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In the article titled “Fractional Crank-Nicolson-Galerkin
Finite Element Methods for Nonlinear Time Fractional
Parabolic Problems with Time Delay” [1], there are a
number of minor typographical errors introduced to the
equations during the typesetting of the article. The cor-
rected article is as follows.

Abstract

A linearized numerical scheme is proposed to solve the nonlin-
ear time fractional parabolic problems with time delay. The
scheme is based on the standard Galerkin finite element
method in the spatial direction, the fractional Crank-Nicolson
method, and extrapolation methods in the temporal direction.
A novel discrete fractional Gronwall inequality is established.
Thanks to the inequality, the error estimate of fully discrete
scheme is obtained. Several numerical examples are provided
to verify the effectiveness of the fully discrete numerical method.

1. Introduction

In this paper, we consider the linearized fractional Crank-
Nicolson-Galerkin finite element method for solving the non-
linear time fractional parabolic problems with time delay

RD%u— Au=f(t,u(x t),u(x,t - 1)), inQx(0,T],

u(x, t) =o(x, 1), inQx (-7,0],

u(x,t)=0, on 0Q x (0, T},
(1)

where  is a bounded convex and convex polygon in R* (or
polyhedron in R?) and 7 is the delay term. ®RD*u denotes the
Riemann-Liouville fractional derivative, defined by

O<ac<l.

(2)

EDfu(-,t) = ﬁ% Jo(t -5)"u(;,s)ds,

The nonlinear fractional parabolic problems with time delay
have attracted significant attention because of their widely range
of applications in various fields, such as biology, physics, and
engineering [1-9]. Recently, plenty of numerical methods were
presented for solving the linear time fractional diffusion equa-
tions. For instance, Chen et al. [10] used finite difference
methods and the Kansa method to approximate time and space
derivatives, respectively. Dehghan et al. [11] presented a full dis-
crete scheme based on the finite difference methods in time
direction and the meshless Galerkin method in space direction
and proved that the scheme was unconditionally stable and con-
vergent. Murio [12] and Zhuang [13] proposed a fully implicit
finite difference numerical scheme and obtained uncondition-
ally stability. Jin et al. [14] derived the time fractional Crank-
Nicolson scheme to approximate Riemann-Liouville fractional
derivative. Li et al. [15] used a transformation to develop some
new schemes for solving the time-fractional problems. The
new schemes admit some advantages for both capturing the ini-
tial layer and solving the models with small parameter o. More
studies can be found in [16-32].
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Recently, it has been one of the hot spots in the investi-
gations of different numerical methods for the nonlinear
time fractional problems. For the analysis of the L1-type
methods, we refer readers to the paper [33-40]. For the anal-
ysis of the convolution quadrature methods or the fractional
Crank-Nicolson scheme, we refer to the recent papers [41-
46]. The key role in the convergence analysis of the schemes
is the fractional Gronwall type inequations. However, as
pointed out in [47-49], the similar fractional Gronwall type
inequations can not be directly applied to study the conver-
gence of numerical schemes for the nonlinear time fractional

problems with delay.

In this paper, we present a linearized numerical scheme
for solving the nonlinear fractional parabolic problems with
time delay. The time Riemann-Liouville fractional derivative
is approximated by fractional Crank-Nicolson type time-
stepping scheme, the spatial derivative is approximated by
using the standard Galerkin finite element method, and the
nonlinear term is approximated by the extrapolation
method. To study the numerical behavior of the fully dis-
crete scheme, we construct a novel discrete fractional type
Gronwall inequality. With the inequality, we consider the
convergence of the numerical methods for the nonlinear
fractional parabolic problems with time delay.

The rest of this article is organized as follows. In Section
2, we present a linearized numerical scheme for the nonlin-
ear time fractional parabolic problems with delay and main
convergence results. In Section 3, we present a detailed proof
of the main results. In Section 4, numerical examples are
given to confirm the theoretical results. Finally, the conclu-
sions are presented in Section 5.

2. Fractional Crank-Nicolson-Galerkin FEMs
Denote T, is a shape regular, quasi-uniform triangulation of
the 2 into d-simplexes. Let h = maxy g {diam K}. Let X, be
the finite-dimensional subspace of Hy(Q) consisting of con-
tinuous piecewise function on 7. Let At = 7/m_ be the time
step size, where m, is a positive 1nteger Denote N = [T/At],
t] :JAt’]: _mT’ _mT + 1’ ...’0’ 1)2’ ...’N'

The approximation to the Riemann-Liouville fractional
derivative at point t =1, () is given by [14]:

RD?,,,W) Zw u(x, 1) + @(At )

= RDg,u +0(AF),

where
@ _ (_1y Fla+1) 4
wor =l )r(i+1)r((x—i+1)' “)
For simplicity, denote [|v||=(],|v( x)[* dx , = (1
—(@2))n" + (a/2)n", 7" = (2= (ar2))" = (1 - (a/2))
72, 19 = (nAt)".

Journal of Function Spaces

With the notation, the fully discrete scheme is to find
U} € X, such that

(*DS,Up, v) + (VU Vv)

= <f(tn,(a,2>, o, UZ”"T’“) , v>, VweX,n=12 N,
(5)

and the initial condition

U,=Ryp(x,t,), n=-m,—m +1,--,0, (6)

where R, : H)(Q) — X,, is Ritz projection operator
which satisfies following equality [50]

(VR,u,Vv) = (Vu,Vv)Yu € Hy(Q)NH*(Q),veX,. (7)

We present the main convergence results here and leave
its proof in the next section.

Theorem 1. Suppose the system (1) has a unique solution
u satisfying

(ol s + Hu“C([O,T];H’”) + HutHC([O,T];H'“) @®

lltelleqoe) + I RDZI‘”HC([O,T];H“‘) =K

and the source term f(¢, u(x,1t),
Lipschitz condition

u(x,t—7)) satisfies the

£ (6 (), (£ = 7)) = £ (1 (1), V(0 t = 1))

SLiju(x, t) = v(x, t)| + Ly|u(x, t, 7) —v(x, £, 7)),

)

where K is a constant independent of n, h and At, L, and L, are
given positive constants. Then, there exists a positive constant
At* such that for At < At*, the following estimate holds that

|u" = Up|| <C} (AP +h™), n=1,2,--,N,  (10)

where Cjis a positive constant independent of h and At.

Remark 2. The main contribution of the present study is
that we obtain a discrete fractional Gronwall’s Grénwall's
inequality. Thanks to the inequality, the convergence of the
fully discrete scheme for the nonlinear time fractional para-
bolic problems with delay can be obtained.

Remark 3. At present, the convergence of the proposed
scheme is proved without considering the weak singularity
of the solutions. In fact, if the initial layer of the problem is
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taken into account, some corrected terms are added at the
beginning. Then, the scheme can be of order two in the tempo-
ral direction for nonsmooth initial data and some incompati-
ble source term. However, we still have the difficulties to get
the similar discrete fractional Gronwall’s inequality. We hope
to leave the challenging problems in future.

3. Proof of the Main Results
In this section, we will present a detailed proof of the main
result.

3.1. Preliminaries and Discrete Fractional Gronwall
Inequality
Firstly, we review the definition of weights w,@, denote g®

= 37 o, Then, we can get
(11)

Actually, it has been shown [51] that wl@ and g'% pro-
cess following properties.

(1) The weights wga) can be evaluated recursively, wg'x)

= (1-((a+ 1)) iz Lol =1

(2) The sequence {wE“)}ZO are monotone increasing —1
(@)

; <™ <0,iz1

<w i+1

(3) The sequence {gl(“)}z)o are monotone decreasing,

9> g\ fori>0and g{” =1

Noticing the definition of gg‘x), Rp& u" can be rewritten as

n
Rp2u' = At Z (gg‘x) - gfﬁ) w4 At’“g(()“) . (12)

i=1
In fact, rearranging this identity yields

n
Rp2 u' = At Z gfﬁ-@tui + At""gﬁl"‘) u°, (13)

i=1

where 8,u’ = u' — u~1.
Lemma 4 (see [51]). Consider the sequence {¢,} given

by

Then, {¢,} satisfies the following properties

() 0<¢, <LYL, 9" =1, 1<j<n
(if) (VI(@) Xy, < (n°/T(1+ )

(i) (/(T()L(1+ (k- 1)) Y, %D < (nkor(1
+a)),k=1,2.

Lemma 5 (see [51]). Consider the matrix

0 ¢ - by by
0 0 - ¢35 ¢,
W =2u(At)* o : : (15)
0 0 0 (o}
0 o0 0 0

nxn

Then, W satisfies the following properties
() W=0,1>n

(i) W*e < (1/T'(1 + ka))

(2L (@)ut)", (2T (@)t )
1,2,

(I (@)t k=0

(iii) Yi_,Wre = Yriwke <
[E.(2(a)uty), E 2T (a)uty_,),E 2T (a)ut})]', 1
>n

where ¢ =[1,1,---,1]' € R", u is a constant.

Theorem 6. Assuming {u"|n=-m,~m+1,--,0,1,2,--
} and {f"|n=0,1,2,---} are nonnegative sequence, for A,
>0,i=1,2,3,4,5, if

Rpya i j -1 -2 j—m j—m—1 j 5 —
Dj <M + A, + A2+ A+ AT T, j=1,2,

(16)

then there exists a positive constant At*, for At < At*,
the following holds

J

(o) (o) [(a)
u'<2 (A“ r((1a+) Mt r((1“+) M maS T ot
<j<n (l + 0()

+2M + A, MAt® + 2L, MAt*)E, (2T (a)At%), 1<n<N,

(17)

where A=, + (1/(gy” = g\)A, + (11(g1" — g8))As + (11

(G = G+ (U9 = gyl A5y Ea(2) = L2250 (1
+ka)) is the Mittag-Leffler function, and M =max {u ™",
u—m+1’ ey MO}‘



Proof. By using the definition of D% 4" in (13), we have

J
D g}ﬁé,uk + gj.“)uo S A (A + Myt + A
k=1 (18)

+ A" Al )+ AL

Multiplying equation (18) by ¢, ; and summing the
index j from 1 to n, we get

n

j
DML

j=1 k=1 j
+ At 7 Ay A
AN G, f - 0,0
=t =t
(19)

. (A + A0

‘MS

I
—_

We change the order of summation and make use of the
definition of ¢,_; to obtain

n j
Y90 2 10 = ZM"Z%-J% 0= ZM = -l
k=1

j=1 k=

—_

(20)

and using Lemma 4, we have

At® z ¢, < At* maxf! Z o
= j

1<jsn
o 104
r@n Tt
I'(l+a)

(21)

< A* i =
11?]2(']( I'(l+a) igj<n

Noticing g](.a)

4, we have

is monotone decreasing, and using Lemma

- Z ¢n—jg§a)uo < Z (pn—jg;a) uo < uo Z ¢n—]g](f)1 = uo' (22)
j=1 j=1 j=1

Substituting (20), (21), and (22) into (19), we can obtain

u" < At* Z b (Ml + Ay + A0
= (23)

I'(a)ts
+ At ™) + 2u” + maxf/ (@)f,

+ Ay YR
4t 1gjer T'(1+ «)

Journal of Function Spaces

Applying Lemma 4, we have

ro () S L(a)ty
A W< "M, At® W < -
;%—1” I'(l+a) le (/5n_]u I'l+a)
= =
(24)
Therefore
m+1
1065 gy e g, s
j=1 j=1
+A Ata(/)n IHO + A3At‘x (¢n_1u71 + ¢n—2u0)
I'(a)t® I'(a)ty
<, @ s As (@)1, M + 2M + A, MA + 20, MAt".
I'(l1+a) *T(1+a)
(25)
Denote
I(a)te I(a)s RACL
b4 :A4 ((X)nM'{'AS <a)”M+max] (a)n
I(1+a) I'(l+a) 1gjsnr T'(1+ a)
+2M + A, MAt* + 2L, MAt*.
(26)

(23) can be rewritten as

n—-1
(1= LA < LAY ¢, b + A qus
Jj=1 j=2

n
P AN Y,

Jj=m+1

n
+ LAY,
=3

n
FASAE Y, W

Jj=m+2

(27)

Let At* = {/1/(2A,), when At < At*, we have

n-1
u" <2¥, +2A% | ) Z¢_]u]+)» Z¢
=1 j=2
n n i n .
Y b A Y b A Y B,
j=3 Jj=m+1 Jj=m+2

(28)

Let V= (u", u" o),
the following matrix form

then (28) can be rewritten in

V<2V, e+ (MW, + L, W, + A, W5 + AW, + A W)V
(29)
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where

W, =2(At)"

W, =2(At)"

W, =2(At)"

W, =2(At)"

W, =2(At)"

o o o o o

o o o o o

¢

¢

o o o o o

¢,
¢

¢
)

o

¢
¢

¢

¢n72
¢n73

¢n71
¢n—2

¢ ¢

¢n—3
¢n—4

¢n—2
¢n—3

$ b

¢n—4
¢n—5

¢n—3
¢n—4

¢n7m—2
¢n—m—3

)
0

¢n—m—3
¢n—m—4

nxn

nxn

nxn

(pnfm—l
(/)n—m—z

¢

o
0

¢n—m—2
¢n—m—3

¢
0

Since the definition of ¢,, we have

¢n—j< ()_ (a)¢”' (31)
gj g]
Then,
1
W,V < WWIV,
90 — 9
1
32
w,V< 71 w,V ( )
AT @) (@1
gm—l gm
1
W;V < @ @ W,V
Im' = Im+1

Hence, (29) can be shown as follows

1 1
V<A + A+ A,
( g -a" " g g
! A ! A | W, V42 ¢
T @Mt Tw @ sV e
gm—l gm gm gm+1
=WV +2¥ e,
(33)
where W =AW,.
Therefore,
VSWV+2¥,7¢ < W(WV + 2?/,}) +2¥, ¢
1 ) n-1 )
=W2V+2%, Y Wid< < W'V +2¥, Y We.
j=0 j=0
(34)

According to Lemma 5, the result can be proved.

Lemma 7 (see [51]). For any sequence {ek}ﬁio c X, the
following inequality holds

o o 1 2
<RDZzek,(1—E>ek+iek’l>2—RDjt &, 1<k<N.

2

(35)

Lemma 8 (see [52]). There exists a positive constant C,,
independent of h, for any v € H(Q) N Hy(£2), such that

1<s<r+1.
(36)

[V =Ryvll2 +hIIV(v = Ry) | 2 < Coh'||v]

I 1

3.2. Proof of Theorem 1
Now, we are ready to prove our main results.



Proof. Taking t =1, in the first equation (1), we can
find that u" satisfies the following equation

("Dgu",v) + (Vu"Vv) = <f (tn*(oz/Z)’ C un—m,,a>, V> + (P v),

(37)
forn=1,2,3,---, N and Vv € X, where
P = RDE y - RDtx /2)u+Au"’(“/2) _ A
+f( . " (aIZ)’un—mT—(zx/Z)) (38)

~f (tuny

n,a n-m_,x
5
U ) .

Now, we estimate the error of ||P"||. Actually, from the
definition of #™* and #™* and the regularity of the exact
solution (8), we can obtain that

n—(a/2) _ e

S |

=[-(1-3) 34 G+ (1-5) s '@

= (1-3) 34 (& @)

S(I—E) Atj gy (5)]||ds < C, AP,

u

(39)

=H<2—fi a7} (-5 )
]

- e~ (2-) (- Han'
(1-3) At &) - ' €]
(

o [
1- E)AtJ [t (5)]| s < C, AP,

tia

(40)

where &, € ( n=(w2)> En)> €2 € (Bucts tuc(ain))> &5 € (Fu(an)> Euc
)> 84 € (B ty(a))> Cr= (1= (@/2))(a2)K, C, = (2~ (a/2
))(1 - (a/2))K are constants.

Applying (39) and (40) and the Lipschitz condition

Hf ( n—(al2)> u'" (alz))“”fm’i(mZ)) -f (tn—(a/z),ﬁ”’“, u"””f’a)
< (L,C, + L,C,)Ar,

(41)
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HA<un,(x _ un*(aIZ)) H < ClAtz, (42)
which further implies that
IP"|| < Ce(At)% n=1,2,3,--+,N, (43)

here C, =L,C, + L,C,.

Denote 6 =R,u" - Uj,n=0,1,---,N.

Substituting fully scheme (5) from equation (37) and
using the property in (7), we can get that

<RDZt92, v> + (VO vy = (RT, v) + (P",v) — <RDZt(u" - R,u"), v>,
(44)

where

R! = f(tn w2y O Ume,,a) ¢ (tni(a/z)’an,a’ un_mr,a)’
Setting v = 0, and applying Cauchy-Schwarz inequality,
it holds that

(“D30; 0,7) + | VO
8 X R X
< [[RY|[1165: 1 + 1P* [[1167 1] + [| *Diae (" = Ryu") || 1165
(46)

Noticing the fact ab < 1/2(a? + b*) and ||VO}||* 2 0,

("D 9w9“®<-—0mﬂ|+nP“|+HRD“Lt—Rmfﬂf)

AR
(47)
Together with (9) and (36), we can arrive that
H RDZt(un _ Rh””)” < CQhHlH RDZtun’ e < CQKhr+1,

Han,(x _ Rhan,a”

=[[ (=3 (1-3)w
2 2

04 _ (04 _
- (2= 5) R (1= 5) R

(2= 3) I =R+ (1= 5) " = Ry
(2_ g)cohr+1||un71| o ( )CQhHlH u 2’

(2 _ g) CoKh™ + (1 - 5) CoKh™ < Ch.

IA

IN

Hr+l

IN

(48)
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Similarly, we have

n—m_,«

[ "% = Ryu™ |

-
2
- (1 - g)Rhun_mT - thu

< (1 - g) CoKh™ + %CQKh”l <C,H,

My gun—mr—l
2

(49)

n-m,—1

where C;=2(2 - (a/2))CyK, C,=2max {(1-(a/2)),

a/2}CpK.
Therefore
IRl = Hf( ot ) = f (10 O U, |
=0 | + Ly = U™

<L, AMH + L6,

|+ Ly - Ry
n—m_,«

+L,||u

<L, H@Z’“H £ L0

- Ry |

C W™
(50)

Substituting (43), (48), and (50) into (47) and the fact
(a+b+c)’ <3a® +3b* +3¢%, we can get

3L12 na||2

3 n,
("D50 01 < S10:°11° + = | 6

L3 2 Cy?

||9Vl mp,x

(ar)*
1
+3 3G L22C42) + (CxK)* | p2Y

3L,2 2

3
<2jope
2
_3L2 o + %(At2+h”‘)2,

(51)

TaBLE 1: The errors and convergence orders in temporal direction
by using Q-FEM.

M a=0.4 a=0.6
Errors Orders Errors Orders
5 1.6856¢-03 * 5.3999¢-03 *
10 2.9420e-04 2.5184 1.2503e-03 2.1106
20 5.9619¢-05 23030 3.0266e-04 2.0465
40 1.3851e-05 2.1058 7.4700e-05 2.0185
Applying Lemma 7, we have
R 2 2|| ™ 2
D503 = 30103 + 3L.,%| |8,
(52)

+3L,%(|6, "’

S(AF +hY)
In terms of the definition of ||6;"*|| and @:’a, we obtain
(¢4 n n o 2 o 2 11— 2
oyl <3(1- 3) lepiE+ (3(5) + 312 (2- 5)7) ey

) I+ 32 (1= 3 e

6" g Cy(A2 +H1Y

+3L12(1 -

2
+3L,% (%)

(53)

Using Theorem 6, we can find a positive constant At*
such that At < At*, then

1671 < Cs (A + K1Y, (54)

where C; is a nonnegative constant which only depen-
dents on Ly, L,, C,, Cy, Cq. In terms of the definition of 6},
we have

|u" = Up|| < ||u" = Rywd"|| + |Ru” = Up|| < Cf (A + H™).
(55)

Then, we complete the proof.

4. Numerical Examples
In this section, we give two examples to verify our theoretical
results. The errors are all calculated in L2-norm.

Example 1. Consider the nonlinear time fractional

where C, = max {Cg?, 3(L,2C5% + L,2C,2) + (CxK)*}. Mackey-Glass-type equation
Ry u(x,y,t=0.1) X
D bl bl t = A bl bl t - 2 bl bl t bl bl t bl bl 07 1 bl t 0’ 1 bl
a3, £) = Auly 1) = 2l )+ 75 i g gy ey 1) (ny) €015 £ [0.1] (56)

u(x, y,t) = t* sin (nx) sin (my),

(x,y) €0, 1]% te

[~0.1,0],



TaBLE 2: The errors and convergence orders in spatial direction by
using L-FEM.
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TaBLE 4: The errors and orders in temporal and spatial direction by
using L-FEM.

M a=0.4 a=0.6 M a=04 a=0.6

Errors Orders Errors Orders Errors Orders Errors Orders
5 7.2603e-02 * 7.2065¢-02 * 5 8.3275e-02 * 8.3375¢-02 *
10 1.9449¢-02 1.9003 1.9297¢-02 1.9009 10 2.2615¢-02 1.8806 2.2732¢-02 1.8749
20 8.7594-03 1.9673 8.6948¢-03 1.9662 20 5.8356¢-03 1.9543 5.8662¢-03 1.9542
40 4.9508¢-03 1.9834 4.9180e-03 1.9807 40 1.4707¢-03 1.9884 1.4784e-03 1.9884

TaBLE 3: The errors and convergence orders in spatial direction by
using Q-FEM.

TaBLE 5: The errors and orders in temporal direction and spatial
direction by using Q-FEM.

M a=04 ax=0.6 M a=0.4 a=0.6

Errors Orders Errors Orders Errors Orders Errors Orders
5 2.0750e-03 * 2.0746¢-03 * 8  6.7379¢-04 * 6.9141¢-04 *

10 2.4888¢-04 3.0596 2.5148¢-04 3.0443 N=MC2 10 3.1416e-04 3.0459 3.4945¢-04  3.0579
20 7.3251e-05 3.0165 7.5802e-05 2.9577 12 1.9415e-04 3.0968 1.9787e-04 3.1196
40 3.0946¢-05 2.9952 3.4200e-05 2.7666 14  1.1891e-04 3.1806  1.1992¢-04  3.2485
where In order to test the convergence order in temporal direc-
tion, we fixed M = 40 for « = 0.4, a = 0.6 and different N. Sim-
Ao e . P s ) ilarly, to obtain the convergence order in spatial direction, we
fleyn= G- " () sin (my) + 2% sin () sin (my) fixed N = 100 for & = 0.4, « = 0.6 and different M. Table 1 gives

(t=0.1) sin (mx) sin (7y) .
1+ [(t-0.1)* sin (7x) sin (ﬂy)}2
(57)

- 2% sin (71x) sin (my) -

The exact solution is given as

u(x, t) = t* sin (7x) sin (7y). (58)

the errors and convergence orders in temporal direction by
using the Q-FEM. Table 1 shows that the convergence order
in temporal direction is 2. Similarly, Tables 2 and 3 give the
errors and convergence orders in spatial direction by using
the L-FEM and Q-FEM, respectively. These numerical results
correspond to our theoretical convergence order.

Example 2. Consider the following nonlinear time frac-
tional Nicholsons blowflies equation

RDZtu(x,y, z,t) = Au(x, y, 2, t) = 2u(x, ¥, 2, t) + u(x, ¥, 2, t = 0.1) exp {~u(x,y,2,t - 0.1)}

+Hf(xyzt), (xyz)€01],

u(x,y,z,t) = t* sin (7x) sin (1y) sin (nz),

where
flxp.21)= F(; :aa) sin (7x) sin (7ry) sin (7z)
+28*(n* = 1) sin (7rx) sin (7ry) sin (7z) (60)

— (t=0.1)* sin (7rx) sin (my) sin (z) exp
- {=(t=0.1)? sin (7rx) sin (7ry) sin (7z) },

the exact solution is given as

u(x, t) =1t sin (mx) sin (7y) sin (7z). (61)

telo,1],
(x,y,2) €[0, 1],

(59)
t €[-0.1,0],

In this example, in order to test the convergence order in
temporal and spatial direction, we solve this problem by
using the L-FEM with M =N and the Q-FEM with N =
MB”2), respectively. Tables 4 and 5 show that the conver-
gence orders in temporal and spatial direction are 2 and 3,
respectively. The numerical results confirm our theoretical
convergence order.

5. Conclusions

We proposed a linearized fractional Crank-Nicolson-
Galerkin FEM for the nonlinear fractional parabolic equa-
tions with time delay. A novel fractional Grénwall type
inequality is developed. With the help of the inequality, we
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prove convergence of the numerical scheme. Numerical
examples confirm our theoretical results.
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A numerical solution for neutral delay fractional order partial differential equations involving the Caputo fractional derivative is
constructed. In line with this goal, the drift term and the time Caputo fractional derivative are discretized by a finite difference
approximation. The energy method is used to investigate the rate of convergence and unconditional stability of the temporal
discretization. The interpolation of moving Kriging technique is then used to approximate the space derivative, yielding a
meshless numerical formulation. We conclude with some numerical experiments that validate the theoretical findings.

1. Introduction

Partial differential equations (PDEs) with time delay play an
important role in the mathematical modeling of complex
phenomena and processes whose states depend not only
on a given moment in time but also on one or more previous
moments. We can mention a simple scenario involving the
hemodynamic behavior of a person suffering from low or
high glucose decompensation. This person can then be given
intravenous insulin to compensate for the low level. Because
the drug must be introduced into the bloodstream for it to
take effect, the preceding scenario can be interpreted as a
delay problem. As a result, there is a growing interest in
studying biological and physical models with delay. The
solutions of delay PDEs may represent voltage, concentra-
tions, temperature, or various particle densities such as bac-
teria, cells, animals, and chemicals [1-3].

Delay PDEs with fractional derivatives have recently
been studied using various numerical and analytical tech-
niques such as [4-8]. It was pointed out in [9] that the deriv-
atives of the dependent variable in the neutral type delay

differential equations are both with and without time delays.
Delay differential equations of neutral type appear in a vari-
ety of new phenomena, and its theory is even more compli-
cated than the theory of nonneutral delay differential
equations. From both a theoretical and practical standpoint,
the oscillatory behavior of neutral system solutions is impor-
tant. For some applications, such as the population growth,
motion of radiating electrons, and the spread of epidemics
in networks with lossless transmission lines, we refer the
interested reader to [9-14].

A consideration of the following fractional PDE with a
constant delay is the goal of this paper. For that end, we
introduce

DV (1, x) + W, (1, X) = AW, (1, x) + A (t,x) + A¥(t — 5, x)
+f(t,x),t€(0,T), x €A,
(1)

with initial and boundary conditions
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2
¥00 =y T2 g xen
W(t,x) = gt x), x € A £ € [0, T], @)
Y(t,x)=¢"(t,x), (t,x) € (=5, 0] x A,

where {D; is the Caputo fractional derivative which is
defined by

y 0"Y(t,x) 1 L0 (s, x)
C _ —
oD (BN = 5= = ey JO 352 (3)

- (t —s)l’vds,v €(L,2).

A novel interpolating element-free Galerkin approach to
approximate the solution of the two-dimensional elastoplas-
ticity problems was constructed in [15] using the interpolat-
ing moving least squares scheme for obtaining the shape
function. Moreover, an improved element-free Galerkin
scheme to solve nonlinear elastic large deformation prob-
lems was considered in [16]. The interpolating moving least
squares approach using a nonsingular weight function is
employed in [17] to approximate the solution of the problem
of inhomogeneous swelling of polymer gels, and also the
penalty scheme is used to enforce the displacement bound-
ary condition; thus, an improved element-free Galerkin
approach was constructed.

The interpolating element free Galerkin method has
been developed to solve a variety of problems, including
two-dimensional elastoplasticity problems [15, 18], two-
dimensional potential problems [19], two- and three-
dimensional Stokes flow problems [20], two-dimensional
large deformation problems [21], incompressible Navier-
Stokes equation [22], steady heat conduction problems
[23], two-dimensional transient heat conduction problems
[24], three-dimensional wave equations [25], two-
dimensional Schrodinger equation [26], two-dimensional
large deformation of inhomogeneous swelling of gels [27],
biological populations [28], two-dimensional elastody-
namics problems [29], and two-dimensional unsteady state
heat conduction problems [30]. The theoretical analysis for
the complex moving least squares approximation, the
properties of its shape function, and its stability was ana-
lyzed in [31]. In [32], a variational multiscale interpolating
element-free Galerkin scheme was established for solving
the Darcy flow. For the numerical solution of generalised
Oseen problems, a novel variational multiscale interpolating
element-free Galerkin scheme was developed in [33] based
on moving Kriging interpolation for obtaining shape func-
tions using the Kronecker delta function. Zaky and Hendy
[34] constructed a finite difference/Galerkin spectral
approach for solving the Higgs boson equation in the de Sit-
ter spacetime universe, which can inherit the discrete energy
dissipation property. A high-order efficient difference/Galer-
kin spectral approach was proposed in [35] for solving the
time-space fractional Ginzburg-Landau equation. Hendy
and Zaky [36] proposed a finite difference/spectral method
based on the L1 formula on nonuniform meshes for time
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stepping and the Legendre-Galerkin spectral approach for
solving a coupled system of nonlinear multiterm time-
space fractional diffusion equations.

This paper is built up as follows. In Section 2, the tempo-
ral discretization is discussed. The analysis of the temporal
discretization scheme is constructed in Section 3. The
moving Kriging technique and its implementation are dem-
onstrated in Section 4. Finally, numerical experiments are
presented in Section 5 to illustrate the analysis of the
obtained scheme.

2. Temporal Discretization

Assume that 7 =s/m such that m is a positive integer. Take

=[T/7] and t, =nt,Vn e N* U{0}. Also, to make ¢t =5,
2s, .-+ being grid points, the time-variable step size should
be surrounded by s =m7 instead of 7=T/N, for N, € Z".
Thus, t, =nt for n=-m,-m+1,---,0. Here, we present a
time-discrete scheme for Equation (1). For any function

&' =&(x,p,t,), we set
AR
4
880 =~ (g -,

Lemma 1 (see [37]). Assume ¢(t) € C*[0,t,] and v € (I,2).
Then

[} O - o). g0 | < €, max 6" (0]
0 (tn - t) 0<t<t,
(5)
in which
Be(6(t,), $(t)) = [MP Z(/\n ket = Anei) (L) = Ai0(t) |
TZ_V 2-v 2-v
Akzz_v[(kﬂ) -k (6)

Let ¥ be the exact solution of (1) and

1 t _Sl,vav(s,x,y,z) S
[ o2 a )

Lx9,2)= —
w(hx.2) r2z-v)J, Os

where v(t,x,y,2) =0¥(t,x, y,z)/0t. Thus, Equation (1) at
(t,>x, y,z) can be rewritten as

w<tn—(l/2)’ X) + V<tn—(1/2)’ X) = Av<tn—(l/2)’ X) +A¥Y (tn—(I/Z)’ x)
+ A‘P<tn—(1/2)—m’x) +f<tn—(1/2)’ x), n

>0.

(8)

Making use of Taylor expansion yields
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-12 _ 8tlI/n—12 + (el)n—IZ, (9)
—(1/2) +Vn—(1/2) :Avﬂ—(l/Z) +Al}/ﬂ—(1/2) +A1}/n—(1/2)—5

+f (172) ( ) —(1/2)-

wn

(10)

Employing Lemma 1 and putting v = v(x, 0) = ¢(x) = ¢
give

n— 1 v (. n— n—
w lzzm.%c(v 12,<p)+(e3) 12, (11)

Furthermore, there is a constant ¢ > 0 that

n12

()" P < e, [(e)" P <t |(e)" P <er’ . (12)

Substituting the above result into (10) arrives at

v n—(1/2) n—(1/2)
m% (6‘1’ ,¢)+5\p

:A5 1{/?’1—(1/2) +Aan_(1/2) +Allln_<1/2)_

+ &) n>1,

m oy (i) (13)

in which there exists C € R* such that

EUR| < Cr. (14)

Removing & (2 yields

1
Ir2-v)r
=A6zUn_(l/2) +AUn—(1/2) +AUn—(1/2)—m +fn—(1/2),n2 1.

B, <8tUn_(1/2 )+6 yr-(12)

In the current paper, U" is an approximation of exact
solution ¥".

3. Analysis of the Temporal Discretization

In the current section, we check the stability of the numeri-
cal procedure.

Lemma 2 (see [38]). Let w, be a nonnegative sequence, and
the sequence x satisfies

Xo < ap>

s—1 16
X<a0+Zb+Zer,, s>1, (16)

r=0

Then, for a, >0 and b, > 0, we have

s—=1 s—1
X < <a0+ b,) exp (Zw,),szl. (17)
r=0 r=0

3
Lemma 3 (see [37]). For any K ={H ;, H,,---} and Q, we
obtain
N r-1
Z )LO‘%r - (Ar—s—l )Lr—s)‘%/s - /\r—IQ ‘%r
r=1 s=1
(18)
S SR
>N oy %! @
r=1 2<2 - V)

Theorem 4. Let ¥° € H)(A); then scheme (15) is uncondi-
tionally stable.

Proof. We define 7 ='¥* — U*. Now, we have

k)Sth(IIZ)} + 8t%57(1/2)
k=1

1 ~ s=1
Ty {A("Ws 023 O = A
:AWS—(IIZ) +AW5—(1/2)—m

(19)

Multiplying relation (19) by 78,7/, integrating over
A and then summing from s=1 to ./ give

M
F(zl_ T Z {Ao (8[7/5‘(“2), 6th—(1/z))
- Z(As—k—l

<6thf(1/z I+ 1/2)

“Ay) <5t%k7(1/2>’ Sth—(l/Z)) }

+7T

DMy -

P
I
—

_ Tf(AStWS’(UZ),St?/"Wz)) n T%(AWS (1/2) 6 W 1/2))

s=1 s=1

M
s Z(Aws—(l/2>—m’ (Sth—(l/Z)).

s=1

(20)

Recalling the left hand side of the above relation, invok-
ing Schwartz inequality and Lemma 3 yields

1 M s—1
o L L W SR

s=1 k=1

,(6;7/1(-(1/2)’ 5th-<1/2)> }

5=

1§ (112) 1
8 S—
2r(z—v);1 oo H 2 A=Ak
Ha gpk-(112) H H5 gps=(112) }
t
M
_ BY 8W:—(1/2 )0 ) s—(1/2)
e I (L L) [ L W
> Tty /Z”: K aa an)|?
2Ir(2-v) & 2y’

(1)



Moreover, for the first term in the right hand side of
Equation (20), we have

Ma

M
T (AS W, 8, W) =~ Y (VO W NS, W)
s=1

@
I
—

M§

SN A% a0

“
I
—

(22)

On the other hand, according to some simple mathemat-
ical actions, we have

M

. Z (A‘W“'(”Z), 517/5—(1/2)) = _TJZ”:

s=1 s

=1

4 s s—1 S _ s—1

. [ <v7/+v7// ><v7/ v >dA
A 2 T

- %f{JA [(vory - (v dA}

Y2dA - jA(VWS)ZdA}

/~

V‘W"(”2>,V6,7/"(”2))

(23)

Also, for the delay term, we arrive at

M§

M
T ( AT 12 8 WS—IZ TZ Ws—m—lz,vatws—n)

11
—_

S

§

<t YV V8T 2
s=1

M
T
)

s=1

E

\V/ i (172) 2
1(4)

<

Nlﬁl

s=1

V6 Ws (172)

|

L2<A>'
(24)

Replacing the above relations in Equation (20) yields

TS s s S 65
- & 17 o 7T LI e

& 12112 1 2
g_fszzluvat% N E{HVWO

2
HLZ(A) B HVWMHLZ(A)}

T & o 2 T & _ 2
+ EZ HVWS " IZHLZ(A) + Ez Hvat?ﬁ IZHLZ(A>
s=1 s=1

(25)
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or

t
TM zu 8 W1, +2rzr\wf o

s—zr2||vsfw||izw+{||W° 2

2
HLZ(A) B HV%/%HLZ(A)}

”2 19972 +TZ 198,72 -
(26)

Now, Equation (26) can be simplified as

< v |}

M
2 S—m— 2
HVW/%HLZ(A) HLZ(A) +7T El HV‘% 12||L2(/\)' (27)
5=

Changing index from ./ to s arrives at

IV |2y < || V2

||L2 LZ(A)
(28)

=||v#?

||L2(A) LZ(A).

The use of Equation (29) and Lemma 2 yields

S
V7|12 < |:HVW°||LZ(A) +271 Z HV((p )IH"HLZ ] exp (2s7)
=1 (4)

0 S k-m
< {Hv% [ +21; HV((p ) HLZ(A)} exp (2T).

(29)
Thus, there exists C € R* that
S 0 —m
&4 HLZ(A) <C lHVW ||L2(A) Lz(A)] ’
(30)
O

4. Moving Kriging Interpolation and
Its Implementation

Following [39, 40], we will invoke the technique of moving
Kriging. Up to our knowledge and armed by the fact of the
advantage of less CPU time consuming needed for the ele-
ment free Galerkin approach based on the shape functions
of moving Kriging than what needed for the element free
Galerkin approach based on the shape functions of moving
least squares approximation. In the meantime, the shape
functions of moving Kriging interpolation can be deduced,
which is analogous to moving least squares approximation
over subdomain A; C A. Let ¥;,(x) is the approximate solu-
tion of ¥(x) on A. The local approximation is formulated
for any subdomain as
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such that g, and a, are monomial basis functions and mono-
mial coeflicients, respectively. Also, S(x) be the realization of
a stochastic process. The covariance matrix of S(x) is given
as

cov {S(x;),S(x,)} = O’ZE[E(Xi, X)), (32)

in which
(i) E[E(x;,x,)] is the correlation matrix

(i) E(x;,x,) is the correlation function between any pair
of nodes located at x; and x,

The correlation function is defined as [39, 40]
E(xi’ xr) = exp (_er?r)’ rzr = ”xi - Xr”’ (33)

such that 0 >0 is a value of the correlation parameter
[39, 40]. Using the best linear unbiased (BLUP) [39], we
can write Equation (31) as follows [39, 40]

¥h(x)=q" (x)n+ ' (X)E (u- Q) (34)
in which

=(Q"E'Q) 'Q"Ew. (35)

We will introduce some notations. The vector of known
m functions can be written as follows [39, 40]

qm (X) 1xm

and the matrix of defined function values at the nodes

X1 X5, -+, X, has the following representation [39, 40]
9(x1)  4(x) 4m(%1)
Q- ‘h("‘z) ‘12(-"2) qm('xZ) ' (37)
9 (xn) ‘b(xn) qm(xn) nxm

5
The correlation matrix is given as [39, 40]
! E(x), %)) E(x),x,,)
E[E(x, x,)] = E(xz', X)) 1 E(xz., X,)
E(x,,x) E(x,%) - 1 nxn
(38)
The correlation vector at the nodes x4, x,, :--, x,, has the

following form

E(x,,x)

n>
The matrices A and B are given as

A=(Q'E'Q) 'QE",
B=E'(I1-QA),

(40)

where I is the n x n identity matrix. Accordingly, Equa-
tion (34) can be written as follows [39, 40]

" (x) = " (x)Au + r’ (x)Bu, (41)

or

P'(x) = [q"(x)A+r"(x z X)¥, = p(x)u, (42)

where the moving Kriging approach’s shape functions are as
follows [39, 40]:

o(x)= (" (XA +r (x)B) =[p ¢ n9,]".  (43)

Now, we are ready to implement that kind of interpola-
tion to the problem under consideration. Let the approxima-
tion solution of this equation be

x »z Z(D ¢] XY )’ (44)

in which ¢;(x) are shape functions of moving Kriging
approximation. Substituting Equation (44) in relation (15)
gives
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TaBLE 1: Results obtained with 500 collocation points for Example 1.
v=1.1 v=1.2 v=1.9 .
’ L, C,-order L, C,-order L, C,-order CPU time(s)
0.1 1.20x 107" — 1.04x 107" — 7.74x 107" — 0.5
0.05 3.00 x 1072 2.00 2.69 x 107 1.94 6.02x 107! 0.36 0.9
0.025 7.51%x 1073 1.99 7.20% 1073 1.90 3.31x 107! 0.86 3.2
0.0125 1.88x 107 1.99 1.97x 107 1.87 1.61x107! 1.04 10.4
0.00625 4.70x 107 1.99 5.46x 107 1.85 7.37 %1072 1.13 37.1
0.003125 1.17x107™* 1.99 1.53x 107* 1.83 3.29x 1072 1.16 87.5
0.0015625 2.94%x107° 1.99 436%x107° 1.81 1.45x 1072 1.18 163.4
0.00078125 7.38x107° 1.99 1.25x107° 1.80 6.35x 107 1.19 277.3
TO 1.9 1.8 1.1
1 , _an) Yo oan) where p=1/T'(2-v)r. Now, the above formulation
T2-vyr (5 2@ 9% 2), <p> +2.0@ T(%0.2)  yields the following system of equations
j=1 j=1
N
112) (1/2) AN =F, 48
—Z@(D A¢ X, 9,2 +Z&)J A¢ (%, 9, 2) (48)
=1 =1

N
. Zst@;zfu/Z)*mA(pj(x) y, Z) +fn7(1/2).
j=1

(45)

By collocating a set of arbitrary distributed nodes
{(x;»y52)}Y, in the computational domain A concludes

1 v < 1-(1/2)
m‘%c (8:2@ ¢i(%i ¥ 2

Jj=1

’ > Zé\@ 1/2 xr’yt’ )

—(1/2)
(D A¢J(x1’yz’ )

'MZ

N
=>4

j—l

Z ~(1/2)-m

n—(1/2
10; ( )A‘Pj(xi))’i)zi) +

-
i
-

A¢j(xi’yi’ z;) +f”’(”2)(x,-,yi, z;).

(46)

After doing some simplifications, we have

N N
(uho +1) z @;;(xis ¥i» 2i) = <1 + 5) zij¢j(xi’yi’Zi)
Jj=1 j=1
N
= (o +1) ) @7 $i(x0 7, 2,) (., 2)
]:1
™
+ (‘1 + 5) ZI:‘D;F Adi(xi yp 2i) + pTh 1
i
n-1 N N
Tt Z()‘n—k—l = Ak (Z ‘D}(qu(xi’yi’ z) - Z ‘Df71¢j(xiryf’ Zi))
k=1 j=1 Jj=1
+F N N 1 ),
3 Z‘D (% Y 7i) - Z‘D;Hm ¢i(xiyp2i) +7f"
j=1 j=1

(47)

in which

T
Ay = (pho + 1)¢(x ¥ 2;) = (1 + E)A¢j(xi’yi’ z),

N N
=(uAg+1) Z cDJ’.”l(/)j(x,y, z)+ (—1 + g) Z cD;”lA(/)j(x,y, z)
j=1 j=1
n-1 N N
it Y (s = Aoe) (Z wf-@(x,y, - Y @ (. z))
k=1 = =1

j=1

+Uth, @+ = (Z(D” "o xy,
+ Tf 1/2
(49)
5. Numerical Verification
In the current section, we investigate the convergence, capa-

bility, and stability of the developed numerical procedure.
Also, the computational rate is calculated by

C - order = (log (2))" x log (%) . (50)

We consider the following problem

1 t az‘I’(x,y, s) ds 0¥ (x, y, 1)
+
F(Z—V)J st (t—s)"! ot
0 [*¥ Y(x,y,t) . BZ‘P(x,y, t) . az‘l’(x,y, t)
T ot 0x? 0y? 0x?

az‘f’(x, ) Bz‘f’(x, yt—s) 52‘}’(96, yt—s)
+ + +
0y? Ox? 0y?

+f(x 1),
(51)
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FIGURE 1: Approximate solution and its absolute error on square domains.

in which the initial conditions are

f(x,y,t) = cos (mx) cos (my) [2t + 277 (s — 1) + 4r’t + 2771,
(52)

0¥ (x, y, 1)

¥ (x, t)|t=0 =0, ot

=0,(x,y) €A, (53)
t=0
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FIGURE 2: Approximate solution and its absolute error on irregular domains.
and also Table 1 shows the results obtained based on the 500 col-

location points, v=1.1, v=1.2, v =1.9, and different values

of 7. Table 1 confirms that the theoretical order (TO) in tem-

¥(x,y,t) =t cos (mx) cos (my), (x,,t) € Ax (=s,0], (54)  poral direction is near to the computational order, i.e., 3 - v.
Figure 1 demonstrates the approximate solutions (a) and its

absolute errors (b) on square domains [0, 1] x [0, 1] (top

with no-flux boundary condition. The exact solution is  figures), [0,4]x [0,4] (middle figures), and [0, 8] x [0, 8]
¥ (x,y,t) =t> cos (rx) cos (my). (bottom figures) with 7=0.001, v=1.5, and also 1000
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FIGURE 3: Approximate solution and its absolute error on irregular domains.

FIGURE 4: Approximate solution and its absolute error on irregular domains.

collocation points. Figure 2 illustrates the approximate solu-
tions (a) and its absolute errors (b) on irregular domains

3
10n2

r(0) = (1+2n+n?—(n+1) cos (nd)), (55)

where n =4 (top figures), n =8 (middle figures), and n =12
(bottom figures) with 7=0.001, v = 1.5, and also 1000 collo-
cation points. Figure 3 presents the approximate solutions
(a) and its absolute errors (b) on irregular domains

3

"0) = Ton2

(1+2n+n? - (n+1) cos (nd)), (56)

with 7=0.001, v=1.5, and also 1000 collocation points.
Figure 4 presents the approximate solutions (a) and its abso-
lute errors (b) on irregular domains

9
x107*
-0.4
2
-0.3 A
-0.2
1.5
-0.1 A
w 04
1
0.1 4
0.2 4
0.5
0.3 4
0.4
T T LI R | T T
-0.15 -0.1 -0.05 0 0.05 0.1 0.15
%107
— 12
- 10
-8
6
4
2
r(0) = 0.3\/ cos (20) + sqrt( 1.1 —sin (9)2> ., (57)

with 7=0.001, v =1.5, and also 1000 collocation points.

6. Conclusion

The current paper presented a new numerical procedure
for solving fractional damped diffusion-wave equations
with delay. In this process, the time derivative is discre-
tized by a finite difference scheme, and we constructed a
time-discrete scheme. The stability and convergence of
the proposed numerical formulation are studied, analyti-
cally and numerically. Then, the moving Kriging interpola-
tion technique, as a meshless method, is used to get a fully
discrete scheme. The proposed numerical method is flexi-
ble to simulate a wide range of PDEs including delay PDEs
on irregular computational domains. Finally, an example is
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provided to demonstrate the stability and convergence of
the new technique.
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The aim of this paper is a new semianalytical technique called the variational iteration transform method for solving fractional-
order diffusion equations. In the variational iteration technique, identifying of the Lagrange multiplier is an essential rule, and
variational theory is commonly used for this purpose. The current technique has the edge over other methods as it does not
need extra parameters and polynomials. The validity of the proposed method is verified by considering some numerical
problems. The solution achieved has shown that the better accuracy of the proposed technique. This paper proposes a simpler
method to calculate the multiplier using the Shehu transformation, making a valuable technique to researchers dealing with

various linear and nonlinear problems.

