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Coherent states, where a macroscopic system of many
quantum particles exhibits properties of a single quantum
particle, have been a topic of intense investigations in physics.
The formation of such states is usually accompanied by
and experimentally indicated by dissipationless transport of
mass, charge, or spin.

Excitonic condensation occurs when an electron-hole
system develops spontaneous coherence between the electron
and hole bands. This effect, predicting the coherent state
of electron-hole pairs, has led to a deeper theoretical
understanding of condensates with metastable particles.
Over the past two decades, this field has seen tremendous
experimental developments, starting with the development
of spatially separated electron and hole quantum wells, which
increased the exciton lifetime by orders of magnitude. The
increased exciton lifetime, in turn, has led to a detailed
exploration of electrical transport, drag, and photolumi-
nescence properties in such double quantum well systems.
These systems have been traditionally fabricated using
semiconductor heterojunctions; however, recently, graphene
and topological insulators have emerged as promising new
candidates as well.

The goal of this special issue is to review the recent
theoretical and experimental developments on coherent
states in such systems. With the rapid progress in fabrication
techniques, it is possible to study coherent states with
multiple broken symmetries. Thus, this issue starts with the
state of experimental efforts on excitonic condensation in
semiconductor quantum wells that are doped or optically
pumped. It is followed by theoretical analyses of excitonic
condensation in bilayer quantum Hall systems. The last

paper extends the discussion on coherent states in graphene
double layers.
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Experiments aimed at demonstrating Bose-Einstein condensation of excitons in two types of experiments with bilayer structures
(coupled quantum wells) are reviewed, with an emphasis on the basic effects. Bose-Einstein condensation implies the existence of
a macroscopic coherence, also known as off-diagonal long-range order, and proposed tests and past claims for coherence in these
excitonic systems are discussed.

1. Introduction: Two Types of Bilayer Excitons

Condensates of electron pairs have long been known as the
basis of superconductivity [1]. In superconductors, two spin-
1/2 electrons bind into a Cooper pair, which is a boson. These
bosons then undergo a type of Bose-Einstein condensation,
in which a macroscopic number of the Cooper pairs enter
a single wave function (see, e.g., [2, Section 11.2.3]). In
principle, the same thing should be possible with pair
states made of electrons and holes instead of two electrons.
In this case, the attraction between the fermions is not
a phonon-mediated effect, but the Coulomb attraction
between particles with positive and negative charge.

In the past two decades, a number of experiments have
focused on demonstrating Bose condensation in this type
of system [3–5]. One version is the well-known polariton
condensates [6], which have several dramatic effects of
the condensation. The polaritons have very short lifetime,
however. Although this makes them quite interesting for
experiments with optical coupling, it also means that the
polariton condensates are never in complete equilibrium.
Another set of experiments, which we will review here,
has focused on creating excitons that are either stable or
metastable. These experiments are based on semiconductor
structures with two coupled, parallel quantum wells.

There are two versions of this system, with important
similarities and differences. In the first system [7, 8], which

we will call Type A, two quantum wells are created parallel to
each other with a thin barrier in between. Doping is used
to create a permanent population of free electrons shared
by the two wells. A DC magnetic field is then generated
perpendicular to the wells, to create Landau levels. When the
magnetic field and free electron density are tuned to the right
values, the lowest Landau level in each quantum well will be
half filled. One can visualize each of these levels as half full
of electrons and half full of holes. Because the wells are near
enough to each other for the Coulomb force to be significant,
the electrons and holes in different wells will be correlated at
low-temperature. The state of the system can be described as
excitons, as shown in Figure 1(a). In this case, the excitons
are not generated optically by taking an electron from the
valence band to the conduction band; instead, the excitons in
this system are generated by imagining that we start with one
well with a full Landau level and the other with a completely
empty Landau level, then an electron from the full Landau
level tunnels through the barrier to the empty Landau level
in the other well. Since the state in which each well has a
half-filled Landau level is the ground state of the system, the
excitons created this way are stable.

The second type of system, which we will call Type B,
also uses two parallel quantum wells. In this case there is not
normally a magnetic field (though one can be added); instead
there is an electric field perpendicular to the wells. Free
electrons and holes are generated optically and then move
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into adjacent wells under the influence of the electric field, as
shown in Figure 1(b). These excitons are known as “spatially
indirect” excitons, or simply “indirect” excitons. In general,
all excitons created by optical excitation are metastable and
can decay, but if the applied electric field is high enough,
the spatially indirect excitons created this way can have very
long lifetime, since the lifetime increases exponentially with
increasing electric field [9]. In recent experiments, exciton
lifetimes up to 40 μs have been measured [10, 11], but much
longer lifetime is possible; the main reason for not making
the lifetime infinite is to use the optical emission to measure
properties of the exciton gas. It is also possible [12, 13] to
generate indirect excitons by injecting holes from a p-doped
region on one side of the structure and electrons from an n-
doped region on the opposite side. An analogous system has
also been proposed for graphene bilayers [14–16].

There are several important differences between these
two types of exciton systems.

1.1. Exciton Density and Disorder. The excitons in the Type B
system can be generated with densities ranging from very low
to very high, where high-density is defined as na2 > 1, with
n the area density and a the radius of the exciton, that is, the
electron-hole correlation length. The exciton density in this
case is directly controlled by the intensity of the pump laser
which generates the free electron and holes, or the amount of
current, if p-n current generation is used.

In the low-density limit, the excitons can act as a dilute
Bose gas, with the critical temperature for Bose-Einstein
condensation increasing with increasing density. In the high-
density regime, a condensate of excitons will be in the BCS
limit, with critical temperature for condensation decreasing
with increasing density. (For a review see [17]; see also [3,
Section 10.3]). This limit was studied theoretically already in
the 1970s under the name of the “excitonic insulator.” It is
still proper to talk about bosonic electron-hole pairs and a
condensate in this limit, because there is still a weak binding
between the electrons and holes.

The excitons in the Type A system are always in this
high-density regime. In principle, one could make a dilute
exciton gas in this system by having one well keep most of
the electrons and the other well have a nearly empty Landau
level. The fraction of electrons in each well can be controlled
by an electric field perpendicular to the wells. However, the
experiments show that when the imbalance is more than a
small fraction, the pairing of the carriers is destroyed. In
the BCS-like state with nearly equal numbers of electrons
and holes in each well, the binding energy of the excitons
in the high-density limit is very weak due to the screening
of the Coulomb interaction, which implies very low critical
temperature; typical temperatures for these experiments are
in the milliKelvin range.

When disorder in the wells is taken into account,
there is an advantage to working in this high-density, low-
temperature regime. Typical disorder fluctuations in the
GaAs samples used for these experiments are a fraction of
a meV. One meV corresponds to 10 K. If the excitons are at
low density and low-temperature, they will simply fall into

d B
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Figure 1: (a) Schematic representaion of the electrons and holes
in a Type A bilayer system. (b) Schematic representaion of the
electrons and holes in a Type B bilayer system.

local minima in the disorder potential, below the so-called
“mobility edge.” In this case they will no longer act as a gas;
instead they will act as an ensemble of pinned particles. This
limit has been seen in experiments in which the diffusion
constant of the excitons in a Type B structure was measured
optically; at low density the diffusion constant became nearly
zero [18].

A high-density, the electrons and holes will each form a
Fermi level that can be larger than the disorder fluctuations.
In this case the effect of the disorder potential will be washed
out and the electron and hole states will be extended states.
Because the disorder fluctuations are a nonnegligible fraction
of the exciton Rydberg energy (typical intrinsic exciton-
binding energies are 4 meV or so in these structures), there
is not much room to increase the density above this point
before hitting the high-density regime where na2 ∼ 1. As
discussed in Section 2.5.4 of [2], the condition na2 ∼ 1
is equivalent to the condition EF � Ryex, where Ryex =
e2/4πεa is the intrinsic two-dimensional exciton-binding
energy and a � 4π�2ε/e2μ is the intrinsic excitonic Bohr
radius, with ε the dielectric permittivity of the medium
and μ the reduced mass of the electron and hole. As noted
above, being in the high-density regime does not prevent
condensation, but it reduces the critical temperature, as the
condensate looks more and more like a BCS state with pair
binding energy small compared to the Fermi energy.

The effect of the disorder is substantially reduced in wider
quantum wells [10], but if the wells are too wide, the intrinsic
binding energy of the excitons will be reduced too much,
because the binding energy depends on the distance between
the electrons and holes [9]. The optimum well width for
GaAs-based structures appears to be around 15 nm.

1.2. Tunneling Current and Recombination. Another signif-
icant difference between the Type A and Type B systems is
the role of tunneling current. In the Type A system, there
is normally no bias normal to the plane of the wells to
drive current from one to the other; in-plane electrical bias
is used, however, to drive an in-plane current within each
well. In the Type B system, a large electric field normal to
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the plane of the wells is used to enforce the separation of the
electrons and holes into different wells. This will always lead
to some current through the barriers. Tunneling from one
well to the other is responsible for the creation of the spatially
indirect excitons, but stops once the excitons are formed.
The electric field normal to the wells also creates tunneling
current into the wells from outside, however, from carriers
from the doped substrate and the doped capping layer of the
structure. This can be suppressed by various methods, but
can still play a large role in the temperature of the excitons,
since carriers tunneling in from the substrate and capping
layer will be very hot compared to the lattice, up to hundreds
of degrees [18].

A perpendicular magnetic field acts to suppress this
tunneling current, since the Landau orbits of the free carriers
inhibit them from finding weak spots in the outer barriers
to tunnel through [19]. In general, when there is not a
magnetic field, the tunneling current through barriers in
semiconductor heterostructures is not uniform; since the
current is exponentially sensitive to the barrier thickness
and alloy content, tiny regions with slightly thinner barrier
or lower barrier height will attract most of the current, in
“filaments” which have been seen dramatically in several
experiments [20]. A magnetic field suppresses these filaments
by forcing the carriers into large Landau orbits which average
over the disorder.

2. Coherence in Exciton Condensates

Figure 2 gives the general structure of the phase diagram
for a system with equal number of electrons and holes (or
any system with equal numbers of equal-mass, opposite-sign
fermions), when disorder is negligible. Since there is actually
much confusion about both the terminology and the physics,
it is worthwhile to take some time to discuss this phase
diagram.

The solid line is the phase boundary for BEC in the
dilute limit. This is nominally given by the condition that
the thermal deBroglie wavelength λ of the particles be
comparable to the average distance between them, rs, which
goes as n−1/2 in two dimensions. Since λ ∝

√
�2/mkBT,

the condition λ ∼ rs implies that the critical temperature
for the transition is proportional to n. (Strong interactions
and correlations of the excitons can substantially affect this
estimate [21].)

A separate transition is the exciton-plasma phase tran-
sition, indicated by the thin solid line in Figure 2. This
is sometimes called the “Mott” transition, but it is not
the same as the condition na2 ∼ 1. The exciton-plasma
phase transition, or ionization transition, actually has a quite
complicated structure that depends on the details of the
exciton-exciton and exciton-free carrier collisions and on
the screening of the Coulomb interaction by free carriers
[22–25]. (“Ionization” here refers to dissociation of the
electron and hole from each other, not ionization of the
underlying atoms.) There is still much debate about the form
of this phase boundary. In general terms, we can say that
in the high-density regime, we expect a critical temperature

Free exciton gas

BCS = EI

FE

BEC

lo
g
T

logn

Ionization EHP

Figure 2: General structure of the phase diagram of an electron-
hole system. FE: free excitons; EHP: electron-hole plasma; BEC:
Bose-Einstein condensate of excitons; EI: exciton insulator state,
which is a BCS-like state with a Fermi level for the electrons and
for the holes. The transition from BEC to BCS may be gradual. At
high pair density n, decreasing the temperature gives one critical Tc
in which both pairing and condensation occur, in the EI (BCS-like)
state. At lower density, there can be two critical temperatures: one
for pairing and a second for condensation.

for ionization, equal to some fraction of the exciton-binding
energy, while at high temperature, we expect a critical density
above which the exciton gas will become disassociated by
collisions. At low density and low temperature the gas should
be purely free excitons.

The condition na2 = 1, indicated by the dashed line
in Figure 2, corresponds to the point at which the Fermi
statistics of the electrons and holes become important; that
is, the Fermi level becomes larger than the exciton-binding
energy. At low enough temperature, the na2 > 1 state
corresponds to a BCS condensate, as discussed above.

One crucial fact to gain from this phase diagram is
that pairing and condensation are not the same. The BCS
pair state assumes condensation and coherence (see, e.g., [2,
Section 11.2.3]), but it is not the only possible paired state
to write down. In a standard superconductor, condensation
and pairing occur at the same critical temperature, and for
this reason the two different transitions are equated in many
people’s minds. Looking at the right-hand, high-density side
of the phase diagram in Figure 2, if the carrier density is high,
and the temperature is increased from zero, the pairs will
unbind at temperatures well below the point at which λ ∼ rs.
This is what happens in a standard BCS superconductor
and in the excitonic insulator (EI) phase discussed above:
because the binding energy of the pairs is small, pair breaking
controls Tc. However, in an excitonic system with strong
pairing, it is easily possible to have a situation in which the
pairs are strongly bound but λ� rs, as on the left side of the
phase diagram of Figure 2. All exciton gases are comprised of
pairs, but these are incoherent pairs, uncorrelated with each
other, until they undergo BEC at low temperature.

At intermediate particle densities, it is possible to have
a situation in which there is a plasma-exciton transition
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to bound pairs (excitons) which are uncorrelated with
each other, and then a second transition to a BEC at lower
temperature. The transition from electron-hole plasma
to excitons may be sharp or may correspond to a gradual
increase of the number of exciton pairs as the temperature is
decreased, according to the Saha equation [25].

In the Coulomb drag experiments [7, 8, 13], there is
ample evidence that electron-hole pairs form which move
together as excitons do. The evidence for condensation
in those experiments, however, is much more indirect. A
condensate is a coherent state, and therefore evidence of
condensation is most directly seen in evidence of coherence,
especially interference. This is seen, for example, in the
Josephson effect in superconductors, including SQUIDs [2],
in the interference of two condensates in cold atom gases
[26], in measurements of first- and second-order coherence
in polariton condensates [27–29], and in superradiant
Brillouin scattering in magnon condensates [30]. It is also
evidenced in observation of quantized vortices in liquid
helium and in superconductors.

It is important to understand what we mean by coherence
in this context. One type of coherence refers to the phase
coherence in the wave function of a single electron and hole
in a pair. This is seen, for example, in enhanced tunneling
between the two layers [31]. Another type of coherence,
the kind which is crucial to the notion of a condensate, is
macroscopic coherence of many bosons in the same quantum
state. This type of coherence is evidenced by in-plane
correlation. For a true condensate, this type of coherence,
known as off-diagonal long-range order, will lead to infinite
in-plane coherence length. In a translationally invariant
two-dimensional system, this cannot occur, and instead
a Berezhinskii-Kosterlitz-Thouless transition can occur to
a quasicondensate state with coherence correlation falling
with a power-law dependence [32]. In a finite, trapped
two-dimensional system, for example, the indirect excitons
trapped in harmonic potentials using inhomogenous strain
[33], the coherence length can be comparable to the size of
the trap.

If all the carriers are in excitonic pair states, then there
will be enhanced tunneling between the two layers simply
due to the pairing, even if the excitons are not correlated
with each other in the plane. This effect, which occurs in
the Type A bilayer systems [31], is equivalent to the well-
known enhancement of the oscillator strength for optical
recombination in a Type B bilayer system when electrons and
electrons and holes form excitons.

It is common to interpret many of the results of Coulomb
drag and tunneling experiments in Type A systems in
terms of a BCS wave function [31, 34, 35]. A BCS wave
function is equivalent to a coherent state of bosons (see [2,
Section 11.2.3]). However, the fact that a BCS wave function
can be used to describe some experimental results is not the
same as showing coherence; it must also be shown that the
results can not be described by an ensemble of independent
pairs. As discussed above, enhanced tunneling and interlayer
drag can be explained by electron-hole pairing, without
invoking coherence among the pairs.

d
B×

F

F

+q

−q

v

v

Figure 3: Schematic representaion of the effect of a DC in-plane
magnetic field on electrons and holes in a bilayer system with
tunneling.

It has been argued [36] that experiments with a weak in-
plane magnetic field in addition to the large perpendicular
magnetic field give evidence of long-range in-plane correla-
tion. In these experiments, when an in-plane magnetic field
is applied, the tunneling current is suppressed. A natural in-
plane length scale λ is defined by setting the flux quantum
Φ = h/q equal to BA = B(dλ), where d is the interlayer
separation, which implies λ = h/qBd. Experimentally, the
measured in-plane B field which suppresses the tunneling
implies λ ∼ 2μm. This natural length scale can in turn be
expressed as an in-plane momentum �k = h/λ = qBd.

Figure 3 shows how this momentum comes about. If a
carrier tunnels through the barrier with thickness d in a time
τ, it will have an effective velocity of v = d/τ. This leads
to an in-plane force of magnitude F = qvB = qdB/τ. This
force leads to a momentum since F = Δp/Δt. Since Δt = τ
here, we obtainΔp = qdB. The forces for the negative-charge
electrons and positively-charged holes are both in the same
direction.

The in-plane B-field therefore introduces a finite
momentum to the tunneling carriers, and the suppression
of the tunneling current can be viewed as a measurement of
a critical velocity of the excitons. One explanation for this
may be related to the Landau critical velocity for superfluids
(e.g., [2, Section 11.1.4]). Other effects may lead to a critical
velocity, such as ionization of the weakly-bound excitons
due to collisions with defects in the lattice. The fact that
no critical temperature has been measured for the bilayer
resonant tunneling effect in Type A structures makes it
difficult to assess whether it is related to condensation.

3. Optical Signatures of Exciton Coherence

In the case of Type B excitons, the observation of coherence
is expected to be much easier, but experimental results so far
have not provided definitive evidence.

Since the excitons in this type of system couple directly to
photons that leave the system, the coherence of the excitons
should map directly to optical coherence of the emitted
photons, and the in-plane coherence length can be measured
by first-order interference. This has been done with polariton
condensates [27–29], but with indirect excitons in Type B
structures, the evidence is not as clear. Butov and coworkers
[37] have reported interference of light emitted from indirect
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excitons in a Type B structure at low-temperature. The
spectral width of this emission was around 2 meV, which
by the W-K theorem (see, e.g., [2, Section 9.6]) implies a
coherence time of about 300 femtoseconds, much less than
the lifetime of the excitons, and not too different from what
would be expected for incoherent light from a small source,
although there was clearly an enhancement of the coherence
in these experiments as the temperature decreased.

Coherent light emission alone is not a sufficient test for
exciton condensation, because lasers also emit coherent light,
and laser light comes from unpaired, incoherent electrons
and holes. To show that the electrons and holes make up a
coherent excitonic condensate, it is also necessary to show (a)
that there is long-range in-plane correlation of the coherent
emission, and (b) that the excitons are still good quantum
states and are not strongly dephased. Both of these have been
shown in the polariton systems, in which two transitions,
one for condensation and a second, at higher pair density,
for lasing have been demonstrated [38, 39].

Balatsky et al. [40] proposed an interesting test for
the presence of a condensate of indirect excitons in a
Type B structure. Similar to the experiment represented
in Figure 4, an in-plane magnetic field is used, but this
time an AC, time-varying field. By Maxwell’s equation ∇ ×−→
E = −∂−→B /∂t, this implies a time-varying difference of the
in-plane component of the electric field between the two
spatially separated planes. (Perpendicular electric field can
be eliminated by symmetry if the in-plane magnetic field
is spatially homogeneous.) Since the electron and hole have
opposite charge, this leads to a net in-plane force on the
excitons.

If the excitons are incoherent, then their motion under
this force should follow an Ohm’s law-type drift behavior
in which their velocity is proportional to the force qE. On
the other hand, if the excitons are superfluid, then they
should have an acceleration proportional to the force. If
the magnetic field oscillates sinusoidally, then the superfluid
component should oscillate in phase with the magnetic field
while the normal component oscillates out of phase. This
could, in principle, be measured by optical imaging of the
exciton motion.

The magnitude of the oscillation is estimated by the
following calculation. The electric field magnitude is E0 =
ωB0d, and the maximum acceleration of the exciton is related
to the maximum amplitude of the spatial motion, x0, by
a0 = ω2x0 = qE0/m. This implies

x0 =
q

m
B0d
ω

. (1)

If we want x0 to be around 10 μm, to be resolvable by
standard far-field optical imaging, then for AC oscillation
frequency of 100 kHz (to match the typical exciton lifetime),
d ∼ 10 nm, and mass of the order of typical effective masses
of carriers, about 1/10 of a vacuum electron mass, this
implies B0 ∼ 1T. It is probably experimentally too difficult to
have a magnetic field of this magnitude oscillate at 100 kHz,
but if the spatial resolution of the imaging can be reduced,
the required magnitude of the magnetic field can also

d
dB/dt×

E

E

+q

−q

Figure 4: Schematic representaion of the effect of an AC in-plane
magnetic field on electrons and holes in a bilayer system with no
tunneling.

be reduced. Alternatively, the frequency of the oscillation
can be reduced by making the exciton lifetime longer, which
will decrease the optical emission signal used to detect the
motion.

This proposal was greeted with some controversy in
the transport community because of questions about the
current [41]. If there is zero tunneling between the two
layers, then a circuit cannot be completed and no net current
can flow. In the context of the indirect excitons, this means
that if the exciton density is constant, then excitons will
pile up at one end of the structure and repel other excitons
from moving. However, in typical experiments with Type
B structures, the exciton density is not constant, and the
region over which the excitons are created and the amplitude
of the spatial oscillation due to the time-varying field are
both small compared to the size of the whole structure.
There will therefore be no back EMF produced by the lack
of completion of the circuit, and the excitons will move
essentially the same as if they were single excitons in an
empty, infinite two-dimensional space.

Of course, the motion of the excitons is measured by
looking at the photons emitted by them when they recom-
bine, which involves tunneling through the barrier. But this
lifetime can be made arbitrarily long, as discussed above, so
that this current is negligible. In optical experiments, the
photon emission functions as a probe in which only a tiny
fraction of the excitons are destroyed at any time. We can
therefore ignore the current due to exciton recombination
leading to photon emission in these experiments.

4. Conclusions

There is still much work to be done to demonstrate
condensation in bilayer systems. There is no question that
there is pairing in both Type A and Type B systems, which
leads to enhanced tunneling through the barrier between the
wells. But off-diagonal long-range order in the plane of the
wells has not yet been clearly demonstrated in either system
with a direct test.

Probably the best bet for doing a direct test of coher-
ence in the Type A bilayer systems would be a transport
experiment analogous to a Josephson junction. Two regions
with bilayer condensate could be separated by a tunneling
junction, and the tunneling current through this in-plane
barrier could be measured.
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For the indirect excitons in Type B structures, the
proposal of Littlewood and coworkers to use a time-varying,
in-plane magnetic field to see undamped superfluid exciton
motion is reasonable, but requires high magnetic fields or
very tiny spatial resolution which may be unobtainable. First-
order coherence in the optical emission is also a test of
coherence of the exciton condensate, but requires additional
tests to distinguish it from standard lasing and to distinguish
it from interference from an incoherent source analogous to
stellar interferometry.
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Recently, it has been possible to design independently contacted electron-hole bilayers (EHBLs) with carrier densities< 5×1010 cm2

in each layer and a separation of 10–20 nm in a GaAs/AlGaAs system. In these EHBLs, the interlayer interaction can be stronger
than the intralayer interactions. Theoretical works have indicated the possibility of a very rich phase diagram in EHBLs consisting
of excitonic superfluid phases, charge density waves, and Wigner crystals. Experiments have revealed that the Coulomb drag on
the hole layer shows strong nonmonotonic deviations from a ∼T2 behaviour expected for Fermi-liquids at low temperatures.
Simultaneously, an unexpected insulating behaviour in the single-layer resistances (at a highly “metallic” regime with kF l > 500)
also appears in both layers despite electron mobilities of above ∼106cm2V−1s−1 and hole mobilities over ∼105cm2V−1s−1.
Experimental data also indicates that the point of equal densities (n = p) is not special.

1. Introduction

Bringing two layers of 2-dimensional electron gases (2DEG)
or a 2-dimensional hole gases (2DHG) in close proximity
opens up possibilities that do not exist when the layers
are very far apart. We give a simple example to show why
interaction-driven phases can arise more readily in bilayers.
Let us recall that the ratio of the kinetic energy of a system
of electrons and their potential energies due to mutual
Coulomb interaction is measured by the parameter rs =
Eee/E f (where Eee = e2

√
(πN)/4πε0εr and Ef = π�2N/m∗

in 2-dimensions, with N electrons per unit area). The ratio
is not material independent; it depends on parameters like
the relative dielectric constant εr and the band effective mass
m∗ of the material. Confining a large number of particles
in a small area makes the interparticle spacing small and
hence the Coulomb repulsion large, but the kinetic energy
of the particles increases even faster—making rs smaller.
This somewhat counterintuitive fact is a straightforward
consequence of Fermi statistics and is true in all dimensions.
Consider now two parallel layers of electrons or holes with

1011 cm−2 electrons in each—which is a typical density in
many experiments based on GaAs-AlGaAs heterostructures.
If they are now brought closer to each other, the particles
in one layer not only interact with others in the same layer
but also with those in the other layer. The interparticle
spacing in the same layer stays fixed and is about 30 nm. It
is now possible to make the distance between the two layers
about 10 nm with negligible tunneling taking place. 10 nm is
approximately the excitonic Bohr radius in gallium arsenide
(GaAs) and is an important length scale. We thus get an
electron to “see” another electron (or hole) only 10 nm away,
without paying the kinetic (Fermi) energy cost, because the
two layers continue to be two separate Fermi systems. To get
the same average interparticle separation (i.e., 10 nm) within
a layer, a 9-fold increase in density (and hence Fermi energy)
would have been necessary. As a consequence interaction-
driven phases may be expected to occur more readily in
bilayers. The case of the electron-hole bilayer may have some
remarkable possibilities—particularly if we can make the
interlayer attractive interaction stronger than the intralayer
repulsive interactions. This will require a bilayer system
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where the particles have low enough densities, such that the
intralayer separation between the particles is larger (or of
the same order) than the interlayer distance. In practice, this
implies that if the layer densities are about 1011 cm−2, then
the interlayer distance would have to be about 10–20 nm.

First, because of the attractive interaction between the
electrons and holes, bound pairs may form. Indeed, bound
pairs of electrons and holes (excitons) are well known in
bulk semiconductors. However, there is a crucial difference
here. In bulk, the lifetime of the excitons can rarely exceed
a few nanoseconds, because of radiative decay. The idea
that spatially separating electrons and holes could be a
fruitful way of obtaining large exciton lifetimes and possible
“bosonic” phases was first proposed in 1975 [1, 2]. Although
this is a very exciting possibility, there can be many legitimate
questions about how stable such a condensate would be,
whether in 2-dimensions one can get a long-range coherence
at all, and so forth. It is not known how to measure the
momentum distribution (characteristic of a condensate) of
a bunch of particles by transport—but there is another class
of transport-based experiments [3–5] that can turn out to
be very useful; these are measurements of the transresistivity
of the bilayer, which can be directly related to the interlayer
scattering rate and may also provide indications of a
condensate phase [6–8]. Passing current in both layers in an
opposite sense (counterflow) is predicted to couple to the
excitons and is expected to be dissipationless for a superfluid
[9]. A large increase in the drag resistivity is also expected
[6, 10]. Noise measurements, response to parallel magnetic
field, and Josephson junction-like behaviour across a weak
link are also anticipated [9, 10].

