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We give a Bézier variant of Baskakov-Durrmeyer-type hybrid operators in the present article. First, we obtain the rate of convergence
by using Ditzian-Totik modulus of smoothness and also for a class of Lipschitz function. Then, weighted modulus of continuity is
investigated too. We study the rate of point-wise convergence for the functions having a derivative of bounded variation.
Furthermore, we establish the quantitative Voronovskaja-type formula in terms of Ditzian-Totik modulus of smoothness at the end.

1. Introduction

To approximate continuous functions, many approximating
operators have been introduced under certain conditions
and with different parameters too. Many researchers have
later generalized and modified these introduced operators
and discussed various approximating properties of these
operators. In 1957, Baskakov [1] introduced and studied such
a class of positive linear operators, called Baskakov operators
defined on the positive semiaxis. For f € @[0,00), the
sequence of Baskakov operators is given as

X (n+k-
%(f;y)=z< L 1>y"(1+y)‘”"‘f(§)> (1)

k=0

for y€[0,00) and neN. Later on, many authors have
been considering the Baskakov operators; for instance,
Aral in [2] defines the parametric generalization of Baskakov
operators as

B(f9)= 2.2 (1) @)

k-1 n+k-1
P (x) = —— G [ = ( ) ~(1-v)(1+x)

(1+x L+x k

n+k-3 n+k-1
(e
k-2 k

n+k-1
with =0ifk=0,1.
k-2

Among interesting studies realized in this context, we cite
those based on the Baskakov-Kantorovitch-type operators in
the generalized form (the original operator given by Kantor-
ovich in [3]) defined as, for f € L'([0, 1]) (the class of Lebes-
gue integrable functions on [0, 1]),

(3)

®(n+k-1 1
BK,(f 5%) = Z( ' )xk(l +x)_"_kJ0Xn,k(f)f(f)df’

k=0 k
(4)
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where . is the characteristic function of the interval
[k/n, k + 1/n).

It is well known that Bézier curves are the mathematically
defined curves successively used in computer-aided geomet-
ric design (CAGD), image processing, and curve fitting.
The miscellaneous Bézier variant of operators is crucial
subject matter in approximation theory. In 1983, Chang [4]
pioneered the Bernstein-Bézier operators. Afterwards,
several researchers established the Bézier variant of various
operators (c.f. [5, 6]). For more details on the approximation
by Durrmeyer-type and Baskakov-Durrmeyer-type opera-
tors, one can refer to [7, 8], respectively. For more about
Bézier variant of operators, one can refer to [9, 10].

We will be mainly interested to the Bézier variant
operator type based on those of Baskakov-Durrmeyer
defined as follows:

10 (f zsr J T (1)t + X5 (x)(0),
(5)

where

L5x) = [Ex )] = (B () Zg’ )k=0,1,2,-
_ . —npt (”Pt)kr1
jﬁ,k(t) =npe " W

(6)

If we take 6=1, then operator (5) reduces to the
following operator studied by [11].

9= 3 P a0+ 210
)

Let us briefly summarize the outline of the paper. Next
section is devoted to the computation of some auxiliary
results which we need to prove our theorems in coming sec-
tions. In Section 3, we will prove some approximations of
functions using Ditzian-Totik modulus and then we will deal
to functions lie in the Lipschitz spaces. We treat in Section 4
the rate of convergence in the context of suitable weighted
spaces and functions having a derivative of bounded varia-
tion. Finally, in Section 5, we state and prove the quantitative
Voronovskaja-type theorem.

2. Preliminary Results
Lemma 1. &, (x) satisfies the following important properties:

(1) & p(x) =& (%) =Py 1 (x) k=0, 1,2, -+
(2) &0(x) > &, 1 (x) >+ & (x) > & gy (x) > o
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ifo>1

— [ g ()] <

0P (x
(3) [E4(x))° { i)

(Pra(2)’ if6<1
Proof. Since (1) and (2) are evident, we prove only the
assertion (3).

If 0>1, it suffices to remark that by the mean value
theorem, we have

be—aegﬂ(b—a)forevery0<a<b<1. (8)

If 0 < 1, we shall prove that

v —a’ < (b-a)’forevery0<a<b. 9)

Dividing this inequality by aY it is equivalent to
prove that

f(r)y=(r-1)% =" +120foreveryr> 1. (10)

We have f'(r) = (8/(r — 1))e? ™ 1) — (0/r)e® * *); then,

£'(r)>0if andonlyif In (——) >In e (11)
(r) andonly 1 A (1) )

and this is true as 6 < 1.
We proved then f is increasing, so f(r) > f(s) for all
r>s>1, letting s to 1, and we deduce that f(r) >0. O

Remark 2. The operators ?Zﬁ( f3;x) have the integral
representation

9 (f %) =j°°%;:?;<x> ) () (12)

0

where % Zl’)z(x, u) is the kernal defined by

K (% u u)+ L5 (x)8(u).  (13)

Zsr
O(u) is the Dirac-delta function.

Lemma 3. Let e, (t)=t" and ¢(t)=1/(1+1t)"">. For the

operator 9B, ,(f ;x), we have

(1) B, ,(e05x) = Y20 P k(%) =
(—1)*o® (x)/k! = p(0) = 1
QI (e3%) = S0 (). (kp + m— 1) (kp + 11— 2)
- (kp)l(np)",m=1,2,3,--

Ziiog’ﬁ,k(x) =Yreo

As an easy consequence of last lemma, we will prove the
following result.
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Lemma 4. We have the following moments:

(1) B, ,(t;x)=x+2x(v—1)/n

(2) B, ,(t75%) =27 +x*(4v = 3)In+x(=2+n+2v+np
+4p(v 1))In’p

(3) B, ,(t=x;5x)=2x(v—1)/In

(4) B, ,((t- x)%5%) = x2n+ (xinp)n(1 + p) + 2(v—1)
(1 +2p)

(5)n° B, ,((t —x)*5x) = (), + (6x° 1P p)ax, + (x2(1
+p)n’p?)az + (x(1+ p)/n'p’)ay

where

o, =3n+16v-10,
a,=n+6v-4+p(n+8v-06), (14)
a;=3n(I1+p)+4v(7+8p)—25p—17

=n(l+p)(3+p)+4(v—-1)(3+4p(2+p)). (15)

Remark 5. We have

(1) lim,__,n%B, ,(t - x;x) =2x(v-1)

(2) lim =x(1+p+px)lp

nZ%Z)p((t—x)4 ;x) =

n—=o00

1193;’0((1‘—96)2 ;%)

(3) lim 3(x(1+p+px))*/p?

Remark 6. For n large enough, we have the following
inequalities:

2 .

(1) |‘%:¢,p((t_x) 4

) |8,,,((t-x)";

x)| < Cy(x(1+ p+ px)inp)
%) < C((x(1+ p+ px))*/(np)*)
Throughout this article, let €5(R}) denote the space of

all functions f on R{ which are bounded and continuous.
We endowed it by the norm ||f|| = sup, . | f(x) |-

Lemma 7. Let f € €5(R}), and we have

(D) 1Z,0(f 5
) ?Ve(f x)<0%, (f;

X)<8)0 (eq; X)If I and €30 (ey5x) = 1
x) <Olfll

Proof.

(1) On the one hand, we have

3
7000 = | X 2| s T0r0)
k=1
<> &’;ﬁ(x)j 70 (O)dt+ 220 ()| 1)
k=1 0
<% ey 1) IfI.
(16)
On the other hand,
0
O(eqsx Z a0 (Z P > =19=1
(17)

(2) We have

GATED) fr;:i<x>j:°f5,k<t>f<t>dt + 20(x)(0)

= 3 ([0 - Baea)]”) | 7atoroas

+([En®)] = [E.)°)F(0).
(18)

Using Lemma 1, it is easy to see that

70 (f <929° j 70 (O (1)dt + 0o () (0)

geg%gyp(f; X).

3. Direct Approximation

Before we discuss the different approximations, we need
some definitions. First, we recall the definition of the well-
known Ditizian-Totik modulus of smoothness w,,(.,.) and

Peetre’s K-functional [12].

Definition 8. Let ¢(x) =
define

Vxand f € €5(R). For0<7<1,we

(7)o (77

(20)

(f 0) = sup sup

0<h<8x+heT (x)/2€R}

and the K-functional



Kp(f:0)= inf {If ~gll +o]e"g|[}, (1)

where
- {geACloc : Hgng'H<oo}, (22)

with AC,,, is the set of all absolutely continuous function on
every finite subinterval of Rj.

Remark 9. w(f,0) and K (f,0) are equivalent, that is,
there exists a constant C>0 such that

’lwq,,(f,(?)qu,r(f,é‘)SCwq,r(f,(?). (23)
In the next definition, we cite Lipschitz-type functions:

Definition 10 [13]. For a > 0, b > 0 to be fixed, the class of two
parametric Lipschitz-type functions is defined as

& x>0
(y+axz+bx)ﬁ/2’ . '
(24)

Lipiy () = {9 €G(Ry): 1f(y) —f(x)l<M

where M is any positive constant and 0 < S < 1.

The space Lip},(B) is the space Lipj,(B) given by
Szasz [14].

We now proceed with the approximation results.

Theorem 11. For f € €5(IR}), we have

w53 -] <y (1 D), )

where w,, is given by (20) and C is a constant free from the

choice of n and x.
For the proof of this theorem, we use the following lemma
proved in [15].

Lemma 12. Let ¢(x) =
X,y >0, we have

V/xand 0 <1 < I; then, for f € W, and

SZTx*T/2\|x—y||Hgon'||. (26)

Jyf'(u)du

X

Proof (Theorem 11). Let g € W . Using Lemma 7, we have

Zis U39 =) =[50 - 939 + (9 - 9
+1970(g5x) - g(x)’
< (1+0)|/(0) - 9]

[9i8(0:0-ato]

(27)
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Since g(y) =g(x) + [’g' (u)du and ?”9(1 x)=1, we

conclude that

28035 - =25 | (28

X

g’(u)du;x> :

Therefore, Lemma 12 implies
|9:5(95%) - 9()| <2 97g || G5 (e~ yl). (29)

By Cauchy-Schwarz inequality and Remark 6, it is easy to
check that

G0 (k= ylsx) =\ G20 (13010 (x=)? %)

Cx0(1+ p+ px) (30)
np '
Combining (27)-(30), we get
9180 3%) - £(0)| < L+ ) (3) - 9()]
b 97T (1+ x) (31)
+Gle'a ||

T ,

Let now taking the infimum over g € W, and we have

wiar s -se] ek (1 D).

We thank to (26).

|95 52) - £(x)| < Cw,, <f, W) (33)

O

Theorem 13. For f € Lipi?(B), then for every n€ N, p > 0,0
> 1 and x € (0,+00), we have
x) B2
. (34)

0%’ —x)?;
w2

where &, ,((y - x)° 5 x) is given in Lemma 4.

Proof. Let f € Lip%’(B) and x € (0+00), and we have

Gb(f32) = ()] = [Z500) - Fx)5%)|

<G (f ) = f(x)l) (35)

—x|B
comt(m— )
n”’( (y+ax2+bx)ﬁ/2
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Let us consider the case B=1. By the Cauchy-
Schwarz inequality and the fact ?Z’f’(l ;x) =1, we have
immediately that

v,0 . _ M v,0 AV 172
Gipf3x) = f0)| < e (10 (0 =)
M 12

<— (6098 2
Vo (s (0= :9)

v ) 172

SM<G%""’(U v ’x)> :

ax? + bx

(36)

This proves the result for f=1.
If 0 < B <1, Holder’s inequality with exponents p=1/f
and p' = 1/1 - B, we get
M

(ax? + bx)ﬁ 2

ZHGURICIE (i y-k)"
(7)

Using again the Cauchy-Schwarz inequality, we obtain

w0 e N M B2
Gplf %) f(x)’ < W (g (y-x%; ))
M v 2. pi2
< o (OB (0-27)
" 12
0%"° (- x)%;x) A
S M >
ax2 + bx

(38)
and this gives the result. O

4. Rate of Convergence in Weighted Spaces

In this section, we focus about the rate of convergence of
operators (5) in the context of suitable weighted function
spaces and functions having a derivative of bounded varia-
tion. We will use the following spaces:

(Ry) = {f If ()] ng(l +x2),Mfisaconstantdependonf}.

(39)
Introduce also
%, (Ry) ={f € B,(R{): fiscontinuous },

If( )| OO}. (40)

x—»oo + X

HORENE
These spaces are endowed with the norm

L) )

1+2'

I, = S

The weighted modulus of continuity is defined as
(see [16])

flx+0)=f(0) |

1+ (x+1)° (42)

O(f,8) = sup sup

x20 |f<d

Theorem 14. Let f € €5(R}). Then, for xR}, p,6 >0,
0>1 and for large enough n, we have

w8730 - | s21+2)0( 1. )

112
X[I+GC1 (1+p+xp \/—< +p+xp)>
(oovara)

(43)

where C;,C,>1 are constants independent of x and n.

Proof. Let u, x € R}, 8 > 0. An immediate consequence of the
definition of weighted modulus of continuity is

lu—x|

\f(u)—f(x)|S2(1+x2)(1+(u—x)2)<1+ >Q(f,8)

(44)

. w0 [ . . . . .
Since &, (f;x) is linear and increasing, we have
from (44)

Gplf () =S ()l0)| <21+ )0, 0)
)14 +?r£<(l+(u—x§2) |u—x| ,x>}

(45)

SERA(E

Cauchy-Schwarz inequality was applied in the last
term, and it gives us

GAf () - F)ln)| <2(1+5)2(£.9)
[0 (55"

. (%’f,((u —x)Z ;x)) 1/2+é (%ﬁ((u _x)z ;x)) 1/2} .
(46)

1/2

Choosing 8 =1/y/n, we get the required result in
virtue of Remark 6. O



5. Rate of Convergence for Functions of
Bounded Variation

Let DBV(RR}) be the space of functions on R} having a deriv-
ative of bounded variation on every finite subinterval of R}.
Consider the space

DBV, (R}) = {f € DBV(R}) : |f(x)|<M; (1 +x%) for some constant M > 0}.
(47)

It is known that every function f in DBV,(RR
representation of the form

) has a

X

g(u)du +f(0), (48)

0

7=

where g is a function of bounded variation on each finite
subinterval of Rf.

Lemma 15. Let x € R, and let ,%Zlf,(x, u) be the kernel
defined by (13). Then, for C,>1 and for n large enough,

we have
1,0 . _ 1,0
(1) fn,p(x’)’) _f)é‘%n,p<x
U(x-y),0<y<x
2) I—E"G (x32) f %
Inp)1/(z - x)° ,x<z<oo

,u)du <0C,(x(1+p+xp)/np)

,u)du<0C,(x(1+p+xp)

Proof. Using Remark 6, we get
v,0 1,0 Y (u -y : v,0
Epp(x5y) = (%n)p(x, u)du < N o F g p (% u)du
1

< —
(x=y)°

<oc, x(1+p+xp) 1 N

o (x-y)

?"9 ((u -x)% X)

(49)

Similarly, we can show the second part; hence, the proof
is omitted. O

Theorem 16. Let f € DBV ,(R}), and for every x € (0, 00),
consider the function f,. defined by

f,(”)—f’(x_), if0<u<x,
fw=x%o, if u=x, (50)
fl(w)-f'(x"), ifx<u<oo.

Let us denote by VAf! the total variation of f. on [c,d]
R}. Then, for every x € (0, 00) and large n,
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Guo(f5%) ()

0, ., . o (Cx(1+p+xp)\ 7
mlf(x)wf(x)\(n—f)
Cix(1+p+xp)\ "

np

[v7]
Ci(I1+p+xp) x
+QT;(ka> \/ﬁ(jﬁ%ﬁf}()

x+-3= [ﬁ] x
X noy C11 X Xy !
*ﬁ(yf@”%%(m'

(51)

93/2

- gl e v )l

Proof. For any f € DBV,(IR}), from the definition off;(u),
we can write

£ = g (£ 46 (0)) 0, (w)

(=3 (e ere))
, 1/, ) 0-1
)5 (76 1)) (sen (=4 5,
52

where

o) ( )— boi ’ (53)
u)=
0, ifu+x.

V0 (1. 4) =
By the fact that &, (1;x) = 1, we have

F0(F %) F(x) = B3 w) ~ £ %)
= | mhes @ e g,

_ fzf;g(x, ) (J f! (v)dv> du.

From (52), we obtain
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From the definition of §,(v), it is clear that
[ ([8.00(r/0 -5 (7)) Jav =0
(56)

The first integral on the right hand side of (55) can be
estimated as follows:

’JT%ZZZ(X’ u) (J:{Tlre (f’(x)++9f’(x*)> }dv) du
() +0f (x) \Eo,%;’g(x, w)|u - x|du.

(57)

’ B

<

(es)

1+

Applying the Cauchy-Schwarz inequality and Remark 2,
we have, for n large enough,

fzf,:f,(x, ) (J{ﬁ (£ +or' () }dv) du

< o f ) +OF () [T (w0 )

- 1 o (COx(1+ p+xp)\

< pyghren) o) (AL
Vo 1o r— [Crx(1 X 172

< Ul ) s ) (ST L)

(58)
Similarly, it is easy to find

J:,%G (. ) (J{% (e -1'60) <sgn (v-x)+ f;;) }dv> du

63/2 Cix(1+p+xp)\
O ey vorc ()

(59)
Write the last term of (55) as

[ e (|| ruontv)du=ati (r15) + B35 (155).

(60)

Now, we estimate the terms /"% ol f;x) and Brup O (fl5 x).

Using the definition of f:[,ep
integrating by parts, we can write

ety (fisx) = [ (| o) ki),

(.;.) given in Lemma 15 and

e (62)
- [ ety
0
Thus,
x—x/\/n
e ()| [ ol
i (63)
' Jx_x/ﬁ ) [E55 s ) du
Since £/(¥) =0 and &)x51) < 1, we gt
JX | Fo(w) | €08 (x5 w)du
x—x/\/n
:J [F2w) = £0) & (x5 w)du
x=x/\/n
(64)

o siea]_ (3

Concerning the first integral on the right hand side of
(63), using Lemma 15, we have

x—x/\/n vh
Jo ‘f ‘Enp (x5 u)du

Cix(1+p+xp) Xl |f;,c(“)|
np 0o (x-y)

Cox(1+p+xp) [V |f1(u) = f1(x)]
np 0 (x =)

Cyx(1+ p+xp) [F¥V" (\:; ,) du
np 0 Y (x-y)

<0
(65)
=0 du

=0

u 2"

By changing of variable u = x — x/v, we deduce that

sz/ﬁv;(u) |£;‘f,(x su)du < 6C1(1+—£+W£/a (X\Zf;> dv
LpGllrprap) ](c f’).
np =S
k (66)



8
Therefore,
[v7]
0 [ 1 Ci(1+p+xp) X )
s (759)| <00y (4 ) (1)

What concerns the second term of the right hand side of
(60), integrating by parts and Lemma 15 with z =x + x/,/n,
we can write

[25(/5) <

[0 (1= g5 )
Joof;c(“) (1 - ff,’,e (x; u))du

(e pexp)
np J Vf (u— x)

X+
X Vﬁf}’( +6C1x(1+p+xp)
v\ x np

+

sJ ¥ fldu+0St

IN

J Vf u-x)"du.
x+x/\/_x

(68)
Putting u = x + x/v, we get

np xtxl/n * *
S0C1(1+p+xp)‘[‘/_"+-f v
np

0

(69)

< ecl(lﬂ;/;”m [f (x\;xf )

Combining (68) and (69), we have
X+ [ﬁ] x
v (o X Vi Ci(1+p+xp) <,
’%”’p(fx’x>‘gﬁ<¥fx>+6 np ; \){f" ’

Finally, by combining (52)-(70), we get (51). O

6. Quantitative Voronovskaja-Type
Asymptotic Formula

In this last section, we deal with the Voronovskaja-type
asymptotic theorem for ?Z’z. More precisely we will prove
the following result:

Journal of Function Spaces

Theorem 17. For f € Gy(R}) such that f',f'" € Gx(R}).
Then,

In{ @0 52) = () = (0Z (- x5%)
1

5@ (u=x)75%) }| (71)

x(1+p+xp)w ¢ (1+x)
<Co ; o (f, NG >

where C is independent of n and x.

Proof. By Taylor’s formula, we write

(73)

On the one hand, we apply ?Z’Z(J’C) to both sides of the

above equality, and we get

’g?’?’(f;x) ~f(x) =1 ()G (u—x:x)

- T (-5 )|

-z ([ e (7w ) avix) "

<o (|[ (770 -0 ] 0.

On the other hand, for g € W, we have

[[w=n(rm-re)ar )

<||f" = glj(u-x)*+2797 979" || |u—xP,

which implies, by (74),
G0 3%) ~£x) - f ()T (u = x32)

_ lf"(x)?vﬂ ((u—x)z;x)( 76)

<[If" - gll@nn((u-x)*:x)
+27¢" Hgo g H?Z,Z(|u—x|3;x).

After using the Cauchy-Schwarz inequality in the last
term, we obtain
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Ly v 2
G (=27 5x)

172

Go (52 ~f() ~f ()9 (u—x53) -

<29 o7 | (925 (" s) " (S35 (e 2072
+[|f"" = gl|30 (4= x)*s5%).

(77)
In view of Remark 6, we have
G0 3) ~ F() ~f () - x53) = 2" ()38 (= 2)7:%)

/ x(1+p+xp)\ 2 x(1+p+xp)\° "
<297 |¢7g H<c197> <cze() )

np np
|- gllc,0 L)
1 T(1
< Clex(++[;m{”f’! _g” +M*u\/{x)”¢1gl||}

(78)

Taking the infimum on the right-hand side of the above
inequality over g € W, we get

[n{@0(F 52) = () - F ()G (1= x5)
T (-5 )| (79)

2-T
<cpXLtptxp) K, <f’M* (1 +><)>.
P vn

Recalling (23), the theorem is proved. O
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In this work, we extend the works of F. Usta and construct new modified g-Bernstein operators using the second central moment of
the g-Bernstein operators defined by G. M. Phillips. The moments and central moment computation formulas and their
quantitative properties are discussed. Also, the Korovkin-type approximation theorem of these operators and the Voronovskaja-
type asymptotic formula are investigated. Then, two local approximation theorems using Peetre’s K-functional and Steklov
mean and in terms of modulus of smoothness are obtained. Finally, the rate of convergence by means of modulus of continuity
and three different Lipschitz classes for these operators are studied, and some graphs and numerical examples are shown by

using Matlab algorithms.

1. Introduction

In [1], Phillips introduced g-analogue of Bernstein operators
as follows:

! i
BI(¢52)= Zc%)pz,-(z),z o1, ()

) ‘ ,
where pj(z) = ( ) Z'(1 —z)f;’,iz 0,1,---,1,and { € C[0, 1].
i
q

Later, generalizations of g-Bernstein operators (1) attracted a
lot of interest and were constructed and researched widely by
a number of researchers. For instance, in [2], Mahmudov and
Sabancigil introduced g-Bernstein-Kantorovich operators
and studied local and global approximation properties. In
[3], Acu et al. defined modified g-Bernstein-Kantorovich
operators and established the shape-preserving properties
of these operators, e.g., monotonicity and convexity. Some
other papers also mention Bernstein operators with parame-
ter(s) and their modification: A-Bernstein operators [4], «

-Bernstein operators [5-8], (a, q)-Bernstein operators [9],
(p, q)-Bernstein  operators [10], (p, g)-Bernstein-Stancu
operators [11], (p, q)-Bernstein-Kantorovich operators [12],
generalized Bernstein operators [13], and so on.

In this article, we consider g-analogue of the following
new Bernstein operators constructed by the second central
moment of the classic Bernstein operators which was given
in [14].

1 /1 ' . ;
B/ ({;z)= %Z<z> (i-1z)*27 (1 - z)l’1(<7>. (2)

There are many papers about the research and application
of g-operators, and we mention some of them: g-Bleimann-
Butzer-Hahn operators [15], Bivariater g-Meyer-Konig-Zeller
operators [16], g-Baskakov operators [17, 18], g-Meyer-
Kénig-Zeller-Durrmeyer operators [19], g-Phillips operators
[20, 21], g-Szasz operators [22], g-Bernstein operators [23],
and so on. All this achievement motivates us to construct
the g-analogue of the operators (2). Before continuing fur-
ther, let us recall some useful concepts and notations from
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g-calculus, which can be found in [24]. For nonnegative
integer I, the g-integer [I] , g-factorial [I] !, and g-binomial

I
coefficients ( ) are defined by
i
q

bl l)
[ =1+g+-+qg = 1—-q %
L, q=1,
. 2, M, I=1 3
B S I=0,

Nl i=0,1,-1.
Ql CRETRA

Further, g-power basis can be defined by

The g-derivative D, of a function { can be defined by

,if z#0, (5)

(00 - =5

=

and (D,{)(0) ={'(0) provided {'(0) exists. High-order q
-derivatives can be defined by Dg( =, D;’C = Dq(Dg’l(f), n
=1,2,---. The formula for the g-derivative of a product is

Dy (€(x)n(x)) = Dy(C(x))n(x) + Dy(n(x))E(qx)-  (6)

The g-analogue of new-Bernstein operators (2) on (0, 1)
is defined by the following:

1L/ , . 2 (i
B/((;2) = ﬁzo (i)qzu(l -qz);—zﬂ([i]q - [l]qz) C(%)
(7)

where g€ (0,1}, 1€ N, :={1,2,---},z€(0,1), and { € C[0, 1].

The rest of the paper is organized as follows: In Section 2,
we get the basic results by the moment computation
formulas. And the first, second, fourth, and sixth order
central moment computation formulas and limit equalities
are also computed. In Sections 3 and 4, we investigate the
Korovkin-type  approximation  theorem and the
Voronovskaja-type asymptotic formula for the operators
(7). In Section 5, we obtain two local approximation theo-
rems using Peetre’s K-functional and Steklov mean and in
terms of modulus of smoothness. In Section 6, we study the
rate of convergence by means of modulus of continuity and
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three different Lipschitz classes for these operators (7). In
Section 7, we show some graphs and numerical examples to
analyze the theoretical results by using Matlab algorithms.

2. Auxiliary Lemmas

In this section, we present certain auxiliary results which will
be used to prove our main theorems for the operators (7).
Using the lemma in ([25], Lemma 2), we have the moment
computation formulas for the operators (1):

Lemma 1. If we define T}, (z) = Bl (u™ ; z), then there holds
the following relation:

Tl(2)=1,T},(2) =2, T},(2) = 2+

,Ti

Lim+1

(z)=z(1- Z)Dq(TZm(z)) + [l]qZsz(Z)’ m=0,1,2,.

©)

Now, we give the moment relation between the operators
(1) and the operators (7) as follows:

Lemma 2. If we define T, (z) = B} (4™ ; z), then there holds
the following relation:

(zlq,m(z) = T?,m+2(z) - ZZTq

Lm+1 (Z) + ZZ T?,m (Z)’

(10)

2] ,(2) =D, (T},,,1(2)) —2D,(T}],,(2)) (11)
T],.(2) = =D, (2(1-2)D,(T},.(2))) + T],.(q2),  (12)
whereq e (0,1),1€ N, ={1,2,-},me N:={0,1,2,-}, and

z€(0,1).

Proof. By the definition of B and B, we can obtain
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Next, by (9) and (10), we can obtain

1]}

Im+1

2(1-2)T},,(2) = [, Tha(2) -2 () + 11,2 T4 2)
—z<1 2D, (Tt (2)) = 1,2 T 2)
1,21, (2) =21 = 2)Dy (T, (2)
= 2([, T (2) + [1,271,(2))

= (1 _Z) (T?mﬂ( )) _22(1 _Z)Dq(TZm(Z))'

(14)

Thus, we complete the proof of (11). Finally, by (6), (9),
and (11), we can obtain

Dy(T},41(2)) = 2Dy (T}, (2))
( [l] D )+qu (z)> szq(TZm(z))

W J(2(1-2)D, (T4,(2))) + D, (T4, (2)) - 2D, (T4, (2))
- ﬁ D, (2(1-2)D, (%, (2))) + T, (42).

(15)

We complete the proof of the Lemma 2. 0

Then, the following lemma can be obtain immediately:

Lemma 3. For g€ (0,1], 1€ N,, and z € (0, 1), we have

[, 2
) <q v +2[21q>z 1
[, R 2
(@)= Bl(u-232) = (- D)z + LA

1(2) =B} ((u-2)*52)= | (q-1)° - 3] + [Z]Q[f]q Z
[, 1

L(Tra-1 2GRN 1
U ; U

q

(16)

Lemma 4. The sequence (q,) satisfies q; € (0, 1], such that q,
— land ¢ — k€ [0, 1] as | — oo; then, for any z € (0, 1)
, we have

Jim (1, af'(2) =1+ (k= 3)z, (17)

3
[im (1], 1(2) = 32(1 - 2), (18)
lrinmmq,%;ﬂ((u -z)5z) =0. (19)

Proof. First, we prove the limit llim [1],, = +00. In fact, for any
—00

q € (0, 1), such sufficiently large I, € N, that [l,], > 1/2(1 - q).

But for I > [, such that g, > g, we easily have [I], > [l]¢- Apply-

ing Lemma 3, we can directly obtain (17) and (18). As | — oo,
using Lemma 1, we can rewrite

TZ%(Z) =22+ [2][‘;’ ! 1Zz(l -2) +o<i>,

2
q; +1[2
Th(2) = (%2 - .

4
Combining Lemma 3 and B} ((u - 2)*;2)=Y! ( )

m=0
m

(1) (ut

™ ;z)z™, we can obtain

Al —4AY + 6AY —4AT
s,
Bl — 4BY + 6B

2 _4B?lz3+o x ,
[, 0,

(22)

B ((u-2)"32) =(q-1)'s" -

where Af=qj(1+[2], +[3],) + 4], [5],, A =q}(1+[2],)
+ (3], 4], AT =7 + 2 o3l AT = (2], BY = 4 +q}(1+
21, + [Bl,)» BY =3, +47(1+[2],), BY = [2]; +4q;, and B}
=1. Hence, Al ~ 26, AT ~ 15, AT ~ 7, AT <2, Bl ~ 22, B ~
12, B ~ 5, and B¥ ~ 1 as | — oo, we have



Jim (Al —4AT + 6AT —4A]) =26 - 4% 15+6x 7 -4x2=0,
—00

lim (B — 4B} +6B] —4B{')=22-4x12+6x5-4x1=0.

I—00

(23)

Combining llim 0, (a,- 1)* = 0, we can obtain (19). O

Lemma 5. For g € (0, 1], 1€ N,, and { € Cy(0, 1), we can have
II%?I(C;Z)IISIICII, where Cy(0,1) denotes the set of all real-

valued bounded and continuous functions defined on (0, 1),

endowed with the norm ||{|| = sup |{(z)].
z€(0,1)

Proof. In view of (7) and Lemma 3, for any z € (0, 1), we have
1B/'(¢52)| < ()€1 = 11S]]- (24)

Taking supremum over all z€(0,1), we obtain the
required result. O

3. Korovkin Approximation Theorem

Theorem 6. Let the sequence (q;) satisfy q; € (0, 1], for any
(€ Cy(0,1); then, the sequence {B}'({;z)} converges uni-
formly to { on (0, 1) if and only if g, —> 1 as | — oo.

