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In the article titled “Fractional Crank-Nicolson-Galerkin
Finite Element Methods for Nonlinear Time Fractional
Parabolic Problems with Time Delay” [1], there are a
number of minor typographical errors introduced to the
equations during the typesetting of the article. The cor-
rected article is as follows.

Abstract
A linearized numerical scheme is proposed to solve the nonlin-
ear time fractional parabolic problems with time delay. The
scheme is based on the standard Galerkin finite element
method in the spatial direction, the fractional Crank-Nicolson
method, and extrapolation methods in the temporal direction.
A novel discrete fractional Grönwall inequality is established.
Thanks to the inequality, the error estimate of fully discrete
scheme is obtained. Several numerical examples are provided
to verify the effectiveness of the fully discrete numericalmethod.

1. Introduction
In this paper, we consider the linearized fractional Crank-
Nicolson-Galerkin finite element method for solving the non-
linear time fractional parabolic problems with time delay

RDα
t u − Δu = f t, u x, tð Þ, u x, t − τð Þð Þ, inΩ × 0, Tð �,

u x, tð Þ = φ x, tð Þ, inΩ × −τ, 0ð �,
u x, tð Þ = 0, on ∂Ω × 0, Tð �,

8>><>>:
ð1Þ

where Ω is a bounded convex and convex polygon in R2 (or
polyhedron in R3) and τ is the delay term. RDα

t u denotes the
Riemann-Liouville fractional derivative, defined by

RDα
t u ·, tð Þ = 1

Γ 1 − αð Þ
∂
∂t

ðt
0
t − sð Þ−αu ·, sð Þds, 0 < α < 1:

ð2Þ

The nonlinear fractional parabolic problemswith time delay
have attracted significant attention because of their widely range
of applications in various fields, such as biology, physics, and
engineering [1–9]. Recently, plenty of numerical methods were
presented for solving the linear time fractional diffusion equa-
tions. For instance, Chen et al. [10] used finite difference
methods and the Kansa method to approximate time and space
derivatives, respectively. Dehghan et al. [11] presented a full dis-
crete scheme based on the finite difference methods in time
direction and the meshless Galerkin method in space direction
and proved that the schemewas unconditionally stable and con-
vergent. Murio [12] and Zhuang [13] proposed a fully implicit
finite difference numerical scheme and obtained uncondition-
ally stability. Jin et al. [14] derived the time fractional Crank-
Nicolson scheme to approximate Riemann-Liouville fractional
derivative. Li et al. [15] used a transformation to develop some
new schemes for solving the time-fractional problems. The
new schemes admit some advantages for both capturing the ini-
tial layer and solving the models with small parameter α. More
studies can be found in [16–32].
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Recently, it has been one of the hot spots in the investi-
gations of different numerical methods for the nonlinear
time fractional problems. For the analysis of the L1-type
methods, we refer readers to the paper [33–40]. For the anal-
ysis of the convolution quadrature methods or the fractional
Crank-Nicolson scheme, we refer to the recent papers [41–
46]. The key role in the convergence analysis of the schemes
is the fractional Grönwall type inequations. However, as
pointed out in [47–49], the similar fractional Grönwall type
inequations can not be directly applied to study the conver-
gence of numerical schemes for the nonlinear time fractional
problems with delay.

In this paper, we present a linearized numerical scheme
for solving the nonlinear fractional parabolic problems with
time delay. The time Riemann-Liouville fractional derivative
is approximated by fractional Crank-Nicolson type time-
stepping scheme, the spatial derivative is approximated by
using the standard Galerkin finite element method, and the
nonlinear term is approximated by the extrapolation
method. To study the numerical behavior of the fully dis-
crete scheme, we construct a novel discrete fractional type
Grönwall inequality. With the inequality, we consider the
convergence of the numerical methods for the nonlinear
fractional parabolic problems with time delay.

The rest of this article is organized as follows. In Section
2, we present a linearized numerical scheme for the nonlin-
ear time fractional parabolic problems with delay and main
convergence results. In Section 3, we present a detailed proof
of the main results. In Section 4, numerical examples are
given to confirm the theoretical results. Finally, the conclu-
sions are presented in Section 5.

2. Fractional Crank-Nicolson-Galerkin FEMs
Denote T h is a shape regular, quasi-uniform triangulation of
the Ω into d-simplexes. Let h =maxK∈T h

{diam K}. Let Xh be

the finite-dimensional subspace of H1
0ðΩÞ consisting of con-

tinuous piecewise function on T h. Let Δt = τ/mτ be the time
step size, where mτ is a positive integer. Denote N = dT/Δte,
t j = jΔt, j = −mτ, −mτ + 1,⋯, 0, 1, 2,⋯,N .

The approximation to the Riemann-Liouville fractional
derivative at point t = tn−ðα/2Þ is given by [14]:

RDα
tn− α/2ð Þ

u x, tð Þ = Δt−α 〠
n

i=0
ω

αð Þ
n−iu x, tið Þ + O Δt2

� �
≔ RDα

Δtu
n + O Δt2

� �
,

ð3Þ

where

ω
αð Þ
i = −1ð Þi Γ α + 1ð Þ

Γ i + 1ð ÞΓ α − i + 1ð Þ : ð4Þ

For simplicity, denote kvk = ðÐ
Ω
jvðxÞj2dxÞ1/2, ηn,α = ð1

− ðα/2ÞÞηn + ðα/2Þηn−1, bηn,α = ð2 − ðα/2ÞÞηn−1 − ð1 − ðα/2ÞÞ
ηn−2, tαn = ðnΔtÞα.

With the notation, the fully discrete scheme is to find
Un

h ∈ Xh such that

RDα
ΔtU

n
h, v

� �
+ ∇Un,α

h ,∇vh i
= f tn− α/2ð Þ, Û

n,α
h ,Un−mτ ,α

h

� �
, v

D E
, ∀v ∈ Xh, n = 1, 2,⋯,N ,

ð5Þ

and the initial condition

Un
h = Rhφ x, tnð Þ, n = −mτ,−mτ + 1,⋯, 0, ð6Þ

where Rh : H
1
0ðΩÞ⟶ Xh is Ritz projection operator

which satisfies following equality [50]

∇Rhu,∇vh i = ∇u,∇vh i,∀u ∈H1
0 Ωð Þ ∩H2 Ωð Þ, v ∈ Xh: ð7Þ

We present the main convergence results here and leave
its proof in the next section.

Theorem 1. Suppose the system (1) has a unique solution
u satisfying

u0k kHr+1 + uk kC 0,T½ �;Hr+1ð Þ + utk kC 0,T½ �;Hr+1ð Þ
+ uttk kC 0,T½ �;H2ð Þ + RDα

Δtu
�� ��

C 0,T½ �;Hr+1ð Þ ≤ K ,
ð8Þ

and the source term f ðt, uðx, tÞ, uðx, t − τÞÞ satisfies the
Lipschitz condition

f t, u x, tð Þ, u x, t − τð Þð Þ − f t, v x, tð Þ, v x, t − τð Þð Þj j
≤ L1 u x, tð Þ − v x, tð Þj j + L2 u x, t, τð Þ − v x, t, τð Þj j, ð9Þ

whereK is a constant independent of n, h andΔt, L1 and L2 are
given positive constants. Then, there exists a positive constant
Δt∗ such that for Δt ≤ Δt∗, the following estimate holds that

un −Un
hk k ≤ C∗

1 Δt2 + hr+1
� �

, n = 1, 2,⋯,N , ð10Þ

where C∗
1 is a positive constant independent of h and Δt.

Remark 2. The main contribution of the present study is
that we obtain a discrete fractional Grönwall’s Grönwall's
inequality. Thanks to the inequality, the convergence of the
fully discrete scheme for the nonlinear time fractional para-
bolic problems with delay can be obtained.

Remark 3. At present, the convergence of the proposed
scheme is proved without considering the weak singularity
of the solutions. In fact, if the initial layer of the problem is
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taken into account, some corrected terms are added at the
beginning. Then, the scheme can be of order two in the tempo-
ral direction for nonsmooth initial data and some incompati-
ble source term. However, we still have the difficulties to get
the similar discrete fractional Grönwall’s inequality. We hope
to leave the challenging problems in future.

3. Proof of the Main Results
In this section, we will present a detailed proof of the main
result.

3.1. Preliminaries and Discrete Fractional Grönwall
Inequality

Firstly, we review the definition of weightsωðαÞ
i , denote gðαÞn

=∑n
i=0ω

ðαÞ
i . Then, we can get

ω
αð Þ
0 = g αð Þ

0 ,  

ω
αð Þ
i = g αð Þ

i − g αð Þ
i−1, 1 ≤ i ≤ n:

8<: ð11Þ

Actually, it has been shown [51] that ωðαÞ
i and gðαÞ

n pro-
cess following properties.

(1) The weights ωðαÞ
i can be evaluated recursively, ωðαÞ

i

= ð1 − ððα + 1Þ/iÞÞωðαÞ
i−1, i ≥ 1, ωðαÞ

0 = 1

(2) The sequence fωðαÞ
i g∞i=0 are monotone increasing −1

< ωðαÞ
i < ωðαÞ

i+1 < 0, i ≥ 1

(3) The sequence fgðαÞ
i g∞i=0 are monotone decreasing,

gðαÞi > gðαÞi+1 for i ≥ 0 and gðαÞ0 = 1

Noticing the definition of gðαÞ
i , RDα

Δtu
n can be rewritten as

RDα
Δtu

n = Δt−α〠
n

i=1
g αð Þ
i − g αð Þ

i−1

� �
un−i + Δt−αg αð Þ

0 un: ð12Þ

In fact, rearranging this identity yields

RDα
Δtu

n = Δt−α〠
n

i=1
g αð Þ
n−iδtu

i + Δt−αg αð Þ
n u0, ð13Þ

where δtu
i = ui − ui−1.

Lemma 4 (see [51]). Consider the sequence fϕng given
by

ϕ0 = 1, ϕn = 〠
n

i=1
g αð Þ
i−1 − g αð Þ

i

� �
ϕn−i, n ≥ 1: ð14Þ

Then, fϕng satisfies the following properties

(i) 0 < ϕn < 1,∑n
i=jϕn−ig

ðαÞ
i−j = 1, 1 ≤ j ≤ n

(ii) ð1/ΓðαÞÞ∑n
i=1ϕn−i ≤ ðnα/Γð1 + αÞÞ

(iii) ð1/ðΓðαÞΓð1 + ðk − 1ÞαÞÞÞ∑n−1
i=1 ϕn−ii

ðk−1Þα ≤ ðnkα/Γð1
+ αÞÞ, k = 1, 2⋯ :

Lemma 5 (see [51]). Consider the matrix

W = 2μ Δtð Þα

0 ϕ1 ⋯ ϕn−2 ϕn−1

0 0 ⋯ ϕn−3 ϕn−2

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 ϕ1

0 0 ⋯ 0 0

0BBBBBBBB@

1CCCCCCCCA
n×n

: ð15Þ

Then, W satisfies the following properties

(i) Wl = 0, l ≥ n

(ii) Wk e! ≤ ð1/Γð1 + kαÞÞ
½ð2ΓðαÞμtαnÞk, ð2ΓðαÞμtαn−1Þk,⋯,ð2ΓðαÞμtα1Þk�′, k = 0
, 1, 2,⋯

(iii) ∑l
k=0W

k e! =∑n−1
k=0W

k e! ≤
½Eαð2ΓðαÞμtαnÞ, Eαð2ΓðαÞμtαn−1Þ,⋯,Eαð2ΓðαÞμtα1Þ�′, l
≥ n

where e! = ½1, 1,⋯, 1�′ ∈ℝn, μ is a constant.
Theorem 6. Assuming funjn = −m,−m + 1,⋯, 0, 1, 2,⋯

g and f f njn = 0, 1, 2,⋯g are nonnegative sequence, for λi
> 0, i = 1, 2, 3, 4, 5, if

RDα
Δtu

j ≤ λ1u
j + λ2u

j−1 + λ3u
j−2 + λ4u

j−m + λ5u
j−m−1 + f j, j = 1, 2⋯ ,

ð16Þ

then there exists a positive constant Δt∗, for Δt < Δt∗,
the following holds

un ≤ 2 λ4
Γ αð Þtαn
Γ 1 + αð ÞM + λ5

Γ αð Þtαn
Γ 1 + αð ÞM + max

1≤j≤n
f j

Γ αð Þtαn
Γ 1 + αð Þ

	
+ 2M + λ2MΔtα + 2λ3MΔtαÞEα 2Γ αð Þλtαnð Þ, 1 ≤ n ≤N ,

ð17Þ

where λ = λ1 + ð1/ðgðαÞ
0 − gðαÞ1 ÞÞλ2 + ð1/ðgðαÞ

1 − gðαÞ
2 ÞÞλ3 + ð1/

ðgðαÞ
m−1 − gðαÞm ÞÞλ4 + ð1/ðgðαÞ

m − gðαÞm+1ÞÞλ5, EαðzÞ =∑∞
k=0ðzk/Γð1

+ kαÞÞ is the Mittag-Leffler function, and M =max fu−m,
u−m+1,⋯, u0g.
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Proof. By using the definition of RDα
Δtu

n in (13), we have

〠
j

k=1
g αð Þ
j−kδtu

k + g αð Þ
j u0 ≤ Δtα λ1u

j + λ2u
j−1 + λ3u

j−2�
+ λ4u

j−m + λ5u
j−m−1� + Δtα f j:

ð18Þ

Multiplying equation (18) by ϕn−j and summing the
index j from 1 to n, we get

〠
n

j=1
ϕn−j 〠

j

k=1
g αð Þ
j−kδtu

k ≤ Δtα 〠
n

j=1
ϕn−j λ1u

j + λ2u
j−1�

+ λ3u
j−2 + λ4u

j−m + λ5u
j−m−1�

+ Δtα〠
n

j=1
ϕn−j f

j − 〠
n

j=1
ϕn−jg

αð Þ
j u0:

ð19Þ

We change the order of summation and make use of the
definition of ϕn−j to obtain

〠
n

j=1
ϕn−j 〠

j

k=1
g αð Þ
j−kδtu

k = 〠
n

k=1
δtu

k 〠
k

j=1
ϕn−jg

αð Þ
j−k = 〠

n

k=1
δtu

k = un − u0,

ð20Þ

and using Lemma 4, we have

Δtα 〠
n

j=1
ϕn−j f

j ≤ Δtα max
1≤j≤n

f j 〠
n

j=1
ϕn−j

≤ Δtα max
1≤j≤n

f j
Γ αð Þnα
Γ 1 + αð Þ = max

1≤j≤n
f j

Γ αð Þtαn
Γ 1 + αð Þ :

ð21Þ

Noticing gðαÞ
j is monotone decreasing, and using Lemma

4, we have

−〠
n

j=1
ϕn−jg

αð Þ
j u0 ≤ 〠

n

j=1
ϕn−jg

αð Þ
j u0 ≤ u0 〠

n

j=1
ϕn−jg

αð Þ
j−1 = u0: ð22Þ

Substituting (20), (21), and (22) into (19), we can obtain

un ≤ Δtα 〠
n

j=1
ϕn−j λ1u

j + λ2u
j−1 + λ3u

j−2�
+ λ4u

j−m + λ5u
j−m−1� + 2u0 + max

1≤j≤n
f j

Γ αð Þtαn
Γ 1 + αð Þ :

ð23Þ

Applying Lemma 4, we have

Δtα 〠
m

j=1
ϕn−ju

j−m ≤
Γ αð Þtαn
Γ 1 + αð ÞM, Δtα 〠

m+1

j=1
ϕn−ju

j−m−1 ≤
Γ αð Þtαn
Γ 1 + αð ÞM:

ð24Þ

Therefore

λ4Δt
α 〠

m

j=1
ϕn−ju

j−m + λ5Δt
α 〠
m+1

j=1
ϕn−ju

j−m−1 + 2u0

+ λ2Δt
αϕn−1u

0 + λ3Δt
α ϕn−1u

−1 + ϕn−2u
0� �

≤ λ4
Γ αð Þtαn
Γ 1 + αð ÞM + λ5

Γ αð Þtαn
Γ 1 + αð ÞM + 2M + λ2MΔtα + 2λ3MΔtα:

ð25Þ

Denote

Ψn = λ4
Γ αð Þtαn
Γ 1 + αð ÞM + λ5

Γ αð Þtαn
Γ 1 + αð ÞM + max

1≤j≤n
f j

Γ αð Þtαn
Γ 1 + αð Þ

+ 2M + λ2MΔtα + 2λ3MΔtα:

ð26Þ

(23) can be rewritten as

1 − λ1Δt
αð Þun ≤ λ1Δt

α 〠
n−1

j=1
ϕn−ju

j + λ2Δt
α 〠

n

j=2
ϕn−ju

j−1

+ λ3Δt
α 〠

n

j=3
ϕn−ju

j−2 + λ4Δt
α 〠

n

j=m+1
ϕn−ju

j−m

+ λ5Δt
α 〠

n

j=m+2
ϕn−ju

j−m−1 +Ψn:

ð27Þ

Let Δt∗ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/ð2λ1Þα

p
, when Δt ≤ Δt∗, we have

un ≤ 2Ψn + 2Δtα λ1 〠
n−1

j=1
ϕn−ju

j + λ2 〠
n

j=2
ϕn−ju

j−1
"

+ λ3 〠
n

j=3
ϕn− ju

j−2 + λ4 〠
n

j=m+1
ϕn− ju

j−m + λ5 〠
n

j=m+2
ϕn−ju

j−m−1
#
:

ð28Þ

Let V = ðun, un−1,⋯,u1ÞT , then (28) can be rewritten in
the following matrix form

V ≤ 2Ψn e
! + λ1W1 + λ2W2 + λ3W3 + λ4W4 + λ5W5ð ÞV ,

ð29Þ
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where

W1 = 2 Δtð Þα

0 ϕ1 ϕ2 ⋯ ϕn−2 ϕn−1

0 0 ϕ1 ⋯ ϕn−3 ϕn−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ ϕ1 ϕ2

0 0 0 ⋯ 0 ϕ1

0 0 0 0 ⋯ 0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
n×n

,

W2 = 2 Δtð Þα

0 ϕ0 ϕ1 ⋯ ϕn−3 ϕn−2

0 0 ϕ0 ⋯ ϕn−4 ϕn−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ ϕ0 ϕ1

0 0 0 ⋯ 0 ϕ0

0 0 0 0 ⋯ 0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
n×n

,

W3 = 2 Δtð Þα

0 0 ϕ0 ⋯ ϕn−4 ϕn−3

0 0 0 ⋯ ϕn−5 ϕn−4

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 0 ϕ0

0 0 0 ⋯ 0 0
0 0 0 0 0 0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
n×n

,

W4 = 2 Δtð Þα

0 ⋯ 0 ϕ0 ϕ1 ⋯ ϕn−m−2 ϕn−m−1

0 ⋯ 0 0 ϕ0 ⋯ ϕn−m−3 ϕn−m−2

⋮ ⋯ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 ⋯ 0 0 0 ⋯ ϕ0 ϕ1

0 ⋯ 0 0 0 ⋯ 0 ϕ0

0   0 0 0 ⋯ 0 0
⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 ⋯ 0 0 0 ⋯ 0 0

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA
n×n

,

W5 = 2 Δtð Þα

0 ⋯ 0 0 ϕ0 ⋯ ϕn−m−3 ϕn−m−2

0 ⋯ 0 0 0 ⋯ ϕn−m−4 ϕn−m−3

⋮ ⋯ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 ⋯ 0 0 0 ⋯ 0 ϕ0

0 ⋯ 0 0 0 ⋯ 0 0
0   0 0 0 ⋯ 0 0
⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 ⋯ 0 0 0 ⋯ 0 0

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA
n×n

:

ð30Þ

Since the definition of ϕn, we have

ϕn−j ≤
1

g αð Þ
j−1 − g αð Þ

j

ϕn: ð31Þ

Then,

W2V ≤
1

g αð Þ
0 − g αð Þ

1
W1V , 

W3V ≤
1

g αð Þ
1 − g αð Þ

2
W1V ,

W4V ≤
1

g αð Þ
m−1 − g αð Þ

m

W1V , 

W5V ≤
1

g αð Þ
m − g αð Þ

m+1
W1V :

ð32Þ

Hence, (29) can be shown as follows

V ≤ λ1 +
1

g αð Þ
0 − g αð Þ

1
λ2 +

1
g αð Þ
1 − g αð Þ

2
λ3

 

+ 1
g αð Þ
m−1 − g αð Þ

m

λ4 +
1

g αð Þ
m − g αð Þ

m+1
λ5

!
W1V + 2Ψn e

!

=WV + 2Ψn e
!,

ð33Þ

where W = λW1.
Therefore,

V ≤WV + 2Ψn e
! ≤W WV + 2Ψn e

!� �
+ 2Ψn e

!

=W2V + 2Ψn 〠
1

j=0
Wj e! ≤⋯≤WnV + 2Ψn 〠

n−1

j=0
Wj e!:

ð34Þ

According to Lemma 5, the result can be proved.

Lemma 7 (see [51]). For any sequence fekgNk=0 ⊂ Xh , the
following inequality holds

RDα
Δte

k, 1 − α

2
� �

ek + α

2 e
k−1

D E
≥
1
2

RDα
Δt ek
��� ���2, 1 ≤ k ≤N:

ð35Þ

Lemma 8 (see [52]). There exists a positive constant CΩ,
independent of h, for any v ∈HsðΩÞ ∩H1

0ðΩÞ, such that

v − Rhvk kL2 + h ∇ v − Rhvð Þk kL2 ≤ CΩh
s vk kHs , 1 ≤ s ≤ r + 1:

ð36Þ

3.2. Proof of Theorem 1
Now, we are ready to prove our main results.
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Proof. Taking t = tn−ðα/2Þ in the first equation (1), we can
find that un satisfies the following equation

RDα
Δtu

n, v
� �

+ ∇un,α,∇vh i = f tn− α/2ð Þ, ûn,α, un−mτ ,α
� �

, v
D E

+ Pn, vh i,
ð37Þ

for n = 1, 2, 3,⋯,N and ∀v ∈ Xh, where

Pn = RDα
Δtu

n − RDα
tn− α/2ð Þ

u + Δun− α/2ð Þ − Δun,α

+ f tn− α/2ð Þ, un− α/2ð Þ, un−mτ− α/2ð Þ
� �

− f tn− α/2ð Þ, ûn,α, un−mτ ,α
� �

:

ð38Þ

Now, we estimate the error of kPnk. Actually, from the
definition of un,α and ûn,α and the regularity of the exact
solution (8), we can obtain that

un− α/2ð Þ − un,α
��� ���

= 1 − α

2
� �

un− α/2ð Þ − un
� �

+ α

2 un− α/2ð Þ − un−1
� ���� ���

= − 1 − α

2
� � α

2Δtu
′ ξ1ð Þ + 1 − α

2
� � α

2Δtu
′ ξ2ð Þ

��� ���
= 1 − α

2
� � α

2 Δt u′ ξ2ð Þ − u′ ξ1ð Þ
� ���� ���

≤ 1 − α

2
� � α

2 Δt
ðtn
tn−1

utt sð Þk kds ≤ C1Δt
2,

ð39Þ

un− α/2ð Þ − ûn,α
��� ���

= un− α/2ð Þ − 2 − α

2
� �

un−1 + 1 − α

2
� �

un−2
��� ���

= 2 − α

2
� �

un− α/2ð Þ − 2 − α

2
� �

un−1
���
+ 1 − α

2
� �

un−2 − 1 − α

2
� �

un− α/2ð Þ
���

= 2 − α

2
� �

un− α/2ð Þ − un−1
� �

+ 1 − α

2
� �

un−2 − un− α/2ð Þ
� ���� ���

= 2 − α

2
� �

1 − α

2
� �

Δtu′ ξ3ð Þ − 2 − α

2
� �

1 − α

2
� �

Δtu′ ξ4ð Þ
��� ���

= 2 − α

2
� �

1 − α

2
� �

Δt u′ ξ3ð Þ − u′ ξ4ð Þ�� ��
≤ 2 − α

2
� �

1 − α

2
� �

Δt
ðtn−1
tn−2

utt sð Þk kds ≤ C2Δt
2,

ð40Þ
where ξ1 ∈ ðtn−ðα/2Þ, tnÞ, ξ2 ∈ ðtn−1, tn−ðα/2ÞÞ, ξ3 ∈ ðtn−ðα/2Þ, tn−1
Þ, ξ4 ∈ ðtn−2, tn−ðα/2ÞÞ, C1 = ð1 − ðα/2ÞÞðα/2ÞK , C2 = ð2 − ðα/2
ÞÞð1 − ðα/2ÞÞK are constants.

Applying (39) and (40) and the Lipschitz condition

f tn− α/2ð Þ, un− α/2ð Þ, un−mτ− α/2ð Þ
� �

− f tn− α/2ð Þ, ûn,α, un−mτ ,α
� ���� ���

≤ L1C1 + L2C2ð ÞΔt2,
ð41Þ

Δ un,α − un− α/2ð Þ
� ���� ��� ≤ C1Δt

2, ð42Þ

which further implies that

Pnk k ≤ CK Δtð Þ2, n = 1, 2, 3,⋯,N , ð43Þ

here CK = L1C1 + L2C2.
Denote θnh = Rhu

n −Un
h, n = 0, 1,⋯,N:

Substituting fully scheme (5) from equation (37) and
using the property in (7), we can get that

RDα
Δtθ

n
h, v

� �
+ ∇θn,αh , vh i = Rn

1 , vh i + Pn, vh i − RDα
Δt u

n − Rhu
nð Þ, v� �

,

ð44Þ

where

Rn
1 = f tn− α/2ð Þ, Û

n,α
h ,Un−mτ ,α

h

� �
− f tn− α/2ð Þ, ûn,α, un−mτ ,α
� �

:

ð45Þ

Setting v = θn,αh and applying Cauchy-Schwarz inequality,
it holds that

RDα
Δtθ

n
h, θn,αh

� �
+ ∇θn,αhk k2

≤ Rn
1k k θn,αhk k + Pnk k θn,αhk k + RDα

Δt u
n − Rhu

nð Þ�� �� θn,αhk k:
ð46Þ

Noticing the fact ab ≤ 1/2ða2 + b2Þ and k∇θn,αh k2 ≥ 0,

RDα
Δtθ

n
h, θn,αh

� �
≤
1
2 Rn

1k k2 + Pnk k2 + RDα
Δt u

n − Rhu
nð Þ�� ��2� �

+ 3
2 θn,αhk k2:

ð47Þ

Together with (9) and (36), we can arrive that

RDα
Δt u

n − Rhu
nð Þ�� �� ≤ CΩh

r+1 RDα
Δtu

n�� ��
Hr+1 ≤ CΩKh

r+1,

ûn,α − Rhû
n,αk k

= 2 − α

2
� �

un−1 − 1 − α

2
� �

un−2
���
− 2 − α

2
� �

Rhu
n−1 + 1 − α

2
� �

Rhu
n−2
���

≤ 2 − α

2
� �

un−1 − Rhu
n−1�� �� + 1 − α

2
� �

un−2 − Rhu
n−2�� ��

≤ 2 − α

2
� �

CΩh
r+1 un−1
�� ��

Hr+1 + 1 − α

2
� �

CΩh
r+1 un−2
�� ��

Hr+1

≤ 2 − α

2
� �

CΩKh
r+1 + 1 − α

2
� �

CΩKh
r+1 ≤ C3h

r+1:

ð48Þ
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Similarly, we have

un−mτ ,α − Rhu
n−mτ ,αk k

= 1 − α

2
� �

un−mτ + α

2 u
n−mτ−1

���
− 1 − α

2
� �

Rhu
n−mτ −

α

2 Rhu
n−mτ−1

���
≤ 1 − α

2
� �

CΩKh
r+1 + α

2 CΩKh
r+1 ≤ C4h

r+1,

ð49Þ

where C3 = 2ð2 − ðα/2ÞÞCΩK , C4 = 2 max fð1 − ðα/2ÞÞ,
α/2gCΩK .

Therefore

Rn
1k k = f tn− α/2ð Þ, ûn,α, un−mτ ,α

� �
− f tn− α/2ð Þ, Û

n,α
h ,Un−mτ ,α

h

� ���� ���
≤ L1 ûn,α − Û

n,α
h

��� ��� + L2 un−mτ ,α −Un−mτ ,α
h

�� ��
≤ L1 bθn,α

h

��� ��� + L2 θn−mτ ,α
h

�� �� + L1 ûn,α − Rhû
n,αk k

+ L2 un−mτ ,α − Rhu
n−mτ ,αk k

≤ L1 bθn,α
h

��� ��� + L2 θn−mτ ,α
h

�� �� + L1C3 + L2C4ð Þhr+1:
ð50Þ

Substituting (43), (48), and (50) into (47) and the fact
ða + b + cÞ2 ≤ 3a2 + 3b2 + 3c2, we can get

RDα
Δtθ

n
h, θn,αh

� �
≤
3
2 θn,αhk k2 + 3L12

2
bθn,α
h

��� ���2
+ 3L22

2 θ
n−mτ ,α
h

�� ��2 + CK
2

2 Δtð Þ4

+ 1
2 3 L1

2C3
2 + L2

2C4
2� �

+ CKKð Þ2� �
h2 r+1ð Þ

≤
3
2 θn,αhk k2 + 3L12

2
bθn,α
h

��� ���2
+ 3L22

2 θn−mτ ,α
h

�� ��2 + C4
2 Δt2 + hr+1
� �2,

ð51Þ

where C4 = max fCK
2, 3ðL12C3

2 + L2
2C4

2Þ + ðCKKÞ2g.

Applying Lemma 7, we have

 RDα
Δt θnhk k2 ≤ 3 θn,αhk k2 + 3L12 bθn,αh

��� ���2
+ 3L22 θ

n−mτ ,α
h

�� ��2 + C4 Δt2 + hr+1
� �2

:

ð52Þ

In terms of the definition of kθn,αh k and bθn,α
h , we obtain

RDα
Δt θnhk k2 ≤ 3 1 − α

2
� �2

θnhk k2 + 3 α

2
� �2

+ 3L12 2 − α

2
� �2	 


θn−1h

�� ��2
+ 3L12 1 − α

2
� �2

θn−2h

�� ��2 + 3L22 1 − α

2
� �2

θ
n−mτ

h

�� ��2
+ 3L22

α

2
� �2

θn−mτ−1
h

��� ���2 + C4 Δt2 + hr+1
� �2

:

ð53Þ

Using Theorem 6, we can find a positive constant Δt∗

such that Δt ≤ Δt∗, then

θnhk k2 ≤ C5 Δt2 + hr+1
� �2, ð54Þ

where C5 is a nonnegative constant which only depen-
dents on L1, L2, C4, CK , CΩ. In terms of the definition of θnh ,
we have

un −Un
hk k ≤ un − Rhu

nk k + Rhu
n −Un

hk k ≤ C∗
1 Δt2 + hr+1
� �

:

ð55Þ

Then, we complete the proof.

4. Numerical Examples
In this section, we give two examples to verify our theoretical
results. The errors are all calculated in L2-norm.

Example 1. Consider the nonlinear time fractional
Mackey-Glass-type equation

RDα
Δtu x, y, tð Þ = Δu x, y, tð Þ − 2u x, y, tð Þ + u x, y, t − 0:1ð Þ

1 + u2 x, y, t − 0:1ð Þ + f x, y, tð Þ, x, yð Þ ∈ 0, 1½ �2, t ∈ 0, 1½ �,

u x, y, tð Þ = t2 sin πxð Þ sin πyð Þ,  x, yð Þ ∈ 0, 1½ �2, t ∈ −0:1,0½ �,

8><>: ð56Þ

Table 1: The errors and convergence orders in temporal direction
by using Q-FEM.

M
α = 0:4 α = 0:6

Errors Orders Errors Orders

5 1.6856e-03 ∗ 5.3999e-03 ∗

10 2.9420e-04 2.5184 1.2503e-03 2.1106

20 5.9619e-05 2.3030 3.0266e-04 2.0465

40 1.3851e-05 2.1058 7.4700e-05 2.0185
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where

f x, y, tð Þ = 2t2−α
Γ 3 − αð Þ sin πxð Þ sin πyð Þ + 2t2π2 sin πxð Þ sin πyð Þ

− 2t2 sin πxð Þ sin πyð Þ − t − 0:1ð Þ2 sin πxð Þ sin πyð Þ
1 + t − 0:1ð Þ2 sin πxð Þ sin πyð Þ� �2 :

ð57Þ

The exact solution is given as

u x, tð Þ = t2 sin πxð Þ sin πyð Þ: ð58Þ

In order to test the convergence order in temporal direc-
tion, we fixedM = 40 for α = 0:4, α = 0:6 and differentN. Sim-
ilarly, to obtain the convergence order in spatial direction, we
fixedN = 100 for α = 0:4, α = 0:6 and differentM. Table 1 gives
the errors and convergence orders in temporal direction by
using the Q-FEM. Table 1 shows that the convergence order
in temporal direction is 2. Similarly, Tables 2 and 3 give the
errors and convergence orders in spatial direction by using
the L-FEM and Q-FEM, respectively. These numerical results
correspond to our theoretical convergence order.

Example 2. Consider the following nonlinear time frac-
tional Nicholsons blowflies equation

where

f x, y, z, tð Þ = 2t2−α
Γ 3 − αð Þ sin πxð Þ sin πyð Þ sin πzð Þ

+ 2t2 π2 − 1
� �

sin πxð Þ sin πyð Þ sin πzð Þ
− t − 0:1ð Þ2 sin πxð Þ sin πyð Þ sin πzð Þ exp
� − t − 0:1ð Þ2 sin πxð Þ sin πyð Þ sin πzð Þ� �

,

ð60Þ

the exact solution is given as

u x, tð Þ = t2 sin πxð Þ sin πyð Þ sin πzð Þ: ð61Þ

In this example, in order to test the convergence order in
temporal and spatial direction, we solve this problem by
using the L-FEM with M =N and the Q-FEM with N =
Mð3/2Þ, respectively. Tables 4 and 5 show that the conver-
gence orders in temporal and spatial direction are 2 and 3,
respectively. The numerical results confirm our theoretical
convergence order.

5. Conclusions
We proposed a linearized fractional Crank-Nicolson-
Galerkin FEM for the nonlinear fractional parabolic equa-
tions with time delay. A novel fractional Grönwall type
inequality is developed. With the help of the inequality, we

Table 2: The errors and convergence orders in spatial direction by
using L-FEM.

M
α = 0:4 α = 0:6

Errors Orders Errors Orders

5 7.2603e-02 ∗ 7.2065e-02 ∗

10 1.9449e-02 1.9003 1.9297e-02 1.9009

20 8.7594e-03 1.9673 8.6948e-03 1.9662

40 4.9508e-03 1.9834 4.9180e-03 1.9807

Table 3: The errors and convergence orders in spatial direction by
using Q-FEM.

M
α = 0:4 α = 0:6

Errors Orders Errors Orders

5 2.0750e-03 ∗ 2.0746e-03 ∗

10 2.4888e-04 3.0596 2.5148e-04 3.0443

20 7.3251e-05 3.0165 7.5802e-05 2.9577

40 3.0946e-05 2.9952 3.4200e-05 2.7666

Table 4: The errors and orders in temporal and spatial direction by
using L-FEM.

M
α = 0:4 α = 0:6

Errors Orders Errors Orders

5 8.3275e-02 ∗ 8.3375e-02 ∗

10 2.2615e-02 1.8806 2.2732e-02 1.8749

20 5.8356e-03 1.9543 5.8662e-03 1.9542

40 1.4707e-03 1.9884 1.4784e-03 1.9884

RDα
Δtu x, y, z, tð Þ = Δu x, y, z, tð Þ − 2u x, y, z, tð Þ + u x, y, z, t − 0:1ð Þ exp −u x, y, z, t − 0:1ð Þf g

+f x, y, z, tð Þ,  x, y, zð Þ ∈ 0, 1½ �3, t ∈ 0, 1½ �,
u x, y, z, tð Þ = t2 sin πxð Þ sin πyð Þ sin πzð Þ,  x, y, zð Þ ∈ 0, 1½ �3, t ∈ −0:1,0½ �,

8>><>>: ð59Þ

Table 5: The errors and orders in temporal direction and spatial
direction by using Q-FEM.

M
α = 0:4 α = 0:6

Errors Orders Errors Orders

8 6.7379e-04 ∗ 6.9141e-04 ∗

N =M 3/2ð Þ 10 3.1416e-04 3.0459 3.4945e-04 3.0579

12 1.9415e-04 3.0968 1.9787e-04 3.1196

14 1.1891e-04 3.1806 1.1992e-04 3.2485
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prove convergence of the numerical scheme. Numerical
examples confirm our theoretical results.
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A numerical solution for neutral delay fractional order partial differential equations involving the Caputo fractional derivative is
constructed. In line with this goal, the drift term and the time Caputo fractional derivative are discretized by a finite difference
approximation. The energy method is used to investigate the rate of convergence and unconditional stability of the temporal
discretization. The interpolation of moving Kriging technique is then used to approximate the space derivative, yielding a
meshless numerical formulation. We conclude with some numerical experiments that validate the theoretical findings.

1. Introduction

Partial differential equations (PDEs) with time delay play an
important role in the mathematical modeling of complex
phenomena and processes whose states depend not only
on a given moment in time but also on one or more previous
moments. We can mention a simple scenario involving the
hemodynamic behavior of a person suffering from low or
high glucose decompensation. This person can then be given
intravenous insulin to compensate for the low level. Because
the drug must be introduced into the bloodstream for it to
take effect, the preceding scenario can be interpreted as a
delay problem. As a result, there is a growing interest in
studying biological and physical models with delay. The
solutions of delay PDEs may represent voltage, concentra-
tions, temperature, or various particle densities such as bac-
teria, cells, animals, and chemicals [1–3].

Delay PDEs with fractional derivatives have recently
been studied using various numerical and analytical tech-
niques such as [4–8]. It was pointed out in [9] that the deriv-
atives of the dependent variable in the neutral type delay

differential equations are both with and without time delays.
Delay differential equations of neutral type appear in a vari-
ety of new phenomena, and its theory is even more compli-
cated than the theory of nonneutral delay differential
equations. From both a theoretical and practical standpoint,
the oscillatory behavior of neutral system solutions is impor-
tant. For some applications, such as the population growth,
motion of radiating electrons, and the spread of epidemics
in networks with lossless transmission lines, we refer the
interested reader to [9–14].

A consideration of the following fractional PDE with a
constant delay is the goal of this paper. For that end, we
introduce

C
0D

ν

tΨ t, xð Þ +Ψt t, xð Þ = ΔΨt t, xð Þ + ΔΨ t, xð Þ + ΔΨ t − s, xð Þ
+ f t, xð Þ, t ∈ 0, Tð Þ, x ∈Λ,

ð1Þ

with initial and boundary conditions
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Ψ 0, xð Þ = ψ xð Þ, ∂Ψ t, xð Þ
∂t

����
t=0

= φ xð Þ, x ∈Λ,

Ψ t, xð Þ = g t, xð Þ, x ∈ ∂Λ, t ∈ 0, T½ �,
Ψ t, xð Þ = φ∗ t, xð Þ, t, xð Þ ∈ −s, 0ð � ×Λ,

ð2Þ

where C
0D

ν
t is the Caputo fractional derivative which is

defined by

C
0D

ν

t Ψ t, xð Þ = ∂νΨ t, xð Þ
∂tν

= 1
Γ 2 − νð Þ

ðt
0

∂2Ψ s, xð Þ
∂s2

� t − sð Þ1−νds, ν ∈ 1, 2ð Þ:
ð3Þ

A novel interpolating element-free Galerkin approach to
approximate the solution of the two-dimensional elastoplas-
ticity problems was constructed in [15] using the interpolat-
ing moving least squares scheme for obtaining the shape
function. Moreover, an improved element-free Galerkin
scheme to solve nonlinear elastic large deformation prob-
lems was considered in [16]. The interpolating moving least
squares approach using a nonsingular weight function is
employed in [17] to approximate the solution of the problem
of inhomogeneous swelling of polymer gels, and also the
penalty scheme is used to enforce the displacement bound-
ary condition; thus, an improved element-free Galerkin
approach was constructed.

The interpolating element free Galerkin method has
been developed to solve a variety of problems, including
two-dimensional elastoplasticity problems [15, 18], two-
dimensional potential problems [19], two- and three-
dimensional Stokes flow problems [20], two-dimensional
large deformation problems [21], incompressible Navier-
Stokes equation [22], steady heat conduction problems
[23], two-dimensional transient heat conduction problems
[24], three-dimensional wave equations [25], two-
dimensional Schrödinger equation [26], two-dimensional
large deformation of inhomogeneous swelling of gels [27],
biological populations [28], two-dimensional elastody-
namics problems [29], and two-dimensional unsteady state
heat conduction problems [30]. The theoretical analysis for
the complex moving least squares approximation, the
properties of its shape function, and its stability was ana-
lyzed in [31]. In [32], a variational multiscale interpolating
element-free Galerkin scheme was established for solving
the Darcy flow. For the numerical solution of generalised
Oseen problems, a novel variational multiscale interpolating
element-free Galerkin scheme was developed in [33] based
on moving Kriging interpolation for obtaining shape func-
tions using the Kronecker delta function. Zaky and Hendy
[34] constructed a finite difference/Galerkin spectral
approach for solving the Higgs boson equation in the de Sit-
ter spacetime universe, which can inherit the discrete energy
dissipation property. A high-order efficient difference/Galer-
kin spectral approach was proposed in [35] for solving the
time-space fractional Ginzburg-Landau equation. Hendy
and Zaky [36] proposed a finite difference/spectral method
based on the L1 formula on nonuniform meshes for time

stepping and the Legendre-Galerkin spectral approach for
solving a coupled system of nonlinear multiterm time-
space fractional diffusion equations.

This paper is built up as follows. In Section 2, the tempo-
ral discretization is discussed. The analysis of the temporal
discretization scheme is constructed in Section 3. The
moving Kriging technique and its implementation are dem-
onstrated in Section 4. Finally, numerical experiments are
presented in Section 5 to illustrate the analysis of the
obtained scheme.

2. Temporal Discretization

Assume that τ = s/m such that m is a positive integer. Take
N = dT/τe and tn = nτ, ∀n ∈ℕ+ ∪ f0g. Also, to make t = s,
2s,⋯ being grid points, the time-variable step size should
be surrounded by s =mτ instead of τ = T/N1 for N1 ∈ℤ

+.
Thus, tn = nτ for n = −m, −m + 1,⋯, 0. Here, we present a
time-discrete scheme for Equation (1). For any function
ξn = ξðx, y, tnÞ, we set

ξn− 1/2ð Þ = 1
2 ξn + ξn−1
� �

,

δtξ
n− 1/2ð Þ = 1

τ
ξn − ξn−1
� �

:

ð4Þ

Lemma 1 (see [37]). Assume ϕðtÞ ∈ C2½0, tn� and ν ∈ ð1, 2Þ.
Then

ðtn
0

ϕ′ tð Þ
tn − tð Þν−1 dt −Bν

C ϕ tnð Þ, ϕ t0ð Þð Þ
�����

����� ≤ Cν max ϕ′′ tð Þ�� ��τ3−ν
0≤t≤tn

,

ð5Þ

in which

Bν
C ϕ tnð Þ, ϕ t0ð Þð Þ = 1

τ
λ0ϕ tnð Þ − 〠

n−1

k=1
λn−k−1 − λn−kð Þϕ tkð Þ − λn−1ϕ t0ð Þ

" #
,

λk =
τ2−ν

2 − ν
k + 1ð Þ2−ν − k2−ν

� �
: ð6Þ

Let Ψ be the exact solution of (1) and

w t, x, y, zð Þ = 1
Γ 2 − νð Þ

ðt
0
t − sð Þ1−ν ∂v s, x, y, zð Þ

∂s
ds, ð7Þ

where vðt, x, y, zÞ = ∂Ψðt, x, y, zÞ/∂t. Thus, Equation (1) at
ðtn, x, y, zÞ can be rewritten as

w tn− 1/2ð Þ, x
� �

+ v tn− 1/2ð Þ, x
� �

= Δv tn− 1/2ð Þ, x
� �

+ ΔΨ tn− 1/2ð Þ, x
� �

+ ΔΨ tn− 1/2ð Þ−m, x
� �

+ f tn− 1/2ð Þ, x
� �

, n

≥ 0:
ð8Þ

Making use of Taylor expansion yields
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vn−12 = δtΨ
n−12 + e1ð Þn−12, ð9Þ

wn− 1/2ð Þ + vn− 1/2ð Þ = Δvn− 1/2ð Þ + ΔΨn− 1/2ð Þ + ΔΨn− 1/2ð Þ−s

+ f n− 1/2ð Þ + e2ð Þn− 1/2ð Þ:

ð10Þ
Employing Lemma 1 and putting v0 = vðx, 0Þ = φðxÞ = φ

give

wn−12 = 1
Γ 2 − νð ÞτB

ν
C vn−12, φ
� �

+ e3ð Þn−12: ð11Þ

Furthermore, there is a constant c > 0 that

e1ð Þn−12�� �� ≤ cτ2, e2ð Þn−12�� �� ≤ cτ2, e3ð Þn−12�� �� ≤ cτ3−ν: ð12Þ

Substituting the above result into (10) arrives at

1
Γ 2 − νð ÞτB

ν
C δtΨ

n− 1/2ð Þ, φ
� �

+ δtΨ
n− 1/2ð Þ

= ΔδtΨ
n− 1/2ð Þ + ΔΨn− 1/2ð Þ + ΔΨn− 1/2ð Þ−m + f n− 1/2ð Þ

+En− 1/2ð Þ
ν , n ≥ 1,

ð13Þ

in which there exists C ∈ℝ+ such that

En− 1/2ð Þ
ν

��� ��� ≤ Cτ3−ν: ð14Þ

Removing En−ð1/2Þ
ν yields

1
Γ 2 − νð ÞτB

ν
C δtU

n− 1/2ð Þ, φ
� �

+ δtU
n− 1/2ð Þ

= ΔδtU
n− 1/2ð Þ + ΔUn− 1/2ð Þ + ΔUn− 1/2ð Þ−m + f n− 1/2ð Þ, n ≥ 1:

ð15Þ

In the current paper, Un is an approximation of exact
solution Ψn.

3. Analysis of the Temporal Discretization

In the current section, we check the stability of the numeri-
cal procedure.

Lemma 2 (see [38]). Let ωs be a nonnegative sequence, and
the sequence χs satisfies

χ0 ≤ a0,

χs ≤ a0 + 〠
s−1

r=0
br + 〠

s−1

r=0
ωrχr , s ≥ 1,

8><
>: ð16Þ

Then, for a0 ≥ 0 and b0 ≥ 0, we have

χs ≤ a0 + 〠
s−1

r=0
br

 !
exp 〠

s−1

r=0
ωr

 !
, s ≥ 1: ð17Þ

Lemma 3 (see [37]). For any K = fK1,K2,⋯g and Q, we
obtain

〠
N

r=1
λ0K r − 〠

r−1

s=1
λr−s−1 − λr−sð ÞK s − λr−1Q

" #
K r

≥
t1−νN

2
τ〠

N

r=1
K2

r −
t2−νN

2 2 − νð ÞQ
2:

ð18Þ

Theorem 4. Let Ψs ∈H1
0ðΛÞ; then scheme (15) is uncondi-

tionally stable.

Proof. We define W s =Ψs −Us. Now, we have

1
τ Γ 2 − νð Þ λ0δtW

s− 1/2ð Þ − 〠
s−1

k=1
λs−k−1 − λs−kð ÞδtW k− 1/2ð Þ

( )
+ δtW

s− 1/2ð Þ

= ΔW s− 1/2ð Þ + ΔW s− 1/2ð Þ−m:

ð19Þ

Multiplying relation (19) by τδtW
s−ð1/2Þ, integrating over

Λ and then summing from s = 1 to M give

1
Γ 2 − νð Þ〠

M

s=1

(
λ0 δtW

s− 1/2ð Þ, δtW s− 1/2ð Þ
� �

− 〠
s−1

k=1
λs−k−1 − λs−kð Þ δtW

k− 1/2ð Þ, δtW s− 1/2ð Þ
� �)

+ τ〠
M

s=1
δtW

s− 1/2ð Þ, δtW s− 1/2ð Þ
� �

= τ〠
M

s=1
ΔδtW

s− 1/2ð Þ, δtW s− 1/2ð Þ
� �

+ τ〠
M

s=1
ΔWs− 1/2ð Þ, δtWs− 1/2ð Þ
� �

+ τ〠
M

s=1
ΔWs− 1/2ð Þ−m, δtWs− 1/2ð Þ
� �

:

ð20Þ

Recalling the left hand side of the above relation, invok-
ing Schwartz inequality and Lemma 3 yields

1
Γ 2 − νð Þ〠

M

s=1
λ0 δtW

s− 1/2ð Þ
			 			2

L2 Λð Þ
− 〠

s−1

k=1
λs−k−1 − λs−kð Þ

(

· δtW
k− 1/2ð Þ, δtW s− 1/2ð Þ

� �)

≥
1

Γ 2 − νð Þ〠
M

s=1
λ0 δtW

s− 1/2ð Þ
			 			2

L2 Λð Þ
− 〠

s−1

k=1
λs−k−1 − λs−kð Þ

(

· δtW
k− 1/2ð Þ

			 			
L2 Λð Þ

δtW
s− 1/2ð Þ

			 			
L2 Λð Þ

)

= 1
Γ 2 − νð Þ〠

M

s=1
Bν
C δtW

s− 1/2ð Þ
			 			

L2 Λð Þ
, 0


 �
δtW

s− 1/2ð Þ
			 			

L2 Λð Þ

≥
τt1−νM

2Γ 2 − νð Þ〠
M

s=1
δtW

s− 1/2ð Þ
			 			2

L2 Λð Þ
:

ð21Þ
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Moreover, for the first term in the right hand side of
Equation (20), we have

τ〠
M

s=1
ΔδtW

s−12, δtW s−12� �
= −τ〠

M

s=1
∇δtW

s−12,∇δtW s−12� �

= −τ〠
M

s=1
∇δtW

s−12		 		2
L2 Λð Þ:

ð22Þ

On the other hand, according to some simple mathemat-
ical actions, we have

τ〠
M

s=1
ΔW s− 1/2ð Þ, δtW s− 1/2ð Þ
� �

= −τ〠
M

s=1
∇W s− 1/2ð Þ,∇δtW s− 1/2ð Þ
� �

= −τ〠
M

s=1

ð
Λ

∇W s+∇W s−1

2


 �
∇W s−∇W s−1

τ


 �
dΛ

= −
1
2〠

M

s=1

ð
Λ

∇W sð Þ2 − ∇W s−1� �2h i
dΛ

� 


= 1
2〠

M

s=1

ð
Λ

∇W s−1� �2
dΛ −

ð
Λ

∇W sð Þ2dΛ
� 


= 1
2〠

M

s=1
∇W s−1		 		2

L2 Λð Þ − ∇W sk k2L2 Λð Þ
n o

= 1
2 ∇W 0		 		2

L2 Λð Þ − ∇WM
		 		2

L2 Λð Þ

n o
:

ð23Þ

Also, for the delay term, we arrive at

τ〠
M

s=1
ΔW s−m−12, δtW s−12� �

= −τ〠
M

s=1
∇W s−m−12,∇δtW s−12� �

≤ τ〠
M

s=1
∇W s−m−12		 		

L2 Λð Þ ∇δtW
s−12		 		

L2 Λð Þ

≤
τ

2〠
M

s=1
∇W s−m− 1/2ð Þ
			 			2

L2 Λð Þ
+ τ

2〠
M

s=1

� ∇δtW
s− 1/2ð Þ

			 			2
L2 Λð Þ

:

ð24Þ

Replacing the above relations in Equation (20) yields

τt1−νM

2Γ 2 − νð Þ〠
M

s=1
δtW

s−12		 		2
L2 Λð Þ + τ〠

M

s=1
δtW

s−12		 		2
L2 Λð Þ

≤ −τ〠
M

s=1
∇δtW

s−12		 		2
L2 Λð Þ +

1
2 ∇W 0		 		2

L2 Λð Þ − ∇W M		 		2
L2 Λð Þ

n o

+ τ

2〠
M

s=1
∇W s−m−12		 		2

L2 Λð Þ +
τ

2〠
M

s=1
∇δtW

s−12		 		2
L2 Λð Þ,

ð25Þ

or

τt1−νM

Γ 2 − νð Þ〠
M

s=1
δtW

s−12		 		2
L2 Λð Þ + 2τ〠

M

s=1
δtW

s−12		 		2
L2 Λð Þ

≤ −2τ〠
M

s=1
∇δtW

s−12		 		2
L2 Λð Þ + ∇W 0		 		2

L2 Λð Þ − ∇WM
		 		2

L2 Λð Þ

n o

+ τ〠
M

s=1
∇W s−m−12		 		2

L2 Λð Þ + τ〠
M

s=1
∇δtW

s−12		 		2
L2 Λð Þ:

ð26Þ

Now, Equation (26) can be simplified as

∇WM
		 		2

L2 Λð Þ ≤ ∇W 0		 		2
L2 Λð Þ + τ〠

M

s=1
∇W s−m−12		 		2

L2 Λð Þ: ð27Þ

Changing index from M to s arrives at

∇W sk kL2 Λð Þ ≤ ∇W 0		 		
L2 Λð Þ + 2τ〠

s

k=1
∇W k−m
			 			

L2 Λð Þ

= ∇W 0		 		
L2 Λð Þ + 2τ〠

s

k=1
∇ φ∗ð Þk−m
			 			

L2 Λð Þ
:

ð28Þ

The use of Equation (29) and Lemma 2 yields

∇W sk kL2 Λð Þ ≤ ∇W 0		 		
L2 Λð Þ + 2τ〠

s

k=1
∇ φ∗ð Þk−m
			 			

L2 Λð Þ

" #
exp 2sτð Þ

≤ ∇W 0		 		
L2 Λð Þ + 2τ〠

s

k=1
∇ φ∗ð Þk−m
			 			

L2 Λð Þ

" #
exp 2Tð Þ:

ð29Þ

Thus, there exists C ∈ℝ+ that

∇W sk kL2 Λð Þ ≤ C ∇W 0		 		
L2 Λð Þ + 2τ〠

s

k=1
∇ φ∗ð Þk−m
			 			

L2 Λð Þ

" #
:

ð30Þ

4. Moving Kriging Interpolation and
Its Implementation

Following [39, 40], we will invoke the technique of moving
Kriging. Up to our knowledge and armed by the fact of the
advantage of less CPU time consuming needed for the ele-
ment free Galerkin approach based on the shape functions
of moving Kriging than what needed for the element free
Galerkin approach based on the shape functions of moving
least squares approximation. In the meantime, the shape
functions of moving Kriging interpolation can be deduced,
which is analogous to moving least squares approximation
over subdomain Λ1 ⊂Λ. Let ΨhðxÞ is the approximate solu-
tion of ΨðxÞ on Λ. The local approximation is formulated
for any subdomain as
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Ψh xð Þ = 〠
m

r=1
qr xð Þar + S xð Þ = qT xð Þa + S xð Þ, ð31Þ

such that qr and ar are monomial basis functions and mono-
mial coefficients, respectively. Also, SðxÞ be the realization of
a stochastic process. The covariance matrix of SðxÞ is given
as

cov S xið Þ, S xrð Þf g = σ2E E xi, xrð Þ½ �, ð32Þ

in which

(i) E½Eðxi, xrÞ� is the correlation matrix

(ii) Eðxi, xrÞ is the correlation function between any pair
of nodes located at xi and xr

The correlation function is defined as [39, 40]

E xi, xrð Þ = exp −θr2ir
� �

, rir = xi − xrk k, ð33Þ

such that θ > 0 is a value of the correlation parameter
[39, 40]. Using the best linear unbiased (BLUP) [39], we
can write Equation (31) as follows [39, 40]

Ψh xð Þ = qT xð Þη + rT xð ÞE−1 u −Qηð Þ, ð34Þ

in which

η = QTE−1Q
� �−1

QTE−1u: ð35Þ

We will introduce some notations. The vector of known
m functions can be written as follows [39, 40]

q xð Þ =

q1 xð Þ
q2 xð Þ
⋮

qm xð Þ

2
666664

3
777775
1×m

, ð36Þ

and the matrix of defined function values at the nodes
x1, x2,⋯, xn has the following representation [39, 40]

Q =

q1 x1ð Þ q2 x1ð Þ ⋯ qm x1ð Þ
q1 x2ð Þ q2 x2ð Þ ⋯ qm x2ð Þ
⋮ ⋮ ⋱ ⋮

q1 xnð Þ q2 xnð Þ ⋯ qm xnð Þ

2
666664

3
777775
n×m

: ð37Þ

The correlation matrix is given as [39, 40]

E E xi, xrð Þ½ � =

1 E x1, x2ð Þ ⋯ E x1, xnð Þ
E x2, x1ð Þ 1 ⋯ E x2, xnð Þ

⋮ ⋮ ⋱ ⋮

E xn, x1ð Þ E xn, x2ð Þ ⋯ 1

2
666664

3
777775
n×n

:

ð38Þ

The correlation vector at the nodes x1, x2,⋯, xn has the
following form

r xð Þ =

E x1, xð Þ
E x2, xð Þ

⋮

E xn, xð Þ

2
666664

3
777775: ð39Þ

The matrices A and B are given as

A = QTE−1Q
� �−1QTE−1,

B = E−1 I −QAð Þ,
ð40Þ

where I is the n × n identity matrix. Accordingly, Equa-
tion (34) can be written as follows [39, 40]

Ψh xð Þ = qT xð ÞAu + rT xð ÞBu, ð41Þ

or

Ψh xð Þ = qT xð ÞA + rT xð ÞB� �
u = 〠

n

k=1
ϕk xð ÞΨk = φ xð Þu, ð42Þ

where the moving Kriging approach’s shape functions are as
follows [39, 40]:

φ xð Þ = qT xð ÞA + rT xð ÞB� �
r
= ϕ1, ϕ2,⋯, ϕn½ �T : ð43Þ

Now, we are ready to implement that kind of interpola-
tion to the problem under consideration. Let the approxima-
tion solution of this equation be

Un x, y, zð Þ = 〠
N

j=1
ϖn
j ϕj x, y, zð Þ, ð44Þ

in which ϕjðxÞ are shape functions of moving Kriging
approximation. Substituting Equation (44) in relation (15)
gives
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1
Γ 2 − νð ÞτB

ν
C δt 〠

N

j=1
ϖ
n− 1/2ð Þ
j ϕj x, y, zð Þ, φ

 !
+ 〠

N

j=1
δtϖ

n− 1/2ð Þ
j ϕj x, y, zð Þ

= 〠
N

j=1
δtϖ

n− 1/2ð Þ
j Δϕj x, y, zð Þ + 〠

N

j=1
ϖ
n− 1/2ð Þ
j Δϕj x, y, zð Þ

+ 〠
N

j=1
δtϖ

n− 1/2ð Þ−m
j Δϕj x, y, zð Þ + f n− 1/2ð Þ:

ð45Þ

By collocating a set of arbitrary distributed nodes
fðxi, yi, ziÞgNi=1 in the computational domain Λ concludes

1
Γ 2 − νð ÞτB

ν
C δt 〠

N

j=1
ϖ
n− 1/2ð Þ
j ϕ j xi, yi, zið Þ, φ

 !
+ 〠

N

j=1
δtϖ

n− 1/2ð Þ
j ϕj xi, yi, zið Þ

= 〠
N

j=1
δtϖ

n− 1/2ð Þ
j Δϕj xi, yi, zið Þ + 〠

N

j=1
ϖ
n− 1/2ð Þ
j Δϕ j xi, yi, zið Þ

+ 〠
N

j=1
δtϖ

n− 1/2ð Þ−m
j Δϕ j xi, yi, zið Þ + f n− 1/2ð Þ xi, yi, zið Þ:

ð46Þ

After doing some simplifications, we have

μλ0 + 1ð Þ〠
N

j=1
ϖn
j ϕj xi, yi, zið Þ − 1 + τ

2
� �

〠
N

j=1
ϖn
j Δϕj xi, yi, zið Þ

= μλ0 + 1ð Þ〠
N

j=1
ϖn−1
j ϕ j xi, yi, zið Þ x, y, zð Þ

+ −1 + τ

2
� �

〠
N

j=1
ϖn−1
j Δϕj xi, yi, zið Þ + μτλn−1φ

+ μτ〠
n−1

k=1
λn−k−1 − λn−kð Þ 〠

N

j=1
ϖk
jϕj xi, yi, zið Þ − 〠

N

j=1
ϖk−1
j ϕ j xi, yi, zið Þ

 !

+ τ

2 〠
N

j=1
ϖn−m
j ϕ j xi, yi, zið Þ − 〠

N

j=1
ϖn−m−1
j ϕj xi, yi, zið Þ

 !
+ τf n− 1/2ð Þ,

ð47Þ

where μ = 1/Γð2 − νÞτ. Now, the above formulation
yields the following system of equations

AΛn = Fn, ð48Þ

in which

Aij = μλ0 + 1ð Þϕj xi, yi, zið Þ − 1 + τ

2
� �

Δϕj xi, yi, zið Þ,

Fi = μλ0 + 1ð Þ〠
N

j=1
ϖn−1
j ϕj x, y, zð Þ + −1 + τ

2
� �

〠
N

j=1
ϖn−1
j Δϕj x, y, zð Þ

+ μτ〠
n−1

k=1
λn−k−1 − λn−kð Þ 〠

N

j=1
ϖk
jϕj x, y, zð Þ − 〠

N

j=1
ϖk−1
j ϕj x, y, zð Þ

 !

+ μτλn−1φ + τ

2 〠
N

j=1
ϖn−m
j ϕj x, y, zð Þ − 〠

N

j=1
ϖn−m−1
j ϕj x, y, zð Þ

 !

+ τf n− 1/2ð Þ:

ð49Þ

5. Numerical Verification

In the current section, we investigate the convergence, capa-
bility, and stability of the developed numerical procedure.
Also, the computational rate is calculated by

C − order = log 2ð Þð Þ−1 × log E h, 2τð Þ
E h, τð Þ


 �
: ð50Þ

We consider the following problem

1
Γ 2 − νð Þ

ðt
0

∂2Ψ x, y, sð Þ
∂s2

ds

t − sð Þν−1 + ∂Ψ x, y, tð Þ
∂t

= ∂
∂t

∂2Ψ x, y, tð Þ
∂x2

+ ∂2Ψ x, y, tð Þ
∂y2

 !
+ ∂2Ψ x, y, tð Þ

∂x2

+ ∂2Ψ x, y, tð Þ
∂y2

+ ∂2Ψ x, y, t − sð Þ
∂x2

+ ∂2Ψ x, y, t − sð Þ
∂y2

+ f x, y, tð Þ,

ð51Þ

Table 1: Results obtained with 500 collocation points for Example 1.

τ
ν = 1:1 ν = 1:2 ν = 1:9

CPU time(s)
L∞ Cτ-order L∞ Cτ-order L∞ Cτ-order

0:1 1:20 × 10−1 — 1:04 × 10−1 — 7:74 × 10−1 — 0:5
0:05 3:00 × 10−2 2:00 2:69 × 10−2 1:94 6:02 × 10−1 0:36 0:9
0:025 7:51 × 10−3 1:99 7:20 × 10−3 1:90 3:31 × 10−1 0:86 3:2
0:0125 1:88 × 10−3 1:99 1:97 × 10−3 1:87 1:61 × 10−1 1:04 10:4
0:00625 4:70 × 10−4 1:99 5:46 × 10−4 1:85 7:37 × 10−2 1:13 37:1
0:003125 1:17 × 10−4 1:99 1:53 × 10−4 1:83 3:29 × 10−2 1:16 87:5
0:0015625 2:94 × 10−5 1:99 4:36 × 10−5 1:81 1:45 × 10−2 1:18 163:4
0:00078125 7:38 × 10−6 1:99 1:25 × 10−5 1:80 6:35 × 10−3 1:19 277:3
TO 1:9 1:8 1:1
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in which

f x, y, tð Þ = cos πxð Þ cos πyð Þ 2t + 2π2 s − tð Þ2 + 4π2t + 2π2t2
� �

,
ð52Þ

the initial conditions are

Ψ x, y, tð Þjt=0 = 0, ∂Ψ x, y, tð Þ
∂t

����
t=0

= 0, x, yð Þ ∈Λ, ð53Þ
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Figure 1: Approximate solution and its absolute error on square domains.
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and also

Ψ x, y, tð Þ = t2 cos πxð Þ cos πyð Þ, x, y, tð Þ ∈Λ × −s, 0ð �, ð54Þ

with no-flux boundary condition. The exact solution is
Ψðx, y, tÞ = t2 cos ðπxÞ cos ðπyÞ.

Table 1 shows the results obtained based on the 500 col-
location points, ν = 1:1, ν = 1:2, ν = 1:9, and different values
of τ. Table 1 confirms that the theoretical order (TO) in tem-
poral direction is near to the computational order, i.e., 3 − ν.
Figure 1 demonstrates the approximate solutions (a) and its
absolute errors (b) on square domains ½0, 1� × ½0, 1� (top
figures), ½0, 4� × ½0, 4� (middle figures), and ½0, 8� × ½0, 8�
(bottom figures) with τ = 0:001, ν = 1:5, and also 1000
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Figure 2: Approximate solution and its absolute error on irregular domains.

8 Journal of Function Spaces



collocation points. Figure 2 illustrates the approximate solu-
tions (a) and its absolute errors (b) on irregular domains

r θð Þ = 3
10n2 1 + 2n + n:2 − n + 1ð Þ cos nθð Þ� �

, ð55Þ

where n = 4 (top figures), n = 8 (middle figures), and n = 12
(bottom figures) with τ = 0:001, ν = 1:5, and also 1000 collo-
cation points. Figure 3 presents the approximate solutions
(a) and its absolute errors (b) on irregular domains

r θð Þ = 3
10n2 1 + 2n + n:2 − n + 1ð Þ cos nθð Þ� �

, ð56Þ

with τ = 0:001, ν = 1:5, and also 1000 collocation points.
Figure 4 presents the approximate solutions (a) and its abso-
lute errors (b) on irregular domains

r θð Þ = 0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2θð Þ + sqrt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:1 − sin θð Þ2

q
 �s
, ð57Þ

with τ = 0:001, ν = 1:5, and also 1000 collocation points.

6. Conclusion

The current paper presented a new numerical procedure
for solving fractional damped diffusion-wave equations
with delay. In this process, the time derivative is discre-
tized by a finite difference scheme, and we constructed a
time-discrete scheme. The stability and convergence of
the proposed numerical formulation are studied, analyti-
cally and numerically. Then, the moving Kriging interpola-
tion technique, as a meshless method, is used to get a fully
discrete scheme. The proposed numerical method is flexi-
ble to simulate a wide range of PDEs including delay PDEs
on irregular computational domains. Finally, an example is
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Figure 3: Approximate solution and its absolute error on irregular domains.
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provided to demonstrate the stability and convergence of
the new technique.
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The aim of this paper is a new semianalytical technique called the variational iteration transform method for solving fractional-
order diffusion equations. In the variational iteration technique, identifying of the Lagrange multiplier is an essential rule, and
variational theory is commonly used for this purpose. The current technique has the edge over other methods as it does not
need extra parameters and polynomials. The validity of the proposed method is verified by considering some numerical
problems. The solution achieved has shown that the better accuracy of the proposed technique. This paper proposes a simpler
method to calculate the multiplier using the Shehu transformation, making a valuable technique to researchers dealing with
various linear and nonlinear problems.