The first proposals [1, 2] relied on n-semiconductor-
insulator-p-semiconductor structures to achieve this. How-
ever, only with the rapid improvements in GaAs/AlGaAs,
heterostructure technology in the 1980s and subsequent
development of closely spaced double quantum-well struc-
tures in the 1990s led to the first realistic possibilities of
making such a system. In 2D, the relationship between the
critical density and the superfluid transition temperature
(TKT) is expected to be given by the Kosterlitz-Thouless
condition

nex ∼ 1
�2
m∗

exkBTKT, (1)

where nex is the exciton density and m∗
ex is the effective mass

of the exciton [2]. In semiconductors, the small effective
mass of an exciton (∼ 0.2me) means that the transition
temperature is anticipated to be much higher than that
required for atomic BEC. The possibility of excitonic BEC
in EHBLs has been reviewed by Littlewood and Zhu [11].

The second possibility is somewhat less intuitive. It
involves the densities of the two layers developing a spon-
taneous periodic modulation. Loosely speaking, it would
remind one of a homogeneous liquid freezing to a solid
which has a crystal structure. Such spontaneous ordering
may be characterized by the divergence of the relevant
susceptibility function at a particular wavevector. Simple
theories describing the susceptibility of a 2DEG (Lindhard
response function) would predict that the susceptibility

remains nearly constant till q = 2kF (where kF is the Fermi
wavevector) and drops rapidly to zero after that. This indeed
is the correct behaviour at long wavelengths, but it leads to
certain unphysical results at short-length scales. A theory of
susceptibility also leads to predictions for the two particle
probability distribution g(r). This is not hard to see. Suscep-
tibility is the density-density response function of a system,
which by the fluctuation-dissipation theorem is directly
related to the density-density fluctuation or the structure
factor. The structure factor, in turn is the Fourier transform
of the two particle probability distribution. Among the well-
known attempts [12–14] to get the physically reasonable
(nonnegative) values of g(r) at small distances is a self-
consistent local-field theory of Singwi et al. This approach
connects the charge susceptibility, structure factor, and the
local-field corrections for the screened Coulomb potential.
With the advent of double quantum well structures in the
early 1990s, this was extended successfully to the bilayer [15–
17]. A striking prediction of [17, 18] is that the electron-hole
bilayer would be more susceptible to a charge density wave
(CDW) formation at wavevectors much smaller than kF than
the electron-electron bilayer. The density-modulated phases
are indicated by the divergence of one of the eigenvalues of
the bilayer susceptibility matrix, but this does not require the
divergence of the single-layer susceptibilities—which may
still occur at much higher rs. An excitonic state may be
indicated by a divergence in the interlayer pair-correlation
function g12(r) at r = 0; Liu et al. [18] had proposed that
such a divergence would be preceded by a CDW.

How close do we want the two layers to be? If we want to
make the interlayer interaction stronger than the intralayer
interaction, then we need the interlayer distance (d) to be
smaller than the intralayer separation (l) of the particles.
Thus, for example, forN = 1011 cm−2 in each layer, we would
want d ≈ 10–20 nm. It is easy to see that the d/l ratio would
be indicative of the relative strength of the interlayer and
intralayer interactions. At the same time, it is important to
ensure that the electron and mobilities are sufficiently high
such that their behaviour is not predominantly dictated by
localisation and inhomogeneity.

2. Making Real Bilayers

While remarkable possibilities were predicted for EHBLs,
making them experimentally turned out to be difficult and
challenging. In this section, we will try to see why the
basic requirements for making transport measurements in
EHBLs turned out to be difficult. Since the first attempt
by Sivan et al. [19], there was a continued interest in these
devices marked by the work of Kane et al. (1994) [20],
Rubel et al. (1998) [21], Pohlt et al. (2002) [22], Keogh et al.
(2005) [23], and Seamons et al. (2007) [24]. There are a few
key requirements for working with bilayers:

(i) independent ohmic contacts to each layer,

(ii) gate voltage control of the densities of each layer,

(iii) very low leakage through the barrier separating the
two layers.
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2.1. Making Independent Ohmic Contacts. Achieving inde-
pendent ohmic contact to each layer in an EHBL is con-
siderably more difficult than in electron-electron or hole-
hole bilayers. Let us first look at the basic idea behind
independently contacting a 2x2DEG. Figure 1 shows how the
ohmic contact, usually indium or a gold-germanium-nickel
alloy, is deposited at selected places using standard pho-
tolithographic techniques. The subsequent annealing process
causes the metal to diffuse into the semiconductor and pass
through both wells. The contacts are not independent at this
stage, since they pass through and contact both layers. To
achieve independent contact to the bottom layer, the front
gate (on the surface side) is biased negatively with respect to
the ohmics such that only the upper electron gas is depleted.
The gate raises the conduction band, creating a potential hill
just below it. So, the left contact (as in Figure 1) contacts only
the bottom 2DEG. If we now have a similar gate at the bottom
of the sample, then a negative voltage on that gate would
locally deplete the lower 2DEG, allowing us to contact only
the top 2DEG (as shown on the right). The gates below the
2x2DEG must be aligned to the topside features of the device,
correct to a few microns, to ensure that the lower 2DEG is
selectively depleted.

There is also another practical point. The topgate is
typically only a few hundred nanometers above the upper
2DEG, so a small voltage on that gate will have sufficient
effect on the 2DEG. But the substrate (gallium arsenide)
is itself about half a millimeter (500 microns) thick. So,
a voltage on the backgate (irrespective of whether it is
aligned or not), will have 1000 times less effect on the
2DEG. Therefore, the sample needs to be thinned to lower
the biases required. It is practical to make the samples
about 50 microns in thickness and still handle them. So, the
voltages required would come down to about 50–100 volts,
which is practical. This was done by Eisenstein et al. in
1990 [25]. Aligning the backgate with topside features is
another crucial requirement. This in general requires a
double-sided mask aligner. A process to achieve this with
a single-side mask aligner and thinned substrates (≈50 μm)
was developed by the authors’ group and has been described
in detail in [26].

There are two possible ways of bringing the backgate
almost as close to the quantum wells as the topgate so
that the voltages required are comparable. One of these
is based on the Focussed Ion Beam (FIB) technique. The
second involves making the sample itself 1-2 microns thick
by etching from the back, using an etch stop layer, using
a technique named “Epoxy bond and stop etch” (EBASE)
described by Weckwerth et al. [27].

If a conducting region could be grown (during MBE)
only at places where we want the backgate (as in Figure 1),
then this would be a nice way to selectively deplete the
bottom 2DEG. Doped GaAs conducts because the dopants
(Si) occupy some of the Ga lattice sites and contributes
one electron to the conduction band. If certain regions
are selectively subjected to a beam of heavy ions, then
the regions become nonconducting. Large defect densities
may be created which trap the electrons released by the
donor atoms or the Si atoms may be displaced—in either

Ohmic Depletion gate

Depletion gate

2x2DEG

Figure 1: A schematic representation for independent ohmic
contacts to a 2x2DEG. A similar method will work for a 2x2DHG
as well. Notice that the 2DEG exists due to carriers from ionised
dopants before the contacts are made. The sketch on the right hand
side shows the rough profile of the bottom of the conduction band.

case, electrons from the donor atoms would not be able
to populate the conduction band. Experimentally, this can
be done by using a beam of Ga ions at 30 keV or so
from a focussed ion gun. Ion doses like 1012–1013 cm−2

would disrupt the lattice sufficiently and the n+ layer would
be rendered resistive (say 1014 Ω at 1.5 K). The beam can
be directed with high accuracy and write out a desired a
pattern. The layers which make up the double quantum
well (DQW) structures are grown after this stage. The entire
patterning process and subsequent growth is done without
removing the sample from the ultra high vacuum (UHV)
environment, to prevent contamination. This is the basis
of the focussed-ion-beam (FIB) method and has also been
successfully used for making transport measurements on
independently contacted DQW by Hill et al. [28] and Linfield
et al. [29]. Notice that the area on which the active region of
the sample will be located is actually not the beam damaged
area—this still allows high 2DEG mobilities to be reached.
A pertinent question at this stage is how to align the later
photolithographic stages with the damaged/undamaged area
pattern written out by the beam. Very high ion doses of
1017 cm2 or so can be used to etch alignment marks away
from the central region where the 2DEG forms. This level of
beam damage makes the subsequent growth on those areas
visibly different due to high concentration of defects. The
later stages can thus be aligned with the buried backgates.

3. The Electron-Hole Bilayer

Is it possible to extend a modulation doping-based method
of making 2x2DEGs and 2x2DHGs to make an electron-hole
bilayer (EHBL)? The answer is that it is possible only if we are
satisfied with very large layer separations d > 100 nm [21].
At that distance, the interlayer Coulomb interaction would
not be dominant. Consider a situation where we try to create
two modulation-doped gases, (one 2DEG and one 2DHG)
in close proximity, say 10–20 nm. The Fermi level must come
above the conduction band for a 2DEG to form; similarly,
it must fall slightly below the valence band for a hole gas
to form. Now, the top of the valence band and the bottom
of the conduction band are separated by 1.5 V, which is the
bandgap of GaAs. Thus, if a 2DEG and a 2DHG exist at the
same electrochemical potential, then the bands must have a
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Figure 2: The band bending shown on (a) is not possible to
achieve in GaAs for a closely spaced EHBL. The electric field in the
barrier would be too high to sustain or even obtain self-consistently
by modulation doping alone. One has to resort to making the
electrochemical potential discontinuous (as shown on (b)). This
was already understood in 1992.

very large slope in the region between the two layers. This
implies an electric field of ∼108 V/m, which is too high to
sustain. The structure would simply collapse. See Figure 2.
As an aside, the bandgap of Silicon is about 1.1 V, so the
required field would be slightly less. In fact, recently, two
groups have succeeded in making EHBLs in Si [29, 30], where
the electrons and holes stay at the same chemical potential.
If at some point independent contact to bilayer graphene
is made, then it would be very interesting from the point
of view of an EHBL, because the bandgap of graphene is
zero. However, in the GaAs-AlGaAs system, the only way
around would be to make the electrochemical potential itself
discontinuous. This means that we need to connect a battery
from outside between the two layers which would allow the
two gases to exist without requiring a huge band slope.

Notice that even before we made independent contacts, it
was possible to create a a 2x2DEG. In the case of the EHBL,
the contact must exist before the electron and hole gases can
be formed. This also calls for the barrier between the two
layers to be exceptionally uniform and robust. At the heart of
most bilayer devices (particularly EHBLs) is this barrier that
separates the two layers. For closely spaced (10 nm) bilayers, a
single growth defect in an area∼100 μm × 100 μm will cause
everything to be dominated by catastrophic leakage and
not bilayer physics! This extremely stringent requirement on
the uniformity of the barrier layer is equivalent to placing
two sheets of cloth over an area of a football field while
maintaining a uniform vertical distance of 1 cm between
them throughout (if we scale all the lengths by a factor of a
million). These issues were quite well appreciated, and the
first EHBL device was made in early 1990s by Sivan et al.
But this device had limited range of operation as far as the
density and temperatures (above 9 K only) were concerned
[19]. Only in last 3-4 years, it has been possible to make
EHBLs where transport can be measured down to millikelvin

Ti/Au contact
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GaAs QW
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GaAs/AlGaAs
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Figure 3: The schematic representation of the EHBL developed
in the authors’ group. Note that two voltage biases are in general
needed for operating the device. However, the outer backgate below
the ohmic contacts (Vobg) to the holes is often biased differently
from the backgate in the central region (Vbg).

temperatures, densities can be tuned over a large range, and
the interlayer interaction can be made stronger than the
intralayer interaction due to d/l values reaching below 1.

3.1. Recent Designs Of Electron-Hole Bilayers. The discussion
in the previous section makes it clear that for an EHBL
to exist in a GaAs/AlGaAs structure, the electron and hole
layers must be held at different electrochemical potentials,
and hence each layer must act as a gate for the other. Thus,
a combination of modulation doping and biasing can be
used to achieve a stable electron and hole population. Here,
we describe the device fabricated by the authors’ group
[23, 26, 31]. We begin with an inverted hole gas created
with a very low level of doping so that it can be backgated.
A high level of doping would prevent the backgate from
acting on the 2DHG. Exactly what level of doping would
stop a gate from working is an interesting and somewhat
difficult question [26]. Making contact to this hole layer
is not difficult. This is usually done by depositing some
gold-beryllium alloy and annealing the metal to make it
diffuse into the semiconductor. See Figure 3 for a device
schematic representation and Figure 4 for a self-consistent
band structure.

Now, using the hole layer as a gate, we can induce an
electron layer on the other side of the AlGaAs barrier (see
Figure 4). Electrons start accumulating soon after the bias
reaches the bandgap, provided there is some n-type ohmic
contact to the electron layer, from where carriers can be
pulled into the heterointerface. Fabricating such a device
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h

e

(a)

2.5

2

1.5

1

0.5

0

−0.5

−1

B
an

d
en

er
gy

(e
V

)

μch

G
aA

s
bu

ff
er

CB

VB

U
n

do
p

ed
A

lG
aA

s

p-
A

lG
aA

s

n-type contact region

B
ar

ri
er

h
ol

e
Q

W
sp

ac
er

n
+

In
A

s
n

-G
aA

s
ca

p

0 1000 2000 3000 4000 5000 6000

U
n

do
p

ed
G

aA
s

Veh

Depth from surface (Å)
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Figure 4: Self-consistent band structure calculations (a) of the Hall-
bar region and (b) the n-type contact region of the device developed
in the authors’ group.

requires some new thinking. An usual diffused ohmic would
not work, because it would penetrate the barrier and reach
the hole layer as well. The method would work only if we
can find a “nonspiking” ohmic. Fortunately, there is a way.
A heavily doped capping layer of InAs (8 × 1018 cm−3 Si)
is used to pin the Fermi-level above the conduction band
at the surface of the wafer. A selective etchant (conc. HCl)
is used to remove the InAs from all regions except from
where the n-type contacts are to be formed. Any metal
which adheres well to this surface (e.g., Ti/Au) can be used
to inject electrons into the InAs layer at any infinitesimal
bias. A “Schottky barrier”, normally observed at a metal
semiconductor interface, is not formed in this case. Though
calculations indicate a small barrier at the interface of
the InAs and n-GaAs, unless the composition is smoothly
graded, experimentally, we have not found evidence of such a
barrier. A flatband condition (see Figure 4) is maintained in
the region below the contacts down to the 2DEG, forming a
completely “nonspiking” contact to the electron QW induced
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Figure 5: Composite IR and visible photographs (a) Backgated
sample mounted on host substrate with etched channels indicated
to contact backgate with silver epoxy. (b) Thinned sample with
outer backgates (Vobg) and central backgate (Vbg) visible.
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Figure 6: 2DEG and 2DHG in an EHBL made by the method
described in [23, 26, 31] (Cavendish Laboratory).

above the barrier. However, the 2DEG must not be allowed to
extend out to the spiking p-type contacts, else independent
contact between the two layers would be lost. A carefully
controlled isolation etch is introduced between each pair
of n and p contacts. The etch removes sufficient GaAs to
depopulate the upper electron QW, but does not interrupt
the lower hole QW. Fully independent contacts are thus
achieved without the need of any depletion gates, focussed
ion beam, ion implantation, or shadow masking during
MBE growth. All the necessary processing can be done with
standard photolithographic techniques.

A composite IR and visible photo is shown in Figure 5(b)
of a finished backgated device. The three independently
controllable backgates are shown (2 × Vobg are tied together
and Vbg). Each backgate is contacted at each end so that its
continuity can be verified.

Figure 6 shows that the electron (blue) and hole (red)
layers behave as 2-dimensional layers as expected.

The crucial point is that there must be independent
contacts existing to both the electron and hole layers so that
we can apply a voltage bias between them to get both layers
to form. Another way was shown by Seamons et al. [24].
This design relies on two back-to-back field-effect transistors
(FETs), one of which is an n-channel device, and the other
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is p-channel. Under such circumstances, the gate of the FET
needs a small overlap with the ohmic contact to ensure that
there is continuous path from the contact to the channel
which has the carriers. The device is in reality less than a
micron thick and has to be supported on a substrate using
a method described by Weckwerth et al. [27].

3.2. The ν = 1/2 + 1/2 QHE Bilayer. In closely spaced
2x2DEGs and 2x2DHGs, excitonic BEC is believed to occur
in large magnetic fields in the quantum Hall regime and to
be observable with transport. When both layers are in the
ν = 1/2 state, the half-filled Landau levels may be considered
to be half full of electrons and half full of holes [32].
Striking experiments in bilayer electrons by Kellogg et al.
[33], Tiemann et al. [34] and in bilayer holes by Tutuc et al.
[35] reveal almost dissipationless counterflow transport and
vanishing counterflow Hall resistance. While in some ways
these systems emulate exciton superfluidity in an EHBL (for
zero magnetic field), there does exist a vacuum of Landau
levels and the screening will be very different in magnetic
fields. The relation between the physics in the ν = 1/2 + 1/2
and the EHBL would doubtlessly be a very interesting area
in near future—however, for the purposes of this paper, we
have not addressed this question.

4. The Coulomb Drag Experiment

The ability to make independent contacts to bilayers makes
some new transport measurements possible. These go by
names like Coulomb drag, counterflow, parallel flow trans-
port, and so forth. and can give us some information that
single-layer measurements cannot. The basic importance of
the drag measurement lies in the fact that it probes the
interlayer scattering rate directly. The measurement involves
sending a known current through one layer (Idrive) and
measuring the open circuit voltage developed in the other
layer as a result (Vdrag). In the linear response regime, we can
define a “drag resistance” ρdrag = Vdrag/Idrive, in analogy with
normal resistance. In general, this has a strong temperature
dependence. The electrons in one layer can see the Coulomb
potential due to the electrons (or holes) in the other layer. Of
course, this potential is not the bare Coulomb potential, but
it would be the “screened” potential. The net result of this
scattering is that the electrons in the drive layer try to impart
a little bit of the momentum they have to the electrons in
the other layer. This means that if we closed the circuit in
the “drag” layer, a small current would actually flow, which
has got nothing to do with leakage. This is very much like
viscous drag between layers of a fluid. Usually, we prevent
any current from flowing in the “drag” layer. So, a small pile
up of charge occurs in one end of the layer which results in
a voltage appearing across the “dragged” layer. This is the
voltage we measure. The interesting (and useful) point is that
the magnitude of this voltage is directly proportional to the
scattering rate between the particles in different layers. As in
any quantum mechanical calculation, the scattering rate is a
product of a “matrix element” and another factor that gives
the density of available states or the phase space” factor. The

scattering rate between two electron gases was first measured
by Gramilla et al. in 1991 [36].

In reality, one almost always uses low-frequency (few Hz)
alternating current for these measurements, the measured
voltage thus has an in-phase and an out-of-phase compo-
nent. It can be shown that the out of phase component is
proportional to the single-layer resistance and the measuring
frequency.

4.1. Boltzmann Transport Analysis of the Drag Measurement.
This problem has been quite extensively analysed by several
authors in the context of 2x2DEGs (or 2x2DHGs) [5, 37–
40] and for EHBLs as well [16, 41], using the linearized
Boltzmann transport equation. Linearization is done in the
way the Fermi distribution in the drive layer is assumed to
change due to the current flow. Here, we quote the final result
and point out a few important relevant features. Summing
over all momentum exchange (q) between particles in the
driven layer (layer 2) and dragged layer (layer 1), one gets [5]

ρdrag = �3

8π2e2kTn1n2

∫

dω
∫

dq

(2π)2W(1, 2 −→ 1′, 2′)

× q3

sinh2(�ω/2kT)
Im
(
χ0

1

(
q,ω

))
Im
(
χ0

2

(
q,ω

))
.

(2)

Here, W(1, 2 → 1′, 2′) denotes the probability of the elastic
scattering in which the momentum of a particle changes by
q. χ0

1 and χ0
2 denote the noninteracting susceptibilities of the

layers. n1 and n2 denote the carrier densities. Equation (2)
is applicable to 2x2DEGs, 2x2DHGs, and EHBLs. The ratio
of drag resistivity to single-layer resistivity is usually a small
number, even for high-mobility double quantum well struc-
tures, around T ∼ 1K , ρdrag/ρsinglelayer ∼ 10−2 or so at most.

Note that individual layer mobilities (μ = eτ/m∗, where
τ is the intralayer relaxation time) do not occur in the
expression. This is crucial and stems from the fact that while
ordinary resistance is a measure of momentum lost to to all
possible channels, the drag resistance is actually a direct mea-
sure of the momentum transferred to a single channel only.

Second, at small ω, Im(χ(q,ω)) ∝ ω. This is useful at
low temperatures, because as the frequency increases a little,
the sinh factor in the denominator would start becoming
large. Thus, it is easy to estimate the low T behaviour. We
do not expect W(1, 2 → 1′, 2′) to have a strong temperature
dependence, because the dielectric screening function does
not have strong T dependence at small T . Substituting
�ω/kT = x, then the dominant T dependence is easy to
extract. We make a very robust prediction that measured drag
(interlayer scattering rate) will be approximately ∝ T2, and
go zero as T → 0, due to the nature of the Fermi distribution
function alone, independent of many details. It can be shown
that for “weak coupling” (i.e., high density) at T/TF � 1,
and for a peak-to-peak separation of the two wavefunctions,
d, one gets [5]

ρdrag ∝ T2

d4(n1n2)3/2 . (3)

This prediction is well verified for 2x2DEGs and 2x2DHGs.
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Figure 7: Schematic representation for the Coulomb drag
measurement—notice that the measurement can be made in two
ways. We may not look into the internal details of the sample and
think of it as a “black box”. Then, it just corresponds to changing
the voltage and current probes, as shown on the right.

The coefficient of the T2 term, however, requires a good
model of dynamical screening of the interlayer Coulomb
interaction. For the transition probability, we can use the
Born approximation

W(1, 2 −→ 1′, 2′) = 2π
�

∣
∣M1,2, 1′,2′

(
q
)∣∣2

. (4)

Here, M denotes the matrix element for a transition from
state (1, 2) to a state (1′, 2′) The transitions are caused by the
screened Coulomb potential of a particle in layer 1, as seen
by another particle in layer 2. Thus, the measured drag gives
us a very direct experimental handle on the generic physics
of screening in a many body context. Here, we quote some of
the relevant important results.

The unscreened Fourier component of the interaction
potential due to a point charge in layer 1, as seen in the same
layer (ṽ11), and in the other layer (ṽ12) can be written as

⎛

⎝
ṽ11
(
q
)

ṽ12
(
q
)

⎞

⎠ = e2

2ε0εrq

⎛

⎝
F11
(
q
)

F12
(
q
)

⎞

⎠, (5)

where the form factors Fi j(q) takes into account the averag-
ing of the potential over the subband charge distribution of
each 2D gas. We can define ṽ21 and ṽ22 similarly

Fi j
(
q
) =

∫

dz
∫

dz′
∣
∣ψi(z)

∣
∣2
e−q|z−z

′|
∣∣
∣ψj(z)

∣∣
∣

2
. (6)

For infinitely narrow wells, the charge distributions approach
delta functions. If these are separated by a distance d, then
F11(q) = 1 and F12(q) = e−qd.

The physically important screened components (v11,v12)
are obtained from the unscreened components (ṽ11,ṽ12) by
summing the contributions of the original charge and the
charges induced by the potential of the original charge. The
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Figure 8: Diagram showing that a sign reversal of any error in drag
due to excitation current leaking between layers is expected when
biasing points (named C1, C2, D1, and D2) are altered, as direction
in drag layer changed. A little bit of the drive current may be leaking
into the other layer and flowing through a parallel path that includes
part of the second layer. The resistive drop due to this would appear
between the voltage probes. But it is possible to decide whether the
measured voltage is due to this. If we change the point at which
the second layer is grounded, the path of the leakage current would
then be reversed causing the measured voltage to change. Thus, by
shifting the point at which the “drag layer” is voltage referenced, we
can verify if the measured voltage was due to leakage or not.

connection is provided by the dielectric screening function
ε(q,ω), which is a 2× 2 matrix in this case

⎛

⎝
v11

v12

⎞

⎠ = ε(q,ω
)−1

⎛

⎝
ṽ11

ṽ12

⎞

⎠. (7)

The dielectric function can be written as

ε
(
q,ω

) = εr
⎛

⎝
1− ṽ11χ1 −ṽ12χ2

−ṽ21χ1 1− ṽ22χ2

⎞

⎠. (8)

The individual layer susceptibilities can be determined from
the well known expressions given by Stern [42]. From (7),
we can determine the screened component v12 and hence
determine the matrix elementM1,2,1′,2′ . It is also clear that the
result cannot depend on whether the interaction is attractive
(electron-hole) or repulsive (electron-electron and hole-
hole). We thus see that within Random Phase Approximation
(RPA), the (minor) differences between the EHBL and a
2x2DEG can arise from the difference in their band effective
masses and the shape of the subband wavefunction for
the holes. As far as the authors understand, the only way
to appreciate (theoretically) the crucial difference between
attractive and repulsive interaction within Born approxima-
tion is to take the next step to RPA by introducing the “local-
field corrections”.

RPA is known to fail for rs > 1. By the inclusion of a
local-field correction Gij(q), the short-range potentials can
be improved upon (vi j(q)(1 − Gij(q))). One approach to
solving for Gij(q) is the Hubbard approximation [12] that
includes the effect of exchange. The potentials can also be
calculated self-consistently using Singwi et al. (1968) [13]
(STLS) approach. This was done for the electron-electron
and electron-hole bilayer by Świerkowski et al. [16, 43], who
found that STLS gave a significant drag enhancement over
the RPA, due to the effect of short-range correlations.

The drag resistivity in an EHBL was predicted to be larger
than the electron-electron bilayer for three reasons, with the



8 Advances in Condensed Matter Physics

0 0.5 1 1.5 2 2.5 3

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

ρdrag ∝0.068T2

ρdrag ∝0.2T2

ρdrag ∝0.25T2

T (K)

ρdrag ∝0.13T2ρ d
ra

g
(Ω

ρdrag, h (n = p = 9× 1010 cm−2)
ρdrag, e (n = p = 9× 1010 cm−2)
ρdrag, h (n = p = 1× 1011 cm−2)
ρdrag, h (n = p = 1.4× 1011 cm−2)
ρdrag, h (n = p = 1.7× 1011 cm−2)

/
)

Figure 9: Hole drag resistivity versus temperature shown for n =
p = 9, 10, 14, 17×1010 cm−2, down to 300 mK. Electron drag is only
shown for n = p = 9 × 1010 cm−2 for clarity. (Device: B138/C4-
1-10 nm Barrier). The drag voltage was measured in two ways, by
sending current through the electrons and measuring the open-
circuit voltage across the holes (ρdrag,h = Vh/Ie) or by sending
current through the holes and measuring the voltage across the
electrons (ρdrag,e = Ve/Ih). As long as the current is low enough
so that the system is in the linear response regime, thermodynamic
arguments [54] predict that ρdrag,e = ρdrag,h.

larger hole mass responsible for two. First, the excitations in
the EHBL are lower in energy, as TF is lower for the heavier
hole layer. Second, the intralayer correlations are larger in the
heavier hole layer (greater rs), which reduces the interlayer
screening. The third contribution arises from the attractive
interlayer interaction in the EHBL that enhances the inter-
layer correlations (larger pair-correlation function g(r) for
small r), with the opposite effect in the repulsive electron-
electron bilayer. Subsequently, the interlayer local-field cor-
rection in the EHBL is negative whereas in the electron-
electron case, it is positive. Hence, the modified potential in
the EHBL is larger leading to an increased drag resistivity.