1. Introduction

In the last decade, significant achievements have been made
to applying and the theory of fractional differential equations
(FDEs). These problems are increasingly implemented to
model equations in research fields as diverse as mechanical
schemes, dynamical schemes, chaos, continuous-time ran-
dom walks, control, chaos synchronization, subdiftusive sys-
tems and anomalous diffusive, wave propagation phenomena
and unification of diffusion, and so on. The benefits of the
fractional-order scheme are that it allows more significant
degrees of freedom in the problem. An integer-order differ-
ential operator (DO) is a local operator, while a fractional-
order DO is a nonlocal operator, taking into account that a
potential state depends not only on the current state but also
on the past of all its previous instances. Fractional-order
schemes have become famous for this valuable property.
Another explanation for applying fractional-order deriva-
tives is that they are naturally linked to memory structures
that prevail in most physical and scientific structure models.
The book by Spanier and Oldham [1] continued to play an

essential role in the improvement of the subject. A few other
primary results connected to the solution of FDEs can be
identified in the books of Ross and Miller [2], Podlubny [3],
and Kilbas et al. [4].

Adolf Fick introduces the laws of diftusion of Fick in 1885.
After that, the second law of Fick became identified as the dif-
fusion equation. Diffusion is the mesh atom’s movement from
a high chemical potential or higher concentration field to a
lower concentration or low chemical potential field. Investiga-
tors have investigated classical wave and diffusion equations to
many physical schemes, such as classical diffusion, slow diffu-
sion, diffusion-wave combination, and classical wave equa-
tion. Many diffusion equation implementations, such as
phase transformation, electrochemistry, magnetic fields, filtra-
tion, microbiology, acoustics, astrophysics, and biochemical
group structures. Diffusion is determined by the gradient of
the potential energy of the diffusing form. The gradient is
the difference in the value of a number, e.g., concentration,
strain, or temperature, with differences in one or more vari-
ables is often differentiated. Researchers have been seeking to
recognize and reduce manufacturing systems problems to
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reach better productivity. In applied science schemes, there are
various causes for entropy production. In heat engines, heat
transfer, the primary source of entropy production is a mass
transfer, the coupling between heat, entropy generation and
chemical reaction, electrical conduction, as described in the
seminal sequence of publications by Bejan et al. [5, 6]. Scholars
have utilized different methods for the analysis of diffusion
equations such as Chebyshev collocation technique [7], finite
difference technique [8], finite volume element technique
[9], variational iteration technique [10], two-step Adomian
decomposition technique [11], finite volume technique [12],
and Laplace transform [10].

In this paper, we implemented the variational iteration
transform method to solve the fractional-order diffusion
equations.

The fractional-order two-dimensional diffusion equation
is given as

a8 aZ 82
a_r;;za_;+a—l;,0<5sl,n20, (1)

with initial condition

#(G . 0)=g(Cv). 2)

The fractional-order three-dimensional diffusion equation

Pu Pu Fu  u
a_rﬁ:a_(2+a—1//2+a—82’0<69”720’ (3)

with initial condition
UG v 5,0 = g0, ). (4)

A Lagrange multiplier technique has been widely utilized
to solve different types of nonlinear equations [13]. This
occurs in mathematics and physics or certain related fields
but has been established as a basic analytical method, ie., a
varjational iteration method (VIM) to model differential equa-
tions [14]. The VIM was first recommended by He [15] and
was implemented effectively to address the heat transforma-
tion problem [15-17]. Recently, several researchers have
widely used this method to solve linear and nonlinear equa-
tions. The approach offers a consistent and efficient mecha-
nism for a wide variety of applications in engineering and
science. It is based on a specific Lagrange multiplier and has
the merits of simplicity and easy implementation. Unlike
conventional numerical approaches, VIM does not require
linearization, discretion, or perturbation. The successive
approximation provides quick convergence for the exact result
[18-21]. The variational iteration method was introduced in
2010 using the modified Riemann-Liouville derivative [22].
Recently, a procedure combining in this sense Laplace trans-
formation and VIM was proposed [23, 24], and Wu developed
a modification via fractional calculus and Laplace transforma-
tion [25]. LVIM for solving nonlinear PDEs [26] and system
of fractional PDEs [27].
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2. Basic Definitions

2.1. Definition. The fractional-order Riemann-Liouville inte-
gral is defined as [28, 29]

6 1

g 6-1
I3k = 57 |, (19" hisyas (5)

2.2. Definition. The fractional-order Caputo’s derivative of
f(n) is given as [28, 29]
Dof(n)=1"f,]-1<8<],J€N;

d (6)
d—n]h(r]),S:],]e]N.

2.3. Definition. Shehu transformation is new and identical to
other integral transformations defined for exponential order
functions. In Set A, the function is defined by [30-32]

'
A={v(n): 3,p;» p, >0, [v(n)| < Me?, if n € [0,00). (7)

The Shehu transform which is described as S(.) for a
function v(#) is defined as

Svim}=V(su)= J:O e%WV(n)dn, 7>0,5s>0. (8)

The Shehu transform of a function v(y) is V (s, 4): then,
v(n) is called the inverse of V (s, u) which is given as

SV (s,u)} =v(y), for >0, S”"is inverse Shehu transform.

)

2.4. Definition. Shehu transform for nth derivatives is given
as [30-32]

J-1

S{VU)(I’])} = Z—]]V(s, u) - ;Z(:)

2.5. Definition. The fractional-order derivatives of Shehu
transformation are defined as [30-32]

S{v(‘s)(q)} = Z—ZV(S, u) - g (%) 6_k_1v(k)(0), 0<p<n.

(11)

2.6. Definition. The Mittag-Lefller function, Eg(z) for § > 0, is
given as

(o8] Z]
1E5(z)=g0 m,6>o,ze((:. (12)
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3. The Methodology of VITM

This section introduces the general producer of VITM to
solve time-fractional partial differential equation [23].

DXu(Cn) + M () + N () = H(Gm) =0,0< 8 <1,
(13)

with the initial sources
(6, 0)=g,(¢), (14)

whereDg =09°/(3n° )is the fractional-order Caputo derivative

andd,.#, and /¥, are linear and nonlinear functions, respec-
tively, and sources function.%".
The implementation of Shehu transformation to Eq. (13)

S[DhuCm)| + Sl + (G - H @) =0, (15)

Using the differentiation property of Shehu transforma-
tion, we get

m-1 §—k-1 ak ;
e

k=0

==S[(Gn) + N (Gm) = H(Em))-
n=0

(16)

The Lagrange multiplier of the iterative system as

5 m-1 §-k-1 3k
Sl (1)) = Sl ()] + A [%m(c m- Y St

P R '
=S (Gm)] = S{ A (&) + N (G m)}]-
(17)
A Lagrange multiplier as
)
u
As) =- i (18)

Applying inverse Shehu transform S, Eq. (17) can be
defined as

[ g )
k=0

_ -1
K1 ((’ 1’]) =Wy (c’ }7) =S [S_(S ud—k akT]
n=0

=S[F (G, n)] = S{A (G, m) + A (&) H,
(19)

the initial value can be described as

k=0

5 | m=1 b5-k-1 xk
_gt | (V)
Ho (C’ 77) =S |:S—6 { 0k akﬂ

H -

4.1. Problem. Consider the fractional-order diffusion equa-
tion [11]

4. Implementation of VITM

u B ’u _ou o u

= Ly v u0<a<l, 21
o acz aC H al? U tp (21)
with the initial condition
u(¢,0)=¢. (22)

Applying VITM on equation (21), we have

Houna (1) =871 {—”’” (f’ ”)} +s”

o’ u, Ou o
S IA()S — - Ly _m_2+ )
{ (s) {acz o THm T T Hm T b

where the Lagrange multiplier is A(s)

5
As)=-2, -
s () = 57| S’"} st
u5 aZ‘u a” u
— S m _m m _ 2
|:s5 { acZ a( m acz lum+lum
(24)
Now take,
Ho(Gom) =&, (25)
consequently, we get
m=0,1,2,3---
1[G ) -1 [ Py, Oy Uy, ]
m(Gn) =S {f]fs STSS 37(2*57(“4067{2*#0*#0 ;
0,0 ) :
_ 5 en
w(Gm=e+ Fo+T)
: N LT 2 T
{410 {128
_ 4 en en
wCm = T Y T )
\ e (7 ) ?*
{0 {20 7,30
_ en en en
wON = Ly Y s 1) T @) (26)



The approximate result of equation (21) can be achieved as

28 38 md
uGn) = Og(is(z%) +y,r(ig+1) ’ r(gcg+1)+"'+r(ig+1)’
u(ln)=¢ Z::O Tmd+1) = ¢'E; (115) . (27)
The exact result of equation (21)
u(Gm) =€, (28)

In Figure 1, the exact and the VITM solutions of problem 1
at 0 =1 are show by subgraphs, respectively. From the given
figures, it can be seen that both the VITM and exact results
are in close contact with each other. Also, in Figure 2, the
VITM results of problem 1 are investigated at different
fractional-order § = 0.8 and 0.6 of 3D and 2D. It is analyzed
that in Table 1, the time-fractional problem results are conver-
gent to an integer order effect as time-fractional analysis to
integer order.

4.2. Problem. Consider the two-dimensional fractional-order
diffusion equation [11]

S 2
a—f;—a“ a‘“0<5<1 (29)
o’ ogt oy
with the initial condition
w6y, 0) = (1-y)é. (30)

Applying VITM on equation (38), we have

(S . Pu,,  Ou,
[R(SAEN l{f} +S 1[)‘(5)5{8—(2 + oy }}’

(31)
where the Lagrange multiplier A(s) is
5
u
A(s)z—s—é,
N N ()| R 7o R 7
U (G ym) =S {f] S |:5_5$ o + oy’ :
(32)
Now take,
Ho(Goyom) = (1-w)é, (33)

consequently, we get

m=0,1,2,3 -

1 o (,q/, - S aZ N aZ )
s [622] o 15{5e - 2]
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m(C»w,n):(1—w)e<+(1—w)e‘r((;7+1),
_ ol [TR(S"27) u az‘ul 82‘141
t(Gyn) =S {f] 65{ or +51//2H’
0 25
palbo )= (=) + (L) s+ (=) s,
Y, S|l [P, P,
m@%mzywﬁiwﬂ_s{?%a;+aﬁﬂ,
0 26
!"3((’1//”1):(1—1//)6(+(1_W)6(F(5r]+1) +(1-y)e (zna+1)
¢ ’136
+(1-y)e F(T*—l)
(34)

The approximate result of equation (38) can be achieved
as

5 28
) = (1= (=9 e (0

¢ ’135 nma
+(1-y)e (38+1)+ (1-vy)e m
(35)
When « = 1, the VITM solution is
uGyan) = (1) Y (36)
m=0 :

The exact solution in closed form is

p(Goyam) = (1= y)elr, (37)

In Figure 3, the exact and the VITM solutions of problem
2 at § =1 are shown by subgraphs, respectively. From the
given figures, it can be seen that both the VITM and exact
results are in close contact with each other. Also, in
Figure 4, the VITM results of problem 2 are investigated at
different fractional-order § = 0.8 and 0.6 of 3D and 2D. It is
analyzed that in Table 2, the time-fractional problem results
are convergent to an integer order effect as time-fractional
analysis to integer order.

4.3. Problem. Consider the two-dimensional fractional-order
diffusion equation [11]

5 2
gﬂf;-g(” gw”0<5<1 (38)

with the initial condition
u(Gy, 0) =), (39)
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FI1GURE 1: Graph of exact and analytical results of Problem 3.1.
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FIGURE 2: The different fractional-order graphs of Problem 3.1.

Applying VITM on equation (38), we have

—1 | B (&Y — az m
R e {A(s)S{ -

where the Lagrange multiplier A(s) is

5
A(s):-%,
—1 m (a > -1 0 aZ m
TR (SN EN {M]_S [s_as{ a?z

Now take,

to (G ) = &Y,

2
ek

(40)

2
.9 umH
oy?

consequently, we get

m=0,1,2,3 -+

(@ o) =51 [Fal& ¥ )]

ol I e

m&%@=NM+RWWH

()] 51 -uas{azyzl N
s 7)o

Gy =S

bl yor) = €00 12660

[ v n)]

f s ( B
=S |, O,
Ha(Goyen) =§ L s ] S B S{ o ! 81[/2}

u Z V. n)= e(( ) + :le(( ) }16 +4 (C+y) ’126
v, +y +y +y

3( ) F(6 + 1) ¢

’736

+ 16eV) ,
¢ TEs )
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TaBLE 1: VITM at fractional-order value & = 0.8 and absolute error § = 1 of example 1.

n ¢ 6=0.75 6=1 Exact AE(6=1)
1 0.853687662 0.7165300518 0.7165306597 7.56E-08
2 0.383587401 0.3331299364 0.3331301601 3.37E-08

0.5 3 0.210647180 0.0930849163 0.0930849986 9.35E-09
4 0.048026028 0.0411973531 0.0411973834 4.24E-09
5 0.024621114 0.0222089854 0.0222089965 2.10E-09
1 1.389724464 0.9988367591 1.0000000000 9.35E-06
2 0.580784320 0.4778488184 0.4778794412 4.42E-06

1 3 0.283191872 0.2453240178 0.2453352832 2.24E-06
4 0.074713729 0.0587829240 0.0587870683 5.45E-07
5 0.034438971 0.0193141142 0.0193156388 2.32E-07

0.8 3
y 10

0.8 8
y 10

FIGURE 3: Graph of exact and approximate solutions of Problem 3.2.

The approximate result of equation (38) can be achieved
as

a 28
u(Goyrn) = eV 4 el T ypcr) T
T

+1) r2é+1)

38 md
166w M e (2)Te ) M k
6 ras T A T

: 2 (@) | (@)
u(Gyom) = M(”( 1) F(26+1)+F(36+1)

@) ., )" )

I'(48+1) I'(md+1)

00 S\ ™M
u(Gyan) =ty % = (1-y)eEy (). (49)

m=0

When 6 = 1, then the VITM solution is

@ . (45)

Mg

(c v, 7) = 6w

3
I
(=]

The exact solution in closed form is

UGy ) = e, (46)

In Figure 5, the exact and the VITM solutions of problem
3 at § =1 are shown by subgraphs, respectively. From the
given figures, it can be seen that both the VITM and exact
results are in close contact with each other. Also, in
Figure 6, the VITM results of problem 3 are investigated at
different fractional-order § = 0.8 and 0.6 of 3D and 2D. It is
analyzed that time-fractional problem results are convergent
to an integer order effect as time-fractional analysis to integer
order.

4.4. Problem. Consider the three-dimensional fractional-
order diffusion equation [11]

Pu _ 92ﬂ+82# O’

— ,0<6<1,n>0, 47
6116 a( 81//2 ac~2 < n ( )
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TaBLE 2: VITM at fractional-order value § = 0.8 and absolute error § = 1 of example 2.
n ¢ §=0.75 6=1 Exact AE(6=1)
1 0.6873975264 0.4262266609 0.326227766 2.23E-07
2 0.0687397526 0.0426226660 0.042622776 2.34E-08
0.5 3 0.0067739752 0.0042622666 0.004262277 0.21E-09
4 0.0006773975 0.0004362266 0.000436227 1.12E-10
5 0.0000687397 0.0000446226 0.000044622 2.14E-10
1 2.7771190120 0.9984599728 1.000000000 4.56E-05
2 0.3567119012 0.0998953372 0.100000000 5.89E-07
1 3 0.0376711901 0.0098746437 0.010000000 7.12E-07
4 0.0042671190 0.0009988544 0.001000000 7.89E-08
5 0.0004567119 0.0000998459 0.000100000 7.22E-09
with the initial condition where the Lagrange multiplier A(s) is
u5
w(¢, v, S, 0) =sin { sin y sin . (48) As) = -3
_ o1 [Ba( G Som)
Applying VITM on equation (47), we have Bt (65 S,1) =S [ - S
8 2 2 2
N L O M
o [aC S S v ast |
Bt (G So) = 7 | ——
s (50)
o*u *u o’u
-1 m m m
+S P(S)S{ e + g2 + s (| Now take,

(49) to (v, B, ;) =sin  sin y sin G, (51)
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consequently, we get
m=0,1,2,3---

e ()
(e S =57t Pl

_g! BS g + Oty + 4y
5 2 T Qur <2 (|
s o¢ 1% 03

s
- o\ . e n
yl(C,t//,\s,q)—s1nC31nw51no(1 3F(6+1)>’

Gy, S,n) = s! {M}

_Sfl u_és aZHl + azyl + azlul
58 aCZ av/Z aSZ >

8
Uy A
yz(C,w,J,r])—s1nCs1nu/s1no(1 3F(8+1)
26
a2 M
+(3) 1‘(28+1)>’
5 1[G 9 Son
m@w¢m=yﬁi—?—4
_g! ”_65 u, + Py, + Oy,
s0 acZ 31//2 aSZ >
8
o1 2 N
[43(C,1p,d,11)—Sln(51nws1nd<1 37F(6+1)

5 ’125 ’135
YO Tasrn T s 1))’
: (52)

The approximate result of equation (47) can be
achieved as

. 3
04 ¢, 1 2
Y 0 x
u(l, v, I, n) =sin { sin y sin §
'75 ),
1=-3_ 1 43
( ST+ T Tase
38 md
Ay ey T
) s ) r(ma+1)>'

(53)

When 8 =1, then the VITM solution in a closed form
is

w(C,p, S, n) =sin{ siny sin §
a2 a3 (_and
.G_Mg3m+<m>g3m+J.

2! 3! 4!
(54)
The exact solution in closed form is
Uy, S, 1) =esin { sin ysin . (55)

In Figure 7, the exact and the VITM solutions of prob-
lem 4 at § =1 are shown by subgraphs, respectively. From
the given figures, it can be seen that both the VITM and
exact results are in close contact with each other. Also,
in Figure 8, the VITM results of problem 4 are investi-
gated at different fractional-order § =0.8 and 0.6. It is
analyzed that time-fractional problem results are conver-
gent to an integer order effect as time-fractional analysis
to integer order.

4.5. Example. Consider the fractional-order nonlinear
convection-diffusion equation

Pu Py ou o[ du
— = - + — —— | -20,0<{<1,0<6<1,n>0,
o~ o o\ Mo ) 20t 1

(56)
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FIGURE 7: Graph of exact and approximate solutions of Problem 3.4.

with the boundary conditions where the Lagrange multiplier is A(s).
u(0: 1) =21, (1, m) =1+ 21, (57) u®
As) =— EE
and initial condition
1 [ (G )
‘M({, 0) = CZ, (58) Hin1 ((’ ’7) =S ! |:f:|
S 2 2
. . _71u a”m_a”m 0 an"{m _
Applying VITM on equation (56), we have S [5—5 S{a—(z ra an (Hm B—CZ> 2 H :
N (60)
. o’u, ou, O o, Now take,
+S |:/\(S)S{ e + o (um o ) —2(}},

(59) wo(Gom) =22, (61)
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F1GURE 8: The fractional-order of § = 0.8 and 0.6 of Problem 3.4.

consequently, we get

m=0,1,2,3:--
_ o1 [#(Gn)
) =S 1[%}

i " 17
#y(Gm) ="+ (2-40) r+1) +41“(25+ 1)
26-1
- g

Ha(C,ﬂ)—42+(2‘4C)r(5+1) 4F(25+1)
-1 T e
-4¢(3¢ - )[‘(28)_ T(38) (6C+ )T(35)
-2 r(28+ 1)t
— 422 (60 - 1) 35-1) —Ml—z()m
713671 N }13572
8y P sy

(62)

The approximate result of equation (56) can be
achieved as

2 ’75 ’728
uom =0+ 24wy Y e
1201 o1
~H3¢-) r2é) 24 (38)
o1 , -2
—4(60 +1) e — 4% (6¢ - 1)m (63)
~ ~ F(25+ 1)’138—1 }136—1
8(1-20) TEO)TB+1) 8{1“(35)
. -2
+80°(1- 3{)m+m
The exact result of equation (56) is
u(Gm)=¢"+2n. (64)

5. Conclusion

In this article, an extended variational iteration transform
method is implemented to achieve the analytical result of
time-fractional diffusion equations. The suggested method
is an effective and simple tool to solve fractional-order par-
tial differential equations, because it applies the Lagrange
multiplier directly to solve fractional-order partial differen-
tial equations. In conclusion, the current technique has the
small number of calculations and straightforward imple-
mentation and therefore can be applied to other fractional-
order partial differential equation, which frequently arises
in applied science.
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Abbreviations

VITM: Variational iteration transform method
ST: Shehu transform

DE:  Diffusion equation

FC: Fractional calculus

PDEs: Partial differential equations
ADM: Adomian decomposition method.
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The qualitative analysis of a three-species reaction-diffusion model with a modified Leslie-Gower scheme under the Neumann
boundary condition is obtained. The existence and the stability of the constant solutions for the ODE system and PDE system
are discussed, respectively. And then, the priori estimates of positive steady states are given by the maximum principle and
Harnack inequality. Moreover, the nonexistence of nonconstant positive steady states is derived by using Poincaré inequality.
Finally, the existence of nonconstant positive steady states is established based on the Leray-Schauder degree theory.

1. Introduction

Three-species reaction-diffusion models with Holling-type II
functional response have been a familiar subject for the anal-
ysis. Taking more practical factors into consideration, a
model with a modified Leslie-Gower scheme is worthy to
explore. Leslie-Gower’s scheme indicates that the carrying
capacity of the predator is proportional to the population
size of the prey. The existing works [1-3] are all about
models with this scheme. As a matter of fact, predators pre-
fer to prey on other prey in the event of a shortage of favorite
prey, so the research of the modified Leslie-Gower model
springs up. Aziz-Alaoui and Okiye [4] focused on a two-
dimensional continuous time dynamical system modeling a
predator-prey food chain and gave the main result of the
boundedness of solutions, the existence of an attracting set,
and the global stability of the coexisting interior equilibrium,
which was based on a modified version of the Leslie-Gower
scheme and Holling-type II scheme. Singh and Gakkhar [5]
investigated the stabilization problem of the modified Leslie-
Gower type prey-predator model with the Holling-type II
functional response. The analysis of models with a modified
Leslie-Gower scheme can be also found in [6-10].
Nonconstant positive steady states have received increas-
ing attention in recent years, see [11-18] and references

therein. Ko and Ryu [19] showed that the predator-prey
model with Leslie-Gower functional response had no noncon-
stant positive solution in homogeneous environment, but the
system with a general functional response might have at least
one nonconstant positive steady state under some conditions.
Zhang and Zhao [20] analyzed a diffusive predator-prey
model with toxins under the homogeneous Neumann bound-
ary condition, including the existence and nonexistence of
nonconstant positive steady states of this model by consider-
ing the effect of large diffusivity. Shen and Wei [21] considered
a reaction-diffusion mussel-algae model with state-dependent
mussel mortality which involved a positive feedback scheme.
Wang and his partners [22] considered a tumor-immune
model with diffusion and nonlinear functional response and
investigated the effect of diffusion on the existence of noncon-
stant positive steady states and the steady-state bifurcations.
Hu and Li [23] were concerned about a strongly coupled dif-
tusive predator-prey system with a modified Leslie-Gower
scheme and established the existence of nonconstant positive
steady states. Qiu and Guo [24] analyzed a stationary Leslie-
Gower model with diffusion and advection.

Motivated by the mentioned above, we consider a three-
species reaction-diffusion model with a modified Leslie-
Gower and Holling-type II scheme under the homogeneous
Neumann boundary condition as follows:
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2
0 C
Y u(Aa-au-By- 1Y), tso,
ot 1+D,u
0
B_‘t} =v(B—A,v—-B,u), t>0, (1)
0 C
—w:w C- 2 R t>0,
ot 1+D,u

where u and v represent the density of two competitors,
respectively, while w stands for the density of the predator
who preys on u. A, B, and C are all positive as the intrinsic
growth rates, A; and A, regard as influencing factors within
diverse populations themselves while B, and B, are influenc-
ing factors between different populations. All of them are
nonnegative. C,w/(1+D;u) and C,w/(1+D,u) are the
modified Leslie-Gower scheme, and C,, C,, D;, and D, are
positive. Applying the following scaling to (1), as well as
assuming C,D,/D,C, =1 for simplicity of calculation:

D A,D D
m1=—1u,m2= 271

A C
1 1+¥1

b = b = t, 2

ac, T A, T D, (2)

still using u, v, w, t replace m,, m,, ms, s, the following ODE
system can be logically obtained:

ou w

E:u a_u_“lv_ﬁ1+u , t>0,

ov

5 (b-v-ayu), t>0, 3)
aw_ L w 50

E_w c m > >

u(0) = 0,v(0) >0, w(0) >0,

where a=AD,/A,C,,b=BD,/A,C,,c=CD,/A,C,,«, =B,/
Ay &y = By/A, By = 1/Cy, B, = 1/C,.

It is clear that (0,0,0), (a,0,0),(0,b,0), (0,0, ¢cf,), and
(0, b, ¢f3,) are nonnegative constant solutions of system (3).
((a—oyb)/(1—ayp), (b—0aya)/(1 -y ),0) is a semitri-
vial solution when it satisfies (a — a,b)(b — a,a) > 0. When
af; > cf,, (it,0,w) is a semitrivial solution where

a—ﬁl—c+\/(ﬁl—a+c)2—4c[32+4a[31 (4)
> ,

w=c(B, +up)- ()
System (3) yields that

1;[:

(o oty — 1)u2 +(a-p—ab+aa,B —cu
+pBa-a;B,b-B,c=0.

If the following alternative conditions hold:

(i)aya, > 1anda < (xﬂ’ (7)
2
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B, b

(i) b+c—>=<a< —, (8)

B, 2%)

there exists the unique positive equilibrium (u*, v*, w*) as

. —a+fBirab-oaf +c+ VA
u =
2(a;y = 1)

>

vi=b-au",

w* =c(B, +u"),
where

A=(a-B-ab+ajaf - C)Z

(10)
— 4, — 1)(Bya—a; b - Bye).

Taking the diffusion into account, the corresponding
PDE system can be written as

a—u—dlAu:u a—u—txlv—L R t>0,x€,
ot B, +u
ov
E—dzszv(b—v—oczu), t>0,x€2,
Jw
— —d;Aw=w(c— R t>0,x€,
ot B, +u
Ju ov Ow

v v ,x €00,
53 9n 0 t>0,x€0
u(x, 0) = uy(x), v(x,0) = vy (x), w(x, 0) =wy(x), x€Q,

(11)

where Q ¢ RN is a smooth bounded domain, 7 is the out-
ward unit normal vector on 9, A is the Laplace operator,
and diffusion coefficients are d,, d,, d; > 0.

The rest of this paper is arranged as follows. In Section 2,
the stability of constant solutions for the ODE system is dis-
cussed. In Section 3, the stability of constant solutions for
the PDE system is studied. In Section 4, we focus on the
priori estimates of positive steady states. In the last two sec-
tions, we have a discussion about the nonexistence and exis-
tence of nonconstant positive steady states under different
conditions.

2. Stability of Constant Solutions for the
ODE System

In this section, we discuss the stability of constant solutions
with the condition of their existence for the ODE system.

Theorem 1. For the ODE system (3), let I' ={a, b, ¢, a;, a,
BBy} and 1/(B, +u* ) £B.

(i) (0,0,0), (a,0,0),(0,b,0),(0,0,cpB,) and ((a—a;b)
(I-oa;0,),(b=aya)/(1-a;a,),0) are all uncon-
ditionally unstable
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(ii) If T satisfies a < bla,, then (i, 0, w) is unstable; if b
<a,(a-B;—c) holds, (i1,0,w) is local asymptoti-
cally stable

(iii) If T satisfies a > a;b+c(f,/3,), then (0,b,cf,) is
unstable; if a<ab+c(B,/B,) holds, (0,b,cf,) is
local asymptotically stable

(iv) If I and B satisfy 2u™ —a+ (a; + 1)(b— a,u™) + ;¢
B (B, +u*) +c<0, then (u*,v*,w") is unstable; if 2
u*—a—-c=0 and c—a;a,u* >0 holds, (u*,v*,w*)
is local asymptotically stable

>
*

Proof. The Jacobian matrix of the ODE system (3) is

a-2u—av- Prw > —aqu -t
(By +u) Pi+u
J= —a,V b-—a,u—2v 0
W 0 - v
(B, +u)? Pr+u

Obviously, we can obtain

a 0 0
J=10 b 0 (13)
0 0 ¢

at (0,0, 0) and its corresponding characteristic polynomial is
¢(A)=(A-a)(A-b)(A-¢)=0, (14)

so its eigenvaluesare A, =a >0,1, =b>0,and A; =c¢> 0.
Therefore, (0,0, 0) is unstable to system (3).

By the same manner, we know that (a, 0, 0), (0, b, 0), (0,
0,cf,),and ((a—a; b)/(1 -, a, ), (b—aya)/(1 —a; @, ),0)
are all unstable to ODE system (3).

The Jacobian matrix of the ODE system at (i1, 0, w) is

,+it(a—i¢) . u
U+ ——=  —ou -
B, +i ! B, +u
= . 15
J 0 b-a,u 0 (15)
é 0 —C

The characteristic polynomial is

A= (b - ayit)] [(A+ i - ”g:;?) (A+c)+ ﬁfu - 0.
(16)

When the eigenvalue satisfies A, = b — a, it > 0, it deduces
that a < b/a,, so we can see that (i1, 0, w) is unstable to ODE
system (3). When A, = b — a, 1 < 0, we consider that

A+ (il— ul(;;z) +c>/\+ci4— Cu(a__u) T )
1

Letp, =it — (it(a—it))/(B, +1t) + ¢, p, =cit— (ci(a—ir)
1B, + i) + (2l B, + ir)and take value for iz, w as (4) and (5),
we know that p, = (i +af, — ¢, + cB,)/(B, + i), p, = ((cit
(2i+ B, +c—a))/(B, +it)) >0. With the existence condi-
tion af; > cf,, p, >0 and p, >0 hold, such that equation
(17) has two solutions with negative real parts.

Because of af3; > cf3,,

a-fB,—-c+ \/(ﬁl—a+c)2—4cﬁ2+4aﬁl
2

M=b-wi=b-a,

a-f,—c+ (ﬁl—a+c)2

<b-a, 3

(18)

holds, then A, <0 if b—a,(a—f, —c) <0. So we can con-
clude that when b<a,(a— 3, —¢), (i, 0,w) is local asymp-
totically stable to ODE system (3).

The Jacobian matrix of the ODE system at (0, b, ¢f3,) is

a—txlb—cl";z 0 0
1

—-ayb -b 0

é 0 —c

The characteristic polynomial is

—ata C& c)=
(/\ +a b+ ﬁl>(k+b)(/\+) 0. (20)

The corresponding eigenvalues are A, =a —a;b—c(B,/p,),
Ay==b<0,A;==c<0. If a>ab+c(B,/B,), (0,b,cp,) is
unstable. Otherwise, a < a,b+c(B,/f;), (0,b,cf,) is local
asymptotically stable to ODE system (3).

The Jacobian matrix of the ODE system at (u*, v*, w*) is

an 4 913
J=|ayn ayn ay

a3 Gz G
a-2u" —a(b-au*) - BB (B +u*)  —au*  -u'B

= —a,(b—a,u”)

& 0 —C

(21)

The corresponding characteristic polynomial is A* + A,
A+ A,A + Ay =0, where
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2u* —a+ () +1)(b—ayu*) + B,cB*(B, +u*) +¢,

Ay= [a-2u" —ay(b—au®) = BcB (B, +u") | (aqu* —b—c) + Cu' B+ (ayau” — ) (ayu* — b), (22)

A= c(ayu” —b)[a—2u" —ay(b-20,u") - B,cB* (B, +u*) — cuB].

When I' satisfies 2u* —a+ (a; + 1)(b - au*) + B,cB(
B, +u*)+c<0, then A, <0, (u*,v*,w*) is unstable apply-
ing the Hurwitz criterion [25]. When 2u* —a—-¢>0,c—
a,a,u* >0, we can find A; >0,4,>0,A;>0,A,4, -A; >
0. So (u*,v*,w*) is local asymptotically stable to ODE
system (3).

The proof is complete.

3. Stability of Constant Solutions for the
PDE System

In this section, the stability of the constant solutions with the
condition of their existence for the PDE system is discussed.

Let 0=, <y <y, <py<--- as the eigenvalues of the
operator —A over (2 under the homogeneous Neumann
boundary condition and E(y;) be the corresponding eigen-
space while {g;; | j=1,2,--, dim E(y,)} is a set of the orthog-
onal basis of E(y,), X={U € C'(Q) x C'(Q) xC'(Q)|0,U
=0,x €00}, and X;;= {C(pij [ceR’}. Then, X=o,

dim E(i"ﬂx
ij*

® L

Theorem 2. For the PDE system (11), let I' ={a, b, ¢, a;, a,
B> By} and 1/(B, +u” ) = B.

a-2u—ov- Prw > —diy;
(B +u)
J= -,V
w?
(B, +u)®

According to the Theorem 1, (0,0, 0), (4, 0,0), (0, b,0),
(0,0,¢p,), ((a—a; b)/(1 -~y &y ), (b -y a)/(1 -y @, ), 0)
are all unstable to ODE system (3). Hence, there exist the
eigenvalue with positive real parts in the PDE system. It
means that (0,0,0), (a,0,0), (0,5,0),(0,0,cf,), ((a—a, b)/
(I1-oyay ), (b—aya)/(1-a;a,),0) are all unstable to
PDE system (11).

The Jacobian matrix of the PDE system at (i, 0, w) is

. ula—iu) . u
U+ B i dy oyt —ﬁ1+it
J= 0 b—oyit—dyu, 0 - (29)
& 0 —c—dsy;

(i) (0,0,0),(a,0,0),(0,b,0),(0,0,¢cB,) and ((a—a;b)
(1-a;a,),(b-a,a)/(1-a;a,),0) are all uncon-
ditionally unstable

(ii) If I' satisfies a < bla,, then (i1, 0,w) is unstable; if b
<ay(a—B,-c)and d;/d;> (a+ B,)/B, holds, (i,
0, w) is uniformly asymptotically stable

(iii) If T satisfies a > a;b+c(f,/B,), then (0,b,cf,) is
unstable; if a<a;b+c(f,/B;) holds, (0,b,cf,) is
uniformly asymptotically stable

(iv) If I and B satisfy 2u™ —a+ (o, + 1)(b— a,u*) + B¢
B (B, +u*) +c<0, then (u*,v*,w*) is unstable; if 2
u*—a—-c>0and c—aa,u* >0 holds, (u*,v*,w")
is uniformly asymptotically stable

Proof. The linearization of (11) at the positive constant solu-
tion U* can be expressed by U, = (DA + G, (U*))U where
U= (uv,w),U* = (u*,v*,w*)", D=diag (d,, d,,d;) and
Gy(U*) is the Jacobian matrix at U*. For each i>0,

;131 Elu ">X,-j is invariant under the operator DA + Gy, (U™*).
And A is an eigenvalue of DA+ G, (U*) on ea;i:irln E(M")le if
and only if A is an eigenvalue of the matrix —u.D + G, (U™).

The Jacobian matrix of PDE system (11) is

- u -t
! B, +u
b—ayu—2v—d,u, 0 . (23)
2w
0 - —dyy
¢ ‘82_'_” 34

The characteristic polynomial is

[A_(b_(xzil—dzzui)}[<A+u_ué‘:;z)+d1#i) (25)
v 25

B+

c(A+c+dyp) + ]=0.

When the eigenvalue satisfies A, = b — a, i > 0, it deduces
that a < b/a,, there exists an eigenvalue with positive real
part, and (i1, 0, w) is unstable to PDE system (11).

It is clear that eigenvalue A, =b—ayit —dyp; <0 as A,
=b-oa,01<0. Then, we discuss the following equation
emphatically:
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A+ (i{— u/ia;z) +d1yi+c+d3yi)/\

1
B+ . (26)
. u(a—i) i _
+<u [ +d1yi>(c+d3yi)+m—0.
Let
_ . u(a-i) _
ps=u —ﬁl"'i‘ +dypy + e+ dap; = (dy +ds)p; +pys
(. i(a-1) ci
Py= <“ Bt +d1ﬂi> (c+dyp;) + B i
. ula—u
:d1d3yf+{cd1+ {u— [(3 +u)}d3}yi+p2.
1
(27)

It shows that p; >0 on account of p; >0. When cd, +
[it— ((@(a —i))/(B, +it))]d; >0, we know p, >0 holds. So
the eigenvalues all have negative real parts.

a=2u" —ay(b-ou’) = BB’ (B, +u) —dyy;

Gy(U") = —ay(b—ayu”)

C2

- 193 2
Its characteristic polynomial is A" +A;, A"+ A, A+

A, =0, where

3y

Ay = (dy+dy+dy)u + A,

The Jacobian matrix of PDE system (11) at (0, b, ¢f3,) can
be written as

a—oclb—c&—dhui 0 0
B 2
-a,b -b—d,u, 0 (28)
¢ 0 —c—dsu,

The characteristic polynomial is

</\—a+oc1b+c/";2 +d1yi) A+b+dyu)(A+c+dyp)=0.
1

(29)

The corresponding eigenvalues are A, =a —a;b—c(B,/B,)
—dypp Ay, =—b—dyp; <0 and Ay, =—c—dyp; <0. If a>
a,b+c(B,/B,), there exists an eigenvalue with positive real
part; (0,b,cf3,) is unstable to PDE system (11). On the
contrary, if a<a,b+c(B,/B,), the eigenvalues all have
negative real parts.

The Jacobian matrix of the PDE system at (u*, v*, w*) is

- u” -u*B
b+ au” —dyp, 0 . (30)
0 —c—dyu

Ay = (dydy+dyds + dyds )i — (dyay, + dyayy +dyass + dsay, + dyasy + dyan )y, + Ay,

Ay, = d\dydsps} — (dydyass + dydsag, + dydsay )i + (dsay 0y, + dyay gy + dy 5055 = dyagay, = dyasag, ), + As.

When 2u* —a+ (a; +1)(b—ayu*) + f,cB*(B, + u*) + ¢
<0, there exists an eigenvalue with positive real part; (u*,
v*,w*) is unstable to PDE system (11).

When A, >0 and d,,d,,d; >0, Ay, >0 holds. Simi-
larly, A,, >0 since A, >0 and d,,d),d;>0. If 2u" —a-
c20,c—oya,u* 20, we have dsa,,a,, +d,a,,a5; +d,a,,
a33 —d;a,,a,, — d,a,3a5, >0 and d d,a;; +d,dza,, + d,d;
aj; <0. As a result of A;>0 and d,,d),d;>0, Ay, >0
can be obtained. What is more, A;A, —A; >0 leads to
Ay, Az, —As, > 0. Thus, the eigenvalues all have negative
real parts.

3

(31)

In the following, we shall prove that there exists a positive
constant « when the corresponding eigenvalues all have
negative real parts, such that

Re (4, ).Re (Ay, ):Re (A, ) < foralliz1. (32)
Let A = ¢, then

vi(A) = P‘?(3 + Alui”?(Z + AZMI!’li( + Ay, 2y(0)- (33)



Since p; — 00 as i — 00, it follows that

llirg{w;ff)} =0+ (dy+d, + ds)cz +(dyd, +d,d; + dyd;)(
+ddyd; 2 y(0).

(34)

Applying the Hurwitz criterion, the three roots {;, (5, {;
of ¥({) =0 all have negative real parts. Thus, there exists a
positive constant «' such that Re ({,), Re ({,), Re ({;) < —«'
. By continuity, there exists i, such that the three roots {;;,

(> i3 of Y(0) = 0 satisfy

!
K

Re {(;;},Re {{;}, Re {{;3} < -3

foralli>i,. (35)
Hence, Re (1, ),Re (1y, ),Re (43, ) < —u'12<—«'12
foralli > i,.
Let —«''=max{Re (A, ), Re (A, ), Re (A, )},x = min

1<i<i,

{«',x'"}. Then, for i > 1,

Re (/\lﬂi),Re (/\ZM),Re (/1%) < —K. (36)

Therefore, the constant solutions are uniformly asymp-
totically stable when the corresponding eigenvalues all have
negative real parts.

The proof is complete.

4. A Priori Estimates of Positive Steady States

The corresponding steady-state problem of system (11) is

_dlAuzu(a—u—(xlv—/jlujLu) x €,
-d,Av=v(b-v-w,u), xeQ,
w (37)
-d;,Aw=w|c- ——|, x €,
B, +u
ou oJv OJw
%_a_a_o, x €0Q.

Two lemmas are listed here for the preliminary.

Lemma 3. (Harnack inequality [26]).

Let w(x) € C*(Q) N C!(Q) be a positive solution to Aw +
c(x)w =0, x € Q, where c(x) € C(Q), satisfying the homoge-
neous Neumann boundary condition. Then, there exists a
positive constant C, = C, (N, Q, ||c||,) such that

maxw < C, minw. (38)
0 0

Lemma 4. (maximum principle [27]). -
Suppose that g € C(Qx R') and b; € C(Q),j=1,2,---,N.
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(i) if w(x) € C*(Q) N C!(Q) satisfies

N
Aw + Z bj(x)w, +g(xw(x)) >0, x€€,
= (39)
ow
— <0, x€0Q,
ov

and w(x,) = maxw(x), then g(x,, w(x,)) = 0.
(0)

(i) if w(x) € C*(Q) N CH(Q) satisfies

N
Aw + Z bj(x)wxj +9(xw(x)) <0, x€£,
1

ow
— >0,

3 x €00,

and w(x,) = minw(x), then g(x,, w(x,)) <0.
Q

The results of upper and lower bounds can be stated as
follows.

Theorem 5. (upper bounds).
Assuming that (u,v,w) is a positive solution of system
(37), we get

maxu < a,
2 (41)
maxv < b, (42)
0
rrgwaC(ﬁ2+a). (43)

Proof. Since u(a—u—-av—-w/(B, +u)) <u(a-u) and v(b
—v—mu)<v(b-v), such that maxu<a, maxv<b

according to Lemma 4. Because of maxu <a, it is evident
that maxw < ¢(f3, +a).

The proof is complete.

Theorem 6. (lower bounds).
Fix I' and d,, d,, d; as positive constants. Assume that

(d1dy, d3) € [d},00) X [d,00) % [d5,00),  (44)

then there exists a positive constant C= C(I', Q, N, d;, d,, d;)
who can make every positive solution (u, v, w) of system (37)

satisfy

minu(x) > G ()
l'l}i)nV(X) > Q, (46)
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n}i)nw(x) > Q (47)

Proof. Let

¢ (x) =d;! (a— - /31“: u>,
o(x)=dy' (b-v-au), (48)

o(x)=d;' (c - ﬁzuj_ u) .

In view of (41), (42), and (43), a positive constant C = C
(Q,N, D, T) can be easily found, such that

€19 > 11623 o> 163 (*) oo < C (49)

where d|, d,, d; > D. Thus, u, v, and w satisfy that

Au+c (x)u=0, x€0,
0
u =0, x€00,
on
Av+c,(x)v=0, x€l,
) (50)
@ =0, x€00,
on
Aw+c(x)w=0, x€,
0
oo, xedn.
on

According to the Harnack inequality in Lemma 3, there
must be a positive constant C, = C,(Q, N, D, I'), such that

maxu < C, minu,
Q (9]

maxv < C, minv,
0 0 (51)

maxw < C, minw.
Q Q

Suppose that (45), (46), and (47) hold of no account.

There must be a sequence {(d,;,dy; ds;)} o, with (d};,
dy;» ds;) € [d},00) X [d,,00) X [d5,00), such that the corre-
sponding positive solutions (u;, v;, w;) of system (37) reach
the qualification

maxuy; — 0, 0or maxv; — 0or maxw,; — 0(i > 00). (52)
0 0

Then, we apply (u;, v;, w;) to the system of (37) and inte-
grate by parts, so we obtain that

w:
J ui(a—ui—alvi— ! >dx=0,
Q By +u;

J vi(b—v;— ayu;)dx =0, (53)
o

w:
w;| c— L )dx=0.
L} ( By + ”z‘)

There exists a subsequence of {(d,;, d;, ds;) }-; accord-
ing to the LP-regularity theory and Sobolev embedding
theorem, but we still use {(d,;, d,;, d;)};) to represent for
convenience. So there must be u*, v*, w* and (d,, d,, d;) as
the limiting of (u;,v,w,;) and (d,;, d;, d;;) when i— co.
They can be written as follows:

(up vy w;) = (U5, v, w*) € CH(Q) x C*(Q) x C*(Q),

(dyi» dyj> d;) — (Jv Jza ‘{3) € [d;,00) x [d,,00) X [d3,00).

(54)

Let i — 0o, we get that

w
J u*<a—u*—(x1v*— * )dsz,
O ﬂ1+u*

J v (b—v, —ayu,)dx =0, (55)
o

w
w,|c— * _)dx=0.
JQ < ﬁz"’”*)

We now discuss the following three cases.

Case 1. u* =0. Since v; > v* as i 5 00, b—v; —a,u; > 0,x €
O holds for every i>> 1, so that

J vi(b—v; — ayu;)dx >0, (56)
o

which contradicts with (55).

Case 2. v =0,u™ #0. Since u; > u* as i —> 00, a—u; — v
—w,;/(B, +u;)>0,x € Q holds for every i > 1, so that

Wi
ula—u—awv - dx >0, (57)
j() Z( S /31""”1‘)

which contradicts with (55).

i

Case 3. w* =0,u* #0,v* #0. Since w; — w* as i — 00, ¢ —
w;/(B, +u;) > 0,x € Q holds for every i > 1, so that

Jﬂw" (c - ﬁzujj ui) dx > 0, (58)

which contradicts with (55).




The proof is complete.

5. Nonexistence of Nonconstant Positive
Steady States

We prove the nonexistence of nonconstant positive steady
states of system (37) in this section.

Theorem 7. Let p, is the smallest positive eigenvalue of
operator —A over Q under the homogeneous Neumann
boundary conditions and fixed positive constants ds, d; sat-
isfy p,dy >b and p,d; >c+1, then there exists a positive
constant D, =D,(I',d5,d}) such that when d,>D,, d,>
d; and d;>d;, system (37) has no mnonconstant positive
steady states.

Proof. Assume that (u, v,
For any ¢ € L'(Q), let ¢ =
equation (37) multiplies u —u,v —
by parts over 2 to get

w) is the positive solution of (37).
(1/121) [ ,¢dx. The differential
v,w—w and integrates

| o [Vu|*dx

=jo[u(a_u_alv—ﬁl’““+u>

—u<a —u—av— B +u)] (u— u)dx
=Jolal
— oy (uv —uv)(u —u)
(B, + u)(u — u) — ww(B, + u)(u
(B +u)(By +u)

(u—u)® — (u+u)(u—u)?

— u)] dx,

(59)
IQd2|Vv|2dx
= JQ[v(b —v—oyu) —v(b—v— au)]
(v —v)dx (60)
_J’Q (v— v —ay(uv —uv)(v — v)

—(v+v) (v —v)*]dx,

| s Vw[*dx

Sollo[x(-5%2) ~+(575)

(w — w)dx
= fpletw—wy’

RECER R IR SR
(B, +u)(B, +u)

(61)

Combine (59), (60), and (61), we have
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[ o (dy|Vu* +dy|VV[? + ds| Vw|*) dx

< Jala(

+ (ayu+ oy v)|u — ul|v — v

2
+ 1+w—2 |u — u||lw — w||dx
B>
2 2
‘. lﬁ alazzlazb o1, G ra) ] (62)

252/33
(u— u)zdx

o { (a, a2+ (xzb)] v — vy

u—u) +b(v—v)2+c(w—w)2

+IQ [c+1+ %} (w — w)’dx,

where &, €, are the arbitrary small positive constants arising
from Young inequality. Meanwhile, applying the Poincaré

inequality p, [, (f —f)zdx < fQ|Vf|2dx, we gain that

o]

SJ [a+1+Cj(ep, &) (u—u)’dx
Q

+ JQ [b 4 hA T %Y) (“la; azb)} (v—v)*dx

c w w—)dx
+ng+1+ 2ﬁ§ ]( )°d

v=7) +ds(w-w)*]dx

(63)

for some positive constants Cj (¢, €,). Choose ¢;, ¢, >0
very small such that

g (aa+a,b)

5 (64)

pydy 2 b+

>

(B, +a)’
Y- (65)

Hence, (65) implies that v=v=constant, w=w=
constant, and u =1 =constant if d, >D, £ y;'la + 1+ C}

(e, )]

The proof is complete.

pdy =c+ 1+

6. Existence of Nonconstant Positive
Steady States

In this part, we discuss the existence of nonconstant positive
solutions of (37) by using the degree theorem.