Proof. Let g; € (0,1] and g, — 1 as | — 005 then, we have
[l],, — ©o as [ —> oco. By the Korovkin theorem ([26], p.

8, Theorem 6), it is sufficient to prove the three following
limit equalities:

lim ||B" (4" 52)-2"||=0,m=0,1,2. (25)

I—00

We can obtain these three limit equalities easily by
Lemma 3. Thus, we get that the sequence {B/({;z)} con-
verges uniformly to { on (0, 1).

We prove the converse result by contradiction. Assume
that {g;} does not tend to 1 as I — oo; then, it must contain
a subsequence {q, } € (0,1] with [, > 1, such that g, —q
€[0,1). Thus,

1 I-
lim = lim Z;: =1-q. (26)
lm

m—00 m—00
m qlm 1

Taking /=1, andq =g, in B/ (u;z) and using Lemma 3,
we can obtain

B (u32) =" (2) — (1-2(1-q))z +

m m>

(1-q)#%
(27)

as m — co. This leads to a contradiction; hence, g, — 1 as
I — 00. The proof is completed. O
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4. Voronovskaja-Type Theorem

In this section, we give a Voronovskaja-type asymptotic
formula for the operators (7) by means of the first, second,
and fourth central moments.

Theorem 7. Under the condition of Lemma 4 and { € Cy(0, 1).
Suppose that {''(z) exists at a point z € (0, 1); then, we have

lim [, (B1(T32) ~4(2)) = (1+ (k=32 () + 32(1-2)""(2)
(28)

Proof. Applying the Taylor’s expansion formula for {, we have

{(u)=4(z) +{ () (u-z) + %C”(z)(u—z)2 +O(u;2)(u-2z)>%

(29)
where
() -4(2) -8 @w-2) - UR"@u-2f
Ousz)= (u-2)? C e
0, u=z.
(30)
Using the L'Hospital’s Rule,

C0-0E L@ =0 ()

1
lim @(u;z) = - lim o 3
u—

u—z 2u—z

Thus, ©(.;z) € C(0, 1). Applying B} to both sides of (29)
and using Lemma 3, we have

Bl'({52) ~{(2) =¢ () (2) + %C”(z) I'(2)
+ B (O(u;2)(u-2)";2).

(32)

Applying the Cauchy-Schwarz inequality, we have

B! (O(u3 2)(u-2)32) | < /B (€2(u32)2) /B (- 2)*32).

(33)
By Theorem 6, we can obtain
lmo@z(u ;2)=0%(z;2) =0. (34)
From (19), (33), and (34), we have
lEréo [l]qlfo’ (O(u;z)(u- 2)%; z) =0. (35)

Combining (17), (18), and (35), we complete the proof of
Theorem 7. O
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Corollary 8. Under the condition of Lemma 4 and {'' € Cy
(0, 1), then

lim [, (B'({52) = {(2) = (1+ (k= 3)2)¢ (2) + ;Z(l -2)¢"'(2),
(36)

uniformly in z € (0, 1).

5. Local Approximation

Firstly, we recall the first and second order modulus of
continuity of { € Cy(0, 1) are defined, respectively, by

w((;8)=sup sup [{(z+1)-{(2)|,
0<t<dz,z+t€(0,1)
w2<C;\/<§)=sup sup [{(z+2t) =20 (z+1)+{(2)|

0<t<8z,z+2t€(0,1)
(37)

The Peetre’s K-functional is defined by

K@:0)= inf {|c-nl+olla"||}.  (38)

1
nn €Cp

By ([26], p. 177, Theorem 2.4), there exists an absolute
constant C > 0 depending only on { such that

K(;0) < Caw, (C ; \/5). (39)
Theorem 9. Under the condition of Lemma 4, then for all

(€ Cg(0,1) and z € (0,1), there exists an absolute positive
constant C; = 4C such that

‘%l”h((;z) —{(z)| < C, ((; (alq’(z))2+|ﬁ?’(z) | )
+0(Cs|w'(2)])-

(40)

Proof. For { € Cg(0, 1), we define new operators by

B/'((52)=B['({32) +{(2) - { (o' (2) +2).- (41)

By Lemma 3, we can obtain immediately
B/'(1;2) =B (1;2) =2 (2) =1,

23?’(1 ;2) = %?l(u;z) +z— (oc?l(z) +z) = EIZ‘I(Z) - oc?’(z) =z.

For any 7,%'' € C5(0,1) and u, z € (0, 1), by the Taylor’s
expansion formula, we can obtain

u

nuo=n@>+n%zxu—z>+j<u—vy/%wdu (43)

z

Applying the operators (7) to both sides of the above
equation, we have

Ju(u - v)r]"(v)dv;z)

<)

o' (z)+z
J ‘(x Y+z— an )’dv

<{|B@)| + (@ @) }lIn"|I

J\u—w#%wdv

(45)
By Lemma 5, we have

SﬂKWVCeCAQI)

Forany { € C5(0,1) and #,%'" € C4(0, 1), combining (45)
and (46), we obtain

1B ((32) = $(2)| = B (§32) = {(2) +{ (o (2) +2) = (2)]
S|§Bq’(C—11'z ]+|?Bq’ 11'2)—11(2)}
+[n(2) |+|C( ) +2) ~{(2)]
<4|¢ - nn+{ af'(2)) }|n"|
+w(Gs]af(z )D

(47)

Taking infinum on the right hand side over all '’ € Cy
(0, 1), using (39), we obtain the desired assertion. d

Now, we discuss local approximation theorems for the
operators (7) by Steklov mean. For any { € C5(0,1) and h >
0, the Steklov mean is defined by

4 (2 phi2
Cn(z) = §J J (20(z+u+v)={(z+2u+2v))dudv.
o Jo
(48)
In direct computation, it is proved that
16k = €Il < @, (€ h), (49)



9
”hH < ?wz((;h),

(50)

$ i € Cy(0,1),

H< w( h),

while { € C4(0, 1).

Theorem 10. Under the condition of Lemma 4, then for all
(€Cy(0,1)andze(0,1),

CIERCIERN e (e
+ (5 [l]ql|[3?l(z)| +2>w2 (C; ﬁ)

(51)

Proof. For z, h, z + 2h € (0, 1), by the definition of the Steklov
mean, we can write

1B/'({52) = $(2)| < B (K= Cul52) + B (G5 2) = Ci(2)]

+[6(2) = C(2)]-
(52)

By Lemma 5 and (49), we have

B (1C=Culs2) < [|B (= uls 2)[| < 1S = Eull < 0p (5 ).
(53)

Now, by the Taylor’s expansion formula for {;,, we have

u

cmw=@@+¢@w—a+jw—wﬁmww-<M>

z

Combining (49) and (50), we have

B! <JAu(u —W (v)dvs z>

%q’<[:\u—v\dv;z>
)|+ 5\)¢L’Illﬁ?‘(z>|

otk + |6l 2) G D)

B €32) - 0u(2) < B (G2 (w-2):2) | +

< [16Hl1BY' (= 2)32)] + (123

< [1%illlei' =

5
< E|tx,q’(z

Hence,

9

B9 -0 < s h]af )]+ (B

)| +z)w2((;h),
(56)

E‘\U‘l

for z€(0,1). Setting h=1/,/[l],, we obtain the desired
result. O
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6. Rate of Convergence

First, we discuss the rate of convergence of the operators (7)
by means of the modulus of continuity w({ ; §).

Theorem 11. Under the condition of Lemma 4, then for all
(e€C(0,1) and z € (0, 1),

\ﬂﬂ%c;z>—c<>!<2w( |ﬁ%<>!) (57)

Proof. Using ([26], p. 41, (6.5)), for all { € C(0,1) and § > 0,
we have

|((u)—((z)|§w((;6)<l+ |”(;Z|>. (58)

Applying the monotonicity and the linearity of B} and
Cauchy-Schwarz inequality, for any § > 0, we have

1B ({52) = {(2)| < B (¢ (u )—((Z)I;Z)
<23q’wC |u—z[);

%%w 2 5

cofs
( )
e

m)

(59)

by taking 8 = \/|B/ (z)|. We complete the proof of Theorem
11. |

Theorem 12. Under the condition of Lemma 4, then for all
{'eC(0,1) and z € (0,1),

B2 -

<\|w@wuv|ﬂaw65 |Wﬂ)

(60)

Proof. Applying B} to both sides of {(u) ={(z) +{'(2)(u -
2) +{(u) - {(2) = ' (2)(u - z), we have
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1B1($52) - {(2)| < ¢ (2)| B} (u—252)| + B!

' (W”) ~{(z) - (2)(u-z) ;z)
< |a?’(z)|’{'(z)| + 8

-(|u—z|<1+ |u(;zl>;z>w((';5)
<|af'(2)[|¢" (2)| + /B ((u—2)*;32)
Ly 53?1((2‘2)2;2) w((';c?),

(61)

with the help of Cauchy-Schwartz inequality and mean value

theorem. Taking 8 = /B ((u - z)*; z) and by Lemma 3, we

can get the desired result. O

Next, we discuss the rate of convergence of the operators
(7) by means of three Lipschitz classes: Lip,,y, Lipy;y, and Li
Py (v, I). A function ¢ € C(0, 1) belongs to Lip,y(y € (0, 1]),
if the condition

IC(u) = {(2)| <M|u—2z|",u,z€(0,1), (62)

is satisfied, where M is a positive constant depending only on y
and (.

Theorem 13. Under the condition of Lemma 4, then for all
(e Lip,yand z€ (0,1),

B (¢52) = ()] < M| )" (63)
Proof. According to the monotonicity and the linearity of the

operators (7) and taking into account that { € Lip,,y, we can
obtain

[B]'(§32) = 4(2)| < B (|§(w) ~{(2)] 5 2) < MB (|u - 2

¥V z2).
(64)
Applying well-known Hélder’s inequality with ¢, =2/y
and t, =2/2 -y, we can get
1B]({52) - {(2)] <MB(|u—z]'s2)
<M(B (ju-z|";x)) " (B (15x)) "
2 2
=M(B]'(Jju-1*5x))"" =M|Bl'(2)|".
(65)
We obtain the required result. O
In [27], Ozarslan and Aktuglu constructed the following

Lipschitz-type space Lip};y with two distinct parameters s, ¢
> 0 as follows:

7
2 1
0 T T T T T T T T T 1
0 01 02 03 04 05 06 07 08 09 1
- 1=10 x =100
+ 1=20 1 = cos(4 xexp(z))
* 1=50
FIGURE 1: Approximation process by 8.
1.4
1.2 1
14
0.8 g " T
: &
- CoF R
. . ++ + .
. HHH . +
0.6 K ++# ++++ ++ N
+ +
K .
+ +
F1GURE 2: Error of approximation |8 ({;z) - {(2)|.
Lipyy =14 (€ C(0, 1): |¢(u) - {(2)| <MM u,z€(0,1)
M o T u+sz+tz2’ ’ ’
(66)

where y € (0, 1] and M is a positive constant depending only
ony,s,t, and (.

Theorem 14. Under the condition of Lemma 4, then for all
(eLipyyy and z € (0, 1),

; y/2
|%?’(C;z)—((z)]sM<M> . (67)

sz+tz2
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TasLE 1: Error of approximation |B]'({ ; z) - {(z)| for I =10,20,50,100.
z By ((52) ~{(2)] 1B (§52) - (2) B (§52) - C(2)| Bl6s (£52) - ¢(2)]
0.1 0.3753 0.2156 0.0916 0.0465
0.2 0.0536 0.0834 0.0496 0.0277
0.3 0.4481 0.2030 0.0688 0.0316
0.4 0.8797 0.5107 0.2177 0.1104
0.5 0.9527 0.6237 0.2932 0.1546
0.6 0.4822 0.3658 0.1875 0.1025
0.7 0.4319 0.2094 0.0911 0.0467
0.8 1.2725 0.7215 0.3178 0.1693
0.9 1.1703 0.7194 0.2119 0.0921

Proof. Applying the well-known Hoélder inequality with k,
=2/y and k, = 2/2 — y, we have

[B/(52) = 4(2)] < B ({(w) = {(2)] 3 2)]

B M7|u—z|y 12
! U+ sz+tz?

B/ (ju-z["37)

<

<
sz +tz?

st (81 (o)
(o)) m(£E)
(68)

Thus, the proof of Theorem 14 is completed. O

A function { € C(0,1) belongs to Lip,,(y,I)(y € (0,1],I
c (0,1)), if the condition

[C(u) ={(z)| <M|u—-z]',uel,ze(0,1), (69)

is satisfied, where M is a positive constant depending only on
y and (.

Theorem 15. Under the condition of Lemma 4, then for all
(e C(0,1) N Lipy(y,I) and z € (0, 1),

B (¢52) - ()| <M(|Bl ()" + 28 (z51)), (70)

where d(z;I)=inf {|u—z|: uel} denotes the distance
between z and 1.

Proof. Let I be the closure of I. Using the properties of infi-

mum, there is at least a point u, € I such that d(z;I)=|z -
Ug|. By the triangle inequality

16 (u) = C(@)| < [6 () = C(uo)| +[E(2) = C(ug),  (71)

1B/'({52) = {(2)] < B ([ (1) =L ()] 5 2) + B (1{(2) =L ()] 5 2)
SM{B!(ju—uy|"52) + |z — uy|"}
SM{%?I(\u—zP’ +lz—upl’;2) + |z - uo\y}
SM{B](|ju-z["52) + 2|z - u,|"}.

(72)

Choosing k, =2/y and k, =2/2 —y and using the well-
known Hélder inequality, we have

[B](¢52) - (=) SM{ (%Iql (|u — 2|tk ;Z))Ukl
. (%?l (lkz ;Z)>1/k2 +2dy(z;1)}
M{(?qu’((u—z)z;z))llkl +2dy(z;1)}

M(|B1 ()" +2d"(z:1) ).

IN

IN

(73)

This completes the proof. O

7. Numerical Examples

In this section, we will analyze the theoretical results pre-
sented in the previous sections by numerical examples.

Let {(z) =1 - cos (4¢%), z€[0.01,0.99], g, =1 - 1/, and
1€{10,20,50,100}. The convergence of the operators 98?’ to
function ¢ is shown in Figure 1. The error of approximation
1B ({; z) - {(z)] is given in Figure 2. Meantime, we compute
the error of approximation |B({;z)-{(z)| while I=
10,20,50,100 at points {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} in
Table 1.
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The main aim of this paper is to establish some theorems concerning the error E, (F, 8), the Sun’s type function U(r), and M,,(o, F)
of entire functions defined by Laplace-Stieltjes transforms with infinite order converge in the whole complex plane. Our results

exhibit the growth of Laplace-Stieltjes transforms from the point of view of approximation.

1. Introduction and Main Results

In 1946, Widder [1] considered the convergence of the fol-
lowing form

G(s) = J;we”‘d(x(x), s=0+it, (1)

where a(x) is a bounded variation on any finite interval [0,
Y](0 < Y<+00), and o and f are real variables and obtained
the following theorem.

Theorem 1 (see ([1], Theorem 1, Page 36)). If

sup

0<u<oco|J 0

Juesf’tda(t)‘ - M<co, 2)

then (1) converges for every s for which o > 0, and

+

J+Ooe_5xd06(x) ~ (5-5,) J * (st B(t)dt, (3)

0 0

where B(u) = [e'da(t), (u>0).

As we know, (1) can be called as Laplace-Stieltjes trans-
form, which is an integral transform similar to the Laplace
transform, named for Pierre-Simon Laplace and Thomas

Joannes Stieltjes. Moreover, it can be used in many fields of
mathematics, such as functional analysis, and certain areas
of theoretical and applied probability.

In view of Ref. [1], G(s) can become the classical Laplace
integral form

6(o)= | "ot (4)

0

when a(t) is absolutely continuous. Moreover, if a(t) is a step
function, choosing a sequence {A,},” such that

0<A; <A, << A, <, A, —>00asn — 00,  (5)
a; +ay+---+a,, A, Sx<Ap
a(x)=4 & *=0 (6)
alx+)+a(x—
xH)*ax=) oo

then we can conclude from Theorem 1 that G(s) becomes a
Dirichlet series

G(s)=f(s)= Z a,e s=0+it, (7)

n=1
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where o,t is real variables, a,, is nonzero complex numbers.
For Dirichlet series (7), it can become a Taylor series f(z) =

Yoo0a,2" if A, =n and € =z, and it further can also become
a classical Dirichlet series f(s) =Y (a,/n®) if e* = 1/n,
which is important in the fields of number theory. Hence, we
can say that Laplace-Stieltjes transform is a general form of
Dirichlet series. Under some conditions related to a,, A, and
n, the series (7) can converge in the whole plane or the half
plane; that is, f(s) is analytic in the whole plane or the half
plane.

In the past several decades, the problem on the growth and
value distribution of analytic functions has been an important
and interesting subject in the fields of complex analysis. More-
over, considerable attention has been paid to the growth and
the value distribution of analytic functions defined by Dirich-
let series and Laplace-Stieltjes transforms, and a great deal of
interesting results focusing on the growth and value distribu-
tion of such functions can be found in (see [2-17]). For exam-
ple, Yu [18] in 1963 first proved a series of theorems about the
Valiron-Knopp-Bohr formula of the associated abscissas of
bounded convergence, absolute convergence and uniform con-
vergence of Laplace-Stieltjes transforms, the maximal mole-
cule M, (0, G), the maximal term u(o, G), the Borel line and
the order of entire functions represented by Laplace-Stieltjes
transforms convergent in the complex plane. Batty, Sheremeta,
Kong, and Sun investigated the growth of analytic functions
with kinds of order defined by Laplace-Stieltjes transforms
(see [19-25]), and Shang, Gao, Zhang, and Xu investigated
the value distribution of such functions (see [26-28]).

In 2012,Luo and Kong [29] studied the following form, is
differ from (1), of Laplace-Stieltjes transform

F(s)= J;mes"d(x(x), s=0+it, (8)

where a(x) is stated as in (1), and {A,} satisfies (5) and

lim sup(A,,; —A,) =h < +co, (9)
n—+00
n

lim sup =D< 0. (10)

n—+00 n

Set
A= sup J eVda(y)|. (11)
A, <x<A,, —00<t<+oo [J A,

By using the same argument as in [18], we can get the sim-
ilar result about the abscissa of uniformly convergent of F(s)
easily. If

lim sup L =—-00, (12)

n—>+00 An

by (5), (9)-(12), and Ref.[18], one can get that 05 =+00, i.e.,
F(s) is entire in the whole plane.
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Set

u(o, F) = max{A;eA"“}(a < +00), M(0, F)

neN

= su F(o +it)|,
—oo<t£)+oo| ( )| (13)

J e(o+it)yd(x(y) ’

0

M, (o, F)= sup

0<x<+00,—00<t<+00

Definition 2 (see [30]). If Laplace-Stieltjes transform (8) sat-
isfies 0¥ = +00 (the sequence {A,} satisfy (5) and (9)-(12)),
we define the order and the lower order of F(s) by

log" log"M (0, F)

limsup =p

0—>+001 . +0 (14)
M (o, F

liminf 28" 198 Mu(0: F) _ )

0—+00 o

respectively, where log*x = max {log x, 0}.

Remark 3. 1f p=0, p € (0, +00) and p = 00, we say that F(s) is
an entire function of zero order, finite order, and infinite
order in the whole plane, respectively.

Definition 4. If Laplace-Stieltjes transform (8) satisfies o =
+00 (the sequence {A,} satisfy (5) and (9)-(12)) and is of
order p(0 < p < 00), then we define

N
Tzhmsupw, (15)

0—+00 e’r

which is called the type of Laplace-Stieltjes transform F(s).

In 2012 and 2014, Luo and Kong [29, 30] studied the
growth of Laplace-Stieltjes transform of finite order and
obtained the following theorem.

Theorem 5 (see [29, 30]). If Laplace-Stieltjes transform (8)
satisfies of =+co (the sequence {A,} satisfy (5) and (9)-
(12)), and is of order p(0 < p < 00) and of type T, then

A, log A,

p =lim sup “log A7

n—=+00

T:Iimsupﬁ(A:)p/)‘". (16)
e

n—+00

In order to state our main results of this paper, we also
introduce some definitions and notations below. We denote
by iﬁ the set of all the functions F(s) of the form (8) which
are analytic in the half plane Res < 3(—00 < < 00) and the
sequence {A,} satisfy (5), (9), and (10) and by L, the set of
all the functions F(s) of the form (8) which are analytic in
the half plane Rs < +oco and the sequence {A,} satisfy (5)
and (9)-(12). Obviously, if —co < 8 < +00 and F(s) € Ly, then
F(s) € L. If (8) satisfies A} = 0 forn > k + 1, and A} # 0, then
we say that F(s) is an exponential polynomial of degree k usu-
ally denoted by p,, i.e., p(s) = fzk exp (sy)da(y). If we choose
a suitable function a(y), the function p,(s) may be reduced to

a polynomial in terms of exp (s\,), that is, ¥~ b; exp (sA,).
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We denote I1,, to be the class of all exponential polynomial of
degree almost n, that is,

=1

For F(s) € Lg, —co < 3 < +co, we use E,(F, ) to denote

the error in approximating the function F(s) by exponential
polynomials of degree n in uniform norm as

E\(F.B)= inf [F=pllgn=1.2-

(18)

n

where

max |F(B+it)-p(B+it)].  (19)

IE=pllg=_mmax,

Around 2017, Singhal and Srivastava [31, 32] studied the
approximation of entire functions represented by Laplace-
Stieltjes transforms (8) of finite order and obtained the follow-
ing result.

Theorem 6 (see [32]). If Laplace-Stieltjes transform F(s) €
L, and is of order p(0 < p < 00) and of type T, then for any
real number —oco < f3 < +00, we have

lim sup A, log A,
=11 u
PoS ~log B, ((F, B) exp (~BA,)
= lim sup _ Aulogh,
_n—>oo_10 En— F’ ’
T =lim sup = (E,_,(F, B) exp (—fA,))""™
n—s+co PE€
— lim sup (E,1(F. B)"™

n—+co P €Xp (pB+1)

In the same year, the authors [33] further the approxima-
tion on the entire function represented by Laplace-Stieltjes
transforms with irregular growth and obtained.

Theorem 7 (see ([33], Theorem 6)). If the Laplace-Stieltjes
transform F(s) € L., and is of the lower order A(0 <A # p<
00), if A, ~A,,,, then for any real number —co < f3 < +00,
we have

A
73 2 lim inf (—Q (-1 (F, B) exp (=BA,)"™, (0<73500).
(21)
Furthermore, there exists a positive integer n, such that

log A% —log A7,
i (n) = B8 (22)
n+l n

forms a nondecreasing function of n for n>n,, and then we
have

n—=o00o

7, = liminf <?_A) (E,_,(F, B) exp (=BA,))M™, (0 < 7)<00).

(23)

As far as we know, there are few papers focusing on the
approximation of Laplace-Stieltjes transform of infinite order.
Inspired by this issue, our main purpose of this paper is to deal
with the approximation of Laplace-Stieltjes transforms of infi-
nite order p(F) = co with the help of the type function given by
Sun. In 1986, Sun [34] studied the existence of type function of
the complex function of infinite order and established a new
type function which is more precise than Xiong’s.

Theorem 8 (see [34]). If S(r) is a continuous function in |a,
+00) and

1 +
lim sup og S(r) = +00,
r—+00 1 r

(24)

then we say that U(r) is the type function of S(r), if there exist
two continuous and differential functions p(r) and U(r)

satisfying

p(r) monotonous, decreasing and trend to 0, p' (r) monot-
onous, increasing

(i) lim rp'(r)logrloglogr=0

r—+00
(iii) For sufficient large r, S(r) < U(r) = r*® (Lp(r)
(iv) U(R) < (1+0(1))U(r)

where R=r + (r log r/log U(r) log’ log U(r)) and S(r) < U
(r) mean that S(r) < U(r) and 3 a sequence {r,}T+00 such
that S(r,) = U(r,).

Remark 9. If F(s) € L, and is of infinite order p = +00, then
in view of Theorem 7, there exists a type function U(r) such
that

lim sup S(r) _ 1, (25)

0—+00 (1’)

where S(r) :=1log u(o, F) and r = ¢°.
The main theorems of this article are listed as follows.

Theorem 10. Let F(s) be of infinite order, and the sequence
{A,} satisfies (5), (9), (12) and

lim sup loglogn

=d<1,
n—+co 10g A, -

(26)



and then for any real number —oco < 3 < +00, we have

lim su log M, (0. F)
e U(n) )
lOg [En—I(F’ ﬁ) exp (_ﬁAn”

U(y,)

=1<Q = lim sup —
0—>+00

>

where y, = [E,_,(F, B) exp (=BA,)] "™, r=¢%, and U(r) are
stated as in Theorem 10.

Remark 11. We can easily get (10) from (26), thus F(s) € L,
when the sequence {7, } satisfies (5), (9), (12), and (26). That
is to say, our condition in our theorem is better than the pre-
vious results.

Theorem 12. Under the assumptions of Theorem 10, then

log M (o, F
lim Supw

A
im sug U(r) =12Q,:=limsup —" (28)

o—ro0 Uy (¥,)

where
Uy(+) = U(+) log U(s) log’log U(s).  (29)
Let Uy(e)=U(s) log’U(s), and then it follows U,(y,)
< U,(y,) for any positive integer n and any real number f.

Hence, we get the following corollary.

Corollary 13. Under the assumptions of Theorem 10, then

log M (o, F
limsup M

A,
imsup = . (30)

UZ(V/n)

Theorem 14. Under the assumptions of Theorem 10, then we
have

=12 Q;=limsup
0—>+00

lim SHPM =1 @llmsup& =1.
S Tog U(r) " 5 fog Uly,)
(31)
2. The Proof of Theorem 6

To prove Theorem 10, we require the following lemma.

Lemma 15 (see ([1], Theorem 6b)). If f(x) and ¢(x) are con-
tinuous and a(x) is of bounded variation in a <x <b, and if

y(x) = Jx(p(x)d(x(t), (a<x<ba<c<h), (32)

c

then
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Lemma 16. If Laplace-stieltjes transform F(s) is of infinite
order, and the sequence {A,} satisfies (5), (9), (12), and (26),
then

log My(0,F) _ 1 & lim sup lo

limsup "
0—>+00

0—>+00 ( )

(34)

where r=¢°, S(r) =log u(o, F), and U(r) are stated as in
Theorem 7.

Proof. The idea of the proof of this lemma come from Ref.
[22]. Next, we will show the completely details.
Set

I,(x;0+it) ZJ); exp {(o +it)y}da(y). (35)

n

From (9), there exists # >0 satisfying 0<A,,;, —1,<#
(n=1,2,3,--+), and then it follows ¢ < 1, as ¢ > 0. Thus,
for x > A, and by Theorem 1 and Lemma 15, we deduce

X
X

J exp {ity}da(y) = J e?d I, (y;o+it)=I(y;o+it)e”
A Ay A

n

+0J eI, (y;0+it)dy;
A

n

that is,

L exp {ity}da(y)

n

<M,(0, F) He"”‘ +e

+ ‘e‘”" — e } <2M, (o, F)e ™.
(37)
Hence, for any o > 0 and any x € (4,, A,.,,], it follows

X
J exp {ity}da(y)| <2M, (0, F)e e 7 <2M, (0, F)e ™ ;
A

n

(38)
that is,
u(o, F)<2M, (o, F). (39)
Therefore, we can conclude from (39) that
lim sup log My(0. F) > lim sup log (o F) . (40)
T e T U
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On the other hand, assume that

lim sup loUi =1, (41)

0—+00 (7’)

then for any fixed ¢ € (0, 1/2) and sufficiently large o, it fol-
lows

log u(o, F) < (1+&)U(r). (42)

For any positive real number x, in view of (5), there exists

a positive integer n such that 1, <x <A,,;; thus, it yields

j exp {(0 +it)y}da(y)

X

Aot
= Z J exp {(o +it)y}da(y) + J exp {(o +it)y}da(y)
A )

n

At X
J exp {oy}d,[i(y;it) +J exp {oy}d,I,(y;it)

A Ay

/\k+l
= [eXp (Akﬂo)fk(lkﬂ;it)-oL exp {oy}Hy(y;it)dy
k

Il
g

+exp (xo)I,(x;it) - GJ exp {oy},(y;it)dy,

n

(43)

where I;.(x; it) L\ exp {ity}da(y). Similar to the argument

as in (38), it follows

<22A* /\k(‘i (44)
k=1

L exp {(0 +it)y}day)

Set Q=0 +log (1 + (log r/log U(r) log® log U(r))) = log
R, where r = €7, and then from (44), we have

M,(0,F)<2 ) A exp {AHQ— A, log (1

n=1

N log r ) } (45)
log U(r) log* log U(r)

+00
<2u(QF) ) e™MF
n=1

where

log r
E:=log [ 1+ 5 . (46)
log U(r) log” log U(r)

Thus, for any real number 8 € (0,1 — d), in view of (26),
there exists a positive integer N € N, such that

A, > (log n)"4*® > logn, asn > N. (47)

5
Hence, we can conclude from (45) and (47) that
M, (0, F) <2u(Q, F) Ze—AE
n=1
< ZM(Q, F) <N + Z e—E(log n)l/d+5> .
n=N

Set T = [exp {(2/E)™""™4°1] + 1, where [x] is an integral

function. Then, it follows E(log n)'™®¥** > 2 as n> T. So,

from (48), we can deduce

T +00
M( )<2,MQF< +Ze—Elogn Z e—210gn>

n=N n=T+1

T

<2u(Q F) (N + J t-Edt>

1
_ 1k
~2u(Q, F) <N+ . )
(49)

Hence, from (39), (49), and by Theorem 8, it becomes
log M, (0, F) <log u(Q, F) +1og 2 +log N

+logﬁ+(l—E) log T

o\ 4+8/1-d-3
<(1+e)UR)+K, + (E)

<(1+28)U(r),

(50)

where K| is a finite constant. Since ¢ is arbitrary and § € (0,
1 - d), then we conclude

logM (o, F
limsup M

< limsup log (0. F) _ 1. (51)
0—+00 U(”)

T—+00 U(r)

Therefore, this completes the proof of Lemma 2 from
(40) and (51).
Proof of Theorem 10. In view of

Q, = limsup —log [Enfl(F’ ﬁ) €Xp (_/jAn)]

Hmsup U(y,) D)

and then it is obvious that the conclusion of Theorem 10
holds as Q, = +00. Next, we will prove that the conclusion
of Theorem 10 holds for Q, € (0, +00).

If Q, € (0, +00), then for any fixed real number ¢ € (0, 1
/3), there exists a positive integer N € N, such that

~log [E,.1(F, B) exp (~BA,)] < (Q +&)U(y,), forn > N.