If the determinant of ε(q,ω) vanishes then those regions
can make large contributions to ρdrag. These are the plasmon
modes of the bilayer. The location of the (two) plasmon
branches with respect to the single-particle excitation spec-
trum of the particles in the two layers in the (q,ω) plane, is an
important aspect of the physics of the bilayer. These modes
were studied (within RPA) by Das Sarma and Madhukar
(1981) [44] and Hu and Wilkins (1991)[45]. Later work
of Liu et al. (1996) [17] and Hwang and Das Sarma [41]
that go beyond RPA has also highlighted how the plasmon
contribution can differ in 2x2DEGs and EHBLs. However,
it is not possible to get a finite drag at T = 0 due to
contributions from the plasmon modes.

Yurtsever et al. (2003) [38] compared the 2x2DEG drag
data of Kellogg et al. [46], with RPA, STLS, and their own
method based on the Hubbard approach. The RPA and
TF underestimate the drag whereas the STLS method gives
an overestimate of the drag. Good agreement with their
Hubbard model was found. Similar work was done by Hwang
et al. (2003) [47] looking at data from 2x2DHG of Pillarisetty
et al. [48] that had a drag resistivity 2-3 times larger than
drag in corresponding electron-electron bilayers [46]. They
used the Hubbard approximation and included scattering
with q ∼ 2kF, appropriate for large rs, and phonon-mediated
drag. A deviation from T2 was found (T2.4) as T ≈ TF
for the holes and an enhanced phonon contribution for the
hole-hole bilayer compared to the electron-electron system.
The intralayer correlations are dependent on rs which affects
the screening at low densities. A comprehensive comparison
of the predictions of various local-field theories, and the
Fermi hypernetted chain approximation for Coulomb drag
has been done by Asgari et al. [39], more recently.

For the RPA, STLS, and Hubbard methods, a stronger
dependence on density is predicted, (n1n2)−2 [38] (rather
than (n1n2)−3/2 for the TF model [5]), which has been
observed [46]. The T2 relationship is only exact in 3D. For
2D, there exist corrections from the divergences in phase
space for q ∼ 0 and 2kF , corresponding to forward and
backward transitions on the Fermi surface. A correction
proportional to T2 lnT is expected [49], but should be small.
This correction is believed to have been observed in low-
density electron-electron bilayers [46].

A similar temperature dependence of −T2 ln(T/Tτ)
(Tτ ≡ �/kBτ) is expected [50], when a large amount of
disorder (l < d, where l is the mean free path) is included
at very low temperatures.

Hwang and Das Sarma [41], calculated the drag resistiv-
ity (and single-layer resistances) for EHBLs with parameters
fitted to the devices of Seamons et al. [51, 52], with
20 nm and 30 nm barriers. Using local-field corrections and
dynamical screening, they were able to show that the coupled
bilayer plasmon modes in the EHBL greatly enhance the drag
resistivity with respect to the electron-electron and hole-hole
bilayers.

5. Coulomb Drag in Electron-Hole Bilayer:
Experimental Results

Coulomb drag at T < 1 K in EHBLs in a regime
where d/l ∼ 1, has recently been measured by the authors’
group and an experimental group in Sandia [51, 53]. Our
results show that drag measured in a device with a 10 nm
Al0.9Ga0.1As barrier (device B138/C4-1) is shown in figure
9 for matched electron and hole densities (n = p). For the
two highest densities (n = p = 1.4, 1.7×1011 cm−2), the hole
drag resistivity is monotonic over this temperature range and
appears to go towards zero as the temperature does. However,
for the lower-density traces (n = p = 9, 10 × 1010 cm−2),
an upturn is seen in the hole drag. The lower-density trace
has a larger upturn and the corresponding electron drag
trace (n = p = 9 × 1010 cm−2) is also shown. Only a very
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Figure 10: Drag resistivity measured on electron (a) and hole layer (b) versus temperature for n = p = 4, 5, 6, 7, 8, 9 × 1010 cm−2, down
to 300 mK. (Inset) Expanded low-temperature drag resistivity measured on hole layer. For the lowest density, kFd ≈ 1.25, rs,e = 2.8, and
rs,h ≈ 14.1. (Device: B138/C4-2-10 nm Barrier).

small upturn (if any) is found in the electron drag, with
ρdrag,h /= ρdrag,e below ∼1 K.

In another 10 nm barrier device (B138/C4-2) fabricated
from the same wafer (I.D. A4268), lower-matched densities
could be reached. Electron and hole drag resistivities are
shown in Figure 10 for n = p between 4 and 9 × 1010

cm−2. The high-temperature drag is a good fit to T2 and
ρdrag,h = ρdrag,e. For 9×1010 cm−2, theT2 coefficient is similar
(∼ 0.2Ω/�K−2) to the first device B138/C4-1 (see Figure 9).
At lower densities (Figure 10), the upturn does not increase
(as seen in Figure 9) but becomes smaller, with the lowest two
densities (4, 5× 1010 cm−2) displaying no upturn at all and a
sign-reversal at the lowest temperatures. For an intermediate
density 7 × 1010 cm−2, the upturn is followed by a sharp
negative downturn around 300 mK. In contrast, the electron
drag resistivity remains monotonic and follows the expected
T2 dependence for two Fermi liquids. It is interesting to note
that the departure from the T2 dependence in the hole drag is
relatively insensitive to density and occurs at ∼700 mK. Note
that at n = p = 4× 1010 cm−2, d/l ≈ 0.5 is reached.

Nonreciprocity at low temperatures is an unexpected
and puzzling result, since the drag is clearly in the linear
regime. The drag resistivity was found to be independent of
the excitation current frequency, up to ∼100 Hz. Switching

the grounding point between the layers can detect whether
the measurement circuit is equivalent in the two drag
configurations. Shifting the grounding and bias points was
found not to affect the anomalous low-temperature data.
At higher temperatures, the drag is reciprocal, this too
verifies that the measurement circuit is set up correctly. The
following section reports drag measured in EHBL devices
below 300 mK in a dilution refrigerator.

5.1. Coulomb Drag down to 50 mK. Coulomb drag in sample
B138/C4-1 was measured down to 50 mK. In Figure 11,
drag is shown for n = p = 9, 11 × 1010 cm−2. For the
9 × 1010 cm−2 traces, the high-temperature dependence is
similar to that in Figure 9 measured in a different system.
An upturn in the hole drag is seen, which appears to be
larger for the lower density. Deviation from T2 appears at
a higher temperature for the lower density. However, for this
density, below 250 mK the hole drag peaks and starts falling.
A smaller upturn is seen in the electron layer, despite the I-
V plot (Figure 11(b)), showing that the electron drag is still
linear down to lower excitation currents (0.5 nA).

In a 25 nm barrier, undoped device (B135/C3-4)
with resulting higher hole mobilities, the drag resistiv-
ity measured down to 35 mK is shown in Figure 12 for
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Figure 11: (a) Electron and hole drag resistivities versus temperature for n = p = 9 and 11×1010 cm−2 versus temperature, down to 50 mK.
T2 coefficients are 0.08 and 0.19Ω/�K−2, respectively. (b) I-V trace for drag on electron layer for n = p = 9×1010 cm−2, indicated by arrows
(a). Electron and hole layer mobilities at T = 1.5 K, μe = 1.5 × 106 cm2V−1s−1 and μh = 1.1 × 105 cm2V−1s−1. (Device: B138/C4-1-10 nm
Barrier).

n = p = 7, 11× 1010 cm−2. For the lower-density traces, an
upturn is seen in the hole drag, though it peaks, then falls
and below 200 mK saturates at a small negative value. As
shown in Figure 12(b), even the negative hole drag appears
to be linear down to small currents. But the corresponding
electron drag trace still appears to follow the T2 dependence.
The features in the low-temperature drag are not hysteretic
with temperature. All points were taken as the sample was
cooled, except the I-V traces that were taken as the sample
was warmed. The resistances corresponding to these traces
are shown as black circles in Figure 12 and agree well with
the other data. Figure 12(c) shows the in- and out-of-phase
component of the hole drag signal for n = p = 7 ×
1010 cm−2. This shows no anomalies in the out-of-phase
signal coincident with the anomalous behaviour seen in the
in-phase signal, ruling out artefacts from capacitive effects or
ohmic contact failure. For the higher-density traces (n = p =
1.1 × 1011 cm−2), a small upturn in the electron drag is seen
whereas a small negative downturn is seen in the hole drag
(see inset, Figure 12).

For an excitonic superfluid phase, an upturn in the drag
is predicted that would diverge, approaching the single-
layer resistivities [6], which themselves would diverge as the
number of unpaired electrons and holes that are able to carry
single-layer current fall. But such a strong effect is not seen.
Besides in the excitonic phase, there is no reason to expect
Nonreciprocity. Electrostatic binding within an exciton may
explain the upturn seen in the drag and departure from
the behaviour expected for weak particle-particle scattering.
However, an excitonic phase is unlikely to have a preference
for the lighter or heavier layer and cannot account for the lack

of reciprocity seen at low temperatures. An indicator for the
presence of excitons would be an enhancement of the drag at
n = p, particularly for a BCS-like state where nesting of the
electron and hole Fermi surfaces is required.

5.1.1. High-Temperature T2 Dependence. The magnitude of
drag in the EHBL is expected to be greater than in electron-
electron and hole-hole bilayers, due to the additional
plasmon enhancement [41] and due to larger correlations
between the layers [55], including the high-temperature
(∼T2) regime. The T2 coefficient (ρdrag = AT2) for the data
in Figure 10 (10 nm barrier) can be compared with that for
10 nm barrier electron-electron and hole-hole bilayers. The
electron-electron data of Kellogg [56] for n1 = n2 = 5 ×
1010 cm−2 gives a coefficient of A = 0.3Ω/�K−2, compared
to A ≈ 2.6Ω/�K−2 in the EHBL. This shows an enhance-
ment by a factor of∼9. In the hole-hole bilayer of Pillarisetty
et al. [48], for p1 = p2 = 7 × 1010 cm−2, A ≈ 0.7Ω/�K−2

compared to A ≈ 0.5Ω/�K−2 in the EHBL. These are simi-
lar, despite the hole-hole bilayer having a larger rs in both lay-
ers. However, at these densities, for an accurate comparison,
the correction to account for the different rs must be made.

Comparing the data in Figures 10 and 12 for 10 nm
and 25 nm barrier devices at n = p = 7 × 1010 cm−2,
the dependence on interlayer separation d can be examined.
The respective T2 coefficients are A = 0.5Ω/�K−2 and
A = 0.051Ω/�K−2, a ratio of ∼10. By measuring the
interlayer capacitance, the wavefunction peak to peak d
can be estimated. The 10 nm and 25 nm barriers corre-
spond to d of 25 nm and 40 nm, respectively. From (3),
one expects A ∝ d−4. Hence, an expected ratio of
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Figure 12: (a) Electron and hole drag resistivity versus temperature for n = p = 7 and 11× 1010 cm−2 versus temperature, down to 50 mK.
T2 coefficients are 0.0035 and 0.051Ω/�K−2, respectively. (b) I-V (a.c. f = 7.2 Hz) trace for drag on hole layer for n = p = 9× 1010 cm−2 at
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and μh = 3.3× 105 cm2V−1s−1. (Device: B135/C3-4-25 nm Barrier).
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Figure 13: Electron (blue) and hole (red) drag resistivity versus
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d4
(25 nm)/d

4
(10 nm) = 404/254 = 6.6, close to the measured

10. An increase in interlayer correlations with reducing
separation may explain the enhancement over the expected
value. The density dependence of the T2 coefficient is
examined next.

We have been able to describe our high-temperature
(above 1 K) drag measurements using the linear Boltzmann
formalism as in (2), provided that the average intralayer
particle spacing is smaller than the average interlayer par-
ticle spacing. We used a simple model with temperature-
dependent Lindhard functions and accounted for the finite-
thickness of the wavefunctions. Intralayer correlations were
taken into account using a Hubbard local-field correction as
described by Yurtsever et al. [38], but interlayer correlations
were neglected. We also neglected phonon effects. This
model works well for 10 nm and 25 nm barrier devices at
high enough densities (see Figure 13). For very low densities,
the model underestimates the drag, suggesting that interlayer
local-field corrections might be large because particles in
different layers are closer together than particles in the
same layer. We have also noticed that the calculated drag
is sensitive to the shape of the wavefunction. However, the
low-temperature drag observations cannot be explained by a
Boltzmann-type even if local-field corrections are taken into
account.

5.2. Drag at Mismatched Densities. Data at constant electron
density (n = 8.6 × 1010 cm−2) with p varied, is shown
for device B138/C4-1 in Figure 14. At higher temperatures
(T = 1.55 K and 3 K), where the anomalous drag is not
seen, agreement is found between the electron and hole
drags, and a good fit to a power-law dependence is found
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Figure 14: Electron and hole drag resistivities with electron density
held constant at n = 8.6 × 1010 cm−2 versus hole density at T =
320 mK, 1.55 K, and 3 K. (Device: B138/C4-1-10 nm Barrier).

(ρdrag ∝ p−3.8). At the lowest temperature, the electron drag
still has the same power-law dependence on p. However, as
p is lowered the hole drag no longer agrees with the electron
drag, and exhibits the upturn found in Figure 9 at n = p =
9 × 1010 cm−2. A maximum is seen in the hole drag close to
n = p, but for n > p a sharp downturn that goes negative is
found. It is unclear from these observations whether n = p
or the value of the hole density (kFd ≈ 2, transition to large-
angle scattering) is important, and more work is required
to analyse this point. However, achieving the upturn is not
dependent on matching the densities exactly. This point was
also investigated by Morath et al. [52]. While a peak is seen in
the hole drag close to matched densities (Figure 14), it cannot
be concluded that this is excitonic (or phonon/plasmon) in
origin.

Considering the data in Figure 10 for n = p, the T2

coefficients are plotted against layer density (ρdrag = AT2) in
Figure 15. A power-law dependence for A ∝ napb, with a +
b = −4.0 is found. This total has been predicted by the RPA,
Hubbard-like and STLS calculations performed by Yurtsever
et al. [38] for the electron-electron bilayer. These go beyond
the (high-density) weak coupling limit (TF) where (np)−3/2

is predicted (3). In Figure 14, a dependence of ρdrag ∝ p−3.8

is found, which together implies a weaker dependence (|a| <
|b|) on n rather than p. For drag taken when the hole density
is held constant at p = 1.5 × 1011 cm−2 and the electron
density is varied (data not shown), the T2 coefficient is
plotted in Figure 15 against n, showing A ∝ n−0.5. Some
inaccuracy will occur as the interlayer separation (d) is to
some extent a function of the interlayer bias that determines
the electron density. This effect was studied by Morath et al.
[57]. Similarly, the position of the hole wavefunction will
be affected by the backgate bias. Depleting holes will push
the wavefunction peak towards the barrier. Nevertheless, it
is expected that the drag will be more sensitive to the layer
with greater rs [47, 48]. Earlier work in the EHBL showed the
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Figure 15: Fit for T2 coefficient A for ρdrag with p constant p =
1.5× 1011 cm−2 and n varied (b) (data not shown). Same for n = p
(data shown Figure in 10) (a). (Device: B138/C4-1 (a), B138/C4-2
(b) −10 nm Barrier).

opposite result that the drag was found to be more sensitive
to the electron density [19], but this work was performed
above T = 9 K, where other processes such as phonon-
mediated drag will be significant.

5.3. Interlayer Leakage. In all biased structures, finite leak-
age currents will exist. In the EHBL, the interlayer bias
(∼1.5 V across ∼10 nm) acts across a small distance and
measurable leakage exists, though it is typically far smaller
than the measurement currents used. In the best devices,
Ileak ≈ 100 pA, while the measurement currents are typically
between 0.5–10 nA. The effect of the leakage current on
transport measurements is important, particularly if it can
influence the drag measurement or the state of the system.
There are several possible mechanisms whereby leakage can
influence measurements directly. Firstly, the electrons/holes
that leak through the barrier will be much hotter than
the 2DHG and 2DEG, which will have reached thermal
equilibrium with the lattice. It must be possible for these
energetic particles to lose this energy on a shorter timescale
(thermalisation time) than the characteristic lifetime of any
coherent phase existing in the bilayer, so that the leakage
event will be forgotten quickly by the system. Likewise, the
leakage events must be infrequent, relative to the phase
lifetime (such as the lifetime of an exciton).

As discussed earlier, the leakage is most likely caused
by barrier defects and carriers will probably lose energy via
transitions through defect states that exist mid-gap. In this
respect, backgate leakage is not likely to be as important.
While much larger biases are used, a charged particle is
unlikely to travel the distance from the backgate to the 2DHG
ballistically, and energy will be dissipated to the lattice. It
is necessary for the particles to be in local equilibrium for
the true ground state to emerge, despite the two layers being
at different electrochemical potentials. It is unknown how
much leakage will affect this condition. For a superfluid-like
state, the lifetime due to leakage between the layers must be
larger than τ ∼ �/Δ, where Δ is the energy gap. For the
effect of the gap to be observed, we need T � Δ/kB, which
assuming a lowest measurable temperature of 50 mK, gives
a bound of τ < 150 ps. A typical interlayer leakage current
in our device is ∼50 pA, over an area (Aoverlap) of 0.14 mm2

(including any leakage due to radiative recombination). The
characteristic timescale between leakage events (how long the
particle remains in one layer) is τleak = enAoverlap/Ileak. Hence,
an approximate leakage lifetime (for n = p = 1× 1011 cm−2)
is τleak ∼ 0.4 s, which is much longer than any typical
transport lifetime (τdrag ∼ 10 ns, τxx ∼ 10 ps) in these devices
and any lifetime corresponding to a gapped phase that could
exist within the measured temperatures.

The drag resistivity at low temperatures is typically
smaller than 1Ω/�, and stray currents can adversely affect
the measurement due to the larger single-layer resistivities.
All measurements were conducted with a.c. phase sensitive
detection. Incoherent d.c. leakage cannot contribute directly
to an error in the measurement. However, a weak point in
the barrier may allow a path for the a.c. excitation current to
cross into the other layer and return via the interlayer bias
supply (battery) (Figure 16), which appears to the a.c. as a
low resistance path. As shown in Figure 16(a), by changing
the interlayer biasing points, the effect can be reversed. For
device B138/C4-2 at n = p = 8 × 1010 cm−2, changing the
bias has little effect on the Nonreciprocity or the upturn in
the hole drag. The electron drag is also unaffected.

6. Discussion

Features are seen in the drag resistivity at low temperatures
that cannot be explained within the framework of Fermi-
liquid theory [41]. For two Fermi gases, the phase space
allowed for interlayer particle-particle scattering must go to
zero as the temperature does.

Qualitatively, similar anomalous behaviour is seen in
two 10 nm barrier devices, with an upturn below 0.5 K that
may be followed by a downturn or sign reversal at the
lowest temperatures, for the lowest densities (Figures 10
and 14). The magnitude of the upturn differs by a factor
of ten between devices (for the n = p = 9 × 1010 cm−2

at 300 mK, Figures 9 and 10), with the high-temperature
drag (∼T2) agreeing well. This would suggest that sample-
dependent factors such as disorder might be important in
the anomalous regime. Anomalous behaviour also occurs at
larger layer separations (25 nm barrier), consistent with the
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Figure 16: (a) Diagram showing that a sign reversal of the error in
drag due to the excitation current leaking between layers is expected
when biasing points (named C1, C2, D1, and D2) are altered, as the
leakage current direction in the drag layer is changed. (b) Electron
and hole drags for the two interlayer biasing configurations, for n =
p = 8× 1010 cm−2. (Device: B138/C4-2-10 nm Barrier).

findings of Seamons et al. (2009) [51], where a small upturn
was found in 20 nm barrier samples but not for 30 nm.

Third-order corrections to the interlayer interaction by
Levchenko and Kamenev [58], showed that nonzero drag at
T = 0 was possible, and so does not necessarily indicate
the presence of strong interlayer correlations. However, the
effect they find is small (∼10−4 Ω/W), particularly for high-
mobility samples, and cannot explain the anomalous drag
seen (∼1Ω/W).

The deviation is too large to be caused by a plasmon
or phonon enhancement [28, 36], which would be peaked
at matched densities and higher temperatures. Plasmon
enhancement is expected at T ∼ 0.2TF (TF,e > 16 K, TF,h �
3 K), while below the Bloch-Grüneisen temperature (∼1 K),
the phonon contribution is heavily suppressed.

6.1. Coulomb Drag Upturn. The upturn in the Coulomb drag
(Figure 9) at the lowest temperature, may be a signature of

an increased interlayer coupling due to the formation of
excitons. This coupling is not suppressed by the falling phase
space with temperature, restricting scattering at the Fermi
surfaces. Within the exciton regime, distinct Fermi surfaces
no longer exist when the binding energy exceeds kBT , lifting
this phase-space restriction.

The transition temperature for an excitonic superfluid
state (assuming a 2D Kosterlitz-Thouless type transition),
is expected to increase with exciton density (in 2D
Tc = nex�

2/0.71m∗
exkB, (1)), where nex is the exciton density.

Seamons et al. [51] attempted to identify the temperature
of the minimum in the drag as the transition temperature,
arguing that this point occurs at higher temperatures for
larger densities. It is possible to see the same trend in Figures
9 and 11, though in the latter the deviation from T2 clearly
occurs at a higher temperature for the lower-density data
(n = p = 9 × 1010 cm−2). This point of deviation may be
more significant than the drag minimum.

However, the upturn is far smaller than that predicted
for an excitonic state [6, 8, 10]. The drag is anticipated to
reach a value approaching the single-layer resistivities, with a
sharp change (discontinuity) signifying the phase transition
(unless only a small fraction of electrons and holes enter
a paired state). Hu [8] predicted an enhancement due to
electron-hole pair fluctuations above the transition rising as
∼ T2/ log(T/Tc). Fitting this to an upturn to obtain Tc is
possible (Morath et al. (2009) [52]), but it cannot explain
the subsequent downturn seen in Figures 11 and 12. The
prefactor to the expression predicted by Hu [8], is larger (by
a factor of ∼1000) than the upturn measured [52]. For the
drag at mismatched densities (Figure 14), the peak expected
at n = p is not seen. The peak in the figure is not sharp
enough and is asymmetric. As discussed earlier, it is unclear
whether n = p or kFd plays a role in the peak. Crucially,
matched densities are not necessary to see the upturn.

Other indicators for an excitonic phase could include a
temperature dependent Hall voltage, since neutral excitons
would not feel the Lorentz force. The authors had looked for
this effect, but not observed it in their experiments.

6.2. Coulomb Drag Sign Reversal. At the lowest temperatures,
in 10 nm and 25 nm barrier samples, a sign reversal of the
drag resistivity has been seen. In this situation, driving the
current in one layer in one direction causes particles in the
other layer to move in the opposite direction. Sign reversal
has been seen for drag between layers at large filling factors
(moderate magnetic fields) in the quantum Hall regime [59–
63]. Partly filled Landau levels, possess electron and hole
character. If the highest Landau levels in the drag and drive
layers have opposite deviation from half filling, then ρdrag is
negative (electron-hole like) at low temperatures. At higher
temperatures when kBT is larger than the disorder broadened
width of the Landau level (�/τ), then the drag returns to
the zero magnetic field (positive) sign. For nonzero drag, the
excitations at the Fermi surface must not have particle-hole
symmetry [60, 63]. At the centre of a disorder broadened
Landau level, this symmetry is acquired and the drag goes to
zero. Varying the magnetic field will change the Landau level
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populations and a complex series of positive and negative
drag oscillations results.

Figure 12 shares many of the features seen in the
temperature dependence of magnetodrag in an electron-
electron bilayer [63] at ν = 7.7, 9.5, where a peak is followed
by a downturn. It is not immediately clear how the banding
(density of states) required for this would occur at zero
magnetic field. For 2DHG and 2DEG, E(k) is expected to be
continuous and the concept of disorder broadening cannot
be applied.

Alkauskas et al. (2002) [64] have proposed that a sign
reversal in the drag resistivity may result from the inclusion
of an in-plane periodic potential, with wavelength much
greater than that of the underlying atomic lattice. This
extra periodicity creates an additional Bragg plane and the
formation of minibands, with a bandgap at much smaller
k, at the Brillouin zone boundary corresponding to the
large wavelength of this additional potential. They found
that as the density was increased, a sign reversal would
occur. Normally, particles exist within the parabolic bottom
of the band and are scattered before they reach the zone
boundary. If the Brillouin zone is smaller, then the point
at which ∂2E/∂k2 (= �2/m∗) changes sign is attainable
at experimental densities, leading to a sign change in the
effective mass and a sign reversal in the drag resistivity. But
for this to be relevant, a periodic solid-like phase must appear
in the EHBL. Candidates for this include the Wigner crystal,
where one or both layers has crystallised into a periodic
array overlaying each other [65] or a spontaneous periodic
modulation in charge density, known as a charge density
wave [55]. These possibilities would be discussed further in
the context of the single-layer resistivity measurements.

6.3. Drag Reciprocity. It is expected that for measurements
in the linear regime, the hole and electron drag resistivities
should be equal [54, 66, 67]. At the lowest temperatures,
where the deviation from T2 is found, a Nonreciprocity
between ρdrag,e and ρdrag,h is observed, despite the measure-
ments appearing to be in the linear regime. The measure-
ment circuit is not the cause of the Nonreciprocity as the drag
is reciprocal at higher temperatures. The effect of interlayer
leakage was discussed before as a possible source of error,
but in our experiments, we have verified that this gives no
noticeable contribution (Figure 16).

Measurements of Coulomb drag down to 300 mK on
EHBLs has been performed by Seamons et al. (2009) [51, 52],
on samples with 20 nm and 30 nm barriers and similar
densities. For the narrower barrier, a small upturn is found
only in the drag measured on the holes (∼ 0.4Ω/W). This
Nonreciprocity was explained as a result of additional Joule
heating caused by passing current through the more resistive
hole layer for the electron drag configuration. They report
saturation in the electron Shubnikov-de Haas oscillations at
about 1 K, when the same current used for drag is passed
through the hole layer. Single-layer measurements reported
by Seamons et al. on the hole layer require a much smaller
current than that used for drag, so heating was avoided.

Joule heating cannot explain the Nonreciprocity found in
this work. Heating will be a nonlinear effect (∼I2R), but no
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Figure 17: Two-probe and four-probe resistance of the electron
(blue squares) and hole (red triangles) layers versus temperature,
at n = p = 9× 1010 cm−2. (Device: B138/C4-1-10 nm Barrier).

nonlinearity is found in the I-V traces of the drag resistivity.
For the data taken in Figure 9 at n = p = 9×1010 cm−2, at the
lowest temperature, the two-probe resistance of the electron
and hole layers differed by a factor of 9 (hole 2-probe 62 kΩ,
electron 2-probe 7.2 kΩ). The two and four-probe (single-
layer) resistances of the hole and electron layers are shown in
Figure 17 as a function of temperature. Reducing the current
by a factor of three will give the same Joule heating for
the electron drag configuration as for the hole drag. But
nonlinearities are not seen in this range (Figure 9). Indeed
the same currents were used for single-layer measurements as
for drag and no saturation of Shubnikov-de Haas amplitude
with temperature was seen.