1. Introduction

In the last decade, significant achievements have been made
to applying and the theory of fractional differential equations
(FDEs). These problems are increasingly implemented to
model equations in research fields as diverse as mechanical
schemes, dynamical schemes, chaos, continuous-time ran-
dom walks, control, chaos synchronization, subdiffusive sys-
tems and anomalous diffusive, wave propagation phenomena
and unification of diffusion, and so on. The benefits of the
fractional-order scheme are that it allows more significant
degrees of freedom in the problem. An integer-order differ-
ential operator (DO) is a local operator, while a fractional-
order DO is a nonlocal operator, taking into account that a
potential state depends not only on the current state but also
on the past of all its previous instances. Fractional-order
schemes have become famous for this valuable property.
Another explanation for applying fractional-order deriva-
tives is that they are naturally linked to memory structures
that prevail in most physical and scientific structure models.
The book by Spanier and Oldham [1] continued to play an

essential role in the improvement of the subject. A few other
primary results connected to the solution of FDEs can be
identified in the books of Ross and Miller [2], Podlubny [3],
and Kilbas et al. [4].

Adolf Fick introduces the laws of diffusion of Fick in 1885.
After that, the second law of Fick became identified as the dif-
fusion equation. Diffusion is the mesh atom’s movement from
a high chemical potential or higher concentration field to a
lower concentration or low chemical potential field. Investiga-
tors have investigated classical wave and diffusion equations to
many physical schemes, such as classical diffusion, slow diffu-
sion, diffusion-wave combination, and classical wave equa-
tion. Many diffusion equation implementations, such as
phase transformation, electrochemistry, magnetic fields, filtra-
tion, microbiology, acoustics, astrophysics, and biochemical
group structures. Diffusion is determined by the gradient of
the potential energy of the diffusing form. The gradient is
the difference in the value of a number, e.g., concentration,
strain, or temperature, with differences in one or more vari-
ables is often differentiated. Researchers have been seeking to
recognize and reduce manufacturing systems problems to
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reach better productivity. In applied science schemes, there are
various causes for entropy production. In heat engines, heat
transfer, the primary source of entropy production is a mass
transfer, the coupling between heat, entropy generation and
chemical reaction, electrical conduction, as described in the
seminal sequence of publications by Bejan et al. [5, 6]. Scholars
have utilized different methods for the analysis of diffusion
equations such as Chebyshev collocation technique [7], finite
difference technique [8], finite volume element technique
[9], variational iteration technique [10], two-step Adomian
decomposition technique [11], finite volume technique [12],
and Laplace transform [10].

In this paper, we implemented the variational iteration
transform method to solve the fractional-order diffusion
equations.

The fractional-order two-dimensional diffusion equation
is given as

∂δμ
∂ηδ

= ∂2μ
∂ζ2

+ ∂2μ
∂ψ2 , 0 < δ ≤ 1, η ≥ 0, ð1Þ

with initial condition

μ ζ, ψ, 0ð Þ = g ζ, ψð Þ: ð2Þ

The fractional-order three-dimensional diffusion equation

∂δμ
∂ηδ

= ∂2μ
∂ζ2

+ ∂2μ
∂ψ2 + ∂2μ

∂I2 , 0 < δ ≤ 1, η ≥ 0, ð3Þ

with initial condition

μ ζ, ψ,I, 0ð Þ = g ζ, ψ,Ið Þ: ð4Þ

A Lagrange multiplier technique has been widely utilized
to solve different types of nonlinear equations [13]. This
occurs in mathematics and physics or certain related fields
but has been established as a basic analytical method, i.e., a
variational iterationmethod (VIM) tomodel differential equa-
tions [14]. The VIM was first recommended by He [15] and
was implemented effectively to address the heat transforma-
tion problem [15–17]. Recently, several researchers have
widely used this method to solve linear and nonlinear equa-
tions. The approach offers a consistent and efficient mecha-
nism for a wide variety of applications in engineering and
science. It is based on a specific Lagrange multiplier and has
the merits of simplicity and easy implementation. Unlike
conventional numerical approaches, VIM does not require
linearization, discretion, or perturbation. The successive
approximation provides quick convergence for the exact result
[18–21]. The variational iteration method was introduced in
2010 using the modified Riemann-Liouville derivative [22].
Recently, a procedure combining in this sense Laplace trans-
formation and VIMwas proposed [23, 24], andWu developed
a modification via fractional calculus and Laplace transforma-
tion [25]. LVIM for solving nonlinear PDEs [26] and system
of fractional PDEs [27].

2. Basic Definitions

2.1. Definition. The fractional-order Riemann-Liouville inte-
gral is defined as [28, 29]

Iδ0h ηð Þ = 1
Γ δð Þ

ðη
0
η − sð Þδ−1h sð Þds: ð5Þ

2.2. Definition. The fractional-order Caputo’s derivative of
f ðηÞ is given as [28, 29]

Dδ
η f ηð Þ = I J−δ f j, J − 1 < δ < J , J ∈ℕ ;

dJ

dηJ
h ηð Þ, δ = J , J ∈ℕ:

ð6Þ

2.3. Definition. Shehu transformation is new and identical to
other integral transformations defined for exponential order
functions. In Set A, the function is defined by [30–32]

A = ν ηð Þ: ∃,ρ1, ρ2 > 0f , ∣ν ηð Þ∣ <Me
ηj j
ρi , if η ∈ 0,∞½ Þ: ð7Þ

The Shehu transform which is described as Sð:Þ for a
function νðηÞ is defined as

S ν ηð Þf g =V s, uð Þ =
ð∞
0
e
−sη
u ν ηð Þdη, η > 0, s > 0: ð8Þ

The Shehu transform of a function νðηÞ is Vðs, μÞ: then,
νðηÞ is called the inverse of Vðs, μÞ which is given as

S−1 V s, uð Þf g = ν ηð Þ, for η ≥ 0, S−1is inverse Shehu transform:

ð9Þ

2.4. Definition. Shehu transform for nth derivatives is given
as [30–32]

S ν Jð Þ ηð Þ
n o

= sJ

uJ
V s, uð Þ − 〠

J−1

k=0

s
u

� �J−k−1
ν kð Þ 0ð Þ: ð10Þ

2.5. Definition. The fractional-order derivatives of Shehu
transformation are defined as [30–32]

S ν δð Þ ηð Þ
n o

= sδ

uδ
V s, uð Þ − 〠

J−1

k=0

s
u

� �δ−k−1
ν kð Þ 0ð Þ, 0 < β ≤ n:

ð11Þ

2.6. Definition. The Mittag-Leffler function, EδðzÞ for δ > 0, is
given as

Eδ zð Þ = 〠
∞

J=0

zJ

Γ δJ + 1ð Þ , δ > 0, z ∈ℂ: ð12Þ
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3. The Methodology of VITM

This section introduces the general producer of VITM to
solve time-fractional partial differential equation [23].

Dδ
ημ ζ, ηð Þ +M ζ, ηð Þ +N ζ, ηð Þ −K ζ, ηð Þ = 0, 0 < δ ≤ 1,

ð13Þ

with the initial sources

μ ζ, 0ð Þ = g1 ζð Þ, ð14Þ

whereDδ
η = ∂δ/ð∂ηδ Þis the fractional-order Caputo derivative

andδ,M, andN , are linear and nonlinear functions, respec-
tively, and sources functionK .

The implementation of Shehu transformation to Eq. (13)

S Dδ
ημ ζ, ηð Þ

h i
+ S M ζ, ηð Þ +N ζ, ηð Þ −K ζ, ηð Þ½ � = 0: ð15Þ

Using the differentiation property of Shehu transforma-
tion, we get

S μ ζ, ηð Þ½ � − 〠
m−1

k=0

sδ−k−1

uδ−k
∂kμ ζ, ηð Þ

∂kη

�����
η=0

= −S M ζ, ηð Þ +N ζ, ηð Þ −K ζ, ηð Þ½ �:

ð16Þ

The Lagrange multiplier of the iterative system as

S μm+1 ζ, ηð Þ½ � = S μm ζ, ηð Þ½ � + λ sð Þ sδ

uδ
μm ζ, ηð Þ − 〠

m−1

k=0

sδ−k−1

uδ−k
∂kμ ζ, ηð Þ

∂kη

�����
η=0

2
4

−S K ζ, ηð Þ½ � − S M ζ, ηð Þ +N ζ, ηð Þf g�:
ð17Þ

A Lagrange multiplier as

λ sð Þ = −
uδ

sδ
: ð18Þ

Applying inverse Shehu transform S−1, Eq. (17) can be
defined as

μm+1 ζ, ηð Þ = μm ζ, ηð Þ − S−1
uδ

sδ
〠
m−1

k=0

sδ−k−1

uδ−k
∂kμ ζ, ηð Þ

∂kη

�����
η=0

2
4

2
4

−S K ζ, ηð Þ½ � − S M ζ, ηð Þ +N ζ, ηð Þf g��,
ð19Þ

the initial value can be described as

μ0 ζ, ηð Þ = S−1
uδ

sδ
〠
m−1

k=0

sδ−k−1

uδ−k
∂kμ ζ, ηð Þ

∂kη

�����
η=0

8<
:

9=
;

2
4

3
5: ð20Þ

4. Implementation of VITM

4.1. Problem. Consider the fractional-order diffusion equa-
tion [11]

∂δμ
∂ηδ

= ∂2μ
∂ζ2

−
∂μ
∂ζ

+ μ
∂2μ
∂ζ2

− μ2 + μ 0 < α ≤ 1, ð21Þ

with the initial condition

μ ζ, 0ð Þ = eζ: ð22Þ

Applying VITM on equation (21), we have

μm+1 ζ, ηð Þ = S−1
μm ζ, ηð Þ

s

� �
+ S−1

� λ sð ÞS ∂2μm
∂ζ2

−
∂μm
∂ζ

+ μm
∂2μm
∂ζ2

− μ2m + μm

( )" #
,

ð23Þ

where the Lagrange multiplier is λðsÞ

λ sð Þ = −
uδ

sδ
,

μm+1 ζ, ηð Þ = S−1
μm ζ, ηð Þ

s

� �
− S−1

� uδ

sδ
S

∂2μm
∂ζ2

−
∂μm
∂ζ

+ μm
∂2μm
∂ζ2

− μ2m + μm

( )" #
:

ð24Þ

Now take,

μ0 ζ, ηð Þ = eζ, ð25Þ

consequently, we get

m = 0, 1, 2, 3⋯

μ1 ζ, ηð Þ = S−1
μ0 ζ, ηð Þ

s

� �
− S−1

uδ

sδ
S

∂2μ0
∂ζ2

−
∂μ0
∂ζ

+ μ0
∂2μ0
∂ζ2

− μ20 + μ0

( )" #
,

μ1 ζ, ηð Þ = eζ + eζηδ

Γ δ + 1ð Þ ,

μ2 ζ, ηð Þ = S−1
μ1 ζ, ηð Þ

s

� �
− S−1

uδ

sδ
S

∂2μ1
∂ζ2

−
∂μ1
∂ζ

+ μ1
∂2μ1
∂ζ2

− μ21 + μ1

( )" #
,

μ2 ζ, ηð Þ = eζ + eζηδ

Γ δ + 1ð Þ + eζη2δ

Γ 2δ + 1ð Þ ,

μ3 ζ, ηð Þ = S−1
μ2 ζ, ηð Þ

s

� �
− S−1

uδ

sδ
S

∂2μ2
∂ζ2

−
∂μ2
∂ζ

+ μ2
∂2μ2
∂ζ2

− μ22 + μ2

( )" #
,

μ3 ζ, ηð Þ = eζ + eζηδ

Γ δ + 1ð Þ + eζη2δ

Γ 2δ + 1ð Þ + eζη3δ

Γ 3δ + 1ð Þ : ð26Þ
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The approximate result of equation (21) can be achieved as

μ ζ, ηð Þ = eζ + eζηδ

Γ δ + 1ð Þ + eζη2δ

Γ 2δ + 1ð Þ + eζη3δ

Γ 3δ + 1ð Þ+⋯+ eζηmδ

Γ mδ + 1ð Þ ,

μ ζ, ηð Þ = eζ 〠
∞

m=0

ηδ
� �m

Γ mδ + 1ð Þ = eζEδ ηδ
� �

: ð27Þ

The exact result of equation (21)

μ ζ, ηð Þ = e ζ+ηð Þ: ð28Þ

In Figure 1, the exact and the VITM solutions of problem 1
at δ = 1 are show by subgraphs, respectively. From the given
figures, it can be seen that both the VITM and exact results
are in close contact with each other. Also, in Figure 2, the
VITM results of problem 1 are investigated at different
fractional-order δ = 0:8 and 0:6 of 3D and 2D. It is analyzed
that in Table 1, the time-fractional problem results are conver-
gent to an integer order effect as time-fractional analysis to
integer order.

4.2. Problem. Consider the two-dimensional fractional-order
diffusion equation [11]

∂δμ
∂ηδ

= ∂2μ
∂ζ2

+ ∂2μ
∂ψ2 0 < δ ≤ 1, ð29Þ

with the initial condition

μ ζ, ψ, 0ð Þ = 1 − ψð Þeζ: ð30Þ

Applying VITM on equation (38), we have

μm+1 ζ, ψ, ηð Þ = S−1
μm ζ, ψ, ηð Þ

s

� �
+ S−1 λ sð ÞS ∂2μm

∂ζ2
+ ∂2μm

∂ψ2

( )" #
,

ð31Þ

where the Lagrange multiplier λðsÞ is

λ sð Þ = −
uδ

sδ
,

μm+1 ζ, ψ, ηð Þ = S−1
μm ζ, ψ, ηð Þ

s

� �
− S−1

uδ

sδ
S

∂2μm
∂ζ2

+ ∂2μm
∂ψ2

( )" #
:

ð32Þ

Now take,

μ0 ζ, ψ, ηð Þ = 1 − ψð Þeζ, ð33Þ

consequently, we get

m = 0, 1, 2, 3⋯

μ1 ζ, ψ, ηð Þ = S−1
μ0 ζ, ψ, ηð Þ

s

� �
− S−1

uδ

sδ
S

∂2μ0
∂ζ2

+ ∂2μ0
∂ψ2

( )" #
,

μ1 ζ, ψ, ηð Þ = 1 − ψð Þeζ + 1 − ψð Þeζ ηδ

Γ δ + 1ð Þ ,

μ2 ζ, ψ, ηð Þ = S−1
μ1 ζ, ψ, ηð Þ

s

� �
− S−1

uδ

sδ
S

∂2μ1
∂ζ2

+ ∂2μ1
∂ψ2

( )" #
,

μ2 ζ, ψ, ηð Þ = 1 − ψð Þeζ + 1 − ψð Þeζ ηδ

Γ δ + 1ð Þ + 1 − ψð Þeζ η2δ

Γ 2δ + 1ð Þ ,

μ3 ζ, ψ, ηð Þ = S−1
μ2 ζ, ψ, ηð Þ

s

� �
− S−1

uδ

sδ
S

∂2μ2
∂ζ2

+ ∂2μ2
∂ψ2

( )" #
,

μ3 ζ, ψ, ηð Þ = 1 − ψð Þeζ + 1 − ψð Þeζ ηδ

Γ δ + 1ð Þ + 1 − ψð Þeζ η2δ

Γ 2δ + 1ð Þ

+ 1 − ψð Þeζ η3δ

Γ 3δ + 1ð Þ :

⋮ ð34Þ

The approximate result of equation (38) can be achieved
as

μ ζ, ψ, ηð Þ = 1 − ψð Þeζ + 1 − ψð Þeζ ηδ

Γ δ + 1ð Þ + 1 − ψð Þeζ η2δ

Γ 2δ + 1ð Þ

+ 1 − ψð Þeζ η3δ

Γ 3δ + 1ð Þ+⋯+ 1 − ψð Þeζ ηmδ

Γ mδ + 1ð Þ :

ð35Þ

When α = 1, the VITM solution is

μ ζ, ψ, ηð Þ = 1 − ψð Þeζ 〠
∞

m=0

ηð Þm
m!

: ð36Þ

The exact solution in closed form is

μ ζ, ψ, ηð Þ = 1 − ψð Þe ζ+ηð Þ: ð37Þ

In Figure 3, the exact and the VITM solutions of problem
2 at δ = 1 are shown by subgraphs, respectively. From the
given figures, it can be seen that both the VITM and exact
results are in close contact with each other. Also, in
Figure 4, the VITM results of problem 2 are investigated at
different fractional-order δ = 0:8 and 0:6 of 3D and 2D. It is
analyzed that in Table 2, the time-fractional problem results
are convergent to an integer order effect as time-fractional
analysis to integer order.

4.3. Problem. Consider the two-dimensional fractional-order
diffusion equation [11]

∂δμ
∂ηδ

= ∂2μ
∂ζ2

+ ∂2μ
∂ψ2 0 < δ ≤ 1, ð38Þ

with the initial condition

μ ζ, ψ, 0ð Þ = e ζ+ψð Þ: ð39Þ
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Applying VITM on equation (38), we have

μm+1 ζ, ψ, ηð Þ = S−1
μm ζ, ψ, ηð Þ

s

� �
+ S−1 λ sð ÞS ∂2μm

∂ζ2
+ ∂2μm

∂ψ2

( )" #
,

ð40Þ

where the Lagrange multiplier λðsÞ is

λ sð Þ = −
uδ

sδ
,

μm+1 ζ, ψ, ηð Þ = S−1
μm ζ, ψ, ηð Þ

s

� �
− S−1

uδ

sδ
S

∂2μm
∂ζ2

+ ∂2μm
∂ψ2

( )" #
:

ð41Þ

Now take,

μ0 ζ, ψ, ηð Þ = e ζ+ψð Þ, ð42Þ

consequently, we get

m = 0, 1, 2, 3⋯

μ1 ζ, ψ, ηð Þ = S−1
μ0 ζ, ψ, ηð Þ

s

� �
− S−1

uδ

sδ
S

∂2μ0
∂ζ2

+ ∂2μ0
∂ψ2

( )" #
,

μ1 ζ, ψ, ηð Þ = e ζ+ψð Þ + 2e ζ+ψð Þ ηδ

Γ δ + 1ð Þ ,

μ2 ζ, ψ, ηð Þ = S−1
μ1 ζ, ψ, ηð Þ

s

� �
− S−1

uδ

sδ
S

∂2μ1
∂ζ2

+ ∂2μ1
∂ψ2

( )" #
,

μ2 ζ, ψ, ηð Þ = e ζ+ψð Þ + 2e ζ+ψð Þ ηδ

Γ δ + 1ð Þ + 4e ζ+ψð Þ η2δ

Γ 2δ + 1ð Þ ,

μ3 ζ, ψ, ηð Þ = S−1
μ2 ζ, ψ, ηð Þ

s

� �
− S−1

uδ

sδ
S

∂2μ2
∂ζ2

+ ∂2μ2
∂ψ2

( )" #
,

μ3 ζ, ψ, ηð Þ = e ζ+ψð Þ + 2e ζ+ψð Þ ηδ

Γ δ + 1ð Þ + 4e ζ+ψð Þ η2δ

Γ 2δ + 1ð Þ

+ 16e ζ+ψð Þ η3δ

Γ 3δ + 1ð Þ ,

⋮ ð43Þ
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Figure 1: Graph of exact and analytical results of Problem 3.1.
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Figure 2: The different fractional-order graphs of Problem 3.1.
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The approximate result of equation (38) can be achieved
as

μ ζ, ψ, ηð Þ = e ζ+ψð Þ + 2e ζ+ψð Þ ηδ

Γ δ + 1ð Þ + 4e ζ+ψð Þ η2δ

Γ 2δ + 1ð Þ

+ 16e ζ+ψð Þ η3δ

Γ 3δ + 1ð Þ+⋯+ 2ð Þme ζ+ψð Þ ηmδ

Γ mδ + 1ð Þ ,

μ ζ, ψ, ηð Þ = e ζ+ψð Þ 1 + 2ηδ
Γ δ + 1ð Þ +

2ηδ
� �2

Γ 2δ + 1ð Þ +
2ηδ
� �3

Γ 3δ + 1ð Þ

 

+ 2ηδ
� �4

Γ 4δ + 1ð Þ+⋯+ 2ηδ
� �m

Γ mδ + 1ð Þ

!
,

μ ζ, ψ, ηð Þ = e ζ+ψð Þ 〠
∞

m=0

ηδ
� �m

Γ mδ + 1ð Þ = 1 − ψð ÞeζEδ ηδ
� �

: ð44Þ

When δ = 1, then the VITM solution is

μ ζ, ψ, ηð Þ = e ζ+ψð Þ 〠
∞

m=0

ηð Þm
m!

: ð45Þ

The exact solution in closed form is

μ ζ, ψ, ηð Þ = e ζ+ψ+ηð Þ: ð46Þ

In Figure 5, the exact and the VITM solutions of problem
3 at δ = 1 are shown by subgraphs, respectively. From the
given figures, it can be seen that both the VITM and exact
results are in close contact with each other. Also, in
Figure 6, the VITM results of problem 3 are investigated at
different fractional-order δ = 0:8 and 0:6 of 3D and 2D. It is
analyzed that time-fractional problem results are convergent
to an integer order effect as time-fractional analysis to integer
order.

4.4. Problem. Consider the three-dimensional fractional-
order diffusion equation [11]

∂δμ
∂ηδ

= ∂2μ
∂ζ2

+ ∂2μ
∂ψ2 + ∂2μ

∂I2 , 0 < δ ≤ 1, η ≥ 0, ð47Þ

Table 1: VITM at fractional-order value δ = 0:8 and absolute error δ = 1 of example 1.

η ζ δ = 0:75 δ = 1 Exact AE δ = 1ð Þ

0.5

1 0.853687662 0.7165300518 0.7165306597 7.56E-08

2 0.383587401 0.3331299364 0.3331301601 3.37E-08

3 0.210647180 0.0930849163 0.0930849986 9.35E-09

4 0.048026028 0.0411973531 0.0411973834 4.24E-09

5 0.024621114 0.0222089854 0.0222089965 2.10E-09

1

1 1.389724464 0.9988367591 1.0000000000 9.35E-06

2 0.580784320 0.4778488184 0.4778794412 4.42E-06

3 0.283191872 0.2453240178 0.2453352832 2.24E-06

4 0.074713729 0.0587829240 0.0587870683 5.45E-07

5 0.034438971 0.0193141142 0.0193156388 2.32E-07
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Figure 3: Graph of exact and approximate solutions of Problem 3.2.
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with the initial condition

μ ζ, ψ,I, 0ð Þ = sin ζ sin ψ sin I: ð48Þ

Applying VITM on equation (47), we have

μm+1 ζ, ψ,I, ηð Þ = S−1
μm ζ, ψ,I, ηð Þ

s

� �

+ S−1 λ sð ÞS ∂2μm
∂ζ2

+ ∂2μm
∂ψ2 + ∂2μm

∂I2

( )" #
,

ð49Þ

where the Lagrange multiplier λðsÞ is

λ sð Þ = −
uδ

sδ
,

μm+1 ζ, ψ,I, ηð Þ = S−1
μm ζ, ψ,I, ηð Þ

s

� �

− S−1
uδ

sδ
S

∂2μm
∂ζ2

+ ∂2μm
∂ψ2 + ∂2μm

∂I2

( )" #
:

ð50Þ

Now take,

μ0 ζ, ψ,I, ηð Þ = sin ζ sin ψ sin I, ð51Þ
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Figure 4: The different fractional-order δ graphs of Problem 3.2.

Table 2: VITM at fractional-order value δ = 0:8 and absolute error δ = 1 of example 2.

η ζ δ = 0:75 δ = 1 Exact AE δ = 1ð Þ

0.5

1 0.6873975264 0.4262266609 0.326227766 2.23E-07

2 0.0687397526 0.0426226660 0.042622776 2.34E-08

3 0.0067739752 0.0042622666 0.004262277 0.21E-09

4 0.0006773975 0.0004362266 0.000436227 1.12E-10

5 0.0000687397 0.0000446226 0.000044622 2.14E-10

1

1 2.7771190120 0.9984599728 1.000000000 4.56E-05

2 0.3567119012 0.0998953372 0.100000000 5.89E-07

3 0.0376711901 0.0098746437 0.010000000 7.12E-07

4 0.0042671190 0.0009988544 0.001000000 7.89E-08

5 0.0004567119 0.0000998459 0.000100000 7.22E-09
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consequently, we get

m = 0, 1, 2, 3⋯

μ1 ζ, ψ,I, ηð Þ = S−1
μ0 ζ, ψ,I, ηð Þ

s

� �

− S−1
uδ

sδ
S

∂2μ0
∂ζ2

+ ∂2μ0
∂ψ2 + ∂2μ0

∂I2

( )" #
,

μ1 ζ, ψ,I, ηð Þ = sin ζ sin ψ sin I 1 − 3 ηδ

Γ δ + 1ð Þ
	 


,

μ2 ζ, ψ,I, ηð Þ = S−1
μ1 ζ, ψ,I, ηð Þ

s

� �

− S−1
uδ

sδ
S

∂2μ1
∂ζ2

+ ∂2μ1
∂ψ2 + ∂2μ1

∂I2

( )" #
,

μ2 ζ, ψ,I, ηð Þ = sin ζ sin ψ sin I 1 − 3 ηδ

Γ δ + 1ð Þ
	

+ −3ð Þ2 η2δ

Γ 2δ + 1ð Þ


,

μ3 ζ, ψ,I, ηð Þ = S−1
μ2 ζ, ψ,I, ηð Þ

s

� �

− S−1
uδ

sδ
S

∂2μ2
∂ζ2

+ ∂2μ2
∂ψ2 + ∂2μ2

∂I2

( )" #
,

μ3 ζ, ψ,I, ηð Þ = sin ζ sin ψ sin I 1 − 3 ηδ

Γ δ + 1ð Þ
	

+ −3ð Þ2 η2δ

Γ 2δ + 1ð Þ + −3ð Þ3 η3δ

Γ 3δ + 1ð Þ


,

⋮ ð52Þ

The approximate result of equation (47) can be
achieved as

u ζ, ψ,I, ηð Þ = sin ζ sin ψ sin I

� 1 − 3 ηδ

Γ δ + 1ð Þ + −3ð Þ2 η2δ

Γ 2δ + 1ð Þ
	

+ −3ð Þ3 η3δ

Γ 3δ + 1ð Þ+⋯+ −3ð Þm ηmδ

Γ mδ + 1ð Þ


:

ð53Þ

When δ = 1, then the VITM solution in a closed form
is

μ ζ, ψ,I, ηð Þ = sin ζ sin ψ sin I

� 1 − 3η + −3ηð Þ2
2! + −3ηð Þ3

3! + −3ηð Þ4
4! +⋯

 !
:

ð54Þ

The exact solution in closed form is

μ ζ, ψ,I, ηð Þ = e−3η sin ζ sin ψ sin I: ð55Þ

In Figure 7, the exact and the VITM solutions of prob-
lem 4 at δ = 1 are shown by subgraphs, respectively. From
the given figures, it can be seen that both the VITM and
exact results are in close contact with each other. Also,
in Figure 8, the VITM results of problem 4 are investi-
gated at different fractional-order δ = 0:8 and 0:6. It is
analyzed that time-fractional problem results are conver-
gent to an integer order effect as time-fractional analysis
to integer order.

4.5. Example. Consider the fractional-order nonlinear
convection-diffusion equation

∂δμ
∂ηδ

= ∂2μ
∂ζ2

−
∂μ
∂ζ

+ ∂
∂η

μ
∂2μ
∂ζ2

 !
− 2ζ, 0 < ζ ≤ 1, 0 < δ ≤ 1, η > 0,

ð56Þ
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Figure 5: Graph of exact and approximate solutions of Problem 3.3.
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with the boundary conditions

μ 0, ηð Þ = 2η, μ 1, ηð Þ = 1 + 2η, ð57Þ

and initial condition

μ ζ, 0ð Þ = ζ2, ð58Þ

Applying VITM on equation (56), we have

μm+1 ζ, ηð Þ = S−1
μm ζ, ηð Þ

s

� �

+ S−1 λ sð ÞS ∂2μm
∂ζ2

−
∂μm
∂ζ

+ ∂
∂η

μm
∂2μm
∂ζ2

 !
− 2ζ

( )" #
,

ð59Þ

where the Lagrange multiplier is λðsÞ:

λ sð Þ = −
uδ

sδ
,

μm+1 ζ, ηð Þ = S−1
μm ζ, ηð Þ

s

� �

− S−1
uδ

sδ
S

∂2μm
∂ζ2

−
∂μm
∂ζ

+ ∂
∂η

μm
∂2μm
∂ζ2

 !
− 2ζ

( )" #
:

ð60Þ

Now take,

μ0 ζ, ηð Þ = ζ2, ð61Þ

1

20

40

60

80

100

120

140

1 2 3
20

0 1 2 3

40

60

80

100

120

140

0.8
0.60.40.2y

x

x

0

1
0.8

0.7
0.6

Figure 6: The different fractional-order graphs of δ Problem 3.3.
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Figure 7: Graph of exact and approximate solutions of Problem 3.4.
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consequently, we get

m = 0, 1, 2, 3⋯

μ1 ζ, ηð Þ = S−1
μ0 ζ, ηð Þ

s

� �

− S−1
uδ

sδ
S

∂2μ0
∂ζ2

−
∂μ0
∂ζ

+ ∂
∂η

μ0
∂2μ0
∂ζ2

 !
− 2ζ

( )" #
,

μ1 ζ, ηð Þ = ζ2 + 2 − 4ζð Þ ηδ

Γ δ + 1ð Þ ,

μ2 ζ, ηð Þ = S−1
μ1 ζ, ηð Þ

s

� �

− S−1
uδ

sδ
S

∂2μ1
∂ζ2

−
∂μ1
∂ζ

+ ∂
∂η

μ1
∂2μ1
∂ζ2

 !
− 2ζ

( )" #
,

μ2 ζ, ηð Þ = ζ2 + 2 − 4ζð Þ ηδ

Γ δ + 1ð Þ + 4 η2δ

Γ 2δ + 1ð Þ

− 4ζ 3ζ − 1ð Þ η2δ−1

Γ 2δð Þ ,

μ3 ζ, ηð Þ = S−1
μ2 ζ, ηð Þ

s

� �

− S−1
uδ

sδ
S

∂2μ2
∂ζ2

−
∂μ2
∂ζ

+ ∂
∂η

μ2
∂2μ2
∂ζ2

 !
− 2ζ

( )" #
,

μ3 ζ, ηð Þ = ζ2 + 2 − 4ζð Þ ηδ

Γ δ + 1ð Þ + 4 η2δ

Γ 2δ + 1ð Þ

− 4ζ 3ζ − 1ð Þ η
2δ−1

Γ 2δð Þ − 24 η3δ−1

Γ 3δð Þ − 4 6ζ + 1ð Þ η
3δ−1

Γ 3δð Þ

− 4ζ2 6ζ − 1ð Þ η3δ−2

Γ 3δ − 1ð Þ − 8 1 − 2ζð Þ Γ 2δ + 1ð Þη3δ−1
Γ 3δð Þ Γ δ + 1ð Þð Þ2

+ 8ζ η3δ−1

Γ 3δð Þ + 8ζ2 1 − 3ζð Þ η3δ−2

Γ 3δ − 1ð Þ :

ð62Þ

The approximate result of equation (56) can be
achieved as

μ ζ, ηð Þ = ζ2 + 2 − 4ζð Þ ηδ

Γ δ + 1ð Þ + 4 η2δ

Γ 2δ + 1ð Þ

− 4ζ 3ζ − 1ð Þ η
2δ−1

Γ 2δð Þ − 24 η3δ−1

Γ 3δð Þ

− 4 6ζ + 1ð Þ η
3δ−1

Γ 3δð Þ − 4ζ2 6ζ − 1ð Þ η3δ−2

Γ 3δ − 1ð Þ

− 8 1 − 2ζð Þ Γ 2δ + 1ð Þη3δ−1
Γ 3δð Þ Γ δ + 1ð Þð Þ2

+ 8ζ η3δ−1

Γ 3δð Þ

+ 8ζ2 1 − 3ζð Þ η3δ−2

Γ 3δ − 1ð Þ+⋯:

ð63Þ

The exact result of equation (56) is

μ ζ, ηð Þ = ζ2 + 2η: ð64Þ

5. Conclusion

In this article, an extended variational iteration transform
method is implemented to achieve the analytical result of
time-fractional diffusion equations. The suggested method
is an effective and simple tool to solve fractional-order par-
tial differential equations, because it applies the Lagrange
multiplier directly to solve fractional-order partial differen-
tial equations. In conclusion, the current technique has the
small number of calculations and straightforward imple-
mentation and therefore can be applied to other fractional-
order partial differential equation, which frequently arises
in applied science.
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Figure 8: The fractional-order of δ = 0:8 and 0:6 of Problem 3.4.
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VITM: Variational iteration transform method
ST: Shehu transform
DE: Diffusion equation
FC: Fractional calculus
PDEs: Partial differential equations
ADM: Adomian decomposition method.

Data Availability

The numerical data used to support the findings of this study
are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Nehad Ali Shah and Jae Dong Chung contributed equally to
this work and are first coauthors.

Acknowledgments

The authors extend their appreciation to the Deanship of
Scientific Research at King Khalid University for funding this
work through a research group program under Grant No.
RGP.2/38/42. This work was supported by Korea Institute
of Energy Technology Evaluation and Planning (KETEP) grant
funded by the Korea government (MOTIE) (20202020900060,
The Development and Application of Operational Technology
in Smart FarmUtilizingWaste Heat from Particulates Reduced
Smokestack)

References

[1] K. B. Oldham and J. Spanier, The Fractional Calculus, Aca-
demic Press, New York, 1974.

[2] K. S. Miller and B. Ross, An Introduction to the Fractional Cal-
culus and Fractional Differential Equations, John Wiley and
Sons, Inc., New York, 2003.

[3] I. Podlubny, Fractional Differential Equations, Academic
Press, New York, 1999.

[4] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Application of Fractional Differential Equations, Elsevier,
Amsterdam, 2006.

[5] A. Bejan, “Second-law analysis in heat transfer and thermal
design,” in Advances in Heat Transfers, vol. 15, pp. 1–58, Aca-
demic Press Inc., 1982.

[6] A. Bejan, “A study of entropy generation in fundamental con-
vective heat transfer,” Journal of Heat Transfer, vol. 101, no. 4,
pp. 718–725, 1979.

[7] P. Agarwal and A. A. El-Sayed, “Non-standard finite difference
and Chebyshev collocation methods for solving fractional dif-
fusion equation,” Physica A: Statistical Mechanics and its
Applications, vol. 500, pp. 40–49, 2018.

[8] L. Li, Z. Jiang, and Z. Yin, “Fourth-order compact finite
difference method for solving two-dimensional convection-
diffusion equation,” Advances in Difference Equations, vol. 2018,
no. 1, 24 pages, 2018.

[9] M. Badr, A. Yazdani, and H. Jafari, “Stability of a finite volume
element method for the time-fractional advection diffusion
equation,” Numerical Methods for Partial Differential Equa-
tions, vol. 34, no. 5, pp. 1459–1471, 2018.

[10] S. Das, “Analytical solution of a fractional diffusion equation
by variational iteration method,” Computers & Mathematics
with Applications, vol. 57, no. 3, pp. 483–487, 2009.

[11] S. S. Ray, “Analytical solution for the space fractional diffusion
equation by two-step Adomian decomposition method,” Com-
munications in Nonlinear Science and Numerical Simulation,
vol. 14, no. 4, pp. 1295–1306, 2009.

[12] F. Liu, P. Zhuang, I. Turner, K. Burrage, and V. Anh, “A new
fractional finite volume method for solving the fractional dif-
fusion equation,” Applied Mathematical Modelling, vol. 38,
no. 15-16, pp. 3871–3878, 2014.

[13] M. Inokuti, H. Sekine, and T. Mura, “General use of the
Lagrange multiplier in nonlinear mathematical physics,” in
Variational method in the mechanics of solids, vol. 33,
pp. 156–162, Elsevier, 1978.

[14] J.-H. He, “Approximate analytical solution for seepage flow
with fractional derivatives in porous media,” Computer
Methods in Applied Mechanics and Engineering, vol. 167,
no. 1-2, pp. 57–68, 1998.

[15] J.-H. He, “Variational iteration method - a kind of non-linear
analytical technique: some examples,” International Journal of
Non-Linear Mechanics, vol. 34, no. 4, pp. 699–708, 1999.

[16] J. Hristov, “An exercise with the He’s variation iteration
method to a fractional Bernoulli equation arising in transient
conduction with non-linear heat flux at the boundary,” Inter-
national Review of Chemical Engineering, vol. 4, no. 5,
pp. 489–497, 2012.

[17] E. Hetmaniok, K. Kaczmarek, D. Słota, R. Wituła, and
A. Zielonka, “Application of the variational iteration method
for determining the temperature in the heterogeneous
casting-mould system,” International Review of Chemical
Engineering, vol. 4, no. 5, pp. 511–515, 2012.

[18] M. A. Abdou and A. A. Soliman, “Variational iteration method
for solving Burger’s and coupled Burger’s equations,” Journal
of Computational and Applied Mathematics, vol. 181, no. 2,
pp. 245–251, 2005.

[19] A. M. Wazwaz, “The variational iteration method: a reliable
analytic tool for solving linear and nonlinear wave equations,”
Computers and Mathematics with Applications, vol. 54, no. 7-
8, pp. 926–932, 2007.

[20] M. Inc, “Numerical simulation of KdV and mKdV equations
with initial conditions by the variational iteration method,”
Chaos, Solitons and Fractals, vol. 34, no. 4, pp. 1075–1081,
2007.

[21] J. H. He and X. H. Wu, “Variational iteration method: new
development and applications,” Computers and Mathematics
with Applications, vol. 54, no. 7-8, pp. 881–894, 2007.

[22] G. C. Wu and E. W. M. Lee, “Fractional variational iteration
method and its application,” Physics Letters A, vol. 374,
no. 25, pp. 2506–2509, 2010.

[23] E. Hesameddini and H. Latifizadeh, “Reconstruction of varia-
tional iteration algorithms using the Laplace transform,” Inter-
national Journal of Nonlinear Sciences and Numerical
Simulation, vol. 10, no. 11-12, pp. 1377–1382, 2009.

[24] S. A. Khuri and A. Sayfy, “A Laplace variational iteration strat-
egy for the solution of differential equations,” Applied Mathe-
matics Letters, vol. 25, no. 12, pp. 2298–2305, 2012.

11Journal of Function Spaces



[25] G. C. Wu and D. Baleanu, “Variational iteration method for
fractional calculus an universal approach by Laplace trans-
form,” Advances in Difference Equations, vol. 2013, 9 pages,
2013.

[26] H. Jafari and H. K. Jassim, “Local fractional Laplace variational
iteration method for solving nonlinear partial differential
equations on Cantor sets within local fractional operators,”
Journal of Zankoy Sulaimani - Part A, vol. 16, pp. 49–57, 2014.

[27] H. F. Ahmed, M. S. M. Bahgat, and M. Zaki, “Numerical
approaches to system of fractional partial differential equa-
tions,” Journal of the Egyptian Mathematical Society, vol. 25,
no. 2, pp. 141–150, 2017.

[28] J. A. T. Machado, D. Baleanu, W. Chen, and J. Sabatier, “New
trends in fractional dynamics,” Journal of Vibration and Con-
trol, vol. 20, no. 7, pp. 963–963, 2014.

[29] D. Baleanu, Z. B. Güvenç, and J. A. Tenreiro Machado, Eds.,
New Trends in Nanotechnology and Fractional Calculus Appli-
cations, Springer, New York, 2010.

[30] S. Maitama and W. Zhao, “New integral transform: Shehu
transform a generalization of Sumudu and Laplace transform
for solving differential equations,” 2019, https://arxiv.org/
abs/1904.11370.

[31] A. Bokhari, D. Baleanu, and R. Belgacem, “Application of
Shehu transform to Atangana-Baleanu derivatives,” Journal
of Mathematics and Computer Science, vol. 20, no. 2,
pp. 101–107, 2019.

[32] R. Belgacem, D. Baleanu, and A. Bokhari, “Shehu transform
and applications to Caputo-fractional differential equations,”
International Journal of Analysis and Applications, vol. 17,
no. 6, pp. 917–927, 2019.

12 Journal of Function Spaces

https://arxiv.org/abs/1904.11370
https://arxiv.org/abs/1904.11370


Research Article
Qualitative Analysis of a Three-Species Reaction-Diffusion
Model with Modified Leslie-Gower Scheme

Xiaoni Wang,1 Gaihui Guo ,2 Jian Li ,1,2 and Mengmeng Du 2

1School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
2School of Arts and Sciences, Shaanxi University of Science and Technology, Xi’an 710021, China

Correspondence should be addressed to Gaihui Guo; guogaihui@sust.edu.cn and Jian Li; jianli@sust.edu.cn

Received 10 December 2020; Revised 27 March 2021; Accepted 5 April 2021; Published 4 May 2021

Academic Editor: Qifeng Zhang

Copyright © 2021 Xiaoni Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The qualitative analysis of a three-species reaction-diffusion model with a modified Leslie-Gower scheme under the Neumann
boundary condition is obtained. The existence and the stability of the constant solutions for the ODE system and PDE system
are discussed, respectively. And then, the priori estimates of positive steady states are given by the maximum principle and
Harnack inequality. Moreover, the nonexistence of nonconstant positive steady states is derived by using Poincaré inequality.
Finally, the existence of nonconstant positive steady states is established based on the Leray-Schauder degree theory.

1. Introduction

Three-species reaction-diffusion models with Holling-type II
functional response have been a familiar subject for the anal-
ysis. Taking more practical factors into consideration, a
model with a modified Leslie-Gower scheme is worthy to
explore. Leslie-Gower’s scheme indicates that the carrying
capacity of the predator is proportional to the population
size of the prey. The existing works [1–3] are all about
models with this scheme. As a matter of fact, predators pre-
fer to prey on other prey in the event of a shortage of favorite
prey, so the research of the modified Leslie-Gower model
springs up. Aziz-Alaoui and Okiye [4] focused on a two-
dimensional continuous time dynamical system modeling a
predator-prey food chain and gave the main result of the
boundedness of solutions, the existence of an attracting set,
and the global stability of the coexisting interior equilibrium,
which was based on a modified version of the Leslie-Gower
scheme and Holling-type II scheme. Singh and Gakkhar [5]
investigated the stabilization problem of the modified Leslie-
Gower type prey-predator model with the Holling-type II
functional response. The analysis of models with a modified
Leslie-Gower scheme can be also found in [6–10].

Nonconstant positive steady states have received increas-
ing attention in recent years, see [11–18] and references

therein. Ko and Ryu [19] showed that the predator-prey
model with Leslie-Gower functional response had no noncon-
stant positive solution in homogeneous environment, but the
system with a general functional response might have at least
one nonconstant positive steady state under some conditions.
Zhang and Zhao [20] analyzed a diffusive predator-prey
model with toxins under the homogeneous Neumann bound-
ary condition, including the existence and nonexistence of
nonconstant positive steady states of this model by consider-
ing the effect of large diffusivity. Shen andWei [21] considered
a reaction-diffusion mussel-algae model with state-dependent
mussel mortality which involved a positive feedback scheme.
Wang and his partners [22] considered a tumor-immune
model with diffusion and nonlinear functional response and
investigated the effect of diffusion on the existence of noncon-
stant positive steady states and the steady-state bifurcations.
Hu and Li [23] were concerned about a strongly coupled dif-
fusive predator-prey system with a modified Leslie-Gower
scheme and established the existence of nonconstant positive
steady states. Qiu and Guo [24] analyzed a stationary Leslie-
Gower model with diffusion and advection.

Motivated by the mentioned above, we consider a three-
species reaction-diffusion model with a modified Leslie-
Gower and Holling-type II scheme under the homogeneous
Neumann boundary condition as follows:
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∂u
∂t

= u A − A1u − B1v −
C1w

1 +D1u

� �
, t > 0,

∂v
∂t

= v B − A2v − B2uð Þ, t > 0,

∂w
∂t

=w C −
C2w

1 +D2u

� �
, t > 0,

8>>>>>>>><
>>>>>>>>:

ð1Þ

where u and v represent the density of two competitors,
respectively, while w stands for the density of the predator
who preys on u. A, B, and C are all positive as the intrinsic
growth rates, A1 and A2 regard as influencing factors within
diverse populations themselves while B1 and B2 are influenc-
ing factors between different populations. All of them are
nonnegative. C1w/ð1 +D1uÞ and C2w/ð1 +D2uÞ are the
modified Leslie-Gower scheme, and C1, C2, D1, and D2 are
positive. Applying the following scaling to (1), as well as
assuming C1D2/D1C2 = 1 for simplicity of calculation:

m1 =
D1
C1

u,m2 =
A2D1
A1C1

v,m3 =
D1
A1C1

w, s = A1C1
D1

t, ð2Þ

still using u, v,w, t replace m1,m2,m3, s, the following ODE
system can be logically obtained:

∂u
∂t

= u a − u − α1v −
w

β1 + u

� �
, t > 0,

∂v
∂t

= v b − v − α2uð Þ, t > 0,

∂w
∂t

=w c −
w

β2 + u

� �
, t > 0,

u 0ð Þ ≥ 0, v 0ð Þ ≥ 0,w 0ð Þ ≥ 0,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3Þ

where a = AD1/A1C1, b = BD1/A1C1, c = CD1/A1C1, α1 = B1/
A2, α2 = B2/A1, β1 = 1/C1, β2 = 1/C2.

It is clear that ð0, 0, 0Þ, ða, 0, 0Þ, ð0, b, 0Þ, ð0, 0, cβ2Þ, and
ð0, b, cβ2Þ are nonnegative constant solutions of system (3).
ðða − α1 bÞ/ð1 − α1 α2Þ, ðb − α2 aÞ/ð1 − α1 α2 Þ, 0Þ is a semitri-
vial solution when it satisfies ða − α1bÞðb − α2aÞ > 0. When
aβ1 > cβ2, ð _u, 0, _wÞ is a semitrivial solution where

_u =
a − β1 − c +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1 − a + cð Þ2 − 4cβ2 + 4aβ1

q
2 , ð4Þ

_w = c β2 + u0ð Þ: ð5Þ
System (3) yields that

α1α2 − 1ð Þu2 + a − β1 − α1b + α1α2β1 − cð Þu
+ β1a − α1β1b − β2c = 0:

ð6Þ

If the following alternative conditions hold:

ið Þ α1α2 > 1 and a < b
α2

, ð7Þ

iið Þ α1b + c
β2
β1

< a < b
α2

, ð8Þ

there exists the unique positive equilibrium ðu∗, v∗,w∗Þ as

u∗ = −a + β1 + α1b − α1α2β1 + c +
ffiffiffiffi
Δ

p

2 α1α2 − 1ð Þ ,

v∗ = b − α2u
∗,

w∗ = c β2 + u∗ð Þ,

ð9Þ

where

Δ = a − β1 − α1b + α1α2β1 − cð Þ2
− 4 α1α2 − 1ð Þ β1a − α1β1b − β2cð Þ: ð10Þ

Taking the diffusion into account, the corresponding
PDE system can be written as

∂u
∂t

− d1Δu = u a − u − α1v −
w

β1 + u

� �
, t > 0, x ∈Ω,

∂v
∂t

− d2Δv = v b − v − α2uð Þ, t > 0, x ∈Ω,

∂w
∂t

− d3Δw =w c −
w

β2 + u

� �
, t > 0, x ∈Ω,

∂u
∂n

= ∂v
∂n

= ∂w
∂n

= 0, t > 0, x ∈ ∂Ω,

u x, 0ð Þ = u0 xð Þ, v x, 0ð Þ = v0 xð Þ,w x, 0ð Þ =w0 xð Þ, x ∈ �Ω,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð11Þ

where Ω ⊂ RN is a smooth bounded domain, n is the out-
ward unit normal vector on ∂Ω, Δ is the Laplace operator,
and diffusion coefficients are d1, d2, d3 > 0:

The rest of this paper is arranged as follows. In Section 2,
the stability of constant solutions for the ODE system is dis-
cussed. In Section 3, the stability of constant solutions for
the PDE system is studied. In Section 4, we focus on the
priori estimates of positive steady states. In the last two sec-
tions, we have a discussion about the nonexistence and exis-
tence of nonconstant positive steady states under different
conditions.

2. Stability of Constant Solutions for the
ODE System

In this section, we discuss the stability of constant solutions
with the condition of their existence for the ODE system.

Theorem 1. For the ODE system (3), let Γ = fa, b, c, α1, α2,
β1, β2g and 1/ðβ1 + u∗ Þ ≜ B.

(i) ð0, 0, 0Þ, ða, 0, 0Þ, ð0, b, 0Þ, ð0, 0, cβ2Þ and ðða − α1 bÞ
/ð1 − α1 α2 Þ, ðb − α2 aÞ/ð1 − α1 α2 Þ, 0Þ are all uncon-
ditionally unstable
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(ii) If Γ satisfies a < b/α2 , then ð _u, 0, _wÞ is unstable; if b
< α2ða − β1 − cÞ holds, ð _u, 0, _wÞ is local asymptoti-
cally stable

(iii) If Γ satisfies a > α1b + cðβ2/β1Þ, then ð0, b, cβ2Þ is
unstable; if a < α1b + cðβ2/β1Þ holds, ð0, b, cβ2Þ is
local asymptotically stable

(iv) If Γ and B satisfy 2u∗ − a + ðα1 + 1Þðb − α2u
∗Þ + β1c

B2ðβ2 + u∗Þ + c < 0, then ðu∗, v∗,w∗Þ is unstable; if 2
u∗ − a − c ≥ 0 and c − α1α2u

∗ ≥ 0 holds, ðu∗, v∗,w∗Þ
is local asymptotically stable

Proof. The Jacobian matrix of the ODE system (3) is

J =

a − 2u − α1v −
β1w

β1 + uð Þ2
−α1u −

u
β1 + u

−α2v b − α2u − 2v 0
w2

β2 + uð Þ2 0 c −
2w

β2 + u

0
BBBBBB@

1
CCCCCCA
:

ð12Þ

Obviously, we can obtain

J =
a 0 0
0 b 0
0 0 c

0
BB@

1
CCA ð13Þ

at ð0, 0, 0Þ and its corresponding characteristic polynomial is

φ λð Þ = λ − að Þ λ − bð Þ λ − cð Þ = 0, ð14Þ

so its eigenvalues are λ1 = a > 0, λ2 = b > 0, and λ3 = c > 0:
Therefore, ð0, 0, 0Þ is unstable to system (3).

By the same manner, we know that ða, 0, 0Þ, ð0, b, 0Þ, ð0,
0, cβ2Þ, and ðða − α1 bÞ/ð1 − α1 α2 Þ, ðb − α2 aÞ/ð1 − α1 α2 Þ, 0Þ
are all unstable to ODE system (3).

The Jacobian matrix of the ODE system at ð _u, 0, _wÞ is

J =
− _u + _u a − _uð Þ

β1 + _u
−α1 _u −

_u
β1 + _u

0 b − α2 _u 0
c2 0 −c

0
BBBB@

1
CCCCA: ð15Þ

The characteristic polynomial is

λ − b − α2 _uð Þ½ � λ + _u −
_u a − _uð Þ
β1 + _u

� �
λ + cð Þ + c2 _u

β1 + _u

� �
= 0:

ð16Þ

When the eigenvalue satisfies λ1 = b − α2 _u > 0, it deduces
that a < b/α2, so we can see that ð _u, 0, _wÞ is unstable to ODE
system (3). When λ1 = b − α2 _u < 0, we consider that

λ2 + _u −
_u a − _uð Þ
β1 + _u

+ c
� �

λ + c _u −
c _u a − _uð Þ
β1 + _u

+ c2 _u
β1 + _u

= 0:

ð17Þ

Letp1 = _u − ð _uða − _uÞÞ/ðβ1 + _u Þ + c, p2 = c _u − ðc _uða − _u Þ
/β1 + _uÞ + ðc2 _u/β1 + _uÞand take value for _u, _w as (4) and (5),
we know that p1 = ð _u2 + aβ1 − cβ2 + cβ1Þ/ðβ1 + _uÞ, p2 = ððc _u
ð2 _u + β1 + c − aÞÞ/ðβ1 + _uÞÞ > 0. With the existence condi-
tion aβ1 > cβ2, p1 > 0 and p2 > 0 hold, such that equation
(17) has two solutions with negative real parts.

Because of aβ1 > cβ2,

λ1 = b − α2 _u = b − α2
a − β1 − c +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1 − a + cð Þ2 − 4cβ2 + 4aβ1

q
2

< b − α2
a − β1 − c +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1 − a + cð Þ2

q
2

ð18Þ

holds, then λ1 < 0 if b − α2ða − β1 − cÞ < 0. So we can con-
clude that when b < α2ða − β1 − cÞ, ð _u, 0, _wÞ is local asymp-
totically stable to ODE system (3).

The Jacobian matrix of the ODE system at ð0, b, cβ2Þ is

J =
a − α1b − c

β2
β1

0 0

−α2b −b 0
c2 0 −c

0
BBBB@

1
CCCCA: ð19Þ

The characteristic polynomial is

λ − a + α1b + c
β2
β1

� �
λ + bð Þ λ + cð Þ = 0: ð20Þ

The corresponding eigenvalues are λ1 = a − α1b − cðβ2/β1Þ,
λ2 = −b < 0, λ3 = −c < 0. If a > α1b + cðβ2/β1Þ, ð0, b, cβ2Þ is
unstable. Otherwise, a < α1b + cðβ2/β1Þ, ð0, b, cβ2Þ is local
asymptotically stable to ODE system (3).

The Jacobian matrix of the ODE system at ðu∗, v∗,w∗Þ is

J =

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
BBB@

1
CCCA

=

a − 2u∗ − α1 b − α2u
∗ð Þ − β1cB

2 β2 + u∗ð Þ −α1u
∗ −u∗B

−α2 b − α2u
∗ð Þ −b + α2u

∗ 0

c2 0 −c

0
BBB@

1
CCCA:

ð21Þ

The corresponding characteristic polynomial is λ3 + A1
λ2 + A2λ + A3 = 0, where
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When Γ satisfies 2u∗ − a + ðα1 + 1Þðb − α2u
∗Þ + β1cB

2ð
β2 + u∗Þ + c < 0, then A1 < 0, ðu∗, v∗,w∗Þ is unstable apply-
ing the Hurwitz criterion [25]. When 2u∗ − a − c ≥ 0, c −
α1α2u

∗ ≥ 0, we can find A1 > 0, A2 > 0, A3 > 0, A1A2 − A3 >
0. So ðu∗, v∗,w∗Þ is local asymptotically stable to ODE
system (3).

The proof is complete.

3. Stability of Constant Solutions for the
PDE System

In this section, the stability of the constant solutions with the
condition of their existence for the PDE system is discussed.

Let 0 = μ0 < μ1 < μ2 < μ3 <⋯ as the eigenvalues of the
operator −Δ over Ω under the homogeneous Neumann
boundary condition and EðμiÞ be the corresponding eigen-
space while fφij ∣ j = 1, 2,⋯, dim EðμiÞg is a set of the orthog-
onal basis of EðμiÞ, X = fU ∈ C1ð�ΩÞ × C1ð�ΩÞ × C1ð�ΩÞ ∣ ∂nU
= 0, x ∈ ∂Ωg, and Xij = fcφij ∣ c ∈ R3g. Then, X = ⊕ ∞

i=o

⊕ dim EðμiÞ
j=1 Xij.

Theorem 2. For the PDE system (11), let Γ = fa, b, c, α1, α2,
β1, β2g and 1/ðβ1 + u∗ Þ ≜ B.

(i) ð0, 0, 0Þ, ða, 0, 0Þ, ð0, b, 0Þ, ð0, 0, cβ2Þ and ðða − α1 bÞ
/ð1 − α1 α2 Þ, ðb − α2 aÞ/ð1 − α1 α2 Þ, 0Þ are all uncon-
ditionally unstable

(ii) If Γ satisfies a < b/α2, then ð _u, 0, _wÞ is unstable; if b
< α2ða − β1 − cÞ and d1/d3 > ða + β2Þ/β1 holds, ð _u,
0, _wÞ is uniformly asymptotically stable

(iii) If Γ satisfies a > α1b + cðβ2/β1Þ, then ð0, b, cβ2Þ is
unstable; if a < α1b + cðβ2/β1Þ holds, ð0, b, cβ2Þ is
uniformly asymptotically stable

(iv) If Γ and B satisfy 2u∗ − a + ðα1 + 1Þðb − α2u
∗Þ + β1c

B2ðβ2 + u∗Þ + c < 0, then ðu∗, v∗,w∗Þ is unstable; if 2
u∗ − a − c ≥ 0 and c − α1α2u

∗ ≥ 0 holds, ðu∗, v∗,w∗Þ
is uniformly asymptotically stable

Proof. The linearization of (11) at the positive constant solu-
tion U∗ can be expressed by Ut = ðDΔ +GUðU∗ÞÞU where
U = ðu, v,wÞT ,U∗ = ðu∗, v∗,w∗ÞT ,D = diag ðd1, d2, d3Þ and
GUðU∗Þ is the Jacobian matrix at U∗. For each i ≥ 0,
⊕ dim EðμiÞ

j=1 Xij is invariant under the operator DΔ +GUðU∗Þ.
And λ is an eigenvalue of DΔ + GUðU∗Þ on ⊕ dim EðμiÞ

j=1 Xij if
and only if λ is an eigenvalue of the matrix −μiD +GUðU∗Þ.

The Jacobian matrix of PDE system (11) is

According to the Theorem 1, ð0, 0, 0Þ, ða, 0, 0Þ, ð0, b, 0Þ,
ð0, 0, cβ2Þ, ðða − α1 bÞ/ð1 − α1 α2 Þ, ðb − α2 aÞ/ð1 − α1 α2 Þ, 0Þ
are all unstable to ODE system (3). Hence, there exist the
eigenvalue with positive real parts in the PDE system. It
means that ð0, 0, 0Þ, ða, 0, 0Þ, ð0, b, 0Þ, ð0, 0, cβ2Þ, ðða − α1 bÞ/
ð1 − α1 α2 Þ, ðb − α2 aÞ/ð1 − α1 α2 Þ, 0Þ are all unstable to
PDE system (11).

The Jacobian matrix of the PDE system at ð _u, 0, _wÞ is

J =
− _u + _u a − _uð Þ

β1 + _u
− d1μi −α1 _u −

_u
β1 + _u

0 b − α2 _u − d2μi 0
c2 0 −c − d3μi

0
BBBB@

1
CCCCA: ð24Þ

The characteristic polynomial is

λ − b − α2 _u − d2μið Þ½ � λ + _u −
_u a − _uð Þ
β1 + _u

+ d1μi

� ��

� λ + c + d3μið Þ + c2 _u
β1 + _u

� = 0:
ð25Þ

When the eigenvalue satisfies λ1 = b − α2 _u > 0, it deduces
that a < b/α2, there exists an eigenvalue with positive real
part, and ð _u, 0, _wÞ is unstable to PDE system (11).

It is clear that eigenvalue λ1μi = b − α2 _u − d2μi < 0 as λ1
= b − α2 _u < 0. Then, we discuss the following equation
emphatically:

A1 = 2u∗ − a + α1 + 1ð Þ b − α2u
∗ð Þ + β1cB

2 β2 + u∗ð Þ + c,
A2 = a − 2u∗ − α1 b − α2u

∗ð Þ − β1cB
2 β2 + u∗ð Þ� �

α2u
∗ − b − cð Þ + c2u∗B + α1α2u

∗ − cð Þ α2u
∗ − bð Þ,

A3 = c α2u
∗ − bð Þ a − 2u∗ − α1 b − 2α2u∗ð Þ − β1cB

2 β2 + u∗ð Þ − cu∗B
� �

:

8>><
>>: ð22Þ

J =

a − 2u − α1v −
β1w

β1 + uð Þ2
− d1μi −α1u −

u
β1 + u

−α2v b − α2u − 2v − d2μi 0
w2

β1 + uð Þ2 0 c −
2w

β2 + u
− d3μi

0
BBBBBB@

1
CCCCCCA
: ð23Þ
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λ2 + _u −
_u a − _uð Þ
β1 + _u

+ d1μi + c + d3μi

� �
λ

+ _u −
_u a − _uð Þ
β1 + _u

+ d1μi

� �
c + d3μið Þ + c2 _u

β1 + _u
= 0:

ð26Þ

Let

p3 = _u −
_u a − _uð Þ
β1 + _u

+ d1μi + c + d3μi = d1 + d3ð Þμi + p1,

p4 = _u −
_u a − _uð Þ
β1 + _u

+ d1μi

� �
c + d3μið Þ + c2 _u

β1 + _u

= d1d3μ
2
i + cd1 + _u −

_u a − _uð Þ
β1 + _u

� �
d3

	 

μi + p2:

ð27Þ

It shows that p3 > 0 on account of p1 > 0. When cd1 +
½ _u − ðð _uða − _uÞÞ/ðβ1 + _uÞÞ�d3 > 0, we know p4 > 0 holds. So
the eigenvalues all have negative real parts.

The Jacobian matrix of PDE system (11) at ð0, b, cβ2Þ can
be written as

a − α1b − c
β2
β1

− d1μi 0 0

−α2b −b − d2μi 0
c2 0 −c − d3μi

0
BBBB@

1
CCCCA: ð28Þ

The characteristic polynomial is

λ − a + α1b + c
β2
β1

+ d1μi

� �
λ + b + d2μið Þ λ + c + d3μið Þ = 0:

ð29Þ

The corresponding eigenvalues are λ1μi = a − α1b − cðβ2/β1Þ
− d1μi, λ2μi = −b − d2μi < 0 and λ3μi = −c − d3μi < 0. If a >
α1b + cðβ2/β1Þ, there exists an eigenvalue with positive real
part; ð0, b, cβ2Þ is unstable to PDE system (11). On the
contrary, if a < α1b + cðβ2/β1Þ, the eigenvalues all have
negative real parts.

The Jacobian matrix of the PDE system at ðu∗, v∗,w∗Þ is

Its characteristic polynomial is λ3 + A1μiλ
2 + A2μiλ +

A3μi = 0, where

When 2u∗ − a + ðα1 + 1Þðb − α2u
∗Þ + β1cB

2ðβ2 + u∗Þ + c
< 0, there exists an eigenvalue with positive real part; ðu∗,
v∗,w∗Þ is unstable to PDE system (11).

When A1 > 0 and d1, d2, d3 > 0, A1μi > 0 holds. Simi-
larly, A2μi > 0 since A2 > 0 and d1, d2, d3 > 0. If 2u∗ − a −
c ≥ 0, c − α1α2u

∗ ≥ 0, we have d3a11a22 + d2a11a33 + d1a22
a33 − d3a12a21 − d2a13a31 > 0 and d1d2a33 + d1d3a22 + d2d3
a11 < 0. As a result of A3 > 0 and d1, d2, d3 > 0, A3μi > 0
can be obtained. What is more, A1A2 − A3 > 0 leads to
A1μiA2μi − A3μi > 0. Thus, the eigenvalues all have negative
real parts.

In the following, we shall prove that there exists a positive
constant κ when the corresponding eigenvalues all have
negative real parts, such that

Re λ1μi

� �
, Re λ2μi

� �
, Re λ3μi

� �
< −κ, for all i ≥ 1: ð32Þ

Let λ = μiζ, then

ψi λð Þ = μ3i ζ
3 + A1μiμ

2
i ζ

2 + A2μiμiζ + A3μi ≜ ~ψi ζð Þ: ð33Þ

GU U∗ð Þ =
a − 2u∗ − α1 b − α2u

∗ð Þ − β1cB
2 β2 + u∗ð Þ − d1μi −α1u

∗ −u∗B

−α2 b − α2u
∗ð Þ −b + α2u

∗ − d2μi 0
c2 0 −c − d3μi

0
BB@

1
CCA: ð30Þ

A1μi = d1 + d2 + d3ð Þμi + A1,

A2μi = d1d2 + d1d3 + d2d3ð Þμ2i − d1a22 + d2a11 + d1a33 + d3a11 + d2a33 + d3a22ð Þμi + A2,

A3μi = d1d2d3μ
3
i − d1d2a33 + d1d3a22 + d2d3a11ð Þμ2i + d3a11a22 + d2a11a33 + d1a22a33 − d3a12a21 − d2a13a31ð Þμi + A3:

8>>><
>>>:

ð31Þ
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Since μi →∞ as i→∞, it follows that

lim
i→∞

~ψi ζð Þ
μ3i

	 

= ζ3 + d2 + d2 + d3ð Þζ2 + d1d2 + d1d3 + d2d3ð Þζ

+ d1d2d3 ≜ �ψ ζð Þ:
ð34Þ

Applying the Hurwitz criterion, the three roots ζ1, ζ2, ζ3
of �ψðζÞ = 0 all have negative real parts. Thus, there exists a
positive constant κ′ such that Re ðζ1Þ, Re ðζ1Þ, Re ðζ1Þ ≤ −κ′
. By continuity, there exists i0 such that the three roots ζi1,
ζi2, ζi3 of �ψðζÞ = 0 satisfy

Re ζi1f g, Re ζi2f g, Re ζi3f g ≤ −
κ′
2 , for all i ≥ i0: ð35Þ

Hence, Re ðλ1μiÞ, Re ðλ2μiÞ, Re ðλ3μiÞ ≤ −μiκ′/2 ≤ −κ′/2
for all i ≥ i0:

Let −κ′′ = max
1≤i≤i0

fRe ðλ1μiÞ, Re ðλ2μiÞ, Re ðλ3μiÞg,κ =min

fκ′, κ′′g. Then, for i ≥ 1,

Re λ1μi

� �
, Re λ2μi

� �
, Re λ3μi

� �
< −κ: ð36Þ

Therefore, the constant solutions are uniformly asymp-
totically stable when the corresponding eigenvalues all have
negative real parts.

The proof is complete.

4. A Priori Estimates of Positive Steady States

The corresponding steady-state problem of system (11) is

−d1Δu = u a − u − α1v −
w

β1 + u

� �
, x ∈Ω,

−d2Δv = v b − v − α2uð Þ, x ∈Ω,

−d3Δw =w c −
w

β2 + u

� �
, x ∈Ω,

∂u
∂n

= ∂v
∂n

= ∂w
∂n

= 0, x ∈ ∂Ω:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð37Þ

Two lemmas are listed here for the preliminary.

Lemma 3. (Harnack inequality [26]).
Let ωðxÞ ∈ C2ðΩÞ ∩ C1ð�ΩÞ be a positive solution to Δω +

cðxÞω = 0, x ∈Ω, where cðxÞ ∈ Cð�ΩÞ, satisfying the homoge-
neous Neumann boundary condition. Then, there exists a
positive constant C∗ = C∗ðN ,Ω, kck∞Þ such that

max
�Ω

ω ≤ C∗ min
�Ω

ω: ð38Þ

Lemma 4. (maximum principle [27]).
Suppose that g ∈ CðΩ × R1Þ and bj ∈ Cð�ΩÞ, j = 1, 2,⋯,N:

(i) if ωðxÞ ∈ C2ðΩÞ ∩ C1ð�ΩÞ satisfies

Δω + 〠
N

j=1
bj xð Þωxj

+ g x, ω xð Þð Þ ≥ 0, x ∈Ω,

∂ω
∂ν

≤ 0, x ∈ ∂Ω,

ð39Þ

and ωðx0Þ =max
�Ω

ωðxÞ, then gðx0, ωðx0ÞÞ ≥ 0:

(ii) if ωðxÞ ∈ C2ðΩÞ ∩ C1ð�ΩÞ satisfies

Δω + 〠
N

j=1
bj xð Þωxj

+ g x, ω xð Þð Þ ≤ 0, x ∈Ω,

∂ω
∂ν

≥ 0, x ∈ ∂Ω,

ð40Þ

and ωðx0Þ =min
�Ω

ωðxÞ, then gðx0, ωðx0ÞÞ ≤ 0:

The results of upper and lower bounds can be stated as
follows.

