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We give a Bézier variant of Baskakov-Durrmeyer-type hybrid operators in the present article. First, we obtain the rate of convergence
by using Ditzian-Totik modulus of smoothness and also for a class of Lipschitz function. Then, weighted modulus of continuity is
investigated too. We study the rate of point-wise convergence for the functions having a derivative of bounded variation.
Furthermore, we establish the quantitative Voronovskaja-type formula in terms of Ditzian-Totik modulus of smoothness at the end.

1. Introduction

To approximate continuous functions, many approximating
operators have been introduced under certain conditions
and with different parameters too. Many researchers have
later generalized and modified these introduced operators
and discussed various approximating properties of these
operators. In 1957, Baskakov [1] introduced and studied such
a class of positive linear operators, called Baskakov operators
defined on the positive semiaxis. For f ∈C ½0,∞Þ, the
sequence of Baskakov operators is given as

Bn f ; yð Þ = 〠
∞

k=0

n + k − 1
k

 !
yk 1 + yð Þ−n−k f k

n

� �
, ð1Þ

for y ∈ ½0,∞Þ and n ∈ℕ. Later on, many authors have
been considering the Baskakov operators; for instance,
Aral in [2] defines the parametric generalization of Baskakov
operators as

Bv
n f ; xð Þ = 〠

∞

k=0
P v

n,k xð Þf k
n

� �
, ð2Þ

where

P v
n,k xð Þ = xk−1

1 + xð Þn+k−1
vx
1 + x

n + k − 1

k

 !
− 1 − vð Þ 1 + xð Þ

"

�
n + k − 3

k − 2

 !
+ 1 − vð Þx

n + k − 1

k

 !#
,

ð3Þ

with
n + k − 1
k − 2

 !
= 0 if k = 0, 1:

Among interesting studies realized in this context, we cite
those based on the Baskakov-Kantorovitch-type operators in
the generalized form (the original operator given by Kantor-
ovich in [3]) defined as, for f ∈ L1ð½0, 1�Þ (the class of Lebes-
gue integrable functions on ½0, 1�),

BKn f ; xð Þ = 〠
∞

k=0

n + k − 1
k

 !
xk 1 + xð Þ−n−k

ð1
0
χn,k tð Þf tð Þdt,

ð4Þ
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where χn,k is the characteristic function of the interval
½k/n, k + 1/n�.

It is well known that Bézier curves are the mathematically
defined curves successively used in computer-aided geomet-
ric design (CAGD), image processing, and curve fitting.
The miscellaneous Bézier variant of operators is crucial
subject matter in approximation theory. In 1983, Chang [4]
pioneered the Bernstein-Bézier operators. Afterwards,
several researchers established the Bézier variant of various
operators (c.f. [5, 6]). For more details on the approximation
by Durrmeyer-type and Baskakov-Durrmeyer-type opera-
tors, one can refer to [7, 8], respectively. For more about
Bézier variant of operators, one can refer to [9, 10].

We will be mainly interested to the Bézier variant
operator type based on those of Baskakov-Durrmeyer
defined as follows:

Gv,θ
n,ρ f ; xð Þ = 〠

∞

k=1
Xv,θ

n,k xð Þ
ð∞
0
J

ρ
n,k tð Þf tð Þdt +Xv,θ

n,0 xð Þf 0ð Þ,

ð5Þ

where

Xv,θ
n,k xð Þ = ξvn,k xð Þ� �θ − ξvn,k+1 xð Þ� �θ, ξvn,k xð Þ = 〠

∞

j=k
P v

n,j xð Þ k = 0, 1, 2,⋯

J
ρ
n,k tð Þ = nρe−nρt

nρtð Þkρ−1
Γ kρð Þ :

ð6Þ

If we take θ = 1, then operator (5) reduces to the
following operator studied by [11].

Bv
n,ρ f ; xð Þ = 〠

∞

k=1
P v

n,k xð Þ
ð∞
0
J

ρ
n,k tð Þf tð Þdt +P v

n,0 xð Þf 0ð Þ:

ð7Þ

Let us briefly summarize the outline of the paper. Next
section is devoted to the computation of some auxiliary
results which we need to prove our theorems in coming sec-
tions. In Section 3, we will prove some approximations of
functions using Ditzian-Totik modulus and then we will deal
to functions lie in the Lipschitz spaces. We treat in Section 4
the rate of convergence in the context of suitable weighted
spaces and functions having a derivative of bounded varia-
tion. Finally, in Section 5, we state and prove the quantitative
Voronovskaja-type theorem.

2. Preliminary Results

Lemma 1. ξvn,kðxÞ satisfies the following important properties:

(1) ξvn,kðxÞ − ξvn,k+1ðxÞ =P v
n,kðxÞ k = 0, 1, 2,⋯

(2) ξvn,0ðxÞ > ξvn,1ðxÞ > :⋯ ξvn,kðxÞ > ξvn,k+1ðxÞ >⋯

(3) ½ξvn,kðxÞ�θ − ½ξvn,k+1ðxÞ�θ ≤
θP v

n,kðxÞ if θ ≥ 1

ðP v
n,kðxÞÞθ if θ ≤ 1

(

Proof. Since (1) and (2) are evident, we prove only the
assertion (3).

If θ ≥ 1, it suffices to remark that by the mean value
theorem, we have

bθ − aθ ≤ θ b − að Þ for every 0 < a < b < 1: ð8Þ

If θ < 1, we shall prove that

bθ − aθ ≤ b − að Þθ for every 0 < a < b: ð9Þ

Dividing this inequality by aθ, it is equivalent to
prove that

f rð Þ = r − 1ð Þθ − rθ + 1 ≥ 0 for every r > 1: ð10Þ

We have f ′ðrÞ = ðθ/ðr − 1ÞÞeθ ln ðr−1Þ − ðθ/rÞeθ ln ðrÞ; then,

f ′ rð Þ > 0 if and only if ln r
r − 1
� �

> ln eθ ln rð Þ

eθ ln r−1ð Þ

� �
, ð11Þ

and this is true as θ < 1.
We proved then f is increasing, so f ðrÞ > f ðsÞ for all

r > s > 1, letting s to 1, and we deduce that f ðrÞ ≥ 0: ☐

Remark 2. The operators Gv,θ
n,ρð f ; xÞ have the integral

representation

Gv,θ
n,ρ f ; xð Þ =

ð∞
0
Kv,θ

n,k x, uð Þf uð Þdu, ð12Þ

where Kv,θ
n,kðx, uÞ is the kernal defined by

Kv,θ
n,k x, uð Þ = 〠

∞

k=1
Xv,θ

n,k xð ÞJ ρ
n,k uð Þ +Xv,θ

n,0 xð Þδ uð Þ: ð13Þ

δðuÞ is the Dirac-delta function.

Lemma 3. Let emðtÞ = tm and φðtÞ = 1/ð1 + tÞn+2. For the
operator Bv

n,ρð f ; xÞ, we have

(1) Bv
n,ρðe0 ; xÞ =∑∞

k=0P
v
n,kðxÞ =∑∞

k=0P
0
n,kðxÞ =∑∞

k=0
ð−1ÞkφðkÞðxÞ/k! = φð0Þ = 1

(2)Bv
n,ρðem ; xÞ =∑∞

k=1P
v
n,kðxÞ:ðkρ +m − 1Þ:ðkρ +m − 2Þ

⋯ ðkρÞ/ðnρÞm,m = 1, 2, 3,⋯

As an easy consequence of last lemma, we will prove the
following result.
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Lemma 4. We have the following moments:

(1) Bv
n,ρðt ; xÞ = x + 2xðv − 1Þ/n

(2) Bv
n,ρðt2 ; xÞ = x2 + x2ð4v − 3Þ/n + xð−2 + n + 2v + nρ

+ 4ρðv − 1ÞÞ/n2ρ
(3) Bv

n,ρðt − x ; xÞ = 2xðv − 1Þ/n

(4) Bv
n,ρððt − xÞ2 ; xÞ = x2/n + ðx/n2ρÞnð1 + ρÞ + 2ðv − 1Þ

ð1 + 2ρÞ
(5)n2Bv

n,ρððt − xÞ4 ; xÞ = ðx4/n3Þα1 + ð6x3/n3ρÞα2 + ðx2ð1
+ ρÞ/n3ρ2Þα3 + ðxð1 + ρÞ/n4ρ3Þα4

where

α1 = 3n + 16v − 10,
α2 = n + 6v − 4 + ρ n + 8v − 6ð Þ,
α3 = 3n 1 + ρð Þ + 4v 7 + 8ρð Þ − 25ρ − 17,

ð14Þ

α4 = n 1 + ρð Þ 3 + ρð Þ + 4 v − 1ð Þ 3 + 4ρ 2 + ρð Þð Þ: ð15Þ

Remark 5. We have

(1) limn⟶∞nBv
n,ρðt − x ; xÞ = 2xðv − 1Þ

(2) limn⟶∞nBv
n,ρððt − xÞ2 ; xÞ = xð1 + ρ + ρxÞ/ρ

(3) limn⟶∞n2Bv
n,ρððt − xÞ4 ; xÞ = 3ðxð1 + ρ + ρxÞÞ2/ρ2

Remark 6. For n large enough, we have the following
inequalities:

(1) jBv
n,ρððt − xÞ2 ; xÞj ≤ C1ðxð1 + ρ + ρxÞ/nρÞ

(2) jBv
n,ρððt − xÞ4 ; xÞj ≤ C2ððxð1 + ρ + ρxÞÞ2/ðnρÞ2Þ

Throughout this article, let CBðℝ+
0 Þ denote the space of

all functions f on ℝ+
0 which are bounded and continuous.

We endowed it by the norm ∥f ∥ = supx∈ℝ+
0
∣ f ðxÞ ∣ .

Lemma 7. Let f ∈CBðℝ+
0 Þ, and we have

(1) ∥Gv,θ
n,ρð f ; xÞ∥≤Gv,θ

n,ρðe0 ; xÞ∥f ∥ and Gv,θ
n,ρðe0 ; xÞ = 1

(2) Gv,θ
n,ρð f ; xÞ ≤ θBv

n,ρð f ; xÞ ≤ θ∥f ∥

Proof.

(1) On the one hand, we have

Gv,θ
n,ρ f ; xð Þ

��� ��� = 〠
∞

k=1
Xv,θ

n,k xð Þ
ð∞
0
J

ρ
n,k tð Þf tð Þdt +Xv,θ

n,0 xð Þf 0ð Þ
�����

�����
≤ 〠

∞

k=1
Xv,θ

n,k xð Þ
ð∞
0
J

ρ
n,k tð Þdt +Xv,θ

n,0 xð Þ
�����

�����:∥f ∥
≤Gv,θ

n,ρ e0 ; xð Þ∥f ∥:
ð16Þ

On the other hand,

Gv,θ
n,ρ e0 ; xð Þ = 〠

∞

k=0
Xv,θ

n,k xð Þ = ξvn,0 xð Þ	 
θ = 〠
∞

k=0
P v

n,k xð Þ
 !θ

= 1θ = 1:

ð17Þ

(2) We have

Gv,θ
n,ρ f ; xð Þ = 〠

∞

k=1
Xv,θ

n,k xð Þ
ð∞
0
J

ρ
n,k tð Þf tð Þdt +Xv,θ

n,0 xð Þf 0ð Þ

= 〠
∞

k=1
ξvn,k xð Þ� �θ − ξvn,k+1 xð Þ� �θ� �ð∞

0
J

ρ
n,k tð Þf tð Þdt

+ ξvn,0 xð Þ� �θ − ξvn,1 xð Þ� �θ� �
f 0ð Þ:

ð18Þ

Using Lemma 1, it is easy to see that

Gv,θ
n,ρ f ; xð Þ ≤ θ〠

∞

k=1
P v

n,k xð Þ
ð∞
0
J

ρ
n,k tð Þf tð Þdt + θP v

n,0 xð Þf 0ð Þ

≤ θBv
n,ρ f ; xð Þ:

ð19Þ

☐

3. Direct Approximation

Before we discuss the different approximations, we need
some definitions. First, we recall the definition of the well-
known Ditizian-Totik modulus of smoothness wφτð:, :Þ and
Peetre’s K-functional [12].

Definition 8. Let φðxÞ = ffiffiffi
x

p
and f ∈CBðℝ+

0 Þ. For 0 ≤ τ ≤ 1, we
define

wφτ f , δð Þ = sup
0≤h≤δ

sup
x±hφτ xð Þ/2∈ℝ+

0

f x + hφτ xð Þ
2

� �
− f x −

hφτ xð Þ
2

� �����
����,

ð20Þ

and the K-functional
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Kφτ f , δð Þ = inf
g∈Wτ

f − gk k + δ φτg′
�� ��n o

, ð21Þ

where

Wτ = g ∈ACloc : φτg′
�� ��<∞n o

, ð22Þ

with ACloc is the set of all absolutely continuous function on
every finite subinterval of ℝ+

0 .

Remark 9. wφτð f , δÞ and Kφτð f , δÞ are equivalent, that is,
there exists a constant C > 0 such that

C−1wφτ f , δð Þ ≤ Kφτ f , δð Þ ≤ Cwφτ f , δð Þ: ð23Þ

In the next definition, we cite Lipschitz-type functions:

Definition 10 [13]. For a ≥ 0, b > 0 to be fixed, the class of two
parametric Lipschitz-type functions is defined as

Lipa,bM βð Þ = g ∈CB ℝ+
0ð Þ: ∣ f yð Þ − f xð Þ∣≤M y − xj jβ

y + ax2 + bxð Þβ/2
, x, y > 0

( )
,

ð24Þ

where M is any positive constant and 0 < β ≤ 1:
The space Lip0,1M ðβÞ is the space Lip∗MðβÞ given by

Szász [14].
We now proceed with the approximation results.

Theorem 11. For f ∈CBðℝ+
0 Þ, we have

Gv,θ
n,ρ f ; xð Þ − f xð Þ

��� ��� ≤ Cwφτ f , φ
2−τ 1 + xð Þffiffiffi

n
p

� �
, ð25Þ

where wφτ is given by (20) and C is a constant free from the
choice of n and x.

For the proof of this theorem, we use the following lemma
proved in [15].

Lemma 12. Let φðxÞ = ffiffiffi
x

p
and 0 ≤ τ ≤ 1; then, for f ∈Wτ and

x, y > 0, we have

ðy
x
f ′ uð Þdu

����
���� ≤ 2τx−τ/2 x − yk k φτ f ′

�� ��: ð26Þ

Proof (Theorem 11). Let g ∈Wτ . Using Lemma 7, we have

Gv,θ
n,ρ f ; xð Þ − f xð Þ

��� ��� = Gv,θ
n,ρ f − g ; xð Þ

��� ��� + f xð Þ − g xð Þj j
+ Gv,θ

n,ρ g ; xð Þ − g xð Þ
��� ���

≤ 1 + θð Þ f xð Þ − g xð Þk k
+ Gv,θ

n,ρ g ; xð Þ − g xð Þ
��� ���:

ð27Þ

Since gðyÞ = gðxÞ + Ð yxg′ðuÞdu and Gv,θ
n,ρð1 ; xÞ = 1, we

conclude that

Gv,θ
n,ρ g ; xð Þ − g xð Þ

��� ��� = Gv,θ
n,ρ

ðy
x
g′ uð Þdu ; x

� �����
����: ð28Þ

Therefore, Lemma 12 implies

Gv,θ
n,ρ g ; xð Þ − g xð Þ

��� ��� ≤ 2τx−τ/2 φτg′
�� ��Gv,θ

n,ρ ∣x − y∣;xð Þ: ð29Þ

By Cauchy-Schwarz inequality and Remark 6, it is easy to
check that

Gv,θ
n,ρ ∣x − y∣;xð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gv,θ

n,ρ 1 ; xð Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gv,θ
n,ρ x − yð Þ2 ; x	 
q

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1xθ 1 + ρ + ρxð Þ

nρ

s
:

ð30Þ

Combining (27)-(30), we get

Gv,θ
n,ρ f ; xð Þ − f xð Þ

��� ��� ≤ 1 + θð Þ f xð Þ − g xð Þk k

+ C3 φτg′
�� ��φ2−τ 1 + xð Þffiffiffi

n
p :

ð31Þ

Let now taking the infimum over g ∈Wτ, and we have

Gv,θ
n,ρ f ; xð Þ − f xð Þ

��� ��� ≤ C4Kφτ f , φ
2−τ 1 + xð Þffiffiffi

n
p

� �
: ð32Þ

We thank to (26).

Gv,θ
n,ρ f ; xð Þ − f xð Þ

��� ��� ≤ Cwφτ f , φ
2−τ 1 + xð Þffiffiffi

n
p

� �
: ð33Þ

☐

Theorem 13. For f ∈ Lipa,bM ðβÞ, then for every n ∈ℕ, ρ > 0, θ
≥ 1 and x ∈ ð0,+∞Þ, we have

Gv,θ
n,ρ f ; xð Þ − f xð Þ

��� ��� ≤M
θBv

n,ρ y − xð Þ2 ; x	 

ax2 + bx

 !β/2

, ð34Þ

where Bv
n,ρððy − xÞ2 ; xÞ is given in Lemma 4.

Proof. Let f ∈ Lipa,bM ðβÞ and x ∈ ð0+∞Þ, and we have

Gv,θ
n,ρ f ; xð Þ − f xð Þ

��� ��� = Gv,θ
n,ρ f yð Þ − f xð Þ ; xð Þ

��� ���
≤Gv,θ

n,ρ ∣f yð Þ − f xð Þ∣;xð Þ

≤Gv,θ
n,ρ M

y − xj jβ
y + ax2 + bxð Þβ/2

; x
 !

:

ð35Þ
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Let us consider the case β = 1. By the Cauchy-
Schwarz inequality and the fact Gv,θ

n,ρð1 ; xÞ = 1, we have
immediately that

Gv,θ
n,ρ f ; xð Þ − f xð Þ

��� ��� ≤ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 + bx

p Gv,θ
n,ρ y − xð Þ2 ; x	 
� �1/2

≤
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ax2 + bx
p θBv

n,ρ y − xð Þ2 ; x	 
� �1/2

≤M
θBv

n,ρ y − xð Þ2 ; x	 

ax2 + bx

 !1/2

:

ð36Þ

This proves the result for β = 1.
If 0 < β < 1, Holder’s inequality with exponents p = 1/β

and p′ = 1/1 − β, we get

Gv,θ
n,ρ f ; xð Þ − f xð Þ

��� ��� ≤ M

ax2 + bxð Þβ/2
Gv,θ

n,ρ ∣y − x∣;xð Þ
� �β

:

ð37Þ

Using again the Cauchy-Schwarz inequality, we obtain

Gv,θ
n,ρ f ; xð Þ − f xð Þ

��� ��� ≤ M

ax2 + bxð Þβ/2
Gv,θ

n,ρ y − xð Þ2 ; x	 
� �β/2
≤

M

ax2 + bxð Þβ/2
θBv

n,ρ y − xð Þ2 ; x	 
� �β/2

≤M
θBv,θ

n,ρ y − xð Þ2 ; x	 

ax2 + bx

 !β/2

,

ð38Þ

and this gives the result. ☐

4. Rate of Convergence in Weighted Spaces

In this section, we focus about the rate of convergence of
operators (5) in the context of suitable weighted function
spaces and functions having a derivative of bounded varia-
tion. We will use the following spaces:

B2 ℝ+
0ð Þ = f : f xð Þj j ≤Mf 1 + x2

	 

,Mf is a constant depend on f


 �
:

ð39Þ

Introduce also

C2 ℝ+
0ð Þ = f ∈B2 ℝ+

0ð Þ: f is continuousf g,

C∗
2 ℝ+

0ð Þ = f ∈C2 ℝ+
0ð Þ: ∃ lim

x⟶∞

∣f xð Þ ∣
1 + x2

<∞
� �

:
ð40Þ

These spaces are endowed with the norm

fk k2 = sup
x∈ℝ+

0

∣f xð Þ ∣
1 + x2

: ð41Þ

The weighted modulus of continuity is defined as
(see [16])

Ω f , δð Þ = sup
x≥0

sup
∣t∣<δ

∣f x + tð Þ − f xð Þ ∣
1 + x + tð Þ2 : ð42Þ

Theorem 14. Let f ∈C∗
2 ðℝ+

0 Þ. Then, for x ∈ℝ+
0 , ρ, δ > 0,

θ ≥ 1 and for large enough n, we have

Gv,θ
n,ρ f ; xð Þ − f xð Þ

��� ��� ≤ 2 1 + x2
	 


Ω f , 1ffiffiffi
n

p
� �

× 1 + θC1
x 1 + ρ + xρð Þ

nρ
+

ffiffiffiffiffiffiffiffi
θC1

p x 1 + ρ + xρð Þ
ρ

� �1/2
"

× 1 +
ffiffiffiffiffiffiffiffi
θC2

p x 1 + ρ + xρð Þ
nρ

� �#
,

ð43Þ

where C1, C2 > 1 are constants independent of x and n:

Proof. Let u, x ∈ℝ+
0 , δ > 0. An immediate consequence of the

definition of weighted modulus of continuity is

f uð Þ − f xð Þj j ≤ 2 1 + x2
	 


1 + u − xð Þ2	 

1 + ∣u − x ∣

δ

� �
Ω f , δð Þ:

ð44Þ

Since Gv,θ
n,ρð f ; xÞ is linear and increasing, we have

from (44)

Gv,θ
n,ρ ∣f uð Þ − f xð Þ∣;xð Þ

��� ��� ≤ 2 1 + x2
	 


Ω f , δð Þ

� Gv,θ
n,ρ 1 + u − xð Þ2	 


; x
	 


+ Gv,θ
n,ρ

1 + u − xð Þ2	 

∣ u − x ∣

δ
; x

 !" #
:

ð45Þ

Cauchy-Schwarz inequality was applied in the last
term, and it gives us

Gv,θ
n,ρ ∣f uð Þ − f xð Þ∣;xð Þ

��� ��� ≤ 2 1 + x2
	 


Ω f , δð Þ

� 1 +Gv,θ
n,ρ u − xð Þ2 ; x	 
h 1

δ
Gv,θ

n,ρ u − xð Þ4 ; x	 
� �1/2
� Gv,θ

n,ρ u − xð Þ2 ; x	 
� �1/2
+ 1
δ

Gv,θ
n,ρ u − xð Þ2 ; x	 
� �1/2�

:

ð46Þ

Choosing δ = 1/ ffiffiffi
n

p
, we get the required result in

virtue of Remark 6. ☐
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5. Rate of Convergence for Functions of
Bounded Variation

LetDBVðℝ+
0 Þ be the space of functions onℝ+

0 having a deriv-
ative of bounded variation on every finite subinterval of ℝ+

0 .
Consider the space

DBV2 ℝ+
0ð Þ = f ∈DBV ℝ+

0ð Þ : f xð Þj j≤Mf 1 + x2
	 


for some constantMf > 0

 �

:

ð47Þ

It is known that every function f in DBV2ðℝ+
0 Þ has a

representation of the form

f xð Þ =
ðx
0
g uð Þdu + f 0ð Þ, ð48Þ

where g is a function of bounded variation on each finite
subinterval of ℝ+

0 .

Lemma 15. Let x ∈ℝ+
0 , and let Kv,θ

n,ρðx, uÞ be the kernel
defined by (13). Then, for C1 > 1 and for n large enough,
we have

(1) ξv,θn,ρðx ; yÞ =
Ð y
0K

v,θ
n,ρðx, uÞdu ≤ θC1ðxð1 + ρ + xρÞ/nρÞ

1/ðx − yÞ2, 0 ≤ y < x

(2) 1 − ξv,θn,ρðx ; zÞ =
Ð∞
z Kv,θ

n,ρðx, uÞdu ≤ θC1ðxð1 + ρ + xρÞ
/nρÞ1/ðz − xÞ2, x < z <∞

Proof. Using Remark 6, we get

ξv,θn,ρ x ; yð Þ =
ðy
0
Kv,θ

n,ρ x, uð Þdu ≤
ðy
0

u − y
x − y

� �2
Kv,θ

n,ρ x, uð Þdu

≤
1

x − yð Þ2 G
v,θ
n,ρ u − xð Þ2, x	 


≤ θC1
x 1 + ρ + xρð Þ

nρ
1

x − yð Þ2 :

ð49Þ

Similarly, we can show the second part; hence, the proof
is omitted. ☐

Theorem 16. Let f ∈DBV2ðℝ+
0 Þ, and for every x ∈ ð0,∞Þ,

consider the function f x′ defined by

f x′ uð Þ =
f ′ uð Þ − f ′ x−ð Þ, if 0 ≤ u < x,
0, if u = x,
f ′ uð Þ − f ′ x+ð Þ, if x < u <∞:

8>><
>>: ð50Þ

Let us denote by ∨d
c f x′ the total variation of f x′ on ½c, d� ⊂

ℝ+
0 . Then, for every x ∈ ð0,∞Þ and large n,

Gv,θ
n,ρ f ; xð Þ − f xð Þ

��� ���
≤

ffiffiffi
θ

p

1 + θ
f ′ x+ð Þ + θf ′ x−ð Þ�� �� C1x 1 + ρ + xρð Þ

nρ

� �1/2

+ θ3/2

1 + θ
f ′ x+ð Þ + θf ′ x−ð Þ�� �� C1x 1 + ρ + xρð Þ

nρ

� �1/2

+ θ
C1 1 + ρ + xρð Þ

nρ
〠

ffiffi
n

p½ �

k=1
∨
x−x

k

x
f x′

� �
+ xffiffiffi

n
p ∨

x− xffiffi
n

p

x
f x′

 !

+ xffiffiffi
n

p ∨
x

x+ xffiffi
n

p

f x′
 !

+ θ
C1 1 + ρ + xρð Þ

nρ
〠

ffiffi
n

p½ �

0

∨
x

x+x
k
f x′

� �
:

ð51Þ

Proof. For any f ∈DBV2ðℝ+
0 Þ, from the definition of f x′ðuÞ,

we can write

f ′ uð Þ = 1
1 + θ

f ′ x+ð Þ + θf ′ x−ð Þ
� �

+ δx uð Þ

� f ′ xð Þ − 1
2 f ′ x+ð Þ + f ′ x−ð Þ
� �� �

+ f x′ uð Þ + 1
2 f ′ x+ð Þ − f ′ x−ð Þ
� �

sgn u − xð Þ + θ − 1
1 + θ

� �
,

ð52Þ

where

δx uð Þ =
1, if u = x,
0, if u ≠ x:

(
ð53Þ

By the fact that Gv,θ
n,ρð1 ; xÞ = 1, we have

Gv,θ
n,ρ f ; xð Þ − f xð Þ =Gv,θ

n,ρ f uð Þ − f xð Þ ; xð Þ

=
ð∞
0
Kv,θ

n,ρ x, uð Þ f uð Þ − f xð Þð Þdu

=
ð∞
0
Kv,θ

n,ρ x, uð Þ
ðu
x
f ′ vð Þdv

� �
du:

ð54Þ

From (52), we obtain

Gv,θ
n,ρ f ; xð Þ − f xð Þ =

ð∞
0
Kv,θ

n,ρ x, uð Þ
ðu
x

1
1 + θ

f ′ x+ð Þ + θf ′ x−ð Þ
� �� �

dv
� �

du

+
ð∞
0
Kv,θ

n,ρ x, uð Þ
ðu
x

1
2 f ′ x+ð Þ − f ′ x−ð Þ
� �

× sgn v − xð Þ + θ − 1
1 + θ

� �� �
dv

� �
du

+
ð∞
0
Kv,θ

n,ρ x, uð Þ
ðu
x
δx vð Þ f ′ xð Þ − 1

2 f ′ x+ð Þ + f ′ x−ð Þ
� �� �

dv
� �

du

+
ð∞
0
Kv,θ

n,ρ x, uð Þ
ðu
x
f x′ vð Þdv

� �
du:

ð55Þ
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From the definition of δxðvÞ, it is clear that
ð∞
0
Kv,θ

n,ρ x, uð Þ
ðu
x
δx vð Þ f ′ xð Þ − 1

2 f ′ x+ð Þ + f ′ x−ð Þ
� �� �

dv
� �

du = 0:

ð56Þ

The first integral on the right hand side of (55) can be
estimated as follows:

ð∞
0
Kv,θ

n,ρ x, uð Þ
ðu
x

1
1 + θ

f ′ xð Þ++θf ′ x−ð Þ
� �� �

dv
� �

du
����

����
≤

1
1 + θ

f ′ x+ð Þ + θf ′ x−ð Þ�� ��ð∞
0
Kv,θ

n,ρ x, uð Þ u − xj jdu:

ð57Þ

Applying the Cauchy-Schwarz inequality and Remark 2,
we have, for n large enough,

ð∞
0
Kv,θ

n,ρ x, uð Þ
ðu
x

1
1 + θ

f ′ x+ð Þ + θf ′ x−ð Þ
� �� �

dv
� �

du
����

����
≤

1
1 + θ

f ′ x+ð Þ + θf ′ x−ð Þ�� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gv,θ

n,ρ u − xð Þ2 ; x	 
q

≤
1

1 + θ
f ′ x+ð Þ + θf ′ x−ð Þ�� �� C1θx 1 + ρ + xρð Þ

nρ

� �1/2

≤
ffiffiffi
θ

p

1 + θ
f ′ x+ð Þ + θf ′ x−ð Þ�� �� C1x 1 + ρ + xρð Þ

nρ

� �1/2
:

ð58Þ

Similarly, it is easy to find

ð∞
0
Kv,θ

n,ρ x, uð Þ
ðu
x

1
2 f ′ x+ð Þ − f ′ x−ð Þ
� �

sgn v − xð Þ + θ − 1
1 + θ

� �� �
dv

� �
du

����
����

≤
θ3/2

1 + θ
f ′ x+ð Þ + θf ′ x−ð Þ�� �� C1x 1 + ρ + xρð Þ

nρ

� �1/2
:

ð59Þ

Write the last term of (55) as

ð∞
0
Kv,θ

n,ρ x, uð Þ
ðu
x
f x′ vð Þdv

� �
du =A v,θ

n,ρ f x′ ; x
� �

+Bv,θ
n,ρ f x′ ; x
� �

,

ð60Þ

where

Av,θ
n,ρ f x′ ; x
� �

=
ðx
0
Kv,θ

n,ρ x, uð Þ
ðu
x
f x′ vð Þdv

� �
du,

Bv,θ
n,ρ f x′ ; x
� �

=
ð∞
x
Kv,θ

n,ρ x, uð Þ
ðu
x
f x′ vð Þdv

� �
du:

ð61Þ

Now, we estimate the terms Av,θ
n,ρð f x′ ; xÞ andBv,θ

n,ρð f x′ ; xÞ.

Using the definition of ξv,θn,ρð:;:Þ given in Lemma 15 and
integrating by parts, we can write

A v,θ
n,ρ f x′ ; x
� �

=
ðx
0

ðu
x
f x′ vð Þdv

� � ∂ξv,θn,ρ x ; uð Þ
∂u

du

=
ðx
0
f x′ uð Þξv,θn,ρ x ; uð Þdu:

ð62Þ

Thus,

A v,θ
n,ρ f x′ ; x
� ���� ��� ≤ ðx−x/

ffiffi
n

p

0
f x′ uð Þ�� ��ξv,θn,ρ x ; uð Þdu

+
ðx
x−x/ ffiffinp f x′ uð Þ�� ��ξv,θn,ρ x ; uð Þdu:

ð63Þ

Since f x′ðxÞ = 0 and ξv,θn,ρðx ; uÞ ≤ 1, we get

ðx
x−x/ ffiffinp f x′ uð Þ�� ��ξv,θn,ρ x ; uð Þdu

=
ðx
x−x/ ffiffinp f x′ uð Þ − f x′ xð Þ�� ��ξv,θn,ρ x ; uð Þdu

≤
ðx
x−x/ ffiffinp f x′ uð Þ − f x′ xð Þ�� ��du ≤ ðx

x−x/ ffiffinp ∨
u

x
f x′

� �
du

≤
xffiffiffi
n

p ∨
x− xffiffi

n
p

x
f x′

 !
:

ð64Þ

Concerning the first integral on the right hand side of
(63), using Lemma 15, we have

ðx−x/ ffiffinp

0
f x′ uð Þ�� ��ξv,θn,ρ x ; uð Þdu

≤ θ
C1x 1 + ρ + xρð Þ

nρ

ðx−x/ ffiffinp

0

f x′ uð Þ�� ��
x − yð Þ2 du

= θ
C1x 1 + ρ + xρð Þ

nρ

ðx−x/ ffiffinp

0

f x′ uð Þ − f x′ xð Þ�� ��
x − yð Þ2 du

= θ
C1x 1 + ρ + xρð Þ

nρ

ðx−x/ ffiffinp

0
∨
u

x
f x′

� � du

x − yð Þ2 :

ð65Þ

By changing of variable u = x − x/v, we deduce that

ðx−x/ ffiffinp

0
f x′ uð Þ�� ��ξv,θn,ρ x ; uð Þdu ≤ θ

C1 1 + ρ + xρð Þ
nρ

ð ffiffinp

1
∨
x−x

v

x
f x′

� �
dv

≤ θ
C1 1 + ρ + xρð Þ

nρ
〠

ffiffi
n

p½ �

k=1
∨
x−x

k

x
f x′

� �
:

ð66Þ
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Therefore,

A v,θ
n,ρ f x′ ; x
� ���� ��� ≤ θ

C1 1 + ρ + xρð Þ
nρ

〠

ffiffi
n

p½ �

k=1
∨
x−x

k

x
f x′

� �
+ xffiffiffi

n
p ∨

x− xffiffi
n

p

x
f x′

 !
:

ð67Þ

What concerns the second term of the right hand side of
(60), integrating by parts and Lemma 15 with z = x + x/ ffiffiffi

n
p

,
we can write

Bv,θ
n,ρ f x′ ; x
� ���� ��� ≤ ðz

x
f x′ uð Þ 1 − ξv,θn,ρ x ; uð Þ

� �
du

����
����

+
ð∞
z
f x′ uð Þ 1 − ξv,θn,ρ x ; uð Þ

� �
du

����
����

≤
ðz
x
∨
x

u
f x′du + θ

C1x 1 + ρ + xρð Þ
nρ

ð∞
z
∨
x

u
f x′

1
u − xð Þ2 du

≤
xffiffiffi
n

p ∨
x

x+ xffiffi
n

p

f x′
 !

+ θ
C1x 1 + ρ + xρð Þ

nρ

�
ð∞
x+x/ ffiffinp ∨

x

u
f x′ u − xð Þ−2du:

ð68Þ

Putting u = x + x/v, we get

θ
C1x 1 + ρ + xρð Þ

nρ

ð∞
x+x/ ffiffinp ∨

x

u
f x′ u − xð Þ−2du

≤ θ
C1 1 + ρ + xρð Þ

nρ

ð ffiffinp

0
∨
x

x+x
v
f x′dv

≤ θ
C1 1 + ρ + xρð Þ

nρ
〠

ffiffi
n

p½ �

0
∨
x

x+x
k
f x′

� �
:

ð69Þ

Combining (68) and (69), we have

Bv,θ
n,ρ f x′ ; x
� ���� ��� ≤ xffiffiffi

n
p ∨

x

x+ xffiffi
n

p

f x′
 !

+ θ
C1 1 + ρ + xρð Þ

nρ
〠

ffiffi
n

p½ �

0
∨
x

x+x
k
f x′

� �
:

ð70Þ

Finally, by combining (52)-(70), we get (51). ☐

6. Quantitative Voronovskaja-Type
Asymptotic Formula

In this last section, we deal with the Voronovskaja-type
asymptotic theorem for Gv,θ

n,ρ. More precisely we will prove
the following result:

Theorem 17. For f ∈CBðℝ+
0 Þ such that f ′, f ′′ ∈CBðℝ+

0 Þ.
Then,

n Gv,θ
n,ρ f ; xð Þ − f xð Þ − f ′ xð ÞGv,θ

n,ρ u − x ; xð Þ
n���

−
1
2
f ′′ xð ÞGv,θ

n,ρ u − xð Þ2 ; x	 
o���
≤ Cθ

x 1 + ρ + xρð Þ
ρ

wφτ f , φ
2−τ 1 + xð Þffiffiffi

n
p

� �
,

ð71Þ

where C is independent of n and x.

Proof. By Taylor’s formula, we write

f uð Þ = f xð Þ + u − xð Þf ′ xð Þ +
ðu
x
u − vð Þf ′′ vð Þdv: ð72Þ

It is clear that

f uð Þ − f xð Þ − u − xð Þf ′ xð Þ − 1
2 u − xð Þ2 f ′′ xð Þ

=
ðu
x
u − vð Þ f ′′ vð Þ − f ′′ xð Þ

� �
dv:

ð73Þ

On the one hand, we apply Gv,θ
n,ρð:;xÞ to both sides of the

above equality, and we get

Gv,θ
n,ρ f ; xð Þ − f xð Þ − f ′ xð ÞGv,θ

n,ρ u − x ; xð Þ
���

−
1
2 f

′′ xð ÞGv,θ
n,ρ u − xð Þ2 ; x	 
���

= Gv,θ
n,ρ

ðu
x
u − vð Þ f ′′ vð Þ − f ′′ xð Þ

� �
dv ; x

� �����
����

≤Gv,θ
n,ρ

ðu
x
u − vð Þ f ′′ vð Þ − f ′′ xð Þ

� �
dv

����
���� ; x

� �
:

ð74Þ

On the other hand, for g ∈Wτ, we have

ðu
x
u − vð Þ f ′′ vð Þ − f ′′ xð Þ

� �
dv

����
����

≤ f ′′ − g
�� �� u − xð Þ2 + 2τφ−τ φτg′

�� �� u − xj j3,
ð75Þ

which implies, by (74),

Gv,θ
n,ρ f ; xð Þ − f xð Þ − f ′ xð ÞGv,θ

n,ρ u − x ; xð Þ
���

−
1
2 f

′′ xð ÞGv,θ
n,ρ u − xð Þ2 ; x	 
���

≤ f ′′ − g
�� ��Gv,θ

n,ρ u − xð Þ2 ; x	 

+ 2τφ−τ φτg′

�� ��Gv,θ
n,ρ u − xj j3 ; x	 


:

ð76Þ

After using the Cauchy-Schwarz inequality in the last
term, we obtain
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Gv,θ
n,ρ f ; xð Þ − f xð Þ − f ′ xð ÞGv,θ

n,ρ u − x ; xð Þ − 1
2 f

′′ xð ÞGv,θ
n,ρ u − xð Þ2 ; x	 
����

����
≤ 2τφ−τ φτg′

�� �� Gv,θ
n,ρ u − xð Þ4 ; x	 
� �1/2

Gv,θ
n,ρ u − xð Þ2 ; x	 
� �1/2

+ f ′′ − g
�� ��Gv,θ

n,ρ u − xð Þ2 ; x	 

:

ð77Þ

In view of Remark 6, we have

Gv,θ
n,ρ f ; xð Þ − f xð Þ − f ′ xð ÞGv,θ

n,ρ u − x ; xð Þ − 1
2 f

′′ xð ÞGv,θ
n,ρ u − xð Þ2 ; x	 
����

����
≤ 2τφ−τ φτg′

�� �� C1θ
x 1 + ρ + xρð Þ

nρ

� �1/2
C2θ

x 1 + ρ + xρð Þ
nρ

� �2
 !1/2

+ f ′′ − g
�� ��C1θ

x 1 + ρ + xρð Þ
nρ

≤ C1θ
x 1 + ρ + xρð Þ

nρ
f ′′ − g
�� �� +M∗ φ

2−τ 1 + xð Þffiffiffi
n

p φτg′
�� ��� �

:

ð78Þ

Taking the infimum on the right-hand side of the above
inequality over g ∈Wτ, we get

n Gv,θ
n,ρ f ; xð Þ − f xð Þ − f ′ xð ÞGv,θ

n,ρ u − x ; xð Þ
n���

−
1
2 f

′′ xð ÞGv,θ
n,ρ u − xð Þ2 ; x	 
o���

≤ Cθ
x 1 + ρ + xρð Þ

ρ
Kφτ f ,M∗ φ

2−τ 1 + xð Þffiffiffi
n

p
� �

:

ð79Þ

Recalling (23), the theorem is proved. ☐
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mation by Bézier-Păltănea operators based on Gould-Hopper
polynomials,” Mathematical Communications, vol. 24, no. 2,
pp. 147–164, 2019.

[7] K. J. Ansari, M. Mursaleen, and S. Rahman, “Approximation
by Jakimovski-Leviatan operators of Durrmeyer type involv-
ing multiple Appell polynomials,” Revista de la Real Academia
de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas,
vol. 113, no. 2, pp. 1007–1024, 2019.

[8] A. Kilicman, M. A. Mursaleen, and A. A. H. A. al-Abied,
“Stancu Type Baskakov—Durrmeyer operators and approxi-
mation properties,” Mathematics, vol. 8, no. 7, p. 1164, 2020.

[9] P. N. Agrawal, N. Ispir, and A. Kajla, “Approximation proper-
ties of Bezier-summation-integral type operators based on
Polya-Bernstein functions,” Applied Mathematics and Compu-
tation, vol. 259, pp. 533–539, 2015.

[10] M. Goyal and P. N. Agrawal, “Bézier variant of the generalized
Baskakov Kantorovich operators,” Bollettino dell'Unione
Matematica Italiana, vol. 8, no. 4, pp. 229–238, 2016.

[11] A. Kajla, S. A. Mohiuddine, A. Alotaibi, M. Goyal, and K. K.
Singh, “Approximation by ϑ-Baskakov–Durrmeyer-type
hybrid operators,” Iranian Journal of Science and Technology,
Transactions A: Science, vol. 44, no. 4, pp. 1111–1118, 2020.

[12] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Ver-
lag, New York, 1987.

[13] M. A. Ozarslan and H. Aktuglu, “Local approximation proper-
ties for certain King type operators,” Filomat, vol. 27, no. 1,
pp. 173–181, 2013.

[14] O. Szász, “Generalization of Bernstein's polynomials to the
infinite interval,” Journal of Research of the National Bureau
of Standards, vol. 45, no. 3, pp. 239–245, 1950.

[15] M. Goyal and P. N. Agrawal, “Bézier variant of the Jakimovski-
Leviatan-Paltanea operators based on Appell polynomials,”
Annali dell'Universita' di Ferrara, vol. 63, no. 2, pp. 289–302,
2017.

[16] I. Yuksel and N. Ispir, “Weighted approximation by a certain
family of summation integral-type operators,” Computers &
Mathematcs with Applications, vol. 52, no. 10-11, pp. 1463–
1470, 2006.

9Journal of Function Spaces



Research Article
Approximation Theorem for New Modification of q-Bernstein
Operators on (0,1)

Yun-Shun Wu ,1 Wen-Tao Cheng ,2 Feng-Lin Chen ,2 and Yong-Hui Zhou 3

1School of Mathematical Sciences, Guizhou Normal University, Guizhou, Guiyang 550001, China
2School of Mathematics and Physics, Anqing Normal University, Anhui, Anqing 246133, China
3School of Big Data and Computer Science, Guizhou Normal University, Guizhou, Guiyang 550001, China

Correspondence should be addressed to Wen-Tao Cheng; chengwentao_0517@163.com

Received 19 April 2021; Accepted 10 June 2021; Published 28 June 2021

Academic Editor: Tuncer Acar

Copyright © 2021 Yun-Shun Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, we extend the works of F. Usta and construct new modified q-Bernstein operators using the second central moment of
the q-Bernstein operators defined by G. M. Phillips. The moments and central moment computation formulas and their
quantitative properties are discussed. Also, the Korovkin-type approximation theorem of these operators and the Voronovskaja-
type asymptotic formula are investigated. Then, two local approximation theorems using Peetre’s K-functional and Steklov
mean and in terms of modulus of smoothness are obtained. Finally, the rate of convergence by means of modulus of continuity
and three different Lipschitz classes for these operators are studied, and some graphs and numerical examples are shown by
using Matlab algorithms.

1. Introduction

In [1], Phillips introduced q-analogue of Bernstein operators
as follows:

Bq
l ζ ; zð Þ = 〠

l

i=0
ζ

i½ �q
l½ �q

 !
pql,i zð Þ, z ∈ 0, 1½ �, ð1Þ

where pql,iðzÞ =
l

i

 !
q

zið1 − zÞl−iq , i = 0, 1,⋯, l, and ζ ∈ C½0, 1�.

Later, generalizations of q-Bernstein operators (1) attracted a
lot of interest and were constructed and researched widely by
a number of researchers. For instance, in [2], Mahmudov and
Sabancigil introduced q-Bernstein-Kantorovich operators
and studied local and global approximation properties. In
[3], Acu et al. defined modified q-Bernstein-Kantorovich
operators and established the shape-preserving properties
of these operators, e.g., monotonicity and convexity. Some
other papers also mention Bernstein operators with parame-
ter(s) and their modification: λ-Bernstein operators [4], α

-Bernstein operators [5–8], ðα, qÞ-Bernstein operators [9],
ðp, qÞ-Bernstein operators [10], ðp, qÞ-Bernstein-Stancu
operators [11], ðp, qÞ-Bernstein-Kantorovich operators [12],
generalized Bernstein operators [13], and so on.

In this article, we consider q-analogue of the following
new Bernstein operators constructed by the second central
moment of the classic Bernstein operators which was given
in [14].

B∗
l ζ ; zð Þ = 1

l
〠
l

i=0

l

i

 !
i − lzð Þ2zi−1 1 − zð Þl−i−1ζ i

l

� �
: ð2Þ

There are many papers about the research and application
of q-operators, and we mention some of them: q-Bleimann-
Butzer-Hahn operators [15], Bivariater q-Meyer-König-Zeller
operators [16], q-Baskakov operators [17, 18], q-Meyer-
König-Zeller-Durrmeyer operators [19], q-Phillips operators
[20, 21], q-Szász operators [22], q-Bernstein operators [23],
and so on. All this achievement motivates us to construct
the q-analogue of the operators (2). Before continuing fur-
ther, let us recall some useful concepts and notations from
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q-calculus, which can be found in [24]. For nonnegative
integer l, the q-integer ½l�q, q-factorial ½l�q!, and q-binomial

coefficients
l

i

 !
q

are defined by

l½ �q = 1 + q+⋯+ql−1 =
1 − ql

1 − q
, q ≠ 1,

l, q = 1,

8><
>:

l½ �q! =
1½ �q 2½ �q ⋯ l½ �q, l ≥ 1,

1, l = 0,

(

l

i

 !
q

=
l½ �q!

i½ �q! l − i½ �q!
, i = 0, 1,⋯, l:

ð3Þ

Further, q-power basis can be defined by

x − yð Þlq =
x − yð Þ x − qyð Þ⋯ x − ql−1y

� �
, l = 1, 2,⋯,

1, l = 0,

x − q−1y
� �

⋯ x − qly
� �

, l = −1,−2,⋯:

8>>>><
>>>>:

ð4Þ

The q-derivative Dqζ of a function ζ can be defined by

Dqζ
� �

zð Þ = ζ zð Þ − ζ qzð Þ
1 − qð Þz , if z ≠ 0, ð5Þ

and ðDqζÞð0Þ = ζ′ð0Þ provided ζ′ð0Þ exists. High-order q
-derivatives can be defined by D0

qζ = ζ, Dn
qζ =DqðDn−1

q ζÞ, n
= 1, 2,⋯. The formula for the q-derivative of a product is

Dq ζ xð Þη xð Þð Þ =Dq ζ xð Þð Þη xð Þ +Dq η xð Þð Þζ qxð Þ: ð6Þ

The q-analogue of new-Bernstein operators (2) on ð0, 1Þ
is defined by the following:

B
q
l ζ ; zð Þ = 1

l½ �q
〠
l

i=0

l

i

 !
q

zi−1 1 − qzð Þl−i−1q i½ �q − l½ �qz
� �2

ζ
i½ �q
l½ �q

 !
,

ð7Þ

where q ∈ ð0, 1�, l ∈ℕ+ ≔ f1, 2,⋯g, z ∈ ð0, 1Þ, and ζ ∈ C½0, 1�.
The rest of the paper is organized as follows: In Section 2,

we get the basic results by the moment computation
formulas. And the first, second, fourth, and sixth order
central moment computation formulas and limit equalities
are also computed. In Sections 3 and 4, we investigate the
Korovkin-type approximation theorem and the
Voronovskaja-type asymptotic formula for the operators
(7). In Section 5, we obtain two local approximation theo-
rems using Peetre’s K-functional and Steklov mean and in
terms of modulus of smoothness. In Section 6, we study the
rate of convergence by means of modulus of continuity and

three different Lipschitz classes for these operators (7). In
Section 7, we show some graphs and numerical examples to
analyze the theoretical results by using Matlab algorithms.

2. Auxiliary Lemmas

In this section, we present certain auxiliary results which will
be used to prove our main theorems for the operators (7).
Using the lemma in ([25], Lemma 2), we have the moment
computation formulas for the operators (1):

Lemma 1. If we define Tq
l,mðzÞ = Bq

l ðum ; zÞ, then there holds
the following relation:

Tq
l,0 zð Þ = 1, Tq

l,1 zð Þ = z, Tq
l,2 zð Þ = z2 + z 1 − zð Þ

l½ �q
, ð8Þ

l½ �qTq
l,m+1 zð Þ = z 1 − zð ÞDq Tq

l,m zð Þ� �
+ l½ �qzTq

l,m zð Þ,m = 0, 1, 2,⋯:

ð9Þ

Now, we give the moment relation between the operators
(1) and the operators (7) as follows:

Lemma 2. If we define Tq
l,mðzÞ =B

q
l ðum ; zÞ, then there holds

the following relation:

z 1 − zð Þ
l½ �q

T
q
l,m zð Þ = Tq

l,m+2 zð Þ − 2zTq
l,m+1 zð Þ + z2Tq

l,m zð Þ,

ð10Þ

T
q
l,m zð Þ =Dq Tq

l,m+1 zð Þ� �
− zDq Tq

l,m zð Þ� �
, ð11Þ

T
q
l,m zð Þ = 1

l½ �q
Dq z 1 − zð ÞDq Tq

l,m zð Þ� �� �
+ Tq

l,m qzð Þ, ð12Þ

where q ∈ ð0, 1�, l ∈ℕ+ ≔ f1, 2,⋯g,m ∈ℕ≔ f0, 1, 2,⋯g, and
z ∈ ð0, 1Þ.

Proof. By the definition of Bq
l and B

q
l , we can obtain

z 1 − zð Þ
l½ �q

T
q
l,m zð Þ = z 1 − zð Þ

l½ �2q
〠
l

i=0

l

i

 !
q

zi−1 1 − qzð Þl−i−1q

� i½ �q − l½ �qz
� �2 i½ �q

l½ �q

 !m

= 〠
l

i=0

l

i

 !
q

zi 1 − zð Þl−iq

i½ �q
l½ �q

− z

 !2
i½ �q
l½ �q

 !m

= Tq
l,m+2 zð Þ − 2zTq

l,m+1 zð Þ + z2Tq
l,m zð Þ:

ð13Þ
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Next, by (9) and (10), we can obtain

z 1 − zð ÞTq
l,m zð Þ = l½ �qTq

l,m+2 zð Þ − 2 l½ �qzTq
l,m+1 zð Þ + l½ �qz2Tq

l,m zð Þ
= z 1 − zð ÞDq Tq

l,m+1 zð Þ� �
− l½ �qzTq

l,m+1 zð Þ
+ l½ �qz2Tq

l,m zð Þ = z 1 − zð ÞDq Tq
l,m+1 zð Þ� �

− z l½ �qTq
l,m+1 zð Þ + l½ �qzTq

l,m zð Þ
� �

= z 1 − zð ÞDq Tq
l,m+1 zð Þ� �

− z2 1 − zð ÞDq Tq
l,m zð Þ� �

:

ð14Þ

Thus, we complete the proof of (11). Finally, by (6), (9),
and (11), we can obtain

T
q
l,m zð Þ =Dq Tq

l,m+1 zð Þ� �
− zDq Tq

l,m zð Þ� �
=Dq

z 1 − zð Þ
l½ �q

Dq Tq
l,m zð Þ� �

+ zTq
l,m zð Þ

 !
− zDq Tq

l,m zð Þ� �

= 1
l½ �q

Dq z 1 − zð ÞDq Tq
l,m zð Þ� �� �

+Dq zTq
l,m zð Þ� �

− zDq Tq
l,m zð Þ� �

= 1
l½ �q

Dq z 1 − zð ÞDq Tq
l,m zð Þ� �� �

+ Tq
l,m qzð Þ:

ð15Þ

We complete the proof of the Lemma 2. ☐

Then, the following lemma can be obtain immediately:

Lemma 3. For q ∈ ð0, 1�, l ∈ℕ+, and z ∈ ð0, 1Þ, we have

T
q
l,0 zð Þ = 1,Tq

l,1 zð Þ = q −
2½ �q
l½ �q

 !
z + 1

l½ �q
,

T
q
l,2 zð Þ = q2 −

q2 + 2½ �q 3½ �q
l½ �q

+
2½ �q 3½ �q
l½ �2q

 !
z2

+
q + 2½ �2q

l½ �q
−

2½ �2q + 2½ �q
l½ �2q

 !
z + 1

l½ �2q
,

αql zð Þ≔B
q
l u − z ; zð Þ = q − 1ð Þz +

1 − 2½ �qz
l½ �q

,

βq
l zð Þ≔B

q
l u − zð Þ2 ; z� �

= q − 1ð Þ2 − q3 + 3q2 − 1
l½ �q

+
2½ �q 3½ �q
l½ �2q

 !
z2

+ q2 + 3q − 1
l½ � −

2½ �2q + 2½ �q
l½ �2q

 !
z + 1

l½ �2q
:

ð16Þ

Lemma 4. The sequence ðqlÞ satisfies ql ∈ ð0, 1�, such that ql
⟶ 1 and qll ⟶ k ∈ ½0, 1� as l⟶∞; then, for any z ∈ ð0, 1Þ
, we have

lim
l⟶∞

l½ �qlα
ql
l zð Þ = 1 + k − 3ð Þz, ð17Þ

lim
l⟶∞

l½ �qlβ
ql
l zð Þ = 3z 1 − zð Þ, ð18Þ

lim
l⟶∞

l½ �qlB
ql
l u − zð Þ4 ; z� �

= 0: ð19Þ

Proof. First, we prove the limit lim
l⟶∞

½l�ql = +∞. In fact, for any

q ∈ ð0, 1Þ, such sufficiently large l0 ∈ℕ+ that ½l0�q > 1/2ð1 − qÞ.
But for l > l0 such that ql > q, we easily have ½l�ql > ½l0�q. Apply-
ing Lemma 3, we can directly obtain (17) and (18). As l⟶∞,
using Lemma 1, we can rewrite

Tql
l,3 zð Þ = z3 +

2½ �ql + 1
l½ �ql

z2 1 − zð Þ + o
1
l½ �ql

 !
,

Tql
l,4 zð Þ = z4 +

3½ �ql + 2½ �ql + 1
l½ �ql

z3 1 − zð Þ + o
1
l½ �ql

 !
:

ð20Þ

Applying (12), we can obtain

T
ql
l,2 zð Þ = q2l −

q2l + 2½ �ql 3½ �ql
l½ �ql

 !
z2 +

ql + 2½ �2ql
l½ �ql

z + o
1
l½ �ql

 !
,

T
ql
l,3 zð Þ = q3l −

q3l 1 + 2½ �ql
� �

+ 3½ �ql 4½ �ql
l½ �ql

0
@

1
Az3

+
3½ �2ql + q2l 1 + 2½ �ql

� �
l½ �ql

z2 + o
1
l½ �ql

 !
,

T
ql
l,4 zð Þ = q4l −

q4l 1 + 2½ �ql + 3½ �ql
� �

+ 4½ �ql 5½ �ql
l½ �ql

0
@

1
Az4

+
4½ �2ql + q3l 1 + 2½ �ql + 3½ �ql

� �
l½ �ql

z3 + o
1
l½ �ql

 !
:

ð21Þ

Combining Lemma 3 and B
ql
l ððu − zÞ4 ; zÞ =∑4

m=0
4
m

 !

ð−1Þ4−mBql
l ðu4−m ; zÞzm, we can obtain

B
ql
l u − zð Þ4 ; z� �

= ql − 1ð Þ4z4 − Aql
4 − 4Aql

3 + 6Aql
2 − 4Aql

1
l½ �ql

z4

+ Bql
4 − 4Bql

3 + 6Bql
2 − 4Bql

1
l½ �ql

z3 + o
1
l½ �ql

 !
,

ð22Þ

where Aql
4 = q4l ð1 + ½2�ql + ½3�qlÞ + ½4�ql ½5�ql , A

ql
3 = q3l ð1 + ½2�qlÞ

+ ½3�ql ½4�ql , A
ql
2 = q2l + ½2�ql ½3�ql , A

ql
1 = ½2�ql , B

ql
4 = ½4�2ql + q3l ð1 +

½2�ql + ½3�qlÞ, B
ql
3 = ½3�2ql + q2l ð1 + ½2�qlÞ, B

ql
2 = ½2�2ql + ql, and Bql

1
= 1. Hence, Aql

4 ~ 26, Aql
3 ~ 15, Aql

2 ~ 7, Aql
1 ~ 2, Bql

4 ~ 22, Bql
3 ~

12, Bql
2 ~ 5, and Bql

1 ~ 1 as l⟶∞, we have
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lim
l⟶∞

Aql
4 − 4Aql

3 + 6Aql
2 − 4Aql

1
� �

= 26 − 4 × 15 + 6 × 7 − 4 × 2 = 0,

lim
l⟶∞

Bql
4 − 4Bql

3 + 6Bql
2 − 4Bql

1
� �

= 22 − 4 × 12 + 6 × 5 − 4 × 1 = 0:

ð23Þ

Combining lim
l⟶∞

½l�qlðql − 1Þ4 = 0, we can obtain (19). ☐

Lemma 5. For q ∈ ð0, 1�, l ∈ℕ+, and ζ ∈ CBð0, 1Þ, we can have
∥Bql

l ðζ ; zÞ∥≤∥ζ∥, where CBð0, 1Þ denotes the set of all real-
valued bounded and continuous functions defined on ð0, 1Þ,
endowed with the norm kζk = sup

z∈ð0,1Þ
jζðzÞj.

Proof. In view of (7) and Lemma 3, for any z ∈ ð0, 1Þ, we have

B
ql
l ζ ; zð Þ�� �� ≤T

q
l,0 zð Þ ζk k = ζk k: ð24Þ

Taking supremum over all z ∈ ð0, 1Þ, we obtain the
required result. ☐

3. Korovkin Approximation Theorem

Theorem 6. Let the sequence ðqlÞ satisfy ql ∈ ð0, 1�, for any
ζ ∈ CBð0, 1Þ; then, the sequence fBql

l ðζ ; zÞg converges uni-
formly to ζ on ð0, 1Þ if and only if ql ⟶ 1 as l⟶∞.

Proof. Let ql ∈ ð0, 1� and ql ⟶ 1 as l⟶∞; then, we have
½l�ql ⟶∞ as l⟶∞. By the Korovkin theorem ([26], p.
8, Theorem 6), it is sufficient to prove the three following
limit equalities:

lim
l⟶∞

B
ql
l um ; zð Þ − zm

		 		 = 0,m = 0, 1, 2: ð25Þ

We can obtain these three limit equalities easily by
Lemma 3. Thus, we get that the sequence fBql

l ðζ ; zÞg con-
verges uniformly to ζ on ð0, 1Þ.

We prove the converse result by contradiction. Assume
that fqlg does not tend to 1 as l⟶∞; then, it must contain
a subsequence fqlmg ⊂ ð0, 1� with lm ≥ 1, such that qlm ⟶ q
∈ ½0, 1Þ. Thus,

lim
m⟶∞

1
lm½ �qlm

= lim
m⟶∞

1 − qlm
1 − qlmlm

= 1 − q: ð26Þ

Taking l = lm and q = qlm inBq
l ðu ; zÞ and using Lemma 3,

we can obtain

B
qlm
lm

u ; zð Þ =T
qlm
lm ,1 zð Þ⟶ 1 − 2 1 − qð Þð Þz + 1 − qð Þ ≠ z,

ð27Þ

as m⟶∞. This leads to a contradiction; hence, ql ⟶ 1 as
l⟶∞. The proof is completed. ☐

4. Voronovskaja-Type Theorem

In this section, we give a Voronovskaja-type asymptotic
formula for the operators (7) by means of the first, second,
and fourth central moments.

Theorem 7.Under the condition of Lemma 4 and ζ ∈ CBð0, 1Þ.
Suppose that ζ′′ðzÞ exists at a point z ∈ ð0, 1Þ; then, we have

lim
l⟶∞

l½ �ql B
ql
l ζ ; zð Þ − ζ zð Þ� �

= 1 + k − 3ð Þzð Þζ′ zð Þ + 3
2
z 1 − zð Þζ′′ zð Þ:

ð28Þ

Proof. Applying the Taylor’s expansion formula for ζ, we have

ζ uð Þ = ζ zð Þ + ζ′ zð Þ u − zð Þ + 1
2 ζ

′′ zð Þ u − zð Þ2 +Θ u ; zð Þ u − zð Þ2,
ð29Þ

where

Θ u ; zð Þ =
ζ uð Þ − ζ zð Þ − ζ′ zð Þ u − zð Þ − 1/2ζ′′ zð Þ u − zð Þ2

u − zð Þ2 , u ≠ z,

0, u = z:

8><
>:

ð30Þ

Using the L’Hospital’s Rule,

lim
u⟶z

Θ u ; zð Þ = 1
2 lim
u⟶z

ζ′ uð Þ − ζ′ zð Þ
u − z

−
1
2 ζ

′′ zð Þ = 0: ð31Þ

Thus,Θð:;zÞ ∈ CBð0, 1Þ. ApplyingBql
l to both sides of (29)

and using Lemma 3, we have

B
ql
l ζ ; zð Þ − ζ zð Þ = ζ′ zð Þαqll zð Þ + 1

2 ζ
′′ zð Þβql

l zð Þ
+B

ql
l Θ u ; zð Þ u − zð Þ2 ; z� �

:
ð32Þ

Applying the Cauchy-Schwarz inequality, we have

B
ql
l Θ u ; zð Þ u − zð Þ2 ; z� ��� �� ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B
ql
l Θ2 u ; zð Þ ; z� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B
ql
l u − zð Þ4 ; z� �q

:

ð33Þ

By Theorem 6, we can obtain

lim
l⟶∞

Θ2 u ; zð Þ =Θ2 z ; zð Þ = 0: ð34Þ

From (19), (33), and (34), we have

lim
l⟶∞

l½ �qlB
ql
l Θ u ; zð Þ u − zð Þ2 ; z� �

= 0: ð35Þ

Combining (17), (18), and (35), we complete the proof of
Theorem 7. ☐
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Corollary 8. Under the condition of Lemma 4 and ζ′′ ∈ CB
ð0, 1Þ, then

lim
l⟶∞

l½ �ql B
ql
l ζ ; zð Þ − ζ zð Þ� �

= 1 + k − 3ð Þzð Þζ′ zð Þ + 3
2
z 1 − zð Þζ′′ zð Þ,

ð36Þ

uniformly in z ∈ ð0, 1Þ.

5. Local Approximation

Firstly, we recall the first and second order modulus of
continuity of ζ ∈ CBð0, 1Þ are defined, respectively, by

ω ζ ; δð Þ = sup
0<t≤δ

sup
z,z+t∈ 0,1ð Þ

ζ z + tð Þ − ζ zð Þj j,

ω2 ζ ;
ffiffiffi
δ

p� �
= sup

0<t≤δ
sup

z,z+2t∈ 0,1ð Þ
ζ z + 2tð Þ − 2ζ z + tð Þ + ζ zð Þj j:

ð37Þ

The Peetre’s K-functional is defined by

K ζ ; δð Þ = inf
η,η′′∈CB 0,1ð Þ

ζ − ηk k + δ η′′
		 		n o

: ð38Þ

By ([26], p. 177, Theorem 2.4), there exists an absolute
constant C > 0 depending only on ζ such that

K ζ ; δð Þ ≤ Cω2 ζ ;
ffiffiffi
δ

p� �
: ð39Þ

Theorem 9. Under the condition of Lemma 4, then for all
ζ ∈ CBð0, 1Þ and z ∈ ð0, 1Þ, there exists an absolute positive
constant C1 = 4C such that

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤ C1ω2 ζ ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α
ql
l zð Þ� �2+∣βql

l zð Þ ∣
q� �

+ ω ζ ; αqll zð Þ�� ��� �
:

ð40Þ

Proof. For ζ ∈ CBð0, 1Þ, we define new operators by

�B
ql
l ζ ; zð Þ =B

ql
l ζ ; zð Þ + ζ zð Þ − ζ α

ql
l zð Þ + z

� �
: ð41Þ

By Lemma 3, we can obtain immediately

�B
ql
l 1 ; zð Þ =B

ql
l 1 ; zð Þ =T

ql
l,0 zð Þ = 1,

�B
ql
l 1 ; zð Þ =B

ql
l u ; zð Þ + z − α

ql
l zð Þ + z

� �
=T

ql
l,1 zð Þ − α

ql
l zð Þ = z:

ð42Þ

For any η, η′′ ∈ CBð0, 1Þ and u, z ∈ ð0, 1Þ, by the Taylor’s
expansion formula, we can obtain

η uð Þ = η zð Þ + η′ zð Þ u − zð Þ +
ðu
z
u − vð Þη′′ vð Þdv: ð43Þ

Applying the operators (7) to both sides of the above
equation, we have

�B
ql
l η ; zð Þ = η zð Þ + �B

ql
l

ðu
z
u − vð Þη′′ vð Þdv ; z

� �

= η zð Þ +B
ql
l

ðu
z
u − vð Þη′′ vð Þdv ; z

� �

−
ðαqll zð Þ+z

z
α
ql
l zð Þ + z − v

� �
η′′ vð Þdv:

ð44Þ

Hence,

�B
ql
l η ; zð Þ − η zð Þ�� �� = �B

ql
l

ðu
z
u − vð Þη′′ vð Þdv ; z

� �����
����

≤ B
ql
l

ðu
z
u − vj jη′′ vð Þdv

����
���� ; z

� �����
����

+
ðαqll zð Þ+z

z
α
ql
l zð Þ + z − v

�� �� η′′ vð Þ�� ��dv
�����

�����
≤ β

ql
l zð Þ�� �� + α

ql
l zð Þ� �2n o

η′′
		 		:

ð45Þ

By Lemma 5, we have

�B
ql
l ζ ; zð Þ�� �� ≤ B

ql
l ζ ; zð Þ�� �� + ζ zð Þj j + ζ α

ql
l zð Þ + z

� ��� ��
≤ 3 ζk k,∀ζ ∈ CB 0, 1ð Þ:

ð46Þ

For any ζ ∈ CBð0, 1Þ and η, η′′ ∈ CBð0, 1Þ, combining (45)
and (46), we obtain

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� = �B

ql
l ζ ; zð Þ − ζ zð Þ + ζ α

ql
l zð Þ + z

� �
− ζ zð Þ�� ��

≤ �B
ql
l ζ − η ; zð Þ�� �� + �B

ql
l η ; zð Þ − η zð Þ�� ��

+ η zð Þ − ζ zð Þj j + ζ α
ql
l zð Þ + z

� �
− ζ zð Þ�� ��

≤ 4 ζ − ηk k + β
ql
l zð Þ�� �� + α

ql
l zð Þ� �2n o

η′′
		 		

+ ω ζ ; αqll zð Þ�� ��� �
:

ð47Þ

Taking infinum on the right hand side over all η′′ ∈ CB
ð0, 1Þ, using (39), we obtain the desired assertion. ☐

Now, we discuss local approximation theorems for the
operators (7) by Steklov mean. For any ζ ∈ CBð0, 1Þ and h >
0, the Steklov mean is defined by

ζh zð Þ = 4
h2

ðh/2
0

ðh/2
0

2ζ z + u + vð Þ − ζ z + 2u + 2vð Þð Þdudv:

ð48Þ

In direct computation, it is proved that

ζh − ζk k ≤ ω2 ζ ; hð Þ, ð49Þ
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ζh′, ζh″ ∈ CB 0, 1ð Þ, ζh′
		 		 ≤ 5

h
ω ζ ; hð Þ, ζ′′h

		 		 ≤ 9
h2

ω2 ζ ; hð Þ,
ð50Þ

while ζ ∈ CBð0, 1Þ.

Theorem 10. Under the condition of Lemma 4, then for all
ζ ∈ CBð0, 1Þ and z ∈ ð0, 1Þ,

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤ 5

ffiffiffiffiffiffiffi
l½ �ql

q
α
ql
l zð Þ�� ��ω ζ ; 1

l½ �ql

 !

+ 9
2
l½ �ql β

ql
l zð Þ�� �� + 2

� �
ω2 ζ ; 1

l½ �ql

 !
:

ð51Þ

Proof. For z, h, z + 2h ∈ ð0, 1Þ, by the definition of the Steklov
mean, we can write

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤B

ql
l ζ − ζhj j ; zð Þ + B

ql
l ζh ; zð Þ − ζh zð Þ�� ��

+ ζh zð Þ − ζ zð Þj j:
ð52Þ

By Lemma 5 and (49), we have

B
ql
l ζ − ζhj j ; zð Þ ≤ B

ql
l ζ − ζhj j ; zð Þ		 		 ≤ ζ − ζhk k ≤ ω2 ζ ; hð Þ:

ð53Þ

Now, by the Taylor’s expansion formula for ζh, we have

ζh uð Þ = ζh zð Þ + ζh′ zð Þ u − zð Þ +
ðu
z
u − vð Þζ′′h vð Þdv: ð54Þ

Combining (49) and (50), we have

B
ql
l ζh ; zð Þ − ζh zð Þ�� �� ≤ B

ql
l ζh′ zð Þ u − zð Þ ; z
� ���� ��� + B

ql
l

ðu
z
u − vð Þζ′′h vð Þdv ; z

� �����
����

≤ ζh′
		 		 B

ql
l u − zð Þ ; zð Þ�� �� + ζh″

		 		 B
ql
l

ðu
z
u − vj jdv ; z

� �����
����

≤ ζh′
		 		 α

ql
l zð Þ�� �� + 1

2 ζh″
		 		 β

ql
l zð Þ�� ��

≤
5
h

α
ql
l zð Þ�� ��ω ζ ; hð Þ + 9

2h2
β
ql
l zð Þ�� ��ω2 ζ ; hð Þ:

ð55Þ

Hence,

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤ 5

h
ω ζ ; hð Þ αqll zð Þ�� �� + 9

2h2
β
ql
l zð Þ�� �� + 2

� �
ω2 ζ ; hð Þ,

ð56Þ

for z ∈ ð0, 1Þ. Setting h = 1/
ffiffiffiffiffiffiffi
½l�ql

q
, we obtain the desired

result. ☐

6. Rate of Convergence

First, we discuss the rate of convergence of the operators (7)
by means of the modulus of continuity ωðζ ; δÞ.

Theorem 11. Under the condition of Lemma 4, then for all
ζ ∈ Cð0, 1Þ and z ∈ ð0, 1Þ,

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤ 2ω ζ ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β
ql
l zð Þ�� ��q� �

: ð57Þ

Proof. Using ([26], p. 41, (6.5)), for all ζ ∈ Cð0, 1Þ and δ > 0,
we have

ζ uð Þ − ζ zð Þj j ≤ ω ζ ; δð Þ 1 + u − zj j
δ

� �
: ð58Þ

Applying the monotonicity and the linearity of Bql
l and

Cauchy-Schwarz inequality, for any δ > 0, we have

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤B

ql
l ζ uð Þ − ζ zð Þj j ; zð Þ

≤B
ql
l ω ζ ; u − zj jð Þ ; zð Þ

≤ ω ζ ; δð Þ 1 + B
ql
l u − zj j ; zð Þ

δ

� �

≤ ω ζ ; δð Þ 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

ql
l u − zð Þ2 ; z� �q

δ

0
@

1
A

≤ ω ζ ; δð Þ 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β
ql
l zð Þ�� ��q
δ

0
@

1
A,

ð59Þ

by taking δ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβql

l ðzÞj
q

. We complete the proof of Theorem

11. ☐

Theorem 12. Under the condition of Lemma 4, then for all
ζ′ ∈ Cð0, 1Þ and z ∈ ð0, 1Þ,

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤ α

ql
l zð Þ�� �� + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β
ql
l zð Þ�� ��q

ω ζ′ ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β
ql
l zð Þ�� ��q� �

:

ð60Þ

Proof. Applying Bql
l to both sides of ζðuÞ = ζðzÞ + ζ′ðzÞðu −

zÞ + ζðuÞ − ζðzÞ − ζ′ðzÞðu − zÞ, we have
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B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤ ζ′ zð Þ�� �� Bql

l u − z ; zð Þ�� �� +B
ql
l

� ζ uð Þ − ζ zð Þ − ζ′ zð Þ u − zð Þ�� �� ; z� �
≤ α

ql
l zð Þ�� �� ζ′ zð Þ�� �� +B

ql
l

� u − zj j 1 + u − zj j
δ

� �
; z

� �
ω ζ′ ; δ
� �

≤ α
ql
l zð Þ�� �� ζ′ zð Þ�� �� + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B
ql
l u − zð Þ2 ; z� �q

� 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

ql
l u − zð Þ2 ; z� �q

δ

0
@

1
Aω ζ′ ; δ
� �

,

ð61Þ

with the help of Cauchy-Schwartz inequality and mean value

theorem. Taking δ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

ql
l ððu − zÞ2 ; zÞ

q
and by Lemma 3, we

can get the desired result. ☐

Next, we discuss the rate of convergence of the operators
(7) by means of three Lipschitz classes: LipMγ, Lips,tMγ, and Li
pMðγ, IÞ. A function ζ ∈ Cð0, 1Þ belongs to LipMγðγ ∈ ð0, 1�Þ,
if the condition

ζ uð Þ − ζ zð Þj j ≤M u − zj jγ, u, z ∈ 0, 1ð Þ, ð62Þ

is satisfied, whereM is a positive constant depending only on γ
and ζ.

Theorem 13. Under the condition of Lemma 4, then for all
ζ ∈ LipMγ and z ∈ ð0, 1Þ,

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤M β

ql
l zð Þ�� ��γ/2: ð63Þ

Proof. According to the monotonicity and the linearity of the
operators (7) and taking into account that ζ ∈ LipMγ, we can
obtain

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤B

ql
l ζ uð Þ − ζ zð Þj j ; zð Þ ≤MB

ql
l u − zj jγ ; zð Þ:

ð64Þ

Applying well-known Hölder’s inequality with t1 = 2/γ
and t2 = 2/2 − γ, we can get

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤MB

ql
l u − zj jγ ; zð Þ

≤M B
ql
l u − zj jt1γ ; x� �� �1/t1 B

ql
l 1t2 ; x
� �� �1/t2

=M B
ql
l u − tj j2 ; x� �� �γ/2 =M β

ql
l zð Þ�� ��γ/2:

ð65Þ

We obtain the required result. ☐

In [27], Özarslan and Aktuğlu constructed the following
Lipschitz-type space Lips,tMγ with two distinct parameters s, t
> 0 as follows:

Lips,tMγ≔ ζ ∈ C 0, 1ð Þ: ζ uð Þ − ζ zð Þj j ≤M
u − zj jγ

u + sz + tz2
, u, z ∈ 0, 1ð Þ

� �
,

ð66Þ

where γ ∈ ð0, 1� and M is a positive constant depending only
on γ, s, t, and ζ.

Theorem 14. Under the condition of Lemma 4, then for all
ζ ∈ Lips,tMγ and z ∈ ð0, 1Þ,

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤M

β
ql
l zð Þ�� ��

sz + tz2

 !γ/2

: ð67Þ
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0
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0.8
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2

l = 10
l = 20
l = 50

l = 100
1 = cos(4 exp(z))⁎

Figure 1: Approximation process by Bql
l .
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Figure 2: Error of approximation jBql
l ðζ ; zÞ − ζðzÞj.
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Proof. Applying the well-known Hölder inequality with k1
= 2/γ and k2 = 2/2 − γ, we have

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤ B

ql
l ζ uð Þ − ζ zð Þj j ; zð Þ�� ��

≤ B
ql
l M

u − zj jγ
u + sz + tz2

; z
� �����

����
≤

M
sz + tz2

B
ql
l u − zj jγ ; zð Þ

≤
M

sz + tz2
B

ql
l u − zj jγk1 ; z
� �� �1/k1

� B
ql
l 1k2 ; z
� �� �1/k2 =M

β
ql
l zð Þ�� ��

sz + tz2

 !γ/2

:

ð68Þ

Thus, the proof of Theorem 14 is completed. ☐

A function ζ ∈ Cð0, 1Þ belongs to LipMðγ, IÞðγ ∈ ð0, 1�, I
⊂ ð0, 1ÞÞ, if the condition

ζ uð Þ − ζ zð Þj j ≤M u − zj jγ, u ∈ I, z ∈ 0, 1ð Þ, ð69Þ

is satisfied, whereM is a positive constant depending only on
γ and ζ.

Theorem 15. Under the condition of Lemma 4, then for all
ζ ∈ Cð0, 1ÞT LipMðγ, IÞ and z ∈ ð0, 1Þ,

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤M β

ql
l zð Þ�� ��γ/2 + 2dγ z ; Ið Þ

� �
, ð70Þ

where dðz ; IÞ = inf fju − zj: u ∈ Ig denotes the distance
between z and I.

Proof. Let �I be the closure of I. Using the properties of infi-
mum, there is at least a point u0 ∈�I such that dðz ; IÞ = jz −
u0j. By the triangle inequality

ζ uð Þ − ζ zð Þj j ≤ ζ uð Þ − ζ u0ð Þj j + ζ zð Þ − ζ u0ð Þj j, ð71Þ

we have

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤B

ql
l ζ uð Þ − ζ u0ð Þj j ; zð Þ +B

ql
l ζ zð Þ − ζ u0ð Þj j ; zð Þ

≤M B
ql
l u − u0j jγ ; zð Þ + z − u0j jγ
 �

≤M B
ql
l u − zj jγ + z − u0j jγ ; zð Þ + z − u0j jγ
 �

≤M B
ql
l u − zj jγ ; zð Þ + 2 z − u0j jγ
 �

:

ð72Þ

Choosing k1 = 2/γ and k2 = 2/2 − γ and using the well-
known Hölder inequality, we have

B
ql
l ζ ; zð Þ − ζ zð Þ�� �� ≤M B

ql
l u − zj jγk1 ; z
� �� �1/k1�

� B
ql
l 1k2 ; z
� �� �1/k2 + 2dγ z ; Ið Þ

�

≤M B
ql
l u − zð Þ2 ; z� �� �1/k1 + 2dγ z ; Ið Þ

n o
≤M β

ql
l zð Þ�� ��γ/2 + 2dγ z ; Ið Þ

� �
:

ð73Þ

This completes the proof. ☐

7. Numerical Examples

In this section, we will analyze the theoretical results pre-
sented in the previous sections by numerical examples.

Let ζðzÞ = 1 − cos ð4ezÞ, z ∈ ½0:01,0:99�, ql = 1 − 1/l2, and
l ∈ f10,20,50,100g. The convergence of the operators Bql

l to
function ζ is shown in Figure 1. The error of approximation
jBql

l ðζ ; zÞ − ζðzÞj is given in Figure 2. Meantime, we compute
the error of approximation jBql

l ðζ ; zÞ − ζðzÞj while l =
10,20,50,100 at points f0:1,0:2,0:3,0:4,0:5,0:6,0:7,0:8,0:9g in
Table 1.
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Table 1: Error of approximation jBql
l ðζ ; zÞ − ζðzÞj for l = 10,20,50,100.

z B
q10
10 ζ ; zð Þ − ζ zð Þ�� �� B

q20
20 ζ ; zð Þ − ζ zð Þ�� �� B

q50
50 ζ ; zð Þ − ζ zð Þ�� �� B

q100
100 ζ ; zð Þ − ζ zð Þ�� ��

0.1 0.3753 0.2156 0.0916 0.0465

0.2 0.0536 0.0834 0.0496 0.0277

0.3 0.4481 0.2030 0.0688 0.0316

0.4 0.8797 0.5107 0.2177 0.1104

0.5 0.9527 0.6237 0.2932 0.1546

0.6 0.4822 0.3658 0.1875 0.1025

0.7 0.4319 0.2094 0.0911 0.0467

0.8 1.2725 0.7215 0.3178 0.1693

0.9 1.1703 0.7194 0.2119 0.0921
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The main aim of this paper is to establish some theorems concerning the error EnðF, βÞ, the Sun’s type functionUðrÞ, andMuðσ, FÞ
of entire functions defined by Laplace-Stieltjes transforms with infinite order converge in the whole complex plane. Our results
exhibit the growth of Laplace-Stieltjes transforms from the point of view of approximation.

1. Introduction and Main Results

In 1946, Widder [1] considered the convergence of the fol-
lowing form

G sð Þ =
ð+∞
0

e−sxdα xð Þ, s = σ + it, ð1Þ

where αðxÞ is a bounded variation on any finite interval ½0,
Y �ð0 < Y<+∞Þ, and σ and t are real variables and obtained
the following theorem.

Theorem 1 (see ([1], Theorem 1, Page 36)). If

sup
0≤u<∞

ðu
0
e−s0tdα tð Þ

����
���� =M <∞, ð2Þ

then (1) converges for every s for which σ > σ0, andð+∞
0

e−sxdα xð Þ = s−s0ð Þ
ð+∞
0

e− s−s0ð Þtβ tð Þdt, ð3Þ

where βðuÞ = Ð u0e−s0tdαðtÞ, ðu ≥ 0Þ.
As we know, (1) can be called as Laplace-Stieltjes trans-

form, which is an integral transform similar to the Laplace
transform, named for Pierre-Simon Laplace and Thomas

Joannes Stieltjes. Moreover, it can be used in many fields of
mathematics, such as functional analysis, and certain areas
of theoretical and applied probability.

In view of Ref. [1], GðsÞ can become the classical Laplace
integral form

G sð Þ =
ð∞
0
e−stφ tð Þdt, ð4Þ

when αðtÞ is absolutely continuous. Moreover, if αðtÞ is a step
function, choosing a sequence fλng∞0 such that

0 ≤ λ1 < λ2 <⋯ < λn <⋯, λn ⟶∞as n⟶∞, ð5Þ

α xð Þ =

a1 + a2+⋯+an, λn ≤ x < λn+1,
0, x = 0,
α x +ð Þ + α x −ð Þ

2
, x > 0,

8>>><
>>>:

ð6Þ

then we can conclude from Theorem 1 that GðsÞ becomes a
Dirichlet series

G sð Þ = f sð Þ≔ 〠
∞

n=1
ane

λns, s = σ + it, ð7Þ
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where σ, t is real variables, an is nonzero complex numbers.
For Dirichlet series (7), it can become a Taylor series f ðzÞ =
∑∞

n=0anz
n if λn = n and es = z, and it further can also become

a classical Dirichlet series f ðsÞ =∑∞
n=0ðan/nsÞ if eλn = 1/n,

which is important in the fields of number theory. Hence, we
can say that Laplace-Stieltjes transform is a general form of
Dirichlet series. Under some conditions related to an, λn, and
n, the series (7) can converge in the whole plane or the half
plane; that is, f ðsÞ is analytic in the whole plane or the half
plane.

In the past several decades, the problem on the growth and
value distribution of analytic functions has been an important
and interesting subject in the fields of complex analysis. More-
over, considerable attention has been paid to the growth and
the value distribution of analytic functions defined by Dirich-
let series and Laplace-Stieltjes transforms, and a great deal of
interesting results focusing on the growth and value distribu-
tion of such functions can be found in (see [2–17]). For exam-
ple, Yu [18] in 1963 first proved a series of theorems about the
Valiron-Knopp-Bohr formula of the associated abscissas of
bounded convergence, absolute convergence and uniform con-
vergence of Laplace-Stieltjes transforms, the maximal mole-
cule Muðσ,GÞ, the maximal term μðσ,GÞ, the Borel line and
the order of entire functions represented by Laplace-Stieltjes
transforms convergent in the complex plane. Batty, Sheremeta,
Kong, and Sun investigated the growth of analytic functions
with kinds of order defined by Laplace-Stieltjes transforms
(see [19–25]), and Shang, Gao, Zhang, and Xu investigated
the value distribution of such functions (see [26–28]).

In 2012,Luo and Kong [29] studied the following form, is
differ from (1), of Laplace-Stieltjes transform

F sð Þ =
ð+∞
0

esxdα xð Þ, s = σ + it, ð8Þ

where αðxÞ is stated as in (1), and fλng satisfies (5) and

lim sup
n→+∞

λn+1 − λnð Þ = h < +∞, ð9Þ

lim sup
n⟶+∞

log n
λn

=D <∞: ð10Þ

Set

A∗
n = sup

λn<x≤λn+1 ,−∞<t<+∞

ðx
λn

eitydα yð Þ
�����

�����: ð11Þ

By using the same argument as in [18], we can get the sim-
ilar result about the abscissa of uniformly convergent of FðsÞ
easily. If

lim sup
n⟶+∞

log A∗
n

λn
= −∞, ð12Þ

by (5), (9)-(12), and Ref.[18], one can get that σF
u = +∞, i:e:,

FðsÞ is entire in the whole plane.

Set

μ σ, Fð Þ =max
n∈N

A∗
ne

λnσ
n o

σ < +∞ð Þ,M σ, Fð Þ
= sup

−∞<t<+∞
F σ + itð Þj j,

Mu σ, Fð Þ = sup
0<x<+∞,−∞<t<+∞

ðx
0
e σ+itð Þydα yð Þ

����
����:

ð13Þ

Definition 2 (see [30]). If Laplace-Stieltjes transform (8) sat-
isfies σF

u = +∞ (the sequence fλng satisfy (5) and (9)-(12)),
we define the order and the lower order of FðsÞ by

limsup
σ⟶+∞

log+ log+Mu σ, Fð Þ
σ

= ρ,

liminf
σ⟶+∞

log+ log+Mu σ, Fð Þ
σ

= λ,
ð14Þ

respectively, where log+x =max flog x, 0g.

Remark 3. If ρ = 0, ρ ∈ ð0, +∞Þ and ρ =∞, we say that FðsÞ is
an entire function of zero order, finite order, and infinite
order in the whole plane, respectively.

Definition 4. If Laplace-Stieltjes transform (8) satisfies σF
u =

+∞ (the sequence fλng satisfy (5) and (9)-(12)) and is of
order ρð0 < ρ <∞Þ, then we define

T = lim sup
σ⟶+∞

log+Mu σ, Fð Þ
eσρ

, ð15Þ

which is called the type of Laplace-Stieltjes transform FðsÞ.
In 2012 and 2014, Luo and Kong [29, 30] studied the

growth of Laplace-Stieltjes transform of finite order and
obtained the following theorem.

Theorem 5 (see [29, 30]). If Laplace-Stieltjes transform (8)
satisfies σF

u = +∞ (the sequence fλng satisfy (5) and (9)-
(12)), and is of order ρð0 < ρ <∞Þ and of type T , then

ρ = lim sup
n⟶+∞

λn log λn
−log A∗

n
, T = limsup

n⟶+∞

λn
ρe

A∗
nð Þρ/λn : ð16Þ

In order to state our main results of this paper, we also
introduce some definitions and notations below. We denote
by �Lβ the set of all the functions FðsÞ of the form (8) which
are analytic in the half plane Res < βð−∞ < β <∞Þ and the
sequence fλng satisfy (5), (9), and (10) and by L∞ the set of
all the functions FðsÞ of the form (8) which are analytic in
the half plane Rs < +∞ and the sequence fλng satisfy (5)
and (9)-(12). Obviously, if −∞ < β < +∞ and FðsÞ ∈ �Lβ, then
FðsÞ ∈ L∞. If (8) satisfies A∗

n = 0 for n ≥ k + 1, and A∗
k ≠ 0, then

we say that FðsÞ is an exponential polynomial of degree k usu-
ally denoted by pk, i:e:, pkðsÞ =

Ð λk
0 exp ðsyÞdαðyÞ. If we choose

a suitable function αðyÞ, the function pkðsÞ may be reduced to

a polynomial in terms of exp ðsλiÞ, that is, ∑k
i=1bi exp ðsλiÞ.
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We denote Πn to be the class of all exponential polynomial of
degree almost n, that is,

Πn = 〠
n

j=1
bje

λ js : b1, b2,⋯, bnð Þ ∈ℂn

( )
: ð17Þ

For FðsÞ ∈ �Lβ, −∞ < β < +∞, we use EnðF, βÞ to denote
the error in approximating the function FðsÞ by exponential
polynomials of degree n in uniform norm as

En F, βð Þ = inf
p∈Πn

F − pk kβ, n = 1, 2,⋯, ð18Þ

where

F − pk kβ = max
−∞<t<+∞

F β + itð Þ − p β + itð Þj j: ð19Þ

Around 2017, Singhal and Srivastava [31, 32] studied the
approximation of entire functions represented by Laplace-
Stieltjes transforms (8) of finite order and obtained the follow-
ing result.

Theorem 6 (see [32]). If Laplace-Stieltjes transform FðsÞ ∈
L∞ and is of order ρð0 < ρ <∞Þ and of type T , then for any
real number −∞ < β < +∞, we have

ρ = lim sup
n⟶+∞

λn log λn
−log En−1 F, βð Þ exp −βλnð Þ

= lim sup
n⟶+∞

λn log λn
−log En−1 F, βð Þ ,

T = lim sup
n⟶+∞

λn
ρe

En−1 F, βð Þ exp −βλnð Þð Þρ/λn

= lim sup
n⟶+∞

λn
ρ exp ρβ + 1ð Þ En−1 F, βð Þð Þρ/λn :

ð20Þ

In the same year, the authors [33] further the approxima-
tion on the entire function represented by Laplace-Stieltjes
transforms with irregular growth and obtained.

Theorem 7 (see ([33], Theorem 6)). If the Laplace-Stieltjes
transform FðsÞ ∈ L∞ and is of the lower order λð0 ≤ λ ≠ ρ<
∞Þ, if λn ~ λn+1, then for any real number −∞ < β < +∞,
we have

τλ ≥ lim inf
n⟶∞

λn
eλ

� �
En−1 F, βð Þ exp −βλnð Þð Þλ/λn , 0 ≤ τλ≤∞ð Þ:

ð21Þ

Furthermore, there exists a positive integer n0 such that

ψ1 nð Þ = log A∗
n − log A∗

n+1
λn+1 − λn

ð22Þ

forms a nondecreasing function of n for n > n0, and then we
have

τλ = liminf
n⟶∞

λn
eλ

� �
En−1 F, βð Þ exp −βλnð Þð Þλ/λn , 0 ≤ τλ≤∞ð Þ:

ð23Þ

As far as we know, there are few papers focusing on the
approximation of Laplace-Stieltjes transform of infinite order.
Inspired by this issue, our main purpose of this paper is to deal
with the approximation of Laplace-Stieltjes transforms of infi-
nite order ρðFÞ =∞with the help of the type function given by
Sun. In 1986, Sun [34] studied the existence of type function of
the complex function of infinite order and established a new
type function which is more precise than Xiong’s.

Theorem 8 (see [34]). If SðrÞ is a continuous function in ½a,
+∞Þ and

lim sup
r⟶+∞

log+S rð Þ
log r = +∞, ð24Þ

then we say that UðrÞ is the type function of SðrÞ, if there exist
two continuous and differential functions ρðrÞ and UðrÞ
satisfying

ρðrÞmonotonous, decreasing and trend to 0, ρ′ðrÞmonot-
onous, increasing

(ii) lim
r⟶+∞

rρ′ðrÞ log r log log r = 0

(iii) For sufficient large r, SðrÞ≪UðrÞ≔ rexp ð1/ρðrÞÞ

(iv) UðRÞ < ð1 + oð1ÞÞUðrÞ
where R = r + ðr log r/log UðrÞ log2 log UðrÞÞ and SðrÞ≪U
ðrÞ mean that SðrÞ ≤UðrÞ and ∃ a sequence frng↑+∞ such
that SðrnÞ =UðrnÞ.

Remark 9. If FðsÞ ∈ L∞ and is of infinite order ρ = +∞, then
in view of Theorem 7, there exists a type function UðrÞ such
that

lim sup
σ⟶+∞

S rð Þ
U rð Þ = 1, ð25Þ

where SðrÞ≔ log μðσ, FÞ and r = eσ.

The main theorems of this article are listed as follows.

Theorem 10. Let FðsÞ be of infinite order, and the sequence
fλng satisfies (5), (9), (12) and

lim sup
n⟶+∞

loglogn
log λn

= d < 1, ð26Þ
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and then for any real number −∞ < β < +∞, we have

lim sup
σ⟶+∞

log Mu σ, Fð Þ
U rð Þ

= 1 ≤Q1 ≔ lim sup
σ⟶+∞

−log En−1 F, βð Þ exp −βλnð Þ½ �
U ψnð Þ ,

ð27Þ

where ψn = ½En−1ðF, βÞ exp ð−βλnÞ�−1/λn , r = eσ, and UðrÞ are
stated as in Theorem 10.

Remark 11. We can easily get (10) from (26), thus FðsÞ ∈ L∞
when the sequence fλng satisfies (5), (9), (12), and (26). That
is to say, our condition in our theorem is better than the pre-
vious results.

Theorem 12. Under the assumptions of Theorem 10, then

lim sup
σ⟶+∞

log Mu σ, Fð Þ
U rð Þ = 1 ≥Q2 ≔ limsup

σ⟶+∞

λn
U1 ψnð Þ , ð28Þ

where

U1 •ð Þ =U •ð Þ log U •ð Þ log2 log U •ð Þ: ð29Þ

Let U2ð•Þ =Uð•Þ log2Uð•Þ, and then it follows U1ðψnÞ
≤U2ðψnÞ for any positive integer n and any real number β.
Hence, we get the following corollary.

Corollary 13. Under the assumptions of Theorem 10, then

limsup
σ⟶+∞

logMu σ, Fð Þ
U rð Þ = 1 ≥Q3 ≔ limsup

σ⟶+∞

λn
U2 ψnð Þ : ð30Þ

Theorem 14. Under the assumptions of Theorem 10, then we
have

lim sup
σ⟶+∞

loglogMu σ, Fð Þ
log U rð Þ = 1⇔ lim sup

σ⟶+∞

log λn
log U ψnð Þ = 1:

ð31Þ

2. The Proof of Theorem 6

To prove Theorem 10, we require the following lemma.

Lemma 15 (see ([1], Theorem 6b)). If f ðxÞ and φðxÞ are con-
tinuous and αðxÞ is of bounded variation in a ≤ x ≤ b, and if

γ xð Þ =
ðx
c
φ xð Þdα tð Þ, a ≤ x ≤ b, a ≤ c ≤ bð Þ, ð32Þ

then

ðb
a
f xð Þdγ xð Þ =

ðb
a
f xð Þφ xð Þdα xð Þ: ð33Þ

Lemma 16. If Laplace-stieltjes transform FðsÞ is of infinite
order, and the sequence fλng satisfies (5), (9), (12), and (26),
then

limsup
σ⟶+∞

logMu σ, Fð Þ
U rð Þ = 1⟺ lim sup

σ⟶+∞

log μ σ, Fð Þ
U rð Þ = 1,

ð34Þ

where r = eσ, SðrÞ = log μðσ, FÞ, and UðrÞ are stated as in
Theorem 7.

Proof. The idea of the proof of this lemma come from Ref.
[22]. Next, we will show the completely details.

Set

In x ; σ + itð Þ =
ðx
λn

exp σ + itð Þyf gdα yð Þ: ð35Þ

From (9), there exists η > 0 satisfying 0 < λn+1 − λn ≤ η
ðn = 1, 2, 3,⋯Þ, and then it follows e−ησ < 1, as σ > 0. Thus,
for x > λn and by Theorem 1 and Lemma 15, we deduce

ðx
λn

exp ityf gdα yð Þ =
ðx
λn

e−σydyIn y ; σ + itð Þ = I y ; σ + itð Þe−σy
�����
x

λn

+ σ
ðx
λn

e−σyIn y ; σ + itð Þdy ;

ð36Þ

that is,

ðx
λn

exp ityf gdα yð Þ
�����

����� ≤Mu σ, Fð Þ e−σx + e−σλn
��� ���h

+ e−σx − e−σλn
��� ���i ≤ 2Mu σ, Fð Þe−σx:

ð37Þ

Hence, for any σ > 0 and any x ∈ ðλn, λn+1�, it follows

ðx
λn

exp ityf gdα yð Þ
�����

����� ≤ 2Mu σ, Fð Þe−σλn e−ση ≤ 2Mu σ, Fð Þe−σλn ;

ð38Þ

that is,

μ σ, Fð Þ ≤ 2Mu σ, Fð Þ: ð39Þ

Therefore, we can conclude from (39) that

lim sup
σ⟶+∞

logMu σ, Fð Þ
U rð Þ ≥ lim sup

σ⟶+∞

log μ σ, Fð Þ
U rð Þ : ð40Þ
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On the other hand, assume that

lim sup
σ⟶+∞

log μ σ, Fð Þ
U rð Þ = 1, ð41Þ

then for any fixed ε ∈ ð0, 1/2Þ and sufficiently large σ, it fol-
lows

log μ σ, Fð Þ ≤ 1 + εð ÞU rð Þ: ð42Þ

For any positive real number x, in view of (5), there exists
a positive integer n such that λn < x ≤ λn+1; thus, it yieldsðx
0
exp σ + itð Þyf gdα yð Þ

= 〠
n−1

k=1

ðλk+1
λk

exp σ + itð Þyf gdα yð Þ +
ðx
λn

exp σ + itð Þyf gdα yð Þ

= 〠
n−1

k=1

ðλk+1
λk

exp σyf gdyIk y ; itð Þ +
ðx
λn

exp σyf gdyIn y ; itð Þ

= 〠
n−1

k=1
exp λk+1σð ÞIk λk+1 ; itð Þ − σ

ðλk+1
λk

exp σyf gIk y ; itð Þdy
" #

+ exp xσð ÞIn x ; itð Þ − σ
ðx
λn

exp σyf gIn y ; itð Þdy,

ð43Þ

where Ikðx ; itÞ =
Ð x
λk
exp fitygdαðyÞ. Similar to the argument

as in (38), it follows

ðx
0
exp σ + itð Þyf gdα yð Þ

����
���� ≤ 2〠

n

k=1
A∗
k e

λkσ: ð44Þ

Set Q = σ + log ð1 + ðlog r/log UðrÞ log2 log UðrÞÞÞ = log
R, where r = eσ, and then from (44), we have

Mu σ, Fð Þ ≤ 2〠
+∞

n=1
A∗
n exp

(
λnQ − λn log

 
1

+ log r
log U rð Þ log2 log U rð Þ

!)

≤ 2μ Q, Fð Þ〠
+∞

n=1
e−λnE ,

ð45Þ

where

E≔ log 1 + log r
log U rð Þ log2 log U rð Þ

 !
: ð46Þ

Thus, for any real number δ ∈ ð0, 1 − dÞ, in view of (26),
there exists a positive integer N ∈ℕ+ such that

λn > log nð Þ1/d+δ > logn, asn >N: ð47Þ

Hence, we can conclude from (45) and (47) that

Mu σ, Fð Þ ≤ 2μ Q, Fð Þ〠
+∞

n=1
e−λnE

≤ 2μ Q, Fð Þ N + 〠
+∞

n=N
e−E log nð Þ1/d+δ

 !
:

ð48Þ

Set T = ½exp fð2/EÞd+δ/1−d−δg� + 1, where ½x� is an integral
function. Then, it follows Eðlog nÞ1−d−δ/d+δ > 2 as n > T . So,
from (48), we can deduce

Mu σ, Fð Þ ≤ 2μ Q, Fð Þ N + 〠
T

n=N
e−E log n + 〠

+∞

n=T+1
e−2 log n

 !

≤ 2μ Q, Fð Þ N +
ðT
1
t−Edt

� �

= 2μ Q, Fð Þ N + 1
1 − E

T1−E
� �

:

ð49Þ

Hence, from (39), (49), and by Theorem 8, it becomes

log Mu σ, Fð Þ ≤ log μ Q, Fð Þ + log 2 + log N

+ log 1
1 − E

+ 1 − Eð Þ log T

≤ 1 + εð ÞU Rð Þ + K1 +
2
E

� �d+δ/1−d−δ

≤ 1 + 2εð ÞU rð Þ,

ð50Þ

where K1 is a finite constant. Since ε is arbitrary and δ ∈ ð0,
1 − dÞ, then we conclude

limsup
σ⟶+∞

logMu σ, Fð Þ
U rð Þ ≤ limsup

σ⟶+∞

log μ σ, Fð Þ
U rð Þ = 1: ð51Þ

Therefore, this completes the proof of Lemma 2 from
(40) and (51).

Proof of Theorem 10. In view of

Q1 ≔ limsup
σ⟶+∞

−log En−1 F, βð Þ exp −βλnð Þ½ �
U ψnð Þ , ð52Þ

and then it is obvious that the conclusion of Theorem 10
holds as Q1 = +∞. Next, we will prove that the conclusion
of Theorem 10 holds for Q1 ∈ ð0, +∞Þ.

If Q1 ∈ ð0, +∞Þ, then for any fixed real number ε ∈ ð0, 1
/3Þ, there exists a positive integer N ∈ℕ+ such that

−log En−1 F, βð Þ exp −βλnð Þ½ � < Q1 + εð ÞU ψnð Þ, f orn >N:

ð53Þ

Let V ≔ VðσÞ =UðeσÞ/σ and W be the inverse function
of V , and then we know in view of Theorem 8 that V is an
increasing function for σðσ→ +∞Þ. Thus, from the above
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inequality, we can deduce

λn
Q1 + ε

≤
λn

−log En−1 exp −βλnð Þ½ �U ψnð Þ ; ð54Þ

that is,

log En−1 exp σ − βð Þλnð Þ½ � ≤ −λn W
λn

Q1 + ε

� �
− σ

� �
: ð55Þ

For sufficiently large σ, set

H ≔H σð Þ = Q1 + εð ÞU r + r log r
log U rð Þ log2 log U rð Þ

 !

= Q1 + εð ÞU Rð Þ,
ð56Þ

and then it follows

H
Q1 + εð ÞQ = U Rð Þ

Q
,W H

Q1 + εð ÞQ
� �

= X: ð57Þ

If λnσ ≤H, it yields from (55) and (57) that

log En−1 exp σ − βð Þλnð Þ½ � ≤ −λn W
λn

Q1 + ε

� �
− σ

� �
< λnσ

≤H ≤ Q1 + 2εð ÞU rð Þ:
ð58Þ

If λnσ >H, that is, λn >H/σ, it yields from (55) and (57)
that

log En−1 exp σ − βð Þλnð Þ½ � < −λn W
λn

Q1 + ε

� �
− σ

� �

< −λn W
H

Q1 + εð Þσ
� �

− σ

� �
= 0:

ð59Þ

Hence, we can conclude from (58) and (59) that

log En−1 exp σ − βð Þλnð Þ½ � ≤ Q1 + 2εð ÞU rð Þ, f orn >N: ð60Þ

For any β < +∞, it follows

A∗
n exp βλnf g

= sup
λn<x≤λn+1,−∞<t<+∞

ðx
λn

exp ityf gdα yð Þ
�����

����� exp βλnf g

≤ sup
λn<x≤λn+1,−∞<t<+∞

ðx
λn

exp β + itð Þyf gdα yð Þ
�����

�����
≤ sup

−∞<t<+∞

ð∞
λn

exp β + itð Þyf gdα yð Þ
�����

�����,
ð61Þ

and thus for any p ∈Πn−1, we can deduce by combining the
above inequalities that

A∗
n exp βλnf g ≤ F β + itð Þ − p β + itð Þj j ≤ F − pk kβ: ð62Þ

On the other hand, there exists p1 ∈Πn−1 such that

F − p1k k ≤ 2En−1 F, βð Þ: ð63Þ

Hence, from (60)–(63) and for any β < +∞, it follows

log A∗
n exp σλnf gð Þ ≤ log 2 En−1 exp σ − βð Þλnð Þ½ �

≤ Q1 + 3εð ÞU rð Þ, for n >N ;
ð64Þ

that is,
log μðσ, FÞ ≤ ðQ1 + 3εÞUðrÞ, forσ⟶ +∞:
Since ε is arbitrary and by Lemma 16, we get
lim sup
σ⟶+∞

logMuðσ, FÞ/UðrÞ = 1 ≤Q1:

We therefore completes the Proof of Theorem 6.

3. Proofs of Theorems 7 and 8

3.1. The Proof of Theorem 7. Here, we will adopt the reduc-
tion to absurdity to prove Theorem 7. Suppose that

lim sup
σ⟶+∞

logMu σ, Fð Þ
U rð Þ = 1 <Q2: ð65Þ

If Q2 ∈ ð1,+∞Þ, set t ∈ ð0, ðQ2 − 1/7Þ� ∩ ð0, 1Þ. From (65),
for any small t and any positive integer n, we have

logMu σ, Fð Þ ≤ 1 + tð ÞU rð Þ: ð66Þ

If FðsÞ ∈ L∞ and βð−∞ < β < +∞Þ, we have FðsÞ ∈ �Lβ.
Moreover, for β < σ < +∞ and pn ∈Πn, it follows

En F, βð Þ ≤ F − pnk kβ ≤ F β + itð Þ − pn β + itð Þj j

≤
ð+∞
0

exp β + itð Þyf gdα yð Þ
����
−
ðλn
0
exp β + itð Þyf gdα yð Þ

����
=
ð∞
λn

exp β + itð Þyf gdα yð Þ
�����

�����:
ð67Þ

Similar to (44), we have

ð∞
λk

exp β + itð Þyf gdα yð Þ
�����

����� ≤ 2〠
+∞

n=k
A∗
n exp βλn+1f g: ð68Þ
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Thus, for any σðβ < σ < +∞Þ, we can conclude from (39),
(67), and (68) that

En F, βð Þ ≤ 2 〠
∞

k=n+1
A∗
k−1 exp βλkf g

≤ 4Mu σ, Fð Þ 〠
∞

k=n+1
exp β − σð Þλkf g:

ð69Þ

From (9), there exists h′ð0 < h′ < hÞ such that ðλn+1 −
λnÞ ≥ h′ for n ≥ 0. Then, for σ ≥ β + 1, it follows from (69)
that

En F, βð Þ ≤ 4Mu σ, Fð Þ exp λn+1 β − σð Þf g

� 〠
∞

k=n+1
exp λk − λn+1ð Þ β − σð Þf g

≤ 4Mu σ, Fð Þ exp λn+1 β − σð Þf g

� exp h′ n + 1ð Þ
n o

〠
∞

k=n+1
exp −h′k

n o� �
= 4Mu σ, Fð Þ exp λn+1 β − σð Þf g
� 1 − exp h′

n o� �−1
;

ð70Þ

that is,

En−1 F, βð Þ ≤ K1Mu σ, Fð Þ exp λn β − σð Þf g, ð71Þ

where K1 is a constant. Hence, we conclude from (66) and
(71) that

log En−1 exp σ − βð Þλnð Þ½ �
≤ log K1Mu σ, Fð Þ ≤ 1 + 2tð ÞU rð Þ, for σ⟶ +∞:

ð72Þ

On the other hand, in view ofQ2 and t, there exists a sub-
sequence fnðpÞg such that

λn pð Þ > Q2 − tð ÞU1 ψn pð Þ
� �

≥ 1 + 6tð ÞU1 ψn pð Þ
� �

: ð73Þ

We choose a sequence fσnðpÞg such that

1 + 2tð ÞU rn pð Þ
� �

= λn pð Þ log 1 + 1
log U ψn pð Þ

� �
log2 log U ψn pð Þ

� �
2
4

3
5,
ð74Þ

and then it follows from (72) and (74) that

σn pð Þ ≤ log ψn pð Þ + log 1 + 1
log U ψn pð Þ

� �
log2 log U ψn pð Þ

� �
2
4

3
5:

ð75Þ

Hence,

U rn pð Þ
� �

≤U ψn pð Þ 1 + 1
log U ψn pð Þ

� �
log2 log U ψn pð Þ

� �
2
4

3
5

8<
:

9=
;

≤U ψn pð Þ 1 +
log ψn pð Þ

log U ψn pð Þ
� �

log2 log U ψn pð Þ
� �

2
4

3
5

8<
:

9=
;

≤ 1 + tð ÞU ψn pð Þ
� �

:

ð76Þ

In view of t ∈ ð0, ðQ2 − 1/7Þ� ∩ ð0, 1Þ, then it follows ð1
+ 2tÞð1 + tÞ < 1 + 5t. Thus, by combining (74) and (76), we
deduce

λn pð Þ = 1 + 2tð ÞU rn pð Þ
� �

� log 1 + 1
log U ψn pð Þ

� �
log2 log U ψn pð Þ

� �
2
4

3
5

8<
:

9=
;

−1

≤ 1 + 2tð Þ 1 + tð Þ 1 + o 1ð Þð ÞU1 ψn pð Þ
� �

≤ 1 + 5tð ÞU1 ψn pð Þ
� �

,

ð77Þ

which is a contradiction with (73).
If Q2 = +∞, we choose t = 1, and by using the same argu-

ment as above, we also get a contradiction.
Therefore, this completes the Proof of Theorem 7.

3.2. The Proof of Theorem 8. From Lemma 15, it is easy to get
the following lemma.

Lemma 17. If Laplace-Stieltjes transform FðsÞ is of infinite
order, and the sequence fλng satisfied (5), (9), (12), and
(26), then

lim sup
σ⟶+∞

log log Mu σ, Fð Þ
log U rð Þ

= 1⟺ lim sup
σ⟶+∞

log log μ σ, Fð Þ
log U rð Þ = 1:

ð78Þ

Proof of Theorem 8. If Q3 = +∞, then it follows

lim sup
σ⟶+∞

λn
U ψnð Þ log2U ψnð Þ = +∞: ð79Þ

By combining Corollary 13, it yields
lim sup
σ⟶+∞

logMuðσ, FÞ/UðrÞ = +∞,
which is a contradiction with the properties of UðrÞ.

Hence, Q3 < +∞. Thus, for any fixed ε > 0 and sufficiently
large n, we have

7Journal of Function Spaces



λn <UQ3+ε ψnð Þ, log V1 λnð Þ1/Q3+ε
� �

≤
−log En−1 F, βð Þ exp −βλnð Þ½ �

λn
,

ð80Þ

where r =V1ðxÞ and x =UðrÞ are two reciprocally inverse
functions; that is,

log En−1 F, βð Þ exp σ − βð Þλnð Þ½ �
≤ −λn log V1 λnð Þ1/Q3+ε

� �
− σ

h i
:

ð81Þ

For any fixed sufficiently large σ, take

I ≔ I σð Þ = σUQ3+ε r + r log r
log U rð Þ log2 log U rð Þ

 !
, ð82Þ

and then it yields

log V1
I
σ

� �1/Q3+ε
" #

= σ + log 1 + log r
log U rð Þ log2 log U rð Þ

 !
:

ð83Þ

If λnσ ≤ I, from (81) and (83), it follows

log En−1 F, βð Þ exp σ − βð Þλnð Þ½ �
≤ −λn log V1 λnð Þ1/Q3+ε

� �
− σ

h i
< σλn

≤ I ≤UQ3+3ε rð Þ:
ð84Þ

If λnσ > I, that is, λn > I/σ, thus in view of (81) and (83), it
yields

log En−1 F, βð Þ exp σ − βð Þλnð Þ½ �
≤ −λn log V1 λnð Þ1/Q3+ε

� �
− σ

h i

< −λn log V1
I
σ

� �1/Q3+ε
" #

− σ

( )
< 0:

ð85Þ

Hence, from (62), (63), (84), and (85), we deduce

log log μ σ, Fð Þ ≤ Q3 + 4εð Þ log U rð Þ, for n >N , σ⟶ +∞:

ð86Þ

Let ε⟶ 0 and by Lemma 17, and it leads to

lim sup
σ⟶+∞

log logMu σ, Fð Þ
log U rð Þ ≤Q3: ð87Þ

Suppose that

1 = lim sup
σ⟶+∞

log logMu σ, Fð Þ
log U rð Þ <Q3: ð88Þ

Set t ∈ ð0, ðQ3 − 1/7Þ�, and then for any positive integer n
and sufficiently large σ, from (71), we have

log En−1 F, βð Þ exp σ − βð Þλnð Þ½ �
≤ logMu σ, Fð Þ + log K1 ≤U1+2t rð Þ, ð89Þ

where K1 is a constant. Since 1 + 6t ≤Q3 − t, then there exists
a subsequence fnðpÞg such that

λn pð Þ ≥UQ3−t ψn pð Þ
� �

>U1+6t ψn pð Þ
� �

: ð90Þ

We choose a sequence fσnðpÞg such that

U1+2t rn pð Þ
� �

= λn pð Þ log 1 + 1

log2U ψn pð Þ
� �

2
4

3
5: ð91Þ

Thus, it follows from (89) and (91) that

eσn pð Þ ≤ ψn pð Þ 1 + 1

log2U ψn pð Þ
� �

2
4

3
5: ð92Þ

That is,

U rn pð Þ
� �

≤U ψn pð Þ 1 + 1

log2U ψn pð Þ
� �

2
4

3
5

8<
:

9=
;

≤ 1 + tð ÞU ψn pð Þ
� �

:

ð93Þ

We therefore can conclude from (91) that

λn pð Þ =U1+2t rn pð Þ
� �

log 1 + 1

log2U ψn pð Þ
� �

2
4

3
5

8<
:

9=
;

−1

≤ 2U1+2t rn pð Þ
� �

log2U ψn pð Þ
� �

≤ 2 1 + tð Þ1+2tU1+2t ψn pð Þ
� �

log2U ψn pð Þ
� �

≤U1+5t ψn pð Þ
� �

,

ð94Þ

which is a contradiction with the inequality (90).
Therefore, this completes the Proof of Theorem 8.
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In this paper, we introduce a new type of degenerate Genocchi polynomials and numbers, which are called degenerate poly-
Genocchi polynomials and numbers, by using the degenerate polylogarithm function, and we derive several properties of these
polynomials systematically. Then, we also consider the degenerate unipoly-Genocchi polynomials attached to an arithmetic
function, by using the degenerate polylogarithm function, and investigate some identities of those polynomials. In particular, we
give some new explicit expressions and identities of degenerate unipoly polynomials related to special numbers and polynomials.

1. Introduction

In [1, 2], Carlitz initiated a study of degenerate versions of
some special polynomials and numbers, namely, the degen-
erate Bernoulli and Euler polynomials and numbers. Kim
et al. [3–5] have studied the degenerate versions of special
numbers and polynomials actively. These ideas provide a
powerful tool in order to define special numbers and polyno-
mials of their degenerate versions. The notion of degenerate
version forms a special class of polynomials because of their
great applicability. Despite the applicability of special func-
tions in classical analysis and statistics, they also arise in com-
munication systems, quantum mechanics, nonlinear wave
propagation, electric circuit theory, electromagnetic theory,
etc. In particular, Genocchi numbers have been extensively
studied in many different contexts in such branches of math-
ematics as, for instance, elementary number theory, complex
analytic number theory, differential topology (differential
structures on spheres), theory of modular forms (Eisenstein

series), p-adic analytic number theory (p-adic L-functions),
and quantum physics (quantum groups). The works of
Genocchi numbers and their combinatorial relations have
received much attention [6–11]. In the paper, we focus on a
new type of degenerate poly-Genocchi polynomial and
numbers.

The aim of this paper is to introduce a degenerate version
of the poly-Genocchi polynomials and numbers, the so-
called new type of degenerate poly-Genocchi polynomials
and numbers, constructing from the degenerate polyloga-
rithm function. We derive some explicit expressions and
identities for those numbers and polynomials.

The classical Euler polynomials EnðxÞ and the classical
Genocchi polynomials GnðxÞ are, respectively, defined by
the following generating functions (see [12–22]):

2
et + 1 e

xt = 〠
∞

n=0
En xð Þ t

n

n!
,  tj j < π, ð1Þ
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2t
et + 1 e

xt = 〠
∞

n=0
Gn xð Þ t

n

n!
,  tj j < π: ð2Þ

In the case when x = 0, Enð0Þ≔ En and Gnð0Þ≔Gn are,
respectively, called the Euler numbers and Genocchi
numbers.

The degenerate exponential function [23, 24] is defined
by

exλ tð Þ = 1 + λtð Þx/λ,
e1λ tð Þ = eλ tð Þ λ ∈ℝð Þ:

ð3Þ

Note that

lim
λ⟶0

1 + λtð Þx/λ = 〠
∞

n=0

xntn

n!
= ext : ð4Þ

In [1, 2], Carlitz introduced the degenerate Bernoulli and
degenerate Euler polynomials defined by

t
eλ tð Þ − 1 e

x
λ tð Þ = t

1 + λtð Þ1/λ − 1
1 + λtð Þx/λ = 〠

∞

n=0
βn x ; λð Þ t

n

n!
,

ð5Þ

2
eλ tð Þ + 1 e

x
λ tð Þ = 2

1 + λtð Þ1/λ − 1
1 + λtð Þx/λ = 〠

∞

n=0
En x ; λð Þ t

n

n!
:

ð6Þ
In the case when x = 0, Bn,λð0Þ≔ Bn,λ are called the

degenerate Bernoulli numbers and En,λð0Þ≔ En,λ are called
the degenerate Euler numbers.

Let ðxÞn,λ be the degenerate falling factorial sequence
given by

xð Þn,λ ≔ x x − λð Þ⋯ x − n − 1ð Þλð Þ n ≥ 1ð Þ, ð7Þ

with the assumption ðxÞ0,λ = 1.
In [5], Kim et al. considered the degenerate Genocchi

polynomials given by

2t
eλ tð Þ + 1 e

x
λ tð Þ = 〠

∞

n=0
Gn,λ xð Þ t

n

n!
: ð8Þ

In the case when x = 0, Gn,λ ≔Gn,λð0Þ are called the
degenerate Genocchi numbers.

For k ∈ℤ, the polylogarithm function is defined by a
power series in t, which is also a Dirichlet series in k (see
[25, 26]):

Lik tð Þ = 〠
∞

n=1

tn

nk
= t + t2

2k
+ t3

3k
+⋯ tj j < 1ð Þ: ð9Þ

This definition is valid for arbitrary complex order k and
for all complex arguments t with jtj < 1 : it can be extended to
jtj ≥ 1 by analytic continuation.

It is noticed that

Li1 tð Þ = 〠
∞

n=1

tn

n
= − log 1 − tð Þ: ð10Þ

For λ ∈ℝ, Kim and Kim [3] defined the degenerate ver-
sion of the logarithm function, denoted by logλð1 + tÞ, as fol-
lows (see [4]):

logλ 1 + tð Þ = 〠
∞

n=1
λn−1 1ð Þn,1/λ

tn

n!
, ð11Þ

being the inverse of the degenerate version of the exponential
function eλðtÞ as has been shown below:

eλ logλ tð Þð Þ = logλ eλ tð Þð Þ = t: ð12Þ

It is noteworthy to mention that

lim
λ⟶0

logλ 1 + tð Þ = 〠
∞

n=1
−1ð Þn−1 t

n

n!
= log 1 + tð Þ: ð13Þ

The degenerate polylogarithm function [3] is defined by
Kim and Kim to be

lk,λ xð Þ = 〠
∞

n=1

−λð Þn−1 1ð Þn,1/λ
n − 1ð Þ!nk xn k ∈ℤ, xj j < 1ð Þ: ð14Þ

It is clear that (see [27, 28])

lim
λ⟶0

lk,λ xð Þ = 〠
∞

n=1

xn

nk
= Lik xð Þ: ð15Þ

From (11) and (14), we get

l1,λ xð Þ = 〠
∞

n=1

−λð Þn−1 1ð Þn,1/λ
n!

xn = − logλ 1 − xð Þ: ð16Þ

Very recently, Kim and Kim [3] introduced the new type
of degenerate version of the Bernoulli polynomials and num-
bers, by using the degenerate polylogarithm function as fol-
lows:

lk,λ 1 − eλ −tð Þð Þ
1 − eλ −tð Þ exλ tð Þ = 〠

∞

n=0
β

kð Þ
n,λ xð Þ t

n

n!
: ð17Þ

When x = 0, βðkÞ
j,λ ≔ βðkÞ

j,λ ð0Þ are called the new type of
degenerate poly-Bernoulli numbers.

The degenerate Stirling numbers of the first kind [24] are
defined by

1
k!

logλ 1 + tð Þð Þk = 〠
∞

n=k
S1,λ n, kð Þ t

n

n!
k ≥ 0ð Þ: ð18Þ
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It is clear that

lim
λ⟶0

S1,λ n, kð Þ≔ S1 n, kð Þ, ð19Þ

calling the Stirling numbers of the first kind given by (see
[29, 30])

1
k!

log 1 + tð Þð Þk = 〠
∞

n=k
S1 n, kð Þ t

n

n!
k ≥ 0ð Þ: ð20Þ

The degenerate Stirling numbers of the second kind
[31] are given by (see [2, 13–22, 25–32])

1
k!

eλ tð Þ − 1ð Þk = 〠
∞

n=k
S2,λ j, kð Þ t

n

n!
k ≥ 0ð Þ: ð21Þ

Note here that

lim
λ⟶0

S2,λ n, kð Þ≔ S2 n, kð Þ, ð22Þ

standing for the Stirling numbers of the second kind given
by means of the following generating function (see [1–8,
12–38]):

1
k!

et − 1
� �k = 〠

∞

n=k
S2 n, kð Þ t

n

n!
k ≥ 0ð Þ: ð23Þ

This paper is organized as follows. In Section 1, we
recall some necessary stuffs that are needed throughout
this paper. These include the degenerate exponential func-
tions, the degenerate Genocchi polynomials, the degener-
ate Euler polynomials, and the degenerate Stirling
numbers of the first and second kinds. In Section 2, we
introduce the new type of degenerate poly-Genocchi poly-
nomials by making use of the degenerate polylogarithm
function. We express those polynomials in terms of the
degenerate Genocchi polynomials and the degenerate Stir-
ling numbers of the first kind and also of the degenerate
Euler polynomials and the Stirling numbers of the first
kind. We represent the generating function of the degener-
ate poly-Genocchi numbers by iterated integrals from
which we obtain an expression of those numbers in terms
of the degenerate Bernoulli numbers of the second kind.
In Section 3, we introduce the new type of degenerate
unipoly-Genocchi polynomials by making use of the
degenerate polylogarithm function. We express those poly-
nomials in terms of the degenerate Genocchi polynomials
and the degenerate Stirling numbers of the first kind and
also of the degenerate Euler polynomials and the Stirling
numbers of the first kind and second kind.

2. New Type of Degenerate Genocchi Numbers
and Polynomials

In this section, we define the new type of degenerate Genoc-
chi numbers and polynomials by using the degenerate poly-

logarithm function which is called the degenerate poly-
Genocchi polynomials as follows.

For k ∈ℤ, we define the new type of degenerate Genocchi
numbers, which are called the degenerate poly-Genocchi
numbers, as

2
eλ tð Þ + 1 lk,λ 1 − eλ −tð Þð Þ = 〠

∞

n=0
G kð Þ
n,λ

tn

n!
: ð24Þ

Note that

〠
∞

n=0
G 1ð Þ
n,λ

tn

n!
= 2
eλ tð Þ + 1 l1,λ 1 − eλ −tð Þð Þ = 2t

eλ tð Þ + 1 = 〠
∞

n=0
Gn,λ

tn

n!
:

ð25Þ

Thus, we have (see [6])

G 1ð Þ
n,λ =Gn,λ n ≥ 0ð Þ: ð26Þ

Now, we consider the new type of degenerate Genocchi
polynomials which are called the degenerate poly-Genocchi
polynomials defined by

2lk,λ 1 − eλ −tð Þð Þ
eλ tð Þ + 1 exλ tð Þ = 〠

∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
: ð27Þ

In the case when x = 0, GðkÞ
n,λ ≔GðkÞ

n,λð0Þ. Using equation
(27), we see

〠
∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
= 2lk,λ 1 − eλ −tð Þð Þ

eλ tð Þ + 1 exλ tð Þ

= 〠
∞

m=0
G kð Þ
m,λ

tm

m!
〠
∞

n=0
xð Þn,λ

tn

n!

= 〠
∞

n=0
〠
n

m=0
n/mð ÞG kð Þ

m,λ xð Þn−m,λ

 !
tn

n!
:

ð28Þ

Therefore, by equation (28), we obtain the following
theorem.

Theorem 1. Let n be a nonnegative integer. Then,

G kð Þ
n,λ xð Þ = 〠

n

m=0
n/mð ÞG kð Þ

m,λ xð Þn−m,λ: ð29Þ

From (27), we note that

〠
∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
= 2t
eλ tð Þ + 1

exλ tð Þ 1
t
lk,λ 1 − eλ −tð Þð Þ, ð30Þ
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〠
∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
= 2t
eλ tð Þ + 1

exλ tð Þ 1
t
〠
∞

m=1

−λð Þm−1 1ð Þm,1/λ
m − 1ð Þ!mk

1 − eλ −tð Þð Þm

= 2t
eλ tð Þ + 1

exλ tð Þ 1
t
〠
∞

m=1

−λð Þm−1 1ð Þm,1/λ
mk−1

� 〠
∞

l=m
−1ð Þl−mS2,λ l,mð Þ t

l

l!
= 2t
eλ tð Þ + 1

exλ tð Þ 1
t

�〠
∞

l=1
〠
l

m=1

λm−1 1ð Þm,1/λ −1ð Þl−1
mk−1 S2,λ l,mð Þ

 !
tl

l!

= 〠
∞

n=0
Gn,λ xð Þ t

n

n!

 !
1
t

〠
∞

l=0
〠
l+1

m=1

λm−1 1ð Þm,1/λ −1ð Þl
mk−1 S2,λ l + 1,mð Þ

 !
tl+1

l + 1ð Þ!

 !

= 〠
∞

n=0
Gn,λ xð Þ t

n

n!

 !
〠
∞

l=0
〠
l+1

m=1

λm−1 1ð Þm,1/λ −1ð Þl
mk−1

S2,λ l + 1,mð Þ
l + 1

 !
tl

l!

 !

= 〠
∞

n=0
〠
n

l=0

n

l

 !
〠
l+1

m=1

λm−1 1ð Þm,1/λ −1ð Þl
mk−1

S2,λ l + 1,mð Þ
l + 1

Gn−l,λ xð Þ
 !

tn

n!
:

ð31Þ

Therefore, by equations (30) and (31), we get the follow-
ing theorem.

Theorem 2. Let n be a nonnegative integer. Then,

G kð Þ
n,λ xð Þ = 〠

n

l=0

n

l

 !
〠
l+1

m=1

λm−1 1ð Þm,1/λ −1ð Þl
mk−1

S2,λ l + 1,mð Þ
l + 1

Gn−l,λ xð Þ:

ð32Þ

Using equations (27) and (6), we see

〠
∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
= 2
eλ tð Þ + 1

exλ tð Þlk,λ 1 − eλ −tð Þð Þ, ð33Þ

〠
∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
= 2
eλ tð Þ + 1

exλ tð Þ 〠
∞

m=1

−λð Þm−1 1ð Þm,1/λ
m − 1ð Þ!mk

1 − eλ −tð Þð Þm

= 2
eλ tð Þ + 1

exλ tð Þ 〠
∞

m=1

−λð Þm−1 1ð Þm,1/λ
mk−1

� 〠
∞

l=m
−1ð Þl−mS2,λ l,mð Þ t

l

l!
= 2
eλ tð Þ + 1

exλ tð Þ

�〠
∞

l=1
〠
l

m=1

λm−1 1ð Þm,1/λ −1ð Þl−1
mk−1 S2,λ l,mð Þ

 !
tl

l!

= 〠
∞

n=0
En,λ xð Þ t

n

n!

 !
〠
∞

l=1
〠
l

m=1

λm−1 1ð Þm,1/λ −1ð Þl−1
mk−1 S2,λ l,mð Þ

 !
tl

l!

 !

= 〠
∞

n=1
〠
n

l=1

n

l

 !
〠
l

m=1

λm−1 1ð Þm,1/λ −1ð Þl−1
mk−1 S2,λ l,mð ÞEn−l,λ xð Þ

 !
tn

n!
:

ð34Þ

By equations (33) and (34), we obtain the following
theorem.

Theorem 3. Let n be a nonnegative integer. Then,

G kð Þ
n,λ xð Þ = 〠

n

l=1

n

l

 !
〠
l

m=1

λm−1 1ð Þm,1/λ −1ð Þl−1
mk−1 S2,λ l,mð ÞEn−l,λ xð Þ:

ð35Þ

From (27), we have

〠
∞

n=0
G kð Þ
n,λ

xn

n!
= 2
eλ xð Þ + 1

lk,λ 1 − eλ −xð Þð Þ = 2
eλ xð Þ + 1

�
ðx
0

e1−λλ −tð Þ
1 − eλ −tð Þ

ðt
0

e1−λλ −tð Þ
1 − eλ −tð Þ ⋯

ðt
0

e1−λλ −tð Þ
1 − eλ −tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k−2ð Þ−times

tdtdt⋯ dt 〠
∞

n=0
G kð Þ
n,λ

xn

n!

= 2
eλ xð Þ + 1

ðx
0

e1−λλ −tð Þ
1 − eλ −tð Þ

ðt
0

e1−λλ −tð Þ
1 − eλ −tð Þ ⋯

ðt
0

e1−λλ −tð Þ
1 − eλ −tð Þ tdtdt⋯ dt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k−2ð Þ−times

:

ð36Þ

For k = 2 in (36) and using [3] (Eq. (27)), we get

〠
∞

n=0
G 2ð Þ
n,λ

xn

n!
= 2
eλ xð Þ + 1

ðx
0

t
1 − eλ −tð Þ e

1−λ
λ −tð Þdt

= 2
eλ xð Þ + 1

ðx
0
〠
∞

j=0
βj,λ 1 − λð Þ −1ð Þj t

j

j!
dt

= 2x
eλ xð Þ + 1

〠
∞

j=0

βj,λ 1 − λð Þ
j + 1

−1ð Þj x
j

j!

= 〠
∞

n=0
Gn,λ

xn

n!
〠
∞

j=0

βj,λ 1 − λð Þ
j + 1

−1ð Þj x
j

j!

= 〠
∞

n=0
〠
n

j=0
n/jð Þ −1ð ÞjGn−j,λ

βj,λ 1 − λð Þ
j + 1

 !
xn

n!
:

ð37Þ

Therefore, by equation (37), we get the following
theorem.

Theorem 4. Let n be a nonnegative integer. Then,

G kð Þ
n,λ xð Þ = 〠

n

m=0
n/mð ÞG kð Þ

m,λ xð Þn−m,λ: ð38Þ

In general, by equation (37), we see

〠
∞

n=0
G kð Þ
n,λ

xn

n!
= 2
eλ xð Þ + 1

ðx
0

e1−λλ −tð Þ
1 − eλ −tð Þ

ðt
0

e1−λλ −tð Þ
1 − eλ −tð Þ ⋯

�
ðt
0

e1−λλ −tð Þ
1 − eλ −tð Þ tdtdt⋯ dt

= 〠
∞

n1 ,n2 ,⋯,nk−1=n

1
n1!n2!⋯nk−1!

βn1 ,λ 1 − λð Þ
n1 + 1

βn2 ,λ 1 − λð Þ
n1 + n2 + 1

×⋯
βnk−1 ,λ 1 − λð Þ

n1+⋯+nk−1 + 1
−xð Þn1 ,n2 ,⋯,nk−1 2x

eλ xð Þ + 1

= 〠
∞

n=0
−1ð Þn 〠

n1 ,n2 ,⋯,nk=n

n

n1, n2,⋯, nk

 !
βn1 ,λ 1 − λð Þ

n1 + 1

� βn2 ,λ 1 − λð Þ
n1 + n2 + 1

⋯
βnk−1 ,λ 1 − λð Þ

n1+⋯+nk−1 + 1
Gn,λ

xn

n!
:

ð39Þ

By equation (39), we obtain the following theorem.
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Theorem 5. Let k ∈ℤ and n ≥ 0, we have

G kð Þ
n,λ = −1ð Þn 〠

n1 ,n2 ,⋯,nk=n

n

n1, n2,⋯, nk

 !
βn1 ,λ 1 − λð Þ

n1 + 1

� βn2 ,λ 1 − λð Þ
n1 + n2 + 1

⋯
βnk−1 ,λ 1 − λð Þ

n1+⋯+nk−1 + 1
Gn,λ:

ð40Þ

From (27), we observe that

2lk,l 1 − eλ −tð Þð Þ = 1 + eλ tð Þð Þ 〠
∞

m=0
G kð Þ
m,λ

tm

m!

