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Breast cancer (BC) is the most common type of cancer among females. Peroxisome proliferator-activated receptor gamma
(PPARG) can regulate the production of adipocyte-related genes and has anti-inflammatory and anti-tumor effects. Our aim
was to investigate PPARG expression, its possible prognostic value, and its effect on immune cell infiltration in BC, and
explore the regulatory effects of natural drugs on PPARG to find new ways to treat BC. Using different bioinformatics tools,
we extracted and comprehensively analyzed the data from the Cancer Genome Atlas, Genotype-Tissue Expression, and
BenCaoZuJian databases to study the potential anti-BC mechanism of PPARG and potential natural drugs targeting it. First,
we found that PPARG was downregulated in BC and its expression level correlates with pathological tumor stage (pT-stage)
and pathological tumor-node-metastasis stage (pTNM-stage) in BC. PPARG expression was higher in estrogen receptor-
positive (ER+) BC than in estrogen receptor-negative (ER−) BC, which tends to indicate a better prognosis. Meanwhile,
PPARG exhibited a significant positive correlation with the infiltration of immune cells and correlated with better cumulative
survival in BC patients. In addition, PPARG levels were shown to be positively associated with the expression of immune-
related genes and immune checkpoints, and ER+ patients had better responses to immune checkpoint blocking. Correlation
pathway research revealed that PPARG is strongly associated with pathways, such as angiogenesis, apoptosis, fatty acid
biosynthesis, and degradation in ER+ BC. We also found that quercetin is the most promising natural anti-BC drug among
natural medicines that upregulate PPARG. Our research showed that PPARG may reduce BC development by regulating the
immune microenvironment. Quercetin as PPARG ligands/agonists is a potential natural drug for BC treatment.

1. Introduction

Breast cancer (BC) currently ranks first in incidence and sec-
ond in mortality among cancers in females worldwide [1],
representing a major health burden globally. Treatment
methods for BC include surgery, radiotherapy, chemother-
apy, endocrine therapy, and gene-targeted therapy, which
depend on the underlying subtype and stage of BC. Despite
significant progress in the field, the pathogenesis of BC
remains unclear. Estrogen receptor positive (ER+) patients
account for a higher proportion of all BC patients. The
growth of ER+ tumor is driven by ER signal. Endocrine

therapy is the main treatment. Representative drugs, such as
tamoxifen, combined with radiotherapy and targeted therapy
can effectively enhance the survival quality and prognosis of
patients. Therefore, ER+ patients tend to have a better progno-
sis than estrogen receptor-negative (ER−) patients, but resis-
tance inevitably develops over time, and drug resistance will
gradually emerge. The therapeutic effect of second-line drugs
is generally weaker than that of first-line drugs. Despite signif-
icant advances in diagnosis and treatment, some BC patients
still have poor outcomes and prognosis. Finding new therapeu-
tic targets and prognostic markers for BC is important to
improve the efficiency and accuracy of BC treatment.
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Peroxisome proliferator-activated receptor (PPAR) is a
type of ligand-activated transcription factor that belongs to
the nuclear receptor superfamily [2]. It participates in the
control of lipid and carbohydrate turnover and their homeo-
stasis and has important roles in cell differentiation and apo-
ptosis, inflammation, vascular biology, and cancer [3].
Peroxisome proliferator-activated receptor gamma
(PPARG) is the focus of research and a key factor in the reg-
ulation of lipid metabolism and energy homeostasis. It is an
important treatment target for various metabolic diseases,
inflammatory responses, cardiovascular diseases, and a vari-
ety of tumors [4, 5]. PPARG is also a key factor in immune
regulation, since it has the ability to directly bind to DNA
and activate transcription of target genes in immune cells
[6–8]. PPARG is an important promoter of macrophage dif-
ferentiation and M2 macrophage polarization [9, 10] and
controls the lipid metabolism of various immune cells [9,
11–13]. The lipid microenvironment is associated with
immune cell function in combination with classical transac-
tivation. In an inflammatory response, PPARG can compet-
itively inhibit the transduction of NF-κB, JAK-STAT, and
other signaling pathways, and inhibit the transactivation
activity of pro-inflammatory transcription factors induced
by cytokines, regulating the function and activity of macro-
phages, B cells, T cells, DC cells, and other immune cells.
Its ligand reduces the damage caused by inflammatory
responses to the body by inhibiting macrophage activation
and inflammatory cytokine production. For example, the
combination of anti-inflammatory drugs for experimental
inflammatory bowel disease (IBD) and PPARG may become
a new method for the treatment of IBD [14]. However, the
current study on whether overexpression of PPARG affects
the immune microenvironment of BC is not sufficient, and
the mechanism is not well understood. Using bioinformat-
ics, we studied PPARG expression and prognostic value in
BC, its effect on immune cell infiltration, and immune
checkpoints to better investigate the biological role of
PPARG in BC cells. Further research is needed to explore
potential natural drugs targeting PPARG in the treatment
of BC, providing new insights into the detection and treat-
ment of BC.

2. Methods

2.1. Pan-Cancer PPARG Expression Analysis. We obtained
tumor data and associated clinical information from the
Cancer Genome Atlas (TCGA; https://portal.gdc.cancer
.gov/) and Genotype-Tissue Expression (GTEx; https://
www.gtexportal.org/) databases. In addition, we employed
the Wilcoxon test to examine the differential expression of
PPARG in cancer and normal tissues. Statistical analysis
was performed using version 4.0.3 of the R software. To
be considered statistically significant, the criterion for p-value
was set at less than 0.05.

2.2. Association Analysis between PPARG Expression and
Clinical Characteristics of BC.We retrieved BC RNAseq data
along with relevant clinical information from the TCGA
database. The BC samples were categorized into high and

low expression groups based on the median level of PPARG
gene expression. Clinicopathological characteristics were
analyzed in relation to PPARG gene expression. Variables
studied included survival status, age, gender, pathologic
tumor stage (pT-stage), pathologic node stage (pN-stage),
pathological metastasis stage (pM-stage), and pathological
tumor-node-metastasis stage (pTNM-stage). The data were
expressed as mean± SD, and unpaired t-tests were used for
statistical evaluation. The association between PPARG and
clinical characteristic variables was investigated using chi-
square or Fisher’s exact tests.

2.3. Prognostic Value Analysis of PPARG Gene in BC.We uti-
lized BC RNAseq data and corresponding clinical information
acquired from TCGA. The survival curve was generated using
the “survminer” and the “Survival” software packages in R
v4.0.3 to study the relationship between PPARG expression
level and BC prognosis. Statistical analysis was performed
using log-rank testing and univariate Cox regression to derive
the p-values, hazard ratios (HR), and 95% confidence inter-
vals (CI). A p-value lower than 0.05 was used to define statis-
tical significance. Subsequently, we further investigated the
prognostic value of the PPARG gene in BC by utilizing the
Kaplan–Meier plotter (https://kmplot.com/analysis/).

2.4. Analysis of the Correlation between PPARG and Immune
Infiltration in BC. We first utilized Tumor Immune Estima-
tion Resource (TIMER) (https://cistrome.shinyapps.io/
timer/) to reveal the correlation between PPARG and the
infiltrating levels of six different immune cell subtypes, as
well as the relationship between immune cell infiltration
levels and BC patients’ cumulative survival rate. Then, we
obtained RNAseq data and corresponding clinical informa-
tion of estrogen receptor-positive BC from TCGA database,
and verified the relationship among PPARG and six immune
cell subtypes infiltration levels using Spearman’s correlation
analysis. The correlation plot was implemented using the R
v4.0.3 software package “ggstatsplot”, and A p-value below
0.05 indicates statistical significance.

2.5. Co-Expression Analysis of PPARG and Immune-Related
Genes. Using BC RNAseq data and related clinical informa-
tion from the TCGA database, the correlation between two
genes was analyzed using “ggstatsplot” package in the R soft-
ware with Spearman’s correlation analysis for non-normally
distributed quantitative variables. Additionally, the expres-
sion differences of immune checkpoint-related genes
between ER+ and ER− BC were analyzed using “ggplot2”
and “pheatmap” packages in the R software. Ultimately,
the tumor immune dysfunction and exclusion (TIDE) algo-
rithm was utilized to predict potential efficacy of immuno-
therapy [15]. Statistical significance is demonstrated when
the p-value is equal to or less than 0.05.

2.6. Analysis of the Correlation between PPARG and
Pathways. We utilized BC RNAseq data obtained from the
TCGA database and corresponding clinical information.
Gene sets containing relevant pathways were collected
[16] and analyzed using the gene set variation analysis
package in the R software version 4.0.3 with the parameter
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method= “ssgsea.” Finally, we used the Spearman’s correla-
tion analysis method to investigate the correlation between
PPARG gene and pathway scores. A p-value below 0.05 was
deemed to be statistically significant.

2.7. Mining of Potential Natural Compounds Regulating
PPARG for BC Treatment. The BenCaoZuJian (HERB) data-
base, a specialized high-throughput experimental and refer-
ence database for traditional Chinese medicine, was used
to search for active compounds and herbal medicines target-
ing the PPARG receptor. Relevant data were extracted using
reference mining, and searched the PubMed database to
identify experimentally validated active compounds and nat-
ural drugs that regulate PPARG.

3. Results

3.1. Analysis of PPARG Expression in Pan-Cancer and ER+
BC. To research PPARG expression in pan-cancer and BC,
we obtained RNAseq data and corresponding clinical infor-
mation from 33 cancer types and 10,228 samples from
TCGA and GTEx databases. First, we evaluated the PPARG
expression in pan-cancer data from TCGA and GTEx.
Results showed that PPARG was lowly expressed in 12 can-
cer types, including BC (BRCA), CESC, COAD, HNSC,
LUAD, LUSC, OV, SKCM, PRAD, THCA, UCEC, UCS,
KIRP, LIHC, STAD, KICH, KIRC, PAAD, and READ (see

Figures 1(a) and 1(b)). Next, we evaluated the expression
of PPARG in ER+, ER− BC, and normal tissue. We found
that PPARG was lowly expressed in both ER+ and ER− BC
compared with normal tissue (see Figures 1(c), 1(d), 1(e),
and 1(f)). Furthermore, we further validated the low expres-
sion of PPARG in BC tissues using the Gene Expression Pro-
file Interaction Analysis (GEPIA) online tool (http://gepia
.cancer-pku.cn/; see Figure 1(g)). Furthermore, we analyzed
the relationship between PPARG levels and ER status in
BC and found that PPARG expression was higher in ER+
BC than in ER− BC (see Figure 1(h)). Taken together, these
results suggest that PPARG is lowly expressed in BC.

3.2. PPARG Expression Levels in BC Patients in relation to
Clinicopathological Characteristics. We obtained RNAseq
data and associated clinical information of 1101 BC cases from
the TCGA database. The cases were categorized into high-
expression and low-expression groups according to the median
level of PPARG gene expression. We examined the correlation
between PPARG expression and clinicopathological features.
The outcome indicated that PPARG expression level was
related to pT-stage and pTNM-stage of BC (see Table 1 and
Figure 2(a)). In ER+ BC, PPARG expression levels correlated
with survival status, age, pT-stage, and pTNM-stage (see
Table 2 and Figure 2(b)). This result suggests that PPARG
may be implicated in the pathogenesis of BC, particularly in
ER+ BC, and may hold promise as a prognostic indicator.
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Figure 1: Pan-cancer and ER+/− BC analysis of PPARG expression. (a and b) PPARG expression in tumor and normal tissues in TCGA and
TCGA+GTEx pancarcinoma data, the result shows that PPARG is downregulated in BC. (c and d) PPARG expression in ER+ BC and
normal tissues in TCGA and TCGA+GTEx data, compared with normal tissues, PPARG is downregulated in ER+ BC. (e and f)
PPARG expression in ER− BC and normal tissues in TCGA and TCGA+GTEx data, compared with normal tissues, PPARG is
downregulated in ER− BC. (g) PPARG expression in BC and normal tissues in GEPIA data, the expression of PPARG is lower in BC
than in normal tissue. (h) Differential expression of PPARG in ER+ and ER− BCs, the expression of PPARG is higher in ER+ BC than
in ER− BC. *p < 0:05, **p < 0:001, and ***p < 0:0001.
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3.3. Prognostic Value of PPARG in BC. To evaluate the value
of PPARG in predicting the prognosis of BC patients, we
obtained RNAseq data and relevant clinical information
from the TCGA database for 807 ER+ BC patients and 237
ER− BC patients. We applied survival correlation analysis
to research the correlation among PPARG expression and
BC prognosis. The results of the KM survival analysis
showed that PPARG was a protective factor in ER+ BC
(p = 0:0057), with higher expression associated with better
prognosis (see Figure 3(a)). The corresponding survival
times at 50% for the high expression and low expression
groups were 11.4 and 9.5 years, respectively. However, there
was no correlation between PPARG expression level and
survival in ER− BC patients (see Figure 3(b)). We further
validated these results using the online Kaplan–Meier plotter
(http://kmplot.com/analysis/; see Figures 3(c) and 3(d)).
Overall, these findings highlight the potential of PPARG as
a therapeutic target and prognostic biomarker for ER+ BC.