Theorem 5. (upper bounds).
Assuming that ðu, v,wÞ is a positive solution of system

(37), we get

max
�Ω

u ≤ a, ð41Þ

max
�Ω

v ≤ b, ð42Þ

max
�Ω

w ≤ c β2 + að Þ: ð43Þ

Proof. Since uða − u − α1v −w/ðβ1 + uÞÞ ≤ uða − uÞ and vðb
− v − α2uÞ ≤ vðb − vÞ, such that max

�Ω
u ≤ a, max

�Ω
v ≤ b

according to Lemma 4. Because of max
�Ω

u ≤ a, it is evident

that max
�Ω

w ≤ cðβ2 + aÞ:
The proof is complete.

Theorem 6. (lower bounds).
Fix Γ and d1, d2, d3 as positive constants. Assume that

d1, d2, d3ð Þ ∈ d1,∞½ Þ × d2,∞½ Þ × d3,∞½ Þ, ð44Þ

then there exists a positive constant C = CðΓ,Ω,N , d1, d2, d3Þ
who can make every positive solution ðu, v,wÞ of system (37)
satisfy

min
�Ω

u xð Þ > C , ð45Þ

min
�Ω

v xð Þ > C , ð46Þ
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min
�Ω

w xð Þ > C: ð47Þ

Proof. Let

c1 xð Þ = d−11 a − u − α1v −
w

β1 + u

� �
,

c2 xð Þ = d−12 b − v − α2uð Þ,

c3 xð Þ = d−13 c −
w

β2 + u

� �
:

8>>>>>><
>>>>>>:

ð48Þ

In view of (41), (42), and (43), a positive constant �C = �C
ðΩ,N , �D, ΓÞ can be easily found, such that

c1 xð Þk k∞, c2 xð Þk k∞, c3 xð Þk k∞ ≤ �C, ð49Þ

where d1, d2, d3 > �D. Thus, u, v, and w satisfy that

Δu + c1 xð Þu = 0, x ∈Ω,
∂u
∂n

= 0, x ∈ ∂Ω,

Δv + c2 xð Þv = 0, x ∈Ω,
∂v
∂n

= 0, x ∈ ∂Ω,

Δw + c3 xð Þw = 0, x ∈Ω,
∂w
∂n

= 0, x ∈ ∂Ω:

ð50Þ

According to the Harnack inequality in Lemma 3, there
must be a positive constant C∗ = C∗ðΩ,N , �D, ΓÞ, such that

max
�Ω

u ≤ C∗ min
�Ω

u,

max
�Ω

v ≤ C∗ min
�Ω

v,

max
�Ω

w ≤ C∗ min
�Ω

w:

ð51Þ

Suppose that (45), (46), and (47) hold of no account.
There must be a sequence fðd1i, d2i, d3iÞg∞i=1 with ðd1i,

d2i, d3iÞ ∈ ½d1,∞Þ × ½d2,∞Þ × ½d3,∞Þ, such that the corre-
sponding positive solutions ðui, vi,wiÞ of system (37) reach
the qualification

max
�Ω

ui → 0, or max
�Ω

vi → 0 or max
�Ω

wi → 0 i→∞ð Þ: ð52Þ

Then, we apply ðui, vi,wiÞ to the system of (37) and inte-
grate by parts, so we obtain that

ð
Ω

ui a − ui − α1vi −
wi

β1 + ui

� �
dx = 0,

ð
Ω

vi b − vi − α2uið Þdx = 0,
ð
Ω

wi c −
wi

β2 + ui

� �
dx = 0:

ð53Þ

There exists a subsequence of fðd1i, d2i, d3iÞg∞i=1 accord-
ing to the Lp-regularity theory and Sobolev embedding
theorem, but we still use fðd1i, d2i, d3iÞg∞i=1 to represent for
convenience. So there must be u∗, v∗,w∗ and ð �d1, �d2, �d3Þ as
the limiting of ðui, vi,wiÞ and ðd1i, d2i, d3iÞ when i→∞.
They can be written as follows:

ui, vi,wið Þ→ u∗, v∗,w∗ð Þ ∈ C2 Ωð Þ × C2 Ωð Þ × C2 Ωð Þ,
d1i, d2i, d3ið Þ→ �d1, �d2, �d3


 �
∈ d1,∞½ Þ × d2,∞½ Þ × d3,∞½ Þ:

ð54Þ

Let i→∞, we get that

ð
Ω

u∗ a − u∗ − α1v∗ −
w∗

β1 + u∗

� �
dx = 0,

ð
Ω

v∗ b − v∗ − α2u∗ð Þdx = 0,
ð
Ω

w∗ c −
w∗

β2 + u∗

� �
dx = 0:

ð55Þ

We now discuss the following three cases.

Case 1. u∗ ≡ 0. Since vi → v∗ as i→∞, b − vi − α2ui > 0, x ∈
�Ω holds for every i≫ 1, so thatð

Ω

vi b − vi − α2uið Þdx > 0, ð56Þ

which contradicts with (55).

Case 2. v∗ ≡ 0, u∗ ≠ 0. Since ui → u∗ as i→∞, a − ui − α1vi
−wi/ðβ1 + ui Þ > 0, x ∈ �Ω holds for every i≫ 1, so that

ð
Ω

ui a − ui − α1vi −
wi

β1 + ui

� �
dx > 0, ð57Þ

which contradicts with (55).

Case 3. w∗ ≡ 0, u∗ ≠ 0, v∗ ≠ 0. Since wi →w∗ as i→∞, c −
wi/ðβ2 + ui Þ > 0, x ∈ �Ω holds for every i≫ 1, so that

ð
Ω

wi c −
wi

β2 + ui

� �
dx > 0, ð58Þ

which contradicts with (55).
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The proof is complete.

5. Nonexistence of Nonconstant Positive
Steady States

We prove the nonexistence of nonconstant positive steady
states of system (37) in this section.

Theorem 7. Let μ1 is the smallest positive eigenvalue of
operator −Δ over Ω under the homogeneous Neumann
boundary conditions and fixed positive constants d∗2 , d∗3 sat-
isfy μ1d

∗
2 > b and μ1d

∗
3 > c + 1, then there exists a positive

constant D1 =D1ðΓ, d∗2 , d∗3 Þ such that when d1 >D1, d2 ≥
d∗2 and d3 ≥ d∗3 , system (37) has no nonconstant positive
steady states.

Proof. Assume that ðu, v,wÞ is the positive solution of (37).
For any ϕ ∈ L1ðΩÞ, let �ϕ = ð1/∣Ω ∣ ÞÐ

Ω
ϕdx. The differential

equation (37) multiplies u − �u, v − �v,w − �w and integrates
by parts over Ω to get

 ∫
Ω
d1 ∇uj j2dx

  = ∫
Ω

u a� u� α1v �
w

β1 + u

� ��

 �u a� u� α1v �
w

β1 + u

� ��
u� uð Þdx

  = ∫
Ω
a u� uð Þ2 � u + uð Þ u� uð Þ2�

 � α1 uv � uvð Þ u� uð Þ

 � uw β1 + uð Þ u� uð Þ � uw β1 + uð Þ u� uð Þ
β1 + uð Þ β1 + uð Þ

�
dx,

ð59Þ

 ∫
Ω
d2 ∇vj j2dx

  = ∫
Ω
v b� v � α2uð Þ � v b� v � α2uð Þ½ �

 ⋅ v � vð Þdx
  = ∫

Ω
b v � vð Þ2 � α2 uv � uvð Þ v � vð Þ�

 � v + vð Þ v � vð Þ2�dx,
ð60Þ

 ∫
Ω
d3 ∇wj j2dx

  = ∫
Ω

∫
Ω

w c� w
β2 + u

� �
� w c� w

β2 + u

� �� ��
 ⋅ w� wð Þdx

  = ∫
Ω
c w� wð Þ2�

 �w2 β2 + uð Þ w� wð Þ � w 2 β2 + uð Þ w� wð Þ
β2 + uð Þ β2 + uð Þ

�
dx:

ð61Þ
Combine (59), (60), and (61), we have

 ∫
Ω

d1 ∇uj j2 + d2 ∇vj j2 + d3 ∇wj j2
 �
dx

  ≤ ∫
Ω
a u� uð Þ2 + b v � vð Þ2 + c w� wð Þ2�

  + α1u + α2vð Þ u� uj j v � vj j

 + 1 + w 2

β2
2

 !
u� uj j w� wj j

#
dx

  ≤ ∫
Ω

a + α1a + α2b
2ε1

+ 1 + c2 β2 + að Þ2
2ε2β2

2

" #

 ⋅ u� uð Þ2dx

  + ∫
Ω

b + ε1 α1a + α2bð Þ
2

� �
v � vð Þ2dx

  + ∫
Ω

c + 1 + ε2c
2 β2 + að Þ2
2β2

2

" #
w� wð Þ2dx,

ð62Þ

where ε1, ε2 are the arbitrary small positive constants arising
from Young inequality. Meanwhile, applying the Poincaré

inequality μ1
Ð
Ω
ð f − �f Þ2dx ≤ Ð

Ω
j∇f j2dx, we gain that

μ1

ð
Ω

d1 u − �uð Þ2 + d2 v − �vð Þ2 + d3 w − �wð Þ2� �
dx

≤
ð
Ω

a + 1 + C∗
1 ε1, ε2ð Þ½ � u − �uð Þ2dx

+
ð
Ω

b + ε1 α1a + α2bð Þ
2

� �
v − �vð Þ2dx

+
ð
Ω

c + 1 + ε2c
2 β2 + að Þ2
2β2

2

" #
w − �wð Þ2dx

ð63Þ

for some positive constants C∗
1 ðε1, ε2Þ. Choose ε1, ε2 > 0

very small such that

μ1d
∗
2 ≥ b + ε1 α1a + α2bð Þ

2 , ð64Þ

μ1d
∗
3 ≥ c + 1 + ε2c

2 β2 + að Þ2
2β2

2
: ð65Þ

Hence, (65) implies that v = �v = constant, w = �w =
constant, and u = �u = constant if d1 >D1 ≜ μ−11 ½a + 1 + C∗

1
ðε1, ε2Þ�.

The proof is complete.

6. Existence of Nonconstant Positive
Steady States

In this part, we discuss the existence of nonconstant positive
solutions of (37) by using the degree theorem.

Fix the Γ, d1, d3 still as positive number and define X+

= fU ∈X ∣U > 0, x ∈ �Ω, i = 1, 2, 3g, BðlÞ = fU ∈X ∣ l−1 < u, v
,w < l, x ∈ �Ωg, l > 0. Then, (37) can be noted as
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−DΔU = G Uð Þ, x ∈Ω,
∂U
∂n

= 0, x ∈ ∂Ω:

8<
: ð66Þ

So U is a positive solution to (37) if and only if

F Uð Þ ≜U − I − Δð Þ−1 D−1G Uð Þ +U
� �

= 0,U ∈X+, ð67Þ

where ðI − ΔÞ−1 is the inverse of I − Δ in X under the homo-
geneous Neumann boundary condition. And if FðUÞ ≠ 0 on
∂B, the Leray-Schauder degree deg ðFð·Þ, 0, BÞ can be well
defined. Besides, we note that

DUF U∗ð Þ ≜ I − I − Δð Þ−1 D−1GU U∗ð Þ + I
� �

: ð68Þ

The index of FðUÞ at U∗ can be either 1 or -1 if DUFðU∗Þ
is invertible, which is defined as indexðFð·Þ,U∗Þ = ð−1Þr ,
where r is the total number of eigenvalues with negative real
parts of DUFðU∗Þ.

Let λ be an eigenvalue ofDUFðU∗Þ on Xij for each integer
i ≥ 1 and each integer 1 ≤ j ≤ dim EðμiÞ, if and only if it is an
eigenvalue of the matrix

I − 1
1 + μi

D−1GU U∗ð Þ + I
� �

= 1
1 + μi

μiI −D−1GU U∗ð Þ� �
:

ð69Þ

Hence, DUFðU∗Þ is invertible if and only if, for all i ≥ 1,
i ∈ Z, the matrix I − ð1/ð1 + μiÞÞ½D−1GUðU∗Þ + I� is nonsin-
gular. Let

H μð Þ =H U∗ ; μð Þ = det μI −D−1GU U∗ð Þ� �
= 1
d1d2d3

det μD − GU U∗ð Þf g: ð70Þ

We can know that if HðμiÞ ≠ 0, the number of negative
eigenvalues of DUFðU∗Þ on Xij is odd if and only if HðμiÞ
< 0 for every 1 ≤ j ≤ dim EðμiÞ. According to this, we can
form the following result.

Proposition 8. Assume that the matrix μiI −D−1GUðU∗Þ is
nonsingular for all i ≥ 1, then

index F ·ð Þ,U∗ð Þ = −1ð Þσ, ð71Þ

where σ =∑i≥1,HðμiÞ<0 dim EðμiÞ.

For calculating the sign of HðμiÞ, we firstly consider the
index of ðFð·Þ,U∗Þ. The calculation shows that

det μD −GU U∗ð Þf g =Φ3 d2ð Þμ3 +Φ2 d2ð Þμ2
+Φ1 d2ð Þμ − det GU U∗ð Þf g

≜Φ d2 ; μð Þ,
ð72Þ

with

Φ1 d2ð Þ = d3a11a22 + d2a11a33 + d1a22a33 − d3a12a21 − d2a13a31,
Φ2 d2ð Þ = − d2d3a11 + d1d3a22 + d1d2a33ð Þ,
Φ3 d2ð Þ = d1d2d3,

ð73Þ

where aij are shown as (21).
Consider the dependence of Φ on d2. Let �μ1ðd2Þ, �μ2ðd2Þ,

and �μ3ðd2Þ be the three roots of Φðd2 ; μÞ = 0, so that �μ1ðd2
Þ�μ2ðd2Þ�μ3ðd2Þ = det fGU ðU∗ Þg/ðΦ3 ðd2ÞÞ. The computation
leads to det fGUðU∗Þg < 0. Therefore, one of �μ1ðd2Þ, �μ2ðd2Þ
, �μ3ðd2Þ is real and negative, and the product of the other
two is positive.

Considering the following limits:

lim
d2→∞

Φ3 d2ð Þ
d2

= d1d3,

lim
d2→∞

Φ2 d2ð Þ
d2

= − d1a33 + d3a11ð Þ,

lim
d2→∞

Φ1 d2ð Þ
d2

= a11a33 − a13a31,

lim
d2→∞

Φ d2ð Þ
d2

= μ d1d3μ
2 − d1a33 + d3a11ð Þμ + a11a33 − a13a31

� �
:

ð74Þ

We establish the following result.

Proposition 9. Assume the parameters satisfy (7) or (8) and
satisfy 2u∗ − a + ðα1 + 1Þðb − α2u

∗Þ + β1cB
2ðβ2 + u∗Þ + c < 0.

If a11a33 − a13a31 < 0, there is a positive constant D2, such that
when d2 ≥D2, the three roots �μ1ðd2Þ, �μ2ðd2Þ, �μ3ðd2Þ of Φðd2
; μÞ = 0 are all real and satisfy

lim
d2→∞

�μ1 d2ð Þ =
d1a33 + d3a11ð Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1a33 + d3a11ð Þ2 + 4d1d3 a13a31 − a11a33ð Þ

q
2d1d3

< 0,

lim
d2→∞

�μ2 d2ð Þ = 0,

lim
d2→∞

�μ3 d2ð Þ =
d1a33 + d3a11ð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1a33 + d3a11ð Þ2 + 4d1d3 a13a31 − a11a33ð Þ

q
2d1d3

≜ ~μ > 0,

ð75Þ
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−∞ < �μ1 d2ð Þ < 0 < �μ2 d2ð Þ < �μ3 d2ð Þ, ð76Þ

Φ d2 ; μð Þ < 0, μ ∈ −∞,�μ1 d2ð Þð Þ ∪ �μ2 d2ð Þ, �μ3 d2ð Þð Þ, ð77Þ

Φ d2 ; μð Þ > 0, μ ∈ �μ1 d2ð Þ, �μ2 d2ð Þð Þ ∪ �μ3 d2ð Þ,+∞ð Þ: ð78Þ
Now, we prove the existence of nonconstant positive solu-

tions of (37) when d2 is sufficiently large.

Theorem 10. Let the parameters d1, d3 are fixed, Γ satisfies (7)
or (8), and satisfies 2u∗ − a + ðα1 + 1Þðb − α2u

∗Þ + β1cB
2ðβ2

+ u∗Þ + c < 0. If a11a33 − a13a31 < 0, ~μ ∈ ðμn, μn+1Þ for some n
≥ 1, and the sum σn =∑n

i=1 dim EðμiÞ is odd. Then, D2 must
be as a positive constant such that (37) has one nonconstant
positive solution at least if d2 ≥D2.

Proof. There exists a positive constant D2 by Proposition 9,
such that for d2 ≥D2, (76), (77), and (78) hold and

0 = μ0 < �μ2 d2ð Þ < μ1, �μ3 d2ð Þ ∈ μn, μn+1ð Þ: ð79Þ

We will testify that for any d2 ≥D2, system (37) has at
least one nonconstant positive solution and the proof is
proved by contradiction. Assume on the contrary that the
statement is not true for some �d2 ≥D2. Afterwards, we fix
d2 = �d2, d

∗
1 = C∗

1 /μ1i, d∗2 = C∗
2 /μ1i, d∗3 = C∗

3 /μ1i, and

d̂1 ≥max d∗1 , d1f g,
d̂2 ≥ d∗2 ,
d̂3 ≥max d∗3 , d3f g:

ð80Þ

As for t ∈ ½0, 1�, make DðtÞ =diagðd1ðtÞ, d2ðtÞ, d3ðtÞÞ with
diðtÞ = tdi + ð1 − tÞd̂i, i = 1, 2, 3 and think about the problem

−D tð ÞΔU =G Uð Þ, x ∈Ω,
∂U
∂n

= 0, x ∈ ∂Ω:

8<
: ð81Þ

U is a nonconstant positive solution of (37) if and only if
it is a positive solution of (81) when t = 1. Obviously for any
0 ≤ t ≤ 1, U∗ is the unique constant positive solution of (81).
U is a positive solution of (81) if and only if

F t ;Uð Þ ≜U − I − Δð Þ−1 D−1 tð ÞG Uð Þ +U
� �

= 0, U ∈X+:

ð82Þ

It is evident that Fð1 ;UÞ = FðUÞ. Fð0 ;UÞ = 0 has been
shown in Theorem 7, which has only positive solution U∗

in X+. After computing, we get that

DUF t ;U∗ð Þ = I − I − Δð Þ−1 D−1 tð ÞGU U∗ð Þ + I
� �

: ð83Þ

Specifically,

DUF 0 ;U∗ð Þ = I − I − Δð Þ−1 D∧−1GU U∗ð Þ + I
� �

,

DUF 1 ;U∗ð Þ = I − I − Δð Þ−1 D−1GU U∗ð Þ + I
� �

=DUF U∗ð Þ,
ð84Þ

where D̂ =diagðd̂1, d̂2, d̂3Þ. From (70) and (72), we know that

H μð Þ = 1
d1d2d3

Φ d2 ; μð Þ: ð85Þ

In view of (76) - (79), and (85), it follows that

H μ0ð Þ =H 0ð Þ > 0,
H μið Þ < 0,  1 ≤ i ≤ n,
H μið Þ > 0, i ≥ n + 1:

ð86Þ

Thus, 0 is not an eigenvalue of the matrix μiI −D−1

GUðU∗Þ for any i ≥ 1, and

〠
i≥0,H μið Þ<0

dimE μið Þ = 〠
n

i=1
dimE μið Þ, ð87Þ

which is odd. Because of Proposition 8, it can be true that

index F 1 ; ·ð Þ,U∗ð Þ = −1ð Þr = −1ð Þσn = −1: ð88Þ

The same method is available to index ððFð0 ; ·Þ,U∗ÞÞ
= ð−1Þ0 = 1.

According to Theorems 5 and 6, we can find a positive
constant C, such that the positive solutions of (81) can meet
the demand C−1 < u, v,w < C for all ∀0 ≤ t ≤ 1. So, Fðt ;UÞ
≠ 0 on ∂BðCÞ. By using the homotopy invariance of the topo-
logical degree, it is clear that

deg F 1 ; ·ð Þ, 0, B Cð Þð Þ = deg F 0 ; ·ð Þ, 0, B Cð Þð Þ: ð89Þ

Moreover, by our assumption, both equations Fð1 ; ·Þ = 0
and Fð0 ; ·Þ = 0 have only the positive solution U∗ in BðCÞ, so

deg Fð 0 ; ·ð Þ, 0, B Cð Þ = index F 0 ; ·ð Þ,U∗ð Þ = 1,
deg Fð 1 ; ·ð Þ, 0, B Cð Þ = index F 1 ; ·ð Þ,U∗ð Þ = −1,

ð90Þ

which is contradictory with (89).
The proof is complete.
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The modified anomalous subdiffusion equation plays an important role in the modeling of the processes that become less
anomalous as time evolves. In this paper, we consider the efficient difference scheme for solving such time-fractional equation in
two space dimensions. By using the modified L1 method and the compact difference operator with fast discrete sine transform
technique, we develop a fast Crank-Nicolson compact difference scheme which is proved to be stable with the accuracy of
Oðτmin ð1+α,1+βÞ + h4Þ. Here, α and β are the fractional orders which both range from 0 to 1, and τ and h are, respectively, the
temporal and spatial stepsizes. We also consider the method of adding correction terms to efficiently deal with the nonsmooth
problems. Numerical examples are provided to verify the effectiveness of the proposed scheme.

1. Introduction

In this paper, we focus on the numerical method for the time-
fractional modified subdiffusion equation [1]:

∂tu x, tð Þ = κ1RLD
1−α
0,t + κ2RLD

1−β
0,t

� �
Δu + f x, tð Þ, x, tð Þ ∈Ω × 0, Tð �,

ð1Þ

with the initial condition uðx, 0Þ = vðxÞ and the homoge-
neous Dirichlet boundary condition. Here, x = ðx1, x2Þ, Ω is
the rectangle domain, T > 0, and Δ is the Laplacian defined
by Δ = ∂2/∂x21 + ∂2/∂x22. The parameters κ1 and κ2 are some
fixed positive constants, f and v are two given functions, 0
< α, β < 1, and RLD

γ
0,t is the Riemann-Liouville derivative of

order γ given by:

RLD
γ
0,tu ·, tð Þ = 1

Γ n − γð Þ
∂n

∂tn

ðt
0
t − sð Þn−γ−1u ·, sð Þds, n − 1 < γ < n, n ∈ℕ,

ð2Þ

where Γð·Þ is the Gamma function.

Anomalous diffusion is ubiquitous in nature and it can be
characterized by the method of mean square particle dis-
placement at the microscopic level. When the mean square
displacement (MSD) is linear with time, the particle is pre-
cisely in classical Brownian motion. If the MSD grows either
sublinearly or superlinearly with time, then this phenome-
non is regarded as the subdiffusion and superdiffusion,
respectively. Numerous experimental studies have shown
that the anomalous diffusion may adequately describe a
number of physical processes in recent decades [2, 3]. Equa-
tion (1) is an important class of anomalous diffusion models
in which the physical processes are observed to become less
anomalous as time evolves [4].

In [4], the author presented the solution of a one-
dimensional modified anomalous subdiffusion equation on
an infinite domain. The analytical solution the author
obtained contains the infinite series of Fox special functions,
which is of complex form that makes it difficult to apply to
practical numerical simulations. So, one needs to resort to
the numerical methods for efficiently solving equation (1).
Many efficient numerical methods for solving fractional
models have emerged in recent years, see the book [5] and
the two review papers [2, 6]. For equation (1), some
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numerical schemes have been developed. Ding and Li applied
two kinds of high-order compact finite difference methods to
construct efficient numerical schemes. The stability and con-
vergence analysis are proved by the Fourier method [7]. In
[8], the authors developed the compact difference scheme
based on the second-order compact approximation formula
of the first-order derivative. The two papers mentioned above
both focus on the one-dimensional case.

For the two-dimensional case, Chen and Li employed the
modified L1 method and compact difference method and
proposed a compact alternating direction implicit scheme.
By utilizing the energy method, they proved that their scheme
is stable with an accuracy of Oðτ2 min ðα,βÞ + h4Þ in the new
defined norm which is equivalent with H1-norm, under the
assumption that the solution is sufficiently smooth [1]. Such
assumption may be too restrictive to limit the scope of appli-
cation of their scheme. To address this issue, Chen proposed
two robust fully discrete finite element methods by convolu-
tion quadrature in time. He proved that the schemes are
convergent under data regularity without relying on the
assumption of the solution regularity. In addition, he also pro-
posed a Crank-Nicolson finite element scheme to numerically
compare and verify the robustness of the convolution-based
schemes in solving nonsmooth solution problems, but no
detailed theoretical analysis of the scheme was given [9]. It
seems that the numerical methods for equation (1) have not
been sufficiently studied. This motivates us to design efficient
numerical schemes for (1), especially for high-dimensional
problems where the solutions are not sufficiently smooth.

As the further work on the high-dimensional equation
(1), we focus on designing numerical schemes that are com-
putationally efficient and can handle the nonsmooth solution
case. In [10], Li et al. implemented the fourth-order compact
difference operator by a fast discrete sine transform (DST)
via the FFT algorithm, which greatly reduces the computa-
tional cost and storage requirement. Notice that the DST
technology can avoid solving matrix inversion directly and
has been successfully applied in the discretization of classical
models, such as Poisson equation [11] and general order

semilinear evolution equations [12], just to name a few. On
the other hand, the weak singularity of the fractional model
has gradually attracted the attention of scholars in the frac-
tional community, and some kinds of methods have been
proposed to resolve this issue, such as nonuniform meshes
[13–16] and convolution quadrature [9, 17, 18]. The method
of adding correction terms is also an efficient way of dealing
with nonsmooth solutions problems. However, this method
is generally not very stable as the starting weights need to
be obtained through a linear system which involves the ill-
conditioned exponential Vandermonde matrix. To resolve
this issue, Zeng et al. theoretically and numerically shown
that the accuracy of numerical solution can be efficiently
improved with only a few correction terms [19]. Since then,
a variety of numerical schemes based on the addition of cor-
rection terms have emerged for fractional problems with
nonsmooth solutions, see [3, 20, 21]. To the best of our
knowledge, it seems that the method of adding correction
terms with DST for solving equation (1) has not been consid-
ered in the existing literatures yet.

The contributions of this paper are as follows. First, we
apply the modified L1 method to discrete the Riemann-
Liouville derivative and compact difference operator with
DST to discrete the Laplacian and then naturally obtain the
fast Crank-Nicolson compact difference scheme for the
two-dimensional problem (1), see (7). Second, the stability
and error estimate are rigorously proved by the energy
method, see Theorems 2 and 3. Specially, we improve the
convergence results in [1] and guarantee computational effi-
ciency but without sacrificing the accuracy of the scheme.
Note that the small term added during the construction of
the ADI scheme in [1] destroys the accuracy of their original
scheme. Third, by using the method of adding correction
terms, we successfully improve the accuracy of the proposed
scheme in solving the nonsmooth problem with no impact
on the stability of the original scheme, see (9). Finally, we
provide concrete numerical tests to show the effectiveness
of the scheme in solving the high-dimensional problem with
nonsmooth solution, see Table 1 and Figures 1–3.

Table 1: The L2-norm errors in time for nonsmooth case in Example 1 with h = 1/64.

α, βð Þ nT
m = 0 m = 1 m = 3

L2 error Rate L2 error Rate L2 error Rate

0:3,0:8ð Þ
80 3.58E-03 — 1.71E-03 — 3.53E-04 —

160 2.24E-03 0.67 1.03E-03 0.73 2.07E-04 0.77

320 1.42E-03 0.66 6.28E-04 0.72 1.22E-04 0.76

640 9.06E-04 0.65 3.83E-04 0.71 7.31E-05 0.74

0:5,0:6ð Þ
80 1.45E-03 — 7.86E-04 — 2.93E-04 —

160 8.52E-04 0.76 4.11E-04 0.94 1.54E-04 0.93

320 5.24E-04 0.70 2.15E-04 0.93 8.05E-05 0.93

640 3.36E-04 0.64 1.13E-04 0.93 4.21E-05 0.94

0:7,0:4ð Þ
80 2.04E-03 — 1.05E-03 — 3.14E-04 —

160 1.22E-03 0.73 5.86E-04 0.85 1.72E-04 0.87

320 7.54E-04 0.70 3.28E-04 0.84 9.43E-05 0.87

640 4.76E-04 0.66 1.84E-04 0.83 5.20E-05 0.86
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The rest of the paper is organized as follows. In Section 2,
we derive the fast Crank-Nicolson compact difference
scheme by the modified L1 method and the compact differ-
ence operator with DST. In Section 3, we prove that the pro-
posed numerical scheme is stable with an accuracy of
Oðτmin ð1+α,1+βÞ + h4Þ under the assumption that the solution
is sufficiently smooth. To weaken the assumption and make
the scheme more robust in solving nonsmooth solution
problems, we present the improved version in Section 4 with
the method of adding correction terms. Numerical examples
are given in Section 5 to confirm the effectiveness of the
proposed scheme. Finally, we present the conclusions of this
paper in Section 6.

Throughout this paper, we shall let the symbol c (with or
without subscript) be a positive constant which may vary at
different locations but is always independent of the temporal
and spatial stepsizes.

2. The Compact Difference Scheme with
Fast Solver

In this section, we derive the fast compact difference scheme
for (1).

We first introduce the temporal discretization. The time
stepsize τ is given by τ = T/nT with the positive integer nT .
The grid point is denoted by tn = nτ for n ≥ 0. Let tn+1/2 =
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Figure 1: Comparison of CPU execution time between original and fast schemes with fixed α = 0:3 and β = 0:8:
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Figure 2: Comparison of CPU execution time between original and fast schemes with fixed α = 0:5 and β = 0:6
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ðtn + tn+1Þ/2. For gðtÞ ∈ C2½0, T�, the modified L1 method
for the approximation of Riemann-Liouville derivative RL

Dγ
0,tgðtÞ with γ ∈ ð0, 1Þ at t = tn+1/2 is described as:

RLD
γ
0,tg tn+1

2

� �
= �Dγ

τg
n+1/2 + Rn+1/2, ð3Þ

where ∣Rn+1/2 ∣ ≤cτ2−γ maxt∈½0,T�∣g′′ðtÞ∣ ([22], Lemma 1).

The operator �Dγ
τ in (2) is given by

�Dγ
τg

n+1/2 = b γð Þ
0 g tn+1

2

� �
− 〠

n

k=1
b γð Þ
n−k − b γð Þ

n−k+1

� �
g tk−1

2

� �
− b γð Þ

n − B γð Þ
n

� �
g t1

2

� �
− A γð Þ

n g t0ð Þ,
ð4Þ

where

b γð Þ
k = τ−γ

Γ 2 − γð Þ k + 1ð Þ1−γ − k1−γ
� �

,

B γð Þ
k = τ−γ

Γ 2 − γð Þ k + 1
2

� �1−γ
− k1−γ

 !
,

8>>>><>>>>:
A γð Þ
n = B γð Þ

n −
1 − γð Þτ−γ
Γ 2 − γð Þ n + 1

2

� �−γ
:

ð5Þ

So, applying the difference discretization ∂tuðx, tn+1/2Þ
= δtu

n+1/2 +Oðτ2Þ with δtu
n+1/2 = ðun+1 − unÞ/τ, we derive

that

δtu
n+1/2 = κ1 �D

1−α
τ + κ2 �D

1−β
τ

� �
Δun+1/2 + f n+1/2 + Rn+1/2

x , ð6Þ

where the local truncation error Rn+1/2
x =Oðτmin ð1+α,1+βÞÞ

and un+1/2 = ðun+1 + unÞ/2.

Next, we consider the spatial discretization for (4). In
order to make our discussion more general, we follow the
notations presented in [10] and always set the symbol d = 2
unless otherwise noted. Denote the domain Ω = ½xL1 , xR1 � × ½xL2
, xR2 � ×⋯ × ½xLd , xRd �. Let Mkð1 ≤ k ≤ dÞ be a positive integer.
The spatial stepsize is then denoted as hk = ðxRk − xLkÞ/Mk and
xk,jk = xLk + jkhk for jk = 0, 1,⋯,Mk: The fully discrete grids

in space are denoted by �Ωh = fxh = ðx1,j1 , x2,j2 ,⋯,xd,jd Þ ∣ 0 ≤
jk ≤Mk, 1 ≤ k ≤ dg. We further denote that Ωh = �Ωh ∩Ω and
the boundary ∂Ωh = �Ωh ∩ ∂Ω. The space of grid function is
denoted as Vh = fv ∣ v = ðvhÞxh and vh = 0 for xh ∈ ∂Ωhg. For
the grid function vh = vðxhÞ with the index vector h = ði1, i2,
⋯,idÞ at kth position, we denote the compact difference oper-
ator as �Δkvik = δ2k/H kvik , with the difference operator H kvik
≔ ðI + h2k/12δ2kÞvik . Here, I is the identity operator, δ2kvik = ð
δkvik+1/2 − δkvik−1/2Þ/hk and δkvik+1/2 ≔ ðvik+1 − vikÞ/hk: So,
the fourth-order spatial approximation of ΔvðxhÞ for xh ∈Ωh
is given by �Δhvh ≔∑k

�Δkvh.
Combining the compact difference approximation in

space with (4), we have

δtu xhð Þn+1/2 = κ1 �D
1−α
τ + κ2 �D

1−β
τ

� �
�Δhu xhð Þn+1/2 + f n+1/2 + Rn+1/2

xt , ð7Þ

where the local truncation error is given by Rn+1/2
xt =Oð

τmin ð1+α,1+βÞ + h4Þ. Here, h4 = h41 + h42 +⋯+h4d . Omitting the
small term Rn+1/2

xt , we obtain the following Crank-Nicolson
compact difference scheme for (1): find unh of uðxh, tnÞ for n
≥ 1, such that

δtu
n+1/2
h = κ1 �D

1−α
τ + κ2 �D

1−β
τ

� �
�Δhu

n+1/2
h + f n+1/2, ð8Þ

where u0h = vðxhÞ and uðxhÞjxh∈∂Ωh
= 0.
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Figure 3: Comparison of CPU execution time between original and fast schemes with fixed α = 0:7 and β = 0:4
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If we solve the discretized system (6) directly, the compu-
tational cost will be OððM1M2 ⋯MdÞ2Þ on each time level
due to the calculation of matrix inversion. Next, we employ
the fast discrete sine transform based on FFT to reduce the
computational cost to OððM1M2 ⋯MdÞ log ðM1M2 ⋯MdÞ
Þ [11], which greatly improves the computational perfor-
mance. Since the discrete sine transform of the grid function
vh at the kth position is provided by vik =∑Mk−1

jk=1 cvjk sin ðik jk
π/MkÞ, it follows from the definition of the compact differ-
ence operator �Δk that

cvjk′′ ≈cvjk 12h2k ·
sjk − 1
sjk + 5 =cvjk λ jk ,Mkð Þ, ð9Þ

where sjk = cos ðjkπ/MkÞ and 1 ≤ jk ≤Mk − 1. One can refer
to [11] or [10] for the derivation. Denote the index set ν
= fðj1, j2,⋯,jdÞ ∣ 1 ≤ jk ≤Mk − 1, 1 ≤ k ≤ dg. Therefore, the
scheme (6) is equivalent to

δt û
n+1/2
ν = κ1 �D

1−α
τ + κ2 �D

1−β
τ

� �
〠
d

k=1
λ jk ,Mkð Þ

 !
ûn+1/2ν + f∧n+1/2:

ð10Þ

The computational procedure is described as follows:

(a) For n ≥ 0, we first computed ûnν and f∧n+1/2 from unh
and f n+1/2 by means of DST

(b) And then we solve equation (10) from which the
numerical solution unh is obtained from ûnν by the
inverse of DST.

3. Stability and Error Estimates

In this part, we demonstrate the stability and error estimates
for the compact difference scheme (6).

We first introduce some useful notations. For any grid
function v ∈ Vh, the discrete L2-norm is given by ∥v∥ =ffiffiffiffiffiffiffiffiffiffiffiffiffiðv, vÞh
p

with the discrete inner product ðu, vÞh = ðQd
k=1hkÞ

∑xh∈Ωh
uhvh. The discrete H1 seminorm and H1 norm are

denoted as jvj1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k∇hvhk2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑d

k=1kδkvhk2
q

and ∥v∥1 =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥v∥2 + jvj21

q
. Here, ∇h = ðδ1, δ2,⋯,δdÞ. One can readily have

the equivalence of jvj1 and ∥v∥1 for any v ∈ Vh in view of the
embedding theorem.

We shall first need the following lemma.

Lemma 1. The operator �Dα
τ given by (3) satisfies the inequal-

ity:

−2 �Dα
τv

n+1/2, vn+1/2
� �

h
≤ 〠

n

k=1
b γð Þ
n−k vk−1/2
			 			2 − 〠

n+1

k=1
b γð Þ
n+1−k vk−1/2

			 			2 + A γð Þ
n v0
		 		2,
ð11Þ

where vn ∈ Vh, n ≥ 0.

Proof. The proof of the lemma can be obtained in view of
Lemma 4.2 in [22] or Lemma 4.4 in [1], thus, the details are
omitted here.

We are ready to present the stability of the scheme (6).

Theorem 2. The Crank-Nicolson compact difference scheme
(6) is stable in the sense that

un+1h

		 		2 ≤ c u0h
		 		2 + c1τ

α + c2τ
β

� �
∇hu

0
h

		 		2 + τ〠
n+1

k=1
f k−1/2
			 			2 !

:

ð12Þ

Proof. By taking the discrete inner product on both sides of
(6) with 2τun+1/2h , we get

2τ δtu
n+1/2
h , un+1/2h

� �
h
= 2τ κ1�D

1−α
τ + κ2 �D

1−β
τ

� �
�Δhu

n+1/2
h , un+1/2h

� �
h

+ 2τ f n+1/2, un+1/2h

� �
h
:

ð13Þ

Notice that the difference operator �Δh is bounded in dis-
crete inner product ([10], Theorem 2):

3
2 Δhu

n+1/2
h , un+1/2h

� �
h
< �Δhu

n+1/2
h , un+1/2h

� �
h
< Δhu

n+1/2
h , un+1/2h

� �
h
,

ð14Þ

with the notation Δhu
n
h =∑d

k=1δ
2
ku

n
h . By the identity

ðΔhu
n+1/2
h , un+1/2h Þh = −ð∇hu

n+1/2
h , ∇hu

n+1/2
h Þh, the Lemma 1

yields

un+1h

		 		2 − unhk k2 ≤ τ 〠
n

k=1
bn−k ∇hu

k−1/2
h

			 			2 − 〠
n+1

k=1
bn+1−k ∇hu

k−1/2
h

			 			2 

+ An ∇hu
0
h

		 		2! + 2τ f n+1/2, un+1/2h

� �
h
,

ð15Þ

where bk = bð1−αÞk + bð1−βÞk , Bk = Bð1−αÞ
k + Bð1−βÞ

k , and An =
Að1−αÞ
n + Að1−βÞ

n . With Gn = ∥unh∥
2 + τ∑n

k=1bn−kk∇hu
k−1/2
h k2, we

write the above inequality as:

Gn+1 ≤Gn + τAn ∇hu
0
h

		 		2 + 2τ f n+1/2, un+1/2h

� �
h
: ð16Þ

We sum up n from 1 to m and replace m with n to get

Gn+1 ≤G1 + τ〠
n

k=1
Ak ∇hu

0
h

		 		2 + 2τ〠
n

k=1
f k+1/2, uk+1/2h

� �
h
: ð17Þ

By the Cauchy-Schwarz inequality and the inequality
kvhk ≤ ckvhk1 with the equivalence of kvhk1 and k∇hvhk,
we obtain the estimate:
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2τ〠
n

k=1
f k+1/2, uk+1/2h

� �
h
≤ τ〠

n+1

k=1
bn+1−k ∇hu

k−1/2
h

			 			2 + τ〠
n+1

k=2

1
bn+1−k

f k−1/2
			 			2,

ð18Þ

from which we derive that

∥un+1h ∥2 ≤G1 + τ〠
n

k=1
Ak ∇u0h
		 		2 + τ〠

n+1

k=2

1
bn+1−k

f k−1/2
			 			2: ð19Þ

Next, we consider the case n = 0 for the scheme (6) for
the estimate of G1. By a similar procedure, we take the
discrete inner product for (6) with 2τu1/2h when n = 0, we
have

2τ δtu
1/2
h , u1/2h

� �
h
= 2τ κ1�D

1−α
τ + κ2�D

1−β
τ

� �
�Δhu

1/2
h , u1/2h

� �
h

+ 2τ f 1/2, u1/2h

� �
h
,

ð20Þ

from which we have

u1h
		 		2 + 2τB0 ∇hu

1/2
h

		 		2 = u0h
		 		2 + 2A0τ ∇hu

0
h, ∇hu

1/2
h

� �
h

+ 2τ f 1/2, u1/2h

� �
h
,

ð21Þ

where B0 = κ1B
ð1−αÞ
0 + κ2B

ð1−βÞ
0 and A0 = κ1A

ð1−αÞ
0 + κ2A

ð1−βÞ
0 .

Utilizing the Cauchy-Schwarz inequality again, we arrive
at the estimate for the last two terms on the right-hand
of the above inequality:

2A0τ ∇hu
0
h, ∇hu

1/2
h

� �
h
+ 2τ f 1/2, u1/2h

� �
h

≤ 2A0τ
1
4ε1

∇hu
0
h

		 		2 + ε1 ∇hu
1/2
h

		 		2� �
+ 2τ 1

4ε2
f 1/2
		 		2 + ε2 u1/2h

		 		2� �
:

ð22Þ

By letting the constants ε1 = B0/ð4A0Þ and ε2 = B0/4
and the equivalence of the ∥vh∥1 and jvhj1, we further get

2A0τ ∇hu
0
h, ∇hu

1/2
h

� �
h
+ 2τ f 1/2, u1/2h

� �
h

≤ 2τA
2
0

B0
∇hu

0
h

		 		2 + B0τ ∇hu
1/2
h

		 		2 + 2τ 1
B0

f 1/2
		 		2, ð23Þ

which implies that the G1 has the following estimate:

G1 = u1h
		 		2 + τb0 u1/2h

		 		2 ≤ u1h
		 		2 + τB0 u1/2h

		 		2
≤ u0h
		 		2 + 2τA

2
0

B0
∇hu

0
h

		 		2 + 2τ 1
B0

f 1/2
		 		2: ð24Þ

Therefore, the inequality (8) yields

un+1h

		 		2 ≤ u0h
		 		2 + 2τA

2
0

B0
∇hu

0
h

		 		2 + 2τ 1
B0

f 1/2
		 		2

+ τ〠
n

k=1
Ak ∇u0h
		 		2 + τ〠

n+1

k=2

1
bn+1−k

f 1/2
		 		2: ð25Þ

By the mean value theorem, one can readily check that
the coefficients appearing in the above inequality are all
bounded, that is, we formally have A2

0/B0 ≤ B0 = c1τ
α−1 +

c2τ
β−1, 1/B0 ≤ c3τ

min ð1−α,1−βÞ, τ∑n
k=1Ak ≤ c4τ

α + c5τ
β, and

∑n+1
k=21/bn+1−k ≤ c5 max ðT1−α, T1−βÞ. Thus, the proof is

completed.
By means of the error equation and the stability conclu-

sion, we have the following convergence result.

Theorem 3. Suppose that u ∈ C2ð0, T ; C6ðΩÞÞ, then we have
the discrete L2 -norm error estimate: For n ≥ 1,

u tnð Þ − unhk k ≤ c τmin 1+α,1+βð Þ + h4
� �

: ð26Þ

Proof. The error equation can be obtained by subtracting (6)
from (5), that is, by letting the error enh = uðxh, tnÞ − unh for
xh ∈Ωh, we have

δte
n+1/2
h = κ1 �D

1−α
τ + κ2 �D

1−β
τ

� �
�Δhe

n+1/2
h + Rn+1/2

xt : ð27Þ

It follows from Theorem 2 that

enhk k2 ≤ c e0h
		 		2 + c1τ

α + c2τ
β

� �
∇he

0
h

		 		2 + τ〠
n

k=1
Rk−1/2
xt

			 			2 !
≤ c τmin 1+α,1+βð Þ + h4
� �2

,

ð28Þ

which leads to the desired convergence result.

4. Numerical Implementation for
Nonsmooth Problems

In general, the solution of equation (1) may not have the reg-
ularity required in Theorem 3. If the nonsmooth solution
problems are directly solved by the fast Crank-Nicolson com-
pact difference scheme (7), unsatisfactory accuracy may be
obtained. In this part, we apply the method of adding suitable
correction terms when dealing with such nonsmooth issue.

Following the idea presented in [3], we, respectively, take
the numerical approximations of RLD

γ
0,tgðtÞ and the first-

order time derivative dgðtÞ/dt at t = tn+1/2 as follows:
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RLD
γ
0,tg tð Þ

t=tn+1/2 ≈ �Dγ

τg tn+1/2ð Þred + 〠
m

k=1
w γð Þ

n,k g tkð Þ − g 0ð Þð Þ,

dg tð Þ
dt






t=tn+1/2

≈ δtg tn+1/2ð Þred + 〠
m

k=1
w 1ð Þ

n,k g tkð Þ − g 0ð Þð Þ:

ð29Þ

Here, wðγÞ
n,k and wð1Þ

n,k are the starting weights which are
chosen such that the above schemes are exact for some power
functions gðtÞ = tζ j with 0 < ζj < ζj+1 and 0 ≤ j ≤m, that is,
they can be determined by the two linear systems:

〠
m

k=1
w γð Þ

n,kt
ζ j
k =

Γ 1 + ζj
� �

Γ 1 + ζj − γ
� � tζ j−γn+1/2 − �Dγ

τt
ζ j
n+1/2,

〠
m

k=1
w 1ð Þ

n,kt
ζ j
k = ζjt

ζ j−1
n+1

2
−
t
ζ j
n+1 − t

ζ j
n

τ
,

ð30Þ

respectively. So, we have the following fast Crank-Nicolson
compact difference scheme with correction terms: for n ≥ 0,

δt û
n+1/2
ν + 〠

m

k=1
w 1ð Þ

n,kû
k
ν = κ1�D

1−α
τ + κ2�D

1−β
τ

� �
〠
d

k=1
λ jk ,Mkð Þ

 !
ûn+1/2ν

+ 〠
m

k=1
w 1−αð Þ

n,k +w 1−βð Þ
n,k

� �
〠
d

k=1
λ jk ,Mkð Þ

 !
ûkν

+ f∧n+1/2:

ð31Þ

The execution procedure of the above scheme is similar
to that of (7). We can observe that the scheme (9) is stable
and effective in solving nonsmooth problems, which will be
verified by numerical examples in the next section. We
remark that the method of adding correction terms is based
on the assumption that the problem solution can be divided
into two terms: low regularity and high regularity terms (with
respect to time). Such assumption is valid for equation (1) in
view of the solution formulation discussed in [4]. By using
the starting weights in the correction terms, one can improve
the accuracy of the proposed scheme for dealing with the
nonsmooth solution problem. For further details about the
parameters m and ζj, one may refer to [19].

5. Numerical Examples

In this part, we present two numerical examples to verify the
accuracy and effectiveness of the scheme (9). The L2-norm
error at t = tn is obtained by eðn, hÞ = kuðxh, tnÞ − unhk, and
the convergence orders in time and in space are calculated
by log ðeðn, hÞ/eð2n, hÞÞ and log ðeðn, hÞ/eðn, h/2ÞÞ, respec-
tively. For simplicity, we set the parameters κ1 and κ2 in (1)
to be one and restrict the computational domain to be Ω =
ð0, 1Þ2. We remark that the numerical tests in this paper are
implemented by MATLAB software (R2020a) on an Apple

OS platform with a quad-core 2.3GHz processor and 8GB
of memory.

Example 1. (Accuracy). Consider the following problem with
zero Dirichlet boundary conditions:

∂tu x, y, tð Þ = RLD
1−α
0,t +RLD

1−β
0,t

� �
Δu x, y, tð Þ + f x, y, tð Þ, x, yð Þ ∈Ω,

u x, y, 0ð Þ = c sin πxð Þ sin πyð Þ,

8<:
ð32Þ

where

f x, y, tð Þ = sin πxð Þ sin πyð Þ γtγ−1 + 2π2c
tα−1

Γ αð Þ + 2π2c
tβ−1

Γ βð Þ
�

+ 2π2 Γ γ + 1ð Þ
Γ γ + αð Þ t

γ+α−1 + 2π2 Γ γ + 1ð Þ
Γ γ + βð Þ t

γ+β−1
�
:

ð33Þ

The exact solution is u = sin ðπxÞ sin ðπyÞðc + tγÞ with
the two given nonnegative parameters c and γ.

We verify the accuracy of the proposed scheme (9) using
two cases: the smooth and nonsmooth solutions. We first let
c = 1 and γ = 2:1. The numerical results are obtained at T = 1
by fast Crank-Nicolson compact difference scheme (9) with
no correction terms and demonstrated in Tables 2 and 3.
One can observe that accuracy of the scheme is
Oðτmin ð1+α,1+βÞ + h4Þ for different fractional orders α and β,
which is in agreement with the theoretical analysis.

Next, for the nonsmooth case, we let c = 0 and γ = 0:4.
One can see that the first-order partial derivative of u with
respect to t is ∂tuðx, y, tÞ = γtγ−1 sin ðπxÞ sin ðπyÞ, which is
unbounded at t = 0 when γ = 0:4. By using the fast Crank-
Nicolson compact difference scheme with correction terms
(9), we compute the L2-norm errors at T = 0:5 and present
the results in Tables 1 and 4. We can see from Table 1 that
when m = 0, that is, no correction term is added to the
scheme, the accuracy of the numerical solution suffers from
the low regularity of the analytic solution. In contrast, when
m is greater than 0, the accuracy of the numerical solution
seems to be improved to some extents. Similar phenomenon
is also observed in Table 4. This suggests that adding a small
number of correction terms does improve the accuracy of the
numerical solution in nonsmooth problems. Thus, the fast
Crank-Nicolson compact difference scheme with correction
terms (9) is valid for solving non-smooth solution problems.

Example 2. (Computational efficiency). In this example, we
investigate the computational efficiency of the fast Crank-
Nicolson compact difference scheme (7). So, we consider
the comparison between results from the schemes with fast
solver and the direct solver, that is, fast scheme (7) and orig-
inal scheme (6). We separately solve the smooth solution case
in Example 1 with the two numerical schemes and report the
numerical results obtained in Figures 1–3. For the given frac-
tional orders α and β, by fixing the time stepsize τ = 1/4 and
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varying the stepsize in each spatial direction simultaneously,
we obtain the CPU execution time at T = 1 for both schemes.
The comparison shows that the execution time spent using
the direct solver in numerical scheme is more expensive than
that using the DST technique, especially when the spatial
stepsize is getting smaller. This is due to the fact that the
direct solver requires to solve matrix inversion on each time
level, and such operation would be extremely inefficient
when the size of the matrix is large. It is clear that the DST
technique can speed up the computational efficiency, thus,
the proposed scheme (7) has more potential than the direct
solver (6) in high-dimensional problems.

6. Conclusions

In this paper, we propose the efficient compact difference
scheme for solving the modified anomalous subdiffusion
equation based on the modified L1 method in time and
compact difference operator in space. By combining the
DST technology, we improve the effectiveness of the scheme
for the two-dimensional problem. The stability and error
estimate of the scheme are provided rigorously. We also
improve the accuracy of the scheme for the nonsmooth solu-

tion problems with the method of adding correction terms.
Numerical examples illustrate the effectiveness and accuracy
of the proposed scheme.

The results of this paper can be readily generalized to
three-dimensional problems. In addition, for inhomoge-
neous boundary conditions, one can convert them into
homogeneous boundary condition problems by variable sub-
stitution. For other types of boundary condition problems,
such as Neumann, Robin, or other combinations of boundary
conditions, we do not discuss them in this paper. In [23], the
authors introduced the augmented matched interface and
boundary (AMIB) method to efficiently solving the Poisson
equation via the FFT. The authors also pointed out that the
AMIB method can easily handle different types of boundary
conditions. So, it may be possible to combine this method
with the correction terms to rapidly solve high-dimensional
problems with complex boundary conditions, and this is
the possible one of the future research directions.

Data Availability

The data of numerical simulation used to support the find-
ings of this study are included within the article.

Table 2: The L2-norm errors in time for smooth case in Example 1 with h = 1/64.

nT
0:3,0:8ð Þ 0:5,0:6ð Þ 0:7,0:4ð Þ

L2 error Rate L2 error Rate L2 error Rate

20 3.87E-03 — 1.95E-03 — 2.55E-03 —

40 1.63E-03 1.25 7.32E-04 1.41 1.00E-03 1.34

80 6.74E-04 1.27 2.67E-04 1.45 3.87E-04 1.37

160 2.76E-04 1.29 9.59E-05 1.48 1.48E-04 1.39

Table 3: The L2-norm errors in space for smooth case in Example 1 with τ = T/8000.

M
0:3,0:8ð Þ 0:5,0:6ð Þ 0:7,0:4ð Þ

L2 error Rate L2 error Rate L2 error Rate

4 1.57E-03 — 1.58E-03 — 1.58E-03 —

8 9.82E-05 4.00 9.73E-05 4.02 9.75E-05 4.02

16 7.72E-06 3.67 6.30E-06 3.95 6.63E-06 3.88

Table 4: The L2-norm errors in space for nonsmooth case in Example 1 with τ = T/8000.

α M
m = 0 m = 1 m = 2

L2 error Rate L2 error Rate L2 error Rate

0:3,0:8ð Þ
4 4.01E-04 — 5.32E-04 — 5.79E-04 —

8 1.59E-04 1.34 2.76E-05 4.27 1.91E-05 4.92

16 1.93E-04 -0.28 6.19E-05 -1.16 1.52E-05 0.33

0:5,0:6ð Þ
4 5.08E-04 — 5.87E-04 — 5.93E-04 —

8 5.28E-05 3.27 2.59E-05 4.50 3.16E-05 4.23

16 8.72E-05 -0.72 8.49E-06 1.61 2.80E-06 3.50

0:7,0:4ð Þ
4 4.86E-04 — 5.74E-04 — 5.89E-04 —

8 7.49E-05 2.70 1.34E-05 5.42 2.81E-05 4.39

16 1.09E-04 -0.54 2.09E-05 -0.64 6.22E-06 2.18
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In this paper, one class of finite difference scheme is proposed to solve nonlinear space fractional Sobolev equation based on the
Crank-Nicolson (CN) method. Firstly, a fractional centered finite difference method in space and the CN method in time are
utilized to discretize the original equation. Next, the existence, uniqueness, stability, and convergence of the numerical method
are analyzed at length, and the convergence orders are proved to be Oðτ2 + h2Þ in the sense of l2-norm, Hα/2-norm, and l∞

-norm. Finally, the extensive numerical examples are carried out to verify our theoretical results and show the effectiveness of
our algorithm in simulating spatial fractional Sobolev equation.

1. Introduction

The main propose of this paper is to construct one class of
the Newton linearized finite difference method based on
CN discretization in temporal direction to efficiently solve
the following spatial fractional Sobolev equation:

∂tu − μ∂αx∂tu = κ∂βxu + f uð Þ, inℝ × 0, Tð �,
u x, 0ð Þ = u0 xð Þ, inℝ × 0f g:

(
ð1Þ

where 1 < α, β ⩽ 2, μ and κ are given positive constants, u0ðxÞ
and f ðuÞ are known sufficiently smooth functions. ∂αx in (1)
denotes the Riesz fractional derivative operator for 1 < α ⩽ 2
and is defined in [1] as follows:

∂αxu x, tð Þ = −
1

2 cos πα/2ð ÞΓ 2−αð Þ
∂2

∂x2

ð∞
−∞

x − ξj j1−αu ξ, tð Þdξ:

ð2Þ

This type of equation is widely used as a mathematical
model for fluid flow through thermodynamics [2], shear in
second-order fluids [3], consolidation of clay [4], and so on.
Note that some special forms of equation (1) are frequently

encountered in many fields. For example, taking α, β = 2,
(1) reduces to a one-dimensional integral-order Sobolev
equation in the bounded domain [5]. When f ðuÞ =∑p

i=1γiu
p

with integer p and given constants γiði = 1, 2,⋯,pÞ, then the
equation is called a semiconductor equation [6]. When f ðuÞ
= 0, it is reduced to a homogeneous space fractional Sobolev
equation. When μ = 0, (1) is reduced to the classical nonlin-
ear reaction-diffusion equations. Recently, many scholars
are dedicated to the numerical investigation on fractional dif-
fusion equations and Sobolev equations based on finite dif-
ference or finite element methods in the literature. For
example, Çelik and Duman [7] investigated the CN method
to approximate the fractional diffusion equation with the
Riesz fractional derivative in a finite domain. Wang et al.
[8] studied the finite difference method for the space frac-
tional Schrödinger equations under the framework of the
fractional Sobolev space. Ran and He [9] investigated the
nonlinear multidelay fractional diffusion equation based on
the CNmethod in time and the fractional centered difference
in space. Chen et al. [5] proposed a Newton linearized com-
pact finite difference scheme to numerically solve a class of
Sobolev equations based on the CN method and proved the
unique solvability, convergence, and stability of the proposed
scheme. Wang and Huang [10] constructed a conservative
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linearized difference scheme for the nonlinear fractional
Schrödinger equation. Zhang et al. [11] established the
numerical asymptotic stability result of the compact θ
-method for the generalized delay diffusion equation. More
researches on delay fractional problems can be referred to
[12, 13] and the references therein.

The main work in this paper is to develop an efficient
Newton linearized CN method to solve the nonlinear space
fractional Sobolev problem (1). The existence, uniqueness,
stability, and convergence of the proposed numerical scheme
are demonstrated, and the convergent orders are obtained in
the sense of l2-norm, Hα/2-norm, and l∞-norm. Besides, we
also prove that the convergence orders of the constructed lin-
earized numerical scheme areOðτ2 + h2Þ under three types of
norms. The extensive numerical examples are proposed to
argue a second-order accuracy in both temporal and spatial
dimensions.

The organization of this paper is as follows. In Section 2,
we define the fractional Sobolev norm and introduce the
second-order centered finite difference approximation for
the space Riesz derivative. In Section 3, we construct a CN
finite difference scheme for the space fractional Sobolev
equation. The existence, uniqueness, stability, and conver-
gence of the proposed scheme in three classes of conventional
norms are proved. Finally, the theoretical results are verified
by several numerical examples.

2. Preliminaries

Firstly, we present some notations and lemmas which will be
used to construct and analyze our numerical scheme.

2.1. Fractional Sobolev Norm. Firstly, we define the fractional
Sobolev norm (cf. [14]). Let hℤ be denoted by the infinite
grid with grid points xj = jh (j ∈ℤ). For arbitrary grid func-
tions u = fujg, v = fvjg on hℤ, we define the discrete inner

products and the corresponding l2-norm and l∞-norm

u, vð Þ = h〠
j∈ℤ

ujvj,∥u∥2 = u, uð Þ,∥u∥l∞ = sup
j∈ℤ

uj

�� ��: ð3Þ

Denote l2 ≔ fu ∣ u = fujg,∥u∥2<+∞g. For u ∈ l2, the semidis-
crete Fourier transformation û is written as

û kð Þ≔ 1ffiffiffiffiffiffi
2π

p h〠
j∈ℤ

uje
−ikx j : ð4Þ

It is easy to get û ∈ L2½−π/h, π/h� due to u ∈ l2. The inver-
sion formula is defined by

uj =
1ffiffiffiffiffiffi
2π

p
ðπ/h
−π/h

û kð Þeikxjdk, ð5Þ

then we can easily check that Parseval’s equality

u, vð Þ =
ðπ/h
−π/h

û kð Þv̂ kð Þdk, ð6Þ

holds. Moreover, For the given constant 0 ⩽ σ ⩽ 1, the frac-
tional Sobolev norm ∥·∥Hσ and seminorm j·jHσ are defined
as follows:

∥u∥2Hσ =
ðπ/h
−π/h

1 + kj j2σ� �
u∧ kð Þj j2dk, uj j2Hσ =

ðπ/h
−π/h

kj j2σ u∧ kð Þj j2dk:

ð7Þ

Obviously, ∥u∥2Hσ = ∥u∥+juj2Hσ .

2.2. Second-Order Approximation of Spatial Riesz Fractional
Derivative. In this section, we will review a second-order
approximation for the Riesz fractional derivative. Introduce

Cn+α Rð Þ = f
ð∞
−∞

1+∣ω ∣ð Þn+α ∣ f̂ ωð Þ ∣ dω<∞,
���� f ∈ L1 ℝð Þ

� �
,

ð8Þ

where f̂ ðωÞ = Ð∞−∞eiωt f ðtÞdt denotes the Fourier transforma-
tion of f ðxÞ.

Lemma 1. (cf. [7]). Suppose the function f ð·Þ ∈C2+αðℝÞ and
the fractional central difference is defined as follows:

δαx f xð Þ = −h−α 〠
+∞

k=−∞
g αð Þ
k f x − khð Þ: ð9Þ

Then, it holds

δαx f xð Þ = ∂αx f xð Þ +O h2
� �

: ð10Þ

gðαÞ
k is defined as

g αð Þ
k = −1ð ÞkΓ α + 1ð Þ

Γ α/2 − k + 1ð ÞΓ α/2 + k + 1ð Þ , k ∈ℤ: ð11Þ

This is consistently established for arbitrary x ∈ℝ.

Remark 2. (cf. [15, 16]). If we define f ∗ by

f ∗ xð Þ =
f xð Þ, x ∈ a, b½ �,
0, x ∉ a, b½ �,

(
ð12Þ

such that f ∗ðxÞ ∈C2+αðℝÞ. We get

δαx f xð Þ = −h−α 〠
x−að Þ/h½ �

k=− b−xð Þ/h½ �
g αð Þ
k f x − khð Þ +O h2

� �
: ð13Þ

For any t ∈ ½0, T�, we define

u∗ xð Þ =
u xð Þ, x ∈ a, b½ �,
0, x ∉ a, b½ �,

(
ð14Þ

and suppose u∗ðxÞ ∈C2+αðℝÞ.
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3. Second-Order CN Method and
Theoretical Analysis

In this section, we are concentrated on the derivation and
theoretical analysis of the finite different scheme. In practical
computation, it is necessary to truncate the whole space
problem onto a finite interval (boundaries are usually chosen
sufficient large such that the truncation error is negligible or
the exact solution has compact support in the bounded
domain [17]). Here, we will truncate (1) on the interval Ω
= ða, bÞ as follows:

∂tu − μ∂αx∂tu = κ∂βxu + f uð Þ, inΩ × 0, Tð �, ð15Þ

u x, 0ð Þ = u0 xð Þ, inℝ × 0f g, ð16Þ

u x, tð Þ = 0, onℝ \Ω × 0, T½ �: ð17Þ
3.1. The Derivation of the Linearized Numerical Scheme. Take
positive integers M, N and let τ = T/N , h = ðb − aÞ/M be the
temporal and spatial step sizes, respectively. Denote xi = a
+ ih, 0 ⩽ i ⩽M; tk = kτ, 0 ⩽ k ⩽N ; tk+1/2 = ðk + 1/2Þτ, 0 ⩽ k
⩽N − 1; Ωh = fxi ∣ 0 ⩽ i ⩽Mg, Ωτ = ftk ∣ 0 ⩽ k ⩽Ng. Define
�ω = fj ∣ j = 0, 1,⋯,Mg, ω = fj ∣ j = 1, 2,⋯,M − 1g, ∂ω = �ω \ ω:
Let Vh = fu ∣ u = uki ∣ 0 ⩽ i ⩽M, 0 ⩽ k ⩽N , uk0 = ukM = 0g be
grid function space defined on Ωhτ =Ωh ×Ωτ. Then, for a
given grid function u ∈ Vh, we introduce the following
notations:

uk+ 1/2ð Þ
i = 1

2 uk+1i + uki
� 	

, δtu
k+ 1/2ð Þ
i = 1

τ
uk+1i − uki
� 	

: ð18Þ

Define the grid function

Uk
i = u xi, tkð Þ, i ∈ �ω, 0 ⩽ k ⩽N: ð19Þ

Then, we consider (15) at the point ðxi, tk+ð1/2ÞÞ and have

∂tu xi, tk+ 1/2ð Þ
� 	

− μ∂αx∂tu xi, tk+ 1/2ð Þ
� 	

= κ∂βxu xi, tk+ 1/2ð Þ
� 	

+ f u xi, tk+ 1/2ð Þ
� 	� 	

, i ∈ ω, 0 ⩽ k ⩽N − 1:

ð20Þ

Utilizing the Taylor expansion, the first term on the left
hand side (LHS) in (20) can be estimated as

∂tu xi, tk+ 1/2ð Þ
� 	

= δtU
k+ 1/2ð Þ
i +O τ2

� �
: ð21Þ

Noticing Lemma 1, for the second term on LHS in (20),
we have

∂αx∂tu xi, tk+ 1/2ð Þ
� 	

= −
1
hα

〠
M

j=0
g αð Þ
i−jδtU

k+ 1/2ð Þ
j +O τ2 + h2

� �
= δtδ

α
xU

k+ 1/2ð Þ
i +O τ2 + h2

� �
:

ð22Þ

For the first term on the right hand side (RHS) in (20), it
yields

∂βxu xi, tk+ 1/2ð Þ
� 	

= −
1
hβ

〠
M

j=0
g βð Þ
i−j U

k+ 1/2ð Þ
j +O τ2 + h2

� �
= δβxU

k+ 1/2ð Þ
i +O τ2 + h2

� �
:

ð23Þ

Moreover, we have

u xi, tk+ 1/2ð Þ
� 	

= 1
2 Uk+1

i +Uk
i

� 	
+O τ2
� �

,

u xi, tk+1ð Þ − u xi, tkð Þ =O τð Þ ⩽ c0τ,
ð24Þ

where c0 is a positive constant.
Applying the Newton linearized method to the nonlinear

term f on RHS in (20) and using Taylor expansion at the
point Uk

i , it yields

f u xi, tk+ 1/2ð Þ
� 	� 	

= f Uk
i

� 	
+ Uk+ 1/2ð Þ

i −Uk
i

� 	
f ′ Uk

i

� 	
+O τ2
� �

= f Uk
i

� 	
+ 1
2 Uk+1

i −Uk
i

� 	
f ′ Uk

i

� 	
+O τ2
� �

,

ð25Þ

where f ′ðUk
i Þ = ∂U f jU=Uk

i
. Plugging (21)–(23) and substitut-

ing (25) into (20), we have

δtU
k+ 1/2ð Þ
i − μδtδ

α
xU

k+ 1/2ð Þ
i = κδβxU

k+ 1/2ð Þ
i + f Uk

i

� 	
+ 1
2 f

′ Uk
i

� 	
Uk+1

i −Uk
i

� 	
+ Rk

i , i ∈ ω, 0 ⩽ k ⩽N − 1:

ð26Þ

There exists a positive constant c1 > 0 such that

Rk
i

��� ��� ⩽ c1 τ2 + h2
� �

, i ∈ ω, 0 ⩽ k ⩽N − 1: ð27Þ

Omitting Rk
i in (26), replacing Uk+ð1/2Þ

i with uk+ð1/2Þi in
(26), then the finite difference scheme reads

δtu
k+ 1/2ð Þ
i − μδtδ

α
xu

k+ 1/2ð Þ
i = κδβxu

k+ 1/2ð Þ
i + f uki

� 	
+ 1
2 f

′ uki
� 	

� uk+1i − uki
� 	

, i ∈ ω, 0 ⩽ k ⩽N − 1,

ð28Þ

u0i = u0 xið Þ, i ∈ �ω, ð29Þ

uki = 0, i ∈ ∂ω, 1 ⩽ k ⩽N: ð30Þ

3.2. The Unique Solvability of Finite Difference Scheme. This
section is concerned with the solvability of scheme
(28)–(30). Now, we give some lemmas which will be used
in the demonstration of solvability.
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Lemma 3. (cf. [7]). Let

Aα =

g αð Þ
0 g αð Þ

−1 ⋯ g αð Þ
3−M g αð Þ

2−M

g αð Þ
1 g αð Þ

0 g αð Þ
−1 ⋯ g αð Þ

3−M

⋮ ⋱ ⋱ ⋱ ⋮

g αð Þ
M−3 ⋯ g αð Þ

1 g αð Þ
0 g αð Þ

−1

g αð Þ
M−2 g αð Þ

M−3 ⋯ g αð Þ
1 g αð Þ

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð31Þ

It holds

g αð Þ
0 = Γ α + 1ð Þ

Γ2 α/2 + 1ð Þ ⩽ 0, 〠
+∞

j=−∞
g αð Þ
j = 0, g αð Þ

j = g αð Þ
−j ⩽ 0,

ð32Þ

where for any ∣j ∣ ⩽1, and 0 < λi < 2gðαÞ
0 ði ∈ ωÞ, λi is the ith the

eigenvalue of matrix Aα. Aβ is given in a similar way. It
implies that the matrices Aα and Aβ are real symmetric posi-
tive definite matrices.