= 〠
∞

j=1
G kð Þ

j,λ +G kð Þ
j,λ 1ð Þ

� � t j
j!
:

ð41Þ

On the other hand,

2lk,l 1 − eλ −tð Þð Þ = 2〠
∞

r=1

−λð Þr−1 1ð Þr,1/λ
r − 1ð Þ!rk 1 − eλ −tð Þð Þr

= 2 〠
∞

m=1

−λð Þm−1 1ð Þm,1/λ
mk−1

1
m!

1 − eλ −tð Þð Þm

= 2〠
∞

r=1

−λð Þr−1 1ð Þr,1/λ
rk−1

〠
∞

j=r
S2,λ j, rð Þ −1ð Þj−r t

j

j!

= 2〠
∞

j=1
〠
j

r=1

−1ð Þj−1 1ð Þr,1/λ
rk−1

λr−1S2,λ j, rð Þ
 !

t j

j!
:

ð42Þ

Therefore, by equations (41) and (42), we get the follow-
ing theorem.

Theorem 6. Let k ∈ℤ and j ≥ 1. Then,

1
2

G kð Þ
j,λ +G kð Þ

j,λ 1ð Þ
h i

= −1ð Þj−1 〠
j

r=1

1ð Þr,1/λ
rk−1

λr−1S2,λ j, rð Þ: ð43Þ

From equations (27) and (14), we see

2t = 2l1,l 1 − eλ −tð Þð Þ = 2 〠
∞

m=1

−λð Þm−1 1ð Þm,1/λ
m − 1ð Þ!mk

1 − eλ −tð Þð Þm

= 2 〠
∞

m=1

−λð Þm−1 1ð Þm,1/λ
m!

1 − eλ −tð Þð Þm

= 2 〠
∞

m=1
−λð Þm−1 1ð Þm,1/λ 〠

∞

n=m
S2,λ n,mð Þ −1ð Þn−m tn

n!

= 2〠
∞

n=1
〠
n

m=1
−1ð Þn−1 1ð Þm,1/λλ

m−1S2,λ n,mð Þ
 !

tn

n!
:

ð44Þ

By comparing the coefficients on both sides of (44), we
obtain the following theorem.

Theorem 7. For n ∈ℕ, we have

〠
n

m=1
−1ð Þn−1 1ð Þm,1

λ
λm−1S2,λ n,mð Þ = δn,1, ð45Þ

where δn,k is Kronecker’s symbol.
Note that

lim
λ⟶0

G 1ð Þ
n,λ = Gn, lim

λ⟶0
G 1ð Þ
n,λ xð Þ =Gn xð Þ: ð46Þ

3. Degenerate Unipoly-Genocchi Numbers
and Polynomials

Let p be any arithmetic function which is a real or complex
valued function defined on the set of positive integers ℕ.
Kim and Kim [29] defined the unipoly function attached to
polynomials pðxÞ by

uk x ∣ pð Þ = 〠
∞

n=1

p nð Þ
nk

xn k ∈ℤð Þ: ð47Þ

Moreover (see [25]),

uk x ∣ 1ð Þ = 〠
∞

n=1

xn

nk
= Lik xð Þ ð48Þ

is the ordinary polylogarithm function.
In [8], Lee and Kim defined the degenerate unipoly func-

tion attached to polynomials pðxÞ as follows:

uk,λ x ∣ pð Þ = 〠
∞

i=1
p ið Þ −λð Þi−1 1ð Þi,1/λ

ik
xi: ð49Þ

It is worthy to note that

uk,λ x ∣
1
Γ

� �
= lk,λ xð Þ ð50Þ

is the degenerate polylogarithm function.
Now, we define the degenerate unipoly-Genocchi poly-

nomials attached to polynomials pðxÞ by

2uk,λ 1 − eλ −tð Þ ∣ pð Þ
eλ tð Þ + 1 exλ tð Þ = 〠

∞

n=0
G kð Þ
n,λ,p xð Þ t

n

n!
: ð51Þ

In the case when x = 0, GðkÞ
n,λ,p ≔GðkÞ

n,λ,pð0Þ are called the
degenerate unipoly-Genocchi numbers attached to p.
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From (51), we see

〠
∞

n=0
G kð Þ
n,λ,1/Γ

tn

n!
= 2
eλ tð Þ + 1 uk,λ 1 − eλ −tð Þ ∣ 1

Γ

� �

= 2
eλ tð Þ + 1〠

∞

r=1

−λð Þr−1 1ð Þr,1/λ 1 − eλ −tð Þð Þr
rk r − 1ð Þ!

= 2
eλ tð Þ + 1 lk,λ 1 − eλ −tð Þð Þ = 〠

∞

n=0
G kð Þ
n,λ

tn

n!
:

ð52Þ

Thus, by (52), we have

G kð Þ
n,λ,1Γ

=G kð Þ
n,λ: ð53Þ

From (51), we have

〠
∞

n=0
G kð Þ
n,λ,p xð Þ t

n

n!
= 2exλ tð Þ
eλ tð Þ + 1 uk,λ 1 − eλ −tð Þ ∣ pð Þ

= 2exλ tð Þ
eλ tð Þ + 1

1
t
〠
∞

m=1

p mð Þ −λð Þm−1 1ð Þm,1/λ
mk

1 − eλ −tð Þð Þm

= 2t
eλ tð Þ + 1 e

x
λ tð Þ 1

t
〠
∞

m=1

p mð Þ −λð Þm−1 1ð Þm,1/λm!

mk

� 〠
∞

l=m
−1ð Þl−mS2,λ l,mð Þ t

l

l!
= 2t
eλ tð Þ + 1 e

x
λ tð Þ 1

t
〠
∞

l=1

� 〠
l

m=1

λm−1 1ð Þm,1/λ −1ð Þl−1m!

mk
S2,λ l,mð Þ

 !
tl

l!
= 〠

∞

n=0
Gn,λ xð Þ t

n

n!

 !
1
t

� 〠
∞

l=0
〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk
S2,λ l + 1,mð Þ

 !
tl+1

l + 1ð Þ!

 !

= 〠
∞

n=0
Gn,λ xð Þ t

n

n!

 !
〠
∞

l=0
〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk

S2,λ l + 1,mð Þ
l + 1

 !
tl

l!

 !

= 〠
∞

n=0
〠
n

l=0

n

l

 !
〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk

S2,λ l + 1,mð Þ
l + 1 Gn−l,λ xð Þ

 !
tn

n!
:

ð54Þ

Therefore, by equation (54), we get the following
theorem.

Theorem 8. Let n be a nonnegative integer. Then,

G kð Þ
n,λ,p xð Þ = 〠

n

l=0

n

l

 !
〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk

S2,λ l + 1,mð Þ
l + 1

Gn−l,λ xð Þ:

ð55Þ

Using equations (49) and (51), we see

〠
∞

n=0
G kð Þ
n,λ xð Þ t

n

n!
= 2
eλ tð Þ + 1

exλ tð Þ 〠
∞

m=1

p mð Þ −λð Þm−1 1ð Þm,1/λ
mk

1 − eλ −tð Þð Þm

= 2
eλ tð Þ + 1

exλ tð Þ 〠
∞

m=1

p mð Þ −λð Þm−1 1ð Þm,1/λm!

mk

� 〠
∞

l=m
−1ð Þl−mS2,λ l,mð Þ t

l

l!
= 2
eλ tð Þ + 1

exλ tð Þ

�〠
∞

l=1
〠
l

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þl−1m!

mk
S2,λ l,mð Þ

 !
tl

l!

= 〠
∞

n=0
En,λ xð Þ t

n

n!

 !
〠
∞

l=1
〠
l

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þl−1m!

mk
S2,λ l,mð Þ

 !
tl

l!

 !

= 〠
∞

n=1
〠
n

l=1

j

l

 !
〠
l

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þl−1m!

mk
S2,λ l,mð ÞEn−l,λ xð Þ

 !
tn

n!
:

ð56Þ

By, equations (51) and (56), we obtain the following
theorem.

Theorem 9. Let n be a nonnegative integer. Then,

G kð Þ
n,λ,p xð Þ = 〠

n

l=1

n

l

 !
〠
l

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þl−1m!

mk
S2,λ l,mð ÞEn−l,λ xð Þ:

ð57Þ

From (6), (49), and (51), we get

〠
∞

n=0
G kð Þ
n,λ,p xð Þ t

n

n!
= 2exλ tð Þ
eλ tð Þ + 1

uk,λ 1 − eλ −tð Þ ∣ pð Þ = 2t
eλ tð Þ + 1

eλ tð Þ − 1
eλ tð Þ − 1

exλ tð Þ 1
t

� 〠
∞

m=1

p mð Þ −λð Þm−1 1ð Þm,1/λ
mk

1 − eλ −tð Þð Þm

= 2texλ tð Þ
e2λ tð Þ − 1

eλ tð Þ − 1ð Þ 1
t
〠
∞

m=1

p mð Þ −λð Þm−1 1ð Þm,1/λ
mk

1 − eλ −tð Þð Þm

= 2tex/2λ/2 2tð Þ
eλ/2 2tð Þ − 1

eλ tð Þ − 1ð Þ〠
∞

l=0
〠
l+1

m=1

� p mð Þ −1ð Þl λð Þm−1 1ð Þm,1/λm!

mk
S2,λ l + 1,mð Þ

� tl

l + 1ð Þ! = 〠
∞

n=0
βn,λ/2

x
2

� � 2ntn
n!

 !
〠
∞

i=1
1ð Þi,λ

ti

i!

 !

� 〠
∞

l=0
〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk

S2,λ l + 1,mð Þ
l + 1

 !
tl

l!

 !

= 〠
∞

n=0
βn,λ/2

x
2

� � 2ntn
n!

 !
〠
∞

i=0

1ð Þi+1,λ
i + 1

ti

i!

 !

� 〠
∞

l=0
〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk

S2,λ l + 1,mð Þ
l + 1

 !
tl

l!

 !

� 〠
∞

n=0
βn,λ/2

x
2

� � 2ntn
n!

 !
〠
∞

i=0
〠
i

l=0

i

l

 !
1ð Þi−l+1,λ
i − l + 1

  

� 〠
l+1

m=1

p mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

mk

S2,λ l + 1,mð Þ
l + 1

!
ti

i!

!

= 〠
∞

n=0
〠
n

i=0
〠
i

l=0

n

i

 !
i

l

 !
〠
l+1

m=1

 

� 1ð Þi−l+1,λp mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

i − l + 1ð Þmk

S2,λ l + 1,mð Þ
l + 1

� 2n−iβn−i,λ/2
x
2

� �
Þ t

n

n!
:

ð58Þ

Therefore, by (58), we obtain the following theorem.

Theorem 10. Let n be a nonnegative integer and k ∈ℤ. Then,

G kð Þ
n,λ,p xð Þ = 〠

n

i=0
〠
i

l=0

n

i

 !
i

l

 !
〠
l+1

m=1

1ð Þi−l+1,λp mð Þλm−1 1ð Þm,1/λ −1ð Þlm!

i − l + 1ð Þmk

� S2,λ l + 1,mð Þ
l + 1

× 2n−iβn−i,λ/2
x
2

� �
:

ð59Þ
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From (51), we have

〠
∞

n=0
G kð Þ
n,λ,p xð Þ t

n

n!
= 2
eλ tð Þ + 1

uk,λ 1 − eλ −tð Þ ∣ pð Þ eλ tð Þ − 1 + 1ð Þx

= 2uk,λ 1 − eλ −tð Þ ∣ pð Þ
eλ tð Þ + 1

〠
∞

i=0
xð Þi

eλ tð Þ − 1ð Þi
i!

= 〠
∞

n=0
G kð Þ
n,λ,p

tn

n!
〠
∞

i=0
xð Þi 〠

∞

l=i
S2,λ l, ið Þ t

l

l!

= 〠
∞

n=0
G kð Þ
n,λ,p

tn

n!
〠
∞

i=0
〠
l

i=0
xð ÞiS2,λ l, ið Þ t

l

l!

= 〠
∞

n=0
〠
n

l=0
〠
l

i=0

n

l

 !
xð ÞiS2,λ l, ið ÞG kð Þ

n−l,λ,p

 !
tn

n!
:

ð60Þ

By equation (60), we get the following theorem.

Theorem 11. Let n be a nonnegative integer and k ∈ℤ. Then,

G kð Þ
n,λ,p xð Þ = 〠

n

l=0
〠
l

i=0

n

l

 !
xð ÞiS2,λ l, ið ÞG kð Þ

n−l,λ,p: ð61Þ

4. Conclusion

In this article, we introduced degenerate poly-Genocchi poly-
nomials and numbers by using the degenerate polylogarithm
function and derived several properties on the degenerate
poly-Genocchi numbers. We represented the generating
function of the degenerate poly-Genocchi numbers by iter-
ated integrals in Theorems 4–6 and explicit degenerate
poly-Genocchi polynomials in terms of the Euler polyno-
mials and degenerate Stirling numbers of the second kind
in Theorem 3. We also represented those numbers in terms
of the degenerate Stirling numbers of the second kind in The-
orem 7. In the last section, we defined the degenerate
unipoly-Genocchi polynomials by using degenerate polylo-
garithm function and obtained the identity degenerate
unipoly-Genocchi polynomials in terms of the degenerate
Genocchi polynomials and degenerate Stirling numbers of
the second kind in Theorem 8, the degenerate Euler polyno-
mials and the degenerate Stirling numbers of the second kind
in Theorem 9, the degenerate Bernoulli and degenerate Stir-
ling numbers of the second kind in Theorem 10, and the
degenerate unipoly-Genocchi numbers and Stirling numbers
of the second kind in Theorem 11. It is important that the
study of the degenerate version is widely applied not only
to numerical theory and combinatorial theory but also to
symmetric identity, differential equations, and probability
theory. In particular, many symmetric identities have been
studied for degenerate versions of many special polynomials
[1, 3, 12, 23, 29–32]. Genocchi numbers have been also exten-
sively studied in many different branches of mathematics.
The works of Genocchi numbers and their combinatorial
relations have received much attention [6–9]. With this in
mind, as a future project, we would like to continue to study

degenerate versions of certain special polynomials and
numbers and their applications to physics, economics, and
engineering as well as mathematics.
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Motivated by the ideas of F-weak contractions and ðF,RÞg-contractions, the notion of ðFw,RÞg-contractions is introduced and
studied in the present paper. The idea is to establish some interesting results for the existence and uniqueness of a coincidence
point for these contractions. Further, using an additional condition of weakly compatible mappings, a common fixed-point
theorem and a fixed-point result are proved for ðFw,RÞg-contractions in metric spaces equipped with a transitive binary

relation. The results are elaborated by illustrative examples. Some consequences of these results are also deduced in ordered
metric spaces and metric spaces endowed with graph. Finally, as an application, the existence of the solution of certain Voltera
type integral equations is investigated.

1. Introduction and Preliminaries

In the development of the metric fixed-point theory, one of
the main pillar is the Banach contraction principle [1], which
states that every contraction on a complete metric space has a
unique fixed point. Due to its extensive application potential,
this concept has been observed in various forms over the
years (see [2–9]).

The concept of F-contractions was introduced by
Wardowski [10]. He proved some new fixed-point results
for such kind of contractions. He built these results in a
different way rather than traditional ways as done by
many authors. Later on, fixed points for F-contractions
were proved by Secelean [11] using an iterated function.
Abbas et al. [12] extended the work of Wardowski and
established various results of fixed points using F-con-
traction mappings. For further related works on F-con-
tractions, see [13–16].

The idea of ðF,RÞ-contractions was established by
Sawangsup et al. [17]. They used this idea to demonstrate
some fixed-point consequences using a binary relation. It is
further investigated by Imdad et al. [18]. In present paper,
we study the results presented by Alfaqih et al. [19] and we
define ðFw,RÞg-contractions. We also prove similar results
for ðFw,RÞg-contractions.

Recall that a binary relationR on nonempty set X is said
to be a partial order if it is reflexive, antisymmetric, and tran-
sitive. Moreover, the inverse or transpose or dual relation of
R, denoted by R−1, is defined by

R−1 = x, yð Þ ∈ X2 : y, xð Þ ∈R� �
: ð1Þ

The symmetric closure ofR, denoted byRs, is defined as
the set R ∪R−1, that is, Rs ≔R ∪R−1: In fact, Rs is the
smallest symmetric relation on X containing R.
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Notice that there is another binary relationR∦ ⊆R on X,
which is defined by kR∦ℓ, whenever kRℓ and k ≠ ℓ.

Definition 1 [10]. Let F be the set of functions F : ð0,∞Þ
⟶ℝ such that

(F1) F is strictly increasing;
(F2) For every sequence fβng ⊂ ð0,∞Þ, limn⟶∞βn = 0

iff limn⟶∞FðβnÞ = −∞;
(F3) There is k ∈ ð0, 1Þ so that limβ⟶0+β

kFðβÞ = 0:
The following functions are in F:

F βð Þ = ln βð Þ,
F βð Þ = ln βð Þ + β,
F βð Þ = ln β2 + β

� �
,

F βð Þ = −
1ffiffiffi
β

p
 !

:

ð2Þ

Many papers in literature deal with the concept of F
-contractions (see [20–22]). Throughout this work, the set
of all continuous functions verifying ðF2Þ is denoted by F .

Definition 2. Let X ≠ ϕ and R be a binary relation on X. A
sequence fςng ⊆ X is such that ςnRςn+1 for all n ∈ℕ0, then
it is called an R preserving sequence.

Definition 3. Consider a metric space ðX, dÞ with a binary
relation R. Then, X is called R complete if each R preserv-
ing Cauchy sequence is convergent in X.

Definition 4 [23]. Let ðX, dÞ be a metric space and R be a
binary relation on X, T : X⟶ X and x ∈ X. We say that T
is R-continuous at x if for each R-preserving sequence fςng
⊆ X so that ςn ⟶ x, we have Tςn ⟶ Tx. Also, T is named
to beR-continuous if it isR-continuous at any element of X.

Definition 5 [23]. Let ðX, dÞ be a metric space and R be a
binary relation on X and T , g : X⟶ X and x ∈ X. We say
that T is ðg,RÞ-continuous at x if for each sequence fςng
⊆ X so that fgςng is R-preserving and gςn ⟶ gx, we have
Tςn ⟶ Tx. Also, T is named to be ðg,RÞ-continuous if it is
ðg,RÞ-continuous at any element of X.

Definition 6 [24]. For x, y ∈ X, a path of length pðp ∈ℕÞ inR

from x to y is a finite sequence fu0, u1,⋯⋯ , upg ⊆ X such
that u0 = x, up = y, and ðui, ui+1Þ ∈R for every i ∈ f0, 1, ::⋯
, p − 1g. Also, a subset L ⊆ X is called R connected if for
any two elements x, y ∈ L, there is a path from x to y in R.

Definition 7 [23]. Let ðX, dÞ be a metric space and R be a
binary relation on X and T , g : X⟶ X. The pair ðT , gÞ is
R-compatible if for each sequence fςng ⊆ X so that fTςng
and fgςng are R-preserving and limn⟶∞gςn = limn⟶∞T
ςn = x ∈ X,

lim
n⟶∞

d gTςn, Tgςnð Þ = 0: ð3Þ

Definition 8. Let f and g be self-maps of a set X. If x = f x = gx
for some x ∈ X, then x is said to a common fixed point of f
and g.

Definition 9 [25]. Let f , g : X⟶ X. If w = f x = gx for some
x ∈ X, then x is said to be a coincidence point of f and g, and
w is said to be a point of coincidence of f and g.

f and g are said to be weakly compatible if they commute
at their coincidence point, i.e., if f x = gx for some x ∈ X, then
f gx = gf x.

Definition 10 [26]. Let ðM, dÞ be a metric space endowed with
a binary relation R. Such aR is named to be d-self closed if
for eachR-preserving sequence fςng ⊆M so that fςng⟶ x,
there is fςnkg of fςng so that ½ςnk , x� ∈R∀k ∈ℕ0.

Definition 11 [23]. Let M be a nonempty set and T , g : M
⟶M. A binary relation R on M is called ðT , gÞ closed if
for any x, y ∈M, gxRgy yields that TxRTy.

Lemma 12 [27, 28]. Consider a metric space ðX, dÞ and a
sequence fkmg in X. If fkmg is not Cauchy in X, then are ε
> 0 and fkmðjÞg and fktðjÞg of fkmg so that

j ≤m jð Þ ≤ t jð Þ, d km jð Þ, kt jð Þ−1
� �

≤ ε < d km jð Þ, kt jð Þ
� �

∀j ∈N0:

ð4Þ

Moreover, if fkmg is so that limm⟶∞dðkm, km+1Þ = 0,
then

lim
j⟶∞

d km jð Þ, kt jð Þ
� �

= lim
j⟶∞

d km jð Þ−1, kt jð Þ−1Þ
� �

= ε: ð5Þ

Lemma 13 [29]. Let X be a nonempty set and g : X⟶ X.
Then, there is a subset E ⊆ X so that gðEÞ = gðXÞ and g : E
⟶ E is one to one.

2. Main Results

We begin this section by introducing the idea of ðFw,RÞg
-contractions as follows.

Definition 14. Consider a metric space ðX, dÞ endowed with a
transitive binary relation R on X and Q, g : X ⟶ X. Then,
T is called an ðFw,RÞg-contractions if there exist F ∈F
and τ > 0 such that

τ + F d Qk,Qℓð Þð Þð
≤ F max d gk, gℓð Þ, d gk,Qkð Þ, d gℓ,Qℓð Þ, d gk,Qℓð Þ + d gℓ,Qkð Þ

2

	 
� �
,

ð6Þ

for all k, l ∈ X with gkR∦gℓ and QkR∦Qℓ.
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Remark 15. Every ðF,RÞg contraction is an ðFw,RÞg con-
traction, but the converse of statement is not true.

The following result is easy to prove. We omit it.

Proposition 16. Let ðX, dÞ be a metric space endowed with a
transitive binary relation R. Given Q, g : X⟶ X. Then, for
each F ∈F , we have equivalence of the two following
statements:

(a) ∀k, l ∈ X so that ðgk, gℓÞ ∈R∦ and ðQk,QℓÞ ∈R∦

τ + F d Qk,Qℓð Þð Þ ≤ F

� max d gk, gℓð Þ, d gk,Qkð Þ, gℓ,Qℓð Þ, d gk,Qℓð Þ + d gℓ,Qkð Þ
2

	 
� �
:

ð7Þ

(b) ∀k, l ∈ X such that either ðgk, gℓÞ, ðQk,QℓÞ ∈R∦ or
ðgℓ, gkÞ, ðQℓ,QkÞ ∈R∦

τ + F d Qk,Qℓð Þð Þ ≤ F

� max d gk, gℓð Þ, d gk,Qkð Þ, gℓ,Qℓð Þ, d gk,Qℓð Þ + d gℓ,Qkð Þ
2

	 
� �
:

ð8Þ

Theorem 17. Consider a metric space ðX, dÞ equipped withR
(where R is a transitive binary relation) and Q, g : X⟶ X.
Assume that:

(1) there exists k0 ∈ X such that gk0RQk0

(2) R is ðQ, gÞ-closed
(3) Q is an ðFw,RÞg-contraction
(4)

(a) A subset K of X exists such that QðXÞ ⊆ K ⊆ gðXÞ
and K is R-complete

(b) One of the subsequent conditions is fulfilled:

(i) Q is ðg,RÞ-continuous, or
(ii) Q and g are continuous, or

(iii) R ∣ K is d-self closed in condition that (6) holds
for all k, l ∈ X with gkRgℓ and QkR∦Qℓ

or on the other hand:

(α) (α1) ∃ a subset L of X such thatQðXÞ ⊆ gðXÞ ⊆ L and L
is R- complete,

(α2) ðQ, gÞ is an R-compatible pair,
(α3) Q and g are R-continuous.
Then, the pair ðQ, gÞ admits a coincidence point.

Proof. In the above two cases (11) and ðαÞ, note that QðXÞ
⊆ gðXÞ. Using assumption (6), we get gk0RQk0. If Qk0 = g
k0, then a coincidence point of ðQ, gÞ is k0. This completes
the proof. Suppose that Qk0 ≠ gk0. Since QðXÞ ⊆ gðXÞ, there

must exist k1 ∈ X such that gk1 =Qk0. Similarly, there is k2
∈ X such that gk2 =Qk1. Proceeding in this way, we can con-
struct a sequence fkmg ⊆ X such that

gkm+1 =Qkm∀m ∈ℕ0: ð9Þ

Now, we will prove fgkmg is an R-preserving sequence,
that is,

gkmRgkm+1∀m ∈ℕ0: ð10Þ

By using induction, we will prove this claim. If we put
m = 0 in (9) and use condition (6), we get gkoRgk1. This
implies that the above statement holds for m = 0. Suppose
that (10) is accurate for m = j ≥ 1, that is, gkjRgkj+1. Since
R is ðQ, gÞ-closed, we get QkjRQkj+1, and so gkj+1Rgkj+2.

Hence, our claim is true for all m ∈ℕ0. By using (9) and
(10), we can conclude that fQkmg is also an R-preserving
sequence, that is,

QkmRQkm+1∀m ∈ℕ0: ð11Þ

If Qkm0
=Qkm0+1

for some m0 ∈ℕ0, then km0
is a coinci-

dence point of ðQ, gÞ.
Suppose on the contrary that Qkm ≠Qkm+1 for alm ∈ℕ0.

With the help of (9), (10), (11), and condition (10), we can
see that

τ + F d Qkm−1,Qkmð Þð Þ ≤ F

·
�
max

	
d gkm−1, gkmð Þ, d gkm−1,Qkm−1ð Þ, d gkm,Qkmð Þ,

� d gkm−1,Qkmð Þ + d gkm,Qkm−1ð Þ
2


�
∀m ∈ℕ0: = F

� max d gkm−1,Qkm−1ð Þ, d gkm,Qkmð Þ, d gkm−1,Qkmð Þ
2

	 
� �
: ≤ F

�
�
max

	
d gkm−1,Qkm−1ð Þ, d gkm,Qkmð Þ,

� d gkm−1, gkmð Þ + d gkm,Qkmð Þ
2


�
: = F

� max d gkm−1, gkmð Þ, d gkm,Qkmð Þf gð Þ:
ð12Þ

Now, max fdðgkm−1, gkmÞ, dðgkm,QkmÞg cannot be dðg
km,QkmÞ. Otherwise,

τ + F d gkm, gkm+1ð Þð Þ ≤ d gkm, gkm+1ð Þ, ð13Þ

which is a contradiction. Hence, max fdðgkm−1, gkmÞ, dðg
km,QkmÞg = dðgkm−1, gkmÞ: Therefore,

τ + F d Qkm−1,Qkmð Þð Þ ≤ F d gkm−1, gkmð Þð Þ⇒ F d Qkm−1,Qkmð Þð Þ
≤ F d gkm−1, gkmð Þð ÞÞ − τ:

ð14Þ

Take γm = dðgkm, gkm+1Þ. With the help of above condi-
tion, we obtain
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F γmð Þ ≤ F γm−1ð Þ − τ ≤ F γm−2ð Þ − 2τ::⋯≤ F γ0ð Þ −mτ ∀m ∈ℕð Þ:
ð15Þ

By using ðF2Þ and taking m⟶∞ in above inequality,
we obtain

lim
m⟶∞

F γmð Þ = −∞: ð16Þ

This together with ðF2Þ imply that

lim
m⟶∞

γm = d gkm, gkm+1ð Þ = 0: ð17Þ

Now, we will show that fgkmg is a Cauchy sequence. We
argue by contradiction. In this case, Lemma 12 guarantees
the existence of ε > 0 and two subsequences fgkmj

g and

fgkt jg of fgkmg such that

d gkm jð Þ, gkt j−1ð Þ
� �

≤ ε < d gkm jð Þ, gkt jð Þ
� �

, ð18Þ

with

j ≤m jð Þ ≤ t jð Þ, ∀j ∈ℕ0, ð19Þ

lim
j⟶∞

d gkm jð Þ, gkt jð Þ
� �

= d gkm jð Þ−1, gkt jð Þ−1
� �

= ε: ð20Þ

This implies that there is j0 ∈ℕ0 so that dðgkmðjÞ−1, g
ktðjÞ−1Þ > 0∀j ≥ j0.

Since R is transitive, one writes

gkm jð Þ−1R
∦gkt jð Þ−1 andQkm jð Þ−1R

∦Qkt jð Þ−1∀j ≥ j0: ð21Þ

Using condition (10), we have for all j ≥ j0,

τ + F d Qkm jð Þ−1,Qkt jð Þ−1
� �� �

≤ F max

�
 

d gkm jð Þ−1, gkt jð Þ−1
� �

, d gkm jð Þ−1,Qkm jð Þ−1
� �

, d gkt jð Þ−1,Qkt jð Þ−1
� �

,

�
d gkm jð Þ−1,Qkt jð Þ−1
� �

+ d gkt jð Þ−1,Qkm jð Þ−1
� �

2

�
:

ð22Þ

Denote

max
(
d gkm jð Þ−1, gkt jð Þ−1
� �

, d gkm jð Þ−1,Qkm jð Þ−1
� �

, d gkt jð Þ−1,Qkt jð Þ−1
� �

,

� d gkm jð Þ−1,Qkt jð Þ−1
� �

+ d gkt jð Þ−1,Qkm jð Þ−1
� �

2

)
=D km jð Þ−1, kt jð Þ−1

� �
:

ð23Þ

IfDðkmðjÞ−1, ktðjÞ−1Þ = dðgkmðjÞ−1, gktðjÞ−1Þ or it is equal to
ðdðgkmðjÞ−1,QktðjÞ−1Þ + dðgktðjÞ−1,QkmðjÞ−1ÞÞ/2 then taking
j⟶∞ and using (20), we get

lim
j⟶∞

D km jð Þ−1, kt jð Þ−1
� �

= ε: ð24Þ

Since F is continuous, letting m⟶∞ in (22) and using
(20) and (24), we get

τ + F εð Þ ≤ F εð Þ, ð25Þ

which is a contradiction. On the other hand, if DðkmðjÞ−1,
ktðjÞ−1Þ = dðgkmðjÞ−1,QkmðjÞ−1Þ or it is equal to dðgktðjÞ−1,Q
ktðjÞ−1Þ then letting m⟶∞ in (22), using continuity of F
and (20) together with condition F2, we get τ + FðεÞ ≤ −∞,
which is again a contradiction. Thus, fgkmg is a Cauchy
sequence.

Let the condition (11) hold. With the help of (9), we
obtain gkm ⊆QðXÞ. Therefore, fgkmg is R-preserving Cau-
chy in K . By utilizing R-completeness of K , there is l ∈ K
so that gkm ⟶ l. As K ⊆ gðXÞ, there is v ∈ X so that l = gv.
Hence, by using (2),

lim
m⟶∞

gkm = lim
m⟶∞

Qkm = gv: ð26Þ

In order to prove that v is coincidence point of ðQ, gÞ, we
will use three different cases of condition ðbÞ. First of all, sup-
pose that Q is ðg,RÞ-continuous. By utilizing (10) and (26),
we get

lim
m⟶∞

Qkm =Qv: ð27Þ

By utilizing (26) and (27), we get Qv = gv: This shows
that v is a coincidence point of ðQ, gÞ.

Now, suppose the second case of ðbÞ, that is, Q and g are
continuous. Since X ≠ ϕ and g : X⟶ X, by using Lemma
13, there is B ⊆ X so that gðBÞ = gðXÞ and g : B⟶ B is
one-one. Define a mapping f : gðBÞ⟶ gðXÞ by

f gbð Þ =Q bð Þ∀gb ∈ g Bð Þwhere b ∈ B: ð28Þ

Recall that g is one-one and QðXÞ ⊆ gðXÞ, so f is well-
defined mapping. As Q and g are continuous, f is also con-
tinuous. Now, utilizing the fact that gðXÞ = gðBÞ, we can
rewrite condition ðaÞ as QðXÞ ⊆ K ⊆ gðBÞ, so that, without
loss of generality, we can select a sequence fkmg in B and
v ∈ B. By using (26), (28), and continuity of f , we have

Qv = f gvð Þ = f lim
m⟶∞

gkm
� �

= lim
m⟶∞

f gkmð Þ = lim
m⟶∞

Qkm = gv:

ð29Þ

Finally, assume that condition (iii) of (b) holds, which
implies that R ∣ K is d-self closed and (2.1) detain ∀k, l ∈ X,
with gkRgℓ and QkR∦Qℓ. As fgkmg ⊆ K , fgkmg is R ∣ K
preserving due to (10) and with the help of (26) gkm ⟶ gv.
So, there is a subsequence fgkmj

g ⊆ fgkmg such that

gkmj
, gv

h i
∈R∣K ⊆R∀j ∈ℕ0: ð30Þ

4 Journal of Function Spaces



Utilizing condition (b) and (30), one writes

Qkmj
,Qv

h i
∈R∣K ⊆R∀j ∈ℕ0: ð31Þ

Now, let q = fj ∈ℕ : Qkmj
=Qvg. If the set q is infinite,

then fQkmj
g has a subsequence fQkmjp

g, such that Qkmjp
=

Qv. This implies that limp⟶∞Qkmjp
=Qv∀p ∈ℕ. By using

(26), we have limm⟶∞Qkm = gv. So we obtain Qv = gv.
If the set q is finite, then fQkmj

g has a subsequence fQ
kmjp

g such that Qkmjp
≠Qv∀p ∈ℕ. Next, we will show that

limp⟶∞Qkmjp
=Qv. With the help of (30), (31) and kmjp

≠
Qv∀p ∈ℕ, we have

gkmjp
, gv

h i
∈R∣K ⊆R∀p ∈ℕ0, ð32Þ

Qkmjp
,Qv

h i
∈R∣K ⊆R andQkmjp

≠Qv∀p ∈ℕ0: ð33Þ

Now, with the help of (32), (33), Proposition 16 and the
fact that (2.1) is satisfied, we get

F d Qkmjp
,Qv

� �� �
≤ F

 
max

(
d gkmjp

, gv
� �

, d gkmjp
,Qkmjp

� �
, d gv,Qvð Þ,

�
d gkmjp

,Qv
� �

+ d gv,Qkmjp

� �
2

)!
− τ:

ð34Þ

Denote

max
(
d gkmjp

, gv
� �

, d gkmjp
,Qkmjp

� �
, d gv,Qvð Þ,

�
d gkmjp

,Qv
� �

+ d gv,Qkmjp

� �
2

)
=D kmjp

, v
� �

: ð35Þ

If Dðkmjp
, vÞ = dðgkmjp

, gvÞthen, we have

τ + F d Qkmjp
,Qv

� �� �
≤ F d gkmjp

, gv
� �� �

⇒ F d Qkmjp
,Qv

� �� �
≤ F d gkmjp

, gv
� �� �

− τ:

ð36Þ

By using (26), (F2) and taking p⟶∞, we get limp⟶∞

Qkmjp
=Qv: If Dðkmjp

, vÞ = dðgkmjp
, gvÞ then, we have

τ + F d Qkmjp
,Qv

� �� �
≤ F d gkmjp

, gv
� �� �

⇒ F d Qkmjp
,Qv

� �� �
≤ F d gkmjp

, gv
� �� �

+ Ld gkmjp
, gkmjp−1

� �
− τ:

ð37Þ

By using (26), (F2) and taking p⟶∞, we get limp⟶∞

Qkmjp
=Qv: Now, if Dðkmjp

, vÞ = dðgv,QvÞ, then

F d Qkmjp
,Qv

� �� �
≤ F d gkmjp

,Qkmjp

� �� �
− τ: ð38Þ

By using (26), (F2) and taking p⟶∞, we get
limp⟶∞Qkmjp

=Qv: If Dðkmjp
, vÞ = ðdðgkmjp

,QvÞ + dðgv,Q
kmjp

ÞÞ/2, then, we have

τ + F d Qkmjp
,Qv

� �� �
≤ F

d gkmjp
,Qv

� �
+ d gv,Qkmjp

� �
2

0
@

1
A

⇒ lim
p⟶∞

F d Qkmjp
,Qv

� �� �

≤ lim
p⟶∞

F
d gkmjp

,Qkmjp

� �
+ d gkmjp

,Qkmjp

� �
2

0
@

1
A − τ

= lim
p⟶∞

F
d gkmjp

, gkmjp−1

� �
+ d gkmjp

, gkmjp−1

� �
2

0
@

1
A − τ:

ð39Þ

By using (26), (F2) and taking p⟶∞, we get

lim
p⟶∞

Qkmjp
=Qv: ð40Þ

From (26) and (40), we obtain Qv = gv: Hence, when the
set q is finite or infinite, v is a coincidence point of Q and g.
Now, if ðαÞ holds, then gkm ⊆ L, and hence fgkmg is an R

-preserving Cauchy sequence in L. Since L is R-complete,
there is u ∈ L so that

lim
m⟶∞

gkm = u: ð41Þ

Using Equations (9) and (41), one gets

lim
m⟶∞

Qkm = u: ð42Þ

Now, with the help of (10), (41), and continuity of g, we
have

lim
m⟶∞

g gkmð Þ = g lim
m⟶∞

gkm
� �

= gu: ð43Þ

Utilizing (11), (42) and continuity of g to find

lim
m⟶∞

g Qkmð Þ = g lim
m⟶∞

Qkm
� �

= gu: ð44Þ

As Qkm and gkm are R-preserving due to (10), (11) and

lim
m⟶∞

Qkm = lim
m⟶∞

gkm = u: ð45Þ

Now, using (41), (42), and condition (α2),

lim
m⟶∞

d gQkm,Qgkmð Þ = 0: ð46Þ
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Next, we will demonstrate that u is a coincidence point of
ðQ, gÞ. Making use of (10), (41) and the R-continuity of Q,
we get

lim
m⟶∞

Q gkmð Þ =Q lim
m⟶∞

gkm
� �

=Qu: ð47Þ

With the use of (44), (46), and (47), we get

d gu,Quð Þ = d lim
m⟶∞

gQkm, lim
m⟶∞

Qgkm
� �

= lim
m⟶∞

d gQkm,Qgkmð Þ = 0⇒Qu = gu:
ð48Þ

This implies that u is a coincidence point of ðQ, gÞ. ☐

Theorem 17 does not guarantee the uniqueness of a coin-
cidence point. The following theorem guarantees that coinci-
dence point is unique.

Theorem 18. Suppose all hypothesis of Theorem 17 are true
except ðαÞ and assume that gu and gv are R-comparable
for all u ≠ v ∈ coin ðQ, gÞ, and one of Q or g is one-one, then
there is a unique coincidence point of ðQ, gÞ.

Proof. The set coinðQ, gÞ is nonempty, because of Theorem
17. Consider two elements u, v ∈ coinðQ, gÞ, then by defini-
tion of coinðQ, gÞ, we have ½gv, gu� ∈R and Qu = gu, Qv =
gv. This implies ½Qu,Qv� ∈R.

Now, if gu = gv, we obtain Qv = gv = gu =Qu, and
hence, v = u, because one of Q and g is one-one.

If gu ≠ gv, then by utilizing condition (10) and Proposi-
tion 16, we get

τ + F d Qu,Qvð Þð Þ ≤ F

· d gu, gvð Þ, d gu,Qvð Þ, d gv,Qvð Þ, d gu,Qvð Þ + d gv,Qvð Þ
2

� �
= F d Qu,Qvð Þð Þ:

ð49Þ

Since τ > 0, our assumption is false. Therefore, a unique
coincidence point of ðQ, gÞ exists. ☐

Theorem 19. Consider above theorem and add a condition
that ðQ, gÞ is a weakly compatible pair, then a unique com-
mon fixed point of ðQ, gÞ exists.

Proof. Above theorem assures that the pair ðQ, gÞ has a
unique coincidence point. Let v be the common coincidence
point and suppose z ∈ X be such that

z =Qv = gv: ð50Þ

The weak compatibility of Q and g leads to Qz =Qgv =
gQv = gz. That is, z is a coincidence point of Q and g. Since
v is unique, one writes z = v. That is, the uniqueness of a com-
mon fixed point. Since all the assumptions of Theorem 18 are
true, the set coinðQ, gÞ is nonempty. ☐

Example 1. Let X = ½0,∞Þ and define d : X × X ⟶ℝ by
dðx, yÞ = jx − yj. Then, ðX, dÞ is a complete metric space.

Consider the sequence fςng ⊆ X which is defined by
fςn = ðnðn + 1Þð4n − 1ÞÞ/3, n ≥ 1g:

Define the binary relation R on X by

R = ςi, ςið Þ, ςi, ςi+1ð Þ such that ςi ≤ ςi+1f g: ð51Þ

Define Q, g : X⟶ X by

Qx =

x, if 0 ≤ x ≤ ς1,
ς2, if ς1 < x ≤ ς2,

ςi +
ςi+1 − ςi
ςi+2 − ςi+1

x − ςi+1ð Þ,  if ςi+1 ≤ x ≤ ςi+2,

8>>><
>>>:

ð52Þ

and

gx = ςi +
ςi+1 − ςi
ςi+2 − ςi+1

x − ςið Þ, if ςi ≤ x ≤ ςi+1, i = 1, 2,⋯
	

:

ð53Þ

Observe that if gxR∦gy and QxR∦Qy, then x = ςi and y
= ςi+1 for i ∈ℕ − 1: Further, by choosing FðαÞ = ln α and α
∈ ð0,+∞Þ, we have

F d Qςi,Qςi+1ð Þð Þ = F ςi−1 − ςij jð Þ = F ςi − ςi−1j jð Þ = ln ςi − ςi−1j j,

F max
(
d gςi, gςi+1ð Þ, d gςi,Qςið Þ, d gςi+1,Qςi+1ð Þ,

 

� d gςi,Qςi+1ð Þ + d Qςi, gςi+1ð Þ
2

)!

= F max ςi+1 − ςij j, ςi − ςi−1j j, ςi+1 − ςij j, ςi+1 − ςi−1j j
2

	 
� �
= F ςi+1 − ςið Þ = ln d gςi+1,Qxi + 1ð Þ:

ð54Þ

Now, for n = 2, 3,⋯ and for τ = ln 3, we have

τ + ln ςi − ςi−1ðj j ≤ ςi+1 − ςij j: ð55Þ

Therefore,

ln 3ð Þ + F d Qςi,Qςi+1ð Þð Þ ≤ Fd gςi+1,Qxi + 1ð Þ,
∀x, y ∈ X such thatgxR∦gy andQxR∦Qy:

ð56Þ

Moreover, all the assumptions of Theorem 19 are true,
and ς1 is the unique common fixed point of ðQ, gÞ:

On setting g = I in Theorem 19, we obtain the following
result.

Theorem 20. Consider a self-mapping Q : X ⟶ X and let
ðX, dÞ be a metric space with a transitive binary relation R.
Assume that:
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(1) ∃k0 ∈ X such that k0RQk0

(2) R is Q-closed

(3) Q is an ðFw,RÞ-contraction
(4) (α) ∃ a subset K of X such that QðXÞ ⊆ K and K is R

-complete,

(η) one of these conditions hold:

(i) Q is R-continuous, or

(ii) R ∣ K is d-self closed on condition that (1.1) with
binary relation holds ∀k, l ∈ X with kRl and QkR∦

Qℓ

Then, a fixed point of Q exists. Furthermore, if
(e) ½u, v� ∈ FixðQÞ⇒ ½u, v� ∈R:
Then, such fixed point of Q is unique.

Theorem 21. Replace condition (e) of above theorem by:
(e ∗) FixðQÞ is Rs-connected,
then Q has a unique fixed point.

Proof. Assume on contrary that Q has more than one fixed
point, say u and v with u ≠ v. Then, there exists a path Rs

⊆ FixðQÞ. As it is from v to u of length q, let us denote the
path by fv0,⋯vqg such that vp ≠ vp+1 for each p where 0 ≤ p
≤ j − 1. If v = u, it is a contradiction. Hence,

v0 = v, vq = u and vp, vp+1

 �

∈R for each p 0 ≤ p ≤ q − 1ð Þ:
ð57Þ

As vp ∈ FixðQÞ, so QðvpÞ = vp for each p ∈ f0, 1,:⋯ , qg.
With the help of condition ðcÞ, we obtain

τ + F d vp, vp+1
� �� �

≤ F max
(
d vp, vp+1
� �

, d vp, vp+1
� �

, d vp+1, vp+1
� �

,
 

� d vp, vp+1
� �

+ d vp+1, vp
� �

2

)!
:

ð58Þ

That is,

τ + F d vp, vp+1
� �� �

≤ F d vp, vp+1
� �� �

: ð59Þ

Since τ > 0, our supposition is not true. Hence, Q has a
unique fixed point. ☐

In the next section, we are presenting a significance of our
results in ordered metric spaces.

3. Some Consequences in OrderedMetric Spaces

Definition 22. Let ðX, dÞ be a metric space and ðX, ≼Þ be an
ordered set, then the triplet ðX, d,≼Þ is known as an ordered
metric space.

Definition 23. Consider self-mappings Q, g : X ⟶ X and an
ordered set ðX, ≼Þ. If, for any k, l ∈ X, gk≼gℓ implies that Q
k≼Qℓ. Then, Q is g-increasing.

Remark 24. Notice that the notion of Q is g-increasing is
equal to say that ≼ is ðQ, gÞ-closed.

Taking R = ≼ in Theorem 17 to 19 and with the help of
Remark 24, we state the following result.

Corollary 25. Consider self-mappings Q, g : X⟶ X and an
ordered metric space ðX, d,≼Þ. Assume that:

(a) ∃k0 ∈ X such that gk0≼Qk0
(b) Qisg-increasing

(c) There are τ > 0 and F ∈F so that

τ + F d Qk,Qℓð Þð ≤ F max
(

d gk, gℓð Þ, d gk,Qkð Þ, d gℓ,Qℓð Þð ,
 

� d gk,Qℓð Þ + d gℓ,Qkð Þ
2

)!
,

ð60Þ

(d) ∃ a subset K of X such that QðXÞ ⊆ K ⊆ gðXÞ and K is
≼ -complete

(e) Either Q and g are continuous, or Q is ðg, ≼Þ-con-
tinuous. Then, a coincidence point of ðQ, gÞ exists.
Additionally, we suppose that

(f) Qu and gv are ≼-comparable for all distinct coinci-
dence points u, v ∈ coinðQ, gÞ, then pair ðQ, gÞ has a
unique coincidence point

Furthermore, if Q and g are weakly compatible, then ðQ
, gÞ has a unique common fixed point.

TakingR = ≼ in Theorem 20 and with the help of Remark
24, we conclude the result given below.

Corollary 26. Consider an ordered metric space ðX, d,≼Þ and
mapping Q : X⟶ X. Suppose the that conditions given
below are fulfilled:

(a) ∃k0 ∈ X such that k0≼Qk0
(b) Q is ≼-increasing

(c) ∃τ > 0 and F ∈F such that

τ + F d Qk,Qℓð Þð Þ ≤ F max
(

d k, lð Þ, d k,Qkð Þ, l,Qℓð Þ,ð
 

� d k,Qℓð Þ + d l,Qkð Þ
2


�
,

ð61Þ

(d) A subset K of X exists such that QðXÞ ⊆ K and K is ≼
-complete
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(e) Q is ≼-continuous. Then a fixed point of Q exists.
Furthermore,

(f) if for any two fixed points u, v ∈Q we have ½u, v� ∈ ≼,
then Q has a unique fixed point

4. Applications to Metric Spaces Endowed with
a Graph

Jachymski [30] in 2008 has instituted the idea of metric
spaces endowed with a graph in order to generalize the idea
of a partial ordering and specified the Banach contraction
principle in metric spaces and partially ordered metric
spaces. In this section, we are going to present an application
of our results in the situating of complete metric spaces
endowed with a graph.

Corollary 27. Consider self-mappings Q, g : X⟶ X on a
metric space ðX, dÞ endowed with a graph G = ðVðGÞ, EðGÞÞ
. Define ≼ on X as u≼v if and only if there is an edge between
u and v. Assume that all the conditions given in Corollary 25
are satisfied. Then a coincidence point of ðQ, gÞ exists. Fur-
ther, if we suppose that Qu and gv are comparable on edges
for all distinct coincidence points u, v ∈ coinðQ, gÞ, then the
pair ðQ, gÞ has a unique coincidence point.

Furthermore, a unique common fixed point of ðQ, gÞ
exists if Q and g are weakly compatible.

Corollary 28. Consider a metric space ðX, dÞ endowed with a
graph G and a mapping Q : X⟶ X. Define ≼ on X as u≼v if
and only if there is an edge between u and v. Suppose that con-
ditions given in Corollary 27 are fulfilled. Then, a fixed point
of Q exists. Furthermore, if u, v ∈ FixðQÞ are such that there
is an edge between u and v, then a unique fixed point of Q
exists.

5. Applications to Integral Equations

In this section, we present an application of Theorem 21 by
finding a solution of the integral equation of Volterra type
given below:

u tð Þ =
ðt
0
K t, s, u sð Þð Þds + h tð Þ,  t ∈ 0, 1½ �: ð62Þ

Here, K : ½0, 1� × ½0, 1� ×ℝ⟶ℝ and h : ½0, 1�⟶ℝ:
Let X be the Banach space of all continuous functions u

: ½0, 1�⟶ℝ: Define a norm on X as follows.
kuk =maxt∈½0,1�juðtÞj. Then, the metric d on X is defined

as dðu, vÞ = ku − vk∀u, v ∈ X:

Definition 29. A function α ∈ X such that

α tð Þ ≤
ðt
0
K t, s, α sð Þð Þds + h tð Þ, t ∈ 0, 1½ �, ð63Þ

is called a lower solution for (62).

Definition 30. A function β ∈ X such that

β tð Þ ≥
ðt
0
K t, s, β sð Þð Þds + h tð Þ,  t ∈ 0, 1½ �, ð64Þ

is called an upper solution for (62).

Now, we have enough material to prove the following
results.

Theorem 31. Assume that in third variable K is nondecreas-
ing and there is τ > 0 such that

K t, s, uð Þ − K t, s, vð Þj j ≤ u − vj j
τD u, vð Þ + 1

, ð65Þ

for all t, s ∈ ½0, 1� and u, v ∈ X, where Dðu, vÞ =max fdðu, vÞ
, dðu,QuÞ, ðv,QvÞ, ððdðu,QvÞ + dðv,QuÞÞ/2Þg: Then, the
existence of a unique solution of the integral Equation (62)
follows from the existence of lower solution of (62).

Proof. Let QðuðtÞÞ = Ð t0Kðt, s, uðsÞÞds + hðtÞ for all u ∈ X, be a
self operator on X: It is clear that u is a fixed point of the
operator Q if and only if it is solution of the Equation (62).

Let R be the binary relation on X defined by

R = u, vð Þ ∈ X × X : u tð Þ ≤ v tð Þ for all t ∈ 0, 1½ �f g: ð66Þ

Now, for any u, v ∈R and for all t ∈ ½0, 1�

Q u tð Þð Þ =
ðt
0
K t, s, u sð Þð Þds + h tð Þ ≤

ðt
0
K t, s, v sð Þð Þds + h tð Þ

=Q v tð Þð Þ:
ð67Þ

This implies that ðQu,QvÞ ∈R: That is, R is Q closed.
Now, let ðu, vÞ ∈R and consider

Q u tð Þð Þ −Q v tð Þð Þj j =
ðt
0
K t, s, u sð Þð Þ − K t, s, v sð Þð Þð Þds

����
����

≤
ðt
0
K t, s, u sð Þð Þ − K t, s, v sð Þð Þj jds

≤
ðt
0

u − vj j
τD u, vð Þ + 1 ds ≤

1
τD u, vð Þ + 1

�
ðt
0
max
t∈ 0,1½ �

u tð Þ − v tð Þj j
�
ds

= 1
τD u, vð Þ + 1

ðt
0
d u, vð Þds ≤ 1

τD u, vð Þ + 1

�
ðt
0
D u, vð Þds = D u, vð Þ

τD u, vð Þ + 1 t,

≤
D u, vð Þ

τD u, vð Þ + 1 since t ∈ 0, 1½ �:

ð68Þ
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Therefore, we have

Q u tð Þð Þ −Q v tð Þð Þj j ≤ D u, vð Þ
τD u, vð Þ + 1 , ∀t ∈ 0, 1½ �: ð69Þ

On taking supremum on both sides of above inequality,
we obtain

Q uð Þ −Q vð Þk k ≤ D u, vð Þ
τD u, vð Þ + 1 : ð70Þ

It yields that

τ −
1

Q uð Þ −Q vð Þk k ≤
−1

D u, vð Þ , ð71Þ

or

τ −
1

d Q uð Þ,Q vð Þð Þ ≤
−1

D u, vð Þ : ð72Þ

By choosing FðμÞ = −1/μ, μ > 0, from the above inequal-
ity, we get

τ + F d Q uð Þ,Q vð Þð Þð Þ ≤ F D u, vð Þð Þ: ð73Þ

Hence, inequality (6) is satisfied. We have defined binary
relation R on X by uRv if and only if uðtÞ ≤ vðtÞ for all t ∈
½0, 1�. Now, consider an R-preserving sequence fung in C½0
, 1� which converges to u ∈ X. Then, we have

u0 tð Þ ≤ u1 tð Þ ≤⋯un tð Þ ≤ ut+1 sð Þ ≤⋯, ð74Þ

which gives us unðtÞ ≤ uðtÞ∀t ∈ ½0, 1�: Therefore, R is d self
closed on X. To show that FixðQÞ is Rs-connected, if u, v ∈
FixðQÞ, then w =max fu, vg ∈ C½0, 1�: Since u ≤w and v ≤
w, thus uRw and vRw. Therefore, all conditions of Theo-
rem 21 are true. Hence, the conclusion holds. ☐

Now, in the situation where upper solution is presented,
we have the following result.

Theorem 32. Consider that in third variable K is nonincreas-
ing and there is τ > 0 such that

K t, s, uð Þ − K t, s, vð Þj j ≤ u tð Þ − v tð Þj j
τD u, vð Þ + 1

, ð75Þ

for all t, s ∈ ½0, 1� and u, v ∈ X, where Dðu, vÞ =max fðdðu, v
Þ, dðu,QuÞ, dðv,QvÞ, ððdðu,QvÞ + dðv,QuÞÞ/2Þg: Then, the
existence of a unique solution of the integral Equation (62) fol-
lows from the existence of an upper solution of (62).

Proof. Let the binary relation on X be defined by

R = u, vð Þ ∈ X × X : u sð Þ ≥ v sð Þ for all t ∈ 0, 1½ �f g: ð76Þ

Now, proceeding as in Theorem 31, we can conclude that
all the assumptions of Theorem 21 are satisfied and it guaran-
tees the existence of a unique solution of (62). ☐
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This paper is aimed at constructing new modified Gamma operators using the second central moment of the classic Gamma
operators. And we will compute the first, second, fourth, and sixth order central moments by the moment computation
formulas, and their quantitative properties are researched. Then, the global results are established in certain weighted spaces and
the direct results including the Voronovskaya-type asymptotic formula, and point-wise estimates are investigated. Also,
weighted approximation of these operators is discussed. Finally, the quantitative Voronovskaya-type asymptotic formula and
Grüss Voronovskaya-type approximation are presented.

1. Introduction

Recently, Karsli et al. [1] constructed and estimated the rate
of convergence for functions with derivatives of bounded
variation on ℝ+ ≔ ð0,∞Þ of new Gamma type operators pre-
serving z2 as (see also [2])

Φlλ tð Þð Þ zð Þ = 2l + 3ð Þ!zl+3
l! l + 2ð Þ!

ð∞
0

tl

z + tð Þ2l+4
λ tð Þdt, z ∈ℝ+:

ð1Þ

In [3], Karsli et al. used analysis methods to obtain the
rate of point-wise convergence for the operators (1). In [4],
Karsli and Özarslan obtained some direct local and global
approximation results for the operators (1). In [5], İzgi stud-
ied some direct results in asymptotic approximation about
the operators (1). In [6], Krech gave a note about the results
of İzgi in [5] and obtained an error estimate for the operators
(1). In [7], Krech gave direct approximation theorems for the
operators (1) in certain weighted spaces. In [8], Cai and Zeng
constructed q-Gamma operators and gave their approxima-
tion properties. In [9], Zhao et al. extended the works of
Cai and Zeng and considered the stancu generalization
of q-Gamma operators. Recently, Cheng et al. constructed
ðp, qÞ-Gamma operators using ðp, qÞ-Beta function of the

second kind and discussed their approximation properties
in [10]. In [11], Zhou et al. extended the works of Cheng
et al. in [10] and constructed ðp, qÞ-Gamma-Stancu opera-
tors. There are many papers about the research and applica-
tion of other Gamma-type operators, and we mention some
of them [12–17].

In this paper, we construct new modified Gamma opera-
tors using the second central moment of the operators (1) as
follows:

Definition 1. For l = 1, 2,⋯ and λ : ℝ+ ⟶ℝ, we construct
new modified Gamma operators by

Ylλ tð Þð Þ zð Þ =
ð∞
0
Kl t, zð Þλ tð Þdt, z ∈ℝ+, ð2Þ

where

Kl t, zð Þ = 2l 2l + 3ð Þ!!zl+1
l!

tl z − tð Þ2
z + tð Þ2l+4

, t, z ∈ℝ+: ð3Þ

The paper is organized as follows: In Section 1, we intro-
duce the history of Gamma operators and construct new
modified Gamma operators using the second central
moment. In Section 2, we obtain the basic results by the
moment computation formulas. And the first, second,
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fourth, and sixth order central moment computation formu-
las and limit equalities are also obtained. In Section 3, we
establish the global approximation results for the operators
(2) in certain weighted spaces. In Sections 4 and 5, we inves-
tigate the direct results including the Voronovskaya-type
asymptotic formula and point-wise estimates in three differ-
ent Lipschitz classes and discuss weighted approximation. In
Section 6, we present a quantitative Voronovskaya-type
asymptotic formula and a Grüss Voronovskaya-type approx-
imation (for the quantitative Voronovskaya type theorem
and Grüss-Voronovskaya theorem for the other operators,
see also [18–24]).

2. Basic Results

In this section, we present certain auxiliary results which will
be used to prove our main theorems for the operators (2).

Lemma 2 (see [1]). For any l ∈ℕ+, p = 0, 1, 2,⋯, l + 2, we
have

φl pð Þ≔ Φlt
pð Þ zð Þ = l + pð Þ! l + 2 − pð Þ!

l! l + 2ð Þ! zp, z ∈ℝ+: ð4Þ

Lemma 3. If we define ϕlðpÞ≔ ðYlt
pÞðzÞ, then there holds the

following relation

2z2

l + 2
ϕl pð Þ = φl p + 2ð Þ − 2φl p + 1ð Þz + φl pð Þz2, ð5Þ

where p = 0, 1,⋯, l, z ∈ℝ+.
Then, the following lemma can be obtained immediately:

Lemma 4. For any l ∈ℕ+, z ∈ℝ+, we have

ϕl 0ð Þ = 1 ; ϕl 1ð Þ = l + 3
l

z ; ϕl 2ð Þ = l + 2ð Þ l + 9ð Þ
l l − 1ð Þ z2, for l > 1 ; ð6Þ

ϕl 3ð Þ = l + 2ð Þ l + 3ð Þ l + 19ð Þ
l l − 1ð Þ l − 2ð Þ z3, for l > 2 ; ð7Þ

ϕl 4ð Þ = l + 2ð Þ l + 3ð Þ l + 4ð Þ l + 33ð Þ
l l − 1ð Þ l − 2ð Þ l − 3ð Þ z4, for l > 3 ; ð8Þ

ϕl pð Þ = l − pð Þ! l + pð Þ! l + 2p2 + 1
� �

l! l + 1ð Þ! zp, for l ≥ p ; ð9Þ

Al zð Þ≔ Yl t − zð Þð Þ zð Þ = 3
l
z ; ð10Þ

Bl zð Þ≔ Yl t − zð Þ2� �
zð Þ = 6l + 24

l l − 1ð Þ z
2, for l > 1 ; ð11Þ

Yl t − zð Þ3� �
zð Þ = 90l + 230

l l − 1ð Þ l − 2ð Þ z
3, for l > 2 ; ð12Þ

Yl t − zð Þ4� �
zð Þ = 60 l2 + 23l + 48

� �
l l − 1ð Þ l − 2ð Þ l − 3ð Þ z

4, for l > 3 ;

ð13Þ

Yl t − zð Þ6� �
zð Þ = 840 l3 + 69l2 + 506l + 768

� �
l l − 1ð Þ l − 2ð Þ l − 3ð Þ l − 4ð Þ l − 5ð Þ z

6 , for l > 5 ;

ð14Þ

lim
l⟶∞

Al zð Þ = 3z ; ð15Þ

lim
l⟶∞

Bl zð Þ = 6z2 ; ð16Þ

lim
l⟶∞

l2 Yl t − zð Þ4� �
zð Þ = 60z4 ; ð17Þ

lim
l⟶∞

l3 Yl t − zð Þ6� �
zð Þ = 840z6: ð18Þ

By the classical Korovkin theorem, we easily obtain the fol-
lowing lemma:

Lemma 5. For all λ ∈ CBðℝ+Þ and any finite interval I ⊂ℝ+,
then the sequence fðYlλðtÞÞðzÞg converges to λ uniformly on
I, where CBðℝ+Þ denotes the set of all real-valued bounded
and continuous functions defined on ℝ+, endowed with the
norm kλk = sup

z∈ℝ+

jλðzÞj.

3. Global Results

In this section, we establish some global results by using cer-
tain Lipschitz classes. We first recall some basic definitions.
Let r ∈ℕ≔ f0, 1, 2,⋯g and define the weighted function
wr as follows:

w0 zð Þ≔ 1 andwr zð Þ≔ 1
1 + zr

for z ∈ℝ+ and r ∈ℕ \ 0f g:
ð19Þ

Meantime, we consider the following subspace Srðℝ+Þ of
Cðℝ+Þ generated by wr :

Sr ℝ+ð Þ≔ λ ∈ C ℝ+ð Þ: wrλ is uniformly continuous and bounded onℝ+f g
ð20Þ

endowedwith thenormkλkr ≔ sup
z∈ℝ+

wrðzÞjλðzÞj forλ ∈ Srðℝ+Þ.
For every λ ∈ Srðℝ+Þ, δ > 0, and α ∈ ð0, 2�, the usual weighted
modulus of continuity, the second-order weighted modulus of
smoothness, and the corresponding Lipschitz classes are,
respectively, defined as

ω1
r λ ; δð Þ≔ sup wr zð Þ λ yð Þ − λ zð Þj j: y − zj j ≤ δ, y, z ∈ℝ+f g ;

ω2
r λ ; δð Þ≔ sup

t∈ 0,δð �
λ z + 2tð Þ − 2λ z + tð Þ + λ zð Þk kr ;

Lip2rα≔ λ ∈ Sr ℝ+ð Þ: ω2
r λ ; δð Þ =O δαð Þ as δ⟶ 0+

� �
:

ð21Þ

Theorem 6. Let r ∈ f0, 1,⋯,lg be fixed. Then, there exists a pos-
itive constant Cr such that
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Yl
1
wr

� �� �����
����
r

≤ Cr: ð22Þ

Furthermore, for all λ ∈ Srðℝ+Þ, we have

Ylλk kr ≤ Cr λk kr: ð23Þ

Thus, Yl is a linear positive operator from Srðℝ+Þ to Srðℝ+Þ
for any r ∈ f0, 1,⋯,lg.

Proof. Inequality (22) is obvious for r = 0. Assume that
l ≥ r ≥ 1, using (6), we have

wr zð Þ Yl
1

wr tð Þ
� �� �

zð Þ =wr zð Þ Yl 1 + trð Þð Þ zð Þ

=wr zð Þ Yl 1ð Þð Þ zð Þ +wr zð Þ Yl t
rð Þð Þ zð Þ

=wr zð Þ +wr zð Þ l − rð Þ! l + rð Þ! l + 2r2 + 1
� �

l! l + 1ð Þ! zr

≤ Crwr zð Þ 1 + zrð Þ
= Cr ,

ð24Þ

where Cr =max f1, sup
l
ððl − rÞ!ðl + rÞ!ðl + 2r2 + 1Þ/l!ðl + 1Þ!Þ

g, and then we obtain (22). Moreover, for every λ ∈ Srðℝ+Þ
and z ∈ℝ+, we have

wr zð Þ Ylλ tð Þð Þ zð Þj j ≤wr zð Þ
ð∞
0
Kl t, zð Þ λ tð Þj jdt

=wr zð Þ
ð∞
0
Kl t, zð Þ λ tð Þj jwr tð Þ

wr tð Þ
dt

≤ λk krwr zð Þ Yl
1

wr tð Þ
� �� �

zð Þ

≤ Cr λk kr:

ð25Þ

Taking the supremum over z ∈ℝ+, we obtain (23).

Theorem 7. For any fixed r ∈ f0, 1,⋯,l − 2g, l ≥ 2, there exists
a positive constant Cr such that

wr zð Þ Yl
t − zð Þ2
wr tð Þ

 ! !
zð Þ ≤ Cr

z2

l
: ð26Þ

Proof. The formula (11) implies (26) for r = 0. If r = 1, then
we obtain

Yl t − zð Þ2 1 + tð Þ� �� �
zð Þ = Yl t − zð Þ2� �� �

zð Þ + Yl t − zð Þ2t� �� �
zð Þ

= Yl t − zð Þ3� �� �
zð Þ + 1 + zð Þ Yl t − zð Þ2� �� �

zð Þ,
ð27Þ

which by (11) and (12) yield (26) for r = 1. Assuming l − 2
≥ r ≥ 2 and using (11) and (6), we obtain

Yl
t − zð Þ2
wr tð Þ

 ! !
zð Þ = Yl t − zð Þ2� �� �

zð Þ + Yl t
r+2� �� �

zð Þ

− 2z Yl t
r+1� �� �

zð Þ + z2 Yl t
rð Þð Þ zð Þ

= 6l + 24
l l − 1ð Þ z

2

+ l − r − 2ð Þ! l + r + 2ð Þ! l + 2 r + 2ð Þ2 + 1
� �

l! l + 1ð Þ! zr+2

− 2 l − r − 1ð Þ! l + r + 1ð Þ! l + 2 r + 1ð Þ2 + 1
� �

l! l + 1ð Þ! zr+2

+ l − rð Þ! l + rð Þ! l + 2r2 + 1
� �

l! l + 1ð Þ! zr+2

= z2

l
6l + 24
l − 1 + l + r + 1ð Þ l + r + 2ð Þ l + 2 r + 2ð Þ2��	

+ 1Þ2 l − r − 1ð Þ l + r + 1ð Þ l + 2 r + 1ð Þ2 + 1
� �

+ l − r − 1ð Þ l − rð Þ l + 2r2 + 1
� �� l − r − 2ð Þ! l + rð Þ!

l − 1ð Þ! l + 1ð Þ! zr



≤
z2

l
6l + 24
l − 1 + 6l2 + Cr,1l + Cr,2

� �
l − r − 2ð Þ! l + rð Þ!

l − 1ð Þ! l + 1ð Þ! zr
 !

≤ Cr
z2

l
1 + zrð Þ,

ð28Þ

where Cr,1 and Cr,1 are two constants only depending on r.
This completes the proof.

Now, for r ∈ f0, 1,⋯,lg, we consider the two spaces
S1r ðℝ+Þ≔ fλ ∈ Srðℝ+Þ: λ′ ∈ Srðℝ+Þg and S2r ðℝ+Þ≔ fλ ∈ Srð
ℝ+Þ: λ′′ ∈ Srðℝ+Þg, and we have the three following
theorems:

Theorem 8. For any fixed r, if λ ∈ S1r ðℝ+Þ, there exists a pos-
itive constant Cr such that

wr zð Þ Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ Cr λ′
�� ��

r

z ffiffi
l

p ð29Þ

for all z ∈ℝ+ and l ≥ r + 2.

Proof. Let z ∈ℝ+. By λðtÞ − λðzÞ = Ð ztλ′ðuÞdu, t ∈ℝ+, Lemma
(11), and the linearity of Yl, we obtain

Ylλ tð Þð Þ zð Þ − λ zð Þ = Yl

ðt
z
λ′ uð Þdu

� �
zð Þ: ð30Þ

Using

ðz
t
λ′ uð Þdu

����
���� ≤ λ′
�� ��

r

ðt
z

1
wr uð Þ du

����
���� ≤ λ′
�� ��

r

1
wr tð Þ

+ 1
wr zð Þ

� �
t − zj j:

ð31Þ

Hence,

wr zð Þ Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ λ′
�� ��

r

� Yl t − zj jð Þ zð Þ +wr zð Þ Yl
t − zj j
wr tð Þ

� �� �
zð Þ

� �
:

ð32Þ
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Applying the well-known Cauchy-Schwarz inequality, we
can obtain

Yl ∣ t − z ∣ð Þ zð Þ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yl t − zð Þ2� �

zð Þ
q

,

Yl
∣t − z ∣
wr tð Þ

� �� �
zð Þ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yl

1
wr tð Þ
� �� �

zð Þ
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Yl
t − zð Þ2
wr tð Þ

� �� �
zð Þ

s
:

ð33Þ

Combining (22) and (26), we can get the required result.

Theorem 9. For any fixed r, if λ ∈ S1r ðℝ+Þ, then there exists a
positive constant Cr such that

wr zð Þ Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ Crω
1
r λ ; z ffiffi

l
p

� �
ð34Þ

for all z ∈ℝ+ and l ≥ r + 2.

Proof. Let z ∈ℝ+. We denote the Steklov means of λ by λs,
s ∈ℝ+:

λs zð Þ = 1
s

ðs
0
λ u + zð Þdu, z, s ∈ℝ+: ð35Þ

It is obvious that

λs zð Þ − λ zð Þ = 1
s

ðs
0
λ u + zð Þ − λ zð Þð Þdu,

λs′ zð Þ = 1
s
λ z + sð Þ − λ zð Þð Þ

ð36Þ

for z, s ∈ℝ+. Hence, if λ ∈ S1r ðℝ+Þ, then λs ∈ S2r ðℝ+Þ for every
fixed s ∈ℝ+. Furthermore, we have

λs − λk kr ≤ ω1
r λ ; sð Þ, λs′

�� ��
r
≤
1
s
ω1
r λ ; sð Þ: ð37Þ

By

wr zð Þ Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤wr zð Þ Yl λ tð Þ − λs tð Þð Þð Þ zð Þj j
+wr zð Þ Ylλs tð Þð Þ zð Þ − λs zð Þj j +wr zð Þ λ zð Þ − λs zð Þj j:

ð38Þ

Using (23) and (37), we have

wr zð Þ Yl λ tð Þ − λs tð Þð Þð Þ zð Þj j ≤ Cr λ − λsk kr ≤ Crω
1
r λ ; sð Þ

ð39Þ

for any z, s ∈ℝ+. From (29) and (37), we have

wr zð Þ Ylλs tð Þð Þ zð Þ − λs zð Þj j ≤ Cr λs′k kr
z ffiffi
l

p ≤ Cr
1
s
ω1
r λ ; sð Þ z ffiffi

l
p :

ð40Þ

By (37), we have

wr zð Þ λ zð Þ − λs zð Þj j ≤ λ − λsk kr ≤ ω1
r λ ; sð Þ ð41Þ

for any z, s ∈ℝ+. Finally, we have

wr zð Þ Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ ω1
r λ ; sð Þ Cr +

1
s
Cr

z ffiffi
l

p + 1
� �

ð42Þ

for any z, s ∈ℝ+. Choosing s = z/
ffiffi
l

p
, the proof is proved.

Theorem 10. Defining a new operator,

Y∗
l λ tð Þð Þ zð Þ = Ylλ tð Þð Þ zð Þ − λ z + Al zð Þð Þ + λ zð Þ: ð43Þ

For any fixed r, if λ ∈ S2r ðℝ+Þ, then there exists a positive
constant Cr such that

wr zð Þ Y∗
l λ tð Þð Þ zð Þ − λ zð Þj j ≤ Cr λ′′

�� ��
r

z2

l
, ð44Þ

for all z ∈ℝ+ and l ≥ r + 2.

Proof. Using Taylor’s expansion, we have

λ tð Þ − λ zð Þ = t − zð Þλ′ zð Þ +
ðt
z
t − uð Þλ′′ uð Þdu, z, t ∈ℝ+:

ð45Þ

By ðY∗
l ðt − zÞÞðzÞ = 0 and ðY∗

l 1ÞðzÞ = 1, we have

Y∗
l λ tð Þð Þ zð Þ − λ zð Þj j ≤ Y∗

l λ tð Þ − λ zð Þð Þð Þ zð Þ
≤ Y∗

l

ðt
z
t − uð Þλ′′ uð Þdu

� �� �
zð Þ Yl

ðt
z
t − uð Þλ′′ uð Þdu

� �� �
zð Þ

����
−
ðz+Al zð Þ

z
z + Al zð Þ − uð Þλ′′ uð Þdu

����:
ð46Þ

Since

ðt
z
t − uð Þλ′′ uð Þ

����
���� ≤ λ′′
�� ��

r
t − zð Þ2
2

1
wr zð Þ + 1

wr tð Þ
� �

,

ðz+Al zð Þ

z
z + Al zð Þ − uð Þλ′′ uð Þdu

����
���� ≤ λ′′
�� ��

r

2wr zð Þ Al zð Þð Þ2,

ð47Þ
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we have

wr zð Þ Y∗
l λ tð Þð Þ zð Þ − λ zð Þj j ≤ λ′′

�� ��
r

2

� Bl zð Þ +wr zð Þ Yl
t − zð Þ2
wr tð Þ

 ! !
zð Þ

 !

+
λ′′
�� ��

r

2 Al zð Þð Þ2:

ð48Þ

Combining Lemma 4 and (26), we have

wr zð Þ Y∗
l λ tð Þð Þ zð Þ − λ zð Þj j ≤ Cr λ′′

�� ��
r

z2

l
ð49Þ

for all z ∈ℝ+ and l ≥ r + 2. The theorem is completed.

Theorem 11. For any fixed r, if λ ∈ S2r ðℝ+Þ, then there exists a
positive constant Cr such that

wr zð Þ Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ Crω
2
r λ ; z ffiffi

l
p

� �
+ ω1

r λ ; Al zð Þð Þ

ð50Þ

for all z ∈ℝ+ and l ≥ r + 2. In particular, if λ ∈ Lip2rα for some
α ∈ ð0, 2�, then

wr zð Þ Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ Cr
z2

l

� �α/2
+ ω1

r λ ; Al zð Þð Þ

ð51Þ

holds.

Proof. Let λ ∈ Srðℝ+Þ, and the Steklov means ~λsðzÞ of the sec-
ond order of λ defined by

~λs zð Þ = 4
s2

ðs/2
0

ðs/2
0

2λ z + u + vð Þ − λ z + 2u + 2vð Þð Þdudv

ð52Þ

for z, s ∈ℝ+. By simple computation, we have

λ − ~λs

��� ���
r
≤ ω2

r λ ; sð Þ,

~λs′′
��� ���

r
≤

9
s2
ω2
r λ ; sð Þ:

ð53Þ

Meantime, ~λs ∈ S2r ðℝ+Þ while λ ∈ Srðℝ+Þ. Using the fol-
lowing inequality,

Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ Y∗
l λ tð Þ − ~λs tð Þ
��� ���
 �

zð Þ + λ zð Þ − ~λs zð Þ
��� ���

+ Y∗
l
~λs tð Þ


 �
zð Þ − ~λs zð Þ

��� ���
+ λ z + Al zð Þð Þ − λ zð Þj j:

ð54Þ

Combining (23) and (44), we have

wr zð Þ Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ Cr + 3ð Þ λ − ~λs

��� ���
r

+ Cr
~λs′′
��� ���

r

z2

l
wr zð Þ λ z +Al zð Þð Þ − λ zð Þj j

≤ Crω
2
r λ ; sð Þ 1 + 1

s2
z2

l

� �
+ ω1

r λ ; Al zð Þð Þ:
ð55Þ

Hence, choosing s = z/
ffiffi
l

p
, the first part of the proof is

proved. The second part of the proof can be directly observed
from the definition of the space Lip2rα.

4. Direct Results

4.1. Voronovskaya-Type Theorem

Theorem 12. If λ ∈ CBðℝ+Þ and λ′′ exists at a point z ∈ℝ+,
then

lim
l⟶∞

l Ylλ tð Þð Þ zð Þ − λ zð Þð Þ = 3z λ′ zð Þ + zλ′′ zð Þ

 �

: ð56Þ

Proof. By the Taylor’s expansion formula for λ, we have

λ tð Þ = λ zð Þ + λ′ zð Þ t − zð Þ + 1
2 λ

′′ zð Þ t − zð Þ2 + R t ; zð Þ t − zð Þ2,
ð57Þ

where

R t ; zð Þ =
λ tð Þ − λ zð Þ − λ′ zð Þ t − zð Þ − 1/2λ′′ zð Þ t − zð Þ2

t − zð Þ2 , t ≠ z ;

0, t = z:

8><
>:

ð58Þ

Applying the L’Hospital’s Rule,

lim
t⟶z

R t ; zð Þ = 1
2 lim
t⟶z

λ′ tð Þ − λ′ zð Þ
t − z

−
1
2 λ

′′ zð Þ = 0: ð59Þ

Thus, Rð:;zÞ ∈ CBðℝ+Þ. Consequently, we can write

Ylλ tð Þð Þ zð Þ − λ zð Þ = Al zð Þλ′ zð Þ + 1
2Bl zð Þλ′′ zð Þ

+ Yl R t ; zð Þ t − zð Þ2� �� �
zð Þ:

ð60Þ

By the Cauchy-Schwarz inequality, we have

l Yl R t ; zð Þ t − zð Þ2� �� �
zð Þ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yl R

2 t ; zð Þð Þð Þ zð Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 Yl t − zð Þ4� �� �
zð Þ

q
:

ð61Þ

We observe that R2ðz ; zÞ = 0 and R2ðt ; zÞ ∈ CBðℝ+Þ.
Then, it follows in Lemma 5 that
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lim
l⟶∞

Yl R
2 t ; zð Þ� �� �

zð Þ = R2 z ; zð Þ = 0: ð62Þ

Hence, from (17), we can obtain

lim
l⟶∞

l Yl R t ; zð Þ t − zð Þ2� �� �
zð Þ = 0: ð63Þ

Combining (15) and (16), we complete the proof of
Theorem 12.

Corollary 13. If λ, λ′′ ∈ CBðℝ+Þ, then we have

lim
l⟶∞

l Ylλ tð Þð Þ zð Þ − λ zð Þð Þ = 3z λ′ zð Þ + zλ′′ zð Þ

 �

, ð64Þ

uniformly with respect to any finite interval I ⊂ℝ+.

4.2. Point-Wise Estimates. In this subsection, we establish
three point-wise estimates of the operators (2). First, we
obtain the rate of convergence locally by using functions
belonging to the Lipschitz class. We denote that λ ∈ CBðℝ+Þ
is in LipMðγ,DÞ, γ ∈ ð0, 1�, and D ⊂ℝ+ if it satisfies the fol-
lowing condition:

λ tð Þ − λ zð Þj j ≤M t − zj jγ, t ∈D, z ∈ℝ+, ð65Þ

where M is a positive constant depending only on γ and λ.

Theorem 14. If λ ∈ CBðℝ+Þ
T

LipMðγ,DÞ, then for any z ∈
ℝ+, we have

Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤M Bl zð Þð Þγ/2 + 2d z ;Dð Þ� �
, ð66Þ

where dðz ;DÞ = inf fjt − zj: t ∈Dg denotes the distance
between z and D.

Proof. Let �D be the closure of D. Using the properties of
infimum, there is at least a point t0 ∈ �D such that dðz ;DÞ =
jz − t0j. By the triangle inequality

λ tð Þ − λ zð Þj j ≤ λ tð Þ − λ t0ð Þj j + λ zð Þ − λ t0ð Þj j, ð67Þ

we have

Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ Yl λ tð Þ − λ t0ð Þj jð Þ zð Þ + Yl λ zð Þ − λ t0ð Þj jð Þ zð Þ
≤M Yl t − t0j jγð Þ zð Þ + z − t0j jγf g
≤M Yl t − zj jγ + z − t0j jγð Þð Þ zð Þ + z − t0j jγf g
≤M Yl t − zj jγð Þ zð Þ + 2 z − t0j jγf g:

ð68Þ

Choosing p = 2/γ and q = 2/2 − γ and using the well-

known Hölder inequality, we have

Ylλ tð Þð Þ zð Þ − λ zð Þj j
≤M Yl t − zj jpγ� �

zð Þ� �1/p Yl1qð Þ zð Þð Þ1/q + 2dγ z ;Dð Þ
n o

≤M Yl t − zð Þ2� �
zð Þ� �γ/2 + 2dγ z ;Dð Þ

n o
≤M Bl zð Þð Þγ/2 + 2dγ z ;Dð Þ� �

:

ð69Þ

Next, we obtain the local direct estimate of the operators
(2), using the Lipcshitz type maximal function of the order γ
introduced by Lenze [25] as

~ωγ λ ; zð Þ = sup
z,t∈ℝ+,t≠z

λ tð Þ − λ zð Þj j
t − zj jγ , γ ∈ 0, 1ð �: ð70Þ

Theorem 15. If λ ∈ CBðℝ+Þ, then for any z ∈ℝ+, we have

Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ ~ωγ λ ; zð Þ Bl zð Þð Þγ/2: ð71Þ

Proof. From equation (70), we have

Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ ~ωγ λ ; zð Þ Yl t − zð Þγð Þ zð Þ: ð72Þ

Applying the well-known Hölder inequality, we have

Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ ~ωγ λ ; zð Þ Yl t − zð Þ2� �
zð Þ� �γ/2

= ~ωγ λ ; zð Þ Bl zð Þð Þγ/2:
ð73Þ

Finally, we establish point-wise estimate of the operators
(2) in the following Lipschitz-type space (see [26]) with two
distinct parameters μ1, μ2 ∈ℝ+:

Lip μ1,μ2ð Þ
M γð Þ≔ λ ∈ C ℝ+ð Þ: λ tð Þ − λ zð Þj j ≤M

t − zj jγ
t + μ1z

2 + μ2z

	 

, t, z ∈ℝ+,

ð74Þ

where γ ∈ ð0, 1�, M, is a positive constant depending only on
γ, μ1, μ2 and λ.

Theorem 16. If λ ∈ Lipðμ1 ,μ2ÞM ðγÞ, then for any z ∈ℝ+, we have

Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤M
Bl zð Þ

μ1z
2 + μ2z

� �γ/2
: ð75Þ

Proof. Applying the well-known Hölder inequality with
p = 2/γ and q = 2/2 − γ, we have
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Ylλ tð Þð Þ zð Þ − λ zð Þj j ≤ Yl λ tð Þ − λ zð Þj jð Þ zð Þ
≤ YlM

t − zj jγ
t + μ1z

2 + μ2z

� �
zð Þ

≤
M

μ1z
2 + μ2z

Yl t − zj jγð Þ zð Þ

≤
M

μ1z
2 + μ2z

Yl t − zj jpγ� �
zð Þ� �1/p Yl1qð Þ zð Þð Þ1/q

=M
Bl zð Þ

μ1z
2 + μ2z

� �γ/2
:

ð76Þ

Thus, the proof is completed.

5. Weighted Approximation

Let B2ðℝ+Þ be the set of all functions λ defined onℝ+ satisfy-
ing the condition ∣λðzÞ ∣ ≤Mλð1 + z2Þ with an absolute con-
stant Mλ > 0 which depends only on λ. C2ðℝ+Þ denotes the
subspace of all continuous functions λ ∈ B2ðℝ+Þ with the
norm kλk2 = sup

z∈ℝ+

ðjλðzÞj/1 + z2Þ. By C0
2ðℝ+Þ, we denote the

subspace of all functions f ∈ C2ðℝ+Þ for which lim
z⟶+∞

jλðzÞj
/1 + z2 is finite.

Theorem 17. If λ ∈ C0
2ðℝ+Þ and κ > 0, we have

lim
l⟶∞

sup
z∈ℝ+

Ylλ tð Þð Þ zð Þ − λ zð Þj j
1 + z2ð Þ1+κ

= 0: ð77Þ

Proof. Let z0 ∈ℝ+ be arbitrary but fixed.

sup
z∈ℝ+

Ylλ tð Þð Þ zð Þ − λ zð Þj j
1 + z2ð Þ1+κ

≤ sup
z∈ 0,z0ð Þ

Ylλ tð Þð Þ zð Þ − λ zð Þj j
1 + z2ð Þ1+κ

+ sup
z∈ z0,∞½ Þ

Ylλ tð Þð Þ zð Þ − λ zð Þj j
1 + z2ð Þ1+κ

≤ Ylλ tð Þð Þ zð Þ − λk k 0,z0ð Þ

+ λk k2 sup
z∈ z0,∞½ Þ

Yl 1 + t2
� �� �

zð Þ
1 + z2ð Þ1+κ

+ sup
z∈ z0,∞½ Þ

λ zð Þj j
1 + z2ð Þ1+κ

≔ I1 + I2 + I3:

ð78Þ

Applying jλðzÞj ≤ kλk2ð1 + z2Þ, we have

I3 = sup
z∈ z0,∞½ Þ

λ zð Þj j
1 + z2ð Þ1+κ

≤ sup
z∈ z0,∞½ Þ

λk k2 1 + z2
� �

1 + z2ð Þ1+κ
≤

λk k2
1 + z20
� �κ :

ð79Þ

Let ε > 0. Since lim
l⟶∞

sup
z∈½z0,∞Þ

ðYlð1 + t2ÞÞðzÞ/ð1 + z2Þ = 1,

there exists L1 ∈ℕ, such that for all l > L1,

λk k2 Yl 1 + t2
� �� �

zð Þ
1 + z2ð Þ1+κ

≤
λk k2

1 + z2ð Þ1+κ
1 + z2
� �

+ ε

3 λk k2

� �

≤
λk k2

1 + z2ð Þκ + ε

3 :

ð80Þ

Hence,

λk k2 sup
z∈ z0,∞½ Þ

Yl 1 + t2
� �� �

zð Þ
1 + z2ð Þ1+κ

≤
λk k2

1 + z20
� �κ + ε

3 ,∀l ≥ L1: ð81Þ

Thus,

I2 + I3 <
2 λk k2
1 + z20
� �κ + ε

3 ,∀l ≥ L1: ð82Þ

Next, for sufficiently large z0 such that kλk2/ð1 + z20Þκ <
ε/6, then I2 + I3 < 2ε/3, ∀l ≥ L1. Applying Lemma 5, there
exists L2 ∈ℕ, such that for all l > L2,

Ylλ tð Þð Þ zð Þ − λk k 0,z0ð Þ <
ε

3 : ð83Þ

Let L =max fL1, L2g. Combining (80) (82), and (83), we
have

sup
z∈ℝ+

Ylλ tð Þð Þ zð Þ − λ zð Þj j
1 + z2ð Þ1+κ

< ε,∀l ≥ L: ð84Þ

Hence, the proof of Theorem 17 is completed.

Theorem 18. If λ ∈ C0
2ðℝ+Þ, then we have

lim
l⟶∞

Ylλ tð Þð Þ zð Þ − λk k2 = 0: ð85Þ

Proof. Applying the Korovkin theorem [27], it is sufficient to
show the following three conditions:

lim
l⟶∞

Ylt
pð Þ zð Þ − zpk k2 = 0, p = 0, 1, 2: ð86Þ

Since ðYl1ÞðzÞ = 1, the condition (86) holds for p = 0.
From Lemma (11), we have

Yltð Þ zð Þ − zk k2 = sup
z∈ℝ+

1
1 + z2

l + 3
l

z − z
����

���� ≤ 3
l
: ð87Þ

Thus, lim
l⟶∞

kðYltÞðzÞ − zk2 = 0. Finally, we have

Ylt
2� �

zð Þ − z2
�� ��

2 = sup
z∈ℝ+

1
1 + z2

l + 2ð Þ l + 9ð Þ
l l − 1ð Þ z2 − z2

����
���� ≤ 12l + 19

l l − 1ð Þ ,

ð88Þ

which implies that lim
l⟶∞

kðYlt
2ÞðzÞ − z2k2 = 0.
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6. Some Voronovskaya-Type
Approximation Theorem

As is known, if λ ∈ Cðℝ+Þ is not uniform, the limit lim
δ⟶0+

ωðλ ;
δÞ = 0may be not true. In [28], Yüksel and Ispir defined the fol-
lowing weightedmodulus of continuity:

Ω λ ; δð Þ = sup
z∈ℝ+,0<h≤δ

λ z + hð Þ − λ zð Þj j
1 + z2ð Þ 1 + h2

� � for λ ∈ C0
2 ℝ+ð Þ ð89Þ

andprovedthepropertiesofmonotoneincreasingaboutΩðλ ; δÞ
as δ > 0, lim

δ⟶0+
Ωðλ ; δÞ = 0, and the inequality

Ω λ ; τδð Þ ≤ 2 1 + τð Þ 1 + δ2
� �

Ω λ ; δð Þ, τ > 0: ð90Þ

For any λ ∈ C0
2ðℝ+Þ, it follows from (89) and (90) that

λ tð Þ − λ zð Þj j ≤ 1 + t − zð Þ2� �
1 + z2
� �

Ω λ ; t − zj jð Þ
≤ 2 1 + t − zj j

δ

� �
1 + δ2
� �

Ω λ ; δð Þ 1 + t − zð Þ2� �
1 + z2
� �

:

ð91Þ

In the next theorem, we obtain the degree of approximation
ofλbytheoperators(2) intheweightedspaceofcontinuousfunc-
tions C0

2ðℝ+Þ in terms of the weighted modulus of smoothness
Ωðλ ; δÞ, δ > 0.

6.1. Quantitative Voronovskaya-Type Theorem

Theorem 19. If λ ∈ C0
2ðℝ+Þ satisfies λ′, λ′′ ∈ C0

2ðℝ+Þ, then for
sufficiently large l and any z ∈ℝ+,

l Ylλ tð Þð Þ zð Þ − λ zð Þ − λ′ zð ÞAl zð Þ − λ′′ zð Þ
2!

Bl zð Þ
�����

����� ≤O 1ð ÞΩ λ′′ ; 1ffiffi
l

p
� �

:

ð92Þ

Proof. By Taylors’ expansion formula for λ, we have

λ tð Þ = λ zð Þ + λ′ zð Þ t − zð Þ + λ′′ yð Þ
2! t − zð Þ2

= λ zð Þ + λ′ zð Þ t − zð Þ + λ′′ zð Þ
2! t − zð Þ2 + R1 t, zð Þ,

ð93Þ

where jy − zj ≤ jt − zj and hence

R1 t, zð Þ = λ′′ yð Þ − λ′′ zð Þ
2! t − zð Þ2: ð94Þ

Applying the inequality (91) of the weighted modulus of
continuity, we have

λ′′ yð Þ − λ′′ zð Þ�� �� ≤ 1 + y − zð Þ2� �
1 + z2
� �

Ω λ′′ ; y − zj j

 �

≤ 1 + t − zð Þ2� �
1 + z2
� �

Ω λ′′ ; t − zj j

 �

≤ 2 1 + t − zj j
δ

� �
1 + δ2
� �

Ω λ′′ ; δ

 �

� 1 + t − zð Þ2� �
1 + z2
� �

≤

4 1 + δ2
� �2 1 + z2

� �
Ω λ′′ ; δ

 �

, t − zj j ≤ δ,

4 1 + δ2
� �2 1 + z2

� �
Ω λ′′ ; δ

 � t − zð Þ4

δ4
, t − zj j > δ,

8>><
>>:

≤ 4 1 + δ2
� �2 1 + z2

� �
Ω λ′′ ; δ

 �

1 + t − zð Þ4
δ4

 !
:

ð95Þ

Combining (94) and (95) and choosing δ ∈ ð0, 1Þ, we
have

R1 t, zð Þj j ≤ 2 1 + δ2
� �2 1 + z2

� �
Ω λ′′ ; δ

 �

1 + t − zð Þ4
δ4

 !
t − zð Þ2:

ð96Þ

Using the operator (2) and Lemma 4 on both sides of
(94), we have

Ylλ tð Þð Þ zð Þ − λ zð Þ − λ′ zð ÞAl zð Þ − λ′′ zð Þ
2! Bl zð Þ

�����
�����

≤ Yl R1 t, zð Þj jð Þ zð Þ:
ð97Þ

Applying (16), (18), and (96), we have

Yl R1 t, zð Þj jð Þ zð Þ ≤ 2 1 + δ2
� �2 1 + z2

� �
Ω λ′′ ; δ

 �

� Yl t − zð Þ2 + t − zð Þ6
δ4

 ! !
zð Þ

≤ 2 1 + δ2
� �2 1 + z2

� �
Ω λ′′ ; δ

 �

� Bl zð Þ + 1
δ4

Yl t − zð Þ6� �
zð Þ

� �

≤ 2 1 + δ2
� �2 1 + z2

� �
Ω λ′′ ; δ

 �

� O
1
l

� �
+ 1
δ4

O
1
l3

� �� �
:

ð98Þ

Choosing δ = 1/
ffiffi
l

p
, we have

l Yl R1 t, zð Þj jð Þ zð Þ ≤O 1ð ÞΩ λ′′ ; 1ffiffi
l

p
� �

: ð99Þ

Combining (97)-(99), we complete the proof ofTheorem19.

6.2. Grüss Voronovskaya-Type Theorem
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Theorem 20. If λ, μ ∈ C0
2ðℝ+Þ satisfy λμ, λ′, μ′, ðλμÞ′, λ′′, μ′′

and ðλμÞ′′ ∈ C0
2ðℝ+Þ. Then, for any z ∈ℝ+,

lim
l⟶∞

l Yl λ · μð Þ tð Þð Þ zð Þ − Ylλ tð Þð Þ zð Þ · Ylμ tð Þð Þ zð Þð Þ = 6λ′ zð Þμ′ zð Þz2:

ð100Þ

Proof. Using the equalities

λ · μð Þ zð Þ = λ zð Þ · μ zð Þ, λ · μð Þ′ zð Þ = λ′ zð Þ · μ zð Þ + λ zð Þ · μ′ zð Þ,
λ · μð Þ′′ zð Þ = λ′′ zð Þ · μ zð Þ + 2λ′ zð Þ · μ′ zð Þ + λ zð Þ · μ′′ zð Þ,

ð101Þ

by simple computations, for any z ∈ℝ+, we have

Yl λ · μð Þ tð Þð Þ zð Þ − Ylλ tð Þð Þ zð Þ · Ylμ tð Þð Þ zð Þ

= Yl λ · μð Þ tð Þð Þ zð Þ − λ · μð Þ zð Þ − λ · μð Þ′ zð ÞAl zð Þ − λ · μð Þ′′ zð Þ
2! Bl zð Þ

( )

− μ zð Þ Ylλ tð Þð Þ zð Þ − λ zð Þ − λ′ zð ÞAl zð Þ − λ′′ zð Þ
2! Bl zð Þ

( )

− Ylλ tð Þð Þ zð Þ Ylμ tð Þð Þ zð Þ − μ zð Þ − μ′ zð ÞAl zð Þ − μ′′ zð Þ
2! Bl zð Þ

( )

+ 1
2!Bl zð Þ λ zð Þ · μ′′ zð Þ + 2λ′ zð Þ · μ′ zð Þ − μ′′ zð Þ · Ylλ tð Þð Þ zð Þ

n o
+Al zð Þ λ zð Þ · μ′ zð Þ − μ′ zð Þ · Ylλ tð Þð Þ zð Þ

n o
:

ð102Þ

By using (16), Lemma 5, and Theorem 19, we have

lim
l⟶∞

l Yl λ · μð Þ tð Þð Þ zð Þ − Ylλ tð Þð Þ zð Þ · Ylμ tð Þð Þ zð Þð Þ = 6λ′ zð Þμ′ zð Þz2,

ð103Þ

which proves our theorem.
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In this article, we purpose to study some approximation properties of the one and two variables of the Bernstein-Schurer-type
operators and associated GBS (Generalized Boolean Sum) operators on a symmetrical mobile interval. Firstly, we define the
univariate Bernstein-Schurer-type operators and obtain some preliminary results such as moments, central moments, in
connection with a modulus of continuity, the degree of convergence, and Korovkin-type approximation theorem. Also, we
derive the Voronovskaya-type asymptotic theorem. Further, we construct the bivariate of this newly defined operator, discuss
the order of convergence with regard to Peetre’s K-functional, and obtain the Voronovskaya-type asymptotic theorem. In
addition, we consider the associated GBS-type operators and estimate the order of approximation with the aid of mixed
modulus of smoothness. Finally, with the help of the Maple software, we present the comparisons of the convergence of the
bivariate Bernstein-Schurer-type and associated GBS operators to certain functions with some graphical illustrations and error
estimation tables.

1. Introduction

In [1], Bernstein suggested his polynomials that still inspire
many studies today as follows:

Br μ ; xð Þ = 〠
r

j=0

r

j

 !
xj 1 − xð Þr−jμ j

r

� �
, x ∈ 0, 1½ �, ð1Þ

for any r ∈ℕ and any μ ∈ C½0, 1�.
In 1962, the operators Srðμ ; xÞ: C½0, p + 1�⟶ C½0, 1�,

which are called Bernstein-Schurer, are proposed by Schurer
[2] as follows:

Sr μ ; xð Þ = 〠
r+p

j=0

r + p

j

 !
xj 1 − xð Þr+p−jμ j

r

� �
, x ∈ 0, 1½ �,

ð2Þ
for any r ∈ℕ and μ ∈ C½0, p + 1�.

Very recently, many modifications and generalizations of
the Bernstein or Bernstein-Schurer operators for univariate
and bivariate cases are discussed by many authors. For
instance, Acar et al. [3] established local and global approxi-
mation results in terms of modulus of continuity for a new
type of the Bernstein-Durrmeyer operators on mobile inter-
val. Izgi [4] presented a new type of the Bernstein polyno-
mials and studied several approximation results of the
univariate and bivariate of these operators. For the parameter
α ∈ℝ, Chen et al. [5] defined a new generalization of the
Bernstein operator and derived the order of convergence
and Voronovskaya-type asymptotic relation for the α −
Bernstein operator. Kajla and Acar [6] constructed a new kind
of the α − Bernstein operator and studied a uniform conver-
gence estimate, some direct results involving the asymptotic
theorems for these operators. Acar et al. [7] introduced the
Kantorovich modifications of the ðp, qÞ − Bernstein operators
for bivariate functions using a new ðp, qÞ − integral and
obtained the uniform convergence and rate of approximation
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in terms of modulus of continuity for these operators. Further,
for λ ∈ ½−1, 1�, Cai [8] introduced the Bézier version of the
Kantorovich-type λ − Bernstein polynomials and gained the
global and direct approximation theorems. Acar and Kajla
[9] introduced an extension of the bivariate generalized Bern-
stein operators with nonnegative real parameters and studied
the degree of approximation with regard to Peetre’s K-func-
tional and Lipschitz-type functions. Bărbosu [10] demon-
strated the uniform convergence and estimated the degree of
approximation of the bivariate of the Bernstein-Schurer oper-
ators. Căbulea [11] considered the generalizations of the Kan-
torovich and Durrmeyer type of the Bernstein-Schurer
operators and evaluated in connection with the modulus of
continuity the order of approximation of these operators.
Also, for some recent works, we can refer the readers to
([12–23]).

By the motivation of the all the above-mentioned works,
we define the univariate Bernstein-Schurer-type operators on
a symmetrical mobile interval. Let the intervals be Dr = ½−r/
ðr + 1Þ − p, r/ðr + 1Þ + p�, I = ½−1, 1�, and CðDrÞ be the set of
all continuous and bounded functions on Dr: For a function
μ ∈ CðDrÞ and x ∈Dr , the univariate Bernstein-Schurer
operators Fr : CðDrÞ⟶ CðIÞ are defined as

Fr μ ; xð Þ = r + 1
2r

� �r+p
〠
r+p

j=0
φp
r,j xð Þμ 2j − r

r + 1

� �
, ð3Þ

where ∈ℕ, p ∈ℕ0 =ℕ ∪ f0g, φp
r,jðxÞ =

r + p

j

 !
ðr/ðr + 1Þ +

xÞjðr/ðr + 1Þ − xÞr+p−j.
The goal of the present work is to obtain some approxi-

mation features of the operators given by (3). We show the
uniform convergence, estimate the degree of convergence
with the help of modulus of continuity, and prove the
Voronovskaya-type asymptotic theorem for the (3) opera-
tors. Next, we define the bivariate of (3) operators, compute
the order of convergence by using Peetre’s K-functional,
and derive the Voronovskaya-type asymptotic theorem for
the bivariate case. Further, we construct the associated GBS
type of bivariate operators and estimate their degree of con-
vergence in terms of mixed modulus of smoothness. Finally,
by the help of the Maple software, we give comparisons of the
convergence of bivariate of (3) operators and related GBS
operators to the certain functions with some graphics and
error estimation tables.

2. Main Results

Lemma 1. Let the operators Frðμ ; xÞ be defined by (3). Then,
for all x ∈Dr , the following moments verify

Fr 1 ; xð Þ = 1, ð4Þ

Fr t ; xð Þ = x + p r + 1ð Þx + rð Þ
r r + 1ð Þ , ð5Þ

Fr t2 ; x
� �

= x2 + p2 + 2pr − p − r
� �

r2
x2 + 2p r + pð Þ

r r + 1ð Þ x + p2 + p + r

r + 1ð Þ2 ,

ð6Þ

Fr t3 ; x
� �
= x3 + p3 + 3pr2 + 3p2r − 3p2 − 3r2 − 3pr + 2p + 2r

� �
r3

x3

+ 3p r + pð Þ r + p − 1ð Þ
r2 r + 1ð Þ x2 + r + pð Þ 3p2 + 3p + 3r − 2

� �
r r + 1ð Þ2 x

+ p p2 + 3p + 3r
� �

r + 1ð Þ3 ,

ð7Þ

Fr t4 ; x
� �
= x4 +

�
p4 + 4p3r + 6p2r2 + 4pr3 − 6p3 − 6r3 − 18pr2 − 18p2r

r4

+ 11p2 + 22pr + 11r2 − 6p − 6r
r4

x4
�

+ 4 p − 1ð Þ r + pð Þ r + p − 1ð Þ r + p − 2ð Þ
r3 r + 1ð Þ x3

+ 2 r + pð Þ r + p − 1ð Þ 3p2 − 3p − 3r + 8
� �

r2 r + 1ð Þ2 x2

+ 4 r + pð Þ p3 − 3pr − 3r2 + 7p + 9r − 6
� �

r r + 1ð Þ3 x

+ p4 + 2p3 − 6p2r − 12pr2 − 4r3 + 15p2 + 30pr + 15r2 − 10p − 10r

r + 1ð Þ4 :

ð8Þ

Proof. From (3), it becomes

Fr 1 ; xð Þ = r + 1
2r

� �r+p
〠
r+p

j=0

r + p

j

 !
r

r + 1 + x
� �j r

r + 1 − x
� �r+p−j

= r + 1
2r

� �r+p 2r
r + 1

� �r+p
= 1,

Fr t ; xð Þ = r + 1
2r

� �r+p
〠
r+p

j=0

r + p

j

 !
r

r + 1 + x
� �j

� r
r + 1 − x
� �r+p−j 2j − r

r + 1

� �

= r + 1
2r

� �r+p 2 r + pð Þ
r + 1 〠

r+p−1

j=0

r + p − 1

j

 !

� r
r + 1 + x
� �j+1 r

r + 1 − x
� �r+p−j−1

−
r

r + 1

� r + 1
2r

� �r+p
〠
r+p

j=0

r + p

j

 !
r

r + 1 + x
� �j r

r + 1 − x
� �r+p−j

= r + 1
2r

2 r + pð Þ
r + 1

r
r + 1 + x
� �

−
r

r + 1 = x + p r + 1ð Þx + rð Þ
r r + 1ð Þ ,
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Fr t2 ; x
� �

= r + 1
2r

� �r+p
〠
r+p

j=0

r + p

j

 !
r

r + 1 + x
� �j

� r
r + 1 − x
� �r+p−j 2j − r

r + 1

� �2

= r + 1
2r

� �r+p 4 r + pð Þ r + p − 1ð Þ
r + 1ð Þ2 〠

r+p−2

j=0

r + p − 2

j

 !

� r
r + 1 + x
� �j+2 r

r + 1 − x
� �r+p−j−2

+ r + 1
2r

� �r+p 4 r + pð Þ
r + 1ð Þ2 〠

r+p−1

j=0

r + p − 1

j

 !

� r
r + 1 + x
� �j+1 r

r + 1 − x
� �r+p−j−1

−
r + 1
2r

� �r+p

� 4r r + pð Þ
r + 1ð Þ2 〠

r+p−1

j=0

r + p − 1

j

 !
r

r + 1 + x
� �j+1

� r
r + 1 − x
� �r+p−j−1

+ r + 1
2r

� �r+p r
r + 1
� �2

〠
r+p

j=0

r + p

j

 !

� r
r + 1 + x
� �j r

r + 1 − x
� �r+p−j

= r + 1
2r

� �2 4 r + pð Þ r + p − 1ð Þ
r + 1ð Þ2

r
r + 1 + x
� �2

+ r + 1
2r

� � 4 r + pð Þ
r + 1ð Þ2

r
r + 1 + x
� �

−
r + 1
2r

� � 4r r + pð Þ
r + 1ð Þ2

� r
r + 1 + x
� �

+ r
r + 1
� �2

= x2 + p2 + 2pr − p − r
� �

r2
x2 + 2p r + pð Þ

r r + 1ð Þ x + p2 + p + r

r + 1ð Þ2 :

ð9Þ

The last two identities can be obtained by applying
similar methods; hence, we have omitted the details.

Lemma 2. For all x ∈Dr , we obtain the following central
moments:

Fr t − x ; xð Þ = p r + 1ð Þx + rð Þ
r r + 1ð Þ ,

Fr t − xð Þ2 ; x� �
= p2 − p − r
� �

r2
x2 + 2p2

r r + 1ð Þ x +
p2 + p + r

r + 1ð Þ2 ,

Fr t − xð Þ4 ; x� �
= p4 − 6p3 − 6p2r − 12pr2 + 11p2 + 14pr + 3r2 − 6p − 6r
� �

r4
x4

+ 4 p4 − 4p3 − 6p2r − 3pr2 + 5p2 + 8pr + 3r2 − 2p − 2r
� �

r3 r + 1ð Þ x3

+ 2 3p4 − 6p3 − 18p2 − 18pr2 + 11p2 + 26pr + 15r2 − 8p − 8r
� �

r2 r + 1ð Þ2 x2

+ 4 p4 − 6p2r − 9pr2 + 7p2 + 16pr + 9r2 − 6p − 6r
� �

r r + 1ð Þ3 x

+ p4 + 2p3 − 6p2r − 12pr2 + 15p2 + 30pr + 15r2 − 10p − 10r

r + 1ð Þ4 :

ð10Þ

Proof. The proof of this lemma can be directly obtained by
using the linearity of (3) operators and as a consequence of
Lemma 1.

Corollary 3. For all x ∈Dr , the following identities hold:

lim
r⟶∞

r Fr t − x ; xð Þð Þ = p x + 1ð Þ,

lim
r⟶∞

r Fr t − xð Þ2 ; x� �� �
= 1 − x2,

lim
r⟶∞

r2 Fr t − xð Þ4 ; x� �� �
= 3 1 − 3x2
� �

x2 + 1
� �

:

ð11Þ

In the next theorem we show the uniform convergence of
(3) operators. As it is known, the space CðDrÞ denotes the
real-valued continuous functions on Dr , and it is equipped
with the norm for a function μ as follows:

μk kC Drð Þ = sup
x∈Dr

μ xð Þj j: ð12Þ

Theorem 4. Let the operators Frðμ ; xÞ be given by (3). Then,
for all x ∈Dr, Frðμ ; xÞ converges to μ uniformly on Dr .

Proof. From (4), it is obvious that

lim
r⟶∞

Fr 1;:ð Þ − 1k kC Drð Þ = 0: ð13Þ

By (5), we arrive

lim
r⟶∞

Fr t;:ð Þ − xk kC Drð Þ = lim
r⟶∞

max
x∈D

px
2r + 1ð Þ
r r + 1ð Þ

����
����

< lim
r⟶∞

p pr + p + 2rð Þ
r r + 1ð Þ

����
���� = 0:

ð14Þ

Similarly, using (6), then

lim
r⟶∞

Fr t2;:
� �

− x2
		 		

C Drð Þ

= lim
r⟶∞

max
x∈Dr

p2 − p − r
� �

r2
x2 + 2p2

r r + 1ð Þ x +
p2 + p + r

r + 1ð Þ2
����

����
< lim

r→∞

p2 − 3p + r + 4
r + 1ð Þ2

����
���� = 0:

ð15Þ

Hence, according to the Korovkin theorem [24], the (3)
operators converge uniformly to μ on Dr:

Further, we will obtain the degree of approximation of (3)
operators. Let the modulus of continuity for a function μ ∈
C½a, b� be given by

ω μ, δð Þ = sup
t,y∈ a,b½ �
t−yj j≤δ

μ tð Þ − μ yð Þj j:
ð16Þ

Since δ > 0, ωðμ, δÞ has some useful properties which can
be found in [25].
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Theorem 5. Let μ ∈ CðDrÞ: Then, for every x ∈Dr , the follow-
ing inequality is verified:

Fr μ ; xð Þ − μ xð Þj j ≤ 2ω μ ; γr xð Þð Þ, ð17Þ

where γrðxÞ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Frððt − xÞ2 ; xÞ

q
:

Proof. Taking into account the following common property
of the modulus of continuity:

μ tð Þ − μ xð Þj j ≤ 1 + t − xj j
δ

� �
ω μ ; δð Þ, ð18Þ

by the linearity of the operator (3), then

Fr μ ; xð Þ − μ xð Þj j ≤ 1 + 1
δ
Fr t − xj j ; xð Þ

� �
ω μ ; δð Þ: ð19Þ

Utilizing the Cauchy-Schwarz inequality yields

Fr μ ; xð Þ − μ xð Þj j ≤ 1 + 1
δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr t − xð Þ2 ; x� �q� �

ω μ ; δð Þ

≤ 1 + γr xð Þ
δ

� �
ω μ ; δð Þ:

ð20Þ

If we take δ = γrðxÞ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Frððt − xÞ2 ; xÞ

q
, thus Theorem 5

is proven.

Theorem 6. Let the operators Frðμ ; xÞ be given by (3). Then,
for any μ ∈ CðDrÞ such that μ′, μ″ ∈ CðDrÞ, the following
identity holds:

lim
r⟶∞

r Fr μ ; xð Þ − μ xð Þð Þ = p x + 1ð Þμ′ xð Þ + 1
2

1 − x2
� �

μ″ xð Þ,
ð21Þ

uniformly on Dr:

Proof. Suppose that μ, μ′, μ″ ∈ CðDrÞ and x ∈Dr are fixed. By
the Taylor formula, hence

μ tð Þ = μ xð Þ + μ′ xð Þ t − xð Þ + 1
2 μ

″ xð Þ t − xð Þ2 + ξ t ; xð Þ t − xð Þ2,
ð22Þ

where ξðt ; xÞ is a form of Peano of the rest term, and since
ξð:;xÞ ∈ CðDrÞ, limt⟶x

ξðt ; xÞ = 0:
Operating Frð:;xÞ to (22), then

Fr μ ; xð Þ − μ xð Þ = μ′ xð ÞFr t − x ; xð Þ + 1
2 μ

″ xð ÞFr t − xð Þ2 ; x� �
+ Fr ξ t ; xð Þ t − xð Þ2 ; x� �

:

ð23Þ

From Lemma 2, it becomes

lim
r⟶∞

r Fr μ ; xð Þ − μ xð Þð Þ = p x + 1ð Þμ′ xð Þ + 1
2 1 − x2
� �

μ″ xð Þ
+ lim

r→∞
r Fr ξ t ; xð Þ t − xð Þ2 ; x� �� �

:

ð24Þ

Applying the Cauchy-Schwarz inequality, one has

r Fr ξ t ; xð Þ t − xð Þ2 ; x� �� �
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr ξ2 t ; xð Þ ; x� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2Fr t − xð Þ4 ; x� �q
:

ð25Þ

Owing to ξðt ; xÞ ∈ CðDrÞ, limt⟶x
ξðt ; xÞ = 0, thus

lim
r⟶∞

Fr ξ2 t ; xð Þ ; x
� �

= 0, ð26Þ

uniformly on Dr with Theorem 4.
Combining (25) and (26) and by Lemma 2, we get

lim
r⟶∞

r Fr ξ t ; xð Þ t − xð Þ2 ; x� �� �
= 0: ð27Þ

Hence,

lim
r⟶∞

r Fr μ ; xð Þ − μ xð Þð Þ = p x + 1ð Þμ′ xð Þ + 1
2 1 − x2
� �

μ″ xð Þ,
ð28Þ

which gives the proof.

3. Construction of the Bivariate Bernstein-
Schurer-Type Operators

Let the intervals be Dr1,r2 = ½ð−r1/r1 + 1Þ − p1, ðr1/r1 + 1Þ+p1�
× ½ð−r2/r2 + 1Þ − p2, ðr2/r2 + 1Þ + p2�, I2 = I × I = ½−1, 1� × ½−
1, 1�, and by CðDr1,r2Þ, we denote the set of all real-valued
continuous functions on Dr1,r2 , and it is equipped with the
norm kμkCðDr1 ,r2 Þ

= sup
ðx,yÞ∈Dr1,r2

jμðx, yÞj:

We define the bivariate Fr1,r2 : CðDr1,r2Þ⟶ CðI2Þ of
operators given by (3) as follows:

Fr1,r2 μ ; x, yð Þ = r1 + 1
2r1

� �r1+p1 r2 + 1
2r2

� �r2+p2
〠
r1+p1

j1=0
〠
r2+p2

j2=0
φ
p1,p2
r1,r2,j1,j2

� x, yð Þμ 2j1 − r1
r1 + 1 , 2j2 − r2

r2 + 1

� �
,

ð29Þ

where φ
p1,p2
r1,r2,j1,j2ðx, yÞ =

r1 + p1

j1

 !
r2 + p2

j2

 !
ðr1/ðr1 + 1Þ +

xÞj1 ðr2/ðr2 + 1Þ + yÞj2 ðr1/ðr1 + 1Þ − xÞr1+p1−j1 ðr2/ðr2 + 1Þ −
yÞr2+p2−j2 , ðr1, r2Þ ∈ℕ ×ℕ, ðp1, p2Þ ∈ℕ0 ×ℕ0, and ðx, yÞ ∈
Dr1,r2 :

4 Journal of Function Spaces



It can be seen that the operators given by (29) are positive
and linear.

Lemma 7. Let ea1 ,a2ðx, yÞ = xa1ya2 , ðx, yÞ ∈Dr1 ,r2 , ða1, a2Þ ∈ℕ0

×ℕ0 with a1 + a2 ≤ 4, be the bivariate test functions. Then,
one has

Fr1 ,r2 e0,0 ; x, yð Þ = 1,

Fr1 ,r2 e1,0 ; x, yð Þ = x + p1 r1 + 1ð Þx + r1ð Þ
r1 r1 + 1ð Þ ,

Fr1 ,r2 e0,1 ; x, yð Þ = y + p2 r2 + 1ð Þy + r2ð Þ
r2 r2 + 1ð Þ ,

Fr1 ,r2 e2,0 ; x, yð Þ

= x2 + p21 + 2p1r1 − p1 − r1
� �

r21
x2 + 2p1 r1 + p1ð Þ

r1 r1 + 1ð Þ x + p21 + p1 + r1
r1 + 1ð Þ2 ,

Fr1 ,r2 e0,2 ; x, yð Þ

= y2 + p22 + 2p2r2 − p2 − r2
� �

r22
y2 + 2p2 r2 + p2ð Þ

r2 r2 + 1ð Þ y + p22 + p2 + r2
r2 + 1ð Þ2 ,

Fr1 ,r2 e3,0 ; x, yð Þ

= x3 + p31 + 3p1r
2
1 + 3p21r1 − 3p21 − 3r21 − 3p1r1 + 2p1 + 2r1

� �
r31

x3

+ 3p1 r1 + p1ð Þ r1 + p1 − 1ð Þ
r21 r1 + 1ð Þ x2 + r1 + p1ð Þ 3p21 + 3p1 + 3r1 − 2

� �
r1 r1 + 1ð Þ2 x

+ p1 p21 + 3p1 + 3r1
� �

r1 + 1ð Þ3 ,

Fr1 ,r2 e0,3 ; x, yð Þ

= y3 + p32 + 3p2r
2
2 + 3p22r2 − 3p22 − 3r22 − 3p2r2 + 2p2 + 2r2

� �
r32

y3

+ 3p2 r2 + p2ð Þ r2 + p2 − 1ð Þ
r22 r2 + 1ð Þ y2 + r2 + p2ð Þ 3p22 + 3p2 + 3r2 − 2

� �
r2 r2 + 1ð Þ2 y

+ p2 p22 + 3p2 + 3r2
� �

r2 + 1ð Þ3 ,

Fr1 ,r2 e4,0 ; x, yð Þ

= x4 +
�
p41 + 4p31r1 + 6p21r

2
1 + 4p1r

3
1 − 6p31 − 6r31 − 18p1r

2
1 − 18p21r1

r41

+ 11p21 + 22p1r1 + 11r21 − 6p1 − 6r1
r41

�
x4

+ 4 p1 − 1ð Þ r1 + p1ð Þ r1 + p1 − 1ð Þ r1 + p1 − 2ð Þ
r31 r1 + 1ð Þ x3

+ 2 r1 + p1ð Þ r1 + p1 − 1ð Þ 3p21 − 3p1 − 3r1 + 8
� �

r21 r1 + 1ð Þ2 x2

+ 4 r1 + p1ð Þ p31 − 3p1r1 − 3r21 + 7p1 + 9r1 − 6
� �

r1 r1 + 1ð Þ3 x

+ p41 + 2p31 − 6p21r1 − 12p1r
2
1+−4r31 + 15p21 + 30p1r1 + 15r21 − 10p1 − 10r1

r1 + 1ð Þ4 ,

Fr1 ,r2 e0,4 ; x, yð Þ

= y4 +
�
p42 + 4p32r2 + 6p22r

2
2 + 4p2r

3
2 − 6p32 − 6r32 − 18p2r

2
2 − 18p22r2

r42

+ 11p22 + 22p2r2 + 11r22 − 6p2 − 6r2
r42

�
y4

+ 4 p2 − 1ð Þ r2 + p2ð Þ r2 + p2 − 1ð Þ r2 + p2 − 2ð Þ
r32 r2 + 1ð Þ y3

+ 2 r2 + p2ð Þ r2 + p2 − 1ð Þ 3p22 − 3p2 − 3r2 + 8
� �

r22 r2 + 1ð Þ2 y2

+ 4 r2 + p2ð Þ p32 − 3p2r2 − 3r22 + 7p2 + 9r2 − 6
� �

r2 r2 + 1ð Þ3 y

+ p42 + 2p32 − 6p22r2 − 12p2r
2
2+−4r32 + 15p22 + 30p2r2 + 15r22 − 10p2 − 10r2

r2 + 1ð Þ4 :

ð30Þ

Proof. The proof of the above equalities can be reached easily
as a consequence of Lemma 1 and by (29); hence, we have
omitted the details.

Corollary 8. In view of Lemma 7, the following relations hold
true:

Fr1 ,r2 t0 − x ; x, yð Þ = p1 r1 + 1ð Þx + r1ð Þ
r1 r1 + 1ð Þ ,

Fr1 ,r2 s0 − y ; x, yð Þ = p2 r2 + 1ð Þy + r2ð Þ
r2 r2 + 1ð Þ ,

Fr1 ,r2 t0 − xð Þ2 ; x, y� �
= p21 − p1 − r1
� �

r21
x2 + 2p21

r1 r1 + 1ð Þ x +
p21 + p1 + r1
r1 + 1ð Þ2 ,

Fr1 ,r2 s0 − yð Þ2 ; x, y� �
= p22 − p2 − r2
� �

r22
y2 + 2p22

r2 r2 + 1ð Þ y +
p22 + p2 + r2
r2 + 1ð Þ2 ,

Fr1 ,r2 t0 − xð Þ4 ; x, y� �
= p41 − 6p31 − 6p21r1 − 12p1r

2
1 + 11p21 + 14p1r1 + 3r21 − 6p1 − 6r1

� �
r41

x4

+ 4 p41 − 4p31 − 6p21r1 − 3p1r
2
1 + 5p21 + 8p1r1 + 3r21 − 2p1 − 2r1

� �
r31 r1 + 1ð Þ x3

+ 2 3p41 − 6p31 − 18p21 − 18p1r
2
1 + 11p21 + 26p1r1 + 15r21 − 8p1 − 8r1

� �
r21 r1 + 1ð Þ2 x2

+ 4 p41 − 6p21r1 − 9p1r
2
1 + 7p21 + 16p1r1 + 9r21 − 6p1 − 6r1

� �
r1 r1 + 1ð Þ3 x

+ p41 + 2p31 − 6p21r1 − 12p1r
2
1 + 15p21 + 30p1r1 + 15r21 − 10p1 − 10r1

r1 + 1ð Þ4 ,

Fr1 ,r2 s0 − yð Þ4 ; x, y� �
= p42 − 6p32 − 6p22r2 − 12p2r

2
2 + 11p22 + 14p2r2 + 3r22 − 6p2 − 6r2

� �
r42

y4

+ 4 p42 − 4p32 − 6p22r2 − 3p2r
2
2 + 5p22 + 8p2r2 + 3r22 − 2p2 − 2r2

� �
r32 r2 + 1ð Þ y3

+ 2 3p42 − 6p32 − 18p22 − 18p2r
2
2 + 11p22 + 26p2r2 + 15r22 − 8p2 − 8r2

� �
r22 r2 + 1ð Þ2 y2

+ 4 p42 − 6p22r2 − 9p2r
2
2 + 7p22 + 16p2r2 + 9r22 − 6p2 − 6r2

� �
r2 r2 + 1ð Þ3 y

+ p42 + 2p32 − 6p22r2 − 12p2r
2
2 + 15p22 + 30p2r2 + 15r22 − 10p2 − 10r2

r2 + 1ð Þ4 :

ð31Þ
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Theorem 9. Let the operators Fr1 ,r2ðμ ; x, yÞ be given by (29).
Then for any μ ∈ CðDr1 ,r2Þ, we arrive at

lim
r1 ,r2⟶∞

Fr1 ,r2 μð Þ − μ
		 		 = 0: ð32Þ

Proof. It is seen from the following that

Fr1,r2 e0,0ð Þ − e0,0
		 		⟶ 0, Fr1,r2 e1,0ð Þ − e1,0

		 		⟶ 0,

Fr1,r2 e0,1ð Þ − e0,1
		 		⟶ 0, Fr1,r2 e2,0 + e0,2ð Þ − e2,0 + e0,2ð Þ		 		⟶ 0,

ð33Þ
as r1, r2 ⟶∞: Thus, these results complete the proof, as
required by the Volkov theorem [26].

Moreover, for the operators given by (29), we want to
derive the Voronovskaya-type asymptotic theorem and
estimate the degree of convergence with the help of Peetre’s
K-functional.

Suppose that C2ðDr1,r2Þ represents the space of all func-
tions of μ ∈ CðDr1,r2Þ such that ∂iμ/∂xi, ∂iμ/∂yi ∈ CðDr1,r2Þ ð
for i = 1, 2Þ . The norm on C2ðDr1,r2Þ and Peetre’s K-func-
tional of μ ∈ CðDr1,r2Þ are given as follows, respectively.

μk kC2 Dr1,r2ð Þ = μk kC Dr1 ,r2ð Þ + 〠
i=1

2 ∂iμ
∂xi

				
				
C Dr1,r2ð Þ

+ ∂iμ
∂yi

				
				
C Dr1 ,r2ð Þ

 !
,

K μ, ζð Þ = inf μ − ϱk kC Dr1,r2ð Þ + ζ ϱk kC2 Dr1,r2ð Þ : ϱ ∈ C2 Dr1,r2
� �n o

,

ð34Þ
where ζ > 0.

For a constant C > 0, the following inequality

K μ, ζð Þ ≤ C ω2
∗

μ,
ffiffiffi
ζ

p� �
ð35Þ

holds, whereω2
∗ðμ,

ffiffiffi
ζ

p
Þ denotes the second order of themod-

ulus of continuity of μ ∈ CðDr1,r2Þ: Also, for μ ∈ CðDr1,r2Þ, the
ordinary modulus of continuity is defined as

ω μ, δð Þ = sup
�

μ u1, u2ð Þ − μ v1, v2ð Þj j: u1, u2ð Þ, v1, v2ð Þ

∈ C Dr1,r2
� �

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 − v1ð Þ2 + u2 − v2ð Þ2

q
≤ δ

�
:

ð36Þ
Theorem 10. Suppose that μ ∈ C2ðDr1 ,r2Þ. Then, the following
relation holds

lim
r1⟶∞

r1 Fr1 ,r1 μ ; x, yð Þ − μ ; x, y

 �

= p1 x + 1ð Þμx′ x, yð Þ + p2 y + 1ð Þμy′ x, yð Þ + 1
2

� 1 − x2
� �

μxx″ x, yð Þ + 1 − y2
� �

μyy″ x, yð Þ
n o

,

ð37Þ

uniformly on Dr1 ,r2 :

Proof. For the arbitrary ðx, yÞ ∈Dr1,r2 , using the Taylor for-
mula, it becomes

μ t0, s0ð Þ = μ x, yð Þ + μx′ x, yð Þ t0 − xð Þ + μy′ x, yð Þ s0 − yð Þ + 1
2

�
n
μxx″ x, yð Þ t0 − xð Þ2 + μyy″ x, yð Þ s0 − yð Þ2 + 2μxy″

� x, yð Þ t0 − xð Þ s0 − yð Þ
o
+ χ t0, s0 ; x, yð Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − xð Þ4 + s0 − yð Þ4

q
,

ð38Þ
for ðt0, s0Þ ∈Dr1,r2 , where χð:,:;x, yÞ ∈ CðDr1,r2Þ and χðt0, s0 ;
x, yÞ⟶ 0, as ðt0, s0Þ⟶ ðx, yÞ:

Operating Fr1,r1ð:;x, yÞ on (38) yields

Fr1,r1 μ t0, s0ð Þ ; x, yð Þ
= μ x, yð Þ + μx′ x, yð ÞFr1,r1 t0 − x ; x, yð Þ + μy′ x, yð ÞFr1,r1

� s0 − y ; x, yð Þ + 1
2
n
μxx″ x, yð ÞFr1,r1 t0 − xð Þ2 ; x, y� �

+ μyy″ x, yð ÞFr1,r1 s0 − yð Þ2 ; x, y� �
+ 2μxy″ x, yð ÞFr1,r1

� t0 − xð Þ s0 − yð Þ ; x, yð Þ
o
+ Fr1,r1

� χ t0, s0 ; x, yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − xð Þ4 + s0 − yð Þ4

q
; x, y

� �
:

ð39Þ
If we use the Cauchy-Schwarz inequality to the last part

of (39), one has

Fr1,r1 χ t0, s0 ; x, yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − xð Þ4 + s0 − yð Þ4

q
; x, y

� �����
����

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr1,r1 χ2 t0, s0 ; x, yð Þ ; x, yð Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr1,r1 t0 − xð Þ4 ; x, y� �

+ Fr1,r1 s0 − yð Þ4 ; x, y� �q
:

ð40Þ

Considering Theorem 9 and because of χð:,:;x, yÞ ∈ C
ðDr1,r2Þ, χðt0, s0 ; x, yÞ⟶ 0, as ðt0, s0Þ⟶ ðx, yÞ, then

lim
r1⟶∞

Fr1,r1 χ2 t0, s0 ; x, yð Þ ; x, y� �
= 0, ð41Þ

uniformly on Dr1,r2 : Also, from Corollary 8, it is clear to see

lim
r1⟶∞

r1 Fr1,r1 t0 − xð Þ s0 − yð Þ ; x, yð Þ
 �
= 0: ð42Þ

Further, by Corollary 3, it follows that

lim
r1⟶∞

r21 Fr1,r1 t0 − xð Þ4 ; x, y� �
 �
= 3 1 − 3x2
� �

x2 + 1
� �

,

lim
r1⟶∞

r21 Fr1,r1 s0 − yð Þ4 ; x, y� �
 �
= 3 1 − 3y2
� �

y2 + 1
� �

:

ð43Þ
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Thus,

lim
r1⟶∞

r1 Fr1,r1 χ t0, s0 ; x, yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − xð Þ4 + s0 − yð Þ4

q
; x, y

� �� �
= 0:

ð44Þ
Hence, the desired sequel is arrived as follows:

lim
r1⟶∞

r1 Fr1,r1 μ ; x, yð Þ − μ ; x, y

 �

= p1 x + 1ð Þμx′ x, yð Þ + p2 y + 1ð Þμy′ x, yð Þ + 1
2
n

1 − x2
� �

μxx″

� x, yð Þ + 1 − y2
� �

μyy″ x, yð Þ
o
,

ð45Þ

uniformly on Dr1,r2 .

Theorem 11. Suppose that μ ∈ CðDr1 ,r2Þ. Then, the following
inequality is verified:

Fr1 ,r2 μ ; x, yð Þ − μ x, yð Þ�� ��
≤ C1 ω2

∗
μ ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sr1 ,r2 x, yð Þ

q� �
+min 1, Sr1 ,r2 x, yð Þ μk kC2 Dr1 ,r2ð Þ

nn o
+ ω μ ; ξr1 ,r2 x, yð Þ� �

,
ð46Þ

where C1 > 0 is a constant and independent of μ and Sr1 ,r2ðx, yÞ
and γ2r1ðxÞ = Fr1 ,r2ððt0 − xÞ2 ; x, yÞ, γ2r2ðyÞ = Fr1 ,r2ððs0 − yÞ2 ; x,
yÞ, ξr1 ,r2ðx, yÞ =

ffiffiffiffiffiffiffiffiffiffiðp1ðð
p

r1 + 1Þx + r1Þ/r1ðr1 + 1ÞÞ2 + ðp2ððr2
+ 1Þy + r2Þ/r2ðr2 + 1ÞÞ2, Sr1 ,r2ðx, yÞ = γ2r1ðxÞ + γ2r2ðyÞ + ξ2r1 ,r2 .

Proof. Let us define the following auxiliary operators:

�Fr1,r2 μ ; x, yð Þ = Fr1,r2 μ ; x, yð Þ + μ x, yð Þ − μ

�
�
x + p1 r1 + 1ð Þx + r1ð Þ

r1 r1 + 1ð Þ , y + p2 r2 + 1ð Þy + r2ð Þ
r2 r2 + 1ð Þ

�
:

ð47Þ

By Lemma 7, we obtain

�Fr1,r2 t0 − x ; x, yð Þ = 0,
�Fr1,r2 s0 − y ; x, yð Þ = 0:

ð48Þ

Suppose that μ ∈ C2ðDr1,r2Þ and ðt0, s0Þ ∈Dr1,r2 ; by the
Taylor formula, we may write

μ t0, s0ð Þ − μ x, yð Þ = ∂μ x, yð Þ
∂x

t0 − xð Þ +
ðt0
x

t0 − uð Þ ∂
2μ u, yð Þ
∂2u

du

+ ∂μ x, yð Þ
∂y

s0 − yð Þ +
ðs0
y

s0 − vð Þ ∂
2μ x, vð Þ
∂2v

dv:

ð49Þ

Now, operating �Fr1,r2 on (49), we get

�Fr1,r2 μ ; x, yð Þ − μ x, yð Þ

= �Fr1,r2

ðt0
x
t0 − uð Þ ∂

2μ u, yð Þ
∂2u

du ; x, y
 !