(53)

Let V:= V(o) =U(e’)/0 and W be the inverse function
of V, and then we know in view of Theorem 8 that V' is an
increasing function for o(0 — +00). Thus, from the above



inequality, we can deduce

.y , _
Gy e = Tog B, exp (PR D)5 (Y

that is,

log £, 9 (o~ A <4, | W( ) -0l (59)

For sufficiently large o, set

) i . rlogr
H=H(o)=(Q + €>U< " log U(r) log” log U(f)>

=(Q +¢)U(R),
(56)
and then it follows
H _ UR H |_
opre e Sl (o R

If A0 <H, it yields from (55) and (57) that

log £, xp ([0~ A, 54, W) -0 <o

(58)

If A\,o > H, that is, A, > H/o, it yields from (55) and (57)
that

g £, exp (9= 1] <=1, | W) ~o]

rr{gts) o
(59)

Hence, we can conclude from (58) and (59) that

log [E,. exp (0~ B)A,)] < (Q +26)U(r), forn > N. (60)
For any f < +0o0, it follows
A exp {BA, }

= sup
A, <XSA 4= 00<E<+00

exp {BA,}

L exp {ity}da(y)

n

< sup
A, <XSA, 41, 00<t<+00

jx exp {(B+it)y}daly)

A

n

< sup
—00<t<+00

>

j " exp {(B+it)y}da(y)

AVI
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and thus for any p € I1,_,, we can deduce by combining the
above inequalities that

A exp {BA} < |F(B+it) —p(B+it) < |[F-pll,  (62)
On the other hand, there exists p, € IT,,_, such that

1F=pill <2E, 1 (F, B). (63)

Hence, from (60)-(63) and for any f3 < +00, it follows

log (A, exp {0A,}) <log2[E,; exp ((0 ~ B)A,)]
<(Q, +3&)U(r),forn>N;

(64)

that is,
log u(o, F) <(Q, +3¢)U(r), for 0 — +00.
Since ¢ is arbitrary and by Lemma 16, we get
lim sup log M, (0, F)/U(r) =1<Q;.
0—>+00

We therefore completes the Proof of Theorem 6.

3. Proofs of Theorems 7 and 8
3.1. The Proof of Theorem 7. Here, we will adopt the reduc-
tion to absurdity to prove Theorem 7. Suppose that

lim sup log M, (0, F)

im sug U(r) =1<Q,. (65)

If Q, € (1,+00), set t € (0, (Q, — 1/7)] N (0, 1). From (65),
for any small t and any positive integer n, we have

log M, (0, F) < (1 +t)U(r). (66)

If F(s) € L, and B(-00 < B<+00), we have F(s) € Lg.
Moreover, for 3 <0 < +00 and p, € IT,,, it follows

E,(F.B) < || F=p,ll, < |F(B+it) - p,(B+it)
j;m exp {(B+it)y}da(y)

<

_ J: exp {(B+ it)y}d“()’)‘

| e (54 it)y}da@)’-

n

Similar to (44), we have

j;” exp {(B+it)y}day)

+00
<2Y A exp (B} (68)
n=k
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Thus, for any o( < 0 < +00), we can conclude from (39),
(67), and (68) that

E,(F.B)<2 ) Ap,exp{BA}

k=n+1 . (69)
<AM,(0,F) Y exp {(B-0)h,).
k=n+1

From (9), there exists h' (0 <h' <h) such that (A,,, -

A,)=h' for n>0. Then, for 0> f+1, it follows from (69)
that

En(F’ ﬁ) < 4Mu(0’ F) €xp {An+1(ﬂ_a)}

[e9)

Y e {(h=A)(B-0)}

k=n+1

< 4Mu(0’ F) €xp {An+1 (ﬁ - 0)}

cexp W ne )} Y (exp {H'k})

k=n+1

=4M, (0, F) exp {41 (B - 0)}

(e (i)

(70)

that is,

En—l(F’ﬁ)SKlMu(O" F) exp {An(lg_a)}’ (71)

where K is a constant. Hence, we conclude from (66) and
(71) that

log [E,_, exp ((o = B)A,)]

) 7)
<log K\M, (0, F) < (1 +2t)U(r), for 0 — +00.

On the other hand, in view of Q, and ¢, there exists a sub-
sequence {n(p)} such that

Aup) > (Q = 1)U, (‘//n@)) z(1+66)U, (‘I/n(p)>- (73)

We choose a sequence {0, } such that

(1+ 2t)U(rn(p))

=MA(p) l0g [1 + ! ] )
log U(l//n(P)) log” log U(l//n(p))

(74)

and then it follows from (72) and (74) that

1
Iup) <108 Yy + log {1 " g U (W) log’ log U("’”@’))] |

(75)

Hence,

- 1 i
U(rn(},)) < U{%(p) 1+ log U(%(p)) log® log U(%(p)) }

I logy,
) U{wn(m _1 "o U(v) long‘)’g ()| }

<(1+ t)U(wn(P>).
(76)

In view of t € (0,(Q, —1/7)] N (0, 1), then it follows (1
+2t)(1+1¢) < 1+ 5t Thus, by combining (74) and (76), we
deduce

Ay = (1+21) U(rn(P)>

-1
1 1+ !
. Og
log U(%@)) log” log U(l//n@))
< (1+26)(1+£)(1+0(1))U, (wn(},))
< (1+58)U, (wn@)),
(77)
which is a contradiction with (73).
If Q, = +00, we choose t = 1, and by using the same argu-

ment as above, we also get a contradiction.
Therefore, this completes the Proof of Theorem 7.

3.2. The Proof of Theorem 8. From Lemma 15, it is easy to get
the following lemma.

Lemma 17. If Laplace-Stieltjes transform F(s) is of infinite

order, and the sequence {A,} satisfied (5), (9), (12), and
(26), then

log log M, (o, F)

i
e log U(r)
(78)
) log log u(o, F)
=l =lmsup—F—— > =1.
0—+00 10g U(")
Proof of Theorem 8. If Q; = +00, then it follows
. A
lim sup =+00. (79)

o—roo U(y,) log’U(y,,)

By combining Corollary 13, it yields

lim sup log M, (o, F)/U(r) = +00,

0—>+00

which is a contradiction with the properties of U(r).
Hence, Q; <+00. Thus, for any fixed € >0 and sufficiently

large n, we have



Ay <UL (y,),log V, ((4,)"%")

_ —log [E,.,(F, B) exp (-, (80)
< / ,

n

where r=V,(x) and x=U(r) are two reciprocally inverse
functions; that is,

log [E,,_; (F, B) exp ((0 = B)A,)]

<2, [log v, ((1,)"%) ~o]. (81)

For any fixed sufficiently large o, take

rlogr

log U(r) log’ log U(r)) - (8

I=I(c)=0cU%™ (r +

and then it yields

(I)I/Q3+€ logr
. =o+log | I+ .
o log U(r) log’ log U(r)

(83)

log V,

If Ao <1, from (81) and (83), it follows

log [E,,;(F, B) exp ((0 = B)A,)]
<-1,[log v, (()»n)”QS“) - a} <od,  (84)
<I<U%(r).

IfA, 0> 1, thatis, A, > I/o, thus in view of (81) and (83), it
yields

log [E,;(F, B) exp ((0 = B)A,)]
<-A, [1og v, ((An)“@”) - 0}

6]

Hence, from (62), (63), (84), and (85), we deduce

(85)
<-A, {log vV,

log log u(o, F) < (Q; + 4¢) log U(r), forn > N, 0 — +00.

(86)
Let e — 0 and by Lemma 17, and it leads to
. log log M, (o, F)
1 “ .
T egue) @)
Suppose that
L log log M, (o, F)
1= l;ris:ig log U(r) <Q;. (88)

Journal of Function Spaces

Set t € (0,(Q; — 1/7)], and then for any positive integer n
and sufficiently large o, from (71), we have

log [E,_; (F, B) exp ((0 = B)A,)]

89
<log M, (0, F) +log K, < U (r), (89)

where K is a constant. Since 1+ 6t < Q; — t, then there exists
a subsequence {n(p)} such that

A 2 UL (‘/’n<p>> >Uh (‘/’n<p))' (90)

We choose a sequence {0, } such that

Ui+t (rn(p>) = Ay log [1 + W} . (91)
n(p)

Thus, it follows from (89) and (91) that

el <y I+ - . (92)
" [ log’ U(V’n(m)}
That is,
1
U(rup) < U{wn@ [1 ' 71%2[](%@))} } o
<(I+ t)U(l[/n(P)).

We therefore can conclude from (91) that

-1
An(p> — UI+2t (rn(P>) {lOg |:1 + logZU'Ev/):| }
n(p)

<2u (rn@) log’U (1//"(11)> (94)
<2(1+1t)H2 U (%@)) logZU(wn(P)>

<yt (V’n(p)) i

which is a contradiction with the inequality (90).
Therefore, this completes the Proof of Theorem 8.
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In this paper, we introduce a new type of degenerate Genocchi polynomials and numbers, which are called degenerate poly-
Genocchi polynomials and numbers, by using the degenerate polylogarithm function, and we derive several properties of these
polynomials systematically. Then, we also consider the degenerate unipoly-Genocchi polynomials attached to an arithmetic
function, by using the degenerate polylogarithm function, and investigate some identities of those polynomials. In particular, we
give some new explicit expressions and identities of degenerate unipoly polynomials related to special numbers and polynomials.

1. Introduction

In [1, 2], Carlitz initiated a study of degenerate versions of
some special polynomials and numbers, namely, the degen-
erate Bernoulli and Euler polynomials and numbers. Kim
et al. [3-5] have studied the degenerate versions of special
numbers and polynomials actively. These ideas provide a
powerful tool in order to define special numbers and polyno-
mials of their degenerate versions. The notion of degenerate
version forms a special class of polynomials because of their
great applicability. Despite the applicability of special func-
tions in classical analysis and statistics, they also arise in com-
munication systems, quantum mechanics, nonlinear wave
propagation, electric circuit theory, electromagnetic theory,
etc. In particular, Genocchi numbers have been extensively
studied in many different contexts in such branches of math-
ematics as, for instance, elementary number theory, complex
analytic number theory, differential topology (differential
structures on spheres), theory of modular forms (Eisenstein

series), p-adic analytic number theory (p-adic L-functions),
and quantum physics (quantum groups). The works of
Genocchi numbers and their combinatorial relations have
received much attention [6-11]. In the paper, we focus on a
new type of degenerate poly-Genocchi polynomial and
numbers.

The aim of this paper is to introduce a degenerate version
of the poly-Genocchi polynomials and numbers, the so-
called new type of degenerate poly-Genocchi polynomials
and numbers, constructing from the degenerate polyloga-
rithm function. We derive some explicit expressions and
identities for those numbers and polynomials.

The classical Euler polynomials E,(x) and the classical
Genocchi polynomials G, (x) are, respectively, defined by
the following generating functions (see [12-22]):

2 — t"
- ZEn(x)m, |t| <, (1)


https://orcid.org/0000-0002-4681-9885
https://orcid.org/0000-0002-2605-1119
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6660517

—ZG —!,

In the case when x=0, E,(0) :=E, and G,(0) :=G,, are,
respectively, called the Euler numbers and Genocchi
numbers.

The degenerate exponential function [23, 24] is defined

by

—— t| <m. 2
e[+1 ||7T ()

e(t) = (1+ A4,

1 ©)
e(t) =ey(t) (A e R).
Note that
. x/IA _ S X"t _ o xt
lim (1+A8)"" = ZOT =, (4)

In [1, 2], Carlitz introduced the degenerate Bernoulli and
degenerate Euler polynomials defined by

t t - t"
e(t) = 1+ A) = x3A)—,
eA(t)—l /\() (1+/\t)1m—1( ) r;)ﬁn( )f’l'
(5)

2 n

ex(t) = 1+)Lt"/)L ¢, x)t—

ey(t) +1 i) (1+)tt)”’\—1( ,,Z‘) Vo

(6)

B, are called the
E,, are called

In the case when x=0, B, ;(0) =
degenerate Bernoulli numbers and E, ,(0) :=
the degenerate Euler numbers.

Let (x),, be the degenerate falling factorial sequence
given by

(%) 1= (n=DA)(n=1),  (7)
with the assumption (x),, = 1.

In [5], Kim et al. considered the degenerate Genocchi

polynomials given by

X(x—=A) - (x-

SDXHCES )

=G, ,(0) are called the

NOESHAL

In the case when x=0, G,
degenerate Genocchi numbers.

For k € Z, the polylogarithm function is defined by a
power series in t, which is also a Dirichlet series in k (see
[25, 26]):

n 2 3

Lig(t) = i—:t+%+%+--~(|t|<1). (9)

This definition is valid for arbitrary complex order k and
for all complex arguments ¢ with || < 1 : it can be extended to
|t| > 1 by analytic continuation.
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It is noticed that

Li, (¢t Z— =

—log (1-1). (10)

For A € R, Kim and Kim [3] defined the degenerate ver-
sion of the logarithm function, denoted by log, (1 + ), as fol-
lows (see [4]):

l’l

Z/\” : nl//\ | (11)

log, (1 +1¢)

being the inverse of the degenerate version of the exponential
function e, () as has been shown below:

er(log, (1)) =

It is noteworthy to mention that

log) (ex(1)) =t. (12)

[ee)

hm log, (1 +1t) Z

——log(1+t) (13)

The degenerate polylogarithm function [3] is defined by
Kim and Kim to be

ak=z_

It is clear that (see [27, 28])

n_

)"W x"(keZ|x|<1).  (14)

i’l

)= 2.5 - (15)

From (11) and (14), we get

hm lkA

1

i B Vl )nl/k X" =—

log, (1 —x). (16)

Very recently, Kim and Kim [3] introduced the new type
of degenerate version of the Bernoulli polynomials and num-
bers, by using the degenerate polylogarithm function as fol-
lows:

b= en(=) ey iﬁiki(@t—nr (17)

1-¢(-t) =l

When x=0, ﬁ;? = ﬁ;lf\)(O) are called the new type of
degenerate poly-Bernoulli numbers.

The degenerate Stirling numbers of the first kind [24] are
defined by

log, (1 +1))

Zsllnk

o (k20 (18)
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It is clear that

lim $,(n k) = $, (. k), (19)

calling the Stirling numbers of the first kind given by (see
29, 30])

00 n

> S (n, k)

n=k

%(log (1+1)* = [ (k20).  (20)

The degenerate Stirling numbers of the second kind
[31] are given by (see [2, 13-22, 25-32])

1
k' e/\ ZSZ/\ .]’ I = ) (21)

Note here that

AlimOSZ’A(n’ k) = Sz(nr k)) (22)

standing for the Stirling numbers of the second kind given
by means of the following generating function (see [1-8,
12-38]):

(k20 (23)

ZSznk

This paper is organized as follows. In Section 1, we
recall some necessary stuffs that are needed throughout
this paper. These include the degenerate exponential func-
tions, the degenerate Genocchi polynomials, the degener-
ate Euler polynomials, and the degenerate Stirling
numbers of the first and second kinds. In Section 2, we
introduce the new type of degenerate poly-Genocchi poly-
nomials by making use of the degenerate polylogarithm
function. We express those polynomials in terms of the
degenerate Genocchi polynomials and the degenerate Stir-
ling numbers of the first kind and also of the degenerate
Euler polynomials and the Stirling numbers of the first
kind. We represent the generating function of the degener-
ate poly-Genocchi numbers by iterated integrals from
which we obtain an expression of those numbers in terms
of the degenerate Bernoulli numbers of the second kind.
In Section 3, we introduce the new type of degenerate
unipoly-Genocchi polynomials by making use of the
degenerate polylogarithm function. We express those poly-
nomials in terms of the degenerate Genocchi polynomials
and the degenerate Stirling numbers of the first kind and
also of the degenerate Euler polynomials and the Stirling
numbers of the first kind and second kind.

2. New Type of Degenerate Genocchi Numbers
and Polynomials

In this section, we define the new type of degenerate Genoc-
chi numbers and polynomials by using the degenerate poly-

logarithm function which is called the degenerate poly-
Genocchi polynomials as follows.

For k € Z, we define the new type of degenerate Genocchi
numbers, which are called the degenerate poly-Genocchi
numbers, as

2 (1—ey(—t —iG’”tn (24)
W e ( A1) = £ nA 1
Note that
a t" 2 2t at t"
1 (1—ey(-1) = = .
,;) G + 1 IA( eA( )) e/\(f) +1 HZ(:) Gn,)x nl
(25)

Thus, we have (see [6])

1

GM=G,, (n>0). (26)

n,

Now, we consider the new type of degenerate Genocchi
polynomials which are called the degenerate poly-Genocchi
polynomials defined by

a1 =er(70)) ey i 8L (27)

e (t) +1 = n!

3;
C)\
PN
(e]
S~—"
c
2.
=]
aQ
[«
a)
o
o
=
©]
=)

In the case when x=0, G,y =
(27), we see

Therefore, by equation (28), we obtain the following
theorem.

Theorem 1. Let n be a nonnegative integer. Then,

k z k
G(x)= Y (n/m)Goh (%), (29)
0

3
I

From (27), we note that

Z fo;(x)ﬁ = q(tzﬁei(t) %lk,/\(l —e(-t),  (30)



Sk t" 2t
Y G = ()

1
T
2t 18 ()",
= alt > Tl”

o (_pym!
$ O Dy

¢ (m—1)lmk

S

00 n\ 1 oo [+ )‘mfl 1 ’ _11 1+1
- (Z G (%) %) - (; (;}%SM(H 1 m)) ﬁ)

&A1), WD S+ Lm)
o) B(E )

m=1

00 n 1+1 A 1 1 , 1 1 3 i R n
) Z;(m( ) (VLV:’*IM( )S'A(zizl " G“’M(XO%‘
(31)

Therefore, by equations (30) and (31), we get the follow-
ing theorem.

Theorem 2. Let n be a nonnegative integer. Then,

n I+1 ym-1 l
(k) /oy _ n A1), 10 (1) S5, (14 1,m)
G,a(x) = ;( ] > m; k-1 1+1 G (%)
(32)
Using equations (27) and (6), we see
Ny 60t = 2 i (1 e (-t 33
2, G = srr Ol -ac0, (3

S n © (—) m-1
20000 = ) Z( (,31 - 1()1!),;";’” (1-e(-0)"
2 S (M) m,ll
- ey (1) +1ei(t) MZZI( ) mkE’) LA
& I
IZ (71)14»«3”(1 m) T 6 Iei(t)

=
[eS) 0 1 Am 1 1 1
(;}Eﬂ ;— <; <mzl r;"k”?( - S:a(l m)> l)

By equations (33) and (34), we obtain the following
theorem.

Theorem 3. Let n be a nonnegative integer. Then,

n/n m—1 _1\-1
d%ki()il<mﬂ“)%mmmmn

(35)
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From (27), we have

0 (k)ﬁz 2 I 1 2
;G"’A nl ey(x)+1 (I =e(=%))= e (x) +1

Jx el- /\( t) J el A( t)
I-e(~t) JoIl—e(-t)
(k=2)—times

2 J g t))jt 47 t)) Jt O g . .

:el(x)+1 I-e(~t) JoI—e (-t o1—ey(-t)

f ) tdtdt - dtZG
17 (7 vx)t

(k=2)—times

(36)

For k =2 in (36) and using [3] (Eq. (27)), we get

Yaaro_2 [ L__ha
= Ml ey (x) + 1 A

~—

ST o\ L (37)

Therefore, by equation (37), we get the following
theorem.

Theorem 4. Let n be a nonnegative integer. Then,
K S K
Gua(X) = X (1)Gyuy(X) (38)
In general, by equation (37), we see
Sans__2 [ dlco (4
Z G
! (x)+1_[ I—e,\(—t)_[ I—-¢)(-t)

n=0
t I-A(_
J L()tdtdt
I-¢(-1)

s 1

BupI=2) B, 2(1-4)

n,+1 n;+n,+1

Inl... |
i =n T2ty

. ﬁnk,l,/\(l - A) _ )”1»”2)'“»”1(—1 2x
Ryt + 1 ey(x) +1

n oy ( ! ) Pua(I74)
sty =N nl) nz’ [EEN nk nl +1

BaN) BN
noAn,+1 et +1 Ml

18

Il
=l

n

(39)

By equation (39), we obtain the following theorem.
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Theorem 5. Let k € Z and n > 0, we have

n _
k n ﬁn,,/\(l /\)
Gh=(-n" Y ( )—
Ny,Mp, N =N s nk

PR/ PAEEE o+l (40)
Boal=1) B, (1N
noAn,+1  ngtedn +1 MY
From (27), we observe that
Zlk)l(l—e/l( = 1+e/1 Z Gk
. m=0 t]. (41)
(k) (k)
= G,+G (1)) =.
;( A i )) 7!
On the other hand,
_ — (_/\)7*1(1)]/)1//\ r
2 (1-ey(-1)) = Z,Z;W (I-ex(-t1))
< (_/\)m_l(l)m,ll/\ 1 m
=20 - a)
ST ot
=2) M Y Sl ) (<1 i
r=1 j=r :
S ([ (_l)jil(l)rll)u r—1 . t
zzz<z—rk1 LA, (o ) 7
=1 \r=1 :
(42)

Therefore, by equations (41) and (42), we get the follow-
ing theorem.

Theorem 6. Let k € Z and j> 1. Then,

L7k
56 +GR( }z

From equations (27) and (14), we see

2t=21,,(1-e)(- 22 _()2:11( ')r:kw(l (=))"
=) N Do,y
=23 (N Wi Y, a1y
:2§<i— 1), A S0 (1, m)> ;'
e (44)

By comparing the coefficients on both sides of (44), we
obtain the following theorem.

5
Theorem 7. For n € N, we have
X DA S =0, (49
where 8, is Kronecker’s symbol.
Note that
lim G} =G, lim G} (x) = G, (x). (46)

3. Degenerate Unipoly-Genocchi Numbers
and Polynomials

Let p be any arithmetic function which is a real or complex
valued function defined on the set of positive integers IN.
Kim and Kim [29] defined the unipoly function attached to
polynomials p(x) by

u (x 1 p) = Z%x" (kez). (47)
n=1
Moreover (see [25]),
ue(x11) =§—Z_L1k (48)

is the ordinary polylogarithm function.
In [8], Lee and Kim defined the degenerate unipoly func-
tion attached to polynomials p(x) as follows:

ZP iil(l)zlm 1 (49)

ur(x1p) =
It is worthy to note that
1
ta | %1 5 ) =lea(x) (50)

is the degenerate polylogarithm function.
Now, we define the degenerate unipoly-Genocchi poly-
nomials attached to polynomials p(x) by

Pl ol0Wa = 3 a0y 6

,(1; ' Gf]f},p(o) are called the

degenerate unipoly-Genocchi numbers attached to p.

In the case when x=0, G



From (51), we see

[ee)
Kt 2 1
ZGEI/{I/F i (t) 1 ”M< —ey(-t)| 1:)

2 QN W -a-t) (52)

() + 14 (r—1)!
S
Thus, by (52), we have
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From (51), we have
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Therefore, by equation (54), we get the following
theorem.

Theorem 8. Let n be a nonnegative integer. Then,

pard -] m I+1 "
(55)
Using equations (49) and (51), we see
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By, equations (51) and (56), we obtain the following
theorem.

Theorem 9. Let n be a nonnegative integer. Then,

n n 1 m m—1 _ lflm.
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(57)

From (6), (49), and (51), we get
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Therefore, by (58), we obtain the following theorem.
Theorem 10. Let n be a nonnegative integer and k € Z. Then,
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From (51), we have
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By equation (60), we get the following theorem.

Theorem 11. Let n be a nonnegative integer and k € Z.. Then,

4. Conclusion

In this article, we introduced degenerate poly-Genocchi poly-
nomials and numbers by using the degenerate polylogarithm
function and derived several properties on the degenerate
poly-Genocchi numbers. We represented the generating
function of the degenerate poly-Genocchi numbers by iter-
ated integrals in Theorems 4-6 and explicit degenerate
poly-Genocchi polynomials in terms of the Euler polyno-
mials and degenerate Stirling numbers of the second kind
in Theorem 3. We also represented those numbers in terms
of the degenerate Stirling numbers of the second kind in The-
orem 7. In the last section, we defined the degenerate
unipoly-Genocchi polynomials by using degenerate polylo-
garithm function and obtained the identity degenerate
unipoly-Genocchi polynomials in terms of the degenerate
Genocchi polynomials and degenerate Stirling numbers of
the second kind in Theorem 8, the degenerate Euler polyno-
mials and the degenerate Stirling numbers of the second kind
in Theorem 9, the degenerate Bernoulli and degenerate Stir-
ling numbers of the second kind in Theorem 10, and the
degenerate unipoly-Genocchi numbers and Stirling numbers
of the second kind in Theorem 11. It is important that the
study of the degenerate version is widely applied not only
to numerical theory and combinatorial theory but also to
symmetric identity, differential equations, and probability
theory. In particular, many symmetric identities have been
studied for degenerate versions of many special polynomials
[1,3,12,23,29-32]. Genocchi numbers have been also exten-
sively studied in many different branches of mathematics.
The works of Genocchi numbers and their combinatorial
relations have received much attention [6-9]. With this in
mind, as a future project, we would like to continue to study

degenerate versions of certain special polynomials and
numbers and their applications to physics, economics, and
engineering as well as mathematics.
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Motivated by the ideas of F-weak contractions and (F, &) -contractions, the notion of (F,,, %) g-contractions is introduced and
studied in the present paper. The idea is to establish some interesting results for the existence and uniqueness of a coincidence
point for these contractions. Further, using an additional condition of weakly compatible mappings, a common fixed-point
theorem and a fixed-point result are proved for (F,, %) g-contractions in metric spaces equipped with a transitive binary
relation. The results are elaborated by illustrative examples. Some consequences of these results are also deduced in ordered
metric spaces and metric spaces endowed with graph. Finally, as an application, the existence of the solution of certain Voltera

type integral equations is investigated.

1. Introduction and Preliminaries

In the development of the metric fixed-point theory, one of
the main pillar is the Banach contraction principle [1], which
states that every contraction on a complete metric space has a
unique fixed point. Due to its extensive application potential,
this concept has been observed in various forms over the
years (see [2-9]).

The concept of F-contractions was introduced by
Wardowski [10]. He proved some new fixed-point results
for such kind of contractions. He built these results in a
different way rather than traditional ways as done by
many authors. Later on, fixed points for F-contractions
were proved by Secelean [11] using an iterated function.
Abbas et al. [12] extended the work of Wardowski and
established various results of fixed points using F-con-
traction mappings. For further related works on F-con-
tractions, see [13-16].

The idea of (F,&)-contractions was established by
Sawangsup et al. [17]. They used this idea to demonstrate
some fixed-point consequences using a binary relation. It is
further investigated by Imdad et al. [18]. In present paper,
we study the results presented by Alfagih et al. [19] and we
define (F,, ) -contractions. We also prove similar results

for (F,, &) ,-contractions.

Recall that a binary relation % on nonempty set X is said
to be a partial order if it is reflexive, antisymmetric, and tran-
sitive. Moreover, the inverse or transpose or dual relation of
R, denoted by %7, is defined by

Qﬁ’lz{(x,y)eXz:(y,x)e,%}. (1)
The symmetric closure of &, denoted by %°, is defined as

the set ZU %7, that is, #° =R U R In fact, %° is the
smallest symmetric relation on X containing .
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Notice that there is another binary relation 2% ¢ % on X,
which is defined by k"¢, whenever k%¢ and k # €.

Definition 1 [10]. Let F be the set of functions F : (0,00)
— R such that

(F,) F is strictly increasing;

(F,) For every sequence {f3,} c (0,00), lim
ifflim,_,  F(B,) =—00;

(F;) There is k € (0, 1) so that lim5H0+ﬁkF([3) =0.

The following functions are in [

=0

i’lHOOﬁﬂ

Many papers in literature deal with the concept of F
-contractions (see [20-22]). Throughout this work, the set
of all continuous functions verifying (F,) is denoted by &.

Definition 2. Let X # ¢ and & be a binary relation on X. A
sequence {¢,} € X is such that ¢,%,,, foralln € N, then
it is called an % preserving sequence.

Definition 3. Consider a metric space (X,d) with a binary
relation Z. Then, X is called % complete if each & preserv-
ing Cauchy sequence is convergent in X.

Definition 4 [23]. Let (X, d) be a metric space and X be a
binary relation on X, T : X — X and x € X. We say that T
is Z-continuous at x if for each %-preserving sequence {¢, }
€ X so that g, — x, we have Tg,, — Tx. Also, T is named
to be Z-continuous if it is %-continuous at any element of X.

Definition 5 [23]. Let (X, d) be a metric space and & be a
binary relation on X and T, g : X — X and x € X. We say
that T is (g, #)-continuous at x if for each sequence {g,}
€ X so that {gg,} is Z#-preserving and gg,, — gx, we have
T, — Tx. Also, T is named to be (g, &)-continuous if it is
(g, #)-continuous at any element of X.

Definition 6 [24]. For x, y € X, a path of length p(p € N) in &
from x to y is a finite sequence {ug, uy, -+ -+ ,u,} €X such
that uy =x,u, =y, and (u;, u;,,) € R for every i € {0, 1, .. -~
,p—1}. Also, a subset LC X is called &# connected if for
any two elements x, y € L, there is a path from x to y in .

Definition 7 [23]. Let (X, d) be a metric space and X be a
binary relation on X and T, g : X — X. The pair (T, g) is
R-compatible if for each sequence {¢,} €X so that {Tg,}
and {g¢,} are &-preserving and lim =lim T
¢, =x€X,

nﬂoogcn n—~oo
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lim d(gTg,, Tgg,)=0. (3)

Definition 8. Let f and g be self-maps of a set X. If x = fx = gx
for some x € X, then x is said to a common fixed point of f
and g.

Definition 9 [25]. Let f, g : X — X. If w = fx = gx for some
x € X, then x is said to be a coincidence point of f and g, and
w is said to be a point of coincidence of f and g.

f and g are said to be weakly compatible if they commute
at their coincidence point, i.e., if fx = gx for some x € X, then

fox=gfx.

Definition 10 [26]. Let (M, d) be a metric space endowed with
a binary relation &#. Such a & is named to be d-self closed if
for each %-preserving sequence {¢,} € M so that {¢,} — x,
there is {c,, } of {¢, } so that [g, , x| € BVk € N,.

Definition 11 [23]. Let M be a nonempty set and T, g: M
— M. A binary relation % on M is called (T, g) closed if
for any x, y € M, gxRgy yields that TxZTy.

Lemma 12 [27, 28]. Consider a metric space (X,d) and a
sequence {k,,} in X. If {k,,} is not Cauchy in X, then are €
>0 and {k,,;} and {k;} of {k,,} so that

j<m(j) <t(j), d(km(j), kt(jH) <e< d(kmm, ktm)Vj €N,
(4)

Moreover, if {k,} is so that lim d(k,, k,.;) =0,

then

m—>00

lim d(km(j),ktw) = lim d(km(j)_l,ktu)_l)) e, (5)

J—00 J]J—00

Lemma 13 [29]. Let X be a nonempty set and g : X — X.
Then, there is a subset EC X so that g(E)=g(X) and g : E

— E is one to one.

2. Main Results

We begin this section by introducing the idea of (F,, %),
-contractions as follows.

Definition 14. Consider a metric space (X, d) endowed with a

transitive binary relation % on X and Q, g : X — X. Then,
T is called an (F,, %) -contractions if there exist F e

and 7 > 0 such that

7+ F((d(Qk, Qt))
< F(max {d(gk, gt), d(gk, Qk), d(g¢, Qe), W}),

2
(6)

for all k, 1 € X with gk%" gt and Qk%*Qt.
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Remark 15. Every (F, %), contraction is an (F,, %), con-

traction, but the converse of statement is not true.
The following result is easy to prove. We omit it.