Lemma 4. (discrete Sobolev inequality (cf. [14])) For every 1/
2 < σ ⩽ 1 , there exists a constant Cσ = CðσÞ > 0 , independent
of h > 0 , such that

∥v∥l∞ ⩽ Cσ∥v∥Hσ : ð33Þ

Lemma 5. (cf. [8]). For any 1 < α ⩽ 2 and any grid function
v ∈ Vh , we have

Cα vj j2Hα/2 ⩽ −δαxv, vð Þ ⩽ vj j2Hα/2 , ð34Þ

where Cα = ðπ/2Þα.

Lemma 6. (cf. [17]). For any grid function v ∈ Vh , there exists
a fractional symmetric positive quotient operator δα/2x , such
that

−δαxv, vð Þ = δα/2x v, δα/2x v
� 	

: ð35Þ

Lemma 7. (cf. [18]) (discrete uniform Sobolev inequality). For
every 1/2 < σ ⩽ 1 , there exists a constant Cσ = CðσÞ > 0 inde-
pendent of h > 0 such that

∥u∥l∞ ⩽ ∥u∥Hσ : ð36Þ

Lemma 8. (cf. [19]). Suppose fFkg∞k=0 be nonnegative sequence
and satisfy

Fk
⩽ cτ〠

k−1

l=0
Fl + g, k = 0, 1, 2,⋯, ð37Þ

Then, we have

Fk
⩽ geckτ, k = 0, 1, 2,⋯, ð38Þ

where c and g are nonnegative constants.

Theorem 9. The linearized finite difference scheme (28)–(30)
is uniquely solvable.

Proof. Denote uk = ðuk1, uk2,⋯,ukM−1Þ
T
. We will prove the

above result by the mathematical induction. Obviously, (29)
is true for k = 0. Now, we suppose ulð0 ⩽ k ⩽ l ⩽N − 1Þ has
been uniquely determined; then, we only need to prove that
ul+1 is uniquely determined by (28). We can rewrite (28) in
the following matrix form

I + μ

hα
Aα + τκ

2hβ
Aβ −

τ

2 diag f ′ ul
� 	� 	
 �

ul+1

= I + μ

hα
Aα −

τκ

2hβ
Aβ −

τ

2 diag f ′ ul
� 	� 	
 �

ul

+ τf ul
� 	

+ ~G
l+1,

ð39Þ

where ~G
l+1

is a vector which depends only on the boundary
value. By using Lemma 3, when τ is sufficiently small, it is
easy to verify that the coefficient matrix of (39) is strictly
diagonally dominant, which implies that there exists a unique
solution ul+1. This completes the proof.

3.3. The Convergence and Stability of the Finite Difference
Scheme. Firstly, we easily have the estimation of the local
truncation error, according to (27).

Lemma 10. Let uðx, ·Þ ∈C ð2+αÞðx, ·Þ be the solution of the
problem (15)–(17). Then, we have

∥Rk∥2 ⩽ b − að Þc21 τ2 + h2
� �2, 0 ⩽ k ⩽N − 1, ð40Þ

where c1 is a positive constant independent of τ and h.

Denote

eki =Uk
i − uki , i ∈ ω, 0 ⩽ k ⩽N: ð41Þ

We will obtain the main convergence result.

Theorem 11. Let uðx, ·Þ ∈C ð2+αÞðx, ·Þ be the solution of the
problem (15)–(17). Then, there exist positive constants τ0
and h0 , when τ < τ0 and h < h0 , for 0 ⩽ k ⩽N , we have

∥ek∥⩽C1 τ2 + h2
� �

, ek
��� ���

Hα/2
⩽ C2 τ2 + h2

� �
,∥ek∥l∞ ⩽ C3 τ2 + h2

� �
,

ð42Þ

where C1, C2, C3 > 0 are positive constants independent of τ
and h.
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Proof. The mathematical induction will be employed. Firstly,
it is obvious (42) is true for k = 0, via (29). Then, it assumes
that (42) is true for 1 ⩽ k ⩽m ⩽N − 1. We will discuss that
(42) holds for k =m + 1. According to the hypothesis, we
can obtain the following estimation:

∥uk∥l∞ ⩽ ∥ek∥l∞+∥Uk∥l∞ ⩽ C3 τ2 + h2
� �

+~c0 ⩽ 1 +~c0, 1 ⩽ k ⩽m,
ð43Þ

where τ < τ0 = ð2C3Þ−1/2, h < h0 = ð2C3Þ−1/2, and ~c0 =

max
ðx,tÞ∈Ω×½0,T�

∣Uðx, tÞ ∣ .

In the view of Lipschitz condition, we have

∣f Uk
i

� 	
− f uki
� 	

∣ ⩽ c2 e
k
i

��� ���, i ∈ �ω, 0 ⩽ k ⩽N , ð44Þ

∣f ′ Uk
i

� 	
− f ′ uki

� 	
∣ ⩽ c3 e

k
i

��� ���, i ∈ �ω, 0 ⩽ k ⩽N , ð45Þ

f ′ uki
� 	��� ��� ⩽ c4, i ∈ �ω, 0 ⩽ k ⩽N , ð46Þ

where c2, c3, and c4 are positive constants independent of τ
and h.

Now, subtracting (28) from (26), we can obtain the error
equation

δte
k+ 1/2ð Þ
i − μδtδ

α
xe

k+ 1/2ð Þ
i = κδβx e

k+ 1/2ð Þ
i + Pk

i + Rk
i , i ∈ ω, 0 ⩽ k ⩽N − 1,

ð47Þ

where

Pk
i = f Uk

i

� 	
− f uki
� 	

+ 1
2 f ′ Uk

i

� 	
Uk+1

i −Uk
i

� 	
− f ′ uki

� 	
uk+1i − uki
� 	� 	

:

ð48Þ

Firstly, we establish l2-error estimation. Taking the dis-
crete inner product of (47) with ek+ð1/2Þ, we have

δtek+ 1/2ð Þ, ek+ 1/2ð Þ
� 	

− μ δtδ
α
xe

k+ 1/2ð Þ, ek+ 1/2ð Þ
� 	

= κ δβx e
k+ 1/2ð Þ, ek+ 1/2ð Þ

� 	
+ Pk, ek+ 1/2ð Þ
� 	

+ Rk, ek+ 1/2ð Þ
� 	

:

ð49Þ

Now, we estimate each term in (49). The first term on
LHS in (49) can be estimated as

δte
k+ 1/2ð Þ, ek+ 1/2ð Þ

� 	
= 1
2τ ∥ek+1∥2−∥ek∥2
� 	

: ð50Þ

Noticing Lemma 6, for the second term on the LHS in
(49), we have

δtδ
α
xe

k+ 1/2ð Þ, ek+ 1/2ð Þ
� 	

= − δα/2x
ek+1 − ek

τ


 �
, δα/2x

ek+1 + ek

2


 �
 �

= −
1
2τ ∥δα/2x ek+1∥2−∥δα/2x ek∥2
� 	

:

ð51Þ

Similarly, the first term on RHS in (49) can be obtained by

δβx e
k+ 1/2ð Þ, ek+ 1/2ð Þ

� 	
= − δβ/2x

ek+1 + ek

2


 �
, δβ/2x

ek+1 + ek

2


 �
 �

= −
1
4 ∥δ

β/2
x ek+1 + ek
� 	

∥2:

ð52Þ

According to (44)–(46), we have

∣Pk
i ∣ = f Uk

i

� 	
− f uki
� 	

+ 1
2 f ′ Uk

i

� 	
− f ′ uki

� 	� 	�����
� Uk+1

i −Uk
i

� 	
+ f ′ uki

� 	
ek+1i − eki
� 		����

⩽ c2∣e
k
i ∣ +

1
2 c3c0τ ∣ e

k
i ∣+c4 ∣ ek+1i − eki ∣

� 	
:

ð53Þ

Using the Cauchy-Schwarz inequality and Young inequal-
ity, the second term on the RHS in (49) becomes

Pk, ek+ 1/2ð Þ
� 	

⩽ ∥Pk∥∥ek+ 1/2ð Þ∥⩽
3
4 ∥P

k∥2 + 1
3 ∥e

k+ 1/2ð Þ∥2

⩽
9
4 c22∥e

k∥2 + 1
4 c

2
3c

2
0τ

2∥ek∥2 + 1
4 c

2
4∥e

k+1 − ek∥2

 �

+ 1
6 ∥ek+1∥2+∥ek∥2
� 	

⩽
9c22
4 + 9c23c20τ2

16 + 9
8 c

2
4 +

1
6


 �
∥ek∥2

+ 9c24
8 + 1

6


 �
∥ek+1∥2:

ð54Þ

The last term of RHS in (49) is estimated as

Rk, ek+ 1/2ð Þ
� 	

⩽ ∥Rk∥∥ek+ 1/2ð Þ∥⩽
3
4 ∥R

k∥2 + 1
3 ∥e

k+ 1/2ð Þ∥2

⩽
3
4 b − að Þc21 τ2 + h2

� �2 + 1
6 ∥ek+1∥2+∥ek∥2
� 	

:

ð55Þ

Substituting (50)–(55) into (49), we get

∥ek+1∥2−∥ek∥2

2τ + μ
∥δα/2x ek+1∥2−∥δα/2x ek∥2

2τ + κ
∥δβ/2x ek+1 + ek

� �
∥2

4
⩽ c5 ∥ek+1∥2+∥ek∥2
� 	

+ 3
4 b − að Þc21 τ2 + h2

� �2,
ð56Þ

where c5 = ð9c22/4Þ + ð9c23c20τ2/16Þ + ðð9/8Þ9/8c24Þ + ð1/3Þ:
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Summing for k from 0 to m, we have

∥em+1∥2−∥e0∥2

2τ + μ
∥δα/2x em+1∥2−∥δα/2x e0∥2

2τ + κ

4〠
m

k=0
∥δβ/2x ek+1 + ek

� 	
∥2

⩽ c5 〠
m

k=0
∥ek+1∥2+∥ek∥2
� 	

+ 3
4 b − að Þc21 〠

m

k=0
τ2 + h2
� �2

:

ð57Þ

Noticing that e0 = 0 and κ > 0, we have

∥em+1∥2 + μ∥δα/2x em+1∥2 ⩽ 4τc5 〠
m

k=0
∥ek∥2 + 2τc5∥em+1∥2

+ 3τ
2 b − að Þc21 〠

m

k=0
τ2 + h2
� �2

:

ð58Þ

Let Fm = ∥em∥2 + μ∥δα/2x em∥2, we have

Fm+1
⩽ 4c5τ〠

m

k=0
Fk + 2c5τFm+1 + 3τ

2 b − að Þc21 〠
m

k=0
τ2 + h2
� �2

:

ð59Þ

It implies when τ ⩽ τ0 = 1/3c5, we have

Fm+1
⩽ 12τc5 〠

m

k=0
Fk + 9

2 τ b − að Þc21 〠
m

k=0
τ2 + h2
� �2

: ð60Þ

Using Gronwall Lemma 8, we have

Fm+1
⩽ exp 12c5mτð Þ 9

2 τ b − að Þc21 〠
m

k=0
τ2 + h2
� �2 !

: ð61Þ

Therefore, we have

∥em+1∥⩽C1 τ2 + h2
� �

, ð62Þ

where C1 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9ðb − aÞc21T exp ð12c5TÞÞ/2

p
.

Similarly, applying Lemma 5 yields

em+1�� ��
Hα/2 ⩽ C2 τ2 + h2

� �
, ð63Þ

where C2 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið9ðb − aÞc21T exp ð12c5TÞÞ/2Cαμ

p
.

Finally, we can establish l∞-error estimate by combining
(62) with (63). Denoting C3 ≔ Cσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 + C2

2
p

, it follows from
Lemma 7 that

∥em+1∥l∞ ⩽ C3 τ2 + h2
� �

: ð64Þ

We complete the proof.
Next, we will analyze the stability of the scheme

(28)–(30). Let fvki ∣ 0 ⩽ i ⩽M, 0 ⩽ k ⩽Ng be the solution of
the fractional Sobolev equation

δtv
k+ 1/2ð Þ
i − μδtδ

α
xv

k+ 1/2ð Þ
i = κδβx v

k+ 1/2ð Þ
i + f vki

� 	
+ 1
2 f

′ vki
� 	

� vk+1i − vki
� 	

, i ∈ ω, 0 ⩽ k ⩽N − 1,

ð65Þ

v0i = u0 xið Þ + ϕ0i , i ∈ �ω, ð66Þ
vki = 0, i ∈ ∂ω, 1 ⩽ k ⩽N , ð67Þ

where ϕ0i is the perturbation of the initial value. Subtracting
(65)–(67) from (28)–(30) and denoting ρki = vki − uki , we have

δtρ
k+ 1/2ð Þ
i − μδtδ

α
xρ

k+ 1/2ð Þ
i = κδβxρ

k+ 1/2ð Þ
i + f vki

� 	
− f uki
� 	

+ 1
2

� f ′ vki
� 	

vk+1i − vki
� 	

− f ′ uki
� 	

uk+1i − uki
� 	h i

,

i ∈ ω, 0 ⩽ k ⩽N − 1,

ρ0i = ϕ0i , i ∈ �ω,

ρki = 0, i ∈ ∂ω, 1 ⩽ k ⩽N: ð68Þ

Similar to the proof of Theorem 11, we have the following
result.

Theorem 12. Denote ρki = vki − uki , i ∈ �ω, 0 ⩽ k ⩽N . Then,
there exist positive constants τ0 and h0 , when τ < τ0 and h
< h0 , we have

∥ρk∥⩽C4∥ρ
0∥, ρk
��� ���

Hα/2
⩽ C5 ρ

0�� ��
Hα/2 ,∥ρk∥l∞ ⩽ C6∥ρ

0∥l∞ , ð69Þ

where C4, C5, C6 > 0 are positive constants independent of τ
and h.

4. Numerical Examples

In this section, we will provide extensive numerical examples
to testify the theoretical results. we will define the discrete l2

-norm and l∞-norm separately and the corresponding
convergence orders are defined as follows:

E h, τð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h〠

M

i=0
UN

i − uNi
� �2

vuut , E∞ h, τð Þ = max
0⩽i⩽M,0⩽k⩽N

Uk
i − uki

��� ���,

Ord2 = log2
∥E h, τð Þ∥

∥E h/2, τ/2ð Þ∥

 �

,

Ord∞ = log2
∥E h, τð Þ∥∞

∥E h/2, τ/2ð Þ∥∞


 �
: ð70Þ
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Example 1. We firstly consider the following fractional Sobolev
equation as

∂tu − μ∂αx∂tu = κ∂βxu + sin uð Þ + g x, tð Þ, x, tð Þ ∈ 0, 1ð Þ × 0, 1ð �,
ð71Þ

The exact solution is

u x, tð Þ = t3x2 1 − xð Þ2: ð72Þ

The initial boundary conditions and gðx, tÞ are deter-
mined by (72).

Table 1: l2- and l∞-errors and their convergence orders of (28)–(30) for 1 < α < 2 in the spatial direction for (72) with fixed time step τ =
1/2000 for Example 1.

α, βð Þ h ∥e∥ Ord2 ∥e∥∞ Ord∞

1:2,1:8ð Þ
1/10 7:5025e − 4 − 1:0862e − 3 −

1/20 1:7359e − 4 2:1117 2:5686e − 4 2:0802
1/40 4:0650e − 5 2:0702 6:1167e − 5 2:0702

1:5,1:5ð Þ
1/10 7:7557e − 4 − 1:1391e − 3 −

1/20 1:7445e − 4 2:1524 2:6326e − 4 2:1133
1/40 3:9827e − 5 2:1310 6:1202e − 5 2:1048

1:8,1:2ð Þ
1/10 1:1777e − 3 − 1:6525e − 3 −

1/20 2:7908e − 4 2:0773 3:9673e − 4 2:0584
1/40 6:6203e − 5 2:0757 9:5326e − 5 2:0572

Table 2: l2- and l∞-errors and their convergence orders of (28)–(30) for 1 < α < 2 in the temporal direction for (72) with fixed spatial step
h = 1/2000 for Example 1.

α, βð Þ τ ∥e∥ Ord2 ∥e∥∞ Ord∞

1:2,1:8ð Þ
1/10 1:9481e − 4 − 3:1163e − 4 −

1/20 4:8708e − 5 1:9998 7:7916e − 5 1:9998
1/40 1:2169e − 5 2:0010 1:9465e − 5 2:0010

1:5,1:5ð Þ
1/10 1:5223e − 4 − 2:4163e − 4 −

1/20 3:8057e − 5 2:0000 6:0406e − 5 2:0001
1/40 9:5069e − 6 2:0011 1:5088e − 5 2:0013

1:8,1:2ð Þ
1/10 1:2416e − 4 − 1:9507e − 4 −

1/20 3:1025e − 5 2:0006 4:8747e − 5 2:0006
1/40 7:7412e − 6 2:0028 1:2163e − 5 2:0028

Table 3: l2-and l∞-errors and their convergence orders of (28)–(30) for 1 < α < 2 in the spatial direction for (73) with τ = 1/2000 for
Example 2.

α, βð Þ h ∥e∥ Ord2 ∥e∥∞ Ord∞

1:1,1:9ð Þ
1/100 1:3736e − 4 − 2:9683e − 4 −

1/200 4:9959e − 5 1:4591 9:9718e − 5 1:5737
1/400 1:6497e − 5 1:5985 3:1155e − 5 1:6784

1:5,1:5ð Þ
1/100 4:6568e − 4 − 6:5750e − 4 −

1/200 1:3983e − 4 1:7357 2:0089e − 4 1:7106
1/400 4:0066e − 5 1:8032 5:8340e − 5 1:7839

1:9,1:1ð Þ
1/100 1:7483e − 4 − 2:1547e − 4 −

1/200 4:6475e − 5 1:9115 5:7682e − 5 1:9013
1/400 1:2052e − 5 1:9471 1:5024e − 5 1:9408
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Taking μ = 1, κ = 1, the linearized numerical scheme
(28)–(30) with τ = h is applied to solve the above Sobolev
equation. The global numerical errors and convergence orders
with respect to different α and β are listed in the following
tables. Table 1 lists the l2-norm and l∞-norm errors and spatial
convergence orders with fixed time step τ = 1/2000. Table 2

tests the temporal convergence orders with fixed spatial step
h = 1/2000. It demonstrates that the convergence orders of
the scheme (28)–(30) is second-order accurate in both spatial
and temporal directions which is consistent with Theorem 11.

All the data are referred to MATLAB codes in Example 1
in the supplementary files.

Table 5: l2-and l∞-errors and their convergence orders of (28)–(30) for 1 < α < 2 in the spatial direction for (75) with τ = 1/1000 for
Example 3.

α, βð Þ h ∥e∥ Ord2 ∥e∥∞ Ord∞

1:3,1:7ð Þ
1/10 1:4761e − 2 − 1:6303e − 2 −

1/20 3:3659e − 3 2:1327 3:8460e − 3 2:0837
1/40 8:0373e − 4 2:0662 9:0995e − 4 2:0795

1:5,1:5ð Þ
1/10 1:6167e − 2 − 1:8043e − 2 −

1/20 3:6642e − 3 2:1414 4:2293e − 3 2:0930
1/40 8:7053e − 4 2:0735 9:9262e − 4 2:0911

1:7,1:3ð Þ
1/10 2:0933e − 2 − 2:2257e − 2 −

1/20 4:8190e − 3 2:1190 5:3128e − 3 2:0667
1/40 1:1227e − 3 2:1018 1:2648e − 3 2:0705

Table 6: l2-and l∞-errors and their convergence orders of (28)–(30) for 1 < α < 2 in the temporal direction for (75) with h = 1/1000 for
Example 3.

α, βð Þ τ ∥e∥ Ord2 ∥e∥∞ Ord∞

1:3,1:7ð Þ
1/10 9:1725e − 3 − 1:0470e − 2 −

1/20 2:5218e − 3 1:8629 2:8729e − 3 1:8657
1/40 6:6380e − 4 1:9256 7:5586e − 4 1:9263

1:5,1:5ð Þ
1/10 8:7813e − 3 − 9:8734e − 3 −

1/20 2:4228e − 3 1:8578 2:7208e − 3 1:8595
1/40 6:3844e − 4 1:9240 7:1689e − 4 1:9242

1:7,1:3ð Þ
1/10 8:2127e − 3 − 9:1056e − 3 −

1/20 2:2771e − 3 1:8507 2:5228e − 3 1:8517
1/40 6:0134e − 4 1:9209 6:6620e − 4 1:9210

Table 4: l2-and l∞-errors and their convergence orders of (28)–(30) for 1 < α < 2 in the temporal direction for (73) with h = 1/1000 for
Example 2.

α, βð Þ τ ∥e∥ Ord2 ∥e∥∞ Ord∞

1:1,1:9ð Þ
1/100 2:0697e − 2 − 5:6643e − 2 −

1/200 8:1358e − 3 1:3471 1:3366e − 2 2:0833
1/400 2:0509e − 3 1:9880 2:9698e − 3 2:1701

1:5,1:5ð Þ
1/100 2:0526e − 2 − 5:6522e − 2 −

1/200 8:1446e − 3 1:3336 1:3303e − 2 2:0871
1/400 2:0523e − 3 1:9886 2:9423e − 3 2:1767

1:9,1:1ð Þ
1/100 2:0734e − 2 − 5:6310e − 2 −

1/200 8:1558e − 3 1:3461 1:3202e − 2 2:0927
1/400 2:0536e − 3 1:9897 2:9033e − 3 2:1850
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Example 2. Next, we consider the nonlinear fractional Sobolev
equation as

The exact solution

u x, tð Þ = sin t + 1ð Þ 2 + xð Þ2 2 − xð Þ2 ð73Þ

is oscillatory along with the temporal direction, where μ
= 1 and κ = 1. And the initial boundary conditions and
gðx, tÞ are determined by (73).

In this example, we examine the spatial convergence
orders with the fixed time step τ = 1/2000 and the temporal
convergence orders with the fixed spatial step h = 1/1000 in
l2-norm and l∞-norm errors, respectively. All the numerical
results in the example are listed in Tables 3 and 4. Similar
results are observed. All the data are referred to MATLAB
codes in Example 2 in the supplementary files.

Example 3. Then, we calculate the nonlinear fractional Sobo-
lev equation as

∂tu − ∂αx∂tu = ∂βxu + u2 − u4 + g x, tð Þ, x, tð Þ ∈ −1, 1ð Þ × 0, 1ð �, ð74Þ

We choose the exact solution

u x, tð Þ = t + t3
� �

1 + xð Þ2 1 − xð Þ2: ð75Þ

The initial boundary conditions and gðx, tÞ are deter-
mined by (75).

Similar to above example, Tables 5 and 6 list the l2-norm
and l∞-norm errors and corresponding spatial and temporal
convergence orders of (28)–(30), respectively. To testify the
spatial convergence orders, we fixed the time step τ = 1/
1000. Similarly, we take the fixed spatial step h = 1/1000 to
obtain the temporal convergence orders. The numerical

Table 7: l2-and l∞-errors and their convergence orders of (28)–(30) for 1 < α ⩽ 2 in the spatial direction with τ = 1/1000 for Example 4.

α, βð Þ h ∥e∥ Ord2 ∥e∥∞ Ord∞

1:2,1:8ð Þ
1/40 1:7548e − 2 − 1:1092e − 2 −

1/80 3:9216e − 3 2:1618 2:3542e − 3 2:2362
1/160 9:5790e − 4 2:0558 5:6623e − 4 2:0558

1:5,1:5ð Þ
1/40 1:2035e − 2 − 7:0740e − 3 −

1/80 2:5833e − 3 2:2199 1:4349e − 3 2:3016
1/160 6:2934e − 4 2:0373 3:4473e − 4 2:0574

1:8,1:2ð Þ
1/40 7:8751e − 3 − 3:5547e − 3 −

1/80 1:6022e − 3 2:2972 8:7242e − 4 2:0266
1/160 3:9110e − 4 2:0345 2:1876e − 4 1:9957

2:0,2:0ð Þ
1/40 1:4624e − 2 − 8:1939e − 3 −

1/80 3:1088e − 3 2:2339 1:5922e − 3 2:3635
1/160 7:5817e − 4 2:0358 3:8083e − 4 2:0638

Table 8: l2-and l∞-errors and their convergence orders of (28)–(30) for 1 < α ⩽ 2 in the temporal direction with h = 1/1000 for Example 4.

α, βð Þ τ ∥e∥ Ord2 ∥e∥∞ Ord∞

1:2,1:8ð Þ
1/40 9:2300e − 9 − 5:5579e − 9 −

1/80 2:3078e − 9 1:9998 1:3897e − 9 1:9998
1/160 5:7564e − 10 2:0033 3:4662e − 10 2:0034

1:5,1:5ð Þ
1/40 7:5499e − 9 — 3:2739e − 9 −

1/80 1:8868e − 9 2:0005 8:1803e − 10 2:0008
1/160 4:7057e − 10 2:0034 2:0378e − 10 2:0051

1:8,1:2ð Þ
1/40 6:7080e − 9 − 2:7409e − 9 −

1/80 1:6769e − 9 2:0001 6:8522e − 10 2:0000
1/160 4:1960e − 10 1:9987 1:7116e − 10 2:0012

2:0,2:0ð Þ
1/40 9:2576e − 9 − 4:4312e − 9 −

1/80 2:3143e − 9 2:0001 1:1077e − 9 2:0001
1/160 5:7857e − 10 2:0000 2:7694e − 10 2:0000
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results show that (28)–(30) is close to second-order accurate
in spatial and temporal directions.

All the data are referred to MATLAB codes in Example 3
in the supplementary files.

In the following model, the exact solution is unknown, we
test convergence orders using the posterior error estimation

Ord2 = log2
∥u h, τð Þ − u h, τ/2ð Þ∥
∥u h, τ/2ð Þ − u h, τ/2ð Þ∥

 �

, Ord∞

= log2
∥u h, τð Þ − u h, τ/2ð Þ∥∞
∥u h, τ/2ð Þ − u h, τ/4ð Þ∥∞


 �
:

ð76Þ

Example 4. We consider the following equation:

∂tu − ∂αx∂tu = ∂βxu + u − u2, x, tð Þ ∈ −25, 25ð Þ × 0,0:1ð �,

u x, 0ð Þ =
ffiffiffi
2

p
sech x + 5ð Þ cos 4/xð Þ,x ∈ −25, 25½ �,

u −25, tð Þ = u 25, tð Þ = 0,t ∈ 0,0:1½ �, ð77Þ

with the exact solution is unknown.

In the computation, we take different spatial and tempo-
ral step sizes. The l2-norm, l∞-norm errors, and their conver-
gence orders of (28)–(30) are listed in Table 7 with the fixed
temporal step size τ = 1/1000. Similarly, the spatial step size
fixed at h = 1/1000 in Table 8. Tables 7 and 8 show that the
numerical results have second-order accurate in spatial and
temporal directions. Figure 1 presents curves of uðx, tÞ with
respect to x at different time with the step sizes h = 0:5 and
τ = 0:02. All the data are referred to MATLAB codes in
Example 4 in the supplementary files.

5. Conclusion

In the article, we establish an efficient finite difference scheme
for nonlinear spatial fractional Sobolev equation based on
Newton linearized technique. We have proved that the
numerical solution of the scheme is unique solvable, stable,
and convergent. The pointwise error estimate is proved with
the convergence order Oðτ2 + h2Þ. Extensive numerical
examples are carried out to testify the numerical theoretical
results. Extending the current work to high dimensional
cases is possible, which will leave as our future work.
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Figure 1: Using scheme (28)–(30), curves of uðx, tÞ with respect to x at different time with h = 0:5, τ = 0:02 (a) and the evolutionary surfaces
of uðx, tÞ at T = 0:1 (b), T = 1 (c), and T = 2 (d) in Example 4.
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In this paper, we introduce a modified method which is constructed by mixing the residual power series method and the Elzaki
transformation. Precisely, we provide the details of implementing the suggested technique to investigate the fractional-order
nonlinear models. Second, we test the efficiency and the validity of the technique on the fractional-order Navier-Stokes models.
Then, we apply this new method to analyze the fractional-order nonlinear system of Navier-Stokes models. Finally, we provide
3-D graphical plots to support the impact of the fractional derivative acting on the behavior of the obtained profile solutions to
the suggested models.

1. Introduction

The fractional-order Navier-Stokes equation (NSE) has been
extensively analyzed. These equations model the fluid
motion defined by several physical processes, such as the
movement of blood, the ocean’s current, the flow of liquid
in vessels, and the airflow around an aircraft’s arms [1–3].
The classical NSEs were generalized by El-Shahed and Salem
[4] by replacing the first time derivative with a Caputo frac-
tional derivative of order α, where 0 < α ≤ 1. Using Hankel
transform, Fourier sine transform, and Laplace transform,
the researchers achieved the exact solution for three different
equations. In 2006, Momani and Odibat [5] solve fractional-
order NSEs using the Adomian decomposition method.
Ganji et al. [6] applied an analytical technique, the homotopy
perturbation method, for solving the fractional-order NSEs
in polar coordinates, and the results achieved were expressed
in a closed form. Singh and Kumar [7] solved the fractional-
order reduced differential transformation method (FRDTM)
to achieve an approximated analytical result of fractional-
order multidimensional NSE. Oliveira and Oliveira [8] ana-
lyzed the residual power series method (RPSM) to find the
result of the nonlinear fractional-order two-dimensional

NSEs. Zhang and Wang [9] suggested numerical analysis
for a class of NSEs with fractional-order derivatives; Ravin-
dran, the exact boundary controllability of Galerkin approx-
imations of a Navier-Stokes system for soret convection [10];
and Cibik and Yilmaz, the Brezzi-Pitkaranta stabilization and
a priori error analysis for the Stokes control [11].

Some researchers mix two powerful techniques to
achieve another result technique to solve equations and
systems of fractional-order NSEs. Below, we define some of
these combinations: a combination of the Laplace transfor-
mation and Adomian decomposition method; Kumar et al.
[12] introduced the homotopy perturbation transform
method (HPTM), combined Laplace transformation with
the homotopy perturbation method, and solved fractional-
order NSEs in a tube. Jena and Chakraverty [13] imple-
mented the homotopy perturbation transformation method
(HPETM), and this technique consists in the mixture of
Elzaki transformation technique and homotopy perturba-
tion technique; Prakash et. al [1] suggested q-homotopy
analysis transformation technique to achieve a result of
coupled fractional-order NSEs. This technique mixture of
the Laplace transformation and residual power series
method is defined:
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Dα
τu + u · ∇ð Þu = −

1
ρ
∇p + v∇2u, 0 < α ≤ 1,

∇u = 0,

8<
: ð1Þ

where Dα
τu is the Caputo derivative of order α, u is the veloc-

ity vector, τ is the time, v is kinematics viscosity, p is the
pressure, and ρ is the density.

In this work, we consider two special cases. First, we con-
sider unsteady, one-dimensional motion of a viscous fluid in
a tube. The fractional-order Navier-Stokes equations in
cylindrical coordinates that governs the flow field in the tube
are given by

Dα
τu + P + v

∂2u
∂ψ2 + 1

ψ

∂u
∂ψ

 !
, 0 < α ≤ 1, ð2Þ

with initial condition

u ψ, 0ð Þ = g ψð Þ, ð3Þ

where P = −1/ρ∂p/∂z and gðψÞ is a function depending only
on ψ.

Consider that the fractional-order two-dimensional
Navier-Stokes equations is defined as

Dα
τu = ρ0

∂2

∂ψ2 u +
∂2

∂φ2 u

 !
− u

∂
∂ψ

u − v
∂
∂φ

u + g,

Dα
τv = ρ0

∂2

∂ψ2 v +
∂2

∂φ2 v

 !
− u

∂
∂ψ

v − v
∂
∂φ

v − g,
ð4Þ

with initial conditions

u ψ, φ, τð Þ = f ψ, φð Þ,
v ψ, φ, τð Þ = g ψ, φð Þ,

ð5Þ

where u = uðψ, φ, τÞ, v = vðψ, φ, τÞ, ρ, τ, p denote as constant
density, time, and pressure, respectively. ψ, φ are the spatial
components, and f ðψ, φÞ and gðψ, φÞ are two functions
depending only on ψ and φ.

The residual power series method (RPSM) is a simple and
efficient technique for constructing a power series result for
extremely linear and nonlinear equations without perturba-
tion, linearization, and discretization. Unlike the classical
power series technique, the RPS approach does not need to
compare the coefficients of the corresponding terms and a
recursion relation is not required. This approach calculates
the power series coefficients by a series of algebraic equations
of one or more variables, and its reliance on derivation,
which is much simpler and more precise than integration,
which is the basis of most other solution approaches, is the
main advantage of this methodology. This method is, in
effect, an alternative strategy for obtaining theoretical results
for the fractional-order partial differential equations [14].

The RPSM was introduced as an essential tool for asses-
sing the power series solution’s values for the first and

second-order fuzzy DEs [15]. It has been successfully imple-
mented in the approximate result of the generalized Lane-
Emden equation [16], which is a highly nonlinear singular
DE, in the inaccurate work of higher-order regular DEs
[17], in the solution of composite and noncomposite
fractional-order DEs [18], in predicting and showing the
diversity of results to the fractional-order boundary value
equations [19], and in the numerical development of the
nonlinear fractional-order KdV and Burgers equation [20],
in addition to some other implementations [21–23], and
recently, it has been applied to investigate the approximate
result of a fractional-order two-component evolutionary
scheme [24].

This paper introduces the modified analytical technique:
the residual power series transform method (RPSTM) is
implemented to investigate the fractional-order NS equa-
tions. The result of certain illustrative cases is discussed to
explain the feasibility of the suggested method. The results
of fractional-order models and integral-order models are
defined by using the current techniques. The new approach
has lower computing costs and higher rate convergence.
The suggested method is also constructive for addressing
other fractional orders of linear and nonlinear PDEs.

2. Preliminaries

Definition 1. The Abel-Riemann of fractional operator Dα of
order α is given as [25–27]

Dαν ζð Þ =

dj

dζj
ν ζð Þ, α = j,

1
Γ j − αð Þ

d

dζj

ðζ
0

ν ζð Þ
ζ − ψð Þα−j+1

dψ, j − 1 < α < j,

8>>>><
>>>>:

ð6Þ

where j ∈ℤ+, α ∈ℝ+ and

D−αν ζð Þ = 1
Γ αð Þ

ðζ
0
ζ − ψð Þα−1ν ψð Þdψ, 0 < α ≤ 1: ð7Þ

Definition 2. The fractional-order Abel-Riemann integration
operator Jα is defined as [25–27]

Jαν ζð Þ = 1
Γ αð Þ

ðζ
0
ζ − ψð Þα−1ν ζð Þdζ, ζ > 0, α > 0: ð8Þ

The operator of basic properties

Jαζj = Γ j + 1ð Þ
Γ j + α + 1ð Þ ζ

j+ψ,

Dαζj = Γ j + 1ð Þ
Γ j − α + 1ð Þ ζ

j−ψ:

ð9Þ

Definition 3. The Caputo fractional operator CDα of α is
defined as [25–27]
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CDαν ζð Þ =

1
Γ j − αð Þ

ðζ
0

νj ψð Þ
ζ − ψð Þα−j+1

dψ, j − 1 < α < j,

dj

dζj
ν ζð Þ, j = α:

8>>>><
>>>>:

ð10Þ

Definition 4. The fractional-order Caputo operator of Elzaki
transform is given as [25–27]

E Dα
ζg ζð Þ� �

= s−αE g ζð Þ½ � − 〠
j−1

k=0
s2−α+kg kð Þ 0ð Þ, where j − 1 < α < j:

ð11Þ

Definition 5. A power series definition of the form [14]

〠
∞

m=0
Pm τ − ψð Þmα = P0 + P1 τ − ψð Þ + P2 τ − ψð Þ2α+⋯, ð12Þ

where 0 ≤m − 1 < α ≤m and τ ≤ ψ is called fractional power
series (FPS) about ψ, where Pm are the constants called the
coefficients of the series. If ψ = 0, then the fractional power
series will be reduced to the fractional Maclaurin series.

Theorem 6. Assume that f o has a fractional power series rep-
resentation at τ = ψ of the form [14]

f o τð Þ = 〠
∞

m=0
Pm τ − ψð Þmα: ð13Þ

For m ∈NUf0g, if Dmα f oðτÞ are continuous on ðψ, ψ +
RoÞ, then the coefficients Pm can be written as

Pm = Dmα f o ψð Þ
Γ 1 +mαð Þ , ð14Þ

where ψ ≤ τ < ψ + Ro, and Ro is the radius of convergence.

Definition 7. The expansion of power series of the form [14]

〠
∞

m=0
Gm ϕð Þ τ − ψð Þmα ð15Þ

is said to be multifractional power series at τ = ψ, where Gm
ðϕÞ are the coefficients of multifractional power series.

Theorem 8. Let us assume that uoðϕ, τÞ which has the multi-
fractional power representation at τ = ψ can be written as [14]

uo ϕ, τð Þ = 〠
∞

m=0
Gm xð Þ τ − ψð Þmα: ð16Þ

For m ∈NUf0g, if Dmα
τ uoðϕ, τÞ are the continuous on Io

× ðψ, ψ + RoÞ, then the coefficients Gm are given by

Gm xð Þ = Dmα
τ uo ϕ, τð Þ
Γ 1 +mαð Þ , ð17Þ

where ψ ∈ Io and ψ ≤ τ < ψ + Ro.
So, we can write the fractional power expansion of uoðϕ, τÞ

of the form

μ ϕ, τð Þ = 〠
∞

m=0

Dmα
τ μ ϕ, τð Þ

Γ 1 +mαð Þ τ − ψð Þmα, ð18Þ

which is the generalized Taylor expansion. If we consider α = 1,
then the generalized Taylor formula will be converted to classi-
cal Taylor series.

Corollary 9. Let us assume that μðϕ, φ, τÞ has a multifrac-
tional power series representation about τ = ψ as [14]

uo ϕ, φ, τð Þ = 〠
∞

m=0
Gm ϕ, φð Þ τ − ψð Þmα: ð19Þ

For m ∈NUf0g if Dmα
τ μðϕ, φ, τÞ are continuous on I1 ×

I2 × ðψ, ψ + RoÞ, then

Gm ψ, φð Þ = Dmα
τ μ ϕ, φ, τð Þ
Γ 1 +mαð Þ , ð20Þ

where ðϕ, φÞ ∈ I1 × I2, ψ ≤ τ < ψ + Ro.

3. The Procedure of RPSTM

In this section, we explain the steps of RPSTM for solving the
fractional-order partial differential equation

Dα
τu ψ, τð Þ = aD2

ψu ψ, τð Þ + bu ψ, τð Þ − cuq ψ, τð Þ, ð21Þ

with initial condition

u ψ, 0ð Þ = f0 ψð Þ: ð22Þ

First, we use the Elzaki transform to (21); we get

E Dα
τu ψ, τð Þ½ � = aE D2

ψu ψ, τð Þ
h i

+ bE u ψ, τð Þ½ � − cE uq ψ, τð Þ½ �:
ð23Þ

By the fact that E½Dα
τuðψ, τÞ� = 1/sαE½uðψ, τÞ� − s1−αuðx

, 0Þ and using the initial condition (22), we can write (23) as

U ψ, sð Þ = s2 f0 ψð Þ + sαaD2
xU ψ, sð Þ + bsαU ψ, sð Þ

− csαE−1 E U ψ, sð Þ½ �ð Þq½ �, ð24Þ

where Uðψ, sÞ =E½uðψ, τÞ�:
Second, we define the transform function Uðψ, sÞ as the

following formula:

U ψ, sð Þ = 〠
∞

n=0
snα+1 f n xð Þ: ð25Þ
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We write the kth truncated series of (25) as

U ψ, sð Þ = 〠
∞

n=0
snα+1 f n xð Þ = s2 f0 xð Þ + 〠

∞

n=1
snα+1 f n xð Þ: ð26Þ

As stated in [25], the definition of Elzaki residual func-
tion to (25) is

ERes ψ, sð Þ =U ψ, sð Þ − f0 xð Þs2 − asαD2
xU ψ, sð Þ − bsαU ψ, sð Þ

+ csαE−1 E U ψ, sð Þ½ �ð Þq½ �,
ð27Þ

and the kth Elzaki residual function of (27) is

ERes ψ, sð Þ =Uk ψ, sð Þ − f0 xð Þs2 − asαD2
xUk ψ, sð Þ

− bsαUk ψ, sð Þ + csαE E−1 Uk ψ, sð Þ½ �� �qh i
:

ð28Þ

Third, we expand a few of the properties arising in the
basic RPSM to find out certain facts:

(i) EResðψ, sÞ = 0 and limk→∞E Re skðψ, sÞ =EResðψ, sÞ
for each s > 0

limk→∞ERes ψ, sð Þ = 0⇒ limk→∞sE Re sk ψ, sð Þ = 0 ð29Þ

(ii) limk→∞skα+1EResðψ, sÞ = limk→∞skα+1E Re skðψ, sÞ
= 0, 0 < α ≤ 1, k = 1, 2, 3,⋯

Furthermore, to evaluate the coefficient functions f nðψÞ,
we can recursively solve the following scheme

lim
s→∞

skα+1E Re sk ψ, sð Þ
� �

= 0, 0 < α ≤ 1, k = 1, 2, 3,⋯:

ð30Þ

Finally, we implemented the Elzaki inverse to Ukðψ, sÞ to
achieve the kth approximate supportive solution ukðψ, τÞ.

4. Numerical Results

Example 1. Consider the time-fractional-order one-
dimensional NS equation of the form

Dα
τu ψ, τð Þ = P + ∂2u

∂ψ2 + 1
ψ

∂u
∂ψ

, 0 < α ≤ 1: ð31Þ

Subject to the initial condition

u ψ, 0ð Þ = 1 − ψ2: ð32Þ

Applying Elzaki transform to (31) and using the initial
condition given in (32), we get

U ψ, sð Þ = s2 1 − ψ2� �
+ sαEτ P½ � + sαEτ

� E−1
τ

∂2

∂ψ2 U ψ, sð Þ
( )" #

+ sαEτ E−1
τ

1
ψ

∂
∂ψ

U ψ, sð Þ
� 	
 �

:

ð33Þ

The kth truncated term series of (33) is

Uk ψ, sð Þ = s2 1 − ψ2� �
+ 〠

k

n=1
snα+2 f n ψð Þ, ð34Þ

and the kth Elzaki residual function is

Eτ Re sk =Uk ψ, sð Þ − s2 1 − ψ2� �
− sα+2P − sαEτ

� E−1
τ

∂2

∂ψ2 Uk ψ, sð Þ
( )" #

− sαEτ E−1
τ

1
ψ

∂
∂x

Uk ψ, sð Þ
� 	
 �

:

ð35Þ

Now, to determine f kðψÞ, k = 1, 2, 3,⋯, we substitute the
kth truncated series (34) into the kth Elzaki residual function
(35), multiply the resulting equation by skα+2, and then solve
recursively the relation lims→∞½skα+2 Re skðψ, sÞ� = 0, k = 1, 2
, 3,⋯, for f kðψÞ. The following are the first several compo-
nents of the series f kðψ, φÞ:

f1 ψð Þ = p − 4,
f2 ψð Þ = 0,
f3 ψð Þ = 0,

⋮:

ð36Þ

Putting the values of f nðψÞðn ≥ 1Þ in (34), we get

U ψ, sð Þ = s2 1 − ψ2� �
+ sα+2 f1 ψð Þ + s2α+2 f2 ψð Þ + s3α+2 f3 ψð Þ+⋯,

U ψ, sð Þ = s2 1 − ψ2� �
+ sα+2 P − 4ð Þ + s2α+2 0ð Þ + s3α+2 0ð Þ+⋯,

ð37Þ
U ψ, sð Þ = s2 1 − ψ2� �

+ sα+2 P − 4ð Þ: ð38Þ
Using inverse Elzaki transform to (38), we get

u ψ, τð Þ = 1 − ψ2 + P − 4ð Þτα
Γ α + 2ð Þ : ð39Þ

Putting α = 1, we have

u ψ, τð Þ = 1 − ψ2 + P − 4ð Þτ: ð40Þ

In Figure 1, the RPSTM and the exact results of Example
1 at α = 1 are shown by plots (a) and (b), respectively. From
the given figures, it can be seen that both the exact and the
EDM results are in close contact with each other. Also, in
the Figure 2 subgraph, the RPSTM results of Example 1 are
calculated at different fractional-order α = 0:8 and 0:6. It is
investigated that fractional-order problem results are
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convergent to an integer-order effect as fractional-order anal-
ysis to integer-order. The same phenomenon of convergence
of fractional-order solutions towards integral-order solutions
is observed.

Example 2. Consider the fractional-order one-dimensional
NS equation of the form

Dα
τu ψ, τð Þ = ∂2u

∂ψ2 + 1
ψ

∂u
∂ψ

, 0 < α ≤ 1: ð41Þ

Subject to the initial condition,

u ψ, 0ð Þ = ψ: ð42Þ

Applying Elzaki transform to (41) and using the initial
condition given in (42), we get

U ψ, sð Þ = s2 ψð Þ + sαEτ E−1
τ

∂2

∂ψ2 U ψ, sð Þ
( )" #

+ sαEτ E−1
τ

1
ψ

∂
∂x

U ψ, sð Þ
� 	
 �

:

ð43Þ

The kth truncated term series of (43) is

Uk ψ, sð Þ = s2 ψð Þ + 〠
k

n=1
snα+2 f n ψð Þ, ð44Þ

and the kth Elzaki residual function is

Eτ Re sk =Uk ψ, sð Þ − s2 ψð Þ − sαEτ E−1
τ

∂2

∂ψ2 Uk ψ, sð Þ
( )" #

− sαEτ E−1
τ

1
ψ

∂
∂x

Uk ψ, sð Þ
� 	
 �

:

ð45Þ

Now, to determine f kðψÞ, k = 1, 2, 3,⋯, we substitute the
kth truncated series (44) into the kth Elzaki residual function
(45), multiply the resulting equation by skα+2, and then solve
recursively the relation lims→∞½skα+2 Re skðψ, sÞ� = 0, k = 1, 2
, 3,⋯, for f kðψÞ. The following are the first several compo-
nents of the series f kðψ, φÞ:
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Figure 1: Graph of exact and analytical results of Problem 1.
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Figure 2: The fractional order of α = 0:8 and 0:6 of Problem 1.
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f1 ψð Þ = 1
ψ
,

f2 ψð Þ = 1
ψ3 ,

f3 ψð Þ = 33 1
ψ5 ,

f4 ψð Þ = 52 1
ψ7 ,

⋮:

ð46Þ

Putting the values of f nðψÞðn ≥ 1Þ in (44), we get

U ψ, sð Þ = s2 ψð Þ + sα+2 f1 ψð Þ + s2α+2 f2 ψð Þ + s3α+2 f3 ψð Þ+⋯, ð47Þ

U ψ, sð Þ = s2 ψð Þ + sα+2

ψ
+ s2α+2

ψ3 + 32s3α+2
ψ5 +⋯: ð48Þ

Using inverse Elzaki transform to (48), we get

u ψ, τð Þ = ψ + 1
ψ

τα

Γ α + 2ð Þ + 1
ψ3

τ2α

Γ 2α + 2ð Þ + 32
ψ5

τ3α

Γ 3α + 2ð Þ+⋯:

ð49Þ

Putting α = 1, we have

u ψ, τð Þ = ψ + 1
ψ
t + 1

ψ3
τ2

2! +
32
ψ5

τ3

3! +⋯,

u ψ, τð Þ = ψ + 〠
∞

n=1

12 × 32 × 53 ×⋯ × 2n − 3ð Þ2
r2n−1

τn

n!
:

ð50Þ

In Figure 3, the RPSTM and the exact results of Example
2 at α = 1 are shown by graphs, respectively. From the given
figures, it can be seen that both the exact and the EDM results
are in close contact with each other. Also, in the Figure 4 sub-
graph, the RPSTM results of Example 2 are calculated at
different fractional-order α = 0:8 and 0:6. It is investigated
that fractional-order problem results are convergent to an
integer-order effect as fractional-order analysis to integer-
order. The same phenomenon of convergence of fractional-
order solutions towards integral-order solutions is observed.

Example 3. Consider the fractional-order two-dimensional
NS equation of the form

Dα
τu = ρ0

∂2

∂ψ2 u +
∂2

∂φ2 u

 !
− u

∂
∂ψ

u − v
∂
∂φ

u + g,

Dα
τv = ρ0

∂2

∂ψ2 v +
∂2

∂φ2 v

 !
− u

∂
∂ψ

v − v
∂
∂φ

v − g,
ð51Þ

with initial condition

u ψ, φ, 0ð Þ = − sin ψ + φð Þ,
v ψ, φ, 0ð Þ = sin ψ + φð Þ:

ð52Þ

Applying Elzaki transform to (51) and using (52), we get

U ψ, φ, sð Þ = s2 −sin ψ + φð Þð Þ + ρ0s
αEτ

� E−1
τ

∂2

∂ψ2 Uk ψ, φ, sð Þ + ∂2

∂φ2 Uk ψ, φ, sð Þ
( )" #

− sαEτ E−1
τ U ψ, φ, sð Þ ∂

∂ψ
U ψ, φ, sð Þ

� 	
 �

− sαEτ E−1
τ v ψ, φ, sð Þ ∂

∂φ
U ψ, φ, sð Þ

� 	
 �
+ sαEτ g½ �,

V ψ, φ, sð Þ = s2 sin ψ + φð Þð Þ + ρ0s
αEτ

� E−1
τ

∂2

∂ψ2 V ψ, φ, sð Þ + ∂2

∂φ2 V ψ, φ, sð Þ
 !" #

− sαEτ E−1
τ U ψ, φ, sð Þ ∂

∂ψ
V ψ, φ, sð Þ

� 	
 �

− sαEτ E−1
τ V ψ, φ, sð Þ ∂

∂φ
V ψ, φ, sð Þ

� 

 �
− sαEτ g½ �:

ð53Þ

The kth truncated term series of (53) is

Uk ψ, φ, sð Þ = − sin ψ + φð Þs2 + 〠
k

n=1
snα+2 f n ψ, φð Þ,

Vk ψ, φ, sð Þ = sin ψ + φð Þs2 + 〠
k

n=1
snα+2gn ψ, φð Þ,

ð54Þ

and the kth Elzaki residual function is

Eτ Re sk ψ, φ, sð Þ =Uk ψ, φ, sð Þ − −sin ψ + φð Þð Þs2 − ρ0s
αEτ

� E−1
τ

∂2

∂ψ2 Uk ψ, φ, sð Þ + ∂2

∂φ2 Uk ψ, φ, sð Þ
( )" #

+ sαEτ E−1
τ Uk ψ, φ, sð Þ ∂

∂ψ
Uk ψ, φ, sð Þ

� 	
 �

+ sαEτ E−1
τ Vk ψ, φ, sð Þ ∂

∂φ
Uk ψ, φ, sð Þ

� 	
 �
− gsα+2,

Eτ Re sk ψ, φ, sð Þ = Vk ψ, φ, sð Þ − sin ψ + φð Þs2 − ρ0s
αEτ

� E−1
τ

∂2

∂ψ2 Vk ψ, φ, sð Þ + ∂2

∂φ2 Vk ψ, φ, sð Þ
( )" #

+ sαEτ E−1
τ Uk ψ, φ, sð Þ ∂

∂ψ
Vk ψ, φ, sð Þ

� 	
 �

+ sαEτ E−1
τ Vk ψ, φ, sð Þ ∂

∂φ
Vk ψ, φ, sð Þ

� 	
 �
+ gsα+2:

ð55Þ
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Now, to determine f kðψ, φÞ and gkðψ, φÞ, k = 1, 2, 3,⋯,
we substitute the kth truncated series (54) into the kth Elzaki
residual function (55), multiply the resulting equation by skα+2

, and then solve recursively the relation lims→∞½skα+2 Re skðψ
, φ, sÞ� = 0, k = 1, 2, 3,⋯, for f k and gk. The following are the
first several components of the series f kðψ, φÞ and gkðψ, φÞ:
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Figure 3: Graph of exact and analytical results of Problem 2.
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Figure 4: The fractional order of α = 0:8 and 0:6 of Problem 2.
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Figure 5: Graph of exact and analytical results of Problem 3.
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f1 ψ, φð Þ = 2ρ0 sin ψ + φð Þ + g,
g1 ψ,φð Þ = −2ρ0 sin ψ + φð Þ − g,
f2 ψ,φð Þ = − 2ρ0ð Þ2 sin ψ + φð Þ,
g2 ψ, φð Þ = 2ρ0ð Þ2 sin ψ + φð Þ,
f3 ψ, φð Þ = 2ρ0ð Þ3 sin ψ + φð Þ,
g3 ψ,φð Þ = − 2ρ0ð Þ3 sin ψ + φð Þ,

⋮:

ð56Þ

Putting the values of f nðψ, φÞ and gnðψ, φÞðn ≥ 1Þ in (54),
we have

U ψ, φ, sð Þ = − sin ψ + φð Þs2 + f1 ψ, φð Þsα+2 + f2 ψ, φð Þs2α+2
+ f3 ψ, φð Þs3α+2+⋯,

V ψ, φ, sð Þ = sin ψ + φð Þs2 + g1 ψ, φð Þsα+2 + g2 ψ, φð Þs2α+2
+ g3 ψ, φð Þs3α+2+⋯,

U ψ, φ, sð Þ = − sin ψ + φð Þs2 + 2ρ0 sin ψ + φð Þ + gð Þsα+2
− 2ρ0ð Þ2 sin ψ + φð Þ� �

s2α+2

+ 2ρ0ð Þ3 sin ψ + φð Þ� �
s3α+2+⋯,

V ψ, φ, sð Þ = sin ψ + φð Þs2 − 2ρ0 sin ψ + φð Þ − gð Þsα+2
+ 2ρ0ð Þ2 sin ψ + φð ÞÞ� �

s2α+2

− 2ρ0ð Þ3 sin ψ + φð ÞÞ� �
s3α+2+⋯,

U ψ, φ, sð Þ = − sin ψ + φð Þ s2 − 2ρ0sα+2 + 2ρ0ð Þ2s2α+2�
− 2ρ0ð Þ3s3α+2+⋯� + gsα+2,

V ψ, φ, sð Þ = sin ψ + φð Þ s2 − 2ρ0sα+2 + 2ρ0ð Þ2s2α+2�
− 2ρ0ð Þ3s3α+2+⋯� − gsα+2:

ð57Þ

Using inverse Elzaki transform, we get

u ψ, φ, τð Þ = − sin ψ + φð Þ 1 − 2ρ0τα
Γ α + 2ð Þ + 2ρ0ð Þ2τ2α

Γ 2α + 2ð Þ −
2ρ0ð Þ3τ3α
Γ 3α + 2ð Þ+⋯

" #

+ g
τα

Γ α + 2ð Þ ,

v ψ, φ, τð Þ = sin ψ + φð Þ 1 − 2ρ0τα
Γ α + 2ð Þ + 2ρ0ð Þ2τ2α

Γ 2α + 2ð Þ −
2ρ0ð Þ3τ3α
Γ 3α + 2ð Þ+⋯

" #

− g
τα

Γ α + 2ð Þ :

ð58Þ

Putting α = 1, we get the solution in closed form

u ψ, φ, τð Þ = − sin ψ + φð Þe−2ρ0τ + g,
v ψ, φ, τð Þ = sin ψ + φð Þe−2ρ0τ − g:

ð59Þ

In Figures 5 and 6, the RPSTM and the exact results of
Example 3 at α = 1 are shown by graphs, respectively. From
the given figures, it can be seen that both the exact and the
RPSTM results are in close contact with each other. Also, in
the Figure 7 and 8 subgraph, the RPSTM results of Example 3
are calculated at different fractional-order α = 0:8 and 0:6. It
is investigated that fractional-order problem results are conver-
gent to an integer-order effect as fractional-order analysis to
integer-order. The same phenomenon of convergence of
fractional-order solutions towards integral-order solutions is
observed.

Example 4. Consider the fractional-order two-dimensional
NS equation as

Dα
τu = ρ0

∂2

∂ψ2 u +
∂2

∂φ2 u

 !
− u

∂
∂ψ

u − v
∂
∂φ

u + g,

Dα
τv = ρ0

∂2

∂ψ2 v +
∂2

∂φ2 v

 !
− u

∂
∂ψ

v − v
∂
∂φ

v − g,
ð60Þ

with initial condition

u ψ, φ, 0ð Þ = −eψ+φ,
v ψ, φ, 0ð Þ = eψ+φ:

ð61Þ

Applying Elzaki transform to (60) and using (61), we get

U ψ, φ, sð Þ = −eψ+φs2 + ρ0s
αEτ

� E−1
τ

∂2

∂ψ2 Uk ψ, φ, sð Þ + ∂2∂φ2Uk ψ, φ, sð Þ
( )" #

− sαEτ E−1
τ U ψ, φ, sð Þ ∂

∂ψ
U ψ, φ, sð Þ

� 	
 �

− sαEτ E−1
τ v ψ, φ, sð Þ ∂

∂φ
U ψ, φ, sð Þ

� 	
 �
+ sαEτ g½ �,

V ψ, φ, sð Þ = eψ+φs2 + ρ0s
αEτ

� E−1
τ

∂2

∂ψ2 V ψ, φ, sð Þ + ∂2

∂φ2 V ψ, φ, sð Þ
( )" #

− sαEτ E−1
τ U ψ, φ, sð Þ ∂

∂ψ
V ψ, φ, sð Þ

� 	
 �

− sαEτ E−1
τ V ψ, φ, sð Þ ∂

∂φ
V ψ, φ, sð Þ

� 	
 �
− sαEτ g½ �:

ð62Þ

8 Journal of Function Spaces



0.4

0

0.2

–0.2

–0.4

–10

10
1

0.5

0

0
–5

50.5 0
5

0.4

0

0.2

–0.2

–0.4

–10

10
1

0.5

0

0
–5

50.5 0
5

Figure 6: Graph of exact and analytical results of Problem 3.
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Figure 7: The fractional order of α = 0:8 and 0:6 of Problem 3.
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The kth truncated term series of (62) is

Uk ψ, φ, sð Þ = −eψ+φs2 + 〠
k

n=1
snα+2 f n ψ, φð Þ,

Vk ψ, φ, sð Þ = eψ+φs2 + 〠
k

n=1
snα+2gn ψ, φð Þ,

ð63Þ

and the kth Elzaki residual function is

Eτ Re sk ψ, φ, sð Þ =Uk ψ, φ, sð Þ−−eψ+φs2 − ρ0s
αEτ

� E−1
τ

∂2

∂ψ2 Uk ψ, φ, sð Þ + ∂2

∂φ2 Uk ψ, φ, sð Þ
( )" #

+ sαEτ E−1
τ Uk ψ, φ, sð Þ ∂

∂ψ
Uk ψ, φ, sð Þ

� 	
 �

+ sαEτ E−1
τ Vk ψ, φ, sð Þ ∂

∂φ
Uk ψ, φ, sð Þ

� 	
 �

− g
1

sα+2p
,

Eτ Re sk ψ, φ, sð Þ = Vk ψ, φ, sð Þ − eψ+φs2 − ρ0s
αEτ

� E−1
τ

∂2

∂ψ2 Vk ψ, φ, sð Þ + ∂2

∂φ2 Vk ψ, φ, sð Þ
( )" #

+ sαEτ E−1
τ Uk ψ, φ, sð Þ ∂

∂ψ
Vk ψ, φ, sð Þ

� 	
 �

+ sαEτ E−1
τ Vk ψ, φ, sð Þ ∂

∂φ
Vk ψ, φ, sð Þ

� 	
 �

+ g
1

sα+2
:

ð64Þ

Now, to determine f kðψ, φÞ and gkðψ, φÞ, k = 1, 2, 3,⋯,
we substitute the kth truncated series (63) into the kth Elzaki
residual function (64), multiply the resulting equation by
skα+2, and then solve recursively the relation lims→∞½skα+2
Re skðψ, φ, sÞ� = 0, k = 1, 2, 3,⋯, for f k and gk. The following
are the first several components of the series f kðψ, φÞ and
gkðψ, φÞ:
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Figure 9: Graph of exact and analytical results of Problem 4.
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f1 ψ,φð Þ = −2ρ0eψ+φ + g,
g1 ψ, φð Þ = 2ρ0eψ+φ − g,
f2 ψ,φð Þ = − 2ρ0ð Þ2eψ+φ,
g2 ψ, φð Þ = 2ρ0ð Þ2eψ+φ,
f3 ψ,φð Þ = − 2ρ0ð Þ3eψ+φ,
g3 ψ, φð Þ = 2ρ0ð Þ3eψ+φ,

⋮:

ð65Þ

Putting the values of f nðψ, φÞ and gnðψ, φÞðn ≥ 1Þ in
(63), we have

U ψ, φ, sð Þ = −eψ+φs2 + f1 ψ, φð Þsα+2 + f2 ψ, φð Þs2α+2
+ f3 ψ, φð Þs3α+2+⋯,

V ψ, φ, sð Þ = eψ+φs2 + g1 ψ, φð Þsα+2 + g2 ψ, φð Þs2α+2
+ g3 ψ, φð Þs3α+2+⋯,

U ψ, φ, sð Þ = −eψ+φs2 − 2ρ0eψ+φ + gsα+2 − 2ρ0ð Þ2eψ+φs2α+2
− 2ρ0ð Þ3eψ+φs3α+2+⋯,

V ψ, φ, sð Þ = eψ+φs2 + 2ρ0eψ+φ − gsα+2 + 2ρ0ð Þ2eψ+φs2α+2
+ 2ρ0ð Þ3eψ+φs3α+2+⋯,

U ψ, φ, sð Þ = −eψ+φ s2 + 2ρ0sα+2 + 2ρ0ð Þ2s2α+2 + 2ρ0ð Þ3s3α+2+⋯� �
+ gsα+2,

V ψ, φ, sð Þ = eψ+φ s2 + 2ρ0sα+2 + 2ρ0ð Þ2s2α+2 + 2ρ0ð Þ3s3α+2+⋯� �
− gsα+2:

ð66Þ

Using inverse Elzaki transform, we get

u ψ, φ, τð Þ = −eψ+φ 1 + 2ρ0τα
Γ α + 2ð Þ + 2ρ0ð Þ2τ2α

Γ 2α + 2ð Þ + 2ρ0ð Þ3τ3α
Γ 3α + 2ð Þ+⋯

" #

+ g
τα

Γ α + 2ð Þ ,
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Figure 12: The fractional order of α = 0:8 and 0:6 of Problem 4.
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v ψ, φ, τð Þ = eψ+φ 1 + 2ρ0τα
Γ α + 2ð Þ +

2ρ0ð Þ2τ2α
Γ 2α + 2ð Þ + 2ρ0ð Þ3τ3α

Γ 3α + 2ð Þ+⋯
" #

− g
τα

Γ α + 2ð Þ :

ð67Þ

Putting α = 1, we get the solution in closed form

u ψ, φ, τð Þ = −eψ+φ+2ρ0τ + g,
v ψ, φ, τð Þ = eψ+φ+2ρ0τ − g:

ð68Þ

In Figures 9 and 10, the RPSTM and the exact results of
Example 4 at α = 1 are shown by graphs, respectively. From
the given figures, it can be seen that both the exact and the
RPSTM results are in close contact with each other. Also, in
the Figure 11 and 12 subgraph, the RPSTM results of Exam-
ple 4 are calculated at different fractional-order α = 0:8 and
0:6. It is investigated that fractional-order problem results
are convergent to an integer-order effect as fractional-order
analysis to integer-order. The same phenomenon of conver-
gence of fractional-order solutions towards integral-order
solutions is observed.

5. Conclusions

In this article, a modified method constructed by a mixture of
the residual power series and Elzaki transformation operator
is presented to solve fractional-order Navier-Stokes models.
The merit of the modified technique is to reduce the size of
computational work needed to find the result in a power
series form whose coefficient to be calculated is in successive
algebraic steps. The technique gives a series form of results
that converges very fast in physical models. It is predicted
that this article achieved results which will be useful for fur-
ther analysis of the complicated nonlinear physical problems.
The calculations of this technique are very straightforward
and simple. Thus, we deduce that this technique can be
implemented to solve several schemes of nonlinear
fractional-order partial differential equations.
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This paper discusses the study of optical solitons that are modeled by Riesz fractional Chen-Lee-Liu model, one of the versions of
the famous nonlinear Schrödinger equation. This model is solved by the assistance of consecutive spectral collocation technique
with two independent approaches. The first is the approach of the spatial variable, while the other is the approach of the
temporal variable. It is concluded that the method of the current paper is far more efficient and credible for the proposed
problem. Numerical results illustrate the performance efficiency of the algorithm. The results also point out that the scheme can
lead to spectral accuracy of the studied model.