3.4. PPARG Expression Is Associated with BC Immune
Microenvironment. To investigate the mechanisms behind
the better prognosis associated with high PPARG expres-
sion, we utilized the TIMER tool to discover a link between
PPARG and the degree of infiltration of six immune cell
subtypes. The results showed that BC patients with higher
levels of immune cell infiltration had better cumulative survival
rates compared with those with lower levels of infiltration

(see Figure 4(a)). Additionally, PPARG expression was
shown to be positively related to the level of infiltration of
CD8+ T cells (Cor = 0.279, p = 5:96 × 10−19), CD4+ T cells
(Cor = 0.25, p = 3:18 × 10−15), macrophages (Cor = 0.266,
p = 2:1 × 10−17), neutrophils (Cor = 0.176, p = 4:75 × 10−8),
and dendritic cells (Cor =0.186, p = 8:11 × 10−9), with
CD8+ T cells having the highest correlation (see
Figure 4(b)). Based on the presented data, it can be con-
cluded that patients with high expression of PPARG in
BC exhibit better cumulative survival rates. This finding
is corroborated by the results displayed in Figure 3. Fur-
thermore, we obtained RNAseq data and related clinical
data of ER+ BC from the TCGA database, and Spearman’s
correlation analysis confirmed the relationship between
PPARG and the degree of infiltration of six immune cell
subtypes (see Figure 4(c)). The results indicate that high
PPARG expression is intimately linked to the immunolog-
ical microenvironment of BC. This suggests that PPARG
potentially exerts a crucial function in regulating the
immune microenvironment of BC, which could have sig-
nificant clinical implications for the development of novel
therapeutic techniques for BC therapy.

3.5. Gene Co-Expression Analysis. To evaluate the mecha-
nism by which PPARG is associated with immune cells in
ER+ BC, we performed gene co-expression analysis. MHC
genes, immune activation genes, immunosuppressive genes,

Table 1: PPARG expression levels in BC patients in relation to clinicopathological characteristics.

Clinicopathological characteristics High expression group Low expression group p -Value

Status
Alive 480 467

0.333
Dead 71 83

Age
Mean (SD) 57.6 (13) 59.1 (13.4)

0.069
Median [Min, Max] 58 [26, 90] 59 [26, 90]

Gender
Female 546 543

0.769
Male 5 7

pT-stage

TX 0 3

0.007

T1 161 120

T2 292 347

T3 83 55

T4 15 25

pN-stage

NX 7 13

0.173

N0 252 264

N1 187 179

N2 56 64

N3 49 30

pM-stage

MX 86 77

0.182M0 455 455

M1 7 15

pTNM-stage

X 5 8

0.041

I 102 80

II 296 328

III 136 115

IV 6 14
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and chemokine (receptor) related genes were studied. PPARG
is co-expressed with all chemokine receptors listed, and its
expression level is positively correlated with most chemo-
kines. Meanwhile, PPARG expression was shown to be posi-
tively linked with the majority of MHC genes, such as HLA-
DOA, HLA-DPB1, HLA-DRA, and HLA-E genes. It is note-
worthy that the expression of PPARG is positively correlated
with almost all immune suppressor genes (see Figure 5(a)).

We further compared the expression of immune check-
points, which are molecules expressed on immune cells that
inhibit immune cell function, leading to ineffective anti-tumor
immune responses and tumor immune evasion, between
ER+ and ER− BC. The results showed that immune check-
points SIGLEC15 (p = 1:17 × 10−27), LAG3 (p = 7:38 × 10−16
), PDCD1 (p = 2:19 × 10−10), CTLA4 (p = 1:33 × 10−17),

TIGIT (p = 4:76 × 10−13), CD274 (p = 1:10 × 10−5), and
PDCD1LG2 (p = 7:19 × 10−11) were expressed at lower
levels in ER+ BC than in ER− BC (see Figure 5(b)). We
found that ER+ patients exhibit stronger responses to
immune checkpoint blockade (ICB) compared with ER−
patients (see Figure 5(c)). A higher TIDE score is associated
with reduced effectiveness of ICB therapy and shorter sur-
vival following such treatment [16]. Furthermore, the
results showed that PPARG was co-expressed with these
immune checkpoints (Table 3), indicating the potential of
PPARG as an immunotherapy target.

3.6. Correlation Analysis between PPARG and Pathway. We
obtained RNAseq data and associated clinical information
for ER+ BC from TCGA database. The statistical analysis

T1
I

II

III

T2

T3

pT_stage pTNM_stage PPARG Status

Dead

Alive

Low exp

High exp

T4

(a)

Age

>60

≤60

T1

T2

T3

T4

pT_stage PPARG Status

Dead

Alive

Low exp

High exp

(b)

Figure 2: PPARG expression levels in BC patients in relation to clinicopathological characteristics. Each column represents a feature
variable, with varying colors denoting different subtypes or stages, and the lines depicting the distribution of the same sample across the
distinct feature variables. (a) PPARG expression level was related to pT-stage and pTNM-stage BC. (b) PPARG expression levels
correlated with survival status, age, and pT-stage of ER+ BC.
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Table 2: PPARG expression levels in ER+ and ER− BC patients in relation to clinicopathological characteristics.

Clinicopathological characteristics High expression group Low expression group p -Value

Status

ER+
Alive 364 343

0.041
Dead 40 60

ER−
Alive 97 99

0.754
Dead 22 19

Age

ER+
Mean (SD) 58.2 (13) 60.5 (13.5)

0.015
Median [Min, Max] 58 [26, 90] 61 [29, 90]

ER−
Mean (SD) 56.1 (11.8) 55.7 (12.9)

0.789
Median [Min, Max] 55 [29, 85] 54.5 [26, 90]

Gender

ER+
Female 399 396

0.768
Male 5 7

ER−
Female 119 118

≤0.001
Male 0 0

pT-stage

ER+

TX 0 2

0.025

T1 123 90

T2 207 247

T3 65 47

T4 9 17

ER−

TX 0 1

0.982

T1 29 25

T2 72 77

T3 13 10

T4 5 5

pN-stage

ER+

NX 6 10

0.182

N0 181 175

N1 139 146

N2 39 51

N3 39 21

ER−

NX 1 1

0.375

N0 61 75

N1 32 30

N2 15 7

N3 10 5

pM-stage

ER+

MX 67 70

0.553M0 329 320

M1 6 10

ER−
MX 15 10

0.571M0 101 106

M1 2 2

pTNM-stage

ER+

X 4 7

0.013

I 81 60

II 211 231

III 100 92

IV 6 9

ER−

X 0 1

0.292

I 19 16

II 65 82

III 31 15

IV 1 2
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Figure 3: PPARG expression and the prognosis of BC. The KM survival curve of the PPARG gene in TCGA data is shown, wherein diverse
groups were analyzed utilizing the log-rank test. HR (High exp.) represents the HR between the high and low expression groups. An HR> 1
indicates that the gene is a risk factor (higher expression is associated with poorer prognosis), whereas an HR< 1 indicates that the gene is a
protective factor (higher expression is associated with better prognosis). The 95% CI represents the range of HR values with a certain level of
certainty. Median time represents the time at which the survival rates of the high expression and low expression groups intersect at 50% (i.e.,
the median survival time). (a) Kaplan–Meier analysis of overall survival for ER+ BC in TCGA, PPARG gene is a protective factor in ER+ BC.
(b) Kaplan–Meier analysis of overall survival for ER− BC in TCGA, survival of patients with ER− BC is not associated with the expression
level of PPARG. (c) Kaplan–Meier analysis of overall survival for ER+ BC in Kaplan–Meier plotter, PPARG gene is a protective factor in ER
+ BC. (d) Kaplan–Meier analysis of overall survival for ER− BC in in Kaplan–Meier plotter, survival of patients with ER− BC is not
associated with the expression level of PPARG.
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Figure 4: Continued.
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revealed that PPARG is closely associated with various path-
ways, including angiogenesis, apoptosis, epithelial–mesen-
chymal transition (EMT) markers, fatty acid biosynthesis,
fatty acid degradation, and glycolysis–gluconeogenesis, in
estrogen receptor-positive BC (see Figure 6). Given its
involvement in several critical pathways that contribute sig-
nificantly to tumor growth, progression, and metastasis,
these findings provide additional evidence to support the
potential targeting of PPARG for the treatment of ER+ BC.
Therefore, by modulating the expression or activity of
PPARG, it may be possible to interfere with these pathways
and inhibit tumor growth and metastasis. These discoveries
offer a foundation for the development of novel PPARG-
related BC treatment approaches.

3.7. Regulation of PPARG by Natural Drugs. We utilized the
HERB database to search for active compounds and Chinese
herbal medicines targeting the PPARG receptor, and identi-
fied experimentally verified active compounds and natural
drugs. Natural drugs that up-regulate PPARG include api-
genin [17], betaine [18], morusin [19], madecassoside [20],

oridonin [21], curcumin [22], cannabidiol [23], piperine
[24], prostaglandin A1 [25], 6-shogaol [26], epigallocatechin
3-gallate [27], rosmarinic acid [28], salvianolic acid b [29],
madecassic acid [30], chrysin (5,7-di-OH-flavone) [31],
and quercetin [32]. Natural drugs that down-regulated
PPARG included resveratrol [33], celastrol [34], cordycepin
[35], ginkgetin [36], tangeretin [37], tauroursodeoxycholic
acid [38], vanillic acid [39], honokiol [40], and tannic acid
[41] (see Figure 7). As discussed earlier, these results suggest
that natural drugs that up-regulate PPARG may have thera-
peutic potential in treating ER+ BC, whereas those that
down-regulate PPARG may have a negative impact on the
treatment outcome. This provides a basis for the develop-
ment of new natural drugs or drug combinations for further
investigation of their potential in treating ER+ BC.

4. Discussion

ER+ BC is the most common subtype of BC. While endo-
crine therapy reduces BC recurrence and mortality, acquired
resistance developed during treatment remains a significant
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Figure 4: PPARG expression correlates with the immune microenvironment of BC. (a) Correlation between immune cell infiltration level
and BC cumulative survival rate. (b) Correlation between PPARG expression levels and BC immune cell infiltration degree. (c) Correlation
between PPARG expression and immune score in ER+ BC. The horizontal axis in the figure represents the distribution of the expression
level of the first gene, whereas the vertical axis represents the distribution of the immune score. The right density curve shows the trend
of immune score distribution, whereas the top density curve shows the trend of gene distribution. The correlation p-value and
coefficient, as well as the method used to calculate the correlation, are indicated at the top.
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Figure 5: Continued.
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challenge [42]. Drug resistance mechanisms involve various
factors, such as the tumor immune microenvironment, gene
regulation, estrogen and comodulated cofactors, growth factor
signaling pathways, autophagy and apoptosis mechanisms,
non-coding RNA regulation, and immune surveillance [43].
Currently, tumor immunity and immunotherapy have
become the forefront of tumor research and are recognized
as important anti-tumor pathways. The prognosis and
treatment of BC are strongly associated with the stage
and subtype of BC. Therefore, it is crucial to explore

immune-related prognostic factors that are more generally
applicable to immunotherapy of BC. These findings pro-
vide a basis for developing new natural drugs or drug com-
binations for further investigating their potential in the
treatment of ER+ BC.

The tumor microenvironment (TME) is crucial in the
progression of tumors [44], and the responsiveness of BC
patients to immunotherapy depends on the dynamic
response among tumor cells as well as immune infiltrating
cells in TME. PPARG belongs to the ligand-activated tran-
scription factor family and it is expressed in a variety of
immune cells. It plays a critical role in various immunologi-
cal processes, such as energy metabolism, cell division,
inflammatory response, and cancer development and pro-
gression. Therefore, targeting PPARG may hold promise as
an immunotherapy approach for BC and be associated with
drug resistance and prognosis based on TME infiltration
characterization of cancer tissue. Clinical studies have dem-
onstrated the key role of PPARG in tumorigenesis and
development in various types of tumors, including BC, liver
cancer, lung cancer, and neurological tumors, through the
inhibition of cancer cell proliferation or the promotion of
cancer cell apoptosis and autophagy. However, our under-
standing of PPARG in BC remains incomplete, and there
are few studies on its differential expression in different
types of BC and its relevance with BC prognosis, which
requires further in-depth study.
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Figure 5: Co-expression analysis of PPARG, immune-related genes, and immune checkpoint molecules in BC. (a) Co-expression of PPARG
with MHC genes, immunoactivation genes, immunosuppressive genes, chemokine receptor-related genes, and chemokine-related genes. (b)
Different expression of immune checkpoints between ER+ and ER− BCs, ***p < 0:001. (c) Different responses of ER+ and ER− BCs to
immune checkpoint blocking therapy, *p < 0:05.