Fix the I',d,, d; still as positive number and define X*
={UeX|U>0,x€Q,i=1,2,3},B()={UeX|I"" <uv
,w<l,xeQ},1>0. Then, (37) can be noted as
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~DAU = G(U), x€Q,

aa—: =0, x € 0Q2. (©6)
So U is a positive solution to (37) if and only if
F(U)2U-(I-4)"{D'G(U)+U}=0,UeX", (67)

where (I - A)™" is the inverse of I — A in X under the homo-
geneous Neumann boundary condition. And if F(U) # 0 on
0B, the Leray-Schauder degree deg (F(-), 0, B) can be well
defined. Besides, we note that
DyF(U*) 21— (I1-A){D'G,(U*) +1}. (68)

The index of F(U) at U* can be either 1 or -1 if Dy F(U*)
is invertible, which is defined as index(F(-), U*)=(-1),
where r is the total number of eigenvalues with negative real
parts of D, F(U™).

Let A be an eigenvalue of Dy F(U") on X;; for each integer
i>1 and each integer 1 < j < dim E(y,), if and only if it is an
eigenvalue of the matrix

1
L+u,

I- DGy (U*) +1] = [u1-D'Gy(U")].

L+
(69)

Hence, D F(U") is invertible if and only if, for all i > 1,
i € Z, the matrix I- (1/(1 + y,))[D"'Gy(U*) +1] is nonsin-
gular. Let

H(u) =H(U" ; p) = det {1 - D' Gy (U") }
- det {uD - Gy (U™)} 70)
d,d,d, v .

We can know that if H(y;) # 0, the number of negative
eigenvalues of DyF(U") on X;; is odd if and only if H(y;)
<0 for every 1< j<dim E(y,). According to this, we can
form the following result.

Proposition 8. Assume that the matrix uy1-D"'Gy(U*) is
nonsingular for all i > 1, then
index(F(-), U") = (-1)7, (71)

where 0 =Y. (<o dim E(g;).

For calculating the sign of H(y;), we firstly consider the
index of (F(-), U*). The calculation shows that

det {uD - Gy (U")} = 3(d,)pi* + @, (d,) 1
+ @, (dy)u - det {Gy(U™)}
=D(d, 5 ),

(72)

with

D, (dy) = d3ay,a, + dray,a53 + dyaya33 — dya1,0,, — dya,3a3,
D,(d,) =—(dydsay, +d dsay, +d,dyaz),
Q§3(d2) =d,d,d;,

(73)

where a;; are shown as (21).

Consider the dependence of @ on d,. Let j1,(d,), i, (d,),
and pi,(d,) be the three roots of @(d, ; u) =0, so that p1,(d,
Vi, (d,)ia;(dy) = det {Gy (U* )}/ (@5 (d,)). The computation
leads to det {G;(U*)} < 0. Therefore, one of &, (d,), ii,(d,)
, li;(d,) is real and negative, and the product of the other
two is positive.

Considering the following limits:

D,(d
im 2202 _g g

d,—00 d2
D, (d

lim M =—(d,a3; + dsa,)),

d,—00 2

. D (d
dzlinoo % = 011033 — 134315

ol
dhm El 2) = ["[dlda‘/‘z = (dyas; + dyay ) u+ay a3 - “13“31}-
200 2

(74)

We establish the following result.

Proposition 9. Assume the parameters satisfy (7) or (8) and
satisfy 2u* —a+ (a; + 1)(b—a,u*) + B,cB* (B, +u*) +c<0.
Ifa;,a;; —a;a;, <0, there is a positive constant D,, such that
when d, > D,, the three roots pi,(d,), i,(d,), fi;(d,) of ©(d,
; ) = 0 are all real and satisfy

(dyaz; + dyay,) - \/(d1a33 +dya,,)” +4d,d; (a0, - ay,a33)

lim g, (d,)

d,—00

lim i, (d;) =0,

dy,—co

2d,d, <%

lim 1,(d,) =

(dyaz; + dyay,) + \/(d1a33 +dsay,)? +4d,ds(ay3a5, — ay,a33)

2

u>0,

d,—00

2d,d,



10

—00 < i, (dy) <0< puy(dy) < is(d;), (76)

D(dy5 ) <0, p € (—00,p, (d,)) U (By(d5), Bi5(dy)),  (77)

D(dys 1) > 0 p € (1, (dy), By (ds)) U (3(d;)+00). (78)

Now, we prove the existence of nonconstant positive solu-
tions of (37) when d, is sufficiently large.

Theorem 10. Let the parameters d,, d, are fixed, I satisfies (7)
or (8), and satisfies 2u* —a+ (a; + 1)(b—a,u*) + f3,cB*(B,
+u*)+c<0. Ifaj a3 —a;3a5, <0, pe (u,, 4,,,) for some n
> 1, and the sum o, =", dim E(y,) is odd. Then, D, must
be as a positive constant such that (37) has one nonconstant
positive solution at least if d, > D,.

Proof. There exists a positive constant D, by Proposition 9,
such that for d, > D,, (76), (77), and (78) hold and

0= phy < fiy(dy) < phy> B3 (d3) € (Hhy Hr)- (79)

We will testify that for any d, > D,, system (37) has at
least one nonconstant positive solution and the proof is
proved by contradiction. Assume on the contrary that the
statement is not true for some d, > D,. Afterwards, we fix
dy =d,, dy = Cilpy;, dy = Gyl ds = C3/py;, and

>d;, (80)

Asfor t € [0, 1], make D(t) =diag(d, (t), d,(¢), d5(t)) with
d(t)=td, + (1 -1t)d,i=1,2,3 and think about the problem

-D(t)AU = G(U), xeQ,

(81)
B_U =0, x € 0Q.
on

U is a nonconstant positive solution of (37) if and only if
it is a positive solution of (81) when t = 1. Obviously for any
0<t<1, U* is the unique constant positive solution of (81).
U is a positive solution of (81) if and only if

UeX*.
(82)

F(t;U)2U-(1-2)"{D()G(U)+U} =0,

It is evident that F(1;U) =F(U). F(0; U) =0 has been
shown in Theorem 7, which has only positive solution U*
in X*. After computing, we get that

DyF(t;U*)=1-(1-A)7{D()Gy(U*) +1}.  (83)

Journal of Function Spaces
Specifically,

DyF(0;U*)=1-(I1-A)"{DA'G,(U") +1},
DyF(1;U*)=I-(1-A)"{D"'Gy(U*) +1} =Dy KU"),
(84)

where D =diag(d,, d,, d,). From (70) and (72), we know that

mwﬁﬁmw (85)

In view of (76) - (79), and (85), it follows that

H(yh) = H(0) >0,
H(y;) <0,
H(p;) >0,

1<i<n, (86)

izn+1.

Thus, 0 is not an eigenvalue of the matrix yI- D™
G, (U*) for any i>1, and

> dmE()= Y dmE). (87

izO,H(y1)<0

which is odd. Because of Proposition 8, it can be true that
index(F(1;-),U") = (-1)" = (-1)""=-1. (88)

The same method is available to index ((F(0;-), U*))
=(-1)°=1.

According to Theorems 5 and 6, we can find a positive
constant C, such that the positive solutions of (81) can meet
the demand C™!' <u,v,w< C for all VO<t< 1. So, F(t; U)
# 0 on 0B(C). By using the homotopy invariance of the topo-
logical degree, it is clear that

deg (F(1;),0, B(C)) = deg (F(0;-),0,B(C)).  (89)

Moreover, by our assumption, both equations F(1;-) =0
and F(0;-) = 0 have only the positive solution U* in B(C), so

deg (F(0;-), 0, B(C) =index(F(0;-), U*) =1, %
deg (F(1;-),0, B(C) = index(F(1;-), U") = -1, 0

which is contradictory with (89).
The proof is complete.
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The modified anomalous subdiffusion equation plays an important role in the modeling of the processes that become less
anomalous as time evolves. In this paper, we consider the efficient difference scheme for solving such time-fractional equation in
two space dimensions. By using the modified L1 method and the compact difference operator with fast discrete sine transform
technique, we develop a fast Crank-Nicolson compact difference scheme which is proved to be stable with the accuracy of
O(g™in (1+e1+8) 4 h*) Here, & and f are the fractional orders which both range from 0 to 1, and 7 and h are, respectively, the
temporal and spatial stepsizes. We also consider the method of adding correction terms to efficiently deal with the nonsmooth

problems. Numerical examples are provided to verify the effectiveness of the proposed scheme.

1. Introduction

In this paper, we focus on the numerical method for the time-
fractional modified subdiffusion equation [1]:

d,u(x t) = (KIRLD});“ + KZRLD(I);ﬁ)Au +f(% 1), (%) € Qx (0, T],
(1)

with the initial condition u(x,0) =v(x) and the homoge-
neous Dirichlet boundary condition. Here, x = (x;,x,), Q is
the rectangle domain, T >0, and A is the Laplacian defined
by A=0%/0x> + 9°/0x%. The parameters x, and «, are some
fixed positive constants, f and v are two given functions, 0
<a,f<1,and y D}, is the Riemann-Liouville derivative of
order y given by:

1o
Y u(t) s —— — &)Ly —
reDo (- 1) F(n—y)at”L(t s) u(s)ds,n—1<y<n,neN,
(2)

where I'(+) is the Gamma function.

Anomalous diffusion is ubiquitous in nature and it can be
characterized by the method of mean square particle dis-
placement at the microscopic level. When the mean square
displacement (MSD) is linear with time, the particle is pre-
cisely in classical Brownian motion. If the MSD grows either
sublinearly or superlinearly with time, then this phenome-
non is regarded as the subdiffusion and superdiffusion,
respectively. Numerous experimental studies have shown
that the anomalous diffusion may adequately describe a
number of physical processes in recent decades [2, 3]. Equa-
tion (1) is an important class of anomalous diffusion models
in which the physical processes are observed to become less
anomalous as time evolves [4].

In [4], the author presented the solution of a one-
dimensional modified anomalous subdiffusion equation on
an infinite domain. The analytical solution the author
obtained contains the infinite series of Fox special functions,
which is of complex form that makes it difficult to apply to
practical numerical simulations. So, one needs to resort to
the numerical methods for efficiently solving equation (1).
Many efficient numerical methods for solving fractional
models have emerged in recent years, see the book [5] and
the two review papers [2, 6]. For equation (1), some
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TasLE 1: The L?-norm errors in time for nonsmooth case in Example 1 with & = 1/64.
a B " m=0 m=1 m=3

(o F) T L? error Rate L? error Rate L? error Rate

80 3.58E-03 — 1.71E-03 — 3.53E-04 —

(0.3,0.8) 160 2.24E-03 0.67 1.03E-03 0.73 2.07E-04 0.77
o 320 1.42E-03 0.66 6.28E-04 0.72 1.22E-04 0.76
640 9.06E-04 0.65 3.83E-04 0.71 7.31E-05 0.74

80 1.45E-03 — 7.86E-04 — 2.93E-04 —

(0.5,0.6) 160 8.52E-04 0.76 4.11E-04 0.94 1.54E-04 0.93
o 320 5.24E-04 0.70 2.15E-04 0.93 8.05E-05 0.93
640 3.36E-04 0.64 1.13E-04 0.93 4.21E-05 0.94

80 2.04E-03 — 1.05E-03 — 3.14E-04 —

(0.7,0.4) 160 1.22E-03 0.73 5.86E-04 0.85 1.72E-04 0.87
o 320 7.54E-04 0.70 3.28F-04 0.84 9.43E-05 0.87
640 4.76E-04 0.66 1.84E-04 0.83 5.20E-05 0.86

numerical schemes have been developed. Ding and Li applied
two kinds of high-order compact finite difference methods to
construct efficient numerical schemes. The stability and con-
vergence analysis are proved by the Fourier method [7]. In
[8], the authors developed the compact difference scheme
based on the second-order compact approximation formula
of the first-order derivative. The two papers mentioned above
both focus on the one-dimensional case.

For the two-dimensional case, Chen and Li employed the
modified L1 method and compact difference method and
proposed a compact alternating direction implicit scheme.
By utilizing the energy method, they proved that their scheme
is stable with an accuracy of O(7? ™ (“A) 4 h*) in the new
defined norm which is equivalent with H'-norm, under the
assumption that the solution is sufficiently smooth [1]. Such
assumption may be too restrictive to limit the scope of appli-
cation of their scheme. To address this issue, Chen proposed
two robust fully discrete finite element methods by convolu-
tion quadrature in time. He proved that the schemes are
convergent under data regularity without relying on the
assumption of the solution regularity. In addition, he also pro-
posed a Crank-Nicolson finite element scheme to numerically
compare and verify the robustness of the convolution-based
schemes in solving nonsmooth solution problems, but no
detailed theoretical analysis of the scheme was given [9]. It
seems that the numerical methods for equation (1) have not
been sufficiently studied. This motivates us to design efficient
numerical schemes for (1), especially for high-dimensional
problems where the solutions are not sufficiently smooth.

As the further work on the high-dimensional equation
(1), we focus on designing numerical schemes that are com-
putationally efficient and can handle the nonsmooth solution
case. In [10], Li et al. implemented the fourth-order compact
difference operator by a fast discrete sine transform (DST)
via the FFT algorithm, which greatly reduces the computa-
tional cost and storage requirement. Notice that the DST
technology can avoid solving matrix inversion directly and
has been successfully applied in the discretization of classical
models, such as Poisson equation [11] and general order

semilinear evolution equations [12], just to name a few. On
the other hand, the weak singularity of the fractional model
has gradually attracted the attention of scholars in the frac-
tional community, and some kinds of methods have been
proposed to resolve this issue, such as nonuniform meshes
[13-16] and convolution quadrature [9, 17, 18]. The method
of adding correction terms is also an efficient way of dealing
with nonsmooth solutions problems. However, this method
is generally not very stable as the starting weights need to
be obtained through a linear system which involves the ill-
conditioned exponential Vandermonde matrix. To resolve
this issue, Zeng et al. theoretically and numerically shown
that the accuracy of numerical solution can be efficiently
improved with only a few correction terms [19]. Since then,
a variety of numerical schemes based on the addition of cor-
rection terms have emerged for fractional problems with
nonsmooth solutions, see [3, 20, 21]. To the best of our
knowledge, it seems that the method of adding correction
terms with DST for solving equation (1) has not been consid-
ered in the existing literatures yet.

The contributions of this paper are as follows. First, we
apply the modified L1 method to discrete the Riemann-
Liouville derivative and compact difference operator with
DST to discrete the Laplacian and then naturally obtain the
fast Crank-Nicolson compact difference scheme for the
two-dimensional problem (1), see (7). Second, the stability
and error estimate are rigorously proved by the energy
method, see Theorems 2 and 3. Specially, we improve the
convergence results in [1] and guarantee computational effi-
ciency but without sacrificing the accuracy of the scheme.
Note that the small term added during the construction of
the ADI scheme in [1] destroys the accuracy of their original
scheme. Third, by using the method of adding correction
terms, we successfully improve the accuracy of the proposed
scheme in solving the nonsmooth problem with no impact
on the stability of the original scheme, see (9). Finally, we
provide concrete numerical tests to show the effectiveness
of the scheme in solving the high-dimensional problem with
nonsmooth solution, see Table 1 and Figures 1-3.
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The rest of the paper is organized as follows. In Section 2,
we derive the fast Crank-Nicolson compact difference
scheme by the modified L1 method and the compact differ-
ence operator with DST. In Section 3, we prove that the pro-
posed numerical scheme is stable with an accuracy of
O(r™in (e1+f) 1 h*) under the assumption that the solution
is sufficiently smooth. To weaken the assumption and make
the scheme more robust in solving nonsmooth solution
problems, we present the improved version in Section 4 with
the method of adding correction terms. Numerical examples
are given in Section 5 to confirm the effectiveness of the
proposed scheme. Finally, we present the conclusions of this
paper in Section 6.

Throughout this paper, we shall let the symbol ¢ (with or
without subscript) be a positive constant which may vary at
different locations but is always independent of the temporal
and spatial stepsizes.

2. The Compact Difference Scheme with
Fast Solver

In this section, we derive the fast compact difference scheme
for (1).

We first introduce the temporal discretization. The time
stepsize T is given by 7 = T/n; with the positive integer n.
The grid point is denoted by ¢, =nt for n>0. Let ¢,,,,, =
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(t, +t,,,)/2. For g(t) € C*[0, T], the modified L1 method
for the approximation of Riemann-Liouville derivative g,
D},g(t) with y € (0,1) at t=t,,,,, is described as:

r.Dog (tn+%> =Dyg"" + R™2, 3)

where |R"V? | <cr? maxte[oﬂlg”(tﬂ ([22], Lemma 1).

The operator D! in (2) is given by

Dlg"'? = bmg(t,&%) - k; (biy,)k - bf?i)kJrl)g(tk—%) @

(o) a() - Aot

where

_ - -y
AW =g - A9 <n+ %) .

So, applying the difference discretization 0,u(x,t,,,/,)
=8,u™? + O(7?) with 8,u™? = (u" - u")/1, we derive
that

n+l/2 _ A"l-a A1 n+1/2 n+1/2 n+1/2
ou"t = (Kl D, " +x,D, )Au + TS R, (6)

where the local truncation error R™12=Q(g™in (I+®l+h))
and w2 = (™ +u)/2.

Next, we consider the spatial discretization for (4). In
order to make our discussion more general, we follow the
notations presented in [10] and always set the symbol d =2
unless otherwise noted. Denote the domain Q = [x%, xX] x [x}
, xR x - x [xh, xB]. Let M (1<k<d) be a positive integer.
The spatial stepsize is then denoted as h = (x§ — x;)/M; and
X = Xi + jyhy for j=0,1, -+, My. The fully discrete grids
in space are denoted by Q, = {x, = (xl,jl, x2,j2"”_>xd,jd) |0<
jx My, 1 <k <d}. We further denote that Q, = Q;, N Q and
the boundary 90, = Q;, N 3Q. The space of grid function is
denoted as V= {v|v=(v,), andv, =0forx, € 0Q,}. For
the grid function v, = v(x;) with the index vector h = (i}, i,,
--+,i;) at kth position, we denote the compact difference oper-
ator as Akvik =817 kV;,» with the difference operator v,
=(I+ hi/ 128i)vik. Here, I is the identity operator, Sivik =(
5k"ik+1/2 - 6kvik—1/2)/hk and 6kvik+1/2 = (Vik+1 - Vik)/hk' So,
the fourth-order spatial approximation of Av(x;,) for x;, € (2,
is given by A, v, = Y Ay,

Combining the compact difference approximation in
space with (4), we have

Stu(xh)’”m _ (KI Diﬂx +5, Di%)ahu(xh)nn/z +fn+1/2 +R::;rl/z’ (7)

where the local truncation error is given by R'/'2=0(
pmin (+el+6) 1 w*) Here, h* = h} + 15 + ---+hY. Omitting the
small term R’/'?, we obtain the following Crank-Nicolson
compact difference scheme for (1): find }} of u(x, t,) for n
> 1, such that

n+1/2 _ Al-a 1=\ 1 n+l/2 n+1/2
Sup'* = (Kl D, " +x,D, )Ahuh +f . (8)

where uf) = v(x;,) and u(xy)ly, ean, =0-
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If we solve the discretized system (6) directly, the compu-
tational cost will be O((M, M, --- M,;)*) on each time level
due to the calculation of matrix inversion. Next, we employ
the fast discrete sine transform based on FFT to reduce the
computational cost to O((M; M, --- M) log (MM, --- M)
) [11], which greatly improves the computational perfor-
mance. Since the discrete sine transform of the grid function

M1~ ..
jie1 Vi, sin (i
/M), it follows from the definition of the compact differ-
ence operator A, that

vy, at the kth position is provided by v; =

-+ 12

LY. — / !
Tk Jk 1,2
hk

. ST = = &;A(jk»Mk), (9)
k

where s; = cos (jyr/M;) and 1< j, <M — 1. One can refer

to [11] or [10] for the derivation. Denote the index set v
={(pJpjg) | 1<), <M —1,1<k<d}. Therefore, the
scheme (6) is equivalent to

d
ata:u/z - (Klbi—rx " KZD:'B) (Z A(jk,M,()> a:+1/2 +f/\n+1/2.
k=1
(10)
The computational procedure is described as follows:

(a) For n>0, we first computed %" and fA"™"? from u!
p v h
and f"*'? by means of DST

(b) And then we solve equation (10) from which the
numerical solution uj, is obtained from %, by the
inverse of DST.

3. Stability and Error Estimates

In this part, we demonstrate the stability and error estimates
for the compact difference scheme (6).
We first introduce some useful notations. For any grid

function v e V,, the discrete L?*-norm is given by |[|v| =

\/ (v, v),, with the discrete inner product (u,v), = (szlhk)
Y cao Upvy,- The discrete H' seminorm and H' norm are
h h

denoted as [v], = /9wl = /S, 80> and vl =

\/IVI? + [v|3. Here, V), = (8, 8,,---,0,1). One can readily have

the equivalence of |v|; and ||v||; for any v € V}, in view of the
embedding theorem.
We shall first need the following lemma.

Lemma 1. The operator D given by (3) satisfies the inequal-
ity:

1
—Z(D‘:v”*“z, Vm/z)h < Z b;v_)k ‘VJH/ZHZ _ ’i bV
1

N e v
k=1 k=

(11)

where v €V, n> 0.

Proof. The proof of the lemma can be obtained in view of
Lemma 4.2 in [22] or Lemma 4.4 in [1], thus, the details are
omitted here.

We are ready to present the stability of the scheme (6).

Theorem 2. The Crank-Nicolson compact difference scheme
(6) is stable in the sense that
y

(12)

n+l
up ||’ < c<|yug||2 +(er* et )|V T ) ka-ﬂz
k=1

Proof. By taking the discrete inner product on both sides of
(6) with ZTuZ”/Z, we get

T

21 (fn+1/2’ ”ZH/Z) )

h

n+l/2 , n+l/2\  _ Al-a ALB A L n+1/2 | n+l/2
27 (8,up™ %, u, )h—2T(<K1D +1,D. 7 ) Aul ' ul ,

(13)

Notice that the difference operator A, is bounded in dis-
crete inner product ([10], Theorem 2):

n+l2 | el Atz nel2 n+12 | el
(A2, w2 < (A2 ™) < (AT )

N W

(14)

with the notation Ath:Zz:18iuZ. By the identity

(Apuy ™2, 12y, = —(V 2, Vw2, the Lemma 1

yields

2 n+l f
12

‘ - zbnﬂ—kthuh

’2
k=1

n
[ e A sr(z by 4|Vt
k=1

2 n n+
o) (),
(15)
where b = b,((l_a) + b;{l_ﬁ), B, = B;{l_“) + B;{l_ﬁ), and A, =

A0 4 AR With G = | I? + X0 b, || Vb2, we
write the above inequality as:

G <G e TA, [yl |+ 2r (£ 02) L (16)
h

We sum up # from 1 to m and replace m with n to get
n 5 n
G <G +1 ZAkHVh”(;IH + 272 (fk“/z, u],j“/z)h. (17)
k=1 k=1

By the Cauchy-Schwarz inequality and the inequality
lvill < cllvyll, with the equivalence of ||v,||, and ||V,v,]],
we obtain the estimate:



n+1

n
k12 kal/2 k=172
Zrz<f , U, )hg'ernH kHth H +T
k=1

k=1 k=2 n+1 k

ka 1/2H
(18)

from which we derive that

k-1/2

a2 <G1+TZAk||VuhH +TZ

e i RLCY

Next, we consider the case n =0 for the scheme (6) for
the estimate of G'. By a similar procedure, we take the
discrete inner product for (6) with 27u;/> when n=0, we
have

21(8,u,% w?), = 21((K1Di_“ + KZDi_ﬂ) Ay, u}/z)
h

g (fuz’ ”;;/2> i
h
(20)

from which we have

HuhH +21B HthL/ZH —HuhH +24 T(thh,thl/z)

+ ZT(fl/Z, “/14/2) i
h

h

(21)
where B, = KlBél_“) + KZBE)HS) and A, = KlAé 9 4 KA 1 P,
Utilizing the Cauchy-Schwarz inequality again, we arrlve

at the estimate for the last two terms on the right-hand
of the above inequality:

2A T(thh,vhul/Z) +21(f1/2 u;ln)h
s2agr (vt eallvi?l) @)

+zr(4—€2||f”2u resll?).

By letting the constants &, =B,/(44,) and &, =By/4
and the equivalence of the [|v,|l; and |v,|,, we further get

2807 (Y, Vi ?), + 27 (fm, u}/z)
I

<2Ti||vhuh|| Byt |V 4 21

||f1/2

which implies that the G' has the following estimate:

G'= [l + <t IIuh/ZH <[l |+ 7By

Hf”ZH

/2”

< HuhH +2‘r— ||thh|| +2T
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Therefore, the inequality (8) yields

A2
71 = il + 22 B Vs + 2 -

I
(25)

n+1

+TZAk||V“h|| +TZ — {11

By the mean value theorem, one can readily check that
the coefficients appearing in the above inequality are all
bounded, that is, we formally have A2/B,<B,=c, 7%+
P, 1By < cypmin m01-B) - o3 AL <, 7% + 5P, and

11/b,, e < s max (T T1 ). Thus, the proof is
completed.

By means of the error equation and the stability conclu-
sion, we have the following convergence result.

Theorem 3. Suppose that u € C*>(0, T ; C*(Q2)), then we have
the discrete L? -norm error estimate: For n > 1,

u(t,) - ul]| < c(rmi“ (Fral+f) o h“) . (26)

Proof. The error equation can be obtained by subtracting (6)
from (5), that is, by letting the error e} = u(x, t,) — uj, for
X, €, we have

el = (KI le + K, Dfﬁ) Apertt? 4 RIFVZ, (27)

It follows from Theorem 2 that

||eZ||2 < C<Heg||2 + (cl‘r“ + cz‘rﬁ){

< C(Tmin (I+a,1+) + h4)2,

)

(28)

which leads to the desired convergence result.

4. Numerical Implementation for
Nonsmooth Problems

In general, the solution of equation (1) may not have the reg-
ularity required in Theorem 3. If the nonsmooth solution
problems are directly solved by the fast Crank-Nicolson com-
pact difference scheme (7), unsatisfactory accuracy may be
obtained. In this part, we apply the method of adding suitable
correction terms when dealing with such nonsmooth issue.
Following the idea presented in [3], we, respectively, take
the numerical approximations of ;D) ,g(f) and the first-

order time derivative dg(t)/dt at t = ¢, , as follows:
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wDheg(t)], = Dlg(tup)red+ Y w])(g(ty) - 9(0)).
k=1
dg(t <
WO <bgltumreds Y wlgn) - g(0).

t=t,1 k=1
(29)
Here, w,(f,z and willi are the starting weights which are
chosen such that the above schemes are exact for some power
functions g(t) = £ with 0 < {;<{j; and 0<j<m, that is,
they can be determined by the two linear systems:

iw(yﬁt? = 7F(1 +(j) ( 1y/2 Dy 172
n+ T n+ 4
k=1 " F(l +Cj - )
; ; (30)
< th+1 - t”)
Z nktk —C;%_ -

respectively. So, we have the following fast Crank-Nicolson
compact difference scheme with correction terms: for n > 0,

m d
Stﬁﬁ”’z i Z wn%lzﬁf, _ (Klbi—a n KZDifﬁ) <Z /\(jk,Mk)>a:+1/2

k=1 k=1
m . d )
+ z (w +w! k/s ) z UM ﬁﬁ
k=1 k=1
+f/\rz+1/2.

(31)

The execution procedure of the above scheme is similar
to that of (7). We can observe that the scheme (9) is stable
and effective in solving nonsmooth problems, which will be
verified by numerical examples in the next section. We
remark that the method of adding correction terms is based
on the assumption that the problem solution can be divided
into two terms: low regularity and high regularity terms (with
respect to time). Such assumption is valid for equation (1) in
view of the solution formulation discussed in [4]. By using
the starting weights in the correction terms, one can improve
the accuracy of the proposed scheme for dealing with the
nonsmooth solution problem. For further details about the
parameters m and (;, one may refer to [19].

5. Numerical Examples

In this part, we present two numerical examples to verify the
accuracy and effectiveness of the scheme (9). The L*-norm
error at t=t, is obtained by e(n, h) = ||u(x,, t,) — u}||, and
the convergence orders in time and in space are calculated
by log (e(n, h)/e(2n, h)) and log (e(n, h)/e(n, h/2)), respec-
tively. For simplicity, we set the parameters x, and «, in (1)
to be one and restrict the computational domain to be Q =
(0,1)*. We remark that the numerical tests in this paper are
implemented by MATLAB software (R2020a) on an Apple

OS platform with a quad-core 2.3 GHz processor and 8 GB
of memory.

Example 1. (Accuracy). Consider the following problem with
zero Dirichlet boundary conditions:

{ 0,u( ) = (Db Do) A3, 1) + (.7, 1), (5.7) €2,

u(x, y,0) = ¢ sin (7x) sin (7y),

(32)
where
fey2t) =sin (mx) sin (my) (Vﬂ‘l B tz_l) +amc ;iﬁl)
2T+ e 2 T g
)
(33)

The exact solution is u = sin (7x) sin (7y)(c+ #") with
the two given nonnegative parameters ¢ and y.

We verify the accuracy of the proposed scheme (9) using
two cases: the smooth and nonsmooth solutions. We first let
c¢=1andy =2.1. The numerical results are obtained at T =1
by fast Crank-Nicolson compact difference scheme (9) with
no correction terms and demonstrated in Tables 2 and 3.
One can observe that accuracy of the scheme is
O(r™in 1+ 1+8) 1 h*) for different fractional orders « and 3,
which is in agreement with the theoretical analysis.

Next, for the nonsmooth case, we let c=0 and y=0.4.
One can see that the first-order partial derivative of u with
respect to t is 0,u(x, y, t) = yt’"! sin (7x) sin (ry), which is
unbounded at t =0 when y =0.4. By using the fast Crank-
Nicolson compact difference scheme with correction terms
(9), we compute the L>-norm errors at T = 0.5 and present
the results in Tables 1 and 4. We can see from Table 1 that
when m =0, that is, no correction term is added to the
scheme, the accuracy of the numerical solution suffers from
the low regularity of the analytic solution. In contrast, when
m is greater than 0, the accuracy of the numerical solution
seems to be improved to some extents. Similar phenomenon
is also observed in Table 4. This suggests that adding a small
number of correction terms does improve the accuracy of the
numerical solution in nonsmooth problems. Thus, the fast
Crank-Nicolson compact difference scheme with correction
terms (9) is valid for solving non-smooth solution problems.

Example 2. (Computational efficiency). In this example, we
investigate the computational efficiency of the fast Crank-
Nicolson compact difference scheme (7). So, we consider
the comparison between results from the schemes with fast
solver and the direct solver, that is, fast scheme (7) and orig-
inal scheme (6). We separately solve the smooth solution case
in Example 1 with the two numerical schemes and report the
numerical results obtained in Figures 1-3. For the given frac-
tional orders & and f3, by fixing the time stepsize 7 = 1/4 and
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TaBLE 2: The L?-norm errors in time for smooth case in Example 1 with h = 1/64.
. (0.3,0.8) (0.5,0.6) (0.7,0.4)

T L? error Rate L? error Rate L? error Rate
20 3.87E-03 — 1.95E-03 — 2.55E-03 —
40 1.63E-03 1.25 7.32E-04 141 1.00E-03 1.34
80 6.74E-04 1.27 2.67E-04 1.45 3.87E-04 1.37
160 2.76E-04 1.29 9.59E-05 1.48 1.48E-04 1.39

TasLE 3: The L?-norm errors in space for smooth case in Example 1 with T = T/8000.
M (0.3,0.8) (0.5,0.6) (0.7,0.4)
L? error Rate L? error Rate L? error Rate
1.57E-03 — 1.58E-03 — 1.58E-03 —
8 9.82E-05 4.00 9.73E-05 4.02 9.75E-05 4.02
16 7.72E-06 3.67 6.30E-06 3.95 6.63E-06 3.88
TaBLE 4: The L?-norm errors in space for nonsmooth case in Example 1 with 7= T/8000.
" M m=0 m=1 m=2
L? error Rate L?* error Rate L? error Rate
4.01E-04 — 5.32E-04 — 5.79E-04 —
(0.3,0.8) 1.59E-04 1.34 2.76E-05 4.27 1.91E-05 4.92
16 1.93E-04 -0.28 6.19E-05 -1.16 1.52E-05 0.33
5.08E-04 — 5.87E-04 — 5.93E-04 —
(0.5,0.6) 5.28FE-05 3.27 2.59E-05 4.50 3.16E-05 4.23
16 8.72E-05 -0.72 8.49E-06 1.61 2.80E-06 3.50
4.86E-04 — 5.74E-04 — 5.89E-04 —
(0.7,0.4) 7.49E-05 2.70 1.34E-05 5.42 2.81E-05 4.39
16 1.09E-04 -0.54 2.09E-05 -0.64 6.22E-06 2.18

varying the stepsize in each spatial direction simultaneously,
we obtain the CPU execution time at T = 1 for both schemes.
The comparison shows that the execution time spent using
the direct solver in numerical scheme is more expensive than
that using the DST technique, especially when the spatial
stepsize is getting smaller. This is due to the fact that the
direct solver requires to solve matrix inversion on each time
level, and such operation would be extremely inefficient
when the size of the matrix is large. It is clear that the DST
technique can speed up the computational efficiency, thus,
the proposed scheme (7) has more potential than the direct
solver (6) in high-dimensional problems.

6. Conclusions

In this paper, we propose the efficient compact difference
scheme for solving the modified anomalous subdiffusion
equation based on the modified L1 method in time and
compact difference operator in space. By combining the
DST technology, we improve the effectiveness of the scheme
for the two-dimensional problem. The stability and error
estimate of the scheme are provided rigorously. We also
improve the accuracy of the scheme for the nonsmooth solu-

tion problems with the method of adding correction terms.
Numerical examples illustrate the effectiveness and accuracy
of the proposed scheme.

The results of this paper can be readily generalized to
three-dimensional problems. In addition, for inhomoge-
neous boundary conditions, one can convert them into
homogeneous boundary condition problems by variable sub-
stitution. For other types of boundary condition problems,
such as Neumann, Robin, or other combinations of boundary
conditions, we do not discuss them in this paper. In [23], the
authors introduced the augmented matched interface and
boundary (AMIB) method to efficiently solving the Poisson
equation via the FFT. The authors also pointed out that the
AMIB method can easily handle different types of boundary
conditions. So, it may be possible to combine this method
with the correction terms to rapidly solve high-dimensional
problems with complex boundary conditions, and this is
the possible one of the future research directions.
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In this paper, one class of finite difference scheme is proposed to solve nonlinear space fractional Sobolev equation based on the
Crank-Nicolson (CN) method. Firstly, a fractional centered finite difference method in space and the CN method in time are
utilized to discretize the original equation. Next, the existence, uniqueness, stability, and convergence of the numerical method
are analyzed at length, and the convergence orders are proved to be O(z? +h*) in the sense of [*-norm, H*?-norm, and I
-norm. Finally, the extensive numerical examples are carried out to verify our theoretical results and show the effectiveness of

our algorithm in simulating spatial fractional Sobolev equation.

1. Introduction

The main propose of this paper is to construct one class of
the Newton linearized finite difference method based on
CN discretization in temporal direction to efficiently solve
the following spatial fractional Sobolev equation:

{ d,u— pd*0,u=10Pu+ f(u), inRx(0,T],

u(x,0) = uy(x), inR x {0}.

where 1 < &, <2, pand k are given positive constants, u(x)
and f(u) are known sufficiently smooth functions. 07, in (1)
denotes the Riesz fractional derivative operator for 1 < a <2
and is defined in [1] as follows:

2 roo
0u(x, t) = ! 4 J lx — &' “u(&, t)dE.

2cos (ma/2)I(2~a) 0x2 )
(2)

This type of equation is widely used as a mathematical
model for fluid flow through thermodynamics [2], shear in
second-order fluids [3], consolidation of clay [4], and so on.
Note that some special forms of equation (1) are frequently

encountered in many fields. For example, taking o, f=2,
(1) reduces to a one-dimensional integral-order Sobolev
equation in the bounded domain [5]. When f(u) = ¥ y,u?
with integer p and given constants y,(i =1, 2,---,p), then the
equation is called a semiconductor equation [6]. When f(u)
=0, it is reduced to a homogeneous space fractional Sobolev
equation. When p =0, (1) is reduced to the classical nonlin-
ear reaction-diffusion equations. Recently, many scholars
are dedicated to the numerical investigation on fractional dif-
fusion equations and Sobolev equations based on finite dif-
ference or finite element methods in the literature. For
example, Celik and Duman [7] investigated the CN method
to approximate the fractional diffusion equation with the
Riesz fractional derivative in a finite domain. Wang et al.
[8] studied the finite difference method for the space frac-
tional Schrodinger equations under the framework of the
fractional Sobolev space. Ran and He [9] investigated the
nonlinear multidelay fractional diffusion equation based on
the CN method in time and the fractional centered difference
in space. Chen et al. [5] proposed a Newton linearized com-
pact finite difference scheme to numerically solve a class of
Sobolev equations based on the CN method and proved the
unique solvability, convergence, and stability of the proposed
scheme. Wang and Huang [10] constructed a conservative
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linearized difference scheme for the nonlinear fractional
Schrédinger equation. Zhang et al. [11] established the
numerical asymptotic stability result of the compact 0
-method for the generalized delay diffusion equation. More
researches on delay fractional problems can be referred to
[12, 13] and the references therein.

The main work in this paper is to develop an efficient
Newton linearized CN method to solve the nonlinear space
fractional Sobolev problem (1). The existence, uniqueness,
stability, and convergence of the proposed numerical scheme
are demonstrated, and the convergent orders are obtained in
the sense of *-norm, H*?-norm, and I°°-norm. Besides, we
also prove that the convergence orders of the constructed lin-
earized numerical scheme are O(7? + h*) under three types of
norms. The extensive numerical examples are proposed to
argue a second-order accuracy in both temporal and spatial
dimensions.

The organization of this paper is as follows. In Section 2,
we define the fractional Sobolev norm and introduce the
second-order centered finite difference approximation for
the space Riesz derivative. In Section 3, we construct a CN
finite difference scheme for the space fractional Sobolev
equation. The existence, uniqueness, stability, and conver-
gence of the proposed scheme in three classes of conventional
norms are proved. Finally, the theoretical results are verified
by several numerical examples.

2. Preliminaries

Firstly, we present some notations and lemmas which will be
used to construct and analyze our numerical scheme.

2.1. Fractional Sobolev Norm. Firstly, we define the fractional
Sobolev norm (cf. [14]). Let hZ be denoted by the infinite
grid with grid points x; = jh (j € Z). For arbitrary grid func-
tions u={u;},v={v;} on hZ, we define the discrete inner

products and the corresponding I*-norm and [°°-norm

2
)= 1Y ulul® =

s u)llulle = Sup|u . 0)
jezZ j€Z

Denote I := {u| u= {uj},||u||2<+oo}. For u € I%, the semidis-
crete Fourier transformation 7 is written as

= —hZu e, (4)

]EZ

It is easy to get & € L?[-mt/h, m/h] due to u € I*. The inver-
sion formula is defined by

1 7r/h .
U= (k) e™idk, 5
! \/ﬂJ’—n/h ( ) ( )

then we can easily check that Parseval’s equality

71/h
(u,v) = J u(k)v(k)dk, (6)

—mt/h
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holds. Moreover, For the given constant 0 < o < 1, the frac-
tional Sobolev norm ||+ and seminorm |-|,. are defined
as follows:

7/h m/h
lull =J (1+ kP2 [un(k) Pk, [ul% :J K2 [un(k)|2dk.

—/h
(7)

-/,

Obviously, [|ull%e = llull+|u|>..

2.2. Second-Order Approximation of Spatial Riesz Fractional
Derivative. In this section, we will review a second-order
approximation for the Riesz fractional derivative. Introduce

€"(R) = {fUOOOO(le )™ | f(w) | dw<co,f € Ll(]R)},
(8)

where f(w) = e f(t)dt denotes the Fourier transforma-
tion of f(x).

Lemma 1. (cf. [7]). Suppose the function f(-) € €***(R) and
the fractional central difference is defined as follows:

1) =1 3 6"k )
Then, it holds
85 (x) = 05f (x) + O(I). (10)
g\ is defined as

4 = (=D)*T'(a+1)
ko I(a2-k+ DI (a/2+k+1)’

eZ. (11)

This is consistently established for arbitrary x € R.

Remark 2. (cf. [15, 16]). If we define f* by

e f(x), x¢€][a,b],
fx)= { 0 xefwh (12)
such that f*(x) € €***(R). We get
[(x=a)/h] .
8f (x)=—h* g f(x—kh)+O(K).  (13)
({6

For any t € [0, T], we define

u(x), xe€la,bl,

u*(x) = {0’ ctlob) (14)

and suppose u* (x) € €**(R).
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3. Second-Order CN Method and
Theoretical Analysis

In this section, we are concentrated on the derivation and
theoretical analysis of the finite different scheme. In practical
computation, it is necessary to truncate the whole space
problem onto a finite interval (boundaries are usually chosen
sufficient large such that the truncation error is negligible or
the exact solution has compact support in the bounded
domain [17]). Here, we will truncate (1) on the interval Q
= (a, b) as follows:

0,u — pd%0,u = k0P u + f(u),inQx (0, T), (15)
u(x,0) = uy(x), in R x {0}, (16)
u(x,t)=0,on R\ Qx [0, T]. (17)

3.1. The Derivation of the Linearized Numerical Scheme. Take
positive integers M, N and let 7= T/N, h= (b — a)/M be the
temporal and spatial step sizes, respectively. Denote x; =a
+ih, 0<i<M; ty=kr, 0SK<N; iy, = (k+1/2)1, 0<k
SN-1; Q,={x;10<i<M}, Q,={t;,|0<k<N}. Define
w=4jlj=0,1,- M} w={jlj=1,2,-\M -1}, dw=0 \ w.
Let Vh:{ulu:u;‘IOSiSM,OskSN,uS:ué‘VI:O} be
grid function space defined on ;. =€), x Q.. Then, for a
given grid function u€V,, we introduce the following
notations:

1 1
uf+(1/2) =3 ( Ukl 4 uk) 6 uf+(1/2) - (uf-‘“ - uf‘) (18)

Define the grid function
Ur=u(x,t,),i€®0<k<N. (19)
Then, we consider (15) at the point (x;, t;, (1)) and have

o,u (xi’ tk+(1/2)) — U030 (xi’ tk+(1/2)>

= xdPu (xl,l‘kJr n ) +f< (xl,l‘kJr 1,2))),iew,0<kéN— 1.
(20)

Utilizing the Taylor expansion, the first term on the left
hand side (LHS) in (20) can be estimated as

0 u(x,, te, 1,2) sUiR) +0(7%). (21)

Noticing Lemma 1, for the second term on LHS in (20),
we have

M
—%Z gl(-ixj?StU;”(l/z) + O(T2 + hz)

=5,00U1"" 1 o2 + ).

0,0, u (xi’ tk+(1/2)) =

(22)

For the first term on the right hand side (RHS) in (20), it
yields

1 < k+(1/2
af”(xi’ tk+(1/2)) = ‘h—ﬁz gfi) Uj+( )+ O(* +h?)

(23)
= 8/3Uk+ 1) O(‘r2 + hz).
Moreover, we have
Ll ok 2
”(xi, tk+(1/2)) =3 (Ui + Ui) +0(7), (24)
U(xp tyy) = u(X; ty) = O(T) < T,

where ¢ is a positive constant.

Applying the Newton linearized method to the nonlinear
term f on RHS in (20) and using Taylor expansion at the
point U¥, it yields

f(u(x,., tk+<1,2>)) =f(U§<) + (Uf*(“z) - Uﬁ.‘)f’ (Ujf) +0(%)
=£(U8) + 5 (U - ) (UF) v o(),

(25)

where ' (U¥) = 0|, u- Plugging (21)-(23) and substitut-

ing (25) into (20), we have

k+(1/2)
i

5tU 55“ k+(1/2 _ SﬁUk+ (172) +f<Uf(>

+§f'(uf)<uf“—uf?) +RNicw,0<k<N-1.

(26)

There exists a positive constant ¢, > 0 such that
Rf|<c (T + 1), iew,0<k<N-1. (27)
Omitting Rk in (26), replacing Uk+(1/2) with uf+(”2) in

(26), then the ﬁmte difference scheme reads

Su k+(1/2)_ 86“ k+ 1/2)_ 8ﬁ k+ 1/2) +f( )

t i
. (u;m _

o ()

ui>,z€w,0<k<N—l,

(28)
u) = uy(x;),i €@, (29)
ub=0,i€0w, 1<k<N. (30)

3.2. The Unique Solvability of Finite Difference Scheme. This
section is concerned with the solvability of scheme
(28)-(30). Now, we give some lemmas which will be used
in the demonstration of solvability.



Lemma 3. (¢f. [7]). Let

a’ 89 o 9P
a” g 47 - P
A= @@ @ | (1)
ImMm-3 91 9o 9-i
Iis Ghis " gy

It holds

@ _ Ta+1) Y W @ @
9o —mga Z 9; =0,9; =9/ <0,

jooo

(32)

where for any |j| <1, and 0 < A; < ng)“) (i € w), A, is the ith the
eigenvalue of matrix A% AP is given in a similar way. It
implies that the matrices A* and AP are real symmetric posi-
tive definite matrices.

Lemma 4. (discrete Sobolev inequality (cf. [14])) For every 1/
2<0 <1, there exists a constant C, = C(0) > 0, independent
of h> 0, such that

Vil < Collvllge- (33)

Lemma 5. (¢f. [8]). For any 1<« <2 and any grid function
veV,, wehave

Col V7 < (=65v,v) < |V (34)
where C, = (7/2)".
Lemma 6. (cf. [17]). For any grid function v € V,,, there exists

a fractional symmetric positive quotient operator 8% , such
that

(=8%, v) = (5;';%, 5;‘:’%) . (35)

Lemma 7. (c¢f. [18]) (discrete uniform Sobolev inequality). For
every 1/2< o0 <1, there exists a constant C, = C(co) > 0 inde-
pendent of h > 0 such that

lllpeo < Mluell o (36)

Lemma 8. (cf. [19]). Suppose { F*} -, be nonnegative sequence
and satisfy

k-1
Fr<er Y Fle g,k=0,1,2,, (37)
=0
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Then, we have
Fk < ged“, k=0,1,2, -, (38)
where ¢ and g are nonnegative constants.

Theorem 9. The linearized finite difference scheme (28)-(30)
is uniquely solvable.

Proof. Denote u* = (uk, u’;,-'-,u’&_l)T. We will prove the
above result by the mathematical induction. Obviously, (29)
is true for k=0. Now, we suppose #/(0 <k<I<N -1) has
been uniquely determined; then, we only need to prove that
u! is uniquely determined by (28). We can rewrite (28) in
the following matrix form

<I+ I%A“+ %Aﬁ_ g diag (f’(ul ))ulﬂ

= (1+ %A“ - %Aﬂ - % diag (f’<ul)>)ul (39)

+ Tf(ul) +GM

where G is a vector which depends only on the boundary
value. By using Lemma 3, when 7 is sufficiently small, it is
easy to verify that the coefficient matrix of (39) is strictly
diagonally dominant, which implies that there exists a unique
solution u/*!. This completes the proof.