+ �Fr1,r2

ðs0
y
s0 − vð Þ ∂

2μ x, vð Þ
∂2v

dv ; x, y
 !

= Fr1,r2

ðt0
x
t0 − uð Þ ∂

2μ u, yð Þ
∂2u

du ; x, y
 !

−
ðx+ p1 r1+1ð Þx+r1ð Þ/r1 r1+1ð Þð Þ

x
x + p1 r1 + 1ð Þx + r1ð Þ

r1 r1 + 1ð Þ − u
� �

� ∂2μ u, yð Þ
∂2u

du + Fr1,r2

ðs0
y

s0 − vð Þ ∂
2μ x, vð Þ
∂2v

dv ; x, y

0
B@

1
CA

−
ðy+ p2 r2+1ð Þy+r2ð Þ/r2 r2+1ð Þð Þ

y
y + p2 r2 + 1ð Þy + r2ð Þ

r2 r2 + 1ð Þ − v
� �

� ∂2μ x, vð Þ
∂2v

dv:

ð50Þ

Hence,

Fr1,r2 μ ; x, yð Þ − μ x, yð Þ�� ��
≤ Fr1,r2

ðt0
x
t0 − uj j ∂

2μ u, yð Þ
∂2u

�����
�����du

�����
����� ; x, y

 !

+ jðx+ p1 r1+1ð Þx+r1ð Þ/r1 r1+1ð Þð Þ

x
x + p1 r1 + 1ð Þx + r1ð Þ

r1 r1 + 1ð Þ − u
����

����
� ∂2μ u, yð Þ

∂2u

�����
�����duj + Fr1,r2

ðs0
y
s0 − vj j ∂

2μ x, vð Þ
∂2v

�����
�����dv

�����
����� ; x, y

 !

+ jðy+ p2 r2+1ð Þy+r2ð Þ/r2 r2+1ð Þð Þ

y
y + p2 r2 + 1ð Þy + r2ð Þ

r2 r2 + 1ð Þ − v
����

����
� ∂2μ x, vð Þ

∂2v

�����
�����dvj

≤

(
Fr1,r2 t0 − xð Þ2 ; x, y� �

+ x + p1 r1 + 1ð Þx + r1ð Þ
r1 r1 + 1ð Þ − x

� �2

+ Fr1,r2 s0 − yð Þ2 ; x, y� �
+ y + p2 r2 + 1ð Þy + r2ð Þ

r2 r2 + 1ð Þ − y
� �2

)

� μk kC2 Dr1,r2ð Þ:
ð51Þ

If we choose ξr1,r2 =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx + p1ððr1 + 1Þx + r1Þ/r1ðr1 + 1ÞÞ2 + ðp2ððr2 + 1Þy + r2Þ/r2ðr2 + 1ÞÞ2

q
,

γ2r1ðxÞ = Fr1,r2ððt0 − xÞ2 ; x, yÞ, γ2r2ðyÞ = Fr1,r2ððs0 − yÞ2 ; x, yÞ,
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Sr1,r2ðx, yÞ = γ2r1ðxÞ + γ2r2ðyÞ + ξ2r1,r2 , then

Fr1,r2 μ ; x, yð Þ − μ x, yð Þ�� �� ≤ Sr1,r2 x, yð Þ μk kC2 Dr1,r2ð Þ: ð52Þ

Also, by Lemma 7 and (52), we arrive at

�Fr1,r2 μ ; x, yð Þ�� �� ≤ Fr1,r2 μ ; x, yð Þ�� �� + μ x, yð Þj j

+ jμ�x + p1 r1 + 1ð Þx + r1ð Þ
r1 r1 + 1ð Þ , y

+ p2 r2 + 1ð Þy + r2ð Þ
r2 r2 + 1ð Þ

�j
≤ 3 μk kC Dr1,r2ð Þ:

ð53Þ

Next, from (53)

Fr1,r2 μ ; x, yð Þ − μ x, yð Þ�� ��
≤ �Fr1,r2 μ − κ ; x, yð Þ�� �� + �Fr1,r2 κ ; x, yð Þ − κ x, yð Þ�� ��

+ jμ x + p1 r1 + 1ð Þx + r1ð Þ
r1 r1 + 1ð Þ , y + p2 r2 + 1ð Þy + r2ð Þ

r2 r2 + 1ð Þ
� �

− μ x, yð Þj + κ x, yð Þ − μ x, yðj j

≤ 4 μ − κk kC Dr1,r2ð Þ + Sr1,r2 x, yð Þ κk kC2 Dr1,r2ð Þ
� �
+ ω μ ; ξr1,r2 x, yð Þ� �

:

ð54Þ

Consequently, on (54), utilizing the infimum on the right-
hand side over all μ ∈ C2ðDr1,r2Þ and by (35), it becomes

Fr1,r2 μ ; x, yð Þ − μ x, yð Þ�� ��
≤ C1 ω2

∗
μ ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sr1,r2 x, yð Þ

q� �
+min 1, Sr1,r2 x, yð Þ μk kC2 Dr1,r2ð Þ

nn o
+ ω μ ; ξr1,r2 x, yð Þ� �

,
ð55Þ

which ends the proof.

4. Construction of the GBS Type of Fr1,r2ðμ ; x, yÞ
The notion of the B-continuous and B-differentiable func-
tions was firstly used by Bögel [27, 28]. Dobrescu and Matei
[29] considered the GBS (Generalized Boolean Sum) kind
of the bivariate of the Bernstein polynomials. Next, using
the B-continuous functions by the GBS operators, which is
related to quantitative version of the Korovkin-type conver-
gence theorem, firstly has been improved by Badea et al.
[30, 31]. Pop and Fărcas [32] obtained some approximation
of the B-continuous and B-differentiable functions by GBS
type of the Bernstein bivariate operators. İspir [33]
established quantitative estimates for the GBS of the
Chlodowsky-Szász-kind operators. Recently, some authors
introduced the GBS operators of various operators (we refer
the readers to [34–42]).

Let a function μ : U ×V ⟶ℝ, where U ,V are compact
real intervals of ℝ: With ðx, yÞ, ðt0, s0Þ ∈U ×V , the mixed
difference of the function μ is given as

ϕ x,yð Þμ t0, s0 ; x, y½ � = μ x, yð Þ − μ x, s0ð Þ − μ t0, yð Þ + μ t0, s0ð Þ:
ð56Þ

A function μ : U ×V ⟶ℝ is named Bögel-continuous
(B-continuous) at ðt0, s0Þ ∈U ×V , if

lim
x,yð Þ⟶ t0,s0ð Þ

ϕ x,yð Þμ t0, s0 ; x, y½ � = 0: ð57Þ

A function μ : U ×V ⟶ℝ is named Bögel-
differentiable (B-differentiable) at ðt0, s0Þ ∈U × V , if the
below result which denoted by DBf ðx, yÞ exists and finite

lim
x,yð Þ⟶ t0,s0ð Þ

ϕ x,yð Þμ t0, s0 ; x, y½ �
x − t0ð Þ y − s0ð Þ =DBf x, yð Þ: ð58Þ

Note that, by CbðU × VÞ and DbðU ×VÞ, we represent
the sets of all B-differentiable and B-continuous functions
on U ×V , respectively.

A function μ : Y ⊂U ×V ⟶ℝ is named Bögel-bounded
(B − bounded) on Y , if there consists W > 0 such that jϕðx,yÞ
μ½t0, s0 ; x, y�j ≤W for every ðt0, s0Þ, ðx, yÞ ∈ Y :

Also, if Y is a compact subset of ℝ2, hence all B-contin-
uous functions are B − bounded on Y ⟶ℝ:

Further, by BbðYÞ, we represent the set of all B-bounded
functions on Y and equipped with the norm kμkB =

sup
ðx,yÞ,ðt0,s0Þ∈Y

jϕðx,yÞμ½t0, s0 ; x, y�Þj: Considering the definition

of B-continuous, then CðYÞ ⊂ CbðYÞ (see details by [43]).
The mixed modulus of smoothness for μ ∈ CbðDr1,r2Þ is

given by

ωmixed μ ; δ1, δ2ð Þ
≔ sup ϕ x,yð Þμ t0, s0 ; x, y½ �

��� ���: t0 − xj j < δ1, s0 − yj j < δ2
n o

,

ð59Þ

where ðx, yÞ, ðt0, s0Þ ∈Dr1,r2 , and δ1, δ2 ∈ℝ+. Also, for all κ1,
κ2 ≥ 0, the following inequality satisfy

ωmixed μ ; κ1δ1, κ2δ2ð Þ ≤ 1 + κ1ð Þ 1 + κ2ð Þωmixed μ ; δ1, δ2ð Þ:
ð60Þ

More details about the mixed modulus of smoothness can
be found in [30, 31].

Now, for all ðx, yÞ ∈Dr1,r2 , for any μ ∈ CbðDr1,r2Þ and ðr1,
r2Þ ∈ℕ ×ℕ, ðp1, p2Þ ∈ℕ0 ×ℕ0, we construct the GBS-type
operators given by (29) operators as follows:

Gr1,r2 μ ; x, yð Þ = Fr1,r2 μ x, s0ð Þ + μ t0, yð Þ − μ t0, s0ð Þ ; x, yð Þ:
ð61Þ
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Exactly, for any μ ∈ CbðDr1,r2Þ and for all ðx, yÞ ∈Dr1,r2 , the
GBS type of Fr1,r2 operators is given as

Gr1,r2 μ ; x, yð Þ = r1 + 1
2r1

� �r1+p1 r2 + 1
2r2

� �r2+p2
〠
r1+p1

j1=0
〠
r2+p2

j2=0
φ
p1,p2
r1,r2,j1,j2

� x, yð Þ ×
�
μ x, 2j2 − r2

r2 + 1

� �
+ μ

2j1 − r1
r1 + 1 , y

� �

− μ
2j1 − r1
r1 + 1 , 2j2 − r2

r2 + 1

� ��
,

ð62Þ

where φp1,p2
r1,r2,j1,j2ðx, yÞ is defined as in (29).

It is clear that the operators given by (62) are linear and
positive. In the following theorem, with regard to the mixed
modulus of smoothness, we estimate the order of approxima-
tion of the (62) operators.

Theorem 12. For all μ ∈ CbðDr1 ,r2Þ and for each ðx, yÞ ∈Dr1 ,r2 ,
the operators given by (62) satisfy the following inequality:

Gr1 ,r2 μ ; x, yð Þ − μ x, yð Þ�� �� ≤ 4ωmixed μ ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αr1 ,p1

� �r
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αr2 ,p2

� �r� �
,

ð63Þ

whereαr1 ,p1 = ðp21 − 3p1 + r1 + 4Þ/ðr1 + 1Þ2 and αr2 ,p2 = ðp22 − 3

p2 + r2 + 4Þ/ðr2 + 1Þ2:

Proof. In view of (60), it gives

ϕ x,yð Þμ t0, s0 ; x, y½ �
��� ��� ≤ ωmixed μ ; t0 − xj j, s0 − yj jð Þ

≤ 1 + t0 − xj j
δ1

� �
1 + s0 − yj j

δ2

� �
ωmixed

� μ ; δ1, δ2ð Þ,
ð64Þ

for all ðx, yÞ, ðt0, s0Þ ∈Dr1,r2 , and for any δ1, δ2 ∈ℝ+: By (56),
we have

μ x, s0ð Þ + μ t0, yð Þ − μ t0, s0ð Þ = μ x, yð Þ − ϕ x,yð Þμ t0, s0 ; x, y½ �:
ð65Þ

Operating Fr1,r2 and by the definition of Gr1,r2 , then

Gr1,r2 μ ; x, yð Þ = μ x, yð ÞFr1,r2 e0,0 ; x, yð Þ − Fr1,r2

� ϕ x,yð Þ μ t0, s0 ; x, y½ � ; x, y
� �

:
ð66Þ

It follows that

Gr1,r2 μ ; x, yð Þ − μ x, yð Þ�� �� ≤ Fr1,r2 ϕ x,yð Þμ t0, s0 ; x, y½ �
��� ��� ; x, y� �

:

ð67Þ

From (64) and by utilizing the Cauchy-Schwarz inequal-
ity, one has

Gr1,r2 μ ; x, yð Þ − μ x, yð Þ�� ��
≤

 
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr1,r2 t0 − xð Þ2 ; x, y� �q

δ1
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr1,r2 s0 − yð Þ2 ; x, y� �q

δ2

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr1,r2 t0 − xð Þ2 ; x, y� �

Fr1,r2 s0 − yð Þ2 ; x, y� �q
δ1δ2

!

� ωmixed μ ; δ1, δ2ð Þ:
ð68Þ

Taking into account Corollary 8, it becomes

Fr1,r2 t0 − xð Þ2 ; x, y� �
≤

p1
r1
x

� �2
+ 2p21
r1 r1 + 1ð Þ x +

p21 + p1 + r1
r1 + 1ð Þ2

≤
p21 − 3p1 + r1 + 4

r1 + 1ð Þ2 = αr1,p1 ,

Fr1,r2 s0 − yð Þ2 ; x, y� �
≤

p2
r2
y

� �2
+ 2p22
r2 r2 + 1ð Þ y +

p22 + p2 + r2
r2 + 1ð Þ2

≤
p22 − 3p2 + r2 + 4

r2 + 1ð Þ2 = αr2,p2 :

ð69Þ

0.80

Function
F75, 75

F15, 15
F5, 5

0.85

0.90

0.95

1.00
1

1
y x

0.5
0.5

0 0–0.5
–0.5 –1

Figure 1: The convergence of Fr1,r2ðμ ; x, yÞ operators to μðx, yÞ =
cos ðxy/ð1 + y2ÞÞ (yellow) for r1 = r2 = 5 (red), r1 = r2 = 15 (green),
r1 = r2 = 75 (blue), and p1 = p2 = 1.
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Hence,

Gr1,r2 μ ; x, yð Þ − μ x, yð Þ�� ��
≤

 
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 − 3p1 + r1 + 4
� �

/ r1 + 1ð Þ2
q

δ1
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p22 − 3p2 + r2 + 4
� �

/ r2 + 1ð Þ2
q

δ2

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 − 3p1 + r1 + 4
� �

/ r1 + 1ð Þ2� �
p22 − 3p2 + r2 + 4
� �

/ r2 + 1ð Þ2� �q
δ1δ2

!

� ωmixed μ ; δ1, δ2ð Þ:
ð70Þ

If we choose δ1 =
ffiffiffiffiffiffiffiffiffiffiαr1,p1

p and δ2 =
ffiffiffiffiffiffiffiffiffiffiαr2,p2

p , then the
desired result is arrived.

5. Graphics and Error Estimation Tables

In this section, with the help of the Maple software, we give
some plots and error estimation tables for the comparison
of the convergence behavior of (29) and (62) operators to
the certain functions.

Example 1. Let μðx, yÞ = cos ðxy/ð1 + y2ÞÞ. In Figure 1, for
r1 = r2 = 5 (red), r1 = r2 = 15 (green), r1 = r2 = 75 (blue), and
by choosing p1 = p2 = 1, we illustrate the convergence of
(29) operators to μðx, yÞ = cos ðxy/ð1 + y2ÞÞ (yellow). Also,
in Table 1, we determine the error of approximation (29)
operators to μðx, yÞ = cos ðxy/ð1 + y2ÞÞ for the certain values
of −1 ≤ x, y ≤ 1 and r1 = r2 = 5,50,500, respectively. It is clear
from Table 1 that as the values of r1 and r2 increase then the
error of approximation (29) operators to μðx, yÞ = cos ðxy/
ð1 + y2ÞÞ decreases.

Example 2. Let μðx, yÞ = sin ðð5/2ÞxyÞe−y/3. In Figure 2, for
r1 = r2 = 15, p1 = p2 = 2, we compare the convergence of
(29) (red) and the associated GBS operators (62) (blue) to μ
ðx, yÞ = sin ðð5/2ÞxyÞe−y/3 (yellow). Also, in Table 2, we eval-
uate the error of approximation (29) and (62) operators to
μðx, yÞ = sin ðð5/2ÞxyÞe−y/3 for r1 = r2 = 300, p1 = p2 = 2, and
the certain points of −1 ≤ x, y ≤ 1. It is obvious that, for
r1 = r2 = 300, p1 = p2 = 2, the absolute difference between

Table 2: Error of approximation Fr1,r2ðμ ; x, yÞ and Gr1,r2ðμ ; x, yÞ
operators to μðx, yÞ = sin ðð5/2ÞxyÞe−y/3 for r1 = r2 = 300 and p1 =
p2 = 2.

x, yð Þ F300,300 μ ; x, yð Þ − μ x, yð Þ�� �� G300,300 μ ; x, yð Þ − μ x, yð Þ�� ��
(-0.9, 0.9) 0.0136597503 0.0000249663

(0.5, 0.5) 0.0127076638 0.0000753517

(-0.8, -0.1) 0.0118523844 0.0000165295

(-0.3, -0.6) 0.0117422817 0.0000287716

(-0.6, -0.4) 0.0102228713 0.0000248461

(0.4, 0.8) 0.0101988560 0.0001669195

(0.9, 0.7) 0.0081455565 0.0005454158

(0.1, -0.4) 0.0070195207 0.0000801529

(-0.7, 0.3) 0.0056112239 0.0000346506

(-0.2, 0.2) 0.0003416940 0.0000879462

–1

–0.5

0

0.5

1

–1
1 y

x

–0.5 0.50
0

0.5

–0.5
–1

Function
G15, 15

F15, 15

Figure 2: The convergence of Fr1,r2ðμ ; x, yÞ (red) and Gr1,r2ðμ ; x, yÞ
(blue) operators to μðx, yÞ = sin ðð5/2ÞxyÞe−y/3 (yellow) for r1 = r2 =
15 and p1 = p2 = 2.

Table 1: Error of approximation Fr1,r2ðμ ; x, yÞ operators to μðx, yÞ = cos ðxy/ð1 + y2ÞÞ for r1 = r2 = 5, r1 = r2 = 50, r1 = r2 = 500, and p1 =
p2 = 1.

x, yð Þ F5,5 μ ; x, yð Þ − μ x, yð Þ�� �� F50,50 μ ; x, yð Þ − μ x, yð Þ�� �� F500,500 μ ; x, yð Þ − μ x, yð Þ�� ��
(0.6, 0.6) 0.0589662082 0.0057059967 0.0005642954

(0.8, −0.1) 0.0532558351 0.0049072492 0.0004809529

(0.5, −0.5) 0.0271614376 0.0024426683 0.0002455107

(0.4, −0.3) 0.0203534842 0.0014131511 0.0001327585

(0.3, −0.7) 0.0170542963 0.0010060800 0.0000896256

(−0.2, 0.8) 0.0148469930 0.0015555907 0.0001550674

(−0.6, 0.4) 0.0127417986 0.0019020417 0.0001971948

(−0.1, 0.1) 0.0091694597 0.0003325468 0.0000204350

(−0.3, −0.7) 0.0081301508 0.0007964789 0.0000801801

(−0.9, 0.9) 0.0020362863 0.0003014692 0.0000358039
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(29) operators to μðx, yÞ is greater than that of (62) oper-
ators to μðx, yÞ. Namely, the (62) operators has better
approximation than (29) operators.
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In this paper, we introduce the notion of controlled rectangular metric spaces as a generalization of rectangular metric spaces and
rectangular b-metric spaces. Further, we establish some related fixed point results. Our main results extend many existing ones in
the literature. The obtained results are also illustrated with the help of an example. In the last section, we apply our results to a
common real-life problem in a general form by getting a solution for the Fredholm integral equation in the setting of controlled
rectangular metric spaces.

1. Introduction

The fixed point theory is a growing and exciting field of
mathematics with a variety of variant applications in
mathematical sciences, proposing newer applications in
discrete dynamics and super fractals. The fixed point the-
ory is a fundamental tool to various theoretical and
applied fields, such as variational and linear inequalities,
the approximation theory, nonlinear analysis, integral
and differential equations and inclusions, the dynamic sys-
tems theory, mathematics of fractals, mathematical eco-
nomics (game theory, equilibrium problems, and
optimization problems), and mathematical modeling; see
[1–3]. In particular, fixed point techniques have been
applied in such diverse fields; see [4, 5]. There are partic-
ular real-life problems, whose statements are fairly easy to
understand, which can be argued using some versions of
fixed point theorems; see [6, 7].

The notion of extended b-metric spaces was introduced
by Kamran et al. [9] as a generalization of metric spaces
and b-metric spaces [10, 11]. This metric type space has been
generalized in several directions (for instance, controlled
metric spaces [12], double controlled metric spaces [13],
and others [14–19]). In a different perception, Branciari
[20] proposed rectangular metric spaces. In the same order,
Asim et al. [21] included a control function to initiate the
concept of extended rectangular b-metric spaces as a general-
ization of rectangular b-metric spaces [22]. In [23], Mlaiki
et al. introduced controlled rectangular b-metric spaces,
which generalize rectangular metric spaces and rectangular
b-metric spaces.

In this paper, our goal is to introduce the notion of
controlled rectangular metric spaces, which is different
from controlled rectangular b-metric spaces, and general-
ize rectangular metric spaces as well as rectangular b
-metric spaces. Further, we prove some fixed point
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results on such spaces as a generalization of many preex-
isting results in the literature. Also, we give examples for
the justification of our results. In the last, as an applica-
tion, we give an existence theorem for the Fredholm
integral equation in the setting of controlled rectangular
metric spaces.

2. Preliminaries

In this section, we collect some basic concepts related to our
main results.

Definition 1 [22]. A mapping dζ : M ×M⟶ ½0,∞Þ on a
nonempty set M is called a rectangular b-metric space, if
there exists a constant s ≥ 1 such that for all m1,m2 ∈M
and all distinct μ1, μ2 ∈M different from m1 and m2, the
following axioms are satisfied:

(i) dζðm1,m2Þ = 0 iff m1 =m2

(ii) dζðm1,m2Þ = dζðm2,m1Þ
(iii) dζðm1,m2Þ ≤ s½dζðm1, μ1Þ + dζðμ1, μ2Þ + dζðμ2,

m2Þ�
In this case, the pair ðM, dζÞ is called a rectangular b

-metric space.

Definition 2 [9]. Let M be a nonempty set and ζ : M ×M

→ ½1,∞Þ be a mapping. Then, a mapping dζ : M ×M⟶

½0,∞Þ is called an extended b-metric, if for all m1,m2,m3
∈M, it satisfies the following axioms:

(i) dζðm1,m2Þ = 0 iff m1 =m2

(ii) dζðm1,m2Þ = dζðm2,m1Þ
(iii) dζðm1,m3Þ ≤ ζðm1,m3Þ½dζðm1,m2Þ + dζðm2,

m3Þ�
The pair ðM, dζÞ is called an extended b-metric space.

Definition 3 [21]. A mapping dζ : M ×M⟶ ½0,∞Þ on a
nonempty set M is called an extended rectangular b
-metric space, if for all m1,m2 ∈M and all distinct μ1,
μ2 ∈M different from m1 and m2, the following axioms
are satisfied:

(i) dζðm1,m2Þ = 0 iff m1 =m2

(ii) dζðm1,m2Þ = dζðm2,m1Þ
(iii) dζðm1,m2Þ ≤ ζðm1,m2Þ½dζðm1, μ1Þ + dζðμ1, μ2Þ

+ dζðμ2,m2Þ�
where ζ : M ×M⟶ ½1,∞Þ is a mapping. In this case, the
pair ðM, dζÞ is called an extended rectangular b-metric space.

Note that the topology of rectangular metric spaces
need not be Hausdorff. For more examples, see the

papers of Sarma et al. [24] and Samet [25]. The topolog-
ical structure of rectangular metric spaces is not compat-
ible with the topology of classic metric spaces; see
Example 7 in the paper of Suzuki [26]. In the same
direction, extended rectangular b-metric spaces cannot
be Hausdorff.

Definition 4 [23]. A mapping dζ : M ×M⟶ ½0,∞Þ on a
nonempty set M is called a controlled rectangular b-metric
space, if for all distinct m1,m2, μ1, μ2 ∈M, the following
axioms are satisfied:

(i) dζðm1,m2Þ = 0 iff m1 =m2

(ii) dζðm1,m2Þ = dζðm2,m1Þ
(iii) dζðm1,m2Þ ≤ ζðm1,m2, μ1, μ2Þ½dζðm1, μ1Þ + dζð

μ1, μ2Þ + dζðμ2,m2Þ�

where ζ : M4 ⟶ ½1,∞Þ is a mapping. In this case, the pair
ðM, dζÞ is called a controlled rectangular b-metric space.

As a generalization of metric spaces, Mlaiki et al. in [12]
introduced the concept of controlled metric spaces as follows.

Definition 5 [12]. Let M be a nonempty set and ζ : M ×M

⟶ ½1,∞Þ. Then, a mapping dζ : M ×M⟶ ½0,∞Þ is
called a controlled metric, if for all m1,m2,m3 ∈M, it sat-
isfies the following axioms:

(i) dζðm1,m2Þ = 0 iff m1 =m2

(ii) dζðm1,m2Þ = dζðm2,m1Þ
(iii) dζðm1,m3Þ ≤ ζðm1,m2Þdζðm1,m2Þ + ζðm2,m3

Þdζðm2,m3Þ
The pair ðM, dζÞ is called a controlled metric space.

Note that Definition 5 generalizes b-metric spaces and is
different from Definition 2.

Example 1 [12]. Let M = f1, 2,⋯g. Define dζ : M ×M⟶

½0,∞Þ as

dζ x, yð Þ =

0, if m1 =m2,
1
m1

, if m1 is even andm2 is odd,

1
m2

, if m1 is odd andm2 is even,

1, otherwise:

8>>>>>>>><
>>>>>>>>:

ð1Þ

Hence, ðM, dζÞ is a controlled metric space, where ζ

2 Journal of Function Spaces



: M ×M⟶ ½1,∞Þ is defined as

ζ m1,m2ð Þ =
m1, if m1 is even andm2 is odd,
m2, if m1 is odd andm2 is even,
1, otherwise:

8>><
>>: ð2Þ

3. Main Results

In this section, we introduce the notion of controlled rectan-
gular metric spaces. Also, we establish some fixed point
results.

Definition 6. A mapping dζ : M ×M⟶ ½0,∞Þ on a non-
empty set M is called a controlled rectangular metric space,
if for all m1,m2 ∈M and all distinct μ1, μ2 ∈M different
from m1 and m2, the following axioms are satisfied:

(i) dζðm1,m2Þ = 0 iff m1 =m2

(ii) dζðm1,m2Þ = dζðm2,m1Þ
(iii) dζðm1,m2Þ ≤ ζðm1, μ1Þdζðm1, μ1Þ + ζðμ1, μ2Þdζð

μ1, μ2Þ + ζðμ2,m2Þdζðμ2,m2Þ
where ζ : M ×M⟶ ½1,∞Þ is a mapping, In this case, the
pair ðM, dζÞ is called a controlled rectangular metric space.

Remark 7.

(i) Every rectangular metric space and rectangular b
-metric is a controlled rectangular metric space

(ii) Clearly, Definition 6 is different from Definition 4

(iii) Every controlled metric space is a controlled rectan-
gular metric space, but its converse is not true in
general. See the following example

Example 2. Let M = ½0,∞Þ. Define a mapping dζ : M ×M

⟶ ½0,∞Þ by

dζ m1,m2ð Þ =

0, if m1 =m2,
1
m1

, if m1 ≥ 1 andm2 ∈ 0, 1½ Þ,

1
m2

, if m2 ≥ 1 andm1 ∈ 0, 1½ Þ,

1, otherwise:

8>>>>>>>><
>>>>>>>>:

ð3Þ

Then, dζ is a controlled rectangular metric space, where
ζ : M ×M⟶ ½1,∞Þ is a mapping defined as

ζ m1,m2ð Þ =
m1, if m1,m2 ≥ 1,
1, otherwise:

(
ð4Þ

Clearly, ðM, dζÞ is not a controlled metric space if we
take m1,m3 ≥ 1 and m2 ∈ ½0, 1Þ. Then, dζðm1,m3Þ = 1, dζ

ðm1,m2Þ = 1/m1, dζðm2,m3Þ = 1/m3, ζðm1,m2Þ = 1,
and ζðm2,m3Þ = 1. Here, the triangle inequality is not satis-
fied:

dζ m1,m3ð Þ = 1 > ζ m1,m2ð Þdζ m1,m2ð Þ
+ ζ m2,m3ð Þdζ m2,m3ð Þ = 1

m1
+ 1
m3

:

ð5Þ

Example 3. Let M = f1, 2, 3, 4g. Define dζ : M ×M⟶ ½o,
∞Þ as

dζ 1, 1ð Þ = dζ 2, 2ð Þ = dζ 3, 3ð Þ = dζ 4, 4ð Þ = 0,

dζ 1, 2ð Þ = dζ 2, 1ð Þ = dζ 2, 3ð Þ = dζ 3, 2ð Þ = dζ 3, 4ð Þ = dζ 4, 3ð Þ
= dζ 1, 3ð Þ = dζ 3, 1ð Þ = 80,

dζ 1, 4ð Þ = dζ 4, 1ð Þ = 1000,
dζ 2, 4ð Þ = dζ 4, 2ð Þ = 450:

ð6Þ

Then, ðM, dζÞ is a controlled rectangular metric space
with ζ : M ×M⟶ ½1,∞Þ defined as ζðm1,m2Þ =max f
m1,m2g + 2, for all m1,m2 ∈M. However, ðM, dζÞ is not
a rectangular metric space; for instance, notice

dζ 1, 4ð Þ = 1000 > dζ 1, 2ð Þ + dζ 2, 3ð Þ + dζ 3, 4ð Þ = 240: ð7Þ

The concepts of convergence, Cauchyness, and complete-
ness can simply be generalized in terms of controlled rectan-
gular metric spaces.

Definition 8. Let ðM, dζÞ be a controlled rectangular metric
space. Then,

(i) A sequence fmng in ðM, dζÞ is said to be conver-
gent to m ∈M, if limn⟶∞dζðmn,mÞ = 0

(ii) A sequence fmng in ðM, dζÞ is called a Cauchy
sequence, if limn,r⟶∞dζðmn,mrÞ = 0

(iii) ðM, dζÞ is called a complete controlled rectangular
metric space, if every Cauchy sequence inM is con-
vergent to some point of M

Definition 9. Let ðM, dζÞ be a controlled rectangular metric
space. Let m ∈M and τ > 0. Then,

(i) The open ball Bðm, τÞ is define as

B m, τð Þ = m1 ∈M, dζ m,m1ð Þ < τ
� �

: ð8Þ

(ii) The mapping f : M⟶M is called continuous at
m ∈M, if for υ > 0, there is ν > 0 such that fðBðm,
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νÞÞ ⊆ BðfðmÞ, υÞ. Thus, if f is continuous at m, then
for any sequence fmng converging to m, we have
limn⟶∞fmn = fm

Note that a rectangular b-metric space is not continuous
in general, and it is the same for controlled rectangular metric
spaces.

Lemma 10. Let ðM, dζÞ be a controlled rectangular metric
space and fmng be a Cauchy sequence in M such that mn
≠mr, whenever n ≠ r. If limn,r⟶∞ζðmn,mrÞ <∞ for all
mn,mr ∈M, then fmng has a unique limit.

Proof. Suppose that a sequence fmng in M has two limit
points μ, ν ∈M, that is, limn⟶∞mn = μ and limn⟶∞mn
= ν. fmng is a Cauchy sequence for mn ≠mr , whenever n
≠ r. Hence, from condition (iii) of Definition 6, we have

dζ μ, νð Þ ≤ ζ μ,mnð Þdζ μ,mnð Þ + ζ mn,mrð Þdζ mn,mrð Þ
+ ζ mr , νð Þdζ mr , νð Þ⟶ 0 as n, r⟶∞:

ð9Þ

This implies that

dζ μ, νð Þ = 0: ð10Þ

Hence, fmng has a unique limit point in M.

Definition 11. Let ðM, dζÞ be a controlled rectangular metric
space. Then,

(i) For a mapping f : M⟶M, we define

O m, nð Þ = m, fm,⋯, fnmf g,
O m,∞ð Þ = m, fm,⋯, fnm,⋯f g,

ð11Þ

wherem ∈M and n ∈ℕ. The Oðm,∞Þ is called an orbit of f
.

(ii) A mapping f : M⟶M is called f-orbitally contin-
uous, if limk⟶∞fnkm =m implies limk⟶∞fðfnkmÞ
= fm, where m ∈M

(iii) A mapping f : M⟶M is called f-orbitally com-
plete, if every Cauchy sequence in Oðm,∞Þ is con-
vergent in M

Our main result is similar to the Banach contraction
principle in the setting of controlled rectangular metric
spaces. Throughout this section, for a mapping f : M⟶
M and m ∈M, we consider an orbit Oðm,∞Þ.

Theorem 12. Let f : M⟶M be a mapping on a controlled
rectangular metric space ðM, dζÞ. Suppose that the following
axioms hold:

(i) For all m1,m2 ∈M, we have

dζ fm1, fm2ð Þ ≤ λdζ m1,m2ð Þ, ð12Þ

where λ ∈ ½0, 1Þ.

(ii) supq≥1limi→∞ζðmi,mqÞðζðmi+1,mi+2Þ/ζðmi−1,mi

ÞÞλ < 1, for any mn ∈M

(iii) ðM, dζÞ is f-orbitally complete

(iv) f is orbitally continuous
(v) For each m ∈M, limn⟶∞ςðmn, μÞ and limn⟶∞ς

ðμ,mnÞ exist and are finite

Then, f has a unique fixed point in M.

Proof. Consider an arbitrary point m0 ∈M, and define an
iterative sequence fmng over m0 as follows:

m1 = fm0,m2 = fm1 = f fm0ð Þ = f2m0,⋯,mn = fnm0,⋯:

ð13Þ

From equation (12), we have

dζ m1,m2ð Þ = dζ fm0, f2m0
� �

≤ λdζ m0, fm0ð Þ = dζ m0,m1ð Þ:
ð14Þ

Recursively, we have

dζ mn,mn+1ð Þ = dζ fnm0, fn+1m0
� �

≤ λdζ fn−1m0, fnm0
� �

≤ λ2dζ fn−2m0, fn−1m0
� �

⋯

≤ λndζ m0,m1ð Þ:
ð15Þ

That is,

dζ mn,mn+1ð Þ ≤ λndζ m0,m1ð Þ: ð16Þ

By taking limit n⟶∞, we get

lim
n⟶∞

dζ mn,mn+1ð Þ = 0, ð17Þ

lim
n⟶∞

dζ mn+1,mn+2ð Þ = 0: ð18Þ
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Next, we show that fmng is a Cauchy sequence. For this,
we will take the following two cases.

Case 1. Let ρ be odd, that is, ρ = 2r + 1, where r ≥ 1. Then,
from condition (iii) of Definition 6 and equation (16) for
n + ρ > n, we have

dζ mn,mn+2r+1ð Þ ≤ ζ mn,mn+1ð Þdζ mn,mn+1ð Þ + ζ

� mn+1,mn+2ð Þdζ mn+1,mn+2ð Þ + ζ mn+2,mn+2r+1ð Þ
× dζ mn+2,mn+2r+1ð Þ ≤ ζ mn,mn+1ð Þλn + ζ½
� mn+1,mn+2ð Þλn+1�dζ m0,m1ð Þ + ζ mn+2,mn+2r+1ð Þdζ
� mn+2,mn+2r+1ð Þ ≤ ζ mn,mn+1ð Þλn + ζ½
� mn+1,mn+2ð Þλn+1�dζ m0,m1ð Þ + ζ mn+2,mn+2r+1ð Þζ
� mn+2,mn+3ð Þ × dζ mn+2,mn+3ð Þ + ζ mn+2,mn+2r+1ð Þζ
� mn+3,mn+4ð Þdζ mn+3,mn+4ð Þ + ζ mn+2,mn+2r+1ð Þ × ζ

� mn+4,mn+2r+1ð Þdζ mn+4,mn+2r+1ð Þ ≤ dζ
� m0,m1ð Þ ζ mn,mn+1ð Þλn + ζ mn+2,mn+3ð Þλn+1� �
+ dζ m0,m1ð Þ × ζ mn+2,mn+2r+1ð Þζ mn+2,mn+3ð Þλn+2�
+ ζ mn+2,mn+2r+1ð Þζ mn+3,mn+4ð Þλn+3�+⋯+dζ
� m0,m1ð Þζ mn+2,mn+2r+1ð Þ⋯ ζ mn+2r−2,mn+2n−1ð Þλn+2r−2
+ ζ mn+2,mn+2r+1ð Þ⋯ ζ mn+2r−1,mn+2rð Þλn+2r−1
+ ζ mn+2,mn+2r+1ð Þ⋯ ζ mn+2r ,mn+2r+1ð Þλn+2rdζ m0,m1ð Þ

≤ dζ m0,m1ð Þ ζ mn,mn+1ð Þλn + ζ mn+2,mn+3ð Þλn+1� �
+ 〠

r−1

i=1

Yi
j=1

ζ mn+2j,mn+2r+1
� �

× ζ mn+2i,mn+2i+1ð Þλn+2idζ

� m0,m1ð Þ + 〠
r−1

i=1

Yi
j=1

ζ mn+2j+1,mn+2r+1
� �

ζ mn+2i+1,mn+2i+2ð Þ

× λn+2i+1dζ m0,m1ð Þ +
Yr−1
i=1

ζ mn+2j,mn+2r+1
� �

λn+2rdζ m0,m1ð Þ:

ð19Þ

As

〠
r−1

i=1

Yi
j=1

ζ mn+2j,mn+2r+1
� �

ζ mn+2i,mn+2i+1ð Þλn+2i

≤ 〠
r−1

i=1

Yi
j=1

ζ m2j,mn+2r+1
� �

ζ m2i,mn+2i+1ð Þλ2i,
ð20Þ

〠
r−1

i=1

Yi
j=1

ζ mn+2j+1,mn+2r+1
� �

ζ mn+2i+1,mn+2i+2ð Þλn+2i+1

≤ 〠
r−1

i=1

Yi
j=1

ζ m2j+1,mn+2r+1
� �

ζ m2i+1,mn+2i+2ð Þλ2i+1,

ð21Þ

therefore, we obtain

dζ mn,mn+2r+1ð Þ ≤ dζ m0,m1ð Þ ζ mn,mn+1ð Þλn½

+ ζ mn+2,mn+3ð Þλn+1� + 〠
r−1

i=1

Yi
j=1

ζ m2j,mn+2r+1
� �

× ζ m2i,m2i+1ð Þλ2idζ m0,m1ð Þ

+ 〠
r−1

i=1

Yi
j=1

ζ m2j+1,mn+2r+1
� �

ζ m2i+1,m2i+2ð Þ

× λ2i+1dζ m0,m1ð Þ +
Yr−1
i=1

ζ mn+2j,mn+2r+1
� �

λn+2rdζ m0,m1ð Þ:

ð22Þ

Since supq≥1limi⟶∞ζðmi,mqÞðζðmi+1,mi+2Þ/ζðmi−1,
miÞÞλ < 1, the series

〠
∞

i=1

Yi
j=1

ζ m2j,mn+2r+1
� �

ζ m2i,m2i+1ð Þλ2i,

〠
∞

i=1

Yi
j=1

ζ m2j+1,mn+2r+1
� �

ζ m2i+1,m2i+2ð Þλ2i+1,
ð23Þ

converge by the ratio test. Let

S = 〠
∞

i=1

Yi
j=1

ζ m2j,mn+2r+1
� �

ζ m2i,m2i+1ð Þλ2i,

Sn = 〠
n

i=1

Yi
j=1

ζ m2j,mn+2r+1
� �

ζ m2i,m2i+1ð Þλ2i,
ð24Þ

S ′ = 〠
∞

i=1

Yi
j=1

ζ m2j+1,mn+2r+1
� �

ζ m2i+1,m2i+2ð Þλ2i+1,

Sn′ = 〠
n

i=1

Yi
j=1

ζ m2j+1,mn+2r+1
� �

ζ m2i+1,m2i+2ð Þλ2i+1:

ð25Þ
Then, equation (22) takes the following form:

dζ mn,mn+2r+1ð Þ ≤ dζ m0,m1ð Þ ζ mn,mn+1ð Þλn½
+ ζ mn+2,mn+3ð Þλn+1� + dζ m0,m1ð Þ Sr−1 − Sn+1½ �dζ
� m0,m1ð Þ + dζ m0,m1ð Þ Sr−1′ − Sn+1′

h i
dζ m0,m1ð Þ

+
Yr−1
i=1

ζ mn+2j,mn+2r+1
� �

λn+2rdζ m0,m1ð Þ:

ð26Þ

By taking limit n⟶∞ in equation (26), we get

lim
n⟶∞

dζ mn,mn+2r+1ð Þ = 0: ð27Þ
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Case 2. Let ρ be even, that is, ρ = 2r, where r ≥ 1. Then,
from condition (iii) of Definition 6 and equation (16) for
n + ρ > n, we have

dζ mn,mn+2rð Þ ≤ ζ mn,mn+1ð Þdζ mn,mn+1ð Þ
+ ζ mn+1,mn+2ð Þdζ � mn+1,mn+2ð Þ + ζ mn+2,mn+2rð Þ
× dζ mn+2,mn+2rð Þ ≤ ζ mn,mn+1ð Þλn½
+ ζ mn+1,mn+2ð Þλn+1�dζ m0,m1ð Þ
+ ζ mn+2,mn+2rð Þdζ mn+2,mn+2rð Þ ≤ ζ mn,mn+1ð Þλn½
+ ζ mn+1,mn+2ð Þλn+1�dζ m0,m1ð Þ
+ ζ mn+2,mn+2rð Þζ mn+2,mn+3ð Þ × dζ mn+2,mn+3ð Þ
+ ζ mn+2,mn+2rð Þζ mn+3,mn+4ð Þdζ mn+3,mn+4ð Þ
+ ζ mn+2,mn+2rð Þ × ζ mn+4,mn+2rð Þdζ mn+4,mn+2rð Þ

≤ dζ m0,m1ð Þ ζ mn,mn+1ð Þλn + ζ mn+2,mn+3ð Þλn+1� �
+ dζ m0,m1ð Þ × ζ mn+2,mn+2rð Þζ mn+2,mn+3ð Þλn+2�
+ ζ mn+2,mn+2rð Þζ mn+3,mn+4ð Þλn+3�
+⋯+dζ m0,m1ð Þζ mn+2,mn+2rð Þ⋯ ζ

� mn+2r−4,mn+2n−3ð Þλn+2r−4 + ζ mn+2,mn+2rð Þ⋯ ζ

� mn+2r−3,mn+2r−2ð Þλn+2r−3 + ζ mn+2,mn+2rð Þ⋯ ζ

� mn+2r−2,mn+2rð Þλn+2r−2dζ m0,m2ð Þ ≤ dζ
� m0,m1ð Þ ζ mn,mn+1ð Þλn + ζ mn+2,mn+3ð Þλn+1� �
+ 〠

r−2

i=1

Yi
j=1

ζ mn+2j,mn+2r
� �

× ζ mn+2i,mn+2i+1ð Þλn+2idζ

� m0,m1ð Þ + 〠
r−2

i=1

Yi
j=1

ζ mn+2j+1,mn+2r
� �

ζ

� mn+2i+1,mn+2i+2ð Þ × λn+2i+1dζ m0,m1ð Þ

+
Yr−1
i=1

ζ mn+2j,mn+2r
� �

λn+2r−2dζ m0,m2ð Þ:

ð28Þ

As

〠
r−2

i=1

Yi
j=1

ζ mn+2j,mn+2r
� �

ζ mn+2i,mn+2i+1ð Þλn+2i

≤ 〠
r−2

i=1

Yi
j=1

ζ m2j,mn+2r
� �

ζ m2i,m2i+1ð Þλ2i,
ð29Þ

〠
r−2

i=1

Yi
j=1

ζ mn+2j+1,mn+2r+1
� �

ζ mn+2i+1,mn+2i+2ð Þλn+2i+1

≤ 〠
r−2

i=1

Yi
j=1

ζ m2j+1,mn+2r+1
� �

ζ m2i+1,m2i+2ð Þλ2i+1,

ð30Þ

therefore, we obtain

dζ mn,mn+2rð Þ ≤ dζ m0,m1ð Þ ζ mn,mn+1ð Þλn½

+ ζ mn+2,mn+3ð Þλn+1� + 〠
r−2

i=1

Yi
j=1

ζ m2j,mn+2r
� �

× ζ m2i,m2i+1ð Þλ2idζ m0,m1ð Þ

+ 〠
r−2

i=1

Yi
j=1

ζ m2j+1,mn+2r
� �

ζ m2i+1,m2i+2ð Þ

× λ2i+1dζ m0,m1ð Þ +
Yr−1
i=1

ζ

� mn+2 j,mn+2r
� �

λn+2r−2dζ m0,m2ð Þ:

ð31Þ

Since supq≥1limi⟶∞ζðmi,mqÞðζðmi+1,mi+2Þ/ζðmi−1,
miÞÞλ < 1, the series

〠
∞

i=1

Yi
j=1

ζ m2j,mn+2r
� �

ζ m2i,m2i+1ð Þλ2i,

〠
∞

i=1

Yi
j=1

ζ m2j+1,mn+2r
� �

ζ m2i+1,m2i+2ð Þλ2i+1,
ð32Þ

converge by the ratio test. Let

S = 〠
∞

i=1

Yi
j=1

ζ m2j,mn+2r
� �

ζ m2i,m2i+1ð Þλ2i,

Sn = 〠
n

i=1

Yi
j=1

ζ m2j,mn+2r
� �

ζ m2i,m2i+1ð Þλ2i,
ð33Þ

S ′ = 〠
∞

i=1

Yi
j=1

ζ m2j+1,mn+2r
� �

ζ m2i+1,m2i+2ð Þλ2i+1,

Sn′ = 〠
n

i=1

Yi
j=1

ζ m2j+1,mn+2r
� �

ζ m2i+1,m2i+2ð Þλ2i+1:
ð34Þ

Then, equation (31) takes the following form:

dζ mn,mn+2rð Þ ≤ dζ m0,m1ð Þ ζ mn,mn+1ð Þλn½
+ ζ mn+2,mn+3ð Þλn+1� + dζ m0,m1ð Þ Sr−1 − Sn+1½ �
+ dζ m0,m1ð Þ Sr−1′ − Sn+1′

h i

+
Yr−1
i=1

ζ mn+2j,mn+2r
� �

λn+2r−2dζ m0,m1ð Þ:

ð35Þ

By taking limit n⟶∞ in equation (35), we get

lim
n⟶∞

dζ mn,mn+2rð Þ = 0: ð36Þ

Hence, in both cases, limn⟶∞dζðmn,mn+ρÞ = 0,
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which shows that fmng is a Cauchy sequence. As M is f
-orbitally complete, so there exists μ ∈M such that
limn⟶∞mn = μ. Next, we show that μ is a fixed point
of f. As f is orbitally continuous, so we have

dζ μ, fμð Þ ≤ ζ μ,mnð Þdζ μ,mnð Þ + ζ mn,mn+1ð Þdζ mn,mn+1ð Þ
+ ζ mn+1, fμð Þdζ mn+1, fμð Þ:

ð37Þ

Since for each m ∈M, limn⟶∞ζðmn,mÞ and
limn⟶∞ζðm,mnÞ exist and are finite, so by taking limit
n⟶∞ and using equation (17), we get

lim
n⟶∞

dζ μ, fμð Þ = 0: ð38Þ

Therefore, fμ = μ. Hence, μ is a fixed point of f. In
view of Lemma 10, m is the unique fixed point of f.

Example 4. Let X = ½1, 2�. Define dζ : M ×M⟶ ½0,∞Þ by
dζðm1,m2Þ = ðm1 −m2Þ2. Then, ðM, dζÞ is a complete
controlled rectangular metric space with ζ : M ×M⟶ ½1,
∞Þ defined as ζðm1,m2Þ = 3m1 + 2m2 + 5. Define a map-
ping f : M⟶M by

fm = m

4 : ð39Þ

Clearly, all the axioms of Theorem 12 are satisfied, and
hence, m = 0 is a fixed point of f.

Corollary 13. Let f : M⟶M be a mapping on a complete
controlled rectangular metric space ðM, dζÞ. Suppose that
the following axioms hold:

(i) For all m1,m2 ∈M, we have

dζ fm1, fm2ð Þ ≤ λdζ m1,m2ð Þ,  λ ∈ 0, 1½ Þ: ð40Þ

(ii) supq≥1limi⟶∞ζðmi,mqÞðζðmi+1,mi+2Þ/ζðmi−1,
miÞÞλ < 1, for any mn ∈M

(iii) f is continuous

Then, f has a unique fixed point.

Remark 14.

(i) By putting ζðm1,m2Þ = s, for all m1,m2 ∈M in
Theorem 12, we get Theorem 2.1 of George et al. [22]

(ii) By putting ζðm1,m2Þ = 1, for all m1,m2 ∈M in
Theorem 12, we get the following corollary in view
of Das and Dey [27]

Corollary 15. Let f : M⟶M be a mapping on a rectangular
metric space ðM, dζÞ. Suppose that the following axioms hold:

(i) For allm1,m2 ∈M, dζðfm1, fm2Þ ≤ λdζðm1,m2Þ,
where λ ∈ ½0, 1Þ

(ii) ðM, dζÞ is f-orbitally complete

(iii) f is orbitally continuous

Then, f has a unique fixed point.

Theorem 16. Let f : M⟶M be a mapping on complete
controlled rectangular metric space ðM, dζÞ, which satisfies
the following axioms:

(i) For all m1,m2 ∈M, we have

dζ fm1, fm2ð Þ ≤ λ dζ m1, fm1ð Þ + dζ m2, fm2ð Þ� �
, ð41Þ

where λ ∈ ½0, 1/2Þ.

(ii) supq≥1limi⟶∞ζðmi,mqÞðζðmi+1,mi+2Þ/ζðmi−1,
miÞÞλ < 1, for anymn ∈M, where λ ≠ 1/ζðm1,m2Þ
for each m1,m2 ∈M

(iii) For each m ∈M, limn⟶∞ζðmn,mn+1Þ ≤ 1,
limn⟶∞ζðmn, μÞ, and limn⟶∞ζðμ,mnÞ exist and
are finite

Then, f has a unique fixed point in M.

Proof. Let us take an arbitrary element m0 ∈M and choose
m1 = fm0 and m2 = fm1. Then, from equation (41), we
obtain

dζ m1,m2ð Þ = dζ fm0, fm1ð Þ ≤ λ dζ m0, fm0ð Þ�
+ dζ m1, fm1ð Þ� = λ dζ m0,m1ð Þ�
+ dζ m1,m2ð Þ�:

ð42Þ

This implies that

dζ m1,m2ð Þ ≤ λ

1 − λ
dζ m0,m1ð Þ, ð43Þ

where ω = λ/ð1 − λÞ < 1, as λ < 1/2. By recursively applying
equation (41), we obtain

dζ mn,mn+1ð Þ ≤ ωndζ m0,m1ð Þ: ð44Þ

Thus, by taking the limit in equation (44), we have

lim
n→∞

dζ mn,mn+1ð Þ = 0: ð45Þ
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Again from equation (41), we have

dζ mn,mn+2ð Þ = dζ fmn−1, fm1n+1ð Þ ≤ λ dζ mn−1, fmn−1ð Þ�
+ dζ mn+1, fmn+1ð Þ� = λ dζ mn−1,mnð Þ�
+ dζ mn+1,mn+2ð Þ�:

ð46Þ

By using equation (45), we obtain

lim
n→∞

dζ mn,mn+2ð Þ = 0: ð47Þ

Now, we will show that fmng is a Cauchy sequence. By
following the same procedure as in the proof of Theorem
12 and using equations (45) and (47), we conclude that f
mng is a Cauchy sequence. AsM is complete, so there exists
μ ∈M such that

lim
n→∞

dζ mn, μð Þ = 0: ð48Þ

Next, we show that μ is a fixed point of f. From condition
(iii) of Definition 6, for any n ∈ℕ, we have

dζ μ, fμð Þ ≤ ζ μ,mnð Þdζ μ,mnð Þ + ζ mn,mn+1ð Þdζ mn,mn+1ð Þ
+ ζ mn+1, fμð Þdζ mn+1, fμð Þ ≤ ζ μ,mnð Þdζ μ,mnð Þ
+ ζ mn,mn+1ð Þdζ mn,mn+1ð Þ + ζ mn+1, fμð Þdζ
� fmn, fμð Þ ≤ ζ μ,mnð Þdζ μ,mnð Þ
+ ζ mn,mn+1ð Þdζ mn,mn+1ð Þ
+ ζ mn+1, fμð Þλ dζ mn, fmnð Þ + dζ μ, fμð Þ� �

:

ð49Þ

λ ≠ 1/ζðm1,m2Þ for eachm1,m2 ∈M. This implies that

dζ μ, fμð Þ ≤ ζ μ,mnð Þ
1 − λζ mn+1, fμð Þð Þ dζ μ,mnð Þ

+ ζ mn,mn+1ð Þ + λζ mn+1, fμð Þ
1 − λζ mn+1, fμð Þð Þ dζ mn,mn+1ð Þ:

ð50Þ

For each m ∈M, limn⟶∞ζðmn,mn+1Þ ≤ 1, limn⟶∞ζð
mn,mÞ, and limn⟶∞ζðm,mnÞ exist and are finite. There-
fore, by taking limit n⟶∞ in equation (50) and using
equations (47) and (48), we obtain

dζ μ, fμð Þ = 0, ð51Þ

which implies that fμ = μ. For the uniqueness, let ν be another
fixed point of f and μ ≠ ν. From equation (41), we obtain

dζ μ, νð Þ = dζ fμ, fνð Þ ≤ λ dζ μ, fμð Þ + dζ ν, fνð Þ� �
= λ dζ μ, μð Þ + dζ ν, νð Þ� �

,
ð52Þ

where dζðμ, μÞ = 0 and dζðν, νÞ = 0. Hence, from the above
inequality, we obtain dζðμ, νÞ = 0, that is, μ = ν, and μ is a
unique fixed point of f.

4. Application

In this section, we will apply Corollary 13 to prove the exis-
tence and uniqueness of a solution for the following Fred-
holm integral equation:

m tð Þ =
ðb
a
τ t, r,m rð Þð Þdr + v tð Þ, for t, r ∈ a, b½ �, ð53Þ

where v : ½a, b�⟶ℝ and τ : ½a, b� × ½a, b� ×ℝ⟶ℝ both
are continuous functions. Let M =ℂð½a, b�Þ be the space of
all continuous real-valued functions defined on the closed
interval ½a, b�. Consider

dζ m1,m2ð Þ = sup
t∈ a,b½ �

m1 tð Þ −m2 tð Þj j2: ð54Þ

Clearly, ðM, dζÞ is a complete controlled rectangular
metric space with ζ : M ×M⟶ ½1,∞Þ defined as ζðm1,
m2Þ = 3jm1ðtÞj + 2jm2ðtÞj + 5. Next, we will prove our
result as follows.

Theorem 17. For allm1,m2 ∈M and t, r ∈ ½a, b�, the follow-
ing condition holds:

τ t, r,m1 rð Þð Þ − τ t, r,m2 rð Þð Þj j ≤ 1
2 b − að Þ m1 rð Þ −m2 rð Þj j:

ð55Þ

Then, the integral equation (53) has a unique solution.

Proof. Define f : M⟶M by

fm tð Þ =
ðb
a
τ t, r,m rð Þð Þdr + v tð Þ, for t, r ∈ a, b½ �, ð56Þ

where v : ½a, b�⟶ℝ and τ : ½a, b� × ½a, b� ×ℝ⟶ℝ both
are continuous functions. Clearly, γ is a fixed point of f, if
and only if γ is a solution of the integral equation (53). For
all m1,m2 ∈M, we have

fm1 tð Þ − fm2 tð Þj j2 =
ðb
a
τ t, r,m1 rð Þð Þ½ − τ t, r,m2 rð Þð Þ dr

����
����
2

≤
1

4 b − að Þ2
sup
s∈ a,b½ �

m1 sð Þ −m2 sð Þj j2
ðb
a
ds

	 
2

≤
1
4 dζ m1,m2ð Þ:

ð57Þ
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It implies that

dζ fm1, fm2ð Þ ≤ 1
4 dζ m1,m2ð Þ, ð58Þ

where λ = 1/4 ∈ ð0, 1Þ. Thus, all the conditions of Corollary
13 are satisfied. Hence, f has a unique fixed point; that is,
the Fredholm integral equation (53) has a solution.
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In this paper, we propose two novel iteration schemes for computing zeros of nonlinear equations in one dimension. We develop
these iteration schemes with the help of Taylor’s series expansion, generalized Newton-Raphson’s method, and interpolation
technique. The convergence analysis of the proposed iteration schemes is discussed. It is established that the newly developed
iteration schemes have sixth order of convergence. Several numerical examples have been solved to illustrate the applicability
and validity of the suggested schemes. These problems also include some real-life applications associated with the chemical and
civil engineering such as adiabatic flame temperature equation, conversion of nitrogen-hydrogen feed to ammonia, the van der
Wall’s equation, and the open channel flow problem whose numerical results prove the better efficiency of these methods as
compared to other well-known existing iterative methods of the same kind.

1. Introduction

The solution of nonlinear scalar equations plays a vital role in
many fields of applied sciences such as Engineering, Physics,
and Mathematics. Analytical methods do not help us to solve
such equations, and therefore, we need iterative methods for
approximate the solution. In an iterative process, the first
step is to choose an initial guess x0 which is improved step
by step by means of iterations till the approximate solution
is achieved with the required accuracy. Some basic iterative
methods are given in literature [1–8] and the references
therein. In the last few years, a lot of researchers worked on
iterative methods with their applications and proposed some
new iterative schemes which possesses either a high conver-
gence rate or have less number of functional evaluations
per iteration, see [9–21] and the references therein. The con-
vergence rate of an iterative method can be increased by
involving predictor and corrector steps which results multi-

step iterative methods whereas the number of functional
evaluations can be reduced by removing second and higher
derivatives in the considered iterative method using different
mathematical techniques. When we try to raise the conver-
gence rate of an iterative scheme, we have to use more func-
tional evaluations per iteration, and similarly, less number of
functional evaluations per iterations causes low order of con-
vergence which is the main drawback. It is much difficult to
manage both terms, i.e., the convergence rate and functional
evaluations per iterations as it seems that there exists an
inverse relation between them. In twenty-first century, many
mathematicians try to modify the existing methods with less
number of functional evaluations per iterations and higher
convergence order by applying different techniques such as
predictor-corrector technique, finite difference scheme, inter-
polation technique, Taylor’s series, and quadrature formula
etc. In 2007, Noor et al. [22] introduced a two-step Halley’s
method with sextic convergence and then approximated its
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second derivative by the utilization of finite difference scheme
and suggested a novel second-derivative free iterative algo-
rithm which have fifth convergence order. In 2012, Hafiz
and Al-Goria [23] suggested two new algorithms with order
seven and nine, respectively, which were based on the weight
combination of midpoint with Simpson quadrature formulas
and using the predictor-corrector technique. Nazeer et al.
[24] in 2016 proposed a new second derivative free generalized
Newton-Raphson’s method with convergence of order five by
means of finite difference scheme. In 2017, Kumar et al. [25]
suggested a sixth-order parameter-based family of algorithms
for solving nonlinear equations. In the same year, Salimi et al.
[26] proposed an optimal class of eighth-order methods by
using weight functions and Newton interpolation technique.
Very recently, Naseem et al. [27] presented some new sixth-
order algorithms for finding zeros of nonlinear equations
and then investigated their dynamics by means of polynomio-
graphy and presented some novel mathematical art through
the execution of the presented algorithms.

In this paper, we suggested two novel iteration schemes
in the form of predictor-corrector type numerical methods,
namely, Algorithms 1 and 2, by taking Newton’s iteration
method as a predictor step. The derivation of the first itera-
tion scheme is purely based on the Taylor’s series expansion
and generalized Newton-Raphson’s method whereas in sec-
ond one, we use interpolation technique for removing its sec-
ond derivative which results the higher efficiency index. We
examined the convergence criteria of the suggested schemes
and proved that these iteration schemes bearing sextic con-
vergence and superior to the other well-known methods of
the similar nature. The efficiency indices of the presented
schemes have been compared with the other similar existing
two-step iteration schemes. The proposed iteration schemes
have been applied to solve some real life problems along with
the arbitrary transcendental and algebraic equations in order
to assess its applicability, validity, and accuracy.

2. Main Results

Consider the nonlinear algebraic equation

f xð Þ = 0: ð1Þ

We assume that α is a simple zero of (1) and x0 is an
initial guess sufficiently close to α. Using the Taylor’s series
around x0 for (1), we have

f x0ð Þ + x − x0ð Þf ′ x0ð Þ + 1
2! x − x0ð Þ2 f ″ x0ð Þ+⋯ = 0: ð2Þ

If f ′ðx0Þ ≠ 0, we can evaluate the above expression as
follows:

f x0ð Þ + x − x0ð Þf ′ x0ð Þ = 0: ð3Þ

If we choose xj+1 the root of equation, then we have

xj+1 = xj −
f xj
� �

f ′ xj
� � : ð4Þ

This is quadratically convergent Newton’s method [2–4]
for root-finding of nonlinear functions and needs two compu-
tations for its execution. From (2), one can evaluate

x = x0 −
f ′ x0ð Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ′2 x0ð Þ − 2f x0ð Þf ″ x0ð Þ

q
f ″ x0ð Þ

: ð5Þ

In iterative form:

xj+1 = xj −
f ′ xj
� �

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ′2 xj

� �
− 2f xj

� �
f ″ xj
� �q

f ″ xj
� � , ð6Þ

which is cubically convergent generalize Newton-Raphson’s
method [28] and requires three functional evaluations per iter-
ation for the execution. After simplification of (2), one can
obtain:

x = x0 −
f x0ð Þ
f ′ x0ð Þ

−
x − x0ð Þ2 f ″ x0ð Þ

2f ′ x0ð Þ
: ð7Þ

Now from generalized Newton-Raphson’s method in (5)

x − x0 = −
f ′ x0ð Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ′2 x0ð Þ − 2f x0ð Þf ″ x0ð Þ

q
f ″ x0ð Þ

: ð8Þ

Using (8) in (7), we obtain

x = x0 −
f x0ð Þ
f ′ x0ð Þ

−
f ′ x0ð Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ′2 x0ð Þ − 2f x0ð Þf ″ x0ð Þ

q� �2
2f ′ x0ð Þf ″ x0ð Þ

:

ð9Þ

After rewriting the above obtained equality in the general
formwith the insertion of Newton’s iteration method as a pre-
dictor, we arrive at a new algorithm of the form:

Algorithm 1. For a given x0, compute the approximate
solution xj+1 by the following iterative schemes:

yj = xj −
f xj
� �

f ′ xj
� � , j = 0, 1, 2,⋯,
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xj+1 = yj −
f yj
� �

f ′ yj
� �

−
f ′ yj
� �

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ′2 yj

� �
− 2f yj

� �
f ″ yj
� �r� �2

2f ′ yj
� �

f ″ yj
� � ,

ð10Þ

which is the modification of the generalized Newton-
Raphson’s method for determining the approximate roots
of the nonlinear algebraic equations. To find the approximate
root of the given nonlinear equation by means of the above
described algorithm, one has to find the first as well as the
second derivative of the given function f ðxÞ. But in several
cases, we have to deal with such functions in which second
derivative does not exists and our proposed algorithm fails
to find approximate root in that situation. To resolve this
issue, we apply interpolation technique for the approxima-
tion of the second derivative as follows:

Consider the function

ρ uð Þ = a1 + a2 u − yj
� �

+ a3 u − yj
� �2

+ a4 u − yj
� �3

, ð11Þ

where the values of the unknowns a1, a2, a3, and a4 can be
found by applying the following interpolation conditions:

f xj
� �

= ρ xj
� �

, f wj

� �
= ρ wj

� �
, f ′ wj

� �
= ρ′ wj

� �
,

f ′ xj
� �

= ρ′ xj
� �

, f ″ wj

� �
= ρ″ wj

� �
:

ð12Þ

From the above conditions, we gain a system containing
four linear equations with four variables, the solution of
which gives the following equality:

f ″ yj
� �

=
6 f xj

� �
− f yj

� �h i
− 2 xj − yj

h i
2f ′ yj

� �
+ f ′ yj

� �h i
xj − yj

� �2

= ρ xj, yj
� �

:

ð13Þ

After putting the value of f ″ðyjÞ from the above equality
in Algorithm 1, we gain novel second-derivative free
algorithm as follows:

Algorithm 2. For a given x0, compute the approximate
solution xj+1 by the following iterative schemes:

yj = xj −
f xj
� �

f ′ xj
� � , j = 0, 1, 2,⋯,

xj+1 = yj −
f yj
� �

f ′ yj
� �

−
f ′ yj
� �

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ′2 yj

� �
− 2f yj

� �
ρ xj, yj
� �r� �2

2f ′ yj
� �

ρ xj, yj
� � ,

ð14Þ

which is a novel second-derivative free iterative algorithm for
computing the approximate solutions of the nonlinear alge-
braic equations. One of the main features of the suggested
algorithm is that it can be applied to all those nonlinear func-
tions in which second derivative does not exist. The removal
of second derivative causes less number of functional evalua-
tions per iteration which yields the best efficiency index as
compared to those methods which require second derivative.
The results of the given test examples certified its best perfor-
mance in comparison with the other similar existing methods
in literature.

3. Convergence Analysis

This section includes the discussion regarding the conver-
gence criteria of the suggested iteration schemes.

Theorem 3. Assuming α as a simple zero of the given equation
f ðxÞ = 0, where f ðxÞ is sufficiently smooth in the neighbor-
hood of α, then the convergence orders of Algorithms 1 and 2
are at least six.

Proof. To prove the convergence of Algorithms 1 and 2, we
assume that α is the simple root of the equation f ðxÞ = 0
and ej be the error at nth iteration; then, ej = xj − α and by
using Taylor series about x = α, we have

f xj
� �

= f ′ αð Þej +
1
2! f

″ αð Þe2j +
1
3! f

‴ αð Þe3j +
1
4! f

ivð Þ αð Þe4j
+ 1
5! f

vð Þ αð Þe5j +
1
6! f

við Þ αð Þe6j +O e7j
� �

,

ð15Þ

f xj
� �

= f ′ αð Þ ej + c2e
2
j + c3e

3
j + c4e

4
j + c5e

5
j + c6e

6
j +O e7j

� �h i
,

ð16Þ

f ′ xj
� �

= f ′ αð Þ
h
1 + 2c2ej + 3c3e2j + 4c4e3j + c5e

4
j + 6c6e5j

+ 7c7e6j +O e7j
� �i

,

ð17Þ
where

cn =
1
n!

f nð Þ αð Þ
f ′ αð Þ

: ð18Þ
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With the help of equations (16) and (17), we get

yj = f ′ αð Þ α + c2e
2
j + 2c3 − 2c22

� �
e3j + 3c4 − 7c2c3 + 4c32

�
e4j

h
+ −6c23 + 20c3c22 − 10c2c4 + 4c5 − 8c42
� �

e5j

+ −17c4c3 + 28c4c22 − 13c2c5 + 5c6
�

+ 33c2c23 − 52c3c32 + 16c52
�
e6j +O e7j

� �
�,

ð19Þ

f yj
� �

= f ′ αð Þ
h
c2e

2
j + 2c3 − 2c22

� �
e3j + 5c32 − 7c2c3 + 3c4

� �
e4j

+ 24c3c22 − 12c42 − 10c2c4 + 4c5 − 6c23
� �

e5j

+
�
−73c3c32 + 34c4c22 + 28c52 + 37c2c23 − 17c4c3

− 13c2c5 + 5c6
�
e6j +O e7j

� �i
,

ð20Þ

f ′ yj
� �

= f ′ αð Þ
h
1 + 2c22e2j + 4c2c3 − 4c32

� �
e3j

+ 6c2c4 − 11c3c22 + 8c42
� �

e4j +
�
28c3c32 − 20c4c22

+ 8c2c5 − 16c52
�
e5j +

�
−16c4c2c3 − 68c3c42 + 12c33

+ 60c4c32 − 26c5c22 + 10c2c6 + 32c62
�
e6j +O e7j

� �i
,

ð21Þ

f ″ yj
� �

= f ′ αð Þ
h
2c2 + 6c2c3e2j + 12c23 − 12c3c22

� �
e3j

+ −42c2c23 + 18c4c3 + 24c3c32 + 12c4c22
� �

e4j

+
�
−12c2c4c3 + 24c5c3 − 36c33 + 120c23c22

− 48c3c42 − 48c4c32
�
e5j +

�
−78c3c2c5 + 30c3c6

− 54c4c23 − 96c3c4c22 + 198c2c33 − 312c23c32 + 96c3c52
+ 72c2c24 + 144c4c42 + 20c5c32

�
e6j +O e8j

� �i
:

ð22Þ

With the help of equations (16)–(21), we have

ρ xj, yj
� �

= f ′ αð Þ
h
2c2 + 6c2c3 − 2c4ð Þe2j +

�
12c23 − 12c3c22

+ 4c2c4 − 4c5
�
e3j +

�
2c2c5 + 26c3c4 − 42c2c23

+ 24c3c32 + 2c4c22 − 6c6
�
e4j +

�
−48c4c2c3 + 12c24

− 24c4c32 + 28c5c3 + 4c5c22 + 120c23c22 − 48c3c42
− 8c7 − 36c33

�
e5j +

�
−60c5c2c3 + 28c4c3c22 − 2c2c7

+ 22c5c4 − 10c5c32 + 30c6c3 + 6c6c22 + 20c2c24
− 86c4c23 + 88c4c42 + 198c2c33 − 312c23c32
+ 96c3c52 − 10c8

�
e6j +O e7j

� �i
:

ð23Þ

Using equations (19)–(23) in Algorithms 1 and 2, we get
the following equalities

xj+1 = α + −c3c
3
2

� �
e6j +O e7

� �
,

xj+1 = α + −c3c
3
2 + c4c

2
2

� �
e6j +O e7

� �
,

ð24Þ

which imply that

en+1 = −c3c
3
2

� �
e6j +O e7

� �
, ð25Þ

en+1 = −c3c
3
2 + c4c

2
2

� �
e6j +O e7

� �
: ð26Þ

Equations (25) and (26) show that the orders of conver-
gence of Algorithms 1 and 2 are atleast six.

4. Comparison of Efficiency Index

In numerical analysis, the efficiency index of an algorithm
provides us the information about the speed and perfor-
mance of the algorithm which is being under the consider-
ation. It is actually a numerical quantity that relates to the
number of computational resources needed to execute the
considered algorithm. The efficiency of an algorithm can be
thought of as analogous to the engineering productivity for
a process that includes iterations. The term efficiency index
is used to analyze the numeric behavior of different algo-
rithms. In iterative algorithms, this quantity totally depends
upon the two factors. The first one is the convergence order
of the algorithm whereas the second factor is the number of
computations per iteration, i.e., the number of functional
and derivatives evaluations, required to execute the algo-
rithm for the purpose of root-finding of the nonlinear func-
tions. If the convergence order is represented by P and the
number of computations per iteration by nf , then the
efficiency index can be written mathematically as:

Efficiency Index = P1/nf : ð27Þ

Since Noor’s method one [11] has quadratic convergence
and requires three computations per iteration for execution,
so its efficiency index will be 21/3 ≈ 1:2599. In the same way,
the cubically convergent Noor’s method two [11] requires
three computations per iteration and has 31/3 ≈ 1:4422 as an
efficiency index. Similarly, the efficiency index of the Traub’s
methods [6] is 41/4 ≈ 1:4142 because it possesses the conver-
gence of order four with four computations for execution.
Since the modified Halley’s method [22] has fifth conver-
gence order with four computations per iteration, so its effi-
ciency index will be 51/4 ≈ 1:4953. Now, we calculate the
efficiency indices of the suggested algorithms. Both algo-
rithms bearing the convergence of order six. The number of
computations per iteration for the execution of the first algo-
rithm is five whereas the second proposed algorithm requires
only four evaluations per iteration. So, their efficiency indices
will be 61/5 ≈ 1:4310 and 61/4 ≈ 1:5651, respectively. The effi-
ciency indices of the different iterative methods, we have dis-
cussed above, are summarized in the following Table 1.
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Table 1 clearly shows that the presented method, namely,
Algorithm 2, has better efficiency index among the other
compared methods.

5. Numerical Comparisons and Applications

In this section, we include four real-life engineering problems
and seven arbitrary problems in the form of transcendental
and algebraic equations to illustrate the applicability and
efficiency of our newly developed iterative methods. We
compare these methods with the following similar existing
two-step iteration schemes:

5.1. Noor’s Method One (NM1). For a provided initial guess
x0, determine the approximate root xj+1 with the iteration
schemes given below:

xj+1 = xj −
f xj
� �

f ′ xj
� � , j = 0, 1, 2, 3,⋯,

xj+1 = xj −
f xj
� �

f ′ xj
� � +

f xj
� �

f ′ xj
� �

" #
f ′ yj
� �

f ′ xj
� � ,

ð28Þ

which is quadratically convergent Noor’s method one [11]
for root-finding of nonlinear equations.

5.2. Noor’s Method Two (NM2). For a provided initial guess
x0, determine the approximate root xj+1 with the iteration
schemes given below:

yj = xj −
f xj
� �

f ′ xj
� � , j = 0, 1, 2, 3,⋯,

xj+1 = xj −
2f xj
� �

f ′ xj
� �

+ f ′ yj
� � ,

ð29Þ

which is cubically convergent Noor’s method two [11] for
root-finding of nonlinear equations.

5.3. Traub’s Method (TM). For a provided initial guess x0,
determine the approximate root xj+1 with the iteration
schemes given below:

yj = xj −
f xj
� �

f ′ xj
� � , j = 0, 1, 2, 3,⋯,

xj+1 = yj −
f yj
� �

f ′ yj
� � ,

ð30Þ

which is two-step fourth order Traub’s method [6] for root-
finding of nonlinear equations which bearing the conver-
gence of order four.

5.4. Modified Halley’s Method (MHM). For a provided initial
guess x0, determine the approximate root xj+1 with the itera-
tion schemes given below:

yj= xj −
f xj
� �

f ′ xj
� � , j = 0, 1, 2, 3,⋯,

xj+1 = yj −
2f xj
� �

f yj
� �

f ′ yj
� �

2f xj
� �

f ′2 yj
� �

− f ′2 xj
� �

f yj
� �

+ f ′ xj
� �

f ′ yj
� �

f yj
� � ,

ð31Þ

which is two-step Halley’ method [22] for root-finding of
nonlinear equations which has the convergence of fifth order.
In order to make the numerical comparison of the above
defined methods with the presented algorithms, we consider
the following test Examples 1–5.

The general algorithm for finding the approximate solu-
tion of the given nonlinear functions is given as:

In Algorithm 3, we take the accuracy ε = 10−15 in the
stopping criteria ∣xj+1 − xj ∣ <ε. We did all the calculations
of the numerical examples with the aid of the computer pro-
gramMaple 13, and their numerical results can be seen in the
following presented Tables 2–6.

Example 1. Adiabatic flame temperature equation. The adia-
batic flame temperature equation is represented by the fol-
lowing relation:

f1 xð Þ = ΔH + a1 x − 298ð Þ + a2
2 x2 − 2982
� �

+ a3
3 x3 − 2983
� �

,

ð32Þ

where ΔH = −57798, a1 = 7:256, a2 = 0:002298, and a3 =
0:00000283: For further details, see [29, 30] and the refer-
ences therein. The above function is actually a polynomial
of degree three, and by the fundamental theorem of Algebra,
it must have exactly three roots. Among these roots, α =
4305:3099136661 is a simple one which we approximated

Table 1: Comparison of efficiency indices of different iterative
methods.

Method
Convergence

order
No. of required
computations

Efficiency
index

Noor’s method one 2 3 1.2599

Noor’s method two 3 3 1.4422

Traub’s method 4 4 1.4142

Modified Halley’s
method

5 4 1.4953

Algorithm 1 6 5 1.4310

Algorithm 2 6 4 1.5651
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through the proposed methods by choosing the initial guess
x0 = 2050, and the numerical results have been shown in
Table2.

Example 2. Fraction conversion of nitrogen-hydrogen to
ammonia. We take this example from [31], which describe
the fraction conversion of nitrogen-hydrogen feed to

Input: f ∈ℝ — non-linear function, k — maximum number of iterations, I — iteration method, ε — accuracy.
Output: Approximated root of the given non-linear function.
for x0 ∈ A do
i = 0:
while i ≤ k do

xj+1 = IðxjÞ
if ∣xj+1 − xj ∣ <ε then

break
i = i + 1

xj+1 is the required solution.

Algorithm 3: General root’s finding algorithm.

Table 2: Numerical comparison among different algorithms for the engineering problem f1:

Method N ∣f xj+1
� �

∣ xj+1 σ = ∣xj+1 − xj ∣ COC

f1 xð Þ, x0 = 2050:0
NR1 9 3:688522e − 28 4305.30991366612556300000 3:947209e − 13 2

NR2 4 2:919985e − 37 4305.30991366612556300000 9:938805e − 11 3

TM 3 6:063382e − 31 4305.30991366612556300000 1:002459e − 05 4

MHM 3 1:311971e − 69 4305.30991366612556300000 1:526816e − 11 5

Algorithm 1 2 3:738643e − 18 4305.30991366612556300000 1:795691e − 00 6

Algorithm 2 2 3:738643e − 18 4305.30991366612556300000 1:795691e − 00 6

Table 3: Numerical comparison among different algorithms for the engineering problem f2:

Method N ∣f xj+1
� �

∣ xj+1 σ = ∣xj+1 − xj ∣ COC

f2 xð Þ, x0 = 0:1
NR1 7 9:675391e − 26 0.27775954284172065910 1:053628e − 13 2

NR2 3 1:203488e − 18 0.27775954284172065910 6:173552e − 07 3

TM 3 3:260304e − 39 0.27775954284172065910 1:412011e − 10 4

MHM 2 2:057683e − 15 0.27775954284172065910 1:970771e − 04 5

Algorithm 1 2 6:942638e − 22 0.27775954284172065910 2:202374e − 04 6

Algorithm 2 2 1:726207e − 21 0.27775954284172065910 2:502938e − 04 6

Table 4: Numerical comparison among different algorithms for the engineering problem f3:

Method N ∣f xj+1
� �

∣ xj+1 σ = ∣xj+1 − xj ∣ COC

f3 xð Þ, x0 = 2:0
NR1 4 1:319023e − 19 1.92984624284786221696 5:000588e − 10 2

NR2 3 3:958485e − 15 1.92984624284786221696 1:021691e − 05 3

TM 3 8:395139e − 34 1.92984624284786221696 2:556739e − 09 4

MHM 2 8:089146e − 19 1.92984624284786221696 1:079121e − 04 5

Algorithm 1 2 4:275791e − 23 1.92984624284786221696 7:584886e − 05 6

Algorithm 2 2 4:275791e − 23 1.92984624284786221696 7:584886e − 05 6
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ammonia, usually known as fractional conversion. In this
problem, the values of temperature and pressure have been
taken as 500°C and 250 atm, respectively. This problem has
the following nonlinear form:

f2 xð Þ = −0:186 − 8x2 x − 4ð Þ2
9 x − 2ð Þ3 , ð33Þ

which can be easily reduced to the following polynomial:

f2 xð Þ = x4 − 7:79075x3 + 14:7445x2 + 2:511x − 1:674: ð34Þ

Since the degree of the above polynomial is four, so, it
must have exactly four roots. By definition, the fraction con-
version lies in ð0, 1Þ interval, so only one real root exists in
this interval which is 0.2777595428. The other three roots
have no physical meanings. We started the iteration process
by the initial guess x0 = 0:1. The numerical results through
different methods have been shown in Table 3.

Example 3. Finding volume from van der Waal’s equation. In
Chemical Engineering, the van der Waal’s equation has been
used for interpreting real and ideal gas behavior [32], having
the following form:

P + A1n
2

V2

	 

V − nA2ð Þ = nRT: ð35Þ

By taking the specific values of the parameters of the
above equation, we can easily convert it to the following non-
linear function:

f3 xð Þ = 0:986x3 − 5:181x2 + 9:067x − 5:289, ð36Þ

where s represents the volume that can easily be found by
solving the function f3. Since the degree of the polynomial
is three, so it must possess three roots. Among these roots,
there is only one positive real root 1:9298462428which is fea-
sible because the volume of the gas can never be negative. We

start the iteration process with the initial guess x0 = 2:0, and
their results can be seen in Table 4.

Example 4.Open channel flow problem. The water flow in an
open channel with uniform flow condition is given by
Manning’s equation [33], having the following standard
form:

Water Flow = F =
ffiffi
s

p
ar2/3

n
, ð37Þ

where s, a, and r represent the slope, area, and hydraulic
radius of the corresponding channel, respectively, and n
denotes Manning’s roughness coefficient. For a rectangular-
shaped channel, having width b and depth of water in chan-
nel x, then we may write:

a = bx,

r = bx
b + 2x :

ð38Þ

Using these values in (37), we obtain:

F =
ffiffi
s

p
bx
n

bx
b + 2x

	 
2/3
: ð39Þ

To find the depth of water in the channel for a given
quantity of water, the above equation may written in the
form of nonlinear function as:

f4 xð Þ =
ffiffi
s

p
bx
n

bx
b + 2x

	 
2/3
− F: ð40Þ

We take the values of different parameters as F = 14:15
m3/s, b = 4:572m, s = 0:017, and n = 0:0015. We choose the
initial guess x0 = 0:4 to start the iteration process, and the
corresponding results through different iteration schemes
are given in Table 5.

Table 5: Numerical comparison among different algorithms for the engineering problem f4:

Method N ∣f xj+1
� �

∣ xj+1 σ = ∣xj+1 − xj ∣ COC

f4 xð Þ, x0 = 0:4
NR1 6 2:230770e − 24 1.46509122029582464238 1:280653e − 12 2

NR2 3 5:751429e − 27 1.46509122029582464238 4:220179e − 09 3

TM 3 7:765624e − 44 1.46509122029582464238 4:884637e − 11 4

MHM 3 4:020841e − 64 1.46509122029582464238 5:749371e − 13 5

Algorithm 1 2 2:394555e − 20 1.46509122029582464238 1:957777e − 03 6

Algorithm 2 2 1:709800e − 15 1.46509122029582464238 9:937512e − 03 6
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Table 6: Numerical comparison among different algorithms for transcendental and algebraic problems f5 − f11:

Method N ∣f xj+1
� �

∣ xj+1 σ = ∣xj+1 − xj ∣ COC

f5 xð Þ, x0 = −2
NR1 9 1:485377e − 16 −0.52248077281054548914 1:517821e − 08 2

NR2 7 4:247308e − 18 −0.52248077281054548914 1:202925e − 06 3

TM 25 1:821056e − 17 −0.52248077281054548914 1:970771e − 04 4

MHM 3 8:137892e − 19 −0.52248077281054548914 3:574246e − 04 5

Algorithm 1 2 6:584167e − 72 −0.52248077281054548914 2:829449e − 12 6

Algorithm 2 2 3:852650e − 57 −0.52248077281054548914 8:860340e − 10 6

f6 xð Þ, x0 = 2
NR1 5 3:163807e − 17 0.40999201798913713162 5:629386e − 09 2

NR2 45 3:382231e − 18 0.40999201798913713162 1:512669e − 06 3

TM 4 6:063382e − 56 0.40999201798913713162 1:586231e − 14 4

MHM 3 4:499472e − 42 0.40999201798913713162 1:880726e − 08 5

Algorithm 1 2 5:856963e − 25 0.40999201798913713162 2:788223e − 04 6

Algorithm 2 2 6:737587e − 25 0.40999201798913713162 2:852107e − 04 6

f7 xð Þ, x0 = 1:2
NR1 7 3:278748e − 27 0.56714329040978387300 4:592634e − 14 2

NR2 4 1:127879e − 31 0.56714329040978387300 3:980665e − 11 3

TM 3 3:135655e − 36 0.56714329040978387300 1:588919e − 09 4

MHM 3 7:204101e − 59 0.56714329040978387300 2:420306e − 12 5

Algorithm 1 2 2:894187e − 17 0.56714329040978387300 2:115592e − 03 6

Algorithm 2 2 7:355480e − 18 0.56714329040978387300 1:597483e − 03 6

f8 xð Þ, x0 = 1:5
NR1 141 3:196546e − 22 2.15443469003188372180 7:032555e − 12 2

NR2 4 7:066989e − 31 2.15443469003188372180 5:866631e − 11 3

TM 3 7:857615e − 27 2.15443469003188372180 2:740790e − 07 4

MHM 3 2:248861e − 57 2.15443469003188372180 5:868237e − 12 5

Algorithm 1 2 2:929220e − 17 2.15443469003188372180 2:575011e − 03 6

Algorithm 2 2 2:929220e − 17 2.15443469003188372180 2:575011e − 03 6

f9 xð Þ, x0 = 0:6
NR1 78 2:720561e − 26 1.00000000000000000000 8:247062e − 14 2

NR2 4 3:726794e − 29 1.00000000000000000000 3:726794e − 29 3

TM 3 1:853180e − 25 1.00000000000000000000 5:187039e − 07 4

MHM 3 2:707444e − 54 1.00000000000000000000 1:950103e − 11 5

Algorithm 1 2 8:487620e − 17 1.00000000000000000000 2:340774e − 03 6

Algorithm 2 2 8:487620e − 17 1.00000000000000000000 2:340774e − 03 2

f10 xð Þ, x0 = −3:0
NR1 6 7:104675e − 20 −1.40449164821534122600 1:911132e − 10 2

NR2 3 2:634964e − 20 −1.40449164821534122600 2:526930e − 07 3

TM 3 2:820318e − 22 −1.40449164821534122600 3:920088e − 06 4

MHM 3 5:741591e − 44 −1.40449164821534122600 3:100243e − 09 5

Algorithm 1 2 7:567005e − 19 −1.40449164821534122600 1:391725e − 03 6

Algorithm 2 2 5:794073e − 16 −1.40449164821534122600 3:524255e − 03 2
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Example 5. Transcendental and algebraic problems. To
numerically analyze the suggested algorithms, we consider
the following seven transcendental and algebraic equations:

f5 xð Þ = ex + cos πxð Þ + x, x0 = −2:0,

f6 xð Þ = x2 + sin x
5

� �
−
1
4 , x0 = 2:0,

f7 xð Þ = lnx + x, x0 = 1:2,
f8 xð Þ = x3 − 10, x0 = 1:5,
f9 xð Þ = x3 + x2 − 2, x0 = 0:6,
f10 xð Þ = sin2x − x2 + 1, x0 = −3:0,
f11 xð Þ = tan−1 xð Þ + x, x0 = 2:0,

ð41Þ

and their numerical results can be seen in Table 6.
Tables 2–6 exhibit the numerical comparison of the sug-

gested algorithms with other similar-nature existing algo-
rithms. In the columns of the above presented tables, N
represents the iterations consumed by different algorithms,
∣f ðxÞ ∣ denotes the absolute value of f ðxÞ at final approxima-
tion, xj+1 shows the final approximated root, ∣xj+1 − xj ∣ rep-
resents the absolute distance between the two consecutive

approximations, and (COC) denotes the computational
order of convergence having the following approximated
formula:

COC ≈
ln xj+1 − α

�� ��/ xj − α
�� ��� �

ln xj − α
�� ��/ xj−1 − α

�� ��� � : ð42Þ

The above approximation was firstly suggested in 2000
by Weerakoon and Fernando [34]. When we look at the
numerical results of Tables 2–6, we come to know that the
presented methods are showing best performance as com-
pared to the other ones. For example, in second, fourth, fifth,
tenth, and eleventh test examples, Algorithm 1 is the best as
it took less number of iterations among the all other com-
pared methods with great precision. In the seventh test
example, Algorithm 2 showing the best performance than
the other ones whereas in first, third, sixth, eighth, and ninth
test examples, both proposed algorithms behave alike and
looks better than all the other ones. In short, we can say that
the proposed algorithms are superior in terms of accuracy,
speed, number of iterations, and computational order of con-
vergence to the other well-known existing iteration schemes.

Table 7 exhibits the comparison of the iterations con-
sumed by different algorithms with the newly proposed

Table 6: Continued.

Method N ∣f xj+1
� �

∣ xj+1 σ = ∣xj+1 − xj ∣ COC

f11 xð Þ, x0 = 2:0
NR1 4 2:455690e − 16 0.00000000000000000000 9:031605e − 06 2

NR2 4 3:424681e − 40 0.00000000000000000000 1:271327e − 13 3

TM 3 7:907266e − 122 0.00000000000000000000 5:282400e − 14 4

MHM 3 1:556811e − 66 0.00000000000000000000 6:000887e − 10 5

Algorithm 1 2 2:328631e − 21 0.00000000000000000000 8:308383e − 03 6

Algorithm 2 2 3:198129e − 15 0.00000000000000000000 3:593833e − 02 2

Table 7: Comparison of the iterations consumed by different algorithms for the accuracy ε = 10−100:

Function with initial guess
Method

NM1 NM2 TM MHM Algorithm 1 Algorithm 2

f1 xð Þ, x0 = 2050:0 09 05 04 04 03 03

f2 xð Þ, x0 = 0:1 09 06 06 06 06 05

f3 xð Þ, x0 = 2:0 07 05 04 04 03 03

f4 xð Þ, x0 = 0:4 08 05 04 05 03 04

f5 xð Þ, x0 = −2:0 12 09 27 05 04 04

f6 xð Þ, x0 = 2:0 08 06 05 04 03 03

f7 xð Þ, x0 = 1:2 09 06 04 04 03 03

f8 xð Þ, x0 = 1:5 144 06 04 04 03 03

f9 xð Þ, x0 = 0:6 80 06 04 04 03 03

f10 xð Þ, x0 = −3:0 09 05 05 04 03 04

f11 xð Þ, x0 = 2:0 06 05 03 04 03 03
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methods for the root-finding of nonlinear algebraic functions
with the accuracy ε = 10−100. Here, the columns of the table
denote the iterations’ number for various test functions
together with the initial guess x0. The numerical results as
shown in Table 7 again certified the fast and best perfor-
mance of the presented algorithms in terms of number of
iterations for the above defined stopping criteria with the
given accuracy. In all test examples, the proposed algorithms
consumed less number of iterations in comparison with the
other iterative algorithms. We did all the calculations with
the aid of the computer program Maple 13.

6. Concluding Remarks

In this work, two novel iteration schemes for computing the
zeros of nonlinear functions have been established which
possess the sextic convergence. The first iteration scheme is
derived using the Taylor’s series expansion and generalized
Newton-Raphson’s method whereas in second one, we apply
the basic idea of interpolation technique for approximating
second derivative which results higher efficiency index. A
comparison table regarding the efficiency indices of different
methods of the similar nature has been presented which
shows that the presented method has higher efficiency index
among the other compared methods. By solving some engi-
neering and arbitrary test problems with the aid of computer
program, the validity and applicability of the suggested itera-
tion schemes have been analyzed. The numerical results of
the Tables 1–7 certified the superiority of the suggested iter-
ation schemes to the other existing two-step iteration
schemes of the similar nature. Using the basic idea of inter-
polation technique, one can derive a broad range of new iter-
ation schemes for computing zeros of one-dimensional
nonlinear equations.
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The paper deals with a one-dimensional porous-elastic system with thermoelasticity of type III and distributed delay term. This
model is dealing with dynamics of engineering structures and nonclassical problems of mathematical physics. We establish the
well posedness of the system, and by the energy method combined with Lyapunov functions, we discuss the stability of system
for both cases of equal and nonequal speeds of wave propagation.

1. Introduction

Let H = ð0, 1Þ × ðτ1, τ2Þ × ð0,∞Þ, τ1, τ2 > 0. For ðx, s, tÞ ∈H ,
we consider the following porous-elastic system:

ρ1utt = μuxx + bϕx,

ρ2ϕtt = δϕxx − bux − ξϕ − βθx − μ1ϕt −
ðτ2
τ1

μ2 sð Þj jϕt x, t − sð Þds,

ρ3θtt = lθxx − γϕttx + kθtxx ,

8>>>><>>>>:
ð1Þ

with the initial data

u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ,
ϕ x, 0ð Þ = ϕ0 xð Þ, ϕt x, 0ð Þ = ϕ1 xð Þ, ϕt x,−tð Þ = f0 x, tð Þ,
θ x, 0ð Þ = θ0 xð Þ, θt x, 0ð Þ = θ1 xð Þ, x ∈ 0, 1ð Þ, t > 0

ð2Þ

and boundary conditions

ux 0, tð Þ = ux 1, tð Þ = ϕ 0, tð Þ = ϕ 1, tð Þ = θx 0, tð Þ = θx 1, tð Þ = 0, t ≥ 0:
ð3Þ

Here, ϕ is the volume fraction of the solid elastic material,
u is the longitudinal displacement, and θ is the difference in
temperatures. The parameters ρ1, ρ2, ρ3, μ, b, δ, ξ, l, γ, β, k
are positive constants with μξ > b2. The integral represents
the distributed delay term withτ1, τ2which are time delays,
μ1 is positive constant, and μ2 is an L∞ function such that

(Hyp1) μ2 : ½τ1, τ2�⟶ℝ is a bounded function satisfying

ðτ2
τ1

∣μ2 sð Þ∣ds < μ1: ð4Þ

This type of problem was mainly based on the following
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equations for one-dimensional theories of porous materials
with temperature

ρ1utt − Tx = 0,
ρ2ϕtt −Hx − G = 0,
ρ3θt + qx + γϕtx = 0,

8>><>>: ð5Þ

where ðx, tÞ ∈ ð0, LÞ × ð0,∞Þ.
According to Green and Naghdis theory, the constitutive

equations of system (5) are given by

T = μux + bϕ, ð6Þ

G = −bux − ξϕ − μ1ϕt −
ðτ2
τ1

∣μ2 sð Þ∣ϕt x, t − sð Þds, ð7Þ

H = δϕx − βθ, ð8Þ

q = −lΦx − kΦtx, ð9Þ
where l, k > 0 are the thermal conductivity and Φ is the ther-
mal displacement whose time derivative is the empirical tem-
perature θ, that is Φt = θ.

We substitute (9) in (5) with the condition b ≠ 0, which
results in

ρ1utt = μuxx + bϕx,

ρ2ϕtt = δϕxx − bux − ξϕ − μ1ϕt −
ðτ2
τ1

μ2 sð Þj jϕt x, t − sð Þds − βθx,

ρ3θt = lΦxx − γϕtx + kΦtxx:

8>>>><>>>>:
ð10Þ

By using Φt = θ in the system (10), we find directly our
system (1).

By using the multiplier techniques, the exponential decay
results have been established. Next, in [1–3], the authors con-
sidered three types of thermoelastic theories based on an
entropy equality instead of the usual entropy inequality (see
[1–21] for more details).

According to the distributed delay, we mention, as a mat-
ter of course, the work by Nicaise and Pignotti in [16], where
the authors studied the following system with distributed
delay:

utt − Δu = 0,
u = 0,
du
dv

tð Þ +
ðτ2
τ1

μ sð Þut t − sð Þds + μ0ut = 0,

u :,0ð Þ = u0,ut :,0ð Þ = u1, ut x,−tð Þ = f0 x, tð Þ,

8>>>>>>><>>>>>>>:
ð11Þ

and proved the exponential stability result with conditionðτ2
τ1

μ sð Þds < μ0: ð12Þ

See for example [8, 22, 23]. Hao and Wei [24] considered
the following problem:

ρ1ϕtt − K ϕx + ψxð Þx = 0,
ρ2ψtt − bψxx + K ϕx + ψð Þ + βθtx + μ1ψt + μ2ψt t − sð Þ + f ψtð Þ = 0,
ρ3θtt − δθxx + γφttx − kθtxx = 0,

8>><>>:
ð13Þ

and obtained the well-posedness and stability of system.
There are many other works done by the authors in this

context; our work differs from all of them, since we took
the delay in the second equation to make the distributed
delay in the rotation angle of the filament, which makes the
contributions clear and important. In addition, we estab-
lished the well-posedness of the system, and we obtain the
exponential decay rate when δ/ρ2 = μ/ρ1 and the energy takes
the algebraic rate for the case δ/ρ2 ≠ μ/ρ1; these results are
mainly stated in Theorem 8.

In order to show the dissipativity of systems (1)–(3), we
introduce the new variables φ = ut and ψ = ϕt . So, problems
(1)–(3) take the form

ρ1φtt = μφxx + bψx ,

ρ2ψtt = δψxx − bφx − ξψ − μ1ψt −
ðτ2
τ1

μ2 sð Þj jψt x, t − sð Þds − βθtx,

ρ3θtt = lθxx − γψtx + kθtxx,

8>>>><>>>>:
ð14Þ

with the initial data

φ x, 0ð Þ = φ0 xð Þ, φt x, 0ð Þ = φ1 xð Þ, ψ x, 0ð Þ = ψ0 xð Þ,
ψt x, 0ð Þ = ψ1 xð Þ, θ x, 0ð Þ = θ0 xð Þ, θt x, 0ð Þ = θ1 xð Þ,
ψt x,−tð Þ = −f0 x, tð Þ, x ∈ 0, 1ð Þ

ð15Þ

and boundary conditions

φx 0, tð Þ = φx 1, tð Þ = ψ 0, tð Þ = ψ 1, tð Þ = θx 0, tð Þ = θx 1, tð Þ = 0, t ≥ 0:
ð16Þ

First, as in [16], taking the following new variable:

z x, ρ, s, tð Þ = ψt x, t − sρð Þ, ð17Þ

then we obtain

szt x, ρ, s, tð Þ + zρ x, ρ, s, tð Þ = 0,
z x, 0, s, tð Þ = ψt x, tð Þ:

(
ð18Þ
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Consequently, the problem was rewritten as

ρ1φtt = μφxx + bψx,

ρ2ψtt = δψxx − bφx − ξψ − μ1ψt −
ðτ2
τ1

μ2 sð Þj jz x, 1, s, tð Þds − βθtx,

ρ3θtt = lθxx − γψtx + kθtxx,
szt x, ρ, s, tð Þ + zρ x, ρ, s, tð Þ = 0,

8>>>>>>><>>>>>>>:
ð19Þ

where

x, ρ, s, tð Þ ∈ 0, 1ð Þ ×H , ð20Þ

with the boundary and the initial conditions

φx 0, tð Þ = φx 1, tð Þ = ψ 0, tð Þ = ψ 1, tð Þ = θx 0, tð Þ = θx 1, tð Þ = 0, t ≥ 0:

ð21Þ

φ x, 0ð Þ = φ0 xð Þ, φt x, 0ð Þ = φ1 xð Þ, ψ x, 0ð Þ = ψ0 xð Þ, ð22Þ
ψt x, 0ð Þ = ψ1 xð Þ, θ x, 0ð Þ = θ0 xð Þ, θt x, 0ð Þ = θ1 xð Þ, x ∈ 0, 1ð Þ,

ð23Þ
z x, ρ, s, 0ð Þ = −f0 x, ρsð Þ = h0 x, ρsð Þ, x ∈ 0:1ð Þ, ρ ∈ 0:1ð Þ, s ∈ 0, τ2ð Þ:

ð24Þ
Meanwhile, from (19) and (24), it follows that

d2

dt2

ð1
0
φ x, tð Þdx = 0: ð25Þ

So, by solving (25) and using (24), we getð1
0
φ x, tð Þdx = t

ð1
0
φ1 xð Þdx +

ð1
0
φ0 xð Þdx: ð26Þ

Consequently, if we let

�φ x, tð Þ = φ x, tð Þ − t
ð1
0
φ1 xð Þdx −

ð1
0
φ0 xð Þdx, ð27Þ

we get ð1
0
�φ x, tð Þdx = 0, ∀t ≥ 0, ð28Þ

and from (19), we have

d2

dt2

ð1
0
θ x, tð Þdx = 0: ð29Þ

So, by solving (29) and using (24), we getð1
0
θ x, tð Þdx = t

ð1
0
θ1 xð Þdx +

ð1
0
θ0 xð Þdx: ð30Þ

Consequently, if we let

�θ x, tð Þ = θ x, tð Þ − t
ð1
0
θ1 xð Þdx −

ð1
0
θ0 xð Þdx, ð31Þ

we get ð1
0
�θ x, tð Þdx = 0, ∀t ≥ 0: ð32Þ

Then, the Poincaré’s inequality was used for �φ and θ–

which are justified. A simple substitution shows that ð�φ, ψ,
�θÞ satisfies system (19) with initial data for �φ and �θ given as

�φ0 xð Þ = φ0 xð Þ −
ð1
0
φ0 xð Þdx,

�φ1 xð Þ = φ1 xð Þ −
ð1
0
φ1 xð Þdx,

�θ0 xð Þ = θ0 xð Þ −
ð1
0
θ0 xð Þdx,

�θ1 xð Þ = θ1 xð Þ −
ð1
0
θ1 xð Þdx:

ð33Þ

Now, we use �φ, �θ instead of φ, θ and writing φ, θ for
simplicity.

2. Well-Posedness

In this section, we give the existence and uniqueness result of
the system (19)–(24) using the semigroup theory.

First, we introduce the vector function

U = φ, φt , ψ, ψt , θ, θt , zð ÞT , ð34Þ

and the new dependent variables u = φt , v = ψt ,w = θt ; then
the system (19) can be written as follows:

Ut =AU ,
U 0ð Þ =U0 = φ0, φ1, ψ0, ψ1, θ0, θ1, h0ð ÞT ,

(
ð35Þ

where A : DðAÞ ⊂H : ⟶H is the linear operator
defined by

AU =

u
1
ρ1

μφxx + bψx½ �
v

1
ρ2

δψxx − bφx − ξψ − βwx − μ1ψt−−
ðτ2
τ1

∣ μ2 sð Þ ∣ z x, 1, s, tð Þds
" #

w
1
ρ3

lθxx − γvx + kwxx½ �

−
1
s
zρ

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA

,

ð36Þ

3Journal of Function Spaces



and H is the energy space given by

H =H1
∗ × L2∗ 0, 1ð Þ ×H1

0 × L2 0, 1ð Þ ×H1
∗ × L2 0, 1ð Þ

× L2 0, 1ð Þ × 0, 1ð Þ × τ1, τ2ð Þð Þ, ð37Þ

where

L2∗ 0, 1ð Þ = ϕ ∈ L2 0, 1ð ÞÐ 1
0 ϕ xð Þdx

= 0
( )

,

H1
∗ 0, 1ð Þ =H1 0, 1ð Þ ∩ L2∗ 0, 1ð Þ,

H2
∗ 0, 1ð Þ = ϕ ∈H2 0, 1ð Þ

ϕx 1ð Þ = ϕx 0ð Þ = 0
� �

:

ð38Þ

For every

U = φ, u, ψ, v, θ,w, zð ÞT ∈H ,

Û = φ∧, u∧, ψ∧, v∧, θ∧,w∧, z∧ð ÞT ∈H ,
ð39Þ

we equip H with the inner product defined by

<U , Û>H = γρ1

ð1
0
uûdx + γρ2

ð1
0
vv̂dx + γξ

ð1
0
ψbψdx

+ βρ3

ð1
0
wŵdx + γμ

ð1
0
φxbφxdx + γδ

ð1
0
ψx bψxdx

+ γb
ð1
0
φx bψ + ψbφ� �

dx + lβ
ð1
0
θx
bθxdx

+ γ
ð1
0

ð1
0

ðτ2
τ1

s∣μ2 sð Þ∣zẑdsdρdx:

ð40Þ

The domain of A is given by

D Að Þ =
U ∈H /φ, θ ∈H2

∗ 0, 1ð Þ ∩H1
∗ 0, 1ð Þ, ψ ∈H2 0, 1ð Þ ∩H1

0 0, 1ð Þ
u,w ∈H1

∗ 0, 1ð Þ, v ∈H1
0 0, 1ð Þ, z x, 0, s, tð Þ = v

z, zρ ∈ L2 0, 1ð Þ × 0, 1ð Þ × τ1, τ2ð Þð Þ

8>><>>:
9>>=>>;

ð41Þ

Clearly, DðAÞ is dense in H . Now, we can give the
following existence result.

Theorem 1. Let U0 ∈H and assume that (4) holds. Then,
there exists a unique solution U ∈Cðℝ+,HÞ of problem (19).

Moreover, if U0 ∈DðAÞ, then

U ∈C ℝ+,D Að Þð Þ ∩C1 ℝ+,Hð Þ: ð42Þ

Proof. First, we prove that the operator A is dissipative. For
any U0 ∈DðAÞ and by using (40), we have

<AU ,U>H = −γμ1

ð1
0
v2dx − γ

ð1
0

ðτ2
τ1

∣μ2 sð Þ∣vz x, 1, s, tð Þdsdx

− γ
ð1
0

ð1
0

ðτ2
τ1

∣μ2 sð Þ∣zρzdsdρdx − βk
ð1
0
w2

xdx:

ð43Þ

For the third term of the right-hand side of (43), we have

−
ð1
0

ð1
0

ðτ2
τ1

∣μ2 sð Þ∣zρzdsdρdx = −
1
2

ð1
0

ðτ2
τ1

ð1
0
∣μ2 sð Þ∣ d

dρ
z2dρdsdx

= −
1
2

ð1
0

ðτ2
τ1

∣μ2 sð Þ∣z2 x, 1, s, tð Þdsdx

+ 1
2

ð1
0

ðτ2
τ1

∣μ2 sð Þ∣z2 x, 0, s, tð Þdsdx:

ð44Þ

By using Young’s inequality, we get

−
ð1
0

ðτ2
τ1

∣μ2 sð Þ∣vz x, 1, s, tð Þdsdx ≤ 1
2

ðτ2
τ1

∣ μ2 sð Þ ∣ ds
 !ð1

0
v2dx

+ 1
2

ð1
0

ðτ2
τ1

∣μ2 sð Þ∣z2 x, 1, s, tð Þdsdx:

ð45Þ
Substituting (44) and (45) into (43), using the fact that

zðx, 0, s, tÞ = vðx, tÞ and (4), we obtained

<AU ,U>H ≤ −γ μ1 −
ðτ2
τ1

∣ μ2 sð Þ ∣ ds
 !ð1

0
v2dx − βk

ð1
0
w2

xdx ≤ 0:

ð46Þ

Hence, the operator A is dissipative.
Next, we prove the operator A is maximal. It is sufficient

to show that the operator ðId −AÞ is surjective.
Indeed, for any F = ð f1, f2, f3, f4, f5, f6, f7ÞT ∈H , we prove

that there exists a unique V = ðφ, u, ψ, v, θ,w, zÞ ∈DðAÞ
such that

Id −Að ÞV = F: ð47Þ

That is

φ − u = f1,
ρ1u − μφxx − bψx = ρ1 f2,
ψ − v = f3,

ρ2v − δψxx + bφx + ξψ + βwx + μ1v +
ðτ2
τ1

μ2 sð Þj jz x, 1, s, tð Þds = ρ2 f4,

θ −w = f5,
ρ3w − lθxx + γvx − kwxx = ρ3 f6,
szt x, ρ, s, tð Þ + zρ x, ρ, s, tð Þ = sf7,

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
ð48Þ
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We note that the last equation in (48) with zðx, 0, s, tÞ =
vðx, tÞ has a unique solution given by

z x, ρ, s, tð Þ = e−ρsv + sesρ
ðρ
0
esσ f7 x, σ, s, tð Þdσ, ð49Þ

then

z x, 1, s, tð Þ = e−sv + ses
ð1
0
esσ f7 x, σ, s, tð Þdσ, ð50Þ

we have

u = φ − f1, v = ψ − f3,w = θ − f5: ð51Þ

Inserting (50) and (51) into (48), (48), and (48), we get

ρ1φ − μφxx − bψx = h1,
μ4ψ − δψxx + bφx + βθx = h2,
rho3θ − l + kð Þθxx + γψx = h3,

8>><>>: ð52Þ

where

We multiply (52) by bφ , bψ , bθ , respectively, and integrate
their sum over ð0, 1Þ to get the following variational formula-
tion:

B φ, ψ, θð Þ, bφ , bψ , bθ� ��
= Γ bφ , bψ , bθ� �

, ð54Þ

where

B : H1
∗ 0, 1ð Þ ×H1

0 0, 1ð Þ ×H1
∗ 0, 1ð Þ� �2

⟶ℝ ð55Þ

is the bilinear form defined by

B φ, ψ, θð Þ, bφ , bψ , bθ� ��
= γρ1

ð1
0
φbφdx + γμ

ð1
0
φxbφxdx

+ γb
ð1
0
ψbφx + φbψx

� �
dx

+ γμ4

ð1
0
ψbψdx + γδ

ð1
0
ψx bψxdx

+ γβ
ð1
0
θx bψdx + βγ

ð1
0
ψx
bθdx

+ βρ3

ð1
0
θbθdx + β l + kð Þ2

ð1
0
θx
bθxdx,

Γ : H1
∗ 0, 1ð Þ ×H1

0 0, 1ð Þ ×H1
∗ 0, 1ð Þ� �

⟶ℝ ð56Þ

is the linear functional given by

Γ bφ , bψ , bθ� �
=
ð1
0
h1bφdx + ð1

0
h2 bψdx + ð1

0
h3bθdx: ð57Þ

Now, for V =H1
∗ð0, LÞ ×H1

0ð0, LÞ ×H1
∗ð0, LÞ, equipped

with the norm

∥ φ, ψ, θð Þ∥2V = ∥φ∥22+∥φx∥
2
2+∥ψ∥22+∥ψx∥

2
2+∥θ∥22+∥θx∥22, ð58Þ

then, we have

B φ, ψ, θð Þ, φ, ψ, θð Þð Þ = γρ1

ð1
0
φ2dx + γμ

ð1
0
φ2
xdx

+ γμ4

ð1
0
ψ2dx + γδ

ð1
0
ψ2
xdx

+ ρ3β
ð1
0
θ2dx + β l + kð Þ

ð1
0
θ2xdx

+ 2γb
ð1
0
φxψdx,

ð59Þ

we have

μφ2
x + μ4ψ

2 + 2bφxψ = 1
2 μ φx +

b
μ
ψ

� 	2
+ μ4 ψ + b

μ4
φx

� 	2
"

+ μ −
b2

μ4

 !
φ2
x + μ4 −

b2

μ

 !
ψ2
#

> 1
2 μ −

b2

μ4

 !
φ2
x + μ4 −

b2

μ

 !
ψ2

" #
,

ð60Þ

μ4 = ρ2 + ξ + μ1 +
4
3 γ +

ðτ2
τ1

μ2 sð Þj je−sds,

h1 = ρ1 f1 + f2ð Þ,

h2 = ρ2 f3 + f4ð Þ + μ1 −
ðτ2
τ1

μ2 sð Þj je−sdsÞf3ds −
ðτ2
τ1

s μ2 sð Þj jes
ð1
0
esσ f7 x, σ, s, tð Þdσds + βf5x

h3 = ρ3 f5 + f6ð Þ + γf3x − kf5xx:

8>>>>>>>>><>>>>>>>>>:
ð53Þ
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by assuming μξ − b2 > 0, we get

μ −
b2

μ4
> 0, μ4 −

b2

μ
> 0, ð61Þ

then, for some M0 > 0,

B φ, ψ, θð Þ, φ, ψ, θð Þð Þ ≥M0∥ φ, ψ, θð Þ∥2V : ð62Þ

Thus, B is coercive. Consequently, using the Lax-
Milgram theorem, we conclude that the existence of a unique
solution ððφ, ψ, θÞÞ in V satisfies

u = φ − f1 ∈H
1
∗ 0, 1ð Þ,

v = ψ − f3 ∈H
1
0 0, 1ð Þ,

w = θ − f5 ∈H
1
∗ 0, 1ð Þ:

ð63Þ

Substituting φ, ψ, θ into (50) and (51), respectively, we
have

u, θ ∈H1
∗ 0, 1ð Þ,

ψ ∈H1
0 0, 1ð Þ,

z, zρ ∈ L2 0, 1ð Þ × 0, 1ð Þ × τ1, τ2ð Þð Þ:
ð64Þ

Let bφ ∈H1
0ð0, 1Þ and denote

b̂bφ = bφ xð Þ −
ð1
0
bφ ξð Þdξ, ð65Þ

which gives us b̂bφ ∈H1
∗ð0, 1Þ. Now, we replace ðbφ , bψ , bθÞ by

ð b̂bφ , 0, 0Þ in (54) to obtain

γρ1

ð1
0
φ
b̂bφdx + γμ

ð1
0
φx
b̂bφxdx + γb

ð1
0
ψx
b̂bφdx = ð1

0
h1
b̂bφdx:

ð66Þ

We get

γμ
ð1
0
φx
b̂bφxdx =

ð1
0
h1 − γρ1φ − γbψxð Þ b̂bφdx, ð67Þ

which yields

γμφxx = γρ1φ − γbψx − h1 ∈ L
2 0, 1ð Þ: ð68Þ

Thus,

φ ∈H2 0, 1ð Þ: ð69Þ

Moreover, (52) also holds for any every bφ ∈ C1ð½0, 1�Þ.
Then, by using integration by parts, we obtain

γμ
ð1
0
φxbφxdx =

ð1
0
h1 − γρ1φ − γbψxð Þbφdx: ð70Þ

Then, we get for any bφ ∈ C1ð½0, 1�Þ

φx 1ð Þbφ 1ð Þ − φx 0ð Þbφ 0ð Þ = 0: ð71Þ

Since bφ is arbitrary, we get that φxð0Þ = φxð1Þ = 0. Hence,
φ ∈H2

∗ð0, 1Þ. Using similar arguments as above, we can
obtain

ψ ∈H2 0, 1ð Þ ∩H1
0 0, 1ð Þ,

θ ∈H2
∗ 0, 1ð Þ:

ð72Þ

Finally, the application of regularity theory for the linear
elliptic equations guarantees the existence of unique U ∈DðAÞ
such that (47) is satisfied.

Consequently, we conclude thatA is a maximal dissipative
operator. Hence, by Lumer-Philips theorem (see [25, 26]), we
have the well-posedness result. This completes the proof.

3. Stability Results

We prepare the next lemmas (Lemmas 2–7) which will be
useful to introduce the Lyapunov function in (104).

Lemma 2. The energy functional E associated with our prob-
lem defined by

E tð Þ = γ

2

ð1
0
ρ1φ

2
t + μφ2

x + ρ2ψ
2
t + δψ2

x + ξψ2 + 2bφxψ

 �

dx
� �

+ β

2

ð1
0
lθ2x + ρ3θ

2
t


 �
dx

� �
+ γ

2

ð1
0

ð1
0

ðτ2
τ1

s∣μ2 sð Þ∣z2 x, ρ, s, tð Þdsdρdx

ð73Þ

satisfies

E′ tð Þ ≤ −kβ
ð1
0
θ2txdx − γη0

ð1
0
ψ2
t dx ≤ 0, ð74Þ

where η0 = μ1 −
Ð τ2
τ1

∣ μ2ðsÞ ∣ ds ≥ 0.
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Proof. Multiplying (19) by γφt , (19) by γψt , and (19) by βθt
then integration by parts over ð0, 1Þ, we get

γ

2
d
dt

ð1
0
ρ1φ

2
t + μφ2

x + ρ2ψ
2
t + δψ2

x + ξψ2 + 2bφxψ

 �

dx

+ γμ1

ð1
0
ψ2
t dx +

β

2
d
dt

ð1
0
lθ2x + ρ3θ

2
t


 �
dx

+ γ
ð1
0
ψt

ðτ2
τ1

∣μ2 sð Þ∣z x, 1, s, tð Þdsdx = 0:

ð75Þ

Now, multiplying (19) by z ∣ μ2ðsÞ ∣ and integrating the
result over ð0, 1Þ × ð0, 1Þ × ðτ1, τ2Þ, we get

d
dt

γ

2

ð1
0

ð1
0

ðτ2
τ1

s∣μ2 sð Þ∣z2 x, ρ, s, tð Þdsdρdx

= −γ
ð1
0

ð1
0

ðτ2
τ1

∣μ2 sð Þ∣zzρ x, ρ, s, tð Þdsdρdx

= −
γ

2

ð1
0

ð1
0

ðτ2
τ1

∣μ2 sð Þ∣ d
dρ

z2 x, ρ, s, tð Þdsdρdx

= γ

2

ð1
0

ðτ2
τ1

∣μ2 sð Þ∣ z2 x, 0, s, tð Þ − z2 x, 1, s, tð Þ� �
dsdx

= γ

2

ðτ2
τ1

∣ μ2 sð Þ ∣ ds
 !ð1

0
ψ2
t dx −

γ

2

ð1
0

ðτ2
τ1

∣μ2 sð Þ∣z2 x, 1, s, tð Þdsdx:

ð76Þ

From (75) and (76), we get (73) and (74).
Now, using Young’s inequality, (74) can be written as

E′ tð Þ ≤ −kβ
ð1
0
θ2txdx − γ μ1 −

ðτ2
τ1

∣ μ2 sð Þ ∣ ds
 !ð1

0
ψ2
t dx:

ð77Þ

Then, by (4), there exists a positive constant η0 such that

E′ tð Þ ≤ −kβ
ð1
0
θ2txdx − γη0

ð1
0
ψ2
t dx: ð78Þ

Thus, the functional E is nonincreasing.

Lemma 3. The function

F1 tð Þ≔ ρ2

ð1
0
ψtψdx +

bρ1
μ

ð1
0
ψ
ðx
0
φt yð Þdydx + μ1

2

ð1
0
ψ2dx

ð79Þ

satisfies

F1′ tð Þ ≤ −
δ

2

ð1
0
ψ2
xdx − μ3

ð1
0
ψ2dx + ε1

ð1
0
φ2
t dx

+ c 1 + 1
ε1

� 	ð1
0
ψ2
t dx + c

ð1
0
θ2txdx

+ c
ð1
0

ðτ2
τ1

∣μ2 sð Þ∣z2 x, 1, s, tð Þdsdx,

ð80Þ

where μ3 = ξ − ðb2/μÞ > 0.

Proof. Direct computation, using integration by parts and
Young’s inequality, for ε1 > 0, yields

F1′ tð Þ = −δ
ð1
0
ψ2
xdx − ξ −

b2

μ

 !ð1
0
ψ2dx + ρ2

ð1
0
ψ2
t dx

+ bρ1
μ

ð1
0
ψt

ðx
0
φt yð Þdydx − β

ð1
0
ψθtxdx

−
ð1
0
ψ
ðτ2
τ1

∣μ2 sð Þ∣z x, 1, s, tð Þdsdx ≤ −δ
ð1
0
ψ2
xdx

− ξ −
b2

μ

 !ð1
0
ψ2dx + c 1 + 1

ε1

� 	ð1
0
ψ2
t dx

+ ε1

ð1
0

ðx
0
φt yð Þdy

� 	2
dx − β

ð1
0
ψθtxdx

−
ð1
0
ψ
ðτ2
τ1

∣μ2 sð Þ∣z x, 1, s, tð Þdsdx:

ð81Þ

By Cauchy-Schwartz’s inequality, it is clear that

ð1
0

ðx
0
φt yð Þdy

� 	2
dx ≤

ð1
0

ð1
0
φtdx

� 	2
dx ≤

ð1
0
φt

2dx: ð82Þ

So, estimate (81) becomes

F1′ tð Þ ≤ −δ
ð1
0
ψ2
xdx − ξ −

b2

μ

 !ð1
0
ψ2dx + c 1 + 1

ε1

� 	ð1
0
ψ2
t dx

+ ε1

ð1
0
φt

2dx − β
ð1
0
ψθtxdx −

ð1
0
ψ
ðτ2
τ1

∣μ2 sð Þ∣z x, 1, s, tð Þdsdx,

ð83Þ

where the Cauchy-Schwartz, Young, and Poincaré’s inequal-
ities have been used, for ε1 > 0.

By the fact that μξ > b2, we get the desired result (80).

Lemma 4. Assume that ((4)) holds. Then, the function

F2 tð Þ≔
ð1
0
ψxφtdx +

ð1
0
ψtφxdx ð84Þ
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satisfies

F2′ tð Þ ≤ −
b
2ρ2

ð1
0
φ2
xdx + c

ð1
0
ψ2
xdx + c

ð1
0
ψ2
t + c

ð1
0
θ2tx

+ c
ð1
0

ðτ2
τ1

∣μ2 sð Þ∣z2 x, 1, s, tð Þdx + δ

ρ2
−

μ

ρ1

� 	ð1
0
φxψxxdx:

ð85Þ

Proof. By differentiating F2, then using (19), integration by
parts gives

F2′ tð Þ = −
b
ρ2

ð1
0
φ2
xdx +

δ

ρ2
−

μ

ρ1

� 	ð1
0
φxψxxdx +

b
ρ1

ð1
0
ψ2
xdx

−
ξ

ρ2

ð1
0
φxψdx −

μ1
ρ2

ð1
0
ψtφxdx −

β

ρ2

ð1
0
θtxφxdx

−
1
ρ2

ð1
0
φx

ðτ2
τ1

∣μ2 sð Þ∣z2 x, 1, s, tð Þdsdx:

ð86Þ

Thanks to Young, Cauchy-Schwartz, and Poincaré’s
inequalities to estimate terms in RHS of (86). For δ1, δ2, δ3,
δ4 > 0, we have

−
ξ

ρ2

ð1
0
φxψdx ≤ δ1

ð1
0
φ2
xdx +

c
4δ1

ð1
0
ψ2dx, ð87Þ

−
μ1
ρ2

ð1
0
ψtφxdx ≤ δ2

ð1
0
φ2
xdx +

c
4δ2

ð1
0
ψ2
t dx, ð88Þ

−
β

ρ2

ð1
0
θtxφxdx ≤ δ3

ð1
0
φ2
xdx +

c
4δ3

ð1
0
θ2txdx, ð89Þ

−
1
ρ2

ð1
0
φx

ðτ2
τ1

∣μ2 sð Þ∣z x, 1, s, tð Þdsdx ≤ δ4

ð1
0
φ2
xdx

+ c
4δ4

ð1
0

ðτ2
τ1

∣μ2 sð Þ∣z2 x, 1, s, tð Þds:
ð90Þ

The replacement of (87)–(90) into (86) and
settingδ1 = δ2 = δ3 = δ4 = b/8ρ2helps to obtain (85).

Lemma 5. The function

F3 tð Þ≔−ρ1
ð1
0
φtφdx ð91Þ

satisfies

F3′ tð Þ ≤ −ρ1

ð1
0
φ2
t dx +

3μ
2

ð1
0
φ2
xdx + c

ð1
0
ψ2
xdx: ð92Þ

Proof. Direct computations give

F3′ tð Þ = −ρ1

ð1
0
φ2
t dx + μ

ð1
0
φ2
xdx + b

ð1
0
φxψdx: ð93Þ

Estimate (92) easily follows by using Young’s and Poin-
caré’s inequalities

F3′ tð Þ ≤ −ρ1
ð1
0
φ2
t dx + μ

ð1
0
φ2
xdx + δ5

ð1
0
φ2
xdx +

c
4δ5

ð1
0
ψ2
xdx,

ð94Þ

setting δ5 = μ/2 to obtain (92).

Lemma 6. The function

F4 tð Þ≔−ρ3

ð1
0
θtθdx ð95Þ

satisfies

F4′ tð Þ ≤ −
l
2

ð1
0
θ2xdx + c

ð1
0
ψ2
t dx + c

ð1
0
θ2txdx: ð96Þ

Proof. Direct computations give

F4′ tð Þ = −l
ð1
0
θ2xdx + γ

ð1
0
θxψtdx − k

ð1
0
θxθtxdx + ρ3

ð1
0
θ2t dx:

ð97Þ

By using Young and Poincaré’s inequalities, we get (96).

Lemma 7. The function

F5 tð Þ≔
ð1
0

ð1
0

ðτ2
τ1

se−sρ∣μ2 sð Þ∣z2 x, ρ, s, tð Þdsdρdx ð98Þ

satisfies

F5′ tð Þ ≤ −η1

ð1
0

ð1
0

ðτ2
τ1

s∣μ2 sð Þ∣z2 x, ρ, s, tð Þdsdρdx + μ1

ð1
0
ψ2
t dx

− η1

ð1
0

ðτ2
τ1

∣μ2 sð Þ∣z2 x, 1, s, tð Þdsdx,

ð99Þ

where η1 is a given positive constant.

Proof. By differentiating F5 with respect to t and using the
last equation in ðHyp1Þ, we have

F5′ tð Þ = −2
ð1
0

ð1
0

ðτ2
τ1

e−sρ∣μ2 sð Þ∣zzρ x, ρ, s, tð Þdsdρdx

= −
d
dρ

ð1
0

ð1
0

ðτ2
τ1

se−sρ∣μ2 sð Þ∣z2 x, ρ, s, tð Þdsdρdx

−
ð1
0

ðτ2
τ1

∣μ2 sð Þ∣ e−sz2 x, 1, s, tð Þ − z2 x, 0, s, tð Þ
 �
dsdx:

ð100Þ
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Using the fact that zðx, 0, s, tÞ = ψtðx, t − sÞ and e−s ≤
e−sρ ≤ 1, for all 0 < ρ < 1, we obtain

F5′ tð Þ = −η1
ð1
0

ð1
0

ðτ2
τ1

s∣μ2 sð Þ∣z2 x, ρ, s, tð Þdsdρdx

−
ð1
0

ðτ2
τ1

e−s∣μ2 sð Þ∣z2 x, 1, s, tð Þdsdx

+
ðτ2
τ1

∣μ2 sð Þ∣ds
ð1
0
ψ2
t dx:

ð101Þ

We have −e−s ≤ −e−τ2∀s ∈ ½τ1, τ2�. Set η1 = e−τ2 , and by
(4), we get (99).

We state and prove the decay result in Theorem 8.

Theorem 8. Let ((4)) hold. Then, there exist positive constants
λ1 and λ2 such that the function ((73)) satisfies, for any t > 0

E tð Þ ≤ λ2e
−λ1t , if

δ

ρ2
= μ

ρ1
, ð102Þ

E tð Þ ≤ C E1 0ð Þ + E2 0ð Þð Þt−1, if
δ

ρ2
≠

μ

ρ1
: ð103Þ

Proof.We define a class of an appropriate Lyapunov func-
tion as

L tð Þ≔NE tð Þ +N1F1 tð Þ +N2F2 tð Þ + F3 tð Þ + F4 tð Þ +N5F5 tð Þ,
ð104Þ

where N , N1, N2, and N5 are positive constants to be
selected later.

Differentiating (104) and by (74), (80), (85), (92), (96),
and (99), we have

L ′ tð Þ ≤ −
δN1
2 − cN2 − c

� 
ð1
0
ψ2
xdx − ρ1 −N1ε1½ �

ð1
0
φ2
t dx

− γη0N − cN1 1 + 1
ε1

� 	
−N2c − μ1N5 − c

� 
ð1
0
ψ2
t dx

−
bN2
2ρ2

−
3μ
2

� 
ð1
0
φ2
xdx −N1μ3

ð1
0
ψ2dx

− N5η1 − cN1 − cN2½ �
ð1
0

ðτ2
τ1

∣μ2 sð Þ∣z2 x, 1, s, tð Þdsdx

−
l
2

ð1
0
θ2xdx −N5η1

ð1
0

ð1
0

ðτ2
τ1

s∣μ2 sð Þ∣z2 x, ρ, s, tð Þdsdρdx

− Nkβ − cN1 − cN2 − c½ �
ð1
0
θ2txdx +N2

δ

ρ2
−

μ

ρ1

� 	ð1
0
φxψxxdx:

ð105Þ

By setting ε1 = ρ1/2N1, we obtain

L ′ tð Þ ≤ −
δN1
2 − cN2 − c

� 
ð1
0
ψ2
xdx −

ρ1
2

ð1
0
φ2
t dx

−
bN2
2ρ2

−
3μ
2

� 
ð1
0
φ2
xdx

− γη0N − cN1 1 +N1ð Þ − cN2 − μ1N5 − c½ �
ð1
0
ψ2
t dx

− N5η1 − cN1 − cN2½ �
ð1
0

ðτ2
τ1

∣μ2 sð Þ∣z2 x, 1, s, tð Þdsdx

−N1μ3

ð1
0
ψ2dx − Nkβ − cN1 − cN2 − c½ �

ð1
0
θ2txdx

−
l
2

ð1
0
θ2xdx −N5η1

ð1
0

ð1
0

ðτ2
τ1

s∣μ2 sð Þ∣z2 x, ρ, s, tð Þdsdρdx

+N2
δ

ρ2
−

μ

ρ1

� 	ð1
0
φxψxxdx:

ð106Þ

Next, we carefully choose the constants, starting by N2 to
be large enough such that

α1 =
bN2
2J −

3μ
2 > 0, ð107Þ

and N1 so that

α2 =
δN1
2 − cN2 − c > 0, ð108Þ

and N5 large enough such that

α3 =N5η1 − cN1 − cN2 > 0: ð109Þ

We arrive at

L ′ tð Þ ≤ −α2
ð1
0
ψ2
xdx − α0

ð1
0
ψ2dx −

ρ

2

ð1
0
φ2
t dx − α1

ð1
0
φ2
xdx

− γη0N − c½ �
ð1
0
ψ2
t dx − kβN − c½ �

ð1
0
θ2txdx −

l
2

ð1
0
θ2xdx

ð110Þ

−α3
ð1
0

ðτ2
τ1

∣μ2 sð Þ∣z2 x, 1, s, tð Þdsdx + α5

ð1
0
φxψxxdx

− α4

ð1
0

ð1
0

ðτ2
τ1

s∣μ2 sð Þ∣z2 x, ρ, s, tð Þdsdρdx,
ð111Þ

where α0 = μ3N1 = ðξ − ðb2/μÞÞN1, α4 =N5η1, α5 =N2k0 =
N2ððδ/ρ2Þ − ðμ/ρ1ÞÞ.

Now, let us define the related function

L tð Þ =N1F1 tð Þ +N2F2 tð Þ + F3 tð Þ + F4 tð Þ +N5F5 tð Þ,
ð112Þ
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then

L tð Þj j ≤ JN1

ð1
0
ψψtj jdx + bρ1N1

μ

ð1
0
ψ
ðx
0
φt yð Þdy

���� ����dx
+ μ1N1

2

ð1
0
ψ2dx +N2

ð1
0
ψxφt + φxψtj jdx

+ ρ1

ð1
0
φtφj jdx + ρ3

ð1
0
θtθj jdx

+N5

ð1
0

ð1
0

ðτ2
τ1

se−sρ∣μ2 sð Þ∣z2 x, ρ, s, tð Þdsdρdx:

ð113Þ

Thanks to Young, Cauchy-Schwartz, and Poincaré’s
inequalities, we get

L tð Þj j ≤ c
ð1
0

φ2
t + ψ2

t + ψ2
x + φ2

x + ψ2 + θ2t + θ2x
� �

dx

+ c
ð1
0

ð1
0

ðτ2
τ1

s∣μ2 sð Þ∣z2 x, ρ, s, tð Þdsdρ ≤ cE tð Þ:

ð114Þ

Then,

L tð Þj j = L tð Þ −NE tð Þj j ≤ cE tð Þ: ð115Þ

Thus,

N − cð ÞE tð Þ ≤L tð Þ ≤ N + cð ÞE tð Þ: ð116Þ

One can nowNlarge enough such that

N − c > 0, kβN − c > 0,Nγη0 − c > 0: ð117Þ

We get

c2E tð Þ ≤L tð Þ ≤ c3E tð Þ, ∀t ≥ 0, ð118Þ

and using (73), (110), and (116), and the fact thatð1
0
θ2t dx ≤

ð1
0
θ2txdx, ð119Þ

which gives

L ′ tð Þ ≤ −k1E tð Þ + α5

ð1
0
φxψxxdx, ∀t ≥ 0: ð120Þ

for some k1, c2, c3 > 0.

Case 1. If k0 = ðδ/ρ2Þ − ðμ/ρ1Þ = 0 , in this case, ((120)) takes
the form

L ′ tð Þ ≤ −k1E tð Þ, ∀t ≥ 0: ð121Þ

The combination of (118) and (121) gives

L ′ tð Þ ≤ −λ1L tð Þ, ∀t ≥ 0, λ1 =
k1
c2
: ð122Þ

Finally, by integrating (122) and recalling (118), we
obtain the first result of (103).