Table 3: Correlation between PPARG and immune checkpoints in
estrogen receptor-positive BC.

Genes Cor p-Value

CD274 0.235364 1:28 × 10−11**
CTLA4 0.212676 1:05 × 10−9**
HAVCR2 0.268371 8:86 × 10−15**
LAG3 0.003241 0.926766

PDCD1 0.243537 2:32 × 10−12**
PDCD1LG2 0.294025 1:48 × 10−17**
TIGIT 0.248973 7:23 × 10−13**
SIGLEC15 0.194715 2.46 × 10−8**
**p < 0:001.
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From this study, we first found that PPARG was poorly
expressed in BC. (Figures 1(a) and 1(b)). We then analyzed
different types of BC and found that PPARG was under-
expressed in both ER+ and ER− BC (Figures 1(c), 1(d),
1(e), and 1(f)), whereas PPARG expression is higher in ER
+ BC compared with ER− BC (Figure 1(h)). These results
demonstrate that PPARG is expressed differently in different
types of BC. Next, we evaluated the relationship between
PPARG expression levels and clinicopathological variables
from a clinical perspective. We discovered that the level of
PPARG expression was associated with BC pT-stage and
pTNM-stage (Table 1 and Figure 2(a)), and correlated with
the survival status and pT-stage of ER+ BC (Table 2 and
Figure 2(b)). To analyze the prognostic value of PPARG
gene in BC, we used Kaplan–Meier and verified the previous
results (Figure 3(c) and 3(d)). This is consistent with the
findings of Jiang et al. [45]. With larger BC tumor size, the
occurrence of axillary lymph node metastasis, and the
increase of BC histological grade and TNM stage, PPARG
expression level decreased significantly. High expression of
PPARG often represents a higher overall survival rate.

There are many kinds of immune cells infiltration in
TME. Studying the regulation of PPARG on immune cell
infiltration levels in the TME is important to clarify its effects
on BC development, metastasis, treatment, and drug resis-
tance. PPARG not only regulates macrophage differentiation

and polarization [46], but also regulates lipid metabolism of
immune cells [47, 48], inhibits the production of various cyto-
kines, such as TNFα, IL-1B, and IL-6 [49, 50], downregulates
chemokines and receptors (IL-12, CD80, CXCL10, and
RANTES), and recruits Th1 lymphocytes. PPARG can alter
gene expression independently of DNA binding, and this type
of transrepression may be the main molecular mechanism
driving the function of macrophages, dendritic cells, and T
cells in terms of their phenotype and secretory output [4],
making PPARG associated with the dynamic regulation of
TME. When exploring the correlation between PPARG
expression and the immune microenvironment in BC, we
selected the six cells mentioned above as study cells. We found
that the cumulative survival rate of BC patients with high
immune cell infiltration levels was better (see Figure 4(a)).
Spearman’s correlation analysis results also verified the correla-
tion of PPARG with the level of infiltration of six immune cell
subtypes (see Figure 4(c)), confirming that PPARG expression
was positively correlated with these cells (see Figure 4(b)). The
aforementioned findings indicate that BC patients with high
expression of PPARG exhibit relatively better overall survival
prognosis, which is consistent with the results depicted in
Figure 3.

The results of our co-expression analysis showed that
PPARG was positive for co-expression with all listed chemo-
kine receptors and positively correlated with most MHC
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Figure 6: Spearman’s correlation analysis between PPARG and path score. Thex-axis in the picture shows gene expression, whereas the y-
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genes. We found that CCR7 and CXCR2 of neutrophils, as
well as CSF1R and CCL16 of macrophages were significantly
correlated with PPARG expression in BC. These results sug-
gest that PPARG may regulate macrophage polarization in
BC. The expression of dendritic cell markers HLA-DPB1,
HLA-DRA, and HLA-DPA1 were significantly correlated
with the expression of PPARG, suggesting a close relation-
ship between PPARG expression and the infiltration level
of dendritic cells. Since dendritic cells can promote tumor
progression by cross-presenting tumor antigens to activate
the cross-initiating process of CD8+ T cells [15], this finding
is significant. Notably, almost all immunosuppressive genes
were co-expressed with PPARG. The mechanism may be
related to PPARG’s regulation of the balance between
immune cell infiltration and immunosuppression. On the
one hand, it can enhance the chemotaxis and retention of
immune cells and promote the beneficial immune response
to kill tumor cells. On the other hand, the expression of
immunosuppressive genes can be regulated by inhibiting
the activity of immune cells to avoid the excessive immune
response leading to normal tissue damage. In addition,
PPARG may suppress the immune response by participating
in the regulation of polarization of M2-type macrophages.
More possible regulatory mechanisms need to be further
explored.

Recent findings suggest that PPARG can affect a variety
of biological functions by regulating and expressing different
signaling pathways, such as β2-adrenaline promoting of BC
growth and angiogenesis through the downregulation of

PPARG [51], and as a PPARγ agonist, VSP-17 is capable
of inhibiting the process of EMT, thereby suppressing the
migration and invasion of triple-negative BC cells, through
the PPARG/AMPK signaling pathway [52]. Correlation
analysis of PPARG with pathways reveals that PPARG is
highly correlated with angiogenesis, apoptosis, EMT
markers, fatty acid biosynthesis, fatty acid degradation, gly-
colysis–gluconeogenesis, and other pathways. These findings
illustrate that PPARG might be a viable therapeutic target,
BC patients with relatively high PPARG expression may
have a better prognosis, and ligands/agonists of PPARG
are a new way to treat advanced BC.

By searching the HERB database, we have discovered
that some natural drugs are capable of regulating the expres-
sion of PPARG. Among these drugs, those that upregulate
the expression of PPARG may have potential for use in
treating and preventing BC, which could lead to improved
prognosis and better outcomes for BC patients. Quercetin
and curcumin are two natural drugs that have received a
lot of attention due to their promising research findings.
According to recent research, quercetin has been shown to
increase adiponectin secretion and prevent atherosclerosis
by regulating factors, such as PPARG [53]. Additionally, it
has been demonstrated to inhibit the development and pro-
gression of BC and other tumors [54]. Specifically, quercetin
has a potent anti-tumor effect by inducing reactive oxygen
species (ROS)-dependent apoptosis in MCF-7 BC cells, and
it also induces apoptosis in human BC cells by activating
PTEN to inhibit the PI3K/AKT and JNK signaling pathways

Figure 7: Regulation of PPARG by natural drugs (red represents up-regulated natural drugs, whereas blue represents down-regulated
natural drugs).
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[55, 56]. Moreover, quercetin nanoparticles have been found
to exhibit in vitro efficacy and in vivo safety, making them a
promising potential anti-BC agent [57].

Curcumin interferes with the EMT process and inhibits
BC cell migration, inducing BC apoptosis and cell death
[58, 59]. Other natural drugs that upregulate PPARG
include apigenin, betaine, morusin, madecassoside, orido-
nin, piperine, prostaglandin A1, cannabigerol, and others.
Several flavonoids, such as apigenin, have been studied for
the treatment of experimental colitis [14, 60], Apigenin
inhibits p65 translocation to the nucleus by activating
PPARG, reduces the expression of NF-κB, and contributes
to the polarization of M2 macrophages. It also alleviates
hepatic and muscle steatosis [17]. Cannabinol can regulate
human metabolism, reduce β-amyloid toxicity and inflam-
mation in rats through PPARG antagonism, and induce
apoptosis through PPARG, which has therapeutic effects
on liver, cervical, and lung cancers [61]. These natural com-
pounds and active ingredients have been shown to be novel
PPARG ligands in clinical trials, and their therapeutic effects
and clinical value for other diseases, including BC, warrant
further exploration.

5. Conclusion

Our study concludes that downregulation of PPARG is
linked with poor prognosis in BC. PPARG may regulate
tumor-infiltrating cells in the TME through different path-
ways, thereby affecting tumor development. PPARG could
be a promising target for BC treatment, and natural products
and compounds from traditional Chinese medicine can
modulate its expression, offering a new therapeutic approach
for BC treatment.
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A ligand-activated transcription factor, peroxisome proliferator-activated receptor (PPAR) regulates fatty acid uptake and
transport. In several studies, upregulation of PPAR expression/activity by cancer cells has been associated with cancer
progression. Worldwide, cancer of the cervix ranks fourth among women’s cancers. Angiogenesis inhibitors have improved
treatment for recurrent and advanced cervical cancer since their introduction 5 years ago. In spite of that, the median overall
survival rate for advanced cervical cancer is 16.8 months, indicating that treatment effectiveness is still lacking. Thus, it is
imperative that new therapeutic methods be developed. In this work, we first downloaded the PPAR signaling pathway-related
genes from the previous study. In addition, the single-sample gene set enrichment analysis (ssGSEA) algorithm was applied to
calculate the PPAR score of patients with cervical cancer. Furthermore, cervical cancer patients with different PPAR scores
show different sensitivity to immune checkpoint therapy. In order to screen the genes to serve as the best biomarker for
cervical cancer patients, we then construct the PPAR-based prognostic prediction model. The results revealed that PCK1,
MT1A, AL096855.1, AC096711.2, FAR2P2, and AC099568.2 not only play a key role in the PPAR signaling pathway but also
show good predictive value in cervical cancer patients. The gene set variation analysis (GSVA) enrichment analysis also proved
that the PPAR signaling pathway is one of the most enriched pathways in the prognostic prediction model. Finally, further
analysis revealed that AC099568.2 may be the most promising biomarker for the diagnosis, treatment, and prognosis in
cervical cancer patients. Both the survival analysis and Receiver Operating Characteristic curve demonstrated that AC099568.2
plays a key role in cervical cancer patients. However, to our knowledge, this is the first time a study focused on the role of
AC099568.2 in cervical cancer patients. Our work successfully revealed a new biomarker for cervical cancer patients, which
also provides a new direction for future research.

1. Introduction

Each year, approximately 500,000 women are diagnosed with
invasive uterine cervical cancer (UCC) worldwide, resulting
in 273,000 deaths [1]. It is estimated that over 70% of cancer
patients have reached a very advanced stage of their illness
[2]. It is reported that 604,127 women worldwide will be diag-
nosed with cervical cancer by 2020 [3]. There could be
approximately 7million fewer cases of human papillomavirus
(HPV) over the next half-century with screening campaigns
and broad-spectrum vaccinations for HPV [4]. According
to recent guidelines released by the International Federation

of Gynecological Ecology and Obstetrics (FIGO), a variety
of imaging tools, surgery, and pathology can be used to
stage cervical cancer [5]. Given the high costs of additional
tests, a clinical approach is still considered acceptable in
low- and middle-income countries [6]. Although HPV
infection is ubiquitous and a major etiological factor in
the carcinogenesis process, it is not always detectable in
all patients with UCCs [7]. Approximately 75% of cervical
cancer patients develop polypoidal exophytic masses inside
the ectocervix caused by squamous cell carcinoma [8].
There are also instances where the endocervix may become
dilated due to ulcerations, barrel adenocarcinomas, or
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adenosquamous cell carcinomas, which originate from the
columnar epithelium [9]. There are several routes of
spread, including the direct extension to the vaginal
mucosa, the adjacent parametrial tissues, the bladder, or
the rectum [10]. A growing body of knowledge is available
about the oncology, tumor biology, and tumor morphology
of cervical cancer at present. This field is also currently
interested in identifying genetic, molecular, and immuno-
histochemical markers as early detection tools for precan-
cerous lesions and neoplastic processes. As part of
oncology, a biomarker is often a gene, DNA, RNA, pro-
tein, enzyme, antigen, or other cellular and biological
product [11]. There is evidence that these lesions may
occur at various stages of carcinogenesis under the influ-
ence of therapy. Many modern reviews and articles have
discussed these lesions [12].

Since 1990, Issemann and Green have been discovering
ligand-activated transcription factors called peroxisome
proliferator-activated receptors (PPARs) [13]. There are
three different subtypes of PPAR, PPAR α, and PPAR β/δ,
which are located on different chromosomes and encoded
by specific genes [14]. In spite of their significant homology,
these three proteins differ in their tissue distribution, an
affinity for ligands, and biological function [15]. Many mod-
ern reviews and articles on carcinogenesis describe how
these lesions can be detected at various stages of carcinogen-
esis, as well as how therapy can influence their development
[16]. However, few studies focused on the correlations
between PPAR signaling pathways and UCC. Therefore,
we aim to explore the potential association between UCC
and PPAR signaling pathways by bioinformatics analysis.

The Cancer Genome Atlas (TCGA) database was used to
obtain expression data for this study to investigate the role of
PPAR signaling pathways in UCC. In addition, the single-
sample gene set enrichment analysis (ssGSEA) algorithm
was applied to explore the score of PPAR signaling in
patients with UCC. A Gene Ontology (GO) enrichment
analysis and a Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis were also conducted in order
to identify potential pathways closely related to the key
genes. Finally, we decided to explore the potential biomark-
ers for better prognosis prediction of patients with UCC.