7. Features in Single-Layer Resistivity:
An Interaction-Driven Insulating State

In our EHBL devices it is possible to perform experiments
with only the 2DHG present. This is achieved by keeping the
interlayer bias below the threshold for electron accumulation
(Veh ≈ 1.55 V) and biasing both backgates negatively to
induce holes in the QW. The hole density can then be
controlled with the central backgate Vbg. The temperature
dependence (0.3 to 1.5 K) of the single-layer resistivity of the
holes is shown in Figure 18(a). As the density is lowered,
there is a transition from metallic to insulating behaviour
between 5 and 6 × 1010 cm−2. These features are consistent
with results from several 2DMIT studies of Silicon MOSFETs
and GaAs/AlGaAs-based devices. The crossover occurs as
expected close to ρxx ≈ h/e2 or equivalently to kF	 = 1,
with dρxx/dT > 0 for ρxx < 25.8 kΩ/� and dρxx/dT < 0
for ρxx > 25.8 kΩ/�. At kF	 = 1, the mean free path (	) is
approximately equal to the interparticle separation (l). Non-
monotonic behaviour is observed for the p = 6 × 1010 cm−2

trace, which is insulating aboveT ∼ 0.8 K and metallic below.
This has been observed before in 2DHGs [68] and in an
EHBL with a 30 nm barrier [57] and can be explained within
Fermi liquid theory [69].

Most striking is the change in behaviour of the hole
layer with the addition of the electron layer (kept in an
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Figure 18: Resistivity of hole layer versus temperature for p = 5, 6, 7, 8, 9 × 1010 cm−2 at B = 0, (a) without electrons (n = 0) and (b) with
electrons (n = p). (c) Magnetoresistance ρxx(B) of hole layer for p = 6, 7, 8, 9 × 1010 cm−2 with no electrons present (n = 0), at T = 0.3 K.
(d) “Metallic” hole layer ρxx(T) for p = 9× 1010 cm−2, n = 0. (e) Arrhenius plot (ln(ρ) against 1/T) for “insulating” hole layer ρxx(T) with
n = p = 9× 1010 cm−2, showing good fit to an exponential rise. (Device: B138/C4-2-10 nm Barrier).

open-circuit configuration), [70, 71] shown in Figure 18(b).
All traces are now clearly insulating by T ∼ 1 K, even
those that had been metallic. This insulating state is
occurring at kF	 > 50, with resistivity at T = 1.5 K far
below the regime where a transition to insulating behaviour

is expected. Localisation due to background disorder
(impurities/dopants/defects) cannot account for this
because the 2DHG sees the same disorder with and without
the 2DEG present. Placing a plane of mobile charge next to
the 2DHG is expected to improve the hole mobility. Adding
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the electrons does result in a significant three-fold increase in
hole mobility at T = 1.5 K; for p = 6×1010 cm−2, ρxx,hole(n =
0) = 3808Ω/� falls to ρxx,hole(n = p) = 1203Ω/�. This
is consistent with the results of Morath et al. [57], from a
30 nm barrier EHBL device, where the dependence of the
hole mobility with electron density was explored. The effect
is much larger here, possibly due to the smaller barrier.

Improvement of the high-temperature mobility is likely
to be the result of several processes. Background impurities
will be screened by the presence of the 2DEG. Inducing the
electrons requires a large electric field across the barrier,
and then to reach matched densities (n = p) a depleting
backgate bias is also required. Both of these cause the
wavefunction to be “squeezed” against the AlGaAs barrier,
improving the screening as the holes become more greatly
confined (though also potentially harming the mobility
due to increased interface roughness scattering and the
higher level of background impurities found in AlGaAs).
In this regime, the hole mobility is limited by remote
ionised impurity scattering caused by the intentional p-
dopants (verified by comparison to undoped structures). The
interlayer bias will pull the holes towards the barrier and
increase the effective spacer thickness (between the 2DHG
and dopants) and accordingly improve the mobility.

Placing a conducting electron layer close to the 2DHG
will also improve the screening, as image charges will form
in this layer. If the interlayer separation is d, then the dipolar
field (charge and its image) will drop faster than ∼ 1/r at
distances greater than ∼ d. This effect has been studied in
gated 2DEGs [72] and in double QW structures (2x2DHG)
with d ∼ 50 nm [73].

While the change at T = 1.5 K can be accounted for
by a combination of effects, the insulating behaviour at
low temperature is unexpected as these arguments always
improve the intralayer screening and lower the effective rs.
Matthiessen’s rule-based addition of scattering rates cannot
explain the increase in mobility [74] at T = 1.5 K. Adding the
contribution of the interlayer scattering rate to the impurity
scattering rate will cause a reduction in mobility. Going from
the situation of a single hole gas (1/μslh ) (where μ = eτ/m∗),
whose mobility is primarily dictated by impurity scattering

(1/μ
imp
h ), to the mobility of the holes with the addition of the

electron layer (bilayer configuration) (1/μblh ) must introduce
a term corresponding to the presence of the electron layer
(1/μCh ) and so

1

μslh
= 1

μ
imp
h

−→ 1

μblh
= 1

μ
imp
h

+
1
μCh
. (9)

This must mean that 1/μ
imp
h is changing in the presence of

the second layer. Note that 1/μCh = enρdrag [74], where n is
the density of the electron layer. The anomalous drag cannot
account for the increase in ρxx(T) at lower temperatures, as
it is too small. This suggests that a new single-layer scattering
mechanism has emerged due to the presence of the electron
layer.

The insulating state is also seen in the electron layer.
Figure 19 shows both electron and hole layer resistivities
down to ∼50 mK. Both layers exhibit a similar behaviour,
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Figure 19: Resistivities of hole and electron layers versus tem-
perature for n = p = 9 × 1010 cm−2, down to ≈ 50 mK in a
dilution refrigerator. At T = 1.5 K, μe = 1.5 × 106 cm2V−1s−1 and
μh = 1.1 × 105 cm2V−1s−1). (Inset) Change in conductivity relative
to σxx (T = 2 K). (Device: B138/C4-1-10 nm Barrier).

though the relative change in resistance appears to be much
larger in the hole layer. However, the loss of conductivity in
both layers between 2 K and 50 mK (inset Figure 19) is sim-
ilar (∼0.2 mS), over which the insulating behaviour is seen.
This is much larger than the change weak localisation (quan-
tum interference) can account for (Δσxx ≈ 40μS) [75]. Weak
localisation predicts that Δσxx(T) = (e2/2π2�) ln(τi/τ0),
where τi and τ0 are the temperature-dependent lifetimes
for eigenstates of energy and momentum, respectively. The
insulating state was also seen in a third device (B141/C5-
2) that had been processed with a shorter hall bar (250 μm
as opposed to 500 μm), and the effect was found to be
independent of the length to width ratio.

Figure 18(e) is an Arrhenius plot (ln ρ versus 1/T) for
n = p = 9 × 1010 cm−2, and the resistivity shows a good
fit to an activated behaviour (It is difficult to distinguish
between a power law and an exponential rise as the insulating
phase occurs over a small temperature range, less than one
order of magnitude.) (ρxx(T) = ρ0eE/kBT), yielding an energy
gap of E/kB = 0.4 K. Similar analysis for the corresponding
electron trace (data not shown) gives a far smaller gap of
E/kB = 0.02 K. As the density is lowered (Figure 18) and
the interaction strength is increased (larger rs), the fit to an
exponential rise becomes poorer. But the traces are expected
to be (weakly) insulating for p < 6 × 1010 cm−2, regardless
of the presence of the electrons. The important result is the
emergence of a strongly insulating state at large kF	 (ρxx �
h/e2). In Figure 19, ρxx(T) for both layers appears to saturate
at the lowest temperatures. This is likely to an artefact
of the electron temperature not reaching the thermometry
temperature (Shubnikov-de Haas oscillation amplitude had
saturated by ∼100 mK, in this measurement run).

7.1. Mismatched Densities. Matching the densities is not
crucial to achieving the insulating state. In Figure 21, the hole
density was held at p = 1.6 × 1011 cm−2 with the electron
density varied (n = 4, 6, 8 × 1010 cm−2). This was chosen
so that for the lowest electron density n = 4 × 1010 cm−2,
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Figure 20: Resistivities of hole and electron layers versus tempera-
ture for n = p = 7, 9× 1010 cm−2, with 25 nm Al0.3Ga0.7 As barrier.
(Device: B135/C3-4-25 nm Barrier).
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Figure 21: Resistivities of the hole (a) and electron layer (b), (c),
and (d), versus temperature for fixed hole density p = 1.6 ×
1011 cm−2, and varied electron density n = 4, 6, 8 × 1010 cm−2.
(Device: B138/C4-1-10 nm Barrier).

both layers have similar resistivities at T = 1.5 K. As the
electron density is increased, both layers undergo a transition
from metallic to insulating behaviour. The transition occurs
between 4 and 6×1010 cm−2 when p ≈ 3n in this instance, far
from matched densities. A transition to insulating behaviour
as the density is raised is very striking and incompatible with
a disorder-driven mechanism; this strengthens the argument
for an interlayer interaction-driven effect.

A similar experiment was performed (down to 50 mK)
where n was fixed at 2 × 1010 cm−2 and p was varied
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Figure 22: Resistivity of electron (a) and hole (b) layers versus
temperature, for constant electron density (n = 2× 1010 cm−2) and
different hole densities (p = 5, 7, 9, 12×1010 cm−2). Arrows indicate
approximate points of transition to insulating behaviour. (Device:
B138/C4-2-10 nm Barrier).

(Figure 22). For the largest hole density (p = 1.2 ×
1011 cm−2), both layers are metallic, and as the hole density
was lowered, both become insulating. Some degree of
matching appears to be required for the insulating state
to occur, though one would expect that in the limit of
p becoming large relative to n (and the hole screening
improving accordingly), they would behave as two isolated
gases. Arrows in Figure 22 indicate the approximate points of
transition to insulating behaviour, suggesting that there may
be no abrupt transition as the density is lowered, but a shift
in transition temperature.

As the hole density is varied with the electron density
held constant (n = 8.6 × 1010 cm−2), ρxx(T) varies mono-
tonically for both layers across n = p (Figure 23) within the
insulating regime at 300 mK. The electron resistance does
increase slightly as the hole density is lowered. Matching the
densities exactly does not appear to play a significant role. In
all the experiments performed, the insulating state appeared
to occur in both layers simultaneously, though at higher
densities ρxx(T) has little temperature dependence over the
range measured.

7.2. Inhomogeneity. It is important to determine whether
the emergent insulating state in the hole layer at large
kF	 can be attributed to (device-driven) density inhomo-
geneity. If the hole gas were highly inhomogeneous, the
average resistance might be determined by high-density
(low-resistance) regions, while the temperature dependence
was dominated by low-density insulating regions. It can be
established that without the electron gas present, the hole
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Figure 23: Resistivity of electron (blue squares) and hole (red
triangles) layers versus hole density, with electron density fixed
(n = 8.6 × 1010 cm−2) at T = 300 mK. (Device: B138/C4-1-10 nm
Barrier).

gas is homogeneous, from the hole layer magnetoresistance
(Figure 18). The Shubnikov-de Haas oscillations are periodic
in 1/B and the reciprocal of the carrier density. A variation
in carrier density over the Hall bar region would smear
the oscillation. In Figure 18, magnetoresistance traces are
shown for four carrier densities, which clearly show well-
pronounced oscillations with minima that go to zero for
the higher densities. At lower densities, the larger sheet
resistance and shorter transport lifetime broaden the Landau
levels, requiring lower temperatures for them to be as clearly
resolved. Considering only the higher two densities (8 and
9× 1010 cm−2), the resolution of the oscillations is consistent
with the densities measured by the Hall probes at each end of
the Hall bar, which record a difference of ∼ 1× 109 cm−2.

With the introduction of the electrons, verifying the
homogeneity of the 2DHG with magnetoresistance is no
longer possible. Indeed, if the insulating state corresponds
to a density-modulated phase, then it might be expected
that the Shubnikov-de Haas oscillations would no longer
be resolved due to the inherent spatial density-variation.
Indeed, there are no strong oscillations at 300 mK in the hole
layer, but normal oscillations persist in the electron layer at
low fields.

If in-built inhomogeneity is the source of the insulating
behaviour, it must only be present when the electrons are
induced across the barrier. Variation in the thickness of a
10 nm barrier will cause spatial density fluctuations due to
a change in interlayer capacitance. MBE growth is capable of
producing interfaces that are smooth to a couple of monolay-
ers (0.3 nm for GaAs), giving a possible variation of ∼1 nm
in the barrier width. This results in a density fluctuation of
�10%. (This is an overestimate as the appropriate distance
corresponding to the interlayer capacitance is ∼25 nm for a
10 nm barrier) and cannot force regions to become insulating
(p < 6 × 1010 cm−2) if the average density is 9 × 1010 cm−2.
Such inhomogeneity would also be mirrored equally in the
electron layer and detectable in the 2DEG magnetoresistance
as described above. However, even in the insulating regime
the Shubnikov-de Haas oscillations are clearly resolved at
50 mK in the electron layer.

To go from p,n = 0 to n = p requires (as well
as an increase in interlayer bias) a depleting backgate
bias as opposed to an inducing one. It is unclear how
backgate action (50 μm away) can produce density variation
on the short-length scale required (<60 μm, width of Hall
bar/probes). The disagreement in density taken from the Hall
slope at each end of the Hall bar is no worse with the electron
layer present, (still about 1× 109 cm−2).

7.3. Two Component Plasma and the Significance of Unequal
Electron and Hole Masses. Most of the early theoretical
(and numerical) work on the EHBL made the simplifying
assumption that the effective masses of the electrons and
holes are equal. qSTLS was used by Moudgil et al. 2002 [76]
to study the ground state of electron-electron and electron-
hole bilayers (m∗

e = m∗
h ). For the EHBL, a divergence for χ+

at small q (CDW) was found for rs < 10 with a crossover
to the WC state above (d ∼ 4a∗B ). Unlike [17], a divergence
in χ−(q) was found for the electron-electron bilayer. They
found that the local fields in the electron-electron bilayer are
weaker than the EHBL, and the density-modulated phases
require larger rs and smaller d. The results were compared
with diffusion Monte Carlo simulations performed on the
EHBL by De Palo et al. [65], who were able to show a
transition to an excitonic condensate state (BCS-like state)
and WC. The WC transition was in good agreement with the
qSTLS data. However the CDW state was not considered by
De Palo et al. [65].

Subsequent qSTLS work by Moudgil [77] studied the
mass-asymmetric EHBL, with m∗

h /m
∗
e = 7 (appropriate to

GaAs) and included the finite widths of the electron and
hole gases. The mass-asymmetry pushes the CDW and WC
transitions to higher density, though the WC is found to
exist only at an intermediate well separation, with the CDW
favoured for smaller separations. The larger rs,h in the hole
layer is found to be significant, with Wigner crystallisation
predicted at rs,e = 2.4. Interestingly, the correlation in the
hole layer (ghh(r)) for the density-modulated phases is found
to be stronger than in the electron layer (gee(r)). Including a
finite QW width was found to lower the critical density for
Wigner crystallisation to rs,e = 3.75.

More recent work implemented Monte Carlo methods
for studying mass-asymmetric EHBLs, with the mass ratio
varied [78] between 1 and 100, with the interlayer separation
(d) fixed. Electron densities studied corresponded to rs ≈
10− 20, but for a large layer separation (d = 20a∗B ≈ 200 nm
in GaAs). They found that by increasing the mass ratio,
the hole layer evolves from a homogeneous to a localised
state (WC), with the electron layer remaining in a relatively
homogeneous state. Periodic structure in ghh(r) exists by
mh = 5me, a ratio appropriate to GaAs. While these particle
densities are considerably lower than those achieved in these
experiments, the d/l ratios are similar at ∼1.

These results provide a large contrast to the low densities
predicted to be required for a WC to occur in a single 2D
gas, rs = 37 ± 5 by Tanatar and Ceperley (1989) [79]. This
corresponds to an electron density of ∼2 × 108 cm−2; this is
difficult to achieve experimentally in GaAs while maintaining
a high mobility such that localisation due to Coulomb
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repulsion can be distinguished from that driven by disorder.
Hole densities as low as 6 × 108 cm−2 (in GaAs/AlGaAs)
have been reported [80], where a much larger rs is reached
(relative to electrons), but at these densities, the 2DHG is
in the insulating regime. But in the EHBL, the density-
modulated phases are predicted at experimentally accessible
rs that lie within the “metallic” regime.

8. Conclusion

The idea of an excitonic condensate was put forward nearly
forty years ago by Blatt et al. [81] and Moskalenko and
Snoke [82]. But excitonic phases were initially thought to
be necessarily insulating and not accessible by transport
because they consisted of charge neutral particles. However,
the key experimental development that has radically changed
this perspective is the ability to make independent ohmic
contacts to the electron-like and the hole-like parts of
a system. Experimentally, 2x2DEGs, and 2x2DHGs in a
magnetic field have shown striking evidence of transport
by neutral objects driven by counterflow currents [33–35].
More recently, electron-hole bilayers in zero magnetic field
have shown evidence of an emerging non-Fermi liquid
phase [51–53, 70]. In these systems, excitonic phases and
collective modes, characteristic of a 2-component plasma,
may be competing in determining the ground state. It is very
likely that this field will lead to exciting experimental and
theoretical results in near future.

Acknowledgments

The work reported here was funded by EPSRC (UK)
under the Grants EP/D008506/1 and EP/H017720/1. A.
F. Croxall acknowledges Trinity College for a fellowship.
I. Farrer acknowledges Toshiba for support. The authors
acknowledge several useful discussions with D. Neilson and
A. R. Hamilton.

References

[1] Yu. E. Lozovik and V. I. Yudson, “A new mechanism for
superconductivity: pairing between spatially separated elec-
trons and holes,” Soviet Physics Journal of Experimental and
Theoretical Physics, vol. 44, p. 389, 1976.

[2] Yu. E. Lozovik and V. I. Yudson, “Feasibility of superfluidity
of paired spatially separated electrons and holes; a new
superconductivity mechanism,” Journal of Experimental and
Theoretical Physics Letters, vol. 22, p. 274, 1975.

[3] P. J. Price, “Hot electron effects in heterolayers,” Physica B+C,
vol. 117-118, no. 2, pp. 750–752, 1983.

[4] M. B. Pogrebinskii, “Mutual drag of carriers in a
semiconductor-insulator-semiconductor system,” Soviet
Physics: Semiconductors, vol. 11, no. 4, pp. 372–376, 1977.

[5] A. P. Jauho and H. Smith, “Coulomb drag between parallel
two-dimensional electron systems,” Physical Review B, vol. 47,
no. 8, pp. 4420–4428, 1993.

[6] G. Vignale and A. H. MacDonald, “Drag in paired electron-
hole layers,” Physical Review Letters, vol. 76, no. 15, pp. 2786–
2789, 1996.

[7] S. Conti, G. Vignale, and A. H. MacDonald, “Engineering
superfluidity in electron-hole double layers,” Physical Review
B, vol. 57, no. 12, pp. R6846–R6849, 1998.

[8] B. Y. K. Hu, “Prospecting for the superfluid transition in
electron-hole coupled quantum wells using Coulomb drag,”
Physical Review Letters, vol. 85, no. 4, pp. 820–823, 2000.

[9] A. V. Balatsky, Y. N. Joglekar, and P. B. Littlewood, “Dipolar
superfluidity in electron-hole bilayer systems,” Physical Review
Letters, vol. 93, no. 26, Article ID 266801, 2004.

[10] Y. N. Joglekar, A. V. Balatsky, and M. P. Lilly, “Excitonic con-
densate and quasiparticle transport in electron-hole bilayer
systems,” Physical Review B, vol. 72, no. 20, Article ID 205313,
6 pages, 2005.

[11] P. B. Littlewood and X. Zhu, “Possibilities for exciton conden-
sation in semiconductor quantum-well structures,” Physica
Scripta, vol. T68, p. 56, 1996.

[12] J. Hubbard, “The description of collective motions in terms of
many-body perturbation theory II. The correlation energy of
a free electron gas,” Proceedings of the Royal Society of London
A, vol. 243, p. 336, 1958.

[13] K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander,
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The quantum Hall bilayer at total filling factor v = 1 displays a number of properties akin to superfluidity, most clearly apparent in
its very low dissipation in tunneling and counterflow transport. Theoretical descriptions in terms of quantum Hall ferromagnetism
or thin-film superfluidity can be developed to explain these phenomena. In either case, merons can be identified as important low
energy excitations. We demonstrate that a model in which puddles of merons induced by disorder, separated by narrow regions of
interlayer coherence—a coherence network—can naturally explain many of the imperfect superfluid finite temperature properties
that are observed in these systems. The periodic realization of this model shows that there can be low energy excitations beyond
the superfluid mode. These are associated with transitions between states of different meron number in the puddles, where we
argue that merons should be unbound at any temperature, and which can have important implications for the effect of quantum
fluctuations on the system.

1. Introduction: Quantum Hall Bilayer as
a Pseudospin System

The quantum Hall system at filling factor ν = 1 supports
a rich set of phenomena when discrete degrees of freedom
can come into play at low energy. These are collectively
known as quantum Hall ferromagnetism. Surprisingly, the
spin degree of freedom in many such systems can be relevant
in spite of the strong magnetic field in which the system
is immersed, because the Landé g-factor is rather small in
most two-dimensional electron gas systems based on GaAs.
A description in terms of a spin-1/2 quantum ferromagnet
turns out to be quite useful for this system, for example,
suggesting that the basic charged excitations of this system
are skyrmions [1, 2], excitations which carry a topological
winding number in the spin and also turn out to be
charged. Microscopic calculations [3–5] suggest these are
indeed the low energy excitations in the clean limit, and
several experimental results appear to confirm the presence
of skyrmions [6, 7], although when disorder is taken into
account such interpretations become less firm [8].

Quantum Hall ferromagnetism is also relevant in a very
different context, the bilayer two-dimensional electron gas

with total filling factor ν = 1 [9]. This system can be
artificially fabricated using molecular beam epitaxy, resulting
in two high quality layers of electron gas very close to one
another. A direct mapping between this and the real spin-1/2
quantum Hall system may be established if one labels one
layer as “up” and the other “down.” The layer index may thus
be viewed as a pseudospin, and many of the ideas established
for the spin behavior of the single layer quantum Hall system
come into play for the bilayer, even if the real spin is fully
polarized. (One can consider the situation in which both real
spin and pseudospin are active degrees of freedom, leading to
many possible states of the system [10]. In what follows we
focus on the limit in which the Zeeman coupling polarizes
the real spin. This has recently been realized experimentally,
and qualitative features of the spin-polarized case are the
same as at lower Zeeman couplings [11, 12].)

An important difference between the spin and the
(bilayer) pseudospin degrees of freedom is the fact that
interactions are not SU(2) invariant in the latter as they are
in the former. This is because with finite layer separation
d the Coulomb repulsion is larger for a pair of electrons
in the same layer than it is for a pair in different layers
with the same in-plane separation r. The first and foremost
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impact of this physics is that, in the absence of an external
perpendicular electric field, the electron density will tend to
be balanced between the layers. In the pseudospin language,
this means that the effective spin-1/2 degree of freedom will
favor an in-plane orientation. Even within this subspace of
orientations, not all spin directions are equivalent. Interlayer
tunneling energetically favors single particle states that are
symmetric linear combinations of states in the two wells
over antisymmetric combinations, which in the pseudospin
language corresponds to spin oriented in the x̂ direction.
Real samples may be grown such that there is a wide
range of possibilities for the scale of this term, from rather
large so that all electrons are firmly in the symmetric
state—essentially removing the layer degree of freedom from
the problem—to very small, orders of magnitude below
accessible temperatures. This latter situation has resulted
in some of the most interesting and puzzling experimental
observations on this system, which we will discuss in more
detail below.

A crucial concept that applies to the bilayer system and
to quantum Hall ferromagnets in general is known as spin-
charge coupling. Because of the strong magnetic field, at
filling factor ν = 1 electrons will tend to reside almost
solely in the lowest Landau level. However, restricting the
orbital degrees of freedom to a single Landau level constrains
the way in which spatially varying spin configurations may
be realized. For configurations in which the direction of
spin varies slowly on the scale of the magnetic length �0 =√

�c/eB, with B the magnetic field, one may show [9] that
charge and spin densities are tied together by the relation
[1, 2]

q(r) = − 1
8π

εμνm · ∂μm× ∂νm, (1)

where m(r) is a unit vector indicating the local direction
of the spin. This relation may be applied somewhat more
generally than just to states in the lowest Landau level; it
works (with an appropriate overall constant) for any state
with a quantized Hall conductivity σxy [13].

An effective energy functional for this pseudospin system
which captures both the spin-charge coupling and the
symmetry-breaking physics has the form [14]

E[m] = ρE
2

∫

dr(∇mμ)2 +
1
2

∫

drdr′q(r)v(r− r′)q(r)

+
∫

drV(r)q(r)− ΔSAS

4π�2
0

∫

dr[mx(dr)− 1]

+ Γ

∫

dr(mz)2 − e2d2

16πκ

∫
dq
4π2

qmz
−qm

z
q

+
ρA − ρE

2

∫

dr(∇mz)2.

(2)

The first three terms of the energy are SU(2) invariant
contributions. The leading gradient term is the only one
that appears in the nonlinear σ model for Heisenberg

ferromagnets, and ρE is the spin stiffness in the x̂- ŷ plane.
The second term describes the SU(2) invariant Hartree
energy corresponding to the charge density associated with
spin textures in quantum Hall ferromagnets. v(r) is the
Coulomb interaction screened by the dielectric constant
κ of the host semiconductor. The third term incorporates
interactions of the charge density with an external potential,
for example, due to disorder. The fourth term describes the
loss in tunneling energy when electrons are promoted from
symmetric to antisymmetric states; here ΔSAS is the single-
particle splitting between symmetric and antisymmetric
states.

The last three terms are the leading interaction
anisotropy terms at long wavelengths. The term proportional
to Γ implements the electrostatic energy cost of having a
net charge imbalance between the layers. The (∇mz)2 term
accounts for the anisotropy of the spin stiffness. Pseudospin
order in the x̂- ŷ plane physically corresponds to interlayer
phase coherence so that ρA − ρE will become larger with
increasing d. The sum of the first and seventh terms in (2)
gives an XY-like anisotropic nonlinear σ model. However,
this gradient term is not the most important source of
anisotropy at long wavelengths. The fifth term produces
the leading anisotropy and is basically the capacitive energy
of the double-layer system. The sixth term appears due
to the long-range nature of the Coulomb interaction; its
presence demonstrates that a naive gradient expansion of the
anisotropic terms is not valid. (mq is the Fourier transform
of the unit vector field m.) Equation (2) can be rigorously
derived from the Hartree- Fock approximation in the limit of
slowly varying spin textures [15], and explicit expressions are
obtained for ρE (which is due in this approximation entirely
to interlayer interactions), ρA (due to intralayer interactions),
and Γ. Quantum fluctuations will alter the values of these
parameters from those implied by the Hartree-Fock theory.