Case 2. If k0 = ðδ/ρ2Þ − ðμ/ρ1Þ ≠ 0 , then

k0 <
k1μ

2γδ

2N2 ρ1 + bð Þ , if k0 > 0,

k0j j < k1μ
2γ

2N2ρ1
, if k0 < 0:

8>>>>><>>>>>:
ð123Þ

Let

E tð Þ = E φ, ψ, θ, zð Þ = E1 tð Þ, ð124Þ

be denoted by

E2 tð Þ = E φt , ψt , θt , ztð Þ: ð125Þ

Then, we have

E2′ tð Þ ≤ −kβ
ð1
0
θ2ttxdx − γη0

ð1
0
ψ2
ttdx: ð126Þ

The last term in (120), by using (19), and Young’s
inequality, and by setting K = −ρ1α5/μ, we have

α5

ð1
0
φxψxxdx = −

α5ρ1
μ

ð1
0
ψxφttdx +

bα5
μ

ð1
0
ψ2
xdx

= −K
d
dt

ð1
0
ψφxtdx −

ð1
0
ψtφxdx

� 
� 	
− K
ð1
0
φxψ

2
ttdx +

bα5
μ

ð1
0
ψ2
xdx

≤ −K
d
dt

ð1
0
ψφxtdx −

ð1
0
ψtφxdx

� 
� 	
+ bα5

μ

ð1
0
ψ2
xdx +

∣K ∣
4

ð1
0
ψ2
ttdx + ∣K∣

ð1
0
φ2
xdx:

ð127Þ

Let

N tð Þ =
ð1
0
ψφxtdx −

ð1
0
ψtφxdx, ð128Þ
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then (120)

L ′ tð Þ + KN ′ tð Þ ≤ −k1E1′ tð Þ +
bα5
μ

ð1
0
ψ2
xdx +

∣K ∣
4

ð1
0
ψ2
ttdx

+ ∣K∣
ð1
0
φ2
xdx ≤ −k2E1′ tð Þ +

∣K ∣
4

ð1
0
ψ2
ttdx,

ð129Þ

where

k2 = k1 −
2
μγ

∣K∣+ bα5
δ

� 	
: ð130Þ

Let

G tð Þ =L tð Þ + KN tð Þ +N3 E1 tð Þ + E2 tð Þð Þ: ð131Þ

If N3 > max fC0 ∣ K∣−c1,∣K∣,∣K∣/4Cg, indeed,

∣N tð Þ∣ = ∣
ð1
0
ψφxtdx∣ + ∣

ð1
0
ψtφxdx∣ ≤

1
2

ð1
0
φ2
txdx +

1
2

ð1
0
ψ2
t dx

+ 1
2

ð1
0
ψ2dx + 1

2

ð1
0
φ2
xdx ≤ E2 tð Þ + C0E1 tð Þ,

ð132Þ

where C0 = max f2/γξ, 2/γμ, 2/γρ2g. By (118), we obtain

G tð Þ ≤ c1E1 tð Þ − ∣K∣ E2 tð Þ + C0E1 tð Þð Þ +N3 E1 tð Þ + E2 tð Þð Þ
≤ N3 + c1 − C0 ∣ K ∣ð ÞE1 tð Þ + N3−∣K ∣ð ÞE2 tð Þ:

ð133Þ

It is not hard to prove

m1 E1 tð Þ + E2 tð Þð Þ ≤G tð Þ ≤m2 E1 tð Þ + E2 tð Þð Þ, ð134Þ

where m1,m2 > 0. By using (129) and (128), we obtain

G′ tð Þ =L ′ tð Þ + KN ′ tð Þ +N3 E1′ tð Þ + E2′ tð Þ
� �

≤ −k2E1 tð Þ + −CN3 +
∣K ∣
4

� 	ð1
0
ψ2
ttdx:

ð135Þ

Choosing N3 such that

CN3 −
∣K ∣
4 > 0, ð136Þ

we have

G′ tð Þ ≤ −k2E1 tð Þ: ð137Þ

Integrating (137), we get

ðt
0
E1 yð Þdy ≤ 1

k2
G 0ð Þ −G 1ð Þð Þ ≤ 1

k2
G 0ð Þ ≤ m2

k2
E1 0ð Þ + E2 0ð Þð Þ,

ð138Þ

using the fact that

tE1 tð Þð Þ′ = tE1′ tð Þ + E1 tð Þ ≤ E1 tð Þ: ð139Þ

We get that

tE1 tð Þ ≤ m2
C2

E1 0ð Þ + E2 0ð Þð Þ, ð140Þ

which is desired to be the second result of (103). This com-
pletes the proof.

4. Conclusion

This paper studied the asymptotic behavior of a one-
dimensional thermoelastic system with distributed time
delay; namely, an integral damping term on a time interval
½t − τ2, t − τ1� is taken into account. Beside the distributed
delay term, a standard undelayed damping is included in
the model ð−μ1ϕtÞ. We established the well-posedness of
the system, and we proved stability estimates by means of
appropriate Lyapunov functions. Exponential decay esti-
mates are proved by nonclassical condition between the delay
damping coefficient and the coefficient of the undelayed one
which is satisfied. Several papers have been proposed for
models including both undelayed and delayed damping of
the same form, and exponential stability results have been
obtained if the coefficient of the delay is smaller than the
one of the undelayed term. This analysis has been extended
to the case of a distributed delay in [16]. Also in this case,
there are now a few literature, dealing with different PDE
models, including thermoelastic systems. Typically, under
the assumption (4), the system keeps the same properties,
the one without delay but only with a standard frictional
damping cϕt , for some coefficient c. Then, this paper intro-
duced a considerable novelties different from those of [15].
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This paper is aimed at presenting some coincidence point results using admissible mapping in the framework of the partial b-metric
spaces. Observed results of the article cover a number of existing works on the topic of “investigation of nonunique fixed points.”
We express an example to indicate the validity of the observed outcomes.

1. Introduction and Preliminaries

In 1974, Ćirić [1] published the first paper on nonunique
fixed point theory. Despite Banach’s theorem, Ćirić [1]
focused only on the existence of a fixed point, but not the
uniqueness. The motivation of Ćirić [1] was inspired by
Banach’s motivation. As it is known, Banach’s fixed point
theorem is abstracted from Picard’s paper, in which Picard
[2] analyzed both the existence and uniqueness of the solu-
tion of the certain differential equation (see [3–5]). On the
other hand, not all differential or integral equations have a
unique solution. In the differential/integral equations, non-
unique solutions are also crucial, for example, periodic solu-
tions. Consequently, Ćirić [1] investigated the corresponding
fixed point theorems that would be a tool in finding periodic
solutions of the differential/integral equations. In the last five
decades, a number of nonunique fixed point results have
been reported in two ways: either proposing a new contrac-
tion type or changing the structure. The first example for
the changing the contraction inequality, in the standard set-
up, was given by Achari [6] in 1976 and Pachpatte [7] in
1973. Fifteen years later, Ćirić and Jotić [8] proposed a new
type of contraction inequalities in the context of complete
metric space. This trend was followed by the attractive results

[9–13]. On the other hand side, in [14–17], the authors
observed several characterizations of the unique fixed point
results in the setting of complete b-metric spaces. Indeed,
among the several extensions of metric structure, the true
extension is the b-metric space. For this reason, observed
nonunique fixed theorems in the context of b-metric space
is very interesting and important, see also [18–20]. In addi-
tion, in [21–23], the characterization of fixed point theorems
in partial metric spaces is crucial due to the potential applica-
tion in the domain theory of computer science. Regarding the
applied mathematics, nonunique fixed point results in cone
metric spaces have taken attention [24].

In this paper, we consider a nonunique fixed point theo-
rem in the context of the very general frame, partial b-metric
spaces. An illustrative example is a set-up to indicate the
validity of the main theorem.

Let M be a nonempty set, a real number s ≥ 1, and ℕ =
f1, 2, 3,⋯g.In this case, the triplet ðM, pb, sÞ forms a partial
b -metric space, on short pb-ms.Undoubtedly, b-metric spaces
(and ordinary metric spaces) are closely related to partial b
-metric spaces. Definitely, a b-metric space (s ≥ 1) is a partial
b-metric space with zero self-distance and a partial metric
space is a partial b-metric space with s = 1. Moreover, a par-
tial b-metric can define a b-metric space. Indeed, for example,
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let pb be a partial b-metric onM. Then, the functions b′p, bp,
bp,m : M⟶M, where

bp u, vð Þ =
pb u, vð Þ, if u ≠ v,
0, if u = v,

(
ð1Þ

b′p u, yð Þ = 2pb u, yð Þ − pb u, uð Þ − pb y, yð Þ, ð2Þ

bp,m u, yð Þ = pb u, yð Þ −min pb u, uð Þ, pb y, yð Þf g ð3Þ
are b-metrics onM:

Definition 1. A function pb : M ×M⟶ ½0,∞Þ is a partial
b-metric on M if for all u, y,w ∈M, it satisfies the follow-
ing conditions:

ðpbÞ1u = y⟺ pbðu, uÞ = pbðu, yÞ = pbðy, yÞ
ðpbÞ2pbðu, uÞ ≤ pbbðu, yÞ
ðpbÞ3pbðu, yÞ ≤ pðy, uÞ
ðpbÞ4pbðu, yÞ ≤ s½pbðu,wÞ + pbðw, uÞ� − pbðw,wÞ

Example 1. (see [25]). Let pb be a partial metric on the setM.
Then, the functions pb : M ×M⟶ ½0,∞Þ are given for all
u, y ∈M by

(1) pbðu, yÞ = pðu, yÞ + bðu, yÞ is a partial b-metric on M
(where b is a b-metric (s > 1) on M)

(2) pbðu, yÞ = ½pðu, yÞ�r for r ≥ 1, define a partial b-met-
rics on M with coefficient s = 2r−1

Remark 2. From ðpbÞ1 and ðpbÞ2, it follows that if u, y ∈M are
such that pbðu, yÞ = 0, then u = y:

Definition 3. (see [26, 27]). Let fung be a sequence on the
pb‐msðM, pb, s ≥ 1Þ

(1) fung is pb-convergent to u ∈M if limn→∞pbðu, unÞ
= pbðu, uÞ

(2) fung is pb-Cauchy if limn,q→∞pbðun, uqÞ exists and is
finite

(3) fung is 0-pb-Cauchy if limn,q→∞pbðun, uqÞ = 0

(4) ðM, pb, s ≥ 1Þ is pb-complete if every pb-Cauchy
sequence in M is pb-convergent

lim
n,q→∞

pb un, uq
� �

= lim
n→∞

pb un, uð Þ = pb u, uð Þ ð4Þ

(5) ðM, pb, s ≥ 1Þ is 0-pb-complete if every 0-pb-Cauchy
sequence we can find u ∈M such that

lim
n,q→∞

pb un, uq
� �

= lim
n→∞

pb un, uð Þ = pb u, uð Þ = 0 ð5Þ

Moreover, in [26], the following interesting results were
proved.

Lemma 4. (see [26]). Every pb-complete pb-ms ðM, pb, s ≥ 1Þ is
0 - pb -complete.

Lemma 5. (see [26]). The pb-ms ðM, pb, s ≥ 1Þ is 0 - pb -com-
plete if and only if the b -metric space ðM, bp, s ≥ 1Þ is com-
plete, where the b -metric bp was defined in (3).

They also showed that the converse affirmation does not
hold.

Let R, S to self-mappings on the set M: We say that

(i) S commutes with R on M if RSu = SRu for all u ∈M

(ii) a point z ∈M is a point of coincidence of R and S if we
can find u∗ ∈M such that z = Ru∗ = Su∗

(iii) a point u∗ ∈M is a common fixed point of R and S if
Ru∗ = u∗ = Su∗

We will use the following notations:

Cc R, Sð ÞM = u ∈M ∣ Ru = Suf gM∗ =M \ Cc R, Sð ÞM: ð6Þ

In [28], the notion of R-β-admissible mapping was introduced
as follows:

(i) Let the function β : M ×M⟶ ½0,∞Þ and R, S : M
⟶M. The mapping S is said to be R-β-admissible if

β Ru, Ryð Þ ≥ 1 impliesβ Su, Syð Þ ≥ 1, ð7Þ

for all u, y ∈M:
In case that R = IM , the mapping S is said to be β

-admissible.
Let ðM, pb, s ≥ 1Þ be a pb-ms and β ;M ×M⟶ ½0,+∞Þ.

The spaceM is β-regular if for every sequence fzng inM such
that zn ⟶ z and βðzn, zn+1Þ ≥ 1, there exists a subsequence
fznlg of fzng such that

β znl , z∗
� �

≥ 1, ð8Þ

for all l ∈ℕ.

Lemma 6. Let R, S : M⟶M such that S is a R-β-admissible.
If there exists u0 ∈M such that βðRu0, Su0Þ ≥ 1, then

β Run, Run+1ð Þ ≥ 1, ð9Þ

where the sequence fung in M is defined by Sun = Run+1, for
each n ∈ℕ ∪ f0g.

Proof. By the assumption βðRu0, Su0Þ ≥ 1, since the mapping
S is R-β-admissible, we get

β Ru0, Ru1ð Þ = β Ru0, Su0ð Þ ≥ 1 impliesβ Ru1, Ru2ð Þ = β Su0, Su1ð Þ ≥ 1,
ð10Þ
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and by induction, it follows that

β Run, Run+1ð Þ ≥ 1, ð11Þ

for n ∈ℕ ∪ f0g.

2. Main Results

Following the idea in [29], we state the following results use-
ful in the sequel.

Lemma 7. Let ðM, pb, s ≥ 1Þ be a pb-ms. If fung is a sequence
inM such that there exists fzng inM, satisfying the inequality

pb un, un+1ð Þ ≤ cpb un−1, unð Þ, ð12Þ

for any n ∈ℕ, then the sequence is fung and is 0-pb-Cauchy.

Proof. First of all, by (12), we get

pb un, un+1ð Þ ≤ cnpb u0, u1ð Þ, ð13Þ

for all n ∈ℕ. On the other hand, by using ðpbÞ4, we can
derive that

pb un, un+q
� �

≤ s pb un, un+1ð Þð
+ pb un+1, un+q

� �Þ − pb un+1, un+1ð Þ
≤ spb un, un+1ð Þ

+ s2 pb un+1, un+2ð Þð + pb un+2, un+2, un+q
� �

−−pb un+1, un+1ð Þ − pb un+2, un+2ð Þ⋯
≤ spb un, un+1ð Þ + s2pb un+1, un+2ð Þ+⋯

+sqpb un+q−1, un+q
� �

−−〠
q−1

l=1
pb un+l , un+lð Þ

≤ sq pb un, un+1ð Þ + pb un+1, un+2ð Þ+⋯½

+pb un+q−1, un+q
� ��−−〠

q−1

l=1
pb un+l, un+lð Þ:

ð14Þ

(1) If c ∈ ½0, 1/sÞ, by (13) and (14), we get

pb un, un+q
� �

≤ 〠
q−1

l=0
sl+1cn+lpb u0, u1ð Þ − 〠

q−1

l=1
pb un+l , un+lð Þ

≤ scn 〠
q−1

l=0
scð Þlpb u0, u1ð Þ

= scn
1 − scð Þq
1 − sc

⟶ 0 as n, q⟶∞:

ð15Þ

Therefore, fung is a 0-pb-Cauchy sequence.

(2) If c ∈ ½1/s, 1Þ, thus cn ⟶ 0 (as n⟶∞). Moreover,
there exits l ∈ℕ such that cl < 1/s. This means l > −
log s/log c. Again, by (13) together with (14), we have

pb unl , u n+1ð Þl
� �

≤ sl pb unl, unl+1ð Þ+⋯+pb unl+l−1, u n+1ð Þl
�h i

−−〠
l−1

j=1
pb unl+j, unl+j
� �

≤ sl 〠
l−1

j=0
cnl+jpb u0, u1ð Þ − 〠

l−1

j=1
pb unl+j, unl+j
� �

≤ slcnl 〠
l−1

j=0
pb u0, u1ð Þ

≤ cnl
sl · pb u0, u1ð Þ

1 − c
⟶ 0 as n⟶∞:

ð16Þ

Thereby, letting λ = cl < 1/s by Case (i), we get that the
sequence funlg is 0-pb-Cauchy sequence, which means that

lim
n,q→∞

pb unl , uql
� �

= 0: ð17Þ

On the other hand,

pb ul n/l½ �, un
� �

≤ s pb ul n/l½ �, ul n/l½ �+1
� ��

+ pb ul n/l½ �+1, un
� ��

− pb ul n/l½ �+1, ul n/l½ �+1
� �

≤ sl pb ul n/l½ �, ul n/l½ �+1
� �

+⋯+pb un−1, unð Þ
h i
−− pb ul n/l½ �+1, ul n/l½ �+1

� �
+⋯+pb un−1, un−1ð Þ

� �
,

ð18Þ

and using (13), we have

pb ul n/l½ �, un
� �

≤ sl cl n/l½ �+⋯+cn−1
h i

pb u0, u1ð Þ

≤ slcl n/l½ � pb u0, u1ð Þ
1 − c

⟶ 0 as n⟶∞:
ð19Þ

Finally, combining relations (19) and (17) and keeping in
mind ðpbÞ4, we have

pb un, uq
� �

≤ s pb un, ul n/l½ �
� �h

+ pb ul n/l½ �, uq
� �i

− pb ul n/l½ �, ul n/l½ �
� �

≤ spb un, ul n/l½ �
� �

+ s2pb ul n/l½ �, ul q/l½ �
� �

+ s2pb ul q/l½ �, uq
� �

−−pb ul n/l½ �, ul n/l½ �
� �

− pb ul q/l½ �, ul q/l½ �
� �

≤ spb un, ul n/l½ �
� �

+ s2pb ul n/l½ �, ul q/l½ �
� �

+ s2pb ul q/l½ �, uq
� �

⟶ 0 as n, q⟶∞:

ð20Þ

Thereupon, the sequence fung is 0-pb-Cauchy.
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Theorem 8. Let ðM, pb, s ≥ 1Þ be a complete pb-ms and two
mappings R, S : M⟶M. Suppose that there exists κ ∈ ð0, 1Þ
such that

β Ru, Ryð Þ min pb Su, Syð Þ, pb Sy, Ryð Þf g
−− min bp Su, Ryð Þ, bp Sy, Ruð Þ� �

≤ κ max pb Ru, Ryð Þ, pb Su, Ruð Þf g,
ð21Þ

for all u, y ∈M, such that u ≠ y when u, y ∈ CcðR, SÞM . Suppose
also that

(a) SðMÞ ⊂ RðMÞ and ðRðMÞ, pb, sÞ is a 0-pb-complete
pb-ms

(b) S is R-β-admissible, and there exists u0 ∈M such that
βðRu0, Su0Þ ≥ 1

(c) M is β-regular

Then, the mappings S and R have a point of coincidence.

Proof. Let u0 be an arbitrary point in M, such that βðRu0, S
u0Þ ≥ 1. Thus, since SðMÞ ⊂ RðMÞ, there exists u1 ∈M such
that Su0 = Ru1: Thereupon, Su1 ∈ SðMÞ ⊂ RðMÞ and we can
find u2 ∈M such that Su1 = Ru2. In this way, we can build a
sequence fung ⊆M as follows:

having defined un ∈M, we let un+1 ∈M such that Sun = Run+1,
ð22Þ

for all n ∈ℕ ∪ f0g. Letting u = un and y = un+1 in (ref1T1)
and taking into account Lemma 6, we have

min pb Sun, Sun+1ð Þ, pb Sun+1, Run+1ð Þf g
−− min bp,m Sun, Run+1ð Þ, bp,m Sun+1, Runð Þ� �

≤ β Run, Run+1ð Þ min pb Sun, Sun+1ð Þ, pb Sun+1, Run+1ð Þf g
−− min bp Sun+1, Runð Þ� �

≤ κ max pb Run, Run+1ð Þ, pb Sun, Runð Þf g:
ð23Þ

Keeping in mind (22), we get

min pb Run+1, Run+2ð Þ, pb Run+1, Runð Þ, pb Run+2, Run+1ð Þf g
−− min bp Run+1, Run+1ð Þ, bp Run+2, Runð Þ� �

≤ κ max pb Run, Run+1ð Þ, pb Run+1, R unð Þð Þf g
= κpb Run, Run+1ð Þ,

ð24Þ

which is equivalent with

min pb Run+1, Run+2ð Þ, pb Run+1, Runð Þf g
−− min bp Run+1, Run+1ð Þ, bp Run+2, Runð Þ� �

≤ κpb Run, Run+1ð Þ:
ð25Þ

Therefore, we get

pb Run+1, Run+2ð Þ ≤ κpb Run, Run+1ð Þ, ð26Þ

for any n ∈ℕ ∪ f0g.Let now fzng be a sequence in M, with
zn = Run+1 = Sun, n ∈ℕ ∪ f0g. First of all, we mention that
zn ≠ zn+1 for every n ∈ℕ. Indeed, if we suppose that there
exists m0 ∈ℕ ∪ f0g such that zm0

= zm0+1, thus by (22),
we have

Rum0+1 = Sum0
= zm0

= zm0+1 = Sum0+1, ð27Þ

so that zm0+1 is a point of coincidence. Thus, zn ≠ zn+1 for
every ℕ ∪ f0g and (28) can be rewritten as

pb zn, zn+1ð Þ ≤ κpb zn−1, znð Þ: ð28Þ

Therefore, according to Lemma 7, the sequence fzng is 0
-pb-Cauchy. Since the space is 0-pb-complete, it follows
that there is z ∈M such that

lim
n,q→∞

pb zn, zq
� �

= lim
n→∞

pb zn, zð Þ = pb z, zð Þ = 0: ð29Þ

But, on the other hand, since zn = Run+1 and the space
ðRðMÞ, pb, sÞ is 0-pb-complete, we can find u∗ ∈M, with
z = Ru∗. Thus,

lim
n→∞

pb Sun, Ru∗ð Þ = lim
n→∞

pb Run, Ru∗ð Þ = pb Ru∗, Ru∗ð Þ = 0:

ð30Þ

Supposing that Ru∗ ≠ Su∗ for u = unl and y = u∗ and taking
into account the β-regularity of the space M, we have

min pb Sunl , Su∗
� �

, pb Su∗, Ru∗ð Þ� �
−min bp Sunl , Ru∗

� �
, bp Su∗, Runl

� �� �
≤ ≤β znl , z

� �
min pb Sunl , Su∗

� �
, pb Su∗, Ru∗ð Þ� �

−min bp Sunl , Ru∗
� �

, bp Su∗, Runl
� �� �

= β Runl , Ru∗
� �

min pb Sunl , Su∗
� �

, pb Su∗, Ru∗ð Þ� �
−min bp Sunl , Ru∗

� �
, bp Su∗, Runl

� �� �
≤ κ max pb Runl , Ru∗

� �
, pb Sunl , Runl

� �� �
:

ð31Þ

If min fpbðSunl , Su∗Þ, pbðSu∗, Ru∗Þg = pbðSu∗, Ru∗Þ, the
above inequality becomes

pb Su∗, Ru∗ð Þ −min pb Sunl , Su∗
� �

, pb Su∗, Ru∗ð Þ� �
−min bp Sunl , Ru∗

� �
, bp Su∗, Runl

� �� �
≤ κ max pb Runl , Ru∗

� �
, pb Sunl , Runl

� �� �
:

ð32Þ

Letting l⟶∞ and taking into account (28) and (30), we get

pb Su∗, Ru∗ð Þ = 0, ð33Þ
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and by ðpbÞ1, ðpbÞ1, we have Su∗ = Ru∗.Ifmin fpbðSunl , Su∗Þ,
pbðSu∗, Ru∗Þg = pbðSunl , Su∗Þ, we find that liml→∞pbðSunl ,
Su∗Þ = 0: On the other hand, by ðpbÞ4,

pb Su∗, Ru∗ð Þ ≤ s pb Su∗, Sunl
� �

+ pb Sð unl , Ru∗
� �� 	

− pb Sð unl , Sunl
� �

,
ð34Þ

and then, pbðSu∗, Ru∗Þ = 0, as l⟶∞. This proves that z
= Su∗ = Ru∗, that is, z is a point of coincidence for S
and R.

Example 2. Let M = ½0,∞Þ and pb : M ×M⟶ ½0,∞Þ be a
partial b-metric, where pbðu, yÞ = ðmax fu, ygÞ2. Let the
mappings S, R : M⟶M,

Su =
u + 1
2 , if u ∈ 0, 1½ �,

3, if u > 1,

8<
:

Ru =

u + 2
4 , if u ∈ 0, 1½ �,

u + 5
10 , if u > 1,

8>><
>>:

ð35Þ

and the function β : M ×M⟶ ½0,∞Þ,

β x, vð Þ =

2, for x = v = 1
2 ,

3, for x = v = 3,
1, for x, v ≥ 4,
0, otherwise:

8>>>>>><
>>>>>>:

ð36Þ

Obviously, since x = Ru ≥ 4 for u ≥ 35 we have

(i) For u, y ≥ 35

β Ru, Ryð Þ = 1⟹ β Su, Svð Þ = β 3, 3ð Þ = 3 > 1,

β
1
2 ,

1
2


 �
= β R 0ð Þ, R 0ð Þð Þ = 2⟹ β S 0ð Þ, S 0ð Þð Þ = β

1
2 ,

1
2


 �
= 2,

β 3, 3ð Þ = β R 25ð Þ, R 25ð Þð Þ = 3⟹ β S 25ð Þ, S 25ð Þð Þ = β 3, 3ð Þ = 3:
ð37Þ

Moreover,

β Ru, Ryð Þ min pb Su, Syð Þ, pbb Sy, Ryð Þf g
−− min bp Su, Ryð Þ, bp Sy, Ruð Þ� �

≤min pb 3, 3ð Þ, pb 3, Ryðf g
= 9, ≤ κ · 16 ≤ κ · max pb Ru, Ryð Þ, pb Su, Ruð Þf g,

ð38Þ

for any 9/16 < κ < 1:

(ii) All other cases are uninteresting due to the way the
function β was defined

Consequently, by Theorem 8, the mappings S, R have
points of coincidence. These are 1/2 = Sð0Þ = Rð0Þ, respec-
tively, 3 = Sð25Þ = Rð25Þ.

Corollary 9. Let ðM, pb, s ≥ 1Þ be a complete pb-ms and two
mappings R, S : M⟶M. Suppose that there exists κ ∈ ð0, 1Þ
such that

min pb Su, Syð Þ, pb Sy, Ryð Þf g
−− min bp Su, Ryð Þ, bp Sy, Ruð Þ� �

≤ κ max pb Ru, Rvð Þ, pb Su, Ruð Þf g,
ð39Þ

for every u, y ∈M, such that u ≠ y when u, y ∈ CcðR, SÞM. If S
ðMÞ ⊂ RðMÞ and ðRðMÞ, pb, sÞ is a 0-pb-complete pb-ms, then
the mappings S and R have a point of coincidence.

Proof. It is enough to choose βðu, yÞ = 1 in Theorem 8.

Theorem 10. Let ðM, pb, s ≥ 1Þ be a complete pb-ms and a
mapping S : M⟶M. Suppose that there exists κ ∈ ð0, 1Þ
such that

β u, yð Þ min pb Su, Syð Þ, pb Sy, yð Þf g
−− min bp Su, yð Þ, bp Sy, uð Þ� �
≤ κ max pb u, yð Þ, pb Su, uð Þf g,

ð40Þ

for every u, y ∈M, such that u ≠ y. Suppose also that

(a) S is β-admissible, and there exists u0 ∈M such that β
ðu0, Su0Þ ≥ 1

(b) M is β-regular

Then, the mapping S has a fixed point.

Proof. Put R = IM in Theorem 8.

Corollary 11. Let ðM, pb, s ≥ 1Þ be a complete pb-ms and a
mapping S : M⟶M. Suppose that there exists κ ∈ ð0, 1Þ
such that

min pb Su, Syð Þ, pb Sy, yð Þf g
−− min bp Su, yð Þ, bp Sy, uð Þ� �
≤ κ max pb u, yð Þ, pb Su, uð Þf g,

ð41Þ

for every u, y ∈M,u ≠ y. Then, the mapping S has a fixed point.

Proof. It is enough to choose βðu, yÞ = 1 in Theorem 10.

Theorem 12. Let ðM, pb, s ≥ 1Þ be a complete pb-ms and two
mappings R, S : M⟶M. Suppose that there exist κ ∈ ð0, 1Þ
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and a > 0 such that

β Ru, Ryð ÞM1
S u, yð Þ − a ·N1

S,R u, yð Þ ≤ κpb Su, Ruð Þpb Sy, Ryð Þ,
ð42Þ

where

M1
S,R u, yð Þ =min pb Su, Syð Þ½ �2, pb Sy, Ryð Þ½ �2� �

,

N1
S,R u, yð Þ =min bp Su, Ryð Þbp Sy, Ruð Þ, pb Su, Ryð Þpb Su, Syð Þ, pb Sy, Ruð Þpb Ru, Ryð Þ� �

,

ð43Þ

for every u, y ∈M, such that u ≠ y when u, y ∈ CcðR, SÞM .
Suppose also that:

(a) SðMÞ ⊂ RðMÞ and ðRðMÞ, pb, sÞ is a 0-pb-complete
pb-ms

(b) S is R-β-admissible, and there exists u0 ∈M such that
βðRu0, Su0Þ ≥ 1

(c) M is β-regular

Then, the mappings S and R have a point of coincidence.

Proof. Starting with a point u0 ∈M such that βðRu0, Su0Þ ≥ 1,
we build the sequences fung, fzng as in Theorem 8,

zn = Run+1 = Sun, for all n ∈ℕ: ð44Þ

Using the same arguments, we can assume that zn ≠ zn+1,
also, for all n ∈ℕ. Thus, for u = un, y = un+1,

and taking into account Lemma 6, (42) becomes

M1
S,R un, un+1ð Þ ≤ β Run, Run+1ð ÞM1

S,R un, un+1ð Þ − a ·N1
S,R un, un+1ð Þ

≤ κpb Sun, Runð Þ · pb Sun+1, Run+1ð Þ:
ð47Þ

Taking into account (46), the above inequality turns into

pb zn, zn+1ð Þ½ �2 ≤ κpb zn, zn−1ð Þpb zn+1, znð Þ, ð48Þ

or equivalent (since zn ≠ zn+1)

pb zn, zn+1ð Þ ≤ κpb zn, zn−1ð Þ: ð49Þ

Accordingly, from Lemma 7, it follows that the sequence
fzng is 0-pb-Cauchy and due to the completeness of the
space, there exists z ∈M such that limn⟶∞pbðznÞ, zÞ
= pbðz, zÞ = 0. Following the corresponding lines in Theo-
rem 8, we can find u∗ ∈M such that Ru∗ = z. Supposing
that Ru∗ ≠ Su∗ for u = unl and y = u∗ and taking into
account the assumption (c),

M1
S,R unl , u∗
� �

≤ β Runl , Ru∗
� �

M1
S,R unl , u∗
� �

− a ·N1
S,R unl , u∗
� �

≤ κpb Sunl , Runl
� �

· pb Su∗, Ru∗ð Þ,
ð50Þ

where

M1
S,R un, un+1ð Þ =min pb Sun, Sun+1ð Þ½ �2, pb Sun+1, Run+1ð Þ½ �2� �

=min pb zn, zn+1ð Þ�2, pb zn+1, znð Þ½ �2� �
= pb zn+1, znð Þ½ �2,

ð45Þ

N1
S,R un, un+1ð Þ =min

bp Sun, Run+1ð Þbp Sun+1, Runð Þ, pb Sun, Run+1ð Þpb Sun, Sun+1ð Þ,
pb Sun+1, Runð Þpb Run, Run+1ð Þ

( )

=min
bp zn, znð Þbp zn+1, zn−1ð Þ, pb zn, zn+1ð Þpb zn, zn+1ð Þ,

pb zn+1, un−1ð Þpb un−1, znð Þ

( )
= 0,

ð46Þ

M1
S,R unl , u∗
� �

=min pb Sunl , Su∗
� �� 	2, pb Su∗, Ru∗ð Þ½ �2

n o
,

N1
S,R unl , u∗
� �

=min bp Sunl , Ru∗
� �

bp Su∗, Runl
� �

, pb Sunl , Ru∗
� �

pb Su∗, Sunl
� �

, pb Su∗, Runl
� �

pb Ru∗, Runl
� �� �

:

ð51Þ
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Since liml→∞N1
S,Rðunl , u∗Þ = 0 and liml→∞ = pbðSunl , RunlÞ ·

pbðSu∗, Ru∗Þ = 0 (by) letting l⟶∞ in (50), we have

either pb Su∗, Ru∗ð Þ½ �2 = 0 or lim
l→∞

pb Sunl , Su∗
� �� 	2 = 0: ð52Þ

(1) If ½pbðSu∗, Ru∗Þ�2 = 0, it follows that Su∗ = Ru∗.

(2) If liml→∞½pbðSunl , Su∗Þ�
2 = 0, by ðpbÞ4

pb Ru∗, Su∗ð Þ ≤ s pb Ru∗, Sunl
� �

+ pb Sunl , Su∗
� �� 	

− pb Sunl , Sunl
� �

≤ s pb Ru∗, Sunl
� �

+ pb Sunl , Su∗
� �� 	

⟶ 0 as l⟶∞,
ð53Þ

so pbðRu∗, Su∗Þ = 0.
Thereupon, Ru∗ = Su∗ = z and z is a point of coincidence

of R and S.

Example 3. Let M = fα1, α2, α3, α4, α5g and the partial b
-metric pb : M ×M⟶ ½0,+∞Þ defined as follows (Table 1).

Let the function β : M ×M⟶ ½0,+∞Þ, with

β u, yð Þ =
1, for u, yð Þ ∈ α5, α3ð Þ, α3, α2ð Þf g,
2, for u, yð Þ = α2, α2ð Þ,
0, otherwise,

8>><
>>: ð54Þ

and two mappings S, R : M⟶M (Table 2).
First of all, we remark that

β α5, α3ð Þ = β Rα2, Rα5ð Þ = 1⟹ β Sα2, Sα5ð Þ = β α3, α2ð Þ = 1,
β α3, α2ð Þ = β Rα5, Rα4ð Þ = 1⟹ β Sα5, Sα4ð Þ = β α2, α2ð Þ = 2,
β α2, α2ð Þ = β Rα4, Rα4ð Þ = 2⟹ β Sα4, Sα4ð Þ = β α2, α2ð Þ = 2,

ð55Þ

which shows as that (b) holds. Also, it is easy to see that (a)
and (c) are satisfied, so it remains to be verified (42). We
distinguish two cases as follows:

(1) ðu, yÞ = ðα2, α5Þ

(2) ðu, yÞ = ðα5, α4Þ

So, for any κ ∈ ð0, 1Þ, the inequality (42) holds. Therefore,
the mappings S, R have a point of coincidence, which is z = α2
.

Corollary 13. Let ðM, pb, s ≥ 1Þ be a complete pb-ms and two
mappings R, S : M→M. Suppose that there exist κ ∈ ð0, 1Þ

and a > 0 such that

M1
S,R u, yð Þ − a ·N1

S,R u, yð Þ ≤ κpb Su, Ruð Þpb Sy, Ryð Þ, ð58Þ

where

M1
S,R α2, α5ð Þ =min pb Sα2, Sα5ð Þ½ �2, pb Sα5, Rα5ð Þ½ �2� �

=min pb α3, α2ð Þ½ �2, pbb α2, α3ð Þ½ �2� �
= 9,

N1
S,R α2, α5ð Þ =min bp Sα2, Rα5ð Þbp Sα5, Rα2ð Þ,⋯� �

=min bp α3, α3ð Þbp α2, α5ð Þ,⋯� �
= 0,

pb Sα2, Rα2ð Þpb Sα5, Rα5ð Þ = pb α3, α5ð Þpb α2, α3ð Þ = 22 · 3 = 66:

ð56Þ

M1
S,R α5, α4ð Þ =min pb Sα5, Sα4ð Þ½ �2, pb Sα4, Rα4ð Þ½ �2� �

=min pb α2, α2ð Þ½ �2, pb α2, α2ð Þ½ �2� �
= 1,

N1
S,R α5, α4ð Þ =min bp Sα5, Rα4ð Þbp Sα4, Rα5ð Þ,⋯� �

=min bp α2, α2ð Þbp α2, α3ð Þ,⋯� �
= 0,

pb Sα5, Rα5ð Þpb Sα4, Rα4ð Þ = pb α2, α3ð Þpb α2, α2ð Þ = 3 · 1 = 3:

ð57Þ

M1
S,R u, yð Þ =min pb Su, Syð Þ½ �2, pb Sy, Ryð Þ½ �22� �

,

N1
S,R u, yð Þ =min bp Su, Ryð Þbp Sy, Ruð Þ, pb Su, Ryð Þpb Su, Syð Þ, pb Sy, Ruð Þpb Ru, Ryð Þ� �

,
ð59Þ
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for every u, y ∈M, such that u ≠ y when u, y ∈ CcðR, SÞM .
Then, the mappings S and R have a point of coincidence pro-
viding that SðMÞ ⊂ RðMÞ and ðRðMÞ, pb, sÞ is a 0-pb-com-
plete pb-ms.

Proof. Put βðu, yÞ = 1 in Theorem 12.

Theorem 14. Let ðM, pb, s ≥ 1Þ be a complete pb-ms a map-
ping S : M⟶M. Suppose that there exists κ ∈ ð0, 1Þ and
a > 0 such that

β u, yð ÞM1
S u, yð Þ − a ·N1

S u, yð Þ ≤ κpb Su, uð Þpb Sy, yð Þ, ð60Þ

where

M1
S u, yð Þ =min pb Su, Syð Þ½ �2, pb Sy, yð Þ½ �2� �

,

N1
S u, yð Þ =min bp Su, yð Þbp Sy, uð Þ, pb Su, yð Þpb Su, Syð Þ, pb Sy, uð Þpb u, yð Þ� �

,

ð61Þ

for every u, y ∈M,u ≠ y. Suppose also that

(a) S is β-admissible, and there exists u0 ∈M such that β
ðu0, Su0Þ ≥ 1

(b) M is β-regular

Then, the mapping S possesses a fixed point.

Proof. Choose R = IM in Theorem 12.

Corollary 15. Let ðM, pb, s ≥ 1Þ be a complete pb-ms a map-
ping S : M⟶M. Suppose that there exists κ ∈ ð0, 1Þ and
a > 0 such that

M1
S u, yð Þ − a ·N1

S u, yð Þ ≤ κpb Su, uð Þpb Sy, yð Þ, ð62Þ

where

M1
S u, yð Þ =min pb Su, Syð Þ½ �2, pb Sy, yð Þ½ �2� �

,

N1
S u, yð Þ =min bp Su, yð Þbp Sy, uð Þ, pb Su, yð Þpb Su, Syð Þ, pb Sy, uð Þpb u, yð Þ� �

,

ð63Þ

for every u, y ∈M, u ≠ y. Then, the mapping S possesses a
fixed point.

Proof. Put βðu, yÞ = 1 in Theorem 14.

Theorem 16. Let ðM, pb, s ≥ 1Þ be a complete pb-ms and two
mappings R, S : M⟶M. Suppose that there exist κ ∈ ð0, 1Þ
and a > 0 such that

β Ru, Ryð ÞM2
S,R u, yð Þ ≤ κ ·N2

S,R u, yð Þ, ð64Þ

where

M2
S,R u, yð Þ = pb Su, Syð Þpb Sy, Ryð Þ − a · min bp Su, Ryð Þ, bp Sy, Ruð Þ� �

,

N2
S,R u, yð Þ = pb Ru, Ryð Þ · max pb Su, Ruð Þ, pb Sy, Ryð Þ, pb Su, Ryð Þ + pb Sy, Ruð Þ

2s

� 

,

ð65Þ

for every u, y ∈M, such that u ≠ y when u, y ∈ CcðR, SÞM .
Suppose also that

(a) SðMÞ ⊂ RðMÞ and ðRðMÞ, pb, sÞ is a 0-pb-complete
pb-ms

(b) S is R-β-admissible and there exists u0 ∈M such that
βðRu0, Su0Þ ≥ 1

(c) M is β-regular

Then, the mappings S and R have a point of coincidence.

Proof. We will only sketch the proof, because, basically, we
use the same technique that was used in the above theorems.
Indeed, for u = un, y = un+1, where the sequences fzng, fung
are defined in Theorem 8, we have

M2
S,R un, un+1ð Þ = pb Sun, Sun+1ð Þpb Sun+1, Run+1ð Þ

−−a · min bp Sun, Run+1ð Þ, bp Sun+1, Runð Þ� �
= pb zn, zn+1ð Þpb zn+1, znð Þ

− a · min bp zn, znð Þ, bp zn+1, zn−1ð Þ� �
= pb zn, zn+1ð Þ½ �2,

Table 1

pb u, yð Þ α1 α2 α3 α4 α5

α1 0 2 6 30 42

α2 2 1 3 21 31

α3 6 3 2 14 22

α4 30 21 14 5 7

α5 42 31 22 7 6

Table 2

α1 α2 α3 α4 α5
S α5 α3 α2 α2 α2

R α1 α5 α1 α2 α3
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N2
S,R un, un+1ð Þ = pb Run, Run+1ð Þ · max

pb Sun, Runð Þ, pb Sun+1, Run+1ð Þ,
pb Sun, Run+1ð Þ + pb Sun+1, Runð Þ

2s

8><
>:

9>=
>;

=max
pb zn−1, znð Þ, pb zn, zn+1ð Þ,
pb zn, znð Þ + pb zn+1, zn−1ð Þ

2s

8><
>:

9>=
>;

≤ pb zn−1, znð Þ · mpb zn−1, znð Þ · max

�
pb zn−1, znð Þ, pb zn, zn+1ð Þ,

pb zn, znð Þ + s pb zn+1, znð Þ + pb zn, zn+1ð Þ½ � − pb zn, znð Þ
2s

8><
>:

9>=
>;

= pb zn−1, znð Þ · max

� pb zn−1, znð Þ, pb zn, zn+1ð Þ, pb zn+1, znð Þ + pb zn, zn+1ð Þ
2

� 

= pb zn−1, znð Þ · max pb zn−1, znð Þ, pb zn, zn+1ð Þf g:

ð66Þ

Thus, the inequality (64) becomes

pb zn, zn+1ð Þ½ �2 ≤ κpb zn−1, znð Þ · max pb zn−1, znð Þ, pb zn, zn+1ð Þf g:
ð67Þ

Since for the case max fpbðzn−1, znÞ, pbðzn, zn+1Þg = pbðzn,
zn+1Þ we get ½pbðzn, zn+1Þ�2 ≤ κpbðzn−1, znÞ · pbðzn, zn+1Þ, or
pbðzn, zn+1Þ ≤ κpbðzn−1, znÞ < pbðzn−1, znÞ, which is a contra-
diction, we conclude that max fpbðzn−1, znÞ, pbðzn, zn+1Þg =
pbðzn−1, znÞ and then (67) becomes

pb zn, zn+1ð Þ ≤ κpb zn−1, znð Þ, ð68Þ

for any n ∈ℕ. Therefore, by Lemma L2A and using similar
arguments as in Theorems 8 and 12, there exists u∗ ∈M
such that

lim
n→∞

pb Sun, Ru∗ð Þ = lim
n→∞

pb Run, Ru∗ð Þ = pb Ru∗, Ru∗ð Þ = 0:

ð69Þ

Finally, we claim that Su∗ = Ru∗. From the assumptions (c),
there exists a subsequences funlg of fung such that βðunl ,
u∗Þ ≥ 1. Thus, replacing u by unl and y by u∗, we get (as
l⟶∞)

lim
n→∞

M2
S,R unl , u∗
� �

= lim
n→∞

pb Sunl , Su∗
� �

pb Su∗, Ru∗ð Þ�
−−a · min bp Sunl , Ru∗

� �
, bp Su∗, Runl

� �� �	
= pb Su∗, Ru∗ð Þ · lim

n→∞
pb Sunl , Su∗
� ��

,

lim
n→∞

N2
S,R unl , u∗
� �

= lim
n→∞

pb Runl , Ru∗
� �

· max
pb Sunl , Runl
� �

, pb Su∗, Ru∗ð Þ,

pb Sunl , Ru∗
� �

+ pb Su∗, Runl
� �

2s

8><
>:

9>=
>; = 0:

ð70Þ

Consequently, (64) becomes pbðSu∗, Ru∗Þ · limn→∞½pbðSunl ,

Su∗Þ = 0 and the rest is just a verbatim repetition of the lines
in the previous proofs.

Corollary 17. Let ðM, pb, s ≥ 1Þ be a complete pb-ms and two
mappings R, S : M⟶M. Suppose that there exist κ ∈ ð0, 1Þ
and a > 0 such that

M2
S,R u, yð Þ ≤ κ ·N2

S,R u, yð Þ, ð71Þ

where

M2
S,R u, yð Þ = pb Su, Syð Þpb Sy, Ryð Þ − a · min bp Su, Ryð Þ, bp Sy, Ruð Þ� �

,

N2
S,R u, yð Þ = pb Ru, Ryð Þ · max pb Su, Ruð Þ, pb Sy, Ryð Þ, pb Su, Ryð Þ + pb Sy, Ruð Þ

2s

� 

,

ð72Þ

for every u, y ∈M, such that u ≠ y when u, y ∈ CcðR, SÞM . If S
ðMÞ ⊂ RðMÞ and ðRðMÞ, pb, sÞ is a 0-pb-complete pb-ms, then,
the mappings S and R have a point of coincidence.

Proof. Let βðu, yÞ = 1 in Theorem 16.

Theorem 18. Let ðM, pb, s ≥ 1Þ be a complete pb-ms and a
mapping S : M⟶M. Suppose that there exist κ ∈ ð0, 1Þ
and a > 0 such that

β u, yð ÞM2
S u, yð Þ ≤ κ ·N2

S u, yð Þ, ð73Þ

where

M2
S u, yð Þ = pb Su, Syð Þpb Sy, yð Þ − a · min bp Su, yð Þ, bp Sy, uð Þ� �

,

N2
S u, yð Þ = pb u, yð Þ · max pb Su, uð Þ, pb Sy, yð Þ, pb Su, yð Þ + pb Sy, uð Þ

2s

� 

,

ð74Þ

for every u, y ∈M: Suppose also that

(i) S is β-admissible, and there exists u0 ∈M such that
βðRu0, Su0Þ ≥ 1

(ii) M is β-regular

Then, the mapping S admits a fixed point.

Proof. Choose R = IM .

Corollary 19. Let ðM, pb, s ≥ 1Þ be a complete pb-ms and two
mappings R, S : M⟶M. Suppose that there exist κ ∈ ð0, 1Þ
and a > 0 such that

M2
S u, yð Þ ≤ κ ·N2

S u, yð Þ, ð75Þ

where
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M2
S u, yð ÞM2

S u, yð Þ = pb Su, Syð Þpb Sy, yð Þ − a · min bp Su, yð Þ, bp Sy, uð Þ� �
,

N2
S u, yð Þ = pb u, yð Þ · max pb Su, uð Þ, pb Sy, yð Þ, pb Su, yð Þ + pb Sy, uð Þ

2s

� 

,

ð76Þ

for every u, y ∈M: Then, the mapping S has a fixed point.
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The aim of the paper is twofold: we introduce new positive linear operators acting on continuous functions defined on a simplex
and then estimate differences involving them and/or other known operators. The estimates are given in terms of moduli of
smoothness and K-functionals. Several applications and examples illustrate the general results.

1. Introduction

Differences of positive linear operators were intensively
investigated in the last years; see [1–14] and the references
therein. The operators involved in these studies act usually
on continuous functions defined on real intervals, and the
differences are estimated in terms of moduli of smoothness
and K-functionals. In some papers, operators having equal
central moments up to a certain order are considered. Other
articles deal with operators constructed with the same funda-
mental functions and different functionals in front of them.

The study of differences of positive linear operators is
important from a theoretical point of view, but also from a
practical one. Let ðUnÞ and ðVnÞ be certain positive linear
operators. If we know that jUnð f Þ − Vnð f Þj is small, we can
choose ðUnÞ or ðVnÞ taking into account other qualities of
them like shape-preserving properties and smoothnes-
s/Lipschitz preserving properties.

This paper is concerned with differences of positive linear
operators acting on continuous functions defined on simpli-
ces. For the sake of simplicity, we consider only the case of
the canonical simplex in ℝ2, where the notation is simpler,
but the results can be easily translated to an arbitrary simplex
in ℝn.

We consider the bivariate versions of some classical oper-
ators like Bernstein, Durrmeyer, Kantorovich, and genuine
Bernstein-Durrmeyer operators. These bivariate versions

were already studied in literature from other points of view.
We introduce the bivariate versions of other operators: Uρ

n

(see [15, 16]) and the operators defined in [17]. All these
operators are constructed with the fundamental Bernstein
polynomials on the two-dimensional simplex. A different
kind of operator is the bivariate version of the univariate Beta
operator of Mühlbach and Lupas (see [18–20]); we introduce
it and use it in composition with the Bernstein operator to get
a useful representation of Uρ

n.
We get estimates of differences of the abovementioned

operators, in terms of suitable moduli of smoothness and K
-functionals.

To resume, the aim of our paper is twofold: we introduce
new operators on a simplex and then estimate differences
involving them and other known operators.

The list of applications and examples can be enlarged. In
particular, we will be interested for a future work in studying
differences of bivariate versions of operators, which preserve
exponential functions (see [21–23]). We also intend to
deepen the study of the newly introduced Beta operators on
the simplex and to consider the composition of it with other
operators, leading to new applications and-why not-new the-
oretical aspects/problems. Given a Markov operator (i.e., a
positive linear operator which preserves the constant func-
tions), the study of its iterate is important not only in
Approximation Theory but also in Ergodic Theory and other
areas of research. We intend to investigate from this point of
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view the newly introduced operators, which are in fact Mar-
kov operators.

We end this Introduction by presenting some notation
and a fundamental inequality expressed in Lemma 1. Section
2 contains the main theoretical results, while Section 3 is
devoted to applications and examples.

Let S≔ fðx, yÞ ∈ℝ2jx, y ≥ 0, x + y ≤ 1g be the canonical
simplex in ℝ2 and EðSÞ denote a space of real-valued contin-
uous functions of two variables defined on S, containing the
polynomials. Throughout the paper, we will denote by 1 the
constant function, namely,

1 : S⟶ℝ, 1 x, yð Þ = 1, x, yð Þ ∈ S, ð1Þ

and pri : S⟶ℝ, i = 1, 2, will denote the ith coordinate
functions restricted on S, which are given by

pr1 x, yð Þ = x and pr2 x, yð Þ = y, x, yð Þ ∈ S: ð2Þ

Let F : EðSÞ⟶ℝ be a positive linear functional such
that Fð1Þ = 1. Set

bF1 ≔ F pr1ð Þ, bF2 ≔ F pr2ð Þ,

μF
i,j ≔ F pr1 − bF1 1

� �i
pr2 − bF2 1
� �j

� �
, i, j ∈ℕ:

ð3Þ

Then, one has

μF
1,0 = 0, μF

2,0 = F pr21
� �

− bF1
� �2

≥ 0,

μF
0,1 = 0, μF

0,2 = F pr22
� �

− bF2
� �2

≥ 0:
ð4Þ

Let C2ðSÞ be the space of all real-valued (continuous)
functions, differentiable on int ðSÞ and whose partial deriva-
tives of order ≤2 can be continuously extended to S, having

fk k = sup f x, yð Þj j: x, yð Þ ∈ Sf g <∞: ð5Þ

Lemma 1. If f ∈ C2ðSÞ, then

F fð Þ − f bF1 , bF2
� ���� ��� ≤Mf μF

2,0 + μF
0,2

	 

,

whereMf ≔max f xxk k, f xy
��� ���, f yy

��� ���n o
:

ð6Þ

Proof. Consider the line segment connecting ðbF1 , bF2 Þ with ð
t1, t2Þ ∈ S. From Taylor’s formula (see [24], p.245), there is
a point ðc1, c2Þ on this line segment, different from ðbF1 , bF2 Þ

and ðt1, t2Þ, such that

f t1, t2ð Þ = f bF1 , bF2
� �

+ f x bF1 , bF2
� �

t1 − bF1
� �

+ f y bF1 , bF2
� �

t2 − bF2
� �

+ 1
2 f xx c1, c2ð Þ t1 − bF1

� �2�

+ 2f xy c1, c2ð Þ t1 − bF1
� �

t2 − bF2
� �

� + f yy c1, c2ð Þ t2 − bF2
� �2


:

ð7Þ

Therefore, we can write

f − f bF1 , bF2
� �

1 − f x bF1 , bF2
� �

pr1 − bF1 1
� ����

− f y bF1 , bF2
� �

pr2 − bF2 1
� �

j

≤
1
2 f xxk k pr1 − bF1 1

� �2
+ 2 f xy
��� ��� pr1 − bF1 1

� �����

� pr2 − bF2 1
� �

j + f yy
��� ��� pr2 − bF2 1

� �2


≤
1
2 f xxk k + f xy

��� ���� �
pr1 − bF1 1
� �2�

+ f xy
��� ��� + f yy

��� ���� �
pr2 − bF2 1
� �2


≤Mf pr1 − bF1 1
� �2

+ pr2 − bF2 1
� �2� �

,

ð8Þ

which gives the result.

2. Difference of Bivariate Positive
Linear Operators

Denote by CðSÞ the space of real-valued continuous func-
tions on S with the norm k f k = max

ðx,yÞ∈S
j f ðx, yÞj, f ∈ CðSÞ. Let

K be a set of nonnegative integers and for k, l ∈ K let pk,l ∈
CðSÞ, pk,l ≥ 0, satisfy ∑k,l∈Kpk,l = 1. Let Fk,l : EðSÞ⟶ℝ and
Gk,l : EðSÞ⟶ℝ, k, l ∈ K , be positive linear functionals such
that Fk,lð1Þ = 1 and Gk,lð1Þ = 1. Moreover, let DðSÞ be the
set of all f ∈ EðSÞ for which

〠
k,l∈K

Fk,l fð Þpk,l ∈ C Sð Þ,

〠
k,l∈K

Gk,l fð Þpk,l ∈ C Sð Þ:
ð9Þ

Now, consider the bivariate positive linear operators V
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and W acting from DðSÞ into CðSÞ defined, for f ∈DðSÞ, by

V fð Þ x, yð Þ = 〠
k,l∈K

Fk,l fð Þpk,l x, yð Þ,

W fð Þ x, yð Þ = 〠
k,l∈K

Gk,l fð Þpk,l x, yð Þ,
ð10Þ

respectively. For future correspondences, we denote

σ x, yð Þ≔ 〠
k,l∈K

μ
Fk,l
2,0 + μ

Gk,l
2,0 + μ

Fk,l
0,2 + μ

Gk,l
0,2

� �
pk,l x, yð Þ, ð11Þ

δ≔ sup
k,l∈K

b
Fk,l
1 , bFk,l

2
� �

− b
Gk,l
1 , bGk,l

2
� ���� ���, ð12Þ

where j·j is the l1-norm in ℝ2.
In the following, we adopt the definitions of K-functional

and modulus of smoothness from [25, 26]. Let

S hð Þ = x ∈ S x + ht ∈ Sj for 0 ≤ t ≤ 1f g, h ∈ℝ2: ð13Þ

For r ∈ℕ, rth order differences on the subset SðrhÞ are
defined as

Δr
h f xð Þ = 〠

r

k=0
−1ð Þr−k

r

k

 !
f x + khð Þ: ð14Þ

The rth order modulus of smoothness of f is a function
ωr : CðSÞ × ð0,∞Þ⟶ ½0,∞Þ given by

ωr f , αð Þ = sup
0< hj j≤α

Δr
h fk k, α > 0: ð15Þ

Let CrðSÞ be the space of all real-valued (continuous)
functions, differentiable on int ðSÞ and whose partial deriva-
tives of order ≤r can be continuously extended to S, with the
seminorm

gj jCr Sð Þ = 〠
γ1+γ2=r

∂rg
∂xγ1∂yγ2

����
���� <∞,γi ≥ 0, i = 1, 2, γ1 + γ2 = r:

ð16Þ

For f ∈ CðSÞ, we shall use the following K-functional:

Kr f , tð Þ = inf f − gk k + t gj jCr Sð Þ : g ∈ Cr Sð Þ
n o

: ð17Þ

Then, there exist c1, c2 > 0 such that for any t > 0 (see [25,
26])

c1Kr f , trð Þ ≤ ωr f , tð Þ ≤ c2Kr f , trð Þ: ð18Þ

Here, c2 depends only on r (for the general definition on
the Lp, 1 ≤ p ≤∞, spaces of functions on bounded domains,
see [25] or, on unbounded domains see [27], p.341.

Theorem 2. If f ∈DðSÞ ∩ C2ðSÞ, then

V −Wð Þ fð Þ x, yð Þj j ≤Mfσ x, yð Þ + ω1 f , δð Þ, ð19Þ

where Mf is defined in Lemma 1.

Proof. Let ðx, yÞ ∈ S. From Lemma 1, we get

V −Wð Þ fð Þ x, yð Þj j ≤ 〠
k,l∈K

Fk,l fð Þ −Gk,l fð Þ�� ��pk,l x, yð Þ

≤ 〠
k,l∈K

pk,l x, yð Þ Fk,l fð Þ − f b
Fk,l
1 , bFk,l

2
� ���� ���n

+ Gk,l fð Þ − f b
Gk,l
1 , bGk,l

2

� ���� ��� + f b
Fk,l
1 , bFk,l

2

� ����
− f b

Gk,l
1 , bGk,l

2

� �
jg ≤Mf 〠

k,l∈K
pk,l x, yð Þ μ

Fk,l
2,0 + μ

Fk,l
0,2 + μ

Gk,l
2,0 + μ

Gk,l
0,2

h i

+ ω1 f ; b
Fk,l
1 , bFk,l

2
� �

− b
Gk,l
1 , bGk,l

2
� ���� ���� �

≤Mfσ x, yð Þ + ω1 f , δð Þ:

ð20Þ

Theorem 3. If f ∈ CðSÞ, then

V −Wð Þ fð Þ x, yð Þj j ≤ η1ω1 f , δð Þ + η2ω2 f ,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ x, yð Þ

p� �
,

ð21Þ

where η1, η2 > 0, and δ = supk,l∈KfjbFk,l
1 − b

Gk,l
1 j + jbFk,l

2 − b
Gk,l
2 jg

:

Proof. Let g ∈ C2ðSÞ. From Theorem 2, we get

V −Wð Þ fð Þ x, yð Þj j ≤ V f − gð Þ x, yð Þj j + W g − fð Þ x, yð Þj j
+ V −Wð Þ gð Þ x, yð Þj j ≤ 2 f − gk k +Mgσ x, yð Þ
+ g b

Fk,l
1 , bFk,l

2
� �

− g b
Gk,l
1 , bGk,l

2
� ���� ���,

ð22Þ

where Mg is the same notation as in Lemma 1 for g. Since
partial derivatives of g exist and are continuous everywhere
in S, it follows that g is differentiable at every point of the line

segment connecting the points ðbFk,l1 , bFk,l
2 Þ and ðbGk,l

1 , bGk,l
2 Þ in

S, k, l ∈ K . By the mean value theorem (see, e.g., [24], p.
239), there is a point ða1, a2Þ on this line segment such that

g b
Fk,l
1 , bFk,l2

� �
− g b

Gk,l
1 , bGk,l

2
� �

= gx a1, a2ð Þ b
Fk,l
1 − b

Gk,l
1

� �
+ gy a1, a2ð Þ b

Fk,l
2 − b

Gk,l
2

� �
:

ð23Þ

From (16), we get

g b
Fk,l
1 , bFk,l

2
� �

− g b
Gk,l
1 , bGk,l

2
� ���� ��� ≤ gxk k b

Fk,l
1 − b

Gk,l
1

��� ���
+ gy
��� ��� b

Fk,l
2 − b

Gk,l
2

��� ��� ≤ gj jC1 Sð Þ sup
k,l∈K

b
Fk,l
1 − b

Gk,l
1

��� ���n
+ b

Fk,l
2 − b

Gk,l
2

��� ���g ≤ δ gj jC1 Sð Þ, k, l ∈ K:

ð24Þ
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Moreover, since Mg ≤ jgjC2ðSÞ, (22) gives that

V −Wð Þ fð Þ x, yð Þj j ≤ 2 f − gk k + δ gj jC1 Sð Þ
+ σ x, yð Þ gj jC2 Sð Þ ≤ K1 f , δð Þ + K2 f , σ x, yð Þð Þ:

ð25Þ

Finally, from (18), we obtain

V −Wð Þ fð Þ x, yð Þj j ≤ η1ω1 f , δð Þ + η2ω2 f ,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ x, yð Þ

p� �
:

ð26Þ

3. Applications

3.1. Difference of Bivariate Bernstein Operators and Their
Durrmeyer Variants. For every n ≥ 1,f ∈ CðSÞ, and ðx, yÞ ∈ S
, the nth bivariate Bernstein operator Bn : CðSÞ⟶ CðSÞ is
defined by

Bn fð Þ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

f
k
n
, l
n

� �
pn,k,l x, yð Þ, ð27Þ

where

pn,k,l x, yð Þ≔ n!
k!l! n − k − lð Þ! x

kyl 1 − x − yð Þn−k−l , ð28Þ

with k, l = 0,⋯, n, k + l ≤ n, ðx, yÞ ∈ S, (see, e.g., [28], p. 115).
For f ∈ L1ðSÞ, the bivariate Durrmeyer operators Mn

: L1ðSÞ⟶ CðSÞ are defined by

Mn fð Þ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

n + 1ð Þ n + 2ð Þ
ð1
0

ð1−s
0

pn,k,l s, tð Þ
�

� f s, tð Þdt ds
�
pn,k,l x, yð Þ,

ð29Þ

see, e.g., [29].
Now, denoting

Fn,k,l fð Þ≔ f
k
n
, l
n

� �
, 0 ≤ k + l ≤ n,

Gn,k,l fð Þ≔ n + 1ð Þ n + 2ð Þ
ð1
0

ð1−s
0

pn,k,l s, tð Þf s, tð Þdt ds,

ð30Þ

the bivariate Bernstein operators and bivariate Durrmeyer

operators can be written as

Bn fð Þ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

Fn,k,l fð Þpn,k,l x, yð Þ,

Mn fð Þ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

Gn,k,l fð Þpn,k,l x, yð Þ,
ð31Þ

respectively.

Proposition 4. For bivariate Bernstein operators and their
Durrmeyer variants, the following properties hold:

(i) If f ∈ C2ðSÞ, then

Bn −Mnð Þ fð Þ x, yð Þj j ≤Mfσ x, yð Þ + ω1 f , 3
n + 3

� �
, ð32Þ

where Mf is the same as in Lemma 1 and

σ x, yð Þ = −x2 − y2 + x + y
� �

n2 + x2 + y2 + 2
� �

n + 4

n + 3ð Þ2 n + 4ð Þ ≤
1

n + 4
:

ð33Þ

(ii) If f ∈ CðSÞ, then

Bn −Mnð Þ fð Þ x, yð Þj j ≤ η1ω1 f , 3
n + 3

� �
+ η2ω2 f ,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ x, yð Þ

p� �
:

ð34Þ

Proof. We need to evaluate the terms in (11). So, we get the
following results:

b
Fn,k,l
1 = k

n
, bFn,k,l2 = l

n
,

b
Gn,k,l
1 = k + 1

n + 3 , b
Gn,k,l
2 = l + 1

n + 3 ,
ð35Þ

0 ≤ k + l ≤ n. Therefore, we easily obtain that

μ
Fn,k,l
2,0 = 0, μGn,k,l

2,0 = k + 1ð Þ n + 2 − kð Þ
n + 3ð Þ2 n + 4ð Þ ,

μ
Fn,k,l
0,2 = 0, μGn,k,l

0,2 = l + 1ð Þ n + 2 − lð Þ
n + 3ð Þ2 n + 4ð Þ :

ð36Þ
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Using Maple, one obtains

σ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

k + 1ð Þ n + 2 − kð Þ
n + 3ð Þ2 n + 4ð Þ + l + 1ð Þ n + 2 − lð Þ

n + 3ð Þ2 n + 4ð Þ

" #

pn,k,l x, yð Þ = −x2 − y2 + x + y
� �

n2 + x2 + y2 + 2
� �

n + 4
n + 3ð Þ2 n + 4ð Þ :

ð37Þ

It is easy to verify that σðx, yÞ ≤ 1/ðn + 4Þ.
Now, for δ, we obtain

δ = max
0≤k+l≤n

b
Fn,k,l
1 − b

Gn,k,l
1

��� ��� + b
Fn,k,l
2 − b

Gn,k,l
2

��� ���n o
= max

0≤k+l≤n

n − 3k
n n + 3ð Þ
����

���� + n − 3l
n n + 3ð Þ
����

����
� 


= 3
n + 3 :

ð38Þ

The rest of the proof follows from Theorems 2 and 3.

3.2. Difference of Bivariate Bernstein Operators and the
Bivariate Operators An. Let Πn be the space of polynomials
over ½0, 1� of degree at most n. In [17], Aldaz et al. introduced
a Bernstein operator An : C½0, 1�⟶Πn that fixes 1 and x2.
The operators An are given by

An fð Þ xð Þ = 〠
n

k=0
f

k k − 1ð Þ
n n − 1ð Þ
� �1/2

 !
n

k

 !
xk 1 − xð Þn−k:

ð39Þ

Here, for f ∈ CðSÞ and ðx, yÞ ∈ S, we introduce the bivar-
iate form of the operators An as follows

An fð Þ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k k − 1ð Þ
n n − 1ð Þ

s
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l l − 1ð Þ
n n − 1ð Þ

s !
pn,k,l x, yð Þ:

ð40Þ

Denoting

Fn,k,l fð Þ = f
k
n
, l
n

� �
,Gn,k,l fð Þ

= f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k k − 1ð Þ
n n − 1ð Þ

s
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l l − 1ð Þ
n n − 1ð Þ

s !
,

ð41Þ

for k, l = 0,⋯, n, k + l ≤ n, we get

b
Fn,k,l
1 = k

n
, bFn,k,l2 = l

n
,

b
Gn,k,l
1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k k − 1ð Þ
n n − 1ð Þ

s
, bGn,k,l

2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l l − 1ð Þ
n n − 1ð Þ

s
,

μ
Fn,k,l
2,0 = μ

Fn,k,l
0,2 = μ

Gn,k,l
2,0 = μ

Gn,k,l
0,2 = 0,

δ = max
k,l=0,⋯,n
k+l≤n

b
Fn,k,l
1 − b

Gn,k,l
1

��� ��� + b
Fn,k,l
2 − b

Gn,k,l
2

��� ���n o
= 2
n
:

ð42Þ

Proposition 5. For bivariate Bernstein operators and bivari-
ate operators An, the following properties hold:

(i) If f ∈ C2ðSÞ, then

Bn − Anð Þ fð Þ x, yð Þj j ≤ ω1 f , 2
n

� �
: ð43Þ

(ii) If f ∈ CðSÞ, then

Bn − Anð Þ fð Þ x, yð Þj j ≤ η1ω1 f , 2
n

� �
: ð44Þ

3.3. Difference of Bivariate Bernstein Operators and Bivariate
Genuine Bernstein-Durrmeyer Operators. In 1987, Chen [30]
and Goodman and Sharma [31] constructed the following
positive linear operators

Un,1 fð Þ xð Þ = f 0ð Þpn,0 xð Þ + f 1ð Þpn,n xð Þ

+ 〠
n−1

k=1
pn,k xð Þ n − 1ð Þ

�
ð1
0
pn−2,k−1 tð Þf tð Þdt,

ð45Þ

where n ∈ℕ,f ∈ C½0, 1�, and

pn,k xð Þ =
n

k

 !
xk 1 − xð Þn−k, x ∈ 0, 1½ �, 0 ≤ k ≤ n: ð46Þ

For the historical background of these operators, we refer
to [32]. In 1991, Goodman and Sharma [33] constructed and
studied the multivariate form of the operators Un,1 on a sim-
plex. In [34], Sauer deeply studied the multivariate genuine
Bernstein-Durrmeyer operators. Here, for f ∈ L1ðSÞ, we
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consider the bivariate form given by

Un fð Þ x, yð Þ = f 0, 0ð Þ 1 − x − yð Þn + f 1, 0ð Þxn + f 0, 1ð Þyn

+ 〠
n−1

l=1
pn,0,l x, yð Þ n − 1ð Þ

ð1
0
pn−2,l−1 tð Þf 0, tð Þdt

+ 〠
n−1

k=1
pn,k,0 x, yð Þ n − 1ð Þ

ð1
0
pn−2,k−1 sð Þf s, 0ð Þds

+ 〠
n−1

k=1
pn,k,n−k x, yð Þ n − 1ð Þ

�
ð1
0
pn−2,k−1 tð Þf t, 1 − tð Þdt

+ 〠
k+l≤n−1
k≥1,l≥1

pn,k,l x, yð Þ n − 1ð Þ n − 2ð Þ

�
ð1
0

ð1−t
0

pn−3,k−1,l−1 s, tð Þf s, tð Þds dt

ð47Þ

with the bivariate Bernstein’s fundamental functions given by
(28) (see [33], Formula 1.7). These operators satisfy Unð f Þð
x, yÞ = f ðx, yÞ at the vertices of S.

Proposition 6. For bivariate Bernstein operators and bivari-
ate genuine Bernstein-Durrmeyer operators, the following
properties hold:

(i) If f ∈ C2ðSÞ, then

Bn −Unð Þ fð Þ x, yð Þj j ≤Mfσ x, yð Þ, ð48Þ

where Mf is the same as in Lemma 1 and

σ x, yð Þ = x + y − x2 − y2
� �

n − 1ð Þ
n n + 1ð Þ ≤

1
2 n + 1ð Þ : ð49Þ

(ii) If f ∈ CðSÞ, then

Bn −Unð Þ fð Þ x, yð Þj j ≤ η2ω2 f ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ x, yð Þ

p� �
: ð50Þ

Proof. If we denote

Fn,k,l fð Þ≔ f
k
n
, l
n

� �
, 0 ≤ k + l ≤ n,

Gn,0,0 fð Þ = f 0, 0ð Þ, k = l = 0,

Gn,n,0 fð Þ = f 1, 0ð Þ, k = n, l = 0,

Gn,0,n fð Þ = f 0, 1ð Þ, k = 0, l = n,

Gn,k,0 fð Þ = n − 1ð Þ
ð1
0
pn−2,k−1 sð Þf s, 0ð Þds, 1 ≤ k ≤ n − 1, l = 0,

Gn,0,l fð Þ = n − 1ð Þ
ð1
0
pn−2,l−1 tð Þf 0, tð Þdt, k = 0, 1 ≤ l ≤ n − 1,

Gn,k,n−k fð Þ = n − 1ð Þ
ð1
0
pn−2,k−1 tð Þf t, 1 − tð Þ

� dt, 1 ≤ k ≤ n − 1, l = n − k,

Gn,k,l fð Þ = n − 1ð Þ n − 2ð Þ
ð1
0

ð1−t
0

pn−3,k−1,l−1 s, tð Þf s, tð Þ
� ds dt, 1 ≤ k + l ≤ n − 1,

ð51Þ

then for the bivariate Bernstein operators, we have

Bn fð Þ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

Fn,k,l fð Þpn,k,l x, yð Þ:
ð52Þ

The bivariate genuine Bernstein-Durrmeyer operators
are given by

Un fð Þ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

Gn,k,l fð Þpn,k,l x, yð Þ:
ð53Þ

Now, for 0 ≤ k + l ≤ n, we get

b
Fn,k,l
1 = k

n
, bFn,k,l2 = l

n
, bGn,k,l

1 = k
n
, bGn,k,l

2 = l
n
: ð54Þ

Hence, we obtain

μ
Fn,k,l
2,0 = 0, μGn,k,l

2,0 = k n − kð Þ
n2 n + 1ð Þ ,

μ
Fn,k,l
0,2 = 0, μGn,k,l

0,2 = l n − lð Þ
n2 n + 1ð Þ :

ð55Þ

Therefore, δ = 0 and

σ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

k n − kð Þ
n2 n + 1ð Þ + l n − lð Þ

n2 n + 1ð Þ
� �

pn,k,l x, yð Þ

= x + y − x2 − y2
� �

n − 1ð Þ
n n + 1ð Þ , x, yð Þ ∈ S:

ð56Þ

The proof is concluded by using Theorems 2 and 3.
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4. The Difference Uρ
n −Ur

n

Let ρ > 0 and n ∈ℕ. The operators Uρ
n,1 : C½0, 1�⟶

Q
n are

introduced by Paltanea in [35] (see also [15, 16]). These oper-
ators are defined by

Uρ
n,1 f ; xð Þ≔ 〠

n−1

k=1

ð1
0

tkρ−1 1 − tð Þ n−kð Þρ−1

β kρ, n − kð Þρð Þ f tð Þdt
 !

� pn,k xð Þ + f 0ð Þ 1 − xð Þn + f 1ð Þxn,
ð57Þ

where f ∈ C½0, 1�, x ∈ ½0, 1�, and βð·, · Þ are Euler’s Beta
function.

Here, for f ∈ L1ðSÞ, we consider the bivariate form of
these operators, given by

Uρ
n f x, yð Þ = f 0, 0ð Þ 1 − x − yð Þn + f 1, 0ð Þxn + f 0, 1ð Þyn

+ 〠
n−1

l=1
Fρ
n,0,l fð Þpn,0,l x, yð Þ

+ 〠
n−1

k=1
Fρ
n,k,0 fð Þpn,k,0 x, yð Þ

+ 〠
n−1

k=1
Fρ
n,k,n−k fð Þpn,k,n−k x, yð Þ

+ 〠
k≥1,l≥1
k+l≤n−1,

Fρ
n,k,l fð Þpn,k,l x, yð Þ,

ð58Þ

where

Fρ
n,0,l fð Þ≔

Ð 1
0t

lρ−1 1 − tð Þ n−lð Þρ−1 f 0, tð Þdt
B lρ, n − lð Þρð Þ ,

Fρ
n,k,0 fð Þ≔

Ð 1
0s

kρ−1 1 − sð Þ n−kð Þρ−1 f s, 0ð Þds
B kρ, n − kð Þρð Þ ,

Fρ
n,k,n−k fð Þ≔

Ð 1
0t

kρ−1 1 − tð Þ n−kð Þρ−1 f t, 1 − tð Þdt
B kρ, n − kð Þρð Þ ,

Fρ
n,k,l fð Þ≔ ∬

S
skρ−1tlρ−1 1 − s − tð Þ n−k−lð Þρ−1 f s, tð Þdsdt
∬

S
skρ−1tlρ−1 1 − s − tð Þ n−k−lð Þρ−1dsdt

:

ð59Þ

It can be easily seen that, for ρ = 1, we obtain the genuine
Bernstein-Durrmeyer operatorsUn. On the other hand, these
operators have the following limiting behavior.

Theorem 7. For any f ∈ CðSÞ, one has lim
ρ⟶∞

Uρ
nð f Þ = Bnð f Þ,

uniformly:

Proof. Let f = prj1, j = 0, 1,⋯. Then,

Fρ
n,k,l pr j1
� �

= kρ + j − 1ð Þ⋯ kρð Þ
nρ + j − 1ð Þ⋯ nρð Þ , for k, l ≥ 1,

lim
ρ⟶∞

Fρ
n,k,l pr j1
� �

= k
n

� �j

= prj1
k
n
, l
n

� �
:

ð60Þ

Since

Fρ
n,0,l pr j1
� �

=
1, j = 0,

0, j > 0,

(
Fρ
n,k,0 prj1
� �

= Fρ
n,k,n−k prj1

� �

= kρ + j − 1ð Þ⋯ kρð Þ
nρ + j − 1ð Þ⋯ nρð Þ ,

ð61Þ

we get

lim
ρ⟶∞

Fρ
n,0,l pr j1
� �

= prj1 0, l
n

� �
, lim
ρ⟶∞

Fρ
n,k,0 prj1
� �

= k
n

� �j

= prj1
k
n
, 0

� �
,

lim
ρ⟶∞

Fρ
n,k,n−k prj1

� �
= k

n

� �j

= prj1
k
n
, n − k

n

� �
:

ð62Þ

Similar results can be obtained for prj2, j = 0, 1,⋯.
Using Korovkin’s theorem (see [36], p. 534, C.4.3.3), it

follows limρ⟶∞Fρ
n,μ,νð f Þ = f ðμ/n, ν/nÞ. Therefore,

lim
ρ⟶∞

Uρ
n fð Þ = Bn fð Þ, f ∈ C Sð Þ: ð63Þ

Proposition 8. For the bivariate operators Uρ
n, the following

properties hold:

(i) If f ∈ C2ðSÞ, then

Uρ
n −Ur

nð Þ fð Þ x, yð Þj j ≤Mfσ x, yð Þ, ð64Þ

where Mf is the same as in Lemma 1 and

σ x, yð Þ = nr + nρ + 2ð Þ x + y − x2 − y2
� �

n − 1ð Þ
n nρ + 1ð Þ nr + 1ð Þ : ð65Þ

(ii) If f ∈ CðSÞ, then

Uρ
n −Ur

nð Þ fð Þ x, yð Þj j ≤ η2ω2 f ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ x, yð Þ

p� �
: ð66Þ

Proof. Since b
Fρ
n,k,l

1 = k/n, bF
ρ
n,k,l

1 = l/n, we get

μ
Fρ
n,k,l

2,0 = k n − kð Þ
n2 nρ + 1ð Þ , μ

Fρ
n,k,l

0,2 = l n − lð Þ
n2 nρ + 1ð Þ : ð67Þ
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Therefore, δ = 0 and

σ x, yð Þ = nr + nρ + 2ð Þ x + y − x2 − y2
� �

n − 1ð Þ
n nρ + 1ð Þ nr + 1ð Þ : ð68Þ

5. Difference of Bivariate Bernstein Operators
and Their Kantorovich Variants

In 2017, F. Altomare et al. [37] introduced Kantorovich oper-
ators on S as follows

ℂn fð Þ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

pn,k,l x, yð Þ2∬S
f

k + as
n + a

, l + at
n + a

� �
dsdt,

ð69Þ

where pn,k,lðx, yÞ is given by (28). It can be easily seen that, for
a = 1, we obtain Kantorovich operators Kn introduced in
[38].

If we denote

Gk,l fð Þ≔ 2∬
S
f

k + as
n + a

, l + at
n + a

� �
dsdt, ð70Þ

the bivariate Kantorovich operators can be written as

ℂn fð Þ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

Gk,l fð Þpn,k,l x, yð Þ:
ð71Þ

Proposition 9. For bivariate Bernstein operators and bivari-
ate Bernstein-Kantorovich operators, the following properties
hold:

(i) If f ∈ C2ðSÞ, then

Bn −ℂnð Þ fð Þ x, yð Þj j ≤Mfσ x, yð Þ + ω1 f , 4a
3 n + að Þ

� �
, ð72Þ

where Mf is the same as in Lemma 1 and

σ x, yð Þ = a2

9 n + að Þ2 : ð73Þ

(ii) If f ∈ CðSÞ, then

Bn −ℂnð Þ fð Þ x, yð Þj j ≤ η1ω1 f , 4a
3 n + að Þ

� �
+ η2ω2 f ,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ x, yð Þ

p� �
:

ð74Þ

Proof. As in the previous examples, taking Bernstein opera-

tors as

Bn fð Þ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

Fk,l fð Þpn,k,l x, yð Þ,
ð75Þ

we get

b
Fk,l
1 = k

n
, bFk,l

2 = l
n
,

b
Gk,l
1 = 3k + a

3 n + að Þ , b
Gk,l
2 = 3l + a

3 n + að Þ :
ð76Þ

Therefore, we easily obtain that

μ
Fk,l
2,0 = 0, μGk,l

2,0 = a2

18 n + að Þ2 ,

μ
Fk,l
0,2 = 0, μGk,l

0,2 = a2

18 n + að Þ2 :
ð77Þ

Then

σ x, yð Þ = 〠
k,l=0,⋯,n
k+l≤n

a2

9 n + að Þ2 pn,k,l x, yð Þ = a2

9 n + að Þ2 :

ð78Þ

Moreover, we have

δ = max
0≤k+l≤n

b
Fk,l
1 − b

Gk,l
1

��� ��� + b
Fk,l
2 − b

Gk,l
2

��� ���n o
= max

0≤k+l≤n

a 3k − nj j
3n n + að Þ +

a 3l − nj j
3n n + að Þ

� 

≤

4a
3 n + að Þ :

ð79Þ

Then, the proof follows from Theorems 2 and 3.

6. A Beta Operator on CðSÞ
For ρ ∈ ð0,∞Þ, f ∈ CðSÞ, and ðx, yÞ ∈ S, let us define

Bρ fð Þ x, yð Þ =

f x, yð Þ, x, yð Þ ∈ 0, 0ð Þ, 1, 0ð Þ, 0, 1ð Þf g,Ð 1
0s

ρx−1 1 − sð Þρ 1−xð Þ−1 f s, 0ð Þds
B ρx, ρ 1 − xð Þð Þ , x ∈ 0, 1ð Þ, y = 0,

Ð 1
0t

ρy−1 1 − tð Þρ 1−yð Þ−1 f 0, tð Þdt
B ρy, ρ 1 − yð Þð Þ , x = 0, y ∈ 0, 1ð Þ,

Ð 1
0u

ρx−1 1 − uð Þρ 1−xð Þ−1 f u, 1 − uð Þdu
B ρx, ρ 1 − xð Þð Þ , y = 1 − x, x ∈ 0, 1ð Þ,

∬
S
sρx−1tρy−1 1 − s − tð Þρ−ρx−ρy−1 f s, tð Þdsdt
∬

S
sρx−1tρy−1 1 − s − tð Þρ−ρx−ρy−1dsdt

, x, yð Þ ∈ int Sð Þ:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð80Þ

For ρ = n ∈ℕ, this is the bivariate version of the operator
�Bn; see [39] and the references therein.
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Theorem 10. Bρ is a positive linear operator acting between
CðSÞ and CðSÞ. Moreover,

Bρ 1ð Þ = 1, ð81Þ

and if φi,jðx, yÞ = pri1pr
j
2ðx, yÞ, ðx, yÞ ∈ S, i ≥ 0, j ≥ 0, integers,

then

Bρ φi,j

� �
x, yð Þ = ρx ρx + 1ð Þ⋯ ρx + i − 1ð Þ

ρ ρ + 1ð Þ⋯ ρ + i − 1ð Þ
· ρy ρy + 1ð Þ⋯ ρy + j − 1ð Þ

ρ ρ + 1ð Þ⋯ ρ + j − 1ð Þ :

ð82Þ

Proof. It is easy to prove (81) and (82) by direct calculation. It
remains to prove that if f ∈ CðSÞ, then, Bρð f Þ ∈ CðSÞ. To do
this, it suffices to verify that Bρð f Þ is continuous at each
point of the boundary of S. Let us prove that if 0 < a < 1 then

lim
x,yð Þ⟶ a,0ð Þ
x,yð Þ∈int Sð Þ

Bρ fð Þ x, yð Þ =Bρ fð Þ a, 0ð Þ:
ð83Þ

Let V ða,0Þ : CðSÞ⟶ℝ, V ða,0ÞðgÞ =BρðgÞða, 0Þ. For ðx,
yÞ ∈ int ðSÞ define Uðx,yÞ : CðSÞ⟶ℝ, U ðx,yÞðgÞ =BρðgÞðx,
yÞ, g ∈ CðSÞ. Then, Uðx,yÞ and V ða,0Þ are positive linear func-
tionals of norm 1.

Let ε > 0. Then, there exists a polynomial function p on S
such that k f − pk∞ ≤ ε/4. Using (82), it is easy to verify that

lim
x,yð Þ⟶ a,0ð Þ
x,yð Þ∈int Sð Þ

U x,yð Þ pð Þ =V a,0ð Þ pð Þ:
ð84Þ

Consequently, there exists δ > 0 with

U x,yð Þ pð Þ − V a,0ð Þ pð Þ
��� ��� ≤ ε

2 , x, yð Þ − a, 0ð Þk k1 ≤ δ: ð85Þ

So, if kðx, yÞ − ða, 0Þk1 ≤ δ, we have

U x,yð Þ fð Þ −V a,0ð Þ fð Þ
��� ��� ≤ U x,yð Þ fð Þ −U x,yð Þ pð Þ

��� ���
+ U x,yð Þ pð Þ −V a,0ð Þ pð Þ
��� ��� + V a,0ð Þ pð Þ −V a,0ð Þ fð Þ

��� ���
≤ f − pk k∞ + ε

2 + p − fk k∞ ≤ ε:

ð86Þ

This shows that

lim
x,yð Þ⟶ a,0ð Þ
x,yð Þ∈int Sð Þ

U x,yð Þ fð Þ =V a,0ð Þ fð Þ, f ∈ C Sð Þ,
ð87Þ

and then (83) is proved.
The continuity of Bρð f Þ at the other boundary points

can be proved similarly.

Proposition 11. For each f ∈ CðSÞ, one has

lim
ρ⟶∞

Bρ fð Þ = f : ð88Þ

Proof. Using Theorem 10, it is easy to verify that (88) is valid
for the functions 1, pr1, pr2, pr21 + pr22. But these functions
form a Korovkin test system (see [36], p. 534, C.4.3.3), so that
(88) holds for each f ∈ CðSÞ.

In what follows, we formulate a

Conjecture 12. If f ∈ CðSÞ is convex and ðx, yÞ ∈ S, then, the
function ρ⟶Bρð f Þðx, yÞ is decreasing on ð0,∞Þ.

It is supported by the following facts.

(i) The unidimensional version of the conjecture is valid:
see [14, 40].

(ii) Bρ is a positive linear operator preserving the affine
functions; this implies

Bρ fð Þ ≥ f , f ∈ C Sð Þconvex: ð89Þ

Now, (88) combined with (89) support the conjecture.

(iii) The conjecture is valid for the functions prk1, prk2,
ð1 − pr1 − pr2Þk, k ∈ℕ

In the sequel, we present two results under the hypothesis
that the conjecture is true. To this end, let us introduce some
notation.

Let f ∈ C2ðSÞ and

m1 fð Þ≔min f xx x, yð Þ − f xy x, yð Þ
��� ���: x, yð Þ ∈ S

n o
,

m2 fð Þ≔min f yy x, yð Þ − f xy x, yð Þ
��� ���: x, yð Þ ∈ S

n o
,

M1 fð Þ≔max f xx x, yð Þ + f xy x, yð Þ
��� ���: x, yð Þ ∈ S

n o
,

M2 fð Þ≔max f yy x, yð Þ + f xy x, yð Þ
��� ���: x, yð Þ ∈ S

n o
:

ð90Þ

Then, the functions φðx, yÞ≔ f ðx, yÞ − 1/2m1ð f Þx2 − 1/2
m2ð f Þy2 and ψðx, yÞ≔ 1/2M1ð f Þx2 + 1/2M2ð f Þy2 − f ðx, yÞ
are convex on S; indeed, for each of them, the Hessian matrix
is positive semidefinite.

Theorem 13. If f ∈ C2ðSÞ and σ > ρ > 0, then

σ − ρ

2 σ + 1ð Þ ρ + 1ð Þ m1 fð Þx 1 − xð Þ +m2 fð Þy 1 − yð Þ½ �

≤Bρ fð Þ x, yð Þ −Bσ fð Þ x, yð Þ
≤

σ − ρ

2 σ + 1ð Þ ρ + 1ð Þ M1 fð Þx 1 − xð Þ +M2 fð Þy 1 − yð Þ½ �, x, yð Þ ∈ S:

ð91Þ
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Proof. Let σ > ρ > 0. If the Conjecture is true, we have Bρðφ
Þ ≥BσðφÞ and BρðψÞ ≥BσðψÞ. Thus

0 ≤Bρ φð Þ x, yð Þ −Bσ φð Þ x, yð Þ =Bρ fð Þ x, yð Þ

−Bσ fð Þ x, yð Þ + x
2m1 fð Þ ρ − σð Þ 1 − xð Þ

σ + 1ð Þ ρ + 1ð Þ
+ y
2m2 fð Þ ρ − σð Þ 1 − yð Þ

σ + 1ð Þ ρ + 1ð Þ :

ð92Þ

Consequently,

Bρ fð Þ x, yð Þ −Bσ fð Þ x, yð Þ
≥

σ − ρ

2 σ + 1ð Þ ρ + 1ð Þ m1 fð Þx 1 − xð Þ +m2 fð Þy 1 − yð Þ½ �: ð93Þ

Moreover,

0 ≤Bρ ψð Þ x, yð Þ −Bσ ψð Þ x, yð Þ = x
2M1 fð Þ σ − ρð Þ 1 − xð Þ

σ + 1ð Þ ρ + 1ð Þ
+ y
2M2 fð Þ σ − ρð Þ 1 − yð Þ

σ + 1ð Þ ρ + 1ð Þ −Bρ fð Þ x, yð Þ +Bσ fð Þ x, yð Þ:

ð94Þ

Now,

Bρ fð Þ x, yð Þ −Bσ fð Þ x, yð Þ
≤

σ − ρ

2 σ + 1ð Þ ρ + 1ð Þ M1 fð Þx 1 − xð Þ½

+M2 fð Þy 1 − yð Þ�:

ð95Þ

So, combining (93) and (95), we have proved the
theorem.

Theorem 14. If f ∈ C2ðSÞ and σ > ρ > 0, then

n − 1ð Þ σ − ρð Þ
2 nσ + 1ð Þ nρ + 1ð Þ m1 fð Þx 1 − xð Þ½

+m2 fð Þy 1 − yð Þ� ≤Uρ
n fð Þ x, yð Þ −Uσ

n fð Þ x, yð Þ
≤

n − 1ð Þ σ − ρð Þ
2 nσ + 1ð Þ nρ + 1ð Þ M1 fð Þx 1 − xð Þ½

+M2 fð Þy 1 − yð Þ�, x, yð Þ ∈ S:

ð96Þ

Proof. It is easy to verify that Uρ
n = Bn ∘Bnρ and, if u≔ pr21,

then

Bnρ uð Þ x, yð Þ = n − 1ð Þρx2 + ρ + 1ð Þx
nρ + 1 : ð97Þ

Using these facts and supposing that the conjecture is
true, we have

Uρ
n φð Þ ≥Uσ

n φð Þ andUρ
n ψð Þ ≥Uσ

n ψð Þ, σ > ρ > 0: ð98Þ

Now,

0 ≤Uρ
n φð Þ x, yð Þ −Uσ

n φð Þ x, yð Þ =Uρ
n fð Þ x, yð Þ

−Uσ
n fð Þ x, yð Þ − n − 1ð Þ σ − ρð Þ

2 nσ + 1ð Þ nρ + 1ð Þ x 1 − xð Þm1 fð Þ

−
n − 1ð Þ σ − ρð Þ

2 nσ + 1ð Þ nρ + 1ð Þ y 1 − yð Þm2 fð Þ:

ð99Þ

Thus,

Uρ
n fð Þ x, yð Þ −Uσ

n fð Þ x, yð Þ ≥ n − 1ð Þ σ − ρð Þ
2 nσ + 1ð Þ nρ + 1ð Þ m1 fð Þx 1 − xð Þ½

+m2 fð Þy 1 − yð Þ�:
ð100Þ

From Uρ
nðψÞ ≥Uσ

nðψÞ, we get a similar upper bound for
Uρ

nð f Þðx, yÞ −Uσ
nð f Þðx, yÞ, which concludes the proof.
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In this article, our main purpose is to define the ðp, qÞ-variant of Szász-Durrmeyer type operators with the help of Dunkl
generalization generated by an exponential function. We estimate moments and establish some direct results of the
aforementioned operators. Moreover, we establish some approximation results in weighted spaces.

1. Introduction and Preliminaries

The well-known Bernstein operators [1] and the q-Bernstein
operators have become very important tools in the study of
approximation theory and several branches of applied sciences
and engineering [2, 3]. A good approach to introduce the
ðp, qÞ-analogues in approximation theory is given by
Mursaleen et al. [4] by an idea of newly introduced integers
known asðp, qÞ-integers and which is ½α�p,q = ðpα − qα/p − qÞ,
α = 0, 1, 2,⋯, q ∈ ð0, pÞ and p ∈ ðq, 1�. In ðp, qÞ-calculus, there
are generally two types of exponential functions which are
defined as follows:

ep,q yð Þ = 〠
∞

ℏ=0
p ℏ ℏ−1ð Þ/2ð Þ yℏ

ℏ½ �p,q!
,

Ep,q yð Þ = 〠
∞

ℏ=0
q ℏ ℏ−1ð Þ/2ð Þ yℏ

ℏ½ �p,q!
:

ð1Þ

In 1950, Szász [5] defined positive linear operators on
½0,∞Þ, and the Dunkl modification of these operators were
given by Sucu [6] who was motivated by the work of
Cheikh et al. [7]. The new generalization of these Szász
operators [6] in quantum calculus (via q-analogue) was

introduced in [8] by Içöz and Çekim. Very recent work
on the quantum Dunkl analogue in postquantum calculus
studied in [9] for a set of all continuous functionsf defined
on½0,∞Þdenote it asf ∈ C½0,∞Þ; for parameterλ > −ð1/2Þ,
they designed the following operators:

Dα,p,q f ; yð Þ = 1
eλ,p,q α½ �p,qy

� �〠∞
ℏ=0

α½ �p,qy
� �ℏ
γλ,p,q ℏð Þ p ℏ ℏ−1ð Þ/2ð Þ f

� pℏ+2λθℏ − qℏ+2λθℏ

pℏ−1 pα − qαð Þ
� �

:

ð2Þ

Lemma 1. For f ðtÞ = 1, t, t2, we have

Dα,p,q 1 ; yð Þ = 1,
Dα,p,q t ; yð Þ = y,

y2 + q2λ

α½ �p,q
1 − 2λ½ �p,q

eλ,p,q q/pð Þ α½ �p,qy
� �

eλ,p,q α½ �p,qy
� � y ≦Dα,p,q t2 ; y

� �
≦ y2 + 1

α½ �p,q
1 + 2λ½ �p,qy:

ð3Þ
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Moreover, for every λ > −ð1/2Þ and 0 < q < p ≦ 1, where
exponential functions and recursion relations are given by

For ℏ = 0, 1, 2,⋯n, the number ½ℏ/2� denotes the greatest
integer functions.

The q-analogues of Szász operators on the Dunkl type
have been studied by several authors in [10–12] and for post-
quantum calculus in [9, 13–15]. We also refer some useful
research articles on these topic (see [16–33]). Some conver-
gence properties of operators through summability tech-
niques can be examined in [34–39].

2. New Operators and Estimations of Moments

Here, with the motivational work of [9, 28], we design a
different version of theðp, qÞ-Szász-Durrmeyer operators
compared to the previous one, and we define it by ((9)). To
obtain a generalized version of the approximation in Dunkl
form generally, we take positive sequences p = pα and q = qα
for every 0 < qα < 1 and qα < pα ≦ 1, and also satisfy the
following results:

lim
α⟶∞

pα ⟶ 1,

lim
α⟶∞

qα ⟶ 1,

lim
α⟶∞

pαα ⟶m,

lim
α⟶∞

qαα ⟶ n,

ð8Þ

where the numbers m and n belong to ð0, 1�.

Definition 2. Let 0 < q < p ≦ 1, λ > −ð1/2Þ and θℏ be defined
by (7). Then, for every f ∈ C½0,∞Þ and y ∈ ½0,∞Þ, we have

Sλ
α,p,q f ; yð Þ = 〠

∞

ℏ=0
Rα,p,q yð Þ 1

ℏ + 2λθℏ½ �p,q!
ð∞
0
Sα,p,q tð Þf pℏ+2λθℏ t

pℏ−1

� �
dp,qt,

ð9Þ

where

Rα,p,q yð Þ =
α½ �p,q

eλ,p,q α½ �p,qy
� � α½ �p,qy

� �ℏ
γλ,p,q ℏð Þ p ℏ ℏ−1ð Þ/2ð Þ,

Sα,p,q tð Þ = p ℏ+2λθℏð Þ ℏ+2λθℏ−1ð Þ/2ð Þ α½ �p,qt
� �ℏ+2λθℏ

Ep,q −q α½ �p,qt
� �

:

ð10Þ

α ∈ℕ and ζ > α. Moreover, for all α ∈ℕ, the gamma
functions in the postquantum calculus are defined as follows:

Γp,q αð Þ =
ð∞
0
p α−1ð Þ α−2ð Þ/2ð Þtα−1Ep,q −qtð Þdp,qt, ð11Þ

and

Γp,q α + 1ð Þ =
p ⊖ qð Þαp,q
p − qð Þα = α½ �p,q α − 1½ �p,qΓp,q α − 1ð Þ = α½ �p,q!:

ð12Þ

Note that

ℏ + 1 + 2λθℏ½ �p,q = q ℏ + 2λθℏ½ �p,q + pℏ+2λθℏ , ð13Þ

ℏ + 2 + 2λθℏ½ �p,q = q2 ℏ + 2λθℏ½ �p,q + p + qð Þpℏ+2λθℏ : ð14Þ
For more detailed properties of the ðp, qÞ-analogue of the

beta and gamma functions, see [40, 41].

Lemma 3. For the operators in (9), we have Sλ
α,p,qð1 ; yÞ = 1:

Sλ
α,p,q f ; yð Þ ≦

y + 1
α½ �p,q

, for f tð Þ = t,

y2 + 1
α½ �p,q

1 + 2½ �p,q + 1 + 2λ½ �p,q
� �

y +
2½ �p,q
α½ �2p,q

, for f tð Þ = t2,

8>>>><
>>>>:

ð15Þ

and

eλ,p,q yð Þ = 〠
∞

ℏ=0
p ℏ ℏ−1ð Þ/2ð Þ yℏ

γλ,p,q ℏð Þ , ð4Þ

γλ,p,q ℏð Þ =
Q ℏ+1ð Þ/2½ �−1

i=0 p2λ −1ð Þi+1+1 p2
� �ip2λ+1 − q2

� �iq2λ+1� �Q ℏ/2½ �−1
j=0 p2λ −1ð Þ j+1 p2

� �jp2 − q2
� �jq2� �

p − qð Þℏ
, ð5Þ

γλ,p,q ℏ + 1ð Þ = p2λ −1ð Þℓ+1+1 p2λθℏ+1+ℏ+1 − q2λθℏ+1+ℏ+1
� �

p − qð Þ γλ,p,q ℏð Þ, ð6Þ

θℏ =
0, for ℏ = 0, 2, 4,⋯,
1, for ℏ = ,1, 3, 5,⋯:

(
ð7Þ
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Proof. We prove this Lemma by using the results obtained in
(11), (12), (13), and (14). Therefore, for f ðtÞ = 1, we easily
see that

Sλ
α,p,q 1 ; yð Þ = 〠

∞

ℏ=0
Rα,p,q yð Þ 1

ℏ + 2λθℏ½ �p,q!
ð∞
0
Sα,p,q tð Þdp,qt

= 〠
∞

ℏ=0
Rα,p,q yð Þ 1

α½ �p,q ℏ + 2λθℏ½ �p,q!
Γp,q ℏ + 2λθℏ + 1ð Þ

= 1:
ð17Þ

Take f ðtÞ = t. Then, we have

Sλ
α,p,q t ; yð Þ = 〠

∞

ℏ=0
Rα,p,q yð Þ pℏ+2λθℏ

pℏ−1 α½ �p,q ℏ + 2λθℏ½ �p,q!

×
ð∞
0
p ℏ+2λθℏð Þ ℏ+2λθℏ−1ð Þ/2ð Þ α½ �p,qt

� �ℏ+2λθℏ+1
Ep,q −q α½ �p,qt
� �

dp,qt

= 1
α½ �2p,q

〠
∞

ℏ=0
Rα,p,q yð Þ 1

pℏ−1 ℏ + 2λθℏ½ �p,q!

×
ð∞
0
p ℏ+2λθℏð Þ ℏ+2λθℏ+1ð Þ/2ð Þtℏ+2λθℏ+1Ep,q −qtð Þdp,qt

= 1
α½ �2p,q

〠
∞

ℏ=0
Rα,p,q yð Þ 1

pℏ−1 ℏ + 2λθℏ½ �p,q!
Γp,q ℏ + 2λθℏ + 2ð Þ

= 1
α½ �2p,q

〠
∞

ℏ=0
Rα,p,q yð Þ 1

pℏ−1
ℏ + 2λθℏ + 1½ �p,q

= 1
α½ �2p,q

〠
∞

ℏ=0
Rα,p,q yð Þ q ℏ + 2λθℏ½ �p,q + pℏ+2λθℏ

� �
p1−ℏ

= q

eλ,p,q α½ �p,qy
� �〠∞

ℏ=0

α½ �p,qy
� �ℏ
γλ,p,q ℏð Þ p ℏ ℏ−1ð Þ/2ð Þ pℏ+2λθℏ − qℏ+2λθℏ

pℏ−1 pα − qαð Þ
� �

+ 1
α½ �p,qeλ,p,q α½ �p,qy

� �〠∞
ℏ=0

α½ �p,qy
� �ℏ
γλ,p,q ℏð Þ p ℏ ℏ−1ð Þ/2ð Þp2λθℏ+1

= qDα,p,q t ; yð Þ + p

α½ �p,qeλ,p,q α½ �p,qy
� �〠∞

ℏ=0

α½ �p,qy
� �2ℏ
γλ,p,q 2ℏð Þ p 2ℏ 2ℏ−1ð Þ/2ð Þp2λθ2ℏ

+ p

α½ �p,qeλ,p,q α½ �p,qy
� �〠∞

ℏ=0

α½ �p,qy
� �2ℏ+1
γλ,p,q 2ℏ + 1ð Þ p

2ℏ 2ℏ+1ð Þ/2ð Þp2λθ2ℏ+1

≧ qy + p2λ+1

α½ �p,qeλ,p,q α½ �p,qy
� �〠∞

ℏ=0

α½ �p,qy
� �ℏ
γλ,p,q ℏð Þ p ℏ ℏ−1ð Þ/2ð Þ

= qy + p2λ+1

α½ �p,q
:

ð18Þ

Similarly,

Sλ
α,p,q t ; yð Þ ≦ y + 1

α½ �p,q
: ð19Þ

If f ðtÞ = t2, then

Sλ
α,p,q t2 ; y
� �

= 〠
∞

ℏ=0
Rα,p,q yð Þ pℏ+2λθℏ

pℏ−1 α½ �2p,q ℏ + 2λθℏ½ �p,q!

×
ð∞
0
p ℏ+2λθℏð Þ ℏ+2λθℏ−1ð Þ/2ð Þ α½ �p,qt

� �ℏ+2λθℏ+2
Ep,q −q α½ �p,qt
� �

dp,qt

= 1
p α½ �3p,q

〠
∞

ℏ=0
Rα,p,q yð Þ 1

p2ℏ−2 ℏ + 2λθℏ½ �p,q!
Γp,q ℏ + 2λθℏ + 3ð Þ

= 1
p α½ �3p,q

〠
∞

ℏ=0
Rα,p,q yð Þ 1

p2ℏ−2
1 + ℏ + 2λθℏ½ �p,q 2 + ℏ + 2λθℏ½ �p,q

= q3

p α½ �3p,q
〠
∞

ℏ=0
Rα,p,q yð Þp2−2ℏ ℏ + 2λθℏ½ �2p,q

+ q p + 2qð Þ
p α½ �3p,q

〠
∞

ℏ=0
Rα,p,q yð Þp2−ℏ+2λθℏ ℏ + 2λθℏ½ �p,q

+ p + qð Þ
p α½ �3p,q

〠
∞

ℏ=0
Rα,p,q yð Þp2+4λθℏ

= q3

peλ,p,q α½ �p,qy
� �〠∞

ℏ=0

α½ �p,qy
� �ℏ
γλ,p,q ℏð Þ p ℏ ℏ−1ð Þ/2ð Þ

� pℏ+2λθℏ − qℏ+2λθℏ

pℏ−1 pα − qαð Þ
� �2

+ q p + 2qð Þ
p α½ �p,q

〠
∞

ℏ=0

α½ �p,qy
� �ℏ
γλ,p,q ℏð Þ p ℏ ℏ−1ð Þ/2ð Þp1+2λθℏ

� pℏ+2λθℏ − qℏ+2λθℏ

pℏ−1 pα − qαð Þ
� �

+ p + qð Þ
p α½ �2p,q

〠
∞

ℏ=0

α½ �p,qy
� �ℏ
γλ,p,q ℏð Þ p ℏ ℏ−1ð Þ/2ð Þp2+2λθℏ :

ð20Þ

We apply the results θℏ defined by (7) and separate it into
even and odd terms, i.e., take ℏ = 2m and ℏ = 2m + 1 for allm
= 0, 1, 2,⋯, and applying (2) and Lemma 1, we easily see that

Sλ
α,p,q t2 ; y
� �

≧ q3Dα,p,q t2 ; y
� �

+ q p + 2qð Þp2λ
α½ �p,q

Dα,p,q t ; yð Þ

+ p + qð Þp2λ+1
α½ �2p,q

Dα,p,q 1 ; yð Þ,

ð21Þ

and

Sλ
α,p,q f ; yð Þ ≧

qy + p1+2λ

α½ �p,q
, for f tð Þ = t,

q
α½ �p,q α − 2½ �p,q

q2+2λ 1 − 2λ½ �p,q
eλ,p,q q/pð Þ α½ �p,qy

� �
eλ,p,q α½ �p,qy

� � + q + 2½ �p,q
� �

p2λ

0
@

1
Ay + q3y2, for f tð Þ = t2,

8>>>>>><
>>>>>>:

ð16Þ
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Sλ
α,p,q t2 ; y
� �

≦Dα,p,q t2 ; y
� �

+
1 + 2½ �p,q
� �

α½ �p,q
Dα,p,q t ; yð Þ

+
2½ �p,q
α½ �2p,q

Dα,p,q 1 ; yð Þ:

ð22Þ

These conclusions complete the proof of Lemma 3.

Lemma 4. Let Δl = ðt − yÞl, for l = 1, 2; then, we have

Sλ
α,p,q Δl ; yð Þ ≦

1
α½ �p,q

, for l = 1,

1
α½ �p,q

2½ �p,q + 1 + 2λ½ �p,q − 1
� �

y +
2½ �p,q
α½ �2p,q

, for l = 2:

8>>>><
>>>>:

ð23Þ

3. Approximation in Weighted Spaces

To obtain the approximation in weighted Korovkin spaces,
we take the weight function σðyÞ = 1 + y2 and on ½0,∞Þ
consider BσðyÞ, CσðyÞ, and Ck

σðyÞ such that

Bσ yð Þ = f : f yð Þj j ≦Mf 1 + y2
� �� 	

, ð24Þ

whereMf depends on f ,

Cσ yð Þ = f : f ∈ C 0,∞½ Þ ∩ Bσ yð Þ
n o

,

Ck
σ yð Þ = f : f ∈ Cσ yð Þ and lim

y→∞

f yð Þ
1 + y2

= k

 �

,
ð25Þ

where k is a constant, C½0,∞Þ is the set of continuous
functions on ½0,∞Þ, CB½0,∞Þ is the set of all bounded and
continuous functions on ½0,∞Þ equipped with the norm
k f kCB

= supy∈0,∞Þj f ðyÞj, and on σðyÞ, a norm is given by

k f kσðyÞ = supy∈½0,∞Þðj f ðyÞj/1 + y2Þ.

Theorem 5. Let qα ∈ ð0, 1Þ, pα ∈ ðqα, 1�, and ΩðyÞ = f f ðyÞ: y
∈ ½0,∞Þ and ð½0,∞Þ/1 + y2Þ is convergent as y⟶∞g. Then,
for each f ∈ΩðyÞ ∩ C½0,∞Þ, the sequence fSλ

α,pα ,qαgα≧1 con-

verges uniformly to f on each compact subset of ½0,∞Þ if
and only if limα⟶∞qα = 1 and limα⟶∞pα = 1.

Proof. Since the operators Sλ
α,pα ,qα defined by (9) are positive

and linear on ½0,∞Þ, if limα→∞qα ⟶ 1 and limα→∞pα ⟶
1, then ð1/½α�pα ,qαÞ⟶ 0. Therefore, fromKorovkin’s theorem

for every f ∈ C½0,∞Þ ∩ΩðyÞ, the operators Sλ
α,pα ,qαð f ; yÞ

converge uniformly to f ðyÞ as α⟶∞ if and only if

Sλ
α,pα ,qα ti ; y

� �
⟶ yi, i = 1, 2: ð26Þ

In another way for all f ∈ C½0,∞Þ ∩ΩðyÞ, if we assume

Sλ
α,pα ,qαð f ; yÞ converges uniformly to f ðyÞ, when α

approaches to ∞, then clearly qα ⟶ 1 and pα ⟶ 1. Sup-
pose in the case where the sequences ðqαÞ and ðpαÞ do not
converge to 1 and ½α�pα ,qα ⟶ ð1/p − qÞ as α⟶∞. Thus,
from Lemma 3, we have

Sλ
α,pα ,qα t ; yð Þ⟶ y + p − qð Þ↛y, ð27Þ

and

Sλ
α,pα ,qα t2 ; y

� �
⟶ y2 + p − qð Þ 2½ �p,q + 2λ + 1½ �p,q + 1

� �
y + p − qð Þ2 2½ �p,q↛y2,

ð28Þ

which leads to contradiction, and hence, qα ⟶ 1 and pα
⟶ 1 as α⟶∞.

Theorem 6. Let the sequences of positive numbers 0 < qα < 1
and qα < pα ≦ 1 satisfy qα ⟶ 1 and pα ⟶ 1 as α approaches
to ∞. Then, for every f ∈ Ck

σðyÞ on ½0,∞Þ, we have

lim
α→∞

Sλ
α,pα ,qα f ; yð Þ − f

��� ���
σ yð Þ

= 0: ð29Þ

Proof. Take f ðtÞ = ti for i = 0, 1, 2. Since by Theorem 5,
Sλ

α,pα ,qαðti ; yÞ converges to yi uniformly for i = 0, 1, 2, from
Lemma 3, we conclude that

lim
α→∞

Sλ
α,pα ,qα 1 ; yð Þ − 1

��� ���
σ yð Þ

= 0: ð30Þ

If f ðtÞ = t,

Sλ
α,pα ,qα t ; yð Þ − y

��� ���
σ yð Þ

= sup
y≧0

Sλ
α,pα ,qα t ; yð Þ − y




 



1 + y2

≦
1

α½ �pα ,qα
sup
y≧0

1
1 + y

:

ð31Þ

Then, we have

lim
α→∞

Sλ
α,pα ,qα t ; yð Þ − y

��� ���
σ yð Þ

= 0: ð32Þ

Similarly, if we take i = 2, we have

Sλ
α,pα ,qα t2 ; y

� �
− y2

��� ���
σ yð Þ

= sup
y≧0

Sλ
α,pα ,qα t2 ; y

� �
− y2




 



1 + y2

≦
1

α½ �pα ,qα
2½ �pα ,qα + 2λ + 1½ �pα ,qα + 1

� �
sup
y≧0

y
1 + y2

+
2½ �pα ,qα
α½ �2pα ,qα

sup
y≧0

1
1 + y2

,

ð33Þ
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which implies that

lim
α→∞

Sλ
α,pα ,qα t2 ; y

� �
− y2

��� ���
σ yð Þ

= 0: ð34Þ

These explanations complete the proof of Theorem 6.

Let the modulus of the continuity of f for any δ > 0 and
ρ > 0 be defined as follows:

ωρ f ; δð Þ = sup
t−yj jδ

sup
y,t∈ 0,ρ½ �

f tð Þ − f yð Þj j, ð35Þ

where it is obvious that limδ→0+ωρð f ; δÞ = 0 and for f ∈
C½0,∞Þ

f tð Þ − f yð Þj j ≦ 1 + t − yj j
δ

� �
ωρ f ; δð Þ: ð36Þ

Theorem 7. Take the numbers q = qα, p = pα with the posi-
tive sequences qα ∈ ð0, 1Þ, pα ∈ ðqα, 1� satisfying qα ⟶ 1 and
pα ⟶ 1 as α⟶∞. Let ωρð f ; δÞ be defined on the inter-

val ½0, ρ + 1� ⊂ ½0,∞Þ for ρ > 0. Then, for every f ∈ Ck
σðyÞ on

½0,∞Þ, we have

Sλ
α,p,q f ; yð Þ − f yð Þ




 


 ≦ 6Mf 1 + ρ2
� �

δα yð Þ + 2ωρ+1 f ;
ffiffiffiffiffiffiffiffiffiffiffi
δα yð Þ

p� �
,

ð37Þ

where Mf is a constant depending only on f .

Proof. Let y ∈ ½0, ρ� and t ≦ ρ + 1 for ρ > 0: Then, clearly
one has

f tð Þ − f yð Þj j ≦ 6C f 1 + ρ2
� �

t − yð Þ2: ð38Þ

Also, when y ∈ ½0, ρ� and t > ρ + 1 for ρ > 0, then for a
given δ > 0

f tð Þ − f yð Þj j ≦ ωρ+1 f ; t − yj jð Þ ≦ t − yj j
δ

+ 1
� �

ωρ+1 f ; δð Þ:

ð39Þ

From (38) and (39), we easily see that

f tð Þ − f yð Þj j ≦ 6C f 1 + ρ2
� �

t − yð Þ2 + 1 + t − yj j
δ

� �
ωρ+1 f ; δð Þ,

ð40Þ

which implies that

Sλ
α,pα ,qα f tð Þ − f yð Þj j ; yð Þ
≦ 6C f 1 + ρ2

� �
Sλ

α,pα ,qα Δ2 ; yð Þ

+ Sλ
α,pα ,qα 1 + t − yj j

δ
; y

� �
ωρ+1 f ; δð Þ:

ð41Þ

The Cauchy-Schwartz inequality gives us

Sλ
α,pα ,qα t − yj j ; yð Þ ≦ Sλ

α,pα ,qα t − yð Þ2 ; y� � 1/2ð Þ
: ð42Þ

From an easy calculation, this leads us to

Sλ
α,pα ,qα f ; yð Þ − f yð Þ




 


 ≦ Sλ
α,pα ,qα f tð Þ − f yð Þj j ; yð Þ: ð43Þ

Therefore, in view of (41)–(43), clearly we get

Sλ
α,pα ,qα f ; yð Þ − f yð Þ




 



≦ 6C f 1 + ρ2

� �
Sλ

α,pα ,qα Δ2 ; yð Þ

+ 1 + 1
δ
Sλ

α,pα ,qα Δ2 ; yð Þ 1/2ð Þ
� �

ωρ+1 f ; δð Þ:
ð44Þ

Finally, if we take δ = ðδαðyÞÞð1/2Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sλ

α,p,qðΔ2 ; yÞ
q

,

then we use a denumerable to get the result.

4. Pointwise Approximation

In an approximation process for measuring the smoothness
of a continuous function, we need Peetre’s K-functional
[42] defined as follows.

Definition 8. Letf ∈ C½0,∞Þ, and for a givenδ > 0of theK
-functional, we have

K2 f ; δð Þ = inf
y∈ 0,∞½ Þ

δ ψ″
�� ��

CB 0,∞½ Þ + f − ψk kCB 0,∞½ Þ
� �

: ψ ∈ C2
B 0,∞½ Þ

n o
:

ð45Þ

Now, from [43], there exists a positive constant C

such that

K2 f ; δð Þ ≦C min 1, δð Þ fk kCB 0,∞½ Þ + ω2 f ;
ffiffiffi
δ

p� �n o
, ð46Þ

where the modulus of continuity of order two is given by

ω2 f ; δð Þ = sup
0<h<δ

sup
y∈ 0,∞½ Þ

f y + 2hð Þ − 2f y + hð Þ + f yð Þj j: ð47Þ

Moreover, the classical modulus of continuity is given by

ω f ; δð Þ = sup
0<h<δ

sup
y∈ 0,∞½ Þ

f y + hð Þ − f yð Þj j: ð48Þ

Theorem 9. Suppose qα and pα are the sequences of positive
numbers satisfying qα ∈ ð0, 1Þ, pα ∈ ðqα, 1� such that qα ⟶ 1,
pα ⟶ 1 as α⟶∞. Let us define an auxiliary operator such
that T λ

α,p,qð f ; yÞ = Sλ
α,p,qð f ; yÞ + f ðyÞ − f ðð½α�p,qy + 1Þ/½α�p,qÞ.

Then, for every ψ ∈ C2
B½0,∞Þ, we have

T λ
α,pα ,qα ψ ; yð Þ − ψ yð Þ




 


 ≦Θα yð Þ ψ″
�� ��, ð49Þ
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whereΘαðyÞ = δαðyÞ + ðð½α�pα ,qαy + 1Þ/½α�pα ,qα − yÞ2, and δαðyÞ
is defined in Theorem 7.

Proof. Let ψ ∈ C2
B½0,∞Þ: We easily get T λ

α,pα ,qαð1 ; yÞ = 1 and

T λ
α,pα ,qα t ; yð Þ = Sλ

α,pα ,qα t ; yð Þ + y −
α½ �pα ,qαy + 1
α½ �pα ,qα

= y, ð50Þ

where we easily know that

Sλ
α,pα ,qα f ; yð Þ

��� ��� ≦ fk k: ð51Þ

Therefore,

T λ
α,pα ,qα f ; yð Þ




 


 ≦ Sλ
α,pα ,qα f ; yð Þ + f yð Þ − f

α½ �pα ,qαy + 1
α½ �pα ,qα

 !










 ≦ 3 fk k:

ð52Þ

In view of the Taylor series expansion, we have

ψ tð Þ = ψ yð Þ + t − yð Þψ′ yð Þ +
ðt
y
t − xð Þψ″ xð Þdx: ð53Þ

On operating T λ
α,pα ,qα , we conclude that

T λ
α,pα ,qα ψ ; yð Þ − ψ yð Þ = ψ′ yð ÞT λ

α,pα ,qα t − y ; yð Þ

+T λ
α,pα ,qα

ðt
y
t − xð Þψ″ xð Þdx ; y

 !

=T λ
α,pα ,qα

ðt
y
t − xð Þψ″ xð Þdx ; y

 !

= Sλ
α,pα ,qα

ðt
y
t − xð Þψ″ xð Þdx ; y

 !
−
ð α½ �pα ,qα y+1ð Þ/ α½ �pα ,qαð Þ
y

�
α½ �pα ,qαy + 1
α½ �pα ,qα

− α

 !
ψ″ xð Þdx T λ

α,pα ,qα ψ ; yð Þ − ψ yð Þ



 




≦ Sλ
α,pα ,qα

ðt
y
t − xð Þψ″ xð Þdx ; y

 !












+
ð α½ �pα ,qα y+1ð Þ/ α½ �pα ,qαð Þ
y

α½ �pα ,qαy + 1
α½ �pα ,qα

− x

 !
ψ″ xð Þdx












:

ð54Þ

Since we know that

ðt
y
t − xð Þψ″ xð Þdx












 ≦ t − yð Þ2 ψ″

�� ��,
ð α½ �pα ,qα y+1ð Þ/ α½ �pα ,qαð Þ
y

α½ �pα ,qαy + 1
α½ �pα ,qα

− x

 !
ψ″ xð Þdx












 ≦

α½ �pα ,qαy + 1
α½ �pα,qα

− y

 !2

ψ″
�� ��,
ð55Þ

we get

T ℏ,λ
α,pα ,qα ψ ; yð Þ − ψ yð Þ




 


 ≦ Sℏ,λ
α,pα ,qα t − yð Þ2 ; y� �

+
α½ �pα ,qαy + 1
α½ �pα ,qα

− y

 !2( )
ψ″
�� ��:
ð56Þ

Hence, the above discussion completes the proof.

Theorem 10. Let Sλ
α,pα ,qα be defined by (9); then, for every ψ

∈ C2
B½0,∞Þ, there exists an absolute constant C > 0 such that

Sλ
α,pα ,qα ψ ; yð Þ − f yð Þ




 


 ≦C ω2 f ;
ffiffiffiffiffiffiffiffiffiffiffiffi
Θα yð Þp
2

 !(

+min 1, Θα yð Þ
4

� �
fk k
)

+ ω f ; 1
α½ �pα ,qα

 !
,

ð57Þ

where ΘαðyÞ is defined by Theorem 9.

Proof. In the view of the result asserted by Theorem 9, we
prove this theorem. For all f ∈ CB½0,∞Þ and ψ ∈ C2

B½0,∞Þ,
we have

Sλ
α,pα ,qα ψ ; yð Þ − f yð Þ




 


 = T λ
α,pα ,qα ψ ; yð Þ − f yð Þ + f

α½ �pα ,qαy + 1
α½ �p,q

 !
− f yð Þ














≦ T λ
α,pα ,qα f − ψ ; yð Þ




 


 + T λ
α,pα ,qα ψ ; yð Þ − ψ yð Þ




 



+ ψ yð Þ − f yð Þj j + f

α½ �pα ,qαy + 1
α½ �pα ,qα

 !
− f yð Þ














≦ 4 f − ψk k +Θα yð Þ ψ″
�� ��

+ ω f ;
α½ �pα ,qα
α½ �pα ,qα

− 1
 !

y + 1
α½ �pα ,qα














 !
:

ð58Þ

By taking the infimum over all ψ ∈ C2
B½0,∞Þ and using

(45), we get

Sλ
α,pα ,qα ψ ; yð Þ − f yð Þ




 


 ≦ 4K2 f ; Θα yð Þ
4

� �
+ ω f ;

α½ �pα ,qα
α½ �pα ,qα

− 1
 !

y + 1
α½ �pα ,qα














 !

≦C ω2 f ;
ffiffiffiffiffiffiffiffiffiffiffiffi
Θα yð Þp
2

 !
+min 1 ; Θα yð Þ

4

� �
fk k

( )

+ ω f ; 1
α½ �pα ,qα

 !
:

ð59Þ

We consider the Lipschitz-type maximal function by [44]
and obtain the local approximation such as for f ∈ C½0,∞�,
0 < κ ≦ 1, and t, y ∈ ½0,∞Þ. We recall that

ωκ f ; yð Þ = sup
t≠y,t∈ 0,∞½ Þ

f tð Þ − f yð Þj j
t − yj jκ : ð60Þ

Theorem 11. For all f ∈ CB½0,∞Þ and κ ∈ ð0, 1�, we have

Sλ
α,pα ,qα f ; yð Þ − f yð Þ




 


 ≦ ωκ f ; yð Þ δα yð Þð Þ κ/2ð Þ, ð61Þ
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where theωκð f ; yÞLipschitz maximal function is defined by
(60), andδαðyÞis defined by Theorem 7.

Proof. We prove Theorem11 by applying (60) and the well-
known Hölder inequality:

Sλ
α,pα ,qα f ; yð Þ − f yð Þ




 


 ≦ Sλ
α,pα ,qα f tð Þ − f yð Þj j ; yð Þ

≦ ωκ f ; yð Þ∣Sλ
α,pα ,qα t − yj jκ ; yð Þ

≦ ωκ f ; yð Þ Sλ
α,pα ,qα 1 ; yð Þ

� � 2−κ/2ð Þ

� Sλ
α,pα ,qα t − yj j2 ; y� �� � κ/2ð Þ

= ωκ f ; yð Þ Sλ
α,pα ,qα Δ2 ; yð Þ

� � κ/2ð Þ
:

ð62Þ

The desired results are proven.

We next denote

C2
B 0,∞½ Þ = ψ : ψ ∈ CB 0,∞½ Þ andψ′, ψ″ ∈ CB 0,∞½ Þ

n o
,

ψk kC2
B ℝ+ð Þ = ψk kCB 0,∞½ Þ + ψ′

�� ��
CB 0,∞½ Þ + ψ″

�� ��
CB 0,∞½ Þ,

ψk kCB 0,∞½ Þ = sup
y∈ 0,∞½ Þ

ψ yð Þj j:

ð63Þ

Theorem 12. Let ψ ∈ C2
B½0,∞Þ: Then, Sλ

α,pα ,qα defined by (9)
satisfies

Sλ
α,pα ,qα ψ ; yð Þ − ψ yð Þ




 


 ≦ ffiffiffiffiffiffiffiffiffiffiffi
δα yð Þ

p
+ δα yð Þ

2

� �
ψk kC2

B 0,∞½ Þ:

ð64Þ

Proof. From the Taylor series expansion of order two, we
have

ψ tð Þ = ψ yð Þ + ψ′ yð Þ t − yð Þ + ψ″ φð Þ t − yð Þ2
2 , ð65Þ

for φ ∈ ðy, tÞ. Let

S = sup
y 0,∞½ Þ

ψ′ yð Þ

 

 = ψ′
�� ��

CB 0,∞½ Þ ≦ ψk kC2
B 0,∞½ Þ,

T = sup
y 0,∞½ Þ

ψ″ yð Þ

 

 = ψ″
�� ��

CB 0,∞½ Þ ≦ ψk kC2
B 0,∞½ Þ:

ð66Þ

Then, we have

ψ tð Þ − ψ yð Þj j ≦ S t − yj j + 1
2T t − yð Þ2 ≦ t − yj j + 1

2 t − yð Þ2
� �

ψk kC2
B 0,∞½ Þ:

ð67Þ

Therefore, we have

Sλ
α,pα ,qα ψ ; yð Þ − ψ yð Þ




 


 ≦ Sλ
α,pα ,qα t − yj j ; yð Þ + 1

2S
λ
α,pα ,qα t − yð Þ2 ; y� �� �

ψk kC2
B 0,∞½ Þ

≦ Sλ
α,pα ,qα Δ2 ; yð Þ

� � 1/2ð Þ
+ 1
2S

λ
α,pα ,qα Δ2 ; yð Þ

� �
ψk kC2

B 0,∞½ Þ:

ð68Þ

This completes the proof of Theorem 12.
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In this paper, we consider fractional differential equations with the new fractional derivative involving a nonsingular kernel,
namely, the Caputo-Fabrizio fractional derivative. Using a successive approximation method, we prove an extension of the
Picard-Lindelöf existence and uniqueness theorem for fractional differential equations with this derivative, which gives a set of
conditions, under which a fractional initial value problem has a unique solution.

1. Introduction

Due to the demonstrated applications of fractional operators
in various and widespread fields of many sciences, such as
mathematics, physics, chemistry, engineering, and statistics
[1–4], various operators of a fractional calculus have been
found to be remarkably popular for modelling of numerous
varied problems in these sciences. We mention here some
of these definitions, such as Riemann-Liouville, Hadamard,
Grünwald-Letnikov, Weyl, Riesz, Erdélyi-Kober, and
Caputo. Compared with an integer order, a significant fea-
ture of a fractional order differential operator appeared in
its hereditary property. In other words, when we describe a
process by a fractional operator, we predict the future state
by its current as well as its past states. Therefore, the memory
and hereditary properties of materials and systems can be
intervened in the modeling of a process by making use of dif-
ferential equations of an arbitrary order. So, in recent years,
fractional differential equations have been paid a great inter-
est and also have appeared in new areas for applications of
initial and boundary value problems of such equations. The
Riemann-Liouville definition for the fractional derivative is
one of the most widely used definitions and has many appli-
cations. But this definition had its drawbacks, such as the fact

that the derivative of a constant function is not zero, and in
practical examples, we need the value of fractional derivatives
as initial values. The Caputo fractional derivative does not
have the above weaknesses and is believed to be one of the
most efficient definitions of fractional derivative applied in
many areas of science and engineering.

However, the new definition suggested by Caputo and
Fabrizio [5], which has all the characteristics of the old defi-
nitions, assumes two different representations for the tempo-
ral and spatial variables. In fact, they claimed that the
classical definition given by Caputo appears to be particularly
convenient for mechanical phenomena, related with plastic-
ity, fatigue, damage, and with electromagnetic hysteresis.
When these effects are not present, it seems more appropriate
to use the new Caputo-Fabrizio operator.

The main advantage of the Caputo-Fabrizio approach is
that the boundary conditions of the fractional differential
equations with Caputo-Fabrizio derivatives admit the same
form as for the integer-order differential equations. On the
other hand, the Caputo-Fabrizio fractional derivative has
many significant properties, such as its ability in describing
matter heterogeneities and configurations with different
scales [6–8]. Therefore, there are some certain phenomena
that cannot be well-modeled using the Riemann-Liouville,
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Caputo, or other standard fractional operators [5, 9–13]. For
an example, in issues related to material heterogeneities, we
encounter some problems that are not well described by the
above fractional operators. Also, later, some other definitions
with a nonsingular kernel, such as the Atangana-Baleanu [6]
fractional derivative, were defined.

Many researchers have shared their contributions to
obtain properties of many models with new and old defini-
tions of fractional derivatives. In [14], we have the analytic
solutions of a viscous fluid with the Caputo and Caputo-
Fabrizio fractional derivatives. In [15], the authors used the
fractional derivative with a nonsingular kernel to model a
Maxwell fluid and found semianalytical solutions. In [16],
we found a comparison approach of two latest fractional
derivatives models, namely, Atangana-Baleanu and Caputo-
Fabrizio, for a generalized Casson fluid and obtained exact
solutions. In [17–19], the authors also used the Caputo-
Fabrizio fractional derivative to model some important
examples.

Due to the abovementioned applications, the existence of
solutions for nonlinear differential equations is an attractive
research topic and has been studied using different tech-
niques of nonlinear analysis [20–23]. One of the most impor-
tant theorems in ordinary differential equations is Picard’s
existence and uniqueness theorem. This theorem, which is
applied on first-order ordinary differential equations, can
be generalized to establish existence and uniqueness results
for both higher-order ordinary differential equations and
for systems of differential equations. This theorem is a good
introduction to the broad class of existence and uniqueness
theorems that are based on fixed-point techniques [24–30].

In this paper, we obtain an extension of Picard’s theorem
for differential equations with the Caputo-Fabrizio fractional
derivative. This theorem provides conditions for which a
fractional initial value problem involving the Caputo-
Fabrizio derivative has a unique solution. On the other hand,
the proof of this extension of Picard’s theorem provides a
way of constructing successive approximations to the
solution.

2. Preliminaries

In this section, we recall some notations and definitions
which are needed throughout this paper. Further, some
lemmas and theorems are stated as preparations for the main
results. First, in the following, we provide some basic con-
cepts and definitions in connection with the new Caputo-
Fabrizio derivative.

The well-known left-sided Caputo fractional derivative
CDα

0+,t of a function f ðxÞ ∈H1ð0, bÞ with 0 < α < 1, is defined
by

CDα
0+,tg tð Þ = 1

Γ 1 − αð Þ
ðt
0
f ′ sð Þ t − sð Þ−αds: ð1Þ

In [5], Caputo and Fabrizio proposed the new operator
by replacing the singular kernel ðx − tÞ−α with e−αðx−tÞ/ð1−αÞ

and 1/Γð1 − αÞ with NðαÞ/ð1 − αÞ in the Caputo definition
to obtain the following definition.