2. Methods

2.1. Dataset Downloaded. Data on mRNA expression and
clinical information were downloaded from the Cancer
Genome Atlas database for UCC patients. In addition, the
genes that are closely associated with the PPAR were also
obtained from the previous studies.

2.2. Tumor Immune Estimation Resource Analysis. The
Tumor Immune Estimation Resource (TIMER) software
program (https://cistrome.shinyapps.io/Timer/) provides a
comprehensive approach to analyze immune infiltration in
different cancer types. An analysis of TIMER was performed
to determine whether immune cell infiltration was related to
the level of expression of the immune-related cells.

2.3. Single-Sample Gene Set Enrichment Analysis. For each
tumor case, an individual score was calculated using ssGSEA.
In ssGSEA, ranking-based GSEA methods are used to com-
pute overexpression measures for genes of interest relative
to other genes in the genome. Based on log-transformed data
from RNA-Seq or microarray experiments, ssGSEA scores
were calculated. In the next step, we classified UCCs accord-
ing to related pathways (ssGSEA scores) and analyzed both
tumor purity and immune scores for each patient.

2.4. The Enrichment Pathway Analysis Based on the Key
Genes. Using functional enrichment, the data were further
analyzed to confirm the potential functions of the potential
targets. GO is widely used to annotate genes with their func-
tions, especially molecular functions (MF), biological path-
ways (BP), and cellular components (CC). Analyzing gene
function and related high-level genome function informa-
tion using KEGG enrichment analysis is practical and useful.
An analysis of the GO function of potential mRNAs and
enrichment of KEGG pathways was performed using the
ClusterProfiler package in R to better understand the onco-
genic functions of target genes.

2.5. Construction of the Prognostic Prediction Model of the
PPAR Signaling Pathways. Module members (MM) repre-
sent gene expression profiles that are correlated with genes
that belong to the module. We then performed univariate
analyses of each gene in the module to identify genes associ-
ated with the prognosis that were significantly associated.
We used COX regression based on the least absolute shrink-
age and selection operator (LASSO) to further narrow down
the candidate biomarkers for immunization prognosis using
the “glmnet” R package. Using the “survminer” R package,
samples were divided into low-risk and high-risk groups
based on a bivariate model with nonzero coefficients. R
was also used to perform the survival analysis.

2.6. Immune Cell Infiltration Analysis. An analysis of RNA-
seq data from UCC patients in different subgroups was con-
ducted to determine the relative proportions of 22 immune
infiltrating cells. To determine whether immune cell infiltra-
tion and gene expression are related, Spearman correlation
analysis was conducted.

2.7. Gene Set Variation Analysis. Gene set variation analysis
(GSVA), an unsupervised, non-parametric method, was
used to evaluate gene set enrichment. As a result of scoring
the genes of interest, followed by determining the biological
function of the sample, changes at the gene level were trans-
formed into changes at the pathway level in this study. In the
present study, gene sets were retrieved using the molecular
signatures database (version 7.0). The GSVA algorithm was
used to evaluate a wide range of samples for potential biolog-
ical function changes.

2.8. Gene Set Enrichment Analysis. Gene sets were retrieved
from MSigDB (http://www.gsea-msigdb.org/gsea/downloads
.jsp). In order to identify enriched GO terms from the gene
sets, GSEA was performed using the 50 best terms selected
from each subtype.

2 PPAR Research
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3. Results

3.1. The ssGSEA Algorithm Was Used to Obtain the PPAR
Signaling Score for UCC Patients. On the basis of the former
study, we successfully obtained the genes that play a key role
in the PPAR signaling pathways. Finally, a total of 72 genes
were regarded as the genes that are closely associated with
the PPAR signaling pathways. Subsequently, by using the
ssGSEA algorithm, the patients with UCC were successfully
divided into low- and high-PPAR signaling pathways groups.
In addition, we also evaluate other pathways, such as choles-
terol metabolism, primary bile acid biosynthesis, fat digestion
and absorption, glycerolipid metabolism, and regulation of
lipolysis in adipocytes. The results demonstrated that the
PPAR-high group is associated with the high pathways of
cholesterol metabolism, primary bile acid biosynthesis, fat
digestion and absorption, glycerolipid metabolism, and regu-
lation of lipolysis in adipocytes (Figure 1(a)). Furthermore,
we then explore the correlation between Human Leukocyte
Antigen (HLA)-related genes and PPAR score (Figure 1(b)).
The results did not show potential associations. In addition,
we also discovered that high score of PPAR signaling pathway
is associated with a higher stromal score and estimate score
(Figure 1(c)). According to the differentially expressed analy-
sis, 290 genes were found to be differentially expressed,
including 57 genes that were up-regulated and 233 genes that
were down-regulated (Figures 1(d) and 1(e)).

3.2. The Potential Pathways That Are Closely Associated with
the Differentially Expressed Genes. Next, we performed the
enrichment pathways analysis based on the 290 different
expression genes. The results revealed that complement
and coagulation cascades, PPAR signaling pathway, choles-
terol metabolism, bile secretion, insulin resistance, fat diges-
tion and absorption, and glycolysis are the most enriched
pathways of KEGG terms (Figures 2(a) and 2(b)). Addition-
ally, for Hallmark terms, the most enriched pathways
involve coagulation, xenobiotic metabolism, bile acid metab-
olism, KRAS signaling dn, myogenesis, and angiogenesis
(Figures 2(c) and 2(d)).

3.3. Evaluation of the Association between PPAR Score and
Immune-Related Cells and Immune Checkpoint-Related
Genes. Subsequently, we aim to explore the potential correla-
tion between PPAR score and immune-related cells. A total
of 22 types of immune-related cells were identified. The
results finally revealed that the lower PPAR score is associ-
ated with more infiltration of CD4-activated T cells, while
the higher PPAR score is associated with more infiltration
of M2 macrophages (Figure 3(a)). In terms of the immune
checkpoint genes, the PPAR score is positively associated
with HAVCR2, while the PPAR score is negatively associ-
ated with CD274, PDCD1, CTLA4, LAG3, and PDCD1LG2
(Figures 3(b), 3(c), 3(d), 3(e), 3(f), and 3(g)).
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Figure 1: (a) The heat map reveals the results of the ssGSEA algorithm; (b) the different expression levels of HLA-related genes between
low- and high-PPAR groups; (c) the different immune-related score between low- and high-PPAR groups; (d) the heat map
demonstrated the differentially expressed genes between low- and high-PPAR groups; (e) the volcano map demonstrated the
differentially expressed genes between low- and high-PPAR groups.
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3.4. Construction of the PPAR-Based Prognostic Prediction
Model in UCC Patients. First, we obtained the mRNA expres-
sion data, as well as the clinical characteristics of UCC patients.
Next, we performed the differentially expressed analysis
betweenUCC patients and normal people. The results demon-
strated that a total of 5980 genes showed significant differences,

which includes 2033 up-regulated genes and 3947 down-
regulated genes (Figure 4(a)). The heat map shows the top 50
differentially expressed genes (Figure 4(b)). Subsequently, we
construct the prognostic predictionmodel based on the overall
survival (OS) of UCC patients. The univariate COX regression
analysis demonstrated that 19 genes are associated with the
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Figure 4: (a and b) The differentially expressed analysis between normal cohort and UCC patients; (c) the results of univariate COX
regression analysis; (d and e) the lasso regression analysis; (f) the risk plot between low- and high-risk groups; (g) the survival analysis
between low- and high-risk score groups; (h) the time-dependent ROC curve revealed the 1-year, 3-year, and 5-year AUC score of risk
score; (i) the calibration score reveals the predictive value of risk score in UCC cohort.
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prognosis of UCCpatients (Figure 4(c)). The LASSO regression
analysis and multivariate COX regression analysis were then
performed to further explore the biomarkers for the prognosis
of UCC patients. The results demonstrated that PCK1,
MT1A, AL096855.1, AC096711.2, FAR2P2, and AC099568.2
are mostly associated with the prognosis of UCC patients.
We then successfully constructed the PPAR-based prognos-
tic prediction model. Each UCC patient was assigned
with the risk score as follows: Risk score = PCK1 ×
0.371061037507491 + MT1A × 0.181870631948255 +
AL096855.1 × 0.207868336512594 + AC096711.2 ×
0.570820588371621 + FAR2P2 × 0.801187844986532 +
AC099568.2 × −0.54499718389366 (Figures 4(d) and
4(e)). Based on the risk score, the UCC patients were divided
into low- and high-risk groups (Figure 4(f)). The survival anal-
ysis revealed that patients with higher risk scores tend to show
poorerOS (Figure 4(g)). In addition, the Area Under the Curve
(AUC) value of the Receiver Operating Characteristic (ROC)
curve was 0.751 at 1 year, 0.731 at 3 years, and 0.675 at 5 years,
respectively (Figure 4(h)). The calibration curve proves that
PPAR-based prognostic prediction model shows good predic-
tive value in UCC patients (Figure 4(i)).

3.5. Validation of the Role of PPAR-Based Prognostic
Prediction Model in Immune-Related Cells, Immune

Checkpoint Genes, Immune-Related Score, and Clinical
Characteristics. On the basis of the former analysis, we suc-
cessfully obtained the PPAR-based prognostic prediction
model, which involves six genes (PCK1, MT1A, AL096855.1,
AC096711.2, FAR2P2, and AC099568.2). We then performed
the immune infiltration analysis. The results demonstrated that
the risk score is positively associated with endothelial cells, M2
macrophage, monocyte, Natural Killer (NK) cell, neutrophil,
and cancer-associated fibroblasts. However, the risk score is
negatively associated with CD8+ naïve T cell, eosinophil, naïve
B cell, and T cell follicular helper (Figures 5(a), 5(b), 5(c), 5(d),
and 5(e)). The immune checkpoint analysis demonstrated that
the risk score is associated with IDO2, ADORA2A, VTCN1,
CD44, NRP1, and LGALS9 (Figures 5(f), 5(g), 5(h), and 5(i)).
In terms of immune score analysis, the higher risk score is asso-
ciated with a high stromal score (Figure 5(j)). For clinical char-
acteristics, the UCC patients with the high-risk score are
associatedwith higher age, T stage, andN stage, while the grade
is not associated with the risk score (Figures 5(k), 5(l), 5(m),
and 5(n)).

3.6. Exploration of the Potential Pathways That Are
Associated with Risk Score and PPAR-Related Genes. Then,
we performed the pathway enrichment analysis based on
the risk score. The GSVA analysis shows that the calcium

100

75

50

Pe
rc

en
t w

ei
gh

t

25

0

low

N0
N1
NX

high
Risk score

(n)

Figure 5: (a) The immune infiltration analysis based on the risk score; the correlation analysis between risk score and cancer-associated
fibroblasts (b); endothelial cells (c); macrophages (d); NK cell (e); (f–i) the correlation analysis between risks score and immune
checkpoint-related genes; (j) the correlation analysis between risk score and immune-related score; the correlation analysis between risk
score and age (k); grade (l); T stage (m); N stage (n).
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Figure 6: Continued.

27PPAR Research



(d)

Figure 6: Continued.

28 PPAR Research



signaling pathway, receptor signaling pathway, PPAR signal-
ing pathway, and Transforming Growth Factor (TGF)-beta
signaling pathway are the most enriched KEGG terms
(Figure 6(a)). For Hallmark terms, angiogenesis, apical junc-
tion, coagulation, complement, E2F target, KRAS signaling,
and pancreas beta cells are the most enriched pathways. In
addition, we also explore the GO enrichment pathways based
on the PPAR-related genes (Figure 6(b)). For GO BP analysis,
blood coagulation, platelet degranulation, protein activation
cascade, regulation of hemostasis, and terpenoid metabolic
process are the most enriched pathways (Figure 6(c)). The
blood microparticle, lipoprotein particle, plasma lipoprotein
particle, protein–lipid complex, and platelet alpha granule
lumen are the most enriched GO CC enrichment pathways
(Figure 6(d)). In addition, the GO MF enrichment analysis
demonstrated that heparin binding, peptidase inhibitor activ-
ity, endopeptidase regulator activity, sulfur compound bind-
ing, and endopeptidase inhibitor activity are most associated
with PPAR-related genes (Figure 6(e)).