Proposition 16. Let (X, d) be a metric space endowed with a
transitive binary relation K. Given Q, g : X — X. Then, for
each Fe%, we have equivalence of the two following
statements:

(a) Vk, 1€ X so that (gk, g¢) € " and (Qk, Qe) € %!

T+ F(d(Qk,QE)) < F

. <max {d(gk, ), d(gk, Qk), (gt QV), W})'

(7)

(b) Yk, 1 € X such that either (gk, gt), (Qk, Q¢) € ! or
(g% gk), (Qt, Qk) € R

T+ F(d(Qk, QE)) < F

: (max {d(gk, 40),d(gk, QK), (gt QV), W})
(8)

Theorem 17. Consider a metric space (X, d) equipped with &
(where R is a transitive binary relation) and Q, g : X — X.
Assume that:

(1) there exists k, € X such that gk,%Qk,
(2) R is (Q, g)-closed
(3) Qis an (F, R) ,-contraction

(4)
(a) A subset K of X exists such that Q(X) K < g(X)
and K is R-complete

(b) One of the subsequent conditions is fulfilled:
(i) Qis (g, R)-continuous, or

(ii) Q and g are continuous, or

(iii) R | K is d-self closed in condition that (6) holds
for all k,1 € X with gk® gt and Qk%* Qe

or on the other hand:

(@) («;) 3 a subset L of X such that Q(X) € g(X) CLand L
is R- complete,

(a,) (Q, g) is an R-compatible pair,

(a3) Q and g are R-continuous.

Then, the pair (Q, g) admits a coincidence point.

Proof. In the above two cases (11) and («), note that Q(X)
C g(X). Using assumption (6), we get gk, ZQk,. If Qk, =g
k,, then a coincidence point of (Q, g) is k,. This completes
the proof. Suppose that Qk, # gk,. Since Q(X) € g(X), there

must exist k; € X such that gk, = Qk,. Similarly, there is k,
€ X such that gk, = Qk,. Proceeding in this way, we can con-
struct a sequence {k,, } € X such that

gkm+1 = kavm € ]NO' (9)

Now, we will prove {gk,,} is an &-preserving sequence,
that is,

gk, Rgk,,,,Ym e N,. (10)

By using induction, we will prove this claim. If we put
m =0 in (9) and use condition (6), we get gk,Zgk,. This
implies that the above statement holds for m = 0. Suppose
that (10) is accurate for m =j > 1, that is, gk;Zgk,,. Since
R is (Q, g)-closed, we get Qk;ZQk;,,, and so gk;,; Rgk;,,.

Hence, our claim is true for all m € IN;. By using (9) and
(10), we can conclude that {Qk,,} is also an R-preserving
sequence, that is,

Qk,, #RQk,,,,¥Ym e N,. (11)

If Qk,, = Qk,,  for some m, € N, then k,, isa coinci-
dence point of (Q, g).

Suppose on the contrary that Qk,, # Qk,,,, for al m € IN,.
With the help of (9), (10), (11), and condition (10), we can
see that

T+ F(d(Qk,,_,, Qk,,)) < F

' (max {d(gkm—l’ gkm)’ d(gkm—l’ ka_l)’ d(gkm, QkM))
~d(gk,1> Qk,,) +d(gk,, Qk,y) })Vm €N,.=F

2

~ (m {d(gkmfl, Q1) d(gk, QK. M}) <F

(max {d(gkm_l, Qkyy1)> d(ghyy Qi)

. d(gkm—P gkm) + d(gkm’ ka) }) =F
> .

- (max {d(gk,,_1, gk,,,), d(gk,,» Qk,u)})-

(12)

Now, max {d(gk,,_,> gk,,), d(gk,, Qk,,)} cannot be d(g
k,,, Qk,,). Otherwise,

T+ F(d(gkm’ gkm+1)) Sd(gkm’ gkm+1)’ (13)

which is a contradiction. Hence, max {d(gk,,_,» gk,,), d(g
k,.Qk,)} =d(gk,,_ ;> gk,,). Therefore,

7+ F(d(Qk,-1> Qk,y)) < F(d(gk,-1> gki)) = F(d(QK,-1, QK;))

F
F(d(gky_y> gk,))) — T

<
<

(14)

Take y,, = d(gk,,, gk,,.,). With the help of above condi-
tion, we obtain



F(y,) < E(y,) ~T<F(y, ) =27 < F(y) —mt(Vm € N).

(15)

By using (F,) and taking m — oo in above inequality,
we obtain

lim F(y,,)=—0o. (16)
This together with (F,) imply that
lim Ym :d(gkm’ gkm+1) =0. (17)
m—>00
Now, we will show that {gk,,} is a Cauchy sequence. We

argue by contradiction. In this case, Lemma 12 guarantees
the existence of £>0 and two subsequences {gk,, } and
J

{ gkt]} of {gk,,} such that

with
jsm(j)<t(j), VjeNN,, (19)
Jim d (ki 9Ky ) = (G Gy 1) = (20)
This implies that there is j, € N, so that d(gk,,_;, g
kt(j)—l) > 0Vj = j,.
Since & is transitive, one writes
gkm(j)—l‘%ﬁgkt(j)—l and ka(j)—l“%Hth(j)—lvj 2jo.  (21)
Using condition (10), we have for all j > j;,
T+ F(d (kau),l, th(j),l)) < F max

' ( (k10 9K )> (G -1> Qhngy-1)> (ki Qg1 ),

. d(gkmm,p th(j)fl) + d(gkt(j)—l’ ka(j)—l) )
5 .

(22)
Denote

max {d <9km<j>—v 9kr<j>—1)> d <9km<j>—v Q"m@')—l) d (gkro‘)—v th(j)—l) ’

. d(gkm<j)_1, th(j)_1) + d<gkt(j)—1) ka(j)—l> }

= Q(km(j)fp kt(j)—l) :

(23)

2

I D(Kyj)-1> ky(j)-1) = d(Gh(j)-1> Gky(j)-1) or it is equal to
(d(gkpn(j)-1> Qkyjy-1) + d(gky(jy 1> Qkyy(j1))/2 then  taking
j— 0o and using (20), we get
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hm 9(km(j)—l’ kt(j)—l) =& (24)

J—00

Since F is continuous, letting m — o0 in (22) and using
(20) and (24), we get

T+ F(e) < F(e), (25)

which is a contradiction. On the other hand, if D(k,,;_;,
ki(j-1) = d(gk,(j)-1> Qkp(jy—1) or it is equal to d(gky;)_;, Q
ky(j-1) then letting m — oo in (22), using continuity of F
and (20) together with condition F,, we get T + F(g) < —00,
which is again a contradiction. Thus, {gk,,} is a Cauchy
sequence.

Let the condition (11) hold. With the help of (9), we
obtain gk,, € Q(X). Therefore, {gk,,} is Z-preserving Cau-
chy in K. By utilizing %-completeness of K, there is [ € K
so that gk,, — I. As K € g(X), there is v € X so that [ = gv.
Hence, by using (2),

im gk, = lim Qk,, = gv. (26)

In order to prove that v is coincidence point of (Q, g), we
will use three different cases of condition (b). First of all, sup-
pose that Q is (g, #)-continuous. By utilizing (10) and (26),
we get

lim Qk,, =Qw. (27)

By utilizing (26) and (27), we get Qv =gv. This shows
that v is a coincidence point of (Q, g).

Now, suppose the second case of (b), that is, Q and g are
continuous. Since X # ¢ and g : X — X, by using Lemma
13, there is BC X so that g(B)=¢g(X) and g: B—> B is
one-one. Define a mapping f : g(B) — g(X) by

f(gb) =Q(b)Vgb € g(B) where b € B. (28)

Recall that g is one-one and Q(X) <€ g(X), so f is well-
defined mapping. As Q and g are continuous, f is also con-
tinuous. Now, utilizing the fact that g(X)=g(B), we can
rewrite condition (a) as Q(X) €K < g(B), so that, without
loss of generality, we can select a sequence {k,,} in B and
v € B. By using (26), (28), and continuity of f, we have

Qv=f(gv) =f( lim gkm) = lim f(gk,)= lim Qk,=gv.
(29)

Finally, assume that condition (iii) of (b) holds, which
implies that & | K is d-self closed and (2.1) detain Vk,l € X,
with gk%ge and Qk#*Qe. As {gk, } K, {gk,} is #|K

preserving due to (10) and with the help of (26) gk,, — gv.
So, there is a subsequence { gkmj} c {gk,,} such that

[gkmj, gv} € RIK < RYj €N, (30)
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Utilizing condition (b) and (30), one writes
[kaj,Qv} € RIK < RVjeN,. (31)

Now, let g={jeN: ka,- = Qv}. If the set g is infinite,
then {kaj} has a subsequence {kaj }, such that kaj =
P P
Qv. This implies that lim, ,Qk,, =QvVp€N. By using
Ip

(26), we have lim,,_, Qk,, = gv. So we obtain Qv = gv.
If the set g is finite, then { kaj} has a subsequence {Q

kmj } such that kaj # QvVp € N. Next, we will show that

P P

limpﬁookaJ = Qv. With the help of (30), (31) and kmj #
P P

QwWp € N, we have

[gkmj , gv} € RIK C RVp e N, (32)
P

[ka, ,Qv} € RKC RandQk,, #+QWpeN,.  (33)
Jp p

Now, with the help of (32), (33), Proposition 16 and the
fact that (2.1) is satisfied, we get

F(d(kajp, Qv)) < F< max {d<gk%, gv), d(gkm/P, ka])’ d(gv, Qv),

d(gkmjp , Qv) + d(gv, kajp) })
. -T.

2
(34)

Denote
max d(gkmjp, gv) , d(gkmjp, ka))’ d(gv, Qv),

. d(gkmjp, Qv) + d(gv, kaj'p) } = g(km ,v). (35)

2

p

If @(kmj V) = d(gkmj , gv)then, we have
P

P

T+ F(d(kajp, Qv)) < F(d(gkmjp, gv)) = F(d(kajp, QV))

< F(d(gkmjp, gv)) - T
(36)

By using (26), (F,) and taking p — oo, we get lim,,
kaj =Quv. If Q(kmj V) = d(gkmj , gv) then, we have
P P (4

—>00

v+ F(d(Qk, ,Qv)) <F(d(gk, .gv)) = F(d(Qk, . Qv))
F (d (gkmjp, gv)) +Ld (gkmjp, gkmjlH ) -T.
(37)

IA

By using (26), (F,) and taking p — oo, we get lim,
kaj = Qv. Now, if @(kmj ,v) =d(gv, Qv), then
P P

F (d (kajp, Qv)) <F (d (gkmjp, kaj,, )) -T. (38)

By using (26), (F,) and taking p— co, we get
limpﬁookaj =Quv. If @(kmj V) = (d(gkmj ,Qv) +d(gv,Q
P P P
kmj ))/2, then, we have
P

T+ F(d(ka/p, @)) <k (d (9kn, Q) + d(gv, Qk%)>

2

= lim F (d (ka,,, , Qv) )

p—00

< lim F (d (gkm’f” kafv> " d(gkm/P, Qk"‘/‘p )) .

p—eo 2
_ PIE?OOF (d (gkmlp s gkmlp 1) er d(gkmlp , gkmjp 1)) .
(59)

By using (26), (F,) and taking p — co, we get

lim Qk, =Qv. (40)
p—>oo Ip

From (26) and (40), we obtain Qv = gv. Hence, when the
set g is finite or infinite, v is a coincidence point of Q and g.
Now, if («) holds, then gk,, € L, and hence {gk,,} is an &#
-preserving Cauchy sequence in L. Since L is Z%-complete,
there is u € L so that

lim gk, =u. (41)
m—00

Using Equations (9) and (41), one gets

lim Qk,, = u. (42)

m—>00

Now, with the help of (10), (41), and continuity of g, we
have

lim g(gk,,) = g(mligloogkm) =gu. (43)

m—>00

Utilizing (11), (42) and continuity of g to find
lim g(Qk,) = g( lim ka) = gu. (44)
m—>00 m—>00
As Qk,, and gk, are #-preserving due to (10), (11) and
lim Qk,, = lim gk, =u. (45)
m—>00 m—o0
Now, using (41), (42), and condition (a,),

lim d(gQk,,, Qgk,,)=0. (46)



Next, we will demonstrate that u is a coincidence point of
(Q, g). Making use of (10), (41) and the Z-continuity of Q,
we get

lim Q(gk,,)= Q<mh£>lmgkm) =Qu. (47)

m—00

With the use of (44), (46), and (47), we get

digun Qu) = lim gk, lim Qg )

(48)
= lim d(gQk,, Qgk,,)=0= Qu=gu.

This implies that u is a coincidence point of (Q, g). O

Theorem 17 does not guarantee the uniqueness of a coin-
cidence point. The following theorem guarantees that coinci-
dence point is unique.

Theorem 18. Suppose all hypothesis of Theorem 17 are true
except (a) and assume that gu and gv are R-comparable
forallu+ve coin (Q, g), and one of Q or g is one-one, then
there is a unique coincidence point of (Q, g).

Proof. The set coin(Q, g) is nonempty, because of Theorem
17. Consider two elements u, v € coin(Q, g), then by defini-
tion of coin(Q, g), we have [gv, gu] € & and Qu = gu, Qv =
gv. This implies [Qu, Qv] € A.

Now, if gu=gv, we obtain Qv=gv=gu=Qu, and
hence, v = u, because one of Q and g is one-one.

If gu # gv, then by utilizing condition (10) and Proposi-
tion 16, we get

T+ F(d(Qu,Qv))<F

-(d(gu, g).d(gu, Q). (g7, Qv),

= F(d(Qu, Qv)).

d(gu, Qv) +d(gv, Qv))
2

(49)

Since 7 > 0, our assumption is false. Therefore, a unique
coincidence point of (Q, g) exists. O

Theorem 19. Consider above theorem and add a condition
that (Q, g) is a weakly compatible pair, then a unique com-
mon fixed point of (Q, g) exists.

Proof. Above theorem assures that the pair (Q,g) has a
unique coincidence point. Let v be the common coincidence
point and suppose z € X be such that

z=Qv=gv. (50)

The weak compatibility of Q and g leads to Qz = Qgv =
gQv = gz. That is, z is a coincidence point of Q and g. Since
v is unique, one writes z = v. That is, the uniqueness of a com-
mon fixed point. Since all the assumptions of Theorem 18 are
true, the set coin(Q, g) is nonempty. O
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Example 1. Let X =[0,00) and define d: XxX — R by
d(x,y) = |x — y|. Then, (X, d) is a complete metric space.
Consider the sequence {¢,} €X which is defined by
{s,=(n(n+1)(4n-1))/3,n>1}.
Define the binary relation % on X by

R ={(6>6)> (6 Giry) such thatg; < 3. (51)
Define Q, g : X — X by

x, if0<x<g,

Qx={ S if¢; <x<¢,,
Siv1 —Gi .
Git ———(x=¢u)  ifG Sx<gy,
Giv2 7 Gitl
(52)
and

Gi+1 — Gi (

gx= {c,-+ = (x—g;), ifg<x<g,,i=1,2,-.
Giv2 ~ Gitl

(53)
Observe that if gx%* gy and Qx#*Qy, then x=¢; and y
=¢;,, for i € N — 1. Further, by choosing F(«) =In & and «

€ (0,400), we have

F(d(Qs; Q6i41)) = F(lgiy = 6i|) = F(I6; =6 ]) =In [, — 6,4 >

F (max {d(gcp 9Sir1)> (965 Q5,)> (961> Qi)

2

[Siv1 = Gi
= F<maX {|§i+1 - C,-|, ‘Ct - Ci,1|, |Ci+1 _Ci" %

= F(Gi1 = 6) =In d(gg;,,, Qxi + 1)

_d(g6i» Q6in) +d(QS) g6i1) })

(54)
Now, for n=2, 3, --- and for 7 =1n 3, we have
T+ [(6; = Gy < [6i1 —6il- (55)
Therefore,
In (3) + F(d(Qg;, Qg11)) < Fd(g61> Qxi + 1), (56)

Vx, y € X such that gx%* gy and Qx %" Qy.

Moreover, all the assumptions of Theorem 19 are true,
and ¢, is the unique common fixed point of (Q, g).

On setting g =1 in Theorem 19, we obtain the following
result.

Theorem 20. Consider a self-mapping Q : X — X and let
(X, d) be a metric space with a transitive binary relation R.
Assume that:
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(1) 3k, € X such that kyRQk,
(2) R is Q-closed
(3) Qisan (F,, R)-contraction

(4) («) 3 a subset K of X such that Q(X) €K and K is R
-complete,

() one of these conditions hold:

(i) Q is R-continuous, or

(ii) R | K is d-self closed on condition that (1.1) with
binary relation holds Vk, 1€ X with k&1 and Qk*
Qe

Then, a fixed point of Q exists. Furthermore, if
(e) [u,v] € Fix(Q) = [u, v] € R.
Then, such fixed point of Q is unique.

Theorem 21. Replace condition (e) of above theorem by:
(e ) Fix(Q) is R*-connected,
then Q has a unique fixed point.

Proof. Assume on contrary that Q has more than one fixed
point, say u and v with u # v. Then, there exists a path %°
C Fix(Q). As it is from v to u of length g, let us denote the
path by {vo,--v,} such that v, #v,,, for each p where 0<p
<j-1If v=u,itis a contradiction. Hence,

vo=v,v,=uand [v, v, | € Rforeachp(0<p<q-1).

(57)

q

As v, € Fix(Q), so Q(v,) =v, for each p€ {0, 1,.---, q}.

With the help of condition (c), we obtain

T+ F(d(vpvpi)) < F(max {d(vp, Vi1 )» 4 (Vps Vi1 ) 4 (Vps1s Vi )

(v Vprr) +d (Vi1 ¥p) })

2
(58)

That is,
T+F(d(vp,vp+1))SF(d(vp,vp+1)). (59)

Since 7> 0, our supposition is not true. Hence, Q has a
unique fixed point. O

In the next section, we are presenting a significance of our
results in ordered metric spaces.

3. Some Consequences in Ordered Metric Spaces
Definition 22. Let (X, d) be a metric space and (X, <) be an

ordered set, then the triplet (X, d,x) is known as an ordered
metric space.

Definition 23. Consider self-mappings Q, g : X — X and an
ordered set (X, <). If, for any k, [ € X, gk<g¢f implies that Q
k<Q¢. Then, Q is g-increasing.

Remark 24. Notice that the notion of Q is g-increasing is
equal to say that < is (Q, g)-closed.

Taking & =< in Theorem 17 to 19 and with the help of
Remark 24, we state the following result.

Corollary 25. Consider self-mappings Q, g : X — X and an
ordered metric space (X, d,). Assume that:

(a) Tk, € X such that gk,<Qk,
(b) Qisg-increasing

(c) There are T >0 and F € & so that

T+ F(d(Qk, Q) < F(max {(d(gk, gb), d(gk, Qk), d(g¢, QP),

d(gk, Q0) +d(gt, Qk) })

2
(60)

(d) 3 a subset K of X such that Q(X) €K € g(X) and K is
< -complete

(e) Either Q and g are continuous, or Q is (g, <)-con-
tinuous. Then, a coincidence point of (Q, g) exists.
Additionally, we suppose that

() Qu and gv are <-comparable for all distinct coinci-
dence points u, v € coin(Q, g), then pair (Q, g) has a
unique coincidence point

Furthermore, if Q and g are weakly compatible, then (Q
,g) has a unique common fixed point.

Taking R = < in Theorem 20 and with the help of Remark
24, we conclude the result given below.

Corollary 26. Consider an ordered metric space (X, d,<) and
mapping Q : X — X. Suppose the that conditions given
below are fulfilled:

(a) Tk, € X such that ky<Qk,
(b) Q is <-increasing

(¢) 31> 0 and F € F such that

T+ F(d(Qk, Qt)) < F( max { (d(k, 1), d(k, Qk), (I, Q0),

d(k Q) +d(L Qk)}),

2
(61)

(d) A subset K of X exists such that Q(X) € K and K is <
-complete



(e) Q is <-continuous. Then a fixed point of Q exists.
Furthermore,

(f) if for any two fixed points u,v € Q we have [u, V] € %,
then Q has a unique fixed point

4. Applications to Metric Spaces Endowed with
a Graph

Jachymski [30] in 2008 has instituted the idea of metric
spaces endowed with a graph in order to generalize the idea
of a partial ordering and specified the Banach contraction
principle in metric spaces and partially ordered metric
spaces. In this section, we are going to present an application
of our results in the situating of complete metric spaces
endowed with a graph.

Corollary 27. Consider self-mappings Q,g: X — X on a
metric space (X, d) endowed with a graph G=(V(G), E(G))
. Define < on X as u<v if and only if there is an edge between
u and v. Assume that all the conditions given in Corollary 25
are satisfied. Then a coincidence point of (Q, g) exists. Fur-
ther, if we suppose that Qu and gv are comparable on edges
for all distinct coincidence points u, v € coin(Q, g), then the
pair (Q, g) has a unique coincidence point.

Furthermore, a unique common fixed point of (Q, g)
exists if Q and g are weakly compatible.

Corollary 28. Consider a metric space (X, d) endowed with a
graph G and a mapping Q : X — X. Define < on X as u<v if
and only if there is an edge between u and v. Suppose that con-
ditions given in Corollary 27 are fulfilled. Then, a fixed point
of Q exists. Furthermore, if u, v € Fix(Q) are such that there
is an edge between u and v, then a unique fixed point of Q
exists.

5. Applications to Integral Equations

In this section, we present an application of Theorem 21 by
finding a solution of the integral equation of Volterra type
given below:

u(t) =JtK(t,s,u(s))ds+h(t), te[o,1]. (62)

0
Here, K: [0,1] x [0,1]x R— R and h: [0,1] — R.
Let X be the Banach space of all continuous functions u

: [0, 1] — IR. Define a norm on X as follows.
[|ull = max,epo ) (). Then, the metric d on X is defined

as d(u,v) =||lu-v||Vu,veX.

Definition 29. A function « € X such that

a(t) < JtK(t, s, a(s))ds + h(t), (63)

0

te(o,1],

is called a lower solution for (62).
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Definition 30. A function f5 € X such that

t

Bt zj K(t,s, B(s))ds + h(t),

0

telo,1], (64)

is called an upper solution for (62).

Now, we have enough material to prove the following
results.

Theorem 31. Assume that in third variable K is nondecreas-
ing and there is T > 0 such that

|u—v]

Kt)) _Kt)$ 37)
(K (55 ) (55 )] TD(u,v) +1

(65)

forall t,s €0, 1] and u,v € X, where D(u,v) = max {d(u, v)
,d(u, Qu), (v, Qv), ((d(u, Qv) +d(v,Qu))/2)}. Then, the
existence of a unique solution of the integral Equation (62)
follows from the existence of lower solution of (62).

Proof. Let Q(u(t)) = ff)K(t, s,u(s))ds+h(t) forallue X,bea

self operator on X. It is clear that u is a fixed point of the

operator Q if and only if it is solution of the Equation (62).
Let £ be the binary relation on X defined by

R={(u,v)eXxX :u(t)<v(t)forallte[0,1]}. (66)

Now, for any u, v € # and for all ¢ € [0, 1]

t

Q(u(t)) = J K(t, s, u(s))ds+h(t) < J K(t,s,v(s))ds + h(t)

=Q(v(1))-
(67)

This implies that (Qu, Qv) € . That is, Z# is Q closed.
Now, let (u, v) € # and consider

1Q(u(t)) - Qv(1)) = JO(K(I‘» s u(s)) = K(t,s,v(s)))ds

IN

J |K(t, s, u(s)) = K(t, s, v(s))|ds

=}

IN

Lou—v - 1
s <
Jo TD(u,v) +1 TD(u,v) + 1

. Jt max |u(t) — v(t)|) ds

ot€0,1]

1 t 1
=——— | du,v)dss ———
TD(u, v)+1L (1 v)ds TD(u,v) +1

t _ D(uv)
.ng(u, Vs =
D(u,v)

< —————sincet €0, 1].
TD(u,v) +1 ' (0.1}
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Therefore, we have

D(u,v)

Q(u(t)) = Qv(1))] < D) 41 vte([o,1].  (69)

On taking supremum on both sides of above inequality,
we obtain

Q) - Q)| < 9%7))“ 70)
It yields that
1 -1
TR -Qm) " 2w )’ (71)
ORI 72)

D(u,v)’

By choosing F(u) = —1/u, u > 0, from the above inequal-
ity, we get

T+ Fd(Q), QW) < F(@(wv).  (73)

Hence, inequality (6) is satisfied. We have defined binary
relation &% on X by uZRv if and only if u(t) < v(¢) for all ¢ €
[0, 1]. Now, consider an &-preserving sequence {u,} in C[0
, 1] which converges to u € X. Then, we have

wo(t) Sy (1) S -y () Spn (<0 (74)
which gives us u,(t) < u(t)Vt € [0, 1]. Therefore, & is d self
closed on X. To show that Fix(Q) is %°-connected, if u, v €
Fix(Q), then w =max {u, v} € C[0,1]. Since u<w and v<
w, thus uRw and vAw. Therefore, all conditions of Theo-
rem 21 are true. Hence, the conclusion holds. O

Now, in the situation where upper solution is presented,
we have the following result.

Theorem 32. Consider that in third variable K is nonincreas-
ing and there is T > 0 such that

IK(t,s,u) — K(f,5, v)| < %, 75)

for all t,s €0, 1] and u, v € X, where D(u,v) = max {(d(u, v
), d(u, Qu), d(v, Qv), ((d(u, Qv) + d(v, Qu))/2)}. Then, the
existence of a unique solution of the integral Equation (62) fol-

lows from the existence of an upper solution of (62).

Proof. Let the binary relation on X be defined by

R={(u,v) eXxX:u(s)2v(s)forallt € [0,1]}.  (76)

Now, proceeding as in Theorem 31, we can conclude that
all the assumptions of Theorem 21 are satisfied and it guaran-
tees the existence of a unique solution of (62). O
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This paper is aimed at constructing new modified Gamma operators using the second central moment of the classic Gamma
operators. And we will compute the first, second, fourth, and sixth order central moments by the moment computation
formulas, and their quantitative properties are researched. Then, the global results are established in certain weighted spaces and
the direct results including the Voronovskaya-type asymptotic formula, and point-wise estimates are investigated. Also,
weighted approximation of these operators is discussed. Finally, the quantitative Voronovskaya-type asymptotic formula and

Griiss Voronovskaya-type approximation are presented.

1. Introduction

Recently, Karsli et al. [1] constructed and estimated the rate
of convergence for functions with derivatives of bounded
variation on R, := (0,00) of new Gamma type operators pre-
serving z* as (see also [2])

(@A(1))(2) =

A(t)dt,z € R,.

(1)

(21+3)12"3 JOO #

N(I+2)! 2

o (z+t

In [3], Karsli et al. used analysis methods to obtain the
rate of point-wise convergence for the operators (1). In [4],
Karsli and Ozarslan obtained some direct local and global
approximation results for the operators (1). In [5], Izgi stud-
ied some direct results in asymptotic approximation about
the operators (1). In [6], Krech gave a note about the results
of Izgi in [5] and obtained an error estimate for the operators
(1). In [7], Krech gave direct approximation theorems for the
operators (1) in certain weighted spaces. In [8], Cai and Zeng
constructed g-Gamma operators and gave their approxima-
tion properties. In [9], Zhao et al. extended the works of
Cai and Zeng and considered the stancu generalization
of g-Gamma operators. Recently, Cheng et al. constructed
(p, q)-Gamma operators using (p, q)-Beta function of the

second kind and discussed their approximation properties
in [10]. In [11], Zhou et al. extended the works of Cheng
et al. in [10] and constructed (p, g)-Gamma-Stancu opera-
tors. There are many papers about the research and applica-
tion of other Gamma-type operators, and we mention some
of them [12-17].

In this paper, we construct new modified Gamma opera-
tors using the second central moment of the operators (1) as
follows:

Definition 1. For [=1,2,--- and A : R, — IR, we construct
new modified Gamma operators by

(VA0 = [ KA zer, @)
where
221+ 3)11ZH H(z - t)?
Ki(t,z) = ( +l') ‘ (z(i t)21)+4,t,z€1R+. (3)

The paper is organized as follows: In Section 1, we intro-
duce the history of Gamma operators and construct new
modified Gamma operators using the second central
moment. In Section 2, we obtain the basic results by the
moment computation formulas. And the first, second,
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fourth, and sixth order central moment computation formu-
las and limit equalities are also obtained. In Section 3, we
establish the global approximation results for the operators
(2) in certain weighted spaces. In Sections 4 and 5, we inves-
tigate the direct results including the Voronovskaya-type
asymptotic formula and point-wise estimates in three differ-
ent Lipschitz classes and discuss weighted approximation. In
Section 6, we present a quantitative Voronovskaya-type
asymptotic formula and a Griiss Voronovskaya-type approx-
imation (for the quantitative Voronovskaya type theorem
and Griiss-Voronovskaya theorem for the other operators,
see also [18-24]).

2. Basic Results

In this section, we present certain auxiliary results which will
be used to prove our main theorems for the operators (2).

Lemma 2 (see [1]). For any [e N,, p=0,1,2,---,1+2, we
have

I+p)l(I+2-p)!
¢1(p) = (Pyt")(2) = %z",ze]&. (4)
Lemma 3. If we define ¢,(p) = (Y,t?)(2), then there holds the
following relation

27?

580 =0 +2) =20+ D2+, (p) (5)

I+

where p=0,1,---,I, z€ R,.
Then, the following lemma can be obtained immediately:

Lemma 4. For any e N,, z€ R, we have

00)=130(0= "z = U2 fri> 1 (6)

0= S ot 24 o)

0= A3 ®

o) - T o g )

A(@) = (Yi(t-2)(@) = 7 2 (10)

By(z) = (Y(t-2)°)(2) = ?(étzljzz,forb I (11)
901 + 230

(Yi(t-2))(2) = mz3,forl >2; (12)

60 (I + 231+ 48)

- D{-2)(-3)

2!, forl> 3;

(13)

(Yi(t-2)")(2) = 5
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840(F + 69F + 5061 + 768)

(Yi(t=2)°) () = I-1)(I-2)(1-3)(I-4)(-5) 2oforl> 55
(14)

Jim A(z) = 3z; (15)

lim By(2) = 623 (16)

Jim F(¥,(t - 2)/) (2) = 602*; (17)

lim P (Y,(t-2)°)(z) = 8402°. (18)

I—o0

By the classical Korovkin theorem, we easily obtain the fol-
lowing lemma:

Lemma 5. For all A € Cgx(R,) and any finite interval  CR,,
then the sequence {(Y,;A(t))(z)} converges to A uniformly on
I, where Cyz(R,) denotes the set of all real-valued bounded
and continuous functions defined on R,, endowed with the
norm ||A|| = sup |A(2)].

zeR,

3. Global Results

In this section, we establish some global results by using cer-
tain Lipschitz classes. We first recall some basic definitions.
Let re N:={0,1,2,---} and define the weighted function
w, as follows:

1
+z"

wy(2) =1landw,(z) = I forze R andr e N\ {0}.