Definition 1. Let g be a given function in H1ða, bÞ. The
Caputo-Fabrizio derivative of fractional order α ∈ ½0, 1� is
defined as

CF
a Dα

t g tð Þð Þ = N αð Þ
1 − α

� �ðt
a
g′ xð Þ exp −α

t − x
1 − α

� �
dx, ð2Þ

where NðαÞ is a normalization function [5]. Also, if a cer-
tain function g does not satisfy in the restriction g ∈H1ða, bÞ,
then its fractional derivative is redefined as

CF
a Dα

t g tð Þð Þ = αN αð Þ
1 − α

ðt
a
g tð Þ − g xð Þð Þ exp −α

t − x
1 − α

� �
dx:

ð3Þ

Clearly, as mentioned in [5], if one sets σ = ð1 − αÞ/α ∈ ½
0,∞� and α = 1/ð1 + σÞ ∈ ½0, 1�, then the Caputo-Fabrizio def-
inition becomes

CF
a Dα

t g tð Þð Þ = N σð Þ
σ

ðt
a
g′ xð Þ exp −

t − x
σ

� �
dx, ð4Þ

where Nð0Þ =Nð∞Þ = 1, and

lim
σ→0

exp −
t − x
σ

� �
= δ x − tð Þ: ð5Þ

Also, the fractional derivative of order ðn + αÞ when n ≥ 1
and α ∈ ½0, 1� is defined by the following

CF
a D α+nð Þ

t g tð Þð Þ= CF
a D αð Þ

t D nð Þ
t g tð Þ

� �
: ð6Þ

Definition 2. Let g ∈H1ða, bÞ, then its fractional integral of an
arbitrary order is defined as follows:

CF
a Iαt g tð Þð Þ = 2 1 − αð Þ

2 − αð ÞN αð Þg tð Þ + 2α
2 − αð ÞN αð Þ

ðt
a
g sð Þds, t ≥ 0:

ð7Þ

It is clear, in view of the above definition, that the αth
Caputo-Fabrizio derivative of a function g is average between
g and its first-order integral. Therefore,

2 1 − αð Þ
2 − αð ÞN αð Þ + 2α

2 − αð ÞN αð Þ = 1: ð8Þ

So, we arrive at the following

N αð Þ = 2
2 − α

, 0 ≤ α ≤ 1: ð9Þ

The Laplace transform of the Caputo-Fabrizio derivative
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is

L CFDα
t g tð Þð Þ� 	

= sL g tð Þf g − g 0ð Þ
1 − αð Þs + α

: ð10Þ

Theorem 3 (Picard theorem [31]). Let D be an open set in ð
t, xÞ-space. Let ðt0, x0Þ ∈D and a and b be positive constants
such that the set

R = t, xð Þj t − t0j j ≤ a, x − x0j j ≤ bf g, ð11Þ

is contained in D. Suppose that the function g is defined, con-
tinuous on D, and satisfies a Lipschitz condition with respect
to x in R. Let

M = max
t,xð Þ∈R

g t, xð Þj j,

A =min a, b
M


 �
:

ð12Þ

Then, the following initial value problem

x′ = g t, xð Þ, x t0ð Þ = x0, ð13Þ

has a unique solution, xðtÞ, on the interval ðt0 − A, t0 + AÞ:
For this solution in the domain ðt0 − A, t0 + AÞ, we have

∣x tð Þ − x0∣ ≤MA: ð14Þ

Note that by the mean-value theorem, the Lipschitz condi-
tion will be satisfied if we have ∣ð∂/∂xÞgðt, xÞ ∣ ≤K .

3. Extension of Picard Theorem

Picard’s Theorem 3 guarantees the existence and uniqueness
of the solution of the following initial value problem of first-
order differential equations:

dy
dt

= f t, y tð Þð Þ t ≥ t0, ð15Þ

y t0ð Þ = y0: ð16Þ
In proving this theorem, the solution is obtained by the

well-known successive approximations method (Picard-Lin-
delöf method) [31]. In this method, the approximate solution
for solving (15) is defined by

yk+1 = y0 +
ðt
t0

f s, yk sð Þð Þds, k ∈N: ð17Þ

By continuing this process, when k→∞, the exact solu-
tion is obtained. In practice, the exact solution is approxi-
mated for a sufficient large k by yk.

In this section, we consider the following differential
equation

CF
0 Dα

t u tð Þ = g t, uð Þ, ð18Þ

such that t ∈ J = ½0, 1�, with the initial condition uð0Þ = u0,
where CF

0 Dα
t denotes the fractional Caputo-Fabrizio deriva-

tive. We extend Picard’s theorem to this problem, and by
the successive approximation method, an iterative process
is provided to obtain the solution. We state the following
generalized Picard existence and uniqueness theorem.

Theorem 4. Suppose that the function g is defined, continuous
on an open set Ω in ðt, uÞ-space, and satisfies

∣g t, uð Þ − g t, vð Þ∣ ≤ k u − vj j, 0 < k < 1: ð19Þ

LetM =maxt∈J ∣ gðt, uÞ ∣ . Then, the fractional differential
equation (18) has a unique solution such that uð0Þ = u0.

To prove the theorem, first, we need to establish the fol-
lowing lemma.

Lemma 5. The function uðtÞ is the solution of (18) under the
initial condition uð0Þ = u0 if and only if it satisfies the follow-
ing integral equation:

u tð Þ = u0 +
2 1 − αð Þ
2 − αð ÞN αð Þg t, u tð Þð Þ

+ 2α
2 − αð ÞN αð Þ

ðt
0
g s, u sð Þð Þds:

ð20Þ

Proof. If uðtÞ is a solution of (18), then taking the fractional
integral of order α, we obtain (20). The second part of the
theorem comes from differentiating equation (20).

In the reminder of the proof, using the successive approx-
imation method, we show that the sequence defined by

u0 tð Þ = u0,

u1 tð Þ = u0 +
2 1 − αð Þ
2 − αð ÞN αð Þg t, u0ð Þ

+ 2α
2 − αð ÞN αð Þ

ðt
0
g s, u0ð Þds,

⋮

um tð Þ = u0 +
2 1 − αð Þ
2 − αð ÞN αð Þ g t, um−1 tð Þð Þ

+ 2α
2 − αð ÞN αð Þ

ðt
0
g s, um−1 sð Þð Þds,

ð21Þ

converges to a function, which is a solution of (20), and then
we show that this solution is unique.

Lemma 6. For each m, the function umðtÞ is defined, continu-
ous on J and satisfies

∣um tð Þ − u0∣ ≤M: ð22Þ
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Proof. We prove the lemma by induction. Since

∣u1 tð Þ − u0 tð Þ∣ ≤ 2 1 − αð Þ
2 − αð ÞN αð Þ ∣g t, u0 tð Þð Þ∣

+ 2α
2 − αð ÞN αð Þ

ðt
0
∣g s, u0 sð Þð Þ∣ds

≤
2 1 − αð Þ
2 − αð ÞN αð ÞM + 2α

2 − αð ÞN αð ÞM
ðt
0

� ds ≤ 2 1 − αð Þ
2 − αð ÞN αð ÞM

+ 2α
2 − αð ÞN αð ÞM =M,

ð23Þ

the result is obviously true for m = 0. Let us suppose that
for t ∈ J ,

∣um tð Þ − u0∣ ≤M: ð24Þ

This yields that f ðt, umðtÞÞ is defined on J , and since f ðt
, umðtÞÞ is continuous at t, one asserts that

um+1 tð Þ = u0 +
2 1 − αð Þ
2 − αð ÞN αð Þg t, um tð Þð Þ

+ 2α
2 − αð ÞN αð Þ

ðt
0
g s, um sð Þð Þds,

ð25Þ

is defined and continuous. Indeed, we have

∣um+1 tð Þ − u0∣ ≤
2 1 − αð Þ
2 − αð ÞN αð Þ ∣g t, um tð Þð Þ∣

+ 2α
2 − αð ÞN αð Þ

ðt
0
∣g s, um sð Þð Þ∣ds ≤ 2 1 − αð Þ

2 − αð ÞN αð ÞM

+ 2α
2 − αð ÞN αð ÞM

ðt
0
ds =M:

ð26Þ

Lemma 7. The sequence fumðtÞg converges uniformly on J to
a continuous function uðtÞ.

Proof. It is obvious that the convergence of the series

u0 tð Þ + 〠
∞

n=0
un+1 tð Þ − un tð Þ½ �, ð27Þ

yields convergence of the sequence fumðtÞg. For t ∈ J , let us
denote

dn tð Þ = un+1 tð Þ − un tð Þj j,
Fn tð Þ = g t, un+1 tð Þð Þ − g t, un tð Þð Þ:

ð28Þ

Then, for each n, one has

dn tð Þ ≤ 2 1 − αð Þ
2 − αð ÞN αð Þ ∣Fn tð Þ∣

+ 2α
2 − αð ÞN αð Þ

ðt
0
∣Fn sð Þ∣ds

≤
2 1 − αð Þ
2 − αð ÞN αð Þ k∣un tð Þ − un−1 tð Þ∣

+ 2α
2 − αð ÞN αð Þ k

ðt
0
∣un sð Þ − un−1 sð Þ∣ds

= 2 1 − αð Þ
2 − αð ÞN αð Þ kdn−1 tð Þ + 2α

2 − αð ÞN αð Þ k
ðt
t0

� dn−1 sð Þds = kCF0 Iαt dn−1 tð Þ,

ð29Þ

where k is the Lipschitz constant of g and 0 < k < 1. Now,
we show that for each n, we have

dn tð Þ ≤Mkn: ð30Þ

From Lemma 6, we have

d0 tð Þ = u1 tð Þ − u0 tð Þj j ≤M: ð31Þ

By induction, let dnðtÞ ≤Mkn: Then, from (29) and (8),
one writes

dn+1 tð Þ ≤ kCF0 Iαt dn tð Þ = 2 1 − αð Þ
2 − αð ÞN αð Þ kdn tð Þ

+ 2α
2 − αð ÞN αð Þ k

ðt
t0

dn sð Þds ≤ 2 1 − αð Þ
2 − αð ÞN αð Þ kMkn

+ 2α
2 − αð ÞN αð Þ kMkn

ðt
0
ds ≤

2 1 − αð Þ
2 − αð ÞN αð ÞMkn+1

+ 2α
2 − αð ÞN αð ÞMkn+1 =Mkn+1:

ð32Þ

Therefore,

〠
∞

n=0
dn tð Þ ≤M 〠

∞

n=0
kn: ð33Þ

Since 0 < k < 1, the uniform convergence of (27) follows
from the Weierstrass test or by a simple comparison test.

Lemma 8. The function uðtÞ is satisfied in (18), and we have
uð0Þ = u0:

Proof. First, let us show that ∣uðtÞ − u0 ∣ is bounded. That is,

∣u tð Þ − u0∣ < B, ð34Þ

for some constant B. We can deduce that gðt, uðtÞÞ is defined
for t ∈ J . For t ∈ J and ε > 0 and for a sufficiently large m, one
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has

∣u tð Þ − u0∣ ≤ ∣u tð Þ − um tð Þ∣ + ∣um tð Þ − u0∣ ≤ ε +M < B: ð35Þ

Then, by the Lipschitz condition of g, we have

∣
ðt
0
g s, u sð Þð Þ − g s, um sð Þð Þds∣ ≤

ðt
0
∣g s, u sð Þð Þ

− g s, um sð Þð Þ∣ds ≤ k
ðt
0
∣u sð Þ − um sð Þ∣ds ≤ kε:

ð36Þ

Therefore, limm→∞
Ð t
0gðs, umðsÞÞ =

Ð t
0gðs, uðsÞÞds: Now,

by taking the limit with respect to m on both sides of the fol-
lowing equation

um tð Þ = u0 +
2 1 − αð Þ
2 − αð ÞN αð Þg t, um−1 tð Þð Þ

+ 2α
2 − αð ÞN αð Þ

ðt
0
g s, um−1 sð Þð Þds,

ð37Þ

we obtain

u tð Þ = u0 +
2 1 − αð Þ
2 − αð ÞN αð Þg t, u tð Þð Þ

+ 2α
2 − αð ÞN αð Þ

ðt
0
g s, u sð Þð Þds:

ð38Þ

Now, we prove the uniqueness of the solution.

Lemma 9. The solution uðtÞ of the integral equation (7) satis-
fying the condition uðt0Þ = u0, is the unique solution of (18)
with this initial condition.

Proof. Suppose that there exist two solutions u1ðtÞ and u2ðtÞ
of the integral equation (7) on J subject to the condition u1
ðt0Þ = u2ðt0Þ = u0. First, since u1ðtÞ and u2ðtÞ are continuous
functions, there exists a constant B > 0 such that in the closed
interval J , we have

∣u1 tð Þ − u2 tð Þ∣ < B: ð39Þ

Let us suppose that for each positive integer m,

∣u1 tð Þ − u2 tð Þ∣ < kmB: ð40Þ

Then, from (7), we have ∣u1ðtÞ − u2ðtÞ ∣ <km+1B: There-
fore, by induction, ∣u1ðtÞ − u2ðtÞ ∣ is less than each term of
the convergent geometric series of B/ð1 − kÞ. This yields that
for each ε, ∣u1ðtÞ − u2ðtÞ ∣ <ε, and therefore, we have u1ðtÞ
= u2ðtÞ.

By proving the above lemma, the proof of Theorem 3 is
completed. Note that the iterative process (21) provides a
constructive approach to obtain the solution. We describe
the following simple example where the hypotheses of Theo-

rem (4) hold:

CF
0 Dα

t u tð Þ = 1
u + 1 ,

u 0ð Þ = 0:
ð41Þ

By assuming C = 2ð1 − αÞ/ð2 − αÞNðαÞ and D = 2α/ð2 −
αÞNðαÞ, the results of using (21) are as follows:

u0 tð Þ = 0,
u1 tð Þ = C +Dt,

u2 tð Þ = C
Dt + C + 1 + ln Dt + C + 1ð Þ,

u3 tð Þ = C
C/ Dt + C + 1ð Þ + ln Dt + C + 1ð Þ + 1

+D
ðt
0

1
C/ Ds + C + 1ð Þ + ln Ds + C + 1ð Þ + 1 :

⋮
ð42Þ

To ensure the results, let us choose α = 1: In this
case, it is easy to show that the obtained sequence 0, t, ln
ðt + 1Þ,⋯ converges to the exact solution uðtÞ = ffiffiffiffiffiffiffiffiffiffiffi

2t + 1
p

− 1.

4. Conclusion

By Picard’s theorem, we can study the existence and unique-
ness of a solution of first-order differential equations. Also,
this theorem can be applied to ensure the existence of a
unique solution of higher-order ordinary differential equa-
tions and for systems of differential equations. On the other
hand, this theorem is an essential tool in fixed-point theory.
Therefore, a generalization of this theorem for fractional dif-
ferential equations would be interesting. In this paper, we
proved an extension of this theorem to the initial value prob-
lems of fractional ordinary differential equations with the
Caputo-Fabrizio derivative, and by the successive approxi-
mation method, an iterative process was provided to obtain
the solution.
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In this article, we introduce the notions of a soft inf-comparable contraction and soft comparable Meir-Keeler contraction in a soft
metric space. Furthermore, we prove two soft fixed point theorems which assure the existence of soft fixed points for these two types
of comparable contractions. The obtained results not only generalize but also unify many recent fixed point results in the literature.

1. Introduction and Preliminaries

It is the main feature of mathematical study to produce dif-
ferent methods and tools to perceive the behavior of systems
that we have difficulty understanding with known methods.
In particular, it may be necessary to deal with systems that
contain uncertainties and to use inaccurate data in different
situations. With this motivation, one of the mathematical
tools used to deal with the necessities of systems established
with uncertainty and to analyze the models created by the
uncertainties and uncertainties already existing in the data
is the Fuzzy Set Theory. Fuzzy sets were introduced by Zadeh
[1] for dealing with the uncertainties on its own limits.
Another mathematical tool to deal with the uncertainties is
the soft set that was introduced by Molodtsov [2]. In this
paper, we shall focus on the soft set theory. The topology
based on the soft sets was defined by Cagman et al. [3]. They
also considered the basic topological notions over soft sets.
On the other hand, a soft real set and soft real number were
proposed successfully by Das and Samanta [4]. Furthermore,
the same authors in considered the notions of a soft metric
and its topology, properly. After then, Abbas et al. [5] proved
a fixed point theorem by introducing the notion of soft con-
traction mapping over the soft metric space. Application
potential of the soft sets in various distinct research topics
is very rich and wide, for example, the smoothness of func-

tions, game theory, operation research, probability theory,
and measurement theory. For more details on soft sets and
application, we can refer to, e.g., [3, 4, 6–12].

As usual, ℝ denotes real numbers and ℝ+ ≔ ½0,∞Þ.
Furthermore, the letters ℤ,ℕ denote integers and natural
numbers, respectively. The symbol BðℝÞ denotes the collec-
tion of all nonempty bounded subsets of ℝ.

We shall denote an initial universeΩ. We setP as a set of
parameters. As usual, 2Ω denotes the collection of all subsets
ofΩ. For a nonempty subset S of P , we consider a set-valued
mapping T : S→ 2Ω for all τ ∉ A with TðτÞ = ϕ. We define a
pair ðT , AÞ on Ω as

T , Sð Þ = T τð Þ, τð Þ: τ ∈Pf g: ð1Þ

Here, ðT , SÞ is called a soft set [2]. The symbol SðΩÞ
represents the collection of all soft sets on Ω.

A soft set ðT , SÞ onΩ is called null soft [11] (respectively,
absolute soft set [11]) represented by, respectively, ~SifTðτÞ =
(respectively,TðτÞ = S) for allτ ∈ S. We presume that ðT1, S1Þ
and ðT2, S2Þ are two soft sets onΩ. We define the intersection
[11] of the mentioned two sets above as a soft set ðT3, S3Þ,
denoted by ðT1,S1Þ ∩ ~ðT2, S2Þ = ðT3, S3Þ, where S3 = S1 ∩ S2,
and for each τ ∈ S3, T3ðτÞ = T1ðτÞ ∩ T2ðτÞ. As expected, we
define the union of ðT1, S1Þ and ðT2, S2Þ [11] as a soft set
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ðT3, S3Þ, denoted by ðT1,AÞ∪~ðT2, BÞ = ðT3, CÞ where S3 =
S1 ∪ S2 and for each τ ∈ S3,

T3 τð Þ =
T1 τð Þ, if τ ∈ S1 \ S2,

T2 τð Þ, if τ ∈ S2 \ S1,

T1 τð Þ ∪ T2 τð Þ, if τ ∈ S1 ∩ S2:

8>><
>>: ð2Þ

We use the notation ðTc,P Þ to indicate the complement
[11] of soft set ðT ,P Þ on Ω where Tc : X→ 2Ω is a mapping
given by TcðτÞ =Ω \ TðτÞ for all τ ∈P .

A mapping T : P → BðℝÞ is called a soft real set [13].
The symbol ℝ+ðP Þ is used to denote the set of all nonnega-
tive soft real numbers. If ðT ,P Þ is a singleton soft set, then it
is called a soft real number. Regarding the corresponding soft
set, soft real numbers will be denoted as ~γ, ~η, ~ξ, etc. In partic-
ular, �0 and ~1 are the soft real numbers where �0ðτÞ = 0, ~1ðτÞ
= 1 for all τ ∈P .

For two soft real numbers, for all τ ∈P , we have the
following inequalities [13]:

(1) γ~≤~~η if γ~ðτÞ≤~~ηðτÞ
(2) γ~≥~~η if γ~ðτÞ≥~~ηðτÞ
(3) γ~<~~η if γ~ðτÞ<~~ηðτÞ
(4) γ~>~~η if γ~ðτÞ>~~ηðτÞ

Definition 1.

(1) The mapping ϕ : ℝ+ðP Þ→ℝ+ðP Þ is called soft
increasing, if

r~<~~t⇒ ϕ r~Þ<~ϕ ~t
� �

:
� ð3Þ

(2) The mapping ϕ : ℝ+ðP Þ→ℝ+ðP Þ is called soft
continuous at a~∈~ℝ+ðP Þ, if for every γ~>~�0, there
exists δ~>~�0 such that �0<~~x − a~<~~δ implies

ϕ ~xð Þ − ϕ a~Þ<~~γ:ð ð4Þ

Moreover, ϕ : ℝ+ðP Þ→ℝ+ðP Þ is called soft continuous
at every point ~a of ℝ+ðP Þ, then we call ϕ as a continuous
mapping.

A soft set ðT ,P Þ on Ω is called a soft point [4, 14],
denoted by exτ, if there is a unique τ ∈P such that TðτÞ =
fxg for some τ ∈P and TðωÞ = ϕ for all ω ∈P \ fτg.

Definition 2 (see). Let ~X = ðT,P Þ be an absolute soft set, and
let SP ð~XÞ be the collection of all soft points of ~X. A mapping
~d : SP ð~XÞ × SP ð~XÞ→ℝ+ðP Þ is called a soft metric on ~X if
~d satisfies the following conditions for all fxτ1 ,fxτ2 ,fxτ3 ∈ ~X:

ðM1Þ~dðfxτ1 , xτ2 ~Þ≥~�0,

ðM2Þ~dðfxτ1 ,fxτ2Þ = �0 if and only if fxτ1 =fxτ2 ,
ðM3Þ~dðfxτ1 ,fxτ2Þ = ~dðfxτ2 ,fxτ1Þ,
ðM4Þ~dðfxτ1 , x~τ3Þ≤~~dðfxτ1 ,fxτ2Þ + ~dðfxτ2 ,fxτ3Þ.
The triple ð~X, ~d,P Þ is called a soft metric space, in short,

s.m.s.
For the sake of simplicity, we set M≔ ð~X, ~d,P Þ.
Suppose M is a s.m.s. and ~γ is a nonnegative soft real

number. A soft open ball with the center exe and radius ~γ is
defined by Bðexe , ~γÞ = fye′~∈~~X : ~dðexe , ye′~Þ<~~γg. Analo-

gously, a soft closed ball with center exe and radius ~γ is B½exe
, ~γ� = fye′~∈~~X : ~dðexe , ye′~Þ≤~~γg. We set that a soft

setðF,P Þis soft open in~Xwith respect to~d if and only if all
soft points of ðF, EÞ are interior points of ðF,P Þ.

In a soft metric spaceM, a sequence of soft points fgxλ,ngn
is called convergent inM if there is a soft point yν

~∈~~X such
that

lim
n→∞

~d gxλ,n, eyνð Þ = �0: ð5Þ

Furthermore, a sequence fgxλ,ngn is said to be a Cauchy in
M if

lim
i,j→∞

~d fxλ,i , fxλ,j� �
= �0: ð6Þ

Moreover, if each Cauchy sequence in ~X converges to
some point of ~X, thenM is called complete soft metric space.

Let N = ð~Y , ~σ,P ′Þ be another soft metric space. A soft
mapping ð f , φÞ: M→N is soft continuous at a point
xλ

~∈~SP ð~XÞ, if for each Bðð f , φÞð~xλÞ, ~γÞ of N , there exists
Bð exλÞ, ~δÞ such that

f B exλð Þ, ~δ
�� �

⊂~B f , φð Þ exλð Þ, ~γð Þ: ð7Þ

In other words, for every γ~>~�0, there exists δ~>~�0 such
that ~dð exλ, yμ~Þ<~~δ implies that ~σðð f , φÞð exλÞ, ð f , φÞð
xλ

~ÞÞ<~~γ. Moreover, if ð f , φÞ is soft continuous for each
point of SP ð~XÞ, then it is called soft continuous mapping.

2. Soft Fixed Points for the Soft Inf-
Comparable Contraction

In this section, we first introduce the notion of soft inf
-comparable mapping ψ : ℝ+ðP Þ→ℝ+ðP Þ.

Definition 3 (see [15]). Let P be a parameter set and ψ : ℝ+

ðP Þ→ℝ+ðP Þ. We call ψ a soft inf-comparable mapping if
it satisfies the following two axioms:

ðψ1Þψðτ~Þ<~~τ for all ~τ ∈ℝ+ðP Þ \ f�0g and ψð�0Þ = �0,
ðψ2Þlim infeτn→~τ

ψðτn~Þ<~~τ for all τ~>~�0.
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Lemma 4. Let ψ : ℝ+ðP Þ→ℝ+ðP Þ be a soft inf -comparable
mapping. Then, limn→∞ψnð~τÞ = �0 for all ~τ > �0, where ψn

denotes the n-th iteration of ψ.

Proof. Let τ~>~�0 be fixed. If ψn
0ð~τÞ = �0 for some n0 ∈ℕ, then

we have

ψn0+1 ~τð Þ = ψ ψn0 ~τð Þð Þ = ψ �0ð Þ = �0, ð8Þ

which implies that

ψn0+r ~τð Þ = �0, for all r ∈ℕ: ð9Þ

Thus, we conclude that

lim
n→∞

ψn ~τð Þ = �0: ð10Þ

If ψnðτ~Þ>~�0 for each n ∈ℕ, then we take eσn = ψnð~τÞ,
and

gσn+1 = ψn+1 ~τð Þ = ψ ψn ~τð Þð Þ = ψ eσnð Þ, ð11Þ

for all n ∈ℕ. By the condition (ψ1) of the soft inf -compara-
ble mapping ψ, we have that for all n ∈ℕ,

gσn+1 = ψ σn
~Þ<~ eσn:ð ð12Þ

Keeping (ψ2) in mind and considering that the soft
sequencefσn∈ℕgis bounded from below and also that the soft
sequence is strictly decreasing, one can find an ν~≥~�0 such
that

lim
n→∞

eσn = ~ν: ð13Þ

We assert that ~ν = �0. If not, suppose that ν~>~�0, then we
find

~ν = lim
n→∞

gσn+1 = lim
n→∞

inf ψ eσnð Þ = limeσn→~ν
inf ψ σn

~Þ<~~ν,ð ð14Þ

a contradiction. So we obtain that limn→∞ψnð~τÞ = �0:

We introduce the notion of soft inf-comparable contrac-
tion, as follows:

Definition 5. Let M be a soft metric space and let ψ : ℝ+

ðP Þ→ℝ+ðP Þ be a soft inf -comparable mapping. A map-
ping ð f , φÞ: M→M is called a soft inf-comparable con-
traction if for each soft points exp, eyτ ∈ SP ð~XÞ,

~d f , φð Þ exp� �
, f , φð Þ yτ

~ÞÞð�
≤~ψ max ~d exp, eyτ� �

, ~d exp, f , φð Þ exp� �� �
, ~d eyτ, f , φð Þ eyτð Þð Þ

n o� �
:

ð15Þ

Example 6. Set R = ðeℝ, ~d,P Þ where the soft metric is
expressed as

dφ p, τð Þ =max p, τf g, d x, yð Þ = x − yj j,

~d exp, eyτ� �
=
3
5
dφ p, τð Þ + d x, yð Þ,

ð16Þ

with P = ½0,∞Þ, φðtÞ = ð2/3Þt for t ∈ ½0,∞Þ.
Let ψ : ℝ+ðP Þ→ℝ+ðP Þ be denoted by

ψ ~ωð Þ = 5
6
~ω: ð17Þ

and let f ðxÞ = ð2/5Þx. Consequently, we find

~d f , φð Þ exp� �
, f , φð Þ eyτð Þ� �

= ~d
g2

5
x 2/3ð Þp,

g2
5
y 2/3ð Þτ

 !
=
2
5
max p, τf g + 2

5
x − yj j,

~d exp, eyτ� �
=
3
5
max p, τf g + x − yj j,

~d exp, g1
2
x 1/3ð Þp

 !
= 3
5
max p, 1

3
p

� �
+ x −

1
2
x

����
���� = 3

5
p + 1

2
xj j,

~d eyτ, g1
2
y 1/3ð Þτ

 !
=
3
5
max τ,

1
3
τ

� �
+ y −

1
2
y

����
���� = 3

5
τ +

1
2
yj j:

ð18Þ

As a result, ð f , φÞ forms a soft inf-comparable contrac-
tion on R.

We say that a soft point exτ ∈ SP ð~XÞ is a soft fixed point
of a self-soft-mapping ð f , φÞ if ð f , φÞðexτÞ = exτ.
Theorem 7. Let ψ : ℝ+ðP Þ→ℝ+ðP Þ be a soft inf -compa-
rable mapping. Let ð f , φÞ: M→M be a soft inf -comparable
contraction on a complete soft metric space M. Then, a soft
mapping ð f , φÞ possesses a soft fixed point.

Proof. Let fx0τ0 ∈ SP ð~XÞ be given. For each n ∈ℕ ∪ f0g, we
put

gxn+1τn+1
= f , φð Þ fxnτn

� �� �
= f n+1 fx0τ0

� �� �
φn+1 τ0ð Þ

: ð19Þ

Then, we have for each n ∈ℕ ∪ f0g

~d fxnτn , gxn+1τn+1

� �
= ~d f , φð Þ gxn−1τn−1

� �
, f , φð Þ xnτn

~
����

≤~ψ max ~d gxn−1τn−1
,fxnτn

� �
, ~d gxn−1τn−1

, f , φð Þ gxn−1τn−1

� �� �
, ~d

n�
� fxnτn , f , φð Þ fxnτn

� �� �o�
= ψ max ~d gxn−1τn−1

,fxnτn
� �

, ~d
n�

� gxn−1τn−1
,fxnτn

� �
, ~d fxnτn , gxn+1τn+1

� �o�
:

ð20Þ

Since ψ : ℝ+ðP Þ→ℝ+ðP Þ is a soft inf -comparable
mapping, we can conclude that for each n ∈ℕ ∪ f0g,

~d fxnτn , xn+1τn+1

~Þ≤~ψ ~d gxn−1τn−1
,fxnτn

� �� �
:

�
ð21Þ
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By induction, we obtain that

~d fxnτn , xn+1τn+1

~
�
≤~ψ ~d gxn−1τn−1

, xnτn
~
��

≤~ψ2 ~d gxn−2τn−2
, xn−1τn−1

~
�������

≤~⋯≤~ψn ~d fx0τ0 ,fx1τ1
� �� �

:

ð22Þ

By Lemma 4, we obtained that

lim
n→∞

~d fxnτn , gxn+1τn+1

� �
= �0: ð23Þ

In what follows, we check whether the sequence ffxnτng is
Cauchy: for each ~ε, there is n0 ∈ℕ such that if n, k ≥ n0, then

~d
g
xkrτkr , x

nr
τnr

~
	
<~~ε:



ð24Þ

Suppose, on the contrary, that the statement ð∗Þ is false.
Then, there exists ε~>~�0 such that, for any r ∈ℕ, there are
nr , kr ∈ℕ with nr > kr ≥ r satisfying that

(1) nr is even and kr is odd

(2) ~dðgxkrτkr , xnrτnr ~Þ≥~~ε

(3) nr is the smallest even number such that condition
ð2Þ holds

By ð1Þ and ð2Þ, we conclude that

ε~≤~~d
g
xkrτkr , x

nr
τnr

~
	
≤~~d

g
xkrτkr ,

gxnr−2τnr −2


 	
+ ~d gxnr −2τnr −2

, gxnr−1τnr −1


 	


+ ~d gxnr−1τnr −1
, xnrτnr

~
	
≤~~ε + ~d gxnr −2τnr −2

, gxnr−1τnr −1


 	
+ ~d gxnr −1τnr −1

,gxnrτnr

 	

:



ð25Þ

Letting r→∞, we obtain that

limr→∞
~d
g
xkrτkr ,

gxnrτnr

 	

= ~ε: ð26Þ

On the other hand,

ε~≤~~d
g
xkr −1τkr −1

, xnr−1τnr−1

~
	
≤~~d

g
xkr−1τkr −1

, gxnr −3τnr −3


 	
+ ~d gxnr −3τnr −3

, gxnr−2τnr −2


 	


+ ~d gxnr−2τnr −2
, xnr−1τnr−1

~
	
≤~~ε + ~d gxnr −3τnr −3

, gxnr−2τnr −2


 	
+ ~d gxnr−2τnr −2

, gxnr −1τnr −1


 	
:




ð27Þ

Letting r→∞, we obtain that

limr→∞
~d
g
xkr −1τkr −1

, gxnr −1τnr −1


 	
= ~ε: ð28Þ

By the above arguments, we obtain that

~d
g
xkrτkr ,

gxnrτnr

 	

= ~d f , φð Þ f , φð Þ, f , φð Þ xnr−1τnr−1

~
����

≤~ψ max ~d
g
xkr −1τkr −1

, gxnr −1τnr −1


 	
, d

�


� g
xkr −1τkr −1

, f , φð Þ g
xkr −1τkr−1


 	
 	
, d

� gxnr −1τnr −1
, f , φð Þ xnr−1τnr−1

~
		�	



≤~ψ max ~d
g
xkr −1τkr −1

, gxnr −1τnr −1


 	
, ~d g

xkr −1τkr −1
, fxkrτkr


 	
, d

�


� gxnr −1τnr −1
,gxnrτnr


 	�	
:

ð29Þ

Taking limr→∞ inf , we get ε~<~~ε. This implies a contra-
diction. So the sequence ffxnτng is Cauchy.

Since M is complete, there exists ex∗τ ∈ ~X such that

fxnτn → ex∗τ as n→∞, ð30Þ

that is,

~d fxnτn , ex∗τ
� �

→ �0 as n→∞: ð31Þ

Notice also that

~d f , φð Þ ex∗τ� �
, x∗τ

~
�
≤~~d f , φð Þ fxnτn

� �
, f , φð Þ ex∗τ� �� ��

+ ~d f , φð Þ fxnτn
� �

, x∗τ
~
��

<~ψ max ~d fxnτn , ex∗τ
� �

, ~d fxnτn , f , φð Þ fxnτn
� �� �

, ~d ex∗τ , f , φð Þ
�n�

· ex∗τ� ��o�
+ ~d gxn+1τn+1

, x∗τ
~
��

<~ψ max ~d fxnτn , ex∗τ
� �

, ~d fxnτn , gxn+1τn+1

� �
, ~d ex∗τ , f , φð Þ ex∗τ� �� �n o� �

+ ~d gxn+1τn+1
, ex∗τ� �

:

ð32Þ

Taking n→∞, we get that

~d f , φð Þ ex∗τ� �
, x∗τ

~
��

≤~ψ max �0, �0; ;~d ex∗τ , f , φð Þ ex∗τ� �� �n o� �
+�0<~~d f , φð Þ ex∗τ� �

, ex∗τ� �
,

ð33Þ

and this is a contradiction unless ~dðð f , φÞð ex∗τ Þ, ex∗τ Þ = �0. Thus,
ð f , φÞð~x∗τ Þ = ~x∗λ completes the proof.

Example 8. Consider Example 6. All hypotheses of Theorem
7 are fulfilled. Thus, we can conclude that �00 is a fixed soft
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point of the soft inf -comparable Meir-Keeler contraction
ð f , φÞ.

3. Observation on the Soft Comparable Meir-
Keeler Contractions

We start this section by recalling the Meir-Keeler contraction
in the standard setting.

Definition 9. (see). A self-mapping g on a metric space ðX, dÞ
is called a Meir-Keeler contraction if the following is fulfilled:
for any η > 0, there is γ > 0 such that

η ≤ d x, yð Þ < η + γ⇒ d gx, gyð Þ < η for all x, y ∈ X: ð34Þ

The mapping ϕ : ℝ+ðP Þ ×ℝ+ðP Þ ×ℝ+ðP Þ→ℝ+ðP Þ is
said to be soft comparable, if the following two axioms are
fulfilled:

(ϕ1) ϕ is a soft increasing and soft continuous function in
each coordinate

(ϕ2) for ~ω ∈ℝ+ðP Þ \ f�0g, ϕð~ω, ~ω, ω~Þ<~~ω, and ϕðfω1,fω2
,fω3Þ = �0 if and only iffω1 =fω2 =fω3 = �0

Now, we introduce the notion of soft comparable Meir-
Keeler contraction.

Definition 10. Let ϕ : ℝ+ðP Þ ×ℝ+ðP Þ ×ℝ+ðP Þ→ℝ+ðP Þ
be soft comparable. A self-soft-mapping ð f , φÞ on a soft met-
ric space M is called a soft comparable Meir-Keeler contrac-
tion if for each soft real number η~>~�0, there is γ~>~�0 such
that

η~≤~ϕ ~d exp, eyτ� �
, ~d exp, f , φð Þ exp� ��

, ~d eyτ, f , φð Þ yτ
~
�������

<~~η + ~γ⇒ ~d f , φð Þ exp� �
, f , φð Þ yτ

~��<~~η,
��

ð35Þ

for each soft points exλ, eyμ ∈ SP ð~XÞ.

Example 11. Set R = ðeℝ, ~d,P Þ where the soft metric is
expressed as

dφ p, τð Þ =max p, τf g, d x, yð Þ = x − yj j,
~d exp, eyτ� �

= dφ p, τð Þ + d x, yð Þ,
ð36Þ

with P = ½0,∞Þ, φðtÞ = ð1/3Þt for t ∈ ½0,∞Þ.
Let ϕ : ℝ+ðP Þ ×ℝ+ðP Þ ×ℝ+ðP Þ→ℝ+ðP Þ be denoted

by

ϕ fω1,fω2,fω3ð Þ = 3
4
· max fω1,fω2,fω3f g, ð37Þ

where

fω1 = ~d exp, eyτ� �
,

fω2 = ~d exp, f , φð Þ exp� �� �
,

fω3 = ~d eyτ, f , φð Þ eyτð Þð Þ:

ð38Þ

Let f ðxÞ = ð1/2Þx. Then,

~d f , φð Þ exp� �
, f , φð Þ eyτð Þ� �

= ~d
g1

2
x 1/3ð Þp,

g1
2
y 1/3ð Þτ

 !

=
1
3
max p, τf g + 1

2
x − yj j,

~ω1 = ~d exp, eyτ� �
=max p, τf g + x − yj j,

fω2 = ~d exp, g1
2
x 1/3ð Þp

 !
=max p,

1
3
p

� �
+ x −

1
2
x

����
���� = p +

1
2
xj j,

fω3 = ~d eyτ, g1
2
y 1/3ð Þτ

 !
=max τ,

1
3
τ

� �
+ y −

1
2
y

����
���� = τ +

1
2
yj j:

ð39Þ

So we can conclude that

ϕ fω1,fω2,fω3, et4� �
=
3
4
· max fω1,fω2, ω3

~
�
≥~ 3

4
fω1 =

3
4

max p, τf g+∣x − y ∣ð Þ:
�

ð40Þ

Consequently, a soft mapping ð f , φÞ forms a soft compa-
rable Meir-Keeler contraction on R.

We establish the following fixed point results for the soft
comparable Meir-Keeler contraction.

Theorem 12. Let M be a complete soft metric space, and let
ϕ : ℝ+ðP Þ ×ℝ+ðP Þ ×ℝ+ðP Þ→ℝ+ðP Þ be a soft compara-
ble. Let ð f , φÞ: M→M be a soft comparable Meir-Keeler
contraction on M. Then, ð f , φÞ possesses a soft fixed point.

Proof. Let fx0τ0 ∈ SP ð~XÞ be given. For each n ∈ℕ ∪ f0g, we
put

gxn+1τn+1
= f , φð Þ fxnτn

� �� �
= f n+1 fx0τ0

� �� �
φn+1 τ0ð Þ

: ð41Þ

So, for each n ∈ℕ ∪ f0g we have

~d fxnτn , gxn+1τn+1

� �
= ~d f , φð Þ gxn−1τn−1

� �
, f , φð Þ xnτn

~
����

≤~ϕ ~d gxn−1τn−1
,fxnτn

� �
, ~d gxn−1τn−1

, f , φð Þ gxn−1τn−1

� �� �
, ~d fxnτn , f , φð Þ fxnτn

� �� �� �
= ϕ ~d gxn−1τn−1

,fxnτn
� �

, ~d gxn−1τn−1
,fxnτn

� �
, ~d fxnτn , gxn+1τn+1

� �� �
:

ð42Þ

5Journal of Function Spaces



If ~dðgxk−1τk−1
, xkτk

~Þ<~~dðfxkτk , gxk+1τk+1
Þ for some k ∈ℕ, then by the

above inequality and the conditions of the function ϕ, we
have

~d fxkτn , xk+1τk+1

~�
≤~ϕ ~d gxk−1τk−1

,fxkτk
� �

, ~d gxk−1τk−1
,fxkτk

� �
, ~d ~k

n
τk
, xk+1τk+1

~�����
<~~d fxkτk , gxk+1τk+1

� �
,

ð43Þ

which implies a contradiction. Hence, for each n ∈ℕ, we
find

~d fxnτn , xn+1τn+1

~
�
<~~d gxk−1τk−1

,fxkτk
� �

:
�

ð44Þ

Thus, the sequence f~dðfxnτn , gxn+1τn+1
Þg is decreasing and con-

verges to a soft real number, say γ~≥~�0. In other words,
~dðfxnτn , gxn+1τn+1

Þ→ ~γ, as n→∞.

Notice that ~γ = inf f~dðfxnτn , gxn+1τn+1
Þ: n ∈ℕ ∪ f0gg. We

claim that ~γ = �0. Suppose, on the contrary, that γ~>~�0. Since
ð f , φÞ is a soft comparable Meir-Keeler contraction, corre-
sponding to ~γ, there exists η~>~�0 and k ∈ℕ such that

γ~≤~ϕ ~d fxkτk , gxk+1τk+1

� �
, ~d fxkτk , gxk+1τk+1

� �
, ~d gxk+1τk+1

, xk+2τk+2

~��<~~γ + ~η
��

⇒ ~d gxk+1τk+1
, gxk+2τk+2

� �
= ~d f , φð Þ fxkτk

� �
, f , φð Þ xk+1τk+1

~��<~~γ:
��

ð45Þ

This is a contradiction since ~γ = inf f~dðfxnτn , gxn+1τn+1
Þ: n ∈ℕ

∪ f0gg. Thus, we obtain that ~dðfxnτn , gxn+1τn+1
Þ→ �0, as n→∞.

As a next step, we check whether the sequence ffxnτng is
Cauchy inM. Suppose, on the contrary, it is not. Thus, there
exists a soft real number ε~>~�0 such that for any k ∈ℕ, there
are mk, nk ∈ℕ with nk >mk ≥ k satisfying

~d gxmk
τmk

, xnkτnk
~
�
≥~~ε:

�
ð46Þ

Further, corresponding to mk ≥ k, we can choose nk in
such a way that it is the smallest integer with nk >mk ≥ k

and ~dðgxmk
τmk

, xnkτnk
~Þ≥~~ε. Therefore,

~d gxmk
τmk

, xnk−2τnk−2

~
�
<~~ε:

�
ð47Þ

So, we derive that

ε~≤~~d gxmk
τmk

, xnkτnk
~
	
≤~~d gxmk

τmk
, gxnk−2τnk−2


 	
+ ~d gxnk−2τnk−2

, gxnk−1τnk−1


 	


+ ~d gxnk−1τnk−1
, xnkτnk

~
	
<~~ε + ~d gxnk−2τnk−2

, gxnk−1τnk−1


 	
+ ~d gxnk−1τnk−1

,gxnkτnk

 	

,



ð48Þ

for all k ∈ℕ. As k→∞, the inequality above yields that

lim
k→∞

~d gxmk
τmk

,gxnkτnk
� �

= ~ε: ð49Þ

On the other hand, we have

ε~≤~~d gxmk
τmk

, xnkτnk
~
	
≤~~d gxmk

τmk
, gxmk+1

τmk+1


 	
+ ~d gxmk+1

τmk+1
, gxnk+1τnk+1


 	


+ ~d gxnk+1τnk+1
, xnkτnk

~
	
≤~~d gxmk

τmk
, gxmk+1

τmk+1


 	
+ ~d gxmk+1

τmk+1
,gxmk

τmk


 	


+ ~d gxmk
τmk

,gxnkτnk
� �

+ ~d gxnkτnk , gxnk+1τnk+1


 	
+ ~d gxnk+1τnk+1

,gxnkτnk

 	

:

ð50Þ

Letting k→∞ in the above inequality, we get

lim
k→∞

~d gxmk+1
λmk+1

, gxnk+1λnk+1


 	
= ~ε: ð51Þ

Since ð f , φÞ is a soft comparable Meir-Keeler contraction,
we have

~d gxmk+1
τmk+1

, gxnk+1τnk+1


 	
= ~d f , φð Þ gxmk

τmk

� �
, f , φð Þ xnkτnk

~
����

<~ϕ ~d gxmk
τmk

,gxnkτnk
� �

, ~d gxmk
τmk

, gxmk+1
τmk+1


 	
, ~d gxnkτnk , gxnk+1τnk+1


 	
 	
:

ð52Þ

Moreover, since

~d gxmk
τmk

, xnk+1τnk+1

~
	
≤~~d ~xmk

τmk
, gxmk+1

τmk+1


 	
+ ~d gxmk+1

τmk+1
, gxnk+1τnk+1


 	
,~d gxnkτnk , xmk+1

τmk+1

~
��


≤~~d gxnkτnk , gxnk+1τnk+1


 	
+ ~d gxnk+1τnk+1

, gxmk+1
τmk+1


 	
:

ð53Þ

Taking k→∞ in the above inequalities, we get that

ε~≤~ϕ ~ε,~ε, ε~Þ<~~ε,ð ð54Þ

and this is a contradiction. Thus, the sequence ffxnλng is

Cauchy.
Keeping the completeness of M in mind, one can findex∗τ ∈ ~X such that

fxnτn → ex∗τ as n→∞, ð55Þ

that is,

~d fxnτn , ex∗τ
� �

→ �0 as n→∞: ð56Þ
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And, we also have

~d f , φð Þ ex∗τ� �
, x∗τ

~
�
≤~~d f , φð Þ fxnτn

� �
, f , φð Þ ex∗τ� �� ��

+ ~d f , φð Þ fxnτn
� �

, x∗τ
~
�
<~ϕ ~d fxnτn , ex∗τ

� �
, d

��
� fxnτn , f , φð Þ fxnτn

� �� �
, ~d ex∗τ , f , φð Þ ex∗τ� �� ��

+ ~d gxn+1τn+1
, x∗τ

~
�
<~ϕ ~d fxnτn , ex∗τ

� �
, ~d fxnτn , gxn+1τn+1

� �
, d

��
� ex∗τ , f , φð Þ ex∗τ� �� ��

+ ~d gxn+1τn+1
, ex∗τ� �

:

ð57Þ

Taking k→∞ in the inequality above,

~d f , φð Þ ex∗τ� �
, x∗τ

~
�
≤~ϕ �0, �0, ~d f , φð Þ ex∗τ� �� �

+�0
�
≤~ϕ ~d f , φð Þ ex∗τ� �

, ex∗τ� �
, ~d f , φð Þ ex∗τ� �

, ex∗τ� �
, d

�
· f , φð Þ ex∗τ� �

, x∗τ
~
��

<~~d f , φð Þ ex∗τ� �
, ex∗τ� �

,
� ð58Þ

a contradiction unless ~dðð f , φÞð ex∗τ Þ, ex∗τ Þ = �0. Thus, ð f , φÞ
ð~x∗τ Þ = ~x∗τ which completes the proof.

Example 13. Consider Example 11. One can easily check all
hypotheses of Theorem 12. Consequently, we conclude that
�00 is a fixed soft point of the soft comparable Meir-Keeler
contraction ð f , φÞ.

We next introduce the notion of soft generalized Meir-
Keeler contraction, as follows:

Definition 14. Let ð~X, ~d,P Þ be a soft metric space. A mapping
ð f , φÞ: ð~X, ~d,P Þ→ ð~X, ~d,P Þ is called a soft generalized
Meir-Keeler contraction if for any soft real number η~>~�0,
there exists γ~>~�0 such that for each soft point exp, eyτ ∈ SP
ð~XÞ,

η~≤~ max ~d exp, f , φð Þ exp� �� �
, ~d eyτ, f , φð Þ eyτð Þð Þ, ~d exp, f , φð Þ yτ

~
��o��n

<~~η + ~γ⇒ ~d f , φð Þ exp� �
, f , φð Þ yτ

~ÞÞ<~~η:ð�
ð59Þ

It is clear that the soft generalized Meir-Keeler contrac-
tion is a comparable soft Meir-Keeler contraction; we can
easily conclude the following corollary.

Corollary 15. A soft generalized Meir-Keeler contraction
onð f , φÞwhich is a complete soft metric spaceMpossesses a
fixed soft point.
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We consider a fixed-point problem for mappings involving a rational type and almost type contraction on complete metric spaces.
To do this, we are using F-contraction and ðH, φÞ-contraction. We also present an example to illustrate our result.

1. Introduction

The beginning of metrical fixed point theory is related to
Banach’s Contraction Principle, presented in 1922 [1], which
says that any contraction self-map on M has a unique fixed
point whenever ðM, dÞ is complete. Afterwards, the crucial
role of the principle in existence and uniqueness problems
arising in mathematics has been realized which fact directed
the researchers to extend and generalize the principle in
many ways (see [2–7]).

In the studies of generalizations and modifications of
contractions, an interesting generalization was given byWar-
dowski [8] using a new concept F-contraction. Then, many
authors gave some results using this concept in different type
metric spaces. One of them is given by Jleli et al. [9] by intro-
ducing a family H of functions H : ½0,∞Þ3 → 0,∞Þ with the
certain assumption. Also, you can find this type generaliza-
tions in [10–12].

In this paper, we consider a fixed-point problem for map-
pings involving a rational type contraction and almost con-
traction. Firstly, we recall some basic on the notions of F
-contraction and ðH, ϕÞ-contraction.

2. Preliminaries

Let F be the family of all functions F : ℝ+ = ½0,∞Þ→ℝ sat-
isfying the following conditions:

(F1) F is nondecreasing;
(F2) for every sequence fαng of positive numbers

limn→+∞αn = 0 if and only if limn→+∞FðαnÞ = −∞;

(F3) there exists k ∈ �0, 1½ such that limα→0+α
kFðαÞ = 0.

([8])

Definition 1. (see [8]). Let ðM, dÞ be a metric space and Y
: M→M be a mapping. Given F ∈F , we say that Y is F
-contraction, if there exists τ > 0 such that

μ, γ ∈M, d Yμ, Yγð Þ > 0⇒ τ + F d Yμ, Yγð Þð Þ ≤ F d μ, γð Þð Þ:
ð1Þ

Taking in (1) different functions F ∈F , one gets a variety
of F-contractions, and some of them being already known in
the literature. You can see this contractions in [8]. In addi-
tion, Wardowski concluded that every F-contraction Y is a
contractive mapping, i.e.,

d Yμ, Yγð Þ < d μ, γð Þ, forallμ, γ ∈M, Yμ ≠ Yγ: ð2Þ

Thus, every F-contraction is a continuous mapping.

Theorem 2. (see [8]). Let ðM, dÞ be a complete metric space
(C:M:S) and let Y : M→M be an F-contraction. Then, Y
has a unique fixed point in M.

In [9], Jleli et al. introduced a family H of functions H
: ½0,+∞3 → 0,+∞ satisfying the following conditions:

(H1) max fα, βg ≤Hðα, β, γÞ for all α, β, γ ∈ 0, +∞;
(H2) Hð0, 0, 0Þ = 0;
(H3) H is continuous.
Some examples of functions belonging to H are given as

follows:
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(i) Hðα, β, γÞ = α + β + γ for all α, β, γ ∈ 0, +∞
(ii) Hðα, β, γÞ =max fα, βg + γ for all α, β, γ ∈ 0, +∞
(iii) Hðα, β, γÞ = α + β + αβ + γ for all α, β, γ ∈ 0, +∞

Using a function H ∈H , the authors of [9] introduced the
following notion of ðH, ϕÞ-contraction.

Definition 3. (see [9]). Let ðM, dÞ be a metric space, ϕ : M
→ 0, +∞ be a given function, and H ∈H . Then, Y : M→
M is called a ðH, ϕÞ-contraction with respect to the metric
d if and only if

H d Yμ, Yγð Þ, ϕ Yμð Þ, ϕ Yγð Þð Þ
≤ kH d μ, γð Þ, ϕ μð Þ, ϕ γð Þð Þ for all μ, γ ∈M,

ð3Þ

for some constant k ∈ �0, 1½.

Now, we set

Zϕ ≔ μ ∈M : ϕ μð Þ = 0f g,
FY ≔ μ ∈M : Yμ = μf g:

ð4Þ

Furthermore, we say that Y is a ϕ-Picard operator if and
only if the following condition holds

FY ∩ Zϕ = ςf g andYnμ→ ς, as n→ +∞,for each μ ∈M:

ð5Þ

Theorem 4. (see [9]). Let ðM, dÞ be a C:M:S, ϕ : M→ 0, +∞
be a given function and H ∈H . Suppose that the following
conditions hold

(A1) ϕ is lower semicontinuous (l.s.c.);
(A2) Y : M→M is a ðH, ϕÞ-contraction with respect to

the metric d.
Then,

FY ⊂ Zϕ ; ð6Þ

(i) Y is a ϕ-Picard operator

(ii) For all μ ∈M and for all n ∈ℕ, we have

d Ynμ, ςð Þ ≤ kn

1 − k
H d Yμ, μð Þ, ϕ Yμð Þ, ϕ μð Þð Þ, ð7Þ

where fςg = FY ∩ Zϕ = FY .
Recently, Vetro ([13]) generalized Theorem 4 by using F

-H-contraction.

Definition 5. (see [13]). Let ðM, dÞ be a metric space and let
Y : M→M be a mapping. The mapping Y is called an F -
H-contraction if there exists F ∈F , H ∈H , a real number,
τ > 0 and ϕ : M→ 0,+∞Þ s.t.

τ + F H d Yμ, Yγð Þ, ϕ Yμð Þ, ϕ Yγð Þð Þð Þ ≤ F H d μ, γð Þ, ϕ μð Þ, ϕ γð Þð Þð Þ,
ð8Þ

for all μ, γ ∈M with HðdðYμ, YγÞ, ϕðYμÞ, ϕðYγÞÞ > 0.
We remark that every F-contraction is an F-H-contrac-

tion such that H ∈H defined by Hðx, y, zÞ = x + y + z for all
x, y, z ∈ 0, +∞ and ϕ : M→ 0, +∞ defined by ϕðμÞ = 0 for
all μ ∈M.

Lemma 6. (see [13]). Let ðM, dÞ be a metric space and let Y
: M→M be an F -H-contraction with respect to the functions
F ∈F , H ∈H , ϕ : M→ 0, +∞, and the real number τ > 0. If
fμng is a sequence of Picard starting at μ0 ∈M, then

lim
n→+∞

H d μn−1, μnð Þ, ϕ μn−1ð Þ, ϕ μnð Þð Þ = 0, ð9Þ

and hence

lim
n→+∞

d μn−1, μnð Þ = 0 and lim
n→+∞

ϕ μnð Þ = 0: ð10Þ

Theorem 7. (see [13]). Let ðM, dÞ be a C:M:S and Y : M→
M be an F - H-contraction with respect to the functions F ∈
F , H ∈H , the real number τ > 0, and a l.s.c. function ϕ : M
→ 0, +∞ such that (8) holds; that is,

τ + F H d Yμ, Yγð Þ, ϕ Yμð Þ, ϕ Yγð Þð Þð Þ ≤ F H d μ, γð Þ, ϕ μð Þ, ϕ γð Þð Þð Þ,
ð11Þ

for all μ, γ ∈M with HðdðYμ, YγÞ, ϕðYμÞ, ϕðYγÞÞ > 0. Then,
Y has a unique fixed point ς such that ϕðςÞ = 0.

Theorem 8. (see [13]). Let ðM, dÞ be a C:M:S and let Y : M
→M be a mapping. Assume that there exists a continuous
function F that satisfies the conditions (F1) and (F2), a func-
tion H ∈H , a real number τ > 0, and a l.s.c. function ϕ : M
→ 0, +∞ such that (8) holds; that is,

τ + F H d Yμ, Yγð Þ, ϕ Yμð Þ, ϕ Yγð Þð Þð Þ ≤ F H d μ, γð Þ, ϕ μð Þ, ϕ γð Þð Þð Þ,
ð12Þ

for all μ, γ ∈M with HðdðYμ, YγÞ, ϕðYμÞ, ϕðYγÞÞ > 0. Then,
Y has a unique fixed point ς such that ϕðςÞ = 0.

3. Main Results

We first introduce the rational type F-H-contraction.

Definition 9. Let ðM, dÞ be a metric space and Y : M→M be
a mapping. Y is called a rational type F - H-contraction if
there exists F ∈F , H ∈H , a real number τ > 0, and ϕ : M
→ 0, +∞ s.t.

τ + F H d Yμ, Yγð Þ, ϕ Yμð Þ, ϕ Yγð Þð Þð Þ ≤ F H M μ, γð Þ, ϕ μð Þ, ϕ γð Þð Þð Þ,
ð13Þ
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for all μ, γ ∈M with HðdðYμ, YγÞ, ϕðYμÞ, ϕðYγÞÞ > 0 where

M μ, γð Þ =max d μ, γð Þ, d μ, Yμð Þ 1 + d γ, Yγð ÞÞ½ �
1 + d Yμ, Yγð Þ

� �
: ð14Þ

Lemma 10. Let ðM, dÞ be a metric space and Y : M→M be a
rational type F - H-contraction with respect to the functions
F ∈F , H ∈H , ϕ : M→ 0, +∞, and the real number τ > 0.
If fμng is a sequence of Picard starting at μ0 ∈M, then

lim
n→+∞

H d μn−1, μnð Þ, ϕ μn−1ð Þ, ϕ μnð Þð Þ = 0, ð15Þ

and hence

lim
n→+∞

d μn−1, μnð Þ = 0 and lim
n→+∞

ϕ μnð Þ = 0: ð16Þ

Proof. By replacing the contradiction in [[13], (29)] with con-
tradiction (13) and following the proof of [[13], Lemma 1],
we immediately have the desired result.

Theorem 11. Let ðM, dÞ be a C:M:S and let Y : M→M be an
rational type F - H-contraction with respect to the functions
F ∈F , H ∈H , the real number τ > 0, and a l.s.c. function ϕ
: M→ 0, +∞ such that (13) holds for all μ, γ ∈M with Hðdð
Yμ, YγÞ, ϕðYμÞ, ϕðYγÞÞ > 0. Then, Y has a unique fixed point
ς such that ϕðςÞ = 0.

Proof. First, we shall proof the uniqueness. Arguing by con-
tradiction, we assume that there exist ς,w ∈M such that ς
= Yς, w = Yw, and ς ≠w. The hypothesis ς ≠w ensures, by
the property (H1) of the function H, that

H d Yς, Ywð Þ, ϕ Yςð Þ, ϕ Ywð Þð Þ ≥ d Yς, Ywð Þ = d ς,wð Þ > 0:
ð17Þ

Using (13) with μ = ς and γ =w, we obtain

τ + F H d Yς, Ywð Þ, ϕ Yςð Þ, ϕ Ywð Þð Þð Þ
= τ + F H d ς,wð Þ, ϕ ςð Þ, ϕ wð Þð Þð Þ
≤ F H M ς,wð Þ, ϕ ςð Þ, ϕ wð Þð Þð Þ
≤ F H max d ς,wð Þ, d ς, Yςð Þ 1 + d w, Ywð ÞÞ½ �

1 + d Yς, Ywð Þ
� �

, ϕ ςð Þ, ϕ wð Þ
� �� �

≤ F H max d ς,wð Þ, d ς, ςð Þ 1 + d w,wð ÞÞ½ �
1 + d ς,wð Þ

� �
, ϕ ςð Þ, ϕ wð Þ

� �� �
≤ F H d ς,wð Þ, ϕ ςð Þ, ϕ wð Þð Þð Þ,

ð18Þ

which is a contradiction. So, we have w = ς, and the fixed
point is unique.

Now, we can show the existence of a fixed point. Take a
point μ0 ∈M and create the fμng sequence starting at μ0.
We emphasize that if μk−1 = μk for some k ∈ℕ, then ς =
μk−1 = μk = Yμk−1 = Yς; that is, ς is a fixed point of Y such
that ϕðςÞ = 0. In fact, by Lemma 10, Hðdðμk−1, μkÞ, ϕðμk−1Þ,
ϕðμkÞÞ = 0 and by the property (H1) of the function H, we

have ϕðςÞ = 0. So, we can suppose that μn−1 ≠ μn for every n
∈ℕ.

In this step, we show that fμng is a Cauchy. By Lemma
10, we say that

0 < hn−1 =H d μn−1, μnð Þ, ϕ μn−1ð Þ, ϕ μnð Þð Þ→ 0 as n→ +∞:

ð19Þ

There exists k ∈ �0, 1½ such that hknFðhnÞ→ 0 as n→ +∞
by he property (F3) of F: Using (13) with μ = μn−1 and γ =
μn, we get

F H d μn, μn+1ð Þ, ϕ μnð Þ, ϕ μn+1ð Þð Þð Þ
≤ F H M μn−1, μnð Þ, ϕ μn−1ð Þ, ϕ μnð Þð Þð Þ − τ

≤ F H max d μn−1, μnð Þ,fðð
·d μn−1, Yμn−1ð Þ 1 + d μn, Yμnð ÞÞ½ �

1 + d Yμn−1, Yμnð Þ
�
, ϕ μn−1ð Þ, ϕ μnð ÞÞÞ − τ

≤ F H d μn−1, μnð Þ, ϕ μn−1ð Þ, ϕ μnð Þð Þð Þ − τ

≤ F H d μ0, μ1ð Þ, ϕ μ0ð Þ, ϕ μ1ð Þð Þð Þ − nτ,
ð20Þ

for all n ∈ℕ; that is,

F hnð Þ ≤ F hn−1ð Þ − τ ≤⋯≤ F h0ð Þ − nτ for all n ∈ℕ: ð21Þ

From

0 = lim
n→+∞

hknF hnð Þ ≤ lim
n→+∞

hkn F h0ð Þ − nτð Þ ≤ 0, ð22Þ

we deduce that

lim
n→+∞

hknn = 0: ð23Þ

This provides that∑+∞
n=1 hn is convergent. By the property

(H1) of the function H, also, the series ∑+∞
n=1 dðμn, μn+1Þ is

convergent and hence fμng is a Cauchy sequence. Now, since
ðM, dÞ is complete, there exists ς ∈M such that

lim
n→+∞

μn = ς: ð24Þ

By (13), taking into account that ϕ is a l.s.c. function, we
have

0 ≤ ϕ ςð Þ ≤ liminf
n→+∞

ϕ μnð Þ = 0 ; ð25Þ

that is, ϕðςÞ = 0. Now, show that ς is a fixed point. If there
exists a subsequence fμnkg of fμng such that μnk = ς or Y
μnk = Yς, for all k ∈ℕ, then ς is a fixed point. Otherwise, we
can assume that μn ≠ ς and Yμn ≠ Yς for all n ∈ℕ. So, using
(13) with μ = μn and γ = ς, we deduce that

τ + F H d Yμn, Yςð Þ, ϕ Yμnð Þ, ϕ Yςð Þð Þð Þ
≤ F H M μn, ςð Þ, ϕ μnð Þ, ϕ ςð Þð Þð Þ: ð26Þ
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Since τ > 0, we obtain

H d Yμn, Yςð Þ, ϕ Yμnð Þ, ϕ Yςð Þð Þ
<H M μn, ςð Þ, ϕ μnð Þ, ϕ ςð Þð Þ for all n ∈ℕ,

ð27Þ

and so

d ς, Yςð Þ ≤ d ς, μn+1ð Þ + d Yμn, Yςð Þ
≤ d ς, μn+1ð Þ +H d Yμn, Yςð Þ, ϕ Yμnð Þ, ϕ Yςð Þð Þ
< d ς, μn+1ð Þ +H M μn, ςð Þ, ϕ μnð Þ, ϕ ςð Þð Þ
< d ς, μn+1ð Þ +H max d μn, ςð Þ,fð
� d μn, Yμnð Þ 1 + d ς, Yςð ÞÞ½ �

1 + d Yμn, Yςð Þ
�
, ϕ μnð Þ, ϕ ςð ÞÞ

≤ d ς, μn+1ð Þ +H max d μn, ςð Þ,fð
� d μn, μn+1ð Þ 1 + d ς, Yςð ÞÞ½ �

1 + d μn+1, Yςð Þ
�
, ϕ μnð Þ, ϕ ςð ÞÞ,

ð28Þ

for all n ∈ℕ.
Finally, letting n→ +∞ in the above calculations and

using that H is continuous in ð0, 0, 0Þ, we deduce that dðς,
YςÞ ≤Hð0, 0, 0Þ = 0; that is, ς = Yς.

Imposing that F is a continuous function and relaxing the
hypothesis ðF3Þ, we can give t Theorem 12.

Theorem 12. Let ðM, dÞ be a C:M:S and Y : M→M be a
mapping. Assume that there exists a continuous function F
that satisfies the conditions (F1) and (F2), a function H ∈H ,
a real number τ > 0, and a l.s.c. function ϕ : M→ 0, +∞ s.t.

τ + F H d Yμ, Yγð Þ, ϕ Yμð Þ, ϕ Yγð Þð Þð Þ
≤ F H M μ, γð Þ, ϕ μð Þ, ϕ γð Þð Þð Þ, ð29Þ

for all μ, γ ∈M with HðdðYμ, YγÞ, ϕðYμÞ, ϕðYγÞÞ > 0. Then,
Y has a unique fixed point ς such that ϕðςÞ = 0.

Proof. Following the similar arguments as in the proof of
Theorem 11, we obtain easily the uniqueness of the fixed
point. The existence of a fixed point, we take a point μ0 ∈M
and create the fμng sequence starting at μ0. Clearly, if μk−1
= μk for some k ∈ℕ, then ς = μk−1 = μk = Yμk−1 = Yς; that
is, ς is a fixed point of Y such that ϕðςÞ = 0 (see the proof of
Theorem 11), and so we have already done.

So, we can suppose that μn−1 ≠ μn for every n ∈ℕ. Now,
showing that fμng is a Cauchy. Let us admit the opposite.
Then, there exists a positive real number ε and two sequences
fmkg and fnkg such that

nk >mk ≥ k and d μmk
, μnk

� �
≥ ε > d μmk

, μnk−1
� �

for all k ∈ℕ:

ð30Þ

By Lemma 10, we say that dðμn−1, μnÞ→ 0, ϕðμnÞ→ 0, as
n→ +∞. This implies

lim
k→+∞

d μmk
, μnk

� �
= lim

k→+∞
d μmk−1, μnk−1
� �

= ε: ð31Þ

Now, the hypothesis that dðμmk
, μnkÞ > ε ensures that

H d μmk
, μnk

� �
, ϕ μmk

� �
, ϕ μnk

� �� �
> 0 for all k ∈ℕ: ð32Þ

Using the continuity of H, we have

lim
k→+∞

H d μmk−1, μnk−1
� �

, ϕ μmk−1

� �
, ϕ μnk−1

� �� �
= lim

k→+∞
H d μmk

, μnk
� �

, ϕ μmk

� �
, ϕ μnk

� �� �
=H ε, 0, 0ð Þ > 0:

ð33Þ

Using again (29), with μ = μmk−1 and γ = μnk−1, we get

τ + F H d μmk
, μnk

� �
, ϕ μmk

� �
, ϕ μnk

� �� �� �
≤ F H M μmk−1, μnk−1

� �
, ϕ μmk−1

� �
, ϕ μnk−1

� �� �� �

≤ F H max

d μmk−1, μnk−1
� �

,

d μmk−1, Yμmk−1

� �
1 + d μnk−1, Yμnk−1

� ��h i
1 + d Yμmk−1, Yμnk−1

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
, ϕ μmk−1

� �
, ϕ μnk−1

� �
0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA

≤ F H max

d μmk−1, μnk−1
� �

,

d μmk−1, μmk

� �
1 + d μnk−1, μnk

� ��h i
1 + d μmk

, μnk
� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
, ϕ μmk−1

� �
, ϕ μnk−1

� �
0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA,

ð34Þ

for all k ∈ℕ. Letting k→ +∞ in the previous inequality,
since the function F is continuous, we get

τ + F H ε, 0, 0ð Þð ÞÞ ≤ F H ε, 0, 0ð Þð ÞÞ, ð35Þ

which leads to contradiction. It follows that fμng is a Cauchy
sequence.

Now, since ðM, dÞ is complete, there exists some ς ∈M
such that

lim
n→+∞

μn = ς: ð36Þ

By (29), using lower semicontinuity of ϕ, we get

0 ≤ ϕ ςð Þ ≤ liminf
n→+∞

ϕ μnð Þ = 0 ; ð37Þ

that is, ϕðςÞ = 0. Now, show that ς is a fixed point of Y .
Clearly, ς is a fixed point of Y if there exists a subsequence
fμnkg of fμng such that μnk = ς or Yμnk = Yς, for all k ∈ℕ.
Otherwise, we can assume that μn ≠ ς and Yμn ≠ Yς for all
n ∈ℕ. Then, the property (H1) of the functionH ensures that
HðdðYμn, YςÞ, ϕðYμnÞ, ϕðYςÞÞ > 0 for all n ∈ℕ. So, using
(29) with μ = μn and γ = ς, we deduce that
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τ + F H d Yμn, Yςð Þ, ϕ Yμnð Þ, ϕ Yςð Þð Þð Þ
≤ F H M μn, ςð Þ, ϕ μnð Þ, ϕ ςð Þð Þð Þ
≤ F H max d μn, ςð Þ,fðð
· d μn, Yμnð Þ 1 + d ς, Yςð ÞÞ½ �

1 + d Yμn, Yςð Þ
�
, ϕ μnð Þ, ϕ ςð ÞÞÞ for all n ∈ℕ:

ð38Þ

Since τ > 0, we conclude that

H d Yμn, Yςð Þ, ϕ Yμnð Þ, ϕ Yςð Þð Þ
< F H max d μn, ςð Þ,fðð
· d μn, Yμnð Þ 1 + d ς, Yςð ÞÞ½ �

1 + d Yμn, Yςð Þ
�
, ϕ μnð Þ, ϕ ςð ÞÞÞ for all n ∈ℕ,

ð39Þ

and so

d ς, Yςð Þ ≤ d ς, μn+1ð Þ + d Yμn, Yςð Þ
≤ d ς, μn+1ð Þ +H d Yμn, Yςð Þ, ϕ Yμnð Þ, ϕ Yςð Þð Þ
< d ς, μn+1ð Þ +H max d μn, ςð Þ,fð

·d μn, Yμnð Þ 1 + d ς, Yςð ÞÞ½ �
1 + d Yμn, Yςð Þ

�
, ϕ μnð Þ, ϕ ςð ÞÞ

= d ς, μn+1ð Þ +H max d μn, ςð Þ,fð
· d μn, μn+1ð Þ 1 + d ς, Yςð ÞÞ½ �

1 + d μn+1, Yςð Þ
�
, ϕ μnð Þ, ϕ ςð ÞÞ,

ð40Þ

for all n ∈ℕ. Finally, letting n→ +∞ and using that H is
continuous in ð0, 0, 0Þ, we deduce that dðς, YςÞ ≤Hð0, 0, 0Þ
= 0; that is, ς = Yς.

Definition 13. Let ðM, dÞ be a metric space and let Y : M→
M be a mapping. The mapping Y is called almost F - H
-contraction if there exists a function F ∈F , H ∈H , a real
number τ > 0, and L ≥ 0 and a l.s.c. function ϕ : M→ 0, +∞
such that

τ + F H d Yμ, Yγð Þ, ϕ Yμð Þ, ϕ Yγð Þð Þð Þ
≤ F H d μ, γð Þ + Ld γ, Yμð Þ, ϕ μð Þ, ϕ γð Þð Þð Þ, ð41Þ

for all μ, γ ∈M with HðdðYμ, YγÞ, ϕðYμÞ, ϕðYγÞÞ > 0.

Theorem 14. Let ðM, dÞ be a C:M:S and let Y : M→M be an
almost F - H-contraction with respect to the functions F ∈F ,
H ∈H , the real number τ > 0, and L ≥ 0 and a l.s.c. function
ϕ : M→ 0, +∞ s.t.

τ + F H d Yμ, Yγð Þ, ϕ Yμð Þ, ϕ Yγð Þð Þð Þ
≤ F H d μ, γð Þ + Ld γ, Yμð Þ, ϕ μð Þ, ϕ γð Þð Þð Þ, ð42Þ

for all μ, γ ∈M with HðdðYμ, YγÞ, ϕðYμÞ, ϕðYγÞÞ > 0. Then,
Y has a fixed point ς such that ϕðςÞ = 0.

Proof. The existence of a fixed point we take a point μ0 ∈M
and create the fμng sequence starting at μ0. We stress that
if μk−1 = μk for some k ∈ℕ, then ς = μk−1 = μk = Yμk−1 = Yς;
that is, ς is a fixed point of Y such that ϕðςÞ = 0. In fact, by
Lemma 10, Hðdðμk−1, μkÞ, ϕðμk−1Þ, ϕðμkÞÞ = 0 and by the
property (H1) of the function H, we have ϕðςÞ = 0. So, we
can suppose that μn−1 ≠ μn for every n ∈ℕ.

Now, showing that fμng is a Cauchy. By Lemma 10, we
say that

0 < hn−1 =H d μn−1, μnð Þ, ϕ μn−1ð Þ, ϕ μnð Þð Þ→ 0 as n→ +∞:

ð43Þ

The property (F3) of the function F ensures that there
exists k ∈ �0, 1½ such that hknFðhnÞ→ 0 as n→ +∞. Using
(42), with μ = μn−1 and γ = μn, we get

F H d μn, μn+1ð Þ, ϕ μnð Þ, ϕ μn+1ð Þð Þð Þ
≤ F H d μn−1, μnð Þ + Ld μn, Yμn−1ð Þ, ϕ μn−1ð Þ, ϕ μnð Þð Þð Þ − τ

≤ F H d μn−1, μnð Þ, ϕ μ0ð Þ, ϕ μ1ð Þð Þð Þ − τ

≤ F H d μ0, μ1ð Þ, ϕ μ0ð Þ, ϕ μ1ð Þð Þð Þ − nτ,
ð44Þ

for ∀n ∈ℕ; that is,

F hnð Þ ≤ F hn−1ð Þ − τ ≤⋯≤ F h0ð Þ − nτ for all n ∈ℕ: ð45Þ

From

0 = lim
n→+∞

hknF hnð Þ ≤ lim
n→+∞

hkn F h0ð Þ − nτð Þ ≤ 0, ð46Þ

we deduce that

lim
n→+∞

hknn = 0: ð47Þ

This ensures that the series ∑+∞
n=1 hn is convergent. By the

property (H1) of the function H, also, the series ∑+∞
n=1 dðμn,

μn+1Þ is convergent, and hence fμng is a Cauchy sequence.
Now, since ðM, dÞ is complete, there exists some ς ∈M such
that

lim
n→+∞

μn = ς: ð48Þ

By (42), using lower semicontinuity of ϕ, we get

0 ≤ ϕ ςð Þ ≤ liminf
n→+∞

ϕ μnð Þ = 0 ; ð49Þ

that is, ϕðςÞ = 0. We assert that ς is a fixed point of Y . Clearly,
ς is a fixed point of Y if there exists a subsequence fμnkg of
fμng such that μnk = ς or Yμnk = Yς, for all k ∈ℕ. Otherwise,
we can assume that μn ≠ ς and Yμn ≠ Yς for all n ∈ℕ. So,
using (42) with μ = μn and γ = ς, we deduce that
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τ + F H d Yμn, Yςð Þ, ϕ Yμnð Þ, ϕ Yςð Þð Þð Þ
≤ F H d μn, ςð Þ + Ld ς, Yμnð Þ, ϕ μnð Þ, ϕ ςð Þð Þð Þ: ð50Þ

Since τ > 0, this inequality leads to

H d Yμn, Yςð Þ, ϕ Yμnð Þ, ϕ Yςð Þð Þ
<H d μn, ςð Þ + Ld ς, Yμnð Þ, ϕ μnð Þ, ϕ ςð Þð Þ for all n ∈ℕ,

ð51Þ

and so

d ς, Yςð Þ ≤ d ς, μn+1ð Þ + d Yμn, Yςð Þ
≤ d ς, μn+1ð Þ +H d Yμn, Yςð Þ, ϕ Yμnð Þ, ϕ Yςð Þð Þ
< d ς, μn+1ð Þ +H d μn, ςð Þ + Ld ς, Yμnð Þ, ϕ μnð Þ, ϕ ςð Þð Þ,

ð52Þ

for all n ∈ℕ.
Finally, letting n→ +∞ in the above calculations and

using that H is continuous in ð0, 0, 0Þ, we deduce that dðς,
YςÞ ≤Hð0, 0, 0Þ = 0; that is, ς = Yς.

Example 15. LetM = ½0, 1� endowed with the standart metric
dðμ, γÞ = jμ − γj for all μ, γ ∈M: Consider the mapping Y
: M→M defined by

Yμ =
μ/2 ; μ ∈ 0, 1Þ
1 ; μ = 1

(
: ð53Þ

Clearly, Y is not a F − contraction but Y is an almost F-H
-contraction with respect to the functions F ∈F defined by
FðαÞ = ln α for all α > 0,H ∈H defined by Hða, b, cÞ =max
fa, bg + c for all a, b, c ∈ 0, +∞, the real number τ = ln 2
and L = 4, and a l.s.c. function ϕ : M→ 0, +∞,ϕðtÞ = t for
all t ∈M, indeed.

Case 1. μ = 0, γ = 1, we have

τ + F H d Yμ, Yγð Þ, ϕ Yμð Þ, ϕ Yγð Þð Þð Þ
= τ + F H d Y0, Y1ð Þ, ϕ Y0ð Þ, ϕ Y1ð Þð Þð Þ
= τ + F H d 0, 1ð Þ, ϕ 0ð Þ, ϕ 1ð Þð Þð Þ
= τ + F H 1, 0, 1ð Þð Þ = ln 4
≤ ln 6 = F H d 0, 1ð Þ + 4d 1, Y0ð Þ, ϕ 0ð Þ, ϕ 1ð Þð Þð Þ
= F H d μ, γð Þ + Ld γ, Yμð Þ, ϕ μð Þ, ϕ γð Þð Þð Þ:

ð54Þ

Case 2. μ = 1, γ = 0, we have

τ + F H d Yμ, Yγð Þ, ϕ Yμð Þ, ϕ Yγð Þð Þð Þ
= τ + F H d Y1, Y0ð Þ, ϕ Y1ð Þ, ϕ Y0ð Þð Þð Þ
= τ + F H d 1, 0ð Þ, ϕ 1ð Þ, ϕ 0ð Þð Þð Þ
= τ + F H 1, 1, 0ð Þð Þ = ln 2 ≤ ln 5
= F H d 1, 0ð Þ + 4d 0, Y1ð Þ, ϕ 1ð Þ, ϕ 0ð Þð Þð Þ
= F H d μ, γð Þ + Ld γ, Yμð Þ, ϕ μð Þ, ϕ γð Þð Þð Þ:

ð55Þ

Case 3. μ, γ ∈ ð0, 1Þ with μ > γ, we have

τ + F H d Yμ, Yγð Þ, ϕ Yμð Þ, ϕ Yγð Þð Þð Þ
= τ + F H d

μ

2 ,
γ

2
� �

, ϕ μ

2
� �

, ϕ γ

2
� �� �� �

= τ + F H
μ − γ

2 , μ2 ,
γ

2
� �� �

= τ + F
μ + γ

2
� �

= ln μ + γð Þ
≤max ln μ + γð Þ, ln 4γ − μð Þf g
= F H d μ, γð Þ + Ld γ, Yμð Þ, ϕ μð Þ, ϕ γð Þð Þð Þ:

ð56Þ
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The main result in this paper is to prove, in Bourgain type spaces, the existence of unique local solution to system of initial value
problem described by integrable equations of modified Korteweg-de Vries (mKdV) by using linear and trilinear estimates, together
with contraction mapping principle. Moreover, owing to the approximate conservation law, we prove the existence of global
solution.

1. Introduction and Main Results

For an effective approach to solving problems arising in mod-
ern science and technology, one cannot do without research-
ing nonlinear problems of mathematical physics. The rapid
development of new technology and the emergence of its high
speed allow researchers to build and consider increasingly
complex multidimensional models describing various phe-
nomena, which are modeled, as a rule, using nonlinear partial
differential equations (systems). However, now it has become
clear that without the development of analytical methods, it is
impossible to get a complete idea of the essence of the phe-
nomenon. Analytical methods provide not only a reliable tool
for debugging and comparing various numerical methods but
also sometimes anticipate some scientific discoveries, make it
possible to study the properties of models, to detect the pres-
ence of certain effects as a result of the existence or nonexis-
tence of objects (solutions) with the required properties.
Therefore, at present, fundamental research is being inten-
sively carried out aimed at proving theorems of existence,
uniqueness, and regularity of solutions of nonlinear partial dif-
ferential equations.

In the present paper, a coupled system of modified
Korteweg-de Vries equations is considered as follows:

∂tu + ∂3xu + ∂x uv2
� �

= 0,

∂tv + β∂3xv + ∂x u2v
� �

= 0, x, tð Þ ∈ℝ2, 0 < β < 1,
u x, 0ð Þ = u0 xð Þ,
v x, 0ð Þ = v0 xð Þ:

8>>>>><>>>>>:
ð1Þ

The dynamics of solutions in the Korteweg-de Vries
equations (KdV) and the modified Korteweg-de Vries equa-
tions (mKdV) are well studied due to the complete integrabil-
ity of these equations (see [1–6]). For KdV equations, the
studies date back to the 1970s, although some results have
been obtained very recently (please see [7]). We extend the
results in [7] and consider a coupled system of mKdV-type
equations on the line in Equation (1).

For mKdV equations, many problems have been studied.
It is proved that the mKdV equation is locally [8] and glob-
ally [9] well-posed in HsðTÞ for s ≥ 1/2. Global well-
posedness in L2ðTÞ is shown in [10].
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For 0 < β < 1, the author in [7] proved that the IVP
(Equation (1)) is locally well-posed for the given data ðu0,
v0Þ ∈HsðℝÞ ×HsðℝÞ, s > −1/2. Oh in [11] used the Fourier
transform restriction norm method and proved that the next
IVP

∂tu + ∂3xu + ∂x v2
� �

= 0, u x, 0ð Þ = u0 xð Þ,
∂tv + β∂3xv + ∂x uvð Þ = 0, v x, 0ð Þ = v0 xð Þ, 0 < β < 1,

ð2Þ

is locally well-posed for data with regularity s ≥ 0.
For β = 1, the system (Equation (1)) reduces to a special

case of a broad class of nonlinear evolution equations consid-
ered by Ablowitz et al. [12] in the inverse scattering context.
In this case, the well-posedness issues along with existence
and stability of solitary waves for this system are widely stud-
ied in the literature, using the technique developed by Kenig
et al. in [13, 14].

Well-posedness for the nonperiodic gKdV equation in
spaces of analytic functions has been proved by Grujic and
Kalisch [15].

A class of suitable analytic functions for our analysis is
the analytic Gevrey class Gδ,sðℝÞ = Gδ,s introduced by Foias
and Temam [16], defined as follows:

Gδ,s = f ∈ L2 ; fk kGδ,s =
ð
ℝ
e2δ ζj j ζh i2s f∧ ζð Þj j2dζ<∞

� �
, ð3Þ

for s ∈ℝ and δ > 0 with h·i = ð1 + j·jÞ. For δ = 0, the space
Gδ,s coincides with the standard Sobolev space Hs. For all
0 < δ′ < δ and s, s′ ∈ℝ, we have

Gδ,s ⊂Gδ′ ,s′ , i:e:, fk kGδ′,s′ ≤ cs,s′,δ,δ′ fk kGδ,s , ð4Þ

which is the embedding property of the Gevrey spaces.
New minimal conditions are used to show the local well-

posedness of solution by using linear and trilinear estimates,
together with contraction mapping principle. By imposing a
more appropriate conditions with the help of the approxi-
mate conservation law, we obtain an unusual global existence
result in Gevery spaces.

Proposition 1 (Paley-Wiener Theorem) [17]. Let δ > 0, s ∈ℝ.
Then, f ∈Gδ,s if and only if it is the restriction to the real line
of a function F which is holomorphic in the strip fx + iy : x,
y ∈ℝ, jyj < δg and satisfies

sup
∣y∣<δ

F x + iyð Þk kHs
x
<∞: ð5Þ

Remark 2. In the view of the Paley-Wiener Theorem, it is nat-
ural to take initial data in Gδ,s, to obtain the best behavior of
solution and may be extended to be globally in time. It means
that given ðu0, v0Þ ∈Gδ,s × Gδ,s for some initial radius δ > 0,
we then estimate the behavior of the radius of analyticity
δðTÞ over time.

The first main result on local well-posedness of Equation
(1) in analytic spaces reads as follows.

Theorem 3. Let δ > 0 and s > −1/2. Then for any ðu0, v0Þ ∈
Gδ,s × Gδ,s, there exists T = Tðkðu0, v0ÞkGδ,s×Gδ,sÞ and unique
solution ðu, vÞ of Equation (1) on ½0, T� such that

u, vð Þ ∈ C 0, T½ �,Gδ,s
� �

× C 0, T½ �,Gδ,s
� �

: ð6Þ

Moreover, the solution depends on ðu0, v0Þ, where

T = 1

16C3 + 16C3 u0, v0ð Þk k2Gδ,s×Gδ,s
� �1/ε : ð7Þ

Furthermore, the solution satisfies the following:

u, vð Þk kXδ,s,b×X
β
δ,s,b

≤ 2C u0, v0ð Þk kGδ,s×Gδ,s ,  b = 1
2
+ ε, ð8Þ

with constant C > 0 depending only on s and b.

An effective method for studying lower bounds on the
radius of analyticity, including this type of problem, was
introduced in [18] for 1D Dirac-Klein-Gordon equations. It
was applied in [19] to the modified Kawahara equation and
in [20] to the nonperiodic KdV equation (for more details,
please see [20–23]).

The second result for the problem (Equation(1)) is given
in the next theorem.

Theorem 4. Let s > −1/2, 0 < β < 1, and δ0 > 0. Assume that
ðu0, v0Þ ∈Gδ,s ×Gδ,s, then the solution in Theorem 3 can be
extended to be global in time and for any T ′ > 0, we have
the following:

u, vð Þ ∈ C 0, T ′
h i

,Gδ T ′ð Þ,s� �
× C 0, T ′

h i
,Gδ T ′ð Þ,s� �

, ð9Þ

with

δ T ′
� �

=min δ0, C1T ′
− 2+σ0ð Þn o

, ð10Þ

where σ0 > 0 can be taken arbitrarily small and C1 > 0 is a
constant depending on w0, δ0, s, and σ0.

The third result is Gevrey’s temporal regularity of the
unique solution obtained in the Theorem 3. A nonperiodic
function f ðxÞ is the Gevrey class of order r, i.e., f ðxÞ ∈ Gr , if
there exists a constant C > 0 such that

∣∂lx f xð Þ∣ ≤ Cl+1 l!ð Þr l = 0, 1, 2,⋯, ð11Þ

if r = 1f ðxÞ is analytic.
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Here, we will show that for x ∈ℝ, for every t ∈ ½0, T� and
j, l ∈ f0, 1, 2,⋯g, there exist C > 0 such that

∂j
t∂

l
xu x, tð Þ

��� ��� ≤ Cj+l+1 j!ð Þ3 l!ð Þ,

∂j
t∂

l
xv x, tð Þ

��� ��� ≤ Cj+l+1 j!ð Þ3 l!ð Þ,
ð12Þ

i.e., ðuð·, tÞ, vð·, tÞÞ ∈G1ðℝÞ × G1ðℝÞ in spacial variable and
ðuðx, ·Þ, vðx, ·ÞÞ ∈ G3ð½0, T�Þ ×G3ð½0, T�Þ in time variable.
Also,

∂j
t∂

l
xu x, tð Þ

��� ��� ≤ Cj+l+1 j!ð Þd l!ð Þ, ð13Þ

∂j
t∂

l
xv x, tð Þ

��� ��� ≤ Cj+l+1 j!ð Þd l!ð Þ, ð14Þ

where Equations (13) and (14) do not hold for1 ≤ d < 3.

Theorem 5. Let s > −1/2, 0 < β < 1, and δ > 0. If ðu0, v0Þ ∈
Gδ,s ×Gδ,s, then the solution ðu, vÞ ∈ Cð½0, T�,GδðTÞ,sÞ × Cð½0,
T�,GδðTÞ,sÞ given by Theorem 4 belongs to the Gevrey class
G3ð½0, T�Þ × G3ð½0, T�Þ in time variable. Furthermore, it is
not belong to Gdð½0, T�Þ ×Gdð½0, T�Þ, 1 ≤ d < 3 in t.

The proof of Theorem 5 is similar to that in [1].
The paper is organized as follows. In Section 2, we define

the function spaces and linear and trilinear estimates. In Sec-
tion 3, we prove Theorem 3, using the linear and trilinear
estimates, together with contraction mapping principle. In
Section 4, we prove the existence of fundamental approxi-
mate conservation law. In the last section, Theorem 4 will
be proved using the approximate conservation law.

2. Preliminary Tools and Analytic
Function Spaces

2.1. Function Spaces. We define the analytic Bourgain spaces
related to the modified Korteweg-de Vries type equations.
The completion of the Schwartz class Sðℝ2Þ is given by

Xβ
δ,s,bðℝ2Þ = Xβ

δ,s,b, for s, b ∈ℝ, δ > 0, subjected to the norm:

wk kXβ
δ,s,b

=
ð
ℝ2

e2δ ζj j ζh i2s η − βζ3
D E2b

w∧ ζ, ηð Þj j2dζdη
	 
1/2

:

ð15Þ

We often use without mention, the definition X1
δ,s,b =

Xδ,s,b, where

wk kXδ,s,b
=
ð
ℝ2

e2δ ζj j ζh i2s η − ζ3
D E2b

w∧ ζ, ηð Þj j2dζdη
	 
1/2

:

ð16Þ

For any interval I, we define the localized spaces

Xβ
δ,s,bðℝ × IÞ = Xβ,I

δ,s,b with norm:

wk kXβ,I
δ,s,b

= inf Wk kXβ
δ,s,b

;W
���
ℝ×I

=w
n o

: ð17Þ

2.2. Linear Estimates. We have the trilinear estimate
(Equations (15) and (16)) defined in the analytic Bourgain

spaces. Since the spaces Xβ
δ,s,b is continuously embedded in

Cð½0, T�,Gδ,sÞ, provided b > 1/2.

Lemma 6. Let b > 1/2, s ∈ℝ, and δ > 0. Then, for all T > 0, we
have the following:

Xδ,s,b↪C 0, T½ �,Gδ,s
� �

: ð18Þ

Proof. First, we note that the operator A defined by

Aw∧x ζ, tð Þ = eδ ζj jw∧x ζ, tð Þ, ð19Þ

satisfies

wk kXβ
δ,s,b

= Awk kXβ
s,b
, wk kGδ,s = Awk kHs , ð20Þ

where Xβ
s,b is introduced in [7]. We observe that Aw belongs

to Cðℝ,HsÞ and for some C > 0, we have the following:

Awk kC ℝ,Hsð Þ ≤ C Awk kXβ
s,b
: ð21Þ

Thus, it follows that w ∈ Cð½0, T�,Gδ,sÞ and

wk kC 0,T½ �,Gδ,sð Þ ≤ C wk kXβ
δ,s,b
: ð22Þ

Taking the Fourier transform with respect to x of the
Cauchy problems (Equation (1)), after an ordinary calcula-
tion, we localize in t by using a cut-off function, satisfying
ψ ∈ C∞

0 , with ψ = 1 in ½−1, 1�, suppψ ⊂ ½−2, 2�, and ψTðtÞ =
ψðt/TÞ. We consider the operator Λ, Γ given by the follow-
ing:

Λ u, v½ � tð Þ = ψ tð ÞS tð Þu0 − ψT tð Þ
ðt
0
S t − νð Þ∂xF1 νð Þdν,

Γ u, v½ � tð Þ = ψ tð ÞSβ tð Þv0 − ψT tð Þ
ðt
0
Sβ t − νð Þ∂xF2 νð Þdν,

8>>><>>>:
ð23Þ

where SðtÞ = e−t∂
3
x and SβðtÞ = e−tβ∂

3
x are the unitary groups

associated with the linear problems.
The nonlinear terms defined by F1 = ðuv2Þ and F2 = ðu2vÞ

will be treated in the next lemmas.
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Lemma 7. Let s, b ∈ℝ and δ > 0. For some constant C > 0, we
have the following:

ψ tð ÞS tð Þu0k kXδ,s,b
≤ C u0k kGδ,s ,

ψ tð ÞSβ tð Þv0
�� ��

Xβ
δ,s,b

≤ C v0k kGδ,s ,
ð24Þ

for all u0, v0 ∈ Gδ,s.

Proof. By definition, we have the following:

ψ tð ÞSβ tð Þu0 = Cψ tð Þ
ð
ℝ
ei xζ+tβζ3ð Þcu0 ζð Þdζ

= C
ð
ℝ2
ei xζ+tηð Þ bψ η − βζ3

� ��cu0 ζð Þdζdη:
ð25Þ

It follows that

ψ tð ÞS tð Þu0k k2
Xβ
δ,s,b

= C
ð
ℝ2
e2δ∣ζ∣ 1+∣ζ ∣ð Þ2s 1 + η − βζ3

��� ���� �2b
� ψ∧ η − βζ3

� ���� ���2 u0∧ ζð Þj j2dζdη

= C
ð
ℝ
e2δ∣ζ∣ 1 + ζj jð Þ2s u0∧ ζð Þj j2

�
ð
ℝ
ψ∧ η − βζ3
� ���� ���2 1 + η − βζ3

��� ���� �2b
dη

	 

dζ:

ð26Þ

Since b > 1/2, we have the following:

ð
ℝ
ψ∧ η − βζ3
� ���� ���2 1+∣η − βζ3 ∣

� �2b
dη

≤ C
ð
ℝ
ψ∧ η − βζ3
� ���� ���2dη + C

ð
ℝ
ψ∧ η − βζ3
� ���� ���2

� 1+∣η − βζ3 ∣
� �2b

dη ≤ C:

ð27Þ

Lemma 8. Let s ∈ℝ, −1/2 < b′ ≤ 0 ≤ b < b′ + 1, 0 ≤ T ≤ 1, and
δ > 0, then for some constant C > 0, we have the following:

ψT tð Þ
ðt
0
S t − νð Þ∂xF1 x, νð Þdν

���� ����
Xδ,s,b

≤ CT1−b+b′ ∂xF1k kXδ,s,b′,

ψT tð Þ
ðt
0
Sβ t − νð Þ∂xF2 x, νð Þdν

���� ����
Xβ
δ,s,b

≤ CT1−b+b′ ∂xF2k kXβ

δ,s,b ′
:

ð28Þ

Proof. Define

W = ψT tð Þ
ðt
0
Sβ t − νð Þ∂xF2 x, νð Þdν: ð29Þ

We have, by Equation (19), the following:

AW∧x ζ, tð Þ = ψT tð Þ
ðt
0
e−i t−νð Þβζ3
� �

eδ∣ζ∣∂xF2∧
x ζ, νð Þdν

= ψT tð Þ
ðt
0
Sβ t − νð Þ ∂xAF2ð Þ� 


∧x ζ, νð Þdν:

ð30Þ

Thus,

Wk kXβ
δ,s,b

= AWk kXβ
s,b
= ψT tð Þ

ðt
0
Sβ t − νð Þ∂xAF2 x, νð Þdν

���� ����
Xβ
s,b

:

ð31Þ

Owing to Lemma 6 in [7], we get the following:

ψT tð Þ
ðt
0
Sβ t − νð Þ∂xAF2 x, νð Þdν

���� ����
Xβ
s,b

≤ CT1−b+b′ ∂xAF2k kXβ

s,b′

= CT1−b+b′ ∂xF2k kXβ

δ,s,b′
:

ð32Þ

This completes the proof.

Lemma 9. LetΘ ∈ SðℝÞ be a Schwartz function in time, s ∈ℝ,
and δ ≥ 0. If −1/2 < b ≤ b′ < 1/2, then for any T > 0, we have
the following:

ΘT tð Þwk kXδ,s,b
≤ CTb′−b wk kXδ,s,b′,

ΘT tð Þwk kXβ
δ,s,b

≤ CTb′−b wk kXβ

δ,s,b′
,

ð33Þ

where C depends only on b and b′.

Proof. The proof of Lemma 9 for δ = 0 can be found in
Lemma 13 of [14], for δ > 0 as one merely has to replace w
by Aw, where the operator is defined in Equation (19).

Lemma 10 [20]. Let s ∈ℝ, δ ≥ 0, −1/2 < b < 1/2, and T > 0.
Then, for any time interval I ⊂ ½0, T�, we have the following:

χI tð Þwk kXδ,s,b
≤ C wk kXT

δ,s,b
,

χI tð Þwk kXβ
δ,s,b

≤ C wk kXβ,T
δ,s,b
,

ð34Þ

where χIðtÞ is the characteristic function of I and C depends
only on b.

2.3. Trilinear Estimates.We have the trilinear estimate in the
following lemmas.
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Lemma 11. Let s > −1/2, δ > 0, b > 1/2, and b′ be as in Lemma
8. Then,

∂x uv2
� ��� ��

Xδ,s,b′
≤ C uk kXδ,s,b

vk k2
Xβ
δ,s,b
,

∂x u2v
� ��� ��

Xβ

δ,s,b′
≤ C uk k2Xδ,s,b

vk kXβ
δ,s,b
:

ð35Þ

Proof.We observe, by considering the operator A in (19), that

eδ∣ζ∣duuv = 2πð Þ−2eδ∣ζ∣û ∗ û ∗ v̂ ≤ 2πð Þ−2
ð
ℝ4
eδ∣ζ−ζ1∣û ζ − ζ1, ηð

− η1Þeδ∣ζ1−ζ2∣û ζ1 − ζ2, η1 − η2ð Þeδ ζ2j jv̂ ζ2, η2ð Þdζ1dζ2dη1dη2
= dAuAuAv ,

ð36Þ

since δjζj ≤ δjζ − ζ1j + δjζ1 − ζ2j + δjζ2j.
Then,

∂x u2v
� ��� ��

Xβ

δ,s,b′
= eδ∣ζ∣ ζh is η − βζ3

D Eb d∂x uuvð Þ ζ, ηð Þ
���� ����

L2
ζ,η

≤ ∂x AuAuAvð Þk kXβ

s,b′
:

ð37Þ

Thanks to Proposition 2.3 of [7], for some C > 0, we have
the following:

∂x AuAuAvð Þk kXβ

s,b′
≤ C Auk k2Xs,b

Avk kXβ
s,b
= C uk k2Xδ,s,b

vk kXβ
δ,s,b
:

ð38Þ

This completes the proof.

3. Proof of Theorem 3

3.1. Existence of Solution. We estimate terms in Equation

(23). For this end, we defineBδ,s,b = Xδ,s,b × Xβ
δ,s,b and Nδ,s =

Gδ,s ×Gδ,s , with norms kðu, vÞkBδ,s,b
=max fkukXδ,s,b

, kvkXβ
δ,s,b
g

and similar for Nδ,s:

Lemma 12. Let s > −1/2, δ > 0, and b > 1/2. Then, for all ðu0,
v0Þ ∈Nδ,s and 0 < T < 1, with some constant C > 0, we have
the following:

Λ u, v½ �, Γ u, v½ �ð Þk kBδ,s,b
≤ C u0, v0ð Þk kNδ,s + Tε u, vð Þk k3Bδ,s,b

� �
,

ð39Þ

Λ u, v½ � −Λ u∗, v∗½ �, Γ u, v½ � − Γ u∗, v∗½ �k kBδ,s,b

≤ CTε u − u∗, v − v∗ð Þk kBδ,s,b

� u, vð Þk k2Bδ,s,b
+ u, vð Þk kBδ,s,b

u∗, v∗ð Þk kBδ,s,b
+ v∗, v∗ð Þk k2Bδ,s,b

� �
,

ð40Þ
for all ðu, vÞ, ðu∗, v∗Þ ∈ Bδ,s,b.

Proof. To prove estimate of Equation (39), we have the fol-
lowing:

Λ u, v½ �k kXδ,s,b
≤ C u0k kGδ,s + CTε uk kXδ,s,b

vk k2
Xβ
δ,s,b

≤ C u0, v0ð Þk kNδ,s + CTε u, vð Þk k3Bδ,s,b ,
ð41Þ

Γ u, v½ �k kXβ
δ,s,b

≤ C v0k kGδ,s + CTε uk k2Xδ,s,b
vk kXβ

δ,s,b

≤ C u0, v0ð Þk kNδ,s + CTε u, vð Þk k3Bδ,s,b
:

ð42Þ

Therefore, from Equations (41) and (42), we obtain the
following:

Λ u, v½ �, Γ u, v½ �ð Þk kBδ,s,b ≤ C u0, v0ð Þk kNδ,s + Tε u, vð Þk k3Bδ,s,b

� �
:

ð43Þ

For the estimate of Equation (40), we observe that

Λ u, v½ � −Λ u∗, v∗½ � = ψT tð Þ
ðt
0
S t − νð Þ∂x uv2 − u∗v∗2

� �
x, νð Þdν,

Γ u, v½ � − Γ u∗, v∗½ � = ψT tð Þ
ðt
0
Sβ t − νð Þ∂x u2v − u∗2v∗

� �
x, νð Þdν,

ð44Þ

where

ω = ∂x u2v − u∗2v∗
� �

= ∂x v u + u∗ð Þ u − u∗ð Þ + u∗2 v − v∗ð Þ� 

,

ω′ = ∂x uv2 − u∗v∗2
� �

= ∂x u v + v∗ð Þ v − v∗ð Þ + v∗2 u − u∗ð Þ� 

:

ð45Þ

We will show that Λ × Γ is a contraction on the ball
Bð0, RÞ to Bð0, RÞ, where Bð0, RÞ is given in Equation (46).

Lemma 13. Let s ≥ −1/4, δ > 0, and b > 1/2. Then, for all ðu0,
v0Þ ∈Nδ,s, such that the map Λ × Γ : Bð0, RÞ⟶Bð0, RÞ is a
contraction, where Bð0, RÞ is given by the following:

B 0, Rð Þ = u, vð Þ ∈ Bδ,s,b ; u, vk kBδ,s,b
≤ R

n o
, ð46Þ

with R = 2Ckðu0, v0ÞkNδ,s .

Proof. From Lemma 12, for all ðu, vÞ ∈ Bð0, RÞ, we have the
following:

Λ u, v½ �, Γ u, v½ �ð Þk kBδ,s,b ≤ C u0, v0ð Þk kNδ,s + CTε u, vð Þk k3Bδ,s,b
≤
R
2 + CTεR3:

ð47Þ

We choose T sufficiently small such that Tε ≤ 1/4CR2;
hence,

Λ u, v½ �, Γ u, v½ �ð Þk kBδ,s,b
≤ R, ∀ u, vð Þ ∈ B 0, Rð Þ: ð48Þ
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Thus, Λ × Γ maps Bð0, RÞ into Bð0, RÞ, which is a con-
traction, since

Λ u, v½ �ð −Λ u∗, v∗½ �, Γ u, v½ � − Γ u∗, v∗½ �k kBδ,s,b

≤ CTε u − u∗, v − v∗ð Þk kBδ,s,b

� u, vð Þk k2Bδ,s,b
+ u, vð Þk kBδ,s,b

u∗, v∗ð Þk kBδ,s,b
+ v∗, v∗ð Þk k2Bδ,s,b

� �
,

≤ 3CTεR2 u − u∗, v − v∗ð Þk kBσ,δ,s,b
≤
3
4 u − u∗, v − v∗ð Þk kBσ,δ,s,b

,

ð49Þ

for all ðu, vÞ ∈ Bð0, RÞ. Hence, ðΛ, ΓÞ: Bð0, RÞ⟶Bð0, RÞ is
a contraction.

3.2. The Uniqueness. Uniqueness of the solution in Cð½0, T�,
Gδ,sÞ × Cð½0, T�,Gδ,sÞ can be proved by the following standard
argument.

Suppose that ðu, vÞ, ðu∗, v∗Þ ∈ Cð½0, T�,Gδ,sÞ × Cð½0, T�,
Gδ,sÞ are solutions to Equation (1) with ðvð·, 0Þ, uð·, 0ÞÞ = ðv∗
ð·, 0Þ, u∗ð·, 0ÞÞ in Gδ,s × Gδ,s. Setting ϑ = u − u∗ and ω = v − v∗,
we see that ϑ, ω solves the Cauchy problem:

∂tϑ + ∂3xϑ + ∂x uv2 − u∗v2
� �

= 0, ϑ 0ð Þ = 0, ð50Þ

∂tω + ∂3xω + ∂x u2v − u2v∗
� �

= 0, ω 0ð Þ = 0: ð51Þ

Thus, by Equation (50), we have the following:

1
2 ∂t ϑ t, ·ð Þk k2L2 =

1
2 ∂t
ð
ℝ
ϑ2 t, xð Þdx =

ð
ℝ
ϑ t, xð Þ∂tϑ t, xð Þdx

= −
ð
ℝ
ϑ t, xð Þ∂x uv2 − u∗v2

� �
dx = 0,

ð52Þ

since we have the following:

ð
ℝ
ϑ t, xð Þ∂3xϑ t, xð Þdx = 0: ð53Þ

Thanks to Equation (53), we have the following:

∂t ϑ t, ·ð Þk k2L2 = −2
ð
ℝ
ϑ t, xð Þ∂x v2ϑ t, xð Þ� 


dx: ð54Þ

Integrating by parts of the last integral, we obtain the
following:

∂t ϑ t, ·ð Þk k2L2 = −
ð
ℝ
∂xv

2 t, xð Þϑ2 t, xð Þdx, ð55Þ

from which we deduce the inequality as follows:

∂t ϑ t, ·ð Þk k2L2
�� �� ≤ ∂xv

2�� ��
L∞

ϑ tð Þk k2L2 : ð56Þ

Since u, u∗ ∈ Cð½0, T�,Gδ,sÞ, we have that u and u∗ are con-
tinuous in t on the compact set ½0, T� and areGδ,s in x. Thus, we
can conclude that

∂xv
2�� ��

L∞
≤ c <∞: ð57Þ

Therefore, from Equations (56) and (57), we obtain the dif-
ferential inequality:

∂t ϑ t, ·ð Þk k2L2
�� �� ≤ c ϑ tð Þk k2L2 , 0 ≤ t ≤ T: ð58Þ

Solving it gives the following:

ϑ tð Þk k2L2 ≤ ec ϑ 0ð Þk k2L2 , 0 ≤ t ≤ T: ð59Þ

Since ∥ϑð0Þ∥2L2 = 0, from Equation (59), we obtain that
ϑðtÞ = 0, 0 ≤ t ≤ T, or u = u∗.

Now by Equation (51), we have the following:

∂t ω t, ·ð Þk k2L2
�� �� ≤ c ω tð Þk k2L2 , 0 ≤ t ≤ T: ð60Þ

Solving it gives the following:

ω tð Þk k2L2 ≤ ec ω 0ð Þk k2L2 , 0 ≤ t ≤ T: ð61Þ

Since ∥ωð0Þ∥2L2 = 0, from Equation (61), we obtain that
ωðtÞ = 0, 0 ≤ t ≤ T , or v = v∗.

3.3. Continuous Dependence of the Initial Data. To prove
continuous dependence of the initial data, we will prove the
following.

Lemma 14. Let s > −1/2, δ > 0, and b > 1/2. Then, for all ðu0,
v0Þ, ðu∗0 , v∗0 Þ ∈Nδ,s, if ðu, vÞ and ðu∗, v∗Þ are two solutions to
Equation (1) corresponding to initial data ðu0, v0Þ and ðu∗0 ,
v∗0 Þ, we have the following:

u − u∗, v − v∗ð Þk kC 0,T½ �,Gδ,sð Þ2 ≤ 4C0C u0 − u∗0 , v0 − v∗0ð Þk kNδ,s :

ð62Þ

Proof. If ðu, vÞ and ðu∗, v∗Þ are two solutions to Equation
(1), corresponding to initial data ðu0, v0Þ and ðu∗0 , v∗0 Þ, we
have from Lemma 6 as follows:

u − u∗k kC 0,T½ �,Gδ,sð Þ ≤ C0 u − u∗k kXδ,s,b
,

v − v∗k kC 0,T½ �,Gδ,sð Þ ≤ C0 v − v∗k kXβ
δ,s,b
:

ð63Þ

By taking ðu, vÞ, ðu∗, v∗Þ ∈ Bð0, RÞ and Tε ≤ 1/4CR, we
have the following:

u − u∗k kXδ,s,b
≤ C u0 − u∗0 , v0 − v∗0ð Þk kNδ,s +

3
4 u − u∗, v − v∗ð Þk kBδ,s,b

,

v − v∗k kXβ
δ,s,b

≤ C u0 − u∗0 , v0 − v∗0ð Þk kNδ,s +
3
4 u − u∗, v − v∗ð Þk kBδ,s,b

:

ð64Þ
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Thus,

u − u∗, v − v∗ð Þk kBδ,s,b
≤ 4C u0 − u∗0 , v0 − v∗0ð Þk kNδ,s : ð65Þ

Then,

u − u∗, v − v∗ð Þk kC 0,T½ �,Gδ,sð Þ2 ≤ 4C0C u0 − u∗0 , v0 − v∗0ð Þk kNδ,s :

ð66Þ

This completes the proof of Theorem 3.

4. Approximate Conservation Law

We have the following:

u, vð Þk kL2 =
ð
ℝ

u2 + v2
� �

dx, ð67Þ

which is conserved for a solution ðu, vÞ of Equation (1). We
are going to show an approximate conservation law for a
solution to Equation (1) based on the conservation of the
L2ðℝÞ norm of solution.

Theorem 15. Let κ ∈ ½0, 1/2Þ and 0 < T1 < T0 < 1, T0 be as in
Theorem 3 with s = 0; there exist b = 1/2 + ε and C > 0, such
that for any δ > 0 and any solution ðu, vÞ ∈ BT0

δ,0,b to the Cau-
chy problem (Equation (1)) on the time interval ½0, T1�, we
have the estimate:

sup
t∈ 0,T1½ �

u tð Þ, v tð Þð Þk k2Nδ,0 ≤ u 0ð Þ, v 0ð Þð Þk k2Nδ,0 + Cδκ u, vð Þk k4Bδ,0,b :

ð68Þ

Moreover, we have the following:

sup
t∈ 0,T1½ �

u tð Þ, v tð Þk k2Nδ,0 ≤ u 0ð Þ, v 0ð Þð Þk k2Nδ,0 + Cδκ u 0ð Þð , v 0ð Þk k4Nδ,0 :

ð69Þ

We need the following estimate.

Lemma 16. Given κ ∈ ½0,−1/2Þ, there exist b = 1/2 + ε, C > 0,
and ðu, vÞ ∈ Bδ,0,b; we have the following:

G1,G2ð Þk kB0,b−1
≤ Cδκ u, vð Þk k3Bδ,0,b , ð70Þ

where G1 = ∂x½ðAuAvAvÞ − Aðuv2Þ�, G2 = ∂x½ðAuAuAvÞ −
Aðu2vÞ�, and the operator A is given by Equation (19).

Proof. Let L1 = ðAuAvAvÞ − Aðuv2Þ. Then,

G1k kX0,b−1
= ζ

η − ζ3
D E1−bcL1 ζ, ηð Þ

�������
�������
L2
ζ,η

=
ð
ℝ2

ζj j2

η − ζ3
D E2 1−bð Þ L1∧ ζ, ηð Þj j2dζdη

0B@
1CA:

ð71Þ

We shall calculate the Fourier transform of L1 as follows:

L̂ ζ, ηð Þ�� �� = dAuAvAvð Þ − dA uv2ð Þ
��� ���

= C eδ ζj jû ∗ eδ ζj jv̂ ∗ eδ ζj jv̂ ∗
� �

ζ, ηð Þ − eδ ζj j û ∗ v̂ ∗ v̂ ∗ð Þ ζ, ηð Þ
��� ���

= C
ð
ℝ4

eδ ζ1j jû ζ1, η1ð Þeδ ζ2j jv̂ ζ2, η2ð Þeδ ζ−ζ1−ζ2j jv̂ ζ − ζ1 − ζ2, η − η1 − η2ð Þ
�����

− eδ ζj jû ζ1, η1ð Þv̂ ζ2, η2ð Þv̂ ζ − ζ1 − ζ2, η − η1 − η2ð Þ
�
dζ1dζ2dη1dη2

����
≤ C
ð
ℝ4

eδ ζ1j jeδ ζ2j jeδ ζ−ζ1−ζ2j j − eδ ζj j
� �

× û ζ1, η1ð Þv̂ ζ2, η2ð Þv̂ ζ − ζ1 − ζ2, η − η1 − η2ð Þj jdζ1dζ2dη1dη2:
ð72Þ

Now using Corollary 7.3 in [21], let θ ∈ ½0, 1�; we have the
following:

eδ ζ1j jeδ ζ2j jeδ ζ−ζ1−ζ2j j − eδ ζj j

≤ 4δ ζ − ζ1 − ζ2h i ζ1h i ζ2h i
ζh i

� �θ
eδ ζ1j jeδ ζ2j jeδ ζ−ζ1−ζ2j j:

ð73Þ

For κ ∈ ½0, 1/2Þ ⊂ ½0, 1�, one can see that

G1k k2X0,b−1
= ζ

η − ζ3
D E1−bcL1 ζ, ηð Þ

�������
�������
2

L2
ζ,η

≤ C4δð Þ2κ
ð
ℝ2

ζj j2

η − ζ3
D E2 1−bð Þ

�
ð
ℝ4

ζ − ζ1 − ζ2h i ζ1h i ζ2h i
ζh i

	 
κ

× eδ ζ1j jeδ ζ2j jeδ ζ−ζ1−ζ2j j × u∧ ζ1, η1ð Þv∧ ζ2, η2ð Þv∧ ζ − ζ1 − ζ2, η − η1 − η2ð Þj jdζ1dζ2dη1dη2
� �2

dζdη

= C 4δð Þ2κ ζ ζh i−κ

η − ζ3
D E1−b ð

ℝ4
eδ ζ1j j ζ1h iκû ζ1, η1ð Þeδ ζ2j j ζ2h iκv̂ ζ2, η2ð Þ × eδ ζ−ζ1−ζ2j j ζ − ζ1 − ζ2h iκv̂ ζ − ζ1 − ζ2, η − η1 − η2ð Þdζ1dζ2dη1dη2

�������
�������
2

L2
ζ,η

:

ð74Þ
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Now by taking s = −κ ∈ ð−1/2, 0�, we obtain the following:

Then,

G1k kX0,b−1
≤ Cδκ Auk kX0,b

Avk k2
Xβ
0,b
= Cδκ uk kXδ,0,b

vk k2
Xβ
δ,0,b

≤ Cδκ u, vð Þk k3Bδ,0,b
:

ð76Þ

Now let L2 = ðAuAuAvÞ − Aðu2vÞ. Then,

G2k kX0,b−1
≤ Cδκ Auk k2X0,b

Avk kXβ
0,b
= Cδκ uk k2Xδ,0,b

vk kXβ
δ,0,b

≤ Cδκ u, vð Þk k3Bδ,0,b
:

ð77Þ

By Equations (76) and (77), we have the following:

G1,G2ð Þk kB0,b−1
≤ Cδκ u, vð Þk k3Bδ,0,b

: ð78Þ

Proof (Theorem 15). Let Uðt, xÞ = Auðt, xÞ, Vðt, xÞ = Avðt, xÞ
which are real-valued since the multiplier A is even and u, v
are real-valued. Applying A to Equation (1), we obtain the
following:

∂tU + ∂3xU + ∂x UV2� �
=G1, ð79Þ

∂tU + ∂3xU + ∂x U2V
� �

= G2, ð80Þ

where G1 = ∂x½ðAuAvAvÞ − Aðuv2Þ� and G2 = ∂x½ðAuAuAvÞ
− Aðu2vÞ�.

By multiplying both sides of Equation (79) by U and
Equation (80) by V and integrating with respect to space var-
iable, we get the following:

ð
ℝ
U∂tUdx +

ð
ℝ
U∂3xUdx +

ð
ℝ
U∂x UV2� �

dx =
ð
ℝ
UG1dx,ð

ℝ
V∂tVdx +

ð
ℝ
V∂3xVdx +

ð
ℝ
V∂x U2V

� �
dx =

ð
ℝ
VG2dx:

ð81Þ

Then,

ð
ℝ
U∂tU +V∂tVð Þdx +

ð
ℝ

U∂3xU +V∂3xV
� �

dx +
ð
ℝ
U∂x UV2� ��

+ V∂x U2V
� ��dx = ð

ℝ
UG1 +VG2ð Þdx,

ð
ℝ
U∂tU +V∂tVð Þdx +

ð
ℝ
∂x ∂xU∂xU + ∂xV∂xVð Þdx

+
ð
ℝ
∂x U2V2� �

dx =
ð
ℝ
UG1 +VG2ð Þdx:

ð82Þ

Noting that ∂j
xUðx, tÞ⟶ 0 as ∣x ∣⟶∞ (see [20]), we

use integration by parts to obtain the following:

1
2 ∂t
ð
ℝ

U2 +V2� �
dx =

ð
ℝ
UG1 + VG2ð Þdx: ð83Þ

Integrating the last equality with respect to t ∈ ½0, T1�, we
obtain the following:

ð
ℝ

U2 T1, xð Þ +V2 T1, xð Þ� �
dx =

ð
ℝ

U2 0, xð Þ + V2 0, xð Þ� �
dx

+ 2
ð
ℝ2
χ 0,T1½ � tð Þ UG1 + VG2ð Þdxdt:

ð84Þ

Thus,

u T1ð Þk k2Gδ,0 + v T1ð Þk k2Gδ,0 = u 0ð Þk k2Gδ,0 + v 0ð Þk k2Gδ,0

+ 2
ð
ℝ2
χ 0,T1½ � tð Þ UG1 + VG2ð Þdxdt

���� ����: ð85Þ

By using Holder’s inequality, Lemma 10, Lemma 9, and
the fact that

1
2 < 1 − b < 1

2 ,
1
2 < b − 1 < 1

2 : ð86Þ

G1k kX0,b−1
≤ C 4δð Þκ ζ ζh is

η − ζ3
D E1−b ð

ℝ4

eδ∣ζ1∣û ζ1, η1ð Þ
ζ1h is

eδ∣ζ2∣v̂ ζ2, η2ð Þ
ζ2h is · e

δ ζ−ζ1−ζ2j jv̂ ζ − ζ1 − ζ2, η − η1 − η2ð Þ
ζ − ζ1 − ζ2h is dζ1dζ2dη1dη2

�������
�������
L2
ζ,η

≤ C 4δð Þκ ζ ζh is

η − ζ3
D E1−b ð

ℝ4

eδ∣ζ1∣ η1 − ζ31

D Eb
û ζ1, η1ð Þ

ζ1h is η1 − ζ31

D Eb eδ∣ζ2∣ η2 − βζ32

D Eb
v̂ ζ2, η2ð Þ

ζ2h is η2 − βζ32

D Eb ×
eδ∣ζ−ζ1−ζ2∣ η − η1 − η2 − β ζ − ζ1 − ζ2ð Þ3

D Eb
v̂ ζ − ζ1 − ζ2, η − η1 − η2ð Þ

ζ − ζ1 − ζ2h is η − η1 − η2 − β ζ − ζ1 − ζ2ð Þ3
D Eb × dζ1dζ2dη1dη2

�������
�������
L2
ζ,η

:

ð75Þ
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Since b > 1/2 + ε, we obtain the following:

ð
ℝ2
χ 0,T1½ � tð Þ UG1 + VG2ð Þdxdt

���� ���� ≤ χ 0,T1½ � tð ÞU
��� ���

X0,1−b

� χ 0,T1½ � tð ÞG1

��� ���
X0,b−1

+ χ 0,T1½ � tð ÞV
��� ���

Xβ
0,1−b

χ 0,T1½ � tð ÞG2

��� ���
Xβ
0,b−1

≤ C Uk kXT1
0,1−b

G1k kXT1
0,b−1

+ C Vk kXβ,T1
0,1−b

G2k kXβ,T1
0,b−1

≤ C ΘT1
U

�� ��
X0,1−b

ΘT1
G1

�� ��
X0,b−1

+ C ΘT1
V

�� ��
Xβ
0,1−b

ΘT1
G2

�� ��
Xβ
0,b−1

≤ C Uk kX0,1−b
G1k kX0,b−1

+ C Vk kXβ
0,1−b

G2k kXβ
0,b−1

,

ð87Þ

where ΘT1
= 1 for t ∈ ½0, T1�; we can conclude from

Lemma 16:

ð
ℝ2
χ 0,T1½ � tð Þ UG1 +VG2ð Þdxdt

���� ���� ≤ C Uk kX0,1−b
G1k kX0,b−1

+ C Vk kXβ
0,1−b

G2k kXβ
0,b−1

≤ Cδκ uk k2Xδ,0,b
vk k2

Xβ
δ,0,b

+ Cδκ uk k2Xδ,0,b
vk k2

Xβ
δ,0,b

= 2Cδκ uk k2Xδ,0,b
vk k2

Xβ
δ,0,b

≤ 2Cδκ u, vð Þk k4Bδ,0,b
:

ð88Þ

Therefore,

u T1ð Þk k2Gδ,0 + v T1ð Þk k2Gδ,0 ≤ u 0ð Þk k2Gδ,0 + v 0ð Þk k2Gδ,0 + 2Cδκ u, vð Þk k4Bδ,0,b
,

2 u T1ð Þ, v T1ð Þð Þk k2Nδ,0 ≤ 2 u 0ð Þ, v 0ð Þð Þk k2Nδ,0 + 2Cδκ u, vð Þk k4Bδ,0,b ,
sup

t∈ 0,T1½ �
u tð Þ, v tð Þð Þk k2Nδ,0 ≤ u 0ð Þ, v 0ð Þð Þk k2Nδ,0 + Cδκ u, vð Þk k4Bδ,0,b

:

ð89Þ

Finally, by using Equation (8), we conclude that

sup
t∈ 0,T1½ �

u tð Þ, v tð Þð Þk k2Nδ,0 ≤ u 0ð Þ, v 0ð Þð Þk k2Nδ,0 + Cδκ u 0ð Þ, v 0ð Þð Þk k4Nδ,0 :

ð90Þ

5. Proof of Theorem 4

Let δ0 > 0, s > −1/2, and κ ∈ ð0, 1/2Þ be fixed, and ðu0, v0Þ ∈
Nδ0,s. Then, we have to prove that the solution ðu, vÞ of
Equation (1) satisfies the following:

u, vð Þ ∈ C 0, T ′
h i

,Gδ T ′ð Þ,s� �
× C 0, T ′

h i
,Gδ T ′ð Þ,s� �

, ð91Þ

where

δ T ′
� �

=min δ0, C1T ′
−1/κn o

,  for allT ′ > 0, ð92Þ

and C1 > 0 is a constant depending on u0, v0, δ0, s, and κ. By

Theorem 3, there is a maximal time T∗ = T∗ðu0, v0, δ0, sÞ ∈
ð0,∞�, such that

u, vð Þ ∈ C 0, T∗½ �,Gδ0,s
� �

× C 0, T∗½ �,Gδ0,s
� �

: ð93Þ

If T∗ =∞, it is done.
If T∗ <∞, as we assume henceforth, it remains to prove

the following:

u, vð Þ ∈ C 0, T ′
h i

,GC1T′−1/κ,s
� �

× C 0, T ′
h i

,GC1T′−1/κ,s
� �

,  for allT ′ ≥ T∗:

ð94Þ

5.1. The Case S = 0. Fixed T ′ ≥ T∗; we will show that, for δ > 0,
sufficiently small

sup
t∈ 0,T′� u 0ð Þ, v 0ð Þð Þk k2

Nδ,0 ≤ 2 u 0ð Þ, v 0ð Þð Þk k2
Nδ0,0 :

� ð95Þ

In this case, by Theorem 3 and Theorem 15 with

T0 =
1

16C3 + 32C3 u 0ð Þ, v 0ð Þð Þk k2Nδ0,0
� �1/ε , ð96Þ

the smallness conditions on δ will be

δ < δ0,
2T ′
T0

Cδκ22 u 0ð Þ, v 0ð Þð Þk k2Nδ0,0 ≤ 1, C > 0: ð97Þ

Here, C is the constant in Theorems 15.
By induction, we check that

sup
t∈ 0,nT0½ �

u tð Þ, v tð Þð Þk k2Nδ,0 ≤ u 0ð Þ, v 0ð Þð Þk k2Nδ,0 + nCδκ22 u 0ð Þ, v 0ð Þð Þk k4Nδ0,0 ,

ð98Þ

sup
t∈ 0,nT0½ �

u tð Þ, v tð Þð Þk k2Nδ,0 ≤ 2 u 0ð Þ, v 0ð Þð Þk k2Nδ0,0 , ð99Þ

for n ∈ f1,⋯,m + 1g, where m ∈ℕ is chosen so that
T ′ ∈ ½mT0, ðm + 1ÞT0Þ. This m does exist; by Theorem
3 and the definition of T∗, we have the following:

T0 <
1

16C3 + 16C3 u 0ð Þ, v 0ð Þð Þk k2Nδ0,0
� �1/ε < T∗, henceT0 < T ′:

ð100Þ

In the first step, we cover the interval ½0, T0�, and
by Theorem 15, we have the following:

sup
t∈ 0,T0½ �

u tð Þ, v tð Þð Þk k2Nδ,0 ≤ u 0ð Þ, v 0ð Þð Þk k2Nδ,0

+ Cδκ u 0ð Þ, v 0ð Þð Þk k4Nδ,0 ≤ u 0ð Þ, v 0ð Þð Þk k2Nδ,0

+ Cδκ u 0ð Þ, v 0ð Þð Þk k4Nδ0,0 ,

ð101Þ
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since δ ≤ δ0; we used the following:

u 0ð Þ, v 0ð Þð Þk kNδ,0 ≤ u 0ð Þ, v 0ð Þð Þk kNδ0,0 : ð102Þ

This satisfies Equation (98) for n = 1, and Equation (99) is
following and using again kðuð0Þ, vð0ÞÞkNδ,0 ≤ kðuð0Þ, vð0ÞÞ
kNδ0,0 as well as the following:

Cδκ u 0ð Þ, v 0ð Þð Þk k2Nδ0 ,0 ≤ 1: ð103Þ

Suppose now that Equations (98) and (99) hold for some
n ∈ f1,⋯,mg and we prove that it holds for n + 1, we estimate
the following:

sup
t∈ nT0, n+1ð ÞT0½ �

u tð Þ, v tð Þð Þk k2Nδ,0 ≤ w nT0ð Þk k2Nδ,0

+ Cδκ u nT0ð Þ, v nT0ð Þð Þk k4Nδ,0 ≤ u nT0nT0ð Þ, v nT0ð Þð Þk k2Nδ,0

+ Cδκ22 u 0ð Þ, v 0ð Þð Þk k4Nδ0,0 ≤ u 0ð Þ, v 0ð Þð Þk k2Nδ,0

+ nCδκ22 u 0ð Þ, v 0ð Þð Þk k4Nδ0,0 + Cδκ22 u 0ð Þ, v 0ð Þð Þk k4Nδ0,0 ,
ð104Þ

satisfying Equation (98) with n replaced by n + 1. To get
Equation (99) with n replaced by n + 1, it is then enough to have
the following:

n + 1ð ÞCδκ22 u 0ð Þ, v 0ð Þð Þk k2Nδ0,0 ≤ 1, ð105Þ

but this holds by Equation (97), since n + 1 ≤m + 1 ≤ T ′/T0
+ 1 < 2T ′/T0.

Finally, Equation (97) is satisfied for δ ∈ ð0, δ0Þ such that

2T ′
T0

Cδκ22 u 0ð Þ, v 0ð Þð Þk k2Nδ0,0 = 1: ð106Þ

Thus, δ = C1T′
−1/κ

, where

C1 =
1

C23 u 0ð Þ, v 0ð Þð Þk k2Nδ0,0 16C3 + 32C3 u 0ð Þ, v 0ð Þð Þk k2Nδ0,0
� �1/ε

 !1/κ

:

ð107Þ

5.2. The General Case. For all s, by Equation (4), we have u0,
v0 ∈Gδ0,s ⊂Gδ0/2,0.

For case s = 0, it is proved that there is a T2 > 0, such that

u, vð Þ ∈ C 0, T2½ Þ,Gδ0/2,0
� �

× C 0, T2½ Þ,Gδ0/2,0
� �

,

u, vð Þ ∈ C 0, T ′
h i

, G2σT ′−1/κ ,0
� �

× C 0, T ′
h i

, G2σT ′−1/κ ,0
� �

, forT ′ ≥ T2,

ð108Þ

where σ > 0 depends on u0, v0, δ0, and κ.

Applying again the embedding Equation (4), we now
conclude that

u, vð Þ ∈ C 0, T2½ Þ,Gδ0/4,s
� �

× C 0, T2½ Þ,Gδ0/4,s
� �

,

u, vð Þ ∈ C 0, T ′
h i

,GσT ′−1/κ ,s
� �

× C 0, T ′
h i

,GσT ′−1/κ ,s
� �

, forT ′ ≥ T2,

ð109Þ

which imply Equation (94). The proof of Theorem 4 is now
completed.
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The purpose of the paper is to introduce a new analogue of Phillips-type Bernstein operators ðBu
m,q f Þðu, vÞ and ðBv

n,q f Þðu, vÞ, their
products ðP mn,q f Þðu, vÞ and ðQnm,q f Þðu, vÞ, their Boolean sums ðSmn,q f Þðu, vÞ and ðT nm,q f Þðu, vÞ on triangle T h, which
interpolate a given function on the edges, respectively, at the vertices of triangle using quantum analogue. Based on Peano’s
theorem and using modulus of continuity, the remainders of the approximation formula of corresponding operators are
evaluated. Graphical representations are added to demonstrate consistency to theoretical findings. It has been shown that
parameter q provides flexibility for approximation and reduces to its classical case for q = 1.

1. Introduction and Essential Preliminaries

In 1912, Bernstein constructed polynomials to provide a con-
structive proof of the Weierstrass approximation theorem [1,
2] using probabilistic interpolation, which is now known as
Bernstein polynomials in approximation theory. In computer-
aided geometric design (CAGD), the basis of Bernstein polyno-
mials plays a significant role to preserve the shape of the curves
and surfaces.

Further, with the development of q-calculus (quantum ana-
logue), the first q-analogue of Bernstein operators (rational)
was constructed by Lupas in [3]. In 1997, Phillips [4] initiated
another generalization of Bernstein polynomials based on the
q-integers (quantum analogue) called q-Bernstein polynomials.
The q-Bernstein polynomials attracted a lot of attention and
were studied broadly by several researchers. One can find a sur-
vey of the obtained results and references on the subject in [5].

Computer-aided geometric design (CAGD) is a disci-
pline which deals with computational aspects of geometric
objects. It emphasizes on the mathematical development of
curves and surfaces such that it becomes compatible with
computers. Popular programs, like Adobe’s Illustrator and
Flash, and font imaging systems, such as Postscript, utilize
Bernstein polynomials to form what are known as Bézier
curves [6–9].

The approximating operators on triangles and their basis
have important applications in finite element analysis and
computer-aided geometric design [10] etc. Starting with the
paper [11] of Barnhill et al., the blending interpolation
operators were considered in the papers [12–14].

In this paper, we construct new operators based on quan-
tum analogue of Phillips. Bernstein-type operators also interpo-
late the value of a given function on the boundary of the
triangle. Also, we will discuss some particular cases. Usingmod-
ulus of continuity and Peano’s theorem, the remainders of the
corresponding approximation formulas are evaluated. The
accuracy of the approximation is also illustrated by graphics
of given functions with suitable Bernstein-type approximation.
For more information regarding such operators, their proper-
ties and their remainders one can refer to [15–28].

In this paper, we would like to draw attention to the
Phillips q-analogue of the Bernstein operators and obtain
new results using q-analogue on triangles. To present results
by Phillips, we recall the following definitions. For other
relevant works, one can see [29].

Let q > 0. For any m = 0, 1, 2,⋯, the q-integer ½m�q is
defined by

m½ �q ≔ 1 + q+⋯+qm−1, m = 1, 2,⋯, 0½ �q ≔ 0, ð1Þ
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and the q-factorial ½m�q! by

m½ �q!≔ 1½ �q 2½ �q ⋯ m½ �q, m = 1, 2,⋯, 0½ �q! = 1: ð2Þ

For integers 0 ≤ i ≤m, the q-binomial or the Gaussian
coefficient is defined by

m

i

" #
q

≔
m½ �q!

i½ �q! m − i½ �q!
: ð3Þ

Clearly, for q = 1,

m½ �1 =m, m½ �1! =m!,
m

i

" #
1

=
m

i

 !
: ð4Þ

The q-binomial coefficients are involved in Cauchy’s
q-binomial theorem (cf. [30], Chapter 10, Section 10.2).
The first one is a q-analogue as an extension to Newton’s
binomial formula:

au + bvð Þmq ≔ 〠
m

i=0
q i i−1ð Þð Þ/2 m

i

" #
q

am−ibium−ivi, ð5Þ

1 + uð Þ 1 + quð Þ · ·⋯ 1 + qm−1u
� �

= 〠
m

i=0

m

i

" #
q

qi i−1ð Þ/2ui:

ð6Þ
Following Phillips, we denote

bm,i u, vð Þ =
m

i

" #
q

Ym−i−1

s=0
1 − qsuð Þ: ð7Þ

It follows from (6) that

〠
m

i=0
bm,i q ; uð Þ = 1, u ∈ 0, 1½ �, ð8Þ

for integers k ≥ i ≥ 0. These recurrence relations are satisfied
by q-binomial coefficients

k + 1
i

" #
q

= qk−i+1
k

i − 1

" #
q

+
k

i

" #
q

,

k + 1
i

" #
q

=
k

i − 1

" #
q

+ qi
k

i

" #
q

,
ð9Þ

when q = 1, both the relations reduce to the Pascal identity. In
the next section, we construct quantum analogue of operators
studied in [31] on triangles.