3.7. AC099568.2 May Play a Key Role in the UCC and PPAR
Signaling Pathway. Based on the PPAR-based prognostic

prediction model constructed in the previous analysis, we suc-
cessfully obtained six genes, which may be the biomarkers
(PCK1, MT1A, AL096855.1, AC096711.2, FAR2P2, and
AC099568.2) for UCC. Subsequently, we performed the sur-
vival analysis solely on these six genes. The results demon-
strated that the high expression of AC099568.2 is associated
with a better prognosis of UCC patients, while the other five
genes are not associated with the OS of UCC patients
(Figures 7(a), 7(b), 7(c), 7(d), 7(e), and 7(f)). In addition,
the ROC curve also proved the good predictive value of
AC099568.2 in the UCC cohort (Figure 7(g)). Additionally,
the expression level of AC099568.2 in UCC patients is higher
than normal cohort (Figures 7(h) and 7(i)). Subsequently, the
GSVA analysis demonstrated that midbody, regulation of cell
population proliferation, misfolded protein binding, response
to oxidative stress, and cyclin binding are positively associated
with AC099568.2. However, external encapsulating structure,
smoothened signaling pathway, kinase binding, microtubule
cytoskeleton, and response to xenobiotic stimulus are corre-
lated with the down-regulation of AC099568.2 (Figure 7(j)).
In addition, the GSEA analysis revealed that keratinization,
NK activation involved in immune response, negative

(e)

Figure 6: (a) The GSVA analysis based on the KEGG terms; (b) the GSVA analysis based on the Hallmark terms; (c) the GO BP enrichment
analysis; (d) the GO CC enrichment analysis; (e) the GO MF enrichment analysis.
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regulation of interleukin 8 productions, and positive regula-
tion of cytoplasmic translation are closely associated with
the AC099568.2 (Figure 7(k)).

4. Discussion

Every year, thousands of women die from cervical cancer.
Approximately 273,000 women die from cervical cancer
each year, despite preventive HPV vaccines and conven-
tional cancer treatments [17]. Malignant cells evade immune
surveillance by forming tumors, invading, and metastasizing
when their immune systems are perturbed [18]. A deeper
understanding of the immune system players that suppress
or promote cervical cancer is essential to develop more tar-
geted treatments with fewer side effects [19]. Using natural
processes of action to stimulate the immune system to fight
cancer cells, immunotherapy has become the most desirable
method of targeting cancer [20]. It is possible to treat cervi-
cal cancer with a variety of immunotherapy approaches,
including monoclonal antibodies, immune checkpoint
blockade therapy, adoptive cell transfer therapy, and oncoly-
tic viruses [21]. Recent studies have found that PPARs,
which are nuclear hormone receptors, may be used as ther-
apeutic targets for a variety of cancers, including lung cancer
[22]. Furthermore, PPARs participate in various cellular
functions, such as differentiation, proliferation, survival,
apoptosis, and motility [23]. Cancer risk is increased when
these cellular processes and metabolic disturbances are

dysregulated in tumors [24]. In recent years, with the develop-
ment of bioinformatics analysis, more and more research
started to focus on the advantages of bioinformatics analysis
in the treatment, prognosis prediction, and diagnosis of can-
cer patients [25–31]. In this work, we aim to explore the role
of PPAR signaling pathways in UCC patients. By using the
ssGSEA algorithm, the UCC cohort was successfully divided
into PPAR-low and PPAR-high groups. In addition, the dif-
ferentially expressed analysis revealed a total of 290 PPAR-
related genes. The pathway enrichment analysis also proved
that the PPAR signaling pathway is one of the most enriched
pathways. Cancer prevention and treatment may be improved
using PPAR modulators, including agonists and antagonists.
A number of factors contribute to cancer risk, including dys-
lipidemia, obesity, glucose intolerance, and low-grade inflam-
mation. Therefore, PPAR modulators can be used to treat
cancer by promoting proliferation, differentiation, and apo-
ptosis of cancerous cells. They have a significant role to play
in preventing various types of cancer, such as cancer of the
breast, lung, and pancreas.

Subsequently, by constructing the prognostic prediction
model based on the PPAR-related genes, we successfully
obtained a six-gene-based prognostic prediction model.
The survival analysis and ROC curve demonstrated that
the PPAR-based model shows good predictive value in
UCC patients. In addition, the immune checkpoint analysis
demonstrated that the expression level of many immune
checkpoint-related genes is closely associated with the
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Figure 7: The survival analysis of AC099568.2 (a); FAR2P2 (b); AC096711.2 (c); AL096855.1 (d); MT1A (e); PCK1 (f) in UCC cohort; (g)
the ROC curve of AC099568.2 in UCC cohort; (h) the box plot reflects the differentially expressed analysis of AC099568.2; (i) the results of
the paired differently expressed analysis; (j) the GSVA analysis of AC099568.2; (k) the GSEA analysis of AC099568.2.
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PPAR-based risk score, which may indicate that the PPAR
signaling pathway map influences immune checkpoint ther-
apy (Figure 8). As shown in the previous study, PPARα acts
as a transcription factor influencing intracellular signaling
events and cellular metabolism [32]. In conditions of various
immunological backgrounds, PPAR-targeted therapies have
become more commonly used due to their broad effects on
the immune system [33].

Finally, further analysis revealed that AC099568.2 may
be the most promising biomarker for the diagnosis, treat-
ment, and prognosis in UCC patients. Both the survival
analysis and ROC curve demonstrated that AC099568.2
plays a key role in UCC patients. However, to our knowl-
edge, this is the first time a study focused on the role of
AC099568.2 in UCC patients. Our work successfully
revealed a new biomarker for UCC patients, which also pro-
vides a new direction for future research.

5. Conclusion

In this work, we construct the PPAR-based prognostic predic-
tionmodel. PCK1,MT1A, AL096855.1, AC096711.2, FAR2P2,
andAC099568.2 not only play a key role in the PPAR signaling
pathway. Further analysis revealed that AC099568.2 may be

the most promising biomarker for the diagnosis, treatment,
and prognosis in cervical cancer patients.
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Background. There is a significant role for peroxisome proliferator-activated receptors (PPARs) in the development of cancer.
Nevertheless, the role of PPARs-related genes in ovarian cancer (OC) remains unclear. Methods. The open-accessed data used
for analysis were downloaded from The Cancer Genome Atlas database, which was analyzed using the R software. Results. In
our study, we comprehensively investigated the PPAR target genes in OC, including their biological role. Meanwhile, a
prognosis signature consisting of eight PPAR target genes was established, including apolipoprotein A-V, UDP
glucuronosyltransferase 2 family, polypeptide B4, TSC22 domain family, member 1, growth hormone inducible transmembrane
protein, renin, dedicator of cytokinesis 4, enoyl CoA hydratase 1, peroxisomal (ECH1), and angiopoietin-like 4, which showed
a good prediction efficiency. A nomogram was constructed by combining the clinical feature and risk score. Immune
infiltration and biological enrichment analysis were applied to investigate the difference between high- and low-risk patients.
Immunotherapy analysis indicated that low-risk patients might respond better to immunotherapy. Drug sensitivity analysis
indicated that high-risk patients might respond better to bleomycin, nilotinib, pazopanib, pyrimethamine, and vinorelbine, yet
worse to cisplatin and gefitinib. Furthermore, the gene ECH1 was selected for further analysis. Conclusions. Our study
identified a prognosis signature that could effectively indicates patients survival. Meanwhile, our study can provide the
direction for future studies focused on the PPARs in OC.

1. Introduction

Around the world, ovarian cancer (OC) remains one of the
most lethal gynecological cancers [1]. With high mortality,
the incidence rate of OC still shows an upward trend, mak-
ing it a serious public health threat [2]. Nowadays, surgery
and chemotherapy are the main treatments for OC. Mean-
while, as a result of hidden early symptoms, many patients
have entered the progressive stage of the disease after their
first diagnosis, missing the best time for treatment [3]. Con-
sequently, exploring new targets with potential for clinical
application is extremely important [4].

Peroxisome proliferator-activated receptors (PPARs) are
a kind of nuclear receptors regulated by ligands and are
involved in sensing nutrients, regulating metabolism, and
regulating lipids [5]. Considering the wide regulatory effect
of PPARs, researchers have begun paying attention to their
role in a variety of diseases, especially in cancers [5]. Yang
et al. found that the interaction between PPARγ and
Nur77 can contribute to fatty acid uptake, therefore, pro-
moting breast cancer development [6]. Zou et al. noticed
that the PPARγ signaling could be activated by the polyun-
saturated fatty acids from astrocytes, further facilitating the
brain metastasis process of cancer [7]. Moreover, PPARs
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signaling is associated with the immune cells in cancer tis-
sue. Liu et al. indicated that S100A4 could regulate the fatty
acid oxidation dependent on PPARγ and, therefore, induce
M2 polarization in cancer [8]. Furthermore, various pieces
of evidence indicate that cancer cells up-regulated PPARδ,
which can be used as a defense mechanism against nutritional
deprivation and energy stress to improve its survival rate and
promote cancer progression [9]. In OC, some studies have pre-
liminarily explored the potential mechanism of PPARs [10].
However, there are still few studies focusing on PPAR in OC.

In recent years, the development of bioinformatics is
accompanied by the arrival of the big data era, which provides

convenience for researchers [11–13]. In our study, we com-
prehensively investigated the PPAR target genes in OC,
including their biological role. Meanwhile, a prognosis signa-
ture consisting of eight PPAR target genes was established,
including apolipoprotein A-V (APOA5), UDP glucuronosyl-
transferase 2 family, polypeptide B4 (UGT2B4), TSC22
domain family, member 1 (TSC22D1), growth hormone
inducible transmembrane protein (GHITM), renin (REN),
dedicator of cytokinesis 4 (DOCK4), enoyl CoA hydratase 1,
peroxisomal (ECH1), and angiopoietin-like 4 (ANGPTL4).
Immune infiltration and biological enrichment analysis were
applied to investigate the difference between high- and low-

Table 1: The baseline information of the enrolled patients.

Clinical features Number Percentage (%)

Age (years)
≤60 326 55.5

>60 261 44.5

Grade

G1–G2 75 12.8

G3–G4 496 84.5

Unknown 16 2.7

Data collection
(TCGA-OV)

List of PPAR
genes

Prognosis model

Model evaluation

Immune
infiltration

Immunotherapy
and drug sensitity

Biological
enrichment

Biological
enrichment

Immune function

Training and
validation cohort Nomogram plot

Univariate Cox
regression analysis

LASSO regression

Multivariate Cox
regression analysis

Biological
enrichment GO and KEGG

Figure 1: The flow chart of whole study.
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(b)

Figure 2: Continued.
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(c)

Figure 2: Continued.
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(d)

Figure 2: Continued.
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risk patients. Immunotherapy and drug sensitivity analysis
were then conducted. Furthermore, the gene ECH1 was
selected for further analysis.

2. Methods

2.1. Acquisition of Open-Accessed Data. The expression pro-
file and clinical characteristics of OC patients were down-
loaded from The Cancer Genome Atlas Program (TCGA)
database (TCGA-OV project). The individual file was
merged using the R code. Data pre-processing was con-
ducted before the analysis. The list of 126 PPAR target genes
was obtained from the PPARgene database (Supplementary
Table S1) [14]. The baseline information of enrolled patients
was shown in Table 1.

2.2. Biological Difference Investigation. Clusterprofiler was
used in the R environment to perform Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis [15]. Gene Set Enrichment Analysis (GSEA) was per-
formed to identify the biological differences based on the spe-
cific gene set, including Hallmark and GO [16].

2.3. Prognosis Signature. First, patients were randomly divided
into the training group and validation group according to the
ratio of 1 : 1. Univariate Cox regression analysis was performed
to identify the genes closely related with patients survival. The
Least absolute shrinkage and selection operator (LASSO)
regression algorithm was applied to screen the optimized vari-
ables through data dimension reduction. Ultimately, themulti-
variate Cox regression was utilized to identify a prognosis
signature.

2.4. Model Evaluation and Nomogram. The performance of
identified prognosis signature was completed using the
Kaplan–Meier (KM) and receiver operating characteristic

(e)

Figure 2: Role of PPAR target genes in OC. (a) The expression pattern of PPAR target genes in OC. (b) GO-BP analysis of these PPAR
target genes. (c) GO-CC analysis of these PPAR target genes. (d) GO-MF analysis of these PPAR target genes. (e) KEGG analysis of
these PPAR target genes.
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(ROC) curves. A nomogram combining our prognosis sig-
nature and clinical features was established using the rms
package. The calibration curve was used to compare the fit
between nomogram-predicted and actual survival.

2.5. Immune Infiltration and Function Analysis. The quanti-
fication of the OC tumor microenvironment was evaluated
using multiple algorithms, including CIBERSORT, EPIC,
MCP-counter, quanTIseq, TIMER, and xCell [17]. The
expression profile of OC patients was set as the input file.
Immune function analysis was performed based on the sin-
gle sample GSEA (ssGSEA) algorithm [18].

2.6. Evaluation of Immunotherapy and Drug Sensitivity. The
assessment of patients on immunotherapy response was per-
formed using the Tumor Immune Dysfunction and Exclu-
sion (TIDE) algorithm [19]. Drug sensitivity analysis was
conducted based on the data from the Genomics of Drug
Sensitivity in Cancer database [20].