(19)

Meantime, we consider the following subspace S, (R, ) of
C(R,) generated by w,:

S,(R,)={A€C(R,): w,Aisuniformly continuous and bounded on R, }
(20)

endowed with the norm ||A]], = supw,(z)|A(z)|for A € S, (R, ).

zeR,
For every A € S,(R,), § >0, and « € (0, 2], the usual weighted
modulus of continuity, the second-order weighted modulus of
smoothness, and the corresponding Lipschitz classes are,
respectively, defined as

w}(138) =sup {w,(2) A(Y) - Ma)|: [y —2| <8,z € R}

r

wf(/\ ;8):= sup ||[AM(z+2t) = 2A(z + 1) + A(2)]],;
te(0,0]

Lipja={1€S,(R,): @’(A;8) =0(8%) aséd — 0" }.
(21)

Theorem 6. Let r € {0, 1,---,1} be fixed. Then, there exists a pos-
itive constant C, such that
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1
Y| — <C,. 22
@)= .
Furthermore, for all A € S,(R,), we have
VA < G- (23)

Thus, Y is a linear positive operator from S, (
foranyre{0, 1,1}

R,)f0S,(R,)

Proof. Inequality (22) is obvious for r=0. Assume that
I>r>1, using (6), we have

w,(z)(y( m))(z—) w, (D) (¥ (1+£))(2)
= w,(2)(¥i(1)) (@) + w () (Y(1))(2)

Cw,(2)+ w,(2) (I=n)(I+nr)! (l+2r + 1) o

I+
<Cw,(z)(1+2")
=C,

(24)

where C, =max {1, sup((l—r) I+ ) +272+ 1)1+ 1))

}, and then we obtaln (22). Moreover, for every A€ S,(RR,)
and z € R,, we have

Ky(t,2)|A(t)|dt

w,(t) dar
w,(t) (25)

w, (D) (YAD)(2)] < w,<z>j°°

0

=w,<z>j°°1<l< 2)A0)

< [ w

SCrHAHr'

Taking the supremum over z € R, we obtain (23).

Theorem 7. For any fixed r € {0, 1,---
a positive constant C, such that

(t-2)
w,(2) <Yl< o )) (2)

Proof. The formula (11) implies (26) for r=0. If r =1, then
we obtain

J =2}, 122, there exists

2
C, ZT (26)

IN

(Yi((t =271+ ) (&) = (Vi((t=2)) (2) + (Vi((t - 2°0)) (2)
= (Yl((t—z)a))(z) +(1+ z)(Y,((t—z)z))(z),

(27)

which by (11) and (12) yield (26) for r = 1. Assuming /-2
>r>2 and using (11) and (6), we obtain

3
(Yz (fu’ft; )) (2= (i(t-27) @) + (1) @)
=22(Y,(1™) (@) + 2 () (2)
_6l+24
“-n°
. (I=r=2) I+ r+2)1(I1+2(r+2) +1) .
I+ 1)!
72(l—r—1)!(l+r+1).(l+2(r+1)2+1)zr+2
I+1)!
(I=ni+ni(I+2r7+1) .,
{7+ 1)
:?{6;+?4+{ I+r+1)(I+r+2)(1+2(r+2)
+12(1-r=1)(I+7r+1) (l+2(r+1) +1)
1 1
F(-r=1)(1-r)(1+27 +1)}%z'}
2 (6l+24 (6P +C, 1+ C,,)(I-r=2)i(I+7)! ,
ST\t (D] ‘
£C,Z—lz(l+z’)
(28)

where C,; and C, ;| are two constants only depending on r.
This completes the proof.

Now, for re€{0,1,---,l}, we consider the two spaces
SHR,)={1eS,(R,): 1 €S,(R,)} and S*(R,):={L1eS,(
R,): A" €S,(R,)}, and we have the three following
theorems:

Theorem 8. For any fixed r, if A € S{(R
itive constant C, such that

. ), there exists a pos-

w,(2)[(YiA(t))(2) - A Z)ISCrHA’Hr\% (29)

forallzeR, andl>r+2.

Proof. Letz € R,. By A(%) =[7 A(
(11), and the linearity of Yl, we obtam

u)du,t € R,, Lemma

(YA())(2) - A(2) = (Y,J}wdu) (2. (30)

Using
[ ]« o] < 1 (.5 + ) -
(31)
Hence,
w,(2)|(YA())(2) - Mz)| < |V,

(
: ((Yl|t - 2))(2) + w,(2) <yl (LZ—(:)I)) (Z)). (32)



Applying the well-known Cauchy-Schwarz inequality, we
can obtain

(YVil1t=z1)(2) <4/ (Yi(t-2)*) (2),

(i) oy () ({5 e

(33)

Combining (22) and (26), we can get the required result.

Theorem 9. For any fixed r, if A € S{(R,), then there exists a
positive constant C, such that

w@IFA0)E) -A@) <Gl (1 5) G0

forallze R, and I>r+ 2.

Proof. Let z € R,. We denote the Steklov means of A by A,
seR,:

l S
A(z) = ;JOA(u+z)du, z,seR,. (35)

It is obvious that

A(2) = A(z) = ér (AMu +2) - AMz))du,
X ° (36)
A(z) = S Az +3) - A(2))

for z,s € R,. Hence, if A € S}(R, ), then A, € S*(RR, ) for every
fixed s € R,. Furthermore, we have

A=Al <@h(hs9), A < sl (s (37)
ros

By

w(2)|(YA(1))(2) = A2)| <
+w, (2)|(YiA(1))(2) = A(2)]

Using (23) and (37), we have

w,(2)|(Yi(A(t) = A,(0))(2)| < C A= Al < Coop (A39)

(39)
for any z,s € R,. From (29) and (37), we have
w,(2)|(YA(D)(2) - 1) <G A [, == < C, Lol (A55) =

r 1Y s = Mrilfts r\/j_ rs r > \/z

(40)

Journal of Function Spaces
By (37), we have
w,(2)]A(2) = A(2)| < A= A, <wrp(Ass)  (41)
for any z,s € R,. Finally, we have
w,(2)|(Y A1) (2) = AM2)| <wl(Ass) <Cr + %Cr% + 1)
(42)

for any z,s € R,. Choosing s = z/v/1, the proof is proved.

Theorem 10. Defining a new operator,
(YIA(0)(2) = (ViA(1)(2) =Mz +A(2)) + A(z). - (43)

For any fixed r, if A € SZ(R,), then there exists a positive
constant C, such that

w,@IYA) @) - M| <G|, S (49)

forallze R, and [>r+ 2.

Proof. Using Taylor’s expansion, we have

A(t) = Mz) = (t-2)A (2) + J (t—wA" (w)du, z, t € R,

(45)

(46)
Since
’ el AL E=2) 0 1 1
[ (G mm)
z+A(2) ~ . 3 H/\’,Hr ,
(2 Az) =W () < 30 (A(2)
(47)
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we have

Combining Lemma 4 and (26), we have

w,(A(VA0)) - M) <G5 (99)
for all ze R, and [ > r + 2. The theorem is completed.

Theorem 11. For any fixed r, if A € S7(R
positive constant C, such that

. ), then there exists a

w @A) -2 (15 ) +ald34(2)
(50)

forallz e R, and 1 >r + 2. In particular, if A € Lip?« for some
€ (0, 2], then

2

w @)@ -1 56, (T) +elhiag)
51)
holds.

Proof. Let A € S, (R, ), and the Steklov means A, (z) of the sec-

ond order of A defined by
- 4 s12 ps/2
A(z) = S—ZJ J Az +u+v) = Az +2u+2v))dudv
0 Jo
(52)

for z, s € R,. By simple computation, we have

Swf(/\;s),

(53)

M < S—w ()L s).

S
r

Meantime, A, € (R
lowing inequality,

) while A€ S.(R,). Using the fol-

(YM0)(2) = A=) < (Y7 |Mo) - A(t)])(z A=) -A(2)|

+|(YiA0) (@) - 1)
+ Az +A(2)) - Az)].

Combining (23) and (44), we have

w,(2)|(YiA(1))(2) = A2)| < (C; +3)

r

rZTwr(z)|)L(z+Al(Z)) -A(2)]

2

sc,wf(/\;s)<1+ %%)
N
(L3 A(2)).

3
+Cr s

(55)

Hence, choosing s = z//1, the first part of the proof is
proved. The second part of the proof can be directly observed
from the definition of the space Lip?a.

4. Direct Results

4.1. Voronovskaya-Type Theorem

Theorem 12. If A € Cg(
then

R,) and "' exists at a point z€ R,,

Tim I((YA(1)(2) - Mz)) = 32 (A'(z) + zA"(z)). (56)
Proof. By the Taylor’s expansion formula for A, we have
1.,
z) + E/\ (z)(t -

At)=A(z) + A (z)(t - 2)* + R(t;2)(t - 2)%,

(57)
where
At) = Mz) = A (2)(t—2) = 1721 (z)(t - 2)* fis
R(t;2) = (t-2)° ’
0 t=z.
(58)

Applying the L’Hospital’s Rule,

. 1. AM-N@E@) 1,
tleZR(t,z) = _th—n}zT - E)\ (z)=0. (59)
Thus, R(.;z) € Cz(R, ). Consequently, we can write

(YIA(1))(2) - A(z) = A)(2)A " (2) + %Bz(z)/\”(z)
+ (Y, (R(t52)(t - 2)*))(2).
By the Cauchy-Schwarz inequality, we have
\/12 (Y)((t-2)*
(61)

We observe that R*(z;z)=0 and R*(t;z) € Cy4(R,).
Then, it follows in Lemma 5 that

(60)

Y (R(t32)( - 2)2)) (2) < 3/ (Yi(RA (15 2))



lingo(Yl(Rz(t;z)))(z) =R*(z;2)=0. (62)

Hence, from (17), we can obtain

lim I(Y(R(t;32)(t - 2)*))(2) = 0. (63)

I—o00

Combining (15) and (16), we complete the proof of
Theorem 12.

Corollary 13. If A, A"’ € Cx(R,), then we have

lim I((YA(£))(2) - M) =32(V () + 21"/ (2) ), (64)

l—o00

uniformly with respect to any finite interval I C R,.

4.2. Point-Wise Estimates. In this subsection, we establish
three point-wise estimates of the operators (2). First, we
obtain the rate of convergence locally by using functions
belonging to the Lipschitz class. We denote that A € Cy4(R,)
is in Lip,,(y, D), y € (0, 1], and D c R, if it satisfies the fol-
lowing condition:

[A(t) = Az)|<M|t-z|',teD,ze R, (65)

where M is a positive constant depending only on y and A.

Theorem 14. If A € C5z(R,) (" Lip,,(y, D), then for any z €
R,, we have

|(YiA(£))(2) = M2)| < M((By(2))" + 2d(2 D)), (66)

where d(z;D)=inf {|t —z|: t e D} denotes the distance
between z and D.

Proof. Let D be the closure of D. Using the properties of
infimum, there is at least a point ¢, € D such that d(z; D) =
|z — t,|. By the triangle inequality

A(t) = Mz)| < [A(2) = Ato)| + [A(2) = A(to) > (67)
we have

|(YiA(1)(2) = A(2)] < (Yi|A(E) = A(t) ) (2) + (Yi|A(2) = A(fo) ) (2)
< M{(Y[t = t5]")(2) + |2 = 1o["}
<M{(Yy(Jt 2" + |2 = 1")(2) + |2 = 1o["}
< M{(Y)|t = 2[")(2) + 2|z~ to|"}-
(68)

Choosing p=2/y and q=2/2 -y and using the well-
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known Hélder inequality, we have

<M{((¥ilt=2")(2) P (Y1)(2)) " + 24" (25 D)}
< M{ ((Yi(t-2))(2)" +2d" (25 D)}
< M((By(2))"™ + 2d"(z; D).

(69)

Next, we obtain the local direct estimate of the operators
(2), using the Lipcshitz type maximal function of the order y
introduced by Lenze [25] as

M,ye(o, 1. (70)

y(Ls2)=_swp S5

SeR t#z
Theorem 15. If A € Cy(R,), then for any z € R, we have
(YIA(1))(2) - M2)| <@, (5 2)(By(2))"™. (71)
Proof. From equation (70), we have
(VA1) (2) - Mz)| <@, (As2)(Yy(E = 2)")(2).  (72)

Applying the well-known Holder inequality, we have

y/2

(YA(£)(2) = M2)| <@, (A5 2)((Yi(t - 2)°)(2))

@, (A5 2)(By(2)". "

Finally, we establish point-wise estimate of the operators
(2) in the following Lipschitz-type space (see [26]) with two
distinct parameters p,, 4, € R,:

-z

s (M) — . _ [ D
Lip () = { A€ COR ) (0 - A(o) <M

},t,ze]RJr,

(74)

where y € (0,1], M, is a positive constant depending only on
P> by p and A,

Theorem 16. If A € Lip(MM’MZ) (y), then for any z € R,, we have

B Y2
#) . (75)
HiZ" + 2

|WM®M@—MM£M<

Proof. Applying the well-known Holder inequality with
p=2/y and g=2/2-7, we have
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[(YiA(1)(2) = A2)| < (Yi[A(£) = A(2)])(2)

— Y
< (Y,Mﬁvizz‘) )
"tz
(Yi[t=2]")(2)

S
[ Y

S o (V=) @) ()™

M B(z) \"
- 2+ pyz '

Thus, the proof is completed.

(76)

5. Weighted Approximation

Let B,(IR, ) be the set of all functions A defined on R, satisfy-

ing the condition |A(z) | <M, (1 + z?) with an absolute con-

stant M, > 0 which depends only on A. C,(R,) denotes the

subspace of all continuous functions A € B,(R,) with the

norm ||A||, = sup (|A(z)|/1 +z%). By Cg(lR+), we denote the
z€R,

subspace of all functions f € C,(R,) for which lim |A(z)]

/1 + 2% is finite.

Theorem 17. If L € C5(R, ) and x > 0, we have
i aup D@ AR
l—00 2R, (I+22)7

Proof. Let z, € R, be arbitrary but fixed.

up LA (@) = A(2)|

zeR, (1 + 22)1+K ze(O)z(])

<

up |(YiA(1))(2) - A(2)]
(1+22)"*
[(YiA(1))(2) - M2)|
(1+22)"*

< [(VA0))(2) = Ml oz,
(Y, (1+8%))(2)
All, sup ~——22 7
+ || ||226[20,(P))o) (1+22)1+K

A=)

)1+K

+ su

=1, +1, + 1.
2€(2(,00) (1 + 22 ! g ’

(78)

Applying [A(z)] < ||A]|,(1 + 2%), we have

HA”2(1+22)< A1l
T (1+z)"
(79)

. M)l
3= Sup N+ = o\ L+k
zelzgo0) (1 +2%) 77 zefzy00) (1+2%)

Let £>0. Since lim

I—00

sup (Y,(1+¢2))(2)/(1+2%) =1,
z€[z4,00)

there exists L, € N, such that for all /> L,,

7
||/\||2(Yl(1+t2>)( < ||/\||2 < )
(1+22)1*" (1+22)1*" 3||A|\2
M, &
T (1+22)" 3
(80)
Hence,
Y, (1+¢
[All, sup (i 2)@ <M, C+SvizL,. (81)
zefzpo0)  (L+22)7F (1+23)" 3
Thus,
2
L+l < —Wj _+ivisL,. (82)
(1+23)" 3

Next, for sufficiently large z, such that ||A||,/(1 +2z3)" <
/6, then I, +1; <2¢/3,VYl>L,. Applying Lemma 5, there
exists L, € N, such that forall > L,,

I(YA0)(E) =M < 5- (83)

Let L = max {L;, L, }. Combining (80) (82), and (83), we
have

p (YMD)(E) ~A)

2™ <gVl>L. (84)
+z

zeR

Hence, the proof of Theorem 17 is completed.

Theorem 18. If A € C)(R,), then we have

lim [[(YA(1))(2) - A, =0. (85)

Proof. Applying the Korovkin theorem [27], it is sufficient to
show the following three conditions:

Jlim [[(Y#)(2) = 2], =0,p =0, 1,2. (86)

Since (Y;1)(z) =1, the condition (86) holds for p=0.
From Lemma (11), we have

I+3 3
1(Yit)(2) =~ ]l ST AT AR T (87)
Thus, llim |(Y,t)(z) - z||, = 0. Finally, we have
2 2 1 |(1+2)(1+9) , | _121+19
1) @) =2l = sep 45 ==y
(88)

which implies that llim I(Y,#*)(z) = 22|, =0.



6. Some Voronovskaya-Type
Approximation Theorem

As is known, if A € C(RR, ) is not uniform, the limit Blin}rw()t ;

&) = 0 may be not true. In [28], Yiiksel and Ispir defined the fol-
lowing weighted modulus of continuity:

e e REEM-A@N
_Q()US)—ZE]RWOEMS (1+z2)(1+h2)f AeCY(R,) (89)

and proved the properties of monotone increasingabout (A ; §)
asd >0, 6lin})+(2()t ; 0) =0, and the inequality

QA;78) <2(1+7)(1+8%)Q(A;8),7>0.  (90)

Forany A € C)(R, ), it follows from (89) and (90) that

M) = A(z)| < (1+ (E-2)7) (1+22)Q(As |t - 2])
2< | |> (1+68%)0Q(A;8)(1+ (t-2)*) (1 +2%).
(°1)
In the next theorem, we obtain the degree of approximation

of Abythe operators (2) in the weighted space of continuous func-
tions C9(RR, ) in terms of the weighted modulus of smoothness

Q(1;6),8>0.

6.1. Quantitative Voronovskaya-Type Theorem

Theorem 19. If A € CY(R,) satisfies ', A"" € CY(
sufficiently large | and any z € R,

R, ), then for

0r0) @) - 12) -2 @ate) - 578 soma (Vs 7).
(92)

Proof. By Taylors’ expansion formula for A, we have

M) =A(z) + A (2)(t—2) + A (,y) (t-z)
" (93)
=Az)+ A (z)(t-2) + A ZEZ) (t—z)> +R(t,2),
where |y — z| < |t — z| and hence

R (t,2) = M(t -2)% (94)

2!

Applying the inequality (91) of the weighted modulus of
continuity, we have

Journal of Function Spaces

IN

_\4
4(1+82)2(1+22)Q(A”;6> (¢ 4Z) Jt—2]> 8,

<4148’ (1+2)0(159) (1 + t(;f)4>.

Combining (94) and (95) and choosing & € (0, 1), we
have

IR, (t,2)| <2(1+68%)*(1+ zZ)Q(A” ;6) (1 L ¢ ;42)4> (t-2)%.
(96)

Using the operator (2) and Lemma 4 on both sides of
(94), we have

(FAD)(E) - X)X ()4 (2) - 2o Bl(z)‘ o
< (Y[R, (t, 2)])(2)-
Applying (16), (18), and (96), we have
(Yl\Rl(t,z)|)(z)§2(1+82)2(1+22)Q(A";8>
e
<2(1+6%)*(1+2%) (A",a %)

(B@+ 5 (ie-2)2))

<2148 (1+2)2(1";6)
(o 1 N IO 1
1) & \F))
Choosing & = 1/+/1, we have

Wik ADE s0ma(Ys ). o9)

Combining (97)-(99), we complete the proof of Theorem 19.

6.2. Griiss Voronovskaya-Type Theorem
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Theorem 20. If A, u € CY(R, ) satisfy \u, A, ', (M), A" !
and (Au)'" € CY(R,). Then, for any z € R,

Jim I((Y,(A - 1) (1) (2) = (YiA(1))(2) - (Yip(1)) (2)) = 61 (2)u' (2)2.
(100)

Proof. Using the equalities

(A 1)(2)=M2) - p(2), (A ) (2) =N (2) - a(z) + M2) -1t (2),
A-w)"(2)=A"(2) - u(z) + 2V (2) -t (2) + A(2) - "' (2),
(101)

by simple computations, for any z € R, we have

(Yi(A-p)(1))(2) = (VA1) (2) - (Yi(1)) (2)

By using (16), Lemma 5, and Theorem 19, we have

Tim 1((Y,(A 1)(0))(2) ~ (VA1) (2) - (Yi(0)(2)) = 6 (2)u' (2)22,
(103)

which proves our theorem.
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In this article, we purpose to study some approximation properties of the one and two variables of the Bernstein-Schurer-type
operators and associated GBS (Generalized Boolean Sum) operators on a symmetrical mobile interval. Firstly, we define the
univariate Bernstein-Schurer-type operators and obtain some preliminary results such as moments, central moments, in
connection with a modulus of continuity, the degree of convergence, and Korovkin-type approximation theorem. Also, we
derive the Voronovskaya-type asymptotic theorem. Further, we construct the bivariate of this newly defined operator, discuss
the order of convergence with regard to Peetre’s K-functional, and obtain the Voronovskaya-type asymptotic theorem. In
addition, we consider the associated GBS-type operators and estimate the order of approximation with the aid of mixed
modulus of smoothness. Finally, with the help of the Maple software, we present the comparisons of the convergence of the
bivariate Bernstein-Schurer-type and associated GBS operators to certain functions with some graphical illustrations and error
estimation tables.

1. Introduction Very recently, many modifications and generalizations of
the Bernstein or Bernstein-Schurer operators for univariate

In [1], Bernstein suggested his polynomials that still inspire  3nq bivariate cases are discussed by many authors. For
many studies today as follows: instance, Acar et al. [3] established local and global approxi-
. mation results in terms of modulus of continuity for a new

ry\ i (] type of the Bernstein-Durrmeyer operators on mobile inter-

B,(u3%) = ;( .>x1(1 —x)"u (;)’ x€[0. 1], (1) V}:fl). Izgi [4] presented a new )t’ype I())f the Bernstein polyno-
Y mials and studied several approximation results of the
univariate and bivariate of these operators. For the parameter
a € R, Chen et al. [5] defined a new generalization of the
Bernstein operator and derived the order of convergence
and Voronovskaya-type asymptotic relation for the o —
Bernstein operator. Kajla and Acar [6] constructed a new kind
v rap o of the « - Bernstein opgrator and st}ldied a uniform conver-

S, (usx) = Z( ) (1 —x)"P Ty (l) , x€[0,1], gence estimate, some direct results involving the asymptotic
j r theorems for these operators. Acar et al. [7] introduced the

2) Kantorovich modifications of the (p, ) — Bernstein operators

for bivariate functions using a new (p,q) —integral and

for any r € N and u € C[0, p + 1]. obtained the uniform convergence and rate of approximation

for any r € N and any u € CJ[0, 1].

In 1962, the operators S,(u;x): C[0,p+ 1] — C[0, 1],
which are called Bernstein-Schurer, are proposed by Schurer
[2] as follows:

j=0


https://orcid.org/0000-0002-8180-9199
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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in terms of modulus of continuity for these operators. Further,
for A €[-1,1], Cai [8] introduced the Bézier version of the
Kantorovich-type A — Bernstein polynomials and gained the
global and direct approximation theorems. Acar and Kajla
[9] introduced an extension of the bivariate generalized Bern-
stein operators with nonnegative real parameters and studied
the degree of approximation with regard to Peetre’s K-func-
tional and Lipschitz-type functions. Barbosu [10] demon-
strated the uniform convergence and estimated the degree of
approximation of the bivariate of the Bernstein-Schurer oper-
ators. Cédbulea [11] considered the generalizations of the Kan-
torovich and Durrmeyer type of the Bernstein-Schurer
operators and evaluated in connection with the modulus of
continuity the order of approximation of these operators.
Also, for some recent works, we can refer the readers to
([12-23]).

By the motivation of the all the above-mentioned works,
we define the univariate Bernstein-Schurer-type operators on
a symmetrical mobile interval. Let the intervals be D, = [~/
(r+1)-p,r/(r+1)+p], I=]-1,1], and C(D,) be the set of
all continuous and bounded functions on D,. For a function
ueC(D,) and xe€D,, the univariate Bernstein-Schurer
operators F, : C(D,) — C(I) are defined as

rwo- (30 Y den(2) o

=0

r+p

where €N, pe N,=NU {0},(pf,j(x) = ( ; )(r/(r+ 1)+
x) (ri(r+1) = x)™P7

The goal of the present work is to obtain some approxi-
mation features of the operators given by (3). We show the
uniform convergence, estimate the degree of convergence
with the help of modulus of continuity, and prove the
Voronovskaya-type asymptotic theorem for the (3) opera-
tors. Next, we define the bivariate of (3) operators, compute
the order of convergence by using Peetre’s K-functional,
and derive the Voronovskaya-type asymptotic theorem for
the bivariate case. Further, we construct the associated GBS
type of bivariate operators and estimate their degree of con-
vergence in terms of mixed modulus of smoothness. Finally,
by the help of the Maple software, we give comparisons of the
convergence of bivariate of (3) operators and related GBS
operators to the certain functions with some graphics and
error estimation tables.

2. Main Results

Lemma 1. Let the operators F,(u; x) be defined by (3). Then,
for all x € D,, the following moments verify

F(1;x)=1, (4)

p((r+)x+r) ()

F.(t;x)=x+ 1)
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2 4 2pr—p—
F (f3x)=x"+ (P +2pr—p V)x2+2p(r+p) » tpEr
r? r(r+1) (r+1)
(6)
Fr(t3;x)
I (p3+3pr2+3p2r—3p23— 312 = 3pr+2p+2r) 2
T
L 0p)(rtp=1) 5 (rp)(3p7+3p+3r—2)
r(r+1) r(r+1)°
2
PP 3p 3
(r+1)3
(7)
F(t';x)
4 <p4 +4p*r + 6p°r? + dpr® — 6p® — 61° — 18pr? — 18p*r
=x"+
r4
2 2 _ _
+11p +22pr+rj1r 6p 6rx4>
+4(p—1)(r+p)(r+p—1)(r+p—2)x3
r3(r+1)
L 2Artp)(rp-1)(3p7 -3p-3r+8) ,
X
r2(r+1)
3 - —
+4(r+p)(p 3pr—3r2+7p+9r 6)x
r(r+1)3
p*+2p - 6p°r — 12pr® — 4+° + 15p® + 30pr + 15r* — 10p — 10r
' (r+1)* :

(8)
Proof. From (3), it becomes

pos= () S () )

FON g

r+ 1\ / 2r \"P
= — N = 1’
(5 (55)

F.(t;x)= (y)fﬂ”i’(ﬁf}?) (% +x>j

AN |
f+P12]
r+1 r+1
<r+1)r+P2(r+prP1(T+p—l>
2r r+1 e j
r il or rp-j-1 r
) )
r+1 r+1 r+1
r+I\"PE(T+P r isor r+p=j
3 ) e )
2r = : r+1 r+1
FON g

_r+12(r+p) /o7 o p((r+1)x+r)
" Gt At e

o
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re 1\"?E[(THP r j
k= (57 ;( ]. )(m”)
(- _x)*“’*f <2j—r>2
r+1 r+1
C(r+l ’+p4(r+p)(r+p—1)”’iz r+p-2
(%) L
r *2ror r+p=j-2
.<r+1+x) (r+1_x)
r+1 r+p4(r+p)r+P71 r+p-1
+<7) (r+1)2]; j
r oy r+p-j-1 r+ 1\
) () _(2r>
4r(r+p) & rHp-1 r j1
+1y jo( j (i)
rp-j-1  [r+1 r\2&[fr+p
() () e e
J J
j rep-j
.(r+1+x> (r+1 )
<r+1> (r+p)(r+p—1)(L+x>z
2r (r+1) r+1
+<ﬂ)4(r+p2 (L+x>_<i)4r(r+pz)
2r ) (r+1)° \r+1 2r ) (r+1)
r r \?2
() )

2y Or2r=por) 5 2p(rtp)
r2 r(r+1)

p +p+r
(r+1)*

©)

The last two identities can be obtained by applying
similar methods; hence, we have omitted the details.

Lemma 2. For all x € D,, we obtain the following central
moments:

F,(t—x;x)=%,
o (PP LA i 238
F,((t—x) ,x)— - x2+r(r+1) eIy

F((t-x)";x)

_ (p* = 6p° — 6p°r — 12pr* + 11p° + 14pr + 31* — 6p — 671) ¥
7'4
4(p* —4p> — 6p’r — 3pr* + 5p + 8pr + 3r* — 2p — 2r) e
r3(r+1)
2(3p4—6p3—18p2—18pr2+11p2+26pr+15r2—8p—8r)x2
r2(r+1)°
4(p4—6p2r—9pr2+7p2+16pr+9r2—6p—6r)x
r(r+1)°
+p4+2p — 6p?r — 12pr? + 15p? + 30pr + 15r° — 10p — 101‘
(r+1)

(10)

Proof. The proof of this lemma can be directly obtained by
using the linearity of (3) operators and as a consequence of
Lemma 1.

Corollary 3. For all x € D,, the following identities hold:

Tim (B, (t - x53)) =p(x + 1),
rknmr(F,((t—x)z;x)) =1-x°, (11)
rl'gnoorz(Fr((t—x)él;x)) = 3(1 - 3x2) (xz + 1).

In the next theorem we show the uniform convergence of
(3) operators. As it is known, the space C(D,) denotes the
real-valued continuous functions on D,, and it is equipped
with the norm for a function y as follows:

e, = sup |u(x)]- (12)
xeD,

Theorem 4. Let the operators F,(u;x) be given by (3). Then,
forall x € D,, F,(u;x) converges to y uniformly on D,.

Proof. From (4), it is obvious that

Tim [F,(13) ~ 1], =0. (13)
By (5), we arrive
. N o (2r+1)
i 86~ =, R
< lim IM =
r—oo| r(r+1)
Similarly, using (6), then
. 2, 2
rEnOOHFr(t ) = HC(D,)
2 o 2 2
= lim max(p ‘f r)x2+ d p+p+r
r—00 xeD, r r(r+ 1) (r+ 1)
2 [
< hm w =
roeo| - (r+1)

(15)

Hence, according to the Korovkin theorem [24], the (3)
operators converge uniformly to y on D, .

Further, we will obtain the degree of approximation of (3)
operators. Let the modulus of continuity for a function y €
Cla, b] be given by

w(d) = sup |u(t) —p(y)]-
ty€lab (16)
t-yl<

Since & > 0, w(y, §) has some useful properties which can
be found in [25].



Theorem 5. Let y € C(D,). Then, for every x € D,, the follow-
ing inequality is verified:

|E (5 %) = p(x)] < 20(p5y,(x)), (17)
where y,(x) =/ F,((t —x)? ; x).

Proof. Taking into account the following common property
of the modulus of continuity:

i -wel= (1+ 5 owsa, s
by the linearity of the operator (3), then
i) =)< (14 gE 05152 Jolusd). (19)
Utilizing the Cauchy-Schwarz inequality yields

i) =)< (14 5/ (1 =0759) ols 8
< (1+ Vréx)>w(y;a).

(20)

If we take § =y, (x) =

is proven.

F.((t-x)*;x), thus Theorem 5

Theorem 6. Let the operators F,(u ; x) be given by (3). Then,
for any we C(D,) such that u', u" € C(D,), the following
identity holds:

Jim r(F,(155) = p(2)) = o+ D' () + 5 (1) (),
(21)

uniformly on D,.