2. Construction of New Univariate Operators
on Triangle

In [31], the authors considered only the standard triangle
sufficient due to affine invariance as

T h = u, vð Þ ∈ℝ2 ∣ u ≥ 0, v ≥ 0, u + v ≤ h
� �

, for h > 0:
ð10Þ

Let Δu
m = fiððh − vÞ/mÞ, i = �0,mg and Δv

n = fjððh − uÞ/nÞ,
j = �0, ng be uniform partitions of the intervals ½0, h − v�
and ½0, h − u�, respectively.

In 2009, they [31] constructed some univariant
Bernstein-type operators on triangle T h as follows:

Bu
mfð Þ u, vð Þ = 〠

m

i=0
pm,i u, vð Þf i

m
h − vð Þ, v

� �
,

Bv
n fð Þ u, vð Þ = 〠

n

j=0
qn,j u, vð Þf u, j

n
h − uð Þ

� �
,

ð11Þ

where

pm,i u, vð Þ =

m

i

 !
ui h − u − vð Þm−i

h − vð Þm , 0 ≤ u + v ≤ h,
ð12Þ

qn,j u, vð Þ =

n

j

 !
vj h − u − vð Þn−j

h − uð Þn , 0 ≤ u + v ≤ h,
ð13Þ

respectively.
Consider a real-valued function f defined onT h as done in

[31]. Through the point ðu, vÞ ∈T h, one considers the parallel
lines to the coordinate axes which intersect the edges Γi, i = 1,
2, 3, of the triangle at the points ð0, vÞ and ðh − v, vÞ, respec-
tively ðu, 0Þ and ðu, h − uÞ ([31], Figure 1).

Let Δu
m = fiððh − vÞ/mÞ, i = �0,mg and Δv

n = fjððh − uÞ/nÞ,
j = �0, ng be uniform partitions of the intervals ½0, h − v�
and ½0, h − u�, respectively.

We define the new Phillips-type Bernstein operators
Bu

m,q and Bv
n,q on triangle by using quantum calculus as

follows:

Bu
m,q f

� 	
u, vð Þ =

〠
m

i=0
~pm,i u, vð Þf

i½ �q
m½ �q

h − vð Þ, v
 !

,  u, vð Þ ∈T h \ 0, hð Þ,

f 0, hð Þ,  0, hð Þ ∈T h,

8>><
>>:

Bv
n,q f

� 	
u, vð Þ =

〠
n

j=0
~qn,j u, vð Þf u,

j½ �q
n½ �q

h − uð Þ
 !

,  u, vð Þ ∈T h \ h, 0ð Þ,

f h, 0ð Þ,  h, 0ð Þ ∈T h,

8>><
>>:

ð14Þ
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where

~pm,i u, vð Þ =

m

i

" #
q

ui
Qm−i−1

s=0 h − v − qsuð Þ

h − vð Þm , 0 ≤ u + v ≤ h except the point 0, hð Þð Þ,

ð15Þ

~qn,j u, vð Þ =

n

j

" #
q

vj
Qn−j−1

t=0 h − u − qtvð Þ

h − uð Þn , 0 ≤ u + v ≤ h except the point 0, hð Þð Þ,

ð16Þ
respectively. These operators reduce to Phillips-type operator
on ½0, 1�. One can note that the bases (15) and (16) of the
operators constructed using quantum calculus are different
from the bases (12) and (13) of the operators constructed
by Blaga and Coman [31]. In case q = 1, corresponding oper-
ators reduce to its classical case on triangles. Now, we gener-
alize various results of [31] in quantum calculus frame.

For the sake of convenience, we use the following nota-
tion onwards:

h − vð Þm ≔ 〠
m

i=0

m

i

" #
q

ui
Ym−i−1

s=0
h − v − qsuð Þ,

h − uð Þn ≔ 〠
n

i=0

n

i

" #
q

vi
Yn−i−1
s=0

h − u − qsvð Þ:
ð17Þ

Theorem 1. If f is a real-valued function defined on T h, then

(i) Bu
m,q f = f onΓ2 ∪ Γ3

(ii) ðBu
m,qei0Þðu, vÞ = ui, i = 0, 1ðdexðBu

m,qÞ = 1Þ
(iii) ðBu

m,qe20Þðu, vÞ = u2 + ððuðh − u − vÞÞ/½m�qÞ

Bu
m,qeij

� 	
u, vð Þ =

vjui, i = 0, 1, j ∈N ,

vj u2 + u h − u − vð Þ
m½ �q

 !
, i = 2, j ∈ℕ,

8>><
>>:

ð18Þ

where eijðu, vÞ = uivj and dex ðBu
m,qÞ is the degree of exactness

of the operator Bu
m,q.

Proof. By definition, ðBu
m,q f Þð0, hÞ = f ð0, hÞ. So we will calcu-

late the moments only on T h \ ð0, hÞ. The interpolation
property ðiÞ follows from the relations

~pm,i 0, vð Þ =
1, if i = 0,
0, i ≠ 0,

(

~pm,i h − v, vð Þ =
1, if i =m,
0, i ≠m:

( ð19Þ

Regarding the property ðiiÞ, we have

Bu
m,qe00

� 	
u, vð Þ = 〠

m

i=0

m

i

" #
q

ui
Qm−i−1

s=0 h − v − qsuð Þ

h − vð Þm = h − vð Þm
h − vð Þm = 1,

Bu
m,qe10

� 	
u, vð Þ = 〠

m

i=0

m

i

" #
q

ui
Qm−i−1

s=0 h − v − qsuð Þ

h − vð Þm
i½ �q
m½ �q

h − vð Þ

= 〠
m

i=0

i½ �q/ m½ �q
� 	 m

i

" #
q

ui
Qm−i−1

s=0 h − v − qsuð Þ

h − vð Þm−1

= 〠
m−1

i=0

m − 1

i

" #
q

ui+1
Qm−i−2

s=0 h − v − qsuð Þ

h − vð Þm−1

= u 〠
m−1

i=0

m − 1

i

" #
q

ui
Q m−1ð Þ−i−1

s=0 h − v − qsuð Þ

h − vð Þm−1 = u,

Bu
m,qe20

� 	
u, vð Þ = 〠

m

i=0

m

i

" #
q

ui
Qm−i−1

s=0 h − v − qsuð Þ

h − vð Þm
i½ �2q
m½ �2q

h − vð Þ2

= h − vð Þ2 〠
m−1

i=0

i + 1½ �q/ m½ �qð Þ
m

i

" #
q

ui+1
Qm−i−2

s=0 h − v − qsuð Þ

h − vð Þm

= h − vð Þ2u 〠
m−1

i=0

1 + q i½ �qð Þ/ m½ �qð Þ
m

i

" #
q

ui
Qm−i−2

s=0 h − v − qsuð Þ

h − vð Þm

= h − vð Þ u
m½ �q

〠
m−1

i=0

m

i

" #
q

ui
Q m−1ð Þ−i−1

s=0 h − v − qsuð Þ

h − vð Þm−1 + h − vð Þ2u

� 〠
m−1

i=0

q m − 1½ �q/ m½ �q
� 	

i½ �q/ m − 1½ �q
� 	 m − 1

i

" #
q

ui
Qm−i−2

s=0 h − v − qsuð Þ

h − vð Þm

= h − vð Þ u
m½ �q

+
q m − 1½ �qu2

m½ �q
〠
m−2

i=0

m − 2

i

" #
q

ui
Q m−2ð Þ−i−1

s=0 h − v − qsuð Þ

h − vð Þm−2 ,

Bu
m,qe20

� 	
u, vð Þ = h − vð Þ u

m½ �q
+
q m − 1½ �qu2

m½ �q
, ð20Þ

or equivalently,

Bu
m,qe20

� 	
u, vð Þ = h − vð Þ u

m½ �q
+ u2 1 − 1

m½ �q

 !
= u2 + u h − u − vð Þ

m½ �q
:

ð21Þ
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Remark 2. In the same way, it can be proved that if f is a real-
valued function defined on T h, then

(i) Bv
n,q f = f onΓ1 ∪ Γ3

(ii) ðBv
n,qe0jÞðu, vÞ = vj, j = 0, 1ðdexðBv

n,qÞ = 1Þ
(iii) ðBv

n,qe02Þðu, vÞ = v2 + ððvðh − u − vÞÞ/½n�qÞ

Bv
n,qeij

� 	
u, vð Þ =

uivj, j = 0, 1, i ∈N ,

ui v2 + v h − u − vð Þ
n½ �q

 !
, j = 2, i ∈ℕ:

8>><
>>:

ð22Þ

Based on the following approximation formula

f =Bu
m,q f +Ru

m,q f , ð23Þ

we present the following results.

Theorem 3. If f ð:,vÞ ∈ C½0, h − v�, then

Ru
m,q f

� 	
u, vð Þ




 


 ≤ 1+ h

2δ
ffiffiffiffiffiffiffiffiffi
m½ �q

q
0
B@

1
CAw f :,vð Þ ; δð Þ, v ∈ 0, h½ �,

ð24Þ

where modulus of continuity of the function f with respect
to the variable u is denoted by wð f ð:,vÞ ; δÞ:

Further, if δ = 1/
ffiffiffiffiffiffiffiffiffi
½m�q

q
, then

∣ Ru
m,q f

� 	
u, vð Þ∣ ≤ 1+ h

2

� �
w f :,vð Þ ; 1ffiffiffiffiffiffiffiffiffi

m½ �q
q

0
B@

1
CA, v ∈ 0, h½ �:

ð25Þ

Proof. Since by definition, ðBu
m,q f Þð0, hÞ = f ð0, hÞ and hence

remainder will be zero at ð0, hÞ due to interpolation. We have

Ru
m,q f

� 	
u, vð Þ




 


 ≤ 〠
m

i=0
~pm,i u, vð Þ f u, vð Þ − f

i½ �q h − vð Þ
m½ �q

, v
 !











:
ð26Þ

Since

∣f u, vð Þ − f
i½ �q h − vð Þ

m½ �q
, v

 !
∣ ≤

1
δ
∣ u −

i½ �q h − vð Þ
m½ �q

∣+1
 !

w f :,vð Þ ; δð Þ,

ð27Þ

one obtains

∣ Ru
m,q f

� 	
u, vð Þ∣ ≤ 〠

m

i=0
~pm,i u, vð Þ 1

δ
∣ u −

i½ �q h − vð Þ
m½ �q

∣+1
 !

w f :,vð Þ ; δð Þ

≤ 1 + 1
δ

〠
m

i=0
~pm,i u, vð Þ u −

i½ �q h − vð Þ
m½ �q

 !2 !1/22
4

3
5w f :,vð Þ ; δð Þ

= 1 + 1
δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u h − u−vð Þ

m½ �q

s" #
w f :,vð Þ ; δð Þ:

ð28Þ

As

max
T h

u h − u − vð Þ½ � = h2

4 , ð29Þ

it follows that

∣ Ru
m,q f

� 	
u, vð Þ∣ ≤ 1+ h

2δ
ffiffiffiffiffiffiffiffiffi
m½ �q

q
0
B@

1
CAw f :,vð Þ ; δð Þ: ð30Þ

For δ = 1/
ffiffiffiffiffiffiffiffiffi
½m�q

q
, we obtain

∣ Ru
m,q f

� 	
u, vð Þ∣ ≤ 1+ h2

� �
w f :,vð Þ ; 1ffiffiffiffiffiffiffiffiffi

m½ �q
q

0
B@

1
CA: ð31Þ

Theorem 4. If f ð:,vÞ ∈ C2½0, h�, then

Ru
m,q f

� 	
u, vð Þ = −

u h − u − vð Þ
2 m½ �q

f 2,0ð Þ ξ, yð Þ, ξ ∈ 0, h − v½ �,

ð32Þ

Ru
m,q f

� 	
u, vð Þ




 


 ≤ h2

8 m½ �q
M20 f , u, vð Þ ∈T h, ð33Þ

where

Mij f =max
T h

f i,jð Þ u, vð Þ



 


: ð34Þ

Proof. As dexðBu
m,qÞ = 1, by Peano’s theorem, one obtains

Ru
m,q f

� 	
u, vð Þ =

ðh−v
0

K20 u, v ; tð Þf 2,0ð Þ t, vð Þdt, ð35Þ
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where the kernel

K20 u, v ; tð Þ≔Ru
m,q u − tð Þ+
� 


= u − tð Þ+ − 〠
m

i=0
~pm,i u, vð Þ i½ �q

h − v
m½ �q

− t

 !
+
ð36Þ

does not change the signðK20ðu, v ; tÞ ≤ 0, u ∈ ½0, h − v�Þ: By
the Mean Value Theorem, it follows that

Ru
m,q f

� 	
u, vð Þ = f 2,0ð Þ ξ, vð Þ

ðh−v
0

K20 u, v ; tð Þdt, ξ ∈ 0, h − v½ �:

ð37Þ

After an easy calculation, we get

Ru
m,q f

� 	
u, vð Þ = −

u h − u − vð Þ
2 m½ �q

f 2,0ð Þ ξ, vð Þ, ð38Þ

where ξ ∈ ½0, h − v�.
By using it in Equation (32), we get

∣ Ru
m,q f

� 	
u, vð Þ∣ ≤ h2

8 m½ �q
M20 f ,  u, vð Þ ∈T h: ð39Þ

Remark 5. From (32), it follows that

(i) if f ð:,vÞ is a concave function, then ðRu
m,q f Þðu, vÞ ≥ 0,

i.e.,

Bu
m,q f

� 	
u, vð Þ ≤ f u, vð Þ, ð40Þ

(ii) if f ð:,vÞ is a convex function, then ðRu
m,q f Þðu, vÞ ≤ 0,

i.e.,

Bu
m,q f

� 	
u, vð Þ ≥ f u, vð Þ, ð41Þ

for u ∈ ½0, h − v� and v ∈ ½0, h�.

Remark 6. For the remainder Rv
n,q f of the approximation

formula

f =Bv
n,q f +Rv

n,q f : ð42Þ

We also have the following:

(A) If f ðu,:Þ ∈ C½0, h − u�, then

∣ Rv
n,q f

� 	
u, vð Þ∣ ≤ 1 + h

2δ
ffiffiffiffiffiffiffi
n½ �q

q
0
B@

1
CAw f u,:ð Þ ; δð Þ, u ∈ 0, h½ �:

ð43Þ

And for δ = 1/
ffiffiffiffiffiffiffi
½n�q

q
,

∣ Rv
n,q f

� 	
u, vð Þ∣ ≤ 1 + h

2

� �
w f u,:ð Þ ; 1ffiffiffiffiffiffiffi

n½ �q
q

0
B@

1
CA, u ∈ 0, h½ �:

ð44Þ

(B) If f ðu,:Þ ∈ C2½0, h�, then

Rv
n,q f

� 	
u, vð Þ = −

v h − u − vð Þ
2 n½ �q

f 0,2ð Þ u, ηð Þ, η ∈ 0, h − u½ �,

∣ Rv
n,q f

� 	
u, vð Þ∣ ≤ h2

8 n½ �q
M02 f ,  u, vð Þ ∈T h,

ð45Þ

where

Mij f =max
T h

f i,jð Þ u, vð Þ



 


: ð46Þ

3. Product Operators

Let P mn,q =Bu
m,qB

v
n,q and Qmn,q =Bv

n,qB
u
m,q be the products

of operators Bu
m,q and Bv

n,q.
We have

P mn,q f
� �

u, vð Þ =
〠
m

i=0
〠
n

j=0
~pm,i u, vð Þ~qn,j i½ �q

h − vð Þ
m½ �q

, v
 !

f i½ �q
h − vð Þ
m½ �q

, j½ �q
m½ �q − i½ �q

� 	
h + i½ �qv

m½ �q n½ �q

0
@

1
A,  u, vð Þ ∈T h \ 0, hð Þ, h, 0ð Þf g,

f 0, hð Þ,  0, hð Þ ∈T h,
f h, 0ð Þ,  h, 0ð Þ ∈T h:

8>>>>>><
>>>>>>:

ð47Þ
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Remark 7. The nodes of the operator P mn,q are the q-ana-
logue of the nodes, which are given in [31], Figure 2, for
i = �0,m ; j = �0, n, and v ∈ ½0, h�.

Theorem 8. The product operatorP mn,q satisfies the following
relations:

(i) ðP mn,q f Þðu, 0Þ = ðBu
m,q f Þðu, 0Þ

(ii) ðP mn,q f Þð0, vÞ = ðBv
n,q f Þð0, vÞ

(iii) ðP mn,q f Þðu, h − uÞ = f ðu, h − uÞ, u, v ∈ ½0, h�

The above proofs follow from some simple computation.
The property ðiÞ or ðiiÞ implies that ðP mn,q f Þð0, 0Þ = f

ð0, 0Þ.

Remark 9. The product operator P mn,q interpolates the func-
tion f at the vertex ð0, 0Þ and on the hypotenuse u + v = h of
the triangle T h.

The product operator Qmn,q, given by

has the nodes, which are q-analogue of nodes given in [31],
Figure 3, for i = �0,m, j = �0, n, u ∈ ½0, h�, and the properties:

(i) ðQnm,q f Þðu, 0Þ = ðBu
m,q f Þðu, 0Þ

(ii) ðQnm,q f Þð0, vÞ = ðBv
n,q f Þð0, vÞ

(iii) ðQnm,q f Þðh − v, vÞ = f ðh − v, vÞ, u, v ∈ ½0, h�

Let us consider the approximation formula

f =P mn,q f +RP
mn,q f : ð49Þ

Theorem 10. If f ∈ CðT hÞ and 0 < q ≤ 1, then

∣ RP
mn,q f

� 	
u, vð Þ∣ ≤ 1 + hð Þw f ; 1ffiffiffiffiffiffiffiffiffi

m½ �q
q , 1ffiffiffiffiffiffiffi

n½ �q
q

0
B@

1
CA,  u, vð Þ ∈T h: ð50Þ

Proof. We have

∣ RP
mn,q f

� 	
u, vð Þ∣

≤
1
δ1

〠
m

i=0
〠
n

j=0
~pm,i u, vð Þ~qn,j i½ �q

h − vð Þ
m½ �q

, v
 !

∣ u − i½ �q
h − vð Þ
m½ �q

∣

"

+ 1
δ2

〠
m

i=0
〠
n

j=0
~pm,i u, vð Þ~qn,j i½ �q

h − vð Þ
m½ �q

, v
 !

∣ v − j½ �q
m½ �q − i½ �q

� 	
h + i½ �qv

m½ �q n½ �q
∣

+〠
m

i=0
〠
n

j=0
~pm,i u, vð Þ~qn,j i½ �q

h − vð Þ
m½ �q

, v
 !#

w f ; δ1, δ2ð Þ:

ð51Þ

After some transformations, one obtains

〠
m

i=0
〠
n

j=0
~pm,i u, vð Þ~qn,j i½ �q

h − vð Þ
m½ �q

, v
 !

u − i½ �q
h − vð Þ
m½ �q














≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u h − u − vð Þ

m½ �q

s
,

〠
m

i=0
〠
n

j=0
~pm,i u, vð Þ~qn,j i½ �q

h − vð Þ
m½ �q

, v
 !

v − j½ �q
m½ �q − i½ �q

� 	
h + i½ �qv

m½ �q n½ �q
















≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v h − u − vð Þ

n½ �q

s
,

ð52Þ

while

〠
m

i=0
〠
n

j=0
~pm,i u, vð Þ~qn,j i½ �q

h − vð Þ
m½ �q

, v
 !

= 1: ð53Þ

It follows

∣ RP
mn,q f

� 	
u, vð Þ∣ ≤ 1

δ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u h − u − vð Þ

m½ �q

s
+ 1
δ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v h − u − vð Þ

n½ �q

s
+ 1

 !
w f ; δ1, δ2ð Þ:

ð54Þ

Qnm,q f
� �

u, vð Þ =
〠
m

i=0
〠
n

j=0
~pm,i u, j½ �q

h − uð Þ
n½ �q

 !
~qn,j u, vð Þf i½ �q

n½ �q − j½ �q
� 	

h + j½ �qu
m½ �q n½ �q

, j½ �q
h − uð Þ
n½ �q

0
@

1
A,  u, vð Þ ∈T h \ 0, hð Þ, h, 0ð Þf g,

f 0, hð Þ,  0, hð Þ ∈T h,
f h, 0ð Þ,  h, 0ð Þ ∈T h,

8>>>>>><
>>>>>>:

ð48Þ
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Figure 1: Operators Bu
m,q f , B

v
n,q f , P mn,q f , and Smn,q f approximating function on triangular domain for h = 1, m = 6, n = 6, and q = 0:70:
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n,q f , P mn,q f , and Smn,q f approximating function on triangular domain for h = 1, m = 6, n = 6, and q = 0:99.
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m,q f ,B

v
n,q f , P mn,q f , and Smn,q f approximating function on triangular domain for h = 1, m = 15, n = 15, and q = 0:70.
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v
n,q f , P mn,q f , and Smn,q f approximating function on triangular domain for h = 1, m = 15, n = 10, and q = 0:99.
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Since

u h − u − vð Þ
m½ �q

≤
h2

4 m½ �q
,

v h − u − vð Þ
n½ �q

≤
h2

4 n½ �q
, for all u, vð Þ ∈T h:

ð55Þ

We have

∣ RP
mn,q f

� 	
u, vð Þ∣ ≤ h

2δ1
ffiffiffiffiffiffiffiffiffi
m½ �q

q + h

2δ2
ffiffiffiffiffiffiffi
n½ �q

q + 1

0
B@

1
CAw f ; δ1, δ2ð Þ∣

� RP
mn,q f

� 	
u, vð Þ∣ ≤ 1 + hð Þw f ; 1ffiffiffiffiffiffiffiffiffi

m½ �q
q , 1ffiffiffiffiffiffiffi

n½ �q
q

0
B@

1
CA:

ð56Þ

4. Boolean Sum Operators

Let

Smn,q ≔Bu
m,q ⨁Bv

n,q =Bu
m,q +Bv

n,q −Bu
m,qB

v
n,q,

T nm,q ≔Bv
n,q ⨁Bu

m,q =Bv
n,q +Bu

m,q −Bv
n,qB

u
m,q,

ð57Þ

be the Boolean sums of the Phillips-type Bernstein oper-
ators Bu

m,q and Bv
n,q.

Theorem 11. For the real-valued function f defined on T h,
we have

Smn,q f ∂T h
= f



 


∂T h

: ð58Þ

Proof. We have

Smn,q f = Bu
m,q +Bv

n,q −Bu
m,qB

v
n,q

� 	
f : ð59Þ

The interpolation properties of Bu
m,q,B

v
n,q together with

properties (i)–(iii) of the operator P mn,q imply that

Smn,q f
� �

u, 0ð Þ = Bu
m,q f

� 	
u, 0ð Þ + f u, 0ð Þ − Bu

m,q f
� 	

u, 0ð Þ = f u, 0ð Þ,

Smn,q f
� �

0, vð Þ = f 0, vð Þ − Bv
n,q f

� 	
0, vð Þ + Bv

n,q f
� 	

0, vð Þ = f 0, vð Þ,

Smn,q f
� �

u, h − uð Þ = f u, h − uð Þ + f u, h − uð Þ − f u, h − uð Þ = f u, h − uð Þ,
ð60Þ

for all u, v ∈ ½0, h�.
LetRS

mn,q f be the remainder of the Boolean sum approx-
imation formula

f = Smn,q f +RS
mn,q f : ð61Þ

Theorem 12. If f ∈ CðT hÞ, then

RS
mn,q f

� 	
u, vð Þ




 


 ≤ 1+ h
2

� �
w f :,vð Þ ; 1ffiffiffiffiffiffiffiffiffi

m½ �q
q

0
B@

1
CA

+ 1 + h
2

� �
w f u,:ð Þ ; 1ffiffiffiffiffiffiffi

n½ �q
q

0
B@

1
CA + 1 + hð Þw

� f ; 1ffiffiffiffiffiffiffiffiffi
m½ �q

q , 1ffiffiffiffiffiffiffi
n½ �q

q
0
B@

1
CA,

ð62Þ

for all ðu, vÞ ∈T h.

Proof. From the equality

f − Smn,q f = f −Bu
m,q f + f −Bv

n,q f − f −P mn,q f
� �

, ð63Þ

we get

RS
mn,q f

� 	
u, vð Þ




 


 ≤ Ru
m,q f

� 	
u, vð Þ




 


 + Rv
n,q f

� 	
u, vð Þ




 



+ RP

mn,q f
� 	

u, vð Þ



 


:

ð64Þ

Now, from (25), (44), and (50), we follow the proof (62).

Remark 13. Analogous relations can be obtained for the
remainders of the product approximation formula

f =Qnm,q f +RQ
nm,q f =Bv

n,qB
u
m,q f +RQ

nm,q f , ð65Þ

and for the Boolean sum formula

f =T nm,q f +RT
nm,q f = Bv

n,q ⊕Bu
m,q

� 	
f +RT

nm,q f : ð66Þ

5. Graphical Analysis

Let us consider a function for graphical analysis. In
Figure 1(a), we have presented the graph of function f ðu, vÞ
= sin ð10uÞ + cos ð5vÞ on triangular domain. The graph of
Phillips Bernstein operator Bu

m,q f based on quantum
analogue on triangular domain is shown in Figure 1(b). Sim-
ilarly, other operators Bv

n,q f , P mn,q f , and Smn,q f approxi-
mating function are shown in Figures 1(c)–1(e) for various
values of q, m, n, and h. One can observe from Figures 1–5
that operators are approximating function better as q
approaches to 1 for fixed value of m and n.

Also from these figures, one can observe that operator is
approximating function better with increasing values of m
and n and by fixing q on triangular domain.
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Thus, we have constructed Phillips-type q-Bernstein
operators over triangular domain which hold the end point
interpolation property on some edges and vertices of triangle.

Hence, it can be concluded that after introducing one
extra parameter q in Lupas Bernstein operators, we have
more modeling flexibility for approximation on triangular
domain.
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A new rule for calculating the parameter t involved in each iteration of the MHSDL (Dai-Liao) conjugate gradient (CG) method is
presented. The new value of the parameter initiates a more efficient and robust variant of the Dai-Liao algorithm. Under proper
conditions, theoretical analysis reveals that the proposed method in conjunction with backtracking line search is of global
convergence. Numerical experiments are also presented, which confirm the influence of the new value of the parameter t on the
behavior of the underlying CG optimization method. Numerical comparisons and the analysis of obtained results considering
Dolan and Moré’s performance profile show better performances of the novel method with respect to all three analyzed
characteristics: number of iterative steps, number of function evaluations, and CPU time.

1. Introduction and Background Results

The topic of our research is solving the unconstrained non-
linear optimization problem

min f xð Þ, x ∈ℝn, ð1Þ

where the function f : ℝn ⟶ℝ is continuously differentia-
ble and bounded below. Following the standard notation,
gk = ∇f ðxkÞ denotes the gradient, sk−1 = xk − xk−1 and yk−1
= gk − gk−1. Using an extended conjugacy condition

dTk yk−1 = −tgT
k sk−1,  t > 0, ð2Þ

Dai and Liao in [1] proposed the conjugate gradient (CG)
method

xk+1 = xk + αkdk, ð3Þ

where the step size αk is a positive parameter, xk is an already
generated point, xk+1 is a new iterative point, and dk is a suit-
able search direction. The search directions dk are generated
by the conceptual formula

dk =
−g0, k = 0,

−gk + βDL
k dk−1, k ≥ 1,

(
ð4Þ

where the conjugate gradient coefficient βDL
k is defined by

βDL
k = Y tð Þ≔ gTk yk−1

dTk−1yk−1
− t

gTk sk−1
dTk−1yk−1

, t > 0, ð5Þ

wherein t > 0 is a scalar.
Some well-known formulas for defining βk have been

created by modifying the conjugate gradient parameter
βDL
k [2–9]. One of them is denoted as βMHSDL

k and defined
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in [7] by

βMHSDL
k = Y1 tð Þ≔ gTk dyk−1

dTk−1yk−1
− t

gTk sk−1
dTk−1yk−1

, ð6Þ

where t > 0 is a scalar as in (5) and dyk−1 = gk − ð∥gk∥/∥
gk−1∥Þgk−1.

The family of CG methods for nonlinear optimization
has reached great popularity lately, thanks to the various
benefits and advantages it possesses. The most important
property is based on computationally efficient iterations
arising from a simple CG rule. This property initiates the
high efficiency of CG methods with respect to analogous
methods for nonlinear optimization. Moreover, global con-
vergence is ensured under suitable conditions. Finally, the
application of various CG methods in solving image resto-
ration problems has become an important research topic
[10, 11].

Since the parameter t is important for the numerical
behavior of Dai-Liao (DL) CG methods [12], one of the most
important problems in the implementation of the DL class
CG method is to determine a proper value t > 0 which will
give desirable results. Many scientists have invested a lot of
time and effort in the previous period to determine the best
definition of the nonnegative parameter t in the DL class
CG methods. So far, the research in finding the appropriate
value of t has evolved in two directions. One group of
methods is aimed at finding an appropriate fixed value for t
[1, 2, 6–8], while methods from another group promote
appropriate rules for computing values of t in each iteration,
which ensure a satisfactory decrease of the objective. In our
research, we will pay attention to the second research stream:
find the parameter t whose values change through iterations
so that the faster convergence is achieved. The value of the
parameter t defined in the kth iteration will be denoted by t
ðkÞ≔ tk.

In order to complete the presentation, we will restate the
main principles proposed so far for computing tk. Hager and
Zhang in [13, 14] proposed the DL CGmethod (5), known as
CG-DESCENT, where tðkÞ ≡ tk1 is defined by

t kð Þ ≡ tk1 ≔ 2 ∥yk−1∥
2

yTk−1sk−1
: ð7Þ

Dai and Kou [15] suggested the conjugate gradient coef-

ficient βDK
k of the form

βDK
k = Y τk +

yk−1k k2
yTk−1sk−1

−
yTk−1sk−1
sk−1k k2

� �
=

gT
k yk−1

yTk−1dk−1
− τk +

∥yk−1∥
2

yTk−1sk−1
−
yTk−1sk−1
∥sk−1∥

2

� �
gT
k sk−1

dTk−1yk−1
,

ð8Þ

where τk is the scaling parameter arising from the self-scaling
memoryless BFGS method. Clearly, the Dai and Kou (DK)
method is a member of the DL class CG methods, which is
determined by

t kð Þ ≡ tk2 ≔ τk +
∥yk−1∥

2

yTk−1sk−1
−
yTk−1sk−1
∥sk−1∥

2 : ð9Þ

The results given in [15] confirm that the DK iterations
outperform many existing CG methods. Following the devel-
opment of DL methods, Babaie-Kafaki and Ghanbari [16]
defined two new ways to calculate the value of the parameter
t in (5), as in the following two formulas:

t kð Þ ≡ tk3 ≔
sTk−1yk−1
sk−1k k2 +

yk−1k k
sk−1k k ,

t kð Þ ≡ tk4 ≔
yk−1k k
sk−1k k :

ð10Þ

Andrei in [17] proposed the new rule for calculating t in
order to define YðtÞ in (5) and defined a new variant of the
DL class CG methods, denoted by DLE, with

t kð Þ ≡ tk5 ≔
sTk−1yk−1
sk−1k k2 : ð11Þ

Lotfi and Hosseini in [18] proposed the following rule for
determining the parameter tðkÞ, using the expression

t kð Þ ≡ tk6 ≔max t∗k6, υ
yk−1k k2

sTk−1yk−1

� �
, ð12Þ

The backtracking line search.
Require: Nonlinear objective function f ðxÞ, search direction dk, previous point xk, and real quantities 0 < ω < 0:5 and φ ∈ ð0, 1Þ.
1: α = 1.
2: While f ðxk + αdkÞ > f ðxkÞ + ωαgTk dk, do α≔ αφ.
3: Return αk = α.

Algorithm 1:
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where

t∗k6 ≔
1 − hk gk−1rk kð ÞsTk−1gk + gTk yk−1/yTk−1sk−1

� �
hk gk−1k kr sk−1k k2

gTk sk−1 + gTk sk−1/sTk−1yk−1
� �

hk gk−1k kr sk−1k k2 ,

hk = C +max −
sTk−1yk−1
sk−1k k2 , 0

� �
gk−1k k−r ,

ð13Þ

and υ > 1/4, C, and r are three positive constants.
On the basis of the above overview of the main CG

methods and motivated by the strong theoretical properties
and computational efficiency of modified Dai-Liao CG
methods proposed by many researchers, we suggest a new
way of calculating the value of the parameter tðkÞ. As a con-
sequence, the corresponding CG method of DL type, termed
as the Effective Dai-Liao (EDL) method, is proposed and its
convergence is proven. Numerical testing and comparison
with other known DL variants are presented in order to show
the effectiveness of the introduced method. Analysis of gen-
erated numerical results exhibits that the proposed EDL
method is efficient compared with other DL-type methods.

The global organization of sections is described as fol-
lows. Introduction, motivation, and a brief overview of the
preliminary results are given in Section 1. A new rule for cal-
culating the variable parameter tðkÞ is proposed in Section 2.
An effective algorithm and global convergence of the EDL
method initiated by tðkÞ are given in the same section. The
new EDL method is tested in Section 3 on some unlimited
optimization test problems and compared against some
known variants of the DL class methods. Finally, concluding
remarks are presented in the last concluding section.

2. A Modified Dai-Liao Method and
Its Convergence

Popularity in defining new rules for calculating tðkÞ is a guaran-
tee that such an approach is effective and still insufficiently
explored. The idea for defining a new parameter t∗k comes from
previously described rules for computing tðkÞ, particularly from

the paper Li and Ruan [19] and from the idea which can be
found in the paper Yuan et al. [11]. Further, analyzing the
results from [1, 2, 6–8], we conclude that the scalar t was
defined by a fixed value of 0:1 in related numerical experiments.
Also, numerical experience related to the fixed valued t = 1 was
reported in [1]. According to this experience, our intention is to
define variable values tðkÞ inside the interval ð0, 1Þ.

To successfully define tðkÞ with values belonging to the
interval ð0, 1Þ, let us start from the definition of the quantity
Lk which was used in defining the direction dk in [19]. The
parameter Lk was defined by Lk = sTk−1sk−1/sTk−1y∗k−1 ∈ ð0, 1Þ, k
≥ 0, where

y∗k−1 = yk−1 + max 0,−
sTk−1yk−1
∥sk−1∥

2

� �
+ 1

� �
sk−1: ð14Þ

By putting y∗k−1 into Lk, the following can be obtained:

Lk =
sTk−1sk−1

sTk−1 yk−1 + max 0,− sTk−1yk−1/ sk−1k k2� �� 	
+ 1

� �
sk−1

� �
=

sk−1k k2
sTk−1yk−1 + max 0,− sTk−1yk−1/∥sk−1∥

2� �� 	
+ 1

� �
sk−1k k2 :

ð15Þ

Further, with certain modifications and substitutions in
the equation defining Lk, as well as using the function max,
which chooses the maximum between the value of the
expression dTk−1gk and 1, we come to a new definition of the
parameter tðkÞ. As described in advance imposed desired
restrictions, the novel parameter t∗k is defined by

t∗k =
gkk k2

max 1, dTk−1gk

n o
+ max 0, dTk−1gk/∥gk∥

2

 �n o

+ 1

 �

gkk k2
:

ð16Þ

Effective Dai-Liao (EDL) CG method.
Require: An initial point x0 and quantities 0 < ε < 1, 0 < δ < 1.
1: Assign k = 0 and d0 = −g0.
2: If

kgkk ≤ ε and ðð∣f ðxk+1Þ − f ðxkÞ ∣ Þ/ð1 + j f ðxkÞjÞÞ ≤ δ,
STOP;
else go to Step 3.

3: Calculate αk ∈ ð0, 1Þ using Algorithm 1 (backtracking line search).
4: Compute xk+1 = xk + αkdk.
5: Calculate gk+1, yk = gk+1 − gk, sk = xk+1 − xk.
6: Compute t∗k by (16).
7: Calculate βEDL

k+1 by (18).
8: Compute dk+1 = −gk+1 + βEDL

k+1 dk.
9: Let k≔ k + 1, and go to Step 2.

Algorithm 2:
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It is easy to verify that t∗k defined by (16) satisfies

0 < t∗k ≤
gkk k2

1 + 0 + 1ð Þ gkk k2 =
gkk k2

1 + gkk k2 < 1: ð17Þ

Accordingly, t∗k ∈ ð0, 1Þ, which was our initial intention.
Clearly, greater values of ∥gk∥ lead to values t∗k↗1. Further,
since the trend ∥gk∥⟶0 is expectable, we can expect smaller
values t∗k↘0 in late iterations. Therefore, t∗k is suitable for
defining corresponding conjugate gradient coefficient YðtÞ
or Y1ðtÞ and further DL CG iterations (4).

Considering t = t∗k in (6), it is reasonable to propose a
novel variant of the Dai-Liao CG parameter βEDL

k which is
subject to the following rule during the iterative process:

βEDL
k = Y1 t∗kð Þ≔ gkk k2 − gkk k/ gk−1k kð Þ gTk gk−1

�� ��
dTk−1yk−1

− t∗k
gTk sk−1
dTk−1yk−1

:

ð18Þ

Before the main algorithm, it is necessary to define the

backtracking line search as one of the most popular and prac-
tical methods for computing the step length αk in (3). The
procedure for the backtracking line search proposed in [20]
starts from the initial value α = 1 and generates output values
which ensure that the goal function decreases in each itera-
tion. Consequently, it is appropriate to use Algorithm 1,
restated from [21], in order to determine the primary step
size αk.

Algorithm 2 describes a computational framework for
the EDL method.

It is necessary to examine the properties of the EDL
method and prove its convergence.

Assumption 1.

(1) The level set M = fx ∈ℝn ∣ f ðxÞ ≤ f ðx0Þg, defined
upon the initial point x0 of the iterative method (3),
is bounded.

(2) The goal function f is continuous and differentiable
in a neighborhood P of M with the Lipschitz

Table 1: Summary results of EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6 methods with respect to NI.

Test function MHSDL3 MHSDL4 MHSDL5 EDL MHSDL6

Extended penalty 1466 2243 2231 1259 1371

Perturbed quadratic 1203710 754291 746557 305622 423037

Raydan 1 159055 110587 106586 55477 75154

Raydan 2 1636 441 441 70 209

Diagonal 1 116788 78844 73512 30978 20332

Diagonal 2 176983 270434 271595 515000 271295

Diagonal 3 150328 98647 104417 47155 37711

Hager 8666 5219 5157 3234 3625

Generalized tridiagonal 1 1862 1471 1485 639 877

Extended TET 1357 5954 5915 4030 2664

Diagonal 4 30693 19589 19332 8040 12012

Diagonal 5 1721 25120 25120 60 216

Extended Himmelblau 1777 8023 7946 1376 3682

Perturbed quadratic diagonal 2940970 2115659 2027128 1136414 1352704

Quadratic QF1 1270802 799192 786032 309509 325415

Extended quadratic penalty QP1 770 594 575 560 543

Extended quadratic penalty QP2 399671 240530 245254 96620 137799

Extended quadratic exponential EP1 462 606 606 513 526

Extended tridiagonal 2 3119 2176 2177 1132 1455

ARWHEAD (CUTE) 88824 69868 67413 40713 48669

ENGVAL1 (CUTE) 2323 1407 1415 552 820

INDEF (CUTE) 20 31 1080 23 36240

QUARTC (CUTE) 173913 262291 262291 524299 262181

Diagonal 6 1824 508 508 70 227

Generalized quartic 1208 1403 2846 1265 1154

Diagonal 7 3217 655 655 653 580

Diagonal 8 511 698 698 686 596

Full Hessian FH3 1456 5353 5350 2523 3176
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continuous gradient g. This assumption implies the
existence of a positive constant L > 0 satisfying

g uð Þ − g vð Þk k ≤ L u − vk k, ∀u, v ∈P : ð19Þ

Assumption 1 initiates the existence of positive constants
D and γ satisfying

u − vk k ≤D, ∀u, v ∈P ,

g uð Þk k ≤ γ, ∀u ∈P :
ð20Þ

The conditions from Assumption 1 are assumed. In view
of the uniform convexity of f , there is a constant θ > 0 that
satisfies

g uð Þ − g vð Þð ÞT u − vð Þ ≥ θ u − vk k2, for all u, v ∈M, ð21Þ

or equivalently,

f uð Þ ≥ f vð Þ + g vð ÞT u − vð Þ + θ

2
u − vk k2,  for all u, v ∈M:

ð22Þ

It follows from (21) and (22) that

sTk−1yk−1 ≥ θ sk−1k k2, ð23Þ

f xk−1ð Þ − f xkð Þ ≥ −g xkð ÞTsk−1 +
θ

2
sk−1k k2: ð24Þ

By (19) and (23), one concludes

θ sk−1k k2 ≤ sTk−1yk−1 ≤ L sk−1k k2, ð25Þ

where the inequality implies θ ≤ L.
The inequality (25) initiates

sTk−1yk−1 = αk−1d
T
k−1yk−1 > 0: ð26Þ

Table 2: Summary results of EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6 methods with respect to NFE.

Test function MHSDL3 MHSDL4 MHSDL5 EDL MHSDL6

Extended penalty 54876 73764 73429 46820 49791

Perturbed quadratic 56691737 34287604 33885701 13168688 18486375

Raydan 1 5066739 3364983 3236335 1551846 2170553

Raydan 2 6554 1162 1162 159 428

Diagonal 1 5004640 3256274 3022015 1200086 744278

Diagonal 2 353976 540878 543200 1030010 542600

Diagonal 3 6339146 3998904 4229565 1798032 1400076

Hager 192474 107413 106534 59187 69735

Generalized tridiagonal 1 37429 27860 28138 10760 15177

Extended TET 19546 77422 76925 40340 29334

Diagonal 4 713120 425023 418666 155027 242443

Diagonal 5 6874 50460 50460 140 442

Extended Himmelblau 45972 192362 190524 26104 80854

Perturbed quadratic diagonal 135901222 94177165 90238441 48147512 57702654

Quadratic QF1 55972697 33836473 33243711 12316721 12853424

Extended quadratic penalty QP1 17016 12882 12565 11116 10544

Extended quadratic penalty QP2 13015888 7454686 7584960 2743358 4030601

Extended quadratic exponential EP1 14914 18463 18463 14132 15133

Extended tridiagonal 2 36450 22564 22379 9687 12920

ARWHEAD (CUTE) 4296028 3305257 3182138 1846606 2230650

ENGVAL1 (CUTE) 40462 22432 22898 8209 12858

INDEF (CUTE) 1808 2182 5995 2060 104962

QUARTC (CUTE) 347926 524662 524662 1048648 524422

Diagonal 6 7394 1416 1408 159 468

Generalized quartic 14364 21842 48770 16695 14103

Diagonal 7 6454 6838 6838 3891 4521

Diagonal 8 6098 6938 6938 4161 5494

Full Hessian FH3 60792 212799 212701 89890 114962
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Taking into account αk−1 > 0 and the last inequality, we
conclude

dTk−1yk−1 > 0: ð27Þ

Lemma 2. [22, 23]. Let Assumption 1 be accomplished and the
points fxkg be generated by the method (3)–(4). Then, it holds

〠
∞

k=0

∥gk∥
4

∥dk∥
2 < +∞: ð28Þ

Lemma 3. Consider the proposed Dai-Liao CG method,
including (3), (4), and (18). If the search procedure guarantees
(27), for all k ≥ 0, then the next inequality holds

gT
k dk ≤ −c gkk k2, ð29Þ

for some 0 ≤ c ≤ 1.

Proof. The inequality (29) will be verified by induction. In the
initial situation k = 0, one obtains gT

0d0 = −kg0k2. Since c ≤ 1,

Table 3: Summary results of EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6 methods with respect to CPU time (sec).

Test function MHSDL3 MHSDL4 MHSDL5 EDL MHSDL6

Extended penalty 29.75 34.11 31.42 18.30 24.27

Perturbed quadratic 40532.66 24358.20 24947.84 8335.80 13225.80

Raydan 1 3054.67 1904.48 1692.06 690.91 1184.86

Raydan 2 6.77 1.58 1.66 0.31 0.77

Diagonal 1 7834.03 5106.41 4592.28 1476.89 486.09

Diagonal 2 885.13 1428.05 1447.02 2352.11 1513.50

Diagonal 3 13614.27 8416.77 9064.30 3132.02 1916.30

Hager 586.63 325.75 333.41 142.06 198.13

Generalized tridiagonal 1 66.14 35.59 34.42 15.19 21.63

Extended TET 20.50 78.34 82.94 41.23 31.45

Diagonal 4 134.53 77.86 87.88 30.41 55.34

Diagonal 5 18.06 134.73 121.09 0.56 1.84

Extended Himmelblau 11.13 44.47 44.36 6.19 18.30

Perturbed quadratic diagonal 91655.55 58226.16 60920.06 32179.38 36383.83

Quadratic QF1 62610.50 31552.48 28679.91 8832.11 8465.34

Extended quadratic penalty QP1 7.56 7.25 6.98 4.98 4.94

Extended quadratic penalty QP2 3814.16 2128.86 2288.55 671.52 1204.72

Extended quadratic exponential EP1 9.11 10.23 8.55 8.00 8.02

Extended tridiagonal 2 11.13 8.83 6.95 4.08 5.25

ARWHEAD (CUTE) 2709.42 2336.92 2369.28 1266.80 1689.80

ENGVAL1 (CUTE) 19.47 11.33 11.81 4.03 6.70

INDEF (CUTE) 2.44 2.89 10.70 1.92 774.34

QUARTC (CUTE) 3106.56 4818.58 4808.70 7138.72 4735.39

Diagonal 6 6.75 1.92 2.03 0.38 1.34

Generalized quartic 7.16 11.53 21.05 7.53 9.78

Diagonal 7 5.98 8.20 8.28 4.56 6.25

Diagonal 8 6.17 8.20 8.08 4.72 7.69

Full Hessian FH3 30.08 66.45 79.48 35.77 43.42
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Figure 1: NI performance profile for EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6 methods.
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obviously (29) is satisfied in the basic case. Suppose that (29)
is valid for some k ≥ 1. Taking the inner product of both the
left- and right-hand sides in (4) with the vector gTk , the fol-
lowing can be obtained:

gTk dk = − gkk k2 + βEDL
k gT

k dk−1

= − gkk k2 + gkk k2 − gkk k/ gk−1k kð Þ gTk gk−1
�� ��

dTk−1yk−1
− t∗k

gTk sk−1
dTk−1yk−1

 !
gTk dk−1

= − gkk k2 + gkk k2 − gkk k/ gk−1k kð Þ gT
k gk−1

�� ��
dTk−1yk−1

gT
k dk−1 − t∗k

gT
k sk−1

dTk−1yk−1
gT
k dk−1

= − gkk k2 + gkk k2 − gkk k/ gk−1k kð Þ gT
k gk−1

�� ��
dTk−1yk−1

gT
k dk−1 − t∗k

αk−1 gT
k dk−1

� �2
dTk−1yk−1

:

ð30Þ

Using (17) in common with (27) and αk−1 > 0, we con-
clude

t∗k
αk−1 gTk dk−1

� �2
dTk−1yk−1

> 0: ð31Þ

Now from (30), (31), and

0 ≤ βMHS
k =

gkk k2 − gkk k/ gk−1k kð Þ gTk gk−1
�� ��

dTk−1yk−1
≤

∥gk∥
2

λ ∣ gTk dk−1 ∣
, λ ≥ 1,

ð32Þ

it follows that

gTk dk ≤ − gkk k2 + gkk k2 − gkk k/ gk−1k kð Þ gT
k gk−1

�� ��
dTk−1yk−1

gT
k dk−1

≤ − gkk k2 + gkk k2
λ gTk dk−1
�� �� gTk dk−1�� �� = − 1 −

1
λ

� �
gkk k2:

ð33Þ

In view of λ ≥ 1, the inequality (29) is satisfied for c = ð1
− ð1/λÞÞ in (33) and arbitrary k ≥ 0.

The global convergence of the proposed EDL method is
confirmed by Theorem 4.

Theorem 4. Let Assumption 1 be true and f be uniformly con-
vex. Then, the sequence fxkg generated by (3), (4), and (18)
fulfills

lim inf
k→∞

gkk k = 0: ð34Þ

Proof. Suppose the opposite, i.e., (34) is not true. This implies
the existence of a constant c1 > 0 such that

gkk k ≥ c1, for all k: ð35Þ

Squaring both sides of (4) implies

dkk k2 = gkk k2 − 2βEDL
k gT

k dk−1 + βEDL
k


 �2
dk−1k k2: ð36Þ

Taking into account (18), we can get

−2βEDL
k gTk dk−1 = −2

gkk k2 − gkk k/ gk−1k kð Þ gTk gk−1
�� ��

dTk−1yk−1
− t∗k

gTk sk−1
dTk−1yk−1

 !
gTk dk−1

= −2
gkk k2 − gkk k/ gk−1k kð Þ gTk gk−1

�� ��
dTk−1yk−1

gT
k dk−1 − t∗k

αk−1 gTk dk−1
� �2
dTk−1yk−1

 !
:

ð37Þ
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Figure 2: NFE performance profile for EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6 methods.
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Figure 3: CPU performance profile for EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6 methods.
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Now from (31) and (32), it follows that

−2βEDL
k gTk dk−1 ≤ 2

gkk k2 − gkk k/ gk−1k kð Þ gTk gk−1
�� ��

dTk−1yk−1

�����
����� gT

k dk−1
�� ��

≤ 2
∥gk∥

2

λ gTk dk−1
�� �� gTk dk−1�� �� = 2

∥gk∥
2

λ
:

ð38Þ

Now, an application of (18) initiates

βEDL
k =

gkk k2 − gkk k/ gk−1k kð Þ gT
k gk−1

�� �� − t∗kg
T
k sk−1

dTk−1yk−1

≤
gTk gk − gkk k/ gk−1k kð Þ gT

k gk−1
�� �� − t∗kg

T
k sk−1

dTk−1yk−1

�����
�����

≤
gTk gk − gkk k/ gk−1k kð Þgk−1 − t∗k sk−1ð Þ�� ��

θαk−1 dk−1k k2

=
gTk gk − gk−1 + gk−1 − gkk k/ gk−1k kð Þgk−1 − t∗k sk−1ð Þ�� ��

θαk−1 dk−1k k2

≤
gkk k gk − gk−1k k + gk−1 1 − gkk k/ gk−1k kð Þð Þk k + t∗k sk−1k kð Þ

θαk−1 dk−1k k2

=
gkk k gk − gk−1k k + 1 − gkk k/ gk−1k kð Þj j gk−1k k + t∗k sk−1k kð Þ

θαk−1 dk−1k k2

=
gkk k gk − gk−1k k + gk−1k k − gkk kj j + t∗k sk−1k kð Þ

θαk−1 dk−1k k2

≤
gkk k gk − gk−1k k + gk−1 − gkk k + t∗k sk−1k kð Þ

θαk−1 dk−1k k2

=
gkk k 2 gk − gk−1k k + t∗k sk−1k kð Þ

θαk−1 dk−1k k2
≤

gkk k 2L sk−1k k + t∗k sk−1k kð Þ
θαk−1 dk−1k k2

=
2L + t∗kð Þ gkk k sk−1k k

θαk−1 dk−1k k2
=

2L + t∗kð Þ gkk kαk−1 dk−1k k
θαk−1 dk−1k k2

=
2L + t∗kð Þ gkk k
θ dk−1k k :

ð39Þ

Using t∗k ∈ ð0, 1Þ and (38) and (39) in (36), we obtain

∥dk∥
2 ≤ ∥gk∥

2 + 2
∥gk∥

2

λ
+

2L + t∗kð Þ2 gkk k2
θ2 dk−1k k2

∥dk−1∥
2

= ∥gk∥
2 + 2

∥gk∥
2

λ
+

2L + t∗kð Þ2
θ2

gkk k2

= 1 +
2
λ
+

2L + t∗kð Þ2
θ2

 !
gkk k2 = λ + 2

λ
+

2L + t∗kð Þ2
θ2

 !
gkk k2

=
λ + 2ð Þθ2 + λ 2L + t∗kð Þ2

λθ2
gkk k2:

ð40Þ

Next, dividing both sides of (40) by kgkk4 and using (35),

it can be concluded that

∥dk∥
2

∥gk∥
4 ≤

λ + 2ð Þθ2 + λ 2L + t∗kð Þ2
λθ2

·
1
c21
,

∥gk∥
4

∥dk∥
2 ≥

λθ2 · c21
λ + 2ð Þθ2 + λ 2L + t∗kð Þ2 :

ð41Þ

The inequalities in (41) imply

〠
∞

k=0

gkk k4
dkk k2

≥ 〠
∞

k=0

λθ2 · c21
λ + 2ð Þθ2 + λ 2L + t∗kð Þ2

=∞: ð42Þ

Therefore, kgkk ≥ c1 causes a contradiction with Lemma
2.

3. Numerical Experiments

The implementation of the EDL method is based on Algo-
rithm 2. This section is intended to analyze and compare
the numerical results obtained by the EDL method and four
variants of the MHSDL class methods (6). These variants
are defined by t ≡ tk3, t ≡ tk4, t ≡ tk5, and t ≡ tk6 and denoted,
respectively, as MHSDL3, MHSDL4, MHSDL5, and
MHSDL6. The obtained results are not compared with the
values tk1 and tk2, because in [16], the authors have already
shown that tk3 and tk4 initiate better numerical performances
compared to tk1 and tk2.

The codes used in the testing experiments for the above
methods are written in MATLAB R2017a and executed on
the Intel Core i3 2.0GHz workstation with the Windows 10
operating system. Three important criteria are analyzed in
each individual test case: number of iterations (NI), number
of function evaluations (NFE), and processor time (CPU).

The numerical experiment is performed using 28 test
functions presented in [24], where much of the problems
are taken over from the CUTEr collection [25]. All methods
used in the testing of an arbitrary objective function start
from the same initialization x0. Each function is tested 10
times with gradually increasing dimensions n = 100, 500,
1000, 3000, 5000, 7000, 8000, 10000, 15000, and 20000.

The uniform terminating criteria for each of the five con-
sidered algorithms (EDL, MHSDL3, MHSDL4, MHSDL5,
and MHSDL6) are

gkk k ≤ ε,

f xk+1ð Þ − f xkð Þj j
1 + f xkð Þj j ≤ δ,

ð43Þ

where ε = 10−6 and δ = 10−16. The backtracking line search is
based on the parameters ω = 0:0001 and φ = 0:8 for all five
algorithms. Specific parameters used only in the MHSDL6
method are defined as C = 1, υ = 0:26, and r = rk = υ∥gk−1∥.

Summary numerical results for EDL, MHSDL3,
MHSDL4, MHSDL5, and MHSDL6 methods, executed on
28 test functions, are arranged in Tables 1–3. Tables 1–3
show the numerical outcomes corresponding to all three
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criteria (NI, NFE, and CPU) for the EDL, MHSDL3,
MHSDL4, MHSDL5, and MHSDL6 methods.

We utilized the performance profile given in [26] to com-
pare numerical results for three criteria (NI, NFE, and CPU)
generated by five methods (EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6). The upper curve of the selected
performance profile corresponds to the method that shows
the best performance.

Figures 1–3 plot the performance profiles for the numer-
ical values included in Tables 1–3, respectively. Figure 1 pre-
sents the performance profiles of the NI criterion generated
by the EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6
methods. In this figure, it is noticeable that EDL, MHSDL3,
MHSDL4, MHSDL5, andMHSDL6methods solved all tested
functions, wherein the EDL method shows the best perfor-
mances in 57.14% of test functions compared with MHSDL3
(25.00%), MHSDL4 (0.00%), MHSDL5 (0.00%), and
MHSDL6 (17.86%). From Figure 1, it is observable that the
graph of the EDLmethod comes first to the top, which means
that the EDL outperforms other considered methods with
respect to the NI.

Figure 2 presents the performance profiles of the NFE of
the EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6
methods. It is observable that EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6 generated solutions to all tested
cases, and the EDL method is the best in 67.86% of the func-
tions compared with MHSDL3 (17.86%), MHSDL4 (0.00%),
MHSDL5 (0.00%), and MHSDL6 (14.28%). From Figure 2, it
is observed that the EDL graph first comes to the top, which
confirms that the EDL is the winner with respect to the NFE.

Figure 3 contains graphs of the performance profiles cor-
responding to the CPU time of the EDL, MHSDL3,
MHSDL4, MHSDL5, and MHSDL6 methods. It is obvious
that EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6
solved all tested functions. Further analysis gives that the
EDL method is the winner in 67.86% of the test cases com-
pared with MHSDL3 (17.86%), MHSDL4 (0.00%), MHSDL5
(0.00%), and MHSDL6 (14.28%). Figure 3 demonstrates that
the graph of the EDL method first comes to level 1, which
indicates its superiority with respect to the CPU time.

From the previous analysis of the results shown in
Tables 1–3 and Figures 1–3, it can be concluded that the
EDL method produces superlative results in terms of all three
basic metrics: NI, NFE, and CPU.

4. Conclusion

A novel rule which determines the value tðkÞ of the parame-
ter t in each iteration of the Dai-Liao-type CGmethod is pre-
sented. The proposed expression for defining tðkÞ is denoted
by t∗k . Considering t = t∗k in (6), a novel variant of the Dai-
Liao CG parameter βEDL

k is defined and a novel Effective
Dai-Liao (EDL) conjugate gradient method is proposed.
The convergence of the EDL method is investigated, and
the global convergence on a class of uniformly convex func-
tions is established. By numerical testing, we have shown that
there is a significant influence of the scalar size of t∗k on the
convergence speed of the EDL method. Numerical compari-

sons on large-scale unconstrained optimization test func-
tions of different structures and complexities confirm the
computational efficiency of the algorithm EDL and its supe-
riority over the previously known DL CG variants, such as
MHSDL3, MHSDL4, MHSDL5, and MHSDL6. During the
testing, we tracked the number of iterations (NI), number
of function evaluations (NFE), and spanned processor time
(CPU) performances for each function and each method.
Analysis of the obtained performance profiles introduced
by Dolan andMoré revealed that the EDLmethod is the most
efficient.

We are convinced that the obtained results will be a moti-
vation for further research in defining new values of the
parameter tk in the Dai-Liao CG methods. Future research
would include research in finding some more efficient rules
to calculate the parameter tk during the iterative process.
We hope that our proposal of the new expression for defining
the parameter t will initiate further research in that direction.
It is evident that finding novel approaches in defining differ-
ent values of t and the conjugate gradient parameter βk is an
inexhaustible topic for scientific research, and our approach
is only one possible direction in this research.
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In this paper, we propose a notion of the Górnicki-Proinov type contraction. Then, we prove the uniqueness and existence of the
fixed point for such mappings in the framework of the complete metric spaces. Some illustrative examples are also expressed to
strengthen the observed results.

1. Introduction and Preliminaries

The history of the fixed point theory goes back about a
century. Banach’s result initiated the metric fixed point the-
ory in 1922 [1]. The first outstanding extension of this initial
theorem was given by Kannan [2] in 1968. In this first gener-
alization, Kannan [2] removed the necessity of the continuity
of the contraction mapping. Recently, Górnicki [3] expressed
an extension of Kannan type of contraction but the continu-
ity condition was assumed. After then, Bisht [4] refined the
result of Górnicki [3] by replacing the continuity condition
for the considered mapping with orbitally continuity or
p-continuity. Very recently, Górnicki [5] improved these
two mentioned results by introducing new contractions,
“Geraghty-Kannan type” and “ϕ-Kannan type.” He proved
the existence of a fixed point for such mappings. On the other
hand, Proinov [6] discussed some existing results and noted
that these results are particular cases of Skof [7]. He also pro-
posed a very general fixed point theorem that also contains
the result of Skof [7].

We first recall the pioneer theorem of Banach [1] and
Kannan [2]. On a complete metric space ðX, dÞ, a mapping
T : X → X admits a unique fixed point if there exists 0 ≤K

< 1 such that

d Tu, Tvð Þ ≤ k · d u, vð Þ, ð1Þ

and

d Tu, Tvð Þ ≤ K · d u, Tuð Þ + d v, Tvð Þf g, ð2Þ

for all u, v ∈ X. The inequality (1) belongs to Banach [1] and
(2) belongs to Kannan [2]. By using the “asymptotic regular-
ity” concept, Górnicki [3] proved an extension of Kannan
Theorem 1.2. Before giving this interesting result, we recol-
lect the interesting concepts:

Let T be a self-mapping on a metric space ðX, dÞ and f
Tnug be the Picard iterative sequence, for an initial point u
∈ X.

(o) The set OðT , uÞ = fT nu : n = 0, 1, 2,⋯g is called the
orbit of the mapping T at u.

The mapping T is said to be [3, 5]:
(o-c) orbitally continuous at a point w ∈ X if for any

sequence fung in OðT , uÞ for some u ∈ X, limn→∞dðun,wÞ
= 0 implies limn→∞dðTun, TwÞ = 0.

(p-c) p -continuous at a point w ∈ X (p = 1, 2, 3,⋯) if for
any sequence fung in Xlimn→∞dðT p−1un,wÞ = 0 implies
limn→∞dðT pun, TwÞ = 0.
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(a-r) asymptotically regular at a point u ∈ X if limn→∞d
ðT nu, T n+1uÞ = 0. If T is asymptotically regular at each point
of X, we say that it is asymptotically regular.

Remark 1. In [8], it is shown that p-continuity of T and the
continuity of Tp are independent conditions for the case
p > 1.

Theorem 2 (see [3, 5]). On a complete metric space ðX, dÞ, a
continuous asymptotically regular mapping T : X→ X admits
a unique fixed point if there exist 0 ≤ k < 1 and 0 ≤ K < +∞
such that

d Tu, Tvð Þ ≤ k · d u, vð Þ + K · d u, Tuð Þ + d v, Tvð Þf g, ð3Þ

for all u, v ∈ X.

Later, the assumption of continuity of the mapping T was
replaced with weaker notions of continuity.

Theorem 3 (see [4]). On a complete metric space ðX, dÞ and a
mapping T : X → X. Suppose that there exists 0 ≤ K < 1 such
that

d Tu, Tvð Þ ≤ k · d u, vð Þ + K · d u, Tuð Þ + d v, Tvð Þf g, ð4Þ

for all u, v ∈ X. Then, T admits a unique fixed point if either T
is (o-c) or (p-c) for p ≥ 1.

In [5], some generalizations of Theorems 2 and 3 are con-
sidered, by replacing the constant k with some real-valued
functions.

Theorem 4 (see [5]). Let ðX, dÞ be a complete metric space
and T : X → X be an (a-r) mapping such that there exist
ψ : ½0,∞Þ→ ½0,∞Þ and 0 ≤ K <∞ such that

d Tu, Tvð Þ ≤ ϕ d u, vð Þð Þ + K · d u, Tuð Þ + d v, Tvð Þf g, ð5Þ

for all u, v ∈ X. Suppose that:

(i) ϕðθÞ < θ for all θ > 0 and ϕ is upper semicontinuous

(ii) either T is (o-c) or T is (p-c) for some p ≥ 1

Then, T has a unique fixed point u∗ ∈ X and for each u
∈ X, T nu→ u∗ as n→∞.

Theorem 5 (see [5]). Let ðX, dÞ be a complete metric space
and T : X → X be an (a-r) mapping such that there exist
ς : ½0,∞Þ→ ½0, 1Þ and 0 ≤ K <∞ such that

d Tu, Tvð Þ ≤ ς d u, vð Þð Þ · d u, vð Þ + K · d u, Tuð Þ + d v, Tvð Þf g,
ð6Þ

for all u, v ∈ X. Suppose that:

(1) ςðθnÞ→ 1⇒ θn → 0;

(2) either T is (o-c) or T is (p-c) for some p ≥ 1

Then, T has a unique fixed point u∗ ∈ X and for each u
∈ X, T nu→ u∗ as n→∞.

On the other hand, very recently, Proinov announced
some results which unify many known results [6].

Theorem 6 (see [6]). Let ðX, dÞ be a complete metric space
and T : X→ X be a mapping such that

ψ d Tu, Tvð Þð Þ ≤ ϕ d u, vð Þð Þ, ð7Þ

for all u, v ∈ X with dðTu, TvÞ > 0, where the functions ψ,
ϕ : ð0,∞Þ→ℝ are such that the following conditions are
satisfied:

(p1) ϕðθÞ < ψðθÞ for any θ > 0;
(p2) ψ is nondecreasing;
(p3) limsupθ→e+ϕðθÞ < ψðe + Þ for any e > 0:

Then, T admits a unique fixed point.

Theorem 7 (see [6]). Let ðX, dÞ be a complete metric space
and T : X→ X be a mapping such that

ψ d Tu, Tvð Þð Þ ≤ ϕ d u, vð Þð Þ, ð8Þ

for all u, v ∈ X with dðTu, TvÞ > 0, where ψ, ϕ : ð0,∞Þ→ℝ
are two functions such that the following conditions are
satisfied:

(p1) ϕðθÞ < ψðθÞ for any θ > 0;
(p4) inf θ>eψðθÞ > −∞ for any e;
(p5) limsupθ→e+ϕðθÞ < liminfθ→eψðθÞ or limsupθ→eϕðθÞ

< liminf θ→e+ψðθÞ for any e > 0;
(p6) limsupθ→0+ϕðθÞ < liminf θ→eψðθÞ for any e > 0;
(p7) if the sequences ðψðθnÞÞ and ðϕðθnÞÞ are convergent

with the same limit and ðψðθnÞÞ is strictly decreasing, then
θn → 0 as n→∞.

Then, T admits a unique fixed point.

Lemma 8 (see [6]). Let ðunÞ be a sequence in a metric space
ðX, dÞ such that dðun, un+1Þ→ 0 as n→∞. If the sequence
ðunÞ is not Cauchy, then there exist e > 0 and two subsequences
fskg, frkg of positive integers such that

lim
k→∞

d usk+1, urk+1
� �

= e+,

lim
k→∞

d usk , urk
� �

= lim
k→∞

d usk+1, urk
� �

= lim
k→∞

d usk , urk+1
� �

= e

ð9Þ

Lemma 9 (see [6]). Let ðunÞ be a sequence in a metric space
ðX, dÞ such that dðun, un+1Þ→ 0 as n→∞. If the sequence
ðunÞ is not Cauchy, then there exist e > 0 and two subsequences
fskg, frkg of positive integers such that
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lim
k→∞

d usk , urk
� �

= e+,

lim
k→∞

d usk+1, urk+1
� �

= lim
k→∞

d usk+1, urk
� �

= lim
k→∞

d usk , urk+1
� �

= e

ð10Þ

In the end of this section, we recall the notions of α-orbital
admissible and triangular α-orbital admissible mappings [9]
with mention that these notions were extended in many direc-
tions, see, e.g., [10] and it could be potentially extended also to
several approaches of recent developments in fixed point the-
ory. See, for instance, [11–21].

On a metric space ðX, dÞ, a self-mapping T is called

(i) α-orbital admissible if

α u, Tuð Þ ≥ 1⇒ α Tu, T2u
� �

≥ 1, ð11Þ

for any u, v ∈ X, where α : X × X → ½0,∞Þ

(ii) triangular α-orbital admissible if it is α-orbital admis-
sible and the following condition is satisfied

α u, vð Þ ≥ 1 and α v, Tvð Þ ≥ 1⇒ α u, Tvð Þ ≥ 1, ð12Þ

for any u, v,w ∈ X

Lemma 10. If for an triangular α-orbital admissible mapping
T : X → X there exists u0 ∈ X such that αðu0, Tu0Þ ≥ 1, then

α un, up
� �

≥ 1, for all n, p ∈ℕ, ð13Þ

where the sequence fung is defined as un+1 = Tun.

Let ðX, dÞ be a metric space and the function α : X × X
→ ½0,∞Þ. The following conditions will be used further:

R If for a sequence fung in X such that un → u and
αðun, un+1Þ ≥ 1 for all n ∈ℕ, then there exists a subsequence
fupkg of fung such that αðupk , uÞ ≥ 1:

ðUÞ For all u, v ∈ FixXT = fz ∈ X : Tz = zg, we have
αðu, vÞ ≥ 1.

2. Main Results

Let Λ be the set of all functions ϕ : ð0,∞Þ→ℝ. For ϕ, ψ ∈Λ,
we are considering the following conditions:

(a1) ϕðθÞ < ψðθÞ for θ > 0
(a2) limsupθ→e+ϕðθÞ < liminf θ→eψðθÞ, for any e > 0
(a3) limsupθ→eϕðθÞ < liminf θ→e+ψðθÞ, for any e > 0
(a4) limsupθ→e+ϕðθÞ < ψðe + Þ, for any e > 0

Definition 11. Let ðX, dÞ be a metric space, the functions ψ,
ϕ ∈Λ and α : X × X → ½0,∞Þ. An (a-r) mapping T : X→ X
is said to be ðα, ψ, ϕÞ-contraction if there exists 0 ≤ K <∞
such that

α u, vð Þψ d u, vð Þð Þ ≤ ϕ d u, vð Þð Þ + K · d u, Tuð Þ + d v, Tvð Þf g,
ð14Þ

for each u, v ∈ X with dðTu, TvÞ > 0:

Theorem 12. On a complete metric space ðX, dÞ an ðα, ψ, ϕÞ
-contraction T : X→ X has a fixed point provided that

(1) the functions ψ, ϕ ∈Λ satisfy (a1) and either (a2) or
(a3)

(2) T is triangular α-orbital admissible and there exists
u0 ∈ X such that αðu0, Tu0Þ ≥ 1

(3) either T is (o-c) or T is (p-c), for some p ≥ 1

Moreover, if property ðUÞ is satisfied, then the fixed point
of T is unique.

Proof. Let u be any point (but fixed) in X and we build the
sequence fung, where u0 = u and un = T nu for any n ∈ℕ: If
there exists m0 ∈ℕ such that Tm0u = Tm0+1u = TðTm0uÞ,
then T m0u is a fixed point of T . For this reason, we can sup-
pose that T nu ≠ T n+1u, for every n ∈ℕ ∪ f0g and we claim
that fung is Cauchy sequence. Assuming the contrary, that
the sequence fung is not Cauchy, from Lemma 1, it follows
that we can find e and two subsequences fskg and frkg of
positive integers such that (9) holds. Letting u = usk and v =
urk in (14), we have αðusk , urkÞ ≥ 1 (taking into account
(1.8)), and then,

ψ d usk+1, urk+1
� �� �

≤ α usk , urk
� �

ψ d usk+1, urk+1
� �� �

= α usk , urk
� �

ψ d Tusk , Turk
� �� �

≤ ϕ d usk , urk
� �� �

+ K

· d usk , usk+1
� �

+ d urk , urk+1
� �� �

,

ð15Þ

or denoting ξk = dðusk+1, urk+1Þ and ζk = dðusk , urkÞ

ψ ξkð Þ ≤ ϕ ζkð Þ + K · d usk , usk+1
� �

+ d urk , urk+1
� �� �

: ð16Þ

Taking into account the asymptotically regularity of T ,
from (9), it follows that

ξk → e + and ζk → e: ð17Þ

Thus, letting the limit in (16), we have

liminf
θ→e+

ψ θð Þ ≤ liminf
k→∞

ψ ξkð Þ ≤ limsup
k→∞

ϕ ζkð Þ ≤ limsup
θ→e

ϕ θð Þ:

ð18Þ

This contradicts the assumption (a2).
Similarly, if we consider that the functions ψ, ϕ satisfy

(a3), the conclusion follows in the same way, but taking into
account Lemma 2.
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Therefore, fung is a Cauchy sequence, and because the
space ðX, dÞ is complete, there exists u∗ such that

lim
n→∞

un = u∗: ð19Þ

We claim that u∗ is a fixed point of T:
If T is orbitally continuous, then since fung ∈OðT , uÞ

and un → u∗, we have un+1 = Tun → Tu∗ as n→∞. The
uniqueness of the limit gives Tu∗ = u∗:

If T is p-continuous, for some p ≥ 1, by (19), we have
limn→∞T p−1un = u∗ which implies limn→∞T pun = Tu∗

(because T is p-continuous). Therefore, by uniqueness of
the limit, we have Tu∗ = u∗.

Now, supposing that there exists v∗ ∈ X such that Tv∗
= v∗ ≠ u∗ = Tu∗, from (14) and taking into account the
property ðUÞ, we have

ψ d u∗, v∗ð Þð Þ ≤ α u∗, v∗ð Þψ d Tu∗, Tv∗ð Þð Þ
≤ ϕ d u∗, v∗ð Þð Þ + K · d u∗, Tu∗ð Þð + d v∗, Tv∗ð Þð Þf g
= ϕ d u∗, v∗ð Þð Þ < ψ d u∗, v∗ð Þð Þð ,

ð20Þ

which is a contradiction. Therefore, u∗ = v∗.

Letting αðu, vÞ = 1 in Theorem 12, we get the following:

Corollary 13. Let ðX, dÞ be a complete metric space and an (a-
r) mapping T : X → X. Suppose that there exists 0 ≤ K <∞
such that

ψ d u, vð Þð Þ ≤ ϕ d u, vð Þð Þ + K · d u, Tuð Þ + d v, Tvð Þf g, ð21Þ

for each u, v ∈ X with dðTu, TvÞ > 0, where ψ, ϕ ∈Λ. Suppose
also that:

(1) the functions ψ, ϕ ∈Λ satisfy (a1) and either (a2) or
(a3)

(2) either T is (o-r) or T is (p-o), for some p ≥ 1

Then, T has a unique fixed point.

Corollary 14. Let ðT , dÞ be a complete metric space and T
: X→ X be an (a-r) mapping such that

d Tu, Tvð Þ ≤ ς d u, vð Þð Þd u, vð Þ + K · d u, Tuð Þ + d v, Tvð Þf g,
ð22Þ

for each u, v ∈ X, where 0 ≤ K <∞ and the function ς : ð0,
∞Þ→ ð0, 1Þ is such that limsupθ→e+ςðθÞ < 1 for any e > 0. If
T is either (o-c) or (p-c) for some p ≥ 1, then T has a unique
fixed point.

Proof. Let ψðθÞ = θ in Corollary 1.

Taking ψðθÞ = θ and ϕðθÞ = k · θ, with k ∈ ½0, 1Þ Corollary
1 becomes:

Corollary 15. Let ðT , dÞ be a complete metric space and
T : X→ X be an (a-r) mapping. If there exist k ∈ ½0, 1Þ
and 0 ≤ K <∞ such that

d Tu, Tvð Þ ≤ kd u, vð Þ + K · d u, Tuð Þ + d v, Tvð Þf g ð23Þ

for each u, v ∈ X, then T admits a unique fixed point pro-
vided that T is (o-c) or (p-c) for some p ≥ 1.

Theorem 16. Let ðX, dÞ be a complete metric space, α : X ×
X → ½0,∞Þ, ψ, φ ∈Λ such that (a1) and (a2) are satisfied. Let
T : X→ X be an (a-r) mapping. Suppose that there exists 0
≤ K <∞ such that

ψ α u, vð Þd Tu, Tvð Þð Þ ≤ φ d u, vð Þð Þ + K · d u, Tuð Þ + d v, Tvð Þf g,
ð24Þ

for each u, v ∈ X with dðTu, TvÞ > 0. Suppose also that

(i) ψ is nondecreasing and limsupθ→e+ < ψðe + Þ for any
e > 0

(ii) T is triangular α-orbital admissible and there exists
u0 ∈ X such that αðu0, Tu0Þ ≥ 1

(iii) the mapping T is either (o-c) or (p-c)

Then, the mapping T possesses a fixed point. Moreover,
the fixed point is unique, provided that property ðUÞ is
satisfied.

Proof. Let fung be the sequence defined as in the previous
theorem, as un = T nu, where u ∈ X is arbitrary but fixed. Let-
ting u = usk and v = urk in (2.7), we have

ψ α usk , urk
� �

d usk+1, urk+1
� �� �

≤ ϕ d usk , urk
� �� �

+ K · d usk , usk+1
� �

+ d usk , usk+1
� �� �

,
ð25Þ

and taking into account the assumptions (i), (ii), and Lemma
3, we get

ψ d usk+1, urk+1
� �� �

≤ ϕ d usk , urk
� �� �

+ K

· d usk , usk+1
� �

+ d urk , urk+1
� �� �

,
ð26Þ

Setting ξk = dðusk+1, urk+1Þ and ζk = dðusk , urkÞ and since
ϕðθÞ < ψðθÞ, we get

ψ ξkð Þ ≤ ϕ ζkð Þ + K · d usk , usk+1
� �

+ d urk , urk+1
� �� �

< ψ ζkð Þ + K · d usk , usk+1
� �

+ d urk , urk+1
� �� �

:
ð27Þ

On the other hand, from 1.5 that ξk → e + , ζk → e + and
then, letting the limit as k→∞ in the above inequality, since
T is an (a-r) mapping and taking into account the second
part of the assumption (i), we have
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ψ e +ð Þ = lim
k→∞

ψ ξkð Þ ≤ limsup
k→∞

ϕ ζkð Þ ≤ limsup
θ→e+

ϕ θð Þ < ψ e +ð Þ,

ð28Þ

which is a contradiction. Thus, the sequence fung is Cauchy
on a metric space, so there exists u∗ such that un → u∗ as n
→∞ and following the lines of the previous proof, we get
that u∗ is the unique fixed point of T:

Again, letting αðu, vÞ = 1 for any u, v ∈ X we get the
following:

Theorem 17. Let ðX, dÞ be a complete metric space, and two
functions ψ, φ ∈Λ such that ( a1) is satisfied. Let T : X→ X
be an (a-r) mapping. Suppose that there exists 0 ≤ K <∞ such
that

ψ d Tu, Tvð Þð Þ ≤ ϕ d u, vð Þð Þ + K · d u, Tuð Þ + d v, Tvð Þf g,
ð29Þ

for each u, v ∈ X with dðTu, TvÞ > 0, where ψ, ϕ ∈Λ. Suppose
also that

(i) ψ is nondecreasing and limsupθ→e+ < ψðe + Þ for any
e > 0

(ii) the mapping T is either (o-c) or (p-c)

Then, the mapping T possesses a unique fixed point.

Theorem 18. Let ðX, dÞ be a complete metric space, and two
functions ψ, φ ∈Λ such that (a1) is satisfied. Let T : X → X be
an (a-r) mapping. Suppose that there exists 0 ≤ K <∞ such that

ψ d Tu, Tvð Þð Þ ≤ ς d u, vð Þð Þψ d u, vð Þð Þ + K · d u, Tuð Þ + d v, Tvð Þf g,
ð30Þ

for each u, v ∈ X with dðTu, TvÞ > 0, where ψ ∈Λ and ς : ð0,
∞Þ→ ð0, 1Þ. Suppose also that

(i) ψ is nondecreasing and limsupθ→e+ςðθÞ < 1 for any
e > 0

(ii) the mapping T is either (o-c) or (p-c)

Then, the mapping T possesses a unique fixed point.

Proof. Take ϕðθÞ = αðθÞψðθÞ, for θ > 0 in Theorem 17.

Next, we consider mappings that satisfy a similar condi-
tion as (14), but for which the asymptotic regularity condi-
tion is not necessary.

Definition 19. Let ðX, dÞ be a complete metric space, α : X
× X → ½0,∞Þ and ψ, φ ∈Λ. A mapping T : X→ X is called
ðα, ψ, ϕÞ-contraction of type 2 if there exists 0 ≤ K <∞ such
that

α u, vð Þψ d Tu, Tvð Þð Þ ≤ ϕ d u, vð Þð Þ + K · d u, Tuð Þ + d v, Tvð Þf g
� d u, Tvð Þd v, Tuð Þ,

ð31Þ

for each u, v ∈ X with dðTu, TvÞ > 0.

Theorem 20. On a complete metric space ðX, dÞ, an ðα, ψ, ϕÞ
-contraction of type 2, T : X→ X has a fixed point provided
that property (R) and the following conditions hold:

(A) T is triangular α-orbital admissible and there exists
u0 ∈ X such that αðu0, Tu0Þ ≥ 1

(B) ψ, ϕ satisfy the assumptions (a1) and (a4)

(C) ψ is nondecreasing

(D) limsupθ→0+ϕðθÞ < liminf θ→eψðθÞ, for any e > 0

Moreover, if the property ðUÞ holds, the fixed point of T
is unique.

Proof. Let fug be a sequence in X defined as

un = T nu0, f oreveryn ∈ℕ, ð32Þ

where u0 is an arbitrary but fixed point in X. Replacing in
(31) and taking into account (11), we have

ψ d un, un+1ð Þð Þ ≤ α un−1, unð Þψ d Tun−1, Tunð Þð Þ
≤ ϕ d un−1, unð Þð Þ++K · d un−1, Tun−1ð Þ + d un, Tunð Þf g
� d un−1, Tunð Þd un, Tun−1ð Þ

= ϕ d un−1, unð Þð Þ + K · d un−1, unð Þ + d un, un+1ð Þf g
� d un−1, un+1ð Þd un, unð Þ = ϕ d un−1, unð Þð Þ,

ð33Þ

or setting xn = dðun−1, unÞ (we can suppose that xn > 0) and
taking into account the condition (a1) for any θ > 0, we get

ψ xnð Þ ≤ ϕ xn−1ð Þ < ψ xn−1ð Þ: ð34Þ

If the condition (C) holds, from the above inequality, we
get xn < xn−1, for every n ∈ℕ. Consequently, being positive
and strictly decreasing, the sequence fxng is convergent
and there is x ≥ 0 ∈ X such that xn → x. If we assume that
x > 0, then from the above inequality, we have

ϕ x +ð Þ = lim
n→∞

ψ xnð Þ ≤ limsup
n→∞

ϕ xnð Þ ≤ limsup
θ→x+

ϕ θð Þ < ϕ x +ð Þ,

ð35Þ

which is a contradiction. Thus,

lim
n→∞

xn = x = 0: ð36Þ

The aim for the next step is to prove that the sequence
fung is Cauchy. Supposing by contradiction, the sequence
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fung is not Cauchy, by (36), and taking into account
Lemma 1, we can find e > 0 and two subsequences fuskg
and furkg of fung such that (9) holds. Taking u = usk
and v = urk in (14) and keeping in mind (1.7), we have

ψ d usk+1, urk+1
� �� �

≤ α usk , urk
� �

ψ d Tusk , Turk
� �� �

≤ ϕ d usk , urk
� �� �

++K · d usk , usk+1
� �

+ d urk , urk+1
� �� �

� d usk , urk+1
� �

d urk , usk+1
� �

:

ð37Þ

Letting the limit as k→∞ in the previous inequality
(since dðusk+1, urk+1Þ→ e + and dðusk , urkÞ→ e and using
(2.11), we get

liminf
θ→e+

ψ θð Þ ≤ liminf
k→∞

ψ d usk+1, urk+1
� �� �

≤ limsup
k→∞

ϕ d usk , urk
� �� �

≤ limsup
θ→e

ϕ θð Þ: ð38Þ

This is a contradiction to (a4). Thus, fung is a Cauchy
sequence on a complete metric space, so it is convergent.
Let u∗ = limn→∞un and we claim that u∗ is a fixed point
of T . From (31) and ðRÞ, for u = un and v = u∗, we have

ψ d un+1, Tu∗ð Þð Þ ≤ α un, u∗ð Þψ d Tun, Tu∗ð Þð Þ
≤ ϕ d un, u∗ð Þð Þ++K · d un, un+1ð Þ + d u∗, Tu∗ð Þf g
� d un, Tu∗ð Þd u∗, un+1ð Þ:

ð39Þ

Since limn→∞dðun+1, Tu∗Þ = dðu∗, Tu∗Þ and limn→∞d
ðun, u∗Þ = 0 if we suppose that dðu∗, Tu∗Þ > 0, the above
inequality yields

liminf
θ→d u∗ ,Tu∗ð Þ

ψ θð Þ ≤ liminf
n→∞

ψ d un+1, Tu∗ð Þð Þ

≤ limsup
n→∞

ϕ d un, u∗ð Þð Þ ≤ limsup
θ→0

ϕ θð Þ,
ð40Þ

which is a contradiction to (D). Therefore, dðu∗, Tu∗Þ
= 0, that is u∗ is a fixed point of T . As in the Theorem
12, adding the condition ðUÞ to the statement of Theo-
rem 20, we are able to prove that the fixed point is
unique. Indeed, if we suppose that v∗ ∈ X is such that
Tv∗ = v∗ ≠ u∗ = Tu∗, from (2.10), we have

ψ d u∗, v∗ð Þð Þ ≤ α u∗, v∗ð Þψ d Tu∗, Tv∗ð Þð Þ
≤ ϕ d u∗, v∗ð Þð Þ++K · d u∗, Tu∗ð Þ + d v∗, Tv∗ð Þf g
� d u∗, Tv∗ð Þ + d v∗, Tu∗ð Þð Þ:

ð41Þ

Letting n→∞ in the above inequality and keeping
in mind (a1), we have

ψ d u∗, v∗ð Þð Þ ≤ ϕ d u∗, v∗ð Þð Þ < ψ d u∗, v∗ð Þð Þ, ð42Þ

which is a contradiction.

Example 21. Let the set X = fA1, A2,A3, A4, A5g endowed
with the distance d : X × X→ ½0,∞Þ, where dðu, uÞ = 0, d
ðu, vÞ = dðv, uÞ for any u, v ∈ X and

d A1, A2ð Þ = d A2, A3ð Þ = d A3, A4ð Þ = 1,
d A1, A3ð Þ = d A2, A4ð Þ = d A4, A5ð Þ = 2,

d A1, A4ð Þ = d A2, A5ð Þ = d A3, A5ð Þ = 3, d A1, A5ð Þ = 4:
ð43Þ

Let the mapping T : X → X defined by

TA1 = A1, TA2 = A3, TA3 = A5, TA4 = A2, TA5 = A2: ð44Þ

Let also the function α : X × X→ ½0,∞Þ, with

α u, vð Þ =
2, if u, vð Þ = Ai, A1ð Þ, for i = 1, 2, 3, 4, 5
1, if u, vð Þ ∈ A3, A4ð Þ, A4,A3ð Þf g
0, otherwise

8>><
>>:

ð45Þ

Then, T does not satisfy Banach, neither Kannan type
condition. Indeed, letting for example u = A1, v = A3,

d TA1, TA3ð Þ = d A1, A5ð Þ = 4 > 2k
= kd A1, A3ð Þf orany0 ≤ k < 1,

d TA1, TA3ð Þ = d A1, A5ð Þ = 4 > 3K
= K · d A1, A1ð Þ + d A3, A5ð Þf g
= K · d A1, TA1ð Þ + d A3, TA3ð Þf g,
f orany0 ≤ K < 1

2 :

ð46Þ

On the other hand, T is not (a-r), so Theorem 3 can-
not be applied. Let the functions ψ, ϕ ∈Λ, ϕðθÞ = θ, ψðθÞ
= θ/2, for θ > 0 and K = 8. For an easier reading, we will
set

A u, vð Þ = ϕ d u, vð Þð Þ + K · d u, Tuð Þ + d v, Tvð Þf g
� d u, Tvð Þd v, Tuð Þ = d u, vð Þ

2 + 8

· d u, Tuð Þ + d v, Tvð Þf gd u, Tvð Þd v, Tuð Þ:
ð47Þ

Let us check that the mapping T is an ðα, ψ, ϕÞ-con-
traction of type 2. For this purpose, we must consider
the following cases:

(i) u = A1, v = A2,

α A1, A2ð Þψ d TA1, TA2ð Þð Þ = 2d A1, A3ð Þ = 4 < 33
2

= A A1, A2ð Þ
ð48Þ

(ii) u = A1, v = A3,
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α A1, A3ð Þψ d TA1, TA3ð Þð Þ = 2d A1, A5ð Þ = 8 < 193 = A A1, A3ð Þ
ð49Þ

(iii) u = A1, v = A4,

α A1, A4ð Þψ d TA1, TA4ð Þð Þ = 2d A1, A2ð Þ = 2 < 99
2 = A A1, A4ð Þ

ð50Þ

(iv) u = A1, v = A5,

α A1, A5ð Þψ d TA1, TA5ð Þð Þ = 2d A1, A2ð Þ = 2 < 98 = A A1, A5ð Þ
ð51Þ

(v) u = A3, v = A4,

α A3, A4ð Þψ d TA3, TA4ð Þð Þ = d A5,A2ð Þ = 3 < 97
2 = A A3, A4ð Þ

ð52Þ

Moreover, it is easy to see that all the assumptions of The-
orem 20 are satisfied, so that T has a unique fixed point.

Example 22. Let the set X = ½0,∞Þ be endowed with the usual
distance d onℝ. Consider the mapping T : X → X defined by

Tu =
1 − u, if0 ≤ u ≤ 1
ln 1 + euð Þ, if u > 1

(
: ð53Þ

Then,Tis neither continuous, a contraction, nor (a-r).
Define the function α : X × X→ ½0,∞Þ by

α u, avð Þ =
2, if u ∈ 1

4 ,
1
2 , 1

� �
, v = 1

2
1, if u = 2, v = 1
0, otherwise

:

8>>>><
>>>>:

ð54Þ

Consider also, the functions ψ, ϕ ∈Λ, where ψðθÞ = eθ

and ϕðθÞ = θ + 1, for θ > 0. Let, for example, K = 64. Using
the same notation as in Example 1, taking into account the
definition of the function α, we have the following:

(i) u = 1/4, v = 1/2

α
1
4 ,

1
2

� 	
ψ d T

1
4 , T

1
2

� 	� 	
= 2e14 ≤ 17

4 = ϕ d
1
4 ,

1
2

� 	� 	
+ A

1
4 ,

1
2

� 	
ð55Þ

(ii) u = 1, v = 1/2

α 1, 12

� 	
ψ d T 1, T 1

2

� 	� 	
= 2e12 ≤ 35

2

= ϕ d 1, 12

� 	� 	
+ A 1, 12

� 	
ð56Þ

(iii) u = 2, v = 1

α 2, 1ð Þψ d T 2, T 1ð Þð Þ = eln 1+e2ð Þ = 1 + e2 ≤ ϕ d 2, 1ð Þð Þ + A 2, 1ð Þ:
ð57Þ

Since it easy to check that all the assumptions of Theorem
20 are verified, we can conclude that T has a unique fixed
point.

Corollary 23. Let ðX, dÞ be a complete metric space and a
mapping T : X→ X such that for all u, v ∈ X with dðTu, TvÞ
> 0,

ψ d Tu, Tvð Þð Þ ≤ ϕ d u, vð Þð Þ + K · d u, Tuð Þ + d v, Tvð Þf g
� d u, Tvð Þd v, Tuð Þ,

ð58Þ

where 0 ≤ K < 1 and the functions ψ, ϕ ∈Λ are such that

(a) ψ, ϕ satisfy (a1) and (a4)

(b) ψ is not decreasing

Then, T admits a unique fixed point.

Corollary 24 (Theorem 6). Let ðX, dÞ be a complete metric
space and a mapping T : X→ X such that for all u, v ∈ X with
dðTu, TvÞ > 0,

ψ d Tu, Tvð Þð Þ ≤ ϕ d u, vð Þð Þ, ð59Þ

where the functions ψ, ϕ ∈Λ are such that

(a) ψ, ϕ satisfy the assumptions (a1) and (a4)

(b) ψ is not decreasing

Then, T admits a unique fixed point.

Proof. Let αðu, vÞ = 0 and K = 0 in Theorem 20.

Corollary 25. Let ðT , dÞ be a complete metric space and
T : X→ X be a mapping such that

ψ d Tu, Tvð Þð Þ ≤ ς d u, vð Þð Þψ d u, vð Þð Þ + K · d u, Tuð Þ + d v, Tvð Þf g
� d u, Tvð Þd v, Tuð Þ,

ð60Þ
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for each u, v ∈ X with dðTu, TvÞ > 0, where 0 ≤ K <∞ and
the functions ς : ð0,∞Þ→ ð0, 1Þ, ψ : ð0,∞Þ→ ð0, 1Þ are
such that

(i) limsupθ→e+ςðθÞ < 1 for any e > 0

(ii) ψ is nondecreasing

Then, T has a unique fixed point.

Proof. Let ϕðθÞ = ςðdðu, vÞÞψðdðu, vÞÞ in Corollary 4.

Corollary 26. Let ðX, dÞ be a complete metric space and a
mapping T : X→ X. Suppose that there exist 0 ≤ k < 1 and
0 ≤ K <∞ such that for all u, v ∈ X,

d Tu, Tvð Þ ≤ kd u, vð Þ + K · d u, Tuð Þ + d v, Tvð Þf gd u, Tvð Þd v, Tvð Þ:
ð61Þ

Then, T admits a unique fixed point.

Proof. Let αðu, vÞ = 0, ψðθÞ = θ and ϕðθÞ = k · θ, with 0 ≤ k < 1
in Theorem 20.
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In accordance with the quantum calculus, we introduced the two variable forms of Hermite-Hadamard- (HH-) type inequality
over finite rectangles for generalized Ψ-convex functions. This novel framework is the convolution of quantum calculus,
convexity, and special functions. Taking into account the q̂1q̂2-integral identity, we demonstrate the novel generalizations of the
HH-type inequality for q̂1q̂2-differentiable function by acquainting Raina’s functions. Additionally, we present a different
approach that can be used to characterize HH -type variants with respect to Raina’s function of coordinated generalized Ψ
-convex functions within the quantum techniques. This new study has the ability to generate certain novel bounds and some
well-known consequences in the relative literature. As application viewpoint, the proposed study for changing parametric values
associated with Raina’s functions exhibits interesting results in order to show the applicability and supremacy of the obtained
results. It is expected that this method which is very useful, accurate, and versatile will open a new venue for the real-world
phenomena of special relativity and quantum theory.

1. Introduction

Recently, a nonrestricted analysis is recognized as quantum
calculus (in short, q̂-calculus) and has initiated numerous q̂
-mathematical formulation as q̂↦ 1−: In 1707–1783, Euler
proposed q̂-calculus theory. Accordingly, Jackson [1]
explored the investigation of q̂-integrals efficiently. The pre-
viously mentioned outcomes prompted an escalated presen-
tation on quantum theory in the 20th Century. As an
application perspective, the concept of q̂-calculus has been
potentially utilized in quantum mechanics, special relativity
theory, anomalous diffusion equations, orthogonal polyno-
mials, fractional calculus, and henceforth. In [2, 3], authors
contemplated the q̂-derivatives on finite intervals of real line
and amplified several new generalizations of classical convex-

ity, q̂-version of Grüss, q̂-Cebyšev’s, and q̂-Pólya-Szegö type
inequalities. Over the most recent couple of years, the subject
of q̂-theory has become a fascinating theme for several
researchers, and new developments have been investigated
in the relative literature (see [4–6]).

Within the framework of q̂-calculus, mechanothermody-
namics, translimiting states, analysis, and generalization of
experimental data, several special approaches are being
developed to assess the quantum calculus in terms of a gener-
alized energy states (see [7, 8]).

Convex functions have potential applications in many
intriguing and captivating fields of research and furthermore
played a remarkable role in numerous areas, such as coding
theory, optimization, physics, information theory, engineer-
ing, and inequality theory. Several new classes of classical
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convexity have been proposed in the literature (see [9–14]).
Mathematical inequalities are viewed as the prominent
framework for assembling the qualitative and quantitative
characterization in the area of applied analysis. A persistent
development of intrigue has emerged to address the prereq-
uisites of issue for rich utilization of these variants. Numer-
ous generalizations were investigated by several scientists
who thus utilized different procedures for introducing and
proposing these bounds [15–17]. Additionally, many authors
demonstrated various forms of inequalities such as
Ostrowski, Lyenger, Opial, Hardy, and Olsen, and the most
distinguished one is the Hermite-Hadamard inequality.
Here, we intend to find the novel version of HH -type
inequality in the frame of q̂1q̂2-integral on coordinated gen-
eralized Ψ-convex functions that correlates with Raina’s
function. Also, we shall represent the application of our find-
ings in the Mittag-Leffler and hypergeometric functions
which show the applicability of the suggested scheme.

Let G : I ⊆ℝ↦ℝ be a convex function such that φ1
< φ2: Then,

G
φ1 + φ2

2
� �

≤
1

φ2 − φ1

ðφ2

φ1

G zð Þdz ≤ G φ1ð Þ +G φ2ð Þ
2 : ð1Þ

The inequality (1) is a well-known paramount in related
literature and plays a pivotal role in optimization, coding,
and fractional calculus theory [18, 19].

In [20], Dragomir proposed the two-variable version of
the HH -type inequality for convex functions as follows:

Theorem 1. (see [20]). Let G : Δ↦ℝ be the coordinated con-
vex on Δ: Then, the following inequalities hold:

G
φ1 + φ2

2
, ϕ1 + ϕ2

2

� �
≤
1
2

1
φ2 − φ1

ðφ2
φ1

G μ, ϕ1 + ϕ2
2

� �
dμ

"

+ 1
ϕ2 − ϕ1

ðϕ2
ϕ1

G
φ1 + φ2

2
, ν

� �
dν

#

≤
1

φ2 − φ1ð Þ ϕ2 − ϕ1ð Þ
ðφ2
φ1

ðϕ2
ϕ1

G μ, νð Þdμdv

≤
1
4

1
φ2 − φ1

ðφ2
φ1

G μ, ϕ1ð Þdμ + 1
φ2 − φ1

"

�
ðφ2
φ1

G μ, ϕ2ð Þdμ + 1
ϕ2 − ϕ1

ðϕ2
ϕ1

G φ1, νð Þdν

+ 1
ϕ2 − ϕ1

ðϕ2
ϕ1

G φ2, νð Þdν
#

≤
G φ1, ϕ1ð Þ + G φ1, ϕ2ð Þ + G φ2, ϕ1ð Þ + G φ2, ϕ2ð Þ

4
:

ð2Þ

In [21], Kunt et al. established the q̂-HH -type inequality
for functions of two variables utilizing convexity on rectangle
from the plane ℝ2:

Theorem 2. Let G : Δ = ½φ1, φ2� × ½ϕ1, ϕ2� ⊆ℝ2 ↦ℝ be con-
vex on the coordinates on Δ with 0 < q̂1, q̂2 < 1 and φ1 < φ2,

ϕ1 < ϕ2: Then, one has the following inequalities:

G
q̂1φ1 + φ2

q̂1 + 1
, q̂2ϕ1 + ϕ2

q̂2 + 1

� �
≤
1
2

1
φ2 − φ1

ðφ2

φ1

G μ, q̂2ϕ1 + ϕ2
q̂2 + 1

� �
φ1

dq̂1μ + 1
ϕ2 − ϕ1

"

�
ðϕ2
ϕ1

G
q̂1φ1 + φ2

q̂1 + 1
, ν

� �
ϕ1

dq̂2ν

#

≤
1

φ2 − φ1ð Þ ϕ2 − ϕ1ð Þ
ðφ2
φ1

ðϕ2
ϕ1

G μ, νð Þφ1dq̂1μϕ1dq̂2ν

≤
1
2

q̂2
1 + q2ð Þ φ2 − φ1ð Þ

ðφ2

φ1

G μ, ϕ1ð Þφ1dq̂1μ
"

+ q̂2
1 + q̂2ð Þ φ2 − φ1ð Þ

ðφ2
φ1

G μ, ϕ2ð Þφ1dq̂1μ

+ q̂1
1 + q̂1ð Þ ϕ2 − ϕ1ð Þ

ðϕ2
ϕ1

G φ1, νð Þϕ1dq̂2ν

+ q̂1
1 + q̂1ð Þ ϕ2 − ϕ1ð Þ

ðϕ2
ϕ1

G φ2, νð Þϕ1dq̂2ν
#

≤
q̂1q̂2G φ1, ϕ1ð Þ + q̂1G φ1, ϕ2ð Þ + q̂2G φ2, ϕ1ð Þ +G φ2, ϕ2ð Þ

1 + q̂1ð Þ 1 + q̂2ð Þ :

ð3Þ

For many useful consequences on the coordinates on
rectangle from the planeℝ2 with the various sorts of variants
for mappings that hold numerous types of convex mappings,
see [22–24] and the references cited therein.

Owing to the above-mentioned work, this research is
aimed at exploring the novel generalizations of HH-type
inequalities on the coordinates by the use of generalized Ψ
-convex functions which are elaborated. An auxiliary identity
is derived with respect to the q̂1q̂2-derivative by the correlation
of Raina’s function. Considering this new approach, we derive
certain novel quantum bounds ofHH-type variants for coor-
dinated generalized Ψ-convex mappings. Meanwhile, we
recapture remarkable cases in the relative literature. For the
change of parameter in Raina’s function, we generate numer-
ous new outcomes depending on hypergeometric and Mittag-
Leffler functions. This new study may stimulate further inves-
tigation in this dynamic field of inequality theory.

2. Prelude

This segment evokes certain earlier ideas and necessary
details related to the notion of a coordinated generalized Ψ
-convex set and coordinated generalized Ψ-convex function
by considering Raina’s function.

Assume that a finite interval of real numbers I , and we
say that a mapping G : I ↦ℝ is known to be convex if

G ζx + 1 − ζð Þyð Þ ≤ ζG xð Þ + 1 − ζð ÞG yð Þ, x, y ∈I , ζ ∈ 0, 1½ �:
ð4Þ

In [20], Dragomir introduced a new term in convexity
theory, which is known as the coordinated convex function
described as follows:

Definition 3. Let a mapping G : ∇~ →ℝ be said to be convex
on the coordinates, for all ζ, θ ∈ ½0, 1� with ðx, yÞ, ðu, vÞ ∈ ~∇, if
the partial functions
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G ζx + 1 − ζð Þu, θy + 1 − θð Þvð Þ
≤ ζθG x, yð Þ + ζ 1 − θð ÞG x, vð Þ

+ 1 − ζð ÞθG u, yð Þ + 1 − ζð Þ 1 − θð ÞG u, vð Þ,
ð5Þ

holds for all ζ, θ ∈ 0, 1] and ðx, yÞ, ðu, vÞ ∈ ~∇:
In [25], Raina contemplated the subsequent class of func-

tion

Fλ
γ,ρ tð Þ =Fλ 0ð Þ,λ 1ð Þ,⋯

γ,ρ tð Þ = 〠
∞

p=0

λ pð Þ
Γ γp + ρð Þ t

p, ð6Þ

where γ, ρ > 0,jtj <ℝ and

λ = λ 0ð Þ, λ 1ð Þ,⋯λ pð Þ,⋯ð Þ, ð7Þ

is a bounded sequence of ℝ+. Also, setting γ = 1, ρ = 0 in (6)
and

λ pð Þ =
ϑ1ð Þp ϑ2ð Þp

ϑ3ð Þp
 for p = 0, 1, 2, 3⋯ , ð8Þ

where the parameters ϑi, ði = 1, 2, 3Þ are assumed to be
real or complex (provided that ϑ3 = 0, −1,−2,⋯) and the
symbol ðzÞp mentions the value

zð Þp =
Γ z + pð Þ
Γ zð Þ = z z + 1ð Þ⋯ z + p − 1ð Þ, p = 0, 1, 2,⋯,

ð9Þ

and its domain is restricted as ∣t ∣ ≤1 (with t ∈ℂ), then we
attain the subsequent hypergeometric function,

Fλ
γ,ρ tð Þ = F ϑ1 ; ϑ2 ; ϑ3 ; tð Þ = 〠

∞

p=0

ϑ1ð Þp ϑ2ð Þp
p! ϑ3ð Þp

tp: ð10Þ

Furthermore, if λ = ð1, 1,⋯Þ with γ = ϑ1,ðRðϑ1Þ > 0Þ,
λ = 1 and its domain is restricted as t ∈ℂ in (6), then we
attain the subsequent Mittag-Leffler function

Eϑ1
tð Þ = 〠

∞

p=0

1
Γ 1 + ϑ1pð Þ t

p: ð11Þ

Next, we mention a novel concept that reunites the coor-
dinated convex function and Raina’s function as mentioned
above.

Definition 4. For γ, λ > 0 and λ = ðλð0Þ, λð1Þ,⋯λðpÞ,⋯Þ is
assumed to be a bounded sequence of ℝ+. A nonempty set
~Δ is known to be a coordinated generalized Ψ -convex set

G z + ζFλ
γ,ρ x − zð Þ,w + θFλ

σ,ρ y −wð Þ
� �

∈ ~Δ, ð12Þ

holds for all ζθ ∈ 0, 1], ðx, yÞ, ðz,wÞ ∈ ~Δ, and Fλ
γ,ρð:Þ

denotes Raina’s function.

Definition 5. For γ, λ > 0 and λ = ðλð0Þ, λð1Þ,⋯λðpÞ,⋯Þ is
assumed to be a bounded sequence of ℝ+. A mapping G

: ~Δ→ℝ is said to be a coordinated generalized Ψ -convex, if

G z + ζFλ
γ,ρ x − zð Þ,w + θFλ

γ,ρ y −wð Þ
� �
≤ ζθG x, yð Þ + ζ 1 − θð ÞG x,wð Þ

+ 1 − ζð ÞθG z, yð Þ + 1 − ζð Þ 1 − θð ÞG z,wð Þ,
ð13Þ

holds for all ζ, θ ∈ 0, 1] and ðx, yÞ, ðz,wÞ ∈ ~Δ:

Remark 6. Setting Fλ
γ,ρðx − φ1Þ = x − φ1 > 0 and Fλ

γ,ρðy − ϕ1Þ
= y − ϕ1 > 0 in Definition 5, we get Definition 3.

Furthermore, we demonstrate some essential ideas and
preliminaries in q̂-analog for a single and two-variable
senses.

Let J = ½ϱ1, ϱ2� ⊆ℝ, and let U = ½ϱ1, ϱ2� × ϱ3, ϱ4� ⊆ℝ2

with constants q̂, q̂k ∈ ð0, 1Þ, k = 1, 2.

Tariboon and Ntouyas [2, 3] studied the concept of q̂
-derivative, q̂-integral, and characteristics for finite interval,
which has been shown as

Definition 7. Assume that a continuous mapping G : J →ℝ
and t ∈ J . Then, one has q̂ -derivative of G on J at t which is
stated as

ϱ1
Dq̂G tð Þ = G tð Þ − G qt + 1 − qð Þϱ1ð Þ

1 − qð Þ t − ϱ1ð Þ ,  t ≠ ϱ1: ð14Þ

Clearly, we see that

lim
t→ϱ1ϱ1

Dq̂G tð Þ= ϱ1
Dq̂G ϱ1ð Þ: ð15Þ

We say that the mapping G is q̂-differentiable over J , also

ρ1
Dq̂GðtÞ exists ∀t ∈ J .
Observe that if ϱ1 = 0 in (14), then 0Dq̂G =Dq̂G , where

Dq̂G is a well-defined q̂-derivative of GðtÞ, i.e, it is mentioned
as

Dq̂G tð Þ = G tð Þ −G qtð Þ
1 − qð Þ tð Þ : ð16Þ

Definition 8. Assume that a continuous mapping G : J →ℝ
is symbolized as ϱ1

D2
q̂G , given that ϱ1

D2
q̂G is q̂ -differentiable

from J →ℝ defined by

ϱ1
D2

q̂G= ϱ1
Dq̂ ϱ1

Dq̂G
� �

: ð17Þ

Therefore, the higher order q̂-differentiable is defined as

ϱ1
Dn

q̂G : J →ℝ.
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Definition 9. Assume that a continuous mapping G : J →ℝ
and the q̂ -integral on J is stated asðt

ϱ1

G zð Þϱ1dq̂z = 1 − q̂ð Þ t − ϱ1ð Þ〠
∞

n=0
q∧nG q∧ntð

+ 1 − q∧nð Þϱ1Þ, ∀t ∈ J :

ð18Þ

Next, if ϱ1 = 0 in (18), then we have a new formulation of
q̂-integral, which is pointed out asðt

0
G zð Þ0dq̂z = 1 − q̂ð Þt 〠

∞

n=0
q∧nG q∧ntð Þ: ð19Þ

Theorem 10. Assuming that a continuous mapping G : J
→ℝ, the following assumptions hold:

ϱ1
Dq̂

ðt
ϱ1

G zð Þϱ1dq̂z =G tð Þ,
ðt
ϱ1

ϱ1
Dq̂G zð Þϱ1dq̂z = G tð Þ,

ðt
ϱ2

ϱ1
Dq̂G zð Þϱ1dq̂z =G tð Þ −G ϱ2ð Þ, ϱ2 ∈ ϱ1, tð Þ:

ð20Þ

Theorem 11. Assuming that a continuous mapping G : J
→ℝ and a ∈ℝ, then the following assumptions hold:ðt
ϱ1

G1 zð Þ +G2 zð Þ½ �ϱ1dq̂z =
ðt
ϱ1

G1 zð Þϱ1dq̂z +
ðt
ϱ1

G2 zð Þϱ1dq̂z,

ðt
ϱ1

aG1 zð Þð Þϱ1dq̂z = a
ðt
ϱ1

G1 zð Þϱ1dq̂z:

ð21Þ

In [26], Kalsoom et al. introduced the quantum integral
identities in a two-variable sense as follows:

Definition 12. Consider a continuous mapping in two-
variable senseG : U→ℝ, then the partial q̂1 -derivative, q̂2
-derivative, and q̂1q̂2 -derivative at ðz,wÞ ∈ ϱ1, ϱ2� × ϱ3, ϱ4�
are, respectively, stated as

 
ϱ1
∂q̂1G z,wð Þ
ϱ1
∂q̂1z

= G z,wð Þ � G q̂1z + 1� q̂1ð Þϱ1,wð Þ
1� q̂1ð Þ z � ϱ1ð Þ , z ≠ ϱ1,

  ϱ3
∂q̂2G z,wð Þ
ϱ3
∂q̂2w

= G z,wð Þ � G z, q̂2w + 1� q̂2ð Þϱ3ð Þ
1� q̂2ð Þ w� ϱ3ð Þ , w ≠ ϱ3,

 
ϱ1,ϱ3∂

2
q̂1,q̂2G z,wð Þ

ϱ1
∂q̂1zϱ3∂q̂2w

= 1
1� q̂1ð Þ 1� q̂2ð Þ z � ϱ1ð Þ w� ϱ3ð Þ

  × G q̂1z + 1� q̂1ð Þϱ1, q̂2w + 1� q̂2ð Þϱ3ð Þ½

 � G q̂1z + 1� q̂1ð Þϱ1,wð Þ

 �G z, q̂2w + 1� q̂2ð Þϱ3ð Þ + G z,wð Þ�, z ≠ ϱ1,w ≠ ϱ3:

ð22Þ

Definition 13. Consider a continuous mapping in two-
variable senseG : U→ℝ, then the definite q̂1q̂2 -integral on
½ϱ1, ϱ2� × ϱ3, ϱ4� is stated as

for ðt, t1Þ ∈ ϱ1, ϱ2� × ϱ3, ϱ4�.

Theorem 14. Consider a continuous mapping in two-variable
senseG : B→ℝ, then the following assumptions hold:

ϱ1 ,ϱ3∂
2
q̂1 ,q̂2

ϱ1
∂q̂1 tϱ3∂q̂2 t1

ðt1
ϱ4

ðt
ϱ1

G z,wð Þϱ1dq̂1 zϱ3dq̂2w =G t, t1ð Þ,

ðt1
ϱ3

ðt
ϱ1

ϱ1 ,ϱ3∂
2
q̂1 ,q̂2G z,wð Þ

ϱ1
∂q̂1 zϱ3∂q̂2w

ϱ1dq̂1zϱ3dq̂2w = G t, t1ð Þ,

ðt1
t2

ðt
y1

ϱ1 ,ϱ3∂
2
q̂1 ,q̂2G z,wð Þ

ϱ1
∂q̂1 zϱ3∂q̂2w

ϱ1dq̂1zϱ3dq̂2w;

= G t, t1ð Þ −G t, t2ð Þ −G y1, t1ð Þ
+ G y1, t2ð Þ, y1, t2ð Þ ∈ ϱ1, tð Þ × ϱ4, t1ð Þ:

ð24Þ

Theorem 15. Suppose that G1, G2 : U→ℝ are continuous
mappings of two variables. Then, the following properties hold
for ðt, t1Þ ∈ ϱ1, ϱ2� × ϱ3, ϱ4�,ðt1

ϱ3

ðt
ϱ1

G1 z,wð Þ + G2 z,wð Þ½ �ϱ1dq̂1 zϱ4dq̂2w

=
ðt1
ϱ3

ðt
ϱ1

G1 z,wð Þϱ1dq̂1 zϱ3dq̂2w

+
ðt
ϱ3

ðt
ϱ1

G2 z,wð Þϱ1dq̂1 zϱ3dq̂2w,

ðt1
ϱ3

ðt
ϱ1

aG z,wð Þϱ1dq̂1 zϱ3dq̂2w

= a
ðt1
ϱ3

ðt
ϱ1

G z,wð Þϱ1dq̂1 zϱ3dq̂2w:
ð25Þ

ðt
ϱ3

ðt
ϱ1

G z,wð Þϱ1dq̂1zϱ3dq̂2w = 1 − q̂1ð Þ 1 − q̂2ð Þ t − ϱ1ð Þ t1 − ϱ3ð Þ 〠
∞

m=0
〠
∞

n=0
q̂n1 q̂

m
2 G q̂n1t + 1 − q̂n1ð Þϱ1, q̂m2 t1 + 1 − q̂m2ð Þϱ3ð Þ, ð23Þ
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3. Quantum HH -Type Inequality for
Generalized Ψ-Convex on the Coordinates

This section addresses the q̂1-HH-type inequality on the
coordinates via generalized Ψ-convex functions.

Theorem 16. For γ, ρ > 0 with λ = ðλð0Þ,⋯, λðpÞÞ as the
bounded sequence of positive real numbers and let G : Δ↦
ℝ be the coordinated generalized Ψ -convex and partially dif-
ferentiable function on Δ∘ with 0 < q̂1, q̂2 < 1, then the follow-
ing inequalities hold:

G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !

≤
1

2Fλ
γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G

� μ,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !
φ1

dq̂1μ

+ 1

2Fλ
γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G

� q̂1 + 1ð Þφ1 +Fλ
γ,ρ φ2 − φ1ð Þ

1 + q̂1
, ν

 !
ϕ1

dq̂2ν

≤
1

Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

�
ðϕ1+Fλ

γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G μ, νð Þϕ1dq̂2νφ1
dq̂1μ

≤
q̂2

2 1 + q̂2ð Þ
1

Fλ
γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ1ð Þφ1
dq̂1μ

 !

+ q̂2
2 1 + q̂2ð Þ

1

Fλ
γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ2ð Þφ1
dq̂1μ

 !

+ q̂1
2 1 + q̂1ð Þ

1

Fλ
γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ1, νð Þϕ1dq̂2μ
 !

+ q̂1
2 1 + q̂1ð Þ

1

Fλ
γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ2, νð Þϕ1dq̂2ν
 !

≤
q̂1q̂2G φ1, ϕ1ð Þ + q̂1G φ1, ϕ2ð Þ + q̂2G φ2, ϕ1ð Þ + G φ2, ϕ2ð Þ

1 + q̂1ð Þ 1 + q̂2ð Þ :

ð26Þ

Proof. Since G is the coordinated generalized Ψ-convex on Δ
and partially differentiable mappings on Δ∘, clearly, we see
that the mapping Gμ : ½ϕ1, ϕ1 +Fλ

γ,ρðϕ2 − ϕ1Þ�↦ℝ,
GμðνÞ≔ Gðμ, νÞ is a generalized Ψ-convex on ½ϕ1, ϕ1 +
Fλ

γ,ρðϕ2 − ϕ1Þ� and a differentiable function on ðϕ1, ϕ1 +
Fλ

γ,ρðϕ2 − ϕ1ÞÞ for all μ ∈ ½φ1, φ1 +Fλ
γ,ρðφ2 − φ1Þ�: Then, by

using the q̂1-HH-type inequality, we obtain

Gμ

q̂2 + 1ð Þϕ1 +Fλ
γ,ρ ϕ2 − ϕ1ð Þ

1 + q̂2

 !

≤
1

Fλ
γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

Gμ νð Þμdq̂2ν

≤
q̂2Gμ ϕ1ð Þ + Gϕ1

ϕ2ð Þ
1 + q̂2

, μ ∈ φ1, φ1 +Fλ
γ,ρ φ2 − φ1ð Þ

h i� �
,

ð27Þ

which can be written as

G μ,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !

≤
1

Fλ
γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G μ, νð Þϕ1dq̂2ν

≤
q̂2G μ, ϕ1ð Þ +G μ, ϕ2ð Þ

1 + q̂2
, μ ∈ φ1, φ1 +Fλ

γ,ρ φ2 − φ1ð Þ
h i� �

:

ð28Þ

Applying q̂1-inegration on the above inequalities over
½φ1, φ1 +Fλ

γ,ρðφ2 − φ1Þ�, we have

1
Fλ

γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !
φ1

dq̂1μ

≤
1

Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

�
ðϕ1+Fλ

γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G μ, νð Þϕ1dq̂2νφ1
dq̂1μ

≤
1

1 + q̂2

q̂2
Fλ

γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ1ð Þφ1
dq̂1μ

"

+ 1
Fλ

γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ2ð Þφ1
dq̂1μ

#
:

ð29Þ

Adopting the same procedure for the mapping Gν :

½φ1, φ1 +Fλ
γ,ρðφ2 − φ1Þ�↦ℝ,GνðμÞ≔ Gðμ, νÞ, we have

1
Fλ

γ,ρ ϕ2 − ϕ1ð Þ

ðφ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G

� q̂1 + 1ð Þφ1 +Fλ
γ,ρ φ2 − φ1ð Þ

1 + q̂1
, ν

 !
ϕ1

dq̂1μ

≤
1

Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

�
ðϕ1+Fλ

γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G μ, νð Þϕ1dq̂2νφ1
dq̂1μ

≤
1

1 + q̂1

q̂1
Fλ

γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ1, νð Þϕ1dq̂2ν
"

+ 1
Fλ

γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ2, νð Þϕ1dq̂2ν
#
:

ð30Þ
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Adding (29) and (30), yields

1
2Fλ

γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G

� μ,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !
φ1

dq̂1μ

+ 1
2Fλ

γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G

� q̂1 + 1ð Þφ1 +Fλ
γ,ρ φ2 − φ1ð Þ

1 + q̂1
, ν

 !
ϕ1

dq̂2ν+

≤
1

Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

�
ðϕ1+Fλ

γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G μ, νð Þϕ1dq̂2νφ1
dq̂1μ

≤
q̂2

2 1 + q̂2ð ÞFλ
γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ1ð Þφ1
dq̂1μ

"

+ 1
2 1 + q̂2ð ÞFλ

γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ2ð Þφ1
dq̂1μ

+ q̂1
2 1 + q̂1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ1, νð Þϕ1dq̂2ν

+ 1
2 1 + q̂1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ2, νð Þϕ1dq̂2ν
#
:

ð31Þ

Also, by considering the q̂-HH-type inequality, we
have

G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !

≤
1

Fλ
γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !
φ1

dq̂1μ,

ð32Þ

G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !

≤
1

Fλ
γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

, ν
 !

ϕ1

dq̂2ν:

ð33Þ

Adding the inequalities (32) and (33), we have the
following inequality:

G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !

≤
1

2Fλ
γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !
φ1

dq̂1μ

+ 1
Fλ

γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

, ν
 !

ϕ1

dq̂2ν:

ð34Þ

Consequently, we have

q̂2
2 1 + q̂2ð Þ

1
Fλ

γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ1ð Þφ1dq̂1μ
 !

≤
q̂2

2 1 + q̂2ð Þ
q̂1G φ1, ϕ1ð Þ + G φ2, ϕ1ð Þ

1 + q̂1

� �
, q̂2
2 1 + q̂2ð Þ

� 1
Fλ

γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ2ð Þφ1dq̂1μ
 !

≤
q̂2

2 1 + q̂2ð Þ
q̂1G φ1, ϕ2ð Þ + G φ2, ϕ2ð Þ

1 + q̂1

� �
,

1
Fλ

γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ1, νð Þϕ1dq̂2μ
 !

≤
q̂1

2 1 + q̂1ð Þ
q̂2G φ1, ϕ1ð Þ + G φ1, ϕ2ð Þ

1 + q̂2

� �
, q̂1
2 1 + q̂1ð Þ

� 1
Fλ

γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ2, νð Þϕ1dq̂2ν
 !

≤
q̂1

2 1 + q̂1ð Þ
q̂2G φ2, ϕ1ð Þ + G φ2, ϕ2ð Þ

1 + q̂2

� �
:

ð35Þ

Adding the above inequalities yields

q̂2
2 1 + q̂2ð Þ

1
Fλ

γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ1ð Þφ1dq̂1μ
 !

+ q̂2
2 1 + q̂2ð Þ

1
Fλ

γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ2ð Þφ1dq̂1μ
 !

+ q̂1
2 1 + q̂1ð Þ

1
Fλ

γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ1, νð Þϕ1dq̂2μ
 !

+ q̂1
2 1 + q̂1ð Þ

1
Fλ

γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ2, νð Þϕ1dq̂2ν
 !

≤
q̂1q̂2G φ1, ϕ1ð Þ + q̂1G φ1, ϕ2ð Þ + q̂2G φ2, ϕ1ð Þ +G φ2, ϕ2ð Þ

1 + q̂1ð Þ 1 + q̂2ð Þ :

ð36Þ

A combination of (31), (34), and (36) gives (36). This
completes the proof.
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Corollary 17. In Theorem 16, if we choose q̂1, q̂2 ↦ 1−, we
have the following new double inequality:

G
2φ1 +Fλ

γ,ρ φ2 − φ1ð Þ
2

,
2ϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
2

 !

≤
1

2Fλ
γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ,
2ϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
2

 !
dμ

+ 1

2Fλ
γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

, ν
 !

dν

≤
1

Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G μ, νð Þdνdμ

≤
1
4

1

Fλ
γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ1ð Þφ1
dq̂1μ

 !(

+ 1

Fλ
γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ2ð Þφ1
dq̂1μ

 !

+ 1

Fλ
γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ1, νð Þϕ1dq̂2μ
 !

+ 1

Fλ
γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ2, νð Þϕ1dq̂2ν
 !)

≤
G φ1, ϕ1ð Þ +G φ1, ϕ2ð Þ +G φ2, ϕ1ð Þ +G φ2, ϕ2ð Þ

4
:

ð37Þ

Remark 18. In Theorem 16,

(i) letting Fλ
γ,ρðφ2 − φ1Þ = φ2 − φ1 and Fλ

γ,ρðϕ2 − ϕ1Þ =
ϕ2 − ϕ1 along with q̂1, q̂2 ↦ 1−, then we attain Theo-
rem 1 in [20]

(ii) letting Fλ
γ,ρðφ2 − φ1Þ = φ2 − φ1 and Fλ

γ,ρðϕ2 − ϕ1Þ =
ϕ2 − ϕ1, then we attain Theorem 4 in [21]

4. Quantum Integral Identity for Coordinated
Generalized Ψ-Convex Functions

The following identity plays a significant role in inaugurating
the main consequences of this paper. The identification is
expressed as follows.

Lemma 19. For γ, ρ > 0 with λ = ðλð0Þ,⋯, λðpÞÞ as the
bounded sequence of positive real numbers and let a twice par-
tially q̂1q̂2 -differentiable mapping G : Δ↦ℝ be defined on
Δ∘ (the interior of Δ). If the second-order partial q̂1q̂2 -deriva-
tives are continuous and integrable over Δ with 0 < q̂1, q̂2 < 1,
then the following equality holds:

Yq̂1 ,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ

≔G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !

−
1

Fλ
γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !
φ1

dq̂1μ

−
1

Fλ
γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

, ν
 !

ϕ1

dq̂2ν

+ 1

Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G μ, νð Þϕ1dq̂2νφ1
dq̂1μ,

ð38Þ

where

Yq̂1 ,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ

≔ q̂1q̂2 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1
0
A ζ, θð Þ

� φ1 ,ϕ1∂
2
q̂1 ,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ,

A ζ, θð Þ =

ζθ, ζ, θð Þ ∈ 0, 1
1 + q̂1

� 	
× 0, 1

1 + q̂2

� 	
,

ζ θ −
1
q̂2

� �
, ζ, θð Þ ∈ 0, 1

1 + q̂1

� 	
× 1

1 + q̂2
, 1

� 	
,

θ ζ −
1
q̂1

� �
, ζ, θð Þ ∈ 1

1 + q̂1
, 1

� 	
× 0, 1

1 + q̂2

� 	
,

ζ −
1
q̂1

� �
θ −

1
q̂2

� �
, ζ, θð Þ ∈ 1

1 + q̂1
, 1

� 	
× 1

1 + q̂2
, 1

� 	
:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð39Þ

Proof. Consider

q̂1q̂2 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1
0
A ζ, θð Þ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

= q̂1q̂2 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �

×
ð1/ 1+q̂1ð Þ

0

ð1/ 1+q̂2ð Þ

0
ζθ




� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

+
ð1

1
1+q̂1

ð1/ 1+q̂2ð Þ

0
θ ζ −

1
q̂1

� �

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

+
ð1/ 1+q̂1ð Þ

0

ð1
1/ 1+q̂2ð Þ

ζ θ −
1
q̂2

� �

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

+
ð1
1/ 1+q̂1ð Þ

ð1
1/ 1+q̂2ð Þ

ζ −
1
q̂1

� �
θ −

1
q̂2

� �

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

)
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= q̂1q̂2 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� � ð1/ 1+q̂1ð Þ

0

ð1/ 1+q̂2ð Þ

0
ζθ




� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

+
ð1
1/ 1+q̂1ð Þ

ð1/ 1+q̂2ð Þ

0
ζθ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

+
ð1/ 1+q̂1ð Þ

0

ð1
1/ 1+q̂2ð Þ

ζθ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

+
ð1
1/ 1+q̂1ð Þ

ð1
1/ 1+q̂2ð Þ

ζθ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

−
1
q̂1

ð1/ 1+q̂1ð Þ

0

ð1/ 1+q̂2ð Þ

0
θ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

−
1
q̂2

ð1
1/ 1+q̂1ð Þ

ð1/ 1+q̂2ð Þ

0
ζ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

−
1
q̂2

ð1/ 1+q̂1ð Þ

0

ð1
1/ 1+q̂2ð Þ

ζ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

� 1
q̂1q̂2

ð1
1/ 1+q̂1ð Þ

ð1
1/ 1+q̂2ð Þ1/ 1+q̂2ð Þ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFe
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

)

= q̂1q̂2 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1
0
ζθ




� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

− q̂2 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1
0
θ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

− q̂1 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1
0
ζ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

+ q̂2 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1/ 1+q̂1ð Þ

0

ð1
0
θ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

+ q̂1 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1/ 1+q̂1ð Þ

0
ζ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

+ Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1
0

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

− Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1/ 1+q̂1ð Þ

0

ð1
0

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

− Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1/ 1+q̂1ð Þ

0

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

+ Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1/ 1+q̂1ð Þ

0

ð 1
1+q̂2

0

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

)
:

ð40Þ

In view of Definition 12 and Definition 13, we conclude
the following identities with the aid of the last nine integrals
appearing in the aforementioned identities as follows:

q̂1q̂2 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1
0
ζθ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1

= −G φ2, ϕ2ð Þ − 1
Fλ

γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ2ð Þ0dq̂1μ

−
1

Fλ
γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ2, νð Þ0dq̂2ν

+ 1
Fλ

γ,ρ φ2 − φ1ð ÞFλ
γ,ρ ϕ2 − ϕ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

� G μ, νð Þϕ1dq̂2νφ1
dq̂1μ,

ð41Þ

q̂2 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1
0
θ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

= −G φ2, ϕ2ð Þ − 1
Fλ

γ,ρ ϕ2 − ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G φ2, νð Þ0dq̂2ν,

ð42Þ
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q̂1 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1
0
ζ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

= −G φ2, ϕ2ð Þ − 1
Fλ

γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G μ, ϕ2ð Þ0dq̂1ν,

ð43Þ

q̂2 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1/ 1+q̂1ð Þ

0

ð1
0
θ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

= −G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

, ϕ2

 !
−

1
Fλ

γ,ρ ϕ2 − ϕ1ð Þ

�
ðϕ1+Fλ

γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

, ν
 !

0

dq̂1ν,

ð44Þ

q̂1 Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1/ 1+q̂1ð Þ

0
ζ

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

= −G φ2,
q̂1 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂1

 !
−

1
Fλ

γ,ρ φ2 − φ1ð Þ

�
ðφ1+Fλ

γ,ρ φ2−φ1ð Þ

φ1

G μ,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !
0

dq̂1μ,

ð45Þ

Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1/ 1+q̂1ð Þ

0

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

= −G φ2, ϕ2ð Þ,
ð46Þ

Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1/ 1+q̂1ð Þ

0

ð1
0

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

= −G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

, ϕ2

 !
,

ð47Þ

Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1/ 1+q̂1ð Þ

0

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

= −G φ2,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !
,

ð48Þ

Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1/ 1+q̂1ð Þ

0

ð1/ 1+q̂2ð Þ

0

� φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
φ1∂q̂1ζ ϕ1∂q̂2θ 0

dq̂2θ0dq̂1ζ

= −G
q̂1 + 1ð Þφ1 +Fλ

γ,ρ φ2 − φ1ð Þ
1 + q̂1

,
q̂2 + 1ð Þϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
1 + q̂2

 !
:

ð49Þ

Combining (42), (43), (44), (45), (46), (47), (48), and
(49), we have the identity (38). This is the proof of Lemma 19.

Corollary 20. In Lemma 19, if we choose q̂1, q̂2 ↦ 1−, we have
the following new identity:

Λ φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ≔G
2φ1 +Fλ

γ,ρ φ2 − φ1ð Þ
2

,
2ϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
2

 !

−
1

Fλ
γ,ρ φ2 − φ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

G

� μ,
2ϕ1 +Fλ

γ,ρ ϕ2 − ϕ1ð Þ
2

 !
dμ −

1

Fλ
γ,ρ ϕ2 − ϕ1ð Þ

�
ðϕ1+Fλ

γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G
2φ1 +Fλ

γ,ρ φ2 − φ1ð Þ
2

, ν
 !

dv

+ 1

Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ

ðφ1+Fλ
γ,ρ φ2−φ1ð Þ

φ1

�
ðϕ1+Fλ

γ,ρ ϕ2−ϕ1ð Þ

ϕ1

G μ, νð Þdνdμ,

ð50Þ

where

Λ φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ≔ Fλ
γ,ρ φ2 − φ1ð ÞFλ

γ,ρ ϕ2 − ϕ1ð Þ
� �ð1

0

ð1
0
A ζ, θð Þ

�
∂2G φ1 + ζFλ

γ,ρ φ2 − φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
∂ζ∂θ

dθdζ,
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A ζ, θð Þ

ζθ, ζ − θð Þ ∈ 0, 1
2

� 	
× 0, 1

2

� 	
,

ζ θ − 1ð Þ, ζ − θð Þ ∈ 0, 1
2

� 	
× 1

2
, 1

� 	
,

θ ζ − 1ð Þ, ζ − θð Þ ∈ 1
2
, 1

� 	
× 0, 1

2

� 	
,

ζ − 1ð Þ θ − 1ð Þ, ζ − θð Þ ∈ 1
2
, 1

� 	
× 1

2
, 1

� 	
:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð51Þ

5. Certain New q̂1q̂2-Integral Estimates
for Generalized Ψ-Convex Functions

The following results exhibit some practice related to Lemma 19
on quantum calculus for generalized Ψ-convex on coordinates.