2.7. Statistical Analysis. Analysis based on public data was all
analyzed using the R software. The threshold of statistical
significance was set as 0.05. Different statistical methods
are selected according to different data distribution forms.
The data with normal distribution were analyzed using the
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Figure 3: Identification a prognosis signature based on the PPAR target genes. (a) Univariate Cox regression analysis was performed to
identify the prognosis-related genes. (b and c) LASSO regression analysis. (d) Multivariate Cox regression analysis was utilized to
identify the prognosis signature.
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Students T test, and the non-normal distribution data was
analyzed using the Mann–Whitney U test.

3. Results

The flow chart of the whole study was shown in Figure 1.

3.1. Collection of PPAR Target Genes in OC. First, the expres-
sion data of 126 PPAR targets were extracted, which was
shown in Figure 2(a). Results of GO-Biological Process
(BP) showed that the regulation of the lipid catabolic pro-
cess, lipid metabolic process, and carboxylic acid biosyn-
thetic process were top enriched terms of these genes
(Figure 2(b)). For the GO-Cell Component (CC), these
genes were primarily enriched in the endocytic vesicle,
membrane raft, membrane microdomain, and chylomicron
(Figure 2(c)). For the GO-Molecular Function (MF), these
genes were mainly enriched in lipoprotein particle receptor
binding, lipoprotein particle binding, protein–lipid complex
binding, and cholesterol-transported activity (Figure 2(d)).

For the KEGG analysis, these genes were mainly enriched
in the PPAR signaling pathway, cholesterol metabolism, bile
secretion, and fatty acid metabolism (Figure 2(e)).

3.2. Identification of a Prognosis Signature Robustly
Indicating Patients Survival. Then, based on these PPAR target
genes, the univariate Cox regression analysis was utilized to iden-
tify the genes close to patients survival with P < 0:1 (Figure 3(a)).
Subsequently, the LASSO regression analysis was utilized to
screen the optimized variables through data dimension reduction
(Figures 3(b) and 3(c)). Finally, multivariate Cox regression anal-
ysis identified a prognosis signature consisting of eight PPAR
target genes, including APOA5, UGT2B4, TSC22D1, GHITM,
REN, DOCK4, ECH1, and ANGPTL4 (Figure 3(d)). The for-
mula of “Risk score =APOA5×−1.358 +UGT2B4× 1.334
+ TSC22D1 × 0.218 + GHITM × 0.192 + REN × −0.134
+DOCK4× 0.211 +ECH1× 0.228 +ANGPTL4× 0.146” was
utilized to calculate the risk score. The median value of risk
score was used to divide high- and low-risk patients. The
biological enrichment analysis of these model genes was
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Figure 4: Evaluation of the prognosis model. (a) KM and ROC curves of our model in training cohort. (b) KM and ROC curves of our
model in validation cohort. (c) A nomogram was established by combining the risk score and clinical features. (d) Calibration plots.
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shown in Figure S1. Results indicated that for the patients
with high ANGPTL4 expression, the top 3 enriched
pathways were angiogenesis, cholesterol hemoostasis, and
interleukin 6/Janus kinase/signal transducer and activator of
transcription 3 signaling (Figure S1(a)); for the patients with
high APOA5 expression, the top 3 enriched pathways were
V-Ki-ras2 Kirsten ratsarcoma viral oncogene homolog
(KRAS) signaling, spermatogenesis, and pancreatic beta cells
(Figure S1(b)); for the patients with high DOCK4
expression, the top 3 enriched pathways were angiogenesis,
hedgehog signaling, and transforming growth factor-beta
signaling (Figure S1(c)); for the patients with high ECH1
expression, the top 3 enriched pathways were KRAS
signaling DN, E2F targets, and G2M checkpoint
(Figure S1(d)); for the patients with high GHITM expression,
the top 3 enriched pathways were reactive oxygen species
pathway, MYC targets, and cholesterol homeostasis
(Figure S1(e)); for the patients with high REN expression, the
top 3 enriched pathways were estrogen response late, KRAS
signaling, and G2M checkpoint (Figure S1(f)); for the patients
with high TSC22D1 expression, the top 3 enriched pathways
were angiogenesis, hedgehog signaling, and Wnt/β-catenin
signaling (Figure S1(g)); and for the patients with high UGT2B4
expression, the top 3 enriched pathways were epithelial–
mesenchymal transition (EMT), mitotic spindle, and ultraviolet
(UV) response DN (Figure S1(h)).

3.3. Model Evaluation. Our training cohort showed that
patients with a high-risk score may have a worse survival
rate (Figure 4(a)). ROC curves presented a satisfactory
prediction efficiency of our signature on patients survival

(Figure 4(a); the area under the curve (AUC) value of 1-,
3-, and 5-year survival were 0.624, 0.685, and 0.753).
The same result was also observed in the validation cohort
(Figure 4(b); the AUC value of 1-, 3-, and 5-year survival
were 0.665, 0.675, and 0.689). A nomogram was con-
structed by combining the risk score and clinical features
to better predict patients survival (Figure 4(c)). The cali-
bration curve indicated a good fit between the actual and
nomogram-predicted survival (Figure 4(d)).

3.4. Microenvironment Quantification. We next quantified
the cell infiltration of OC patients using multiple algorithms,
including CIBERSORT, EPIC, MCP-counter, quanTIseq,
TIMER, and xCell (Figure 5(a)). Results indicated that the
risk score was positively correlated with neutrophils, macro-
phages, monocyte, myeloid dendritic cells, and endothelial
cells, whereas negatively correlated with B cells and CD8-
positive T-lymphocytes (CD8+ T) cells (Figures 5(b) and
5(c)). Immune function analysis showed that the high-risk
patients might have a lower activity of major histocompati-
bility complex (MHC) class I (Figure 5(d)).

3.5. Evaluation of Immunotherapy and Drug Sensitivity. We
next evaluated the immunotherapy sensitivity differences. The
result indicated a positive correlation between the risk score
and the TIDE score (Figure 6(a), r = 0:207, P < 0:001). Mean-
while, we noticed that the immunotherapy non-responders
might have a higher risk score (Figure 6(b)). Moreover, we
noticed a higher level of immune exclusion and Carcinoma-
associated fibroblasts (CAFs) infiltration in high-risk patients
(Figure 6(c)). Drug sensitivity analysis indicated that high-risk
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Figure 5: Immune microenvironment difference between high and low risk patients. (a) The tumor microenvironment of OC was
quantified using the multiple algorithm. (b and c) Correlation between risk score and quantified cells. (d) The level of immune function
in high- and low-risk patients.
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patients might respond better to bleomycin, nilotinib, pazopa-
nib, pyrimethamine, and vinorelbine, yet resistant to cisplatin
and gefitinib (Figures 6(d), 6(e), 6(f), 6(g), 6(h), 6(i), 6(j), 6(k),
6(l), 6(m), 6(n), 6(o), 6(p), 6(q), 6(r), and 6(s)).

3.6. Biological Enrichment Analysis. The GSEA analysis
based on the Hallmark gene set indicated that the pathways
of EMT, myogenesis, KRAS signaling, apical junction, and
inflammatory response were activated in high-risk patients
(Figure 7(a)). The GSEA analysis based on the GO gene set
showed that the terms of external encapsulating structure
organization, forebrain development, and muscle system
process were activated (Figure 7(b)).

3.7. Further Investigation of ECH1. The ECH1 was then
selected for further analysis. Although not statistically signif-
icant, considering the significant difference between KM
curves, we believed that the patients with high ECH1 tend
to have a worse prognosis (Figures 8(a), 8(b), and 8(c)).
Immune infiltration analysis showed that ECH1 was posi-
tively correlated with Th2 cells, yet negatively correlated with
T helper cell 17 (Th17) cells, CD8+ T cells, plasmacytoid DC
(pDC), Central Memory T cell (Tcm), and CD56dim NK
cells (Figure 8(d)). GSEA analysis indicated that the top 3
pathways ECH1 was involved in were E2F targets, G2M
checkpoints, and estrogen response late (Figures 8(e), 8(f),
and 8(g)).
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4. Discussion

OC remains the primary threat to women’s health globally
[21]. OC often occurs in perimenopausal women. Due to
the lack of early symptoms and effective diagnostic
methods, the mortality of OC ranks first among gynecolog-
ical malignancies [22]. Moreover, the recurrence of OC can
be considered a fatal chronic disease with limited treat-
ment. Therefore, exploring its internal mechanism from a
molecular perspective can effectively promotes the clinical
application of OC.

The development of bioinformatics provides us with an
opportunity to deeply understand the mechanism of disease
[23]. In our study, we comprehensively investigated the
PPAR target genes in OC, including their biological role.
Meanwhile, a prognosis signature consisting of eight PPAR
target genes was established, including APOA5, UGT2B4,
TSC22D1, GHITM, REN, DOCK4, ECH1, and ANGPTL4.
A nomogram was constructed by combining the clinical fea-
ture and risk score. Immune infiltration and biological
enrichment analysis were applied to investigate the differ-
ence between high- and low-risk patients. Immunotherapy
and drug sensitivity analysis were then conducted. Further-
more, the gene ECH1 was selected for further analysis.

Our prognosis signature consists of eight PPAR genes,
including APOA5, UGT2B4, TSC22D1, GHITM, REN,
DOCK4, ECH1, and ANGPTL4. Some studies have explored
their role in cancers. For instance, the polymorphisms of
UGT2B4 were reported to be associated with pancreatic can-
cer, breast cancer, and esophageal cancer [24–26]. In breast
cancer, Meijer et al. found that the TSC22D1 could predict
the clinical outcome of patients treated with tamoxifen
[27]. Zhao et al. noticed that DOCK4 is a biomarker indicat-
ing the prognosis and sensitivity to platinum [28]. Kobaya-
shi et al. revealed that the complex formed by DOCK4 and
SH3YL1 could induce Rac1 activation and promote cell

migration [29]. Zhang et al. found that ECH1 is an effective
inhibitor for lymphatic metastasis of liver cancer [30]. Hui
et al. noticed that the long non-coding RNA (lncRNA)
AGAP2-AS1 induced by RREB1 could affect the malignant
behaviors of pancreatic cancer by suppressing the ankyrin
repeat domain 1 and ANGPTL4 [31]. Our results present
the role of these genes in OC, which can provide direction
for future studies.

GSEA analysis indicated that the pathways of the inflam-
matory response, EMT, myogenesis, and KRAS signaling
were activated in high-risk patients. Liang et al. indicated
that in OC, by competitively binding miR-101-3p, lncRNA
PTAR promotes EMT and invasion-metastasis [32]. Wu
et al. showed that ST3GAL1 could facilitate OC cancer pro-
gression through EMT signaling [33]. Kim et al. indicated
that the silence of the KRAS gene could indicate a novel
treatment strategy for OC [34]. Our result indicated that
the poor prognosis of high-risk patients might be due to
the abnormal activation of these pathways.

Results indicated that the risk score was positively corre-
lated with neutrophils, macrophages, monocyte, myeloid
dendritic cells, and endothelial cells, whereas negatively cor-
related with B cells and CD8+ T cells. Endothelial cells could
promote angiogenesis in the tumor microenvironment,
which is a key factor in tumor metastasis [35]. In OC, Li
et al. found that the chemoresistant OC cells could promote
angiogenesis through exosome manners [36]. Macrophages
have also been found to exert an important role in OC. For
example, Song et al. noticed that the ubiquitin protein ligase
E3 component n-recognin 5 derived from the immunosup-
pressive macrophages could facilitate the OC progression
[37]. Zeng et al. demonstrated that the EGF secreted by the
M2 macrophages could enhance OC metastasis by activating
epidermal growth factor receptor–extracellular regulated
protein kinases signaling and inhibiting the expression of
lncRNA LIMIT [38]. Muthuswamy et al. noticed that the
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CXCR6 could promote immunosurveillance and control in
the OC microenvironment through increasing the retention
of memory CD8+ T cells [39]. Our results indicated that the
diverse immune cell infiltration pattern can be partly
responsible for the difference in prognosis.

ECH1was selected for our further analysis. Previous stud-
ies have shown its role in cancers. Zhang et al. revealed that
ECH1 is a potent inhibitor in the process of lymphatic metas-
tasis in liver cancer [30]. Dai et al. found that the ECH1 and
HNRNPA2B1 could be a biomarkers for the early diagnosis
of lung cancer [40]. Our study illustrated the role of ECH1
in OC, which could provide direction for follow-up research.