Proof. Suppose that u, ', u" € C(D,) and x € D, are fixed. By
the Taylor formula, hence

1
u(t) = p(x) + ' () (¢ = x) + S () (8= 2)* +E(E50) (£ %),
(22)
where &(t; x) is a form of Peano of the rest term, and since
E(sx) e C(D,), zlim E(t;x)=0.
Operating F,(.;x) to (22), then

Fy(15%) () = (B, (£ = 32) + " (0)F, (12075 %)
+F,(E(t;x)(t—x)*; x).
(23)
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From Lemma 2, it becomes

(1-2)u" (%)
+ }Lno})r(Fr(E(t s x)(t— x)z ;x)).
(24)

N =

lim 7(F, (13 ¥) ~ (x) = ploc+ Vg’ (x) +

r—00

Applying the Cauchy-Schwarz inequality, one has

r(F,(E(t;x)(t-x)75x)) < \/F,(Ez(t;x) ;%) \/rzF,((t—x)4 5 x).

(25)
Owing to &(t;x) € C(D,), thgle(t ;x) =0, thus
lim F, (£Z(t;x) ;x) =0, (26)
uniformly on D, with Theorem 4.
Combining (25) and (26) and by Lemma 2, we get
lim r(F,(&(t;x)(t —x)*;x)) =0. (27)

r—00

Hence,

lim r(F (3%) - 0(2)) =plox+ D' (x) + 5 (1) (2),

r—00

which gives the proof.

3. Construction of the Bivariate Bernstein-
Schurer-Type Operators

Let the intervals be D, , = [(~r/r; + 1) =p,, (ri/r; + 1)+p,]
X [(=1y/ry + 1) = py, (rafry + 1) +py), P=IxI=[-1,1]x[-
1,1], and by C(D, , ), we denote the set of all real-valued
continuous functions on D, , , and it is equipped with the

norm [luflgp, y= sup [u(xy)]-
2 (ey)eD,,,,

We define the bivariate F, , : C(D
operators given by (3) as follows:

ro+ I\, 4+ 1\ 2P D R
. _ 1 2 102
Frl,rz (Abl > x’y) - ( ) Z Z (PI;IJZ’jl’j2

2ry 2r,

— C(Iz) Of

71,72)

J1=0 j,=0
2j-1 2j-1

(x,y)y( rn+l’ rn+l )
(29)

b AP\ [ T2th,
where ﬂl’i’jl’jz(x,y) = ( . ) ( ) )(71/(71 +1)+

' . N o
x)" (ry/(ry +1) ) (1l (ry + 1) = )P () (ry + 1) —
y) PR, (rry) e NXIN, (p,p,) € Ny x Ny, and (x,y) €

D

1151 ‘
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It can be seen that the operators given by (29) are positive
and linear.

Lemma7. Lete, , (x,y) =x"y®, (x,y) €D, , ,(a;,a,) €N,
x N, with a; + a, <4, be the bivariate test functions. Then,
one has

Frl,rz (e0,0;x’y) =1

pi((ry+ Dx+1;)

Fr1,rg(el,0;x’y):x+ 7’1(1‘1+1)

>

po((ry+ 1)y +15)

F 3%,y)=y+
r,,r2(50,1 X}/) y T’Z(T’2+1)

>

Frl,rz (eZ,O 3 Xs y)

=24 (Pf+2P1”1—P1—"1)x2+2P1(7'1+P1) Pf"’l’z*’rl
ri ri(r;+1) (r+1)7° '
Fr,,rz(eO,Z;x’y)
=+ (p§+2p2r2—p2—r2) e 2py(ro+py) p3+p, +2"2’
r3 ry(ry+ 1) (ry+1)

Fr1>rz(e3,0 > X,y)

_ s, (pi+3pyr+3pir = 3p] =31 =3pyr, +2p, +2r))
=X+ r3 X
1
+ 3p,(r; +2P1)(r1 +p - l)xz + (r, +P1)(3P? +3P12+ 3r, —2) X
ri(r;+1) ri(ry+1)
L Pi(pi+3p, +3r,)
(r; +1)3 ’

Fr,,rz(eo,S ;x’y)

Ly P2 303 3p5rs = 303 =305~ 3para 4 2+ 21) g
5]
. 3p,(ry+py)(ry+py— 1)y2 . (ry+p,) (3p5+ 3p, +3r, - 2)
r3(r,+1) ry(ry+1)°
N2 (p3+3p, + 3r5)
(r2+ 1)3 )

Frl,rz(eél,l) ;x’y)
ity (p‘} + 4pir; +6piri + 4p,ri — 6p] = 6r] — 18p,r] — 18pir,
4
i

11p? +22p,r, + 11r3 — 6p, — 671, ) 4
+ 7 X
r

+ 4, = D)(ry +p)(ry +p; — D(r +p, _2)x3

ri(r; +1)
. 2(ry+py)(ri+p; - 1)(3P5 —-3p,=3r; + 8) 2
ri(r + 1)2
. 4(r, +P1)(P? = 3p,ry = 3r+7p, +9r, - 6) .
ri(r; + 1)3
. pt+2p3 — 6p3r, — 12p,ri+—4r + 15p7 + 30p,r, + 1517 — 10p, — 10r,

(r+ 1)

Frl,rz(eo,f! ;x,y)
_ ity (PR AP OPETE+ Apars = 6p; 673~ 18pyri — 18pir,
&)
. 11p3+ 22p,ry + 1113 — 6p, — 61,
s 4
. 4P, = 1)(ra+po)(ra+ P = D(ra+p, _2)),3
r3(r,+1)
+ 2ry+py)(ra+py— 1)(317; —3p, =31, + 8)}/2
r3(ry +1)°
. 4(ry+p,) (pi = 3p,ry =315+ 7p, + 91, — 6)
ry(ry+ 1)3
. P4+ 2p3 — 6pir, — 12p,ro+—4r] + 15p2 + 30p,r, + 152 — 10p, — 10r, .
(ry+ 1)4
(30)

Proof. The proof of the above equalities can be reached easily
as a consequence of Lemma 1 and by (29); hence, we have
omitted the details.

Corollary 8. In view of Lemma 7, the following relations hold
true:

Frbrz(tO_X;x’y) = pl((rl : 1)x+ rl)

ri(r;+1) ’
pZ((rZ + 1))"" 1’2)
F )X == =
rIJZ(SO yi%?) ry(ry+1)
F, . ((t _x)Z.xy):(Pi_Pz—ﬁ)szr 2p? PAp,
S - ri ri(r+1) (rp+1)?
2 5 ,
F,, ((ss=)5%p) = (p p22 r2) 2, 2m  P2tp +2rz’
2 5 rz(r2+1) (1’2+1)

Frl,rz ((tO - x)4 ;X,y)
(p} - 6p] — 6pir, — 12p,ri + 11p] + 14p,r; +3r] — 6p, — 61})

— 4
4 4(P§ —4p; — 6pir, = 3p,ri +5p7 + 8p,r; + 317 — 2p, ’2"1) &
ri(r;+1)
2(3p7 — 6p; — 18p7 — 18p, 77 + 11p7 + 26,7, + 1511 = 8p, = 8r}) ,
+ X
ri(ry + 1)2
. 4(pi—6pir; = 9p,ri + 7p; + 16p,7, + 917 — 6p, — 61/) .
r(r;+ 1)3
. Pi+2p3 —6pir, — 12p,r? + 15p2 + 30p,r; + 15r2 — 10p, — 10r,
(r; + 1)4 ,
Frl,rz ((50 _y)4 ;x’y)
_ (P3—6p5 = 6p3r; = 12p,15 + 11p3 + 14p,r; + 3r3 = 6p, = 673)
s Y
4(P§ —4p3 — 637, = 3p,15 + 5p5 + 8p,ry + 315 = 2p, — 2"2) 3
+ : ¥
ry(r, +1)
2(3p5 — 6p3 — 18p5 — 18p,r5 + 11p5 + 26p,7, + 1515 = 8p, = 813)
+
ri(r+ 1) g
. 4(1’31 — 6p3ry = 9p,13 + 7p3 + 16p,r, + 95— 6p, — 6’2) y
ry(ry +1)°
N PS5+ 2p3 — 6p3r, — 12p,r5 + 15p3 + 30p,r, + 1513 — 10p, — 10r,
(ry+ 1)4 .

(31)



Theorem 9. Let the operators F, , (u;x,y) be given by (29).
Then for any y € C(D, , ), we arrive at

lim ||Fr1,r2(tu) - AMH =0. (32)

rpr ;=00

Proof. Tt is seen from the following that

HFrl,rz(eO,O) - eo,oH I 0>| Frl,rz(el,o) - el,O” —0,

F, (0t €)= (€20t €p5) ” —0,

(33)

HF'rl,rZ (eoxl) ~ €1 H — 0>|

as r, 1, — 00. Thus, these results complete the proof, as
required by the Volkov theorem [26].

Moreover, for the operators given by (29), we want to
derive the Voronovskaya-type asymptotic theorem and
estimate the degree of convergence with the help of Peetre’s
K-functional.

Suppose that C? (D,,,,) represents the space of all func-
tions of y € C(D, , ) such that 0,u/0x;, 0;u/dy; € C(D, , ) (
fori=1,2). The norm on C*(D
tional of y € C(D, , ) are given as follows, respectively.

(D) <>)

K §)=inf { = ellegn, )+l )i ee G (D,,)}
(34)

) and Peetre’s K-func-

Ty

i
o

|2
9y,

Il (o,,,,) = Iedlleqo, ) + Z(

i=1

where { > 0.
For a constant C > 0, the following inequality

K(p0) < Cay (1 VX)) (35)

holds, where w,* (i, 1/¢) denotes the second order of the mod-
ulus of continuity of 4 € C(D, . ). Also, for € C(D, , ), the
ordinary modulus of continuity is defined as

TI,TZ)

w(@ ) = sup {|u<u1,u2> — )l (W ) (1)

€eC(D, ) \/(u1 —v) (U —vy)2 < 8}.
(36)

Theorem 10. Suppose that p € CZ(D,P,Z). Then, the following
relation holds

lim 7, [F, , (3%y) = p5%]

“pyxt D) +pa+ D)+ 3 (7)
< {(1=2)u (69) + (1=, (69) |

uniformly on D

r,,rz‘
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Proof. For the arbitrary (x,y) € D, , , using the Taylor for-
mula, it becomes

ltor o) = (33) * 45 ) (o =) + 505, 7)(50 =) * 3
B (6 9) (g =207+t (69) (50— ) + 20,
()t =) (50 =) | + Xt 505%.7)
(=) + (5 2)"

(38)

for (ty,sy) € D, , , where x(..;x,y) € C(D, , ) and y(ty sy
X%y) = 0, as (tg,59) — (%,7).
Operating F, , (.;x,y) on (38) yields

F, . (u(tg$0)3% )
= U5y FHEDE, (=50 7) + (6 )) Fr
X (s ysxy)+ %{Mi'x (% 2)F,, ((t-x)3%y)
iy (5 0)Fyp, (0= 3359) + 20 () B
X ((to=%)(s0 =) ;x,y)} +F,
(39)

If we use the Cauchy-Schwarz inequality to the last part
of (39), one has

F . (X(to’ So 5"’)’)\/(% —x)"+ (s -9)" ;x,y) ’
<\ Fr, (R0 5032.7) 5%,)

x \/Frl’rl ((to —X)4 ;X,y) + Fﬁ,ﬁ ((SO _)’)4 ;x,)/)-
(40)

Considering Theorem 9 and because of x(.,.;x,y)€C

(Dy,r,)> X(tg>S93%y) = 0, as (ty, ) — (x,7), then

1151

lim Frl,r1 (XZ(tO’SO;x’y);x’y) :0’ (41)

"
uniformly on D, , . Also, from Corollary 8, it is clear to see

lim 7, [F,, (t =) (5 =7)5%0)] =0, (42)

Further, by Corollary 3, it follows that

lim r1[F, ((ty=x)"5%y)] =3(1-3x%) (x* + 1),

r—00

lim 73 [F, , ((s-»)"5%y)]=3(1-3) (" +1).

r—00

(43)
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Thus,

r—00

(44)

Hence, the desired sequel is arrived as follows:

lim r,[F, , (#:%))—p;xy]

r—00

=py(x+ Dp(xy) +p,(y + Dy (xy) + 5

X (59) + (1=, (x7) |

uniformly on D, .

Theorem 11. Suppose that y € C(
inequality is verified:

D, , ). Then, the following

|Fr (152 y) = ()|
<C{a(us1/S,,r,(x2)) +min {18, o)l exn, ) }
(i, ., ().
(46)

where C; > 0 is a constant and independent of yuand S, ,2( X, )
andyr( ) Frlrz((to_ ) ’x’y) yrz(y) Frlrz((so y) 5 X5
P &, (69) = /(0 ((C vy + Dxtry)iry () + 1))+ (p,((1

F 1y +r)lry(r+ DS, L (%) =77 (1) + 97, 0) + &

Proof. Let us define the following auxiliary operators:

F, . (usxy)=F, . (4:xy) +u(xy) - p
A xq pi((r +)x+1) T+ pa((ra+ 1)y +1,) .
ri(r +1) ry(ry +1)
(47)
By Lemma 7, we obtain

F, (ty=xix.9) =0,
(48)

Frl rz( 0 y;x’y) =0.
Suppose that p € CZ(DYMZ) and (t5,59) €D, ,; by the

Taylor formula, we may write

t

WO 1)+ 100 T

p(to> o) — p(x: ) = I 7u

X

ou(x, T ?u(x, v
+ ngy Y) (so—y) + J(so -v) P(;(ZV ) dv.
y

(49)

Now, operating F,

12

on (49), we get

F, . (43%y) - p(xy)

- to o*u(u,
= Frl’r2 (J (ty—u) %du;xw)

So 2
+F, . (J (S —v)Mdv;x,y)

y 0“v

fo O u(u, y
=F (J (%—u)%du;x,y)

X+(py ((ry+1)x+ry ) /1) (r1+1)) 1
_j' <x+P1((”1+ )x+r1)_u>
x ri(r +1)

9’ p(u,y) O p(x,v)
XTdM+F'1>'z J(so—v)Tdv;x,y
y

_ Jy+@2((rﬁl)yﬂl)/@(rz“)) (y N Pz((rz + 1))’ + 1‘2) _ V>

y ry(ry + 1)

2
TSI
v
(50)

Hence,

|F, i (05%,9) = (2, 9)]

fo o*u(u,
gFrm(J Ity — u| P(_;(Zu)’)

Jx+(pl ((ry+1)x+ry)/ry(r;+1))

du|+F, (

JJ”f@z((’z*'l)J’*’z)”z(’z*”)

d

u ;x,y)

pi((ry+1)x+r)
" ri(r +1) —u‘

5
j|s—\
y

+ po((ra+1)y+1y) _ v’
ry(ry + 1)

+

X

dv

2
. |9 M(ZM’)’)

u

P u(x,v)
o*v

+

y

2
o [0 uxY)
%

c{ottmsinn (P

py(ry + 1)y +1,) _y>2}

ry(ry + 1)

dv

+Frl,r2(($0 _y)Z ;x,y) + (y+

< e, )
(51)

If we choose

E71’72 =
V Gty + Dt )iy (1 + D)+ (py(ry + Dy + 1), + 1)

yrl( ) Frl rz((tO_x)z;x’y)’ Yr (y) Frl rz((SO_y)z;x’y)’




S (©9) =72 () +92,(y) + £, then
|Fr1,r2((’t;x’y) - M(x,y)| < Srl,rz(x’y)HMHCZ(D,NZ)' (52)

Also, by Lemma 7 and (52), we arrive at

|F, (3% 0)| < |F, L (5% 9)| + 6(xp)]

y<x+P1(("1 +1)x+1)

+
ri(r+1)

>

ry(r, +1)

NAGE: 1>y+r2>>
S3H#||C(D,ln)'
Next, from (53)
|F, (3%, y) = p(x,y)]

<[y (= 53|+ [y (63.9) - K(09)|

y<x+ pi((ry + )x+ry) I po((ry+ 1)y + ’"2))

+ >
ri(r+1) ry(r, +1)

—p(x )|+ k(% y) — (% ¥

< (4la=rllc, ) *+ SRkl o, )

+ w([’l > Erl,rz (X,y)) .
(54)

Consequently, on (54), utilizing the infimum on the right-
hand side over all € C*(D, . ) and by (35), it becomes

|F, 0 (3 %y) —p(x )|

<C{a (51,0, (02)) +min {15 (o9l o, }

+o(usg, , (6y))
(55)
which ends the proof.

4. Construction of the GBS Type of F, , (4;x,Y)

The notion of the B-continuous and B-differentiable func-
tions was firstly used by Bogel [27, 28]. Dobrescu and Matei
[29] considered the GBS (Generalized Boolean Sum) kind
of the bivariate of the Bernstein polynomials. Next, using
the B-continuous functions by the GBS operators, which is
related to quantitative version of the Korovkin-type conver-
gence theorem, firstly has been improved by Badea et al.
[30, 31]. Pop and Farcas [32] obtained some approximation
of the B-continuous and B-differentiable functions by GBS
type of the Bernstein bivariate operators. Ispir [33]
established quantitative estimates for the GBS of the
Chlodowsky-Szasz-kind operators. Recently, some authors
introduced the GBS operators of various operators (we refer
the readers to [34-42]).
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Let a function p : U x V — R, where U,V are compact
real intervals of R. With (x, y), (£, 5,) € U x V, the mixed
difference of the function y is given as

Py HlEor So3% ¥ = p(x, y) — p(x: 50) — (o> ¥) + (o5 So)-
(56)

A function y : U x V — R is named Boégel-continuous
(B-continuous) at (t,,s,) € Ux V, if

lim ¢(x,y)n"l[t0’50 ;X,y] =0. (57>

(%)= (to%0)

A function p:UxV-—R is named Bogel-
differentiable (B-differentiable) at (t,,s,) € Ux V, if the
below result which denoted by Dgf(x, y) exists and finite

Pantlio 0300 ) e sy

lim
() —(toso) (X = 1) (¥ = o)

Note that, by C,(U x V) and D, (U x V), we represent
the sets of all B-differentiable and B-continuous functions
on U x V, respectively.

Afunction p : Y ¢ U x V — R is named Bogel-bounded
(B —bounded) on Y, if there consists W > 0 such that \gb(x)y)
Ultes o 3%, y]| < W for every (t,,s,), (x,y) € Y.

Also, if Y is a compact subset of R?, hence all B-contin-
uous functions are B —bounded on Y — R.

Further, by B,(Y), we represent the set of all B-bounded
functions on Y and equipped with the norm |y ;=

sup [Py, lto> S5 % y])|. Considering the definition
(9),(tg:50) €Y
of B-continuous, then C(Y) ¢ C,(Y) (see details by [43]).
The mixed modulus of smoothness for y € C,(D, , ) is

given by
Wiixed (#3615 05)
= sup {‘qsw)y[to,so 53, 9| [ty — x| <Oy s — ¥ < 52},
(59)

where (x, ), (ty, o) €D, , , and &, 8, € R™. Also, for all «;,
k, > 0, the following inequality satisty

Winixed (43 K1015%30,) < (1 + &1 ) (1 + 5 )i (¢35 015 05).
(60)

More details about the mixed modulus of smoothness can
be found in [30, 31].

Now, for all (x, y) € D, , , for any p € Cy(D, , ) and (ry,
r,) €ENxN, (p;,p,) € Ny x IN;, we construct the GBS-type
operators given by (29) operators as follows:

G, ., (usx,y)=F, . (4(x50) + h(to, y) = 4(tos So) 3% )
(61)
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Exactly, for any p € C,(D, , ) andforall (x,y) € D, , , the

GBS type of F,

S0P >

», Operators is given as

TPy 121p;
ro+ I\, + 1\ 2P Pis
Grl,rz (Au 5 %5 y) = Z Z T f1o],
2ry 2r, = v
71=0 j,=0

) 2,1 2j,— 1
(ey)x (“("’ W) “‘( 1

—u 2ji-1 2j,-1y
n+l’ r+l))
where ¢f'F

v, (%) is defined as in (29).

It is clear that the operators given by (62) are linear and
positive. In the following theorem, with regard to the mixed
modulus of smoothness, we estimate the order of approxima-
tion of the (62) operators.

(62)

Theorem 12. For all y € C,(D, , ) and for each (x,y) €D, , ,
the operators given by (62) satisfy the following inequality:

|G,y (13 %,)) = (%)) | < 40,100 (/‘5 \/(“r,,p,)’ \/(“04&))’

(63)

Whereocrppl =(pi-3p,+r+4)/(r + 1)2 and W p = (p5-3
P+t 4)(ry+ 1)2.

Proof. In view of (60), it gives

Dy Hlt0s So ;x,y]‘ < Wiied (U5 [to = X5 [S9 = ¥])

th—X Sy —
< <1+ | 051 |> (1+ | 062)’|)wmixed

(4361, 6,),
(64)

for all (x, ), (t, 5) € D, , , and for any &}, 8, € R™. By (56),
we have
(% 50) + p(to, ) =t $0) = H(% ¥) = Py Hltos 05 % Y-
(65)

Operating F, . and by the definition of G, , , then

Ty ’

Grl,rz ((’l;x’y) = [’l(x’y)Frl,rz (60,0 ;x’y) - Frl,r2

(66)
. ((p(x,y) H[to, So ;x,y] 3 X, y) .

It follows that

|Gr1,r2 (y;x,y) —M(x))/)| < Frl,r2<

;x,y).

(67)

Play)Hlto> 05 %, Y]

1.00

Function

I F75,75 FS,S

FiGurE 1: The convergence of F, (p3x,y) operators to u(x,y) =
cos (xy/(1+y?)) (yellow) for r, =r, =5 (red), r =1, = 15 (green),
ry=r,=75 (blue), and p, =p, = 1.

From (64) and by utilizing the Cauchy-Schwarz inequal-
ity, one has

|G, ., (5% y) = 5(x,y)]

\/Frl"z ((to - x)z ;x>)’) E o, ((So —)’)2 ;x,)/)
' 8,6,

X wmixed([’l > 61’ 82)
(68)

Taking into account Corollary 8, it becomes

prp 1
(ri + 1)2

2 2
F’Mz((to —x)2 ;x,y) < (&X> + - (2P1
1

r r+1)

<p{—3p1+r1+4 _‘X
= (71 + 1)2 = repy?

p% TP+,
(ry+ 1)2

2 2 2
Fr],rz((so_y)z;x’y) < (%y> + r ( P
2

2 r+1)
<p§—3p2+r2+4=“ '
(T2+1)2 T2:Ps

(69)
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Tasre 1: Error of approximation F, , (u;x,y) operators to p(x, y) = cos (xy/(1+y?)) for r, =r, =5, r, =r, =50, r, =, =500, and p, =
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p,=1L
(%) |F5)5(‘u;x,y)—pt(x,y)| |F50,50(y;x,y)—[,t(x,y)| {Fsoo,soo(P‘;xJ’)_!‘(xr)’)}
(0.6, 0.6) 0.0589662082 0.0057059967 0.0005642954
(0.8, -0.1) 0.0532558351 0.0049072492 0.0004809529
(0.5, -0.5) 0.0271614376 0.0024426683 0.0002455107
(0.4, -0.3) 0.0203534842 0.0014131511 0.0001327585
(0.3, -0.7) 0.0170542963 0.0010060800 0.0000896256
(0.2, 0.8) 0.0148469930 0.0015555907 0.0001550674
(-0.6, 0.4) 0.0127417986 0.0019020417 0.0001971948
(0.1, 0.1) 0.0091694597 0.0003325468 0.0000204350
(0.3, -0.7) 0.0081301508 0.0007964789 0.0000801801
(0.9, 0.9) 0.0020362863 0.0003014692 0.0000358039
Hence,

|G, (5%, y) — (%)
< <1+ V@3 =3+ n 4)1r 12 . V(B3 =3p +ry )1 (1 + 1)

5, %,

+

\/((pf =3p, +r +4)/(r + 1)2) ((p3—=3py +ry+4)/(ry + 1)2) )
6,6,

X @ied (3615 65)-
(70)

If we choose &, =, /@ " and &, =, /&, ", then the

desired result is arrived.

5. Graphics and Error Estimation Tables

In this section, with the help of the Maple software, we give
some plots and error estimation tables for the comparison
of the convergence behavior of (29) and (62) operators to
the certain functions.

Example 1. Let u(x,y)=cos (xy/(1+y*)). In Figure 1, for
r, =1, =5 (red), r; =r, =15 (green), r, =r, =75 (blue), and
by choosing p, =p, =1, we illustrate the convergence of
(29) operators to p(x,y) =cos (xy/(1+y?)) (yellow). Also,
in Table 1, we determine the error of approximation (29)
operators to p(x, y) = cos (xy/(1 + y*)) for the certain values
of -1<x,y<1and r; =r, =5,50,500, respectively. It is clear
from Table 1 that as the values of r; and r, increase then the
error of approximation (29) operators to p(x, y) = cos (xy/
(1+y?)) decreases.

Example 2. Let u(x,y) =sin ((5/2)xy)e”. In Figure 2, for
r,=r,=15, p,=p, =2, we compare the convergence of
(29) (red) and the associated GBS operators (62) (blue) to
(x,y) =sin ((5/2)xy)e™" (yellow). Also, in Table 2, we eval-
uate the error of approximation (29) and (62) operators to
p(x, y) =sin ((5/2)xy)e?” for r, =r, =300, p, =p, =2, and
the certain points of —1<x,y<1. It is obvious that, for
r, =r, =300, p, =p, =2, the absolute difference between

Function

I GIS, 15

- FIS, 15

FIGURE 2: The convergence of F, , (¢;x,y) (red) and G, , (435, )
(blue) operators to p(x, y) = sin ((5/2)xy)e™" (yellow) for r; =1, =

15and p, =p, = 2.

TasLE 2: Error of approximation F, , (u;x,y) and G, , (4;x,y)
operators to u(x, y) =sin ((5/2)xy)e™" for r, =r, =300 and p, =

py=2
(%) |F300)300(y;x,y)—;4(x,y)| ‘G300,300(;4;x,y)—y(x,y)|
(-0.9,0.9) 0.0136597503 0.0000249663
(0.5, 0.5) 0.0127076638 0.0000753517
(-0.8, -0.1) 0.0118523844 0.0000165295
(-0.3, -0.6) 0.0117422817 0.0000287716
(-0.6, -0.4) 0.0102228713 0.0000248461
(0.4,0.8) 0.0101988560 0.0001669195
(0.9, 0.7) 0.0081455565 0.0005454158
(0.1, -0.4) 0.0070195207 0.0000801529
(-0.7,0.3) 0.0056112239 0.0000346506
(-0.2,0.2) 0.0003416940 0.0000879462
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(29) operators to u(x, y) is greater than that of (62) oper-
ators to u(x,y). Namely, the (62) operators has better
approximation than (29) operators.
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In this paper, we introduce the notion of controlled rectangular metric spaces as a generalization of rectangular metric spaces and
rectangular b-metric spaces. Further, we establish some related fixed point results. Our main results extend many existing ones in
the literature. The obtained results are also illustrated with the help of an example. In the last section, we apply our results to a
common real-life problem in a general form by getting a solution for the Fredholm integral equation in the setting of controlled

rectangular metric spaces.

1. Introduction

The fixed point theory is a growing and exciting field of
mathematics with a variety of variant applications in
mathematical sciences, proposing newer applications in
discrete dynamics and super fractals. The fixed point the-
ory is a fundamental tool to various theoretical and
applied fields, such as variational and linear inequalities,
the approximation theory, nonlinear analysis, integral
and differential equations and inclusions, the dynamic sys-
tems theory, mathematics of fractals, mathematical eco-
nomics (game theory, equilibrium problems, and
optimization problems), and mathematical modeling; see
[1-3]. In particular, fixed point techniques have been
applied in such diverse fields; see [4, 5]. There are partic-
ular real-life problems, whose statements are fairly easy to
understand, which can be argued using some versions of
fixed point theorems; see [6, 7].

The notion of extended b-metric spaces was introduced
by Kamran et al. [9] as a generalization of metric spaces
and b-metric spaces [10, 11]. This metric type space has been
generalized in several directions (for instance, controlled
metric spaces [12], double controlled metric spaces [13],
and others [14-19]). In a different perception, Branciari
[20] proposed rectangular metric spaces. In the same order,
Asim et al. [21] included a control function to initiate the
concept of extended rectangular b-metric spaces as a general-
ization of rectangular b-metric spaces [22]. In [23], Mlaiki
et al. introduced controlled rectangular b-metric spaces,
which generalize rectangular metric spaces and rectangular
b-metric spaces.

In this paper, our goal is to introduce the notion of
controlled rectangular metric spaces, which is different
from controlled rectangular b-metric spaces, and general-
ize rectangular metric spaces as well as rectangular b
-metric spaces. Further, we prove some fixed point
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results on such spaces as a generalization of many preex-
isting results in the literature. Also, we give examples for
the justification of our results. In the last, as an applica-
tion, we give an existence theorem for the Fredholm
integral equation in the setting of controlled rectangular
metric spaces.

2. Preliminaries

In this section, we collect some basic concepts related to our
main results.

Definition 1 [22]. A mapping d; : M x M — [0,00) on a
nonempty set ./ is called a rectangular b-metric space, if
there exists a constant s>1 such that for all 7z, 72, € #
and all distinct y,, u, € # different from 72, and 7,, the
following axioms are satisfied:

() d¢(72, ;) = 0iff 722, = 72,
(ii) d((mp m,) = d((mz’ 7m,)

(iii) dg(72,,772,) <

m;)]

slde (7721, py) + di(pys py) + A (py

In this case, the pair (/,d;) is called a rectangular b
-metric space.

Definition 2 [9]. Let . be a nonempty set and { : M x M
— [L,00) be a mapping. Then, a mapping d; : M x M —
[0,00) is called an extended b-metric, if for all 72,, 772,, 72,4
€ M, it satisfies the following axioms:

() di(m72y, ;) =0ift 72, =2,
(ii) d((’”l’ m,) = dc(mz’ m)

(iii) dy (7724, 7725) < Qs 125)|di (772, 772) + diy (772,

m3)]

The pair (., d;) is called an extended b-metric space.
Definition 3 [21]. A mapping d; : M x M — [0,00) on a
nonempty set . is called an extended rectangular b
-metric space, if for all 72,72, € # and all distinct y,,

u, € A different from 772, and 77,, the following axioms
are satisfied:

(@) de( )=
(ii) di(772,, 72,) =
)

ey, m,) =0iff 172, =m2,
de (1729, 1721)

(iii) d((ml’mz S((ml)mz)[d((”&v%)+d((.‘"17/42)
+dp(py, 772,)]

where { : M x M —> [1,00) is a mapping. In this case, the
pair (/, d;) is called an extended rectangular b-metric space.

Note that the topology of rectangular metric spaces
need not be Hausdorff. For more examples, see the
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papers of Sarma et al. [24] and Samet [25]. The topolog-
ical structure of rectangular metric spaces is not compat-
ible with the topology of classic metric spaces; see
Example 7 in the paper of Suzuki [26]. In the same
direction, extended rectangular b-metric spaces cannot
be Hausdorff.

Definition 4 [23]. A mapping d; : M x M — [0,00) on a
nonempty set ./ is called a controlled rectangular b-metric
space, if for all distinct 72, 72,, y;, 4, € M, the following
axioms are satisfied:

() d¢(721,72,) = 0iff 772, = 72,
(ii) dy(72y,772,) = dy (725, 772)

(i) d¢ (772,72,
s thy) + d(

< (2, 1725, ”1’[’[2)[(1((777/1’ Hy) + d((
Hy» 772,)]

where { : M* — [1,00) is a mapping. In this case, the pair
(M, dy) is called a controlled rectangular b-metric space.