3.3. The Convergence and Stability of the Finite Difference
Scheme. Firstly, we easily have the estimation of the local
truncation error, according to (27).

Lemma 10. Let u(x,-) € €% (x,-) be the solution of the
problem (15)-(17). Then, we have

IR < (b-a)d (7 +h)",0<sk<N -1,  (40)
where ¢, is a positive constant independent of T and h.
Denote
e =UF—uFicw, 0<k<N. (41)
We will obtain the main convergence result.

Theorem 11. Let u(x,-) € €'*%(x, ) be the solution of the
problem (15)-(17). Then, there exist positive constants T,
and h, , when T <t,and h<h,, for 0< k<N, we have

lefI<C, (2 + ),

¢ <O+ < C(F + 1),
HaZ

(42)

where C,, C,, C;> 0 are positive constants independent of T
and h.
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Proof. The mathematical induction will be employed. Firstly,
it is obvious (42) is true for k =0, via (29). Then, it assumes
that (42) is true for 1 <k <m <N - 1. We will discuss that
(42) holds for k=m+ 1. According to the hypothesis, we
can obtain the following estimation:

[l < Mo+l UMl < C (7 + 1) + Gy <1+ G, 1 <k <m,
(43)
where 7<7,=(2C,)"%, h<hy=(2C;,)™", and ¢, =

eyt CEOT

In the view of Lipschitz condition, we have

|f(Uff) —f(uf)| <o el iem0<k<N, (44)
If’(Uf.‘) —f’(uf)|<c3 ¢|,ic@0<k<N, (45)
f’(uf)‘<c4,ied),0<k$N, (46)

where ¢,, ¢;, and ¢, are positive constants independent of T
and h.

Now, subtracting (28) from (26), we can obtain the error
equation

8,6 _ 148, 5% ) = e8Pl M) 4 PE 4 RE i€ w,0< k<N -1,

(47)
where
A (0)S(4) ) (0 -8) 5 (4) ).
(48)

Firstly, we establish [*-error estimation. Taking the dis-

crete inner product of (47) with e*(12), we have

(Stek*“/z), ek+(1/2)) _ M(&Sﬁek*(”z), ek+(1/2))
_ K<656k+(1/2),ek+(1/2)) " (Pk’ ek+(1/2)> N (Rk) ek+(1/2)).

(49)

Now, we estimate each term in (49). The first term on
LHS in (49) can be estimated as

1
(8t6k+(1/2), ek+(l/2)) — E ("ek+1"2_"ek”2) ) (50)

Noticing Lemma 6, for the second term on the LHS in
(49), we have

<8 8a6k+(1/2))ek+(1/2)) =[5 oktl _ ok g Rl 4 ok
tx X T X 2

1
_ E <”8it/26k+1 "2—”8?;/28("2) )

(51)

Similarly, the first term on RHS in (49) can be obtained by

(55 1) ek+<1/2)> —_ <5ﬁ/2 (ekﬂ * ek> P (e"“ + ek)>
X > Y 2 ,0F 2

1
— _Z ”65/2 <ek+1 + ek) ”2

(52)

According to (44)-(46), we have
=) 160 (7 () 1 ()
(ot () (=) 6

1
k k kel k
Sczlei|+5(c3c0‘r|ei|+c4|e+ - I).

i

Using the Cauchy-Schwarz inequality and Young inequal-
ity, the second term on the RHS in (49) becomes

3 1
(Pk, ek+(1/2)) < "Pk" Ilek+(1/2) ||< Z "Pk”2 + 5 ||ek+(1/2) "2

9 k2. L 22 ap k2. L oog ker k2
< (f:ﬁlle 1P+ S aar Il + S cile o

1
o (||e"“||2+||e"||2)
6
2
9 2 1 k2
+-c;+—|le
02 6) le¥|

4
92 1
+ _4+_ "€k+1"2.
8 6

(54)
The last term of RHS in (49) is estimated as
(Rk, ek+(1/2)) < "Rk””ek+(1/2) ”< Z ”RkHZ + %"elﬁ(l/z) "2
< E(b —a)3 (e h) 4 L (1t et
Sy 1 g .
(55)

Substituting (50)-(55) into (49), we get

2
X212l .
2T

[ i L W S Gt L
2T 4
3 2
k 2 k2 2
<c5<||e T2k ) +(b-a)d (2 + 1),

Y

(56)

where ¢; = (9c5/4) + (9cciT%/16) + ((9/8)9/8¢%) + (1/3).



Summing for k from 0 to m, we have

2 2
lle™ 2=l
+

2T 2T

12 2 12,012
195" =165l

m
K

+ = Z "83‘[3/2 <ek+1 + €k> "2
4k=0

<C5 Z<|lek+1"2+”ek"2> + Z(b_a)ci Z <T2 +h2)2.
k=0 k=0
(57)

Noticing that ¢° = 0 and « > 0, we have

m
le™ 1> + ulloF e P < dreg Y Nleb I + 27csle™ |
k=0
3T i
+ = (b-a)q )
2 k=0

(7 + hz)z.
(58)
Let F" = ||le™|* + ‘u||8fc‘/ze"‘||2, we have

—a)c Z (TZ + h2)2
k=0

(59)

m
F™! <der Y FE 420, TF™ +
k=0

It implies when 7 < 7, = 1/3¢;, we have
= 9 - 2
+1 k 2 2 2
F™ <12Tc5kZF +§T(b—a)CIZ(T +h)". (60)
=0 k=0
Using Gronwall Lemma 8, we have

t(b-a)c i (7 + h2)2> . (61)

9
F™! <exp (12csmt) | =
2 k=0

Therefore, we have

le™<C, (2 + K?), (62)

where C, = /(9(b—a)3T exp (12¢;T))/2.
Similarly, applying Lemma 5 yields

|em+1

L SC (TP + 1), (63)

where C, = /(9(b—a)c3T exp (12¢5T))/2C .

Finally, we can establish I*°-error estimate by combining
(62) with (63). Denoting C; :=C, Cf + C%, it follows from
Lemma 7 that

le™ ! I < C5 (72 + ). (64)

We complete the proof.

Next, we will analyze the stability of the scheme
(28)-(30). Let {+*|0<i<M,0<k<N} be the solution of
the fractional Sobolev equation

Journal of Function Spaces

1
8tvic+(1/2) _P“S 80‘ k+ 12) _ 85 k+ (172) +f<vf‘> N Ef’ (VD

. (an _

v{?),iEw,osksN—l,

(65)
vo—uo( )+¢,l€w> (66)
VE=0,i€dw, 1<k<N, (67)

where ¢! is the perturbation of the initial value. Subtracting
(65)-(67) from (28)-(30) and denoting pl = v - u we have

80— 0 0 () 1 () 4
[ () )
icw,0<k<N-1,
pl=¢hica,
pF=0,i€dw,1<k<N. (68)

Similar to the proof of Theorem 11, we have the following
result.

Theorem 12. Denote pi.‘ = vf - uf, icew,0<k<N . Then,
there exist positive constants T, and h, , when Tt <1, and h

<h,, we have

IISCAPL] |, < Cslp”] punrlpH e < Colle"lo (69)

where C,, Cs, Cg > 0 are positive constants independent of T
and h.

4. Numerical Examples

In this section, we will provide extensive numerical examples
to testify the theoretical results. we will define the discrete I*
-norm and I®-norm separately and the corresponding
convergence orders are defined as follows:

M

E(hyt)=,|h) (UN-ul h.7)= e
(h,7) ;( )" By () = 0<z<M0<k<N’ ’

i IE(h, )l
Ord, =log, (IIE(h/ZT/Z)II ’

IE(h, 7)|

1 _Ave P/leo )

Ord,, =log, (IIE(h/z, /2) oo .
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TaBLE 1: *- and I®-errors and their convergence orders of (28)-(30) for 1 < & < 2 in the spatial direction for (72) with fixed time step 7 =
1/2000 for Example 1.

(o ) h llel Ord, llelloo Ord,,
1/10 7.5025e - 4 - 1.0862e -3 -
(1.2,1.8) 1/20 1.7359¢ - 4 2.1117 2.5686e — 4 2.0802
1/40 4.0650e - 5 2.0702 6.1167e -5 2.0702
1/10 7.7557e — 4 - 1.1391e-3 -
(1.5,1.5) 1/20 1.7445e - 4 2.1524 2.6326e -4 2.1133
1/40 3.9827e-5 2.1310 6.1202e -5 2.1048
1/10 1.1777e -3 - 1.6525¢ -3 -
(1.8,1.2) 1/20 2.7908e - 4 2.0773 3.9673e -4 2.0584
1/40 6.6203e -5 2.0757 9.5326e -5 2.0572

TaBLE 2: I*- and [®-errors and their convergence orders of (28)-(30) for 1 < « <2 in the temporal direction for (72) with fixed spatial step
h =1/2000 for Example 1.

(o B) T lel Ord, llell Ord_,
1/10 1.9481e -4 - 3.1163e -4 -
(1.2,1.8) 1/20 4.8708e -5 1.9998 7.7916e - 5 1.9998
1/40 1.2169¢ - 5 2.0010 1.9465e -5 2.0010
1/10 1.5223e -4 - 2.4163e -4 -
(1.5,1.5) 1/20 3.8057e -5 2.0000 6.0406e - 5 2.0001
1/40 9.5069%¢ - 6 2.0011 1.5088e -5 2.0013
1/10 1.2416e -4 - 1.9507e - 4 -
(1.8,1.2) 1/20 3.1025e -5 2.0006 4.8747e -5 2.0006
1/40 7.7412e -6 2.0028 1.2163e -5 2.0028

TaBLE 3: P-and [®-errors and their convergence orders of (28)-(30) for 1 <a <2 in the spatial direction for (73) with 7 =1/2000 for
Example 2.

(o, B) h llell Ord, llello Ord

o0
1/100 1.3736e — 4 - 2.9683¢ -4 -
(1.1,1.9) 1/200 4.9959% -5 1.4591 9.9718e -5 1.5737
1/400 1.6497e -5 1.5985 3.1155e -5 1.6784
1/100 4.6568¢ — 4 - 6.5750e — 4 -
(1.5,1.5) 1/200 1.3983¢ - 4 1.7357 2.0089¢ - 4 1.7106
1/400 4.0066¢e — 5 1.8032 5.8340e -5 1.7839
1/100 1.7483e - 4 - 2.1547e -4 -
(1.9,1.1) 1/200 4.6475e -5 1.9115 5.7682e -5 1.9013
1/400 1.2052¢ -5 1.9471 1.5024e -5 1.9408
Example 1. We firstly consider the following fractional Sobolev The exact solution is

equation as
u(x, t) =£x*(1 - x)*. (72)
0,u— poso u=Kafu+sin u) + g(x, t), (x,t) € (0, 1) x (0, 1],
t ' )+ g5 1), () € 0, 1)x (0.1 The initial boundary conditions and g(x,t) are deter-
(71) mined by (72).
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TaBLE 4: *-and [®-errors and their convergence orders of (28)-(30) for 1 < @ <2 in the temporal direction for (73) with & =1/1000 for

Example 2.

(o B) T llel Ord, lelloo Ord,,
1/100 2.0697e -2 - 5.6643¢ — 2 -

(1.1,1.9) 1/200 8.1358¢ -3 1.3471 1.3366¢ — 2 2.0833
1/400 2.0509¢ - 3 1.9880 2.9698¢ - 3 2.1701
1/100 2.0526e -2 - 5.6522e -2 -

(1.5,1.5) 1/200 8.1446e — 3 1.3336 1.3303¢ - 2 2.0871
1/400 2.0523e -3 1.9886 2.9423¢ -3 2.1767
1/100 2.0734e -2 - 5.6310¢ - 2 -

(1.9,1.1) 1/200 8.1558¢ - 3 1.3461 1.3202¢ - 2 2.0927
1/400 2.0536e -3 1.9897 2.9033¢ -3 2.1850

TaBLE 5: P-and [®-errors and their convergence orders of (28)-(30) for 1 <a <2 in the spatial direction for (75) with 7=1/1000 for

Example 3.

(o, B) h llell Ord, llell o Ord,,
1/10 1.4761e-2 - 1.6303e -2 -

(1.3,1.7) 1/20 3.3659%¢ -3 2.1327 3.8460¢ -3 2.0837
1/40 8.0373e -4 2.0662 9.0995e - 4 2.0795
1/10 1.6167¢ -2 - 1.8043e -2 -

(1.5,1.5) 1/20 3.6642¢ -3 2.1414 4.2293e-3 2.0930
1/40 8.7053e -4 2.0735 9.9262¢ -4 2.0911
1/10 2.0933e -2 - 2.2257e -2 -

(1.7,1.3) 1/20 4.8190e -3 2.1190 5.3128¢ -3 2.0667
1/40 1.1227e -3 2.1018 1.2648e -3 2.0705

TABLE 6: *-and [®-errors and their convergence orders of (28)-(30) for 1 <a <2 in the temporal direction for (75) with 4 =1/1000 for

Example 3.

(o, B) T llell Ord, llell Ord,,
1/10 9.1725e - 3 - 1.0470e -2 -

(1.3,1.7) 1/20 2.5218e -3 1.8629 2.8729¢ -3 1.8657
1/40 6.6380e — 4 1.9256 7.5586¢ — 4 1.9263
1/10 8.7813e -3 - 9.8734e -3 -

(1.5,1.5) 1/20 2.4228e -3 1.8578 2.7208e -3 1.8595
1/40 6.3844¢ -4 1.9240 7.168% — 4 1.9242
1/10 8.2127e-3 - 9.1056e - 3 -

(1.7,1.3) 1/20 2.2771e-3 1.8507 2.5228e -3 1.8517
1/40 6.0134e -4 1.9209 6.6620e — 4 1.9210

Taking p=1, k=1, the linearized numerical scheme  tests the temporal convergence orders with fixed spatial step
(28)-(30) with T=h is applied to solve the above Sobolev h=1/2000. It demonstrates that the convergence orders of
equation. The global numerical errors and convergence orders  the scheme (28)-(30) is second-order accurate in both spatial
with respect to different a and 8 are listed in the following  and temporal directions which is consistent with Theorem 11.
tables. Table 1 lists the *-norm and [°°-norm errors and spatial All the data are referred to MATLAB codes in Example 1
convergence orders with fixed time step 7 =1/2000. Table 2 in the supplementary files.
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TaBLE 7: *-and [®-errors and their convergence orders of (28)-(30) for 1 < a <2 in the spatial direction with 7 =1/1000 for Example 4.

(o B) h llel Ord, llelloo Ord,,
1/40 1.7548e - 2 - 1.1092e -2 -
(1.2,1.8) 1/80 3.9216e-3 2.1618 2.3542¢ -3 2.2362
1/160 9.5790e — 4 2.0558 5.6623e — 4 2.0558
1/40 1.2035e -2 - 7.0740e - 3 -
(1.5,1.5) 1/80 2.5833e-3 2.2199 1.4349¢ -3 2.3016
1/160 6.2934e -4 2.0373 3.4473e -4 2.0574
1/40 7.8751e -3 - 3.5547e -3 -
(1.8,1.2) 1/80 1.6022¢ -3 2.2972 8.7242¢ - 4 2.0266
1/160 3.9110e -4 2.0345 2.1876e -4 1.9957
1/40 1.4624e -2 - 8.193%9¢ -3 -
(2.0,2.0) 1/80 3.1088e -3 2.2339 1.5922¢ -3 2.3635
1/160 7.5817e -4 2.0358 3.8083e -4 2.0638

TABLE 8: [>-and I®®-errors and their convergence orders of (28)-(30) for 1 < @ <2 in the temporal direction with 4 =1/1000 for Example 4.

(a, B) T lel Ord, lell, ord,_,
1/40 9.2300e -9 - 5.5579¢ -9 -
(1.2,1.8) 1/80 2.3078¢ - 9 1.9998 1.3897¢ — 9 1.9998
1/160 5.7564e - 10 2.0033 3.4662¢ - 10 2.0034
1/40 7.5499¢ -9 — 3.273%9%¢ -9 -
(1.5,1.5) 1/80 1.8868e -9 2.0005 8.1803e - 10 2.0008
1/160 4.7057e — 10 2.0034 2.0378e - 10 2.0051
1/40 6.7080e — 9 - 2.7409¢ - 9 -
(1,8,1.2) 1/80 1.6769¢ -9 2.0001 6.8522e¢ - 10 2.0000
1/160 4.1960e — 10 1.9987 1.7116e - 10 2.0012
1/40 9.2576e -9 - 4.4312e -9 -
(2.0,2.0) 1/80 2.3143e -9 2.0001 1.1077e-9 2.0001
1/160 5.7857¢ — 10 2.0000 2.7694¢ - 10 2.0000

Example 2. Next, we consider the nonlinear fractional Sobolev
equation as
The exact solution

u(x,t)=sin (t+1)(2 +x)*(2 - x)° (73)

is oscillatory along with the temporal direction, where
=1 and x=1. And the initial boundary conditions and
g(x, t) are determined by (73).

In this example, we examine the spatial convergence
orders with the fixed time step T =1/2000 and the temporal
convergence orders with the fixed spatial step = 1/1000 in
I*-norm and I*°-norm errors, respectively. All the numerical
results in the example are listed in Tables 3 and 4. Similar
results are observed. All the data are referred to MATLAB
codes in Example 2 in the supplementary files.

Example 3. Then, we calculate the nonlinear fractional Sobo-
lev equation as

O,u—030,u= afu +ut—ut+ g(x, 1), (x,t) € (-1,1) x (0, 1], (74)
We choose the exact solution
u(x, 1) = (t+2)(1+x)°(1-x)% (75)

The initial boundary conditions and g(x,t) are deter-
mined by (75).

Similar to above example, Tables 5 and 6 list the *-norm
and [*°-norm errors and corresponding spatial and temporal
convergence orders of (28)-(30), respectively. To testify the
spatial convergence orders, we fixed the time step 7=1/
1000. Similarly, we take the fixed spatial step 4 =1/1000 to
obtain the temporal convergence orders. The numerical
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FiGure 1: Using scheme (28)-(30), curves of u(x, t) with respect to x at different time with & = 0.5, 7 = 0.02 (a) and the evolutionary surfaces

of u(x,t) at T=0.1(b), T=1(c), and T =2 (d) in Example 4.

results show that (28)-(30) is close to second-order accurate
in spatial and temporal directions.

All the data are referred to MATLAB codes in Example 3
in the supplementary files.

In the following model, the exact solution is unknown, we
test convergence orders using the posterior error estimation

> - > 2
Ord, g, ( lu(h 7) = u(h, 7/2)] ) ond
lu(h, ©/2) = u(h, 7/2)| (76)
lu(h, ) —u(h, 7/2) |l
lu(h, 7/2) —u(h, t/4)lly, )

Example 4. We consider the following equation:
du—03,u=0Pu+u—1’ (x1)e(-2525)x(00.1],
u(x,0) = V/2sech(x + 5) cos (4/x),x € [-25,25),

(=25, t) = u(25, ) = 0,t € [0,0.1], (77)

with the exact solution is unknown.

In the computation, we take different spatial and tempo-
ral step sizes. The P-norm, I°°-norm errors, and their conver-
gence orders of (28)-(30) are listed in Table 7 with the fixed
temporal step size T = 1/1000. Similarly, the spatial step size
fixed at h=1/1000 in Table 8. Tables 7 and 8 show that the
numerical results have second-order accurate in spatial and
temporal directions. Figure 1 presents curves of u(x, t) with
respect to x at different time with the step sizes h=0.5 and
7=0.02. All the data are referred to MATLAB codes in
Example 4 in the supplementary files.

5. Conclusion

In the article, we establish an efficient finite difference scheme
for nonlinear spatial fractional Sobolev equation based on
Newton linearized technique. We have proved that the
numerical solution of the scheme is unique solvable, stable,
and convergent. The pointwise error estimate is proved with
the convergence order O(z?+h*). Extensive numerical
examples are carried out to testify the numerical theoretical
results. Extending the current work to high dimensional
cases is possible, which will leave as our future work.



Journal of Function Spaces

Data Availability

All the data are available and referred to the supplementary
file.

Conflicts of Interest

The authors declare that they have no competing interests.

Acknowledgments

This work was supported by Zhejiang Provincial Natural
Science Foundation of China under Grant LY18D060009.

References

[1] R. Gorenflo and F. Mainardi, “Random walk models for space-
fractional diffusion processes,” Fractional Calculus and
Applied Analysis, vol. 1, no. 2, pp. 167-191, 1998.

[2] R. E. Ewing, “A coupled non-linear hyperbolic-Sobolev sys-
tem,” Annali di Matematica Pura ed Applicata, vol. 114,
no. 1, pp. 331-349, 1977.

[3] T. W. Ting, “A cooling process according to two-temperature
theory of heat conduction,” Journal of Mathematical Analysis
and Applications, vol. 45, no. 1, pp. 23-31, 1974.

[4] D. W. Taylor, Research on Consolidation of Clays, Massachu-
setts Institute of Technology Press, Cambridge, 1942.

[5] X. Chen, J. Duan, and D. Li, “A Newton linearized compact
finite difference scheme for one class of Sobolev equations,”
Numerical Methods for Partial Differential Equations, vol. 34,
no. 3, pp. 1093-1112, 2018.

[6] M. O. Korpusov and A. G. Sveshnikov, “Blow-up of solutions
of abstract Cauchy problems for nonlinear operator differen-
tial equations,” Doklady Akademii Nauk, vol. 195, pp. 12-15,
2005.

[7] C. Celik and M. Duman, “Crank-Nicolson method for the
fractional diffusion equation with the Riesz fractional deriva-
tive,” Journal of Computational Physics, vol. 231, no. 4,
pp. 1743-1750, 2012.

[8] D.Wang, A. Xiao, and W. Yang, “Maximum-norm error anal-
ysis of a difference scheme for the space fractional CNLS,”
Applied Mathematics and Computation, vol. 257, pp. 241-
251, 2015.

[9] M. Ran and Y. He, “Linearized Crank-Nicolson method for
solving the nonlinear fractional diffusion equation with
multi-delay,” International Journal of Computer Mathematics,
vol. 95, pp. 1-14, 2017.

[10] P. Wang and C. Huang, “A conservative linearized difference
scheme for the nonlinear fractional Schrédinger equation,”
Numerical Algorithms, vol. 69, no. 3, pp. 625-641, 2015.

[11] Q.Zhang, M. Chen, Y. Xu, and D. Xu, “Compact 8-method for
the generalized delay diffusion equation,” Applied Mathemat-
ics and Computation, vol. 316, pp. 357-369, 2018.

[12] Q. Zhang, X. Lin, K. Pan, and Y. Ren, “Linearized ADI
schemes for two-dimensional space-fractional nonlinear
Ginzburg-Landau equation,” Computers and Mathematics
with Applications, vol. 80, no. 5, pp. 1201-1220, 2020.

[13] Q. Zhang and T. Li, “Asymptotic stability of compact and lin-
ear $$\theta $$-methods for space fractional delay generalized
diffusion equation,” Journal of Scientific Computing, vol. 81,
no. 3, pp. 2413-2446, 2019.

11

[14] K. Kirkpatrick, E. Lenzmann, and G. Staffilani, “On the contin-
uum limit for discrete NLS with long-range lattice interac-
tions,” Communications in Mathematical Physics, vol. 317,
no. 3, pp. 563-591, 2013.

[15] H. Sun, Z. Sun, and G. Gao, “Some high order difference
schemes for the space and time fractional Bloch-Torrey equa-
tions,” Applied Mathematics and Computation, vol. 281,
pp. 356-380, 2016.

[16] Q. Zhang, Y. Ren, X. Lin, and Y. Xu, “Uniform convergence of
compact and BDF methods for the space fractional semilinear
delay reaction-diffusion equations,” Applied Mathematics and
Computation, vol. 358, pp. 91-110, 2019.

[17] P. Wang and C. Huang, “An energy conservative difference
scheme for the nonlinear fractional Schrédinger equations,”
Journal of Computational Physics, vol. 293, pp. 238-251, 2015.

[18] P. Wang, C. Huang, and L. Zhao, “Point-wise error estimate of
a conservative difference scheme for the fractional Schrédinger
equation,” Journal of Computational and Applied Mathemat-
ics, vol. 306, pp. 231-247, 2016.

[19] Q. Zhang, M. Ran, and D. Xu, “Analysis of the compact differ-
ence scheme for the semilinear fractional partial differential
equation with time delay,” Applicable Analysis, vol. 96,
no. 11, pp. 1867-1884, 2017.



Hindawi

Journal of Function Spaces

Volume 2021, Article ID 5588601, 13 pages
https://doi.org/10.1155/2021/5588601

Research Article

Hindawi

The New Semianalytical Technique for the Solution of Fractional-

Order Navier-Stokes Equation

Nehad Ali Shah (5," Mounirah Areshi,” Jae Dong Chung,' and Kamsing Nonlaopon

"Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
*Mathematics Department, College of Science, University of Tabuk, Tabuk, Saudi Arabia
*Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

Correspondence should be addressed to Kamsing Nonlaopon; nkamsi@kku.ac.th

Received 1 March 2021; Revised 29 March 2021; Accepted 3 April 2021; Published 20 April 2021

Academic Editor: Qifeng Zhang

Copyright © 2021 Nehad Ali Shah et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we introduce a modified method which is constructed by mixing the residual power series method and the Elzaki
transformation. Precisely, we provide the details of implementing the suggested technique to investigate the fractional-order
nonlinear models. Second, we test the efficiency and the validity of the technique on the fractional-order Navier-Stokes models.
Then, we apply this new method to analyze the fractional-order nonlinear system of Navier-Stokes models. Finally, we provide
3-D graphical plots to support the impact of the fractional derivative acting on the behavior of the obtained profile solutions to

the suggested models.

1. Introduction

The fractional-order Navier-Stokes equation (NSE) has been
extensively analyzed. These equations model the fluid
motion defined by several physical processes, such as the
movement of blood, the ocean’s current, the flow of liquid
in vessels, and the airflow around an aircraft’s arms [1-3].
The classical NSEs were generalized by El-Shahed and Salem
[4] by replacing the first time derivative with a Caputo frac-
tional derivative of order o, where 0 < @ < 1. Using Hankel
transform, Fourier sine transform, and Laplace transform,
the researchers achieved the exact solution for three different
equations. In 2006, Momani and Odibat [5] solve fractional-
order NSEs using the Adomian decomposition method.
Ganyji et al. [6] applied an analytical technique, the homotopy
perturbation method, for solving the fractional-order NSEs
in polar coordinates, and the results achieved were expressed
in a closed form. Singh and Kumar [7] solved the fractional-
order reduced differential transformation method (FRDTM)
to achieve an approximated analytical result of fractional-
order multidimensional NSE. Oliveira and Oliveira [8] ana-
lyzed the residual power series method (RPSM) to find the
result of the nonlinear fractional-order two-dimensional

NSEs. Zhang and Wang [9] suggested numerical analysis
for a class of NSEs with fractional-order derivatives; Ravin-
dran, the exact boundary controllability of Galerkin approx-
imations of a Navier-Stokes system for soret convection [10];
and Cibik and Yilmaz, the Brezzi-Pitkaranta stabilization and
a priori error analysis for the Stokes control [11].

Some researchers mix two powerful techniques to
achieve another result technique to solve equations and
systems of fractional-order NSEs. Below, we define some of
these combinations: a combination of the Laplace transfor-
mation and Adomian decomposition method; Kumar et al.
[12] introduced the homotopy perturbation transform
method (HPTM), combined Laplace transformation with
the homotopy perturbation method, and solved fractional-
order NSEs in a tube. Jena and Chakraverty [13] imple-
mented the homotopy perturbation transformation method
(HPETM), and this technique consists in the mixture of
Elzaki transformation technique and homotopy perturba-
tion technique; Prakash et. al [1] suggested g-homotopy
analysis transformation technique to achieve a result of
coupled fractional-order NSEs. This technique mixture of
the Laplace transformation and residual power series
method is defined:
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1
D$u+(u-V)u:——Vp+vV2u, O<ac<l,

P (1)
Vu=0,

where D%u is the Caputo derivative of order a, u is the veloc-
ity vector, 7 is the time, v is kinematics viscosity, p is the
pressure, and p is the density.

In this work, we consider two special cases. First, we con-
sider unsteady, one-dimensional motion of a viscous fluid in
a tube. The fractional-order Navier-Stokes equations in
cylindrical coordinates that governs the flow field in the tube
are given by

2 1
Dfu+P+v<a—Z+—%>, 0<ac<l, (2)
ay:  yoy
with initial condition
u(y,0) =g(y), (3)

where P=—1/pdp/oz and g(y) is a function depending only
on .

Consider that the fractional-order two-dimensional
Navier-Stokes equations is defined as

2 2 0 b}
Dru=p0<a—v/2u+ a—(qu> —uwu—vgpuﬁq,

2 2 b} b}
DIv=p, a—wzv+ a—(sz —uwv—v%v—g,
with initial conditions

u(y, 0, 7) = (¥, 9),
vy, 9, 7)=9(v, 9),

where u=u(y, ¢, 1), v=2(¥, ¢, T), p, T, p denote as constant
density, time, and pressure, respectively. v, ¢ are the spatial
components, and f(v,¢) and g(y, @) are two functions
depending only on v and ¢.

The residual power series method (RPSM) is a simple and
efficient technique for constructing a power series result for
extremely linear and nonlinear equations without perturba-
tion, linearization, and discretization. Unlike the classical
power series technique, the RPS approach does not need to
compare the coefficients of the corresponding terms and a
recursion relation is not required. This approach calculates
the power series coefficients by a series of algebraic equations
of one or more variables, and its reliance on derivation,
which is much simpler and more precise than integration,
which is the basis of most other solution approaches, is the
main advantage of this methodology. This method is, in
effect, an alternative strategy for obtaining theoretical results
for the fractional-order partial differential equations [14].

The RPSM was introduced as an essential tool for asses-
sing the power series solution’s values for the first and
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second-order fuzzy DEs [15]. It has been successfully imple-
mented in the approximate result of the generalized Lane-
Emden equation [16], which is a highly nonlinear singular
DE, in the inaccurate work of higher-order regular DEs
[17], in the solution of composite and noncomposite
fractional-order DEs [18], in predicting and showing the
diversity of results to the fractional-order boundary value
equations [19], and in the numerical development of the
nonlinear fractional-order KdV and Burgers equation [20],
in addition to some other implementations [21-23], and
recently, it has been applied to investigate the approximate
result of a fractional-order two-component evolutionary
scheme [24].

This paper introduces the modified analytical technique:
the residual power series transform method (RPSTM) is
implemented to investigate the fractional-order NS equa-
tions. The result of certain illustrative cases is discussed to
explain the feasibility of the suggested method. The results
of fractional-order models and integral-order models are
defined by using the current techniques. The new approach
has lower computing costs and higher rate convergence.
The suggested method is also constructive for addressing
other fractional orders of linear and nonlinear PDEs.

2. Preliminaries

Definition 1. The Abel-Riemann of fractional operator D* of
order « is given as [25-27]

d

—v

" ¢’
D*v({) =
1 d J( v({)
I(j-a)dy Jo (¢ —y)*7*

©) a=j,

dy, j-l<a<j,

(6)

where j€ Z",a ¢ R and

1 (¢ .
D) = 1 | €0 vy, 0<asi @)

Definition 2. The fractional-order Abel-Riemann integration
operator J* is defined as [25-27]

1

¢
J“v(¢)=mj@((—w“*v(c)dc, {>0,a>0. (8)

The operator of basic properties

oo TU+D
= o
wri_ TG+L) i
U= rarn

Definition 3. The Caputo fractional operator D% of « is
defined as [25-27]
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I(G—a))o(C-y)"
CDIXV(C’) dSJ ) (C V/)
d—UV(C)’ J=a

(10)

Definition 4. The fractional-order Caputo operator of Elzaki
transform is given as [25-27]

j-1

E[D{g(¢)] =s“E[g({)] - ). & ** g™ (0), wherej - 1< a <.
k=0

(1)

Definition 5. A power series definition of the form [14]

Mg

P, (T=y)" =Py + Pi(1—y) + Py(r—y)* "+, (12)
0

3
I

where 0 <m —1 <a<mand <y is called fractional power
series (FPS) about vy, where P, are the constants called the
coeflicients of the series. If y =0, then the fractional power
series will be reduced to the fractional Maclaurin series.

Theorem 6. Assume that f | has a fractional power series rep-
resentation at T =y of the form [14]

For m e NU{0}, if D™f () are continuous on (y,y +
R,), then the coefficients P,, can be written as

o _ D)

" I(1+ma) (14)

where y < T <y + R, and R, is the radius of convergence.

Definition 7. The expansion of power series of the form [14]

Mg

Gu(@)(T—y)™ (15)

0

3
I

is said to be multifractional power series at T =y, where G,,
(¢) are the coeflicients of multifractional power series.

Theorem 8. Let us assume that u,(¢, T) which has the multi-
fractional power representation at T =y can be written as [14]

w( 1) = > Golx) (- (16)

0

3
1

For m e NU{0}, if D" u, (¢, T) are the continuous on I,
x (W, ¥+ R,), then the coefficients G,, are given by

DI uy (¢, 7)
St i 17
m(¥) I'(I1+ma) (17)
where w eI, and w <1<y +R,.
So, we can write the fractional power expansion of u,(¢, T)
of the form

ppr)= 3 DB (e (g

= (1 +ma)

which is the generalized Taylor expansion. If we consider & = 1,
then the generalized Taylor formula will be converted to classi-
cal Taylor series.

Corollary 9. Let us assume that u(¢, ¢, ) has a multifrac-
tional power series representation about T = as [14]

Mg

uy($: . 7) = ) G(ds ) (T — )" (19)

0

3
I

For m e NU{0} if D u(¢, ¢, T) are continuous on I x
I, x (y,y+R,), then

Deu(¢ ¢, 7) (20)

(¥ ) = I'(1+ma)

where (¢, ¢) €I, XL, w <T<Y+R,,

3. The Procedure of RPSTM

In this section, we explain the steps of RPSTM for solving the
fractional-order partial differential equation

Diu(y, 1) = aDi,u(l//, 7) + bu(y, 7) — cul(y, 1), (21)
with initial condition

u(y, 0) = fo(y). (22)

First, we use the Elzaki transform to (21); we get

&IDSu(y, 7)) = a8 [ Dyu(y, 7)| + bE[u(y, 7)] - [ (y 7))
(23)

By the fact that &[D%u(y, 7)] = 1/s*&[u(y, 7)] — s'*u(x
,0) and using the initial condition (22), we can write (23) as

U(y,s) =s’fy(y) +s"aDU(y, s) + bs"U (v ) (24)
— " E(EU(y 9,
where U(y, s) = &[u(y, 1)].
Second, we define the transform function U(y, s) as the
following formula:

00

Ulyrs)= 3 1f, (). (25)

n=0



We write the kth truncated series of (25) as

[ee]

U,s)= ) U, (x) =fo(x) + ) 5", (%) (26)

n=0 n=1

As stated in [25], the definition of Elzaki residual func-
tion to (25) is

BRes(y,5) = U(ys 5) — fo(x)s* — asDEU (5 5) - bs"U(ys )
+ e & [(B[U(,9)))7,
(27)

and the kth Elzaki residual function of (27) is

ERes(y,5) = U (¥, 5) = fy(x)s” — as"DLUx (v, s)
—bs*U(y ) + cs"‘%{(%’l[Uk(q/, s)})q] .
(28)

Third, we expand a few of the properties arising in the
basic RPSM to find out certain facts:

(i) &Res(y,s) =

for each s> 0

0 and lim;_, & Re s, (y, s) = ERes(y, s)

lim;_, &Res(y,s) =0 = lim;_ s& Re s (y,5) =0 (29)

(i) lim, . s**1&Res(y, s) = lim,_,
=0,0<a<1,k=1,2,3,--

sk L& Re s, (v, 5)

Furthermore, to evaluate the coefficient functions f, (y),
we can recursively solve the following scheme

lim (sk““%Resk(u/,s)) =0, O<a<lk=1,23,

§—00

(30)

Finally, we implemented the Elzaki inverse to U, (v, s) to
achieve the kth approximate supportive solution u;(y, 7).

4. Numerical Results

Example 1. Consider the time-fractional-order one-
dimensional NS equation of the form

u 10u

5_1//2+¢w O<a<l. (31)

Diu(y,7)=P+
Subject to the initial condition

u(y,0) =17 (32)

Applying Elzaki transform to (31) and using the initial
condition given in (32), we get
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U(y,s) =" (1-y?) +s“&,[P] +5°8,
o’ 10
1 o —1
& {awz Uy, )} ts gr{gr {WT//U

The kth truncated term series of (33) is

k
V) = (L9 + XL (39

and the kth Elzaki residual function is

& Res,=Up(y,s)—s*(1-y*) -

—1 aZ
| a—szk(llf’S)

Now, to determine f, (v), k=1,2, 3, ---, we substitute the
kth truncated series (34) into the kth Elzaki residual function
(35), multiply the resulting equation by s***2, and then solve
recursively the relation lim,___[s"**? Re s, (y,s)] =0,k =1,2

-, for f,(y). The following are the first several compo-
nents of the series f, (v, ¢):

Szx+2 P—s g‘r

s ft v

(35)

hLy) =p-4
fr(w) =0, (36)
f3(w) =0,

Putting the values of f, (y)(n >1) in (34), we get

Uy, s)=s*(1=y?) + "2, (y) + 2, (9) + 25 (W) +,
U(y,s) =5 (1- 1//2) +sMH(P - 4) + $22(0) + 2 (0)+++,

(37)
U(y,s) =5 (1-y?) +s*2(P-4). (38)

Using inverse Elzaki transform to (38), we get

2 (P-4)r*
u(y,t)=1-vy +m. (39)
Putting a = 1, we have

u(y,7)=1-y*+ (P-4)r1. (40)

In Figure 1, the RPSTM and the exact results of Example
1 at a =1 are shown by plots (a) and (b), respectively. From
the given figures, it can be seen that both the exact and the
EDM results are in close contact with each other. Also, in
the Figure 2 subgraph, the RPSTM results of Example 1 are
calculated at different fractional-order « = 0.8 and 0.6. It is
investigated that fractional-order problem results are
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FI1GURE 1: Graph of exact and analytical results of Problem 1.

0 -5

FiGUre 2: The fractional order of a = 0.8 and 0.6 of Problem 1.

convergent to an integer-order effect as fractional-order anal-
ysis to integer-order. The same phenomenon of convergence
of fractional-order solutions towards integral-order solutions
is observed.

Example 2. Consider the fractional-order one-dimensional
NS equation of the form

. u 10u
Dru(w,r)za—v/z+aw, O<a<l. (41)

Subject to the initial condition,
u(y,0) =y (42)

Applying Elzaki transform to (41) and using the initial
condition given in (42), we get

U s)=£(y) +°, {% { E; U(W’S)H co 6 (LS uwa )]

5
10
0 -5
The kth truncated term series of (43) is
k
V(v - XS (44)
and the kth Elzaki residual function is
aZ
&, Res = Uy(yss) - (y) - &, | & {m ULw, >H
o« (10
S gr[% {waxUk(w’ ) :
(45)

Now, to determine f, (y), k=1,2, 3, ---, we substitute the
kth truncated series (44) into the kth Elzaki residual function
(45), multiply the resulting equation by s***2, and then solve
recursively the relation lim,_,__[s"**? Re s, (y,s)] =0,k=1,2

-, for f(y). The following are the first several compo-
nents of the series f, (v, ¢):



1
=y
1
L) = ?
L) =%, (46)
fly) =%~

Putting the values of f, (y)(n >1) in (44), we get

Uy, s) =5 (¥) + " f1(w) + 2 f, (w) + 2 f (w)+-, (47)

Soc+2 52a+2

+—t —
v oy v

2 3a+2
A (48)

Ulyss) =) +

Using inverse Elzaki transform to (48), we get

1 7 1 32 %
YW=V Tar2) Y TRae2) T P TGar
(49)
Putting o = 1, we have
(v, 1) +1t+1T2+32T3+
u ’T = — _ ——t--,
v v vy o2l oy 3l (50)
50
S 12x32 x5 % x (2n-3)* 1"
u(y, 1) =y + Z P2n1 e
n=1 :

In Figure 3, the RPSTM and the exact results of Example
2 at =1 are shown by graphs, respectively. From the given
figures, it can be seen that both the exact and the EDM results
are in close contact with each other. Also, in the Figure 4 sub-
graph, the RPSTM results of Example 2 are calculated at
different fractional-order a =0.8 and 0.6. It is investigated
that fractional-order problem results are convergent to an
integer-order effect as fractional-order analysis to integer-
order. The same phenomenon of convergence of fractional-
order solutions towards integral-order solutions is observed.

Example 3. Consider the fractional-order two-dimensional
NS equation of the form

Dlu=p, (a—2u+ —2u>—uiu—viu+g

M0 oy T 0¢2 oy o9 ’
(51)

Div=p (a_a_> EPIRNL I

M0\ oy2 T g2 oy ¢ ’

with initial condition
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u(y, ¢, 0)==sin (y +¢),

(52)
V(Y @,0) =sin (y +9).

Applying Elzaki transform to (51) and using (52), we get

V(y,9:5) =5*(sin (y +9)) + pys" &,
0’ 0’
. -1 [ R
{%T (awz V.5 + 57 Vv 9 s))]
o —1 a
"8, |:gr {U(‘l/) ) 3 V(Y 9:5)

-8, (Vi) 55 Vg9 ) | -5 lo)

(53)
The kth truncated term series of (53) is
k
Uiy 9.5) == sin (y +9)s* + ) s"“f (v, 9),
" (54)

k
Vi(y, @ 5) =sin (y + @)s" + Y s g, (v, 9),

n=1

and the kth Elzaki residual function is
&, Re s (¥, 9, 8) = Up(y, 9, 5) = (=sin (y + 9))s* = pys” &,

. aZ aZ
&, 3 Uy, @, 5) + 3 Uy, 9> 5)

N 5}
+ Sa(g‘r |:g‘rl{Uk(v/’ (28 S) w Uk(ll/’ P> S)}:l

_ 0
+ Sag‘r {ng{Vk(llj, P S) % Uk(W’ P> S)}:|

& Resy(y,9,5) = Vi (¥, 9,5) = sin (y + 9)s* = pys" &,

0? 0?

: [g;l {a_wz Vi(y, 9,5) + 3 Vi(y, ¢:5) H
. 0

+szxch |:%Tl{Uk(w> 78 S)ka(l% 2 S)}:|
5 0

+sE, |:grl{vk(1p’ ® 3)%‘/1((1//’ ¢’S)H

o+2

+gs
(55)
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F1GURE 4: The fractional order of « = 0.8 and 0.6 of Problem 2.

FIGURE 5: Graph of exact and analytical results of Problem 3.

Now, to determine f, (v, ¢) and g,(v,9),k=1,2,3,---, , and then solve recursively the relation lim,_,,[s***? Re s;(y
we substitute the kth truncated series (54) into the kth Elzaki ~ ,¢,s)]=0,k=1,2,3,--, for f; and g,. The following are the
residual function (55), multiply the resulting equation by s> first several components of the series f, (v, ¢) and g, (v, ¢):



8
fiws9)  =2pysin (Y +9)+g,
91(¥p)  =-2p, sin (Y +¢) -
Lyp)  ==(2py)* sin (v +¢),
9.9)  =(2p,) sin (v +9), (56)
L) = (2/)0)3 sin (y + ¢),
AVZ%)

~(2p,)” sin (v +¢),

Putting the values of f, (v, ¢) and g, (v, ¢)(n > 1) in (54),
we have

20+2

Uy, ¢,5) == sin (y +@)s’ +f1 (¥, 9)s"* + £, (v, 9)s
+ 5 (9, @)™ P4,

a+2 20+2

V(. @, 5) =sin (y +9)s” + g, (v, 9)s*" + g, (v, 9)s

) 3(X+2+.“’

+95(¥> 9)s

) o+2

—sin (y +)s” + (2p, sin (y +¢) + g)s
= ((2p,)? sin (y + ¢))s***
+((2p)” sin (y +9)) s P,

Uy, ¢,5) =

V(yrus) = sin (y + 9)5* ~ (2, sin (y + 9) ~ 9)s*"
+ ((2po)” sin (y +¢)))s**2
= ((2py)” sin (¥ +9)))s 2+,
Uy, ,s) == sin (y +9) [s* = 2pys™ (ZPO)Z a2
(2‘0 )3 30t+2 } +g5
V(Y 9,5) =sin (y + @) [s* = 2p,s™ (2P K (57)
(zp )3 3{X+2 . ] gs
Using inverse Elzaki transform, we get
L 20T, ()T (2p)’T
Uy o7) =~ sin (v +¢) [1 [(a+2)  T(a+2) T(a+2)
TO(
"Ity
. _2pmt L (2py)' T (2py)° T
V(y> @) =sin (v +¢) {1 [(a+2) T(2a+2) T(Ga+2)
Tlx
“IT(ar2)
(58)
Putting « = 1, we get the solution in closed form
u(w, o, 7) = — sin (¢ + @)e 2" + g,
(v 9:7) (v +¢) g (59)

V(> . 7) =sin (Y + @)e T — g.
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In Figures 5 and 6, the RPSTM and the exact results of
Example 3 at a =1 are shown by graphs, respectively. From
the given figures, it can be seen that both the exact and the
RPSTM results are in close contact with each other. Also, in
the Figure 7 and 8 subgraph, the RPSTM results of Example 3
are calculated at different fractional-order a =0.8 and 0.6. It
is investigated that fractional-order problem results are conver-
gent to an integer-order effect as fractional-order analysis to
integer-order. The same phenomenon of convergence of
fractional-order solutions towards integral-order solutions is
observed.

Example 4. Consider the fractional-order two-dimensional
NS equation as

with initial condition

u(y, ¢, 0) = €%, 6
V(l//, (P> 0) — el[/+(p’ ( 1)

Applying Elzaki transform to (60) and using (61), we get

—eVs? + p &

{al,,z U2 +525¢2Uk(w>¢,5)H

Ers [gg 1{ (¥ 9,5) Uy, 9, )H

1/’
U 9.9}

Uy, ¢,5) =

=S gr[(g 1{ V/’QD’
+5"E.[g

V() 9,5) = V95 + ps°,

et o 1% + o Vv
T 571//2 (v, 9,5) 87)2 (¥, 9,5)

-5, [6 {9 Ve |

s [%Tl { Vv, ,s) % V(y,¢,s) H

- 5“%_[ [g]
(62)
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FIGURE 6: Graph of exact and analytical results of Problem 3.
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FiGUure 7: The fractional order of & = 0.8 and 0.6 of Problem 3.
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FiGure 8: The fractional order of & = 0.8 and 0.6 of Problem 3.
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FIGURE 9: Graph of exact and analytical results of Problem 4.

FIGURE 10: Graph of exact and analytical results of Problem 4.