Some limitations should be noticed. First, since most of
the patients included are from Western populations, this
study is inevitably affected by race bias. Second, the results
of bioinformatics can not directly reflect the real biological
role. Consequently, further biological validation is necessary
for the future.
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Background. The Nuclear protein 1 gene was first discovered in acute pancreatitis and functions as an oncogene in cancer
progression and drug resistance. However, the role of Nuclear protein 1 in bladder transitional cell carcinoma (BTCC) is still
unclear. Methods. The Cancer Genome Atlas database and immunohistochemical analysis were adopted to evaluate Nuclear
protein 1 expression in BTCC. We applied lentivirus-mediated small-interfering RNA to down-regulate the expression of
Nuclear protein 1 in BTCC cell lines. We further performed an Affymetrix microarray and Gene Set Enrichment Analysis
(GSEA) to assess the genes and signaling pathways related to Nuclear protein 1. Results. We found that Nuclear protein 1
expression was up-regulated in BTCC and positively related to the degree of BTCC malignancy. Compared with Caucasian
patients with BTCC, Nuclear protein 1 expression was attenuated in Asian patients. The Affymetrix microarray showed that
lipopolysaccharide was the upstream regulatory factor of Nuclear protein 1 in BTCC. The GSEA indicated that Nuclear protein
1 expression was associated with signaling pathways in cancer, peroxisome proliferator-activated receptor (PPAR) pathways,
and RNA degradation. The expression of Nuclear protein 1 was negatively correlated with PPARG (R = −0:290, P < 0:001), but
not with PPARA (R = 0:047, P = 0:344) and PPARD (R = −0:055, P = 0:260). Conclusions. The study findings indicate that
Nuclear protein 1 is positively associated with the malignancy degree of BTCC and that Nuclear protein 1 expression is
negatively correlated with PPARG.

1. Introduction

Bladder transitional cell carcinoma (BTCC) is one of the
most common malignancies of the urinary system. In the
United States, 61,700 new cases of BTCC in men and
19,480 new cases in women were estimated in 2022. A total
of 12,120 men and 4,980 women died in the same year as a
result of BTCC [1]. BTCC is also one of the five most com-
mon malignancies in the United States. Given its high recur-
rence rate, BTCC remains one of the most expensive
malignancies to treat [2]. With about 550,000 new patients
each year, BTCC is one of the 10 most common malignan-
cies worldwide. Currently, developed communities have
the heaviest burden of BTCC [3], and hence, strategies are
required for the prevention and control of BTCC and to alle-
viate the exorbitant burden on the society and economy. The
gradual understanding of urinary biomarkers in BTCC has

facilitated the employment of non-invasive biomarkers to
replenish urine cytology. However, none is effective enough
when performed alone, and pathology remains to be the gold
standard method to detect and diagnose BTCC [4].

The Nuclear protein 1 (also named Com-1) is a gene
strongly up-regulated in the acute stage of pancreatitis. The
Nuclear protein 1 mRNA is activated in response to a variety
of stress responses, and its activation is not limited to pan-
creatic cells. Restoration of Nuclear protein 1 expression in
transformed fibroblasts results in the formation of carci-
noma, suggesting that the expression of Nuclear protein 1
is essential for tumor development [5, 6]. The Nuclear pro-
tein 1 is a protein associated with a high-migration subgroup
of transcriptional regulatory proteins and plays a hinge role
in cellular stress response and metastasis [7]. The CAAT-
enhancer binding protein (C/EBP) is a cis-acting element
at the nucleotide −111 position of Nuclear protein 1 and
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can facilitate the transcription of the Nuclear protein 1 gene
in mice [8]. The anomalous expression of Nuclear protein 1
in many benign disorders can cause renal mesangial cell
hypertrophy, cardiac fibrosis, and higher autophagy [9–11].
Additionally, as a transcription regulator, Nuclear protein 1
can participate in DNA damage response, cell cycle, apopto-
sis, and chromatin remodeling in response to chemothera-
peutic resistance in carcinoma [12]. Understanding the
regulation of multifaceted functions of Nuclear protein 1
can provide new insights, which could help in the creation
of new therapies for cancer and other pathologies [13].
Moreover, conclusions from existing in vitro studies may
not be in line with those from in vivo studies [14].

Initially, Nuclear protein 1 was thought to regulate pan-
creatic cancer cell growth through growth suppression-
related pathways and the inhibition of cell growth promot-
ing factors [15]. To a certain extent, Nuclear protein 1
adjusts the migration, invasion, and adhesion of pancreatic
cancer cells through cytoskeletal regulatory factors [16].
Results from breast cancer studies revealed that Nuclear pro-
tein 1 interacts with p53 to up-regulate the anti-apoptotic
protein Bcl-2, giving breast epithelial cells an advantage in
growth and survival [17]. As a transcriptional co-regulator,
Nuclear protein 1 plays a key role in the endocrine therapy
of breast cancer, thus representing a sensitive therapeutic
target for the study of endocrine resistance of breast cancer
[18]. In vitro studies revealed Nuclear protein 1 to be a
potential tumor suppressor in human prostate cancer, and
that Nuclear protein 1 expression is inversely associated with
prostate cancer aggressiveness and growth [19]. The specific
mechanism of Nuclear protein 1 action in BTCC cells and
tissues remains unclear till date. Therefore, the present study
assessed the expression of Nuclear protein 1 in clinical BTCC
tissues. In addition, the regulatory factors of Nuclear protein
1 and the signaling pathway of their interaction were identi-
fied through functional experiments. Bioinformatic tools
were used to verify Nuclear protein 1-related genes and sig-
naling pathways in BTCC.

2. Materials and Methods

2.1. Study Population. RNA sequencing data and correspond-
ing clinicopathological data of 414 cases of BTCC were
extracted from The Cancer Genome Atlas (TCGA) database.
The baseline data sheet of patients with BTCC who were
enrolled for the study is summarized in Supplemental
Table 1. The specimens collected from these patients were
first examined by pathological examination. Patients who had
received chemotherapy or radiation before operation were
excluded. In addition, we recruited patients with BTCC from
our research center and conducted clinical verification on the
tissue samples of these patients. Changzhou Second People’s
Hospital’s Ethics Committee approved the study protocol.

2.2. Immunohistochemical Analysis. Immunohistochemical
analysis was employed to verify the clinical samples of patients
with BTCC enrolled in our center. The control groups were
derived from cancer-free mucosal tissue from patients with
BTCC. The slices were stained with anti-Nuclear protein 1 anti-
body using standard immunoperoxidase-staining protocols.
Two pathologists were invited to evaluate the tissue sections
and obtain the corresponding staining scores. We indepen-
dently chose five fields of view for each section. The staining
intensity score was recorded as four scales (0–3) according to
the number of immune response cells.

2.3. Cell Culture. We used the human BTCC cell line (5637
Cell Line, Shanghai, China) for functional experiments. This
cell line was cultured in a RPMI-1640 medium (Gibco,
USA). The medium consisted of 10% fetal bovine serum as
well as 100U/mL penicillin and streptomycin. The cells were
stored in a humidified incubator with 5% CO2 at 37

°C.

2.4. Transfection of Lentivirus and Affymetrix Microarray
Analysis. To construct lentivirus with low Nuclear protein 1
expression, we designed the RNA interference sequence (RNAi)
system using a part of Nuclear protein 1 sequence (CCAAGC
TGCAGAATTCAGA). A non-silencing small-interfering RNA
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Figure 1: Association between Nuclear protein 1 expression and clinical manifestation of bladder transitional cell carcinoma (BTCC)
evaluated by TCGA database. (a) The Nuclear protein 1 in high-grade BTCC was enhanced in low-grade BTCC (P < 0:05). (b) The
Nuclear protein 1 was positively associated with the stage of BTCC (P < 0:05).

2 PPAR Research



(siRNA) sequence (TTCTCCGAACGTGTCACGT) was
used as negative control. We employed the PrimeView
Human Gene Expression Array (Affymetrix, Thermo
Fisher Scientific, USA) and conducted gene chip assays to
explore the differential expression profile after Nuclear pro-
tein 1 interference. Total RNA was retrieved from Nuclear
protein 1 interference and control cells. The NanoDrop
2000 (NanoDrop Technologies, Wilmington, USA) was
used to evaluate the quality of the total RNA, and the Gen-
eChip kit (Affymetrix, Thermo Fisher Scientific, USA) was
used to perform gene hybridization, washing, and staining
based on the manufacturer’s instructions. Subsequently,
an ingenuity pathway analysis (IPA) was carried out to
annotate the gene microarray expression profiles.

2.5. Western Blotting. After quantification, the total protein
(<100μg) was mixed with protein marker and buffer. The

buffer was subsequently added into the wells of a sodium
dodecyl sulfate–polyacrylamide gel electrophoresis gel for
electrophoretic separation. Afterwards, we transferred the
samples to a polyvinylidene fluoride membrane, which was
further blocked with 5% skim milk. The Nuclear protein 1
antibody was purchased from Proteintech Group. The BCL-
2, BAX, E-cadherin, vimentin, P21, N-cadherin, cyclin-D1,
C-caspase 3, CDK2, and GAPDH antibodies were bought
from Abcam company. GAPDH was used as the internal
control. The membranes were then incubated with an appro-
priate primary antibody overnight at 4°C. After a thorough
wash, the samples were reacted with a secondary antibody
for 2 hours (20°C). We used the chemiluminescence reagent
(Millipore, USA) to evaluate the protein bands.

2.6. GSEA and Bioinformatic Analyses of Nuclear Protein 1.
We used the Gene Set Enrichment Analysis (GSEA) to
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Figure 2: Expression of Nuclear protein 1 in different subgroups of BTCC. (a) The expression of Nuclear protein 1 was down-regulated in
para-carcinoma tissues (P < 0:001). (b) The Nuclear protein 1 in high-grade BTCC was significantly augmented than that in low-grade
BTCC (P < 0:001). (c) Compared with Caucasian patients with BTCC, the Nuclear protein 1 expression was attenuated in Asian patients.
(d) There was no difference in the expression of Nuclear protein 1 in patients with different ages.
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assess the possible pathways associated with Nuclear pro-
tein 1. A gene set, c2.cp.kegg.v7.1.symbols.gmt, was chosen
as the reference gene set [20]. We adopted the R language

to analyze the clinical data acquired from the TCGA data-
base and applied the Search Tool for the Retrieval of Inter-
action Gene/Proteins (STRING) server to explore the
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Figure 3: Prognosis analysis of Nuclear protein 1 in different stage of BTCC. High Nuclear protein 1 expression had a worse prognosis in
patients with advanced BTCC (c) compared to relatively early cancer (a) and (b). ROC curve of Nuclear protein 1 expression in Asian,
Caucasian, and Black American subgroup was revealed in (d), (e), and (f).
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protein–protein crosstalk of Nuclear protein 1 in Homo
sapiens (https://string-db.org/cgi/input.pl). We then used
the GraphPad Prism software to evaluate the findings of
immunohistochemical analyses. Participants were classified
into two groups according to the Nuclear protein 1 expression.
We employed a prognostic classifier to explore whether the
expression of Nuclear protein 1 influences the clinical out-
comes in patients with BTCC. The rank of differentially
expressed genes associated with Nuclear protein 1 was mea-
sured by R (3.6.3). We applied the predictive receiver operat-
ing characteristic package to create receiver operating

characteristic (ROC) curves, and multivariate Cox analysis
was used to evaluate the influence of Nuclear protein 1 expres-
sion on prognosis. We employed the University of ALabama
at Birmingham CANcer data analysis Portal (http://ualcan
.path.uab.edu/analysis.html) to explore the expression profile
of PPARG in bladder cancer. The influence of different
PPARG expression levels on overall survival and disease-free
survival time was investigated by Gene Expression Profiling
Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/
index.html) database. We further used a correlation chord
diagram to outline the degree of correlation between Nuclear

(d)

Figure 4: The relative regulatory molecules of Nuclear protein 1 evaluated by microarray. We used gene chip to explore the expression
profile of relative molecules after Nuclear protein 1 interference. Cluster map panoramic display of differential molecule distribution was
indicated in (a). Among them, one of the most up-regulated molecules was lipopolysaccharide (c). Network diagram of
lipopolysaccharide was shown in (b). The downstream path network diagram with significant changes was deprived in (d).
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protein 1, PPARG, PPARA, and PPARD. The nomogram
chart was based on multivariate regression analysis. Statistical
significance was set at P < 0:05.

3. Results

3.1. Expression of Nuclear Protein 1 in Clinical Tissue of
BTCC. The TCGA database was employed to demonstrate
the association between Nuclear protein 1 and clinical traits
of BTCC. The expression of Nuclear protein 1 in high-
grade BTCC was higher than that in low-grade BTCC
(Figure 1(a), P < 0:05). Moreover, Nuclear protein 1 expres-
sion was positively associated with the clinical stage of BTCC
(Figure 1(b), P < 0:05). Further, the tissues collected from
patients with BTCC were subjected to immunohistochemi-
cal analysis of Nuclear protein 1. Our results provide evi-
dence that Nuclear protein 1 is down-regulated in para-
carcinoma tissues (Figure 2(a), P < 0:001). Furthermore,
Nuclear protein 1 expression in high-grade BTCC was signif-
icantly augmented compared to that in low-grade BTCC
(Figure 2(b), P < 0:001).