As a generalization of metric spaces, Mlaiki et al. in [12]
introduced the concept of controlled metric spaces as follows.

Definition 5 [12]. Let .4 be a nonempty set and { : M x M
— [L,00). Then, a mapping d; : M x M — [0,00) is
called a controlled metric, if for all 7z, 72,, 772, € M, it sat-
isfies the following axioms:

() di (21, 772,) =
(ii) dy(772y,772,) =
(iii) d¢ (7721, 7725) <

)d((mz’”%)

0iff 72, =2,
d (7”2)7”1)

{(r2,, mz)d((mp 725) + (7725, 725

The pair (, d;) is called a controlled metric space.

Note that Definition 5 generalizes b-metric spaces and is
different from Definition 2.

Example 1 [12]. Let M ={1,2,--}. Define d; : M x M —>

[0,00) as
0, if 72, =m2,,
1
—, if 7, isevenand 72, is odd,
77,
de(my)=q (1)
—, if 72, isodd and 772, is even,
)
1, otherwise.

Hence, (/,d;) is a controlled metric space, where {
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s M x M —> [1,00) is defined as

my, if 2, isevenand 772, is odd,

{(m\,m5) = m,, ifm,isoddandz,iseven,  (2)
1, otherwise.
3. Main Results

In this section, we introduce the notion of controlled rectan-
gular metric spaces. Also, we establish some fixed point
results.

Definition 6. A mapping d; : M x M — [0,00) on a non-
empty set ./ is called a controlled rectangular metric space,
if for all 72,772, € # and all distinct y,, u, € A different
from 772, and 72,, the following axioms are satisfied:
() d¢(72,, m,) = 0iff 722, = 172,
(ii) d((mp m,) = d((mz’ 7m,)
(iii) d((mp m,) < (72, #1)‘1{(7”1’ ) + gy P‘z)d((
b ) + C 1y, mz)d((."‘z’ 7m,)

where { : M x M —> [1,00) is a mapping, In this case, the

pair (, d;) is called a controlled rectangular metric space.

Remark 7.
(i) Every rectangular metric space and rectangular b
-metric is a controlled rectangular metric space
(ii) Clearly, Definition 6 is different from Definition 4

(iii) Every controlled metric space is a controlled rectan-
gular metric space, but its converse is not true in
general. See the following example

Example 2. Let /M =[0,00). Define a mapping d; : M x M
— [0,00) by

0, if 72, =me,,
1

—, ifm,>1landm,€|0,1),

7

de(m72y, m25) = 3)

1 .

—, ifm,>landzz, €]0,1),

772,

1, otherwise.

Then, d; is a controlled rectangular metric space, where
(M x M —> [1,00) is a mapping defined as

my, itmy,m, 21,

((r721,772,) = { (4)

1, otherwise.

Clearly, (,d;) is not a controlled metric space if we
take 772,725 > 1 and 72, € [0, 1). Then, d; (72, 7725) = 1, d,

(1721, 772,) = 12, d((mz’ my) =1lms, (), my) =1,
and {(772,, 7724) = 1. Here, the triangle inequality is not satis-
fied:

de(r72y,725) = 1> (772, 72,)dp (1721, 772,)

1 1
+ (7729, m723)de (1729, 1725) = o + o
(5)

Example 3. Let M ={1,2,3,4}. Define d; : M x M — |o,
00) as

2,1)=d(2,3)=d(3,2) =d(3,4) = d(4,3)
=d;(1,3) =d,(3,1) = 80,
d((l, 4) = d((4, 1) = 10007
dp(2,4) = d;(4,2) = 450.

(6)

Then, (M, d;) is a controlled rectangular metric space
with {: M x M —> [1,00) defined as {(72,,772,) = max {
7y, 7y} +2, for all 72, 7, € M. However, (M, d;) is not
a rectangular metric space; for instance, notice

The concepts of convergence, Cauchyness, and complete-
ness can simply be generalized in terms of controlled rectan-
gular metric spaces.

Definition 8. Let (M, d;) be a controlled rectangular metric
space. Then,

(i) A sequence {72,} in (., d;) is said to be conver-
gent to 772 € M, if lim de(772,,772) =0

(ii) A sequence {7,} in (M, d;) is called a Cauchy
sequence, if lim di(m2,,m,)=0

n,r—00

(iii) (., d;) is called a complete controlled rectangular
metric space, if every Cauchy sequence in ./ is con-
vergent to some point of .4

Definition 9. Let (M, d;) be a controlled rectangular metric
space. Let 77z € # and T > 0. Then,

(i) The open ball B(72, T) is define as

B(m,7) = {m\ € M,dc (12, 17)) <T}. (8)

(ii) The mapping f: # — M is called continuous at
m € M, if for v > 0, there is v > 0 such that f(B(7z,



v)) € B(f(722), v). Thus, if f is continuous at 72z, then
for any sequence {2,} converging to 77z, we have
lim, |, fme,=fm

Note that a rectangular b-metric space is not continuous
in general, and it is the same for controlled rectangular metric
spaces.

Lemma 10. Let (M, d;) be a controlled rectangular metric

space and {r2,} be a Cauchy sequence in M such that .,
#m,, whenever n#r. If lim,,_ ((72,,,) < oo for all
7, m, € M, then {7} has a unique limit.

Proof. Suppose that a sequence {72,} in .4 has two limit

points u,v € M, that is, lim, | 7 ,=p and lim, 7z,

=v. {m,} is a Cauchy sequence for 72, # 772,, whenever n
# r. Hence, from condition (iii) of Definition 6, we have

e (V) <Lt 72, ) (s 72,) + L (1,0 72, ) (2, 2,

+{(m2,,v)d¢(72,,v) — 0 asn,r — 0.
©)
This implies that
de(u,v)=0. (10)
Hence, {72,} has a unique limit point in /.

Definition 11. Let (M, d;) be a controlled rectangular metric
space. Then,

(i) For a mapping f : # — M, we define

O(m,n) ={m,fm, -, f'm}, a1

O(m,00) = {m,fm, -+, f'm, -},

where 772 € # and n € N. The O(772, 00) is called an orbit of f

(ii) A mappingf: M — A is called f-orbitally contin-
uous, if limy_, 72 = 772 implies lim,_,  f(f;72)
=fm, where 72 € M

(iii) A mapping f: M — M is called f-orbitally com-
plete, if every Cauchy sequence in O(722, c0) is con-
vergent in

Our main result is similar to the Banach contraction
principle in the setting of controlled rectangular metric
spaces. Throughout this section, for a mapping f: # —
M and 72 € M, we consider an orbit O(72, 00).

Theorem 12. Let f : M — M be a mapping on a controlled
rectangular metric space (M, d;). Suppose that the following
axioms hold:
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(i) For all 772, 172, € M, we have

dy(fm . fm,) < Ady (121, 172,), (12)

where A€ [0, 1).
(ii) Supqzlhmiaoo{(mi’ mq)(((mm, ) (172 gy 172
A< 1, for any m2, € M
(iii) (M, d;) is f-orbitally complete
(iv) f is orbitally continuous

(v) For each 7 € M, lim,__,_ ¢(72,,u) and lim
(4, 72,,) exist and are finite

ﬂ—)OOC

Then, f has a unique fixed point in M.

Proof. Consider an arbitrary point 72, € ., and define an
iterative sequence {772, } over 7z, as follows:

my =fmg, my =fm = f(fmy) = Emg, oy, =g, .

(13)

From equation (12), we have

de (1721, 725) = di (fr72, fzmo) <Ay (720, fr72) = di (772, 772,).
(14)

Recursively, we have

e (172, 172,4)) = d (£ 7720, £ 720) < Add (€ 7720, 172,
SNy (£ mg, £ ) -
< A'dy (724, 1721).

(15)
That is,

de (725 772 1) S ey (7725 772,1). (16)

By taking limit n — oo, we get

nh_r,nood((mn’ mn+1) = 0’ (17)
i de(7,01,7,.2) =0 (1)
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Next, we show that {72, } is a Cauchy sequence. For this,
we will take the following two cases.

Case 1. Let p be odd, that is, p=2r+1, where r > 1. Then,
from condition (iii) of Definition 6 and equation (16) for
n+ p>n, we have

de (772> 172 y,011) S C(77205 772,0,0) A (772, 77241 ) + €
(77241 mn+2)d((mn+1» 7 12) + (721425 72 11211

X e (72125 7 12p41) < [§(772,5 172,00 )A" +C

ntl> mn+2)/\n+l]d((”@0’ ml) +8(72 02> 7 azenr ) e
w2 Pniarin) < [((72, 72,5, )M +€

n+l> mmz)/\nﬂ] d((’”o’ 71) + (721100 7 42001 )
3) X Ag (772 420 72013) + C (772 100 772 211 )
143> Pnea ) A (72030 721100) + C(72,010, 72 110,10) X €
1> P21 ) B (7> 72 101 ) < g

: m0>m1)[ (720 172, )A" + (772,140, 172

(772
(72
(772
’ ( n+2>
(7
(772
( w3

)/\n+l]

+ d((’”(w ml) X [C(mn+2’ mn+2r+1)c(mn+2 7”n+3)/\wr2

+ (72020 7202001 )8 (7213, 172 n+4)/\n+3]+ g
(1120s 121)C (17220 7 zrin) S piaens mn+2n71)/\n+27_2
(i Ppizest) S Pnsrgts 7o) A2
+ (7212 7 i2r01) S22 mn+2r+1)A”+2rdc(m0’m1)
<dp(mg,m721) [C(mn, 7 )" + (72,1455 mn+3)ln+l]
=1

5
+ H C(mn+2j’ mn+2r+1) X C(772 2> 72 iai) )™ dy
j=1

i=1 j=
i

-1
(g, 1) + ZH( n+2j+1’mn+2r+l)((mn+2i+l’mn+2i+2)
i= 1] 1

r=1
X A" e (g, 1) + H (72 niapp mn+2r+1)/\n+2rd((’”o> 74)
=1

(19)

As
r-1 i
5
C(mn+2j’ mn+2r+l)c(mn+2i’ iz ) A
i=1 j=1
r=1 i (20)
5
< §(7722)> 7 psari1 ) S (77200 72012141 ) A
i=1 j=1
r=1 i
2i+1
c(mn+2j+l’ mn+2r+1)c(7nn+2i+1’ i) A

2
< C(mzj+1’mn+2r+1)((mzi+1’ Pyi2is2) A

(21)

therefore, we obtain

d((mn’ mn+2r+1) < d((ﬂZO’ ml)[c(mn’ 777,”+1)An

-1 i

+ (72125 mn+3)An+l] + Z H C(mzy mn+2r+1)

i=1 j=1

X §(m2,;, m2i+1)/\2id((m0) my)

+ ((m2j+l’ mn+2r+1)((m2i+l’ 79i42)
i=1 j=1
r—1
X )‘ZHld((mo» my) + H ((anij’ mn+2r+1)An+2rd((7ﬂ’0’ 74).
=1
(22)
Since sup,.lim; ,{(772, 772) (C(7724415 772445 ) I (772
m;))A < 1, the series
[e9)
5
Z HC 73js n+2r+1){(m2i’ 723i1) A7
_‘ (23)
00 1
2i+1
Z ((7”2]41’ mn+2r+1)((m2i+l’ 732) AT
i=1 j=1
converge by the ratio test. Let
0 i
5
§= Z C(”sz) mn+2r+l)c(m2i’ 73i01) A
i=1 j=1
noi (24)
$, = z c(mzp mn+2r+l)c(m2i’ m2i+1)/\21’
i=1 j=1
00 i
, 2i+1
S = Z ((m2j+1’ mn+2r+1)((m2i+1>m2i+2))‘ "
i=1 j=1
noi
! 2i+1
S, = Z C(mzjﬂx mn+2r+1)((77l2i+1’ 7512) A
i=1 j=1
(25)

Then, equation (22) takes the following form:

d((ﬁ?/ mn+2r+l) < d((mm ml)[c(mn’ mn+1)An
+ (72 140> 72 n+3)An+l] +dg (720, 1721) Sy = S e

(720, 21) + dy (172, 772 ) [5;—1 - n+l] de (7720, 7721)

—

r—

+ C(anij’ mn+2r+1)An+2rd((7ﬂo’ my).

i=1
(26)
By taking limit # — oo in equation (26), we get
nlinoodc( 7 pior1) = 0- (27)



Case 2. Let p be even, that is, p=2r, where r>1. Then,
from condition (iii) of Definition 6 and equation (16) for
n+p>n, we have

d((mn’ 777’n+2r> < ((777/
+ C(mnﬂ’ mn+2)d(
X d{(ﬂ?x

mn+l)d((mn’ mn+1)
~(mn+1> mn+2) + ((77&

n+2> mn+2r) < [((ﬂ& mn+l)An

n+2> mn+2r)

772 441> 772 n+2)/\n+1]d((m0’m1)
) <6725 7201 ) A"

n+2> n+2r)d(( n+2> " piar

+{(m
+{(m
+{(m n+1’mn+2)/\n+l]d((m0’m1)
+{(m
+ (1

n+2> mn+2r) ( n+2> mn+3) X d((mn+2’ mn+3)
n+2> n+2r)(( n+3? n+4)d((mn+3> mn+4)
+ C(mn+2’ n+21) X C( n+4> mn+21)d((mn+4’ mn+2r)

< d(m72g, 7724) [(( 7 1) A" + (72 n+2>mn+3)ln+1]
+dg (724, 1724) [C 112 "2 )§ (7215 n+3)Ml+2
+ 8772 125 71,2, )C (72 1135 mn+4)/\n+3]
tetde (7720, 7720) 8 (72 1400 772 40,) - €

wir> Ponsons) N2 C( 0 10,)
n+2772)/\n+2r_3 + Q772 2o 17211)
n+2r)/1n+2772d((m0’ 7m,) S dg

7720, 772 ) [ (m mn+l)An + C(mrHZ’ mn+3)/\n+l]

(72 ¢
(psarz ¢
( n+2r=2> 77
(
r2 i
+ Zl: H C(72ni2jp 7 piar) X C (772120 mn+2i+1)/\n+2idC
i=1 j=

r=2 i

(g 121) + c(mn+2j+l’ mn+2r)c

lM

._‘

Jj=

(72 p2iv1> mn+2i+2) X An+21+ld((mo> 7,)
r—1

+ H C(m
i=1

n+2j> mn+2r) /\n+2r72d( (772 172,).

(28)

((mnﬂj’ mn+2r) ((mn+2i’ | )Anm

.
< ‘ C(mzj’ mn+2r>((m2i’ 725i1)A7

2i+1
c(mn+2j+l’ mn+2r+1)c(7nn+2i+1’ i) A

5
< (7221110 72201 ) S (720141 772112) A et

(30)
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therefore, we obtain
n+1 ) A”

dp (172> 172,,y) < di (7720, 1724 )[{ (772
-2 i

+ C(mn+2’ mn+3 Anﬂ Z HC 777’2j> 777’11+2r)
i=1 j=1
X § (7725 7”21’+1))t ld((’”m 71)

=2 i 31
+ z H C(m2j+1> mn+2r)((m2i+l’ oy .

i=1 j=1
r—1
y ,\21+1d((7n0> my) + HC

i=1

: (mn+2j’ mn+2r)/\n+2r_2df(m0’ 777/2).

Since Supqzllimi%ooc(mi’ mq)({(mﬁl’ m1+2)/€(
m;))A <1, the series

Z H ((mzjr mn+2r)((m2i’ m2i+1)A2i’

i=1 j=1
(32)
i .
Z C(m2j+1’ mn+21’)((m2i+l’ mznz))‘mﬂ’
i=1 j=1
converge by the ratio test. Let
o i
5
S= z C(mzp mn+2r>{(m2i’ i1 )M
i=1 j=1
noi (33)
S, = Z C(ij’ mn+2r)c(m2i’ m2i+1))‘21’
i=1 j=1
00 i
' 2i
"= Y T[S (70500 72mar) (7201005 722100 ) A
i=1 j=1
o (34)
5,’1 = Z C(mzﬁ-l’ mn+2r)c(m2i+1’ 777/2i+2)/\2i+1-

Then, equation (31) takes the following form:

d(<m 77?’n+27) < d((mO’ ml)[c(mn’ mn+1))tn
+ (72425 n+3)’1n+1] +de(720, 721)[S,21 = S
+dg (7720, 1721) {5;71 - &m}

r—1

+ H C(mn+2j’ 777’;1+2r)An)rzr_zd((ﬂZO’ ml)'

i=1

(35)
By taking limit # — oo in equation (35), we get

lim dg(72,,72,,,,) = 0. (36)

n—~oo

Hence, in both cases, lim, d; (72,7

n’ n+p) =0,
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which shows that {72,} is a Cauchy sequence. As ./ is f
-orbitally complete, so there exists pe.# such that
lim, | 72, =u. Next, we show that y is a fixed point

of f. As f is orbitally continuous, so we have

de (u, fu) <L (g 72,)di (s 72,,) + (72,
+ C(mnﬂ’ flbl)d((mn+1) fu).

7 411 )d(( n+1)
(37)

Since for each m e #, lim, . {(m,,72) and
lim, . {(72,72,) exist and are finite, so by taking limit
n— oo and using equation (17), we get

lim_d; (s 1) = (38)

n—~oo

Therefore, fu=yp. Hence, y is a fixed point of f. In
view of Lemma 10, 72 is the unique fixed point of f.

Example 4. Let X =[1,2]. Define d; : M x M — [0,00) by
de(72\, my) = (1721 — m,)’. Then, (M, d;) is a complete
controlled rectangular metric space with { : M x M — [1,

00) defined as {(772, 772,) = 372, + 2772, + 5. Define a map-
ping f : M — M by

m
frn=—.
m=— (39)

Clearly, all the axioms of Theorem 12 are satisfied, and
hence, 772 =0 is a fixed point of f.

Corollary 13. Let f : M/ — M be a mapping on a complete
controlled rectangular metric space (M, d;). Suppose that

the following axioms hold:

(i) For all 772, 772, € M, we have

de (£, fm,) < Adp (12, m25), A €0, 1). (40)

(”) Supqzlhmiﬁoo((mi’ mq)(C(ﬂZH], 777/”2)/((
m;))A< 1, for any m, € M

(iii) f is continuous
Then, f has a unique fixed point.

Remark 14.

(i) By putting {(772,,72,) =s, for all 72,72, € M in
Theorem 12, we get Theorem 2.1 of George et al. [22]

(i) By putting {(772,,72,) =1, for all 72,72, € M in
Theorem 12, we get the following corollary in view
of Das and Dey [27]

Corollary 15. Let f : M —> M be a mapping on a rectangular
metric space (M, d;). Suppose that the following axioms hold:

(i) Forall 172, 7m0, € M, dr(fr2 ), ¥m,) < Ad (172}, 772,),
where A€ [0, 1)
(ii) (M, d;) is f-orbitally complete
(iii) £ is orbitally continuous

Then, f has a unique fixed point.

Theorem 16. Let f: M — M be a mapping on complete
controlled rectangular metric space (M, d;), which satisfies
the following axioms:

(i) For all 772, 772, € M, we have

de(frme ), fme,) < A[dy (2 B )) + de (5, fm25)], (41)

where A € [0, 1/2).

(i) supqzlhmi—»oo((mi’ mq)(f(mm, mi)I(m
m;))A < 1, for any m, € M, where A # 1/ (e, 772,)
for each 172,12, € M

(iii) For —each me M, lim,  ((m,,m,.;)<]1,
lim, ,  ((7,,p), and lim,_, _{(y,7,) exist and
are finite

Then, f has a unique fixed point in M.

Proof. Let us take an arbitrary element 72, € /4 and choose
my =fm, and 7, =fm,. Then, from equation (41), we
obtain

de (121, 7m25) = de (£, £r21) < A di (772, Fr72)

+dp (e, fm )| = A[d (g, 72,)  (42)

+dp (74, m,)].

This implies that

A
dy (721, 1725) < md((mo,ml), (43)

where w=A/(1-1) <1, as A < 1/2. By recursively applying
equation (41), we obtain

e (772> 72 41) < @"d (772, 7721 (44)
Thus, by taking the limit in equation (44), we have

lim dy (72,1, 72,,1) = 0. (45)

n—o00



Again from equation (41), we have

d((mn’ mn+2) = d((fmnfl’ fmlrwl) <A [d((mnfl’ fmn—l)

+ d((mnﬂ’ fmn+1) =A d((mn—l’ mn)

+ d((mwrl’ mn+2)] .

By using equation (45), we obtain

lim d; (772, 772,,,) = 0. (47)

n—-0o0

Now, we will show that {72,} is a Cauchy sequence. By
following the same procedure as in the proof of Theorem
12 and using equations (45) and (47), we conclude that {
m,} is a Cauchy sequence. As ./ is complete, so there exists
u € M such that

lim d¢(722,,, ) = 0. (48)

n—-o00

Next, we show that p is a fixed point of f. From condition
(iii) of Definition 6, for any n € IN, we have

dy (s Sp) <G, 772, )l (p 772,) + G (77205 77241 )i (7725 772,41 )
+ 072 15 S i (772,15 B0) < E (s 772, ) (15 772,,)
+ C(72, 772,011 ) A (72,15 72 01) + (77200 F00)
< (fre,, fu) <C(w, 72,)dy (s 772,,)
+ (772 172,011 )y (772, 772,41
+§ (7721 A [di (172, 172, + i (1 )]
(49)

A # 1/{(#72,, m,) for each 772, 72, € M. This implies that

S, 772,)
1- )Lz(mrﬁ—l’ ftu
c(mn’ mn+1) + Ac(mrﬁ-l’ f[’l)
(1= A8 (72 11 1))

d((‘[/l,f[,t)ﬁ ( ))df(/’l’ mn)

d((mn’ mn+1>'
(50)

For each 72 € M, lim,_, ((m2,,m,,,) <1, lim,_ ((
m,, m), and lim,_,_ {(7,,) exist and are finite. There-
fore, by taking limit n — co in equation (50) and using
equations (47) and (48), we obtain

~—

which implies that fi = p. For the uniqueness, let v be another
fixed point of f and y # v. From equation (41), we obtain

de(,v) = de (fu, fv) < A[d (1, ) + dp (v, V)]

(52)
= Mg () +dp (v, v)],

Journal of Function Spaces

where d;(u, 4) =0 and d;(v,v) =0. Hence, from the above
inequality, we obtain d;(u,v) =0, that is, p=v, and p is a
unique fixed point of f.

4. Application

In this section, we will apply Corollary 13 to prove the exis-
tence and uniqueness of a solution for the following Fred-
holm integral equation:

m(t) = J T(t,r,72(r))dr +v(t), fort,re[a,b], (53)

a

where v: [a,b] — R and 7 : [a,b] X [a, b] x R — R both
are continuous functions. Let .# = C([a, b]) be the space of
all continuous real-valued functions defined on the closed
interval [a, b]. Consider

de(7721,772,) = SFIZ]|7”1(t) _mz(t)|2- (54)
tela,

Clearly, (/,d;) is a complete controlled rectangular
metric space with { : M x M — [1,00) defined as {(72,,
m2,) = 3|y (t)] + 2|772,(t)| + 5. Next, we will prove our
result as follows.

Theorem 17. For all 72|, 772, € M and t, r € [a, b], the follow-
ing condition holds:

[T(t, 1, 772, (r)) —T(t, 1, 772,5(1))| < 2(bl—a) |7721(r) — m725(7)|.

(55)
Then, the integral equation (53) has a unique solution.
Proof. Define f : M — M by

b
frn(t) = J T(t, 1, 722 (1) )dr + v(1),

a

fort,rela,b], (56)

where v: [a,b] — R and 7 : [4,]] X [a, 5] x R — R both
are continuous functions. Clearly, y is a fixed point of f, if
and only if y is a solution of the integral equation (53). For
all 772, 72, € M, we have

2

b
|72, (t) = fr, (1) = J [2(t: 1,772, (r)) = (1, 1, 7725(r) ) dr

a

<1 i) —mz(s>|2(jbds)2

B 4(b - a) s€[a,b] a

1
< ch(ml, 7722).
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It implies that
1
d(fmy, fmo) < L dy(my, ), (58)

where A =1/4 € (0,1). Thus, all the conditions of Corollary
13 are satisfied. Hence, f has a unique fixed point; that is,
the Fredholm integral equation (53) has a solution.
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In this paper, we propose two novel iteration schemes for computing zeros of nonlinear equations in one dimension. We develop
these iteration schemes with the help of Taylor’s series expansion, generalized Newton-Raphson’s method, and interpolation
technique. The convergence analysis of the proposed iteration schemes is discussed. It is established that the newly developed
iteration schemes have sixth order of convergence. Several numerical examples have been solved to illustrate the applicability
and validity of the suggested schemes. These problems also include some real-life applications associated with the chemical and
civil engineering such as adiabatic flame temperature equation, conversion of nitrogen-hydrogen feed to ammonia, the van der
Wall’s equation, and the open channel flow problem whose numerical results prove the better efficiency of these methods as

compared to other well-known existing iterative methods of the same kind.

1. Introduction

The solution of nonlinear scalar equations plays a vital role in
many fields of applied sciences such as Engineering, Physics,
and Mathematics. Analytical methods do not help us to solve
such equations, and therefore, we need iterative methods for
approximate the solution. In an iterative process, the first
step is to choose an initial guess x, which is improved step
by step by means of iterations till the approximate solution
is achieved with the required accuracy. Some basic iterative
methods are given in literature [1-8] and the references
therein. In the last few years, a lot of researchers worked on
iterative methods with their applications and proposed some
new iterative schemes which possesses either a high conver-
gence rate or have less number of functional evaluations
per iteration, see [9-21] and the references therein. The con-
vergence rate of an iterative method can be increased by
involving predictor and corrector steps which results multi-

step iterative methods whereas the number of functional
evaluations can be reduced by removing second and higher
derivatives in the considered iterative method using different
mathematical techniques. When we try to raise the conver-
gence rate of an iterative scheme, we have to use more func-
tional evaluations per iteration, and similarly, less number of
functional evaluations per iterations causes low order of con-
vergence which is the main drawback. It is much difficult to
manage both terms, i.e., the convergence rate and functional
evaluations per iterations as it seems that there exists an
inverse relation between them. In twenty-first century, many
mathematicians try to modify the existing methods with less
number of functional evaluations per iterations and higher
convergence order by applying different techniques such as
predictor-corrector technique, finite difference scheme, inter-
polation technique, Taylor’s series, and quadrature formula
etc. In 2007, Noor et al. [22] introduced a two-step Halley’s
method with sextic convergence and then approximated its
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second derivative by the utilization of finite difference scheme
and suggested a novel second-derivative free iterative algo-
rithm which have fifth convergence order. In 2012, Hafiz
and Al-Goria [23] suggested two new algorithms with order
seven and nine, respectively, which were based on the weight
combination of midpoint with Simpson quadrature formulas
and using the predictor-corrector technique. Nazeer et al.
[24] in 2016 proposed a new second derivative free generalized
Newton-Raphson’s method with convergence of order five by
means of finite difference scheme. In 2017, Kumar et al. [25]
suggested a sixth-order parameter-based family of algorithms
for solving nonlinear equations. In the same year, Salimi et al.
[26] proposed an optimal class of eighth-order methods by
using weight functions and Newton interpolation technique.
Very recently, Naseem et al. [27] presented some new sixth-
order algorithms for finding zeros of nonlinear equations
and then investigated their dynamics by means of polynomio-
graphy and presented some novel mathematical art through
the execution of the presented algorithms.

In this paper, we suggested two novel iteration schemes
in the form of predictor-corrector type numerical methods,
namely, Algorithms 1 and 2, by taking Newton’s iteration
method as a predictor step. The derivation of the first itera-
tion scheme is purely based on the Taylor’s series expansion
and generalized Newton-Raphson’s method whereas in sec-
ond one, we use interpolation technique for removing its sec-
ond derivative which results the higher efficiency index. We
examined the convergence criteria of the suggested schemes
and proved that these iteration schemes bearing sextic con-
vergence and superior to the other well-known methods of
the similar nature. The efliciency indices of the presented
schemes have been compared with the other similar existing
two-step iteration schemes. The proposed iteration schemes
have been applied to solve some real life problems along with
the arbitrary transcendental and algebraic equations in order
to assess its applicability, validity, and accuracy.

2. Main Results

Consider the nonlinear algebraic equation
fx)=0. (1)

We assume that « is a simple zero of (1) and x, is an
initial guess sufficiently close to a. Using the Taylor’s series
around x, for (1), we have

If f'(x,) #0, we can evaluate the above expression as
follows:

f(x0) + (x = x0)f " (3%5) =0. 3)
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If we choose x;,, the root of equation, then we have

(4)

xj+1 =X =

")

This is quadratically convergent Newton’s method [2-4]
for root-finding of nonlinear functions and needs two compu-
tations for its execution. From (2), one can evaluate

£ (%) = \Jf ' 20x0) = 2 (x)" (%)

. 5
f"(xo) ®

X=Xxy—

In iterative form:

) ) - Y ) ()

1 T g 17 > (6)
/(%)

which is cubically convergent generalize Newton-Raphson’s
method [28] and requires three functional evaluations per iter-
ation for the execution. After simplification of (2), one can
obtain:

X=Xy - f,(xo) _ (x_xol) f (xo). (7)
J (%) 2f (xo)

Now from generalized Newton-Raphson’s method in (5)

£ (x0) = \/f 2(x0) = 2 (x)" (%)

. 8
f" (%) ®

X—Xy=—

Using (8) in (7), we obtain

2

JIED) {f W‘W 2(x0) = 2f (x0)f " (o)
21" (x0)f" (o)

)

After rewriting the above obtained equality in the general
form with the insertion of Newton’s iteration method as a pre-
dictor, we arrive at a new algorithm of the form:

Algorithm 1. For a given x,, compute the approximate

solution x;,; by the following iterative schemes:
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f! (yj) 2
ORI EORIOET)
o' ()" () ’

(10)

which is the modification of the generalized Newton-
Raphson’s method for determining the approximate roots
of the nonlinear algebraic equations. To find the approximate
root of the given nonlinear equation by means of the above
described algorithm, one has to find the first as well as the
second derivative of the given function f(x). But in several
cases, we have to deal with such functions in which second
derivative does not exists and our proposed algorithm fails
to find approximate root in that situation. To resolve this
issue, we apply interpolation technique for the approxima-
tion of the second derivative as follows:
Consider the function

p(u)=a, +a, (u—yj) +d, (u—yj)z +a4<u—yj)3, (11)

where the values of the unknowns a,, a,, 45, and a, can be
found by applying the following interpolation conditions:

f(x) =p (x))s f" (wy) = p" (w))-

From the above conditions, we gain a system containing
four linear equations with four variables, the solution of
which gives the following equality:

7" () = ol fes) ()] - ZE‘J ygl 7' () +/' ()]
~o(s)

(13)

After putting the value of " (y;) from the above equality

in Algorithm 1, we gain novel second-derivative free
algorithm as follows:

Algorithm 2. For a given x,, compute the approximate

solution x;,; by the following iterative schemes:

Xj1 =Y~ f<yj)
) |
)~ fr6) el
2f’(yj)P(xj’yj) ( )

which is a novel second-derivative free iterative algorithm for
computing the approximate solutions of the nonlinear alge-
braic equations. One of the main features of the suggested
algorithm is that it can be applied to all those nonlinear func-
tions in which second derivative does not exist. The removal
of second derivative causes less number of functional evalua-
tions per iteration which yields the best efficiency index as
compared to those methods which require second derivative.
The results of the given test examples certified its best perfor-
mance in comparison with the other similar existing methods
in literature.