The kth truncated term series of (62) is &, Re s (¥, 9,5) = Vi(y, ¢, 5) — V75> — ps* &,
aZ
k K> 925) + 55 Vi(¥ 9, S)H
U(r9.9) = ="'%+ )" %, (9, g), [ { o
n=1 0
(63) +5°8, [ { (V> 9:9) v V(¥ @, S)H
(ll/> ?, ) — el//-f—(ps + SnoH—Z l//’ )’ . P
> e[ e
and the kth Elzaki residual function is t9—5 s"‘+2
&, Re sy(y9.5) = Uy (v 9. 5) V95" — ps°, ()
N az
[ B Suines)
3 . Fy Now, to determine f, (v, ¢) and g, (v, ¢), k=1,2,3, -,
+5°E N E S Uk(y 9:9) oy Uk(v> 9, 9) we substitute the kth truncated series (63) into the kth Elzaki
5 residual function (64), multiply the resulting equation by
+5%E, {%;1{ KV 9:5) 5 Ui 9, )H s¥+2and then solve recursively the relation lim,_,[s*2
. % Re s (v, 9,5)] =0,k=1,2,3, -, for f, and g,. The following
~ 9 are the first several components of the series f, (v, ¢) and

9 (v, 9):
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0.5 0 _05

F1GURE 11: The fractional order of & = 0.8 and 0.6 of Problem 4.

-1 -1

-1 -1

F1GURrE 12: The fractional order of « = 0.8 and 0.6 of Problem 4.

filysp)  =-2pe""? +g,
9(¥:9)  =2pe"? ~ g,
Lye)  =-(2py)%e"?,
g(p9)  =(2p) ", (65)
L(ye)  =-(2py) "7,
(v,

9 (v, 9) = (2P0)3eww>

Putting the values of f,(y,¢) and g,(y,¢)(n>1) in
(63), we have

Uy, 9, 5) = =" + f, (¥, )52 + f, (v, )s™*
+f3(1//’ (P)s3zx+2+_ .

a+2 20+2

VY, 9,5) = €5 + g, (v, 9)s™** + g, (v, @)s

+ 95y @)™ P,

U(V/’ 90’ S) — _eer(pSZ _ ZPOeuxﬂp + gsa+2 _ <2p0)26w+<p52a+2

_ (2p0)36w+<ps3a+2+”_,

V(y, 9,5) =05 + 2p,el? — gs**? 4 (2p, )2V 1057

+ (2p0)3e"’“"s3‘”2+---,

U(V/i (P) S) — 7eq/+<p [52 + 2P05a+2 + (2p0)252a+2 + (2P0)353a+2+'“} +gsa+2)

V(l[/, ?, S) — ew+go [SZ + 2p05a+2 + (2P0)232a+2 + (2p0)353“+2+“-] —gSMZ.

(66)
Using inverse Elzaki transform, we get
o 2_2a 3 3
u(w)(p, T):_elpﬂp 1+ ZPOT (ZPO) T + (2:00) T IR
I'a+2) I'(2a+2) TI'(3a+2)
+ T
g I'(a+2)’
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T PO LA, A C
e I(a+2) TI'(2a+2) I'(3a+2)
— Ta
ITa+r2)
(67)

Putting o = 1, we get the solution in closed form

u(y, ¢, 7) ="+ g, (68)
YyogT) =P

In Figures 9 and 10, the RPSTM and the exact results of
Example 4 at « = 1 are shown by graphs, respectively. From
the given figures, it can be seen that both the exact and the
RPSTM results are in close contact with each other. Also, in
the Figure 11 and 12 subgraph, the RPSTM results of Exam-
ple 4 are calculated at different fractional-order « = 0.8 and
0.6. It is investigated that fractional-order problem results
are convergent to an integer-order effect as fractional-order
analysis to integer-order. The same phenomenon of conver-
gence of fractional-order solutions towards integral-order
solutions is observed.

5. Conclusions

In this article, a modified method constructed by a mixture of
the residual power series and Elzaki transformation operator
is presented to solve fractional-order Navier-Stokes models.
The merit of the modified technique is to reduce the size of
computational work needed to find the result in a power
series form whose coefficient to be calculated is in successive
algebraic steps. The technique gives a series form of results
that converges very fast in physical models. It is predicted
that this article achieved results which will be useful for fur-
ther analysis of the complicated nonlinear physical problems.
The calculations of this technique are very straightforward
and simple. Thus, we deduce that this technique can be
implemented to solve several schemes of nonlinear
fractional-order partial differential equations.
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This paper discusses the study of optical solitons that are modeled by Riesz fractional Chen-Lee-Liu model, one of the versions of
the famous nonlinear Schrodinger equation. This model is solved by the assistance of consecutive spectral collocation technique
with two independent approaches. The first is the approach of the spatial variable, while the other is the approach of the
temporal variable. It is concluded that the method of the current paper is far more efficient and credible for the proposed
problem. Numerical results illustrate the performance efficiency of the algorithm. The results also point out that the scheme can

lead to spectral accuracy of the studied model.

1. Introduction

Several numerical methods, including local and global
methods, have been listed as approximation techniques for
treating the differential equations. The local methods listed
the approximate solution at specific points, while the global
methods give the approximate solution in whole the men-
tioned interval. The numerical approximations for differen-
tial equations [1-4] are listed at specific points using finite
difference methods. While the finite element methods sub-
divide the whole interval into subintervals and give the
approximate solution in them. The finite element methods
are used for various types of differential equation; see for
example [5-7].

Recently, there are more interests of appointing the spec-
tral methods to treat with various kinds of differential and
integral equations [8, 9], due to their applicability to bounded
and unbounded domains [10, 11]. The convergence speed is
one of the major advantages of spectral method. Spectral
methods are promising candidates for solving fractional dif-
ferential equations since their global nature fits well with
the nonlocal definition of fractional operators. They have

gained new popularity in automatic computations for a wide
class of different problems which included linear and nonlin-
ear differential equation of integer or fractional (fixed, vari-
able, Riesz, tempered, and distributed orders); see [12, 13].
Also, they are more reliable to treat the integral and
integro-differential equations. Spectral methods have expo-
nential convergence rates as well as a high accuracy level.
The spectral method has been classified into four classes, col-
location [14], tau [15], Galerkin [16], and Petrov-Galerkin
[17] methods.

The theory of optical solitons [18-21] is mainly governed
by the well-known nonlinear Schrédinger equation (NLSE)
[22-25]. However, there exists a wide variety of its manifes-
tations and modifications that also govern pulse transfer
across the globe through optical fibers, PCF, metamaterials,
and couplers. A few such models are Schrédinger-Hirota
equation [26], Manakov equation, complex Ginzburg-
Landau equation, Fokas-Lenells equation, Gabitov-Turitsyn
equation, and many others. These models are considered
under different circumstances such as dispersive solitons, dif-
ferential group delay, and dispersion-managed solitons.
Besides these familiar models, there is another class of
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versions of NLSE that is referred to as derivative NLSE
(DNLSE) [27-29] that appears in three forms. One such form
is the Chen-Lee-Liu equation [30-32] that incorporates
higher order perturbations from optics and is going to be
the focus of today’s paper. While a plethora of preexisting
work has been already reported in regard to this model,
today’s focus is going to be handling the model by the aid
of fully shifted Legendre collocation method.

Shifted Legendre collocation schemes are used to numer-
ically solve the Riesz fractional Chen-Lee-Liu model. The
solution ®(&, 7) is firstly placed in its real %(&, 7) and imag-
inary 77(&, 7) parts. Accordingly, the real % (&, 7) and imagi-
nary 7'(§,7) parts of such equation are approximated as
Uy y(& 1) and %, ,(E 1), respectively, which can be
expressed as a finite expansion of shifted Legendre polyno-
mials for spatial variable. Subsequently, the Chen-Lee-Liu
equation with boundary conditions is reduced to temporal
differential system with initial conditions. Then, the shifted
Legendre-Gauss-Radau collocation is assigned for temporal
discretization, which is more reliable for treating with such
problems. Substituting these discretizations in the mentioned
equation gets a nonlinear system of algebraic equations
which solved numerically using the Newton-Raphson
approach.

This paper is arranged as follows. In Section 1, some
properties of Riemann-Liouville fractional derivatives,
shifted Legendre polynomials, and shifted Chebyshev poly-
nomials are listed. The mentioned scheme is implemented
for the Chen-Lee-Liu equation with initial-boundary condi-
tions in Section 2. In Section 3, two test examples are dis-
cussed. The competence of our numerical approach is
exhibited by diverse examples in Section 4. Few remarks are
mentioned in the last section (Section 5).

2. Riemann-Liouville Fractional Derivative

The fractional integration of order y > 0 exists in different
formulas [33]. Riemann-Liouville formula, the most com-
mon and widely used, is defined as follows:

¢
Q) = ﬁjom e w000

JPF(§) =£(Q).

Here, we introduce some properties of the fractional
operators. The left-sided and the right-sided fractional deriv-
atives of Riemann-Liouville type of order f(n—-1< f<n)
are defined as follows:

3 _ 1 afl ¢ n-1-
oDy (6 7) = wa—gnjioo(f 2" Py (z,7)dz,
_1\n an +00 L
D& = 1t [ e Pyte e

(2)
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The Riesz fractional derivative is defined as follows:

& 12 3 5
W‘/’(f, 1) =—(-V)P2y (&, 1) = cs [*DODE‘//(E’T)JQDEOO‘//(E, T)] ,
3)

where ¢z = —1/2 cos (n3/2). The fractional Laplacian opera-

tor in Equation (3) can be represented in the following equiv-
alent Fourier form on the spatial variable &:

~(V)Py(E 1) =-F (EI1F (v 7). (4)

If y is defined on [¢/, %] and satisfies w(,7) =y (S, T
) =0, then the function can be extended by taking y/(&, 1) =
0 for x < a and x > b. Moreover, as shown in [34], if y (o

,T) =y¢(%,7) =0, then the Riesz fractional derivative can
be written as follows:

oF

SV Ve -

DEY(ET) + Dhy (7).

(5)

The left and right RL-FDs of the Legendre polynomial are
given by the following:

1
" 2cos (pBl2)

)(_1)k+j[‘(k+j+1) (5+1)k_”,

S (i —-k)IT(k+1)25I (k- p+1)
! (~D)Fr(k+j+1)
S G- k)\C(k+1)2F (k- p+1)

(1-&F*.
(6)

3. Chen-Lee-Liu Equation

In this section, we treat the next nonlinear Riesz space Chen-
Lee-Liu equation

iB@(E, 7) 'O, 1)

00(&, 1)
o ’

i

+iy|O(&,7)] =AET),  (§7) €[0,Ena] X [0, Tend]s

(7)
with the following conditions:

®(0’ Tend) =X (T)’ ®(£end’ T) =Xz (T)’
®(x’ 0) = ¢1 (X), X € [0’ Eend]'

te [0’ Tend}’

(8)

We now split the complex function @(&, 7) into two real
functions % (&, 7) and 7'(&, 7) as follows:

OE 1) =UE 1) +i7 (& 1), A 1) = A&, T) +id, (€, 7),
X1 (T) =11 (T) + i15(7)s Xo(T) = 11,(T) + iy (T)s ¢4 (%) = @1 (%) + iy (%),

)

where %(&,7), 7' (§, 1), A (&, 1), Delta, (&, 7), 1, (1), 115(7), 1
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2(1),14(1), 9, (x), and ¢, (x) are the real functions. Thereafter,

QUET) V(1) %@ T) _

0
5t o +y(P (1) +V (1)) o A& T),
o7 (&, oMU (&, oV (E,
o T e e T <o,
(10)

with the next conditions:

%(0’ Tend) =M (T>’ %(gend’ T) =M1, (T>’ € [0’ Tend]’ (11)
%(0’ Tend) = }73 (T)’ %(gend’ T) = ’74(‘[)’ € [O’ Tend]’ (12)
U(x,0)=15(x), 7'(%,0) =115(x),  x€[0.8pa]-  (13)

3.1. Spatial Discretization. The distribution of shifted Legendre-
Gauss-Lobatto nodes in [0, £, 4] is the major feature of consid-
ering them in our discretization. Here, we list the basic main of
implementing our Legendre-Gauss-Lobatto collocation scheme
for converting the nonlinear system (Equations (10) and (11))
into temporal ordinary differential system.

The spectral approximation of P(,7) and Q(§, 1) is
given as follows:

Mé

Uy (1) = ) (1) P, (%),

~.
Il
(=]

(14)

Mé

&1 = 2 (0P, (%),

j=0

.
Il

where the orthogonal property and discrete inner product
permit the following:

8] 5 Z()P 55 nd‘/Vl end (EEe|1d )

end>f i= (15)
&(7)= hs ZOP (88 0g1.8) P 7 (S T):

end] 1

In that case, Equation (14) takes the form:

NN
“@T) = Z(Z h: P $art i) L% )wfenwr)%(fse,,dm’f)’

i=0 \ j=0

N
Z <Z ‘@5 d](sf nd Y, ’)95 nd>. J( )wfc.ldv-”'vi) W(E{md,ﬂ,," T)'
(16)

Over and above that, the partial derivative of first order in
space evaluated at shifted Legendre-Gauss-Lobatto colloca-

TaBLE 1: Maximum absolute errors of Equation (32).

(N, M) Moy y,u My oy My um
(2,2) 1.5625x 1072  7.39136 x 107> 1.5625 x 107>
(4,4) 7.01531x107°  2.43449x10°  7.01531x107°
(6,6) 1.26263x 107 4.44263x107%  1.26263x107°
(8,8) 6.75387 x 107 1.47693 x 1072 1.50175 x 107'2
(10,10)  4.35416x107'®  9.29812x 107  9.56769 x 10716
(12,12)  5.73001x 1077 2.48174x107'®  2.54703 x 107'°

tion is as follows:

ou )
% = Y P (e ro ),
i=0

M n=0.1.---.N

(17)

an,

end"/V’i’ T) ’

where

Z Eend /Vl

‘Eend ]

0Py (%)
end o (EEend"/V’i) <87%])

x=&;

end o1

(18)

Comparable procedure can be performed to the Riesz
fractional derivative 0*¢ . , (&7, 7)/0[€|" for space variable
to get

U (i ) _ ﬁ

gl i=0 A ﬂl(sgmd,mi’ T) ’
oty , &
(Efend;j‘/)” T) _ z An,i%(sf i T), n=0,1,---, N,
0[] par -
(19)
where
P i(x)
&’em ./Vl End>
Z s . end’j (€£e|1d>'/V’i) ( a|£ii.‘:: )
end] x—gimd
(20)

Combining the boundary conditions with the abovemen-
tioned equations and equalizing the residual of Equation (7)
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(a) Real part

(b) Imaginary part

FIGURE 1: Space graphs of real and imaginary parts of the numerical solution of Equation (32).

0.015 4
= 0.010 -
z
S
e
5
< 0.005 A
0.000 -
T T T T T T
0.0 0.2 04 0.6 0.8 1.0
g
——— u(£03) Uy, (&,0.5)
Uy (6,0.3) --= u(0.7)
-—- u(£05) — Uy, §0.7)

(a) Real part

0.010 -
0.008 1
= ]
= 0006
=
5 0.004
>
0.002 1
0.000
T T T T T T
0.0 0.2 04 0.6 0.8 1.0
g
——— Vyy (£03) Vi (6,0.5)
Vo 6:0.3) === Yy §0.7)
=== Yy (§:0.5) — Vo ©0.7)

(b) Imaginary part

Fi1GURE 2: &-direction curves for the approximate and exact solutions of real and imaginary parts of Equation (32).

by zero give us the following:

N=1
Uy(1) = D7) = Y. M7 (1) =y (U5 (1) + 75(2))

i=

: (Pn,o’ﬁ("') + Pt (T) + '

= Aotz (7) = Ap oy a(7),

+ A0 (T) = Aty (T), M=1,2,, W =1,
(21)
with initial values
,(0)=15(0),7,(0) =15(0), n=1,--N-1, (22)

where

U (1) = U (Egena o T)> V'i(T) =V (Egena .o T)> v

(23)
:Ar(EEend,N,k’T)’ k:1,"',./V_1,r:1,2.

The numerical approach of such system will be listed in
Subsection 3.2.

3.2. Temporal Discretization. Here, we numerically treat the
temporal differential system with initial conditions:

W (2) =G (W (D) T (7)), 0< <], r=1,, Rt €0, Tongls

(24)

W,0)=1, r=1-,R, (25)

where &,(t, W (1), W (1)), r=1,---, R are given func-
tions. Shifted Legendre-Gauss-Radau collocation is assigned
for temporal discretization, which is more reliable for
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FIGURE 3: §-direction curves of real and imaginary parts of the absolute error of Equation (32).
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TaBLE 2: Maximum absolute errors of Equation (35).

MN,M
3.90625 x 1073
2.11826x 1073

‘%V/V,/%
3.67244 x 1073

1.98249x 1073

ﬂ%ﬂ,ﬂ
3.90625 x 107>

)

) 2.11826x 1073
) 6.60009 x 107*
)

1

6.04953 x 10 6.60009 x 1074

8.74126 x 107> 7.91024x 10>  8.74126x 107°

3.1572 x 10716 3.53179 x 1071°

4.86791 x 1071¢

2.1453 x 10716

4.75375x 107 2.13208 x 107'¢

treating with such problems. We approximate %', (7) as fol-
lows:

H
V()= a, G, (1), r=1-R  (26)
j=0

The temporal derivative 7, (7) is evaluated as follows:

HK H 0
z rj - dT end} T)) = z af’jgrcnd>j(1))

i=0 j=0

-

Thus, we get the following:

K
Z aVJ Tend](T) g

j=0

< Z“IJ i (T

> ‘%’ te [0’ Tend]’

<.

=1, 9. (28)

F
24,6 i(0)=1,

j=0

Combining the initial conditions with the abovemen-
tioned equations and equalizing the residual of Equation
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FIGURE 5: Space graphs of real and imaginary parts of the numerical solution of Equation (35).
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(24) by zero at (ZK) shifted Legendre-Gauss-Radau collo- ~ where the rest (&) algebraic equations are outputted by the
cation points give us the following: initial conditions as follows:

M

I
<

T T
(1) _ Z . Z -
a’vfgfcnd»f =gt pard alxj(gfmdxj (Tfend x, S)’ > L - u‘%’.l(grmd’j (Tfend’ H, S) o=l
J J= J=

e Rys=1,0 H,

K

(29) Z0 ar’j(grend’j(o) =T TS L. R (30)
j=
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Finally, we have (Z(# + 1)) algebraic equations as fol-
lows:

%

<.
I
o

a, %) (1, ,H.s)

1] 7 Tends]

( Zall Td}(Td%S Za%} Td](rd%5)> r=1,
j=0 j=0

S Rys=1, F,
F
Y4B j(0)=T, r=1 % (31)
j=0

The numerical approach of the previous system will be
acquired by using Newton’s iterative method.

4. Applications and Numerical Results

Here, the adequacy of the spectral collocation algorithms is
verified by the obtained results. Problems including initial-
boundary conditions are examined. Mathematica version
10 is utilized to carry out the code.

Example 1. We test the next problem:

00 0’0 . ,00

e + e 101 5; =AE D 1) € 0.1]x[0.1)

(32)
where the function A(&, 7), initial condition, and the bound-

ary conditions are given such as the continuous problem has
the next exact solution:

O 1) =" (1-8). (33)

In Table 1, the numerical results based on the maximum
absolute errors of Equation (32) obtained using the previous
algorithms are listed, where

EW4 v E 7)

EWAIIET

’%/Vﬂ &7)-
|%/V/% (& 1)-

(E’ T) ’ (E’ T) € [0’ gend]’
7(& 1)) (57)€[0.¢],

By, (E7)= ¢ (Ba,,&0) + (B, &) &) € 0.8

u, (&) =Max (B, (&7), VET) 0.8},

My, (&) =Max {E; ,(&7), V(ET) 0.8},

My 4(&1)=Max {E, ,(& 1), V(& 71)€[0,&]}.
(34)

Space graphs of real and imaginary parts of the numerical
solution of Equation (32) are shown in Figures 1(a) and 1(b),
respectively, where /" = ./ = 12. While in Figures 2(a) and
2(b), we recognize the outright matching of numerical and
exact solutions in its real and imaginary parts of Equation
(32), where N =M =12. Also, &-direction curves for real

and imaginary parts of the absolute errors of Equation (32)
are plotted in Figures 3(a) and 3(b), respectively, where 7=
0.5, /' = M = 12. Moreover, we sketched in Figure 4 the log-
arithmic graphs of M, (ie., log,,M,) of Equation (32)
obtained by the present method with different values of (/
=M =2,4,6,12).

Example 2. Now, consider the following:

00 'O a®

IEJFW i | A(E, 1),

(1) €[0,1] %[0, 1],

(35)

where the function A(E, 7), initial condition, and the bound-
ary conditions are given such as the continuous problem has
the next exact solution:

O, 1)=& (1-8)" (36)

In Table 2, the numerical results based on the maximum
absolute errors of Equation (35) obtained using the previous
algorithms are listed. Space graphs of real and imaginary
parts of the numerical solution of Equation (35) are shown
in Figures 5(a) and 5(b), respectively, where /' = ./ =12.
While in Figures 6(a) and 6(b), we recognize the outright
matching of numerical and exact solutions in its real and
imaginary parts, respectively, where /' =4 =12. Also, &
-direction curves for real and imaginary parts of absolute
errors of Equation (35) are plotted in Figures 7(a) and 7(b),
respectively, where 7=0.5, # =/ =12. Even though few
values of N and M, the accurate results have been spotted
in these tables. This is consistent with which was predicted
in case of using a spectral collocation method. Likewise, these
results bring to light the responsibility convergence of the
shifted Legendre collocation method for such problems.

5. Conclusions

This paper adopted fully collocation method to study Riesz
fractional Chen-Lee-Liu equation that discusses soliton
propagation down the optical fibers with perturbation terms
incorporated into the waveguides. The powerful numerical
scheme gave way to a number of impressive numerical results
that prove high efficiency of the algorithm. The study was
carried out with initial-boundary conditions.

The results of the algorithm pave way to conduct further
additional research in this field to display additional results in
future. One avenue is to consider Riesz fractional Chen-Lee-
Liu equation with differential group delay and then further
along study the model with additional optoelectronic devices
such as in magneto-optic waveguides. Subsequently, this
model will be treated with the same algorithm for dense
wavelength division multiplexing (DWDM) topology.

Thus, a lot lies in the bucket list!
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In this work, we consider a new full von Karmén beam model with thermal and mass diffusion effects according to the Gurtin-
Pinkin model combined with time-varying delay. Heat and mass exchange with the environment during thermodiffusion in the
von Kédrman beam. We establish the well-posedness and the exponential stability of the system by the energy method under
suitable conditions.

1. Introduction and Preliminaries where
In this paper, we are concerned with the following problem: (x,0,t) € (0,L) x R, x (0,00). (2)

Here, 7(t) > 0 represents the time-varying delay, and d,,

1 I . .
w, —d, Ku"+ i(wx)2>wx:| Ay, + W, + iw, (6t —7(£) =0, @2 015 03, & d, 1, and i, are positive constants; y, is a real
x number, and B, and 3, are the relaxation functions, with

) .
u,—d, {ux . E(wx)z} 6,0~ 8,P. =0, the initial data

00 , 0 — ,
0, +dP, —J B,(0)0,n(t — 0)do — 8,1 =0, w(x, 0) = wy(x)

0

w,(5,0) = w, (x),

do, +rP, — J B,(0)P,(t—0o)do - 8,u,, =0,
0

(1) u(x, 0) = uy(x),


https://orcid.org/0000-0003-1308-2159
https://orcid.org/0000-0002-5526-165X
https://orcid.org/0000-0002-0165-4992
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9974034

2
4y (5,0) = (),
0(x,0) =0,(x),
P(x,0) = Py(x),
w (%, t =7(0)) = fo (%, t = 7(0)), 3)
where
(5.1) € (0,1) x (0,7(0)), )

and Neumann-Dirichlet boundary conditions
w(x, t) =u(x,t)=P(x,t)=0, x=0,LVt>0,
(5)
w,(x,t)=0(x,t)=0, x=0,LVt>0.
The case of time-varying delay in the wave equation has
been studied recently by Nicaise et al. [1]; they proved the
exponential stability under the condition

Hy <V1-duy, (6)

where d is a constant that satisfies

t'(t)<d<1, Vt>0. (7)
For the wave equation with a time-varying delay, in [1],
the authors consider the system

u, —Au=0,
u(x, t) =0, (8)
du
O 1) = it (5. 1) ot (£ (1),
where the time-varying delay 7(¢) > 0 satisfies

0<t(t)<7, V>0, 9)

(1) <1, V>0, (10)

7(t) € W>°([0, T])), VT >0. (11)

They proved the exponential stability under suitable
conditions.

The purpose of this work is to study problem (1)-(5),
with a delay term appearing in the control term at the
first equation, introducing the time-varying delay term
Bw,(x,t —1(t)); thermal and mass diffusion effects make
the problem different from those considered in the literature
(see [2-30]).

This paper is organized as follows: in the rest of this sec-
tion, we put the preliminaries necessary for problem (1); in
Section 2, we establish the well-posedness. As for Section 3,
we prove the exponential stability result by the energy
method and Lyapunov function.

Journal of Function Spaces

In order to prove the existence of a unique solution of
problem (1)-(5), we introduce the new variable

2 1) = w,(x £~ 7()p). (12)

Then, we obtain

T(H)z,(x% pr ) + (1 - T’(t)p) 2,(% p.1) =0,
z(x,0,t) =w,(x, t).

(13)

And it is more convenient to work in the history space
setting by introducing the so-called summed past history of
0 and P defined by (see [31-36])

(o) = j“ea -0t

0

. (14)
V(o) = J P(t-0)d{, (t,0)€[0,00)xR,.
0
Differentiating (14), and (14),, we get

Ho)+7 (0)=06(),
{ni() 1,(0) =610 s

vi(0) +vg(0) = P(t),

with the boundary and initial conditions

7'(0)=v'(0)=0, ¢>0,

(16)

Mo(0) = Jaéo(f)dr,
?7 (17)
Vo(0) = J Py(t)dr,0 €R,.

Concerning the memory kernels 3, and 3,, we set
(18)

Assuming 3, (00) = f3,(00) =0, then from (14), we infer

jwﬁl (0)0(t - 0)dor = —jmﬁl (o) (0)do,
0 0 (19)

J:Oﬁz(cr)P(t ~0)do = —Jmﬁz'(a)vt (0)do,

0
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and therefore,

(0¢)

jmﬁl (©)0,a(t~0)do = [ "Bty (o)do
0 0 (20)

(0]

| B0t =)o | A(a)v)do.

0

Consequently, the problem is equivalent to

1
Wy — dl {(ux + z (wx)z) wx:| + dwaxxx + P’lwt + Auzz(x’ 1’ t) = 0’
x

X

1
u, —d, {u + E(wx)z] -6,0,-6,P, =0,

X

6, +dpP, - J ﬁ(O')?I;x(U)dO' = 68,u, =0,
0

doé, +rP, - J MoV, (0)do - 8,u,, =0,
0

1y + 1 =6,

t o
v, +v, =P,

T(t)z, (%, ps t) + (l - T'(t)p)zp(x, p,t)=0,

(21)
where
(x,0,p,t) € (0,L) xR, x(0,1) x (0,00), (22)
with the initial and boundary conditions

w(x, t) =w,(x, t) =u(x,t) =P(x,t) =0(x,t) =0, x=0,L,
(

w(x,0) = wy(x), W, (x,0) = w, (x),

u(x,0) = g (), 4,5, 0) = 1, (x),
0(x,0) =0,y (x), P(x,0) = Py(x),
z(x, p, 0) = fo (x:=p7(0)),

(x,0)€(0,1) xR,
(23)

7 (x,0) =1y (%, 0), V" (%, 0) = vy (x, 0),

V(x, p,o,t) € (0,L) x (0, 1) x (0,00) x (0,00), (24)
where the function 7(t) satisfies (7), (11), and the condition

0<1y<T(t)<T, Vt>0. (25)

In this paper, we establish the well-posedness and prove
the exponential stability by using the variable of Kato under
some restrictions and assumptions:

(HI).

luy| < V1-dp,. (26)

(H2). The symmetric matrix A is positive definite, where

A= 27
() )

That is, |A| =cr—d* >0 implies that

L L L
cJ 0% dx + zdj OPdx + rj P*dx > 0. (28)
0 0 0

Condition (28) is needed to stabilize the system when dif-
tusion effects are added to thermal effects (see, e.g., [31-38]
for more information on this). By virtue of ¢r > 4%, we deduce
that d/c < r/d. Let, then, { be a number chosen in such a way
that

d r
— —. 29
: < <d (29)

Thus, Young’s inequality leads to

L d L L
2dj OPdx < 7J 6 dx + dcj Pdx. (30)

0 B ( 0 0
(H3). We assume the following set of hypotheses on p and A:

B, AeC'(R,)nL'(R,),

B(0), AM(0)20,B'(0),A'(6) <0, VoeR,,

B'(0) + a,f(0) <0,A' (0) + ayA(0) <0,

forsomeay, a, >0,Yo € R,

(31)

00

B(0) j B(0)do =B, >0,
0 (32)
A(0) = J Ao)do =Xy > 0.

0

Let f be a memory kernel satisfying the assumptions (31)
and (32).

Now, we consider the weighted Hilbert spaces
My =1 (R,, Hy(0,L))

= {CD ‘R, — Hy(0, L)/JLJOOf(o)(Di(G)dex<oo},

(33)

equipped with the inner product

<DY>, = JO J?f(a)@x(a)‘l’x(a)dodx, (34)



and the norm

DI, = <0, ®> 4, = JLJmf(o)cbﬁ(o)dadx. (35)

We also introduce the linear operator T on .# defined by
Te=-0, ©ecP(T), (36)
with

D(T)={DeM;D, € MsD(0)=0}, (37)
where @, is the distributional derivative of @ with respect to
the internal variable o, and then, the operator T is the infini-
tesimal generator of a C,-semigroup of contractions. Follow-

ing Ref. [39], there holds

<TQ, (D>/%f =<-D,, <D>/%f

- 1 Joof(g) d% J:cbi(a)dxda, VO e D(T).

2)o
(38)
Integration by parts yields
00 d L
J f(a)—J @ (0)dxdo
0 do J
L o 00 L <39)
= f(a)J D% (0)dx —J f’(a)J @ (0)dxdo.
0 o Jo 0
Hence, from (31), we obtain
1 [® L
<IT®, 0>, = EJ f’(o)J @ (0)dxdo < 0. (40)
0 0

As a direct consequence, we deduce from (32) and (40)
that

1 [® L
<Tn.1>4, = EJ ﬁ'(a)J n2(o)dxdo
0 0

o [ L, A2
S‘?J ﬁ(a)J 1 (0)dxda =S,y
0 0

1 [ L
<Tv,v>, = EJ )L’(G)J v:(o)dxdo
0

0

00 L
< _%J /\(G)J v2(0)dxdo = % vl
2 ), 0 2 g

(41)

for all #,v€(T). Finally, we define the operator L;:
P(L,) ~ 120, I) by

(o]

L= "f(0)0,(0)do (42)
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with the domain

2(Ly) = {(D € /%f/rof(ﬁ)@xx(o)da € L*(0,L), ®(0) = 0},

(43)

2. Well-Posedness

In this section, we give sufficient conditions that guarantee
the well-posedness of this problem. Let

U= (w,w, u, uy, 0,1, P, V', 2) r (44)

For the sake of simplicity, we write #=#'(c) and v =
v!(o) and the new dependent variables ¢ = w, and v = u,;
then, (21)-(23) can be written as

{U’ =d(t)U + F(U),

U(0) = (wg> wy> Ug» 4y, By, 175 P> Vo’fo(w_PT(O)))T’

(45)
with the linear problem
{ U'=d(t)U,
U(0) = (wp, wy, g, 14y, 00, 1g» Pos Voo (=p7(0))) "
(46)

where the time-varying operator & is defined by

%
w _dwaxxx ~HhP- A”ZZ(X’ L, t)
Y
u dyu,, +68,0, +06,P,
1
v ——[(d8, — 18, )y, - rlgn +dLv]
amlolf=] © ,
0+ Ty
g 1
p - [(d8) — c8,)w, +dLgn—cl,v]
2
v P+Tv
z (T'(t)p - 1)
Y yr—]
O
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The energy space 7 is defined as
7 = [H*(0,L) N Hg(0, L)] x Hy(0, L)
x [H*(0,L) N Hg(0,L)] x Hg(0,L) x L*(0, L) (49)
X M x L0, L) x My x L*((0,L), (0, 1)),

and the domain of < is

D(d(t))={U e Xlp=2(.0),0,PeHy(0,L), LynL,v
€L*(0,L),n,ve(T)}.
(50)

We equip # with the inner product
- L
<U’ U>% = J {(P¢ + dl uxax + 1//11/ + dwafoxx}dx
0

[ [t prtito 1

+<A@6,P)", (6, P)T >+ <> g, <V V> 45
(51)

with the existence and the uniqueness in the following
result.

Theorem 1. Let (7), (11), and (25) be satisfied and assume
that (26)-(31) hold. Then, for all U, € D(/(0)), there exists
a unique solution U of problem (21)-(23) satisfying

U € C([0,+00), 2((0)) N C' ([0,+00), ). (52)
In order to prove Theorem 1, we will use the variable
norm technique developed by Kato in [40]. The following

theorem is proved in [40].

Theorem 2. Assume that

(1) D(H(0)) is a dense subset of H
(2) D(A(t))=D(H(0)),Vt>0

(3) For all t € [0, T], 9/(t) generates a strongly continuous
semigroup on F and the family of = {/(t): t € [0, T|}
is stable with stability constants C and m independent
of t; .., the semigroup (S,(s))., generated by </ (t)
satisfies

1S, (s) (1)l < Ce™ullyy, VueH,s=0. (53)

(4) d,of(t) e L([0, T, B(D(H(0)), #)), where L2 ([0,
T], B(2((0)), #)) is the space of equivalent classes
of essentially bounded, strongly measurable functions
from [0, T] into the set B(D(H(0)), ) of bounded
operators from D((0)) into I

Then, problem (46) has a unique solution
U e C([0, T}, 2(/(0))) n C'([0, T], %), (54)
for any initial datum in D(</(0)).

Proof. To prove Theorem 1, we use the method in [1] with
the necessary modification.

(1) First, we show that (/(0)) is dense in #

Let F=(f1sfp f3 fus f5 for S0 oo fo) € Z e orthogonal
to all elements of P(2/(0)) with respect to the inner product

(o)

I
0=<U, F>g4 =J {ofy +yfy + dw, i, + diu S, hdx
0

| [ o poifdpdse <A@ ()T >

0J0
+ <;7,f6>ﬂﬂ+ <V fs>u,-

For all U= (w,¢,uy,0,1Pv,z)" €
goal is to prove that f,=0,Vi=1,---,9. Le
z€PD((0,L)x(0,1)) and w=¢= 1//=u=0
the vector U = (0,0,0,0,0,0,0,0,z)" € 2(/(0 ))
fore, from (55), we deduce that

le(x, p)fdpdx = 0. (56)

0Jo0

Since 2((0,L) x (0, 1)) is dense in L*((0, L) x
follows then that f, = 0.

Similarly, let ¢ € H}(0,L); then,
0,0)" e p(ot

(0,1)), it

U = (0, (P, 0, 0: 0, 0; 0)
(0)), which implies from (55) that

J:<pf2dx — 0. (57)

So, as above, f, =0.



And let U= (w,0,0,0,0,0,0,0,0)"; then, we obtain

from (55) that

[[wihcti=o. (58)

0
It is obvious that U = (w, 0, 0,0,0,0,0,0,0)" € Z((0))

only if we H*(0,L) N Hj(0,L) is dense in HZ(0,L), with
respect to the inner product

L
<g, h>H(z)<0,L)J G hdx. (59)
0

We get f; =0. By the same ideas as above, we can also
show that f; = 0.
For u € D(H(t)), we get from (55) that

K”xfsxdx =0, (60)

and by the density of 2(/(t)) in Hy(0, L), we obtain f, = 0.
For v € D(g(t)), we get from (55) that

L
Jowf4dx: 0, (61)

and by the density of 2(</(t)) in H'(0, L), we obtain f, = 0.
Next, let U=(0,0,0,0,6,0,0,0,0)"; then, we obtain
from (55) that

Jzafsdx — 0. (62)

It is obvious that U = (0,0,0,0,6,0,0,0,0)" € 2(/(0))
only if 6 € L*(0,L) is dense in L*(0,L); we get f5=0; for
1€ Mg, we get from (55) that

[,

which gives f, =0. Similarly, for P and v. This completes
the proof of (1).

oS sedodx =0, (63)

(2) With our choice,
quently,

D(H(t)) is independent of t; conse-

Vit > 0. (64)

(3) Now, we show that the operator &/(t) generates a
C,-semigroup in # for a fixed t. We define the
time-dependent inner product on #:
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L
<U, U>t=J {(P¢+dluxﬁx+1//17/+dz Xx xx}dx
0

+£r<t>J:j; 2(x prt)2(x, pr t)dpd

+<A(6,P)", (6, P)T >+ <> g, <V

(65)
where £ satisfies
luy | ( |ty | )
B ci<(op - , 66
T-d H T-4 (66)
thanks to hypothesis (26).
Let us set
12
(T’(t)z + 1)
k()= ~—n—~—. (67)

In this step, we prove the dissipativity of the operator
A(t)=d(t) - ()L

Forafixedtand U =
we have

(w, ¢, 1, ,0,1,P,v,2)" € D(A(1)),

L L
<A (t)U,U>, = —‘uIJ @dx - ‘uZJ oz(x, 1,t)dx
0 0
+< T;7,;1>/,l +<Tv,n> 4,
_EJ J (1 -7'(t)p ) (%, p> 1)z, (x, ps t)dpdx.
(68)

Observe that

<Ty, 17>/%ﬂ+ <Tv, >,

- +%Jmﬁ’(a)J:11i(a)dxda " %J

0
% 2 22 2
) ||rl(0')"‘/ﬂﬁ -5 V(o)

(o]
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whereupon

L L
<d(H)U,U>, = —ylj @dx - yzj ez(x, 1,t)dx
0 0

ay 2 a 2
- S (o), ~ 2v(o)l,

_ ET’(t) e
- JOJOZ (x, p, t)dpdx

. §JLzz
2)o
By using Young’s inequality and (7), we get

<d(t)U,U>, < (—M + I, | + E) r(pzdx
U aviZad 2)),
. <|,42 | \2/1 —d _E(I;d)) JLZZ

L

(x, 1, t) (1 —T'(t))dx+ gJ @’dx.

(70)

(%, 1,t)dx
0

[24 [o4
= (), = S 1v(o) Py, + (1) < U, U>,

(71)
under condition (66) which allows to write
_Ml |M2| + é < 0,
2V1-d 2
(72)
| V1I-d  (1-d)
& <0.
2 2
Consequently, the operator &(t)=d/(t)—«x(t) is
dissipative.

Now, we prove the subjectivity of the operator I — &/(¢)
for fixed t > 0.

Let (fl’f2’f3’f4’f5’f6’f7’f8’f9)T €x; we seek U=
(w, @, u,y,0,1, P, v, z)T € 9(d(t)) solution of the following
system:

w-¢=fp
¢+ dwaxxx + Ml(P+Au2Z("1’ t) :fZ’
u-vy =f3’
v dluxx - 810x - 82Px :f4’
a0+ (dd, - 16, )y, —rlgn +dLyv=af;, 73)
73
n-0-Tn=fs
o, P+ (dd) = 8,)y, +dLgnt—clyv = a,f;,
v—-P-Tv=f,
(‘r/(t)p - 1)
z sz = fo.
Suppose that we have found w and u. Then,
w-¢=f,
{ ¢=f (74)
u-y=f;.
Furthermore, by (73), we can find z as
z(x,0)=¢(x), x€(0,L). (75)

Following the same approach as in [1], we obtain, by
using the last equation in (73),

2(e.p) =)™ w7070 fym e Oy, i (1) =0,
(76)
2(x, p) = p(x)e" " + e"P(t)Jl T(,t fox9)e™Ddy, if ' (£) #0,
ol—-1 ( )
where 7, (t) = (z(t)/7' () In (1 - 7' (t)p). Whereupon, from
(74), we obtain
1
2(x, p) = p(x) fre? (1) (t>Jf9(st’)eyT<’)d)” if /() =0,
0
(77)

—— fy(x y)e B dy,

if 7' (¢) #0.



Integrating (73), and (73), with #(0) =v(0) = 0, we have

()= 1=+ [ ey ods
: 78)

v(io)=(1-€e“)P+ J:es_“fg(s)ds.

Substituting (73), 564 into the others, we obtain the
following system. Now, we have to find w, u, 0, and P as
solutions of the equations:

w+ dwaxxx + nul(P-H’lZZ("l’ t) :fZ +f1 + ﬁlfl’
u- dluxx - 816x - 82Px :f4 +f3’

a0 = rCg0,, + dCy P, + (dd, — 16y )u, = hs,
P +dCg0,, — cC)\P,, + (d6, — cb,)u, = hy.

(79)

py=1+p +e™0,
hy=fo+ (L+w)fy = 2o
hy=fy+f3

From (77), we have

() if 7' (1) = 0
w(x)e ™ +z5(x), ifT ,
I CC RO A0 )
w(x)e D +zy(x), if ' (t) #0,
where x € (0, L) and
1
e s | ey, it (0 =0
2(x) = _—
~f, e + e"P(t)J ,) foxy)e™dy, if 7' (1) #0.
ol=T(t)y
(83)

It is clear from the above formula that z, depends only on
f1»fo- Consequently, problem (80) is equivalent to

(((w, 1,6, P), (@, 7,0, 13)) = r(w, 7, 0, 13), (84)

b= f, + (08, =8, o= d| o) | & fua(sdsdo +c
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Solving (79), we get

#3w + dwaxxx = hl’
u- dluxx - 610x - 62Px = hZ’
(80)
a,0— rCﬁQXX +dCyP,, + (dd, — 18, )u, = hs,
(XZP + dCﬁexx - CCAPxx + (d81 — C81)ux = h4’
where
o (81)
0

By = fy + (A6, - 18,y + rjmﬁw)re““fﬁxx(s)dsdo | A(a)j”e”fgxx<s>dsdo,

00

Ao) J:es“’ foxc(s)dsdo.

0

where the bilinear form { : [H3(0, L) x Hy(0, L) x L*(0, L) x
12(0,L)]> = R and the linear form I : [H2(0, L) x H}(0, L)

x L*(0,L) x L*(0, L)] — R are defined by
C((w, 1,6, P), (w 7,0, 13))
L Lo
= J (Uyw + dyw,, W, +utl + dyu, 4, )dx + oclj 00dx
0 0
L L L
+ (xZJ PPdx + rCﬁJ 0.0, dx + CCAJ PP dx
0 0 0
L L
- dCﬁJ 0.B dx - chJ P8 dx
0 0
Lo Lo
+(d8, - r(Sl)J u Bdx + (d6, - céz)J u_Pdx

0 0

L
+ J (6,0 + 6,P)un dx,

(=]

L

r(w, 7,0, 13) = J hywdx + JL
0

L L
hzﬁdx+J h,0dx +J h,Pdx.

0 0 0

(85)
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Now, for %, = H3(0,L) x Hy(0, L) x L*(0, L) x L*(0, L),
equipped with the norm

2 2 2 2 2 2

l(w, u, 0, P)lI5 = lwllz+llwy 5+l 3+l 5+1615
2 2 2
HIO M5+l +IPI

(86)

then, we have

B((w, u, 0, P), (w, u, 0, P))

L L
= M3J wdx + dzJ

0 0

L
2
wi dx + J

0

L
udx + dIJ uldx
0
L L L L
+ “1J 6dx + (x2J Pdx + rCﬁJ 02dx + CCAJ Pldx
0 0 0 0

L L
— (dCg + dCA)J P.0.dx+ (d6, - rSI)J u, Odx
0

0
L

L
+(ds, - céz)J u_Pdx + J (8,0 + 8,P)u,dx.
0

0
(87)
Then, for some M, >0,

B((w, u, 6, P), (w,u, 6, P)) = Mll(w, 4,0, P)|I3, . (88)

Thus, B is coercive.
By Cauchy-Schwarz’s and Poincaré’s inequalities, we
obtain

B((w, u,6, P), (w 7, 0, 13))

- (89)
<My l(w,u,0, P)IFy, I (@.7,0.P) .
Similarly, we get
r(w, 2,0, 13) <M,| (w 2,0, 13) 1% (90)

Consequently, applying the Lax-Milgram theorem, prob-
lem (84) admits a unique solution (w, u, 6, P) € #,, for all
(w, @, 0,P) € ,. Applying the classical elliptic regularity,
it follows from (80) that (w,u,0,P) e #,.

Therefore, the operator I — o/(¢) is surjective for any fixed
t>0. Since x(t) >0 and

I-d(t)=(1+x(t))] - (1), (91)
we deduce that the operator I — &/(t) is also surjective for any

t>0.
To complete the proof of (3), it suffices to show that

”U”t (cl274)|t=s|

—— <ene , Vt,sel0,T], 92

U1 0.7 52
where U = (w, ¢, u,y,0,%,P,v,z)" and |.||, is the norm
associated with the inner product (56).

For t,s € [0, T], we have from (56) that
U -IUzem
= (1 elermlt= sl)J {‘P +dyw? +did+y }dx
+ (1) <A@, P, (6,P)" > (93)
+ (10 L, +viey, }

+ E(T(t) - T(s)e<C/T°)|t_sl> KJ;ZZ (x, p, t)dpdx.

It is clear that (1 — e(™0)l=sl) < 0. Now, we will prove that
(7(t) = 7(s)el™)t=) < 0 for ¢ > 0. To do this, we have

T(t) =1(s) + 7' (a)(t - s), (94)

where a € (s, t), which implies

(t) 7@l _
=) =7 |t —s]. (95)
By using (11), we deduce that
(_3 <1+ —|t—5\ < el (96)

which proves (92); therefore, this completes the proof of (3).

(4) It is clear that

0
0
0
0
%d(t)U— 2
0
0
(o7 (-7 (07 (p -1
(oron-ofson))

(97)

Then, by (11) and (25), (4) holds exactly as in [1]. Conse-
quently, from the above analysis, we deduce that the problem

U,(0)=U,, (98)
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has a solution U € C([0, 00), #), and if U, € 2(/(0)), then

U € C(]0, 00), D(4(0))) N C'([0,00), F).  (99)

Now, let
U(t) =" 0(t), (100)
with 9(t) = [{ k(s)ds; then, by using (98), we have
U,(t) = k(t)® D U(t) + 0T, (1)
= Ke(t) YT (1) + e“’ff>§f(t)(t7§t) (101)

Consequently, U(t) is the unique solution of (46).

It remains to prove that the operator & defined in (48) is
locally Lipschitz in 7.

Let U, = (wy, @y, 4, ¥y, 01,17y, Povyy2y)' € Zand U, =
(W, @y Uy Yy 05,1155 Py vy, z,)" € #. Then, we have

IF(U,) = F(U )l =d, (IR + [K[?), (102)
where
1,
R= “1x+2w1x Wiy — ”2x+2w2x Wk |>
(103)
1
K= E(wfx—ng).

Adding and subtracting the term (u, + (1/2)w? Jw,,
inside the norm |R |, we find

1 2
|R| < "wlx - w2x”L"°(0,L)|u1x + Ew1x|+”w2x”Lm|u1x — Uy,

1
t3 lwallpeo lwy e + wo [y, = W[l oo o -
(104)

Using the embedding of H'(0,L) into L®(0,L), from
(104), one has

IRI < ki (1U sl Uzl )1 Uy = Ul (105)
Using once again the embedding of H' (0, L) into L*°(0, L),
one also sees that

K| <k, (1U 51 Ul )IUy = Usll- (106)

Combining (102), (105), and (106), consequently, #(U)
is locally Lipschitz continuous in 7. This ends the proof of
Theorem 1.
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3. General Decay

In this section, we state and prove the stability of system
(21)-(23) using the multiplier technique under the assump-
tions (26)-(31).