Equation (2) is an energy functional for an easy-plane
ferromagnet. As such one expects this system to support
vortex excitations. In this context these are called merons,
of which there are two for each vorticity—one in which
the local spin vector m points in the positive ẑ direction
in the vortex core center and the other with m in the
negative ẑ direction. Due to the spin-charge relation (1),
this means that vortices and antivortices each may have
charge ±e/2. In clean systems at low temperatures, we
expect vortices and antivortices to be bound into pairs. Such
bimerons then become the basic charged quasiparticles of the
system [14], carrying charge e. Interestingly, such a bimeron
is topologically equivalent to a skyrmion, confirming our
understanding of the close relation between the real spin and
the bilayer pseudospin system.

For ΔSAS = 0, it is clear that above the Kosterlitz-
Thouless temperature the meron pairs will unbind. Renor-
malization group calculations and simulation studies suggest
that such unbinding can still occur if ΔSAS is sufficiently
small, either from thermal fluctuations [16] or disorder
[17, 18]. The presence of unbound merons in the system
has profound physical implications and may explain a
number of remarkable phenomena that have been observed
in experiments, as we now explain.
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2. Analogy with Two-Dimensional Superfluidity

The analogy with easy-plane ferromagnetism suggests a
different way to interpret the energy functional in (2). If Γ
is sufficiently large then out of plane fluctuations will be
strongly suppressed, and in a first approximation one may
ignore mz as a dynamical degree of freedom. Writing mx +
imy = eiθ , to lowest order in gradients the energy functional
may be written in the simple form

ESF =
∫

dr

[
ρs
2

(∇θ)2 − ΔSAS

4π�2
0

cos θ

]

(3)

in the absence of an external potential V(r). For ΔSAS = 0
(i.e., negligible tunneling), this has exactly the form expected
for a two-dimensional thin film superfluid, with θ the
condensate wavefunction phase and ρs an effective two-
dimensional “superfluid stiffness.” In this case one expects
the system to have a linearly dispersing “superfluid mode”
which is analogous to the spin wave of an easy-plane
ferromagnet. The presence of such a mode has been verified
in microscopic calculations using the underlying electron
degrees of freedom [19]. This suggests the possibility that
one might observe some form of superfluidity in this system.
To see exactly what this means, it is convenient to consider
momentarily a wavefunction for the groundstate of the
system in terms of the electron degrees of freedom

|Ψex〉 = ΠX

[
uX + vXc

†
T ,XcB,X

]
|Bot〉, (4)

where |Bot〉 represents the state in which all the single
particle states of the bottom layer in the lowest Landau
level, created by c†B,X , have been filled. For a state with
uniform density and equal populations in each well, uX =
vX = 1/

√
2. More generally, one can represent an imbalanced

state, obtained physically with an electric field applied
perpendicular to the bilayer, by taking uX = √νT and vX =√

νB, with νT + νB = 1. The constants νT and νB represent the
filling fractions in each of the layers, and the situation where
νT /= νB turns out to be quite interesting, as we will discuss
below.

Equation (4) is an excellent trial wavefunction for the
groundstate, provided the layer separation d is not too large
[20]. It shows that in the ideal (clean) limit, this system
has a coherence much akin to that of a superconductor and
that the condensed objects in the groundstate are excitons,
particle-hole pairs with each residing in a different layer. This
immediately implies that the superfluidity in the this system
will be in counterflow transport, where electric current in
each layer runs in opposite directions.

Something much like this has been observed in experi-
ments where electrical contact is made separately with each
layer [21, 22]. In such studies current flows in opposite
directions in the two layers. Such a current can be sustained
by exciton flow, since the charge of the two constituents of the
exciton have opposite sign. By measuring the voltage drop in
a single layer along the direction of current, one may learn
about dissipation in this exciton flow. In the experiments
[21, 22], the dissipation is nonvanishing at any temperature
T > 0, but apparently extrapolates to zero as T → 0.

Another type of experiment takes advantage of the
fact that ΔSAS, while very small (typically several tens of
microKelvin), is not zero. When the last term in (3) is
included, the energy functional has a form very similar to
that of a Josephson junction, suggesting that this system
supports a Josephson effect [23]. In tunneling experiments,
where one separately contacts to each layer such that current
must tunnel between them, the tunneling I-V is nearly
vertical near zero interlayer bias [24], which appears very
similar to a Josepshon I-V characteristic.

Another similarity between Josephson junction physics
and the quantum Hall bilayer is the existence of a critical
current. Josephson junctions can pass dissipationless cur-
rents only up to a limit that scales as

√
ΔSAS in the model

of (3). Above this current, a voltage sets in, and the system
behaves dissipatively. Again, behavior reminiscent of this has
been observed experimentally [25], although in the quantum
Hall bilayer one should note carefully that the critical current
separates a low from a high dissipation regime, rather than
a zero from a nonzero dissipation regime. A number of
theories have addressed this issue in the clean [26–28] and
dirty [29] limits, which give very different behaviors with
respect to how the critical current should scale with respect
to the sample area. Interestingly, it is the latter which seems
to agree best with experiment.

While these results look quite similar to what one might
expect for exciton superfluidity, it is important to recognize
that these results clearly are not genuine superfluid behavior.
If the condensate could truly flow without dissipation, one
would expect zero dissipation at any finite temperature below
the Kosterlitz-Thouless transition, where vortex-antivortex
pairs unbind. In experiment this truly dissipationless flow
appears to emerge, if at all, only in the zero temperature limit.
Similarly, the Josepshon effect should be truly dissipationless,
whereas in experiment there is always a measurable tunneling
resistance at zero bias. The superfluidity in this system is
imperfect. What kind of state can be nearly superfluid in this
way? The answer likely involves disorder, which as mentioned
above can cause the meron-antimeron pairs to unbind at
arbitrarily low temperature. We next discuss a model which
seems to capture much of the physics found in experiment.

3. The Coherence Network Model

One important way in which skyrmions and merons of the
ν = 1 quantum Hall system are different than those of
more standard ferromagnets is that they carry charge. This
means that they couple to electric potential fluctuations
due to disorder. In these systems, disorder is ubiquitous
because electrons are provided to the layers by dopants,
which leave behind charged centers. The resulting potential
fluctuations are extremely strong, and in fact divergent at
long length-scales. In the Efros picture, the system screens
nonlinearly by creating large puddles of positive and negative
charge, separated by narrow strips of incompressible Hall
fluid with local filling factor near ν = 1 [30, 31]. For the
bilayer system, the charge flooding the puddles should take
the form of merons and antimerons, whose high density
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Figure 1: Representation of coherence network. Links and nodes
separate puddles of merons (circles). Meron charge and electric
dipole moments indicated inside circles, as are strings of overturned
phase connecting meron-antimeron pairs. Reproduced from [18].

spoils the interlayer coherence. The coherence however will
remain strongest in the regions separating the puddles, even
though some meron-antimeron pairs will likely straddle
them. Thus one forms a network structure for the regions
where the coherence is strong, and these should dominate the
“superfluid” properties of the system. A schematic picture of
the system is illustrated in Figure 1.

The key assumption in this model is that with such dense
puddles, merons are able to diffuse independently through
the system. This is supported by a renormalization group
analysis, which suggests that there exists a state in which
disorder enters as an effective temperature, so that one would
likely be above any meron-antimeron unbinding transition
for such strong disorder [18]. Motion of the merons is then
limited by energy barriers for them to cross the coherent links
between puddles. The tendency for dissipationless counter-
flow to emerge only at zero temperature now becomes very
natural. When condensed excitons flow down the system,
these produce a force on the merons perpendicular to that
current [32]. The resulting meron current is limited by
the activation energy to hop over the coherent links and
vanishes rapidly but only completely when the temperature
drops to zero. This meron current induces a voltage drop
in the direction of the exciton current via the Josephson
relation, rendering the counterflow current dissipative. True
superfluid response in this system can only occur at zero
temperature.

Dissipation in the tunneling geometry also emerges
naturally in this model [18]. Since the current flows into (say)
the top layer on the left and leaves via the bottom layer on the
right, the current in the system must be decomposed into a
sum of symmetric “coflow” and antisymmetric counterflow
(CF). The former is likely carried by edge currents which
are essentially dissipationless in the quantum Hall state. To
obtain the correct current geometry, the CF current must
point in opposite directions at the two ends of the sample.
Thinking of the network as a Josephson array, the current
of excitons—that is, CF current—is proportional to ∇θ. In
order to inject CF currents in opposite directions at each end

of the sample, the phase angle at the sample edges should
be rotated in the same direction. This means that the phase
angle throughout the system will tend to rotate at a uniform
rate, which is limited by the (ΔSAS/4π�2

0) cos θ term in (3).
This is most effective at the nodes of the network, where
the coherence is least compromised by the disorder-induced
merons.

The dynamics of a typical node with phase angle θ may
be described by a Langevin equation

Γ
d2θ

dt2
=
∑

links

Flink − γ0
dθ

dt
− h sin θ + ξ(t). (5)

The quantities Flink represent the torque on an individual
“rotor” (i.e., θ variable) due its neighbors, transmitted
through the links. Γ is the effective moment of inertia of
a rotor, proportional to the capacitance of the node, h =
ΔSAS/4π�2

0 , ξ is a random (thermal) force, and γ0 is the
viscosity due to dissipation from the other node rotors in
the system. For a small driving force, the node responds
viscously, and the resulting rotation rate has the form γθ̇ =∑
Flink. The Josephson relation V = (�/e)(dθ/dt) then

implies that the viscosity γ is proportional to the tunneling
conductance σT of the system. For kBT � h one may show
the viscosity for an individual node to be [33]

γ = γ0 + Δγ = γ0 +
√
π

2Γ
h2

(kBT)3/2 . (6)

As each node contributes the same amount to the total
viscosity, the total response of the system to the injected CF
current obeys

ICF ∝ NnodesΔγ
e2Vint

�
= σTVint. (7)

Note that because the nodes respond viscously, the tunneling
conductance is proportional to the area of the bilayer. This
is a nontrivial prediction of the model discussed here, which
has been confirmed in experiment [34]. The proportionality
of the tunneling conductance to Δ2

SAS is another nontrivial
prediction which appears to be consistent with experimental
data, and which contrasts with the result one expects in the
absence of disorder, for which σT ∝ ΔSAS.

4. Drag Experiments and Interlayer Bias

When an electric field is applied perpendicular to the layers,
the density in the two layers becomes imbalanced. The effect
of this can be incorporated into the model, (2), by replacing
Γ
∫
dr(mz)2 with Γ

∫
dr(mz −m0)2, with m0 = νT-νB. The

imbalance has interesting consequences for merons: since the
pseudospin field m does not drop back into the x̂ − ŷ plane
as one moves out from the center of meron, the spin-charge
relation (1) indicates that the four types of merons will have
four different charges. These charges are specifically given
by qs,T(B) = −s σνB(T), where s = ±1 is the vorticity of the
meron, and the T(B) subscript reflects the layer in which the
magnetization at the core of the meron—its polarization—
resides. The index σ indicates a sign associated with the
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polarizations: σ = 1 for m in the meron center oriented in the
top layer, σ = −1 for merons where it resides in the bottom
layer.

The connection between polarization and charge has
very interesting consequences for another type of transport
experiment specific to bilayers, known as drag. In these
experiments, one drives a current through only a single
layer and measures voltage drops either in the drive layer
or the drag layer. Within the coherence network model, the
activation barrier for merons to hop across incompressible
strips will clearly depend on the relative orientation of
the meron polarization and the applied bias. Naively one
would think that at low temperature, transport will be
dominated by only the smallest activation energy, so that a
measurement of resistance will reveal an activation energy
that is symmetric around zero bias, which drops as the bias
increases.

But this is not what is seen in experiment. The activation
energy as measured in the drive layer is highest when
the density is biased into the drive layer and decreases
monotonically as the imbalance is changed so that more
density is transferred to the drag layer. In the drag layer, the
measured voltage drops turn out to be much smaller than in
the drive layer, and are symmetric, but increase as the layer is
imbalanced [35].

A careful analysis of the situation requires a method
for determining voltage drops in individual layers, not
just the interlayer voltage difference, which is what the
Josephson relation applied above actually reveals. This can
be accomplished [36] by adopting a “composite boson”
description of the ν = 1 quantum Hall state [1, 37].
The idea is to model electrons as bosons, each carrying
a single magnetic flux quantum in an infinitesimally thin
solenoid. The Aharonov-Bohm effect then implements the
correct phase (minus sign) when two of these objects are
interchanged [37]. By orienting the flux quanta opposite
to the direction of the applied magnetic field, on average
the field is canceled, and in mean-field theory the system
may be modeled as a collection of bosons in zero field. The
quantum Hall state is then equivalent to a Bose condensate of
these composite bosons. For the coherent bilayer state, there
is an additional sense in which the bosons are condensed:
they carry a pseudospin with an in-plane ferromagnetic
alignment.

Because merons carry physical charge, they will carry
a quantity of magnetic flux proportional to this charge. In
analogy with a thin-film superconductor [32], this means
that a net current in the bilayer (i.e., a coflow) creates a
force on the meron perpendicular to the current. This has
to be added to the force due to a counterflow component.
Together, these yield a net force which may be shown to be
[36]

FT = es

2
Φ0[(1 + σ)JB − (1− σ)JT]× ẑ, (8)

where JT(B) is the current density in the top (bottom) layer.
As is clear from this expression, merons with only one of
the possible polarizations are subject to a force in a drag
experiment, since one of the two current densities vanishes.
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Figure 2: Expected activation energy Δ as a function of relative
density imbalance between the layers, Δν/νT . For voltage drop
measured in the drive layer, the results are asymmetric with around
Δν = 0, as shown explicitly for d = 0.8�0 (see text). For
measurements in the drag layer, the data is reflected around Δν = 0;
the measured result would follow the higher of the two activation
energies, yielding a result symmetric in bias. Inset: activation energy
at zero bias versus layer separation. Reproduced from [36].

The force Fs,σ on merons of vorticity s and polarization σ
will cause them to flow with a velocity us,σ = μs,σFs,σ , where
μs,σ is an effective mobility, which we expect to be thermally
activated, with a bias dependence of the activation energy as
discussed above. The resulting motion of the vortices induces
voltages in two ways. The first is through the Josepshon
relation for the interlayer phase, yielding the relation [36]

ΔV = ΔVT − ΔVB = −2πh
e

y0

∑

s,σ

nsσ susσ (9)

for the voltage drops between ΔVσ between two points a
distance y0 apart along the direction of electron current, in
layer σ , where ns,σ is the meron density. The second is due to
the effective magnetic flux moving with the merons, which
induces a voltage drop between electrons at different points
along the current flow that is independent of the layer in
which they reside. This contribution is given by [36]

(νTΔVT + νBΔVB) = −h
e
y0

∑

s,σ

nsσqsσusσ . (10)

In a drag geometry we have, for example, JB = 0 and JT =
(I/W) ŷ, with I the total current and W the sample width.
Combining (9) and (10), we obtain ΔVB = 0 and

ΔVT

I
= y0

W
hΦ0

(
n1,−1μ1,−1 + n−1,−1μ−1,−1

)
. (11)

Notice that the final result depends on the mobility of only
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merons with polarization σ = −1. It immediately follows
that the voltage drop in the drive layer is asymmetric with
respect to bias, precisely as observed in experiment.

In order to explain the voltage drop in the drag layer
(ΔVL /= 0), we must identify how forces on the σ = +1
merons might arise. A natural candidate for this is the attrac-
tive interaction between merons with opposite vorticities,
which in the absence of disorder binds them into pairs at
low meron densities. Assuming that driven merons crossing
incompressible strips will occasionally be a component of
these bimerons, a voltage drop in the drag layer will result.
The mobility of such bimerons is limited by the energy
barrier to cross an incompressible strip. These strips are likely
to be narrow compared to the size scale of the constituents
of the bimeron [36], so we expect the activation energy to
be given approximately by the maximum of the activation
energies for merons of the two polarizations σ = ±1. This
leads to a drag resistance much smaller than that of the
drive layer, with an activation energy that is symmetric with
respect to and increases with bias. These are the behaviors
observed in experiment [35]. Figure 2 illustrates the expected
activation energy from a microscopic model implementing
this physics [36] as a function of relative density imbalance
between the layers, Δν/νT , where Δν = νT − νB and νT = 1,
for different layer separations. For voltage drop measured in
the drive layer, the results are asymmetric around Δν = 0, as
shown explicitly for d = 0.8�0. For the drive layer, the large
circles represent the activation energy found from a voltage
drop measurement when it has a higher density than the drag
layer, and the small circles the activation energy when it has
the smaller density. Thus a measurement on the drive layer
while continuously adjusting the density imbalance from
positive through zero to negative results in a line from the
large circles to the small circles as zero is crossed, yielding an
asymmetric result. For measurements in the drag layer, the
result would follow the higher of the two activation energies,
yielding a result symmetric in bias.

This result followed from the precise cancellation
between the counterflow current force on the vorticity of
merons of a particular polarization and the Lorentz force
associated with meron charge and its associated effective
flux. The experiments thus provide indirect evidence that the
meron charges vary in precisely the way one expects from the
spin-charge relation, (1), verifying this unique property of
quantum Hall ferromagnetism.

5. Periodic Models of the Quantum Hall Bilayer

As explained in Section 3, disorder has a nonperturbative
effect on the incompressible quantum Hall state. True
disorder is extremely difficult to treat theoretically. In
analogy with superfluid systems [38], and one-component
quantum Hall systems near a plateau transition [39–42], one
may hope that a periodic potential captures some of the
nonperturbative effects of disorder. Once one has obtained
a second-order phase transition, one then adds disorder or
other perturbations and examines their relevance/irrelevance
[43]. This approach has been very fruitful in the past.

Figure 3: (Color online) The ground state configuration for a 16×16
unit cell with the strength of the periodic potential (in units, where
J = 1) being V = 3.0, and the Hubbard interaction is U = 8.0.
The lengths of the spins denote their planar projection. Note a
vortex/antivortex at the center of each puddle.

As a first attempt, one of us (G. Murthy) and Subir
Sachdev [13] examined the Composite Boson theory [1]
near a putative Superfluid/Mott Insulator transition [38].
The primary difference between the neutral system and this
one is that the Composite Boson is charged and is minimally
coupled to both the external gauge field and the statistical
field which attaches flux. There are two natural phases: a
Bose-condensed Higgs phase in which all excitations are
massive and the system can be shown to have a quantized
Hall conductivity and a Mott Insulating phase in which all
conductivities vanish [13].

In the large-N approximation, one can integrate out
the bosons, leaving behind an effective theory of gauge
fluctuations. The phase transition turns out to be second-
order in the large-N limit, with the critical point having the
conductivities [13]

σ∗xx(0,ω) = e2

h

π/8

1 + (π/8)2 , σ∗xy =
π

8
σ∗xx. (12)

The XY-angle θ also acquires an imaginary part of the
self-energy at the critical point which vanishes as ω7 for
zero interlayer tunneling and ω5 when interlayer tunneling
is nonzero [13].

While this model is fully quantum, it is overly simplistic
in assuming that only a single phase transition exists between
the uniform superfluid and a Mott Insulator.

Recently, the present authors in collaboration with
Jianmin Sun and Noah Bray-Ali have taken some steps
towards building a more realistic model [44]. In this model,
fermions are assumed to be gapped out, and the real spin
is assumed to be fully polarized, leaving dynamics only in
the pseudospin. We put the system on a square lattice with
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Figure 4: (Color online) The ground state configuration forV = 7.0
and U = 8.0.
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Figure 5: The spin wave velocity of the G-mode as a function of V .
Note that it never vanishes, but that it can vary by a factor of three,
and have significant discontinuities at transitions.

lattice constant a = l0
√

2π, so that there is one electron per
site. There is a periodic potential with period L = Na in each
direction coupling to the charge associated with pseudospin
textures, which assumes the following form for a triplet of
spins on the lattice [45]:

δQ123 = e

2π
tan−1

(
n1 · n2 × n3

1 + n1 · n2 + n2 · n3 + n3 · n1

)
. (13)

The usual spin-stiffness, planar anisotropy, and interlayer
tunneling terms are present. Finally, to model the Coulomb
interaction between pseudospin textures, we introduce a
Hubbard interaction for the charge on each plaquette �.
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Figure 6: The lowest-lying modes for V = 4.3 and U = 18. The
system is very close to a ground state transition. Note the almost
gapless Q-mode.

Thus, the Hamiltonian is

H = −J
∑

〈rr′〉

(
nx(r)nx(r′) + ny(r)ny(r′)

)
+
Γ

2

∑

r

(nz(r))2

− h
∑

r
nx(r)−V

∑

�
f (X ,Y)δQ� +HU

[
δQ2].

(14)

Here V is the strength of the periodic potential living on
the dual lattice, and f (X ,Y) its functional form. We choose
the simple form f = sin(2πX/L) sin(2πY/L), resulting in
each unit cell having four puddles, two each being positive
and negative. We show results for J = Γ and measure all
energies in units of J . We find the ground states (really saddle
point configurations of the spins) numerically by simulated
annealing. For smallV the uniform ferromagnetic state is the
ground state, but as V increases the ground state nucleates
more and more merons/antimerons in each of the puddles.
An example is shown Figure 3.

As the strength of the periodic potential increases, more
merons/antimerons are nucleated to screen the potential, as
exemplified by Figure 4.

The phase transitions between these ground states are
generically first order, though occasionally they can become
weakly first order or even second order. Various physical
quantities, such as the spin stiffness (without vortex correc-
tions) and spin wave velocity, also exhibit jumps at these
transitions, as shown in Figure 5.

We note an important qualitative difference between
the models with and without the periodic potential as a
function of interlayer coupling. In the clean model, with
no potential, the interlayer tunneling strength h is strongly
relevant, and thus systems with weak and strong h at
the microscopic scale are expected to behave similarly at
large length scales. However, in the model with a periodic
potential, as h increases, the system undergoes transitions in
which merons/antimerons are lost from the puddles, ending
at very large h in the uniform ferromagnetic state. Thus, the
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Figure 7: TKT in units of J/kB as a function of V for a 16× 16 unit
cell at U = 8. Dramatic decreases in the transition temperature
TKT separating the low-temperature ferromagnetic phase from
high-temperature paramagnetic phase occur due to changes in
the topological density of the ground-state at critical potential
strengths.

weak and strong h systems are in different phases, and there
is no reason to expect similar behavior from them. Indeed,
experimentally one sees the puzzling features only in systems
with a tiny h.

Secondly, we examined the collective mode spectrum,
and found that when the transition is weakly first order there
is a new, quadratically dispersing, mode which becomes low
in energy and can be even lower in energy than the linearly
dispersing Goldstone mode (or G-mode). We call this new
mode the Q-mode. Examining the wave functions of the
Q-mode reveals that it represents vortex motion within the
puddle. An example of the low-energy part of the collective
mode dispersions is shown in Figure 6.

The presence of first-order ground state phase transi-
tions results in the strong suppression of the Berezinskii-
Kosterlitz-Thouless transition temperature TKT near the V0

corresponding to the transition. This can be seen in a simple
way as follows. The ground state transition occurs between
states having different numbers of merons/antimerons in
each puddle. The simplest picture is when the ground state
on one side of the transition has no merons/antimerons
while the ground state on the other side has a checkerboard
pattern of merons/antimerons. Integrating out the spin
waves, the difference in ground state energy can be modelled
as arising from a Coulomb gas energy of the form

E[{m(R }] = 1
2

∑

R /=R′
Ksm(R)m(R′) log

(
|R− R′|

ξ

)

− Ec(V)
∑

R

(m(R))2,

(15)

where Ec(V) is a core energy that depends on the potential
strength, m(R) is the vorticity at the dual lattice site R, and
ξ is a cutoff which can be tuned so that the groundstate goes
through the transition seen to occur at Vc in the simulation.
Near the transition the difference in ground state energies

behaves as α(V − Vc). Attributing this difference to the
difference in vortex/antivortex core energies, we can extract
Ec ≈ (α/4)|V−Vc|. Note that the vortex and the absence of a
vortex interchange roles as the excitation as one goes through
the transition. As the core energy of a vortex/antivortex
vanishes, they proliferate and disorder the system. One can
solve the renormalization group equations to find TKT as one
variesV . We find that TKT is typically suppressed by an order
of magnitude compared to Hartree-Fock estimates, as shown
in Figure 7.

Now consider the suppression of interlayer tunneling
near a ground state transition with a nearly gapless Q-mode.
It is important to note that the XY angle θ couples to both
theG- andQ-modes, and for small deviations, can be written
as a linear combination of them. To see the effect of the Q-
mode, one decomposes the tunneling term as

h cos(θ) � h
(
eiθGeiθQ + c.c

)
(16)

and integrates out the Q-mode at nonzero temperature T .
Assuming a quadratic dispersion ωQ(k) = EQ0 + γk2, after
integrating the Q-mode one obtains a renormalized h

hR ≈ he−Tl
2 log(Λ/EQ0)/γ. (17)

Here Λ is a cutoff, and it can be seen that as the gap EQ0 of
the Q-mode vanishes, hR → 0.

One of the most important open questions is whether,
and how much of, the phenomenology of the system with the
periodic potential survives in the system with true disorder.
Our expectation is that the qualitative difference between
weak and strong tunneling will survive, as will the fact that
the ground state has topological content. One can expect the
disorder to smooth the first-order transitions into second-
order ones with a gapless mode at the transition [46–48]. In
such a case, near a transition one expects the suppression
of interlayer tunneling to survive as well. Furthermore, an
important effect of disorder is to create large rare regions in
which the system is close to critical (the Griffiths phase [49]),
and thus even for a generic disorder strength one expects
low-energy modes to exist in the system. However, whether
interlayer tunneling is thus suppressed for generic disorder
strength is not clear.

6. Conclusion

Quantum Hall bilayers have natural descriptions in the
languages of ferromagnetism and thin film superconductiv-
ity. Both these descriptions suggest that the system should
have vortex-like excitations, called merons, which can play
a key role in the dissipative properties of the system. Real
bilayer systems are inevitably subject to disorder, which
is likely to be strong, and to induce such vortices in
the groundstate, forming a “coherence network” which
surrounds puddles of merons. We have discussed how
the motion of merons accounts for the deviation of the
system from perfect superfluid behavior and how the model
naturally explains dissipation at finite temperatures in in
counterflow, tunneling, and drag geometries. To better
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understand quantum effects in this system, one can consider
a simpler model in which the puddles are periodically
arranged and study the low energy collective modes of
the system. In this case we found a series of first-order
zero temperature transitions separating states of different
meron occupations in the puddles and argued that the
Kosterlitz-Thouless temperature should drop to zero at these
transitions. Approaching these transitions, the collective
mode spectrum may develop a low energy mode associated
with vortex motion which can greatly suppress the effect of
tunneling on the system.

There is much yet to understand about this rich and fas-
cinating system, including how quantum effects impact the
zero temperature state and its transport properties, whether
there is any attainable limit in which true counterflow
superfluidity could be observed, and whether the competing
effects of tunneling and disorder can lead to further exotic
states. We anticipate that this system will remain a subject of
keen interest for years to come.
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We present a theory for the regime of coherent interlayer tunneling in a disordered quantum Hall bilayer at total filling factor
one, allowing for the effect of static vortices. We find that the system consists of domains of polarized superfluid phase. Injected
currents introduce phase slips between the polarized domains which are pinned by disorder. We present a model of saturated
tunneling domains that predicts a critical current for the breakdown of coherent tunneling that is extensive in the system size. This
theory is supported by numerical results from a disordered phase model in two dimensions. We also discuss how our picture might
be used to interpret experiments in the counterflow geometry and in two-terminal measurements.