3.2. Nuclear Protein 1 Expression in Different Subgroups of
BTCC. We further utilized the R language to explore the
expression of Nuclear protein 1 in different subgroups of
BTCC. Details of the Nuclear protein 1 expression in differ-
ent ethnic groups were summarized in Supplemental
Table 1. The logistic regression model was used to analyze
the odds ratio (OR) in different subgroups of BTCC
(Supplemental Table 2). Compared with Caucasian patients
with BTCC, Nuclear protein 1 expression was attenuated in
Asian patients (Figure 2(c), P < 0:001). No difference was
observed in the expression of Nuclear protein 1 among patients
with different ages (Figure 2(d), P > 0:05). Additionally, we

analyzed the prognosis potential of Nuclear protein 1 in different
stages of BTCC. High Nuclear protein 1 expression had a worse
prognosis in patients with advanced BTCC (Figure 3(c))
compared with patients with relatively early cancer (Figures 3(a)
and 3(b)). The ROC curves of Nuclear protein 1 expression in
Asian, Caucasian, and Black American subgroups are shown in
Figures 3(d), 3(e), and 3(f).

3.3. Investigation of the Relative Regulatory Molecules of
Nuclear Protein 1 via Microarray. We used Affymetrix
microarray assays to explore the expression profiles of rela-
tive molecules after RNAi silencing of Nuclear protein 1.
The heat maps of hierarchical clustering of the two groups
of samples of KD and normal control (NC) were selected
by using the expression profiles of differential genes screened
according to the criteria of fold change ≥1.5 and false discov-
ery rate (FDR) <0.05. The cluster panoramic map of differ-
ential molecule distribution is shown in Figure 4(a). The
tree structure indicated the aggregation of the expression
patterns of different genes: red represented that the expres-
sion of genes was relatively up-regulated, green represented
that the expression of genes was relatively down-regulated,
and black indicated no significant change in gene expression.
One of the most up-regulated molecules was lipopolysaccha-
ride (Figure 4(c)). Figure 4(b) shows the network diagram of
lipopolysaccharide, and Figure 4(d) shows the downstream
path network diagram with significant changes.

3.4. Identification of Nuclear Protein 1-Related Proteins. We
used western blotting to explore the downstream proteins
after Nuclear protein 1 interference. In the Nuclear protein
1 interference group, key proteins in apoptosis (BCL-2), cell
cycle (cyclin-D1, CDK2), and Epithelial–Mesenchymal Tran-
sition (EMT) (vimentin, N-cadherin) were all diminished
(P < 0:05, Figure 5). We applied the STRING database to dem-
onstrate more related proteins associated with Nuclear protein
1, indicating that more than 30 proteins were involved in the
correlation with Nuclear protein 1 (Figure 6(a)). In addition,
peroxisome proliferator-activated receptor γ (PPARG) was
found to be associated with Nuclear protein 1 (Figure 6(b)).

3.5. GSEA and Bioinformatic Analyses of Nuclear Protein 1-
Related Signaling Pathways. In order to verify whether the
PPAR signaling pathway is associated with Nuclear protein
1 expression, we employed GSEA to investigate the signaling
pathways associated with Nuclear protein 1. Results from the
GSEA revealed that the signaling pathways in cancer
(Figure 7(a)) were associated with the expression of Nuclear
protein 1, especially for BTCC (Figure 7(b)). The PPAR
(Figure 7(c)) signaling pathway and RNA degradation
(Figure 7(d)) were associated with high Nuclear protein 1
expression. We further utilized the R language to explore
the differentially expressed genes associated with Nuclear
protein 1. Figure 8(a) shows the correlations between
Nuclear protein 1 and PPARA, PPARD, and PPARG. The
Nuclear protein 1 expression was significantly correlated
with PPARG in BTCC (Figure 8(b)). The correlation chord
diagram of Nuclear protein 1, PPARG, PPARA, and PPARD
was shown in Figure 8(c). Furthermore, we employed

BAX

BCL-2
NC shNUPR1

E-CAD

N-CAD

Cyclin-D1

C-Caspase 3

CDK2

GAPDH

Vimentin

P21

Figure 5: Verification of downstream proteins after Nuclear protein 1
interference investigated by western blotting. In Nuclear protein 1
interference group, key proteins in apoptosis (BCL-2), cell cycle
(cyclin-D1, CDK2), and epithelial–mesenchymal transformation
(vimentin, N-cadherin) were all diminished (P < 0:05).

9PPAR Research



bioinformatic analysis to investigate the association between
Nuclear protein 1 expression and PPAR signaling pathway-
related genes, including PPARA, PPARD, and PPARG.
The expression of Nuclear protein 1 was negatively corre-
lated with PPARG (R = −0:290, P < 0:001, Figure 9(c)), but
not with PPARA (R = 0:047, P = 0:344, Figure 9(a)) and
PPARD (R = −0:055, P = 0:260, Figure 9(b)). Prognosis

nomogram chart shows that low PPARG expression is an
independent risk factor for the prognosis of BTCC
(Figure 10). We further assessed the expression of PPARG
in different stage of bladder cancer patients. The expression
of PPARG was augmented in patients with early stage blad-
der cancer (Figure 11(a)). Patients with lower PPARG
expression had shorter overall survival time than those with

(a)

(b)

Figure 6: The crosstalk of Nuclear protein 1 investigated by bioinformatic tools. The STRING database indicated that more than 30 proteins
were involved in the correlation with Nuclear protein 1 (a). PPARG was also the associated gene with Nuclear protein 1 (b).
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higher expression (P < 0:05, Figure 11(b)). No significant
difference was revealed for disease-free survival time
(P > 0:05, Figure 11(c)).

4. Discussion

Malignant tumors are still the major diseases that threaten and
shorten human life span. Scientists are trying to understand
the causes and pathogenesis of cancer, but the results are still
not satisfactory [21–24]. Previous retrospective studies have
found that different molecular subtypes of BTCC patients

show different responses to targeted therapy and different
prognoses [25]. The discovery of new genes related to predict-
ing the prognosis of BTCC can provide guidance for the
immune microenvironment, lifetime, and chemotherapy
responses of patients with BTCC [26]. In this study, we evalu-
ated the expression of Nuclear protein 1 in the tissues of
patients with BTCC from the online database and those
enrolled at our center. At the same time, lentivirus-mediated
siRNA method was adopted to silence the expression of
Nuclear protein 1 in human BTCC cell lines. We further
explored the effect of Nuclear protein 1 on the biological

Figure 7: Nuclear protein 1 is associated with PPAR signaling pathway by Gene Set Enrichment Analysis (GSEA). Results from the GSEA
revealed that the signaling pathways in cancer (a) were associated with the expression of Nuclear protein 1, especially for BTCC (b). The
PPAR (c) signaling pathway and RNA degradation (d) were correlated with a high expression of Nuclear protein 1.
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behavior of BTCC by functional experiments. We anticipate
that our findings will offer a new guidance strategy for the
early diagnosis and drug therapy of BTCC through investigat-
ing the biological function of Nuclear protein 1 in BTCC.

Biomarkers associated with inflammation and immune
activation may help to assess the risk of BTCC. Despite the
lack of specificity at present, it would be helpful to predict

the routine clinical and pathological prognosis of BTCC in
the future. These biomarkers are also expected to improve
the outcomes of patients with BTCC. Studies of prognostic
models for BTCC patients have shown that many predictive
models are promising to improve treatment decisions for
BTCC patients. Although many models have not been con-
firmed in the BTCC patient cohort, some studies have tested
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Figure 9: The correlation between Nuclear protein 1 and PPARA, PPARD, PPARG. Bioinformatic analysis revealed that the expression of
Nuclear protein 1 was negatively correlated with PPARG (R = −0:290, P < 0:001, (c)), but not with PPARA (R = 0:047, P = 0:344, (a)) and
PPARD (R = −0:055, P = 0:260, (b)).
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the clinical utility of these models and improved the ability
to make clinical decisions. The role of inflammation in
BTCC has recently been demonstrated, providing insight
into the clinical significance of inflammation in preventing
the development and progression of BTCC [27–29]. Because
BTCC is associated with inflammation, Nuclear protein 1,
which plays an important role in acute inflammation, may
also be associated with the development of BTCC. Hence,
it is necessary to investigate the underlying mechanism of
these inflammatory factors in malignant tumors to explore
the molecular mechanism of drug resistance in cancer cells
and provide strategies for the development of effective tar-
gets for tumor therapy [30, 31]. The Nuclear protein 1 par-
ticipates in numerous malignancy-related processes,
including regulation of the cell proliferation, apoptosis,
ferroptosis, auto-lysosomal efflux, drug resistance, tumor
metastasis, and autophagic-associated cell death [32–38].

Nevertheless, the molecular mechanism of Nuclear protein
1 in carcinomas has not been clarified. Nuclear protein 1
dysregulation has been reported in several malignancies,
including breast, pancreatic, lung, prostate, and colorectal
cancer, as well as glioma [39–44].

To explore the biological function of Nuclear protein 1 in
BTCC, we first used an online database to assess the expres-
sion of Nuclear protein 1, which was then verified by clinical
samples from our centers. We found that Nuclear protein 1
in high-grade BTCC was augmented in low-grade BTCC.
Moreover, Nuclear protein 1 was positively associated with
BTCC stage. Compared with Caucasian patients with
BTCC, the Nuclear protein 1 expression was attenuated in
Asian patients. No difference was observed in the expres-
sion of Nuclear protein 1 in patients with different ages.
In Nuclear protein 1 interference group, key proteins in
apoptosis (BCL-2), cell cycle (cyclin-D1, CDK2), and
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Figure 11: Expression of PPARG in different stage of bladder cancer patients. The expression of PPARG was augmented in patients with
early stage bladder cancer (a). Expression of PPARG was diminished in patients with more advanced bladder cancer. Patients with lower
PPARG expression had shorter overall survival time than those with higher expression (P < 0:05, (b)). No significant difference was
revealed for disease-free survival time (P > 0:05, (c)).
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epithelial–mesenchymal transformation (vimentin, N-cad-
herin) were all diminished. Furthermore, we carried out
the Affymetrix microarray to explore the relative regulatory
molecules and signaling pathways associated with Nuclear
protein 1 in BTCC. Based on the results, lipopolysaccharide
was the upstream regulatory factor of Nuclear protein 1 in
BTCC. The results of the present study were in line with
those of a previous study conducted by Vasseur et al.
[45]. In vivo and in vitro experiments on the pancreas have
confirmed that the mRNA expression of Nuclear protein 1
can be induced by lipopolysaccharides [46]. Results from
Nuclear protein 1-knockout in mice showed that Nuclear pro-
tein 1 deficiency hinders normal tissue response to lipopolysac-
charides [45]. Prognosis nomogram chart shows that low
PPARG expression is an independent risk factor for the prog-
nosis of BTCC. Results from TCGA samples revealed that the
expression of PPARG was augmented in patients with early
stage bladder cancer and was attenuated in those with more
advanced bladder cancer, which is in line with the result from
prognosis nomogram chart. Although our previous studies
revealed that Nuclear protein 1 acts as an oncogene in bladder
cancer, and the carcinogenic role may be achieved through
EMT [47], the crosstalk of Nuclear protein 1 and PPARG in
bladder cancer has not been fully elucidated. Previous litera-
ture has shown that PPARG, as a nuclear receptor, is attenu-
ated in basic bladder cancer with muscle invasive, but over-
expressed in non-muscle invasive luminal bladder cancer
[48]. Additionally, evidence from in vivo studies showed the
PPARG dependency of bladder urothelial carcinoma and
PPARG promotes bladder cancer progression through Sonic
Hedgehog signaling-related cellular autonomic mechanisms
[49]. In the current study, we found that the PPAR signaling
pathway and RNA degradation were correlated with a high
expression of Nuclear protein 1. Bioinformatic analysis
revealed that the expression of Nuclear protein 1 was nega-
tively correlated with PPARG, but not with PPARA and
PPARD. The expression of PPARG was augmented in
patients with early stage bladder cancer. Patients with lower
PPARG expression had shorter overall survival time than
those with higher expression. There are some limitations that
need to be mentioned. First, we found that lipopolysaccharide
is the upstream regulatory factor of Nuclear protein 1; how-
ever, the specific regulatory mechanisms of lipopolysaccha-
rides and Nuclear protein 1 in BTCC tissues were warranted
to be further elucidated by more functional experiments. Sec-
ond, it is reasonable to assess the Nuclear protein 1 expression
in BTCC patients before and after chemotherapy. Neverthe-
less, due to lack of patients’ authorization, we are unable to
deal with it at this time. Third, further experiments are
needed to confirm the molecular mechanism of Nuclear pro-
tein 1 and PPARG in BTCC in more details.

5. Conclusion

The results of the current study indicate that Nuclear protein
1 is positively associated with the malignancy degree of
BTCC. Compared with Caucasian patients with BTCC, the
Nuclear protein 1 expression is attenuated in Asian patients.
The Affymetrix microarray showed that lipopolysaccharide

is the upstream regulatory factor of Nuclear protein 1 in
BTCC. The expression of Nuclear protein 1 is associated with
PPAR pathways, and Nuclear protein 1 expression is nega-
tively correlated with PPARG.
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