We define the energy functional E by

oL 2
E(t)= % ‘ {w? +ul +dyw? +d, (ux + %wi) + 0% + er}dx
Jo
d 6 1 2 1 2
+d<6,P> +§||11||/%ﬁ + EH"",%A
Ll
+ EJ J 7(t)2%(x, p, t)dpdx,
2J)o)o
(107)
where
lu, | 123
\/1”2_71SES 2;11—\/1_2_7 : (108)

The following lemma shows that the energy is decreasing.

Lemma 3. Assume that (26)-(31) hold and the hypotheses (7),
(11), and (25) are satisfied. Then, for VC = 0,

L L
E'(t) s—C( wfdx+J zz(x,l,t)dx> - ﬁ||11||i%
Jo 0 4 ¢
1[*, 2 Oy 12
* 2 B (0)ln, (o)l"do - 2"‘}"‘/”/\ (109)
JO
1 (0]
* 3 A (0)lv,(o)lPdo < 0.
0

Proof. Multiplying the equations of (21) by w,, u,, 0, #, P, v,
and &z, respectively, then by integration by parts, we get

vdtf 2 1o\, o, 2
—— | Sw;p +uy +dywi, +d | u,+ -wp | +c0° +rP” Hdx
2dt ), 2

d
Ll
+ g%] J T(t)2*(x, p, t)dpdx

0J0

1 L
= —yIJ widx — /"ZJ w,z(x, 1, t)dx
0

B @l (o)Fdo+ 3 | Vo)l (o)Pdo
Jlr’ ()2*(x, p, t)dpdx
(1 - T'(t)p)Z(x, p> 1)z, (%, ps t)dpdx

L
(44 [0
W - J w2 1, )dx = Ll - i,
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00

A (0)lIv,(0)IPdo

0

<3| B @M P

0

L0 oo
=-u, Jl w;dx — yZJLw z(x, 1, t)dx — — 4 ||11||ﬂ‘3

0

00 1 00
Jﬁ' )in, (o |da+4j A

0
L

J x,Ot
0

2z,
(0)lv,(0)IPdo

2 (x,1, t))dx

- &#Jizz(% 1,t))dx. (110)
From (110), we find
E'(t)< —(//11 - g) Jo wldx (ETZ( ) _ g) Jozz(x, L, t)dx

Epp2 %2
wiz(x, 1, t)dx = =iy, — =1Vl

L
_sz
0

1(*® 1
+ ZJ B' (0)ln,(o)l*do + ZJ A (0) v, (0)*do.
0 0
(111)
Using Young’s inequality, we have
—u JLw z(x, 1, t)dx < s, | Jszdx
2 0 t > = 2\/1? t
IV
2 0
(112)

Inserting (112) into (111), we get

E'(t)s—(yl— g - N'ﬁ‘z'__)J wdx

+ (g (T'(t) - 1) + W> JLzz(x, 1, t)dx

X2 O 2 A2
- Z””’"/ﬂﬁ + ZL B (o)ln . (o)l"do ~ le\/ll%

+ iJmA'(G)Ilvx(a)llzda.

0
(113)
Then, by using (7), (28)-(31), and (108), we obtain (109).

In the following, we state and prove our stability result;
we introduce and prove several lemmas.

11

Lemma 4. The functional

F(1) ::JL<u u+ 2ww+ &w )dx,

0

(114)

satisfies, for any €, > 0,

, L 1 2 d. (t L
Fity<—d,| (u,+zw?) dx— 2| wldx+ | uldx

0 2 4 )o 0

L L 2 L 2
+éJ wfdx+2£lj uldx + f—J 6 + % JPZ

0 0 €1 Jo 4e,
L
+ CJ zz(x, 1, t)dx.

0 (115)

Proof. By differentiating F,, then by integration by parts, we
obtain

L 1(* 1t 1
Fi(t) =J uldx + —J widx — _dIJ (ux + —wﬁ)widx
0 2Jo 2 Jo 2
L 1 L
_dIJ u, (ux + —wi) dx - &J wz(x, 1, t)dx
0 2 2 Jo

d. (L L L
- 72J wﬁxdx+8lj 9uxdx+82J Pu, dx.
0 0

(116)

In what follows, using Young’s and Poincaré’s inequal-
ities, we obtain (115).

Then, we have the following lemma.

Lemma 5. The functional

F,(t) = JLut(Ddx, (117)

0

where =8, @, = c + dP, with ©(0) = (L) = 0, satisfies

L 1 2
Fiyt) < —J uldx + SZJO (ux + Ewi) dx + cIInIIi,ZM

N (t IN [t
+c(1 + —)J 92dx+c(1 + —)J P?dx.
€/ Jo €/ J)o

Proof. For direct computations, we have

(118)

L
Fi(t) :J u,, Pdx
0

(119)
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Using Young’s inequality and integrating by parts, we

obtain
L 1 1 L
J u, + wi) dx+c<1+)J 0*dx
2 &/ Jo

+c<1+ 1) P?dx, "
;IJLu,aX (J 0)11..(0 )da+51u,x>dx
- ;JOL"(JO Bo)n(o )d0+81uz>dx (121)

1
t 2
< J 2dx+ c||r]||/%ﬁ.
0
From (120) and (121), we obtain (118).

Lemma 6. Assuming that assumptions (31) and (32) hold, the
functional

00 L

Fy(t) = —JO ,B(G)Jo (cO + dP)ndxdo—Eo/\(a)JZ(de + rP)vdxdo,

g, 9,
(122)

satisfies

L L
Fi(t) < —EJ Odx - 7J Pax+ Byllnll, +Aolviy,
0 0

+ Crufdx— Cﬁojooﬁ’(G)HWX(U)HZ(O')dU (123)

€Jo

—CAJ A
00

o= 3 (B Bre %),

(Aor = (#g + Ag)dC),

(0)Iv<(0)I*(0)do,

where

(124)

and { > 0 satisfies (29).

Proof. We take the derivative of F; = &, + &,, which gives

00

G,(t) = —J ﬁ(a)J:(CO +dP) ndxdo

0

- r’ﬁ(a)ﬁ(ce +dP)y,dxdo

0

= —roﬁ(a)JL(th +dP,)ndxdo + ch/S(a)JLBnadxda

+ dJ.OOﬁ(J)J‘anadxda - cﬁOJZGde - dJ

0 0 0

(125)

L
ﬁ(a)J POdxdo.
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The first term on the right-hand side of (125) is

—JOO,B(G)JL(CG +dP),ndxdo

- —51J00 ﬁ(a)ru,quxda (126)

(o) o

and can be controlled in the following way:

L

c
< C(£3)||11||i/[ﬁ + —J ufdx,
€ Jo

‘—81 JOO/S(G)Jzutxndxda

(127)

[ (]} Boma ) ([ pomds < o,

(128)

Moreover, by integration by parts, we get

:c—oo (o L@dxdo
| B on

0

coo o LH dxdo
| 8| on,

cty ("2 Y 2
<% | fax-cy | B (oo
0 0

(129)

where Cg > 0. Similarly, we obtain
0

=c J:Oﬁ' (U)JLPndxda

0

’ J ﬁ(a)J Py, dxdo| =

JLPzdx - cﬁ;J:O/s’ (0)lI,(0) Ido,

0

(130)

where C' g, > 0. Using (29), we get

—dJ:O B(o) (Jj@de) do<p, 2% Jzezdx B, d; Jszdx.
(131)

Then, we obtain

<4 (1-3) e )

L
+ iJ ufdx—%ﬁoj B (0)ln,(0)ldo
0 0

&3

+ (By + (el

(ﬂodz

(132)
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where € =Cg + o g, Then, using the same arguments, we

find
L
i [Q— 2d
o3[

Gy(t) < % ()t(,? + @M 6°dx

+ —J uldx - J A (0)Iv,(0)IPdo
& 0
+ (Ao + Cles)IVIZ, -
(133)
Adding (127) and (133), we obtain (123).
We choose ( in such a way that
1 d
= 5 (Be- B 20)7) >0
(134)
1
=3 (Agr = (By + Ag)d) >0
which implies
d o+ d Ay 1
R B e Z<, 135
R L e W Bl (135)
Then, ( satisfies (29).
Now, let us introduce the following functional.
Lemma 7. The functional
L1
F (t)= ET(t)J J e 2" 0PZ2(x, p, t)dpdx, (136)
0Jo
satisfies
L L
Fi(t) < —2F,(t) - ”IJ Z(x, 1, t)dx + EJ widx,  (137)
0 0
where 1, is a positive constant.
Proof. By differentiating F,, with respect to ¢, we have
L1
Fy(t)= fr’(t)J J e TP (x, p, t)dpdx
oJo
Ll
+ fT(t)J J {—Z‘r'(L‘)/)¢3_2T<‘>Pz2 + e‘zr(t)Pztz}dpdx.
0Jo
(138)

13
By using the last equation of (21), we have
Ll
T(t)J J ~ "ztzdpdx
J J (T'(t ) )Pz zdpdx
1 d ,
— -1 2ldpd 139
Jojo dp (T ) - } P (139)
L
(t) (r’ 2T<f>f’z2dpdx
0Jo

~21(0P 22 dx.

Using (137)-(139), we get

L 1

L
Fi(t) = —ZET(t)J Joe*h(t)pz2 (x, p, t)dpdx + EJOZZ (x,0,t)dx

0
L
- 5(1 - T’(t))e’zr(t)J 2(x 1, t)dx.
0
(140)
Then, by using (7), (25), and the fact that z(x,0,t) =
w,(x,t) and setting 1, =&(1 — d)e *", we obtain (137).
We are now ready to prove the following result.
Theorem 8. Assume (26)-(31) hold; there exist positive con-

stants C, and C, such that the energy functional given by
(107) satisfies

E(t)<Ce @, Vvt>o0. (141)
Proof. We define a Lyapunov functional
i=3
Z(t)=NE(t)+ Y N;Fi(t) + F,(1), (142)

where N and N;, i=1,2,3, are positive constants to be
selected later.

By differentiating (142) and using (109), (115), (118),
(123), and (137), including the relation

L L 1 1
Juidx:J (u + —w ——w)dx
0 0 2 2
L 2 1 L
ZJ (u + ) dx——J widx
0 2)o

1
2"
L 1 2 L L
SZJ (u +-w ) dx——Jwixdx,
0 2 4)o

IN

(143)



1 L
1+ >N2 J 6*dx
& 0
1 L
1+ >N2 J Pldx
& 0
L

2% (x, 1, t)dx — 2F(t)
0

(144)

[CN —cN,| + ’71]J

- 1N_CNz #0N3} ||’7"//1

(X
- [2N- AN}”VH/%
: N
+ iV =G| [ B @
3 0
+ [iy-om] [TV @)oo
0

First, we choose €, small enough such that

d, —2¢ >0,

4, L (145)
— - - >0
4 2

By setting

(146)

we obtain

L' ()<~ E (d, - 251)N1} J: (ux + %wi)zdx

1 L d, L L

- —NZ—NI}J uldx — [(—2 - —51>N1}J w? dx
2 . 4 2 .
- ) L

- CN—ENl—E}J w;dx

0

[ 8 N L
~ |eN, - 4—1N1 —c(l + N_Z)NZH 6*d
€ 1 0
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52 N L
N, - 2N, —c(l + —2>N2 J P*dx
4¢, N, 0

L
Z%(x, 1, t)dx — 2F,(t)
0

—[CN —cN, + ’71]J
C[UN N, - N Il
4 CINy = UolN3 ||’I||/%ﬁ

r
- 2N - 20N VI,

(0]

B (@)ln (o) do

1

+|-N-C N3“
4 Ho
L 0

(1
+ s N-Cy,

3 (147)

N3] J:OA'(G) ||Vx(0’)||2d0'.

Next, we carefully choose our constants so that the terms
inside the brackets are positive.
We choose N, large enough such that

1
k=N, =N, >0. (148)
Then, we choose N, large enough such that
& N
k,=7N;— —2N, —c( 1+ =2]|N, >0,
4¢, N,
(149)
- 8 N,
ky=?N;— —2N,—c( 1+ =2|N,>0.
¢, N,

Thus, we arrive at

L 1 2 L
L (1) <k U, + = w dx -k, udx—k w? dx
0 4 XX
0 2 0 0

L L L
- (CN=¢)| widx- k2J 6%dx - k3J P?dx
0 0
2 (x, 1, t)dx — 2F,(t)

[24
~ (N =)y, ~ (FN <)My,

4
+ GN— c) Jooﬁ'(a)llnx(a)llzda
' GN ) C) Jmk'(a)llvx(o)nzdo,
(150)
where k, = (1/2)(d, - 2¢,)N, and k, = ((d,/4) — (L/2)¢;)N].
On the other hand, we let
T(t) = §NiF,(t)+F4(t) (151)
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Exploiting Young’s, Cauchy-Schwarz’s, and Poincaré’s
inequalities, we get

L 1 2
|‘£(t)\§cJ (wf+uf+(ux+ Ewi) +wl +60°+P? |dx

0

L 1
sl + vz, + CL Lzz (x, py £)dpd.

(152)
Then,
|Z(t)| < cE(t). (153)
Consequently, we obtain
(6] = |L(r) - NE(H) <cE(r),  (154)
that is,
(N-c)E(t) < Z(t) < (N +c)E(t). (155)
Now, we choose N large enough such that
N-c¢>0,
ud|
—N-¢c>0,
4
ZN-c>0, (156)
1
—-N-¢c>0>0,
4
CN —-c¢>0.

Exploiting (107), estimates (150) and (155), respectively,
give

Z'(t) <-a,E(t), (157)
for some a, >0, and
o E(t)< Z(t) <c,E(t), Vt=0, (158)
for some ¢, ¢, > 0; we have
Z(t) ~E(t). (159)
A combination with (157) and (158) gives
Z'(t)<-C,Z(t), Vt=0, (160)

where C, =a,/c,.
Finally, by simple integration of (159) and (160), we
obtain the result (141).
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A linearized numerical scheme is proposed to solve the nonlinear time-fractional parabolic problems with time delay. The scheme
is based on the standard Galerkin finite element method in the spatial direction, the fractional Crank-Nicolson method, and
extrapolation methods in the temporal direction. A novel discrete fractional Gronwall inequality is established. Thanks to the
inequality, the error estimate of a fully discrete scheme is obtained. Several numerical examples are provided to verify the

effectiveness of the fully discrete numerical method.

1. Introduction

In this paper, we consider the linearized fractional Crank-
Nicolson-Galerkin finite element method for solving the
nonlinear time-fractional parabolic problems with time delay

RDMu—Au=f(tu(x t),u(x,t— 7)), inQx(0,T],

u(x, t) = (x, t),
u(x,t)=0,

inQx(-7,0],
on 0Q x (0, T},

(1)
where () is a bounded convex and convex polygon in R* (or

polyhedron in R’) and 7 is the delay term. ®D%u denotes
the Riemann-Liouville fractional derivative, defined by

O<ac<l.

(2)

The nonlinear fractional parabolic problems with time
delay have attracted significant attention because of their
wide range of applications in various fields, such as biology,
physics, and engineering [1-9]. Recently, plenty of numerical

Ry o[ —a
Diu(-t)= ﬁajo(t—s) u(-, s)ds,

methods were presented for solving the linear time-fractional
diffusion equations. For instance, Chen et al. [10] used finite
difference methods and the Kansa method to approximate
time and space derivatives, respectively. Dehghan et al. [11]
presented a fully discrete scheme based on the finite differ-
ence methods in time direction and the meshless Galerkin
method in space direction and proved the scheme was
unconditionally stable and convergent. Murio [12] and
Zhuang and Liu [13] proposed a fully implicit finite differ-
ence numerical scheme and obtained unconditionally stabil-
ity. Jin et al. [14] derived the time-fractional Crank-Nicolson
scheme to approximate Riemann-Liouville fractional deriva-
tive. Li et al. [15] used a transformation to develop some new
schemes for solving the time-fractional problems. The new
schemes admit some advantages for both capturing the initial
layer and solving the models with small parameter «. More
studies can be found in [16-32].

Recently, it has been one of the hot spots in the investiga-
tions of different numerical methods for the nonlinear time-
fractional problems. For the analysis of the L1-type methods,
we refer readers to the paper [33-40]. For the analysis of the
convolution quadrature methods or the fractional Crank-
Nicolson scheme, we refer to the recent papers [41-46].
The key role in the convergence analysis of the schemes is
the fractional Gronwall-type inequations. However, as
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pointed out in [47-49], the similar fractional Grénwall-type
inequations can not be directly applied to study the
convergence of numerical schemes for the nonlinear time-
fractional problems with delay.

In this paper, we present a linearized numerical scheme
for solving the nonlinear fractional parabolic problems with
time delay. The time Riemann-Liouville fractional derivative
is approximated by the fractional Crank-Nicolson-type time-
stepping scheme, the spatial derivative is approximated by
using the standard Galerkin finite element method, and the
nonlinear term is approximated by the extrapolation
method. To study the numerical behavior of the fully discrete
scheme, we construct a novel discrete fractional type
Gronwall inequality. With the inequality, we consider the
convergence of the numerical methods for the nonlinear
fractional parabolic problems with time delay.

The rest of this article is organized as follows. In Section
2, we present a linearized numerical scheme for the nonlinear
time-fractional parabolic problems with delay and main con-
vergence results. In Section 3, we present a detailed proof of
the main results. In Section 4, numerical examples are given
to confirm the theoretical results. Finally, the conclusions
are presented in Section 5.

2. Fractional Crank-Nicolson-Galerkin FEMs

Denote 7, is a shape regular, quasiuniform triangulation of
the Q into d-simplexes. Let h = maxy,g, {diam K}. Let X, be
the finite-dimensional subspace of Hy () consisting of con-
tinuous piecewise function on 7. Let At = 7/m_ be the time
step size, where m, is a positive 1nteger Denote N [TIAt],
t;=jAt j=-m,-m +1,--,0,1,2,---,N.

The approximation to the Riemann-Liouville fractional
derivative at point f =1f,_,,) is given by [14]

n
- AF ) -
Dy, ulxt)=Ar" Z W, (% )+ O(AF) = "Df u" + 0(AF),

3)

where
w(a) _ F(a + l)

i (_l)lr(i+ O(a—i+1) )

For simplicity, denote [lv| = =(1-
(@2 + (@2, gane = (2 ~(@2))
72, 1% = (nAt)".

With the notation, the fully discrete scheme is to find
UjeX,, such that

fQ|v | dx 17
= (al2))y" = (1

(*D3, Uy, v) + (VU Vv)
= <f(tn_(a,2), UZ’“, UZ_m”a>, v>, VveX,,n=1,2,--,N,
(5)
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and the initial condition

U, =Ryo(x,t,), n=-m,—m +1,--,0, (6)

where R, : Hj(Q) — X, is Ritz projection operator which
satisfies the following equality [50]

(VR,u,Vv) = (Vu,Vv), VueHy(Q) N H*(Q),veX),. (7)

We present the main convergence results here and leave
their proof in the next section.

Theorem 1. Suppose the system (1) has a unique solution u
satisfying

|| u0||Hr+z +|| u||c([0)T];Hr+1 ) +|| U, ”C([O,T];H'” ) +||utt ”C([O,T];HZ)

+ "RDZtu”C([aT];HHI) <K,

and the source term f(t,u(x,t),u(x,t—1)) satisfies the
Lipschitz condition

£ (6 i 1), (= 1)) = (8, V(3. 1), V(0. £ = 7))

SLjlu(x,t) = v(x, )| + Lylu(x, £, T) = v(x, t, 7))

where K is a constant independent of n, h, and At and L, and
L, are given positive constants. Then, there exists a positive
constant At* such that for At < At*, the following estimate
holds that

lu" - Upl<C; (A + H™*'), n=1,2,---N, (10)

where C7 is a positive constant independent of h and At.

Remark 2. The main contribution of the present study is that
we obtain a discrete fractional Gronwall’s inequality. Thanks
to the inequality, the convergence of the fully discrete scheme
for the nonlinear time-fractional parabolic problems with
delay can be obtained.

Remark 3. At present, the convergence of the proposed
scheme is proved without considering the weak singularity
of the solutions. In fact, if the initial layer of the problem is
taken into account, there are some corrected terms at the
beginning. Then, the scheme can be of order two in the tem-
poral direction for nonsmooth initial data and some incom-
patible source terms. However, we still have the difficulties
to get the similar discrete fractional Grénwall’s inequality.
We hope to leave the challenging problems in the future.

3. Proof of the Main Results

In this section, we will present a detailed proof of the main
result.
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3.1. Preliminaries and Discrete Fractional Gronwall
Inequality. Firstly, we review the definition of weights w,(“)
(a

and denote g9 = ¥ | w; ) Then, we can get

l<i<n. (11)

Actually, it has been shown [51] that w§“> and g\ pro-
cess following properties:

(a)

i

(1) The weights wl(-“) can be evaluated recursively, w
=(1-((a+1)/i)) 0, iz, =1

o0
(2) The sequence {wﬁ"‘)} .o are monotone increasing —1

@ < wl®<0,i>0

<w i+1

(3) The sequence {g§a>}zo are monotone decreasing,
gga) > gfﬂ for i>0 and g(()a) =1

Noticing the definition of gg'x), Rpg,u" can be rewrit-
ten as

s =AY (_q(“) - gﬁf‘{) W At ur (12)

i
i=1

In fact, rearranging this identity yields
1 .
Rp2u' = At Z gfﬁ@tu’ + A g9, (13)
i=1

where 8,u' = u' - u'1.

Lemma 4 (see [51]). Consider the sequence {¢,} given by

Then, {¢,} satisfies the following properties:

() 0<¢, <YL, g =L1<js<n
(i) 1/(I(a))Y 5, ¢, <n®/I(1+a)

(iii) 1/(C(a)T(1+ (k- D)) Y0, ik Do < nke/r(1 +
a),k=1,2-

3
Lemma 5 (see [51]). Consider the matrix
0 ‘/51 ¢n—2 ¢n—1
0 0 ¢n—3 ¢n—2
wW=2ua*l ’ . (15)
0 0 - 0 ¢,
o 0 - 0 0

nxn
Then, W satisfies the following properties:

G) W=0,1>n

(i) WKe < (1/(T(1 +ka)))[(2T (@)ut®), (2T (o)t ),
2L ()ut) ) k=0,1,2, -

(iii) TjgWre = T3y W¥e < [E, (2L (a)uts), (21 («)
uEs )y Eg (2T (@)uts)]' 12

where e = 1,1, 1]' € R", y is a constant.
Theorem 6. Assuming {u"|n=-m-m+1,--,0,1,2,---}

and {f" |n=0,1,2,---} are nonnegative sequence, for A, > 0
> i: 1)2)3,4,5, l:f

Rps b < Ay + A 4+ A2+ Al Al 4 f

then, there exists a positive constant At*, for At < At*, the
following holds

I'(a)t® I'(a)t® - I'(a)t®
u"<2( A, (a)”M+A5 (a)”M+maxJ (@),
I'(l+a) I'(l+a) igjsr’ T'(1+a)

+2M + A, MAt® + 2A3MM) E (2T (@)A%), I1<n<N,
(17)

where A=A+ (1/(gy - g\) gy — g\ A, + (1(g)" -

95" )As + (11(g,s = giAy+ (g5 = gl )As, Eo(2)
=Y, (2K /(I(a+ka))) is the Mittag-Leffler function, and
M =max {u™™, u™, ...y}

Proof. By using the definition of D% 4" in (13), we have

M=

g](.f,l&uk + g](-a) u’ < At (Aluj F A A A A uj’m’l)
K

1
+ At

(18)

Multiplying equation (18) by gbn_j and summing the
index j from 1 to n, we get



n
gﬁf}(étuk SACY ¢ (Ml + ™+ A+ A+ A

1 j=1

n n
+ A" Z ¢n—jfj - z ¢n—jg§a) uo‘
=i =i

M=

¢n7 j

J
j=1 k=

-
i

(19)

We change the order of summation and make use of the
definition of ¢,,_; to obtain

n

J n k n
XY gj('fl)c‘st”k =Y 0ut )y (pn—jg](fl)c =Y s =u" -,
k=1 =1 K

j=1 k=1 =1
(20)

and using Lemma 4, we have

I'(a)n®
I'l+a)

n n
Aty ¢, ff <M maxfl ) ¢, < A* maxf!
j=1 j=1

1<jsn I<jsn

21

j T(a)ty 2y
=maxf/ ———"_.
i<’ T'(1+a)

Noticing g]@ is monotone decreasing and using Lemma
4, we have

- Z (pn—jg;a) uo < Z (pn—jg]('a) uo = uo z ¢n7]g](it)1 = uo' (22)
=1 =1 =1
Substituting (20), (21), and (22) into (19), we can obtain

n
n o j j—1 j—2 j—m j—m—1
u" <At Zl¢n_j(kluf+/\2uf + At 7+ Al A
i=

i ()t
+2u0+maxf]&.
1< I'(1+ )

Applying Lemma 4, we have

i - I(a)ts
At g W
].:Zl‘/’"ﬂ” I(1+a)

I

Atoc ) j—m—1 < - \n
2 fn I(1+a)
j=1

Therefore,

m m+1
A A" Z ﬁbn—j“j_m +As At Z ‘/’n—j”j_m_l +2u’ + LA,
=1 =1
o _ I'(a)ts
+ A% (¢, w7 + ¢, u’) <A, (i ;)
r(a)ty
5 I'(l+a)

M +2M + A,MAt* + 2A; M At*.

(25)
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Denote
I'(a)ts I'(a)ts c T(a)ts
v, = 47@) n M+A57(a) "_ M + max 17@6) n
I'(l+a) I'(l+a) 1gjsr” I'(1+«)
+2M + A, MAt* + 2A; M At*,
(26)
Equation (23) can be rewritten as
n-1 ) n )
(1= LA <A A Y ¢, 0l + LAY ¢, ™!
=1 =2
n ) n .
+ ;A0 ) B, + A AL > B, "
=3 jem+l

ne

AT Y G,

j=m+2

(27)
Let At* = {/1/(2A,), when At < At*, we have

n-1 n

n
WSOV, 20N Y b, N, Y b A Y
Jj=3

j1 j=2
n n
Jj—m Jj—m—1
+A Z (/Sn_ju + A5 Z gbn_ju .
Jj=m+1 j=m+2

(28)

Let V = (u", 1" 1,--u")", then (28) can be rewritten in
the following matrix form:

V<2¥, e+ (MW, + L, W, + L, W5 + A, W, + A, WSV,

(29)
where
0 ¢1 ¢2 ¢n—2 (/)n—l
0 0 ¢1 ¢n—3 ¢n—2
W,=2(A0" 0 0 0 - ¢ &, ,
0 0 0 0 ¢
o 0 0 0 0

nxn
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0 ¢0 ¢ ¢n—3 ¢n—2
0 0 ¢O ¢n—4 ¢n—3

Wr=2(40%1 0 0 0 - ¢ ¢ ’
0 0 0 0 ¢
0 0 0 0 0

0 0 0 $rs Pua
Wi=2(A0"l 0 0 0 - 0 ¢ ,
0 0 0 0 0

nxn

0 0 ¢0 ¢1 ¢n—m—2 ¢n—m—1
0 0 0 (/)O ¢nfrn73 ¢n7m72
O - 0 0 0 - o8 ¢,
W4=2(At)“ o - 0 0 0 - 0 ¢, )
0 o o0 0 - 0 0
0 0O 0 O 0 0
nxn
0 0 0 ¢0 (/)nfme (ibnfmfZ
0 0 0 0 ¢n—m—4 ¢n—m—3
O - 0 0 0 - 0 b0
Ws=2(A0" 0 - 0 0 0 - 0 0
0 o 0 0 - 0 0
0 0 0 O 0 0
nxn
(30)
Since the definition of ¢,, we have
< ! 31
(pn—j = w¢n' ( )
9i-1~ 9;

5
Then,
90 — 9
W,V — WV,
g<“> _ g(“)
1 1 2 (32)
WV s g WiV,
Gm-1 —Gm
1
W5V < — W, V.
Im ~ YGm1
Hence, (29) can be shown as follows
1 1 1
V<A + Ay + A+ Ay
( a’-a" " a"-a" " G-
1 — —
+ —A5> W, V+2¥,e=WV+2¥ e,
(@) _ (@) " "
Im ~ Gm+1
(33)
where W =AW,.
Therefore,
VSWV+2¥, e < W(WV + 2'1””?) +2¥ e
1 ) n-1 )
=W V427, Y We< - <W'V+2¥, Y We.
j=0 j=0
(34)

According to Lemma 5, the result can be proved.

Lemma 7 (see [51]). For any sequence {ek}kN:0 c X, the fol-
lowing inequality holds:
("D, (1= 5) e+ 5 Uper, 1<ksN.
At 3 > 5 Par
(35)

Lemma 8 (see [52]). There exists a positive constant C,, inde-
pendent of h, for any v € H*(Q) N H}(Q2), such that

lv—Ryvllz+hlIV(v=R)ll2 < Cob'lvllys, 1<s<r+1.

(36)

3.2. Proof of Theorem 1. Now, we are ready to prove our main
results.

Proof. Taking t =t,._(,,) in the first equation (1), we can find
that u" satisfies the following equation:

(*DY " v + (Vi V) = <f<tn_(m2), un™, u”’mf’“>, v> +(P",v),
(37)



forn=1,2,3,---,N and Vv € X, where

pP'= RDZtu”—RD‘t"_ LUt Au" (@) _ Ay
+f( o (ai2)> u ((X/Z)) un—mT—(a/Z)) (38)

_f(tn—(a/2)> u/\n,(x’ un_mr"x> .

Now, we estimate the error of |[P"|. Actually, from the
definition of u™* and uA™* and the regularity of the exact
solution (8), we can obtain that

1- g) O : S (el2) _ (1 _ f)u ~(«2) -1

1- g) (un—(alz)—u”) g (u (a/2)~ ) H
2 2
(13

|

1- )Atllu (&) —u' EDI

1- E)AtJ ity (5)llds < C, AL,
t

n-2

(40)
where &, € (n (@/2)> tn) & € (tuops b oc/2) &e(t, (@/2)> 1)
28y € (tyg by (oc/2)) C = (1-(06/2))(06/2)K C,=(2 (“/2))

(1 - (a/2))K are constants.
Applying (39) and (40) and the Lipschitz condition,

( —(a2)s n—(a/2) un—mr—(a/2)> _f(tnf(szZ)’ UN"®, un—mr,a) I
<

(L,Cy + L,Cy) At

||A<u”’“ — ym(e2) )||<c AP, (41)
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which further implies that

[P"|<Ck(At)?, n=1,2,3,---,N, (42)

here Cy =L,C, + L,C,.

Denote 6, =R,u" - Uj,n=0,1,---,N.

Substituting fully scheme (5) from equation (37) and
using the property in (7), we can get that

<RDZ\tGZ, v> + (VO v) = (R, v) + (P", v) - <RDZt(u” - Ryu"), v>,
(43)

where

R! = f<tn w2 O UZ-m,,u) _f (tm(a/zy AP unfmr,a)_
(44)

Setting v=07" and applying the Cauchy-Schwarz
inequality, it holds that

("DRL ") + IV < IR PN
HIRDS (" — R, 16,1,

Noticing the fact ab < 1/2(a® + b*) and |V6}*|* > 0,

(RD50504%) < = (IRLIP+IP"IP + "D, (" = Ryu") )

NI'—‘

(12
+ EIIGZ“II :
(46)

Together with (9) and (36), we can arrive that

1D, (1" = Ru™)I<Coh ™ IRDS, " |y < CoKR™ . (47)

uA™ = R = (2= S)ur = (1= D)ur?
l h
2 2
o 04
- (2 - E)Rhu"’1 + (l - E)Rhu"’zll
04 04
E) "unfl _ Rhun71"+(1 _ E) "una
04
E) Coh™ " e
o

( - E)CQh”lllu”’zlle
- g) CoKh™ + (1 -

<

(2
< (2
(

- R

g) CoKh™ < CyH .

(48)
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Similarly, we have TaBLE 1: The errors and convergence orders in temporal direction
by using Q-FEM.
o o
e = Ry = (1= S S Ny a=04 a=0.6
o « Errors Orders Errors Orders
— (1= 2)R,u"™ — ZRu™™
7)) h 7 h 5 1.6856e — 03 * 5.3999¢ - 03 *
< (1 _ g) CoKh™ + gCQKh’“ 10 2.9420e - 04 25184 1.2503¢ - 03 2.1106
o 20 5.9619¢ - 05 2.3030 3.0266¢e — 04 2.0465
<
- ’ 40 1.3851e - 05 2.1058 7.4700e — 05 2.0185
(49)
where C; =2(2 — (a/2))CpK, Cy =2 max {(1 - (/2)), (a/2 P
YCoK 2 =22 (a/2))Co 4 {1 - (ar2)), (a72) In terms of the definition of [|6},*|| and 6, , we obtain

Therefore,

Rpa |jon)2 AN o 2 2 oy 2 n—1)12
. R D2 |0 33(1——) 0 3(_) 3L (2—-) 0
|Rn" _ "f( nm(ai2)s LU " mr,a) _f(tn_(a/z)) UZ(X’ UZ mf’“) I At” h" P Il h” + ( 2 +35L7 2 I h Il
2
1- ) 6217 + 323 (1= 5) 16y P

< Lyllun™ = U |+ Ly lu™m = Uy ™| + 3L§(
24 n—m, 1 2, 112
312 (2) 167" 1P + Cy (AP + ),

N, —
<L110), I+Ly 10 “I+L lun™ — Ryun™|
~N,0 —
+Ly U™ = Ry "<y [10), I+Ly 10,

(53)
+(L,Cy + L,C,)H™.

50
50) Using Theorem 6, we can find a positive constant At*

such that At < At*, then
Substituting (42), (47), and (50) into (46) and the fact

(a+b+c)” <3a®+3b> + 3¢ we can get ,
1671 < Cs (A2 + B, (54)
Rs 07, 60 < 2 1o + LB 4 22 gy : ~ :
("D} ;%) < 2 Wh > Wh where C; is a nonnegative constant which only depends on

2 L,,L,,C,,Cg, Cp. In terms of the definition of 6}, we have
+ %(At)4 + % [3(LIC; +L3CY) + (CKK)Z]hZ(’+1> P2 e e 0 h

3 312 .
< EIIGZ""IIZ 4 e G e e " - Upl<llu” - Ryu" | +|IR,u" — URI<C; (AF + B"*).

G (AF + h’”) , (55)
2

Then, we complete the proof.

where C, = max {C%, 3(L3C? + L2C2) + (CxK)*}. 4. Numerical Examples
Applying Lemma 7, we have
In this section, we give two examples to verify our theoretical
results. The errors are all calculated in L2-norm.
Rpya 19712 (2 21 9™%)2 21| 9" 2 2, 12
DO < SO + SLN0, I+ 3Lally, ™I+ Cy (A + )" Example 1. Consider the nonlinear time-fractional Mackey-
(52) Glass-type equation

Lyt —0.1)
RD‘X bl )t =A bl )t _2 bl )t u(xyt b )t) b )lz’t )1)
Fuln 1) = Bulr 3 ) = (. 0) + e e () €[00 e 0]

(56)
u(x,y,t) =t sin (7x) sin (y),  (x,y) € [0, 1]% ¢ € [-0.1,0],



TaBLE 2: The errors and convergence orders in spatial direction by
using L-FEM.
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TaBLE 4: The errors and orders in temporal and spatial direction by
using L-FEM.

M a=0.4 a=0.6 M a=0.4 a=0.6

Errors Orders Errors Orders Errors Orders Errors Orders
5 7.2603e — 02 * 7.2065e — 02 * 5 8.3275e—-02 * 8.3375e - 02 *
10 1.9449¢ - 02 1.9003 1.9297e - 02 1.9009 10 2.2615e - 02 1.8806 2.2732e - 02 1.8749
20 8.7594e - 03 1.9673 8.6948¢ - 03 1.9662 20 5.8356e — 03 1.9543 5.8662e — 03 1.9542
40 4.9508e - 03 1.9834 4.9180e - 03 1.9807 40 1.4707e - 03 1.9884 1.4784e - 03 1.9884

TaBLE 3: The errors and convergence orders in spatial direction by
using Q-FEM.

M a=0.4 a=0.6

Errors Orders Errors Orders
5 2.0750e - 03 * 2.0746e - 03 *
10 2.4888e — 04 3.0596 2.5148e - 04 3.0443
20 7.3251e - 05 3.0165 7.5802e — 05 2.9577
40 3.0946e - 05 2.9952 3.4200e - 05 2.7666

where
flxy.t)= % sin (7x) sin (7ry) + 267 sin (7x) sin (7y)
—2¢* sin (7x) sin (7y)
(t=0.1)* sin (7x) sin (7y)
1+ [(t=0.1) sin (7rx) sin (rry)]2 .

The exact solution is given as

u(x, t) = t* sin (mx) sin (y). (58)

RDf‘u(x,y, z,t) = Au(x, y, 2, t) = 2u(x, y, 2, t) + u(x, y, 2, t = 0.1) exp {~u(x, y,z,t = 0.1)} +f(x,y, z,t),

u(x, y,z, t) = t* sin (7x) sin (7y) sin (n1z),

where

fley2t)= (2t2_“/1’(3 - )) sin (71x) sin (7y) sin (7z)
+2£*(7* = 1) sin (7x) sin (7y) sin (72)
— (=0.1) sin (7zx) sin (7y) sin (z) exp
- {=(t-0.1)? sin (7x) sin (7y) sin (72) },
(60)

TaBLE 5: The errors and orders in temporal direction and spatial
direction by using Q-FEM.

M a=0.4 a=0.6
Errors Orders Errors Orders
8 6.7379¢-04 * 6.9141e - 04 *
10 3.1416e—04 3.0459 3.4945¢—-04 3.0579
N =M®2)
12 1.9415e—-04 3.0968 1.9787¢e—-04 3.1196
14 1.1891e—-04 3.1806 1.1992¢—-04 3.2485

In order to test the convergence order in temporal direc-
tion, we fixed M =40 for «=0.4,4=0.6 and different N.
Similarly, to obtain the convergence order in spatial direc-
tion, we fixed N =100 for a« =0.4, « = 0.6, and different M.
Table 1 gives the errors and convergence orders in temporal
direction by using the Q-FEM. Table 1 shows that the
convergence order in temporal direction is 2. Similarly,
Tables 2 and 3 give the errors and convergence orders in spa-
tial direction by using the L-FEM and Q-FEM, respectively.
These numerical results correspond to our theoretical
convergence order.

Example 2. Consider the following nonlinear time-fractional
Nicholson’s blowflies equation

(x,y,2) €[0, 17, t€[0,1],

(x,5,2) €[0, 1], ¢ € [-0.1,0],

(59)

the exact solution is given as
u(x, t) = t* sin (nx) sin (my) sin (mz). (61)

In this example, in order to test the convergence order in
temporal and spatial direction, we solve this problem by
using the L-FEM with M =N and the Q-FEM with N =
M©?), respectively. Tables 4 and 5 show that the conver-
gence orders in temporal and spatial direction are 2 and 3,
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respectively. The numerical results confirm our theoretical
convergence order.

5. Conclusions

We proposed a linearized fractional Crank-Nicolson-
Galerkin FEM for the nonlinear fractional parabolic equa-
tions with time delay. A novel fractional Grénwall-type
inequality is developed. With the help of the inequality, we
prove convergence of the numerical scheme. Numerical
examples confirm our theoretical results.
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In this paper, we consider the initial boundary value problem of the time fractional Burgers equation. A fully discrete scheme is
proposed for the time fractional nonlinear Burgers equation with time discretized by L1-type formula and space discretized by
the multiscale Galerkin method. The optimal convergence orders reach (>~ + k') in the L* norm and O(z>* + h™™") in the
H' norm, respectively, in which 7 is the time step size, h is the space step size, and r is the order of piecewise polynomial space.
Then, a fast multilevel augmentation method (MAM) is developed for solving the nonlinear algebraic equations resulting from
the fully discrete scheme at each time step. We show that the MAM preserves the optimal convergence orders, and the
computational cost is greatly reduced. Numerical experiments are presented to verify the theoretical analysis, and comparisons

between MAM and Newton’s method show the efficiency of our algorithm.

1. Introduction

In this paper, we consider the following time fractional
Burgers equation [1-7]:

oDy u(x, t) + u(o, t)u (x, ) — g (x, 1) = f(x, 1), (x, 1) €O,

(1)
with the initial and boundary conditions, given by

,0) =uy(x), 0<x<1,
u(r0)=tg(x),  0<xs o

u(0,t)=u(l,t)=0, 0<t<T,

where 0 << 1,Q={(x1)]0<x<1,0<t<ThHuy(x) and f
(x,t) are given functions, and the notation {Df denotes the

Caputo fractional partial derivative of order «, defined by

ou(x, s)

cpe A = 1 t 1
oDy u(, )_F(l—a)Jo(t—s)“ ds

ds,ae(0,1), (3)

in which I'(-) represents the Gamma fuction.

The time fractional Burgers equation is a kind of nonlinear
subdiftusion convection equation occurring in several physical
problems such as unidirectional propagation of weakly non-
linear acoustic waves through a gas-filled pipe, propagation
of weak shock, compressible turbulence shallow-water waves,
shock waves in a viscous medium, waves in bubbly liquids,
and electromagnetic waves [1, 4, 8]. Till now, there have been
several analytical techniques developed to solve the time
fractional Burgers equation. These methods include the
Cole-Hopf transformation, Laplace transform, variable sepa-
ration method [8], Adomian decomposition method [4],
homotopy analysis method [6], and so on.
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However, even if some fractional differential equations
can be solved, the expressions of their exact solutions are
often expressed by special functions, which are difficult to
apply in practice. Moreover, due to the nonlocality of the
fractional operators, analytical methods do not always work
well on most fractional differential equations in real applica-
tions. Hence, it is of great importance to develop reliable and
efficient numerical methods for solving fractional differential
equations. Nowadays, the numerical methods cover the
quadratic B-spline Galerkin method [2], cubic B-spline finite
element method [3], finite difference methods [1, 9-13], and
Fourier pseudospectral schemes [14]. There are also some
other numerical methods (see, for example, [8, 15-17]).

In this paper, we first present a fully discrete scheme for
solving the time fractional Burgers equation with the time
approximated by the L1-type formula and the space discreti-
zation based on the multiscale Galerkin method. We give
rigorous convergence analysis for the fully discrete scheme,
which shows that the scheme enjoys the optimal convergence
order O(t>* + 1) in the L norm and O(z>* + h'™!) in the
H! norm, respectively, where 7,h, and r are the time step size,
space step size, and the order of piecewise polynomial space,
respectively. Since the time fractional Burgers equation is a
nonlinear differential equation, the fully discrete scheme
results in a system of nonlinear algebraic equation at each time
step. Iteration methods such as the Newton iteration method
and the quasi-Newton iteration method are often employed
to solve these nonlinear equations. In this case, a large amount
of computational effort is demanded to compute and update
the Jacobian matrix in each iteration process. The higher accu-
racy of the approximate solution is required, the larger dimen-
sion of the subspace is needed, and the longer computational
time is consumed. To overcome this problem, we develop
the multilevel augmentation method for solving the fully dis-
crete scheme. The MAM solves a nonlinear equation at a high
level consisting of two parts: solving the nonlinear equation
only in a fixed initial subspace with the dimension much lower
than that of the whole approximate subspace; compensating
the error by matrix-vector multiplications at the high level.
The MAM reduces the computational costs significantly and
leads to a fast solution for the fully discrete scheme. We prove
that the MAM preserves the same optimal convergence order
as the original fully discrete scheme. The idea of MAM was
first introduced in [18] for solving the linear Fredholm integral
equations of the second kind. The theoretical setting of MAM
was established by Chen et al. in [19] for solving operator equa-
tions covering both first kind and second kind equations; they
further develop MAM for solving the nonlinear Hammerstein
integral equation in [20]. We modified the framework and
extended the idea of MAM to solve general nonlinear operator
equations of the second kind and applied it to the Sine-Gordon
equation in [21]. Readers are referred to [22-27] and the refer-
ences therein for more applications of MAM.

This paper is organized in seven sections. In “Preliminar-
ies,” some necessary notations, multiscale orthonormal bases
in Sobolev space, and useful lemmas are introduced. In “L1
Scheme for Discretization of Caputo Derivative in Time,”
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we introduce the L1-formula for time discretization. In “Fully
Discrete Scheme and Convergence,” a fully discrete scheme
for time fractional Burgers equation is established, and the
convergence analysis are given. The MAM and its conver-
gence analysis are developed in “Multilevel Augmentation
Method for Solving the Fully Discrete Scheme.” The numer-
ical experiments are provided in “Numerical Experiments” to
verify the theoretical estimates. Finally, a conclusion is
included in “Conclusion.”

2. Preliminaries

Denote I =0, 1]. Let (-, - ) stand for the inner product on the
space L*(I) with the L? norm ||||,. We denote by H}(I) the
Sobolev space of elements u satisfying the homogeneous
boundary conditions that #(0) = u(1) = 0. The inner product
and norm of H{(I) are defined by

1

(u,v) = (u',v') :Jou'(x)v'(x)dx, u,veHé(I), @

|uly = /(u, 1), u € Hy(I),

respectively. Let n be a positive integer, we denote by X, the
subspace of Hy(I) whose elements are the piecewise polyno-
mials of order  with knots j/2", j — 1 € Z,._,, where the nota-
tion Z,:={0,1,2---,n—1}. Obviously, the sequence of X,
is nested, that is

X, ¢X,,,neN;={0,1,2--- }, (5)
which yields the following decomposition:
X, =X, 0"W, =X, o'W, & " W,&"--- &*W,, (6)

where W, is the orthogonal complement of X,_; in X,,.

It is easily concluded from the definition of X, and W,
that the dimensions of X, and W, are given by

x(n)=dim (X,)=(r—-1)2"-1 and w(n):=dim (W,)
=x(n) —x(n—1) = (r—1)2"! respectively.

Define two affine mappings on the interval I by ¢ (x) =
x/2 and ¢, (x) =x + 1/2, x € I, which map the interval [0, 1]
into [0,1/2] and [1/2, 1], respectively. Associated with the
two mappings, we introduce two linear operators as follows:

Lemma 1 (see [26]). Let w;,j € Z,(;), be an orthonormal basis
of Wyi> 1. Then the functions {T gw, T jw;; : j € Zy;}
form an orthonormal basis for W,, ;.

i

Lemma 1 shows that the space W, can be recursively
constructed by the linear operators 7, and 7, once W,
has been given. Therefore, the basis of the space X, can be
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where c¢;; = (uy(x), w,-j>1,(i,j) €/,

H _
”2,; = Z(i,j)s]kymcijwij(x)’

~

that is

Let k, m be two fixed positive integers and n =k + m.
Step 1: obtain the approximation of initial value function

Uy = Pyt (%) = X117, €35 (%),

Step 2: fori=1: N (T = N7), do the following:
(I): Solve uj € X from (33) with n:= k. Set uj,, = uj,l =1

(II): Compute u;ff = (Ppyr — @k)(fi - Huy, ), that is

where Ji, = Jipm \ oG = (f - FHul w;;), with

(> wij>1 = (f', wij) + M(’};,m’ wij)'

(IID): solve u}(Ll € X from the following equation
PI + T + ul) = P f,

(F+ *7[)(”#1 + “ﬁ)) wij>1 = <.]~(l’wij>1’ forall (i, j) € J.
(IV): Let u};,l = u;cLl + u}j’ Set [ I+ 1 and go back to (III) until I = m..--

ArcoriTHM 1: (MAM for time fractional Burgers equation).

constructed by Lemma 1 step by step. For the details of the
construction and more, the readers can refer to [26].