1. Introduction

Several numerical methods, including local and global
methods, have been listed as approximation techniques for
treating the differential equations. The local methods listed
the approximate solution at specific points, while the global
methods give the approximate solution in whole the men-
tioned interval. The numerical approximations for differen-
tial equations [1–4] are listed at specific points using finite
difference methods. While the finite element methods sub-
divide the whole interval into subintervals and give the
approximate solution in them. The finite element methods
are used for various types of differential equation; see for
example [5–7].

Recently, there are more interests of appointing the spec-
tral methods to treat with various kinds of differential and
integral equations [8, 9], due to their applicability to bounded
and unbounded domains [10, 11]. The convergence speed is
one of the major advantages of spectral method. Spectral
methods are promising candidates for solving fractional dif-
ferential equations since their global nature fits well with
the nonlocal definition of fractional operators. They have

gained new popularity in automatic computations for a wide
class of different problems which included linear and nonlin-
ear differential equation of integer or fractional (fixed, vari-
able, Riesz, tempered, and distributed orders); see [12, 13].
Also, they are more reliable to treat the integral and
integro-differential equations. Spectral methods have expo-
nential convergence rates as well as a high accuracy level.
The spectral method has been classified into four classes, col-
location [14], tau [15], Galerkin [16], and Petrov-Galerkin
[17] methods.

The theory of optical solitons [18–21] is mainly governed
by the well-known nonlinear Schrödinger equation (NLSE)
[22–25]. However, there exists a wide variety of its manifes-
tations and modifications that also govern pulse transfer
across the globe through optical fibers, PCF, metamaterials,
and couplers. A few such models are Schrödinger-Hirota
equation [26], Manakov equation, complex Ginzburg-
Landau equation, Fokas-Lenells equation, Gabitov-Turitsyn
equation, and many others. These models are considered
under different circumstances such as dispersive solitons, dif-
ferential group delay, and dispersion-managed solitons.
Besides these familiar models, there is another class of
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versions of NLSE that is referred to as derivative NLSE
(DNLSE) [27–29] that appears in three forms. One such form
is the Chen-Lee-Liu equation [30–32] that incorporates
higher order perturbations from optics and is going to be
the focus of today’s paper. While a plethora of preexisting
work has been already reported in regard to this model,
today’s focus is going to be handling the model by the aid
of fully shifted Legendre collocation method.

Shifted Legendre collocation schemes are used to numer-
ically solve the Riesz fractional Chen-Lee-Liu model. The
solution Θðξ, τÞ is firstly placed in its real Uðξ, τÞ and imag-
inary V ðξ, τÞ parts. Accordingly, the real Uðξ, τÞ and imagi-
nary V ðξ, τÞ parts of such equation are approximated as
UN ,Mðξ, τÞ and UN ,Mðξ, τÞ, respectively, which can be
expressed as a finite expansion of shifted Legendre polyno-
mials for spatial variable. Subsequently, the Chen-Lee-Liu
equation with boundary conditions is reduced to temporal
differential system with initial conditions. Then, the shifted
Legendre-Gauss-Radau collocation is assigned for temporal
discretization, which is more reliable for treating with such
problems. Substituting these discretizations in the mentioned
equation gets a nonlinear system of algebraic equations
which solved numerically using the Newton-Raphson
approach.

This paper is arranged as follows. In Section 1, some
properties of Riemann-Liouville fractional derivatives,
shifted Legendre polynomials, and shifted Chebyshev poly-
nomials are listed. The mentioned scheme is implemented
for the Chen-Lee-Liu equation with initial-boundary condi-
tions in Section 2. In Section 3, two test examples are dis-
cussed. The competence of our numerical approach is
exhibited by diverse examples in Section 4. Few remarks are
mentioned in the last section (Section 5).

2. Riemann-Liouville Fractional Derivative

The fractional integration of order μ > 0 exists in different
formulas [33]. Riemann-Liouville formula, the most com-
mon and widely used, is defined as follows:

Jμ f ζð Þ = 1
Γ μð Þ

ðζ
0
ζ − τð Þμ−1 f τð Þdτ, μ > 0, ζ > 0,

J0 f ζð Þ = f ζð Þ:
ð1Þ

Here, we introduce some properties of the fractional
operators. The left-sided and the right-sided fractional deriv-
atives of Riemann-Liouville type of order β ðn − 1 < β < nÞ
are defined as follows:

−∞Dβ
ξψ ξ, τð Þ = 1

Γ n−βð Þ
∂n

∂ξn
ðξ
−∞

ξ − zð Þn−1−βψ z, τð Þdz,

ξD
β
+∞ψ ξ, τð Þ = −1ð Þn

Γ n−βð Þ
∂n

∂ξn
ð+∞
ξ

z − ξð Þn−1−βψ z, τð Þdz:

ð2Þ

The Riesz fractional derivative is defined as follows:

∂β

∂ ξj jβ
ψ ξ, τð Þ = − −∇ð Þβ/2ψ ξ, τð Þ = cβ −∞Dβ

ξψ ξ,τð Þ+ξD
β
+∞ψ ξ, τð Þ

h i
,

ð3Þ

where cβ = −1/2 cos ðπβ/2Þ. The fractional Laplacian opera-
tor in Equation (3) can be represented in the following equiv-
alent Fourier form on the spatial variable ξ:

− −∇ð Þβ/2ψ ξ, τð Þ = −F−1 ξj jF ψ ξ, τð Þð Þð Þ: ð4Þ

If ψ is defined on ½A ,B� and satisfies ψðA , τÞ = ψðB, τ
Þ = 0, then the function can be extended by taking ψðξ, τÞ ≡
0 for x≪ a and x≫ b. Moreover, as shown in [34], if ψξðA
, τÞ = ψξðB, τÞ = 0, then the Riesz fractional derivative can
be written as follows:

∂β

∂ ξj jβ
ψ ξ, τð Þ = − −∇ð Þβ/2ψ ξ, τð Þ = −

1
2 cos πβ/2ð Þ aD

β
ξψ ξ, τð Þ + ξD

β
bψ ξ, τð Þ

h i
:

ð5Þ

The left and right RL-FDs of the Legendre polynomial are
given by the following:

−1D
μ
ξPk ξð Þ = 〠

j

k=0

−1ð Þk+jΓ k + j + 1ð Þ
j − kð Þ!Γ k + 1ð Þ2kΓ k − μ + 1ð Þ ξ + 1ð Þk−μ,

ξD
μ
1Pk ξð Þ = 〠

j

k=0

−1ð ÞkΓ k + j + 1ð Þ
j − kð Þ!Γ k + 1ð Þ2kΓ k − μ + 1ð Þ 1 − ξð Þk−μ:

ð6Þ

3. Chen-Lee-Liu Equation

In this section, we treat the next nonlinear Riesz space Chen-
Lee-Liu equation

i
∂Θ ξ, τð Þ

∂τ
+ ∂μΘ ξ, τð Þ

∂ ξj jμ + iγ Θ ξ, τð Þj j2 ∂Θ ξ, τð Þ
∂ξ

= Δ ξ, τð Þ,  ξ, τð Þ ∈ 0, ξend½ � × 0, τend½ �,

ð7Þ

with the following conditions:

Θ 0, τendð Þ = χ1 τð Þ,Θ ξend, τð Þ = χ2 τð Þ,  t ∈ 0, τend½ �,
Θ x, 0ð Þ = ϕ1 xð Þ, x ∈ 0, ξend½ �:

ð8Þ

We now split the complex function Θðξ, τÞ into two real
functions Uðξ, τÞ and V ðξ, τÞ as follows:

Θ ξ, τð Þ =U ξ, τð Þ + iV ξ, τð Þ, Δ ξ, τð Þ = Δ ξ, τð Þ + iΔ2 ξ, τð Þ,
χ1 τð Þ = η1 τð Þ + iη3 τð Þ, χ2 τð Þ = η2 τð Þ + iη4 τð Þ, ϕ1 xð Þ = φ1 xð Þ + iφ2 xð Þ,

ð9Þ

where Uðξ, τÞ,V ðξ, τÞ, Δ1ðξ, τÞ, Delta2ðξ, τÞ, η1ðτÞ, η3ðτÞ, η
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2ðτÞ, η4ðτÞ, φ1ðxÞ, and φ2ðxÞ are the real functions. Thereafter,

∂U ξ, τð Þ
∂τ

+ ∂μV ξ, τð Þ
∂ ξj jμ + γ u2 ξ, τð Þ + v2 ξ, τð Þ� � ∂U ξ, τð Þ

∂ξ
= Δ1 ξ, τð Þ,

∂V ξ, τð Þ
∂τ

+ ∂μU ξ, τð Þ
∂ ξj jμ + γ u2 ξ, τð Þ + v2 ξ, τð Þ� � ∂V ξ, τð Þ

∂ξ
= Δ2 ξ, τð Þ,

ð10Þ

with the next conditions:

U 0, τendð Þ = η1 τð Þ,U ξend, τð Þ = η2 τð Þ, t ∈ 0, τend½ �, ð11Þ

V 0, τendð Þ = η3 τð Þ,V ξend, τð Þ = η4 τð Þ, t ∈ 0, τend½ �, ð12Þ

U x, 0ð Þ = η5 xð Þ,V x, 0ð Þ = η6 xð Þ, x ∈ 0, ξend½ �: ð13Þ

3.1. Spatial Discretization. The distribution of shifted Legendre-
Gauss-Lobatto nodes in ½0, ξend� is the major feature of consid-
ering them in our discretization. Here, we list the basic main of
implementing our Legendre-Gauss-Lobatto collocation scheme
for converting the nonlinear system (Equations (10) and (11))
into temporal ordinary differential system.

The spectral approximation of P ðξ, τÞ and Qðξ, τÞ is
given as follows:

UN ξ, τð Þ = 〠
N

j=0
εj τð ÞP ξend,j xð Þ,

VN ξ, τð Þ = 〠
N

j=0
εj τð ÞP ξend,j xð Þ,

ð14Þ

where the orthogonal property and discrete inner product
permit the following:

εj τð Þ = 1
hξend,j

〠
N

i=0
Pj ξξend,N ,i
� �

ϖξend,N ,iU ξξend,N ,iτ
� �

,

εj τð Þ = 1
hξend,j

〠
N

i=0
Pj ξξend,N ,i
� �

ϖξend,N ,iV ξξend,N ,iτ
� �

:

ð15Þ

In that case, Equation (14) takes the form:

U ξ, τð Þ = 〠
N

i=0
〠
N

j=0

1
hξend,j

P ξend,j ξξend,N ,i
� �

P ξend,j xð Þϖξend,N ,i

 !
U ξξend,N ,i, τ
� �

,

V ξ, τð Þ = 〠
N

i=0
〠
N

j=0

1
hξend,j

P ξend,j ξξend,N ,i
� �

P ξend,j xð Þϖξend,N ,i

 !
V ξξend,N ,i, τ
� �

:

ð16Þ

Over and above that, the partial derivative of first order in
space evaluated at shifted Legendre-Gauss-Lobatto colloca-

tion is as follows:

∂U ξξend,N ,n, τ
� �

∂ξ
= 〠

N

i=0
ρn,iU ξξend,N ,i, τ

� �
,

∂V ξξend,N ,n, τ
� �

∂ξ
= 〠

N

i=0
ρn,iV ξξend,N ,i, τ

� �
, n = 0, 1,⋯,N ,

ð17Þ

where

ρn,i =〠
N

j=0

ϖξend,N ,i
hξend,j

P ξend,j ξξend,N ,i
� � ∂P ξend,j xð Þ

∂ξ

� ������
x=ξξend,N ,n

:

ð18Þ

Comparable procedure can be performed to the Riesz
fractional derivative ∂μϕN ,Mðξ, η, τÞ/∂jξjμ for space variable
to get

∂μU ξξend,N ,n, τ
� �
∂ ξj jμ = 〠

N

i=0
λn,iU ξξend,N ,i, τ

� �
,

∂μV ξξend,N ,n, τ
� �
∂ ξj jμ = 〠

N

i=0
λn,iV ξξend,N ,i, τ

� �
, n = 0, 1,⋯,N ,

ð19Þ

where

λn,i =〠
N

j=0

ϖξend,N ,i
hξend,j

P ξend,j ξξend,N ,i
� � ∂μP ξend,j xð Þ

∂ ξj jμ
� ������

x=ξξend ,N ,n

:

ð20Þ

Combining the boundary conditions with the abovemen-
tioned equations and equalizing the residual of Equation (7)

Table 1: Maximum absolute errors of Equation (32).

N ,Mð Þ MUN ,M MVN ,M MN ,M

2, 2ð Þ 1:5625 × 10−2 7:39136 × 10−3 1:5625 × 10−2

4, 4ð Þ 7:01531 × 10−3 2:43449 × 10−3 7:01531 × 10−3

6, 6ð Þ 1:26263 × 10−3 4:44263 × 10−4 1:26263 × 10−3

8, 8ð Þ 6:75387 × 10−13 1:47693 × 10−12 1:50175 × 10−12

10, 10ð Þ 4:35416 × 10−16 9:29812 × 10−16 9:56769 × 10−16

12, 12ð Þ 5:73001 × 10−17 2:48174 × 10−16 2:54703 × 10−16
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by zero give us the following:

_Un τð Þ = Δ1,n τð Þ − 〠
N −1

i=1
λn,iV i τð Þ − γ U2

n τð Þ +V 2
n τð Þ� �

� ρn,0η1 τð Þ + ρn,N η1 τð Þ + 〠
N −1

i=1
ρn,iUi τð Þ

 !

− λn,0η3 τð Þ − λn,N η4 τð Þ,

_V n τð Þ = Δ2,n τð Þ + 〠
N −1

i=1
λn,iUi τð Þ − γ U2

n τð Þ +V 2
n τð Þ� �

� ρn,0η3 τð Þ + ρn,N η4 τð Þ + 〠
N −1

i=1
ρn,iV i τð Þ

 !

+ λn,0η1 τð Þ − λn,N η2 τð Þ, n = 1, 2,⋯,N − 1,
ð21Þ

with initial values

Un 0ð Þ = η5 0ð Þ,V n 0ð Þ = η6 0ð Þ, n = 1,⋯,N − 1, ð22Þ

where

Uk τð Þ =U ξξend,N ,k, τ
� �

,V k τð Þ =V ξξend,N ,k, τ
� �

, Δr,n

= Δr ξξend,N ,k, τ
� �

, k = 1,⋯,N − 1, r = 1, 2:
ð23Þ

The numerical approach of such system will be listed in
Subsection 3.2.

3.2. Temporal Discretization. Here, we numerically treat the
temporal differential system with initial conditions:

_W r τð Þ = G r t,W 1 τð Þ,⋯,WR τð Þð Þ, 0 < α < 1, r = 1,⋯,R, t ∈ 0, τend½ �,
ð24Þ

W r 0ð Þ = τr , r = 1,⋯,R, ð25Þ

where G rðt,W 1ðτÞ,⋯,WRðτÞÞ, r = 1,⋯,R are given func-
tions. Shifted Legendre-Gauss-Radau collocation is assigned
for temporal discretization, which is more reliable for
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Figure 1: Space graphs of real and imaginary parts of the numerical solution of Equation (32).
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Figure 2: ξ-direction curves for the approximate and exact solutions of real and imaginary parts of Equation (32).
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treating with such problems. We approximate W rðτÞ as fol-
lows:

W r τð Þ = 〠
K

j=0
ar,jCτend,j τð Þ, r = 1,⋯,R: ð26Þ

The temporal derivative _W rðτÞ is evaluated as follows:

_W r τð Þ = 〠
K

j=0
ar,j

d
dτ

Cτend,j τð Þ� �
= 〠

K

j=0
ar,jC

1ð Þ
τend,j τð Þ, r = 1,⋯,R:

ð27Þ

Thus, we get the following:

〠
K

j=0
ar, jC

1ð Þ
τend,j τð Þ = G r t, 〠

K

j=0
a1,jCτend,j τð Þ,⋯, 〠

K

j=0
aK ,jCτend,j τð Þ

 !
, r = 1,

⋯ ,R, t ∈ 0, τend½ �,

〠
K

j=0
ar,jCτend,j 0ð Þ = τr , r = 1,⋯,R: ð28Þ

Combining the initial conditions with the abovemen-
tioned equations and equalizing the residual of Equation
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Figure 4: ME convergence of Equation (32).

Table 2: Maximum absolute errors of Equation (35).

N ,Mð Þ MUN ,M MVN ,M MN ,M

2, 2ð Þ 3:90625 × 10−3 3:67244 × 10−3 3:90625 × 10−3

4, 4ð Þ 2:11826 × 10−3 1:98249 × 10−3 2:11826 × 10−3

6, 6ð Þ 6:60009 × 10−4 6:04953 × 10−4 6:60009 × 10−4

8, 8ð Þ 8:74126 × 10−5 7:91024 × 10−5 8:74126 × 10−5

10, 10ð Þ 3:1572 × 10−16 2:1453 × 10−16 3:53179 × 10−16

12, 12ð Þ 4:75375 × 10−16 2:13208 × 10−16 4:86791 × 10−16
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Figure 3: ξ-direction curves of real and imaginary parts of the absolute error of Equation (32).
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(24) by zero at ðRKÞ shifted Legendre-Gauss-Radau collo-
cation points give us the following:

〠
K

j=0
ar, jC

1ð Þ
τend, j =G r t, 〠

K

j=0
a1,jCτend,j ττendK , s

� �
,⋯, 〠

K

j=0
aK ,jCτend, j ττend ,K , s

� � !
, r = 1,

⋯ ,R, s = 1,⋯,K ,

ð29Þ

where the rest ðRÞ algebraic equations are outputted by the
initial conditions as follows:

〠
K

j=0
ar,jCτend,j 0ð Þ = τr , r = 1,⋯,R: ð30Þ
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Figure 5: Space graphs of real and imaginary parts of the numerical solution of Equation (35).
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Finally, we have ðRðK + 1ÞÞ algebraic equations as fol-
lows:

〠
K

j=0
ar,jC

1ð Þ
τend,j ττend ,K , s

� �

=G r t, 〠
K

j=0
a1,jCτend,j ττend ,K , s

� �
,⋯, 〠

K

j=0
aK ,jCτend,j ττend ,K , s

� � !
, r = 1,

⋯ ,R, s = 1,⋯,K ,

〠
K

j=0
ar,jCτend,j 0ð Þ = τr , r = 1,⋯,R: ð31Þ

The numerical approach of the previous system will be
acquired by using Newton’s iterative method.

4. Applications and Numerical Results

Here, the adequacy of the spectral collocation algorithms is
verified by the obtained results. Problems including initial-
boundary conditions are examined. Mathematica version
10 is utilized to carry out the code.

Example 1. We test the next problem:

i
∂Θ
∂τ

+ ∂μΘ
∂ ξj jμ + i Θj j2 ∂Θ∂τ = Δ ξ, τð Þ, ξ, τð Þ ∈ 0, 1½ � × 0, 1½ �,

ð32Þ

where the function Δðξ, τÞ, initial condition, and the bound-
ary conditions are given such as the continuous problem has
the next exact solution:

Θ ξ, τð Þ = eiτξ3 1 − ξð Þ3: ð33Þ

In Table 1, the numerical results based on the maximum
absolute errors of Equation (32) obtained using the previous
algorithms are listed, where

EUN ,M
ξ, τð Þ = UN ,M ξ, τð Þ −U ξ, τð Þ�� ��, ξ, τð Þ ∈ 0, ξend½ �,

EVN ,M
ξ, τð Þ = VN ,M ξ, τð Þ −V ξ, τð Þ�� ��, ξ, τð Þ ∈ 0, ξ½ �,

EVN ,M
ξ, τð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EUN ,M

ξ, τð Þ
� 	2

+ EVN ,M
ξ, τð Þ

� 	2r
, ξ, τð Þ ∈ 0, ξ½ �,

MUN ,M
ξ, τð Þ =Max EUN ,M

ξ, τð Þ, ∀ ξ, τð Þ ∈ 0, ξ½ �
n o

,

MVN ,M
ξ, τð Þ =Max EVN ,M

ξ, τð Þ, ∀ ξ, τð Þ ∈ 0, ξ½ �
n o

,

MN ,M ξ, τð Þ =Max EN ,M ξ, τð Þ, ∀ ξ, τð Þ ∈ 0, ξ½ �
 �
:

ð34Þ

Space graphs of real and imaginary parts of the numerical
solution of Equation (32) are shown in Figures 1(a) and 1(b),
respectively, where N =M = 12. While in Figures 2(a) and
2(b), we recognize the outright matching of numerical and
exact solutions in its real and imaginary parts of Equation
(32), where N =M = 12. Also, ξ-direction curves for real

and imaginary parts of the absolute errors of Equation (32)
are plotted in Figures 3(a) and 3(b), respectively, where τ =
0:5, N =M = 12. Moreover, we sketched in Figure 4 the log-
arithmic graphs of Mε (i.e., log10Mε) of Equation (32)
obtained by the present method with different values of ðN
=M = 2, 4, 6,⋯,12Þ.

Example 2. Now, consider the following:

i
∂Θ
∂τ

+ ∂μΘ
∂ ξj jμ + i Θj j2 ∂Θ∂τ = Δ ξ, τð Þ,  ξ, τð Þ ∈ 0, 1½ � × 0, 1½ �,

ð35Þ

where the function Δðξ, τÞ, initial condition, and the bound-
ary conditions are given such as the continuous problem has
the next exact solution:

Θ ξ, τð Þ = eiτξ4 1 − ξð Þ4: ð36Þ

In Table 2, the numerical results based on the maximum
absolute errors of Equation (35) obtained using the previous
algorithms are listed. Space graphs of real and imaginary
parts of the numerical solution of Equation (35) are shown
in Figures 5(a) and 5(b), respectively, where N =M = 12.
While in Figures 6(a) and 6(b), we recognize the outright
matching of numerical and exact solutions in its real and
imaginary parts, respectively, where N =M = 12. Also, ξ
-direction curves for real and imaginary parts of absolute
errors of Equation (35) are plotted in Figures 7(a) and 7(b),
respectively, where τ = 0:5, N =M = 12. Even though few
values of N and M, the accurate results have been spotted
in these tables. This is consistent with which was predicted
in case of using a spectral collocation method. Likewise, these
results bring to light the responsibility convergence of the
shifted Legendre collocation method for such problems.

5. Conclusions

This paper adopted fully collocation method to study Riesz
fractional Chen-Lee-Liu equation that discusses soliton
propagation down the optical fibers with perturbation terms
incorporated into the waveguides. The powerful numerical
scheme gave way to a number of impressive numerical results
that prove high efficiency of the algorithm. The study was
carried out with initial-boundary conditions.

The results of the algorithm pave way to conduct further
additional research in this field to display additional results in
future. One avenue is to consider Riesz fractional Chen-Lee-
Liu equation with differential group delay and then further
along study the model with additional optoelectronic devices
such as in magneto-optic waveguides. Subsequently, this
model will be treated with the same algorithm for dense
wavelength division multiplexing (DWDM) topology.

Thus, a lot lies in the bucket list!
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In this work, we consider a new full von Kármán beam model with thermal and mass diffusion effects according to the Gurtin-
Pinkin model combined with time-varying delay. Heat and mass exchange with the environment during thermodiffusion in the
von Kármán beam. We establish the well-posedness and the exponential stability of the system by the energy method under
suitable conditions.

1. Introduction and Preliminaries

In this paper, we are concerned with the following problem:

wtt − d1 ux +
1
2 wxð Þ2

� �
wx

� �
x

+ d2wxxxx + μ1wt + μ2wt x, t − τ tð Þð Þ = 0,

utt − d1 ux +
1
2 wxð Þ2

� �
x

− δ1θx − δ2Px = 0,

cθt + dPt −
ð∞
0
β1 σð Þθxx t − σð Þdσ − δ1utx = 0,

dθt + rPt −
ð∞
0
β2 σð ÞPxx t − σð Þdσ − δ2utx = 0,

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð1Þ

where

x, σ, tð Þ ∈ 0, Lð Þ ×ℝ+ × 0,∞ð Þ: ð2Þ

Here, τðtÞ > 0 represents the time-varying delay, and d1,
d2, δ1, δ2, c, d, r, and μ1 are positive constants; μ2 is a real
number, and β1 and β2 are the relaxation functions, with
the initial data

w x, 0ð Þ =w0 xð Þ,

wt x, 0ð Þ =w1 xð Þ,

u x, 0ð Þ = u0 xð Þ,
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ut x, 0ð Þ = u1 xð Þ,

θ x, 0ð Þ = θ0 xð Þ,

P x, 0ð Þ = P0 xð Þ,

wt x, t − τ 0ð Þð Þ = f0 x, t − τ 0ð Þð Þ, ð3Þ

where

x, tð Þ ∈ 0, Lð Þ × 0, τ 0ð Þð Þ, ð4Þ

and Neumann-Dirichlet boundary conditions

w x, tð Þ = u x, tð Þ = P x, tð Þ = 0, x = 0, L,∀t ≥ 0,

wx x, tð Þ = θ x, tð Þ = 0, x = 0, L,∀t ≥ 0:
ð5Þ

The case of time-varying delay in the wave equation has
been studied recently by Nicaise et al. [1]; they proved the
exponential stability under the condition

μ2 <
ffiffiffiffiffiffiffiffiffiffi
1 − d

p
μ1, ð6Þ

where d is a constant that satisfies

τ′ tð Þ ≤ d < 1, ∀t > 0: ð7Þ

For the wave equation with a time-varying delay, in [1],
the authors consider the system

utt − Δu = 0,
u x, tð Þ = 0,
du
dv

x, tð Þ = μ1ut x, tð Þ + μ2ut x, t − τ tð Þð Þ,

8>>><>>>: ð8Þ

where the time-varying delay τðtÞ > 0 satisfies

0 ≤ τ tð Þ ≤ �τ, ∀t > 0, ð9Þ

τ′ tð Þ ≤ 1, ∀t > 0, ð10Þ

τ tð Þ ∈W2,∞ 0, T½ �ð Þ, ∀T > 0: ð11Þ
They proved the exponential stability under suitable

conditions.
The purpose of this work is to study problem (1)–(5),

with a delay term appearing in the control term at the
first equation, introducing the time-varying delay term
β2wtðx, t − τðtÞÞ; thermal and mass diffusion effects make
the problem different from those considered in the literature
(see [2–30]).

This paper is organized as follows: in the rest of this sec-
tion, we put the preliminaries necessary for problem (1); in
Section 2, we establish the well-posedness. As for Section 3,
we prove the exponential stability result by the energy
method and Lyapunov function.

In order to prove the existence of a unique solution of
problem (1)–(5), we introduce the new variable

z x, ρ, tð Þ =wt x, t − τ tð Þρð Þ: ð12Þ

Then, we obtain

τ tð Þzt x, ρ, tð Þ + 1 − τ′ tð Þρ
� �

zρ x, ρ, tð Þ = 0,

z x, 0, tð Þ =wt x, tð Þ:

8<: ð13Þ

And it is more convenient to work in the history space
setting by introducing the so-called summed past history of
θ and P defined by (see [31–36])

ηt σð Þ =
ðσ
0
θ t − ζð Þdζ,

νt σð Þ =
ðσ
0
P t − ζð Þdζ,  t, σð Þ ∈ 0,∞½ Þ ×ℝ+:

8>>><>>>: ð14Þ

Differentiating (14)1 and (14)2, we get

ηtt σð Þ + ηtσ σð Þ = θ tð Þ,
νtt σð Þ + νtσ σð Þ = P tð Þ,

(
ð15Þ

with the boundary and initial conditions

ηt 0ð Þ = νt 0ð Þ = 0, t ≥ 0,

η0 σð Þ = η0 σð Þ, ν0 σð Þ = ν0 σð Þ, σ ≥ 0:
ð16Þ

We set

η0 σð Þ =
ðσ
0
�θ0 τð Þdτ,

ν0 σð Þ =
ðσ
0
�P0 τð Þdτ, σ ∈ℝ+:

8>>><>>>: ð17Þ

Concerning the memory kernels β1 and β2, we set

β σð Þ = −β1 ′ σð Þ,
λ σð Þ = −β2 ′ σð Þ:

ð18Þ

Assuming β1ð∞Þ = β2ð∞Þ = 0, then from (14), we infer

ð∞
0
β1 σð Þθ t − σð Þdσ = −

ð∞
0
β1 ′ σð Þηt σð Þdσ,ð∞

0
β2 σð ÞP t − σð Þdσ = −

ð∞
0
β2 ′ σð Þνt σð Þdσ,

8>>><>>>: ð19Þ
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and therefore,

ð∞
0
β1 σð Þθxx t − σð Þdσ =

ð∞
0
β σð Þηtxx σð Þdσ,ð∞

0
β2 σð ÞPxx t − σð Þdσ =

ð∞
0
λ σð Þνt σð Þdσ:

8>>><>>>: ð20Þ

Consequently, the problem is equivalent to

wtt − d1 ux +
1
2 wxð Þ2

� �
wx

� �
x

+ d2wxxxx + μ1wt + μ2z x, 1, tð Þ = 0,

utt − d1 ux +
1
2 wxð Þ2

� �
x

− δ1θx − δ2Px = 0,

cθt + dPt −
ð∞
0
β σð Þηtxx σð Þdσ − δ1utx = 0,

dθt + rPt −
ð∞
0
λ σð Þνtxx σð Þdσ − δ2utx = 0,

ηtt + ηtσ = θ,
νtt + νtσ = P,

τ tð Þzt x, ρ, tð Þ + 1 − τ′ tð Þρ
� �

zρ x, ρ, tð Þ = 0,

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:
ð21Þ

where

x, σ, ρ, tð Þ ∈ 0, Lð Þ ×ℝ+ × 0, 1ð Þ × 0,∞ð Þ, ð22Þ

with the initial and boundary conditions

w x, tð Þ =wx x, tð Þ = u x, tð Þ = P x, tð Þ = θ x, tð Þ = 0, x = 0, L,
w x, 0ð Þ =w0 xð Þ,wt x, 0ð Þ =w1 xð Þ,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ,
θ x, 0ð Þ = θ0 xð Þ, P x, 0ð Þ = P0 xð Þ,
z x, ρ, 0ð Þ = f0 x,−ρτ 0ð Þð Þ,
η0 x, σð Þ = η0 x, σð Þ, ν0 x, σð Þ = ν0 x, σð Þ,  x, σð Þ ∈ 0, 1ð Þ ×ℝ+,

8>>>>>>>>>>><>>>>>>>>>>>:
ð23Þ

∀ x, ρ, σ, tð Þ ∈ 0, Lð Þ × 0, 1ð Þ × 0,∞ð Þ × 0,∞ð Þ, ð24Þ

where the function τðtÞ satisfies (7), (11), and the condition

0 < τ0 < τ tð Þ < �τ, ∀t > 0: ð25Þ

In this paper, we establish the well-posedness and prove
the exponential stability by using the variable of Kato under
some restrictions and assumptions:

(H1).

μ2j j ≤
ffiffiffiffiffiffiffiffiffiffi
1 − d

p
μ1: ð26Þ

(H2). The symmetric matrix Λ is positive definite, where

Λ =
c d

d r

 !
: ð27Þ

That is, ∣Λ ∣ = cr − d2 > 0 implies that

c
ðL
0
θ2dx + 2d

ðL
0
θPdx + r

ðL
0
P2dx > 0: ð28Þ

Condition (28) is needed to stabilize the system when dif-
fusion effects are added to thermal effects (see, e.g., [31–38]
for more information on this). By virtue of cr > d2, we deduce
that d/c < r/d. Let, then, ζ be a number chosen in such a way
that

d
c
< ζ < r

d
: ð29Þ

Thus, Young’s inequality leads to

2d
ðL
0
θPdx ≤

d
ζ

ðL
0
θ2dx + dζ

ðL
0
P2dx: ð30Þ

(H3). We assume the following set of hypotheses on μ and λ:

β, λ ∈ C1 ℝ+ð Þ ∩ L1 ℝ+ð Þ,

β σð Þ, λ σð Þ ≥ 0, β′ σð Þ, λ′ σð Þ ≤ 0, ∀σ ∈ℝ+,

β′ σð Þ + α1β σð Þ ≤ 0, λ′ σð Þ + α2λ σð Þ ≤ 0, for some α1, α2 > 0,∀σ ∈ℝ+,

ð31Þ

β 0ð Þ =
ð∞
0
β σð Þdσ≔ β0 > 0,

λ 0ð Þ =
ð∞
0
λ σð Þdσ≔ λ0 > 0:

8>>><>>>: ð32Þ

Let f be a memory kernel satisfying the assumptions (31)
and (32).

Now, we consider the weighted Hilbert spaces

Mf = L2 ℝ+,H1
0 0, Lð Þ	 


= Φ : ℝ+ →H1
0 0, Lð Þ/

ðL
0

ð∞
0
f σð ÞΦ2

x σð Þdσdx<∞
� �

,

ð33Þ

equipped with the inner product

<Φ,Ψ>M f
=
ðL
0

ð∞
0
f σð ÞΦx σð ÞΨx σð Þdσdx, ð34Þ
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and the norm

∥Φ∥2M f
= <Φ,Φ>M f

=
ðL
0

ð∞
0
f σð ÞΦ2

x σð Þdσdx: ð35Þ

We also introduce the linear operator T onMf defined by

TΦ = −Φσ, Φ ∈D Tð Þ, ð36Þ

with

D Tð Þ = Φ ∈Mf /Φσ ∈Mf ,Φ 0ð Þ = 0

 �

, ð37Þ

where Φσ is the distributional derivative of Φ with respect to
the internal variable σ, and then, the operator T is the infini-
tesimal generator of a C0-semigroup of contractions. Follow-
ing Ref. [39], there holds

<TΦ,Φ>M f
= <−Φσ,Φ>M f

= −
1
2

ð∞
0
f σð Þ d

dσ

ðL
0
Φ2

x σð Þdxdσ, ∀Φ ∈D Tð Þ:

ð38Þ

Integration by parts yieldsð∞
0
f σð Þ d

dσ

ðL
0
Φ2

x σð Þdxdσ

= f σð Þ
ðL
0
Φ2

x σð Þdx
����∞
0
−
ð∞
0
f ′ σð Þ

ðL
0
Φ2

x σð Þdxdσ:
ð39Þ

Hence, from (31), we obtain

<TΦ,Φ>M f
= 1
2

ð∞
0
f ′ σð Þ

ðL
0
Φ2

x σð Þdxdσ ≤ 0: ð40Þ

As a direct consequence, we deduce from (32) and (40)
that

<Tη, η>Mβ
= 1
2

ð∞
0
β′ σð Þ

ðL
0
η2x σð Þdxdσ

≤ −
α1
2

ð∞
0
β σð Þ

ðL
0
η2x σð Þdxdσ = −

α1
2 ∥ηx∥

2
Mβ

,

<Tν, ν>Mλ
= 1
2

ð∞
0
λ′ σð Þ

ðL
0
ν2x σð Þdxdσ

≤ −
α2
2

ð∞
0
λ σð Þ

ðL
0
ν2x σð Þdxdσ = −

α2
2 ∥νx∥

2
Mλ

,

ð41Þ

for all η, ν ∈DðTÞ. Finally, we define the operator Lf :

DðLf Þ→ L2ð0, LÞ by

LfΦ =
ð∞
0
f σð ÞΦxx σð Þdσ, ð42Þ

with the domain

D Lf

	 

= Φ ∈Mf /

ð∞
0
f σð ÞΦxx σð Þdσ ∈ L2 0, Lð Þ,Φ 0ð Þ = 0

� �
:

ð43Þ

2. Well-Posedness

In this section, we give sufficient conditions that guarantee
the well-posedness of this problem. Let

U = w,wt , u, ut , θ, ηt , P, νt , z
	 
T

: ð44Þ

For the sake of simplicity, we write η = ηtðσÞ and ν =
νtðσÞ and the new dependent variables φ = ωt and ψ = ut ;
then, (21)–(23) can be written as

U ′ =A tð ÞU +F Uð Þ,
U 0ð Þ = w0,w1, u0, u1, θ0, η0, P0, ν0,f0 :,−ρτ 0ð Þð Þð ÞT ,

(
ð45Þ

with the linear problem

U ′ =A tð ÞU ,

U 0ð Þ = w0,w1, u0, u1, θ0, η0, P0, ν0,f0 :,−ρτ 0ð Þð Þð ÞT ,

(
ð46Þ

where the time-varying operator A is defined by

A tð Þ

w

φ

u

ψ

θ

η

P

ν

z

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA

=

φ

−d2wxxxx − μ1φ − μ2z x, 1, tð Þ
ψ

d1uxx + δ1θx + δ2Px

−
1
α1

dδ2 − rδ1ð Þψx − rLβη + dLλν
� �

θ + Tη

−
1
α2

dδ1 − cδ2ð Þψx + dLβη − cLλν
� �

P + Tν

τ′ tð Þρ − 1
� �

τ tð Þ zρ

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCA

,

ð47Þ
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F Uð Þ =

0

d1 ux +
1
2 wxð Þ2

� �
x

0
d1
2 wxð Þ2

0
0
0
0
0

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

: ð48Þ

The energy space H is defined as

H = H4 0, Lð Þ ∩H2
0 0, Lð Þ� �

×H1
0 0, Lð Þ

× H2 0, Lð Þ ∩H2
0 0, Lð Þ� �

×H1
0 0, Lð Þ × L2 0, Lð Þ

×Mβ × L2 0, Lð Þ ×Mλ × L2 0, Lð Þ, 0, 1ð Þð Þ,
ð49Þ

and the domain of A is

D A tð Þð Þ = U ∈H /φ = z :,0ð Þ, θ, P ∈H1
0 0, Lð Þ, Lβη, Lλν



∈ L2 0, Lð Þ, η, ν ∈D Tð Þ�:

ð50Þ

We equip H with the inner product

<U , �U>H =
ðL
0
φ�φ + d1ux�ux + ψ�ψ + d2wxx �wxxf gdx

+
ðL
0

ð1
0
z x, ρ, tð Þ�z x, ρ, tð Þdρdx

+ <Λ θ, Pð ÞT , �θ, �P
	 
T > + < η, �η>Mβ

+ < ν, �ν>Mλ
,

ð51Þ

with the existence and the uniqueness in the following
result.

Theorem 1. Let (7), (11), and (25) be satisfied and assume
that (26)–(31) hold. Then, for all U0 ∈DðAð0ÞÞ, there exists
a unique solution U of problem (21)–(23) satisfying

U ∈ C 0½ ,+∞ð Þ,D A 0ð Þð Þ ∩ C1 0½ ,+∞ð Þ,HÞ: ð52Þ

In order to prove Theorem 1, we will use the variable
norm technique developed by Kato in [40]. The following
theorem is proved in [40].

Theorem 2. Assume that

(1) DðAð0ÞÞ is a dense subset of H

(2) DðAðtÞÞ =DðAð0ÞÞ, ∀t > 0

(3) For all t ∈ ½0, T�, AðtÞ generates a strongly continuous
semigroup onH and the family A = fAðtÞ: t ∈ ½0, T�g
is stable with stability constants C and m independent
of t; i.e., the semigroup ðStðsÞÞs≥0 generated by AðtÞ
satisfies

∥St sð Þ uð Þ∥H ≤ Cems∥u∥H , ∀u ∈H , s ≥ 0: ð53Þ

(4) dtAðtÞ ∈ L∞∗ ð½0, T�, BðDðAð0ÞÞ,HÞÞ, where L∞∗ ð½0,
T�, BðDðAð0ÞÞ,HÞÞ is the space of equivalent classes
of essentially bounded, strongly measurable functions
from ½0, T� into the set BðDðAð0ÞÞ,HÞ of bounded
operators from DðAð0ÞÞ into H

Then, problem (46) has a unique solution

U ∈ C 0, T½ �,D A 0ð Þð Þð Þ ∩ C1 0, T½ �,Hð Þ, ð54Þ

for any initial datum in DðAð0ÞÞ.

Proof. To prove Theorem 1, we use the method in [1] with
the necessary modification.

(1) First, we show that DðAð0ÞÞ is dense in H

Let F = ð f1, f2, f3, f4, f5, f6, f7, f8, f9Þ ∈H be orthogonal
to all elements of DðAð0ÞÞ with respect to the inner product
h:, :iH :

0 = <U , F>H =
ðL
0
φf2 + ψf4 + d2wxx f1xx + d1ux f3xf gdx

+
ðL
0

ð1
0
z x, ρ, tð Þf9dρdx+ <Λ θ, Pð ÞT , f5, f7ð ÞT >

+ <η, f6>Mβ
+ < ν, f8>Mλ

:

ð55Þ

For all U = ðw, φ, u, ψ, θ, η, P, ν, zÞT ∈DðAð0ÞÞ, our
goal is to prove that f i = 0, ∀i = 1,⋯, 9. Let us first take
z ∈Dðð0, LÞ × ð0, 1ÞÞ and w = φ = ψ = u = θ = q = ϕ = 0, so
the vector U = ð0, 0, 0, 0, 0, 0, 0, 0, zÞT ∈DðAð0ÞÞ, and there-
fore, from (55), we deduce that

ðL
0

ð1
0
z x, ρð Þf7dρdx = 0: ð56Þ

Since Dðð0, LÞ × ð0, 1ÞÞ is dense in L2ðð0, LÞ × ð0, 1ÞÞ, it
follows then that f9 = 0.

Similarly, let φ ∈H1
0ð0, LÞ; then, U = ð0, φ, 0, 0, 0, 0, 0,

0, 0ÞT ∈DðAð0ÞÞ, which implies from (55) that

ðL
0
φf2dx = 0: ð57Þ

So, as above, f2 = 0.
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And let U = ðw, 0, 0, 0, 0, 0, 0, 0, 0ÞT ; then, we obtain
from (55) that

ðL
0
wxx f1xxdx = 0: ð58Þ

It is obvious that U = ðw, 0, 0, 0, 0, 0, 0, 0, 0ÞT ∈DðAð0ÞÞ
only if w ∈H4ð0, LÞ ∩H2

0ð0, LÞ is dense in H2
0ð0, LÞ, with

respect to the inner product

<g, h>H2
0 0,Lð Þ

ðL
0
gxxhxxdx: ð59Þ

We get f1 = 0. By the same ideas as above, we can also
show that f3 = 0.

For u ∈DðAðtÞÞ, we get from (55) that

ðL
0
ux f3xdx = 0, ð60Þ

and by the density of DðAðtÞÞ in H1
0ð0, LÞ, we obtain f3 = 0.

For ψ ∈DðAðtÞÞ, we get from (55) that

ðL
0
ψf4dx = 0, ð61Þ

and by the density of DðAðtÞÞ in H1ð0, LÞ, we obtain f4 = 0.
Next, let U = ð0, 0, 0, 0, θ, 0, 0, 0, 0ÞT ; then, we obtain

from (55) that

ðL
0
θf5dx = 0: ð62Þ

It is obvious that U = ð0, 0, 0, 0, θ, 0, 0, 0, 0ÞT ∈DðAð0ÞÞ
only if θ ∈ L2ð0, LÞ is dense in L2ð0, LÞ; we get f5 = 0; for
η ∈Mβ, we get from (55) that

ðL
0

ð∞
0
β σð Þηx f6xdσdx = 0, ð63Þ

which gives f6 = 0. Similarly, for P and ν. This completes
the proof of (1).

(2) With our choice,DðAðtÞÞ is independent of t; conse-
quently,

D A tð Þð Þ =D A 0ð Þð Þ, ∀t > 0: ð64Þ

(3) Now, we show that the operator AðtÞ generates a
C0-semigroup in H for a fixed t. We define the
time-dependent inner product on H :

<U , �U>t =
ðL
0
φ�φ + d1ux�ux + ψ�ψ + d2wxx �wxxf gdx

+ ξτ tð Þ
ðL
0

ð1
0
z x, ρ, tð Þ�z x, ρ, tð Þdρdx

+ <Λ θ, Pð ÞT , �θ, �P
	 
T > + < η, �η>Mβ

+ < ν, �ν>Mλ
,

ð65Þ

where ξ satisfies

∣μ2 ∣ffiffiffiffiffiffiffiffiffiffi
1 − d

p ≤ ξ ≤ 2μ1 −
∣μ2 ∣ffiffiffiffiffiffiffiffiffiffi
1 − d

p
� �

, ð66Þ

thanks to hypothesis (26).
Let us set

κ tð Þ =
τ′ tð Þ2 + 1
� �1/2

2τ tð Þ : ð67Þ

In this step, we prove the dissipativity of the operator
�AðtÞ =AðtÞ − τðtÞI.

For a fixed t andU = ðw, φ, u, ψ, θ, η, P, ν, zÞT ∈DðAðtÞÞ,
we have

<A tð ÞU ,U>t = −μ1

ðL
0
φ2dx − μ2

ðL
0
φz x, 1, tð Þdx

+ < Tη, η>Mβ
+ <Tν, η>Mλ

− ξ
ðL
0

ð1
0
1 − τ′ tð Þρ
� �

z x, ρ, tð Þzρ x, ρ, tð Þdρdx:

ð68Þ

Observe that

ðL
0

ð1
0
1 − τ′ tð Þρ
� �

z x, ρ, tð Þzρ x, ρ, tð Þdρdx

= 1
2

ðL
0

ð1
0
1 − τ′ tð Þρ
� � d

dρ
z2dρdx

= τ′ tð Þ
2

ðL
0

ð1
0
z2 x, ρ, tð Þdρdx

+ 1
2

ðL
0

z2 x, 1, tð Þ 1 − τ′ tð Þ
� �

− z2 x, 0, tð Þ
n o

dρdx,

<Tη, η>Mβ
+ < Tν, η>Mλ

= + 12

ð∞
0
β′ σð Þ

ðL
0
η2x σð Þdxdσ + 1

2

ð∞
0
λ′ σð Þ

ðL
0
ν2x σð Þdxdσ

≤ −
α1
2 ∥η σð Þ∥2Mβ

−
α2
2 ∥ν σð Þ∥2Mλ

,

ð69Þ
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whereupon

<A tð ÞU ,U>t = −μ1

ðL
0
φ2dx − μ2

ðL
0
φz x, 1, tð Þdx

−
α1
2 ∥η σð Þ∥2Mβ

−
α2
2 ∥ν σð Þ∥2Mλ

−
ξτ′ tð Þ
2

ðL
0

ð1
0
z2 x, ρ, tð Þdρdx

−
ξ

2

ðL
0
z2 x, 1, tð Þ 1 − τ′ tð Þ

� �
dx + ξ

2

ðL
0
φ2dx:

ð70Þ

By using Young’s inequality and (7), we get

<A tð ÞU ,U>t ≤ −μ1 +
∣μ2 ∣

2
ffiffiffiffiffiffiffiffiffiffi
1 − d

p + ξ

2

� �ðL
0
φ2dx

+ ∣μ2 ∣
ffiffiffiffiffiffiffiffiffiffi
1 − d

p

2 − ξ
1 − dð Þ
2

 !ðL
0
z2 x, 1, tð Þdx

−
α1
2 ∥η σð Þ∥2Mβ

−
α2
2 ∥ν σð Þ∥2Mλ

+ κ tð Þ <U ,U>t ,

ð71Þ

under condition (66) which allows to write

−μ1 +
μ2j j

2
ffiffiffiffiffiffiffiffiffiffi
1 − d

p + ξ

2 ≤ 0,

μ2j j
ffiffiffiffiffiffiffiffiffiffi
1 − d

p

2 − ξ
1 − dð Þ
2 ≤ 0:

ð72Þ

Consequently, the operator �AðtÞ =AðtÞ − κðtÞI is
dissipative.

Now, we prove the subjectivity of the operator I −AðtÞ
for fixed t > 0.

Let ð f1, f2, f3, f4, f5, f6, f7, f8, f9ÞT ∈H ; we seek U =
ðw, φ, u, ψ, θ, η, P, ν, zÞT ∈DðAðtÞÞ solution of the following
system:

w − φ = f1,
φ + d2wxxxx + μ1φ+μ2z :,1, tð Þ = f2,
u − ψ = f3,
ψ − d1uxx − δ1θx − δ2Px = f4,
α1θ + dδ2 − rδ1ð Þψx − rLβη + dLλν = α1 f5,
η − θ − Tη = f6,
α2P + dδ1 − cδ2ð Þψx + dLβη+−cLλν = α2 f7,
ν − P − Tν = f8,

z −
τ′ tð Þρ − 1
� �

τ tð Þ zρ = f9:

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

ð73Þ

Suppose that we have found w and u. Then,

w − φ = f1,
u − ψ = f3:

(
ð74Þ

Furthermore, by (73), we can find z as

z x, 0ð Þ = φ xð Þ, x ∈ 0, Lð Þ: ð75Þ

Following the same approach as in [1], we obtain, by
using the last equation in (73),

where ηyðtÞ = ðτðtÞ/τ′ðtÞÞ ln ð1 − τ′ðtÞρÞ. Whereupon, from
(74), we obtain

z x, ρð Þ = φ xð Þe−ρτ tð Þ + τ tð Þe−ρτ tð Þ
ð1
0
f9 x, yð Þeyτ tð Þdy, if τ′ tð Þ = 0,

z x, ρð Þ = φ xð Þeηρ tð Þ + eηρ tð Þ
ð1
0

τ tð Þ
1 − τ′ tð Þy

f9 x, yð Þe−ηy tð Þdy, if τ′ tð Þ ≠ 0,

8>>><>>>: ð76Þ

z x, ρð Þ = φ xð Þe−ρτ tð Þ − f1e
−ρτ tð Þ + τ tð Þe−ρτ tð Þ

ð1
0
f9 x, yð Þeyτ tð Þdy, if τ′ tð Þ = 0,

z x, ρð Þ = φ xð Þeηρ tð Þ − f1e
ηρ tð Þ + eηρ tð Þ

ð1
0

τ tð Þ
1 − τ′ tð Þy

f9 x, yð Þe−ηy tð Þdy, if τ′ tð Þ ≠ 0:

8>>><>>>: ð77Þ
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Integrating (73)6 and (73)8 with ηð0Þ = νð0Þ = 0, we have

η σð Þ = 1 − e−σð Þθ +
ðσ
0
es−σ f6 sð Þds,

ν σð Þ = 1 − e−σð ÞP +
ðσ
0
es−σ f8 sð Þds:

8>>><>>>: ð78Þ

Substituting (73)1,3,6,8,9 into the others, we obtain the
following system. Now, we have to find w, u, θ, and P as
solutions of the equations:

w + d2wxxxx + μ1φ+μ2z :,1, tð Þ = f2 + f1 + β1 f1,
u − d1uxx − δ1θx − δ2Px = f4 + f3,
α1θ − rCβθxx + dCλPxx + dδ2 − rδ1ð Þux = h3,
α2P + dCβθxx − cCλPxx + dδ1 − cδ1ð Þux = h4:

8>>>>><>>>>>:
ð79Þ

Solving (79), we get

μ3w + d2wxxxx = h1,
u − d1uxx − δ1θx − δ2Px = h2,
α1θ − rCβθxx + dCλPxx + dδ2 − rδ1ð Þux = h3,
α2P + dCβθxx − cCλPxx + dδ1 − cδ1ð Þux = h4,

8>>>>><>>>>>:
ð80Þ

where

From (77), we have

z x, 1ð Þ =
w xð Þe−τ tð Þ + z0 xð Þ,  if τ′ tð Þ = 0,

w xð Þeηρ tð Þ + z0 xð Þ,  if τ′ tð Þ ≠ 0,

(
ð82Þ

where x ∈ ð0, LÞ and

z0 xð Þ =
−f1e

−ρτ tð Þ + τ tð Þe−ρτ tð Þ
ð1
0
f9 x, yð Þeyτ tð Þdy,  if τ′ tð Þ = 0,

−f1e
ηρ tð Þ + eηρ tð Þ

ð1
0

τ tð Þ
1 − τ′ tð Þy

f9 x, yð Þe−ηy tð Þdy,  if τ′ tð Þ ≠ 0:

8>>><>>>:
ð83Þ

It is clear from the above formula that z0 depends only on
f1, f9. Consequently, problem (80) is equivalent to

ζ w, u, θ, Pð Þ, ŵ, û, bθ , P̂� �� �
= Γ ŵ, û, bθ , P̂� �

, ð84Þ

where the bilinear form ζ : ½H2
0ð0, LÞ ×H1

0ð0, LÞ × L2ð0, LÞ ×
L2ð0, LÞ�2 →ℝ and the linear form Γ : ½H2

0ð0, LÞ ×H1
0ð0, LÞ

× L2ð0, LÞ × L2ð0, LÞ�→ℝ are defined by

ζ w, u, θ, Pð Þ, ŵ, û, bθ , P̂� �� �
=
ðL
0
μ3wŵ + d2wxxŵxx + uû + d1uxûxð Þdx + α1

ðL
0
θbθdx

+ α2

ðL
0
PP̂dx + rCβ

ðL
0
θx
bθxdx + cCλ

ðL
0
PxP̂xdx

− dCβ

ðL
0
θxP̂xdx − dCλ

ðL
0
Px
bθxdx

+ dδ2 − rδ1ð Þ
ðL
0
uxbθdx + dδ1 − cδ2ð Þ

ðL
0
uxP̂dx

+
ðL
0
δ1θ + δ2Pð Þûxdx,

Γ ŵ, û, bθ , P̂� �
=
ðL
0
h1ŵdx +

ðL
0
h2ûdx +

ðL
0
h3bθdx + ðL

0
h4P̂dx:

ð85Þ

μ3 = 1 + μ1 + e−τ tð Þ,
h1 = f2 + 1 + μ1ð Þf2 − μ2z0,
h2 = f4 + f3,

h3 = α1 f5 + dδ2 − rδ1ð Þf3x + r
ð∞
0
β σð Þ

ðσ
0
es−σ f6xx sð Þdsdσ − d

ð∞
0
λ σð Þ

ðσ
0
es−σ f8xx sð Þdsdσ,

h4 = α2 f7 + dδ1 − cδ2ð Þf5x − d
ð∞
0
β σð Þ

ðσ
0
es−σ f6xx sð Þdsdσ + c

ð∞
0
λ σð Þ

ðσ
0
es−σ f8xx sð Þdsdσ:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð81Þ
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Now, for H 1 =H2
0ð0, LÞ ×H1

0ð0, LÞ × L2ð0, LÞ × L2ð0, LÞ,
equipped with the norm

∥ w, u, θ, Pð Þ∥2H1
= ∥w∥22+∥wxx∥

2
2+∥u∥22+∥ux∥22+∥θ∥22

+∥θx∥22+∥Px∥
2
2+∥P∥22,

ð86Þ

then, we have

B w, u, θ, Pð Þ, w, u, θ, Pð Þð Þ

= μ3

ðL
0
w2dx + d2

ðL
0
w2

xxdx +
ðL
0
u2dx + d1

ðL
0
u2xdx

+ α1

ðL
0
θ2dx + α2

ðL
0
P2dx + rCβ

ðL
0
θ2xdx + cCλ

ðL
0
P2
xdx

− dCβ + dCλ

	 
ðL
0
Pxθxdx + dδ2 − rδ1ð Þ

ðL
0
uxθdx

+ dδ1 − cδ2ð Þ
ðL
0
uxPdx +

ðL
0
δ1θ + δ2Pð Þuxdx:

ð87Þ

Then, for some M0 > 0,

B w, u, θ, Pð Þ, w, u, θ, Pð Þð Þ ≥M0∥ w, u, θ, Pð Þ∥2H1
: ð88Þ

Thus, B is coercive.
By Cauchy-Schwarz’s and Poincaré’s inequalities, we

obtain

B w, u, θ, Pð Þ, ŵ, û, bθ , P̂� �� �
≤M1∥ w, u, θ, Pð Þ∥2H 1

∥ ŵ, û, bθ , P̂� �
∥2H1

:
ð89Þ

Similarly, we get

Γ ŵ, û, bθ , P̂� �
≤M2∥ ŵ, û, bθ , P̂� �

∥2H1
: ð90Þ

Consequently, applying the Lax-Milgram theorem, prob-
lem (84) admits a unique solution ðw, u, θ, PÞ ∈H 1, for all

ðŵ, û, bθ , P̂Þ ∈H 1. Applying the classical elliptic regularity,
it follows from (80) that ðw, u, θ, PÞ ∈H1.

Therefore, the operator I −AðtÞ is surjective for any fixed
t > 0. Since κðtÞ > 0 and

I − �A tð Þ = 1 + κ tð Þð ÞI −A tð Þ, ð91Þ

we deduce that the operator I − �AðtÞ is also surjective for any
t > 0.

To complete the proof of (3), it suffices to show that

∥U∥t
∥U∥s

≤ e c/2τ0ð Þ t−sj j, ∀t, s ∈ 0, T½ �, ð92Þ

where U = ðw, φ, u, ψ, θ, η, P, ν, zÞT and k:kt is the norm
associated with the inner product (56).

For t, s ∈ ½0, T�, we have from (56) that

∥U∥2t−∥U∥2s e
c/τ0ð Þ∣t−s∣

= 1 − e c/τ0ð Þ∣t−s∣
� �ðL

0
φ2 + d2w

2
xx + d1u

2
x + ψ2
 �

dx

+ 1 − e c/τ0ð Þ∣t−s∣
� �

<Λ θ, Pð ÞT , θ, Pð ÞT >

+ 1 − e c/τ0ð Þ∣t−s∣
� �

∥η∥2Mβ
+∥ν∥2Mλ

n o
+ ξ τ tð Þ − τ sð Þe c/τ0ð Þ∣t−s∣
� �ðL

0

ð1
0
z2 x, ρ, tð Þdρdx:

ð93Þ

It is clear that ð1 − eðc/τ0Þ∣t−s∣Þ ≤ 0. Now, we will prove that
ðτðtÞ − τðsÞeðc/τ0Þ∣t−s∣Þ ≤ 0 for c > 0. To do this, we have

τ tð Þ = τ sð Þ + τ′ að Þ t − sð Þ, ð94Þ

where a ∈ ðs, tÞ, which implies

τ tð Þ
τ sð Þ ≤ 1 + τ að Þj j

τ sð Þ t − sj j: ð95Þ

By using (11), we deduce that

τ tð Þ
τ sð Þ ≤ 1 + c

τ0
t − sj j ≤ e c/τ0ð Þ t−sj j, ð96Þ

which proves (92); therefore, this completes the proof of (3).

(4) It is clear that

d
dt

A tð ÞU =

0
0
0
0
0
0
0
0

τ′′ tð Þτ′ tð Þρ − τ′ tð Þ τ′ tð Þρ − 1
� �� �

τ2 tð Þ zρ

0BBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCA

:

ð97Þ

Then, by (11) and (25), (4) holds exactly as in [1]. Conse-
quently, from the above analysis, we deduce that the problem

�Ut = �A tð Þ�Ut ,
�Ut 0ð Þ =U0,

8>><>>: ð98Þ
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has a solution �U ∈ Cð½0,∞Þ,HÞ, and if U0 ∈DðAð0ÞÞ, then

�U ∈ C 0½ ,∞Þ,D A 0ð Þð Þð Þ ∩ C1 0½ ,∞Þ,Hð Þ: ð99Þ

Now, let

U tð Þ = eϑ tð Þ �U tð Þ, ð100Þ

with ϑðtÞ = Ð t0κðsÞds; then, by using (98), we have
Ut tð Þ = κ tð Þeϑ tð Þ �U tð Þ + eϑ tð Þ �Ut tð Þ

= κ tð Þeϑ tð Þ �U tð Þ + eϑ tð Þ �A tð Þ�U tð Þ
= eϑ tð Þ κ tð Þ�U tð Þ + �A tð Þ�U tð Þ	 

= eϑ tð Þ A tð Þ�U tð Þ	 


=A tð ÞU tð ÞÞ:

ð101Þ

Consequently, UðtÞ is the unique solution of (46).
It remains to prove that the operator F defined in (48) is

locally Lipschitz in H .
LetU1 = ðw1, φ1, u1, ψ1, θ1, η1, P1, ν1, z1ÞT ∈H andU2 =

ðw2, φ2, u2, ψ2, θ2, η2, P2, ν2, z2ÞT ∈H . Then, we have

∥F U1ð Þ −F U2ð Þ∥ = d1 Rj j2 + Kj j2	 

, ð102Þ

where

R = u1x +
1
2w

2
1x

� �
w1x − u2x +

1
2w

2
2x

� �
w2x

� �
,

K = 1
2 w2

1x −w2
2x

	 

:

ð103Þ

Adding and subtracting the term ðu1x + ð1/2Þw2
1xÞw2x

inside the norm ∣R ∣ , we find

∣R∣ ≤ ∥w1x −w2x∥L∞ 0,Lð Þ∣u1x +
1
2w

2
1x∣+∥w2x∥L∞∣u1x − u2x∣

+ 1
2 ∥w2x∥L∞∣w1x +w2x∣ w1x −w2xk kL∞ 0,Lð Þ:

ð104Þ

Using the embedding of H1ð0, LÞ into L∞ð0, LÞ, from
(104), one has

∣R∣ ≤ k1 ∥U1∥H ,∥U2∥Hð Þ∥U1 −U2∥: ð105Þ

Using once again the embedding ofH1ð0, LÞ into L∞ð0, LÞ,
one also sees that

∣K∣ ≤ k2 ∥U1∥H ,∥U2∥Hð Þ∥U1 −U2∥: ð106Þ

Combining (102), (105), and (106), consequently,FðUÞ
is locally Lipschitz continuous in H . This ends the proof of
Theorem 1.

3. General Decay

In this section, we state and prove the stability of system
(21)–(23) using the multiplier technique under the assump-
tions (26)–(31).

We define the energy functional E by

E tð Þ = 1
2

ðL
0

w2
t + u2t + d2w

2
xx + d1 ux +

1
2w

2
x

� �2
+ cθ2 + rP2

( )
dx

+ d < θ, P > + 12 ∥η∥
2
Mβ

+ 1
2 ∥ν∥

2
Mλ

+ ξ

2

ðL
0

ð1
0
τ tð Þz2 x, ρ, tð Þdρdx,

ð107Þ

where

∣μ2 ∣ffiffiffiffiffiffiffiffiffiffi
1 − d

p ≤ ξ ≤ 2μ1 −
μ2j jffiffiffiffiffiffiffiffiffiffi
1 − d

p
� �

: ð108Þ

The following lemma shows that the energy is decreasing.

Lemma 3. Assume that (26)–(31) hold and the hypotheses (7),
(11), and (25) are satisfied. Then, for ∀C ≥ 0,

E′ tð Þ ≤ −C
ðL
0
w2

t dx +
ðL
0
z2 x, 1, tð Þdx

� �
−
α1
4
∥η∥2Mβ

+ 1
4

ð∞
0
β′ σð Þ∥ηx σð Þ∥2dσ −

α2
4
∥ν∥2Mλ

+ 1
4

ð∞
0
λ′ σð Þ∥νx σð Þ∥2dσ ≤ 0:

ð109Þ

Proof. Multiplying the equations of (21) by wt , ut , θ, η, P, ν,
and ξz, respectively, then by integration by parts, we get

1
2
d
dt

ðL
0

w2
t + u2t + d2w

2
xx + d1 ux +

1
2w

2
x

� �2
+ cθ2 + rP2

( )
dx

+ d
dt

d < θ, P > + 1
2 ∥η∥

2
Mβ

+ 1
2 ∥ν∥

2
Mλ

� �
+ ξ

2
d
dt

ðL
0

ð1
0
τ tð Þz2 x, ρ, tð Þdρdx

= −μ1
ð1
0
ω2
t dx − μ2

ðL
0
wtz x, 1, tð Þdx

+ 1
2

ð∞
0
β′ σð Þ∥ηx σð Þ∥2dσ + 1

2

ð∞
0
λ′ σð Þ∥νx σð Þ∥2dσ

+ ξ

2

ðL
0

ð1
0
τ′ tð Þz2 x, ρ, tð Þdρdx

− ξ
ðL
0

ð1
0
1 − τ′ tð Þρ
� �

z x, ρ, tð Þzρ x, ρ, tð Þdρdx

≤ −μ1

ð1
0
ω2
t dx − μ2

ðL
0
wtz x, 1, tð Þdx − α1

4 ∥η∥2Mβ
−
α2
4 ∥ν∥2Mλ
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+ 1
4

ð∞
0
β′ σð Þ∥ηx σð Þ∥2dσ + 1

4

ð∞
0
λ′ σð Þ∥νx σð Þ∥2dσ

−
ξ

2

ðL
0

ð1
0

d
dρ

1 − τ′ tð Þρ
� �

z2 x, ρ, tð Þ
� �

dρdx

= −μ1

ð1
0
ω2
t dx − μ2

ðL
0
wtz x, 1, tð Þdx − α1

4 ∥η∥2Mβ
−
α2
4 ∥ν∥2Mλ

+ 1
4

ð∞
0
β′ σð Þ∥ηx σð Þ∥2dσ + 1

4

ð∞
0
λ′ σð Þ∥νx σð Þ∥2dσ

+ ξ

2

ðL
0
z2 x, 0, tð Þ − z2 x, 1, tð Þ	 


dx

+ ξτ′ tð Þ
2

ðL
0
z2 x, 1, tð ÞÞdx: ð110Þ

From (110), we find

E′ tð Þ ≤ − μ1 −
ξ

2

� �ðL
0
w2

t dx +
ξτ′ tð Þ
2 −

ξ

2

 !ðL
0
z2 x, 1, tð Þdx

− μ2

ðL
0
wtz x, 1, tð Þdx − α1

4 ∥η∥2Mβ
−
α2
4 ∥ν∥2Mλ

+ 1
4

ð∞
0
β′ σð Þ∥ηx σð Þ∥2dσ + 1

4

ð∞
0
λ′ σð Þ∥νx σð Þ∥2dσ:

ð111Þ

Using Young’s inequality, we have

−μ2

ðL
0
wtz x, 1, tð Þdx ≤ ∣μ2 ∣

2
ffiffiffiffiffiffiffiffiffiffi
1 − d

p
ðL
0
w2

t dx

+ ∣μ2 ∣
ffiffiffiffiffiffiffiffiffiffi
1 − d

p

2

ðL
0
z2 x, 1, tð Þdx:

ð112Þ

Inserting (112) into (111), we get

E′ tð Þ ≤ − μ1 −
ξ

2 −
μ2j j

2
ffiffiffiffiffiffiffiffiffiffi
1 − d

p
� �ðL

0
w2

t dx

+ ξ

2 τ′ tð Þ − 1
� �

+ μ2j j
ffiffiffiffiffiffiffiffiffiffi
1 − d

p

2

 !ðL
0
z2 x, 1, tð Þdx

−
α1
4 ∥η∥2Mβ

+ 1
4

ð∞
0
β′ σð Þ∥ηx σð Þ∥2dσ −

α2
4 ∥ν∥2Mλ

+ 1
4

ð∞
0
λ′ σð Þ∥νx σð Þ∥2dσ:

ð113Þ

Then, by using (7), (28)–(31), and (108), we obtain (109).

In the following, we state and prove our stability result;
we introduce and prove several lemmas.

Lemma 4. The functional

F1 tð Þ≔
ðL
0

utu +
1
2
wtw + β1

4
w2

� �
dx, ð114Þ

satisfies, for any ε1 > 0,

F1′ tð Þ ≤ −d1
ðL
0

ux +
1
2
w2

x

� �2

dx −
d2
4

ðL
0
w2

xxdx +
ðL
0
u2t dx

+ 1
2

ðL
0
w2

t dx + 2ε1

ðL
0
u2xdx +

δ21
4ε1

ðL
0
θ2 + δ22

4ε1

ðL
0
P2

+ c
ðL
0
z2 x, 1, tð Þdx:

ð115Þ

Proof. By differentiating F1, then by integration by parts, we
obtain

F1′ tð Þ =
ðL
0
u2t dx +

1
2

ðL
0
w2

t dx −
1
2 d1

ðL
0

ux +
1
2w

2
x

� �
w2

xdx

− d1

ðL
0
ux ux +

1
2w

2
x

� �
dx −

μ2
2

ðL
0
wz x, 1, tð Þdx

−
d2
2

ðL
0
w2

xxdx + δ1

ðL
0
θuxdx + δ2

ðL
0
Puxdx:

ð116Þ

In what follows, using Young’s and Poincaré’s inequal-
ities, we obtain (115).