Theorem 21. For γ, ρ > 0 with λ = ðλð0Þ,⋯, λðpÞÞ as the
bounded sequence of positive real numbers and let a mapping
G : Δ↦ℝ be a twice partially q̂1q̂2 -differentiable on Δ∘ such
that continuous partial q̂1q̂2 -derivatives φ1 ,ϕ1∂

2
q̂1 ,q̂2G/ φ1

∂q̂1
ζϕ1∂q̂2θ is integrable on Δ with 0 < q̂1, q̂2 < 1: If

j φ1 ,ϕ1∂
2
q∧1 ,q∧2

G/ φ1∂q∧1
ζϕ1∂q∧2

θjσ is a generalized Ψ -convex

on the coordinates on Δ for σ ≥ 1, where σ−1 + β−1 = 1: Then,
the following inequality holds:

Yq̂1 ,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ
��� ��� ≤ q̂1q̂2 Fλ

γ,ρ φ2 − φ1ð ÞFλ
γ,ρ ϕ2 − ϕ1ð Þ

� �
� B1 q∧1, q∧2ð Þð Þ1− 1/σð Þ × B2 q∧1, q∧2ð Þ½

� φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

+ B3 q∧1, q∧2ð Þ

� φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ1, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

+ B4 q∧1, q∧2ð Þ

� φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

+ B5 q∧1, q∧2ð Þ

� φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ1, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ#1/σ

,

ð52Þ

where

B1 q̂1, q̂2ð Þ≔ 4

1 + q∧1ð Þ3 1 + q∧2ð Þ3 , ð53Þ

B2 q̂1, q̂2ð Þ≔ 9

1 + q∧1ð Þ3 1 + q∧2ð Þ3 1 + q̂1 + q̂21
� �

1 + q̂2 + q̂22
� � ,

ð54Þ

B3 q̂1, q̂2ð Þ≔ 1 + q̂1 + q̂2 + q̂22 � 3q̂1q̂2 � q̂1q̂
3
2

q̂1q̂2 1 + q∧1ð Þ3 1 + q∧2ð Þ3 1 + q̂1 + q̂21
� �

1 + q̂2 + q̂22
� � ,

ð55Þ

B4 q̂1, q̂2ð Þ≔ 1 + q̂1 + q̂2 + q̂21 + q̂22 � 3q̂1q̂2 � q̂2q̂
3
1 � q̂31q̂

2
2 + 6q̂1q̂

2
2 � q̂21q̂

3
2 � q̂31q̂

3
2 + 5q̂1q̂

3
2

q̂1q̂2 1 + q∧1ð Þ3 1 + q∧2ð Þ3 1 + q̂1 + q̂21
� �

1 + q̂2 + q̂22
� �

ð56Þ

 B5 q̂1, q̂2ð Þ≔ �2q̂51 � 6q̂41 + 2q̂41q̂
3
2 + 2q̂31q̂

4
2 � 4q̂41q̂

2
2 � 4q̂41q̂2 � 2q̂1q̂

5
2

�
 � 2q̂51q̂2 � 2q̂51q̂

3
2 + 16q̂31q̂

3
2 � 4q̂21 + 2q̂31q̂2 � 2q̂21q̂

5
2 � 4q̂21q̂

4
2

  + 4q̂21q̂2 + 6q̂31 + 8q̂21q̂
2
2 + 10q̂31q̂

2
2 + 10q̂21q̂

3
2 � 6q̂42 � 6q̂32

 �4q̂22 � 4q̂1q̂
4
2 + 2q̂1q̂

3
2 + 4q̂1q̂

2
2 + 9q̂1q̂2 � 2q̂52

�
 /q̂1q̂2 1 + q∧1ð Þ3 1 + q∧2ð Þ3 1 + q̂1 + q̂21

� �
1 + q̂2 + q̂22
� �

ð57Þ
Proof. Taking into consideration the q̂1q̂2-integral power
mean inequality, the generalized Ψ-convexity of
j φ1,ϕ1∂

2
q∧1,q∧2

G/ φ1
∂q∧1

ζϕ1∂q∧2
θjσ on the coordinates on Δ with

the aid of Lemma 19, we have

  Yq̂1,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ
��� ���

  ≤ q̂1q̂2 Fλ
γ,ρ φ2 � φ1ð ÞFλ

γ,ρ ϕ2 � ϕ1ð Þ
� �

  ×
ð1
0

ð1
0
A ζ, θð Þj j



� φ1,ϕ1∂

2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 � φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 � ϕ1ð Þ

� �
φ1
∂q̂1ζϕ1∂q̂2θ

������
������
0

  �φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 � φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 � ϕ1ð Þ

� �
φ1
∂q̂1ζϕ1∂q̂2θ

������
������ · dq̂2θ0dq̂1ζ

9=;
  ≤ q̂1q̂2 Fλ

γ,ρ φ2 � φ1ð ÞFλ
γ,ρ ϕ2 � ϕ1ð Þ

� �
 ⋅

ð1
0

ð1
0
A ζ, θð Þj j0dq∧2

θ0dq∧1
ζ

� �1� 1/σð Þ

  ×
ð1
0

ð1
0
A ζ, θð Þj j

�
� φ1,ϕ1∂

2
q∧1,q∧2

G φ1 + ζFλ
γ,ρ φ2 � φ1ð Þ, ϕ1 + θFλ

γ,ρ ϕ2 � ϕ1ð Þ
� �

φ1
∂q∧1

ζϕ1∂q∧2
θ

������
������
σ

0

� 
φ1,ϕ1∂

2
q∧1,q∧2

G φ1 + ζFλ
γ,ρ φ2 � φ1ð Þ, ϕ1 + θFλ

γ,ρ ϕ2 � ϕ1ð Þ
� �

φ1
∂q∧1

ζϕ1∂q∧2
θ

������
������
σ

0

· dq∧2
θ0dq∧1

ζ

1A1/σ

  = q̂1q̂2 Fλ
γ,ρ φ2 � φ1ð ÞFλ

γ,ρ ϕ2 � ϕ1ð Þ
� �

  ·
ð1/ 1+q̂1ð Þ

0

ð1/ 1+q̂1ð Þ

0
ζθ0dq̂2θ0dq̂1ζ

�
+
ð1/ 1+q̂1ð Þ

0

ð1
1/ 1+q̂2ð Þ

ζ

� 1
q̂2

� θ

� �
0
dq̂2θ0dq̂1ζ
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  +
ð1
1/ 1+q̂1ð Þ

ð1/ 1+q̂2ð Þ

0
θ

1
q̂1

� ζ

� �
0
dq̂2θ0dq̂1ζ

 +
ð1
1/ 1+q̂1ð Þ

ð1
1/ 1+q̂2ð Þ

1
q̂1

� ζ

� � 1
q̂2

� θ

� �
0
dq̂2θ0dq̂1ζ

#

  ×
ð1/ 1+q∧1ð Þ

0

ð1/ 1+q∧1ð Þ

0
ζθ

ζθ
φ1,ϕ1∂

2
q∧1,q∧2

G φ2, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

θ 1� ζð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

 ζ 1� θð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

  1� ζð Þ 1� θð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

26666666666666666664

37777777777777777775
0

26666666666666666664

  · dq∧2
θ0dq∧1

ζ  +
ð1/ 1+q∧1ð Þ

0

ð1
1/ 1+q∧2ð Þ

ζ
1
q∧2

� θ

� �

�

ζθ
φ1,ϕ1∂

2
q∧1,q∧2

G φ2, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

θ 1� ζð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

 ζ 1� θð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

  1� ζð Þ 1� θð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

26666666666666666664

37777777777777777775
0

  · dq∧2
θ0dq∧1

ζ  +
ð1
1/ 1+q∧1ð Þ

ð1/ 1+q∧2ð Þ

0
θ

1
q∧1

� ζ

� �

�

ζθ
φ1,ϕ1∂

2
q∧1,q∧2

G φ2, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

θ 1� ζð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

 ζ 1� θð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

  1� ζð Þ 1� θð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

26666666666666666664

37777777777777777775
0

 ⋅dq∧2
θ0dq∧1

ζ  +
ð1
1/ 1+q∧1ð Þ

ð1
1/ 1+q∧2ð Þ

1
q∧1

� ζ

� � 1
q∧2

� θ

� �

  ×

ζθ
φ1,ϕ1∂

2
q∧1,q∧2

G φ2, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

θ 1� ζð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

 ζ 1� θð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

  1� ζð Þ 1� θð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

26666666666666666664

37777777777777777775
0

dq∧2
θ0dq∧1

ζ

37777777777777777775

1/σ

  = q̂1q̂2 Fλ
γ,ρ φ2 � φ1ð ÞFλ

γ,ρ ϕ2 � ϕ1ð Þ
� �

B1 q∧1, q∧2ð Þð Þ1�1/σ

  × B2 q∧1, q∧2ð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

+ B3 q∧1, q∧2ð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ"

  + B4 q∧1, q∧2ð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

+ B5 q∧1, q∧2ð Þ φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ#1/σ

:

ð58Þ

This completes the proof of Theorem 21.

Corollary 22. In Theorem 21, if we choose q̂1, q̂2 ↦ 1−, we
have the following new inequality:

  G
2φ1 +Fλ

γ,ρ φ2 � φ1ð Þ
2

,
2ϕ1 +Fλ

γ,ρ ϕ2 � ϕ1ð Þ
2

 !�����
 � 1

Fλ
γ,ρ φ2 � φ1ð Þ

ðφ1+Fλ
y,ρ φ2�φ1ð Þ

φ1

G μ,
2ϕ1 +Fλ

γ,ρ ϕ2 � ϕ1ð Þ
2

 !
dμ

 � 1

Fλ
γ,ρ ϕ2 � ϕ1ð Þ

ðϕ1+Fλ
y,ρ ϕ2�ϕ1ð Þ

ϕ1

G
2φ1 +Fλ

γ,ρ φ2 � φ1ð Þ
2

, ν
 !

dν

 � 1

Fλ
γ,ρ φ2 � φ1ð ÞFλ

γ,ρ ϕ2 � ϕ1ð Þ

ðφ1+Fλ
y,ρ φ2�φ1ð Þ

φ1

ðϕ1+Fλ
y,ρ ϕ2�ϕ1ð Þ

ϕ1

G μ, νð Þdνdμ
�����

  ≤
Fλ

γ,ρ φ2 � φ1ð ÞFλ
γ,ρ ϕ2 � ϕ1ð Þ

16

 

· ∂2G φ2, ϕ2ð Þ/∂ζ∂θ�� ��σ + ∂2G φ1, ϕ2ð Þ/∂ζ∂θ�� ��σ + ∂2G φ2, ϕ1ð Þ/∂ζ∂θ�� ��σ + ∂2G φ1, ϕ1ð Þ/∂ζ∂θ�� ��σ
4

( )
:

ð59Þ

Remark 23. In Theorem 21,

(i) letting Fλ
γ,ρðφ2 − φ1Þ = φ2 − φ1 and Fλ

γ,ρðϕ2 − ϕ1Þ =
ϕ2 − ϕ1, then we attain Theorem 5 in [21]

(ii) letting Fλ
γ,ρðφ2 − φ1Þ = φ2 − φ1 and Fλ

γ,ρðϕ2 − ϕ1Þ =
ϕ2 − ϕ1 along with q̂1, q̂2 ↦ 1−, then we attain Corol-
lary 1 in [21] and Theorem 4 in [27], respectively

Theorem 24. For γ, ρ > 0 with λ = ðλð0Þ,⋯, λð1ÞÞ as the
bounded sequence of positive real numbers and let a mapping
G : Δ↦ℝ be a twice partially q̂1q̂2 -differentiable on Δ∘(the
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interior of Δ) such that continuous partial q̂1q̂2 -derivatives

φ1 ,ϕ1∂
2
q̂1 ,q̂2G/ φ1∂q̂1ζϕ1∂q̂2θ is integrable on Δ with 0 < q̂1, q̂2 <

1: If j φ1 ,ϕ1∂
2
q∧1 ,q∧2

G/ φ1
∂q∧1

ζϕ1∂q∧2
θjσ is a generalized Ψ -con-

vex on the coordinates on Δ for σ > 1 where σ−1 + β−1 = 1:
Then, the following inequality holds

Yq̂1 ,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ
��� ��� ≤ q̂1q̂2 Fλ

γ,ρ φ2 � φ1ð ÞFλ
γ,ρ ϕ2 � ϕ1ð Þ

� �
�
ð1
0

ð1
0
A ζ, θð Þj jβ0dq∧2

θ0dq∧1
ζ

� �1/β

× φ1 ,φ1
∂2q∧1 ,q∧2

G φ2, ϕ2ð Þ/ ϕ1∂q∧1
ζϕ1∂q∧2

θ
��� ���σ�h

+ q∧1 φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ1, ϕ2ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ
+ q∧2 φ1 ,ϕ1∂

2
q∧1 ,q∧2

G φ2, ϕ1ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ
+ q∧1q∧2 φ1 ,ϕ1∂

2
q∧1 ,q∧2

G φ1, ϕ1ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ�
/ 1 + q∧1ð Þ 1 + q∧2ð Þð Þ

i1/σ
,

ð60Þ

where Aðζ, θÞ is defined as in (38).

Proof. Taking into consideration the q̂1q̂2-Hölder integral
inequality, the generalized Ψ-convexity of
j φ1,ϕ1∂

2
q∧1,q∧2

G/ φ1
∂q∧1

ζϕ1∂q∧2
θjσ on the coordinates on Δ with

the aid of Lemma 19, we have

  Yq̂1,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ
��� ��� ≤ q̂1q̂2 Fλ

γ,ρ φ2 � φ1ð ÞFλ
γ,ρ ϕ2 � ϕ1ð Þ

� �
  ×

ð1
0

ð1
0
A ζ, θð Þj j φ1,ϕ1∂

2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 � φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 � ϕ1ð Þ

� �
σ1
∂q̂1ζϕ1∂q̂2θ

������
������
0

8<:
 

φ1,ϕ1∂
2
q̂1,q̂2G φ1 + ζFλ

γ,ρ φ2 � φ1ð Þ, ϕ1 + θFλ
γ,ρ ϕ2 � ϕ1ð Þ

� �
φ1
∂q̂1ζϕ1∂q̂2θ

������
������ · dq̂2θ0dq̂1ζ

9=;
  ≤ q̂1q̂2 Fλ

γ,ρ φ2 � φ1ð ÞFλ
γ,ρ ϕ2 � ϕ1ð Þ

� �
  ×

ð1
0

ð1
0
A ζ, θð Þj jβ0dq∧2

θ0dq∧1
ζ

� �1/β"

  ×
ð1
0

ð1
0
A ζ, θð Þj j φ1,ϕ1∂

2
q∧1,q∧2

G φ1 + ζFλ
γ,ρ φ2 � φ1ð Þ, ϕ1 + θFλ

γ,ρ ϕ2 � ϕ1ð Þ
� �

φ1
∂q∧1

ζϕ1∂q∧2
θ

������
������
σ

0

0@

 
φ1,ϕ1∂

2
q∧1,q∧2

G φ1 + ζFλ
γ,ρ φ2 � φ1ð Þ, ϕ1 + θFλ

γ,ρ ϕ2 � ϕ1ð Þ
� �

φ1
∂q∧1

ζϕ1∂q∧2
θ

������
������
σ

0

· dq∧2
θ0dq∧1

ζ

1A1/σ375

  = q̂1q̂2 Fλ
γ,ρ φ2 � φ1ð ÞFλ

γ,ρ ϕ2 � ϕ1ð Þ
� � ð1

0

ð1
0
A ζ, θð Þj jβ0dq∧2

θ0dq∧1
ζ

� �1/β
 

  × φ1,ϕ1∂
2
q∧1,q∧2

G φ2, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σð1

0

ð1
0
ζθ0dq∧2

θ0dq∧1
ζ

"

  + φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σð1

0

ð1
0
θ 1� ζð Þ0dq∧2

θ0dq∧1
ζ

  + φ1,ϕ1∂
2
q∧1,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σð1

0

ð1
0
ζ 1� θð Þ0dq∧2

θ0dq∧1
ζ

 + φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σð1

0

ð1
0
1� ζð Þ 1� θð Þ0dq∧2

θ0dq∧1
ζ

#1/σ

  = q̂1q̂2 Fλ
γ,ρ φ2 � φ1ð ÞFλ

γ,ρ ϕ2 � ϕ1ð Þ
� � ð1

0

ð1
0
A ζ, θð Þj jβ0dq∧2

θ0dq∧1
ζ

� �1/β

  × φ1,ϕ1∂
2
q∧1,q∧2

G φ2, ϕ2ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ + q∧1 φ1,ϕ1∂
2
q∧1,q∧2

G φ1, ϕ2ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ�h

  + q∧2 φ1,ϕ1∂
2
q∧1,q∧2

G φ2, ϕ1ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ
 +q∧1q∧2 φ1,ϕ1∂

2
q∧1,q∧2

G φ1, ϕ1ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ�
 / 1 + q∧1ð Þ 1 + q∧2ð Þð Þ�1/σ: ð61Þ

This completes the proof of Theorem 21.

Corollary 25. In Theorem 21, if we choose q̂1, q̂2 ↦ 1−, we
have the following new inequality:

G
2φ1 +Fλ

γ,ρ φ2 � φ1ð Þ
2

,
2ϕ1 +Fλ

γ,ρ ϕ2 � ϕ1ð Þ
2

 !�����
� 1

Fλ
γ,ρ φ2 � φ1ð Þ

ðφ1+Fλ
γ,ρ φ2�φ1ð Þ

φ1

G μ,
2ϕ1 +Fλ

γ,ρ ϕ2 � ϕ1ð Þ
2

 !
dμ

� 1

Fλ
γ,ρ ϕ2 � ϕ1ð Þ

ðϕ1+Fλ
γ,ρ ϕ2�ϕ1ð Þ

ϕ1

G
2φ1 +Fλ

γ,ρ φ2 � φ1ð Þ
2

, ν
 !

dν

� 1

Fλ
γ,ρ φ2 � φ1ð ÞFλ

γ,ρ ϕ2 � ϕ1ð Þ

ðφ1+Fλ
γ,ρ φ2�φ1ð Þ

φ1

�
ðϕ1+Fλ

γ,ρ ϕ2�ϕ1ð Þ

ϕ1

G μ, νð Þdνdμj ≤
q̂1q̂2 Fλ

γ,ρ φ2 � φ1ð ÞFλ
γ,ρ ϕ2 � ϕ1ð Þ

� �
4 β + 1ð Þ2/β

× φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ2, ϕ2ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ�h
+ φ1 ,ϕ1∂

2
q∧1 ,q∧2

G φ1, ϕ2ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ
+ φ1 ,ϕ1∂

2
q∧1 ,q∧2

G φ2, ϕ1ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ
+ φ1 ,ϕ1∂

2
q∧1 ,q∧2

G φ1, ϕ1ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σÞ/ 4ð Þ
i1/σ

:

ð62Þ

Remark 26. In Theorem 21,

(i) letting Fλ
γ,ρðφ2 − φ1Þ = φ2 − φ1 and Fλ

γ,ρðϕ2 − ϕ1Þ =
ϕ2 − ϕ1, then we attain Theorem 6 in [21]

(ii) letting Fλ
γ,ρðφ2 − φ1Þ = φ2 − φ1 and Fλ

γ,ρðϕ2 − ϕ1Þ =
ϕ2 − ϕ1 along with q̂1q̂2 ↦ 1−, then we attain Theo-
rem 3 in [27]

6. Applications

This section contains some useful utilities of our findings
derived in the previous sections. For appropriate and suitable

12 Journal of Function Spaces



selections of parameters γ, ρ, and λ in the special functions
stated in (6), (10), and (11). Taking into account Raina’s
function (6), we shall derive outcomes for the hypergeo-
metric function and Mittag-Leffler function as particular
cases.

6.1. Hypergeometric Function. Letting γ = 1 and ρ = 0, and

λ pð Þ =
ϑ1ð Þp ϑ2ð Þp

ϑ3ð Þp
, for p = 0, 1, 2,⋯, ð63Þ

then for Theorem 16, Lemma 19, and Theorems 21–24,
the following results hold.

Theorem 27. Suppose λ = ðλð0Þ,⋯, λðpÞÞ is the bounded
sequence of positive real numbers and let G : O = ½φ1, φ1 +
Fðϑ1 ; ϑ2 ; ϑ3, φ2 − φ1Þ� × ½ϕ1, ϕ1 +Fðϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1Þ�↦
ℝ is the coordinated generalized Ψ -convex and partially
differentiable function on O∘ with 0 < q̂1, q̂2 < 1, then the
following inequalities hold:

G
q̂1 + 1ð Þφ1 +F ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð Þ

1 + q̂1
, q̂2 + 1ð Þϕ1 +F ϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1ð Þ

1 + q̂2

� �
≤

1
2F ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð Þ

ðφ1+F ϑ1 ;ϑ2 ;ϑ3 ,φ2−φ1ð Þ

φ1

G

� μ, q̂2 + 1ð Þϕ1 +F ϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1ð Þ
1 + q̂2

� �
φ1

dq̂1μ 

+ 1
2F ϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1ð Þ

ðϕ1+F ϑ1 ;ϑ2 ;ϑ3 ,ϕ2−ϕ1ð Þ

ϕ1

G

� q̂1 + 1ð Þφ1 +F ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð Þ
1 + q̂1

, ν
� �

ϕ1

dq̂2ν

≤
1

F ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð ÞF ϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1ð Þ
ðφ1+F ϑ1 ;ϑ2 ;ϑ3 ,φ2−φ1ð Þ

φ1

�
ðϕ1+F ϑ1 ;ϑ2 ;ϑ3 ,ϕ2−ϕ1ð Þ

ϕ1

G μ, νð Þϕ1dq̂2νφ1
dq̂1

≤
q̂2

2 1 + q̂2ð Þ
1

F ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð Þ
ðφ1+F ϑ1 ;ϑ2 ;ϑ3 ,φ2−φ1ð Þ

φ1

G μ, ϕ1ð Þφ1dq̂1μ
 !

+ q̂2
2 1 + q̂2ð Þ

1
F ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð Þ

ðφ1+F ϑ1 ;ϑ2 ;ϑ3 ,φ2−φ1ð Þ

φ1

G μ, ϕ2ð Þφ1
dq̂1μ

 !

+ q̂1
2 1 + q̂1ð Þ

1
F ϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1ð Þ

ðϕ1+F ϑ1 ;ϑ2 ;ϑ3 ,ϕ2−ϕ1ð Þ

ϕ1

G φ1, νð Þϕ1dq̂2μ
 !

+ q̂1
2 1 + q̂1ð Þ

1
F ϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1ð Þ

ðϕ1+F ϑ1 ;ϑ2 ;ϑ3 ,ϕ2−ϕ1ð Þ

ϕ1

G φ2, νð Þϕ1dq̂2ν
 !

≤
q̂1q̂2G φ1, ϕ1ð Þ + q̂1G φ1, ϕ2ð Þ + q̂2G φ2, ϕ1ð Þ +G φ2, ϕ2ð Þ

1 + q̂1ð Þ 1 + q̂2ð Þ :

ð64Þ

Lemma 28. Suppose λ = ðλð0Þ,⋯, λðpÞÞ be the bounded
sequence of positive real numbers and let a twice partially q̂1
q̂2 -differentiable mapping G : O = ½φ1, φ1 +Fðϑ1 ; ϑ2 ; ϑ3, φ2
− φ1Þ� × ½ϕ1, ϕ1 +Fðϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1Þ�↦ℝ defined on O∘

(the interior ofO). If the second-order partial q̂1q̂2 -derivatives
are continuous and integrable over O with 0 < q̂1, q̂2 < 1, then
the following equality holds:

~Yq̂1 ,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ

≔G
q̂1 + 1ð Þφ1 +F ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð Þ

1 + q̂1
, q̂2 + 1ð Þϕ1 +F ϑ1 ; ϑ2 ; ϑ3, ϕ2−c1ð Þ

1 + q̂2

� �
−

1
F ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð Þ

ðφ1+F ϑ1 ;ϑ2 ;ϑ3 ,φ2−φ1ð Þ

φ1

G

� μ, q̂2 + 1ð Þϕ1 +F ϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1ð Þ
1 + q̂2

� �
φ1

dq̂1μ  −
1

F ϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1ð Þ

�
ðϕ1+F ϑ1 ;ϑ2 ;ϑ3 ,ϕ2−ϕ1ð Þ

ϕ1

G
q̂1 + 1ð Þφ1 +F ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð Þ

1 + q̂1
, ν

� �
ϕ1

dq̂2ν

+ 1
F ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð ÞF ϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1ð Þ

ðφ1+F ϑ1 ;ϑ2 ;ϑ3 ,φ2−φ1ð Þ

φ1

�
ðϕ1+F ϑ1 ;ϑ2 ;ϑ3 ,ϕ2−ϕ1ð Þ

ϕ1

G μ, νð Þϕ1dq̂2νφ1
dq̂1μ,

ð65Þ

where

~Yq̂1 ,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ≔ q̂1q̂2 F ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð Þð

�F ϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1ð ÞÞ ×
ð1
0

ð1
0
A ζ, θð Þ

� φ1 ,ϕ1∂
2
q̂1 ,q̂2G φ1 + ζF ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð Þ, ϕ1 + θF ϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1ð Þð Þ

φ1∂q̂1ζ ϕ1∂q̂2θ 0

� dq̂2θ0dq̂1ζf v,
ð66Þ

and Aðζ, θÞ given in (38).

Theorem 29. Suppose λ = ðλð0Þ,⋯, λðpÞÞ is the bounded
sequence of positive real numbers and let a mapping G

: O = ½φ1, φ1 +Fðϑ1 ; ϑ2 ; ϑ3, φ2 − φ1Þ� × ½ϕ1, ϕ1 +Fðϑ1 ; ϑ2 ;
ϑ3, ϕ2 − ϕ1Þ�↦ℝ be a twice partially q̂1q̂2 -differentiable on
O∘ such that continuous partial q̂1q̂2 -derivatives φ1 ,ϕ1∂

2
q̂1 ,q̂2

G/ φ1
∂q̂1ζϕ1∂q̂2θ is integrable on O with 0 < q̂1, q̂2 < 1: If

j φ1 ,ϕ1∂
2
q∧1 ,q∧2

G/ φ1
∂q∧1

ζϕ1∂q∧2
θjσ is a generalized Ψ -convex

on the coordinates on O for σ ≥ 1 where σ−1 + β−1 = 1:
Then, the following inequality holds:

~Yq̂1 ,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ
��� ��� ≤ q̂1q̂2 F ϑ1 ; ϑ2 ; ϑ3, φ2 − φ1ð Þð

�F ϑ1 ; ϑ2 ; ϑ3, ϕ2 − ϕ1ð ÞÞ B1 q∧1, q∧2ð Þð Þ1−1/σ

× B2 q∧1, q∧2ð Þ φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

+ B3 q∧1, q∧2ð Þ
"

� φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ1, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

+ B4 q∧1, q∧2ð Þ φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

+ B5 q∧1, q∧2ð Þ φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ1, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ#1/σ

,

ð67Þ

where B1ðq̂1, q̂2Þ, B2ðq̂1, q̂2Þ,B3ðq̂1, q̂2Þ,B4ðq̂1, q̂2Þ, and B5ð
q̂1, q̂2Þ are given in (53), (54), (55), (56), and (57),
respectively.

Theorem 30. Suppose λ = ðλð0Þ,⋯, λðpÞÞ is the bounded
sequence of positive real numbers and let a mapping G : O
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= ½φ1, φ1 +Fðϑ1 ; ϑ2 ; ϑ3, φ2 − φ1Þ� × ½ϕ1, ϕ1 +Fðϑ1 ; ϑ2 ; ϑ3,
ϕ2 − ϕ1Þ�↦ℝ be a twice partially q̂1q̂2 -differentiable on O∘

such that continuous partial q̂1q̂2 -derivatives φ1 ,ϕ1∂
2
q̂1 ,q̂2G/ φ1

∂q̂1ζϕ1∂q̂2θ is integrable on O with 0 < q̂1, q̂2 < 1: If

j φ1 ,ϕ1∂
2
q∧1 ,q∧2

G/ φ1∂q∧1
ζϕ1∂q∧2

θjσ is a generalized Ψ -convex

on the coordinates on O for σ > 1 where σ−1 + β−1 = 1: Then,
the following inequality holds:

Yq̂1 ,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ
��� ��� ≤ q̂1q̂2 F ϑ1 ; ϑ2 ; ϑ3, φ2 � φ1ð Þð

�F ϑ1 ; ϑ2 ; ϑ3, ϕ2 � ϕ1ð ÞÞ ∫1
0
∫1
0
A ζ, θð Þj jβ0dq∧2

θ0dq∧1
ζ

� �1/β
× φ1 ,ϕ1∂

2
q∧1 ,q∧2

G φ2, ϕ2ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ�h
+ q∧1 φ1 ,ϕ1∂

2
q∧1 ,q∧2

G φ1, ϕ2ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ
+ q∧2 φ1 ,ϕ1∂

2
q∧1 ,q∧2

G φ2, ϕ1ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ
+ q∧1q∧2 φ1 ,ϕ1∂

2
q∧1 ,q∧2

G φ1, ϕ1ð Þ/ φ1
∂q∧1

ζϕ1∂q∧2
θ

��� ���σ�/
1 + q∧1ð Þ 1 + q∧2ð Þð Þ

i1/σ
,

ð68Þ

where Aðζ, θÞ is defined as in (38).

6.2. Mittag-Leffler Function. Setting ν = ð1, 1,⋯Þ having γ
= ϑ1,Rðϑ1Þ > 0 and ρ = 1, then from Theorem 16, Lemma
19, and Theorems 21–24, the following results hold.

Theorem 31. Let G : S = ½φ1, φ1 + Eϑ1
ðφ2 − φ1Þ� × ½ϕ1, ϕ1 +

Eϑ1
ðϕ2 − ϕ1Þ�↦ℝ be the coordinated generalized Ψ-convex

and partially differentiable function on S∘ with 0 < q̂1, q̂2 < 1,
then the following inequalities hold:

G
q̂1 + 1ð Þφ1 + Eϑ1

φ2 − φ1ð Þ
1 + q̂1

,
q̂2 + 1ð Þϕ1 + Eϑ1

ϕ2 − ϕ1ð Þ
1 + q̂2

� �
≤

1
2Eϑ1

φ2 − φ1ð Þ
ðφ1+Eϑ1

φ2−φ1ð Þ

φ1

G

� μ,
q̂2 + 1ð Þϕ1 + Eϑ1

ϕ2 − ϕ1ð Þ
1 + q̂2

� �
φ1

dq̂1μ + 1
2Eϑ1

ϕ2 − ϕ1ð Þ

�
ðϕ1+Eϑ1

ϕ2−ϕ1ð Þ

ϕ1

G
q̂1 + 1ð Þφ1 + Eϑ1

ϕ2 − ϕ1ð Þ
1 + q̂1

, ν
� �

ϕ1

dq̂2ν

≤
1

Eϑ1
φ2 − φ1ð ÞEϑ1

ϕ2 − ϕ1ð Þ
ðφ1+Eϑ1

φ2−φ1ð Þ

φ1

ðϕ1+Eϑ1
ϕ2−ϕ1ð Þ

ϕ1

G

� μ, νð Þϕ1dq̂2νφ1
dq̂1μ ≤

q̂2
2 1 + q̂2ð Þ

� 1
Eϑ1

ϕ2 − ϕ1ð Þ
ðφ1+Eϑ1

φ2−φ1ð Þ

φ1

G μ, ϕ1ð Þφ1
dq̂1μ

 !

+ q̂2
2 1 + q̂2ð Þ

1
Eϑ1

φ2 − φ1ð Þ
ðφ1+Eϑ1

φ2−φ1ð Þ

φ1

G μ, ϕ2ð Þφ1
dq̂1μ

 !

+ q̂1
2 1 + q̂1ð Þ

1
Eϑ1

ϕ2 − ϕ1ð Þ
ðϕ1+Eϑ1

ϕ2−ϕ1ð Þ

ϕ1

G φ1, νð Þϕ1dq̂2μ
 !

+ q̂1
2 1 + q̂1ð Þ

1
Eϑ1

ϕ2 − ϕ1ð Þ
ðϕ1+Eϑ1

ϕ2−ϕ1ð Þ

ϕ1

G φ2, νð Þϕ1dq̂2ν
 !

≤
q̂1q̂2G φ1, ϕ1ð Þ + q̂1G φ1, ϕ2ð Þ + q̂2G φ2, ϕ1ð Þ + G φ2, ϕ2ð Þ

1 + q̂1ð Þ 1 + q̂2ð Þ :

ð69Þ

Lemma 32. Let a twice partially q̂1q̂2 -differentiable mapping
G : S = ½φ1, φ1 +Fðϑ1 ; ϑ2 ; ϑ3, φ2 − φ1Þ� × ½ϕ1, ϕ1 +Fðϑ1 ; ϑ2
; ϑ3, ϕ2 − ϕ1Þ�↦ℝ defined on S∘(the interior of S). If the
second-order partial q̂1q̂2-derivatives are continuous and integra-
ble over S with 0 < q̂1, q̂2 < 1, then the following equality holds:

e~Yq̂1 ,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ

≔ G
q̂1 + 1ð Þφ1 + Eϑ1

φ2 − φ1ð Þ
1 + q̂1

,
q̂2 + 1ð Þϕ1 + Eϑ1

ϕ2−c1ð Þ
1 + q̂2

� �
−

1
Eϑ1

φ2 − φ1ð Þ
ðφ1+Eϑ1 φ2−φ1ð Þ

φ1

G μ,
q̂2 + 1ð Þϕ1 + Eϑ1

ϕ2 − ϕ1ð Þ
1 + q̂2

� �
φ1

� dq̂1μ −
1

Eϑ1
ϕ2 − ϕ1ð Þ

ðϕ1+Eϑ1 ϕ2−ϕ1ð Þ

ϕ1

G
q̂1 + 1ð Þφ1 + Eϑ1

φ2 − φ1ð Þ
1 + q̂1

, ν
� �

ϕ1

� dq̂2ν +
1

Eϑ1
φ2 − φ1ð ÞEϑ1

ϕ2 − ϕ1ð Þ
ðφ1+Eϑ1

φ2−φ1ð Þ

φ1

�
ðϕ1+Eϑ1 ϕ2−ϕ1ð Þ

ϕ1

G μ, νð Þϕ1dq̂2νφ1dq̂1μ,

ð70Þ

where

e~Yq̂1 ,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ

≔ q̂1q̂2 Eϑ1
φ2 − φ1ð ÞEϑ1

ϕ2 − ϕ1ð Þ� �
×
ð1
0

ð1
0
A ζ, θð Þ

� φ1 ,ϕ1∂
2
q̂1 ,q̂2G φ1 + ζEϑ1

φ2 − φ1ð Þ, ϕ1 + θEϑ1
ϕ2 − ϕ1ð Þ� �

φ1∂q̂1ζ ϕ1∂q̂2θ 0

� dq̂2θ0dq̂1ζ,
ð71Þ

and Aðζ, θÞ given in (38).

Theorem 33. Let a mapping G : S = ½φ1, φ1 + Eϑ1
ðφ2 − φ1Þ�

× ½ϕ1, ϕ1 + Eϑ1
ðϕ2 − ϕ1Þ�↦ℝ be a twice partially q̂1q̂2 -differ-

entiable on S∘ such that continuous partial q̂1q̂2-derivatives

φ1 ,ϕ1∂
2
q̂1 ,q̂2G/ φ1

∂q̂1ζϕ1∂q̂2θ is integrable on S with 0 < q̂1, q̂2 <
1: If j φ1 ,ϕ1∂

2
q∧1 ,q∧2

G/ φ1
∂q∧1

ζϕ1∂q∧2
θjσ is a generalized Ψ -con-

vex on the coordinates on S for σ ≥ 1 where σ−1 + β−1 = 1:
Then, the following inequality holds:

e~Yq̂1 ,q̂2 φ1, φ2, ϕ1, ϕ2ð Þ Gð Þ
��� ���
≤ q̂1q̂2 Eϑ1

φ2 − φ1ð ÞEϑ1
ϕ2 − ϕ1ð Þ� �

B1 q∧1, q∧2ð Þð Þ1−1/σ

× B2 q∧1, q∧2ð Þ φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

+B3 q∧1, q∧2ð Þ
"

� φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ1, ϕ2ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

+B4 q∧1, q∧2ð Þ φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ2, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ

+ B5 q∧1, q∧2ð Þ φ1 ,ϕ1∂
2
q∧1 ,q∧2

G φ1, ϕ1ð Þ
φ1
∂q∧1

ζϕ1∂q∧2
θ

�����
�����
σ#1/σ

,

ð72Þ
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where B1ðq̂1, q̂2Þ, B2ðq̂1, q̂2Þ, B3ðq̂1, q̂2Þ, B4ðq̂1, q̂2Þ, and
B5ðq̂1, q̂2Þ are given in (53), (54), (55), (56), and (57),
respectively.

Theorem 34. Let a mapping G : S = ½φ1, φ1 + Eϑ1
ðφ2 − φ1Þ�

× ½ϕ1, ϕ1 + Eϑ1
ðϕ2 − ϕ1Þ�↦ℝ be a twice partially q̂1q̂2 -differ-

entiable on S∘ such that continuous partial q̂1q̂2 -derivatives

φ1 ,ϕ1∂
2
q̂1 ,q̂2G/ φ1

∂q̂1ζϕ1∂q̂2θ is integrable on S with 0 < q̂1, q̂2 <
1: If j φ1 ,ϕ1∂

2
q∧1 ,q∧2

G/ φ1
∂q∧1

ζϕ1∂q∧2
θjσ is a generalized Ψ -con-

vex on the coordinates on S for σ > 1 where σ−1 + β−1 = 1:
Then, the following inequality holds:

where Aðζ, θÞ is defined as in (38).

7. Conclusion

The main objective of this paper will be a motivation source
for future studies. An auxiliary result in q̂1q̂2-integrals has
been derived. We established some new generalizations for
the HH-type inequality pertaining to q̂1q̂2-differentiable
mappings for generalizedΨ-convex functions on coordinates
in the special Raina’s function sense that correlates with the
q̂1q̂2-identity. Some useful applications of our findings have
been illustrated with the association of the well-known spe-
cial functions (hypergeometric and Mittag-Leffler function).
Moreover, our findings are essentially applicable for obtain-
ing the solution of integral equations that interact withn
bodies subject to mixed boundary conditions (see [7, 8]).
For further potential investigation, we left the details for
futuristic research. Every aspect of the suggested scheme is
versatile and simple to execute. We apprehended noteworthy
special cases for varying the parametric values in the involve-
ment of special functions. This new study is explicit and via-
ble and can be effectively utilized in inequality theory, special
relativity theory, and quantum mechanics.
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Debnath and De La Sen introduced the notion of set valued interpolative Hardy-Rogers type contraction mappings on b-metric
spaces and proved that on a complete b-metric space, whose all closed and bounded subsets are compact, the set valued
interpolative Hardy-Rogers type contraction mapping has a fixed point. This article presents generalizations of above results by
omitting the assumption that all closed and bounded subsets are compact.

1. Introduction

There are numerous studies on interpolation inequalities in
literature. In 1999, Chua [1] gave some weighted Sobolev
interpolation inequalities on product spaces. Badr and Russ
[2] proved some Littlewood-Paley inequalities and interpola-
tion results for Sobolev spaces. Interpolation is considered as
one of the central concepts in pure logic. Various interpola-
tion properties find their applications in computer science
and have many deep purely logical consequences (see [3,
4]). Gogatishvili and Koskela [5] presented variant interpola-
tion properties of Besov spaces defined on metric spaces.
Going in the same direction in the setting of metric spaces
via contraction mappings, Karapinar [6] presented the con-
cept of an interpolative Kannan contraction mapping and
proved that this mapping admits a fixed point on complete
metric spaces. Later on, this notation has been extended into
several directions (see [7–18]).

In [6], Karapinar presented the interpolative Kannan
contraction as follows: a mapping K : ðW, dWÞ→ ðW, dWÞ
is an interpolative Kannan contraction if

dW Kwa, Kwb
� �i

≤ δ dW wa, Kwað Þ½ �ι1 dW wb, Kwb
� �h i1−ι1

ð1Þ

for all wa,wb ∈W with wa ≠ Kwa, where δ ∈ ½0, 1Þ and ι1
∈ ð0, 1Þ. This inequality was further refined by Karapinar
et al. [7] by

dW Kwa, Kwb
� �i

≤ δ dW wa, Kwað Þ½ �ι1 dW wb, Kwb
� �h i1−ι1

ð2Þ
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for all wa,wb ∈W \ fixðKÞ, where δ ∈ ½0, 1Þ, ι1 ∈ ð0, 1Þ, and
fixðKÞ = fwa ∈W : Kwa =wag.

Gaba and Karapinar [9] further modified the interpola-
tive Kannan contraction concept in the following way: a
mapping K : ðW, dWÞ→ ðW, dWÞ is a ðδ, ι1, ι2Þ-interpola-
tive Kannan contraction, if

dW Kwa, Kwb
� �i

≤ δ dW wa, Kwað Þ½ �ι1 dW wb, Kwb
� �h iι2

ð3Þ

for all wa,wb ∈W \ fixðKÞ, where δ ∈ ½0, 1Þ, ι1, ι2 ∈ ð0, 1Þ with
ι1 + ι2 < 1. Karapinar et al. [10] gave the interpolative Hardy-
Rogers type contraction as follows: a mapping K : ðW, dWÞ
→ ðW, dWÞ is called an interpolative Hardy-Rogers type
contraction if

dW Kwa, Kwb
� �

≤ δ

"
dW wa,wb
� �h iι1

dW wa, Kwað Þ½ �ι2 dW wb, Kwb
� �h iι3

× 1
2ρ dW wa, Kwb

� �
+ dW Kwa,wb

� �� �� �1−ι1−ι2−ι3#

ð4Þ

for each wa,wb ∈W \ fixðKÞ, where δ ∈ ½0, 1Þ and ι1, ι2, ι3
∈ ð0, 1Þ with ι1 + ι2 + ι3 < 1.

Later on, Debnath and De La Sen [12] extended the above
definition to set valued interpolative Hardy-Rogers type con-
traction mappings on b-metric spaces and proved that on
complete b-metric spaces, whose all closed and bounded sub-
sets are compact, the set valued interpolative Hardy-Rogers
type contraction mapping has a fixed point.

On the other hand, Bakhtin [19] and Czerwik [20] intro-
duced the notion of b-metric spaces.

Definition 1 (see [19, 20]). Let W be a nonempty set and
dW : W ×W → ½0,∞Þ be a function so that for all i, j, ℓ ∈ X
and some ρ ≥ 1,

dW i, jð Þ = 0⇔ i = j,
dW i, jð Þ = dW j, ið Þ,
dW i, jð Þ ≤ ρ dW i, ℓð Þ + dW ℓ, jð Þ½ �:

ð5Þ

Then, dW is a b-metric on W, and ðW, dW , ρÞ is called a
b-metric space with a coefficient ρ ≥ 1.

For related works in this setting, see [21–23]. From now
on, ðW, dW , ρÞ is a b-metric space with a coefficient ρ ≥ 1.
In the whole paper, ρ ≥ 1 is the coefficient of the b-metric
space.

Definition 2 (see [20]). We have the following:

(a) A sequence fηng in W is said to be Cauchy if lim
n,m→∞

dWðηn, ηmÞ = 0

(b) A sequence fηng inW is said to be convergent to η if
lim

n,m→∞
dWðηn, ηÞ = 0

(c) ðW, dW , ρÞ is said to be complete if every Cauchy
sequence fηng in W is convergent

Denote by CBðWÞ the set of nonempty closed bounded
subsets of W. For A, B ∈ CBðXÞ, consider

ΔW A, Bð Þ = sup dW ω, Bð Þ ; ω ∈ Af g, ð6Þ

where dWðω, BÞ = inf fdWðω, μÞ, μ ∈ Bg. The functional
HW : CBðWÞ × CBðWÞ→ ½0,∞Þ defined by

HW A, Bð Þ =max ΔW A, Bð Þ, ΔW B, Að Þf g ð7Þ

is known as the Pompieu-Hausdorff b-metric on CBðWÞ. We
state the following known lemma.

Lemma 3 (see [24]). Let ðW, dW , ρÞ be a b-metric space ðρ
≥ 1Þ. Let A, B ∈ CBðWÞ and a ∈ A. We have the two following
statements:

(i) For each ε > 0, there is b ∈ B so that

dW a, bð Þ ≤HW A, Bð Þ + ε ð8Þ

(ii) For each h > 1, there is ν ∈ B so that

dW a, νð Þ ≤ hHW A, Bð Þ ð9Þ

This article presents two new generalizations of set val-
ued interpolative Hardy-Rogers type contraction mappings.
Namely, we ensure the existence of fixed points of such
maps on a complete b-metric space without considering
the assumption that all closed and bounded subsets must
be compact. Two examples are also presented.

2. Main Results

First, we define the notion of ξ-interpolative Hardy-Rogers
type contractions.

Definition 4. Consider a b-metric space ðW, dW , ρÞ. Also,
consider maps K : W → CBðWÞ and ξ : W ×W →ℝ \ f0g.
Such a map K is called an ξ-interpolative Hardy-Rogers type
contraction if

HW Kwa, Kwb
� �h iξ wa ,wbð Þ

≤ δ

"
dW wa,wb
� �h iι1

dW wa, Kwað Þ½ �ι2 dW wb, Kwb
� �h iι3

× 1
2ρ dW wa, Kwb

� �
+ dW Kwa,wb

� �� �� �1−ι1−ι2−ι3#

ð10Þ
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for each wa,wb ∈W with

min dW wa,wb
� �

, dW wa, Kwað Þ, dW wb, Kwb
� �n o

> 0,

ð11Þ
where δ ∈ ½0, 1/ρ2Þ and ι1, ι2, ι3 ∈ ð0, 1Þ with ι1 + ι2 + ι3 < 1.

The following result ensures the existence of a fixed point
of ξ-interpolative Hardy-Rogers type contractions.

Theorem 5. Consider a complete b-metric space ðW, dW , ρÞ
and consider an ξ-interpolative Hardy-Rogers type contrac-
tion map K . Also, consider the given assertions.

(I) There must exist wa
0 ∈W and wa

1 ∈ Kw
a
0 such that ξ

ðwa
0,wa

1Þ = 1

(II) For each wa,wb ∈W with ξðwa,wbÞ = 1, we have ξ
ðwc,wdÞ = 1∀wc ∈ Kwa,wd ∈ Kwb

(III) For each fwa
mg in W with wa

m →w and ξðwa
m,

wa
m+1Þ = 1∀m ∈ℕ, we have ξðwa

m,wÞ = 1∀m ∈ℕ

Then, K must have a fixed point in W.

Proof. By assertion (I) there are wa
0 ∈W and wa

1 ∈ Kw
a
0 with

ξðwa
0,wa

1Þ = 1. If

min dW wa
0,wa

1ð Þ, dW wa
0, Kwa

0ð Þ, dW wa
1, Kwa

1ð Þf g = 0, ð12Þ

then K has a fixed point. Suppose that

min dW wa
0,wa

1ð Þ, dW wa
0, Kwa

0ð Þ, dW wa
1, Kwa

1ð Þf g > 0: ð13Þ

By (10), we obtain

HW Kwa
0, Kwa

1ð Þ
= HW Kwa

0, Kwa
1ð Þ½ �ξ wa

0,wa
1ð Þ

≤ δ

"
dW wa

0,wa
1ð Þ½ �ι1 dW wa

0, Kwa
0ð Þ½ �ι2 dW wa

1, Kwa
1ð Þ½ �ι3

× 1
2ρ dW wa

0, Kwa
1ð Þ + dW Kwa

0,wa
1ð Þð Þ

� �1−ι1−ι2−ι3#
:

ð14Þ
This leads to

1ffiffiffi
δ

p dW wa
1, Kwa

1ð Þ

≤
1ffiffiffi
δ

p HW Kwa
0, Kwa

1ð Þ

≤
ffiffiffi
δ

p "
dW wa

0,wa
1ð Þ½ �ι1 dW wa

0, Kwa
0ð Þ½ �ι2 dW wa

1, Kwa
1ð Þ½ �ι3

× 1
2ρ dW wa

0, Kwa
1ð Þ + dW Kwa

0,wa
1ð Þð Þ

� �1−ι1−ι2−ι3#
:

ð15Þ

Since 1/
ffiffiffi
δ

p
> 1, there is wa

2 ∈ Kw
a
1 such that

dW wa
1,wa

2ð Þ ≤ 1ffiffiffi
δ

p dW wa
1, Kwa

1ð Þ: ð16Þ

Thus, by (15),

dW wa
1,wa

2ð Þ ≤
ffiffiffi
δ

p "
dW wa

0,wa
1ð Þ½ �ι1 dW wa

0,wa
1ð Þ½ �ι2 dW wa

1,wa
2ð Þ½ �ι3

× 1
2ρ dW wa

0,wa
2ð Þ + dW wa

1,wa
1ð Þð Þ

� �1−ι1−ι2−ι3#
:

ð17Þ
Note that dWðwa

0,wa
2Þ ≤ ρ½dWðwa

0,wa
1Þ + dWðwa

1,wa
2Þ� ≤

2ρ max fdWðwa
0,wa

1Þ, dWðwa
1,wa

2Þg. Hence, by (17), we get

dW wa
1,wa

2ð Þ ≤
ffiffiffi
δ

p h
dW wa

0,wa
1ð Þ½ �ι1 dW wa

0,wa
1ð Þ½ �ι2 dW wa

1,wa
2ð Þ½ �ι3

× max dW wa
0,wa

1ð Þ, dW wa
1,wa

2ð Þf g½ �1−ι1−ι2−ι3
i
:

ð18Þ
Now, we consider max fdWðwa

0,wa
1Þ, dWðwa

1,wa
2Þg = dW

ðwa
0,wa

1Þ. Then, by (18), we get

dW wa
1,wa

2ð Þ ≤
ffiffiffi
δ

p h
dW wa

0,wa
1ð Þ½ �ι1 dW wa

0,wa
1ð Þ½ �ι2 dW wa

0,wa
1ð Þ½ �ι3

× dW wa
0,wa

1ð Þ½ �1−ι1−ι2−ι3
i
:

ð19Þ
This implies

dW wa
1,wa

2ð Þ ≤
ffiffiffi
δ

p
dW wa

0,wa
1ð Þ: ð20Þ

Note that when we take max fdWðwa
0,wa

1Þ, dWðwa
1,wa

2Þg
= dWðwa

1,wa
2Þ in (18), then we get dWðwa

1,wa
2Þ = 0, that is,

wa
1 ∈ Kw

a
1; hence, this choice is not possible. As ξðwa

0,wa
1Þ =

1 and wa
1 ∈ Kw

a
0 and wa

2 ∈ Kw
a
1, then by assertion (II), we

get ξðwa
1,wa

2Þ = 1. Again, we consider

min dW wa
1,wa

2ð Þ, dW wa
1, Kwa

1ð Þ, dW wa
2, Kwa

2ð Þf g > 0, ð21Þ

then by (10), we get

1ffiffiffi
δ

p dW wa
2, Kwa

2ð Þ

≤
1ffiffiffi
δ

p HW Kwa
1, Kwa

2ð Þ

= 1ffiffiffi
δ

p HW Kwa
1, Kwa

2ð Þ½ �ξ wa
1,wa

2ð Þ

≤
ffiffiffi
δ

p "
dW wa

1,wa
2ð Þ½ �ι1 dW wa

1, Kwa
1ð Þ½ �ι2 dW wa

2, Kwa
2ð Þ½ �ι3

× 1
2ρ dW wa

1, Kwa
2ð Þ + dW Kwa

1,wa
2ð Þð Þ

� �1−ι1−ι2−ι3#
:

ð22Þ
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Since 1/
ffiffiffi
δ

p
> 1, there is wa

3 ∈ Kw
a
2 such that

dW wa
2,wa

3ð Þ ≤ 1ffiffiffi
δ

p dW wa
2, Kwa

2ð Þ: ð23Þ

Thus, by (22), we conclude

dW wa
2,wa

3ð Þ ≤
ffiffiffi
δ

p "
dW wa

1,wa
2ð Þ½ �ι1 dW wa

1,wa
2ð Þ½ �ι2 dW wa

2,wa
3ð Þ½ �ι3

× 1
2ρ dW wa

1,wa
3ð Þ + dW wa

2,wa
2ð Þð Þ

� �1−ι1−ι2−ι3#
:

ð24Þ

Note that dWðwa
1,wa

3Þ ≤ ρ½dWðwa
1,wa

2Þ + dWðwa
2,wa

3Þ� ≤
2ρ max fdWðwa

1,wa
2Þ, dWðwa

2,wa
3Þg. Hence, by (24), we get

dW wa
2,wa

3ð Þ ≤
ffiffiffi
δ

p h
dW wa

1,wa
2ð Þ½ �ι1 dW wa

1,wa
2ð Þ½ �ι2 dW wa

2,wa
3ð Þ½ �ι3

× max dW wa
1,wa

2ð Þ, dW wa
2,wa

3ð Þf g½ �1−ι1−ι2−ι3
i
:

ð25Þ

Now, we consider max fdWðwa
1,wa

2Þ, dWðwa
2,wa

3Þg = dW
ðwa

1,wa
2Þ. Then, by (18), we get

dW wa
2,wa

3ð Þ ≤
ffiffiffi
δ

p h
dW wa

1,wa
2ð Þ½ �ι1 dW wa

1,wa
2ð Þ½ �ι2 dW wa

1,wa
2ð Þ½ �ι3

× dW wa
1,wa

2ð Þ½ �1−ι1−ι2−ι3
i
:

ð26Þ

This yields that

dW wa
2,wa

3ð Þ ≤
ffiffiffi
δ

p
dW wa

1,wa
2ð Þ: ð27Þ

Note that if we take max fdWðwa
1,wa

2Þ, dWðwa
2,wa

3Þg =
dWðwa

2,wa
3Þ in (25), then dWðwa

2,wa
3Þ = 0, that is, wa

2 ∈ Kw
a
2,

which is not possible. From (27) and (20), we get

dW wa
2,wa

3ð Þ ≤
ffiffiffi
δ

p� �2
dW wa

0,wa
1ð Þ: ð28Þ

Proceeding in this way, we can obtain a sequence fwa
mg

in W with wa
m+1 ∈ Kw

a
m, ξðwa

m,wa
m+1Þ = 1 for all m ∈W and

dW wa
m,wa

m+1ð Þ ≤
ffiffiffi
δ

p� �m
dW wa

0,wa
1ð Þ∀m ∈ℕ: ð29Þ

Also, by the construction of fwa
mg, we get

min dW wa
m,wa

m+1ð Þ, dW wa
m, Kwa

mð Þ, dW wa
m+1, Kwa

m+1ð Þf g
> 0∀m ∈ℕ:

ð30Þ

By a triangular inequality, we have for n >m,

dW wa
n,wa

mð Þ ≤ 〠
n−1

j=m
ρjdW wa

j ,wa
j+1

� �
≤ 〠

n−1

j=m
ρj

ffiffiffi
δ

p� �j
dW wa

0,wa
1ð Þ:

ð31Þ

Since the above series is convergent, fwa
mg is a Cauchy

sequence inW. Completeness of W gives wa
∗ in W such that

wa
m →wa

∗. By considering assertion (III), we get ξðwa
m,wa

∗Þ
= 1∀m ∈ℕ. Here, we claim wa

∗ ∈ Kw
a
∗. If the claim is wrong,

then min fdWðwa
m,wa

∗Þ, dWðwa
m, Kwa

mÞ, dWðwa
∗, Kwa

∗Þg > 0
for all m >m0, for some m0 ∈ℕ. From (10), we get

dW wa
m+1, Kwa

∗ð Þ
≤HW Kwa

m, Kwa
∗ð Þ

= HW Kwa
m, Kwa

∗ð Þ½ �ξ wa
m ,wa

∗ð Þ

≤ δ

"
dW wa

m,wa
∗ð Þ½ �ι1 dW wa

m, Kwa
mð Þ½ �ι2 dW wa

∗, Kwa
∗ð Þ½ �ι3

× 1
2ρ dW wa

m, Kwa
∗ð Þ + dW Kwa

m,wa
∗ð Þð Þ

� �1−ι1−ι2−ι3#

≤ δ

"
dW wa

m,wa
∗ð Þ½ �ι1 dW wa

m, Kwa
mð Þ½ �ι2 dW wa

∗, Kwa
∗ð Þ½ �ι3

× 1
2ρ dW wa

m, Kwa
∗ð Þ + dW wa

m+1,wa
∗ð Þð Þ

� �1−ι1−ι2−ι3#
∀m >m0:

ð32Þ

From the above, we get limm→∞dWðwa
m+1, Kwa

∗Þ = 0. By
the triangular inequality, we have

dW wa
∗, Kwa

∗ð Þ ≤ ρ dW wa
∗,wa

m+1ð Þ + dW wa
m+1, Kwa

∗ð Þ½ �∀m ∈ℕ:

ð33Þ

By taking the limit m→∞, we get dWðwa
∗, Kwa

∗Þ = 0,
that is, wa

∗ ∈ Kw
a
∗. Therefore, our claim is valid.

Example 1. Consider W =ℤ with dWðwn,wmÞ = ðwn −wmÞ2
for all wn,wm ∈W. Define K : W → CBðWÞ by

K wnð Þ =
0f g, wn ∈ 0, 1, 2, 3,⋯f g
− wn − 2ð Þ2� �

, wn ∈ −1,−2,−3,⋯f g

 
ð34Þ

and ξ : W ×W →ℝ \ f0g by

ξ wn,wmð Þ =
1, wn,wm ∈ 0, 1, 2, 3,⋯f g
− wnj j + wmj j + 4½ �, otherwise:

 

ð35Þ

Note that

Case 1. If wn,wm ≥ 0 with wn ≠wm, we get HW

ðKwn, KwmÞξðwn ,wmÞ = 0.
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Case 2. If wn,wm < 0 with wn ≠wm, we get

HW Kwn, Kwmð Þξ wn ,wmð Þ

= 1

− wn − 2ð Þ2 + wm − 2ð Þ2	 
2h i wnj j+ wmj j+4 :
ð36Þ

Case 3. If wn < 0 and wm ≥ 0, we get HWðKwn, KwmÞξðwn ,wmÞ

= 1/½ð−ðwn − 2Þ2Þ2�jwnj+jwmj+4
.

After calculating the values, it is easy to see that
For Case1: if wn,wm > 0 with wn ≠wm, we get

HW Kwn, Kwmð Þ½ �ξ wn ,wmð Þ

= 0 < 1
5 1 · 1 · 1 · 14

� �

≤
1
5

"
dW wn,wmð Þ½ �ι1 dW wn, Kwnð Þ½ �ι2 dW wm, Kwmð Þ½ �ι3

× 1
2ρ dW wn, Kwmð Þ + dW Kwn,wmð Þð Þ
� �1−ι1−ι2−ι3#

ð37Þ

for each ι1, ι2, ι3 ∈ ð0, 1Þ with ι1 + ι2 + ι3 < 1.
For Case2: if wn,wm < 0 with wn ≠wm, we get

HW Kwn, Kwmð Þ½ �ξ wn ,wmð Þ

= 1

− wn − 2ð Þ2 + wm − 2ð Þ2	 
2h i wnj j+ wmj j+4

≤
1
49ð Þ7 < 1

5 1 · 1 · 1 · 14

� �

≤
1
5

"
dW wn,wmð Þ½ �ι1 dW wn, Kwnð Þ½ �ι2 dW wm, Kwmð Þ½ �ι3

× 1
2ρ dW wn, Kwmð Þ + dW Kwn,wmð Þð Þ
� �1−ι1−ι2−ι3#

ð38Þ

for each ι1, ι2, ι3 ∈ ð0, 1Þ with ι1 + ι2 + ι3 < 1.
For Case3: if wn < 0 and wm > 0, we get

HW Kwn, Kwmð Þ½ �ξ wn ,wmð Þ

= 1

− wn − 2ð Þ2	 
2h i wnj j+ wmj j+4 ≤
1
81ð Þ6 < 1

5 1 · 1 · 1 · 14

� �

≤
1
5

"
dW wn,wmð Þ½ �ι1 dW wn, Kwnð Þ½ �ι2 dW wm, Kwmð Þ½ �ι3

× 1
2ρ dW wn, Kwmð Þ + dW Kwn,wmð Þð Þ
� �1−ι1−ι2−ι3#

ð39Þ

for each ι1, ι2, ι3 ∈ ð0, 1Þ with ι1 + ι2 + ι3 < 1. By keeping these
calculations in mind, one can check that all the hypotheses of
Theorem 5 are valid. Hence, K must have a fixed point.

The following definition presents a multiplicative ξ
-interpolative Hardy-Rogers type contraction.

Definition 6. Consider a b-metric space ðW, dW , ρÞ. Also,
consider the maps K : W → CBðWÞ and ξ : W ×W → ½0,
∞Þ. Such K is called a multiplicative ξ -interpolative
Hardy-Rogers type contraction if

ξ wa,wb
� �

HW Kwa, Kwb
� �

≤ δ

"
dW wa,wb
� �h iι1

dW wa, Kwað Þ½ �ι2 dW wb, Kwb
� �h iι3

× 1
2ρ dW wa, Kwb

� �
+ dW Kwa,wb

� �� �� �1−ι1−ι2−ι3#

ð40Þ

for each wa,wb ∈W with

min dW wa,wb
� �

, dW wa, Kwað Þ, dW wb, Kwb
� �n o

> 0,

ð41Þ

where δ ∈ ð0, 1/ρ2Þ and ι1, ι2, ι3 ∈ ð0, 1Þ with ι1 + ι2 + ι3 < 1.

The following result concerns the existence of fixed
points for the above-defined mapping.

Theorem 7. Consider a complete b-metric space ðW, dW , ρÞ
and consider a multiplicative ξ -interpolative Hardy-Rogers
type contraction map K . Also, consider the given assertions:

(i) There must exist wa
0 ∈W and wa

1 ∈ Kw
a
0 such that ξ

ðwa
0,wa

1Þ ≥ 1

(ii) For each wa,wb ∈W with ξðwa,wbÞ ≥ 1, we have
ξðwc,wdÞ ≥ 1∀wc ∈ Kwa,wd ∈ Kwb

(iii) For each fwa
mg in W with wa

m →w and ξðwa
m,wa

m+1Þ
≥ 1∀m ∈ℕ, we have ξðwa

m,wÞ ≥ 1∀m ∈ℕ

Then K possesses a fixed point in W.

Proof. Assertion (i) implies the existence of wa
0 ∈W and wa

1
∈ Kwa

0 with ξðwa
0,wa

1Þ ≥ 1. We consider

min dW wa
0,wa

1ð Þ, dW wa
0, Kwa

0ð Þ, dW wa
1, Kwa

1ð Þf g > 0: ð42Þ
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Otherwise, K has a fixed point. Then, by (40), we obtain

HW Kwa
0, Kwa

1ð Þ
≤ ξ wa

0,wa
1ð ÞHW Kwa

0, Kwa
1ð Þ

≤ δ

"
dW wa

0,wa
1ð Þ½ �ι1 dW wa

0, Kwa
0ð Þ½ �ι2 dW wa

1, Kwa
1ð Þ½ �ι3

× 1
2ρ dW wa

0, Kwa
1ð Þ + dW Kwa

0,wa
1ð Þð Þ

� �1−ι1−ι2−ι3#
:

ð43Þ

This yields that

1ffiffiffi
δ

p dW wa
1, Kwa

1ð Þ

≤
1ffiffiffi
δ

p HW Kwa
0, Kwa

1ð Þ

≤
ffiffiffi
δ

p "
dW wa

0,wa
1ð Þ½ �ι1 dW wa

0, Kwa
0ð Þ½ �ι2 dW wa

1, Kwa
1ð Þ½ �ι3

× 1
2ρ dW wa

0, Kwa
1ð Þ + dW Kwa

0,wa
1ð Þð Þ

� �1−ι1−ι2−ι3#
:

ð44Þ

Since 1/
ffiffiffi
δ

p
> 1, there is wa

2 ∈ Kw
a
1 satisfying

dW wa
1,wa

2ð Þ ≤ 1ffiffiffi
δ

p dW wa
1, Kwa

1ð Þ: ð45Þ

Thus, by (44), we get

dW wa
1,wa

2ð Þ ≤
ffiffiffi
δ

p "
dW wa

0,wa
1ð Þ½ �ι1 dW wa

0,wa
1ð Þ½ �ι2 dW wa

1,wa
2ð Þ½ �ι3

× 1
2ρ dW wa

0,wa
2ð Þ + dW wa

1,wa
1ð Þð Þ

� �1−ι1−ι2−ι3#
:

ð46Þ

Since dWðwa
0,wa

2Þ ≤ ρ½dWðwa
0,wa

1Þ + dWðwa
1,wa

2Þ� ≤ 2ρ
max fdWðwa

0,wa
1Þ, dWðwa

1,wa
2Þg, we get using (46),

dW wa
1,wa

2ð Þ ≤
ffiffiffi
δ

p h
dW wa

0,wa
1ð Þ½ �ι1 dW wa

0,wa
1ð Þ½ �ι2 dW wa

1,wa
2ð Þ½ �ι3

× max dW wa
0,wa

1ð Þ, dW wa
1,wa

2ð Þf g½ �1−ι1−ι2−ι3
i
:

ð47Þ

Consider max fdWðwa
0,wa

1Þ, dWðwa
1,wa

2Þg = dWðwa
0,wa

1Þ.
Then, by (47), we get

dW wa
1,wa

2ð Þ ≤
ffiffiffi
δ

p
dW wa

0,wa
1ð Þ½ �ι1 dW wa

0,wa
1ð Þ½ �ι2 dW wa

0,wa
1ð Þ½ �ι3

× dW wa
0,wa

1ð Þ½ �1−ι1−ι2−ι3 �:
ð48Þ

This implies that

dW wa
1,wa

2ð Þ ≤
ffiffiffi
δ

p
dW wa

0,wa
1ð Þ: ð49Þ

If we take max fdWðwa
0,wa

1Þ, dWðwa
1,wa

2Þg = dWðwa
1,wa

2Þ
in (47), then we get dWðwa

1,wa
2Þ = 0, that is, wa

1 ∈ Kw
a
1, which

is not possible. Since ξðwa
0,wa

1Þ ≥ 1,wa
1 ∈ Kw

a
0, and w

a
2 ∈ Kw

a
1,

by assertion (ii), we get ξðwa
1,wa

2Þ ≥ 1. Applying (40) and
again assertion (ii), we can obtain a sequence fwa

mg in W
with wa

m+1 ∈ Kw
a
m, ξðwa

m,wa
m+1Þ ≥ 1 for all m ∈W and

dW wa
m,wa

m+1ð Þ ≤
ffiffiffi
δ

p� �m
dW wa

0,wa
1ð Þ∀m ∈ℕ: ð50Þ

Also, by construction of fwa
mg, we know that

min dW wa
m,wa

m+1ð Þ, dW wa
m, Kwa

mð Þ, dW wa
m+1, Kwa

m+1ð Þf g
> 0∀m ∈ℕ:

ð51Þ

By a triangular inequality, we have for n >m,

dW wa
n,wa

mð Þ ≤ 〠
n−1

j=m
ρjdW wa

j ,wa
j+1

� �
≤ 〠

n−1

j=m
ρj

ffiffiffi
δ

p� �j
dW wa

0,wa
1ð Þ:

ð52Þ

This implies that fwa
mg is a Cauchy sequence in W.

Since W is complete, wa
m →wa

∗ ∈W. By assertion (iii), we
get ξðwa

m,wa
∗Þ ≥ 1 for all m ∈ℕ. Now, we claim that wa

∗ ∈
Kwa

∗. Assume the claim is wrong, then min fdWðwa
m,wa

∗Þ,
dWðwa

m, Kwa
mÞ, dWðwa

∗, Kwa
∗Þg > 0 for all m >m0 for some

m0 ∈ℕ. Then by (40), we get

dW wa
m+1, Kwa

∗ð Þ
≤HW Kwa

m, Kwa
∗ð Þ

= ξ wa
m,wa

∗ð ÞHW Kwa
m, Kwa

∗ð Þ

≤ δ

"
dW wa

m,wa
∗ð Þ½ �ι1 dW wa

m, Kwa
mð Þ½ �ι2 dW wa

∗, Kwa
∗ð Þ½ �ι3

× 1
2ρ dW wa

m, Kwa
∗ð Þ + dW Kwa

m,wa
∗ð Þð Þ

� �1−ι1−ι2−ι3#

≤ δ

"
dW wa

m,wa
∗ð Þ½ �ι1 dW wa

m, Kwa
mð Þ½ �ι2 dW wa

∗, Kwa
∗ð Þ½ �ι3

× 1
2ρ dW wa

m, Kwa
∗ð Þ + dW wa

m+1,wa
∗ð Þð Þ

� �1−ι1−ι2−ι3#
∀m >m0:

ð53Þ

From the above inequality, we get limm→∞dWðwa
m+1, K

wa
∗Þ = 0. By a triangular inequality, we have

dW wa
∗, Kwa

∗ð Þ ≤ ρ dW wa
∗,wa

m+1ð Þ + dW wa
m+1, Kwa

∗ð Þ½ �∀m ∈ℕ:

ð54Þ
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Hence, by taking the limit m⟶∞, we get dWðwa
∗, K

wa
∗Þ = 0, that is, wa

∗ ∈ Kw
a
∗.

Example 2. Consider W =ℤ with dWðwn,wmÞ = ∣wn −wm ∣
for all wn,wm ∈W. Define K : W ⟶ CBðWÞ by

K wnð Þ =
0f g, wn ∈ 0, 1, 2, 3,⋯f g
0, 2wnf g, wn ∈ −1,−2,−3,⋯f g

 
ð55Þ

and ξ : W ×W →ℝ − f0g by

ξ wn,wmð Þ =
1, wn,wm ∈ 0, 1, 2, 3,⋯f g
0, otherwise:

 
ð56Þ

One can see that all the hypotheses of Theorem 7 are
valid. Hence, K must have a fixed point.

Remark 8. Note that ([12], Theorem 2) is not applicable in
Example 2. It suffices to take x = −1 and y = −2, then Kx =
f0,−2g and Ky = f0,−4g. Thus, we have HðKx, KyÞ = 2, d
ðx, yÞ = 1, dðx, KxÞ = 1, dðy, KyÞ = 2, dðy, KxÞ = 0, and dðx,
KyÞ = 1. One then writes

H Kx, Kyð Þ = 2 > δ 1ι1ð Þ 1ι2ð Þ 2ι3ð Þ 1
2

� �1−ι1−ι2−ι3
 !" #

ð57Þ

for all δ, ι1, ι2, ι3 ∈ ð0, 1Þ. Thus, our main results generalize
and improve the result given in [12]. Moreover, when con-
sidering the single valued case in Theorem 5 and Theorem
7, that is, for a self-mapping K : W ⟶W, we get general-
izations of the main results in [9].
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In the present article, we construct ðp, qÞ-Szász-Mirakjan-Kantorovich-Stancu operators with three parameters λ, α, β. First, the
moments and central moments are estimated. Then, local approximation properties of these operators are established via K
-functionals and Steklov mean in means of modulus of continuity. Also, a Voronovskaja-type theorem is presented. Finally, the
pointwise estimates, rate of convergence, and weighted approximation of these operators are studied.

1. Introduction

During this decades, the applications of ðp, qÞ-calculus tran-
spired as a new area in the field of operator approximation
theory. Many researchers constructed and discussed many
positive linear operators based on ðp, qÞ-integers, ðp, qÞ
-exponential functions, ðp, qÞ-Gamma functions [1], ðp, qÞ
-Beta functions, and so on. Since Mursaleen et al. first con-
structed ðp, qÞ-Bernstein operators [2] and ðp, qÞ-Bernstein-
Stancu operators [3], several generalizations of well-known
positive linear operators based on ðp, qÞ-calculus have been
introduced and studied (see [4–11]). In [12], Acar first pro-
posed ðp, qÞ-Szász-Mirakjan operators defined on ½0,∞Þ. In
[13], Kara et al. constructed a modified ðp, qÞ-Szász-Mirakjan
as follows:

Sp,qn f ; tð Þ = 〠
∞

k=0
sp,qn,k tð Þf

pn−k k½ �p,q
n½ �p,q

 !
, t ∈ 0,∞½ Þ, ð1Þ

where 0 < q < p ≤ 1, f ∈ C½0,∞Þ and sp,qn,kðtÞ = ðpkðk−nÞ/qkðk−1Þ/2Þ
ð½n�kp,qtk/½k�p,q!Þep,qð−½n�p,qpk−n+1q−ktÞ. Certain basic notations
of ðp, qÞ-calculus are mentioned below (for details see
[14]): For each real number λ, ðp, qÞ-analogue of λ
named ½λ�p,q is defined by

λ½ �p,q =
pλ − qλ

p − q
, p ≠ q: ð2Þ

And for each nonnegative integer n, the ðp, qÞ-integer
½n�p,q and ðp, qÞ-factorial ½n�p,q! are defined by

n½ �p,q = pn−1 + pn−2q + pn−3q2+⋯+pqn−2 + qn−1

=

pn − qn

n − n
, p ≠ q ;

npn−1, p = q ;

n½ �q, p = 1 ;

n, p = q = 1,

8>>>>>>>><
>>>>>>>>:

n½ �p,q! =
1½ �p,q 2½ �p,q ⋯ n½ �p,q, n ≥ 1 ;
1, n = 0:

(
ð3Þ

The ðp, qÞ-analogue of the exponential function is
defined by

ep,q tð Þ = 〠
∞

n=0

pn n−1ð Þ/2tn

n½ �p,q!
: ð4Þ
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Let f be an arbitrary function and a ∈ℝ. The ðp, qÞ
-Jackson integral [15] was defined by

ða
0
f uð Þdp,qu = p − qð Þa〠

∞

i=0

qi

pi+1
f

qi

pi+1

� �
, 0 < q < p ≤ 1: ð5Þ

And the ðp, qÞ-Jackson integral over an interval ½a, b�
ða < bÞ can be defined by

ðb
a
f uð Þdp,qu =

ðb
0
f uð Þdp,qu −

ða
0
f uð Þdp,qu: ð6Þ

We easily know that ðp, qÞ-Jackson integral (6) is not
positive unless it is assumed that f is a nondecreasing
function. To solve this problem, Acar et al. [16] defined
the ðp, qÞ-integral of the arbitrary function f on interval
½a, b�ða < bÞ as follows:

ðb
a
f uð Þdp,qu = p − qð Þ b − að Þ〠

∞

n=0

qn

pn+1
f a + b − að Þ qn

pn+1

� �
, 0 < q < p ≤ 1:

ð7Þ

It is obvious that integral (6) and integral (7) of f on
½0, 1� are equivalence.

The Kantorovich modification of positive linear opera-
tors on ½0,∞Þ is a method to approximate the Riemann inte-
grable functions. The idea behind the Kantorovich
modifications mainly depends on replacing the sample value
f ðk/nÞ by n

Ð k/n
k+1/n f ðuÞdu (see [17, 18]). By definite integral

substitution, we have n
Ð k/n
k+1/n f ðuÞdu =

Ð 1
0 f ðk + u/nÞdu. How-

ever, two Kantorovich modifications may be not equivalence
or cannot use definite integral substitution in q-calculus and
ðp, qÞ-calculus. For the researches about ðp, qÞ-Szász-Mirak-
jan-Kantorovich-operators, we can see [19–21]. Meantime,
the idea behind the Stancu modifications mainly depends
on replacing the sample value f ðk/nÞ by f ðk + α/n + βÞ with
two parameters 0 ≤ α ≤ β (see [22]). For the researches about
the Stancu modification of ðp, qÞ-operators, we can see [23,
24]. All these achievements motivate us to construct the
Stancu and Kantorovich generalizations of ðp, qÞ-Szász-Mir-
akjan (1) with three parameters λ, α, β as follows:

Definition 1. For n ∈ℕ, 0 < q < p ≤ 1, λ > 0, 0 ≤ α ≤ β and f
∈ C½0,∞Þ, the ðp, qÞ-Szász-Mirakjan-Kantorovich-Stancu
operators can be defined by

Sp,q,λn,α,β f ; tð Þ = 〠
∞

k=0
sp,qn,k tð Þ

ð1
0
f

pn−k k½ �p,q + uλ + α

n½ �p,q + β

 !
dp,qu, t ∈ 0,∞½ Þ:

ð8Þ

2. Auxiliary Results

In order to obtain the approximation properties of the oper-

ators Sp,q,λn,α,βð f ; tÞ, we need the following lemmas and

corollaries.

Lemma 2. For t ∈ ½0,∞Þ, 0 < q < p ≤ 1, λ > 0, we have
Ð 1
0t

λ

dp,qt = 1/½λ + 1�p,q.

Proof. Using (7),

ð1
0
tλdp,qt = p − qð Þ〠

∞

n=0

qn

pn+1

� �λ+1
= p − q

pλ+1
〠
∞

n=0

qλ+1

pλ+1

� �n

= 1
λ + 1½ �p,q

:

ð9Þ

Lemma 3. ([13], Lemma 4) For 0 < q < p ≤ 1, n ∈ℕ, and t ∈
½0,∞Þ, we have

Sp,qn 1 ; tð Þ = 1, Sp,qn u ; tð Þ = t, Sp,qn u2 ; t
� �

= t2 + pn−1

n½ �p,q
t,

Sp,qn u3 ; t
� �

= t3 + 2p + qð Þpn−2
n½ �p,q

t2 + p2n−2

n½ �2p,q
t,

Sp,qn u4 ; t
� �

= t4 + 3p2 + 2qp + q2
� �

pn−3

n½ �p,q
t3

+ 3p2 + 3qp + q2
� �

p2n−4

n½ �2p,q
t2 + p3n−3

n½ �3p,q
t:

ð10Þ

The following lemma will tell us the relation between the
moment of the operators Sp,qn and the moment of the opera-

tors Sp,q,λn,α,β:

Lemma 4. For t ∈ ½0,∞Þ, n,m ∈ℕ, 0 < q < p ≤ 1, λ > 0, 0 ≤
α ≤ β, we have the following recursive relation:

Sp,q,λn,α,β um ; tð Þ = 1

n½ �p,q + β
� �m〠

m

i=0
〠
m−i

j=0

m!

i!j! m − i − jð Þ! n½ �ip,qSp,qn ui ; t
� � αm−i−j

λj + 1½ �p,q
:

ð11Þ

Proof. By direct computation, we have

Sp,q,λn,α,β um ; tð Þ = 〠
∞

k=0
sp,qn,k tð Þ

ð1
0

pn−k k½ �p,q + uλ + α

n½ �p,q + β

 !m

dp,qu

= 1
n½ �p,q + β

� �m 〠
∞

k=0

ð1
0
〠
m

i=0
〠
m−i

j=0

m!

i!j! m − i − jð Þ! pn−k k½ �p,q
� �i

uλjαm−i−jdp,qu

= 1
n½ �p,q + β

� �m 〠
m

i=0
〠
m−i

j=0
n½ �ip,q 〠

∞

k=0
sp,qn,k tð Þ

pn−k k½ �p,q
n½ �p,q

 !i
0
@

1
A αm−i−j

λj + 1½ �p,q

= 1
n½ �p,q + β

� �m 〠
m

i=0
〠
m−i

j=0

m!

i!j! m − i − jð Þ! n½ �ip,qSp,qn ui ; t
� � αm−i−j

λj + 1½ �p,q
:

ð12Þ

Hence, the proof of Lemma 4 is completed.

Then, the following lemma can be obtain immediately:
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Lemma 5. For t ∈ ½0,∞Þ, 0 < q < p ≤ 1, λ > 0, 0 ≤ α ≤ β , we
have

Sp,q,λn,α,β 1 ; tð Þ = 1, Sp,q,λn,α,β u ; tð Þ =
n½ �p,q

n½ �p,q + β
t + 1

n½ �p,q + β

1
λ + 1½ �p,q

+ α

 !
,

Sp,q,λn,α,β u2 ; t
� �

=
n½ �2p,q

n½ �p,q + β
� �2 t2 + pn−1

n½ �p,q
t

 !
+

2 n½ �p,q
n½ �p,q + β

� �2
� 1

λ + 1½ �p,q
+ α

 !
t + 1

n½ �p,q + β
� �2

� 1
2λ + 1½ �p,q

+ 2α
λ + 1½ �p,q

+ α2
 !

:

ð13Þ

Lemma 6. Under the condition of Lemma 5, we can easily
obtain the following formulas for the first and second central
moments:

Ap,q,λ
n,α,β tð Þ≔ Sp,q,λn,α,β u − t ; tð Þ = 1

n½ �p,q + β

1
λ + 1½ �p,q

+ α − βt

 !
,

Bp,q,λ
n,α,β tð Þ≔ Sp,q,λn,α,β u − tð Þ2 ; t� �

=
pn−1 n½ �p,qt
n½ �p,q + β

� �2 + 1

n½ �p,q + β
� �2

� βt − α −
1

λ + 1½ �p,q

 !2

+ 1
2λ + 1½ �p,q

−
1

λ + 1½ �2p,q

 !
:

ð14Þ

Lemma 7. The sequences ðpnÞ, ðqnÞ satisfy 0 < qn < pn ≤ 1,
such that qn ⟶ 1, pnn ⟶ η ∈ ½0, 1�, ½n�pn ,qn ⟶∞ as n⟶
∞; then for any t ∈ ½0,∞Þ, 0 < q < p ≤ 1, λ > 0, 0 ≤ α ≤ β, we
have

lim
n→∞

n½ �pn ,qnA
pn ,qn ,λ
n,α,β tð Þ = −βt + α + 1

λ + 1
, ð15Þ

lim
n→∞

n½ �pn ,qnB
pn ,qn ,λ
n,α,β tð Þ = ηt, ð16Þ

lim
n→∞

n½ �pn ,qnS
pn ,qn ,λ
n,α,β u − tð Þ4 ; t� �

= 0: ð17Þ

Proof. By ½λ + 1�pn ,qn = ðλ + 1Þξλn, ξn ∈ ðqn, pnÞ, we have lim
n→∞

½λ + 1�pn ,qn = λ + 1. Thus, we easily obtain (15) and (16). As
n⟶∞, we can rewrite

Spn ,qnn u3 ; t
� �

= t3 + 2 + qnp
−1
n

� �
pn−1n

n½ �pn ,qn
t2 + o

1
n½ �pn ,qn

 !
,

Spn ,qnn u4 ; t
� �

= t4 + 3 + 2qnp−1n + q2np
−2
n

� �
pn−1n

n½ �pn ,qn
t3 + o

1
n½ �pn ,qn

 !
:

ð18Þ

Set AðnÞ = ð1/½λ + 1�pn ,qnÞ + α. Applying Lemma 4 and

ð½n�pn ,qn /½n�pn ,qn + βÞi = 1 − ðiβ/½n�pn ,qn + βÞ + oð1/½n�pn ,qnÞ, i =
1, 2, 3, 4, we can also rewrite

Spn ,qn ,λn,α,β u ; tð Þ =
n½ �pn ,qn

n½ �pn ,qn + β
t + A nð Þ

n½ �pn ,qn + β
= 1 − β

n½ �pn ,qn + β

 !
t

+ A nð Þ
n½ �pn ,qn + β

+ o
1

n½ �pn ,qn

 !
,

Spn ,qn ,λn,α,β u2 ; t
� �

=
n½ �2pn ,qn

n½ �pn ,qn + β
� �2 t2 + pn−1

n½ �pn ,qn
t

 !
+

2 n½ �pn ,qnA nð Þ
n½ �pn ,qn + β

� �2 t

= 1 − 2β
n½ �pn ,qn + β

 !
t2 + pn−1

n½ �pn ,qn
t

+ 2A nð Þ
n½ �pn ,qn + β

t + o
1

n½ �pn ,qn

 !
,

Spn ,qn ,λn,α,β u3 ; t
� �

=
n½ �3pn ,qn

n½ �pn ,qn + β
� �3 t3 + 2 + qnp

−1
n

� �
pn−1n

n½ �pn ,qn
t2

 !

+
3 n½ �2pn ,qnA nð Þ
n½ �pn ,qn + β

� �3 t2 + o
1

n½ �pn ,qn

 !

= 1 − 3β
n½ �pn ,qn + β

 !
t3 + 2 + qnp

−1
n

� �
pn−1

n½ �pn ,qn
t2

+ 3A nð Þ
n½ �pn ,qn + β

t2 + o
1

n½ �pn ,qn

 !
,

Spn ,qn ,λn,α,β u4 ; t
� �

=
n½ �4pn ,qn

n½ �pn ,qn + β
� �4 t4 + 3 + 2qnp−1n + q2np

−2
n

� �
pn−1n

n½ �pn ,qn
t3

 !

+
4 n½ �3pn ,qnA nð Þ
n½ �pn ,qn + β

� �4 t3 + o
1

n½ �pn ,qn

 !

= 1 − 4β
n½ �pn ,qn + β

 !
t4 + 3 + 2qnp−1n + q2np

−2
n

� �
pn−1

n½ �pn ,qn
t3

+ 4A nð Þ
n½ �pn ,qn + β

t3 + o
1

n½ �pn ,qn

 !
:

ð19Þ

Combining Spn ,qn ,λn,α,β ððu − tÞ4 ; tÞ =∑4
m=0ð4mÞð−1ÞmSpn ,qn ,λn,α,β ð

u4−m ; tÞtm, we can obtain

n½ �pn ,qnS
pn ,qn ,λ
n,α,β u − tð Þ4 ; t� �

= 1 − 2qnp−1n + q2np
−2
n

� �
pn−1n t3

+ o 1ð Þ⟶ 0, as n⟶∞,
ð20Þ

we obtain the required result.

Lemma 8. Let CB½0,∞Þ be the set of real-valued continuous
bounded functions defined on ½0,∞Þ endowed with the norm
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∥f ∥ = sup
x∈½0,∞Þ

∣ f ðxÞ ∣ . Under the condition of Lemma 5, for

any f ∈ CB½0,∞Þ, we have

Sp,q,λn,α,β f ; tð Þ
��� ��� ≤ fk k: ð21Þ

Proof. In view of (8) and Lemma 5, the proof of this
lemma can be obtained easily.

3. Local Approximation

In this section, we will establish local approximation theorem
for the operators. For any f ∈ CB½0,∞Þ, we consider the fol-
lowing K-functional:

K f ; δð Þ = inf
h∈W2

∥f − h∥+δ∥h′′∥
n o

, ð22Þ

where δ ∈ ð0,∞Þ and w2 = fh ∈ CB½0,∞Þ: h′, h″ ∈ CB½0,∞Þg.
The usual modulus of continuity and the second-order mod-
ulus of smoothness of f can be defined as

ω f ; δð Þ = sup
0< uj j<δ

sup
x∈ 0,∞½ Þ

f t + uð Þ − f tð Þj j,

ω2 f ; δð Þ = sup
0< uj j<δ

sup
x∈ 0,∞½ Þ

f t + 2uð Þ − f t + uð Þ + f tð Þj j:

ð23Þ

By ([25], p.177, Theorem 2.4), there exists an absolute
positive constant C such that

K f ; δð Þ ≤ Cω2 f ;
ffiffiffi
δ

p� �
, δ > 0: ð24Þ

In the meantime, for f ∈ CB½0,∞Þ and h > 0, the Steklov
mean is defined as

f h tð Þ = 4
h2

ðh/2
0

ðh/2
0

2f t + u + vð Þ − f t + 2 u + vð Þð Þ½ �dudv:

ð25Þ

Thus, f h ∈ CB½0,∞Þ, and we can write

f h tð Þ − f tð Þ = 4
h2

ðh/2
0

ðh/2
0

2f t + u + vð Þ½
− f t + 2 u + vð Þð Þ − f tð Þ�dudv:

ð26Þ

It is obvious that ∣f hðtÞ − f ðtÞ ∣ ≤ω2ð f ; hÞ and ∥f h − f ∥≤
ω2ð f ; hÞ. If f is continuous, then f h′, f h′′ ∈ CB½0,∞Þ and

f h′ tð Þ =
4
h2

2
ðh/2
0

f t + u + h
2 − f t + uð Þ

� �� �
du




−
1
2

ðh/2
0

f t + h + 2uð Þ − f t + 2uð Þð Þdu�:
ð27Þ

Thus, we have ∥f h′∥≤ð5/hÞωð f ; hÞ. Similarly, ∥f h′′∥≤
ð9/h2Þω2ð f ; hÞ.

Theorem 9. Under the condition of Lemma 7, then for all f
∈ CB½0,∞Þ and t ∈ ½0,∞Þ, we have

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ 2ω f ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bpn ,qn ,λ
n,α,β tð Þ

q� �
: ð28Þ

Proof. For any δ > 0, we have ∣f ðuÞ − f ðtÞ ∣ ≤ωð f ;∣u − t ∣ Þ ≤
ð1 + ð∣u − t∣/δÞÞωð f ; δÞ. Applying Spn ,qn ,λn,α,β to both ends and

using Lemma 5, we can obtain

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ Spn ,qn ,λn,α,β f uð Þ − f tð Þj j ; tð Þ

≤ 1 + 1
δ
Spn ,qn ,λn,α,β ∣u − t∣;tð Þ

� �
ω f ; δð Þ:

ð29Þ

By using the Chauchy-Schwarz inequality and taking

δ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bpn ,qn ,λ
n,α,β ðtÞ

q
, we have

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ 1 + 1

δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Spn ,qn ,λn,α,β u − tð Þ2 ; t� �q� �

ω f ; δð Þ

≤ 2ω f ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bpn ,qn ,λ
n,α,β tð Þ

q� �
:

ð30Þ

Theorem 9 is proved.

Theorem 10. Under the condition of Lemma 7, then for all
f ∈ CB½0,∞Þ and t ∈ ½0,∞Þ, there exists an absolute positive
constant C1 = 4C such that

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ C1ω2 f ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Apn ,qn ,λ
n,α,β tð Þ

� �2
+ Bpn ,qn ,λ

n,α,β tð Þ
r !

+ ω f ; Apn ,qn ,λ
n,α,β tð Þ

��� ���� �
:

ð31Þ

Proof. First, we define the following new positive linear oper-
ators as follows:

Tpn ,qn ,λ
n,α,β f ; tð Þ = Spn ,qn ,λn,α,β f ; tð Þ − f Apn ,qn ,λ

n,α,β tð Þ + t
� �

+ f tð Þ, t ∈ 0,∞½ Þ:
ð32Þ

It is apparent from Lemma 5, Lemma 6, and Lemma
8 that

Tpn ,qn ,λ
n,α,β 1 ; tð Þ = 1 ; Tpn ,qn ,λ

n,α,β u − t ; tð Þ = 0, ð33Þ

Tpn ,qn ,λ
n,α,β f ; tð Þ

��� ��� ≤ 3 fk k: ð34Þ
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Now for any given function h ∈W2 and u, t ∈ ½0,∞Þ,
we write Taylor’s expansion formula as follows:

h uð Þ = h tð Þ + h′ tð Þ u − tð Þ +
ðu
t
h′′ vð Þ u − vð Þdv: ð35Þ

By applying Tpn ,qn ,λ
n,α,β operators to both sides of the

above equality, we can obtain

Tpn ,qn ,λ
n,α,β h ; tð Þ = Tpn ,qn ,λ

n,α,β h tð Þ + h′ tð Þ u − tð Þ +
ðu
t
h′′ vð Þ u − vð Þdv ; t

� �

= h tð Þ + Tpn ,qn ,λ
n,α,β h′ tð Þ u − tð Þ ; t

� �
+ Tpn ,qn ,λ

n,α,β

ðu
t
h′′ vð Þ u − vð Þdv ; t

� �
:

ð36Þ

Using (32), (33), and the following inequality,

ðu
t
h′′ vð Þ u − vð Þdv

����
���� ≤

ðu
t
h′′ vð Þ�� �� u − vj jdv

����
����

≤ ∥h′′∥
ðu
t
u − vj jdv

����
����

≤ u − tð Þ2∥h′′∥,

ð37Þ

we can get

Tpn ,qn ,λ
n,α,β h ; tð Þ − h tð Þ

��� ��� = Tpn ,qn ,λ
n,α,β

ðu
t
h′′ vð Þ u − vð Þdv ; t

� �����
����

≤ Spn ,qn ,λn,α,β

ðu
t
h′′ vð Þ ∣ u − v ∣ dv

����
���� ; t

� �

+
ðApn ,qn ,λ

n,α,β tð Þ+t

t
h′′ vð Þ Apn ,qn ,λ

n,α,β tð Þ + t − v
� �

dv
�����

�����
≤ Spn ,qn ,λn,α,β u − tð Þ2 ; t� �

∥h′′∥+ Apn ,qn ,λ
n,α,β tð Þ

� �2
∥h′′∥

= Apn ,qn ,λ
n,α,β tð Þ

� �2
+ Bpn ,qn ,λ

n,α,β tð Þ
� �

∥h′′∥:

ð38Þ

By using (32) and (34), we have

Spn ,qn ,λn,α,β h ; tð Þ − h tð Þ
��� ��� = Tpn ,qn ,λ

n,α,β f ; tð Þ + f Apn ,qn ,λ
n,α,β tð Þ + t

� �
− 2f tð Þ

��� ���
≤ Tpn ,qn ,λ

n,α,β f − h ; tð Þ − f − gð Þ tð Þ
��� ���
+ Tpn ,qn ,λ

n,α,β h ; tð Þ − h tð Þ
��� ���

+ f Apn ,qn ,λ
n,α,β tð Þ + t

� �
− f tð Þ

��� ���
≤ 4∥f − h∥+ Apn ,qn ,λ

n,α,β tð Þ
� �2

+ Bpn ,qn ,λ
n,α,β tð Þ

� �
∥h′′∥

+ω f ; Apn ,qn ,λ
n,α,β tð Þ

��� ���� �
:

ð39Þ

Taking the infimum on the right-hand side over all h ∈W2

and using (24), we complete the proof of Theorem 10.

Theorem 11. Under the condition of Lemma 7, then for all
f ′ ∈ CB½0,∞Þ and t ∈ ½0,∞Þ, we have

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ Apn ,qn ,λ

n,α,β tð Þ
��� ��� f ′ tð Þ�� �� + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bpn ,qn ,λ
n,α,β tð Þ

q
ω

� f ′ ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bpn ,qn ,λ
n,α,β tð Þ

q� �
:

ð40Þ

Proof. Applying Spn ,qn ,λn,α,β to both sides of the equality f ðuÞ = f

ðtÞ + f ′ðtÞðu − tÞ + f ðuÞ − f ðtÞ − f ′ðtÞðu − tÞ, using mean
value theorem and the Chauchy-Schwarz inequality and tak-

ing δ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bpn ,qn ,λ
n,α,β ðtÞ

q
, we can obtain

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ f ′ tð Þ�� �� Spn ,qn ,λn,α,β u − t ; tð Þ

��� ��� + Spn,qn,λn,α,β

� f uð Þ − f tð Þ − f ′ tð Þ u − tð Þ�� �� ; t� �
≤ ∣f ′ tð Þ∣ Spn ,qn ,λn,α,β u − t ; tð Þ

��� ��� + Spn ,qn ,λn,α,β

� ∣u − t ∣ 1 + ∣u − t ∣
δ

� �
ω f ′ ; δ
� �

; t
� �

≤ ∣f ′ tð Þ∣ Apn ,qn ,λ
n,α,β tð Þ

��� ��� + ω f ′ ; δ
� �

� Spn ,qn ,λn,α,β ∣u − t∣;tð Þ +
Spn ,qn ,λn,α,β u − tð Þ2 ; t� �

δ

 !

≤ ∣f ′ tð Þ∣ Apn ,qn ,λ
n,α,β tð Þ

��� ��� + ω f ′ ; δ
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Spn,qn,λn,α,β u − tð Þ2 ; t� �q

� 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Spn ,qn ,λn,α,β u − tð Þ2 ; t� �q

δ

0
@

1
A

≤ Apn ,qn ,λ
n,α,β tð Þ

��� ��� f ′ tð Þ�� �� + 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bpn ,qn ,λ
n,α,β tð Þ

q
ω

� f ′ ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bpn ,qn ,λ
n,α,β tð Þ

q� �
:

ð41Þ

Theorem 12. Under the condition of Lemma 7, if f ∈
CB½0,∞Þ, then

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n½ �pn ,qn

q
Apn ,qn ,λ
n,α,β tð Þ

��� ���ω f ; 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
n½ �pn ,qn

q
0
B@

1
CA

+ 9
2
n½ �pn ,qnB

pn ,qn ,λ
n,α,β tð Þ + 2

� �
ω2

� f ; 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
n½ �pn ,qn

q
0
B@

1
CA:

ð42Þ
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Proof. For t ∈ ½0,∞Þ, using the Steklov mean function
f h, we can write

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ Spn ,qn ,λn,α,β ∣f − f h∣;tð Þ + Spn ,qn ,λn,α,β f h − f h tð Þ ; tð Þ

��� ���
+ f h tð Þ − f tð Þj j:

ð43Þ

By Lemma 8 and properties of the Steklov mean,
we can obtain

Spn ,qn ,λn,α,β ∣f − f h∣;tð Þ ≤ ∥Spn ,qn ,λn,α,β ∣f − f h ∣ð Þ∥ ≤ ∥f − f h∥ ≤ ω2 f ; hð Þ:
ð44Þ

By Taylor’s expansion formula, we have

Spn ,qn ,λn,α,β f h − f h tð Þ ; tð Þ
��� ��� ≤ f h′ tð Þj j Apn ,qn ,λ

n,α,β tð Þ
��� ��� + 1

2 ∥f h
′′∥Bpn ,qn ,λ

n,α,β tð Þ

≤
5
h
ω f ; hð Þ Apn ,qn ,λ

n,α,β tð Þ
��� ���

+ 9
2h2

ω2 f ; hð ÞBpn ,qn ,λ
n,α,β tð Þ:

ð45Þ

Hence,

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ 5

h
Apn ,qn ,λ
n,α,β tð Þ

��� ���ω f ; hð Þ

+ 9
2h2

Bpn ,qn ,λ
n,α,β tð Þ + 2

� �
ω2 f ; hð Þ:

ð46Þ

Setting h = 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
½n�pn ,qn

q
, we can get the desired result.

By the classic Korovkin theorem, we easily get the follow-
ing corollary:

Corollary 13. Under the condition of Lemma 7, then for all

f ∈ CB½0,∞Þ and any A > 0, the the sequence fSpn ,qn ,λn,α,β ðf ; tÞg
converges to f uniformly on ½0, A�.

4. Voronovskaja-Type Theorem for Spn,qn,λn,α,β

In this section, we show a Voronovskaja-type asymptotic for-

mula for the operators Spn ,qn ,λn,α,β by means of the first, second

and fourth central moments.

Theorem 14. Under the condition of Lemma 7, then for all
f ∈ CB½0,∞Þ satisfying f ′′ðtÞ that exists at a point t ∈ ½0,∞Þ,
we can obtain

lim
n→∞

n½ �pn ,qn Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
� �

= α − βt + 1
λ + 1

� �
f ′ tð Þ + η

2
f ′′ tð Þt:

ð47Þ

Proof. By Taylor’s expansion formula for f , we have

f uð Þ = f tð Þ + f ′ tð Þ u − tð Þ + 1
2 f

′′ tð Þ u − tð Þ2 + ϕ u ; tð Þ u − tð Þ2,
ð48Þ

where

ϕ u ; tð Þ =
f uð Þ − f tð Þ − f ′ tð Þ u − tð Þ − 1/2f ′′ tð Þ u − tð Þ2

u − tð Þ2 , u ≠ t ;

0, u = t:

8><
>:

ð49Þ

Applying L’Hospital’s Rule,

lim
u→t

ϕ u ; tð Þ = 1
2 limu→t

f ′ uð Þ − f ′ tð Þ
u − t

−
1
2 f

′′ tð Þ = 0: ð50Þ

Thus, ϕð:;tÞ ∈ CB½0,∞Þ. Consequently, we can write

n½ �pn ,qn Spn ,qn ,λn,α,β f ; tð Þ − f xð Þ
� �

= n½ �pn ,qnA
pn ,qn ,λ
n,α,β tð Þ + 1

2 n½ �pn ,qnB
pn ,qn ,λ
n,α,β tð Þ

+ n½ �pn ,qn Spn ,qn ,λn,α,β ϕ u ; tð Þ u − tð Þ2 ; t� �� �
:

ð51Þ

By Schwarz’s inequality, we have

Spn ,qn ,λn,α,β ϕ u ; tð Þ u − tð Þ2�
; t

� �
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Spn ,qn ,λn,α,β ϕ2 u ; tð Þ�

; t
� �r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Spn ,qn ,λn,α,β u − tð Þ4�

; t
� �r

:

ð52Þ

We observe that ϕ2ðt ; tÞ = 0 and ϕ2ð:;tÞ ∈ CB½0,∞Þ. Then,
it follows in Corollary 13 that

lim
n→∞

n½ �pn ,qnS
pn ,qn ,λ
n,α,β ϕ2 u ; tð Þ ; t� �

= ϕ2 t ; tð Þ = 0: ð53Þ

Hence, from (17), we can obtain

lim
n→∞

n½ �pn ,qn Spn ,qn ,λn,α,β ϕ u ; tð Þ u − tð Þ2 ; t� �� �
= 0: ð54Þ

Combining, we complete the proof of Theorem 14.

Corollary 15. Under the condition of Lemma 7, then for all
f ′, f ′′ ∈ CB½0,∞Þ, we have

lim
n→∞

n½ �pn ,qn Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
� �

= α − βt + 1
λ + 1

� �
f ′ tð Þ

+ η

2
f ′′ tð Þt,

ð55Þ

uniformly with respect to any finite interval I ⊂ ½0,∞Þ.
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5. Pointwise Estimates

In this section, we establish two pointwise estimates of the

operators Sp,q,λn,α,β. First, we compute the rate of convergence

locally by using functions belonging to the Lipschitz class.
We denote that f ∈ CB½0,∞Þ is in LipMðγ,DÞ, γ ∈ ð0, 1�, D
⊂ ½0,∞Þ if it satisfies the following condition:

f uð Þ − f tð Þj j ≤M u − tj jγ, u ∈D, t ∈ 0,∞½ Þ, ð56Þ

where M is a positive constant depending only on γ and f .

Theorem 16. The sequences ðpnÞ, ðqnÞ satisfy 0 < qn < pn ≤ 1,
γ ∈ ð0, 1� and D be any bounded subset on ½0,∞Þ. If f ∈ CB½0
,∞Þ ∩ LipMðγ,DÞ, then for any t ∈ ½0,∞Þ, we have

Spn ,qn ,λn,α,β f ; tð Þ − f xð Þ
��� ��� ≤M Bpn ,qn ,λ

n,α,β tð Þ
� �γ/2

+ 2dγ t ;Dð Þ
� �

,

ð57Þ

where dðt ;DÞ = inf f∣u − t∣ : u ∈Dg denotes the distance
between t and D.

Proof. Let �D be the closure of D. Using the properties of infi-
mum, and there is at least a point t0 ∈ �D such that dðt ; EÞ
= ∣t − t0 ∣ . By the triangle inequality

f uð Þ − f tð Þj j ≤ f uð Þ − f t0ð Þj j + f tð Þ − f t0ð Þj j: ð58Þ

By the monotonicity of Spn ,qn ,λn,α,β , we get

Spn ,qn ,λn,α,β f ; tð Þ − f xð Þ
��� ��� ≤ Spn ,qn ,λn,α,β ∣f uð Þ − f t0ð Þ∣;tð Þ + Spn ,qn,λn,α,β ∣f tð Þ − f t0ð Þ∣;tð Þ

≤M Spn ,qn ,λn,α,β u − t0j jγ ; tð Þ + Spn ,qn ,λn,α,β t − t0j jγ ; tð Þ
n o

≤M Spn ,qn ,λn,α,β u − tj jγ + t − t0j jγ ; tð Þ + t − t0j jγ
n o

=M Spn ,qn ,λn,α,β u − tj jγ ; tð Þ + 2 t − t0j jγ
n o

:

ð59Þ

Applying the well-known Hölder inequality with a1 = 2/γ,
a2 = 2/2 − γ, we obtain

Spn ,qn ,λn,α,β f ; tð Þ − f xð Þ
��� ��� ≤M Spn ,qn ,λn,α,β u − tj ja1γ ; tð Þ1/a1 + 2dγ t ;Dð Þ

n o
≤M Spn ,qn ,λn,α,β u − tj j2 ; t� �1/a1 + 2dγ t ;Dð Þ

n o
=M Bpn ,qn ,λ

n,α,β tð Þ
� �γ/2

+ 2dγ t ;Dð Þ
� 


:

ð60Þ

Second, we will give a local direct estimation of the opera-

tors Spn ,qn ,λn,α,β by using the Lipschitz-type maximal function of

the order γ introduced by Lenze [26] as

~ωγ f ; tð Þ = sup
u≠t,u∈ 0,∞½ Þ

∣f uð Þ − f tð Þ ∣
u − tj jγ , t ∈ 0,∞½ Þ and γ ∈ 0, 1ð �:

ð61Þ

Theorem 17. The sequences ðpnÞ, ðqnÞ satisfy 0 < qn < pn ≤ 1
and γ ∈ ð0, 1� . If f ∈ CB½0,∞Þ , then for any t ∈ ½0,∞Þ , we have

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ ~ωγ f ; tð Þ Bpn ,qn ,λ

n,α,β tð Þ
� �γ/2

: ð62Þ

Proof. Using the equality (61), we obtain

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ ~ωγ f ; tð ÞSpn ,qn ,λn,α,β u − tj jγ ; tð Þ: ð63Þ

By the well-known Hölder inequality, we have

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ ~ωγ f ; tð ÞSpn ,qn ,λn,α,β u − tj j2 ; t� �γ/2

≤ ~ωγ f ; tð Þ Bpn ,qn ,λ
n,α,β tð Þ

� �γ/2
:

ð64Þ

Thus, the proof of Theorem 17 is completed.

6. Rate of Convergence

Let B2½0,∞Þ be the set of all functions f defined on ½0,∞Þ
satisfying the condition ∣f ðtÞ ∣ ≤Cf ð1 + t2Þ with an absolute
constant Cf > 0 which may depend only on f . C2½0,∞Þ
denotes the subspace of all continuous functions f ∈ B2½0,∞Þ
with the norm ∥f ∥2 = sup

x∈½0,∞Þ
j f ðtÞj/1 + t2. By C0

2½0,∞Þ, and
we denote the subspace of all functions f ∈ C2½0,∞Þ for which
lim

x→+∞
j f ðtÞj/1 + t2 is finite. Meantime, we denote the modulus

of continuity of f on the interval ½0, a�, a > 0 by

ωa f ; δð Þ = sup
∣u−t∣≤δ

sup
u,t∈ 0,a½ �

f uð Þ − f tð Þj j: ð65Þ

Theorem 18. Let f ∈ C2½0,∞Þ, 0 < q < p ≤ 1, and a > 0. Then,
for all t ∈ ½0, a�, we have

Sp,q,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ Cf 4 + 3a2

� �
Bp,q,λ
n,α,β tð Þ + 2ωa+1 f ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bp,q,λ
n,α,β tð Þ

q� �
:

ð66Þ

Proof. For any t ∈ ½0, a� and u > a + 1, we easily have 1 ≤
ðu − aÞ2 ≤ ðu − tÞ2; thus

f uð Þ − f tð Þj j ≤ f uð Þj j + f tð Þj j ≤ Cf 2 + u2 + t2
� �

= Cf 2 + t2 + u − t + tð Þ2� �
≤ Cf 2 + 3t2 + 2 u − tð Þ2� �

≤ Cf 4 + 3t2
� �

u − tð Þ2 ≤Mf 4 + 3a2
� �

u − tð Þ2,
ð67Þ
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and for any t ∈ ½0, a�, u ∈ ½0, a + 1�Þ and δ > 0, we have

f uð Þ − f tð Þj j ≤ ωa+1 ∣u − t∣;tð Þ ≤ 1 + ∣u − t ∣
δ

� �
ωa+1 f ; δð Þ:

ð68Þ

For (67) and (68), we can get

f uð Þ − f tð Þj j ≤ Cf 4 + 3a2
� �

u − tð Þ2 + 1 + ∣u − t ∣
δ

� �
ωa+1 f ; δð Þ:

ð69Þ

Applying the Cauchy-Schwarz inequality and choosing δ

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bp,q,λ
n,α,βðtÞ

q
, we have

Sp,q,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ Sp,q,λn,α,β ∣f uð Þ − f tð Þ∣;tð Þ

≤ Cf 4 + 3a2
� �

Sp,q,λn,α,β u − tð Þ2 ; t� �
+ Sp,q,λn,α,β 1 + ∣u − t ∣

δ

� �
; t

� �
ωa+1 f ; δð Þ

≤ Cf 4 + 3a2
� �

Bp,q,λ
n,α,β tð Þ + ωa+1 f ; δð Þ

� 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bp,q,λ
n,α,β tð Þ

q
δ

0
@

1
A = Cf 4 + 3a2

� �
Bp,q,λ
n,α,β tð Þ

+ 2ωa+1 f ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bp,q,λ
n,α,β tð Þ

q� �
:

ð70Þ

This completes the proof of Theorem 18.

7. Weighted Approximation

As is known, if f ∈ C½0,∞Þ is not uniform, the limit lim
δ→0+

ωð f ; δÞ = 0 may be not true. In [27], Ispir defined the fol-
lowing weighted modulus of continuity:

Ω f ; δð Þ = sup
t∈ 0,∞½ Þ,0<h≤δ

f t + hð Þ − f tð Þj j
1 + t2ð Þ 1 + h2

� � for f ∈ C0
2 0,∞½ Þ,

ð71Þ

and proved the properties of monotone increasing about
Ωð f ; δÞ as δ > 0, lim

δ→0+
Ωð f ; δÞ = 0 and the inequality

Ω f ; τδð Þ ≤ 2 1 + τð Þ 1 + δ2
� �

Ω f ; δð Þ, τ > 0: ð72Þ

Theorem 19. Under the condition of Lemma 7, f ∈ C0
2½0,

∞Þ, then for sufficiently large n, the inequality

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ K 1 + t2

� �2+θ
Ω f ; 1

n½ �pn ,qn

 !
ð73Þ

holds, where θ ≥ 1/2 and K is a positive constant depending
only on f and n.

Proof. Applying (71) and (72), we can obtain

f uð Þ − f tð Þj j ≤ 1 + u − tð Þ2� �
1 + t2
� �

Ω f ;∣u − t ∣ð Þ
≤ 2 1 + ∣u − t ∣

δ

� �
1 + δ2
� �

Ω f ; δð Þ 1 + u − tð Þ2� �
1 + t2
� �

≤
4 1 + δ2
� �2 1 + t2

� �
Ω f ; δð Þ, ∣u − t∣ ≤ δ,

4 1 + δ2
� �

1 + t2
� �

Ω f ; δð Þ ∣u − t∣+ u − tj j3
δ

, ∣u − t∣ > δ:

8>><
>>:

ð74Þ

Thus, for any δ ∈ ð0, 1/2Þ and u, t ∈ ½0,∞Þ, the above
inequality can be rewritten

f uð Þ − f tð Þj j ≤ 5 1 + t2
� �

Ω f ; δð Þ 5
4 + ∣u − t∣+ u − tj j3

δ

� �
:

ð75Þ

Applying (16) and (17), there exists sufficiently large n
such that

n½ �pn ,qnS
pn ,qn ,λ
n,α,β u − tð Þ2 ; t� �

≤ K2
1 1 + t2
� �

,

n½ �pn ,qnS
pn ,qn ,λ
n,α,β u − tð Þ4 ; t� �

≤ K2
2 1 + t2
� �2

:
ð76Þ

By Schwarz’s inequality, we can obtain

Spn ,qn ,λn,α,β ∣u − t∣;tð Þ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Spn ,qn ,λn,α,β u − tð Þ2 ; t� �q

≤
K1
n½ �pn ,qn

ffiffiffiffiffiffiffiffiffiffiffi
1 + t2

p
,

Spn ,qn ,λn,α,β u − tj j3 ; t� �
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Spn ,qn ,λn,α,β u − tð Þ2 ; t� �

Spn ,qn ,λn,α,β u − tð Þ4 ; t� �q
≤

K2
n½ �pn ,qn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + t2ð Þ3

q
:

ð77Þ

Using Spn ,qn ,λn,α,β as linear and positive and choosing δ = 1/
½n�pn ,qn , we can obtain

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ��� ≤ 5 1 + t2

� �
Ω f ; 1

n½ �pn ,qn

 !

� 5
4 + K1 1 + t2

� �
+ K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + t2ð Þ3

q� �

≤ K 1 + t2
� �5/2

Ω f ; 1
n½ �pn ,qn

 !
,

ð78Þ

for sufficiently large n and t ∈ ½0,∞Þ, where K ≔ 5 max f5/4,
K1, K2g.
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Theorem 20. Under the condition of Lemma 7, then for any
f ∈ C0

2½0,∞Þ, we have

lim
n→∞

∥Spn ,qn ,λn,α,β f ; tð Þ − f ∥2 = 0: ð79Þ

Proof. Applying the Korovkin theorem [28], we only see that
it is sufficient to prove the following three conditions:

lim
n→∞

∥Spn ,qn ,λn,α,β um ; tð Þ − tm∥2 = 0,m = 0, 1, 2: ð80Þ

Since Spn ,qn ,λn,α,β ð1 ; tÞ = 1, the condition holds for m = 0. By

Lemma 6, we can obtain

lim
n→∞

Spn ,qn ,λn,α,β u ; tð Þ − t
��� ���

2
= lim

n→∞
Apn ,qn ,λ
n,α,β tð Þ

��� ���
2

≤
1

n½ �pn ,qn + β

1
λ + 1½ �pn ,qn

+ α

 !
sup

t∈ 0,∞½ Þ

1
1 + t2

 

+ β sup
t∈ 0,∞½ Þ

t
1 + t2

!
⟶ 0, asn⟶∞:

ð81Þ

Hence, (80) holds for m = 1. Similarly, by Lemma 5, we
can write for m = 2,

Thus, (80) holds for m = 2. Hence, the proof is
completed.

Theorem 21. Under the condition of Lemma 7, then for any
f ∈ C0

2½0,∞Þ and κ > 0, we have

lim
n→∞

sup
t∈ 0,∞½ Þ

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
1 + t2ð Þ1+κ

= 0: ð83Þ

Proof. Let t0 ∈ ð0,∞Þ be arbitrary but fixed.

Applying ∣f ðtÞ ∣ ≤∥f ∥2ð1 + t2Þ, we have

I3 = sup
t∈ t0,∞½ Þ

∣f tð Þ ∣
1 + t2ð Þ1+κ

≤ sup
t∈ t0,∞½ Þ

∥f ∥2 1 + t2
� �

1 + t2ð Þ1+κ
≤

∥f ∥2
1 + t20
� �κ :

ð85Þ

Let ε > 0. By Lemma 5, there exists N1 ∈ℕ, such that for
all n >N1:

fk k2 Spn ,qn ,λn,α,β 1 + u2 ; t
� ���� ���

1 + t2ð Þ1+κ
≤

∥f ∥2
1 + t2ð Þ1+κ

1 + t2
� �

+ ε

3∥f ∥2

� �

≤
∥f ∥2
1 + t2ð Þκ + ε

3 :

ð86Þ

Hence

lim
n→∞

∥Spn ,qn ,λn,α,β u2 ; t
� �

− t2∥2 ≤
n½ �2pn ,qn

n½ �pn ,qn + β
� �2 − 1

�������
������� sup
t∈ 0,∞½ Þ

t2

1 + t2
+

n½ �pn ,qn
n½ �pn ,qn + β

� �2
� pn−1n + 2

λ + 1½ �pn ,qn
+ 2α

 !
sup

t∈ 0,∞½ Þ

t
1 + t2

+ 1
n½ �pn ,qn + β

� �2
� 1

2λ + 1½ �pn ,qn
+ 2α

λ + 1½ �pn ,qn
+ α2

 !
sup

t∈ 0,∞½ Þ

1
1 + t2

⟶ 0, asn⟶∞:

ð82Þ

sup
t∈ 0,∞½ Þ

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ���

1 + t2ð Þ1+κ
≤ sup

t∈ 0,t0½ Þ

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ���

1 + t2ð Þ1+κ
+ sup

t∈ t0,∞½ Þ

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
��� ���

1 + t2ð Þ1+κ

≤ ∥Spn ,qn ,λn,α,β f ; tð Þ − f ∥ 0,t0½ Þ+∥f ∥2 sup
t∈ t0,∞½ Þ

Spn ,qn ,λn,α,β 1 + u2 ; t
� ���� ���

1 + t2ð Þ1+κ

+ sup
t∈ t0,∞½ Þ

∣f tð Þ ∣
1 + t2ð Þ1+κ

≔ I1 + I2 + I3:

ð84Þ
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fk k2 sup
t∈ t0,∞½ Þ

Spn ,qn ,λn,α,β 1 + u2 ; t
� ���� ���

1 + t2ð Þ1+κ
≤

∥f ∥2
1 + t20
� �κ + ε

3 ,∀n ≥N1:

ð87Þ

Thus

I2 + I3 <
2∥f ∥2
1 + t20
� �κ + ε

3 ,∀n ≥N1: ð88Þ

Next, for sufficiently large t0 such that ∥f ∥2/ð1 + t20Þκ < ε/6
. Then, I2 + I3 < 2ε/3, ∀n ≥N1. Applying Corollary 13, there
exists N2 ∈ℕ, such that for all n >N2,

Spn ,qn ,λn,α,β f ; tð Þ − f
��� ���

0,t0½ Þ
< ε

3 : ð89Þ

Let N =max fN1,N2g. Combining (86), (88), and (89),
we have

sup
t∈ 0,∞½ Þ

Spn ,qn ,λn,α,β f ; tð Þ − f tð Þ
1 + t2ð Þ1+κ

< ε,∀n ≥N: ð90Þ

Hence, the proof of Theorem 21 is completed.
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In this paper, a generalized algorithm to develop a class of approximating binary subdivision schemes is presented. The proposed
algorithm is based on three-point approximating binary and four-point interpolating binary subdivision schemes. It contains a
parameter which classifies members of the new class of subdivision schemes. A set of efficient properties, for instance,
polynomial generation and reproduction, support, continuity, and Hölder continuity, is discussed. Moreover, applications of the
proposed subdivision schemes are given in order to demonstrate their variety, flexibility, and visual performance.

1. Introduction

Subdivision is a competent way of producing smooth curves
or surfaces in geometric modeling and computer graphics. It
repeatedly refines the initial polygonal shape. After each split
average step, we get closer to the limit curve, which is the
limit of an infinite series. A nice property of subdivision
schemes is that they are simple and local, which means that
local change in initial data will only have a local effect in
the resulting object. Subdivision schemes have become cele-
brated because of their simplicity and efficiency. There are
generally two main categories of subdivision schemes: inter-
polatory and approximating. For interpolating subdivision
schemes, limit curve always passes through initial control
points while for approximating subdivision schemes it may

or may not. Subdivision schemes play an integral role in
computer graphics due to their wide range of applications
in many fields such as engineering, medical science, space
science, graphic visualization, and image processing. Differ-
ential equations are used for mathematical modeling of many
phenomena. Different techniques are being used to solve
boundary value problems [1] and nonlinear problems [2].
Nowadays, subdivision schemes are also becoming a popular
tool to numerically solve boundary value problems [3]. Sub-
division algorithms are also a major field in many multiscale
techniques applied in data compression. In some applica-
tions, the given data need not be reproduced at each step of
the subdivision process, which needs the applications of sub-
division schemes. Several researchers in the area of continu-
ous geometry have been established classical subdivision
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schemes for various kinds of initial control data. In geometric
modeling and engineering, practical applications of subdivi-
sion curves are restricted due to their shortcomings, and to
overcome these shortcomings, a lot of work has been carried
out [4–17].

Deslauriers and Dubuc [18] presented a family of inter-
polating binary subdivision schemes. They used Lagrange
interpolating polynomial for construction of schemes. Hor-
man and Sabin (HS) [19] proposed a family of binary subdi-
vision schemes having cubic precision. Some members of the
HS family are interpolating and some are approximating.
Mustafa et al. [20] offered a family of binary subdivision
schemes which has alternating primal and dual symbols.
Ashraf et al. [21] discussed a family of binary subdivision
schemes based on Lane-Riesenfeld algorithm. Members of
the proposed family have quintic precision. Mustafa and Bari
[22] developed a family of univariate subdivision schemes for
curve generation and data fitting. Asghar and Mustafa [23]
presented a unified framework of stationary and nonstation-
ary subdivision schemes. Keeping in view this practice, we
present a generalized algorithm to develop a new class of
approximating binary subdivision schemes. Ghaffar et al.
[24–29] constructed geometric continuity conditions for the
construction of free-form generalized subdivision curves
with single shape parameter. These free-form complex shape
adjustable generalized curves can be obtained by using
shape-adjustable generalized subdivision schemes. These
newly proposed approaches not only take over the benefits
of classical subdivision curve and surface schemes but also
resolve the issue of shape adjustability of subdivision curves
and surfaces with the help of tension control shape parame-
ters. They modeled some complex curves and surfaces using
higher continuity conditions. The proposed masks of the
schemes provide an alternative approach to generate the
complex curves using higher continuity conditions with sim-
ple and straightforward calculation for the proposed algo-
rithm because they are blended with linear polynomials
rather than trigonometric functions. In 2020, Ashraf et al.
[17, 30, 31] proposed a new approach using the generalized
hybrid subdivision curve with shape parameters to solve the
problem in construction of some symmetric curves and sur-
faces. These curves are easily modified by the changing the
values of shape parameters.

In this paper, we offer a Lane-Riesenfeld-like algorithm
to derive a class of binary approximating subdivision
schemes. Our algorithm is based on the well-known four-
point interpolating binary subdivision scheme [18], which
is C1 continuous, and three-point approximating binary
subdivision scheme [32], which has C3 continuity. Consider-
ing ϕ smoothing stages as in the Lane-Riesenfeld algorithm,
our proposed algorithm allows us to derive a class of univar-
iate subdivision schemes. In fact, each member of the pro-
posed class is enumerated by ϕ, and higher values of ϕ give
schemes with wider masks and support, higher continuity,
higher Holder regularity, and higher degree of polynomial
generation. The first member of the proposed class (corre-
sponding to ϕ = 0) coincides with the three-point approxi-
mating binary subdivision scheme [32]. The proposed class
of schemes generates schemes of higher continuities and

visually more smooth limit curves as compared to existing
families of schemes. The content of the paper is structured
as follows. In Section 2, fundamental definitions and con-
cepts are given. Section 3 presents a generalized algorithm
for construction of new class of subdivision schemes. Section
4 is devoted for properties of proposed schemes, such as
continuity, Hölder continuity, and support of basic limit
function. Geometrical analysis and some beautiful examples
of limit curve are given in Section 5. Section 6 presents a
summary of the paper.

2. Preliminaries

Let the initial data be given by a set of control points
G0 = fg0i ∈ℝ, i ∈ℤg, and the set of control points at
refinement level hðh ≥ 0, h ∈ℕÞ is given by Gh = fgh

i ∈ℝ,
i ∈ℤg. Define Gh+1 = fgh+1i ∈ℝ, i ∈ℤg recursively by the
following binary refinement rules:

gh+1
i = 〠

k∈ℤ
bi−2kg

h
i ,  i ∈ℤ, ð1Þ

where the finite set B = fbi, i ∈ℤg is called mask. The
recursive algorithm associated with the repeated applica-
tion of (1) is called subdivision scheme and denoted by
S. The Laurent polynomial or symbol of the scheme S is
defined as

B zð Þ =〠
l∈ℤ

blz
l: ð2Þ

Theorem 1 (see [33]). If a binary scheme S is convergent,
then the mask B = fbi, i ∈ℤg satisfies

〠
l∈ℤ

b2l =〠
l∈ℤ

b2l+1 = 1: ð3Þ

The symbol of a convergent scheme can be also be writ-
ten as

B zð Þ = Beven z2
� �

+ zBodd z2
� �

, ð4Þ

with BevenðzÞ =∑l∈ℤb2lz
l and BoddðzÞ =∑l∈ℤb2l+1z

l.

Theorem 2 (see [33]). A binary scheme S associated with the
symbol

B zð Þ = z + 1ð Þm+1

2m
L zð Þ ð5Þ

is said to be Cm continuous if the subdivision scheme associ-
ated with the symbol LðzÞ is contractive.

Proposition 3 (see [34]). A binary scheme S generates polyno-
mials of degree m if and only if

B 1ð Þ = 2, B −1ð Þ = 0 and B jð Þ −1ð Þ = 0, j = 1, 2,⋯,m: ð6Þ
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Proposition 4 (see [34]). A binary scheme S reproduces poly-
nomials of degree n with respect to parametrization
fehj = ðj + τÞ/2hg

j∈ℤ
with τ = BðjÞð1Þ/2, if and only if it gener-

ates polynomials of degree n and

B jð Þ 1ð Þ = 2
Yj−1
i=0

τ − ið Þ, j = 1, 2,⋯, n: ð7Þ

3. Algorithm for Construction of Schemes

The well-known four-point interpolating binary subdivision
scheme [18] is given by

gh+12i = ghi ,

gh+12i+1 = −
1
16g

h
i−1 +

9
16 g

h
i +

9
16g

h
i+1 −

1
16 g

h
i+2:

8<
: ð8Þ

By considering (4), the symbol of the even part of scheme
(8) is as follows:

Peven zð Þ = z + 1
2

� �
−z2 + 10z − 1

8

� �
: ð9Þ

Now, consider the three-point approximating binary
subdivision scheme [32]

gh+12i = 1
16 g

h
i−1 +

10
16g

h
i +

5
16 g

h
i+1,

gh+12i+1 =
5
16g

h
i−1 +

10
16 g

h
i +

1
16g

h
i+1:

8>><
>>: ð10Þ

The symbol of scheme (10) is given by

T zð Þ = 2 z + 1
2

� �5
: ð11Þ

Let us now present the class of subdivision schemes,
namely, R = fRφ : φ ≥ 0, φ ∈ℕg. The symbol of the scheme
Rφ is obtained by applying symbol of the even part of scheme
(8) φ-times on symbol of scheme (10) and given by

Rφ zð Þ = Peven zð Þð ÞφT zð Þ: ð12Þ

So by (9), (11), and (12), we have

Rφ zð Þ = 2 z + 1
2

� �φ+5 −z2 + 10z − 1
8

� �φ

, ð13Þ

where fφ ≥ 0, φ ∈ℕg. The members of the class R of subdi-
vision schemes can be categorized by varying φ = 0, 1, 2,⋯,
in (13). By taking φ = 0 in (13), we get three-point approxi-
mating binary scheme [32]. Table 1 presents mask of some
members of the proposed class.

4. Properties of the Proposed Schemes

In this section, we present some desirable properties of class
R of subdivision schemes, comprising of polynomial genera-
tion and reproduction, support, continuity, and Hölder
continuity.

4.1. Polynomial Generation and Reproduction. If a subdivi-
sion scheme generates polynomials of degree up to dG, then
the polynomial generation degree of the scheme is dG. Also,
if the initial data G0 = fg0i , i ∈ℤg is sampled from a polyno-
mial P̂ of degree dR and the scheme yields precisely the same
polynomial in the limit, then the reproduction degree dR is
the maximal degree of polynomials that can be reproduced
by the scheme. Clearly, the reproduction degree is always less
than or equal to the generation degree. Now, we establish few
results about polynomial generation and polynomial repro-
duction of the proposed subdivision schemes.

Proposition 5. Rφ -scheme generates space of polynomials up
to degree φ + 4.

Proof. Since symbol of Rφ -scheme satisfies the conditions

Rφ 1ð Þ = 2, Rφ −1ð Þ = 0 andRj
φ −1ð Þ = 0, j = 1, 2,⋯, φ + 4, ð14Þ

so by Proposition 3, Rφ-scheme has φ + 4 polynomial gener-
ation degree.

In the view of Conti and Hormann [35], the standard
parametrization ehj = j/2h at level h ∈ℕ is not appropriate
to analyze a subdivision scheme to reproduce space of
polynomials, and the relative shift τh = ðeh0 − eh+10 Þ/2h+1

Table 1: Mask of the Rφ schemes corresponding to different values of parameter φ.

φ Scheme Mask

0 3-point
1
16 1, 5, 10,10,5, 1½ �

1 5-point
1
256 −1, 4, 44,124,170,124,44,4,−1½ �

2 6-point
1

4096 1,−13,−17,309,1338,2478,2478,1338,309,−17,−13, 1½ �

3 8-point
1

65536 −1, 22,−91,−580,1303,12362,31557,41928,31557,12362, 1303,−580,−91, 22,−1½ �
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between the parameterizations at iteration level h and h
+ 1 is important for polynomial reproduction of degree
dR ≥ 1. By applying a more suitable parametrization ehj =
ðj + τφÞ/2h with shift parameter τφ = Rð1Þ

φ ð1Þ/2 = ð3φ + 5Þ/2,
we have the following result.

Proposition 6. Rφ-scheme reproduces linear polynomial with

respect to parametrization fehj = ðj + τφÞ/2hgj∈ℤ with shift τφ
= ð3φ + 5Þ/2.

Proof. It can be easily verified that

R 1ð Þ
φ 1ð Þ = 2τφ = 3φ + 5,

R jð Þ
φ 1ð Þ = 2

Yj−1
i=0

τφ − j
� �

, j = 0, 1:
ð15Þ

Thus, by Propositions 4 and 5, Rφ-scheme reproduces
polynomial of degree one.

Table 2 presents the degree of polynomial generation and
reproduction of some of the proposed Rφ-schemes. It is
observed that the degree of polynomial generation is increas-
ing linearly with the value of parameter φ.

4.2. Support. The support of a subdivision scheme quantifies
how much one vertex brought change in its neighboring ver-
tices, and its measure represents local support of the limit
curve. Basic limit function (BLF) of a convergent subdivision
scheme is a limit function of the initial data G0 = fg0i , i ∈ℤg
which is of the form

g0i =
1, i = 0,
0, i ≠ 0:

(
ð16Þ

By following [36], we determine that support of BLF of
Rφ-scheme is 3φ + 5. BLF generated by the proposed R0 and
R1 schemes are demonstrated in Figure 1.

4.3. Continuity Analysis. Continuity of a subdivision scheme
is an essential parameter on which efficiency of a scheme

depends. To investigate continuity of our proposed class,
we follow the approach as given in [33] and use the symbol
of Rφ-scheme.

Theorem 7. The Rφ -scheme has Cφ+3−vφ continuity, where φ
= 1, 2, 3,⋯, and vφ = bðφ − 1Þ/2c (floor function).

Proof. The symbol of Rφ -scheme (13) can be simplified as

Rφ zð Þ = z + 1ð Þφ+4−vφ
2φ+3−vφ

rφ zð Þ, ð17Þ

with

rφ zð Þ = z + 1
2

� �1+vφ −z2 + 10z − 1
8

� �φ

, φ = 1, 2, 3,⋯,

ð18Þ

where vφ = bðφ − 1Þ/2c:
Let Srφ be the subdivision scheme associated with the

symbol rφðzÞ. The scheme Srφ is contractive provided that

kSrφk∞ =max f∑l∈ℤjr2lj,∑l∈ℤjr2l+1jg < 1. So, by Theorem 2,

Rφ-scheme has Cφ+3−Vφ continuity.
In Theorem 7, we discuss continuity of Rφ-scheme for

φ = 1, 2, 3,⋯. It is to be noted that R0-scheme has C3 con-
tinuity which is analyzed in [32].

Corollary 8. The R1-scheme has C4 continuity.

Proof. By letting φ = 1, the symbol of R1-scheme from (17)
and (18) is given by

R1 zð Þ = z + 1ð Þ5
24 r1 zð Þ, ð19Þ

with

r1 zð Þ = 1
16 −z3 + 9z2 + 9z − 1
� �

: ð20Þ

Let Sr1 be the scheme corresponding to the symbol r1ðzÞ.
The scheme Sr1 is contractive, as kSr1k∞ =max f10/16, 10/
16g = ð10/16Þ < 1. So, by Theorem 7, R1-scheme has C4

continuity.

Similarly, for different values of parameter φ, continuity
of Rφ-scheme can be easily computed by using Theorem 7.