Let 2, be an orthogonal projection operator from Hy(I)
into X, with respect to the inner product (-, - ), that is, for all
ue Hy(I),

(Pu, vy = (u,v),veX,, (8)
or
(0, P, u,0,.v)=(0,u,0,v),veX,. 9)

The following approximation results on the operator &,
will be used later. Throughout this paper, unless stated other-
wise, ¢ denotes a generic positive constant whose value may
differ in different occurrences.

Lemma 2 (see [28]). If u € H'(I) N H)(I), then

[ = Pull, < ch’|lul],,

= Pul, < b |ul,,
where h==27".

3. L1 Scheme for Discretization of Caputo
Derivative in Time

For a positive integer N, let 7 = T/N be the time step size and
t,=it for i=0,1,---,N. Let u’ be the solution of u(x,t) on
t=t,

Define

and 8,u’*? = . (11)

For the approximation of fractional derivative DY g(t;),
we use the following L1 scheme [29, 30]:

i-1

oDia(t) =Dig(t;) = p|ang(t;) - Z(ai—k—l —ai1)9(t) — ai.9(to) |»
k=1
(12)
where 0 <a < Lu=7%I'(2-«) and g, = (k+ 1) - k'™

Lemma 3 (see [30]). If 0<a <1 and a, = (k+ 1) - k'™,
k e N,, then

I=ay>a;,>a,>->a;> — 0,ask — 00,

(13)
(1-a)(k+ 1) <a, < (1-a)k™.

Lemma 4 (see [30]). Suppose 0 < a < 1,g(t) € C?[0,t;]. Let
R(g(t;)) =D;g(t;) - Dg(t;). (14)
Then

ROO= 15— |7 * 5

_ —-a 1 2-a
P +2—¢x (I+27) Orggt)f’g (t)|‘r .
(15)

4. Fully Discrete Scheme and Convergence

In this section, we present a fully discrete scheme for the time
fractional Burgers equation (1), and we derive the error esti-
mates and convergence of the proposed fully discrete scheme.
The Galerkin method associated with the multiscale basis
introduced in “Preliminaries” is employed to discretize the
spatial variable. The fully discrete scheme in weak formulation



TaBLE 1: Errors and convergent orders of MAM in temporal
direction for Example 1.

Linear basis Quadratic basis

a T (k=3,m=7) (k=2,m=5)
Rate Rate
1/4 3.8885e-4 3.8871e-4
1/8 1.3023e-4 1.5781 1.3012e-4 1.5789
1/16 4.2962e-5 1.5999 4.2893e-5 1.6010
173 1/32 1.3946e-5 1.6233 1.3985e-5 1.6168
1/64 4.275%-6 1.7055 4.5237e-6 1.6283
1/128 1.3118e-6 1.7047 1.4543e-6 1.6372
1/4 7.8755e-4 7.8742e-4
1/8 2.8852e-4 1.4487 2.8850e-4 1.4486
1/16 1.0421e-4 1.4692 1.0448e-4 1.4654
172 1/32 3.7337e-5 1.4808 3.7550e-5 1.4763
1/64 1.3340e-5 1.4848 1.3427e-5 1.4837
1/128 4.5749e-6 1.5439 4.7858e-6 1.4883
1/4 1.8737e-3 1.8737e-3
1/8 7.9862e-4 1.2303 7.9879e-4 1.2300
1/16 3.3825e-4 1.2394 3.3833e-4 1.2394
3 1/32 1.4287e-4 1.2434 1.4285e-4 1.2440
1/64 6.0343e-5 1.2434 6.0206e-5 1.2465
1/128 2.5613e-5 1.2363 2.5352e-5 1.2478

for (1) reads as follows: for each t=1¢,i=1,2---
X, such that

n, find v/, €

(Dfu’n, a) + (u;x, an) + (u ul v ) = (fi, vn),vn €X,,
”2 =11,u,,

(16)

where f'=f(x,t)|,, and IT, denotes the interpolation

operator.
We present an optimal error estimate of the fully discrete
scheme (16) in the following theorem.

Theorem 5. Suppose that the problem (1)-(2) has a unique
solution u € C*([0, T]; L*(Q)) n C'([0, T] ; H'(Q)). Then

| =, ||, < c(z**+H"), (17)
where u' = u(x, t)|,_, .

Proof. Denote ¢! =% u' —u',i=0,1,2-
from (1) and (16) that €/, satisfies

N. We conclude

(Di‘e’n, v ) + (eilx, an) =

(DY(P,ud' —ut'),v,,)
@i Ca (18)
+ (DTu —oDi us vn) + (u'u

x—u um,v)
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Taking v, = ¢!, in (18), we have
(Di‘e;, e ) + |ef1|2 = ((g’n - 7\Du, e;) + (Dﬁ‘ui—gDZu, e;)
+(uu - unx,e )

(19)

We estimate the terms of the right-hand side of (19) one
by one. For the first term in right-hand side of (19), using the
Cauchy-Schwarz inequality and Lemma 2, we have

L . . . 1 i
(2= 5)D5e,) | < e[| D] e, < o™ [ D[ + e

(20)

To estimate the second term in the right-hand side of
(19), we conclude from Lemma 4 that

o i crye i o i c a
— < —
‘(DTu oD u, en)‘ < HDTu oDt H || ||2<CT4 il 2

(21)

For the last term in the right-hand side of (19), using
integration by parts and the Cauchy-Schwartz inequality,
we have

L (ui - u’n) (ui + u;)e;xdx

sMHu"—ufH b, < 1= w2+ el

1
‘(uu —ul unx,e HIE

< 5o - P ||z+—He 3 +]ebfy <

2
M
7

lehll3 + lesf

(22)

where ||u/|| <M and ||u}|| <M, due to the smoothness of u

and the approximation u, € X, ¢ Hy(I).
On the other hand

. % . i1 P .
(D?e} e’n) = m (“oe’n - kZ(“HH — i )e, aﬂeﬁ’eln >
=1
— — 1
apT S 2 . .
,mHe;”Z—F (Z et — i)k ra e, e>.

(23)

Substituting (20)-(23) into (19) and noting that 1 =g,
>a, >--->a;>--, we deduce that
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TaBLE 2: Errors and convergent orders of MAM and DNM via linear basis in spatial direction with k = 3,7 =0.001, and « = 0.25 for Example

1.

MAM DNM

" x(n) |[u* = us |, Rate [|u* = vz, Rate |u* —u,, Rate [lu* = u, |l Rate
0 7 3.1264e-2 1.2161e-3 3.1264e-2 1.2161e-3

1 15 1.7726e-2 0.8186 3.1564e-4 1.9461 1.6011e-2 0.9654 3.1282e-4 1.9590
2 31 8.9080e-3 0.9927 7.7686e-5 2.0225 8.0530e-3 0.9915 7.8743e-5 1.9901
3 63 4.4596e-3 0.9982 1.9377e-5 2.0033 4.0324e-3 0.9979 1.9714e-5 1.9979
4 127 2.2305e-3 0.9996 4.8450e-6 1.9998 2.0169e-3 0.9995 4.9263e-6 2.0006
5 255 1.1153e-3 0.9999 1.2132e-6 1.9976 1.0086e-3 0.9999 1.2342e-6 1.9970
6 511 5.5768e-4 1.0000 2.8891e-7 2.0702 5.0429¢e-4 1.0000 3.3678e-7 1.8737

TaBLE 3: Comparison of CPU time between MAM and DNM via
linear basis with k = 3,7 =0.001, and « = 0.25 for Example 1.

n=k+m x(n) Trviam Toxm
3=3+0 7 1.33 1.28
4=3+1 15 3.21 3.70
5=3+2 31 7.09 12.22
6=3+3 63 15.45 41.96
7=3+4 127 41.47 152.71
8§=3+5 255 112.52 570.63
9=3+6 511 340.87 4581.64

i-1

" P12 " llek13-+l€k 113 lleS5+lle, 15
el (z<> Sl |, IR
+ <A2—/I + 1> He;Hi +e(T +h’)2
T P 2
- s (I & [+ 12)

M i2 - r
+ (5 +1>Hen|¢z+c(fz +HY

(24)

Choose 7 such that 77%/2I'(2 - «) > ((M/2) + 1), and
denote o=7%2I'2-a)A=7%2I2—-a)— ((M/2)+1);
then, we have

k
€n

. il 2
”e;”;%;‘ 2+;||eg||j+c(fzfa+hf)2. (25)

By Gronwall’s inequality, we have
lesll, = ellenll; +e(= =+ ), (26)

which, together with Lemma 2 and the initial error estimate,
yields that

' = s, < | = P, + e, < e(=* + 1) 27)

This completes the proof.

Remark 6. If we choose v, = D%, in (19) and make a similar
analysis as the above Theorem 5, we can obtain the optimal
convergence order in H' norm

‘ui—u;‘l <c(?+n). (28)

5. Multilevel Augmentation Method for Solving
the Fully Discrete Scheme

At each time step, the fully discrete scheme (16) leads to a non-
linear system, which makes the computational cost expensive.
We present a fast multilevel augmentation method in this sec-
tion to solve these nonlinear systems. To this end, we rewrite
(16) into

(Mo V) + (bt + st v,) = (F v ), (29)

; i1 _
wherer! =Y (a; 51 — ai_k)u’:’ + ai_lu?l andpu=1"%T(2-a).

Define a nonlinear operator # :X — X as follows:
(K (u),v), = (uu+ uu,,v),veX. (30)

Similar to the proof of Lemma 3 in [23], we applied the
Riesz representation theorem to the right-hand side of (29);

there exists a element ]"i € X, such that
<fi,v>1: (fi+yri,,v>,Vv€Xn. (31)
Then, Equation (29) can be reformulated as
<”2’Vn>1 + <3£/uf1,vn>1 = <]~‘i, vn>,vn €X,, (32)
or equivalently
(I +P,H )il =P ] (33)

Since Equation (16) has been reformulated as a nonlinear
operator equation of the second kind (33), and # has the
properties (P1) and (P2) described in [23], then MAM devel-
oped in [21] is applicable.
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TaBLE 4: Errors and convergent orders of MAM and DNM via quadratic basis in spatial direction with k=2,7=0.001, and a«=0.1 for

Example 1.
MAM DNM

" x(n) |u* =y, Rate [|u* = upm, Rate |u* —u,, Rate [lu* = u, |l Rate
0 7 1.5670e-2 6.0316e-4 1.5670e-2 6.0316e-4

1 15 4.0566e-3 1.9496 8.1280e-5 2.8916 4.0054e-3 1.9679 7.7216e-5 2.9656
2 31 1.0196e-3 1.9922 1.0218e-5 2.9918 1.0068e-3 1.9922 9.7080e-6 2.9917
3 63 2.5528e-4 1.9979 1.2796e-6 2.9973 2.5203e-4 1.9981 1.2151e-6 2.9980
4 127 6.3843e-5 1.9995 1.5919e-7 3.0070 6.3030e-5 1.9995 1.5096e-7 3.0089
5 255 1.5962e-5 1.9999 2.1784e-8 2.8694 1.575%¢-5 1.9999 1.7198e-8 3.1339

TaBLE 5: Comparison of CPU time between MAM and DNM via
quadratic basis with k =2,7=0.001, and & = 0.1 for Example 1.

n=k+m x(n) Tviam Tonm
2=2+0 7 2.44 2.48
3=2+1 15 5.18 8.91
4=2+2 31 8.49 31.60
5=2+3 63 14.04 128.97
6=2+4 127 23.16 518.63
7=2+5 255 43.77 2506.75

We now briefly describe the MAM for solving (33). As we
presented in “Preliminaries,” the approximation subspace
sequence is nested, for a fixed positive integer k,n =k + m,
m is any nonnegative integer, and we have the following
decomposition:

1 . 1 1
Xiom =X @ "W, with Wy, =W, @ "Wy, @ & Wy,

(34)

Now, we are in a position to solve (33) with n:=k+ m,
and k is fixed and smaller than n. Firstly, we solve (33) with
n=k exactly and obtain u}. Next, we obtain an approxima-
tion of 1}, | of (33) w1th n=k+1.To thls end, we decompose

Uy = U+, with 4 € X ) €Wy,

With the help of (34), Equation (33) with n:= k + 1 can be
rewritten as an equivalent form as

(Prrs = Po) (k) + 1) = (Prpy = P) Hky, = (Pryy - Po)f
(35)
PT =) (i, + 1) = f (36)

Note that
(Pri1 — %) (u;cil + u;c-ljl) = u;ﬁl:ll (37)

Equation (35) becomes

Uy = (Pr - @k)(fi+*%”i+1)- (38)

The ui,, in the right-hand side can be approximated by
the previous level solution uj , = u}. We compute

W = (P = 2 (F + Tt ) (Wer). (39)

LH . iH iL
Replace up /| in (36) by uy |, and solve up; € X from

i

Pr(T = H) (uph + i) = P f . (40)

Let
”l; _”kl ‘H";clil’ (41)

which is an approximation to the solution u},,.

This procedure is repeated m times to obtain an approx-
imation u};)m of the solution ufC +m Of (33) with n =k + m. The
solution u , is called a multilevel augmentation solution.
Since at any step /=0, 1,---m, we only need to invert the
same nonlinear operator 2, (.7 — %) with a fixed small k
instead of the nonlinear operator (¥ — %). This means
the algorithm has a high computational efficiency. At every
time step, the fully discrete scheme (33) is solved by the
MAM, and the whole process can be summarized as the
following algorithm:

Theorem 7. Let u be the exact solution of (1) and uf(’m be the
approximation solution obtained by Algorithm 1. Suppose
that the solution of Equation (33) belongs to H'(I) for i=1,
2,---T/t. Then, there exist a positive integer N such that for
allk>N and m € N

||ui - u};’mHZ < C(TZ’”‘ +h"). (42)

Proof. As stated in [20, 21, 23],
equation:

Uy, is the solution of the

(j + ‘@k‘%) u;(,m = ‘@kﬂnj -

(Prom — Pr) Fjy s (43)
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u(x,t)-u, g

Error

F1GURE 1: The graph of error function u(x, t) — u, 5(, t) for Example 1.
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F1GURE 2: The temporal convergence order of MAM for Example 2.

TaBLE 6: Errors and convergent orders of MAM and DNM via linear basis in spatial direction with k = 3,7 = 0.005, and & = 0.25 for Example
2.

MAM DNM

" *(n) [u* = s, Rate [lu* = s, Rate |u* —u,, Rate lu* —u,|, Rate
0 7 9.9718e-1 3.8317e-2 9.9718e-1 3.8317e-2

1 15 5.1444e-1 0.9548 7.8333e-3 2.2903 5.0239-1 0.9891 9.6573e-3 1.9883
2 31 2.5795e-1 0.9959 1.9554e-3 2.0021 2.5167e-1 0.9973 2.4190e-3 1.9972
3 63 1.2907e-1 0.9990 4.8547e-4 2.0100 1.2589%¢-1 0.9993 6.0479¢-4 1.9999
4 127 6.4546e-2 0.9998 1.2093e-4 2.0052 6.2955e-2 0.9998 1.5096e-4 2.0022
5 255 3.2274e-2 0.9999 2.9983e-5 2.0120 3.1478e-2 1.0000 3.7490e-5 2.0096
6 511 1.6137e-2 1.0000 7.2066e-6 2.0568 1.5739%e-2 1.0000 9.1214e-6 2.0392
7 1023 8.0687¢-3 1.0000 1.5895e-6 2.1808 7.8696e-3 1.0000 2.0338e-6 2.1651




TaBLE 7: Comparison of CPU time between MAM and DNM via
linear basis with k = 3,7 =0.005, and « = 0.25 for Example 2.

n=k+m x(n) Tviam Toxm
3=3+0 7 0.29 0.51
4=3+1 15 0.78 1.08
5=3+2 31 1.67 3.75
6=3+3 63 3.86 13.18
7=3+4 127 9.82 48.16
8§=3+5 255 27.78 179.33
9=3+6 511 87.87 716.02
10=3+7 1023 289.36 7004.77

which is equivalent to the following discrete form:
i i i (i i
(uk,m,x’ Vx) + (Auuk,m + Ut mUiemxo V) - nu(uk,m U m-1> VZ)
i i i i i i
+ (f > V) + ."l(rk,m’ V) + (uk,muk,m,x U m1%kem-1,0 VZ)’

(44)

where v € X, = (Prym —
we have

P,)v. Rearranging the terms,

(D?u;c,m’ V) + (u;;,m,x’ vx) == (u;c,mu;gm,x’ V)

+ nu(u;gm - u;(,m—l’ VZ) + (u;c,mu;;,m,x - u;gm—lu;-c,m—l,x’ VZ)
+ ( f i v) .
(45)
Noting that the exact solution u at f =¢; satisfies
o i i _ i i i o, i A
(Dfu',v) + (u v,) == ('t v) + (f , v) + (DTu —Dfu, v).
(46)
Subtracting (45) from (46), we obtain that for all v €
XiemV2 = (Prem = Pr)v
(D? (ui - uicm)’ V) + (M; - u;;,m,x’ Vx) == (”lu; - u;.(,mu;‘(,m,x’ V)
+ (D' =GD5,v) = (0 = 010 v2)
- (u;c,m u;gm,x - u;c,m—l u;gm—l,x’ VZ) .

(47)

Denote p'=u' -9, u' and e =P, u' —uj,, then
u' —up,, =p'+¢. Using these notations and noting that
(p',v,) =0, we derive the error equation as follows:

(D%, v) + (& v,) = (Dip',v) + (Di‘ui—gD‘t"iu, v)

- (uiu; - u;c,mu;(,m,x’ V) - M(”j{,m - ujc,m—l’ VZ)
- (u;gmu;(,m,x - u;gm—lu;(,m—l,x’ VZ) .
(48)
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Let M, = max {[|u,, || i€ Zy} and M' = max {M,, M},
where M is the positive constant appearing in (22); then, ||u/[|,
SM’,Hu};,mHOO <M'. We take v=e¢' in (48) and estimate the
terms in the right-hand side of (48).

For the first three terms in the right-hand side of (48),
similar to the analysis of (20)-(22), we have

(3¢ = (P =)D ) | < b D82+ 2

(49)

‘(D;“ui—(‘)D‘Zu, e’)‘ <ctt ¥4 %He"{ z, (50)

Y e+ MR+ 216l (51)
’(uux uk)muk)m,x,e)|_c + He||2+2|e|1.

By the Cauchy-Schwartz inequality, Young’s inequality,
and noting that ||v,]|, < ||v||,, we have

. . 2 . . o .
Y [ i [
1

(52)
For the last term in the right-hand side of (48), it follows

from integration by parts, the Cauchy-Schwartz inequality,
and the Young inequality that

! (u;;,mu;;,m,x - ui,m—lu;c,m—l,x’ VZ) ! < ZMI ||u;c,m - u;;,m—l Hz |ei|1
<My = s [+ 5 1€

(53)

On the other hand side, as presented in (23), we have

o i-1
(Dge’, e’) <

P 2 e .
“T(2-a) 1€]]; - r2-a) <};(aikl —ai)d +a, e) :
(54)

Combining (49)-(54) and (¢!, ¢! ) = |ei|f, we have

Tt i ([ e 13+l e l3+1l€l3
I2-a Il = 7= (,; (@ipr = i) =3 =

g i ."‘2 i i - r
(1 Y () o [l )
T 2 i-1 N
- gy (115 B 1 1)
+ (1 M+ %) ||31Hz + (Z_) [ — ”im—l“i (e +h’)2.
(55)

Choose 7 such that 77%/2I'(2 —a) > 1+ M' + (0,/4), and
denote 6=7"2I(2-a)p=06—(1+M' +(0,/4)). Then,
we have
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TaBLE 8: Errors and convergent orders of MAM and DNM via quadratic basis in spatial direction with k=2,7=0.005, and a«=0.1 for

Example 2.

MAM DNM
" x(n) |u* =y, Rate [|u* = upm, Rate |u* —u,, Rate [lu* = u, |l Rate
0 7 3.9445e-1 1.5119e-2 3.9445e-1 1.5119e-2
1 15 1.0367e-1 1.9279 2.0779e-3 2.8631 1.0124e-1 1.9620 1.9499¢-3 2.9549
2 31 2.9991e-2 1.7893 3.8616e-4 2.4279 2.5478e-2 1.9905 2.4561e-4 2.9889
3 63 7.5607e-3 1.9879 5.0534e-5 2.9339 6.3800e-3 1.9976 3.0758e-5 2.9973
4 127 1.8938e-3 1.9972 6.3432e-6 2.9940 1.5957e-3 1.9994 3.8482e-6 2.9987
5 255 4.7367e-4 1.9993 8.1030e-7 2.9687 3.9896e-4 1.9999 5.0488e-7 2.9301
TaBLE 9: Comparison of CPU time between MAM and DNM with ) ) ) .,
k=2,r=0.005, and & = 0.1 for Example 2. ’u' — U, |1 <c(r7+ ). (60)

n=k+m x(n) Tviam Tonm
2=2+0 7 0.57 0.57
3=2+1 15 1.33 2.02
4=2+2 31 2.16 7.64
5=2+3 63 3.43 32.32
6=2+4 127 5.89 129.80
7=2+5 255 10.34 543.35
20 ti k|| 0|2
el <= He H + e
el S 3 e e
T+ M\ e 2
+ + ul —ul +e(T B
(4!]1-‘2(2 _ OC) ‘a || kom k,m—1 ”2 ( )
(56)

When the exact solution of (33) belongs to H'(I),
there exists a positive integer N, for all k>N and any m
€N (see [21, 23]):

Hu}(m - u};’m_l H <ch". (57)

Combining (56) and (57), we conclude from Gron-
wall’s inequality that

He’”2 < ||e°||2 + c('rz*”‘h' +h') + c(rz"" +h")

58
<€, + c(‘rz_“ +h). (58)

Noting that ||¢°||, < ch’, then

16 =t < ([ = Pt |, + €], < €+ ).
(59)
This completes the proof.
Remark 8. If we choose v=D%¢' in (48) and make a similar

analysis as the above Theorem 7, we can obtain the optimal
convergence order in H! norm:

6. Numerical Experiments

We present in this section numerical examples to illustrate
the efficiency and accuracy of our proposed method. The
computer programs are run on a personal computer with
2.5G CPU and 8G memory.

Example 1. We consider the time fractional Burgers equation
(1) with the exact solution:

u(x, t) = (48 -4t +1)x* (x - 1)%. (61)
The corresponding initial condition and forcing term are
u(x,0) = uy(x) =x*(x - 1)
41.1706

8« 5 5
Jen)= (F<3 “w) r<2—a>>" (x=1) (2)

+2(42 4t +1)°(x - 1)°(2x - 1)
—2(4° —4t+1)(6x° —6x+1).

Both piecewise linear (r = 2) and quadratic (r = 3) multi-
scale orthonormal bases introduced in “Preliminaries” are
employed in our numerical approximation. The numerical
results are reported in Tables 1-5. k and m stand for the
numbers of initial level and augmentation level used in the
MAM, respectively. x(n) denotes the dimension of approx-
imation subspace X, with n=k+ m. Table 1 shows the L*
errors and temporal convergence rates for different a using
the MAM with (k, m) = (3,7) for linear basis and (k, m) =
(2,5) for quadratic basis. It is seen that our numerical
scheme has an accuracy of 2 — a, which is in agreement with
our theoretical analysis. In the spatial direction, we illustrate
the accuracy, convergence order, and computational effi-
ciency of the MAM, with a comparison to those of the direct
Newton’s method (DNM) for solving the fully discrete
scheme (16). The numerical results listed in Tables 2 and
3 are linear basis cases, and Tables 4 and 5 are quadratic
basis cases. We can easily see from these tables that both
MAM and DNM have the optimal convergence orders in
the H' norm (1 for the linear case and 2 for the quadratic
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case) and in the L? norm (2 for the linear case and 3 for the
quadratic case). We also observe that MAM and DNM have
nearly the same accuracy, while MAM takes significantly
less time than DNM. To intuitively show the approximation
effect, we plot in Figure 1 the absolute error surface of the
approximation solution u, 5 obtained by MAM.

Example 2. We consider the time fractional Burgers equation
(1) with initial condition:

uy(x) =0,

2t %sin (271x)

flot)=

+ 7ttt sin (4mx) + 47°¢* sin (2mx).

I'3-a)
(63)
The exact solution of this problem is
u(x, t) = t* sin (27x). (64)

The numerical results are presented in Figure 2 and
Tables 6-9, where Figure 2 displays the convergence orders
in temporal direction with different «, and Tables 6-9 show
the accuracy, convergence order, and computing time for
the spatial direction. All the numerical results verify our the-
oretical analysis and also show the efficiency of the proposed
algorithm.

7. Conclusion

In this article, the L1-discretization formula and the multi-
scale Galerkin method are adopted to discrete the Caputo
fractional derivative and spatial variable, respectively, and
the multilevel augmentation algorithm is proposed for solv-
ing the resulting fully discrete scheme which is a nonlinear
system at each time step. The MAM only needs to solve non-
linear systems in a fixed subspace with much lower dimen-
sion than that for the whole approximation subspace and
compensate the error by multiplications of matrices and
vectors at the high level. Therefore, the computational cost
is greatly reduced. Numerical experiments are presented to
confirm our theoretical results. Compared with the DNM,
the proposed MAM has substantial advantages in computing
time and is suitable for solving large-scale and high-accuracy
problems.
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In this paper, we consider a swelling porous elastic system with a viscoelastic damping and distributed delay terms in the second
equation. The coupling gives new contributions to the theory associated with asymptotic behaviors of swelling porous elastic

soils. The general decay result is established by the multiplier method.

1. Introduction and Preliminaries

In the late 19th century, Eringen [1] proposed a theory in
which he presented a mixture of viscous liquids and elastic
solids in addition to gas. And he also studied the equilibrium
laws for all components of this mixture, and finally, you get
the field equations for a heat conductive mixture (for more
details, see [2]). In [3], the author has classified expansive
(swelling) soils under the classification of porous media
theory.

On the other hand, it contains clay minerals that attract
and absorb water, which leads to an increase in pressure
[4], and this is considered a harmful and dangerous problem
in architecture and civil engineering in most countries of the
world, especially in foundations, which leads to cracks in
buildings and ripples in sidewalks and roads (see [5-8]).
From there, studies began to eliminate or reduce the damage,
as in ([9-13]), where the basic field equations of the linear
theory of swelling porous elastic soils were presented by

Pty =P+ G+ Hy, (1)

p¢¢tt =P, +G,+ H,, (2)

where u, ¢ are the displacement of the fluid and the elastic
solid material. And p,, p, > 0 are the densities of each con-
stituent. The functions (P}, G,, H,) represent the partial ten-
sion, internal body forces, and eternal forces acting on the
displacement, respectively. Similarly (P,, G,, H,), it works
on the elastic solid. In addition, the constitutive equations
of partial tensions are given by

(o)) ()
P, a,, a3 . o, ) (3)

———
A

where a;,a; >0 and a, # 0 is a real number. A is a matrix
positive definite in the sense that a;a; > a.
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Quintanilla [10] investigated (1) by taking

G =Gy =§(u,— ¢,),
Hl = aSuxxt’ (4)
H,=0,

where & > 0; they obtained that the stability is exponential.
Similarly, in [14], the authors considered (1) with different
conditions

H,=0, (5)

where y(x) is an internal viscous damping function with a
positive mean. They established the exponential stability
result (see ([10-20]) for some other interesting results on
the swelling porous system).

Time delays arise in many applications because most
phenomena naturally depend not only on the present state
but also on some past occurrences.

In recent years, the control of PDEs with time delay
effects has become an active area of research (see, for exam-
ple, [15, 20-27]). In many cases, it was shown that delay is

Pty = Ayl — A0
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a source of instability unless additional condition or control
terms are used; the stability issue of systems with delay is of
theoretical and practical great importance.

A complement to these works, and by introducing the
terms of memory and distributed delay, forms a new problem
different from previous studies. Under appropriate assump-
tions and by using the energy method, we prove the stability
results.

In this paper, we are interested in problem (1) with null
internal body forces, but the eternal force acting only on
the elastic solid is in the form of viscoelastic damping and
distributed delay terms, that is,

G,=G,=H, =0,

H, :—J g(t = s5)d,.(x, s)ds — B, ¢,
. (6)
—J 1B,(0)|,(x, t — 0)do.

Remark 1. Regarding the problems of swelling porous elastic,
we believe that there are no studies of viscoelasticity (the
memory) and the distributed delay conditions that act as a
simultaneous dissipation mechanism, and hence, our cou-
pling constitutes a new contribution.

Thus, we are interested in the following problem:

ex = 0’
p¢¢"—a3¢xx—azuxx+J 9t =)y (. s>ds+ﬁ1¢t+j” 1B, ()16, (x, t — 0)do =0, 7)

where
(x,0,t) € =(0,1) % (1,, T,) x (0,00), (8)
under the initial and boundary conditions
u(x,0) = uy(x), uy(x,0) = uy (x),
$(x:0) = @y (%), ¢ (%, 0) = ¢, (x), x € (0, 1),

¢ (x=t) = fo(x. 1), x € (0, 1) x (0, 73),
u(0, 1) = u(1,£) = $(0,£) = $(1,£) =0, £ > 0.

©)

Pulhy — AUy — a2¢xx =0,
t

P¢¢tt - a3¢xx Ol T J
0

0¥, (x,p0,t) + ¥ ,(x,p,0,1) =0,

T

First, as in [27], taking the following new variable
Y (x,p.0,1) = §,(x 1~ 0p), (10)
then we obtain

{o?t(x,p,a, )+ Y ,(x.p,0,1) =0, )

Y (x,0,0,t) = ¢,(x, t).

Consequently, the problem is equivalent to

Gt = 5) (6, 5)ds + B, + j 1B,(0)| % (51,0, t)dor =0, (12)
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where
(x, p,0,1) €(0,1) x X, (13)
with the initial data

u(x,0) = g (x), (3, 0) = 0y (),

B(x0) = 9o(x), §,(x,0) = ¢, (x), x € (0, 1),

Y (x9,0,0) = fy(x, p0), (3 p,0) € (0,1) x (0, 1) x (0,7,),
(14)

and the boundary conditions
u(0,t)=u(L,t)=¢(0,t) =¢(1,£)=0,t>0.  (15)

Here, p,, Pg> 41> 43 B, are positive constants and a, is a
real number, with a,a,,a; satisfying a=a;—a3/a, > 0.
The integrals represent the memory and the distributed delay
terms with 7,, 7, > 0 are a time delay, 3, is an L® function,
and the kernel g is the relaxation function, under the follow-
ing assumptions.

(H1) g € C'(R,, R,) is a nonincreasing function satisfy-
ing

0O

g(0)>0, a—J g(s)ds=1>0, (16)

0
where a = a; —a3/a, > 0.

(H2) There exists a 9 € (R,,R,) positive nonincreasing
differentiable function, such that

g (H)<-9(t)g(t), t=0. (17)

(H3) B, :

[11,T,] = R is a bounded function satisfying
| 18,010 <, (19)

Remark 2. The results that we obtained in this work are also
correct with other conditions, including

(0, 1) = (1, 7)
u(0,t) =u,(1,1t)
u,(0,1) =u(l,t)

¢.(0,1)=¢,(1,£)=0, =0,
$(0,t)=¢,(1,t)=0, t=0,  (19)
¢.(0,t) =¢(1,£)=0, t>0.

Of course, there can be some difficulties with regard to
the following boundary conditions:

ue(0, 1) =1 (1, 1) = $(0, 1) = (1, 1) =
u(0, 1) =u(l, 1) =¢,(0: 1) = ¢, (1, 1) =

unless we assume
1 1
J uo(x)dxzo,J $o(x)dx =0, (21)
0 0

respectively.

In this paper, we consider (u, ¢, %) to be a solution of
system (12)—(15) with the regularity needed to justify the cal-
culations. In Section 2, we proved our decay result. And we
symbolize that ¢ is a positive constant.

2. Main Result

In this section, we prove our stability result for the energy of
system (12)-(15).
We need the following lemmas.

Lemma 3. The energy functional E, defined by

1 1
-2 [potvero it

0

! éJ; J; J o1B,(0)| % (x, p, 0, t)dodpdx,
(22)

satisfies

E'(0)= 39" 29- 5900 i

(p-[" do | g2
(m j |By(0)| o)j gdx  (23)
<39 de-n| gidxso

where 1y =B, - [ |B,(0)|do > 0 and
1ot ,
(920 =] | gt=9)((0) - v,(e)dsds. (21)
0Jo
Proof. Multiplying (12), , by u, and ¢,, then integration by

parts over (0, 1), with (15), gives

1d (!
Eaj [Pu”? +ayuy + P¢¢f +ayy + zaz”xﬁbx} dx
0

" ﬁljl Fdx + Jl ¢tr 1B,(0)|¥(x, 1,0, )dodx (25)
0 0 T,

[ 6] gte-9p.asin=o

0 0

The estimate of the last term in the LHS of (25) is as



follows:

‘Jl ‘thJt g(t = 5)$,(s)dsdx
:J:, ‘bfo; g(t = 5)((t) = Py (s))dsdx
- Ji g(S)dsJ; ¢, dx (26)

0

1d 1d ! LN
= 559"%— EEL Q(S)dsjo prdx

_Llgteg + lg 1 2d
39500+ 30| glax
Now, multiplying ((12)); by ¥ | 5,(0) |, and by integra-
tion over (0,1) x (0,1) x (71, 7,)

di1 1 1 p1y
EEJ J J a|[32(0)|?/2(x,p,a, t)dodpdx
0

0 Jr,

1ol opT,
__ J J B(0)| Y'Y (x, p, 0, t)dodpd
1

=N j 1B.(0)] (5., )dodpds

0J7
T2

|ﬁ2(a)|dajo $dx - ZLL J 103(0)| 9% 1,0, ).

L

1

E 0

Jl JI: 1B,(0)1(Z2(x,0,0,t) - %*(x, 1,0, 1)) dodx
J

(27)

Now, by substituting (26) into (25), and using Young’s
inequality, we have

1
E'(0)= 39 20 5000 o2

- (/31 - r | By(0) | dff) J; ¢id (28)

<50 o4, - (/31 [T 181 da) || g

I3

then, by (18), there exists #, > 0 so that

1 1
E(0) 30 og0-m| ias (29)

then we obtain (22) and (23) (E is a nonincreasing function).
Lemma 4. The functional
1

I 1
D,(t) = p¢J0 ¢, ¢pdx — Z—jpuL du,dx + IZIJ ¢’dx  (30)

0
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satisfies

1 1 I\ (!
D;(t)g—%J ¢idx+elj ufdx+c<1+;)J ¢7dx
0 0 1/Jo

1

+cgeod, + CJ JTZ 1B,(0)| %% (x, 1, 0, t)dodx.

(31)

0

Proof. Direct computation using integration by parts and
Young’s inequality, for & > 0, yields

1 1 112 1
Di(0)=a | gdcrp,| giare %[ g
0 0 1J0
1

+ Z_jpujo ¢tutdx+J ¢xJo g(t—s)¢,.(s)dsdx
_J ¢JT2 1B,(0)| ¥ (x,1,0, t)dodx
0 1

T

AYE b
<- 4= = J ¢xdx+p¢J ¢, dx

1/ Jo 0

1

- J o] B (@)% 10 )

T

0

g(t—s)¢,(s)dsdx.

(32)

The estimate of the two last terms in the RHS of (32) is as
follows:

< (s [ otas) [ aiass g (] oas)ge

(33)

_Jl ¢JTZ 1B,(0)|% (x, 1,0, t)dodx

0

<, (J 1 8,(0) |d0> Jl $dx (34)

t Ty
+ij J 1By (0)1%2(x, 1, 0, t)dod,
15, ), ).

0

where we have used Cauchy-Schwartz, Young’s, and Poin-
caré’s inequalities, for §,, 8, > 0, and (18).
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By substituting (33) and (34) into (32), we find

2 t 1
i) s~(ay= 2 - [ gterds-0,-piet,) | i

0

1 1 1
+81J ufdx+c<l+ )J ¢rdx
0 &/ Jo

+ 4%1 (L g(S)dS>g° ¢,

t T,
e I NG R
462 0 Jr;

(35)

Bearing in mind that a = a; — a3/a, > 0 and using (16), we
get

[ awas<|" aws<a (36)

0 0

let ay = (a; — a3la;) - fg g(s)ds >0, and letting &, = g,/4, 6,
= ayl4cy,, gives (31).

Lemma 5. Assume that (16) hold. Then, the functional

D, (t) = a, (J; o udx - J; (/)utdx> (37)

satisfies,

a2 1 1 1
Dit) < - —ZJ uldx + cJ ¢2dx + cJ ¢ dx
0 0

+tcgod, + CJI JTZ 1B, (o)1 %% (x, 1,0, t)dodx.

(38)

Proof. By differentiating D,, then using (12), integration by
parts, and (15), we find

¢Z21 a21
DWF—éL@M+fLﬁ&

(2 - 1) [ g P g
Py Pu 0 Py Jo

+ Z_ZJ; uJ; g(t-5)o,(s)dsd

2

Jl uJ 1B,(0)|% (x. 1, 0, t)dodx.

P¢ 0 T,

(39)

In what follows, we estimate the different terms in the
RHS of (39); we use Young’s, Cauchy-Schwartz, and Poin-

caré’s inequalities. For 85, §,, 85 > 0, we have
aa; apa, \ (!
N e J ¢, dx
pq5 Pu 0

2
< 63J1 uldx + L% 4 LJI ¢?dx,
0 Py Py ) 495 )

%[ gt

5. waxs S [ et £
<2 U, X+ —= ¢x x+_g°¢x’
4J0 464J0 84

[

P (! 2 b
——IJ ugbtdxsassj u.dx + 5 J ¢ dx,
s Jo

1

0

a 1 T,

——ZJ uJ 13, (0)|%(x,1,0, t)dodx
p(/; 0 T,

1 1 7,
SC56J uidx-%J J 1B,(0)|%2(x, 1, 0, t)dodx.
0 6Jo Jr,

(40)

By letting 03 =a,/8p,, 8, =a,/16p,, 85 =8 = a,/8cp,
and substituting into (39), we get (38).

Lemma 6. The functional

1

Di(t) =p, | wuds (41)

satisfies

1
9s

1
uldx + 2‘11J wldx +
0 4

Dyt) <, [ gax @)

0

Proof. Direct computations give

1 1

1
uldx + azj up.dx.  (43)
0

Dt)=-p,| wdrsa

0 0

Estimate (42) easily follows by using Young’s inequality
and a,a; > a.

Now, let us introduce the following functional used.

Lemma 7. The functional

D,(t) = J J J " 6B, (0)| % (x, po 0, t)dodpdx (44)

0Jo Jr,



satisfies

1 ¢l ¢,
Dtz | | ol.0)19 (e p.0.00dodpas
1

1 -
o gtae=n| [ 1801770 1.0 0d0d

(45)

0

where 1, > 0.

Proof. By differentiating D,, with respect to t and using the
last equation in (12), we have

Di(f)=—2[ J J ePIBy ()Y Y (%, p, 0, t)dodpdx

0Jo Jr,

_ _Jl J 1 J 6e 1B, (0) %2 (x, pr 0, 1) dodpdx

0Jr

- Jl r B, ()| [e° Y (x, 1,0, t) = %*(x,0,0, )] dodx.
(46)

By using %(x,0,0,t) = ¢,(x, t), and e ? < e P < 1, for all
0<p<1,wefind

Dj(t) =—’71J1 J; JTZ o1B,(0)|%*(x, p, 0, t)dodpdx

0 T,

- J J " 1B, (0)| Y2 (0 1, 0, £)dodx (47)

N (J 18,(0) | da> J; $2dx.

Because —e™“ is an increasing function, we have —e™ <
—e ™, forall o € [ry, 1,

Finally, setting 77, = e™"2 and recalling (18) give (45). We
are now ready to prove the main result.

Theorem 8. Assume (16)-(18) hold.
Then, Vt,> 0, there exist A;, A, > 0 such that the energy
functional given by (22) satisfies

E(f) < /\le_hzfm O sy, (48)
Proof. We define the functional of Lyapunov

Z(t) = NE(t) + N, Dy (t) + N,D, (t) + D5 () + N, D, (1),
(49)

where N,N{,N,, N, > 0 to be selected later.
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By differentiating (49) and using (22), (31), (38), (42),
and (45), we have

1 2N 1
—[Pu‘N181]J uldx — B -2a, J uldx
2p 0
N
+C[N1+N2]g°¢x+zg,°¢x

1 1
- [nON—ch (1 + s_> —Nzc—ﬁlNJJ (/)fdx
1 0
1

- Nty =N, =y j 1B(0)17

0

(%, 1,0, 1f)dcrdx—N4111J1 Jl JTZ alﬁz(a)I?2
0 Jo Je,
- (x, p, 0, t)dodpdx.
(50)
By setting
1= g (51)
we obtain

N a 1 p 1
Z'(t S_[ao LN ——S]J ¢idx — —“J wldx
®) 2 4, [2} 0 !

2N 1
- E—2(11 j uidx+c[N1+N2]go¢x
2p, 0

1

N
+ 5006~ N - N, - Nye= BN | gias
0

1 pr,
~ [Ny, — N, - cN21j0 j 1B,(0)1 72

olBy ()|

T

1
-(x,l,a,t)dadx—leJ J J
0 Jo

- (x, p, 0, t)dodpdx.
(52)

At this stage, we choose our different constants.
First, choosing N, large enough such that

~2a, >0, (53)
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then we select N, large enough such that
oy =Nyn, —cN; —cN, > 0. (55)

Thus, we arrive at

1 1 1
Sf’(t)s—(xzj ¢>§dx—ﬂj ufdx—ocIJ 12dx
0 2 0 0
1

2 '
tdx+a6g °¢x+a7g°¢x
0

Nl
- “3J1 JT2 1B, (0)|%*(x, 1,0, t)dod

0Jr

—ocSJl Jl JTZ 01B,(0)|%*(x, p, 0, t)dodpdx,

0Jo Jr,
(56)

where as =7, N, ag =N/2,a;, = c[N| + N,].
On the other hand, if we let

R(t) =N, D, () + N,D,(t) + D5(t) + NyDy(t), (57)

then

1 a 1
2] < Nipy | [60ds N, 2, | [gunjax
0 1 0

1
0

1
+N, %J ¢2dx + N2a2J |pu, — ue,|dx
0

”’“JL '”f”'d’“”‘*r J | oeonip, @1

0Jo Jr;
- (x, p, 0, t)dodpdx.
(58)

Exploiting Young’s, Cauchy-Schwartz, and Poincaré
inequalities, we obtain

|8(1)] < ch (uf + @7+ P2+ ui)dx +cgo¢,
0

1 pl p7, (59)

+ CJ J J 0|[32(0)|?2(x, p, 0, t)dodp.

0Jo Jr;

On the other hand, from (22), we can write

2 2
1 a a
2 2 _ 2 2
ayuy + 2a2¢x”x + a4¢x - E |:al <le + a_¢x> +a, <¢x + a_ ux>
1

4

2 2
a a
2,2 2\ (2
4 1

(60)

where

Since a,a; > a3 and (16), we deduce that

2 2 1 “% 2 “% 2
alr,tx+2az(/5x1,1x+a4</>x>E a,— —=u;+a,— —=|¢;|-

a, a,
(62)
Consequently, we find
1(0)| = |2(t) - NE(1)| < cE(1) (63)
that is,
(N—-)E(t) < Z(t) < (N +c)E(t). (64)
At this point, we choose N large enough such that
N-¢>0,Nny—c>0, (65)

and exploiting (22), estimates (56) and (64), respectively,
leads to

GE(t) < Z(t) <cE(t), Vt=0, (66)
L' (t) <~k E(t) + kyg o ¢Vt > 1, (67)

for some ki, k,, ¢,, ¢; > 0.
By multiplying (67) by 9(t), we get

)L (t) <~k I(HE(t) + k,9(t)g o p ¥t >t).  (68)

Now, by using (17), we have the following estimate:

09°0.=90)| [ 1-9(6.00) - 9.0 s

0Jo

<[ [ oe-sigte-90u0- 6,457

0Jo (69)
J J 9 (t =) ($,(8) - $,(5)) dsdx
— g’ o, <—2E'(1).

Thus, (68) becomes
)L (t) <k, 9(t)E(t) - 2k,E' (1), Vt=t,, (70)

which can be rewritten as

(O(t)Z(t) +2k,E(t)) = 9" ()L (t) < -k I(H)E(t), V>t
(71)

By using 9'(¢) <0, Vt >0, we have
() Z(t) +2k,E(t)) <Kk, 9(t)E(t), Vt=t,.  (72)

By exploiting (66), we notice that

(1) = 9(t) L (t) + 2k, E(t) ~ E(L). (73)



Consequently, for « > 0, we get

H'(t) <—kFH(H)9(t), Vt=t,. (74)
Integrating (74) over (t,, t) gives
—Kf/ 9(s)ds

F(t) < H(ty)e o , Vit (75)

Consequently, (48) is established by virtue of (66) and
(75).

Remark 9. The estimate (48) also remains valid for ¢ € [0, #,],
thanks to the boundedness and continuity of E and 9.

Data Availability

No data were used to support the study.

Conflicts of Interest

This work does not have any conflicts of interest.

Acknowledgments

The fifth author extends their appreciation to the Deanship
of Scientific Research at King Khalid University for funding
this work through General Research Project under Grant
No. (G.R.P-2/42).

References

[1] A. C. Eringen, “A continuum theory of swelling porous elastic
soils,” International Journal of Engineering Science, vol. 32,
no. 8, pp. 1337-1349, 1994.

[2] A.Bedford and D. S. Drumbheller, “Theories of immiscible and
structured mixtures,” International Journal of Engineering Sci-
ence, vol. 21, no. 8, pp- 863-960, 1983.

[3] T. K. Karalis, “On the elastic deformation of non-saturated
swelling soils,” Acta Mechanica, vol. 84, no. 1-4, pp. 19-45,
1990.

[4] R. L. Handy, “A stress path model for collapsible loess,” in
Genesis and Properties of Collapsible Soils, pp. 33-47, Springer,
Dordrecht, 1995.

[5] J. E. Bowels, Foundation Design and Analysis, McGraw Hill
Inc., New York, U.S.A, 1988.

[6] V. Q. Hung, Hidden Disaster, University of Saska Techwan,
Saskatoon, Canada, University News, 2003.

[7] L. D. Jones and I Jefferson, Expansive Soils, ICE Publishing,
London, 2012.

[8] B. Kalantari, “Engineering significant of swelling soils,”
Research Journal of Applied Sciences, Engineering and Technol-
0gy, vol. 4, no. 17, pp. 2874-2878, 2012.

[9] D. Iesan, “On the theory of mixtures of thermoelastic solids,”
Journal of Thermal Stresses, vol. 14, no. 4, pp. 389-408, 1991.

[10] R. Quintanilla, “Exponential stability for one-dimensional
problem of swelling porous elastic soils with fluid saturation,”
Journal of Computational and Applied Mathematics, vol. 145,
no. 2, pp. 525-533, 2002.

Journal of Function Spaces

[11] R. Quintanilla, “Existence and exponential decay in the linear
theory of viscoelastic mixtures,” European Journal of Mechan-
ics - A/Solids, vol. 24, no. 2, pp. 311-324, 2005.

[12] R. Quintanilla, “Exponential stability of solutions of swelling
porous elastic soils,” Meccanica, vol. 39, no. 2, pp. 139-145,
2004.

[13] R. Quintanilla, “On the linear problem of swelling porous elas-
tic soils with incompressible fluid,” International Journal of
Engineering Science, vol. 40, no. 13, pp. 1485-1494, 2002.