Then, we have the following lemma.

Lemma 5. The functional

F2 tð Þ≔
ðL
0
utΦdx, ð117Þ

where −δ1Φx = cθ + dP, with Φð0Þ =ΦðLÞ = 0, satisfies

F2′ tð Þ ≤ −
ðL
0
u2t dx + ε2

ðL
0

ux +
1
2
w2

x

� �2

dx + c∥η∥2Mμ

+ c 1 + 1
ε2

� �ðL
0
θ2dx + c 1 + 1

ε2

� �ðL
0
P2dx:

ð118Þ

Proof. For direct computations, we have

F2′ tð Þ =
ðL
0
uttΦdx|fflfflfflfflffl{zfflfflfflfflffl}

f

1 tð Þ +
ðL
0
utΦtdx|fflfflfflfflffl{zfflfflfflfflffl}
f2 tð Þ

: ð119Þ
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Using Young’s inequality and integrating by parts, we
obtain

f1 tð Þ ≤ ε2

ðL
0

ux +
1
2w

2
x

� �2
dx + c 1 + 1

ε2

� �ðL
0
θ2dx

+ c 1 + 1
ε2

� �ðL
0
P2dx,

ð120Þ

f2 tð Þ = −
1
δ1

ðL
0
ut∂

−1
x

ð∞
0
β σð Þηxx σð Þdσ + δ1utx

� �
dx

= −
1
δ1

ðL
0
ut

ð∞
0
β σð Þηx σð Þdσ + δ1ut

� �
dx

≤ −
ðL
0
u2t dx + c∥η∥2Mβ

:

ð121Þ

From (120) and (121), we obtain (118).

Lemma 6. Assuming that assumptions (31) and (32) hold, the
functional

F3 tð Þ≔ −
ð∞
0
β σð Þ

ðL
0
cθ + dPð Þηdxdσ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G1

−
ð∞
0
λ σð Þ

ðL
0
dθ + rPð Þνdxdσ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G2

,

ð122Þ

satisfies

F3′ tð Þ ≤ −ĉ
ðL
0
θ2dx − r̂

ðL
0
P2dx + β0∥η∥

2
Mβ

+ λ0∥ν∥
2
Mλ

+ c
ε3

ðL
0
u2t dx − Cβ0

ð∞
0
β′ σð Þ∥ηx σð Þ∥2 σð Þdσ

− Cλ0

ð∞
0
λ′ σð Þ∥νx σð Þ∥2 σð Þdσ,

ð123Þ

where

ĉ = 1
2

β0c − β0 + λ0ð Þ d
ζ

� �
,

r̂ = 1
2

λ0r − μ0 + λ0ð Þdζð Þ,
ð124Þ

and ζ > 0 satisfies (29).

Proof. We take the derivative of F3 =G1 +G2, which gives

G1′ tð Þ = −
ð∞
0
β σð Þ

ðL
0
cθ + dPð Þtηdxdσ

−
ð∞
0
β σð Þ

ðL
0
cθ + dPð Þηtdxdσ

= −
ð∞
0
β σð Þ

ðL
0
cθt + dPtð Þηdxdσ + c

ð∞
0
β σð Þ

ðL
0
θησdxdσ

+ d
ð∞
0
β σð Þ

ðL
0
Pησdxdσ − cβ0

ðL
0
θ2dx − d

ð∞
0
β σð Þ

ðL
0
Pθdxdσ:

ð125Þ

The first term on the right-hand side of (125) is

−
ð∞
0
β σð Þ

ðL
0
cθ + dPð Þtηdxdσ

= −δ1
ð∞
0
β σð Þ

ðL
0
utxηdxdσ

−
ðL
0

ð∞
0
β σð Þηxxdσ

� � ð∞
0
β σð Þηdσ

� �
dx,

ð126Þ

and can be controlled in the following way:

−δ1
ð∞
0
β σð Þ

ðL
0
utxηdxdσ

���� ���� ≤ C ε3ð Þ∥η∥2Mβ
+ c
ε3

ðL
0
u2t dx,

ð127Þ

−
ðL
0

ð∞
0
β σð Þηxxdσ

� � ð∞
0
β σð Þηdσ

� �
dx ≤ β0∥η∥

2
Mβ

:

ð128Þ
Moreover, by integration by parts, we get

c
ð∞
0
β σð Þ

ðL
0
θησdxdσ

���� ���� = c −
ð∞
0
β′ σð Þ

ðL
0
θηdxdσ

���� ����
≤
cμ0
4

ðL
0
θ2dx − Cβ0

ð∞
0
β′ σð Þ∥ηx σð Þ∥2dσ,

ð129Þ

where Cβ0
> 0. Similarly, we obtain

d
ð∞
0
β σð Þ

ðL
0
Pησdxdσ

���� ���� = c −
ð∞
0
β′ σð Þ

ðL
0
Pηdxdσ

���� ����
≤
rλ0
4

ðL
0
P2dx − Cβ0

′
ð∞
0
β′ σð Þ∥ηx σð Þ∥2dσ,

ð130Þ

where C′β0
> 0. Using (29), we get

−d
ð∞
0
β σð Þ

ðL
0
θPdx

� �
dσ ≤ β0

d
2ζ

ðL
0
θ2dx + β0

dζ
2

ðL
0
P2dx:

ð131Þ

Then, we obtain

G1′ tð Þ ≤
β0
2

d
ζ
−
3c
2

� �ðL
0
θ2dx + 1

2 β0dζ +
rλ0
2

� �ðL
0
P2dx

+ c
ε3

ðL
0
u2t dx −Cβ0

ð∞
0
β′ σð Þ∥ηx σð Þ∥2dσ

+ β0 + C ε3ð Þð ∥η∥2Mβ
,

ð132Þ
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where Cβ0
= Cβ0

+ C′β0
. Then, using the same arguments, we

find

G2′ tð Þ ≤
1
2 λ0

d
ζ
+ β0c

2

� �ðL
0
θ2dx + λ0

2 dζ −
3r
2

� �ðL
0
P2dx

+ c
ε3

ðL
0
u2t dx −Cλ0

ð∞
0
λ′ σð Þ∥νx σð Þ∥2dσ

+ λ0 + C ε3ð Þð ∥ν∥2Mλ
:

ð133Þ

Adding (127) and (133), we obtain (123).
We choose ζ in such a way that

ĉ = 1
2 β0c − β0 + λ0ð Þ d

ζ

� �
> 0,

r̂ = 1
2 λ0r − β0 + λ0ð Þdζð Þ > 0,

ð134Þ

which implies

d
c
< β0 + λ0

β0

d
c
< ζ < λ0

β0 + λ0

r
d
< r
d
: ð135Þ

Then, ζ satisfies (29).

Now, let us introduce the following functional.

Lemma 7. The functional

F4 tð Þ≔ ξτ tð Þ
ðL
0

ð1
0
e−2τ tð Þρz2 x, ρ, tð Þdρdx, ð136Þ

satisfies

F4′ tð Þ ≤ −2F4 tð Þ − η1

ðL
0
z2 x, 1, tð Þdx + ξ

ðL
0
w2

t dx, ð137Þ

where η1 is a positive constant.

Proof. By differentiating F4, with respect to t, we have

F4′ tð Þ = ξτ′ tð Þ
ðL
0

ð1
0
e−2τ tð Þρz2 x, ρ, tð Þdρdx

+ ξτ tð Þ
ðL
0

ð1
0

−2τ′ tð Þρe−2τ tð Þρz2 + e−2τ tð Þρztz
n o

dρdx:

ð138Þ

By using the last equation of (21), we have

τ tð Þ
ðL
0

ð1
0
e−2τ tð Þρztzdρdx

=
ðL
0

ð1
0
τ′ tð Þρ − 1
� �

e−2τ tð Þρzρzdρdx

= 1
2

ðL
0

ð1
0

d
dρ

τ′ tð Þρ − 1
� �

e−2τ tð Þρz2
n o

dρdx

+ τ tð Þ
ðL
0

ð1
0
τ′ tð Þρ − 1
� �

e−2τ tð Þρz2dρdx

−
τ′ tð Þ
2

ðL
0

ð1
0
e−2τ tð Þρz2dx:

ð139Þ

Using (137)–(139), we get

F4′ tð Þ = −2ξτ tð Þ
ðL
0

ð1
0
e−2τ tð Þρz2 x, ρ, tð Þdρdx + ξ

ðL
0
z2 x, 0, tð Þdx

− ξ 1 − τ′ tð Þ
� �

e−2τ tð Þ
ðL
0
z2 x, 1, tð Þdx:

ð140Þ

Then, by using (7), (25), and the fact that zðx, 0, tÞ =
wtðx, tÞ and setting η1 = ξð1 − dÞe−2�τ, we obtain (137).

We are now ready to prove the following result.

Theorem 8. Assume (26)–(31) hold; there exist positive con-
stants C1 and C2 such that the energy functional given by
(107) satisfies

E tð Þ ≤ C2e
−C1t , ∀t ≥ 0: ð141Þ

Proof. We define a Lyapunov functional

L tð Þ≔NE tð Þ + 〠
i=3

i=1
NiFi tð Þ + F4 tð Þ, ð142Þ

where N and Ni, i = 1, 2, 3, are positive constants to be
selected later.

By differentiating (142) and using (109), (115), (118),
(123), and (137), including the relation

ðL
0
u2xdx =

ðL
0

u2x +
1
2w

2
x −

1
2w

2
x

� �
dx

≤ 2
ðL
0

ux +
1
2w

2
x

� �2
dx −

1
2

ðL
0
w4

xdx

≤ 2
ðL
0

ux +
1
2w

2
x

� �2
dx −

L
4

ðL
0
w2

xxdx,

ð143Þ
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we get

L ′ tð Þ ≤ − d1 − 2ε1ð ÞN1 − ε2N2½ �
ðL
0

ux +
1
2w

2
x

� �2
dx

− N2 −N1 −
c
ε3
N3

� �ðL
0
u2t dx

−
d2
4 −

L
2 ε1

� �
N1

� �ðL
0
w2

xxdx

− CN −
1
2N1 − ξ

� �ðL
0
ω2
t dx

− ĉN3 −
δ21
4ε1

N1 − c 1 + 1
ε2

� �
N2

" #ðL
0
θ2dx

− r̂N3 −
δ22
4ε1

N1 − c 1 + 1
ε2

� �
N2

" #ðL
0
P2dx

− CN − cN1 + η1½ �
ðL
0
z2 x, 1, tð Þdx − 2F4 tð Þ

−
α1
4 N − cN2 − μ0N3
h i

∥η∥2Mβ

−
α2
4 N − λ0N3
h i

∥ν∥2Mλ

+ 1
4N − Cμ0

N3

� �ð∞
0
β′ σð Þ∥ηx σð Þ∥2dσ

+ 1
4N − Cλ0

N3

� �ð∞
0
λ′ σð Þ∥νx σð Þ∥2dσ:

ð144Þ

First, we choose ε1 small enough such that

d1 − 2ε1 > 0,

d2
4 −

L
2 ε1 > 0:

ð145Þ

By setting

ε2 =
d1 − 2ε1ð ÞN1

2N2
,

ε3 =
2cN3
N2

,
ð146Þ

we obtain

L ′ tð Þ ≤ −
1
2 d1 − 2ε1ð ÞN1

� �ðL
0

ux +
1
2w

2
x

� �2
dx

−
1
2N2 −N1

� �ðL
0
u2t dx −

d2
4 −

L
2 ε1

� �
N1

� �ðL
0
w2

xxdx

− CN −
1
2N1 − ξ

� �ðL
0
ω2
t dx

− ĉN3 −
δ21
4ε1

N1 − c 1 + N2
N1

� �
N2

" #ðL
0
θ2d

− r̂N3 −
δ22
4ε1

N1 − c 1 + N2
N1

� �
N2

" #ðL
0
P2dx

− CN − cN1 + η1½ �
ðL
0
z2 x, 1, tð Þdx − 2F4 tð Þ

−
α1
4 N − cN2 − μ0N3
h i

∥η∥2Mβ

−
α2
4 N − λ0N3
h i

∥ν∥2Mλ

+ 1
4N − Cμ0

N3

� �ð∞
0
β′ σð Þ∥ηx σð Þ∥2dσ

+ 1
4N − Cλ0

N3

� �ð∞
0
λ′ σð Þ∥νx σð Þ∥2dσ: ð147Þ

Next, we carefully choose our constants so that the terms
inside the brackets are positive.

We choose N2 large enough such that

k1 =
1
2N2 −N1 > 0: ð148Þ

Then, we choose N3 large enough such that

k2 = r̂N3 −
δ22
4ε1

N1 − c 1 + N2
N1

� �
N2 > 0,

k3 = r̂N3 −
δ22
4ε1

N1 − c 1 + N2
N1

� �
N2 > 0:

ð149Þ

Thus, we arrive at

L ′ tð Þ ≤ −k0
ðL
0

ux +
1
2w

2
x

� �2
dx − k1

ðL
0
u2t dx − k4

ðL
0
w2

xxdx

− CN − cð Þ
ðL
0
ω2
t dx − k2

ðL
0
θ2dx − k3

ðL
0
P2dx

− CN − cð Þ
ðL
0
z2 x, 1, tð Þdx − 2F4 tð Þ

−
α1
4 N − c

� �
∥η∥2Mβ

−
α2
4 N − c

� �
∥ν∥2Mλ

+ 1
4N − c
� �ð∞

0
β′ σð Þ∥ηx σð Þ∥2dσ

+ 1
4N − c
� �ð∞

0
λ′ σð Þ∥νx σð Þ∥2dσ,

ð150Þ

where k0 = ð1/2Þðd1 − 2ε1ÞN1 and k4 = ððd2/4Þ − ðL/2Þε1ÞN1.
On the other hand, we let

T tð Þ = 〠
i=3

i=1
NiFi tð Þ + F4 tð Þ: ð151Þ
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Exploiting Young’s, Cauchy-Schwarz’s, and Poincaré’s
inequalities, we get

T tð Þj j ≤ c
ðL
0

ω2
t + u2t + ux +

1
2w

2
x

� �2
+ ω2

xx + θ2 + P2
 !

dx

+ c∥η∥2Mβ
+ c∥ν∥2Mλ

+ c
ðL
0

ð1
0
z2 x, ρ, tð Þdρdx:

ð152Þ

Then,

T tð Þj j ≤ cE tð Þ: ð153Þ

Consequently, we obtain

T tð Þj j = L tð Þ −NE tð Þj j ≤ cE tð Þ, ð154Þ

that is,

N − cð ÞE tð Þ ≤L tð Þ ≤ N + cð ÞE tð Þ: ð155Þ

Now, we choose N large enough such that

N − c > 0,
α1
4 N − c > 0,

α2
4 N − c > 0,

1
4N − c > 0 > 0,

 CN − c > 0:

ð156Þ

Exploiting (107), estimates (150) and (155), respectively,
give

L ′ tð Þ ≤ −a1E tð Þ, ð157Þ

for some a1 > 0, and

c1E tð Þ ≤L tð Þ ≤ c2E tð Þ, ∀t ≥ 0, ð158Þ

for some c1, c2 > 0; we have

L tð Þ ~ E tð Þ: ð159Þ

A combination with (157) and (158) gives

L ′ tð Þ ≤ −C1L tð Þ, ∀t ≥ 0, ð160Þ

where C1 = a1/c2.
Finally, by simple integration of (159) and (160), we

obtain the result (141).
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A linearized numerical scheme is proposed to solve the nonlinear time-fractional parabolic problems with time delay. The scheme
is based on the standard Galerkin finite element method in the spatial direction, the fractional Crank-Nicolson method, and
extrapolation methods in the temporal direction. A novel discrete fractional Grönwall inequality is established. Thanks to the
inequality, the error estimate of a fully discrete scheme is obtained. Several numerical examples are provided to verify the
effectiveness of the fully discrete numerical method.

1. Introduction

In this paper, we consider the linearized fractional Crank-
Nicolson-Galerkin finite element method for solving the
nonlinear time-fractional parabolic problems with time delay

RDα
t u − Δu = f t, u x, tð Þ, u x, t − τð Þð Þ, inΩ × 0, Tð �,

u x, tð Þ = φ x, tð Þ, inΩ × −τ, 0ð �,
u x, tð Þ = 0, on ∂Ω × 0, Tð �,

8>><>>:
ð1Þ

where Ω is a bounded convex and convex polygon in R2 (or
polyhedron in R3) and τ is the delay term. RDα

t u denotes
the Riemann-Liouville fractional derivative, defined by

RDα
t u ·, tð Þ = 1

Γ 1 − αð Þ
∂
∂t

ðt
0
t − sð Þ−αu ·, sð Þds, 0 < α < 1:

ð2Þ

The nonlinear fractional parabolic problems with time
delay have attracted significant attention because of their
wide range of applications in various fields, such as biology,
physics, and engineering [1–9]. Recently, plenty of numerical

methods were presented for solving the linear time-fractional
diffusion equations. For instance, Chen et al. [10] used finite
difference methods and the Kansa method to approximate
time and space derivatives, respectively. Dehghan et al. [11]
presented a fully discrete scheme based on the finite differ-
ence methods in time direction and the meshless Galerkin
method in space direction and proved the scheme was
unconditionally stable and convergent. Murio [12] and
Zhuang and Liu [13] proposed a fully implicit finite differ-
ence numerical scheme and obtained unconditionally stabil-
ity. Jin et al. [14] derived the time-fractional Crank-Nicolson
scheme to approximate Riemann-Liouville fractional deriva-
tive. Li et al. [15] used a transformation to develop some new
schemes for solving the time-fractional problems. The new
schemes admit some advantages for both capturing the initial
layer and solving the models with small parameter α. More
studies can be found in [16–32].

Recently, it has been one of the hot spots in the investiga-
tions of different numerical methods for the nonlinear time-
fractional problems. For the analysis of the L1-type methods,
we refer readers to the paper [33–40]. For the analysis of the
convolution quadrature methods or the fractional Crank-
Nicolson scheme, we refer to the recent papers [41–46].
The key role in the convergence analysis of the schemes is
the fractional Grönwall-type inequations. However, as
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pointed out in [47–49], the similar fractional Grönwall-type
inequations can not be directly applied to study the
convergence of numerical schemes for the nonlinear time-
fractional problems with delay.

In this paper, we present a linearized numerical scheme
for solving the nonlinear fractional parabolic problems with
time delay. The time Riemann-Liouville fractional derivative
is approximated by the fractional Crank-Nicolson-type time-
stepping scheme, the spatial derivative is approximated by
using the standard Galerkin finite element method, and the
nonlinear term is approximated by the extrapolation
method. To study the numerical behavior of the fully discrete
scheme, we construct a novel discrete fractional type
Grönwall inequality. With the inequality, we consider the
convergence of the numerical methods for the nonlinear
fractional parabolic problems with time delay.

The rest of this article is organized as follows. In Section
2, we present a linearized numerical scheme for the nonlinear
time-fractional parabolic problems with delay and main con-
vergence results. In Section 3, we present a detailed proof of
the main results. In Section 4, numerical examples are given
to confirm the theoretical results. Finally, the conclusions
are presented in Section 5.

2. Fractional Crank-Nicolson-Galerkin FEMs

Denote T h is a shape regular, quasiuniform triangulation of
theΩ into d-simplexes. Let h =maxKεT h

fdiamKg. Let Xh be

the finite-dimensional subspace of H1
0ðΩÞ consisting of con-

tinuous piecewise function on T h. Let Δt = τ/mτ be the time
step size, where mτ is a positive integer. Denote N = dT/Δte,
t j = jΔt, j = −mτ, −mτ + 1,⋯, 0, 1, 2,⋯,N .

The approximation to the Riemann-Liouville fractional
derivative at point t = tn−ðα/2Þ is given by [14]

RDα
tn− α/2ð Þ

u x, tð Þ = Δt−α 〠
n

i=0
ω

αð Þ
n−iu x, tið Þ + O Δt2

� �
≔ RDα

tΔt
un + O Δt2

� �
,

ð3Þ

where

ω
αð Þ
i = −1ð Þi Γ α + 1ð Þ

Γ i + 1ð ÞΓ α − i + 1ð Þ : ð4Þ

For simplicity, denote ∥v∥ = ðÐ
Ω
jvðxÞj2dxÞ1/2, ηn,α = ð1 −

ðα/2ÞÞηn + ðα/2Þηn−1, η∧n,α = ð2 − ðα/2ÞÞηn−1 − ð1 − ðα/2ÞÞ
ηn−2, tαn = ðnΔtÞα.

With the notation, the fully discrete scheme is to find
Un

hεXh such that

RDα
ΔtU

n
h, v

� �
+ ∇Un,α

h ,∇vh i
= f tn− α/2ð Þ, Û

n,α
h ,Un−mτ ,α

h

� �
, v

D E
, ∀vεXh, n = 1, 2,⋯,N ,

ð5Þ

and the initial condition

Un
h = Rhφ x, tnð Þ, n = −mτ,−mτ + 1,⋯, 0, ð6Þ

where Rh : H
1
0ðΩÞ→ Xh is Ritz projection operator which

satisfies the following equality [50]

∇Rhu,∇vh i = ∇u,∇vh i, ∀uεH1
0 Ωð Þ ∩H2 Ωð Þ, vεXh: ð7Þ

We present the main convergence results here and leave
their proof in the next section.

Theorem 1. Suppose the system (1) has a unique solution u
satisfying

∥u0∥Hr+1+∥u∥C 0,T½ �;Hr+1ð Þ+∥ut∥C 0,T½ �;Hr+1ð Þ+∥utt∥C 0,T½ �;H2ð Þ
+ ∥RDα

Δtu∥C 0,T½ �;Hr+1ð Þ ≤ K ,
ð8Þ

and the source term f ðt, uðx, tÞ, uðx, t − τÞÞ satisfies the
Lipschitz condition

f t, u x, tð Þ, u x, t − τð Þð Þ − f t, v x, tð Þ, v x, t − τð Þð Þj j
≤ L1 u x, tð Þ − v x, tð Þj j + L2 u x, t, τð Þ − v x, t, τð Þj j, ð9Þ

where K is a constant independent of n, h, and Δt and L1 and
L2 are given positive constants. Then, there exists a positive
constant Δt∗ such that for Δt ≤ Δt∗, the following estimate
holds that

∥un −Un
h∥≤C

∗
1 Δt2 + hr+1
� �

, n = 1, 2,⋯,N , ð10Þ

where C∗
1 is a positive constant independent of h and Δt.

Remark 2. The main contribution of the present study is that
we obtain a discrete fractional Grönwall’s inequality. Thanks
to the inequality, the convergence of the fully discrete scheme
for the nonlinear time-fractional parabolic problems with
delay can be obtained.

Remark 3. At present, the convergence of the proposed
scheme is proved without considering the weak singularity
of the solutions. In fact, if the initial layer of the problem is
taken into account, there are some corrected terms at the
beginning. Then, the scheme can be of order two in the tem-
poral direction for nonsmooth initial data and some incom-
patible source terms. However, we still have the difficulties
to get the similar discrete fractional Grönwall’s inequality.
We hope to leave the challenging problems in the future.

3. Proof of the Main Results

In this section, we will present a detailed proof of the main
result.
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3.1. Preliminaries and Discrete Fractional Grönwall
Inequality. Firstly, we review the definition of weights ωðαÞi

and denote gðαÞn =∑n
i=0ω

ðαÞ
i . Then, we can get

ω
αð Þ
0 = g αð Þ

0 ,

ω
αð Þ
i = g αð Þ

i − g αð Þ
i−1, 1 ≤ i ≤ n:

8>><>>: ð11Þ

Actually, it has been shown [51] that ωðαÞi and gðαÞn pro-
cess following properties:

(1) The weights ωðαÞi can be evaluated recursively, ωðαÞi

= ð1 − ððα + 1Þ/iÞÞωðαÞi−1, i ≥ 1, ωðαÞ0 = 1

(2) The sequence fωðαÞi g
∞
i=0 are monotone increasing −1

< ωðαÞi < ωðαÞi+1 < 0, i ≥ 0

(3) The sequence fgðαÞi g
∞
i=0 are monotone decreasing,

gðαÞi > gðαÞi+1 for i ≥ 0 and gðαÞ0 = 1

Noticing the definition of gðαÞi , RDα
Δtu

n can be rewrit-
ten as

RDα
Δtu

n = Δt−α 〠
n

i=1
g αð Þ
i − g αð Þ

i−1

� �
un−i + Δt−αg αð Þ

0 un: ð12Þ

In fact, rearranging this identity yields

RDα
Δtu

n = Δt−α〠
n

i=1
g αð Þ
n−iδtu

i + Δt−αg αð Þ
n u0, ð13Þ

where δtu
i = ui − ui−1.

Lemma 4 (see [51]). Consider the sequence fϕng given by

ϕ0 = 1, ϕn = 〠
n

i=1
g αð Þ
i−1 − g αð Þ

i

� �
ϕn−i, n ≥ 1: ð14Þ

Then, fϕng satisfies the following properties:

(i) 0 < ϕn < 1,∑n
i=jϕn−ig

ðαÞ
i−j = 1, 1 ≤ j ≤ n

(ii) 1/ðΓðαÞÞ∑n
i=1ϕn−i ≤ nα/Γð1 + αÞ

(iii) 1/ðΓðαÞΓð1 + ðk − 1ÞαÞÞ∑n−1
i=1 ϕn−ii

ðk−1Þα ≤ nkα/Γð1 +
αÞ, k = 1, 2⋯

Lemma 5 (see [51]). Consider the matrix

W = 2μ Δtð Þα

0 ϕ1 ⋯ ϕn−2 ϕn−1

0 0 ⋯ ϕn−3 ϕn−2

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 ϕ1

0 0 ⋯ 0 0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
n×n

: ð15Þ

Then, W satisfies the following properties:

(i) Wl = 0, l ≥ n

(ii) Wk e ≤ ð1/ðΓð1 + kαÞÞÞ½ð2ΓðαÞμtαnÞk, ð2ΓðαÞμtαn−1Þk,
⋯,ð2ΓðαÞμtα1Þk�′, k = 0, 1, 2,⋯

(iii) ∑l
k=0W

k e =∑n−1
k=0W

k e ≤ ½Eαð2ΓðαÞμtαnÞ, Eαð2ΓðαÞ
μtαn−1Þ,⋯,Eαð2ΓðαÞμtα1Þ�′, l ≥ n

where e = ½1, 1,⋯, 1�′ ∈ℝn, μ is a constant.

Theorem 6. Assuming fun ∣ n = −m,−m + 1,⋯, 0, 1, 2,⋯g
and f f n ∣ n = 0, 1, 2,⋯g are nonnegative sequence, for λi > 0
, i = 1, 2, 3, 4, 5, if

RDα
Δtu

j ≤ λ1u
j + λ2u

j−1 + λ3u
j−2 + λ4u

j−m + λ5u
j−m−1 + f j, j = 1, 2⋯ ,

ð16Þ

then, there exists a positive constant Δt∗, for Δt < Δt∗, the
following holds

un ≤ 2 λ4
Γ αð Þtαn
Γ 1 + αð ÞM + λ5

Γ αð Þtαn
Γ 1 + αð ÞM + max

1≤j≤n
f j

Γ αð Þtαn
Γ 1 + αð Þ

�
+ 2M + λ2MΔtα + 2λ3MΔtα

	
Eα 2Γ αð Þλtαnð Þ, 1 ≤ n ≤N ,

ð17Þ

where λ = λ1 + ð1/ðgðαÞ0 − gðαÞ1 ÞgðαÞ0 − gðαÞ1 Þλ2 + ð1/ðgðαÞ1 −
gðαÞ2 ÞÞλ3 + ð1/ðgðαÞm−1 − gðαÞm ÞÞλ4 + ð1/ðgðαÞm − gðαÞm+1ÞÞλ5, EαðzÞ
=∑∞

k=0ðzk/ðΓða + kαÞÞÞ is the Mittag-Leffler function, and
M =max fu−m, u−m+1,⋯, u0g:

Proof. By using the definition of RDα
Δtu

n in (13), we have

〠
j

k=1
g αð Þ
j−kδtu

k + g αð Þ
j u0 ≤ Δtα λ1u

j + λ2u
j−1 + λ3u

j−2 + λ4u
j−m + λ5u

j−m−1� �
+ Δtα f j:

ð18Þ

Multiplying equation (18) by ϕn−j and summing the
index j from 1 to n, we get
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〠
n

j=1
ϕn−j 〠

j

k=1
g αð Þ
j−kδtu

k ≤ Δtα 〠
n

j=1
ϕn−j λ1u

j + λ2u
j−1 + λ3u

j−2 + λ4u
j−m + λ5u

j−m−1� �
+ Δtα 〠

n

j=1
ϕn−j f

j − 〠
n

j=1
ϕn−jg

αð Þ
j u0:

ð19Þ

We change the order of summation and make use of the
definition of ϕn−j to obtain

〠
n

j=1
ϕn−j 〠

j

k=1
g αð Þ
j−kδtu

k = 〠
n

k=1
δtu

k 〠
k

j=1
ϕn−jg

αð Þ
j−k = 〠

n

k=1
δtu

k = un − u0,

ð20Þ

and using Lemma 4, we have

Δtα 〠
n

j=1
ϕn−j f

j ≤ Δtα max
1≤j≤n

f j 〠
n

j=1
ϕn−j ≤ Δtα max

1≤ j≤n
f j

Γ αð Þnα
Γ 1 + αð Þ

= max
1≤j≤n

f j
Γ αð Þtαn
Γ 1 + αð Þ :

ð21Þ

Noticing gðαÞj is monotone decreasing and using Lemma
4, we have

−〠
n

j=1
ϕn−jg

αð Þ
j u0 ≤ 〠

n

j=1
ϕn−jg

αð Þ
j u0 ≤ u0 〠

n

j=1
ϕn−jg

αð Þ
j−1 = u0: ð22Þ

Substituting (20), (21), and (22) into (19), we can obtain

un ≤ Δtα 〠
n

j=1
ϕn−j λ1u

j + λ2u
j−1 + λ3u

j−2 + λ4u
j−m + λ5u

j−m−1� �
+ 2u0 + max

1≤j≤n
f j

Γ αð Þtαn
Γ 1 + αð Þ :

ð23Þ

Applying Lemma 4, we have

Δtα〠
m

j=1
ϕn−ju

j−m ≤
Γ αð Þtαn
Γ 1 + αð ÞM,

Δtα 〠
m+1

j=1
ϕn−ju

j−m−1 ≤
Γ αð Þtαn
Γ 1 + αð ÞM:

ð24Þ

Therefore,

λ4Δt
α 〠

m

j=1
ϕn−ju

j−m + λ5Δt
α 〠
m+1

j=1
ϕn−ju

j−m−1 + 2u0 + λ2Δt
αϕn−1u

0

+ λ3Δt
α ϕn−1u

−1 + ϕn−2u
0� �

≤ λ4
Γ αð Þtαn
Γ 1 + αð ÞM

+ λ5
Γ αð Þtαn
Γ 1 + αð ÞM + 2M + λ2MΔtα + 2λ3MΔtα:

ð25Þ

Denote

Ψn = λ4
Γ αð Þtαn
Γ 1 + αð ÞM + λ5

Γ αð Þtαn
Γ 1 + αð ÞM + max

1≤j≤n
f j

Γ αð Þtαn
Γ 1 + αð Þ

+ 2M + λ2MΔtα + 2λ3MΔtα,
ð26Þ

Equation (23) can be rewritten as

1 − λ1Δt
αð Þun ≤ λ1Δt

α 〠
n−1

j=1
ϕn−ju

j + λ2Δt
α 〠

n

j=2
ϕn−ju

j−1

+ λ3Δt
α〠

n

j=3
ϕn−ju

j−2 + λ4Δt
α 〠

n

j=m+1
ϕn−ju

j−m

+ λ5Δt
α 〠

n

j=m+2
ϕn−ju

j−m−1 +Ψn:

ð27Þ

Let Δt∗ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/ð2λ1Þα

p
, when Δt ≤ Δt∗, we have

un ≤ 2Ψn + 2Δtα λ1 〠
n−1

j=1
ϕn−ju

j + λ2 〠
n

j=2
ϕn−ju

j−1 + λ3 〠
n

j=3
ϕn−ju

j−2
"

+ λ4 〠
n

j=m+1
ϕn−ju

j−m + λ5 〠
n

j=m+2
ϕn−ju

j−m−1
#
:

ð28Þ

Let V = ðun, un−1,⋯,u1ÞT , then (28) can be rewritten in
the following matrix form:

V ≤ 2Ψn e
 + λ1W1 + λ2W2 + λ3W3 + λ4W4 + λ5W5ð ÞV ,

ð29Þ

where

W1 = 2 Δtð Þα

0 ϕ1 ϕ2 ⋯ ϕn−2 ϕn−1

0 0 ϕ1 ⋯ ϕn−3 ϕn−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ ϕ1 ϕ2

0 0 0 ⋯ 0 ϕ1

0 0 0 0 ⋯ 0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
n×n

,
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W2 = 2 Δtð Þα

0 ϕ0 ϕ1 ⋯ ϕn−3 ϕn−2

0 0 ϕ0 ⋯ ϕn−4 ϕn−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ ϕ0 ϕ1

0 0 0 ⋯ 0 ϕ0

0 0 0 0 ⋯ 0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
n×n

,

W3 = 2 Δtð Þα

0 0 ϕ0 ⋯ ϕn−4 ϕn−3

0 0 0 ⋯ ϕn−5 ϕn−4

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 0 ϕ0

0 0 0 ⋯ 0 0
0 0 0 0 0 0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
n×n

,

W4 = 2 Δtð Þα

0 ⋯ 0 ϕ0 ϕ1 ⋯ ϕn−m−2 ϕn−m−1

0 ⋯ 0 0 ϕ0 ⋯ ϕn−m−3 ϕn−m−2

⋮ ⋯ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 ⋯ 0 0 0 ⋯ ϕ0 ϕ1

0 ⋯ 0 0 0 ⋯ 0 ϕ0

0 0 0 0 ⋯ 0 0
⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 ⋯ 0 0 0 ⋯ 0 0

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA
n×n

,

W5 = 2 Δtð Þα

0 ⋯ 0 0 ϕ0 ⋯ ϕn−m−3 ϕn−m−2

0 ⋯ 0 0 0 ⋯ ϕn−m−4 ϕn−m−3

⋮ ⋯ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 ⋯ 0 0 0 ⋯ 0 ϕ0

0 ⋯ 0 0 0 ⋯ 0 0
0 0 0 0 ⋯ 0 0
⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 ⋯ 0 0 0 ⋯ 0 0

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA
n×n

:

ð30Þ

Since the definition of ϕn, we have

ϕn−j ≤
1

g αð Þ
j−1 − g αð Þ

j

ϕn: ð31Þ

Then,

W2V ≤
1

g αð Þ
0 − g αð Þ

1
W1V ,

W3V ≤
1

g αð Þ
1 − g αð Þ

2
W1V ,

W4V ≤
1

g αð Þ
m−1 − g αð Þ

m

W1V ,

W5V ≤
1

g αð Þ
m − g αð Þ

m+1
W1V :

ð32Þ

Hence, (29) can be shown as follows

V ≤ λ1 +
1

g αð Þ
0 − g αð Þ

1
λ2 +

1
g αð Þ
1 − g αð Þ

2
λ3 +

1
g αð Þ
m−1 − g αð Þ

m

λ4

 

+ 1
g αð Þ
m − g αð Þ

m+1
λ5

!
W1V + 2Ψn e

 =WV + 2Ψn e
 ,

ð33Þ

where W = λW1.
Therefore,

V ≤WV + 2Ψn e
 ≤W WV + 2Ψn e

 � �
+ 2Ψn e

 

=W2V + 2Ψn 〠
1

j=0
Wj e ≤⋯≤WnV + 2Ψn 〠

n−1

j=0
Wj e :

ð34Þ

According to Lemma 5, the result can be proved.

Lemma 7 (see [51]). For any sequence fekgNk=0 ⊂ Xh, the fol-
lowing inequality holds:

RDα
Δte

k, 1 −
α

2

� �
ek + α

2
ek−1

D E
≥
1
2

R

Dα
Δt∥e

k∥2, 1 ≤ k ≤N:

ð35Þ

Lemma 8 (see [52]). There exists a positive constant CΩ, inde-
pendent of h, for any v ∈HsðΩÞ ∩H1

0ðΩÞ, such that

∥v − Rhv∥L2 + h∥∇ v − Rhvð Þ∥L2 ≤ CΩh
s∥v∥Hs , 1 ≤ s ≤ r + 1:

ð36Þ

3.2. Proof of Theorem 1.Now, we are ready to prove our main
results.

Proof. Taking t = tn−ðα/2Þ in the first equation (1), we can find
that un satisfies the following equation:

RDα
Δtu

n, v
� �

+ ∇un,α,∇vh i = f tn− α/2ð Þ, u∧n,α, un−mτ ,α
� �

, v
D E

+ Pn, vh i,
ð37Þ
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for n = 1, 2, 3,⋯,N and ∀v ∈ Xh, where

Pn= RDα
Δtu

n−RDα
tn− α/2ð Þ

u + Δun− α/2ð Þ − Δun,α

+ f tn− α/2ð Þ, un− α/2ð Þ, un−mτ− α/2ð Þ
� �

− f tn− α/2ð Þ, u∧n,α, un−mτ ,α
� �

:

ð38Þ

Now, we estimate the error of ∥Pn∥. Actually, from the
definition of un,α and u∧n,α and the regularity of the exact
solution (8), we can obtain that

un− α/2ð Þ − un,α
��� ��� = 1 − α

2
� �

un− α/2ð Þ + α

2 u
n− α/2ð Þ − 1 − α

2
� �

un− α/2ð Þun−1
��� ���

= 1 − α

2
� �

un− α/2ð Þ−un
� �

+ α

2 un− α/2ð Þ−un−1
� ���� ���

= − 1 − α

2
� �

+ α

2 Δtu
′ ξ1ð Þ + 1 − α

2
� �

+ α

2 Δtu
′ ξ2ð Þ

��� ���
= 1 − α

2
� �

+ α

2Δt u′ ξ2ð Þ − u′ ξ1ð Þ
�� ��

≤ 1 − α

2
� �

+ α

2Δt
ðtn
tn−1

utt sð Þk kds ≤ C1Δt
2,

ð39Þ

∥un− α/2ð Þ − u∧n,α∥ = ∥un− α/2ð Þ − 2 − α

2
� �

un−1 + 1 − α

2
� �

un−2∥

= ∥ 2 − α

2
� �

un− α/2ð Þ − 2 − α

2
� �

un−1

+ 1 − α

2
� �

un−2 − 1 − α

2
� �

un− α/2ð Þ∥

= ∥ 2 − α

2
� �

un− α/2ð Þ − un−1
� �

+ 1 − α

2
� �

un−2 − un− α/2ð Þ
� �

∥

= ∥ 2 − α

2
� �

1 − α

2
� �

Δtu′ ξ3ð Þ

− 2 − α

2
� �

1 − α

2
� �

Δtu′ ξ4ð Þ∥

= 2 − α

2
� �

1 − α

2
� �

Δt∥u′ ξ3ð Þ − u′ ξ4ð Þ∥

≤ 2 − α

2
� �

1 − α

2
� �

Δt
ðtn−1
tn−2

∥utt sð Þ∥ds ≤ C2Δt
2,

ð40Þ

where ξ1 ∈ ðtn−ðα/2Þ, tnÞ, ξ2 ∈ ðtn−1, tn−ðα/2ÞÞ, ξ3 ∈ ðtn−ðα/2Þ, tn−1Þ
, ξ4 ∈ ðtn−2, tn−ðα/2ÞÞ, C1 = ð1 − ðα/2ÞÞðα/2ÞK , C2 = ð2 − ðα/2ÞÞ
ð1 − ðα/2ÞÞK are constants.

Applying (39) and (40) and the Lipschitz condition,

∥f tn− α/2ð Þ, un− α/2ð Þ, un−mτ− α/2ð Þ
� �

− f tn− α/2ð Þ, u∧n,α, un−mτ ,α
� �

∥

≤ L1C1 + L2C2ð ÞΔt2,

∥Δ un,α − un− α/2ð Þ
� �

∥≤C1Δt
2, ð41Þ

which further implies that

∥Pn∥≤CK Δtð Þ2, n = 1, 2, 3,⋯,N , ð42Þ

here CK = L1C1 + L2C2.
Denote θnh = Rhu

n −Un
h , n = 0, 1,⋯,N:

Substituting fully scheme (5) from equation (37) and
using the property in (7), we can get that

RDα
Δtθ

n
h, v

� �
+ ∇θn,αh , vh i = Rn

1 , vh i + Pn, vh i − RDα
Δt u

n − Rhu
nð Þ, v� �

,
ð43Þ

where

Rn
1 = f tn− α/2ð Þ, Û

n,α
h ,Un−mτ ,α

h

� �
− f tn− α/2ð Þ, u∧n,α, un−mτ ,α
� �

:

ð44Þ

Setting v = θn,αh and applying the Cauchy-Schwarz
inequality, it holds that

RDα
Δtθ

n
h, θn,αh

� �
+ ∥∇θn,αh ∥2 ≤ ∥Rn

1∥∥θ
n,α
h ∥+∥Pn∥∥θn,αh ∥

+∥RDα
Δt u

n − Rhu
nð Þ∥∥θn,αh ∥:

ð45Þ

Noticing the fact ab ≤ 1/2ða2 + b2Þ and ∥∇θn,αh ∥2 ≥ 0,

RDα
Δtθ

n
h , θn,αh

� �
≤
1
2 ∥Rn

1∥
2+∥Pn∥2 + ∥RDα

Δt u
n − Rhu

nð Þ∥2� �
+ 3
2 ∥θ

n,α
h ∥2:

ð46Þ

Together with (9) and (36), we can arrive that

∥RDα
Δt u

n − Rhu
nð Þ∥≤CΩh

r+1∥RDα
Δtu

n∥Hr+1 ≤ CΩKh
r+1: ð47Þ

∥u∧n,α − Rhu∧
n,α∥ = ∥ 2 − α

2
� �

un−1 − 1 − α

2
� �

un−2

− 2 − α

2
� �

Rhu
n−1 + 1 − α

2
� �

Rhu
n−2∥

≤ 2 − α

2
� �

∥un−1 − Rhu
n−1∥+ 1 − α

2
� �

∥un−2 − Rhu
n−2∥

≤ 2 − α

2
� �

CΩh
r+1∥un−1∥Hr+1

+ 1 − α

2
� �

CΩh
r+1∥un−2∥Hr+1

≤ 2 − α

2
� �

CΩKh
r+1 + 1 − α

2
� �

CΩKh
r+1 ≤ C3h

r+1:

ð48Þ
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Similarly, we have

∥un−mτ ,α − Rhu
n−mτ ,α∥ = ∥ 1 − α

2
� �

un−mτ + α

2 u
n−mτ−1

− 1 − α

2
� �

Rhu
n−mτ −

α

2 Rhu
n−mτ−1∥

≤ 1 − α

2
� �

CΩKh
r+1 + α

2 CΩKh
r+1

≤ C4h
r+1,

ð49Þ

where C3 = 2ð2 − ðα/2ÞÞCΩK , C4 = 2 max fð1 − ðα/2ÞÞ, ðα/2Þ
gCΩK .

Therefore,

∥Rn
1∥ = ∥f tn− α/2ð Þ, u∧n,α, un−mτ ,α

� �
− f tn− α/2ð Þ, Û

n,α
h ,Un−mτ ,α

h

� �
∥

≤ L1∥u∧
n,α − Û

n,α
h ∥+L2∥un−mτ ,α −Un−mτ ,α

h ∥

≤ L1∥bθn,α
h ∥+L2∥θ

n−mτ ,α
h ∥+L1∥u∧n,α − Rhu∧

n,α∥

+L2∥un−mτ ,α − Rhu
n−mτ ,α∥≤L1∥bθn,αh ∥+L2∥θ

n−mτ ,α
h ∥

+ L1C3 + L2C4ð Þhr+1:
ð50Þ

Substituting (42), (47), and (50) into (46) and the fact
ða + b + cÞ2 ≤ 3a2 + 3b2 + 3c2, we can get

RDα
Δtθ

n
h, θn,αh

� �
≤
3
2 ∥θ

n,α
h ∥2 + 3L21

2 ∥bθn,αh ∥2 + 3L22
2 ∥θn−mτ ,α

h ∥2

+ C2
K

2 Δtð Þ4 + 1
2 3 L21C

2
3 + L22C

2
4

� �
+ CKKð Þ2� 


h2 r+1ð Þ

≤
3
2 ∥θ

n,α
h ∥2 + 3L21

2 ∥bθn,αh ∥2 + 3L22
2 ∥θn−mτ ,α

h ∥2

+ C4
2 Δt2 + hr+1
� �2,

ð51Þ

where C4 = max fC2
K , 3ðL21C2

3 + L22C
2
4Þ + ðCKKÞ2g.

Applying Lemma 7, we have

RDα
Δt∥θ

n
h∥

2 ≤ 3∥θn,αh ∥2 + 3L21∥bθn,αh ∥2 + 3L22∥θ
n−mτ ,α
h ∥2 + C4 Δt2 + hr+1

� �2
:

ð52Þ

In terms of the definition of ∥θn,αh ∥ and bθn,α
h , we obtain

RDα
Δt∥θ

n
h∥

2 ≤ 3 1 − α

2
� �2

∥θnh∥
2 + 3 α

2
� �2

+ 3L21 2 − α

2
� �2� 	

∥θn−1h ∥2

+ 3L21 1 − α

2
� �2

∥θn−2h ∥2 + 3L22 1 − α

2
� �2

∥θn−mτ

h ∥2

+ 3L22
α

2
� �2

∥θn−mτ−1
h ∥2 + C4 Δt2 + hr+1

� �2
:

ð53Þ

Using Theorem 6, we can find a positive constant Δt∗

such that Δt ≤ Δt∗, then

∥θnh∥
2 ≤ C5 Δt2 + hr+1

� �2, ð54Þ

where C5 is a nonnegative constant which only depends on
L1, L2, C4, CK , CΩ. In terms of the definition of θnh , we have

∥un −Un
h∥≤∥u

n − Rhu
n∥+∥Rhu

n −Un
h∥≤C

∗
1 Δt2 + hr+1
� �

:

ð55Þ

Then, we complete the proof.

4. Numerical Examples

In this section, we give two examples to verify our theoretical
results. The errors are all calculated in L2-norm.

Example 1. Consider the nonlinear time-fractional Mackey-
Glass-type equation

Table 1: The errors and convergence orders in temporal direction
by using Q-FEM.

M
α = 0:4 α = 0:6

Errors Orders Errors Orders

5 1:6856e − 03 ∗ 5:3999e − 03 ∗

10 2:9420e − 04 2.5184 1:2503e − 03 2.1106

20 5:9619e − 05 2.3030 3:0266e − 04 2.0465

40 1:3851e − 05 2.1058 7:4700e − 05 2.0185

RDα
t u x, y, tð Þ = Δu x, y, tð Þ − 2u x, y, tð Þ + u x, y, t − 0:1ð Þ

1 + u2 x, y, t − 0:1ð Þ + f x, y, tð Þ,  x, yð Þ ∈ 0, 1½ �2, t ∈ 0, 1½ �,

u x, y, tð Þ = t2 sin πxð Þ sin πyð Þ,  x, yð Þ ∈ 0, 1½ �2, t ∈ −0:1, 0½ �,

8><>: ð56Þ
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where

f x, y, tð Þ = 2t2−α
Γ 3 − αð Þ sin πxð Þ sin πyð Þ + 2t2π2 sin πxð Þ sin πyð Þ

− 2t2 sin πxð Þ sin πyð Þ

−
t − 0:1ð Þ2 sin πxð Þ sin πyð Þ

1 + t − 0:1ð Þ2 sin πxð Þ sin πyð Þ� 
2 :
ð57Þ

The exact solution is given as

u x, tð Þ = t2 sin πxð Þ sin πyð Þ: ð58Þ

In order to test the convergence order in temporal direc-
tion, we fixed M = 40 for α = 0:4, α = 0:6 and different N .
Similarly, to obtain the convergence order in spatial direc-
tion, we fixed N = 100 for α = 0:4, α = 0:6, and different M.
Table 1 gives the errors and convergence orders in temporal
direction by using the Q-FEM. Table 1 shows that the
convergence order in temporal direction is 2. Similarly,
Tables 2 and 3 give the errors and convergence orders in spa-
tial direction by using the L-FEM and Q-FEM, respectively.
These numerical results correspond to our theoretical
convergence order.

Example 2. Consider the following nonlinear time-fractional
Nicholson’s blowflies equation

where

f x, y, z, tð Þ = 2t2−α/Γ 3 − αð Þ� �
sin πxð Þ sin πyð Þ sin πzð Þ

+ 2t2 π2 − 1
� �

sin πxð Þ sin πyð Þ sin πzð Þ
− −0:1ð Þ2 sin πxð Þ sin πyð Þ sin πzð Þ exp
� − t − 0:1ð Þ2 sin πxð Þ sin πyð Þ sin πzð Þ� �

,
ð60Þ

the exact solution is given as

u x, tð Þ = t2 sin πxð Þ sin πyð Þ sin πzð Þ: ð61Þ

In this example, in order to test the convergence order in
temporal and spatial direction, we solve this problem by
using the L-FEM with M =N and the Q-FEM with N =
Mð3/2Þ, respectively. Tables 4 and 5 show that the conver-
gence orders in temporal and spatial direction are 2 and 3,

Table 3: The errors and convergence orders in spatial direction by
using Q-FEM.

M
α = 0:4 α = 0:6

Errors Orders Errors Orders

5 2:0750e − 03 ∗ 2:0746e − 03 ∗

10 2:4888e − 04 3.0596 2:5148e − 04 3.0443

20 7:3251e − 05 3.0165 7:5802e − 05 2.9577

40 3:0946e − 05 2.9952 3:4200e − 05 2.7666

Table 4: The errors and orders in temporal and spatial direction by
using L-FEM.

M
α = 0:4 α = 0:6

Errors Orders Errors Orders

5 8:3275e − 02 ∗ 8:3375e − 02 ∗

10 2:2615e − 02 1.8806 2:2732e − 02 1.8749

20 5:8356e − 03 1.9543 5:8662e − 03 1.9542

40 1:4707e − 03 1.9884 1:4784e − 03 1.9884

Table 5: The errors and orders in temporal direction and spatial
direction by using Q-FEM.

M
α = 0:4 α = 0:6

Errors Orders Errors Orders

N =M 3/2ð Þ

8 6:7379e − 04 ∗ 6:9141e − 04 ∗

10 3:1416e − 04 3.0459 3:4945e − 04 3.0579

12 1:9415e − 04 3.0968 1:9787e − 04 3.1196

14 1:1891e − 04 3.1806 1:1992e − 04 3.2485

Table 2: The errors and convergence orders in spatial direction by
using L-FEM.

M
α = 0:4 α = 0:6

Errors Orders Errors Orders

5 7:2603e − 02 ∗ 7:2065e − 02 ∗

10 1:9449e − 02 1.9003 1:9297e − 02 1.9009

20 8:7594e − 03 1.9673 8:6948e − 03 1.9662

40 4:9508e − 03 1.9834 4:9180e − 03 1.9807

RDα
t u x, y, z, tð Þ = Δu x, y, z, tð Þ − 2u x, y, z, tð Þ + u x, y, z, t − 0:1ð Þ exp −u x, y, z, t − 0:1ð Þf g + f x, y, z, tð Þ,  x, y, zð Þ ∈ 0, 1½ �3, t ∈ 0, 1½ �,

u x, y, z, tð Þ = t2 sin πxð Þ sin πyð Þ sin πzð Þ,  x, y, zð Þ ∈ 0, 1½ �3, t ∈ −0:1,0½ �,

8>><>>:
ð59Þ
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respectively. The numerical results confirm our theoretical
convergence order.

5. Conclusions

We proposed a linearized fractional Crank-Nicolson-
Galerkin FEM for the nonlinear fractional parabolic equa-
tions with time delay. A novel fractional Grönwall-type
inequality is developed. With the help of the inequality, we
prove convergence of the numerical scheme. Numerical
examples confirm our theoretical results.
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In this paper, we consider the initial boundary value problem of the time fractional Burgers equation. A fully discrete scheme is
proposed for the time fractional nonlinear Burgers equation with time discretized by L1-type formula and space discretized by
the multiscale Galerkin method. The optimal convergence orders reach Oðτ2−α + hrÞ in the L2 norm and Oðτ2−α + hr−1Þ in the
H1 norm, respectively, in which τ is the time step size, h is the space step size, and r is the order of piecewise polynomial space.
Then, a fast multilevel augmentation method (MAM) is developed for solving the nonlinear algebraic equations resulting from
the fully discrete scheme at each time step. We show that the MAM preserves the optimal convergence orders, and the
computational cost is greatly reduced. Numerical experiments are presented to verify the theoretical analysis, and comparisons
between MAM and Newton’s method show the efficiency of our algorithm.

1. Introduction

In this paper, we consider the following time fractional
Burgers equation [1–7]:

c
0D

α
t u x, tð Þ + u x, tð Þux x, tð Þ − uxx x, tð Þ = f x, tð Þ, x, tð Þ ∈Ω,

ð1Þ

with the initial and boundary conditions, given by

u x, 0ð Þ = u0 xð Þ, 0 ≤ x ≤ 1,
u 0, tð Þ = u 1, tð Þ = 0, 0 < t ≤ T ,

ð2Þ

where 0 < α < 1,Ω = fðx, tÞ ∣ 0 ≤ x ≤ 1, 0 < t ≤ Tg,u0ðxÞ and f
ðx, tÞ are given functions, and the notation c

0D
α
t denotes the

Caputo fractional partial derivative of order α, defined by

c
0D

α
t u x, tð Þ = 1

Γ 1 − αð Þ
ðt
0

1
t − sð Þα

∂u x, sð Þ
∂s

ds, α ∈ 0, 1ð Þ, ð3Þ

in which Γð·Þ represents the Gamma fuction.
The time fractional Burgers equation is a kind of nonlinear

subdiffusion convection equation occurring in several physical
problems such as unidirectional propagation of weakly non-
linear acoustic waves through a gas-filled pipe, propagation
of weak shock, compressible turbulence shallow-water waves,
shock waves in a viscous medium, waves in bubbly liquids,
and electromagnetic waves [1, 4, 8]. Till now, there have been
several analytical techniques developed to solve the time
fractional Burgers equation. These methods include the
Cole-Hopf transformation, Laplace transform, variable sepa-
ration method [8], Adomian decomposition method [4],
homotopy analysis method [6], and so on.
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However, even if some fractional differential equations
can be solved, the expressions of their exact solutions are
often expressed by special functions, which are difficult to
apply in practice. Moreover, due to the nonlocality of the
fractional operators, analytical methods do not always work
well on most fractional differential equations in real applica-
tions. Hence, it is of great importance to develop reliable and
efficient numerical methods for solving fractional differential
equations. Nowadays, the numerical methods cover the
quadratic B-spline Galerkin method [2], cubic B-spline finite
element method [3], finite difference methods [1, 9–13], and
Fourier pseudospectral schemes [14]. There are also some
other numerical methods (see, for example, [8, 15–17]).

In this paper, we first present a fully discrete scheme for
solving the time fractional Burgers equation with the time
approximated by the L1-type formula and the space discreti-
zation based on the multiscale Galerkin method. We give
rigorous convergence analysis for the fully discrete scheme,
which shows that the scheme enjoys the optimal convergence
order Oðτ2−α + hrÞ in the L2 norm and Oðτ2−α + hr−1Þ in the
H1 norm, respectively, where τ,h, and r are the time step size,
space step size, and the order of piecewise polynomial space,
respectively. Since the time fractional Burgers equation is a
nonlinear differential equation, the fully discrete scheme
results in a system of nonlinear algebraic equation at each time
step. Iteration methods such as the Newton iteration method
and the quasi-Newton iteration method are often employed
to solve these nonlinear equations. In this case, a large amount
of computational effort is demanded to compute and update
the Jacobianmatrix in each iteration process. The higher accu-
racy of the approximate solution is required, the larger dimen-
sion of the subspace is needed, and the longer computational
time is consumed. To overcome this problem, we develop
the multilevel augmentation method for solving the fully dis-
crete scheme. The MAM solves a nonlinear equation at a high
level consisting of two parts: solving the nonlinear equation
only in a fixed initial subspace with the dimensionmuch lower
than that of the whole approximate subspace; compensating
the error by matrix-vector multiplications at the high level.
The MAM reduces the computational costs significantly and
leads to a fast solution for the fully discrete scheme. We prove
that the MAM preserves the same optimal convergence order
as the original fully discrete scheme. The idea of MAM was
first introduced in [18] for solving the linear Fredholm integral
equations of the second kind. The theoretical setting of MAM
was established by Chen et al. in [19] for solving operator equa-
tions covering both first kind and second kind equations; they
further develop MAM for solving the nonlinear Hammerstein
integral equation in [20]. We modified the framework and
extended the idea of MAM to solve general nonlinear operator
equations of the second kind and applied it to the Sine-Gordon
equation in [21]. Readers are referred to [22–27] and the refer-
ences therein for more applications of MAM.

This paper is organized in seven sections. In “Preliminar-
ies,” some necessary notations, multiscale orthonormal bases
in Sobolev space, and useful lemmas are introduced. In “L1
Scheme for Discretization of Caputo Derivative in Time,”

we introduce the L1-formula for time discretization. In “Fully
Discrete Scheme and Convergence,” a fully discrete scheme
for time fractional Burgers equation is established, and the
convergence analysis are given. The MAM and its conver-
gence analysis are developed in “Multilevel Augmentation
Method for Solving the Fully Discrete Scheme.” The numer-
ical experiments are provided in “Numerical Experiments” to
verify the theoretical estimates. Finally, a conclusion is
included in “Conclusion.”

2. Preliminaries

Denote I = ½0, 1�. Let ð·, · Þ stand for the inner product on the
space L2ðIÞ with the L2 norm k·k2. We denote by H1

0ðIÞ the
Sobolev space of elements u satisfying the homogeneous
boundary conditions that uð0Þ = uð1Þ = 0. The inner product
and norm of H1

0ðIÞ are defined by

u, vh i≔ u′, v′
� �

=
ð1
0
u′ xð Þv′ xð Þdx, u, v ∈H1

0 Ið Þ,

uj j1 ≔
ffiffiffiffiffiffiffiffiffiffiffi
u, uh i

p
, u ∈H1

0 Ið Þ,
ð4Þ

respectively. Let n be a positive integer, we denote by Xn the
subspace of H1

0ðIÞ whose elements are the piecewise polyno-
mials of order r with knots j/2n, j − 1 ∈ℤ2n−1,where the nota-
tion ℤn ≔ f0, 1, 2⋯ , n − 1g: Obviously, the sequence of Xn
is nested, that is

Xn ⊂Xn+1, n ∈ℕ0 ≔ 0, 1, 2⋯f g, ð5Þ

which yields the following decomposition:

Xn =Xn−1 ⊕
⊥Wn =X0 ⊕

⊥W1 ⊕
⊥W2 ⊕

⊥ ⋯ ⊕ ⊥Wn, ð6Þ

where Wn is the orthogonal complement of Xn−1 in Xn:
It is easily concluded from the definition of Xn and Wn

that the dimensions of Xn and Wn are given by
xðnÞ≔ dim ðXnÞ = ðr − 1Þ2n − 1 and wðnÞ≔ dim ðWnÞ

= xðnÞ − xðn − 1Þ = ðr − 1Þ2n−1,respectively.
Define two affine mappings on the interval I by φ0ðxÞ =

x/2 and φ1ðxÞ = x + 1/2, x ∈ I, which map the interval ½0, 1�
into ½0, 1/2� and ½1/2, 1�, respectively. Associated with the
two mappings, we introduce two linear operators as follows:

T 0uð Þ xð Þ≔
ffiffiffi
2

p

2 u φ−1
0 xð Þ� �

=
ffiffiffi
2

p

2 u 2xð Þ,

T 1uð Þ xð Þ≔
ffiffiffi
2

p

2 u φ−1
1 xð Þ� �

=
ffiffiffi
2

p

2 u 2x − 1ð Þ:
ð7Þ

Lemma 1 (see [26]). Letwij,j ∈ℤwðiÞ, be an orthonormal basis
of Wi,i ≥ 1: Then the functions fT 0wij,T 1wij : j ∈ℤwðiÞg
form an orthonormal basis for Wi+1:

Lemma 1 shows that the space Wn can be recursively
constructed by the linear operators T 0 and T 1 once W1
has been given. Therefore, the basis of the space Xn can be
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constructed by Lemma 1 step by step. For the details of the
construction and more, the readers can refer to [26].

Let P n be an orthogonal projection operator from H1
0ðIÞ

intoXn with respect to the inner product h·, · i, that is, for all
u ∈H1

0ðIÞ,

P nu, vh i = u, vh i, v ∈Xn, ð8Þ

or

∂xP nu, ∂xvð Þ = ∂xu, ∂xvð Þ, v ∈Xn: ð9Þ

The following approximation results on the operator P n
will be used later. Throughout this paper, unless stated other-
wise, c denotes a generic positive constant whose value may
differ in different occurrences.

Lemma 2 (see [28]). If u ∈HrðIÞ ∩H1
0ðIÞ, then

u −P nuk k2 ≤ chr uk kr ,
u −P nuj j1 ≤ chr−1 uk kr ,

ð10Þ

where h≔ 2−n:

3. L1 Scheme for Discretization of Caputo
Derivative in Time

For a positive integer N , let τ = T/N be the time step size and
ti = iτ for i = 0, 1,⋯,N: Let ui be the solution of uðx, tÞ on
t = ti:

Define

ui+
1
2 ≔

ui+1 + ui

2 and δtui+
1
2 ≔

ui+1 − ui

τ
: ð11Þ

For the approximation of fractional derivative c
0D

α
t gðtiÞ,

we use the following L1 scheme [29, 30]:

c
0D

α
t g tið Þ ≃Dα

τg tið Þ≔ μ a0g tið Þ − 〠
i−1

k=1
ai−k−1 − ai−kð Þg tkð Þ − ai−1g t0ð Þ

" #
,

ð12Þ

where 0 < α < 1,μ = τ−α/Γð2 − αÞ and ak = ðk + 1Þ1−α − k1−α:

Lemma 3 (see [30]). If 0 < α < 1 and ak = ðk + 1Þ1−α − k1−α,
k ∈ℕ0, then

1 = a0 > a1 > a2 >⋯ > ai >⋯⟶ 0, as k⟶∞,
1 − αð Þ k + 1ð Þ−α < ak < 1 − αð Þk−α:

ð13Þ

Lemma 4 (see [30]). Suppose 0 < α < 1,gðtÞ ∈ C2½0, ti�: Let

R g tið Þð Þ≔ c
0D

α
t g tið Þ −Dα

τg tið Þ: ð14Þ

Then

∣R g tið Þð Þ∣ ≤ 1
Γ 2 − αð Þ

1 − α

12 + 22−α
2 − α

− 1 + 2−αð Þ
� �

max
0≤t≤ti

g′′ tð Þ		 		τ2−α:
ð15Þ

4. Fully Discrete Scheme and Convergence

In this section, we present a fully discrete scheme for the time
fractional Burgers equation (1), and we derive the error esti-
mates and convergence of the proposed fully discrete scheme.
The Galerkin method associated with the multiscale basis
introduced in “Preliminaries” is employed to discretize the
spatial variable. The fully discrete scheme in weak formulation

Let k,m be two fixed positive integers and n≔ k +m.
Step 1: obtain the approximation of initial value function

u0n ≔P nu0ðxÞ =∑ði,jÞ∈Jn cijwijðxÞ,
where cij = hu0ðxÞ,wiji1,ði, jÞ ∈ Jn:
Step 2: for i = 1 : N (T =Nτ), do the following:

(I): Solve uik ∈Xk from (33) with n≔ k: Set uik,0 ≔ uik,l = 1
(II): Compute ui,Hk,l ≔ ðP k+l −P kÞð~f

i
−Kuik,l−1Þ, that is

ui,Hk,l =∑ði,jÞ∈Jk,mcijwijðxÞ,
where Jk,m = Jk+m \ Jk,cij = h~f i −Kuik,l−1,wiji1 with

h~f i,wiji1 ≔ ð f i,wijÞ + μðrik,m,wijÞ:
(III): solve ui,Lk,l ∈Xk from the following equation

P kðI +KÞðui,Lk,l + ui,Hk,l Þ =P k
~f
i,

that is

hðI +KÞðui,Lk,l + ui,Hk,l Þ,wiji1 = h~f i,wiji1, for all ði, jÞ ∈ Jk:

(IV): Let uik,l ≔ ui,Lk,l + ui,Hk,l : Set l← l + 1 and go back to (III) until l =m::⋯

Algorithm 1: (MAM for time fractional Burgers equation).
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for (1) reads as follows: for each t = ti,i = 1, 2⋯ n, find uin ∈
Xn such that

Dα
τu

i
n, vn

� �
+ uinx, vnx
� �

+ uinu
i
nx, vn

� �
= f i, vn
� �

, vn ∈Xn,

u0n =Πnu0,

8<
:

ð16Þ

where f i = f ðx, tÞjt=ti and Πn denotes the interpolation
operator.

We present an optimal error estimate of the fully discrete
scheme (16) in the following theorem.

Theorem 5. Suppose that the problem (1)–(2) has a unique
solution u ∈ C2ð½0, T� ; L2ðΩÞÞ ∩ C1ð½0, T� ;HrðΩÞÞ: Then

ui − uin


 



2
≤ c τ2−α + hr
� �

, ð17Þ

where ui = uðx, tÞjt=ti :

Proof. Denote ein ≔P nu
i − uin,i = 0, 1, 2⋯N: We conclude

from (1) and (16) that ein satisfies

Dα
τe

i
n, vn

� �
+ einx , vnx
� �

= Dα
τ P nu

i − ui
� �

, vn
� �

+ Dα
τu

i−c
0D

α
ti
u, vn

� �
+ uiuix − uinu

i
nx , vn

� �
:

ð18Þ

Taking vn = ein in (18), we have

Dα
τe

i
n, ein

� �
+ ein
		 		2

1 = P n −Ið ÞDα
τu

i, ein
� �

+ Dα
τu

i−c
0D

α
ti
u, ein

� �
+ uiuix − uinu

i
nx , ein

� �
:

ð19Þ

We estimate the terms of the right-hand side of (19) one
by one. For the first term in right-hand side of (19), using the
Cauchy-Schwarz inequality and Lemma 2, we have

P n −Ið ÞDα
τu

i, ein
� �		 		 ≤ chr Dα

τu
i



 


2 ein


 



2 ≤ ch2r Dα
τu

i


 

2

2 +
1
2 ein


 

2

2:

ð20Þ

To estimate the second term in the right-hand side of
(19), we conclude from Lemma 4 that

Dα
τu

i−c
0D

α
ti
u, ein

� �			 			 ≤ Dα
τu

i−c
0D

α
ti
u




 



2
ein


 



2≤cτ4−2r+1
2 eink k22

:

ð21Þ

For the last term in the right-hand side of (19), using
integration by parts and the Cauchy-Schwartz inequality,
we have

uiuix − uinu
i
nx, ein

� �		 		 = 1
2

ð
I
ui − uin
� �

ui + uin
� �

einxdx
				

				
≤M ui − uin



 


2 e

i
n

		 		
1 ≤

M
2 ui − uin


 

2

2 + ein
		 		2

1

≤
M
2 ui −P nu

i

 

2
2 +

M
2 ein


 

2

2 + ein
		 		2

1 ≤ ch2r

+ M
2 ein


 

2

2 + ein
		 		2

1,

ð22Þ

where kuik ≤M and kuink ≤M, due to the smoothness of u
and the approximation un ∈Xn ⊂H1

0ðIÞ:
On the other hand

Dα
τe

i
n, ein

� �
= τ−α

Γ 2 − αð Þ a0e
i
n − 〠

i−1

k=1
ai−k−1 − ai−kð Þekn − ai−1e

0
n, ein

 !
,

= a0τ
−α

Γ 2 − αð Þ ein


 

2

2 −
τ−α

Γ 2 − αð Þ 〠
i−1

k=1
ai−k−1 − ai−kð Þekn + ai−1e

0
n, ein

 !
:

ð23Þ

Substituting (20)–(23) into (19) and noting that 1 = a0
> a1 >⋯>ai>⋯, we deduce that

Table 1: Errors and convergent orders of MAM in temporal
direction for Example 1.