1. Introduction

In a quantum Hall bilayer at total Landau level filling νT =
1, Coulomb interactions induce a state with interlayer phase
coherence [1, 2]. This state is expected to be approximately
the Halperin [111] state [3], which can be understood as a
Bose-Einstein condensate of interlayer excitons [4, 5]. The
motion of excitons corresponds to counterflowing electrical
currents in the layers so that excitonic supercurrents can give
dissipationless electrical transport. The superfluid properties
of the [111] state have been demonstrated theoretically by
Wen and Zee [6, 7].

This counterflow superfluidity can be probed in tun-
neling experiments. In the tunneling geometry (Figure 1),
a current It is injected into the top layer at one corner and
removed from the bottom layer at the opposite corner. These
current flows may be written as superpositions of layer-
symmetric and layer-antisymmetric currents

Iin(out) = 1
2
It

⎡

⎣

⎛

⎝
1

1

⎞

⎠±
⎛

⎝
1

−1

⎞

⎠

⎤

⎦, (1)

where the two components refer to currents in the two
layers. Thus, the tunneling experiment corresponds to a

flow of layer-symmetric current, with equal counterflow
currents ICF = It/2 injected by both the electron source
and drain. The symmetric component is transported by a
dissipationless edge state, which does not penetrate the bulk
due to an energy gap to charged excitations. However, the
bulk can carry the counterflow component as a charge-
neutral excitonic supercurrent. Since both these channels are
dissipationless, we expect dissipationless electrical transport.
In particular, a finite interlayer current I at negligible
interlayer voltage V has been predicted [8, 9]. This has
been recently confirmed by four-terminal measurements by
Tiemann and coworkers [10, 11]. This phenomenon can be
regarded as a form of the Josephson effect [7]. Note that
thermally activated quasiparticles and contact effects [12]
can give rise to complications in actual experiments.

The Josephson-like regime persists for interlayer currents
up to a critical value Ic. Above Ic, interlayer transport
becomes dissipative. Nevertheless, interlayer coherence can
still be detected in the interlayer IV characteristics of the
system. A strong peak is observed at zero bias in the
differential interlayer conductivity. This is followed at low
bias by a regime with negative differential conductivity
[13, 14]. This regime can be studied theoretically treating the
interlayer tunneling as a perturbation [15–17].
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Figure 1: Schematic diagram of tunneling experiment.

In this paper, we focus on the Josephson regime below
the critical current and present a physical picture of its
breakdown. We have previously presented, in a short paper
[18], a theory of this breakdown based on numerical results
on a one-dimensional model. The aim of the present paper is
to present numerical results for a two-dimensional model,
which directly demonstrate the breakdown mechanism in
a realistic geometry. The key motivation of our work is to
understand the observation [11] that the critical current
Ic is proportional to the sample area. (Area scaling is also
observed in the zero-bias peak of the interlayer conductivity
[19]. We will discuss this in Section 6.) The source and
drain contacts for the applied current are located at opposite
ends of the system. If one models this system as a clean
homogeneous bilayer using reasonable estimates of the
tunnel splitting, one finds that the injected current should
have tunneled across the bilayer within a few microns of
the source contact (λJ in (6)). Such a current profile would
suggest that the critical value of the interlayer current should
not depend on the sample length in the direction of the
current [12, 20, 21]. Put another way, the area scaling of
the critical current could only be explained by a clean
model of the bilayer if one accepts a tunnel splitting that is
anomalously small by several orders of magnitude [12].

A similar puzzle is found in the original observation
of dissipationless counterflow [22, 23] in the counterflow
geometry (Figure 3). Again, counterflow currents apparently
traverse the system over distances orders of magnitude
further than expected. We will return to this geometry in the
final section.

The resolution of this puzzle lies in the presence of
disorder. We shall see (Figure 2) that in the presence of
static phase disorder (pinned vortices), the supercurrent
profile can be pinned by disorder. The time-independent
supercurrents can then penetrate into the sample over indef-
initely large distances, limited only by the finite size of the
sample. In fact, we find that dissipation only appears when
supercurrents completely fill the sample. This mechanism
gives a critical current (11) which is proportional to the
area of the sample. The magnitude of this critical current
agrees with experiments, using reasonable estimates of the
parameters [18].

This paper is organized as follows. We will discuss the
origin of disorder in the bilayer in Section 2. Then, in
Section 3, we will introduce the phase Hamiltonian for the
excitonic superfluid that describes the interlayer-coherent
phase of the quantum Hall bilayer. In Section 4, we discuss

I/
I 0
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V∇·jCF

Figure 2: Spatial distribution of tunneling currents (left column)
and interlayer voltages (right column), in a lattice model of 200 ×
20 sites, with current injection at the two lower corners. The injected
counterflow currents are I/I0 = 15, 30, 45, 60 for the four pairs of
plots. Dark colours, left column: high current. Dark colours, right
column: low voltage. tξ2/ρs = 0.6. Results are averaged over 500
realizations; tunneling currents are summed over blocks of 3 × 3
sites.

how quenched vortices in the superfluid affect the ground
state of the system and its response to injected currents.
Then, in Section 5, we present the results of a numerical
simulation of the bilayer in the tunneling configuration to
support the prediction of our theory. In the final section, we
discuss how our picture can be used to interpret experiments
for the bilayer in other configurations.

2. Model of Disorder

Weak disorder, such as a spatially varying tunneling splitting,
does not affect the tunneling properties of the system
dramatically [24]. A tunneling mechanism based on a
disordered edge has been proposed by Rossi et al. [25].
However, such a theory predicted linear scaling with the
sample length but not its area.

We consider here a bilayer with charge disorder in
the bulk. One common source for this disorder is the
electrostatic potential due to disordered dopant layers. We
expect the incompressible quantum Hall phase to occupy
only a fraction of the sample, with the remainder occupied
by puddles of compressible electron liquid. Thus, the
incompressible phase forms a network of channels separating
puddles of size ξ ≈ dd ≈ 200 nm, the distance to the dopants.
We suppose that the width of the channels is of the order
of the magnetic length �B ∼ 20 nm. This coherent network
model was first studied in the context of the quantum Hall
bilayer by Fertig and Murthy [26].
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I

Iloop

Figure 3: Schematic diagram of a counterflow experiment with
a short circuit to complete current loop for counterflow. Iloop

measures current through the short circuit. Diagram depicts the
Josephson regime where the loss of counterflow current through
tunneling means that Iloop = 0. The current-carrying region
penetrates to the right as the injected current I is increased,
eventually reaching the other end at Ic.

In a quantum Hall superfluid, excess charge nucleates
vortices in the exciton superfluid [16, 17, 26–28]. For a
balanced bilayer with individual layer fillings ν1 = ν2 = 1/2
these vortices are merons of charge ±e/2. (In an unbalanced
bilayer, the charges are [29] ±ev1(2).) In previous work [27],
we have studied how the vortex density is determined by
a competition between the superfluid energy cost of the
vortex and the charging energy of each puddle. We found
that the bilayer can be strongly disordered in the current
experimental regimes. This suggests that the random field
due to the pinned vortices has an exponentially decaying
correlation function in space.

The above scenario provides a specific physical model
for quenched vortices with short-ranged correlations in the
exciton superfluid. The theory we present below depends on
the existence of trapped fractional e/2 charges to create these
vortices but does not depend crucially on the details of the
disorder distribution. Our results should be valid as long as
the vortices are dense enough that their separation (∼ξ) is
smaller than the clean tunneling length scale λJ (6).

3. Phase Model

In the previous section, we have outlined a model of disorder
which induced quenched vortices in a quantum Hall state.
To describe this exciton superfluid with quenched vortices,
we start with an effective Hamiltonian for the phase θ of the
superfluid. We separate out the component, θ0, of the phase
field that is due to the quenched vortices. The remaining
component, φ ≡ θ − θ0, would have no vorticity in the
ground state but may acquire vorticity in the presence of
injected currents and other external perturbations. It can be
shown that the effective Hamiltonian can be written as a
random field XY model

Heff =
∫ [

ρs
2

(∇φ)2 − t cos
(
φ + θ0)

]
dDr, (2)

which describes the low-energy phase fluctuations of a
bilayer containing pinned vortices. This form is a simple
extension of the form for a clean model [8]. The first term

describes the superfluid stiffness to phase twists, while the
second describes the interlayer tunneling. We will assume
that the quenched phase field θ0 has a correlation length of ξ .

In the Josephson regime, there is no quasiparticle flow at
zero temperature. All currents are accounted for by superflow
and coherent tunneling. The counterflow supercurrent den-
sity above the ground state, jCF, and the interlayer tunneling
current density, Jt, are related to the phase field by

jCF =
eρs
�
∇φ, Jt = et

�
sin
(
φ + θ0). (3)

A time-varying superfluid phase φ(t) gives rise to an
interlayer voltage difference V via the Josephson relation

V = �φ̇

e
. (4)

Therefore, a state with a finite interlayer current at zero
interlayer voltage is time-independent, corresponding to a
local minimum of the energy (2). The stationary equation
is simply the continuity equation stating that the loss of
counterflow current is accounted for by interlayer tunneling
∇ · jCF = Jt. This can be written as

−ρs∇2φ + t sin
(
φ + θ0) = 0. (5)

All states with zero interlayer voltage obey this equation. The
dependence on the injected current arises as the boundary
conditions at the source and drain specifying the injected
counterflow component jCF. In terms of the phase field, this
is a boundary condition on∇φ.

We expect that the counterflow current injected at the
boundary will decay into the sample because interlayer
tunneling will recombine electrons and holes across the two
layers, as depicted in Figure 3. In the clean case (θ0 = 0),
one expects [20, 30] the static solution to show all the
injected counterflow current tunneling across the bilayer
over a “Josephson length” of

λJ =
√
ρs
t
. (6)

This length scale is estimated to be of the order of a few
microns using realistic parameters.

Since the phase angle is compact, this implies a maxi-
mum injected current density of ρs|∇φ| ∼ πρs/λJ . For higher
injected currents, phase slips enter and propagate through
the system. This gives rise to a time-varying phase and hence
a nonzero interlayer voltage via the Josephson relation (4).

Note that this picture of current penetration into the
clean system gives a penetration depth as a microscopic
length scale independent of the injected current. We will
see below that the disordered system behaves qualitatively
differently—the current can penetrate into an indefinitely
large area of the system. The reason is that injected phase slips
are pinned by disorder, and therefore, a static solution to (5)
can persist to higher injected currents. In the next section, we
will discuss this picture of pinning.
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4. Pinned Superfluid

We will now review the heuristic theory of pinning presented
in our previous work [18] in order to provide the context
to interpret our simulation results. The quenched vortices
play a crucial role for the critical current. They pin any
injected supercurrents and sustain dissipationless states. This
is reminiscent of how disorder pins magnetic flux in super-
conductors [31–33] or charge in charge-density waves [34].
However, we emphasize that there is a significant difference
in the bilayer compared with these other systems. In the
superconductor, the depinning force arises from the Lorentz
force on the flux lines due to the bulk transport current. In
charge-density-wave systems, depinning originates from the
electric field in the bulk which is an insulator when the charge
density cannot slide. In the quantum Hall bilayer, depinning
arises from the injected charge current which is applied only
at the sample boundary. Thus, in this case, the critical current
will depend on how the depinning “forces” are transmitted
through the system. In such a geometry, it is not immediately
obvious how the critical current Ic would scale with the area
of the whole sample.

We will borrow from the Fukuyama-Lee theory [34] of
disordered charge density waves and the Imry-Ma theory
[35] for ferromagnets in random fields. We recall the form
of the ground states of the random field XY model, (2), in
the weak disorder regime ξ � λJ relevant for the bilayer.
In this regime, it is energetically costly for the phase φ to
follow the random field θ0 which varies over the scale of the
correlation length ξ . The ground state consists of domains of
polarized phase. These domains cannot be arbitrarily large,
because the energy cost of the mismatch between the phase
and random field grows with the domain size. The energy
cost for a phase twist that varies over the scale l is Es(l) ∼
ρslD−2 in D dimensions. The typical tunneling energy of a
polarized region of size l is obtained by summing random
energies in the range ±tξD for its (l/ξ)D correlation areas,
giving Et(l) ∼ tξD(l/ξ)D/2. The phases will twist when Et(l)
exceeds Es(l). Therefore, the ground state consists of domains
of size Ld determined by

Es(Ld) ∼ Et(Ld). (7)

This “Imry-Ma scale” for the domain is

Ld ∼
(

ρs
tξD/2

)2/(4−D)

=
(
λ2
J

ξD/2

)2/(4−D)

. (8)

In this ground state of polarized domains, the average
coarse-grained phase over a domain is chosen such that the
tunneling energy Ht of each domain is minimized. Since
δHt/δφ(r) is the tunneling current at position r, the total
tunneling current over the domain vanishes.

In two dimensions, Ld = λ2
J /ξ . We see that in the

experimentally relevant regime of λJ � ξ , this new disorder-
induced length scale is much larger than the Josephson
length. This is the length scale controlling current penetra-
tion into the sample. However, as we see below, this should
not be interpreted simply as a renormalized length scale for
how far counterflow currents penetrate into the sample.

Consider now the effect of an injected counterflow which
imposes a phase twist at the boundary. The phase will
therefore twist away from its equilibrium configuration. We
assume that the domain at the boundary remains polarized
at short distances and so will rotate uniformly on the scale
of Ld. This generates a tunneling current which reduces the
counterflow current. The residual counterflow currents will
be transmitted further into the sample, causing the domains
there to rotate in a similar way.

This picture allows us to average over each domain. The
total tunneling current in a domain consists of a similar
random sum to that for the tunneling energy, Et , and is given
by Id f (φ), where

Id = eEt(Ld)
�

= eρs
�
LD−2

d , (9)

φ is the deviation of the coarse-grained phase from its
equilibrium value, and the range of f (φ) is typically [−1, 1].
To minimize the region pushed out of equilibrium by the
injected current, each domain will rotate so as to minimize
the counterflow current transmitted into the sample. This
maximizes the tunneling current and is achieved if we choose
| f | ∼ 1. Thus, we argue that forcing at a boundary leads to
a self-organized critical state, in which the driven part of the
system is saturated at the threshold | f | ∼ 1. This means that
the area St of the system driven out of equilibrium to provide
coherent tunneling is simply proportional to the number
of domains necessary to carry the injected current I . Each
domain can support a current of Id, and so

St(I)
LDd

≈ I

Id
. (10)

The critical current is reached when all domains in the
sample are saturated: S = St(Ic) for a 2D sample of area S.
Therefore, the critical current for a sample of area S is

Ic ∼ Id
S

LDd
= eρs

�

S

L2
d
. (11)

This formula also applies to the 1D case with S being the
sample length.

5. Numerical Results

We will now present numerical results to support the theory
in the previous section. Our numerical results are obtained
using the dissipative model

−λφ̇ = δHeff

δφ
= −ρs∇2φ + t sin

(
φ + θ0

)
, (12)

whose stationary solutions φ̇ = V = 0 are the local minima
of (2). This is performed on a lattice model. The phase
field θ0

i at site i is uncorrelated with the phase field at any
other site. This corresponds to taking the lattice spacing to
be the correlation length ξ of the original continuum model.
The natural unit of current is I0 = eρs/�. The results that
we present below are the results for a 200 × 20 lattice,
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averaged over 500 realizations of the disorder. For this
illustration, we take the ratio of the tunneling strength to the
superfluid stiffness to be tξ2/ρs = 0.6. This corresponds to
a Josephson depth λJ of the order of a lattice spacing and
a domain size Ld of 2 lattice spacings. Although this is not
deep in the weak-disorder regime considered in the previous
section, our results appear to support the conclusions in that
section.

The boundary conditions for (2) are determined by
the current flows through the sample [12]. We consider a
tunneling geometry in which, as seen in Figure 2, a current
It is injected into the top layer at the bottom left corner and
removed from the bottom layer at the bottom right corner.
As already discussed in (1), the counterflow component of
the currents corresponds to equal counterflow currents ICF

injected by both the electron source and drain.
The ground state of the system is found by evolving from

a random state using the dissipative dynamics (12) with the
boundary condition of no injected current. From (3), this
corresponds to n̂ ·∇φ = 0 everywhere on the boundary with
n̂ being the normal to the boundary. To model the current
injection in a tunneling experiment, we then slowly increase
the counterflow current at the source and drain sites (1 and
2) to the final values ξn̂ · ∇φ|1 = −ξn̂ · ∇φ|2 = I/I0. For
the low values of the injected current I , the dynamics reach
a static solution, corresponding to the Josephson regime
with vanishing interlayer voltages. At higher currents, these
time-independent solutions break down and the phase winds
continuously in time. This corresponds to the breakdown of
the d.c. Josephson regime and the appearance of a state with
finite interlayer voltages.

We expect that the counterflow current injected at the
boundary will decay into the sample, because interlayer
tunneling will recombine electrons and holes across the two
layers. We find that the manner in which this occurs is
qualitatively different in clean and disordered bilayers. As
mentioned in Section 1, the penetration depth of the injected
current is simply the Josephson length λJ in the clean case.
We see in Figure 2 that for the disordered case, the current
penetrates further and further into the sample as we increase
the injected current from the two ends. We see from the
border of the regions with finite tunneling (∇ · jCF /= 0) that
the counterflow region increases linearly in area (St) with the
injected current. This is consistent with the prediction (10)
for St as a function of the injected current from our theory.

At a high enough injected current (I/I0 � 50), the current
profiles from the contacts (lower left and right corners) will
meet in the middle of the lattice. Beyond this point, further
increases in current cannot be accommodated by coherent
tunneling and an interlayer voltage develops.

We emphasize that this interpretation of the threshold
for the breakdown of the stationary solutions is qualitatively
different from the clean case. In the clean model, the
breakdown can be understood in terms of the injection of
phase solitons at the boundary [20, 36] when the injected
current exceeds the superflow that can be supported by
a static phase twist |∇φ| ∼ π/λJ . These phase solitons
propagate through the sample. Thus, the phase at any point
varies in time, and the system develops an interlayer voltage

by the a.c. Josephson effect. In this language, we can say
that these injected solitons can be pinned by disorder so that
stationary solutions exist even when there are many solitons
in the system.

6. Discussion

We have so far focused our discussion on the bilayer in
the tunneling geometry. Finally, we will discuss how two
other experimental situations can be interpreted in our
theory. The first setup is the transport in the bilayer in a
counterflow geometry, where the source and drain contacts
are on the same side of the bilayer, while the other end is
short-circuited to allow the current to flow from the top
layer to bottom without the need for tunneling. This is
depicted schematically in Figure 3. This was first investigated
by Tutuc et al. [22] and Kellogg et al. [23]. A large current
(Iloop in figure) was found passing through the short circuit
that join the top and bottom layers. This seems to imply that
there is no leakage by tunneling across hundreds of microns.
As we discussed in Section 1 for the case of the tunneling
geometry, a realistic estimate of the tunneling rate based
on a clean bilayer predicts that the injected current would
have tunneled across the bilayer within a micron and that no
current should remain at the far end.

In our theory, this situation can be simulated by solving
(12) with injected counterflow current at one end only, say
the left end of Figure 2. We expect the tunneling domains to
saturate successively from this end, and the current profile
is the same as that found in Figure 2 for this side of the
sample. There will be no current flow on the right side. In
other words, we expect to see zero current in the short-circuit
loop (Iloop = 0) in the Josephson regime. As we increase the
injected current I to Ic, the current-carrying region reaches
the other end of the sample. Any further currents will pass
through the short circuit. For an ideal loop, we expect Iloop =
I − Ic. However, the short circuit itself should have a finite
resistance. Therefore, the presence of a nonzero Iloop implies a
small interlayer voltage at the end of the sample. In the phase
theory, the Josephson relation (4) means that the superfluid
phase must wind in time. Thus, a static solution to (12)
becomes impossible anywhere in the system, and the whole
sample develops an interlayer voltage. We expect that the
phase dynamics will be complex and chaotic. The nature of
the steady state would depend on details of the damping
mechanisms. This provides a zero-temperature picture of
the counterflow geometry and is consistent with the recent
experiments of Yoon et al. [37], in which the loop current
Iloop is negligible for tunnel currents below a critical value.
A broadly similar scenario for these experiments has been
recently suggested by Gilbert [38]. We should keep in mind
that at finite temperatures, there may be in-plane resistances
associated with the flow of vortices and thermally activated
quasiparticles. Thermal effects have been considered by many
authors [26, 39]. Most recently, Hyart and Rosenow have
modeled this with a decoherence rate that crosses over from
a thermally activated form at high temperatures to a power
law form at lower temperatures [40].
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The second situation we wish to discuss is the two-
terminal measurements of zero-bias interlayer conductance,
G(0), by Finck et al. [19]. Within our theory, this could be
interpreted as the dissipative regime (i.e., no static solutions
for the phase) above the critical current. We note that
these measurements were performed close to the phase
boundary between the excitonic superfluid with interlayer
coherence and the incoherent ν = 1/2 liquids. We expect the
critical current to vanish near the phase boundary [11, 18].
Therefore, it is easy to exceed the critical current in this
region of the phase diagram. Then, we see in Figure 2 that a
nonzero interlayer voltage develops across the whole sample,
and the tunneling current exists over the whole sample. In
other words, G(0) should be proportional to the area of the
sample, as seen by Finck et al. We point out that whereas this
interpretation gives an intrinsic zero-temperature source of a
finite conductance, there may be other sources of dissipation.
Even below Ic there could be a finite dissipation due to
contact resistances and thermally activated vortex motion
[39, 40]. Fluctuations in the pinning energies could also lead
to very weakly pinned regions in large samples [41], which
may lead to dissipation below Ic even at T = 0.

In summary, we have presented a theory of the Josephson
regime of coherent tunneling in a disordered quantum Hall
bilayer with static pinned vortices. We find that in the
tunneling geometry, there are two current-carrying regions
emanating separately from the source and drain contacts. In
these regions, coherent tunneling is saturated. All injected
counterflow current is lost by tunneling by the edge of these
regions. The area of the saturated region St grows linearly
with the injected current I . This linear relation is predicted
by our theory and is confirmed by the numerical results
presented here. This is analogous to the Bean critical state
for flux penetration into a disordered superconductor.

This picture tells us that the system reaches the critical
current when the whole sample is saturated with coherent
tunneling. This results in a critical current that is extensive
for sufficiently large samples that contain many domains of
polarized phase. In contrast, the clean limit [12] sees area
scaling for Ic only for small samples (small compared to the
Josephson length).

Theoretically, our results are qualitatively different from
clean theories [12] because of the existence of these pinned
polarized domains. The size Ld of these domains is a
disorder-induced length scale that emerges in our theory (8).
This scale has no counterpart in the clean system. It would,
therefore, be useful if this length scale can be probed in
experiments. We note that for the area-scaling formula (11)
to apply, the sample should be large enough to include many
complete domains. For sample dimensions smaller than Ld,
the system should cross over to a regime where Ic scales with
the square-root of the sample dimension [18]

Ic ∼
eρs
�

√
Lx
Ld

Ly
Ld

(
quasi-1D: Lx � Ld � Ly

)

∼ eρs
�

√
√
√LxLy

L2
d

(
for Lx,Ly � Ld

)
.

(13)

This crossover provides an experimental probe of the domain
size Ld.
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We show that the wave functions that describe the ground states of putative p-wave-paired phases in quantum Hall bilayers, like
the Pfaffian at νT = 1/2 or the paired phase at νT = 1, are more likely to describe the excited states of Fermi liquids at these filling
factors. We point out to the close competition between Fermi liquid and paired phases, which leads to the conclusion that in the
experiments only direct transitions from the correlated 111 and 331 states into Fermi liquid(s) are likely to be observed.

1. Introduction

The quantum Hall bilayer, which consists of two layers of
2D electron gases in the presence of strong magnetic field
orthogonal to the layers, represents a stage for correlated
states with an extra layer degree of freedom [1]. When the
total filling factor is νT = 1/2 and the distance d between
the layers is on the order of the magnetic length, d ∼ lB,
we expect the so-called 331 state, which can be viewed
as a Cauchy determinant pairing among the underlying
quasiparticles which are neutral fermions. This is a p-wave
pairing between two species of neutral fermions belonging
to different layers. The pairing or order parameter function
should be an eigenstate of rotations in two dimensions and,
in the p-wave case, assumes the form [2] Δk = Δ(kx − iky),
where k is the relative momentum of the Cooper pair and
Δ a constant. Antisymmetrizing a Cauchy determinant leads
to the Pfaffian wave function [3]. The physical question
therefore is whether the tunneling in the quantum Hall
bilayer can mimic the antisymmetrization between the two
species of electrons. Tunneling would allow to reach a p-
wave-paired state of electrons without the layer degree of
freedom, that is, the Moore-Read state. Recent work [4]
pointed out that this route to the Pfaffian may be obstructed
by the intervening phase of the Fermi liquid of neutral
fermions [5]. The latter is, for all that we know, the only
stable phase of one-component neutral fermions at the filling
factor ν = 1/2 in the lowest Landau level (LLL) and would

constitute a certain outcome of strong tunneling. On the
other hand, for the quantum Hall bilayer at total filling factor
νT = 1 and for small distances we have a highly correlated
excitonic 111 state [6, 7]. For large distances between the
two layers, two separate Fermi liquids of neutral fermions
are formed, each at the filling factor 1/2. Proposals [8–12]
were made for an intervening p-wave-paired phase between
electrons—neutral fermions, that belong to different layers
at intermediate distances.

In this paper, by analytical and numerical means, we
further address the relevance of the proposals for the p-wave
phases: (a) Pfaffian in the context of bilayer at νT = 1/2 and
(b) the BCS-like (with two species) p-wave wave function for
the bilayer at νT = 1. In both cases, we assume the problem
is defined by the usual Coulomb interaction. We point out
to the close competition between Fermi liquid(s) and paired
phases in these systems, suggesting that direct transitions
from the correlated 111 and 331 states into Fermi liquid(s)
are likely to take place in the experiments.

2. The Quantum Hall Bilayer and
Its Model Wave Functions

In the following, we review some basic facts about the
quantum Hall bilayer including its possible phases and the
corresponding quantum Hall wave functions. We consider
the quantum Hall bilayer in the presence of the vector
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potential A that describes a strong magnetic field, Bẑ =
∇ × A, perpendicular to both layers. In the rotationally
symmetric gauge, the lowest Landau level (LLL) eigenstates
of an electron with the coordinate z = x+ iy in the plane and
localized in the layer σ ∈ {↑, ↓} are given by

zm exp

{

−|z|
2

4l2B

}

ησ , m = 0, . . . ,Nφ − 1, (1)

where ησ is the usual spinor wave function and the unit of
length is given by the magnetic length, lB =

√
�c/eB. The

number of flux quanta, Nφ, denotes the number of available
states in the LLL. In the thermodynamic limit, the ratio of the
total number of electrons Ne and the number of flux quanta
Nφ defines the filling factor νT = Ne/Nφ. We focus on the
filling factors νT = 1/2 and νT = 1.