[14] J. M. Wang and B. Z. Guo, “On the stability of swelling porous
elastic soils with fluid saturation by one internal damping,”
IMA Journal of Applied Mathematics, vol. 71, no. 4, pp. 565-
582, 2006.

[15] T. A. Apalara, “General stability result of swelling porous elas-
tic soils with a viscoelastic damping,” Zeitschrift fiir Ange-
wandte Mathematik und Physik, vol. 71, no. 6, p. 200, 2020.

[16] F.Bofill and R. Quintanilla, “Anti-plane shear deformations of
swelling porous elastic soils,” International Journal of Engi-
neering Science, vol. 41, no. 8, pp. 801-816, 2003.

[17] B.Fengand T. A. Apalara, “Optimal decay for a porous elastic-
ity system with memory,” Journal of Mathematical Analysis
and Applications, vol. 470, no. 2, pp. 1108-1128, 2019.

[18] R. L. Leonard, Expansive Soils Shallow Foundation, Kansas,
U.S.A, Regent Centre, University of Kansas, 1989.

[19] M. A. Murad and J. H. Cushman, “Thermomechanical theo-
ries for swelling porous media with microstructure,” Interna-
tional Journal of Engineering Science, vol. 38, no. 5, pp. 517-
564, 2000.

[20] C. A. Raposo, T. A. Apalara, and J. O. Ribeiro, “Analyticity to
transmission problem with delay in porous-elasticity,” Journal
of Mathematical Analysis and Applications, vol. 466, no. 1,
pp. 819-834, 2018.

[21] T. A. Apalara, “General decay of solution in one-dimensional
porous-elastic system with memory,” Journal of Mathematical
Analysis and Applications, vol. 469, no. 2, pp. 457-471, 2017.

[22] T. A. Apalara, “On the stabilization of a memory-type porous
thermoelastic system,” Bulletin of the Malaysian Mathematical
Sciences Society, vol. 43, no. 2, pp. 1433-1448, 2020.

[23] T. A. Apalara, “Uniform decay in weakly dissipative Timo-
shenko system with internal distributed delay feedbacks,” Acta
Mathematica Scientia, vol. 36, no. 3, pp. 815-830, 2016.

[24] A. Choucha, D. Ouchenane, and S. Boulaaras, “Exponential
decay of solutions for a viscoelastic coupled lame system with
logarithmic source and distributed delay terms,” Mathematical
Methods in the Applied Sciences, vol. 2020, 2020.

[25] A. Choucha, S. Boulaaras, D. Ouchenane, S. Alkhalf, and
B. Cherif, “Stability result and well posedness for Timoshen-
ko's beam laminated with termoelastic and past history distrib-
uted delay term,” Fractals, vol. 29, pp. 1-21, 2021.

[26] A. Choucha, D. Ouchenane, and S. Boulaaras, Mathematical
Methods in the Applied Sciences, vol. 43, no. 17, 2020Well
posedness and stability result for a thermoelastic laminated
Timoshenko beam with distributed delay term, 2020.

[27] A.S. Nicaise and C. Pignotti, “Stabilization of the wave equa-

tion with boundary or internal distributed delay,” Differential
and Integral Equations, vol. 21, no. 9-10, pp. 935-958, 2008.



Hindawi

Journal of Function Spaces

Volume 2021, Article ID 6683465, 18 pages
https://doi.org/10.1155/2021/6683465

Hindawi

Research Article

Global Existence for Two Singular One-Dimensional Nonlinear
Viscoelastic Equations with respect to Distributed Delay Term

Abdelbaki Choucha,' Salah Mahmoud Boulaaras®,”> Djamel Ouchenane,*
and Ali Allahem ©°

!Laboratory of Operator Theory and PDEs: Foundations and Applications, Department of Mathematics, Faculty of Exact Sciences,
University of El Oued, El Oued, Algeria

Department of Mathematics, College of Sciences and Arts, ArRass, Qassim University, Saudi Arabia

’Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Ahmed Benbella, Algeria

*Laboratory of Pure and Applied Mathematics, Amar Telidji Laghouat University, Algeria

5Department of Mathematics, College of Sciences, Qassim University, Saudi Arabia

Correspondence should be addressed to Salah Mahmoud Boulaaras; s.boularas@qu.edu.sa and Ali Allahem; aallahem@qu.edu.sa
Received 31 December 2020; Revised 24 January 2021; Accepted 2 February 2021; Published 16 February 2021
Academic Editor: Mahmoud A. Zaky

Copyright © 2021 Abdelbaki Choucha et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this current work, we are interested in a system of two singular one-dimensional nonlinear equations with a viscoelastic, general
source and distributed delay terms. The existence of a global solution is established by the theory of potential well, and by using the
energy method with the function of Lyapunov, we prove the general decay result of our system.

1. Introduction where Q=(0,L)x (0,T), L<oo, T<oo, g,(.), g,(.): R
— R*, u,,4;>0, the second integral represents the

We are interested in the following system: distributed delay and ,, p, : [1,7,] — R are bounded

t

1 1
o= ), | 93090 o, 9), 5y

+JT2 |42 (P) s (x t = p)dp = f, (4, v), In Q,

Ty

1 t 1
= o), v | (9L om o) s

functions, where 7,,7, are two real numbers satisfying 0
<1,<1y and f,(.,.), f,(-.): R — R are defined func-
tions later.

Three decades ago, these problems that arise in one-
dimensional elasticity have been studied and developed with
regard to viscosity with long-term memory. And it has been
studied in many fields of science, engineering, medical
sciences, and chemistry, as well as population and other
matters; see, for example, [1-24]. Recently, in the absence

|l = p)dp= £ ), nQ
T‘ of delay (4,=0,i=1..4), problem (1) was studied in [25],
and also later in [26], the authors considered problem (1)
with localized frictional damping term. We also know that
delay, especially distributed delay, is a phenomenon in our
life and is almost found in various fields, and its inclusion
in any problem makes it more important. The distributed
delay in many works has been studied and many authors
have taken care of it, for example, [5, 9, 27, 28]. Based on

L L .
u(L,t) =v(L, ) ZO’J xu(x, t)dx:J xv(x, t)dx =0, all this and the results of the research papers [14, 15, 17,
0 0 28-30, 31], the introduction of the term distributed delay as

with
u(x,0) = uy(x), u,(x,0) = u; (x), x € (0, L),
v(x,0) = vy(x), v,(x,0) =v,(x),x € (0, L),
ty(%m8) = fo (5 £), v (5,-0) = gy (%, 1), £ € (0,7,), (2)
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a damping mechanism in problem (1) makes it a new prob-
lem from what has been previously studied.

And we have divided this paper into the following. We
present in the second section the definitions, basics, and the-
ories of function spaces that are required throughout the rest
of the paper. In Section 3, we present the energy function
while proving to be decreasing. And in the final section, the
general decay is obtained by applying the energy method
and the function of Lyapunov.

2. Preliminaries

Let L2 =L2((0,L)) be the weighted Banach space equipped

with the norm
L ip
ol = (J x|u|f’dx) , )
0

H=1%((0,L)) be the Hilbert space of square integral
functions having the finite norm

= (|| ) (1)

and K=L2((0,L) x(0,1) x (1;,7,)) be the Hilbert space
equipped with the norm

1 r7,
el = |, | eatolleldede. (s)
V =V} is the Hilbert space equipped with the norm

2 24\ 1/2
elly = el + allzr) (6)

Vo ={u € Vsuchthatu(L) =0}. (7)

Theorem 1 [27]. For 2< p <4 and Vv in V,, we have

L
»
JO x|v|desC*||vx||H=Li(0)L), (8)

where C, is a constant depending on L and p only.

As in [18], introducing the new variables

{ z(x, p, 0, 1) = u,(x, t —Qp), ©)
(%, p, Q1) = v, (x, t —Qp),
yields
{ 0z,(%, P, Q. 1) +2,(x, p, @, 1) =0,
z(x,0,0, t) = u,(x, t), (10)

{ (%6 p e t) +y,(x p 0 1) =0,
Y(%,0,0,t) =v,(x, t).
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Problem (1) arrives at

t

1 1
e () | g(0=9) L ),
0
| et (o £ - e)de=fy(w ),

t

1 1
= S | 0= (v ) s gy

+r 114, (Q) 1, £ — Q) = f (1, V),

T
Qz,(%, p> Q. 1) + 2, (%, p,Q, ) =0,
(6P, 1) +y, (% p 0 1) =0,

(11)
where
(x, p» s, 1) € (0,L) x (0, 1) x (11, T,) % (0,00). (12)
With the initial data and boundary conditions

(4(x,0), v(x, 0)) = (up(x), vp(x)), in (0, L),

(14 (%, 0), v4(%, 0)) = (14 (), v (x))> in (0, L),

(4 (x,=1), v, (%,=1)) = (fo (% 1), Go (%)), in (0, L) X (0, 75),
u(0,t) =u(L, t) =v(0,t) =v(L, t) =0,

(%, £, 0) = fo(x, p@)> in (0, L) x (0, 1) x (0, 7,),

y(% >0, 0) = gy (% pQ),

u(L,t)y=v(L,t)=0, JL xu(x, t)dx = JL xv(x, t)dx =0.

0

0 (13)

We have the following assumptions:
(G1) g,(t): R* — R* are C', nonincreasing functions
satisfying

gi(s) <0,

o (14)
g;(s)ds=1;>0,i=1,2,

0

9,(s) 20,

gi(0)>0,1—J

(G2) 3&(t) > 0 a differentiable function, such that

gl < EOg (1, i=1.2620150< 2, (15)

and &(¢) satisfies for some [ < 1

<l JOO &(s)ds =+00,Vt > 0. (16)
0




Journal of Function Spaces

And also, where 1<0<3/2, Vt,>0 fixed, 3C, (o) >0,
such that

t
(1 + jio &(s)ds

(G3) we take

)1/(2(071» <C,, Vt=t,. (17)

S el e ) b
1
fH(wv)=alu+ v|2<’+1>(u +v)+ b|v|rv|u\’+2,

where a,b>0and r > -1.
We have

uf, (u, v) + vf, (1, v) =2(r + 2)F(u, v),¥ (1, v) € R?  (19)

where

F(u,v)= 3 [a\u+v|2(’+2) +2blw| ). (20)

(r+2)

(G4) py> py : [11, T,) — R satistying

r () do < iy (1)

Ty

T2
J lug(Q)lde < 5. (22)
T

Theorem 2. Assume (14) and p<3. Then, Y(u, v,) € V2,
(vi,v,) € H? and (f,, g,) € K? problem (1) has a unique
local solution

(u,v,2,y) €C(0,t,; Ve x K*)nC' (0,1, ; H* xK?), (23)
for t, >0 small enough.

Lemma 3. For r > —1, 3y > 0 such that Yu,ve VN V,(0,L),
we have

r+2)

2 2
-+ 25+ 2w 2
‘X

+2
L<v+2>SW(U””x”?{*'lz”Vx”é)r - (24)

Proof. It is clear that by using the Minkowski inequality
we get

o 1 < 2(alPao + W) (29)

Also, Holder’s and Young’s inequalities give us

(r+2)

)

< ||u||Li(y+z) ”V”Li(”z) (26)

<c(hllnlf+Llvdy).  @7)

By applying the embedding V N V,(0, L)—L2"2)(0,L)
and (25), (27) gives (15).

Lemma 4. 3A,, A, > 0 such that

L L L 2r+3
J x|f(u, v)|2deAi(ll-[ xuidx+lzj xvzdx) Vxe(0,L),i=1,2.
0 0

X
0

(28)

Proof. We prove inequality for f; and the same result also
holds for f,.
It is clear that

[y ()] < Cju v o [ || )

29
< C[|u‘2r+3 + |V|2r+3 + ‘u|r+l|v|r+2j| ) ( )
By Young’s inequality, with
2r+3
q= >
r+1 (30)
; 2r+3
T or+2”
we get
|u|r+1lv|r+2 < Cllu|2r+3 + C2|V|2r+3. (31)
Therefore,
f ()] < ClJu™ + 3] (32)

Hence, by Poincaré’s inequality and (11), we obtain

L
2(2r+3 2(2r+3
| it P i+ )

)(2r+3) )

(33)

S/\1(11”” +ZZ||vx||?i

Ik
The proof of lemma is complete.

The energy function (see, e.g., [8, 19] and reference
therein) is defined by

L

1(* 1 '
xuldx + —J xvidx+ = (1 —J g,(s)ds
0 2J)o 2 0

L 1 t
| xiddx+ < (1-| gy(s)ds
0 2 0

1
xv2(x, t)dx + EK(Z’)/)

E(t) =

NS
<

=~

L

(910m)(0)+ 3(8,°9)(0) - | Flads

N = 2



where

K(zy) - j [ j 50l (@) 1225 .0 1ty (@) 1 (. py 0. 1)) dodpds,

T

(gou0) = [ o=t -

0Jo

u,(x, s)[dsdx.
(35)

Lemma 5. Let (u,v,z, y) be the solution of system (11); then,
E(t) is a nonincreasing function, that is, Vt > 0

L 1 1
E’(t)S—dleufdx—dzf xvidx + = (glou )(t)+ 5(9;"%)(0

1 L 1
- —gl(t)J xuldx - —gz(t)J xv2dx <0,
2 0 2 0

(36)

where

di=p, - (J IMZ(Q)IdQ> >0
dy=p;— (J |.”4(Q)|dQ> >0

Proof. Multiplying equation (11),, by xu,xv,, and
integrating over (0, L), we find

L L L
2
J Xt u,dx — J (xuy) uydx + yIJ xu; dx
0 0 0

L T,
+ xutJ |, (Q)lz(x, 1, @, t)dpdx

0 T,

Lot
+ J gy (t = s)(xuy(x, 5)) dsu,dx
0Jo
L L

L
+ | xv,vdx - J (xv,) v, dx + (43J xvidx

JO 0 0

L 7, (38)
+ thJ ey (Q)ly(x, 1, Q, t)dodx

0 T,

+ J Gy (t=3)(xv,(x,5)) dsv,dx

0J0

L
J alu+ v (u+v) + b|u|ru|v|’+2}xutdx

L
+ [a|u+v|
0

(r+1)

u+v) + b|v| v|u| | xv,dx.
( ) t
Using integration by parts, we get

L L
J Xty U dx = %% U xufdx}, (39)
0

0
JL xv,v,dx = i UL xvzdx] (40)
ttrt - dt 0 t 4

0

N —
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UZ xufcdx} , (41)

Uz xvidx] , (42)

I 1 (*
J xf (u, v)uu,dx + m,[o xf, (u, v)vv,dx

(43)
[[]] vt =000 s 1
0 01 d , . (44)
- 3o @)= [ au(9as] e
3 (ghow)0)+ —gl<t>jz xuzdx, (45)

ai [(92 ov, ) (t) - J; gz(t)dsjz xvidx} (46)
"2 (9§° Vx)(t) + %gz(t)J: xvidx.

Now, multiplying equation (11), by xz|u,(e)| and
integrating over (0,L) x (0, 1) X (1,,T,), we get

1 7,
dt2J J J alu, (Q)1xz* dodpdx

1
2
T2 2 (47)
L j (@)1 ((2(x.0,0,1))
z(x,1,0,t))*)dodx

- Ej (e [
0

- %J JTZ x|ty (Q)(2(x, 1, 0, 1)) *dodx.

0J 1

Similarly, by multiplying equation (11), by xy | u,(Q) |
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and integrating over (0,L) x (0,1) X (7, T,), we get

d1 L 1 1, 5
aij J J Qluy(Q)|xy dedpdx
0

0Jr

-3 (J |M4(Q)|dQ> [[ i (48)

1 L 7,
‘—J J x|y (Q)y* (%, 1, @, t)dedx.

2011

Using Young’s and Cauchy-Schwartz inequalities, we have

L T,
| ] @let 1.0, o

0 T,

< % (J; | 4,(Q) | dQ> ﬁ xupdx (49)

1 L 7,
w5 || @l 10 )deds
0Jr1,

Similarly, we get

L T,
—J xv,J |ty (Q)|y(%, 1, 0, t)dodx
0

Ty

<3 (J Im(@)ldQ) [[ (50)

1 L (7,
] [ @b e deas
0JT,

By combining (39), (40), (41), (42), (43), (45), (46), (47),
(48), (49), and (50) in (38), we get (34) and (36).

3. Global Existence

In this section, we showed the global existence of the
solutions of the system (11).
First, introducing the following notation

1) = 1) () = (1= | g, [[ s+ gy )
(1 [ a0 ) [ w2 (0200

L
+K(Zs}’)—2(i’+2)[ x[a|u+v‘2(r+2)+2b|uv|r+2}dx’
JO

(51)

t

J(t) =T (u(t),v(t)) = % (1 - L gl(s)ds> J: xuldx
+ %(gl ou)(t) + % (1 - J; gz(s)ds) vaidx
+ %(gz ov)(t) + %K(z,y) - J: x[a|u +yPH2) 4 zmm’ﬂ dx,

(52)

note that

L L
E(t)y=](t) + —J xuldx + %J xvidx. (53)
0 0

Lemma 6. Assume that (24), (14), (15), (16), (17), and
(22) hold, and N(ug,v,) € Ve, (u;,v,) €H? and (fy g,)

€eLZ((0,L),(0,1), (1}, 7,)) satisfying

2(r+2) !
1 , Bi= E 1. 4
©>0p=n(3 T E0) < (54
Then, 3t, >0 such that
I(t)>0Vte|0,t,), (55)
where

1(* 1 (*
E(0)=J(0)+ —J xusdx + —J xvidx. (56)

2)o 2)o

Proof. As I(0)>0, then by continuity of I(¢), 3T, <t,

such that I(t) >0, Vt€]0,T,,); this implies that we have

a maximum time value noting T, such that
{I(T,)=0andI(t)>0, forallo<t<T,}. (57)

This, with (51), (52), and (14), we have

-5 (- L)

(=[]

37 (91 + (8,07)() +K(2 )]

+ﬁ[(t)
r+1

L L
> 20r+2) [(l1 JO xuldx + ZZJO xvidx)

+(grou)(6) + (920 v)(8) + K(m)} -

(58)

Hence,

L L
11J xuidx+lzj xvidx
0 0
2(r+2
<22
r+1 (59)
2(r+2)
< E(t)

r+1
< 2(r+2) E(0),

r+1

vVtel0,T,,).



By (24) and (54), we get

L L r+2
xvﬁdx)

0

L
2(r+2)J F(u(Tm),v(Tm))dsz(llj xuidx+lzj
0 0
r+1 L L
< (% E(O)) <11L xuldx + lzJo xvidx)
L L
:[3<11J xuidx+lzj xvfcdx)
0 0
t L
< (1—J gl(s)ds)J xuldx
0 0
t L
+ (1 —J gz(s)ds>J xvidx
0 0

+(gr o) () + (g, 2 ) (1) + K(2, ).
(60)

Hence,

(1 - J; a1 (s)ds) J: xildx + (1 - J; 4, (s)ds) K widx

+ (g1 0w (1) + (g5 °vi) (1) +K(2,)
-2(r+ Z)JL xF(u, v)dx > 0.

(61)

This proves that I(¢)>0,Vt€[0,T,). By repeating the

procedure, T,, is extended to t,.

Theorem 7. Let (14), (15), (16), (17), (22), and (24) hold.
Then, Y (ug, vy) € V3, (u;,v;) € H% and (fy, g,) € L2((0, L),
(0,1), (t,,1,)) satisfying (54) the solution of system (11) is
bounded and global.

2 2 2 2
Proof. To prove that [lu[|y + [[villi + e[z + vl +
||z||f<’,42 + ||y\|f<,ﬂ4 is bounded independently of f, using
(36) yields

E(0) = E(t). (62)

Using (52), we find

I
X [a|u + v\zmz) + 2b|uv|r+2} dx

—2(r+2)J0

o (- fron)e

(=) e

= (g1 ou)(t) = (95 °v)(1) ~K(2. 7).
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By using (62) in (63), we get

+

+
N = N = N = N =

+ =K(z,y) +1(t),

and using (14), (15), and (54) in (64), we get

1 (t 1t
E(0) = E(t) = —J xufdx+ —J xv?dx
2 2
0 0

r+1 L L
ZIJ xuldx + lzj xvidx +K(z,y)
2(r+2) 0 0

L L
>u( | xuldx+ J xvidx + J xuldx
0 0 0
L
+ J xvidx + K(z,y)) .
0
(65)
So
1
ol + 1Vll =+ el 1+ Vel + D121, + 1, < HEQ@)p = —,
2 4 ‘[,4
0
(66)

where

L (r+1) (r+1) (r+1)
Ho = IR {E’ 2(r+2) b 2(r+2) b 2(r+2)}' (67)

Hence, the solution of system (11) is bounded and
global.

4. Decay of Solutions

In this section, the decay result is showed by using several
lemmas.
As, we let

F(t)=E(t) + &,D(t) + &, x(t) + &V (1), (68)

where ¢, &,, &5 > 0, and

L

D(t) = E(t)JL xu,udx + E(t)J xv,vdx, (69)

0
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t

x(t) = —f(t)jo j g1 9)((t) ~u(s)dsd

—s<t>JL t

(70)
xthO g,(t =) (v(t) — v(s))dsdx,

0

¥(z,y)= f(f)J J J xQe P (|uy(Q)|2° + |y (@) |y*) dadpdx.

Ty

(71)

Lemma 8. There exist o}, a, > 0, such that
o, F(t) <E(t) <a,F(t), (72)
for &;, &5, and &5 small enough.

Proof. Using the inequality of Young and the Poincaré-type
inequality and 0 < &(¢) <&(0), we find

L L

L
xuudx < Z—IE(O)J xuldx + %CPS(O)J xuldx,
0 0

()

0 (73)

L e L e L
xv,vdx < %ﬁ(O)J xvfdx+ EICPE(O)J xvidx,
0 0

i)

(74)
()| x| 9106 ) (ute) - u(s) s

sude+ 2 CE0)(1-1,)(g, o 1) (1)

(75)

|
(]
N}
Nayl
—~
N
~—
=
=
=
—
2

. G (t =) (v(t) = v(s))dsdx

26(0)| i+ SCEO(1-b) (5,00

(76)

W(zy) < f<o>jL j j %0l (@) | 2+1144(0) 1) dodpd,

0J0JT1;
(77)

where Cp > 0.

A combination of (73), (74), (75), (76), and (77) in
(68) gives

F(t) < E(t) + (81;—82)5(0)JL xildx + (81 ; 82)5(0)JL xv2dx
L ’ L ’
+—C E(O)JO xuidx + %l CPE(O)JO xvidx

+ %Cpé(O)(l = 1)(gy o u,)(1)
+ Z2CE0)(1-1)(g, v, (1)

+ 835(0>JO JO J xp(luy(Q) | Z2+luy(Q) | y*) dadpx.

Ty

(78)

Then, 3o, > 0, for &, &,, and &; small enough, such that

F(t)< —E(1). (79)

Similarly, thanks to the inequalities of Young and
Poincaré-type and using 0 < &(¢) < &(0) gives

slf(t)r xu,udx > _Telﬁ(o)r xupdx — %ICPE(O)JL xuldx,
(80)
slf(t)JO xv,vdx > _7815(0)‘[0 xvidx — %CPE(O)JO xvidx,
(81)
()| x| gu(e =) (ute) - u(s) s
> 7E(0)| wutdx= 3 CEO)(1= 1) (g) ) (1),
(82)
()| ] ga(t=)00) - vis) s
> 528(0)| wvtds- CE01-L) g )0

and

1

L T,
_83W(2’J’)2_83E(0)JOJ J xQ(luy(Q) | 2°+luy(po) | y*) ddpdx.

(84)



By combining (80), (81), (82), (83), and (84) in (68),
we find

F(t) > E(t) - (81;£2>£(0)Jz xidx - (81 ;£Z>E(O)J: xvidx

81CEO Lxuzdx SICEO vazdx
2CE0)| mide-3CE0)|
&

- ZCEO)(1-L) (g, v
- | [ 5pli0) 12410 ) 1) dodpa
(85)

Then, 3a, > 0, for &, ¢,, and &; small enough, such that
F(t)> —E(t). (86)

This completes the proof.

Lemma 9. For 0 > 1 and 0< 0 < 1, we have

|| ate-swioeas
) <J g1 wlo) ) " )
(][ g pwores)

Yw e H.

Proof. It suffices to note that

t t
J g(t—s>||w<s>||2ds=j IO (¢ = 5)[uo(s) |2 gl
0 0

(t=9)|lw(s)| " ds,

(88)
using Holder’s inequality for
p=o
o (89)
q=——7, r>1
o-1

This completes the proof.

Lemma 10. Let v € L™((0, T) ; H) be such that v, € L°((0,
t);H) and g be a continuous function on [0, T| and suppose

Journal of Function Spaces

that 0<0< 1 and p> 1. Then, 3C> 0 so that

j G(=5) [V ()=, () |l

0
(p=1)/(p~1+6)

< RETHA) g ) (90)

0<s<T
0/(p-1+0)

<([[ o et noliee)

Proof. By applying Lemma 8 with o= (p-1+6)/(p—-1)
gives

|| a9y o)) s

0

(p-1)/(p-146)
) (91)

t
< (j G0 (=) e (o) =vs (o) s
0/(p-1+0)

([ #e-ameo-nea)

We also have

t

t
J 90 (1=9) v (ot)vi(9) [fds < C supllvx(~»5)\|§1J 9" (s)ds,
0 0<s<T 0

(92)

by combining (82) and (83). This completes the proof.

Lemma 11. Suppose that v € L°((0, T) ; H) be such that v,
€L®((0,T);H) and g be a continuous function on [0, T]
and assume p > 1. Then, AC > 0 so that

Lg(t—s)||vx<-,t>—vx<.,s>|\zds

(p=D)lp

<c(tlCOle | Il (99)
11p

([ etnnoliee)

Proof. By using (82) for 6 =1 gives

j G(E=5) [V () v, (o) s

0

< ([ mtn-satoniar) o (o4)

x (j gP(t—s)||vx<-,r>—vx<.,s>|zds) v
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where

t t
JO [V ()= (8)[[7ydls < ZfHVx(-»f)H?ﬁZL [EXES]IF

(95)
to obtain (93). Hence, this ends the proof.

Lemma 12. Suppose that r satisfies (15) and (52) hold. Then,
the functional ©(t), given by (69), satisfies

@' I ow b
<1+ R E(t)| xujdx
1 0

L,—C, (6] -26 L
.(2 p(2 2#3))J widx
0

50 ([ sttt 2

. (J; g?”(s)d5> (95 o v)(1)

t L (7,
+£(—) J x|ﬂ2(Q)|Z2(x,1,Q,t)dex

(96)

JTZ xlug (@)1 (x, 1, @ t)dedx

[a|u + v|2(”2) + Zb\uv\”z} dx.

For any 6, 6;,6, > 0.

Proof. The derivation of (11) gives

L L L

xuldx + f(t)J Xy, udx
0

@)=

Jo

xutudx+E(t)J
0
L

+ f'(t)J: xvyvdx + E(t)ﬂ xvtdx +&(t )Jo XV vdx
-&0

—e<t)u1f s ds =)

L L L
xuldx - E(t)J xuldx

0

xutudx+E(t)J

0 0

L T,
xuj 178 (Q)|z2 (%, 1,0, t)dodx
T

0 1
L
J g,(t = s)uy(s)dsdx + &' (t )J xv,vdx
0
L
XV J xvidx — E(t)mJ xvv,dx

0
L
J lug(Q1y* (x. 1, @ t)dodx

0
L
&(t) x ngt s)v,(s)dsdx
+ E( [a\u+v\ (2) 4 2b|uv|"2 | dx
2(r+2)

By Young’s and Poincaré inequalities and (14) and (15),
we find

600 [ w0 100 (9
<50 [szaxs S0 [ (] g1e-9u9

0

o

L
D en)a-n2] wia

SUTEEEY (j (945 ) (0 >0
9 (1 +(14+n,)(1 —11)2> JLqudx
: s

A (1 ) [ (945 ) (6 >0

I
+ —J [a|u + v|2(”2) + 2b|uv|”2} dx.
0

(98)

Il
e
—~

Similarly, we get

[ (]| (e 9mtoras) as

<& ”(“’7;)“"2)2>jzxv§dx

(99)

L 1 L
<CP8J xuldx + —J xufdx)
* )
0 0
(f) PR
<z Cpl5J xudx + SJ xuydx |,V > 0,
0 0

(100)

and similarly, we find

g0 [ wvpae< 2D (o[ xars L[ s
()| xvvdx< == C, Oxvxx+5 xvidx ).

0 2 0
(101)



10

By using Young’s and Poincaré’s inequalities and (22) gives

L

£ (t)J0 xur 1212 (%, 1, @, 1) ddx

1

g L (1,
E(t) (C 81/41J xuldx + é‘ij J lu,(Q)12%(x 1, @ t)dex),
0Jr

1

(102)

L
t)J va 1, (@)1 (. 1, @, t)dodx
0 Ty

L L (1,
<40 <c 62#3J xvidx+ %Lj L@ 17 (% Lo t)dex)~

2 T

(103)

Similarly, we get

E(t)Jz xu,udx < @ (C 81,1411 xuy, 2dx + SL 61 L xulzdx)ﬁ(t)rxvtvdx

0
L
<22 &) (C 82[,13J xvidx + ?J xv?dx).
0

2

(104)

In a combination of (98), (99), (100), (101), (102), (103),
and (104) in (97), we obtain

~8C,1-26,Copt]

L
t
J ,m,idx—5 )[1 (1+7,)(1 = 1)* = 6C,1 - 26,C,p;]

s 52 (0 L) ([ gt ) 6w
SO (e ) ([ om0 om0

R @J [ (g (@12 L)

T 1

1
+ 5 1Ha(Q) 1V (% 1, t)>dex
2

L
J [a|u + v|2(”2) + 2b|uv|r+2] dx,
0

(105)

by choosing #,,7,, so that #; =1,/(1 —1,); hence, (1/2)(-1
+(1+5,)(1 1)) =~1,/2 and (1+ (1/5,)) = 1/l;,and 1, =
L/(1-1); therefore, (1/2)(=1+(1+n,)(1-1)%)=~L/2
and (1+ (1/n,)) = 1/1,.

Then, (96) is proved.
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Lemma 13. Assuming that r satisfies (15), (14), and (15) and
(22) and (52) hold. Then, the functional x(t) given by (70)
satisfies along the solution of (11)

¥ (1)< E(t)@{l e e +2(1- 11)2} (JL xuidx)

0

b0 ey 20017 ] o)

VE(t) [9 - (J; g, (s)ds) ol e,yl] ( J z xufdx)
VE() {e - (J; gz(s)ds) vol+ 92y3] < J z xvfdx)

1 wC,  C(1+1)]
+ _2—9+26+ 20, t 0

<E(t) (J g (94 (0 )

I C C,(1+1)]
P I I pU+D)
20 20, © 40

< E(1) (J gﬁ”(s)ds) (65 o) (1)

- 2 E()g,(0) (g} ) (1

- S E(0)g,0) (5. (1

+f<t>jz j(e | 15(Q) | 22(x, Loy 1)

+6, | y(Q) 17 (% 1,0, t))dodx,

~—

(106)

for any 6,0,,0, > 0.

Proof. Direct calculation gives

|
See
~—~
-
=
=
x
=
%

|
Nay
—~
=
x
=
S~
«Q /N 9

(=]
(=}

—E'(t)ﬂxvtj; (t = s)(v(t) = v(s))dsdx
—f(f>J: xvnﬁ) gyt =s)(v(t) = v(s))dsdx
_E(t)J:xvti(J;gz(t—s)( () ())ds)dx,
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by using
i B(t) ~ B(t) of (£, 5)
“ (Lm I s)ds) _ Lm D
a
PO 10, ) - 228 s 1, (e,
(108)
As we have (u, v, z, y) the solution of (11), we find
K 0= 0 (]| (6= 900 - o) s
+&(1) Oxu <L gy (t =) (u(t) — uy( ))ds)dx
-0 #([ aie-ome)

(

- ( g2<t—s><v<r>—v<s>>ds) dx—f(t)]ix
: ( luy(p) 12 (1 p, t)dp>
(

;gza—s)(vm —V(S))ds) i

-0 000 (]| nte-9100) - v

0 o (]| -0 - v
(109)

11

By Young’s inequality and (14) and (15), we arrive to

£ o ], 906 ) a0~ (o))

<ttt [of witr+ G ([ o) gt -uro]
<OIE(t) unzdx+ p€ (J )d5><g1°”x)(t>>
(110)

660 (] =220 - ()

0
t 2 1 ' 2-0 o
o) s o) ([ o) 67 m)0)
(111)
Similarly, we get

et | (][ 1090000 - o)

0 0

<ount(0)| sias -0 ([ a0 0) @ woro,
(112)

ct0s | [ aas =000 =it )

<o) wvtdes oGt ([ 70 (@2 ovc)
(113)

(114)
So
60 w0 ([ 0= 9000 - oas)as
< ([ o) (et onto (115)

L

L
+ CIGE(t)J xuldx + CZGE(t)J xvidx,
0

0
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where

6= A (2(r +2)

(r+1)

(r+1)

2(r+1)
E(O)) ,

2(r+1)
E(0)> ,
t

—E(t)J: xu, (L gi(t—s)(u(t) - u(s))ds) dx

(116)

. (117)

< GE(t)J xuldx — gil(eo) C,&(t) (g; 0 ux) ().

0

Then,

_g’(t)J: , <J; gy (t = $)(v(t) - v(s))ds) dx

<o) mtaxe a0 ([ 2o 0as) g0

(118)

0

600 (]| e =900) - v ) s
< ef(t)JL xvidx + %E(t) (J; ggf’(s)ds) (g5 ov)(b).

(119)

0

(120)

[[ st ([ oatt=s10) (o)

C !
= ng(t) (JO 93_0(5)d5> (g5 ov,)(t) +c,08(t)
. JL xuidx + cé@f(t)r xvidx,

0

(121)
where
2(r+2 2(r+1)
e )
122
b (2(r+2) 2(r+1) =
c=A2< E(O)) ,
r+1

Journal of Function Spaces

—«t)ji (j gt =5 (v(t) - v(s))ds) dx

) (123)

< Of(t)Jo xvidx — gil(QO) C,é(t) (g; 0 vx) ().

Similarly, we have

1

: (J; g, (t—s)(u(t) - u(s))dS) dxB,§(t)

- (124)
| ] e 1, )dps
0J1,

e { I (RPN O}

1

—f(r)jix(fl 1) 1205 Lo r>dg>

: (J; g,(t—s)(v(t) - V(S))d5> 4x83(1) (125)

L (7,
J J xlpty (QA (3 1, 00 £)dodx
0Jr

1

+ 6] ) @z evan,

A combination of (110), (111), (112), (113), (114), (115),
(117), (118), (119), (120), (121), (123), (124), and (125) into
(109) gives (106).

Lemma 14. Let (u,v,z,y) be the solution of (11). Then, for
15 > 0, the functional \¥'(t) satisfies

1

w0 s=&om| | ] sellus(@) 12 @)1 ) dedpds

0
L L
xuldx + E(t)‘u3j xvidx

0

&0,

0

- E(t)ﬂgj j *(11x(Q) 1 (5 Loy 1)

+Huy(Q) 1y (x, 1,0, 1))dodx,
(126)

where 11, > 0 and n,=1,(1-1)>0>0.
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Proof. By differentiating ¥(¢) and using equations (11), and
(11),, we get

=8O [ [ ape )12 400) 1) dadpis

0J0J1

- 2&(t) ' I[TZ

0J0Jr

e ¥, (Q)lzz,(x, p, 0, t)dedpdx

L ¢l 7,
- 28(1) J e 1y (Q)lyy, (. p» @ t)dodpdx

0J0Jr
(#]

xe % (1, (Q) | 22+luy (@) | 2°) dodpdx

=

0J0Jr1,

L 1l p7,
J xge % |y, ()|z*dedpdx
0J0J1

xlpy(Q)l[e2* (x, 0 1) - 22

L ¢T,

(%, 0,0, t)|dodx

L 1 1,
J xQe P, (p)ly*dpopdx
0J0Jr,

L (71,

|
L)
|
|

0Jr

(127)

Using the equality z(x,0,0,t) =u,(x,t), y(x,0,0,t) =
v(x,t), and e ®<e <1, for any 0< p< 1, we find

L 1 1,
<& | [ x0(| (@12 + |y (0)|22) dedpdx

- f(t)([o | J x0 % (|, (@[ + 1y (@)1y?) dedpdx

JOoJ

~&() j j 52 ([, (@12 (5 1,0, £) + iy QA (5 1 0. 1)) dodx

0Jr1
L

. (J |u2(9>|dg)f<t>J0 it

+ (J i, (Q)lde ) (1) [L xvldx.

Jo

(128)

As —e7? is an increasing function, we have —e™? < —e ™
for any p € [y, 1,].
Then, setting #, = ™™ and (22), we obtain (126).

Theorem 15. Let (uy, v,) € V3, (u;,v;) € H and (f,, g,) €
L2((0,L)x (0, 1) x (t,,7,)) be defined and satisfy (163).
Assume that r satisfies (24), (14), (15), (16), (17), and (22)
hold. Then, for each t,> 0, 3K and k such that the solution
of (11) satisfies Vt > t,, we have the following inequality for
the energy function

Ke—k o E(s)ds’

E(t) <

xluy (@)1 [ (x, 1,0 1) = y*(x, 0, @, t) | ddx.

13

Proof. As g,, g, is continuous and g, (0), g,(0) > 0, hence V
t, > 0; we have

Vit >t

t t
Jo gi(s)ds> J 91(s)ds=g,,>0,

ty

(130)

t t
J g,(s)ds > J 9,(s)ds=g,,>0, Vt=t,.
0

ty

By using (36), (96), (106), (126), and (130) and 0 < &(¢)
<&(0)) (hence (&(£)/£(0)) < 1), we get

F'(t) =E'(t) +&,@'(t) +&,x (1) + &7/ (1)
s—{dl (1+216+2l%1>
L
+8(g19 =0 01-1,6,) - 83!"1:| §(t) (J xufdx)
0
- [dz <1+ 5t ) +ey(gy—0- 01— 0,
_53%} &(t) (JL xvfdx) +2¢g,8(1)
) 0
J [u|u+v| (r2) +2b\uv|”2] x
0
+(5- 552600 (shw) 0

+(5- 52690 (o))
—B (1, = 8C,1-28,,C,) — £,0

. (1 to o +2(1-1) >}E(t)
. (J: xugdx) - [ - ¢,1-20,0,6,)

L
—ef(1+6+6+2(1-h) o
€ <1+c +o,+2(1 )ﬂﬁ(t)(Joxv x)
+ [281 +&, (29 +20+ lee(ip + Cpielcpﬂg(t)
([ gtoas) tt owco
C, C,+IC
+ [; +52<216+29 M261P+ P;re P)]E(t)
([ g was) gzevorn

1
- [53’73 k! 2. 5261} &(t)
1

L rr,
| [ et 0 dods

0Jr1,

1
- [53’13 BTN —3292} &(t)
2

L 1,
: J j xlu, (@12 (x, 1, 0, t)dodx

0Jr1

- 83n45(t)L [ j 5p(Is (@) | 2+l () 17) dadpdx.

0Jr

(131)
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By choosing §, 8, and §, so small that

h

(h-8C,1-2u,8,C,) >

>

(132)

—

(= 0C) - 2,8,C,) > 5.
Then,

1 .
o< Fpl min {l;,1,},

8, < min {},, 1}, (133)

1
8;41Cp

1
8, < n min {l;,,}.

Journal of Function Spaces

At this point, we choose 8 small enough, such that

ky = % —826(1+C1+Ci+2(1—11)2) >0,

(134)
k ::%—s 9(1+c +c'+2(1—l)2> >0
4 4 2 2 2 2 :

Then,

0 < min &ih , &l .
4e, (1 ro o +2(1- ll)z> 4e, (1 to o +2(1- lz)z)

(135)

Now, 8, 8,,8,, and 0 are fixed. Then, we select ¢, &,, €,
0,, and 0, so small that (72) and (162) remain correct and

1w
k= [dl - & (1 e 2_611> + (910 = b - (1+1)0) _83”1} >0,

27w Pg‘(o)) {
(i) |

1
ky =35 — € 3. £0,>0,
1

1
kg =e3m; — ¢ 35 £,0,>0.
2

Hence, by using (15) gives, for some o > 0,

L L
xu?dx + J xv?dx

0

F'(t) <-d&(t) U

0

L
- J x [a\u + v|2<’+2> + 2b|uv|’+2} dx
0

’ ) (137)
+J xuldx + J xvidx + (g9 o uy)(t)

0 0
@ o))+ K(z)]|

We choose 0, 0,, and 0, so small that
1
(910~ b= (1+1)0) > 5910
(138)

1
(92,0 —uy0, - (1+ 1)9) > 5572,0-

& 1 ‘btlcp Cp + ZCP b
Lll+sz<20+29+ 20, 0 Ogl (s)ds | + >0,

& 1 wCp Gt IG, e
le+ez<26+29+ 20, 0 ng (s)yds | » >0,

+& (92,0 —u30, - (1+ 1)9) - 83/43} >0,

(136)

By (134), we get

0 < min &k R &b R
482(1 to e 2(1- ll)z> 482(1 totch+2(l- 12)2)

1 1
a(1+0) 70 4(1+1) gm}’
1 1
O < raen 9o < ey S

49(1 to el +2(1- ll)z)

< 910
A 2+ (U8) + (u,16,)’
49(1+c2+c;+2(1—lz)2> 9r

L S 2 (U0 + (1ldy)
(139)
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With 6,8,,6,, and «' fixed, we pick €, ¢,, and &, such
that

49(1 o+ +2(1 —ll)z) 49(1 +e+ e +2(1 —12)2>
max &,

I ’ L,
< L (
2+ (U8) + min ((4,/3,), (4:/9,))

+& min {g, 50} +& min (4 +py)).

<g min (d,,d,)

(140)

We will make

1
k= {dl —g (1 to5t 2_811) +sz(g1,0 -0, - (1+1)0) —53!41} >0,

1
k,= [—sl (1 tost 2“%3) +8,(Gy0 ~ 30, —0 - 0l) _83/‘3} >0,
(h =218,C, - 8C,1) - 529(1 +o o +2(1- 11)2> >0,
1 (lz -2u,8,C, - 6CPl) - 529(1 +6,+ C; +2(1- 12)2) >0,

—-&0,>0,

(141)
Then, we select €, €,, and &5 so small that (72) and (137)
remain correct and

1 &¢&(0) € 1 u,C

ks=(- -2 g pas — +20 P

; (2 10 CPgl(O)) { [211 T (29 BT}
C, +IC b

)] ) o

k6 — <l _ 82§<0) C g 0

2 40

([ owas) ) oo

Next, as (137) is showed, according to the different ranges
of r, we give the following two cases.

(142)

Case 1.0 =1.
By choosing ¢, ¢,, &5, 0, 0,, and 0, (137) gives, for y >0
is constant so that,

(143)

Therefore, with the help of the LHS of (72) and (143), we
obtain

F'(t) < —pa,E(t)F ()Yt > t,. (144)

15

By integration of (144) over (f,, t) gives

F'(0) < Ft)e ™™o % wise. (145)
Therefore, (129), is proved by (72) as well.
Case 2. 1 <0< 3/2.
We use (11), which gives
1 ' 1
0,02 (- 1) | &0ds) 9,00
tO
(146)
t
9,(1)' 7= (0-1) (J E(S)d5> +9,(t)' ™
Ly
We have, for0<7<1,
JOO g1 " (s)ds < ro 1 =0)/(o-1) ds,
’ " @ 1)([}, E9ds) +g1(00)' |
J ) g, " (s)ds < ro 1 e &
’ * o= 1)(J}, &6)ds) + g,(10)
(147)

For 0<7t<2-0<1, we have (1-7)/(c—1)>1 and (15),
we find

J g, " (s)ds< oo, Y0<T<2-0,
0

- (148)
J g, "(s)ds<oco, Y0<T<2-0.
0
From (72) (for@=7tand p=0) and (55) gives
o (0-1)/(0-1+T)
(arou) 026, (E0) )
0
(5 2 (0)7O 1)
<Cy((g7 o va) (1))
Similarly, we have
(92 °va) (1) SCH((g5 v, ) (1), (150)
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for some C], C,>0. Hence, Yo, > 1, we find

L I
E%(t) < C''gn ! ( xuldx + J xvidx + J xuldx
0 0

L
+J xvidx — J x[a|u+v| ”2>+2b\uv|r+2}dx+K(z,y))

()7 + Cy((g2 2 va) ()"

)

oL
[ xXuy dx+ xvfdx+J xuidx
0

0

o

((gl o Uy
<C,,Eal (

J xvidx — J x a|u+v|2<r+2>+2b\uv|’+2}dx+K(z,y)>
0

+ CL(g7 o) ()" + C(g5 o v (1)
(151)
We choose T=1/2 and 0,=20-1
(therefore, 70,/(0 — 1+ 7) =1) and (144); we get, for some
I'>0,
L L L L
E(t)<T U xuldx + J xvidx +J xuldx +J xvidx
0 0 0 0
L
K(z,y) - J [a|u + ) 4 2b|uv|”2} x
0
g o)1)+ (65 >)(0)]
(152)
By combining (72), (137), and (151), we find
! o 0 o
F(t)< —ff(t)E"l(t) < —focllF"l(t)E(t),Vtz ty.  (153)
By integrating (153) gives
¢ ~(1/(e-1))
F(t)<Cy <1+J «f(s)ds) , Vtxt,.  (154)
tO
Hence,
h d (" ! d
Jt F(t)dt < C1J )1/(0171) t (155)
0 S

fo (1 + ﬁo &(s)d

From (1/(o;-1))>0 and ( 1+L

t — +00, we find

s)ds) — +00 as

JOO F(t)dt < oco. (156)

ty
Also, we use (24), and we get

C*
tF(t) < <C,.

1/(o,-1 o
(1+L ) )

(157)
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Hence, we find

suptF(t) < oo

t>t,

(158)

From E(t) which is bounded, using (72), (156), and
(158) to get

JOO F(t)dt + sup(tF(t)) < 00. (159)

ty >0

Therefore, using (55) and Lemma 10 (forp=o0) gives

00000023 (1 + [ I ts)
([ ot - i)

(o-1)/
<G+ | F<s>ds> (g7 > ) )"

)

< G5 (g7 o)1)
(160)
This means
(g7 o ue) (1) 2 Cy((gy ° ) (1)) (161)
(95 °v2)(1) 2 C5((g5 2 v) (1)) (162)

for some C,, C5>0.
Then, combining (137), (161), and (162) yields

L L

L
xvidx + J xuldx

0

F'(t) s—Céﬁ(t){J

L L
+ J xvidx — J x[a|u + ) 4 2b|uv|r+2} dx
0 0

xupdx + J

0 0

+K(59) + (9, o ) (0)° + ((gzovxxt))”},
(163)

for some Cg > 0.
As in [1], we obtain

L L

xvidx + J xusdx
0

E%(t) < CE(t) {JL xurdx + J

0

+J: xvidx—sz
+K(2,) + (912 uet)(1)" + (g, ° V) (1) }

(164)

0

[a|u + v|2<”2) + 2b|uv|r+2} dx

Vt >0 and some C; > 0.



Journal of Function Spaces

Combining (163), (164), and (72), we find

F'(t) < —CgE(t)F° ()Yt = t,, (165)
for some Cg > 0.
By integrating (163) over (t,, t), we get
, ~(1/(o-1))
F(t)<Cy (1 +J E(s)ds) ,  Vtxt,. (166)
tU

Hence, (129), is showed by (72) as well.
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