4.4. Hölder Continuity Analysis. Continuity of a subdivision
scheme is related to the existence of derivative of subdivision
curve. For example, subdivision curve is said to be Cm contin-
uous if the mth derivative of the curve exists and is continu-
ous everywhere in the given interval. On the other hand,

Table 2: Support, degree of polynomial generation (dG), degree of
polynomial reproduction (dR), continuity (C), and HC of Rφ

-scheme for φ = 0, 1, 2, and 3.

φ Support dG dR C
Hölder

continuity
LB UB

0 5 4 1 3 4 4

1 8 5 1 4 4.678 4.678

2 11 6 1 5 5.299 5.332

3 14 7 1 5 5.871 5.968
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Hölder continuity (HC) of a subdivision scheme tells how
continuous the highest continuous derivative is. Therefore,
it is also important to find HC of subdivision schemes along
with continuity. Lower bound (LB) on HC of the proposed
class is calculated by using an interesting property of symbol
of Rφ-scheme, i.e., odd coefficients in RφðzÞ are nonnegative
and even coefficients are nonpositive.

Theorem 9. LB on the HC of Rφ-scheme is φ + 5 − log2
ðð3/2Þφ + 1Þ, where φ = 0, 1, 2,⋯.

Proof. By (13), symbol of Rφ -scheme can be expressed as

Rφ zð Þ = z + 1
2

� �φ+5
Uφ zð Þ, ð21Þ

where UφðzÞ = ðaðzÞÞφbðzÞ, aðzÞ = ð−z2 + 10z − 1Þ/8, and b
ðzÞ = 2. So LB on HC of Rφ-scheme is given by φ + 5 −
log2kUφk. As we know kUφk =max ðu⋄, u⋄Þ, where u⋄ is
the sum of odd and u⋄ is the sum of even coefficients of
UφðzÞ. We can write coefficients of UφðzÞ in the following
manner:

u⋄

u⋄

 !
=

a⋄ a⋄

a⋄ a⋄

 !φ
b⋄

b⋄

 !
: ð22Þ

Thus, we have

u⋄

u⋄

 !
=

5
4 −

1
4

−
1
4

5
4

0
BB@

1
CCA

φ

0
2

 !
: ð23Þ

By eigenvalue decomposition, we have

u⋄

u⋄

 !
= 1
2

−1 1
1 1

 ! 3
2 0

0 1

0
@

1
A

φ
−1 1
1 1

 !
0
2

 !
, ð24Þ

which implies that

u⋄

u⋄

 !
=

−
3
2

� �φ

+1

3
2

� �φ

+1

0
BBB@

1
CCCA

φ

: ð25Þ

Thus, we have

Uφ

�� �� = 3
2

� �φ

+ 1: ð26Þ

Consequently, LB on HC of Rφ-scheme is φ + 5 − log2
ðð3/2Þφ + 1Þ, where φ = 0, 1,⋯.

Upper bound (UB) on HC of Rφ-scheme is as follows.

Theorem 10. UB on HC of Rφ-scheme is φ + 5 − log2ðζφÞ,
where φ = 0, 1,⋯, and ζφ be the joint spectral radius of the
matrices Q0 and Q1 which are obtained by using symbol of
Rφ -scheme.

Proof. By (13), symbol of Rφ -scheme can be expressed as

Rφ zð Þ = z + 1
2

� �φ+5
Qφ zð Þ, ð27Þ

where QφðzÞ = 2ðð−z2 + 10z − 1Þ/8Þφ. Let q0, q1,⋯, qd be the
nonzero real coefficients of QφðzÞ. Also, Q0 and Q1 are the
matrices of order d × d defined by

–3 –2 –1 0 1 2 3

0.2

0.4

0.6

0.8

1

(a)

–3 –2 –1 0 1 2 3

0.2

0.4

0.6

0.8

1

(b)

Figure 1: (a, b) Basic limit functions generated by the proposed schemes R0 and R1, respectively.
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Original
�e scheme R0 (C3)
�e scheme R1 (C4)
�e scheme R2 (C5)

Figure 2: Behavior of the proposed R0, R1, and R2 schemes after
three iterations.

Q0ð Þmn = qd+m−2n, and Q1ð Þmn = qd+m−2n+1, ð28Þ

where m, n = 1, 2,⋯, d:
Let us denote joint spectral radius of both matrices Q0

and Q1 by ζφ. Then, by Rioul [37] and Dyn [33], UB on
HC of Rφ-scheme is given by φ + 5 − log2ðζφÞ.

For different values of parameter φ, upper and lower
bounds on the HC of Rφ-schemes can be straightforwardly
computed by using Theorems 9 and 10. Table 2 summarizes
the continuity and HC of the proposed class of subdivision
schemes. It clearly indicates that as we go up for higher values
of parameter φ, continuity and HC of Rφ-schemes also
increase. Moreover, newly generated Rφ-schemes have higher
order of continuity and HC as compared to their parent sub-
division schemes.

5. Geometrical Analysis of Proposed Schemes

The shape of an object is generally controlled by a control
polygon. The purpose of applying a subdivision scheme on
the control polygon is to generate visually smooth curves.
Figure 2 presents the behavior of some of the proposed
schemes. R0, R1, and R2 schemes are applied on the same ini-
tial polygon, and limit curves are obtained after three itera-
tions. It is evident that the proposed class offers more
choices to meet different designing needs.

5.1. Subdivision Rules for Endpoints. For closed curves, the
subdivision rules of R0, R1, R2, and R3 schemes can be defined
by their corresponding Laurent polynomial from (13). The
limit curves generated by these schemes are C3, C4, C5, and
C5 continuous, respectively. In case of dealing with open
polygons, these rules can be used to improve the interior of
the curve, while it is quite troublesome to improve the first
and last edges with the help of subdivision rules of the origi-
nal proposed schemes. So to handle the endpoints of an open
polygon, we need to supply additional points which are not
usually required in case of a closed polygon. Let gh

0g
h
1 be the

first edge of the open polygon fGh = gh
k : k = 0,⋯, 2hmg.

Now, we define an additional control point gh−1, as an extrapo-
latory rule in the nonrefined polygon Gh, and then we can
compute the point gh+11 through the proposed schemes by
applying subdivision to the subpolygon fgh−1, gh0, gh1, gh

2g. We
select the point as gh

−1 = 2gh0 − gh1. The first edge of an open
control polygon fGh = ghk : k = 0, 1,⋯, 2hmg can be refined
by using the following rules.

(i) Refinement rules of the proposed three-point
scheme R0 are given by

gh+10 = 5
4g

h
0 −

1
4g

h
1,

gh+1
1 = 3

4g
h
0 +

1
4g

h
1:

ð29Þ

(ii) Refinement rules of the proposed five-point scheme
R1 are given by

gh+1
0 = 380

256g
h
0 −

120
256g

h
1 −

4
256 g

h
2,

gh+1
1 = 255

256g
h
0 +

2
256g

h
1 −

1
256 g

h
2,

gh+12 = 132
256g

h
0 +

120
256g

h
1 +

4
256g

h
2,

gh+13 = 42
256g

h
0 +

171
256 g

h
1 +

44
256g

h
2 −

1
256g

h
3:

ð30Þ

(iii) Refinement rules of the proposed six-point scheme
R2 are given by

gh+1
0 = 3070

4096 g
h
0 +

1029
4096g

h
1 −

4
4096g

h
2 +

1
4096 g

h
3,

gh+1
1 = 1306

4096 g
h
0 +

2495
4096g

h
1 +

308
4096g

h
2 −

13
4096 g

h
3,

gh+12 = 283
4096 g

h
0 +

2491
4096 g

h
1 +

1338
4096 g

h
2 −

17
4096 g

h
3 +

1
4096 g

h
4,

gh+13 = −
15
4096 g

h
0 +

1337
4096 g

h
1 +

2478
4096 g

h
2 +

309
4096 g

h
3 −

13
4096g

h
4:

ð31Þ
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(a) (b)

Figure 3: Application of R0-scheme: (a) initial polygon and (b) the limit curve generated by R0-scheme at the third subdivision level.

(a) (b)

Figure 4: Application of R0 -scheme: (a) initial polygon and (b) the limit curve generated by R0-scheme at the third subdivision level.

(a) (b)

Figure 5: Application of R1-scheme: (a) initial polygon and (b) the limit curve generated by R1-scheme at the third subdivision level.
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(a) (b)

Figure 6: Application of R1 -scheme: (a) initial polygon and (b) the limit curve generated by R1 -scheme at the third subdivision level.

(a) (b)

Figure 7: Application of R2-scheme: (a) initial polygon and (b) the limit curve generated by R2-scheme at the third subdivision level.

(a) (b)

Figure 8: Application of R3 -scheme: (a) initial polygon and (b) the limit curve generated by R3 -scheme at the third subdivision level.
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Original curve
Limit curve

(a)

Original curve
Limit curve

(b)

Figure 9: Application of R3 -scheme: (a, b) the initial polygon along with sharp features of limit curve generated by R3-scheme at the third
subdivision level.

(a) 3-point scheme [38] (b) 4-point scheme [18] (c) 5-point scheme [19]

(d) R0-scheme (e) R1-scheme (f) R2-scheme

Figure 10: Comparison of the existing and proposed subdivision schemes at the third subdivision level.
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(iv) Refinement rules of the proposed eight-point
scheme R3 are given by

gh+1
0 = 65066

65536 g
h
0 +

1028
65536 g

h
1 −

580
65536 g

h
2 +

22
65536 g

h
3,

gh+11 = 33976
65536 g

h
0 +

30254
65536 g

h
1 +

1394
65536 g

h
2 −

90
65536 g

h
3

−
1

65536 g
h
4,

gh+12 = 11246
65536 g

h
0 −

42508
65536 g

h
1 +

12340
65536 g

h
2 −

580
65536 g

h
3

+ 22
65536 g

h
4,

gh+13 = 1119
65536 g

h
0 +

31648
65536 g

h
1 +

31558
65536 g

h
2 +

1303
65536 g

h
3

−
91

65536 g
h
4 −

1
65536 g

h
5,

gh+14 = 536
65536 g

h
0 −

12340
65536 g

h
1 +

41928
65536 g

h
2 +

12362
65536 g

h
3

−
580
65536 g

h
4 +

22
65536 g

h
5,

gh+1
5 = −

93
65536 g

h
0 +

1304
65536 g

h
1 +

31557
65536 g

h
2 +

31557
65536 g

h
3

+ 1303
65536 g

h
4 −

91
65536 g

h
5 −

1
65536 g

h
6:

ð32Þ

Similarly, we can refine the final edges of the open
polygon.

5.2. Applications and Comparison. Geometrical performance
of R0, R1, R2, and R3 schemes is depicted through several
examples. The proposed schemes have good continuity and
present smooth limit curves. Figures 3(a) and 4(a) present
initial control polygons of cap and elephant, respectively,
while Figures 3(b) and 4(b) are the limit curves obtained by
applying three iterations of R0-scheme on these initial poly-
gons. Figures 5(a) and 6(a) present initial control polygons
of flower and bird, respectively, while Figures 5(b) and 6(b)
are the limit curves obtained by applying three iterations of
R1-scheme on these initial polygons. Figures 7(a) and 8(a)
present initial control polygons of face of girls, while
Figures 7(b) and 8(b) are the limit curves obtained by apply-
ing three iterations of R2-scheme on these initial polygons,
respectively.

Figure 9 represents the initial polygon along with sharp
features of limit curve generated by R3-scheme at the third
subdivision level. Figures 10 and 11 present comparison of
some existing subdivision schemes (3-point scheme [38], 4-
point scheme [18], and 5-point scheme [19]) with the pro-
posed subdivision schemes (R0, R1, and R2 schemes). We have
chosen two different initial polygons, and limit curves are gen-
erated after three subdivision levels. It is clear from the figures
that the proposed schemes generate smooth limit curves.

6. Conclusion

Subdivision is an efficient way of constructing smooth curves
or surfaces in geometric modeling and computer graphics. In

(a) 3-point scheme [38] (b) 4-point scheme [18] (c) 5-point scheme [19]

(d) R0-scheme (e) R1-scheme (f) R2-scheme

Figure 11: Comparison of the existing and proposed subdivision schemes at the third subdivision level.

10 Journal of Function Spaces



this paper, we have presented an elegant way of constructing
a class of approximating binary subdivision schemes by using
two well-known binary subdivision schemes. Several exam-
ples are provided to illustrate that the proposed schemes give
wide choice to geometric designers for generation of smooth
geometric models as per their own needs. Comparison with
some existing schemes is also given. Moreover, several
important properties like polynomial reproduction and gen-
eration, support of BLF, continuity, and HC of the proposed
scheme are discussed. Geometrical analysis of the limit curve
is also carried out.
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The problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708. A derangement is a permutation
that has no fixed points, and the derangement number Dn is the number of fixed point free permutations on an n element set.
Furthermore, the derangement polynomials are natural extensions of the derangement numbers. In this paper, we study the
derangement polynomials and numbers, their connections with cosine-derangement polynomials and sine-derangement
polynomials, and their applications to moments of some variants of gamma random variables.

1. Introduction and Preliminaries

The problem of counting derangements was initiated by
Pierre Rémond de Montmort in 1708 (see [1, 2]). A derange-
ment is a permutation of the elements of a set, such that no
element appears in its original position. In other words, a
derangement is a permutation that has no fixed points. The
derangement number Dn is the number of fixed point free
permutations on an nðn ≥ 1Þ element set.

The aim of this paper is to study derangement polyno-
mials and numbers, their connections with cosine-
derangement polynomials and sine-derangement polyno-
mials, and their applications to moments of some variants of
gamma random variables. Here, the derangement polynomials
DnðxÞ are natural extensions of the derangement numbers.

The outline of our main results is as follows. We show a
recurrence relation for derangement polynomials. Then, we
derive identities involving derangement polynomials, Bell
polynomials, and Stirling numbers of both kinds. In addition,
we also have an identity relating Bell polynomials, derange-
ment polynomials, and Euler numbers. Next, we introduce
the two variable polynomials, namely, cosine-derangement
polynomials DðcÞ

n ðx, yÞ and sine-derangement polynomials
DðsÞ
n ðx, yÞ, in a natural manner by means of derangement

polynomials. We obtain, among other things, their explicit
expressions and recurrence relations. Lastly, in the final sec-
tion, we show that if X is the gamma random variable with
parameters 1, 1, then DnðpÞ,DðcÞ

n ðp, qÞ,DðsÞ
n ðp, qÞ are given

by the “moments” of some variants of X.
In the rest of this section, we recall the derangement num-

bers, especially their explicit expressions, generating function,
and recurrence relations. Also, we give the derangement poly-
nomials and give their explicit expressions. Then, we recall the
gamma random variable with parameters α, λ along with their
moments and the Bell polynomials. Finally, we give the defini-
tions of the Stirling numbers of the first and second kinds.

As before, let Dn denote the derangement number for n
≥ 1, and let D0 = 1. Then, the first few derangement numbers
Dn ðn ≥ 0Þ are 1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496,
1334961, ⋯. For n ≥ 0, the derangement numbers are given
by [3–5]

Dn = n!−
n

1

 !
n − 1ð Þ!+

n

2

 !
n − 2ð Þ!−

n

3

 !
n − 3ð Þ!+⋯+ −1ð Þn

n

n

 !
0!

= 〠
n

k=0

n

k

 !
n − kð Þ! −1ð Þk = n!〠

n

k=0

−1ð Þk
k!

:

ð1Þ
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From (1), we note that [1–4, 6, 7]

〠
∞

n=0
Dn

tn

n!
= 1
1 − t

e−t: ð2Þ

By (2), we get

e−t = 1 − tð Þ〠
∞

n=0
Dn

tn

n!
= 1 + 〠

∞

n=1
Dn − nDn−1ð Þ t

n

n!
: ð3Þ

From (3), we can easily derive the following recurrence
relation [5, 8–11]:

−1ð Þn =Dn − nDn−1, n ≥ 1ð Þ: ð4Þ

Now, we consider the derangement polynomials which
are given by [10]

e−t

1 − t
ext = 〠

∞

n=0
Dn xð Þ t

n

n!
: ð5Þ

From (5), we have

〠
∞

n=0
Dn xð Þ t

n

n!
= 1
1 − t

e−text = 〠
∞

n=0
〠
n

l=0

n

l

 !
Dlx

n−l

 !
tn

n!
:

ð6Þ

By comparing the coefficients on both sides of (6), we get
[10]

Dn xð Þ = 〠
n

l=0

n

l

 !
Dlx

n−l , n ≥ 0ð Þ: ð7Þ

On the other hand,

e−t

1 − t
ext = 1

1 − t
e x−1ð Þt = 〠

∞

l=0
tl 〠

∞

m=0
x − 1ð Þm tm

m!

= 〠
∞

n=0
n! 〠

n

m=0

x − 1ð Þm
m!

 !
tn

n!
:

ð8Þ

From (6), (7), and (8), we have

Dn xð Þ = n! 〠
n

m=0

x − 1ð Þm
m!

= 〠
n

l=0

n

l

 !
Dlx

n−l , n ≥ 0ð Þ:

ð9Þ

A continuous random variable X whose density function
is given by [12–14]

f xð Þ = λe−λx
λxð Þα−1
Γ αð Þ , if x ≥ 0,

0, if x < 0,

8><
>: ð10Þ

for some λ > 0 and α > 0 is said to be the gamma random
variable with parameter α, λ which is denoted by X ~ Γðα, λÞ.

For X ~ Γðα, λÞ, the n-th moment of X is given by

E Xn½ � = λ

Γ αð Þ
ð∞
0

xne−λx λxð Þα−1dx

= 1
λnΓ αð Þ

ð∞
0

tn+α−1e−tdt

= Γ α + nð Þ
λnΓ αð Þ = α + nð Þ⋯ α + 1ð Þα

λn
:

ð11Þ

It is well known that the Bell polynomials are defined by
[15]

ex et−1ð Þ = 〠
∞

n=0
Beln xð Þ t

n

n!
: ð12Þ

When x = 1, Beln = Belnð1Þðn ≥ 0Þ are called the Bell
numbers.

The Stirling numbers of the first kind are defined as [16,
17]

xð Þn = 〠
n

l=0
S1 n, lð Þxl, n ≥ 0ð Þ, ð13Þ

where ðxÞ0 = 1, ðxÞn = xðx − 1Þ⋯ ðx − n + 1Þðn ≥ 1Þ.
As an inversion formula of (13), the Stirling numbers of

the second kind are defined by [16–18]

xn = 〠
n

l=0
S2 n, lð Þ xð Þl n ≥ 0ð Þ: ð14Þ

2. Derangement Polynomials and Numbers

From (5), we have

e x−1ð Þt = 〠
∞

n=0
Dn xð Þ t

n

n!

 !
1 − tð Þ = 1 + 〠

∞

n=1
Dn xð Þ − nDn−1 xð Þð Þ t

n

n!
:

ð15Þ

On the other hand,

e x−1ð Þt = 〠
∞

n=0

x − 1ð Þn
n!

tn = 1 + 〠
∞

n=1

x − 1ð Þn
n!

tn: ð16Þ

Therefore, by (15) and (16), we obtain the following
lemma.

Lemma 1. For n ≥ 1, we have

Dn xð Þ − nDn−1 xð Þ = x − 1ð Þn: ð17Þ
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Replacing t by 1 − et in (5), we get

e 1−xð Þ et−1ð Þ = et 〠
∞

l=0
Dl xð Þ 1

l!
1 − et
� �l

= 〠
∞

m=0

tm

m!
〠
∞

l=0
−1ð ÞlDl xð Þ〠

∞

j=l
S2 j, lð Þ t

j

j!

= 〠
∞

m=0

tm

m!
〠
∞

j=0
〠
j

l=0
−1ð ÞlDl xð ÞS2 j, lð Þ t

j

j!

 

= 〠
∞

n=0
〠
n

j=0
〠
j

l=0

n

j

 !
−1ð ÞlDl xð ÞS2 j, lð Þ

 !
tn

n!
:

ð18Þ

From (18), we have

Beln 1 − xð Þ = 〠
n

j=0
〠
j

l=0

n

j

 !
−1ð ÞlDl xð ÞS2 j, lð Þ, n ≥ 0ð Þ:

ð19Þ

It is easy to show that

1
et
e 1−xð Þ et−1ð Þ = 〠

∞

l=0

−1ð Þl
l!

tl 〠
∞

m=0
Belm 1 − xð Þ t

m

m!

= 〠
∞

n=0
〠
n

m=0

n

m

 !
Belm 1 − xð Þ −1ð Þn−m

 !
tn

n!
:

ð20Þ

Replacing t by log ð1 − tÞ in (20), we get

1
1 − t

e−text = 〠
∞

l=0
〠
l

m=0

l

m

 !
Belm 1 − xð Þ −1ð Þl−m 1

l!
log 1 − tð Þð Þl

= 〠
∞

l=0
〠
l

m=0

l

m

 !
Belm 1 − xð Þ −1ð Þl−m 〠

∞

n=l
−1ð ÞnS1 n, lð Þ t

n

n!

= 〠
∞

n=0
〠
n

l=0
〠
l

m=0

l

m

 !
Belm 1 − xð Þ −1ð Þn−l−mS1 n, lð Þ

 !
tn

n!
:

ð21Þ

From (5) and (21), we have

Dn xð Þ = 〠
n

l=0
〠
l

m=0

l

m

 !
Belm 1 − xð Þ −1ð Þn−m−lS1 n, lð Þ, n ≥ 0ð Þ:

ð22Þ

Therefore, by (19) and (22), we obtain the following
theorem.

Theorem 2. For n ≥ 0, we have

Beln 1 − xð Þ = 〠
n

j=0
〠
j

l=0

n

j

 !
−1ð ÞlDl xð ÞS2 j, lð Þ,

Dn xð Þ = 〠
n

l=0
〠
l

m=0

l

m

 !
Belm 1 − xð Þ −1ð Þn−m−lS1 n, lð Þ:

ð23Þ

Corollary 3. For n ≥ 0, we have

Beln = 〠
n

j=0
〠
j

l=0

n

j

 !
−1ð ÞlDlS2 j, lð Þ,

Dn = 〠
n

l=0
〠
l

m=0

l

m

 !
Belm −1ð Þn−m−lS1 n, lð Þ:

ð24Þ

Replacing t by −et in (5), we get

1
et + 1 e

1−xð Þet = 〠
∞

m=0
Dm xð Þ −1ð Þm

m!
emt

= 〠
∞

m=0

Dm xð Þ −1ð Þm
m!

〠
∞

n=0
mn t

n

n!

= 〠
∞

n=0
〠
∞

m=0

−1ð ÞmDm xð Þ
m!

mn

 !
tn

n!
:

ð25Þ

On the other hand, we have

1
et + 1 e

1−xð Þet = e1−x

2
2

et + 1 e
1−xð Þ et−1ð Þ

= e1−x

2 〠
∞

l=0
El
tl

l!
〠
∞

m=0
Belm 1 − xð Þ t

m

m!

= e1−x

2 〠
∞

n=0
〠
n

m=0
Belm 1 − xð ÞEn−m

n

m

 ! !
tn

n!
,

ð26Þ

where En are the ordinary Euler numbers.
Therefore, by (25) and (26), we obtain the following

theorem.

Theorem 4. For n ≥ 0, we have

〠
n

m=0
Belm 1 − xð ÞEn−m

n

m

 !
= 2ex−1 〠

∞

m=0
−1ð Þm Dm xð Þ

m!
mn:

ð27Þ
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Now, we observe that

1
1 − t

� �r

= 1
1 − t

� �r

e−rtert = 1
1 − t

e−t
� �r−1 e−t

1 − t
ert

= 〠
∞

k=0
〠

l1+⋯+lr−1=k

k

l1,⋯, lr−1

 !
Dl1

Dl2
⋯Dlr−1

� t
k
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〠
∞

m=0
Dm rð Þ t

m

m!

= 〠
∞
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〠
n

k=0
〠
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k
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 ! 

�
n

k
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Dl1
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Dn−k rð Þ
!
tn

n!
,

ð28Þ

where r is a positive integer.
On the other hand,

1
1 − t

� �r

= 〠
∞

n=0

−r

n

 !
−1ð Þntn = 〠

∞

n=0
n!

r + n − 1
n

 !
tn

n!
:

ð29Þ

Therefore, by (28) and (29), we obtain the following
proposition.

Proposition 5. For r ∈ℕ, we have

r + n − 1

n

 !
= 1
n!

〠
n

k=0
〠

l1+⋯+lr−1=k

k

l1,⋯, lr−1

 !
n

k

 !
Dl1

⋯Dlr−1
Dn−k rð Þ:

ð30Þ

It is well known that [16, 18, 19]

eix = cos x + i sin x, i =
ffiffiffiffiffiffi
−1

p
: ð31Þ

From (5), we note that

e−t

1 − t
e x+iyð Þt = 〠

∞

n=0
Dn x + iyð Þ t

n

n!
, x, y ∈ℝð Þ, ð32Þ

e−t

1 − t
e x−iyð Þt = 〠

∞

n=0
Dn x − iyð Þ t

n

n!
: ð33Þ

By (9), (32), and (33), we get

Dn x + iyð Þ = n! 〠
n

m=0

x − 1 + iyð Þm
m!

, ð34Þ

Dn x − iyð Þ = n! 〠
n

m=0

x − 1 − iyð Þm
m!

, n ≥ 0ð Þ: ð35Þ

From (34) and (35), we can derive the following
equations:

e−t

1 − t
ext cos ytð Þ = 〠

∞

n=0

Dn x + iyð Þ +Dn x − iyð Þ
2

� �
tn

n!
,

ð36Þ

e−t

1 − t
ext sin ytð Þ = 〠

∞

n=0

Dn x + iyð Þ −Dn x − iyð Þ
2i

� �
tn

n!
:

ð37Þ
We define cosine-derangement polynomials and sine-

derangement polynomials, respectively, by

e−t

1 − t
ext cos yt = 〠

∞

n=0
D cð Þ
n x, yð Þ t

n

n!
, ð38Þ

e−t

1 − t
ext sin yt = 〠

∞

n=0
D sð Þ

n x, yð Þ t
n

n!
: ð39Þ

Thus, we have

D cð Þ
n x, yð Þ = Dn x + iyð Þ +Dn x − iyð Þ

2 ,

D sð Þ
n x, yð Þ = Dn x + iyð Þ −Dn x − iyð Þ

2i , n ≥ 0ð Þ:
ð40Þ

Therefore, we obtain the following theorem.

Theorem 6. For n ≥ 0, we have

D cð Þ
n x, yð Þ = n!

2
〠
n

m=0

1
m!

x − 1 + iyð Þm + x − 1 − iyð Þmð Þ,

D sð Þ
n x, yð Þ = n!

2i
〠
n

m=0

1
m!

x − 1 + iyð Þm − x − 1 − iyð Þmð Þ:

ð41Þ

Before proceeding further, we recall that

cos yt = 〠
∞

n=0

−1ð Þn
2nð Þ! y

2nt2n: ð42Þ

From (38)and (42), we note that

〠
∞

n=0
D cð Þ
n x, yð Þ t

n

n!
= e−t

1 − t
ext cos ytð Þ

= 〠
∞

l=0

Dl

l!
tl 〠

∞

k=0
〠
k/2½ �

m=0

k

2m

 !
−1ð Þmy2mxk−2m tk

k!

= 〠
∞

n=0
〠
n

k=0

n

k

 !
Dn−k 〠

k/2½ �

m=0

k

2m

 !
−1ð Þmy2mxk−2m

 !
tn

n!
:

ð43Þ

Therefore, by comparing the coefficients on both sides of
(43), we obtain the following theorem.
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Theorem 7. For n ≥ 0, we have

D cð Þ
n x, yð Þ = 〠

n/2½ �

m=0
〠
n

k=2m

n

k

 !
k

2m

 !
Dn−k −1ð Þmy2mxk−2m:

ð44Þ

Corollary 8. For n ≥ 0, we have

n!
2
〠
n

m=0

1
m!

x − 1 + iyð Þm + x − 1 − iyð Þmð Þ

= 〠
n/2½ �

m=0
〠
n

k=2m

n

k

 !
k

2m

 !
Dn−k −1ð Þmy2mxk−2m:

ð45Þ

By (38), we get

e x−1ð Þt cos yt = 1 − tð Þ〠
∞

n=0
D cð Þ
n x, yð Þ t

n

n!

= 1 + 〠
∞

n=1
D cð Þ
n x, yð Þ − nD cð Þ

n−1 x, yð Þ
� � tn

n!
:

ð46Þ

Thus, we have

cos yt = e 1−xð Þt + e 1−xð Þt 〠
∞

m=1
D cð Þ

m x, yð Þ −mD cð Þ
m−1 x, yð Þ

� � tm

m!

= 〠
∞

n=0
1 − xð Þn t

n

n!
+ 〠

∞

l=0
1 − xð Þl t

l

l!
〠
∞

m=1

� D cð Þ
m x, yð Þ −mD cð Þ

m−1 x, yð Þ
� � tm

m!

= 1 + 〠
∞

n=1
1 − xð Þn + 〠

n

m=1

n

m

 !
1 − xð Þn−m

 

� D cð Þ
m x, yð Þ −mD cð Þ

m−1 x, yð Þ
� �� tn

n!
:

ð47Þ

Therefore, by (47) and (42), we obtain the following
theorem.

Theorem 9. For k ∈ℕ, we have

1 − xð Þn + 〠
n

m=1

n

m

 !
1 − xð Þn−m D cð Þ

m x, yð Þ −mD cð Þ
m−1 x, yð Þ

� �

=
−1ð Þky2k, if n = 2k,

0, if n = 2k − 1:

8<
:

ð48Þ

By (38), we get

e x−1ð Þt cos yt = 〠
∞

n=0
D cð Þ
n x, yð Þ t

n

n!
1 − tð Þ

= 〠
∞

n=1
D cð Þ
n x, yð Þ − nD cð Þ

n−1 x, yð Þ
� � tn

n!
+ 1:

ð49Þ

On the other hand,

e x−1ð Þt cos yt = 〠
∞

l=0
x − 1ð Þl t

l

l!
〠
∞

m=0
y2m −1ð Þm t2m

2mð Þ!

= 1 + 〠
∞

n=1
〠
n/2½ �

m=0

n

2m

 !
−1ð Þm x − 1ð Þn−2my2m

 !
tn

n!
:

ð50Þ

Therefore, by (49) and (50), we obtain the following
theorem.

Theorem 10. For n ≥ 1, we have

D cð Þ
n x, yð Þ − nD cð Þ

n−1 x, yð Þ = 〠
n/2½ �

m=0

n

2m

 !
−1ð Þm x − 1ð Þn−2my2m:

ð51Þ

It is not difficult to show that

〠
∞

n=0
D cð Þ
n x + r, yð Þ t

n

n!
= 〠

∞

n=0
〠
n

l=0

n

l

 !
D cð Þ
l x, yð Þrn−l

 !
tn

n!
,

ð52Þ

where r is a positive integer.
By comparing the coefficients on both sides of (47), we

get

D cð Þ
n x + r, yð Þ = 〠

n

l=0

n

l

 !
D cð Þ

l x, yð Þrn−l: ð53Þ

Now, we observe that

〠
∞

n=1

∂
∂x

D cð Þ
n x, yð Þ t

n

n!
= ∂
∂x

e−t

1 − t
ext cos yt

� �

= t
e−t

1 − t
ext cos yt = t 〠

∞

n=0
D cð Þ
n x, yð Þ t

n

n!

= 〠
∞

n=1
nD cð Þ

n−1 x, yð Þ t
n

n!
:

ð54Þ
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Form (54), we note that

D cð Þ
0 x, yð Þ = 1, ∂

∂x
D cð Þ
n x, yð Þ = nD cð Þ

n−1 x, yð Þ, n ≥ 1ð Þ: ð55Þ

Therefore, we obtain the following theorem.

Theorem 11. For n ≥ 0, we have

D cð Þ
0 x, yð Þ = 1, ∂

∂x
D cð Þ

n x, yð Þ = nD cð Þ
n−1 x, yð Þ, n ≥ 1ð Þ: ð56Þ

In particular,

d
dx

Dn xð Þ = ∂
∂x

D cð Þ
n x, 0ð Þ = nD cð Þ

n−1 x, 0ð Þ = nD cð Þ
n−1 xð Þ, n ≥ 1ð Þ:

ð57Þ

Corollary 12. DðcÞ
n ðx, yÞ as a polynomial in x, for each fixed y,

and DnðxÞ are Appell sequences.
Before proceeding further, we recall that

sin yt = 〠
∞

n=1

−1ð Þn−1
2n − 1ð Þ! y

2n−1t2n−1: ð58Þ

From (39)and (58), we note that

〠
∞

n=0
D sð Þ
n x, yð Þ t

n

n!
= 1
1 − t

e−text sin yt

= 〠
∞

k=0

Dk

k!
tk 〠

∞

j=1
〠
j−1ð Þ/2½ �

m=0

�
j

2m + 1

 !
xj−2m−1y2m+1 t

j

j!

= 〠
∞

n=1
〠
n

j=1
〠
j−1ð Þ/2½ �

m=0

j

2m + 1

 ! 

�
n

j

 !
xj−2m−1y2m+1Dn−j

!
tn

n!
:

ð59Þ

Therefore, by (59), we obtain the following theorem.

Theorem 13. For n ≥ 0, we have

D sð Þ
0 x, yð Þ = 0,D sð Þ

n x, yð Þ

= 〠
n

j=1
〠
j−1ð Þ/2½ �

m=0

j

2m + 1

 !
n

j

 !
xj−2m−1y2m+1Dn−j:

ð60Þ

By (35) and (37) and Theorem 13, we obtain the
following corollary.

Corollary 14. For n ≥ 1, we have

Dn x + iyð Þ −Dn x − iyð Þ
2i

= 〠
n

j=1
〠
j−1ð Þ/2½ �

m=1

j

2m + 1

 !

�
n

j

 !
xj−2m−1y2m+1Dn−j:

ð61Þ

By (59), we see that

sin yt = e 1−xð Þt 〠
∞

k=1
D sð Þ
k x, yð Þ − kD sð Þ

k−1 x, yð Þ
� � tk

k!

= 〠
∞

m=0
1 − xð Þm tm

m!
〠
∞

k=1
D sð Þ
k x, yð Þ − kD sð Þ

k−1 x, yð Þ
� � tk

k!

= 〠
∞

n=1
〠
n

k=1

n

k

 ! 

� D sð Þ
k x, yð Þ − kD sð Þ

k−1 x, yð Þ
� �

1 − xð Þn−k
� tn
n!
:

ð62Þ

Therefore, by (62) and (58), we obtain the following
theorem.

Theorem 15. For m ∈ℕ, we have

〠
n

k=1

n

k

 !
D sð Þ

k x, yð Þ − kD sð Þ
k−1 x, yð Þ

� �
1 − xð Þn−k

=
−1ð Þm−1y2m−1, if n = 2m − 1,

0, if n = 2m:

( ð63Þ

It is easy to show that ð∂/∂xÞDðsÞ
n ðx, yÞ = nDðsÞ

n−1ðx, yÞ.
However, DðsÞ

n ðx, yÞ is not an Appell sequence, since DðsÞ
0 ðx,

yÞ = 0.
We observe that

〠
∞

n=0
D sð Þ
n x, yð Þ t

n

n!
= e−t

1 − t
ext sin yt

= 〠
∞

l=0
Dl xð Þ t

l

l!
〠
∞

m=0
−1ð Þmy2m+1 t2m+1

2m + 1ð Þ!

= 〠
∞

n=1
〠
n−1ð Þ/2½ �

m=0

n

2m + 1

 ! 

� −1ð Þmy2m+1Dn−2m−1 xð Þ� tn
n!
:

ð64Þ

Comparing the coefficients on both sides of (64), we have
the following theorem.
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Theorem 16. For n ≥ 1, we have

D sð Þ
n x, yð Þ = 〠

n−1ð Þ/2½ �

m=0

n

2m + 1

 !
−1ð Þmy2m+1Dn−2m−1 xð Þ:

ð65Þ

For r ∈ℕ, we have

〠
∞

n=0
D sð Þ
n x + r, yð Þ = e−t

1 − t
e x+rð Þt sin yt = e−t

1 − t
ext sin ytert

= 〠
∞

l=0
D sð Þ
l x, yð Þ t

l

l!
〠
∞

m=0
rm

tm

m!

= 〠
∞

n=0
〠
n

l=0

n

l

 !
D sð Þ
l x, yð Þrn−l

 !
tn

n!
:

ð66Þ

Thus, we obtain

D sð Þ
n x + r, yð Þ = 〠

n

l=0

n

l

 !
D sð Þ
l x, yð Þrn−l , n ≥ 0ð Þ: ð67Þ

3. Further Remarks

As applications, we want to show that if X is the gamma ran-
dom variable with parameters 1, 1, then DnðpÞ,DðcÞ

n ðp, qÞ,
DðsÞ
n ðp, qÞ are given by the “moments” of some variants of X

. We let the reader refer to the papers [20–22] for some recent
papers related to this section.

Let X be a gamma random variable with parameters 1, 1
which is denoted by X ~ Γð1, 1Þ. Then, we observe that

E e X−1+pð Þt
h i

=
ð∞
0

e x−1+pð Þt f xð Þdx, ð68Þ

where f ðxÞ is the density function of X and p ∈ℝ.
From (10) and (68), we can derive the following equation:

E e X−1+pð Þt
h i

=
ð∞
0

e x−1+pð Þte−xdx = e−t+pt ·
ð∞
0

e−x 1−tð Þdx

= e−t

1 − t
ept = 〠

∞

n=0
Dn pð Þ t

n

n!
:

ð69Þ

On the other hand, by Taylor expansion, we get

E e X−1+pð Þt
h i

= 〠
∞

n=0
E X − 1 + pð Þn½ � t

n

n!
: ð70Þ

Therefore, by (69) and (70), we obtain the following
theorem.

Theorem 17. For n ≥ 0, X ~ Γð1, 1Þ, the moment of X − 1 + p
is given by

E X − 1 + pð Þn½ � =Dn pð Þ: ð71Þ

When p = 0, Dn =Dnð0Þ = E½ðX − 1Þn�, ðn ≥ 0Þ.
Thus, we note that

Dn = 〠
n

l=0

n

l

 !
−1ð Þn−lE Xl

h i
: ð72Þ

For X ~ Γð1, 1Þ, we note that the moment of X is given by
E½Xn� = n!, ðn ≥ 0Þ.

Therefore, by (72), we obtain the following corollary.

Corollary 18. For n ≥ 0, X ~ Γð1, 1Þ, we have

Dn = 〠
n

l=0

n

l

 !
−1ð Þn−l l!,

Dn pð Þ = 〠
n

l=0

n

l

 !
p − 1ð Þn−l l!:

ð73Þ

For X ~ Γð1, 1Þ, we have

E e X−1+p+iqð Þt
h i

= e−t

1 − t
e p+iqð Þt , ð74Þ

where p, q ∈ℝ.
From (74), we note that

E e X−1+p−iqð Þt
h i

= e−t

1 − t
e p−iqð Þt: ð75Þ

By (74) and (75), we get

E e X−1+p+iqð Þt
h i

+ E e X−1+p−iqð Þt
h i

= 2e−t
1 − t

ept cos qt

= 〠
∞

n=0
2D cð Þ

n p, qð Þ t
n

n!
:

ð76Þ

On the other hand, by Taylor expansion, we get

E e X−1+p+iqð Þt
h i

+ E e X−1+p−iqð Þt
h i

= 〠
∞

n=0
E X − 1 + p + iqð Þn½

+ X − 1 + p − iqð Þn� t
n

n!
:

ð77Þ

Therefore, by (76) and (77), we obtain the following
theorem.
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Theorem 19. For n ≥ 0, X ~ Γð1, 1Þ, we have

E
X − 1 + p + iqð Þn + X − 1 + p − iqð Þn

2

	 

=D cð Þ

n p, qð Þ: ð78Þ

It is easy to show that

E e X−1+p+iqð Þt
h i

− E e X−1+p−iqð Þt
h i

= 2i e−t

1 − t
ept sin qt

= 2ið Þ〠
∞

n=1
D sð Þ
n p, qð Þ t

n

n!
,

ð79Þ

where X ~ Γð1, 1Þ.
Thus, we have

E
X − 1 + p + iqð Þn − X − 1 + p − iqð Þn

2i

	 

=D sð Þ

n p, qð Þ, n ≥ 0ð Þ,

ð80Þ

where X ~ Γð1, 1Þ.

4. Conclusion

The introduction of derangement numbers Dn goes back to
as early as 1708 when Pierre Rémond de Montmort consid-
ered some counting problem on derangements. In this paper,
we dealt with derangement polynomials DnðxÞ which are
natural extensions of the derangement numbers. We showed
a recurrence relation for derangement polynomials. We
derived identities involving derangement polynomials, Bell
polynomials, and Stirling numbers of both kinds. In addition,
we also obtained an identity relating Bell polynomials,
derangement polynomials, and Euler numbers. Next, we
introduced the cosine-derangement polynomials DðcÞ

n ðx, yÞ
and sine-derangement polynomials DðsÞ

n ðx, yÞ, by means of
derangement polynomials. Then, we derived, among other
things, their explicit expressions and recurrence relations.
Lastly, as applications, we showed that if X is the gamma ran-
dom variable with parameters 1, 1, then DnðpÞ,DðcÞ

n ðp, qÞ,
DðsÞ
n ðp, qÞ are given by the “moments” of some variants of X.
We have witnessed that the study of some special num-

bers and polynomials was done intensively by using several
different means, which include generating functions, combi-
natorial methods, umbral calculus, p-adic analysis, probabil-
ity theory, special functions, and differential equations.
Moreover, the same has been done for various degenerate
versions of quite a few special numbers and polynomials in
recent years with their interests not only in combinatorial
and arithmetical properties but also in their applications to
symmetric identities, differential equations, and probability
theories. It would have been nicer if we were able to find
abundant applications in other disciplines.

It is one of our future projects to continue to investigate
many ordinary and degenerate special numbers and polyno-
mials by various means and find their applications in physics,
science, engineering, and mathematics.
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In this paper, we consider an auxiliary function G to combine and unify several existing fixed point theorems in the setting of the
complete partial b-metric space. We consider also some examples to support the observed main results.

1. Introduction and Preliminaries

The notion of the distance has been investigated and
improved from the beginning of the mathematics sciences.
The first formal definition was given by Hausdorff and Fre-
chet under the name of metric spaces. The formal definition
was extended, improved, and generalized in several ways. In
this paper, we shall consider the combination of notions of
partial metric space and b-metric space. Partial metric space,
defined byMatthews [1, 2] is the most economical way to cal-
culate the distance in computer science. So, it is important in
the setting of theoretical computer science. On the other
hand, b-metric is the most interesting and real generalization
of metric spaces; in this case, the triangle inequality is
replaced by a modified version of triangle inequality.For
more details on the advances of fixed point theory in the set-
ting of b-metric spaces, see e.g. [13]-[27].

In this paper, we shall propose a fixed point theorem by
using an auxiliary function G to combine, generalize, and
unify several fixed point results in the setting of the complete
partial b-metric spaces.

In [3], the authors proposed a new fixed point theorem in
the setting of metric spaces.

We consider the follow sets of functions:

(1) G be the set of the functions G : ½0,∞Þ3 ⟶ ½0,∞Þ
that satisfy the following conditions:

(f1) G is continuous,
(f2) Gð0, 0, 0Þ = 0,
(f3) max fτ, υg ≤Gðτ, υ, ωÞ, for all τ, υ, ω ∈ ½0,∞Þ:
In [3], some examples of such a function were given.

(i) Gðτ, υ, ωÞ = τ + υ + ω

(ii) Gðτ, υ, ωÞ =max fτ, υ, ωg
(iii) Gðτ, υ, ωÞ = ðτ + υÞð1 + ωÞ

(2) Φ be the set of functions ψ : ½0,∞Þ⟶ ½0,∞Þ that
satisfy the following conditions:

(b1) ψ is nondecreasing,
(b2) ∑i≥1ψ

iðuÞ <∞ for each u > 0. (Here, by ψi, we
denote the ith iterate ohψ.)

We mention that the functions ψ ∈Φ are called ðcÞ
-comparison functions. Moreover, it is not difficult to check
that ϕðuÞ < u for every u > 0:

(3) Γ = fγ : X ⟶ ½0,∞Þ ∣ γ is lower semicontinuousg

Theorem 1 (see [3]). Let ðX, dÞ be a complete metric space,
a lower semicontinuous function γ : X ⟶ ½0,∞Þ, and a
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self-mapping T : X⟶ X. If there exist ψ ∈Φ and G ∈G
such that

G d Tx, Tyð Þ, γ Txð Þ, γ Tyð Þð Þ

≤ ψ max
G d x, yð Þ, γ xð Þ, γ yð Þð Þ,

G d x, Txð Þ, γ Txð Þ, γ xð Þð Þ + G d y, Tyð Þ, γ Tyð Þ, γ yð Þð Þ
2

8><
>:

9>=
>;

0
B@

1
CA,

ð1Þ

for every x, y ∈ X, then T has a unique fixed point.

Let X be a nonempty set.

(i) A function b : X × X⟶ ½0,∞Þ is a b-metric on X if
for a given real number s ≥ 1 and for all x, y, z ∈ X
the following conditions hold:

b1ð Þ b x, yð Þ = 0⇔ x = y,
b2ð Þb x, yð Þ = b y, xð Þ,
b3ð Þb x, yð Þ ≤ s b x, zð Þ + b z, yð Þ½ �:

ð2Þ

The triplet ðX, b, s ≥ 1Þ is called a b-metric space.

(ii) A function ρ : X × X⟶ ½0,∞Þ is a partial metric on
X if for all x, y, z ∈ X the following conditions hold:

ρ1ð Þ x = y⇔ ρ x, xð Þ = ρ y, yð Þ = ρ x, yð Þ⇔ x = y,
ρ2ð Þ ρ x, xð Þ ≤ ρ x, yð Þ,
ρ3ð Þ ρ x, yð Þ = ρ y, xð Þ
ρ4ð Þ ρ x, yð Þ ≤ ρ x, zð Þ + ρ z, yð Þ − ρ z, zð Þ:

ð3Þ

The pair ðX, ρÞ is said to be a partial metric space.
Combining these two concepts, Shukla [4] introduced the

notion of partial b-metric space as follows.

(iii) A function ρb : X × X ⟶ ½0,∞Þ is a partial b-met-
ric on X if for all x, y, z ∈ X the following conditions
hold:

ρb1

� �
x = y⇔ ρb x, xð Þ = ρb y, yð Þ = ρb x, yð Þ,

ρb2

� �
ρb x, xð Þ ≤ ρb x, yð Þ,

ρb3

� �
ρb x, yð Þ = ρb y, xð Þ,

ρb4

� �
ρb x, yð Þ ≤ s ρb x, zð Þ + ρb z, yð Þ½ � − ρb z, zð Þ:

ð4Þ

The triplet ðX, ρb, s ≥ 1Þ is said to be a partial b-metric
space.

On a partial b-metric space ðX, ρb, s ≥ 1Þ a sequence fxng
is said to be

(i) convergent to x ∈ X if limn→∞ρbðxn, xÞ = bðx, xÞ (the
limit of a convergent sequence is not necessarily
unique)

(ii) Cauchy if limn,m→∞ρbðxn, xpÞ exists and its finite

Moreover, the partial b-metric space is complete if for
every Cauchy sequence faxng there exists x ∈ X such that

lim
n,p→∞

ρb xn, xp
� �

= lim
n→∞

ρb xn, xð Þ = ρb x, xð Þ: ð5Þ

Let ðX, ρb, s ≥ 1Þ be a partial b-metric space. We say that a
self-mapping T on X is continuous if for every sequence fxng
in X which converges to a point x ∈ X we have

lim
n→∞

ρb Txn, Txð Þ = lim
n→∞

ρb Txn, Txn+j
� �

= ρb Tx, Txð Þ: ð6Þ

In [5], the authors introduced the following new notions.

(i) On a partial b-metric space, a sequence fxng is a 0
-Cauchy sequence if limn→∞ρbðxn, xpÞ = 0

(ii) The space ðX, ρb, s ≥ 1Þ is said to be 0-complete if for
each 0-Cauchy sequence fxng in X, there exists a
point x ∈ X such that

lim
n,p→∞

ρb xn, xp
� �

= lim
n→∞

ρb xn, xð Þ = ρb x, xð Þ = 0: ð7Þ

Moreover, they proved that if the partial b-metric space
ðX, ρb, s ≥ 1Þ is complete, then it is 0-complete.

For a better understanding of the connections between
these spaces (partial metric space, b-metric space, and partial
b-metric space), we mention some papers that can be
consulted [6–12].

Let Φb be the set of functions ϕ : ½0,∞Þ⟶ ½0,∞Þ that
satisfy the following conditions:

ðϕ1Þϕ is nondecreasing,
ðϕ2Þ∑i≥1 s

iϕiðuÞ <∞ for each u > 0. (Here, by ϕi, we
denote the ith iterate oh ϕ.)

2. Main Results

The following is the main result of the paper.

Theorem 2. Let ðX, ρb, s ≥ 1Þ be a 0-complete partial b -metric
space, a function γ ∈ Γ, G ∈G , and a self-mapping T : X
⟶ X . If there exists ϕ ∈Φb such that

G ρb Tx, Tyð Þ, γ Txð Þ, γ Tyð Þð Þ

≤ ϕ max
G ρb x, yð Þ, γ xð Þ, γ yð Þð Þ,

G ρb x, Txð Þ, γ Txð Þ, γ xð Þð Þ + G d y, Tyð Þ, γ Tyð Þ, γ yð Þð Þ
2s

8><
>:

9>=
>;

0
B@

1
CA,

ð8Þ
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for every x, y ∈ X . If T is continuous or ρb is continuous, then
T has a unique fixed point.

Proof. Starting with a point x0 ∈ X, we consider the sequence
fxg defined by xn = Txn−1, n ∈ℕ. Without losing the general-
ity, we can assume that for any n ∈ℕ, we have bðxn, xn+1Þ > 0.
Indeed, on the contrary, if there exists a positive integer j0 such
that xj0 = xj0+1, we get that xj0 is a fixed point of T, because due
to the way the sequence was fxg defined, it follows that xj0 =
Txj0 . Moreover, using this remark, we can easily see that

G ρb xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þ > 0, for every n ∈ℕ: ð9Þ

Again supposing that Gðρbðxj0 , xj0+1Þ, γðxj0Þ, γðxj0+1ÞÞ = 0
for some j0 from ð f3Þ, we have

0 < ρb xj0 , xj0+1
� �

≤max ρb xj0 , xj0+1
� �

, γ xj0

� �n o
≤ G ρb xj0 , xj0+1

� �
, γ xj0

� �
, γ xj0+1
� �� �

,
ð10Þ

which is a contradiction. Taking x = xn and y = xn+1 in (8)
we get

There are two possibilities, namely,

max G ρb xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þ,f
G ρb xn+1, xn+2ð Þ, γ xn+1ð Þ, γ xn+2ð Þð Þg

=G d xn+1, xn+2ð Þ, γ xn+1ð Þ, γ xn+2ð Þð Þ,
ð12Þ

which leads us (since ϕðuÞ < u for any u > 0) to
G d xn+1, xn+2ð Þ, γ xn+1ð Þ, γ xn+2ð Þð Þ

≤ ϕ G ρb xn+1, xn+2ð Þ, γ xn+1ð Þ, γ xn+2ð Þð Þð Þ
<G ρb xn+1, xn+2ð Þ, γ xn+1ð Þ, γ xn+2ð Þð Þ:

ð13Þ

But, this is a contradiction, and then

max G d xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þ,f
G d xn+1, xn+2ð Þ, γ xn+1ð Þ, γ xn+2ð Þð Þg

=G d xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þ:
ð14Þ

Therefore, by (11) and taking into account ð f3Þ, we have

ρb xn+1, xn+2ð Þ ≤max ρb xn+1, xn+2ð Þ, γ xn+1ð Þf g
≤ G ρb xn+1, xn+2ð Þ, γ xn+1ð Þ, γ xn+2ð Þð Þ
≤ ϕ G ρb xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þð Þ,

 for every n ∈ℕ ∪ 0:

ð15Þ

Consequently, for every n ∈ℕ, we obtain

ρb xn, xn+1ð Þ ≤ ϕ G ρb xn−1, xnð Þ, γ xn−1ð Þ, γ xnð Þð Þð Þ
≤ ϕn G ρb x0, x1ð Þ, γ x0ð Þ, γ x1ð Þð Þð Þ: ð16Þ

Let p,m ∈ℕ such that p <m. By applying the (triangle-
type inequality) ðρb4Þ, we have

ρb xp, xm
� �

≤ s ρb xp, xp+1
� �

+ ρb xp+1, xm
� �� �

− ρb xp+1, xp+1
� �

≤ s ρb xp, xp+1
� �

+ ρb xp+1, xm
� �� �

≤ sρb xp, xp+1
� �

+ s2 ρb xp+1, xp+2
� ��

+ s ρb xp+2, xm
� �� �

− ρb xp+2, xp+2
� �

≤ sρb xp, xp+1
� �

+ s2 ρb xp+1, xp+2
� ��

+ s ρb xp+2, xm
� �� �

⋯≤sρb xp, xp+1
� �

+ s2ρb xp+1, xp+2
� �

+⋯+sm−p−1ρb xm−1, xmð Þ,
ð17Þ

G ρb xn+1, xn+2ð Þ, γ xn+1ð Þ, γ xn+2ð Þð Þ
≤G ρb Txn, Txn+1ð Þ, γ Txnð Þ, γ Txn+1ð Þð

≤ ϕ max
G ρb xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þ,

G ρb xn, Txnð Þ, γ xnð Þ, γ Txnð Þð Þ +G ρb xn+1, Txn+1ð Þ, γ xn+1ð Þ, γ Txn+1ð Þð Þ
2s

8><
>:

9>=
>;

0
B@

1
CA

≤ ϕ max
G ρb xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þ,

G ρb xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þ +G ρb xn+1, xn+2ð Þ, γ xn+1ð Þ, γ xn+2ð Þð Þ
2s

8><
>:

9>=
>;

0
B@

1
CA

≤ ϕ max
G ρb xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þ,

G ρb xn+1, xn+2ð Þ, γ xn+1ð Þ, γ xn+2ð Þð Þ

( ) !
:

ð11Þ
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and (17) leads us to

ρb xp, xm
� �

≤
1
sp−1

〠
m−1

i=p
siϕi G ρb x0, x1ð Þ, γ x0ð Þ, γ x1ð Þð Þð Þ

< 1
sp−1

〠
m−1

i=p
siϕi G ρb x0, x1ð Þ, γ x0ð Þ, γ x1ð Þð Þð Þ

= 1
sp−1

Sm−1 − Sp−1
� �

,

ð18Þ

where Sn =∑n
i=0s

iϕiðGðρbðx0, x1Þ, γðx0Þ, γðx1ÞÞÞ. Keeping in
mind ðϕ2Þ, we deduce that there exists Sn ⟶ S as n⟶∞,
and from (18), we get

lim
p,m→∞

ρb xp, xm
� �

= 0: ð19Þ

Consequently, fxng is a 0-Cauchy sequence in a 0-
complete partial b-metric space, and then there exists ς ∈ X
such that

lim
p,m→∞

ρb xp, xm
� �

= lim
p→∞

ρb xp, ς
� �

= ρb ς, ςð Þ = 0: ð20Þ

Moreover, by ð f3Þ together with (16), we have

γ xnð Þ ≤max ρb xn, xn+1ð Þ, γ xnð Þf g
≤G ρb xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þ
≤ ϕn G ρb x0, x1ð Þ, γ x0ð Þ, γ x1ð Þð Þð

ð21Þ

and using ðϕ2Þ

lim
n→∞

γ xnð Þ = 0: ð22Þ

Plus, by ðϕ1Þ and (20),

γ ςð Þ = 0: ð23Þ

We claim that this point ς is in fact a fixed point of the
mapping T . If the mapping T is continuous, then by (6), we
have

ρb ς, ςð Þ = lim
p→∞

ρb Txp, Tς
� �

= lim
p→∞

ρb Txp, Txp+i
� �

= 0: ð24Þ

Thus, applying the triangle inequality ðρ4Þ,

ρb ς, Tςð Þ ≤ s ρb ς, xn+1ð Þ + ρbxn+1, Tς½ � − ρb xn+1, xn+1ð Þ, ð25Þ

and together with (20) and (24), letting n⟶∞, we get ρb
ðς, TςÞ = 0, that is, ς is a fixed point of T .

Let assume now that ρb is continuous, that is, limn→∞ρb
ðxn, TςÞ = ρbðς, TςÞ Replacing x by xn and y by ς in (8), we

have (for every n ∈ℕ)

G ρb xn+1, Tςð Þ, γ xn+1ð Þ, γ Tςð Þð Þ = G ρb Txn, Tςð Þ, γ Txnð Þ, γ Tςð Þð

≤ ϕ max
G ρb xn, ςð Þ, γ xnð Þ, γ ςð Þ,ð

G ρb xn, Txnð Þ, γ xnð Þ, γ Txnð Þð Þ + G ρb ς, Tςð Þ, γ ςð Þ, γ Tςð Þð Þ
2s

8><
>:

9>=
>;

0
B@

1
CA

≤ ϕ max
G ρb xn, ςð Þ, γ xnð Þ, γ ςð Þð Þ,

G ρb xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þ + G ρb ς, Tςð Þ, γ ςð Þ, γ Tςð Þð Þ
2s

8><
>:

9>=
>;

0
B@

1
CA

<max
G ρb xn, ςð Þ, γ xnð Þ, γ ςð Þð Þ,

G ρb xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þ + G ρb ς, Tςð Þ, γ ςð Þ, γ Tςð Þð Þ
2s

8><
>:

9>=
>;:

ð26Þ

Letting n⟶∞ and taking into account ð f1Þ, we have
G ρb ς, Tςð Þ, 0, γ Tςð Þð Þ

= lim
n→∞

G ρb xn+1, Tςð Þ, γ xn+1ð Þ, γ Tςð Þð Þ

< lim
n→∞

max
G ρb xn, ςð Þ, γ xnð Þ, γ ςð Þð Þ,

G ρb xn, xn+1ð Þ, γ xnð Þ, γ xn+1ð Þð Þ +G ρb ς, Tςð Þ, γ ςð Þ, γ Tςð Þð Þ
2s

8><
>:

9>=
>;

=max G 0, 0, 0ð Þ, G 0, 0, 0ð Þ +G ρb ς, Tςð Þ, 0, γ Tςð Þð Þ
2

� 	

= G ρb ς, Tςð Þ, 0, γ Tςð Þð Þ
2s :

ð27Þ
Consequently, Gðρbðς, TςÞ, 0, γðTςÞÞ = 0: But, taking

ð f3Þ into account, we get

0 ≤max ρb ς, Tςð Þ, 0f g ≤G ρb ς, Tςð Þ, 0, γ Tςð Þð Þ = 0, ð28Þ

which means ρbðς, TςÞ = 0: Thus, Tς = ς:
As a last step, we claim that ς is the unique fixed point of

T . Supposing on the contrary, that there exists another point
υ ∈ X such that Tς = ς ≠ υ = Tυ. First of all, applying (8) with
x = υ = y, we have

G 0, γ υð Þ, γ υð Þð Þ ≤ ϕ G 0, γ υð Þ, γ υð Þð Þð Þ < G 0, γ υð Þ, γ υð Þð Þ, ð29Þ

which implies that γðυÞ = γðTυÞ = 0. Let now x = ς and y = υ
in (8). We have

G ρb ς, υð Þ, 0, 0ð Þ = G ρb Tς, Tυð Þ, γ Tςð Þ, γ Tυð Þð Þ

≤ ϕ max
G ρb ς, υð Þ, γ ςð Þ, γ υð Þð Þ,

G ρb ς, Tςð Þ, γ ςð Þ, γ Tςð Þð Þ + G ρb υ, Tυð Þ, γ υð Þ, γ Tυð Þð Þ
2s
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>:
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>;
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1
CA

= ϕ max
G ρb ς, υð Þ, γ ςð Þ, γ υð Þð Þ,

G 0, γ ςð Þ, γ Tςð Þð Þ +G 0, γ υð Þ, γ Tυð Þð Þ
2s
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>:
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>;
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1
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≤ ϕ G ρb ς, υð Þ, 0, 0ð Þð Þ < G ρb ς, υð Þ, 0, 0ð Þ: ð30Þ

This is a contradiction. Therefore, ρbðς, υÞ = 0, that is, T
admits a unique fixed point.

In particular, letting Gðτ, υ, ωÞ = τ + υ + ω, for τ, υ, ω
∈ ½0,∞Þ, we can omit the continuity conditions of the
mapping T or the partial b-metric ρb.
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Theorem 3. Let ðX, ρb, s ≥ 1Þ be a 0-complete partial b -metric
space, a function γ ∈ Γ, G ∈F , and a self-mapping T : X
⟶ X . If there exists ϕ ∈Φb such that

ρb Tx, Tyð Þ + γ Txð Þ + γ Tyð ÞÞ

≤ ϕ max
ρb x, yð Þ + γ xð Þ + γ yð ÞÞ,

ρb x, Txð Þ + γ Txð Þ + γ xð Þ + ρb y, Tyð Þ + γ Tyð Þ + γ yð ÞÞ
2s

8><
>:

9>=
>;

0
B@

1
CA,

ð31Þ

for every x, y ∈ X , then T has a unique fixed point.

Proof. Of course, since the function Gðτ, υ, ωÞ = τ + υ + ω
∈F , by Theorem 2, we have that the sequence fxng
defined as xn = Txn−1 is convergent to a point ς ∈ X,
and moreover, (22) and (23) hold. We claim that this
point ς is a fixed point of T . For this purpose, by
(31), for x = ς and y = ς, we get

Letting n⟶∞, in the above inequality and keeping in
mind (19), (22), and (23), we get

ρb ς, Tςð Þ + γ Tςð Þ ≤ sϕ
ρb ς, Tςð Þ + γ Tςð Þ

2s


 �

< ρb ς, Tςð Þ + γ Tςð Þ
2 ,

ð33Þ

which is a contradiction. Therefore, ρbðς, TςÞ = 0, that is,
Tς = ς:

As in the previous theorem, supposing that there exists υ,
another fixed point of T , by (31), we have

2γ υð Þ = ρb Tυ, Tυð Þ + γ υð Þ + γ Tυð Þ ≤ ϕ 2γ υð Þð Þ < 2γ υð Þ,
ð34Þ

which is a contradiction. Thus, γðυÞ = 0 and taking x = ς and
y = υ in (31), we have

But, this is a contraction, so ρbðς, υÞ = 0 which proves the
uniqueness of the fixed point.

Example 4. Let the set X = ½0, 1� and the function ρb : X × X
⟶ ½0,∞Þ be defined by ρbðx, 1/2Þ = ρbð1/2, xÞ = 1 for any
x ∈ X and ρbðx, yÞ = ðmax fx, ygÞ2, otherwise. It easy to see

that ρb is a partial b -metric space, with s = 2:Moreover, since
limn,m→∞ρbðxn, xmÞ = limn,m→∞ðmax fxn, xmgÞ2 = 0 implies
limn,m→∞xn = 0, we have

lim
n→∞

ρb xn, 0ð Þ = ρb 0, 0ð Þ = 0, ð36Þ

ρb ς, Tςð Þ + γ xn+1ð Þ + γ Tςð ÞÞ
≤ s ρb ς, Txnð Þ + ρb Txn, Tςð Þ½ �

− ρb Txn, Txnð Þ + γ xn+1ð Þ + γ Tςð ÞÞ
≤ sρb ς, xn+1ð Þ + s ρb Txn, Tςð Þ + γ Txnð Þ + γ Tςð Þ½ �
≤ sρb ς, xn+1ð Þ + sϕ max ρb xn, ςð Þ + γ xnð Þ + γ ςð Þ, ρb xn, xn+1ð Þ + γ xnð Þ + γ xn+1ð ÞÞ + ρb ς, Tςð Þ + γ ςð Þ + γ Tςð Þ

2s

� 	
 �

< sρb ς, xn+1ð Þ + s max ρb xn, ςð Þ + γ xnð Þ + γ ςð Þ, ρb xn, xn+1ð Þ + γ xnð Þ + γ xn+1ð ÞÞ + ρb ς, Tςð Þ + γ ςð Þ + γ Tςð ÞÞ
2s

� 	
:

ð32Þ

ρb ς, υð Þ = ρb ς, υð Þ + γ ςð Þ + γ υð Þ = ρb ς, υð Þ + γ ςð Þ + γ υð Þ
≤ ϕ max ρb ς, υð Þ + γ ςð Þ + γ υð Þ, ρb ς, Tςð Þ + γ ςð Þ + γ Tςð Þ + ρb υ, υð Þ + γ υð Þ + γ Tυð Þ

2s

� 	
 �
= ϕ ρb ς, υð Þð Þ < ρb ς, υð Þ:

ð35Þ
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which shows that ðX, ρb, sÞ is 0-complete. On the other hand,
taking, for example, the sequence fxng in X, where xn = n/ð2
n + 1Þ, we have limn,m→∞ρbðxn, xmÞ = 1/4, but limn→∞ρbðxn,
1/2Þ = 1 = ρbð1/2, 1/2Þ = 1. Thus, the space ðX, ρb, sÞ is not
complete.

Let the mapping T : X ⟶ X be defined as

Tx =

x
4 , if x ∈ 0, 1½ Þ,
1
2 , if x = 1:

8><
>: ð37Þ

Choosing ϕðuÞ = u/2 and γðuÞ = u, we have

(i) If x = y = 1, then

ρb T1, T1ð Þ + γ T1ð Þ + γ T1ð ÞÞ
= ρb

1
2 ,

1
2


 �
+ 2γ 1

2


 �
= 5
4 < 3

2

= ϕ max
ρb 1, 1ð Þ + γ 1ð Þ + γ 1ð ÞÞ,

ρb 1, T1ð Þ + γ T1ð Þ + γ 1ð ÞÞ
2

8><
>:

9>=
>;

0
B@

1
CA

ð38Þ

(ii) If x = 1, y ∈ ½0, 1Þ, then
ρb Tx, T1ð Þ + γ Txð Þ + γ T1ð ÞÞ

= ρb
x
4 ,

1
2


 �
+ γ

x
4
� �

+ γ
1
2


 �
= 3 + x

4 < 2 + x
2

≤ ϕ max
ρb x, 1ð Þ + γ xð Þ + γ 1ð ÞÞ,

ρb x, Txð Þ + γ Txð Þ + γ xð Þ + ρb 1, T1ð Þ + γ T1ð Þ + γ 1ð ÞÞ
4

8><
>:

9>=
>;

0
B@

1
CA

ð39Þ

(iii) If x, y ∈ ½0, 1Þ, then
ρb Tx, Tyð Þ + γ Txð Þ + γ Tyð ÞÞ

= ρb
x
4 ,

y
4

� �
+ γ

x
4
� �

+ γ
y
4
� �

≤
x2 + 4x + 4y

16 ≤
x2 + x + y

2

≤ ϕ max
ρb x, yð Þ + γ xð Þ + γ yð ÞÞ,

ρb x, Txð Þ + γ Txð Þ + γ xð Þ + ρb Ty, yð Þ + γ Tyð Þ + γ yð ÞÞ
4

8><
>:

9>=
>;

0
B@

1
CA

ð40Þ

(We considered here max fx, yg = x: The case max fx, yg
= y is similar.)

Consequently, by Theorem 3, the mapping T admits a
unique fixed point.

3. Conclusion

In this paper, we investigate the uniqueness and the existence
of a fixed point for certain contraction via the G-function in
one of the most general frames and complete the partial b
-metric space. Regarding that the metric fixed point theory
has a key role in the solution of not only differential equa-
tions and fractional differential equations but also integral
equations, our results can be applied in these problems.
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In this paper, a nonlinear integral equation related to infectious diseases is investigated. Namely, we first study the existence and
uniqueness of solutions and provide numerical algorithms that converge to the unique solution. Next, we study the lower and
upper subsolutions, as well as the data dependence of the solution.

1. Introduction

We consider the nonlinear integral equation

x tð Þ =
Yn
i=1

f i t, x tð Þð Þ +
ðt
t−τi

gi s, x sð Þð Þds
 !

, t ∈ℝ, ð1Þ

where n ≥ 2 is an integer and τi > 0, i = 1, 2,⋯, n. In the case
n = 1 and f1 ≡ 0, (1) reduces to

x tð Þ =
ðt
t−τ1

g1 s, x sð Þð Þds t ∈ℝ: ð2Þ

The integral equation (2) models the spread of certain
infectious diseases with periodic contact rate that varies sea-
sonally (see [1]). Several results related to certain mathemat-
ical aspects of (2) have been obtained by many authors (see,
e.g., [1–9] and the references therein). In particular, in [3],
using the Picard operator technique, the integral equation
(2) was investigated regarding the existence and uniqueness
of solutions and periodic solutions, lower and upper subsolu-
tions, the data dependence, and the differentiability of solu-
tions with respect to a parameter.

In this paper, we are concerned with the integral equation
(1). We first investigate the existence and uniqueness of solu-
tions and provide numerical algorithms that converge to the
unique solution. Next, we study the lower and upper subsolu-
tions, as well as the data dependence of the solution.

The next section is devoted to the main results of this
paper. Namely, in Subsection 2.1, we fix some notations that
will be used throughout this paper. In Subsection 2.2, we pro-
vide some lemmas that will be used in the proofs of our main
results. In Subsection 2.3, the existence and uniqueness of
solutions and periodic solutions are derived using the Banach
contraction principle. Moreover, an iterative algorithm based
on Picard iteration for approximating the unique solution is
provided. In Subsection 2.4, a Prešic′-type iterative algorithm
that converges to the unique solution is provided. Lower and
upper subsolutions type results are obtained in Subsection
2.5. Finally, in Subsection 2.6, the data dependence of solu-
tions is studied.

2. Results

We first fix some notations.

2.1. Notations. Let I = ½α, β� and J = ½m,M�, where 0 < α < β
and 0 <m <M. Let

C ℝ × I, Jð Þ = f : ℝ × I ⟶ J , f is continuousf g,
X = C ℝ, Ið Þ = f : ℝ⟶ I, f is continuousf g:

ð3Þ

The functional space X is equipped with the norm ∥·∥X ,
where
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xk kX = sup
t∈ℝ

x tð Þj j, x ∈ X: ð4Þ

Notice that ðX, k·kXÞ is a Banach space.

2.2. Preliminaries. The following lemma will be useful later. It
can be easily proved by induction.

Lemma 1. Let fang and fbng be two real sequences. Then, for
all n ≥ 2,

a1a2 ⋯ an − b1b2 ⋯ bnj j ≤ a2a3 ⋯ anj j a1 − b1j j
+ b1j j a3a4 ⋯ anj j a2 − b2j j
+ b1b2j j a4a5 ⋯ anj j a3 − b3j j+⋯+ anj j b1b2 ⋯ bn−2j j
� an−1 − bn−1j j + b1b2 ⋯ bn−1j j an − bnj j:

ð5Þ

We recall the following result due to Prešic′ [10].

Lemma 2. Let ðX, dÞ be a complete metric space, k a positive
integer and φ : Xk ⟶ X a mapping satisfying the following
condition:

d φ x1, x2,⋯,xkð Þ, φ x2, x3,⋯,xk+1ð Þð Þ
≤ q1d x1, x2ð Þ + q2d x2, x3ð Þ+⋯+qkd xk, xk+1ð Þ, ð6Þ

for all x1,⋯, xk+1 ∈ X, where q1, q2,⋯, qk are nonnegative
constants such that q1 + q2 +⋯+qk < 1. Then,

(i) There exists a unique x∗ ∈ X such that

x∗ = φ x∗, x∗,⋯,x∗ð Þ: ð7Þ

(ii) For all x1, x2,⋯, xk ∈ X, the sequence fxpg ⊂ X
defined by

xp+k = φ xp, xp+1,⋯,xp+k−1
� �

, p ≥ 1 ð8Þ

is convergent to x∗.

For more details about the above result, we refer to [11–15].

2.3. Existence and Uniqueness Result. Problem (1) is investi-
gated under the following conditions:

(C1) f i, gi ∈ Cðℝ × I, JÞ, i = 1, 2,⋯, n.
(C2) For all i = 1, 2,⋯, n, there exists a constant Lf i

> 0
such that for all t ∈ℝ,

f i t, uð Þ − f i t, vð Þj j ≤ Lf i
u − vj j, u, v ∈ I: ð9Þ

(C3) For all i = 1, 2,⋯, n, there exists a constant Lgi > 0
such that for all t ∈ℝ,

gi t, uð Þ − gi t, vð Þj j ≤ Lgi u − vj j, u, v ∈ I: ð10Þ

(C4) Mn−1ðQn−1
i=1 ðτi + 1ÞÞ∑n

k=1ðLf k
+ LgkτkÞ < 1.

(C5) α/mn ≤
Qn

i=1ðτi + 1Þ ≤ β/Mn.
We have the following existence and uniqueness result.

Theorem 3. Under conditions (C1)–(C5), problem (1) admits
one and only one solution x∗ ∈ X. Moreover, for all x0 ∈ X, the
sequence fxpg ⊂ X defined by

xp+1 tð Þ =
Yn
i=1

f i t, xp tð Þ� �
+
ðt
t−τi

gi s, xp sð Þ� �
ds

 !
, t ∈ℝ

ð11Þ

converges uniformly to x∗.

Proof. Let us define the operator T : X⟶ Cðℝ,ℝÞ by

T xð Þ tð Þ =
Yn
i=1

Ti xð Þ tð Þ, x ∈ X, t ∈ℝ, ð12Þ

where

Ti xð Þ tð Þ = f i t, x tð Þð Þ +
ðt
t−τi

gi s, x sð Þð Þ ds, i = 1, 2,⋯, n:

ð13Þ

By (C 1), for all i = 1, 2,⋯, n and t ∈ℝ, one has

Ti xð Þ tð Þ ≤M +
ðt
t−τi

M ds = τi + 1ð ÞM, ð14Þ

which yields

T xð Þ tð Þ ≤Mn
Yn
i=1

τi + 1ð Þ: ð15Þ

Then, using (C5), one deduces that

T xð Þ tð Þ ≤ β, t ∈ℝ: ð16Þ

Similarly, by (C 1), one has

Ti xð Þ tð Þ ≥m +
ðt
t−τi

m ds = τi + 1ð Þm, ð17Þ

which yields

T xð Þ tð Þ ≥mn
Yn
i=1

τi + 1ð Þ: ð18Þ

Hence, using (C5), one obtains

T xð Þ tð Þ ≥ α, t ∈ℝ: ð19Þ

2 Journal of Function Spaces



Therefore, it follows from (16) and (19) that

TX ⊂ X: ð20Þ

Moreover, the set of solutions to the integral equation (1)
coincides with the set of fixed points of the operator T . Next,
by Lemma 1, for all x, y ∈ X and t ∈ℝ, one has

T xð Þ tð Þ − T yð Þ tð Þj j =
Yn
i=1

Ti xð Þ tð Þ −
Yn
i=1

Ti yð Þ tð Þ
�����

�����
≤ T2 xð Þ tð ÞT3 xð Þ tð Þ⋯ Tn xð Þ tð Þ T1 xð Þ tð Þ − T1 yð Þ tð Þj j

+ T3 xð Þ tð ÞT4 xð Þ tð Þ⋯ Tn xð Þ tð ÞT1 yð Þ tð Þ T2 xð Þ tð Þ − T2 yð Þ tð Þj j
+ T4 xð Þ tð ÞT5 xð Þ tð Þ⋯ Tn xð Þ tð ÞT1 yð Þ tð ÞT2 yð Þ tð Þ
� T3 xð Þ tð Þ − T3 yð Þ tð Þj j+⋯+T1 yð Þ tð ÞT2 yð Þ tð Þ⋯ Tn−1 yð Þ tð Þ
� Tn xð Þ tð Þ − Tn yð Þ tð Þj j:

ð21Þ

On the other hand, by (C2) and (C3), for all i = 1, 2,⋯, n,
one has

Ti xð Þ tð Þ − Ti yð Þ tð Þj j ≤ f i t, x tð Þð Þ − f i t, y tð Þð Þj j
+
ðt
t−τi

gi s, x sð Þð Þ − gi s, y sð Þð Þj jds ≤ Lf i
x tð Þ − y tð Þj j

+ Lgi

ðt
t−τi

x sð Þ − y sð Þj jds ≤ Lf i
+ Lgiτi

� �
x − yk kX :

ð22Þ

Therefore, using (14), (21), and (22), one obtains

∣T xð Þ tð Þ − T yð Þ tð Þ∣ ≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
Lf k

+ Lgkτk
� �

x − yk kX ,

ð23Þ

which yields

∥Tx − Ty∥X ≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
Lf k

+ Lgkτk
� �

∥x − y∥X , x, y ∈ X:

ð24Þ

Finally, using (C 4), (20) and (24), the conclusion of the
theorem follows from the Banach contraction principle.

Now, we consider problem (1) under the additional
condition:

(C6) There exists ω > 0 such that for all i = 1, 2,⋯, n,

f i t + ω, uð Þ = f i t, uð Þ, gi t + ω, uð Þ = gi t, uð Þ, t ∈ℝ, u ∈ I:
ð25Þ

Theorem 4. Under conditions (C 1)–(C 6), problem (1) admits
one and only one ω-periodic solution x∗ ∈ X. Moreover, for
any ω-periodic function x0 ∈ X, the sequence fxpg defined by
(11) converges uniformly to x∗.

Proof. Let T : X ⟶ X be the operator defined by (12).
Notice that from the proof of Theorem 3, we know that
under conditions (C 1)–(C5), one has TX ⊂ X. Let V be the
closed subset of X (with respect to the norm k·kX) defined by

V = x ∈ X : x t + ωð Þ = x tð Þ, t ∈ℝf g: ð26Þ

For all x ∈ V and t ∈ℝ, using (C6), one obtains

T xð Þ t + ωð Þ =
Yn
i=1

f i t + ω, x t + ωð Þð Þ +
ðt+ω
t+ω−τi

gi s, x sð Þð Þ ds
 !

=
Yn
i=1

f i t, x tð Þð Þ +
ðt
t−τi

gi σ + ω, x σ + ωð Þdσð Þ
 !

=
Yn
i=1

f i t, x tð Þð Þ +
ðt
t−τi

gi σ, x σð Þð Þdσ
 !

= T xð Þ tð Þ:

ð27Þ

Hence, one has TV ⊂V . On the other hand, since V ⊂ X,
it follows from (24) that

∥Tx − Ty∥X ≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
Lf k

+ Lgkτk
� �

∥x − y∥X , x, y ∈ V :

ð28Þ

Then, the conclusion of the theorem follows from the
Banach contraction principle.

2.4. Prešic′-Type Approximation of the Unique Solution. Let
us consider the integral equation (1) under conditions (C 1
)–(C 5). Notice that by Theorem 3, (1) admits one and only
one solution x∗ ∈ X.

Theorem 5. Under conditions (C 1)–(C 5), for any x1, x2,⋯,
xn ∈ X, the sequence fxpg defined by

xp+n tð Þ = f1 t, xp tð Þ� �
+
ðt
t−τ1

g1 s, xp sð Þ� �
ds

 !

� f2 t, xp+1 tð Þ� �
+
ðt
t−τ2

g2 s, xp+1 sð Þ� �
ds

 !
⋯

� f n t, xp+n−1 tð Þ� �
+
ðt
t−τn

g2 s, xp+n−1 sð Þ� �
ds

 !
,

p ≥ 1, t ∈ℝ
ð29Þ

converges uniformly to x∗.

Proof. Consider the function φ : Xn ⟶ X defined by

φ x1, x2,⋯,xnð Þ tð Þ =
Yn
i=1

f i t, xi tð Þð Þ +
ðt
t−τi

g1 s, xi sð Þð Þds
 !

, t ∈ℝ,

ð30Þ
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that is,

φ x1, x2,⋯,xnð Þ tð Þ =
Yn
i=1

Ti xið Þ tð Þ, ð31Þ

where for all i = 1, 2,⋯, n, the operator Ti is defined by (13).
Notice that from the considered assumptions, one has φðXnÞ
⊂ X, so φ is well-defined. On the other hand, using Lemma
1, for all x1, x2,⋯, xn, xn+1 ∈ X and t ∈ℝ, on has

φ x1, x2,⋯,xnð Þ tð Þ − φ x2, x3,⋯,xn+1ð Þ tð Þj j

=
Yn
i=1

Ti xið Þ tð Þ −
Yn
i=1

Ti xi+1ð Þ tð Þ
�����

�����
≤ T2 x2ð Þ tð Þ⋯ Tn xnð Þ tð Þ T1 x1ð Þ tð Þ − T1 x2ð Þ tð Þj j

+ T1 x2ð Þ tð ÞT3 x3ð Þ tð Þ⋯ Tn xnð Þ tð Þ T2 x2ð Þ tð Þ − T2 x3ð Þ tð Þj j
+⋯+T1 x2ð Þ tð Þ⋯ Tn−1 xnð Þ tð Þ Tn xnð Þ tð Þ − Tn xn+1 tð Þðj j:

ð32Þ

Next, using (14), it holds that

φ x1, x2,⋯,xnð Þ tð Þ − φ x2, x3,⋯,xn+1ð Þ tð Þj j

≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
Tk xkð Þ tð Þ − Tk xk+1 tð Þðj j: ð33Þ

On the other hand, under the considered assumptions, for
all k = 1, 2,⋯, n, one has

Tk xkð Þ tð Þ − Tk xk+1 tð Þðj j ≤ Lf k
+ τkLgk

� �
xk − xk+1k kX : ð34Þ

Hence, one deduces that

φ x1, x2,⋯,xnð Þ − φ x2, x3,⋯,xn+1ð Þk kX
≤Mn−1 Yn−1

i=1
τi + 1ð Þ

 !
〠
n

k=1
Lf k

+ τkLgk

� �
xk − xk+1k kX :

ð35Þ

Finally, using (C4) and Lemma 2, the desired result
follows.

2.5. Lower and Upper Subsolutions.We consider problem (1)
under conditions (C1)–(C5). We recall that by Theorem 3,
problem (1) admits one and only one solution x∗ ∈ X. We
suppose also that

For all i = 1, 2,⋯, n and t ∈ℝ, the functions

f i t, ·ð Þ: I ⟶ J and gi t, ·ð Þ: I ⟶ J ð36Þ

are nondecreasing.

Theorem 6. Suppose that conditions (C 1)–(C 5) and (C6′) are
satisfied. If x ∈ Cðℝ, IÞ satisfies

x tð Þ ≤
Yn
i=1

f i t, x tð Þð Þ +
ðt
t−τi

gi s, x sð Þð Þds
 !

, t ∈ℝ, ð37Þ

then

x tð Þ ≤ x∗ tð Þ, t ∈ℝ: ð38Þ

Proof. Let T : X⟶ X be the operator defined by (12). Then,
(39) is equivalent to

x tð Þ ≤ T xð Þ tð Þ, t ∈ℝ: ð39Þ

We shall prove that T is a nondecreasing operator, that is,

u, v ∈ X, u tð Þ ≤ v tð Þ, t ∈ℝ⟹ T uð Þ tð Þ ≤ T vð Þ tð Þ, t ∈ℝ:

ð40Þ

Let u, v ∈ X be such that

u tð Þ ≤ v tð Þ, t ∈ℝ: ð41Þ

By (C6′), for all i = 1, 2,⋯, n and t ∈ℝ, one obtains

0 ≤ f i t, u tð Þð Þ +
ðt
t−τi

gi s, u sð Þð Þds ≤ f i t, v tð Þð Þ +
ðt
t−τi

gi s, v sð Þð Þds,

ð42Þ

which yields

Yn
i=1

f i t, u tð Þð Þ +
ðt
t−τi

gi s, u sð Þð Þds
 !

≤
Yn
i=1

f i t, v tð Þð Þ +
ðt
t−τi

gi s, v sð Þð Þds
 !

,
ð43Þ

that is,

T uð Þ tð Þ ≤ T vð Þ tð Þ: ð44Þ

This proves (40). Next, by (39), it holds that

x tð Þ ≤ T xð Þ tð Þ ≤ T2 xð Þ tð Þ ≤⋯ ≤ Tp xð Þ tð Þ, ð45Þ

for all nonnegative integer p and t ∈ℝ, where

T0 xð Þ tð Þ = x tð Þ andTp+1 xð Þ tð Þ = T Tp xð Þð Þ tð Þ: ð46Þ

Hence, it holds that

x tð Þ ≤ xp tð Þ, t ∈ℝ, ð47Þ

where fxpg is the sequence defined by (11) with x0 = x.
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On the other hand, by Theorem 3, one has

lim
p→∞

xp tð Þ = x∗ tð Þ, t ∈ℝ: ð48Þ

Therefore, passing to the limit as p⟶∞ in (47), (38)
follows.

(A1) For j = 1, 2, 3 and i = 1, 2,⋯, n, let f ðjÞi , gðjÞ
i ∈ Cðℝ

× I, JÞ. We suppose that
(A2) For all i = 1, 2,⋯, n and j = 1, 2, 3, there exists a

constant Lf ð jÞi
> 0 such that for all t ∈ℝ,

f jð Þ
i t, uð Þ − f jð Þ

i t, vð Þ
��� ��� ≤ L

f jð Þ
i
u − vj j, u, v ∈ I: ð49Þ

For all i = 1, 2,⋯, n and j = 1, 2, 3, there exists a constant
L
gð jÞÞi

> 0 such that for all t ∈ℝ,

g jð Þ
i t, uð Þ − g jð Þ

i t, vð Þ
��� ��� ≤ L

g jð Þ
i
u − vj j, u, v ∈ I: ð50Þ

(A3) Mn−1ðQn−1
i=1 ðτi + 1ÞÞ∑n

k=1ðLf ð jÞk
+ L

gð jÞk
τkÞ < 1, j = 1, 2

, 3.
(A4) α/mn ≤

Qn
i=1ðτi + 1Þ ≤ β/Mn.

(A5) For all i = 1, 2,⋯, n and t ∈ℝ, the functions

f 2ð Þ
i t, ·ð Þ: I ⟶ J and g 2ð Þ

i t, ·ð Þ: I ⟶ J , ð51Þ

are nondecreasing.
(A6) For all i = 1, 2,⋯, n, t ∈ℝ and u ∈ I,

f 1ð Þ
i t, uð Þ ≤ f 2ð Þ

i t, uð Þ ≤ f 3ð Þ
i t, uð Þ and g 1ð Þ

i t, uð Þ ≤ g 2ð Þ
i t, uð Þ ≤ g 3ð Þ

i t, uð Þ:
ð52Þ

Notice that by (A 1)–(A 4), it follows from Theorem 3 that
for all j = 1, 2, 3, the integral equation

x tð Þ =
Yn
i=1

f jð Þ
i t, x tð Þð Þ +

ðt
t−τi

g jð Þ
i s, x sð Þð Þds

 !
, t ∈ℝ, ð53Þ

admits one and only one solution xðjÞ ∈ X. Moreover, for all

j = 1, 2, 3 and xðjÞ0 ∈ X, the sequence fxðjÞp g ⊂ X defined by

x jð Þ
p+1 tð Þ =

Yn
i=1

f jð Þ
i t, x jð Þ

p tð Þ
� �

+
ðt
t−τi

g jð Þ
i s, x jð Þ

p sð Þ
� �

ds

 !
, t ∈ℝ

ð54Þ

converges uniformly to xðjÞ.

Theorem 7. Under conditions (A1)–(A6), one has

x 1ð Þ tð Þ ≤ x 2ð Þ tð Þ ≤ x 3ð Þ tð Þ, t ∈ℝ: ð55Þ

Proof. For all j = 1, 2, 3, let TðjÞ : X⟶ X be the operator
defined by

T jð Þ xð Þ tð Þ =
Yn
i=1

f jð Þ
i t, x tð Þð Þ +

ðt
t−τi

g jð Þ
i s, x sð Þð Þds

 !
, x ∈ X, t ∈ℝ:

ð56Þ

From condition (A 5), the operator T
ð2Þ is nondecreasing,

that is,

u, v ∈ X, u tð Þ ≤ v tð Þ, t ∈ℝ⟹ T 2ð Þ uð Þ tð Þ ≤ T 2ð Þ vð Þ tð Þ, t ∈ℝ:

ð57Þ

Moreover, by (A6), one has

T 1ð Þ uð Þ tð Þ ≤ T 2ð Þ uð Þ tð Þ ≤ T 3ð Þ uð Þ tð Þ, u ∈ X, t ∈ℝ: ð58Þ

Let xð1Þ0 , xð2Þ0 , xð3Þ0 ∈ X be such that

x 1ð Þ
0 tð Þ ≤ x 2ð Þ

0 tð Þ ≤ x 3ð Þ
0 tð Þ, t ∈ℝ: ð59Þ

Hence, by (57), one obtains

T 2ð Þ x 1ð Þ
0

� �
tð Þ ≤ T 2ð Þ x 2ð Þ

0
� �

tð Þ ≤ T 2ð Þ x 3ð Þ
0

� �
tð Þ, t ∈ℝ: ð60Þ

On the other hand, by (58), one has

T 1ð Þ x 1ð Þ
0

� �
tð Þ ≤ T 2ð Þ x 1ð Þ

0
� �

tð Þ, t ∈ℝ, ð61Þ

T 2ð Þ x 3ð Þ
0

� �
tð Þ ≤ T 3ð Þ x 3ð Þ

0
� �

tð Þ, t ∈ℝ: ð62Þ

Therefore, using (60), (61), and (62), one deduces that

T 1ð Þ x 1ð Þ
0

� �
tð Þ ≤ T 2ð Þ x 2ð Þ

0

� �
tð Þ ≤ T 3ð Þ x 3ð Þ

0

� �
tð Þ, t ∈ℝ, ð63Þ

that is,

x 1ð Þ
1 tð Þ ≤ x 2ð Þ

1 tð Þ ≤ x 3ð Þ
1 tð Þ, t ∈ℝ: ð64Þ

Repeating the same argument, by induction, one deduces
that for all nonnegative integer p and t ∈ℝ,

x 1ð Þ
p tð Þ ≤ x 2ð Þ

p tð Þ ≤ x 3ð Þ
p tð Þ, ð65Þ

where fxðjÞp g, j = 1, 2, 3, is the sequence defined by (54).
Finally, passing to the limit as p⟶∞ in (65), the desired
result follows.

2.6. Data Dependence of Solutions. Suppose that conditions
(C1)–(C5) are satisfied. Then, by Theorem 3, the integral
equation admits one and only one solution x∗ ∈ X. Consider
now the perturbed problem

y tð Þ =
Yn
i=1

Fi t, y tð Þð Þ +
ðt
t−τi

Gi s, y sð Þð Þds
 !

, t ∈ℝ, ð66Þ
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where Fi,Gi ∈ Cðℝ × I, JÞ, i = 1, 2,⋯, n. Suppose that y∗ ∈ X
is a solution to the integral equation (66).

We have the following data dependence result.

Theorem 8. Suppose that for all i = 1, 2,⋯, n, there exist σi,
ηi > 0 such that

f i t, uð Þ − Fi t, uð Þj j ≤ σi, gi t, uð Þ −Gi t, uð Þj j ≤ ηi, t ∈ℝ, u ∈ I:
ð67Þ

Then,

x∗ − y∗k kX ≤
Mn−1 Qn−1

i=1 τi + 1ð Þ� �
∑n

k=1 σk + τkηkð Þ
1 −Mn−1 Qn−1

i=1 τi + 1ð Þ� �
∑n

k=1 Lf k
+ Lgkτk

� �h i :
ð68Þ

Proof. Let

S yð Þ tð Þ =
Yn
i=1

Si yð Þ tð Þ, t ∈ℝ, ð69Þ

where

Si yð Þ tð Þ = Fi t, y tð Þð Þ +
ðt
t−τi

Gi s, y sð Þð Þ ds, i = 1, 2,⋯, n:

ð70Þ

Then, for all t ∈ℝ, one has

x∗ tð Þ − y∗ tð Þj j = T x∗ð Þ tð Þ − S y∗ð Þ tð Þj j =
Yn
i=1

Ti x
∗ð Þ tð Þ −

Yn
i=1

Si y
∗ð Þ tð Þ

�����
�����,

ð71Þ

where the operator T is defined by (12). Next, by Lemma 1
and (14), one obtains

∣x∗ tð Þ − y∗ tð Þ∣ ≤ T2 x∗ð Þ tð Þ⋯ Tn x∗ð Þ tð Þ∣T1 x∗ð Þ tð Þ − S1 y∗ð Þ tð Þ∣
+ S1 y∗ð Þ tð ÞT3 x∗ð Þ tð Þ⋯ Tn x∗ð Þ tð Þ∣T2 x∗ð Þ tð Þ − S2 y∗ð Þ tð Þ∣
+⋯+S1 y∗ð Þ tð Þ⋯ Sn−1 y∗ð Þ tð Þ∣Tn x∗ð Þ tð Þ − Sn y∗ð Þ tð Þ∣

≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
Tk x∗ð Þ tð Þ − Sk y∗ð Þ tð Þj j:

ð72Þ

On the other hand, using (C2) and (C3) and (67), for all
k = 1, 2,⋯, n, one has

Tk x∗ð Þ tð Þ − Sk y∗ð Þ tð Þj j ≤ f k t, x∗ tð Þð Þ − Fk t, y∗ tð Þð Þj j
+
ðt
t−τk

gk s, x∗ sð Þð Þ −Gk s, y∗ sð Þð Þj jds

≤ f k t, x∗ tð Þð Þ − f k t, y∗ tð Þð Þj j + f k t, y∗ tð Þð Þ − Fk t, y∗ tð Þð Þj j
+
ðt
t−τk

gk s, x∗ sð Þð Þ − gk s, y∗ sð Þð Þj jds

+
ðt
t−τk

gk s, y∗ sð Þð Þ − Gk s, y∗ sð Þð Þj jds ≤ Lf k
x∗ − y∗k kX

+ σk + Lgkτk x∗ − y∗k kX + τkηk = Lf k
+ Lgkτk

� �
x∗ − y∗k kX

+ σk + τkηk:

ð73Þ

Hence, by (72), it holds that

x∗ − y∗k kX ≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

� 〠
n

k=1
Lf k

+ Lgkτk
� �

x∗ − y∗k kX + σk + τkηk

h i
,

ð74Þ

which yields

1 −Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
Lf k

+ Lgkτk
� �" #

x∗ − y∗k kX

≤Mn−1 Yn−1
i=1

τi + 1ð Þ
 !

〠
n

k=1
σk + τkηkð Þ:

ð75Þ

Finally, by (C4), the desired result follows.
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In this paper, we introduce the notion ofR-partial b-metric spaces and prove some related fixed point results in the context of this
notion. We also discuss an example to validate our result. Finally, as applications, we evince the importance of our work by
discussing some fixed point results on graphical-partial b-metric spaces and on partially-ordered-partial b-metric spaces.

1. Introduction and Preliminaries

Due to the fact that fixed point theory plays a very crucial role
for different mathematical models to obtain their solution
existence and has a wide range of applications in different
fields related to mathematics, this theory has intrigued many
researchers.

By the inception of the Banach fixed point theorem [1],
researchers are continuously trying to get the generalizations
of this classical result through different methodologies. For
instance, Czerwik [2] introduced the notion of b-metric
spaces, with a triangle inequality weaker than that of metric
spaces, in a view to generalize the Banach contraction princi-
ple. Moving on the same sequel, Matthews [3] introduced the
notion of a partial metric space, which was a part of the study
for denotational semantics of dataflow networks and gave a
generalized version of the Banach contraction principle.
The concept of partial metric spaces was further extended
to partial b-metric spaces by Shukla in [4]. A number of

researchers took keen interest in the generalized version of
the metric spaces some work is available in [5–27].

Recently, Gordgi et al. [28] introduced the notion of orthog-
onal sets and gave a new extension for the classical Banach
contraction principle. More details can be found in [29, 30].

After looking into the structure of orthogonal metric
spaces, introduced by [29, 30], and the binary relation used
with a metric, [31, 32], we introduce the notion of R-par-
tial b-metric spaces. We are also improving and generalizing
the concept of orthogonal contractions in the sense of R
-partial b-metric spaces and establish some fixed point theo-
rems for the proposed contractions.

Throughout this paper, we denote byℕ,ℝ,ℤ, and ℝ+ the
set of natural numbers, real numbers, integer numbers, and
nonnegative real numbers, respectively.

Definition 1 (see [2]. Let H be a nonempty set and s ≥ 1: Sup-
pose a mapping d : H ×H ⟶ℝ+ satisfies the following con-
ditions for all h,l,z ∈H :
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Journal of Function Spaces
Volume 2020, Article ID 6671828, 8 pages
https://doi.org/10.1155/2020/6671828

https://orcid.org/0000-0003-4648-9318
https://orcid.org/0000-0003-4606-7211
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6671828


ðbM1Þdðh, lÞ = 0 if and only if h = l ;
ðbM2Þdðh, lÞ = dðl, hÞ ;
ðbM3Þdðh, lÞ ≤ s½dðh, zÞ + dðz, lÞ�:
Then d is called a b-metric on H, and ðH, dÞ is called

a b-metric space with coefficient s:

Definition 2 (see [3]. Let H be a nonempty set. Let p : H ×H
⟶ℝ+ satisfy the following for all h,l,z ∈H:

ðpM1Þh = l if and only if pðh, hÞ = pðh, lÞ = pðl, lÞ ;
ðpM2Þpðh, hÞ ≤ pðh, lÞ ;
ðpM3Þpðh, lÞ = pðl, hÞ ;
ðpM4Þpðh, lÞ ≤ pðh, zÞ + pðz, lÞ − pðz, zÞ:
Then ðH, pÞ is called a partial metric space.

Definition 3 [4]. A partial b -metric on H ≠∅ is a function
σ : H ×H ⟶ℝ+ such that for all h,l,z ∈H , and for some s
≥ 1 , we have

ðσ1Þh = l if and only if σðh, hÞ = σðh, lÞ = σðl, lÞ ;
ðσ2Þσðh, hÞ ≤ σðh, lÞ ;
ðσ3Þσðh, lÞ = σðl, hÞ ;
ðσ4Þσðh, lÞ ≤ s½σðh, zÞ + σðz, lÞ� − σðz, zÞ:
A partial b-metric space is denoted with ðH, σ, sÞ: The

number s is called the coefficient of ðH, σ, sÞ:

Remark 4 (see [4]. It is clear that every partial metric space
is a partial b -metric space with coefficient s = 1 and every
b -metric space is a partial b -metric space with the same
coefficient and a zero self-distance. However, the converse
of this fact need not hold.

Example 1 [4]. Let H =ℝ+, p > 1 be a constant and σ : H ×
H ⟶ℝ+ be defined by

σ h, lð Þ = h − lj jp + max h, lf gð Þp for all h, l ∈H: ð1Þ

Then, ðH, σ, sÞ is a partial b-metric space with coefficient
s = 2p > 1, but it is neither a b-metric nor a partial metric space.

Definition 5 [33]. LetH be a nonempty set. A subsetR ofH2 is
called a binary relation on H . Then, for any h, l ∈H , we say
that }h isR -related to l} , that is, hRl , or }h relates to l under
R} if and only if ðh, lÞ ∈R. ðh, lÞ ∉R means that }h is not R
-related to l} or }h is not related to l under R}:

Definition 6 [33]. A binary relationR defined on a nonempty
set H is called ðaÞ reflexive if ðh, hÞ ∈R∀h ∈H ;

ðbÞ irreflexive if ðh, hÞ ∉R for some h ∈H ;
ðcÞ symmetric if ðh, lÞ ∈R implies ðl, hÞ ∈R∀h, l ∈H ;
ðdÞ antisymmetric if ðh, lÞ ∈R and ðl, hÞ ∈R imply h = l

∀h,l ∈H ;
ðeÞ transitive if ðh, lÞ ∈R and ðl, zÞ ∈R imply ðh, zÞ ∈R

∀h,l, z ∈H ;
ð f Þ preorder if R is reflexive and transitive;
ðgÞ partial order if R is reflexive, antisymmetric, and

transitive.

Definition 7 [32]. Let H be a nonempty set and let R be a
binary relation on H.

(a) A sequence fhng is called an R-sequence if

∀n ∈ℕ, hnRhn+1ð Þ: ð2Þ

(b) A map T : H ⟶H is R-preserving if

∀h, l ∈H, hRl implies ThRTl: ð3Þ

Definition 8 [32]. Let ðH, dÞ be a metric space and R be a
binary relation on H . Then, ðH, d,RÞ is called an R -metric
space.

Definition 9 [31]. A mapping T : H ⟶H is R -continuous
at h0 ∈H if for each R -sequence fhngn∈ℕ in H with hn ⟶
h0 , we get TðhnÞ⟶ Tðh0Þ . Thus, T is R -continuous on
H if T is R -continuous at each h0 ∈H.

Definition 10 [31]. A map T : H ⟶H is an R -contraction,
if

d Th, Tlð Þ ≤ kd h, lð Þ, ð4Þ

for all h, l ∈H with hRl, where 0 < k < 1.

Khalehoghli et al. [31] extended the result of Banach in
the following way.

Theorem 11 [31]. If T is anR -preserving andR -continuous
R -contraction on an R -complete R -metric space with h0
∈H such that h0Rl for each l ∈H . Then, T has a unique fixed
point.

2. Main Results

Let us begin this section with the definition of R-partial
b-metric spaces.

Definition 12. Let H ≠∅ and R be a reflexive binary relation
onH , denoted as ðH,RÞ . A map σR : H ×H⟶ℝ+ is called
anR -partial b -metric on the setH , if the following conditions
are satisfied for all h, l, z ∈H with either (hRl or lRh ), either
(hRz or zRh) and either (zRl or lRz ):

ðσR1Þh = l if and only if σRðh, hÞ = σRðh, lÞ = σRðl, lÞ;
ðσR2ÞσRðh, hÞ ≤ σRðh, lÞ;
ðσR3ÞσRðh, lÞ = σRðl, hÞ;
ðσR4ÞσRðh, lÞ ≤ s½σRðh, zÞ + σRðz, lÞ� − σRðz, zÞ, where

s ≥ 1.
Then, ðH,R, σR, sÞ is called R-partial b-metric space

with the coefficient s ≥ 1:

Remark 13. In the above definition, a set H is endowed with a
reflexive binary relation R and σR : H ×H ⟶ℝ+ satisfies
ðσR1Þ - ðσR4Þ only for those elements which are comparable
under the reflexive binary relation R . Hence, the R -partial
b -metric may not be a partial b -metric, but the converse is
true.

The following simplest example shows that theR-partial
b-metric with s ≥ 1 need not to be a partial b-metric with s ≥ 1.
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Example 2. Let H = f−1,−2, 1, 2g and let the binary relation
be defined by hRl if and only if h = l or h, l > 0 . It is easy to
prove that σRðh, lÞ =max f∣h∣,∣l ∣ g is anR -partial b -metric
on H with s ≥ 1 , but σR is not a partial b -metric on H with
s ≥ 1 . Indeed, for h = −2 and l = 2 , we have σRðh, hÞ = σRð
h, lÞ = σRðl, lÞ = 2.

In the coming definitions, let ðH,R, σR, sÞ be an R

-partial b-metric space with the coefficient s ≥ 1.

Definition 14. Let fhng be an R -sequence in ðH,R, σR, sÞ ,
that is, hnRhn+1 or hn+1Rhn for each n ∈ℕ . Then

(i) fhng is a convergent sequence to some h ∈H if
limn→∞σRðhn, hÞ = σRðh, hÞ and hnRh for each n
≥ k

(ii) fhng is Cauchy if limn,m→∞σRðhn, hmÞ exists and is
finite

Definition 15. ðH,R, σR, sÞ is said to be R -complete if for
every Cauchy R -sequence in H , there is h ∈H with
limn,m→∞σRðhn, hmÞ = limn→∞σRðhn, hÞ = σRðh, hÞ and hn
Rh for each n ≥ k.

Definition 16. We say that T : H ⟶H is an R -property map,
if for any iterative R -sequence fhn : hn = Tnh, h ∈Hg in ðH
,R, σR, sÞ with limn→∞σRðhn, hÞ = σRðh, hÞ, hnRh for some
n ≥ k and limn→∞σRðhn, ThÞ ≤ σRðh, hÞ , we have that hRT
h or ThRh.

Definition 17. We say that T : H ⟶H isR -0-continuous at
h ∈H if for each R -sequence fhng in ðH,R, σR, sÞ with
limn→∞σRðhn, hÞ = 0 , we have limn→∞σRðThn, ThÞ = 0 .
Also, T is R -0-continuous on H if T is R -0-continuous for
each h ∈H:

The following results help us to ensure the existence of
fixed points for self maps. Throughout, we assume that R
is a preorder relation.

Theorem 18. Let ðH,R, σR, sÞ be anR -complete R -partial
b -metric space with the coefficient s ≥ 1 and let h0 ∈H be such
that h0Rl for each l ∈H . Let T : H⟶H be an R -preserv-
ing and an R -property map satisfying the following

σR Th, Tlð Þ ≤ kσR h, lð Þ for all h, l ∈H with hRl,
ð5Þ

where k ∈ ½0, 1/sÞ: Then, T has a fixed point h∗ ∈H and
σRðh∗, h∗Þ = 0:

Proof. As h0 ∈H is such that h0Rl for each l ∈H, then by
using the R-preserving nature of T , we construct an R

-sequence fhng such that hn = Thn−1 = Tnh0 and hn−1Rhn
for each n ∈ℕ. We consider hn ≠ hn+1 for each n ∈ℕ ∪ f0g.

Thus, by (5), we get

σR hn, hn+1ð Þ = σR Thn−1, Thnð Þ ≤ kσR hn−1, hnð Þ, ð6Þ

for all n ∈ℕ: This inequality yields

σR hn, hn+1ð Þ ≤ knσR h0, h1ð Þ, ð7Þ

for all n ∈ℕ: To discuss the Cauchy criteria, we will consider
an arbitrary integer n ≥ 1,m ≥ 1withm > n and use σR4

along
(7) in the following way.

σR hn, hmð Þ ≤ s σR hn, hn+1ð Þ + σR hn+1, hmð Þ½ � − σR hn+1, hn+1ð Þ
≤ sσR hn, hn+1ð Þ + s2 σR hn+1, hn+2ð Þ + σR hn+2, hmð Þ½ �

− σR hn+2, hn+2ð Þ ≤ sσR hn, hn+1ð Þ + s2σR hn+1, hn+2ð Þ
+ s3σR hn+2, hn+3ð Þ+⋯+sm−nσR hm−1, hmð Þ

≤ sknσR h0, h1ð Þ + s2kn+1σR h0, h1ð Þ
+ s3kn+2σR h0, h1ð Þ+⋯+sm−nkm−1σR h0, h1ð Þ

≤ skn 1 + sk + skð Þ2+⋯� �
σR h0, h1ð Þ

= skn

1 − sk
σR h0, h1ð Þ:

ð8Þ

As k ∈ ½0, 1/sÞ and s ≥ 1, it follows from the above inequal-
ity that

lim
n,m→∞

σR hn, hmð Þ = 0: ð9Þ

Therefore, fhng is a Cauchy R-sequence. Since H is R
-complete, there exists h∗ ∈H such that limn,m→∞σRðhn, hm
Þ = limn→∞σRðhn, h∗Þ = σRðh∗, h∗Þ and hnRh∗ for each n
≥ k (for some value of k). Thus, from above, we obtain 0 =
limn,m→∞σRðhn, hmÞ = limn→∞σRðhn, h∗Þ = σRðh∗, h∗Þ and
hnRh∗ for each n ≥ k. As hnRh∗ for each n ≥ k, from (5),
we get

σR Thn, Th∗ð Þ ≤ kσR hn, h∗ð Þ: ð10Þ

This inequality and the above findings imply

lim
n→∞

σR hn+1, Th∗ð Þ ≤ σR h∗, h∗ð Þ = 0: ð11Þ

As T is an R-property map, so we get h∗RTh∗ or Th∗

Rh∗. Without any loss of generality, we take h∗RTh∗. Thus,
by using σR4

with (5), we get the following for each n ≥ k

σR h∗, Th∗ð Þ ≤ sσR h∗, hn+1ð Þ + sσR hn+1, Th∗ð Þ
− σR hn+1, hn+1ð Þ ≤ sσR h∗, hn+1ð Þ
+ sσR Thn, Th∗ð Þ ≤ sσR h∗, hn+1ð Þ
+ skσR hn, h∗ð Þ:

ð12Þ

When n tends to infinity, the above inequality yields σR

ðh∗, Th∗Þ = 0. Hence, we get σRðh∗, Th∗Þ = 0, σRðh∗, h∗Þ =
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0 and σRðTh∗, Th∗Þ = 0. Therefore, h∗ = Th∗, that is, h∗ is a
fixed point of T .

Remark 19. Note that the fixed point of T is unique if in the
above theorem we add (I): for each fixed points h∗ and l∗ of
T , we have h∗Rl∗ or l∗Rh∗.

Since h∗ and l∗ are fixed points of T such that h∗Rl∗.
Then, we have Tnh∗ = h∗,Tnl∗ = l∗ for all n ∈ℕ: By the
nature of h0, we obtain

h0Rh∗andh0Rl∗: ð13Þ

Since T is R-preserving, we have

Tnh0RTnh∗andTnh0RTnl∗, ð14Þ

for all n ∈ℕ: Therefore, by the triangle inequality and (5), we
get

σR h∗, l∗ð Þ = σR Tnh∗, Tnl∗ð Þ = s σR Tnh∗, Tnh0ð Þ½
+ σR Tnh0, Tnl∗ð Þ� − σR Tnh0, Tnh0ð Þ

≤ sknσR h∗, h0ð Þ + sknσR h0, l∗ð Þ:
ð15Þ

Taking limit as n⟶∞ in the above inequality, we
obtain

σR h∗, l∗ð Þ = 0, ð16Þ

and so

h∗ = l∗: ð17Þ

Remark 20. Note that the condition “let h0 ∈H be such that
h0Rl for each l ∈H” of Theorem18may be replaced with “let
h0 ∈H be such that h0RTh0 .”

Example 3. Let H =ℝ and define σR : H ×H ⟶ℝ+ by

σR h, lð Þ = h − lj j2  if  h, l ≥ 0,
0 otherwise:

 
ð18Þ

The relation on H is defined by hRl if and only if h = l or
h, l ≥ 0. Clearly, ðH,R, σR, 4Þ is an R-complete partial b
-metric space. Define a map T : H⟶H by

Th =
h
4  if  h ≥ 0,

0 otherwise:

0
@ ð19Þ

Then, it is very simple to verify the following:

(1) If h = l, then Th = Tl. While if h, l ≥ 0, then Th, Tl ≥ 0.
Thus, T is an R-preserving map

(2) Suppose that for any iterative R-sequence fhng in H
with limn→∞σRðhn, hÞ = σRðh, hÞ, hnRh for some n
≥ k, and limn→∞σRðhn, ThÞ ≤ σRðh, hÞ, then we get
hRTh

(3) Consider h0 ≥ 0 any real number, then Th0 ≥ 0. Thus,
we have h0, Th0 ≥ 0, that is, h0RTh0

(4) For each h, l ∈H with hRl, we have

case (a) h = l:

σR Th, Tlð Þ = 0 = 1
16 × 0 = 1

16σR h, lð Þ: ð20Þ

case (b) h, l ≥ 0:

σR Th, Tlð Þ = h
4 −

l
4

����
����
2
= 1
16 h − lj j2 = 1

16σR h, lð Þ: ð21Þ

Hence, by Theorem 18, T must has a fixed point.

Example 4. Let H =ℝ and define σR : H ×H ⟶ℝ+ by

σR h, lð Þ = h − lj j2 + max h, lf gð Þ2  if  h, l ≥ 0,
0 otherwise:

 

ð22Þ

The relation on H is defined by hRl if and only if h = l or
h, l ≥ 0.

Clearly, ðH,R, σR, 4Þ is an R-complete partial b-metric
space. Define a map T : H⟶H by

Th =
h
6  if  h ≥ 0,

−1 otherwise:

0
@ ð23Þ

Then, one can verify the following:

(1) If h = l, then Th = Tl. While if h, l ≥ 0, then Th, Tl ≥ 0
. Thus, T is an R-preserving map

(2) Suppose that for any iterative R-sequence fhng in H
with limn→∞σRðhn, hÞ = σRðh, hÞ, hnRh for some n
≥ k, and limn→∞σRðhn, ThÞ ≤ σRðh, hÞ, then we get
hRTh

(3) If h0 ≥ 0 be some real number, then Th0 ≥ 0. Thus, we
get h0, Th0 ≥ 0, that is, h0RTh0

(4) For each h, l ∈H with hRl, we have

Case (a) If h = l ≥ 0, then Th = Tl ≥ 0. Thus,

σR Th, Tlð Þ = 0 + max h
6 ,

l
6

� �� �2
= 1
36 max h, lf gð Þ2

= 1
36 σR h, lð Þ:

ð24Þ

Case (b) If h = l < 0, then Th = Tl = −1. Thus,

σR Th, Tlð Þ = 0 = σR h, lð Þ: ð25Þ
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Case (c) If h, l ≥ 0, then Th, Tl ≥ 0. Thus,

σR Th, Tlð Þ = h
6 −

l
6

����
����
2
+ max h

6 ,
l
6

� �� �2
= 1
36σR h, lð Þ:

ð26Þ

Hence, by Theorem 18, T must has a fixed point.

Remark 21. Note that the function σR defined in the above
example is neither a metric nor a b -metric nor a partial b -met-
ric on ℝ . Indeed, σRð4, 1Þ = 25, σRð4,−1Þ = 0, σRð−1, 1Þ = 0,
σRð−1,−1Þ = 0 , that is, ðσ4Þ and ðbM3Þ do not exist.

Theorem 22. Let ðH,R, σR, sÞ be anR -complete R -partial
b -metric space with the coefficient s ≥ 1 and let h0 ∈H be such
that h0Rl for each l ∈H . Let T : H⟶H be an R -preserv-
ing and R -0-continuous map satisfying the following

σR Th, Tlð Þ ≤ k max σR h, lð Þ, σR h, Thð Þ, σR l, Tlð Þf g, ð27Þ

for all h, l ∈H with hRl, hRTh, and lRTl, where k ∈ ½0, 1/sÞ:
Also, let for eachR-sequence fhng inH with hnRa and hnRb,
we have either aRb or bRa. Then, T has a fixed point h∗ ∈H
and σRðh∗, h∗Þ = 0:

Proof. As h0 ∈H is such that h0Rl for each l ∈H, then by
using the R-preserving nature of T , we obtain an R

-sequence fhng such that hn = Thn−1 = Tnh0 and hn−1Rhn
for each n ∈ℕ. We take hn ≠ hn+1 for each n ∈ℕ ∪ f0g. Then
by (27), for each n ∈ℕ, we get

σR hn, hn+1ð Þ = σR Thn−1, Thnð Þ
≤ k max σR hn−1, hnð Þ, σR hn−1, Thn−1ð Þ, σR hn, Thnð Þf g
= k max σR hn−1, hnð Þ, σR hn−1, hnð Þ, σR hn, hn+1ð Þf g
= k max σR hn−1, hnð Þ, σR hn, hn+1ð Þf g:

ð28Þ

If max fσRðhn−1, hnÞ, σRðhn, hn+1Þg = σRðhn, hn+1Þ, then
from the above inequality, we obtain that σRðhn, hn+1Þ ≤ k
σRðhn, hn+1Þ < σRðhn, hn+1Þ, which is a contradiction. There-
fore, we must have max fσRðhn−1, hnÞ, σRðhn, hn+1Þg = σRð
hn−1, hnÞ. Again, from the above inequality, we have

σR hn, hn+1ð Þ ≤ kσR hn−1, hnð Þ∀n ∈ℕ: ð29Þ

On repeating this process, we obtain

σR hn, hn+1ð Þ ≤ knσR h0, h1ð Þ∀n ∈ℕ: ð30Þ

For m,n ∈ℕ with m > n, by σR4, we obtain

σR hn, hmð Þ ≤ s σR hn, hn+1ð Þ + σR hn+1, hmð Þ½ � − σR hn+1, hn+1ð Þ
≤ sσR hn, hn+1ð Þ + s2 σR hn+1, hn+2ð Þ½

+ σR hn+2, hmð Þ� − σR hn+2, hn+2ð Þ
≤ sσR hn, hn+1ð Þ + s2σR hn+1, hn+2ð Þ

+ s3σR hn+2, hn+3ð Þ+⋯+sm−nσR hm−1, hmð Þ:
ð31Þ

Using (30) in the above inequality, we obtain

σR hn, hmð Þ ≤ sknσR h0, h1ð Þ + s2kn+1σR h0, h1ð Þ
+ s3kn+2σR h0, h1ð Þ+⋯+sm−nkm−1σR h0, h1ð Þ

≤ skn 1 + sk + skð Þ2+⋯� �
σR h0, h1ð Þ

= skn

1 − sk
σR h0, h1ð Þ:

ð32Þ

As k ∈ ½0, 1/sÞ and s ≥ 1, it follows from the above inequal-
ity that

lim
n,m→∞

σR hn, hmð Þ = 0: ð33Þ

Therefore, fhng is a Cauchy R-sequence. Since H is
R-complete, there exists h∗ ∈H such that limn,m→∞σRðhn,
hmÞ = limn→∞σRðhn, h∗Þ = σRðh∗, h∗Þ and hnRh∗ for each
n ≥ k. Thus, from above, we obtain 0 = limn,m→∞σRðhn, hmÞ
= limn→∞σRðhn, h∗Þ = σRðh∗, h∗Þ and hnRh∗ for each n ≥
k. Since T is R-0-continuous, one gets that limn→∞σRðhn,
h∗Þ = 0, which leads to limn→∞σRðThn, Th∗Þ = 0. Obviously,
we have ThnRTh∗ for each n ≥ k. Thus, hnRTh∗ for each
n > k. Since hnRh∗ and hnRTh∗ for each n > k, we have
either h∗RTh∗ or Th∗Rh∗. By using σR4, we get the fol-
lowing for each n > k:

σR h∗, Th∗ð Þ ≤ sσR h∗, hn+1ð Þ + sσR hn+1, Th∗ð Þ
− σR hn+1, hn+1ð Þ: ð34Þ

When n tends to infinity, the above inequality yields
σRðh∗, Th∗Þ = 0. Hence, we get σRðh∗, Th∗Þ = 0, σRðh∗,
h∗Þ = 0, and σRðTh∗, Th∗Þ = 0. Therefore, we say that
h∗ = Th∗, i.e., h∗ is a fixed point of T.

Remark 23. Note that the fixed point of T is unique if in the
above result, we add the condition: for each fixed points h∗

and l∗ of T , we have h∗Rl∗ or l∗Rh∗.
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Since h∗ = Th∗, we have l∗ = Tl∗ and h∗Rl∗. From (27),
we get

σR h∗, l∗ð Þ = σR Th∗, Tl∗ð Þ
≤ k max σR h∗, l∗ð Þ, σR h∗, Th∗ð Þ, σR l∗, Tl∗ð Þf g
= k max σR h∗, l∗ð Þ, σR h∗, h∗ð Þ, σR l∗, l∗ð Þf g
= kσR h∗, l∗ð Þ < σR h∗, l∗ð Þ:

ð35Þ

It is a contradiction in the case σRðh∗, l∗Þ ≠ 0. Therefore,
we must have σRðh∗, l∗Þ = 0, that is, h∗ = l∗.

3. Applications to Graphical Partial b-Metric
Spaces and Partially-Ordered-Partial b
-Metric Spaces

In this section, we define a directed graphG onH, denoted by
G = ðVðHÞ, EðHÞÞ, with the vertex set VðHÞ =H and the
edge set EðHÞ such that EðHÞ ⊂H ×H and fðh, hÞ: h ∈Hg
⊂ EðHÞ. Also, EðHÞ has no parallel edge. Note that hPl
denotes the path between h and l, that is, there exists a finite
sequence fkigji=0, for some finite j, such that k0 = h, kj = l, and
ðki, ki+1Þ ∈ EðHÞ for i ∈ f0, 1,⋯,j − 1g.

Definition 24. Let H ≠∅ be associated the above-defined G ,
denoted as ðH,GÞ . A map σG : H ×H →ℝ+ is called a G
-partial b -metric on the set H , if the following conditions
are satisfied for all h, l, z ∈H with hPl and z ∈ hPl:

ðσG1Þh = l if and only if σGðh, hÞ = σGðh, lÞ = σGðl, lÞ;
ðσG2ÞσGðh, hÞ ≤ σGðh, lÞ;
ðσG3ÞσGðh, lÞ = σGðl, hÞ;
ðσG4ÞσGðh, lÞ ≤ s½σGðh, zÞ + σGðz, lÞ� − σGðz, zÞ, where

s ≥ 1.
Then, ðH,G, σG, sÞ is called a G -partial b-metric space

with the coefficient s ≥ 1:

Remark 25. If hPl and z ∈ hPl , then we get hPz and zPl . Also
note if hPz and zPl , then we have hPl.

Thus, P is a preorder relation on H. Therefore, ðH,G,
σG, sÞ is also an R-partial b-metric space.

Definition 26. Let fhng be a G -sequence in ðH,G, σG, sÞ , that
is, hnPhn+1 or hn+1Phn for each n . Then, we say that

(i) fhng is a convergent sequence to h ∈H if limn→∞σG
ðhn, hÞ = σGðh, hÞ and hnPh for each n ≥ k

(ii) fhng is Cauchy if limn,m→∞σGðhn, hmÞ exists and is
finite

Definition 27. ðH,G, σG, sÞ is said to be G -complete if for each
Cauchy G -sequence in H there is h ∈H with limn,m→∞σGð
hn, hmÞ = limn→∞σGðhn, hÞ = σGðh, hÞ and hnPh for each n
≥ k.

Note that for a map T : H →H, the G-0-continuity and
G-property are defined in the same way as explained in the
last section.

Theorem 28. Let ðH,G, σG, sÞ be a G -complete G -partial b
-metric space with the coefficient s ≥ 1 and let h0 ∈H be such
that h0Pl for each l ∈H . Let T : H⟶H be an edge
preserving (if ðh, lÞ ∈ EðHÞ , then ðTh, TlÞ ∈ EðHÞ) and a G
-property map satisfying the following

σG Th, Tlð Þ ≤ kσG h, lð Þ for all h, l ∈H with hPl,
ð36Þ

where k ∈ ½0, 1/sÞ: Then, T has a fixed point h∗ ∈H and
σGðh∗, h∗Þ = 0:

By Remark 25, we know that P is a preorder relation on H
and ðH,G, σG, sÞ is anR-partial b-metric space. Also, an edge
preserving map is path preserving. Thus, all the conditions of
Theorem 18 hold. Hence, T has a fixed point.

In the following, we obtain partially-ordered-partial b
-metric spaces from R-partial b-metric spaces, by consid-
ering ° as a partial order on H.

Definition 29. Let H ≠∅ be associated with a partial order ° ,
denoted as ðH°Þ . Given a map σ° : H ×H→ℝ+ . If the fol-
lowing conditions are satisfied for all h, l, z ∈H with h°l and
h°z°l:

ðσ°1Þh = l if and only if σ°ðh, hÞ = σ°ðh, lÞ = σ°ðl, lÞ;
ðσ°2Þσ°ðh, hÞ ≤ σ°ðh, lÞ;
ðσ°3Þσ°ðh, lÞ = σ°ðl, hÞ;
ðσ°4Þσ°ðh, lÞ ≤ s½σ°ðh, zÞ + σ°ðz, lÞ� − σ°ðz, zÞ, where s ≥ 1,
then ðH,G, σ°, sÞ is called a partially-ordered-partial b

-metric space with the coefficient s ≥ 1:

As we discussed in the above, we state the following
result.

Theorem 30. Let ðH,G, σ°, sÞ be an ° -complete partially-
ordered-partial b -metric space with the coefficient s ≥ 1 and
let h0 ∈H be such that h0

°l for each l ∈H . Let T : H ⟶H
be order preserving (if h°l then Th°Tl ), and an ° -property
map satisfying the following:

σ° Th, Tlð Þ ≤ kσ° h, lð Þ for all h, l ∈H with h°l,
ð37Þ

where k ∈ ½0, 1/sÞ: Then, T has a fixed point h∗ ∈H and
σ°ðh∗, h∗Þ = 0:

Remark 31. ≼− completeness is defined in the same way as G
-completeness.

4. Conclusion

By combining the concepts of orthogonality and the binary
relation, we introduced the notion of R-partial b-metric
spaces. We presented some related fixed point results. Some
illustrated examples and an application to graphical partial
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b-metric spaces and partially-ordered-partial b-metric spaces
have been provided. As perspectives, it would be interesting
to consider in this setting more generalized contraction
mappings involving simulation functions or more control
functions.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no competing interests
regarding the publication of this paper.

Authors’ Contributions

All authors contributed equally and significantly in writing
this article. All authors read and approved the final
manuscript.

Acknowledgments

The research has been supported by the China Postdoctoral
Science Foundation (Grant No. 2019M661047), the Natural
Science Foundation of Hebei Province (Grant No.
A2019404009), and Postdoctoral Foundation of Hebei Prov-
ince (Grant No. B2019003016).

References

[1] S. Banach, “Sur les opérations dans les ensembles abstraits et
leur application aux équations intégrales,” Fundamenta Math-
ematicae, vol. 3, pp. 133–181, 1922.

[2] S. Czerwik, “Contraction mappings in b-metric spaces,” Acta
mathematica et informatica universitatis ostraviensis, vol. 1,
pp. 5–11, 1993.

[3] S. G. MATTHEWS, “Partial metric topology,” Annals of the
New York Academy of Sciences, vol. 728, no. 1 General Topol,
pp. 183–197, 1994.

[4] S. Shukla, “Partial b-metric spaces and fixed point theorems,”
Mediterranean Journal of Mathematics, vol. 11, no. 2,
pp. 703–711, 2014.

[5] E. Karapınar and C. Chifu, “Results in wt-distance over b
-metric spaces,” Mathematics, vol. 8, no. 2, 2020.

[6] H. Afshari, H. Aydi, and E. Karapinar, “On generalized α-ψ-
Geraghty contractions on b-metric spaces,” Georgian Mathe-
matical Journal, vol. 27, no. 1, pp. 9–21, 2020.

[7] E. Karapinar, O. Alqahtani, and H. Aydi, “On interpolative
Hardy-Rogers type contractions,” Symmetry, vol. 11, no. 1,
2019.

[8] C. Chifu, E. Karapinar, and G. Petrușel, “Fixed point results in
ε-chainable complete b-metric spaces,” Fixed Point Theory,
vol. 21, no. 2, pp. 453–464, 2020.

[9] H. Aydi, E. Karapinar, and A. F. R. L. Hierrode, “ω-interpo-
lative Ciric-Reich-Rus type contractions,” Mathematics,
vol. 7, no. 1, 2019.

[10] E. Ameer, H. Aydi, M. Arshad, andM. De la Sen, “HybridĆirić
type graphic Υ,Λ-contraction mappings with applications to

electric circuit and fractional differential equations,” Symme-
try, vol. 12, no. 3, 2020.

[11] N. Alamgir, Q. Kiran, H. Isik, and H. Aydi, “Fixed point results
via a Hausdorff controlled type metric,” Advances in Difference
Equations, vol. 2020, no. 1, 2020.

[12] H. Aydi, H. Lakzian, Z. D. Mitrović, and S. Radenović, “Best
proximity points of MT -cyclic contractions with property
UC,” Numerical Functional Analysis and Optimization,
vol. 41, no. 7, pp. 871–882, 2020.

[13] H. Aydi, E. Karapinar, and W. Shatanawi, “Coupled fixed
point results for (ψ,φ)-weakly contractive condition in ordered
partial metric spaces,” Computers and Mathematics with
Applications, vol. 62, no. 12, pp. 4449–4460, 2011.

[14] E. Karapinar, S. Czerwik, and H. Aydi, “ðα, ψÞ-Meir-Keeler
contraction mappings in Generalizedb-Metric spaces,” Journal
of Function spaces, vol. 2018, Article ID 3264620, 4 pages,
2018.

[15] T. Abdeljawad, N. Mlaiki, H. Aydi, and N. Souayah, “Double
controlled metric type spaces and some fixed point results,”
Mathematics, vol. 6, no. 12, p. 320, 2018.

[16] E. Ameer, H. Aydi, M. Arshad, H. Alsamir, and M. S. Noorani,
“Hybrid multivalued type contraction mappings in αK-com-
plete partial b-metric spaces and applications,” Symmetry,
vol. 11, no. 1, 2019.

[17] J. Vujaković, H. Aydi, S. Radenović, and A.Mukheimer, “Some
remarks and new results in ordered partial b-metric spaces,”
Mathematics, vol. 7, no. 4, 2019.

[18] S. Babu, T. Dosenovic, and M. Ali, “Some Presic′ type results
in b-dislocated metric spaces,” Constructive Mathematical
Analysis, vol. 2, pp. 40–48, 2019.

[19] E. Karapinar, “A short survey on the recent fixed point results
on b-metric spaces,” Constructive Mathematical Analysis,
vol. 1, pp. 15–44, 2018.

[20] Z. Kadelburg and S. Radenović, “Notes on some recent papers
concerning F-contractions in b-metric spaces,” Constructive
Mathematical Analysis, vol. 1, no. 2, pp. 108–112, 2018.

[21] O. Acar and I. Altun, “Multivalued F-contractive mappings
with a graph and some fixed point results,” Publicationes
Mathematicae Debrecen, vol. 88, no. 3-4, pp. 305–317, 2016.

[22] E. Karapinar, R. P. Agarwal, and H. Aydi, “Interpolative
Reich–Rus–Ćirić type contractions on partial metric spaces,”
Mathematics, vol. 6, no. 11, 2018.

[23] E. Karapınar, I. Erhan, and A..̇ Öztürk, “Fixed point theorems
on quasi-partial metric spaces,” Mathematical and Computer
Modelling, vol. 57, no. 9-10, pp. 2442–2448, 2013.

[24] Z. Mustafa, J. R. Roshan, V. Parvaneh, and Z. Kadelburg,
“Some common fixed point results in ordered partial b-met-
ric spaces,” Journal of Inequalities and Applications,
vol. 2013, no. 1, 2013.

[25] K. P. Chi, E. Karapinar, and T. D. Thanh, “A generalized con-
traction principle in partial metric spaces,” Mathematical and
Computer Modelling, vol. 55, no. 5-6, pp. 1673–1681, 2012.

[26] E. Karapinar, I. M. Erhan, and A. Y. Ulus, “Fixed point theo-
rem for cyclic maps on partial metric spaces,” Applied Mathe-
matics & Information Sciences Letters, vol. 6, pp. 239–244,
2012.

[27] O. Acar, V. Berinde, and I. Altun, “Fixed point theorems for
Ćirić-type strong almost contractions on partial metric
spaces,” Journal of Fixed Point Theory and Applications,
vol. 12, no. 1-2, pp. 247–259, 2012.

7Journal of Function Spaces



[28] M. E. Gordji, M. Rameani, M. SenDe La, and Y. J. Cho, “On
orthogonal sets and Banach fixed point theorem,” Fixed Point
Theory, vol. 18, no. 2, pp. 569–578, 2017.

[29] M. Eshagahi Gordji and H. Habibi, “Fixed point theory in gen-
eralized orthognal metric space,” Journal of Linear and Topo-
logical Algebra, vol. 6, no. 3, pp. 251–260, 2017.

[30] H. Baghani, M. E. Gordji, and M. Ramezani, “Orthogonal sets:
the axiom of choice and proof of a fixed point theorem,” Jour-
nal of Fixed Point Theory and Applications, vol. 18, no. 3,
pp. 465–477, 2016.

[31] S. Khalehoghli, H. Rahimi, and M. E. Gordji, “Fixed point the-
orem inR-metric spaces with applications,” AIMSMathemat-
ics, vol. 5, no. 4, 2020.

[32] H. Baghani and M. Ramezani, “A fixed point theorem for a
new class of set-valued mappings in R-complete (not necessar-
ily complete) metric spaces,” Filomat, vol. 31, no. 12, pp. 3875–
3884, 2017.

[33] R. D. Maddux, “Relation algebras,” in Studies in Logic and the
Foundations of Mathematics, Elsevier B. V, Amsterdam, 2006.

8 Journal of Function Spaces