The many-body interacting system of electrons is defined
by the following Lagrangian density in the second quantized
formulation:

L =
∑

σ

{

Ψ†σ∂τΨσ −Ψ†σ
(∂r + eA)2

2m
Ψσ −Ψ†σ

ΔSAS

2
Ψ−σ

+
1
2

∫

dr′ρσ(r)V intra
c (r− r′)ρσ(r′)

+
1
2

∫

dr′ρσ(r)V inter
c (r− r′)ρ−σ(r′)

}
,

(2)

where Ψσ is the electron field which carries the pseudospin
(layer) index and ΔSAS denotes the tunneling term. The
interaction is defined by

V intra
c (r) = e2

εr
(3)

and in general V inter
c is different. When we model a quantum

Hall bilayer,

V inter
c (r) = e2

ε
√
r2 + d2

, (4)

d has the meaning of distance between the two layers of 2D
gases and it is of the order of lB. (In the Lagrangian density
(2) we set � = c = lB = 1.) Significant insight into the physics
described by the Lagrangian (2) can be obtained using first-
quantized trial wave functions for its ground states [13]. We
now list several candidate wave functions that are expected
to describe the ground state of (2) in different limits of ΔSAS

and d for the filling factors νT = 1/2 and νT = 1. Trial wave
functions in the LLL are analytic in z variables and we will
omit the omnipresent Gaussian factor for each electron as
the one in (1).

In the small tunneling regime, the fractional quantum
Hall (FQH) system at νT = 1/2 is two-component, described
by the 331 Halperin state for two distinguishable species of
electrons, ziσ ; σ =↑, ↓; i = 1, . . . ,Ne/2,

Ψ331 =
∏

i< j

(
zi↑ − zj↑

)3∏

k<l

(zk↓ − zl↓)3
∏

p,q

(
zp↑ − zq↓

)
. (5)

Due to the fact that the correlation exponents between
electrons of the same layer are bigger than those between
electrons of the opposite layers, we expect the wave function
(5) to be more appropriate for nonzero d, for example, in the
range d ∼ lB.

As the tunneling strength ΔSAS is increased, the electrons
find it energetically favorable to be in the superposition
of two layers, ↑ + ↓, and the system loses its two-
component character. The effective single-component state
is characterized by full polarization in the x-direction. At
ν = 1/2 single layer in the LLL, a compelling candidate for the
polarized state is Rezayi-Read composite Fermi liquid state
[14]:

Ψ1/2 = pLLL

⎧
⎨

⎩F ({z, z}) ·
∏

i< j

(
zi − zj

)2

⎫
⎬

⎭, (6)

where pLLL is a projector to the LLL and F ≡ det[eikir j ]
represents the Slater determinant of free waves. Note that a
single index suffices to label the electron coordinates as the
pseudospin index is implicitly assumed to be ↑ + ↓.

An alternative candidate for the polarized state at the
half filling is the so-called Pfaffian state, which up to a
normalization factor can be expressed as

ΨPf =A{Ψ331}. (7)

The two-component state is made single-component under
the action of the antisymmetrizer A between ↑ and ↓ electron
coordinates. In the notation of (7), one can think of the
Pfaffian originating from the two-component 331 state with
the pairing represented by the Cauchy determinant because

Ψ331 ∝ Ψ222 det
[

1
z↑ − z↓

]
, (8)

by virtue of the Cauchy identity. As a result, we can express
the Pfaffian state in its more familiar form as

ΨPf ∝
∏

i< j

(
zi − zj

)2

×
∑

σ∈Sn
sgn σ

{
1

(
zσ(1) − zσ(2)

) · · · 1
(
zσ(Ne−1) − zσ(Ne)

)

}

,

(9)

where the sum represents a BCS wave function for spinless
fermions that pair in the manner of a p-wave (see below).
Pfaffian (7) is usually thought of as a candidate wave function
to describe the half filling of the second Landau level, where
the nature of the effective interaction facilitates the pairing
between the electrons [15]. However, being an analytic wave
function, Pfaffian is also a valid trial state for the LLL.

At ΔSAS = 0 and in the small d regime, the FQH system
at νT = 1 is two-component, described by the 111 Halperin
state for two distinguishable species of electrons,

Ψ111 =
∏

i< j

(
zi↑ − zj↑

)∏

k<l

(zk↓ − zl↓)
∏

p,q

(
zp↑ − zq↓

)
. (10)
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The correlation exponents are the same between the elec-
trons belonging to the same and opposite layers, reflecting
the excitonic nature [6] of the correlated state in the regime
when the inter- and intrainteractions are about the same. As
the distance between the layers is increased, it is expected
that electrons find it energetically more favorable to correlate
inside the layers and make two independent composite Fermi
liquid states, each in the form of (6).

When we study the trial states on a spherical surface, we
will make use of the fact that they are characterized by the
topological number called the shift, S = Ne/ν − Nφ. In the
case of the 331 state S = 3, for the 111 state S = 1, and for
the Fermi liquid state in (6) S = 2. The shift is a distinctive
feature of each FQH state on the sphere.

3. The Role of p-Wave Pairing for the
Transitions from 331 and 111 State into
Fermi Liquids

We start with the effective description of [16] of the p-wave-
paired state in order to describe its instability towards the
Fermi liquid. We will show how the paired wave function,
from representing a ground state in the paired phase, ends
up describing an excited state of the Fermi liquid after the
transition. The BCS effective description near k = 0 is given
by

Keff =
∑

k

{(
εk − μ

)
c†kck +

(
Δkc

†
kc
†
−k + h.c.

)}
, (11)

where Δk = Δ(kx − iky) and the diagonal term describes
fermions with a quadratic dispersion in 2D. After the
Bogoliubov transformation with operators in the form αk =
ukck − vkc

†
−k, we obtain for the dispersion of the excitations

above the ground state

Ek =
√(
εk − μ

)2 + |Δk|2, (12)

and the ground state is

∏

k

(
1 + gkc

†
kc
†
−k

)
|0〉, (13)

where gk = vk/uk. For small k and μ > 0, this becomes

vk

uk
= −

(
Ek − εk + μ

)

Δ∗k
−→ − 2μ

Δ∗k
, (14)

which then in the real space yields asymptotically g(r) ∼
1/z, that is, the p-wave Cooper pair pairing function. The
antisymmetrization over a collection of these Cooper pairs
leads to the Moore-Read state or the Pfaffian where the
pairing is described by 1/z for all distances [16].

If μ > 0 becomes large and Δk stays about the same or
decreases, then due to the simple expansion for small k the
energy of excitations behaves as

Ek ≈ μ− εk +
|Δk|2

2μ
(15)

and the minimum around k = 0 becomes a local maximum.
Then we may think of this unstable point in the phase space
as a description of an excited state of the system which
finds itself, with high probability, in the state of Fermi liquid
because the minimum for excitations has moved to k = kF
from k = 0. But the description of this unstable point, that
is the excited state is still given by (13) and (14), that is, by a
Pfaffian pairing function. Therefore Pfaffian may describe an
excited state of the Fermi liquid.

In the following, we will discuss the two correlated
systems, at νT = 1/2 and νT = 1, where the p-wave-paired
state may occur as an excited state of the Fermi liquid.

331 Case. In the presence of tunneling, the 331 bilayer
state can be transformed into a Fermi liquid of neutral or
composite fermions in the LLL. This expectation is based
on the fact that Pfaffian, as an alternative candidate, is not
found in any polarized system (without an internal degree
of freedom) in the LLL. BCS theory of the 331 system can
be found in [4, 16]. There is a separation of the description
into two sectors, the even and odd channel. Each channel is
described by the Read-Green theory of the p-wave pairing
of spinless fermions that we introduced above. With the
increase of tunneling ΔSAS, the number of electrons in the
even channel increases and its effective chemical potential
is modified as μe = μ + ΔSAS/2. The excitations of the even
channel, by having μe instead of μ above as a parameter that
enters the expression for their energies (12), become unstable
unless there is an appropriate change in Δk, for example, the
strengthening of the pairing. In the absence of this change,
the system evolves into a Fermi liquid with a possibility that
one of the excited states is described by the Pfaffian (13), as
argued previously. Exact diagonalization calculations on the
sphere, performed at the fixed value of d = lB and at the
fixed shift S = 3, characteristic of the Pfaffian state, give
high overlaps for the Pfaffian with the increase of tunneling
[4]. On the other hand, exact diagonalization on the torus
[4], with the same fixed distance between the layers, does
not find the characteristic degeneracy of the Pfaffian with
the increase of tunneling [4]. A possible interpretation of
the result on the sphere is that the true ground state of the
system is found at a different shift S, where the Pfaffian
describes, to a high accuracy, an excited state of the system.
This is corroborated by comparing the ground state energies
on the sphere as a function of tunneling for the shifts S = 3
(Pfaffian) and S = 2 (the shift of the Fermi liquid); see
Figure 1. We show the data for two systems of N = 8 and
N = 10 electrons which do not suffer from the aliasing with
Jain’s composite fermion states [17]. The energies plotted
in Figure 1 include the appropriate background charge and
finite-size corrections [17]. We observe that the polarized
state (for large ΔSAS) is found at the Fermi liquid shift of
S = 2 whereas the excited state lying closely above it, at the
shift of S = 3, is the Moore-Read state as shown in [4].

111 Case. The increase of distance between the two layers
transforms the 111 state at the bilayer total filling factor νT =
1 into two Fermi liquids, each with a filling factor equal to
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function of tunneling for the filling factor νT = 1/2 and the shifts
S = 3 and S = 2. We show data for N = 8 and N = 10 electrons
and the distance is fixed at d = lB .
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Figure 2: (color online) Ground state energies on the sphere as a
function of distance for N = 8 and N = 16 electrons at the filling
factor νT = 1 and the shifts S = 1 and S = 2.

1/2. An intermediate state based on p-wave pairing between
composite fermions of the two layers is a viable candidate,
as shown by the numerical investigation in the spherical
geometry [10, 11] and analytical work [12]. In the latter
investigation the manner of superfluid disordering with the
increasing distance was analyzed and implications for the
form of the ground state that evolves with distance were
derived. Based on the universal phonon correction [18, 19]
for small distances, the nature of pairing in the ground
state wave function was extrapolated. The most likely kind
of pairing was found to be g(r) = √

z/z∗, that is, a pure

phase that leads to very weak pairing in the opposite angular
momentum channel. This result was derived following the
long-distance, effective (Chern-Simons) argument with the
universal phonon correction. It is different from what we are
used to when considering the Pfaffian for which g(r) = 1/z,
because here we have the pairing for the opposite value of
the angular momentum. The numerics [10, 11] confirms the
value of the angular momentum for the pairing. However, as
the numerics was done in the LLL, it also does not preclude
the pairings of the same angular momentum like g(r) =
1/z∗, which amounts to the same leading short-distance
behavior g̃(r) ∼ z, in the LLL, which was determined by
Möller et al. [10, 11]. In the following, we will consider only
these two possibilities for the pairing, which is expected to be
weak (as opposed to the extreme case of strong pairing when
the Cooper pairs are exponentially bound).

The physical picture that emerges from these works
and the proposal for mixed states of composite bosons and
composite fermions in [20] is that, with increasing distance,
composite fermions nucleate in the 111 (composite boson)
condensate and they do that by pairing in the p-wave pairs.
The number of composite fermions or, equivalently, neutral
fermions increases with the increase of distance between the
layers. Therefore, their chemical potential increases as well.
In this case, we can apply the theory of Read and Green,
generalized to two species (spinful pairing), which differs
from the one we described earlier only by the degeneracy
equal to two of the excitations. For g(r) = √

z/z∗ pairing,
we have |Δk| ∼ |k|2 (due to the very weak pairing), and
the theory is always unstable, leading to a direct transition
from 111 state into Fermi liquids. For g(r) = 1/z∗, we
have |Δk| ∼ |k| and the considerations that we pointed out
in the beginning follow. Because the chemical potential of
composite fermions increases, we may expect the transition
into two Fermi liquids at a finite distance. A comparison of
the lowest energies in the spherical geometry for the shifts
S = 1 (the 111 state) and S = 2 (the Fermi liquids)
corroborates this expectation; see Figure 2. We show data for
N = 8 and N = 16 electrons; the former represents the case
where composite fermions in each layer form a filled shell,
leading to a local energy minimum [21], while the latter is the
largest system attainable by exact diagonalization. Further
information on the finite-size scaling of the data, including
the estimate for critical dC , will be given elsewhere [21].

We thus conclude that, even in the clean system with
translational invariance such as in Figure 2, we may have a
direct transition between the 111 state and the decoupled
Fermi liquids occurring at a finite dC . This happens when the
shift S = 2 becomes energetically favorable. If one continues
to study the system for d > dC at the fixed shift of S = 1,
a paired state is likely to have an excellent overlap but it will
only describe the excited state of the system.

4. Conclusions and Discussion

We described a possible role of the p-wave-paired states in
the transition of the 111 and 331 correlated states into Fermi
liquids. In the case of the 111 state, we have a transition
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into two Fermi liquids induced by increasing the distance
between two layers and in the case of the 331 state the
transition into a one-component Fermi liquid is induced by
tunneling. The previous studies [4, 10, 11] have shown that
the p-wave state is slowly nucleated in a correlated state and
here we demonstrated that after the transition it may assume
the role of an excited state of the Fermi liquid(s). Whether
we have a case for a second-order transition in each of our
two examples we cannot claim. However, this scenario will
likely lead to the observance of smooth transitions into Fermi
liquids in experiments as found in [22, 23] in the case of
the 111 excitonic, correlated state. As we pointed out in the
331 case by changing the distance between layers, that is,
fixing a parameter for the transition driven by tunneling,
Pfaffian may indeed become a ground state in the place
of the Fermi liquid state [4]. Unfortunately, it becomes so
with a very small gap [4, 24] which would again lead to
the observance of a smooth transition into a compressible
thermodynamic phase in experiments if the beginning phase
is the 331 correlated phase.

In the transitions we discussed that are followed by p-
wave states, there is a mismatch between the shift numbers
characteristic of the beginning of the correlated phase and
the ending of the Fermi liquid phase. Quantum fluctuations
in the correlated state produce the p-wave state which
inherits and accommodates the shift of the correlated phase
and therefore has to play a role at the transition into a new
phase. Unfortunately, p-wave states are unstable or very weak
and give a way to Fermi liquids.
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Based on the known physics of the excitonic superfluid or 111 state of the quantum Hall ν = 1/2 + 1/2 bilayer, we create a simple
trial wavefunction ansatz for constructing a low-energy branch of (Goldstone) excitations by taking the overall ground state and
boosting one layer with respect to the other. This ansatz works extremely well for any interlayer spacing. For small d, this is simply
the physics of the Goldstone mode, whereas for large d, this is a reflection of composite fermion physics. We find hints that certain
aspects of composite fermion physics persist to low d whereas certain aspects of Goldstone mode physics persist to high d. Using
these results, we show nonmonotonic behavior of the Goldstone mode velocity as a function of d.

The ν = 1/2 + 1/2 quantum Hall bilayer is a remarkably rich
system [1, 2]. At small enough spacing between the layers, d,
the system is known to be an excitonic superfluid [3] known
sometimes as the 111 phase [4]. At larger layer spacing, a
phase transition or crossover is observed experimentally [5–
11] leading to a compressible phase which is well described
by two weakly coupled composite fermion Fermi liquids.
The nature of this crossover, as well as whether there are
intervening phases between small and large d, has been a
matter of some debate in the community [12–20].

There are some results, however, that are extremely well
established theoretically. In the limit where d becomes very
small, it is known that the Halperin 111 trial wavefunction
becomes exact [4]. In a more BCS-like language, this
wavefunction can be expressed as [3]

|111〉 =
∏

X

(
c†X ,↑ + c†X ,↓

)
|0〉, (1)

where ↑ and ↓ indicate the layer index (we assume the real
spin is frozen throughout this paper) and X constitutes the
orbital index within the lowest Landau level (chosen to be
the x-directed momentum in Landau gauge, e.g.). (Strictly
speaking this second quantized form of the wavefunction
must be projected to fixed number of particles within each

layer to generate a Halperin 111 wavefunction. However,
in the thermodynamic limit these two descriptions are
essentially equivalent.)

The BCS-like form of (1) allows one to consider long
wavelength Goldstone excitations of the form [3, 21]

|111− excitation, k〉 =
∏

X

(
c†X ,↑ + eikXc†X ,↓

)
|0〉. (2)

These modes are expected to form a linearly dispersing low
energy branch with energy proportional to k for small k.
Physically, this Goldstone mode corresponds to superflow—
one layer being boosted with respect to the other. Both
a linearly dispersing mode [22] and excitonic superflow
[7, 9, 23–25] were observed experimentally in this system.
Some properties of the Goldstone mode were discussed in a
numerical study on the torus [17].

Away from the d → 0 limit, the form of the bilayer
ground state is not known exactly. However, so long as we
remain in the same phase of matter, there will continue to be
a linearly dispersing Goldstone mode in the long wavelength
limit. An approximate expression for this Goldstone mode
can be obtained from the ground state wavefunction at any
d simply by boosting one layer with respect to the other.
One purpose of the current paper is to test this technique
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of generating trial wavefunctions for the long wavelength
Goldstone modes.

We note that this technique is not expected to be exact
away from d = 0, but for small d is expected to be quite
accurate. In a conventional picture of superfluidity, one
might imagine that it would be better to find a way to boost
the superfluid fraction while leaving the “normal” fraction
unboosted (only at d = 0 is the system entirely super in
some sense [13]). Nonetheless, our technique appears to
work quite well even away from d = 0.

One might expect that once the system is no longer in the
111 phase of matter (roughly d > 1.5 magnetic lengths), our
technique for generating excited states would fail. However,
this turns out not to be the case. First of all, at intermediate d
there may exist an interlayer paired state as discussed in [19].
Such a paired state would also have a Goldstone mode that
could be generated from the ground state by boosting one
layer in exactly the same way.

However, even at very large d when either such a pairing
phase is absent or pairing is extremely weak, our scheme
for generating excited states still works surprisingly well.
To understand why this is so, we realize that at large
enough d each layer is essentially independent. To the first
approximation, each layer forms a composite fermion Fermi
liquid, which for finite-size system has finite momentum
(except when the number of electrons exactly fills a shell).
The two Fermi liquids are weakly coupled and can combine
their momenta to form an overall zero momentum ground
state, but since the coupling between the two layers is weak,
it costs very little energy to form a state of overall finite
momentum instead—which can be interpreted as boosting
one layer with respect to the other in comparison to the
ground state.

In the absence of any superfluid order parameter (at large
d), it is probably not strictly appropriate to refer to this
low-energy mode as a Goldstone mode. However, since this
mode may evolve continuously into the Goldstone mode at
smaller d, we will abuse nomenclature and continue to call
it a Goldstone mode (If, as conjectured in [19], the bilayer
is actually paired out to large d, then the usage remains
correct).

Throughout this paper we will work with a spherical
geometry. In this case, boosting one layer with respect to
the other corresponds to applying the angular momentum
raising operator L+ to one layer but not the other (call this
operator L+,↑ meaning that it is applied to the ↑ layer only).
In the appendix we show that if we start with any L = 0 state
of the entire system, applying (L+,↑)

J generates a bilayer state
with overall angular momentum L = Lz = J . Our technique
is then to use exact diagonalization to generate the L = 0
ground state of the bilayer system, which is used to obtain
the trial wavefunction for the excited state

|Trial(d) : L = J〉 = (L+,↑
)J |Ground State(d) : L = 0〉. (3)

Despite the apparent asymmetry between spins ↑ and ↓,
the trial state (3) has a distinct parity of (−1)J under spin
reversal, as shown in the appendix. In turn, we compare this

trial state to the exact excited states with angular momentum
L = J .

Our numerical work is based on exact diagonalization of
the Coulomb Hamiltonian for a bilayer system on the sphere
[26]. We simplify the problem to exclude issues related to a
finite tunneling amplitude between the layers, Landau level
mixing, or spin (which we assume is polarized) and model
each layer as an ideal 2D plane without considering its width
into the third dimension. At fillings smaller than one per
layer, the Hamiltonian is thus given by the projection of the
Coulomb interaction into the lowest Landau level

H[d] =
∑

σ =↑, ↓
i < j

e2

ε
∣
∣
∣rσ ,i − rσ , j

∣
∣
∣

+
∑

i, j

e2

ε
√∣
∣
∣r↑,i − r↓, j

∣
∣
∣

2
+ d2

,

(4)

where sums run over all particles with the given pseudospin.
The interactions are parametrized by the layer separation d
that is measured in units of the magnetic length �0 =

√
�c/eB.

All lengths given in this paper should be understood to be
measured in units of �0, where this is not explicitly indicated.

In our exact diagonalization calculations, we focus specif-
ically on the density-balanced bilayer system withN↑ = N↓ =
N/2 and devote the majority of this paper to the discussion
of the state at the shift of the 111 state, namely, Nφ =
N − 1. We have also tested the system at the neighbouring
shifts of Nφ = N and Nφ = N − 2 and found in these
cases that the low-lying spectrum is very flat, and that the
ground state may occur at finite L—unlike the behaviour
expected from the collective modes of a condensate. We
thus focus on Nφ = N − 1, but we should caution that
our analysis does not exclude the possibility that for large
d a first-order phase transition into a state occurring at a
different shift may occur. For our discussion, we obtain the
two lowest-lying eigenvalues and eigenvectors in each sector
of angular momentum. This is most easily achieved using a
projected Lanczos algorithm [27] which uses an additional
projection to the lowest energy subspace of minimal angular
momentum after each multiplication with the Hamiltonian.
In a given sector with fixed Lz, this procedure therefore
directly yields eigenstates of L2 with the eigenvalue L = Lz.

To assess the accuracy of the trial states (3) for the
Goldstone mode, we consider their overlap with the lowest
energy state in each sector of angular momentum L2 and
for layer separations d = 0 · · · 3�0, in steps of (1/2)�0

(We will attempt to keep the convention of using the word
“ground state” to indicate the absolute lowest energy state
of the system, whereas the lowest energy state of an angular
momentum sector will be referred to as such.) We note again
that the the trial states are generated by applying the operator
(L+,↑)

J to the exact ground state at L = 0. Only at d = 0
is an exact analytical expression of the ground state known:
the 111 state. At other values of d, the numerical ground
states from exact diagonalization are used, although very
accurate trial wavefunctions are also known [20]. The results
are summarized in Figure 1, which also indicates overlaps
with the first excited state in addition to the overlaps with
the lowest energy state in each sector. At d = 0, the ansatz
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Figure 1: Overlaps of the trial states (3) with the exact eigenstates of the Coulomb Hamiltonian for a selection of system sizes N = 10,
12, 14, and 16 on the sphere. The magnitude of the overlap of the trial state with the exact ground state is indicated by the size of red dark
shaded circles. Blue lightly shaded circles additionally indicate the overlap of the same trial states with the first excited state of the exact
spectrum. Overlaps at L = 0 are equal to one by definition and give the overall scale. The trial states are very accurate at d = 0, giving a good
description of the lowest energy mode in each sector of angular momentum (the Goldstone mode) up to large L. At finite layer separation d,
the Goldstone mode is always present at small L but does not reach to similarly high values of angular momentum. The description is again
more successful at very large d.

(3) is very successful, describing excited states up to high
angular momentum accurately. This is shown in more detail
in Figure 2(a), which displays the magnitude of the overlap
as a function of wavevector k. Surprisingly, for d = 0, the
overlap is very consistent with system size at given k, even
though the Hilbert space dimension increases strongly with
N . A very good description with overlaps above 0.8 is given
up to a wavevector of k ∼ 2�−1

0 . Turning back to Figure 1, we
now focus on the overlaps at finite values of layer separation.
At d = 0.5�0, our trial states obtain significant overlaps only
with the first excited state at L = 1. This is not due to
a disappearance of the linearly dispersing mode, however.
Rather, a level crossing appears with distinct excitations
occurring at energies less than those of the Goldstone mode,
as can be seen from the significant overlaps with the first
excited-excited state in the sector of L = 2. At N = 12,
the crossing of the L = 2 (3) eigenstates with the Goldstone
mode occurs near d/�0 = 0.35 (0.45). For layer separations

below the first level crossing, the overlaps of the trial states
with the exact eigenstates drop only slightly. Once again
considering N = 12, the overlap of the first four eigenstates
remains of the order of 0.9 for d = 0.3�0, and for L = 5 it
drops from 0.81 to 0.58. At d > 1.5�0 this overlap with the
first excited state again disappears, signalling the presence of
additional low-lying excitations of a nature different from the
linearly dispersing Goldstone mode.

Finally, at the largest value of d = 3�0, the ansatz for
the boosted trial wavefunctions becomes more accurate than
at intermediate d, signalling the possible emergence of a
distinct mode of low-lying excitations. Based on the overlap
with the trial states, we can point out that there are strong
finite-size effects in the physics at large d. As with d = 0,
Figure 2(b) displays the numerical values of the overlaps at
d = 3. These data single out the system withN = 12 particles
as particularly poorly described by these trial states. Here,
the physics at large d is clearly dominated by the shell filling
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Figure 2: Overlaps of the trial states for the Goldstone mode at
d = 0 (a) and d = 3 (b) with the exact state, as in Figure 1, plotted

here as a function of wavevector k ∼ L/
√
Nφ/2. Despite the size

of the Hilbert spaces increasing significantly between the smallest
and largest system shown, the overlap remains roughly constant or
maybe slightly increases with N . The region of high overlap extends
roughly up to k ≈ 2�−1

0 . The failure of this approach for d = 3 and
N = 12 is discussed in detail in the text.

effects of composite fermions. As N↑ = N↓ = 6 electrons per
layer precisely fill the lowest two shells of composite fermion
orbitals in one quantum of effective flux, this system size
is aliased with the situation where each layer forms its own
incompressible ν = 2/5 state with angular momentum zero
in each layer—making it impossible to form higher angular
momenta states by boosting one layer with respect to the
other.

Before proceeding further, note the rather unusual
feature that, excepting N = 12, the trial states give higher
overlaps for larger systems at d = 3�0. This unusual
behaviour is related to a different manifestation of the
composite fermion shell filling effect. As we have shown
in [19], the ground state at large layer separation is a state
in which each layer individually obeys Hund’s rule and
maximizes the angular momentum per layer Lσ = L↑ = L↓,
while both layers are combined into a total L = 0 state.
Without modifying the correlations inside each layer, the
same states with Lσ per layer can be paired into excited
states with subsequently larger angular momenta, up to a
maximum Lmax = 2Lσ . For the system sizes with partially
filled composite fermion shells in each layer, one obtains the
values of Lσ = 3/2 for N = 10, Lσ = 5/2 for N = 14, and
Lσ = 3/2 + 5/2 = 4 for N = 16 particles. We therefore expect
a low-lying mode of excitations with angular momenta up to

Lmax = 3, Lmax = 5, and Lmax = 8, respectively. Indeed, upon
inspection of the spectra, such a mode can be identified.

As an example, Figure 3 displays the spectra for the
system with N = 16 particles, including different values of
the layer separation. Indeed for d = 3�0, shown in the bottom
right panel, there is clear evidence of a mode of excitations
terminating at L = 8. Its dispersion is approximately linear at
small L; however, it has a quadratic component as well. This
should be compared to the Goldstone mode at d = 0 (top
left panel), for which linear dispersion is clearly realized up
to high values of angular momentum.