α τ
Linear basis
(k = 3,m = 7)

Quadratic basis
(k = 2,m = 5)

u∗ − u3,7


 



2 Rate u∗ − u2,5


 



2 Rate

1/3

1/4 3.8885e-4 3.8871e-4

1/8 1.3023e-4 1.5781 1.3012e-4 1.5789

1/16 4.2962e-5 1.5999 4.2893e-5 1.6010

1/32 1.3946e-5 1.6233 1.3985e-5 1.6168

1/64 4.2759e-6 1.7055 4.5237e-6 1.6283

1/128 1.3118e-6 1.7047 1.4543e-6 1.6372

1/2

1/4 7.8755e-4 7.8742e-4

1/8 2.8852e-4 1.4487 2.8850e-4 1.4486

1/16 1.0421e-4 1.4692 1.0448e-4 1.4654

1/32 3.7337e-5 1.4808 3.7550e-5 1.4763

1/64 1.3340e-5 1.4848 1.3427e-5 1.4837

1/128 4.5749e-6 1.5439 4.7858e-6 1.4883

3/4

1/4 1.8737e-3 1.8737e-3

1/8 7.9862e-4 1.2303 7.9879e-4 1.2300

1/16 3.3825e-4 1.2394 3.3833e-4 1.2394

1/32 1.4287e-4 1.2434 1.4285e-4 1.2440

1/64 6.0343e-5 1.2434 6.0206e-5 1.2465

1/128 2.5613e-5 1.2363 2.5352e-5 1.2478
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τ−α

Γ 2 − αð Þ ein


 

2

2 ≤
τ−α

Γ 2 − αð Þ 〠
i−1

k=1
ai−k−1 − ai−kð Þ ∥e

k
n∥

2
2+∥ein∥22
2 + ai−1

∥e0n∥
2
2+∥ein∥22
2

 !

+ M
2 + 1

� �
ein


 

2

2 + c τ2−α + hr
� �2

= τ−α

2Γ 2 − αð Þ ein


 

2

2 + 〠
i−1

k=1
ekn



 


2

2
+ e0n


 

2

2

 !

+ M
2 + 1

� �
ein


 

2

2 + c τ2−α + hr
� �2

:

ð24Þ

Choose τ such that τ−α/2Γð2 − αÞ > ððM/2Þ + 1Þ, and
denote σ = τ−α/2Γð2 − αÞ,λ = τ−α/2Γð2 − αÞ − ððM/2Þ + 1Þ;
then, we have

ein


 

2

2 ≤
σ

λ
〠
i−1

k=1
ekn



 


2

2
+ σ

λ
e0n


 

2

2 + c τ2−α + hr
� �2

: ð25Þ

By Gronwall’s inequality, we have

ein


 



2 ≤ c e0n


 

2

2 + c τ2−α + hr
� �

, ð26Þ

which, together with Lemma 2 and the initial error estimate,
yields that

ui − uin


 



2 ≤ ui −P nu
i

 



2 + ein


 



2 ≤ c τ2−α + hr
� �

: ð27Þ

This completes the proof.

Remark 6. If we choose vn =Dα
τe

i
n in (19) and make a similar

analysis as the above Theorem 5, we can obtain the optimal
convergence order in H1 norm

ui − uin
		 		

1 ≤ c τ2−α + hr−1
� �

: ð28Þ

5. Multilevel Augmentation Method for Solving
the Fully Discrete Scheme

At each time step, the fully discrete scheme (16) leads to a non-
linear system, which makes the computational cost expensive.
We present a fast multilevel augmentation method in this sec-
tion to solve these nonlinear systems. To this end, we rewrite
(16) into

uinx , vnx
� �

+ μuin + uinu
i
nx , vn

� �
= f i + μrin, vn
� �

, ð29Þ

where rin =∑i−1
k=1ðai−k−1 − ai−kÞukn + ai−1u

0
n andμ = τ−α/Γð2 − αÞ:

Define a nonlinear operator K :X⟶X as follows:

K uð Þ, vh i1 ≔ μu + uux , vð Þ, v ∈X: ð30Þ

Similar to the proof of Lemma 3 in [23], we applied the
Riesz representation theorem to the right-hand side of (29);

there exists a element ~f
i
∈X, such that

~f
i, v

D E
1
= f i + μrin, v
� �

,∀v ∈Xn: ð31Þ

Then, Equation (29) can be reformulated as

uin, vn

 �

1 + Kuin, vn

 �

1 = ~f
i, vn

D E
, vn ∈Xn, ð32Þ

or equivalently

I +P nKð Þuin =P n
~f
i
: ð33Þ

Since Equation (16) has been reformulated as a nonlinear
operator equation of the second kind (33), and K has the
properties (P1) and (P2) described in [23], then MAM devel-
oped in [21] is applicable.

Table 2: Errors and convergent orders of MAM and DNM via linear basis in spatial direction with k = 3,τ = 0:001, and α = 0:25 for Example
1.

m x nð Þ MAM DNM
u∗ − u3,m
		 		

1 Rate u∗ − u3,m


 



2 Rate u∗ − unj j1 Rate u∗ − unk k2 Rate

0 7 3.1264e-2 1.2161e-3 3.1264e-2 1.2161e-3

1 15 1.7726e-2 0.8186 3.1564e-4 1.9461 1.6011e-2 0.9654 3.1282e-4 1.9590

2 31 8.9080e-3 0.9927 7.7686e-5 2.0225 8.0530e-3 0.9915 7.8743e-5 1.9901

3 63 4.4596e-3 0.9982 1.9377e-5 2.0033 4.0324e-3 0.9979 1.9714e-5 1.9979

4 127 2.2305e-3 0.9996 4.8450e-6 1.9998 2.0169e-3 0.9995 4.9263e-6 2.0006

5 255 1.1153e-3 0.9999 1.2132e-6 1.9976 1.0086e-3 0.9999 1.2342e-6 1.9970

6 511 5.5768e-4 1.0000 2.8891e-7 2.0702 5.0429e-4 1.0000 3.3678e-7 1.8737

Table 3: Comparison of CPU time between MAM and DNM via
linear basis with k = 3,τ = 0:001, and α = 0:25 for Example 1.

n = k +m x nð Þ TMAM TDNM

3 = 3 + 0 7 1.33 1.28

4 = 3 + 1 15 3.21 3.70

5 = 3 + 2 31 7.09 12.22

6 = 3 + 3 63 15.45 41.96

7 = 3 + 4 127 41.47 152.71

8 = 3 + 5 255 112.52 570.63

9 = 3 + 6 511 340.87 4581.64
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We now briefly describe theMAM for solving (33). As we
presented in “Preliminaries,” the approximation subspace
sequence is nested, for a fixed positive integer k,n≔ k +m,
m is any nonnegative integer, and we have the following
decomposition:

Xk+m ≔Xk ⊕
⊥Wk,m, withWk,m ≔Wk+1 ⊕

⊥Wk+2 ⊕
⊥ ⋯ ⊕ ⊥Wk+m:

ð34Þ

Now, we are in a position to solve (33) with n≔ k +m,
and k is fixed and smaller than n: Firstly, we solve (33) with
n≔ k exactly and obtain uik: Next, we obtain an approxima-
tion of uik+1 of (33) with n≔ k + 1: To this end, we decompose

uik+1 = ui,Lk+1 + ui,Hk+1, with ui,Lk+1 ∈Xk, ui,Hk+1 ∈Wk+1:
With the help of (34), Equation (33) with n≔ k + 1 can be

rewritten as an equivalent form as

P k+1 −P kð Þ ui,Lk+1 + ui,Hk+1
� �

− P k+1 −P kð ÞKuik+1 = P k+1 −P kð Þ~f i,
ð35Þ

P k I −Kð Þ ui,Lk+1 + ui,Hk+1
� �

=P k
~f
i
: ð36Þ

Note that

P k+1 −P kð Þ ui,Lk+1 + ui,Hk+1
� �

= ui,Hk+1: ð37Þ

Equation (35) becomes

ui,Hk+1 = P k+1 −P kð Þ ~f
i +Kuik+1

� �
: ð38Þ

The uik+1 in the right-hand side can be approximated by
the previous level solution uik,0 ≔ uik: We compute

ui,Hk,1 = P k+1 −P kð Þ ~f
i +Kuik,0

� �
∈Wk+1ð Þ: ð39Þ

Replace ui,Hk+1 in (36) by ui,Hk,1 , and solve ui,Lk,1 ∈Xk from

P k I −Kð Þ ui,Lk,1 + ui,Hk,1
� �

=P k
~f
i
: ð40Þ

Let

uik,1 ≔ ui,Lk,1 + ui,Hk,1 , ð41Þ

which is an approximation to the solution uik+1:
This procedure is repeated m times to obtain an approx-

imation uik,m of the solution uik+m of (33) with n = k +m. The
solution uik,m is called a multilevel augmentation solution.
Since at any step l = 0, 1,⋯m, we only need to invert the
same nonlinear operator P kðI −KÞ with a fixed small k
instead of the nonlinear operator P k+lðI −KÞ: This means
the algorithm has a high computational efficiency. At every
time step, the fully discrete scheme (33) is solved by the
MAM, and the whole process can be summarized as the
following algorithm:

Theorem 7. Let u be the exact solution of (1) and uik,m be the
approximation solution obtained by Algorithm 1. Suppose
that the solution of Equation (33) belongs to HrðIÞ for i = 1,
2,⋯T/τ: Then, there exist a positive integer N such that for
all k ≥N and m ∈ℕ

ui − uik,m


 



2
≤ C τ2−α + hr
� �

: ð42Þ

Proof. As stated in [20, 21, 23], uik,m is the solution of the
equation:

I +P kKð Þuik,m =P k+m
~f
i
− P k+m −P kð ÞKuik,l−1, ð43Þ

Table 4: Errors and convergent orders of MAM and DNM via quadratic basis in spatial direction with k = 2,τ = 0:001, and α = 0:1 for
Example 1.

m x nð Þ MAM DNM
u∗ − u2,m
		 		

1 Rate u∗ − u2,m


 



2 Rate u∗ − unj j1 Rate u∗ − unk k2 Rate

0 7 1.5670e-2 6.0316e-4 1.5670e-2 6.0316e-4

1 15 4.0566e-3 1.9496 8.1280e-5 2.8916 4.0054e-3 1.9679 7.7216e-5 2.9656

2 31 1.0196e-3 1.9922 1.0218e-5 2.9918 1.0068e-3 1.9922 9.7080e-6 2.9917

3 63 2.5528e-4 1.9979 1.2796e-6 2.9973 2.5203e-4 1.9981 1.2151e-6 2.9980

4 127 6.3843e-5 1.9995 1.5919e-7 3.0070 6.3030e-5 1.9995 1.5096e-7 3.0089

5 255 1.5962e-5 1.9999 2.1784e-8 2.8694 1.5759e-5 1.9999 1.7198e-8 3.1339

Table 5: Comparison of CPU time between MAM and DNM via
quadratic basis with k = 2,τ = 0:001, and α = 0:1 for Example 1.

n = k +m x nð Þ TMAM TDNM

2 = 2 + 0 7 2.44 2.48

3 = 2 + 1 15 5.18 8.91

4 = 2 + 2 31 8.49 31.60

5 = 2 + 3 63 14.04 128.97

6 = 2 + 4 127 23.16 518.63

7 = 2 + 5 255 43.77 2506.75
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Figure 1: The graph of error function uðx, tÞ − u2,5ðx, tÞ for Example 1.

10−3 10−2 10−1 100
10−6

10−5

10−4

10−3

10−2

10−1

100

𝜏

L2
−e

rr
or

𝛼 = 1/3
𝛼 = 1/2
𝛼 = 3/4

Slope = 5/3
Slope = 1.5
Slope = 1.25

Figure 2: The temporal convergence order of MAM for Example 2.

Table 6: Errors and convergent orders of MAM and DNM via linear basis in spatial direction with k = 3,τ = 0:005, and α = 0:25 for Example
2.

m x nð Þ MAM DNM
u∗ − u3,m
		 		

1 Rate u∗ − u3,m


 



2 Rate u∗ − unj j1 Rate u∗ − unk k2 Rate

0 7 9.9718e-1 3.8317e-2 9.9718e-1 3.8317e-2

1 15 5.1444e-1 0.9548 7.8333e-3 2.2903 5.0239e-1 0.9891 9.6573e-3 1.9883

2 31 2.5795e-1 0.9959 1.9554e-3 2.0021 2.5167e-1 0.9973 2.4190e-3 1.9972

3 63 1.2907e-1 0.9990 4.8547e-4 2.0100 1.2589e-1 0.9993 6.0479e-4 1.9999

4 127 6.4546e-2 0.9998 1.2093e-4 2.0052 6.2955e-2 0.9998 1.5096e-4 2.0022

5 255 3.2274e-2 0.9999 2.9983e-5 2.0120 3.1478e-2 1.0000 3.7490e-5 2.0096

6 511 1.6137e-2 1.0000 7.2066e-6 2.0568 1.5739e-2 1.0000 9.1214e-6 2.0392

7 1023 8.0687e-3 1.0000 1.5895e-6 2.1808 7.8696e-3 1.0000 2.0338e-6 2.1651
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which is equivalent to the following discrete form:

uik,m,x, vx
� �

+ μuik,m + uik,mu
i
k,m,x, v

� �
= μ uik,m − uik,m−1, v2
� �

+ f i, v
� �

+ μ rik,m, v
� �

+ uik,mu
i
k,m,x − uik,m−1u

i
k,m−1,x, v2

� �
,

ð44Þ

where v ∈Xk+m,v2 = ðP k+m −P kÞv: Rearranging the terms,
we have

Dα
τu

i
k,m, v

� �
+ uik,m,x, vx
� �

= − uik,mu
i
k,m,x, v

� �
+ μ uik,m − uik,m−1, v2
� �

+ uik,mu
i
k,m,x − uik,m−1u

i
k,m−1,x, v2

� �
+ f i, v
� �

:

ð45Þ

Noting that the exact solution u at t = ti satisfies

Dα
τu

i, v
� �

+ uix , vx
� �

= − uiuix , v
� �

+ f i, v
� �

+ Dα
τu

i−c
0D

α
ti
u, v

� �
:

ð46Þ

Subtracting (45) from (46), we obtain that for all v ∈
Xk+m,v2 = ðP k+m −P kÞv

Dα
τ ui − uik,m
� �

, v
� �

+ uix − uik,m,x, vx
� �

= − uiuix − uik,mu
i
k,m,x, v

� �
+ Dα

τu
i−c

0D
α
ti
u, v

� �
− μ uik,m − uik,m−1, v2
� �

− uik,mu
i
k,m,x − uik,m−1u

i
k,m−1,x , v2

� �
:

ð47Þ

Denote ρi ≔ ui −P k+mu
i and ei ≔P k+mu

i − uik,m, then
ui − uik,m = ρi + ei: Using these notations and noting that
ðρix, vxÞ = 0, we derive the error equation as follows:

Dα
τe

i, v
� �

+ eix, vx
� �

= Dα
τρ

i, v
� �

+ Dα
τu

i−c
0D

α
ti
u, v

� �
− uiuix − uik,mu

i
k,m,x, v

� �
− μ uik,m − uik,m−1, v2
� �

− uik,mu
i
k,m,x − uik,m−1u

i
k,m−1,x , v2

� �
:

ð48Þ

LetM1 = max fkuik,mk∞, i ∈ℤNg andM ′ =max fM1,Mg,
where M is the positive constant appearing in (22); then, kuik∞
≤M ′,kuik,mk∞ ≤M ′: We take v = ei in (48) and estimate the
terms in the right-hand side of (48).

For the first three terms in the right-hand side of (48),
similar to the analysis of (20)–(22), we have

Dα
τρ

i, ei
� �		 		 = P k+m −Ið ÞDα

τu
i, ei

� �		 		 ≤ ch2r Dα
τu

i


 

2

2 +
1
2 ei


 

2

2,

ð49Þ

Dα
τu

i−c
0D

α
ti
u, ei

� �			 			 ≤ cτ4−2r + 1
2 ei


 

2

2, ð50Þ

uiuix − uik,mu
i
k,m,x, ei

� �		 		 ≤ ch2r +M ′ ei


 

2

2 +
1
2 ei
		 		2

1:
ð51Þ

By the Cauchy-Schwartz inequality, Young’s inequality,
and noting that kv2k2 ≤ kvk2, we have

−μ uik,m − uik,m−1, v2
� �		 		 ≤ μ2

σ1
uik,m − uik,m−1


 

2

2 +
σ1
4 ei


 

2

2:

ð52Þ

For the last term in the right-hand side of (48), it follows
from integration by parts, the Cauchy-Schwartz inequality,
and the Young inequality that

uik,mu
i
k,m,x − uik,m−1u

i
k,m−1,x, v2

� �		 		 ≤ 2M ′ uik,m − uik,m−1


 



2 e
i		 		
1

≤M ′2 uik,m − uik,m−1


 

2

2 +
1
2 ei
		 		2

1:

ð53Þ

On the other hand side, as presented in (23), we have

Dα
τe

i, ei
� �

≤
τα

Γ 2 − αð Þ ei


 

2

2 −
τα

Γ 2 − αð Þ 〠
i−1

k=1
ai−k−1 − ai−kð Þek + ai−1e

0, ei
 !

:

ð54Þ

Combining (49)–(54) and ðeix, eixÞ = jeij21, we have

τ−α

Γ 2 − αð Þ ei


 

2

2 ≤
τ−α

Γ 2 − αð Þ 〠
i−1

k=1
ai−k−1 − ai−kð Þ ∥e

k∥22+∥ei∥22
2 + ai−1

∥e0∥22+∥ei∥22
2

 !

+ 1 +M ′ + σ1
4

� �
ei


 

2

2 +
μ2

σ1

� �
uik,m − uik,m−1


 

2

2 + c τ2−α + hr
� �2

= τ−α

2Γ 2 − αð Þ ei


 

2

2 + 〠
i−1

k=1
ek



 


2

2
+ e0


 

2

2

 !

+ 1 +M ′ + σ1
4

� �
ei


 

2

2 +
μ2

σ1

� �
uik,m − uik,m−1


 

2

2 + c τ2−α + hr
� �2

:

ð55Þ

Choose τ such that τ−α/2Γð2 − αÞ > 1 +M ′ + ðσ1/4Þ, and
denote �σ = τ−α/2Γð2 − αÞ,�μ≔ �σ − ð1 +M ′ + ðσ1/4ÞÞ: Then,
we have

Table 7: Comparison of CPU time between MAM and DNM via
linear basis with k = 3,τ = 0:005, and α = 0:25 for Example 2.

n = k +m x nð Þ TMAM TDNM

3 = 3 + 0 7 0.29 0.51

4 = 3 + 1 15 0.78 1.08

5 = 3 + 2 31 1.67 3.75

6 = 3 + 3 63 3.86 13.18

7 = 3 + 4 127 9.82 48.16

8 = 3 + 5 255 27.78 179.33

9 = 3 + 6 511 87.87 716.02

10 = 3 + 7 1023 289.36 7004.77
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ei


 

2

2 ≤
�σ

�μ
〠
i−1

k=1
ek



 


2

2
+ e0


 

2

2

 !

+ τ4−2α

4�μΓ2 2 − αð Þ + 2M ′2

�μ

 !
uik,m − uik,m−1


 

2

2 + c τ2−α + hr
� �2

:

ð56Þ

When the exact solution of (33) belongs to HrðIÞ,
there exists a positive integer N , for all k ≥N and any m
∈ℕ (see [21, 23]):

uik,m − uik,m−1


 

 ≤ chr: ð57Þ

Combining (56) and (57), we conclude from Gron-
wall’s inequality that

ei


 



2 ≤ e0


 



2 + c τ2−αhr + hr
� �

+ c τ2−α + hr
� �

≤ ∥e0∥2 + c τ2−α + hr
� �

:
ð58Þ

Noting that ke0k2 ≤ chr , then

ui − uik,m


 



2 ≤ ui −P k+mu
i

 



2 + ei


 



2 ≤ C τ2−α + hr
� �

:

ð59Þ

This completes the proof.

Remark 8. If we choose v =Dα
τe

i in (48) and make a similar
analysis as the above Theorem 7, we can obtain the optimal
convergence order in H1 norm:

ui − uik,m
		 		

1 ≤ c τ2−α + hr−1
� �

: ð60Þ

6. Numerical Experiments

We present in this section numerical examples to illustrate
the efficiency and accuracy of our proposed method. The
computer programs are run on a personal computer with
2.5G CPU and 8G memory.

Example 1.We consider the time fractional Burgers equation
(1) with the exact solution:

u x, tð Þ = 4t2 − 4t + 1
� �

x2 x − 1ð Þ2: ð61Þ

The corresponding initial condition and forcing term are

u x, 0ð Þ = u0 xð Þ = x2 x − 1ð Þ2

f x, tð Þ = 8t2−α
Γ 3 − αð Þ −

4t1−α
Γ 2 − αð Þ

� �
x2 x − 1ð Þ2

+ 2 4t2 − 4t + 1
� �2

x3 x − 1ð Þ3 2x − 1ð Þ
− 2 4t2 − 4t + 1
� �

6x2 − 6x + 1
� �

:

ð62Þ

Both piecewise linear (r = 2) and quadratic (r = 3) multi-
scale orthonormal bases introduced in “Preliminaries” are
employed in our numerical approximation. The numerical
results are reported in Tables 1–5. k and m stand for the
numbers of initial level and augmentation level used in the
MAM, respectively. xðnÞ denotes the dimension of approx-
imation subspace Xn with n = k +m: Table 1 shows the L2

errors and temporal convergence rates for different α using
the MAM with ðk,mÞ = ð3, 7Þ for linear basis and ðk,mÞ =
ð2, 5Þ for quadratic basis. It is seen that our numerical
scheme has an accuracy of 2 − α, which is in agreement with
our theoretical analysis. In the spatial direction, we illustrate
the accuracy, convergence order, and computational effi-
ciency of the MAM, with a comparison to those of the direct
Newton’s method (DNM) for solving the fully discrete
scheme (16). The numerical results listed in Tables 2 and
3 are linear basis cases, and Tables 4 and 5 are quadratic
basis cases. We can easily see from these tables that both
MAM and DNM have the optimal convergence orders in
the H1 norm (1 for the linear case and 2 for the quadratic

Table 8: Errors and convergent orders of MAM and DNM via quadratic basis in spatial direction with k = 2,τ = 0:005, and α = 0:1 for
Example 2.

m x nð Þ MAM DNM
u∗ − u2,m
		 		

1 Rate u∗ − u2,m


 



2 Rate u∗ − unj j1 Rate u∗ − unk k2 Rate

0 7 3.9445e-1 1.5119e-2 3.9445e-1 1.5119e-2

1 15 1.0367e-1 1.9279 2.0779e-3 2.8631 1.0124e-1 1.9620 1.9499e-3 2.9549

2 31 2.9991e-2 1.7893 3.8616e-4 2.4279 2.5478e-2 1.9905 2.4561e-4 2.9889

3 63 7.5607e-3 1.9879 5.0534e-5 2.9339 6.3800e-3 1.9976 3.0758e-5 2.9973

4 127 1.8938e-3 1.9972 6.3432e-6 2.9940 1.5957e-3 1.9994 3.8482e-6 2.9987

5 255 4.7367e-4 1.9993 8.1030e-7 2.9687 3.9896e-4 1.9999 5.0488e-7 2.9301

Table 9: Comparison of CPU time between MAM and DNM with
k = 2,τ = 0:005, and α = 0:1 for Example 2.

n = k +m x nð Þ TMAM TDNM

2 = 2 + 0 7 0.57 0.57

3 = 2 + 1 15 1.33 2.02

4 = 2 + 2 31 2.16 7.64

5 = 2 + 3 63 3.43 32.32

6 = 2 + 4 127 5.89 129.80

7 = 2 + 5 255 10.34 543.35
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case) and in the L2 norm (2 for the linear case and 3 for the
quadratic case). We also observe that MAM and DNM have
nearly the same accuracy, while MAM takes significantly
less time than DNM. To intuitively show the approximation
effect, we plot in Figure 1 the absolute error surface of the
approximation solution u2,5 obtained by MAM.

Example 2.We consider the time fractional Burgers equation
(1) with initial condition:

u0 xð Þ = 0,

f x, tð Þ = 2t2−α sin 2πxð Þ
Γ 3 − αð Þ + πt4 sin 4πxð Þ + 4π2t2 sin 2πxð Þ:

ð63Þ

The exact solution of this problem is

u x, tð Þ = t2 sin 2πxð Þ: ð64Þ

The numerical results are presented in Figure 2 and
Tables 6–9, where Figure 2 displays the convergence orders
in temporal direction with different α, and Tables 6–9 show
the accuracy, convergence order, and computing time for
the spatial direction. All the numerical results verify our the-
oretical analysis and also show the efficiency of the proposed
algorithm.

7. Conclusion

In this article, the L1-discretization formula and the multi-
scale Galerkin method are adopted to discrete the Caputo
fractional derivative and spatial variable, respectively, and
the multilevel augmentation algorithm is proposed for solv-
ing the resulting fully discrete scheme which is a nonlinear
system at each time step. The MAM only needs to solve non-
linear systems in a fixed subspace with much lower dimen-
sion than that for the whole approximation subspace and
compensate the error by multiplications of matrices and
vectors at the high level. Therefore, the computational cost
is greatly reduced. Numerical experiments are presented to
confirm our theoretical results. Compared with the DNM,
the proposed MAM has substantial advantages in computing
time and is suitable for solving large-scale and high-accuracy
problems.
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In this paper, we consider a swelling porous elastic system with a viscoelastic damping and distributed delay terms in the second
equation. The coupling gives new contributions to the theory associated with asymptotic behaviors of swelling porous elastic
soils. The general decay result is established by the multiplier method.

1. Introduction and Preliminaries

In the late 19th century, Eringen [1] proposed a theory in
which he presented a mixture of viscous liquids and elastic
solids in addition to gas. And he also studied the equilibrium
laws for all components of this mixture, and finally, you get
the field equations for a heat conductive mixture (for more
details, see [2]). In [3], the author has classified expansive
(swelling) soils under the classification of porous media
theory.

On the other hand, it contains clay minerals that attract
and absorb water, which leads to an increase in pressure
[4], and this is considered a harmful and dangerous problem
in architecture and civil engineering in most countries of the
world, especially in foundations, which leads to cracks in
buildings and ripples in sidewalks and roads (see [5–8]).
From there, studies began to eliminate or reduce the damage,
as in ([9–13]), where the basic field equations of the linear
theory of swelling porous elastic soils were presented by

ρuutt = P1x +G1 +H1, ð1Þ

ρϕϕtt = P2x +G2 +H2, ð2Þ
where u, ϕ are the displacement of the fluid and the elastic
solid material. And ρu, ρϕ > 0 are the densities of each con-
stituent. The functions (P1,G1,H1) represent the partial ten-
sion, internal body forces, and eternal forces acting on the
displacement, respectively. Similarly (P2,G2,H2), it works
on the elastic solid. In addition, the constitutive equations
of partial tensions are given by

P1

P1

 !
=

a1, a2
a2, a3

 !

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
A

:
ux

ϕx

 !
,

ð3Þ

where a1, a3 > 0 and a2 ≠ 0 is a real number. A is a matrix
positive definite in the sense that a1a3 > a22.
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Quintanilla [10] investigated (1) by taking

G1 = G2 = ξ ut − ϕtð Þ,
H1 = a3uxxt ,
H2 = 0,

ð4Þ

where ξ > 0; they obtained that the stability is exponential.
Similarly, in [14], the authors considered (1) with different
conditions

G1 =G2 = 0,

H1 = −ρuγ xð Þut ,

H2 = 0, ð5Þ

where γðxÞ is an internal viscous damping function with a
positive mean. They established the exponential stability
result (see ([10–20]) for some other interesting results on
the swelling porous system).

Time delays arise in many applications because most
phenomena naturally depend not only on the present state
but also on some past occurrences.

In recent years, the control of PDEs with time delay
effects has become an active area of research (see, for exam-
ple, [15, 20–27]). In many cases, it was shown that delay is

a source of instability unless additional condition or control
terms are used; the stability issue of systems with delay is of
theoretical and practical great importance.

A complement to these works, and by introducing the
terms of memory and distributed delay, forms a new problem
different from previous studies. Under appropriate assump-
tions and by using the energy method, we prove the stability
results.

In this paper, we are interested in problem (1) with null
internal body forces, but the eternal force acting only on
the elastic solid is in the form of viscoelastic damping and
distributed delay terms, that is,

G1 =G2 =H1 = 0,

H2 = −
ðt
0
g t − sð Þϕxx x, sð Þds − β1ϕt

−
ðτ2
τ1

∣β2 σð Þ∣ϕt x, t − σð Þdσ:
ð6Þ

Remark 1. Regarding the problems of swelling porous elastic,
we believe that there are no studies of viscoelasticity (the
memory) and the distributed delay conditions that act as a
simultaneous dissipation mechanism, and hence, our cou-
pling constitutes a new contribution.

Thus, we are interested in the following problem:

where

x, σ, tð Þ ∈H = 0, 1ð Þ × τ1, τ2ð Þ × 0,∞ð Þ, ð8Þ

under the initial and boundary conditions

u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ,
ϕ x, 0ð Þ = ϕ0 xð Þ, ϕt x, 0ð Þ = ϕ1 xð Þ, x ∈ 0, 1ð Þ,
ϕt x,−tð Þ = f0 x, tð Þ, x ∈ 0, 1ð Þ × 0, τ2ð Þ,

u 0, tð Þ = u 1, tð Þ = ϕ 0, tð Þ = ϕ 1, tð Þ = 0, t ≥ 0:

ð9Þ

First, as in [27], taking the following new variable

Y x, ρ, σ, tð Þ = ϕt x, t − σρð Þ, ð10Þ

then we obtain

σY t x, ρ, σ, tð Þ +Yρ x, ρ, σ, tð Þ = 0,
Y x, 0, σ, tð Þ = ϕt x, tð Þ:

(
ð11Þ

Consequently, the problem is equivalent to

ρuutt − a1uxx − a2ϕxx = 0,

ρϕϕtt − a3ϕxx − a2uxx +
ðt
0
g t − sð Þϕxx x, sð Þds + β1ϕt +

ðτ2
τ1

∣β2 σð Þ∣ϕt x, t − σð Þdσ = 0,
 

8>>><
>>>:

ð7Þ

ρuutt − a1uxx − a2ϕxx = 0,

ρϕϕtt − a3ϕxx − a2uxx +
ðt
0
g t − sð Þϕxx x, sð Þds + β1ϕt +

ðτ2
τ1

β2 σð Þj jY x, 1, σ, tð Þdσ = 0,

σY t x, ρ, σ, tð Þ +Yρ x, ρ, σ, tð Þ = 0,

8>>>><
>>>>:

ð12Þ

2 Journal of Function Spaces



where

x, ρ, σ, tð Þ ∈ 0, 1ð Þ ×H , ð13Þ

with the initial data

u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ,
ϕ x, 0ð Þ = ϕ0 xð Þ, ϕt x, 0ð Þ = ϕ1 xð Þ, x ∈ 0, 1ð Þ,
Y x, ρ, σ, 0ð Þ = f0 x, ρσð Þ, x, ρ, σð Þ ∈ 0, 1ð Þ × 0, 1ð Þ × 0, τ2ð Þ,

8>><
>>:

ð14Þ

and the boundary conditions

u 0, tð Þ = u 1, tð Þ = ϕ 0, tð Þ = ϕ 1, tð Þ = 0, t ≥ 0: ð15Þ

Here, ρu, ρϕ, a1, a3, β1 are positive constants and a2 is a

real number, with a1, a2, a3 satisfying a = a3 − a22/a1 > 0.
The integrals represent the memory and the distributed delay
terms with τ1, τ2 > 0 are a time delay, β2 is an L∞ function,
and the kernel g is the relaxation function, under the follow-
ing assumptions.

(H1) g ∈ C1ðℝ+,ℝ+Þ is a nonincreasing function satisfy-
ing

g 0ð Þ > 0, a −
ð∞
0

g sð Þds = l > 0, ð16Þ

where a = a3 − a22/a1 > 0.
(H2) There exists a ϑ ∈ ðℝ+,ℝ+Þ positive nonincreasing

differentiable function, such that

g′ tð Þ ≤ −ϑ tð Þg tð Þ, t ≥ 0: ð17Þ

(H3) β2 : ½τ1, τ2�→ℝ is a bounded function satisfying

ðτ2
τ1

∣β2 σð Þ∣dσ < β1: ð18Þ

Remark 2. The results that we obtained in this work are also
correct with other conditions, including

ux 0, tð Þ = ux 1, tð Þ = ϕx 0, tð Þ = ϕx 1, tð Þ = 0, t ≥ 0,
u 0, tð Þ = ux 1, tð Þ = ϕ 0, tð Þ = ϕx 1, tð Þ = 0, t ≥ 0,
ux 0, tð Þ = u 1, tð Þ = ϕx 0, tð Þ = ϕ 1, tð Þ = 0, t ≥ 0:

ð19Þ

Of course, there can be some difficulties with regard to
the following boundary conditions:

ux 0, tð Þ = ux 1, tð Þ = ϕ 0, tð Þ = ϕ 1, tð Þ = 0, t ≥ 0,
u 0, tð Þ = u 1, tð Þ = ϕx 0, tð Þ = ϕx 1, tð Þ = 0, t ≥ 0,

ð20Þ

unless we assume

ð1
0
u0 xð Þdx = 0,

ð1
0
ϕ0 xð Þdx = 0, ð21Þ

respectively.

In this paper, we consider ðu, ϕ,YÞ to be a solution of
system (12)–(15) with the regularity needed to justify the cal-
culations. In Section 2, we proved our decay result. And we
symbolize that c is a positive constant.

2. Main Result

In this section, we prove our stability result for the energy of
system (12)–(15).

We need the following lemmas.

Lemma 3. The energy functional E, defined by

E tð Þ = 1
2

ð1
0

ρuu
2
t + a1u

2
x + ρϕϕ

2
t

h

+ a3 −
ðt
0
g sð Þds

� �
ϕ2x + 2a2uxϕx

�
dx + 1

2
g ∘ ϕx

+ 1
2

ð1
0

ð1
0

ðτ2
τ1

σ∣β2 σð Þ∣Y2 x, ρ, σ, tð Þdσdρdx,

ð22Þ

satisfies

E′ tð Þ ≤ 1
2
g′ ∘ ϕx −

1
2
g tð Þ

ð1
0
ϕ2xdx

− β1 −
ðτ2
τ1

∣ β2 σð Þ ∣ dσ
 !ð1

0
ϕ2t dx

≤
1
2
g′ ∘ ϕx − η0

ð1
0
ϕ2t dx ≤ 0,

ð23Þ

where η0 = β1 −
Ð τ2
τ1

jβ2ðσÞjdσ > 0 and

g ∘ vxð Þ tð Þ =
ð1
0

ðt
0
g t − sð Þ vx tð Þ − vx sð Þð Þ2dsdx: ð24Þ

Proof. Multiplying (12)1,2 by ut and ϕt , then integration by
parts over ð0, 1Þ, with (15), gives

1
2
d
dt

ð1
0

ρuu
2
t + a1u

2
x + ρϕϕ

2
t + a3ϕ

2
x + 2a2uxϕx

h i
dx

+ β1

ð1
0
ϕ2t dx +

ð1
0
ϕt

ðτ2
τ1

∣β2 σð Þ∣Y x, 1, σ, tð Þdσdx

−
ð1
0
ϕxt

ðt
0
g t − sð Þϕx sð Þdsdx = 0:

ð25Þ

The estimate of the last term in the LHS of (25) is as
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follows:

−
ð1
0
ϕxt

ðt
0
g t − sð Þϕx sð Þdsdx

=
ð1
0
ϕxt

ðt
0
g t − sð Þ ϕx tð Þ − ϕx sð Þð Þdsdx

−
ðt
0
g sð Þds

ð1
0
ϕxtϕxdx

= 1
2
d
dt

g ∘ ϕx −
1
2
d
dt

ðt
0
g sð Þds

ð1
0
ϕ2xdx

−
1
2g

′ ∘ ϕx +
1
2g tð Þ

ð1
0
ϕ2xdx:

ð26Þ

Now, multiplying ((12))3 by Y ∣ β2ðσÞ ∣ , and by integra-
tion over ð0, 1Þ × ð0, 1Þ × ðτ1, τ2Þ

d
dt

1
2

ð1
0

ð1
0

ðτ2
τ1

σ∣β2 σð Þ∣Y2 x, ρ, σ, tð Þdσdρdx

= −
ð1
0

ð1
0

ðτ2
τ1

∣β2 σð Þ∣YYρ x, ρ, σ, tð Þdσdρdx

= −
1
2

ð1
0

ð1
0

ðτ2
τ1

∣β2 σð Þ∣ d
dρ

Y2 x, ρ, σ, tð Þdσdρdx

= 1
2

ð1
0

ðτ2
τ1

∣β2 σð Þ∣ Y2 x, 0, σ, tð Þ −Y2 x, 1, σ, tð Þ� �
dσdx

= 1
2

ðτ2
τ1

∣β2 σð Þ∣dσ
ð1
0
ϕ2t dx −

1
2

ð1
0

ðτ2
τ1

∣σ2 σð Þ∣Y2 x, 1, σ, tð Þdσdx:

ð27Þ

Now, by substituting (26) into (25), and using Young’s
inequality, we have

E′ tð Þ ≤ 1
2g

′ ∘ ϕx −
1
2g tð Þ

ð1
0
ϕ2xdx

− β1 −
ðτ2
τ1

∣ β2 σð Þ ∣ dσ
 !ð1

0
ϕ2t d

≤
1
2g

′ ∘ ϕx − β1 −
ðτ2
τ1

∣ β2 σð Þ ∣ dσ
 !ð1

0
ϕ2t dx,

ð28Þ

then, by (18), there exists η0 > 0 so that

E′ tð Þ ≤ 1
2g

′ ∘ ϕx − η0

ð1
0
ϕ2t dx, ð29Þ

then we obtain (22) and (23) (E is a nonincreasing function).

Lemma 4. The functional

D1 tð Þ≔ ρϕ

ð1
0
ϕtϕdx −

a2
a1

ρu

ð1
0
ϕutdx +

β1

2

ð1
0
ϕ2dx ð30Þ

satisfies

D1′ tð Þ ≤ −
a0
2

ð1
0
ϕ2xdx + ε1

ð1
0
u2t dx + c 1 + 1

ε1

� �ð1
0
ϕ2t dx

+ cg ∘ ϕx + c
ð1
0

ðτ2
τ1

∣β2 σð Þ∣Y2 x, 1, σ, tð Þdσdx:

ð31Þ

Proof. Direct computation using integration by parts and
Young’s inequality, for ε1 > 0, yields

D1′ tð Þ = −a3
ð1
0
ϕ2xdx + ρϕ

ð1
0
ϕ2t dx +

a22
a1

ð1
0
ϕ2xdx

+ a2
a1

ρu

ð1
0
ϕtutdx +

ð1
0
ϕx

ðt
0
g t − sð Þϕx sð Þdsdx

−
ð1
0
ϕ
ðτ2
τ1

∣β2 σð Þ∣Y x, 1, σ, tð Þdσdx

≤ − a3 −
a22
a1

� �ð1
0
ϕ2xdx + ρϕ

ð1
0
ϕ2t dx

+ a2
a1

ρu

ð1
0
ϕtutd −

ð1
0
ϕ
ðτ2
τ1

∣β2 σð Þ∣Y x, 1, σ, tð Þdσdx

+
ð1
0
ϕx

ðt
0
g t − sð Þϕx sð Þdsdx:

ð32Þ

The estimate of the two last terms in the RHS of (32) is as
follows:

ð1
0
ϕx

ðt
0
g t − sð Þϕx sð Þdsdx

=
ðt
0
g sð Þds

ð1
0
ϕ2xdx −

ð1
0
ϕx

ðt
0
g t − sð Þ ϕx tð Þ − ϕx sð Þð Þdsdx

≤ δ1 +
ðt
0
g sð Þds

� �ð1
0
ϕ2xdx +

1
4δ1

ðt
0
g sð Þds

� �
g ∘ ϕx,

ð33Þ

−
ð1
0
ϕ
ðτ2
τ1

∣β2 σð Þ∣Y x, 1, σ, tð Þdσdx

≤ cδ2

ðτ2
τ1

∣ β2 σð Þ ∣ dσ
 !ð1

0
ϕ2xdx

+ 1
4δ2

ðt
0

ðτ2
τ1

∣β2 σð Þ∣Y2 x, 1, σ, tð Þdσdx,

ð34Þ

where we have used Cauchy-Schwartz, Young’s, and Poin-
caré’s inequalities, for δ1, δ2 > 0, and (18).
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By substituting (33) and (34) into (32), we find

D1′ tð Þ ≤ − a3 −
a22
a1

−
ðt
0
g sð Þds − δ1 − β1cδ2

� �ð1
0
ϕ2xdx

+ ε1

ð1
0
u2t dx + c 1 + 1

ε1

� �ð1
0
ϕ2t dx

+ 1
4δ1

ðt
0
g sð Þds

� �
g ∘ ϕx

+ 1
4δ2

ðt
0

ðτ2
τ1

∣β2 σð Þ∣Y2 x, 1, σ, tð Þdσdx:

ð35Þ

Bearing in mind that a = a3 − a22/a1 > 0 and using (16), we
get

ðt
0
g sð Þds <

ð∞
0

g sð Þds < a, ð36Þ

let a0 = ða3 − a22/a1Þ −
Ð t
0 gðsÞds > 0, and letting δ1 = a0/4, δ2

= a0/4cμ1, gives (31).

Lemma 5. Assume that (16) hold. Then, the functional

D2 tð Þ≔ a2

ð1
0
ϕtudx −

ð1
0
ϕutdx

� �
ð37Þ

satisfies,

D2′ tð Þ ≤ −
a22
2ρϕ

ð1
0
u2xdx + c

ð1
0
ϕ2xdx + c

ð1
0
ϕ2t dx

+ cg ∘ ϕx + c
ð1
0

ðτ2
τ1

∣β2 σð Þ∣Y2 x, 1, σ, tð Þdσdx:

ð38Þ

Proof. By differentiating D2, then using (12), integration by
parts, and (15), we find

D2′ tð Þ = −
a22
ρϕ

ð1
0
u2xdx +

a22
ρu

ð1
0
ϕ2xdx

−
a2a3
ρϕ

−
a1a2
ρu

 !ð1
0
ϕxuxdx −

a2β1
ρϕ

ð1
0
uϕtdx

+ a2
ρϕ

ð1
0
ux

ðt
0
g t − sð Þϕx sð Þdsd

−
a2
ρϕ

ð1
0
u
ðτ2
τ1

∣β2 σð Þ∣Y x, 1, σ, tð Þdσdx:

ð39Þ

In what follows, we estimate the different terms in the
RHS of (39); we use Young’s, Cauchy-Schwartz, and Poin-

caré’s inequalities. For δ3, δ4, δ5 > 0, we have

−
a2a3
ρϕ

−
a1a2
ρu

 !ð1
0
ϕxuxdx

≤ δ3

ð1
0
u2xdx +

a2a3
ρϕ

−
a1a2
ρu

 !2 1
4δ3

ð1
0
ϕ2dx,

a2
ρϕ

ð1
0
ux

ðt
0
g t − sð Þϕx sð Þdsdx

≤ 2δ4
ð1
0
u2xdx +

c
4δ4

ð1
0
ϕ2xdx +

c
δ4

g ∘ ϕx,

−
a2β1
ρϕ

ð1
0
uϕtdx ≤ cδ5

ð1
0
u2xdx +

c
4δ5

ð1
0
ϕ2t dx,

−
a2
ρϕ

ð1
0
u
ðτ2
τ1

∣β2 σð Þ∣Y x, 1, σ, tð Þdσdx

≤ cδ6

ð1
0
u2xdx −

c
4δ6

ð1
0

ðτ2
τ1

∣β2 σð Þ∣Y2 x, 1, σ, tð Þdσdx:

ð40Þ

By letting δ3 = a2/8ρϕ, δ4 = a2/16ρϕ, δ5 = δ6 = a2/8cρϕ
and substituting into (39), we get (38).

Lemma 6. The functional

D3 tð Þ≔−ρu

ð1
0
utudx ð41Þ

satisfies

D3′ tð Þ ≤ −ρu

ð1
0
u2t dx + 2a1

ð1
0
u2xdx +

a3
4

ð1
0
ϕ2xdx: ð42Þ

Proof. Direct computations give

D3′ tð Þ = −ρu

ð1
0
u2t dx + a1

ð1
0
u2xdx + a2

ð1
0
uxϕxdx: ð43Þ

Estimate (42) easily follows by using Young’s inequality
and a1a3 > a22.

Now, let us introduce the following functional used.

Lemma 7. The functional

D4 tð Þ≔
ð1
0

ð1
0

ðτ2
τ1

σe−σρ∣β2 σð Þ∣Y2 x, ρ, σ, tð Þdσdρdx ð44Þ
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satisfies

D4′ tð Þ ≤ −η1
ð1
0

ð1
0

ðτ2
τ1

σ∣β2 σð Þ∣Y2 x, ρ, σ, tð Þdσdρdx

+ β1

ð1
0
ϕ2t dx − η1

ð1
0

ðτ2
τ1

∣β2 σð Þ∣Y2 x, 1, σ, tð Þdσdx,

ð45Þ

where η1 > 0.

Proof. By differentiating D4, with respect to t and using the
last equation in (12), we have

D4′ tð Þ = −2
ð1
0

ð1
0

ðτ2
τ1

e−σρ∣β2 σð Þ∣YYρ x, ρ, σ, tð Þdσdρdx

= −
ð1
0

ð1
0

ðτ2
τ1

σe−σρ∣β2 σð Þ∣Y2 x, ρ, σ, tð Þdσdρdx

−
ð1
0

ðτ2
τ1

∣β2 σð Þ∣ e−σY2 x, 1, σ, tð Þ −Y2 x, 0, σ, tð Þ� 	
dσdx:

ð46Þ

By usingYðx, 0, σ, tÞ = ϕtðx, tÞ, and e−σ ≤ e−σρ ≤ 1, for all
0 < ρ < 1, we find

D4′ tð Þ = −η1
ð1
0

ð1
0

ðτ2
τ1

σ∣β2 σð Þ∣Y2 x, ρ, σ, tð Þdσdρdx

−
ð1
0

ðτ2
τ1

e−σ∣β2 σð Þ∣Y2 x, 1, σ, tð Þdσdx

+
ðτ2
τ1

∣ β2 σð Þ ∣ dσ
 !ð1

0
ϕ2t dx:

ð47Þ

Because −e−σ is an increasing function, we have −e−σ ≤
−e−τ2 , for all σ ∈ ½τ1, τ2�.

Finally, setting η1 = e−τ2 and recalling (18) give (45). We
are now ready to prove the main result.

Theorem 8. Assume (16)–(18) hold.
Then, ∀t0 > 0, there exist λ1, λ2 > 0 such that the energy

functional given by (22) satisfies

E tð Þ ≤ λ1e
−λ2
Ð t

t0
ϑ sð Þds, ∀t ≥ t0: ð48Þ

Proof. We define the functional of Lyapunov

L tð Þ≔NE tð Þ +N1D1 tð Þ +N2D2 tð Þ +D3 tð Þ +N4D4 tð Þ,
ð49Þ

where N ,N1,N2,N4 > 0 to be selected later.

By differentiating (49) and using (22), (31), (38), (42),
and (45), we have

L ′ tð Þ ≤ −
a0N1
2 − cN2 −

a3
4


 �ð1
0
ϕ2xdx

− ρu −N1ε1½ �
ð1
0
u2t dx −

a22N2
2ρϕ

− 2a1

" #ð1
0
u2xdx

+ c N1 +N2½ �g ∘ ϕx +
N
2 g′ ∘ ϕx

− η0N − cN1 1 + 1
ε1

� �
−N2c − β1N4


 �ð1
0
ϕ2t dx

− N4η1 − cN1 − cN2½ �
ð1
0

ðτ2
τ1

∣β2 σð Þ∣Y2

� x, 1, σ, tð Þdσdx −N4η1

ð1
0

ð1
0

ðτ2
τ1

σ∣β2 σð Þ∣Y2

� x, ρ, σ, tð Þdσdρdx:
ð50Þ

By setting

ε1 =
ρu
2N1

, ð51Þ

we obtain

L ′ tð Þ ≤ −
a0N1
2 − cN2 −

a3
4


 �ð1
0
ϕ2xdx −

ρu
2
h ið1

0
u2t dx

−
a22N2
2ρϕ

− 2a1

" #ð1
0
u2xdx + c N1 +N2½ �g ∘ ϕx

+ N
2 g′ ∘ ϕx − η0N − cN1 −N2c − β1N4½ �

ð1
0
ϕ2t dx

− N4η1 − cN1 − cN2½ �
ð1
0

ðτ2
τ1

∣β2 σð Þ∣Y2

� x, 1, σ, tð Þdσdx −N4η1

ð1
0

ð1
0

ðτ2
τ1

σ∣β2 σð Þ∣Y2

� x, ρ, σ, tð Þdσdρdx:
ð52Þ

At this stage, we choose our different constants.
First, choosing N2 large enough such that

α1 =
a22N2
2ρϕ

− 2a1 > 0, ð53Þ

then we pick N1 large enough such that

α2 =
a0N1
2 − cN2 −

a3
4 > 0, ð54Þ
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then we select N4 large enough such that

α3 =N4η1 − cN1 − cN2 > 0: ð55Þ

Thus, we arrive at

L ′ tð Þ ≤ −α2
ð1
0
ϕ2xdx −

ρu
2

ð1
0
u2t dx − α1

ð1
0
u2xdx

− η0N − c½ �
ð1
0
ϕ2t dx + α6g′ ∘ ϕx + α7g ∘ ϕx

− α3

ð1
0

ðτ2
τ1

∣β2 σð Þ∣Y2 x, 1, σ, tð Þdσd

− α5

ð1
0

ð1
0

ðτ2
τ1

σ∣β2 σð Þ∣Y2 x, ρ, σ, tð Þdσdρdx,

ð56Þ

where α5 = η1N4, α6 =N/2, α7 = c½N1 +N2�.
On the other hand, if we let

L tð Þ =N1D1 tð Þ +N2D2 tð Þ +D3 tð Þ +N4D4 tð Þ, ð57Þ

then

L tð Þj j ≤N1ρϕ

ð1
0
ϕϕtj jdx +N1

a2
a1

ρu

ð1
0
ϕutj jdx

+N1
μ1
2

ð1
0
ϕ2dx +N2a2

ð1
0
ϕut − uϕtj jdx

+ ρu

ð1
0
utuj jdx +N4

ð1
0

ð1
0

ðτ2
τ1

σe−σρ∣β2 σð Þ∣Y2

� x, ρ, σ, tð Þdσdρdx:
ð58Þ

Exploiting Young’s, Cauchy-Schwartz, and Poincaré
inequalities, we obtain

L tð Þj j ≤ c
ð1
0

u2t + ϕ2t + ϕ2x + u2x
� �

dx + cg ∘ ϕx

+ c
ð1
0

ð1
0

ðτ2
τ1

σ∣β2 σð Þ∣Y2 x, ρ, σ, tð Þdσdρ:
ð59Þ

On the other hand, from (22), we can write

a1u
2
x + 2a2ϕxux + a4ϕ

2
x =

1
2 a1 ux +

a2
a1

ϕx

� �2
+ a4 ϕx +

a2
a4

ux

� �2
"

+ a1 −
a22
a4

� �
u2x + a4 −

a22
a1

� �
ϕ2x

�
,

ð60Þ

where

a4 = a3 −
ðt
0
g sð Þds: ð61Þ

Since a1a3 > a22 and (16), we deduce that

a1u
2
x + 2a2ϕxux + a4ϕ

2
x >

1
2 a1 −

a22
a4

� �
u2x + a4 −

a22
a1

� �
ϕ2x


 �
:

ð62Þ

Consequently, we find

L tð Þj j = L tð Þ −NE tð Þj j ≤ cE tð Þ, ð63Þ

that is,

N − cð ÞE tð Þ ≤L tð Þ ≤ N + cð ÞE tð Þ: ð64Þ

At this point, we choose N large enough such that

N − c > 0,Nη0 − c > 0, ð65Þ

and exploiting (22), estimates (56) and (64), respectively,
leads to

c2E tð Þ ≤L tð Þ ≤ c3E tð Þ, ∀t ≥ 0, ð66Þ

L ′ tð Þ ≤ −k1E tð Þ + k2g ∘ ϕx ,∀t ≥ t0, ð67Þ
for some k1, k2, c2, c3 > 0:

By multiplying (67) by ϑðtÞ, we get

ϑ tð ÞL ′ tð Þ ≤ −k1ϑ tð ÞE tð Þ + k2ϑ tð Þg ∘ ϕx,∀t ≥ t0: ð68Þ

Now, by using (17), we have the following estimate:

ϑ tð Þg ∘ ϕx = ϑ tð Þ
ð1
0

ðt
0
g t − sð Þ ϕx tð Þ − ϕx sð Þð Þ2dsdx

≤
ð1
0

ðt
0
ϑ t − sð Þg t − sð Þ ϕx tð Þ − ϕx sð Þð Þ2dsd

≤ −
ð1
0

ðt
0
g′ t − sð Þ ϕx tð Þ − ϕx sð Þð Þ2dsdx

= −g′ ∘ ϕx ≤ −2E′ tð Þ:

ð69Þ

Thus, (68) becomes

ϑ tð ÞL ′ tð Þ ≤ −k1ϑ tð ÞE tð Þ − 2k2E′ tð Þ, ∀t ≥ t0, ð70Þ

which can be rewritten as

ϑ tð ÞL tð Þ + 2k2E tð Þð Þ′ − ϑ′ tð ÞL tð Þ ≤ −k1ϑ tð ÞE tð Þ, ∀t ≥ t0:

ð71Þ

By using ϑ′ðtÞ ≤ 0, ∀t ≥ 0, we have

ϑ tð ÞL tð Þ + 2k2E tð Þð Þ′ ≤ −k1ϑ tð ÞE tð Þ, ∀t ≥ t0: ð72Þ

By exploiting (66), we notice that

K tð Þ = ϑ tð ÞL tð Þ + 2k2E tð Þ ~ E tð Þ: ð73Þ
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Consequently, for κ > 0, we get

K ′ tð Þ ≤ −κK tð Þϑ tð Þ, ∀t ≥ t0: ð74Þ

Integrating (74) over ðt0, tÞ gives

K tð Þ ≤K t0ð Þe−κ
Ð t

t0
ϑ sð Þds, ∀t ≥ t0: ð75Þ

Consequently, (48) is established by virtue of (66) and
(75).

Remark 9. The estimate (48) also remains valid for t ∈ ½0, t0�,
thanks to the boundedness and continuity of E and ϑ.
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In this current work, we are interested in a system of two singular one-dimensional nonlinear equations with a viscoelastic, general
source and distributed delay terms. The existence of a global solution is established by the theory of potential well, and by using the
energy method with the function of Lyapunov, we prove the general decay result of our system.

1. Introduction

We are interested in the following system:

utt −
1
x

xuxð Þx +
ðt
0
g1 t − sð Þ 1

x
xux x, sð Þð Þxds + μ1ut

+
ðτ2
τ1

μ2 ρð Þj jut x, t − ρð Þdρ = f1 u, vð Þ, inQ,

vtt −
1
x

xvxð Þx +
ðt
0
g2 t − sð Þ 1

x
xvx x, sð Þð Þxds + μ3vt

+
ðτ2
τ1

μ4 ρð Þj jvt x, t − ρð Þdρ = f2 u, vð Þ, inQ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð1Þ

with

u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, x ∈ 0, Lð Þ,
v x, 0ð Þ = v0 xð Þ, vt x, 0ð Þ = v1 xð Þ, x ∈ 0, Lð Þ,
ut x,−tð Þ = f0 x, tð Þ, vt x,−tð Þ = g0 x, tð Þ, t ∈ 0, τ2ð Þ,

u L, tð Þ = v L, tð Þ = 0,
ðL
0
xu x, tð Þdx =

ðL
0
xv x, tð Þdx = 0,

8>>>>>>><
>>>>>>>:

ð2Þ

where Q = ð0, LÞ × ð0, TÞ, L <∞, T <∞, g1ð:Þ, g2ð:Þ: ℝ+

⟶ℝ+, μ1, μ3 > 0, the second integral represents the
distributed delay and μ2, μ4 : ½τ1, τ2�⟶ℝ are bounded
functions, where τ1, τ2 are two real numbers satisfying 0
≤ τ1 < τ2, and f1ð:, :Þ, f2ð:,:Þ: ℝ2 ⟶ℝ are defined func-
tions later.

Three decades ago, these problems that arise in one-
dimensional elasticity have been studied and developed with
regard to viscosity with long-term memory. And it has been
studied in many fields of science, engineering, medical
sciences, and chemistry, as well as population and other
matters; see, for example, [1–24]. Recently, in the absence
of delay (μi = 0, i = 1::4), problem (1) was studied in [25],
and also later in [26], the authors considered problem (1)
with localized frictional damping term. We also know that
delay, especially distributed delay, is a phenomenon in our
life and is almost found in various fields, and its inclusion
in any problem makes it more important. The distributed
delay in many works has been studied and many authors
have taken care of it, for example, [5, 9, 27, 28]. Based on
all this and the results of the research papers [14, 15, 17,
28–30, 31], the introduction of the term distributed delay as
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a damping mechanism in problem (1) makes it a new prob-
lem from what has been previously studied.

And we have divided this paper into the following. We
present in the second section the definitions, basics, and the-
ories of function spaces that are required throughout the rest
of the paper. In Section 3, we present the energy function
while proving to be decreasing. And in the final section, the
general decay is obtained by applying the energy method
and the function of Lyapunov.

2. Preliminaries

Let Lpx = Lpxðð0, LÞÞ be the weighted Banach space equipped
with the norm

uk kLpx =
ðL
0
x uj jpdx

� �1/p
, ð3Þ

H = L2xðð0, LÞÞ be the Hilbert space of square integral
functions having the finite norm

uk kH =
ðL
0
xu2dx

� �1/2
, ð4Þ

and K = L2xðð0, LÞ × ð0, 1Þ × ðτ1, τ2ÞÞ be the Hilbert space
equipped with the norm

zk kK ,μ2 =
ð1
0

ðτ2
τ1

∣μ2 ρð Þ∣ zk kHdρdρ: ð5Þ

V =V1
x is the Hilbert space equipped with the norm

uk kV = uk k2H + uxk k2H
� �1/2, ð6Þ

V0 = u ∈ V such that u Lð Þ = 0f g: ð7Þ
Theorem 1 [27]. For 2 < p < 4 and ∀v in V0, we haveðL

0
x vj jpdx ≤ C∗ vxk kpH=L2x 0,Lð Þ, ð8Þ

where C∗ is a constant depending on L and p only.

As in [18], introducing the new variables

z x, ρ, ϱ, tð Þ = ut x, t − ϱρð Þ,
y x, ρ, ϱ, tð Þ = vt x, t − ϱρð Þ,

(
ð9Þ

yields

ϱzt x, ρ, ϱ, tð Þ + zρ x, ρ, ϱ, tð Þ = 0,
z x, 0, ϱ, tð Þ = ut x, tð Þ,

(

ϱyt x, ρ, ϱ, tð Þ + yρ x, ρ, ϱ, tð Þ = 0,
y x, 0, ϱ, tð Þ = vt x, tð Þ:

( ð10Þ

Problem (1) arrives at

utt −
1
x

xuxð Þx +
ðt
0
g1 t − sð Þ 1

x
xux x, sð Þð Þxds + μ1ut

+
ðτ2
τ1

∣μ2 ϱð Þ∣ut x, t − ϱð Þdϱ = f1 u, vð Þ,

vtt −
1
x

xvxð Þx +
ðt
0
g2 t − sð Þ 1

x
xvx x, sð Þð Þxds + μ3vt

+
ðτ2
τ1

∣μ4 ϱð Þ∣vt x, t − ϱð Þdϱ = f2 u, vð Þ,

ϱzt x, ρ, ϱ, tð Þ + zρ x, ρ, ϱ, tð Þ = 0,
ϱyt x, ρ, ϱ, tð Þ + yρ x, ρ, ϱ, tð Þ = 0,

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð11Þ

where

x, ρ, s, tð Þ ∈ 0, Lð Þ × 0, 1ð Þ × τ1, τ2ð Þ × 0,∞ð Þ: ð12Þ

With the initial data and boundary conditions

u x, 0ð Þ, v x, 0ð Þð Þ = u0 xð Þ, v0 xð Þð Þ, in 0, Lð Þ,
ut x, 0ð Þ, vt x, 0ð Þð Þ = u1 xð Þ, v1 xð Þð Þ, in 0, Lð Þ,
ut x,−tð Þ, vt x,−tð Þð Þ = f0 x, tð Þ, g0 x, tð Þð Þ, in 0, Lð Þ × 0, τ2ð Þ,
u 0, tð Þ = u L, tð Þ = v 0, tð Þ = v L, tð Þ = 0,
z x, ρ, ϱ, 0ð Þ = f0 x, ρϱð Þ, in 0, Lð Þ × 0, 1ð Þ × 0, τ2ð Þ,
y x, ρ, ϱ, 0ð Þ = g0 x, ρϱð Þ,

u L, tð Þ = v L, tð Þ = 0,
ðL
0
xu x, tð Þdx =

ðL
0
xv x, tð Þdx = 0:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð13Þ

We have the following assumptions:
(G1) giðtÞ: ℝ+ ⟶ℝ+ are C1, nonincreasing functions

satisfying

gi sð Þ ≥ 0, gi′ sð Þ ≤ 0,

gi 0ð Þ > 0, 1 −
ð∞
0
gi sð Þds = li > 0, i = 1, 2,

8><
>: ð14Þ

(G2) ∃ξðtÞ > 0 a differentiable function, such that

gi′ tð Þ ≤ −ξ tð Þgσ
i tð Þ, i = 1, 2, t ≥ 0, 1 ≤ σ < 3

2 , ð15Þ

and ξðtÞ satisfies for some l < 1

ξ′ tð Þ ≤ 0, ξ
′ tð Þ
ξ tð Þ

�����
����� ≤ l,

ð∞
0
ξ sð Þds = +∞,∀t > 0: ð16Þ
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And also, where 1 < σ < 3/2, ∀t0 > 0 fixed, ∃CσðσÞ > 0,
such that

t

1 + Ð tt0 ξ sð Þds
� �1/ 2 σ−1ð Þð Þ ≤ Cσ, ∀t ≥ t0: ð17Þ

(G3) we take

f1 u, vð Þ = a u + vj j2 r+1ð Þ u + vð Þ + b uj jru vj jr+2,
f2 u, vð Þ = a u + vj j2 r+1ð Þ u + vð Þ + b vj jrv uj jr+2,

ð18Þ

where a, b > 0 and r > −1.
We have

uf1 u, vð Þ + vf2 u, vð Þ = 2 r + 2ð ÞF u, vð Þ,∀ u, vð Þ ∈ℝ2, ð19Þ

where

F u, vð Þ = 1
2 r + 2ð Þ a u + vj j2 r+2ð Þ + 2b uvj jr+2

h i
: ð20Þ

(G4) μ2, μ4 : ½τ1, τ2�⟶ℝ satisfying

ðτ2
τ1

μ2 ϱð Þj jdϱ < μ1, ð21Þ

ðτ2
τ1

∣μ4 ϱð Þ∣dϱ < μ3: ð22Þ

Theorem 2. Assume (14) and p < 3. Then, ∀ðu0, v0Þ ∈ V2
0,

ðv1, v2Þ ∈H2 and ð f0, g0Þ ∈ K2 problem (1) has a unique
local solution

u, v, z, yð Þ ∈ C 0, t∗ ; V2
0 × K2� �

∩ C1 0, t∗ ;H2 × K2� �
, ð23Þ

for t∗ > 0 small enough.

Lemma 3. For r > −1, ∃η > 0 such that ∀u, v ∈ V ∩V0ð0, LÞ,
we have

u + vk k2 r+2ð Þ
L2 r+2ð Þ
x

+ 2 uvk k r+2ð Þ
L r+2ð Þ
x

≤ η l1 uxk k2H + l2 vxk k2H
� �r+2

: ð24Þ

Proof. It is clear that by using the Minkowski inequality
we get

u + vk k2
L2 r+2ð Þ
x

≤ 2 uk k2
L2 r+2ð Þ
x

+ vk k2
L2 r+2ð Þ
x

� �
: ð25Þ

Also, H _older’s and Young’s inequalities give us

uvk k r+2ð Þ
L r+2ð Þ
x

≤ uk kL2 r+2ð Þ
x

vk kL2 r+2ð Þ
x

ð26Þ

≤c l1 uxk k2H + l2 vxk k2H
� �

: ð27Þ

By applying the embedding V ∩ V0ð0, LÞ↪L2ðr+2Þx ð0, LÞ
and (25), (27) gives (15).

Lemma 4. ∃Λ1,Λ2 > 0 such that

ðL
0
x f i u, vð Þj j2dx ≤Λi l1

ðL
0
xu2xdx + l2

ðL
0
xv2xdx

� �2r+3
,∀x ∈ 0, Lð Þ, i = 1, 2:

ð28Þ

Proof. We prove inequality for f1 and the same result also
holds for f2.

It is clear that

f1 u, vð Þj j ≤ C u + vj j2r+3 + uj jr+1 vj jr+2� �
≤ C uj j2r+3 + vj j2r+3 + uj jr+1 vj jr+2	 


:
ð29Þ

By Young’s inequality, with

q = 2r + 3
r + 1 ,

q′ = 2r + 3
r + 2 ,

ð30Þ

we get

uj jr+1 vj jr+2 ≤ c1 uj j2r+3 + c2 vj j2r+3: ð31Þ

Therefore,

f1 u, vð Þj j ≤ C uj j2r+3 + vj j2r+3	 

: ð32Þ

Hence, by Poincaré’s inequality and (11), we obtain

ðL
0
x f i u, vð Þj j2dx ≤ C uxk k2 2r+3ð Þ

H + vxk k2 2r+3ð Þ
H

� �
≤Λ1 l1 uxk k2H + l2 vxk k2H

� � 2r+3ð Þ
:

ð33Þ

The proof of lemma is complete.