Once the termination of the low-energy branch at Lmax =
8 is identified at large d, it becomes apparent that this feature
of a jump in the spectrum at Lmax exists at all values of layer
separation shown, with the exception of the SU(2) invariant
case of vanishing d. Note that this termination is a feature of
composite fermion physics, explained by successively filling
the lowest shells of these composite particles, while obeying
Hund’s rule. The observation that composite fermion physics
intervenes at very small layer separation had been made
previously by the current authors. While the 111 state can be
regarded as a condensate of composite bosons, it was shown
that an accurate description of the ground state requires
a mixed-fluid description of both composite bosons and
composite fermions at any finite layer separation [16, 20].
The identified jump may constitute evidence for the mixed-
fluid picture in the excitation spectrum, but more study of
these excitation spectra will certainly be required.

A linearly dispersing mode at small k exists at all values
of the layer separation. The states which were shown in
Figure 1 to have large overlap with the trial states (3) are
highlighted by blue circles in the spectra shown in Figure 3.
These states very accurately come to lie on a single line,
which is true especially for the 111 state at d = 0, but
also for the intermediate layer separations such as d = 1�0,
where the first excited state at L = 2 lies in the continuation
of the line through the points at L = 0 and L = 1 and
is shown to be associated to the Goldstone mode by its
overlap. Judging by the spectra, it is also very suggestive
that multiple level crossings occur at larger values of L, for
example, at L = 2 for d = 1.5�0. Finally, between d = 2�0

and d = 3�0, a change occurs in the association of the
low-lying mode with the Goldstone mode trial states. For
d = 2�0, only the states up to L = 2 have a good overlap,
and the remaining states of the already well-formed band
of low-lying states in the exact spectrum are of a different
nature. The transition to low overlaps occurs at a point
where this band has a visible kink and flattens out. Finally
at d = 3�0, this low-lying band has good overlaps up to
much higher momenta, which, as we have discussed above,
is a reflection of two approximately uncoupled composite
fermion Fermi seas which each maximizes its own angular
momentum according to Hund’s rule.

Given the existence of a linearly dispersing mode over the
whole range of layer separations, we now consider how its
velocity changes with d. Comparing the results obtained for
different system sizes, a relatively strong dependence of the
velocity v = ∂E/∂k is evident. Applying charging corrections
to take account of the shift in the charge density of the
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Figure 3: Spectra of the Coulomb Hamiltonian in the bilayer system on the sphere for N = 16 particles with Nφ = 15 flux, for layer
separations d ranging from d = 0 (top left) to d = 3�0 (bottom right). Energies are indicated in units of e2/ε�0 relative to the ground state
energy EGS at L = 0. Red crosses mark the lowest two eigenstates in each sector of given L. Blue circles indicate those states which were
identified as part of the Goldstone branch by high overlaps (see Figure 1). At d = 0, the Goldstone mode is very well formed, while it is
clearly visible at small and intermediate d how there are level crossings with additional low lying excitations. At d = 3, a mode of low-lying
excitations is once again clearly separated from the rest of the spectrum, which terminates sharply at L = 8. Its dispersion is linear at small
L, but it has a quadratic component responsible of the upturn at larger L. Note the change in the scale of the y-axis for the three columns of
panels.

system [28] does not suffice to absorb these effects. Thus,
in addition to measuring energies in units of the rescaled

magnetic length �′0 =
√

νNφ/N�0, we analyze the scaling of

the mode velocity as a function of the inverse system size
N−1. These scalings are fitted well by linear extrapolation to
the thermodynamic limit, as shown in the inset of Figure 4.
The data for N = 12 and large layer separation are easily
identified as outliers, due to the shell filling effects discussed
above. Generally, the slope is decreasing with system size.
However, at small finite layer separations the opposite scaling
takes effect. The resulting estimates for the mode velocity
in the thermodynamic limit shown in the main graph of
Figure 4 therefore show a pronounced maximum near d =
�0, which has about twice the magnitude as the value found
at d = 0. Beyond this point, the mode velocity decreases
monotonically and drops to about 1/10th the value of the
111 state at layer separation d = 3�0. In Figure 4, we have
also explored how the velocity is affected when we depart
from the case of completely balanced densities in both layers.
When an additional particle is added to one of the layers, we
continue to find a well-defined Goldstone mode across the
full range of layer separations, and the velocity extrapolates
to the same values for small d and in the limit of large d.
However, in the region around d ∼ 1.5�0 where the vanishing
of the condensate fraction indicates a phase transition,
the velocity extrapolates to slightly higher values for the
imbalanced case, that is, the lowest-lying excitations occur
at higher energy. This may be indicative of the presence of
pairing in this range of layer separations [19]. On the torus,

a low-lying state has been found, which was interpreted as
a pseudospin spiral state [17]. However, this mode does not
occur in the spherical geometry. Further investigation will be
needed to understand this difference.

A previous experiment [22] has probed the velocity of
the neutral mode at layer separations near the transition into
the incompressible phase at large d, obtaining a combined
best fit of v = 1.4 × 104 m/s for data at the three layer
separations d1 = 1.61�0, d2 = 1.71�0, and d3 = 1.76�0.
Based on linear extrapolation between our numerical data
at d = 1.5�0 and d = 2�0, the corresponding estimates are
v(d1) = 1.14× 104 m/s, v(d2) = 1.21× 104 m/s, and v(d3) =
1.33 × 104 m/s, all slightly smaller but within about 20% of
the proposed fit to the experimentally obtained values. Had
the data in [22] been fitted separately at each layer separation,
the velocity at d = 1.71�0 would have been estimated to be
about 10% smaller than that at d = 1.61�0, roughly reflecting
the ratio of our predicted values. The data at d = 1.76�0

appears to be rather noisier, probably due to the vicinity to
the phase transition, and would be difficult to fit on its own.
We suggest that a significant enhancement of the linear mode
velocity should be seen deeper inside the interlayer coherent
phase at smaller layer separation.

To summarize our results, we use the ansatz (3) to
construct trial wavefunctions for a low-energy branch of
excitations based on the exact ground state wavefunction.
This ansatz is accurate at all interlayer spacings d when k
is small, and it is accurate at all k when either d is small
or d is large (so long as we do not have a filled shell
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Figure 4: The velocity of the Goldstone mode depends strongly
on the layer separation and peaks near d ∼ �0. The velocity has
significant finite-size effects on the sphere, and therefore we extract
an estimate of its value in the thermodynamic limit by extrapolating
the finite-size values over the inverse system size (see inset). The
main figure shows the resulting velocities for a density balanced
bilayer, as well as for a slightly imbalanced system, as discussed in
the main text.

configuration, whereupon only k = 0 is in this low energy
branch). We find hints that certain aspects of the composite
fermion physics persist to low d whereas certain aspects
of the Goldstone mode physics persist to high d. Applying
these results to the analysis of our numerical data, we show
nonmonotonic behavior of the Goldstone mode velocity as
a function of the layer separation d. It would be interesting
to look for this nonmonotonicity of the Goldstone mode
velocity experimentally.

Appendix

Angular Momentum of
Two Coupled Subsystems

In this appendix, we will use the standard angular momen-
tum notation |l,m〉 to indicate eigenstates of the L2 and Lz
operators.

We consider two subsystems ↑ and ↓ with correspond-
ing angular momentum operators L↑ and L↓. These two
subsystems combine to form the total system with angular
momentum operator

L = L↑ + L↓. (A.1)

Our objective is to show that given an eigenstate of the total
system with |l = 0,m = 0〉 application of (L+↑)

J to this
system will produce an eigenstate of the total system with
|l = J ,m = J〉. To achieve this, it is sufficient to show that

L+↑|J , J〉 ∼ |J + 1, J + 1〉. (A.2)

Obviously, applying L+↑ to any state increments its overall
Lz eigenvalue by one (or kills the state), so all that remains
is to show that applying L+↑ to |J , J〉 results in an eigenstate
L = J + 1 of L2, that is, results in an eigenvalue of L2 being
given by (J + 1)(J + 2).

Using (A.1), it is just a matter of some algebra to show
that

[
L+↑,L2] = 2Lz↑L+↓ − 2L+↑Lz↓

= 2(L+ − L+↑)(Lz + 1)− 2Lz↓L+.
(A.3)

We then apply both sides of this equation to the state |J , J〉.
Noting that L+ kills |J , J〉, we obtain

L2[L+↑|J , J〉] = [L+↑(J(J + 1)) + 2L+↑(J + 1)]|J , J〉

= (J + 1)(J + 2)[L+↑|J , J〉],
(A.4)

which completes the proof.
From the particular form of the eigenstate, it further

follows that it has a parity of (−1)J under reversal of the z-
component of (pseudo-)spin. Noting that

L+,total
∣
∣Ltotal = Lz,total = J

〉 = 0, (A.5)

and since Ltotal = L+,↑ + L+,↓, we have L+,↑ = −L+,↓ when
applied to any state of the form |Ltotal = Lz,total = J〉 for
any J . The trial state (3) can thus equivalently be obtained
by applying LJ+,↓, since the state |J , J〉 is unique.

Acknowledgment
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Colleagues and we recently proposed a new type of transistor, a Bilayer PseudoSpin Field Effect Transistor (BiSFET), based on
many-body coherent states in coupled electron and hole layers in graphene. Here we review the basic BiSFET device concept and
ongoing efforts to determine how such a device, which would be far from a drop-in replacement for MOSFETs in CMOS logic,
could be used for low-power logic operation, and to model the effects of engineerable device parameters on the formation and
gating of interlayer coherent state.

1. Introduction

The greatest roadblock to continued logic scaling is power
consumption. Circuit heating can limit device density and
clock frequencies beyond intrinsic device limits. Mobile
device performance is limited by battery use. And it has
been estimated that 7% of power consumption in the United
States is already integrated circuit related [1]. Complemen-
tary metal-oxide semiconductor (CMOS) logic employing
electron/n-channel and hole/p-channel metal-oxide field
effect transistors (MOSFETs) has been the standard for many
years. However, basic physics rather than technological limits
now portend an “end of the roadmap”—referring in part to
the International Technology Roadmap for Semiconductors
(ITRSs) [2]—for CMOS scaling in the not too distant future.
Specifically, thermionic emission of charge carriers over
the gated channel barrier between the source and drain
combined with the need for rapid switching appears to limit
minimum supply voltages to 0.5 to 0.7 V at room temper-
ature, and associated switching energies to a few aJ [2]. Of
course, with this limit defined by thermionic emission, lower
voltage and power operation would be possible at colder
temperatures. However, for most conventional applications,
logic or otherwise, a proposal for below room-temperature

operation is a nonstarter. This need for continued scaling
beyond the end of the roadmap for CMOS is motivating
various efforts to produce transistors based on alternative
switching mechanisms.

Of relevance to the subject of this special issue, colleagues
and we recently proposed a new type of transistor, a Bilayer
PseudoSpin Field Effect Transistor (BiSFET), based on many-
body coherent states in coupled electron/n and hole/p type
graphene layers [3]. Normally one does not associate coher-
ent many-body states with room temperature. However,
as a consequence of a synergy of graphene properties—a
single atomic layer thick with nearly perfect electron-hole
symmetry in the band structure, a low density of states
and zero band gap—it has recently been predicted that
this condensate might occur above room temperature in
otherwise weakly coupled and oppositely charged graphene
double/bilayer systems [4]. Under appropriate conditions,
the predicted temperature for coherence could extend to
slightly above 0.1EF/kB where EF is the magnitude of the
Fermi energy relative to the Dirac point [4], which translates
to n ≈ p ≈ 5×1012/cm2 in graphene for many-body-induced
coherence above 300 K [3]. Single layer graphene sheets have
been gated up to densities in excess of 1013/cm2 [5]. The
BiSFET represents one attempt to explore the applicability of
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this novel predicted behavior for graphene bilayers to achieve
device functionality.

In the following we review the basic BiSFET device
concept (Section 2) [3], how such a device, which would be
far from a drop-in replacement for MOSFETs in CMOS logic,
could be used for low power logic operation (Section 3) [3, 6,
7], and ongoing work to examine the effects of engineerable
device parameters on formation and “gating” of interlayer
coherence (Section 4) [8].

2. The BiSFET Device Concept

A schematic of a BiSFET intended to represent only the
essential device elements is shown Figure 1(a). A p-type and
an n-type layer of graphene are separated by a dielectric
tunnel barrier (or perhaps are just misaligned in order to
limit the bare charge carrier transport/tunneling between
layers, but the effects of such misalignment on the interlayer
coherence has not yet been well explored). The region for
coherence could be defined, for example, by increased carrier
concentrations consistent with the introductory remarks,
or by variation of the separation between the two layers
or variation in the dielectric material as will be discussed.
As illustrated, each graphene layer has a metallic contact
and is electrostatically coupled to a gate electrode through
a gate dielectric. Much like for a Josephson junction, the
current flow between the layers is expected to be limited
by the peak/critical interlayer current beyond which the
coherence would collapse. Below the critical current and
associated critical interlayer voltage, the layers would be
essentially shorted together via the many-body-enhanced
interlayer current flow, with current flow limited by the
leads; beyond this voltage, current would drop toward the
single particle tunneling limit. The required carrier densities
could perhaps be induced under zero gate bias by use
of differing work functions for the gates, or ferroelectric
oxides as dielectrics, and/or back-gating. Applied gate voltage
signals are intended only to balance or slightly unbalance the
charge concentrations between layers to increase or degrade
the interlayer coherence, and, thus, increase or decrease
the interlayer critical current. Note that in many cases a
switchable input signal to only one gate is required, leaving a
good deal of flexibility in what constitutes the other “gate.”

Preliminary estimates for the critical current and associ-
ated voltage are provided in [3]. Perhaps the most important
results are two qualitative predictions: first, the critical cur-
rent and associated voltage should depend on engineerable
device parameters, allowing them to be designed subject to
technological constraints; second, the critical voltage can be
small compared to kBT/q ≈ 26 mV at room temperature
allowing potentially very low voltage operation. Qualitatively
expected I-V characteristics are illustrated in Figure 1(b).

3. BiSFET Logic

Without an experimental realization of a BiSFET or even
experimental evidence for formation of the condensate in
adjacent layers of graphene at the time of writing, it might
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Figure 1: (a) Schematic illustration of BiSFET (with dielectrics not
shown for clarity). (b) Qualitative estimation of interlayer current
versus interlayer voltage for balanced and unbalanced charged
distributions, consistent with the BiSFET model used in Section 2
as required for specificity. Arrows in (b) illustrate inverter operation
as discussed in Section 3.

seem that exploring logic based on BiSFETs is a case of
“putting the cart before the horse.” However, such circuit
level work helps measure the potential payoff of continuing
device work, and informs that work through identification of
critical device physics and technological challenges.

We also note that the I-V characteristics of Figure 1(b)
are similar in some respect to those of resonant tunneling
diodes, which have long been considered for logic appli-
cations. Indeed, the clocked biasing of the logic gates as
discussed here has much in common with proposals for gated
resonant tunneling diodes (RTDs), for example, [9, 10].
However, there are fundamental differences between how
BiSFETs and gated RTDs operate, which are relevant to
circuit design as well. For example, critical for low voltage
circuit design, peak conductivity for a BiSFET would be
intrinsically centered about a 0 V interlayer potential, with,
again, critical voltages being small compared to kBT/q. In
an RTD, peak conductivity is associated with resonant band
alignment, which may or may not occur under zero bias
across the diode as defined not only by design but by device-
to-device variances during fabrication, and is broadened
by the thermal carrier distributions on either side of the
junction in conventional RTD designs.

For the purposes of SPICE-based circuit simulation,
we model the BiSFET as shown in Figure 2. To provide the
required specificity for SPICE-based circuit simulation, the
qualitative I-V behavior illustrated in Figure 1(b) has been
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Figure 2: Circuit model of BiSFET used for SPICE simulation.Vp−
Vn is the interlayer voltage, and VG,p and VG,n are the gate voltages.
CG,p, CG,n, and Cil are parallel plate capacitances between the p-type
graphene layer and its gate, between the n-type graphene layer and
its gate, and between the n and p graphene layers, respectively. CQ
are the quantum capacitances associated with the density of states
of the individual graphene layers, and I is the interlayer current of
all four applied voltages.

approximated via the smoothed current versus interlayer
voltage relation,
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with gate dependent Vmax,
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∣∣Δp − Δn
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]

, (2)

where Go represents the ballistic Landauer-Büttiker limit of
conductance, and Δn and Δp are the variations in charge
densities with all four terminal voltages consistent with
the model of Figure 2. There remains much work to be
done on the device side to better quantify this behavior.
However, we note that the actual form of the decay in the
negative differential resistance (NDR) regime of (1), I ≈
GoVmax exp(1− |Vp −Vn|/Vmax), is not critical to logic gates
operation or power consumption [6]. Also, for specificity,
for all the simulations presented below, the following model
parameter values have been used in accordance with the
calculations in [3]. All gate lengths have been chosen to be
L = 10 nm. Unless otherwise specified, the gate/channel
widths for BiSFETs shown in the circuits here are W =
20 nm for a W/L ratio of 2; larger specified values of W/L
below indicate wider gates. Again for specificity, effective
oxide thicknesses (EOTs) of 1 nm are assumed for gate and
interlayer dielectrics corresponding to Cg = Cil = 3.5 ×
10−6 F/cm2, but this choice does not imply the use of the
same oxides. To the contrary, the gate dialectics should be
more insulating, while the interlayer dielectric should allow
some single/bare electron tunneling which is necessary to
allow the many-body-enhanced interlayer current on which
the BiSFET relies [3, 8]. The nominal carrier densities in
graphene layers were taken to be po ≈ no ≈ 5 × 1012 cm−2

which should theoretically allow room-temperature oper-
ation as discussed in Section 2. These densities could be
provided by, for example, opposing gate work-functions of
approximately±1 eV, respectively, or by one±1 eV gate work
function and an opposing fixed back-gate bias.
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Figure 3: (a) BiSFET-based inverter layout and (b) clock signal,
illustrated input voltage signal string (from a preceding inverter),
and inverted output signal obtained using the SPICE circuit
simulator.

Because of the substantial qualitative differences between
BiSFET behavior and that of MOSFETs—that is, current
decay rather than saturation with increased interlayer
voltage, and perhaps weak dependence on gate voltage
by comparison—entirely different ways of implementing
Boolean logic are required using BiSFETs. The simplest
of logic elements, an inverter, can be realized in a com-
plementary layout as shown in Figure 3(a) where we
have used a symbolic representation for the BiSFET. The
unswitched “back-gate” voltages represent changes in work-
functions, modulation doping, or actual back-gate voltages
that produce an equivalent charge imbalance. Although this
circuit appears similar to a CMOS inverter, the operation is
notably different, with a clocked power supplyVclock(t) [3, 6],
as in, for example, [9]. Vclock(t) is used because changing
the input signal/voltage with a fixed power supply has no
effect on the output signal. Instead, Vclock(t) must be raised
after the input signal is set for proper logic functionality.
As illustrated via the arrows in Figure 1(b), as the clock
voltage increases, it is split essentially equally between the
two devices until the current reaches the peak allowed for
the device with the smaller peak/critical current. Beyond that
point the current can only decrease, forcing the voltage drop
across the device with the larger critical current back toward
zero while that for the device with the smaller critical current
increases into the NDR region. With a 0 mV input signal and
−25 mV on VGp2, BiSFET 2 will have a charge imbalance
and the associated lower critical current, causing the output
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Figure 4: (a) A programmable NAND/OR Gate and SPICE simulation results of (b) NAND and (c) OR gate operation at 100 GHz.

signal to closely follow Vclock(t), that is, to go high. With the
input voltage high, +25 mV, however, the charge in BiSFET
2 is balanced and that in BiSFET 1 is unbalanced, Vclock(t)
is dropped predominantly across BiSFET 1, and the output
signal remains low. Similarly, removing the input signal will
have no effect on the output while the clock signal remains
high; each gate also serves much like a latch.

Figure 3(b) shows the SPICE-simulated response for such
an inverter. The clock signal is pulsed with a frequency of
100 GHz and peak clock voltage of 25 mV. A four-inverter
output load was considered. The clock signal is delayed
relative to the input signal by the 2.5 ps rise time, allowing
the latter to be set before the inverter is clocked. Both input
and output signals were subject to a fan-in and fan-out of
four inverters, respectively. The average energy consumed per
clock cycle per BiSFET was∼0.01 aJ = 10 zJ. For comparison,

the switching energy for current MOSFETs is ∼100 aJ, and
2020 “end of the roadmap” CMOS will have a switching
energy on the scale of 5 aJ [2]. The drastic energy reductions
are largely a function of the reduced operating voltage for
this many-body-coherence-mediated switching mechanism
that may be possible, where energies scale as the square of
voltage, of course. However, these estimates are rough and
do not consider the parasitic power losses of delivering the
clock signal to each BiSFET. And, each BiSFET is switched
on each clock cycle, for an effective activity factor of unity
for an active clock.

Other logic gates such as NAND, NOR, OR, and XOR
(exclusive OR) gates, and memory elements have also been
implemented and verified by SPICE simulations [6, 7], as
per the example of the potentially programmable NAND/OR
gate of Figure 4. The average energy consumed per switching
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Figure 5: (a) Illustration of a four-phase clocking scheme, (b) a 1-bit full adder, and (c) inputs and sum (S) and carry (C) outputs with the
delay between input and output shown.

operation per gate (not per BiSFET) was ∼30 zJ for both the
NAND and OR gates, respectively. We have also considered
multistage circuits using a four-phase clock signal, as in [10],
such as the adder of Figure 5 [7]. Note that although each
gate in series requires a quarter-period delay in processing
the signal, the inputs can be released once the output for
each gate is set, and new inputs can be processed each clock
cycle no matter how many subsequent gates there are in
series.

4. Achieving and Gating Interlayer Coherence

To take a direct look at the many-body-interaction-induced
interlayer coherence, we use a π-band tight-bond model of
the graphene layers, treat the many-body interaction via a
Fock approximation as within the original work predicting
possible room-temperature coherence [4], and neglect any
bare/single particle coupling here although it is ultimately

required to support the critical current. The interlayer coher-
ence is therefore driven entirely by the exchange interactions
between the top (T) and bottom (B) layers,

VF(RT, RB) = −e2

4πε0εr

√
(ΔR)2 + d2

×
∑

α,k,s

nα,k,sφα,k,s(RT)φ∗α,k,s(RB).

(3)

Here, RT and RB are the 2D in-plane vectors for the atoms
in the top and bottom graphene layers, respectively. ΔR =
|RT − RB| is the magnitude of the in-plane component of
the separation between the atoms, and d is the separation
between the two layers, and the φα,k,s(R) are the self-
consistently calculated single particle Bloch functions subject
to the Fock interaction, where α labels the band, k the wave-
vector, and s the spin state.
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inset magnifies the low energy-spectrum, revealing a band gap
Eg of 74 meV at 0 K for balanced top and bottom layer charge
distributions with EF located within the band gap.

Of course, self-consistent solutions can be obtained
simply by setting the interlayer exchange interactions to zero.
This solution corresponds to an uncorrelated/incoherent
state with electrons isolated in one layer or the other.
However, a self-consistent solution that yields a nonzero
value of the interlayer exchange potential and eigenfunctions
that overlap both layers is what we are after. Coherence
results in a gap in the energy spectrum of the two-layer
system near the points at which the conduction band of the
top layer and the valence band of the lower would otherwise
cross. For balanced charge distributions in the two layers
(overall charge neutrality) the Fermi level falls within the
center of the gap, energy is gained due to gap formation,
and the coherent state becomes energetically favorable. This
band splitting for such a correlated state (0 K temperature,
balanced charge distributions of 6×1012 cm−2 corresponding
to an interlayer potential splitting Δ of 0.5 eV, interlayer
spacing of 1 nm, and dielectric permittivity εr = 3.9 of SiO2)
is illustrated in Figure 6, where the energy bands are plotted
along the high-symmetry directions.

Figure 7 shows corresponding 0 K solutions for the self-
consistent nonlocal Fock potential of (3). Note that the
result depends greatly on which of the two atoms in the
primitive unit cell of each layer are considered. Physically,
the alignment (not the coupling) was Bernal-like for this
particular simulation, but the result is essentially the same for
a hexagonal-like alignment because the separation between
the graphene layers is much greater than the nearest neighbor
atomic separation within layers. Also note that, beyond
being nonlocal within the plane of the layers, the coupling
is neither Bernal-like nor hexagonal-like, but rather takes
on an antihexagonal nature, at least in the absence of
bare coupling. As further detailed in [8], along with initial
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Figure 7: (a) Real part of V ′
F(RT,RB) for AT-AB coupling obtained

by dividing VF(RT,RB) by exp[ikD · (RT − RB)], as a function
of RT − RB for Δ = 0.5 eV, d = 1 nm, εr = 3.9, and balanced
charge distributions at 0 K. The imaginary part essentially vanishes.
V ′

F(RT,RB) for BT-BB is essentially identical except for a 180◦ degree
phase shift. (b) Real part ofV ′

F(RT, RB) for AT-BB coupling obtained
under the same conditions. The imaginary part is rotated by 90◦.
V ′

F(RT,RB) for BT-AB coupling is essentially the complex conjugate
of V ′

F(RT, RB) for AT-BB coupling.

efforts to consider the consequences for the critical interlayer
current, this antihexagonal pattern of coupling is optimal
for coupling the chiral valence band and conduction band
electron states of the individual graphene layers to each other,
states which have opposite relative phases between the two
atomic sublattices for any given wavevector k.

The need is for room-temperature coherence, however.
As temperature increases, states below the condensate band
gap begin to empty, and states above the condensate band
gap begin to fill whose contributions to the condensate is
of same magnitude but opposite sign to their counterparts
below, breaking down the condensate, as again detailed in
[8]. Figure 8(a) illustrates the resulting temperature depen-
dence of the condensate for three different dielectric permit-
tivities, exhibiting a universal behavior when normalized to
the 0 K band gap. Thus, along with other considerations [4],
obtaining a room-temperature condensate translates to find-
ing a 0 K band gap greater than at least approximately 4kBT
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(b) 0 K band gap as a function of interlayer separation d and
dielectric relative permittivity εr .

≈ 100 meV. The 0 K band gap for various combinations of
layer separation and displacement are shown in Figure 8(b).
Among other things, it becomes clear that low-permittivity
dielectrics are preferable, in contrast to the needs of CMOS
devices (or to dielectrics encountered in III–V quantum well
systems).

Finally, Figure 9 provides an example of degradation of
the condensate with charge imbalance. In this case at least,
the initial sensitivity is actually less than that of (2) used
in SPICE simulations. This should not be that qualitatively
critical, however, as the circuits are bistable and essentially
any difference in critical currents should be sufficient to
control the switching. On the other hand, with a bit more
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Figure 9: Energy band edges for the coherent state and Fermi level
as a function of carrier imbalance between top layer electron density
and bottom layer hole density, for graphene bilayers separated by
1 nm at 300 K with εr = 3.0 and Δ = 0.5 eV.

charge imbalance, the coherence appears to completely
collapse, for reasons detailed in [8], and more conventional
logic may become possible.

5. Conclusion

We have reviewed ongoing efforts on the theory side to
translate possible room-temperature many-body-induced
interlayer coherence in graphene bilayers into a “beyond
CMOS” switch, a Bilayer PseudoSpin Field Effect Transistor
or BiSFET. The BiSFET is, however, currently only a concept
based on novel predicted physics in a novel material
system. And we recognize the limitations of theory, and the
technological challenges to realization of BiSFETs even if
theory holds. There are certainly no guarantees that such
a device based on room-temperature many-body-mediated
coherence between graphene layers can ever be realized.
However, we believe that the potential benefits of ultra-low
power logic well justify the efforts, theoretical as here as well
as experimental, to more fully explore the possibility.
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