The energy function (see, e.g., [8, 19] and reference
therein) is defined by

E tð Þ = 1
2

ðL
0
xu2t dx +

1
2

ðL
0
xv2t dx +

1
2 1 −

ðt
0
g1 sð Þds

� �

�
ðL
0
xu2xdx +

1
2 1 −

ðt
0
g2 sð Þds

� �

�
ðL
0
xv2x x, tð Þdx + 1

2K z, yð Þ

+ 1
2 g1 ∘ uxð Þ tð Þ + 1

2 g2 ∘ vxð Þ tð Þ −
ðL
0
F u, vð Þdx,

ð34Þ
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where

K z, yð Þ =
ðL
0

ð1
0

ðτ2
τ1

xϱ ∣μ2 ϱð Þ ∣ z2 x, ρ, ϱ, tð Þ+∣μ4 ϱð Þ ∣ y2 x, ρ, ϱ, tð Þ� �
dϱdρdx,

g ∘ uxð Þ tð Þ =
ðL
0

ðt
0
xg t − sð Þ ux x, tð Þ − ux x, sð Þj j2dsdx:

ð35Þ

Lemma 5. Let ðu, v, z, yÞ be the solution of system (11); then,
EðtÞ is a nonincreasing function, that is, ∀t ≥ 0

E′ tð Þ ≤ −d1
ðL
0
xu2t dx − d2

ðL
0
xv2t dx +

1
2

g1
′ ∘ ux

� �
tð Þ + 1

2
g2′ ∘ vx
� �

tð Þ

−
1
2
g1 tð Þ

ðL
0
xu2xdx −

1
2
g2 tð Þ

ðL
0
xv2xdx ≤ 0,

ð36Þ

where

d1 = μ1 −
ðτ2
τ1

μ2 ϱð Þj jdϱ
 !

> 0,

d2 = μ3 −
ðτ2
τ1

∣ μ4 ϱð Þ ∣ dϱ
 !

> 0:

ð37Þ

Proof. Multiplying equation (11)1,2 by xut , xvt , and
integrating over ð0, LÞ, we find

ðL
0
xuttutdx −

ðL
0
xuxð Þxutdx + μ1

ðL
0
xu2t dx

+
ðL
0
xut

ðτ2
τ1

∣μ2 ϱð Þ∣z x, 1, ϱ, tð Þdρdx

+
ðL
0

ðt
0
g1 t − sð Þ xux x, sð Þð Þxdsutdx

+
ðL
0
xvttvtdx −

ðL
0
xvxð Þxvtdx + μ3

ðL
0
xv2t dx

+
ðL
0
xvt

ðτ2
τ1

∣μ4 ϱð Þ∣y x, 1, ϱ, tð Þdϱdx

+
ðL
0

ðt
0
g2 t − sð Þ xvx x, sð Þð Þxdsvtdx

=
ðL
0

a u + vj j2 r+1ð Þ u + vð Þ + b uj jru vj jr+2
h i

xutdx

+
ðL
0

a u + vj j2 r+1ð Þ u + vð Þ + b vj jrv uj jr+2
h i

xvtdx:

ð38Þ

Using integration by parts, we get

ðL
0
xuttutdx =

1
2
d
dt

ðL
0
xu2t dx

� �
, ð39Þ

ðL
0
xvttvtdx =

1
2
d
dt

ðL
0
xv2t dx

� �
, ð40Þ

−
ðL
0
xuxð Þxutdx =

1
2
d
dt

ðL
0
xu2xdx

� �
, ð41Þ

−
ðL
0
xvxð Þxvtdx =

1
2
d
dt

ðL
0
xv2xdx

� �
, ð42Þ

1
2 r + 2ð Þ

ðL
0
xf1 u, vð Þuutdx +

1
2 r + 2ð Þ

ðL
0
xf2 u, vð Þvvtdx

= 1
2 r + 2ð Þ

d
dt

ðL
0

a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

xdx,

ð43Þ

ðL
0

ðt
0
g1 t − sð Þ xux sð Þð Þxdsut tð Þdx

= 1
2
d
dt

g1 ∘ uxð Þ tð Þ −
ðt
0
g1 sð Þds

ðL
0
xu2xdx

� � ð44Þ

−
1
2 g1′ ∘ ux
� �

tð Þ + 1
2g1 tð Þ

ðL
0
xu2xdx, ð45Þ

ðL
0

ðt
0
g2 t − sð Þ xvx sð Þð Þxdsvt tð Þdx

= 1
2
d
dt

g2 ∘ vxð Þ tð Þ −
ðt
0
g2 tð Þds

ðL
0
xv2xdx

� �

−
1
2 g2′ ∘ vx
� �

tð Þ + 1
2g2 tð Þ

ðL
0
xv2xdx:

ð46Þ

Now, multiplying equation (11)3 by xz ∣ μ2ðϱÞ ∣ and
integrating over ð0, LÞ × ð0, 1Þ × ðτ1, τ2Þ, we get

d
dt

1
2

ðL
0

ð1
0

ðτ2
τ1

ϱ∣μ2 ϱð Þ∣xz2dϱdρdx

= −
ðL
0

ð1
0

ðτ2
τ1

∣μ2 ϱð Þ∣xzzρdϱdρdx

= −
1
2

ðL
0

ð1
0

ðτ2
τ1

x∣μ2 ϱð Þ∣ d
dρ

z2dϱdρdx

= 1
2

ðL
0

ðτ2
τ1

x∣μ2 ϱð Þ∣ z x, 0, ϱ, tð Þð Þ2�
− z x, 1, ϱ, tð Þð Þ2Þdϱdx

= 1
2

ðτ2
τ1

∣μ2 ϱð Þ∣dϱ
ðL
0
xutj j2dx

−
1
2

ðL
0

ðτ2
τ1

x∣μ2 ϱð Þ∣ z x, 1, ϱ, tð Þð Þ2dϱdx:

ð47Þ

Similarly, by multiplying equation (11)4 by xy ∣ μ4ðϱÞ ∣
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and integrating over ð0, LÞ × ð0, 1Þ × ðτ1, τ2Þ, we get

d
dt

1
2

ðL
0

ð1
0

ðτ2
τ1

ϱ μ4 ϱð Þj jxy2dϱdρdx

= 1
2

ðτ2
τ1

μ4 ϱð Þj jdϱ
 !ðL

0
xv2t dx

−
1
2

ðL
0

ðτ2
τ1

x μ4 ϱð Þj jy2 x, 1, ϱ, tð Þdϱdx:

ð48Þ

Using Young’s and Cauchy-Schwartz inequalities, we have

−
ðL
0
xut

ðτ2
τ1

∣μ2 ϱð Þ∣z x, 1, ϱ, tð Þdϱdx

≤
1
2

ðτ2
τ1

∣ μ2 ϱð Þ ∣ dϱ
 !ðL

0
xu2t dx

+ 1
2

ðL
0

ðτ2
τ1

∣μ2 ϱð Þ∣xz2 x, 1, ϱ, tð Þdϱdx:

ð49Þ

Similarly, we get

−
ðL
0
xvt

ðτ2
τ1

μ4 ϱð Þj jy x, 1, ϱ, tð Þdϱdx

≤
1
2

ðτ2
τ1

μ4 ϱð Þj jdϱ
 !ðL

0
xv2t dx

+ 1
2

ðL
0

ðτ2
τ1

μ4 ϱð Þj jxy2 x, 1, ϱ, tð Þdϱdx:

ð50Þ

By combining (39), (40), (41), (42), (43), (45), (46), (47),
(48), (49), and (50) in (38), we get (34) and (36).

3. Global Existence

In this section, we showed the global existence of the
solutions of the system (11).

First, introducing the following notation

I tð Þ≔ I u tð Þ, v tð Þð Þ = 1 −
ðt
0
g1 sð Þds

� �ðL
0
xu2xdx + g1 ∘ uxð Þ tð Þ

+ 1 −
ðt
0
g2 sð Þds

� �ðL
0
xv2xdx + g2 ∘ vxð Þ tð Þ

+ K z, yð Þ − 2 r + 2ð Þ
ðL
0
x a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

dx,

ð51Þ

J tð Þ≔ J u tð Þ, v tð Þð Þ = 1
2 1 −

ðt
0
g1 sð Þds

� �ðL
0
xu2xdx

+ 1
2 g1 ∘ uxð Þ tð Þ + 1

2 1 −
ðt
0
g2 sð Þds

� �ðL
0
xv2xdx

+ 1
2 g2 ∘ vxð Þ tð Þ + 1

2K z, yð Þ −
ðL
0
x a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

dx,

ð52Þ

note that

E tð Þ = J tð Þ + 1
2

ðL
0
xu2t dx +

1
2

ðL
0
xv2t dx: ð53Þ

Lemma 6. Assume that (24), (14), (15), (16), (17), and
(22) hold, and ∀ðu0, v0Þ ∈ V2

0, ðu1, v1Þ ∈H2 and ð f0, g0Þ
∈ L2xðð0, LÞ, ð0, 1Þ, ðτ1, τ2ÞÞ satisfying

I 0ð Þ > 0, β≔ η
2 r + 2ð Þ
r + 1ð Þ E 0ð Þ

� �r+1
< 1: ð54Þ

Then, ∃t∗ > 0 such that

I tð Þ > 0,∀t ∈ 0, t∗½ Þ, ð55Þ

where

E 0ð Þ = J 0ð Þ + 1
2

ðL
0
xu21dx +

1
2

ðL
0
xv21dx: ð56Þ

Proof. As Ið0Þ > 0, then by continuity of IðtÞ, ∃Tm ≤ t∗
such that IðtÞ ≥ 0, ∀t ∈ ½0, TmÞ; this implies that we have
a maximum time value noting Tm such that

I Tmð Þ = 0 and I tð Þ > 0, for all 0 ≤ t < Tmf g: ð57Þ

This, with (51), (52), and (14), we have

J tð Þ = r + 1
2 r + 2ð Þ 1 −

ðt
0
g1 sð Þds

� �ðL
0
xu2xdx

�

+ 1 −
ðt
0
g2 sð Þds

� �ðL
0
xv2xdx

�

+ r + 1
2 r + 2ð Þ g1 ∘ uxð Þ tð Þ + g2 ∘ vxð Þ tð Þ + K z, yð Þ½ �

+ 1
2 r + 2ð Þ I tð Þ

≥
r + 1

2 r + 2ð Þ l1

ðL
0
xu2xdx + l2

ðL
0
xv2xdx

� ��

+ g1 ∘ uxð Þ tð Þ + g2 ∘ vxð Þ tð Þ + K z, yð Þ
�
:

ð58Þ

Hence,

l1

ðL
0
xu2xdx + l2

ðL
0
xv2xdx

≤
2 r + 2ð Þ
r + 1 J tð Þ

≤
2 r + 2ð Þ
r + 1 E tð Þ

≤
2 r + 2ð Þ
r + 1 E 0ð Þ, ∀t ∈ 0, Tm½ Þ:

ð59Þ
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By (24) and (54), we get

2 r + 2ð Þ
ðL
0
F u Tmð Þ, v Tmð Þð Þdx ≤ η l1

ðL
0
xu2xdx + l2

ðL
0
xv2xdx

� �r+2

≤ η
2 r + 2ð Þ
r + 1 E 0ð Þ

� �r+1
l1

ðL
0
xu2xdx + l2

ðL
0
xv2xdx

� �

= β l1

ðL
0
xu2xdx + l2

ðL
0
xv2xdx

� �

< 1 −
ðt
0
g1 sð Þds

� �ðL
0
xu2xdx

+ 1 −
ðt
0
g2 sð Þds

� �ðL
0
xv2xdx

+ g1 ∘ uxð Þ tð Þ + g2 ∘ vxð Þ tð Þ + K z, yð Þ:
ð60Þ

Hence,

1 −
ðt
0
g1 sð Þds

� �ðL
0
xu2xdx + 1 −

ðt
0
g2 sð Þds

� �ðL
0
xv2xdx

+ g1 ∘ uxð Þ tð Þ + g2 ∘ vxð Þ tð Þ + K z, yð Þ

− 2 r + 2ð Þ
ðL
0
xF u, vð Þdx > 0:

ð61Þ

This proves that IðtÞ > 0, ∀t ∈ ½0, TmÞ. By repeating the
procedure, Tm is extended to t∗.

Theorem 7. Let (14), (15), (16), (17), (22), and (24) hold.
Then, ∀ðu0, v0Þ ∈ V2

0, ðu1, v1Þ ∈H2, and ð f0, g0Þ ∈ L2xðð0, LÞ,
ð0, 1Þ, ðτ1, τ2ÞÞ satisfying (54) the solution of system (11) is
bounded and global.

Proof. To prove that kuxk2H + kvxk2H + kutk2H + kvtk2H +
kzk2K ,μ2 + kyk2K ,μ4 is bounded independently of t, using

(36) yields

E 0ð Þ ≥ E tð Þ: ð62Þ

Using (52), we find

−2 r + 2ð Þ
ðL
0
x a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

dx

= I tð Þ − 1 −
ðt
0
g1 sð Þds

� �ðL
0
xu2xdx

− 1 −
ðt
0
g2 sð Þds

� �ðL
0
xv2xdx

− g1 ∘ uxð Þ tð Þ − g2 ∘ vxð Þ tð Þ − K z, yð Þ:

ð63Þ

By using (62) in (63), we get

E 0ð Þ ≥ E tð Þ = 1
2

ðL
0
xu2t dx +

1
2

ðL
0
xv2t dx

+ 1
2 1 −

ðt
0
g1 sð Þds

� �ðL
0
xu2xdx

+ 1
2 1 −

ðt
0
g2 sð Þds

� �ðL
0
xv2x x, tð Þdx

+ 1
2 g1 ∘ uxð Þ tð Þ + 1

2 g2 ∘ vxð Þ tð Þ

+ 1
2K z, yð Þ + I tð Þ,

ð64Þ

and using (14), (15), and (54) in (64), we get

E 0ð Þ ≥ E tð Þ ≥ 1
2

ðL
0
xu2t dx +

1
2

ðL
0
xv2t dx

+ r + 1
2 r + 2ð Þ
� �

l1

ðL
0
xu2xdx + l2

ðL
0
xv2xdx + K z, yð Þ


 �

≥ μ0

ðL
0
xu2t dx +

ðL
0
xv2t dx +

ðL
0
xu2xdx

�

+
ðL
0
xv2xdx + K z, yð Þ

�
:

ð65Þ

So

uxk k2H + vxk k2H + utk k2H + vtk k2H + zk k2K ,μ2 + yk k2K ,μ4 ≤ μE 0ð Þ/μ≔
1
μ0

,

ð66Þ

where

μ0 ≔min 1
2 ,

r + 1ð Þ
2 r + 2ð Þ l1,

r + 1ð Þ
2 r + 2ð Þ l2,

r + 1ð Þ
2 r + 2ð Þ


 �
: ð67Þ

Hence, the solution of system (11) is bounded and
global.

4. Decay of Solutions

In this section, the decay result is showed by using several
lemmas.

As, we let

F tð Þ≔ E tð Þ + ε1Φ tð Þ + ε2χ tð Þ + ε3Ψ tð Þ, ð68Þ

where ε1, ε2, ε3 > 0, and

Φ tð Þ≔ ξ tð Þ
ðL
0
xutudx + ξ tð Þ

ðL
0
xvtvdx, ð69Þ
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χ tð Þ≔−ξ tð Þ
ðL
0
xut

ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þdsdx

− ξ tð Þ
ðL
0
xvt

ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þdsdx,

ð70Þ

Ψ z, yð Þ≔ ξ tð Þ
ðL
0

ð1
0

ðτ2
τ1

xϱe−ρϱ μ2 ϱð Þj jz2 + μ4 ϱð Þj jy2� �
dϱdρdx:

ð71Þ

Lemma 8. There exist α1, α2 > 0, such that

α1F tð Þ ≤ E tð Þ ≤ α2F tð Þ, ð72Þ

for ε1, ε2, and ε3 small enough.

Proof. Using the inequality of Young and the Poincaré-type
inequality and 0 < ξðtÞ ≤ ξð0Þ, we find

ε1ξ tð Þ
ðL
0
xutudx ≤

ε1
2 ξ 0ð Þ

ðL
0
xu2t dx +

ε1
2 Cpξ 0ð Þ

ðL
0
xu2xdx,

ð73Þ

ε1ξ tð Þ
ðL
0
xvtvdx ≤

ε1
2 ξ 0ð Þ

ðL
0
xv2t dx +

ε1
2 Cpξ 0ð Þ

ðL
0
xv2xdx,

ð74Þ

−ε2ξ tð Þ
ðL
0
xut

ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þdsdx

≤
ε2
2 ξ 0ð Þ

ðL
0
xu2t dx +

ε2
2 Cpξ 0ð Þ 1 − l1ð Þ g1 ∘ uxð Þ tð Þ,

ð75Þ

−ε2ξ tð Þ
ðL
0
xvt

ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þdsdx

≤
ε2
2 ξ 0ð Þ

ðL
0
xv2t dx +

ε2
2 Cpξ 0ð Þ 1 − l2ð Þ g2 ∘ vxð Þ tð Þ,

ð76Þ

Ψ z, yð Þ ≤ ξ 0ð Þ
ðL
0

ð1
0

ðτ2
τ1

xϱ ∣μ2 ϱð Þ ∣ z2+∣μ4 ϱð Þ ∣ y2� �
dϱdρdx,

ð77Þ

where Cp > 0.

A combination of (73), (74), (75), (76), and (77) in
(68) gives

F tð Þ ≤ E tð Þ + ε1+ε2
2

� �
ξ 0ð Þ

ðL
0
xu2t dx +

ε1 + ε2
2

� �
ξ 0ð Þ

ðL
0
xv2t dx

+ ε1
2 Cpξ 0ð Þ

ðL
0
xu2xdx +

ε1
2 Cpξ 0ð Þ

ðL
0
xv2xdx

+ ε2
2 Cpξ 0ð Þ 1 − l1ð Þ g1 ∘ uxð Þ tð Þ

+ ε2
2 Cpξ 0ð Þ 1 − l2ð Þ g2 ∘ vxð Þ tð Þ

+ ε3ξ 0ð Þ
ðL
0

ð1
0

ðτ2
τ1

xρ ∣μ2 ϱð Þ ∣ z2+∣μ4 ϱð Þ ∣ y2� �
dϱdρdx:

ð78Þ

Then, ∃α1 > 0, for ε1, ε2, and ε3 small enough, such that

F tð Þ ≤ 1
α1

E tð Þ: ð79Þ

Similarly, thanks to the inequalities of Young and
Poincaré-type and using 0 < ξðtÞ ≤ ξð0Þ gives

ε1ξ tð Þ
ðL
0
xutudx ≥

−ε1
2 ξ 0ð Þ

ðL
0
xu2t dx −

ε1
2 Cpξ 0ð Þ

ðL
0
xu2xdx,

ð80Þ

ε1ξ tð Þ
ðL
0
xvtvdx ≥

−ε1
2 ξ 0ð Þ

ðL
0
xv2t dx −

ε1
2 Cpξ 0ð Þ

ðL
0
xv2xdx,

ð81Þ

−ε2ξ tð Þ
ðL
0
xut

ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þdsdx

≥
−ε2
2 ξ 0ð Þ

ðL
0
xu2t dx −

ε2
2 Cpξ 0ð Þ 1 − l1ð Þ g1 ∘ uxð Þ tð Þ,

ð82Þ

−ε2ξ tð Þ
ðL
0
xvt

ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þdsdx

≥
−ε2
2 ξ 0ð Þ

ðL
0
xv2t dx −

ε2
2 Cpξ 0ð Þ 1 − l2ð Þ g2 ∘ vxð Þ tð Þ,

ð83Þ
and

−ε3Ψ z, yð Þ ≥ −ε3ξ 0ð Þ
ðL
0

ð1
0

ðτ2
τ1

xϱ ∣μ2 ϱð Þ ∣ z2+∣μ4 ρϱð Þ ∣ y2� �
dϱdρdx:

ð84Þ
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By combining (80), (81), (82), (83), and (84) in (68),
we find

F tð Þ ≥ E tð Þ − ε1+ε2
2

� �
ξ 0ð Þ

ðL
0
xu2t dx −

ε1 + ε2
2

� �
ξ 0ð Þ

ðL
0
xv2t dx

−
ε1
2 Cpξ 0ð Þ

ðL
0
xu2xdx −

ε1
2 Cpξ 0ð Þ

ðL
0
xv2xdx

−
ε2
2 Cpξ 0ð Þ 1 − l1ð Þ g1 ∘ uxð Þ tð Þ

−
ε2
2 Cpξ 0ð Þ 1 − l2ð Þ g2 ∘ vxð Þ tð Þ

− ε3ξ 0ð Þ
ðL
0

ð1
0

ðτ2
τ1

xρ ∣μ2 ϱð Þ ∣ z2+∣μ4 ϱð Þ ∣ y2� �
dϱdρdx:

ð85Þ

Then, ∃α2 > 0, for ε1, ε2, and ε3 small enough, such that

F tð Þ ≥ 1
α2

E tð Þ: ð86Þ

This completes the proof.

Lemma 9. For σ > 1 and 0 < θ < 1, we have

ðt
0
g t − sð Þ w sð Þk k2ds

≤
ðt
0
g1−θ t − sð Þ w sð Þk k2ds

� �1/σ

×
ðt
0
g σ−1+θð Þ/σ−1 t − sð Þ w sð Þk k2ds

� � σ−1ð Þ/σ
,

ð87Þ

∀w ∈H.

Proof. It suffices to note that

ðt
0
g t − sð Þ w sð Þk k2ds =

ðt
0
g 1−θð Þ/r t − sð Þ w sð Þk k2/rg σ−1+θð Þ/σ

� t − sð Þ w sð Þk k 2 σ−1ð Þð Þ/σds,
ð88Þ

using Hȯlder’s inequality for

p = σ,

q = σ

σ − 1 , r > 1:
ð89Þ

This completes the proof.

Lemma 10. Let v ∈ L∞ðð0, TÞ ;HÞ be such that vx ∈ L∞ðð0,
tÞ ;HÞ and g be a continuous function on ½0, T� and suppose

that 0 < θ < 1 and ρ > 1. Then, ∃C > 0 so that

ðt
0
g t−sð Þ vx :,tð Þ−vx :,sð Þk k2Hds

≤ C sup
0<s<T

v :,sð Þk k2H
ðt
0
g1−θ sð Þds

� � ρ−1ð Þ/ ρ−1+θð Þ

×
ðt
0
gρ t−sð Þ vx :,tð Þ−vx :,sð Þk k2Hds

� �θ/ ρ−1+θð Þ
:

ð90Þ

Proof. By applying Lemma 8 with σ = ðρ − 1 + θÞ/ðρ − 1Þ
gives

ðt
0
g t−sð Þ vx :,tð Þ−vx :,sð Þk k2Hds

≤
ðt
0
g1−θ t−sð Þ vx :,tð Þ−vx :,sð Þk k2Hds

� � ρ−1ð Þ/ ρ−1+θð Þ

×
ðt
0
gρ t−sð Þ vx :,tð Þ−vx :,sð Þk k2H

� �θ/ ρ−1+θð Þ
:

ð91Þ

We also have

ðt
0
g1−θ t−sð Þ vx :,tð Þ−vx :,sð Þk k2Hds ≤ C sup

0<s<T
vx :,sð Þk k2H

ðt
0
g1−θ sð Þds,

ð92Þ

by combining (82) and (83). This completes the proof.

Lemma 11. Suppose that v ∈ L∞ðð0, TÞ ;HÞ be such that vx
∈ L∞ðð0, TÞ ;HÞ and g be a continuous function on ½0, T�
and assume ρ > 1. Then, ∃C > 0 so that

ðt
0
g t−sð Þ vx :,tð Þ−vx :,sð Þk k2Hds

≤ c t vx :,tð Þk k2H+
ðt
0

vx :,sð Þk k2Hds
� � ρ−1ð Þ/ρ

×
ðt
0
gρ t−sð Þ vx :,tð Þ−vx :,sð Þk k2Hds

� �1/ρ
:

ð93Þ

Proof. By using (82) for θ = 1 gives

ðt
0
g t−sð Þ vx :,tð Þ−vx :,sð Þk k2Hds

≤
ðt
0

vx :,tð Þ−vx :,sð Þk k2Hds
� � ρ−1ð Þ/ρ

×
ðt
0
gρ t−sð Þ vx :,tð Þ−vx :,sð Þk k2Hds

� �1/ρ
,

ð94Þ
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where

ðt
0

vx :,tð Þ−vx :,sð Þk k2Hds ≤ 2t vx :,tð Þk k2H+2
ðt
0

vx :,sð Þk k2Hds,

ð95Þ

to obtain (93). Hence, this ends the proof.

Lemma 12. Suppose that r satisfies (15) and (52) hold. Then,
the functional ΦðtÞ, given by (69), satisfies

Φ′ tð Þ ≤ 1 + l
2δ

+ μ1
2δ1

� �
ξ tð Þ
ðL
0
xu2t dx

+ 1 + l
2δ

+ μ3
2δ2

� �
ξ tð Þ

ðL
0
xv2t dx − ξ tð Þ

� l1 − Cp δl − 2δ1μ1ð Þ
2

� �ðL
0
xu2xdx − ξ tð Þ

� l2 − Cp δl − 2δ2μ3ð Þ
2

� �ðL
0
xv2xdx

+ ξ tð Þ
2l1

ðt
0
g2−σ1 sð Þds

� �
gσ1 ∘ uxð Þ tð Þ + ξ tð Þ

2l2

�
ðt
0
g2−σ
2 sð Þds

� �
gσ2 ∘ vxð Þ tð Þ

+ ξ tð Þ
2δ1

ðL
0

ðτ2
τ1

x∣μ2 ϱð Þ∣z2 x, 1, ϱ, tð Þdϱdx

+ ξ tð Þ
2δ2

ðL
0

ðτ2
τ1

x∣μ4 ϱð Þ∣y2 x, 1, ϱ, tð Þdϱdx

+ ξ tð Þ
2 r + 2ð Þ a u + vj j2 r+2ð Þ + 2b uvj jr+2

h i
dx:

ð96Þ

For any δ, δ1, δ2 > 0.

Proof. The derivation of (11) gives

Φ′ tð Þ = ξ′ tð Þ
ðL
0
xutudx + ξ tð Þ

ðL
0
xu2t dx + ξ tð Þ

ðL
0
xuttudx

+ ξ′ tð Þ
ðL
0
xvtvdx + ξ tð Þ

ðL
0
xv2t dx + ξ tð Þ

ðL
0
xvttvdx

= ξ′ tð Þ
ðL
0
xutudx + ξ tð Þ

ðL
0
xu2t dx − ξ tð Þ

ðL
0
xu2xdx

− ξ tð Þμ1
ðL
0
xuutdx − ξ tð Þ

ðL
0
xu
ðτ2
τ1

∣μ2 ϱð Þ∣z2 x, 1, ϱ, tð Þdϱdx

+ ξ tð Þ
ðL
0
xux

ðt
0
g1 t − sð Þux sð Þdsdx + ξ′ tð Þ

ðL
0
xvtvdx

+ ξ tð Þ
ðL
0
xv2t dx − ξ tð Þ

ðL
0
xv2xdx − ξ tð Þμ3

ðL
0
xvvtdx

− ξ tð Þ
ðL
0
xv
ðτ2
τ1

∣μ4 ϱð Þ∣y2 x, 1, ϱ, tð Þdϱdx

+ ξ tð Þ
ðL
0
xvx

ðt
0
g2 t − sð Þvx sð Þdsdx

+ ξ tð Þ
2 r + 2ð Þ a u + vj j2 r+2ð Þ + 2b uvj jr+2

h i
dx:

ð97Þ

By Young’s and Poincaré inequalities and (14) and (15),
we find

ξ tð Þ
ðL
0
xux tð Þ

ðt
0
g1 t − sð Þux sð Þds

� �
dx

≤
ξ tð Þ
2

ðL
0
xu2xdx +

ξ tð Þ
2

ðL
0
x
ðt
0
g1 t − sð Þ ux sð Þjð

�

− ux tð Þj + ux tð Þj jÞds
�2

dx

≤
ξ tð Þ
2

ðL
0
xu2xdx +

ξ tð Þ
2 1 + η1ð Þ 1 − l1ð Þ2

ðL
0
xu2x tð Þdx

+ ξ tð Þ
2 1 + 1

η1

� � ðt
0
g2−σ1 sð Þds

� �
gσ1 ∘ uxð Þ tð Þ

= ξ tð Þ 1 + 1 + η1ð Þ 1 − l1ð Þ2
2

 !ðL
0
xu2xdx

+ ξ tð Þ
2 1 + 1

η1

� � ðt
0
g2−σ1 sð Þds

� �
gσ1 ∘ uxð Þ tð Þ

+ ξ tð Þ
r + 2

ðL
0

a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

dx:

ð98Þ

Similarly, we get

ðL
0
xvx tð Þ

ðt
0
g1 t − sð Þvx sð Þds

� �
dx

≤ ξ tð Þ 1 + 1 + η2ð Þ 1 − l2ð Þ2
2

 !ðL
0
xv2xdx

+ ξ tð Þ
2 1 + 1

η2

� � ðt
0
g2−σ
2 sð Þds

� �
gσ2 ∘ vxð Þ tð Þ:

ð99Þ

∀η1, η2 > 0. As we have

ξ′ tð Þ
ðL
0
xutudx ≤

ξ tð Þ
2

ξ′ tð Þ
ξ tð Þ

�����
����� Cpδ

ðL
0
xu2xdx +

1
δ

ðL
0
xu2t dx

� �

≤
ξ tð Þ
2 Cplδ

ðL
0
xu2xdx +

l
δ

ðL
0
xu2t dx

� �
,∀δ > 0,

ð100Þ

and similarly, we find

ξ′ tð Þ
ðL
0
xvtvdx ≤

ξ tð Þ
2 Cplδ

ðL
0
xv2xdx +

l
δ

ðL
0
xv2t dx

� �
:

ð101Þ
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By using Young’s and Poincaré’s inequalities and (22) gives

−ξ tð Þ
ðL
0
xu
ðτ2
τ1

∣μ2 ϱð Þ∣z2 x, 1, ϱ, tð Þdϱdx

≤
ξ tð Þ
2 Cpδ1μ1

ðL
0
xu2xdx +

1
δ1

ðL
0

ðτ2
τ1

∣ μ2 ϱð Þ ∣ z2 x, 1, ϱ, tð Þdϱdx
 !

,

ð102Þ

−ξ tð Þ
ðL
0
xv
ðτ2
τ1

∣μ4 ϱð Þ∣y2 x, 1, ϱ, tð Þdϱdx

≤
ξ tð Þ
2 Cpδ2μ3

ðL
0
xv2xdx +

1
δ2

ðL
0

ðτ2
τ1

∣ μ4 ϱð Þ ∣ y2 x, 1, ϱ, tð Þdϱdx
 !

:

ð103Þ

Similarly, we get

ξ tð Þ
ðL
0
xutudx ≤

ξ tð Þ
2 Cpδ1μ1

ðL
0
xu2xdx +

μ1
δ1

ðL
0
xu2t dx

� �
ξ tð Þ

ðL
0
xvtvdx

≤
ξ tð Þ
2 Cpδ2μ3

ðL
0
xv2xdx +

μ3
δ2

ðL
0
xv2t dx

� �
:

ð104Þ

In a combination of (98), (99), (100), (101), (102), (103),
and (104) in (97), we obtain

Φ′ tð Þ ≤ 1 + l
2δ + μ1

2δ1

� �
ξ tð Þ

ðL
0
xu2t dx

+ 1 + l
2δ + μ3

2δ2

� �
ξ tð Þ

ðL
0
xv2t dx

−
ξ tð Þ
2 1 − 1 + η1ð Þ 1 − l1ð Þ2 − δCpl − 2δ1Cpμ1
	 


�
ðL
0
xu2xdx −

ξ tð Þ
2 1 − 1 + η2ð Þ 1 − l2ð Þ2 − δCpl − 2δ2Cpμ3
	 


�
ðL
0
xv2xdx +

ξ tð Þ
2 1 + 1

η1

� � ðt
0
g2−σ
1 sð Þds

� �
gσ1 ∘ uxð Þ tð Þ

+ ξ tð Þ
2 1 + 1

η2

� � ðt
0
g2−σ2 sð Þds

� �
gσ2 ∘ vxð Þ tð Þ

+ ξ tð Þ
2

ðL
0

ðτ2
τ1

1
δ1

∣ μ2 ϱð Þ ∣ z2 x, 1, ϱ, tð Þ
�

+ 1
δ2

∣ μ4 ϱð Þ ∣ y2 x, 1, ϱ, tð Þ
�
dϱdx

+ ξ tð Þ
2 r + 2ð Þ

ðL
0

a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

dx,

ð105Þ

by choosing η1, η1, so that η1 = l1/ð1 − l1Þ; hence, ð1/2Þð−1
+ ð1 + η1Þð1 − l1Þ2Þ = −l1/2 and ð1 + ð1/η1ÞÞ = 1/l1,and η2 =
l2/ð1 − l2Þ; therefore, ð1/2Þð−1 + ð1 + η2Þð1 − l2Þ2Þ = −l2/2
and ð1 + ð1/η2ÞÞ = 1/l2.

Then, (96) is proved.

Lemma 13. Assuming that r satisfies (15), (14), and (15) and
(22) and (52) hold. Then, the functional χðtÞ given by (70)
satisfies along the solution of (11)

χ′ tð Þ ≤ ξ tð Þθ 1 + c1 + c1′ + 2 1 − l1ð Þ2
h i ðL

0
xu2xdx

� �

+ ξ tð Þθ 1 + c2 + c2′ + 2 1 − l2ð Þ2
h i ðL

0
xv2xdx

� �

+ ξ tð Þ θ −
ðt
0
g1 sð Þds

� �
+ θl + θ1μ1

� � ðL
0
xu2t dx

� �

+ ξ tð Þ θ −
ðt
0
g2 sð Þds

� �
+ θl + θ2μ3

� � ðL
0
xv2t dx

� �

+ 1
2θ

+ 2θ +
μ1Cp

2θ1
+
Cp 1 + lð Þ

4θ

� �

× ξ tð Þ
ðt
0
g2−σ1 sð Þds

� �
gσ
1 ∘ uxð Þ tð Þ

+ 1
2θ

+ 2θ +
μ3Cp

2θ2
+
Cp 1 + lð Þ

4θ

� �

× ξ tð Þ
ðt
0
g2−σ2 sð Þds

� �
gσ
2 ∘ vxð Þ tð Þ

−
Cp

4θ
ξ tð Þg1 0ð Þ g1′ ∘ ux

� �
tð Þ

−
Cp

4θ
ξ tð Þg2 0ð Þ g2′ ∘ vx

� �
tð Þ

+ ξ tð Þ
ðL
0

ðτ2
τ1

x θ1 ∣ μ2 ϱð Þ ∣ z2 x, 1, ϱ, tð Þ�
+ θ2 ∣ μ4 ϱð Þ ∣ y2 x, 1, ϱ, tð ÞÞdϱdx,

ð106Þ

for any θ, θ1, θ2 > 0.

Proof. Direct calculation gives

χ′ tð Þ = −ξ′ tð Þ
ðL
0
xut

ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þdsdx

− ξ tð Þ
ðL
0
xutt

ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þdsdx

− ξ tð Þ
ðL
0
xut

d
dt

ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þds

� �
dx

− ξ′ tð Þ
ðL
0
xvt

ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þdsdx

− ξ tð Þ
ðL
0
xvtt

ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þdsdx

− ξ tð Þ
ðL
0
xvt

d
dt

ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þds

� �
dx,

ð107Þ
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by using

d
dt

ðβ tð Þ

α tð Þ
f t, sð Þds

 !
=
ðβ tð Þ

α tð Þ

∂f t, sð Þ
∂t

ds

+ ∂β tð Þ
∂t

f t, β tð Þð Þ − ∂α tð Þ
∂t

f t, α tð Þð Þ:
ð108Þ

As we have ðu, v, z, yÞ the solution of (11), we find

χ′ tð Þ = −ξ′ tð Þ
ðL
0
xut

ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þds

� �
dx

+ ξ tð Þ
ðL
0
xux

ðt
0
g1 t − sð Þ ux tð Þ − ux sð Þð Þds

� �
dx

− ξ tð Þ
ðL
0
x
ðt
0
g1 t − sð Þux sð Þds

� �

�
ðt
0
g1 t − sð Þ ux tð Þ − ux sð Þð Þds

� �
dx

− ξ tð Þμ1
ðL
0
xut

ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þds

� �
dx

− ξ tð Þ
ðL
0
x
ðτ2
τ1

∣ μ2 ρð Þ ∣ z2 x, 1, ρ, tð Þdρ
 !

�
ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þds

� �
dx − ξ tð Þ

ðL
0
xf1 u, vð Þ

�
ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þds

� �
dx − ξ tð Þ

ðL
0
xut

�
ðt
0
g1′ t − sð Þ u tð Þ − u sð Þð Þds

� �
dx − ξ tð Þ

�
ðt
0
g1 sð Þds

� �ðL
0
xu2t dx − ξ tð Þ

ðt
0
g2 sð Þds

� �ðL
0
xv2t dx

− ξ′ tð Þ
ðL
0
xvt

ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þds

� �
dx

+ ξ tð Þ
ðL
0
xvx

ðt
0
g2 t − sð Þ vx tð Þ − vx sð Þð Þds

� �
dx

− ξ tð Þ
ðL
0
x
ðt
0
g2 t − sð Þvx sð Þds

� �

�
ðt
0
g2 t − sð Þ vx tð Þ − vx sð Þð Þds

� �
dx − ξ tð Þμ3

ðL
0
xvt

�
ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þds

� �
dx − ξ tð Þ

ðL
0
x

�
ðτ2
τ1

∣ μ4 ρð Þ ∣ y2 x, 1, ρ, tð Þdρ
 !

�
ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þds

� �
dx

− ξ tð Þ
ðL
0
xf2 u, vð Þ

ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þds

� �
dx

− ξ tð Þ
ðL
0
xvt

ðt
0
g2′ t − sð Þ v tð Þ − v sð Þð Þds

� �
dx:

ð109Þ

By Young’s inequality and (14) and (15), we arrive to

−ξ′ tð Þ
ðL
0
xut

ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þds

� �
dx

≤ ξ tð Þ ξ′ tð Þ
ξ tð Þ

�����
����� θ
ðL
0
xu2t dx +

Cp

4θ

ðt
0
g2−σ1 sð Þds

� �
gσ1 ∘ uxð Þ tð Þ

� �

≤ θlξ tð Þ
ðL
0
xu2t dx +

Cpl

4θ ξ tð Þ
ðt
0
g2−σ
1 sð Þds

� �
gσ
1 ∘ uxð Þ tð Þ,

ð110Þ

ξ tð Þ
ðL
0
xux

ðt
0
g1 t − sð Þ ux tð Þ − ux sð Þð Þds

� �
dx

≤ θξ tð Þ
ðL
0
xu2xdx +

1
4θ ξ tð Þ

ðt
0
g2−σ
1 sð Þds

� �
gσ1 ∘ uxð Þ tð Þ:

ð111Þ

Similarly, we get

ξ tð Þμ1
ðL
0
xut

ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þds

� �
dx

≤ θ1μ1ξ tð Þ
ðL
0
xu2t dx +

1
4θ1

Cpξ tð Þ
ðt
0
g2−σ1 sð Þds

� �
gσ1 ∘ uxð Þ tð Þ,

ð112Þ

ξ tð Þμ3
ðL
0
xvt

ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þds

� �
dx

≤ θ2μ3ξ tð Þ
ðL
0
xv2t dx +

1
4θ2

Cpξ tð Þ
ðt
0
g2−σ2 sð Þds

� �
gσ
2 ∘ vxð Þ tð Þ,

ð113Þ

with

−ξ tð Þ
ðL
0
x
ðt
0
g1 t − sð Þux sð Þds

� � ðt
0
g1 t − sð Þ ux tð Þ − ux sð Þð Þds

� �
dx

≤ 2θ 1 − l1ð Þ2ξ tð Þ
ðL
0
xu2xdx + 2θ + 1

4θ

� �
ξ tð Þ

�
ðt
0
g2−σ
1 sð Þds

� �
gσ1 ∘ uxð Þ tð Þ:

ð114Þ

So

−ξ tð Þ
ðL
0
xf1 u, vð Þ

ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þds

� �
dx

≤
Cp

4θ ξ tð Þ
ðt
0
g2−σ1 sð Þds

� �
gσ1 ∘ uxð Þ tð Þ

+ c1θξ tð Þ
ðL
0
xu2xdx + c2θξ tð Þ

ðL
0
xv2xdx,

ð115Þ
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where

c1 ≔Λ1
2 r + 2ð Þ
r + 1ð Þ E 0ð Þ

� �2 r+1ð Þ
,

c2 ≔Λ2
2 r + 2ð Þ
r + 1ð Þ E 0ð Þ

� �2 r+1ð Þ
,

8>>>><
>>>>:

ð116Þ

−ξ tð Þ
ðL
0
xut

ðt
0
g1′ t − sð Þ u tð Þ − u sð Þð Þds

� �
dx

≤ θξ tð Þ
ðL
0
xu2t dx −

g1 0ð Þ
4θ Cpξ tð Þ g1′ ∘ ux

� �
tð Þ:

ð117Þ

Then,

−ξ′ tð Þ
ðL
0
xvt

ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þds

� �
dx

≤ θlξ tð Þ
ðL
0
xv2t dx +

Cpl

4θ ξ tð Þ
ðt
0
g2−σ2 sð Þds

� �
gσ
2 ∘ vxð Þ tð Þ,

ð118Þ

ξ tð Þ
ðL
0
xvx

ðt
0
g2 t − sð Þ vx tð Þ − vx sð Þð Þds

� �
dx

≤ θξ tð Þ
ðL
0
xv2xdx +

1
4θ ξ tð Þ

ðt
0
g2−σ2 sð Þds

� �
gσ2 ∘ vxð Þ tð Þ:

ð119Þ
Thus,

−ξ tð Þ
ðL
0
x
ðt
0
g2 t − sð Þvx sð Þds

� � ðt
0
g2 t − sð Þ vx tð Þ − vx sð Þð Þds

� �
dx

≤ 2θ 1 − l2ð Þ2ξ tð Þ
ðL
0
xv2xdx + 2θ + 1

4θ

� �
ξ tð Þ

�
ðt
0
g2−σ
2 sð Þds

� �
gσ
2 ∘ vxð Þ tð Þ,

ð120Þ

−
ξ tð Þ

2 r + 2ð Þ
ðL
0
xf2 u, vð Þ

ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þds

� �
dx

≤
Cp

4θ ξ tð Þ
ðt
0
g2−σ2 sð Þds

� �
gσ2 ∘ vxð Þ tð Þ + c1′θξ tð Þ

�
ðL
0
xu2xdx + c2′θξ tð Þ

ðL
0
xv2xdx,

ð121Þ
where

c1′≔Λ1′
2 r + 2ð Þ
r + 1 E 0ð Þ

� �2 r+1ð Þ
,

c2′≔Λ2′
2 r + 2ð Þ
r + 1 E 0ð Þ

� �2 r+1ð Þ
,

8>>>><
>>>>:

ð122Þ

−ξ tð Þ
ðL
0
xvt

ðt
0
g2′ t − sð Þ v tð Þ − v sð Þð Þds

� �
dx

≤ θξ tð Þ
ðL
0
xv2t dx −

g2 0ð Þ
4θ Cpξ tð Þ g2′ ∘ vx

� �
tð Þ:

ð123Þ

Similarly, we have

−ξ tð Þ
ðL
0
x
ðτ2
τ1

∣ μ2 ρð Þ ∣ z2 x, 1, ρ, tð Þdρ
 !

�
ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þds

� �
dxθ1ξ tð Þ

�
ðL
0

ðτ2
τ1

x∣μ2 ρð Þ∣z2 x, 1, ρ, tð Þdρdx

+ 1
4θ1

μ1Cp

ðt
0
g2−σ1 sð Þds

� �
gσ1 ∘ uxð Þ tð Þ,

ð124Þ

−ξ tð Þ
ðL
0
x
ðτ2
τ1

∣ μ4 ϱð Þ ∣ y2 x, 1, ϱ, tð Þdϱ
 !

�
ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þds

� �
dxθ2ξ tð Þ

�
ðL
0

ðτ2
τ1

x∣μ4 ϱð Þ∣y2 x, 1, ϱ, tð Þdϱdx

+ 1
4θ2

μ3Cp

ðt
0
g2−σ2 sð Þds

� �
gσ2 ∘ vxð Þ tð Þ:

ð125Þ

A combination of (110), (111), (112), (113), (114), (115),
(117), (118), (119), (120), (121), (123), (124), and (125) into
(109) gives (106).

Lemma 14. Let ðu, v, z, yÞ be the solution of (11). Then, for
η3 > 0, the functional ΨðtÞ satisfies

Ψ′ tð Þ ≤ −ξ tð Þη4
ðL
0

ð1
0

ðτ2
τ1

xϱ ∣μ2 ϱð Þ ∣ z2+∣μ4 ϱð Þ ∣ y2� �
dϱdρdx

+ ξ tð Þμ1
ðL
0
xu2t dx + ξ tð Þμ3

ðL
0
xv2t dx

− ξ tð Þη3
ðL
0

ðτ2
τ1

x ∣μ2 ϱð Þ ∣ z2 x, 1, ϱ, tð Þ�
+∣μ4 ϱð Þ ∣ y2 x, 1, ϱ, tð ÞÞdϱdx,

ð126Þ

where η3 > 0 and η4 = η3ð1 − lÞ > 0 > 0.
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Proof. By differentiating ΨðtÞ and using equations (11)3 and
(11)4, we get

Ψ′ tð Þ = ξ′ tð Þ
ðL
0

ð1
0

ðτ2
τ1

xρe−ϱρ ∣μ2 ϱð Þ ∣ z2+∣μ4 ϱð Þ ∣ z2� �
dϱdρdx

− 2ξ tð Þ
ðL
0

ð1
0

ðτ2
τ1

e−ϱρ∣μ2 ϱð Þ∣zzρ x, ρ, ϱ, tð Þdϱdρdx

− 2ξ tð Þ
ðL
0

ð1
0

ðτ2
τ1

e−ϱρ∣μ4 ϱð Þ∣yyρ x, ρ, ϱ, tð Þdϱdρdx

= ξ′ tð Þ
ðL
0

ð1
0

ðτ2
τ1

xϱe−ϱρ ∣μ2 ϱð Þ ∣ z2+∣μ4 ϱð Þ ∣ z2� �
dϱdρdx

− ξ tð Þ
ðL
0

ð1
0

ðτ2
τ1

xϱe−ϱρ∣μ2 ϱð Þ∣z2dϱdρdx

− ξ tð Þ
ðL
0

ðτ2
τ1

x∣μ2 ϱð Þ∣ e−ϱz2 x, 1, ϱ, tð Þ − z2 x, 0, ϱ, tð Þ	 

dϱdx

− ξ tð Þ
ðL
0

ð1
0

ðτ2
τ1

xϱe−ϱρ∣μ4 pð Þ∣y2dρϱρdx

− ξ tð Þ
ðL
0

ðτ2
τ1

x∣μ4 ϱð Þ∣ e−ϱy2 x, 1, ϱ, tð Þ − y2 x, 0, ϱ, tð Þ	 

dϱdx:

ð127Þ

Using the equality zðx, 0, ϱ, tÞ = utðx, tÞ, yðx, 0, ϱ, tÞ =
vtðx, tÞ, and e−ϱ ≤ e−ρϱ ≤ 1, for any 0 < ρ < 1, we find

Ψ′ tð Þ ≤ ξ tð Þl
ðL
0

ð1
0

ðτ2
τ1

xϱ μ2 ϱð Þj jz2 + μ4 ϱð Þj jz2� �
dϱdρdx

− ξ tð Þ
ðL
0

ð1
0

ðτ2
τ1

xϱe−ϱρ μ2 ϱð Þj jz2 + μ4 ϱð Þj jy2� �
dϱdρdx

− ξ tð Þ
ðL
0

ðτ2
τ1

xe−ϱ μ2 ϱð Þj jz2 x, 1, ϱ, tð Þ + μ4 ϱð Þj jy2 x, 1, ϱ, tð Þ� �
dϱdx

+
ðτ2
τ1

μ2 ϱð Þj jdϱ
 !

ξ tð Þ
ðL
0
xu2t dx

+
ðτ2
τ1

μ4 ϱð Þj jdϱ
 !

ξ tð Þ
ðL
0
xv2t dx:

ð128Þ

As −e−ϱ is an increasing function, we have −e−ϱ ≤ −e−τ2 ,
for any ρ ∈ ½τ1, τ2�.

Then, setting η3 = e−τ2 and (22), we obtain (126).

Theorem 15. Let ðu0, v0Þ ∈ V2
0, ðu1, v1Þ ∈H2, and ð f0, g0Þ ∈

L2xðð0, LÞ × ð0, 1Þ × ðτ1, τ2ÞÞ be defined and satisfy (163).
Assume that r satisfies (24), (14), (15), (16), (17), and (22)
hold. Then, for each t0 > 0, ∃K and k such that the solution
of (11) satisfies ∀t ≥ t0, we have the following inequality for
the energy function

E tð Þ ≤
Ke

−k
Ð t

t0
ξ sð Þds, σ = 1,

K 1 +
ðt
t0

ξ sð Þds
 !− 1/ σ−1ð Þð Þ

, 1 < σ < 3
2
:

8>>><
>>>:

ð129Þ

Proof. As g1, g2 is continuous and g1ð0Þ, g2ð0Þ > 0, hence ∀
t0 > 0; we have

ðt
0
g1 sð Þds ≥

ðt
t0

g1 sð Þds = g1,0 > 0, ∀t ≥ t0,

ðt
0
g2 sð Þds ≥

ðt
t0

g2 sð Þds = g2,0 > 0, ∀t ≥ t0:

8>>>><
>>>>:

ð130Þ

By using (36), (96), (106), (126), and (130) and 0 < ξðtÞ
≤ ξð0ÞÞ ðhence ðξðtÞ/ξð0ÞÞ < 1Þ, we get

F ′ tð Þ = E′ tð Þ + ε1Φ′ tð Þ + ε2χ′ tð Þ + ε3Ψ′ tð Þ
≤ − d1 − ε1 1 + 1

2δ + μ1
2δ1

� ��

+ ε2 g1,0 − θ − θl − μ1θ1
� �

− ε3μ1

#
ξ tð Þ

ðL
0
xu2t dx

� �

− d2 − ε1 1 + 1
2δ + μ3

2δ2

� �
+ ε2 g2,0 − θ − θl − μ1θ1

� ��

− ε3μ3

�
ξ tð Þ

ðL
0
xv2t dx

� �
+ 2ε1ξ tð Þ

�
ðL
0
x a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

dx

+ 1
2 −

ε2ξ 0ð Þ
4θ Cpg1 0ð Þ

� �
g1′ ∘ ux
� �

tð Þ

+ 1
2 −

ε2ξ 0ð Þ
4θ Cpg2 0ð Þ

� �
g2′ ∘ vx
� �

tð Þ

−
ε1
2 l1 − δCpl − 2δ1μ1Cp

� �
− ε2θ

h
� 1 + c1 + c1′ + 2 1 − l1ð Þ2
� �i

ξ tð Þ

�
ðL
0
xu2xdx

� �
−

ε1
2 l2 − δCpl − 2δ2μ3Cp

� �h

− ε2θ 1 + c2 + c2′ + 2 1 − l2ð Þ2
� �i

ξ tð Þ
ðL
0
xv2xdx

� �

+ ε1
2l1

+ ε2
1
2θ + 2θ +

μ1Cp

2θ1
+
Cp + lCp

4θ

� �� �
ξ tð Þ

�
ðt
0
g2−σ
1 sð Þds

� �
gσ
1 ∘ uxð Þ tð Þ

+ ε1
2l2

+ ε2
1
2θ + 2θ +

μ1Cp

2θ1
+
Cp + lCp

4θ

� �� �
ξ tð Þ

�
ðt
0
g2−σ
2 sð Þds

� �
gσ
2 ∘ vxð Þ tð Þ

− ε3η3 − ε1
1
2δ1

− ε2θ1

� �
ξ tð Þ

�
ðL
0

ðτ2
τ1

x∣μ2 ϱð Þ∣z2 x, 1, ϱ, tð Þdϱdx

− ε3η3 − ε1
1
2δ2

− ε2θ2

� �
ξ tð Þ

�
ðL
0

ðτ2
τ1

x∣μ4 ϱð Þ∣y2 x, 1, ϱ, tð Þdϱdx

− ε3η4ξ tð Þ
ðL
0

ð1
0

ðτ2
τ1

xρ ∣μ2 ϱð Þ ∣ z2+∣μ4 ϱð Þ ∣ y2� �
dϱdρdx:

ð131Þ
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By choosing δ, δ1, and δ2 so small that

l1 − δCpl − 2μ1δ1Cp

� �
> l1

2 ,

l2 − δCpl − 2μ3δ2Cp

� �
> l2

2 :

8>><
>>: ð132Þ

Then,

δ < 1
4Cpl

min l1, l2f g,

δ1 <
1

8μ1Cp
min l1, l2f g,

δ2 <
1

8μ3Cp
min l1, l2f g:

ð133Þ

At this point, we choose θ small enough, such that

k3 ≔
ε1l1
4 − ε2θ 1 + c1 + c1′ + 2 1 − l1ð Þ2

� �
> 0,

k4 ≔
ε1l2
4 − ε2θ 1 + c2 + c2′ + 2 1 − l2ð Þ2

� �
> 0:

ð134Þ

Then,

θ <min ε1l1

4ε2 1 + c1 + c1′ + 2 1 − l1ð Þ2
� � , ε1l2

4ε2 1 + c2 + c2′ + 2 1 − l2ð Þ2
� �

8<
:

9=
;:

ð135Þ

Now, δ, δ1, δ2, and θ are fixed. Then, we select ε1, ε2, ε3,
θ1, and θ2 so small that (72) and (162) remain correct and

Hence, by using (15) gives, for some σ > 0,

F ′ tð Þ ≤ −σξ tð Þ
ðL
0
xu2t dx +

ðL
0
xv2t dx

�

−
ðL
0
x a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

dx

+
ðL
0
xu2xdx +

ðL
0
xv2xdx + gσ1 ∘ uxð Þ tð Þ

+ gσ2 ∘ vxð Þ tð Þ + K z, yð Þ
�
:

ð137Þ

We choose θ, θ1, and θ2 so small that

g1,0 − μ1θ1 − 1 + lð Þθ� �
> 1
2g1,0,

g2,0 − μ3θ2 − 1 + lð Þθ� �
> 1
2g2,0:

ð138Þ

By (134), we get

θ <min ε1l1

4ε2 1 + c1 + c1′ + 2 1 − l1ð Þ2
� � , ε1l2

4ε2 1 + c2 + c2′ + 2 1 − l2ð Þ2
� � ,

8<
:

1
4 1 + lð Þg1,0,

1
4 1 + lð Þg2,0

�
,

θ1 <
1

4μ1 1 + lð Þ g1,0,θ2 <
1

4μ3 1 + lð Þg2,0,

4θ 1 + c1 + c1′ + 2 1 − l1ð Þ2
� �

l1
< g1,0
2 + l/δð Þ + μ1/δ1ð Þ ,

4θ 1 + c2 + c2′ + 2 1 − l2ð Þ2
� �

l2
< g2,0
2 + l/δð Þ + μ3/δ2ð Þ :

ð139Þ

k1 ≔ d1 − ε1 1 + 1
2δ + μ1

2δ1

� �
+ ε2 g1,0 − μ1θ1 − 1 + lð Þθ� �

− ε3μ1

� �
> 0,

k2 ≔ d2 − ε1 1 + 1
2δ + μ3

2δ2

� �
+ ε2 g2,0 − μ3θ2 − 1 + lð Þθ� �

− ε3μ3

� �
> 0,

k5 ≔
1
2 −

ε2ξ 0ð Þ
4θ Cpg1 0ð Þ

� �
−

ε1
2l1

+ ε2
1
2θ + 2θ +

μ1Cp

2θ1
+
Cp + lCp

4θ

� �� � ðt
0
g2−σ1 sð Þds

� �
 �
> 0,

k6 ≔
1
2 −

ε2ξ 0ð Þ
4θ Cpg2 0ð Þ

� �
−

ε1
2l2

+ ε2
1
2θ + 2θ +

μ3Cp

2θ2
+
Cp + lCp

4θ

� �� � ðt
0
g2−σ2 sð Þds

� �
 �
> 0,

k7 ≔ ε3η3 − ε1
1
2δ1

− ε2θ1 > 0,

k8 ≔ ε3η3 − ε1
1
2δ2

− ε2θ2 > 0:

ð136Þ
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With θ, θ1, θ2, and α′ fixed, we pick ε1, ε2, and ε3 such
that

max
4θ 1 + c1 + c1′ + 2 1 − l1ð Þ2
� �

l1
,
4θ 1 + c2 + c2′ + 2 1 − l2ð Þ2
� �

l2

8<
:

9=
;ε2

< ε1 <
1

2 + l/δð Þ +min μ1/δ1ð Þ, μ3/δ2ð Þð Þ min d1, d2ð Þð

+ ε2 min g1,0,2,0
� �

+ ε3 min μ1 + μ3ð ÞÞ:
ð140Þ

We will make

k1 ≔ d1 − ε1 1 + 1
2δ + μ1

2δ1

� �
+ ε2 g1,0 − μ1θ1 − 1 + lð Þθ� �

− ε3μ1

� �
> 0,

k2 ≔ −ε1 1 + 1
2δ + μ3

2δ2

� �
+ ε2 g2,0 − μ3θ2 − θ − θl

� �
− ε3μ3

� �
> 0,

k3 ≔
ε1
2 l1 − 2μ1δ1Cp − δCpl
� �

− ε2θ 1 + c1 + c1′ + 2 1 − l1ð Þ2
� �

> 0,

k4 ≔
ε1
2 l2 − 2μ3δ2Cp − δCpl
� �

− ε2θ 1 + c2 + c2′ + 2 1 − l2ð Þ2
� �

> 0,

k7 ≔ ε3η3 − ε1
1
2δ1

− ε2θ1 > 0,

k8 ≔ ε3η3 − ε1
1
2δ2

− ε2θ2 > 0:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð141Þ

Then, we select ε1, ε2, and ε3 so small that (72) and (137)
remain correct and

k5 ≔
1
2 −

ε2ξ 0ð Þ
4θ Cpg1 0ð Þ

� �
−

ε1
2l1

+ ε2
1
2θ + 2θ +

μ1Cp

2θ1

��


+
Cp + lCp

4θ Þ�
ðt
0
g2−σ1 sð Þds

� ��
> 0,

k6 ≔
1
2 −

ε2ξ 0ð Þ
4θ Cpg2 0ð Þ

� �
−

ε1
2l2

+ ε2
1
2θ + 2θ +

μ3Cp

2θ2

��


+
Cp + lCp

4θ Þ�
ðt
0
g2−σ2 sð Þds

� ��
> 0:

ð142Þ

Next, as (137) is showed, according to the different ranges
of r, we give the following two cases.

Case 1. σ = 1.
By choosing ε1, ε2, ε3, θ1, θ2, and θ, (137) gives, for γ > 0

is constant so that,

F ′ tð Þ ≤ −γξ tð ÞE tð Þ, ∀t ≥ t0: ð143Þ

Therefore, with the help of the LHS of (72) and (143), we
obtain

F ′ tð Þ ≤ −γα1ξ tð ÞF tð Þ,∀t ≥ t0: ð144Þ

By integration of (144) over ðt0, tÞ gives

F ′ tð Þ ≤ F t0ð Þe −γα1ð Þ
Ð t

t0
ξ sð Þds, ∀t ≥ t0: ð145Þ

Therefore, (129)1 is proved by (72) as well.

Case 2. 1 < σ < 3/2.
We use (11), which gives

g1 tð Þ1−σ ≥ σ − 1ð Þ
ðt
t0

ξ sð Þds
 !

+ g1 t0ð Þ1−σ,

g2 tð Þ1−σ ≥ σ − 1ð Þ
ðt
t0

ξ sð Þds
 !

+ g2 t0ð Þ1−σ:
ð146Þ

We have, for 0 < τ < 1,

ð∞
0
g1−τ1 sð Þds ≤

ð∞
0

1

σ − 1ð Þ Ð tt0 ξ sð Þds
� �

+ g1 t0ð Þ1−σ
h i 1−τð Þ/ σ−1ð Þ ds,

ð∞
0
g1−τ
2 sð Þds ≤

ð∞
0

1

σ − 1ð Þ Ð tt0 ξ sð Þds
� �

+ g2 t0ð Þ1−σ
h i 1−τð Þ/ σ−1ð Þ ds:

ð147Þ

For 0 < τ < 2 − σ < 1, we have ð1 − τÞ/ðσ − 1Þ > 1 and (15),
we find

ð∞
0
g1−τ1 sð Þds <∞, ∀0 < τ < 2 − σ,

ð∞
0
g1−τ2 sð Þds <∞, ∀0 < τ < 2 − σ:

ð148Þ

From (72) ðfor θ = τ and ρ = σÞ and (55) gives

g1 ∘ uxð Þ tð Þ ≤ C1 E 0ð Þ
ð∞
0
g1−τ1 sð Þds

� � σ−1ð Þ/ σ−1+τð Þ

� gσ
1 ∘ uxð Þ tð Þð Þτ/ σ−1+τð Þ

≤ C1′ gσ1 ∘ vxð Þ tð Þð Þτ/ σ−1+τð Þ:

ð149Þ

Similarly, we have

g2 ∘ vxð Þ tð Þ ≤ C2′ gσ2 ∘ vxð Þ tð Þð Þτ/ σ−1+τð Þ, ð150Þ
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for some C1′ , C2′ > 0. Hence, ∀σ1 > 1, we find

Eσ1 tð Þ ≤ C′′Eσ1−1 0ð Þ
ðL
0
xu2t dx +

ðL
0
xv2t dx +

ðL
0
xu2xdx

�

+
ðL
0
xv2xdx −

ðL
0
x a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

dx + K z, yð Þ
�

+ C1′′ g1 ∘ uxð Þ tð Þð Þσ1 + C2′′ g2 ∘ vxð Þ tð Þð Þσ1

≤ C′′Eσ1−1 0ð Þ
ðL
0
xu2t dx +

ðL
0
xv2t dx +

ðL
0
xu2xdx

�

+
ðL
0
xv2xdx −

ðL
0
x a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

dx + K z, yð Þ
�

+ C1′′′ gσ1 ∘ uxð Þ tð Þð Þτσ1/ σ−1+τð Þ + C2′′′ gσ
2 ∘ vxð Þ tð Þð Þτσ1/ σ−1+τð Þ:

ð151Þ

We choose τ = 1/2 and σ1 = 2σ − 1
ðtherefore, τσ1/ðσ − 1 + τÞ = 1Þ and (144); we get, for some
Γ > 0,

Eσ1 tð Þ ≤ Γ
ðL
0
xu2t dx +

ðL
0
xv2t dx +

ðL
0
xu2xdx +

ðL
0
xv2xdx

�

+ K z, yð Þ −
ðL
0
x a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

dx

+ gσ1 ∘ uxð Þ tð Þ + gσ
2 ∘ vxð Þ tð Þ

�
:

ð152Þ

By combining (72), (137), and (151), we find

F ′ tð Þ ≤ −
σ

Γ
ξ tð ÞEσ1 tð Þ ≤ −

σ

Γ
ασ11 Fσ1 tð Þξ tð Þ,∀t ≥ t0: ð153Þ

By integrating (153) gives

F tð Þ ≤ C∗
1 1 +

ðt
t0

ξ sð Þds
 !− 1/ σ1−1ð Þð Þ

, ∀t ≥ t0: ð154Þ

Hence,

ð∞
t0

F tð Þdt ≤ C∗
1

ð∞
t0

1

1 + Ð tt0 ξ sð Þds
� �1/ σ1−1ð Þ dt: ð155Þ

From ð1/ðσ1 − 1ÞÞ > 0 and ð1 + Ð tt0 ξðsÞdsÞ⟶ +∞ as

t⟶ +∞, we find

ð∞
t0

F tð Þdt <∞: ð156Þ

Also, we use (24), and we get

tF tð Þ ≤ C∗
1 t

1 + Ð tt0 ξ sð Þds
� �1/ σ1−1ð Þ ≤ Cσ: ð157Þ

Hence, we find

sup
t≥t0

tF tð Þ <∞: ð158Þ

From EðtÞ which is bounded, using (72), (156), and
(158) to get

ð∞
t0

F tð Þdt + sup
t≥0

tF tð Þð Þ <∞: ð159Þ

Therefore, using (55) and Lemma 10 ðfor ρ = σÞ gives

g1 ∘ uxð Þ tð Þ ≤ C∗
2 t ux x, tð Þk k2H +

ðt
0

ux x, sð Þk k2Hds
� � σ−1ð Þ/σ

×
ðt
0
gσ t − sð Þ ux x, tð Þ − ux x, sð Þk k2Hds

� �

≤ C∗
2 tF tð Þ +

ðt
t0

F sð Þds
 ! σ−1ð Þ/σ

gσ1 ∘ uxð Þ tð Þð Þ1/σ

≤ C∗
3 gσ1 ∘ uxð Þ tð Þð Þ1/σ:

ð160Þ

This means

gσ1 ∘ uxð Þ tð Þ ≥ C4 g1 ∘ uxð Þ tð Þð Þσ, ð161Þ

gσ2 ∘ vxð Þ tð Þ ≥ C5 g2 ∘ vxð Þ tð Þð Þσ, ð162Þ
for some C4, C5 > 0.

Then, combining (137), (161), and (162) yields

F ′ tð Þ ≤ −C6ξ tð Þ
ðL
0
xu2t dx +

ðL
0
xv2t dx +

ðL
0
xu2xdx




+
ðL
0
xv2xdx −

ðL
0
x a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

dx

+ K z, yð Þ + g1 ∘ uxð Þ tð Þð Þσ + g2 ∘ vxð Þ tð Þð Þσ
�
,

ð163Þ

for some C6 > 0:
As in [1], we obtain

Eσ tð Þ ≤ C7ξ tð Þ
ðL
0
xu2t dx +

ðL
0
xv2t dx +

ðL
0
xu2xdx




+
ðL
0
xv2xdx −

ðL
0
x a u + vj j2 r+2ð Þ + 2b uvj jr+2
h i

dx

+ K z, yð Þ + g1 ∘ uxtð Þ tð Þð Þσ + g2 ∘ vxð Þ tð Þð Þσ
�
,

ð164Þ

∀t ≥ 0 and some C7 > 0:
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Combining (163), (164), and (72), we find

F ′ tð Þ ≤ −C8ξ tð ÞFσ tð Þ,∀t ≥ t0, ð165Þ

for some C8 > 0:
By integrating (163) over ðt0, tÞ, we get

F tð Þ ≤ C9 1 +
ðt
t0

ξ sð Þds
 !− 1/ σ−1ð Þð Þ

, ∀t ≥ t0: ð166Þ

Hence, (129)2 is showed by (72) as well.
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