3. Convergence Analysis

This section includes the discussion regarding the conver-
gence criteria of the suggested iteration schemes.

Theorem 3. Assuming a as a simple zero of the given equation
f(x) =0, where f(x) is sufficiently smooth in the neighbor-
hood of a, then the convergence orders of Algorithms 1 and 2
are at least six.

Proof. To prove the convergence of Algorithms 1 and 2, we

assume that « is the simple root of the equation f(x) =0
and e; be the error at nth iteration; then, e; =x; — a and by

i
using Taylor series about x = &, we have

f(xj) =f’(oc)ej + %f”((x)e]z. + % W(oc)ej. + %f(”)(a)e?
+ %f(")(a)e;’ + éf“")(a)e; +0()),

(15)

fx)=f"(a) [ej +0r€] + G5 + ¢y + C5€ + Coel + O(e;)},
(16)
"(x.) = (a) |1+ 2¢,e. + 3c,e% + 4c e + ceet + 6¢.e7
j 2%j 3%j 45 5T 6%j

+7¢,€5 + O(ej.)},

where

€= — . (18)



With the help of equations (16) and (17), we get

b2 =f'(a) [oc+ czejz. +(2¢5 - 2c§)e; +3¢, = 76,6 + 4c§)e}l

+ (=603 +20¢;6; — 10,64 + 4¢5 — 865 ) €]
+ (=17c,¢5 +28¢,65 — 13,65 + 5¢
+336,63 = 52¢5¢ + 1665 € + O(ej.)],

(19)

f(yj) =f(a) [cze? + (26, -26) €} + (56 = 7ey¢5 +3¢4) €
2 2
+ (246,63 = 126 — 10c,¢, + 4es — 663 ) e;
+ (=73¢50, + 34c,6; + 28¢5 + 376,63 — 17¢,¢4
6
— 13,05 + 5¢5) €§ + O(ej-)] ,

(20)

! ! 22 3\ 3
f ()’j) =f(a) {1 +206; + (46,6, - 40y )e;
+ (66,64 = 11365 + 865) e + (286565 — 20,65
4 3
+ 8,05 — 163 ) €] + (~16¢,¢5¢5 — 6836 + 1263

+60c,¢5 — 2656 + 10,¢5 + 3265 € + O(ej)} ,

(21)

f" (yj) =f'(a) [ZC2 +60yc5€7 + (1263 — 12363 ) ]
+ (—420,63 + 18¢,¢5 + 240565 + 12¢,6) ¢
+ (—12¢y¢,¢5 + 24565 — 36¢3 + 120656
—4803¢; — 48c,03 ) €] + (=78c3¢5¢5 + 30366
= 54¢,c5 — 96¢5¢,6 + 198¢,05 — 312c5¢; + 96¢5¢5
+ 72654 + 14dc, ¢y +20¢563) €] + O(ef)} :
(22)

With the help of equations (16)-(21), we have

p(xj,yj> =f'(a) {2(:2 + (60565 — 264)612. + (1265 - 126,65
+4cycy —dcs) el + (20,05 + 26050, — 426,63
+ 240565 + 20,65 — 6¢6) ¢ + (—48¢,6,¢4 + 126
- 24c4c§ +28¢s5¢5 + 4csc§ + 120(:%(:% - 48c3c§
— 8, = 366;)¢; + (=60c50,¢3 + 286,656 — 26565
+22¢5¢4 — 1065cg +30c4c5 + 6c6c§ + ZOCZCi
—86¢,C3 +88¢,c3 + 198¢,c3 — 312¢3¢3

+9605¢; — 10cg ) € + O(e?)} :
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Using equations (19)-(23) in Algorithms 1 and 2, we get
the following equalities

Xjp =0t (—cy:%)e? + O(e7),

(24)
X =@+ (-GG +66)e +0(¢),
which imply that
e = (—6:6) ¢ +0(), (25)
Cuir = (—636 +¢465) €8 + O(¢). (26)

Equations (25) and (26) show that the orders of conver-
gence of Algorithms 1 and 2 are atleast six.

4. Comparison of Efficiency Index

In numerical analysis, the efficiency index of an algorithm
provides us the information about the speed and perfor-
mance of the algorithm which is being under the consider-
ation. It is actually a numerical quantity that relates to the
number of computational resources needed to execute the
considered algorithm. The efficiency of an algorithm can be
thought of as analogous to the engineering productivity for
a process that includes iterations. The term efficiency index
is used to analyze the numeric behavior of different algo-
rithms. In iterative algorithms, this quantity totally depends
upon the two factors. The first one is the convergence order
of the algorithm whereas the second factor is the number of
computations per iteration, i.e., the number of functional
and derivatives evaluations, required to execute the algo-
rithm for the purpose of root-finding of the nonlinear func-
tions. If the convergence order is represented by P and the
number of computations per iteration by g, then the

efficiency index can be written mathematically as:
Efficiency Index = P'/". (27)

Since Noor’s method one [11] has quadratic convergence
and requires three computations per iteration for execution,
so its efficiency index will be 2!/ = 1.2599. In the same way,
the cubically convergent Noor’s method two [11] requires
three computations per iteration and has 3'/% = 1.4422 as an
efficiency index. Similarly, the efficiency index of the Traub’s
methods [6] is 4!/ ~ 1.4142 because it possesses the conver-
gence of order four with four computations for execution.
Since the modified Halley’s method [22] has fifth conver-
gence order with four computations per iteration, so its effi-
ciency index will be 5"*~1.4953. Now, we calculate the
efficiency indices of the suggested algorithms. Both algo-
rithms bearing the convergence of order six. The number of
computations per iteration for the execution of the first algo-
rithm is five whereas the second proposed algorithm requires
only four evaluations per iteration. So, their efficiency indices
will be 6'° = 1.4310 and 6'/* = 1.5651, respectively. The effi-
ciency indices of the different iterative methods, we have dis-
cussed above, are summarized in the following Table 1.
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TaBLE 1: Comparison of efficiency indices of different iterative
methods.

Method Convergence  No. of reql}ired Eﬂiciency
order computations index
Noor’s method one 2 3 1.2599
Noor’s method two 3 3 1.4422
Traub’s method 4 4 1.4142
fﬁ:ﬁggd Halley's 5 4 1.4953
Algorithm 1 1.4310
Algorithm 2 6 1.5651

Table 1 clearly shows that the presented method, namely,
Algorithm 2, has better efficiency index among the other
compared methods.

5. Numerical Comparisons and Applications

In this section, we include four real-life engineering problems
and seven arbitrary problems in the form of transcendental
and algebraic equations to illustrate the applicability and
efficiency of our newly developed iterative methods. We
compare these methods with the following similar existing
two-step iteration schemes:

5.1. Noor’s Method One (NM1). For a provided initial guess
xo» determine the approximate root x;,; with the iteration

schemes given below:

which is quadratically convergent Noor’s method one [11]
for root-finding of nonlinear equations.

5.2. Noor’s Method Two (NM2). For a provided initial guess
xo» determine the approximate root x;,; with the iteration

schemes given below:

.=x}—f(xf) i=0,1,2,3,
KT
2f (x;) )

flx)+f (yj)

Xjp1 =X~

which is cubically convergent Noor’s method two [11] for
root-finding of nonlinear equations.

5.3. Traub’s Method (TM). For a provided initial guess x,,
determine the approximate root x;,; with the iteration
schemes given below:

f(x)
!
(%)
@
/ bl
()
which is two-step fourth order Traub’s method [6] for root-

finding of nonlinear equations which bearing the conver-
gence of order four.

y] )j:0)1)2a3a”'a

[

(30)

—

N———

X1 =Y~

—

5.4. Modified Halley’s Method (MHM). For a provided initial

guess x,, determine the approximate root x;,; with the itera-

tion schemes given below:

f(x)
f'(x)

V=X = ,j=0,1,2,3, -+,

2f (5)f (3,)f' ()

21 (5)1"2(y) = £25)f () + 7 )5 () ()
G

Xip =Y~

>

which is two-step Halley’ method [22] for root-finding of
nonlinear equations which has the convergence of fifth order.
In order to make the numerical comparison of the above
defined methods with the presented algorithms, we consider
the following test Examples 1-5.

The general algorithm for finding the approximate solu-
tion of the given nonlinear functions is given as:

In Algorithm 3, we take the accuracy ¢=10"" in the
stopping criteria |x;,; —x; | <e. We did all the calculations
of the numerical examples with the aid of the computer pro-
gram Maple 13, and their numerical results can be seen in the
following presented Tables 2—6.

Example 1. Adiabatic flame temperature equation. The adia-
batic flame temperature equation is represented by the fol-
lowing relation:

f1(0) = AH + a,(x = 298) + 2 (¥ - 298%) + 2 (x* - 298"),

(32)

where AH =-57798,a, =7.256,a, =0.002298, and a;=
0.00000283. For further details, see [29, 30] and the refer-
ences therein. The above function is actually a polynomial
of degree three, and by the fundamental theorem of Algebra,
it must have exactly three roots. Among these roots, a =
4305.3099136661 is a simple one which we approximated
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Input: f € R — non-linear function, k — maximum number of iterations, I — iteration method, ¢ — accuracy.
Output: Approximated root of the given non-linear function.
for x, € A do
i=0.
while i < k do
Xy =1 (xj)
if |x;,, — x; | <e then
break
i=i+1
xj,1 is the required solution.
ALGORITHM 3: General root’s finding algorithm.
TaBLE 2: Numerical comparison among different algorithms for the engineering problem f.
Method N If (1) | Xj1 0= lxj —x; COoC
f1(x), xy =2050.0
NR1 9 3.688522¢ - 28 4305.30991366612556300000 3.947209e - 13 2
NR2 4 2.919985e - 37 4305.30991366612556300000 9.938805e - 11 3
™ 3 6.063382¢ — 31 4305.30991366612556300000 1.002459¢ - 05 4
MHM 3 1.311971e - 69 4305.30991366612556300000 1.526816e — 11 5
Algorithm 1 2 3.738643e¢ - 18 4305.30991366612556300000 1.795691e - 00 6
Algorithm 2 2 3.738643e - 18 4305.30991366612556300000 1.795691e - 00 6
TaBLE 3: Numerical comparison among different algorithms for the engineering problem f,.
Method N If (1) | Xjp 0 =lxj —x;] COoC
fo(%), % =0.1
NR1 7 9.675391e - 26 0.27775954284172065910 1.053628e - 13 2
NR2 3 1.203488e - 18 0.27775954284172065910 6.173552e — 07 3
™ 3 3.260304¢ - 39 0.27775954284172065910 1.412011e-10 4
MHM 2 2.057683e - 15 0.27775954284172065910 1.970771e - 04 5
Algorithm 1 2 6.942638e — 22 0.27775954284172065910 2.202374e - 04 6
Algorithm 2 2 1.726207e - 21 0.27775954284172065910 2.502938e - 04 6
TABLE 4: Numerical comparison among different algorithms for the engineering problem f;.
Method N If (1) | o 0= x;y — x| COoC
f3(x), % =2.0
NR1 4 1.319023e - 19 1.92984624284786221696 5.000588¢ - 10 2
NR2 3 3.958485e¢ - 15 1.92984624284786221696 1.021691e - 05 3
™ 3 8.395139¢ - 34 1.92984624284786221696 2.556739e - 09 4
MHM 2 8.089146¢e - 19 1.92984624284786221696 1.079121e - 04 5
Algorithm 1 2 4.275791e - 23 1.92984624284786221696 7.584886e — 05 6
Algorithm 2 2 4.275791e - 23 1.92984624284786221696 7.584886e — 05 [

through the proposed methods by choosing the initial guess
X, =2050, and the numerical results have been shown in
Table2.

Example 2. Fraction conversion of nitrogen-hydrogen to
ammonia. We take this example from [31], which describe
the fraction conversion of nitrogen-hydrogen feed to
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TaBLE 5: Numerical comparison among different algorithms for the engineering problem f,.

Method N If (1) | Xjp 0=lxj, —x;] CoC

fa(x), %o =0.4
NR1 6 2.230770e — 24 1.46509122029582464238 1.280653e — 12 2
NR2 3 5.751429e - 27 1.46509122029582464238 4.220179e - 09 3
™ 3 7.765624¢ — 44 1.46509122029582464238 4.884637e - 11 4
MHM 3 4.020841e - 64 1.46509122029582464238 5.749371e - 13 5
Algorithm 1 2 2.394555e - 20 1.46509122029582464238 1.957777e - 03 6
Algorithm 2 2 1.709800e - 15 1.46509122029582464238 9.937512e - 03 6

ammonia, usually known as fractional conversion. In this
problem, the values of temperature and pressure have been
taken as 500°C and 250 atm, respectively. This problem has
the following nonlinear form:

8x%(x — 4)?

f,(x)=-0.186 - o2y

(33)
which can be easily reduced to the following polynomial:
fo(x) =x* = 7.79075x + 14.7445x* + 2.511x — 1.674. (34)

Since the degree of the above polynomial is four, so, it
must have exactly four roots. By definition, the fraction con-
version lies in (0, 1) interval, so only one real root exists in
this interval which is 0.2777595428. The other three roots
have no physical meanings. We started the iteration process
by the initial guess x, =0.1. The numerical results through
different methods have been shown in Table 3.

Example 3. Finding volume from van der Waal’s equation. In
Chemical Engineering, the van der Waal’s equation has been
used for interpreting real and ideal gas behavior [32], having
the following form:

(P + A‘lf'zz) (V - nA,) = nRT. (35)

By taking the specific values of the parameters of the
above equation, we can easily convert it to the following non-
linear function:

f5(x) =0.986x> — 5.181x” + 9.067x — 5.289, (36)

where s represents the volume that can easily be found by
solving the function f;. Since the degree of the polynomial
is three, so it must possess three roots. Among these roots,
there is only one positive real root 1.9298462428 which is fea-
sible because the volume of the gas can never be negative. We

start the iteration process with the initial guess x, = 2.0, and
their results can be seen in Table 4.

Example 4. Open channel flow problem. The water flow in an
open channel with uniform flow condition is given by
Manning’s equation [33], having the following standard
form:

Va3

Water Flow = F = , (37)
n

where s, g, and r represent the slope, area, and hydraulic
radius of the corresponding channel, respectively, and n
denotes Manning’s roughness coefficient. For a rectangular-
shaped channel, having width b and depth of water in chan-
nel x, then we may write:

a = bx,

bx (38)

" v

Using these values in (37), we obtain:

n b+2x (39)

Fz\/be( bx )2/3.

To find the depth of water in the channel for a given
quantity of water, the above equation may written in the
form of nonlinear function as:

fux) = Vsbx ( bx )2/3 _F. (40)

n b+2x

We take the values of different parameters as F = 14.15
m’/s, b=4.572m, s=0.017, and n=0.0015. We choose the
initial guess x, =0.4 to start the iteration process, and the
corresponding results through different iteration schemes
are given in Table 5.



TABLE 6: Numerical comparison among different algorithms for transcendental and algebraic problems f, - f;,.
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Method

N

f (1) |

Xjt1

o= Ixj+1 —ij

COC

fs(x), xp =2
NR1
NR2
™
MHM
Algorithm 1
Algorithm 2

1.485377e - 16
4.247308e — 18
1.821056e - 17
8.137892¢ - 19
6.584167e 72
3.852650e — 57

—-0.52248077281054548914
—0.52248077281054548914
—-0.52248077281054548914
—-0.52248077281054548914
—-0.52248077281054548914
—-0.52248077281054548914

1.517821e - 08
1.202925e - 06
1.970771e - 04
3.574246e - 04
2.829449e - 12
8.860340e - 10

A N U s W N

fe(x)> x=2
NR1
NR2
™
MHM
Algorithm 1
Algorithm 2

NN W

3.163807e—17
3.382231e-18
6.063382¢ — 56
4.499472e — 42
5.856963¢ — 25
6.737587e — 25

0.40999201798913713162
0.40999201798913713162
0.40999201798913713162
0.40999201798913713162
0.40999201798913713162
0.40999201798913713162

5.629386e - 09
1.512669¢ — 06
1.586231e - 14
1.880726e — 08
2.788223e - 04
2.852107e - 04

A A U s W N

(%), xg=1.2
NR1
NR2
™
MHM
Algorithm 1
Algorithm 2

NN W W RN

3.278748e - 27
1.127879¢ - 31
3.135655e - 36
7.204101e - 59
2.894187e - 17
7.355480e - 18

0.56714329040978387300
0.56714329040978387300
0.56714329040978387300
0.56714329040978387300
0.56714329040978387300
0.56714329040978387300

4.592634e - 14
3.980665e — 11
1.588919¢ - 09
2.420306e - 12
2.115592¢ - 03
1.597483e - 03

A N U A W N

fe(x), x5 =15
NR1
NR2
™
MHM
Algorithm 1
Algorithm 2
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NN W W

3.196546¢ — 22
7.06698%¢ — 31
7.857615e — 27
2.248861e — 57
2.929220e - 17
2.929220e - 17

2.15443469003188372180
2.15443469003188372180
2.15443469003188372180
2.15443469003188372180
2.15443469003188372180
2.15443469003188372180

7.032555e - 12
5.866631e—11
2.740790e — 07
5.868237e—12
2.575011e—-03
2.575011e—-03

A N U R W N

fo(x), % =0.6
NR1
NR2
™
MHM
Algorithm 1
Algorithm 2

NN W W

2.720561e - 26
3.726794e - 29
1.853180e - 25
2.707444e — 54
8.487620e — 17
8.487620e — 17

1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000

8.247062¢ — 14
3.726794e - 29
5.18703%¢ - 07
1.950103e - 11
2.340774e - 03
2.340774e - 03

NN U R W N

f1o(x), %9 =-3.0
NR1
NR2
™
MHM
Algorithm 1
Algorithm 2

N D W W W A

7.104675e - 20
2.634964e — 20
2.820318e — 22
5.741591e — 44
7.567005e — 19
5.794073e - 16

—1.40449164821534122600
—1.40449164821534122600
—1.40449164821534122600
—1.40449164821534122600
—1.40449164821534122600
—1.40449164821534122600

1.911132e~-10
2.526930e - 07
3.920088¢ - 06
3.100243e - 09
1.391725e - 03
3.524255e - 03

N AN UL R W
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TaBLE 6: Continued.
Method N If (1) | Xy 0=|xj — x| CcocC
Ju(x), %9 =2.0
NR1 4 2.455690e - 16 0.00000000000000000000 9.031605¢ — 06 2
NR2 4 3.424681e - 40 0.00000000000000000000 1.271327e - 13 3
™ 3 7.907266e — 122 0.00000000000000000000 5.282400e - 14 4
MHM 3 1.556811e - 66 0.00000000000000000000 6.000887¢ - 10 5
Algorithm 1 2 2.328631e - 21 0.00000000000000000000 8.308383¢ - 03 6
Algorithm 2 2 3.198129¢ - 15 0.00000000000000000000 3.593833e - 02 2
TasLE 7: Comparison of the iterations consumed by different algorithms for the accuracy e = 1071%.
Function with initial guess Method . .
NM1 NM2 ™ MHM Algorithm 1 Algorithm 2
(%), %o = 2050.0 09 05 04 04 03 03
fo(x), % =0.1 09 06 06 06 06 05
f5(x),% = 2.0 07 05 04 04 03 03
fu(x), %, = 0.4 08 05 04 05 03 04
fo(x), %= 2.0 12 09 27 05 04 04
fo(x), % =2.0 08 06 05 04 03 03
fo(x), %= 1.2 09 06 04 04 03 03
fo(x), %= 1.5 144 06 04 04 03 03
fo(x), %0 = 0.6 80 06 04 04 03 03
Fro(x), %0 =-3.0 09 05 05 04 03 04
fi1(x), %, =20 06 05 03 04 03 03

Example 5. Transcendental and algebraic problems. To
numerically analyze the suggested algorithms, we consider
the following seven transcendental and algebraic equations:

fs(x) =€+ cos (mx) + x, x5 = -2.0,
L (X 1
=x" +sin (—) - —,xy=2.0,
5 4
=Inx +x,x,=1.2,
(41)
=x>+x*~2,x,=0.6,

=sin’x — x* + 1, x, = -3.0,

)
)
x)=x"—10,xy= 1.5,
)
)
)

tan”! (x) + x, xo = 2.0,

and their numerical results can be seen in Table 6.

Tables 2-6 exhibit the numerical comparison of the sug-
gested algorithms with other similar-nature existing algo-
rithms. In the columns of the above presented tables, N
represents the iterations consumed by different algorithms,
[f(x) | denotes the absolute value of f(x) at final approxima-
tion, x;,; shows the final approximated root, |x;,; —x; | rep-
resents the absolute distance between the two consecutive

approximations, and (COC)
order of convergence having
formula:

denotes the computational
the following approximated

~af/x; - af)

coc= 2% . (42)
In (|x; - af/|xjs — o)

The above approximation was firstly suggested in 2000

by Weerakoon and Fernando [34]. When we look at the
numerical results of Tables 2-6, we come to know that the
presented methods are showing best performance as com-
pared to the other ones. For example, in second, fourth, fifth,
tenth, and eleventh test examples, Algorithm 1 is the best as
it took less number of iterations among the all other com-
pared methods with great precision. In the seventh test
example, Algorithm 2 showing the best performance than
the other ones whereas in first, third, sixth, eighth, and ninth
test examples, both proposed algorithms behave alike and
looks better than all the other ones. In short, we can say that
the proposed algorithms are superior in terms of accuracy,
speed, number of iterations, and computational order of con-
vergence to the other well-known existing iteration schemes.
Table 7 exhibits the comparison of the iterations con-
sumed by different algorithms with the newly proposed
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methods for the root-finding of nonlinear algebraic functions
with the accuracy e = 107'%. Here, the columns of the table
denote the iterations’ number for various test functions
together with the initial guess x,. The numerical results as
shown in Table 7 again certified the fast and best perfor-
mance of the presented algorithms in terms of number of
iterations for the above defined stopping criteria with the
given accuracy. In all test examples, the proposed algorithms
consumed less number of iterations in comparison with the
other iterative algorithms. We did all the calculations with
the aid of the computer program Maple 13.

6. Concluding Remarks

In this work, two novel iteration schemes for computing the
zeros of nonlinear functions have been established which
possess the sextic convergence. The first iteration scheme is
derived using the Taylor’s series expansion and generalized
Newton-Raphson’s method whereas in second one, we apply
the basic idea of interpolation technique for approximating
second derivative which results higher efficiency index. A
comparison table regarding the efficiency indices of different
methods of the similar nature has been presented which
shows that the presented method has higher efficiency index
among the other compared methods. By solving some engi-
neering and arbitrary test problems with the aid of computer
program, the validity and applicability of the suggested itera-
tion schemes have been analyzed. The numerical results of
the Tables 1-7 certified the superiority of the suggested iter-
ation schemes to the other existing two-step iteration
schemes of the similar nature. Using the basic idea of inter-
polation technique, one can derive a broad range of new iter-
ation schemes for computing zeros of one-dimensional
nonlinear equations.
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The paper deals with a one-dimensional porous-elastic system with thermoelasticity of type III and distributed delay term. This
model is dealing with dynamics of engineering structures and nonclassical problems of mathematical physics. We establish the
well posedness of the system, and by the energy method combined with Lyapunov functions, we discuss the stability of system
for both cases of equal and nonequal speeds of wave propagation.

1. Introduction and boundary conditions

Let # =(0,1) X (11, 7,) X (0,00), T;, T, > 0. For (x,s,t) € Z,
we consider the following porous-elastic system:

U (0,8) = u (1, 1) = (0, £) = $(1, £) =0, (0, £) =0,(1,£) =0, ¢ >0.

(3)

Prthy = pthy, + b,

Here, ¢ is the volume fraction of the solid elastic material,

Py, =0¢, —bu, —Ep— PO, — ¢, - J 2 |45 (5)| @, (x, t = 5)ds, u is the longitudinal displacement, and 0 is the difference in

n temperatures. The parameters p,, p,, p5, i, b, 6, &1y, B, k

P30s =10, = Yy + KO,y are positive constants with u& > b%. The integral represents

with the initial data

() (e} (=)
~
1]

(1) the distributed delay term withr,, 7,which are time delays,
W, is positive constant, and 4, is an L™ function such that
(Hypl) u, : [r,, 7,] — Risa bounded function satisfying

g (%), (%, 0)
(%), ¢,(x, 0)
0o (%), 0,(x, 0)

=y (), J Iy () lds < . 4)
=:(0) $,( ) =fo(x 1), (2) :

0,(x),x€(0,1), >0 This type of problem was mainly based on the following
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equations for one-dimensional theories of porous materials
with temperature

pruy — T, =0,
prpy —H,—G=0, (5)
P30, +q, + v, =0,

where (x, t) € (0, L) x (0,00).
According to Green and Naghdis theory, the constitutive
equations of system (5) are given by

T = pu, + b, (6)

G=—bu, ==~ [ Il (s t-9ds ()

L3l

H=06¢, - 6, (8)
q=-10, - k®,,, 9)

where [, k > 0 are the thermal conductivity and @ is the ther-
mal displacement whose time derivative is the empirical tem-
perature 0, that is @, = 6.

We substitute (9) in (5) with the condition b # 0, which
results in

plutt =Py + b(px’

Pri =0¢,, —bu, —&d—p, ¢, - JTZ |t (5) |, (%, t = 5)ds — 6,

T

p36t = Z(Dxx - y(ptx + kD

txx*

(10)

By using @, = 0 in the system (10), we find directly our
system (1).

By using the multiplier techniques, the exponential decay
results have been established. Next, in [1-3], the authors con-
sidered three types of thermoelastic theories based on an
entropy equality instead of the usual entropy inequality (see
[1-21] for more details).

According to the distributed delay, we mention, as a mat-
ter of course, the work by Nicaise and Pignotti in [16], where
the authors studied the following system with distributed
delay:

U, —Au=0,

u=0,

S0+ [ wsyno - 9ds - s =0 .

Ty

u(.,0) = ug,u, (,0) = uy, uy(x,-t) = fo (%, ),

and proved the exponential stability result with condition

|| s < (12)

T
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See for example [8, 22, 23]. Hao and Wei [24] considered
the following problem:

P1%: — K(¢x + Wx)x =0,
Pa¥i — by, + K(¢, +v) + B0 + iy, + oy, (t—s) + f(y,) =0,
p39tt - 69xx T VYPrix — kB, = 0,

txx =

(13)

and obtained the well-posedness and stability of system.

There are many other works done by the authors in this
context; our work differs from all of them, since we took
the delay in the second equation to make the distributed
delay in the rotation angle of the filament, which makes the
contributions clear and important. In addition, we estab-
lished the well-posedness of the system, and we obtain the
exponential decay rate when &/p, = u/p, and the energy takes
the algebraic rate for the case 8/p, # u/p,; these results are
mainly stated in Theorem 8.

In order to show the dissipativity of systems (1)-(3), we
introduce the new variables ¢ = u, and y = ¢,. So, problems
(1)-(3) take the form

P19y = PP, +bY,,

¥ =00~ =&y, | 1)y 0= )= O,

T
P39tt = lexx AL ketxx’
(14)

with the initial data

9(50) = 95(x), 9,3, 0) = 9, (1), Y(x, 0) = Yo (),
Yi(35,0) =y, (), 005,0) = 0,(x),0,(6,0) =0, (x), (15
Vst =~fy(o 1), x€(0,1)

and boundary conditions

9.(0.1) =9, (L) =y(0,0) =y(1,1) =60,(0,1) =0,(1,1) =0, £20.

(16)
First, as in [16], taking the following new variable:
25 P8, 1) =¥, (£~ ), (17)
then we obtain

sz, (%, py 5, 1) +z (%, p,5,t) =0,
{t<p RERCYIY) )

Z(x, 0,5, ) =y, (x, t).
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Consequently, the problem was rewritten as

P19y = UP,, + by,

PV = 80— b, — W~y - j iy (5) |23 1,5, £)ds — 6,

Ty

pSGtt = lexx AT ketxx’
$2,(%, S 1) + 2,(%, p, 5, 1) =0,

(19)
where

(x,p»s,t) € (0,1) X , (20)

with the boundary and the initial conditions

9.(0,1) =0, (1,1) =9(0,6) = y(1,1) =0,(0,1) =0,(1,1) =0, £20.

(21)
P(x,0) = @y (%), @, (%, 0) = 9y (x), ¥ (x, 0) = Yy (%), (22)
¥,(5,0) = ¥, (x), 05, 0) = 0, (x), 6, (1,0) =0, (x), x€(0,1),
(23)
z(x, p,5,0) = —f (x, ps) = hy(x, ps),  x€(0.1), p€(0.1),s€(0,7,).
(24)
Meanwhile, from (19) and (24), it follows that
a !
WJO @(x, t)dx=0. (25)

So, by solving (25) and using (24), we get
1 1 1
J o(x, t)dx = tJ @, (x)dx + J @, (x)dx. (26)
0 0 0

Consequently, if we let

o) =000 | pite- [ e @)
we get

1
J o(x,t)dx=0, Vt=0, (28)

0
and from (19), we have
d (!
7 Jo 0(x, t)dx=0. (29)
So, by solving (29) and using (24), we get
1

Jl 0(x, t)dx = tJl 0, (x)dx + J 0, (x)dx. (30)

0 0 0

Consequently, if we let
_ 1 1
O(x,t)=0(x,t) - tJ 0, (x)dx - J 0y(x)dx,  (31)
we get
1 —
J B(x, t)dx =0, V>0, (32)

0

Then, the Poincaré’s inequality was used for ¢ and 6~
which are justified. A simple substitution shows that (¢, y,

0) satisfies system (19) with initial data for ¢ and 6 given as

1

Po(x) = p(x) — . Py (x)dx,
¢1(x) = ¢, (x) ¢, (x)dx,

: @)
00(x) =By (x) = | 6y (x)dx,
0,(3)=0,(6) - | 0,0

Now, we use ¢, 0 instead of ¢,6 and writing ¢,0 for
simplicity.

2. Well-Posedness

In this section, we give the existence and uniqueness result of
the system (19)-(24) using the semigroup theory.
First, we introduce the vector function

U= (090> 9,0,0,2)", (34)

and the new dependent variables u=¢,, v=1v,, w =0,; then
the system (19) can be written as follows:

{U[:WU,

r (35)
U(0)=Ugy = (90> 1> Voo V1,00, 61, hg) "

where of : D(o)CH : —FH is the linear operator
defined by

u
: (49, + by, ]
Pl lbl(pxx X.

v

1 &
A e M OIECA L
2

L)

AU =
w

Xx]

1
— [0 — yv, + kw
Ps[ 4

1

--z
5P




and 7 is the energy space given by

¥ =H. xL2(0,1) x Hy x L*(0,1) x H, x L*(0, 1)

2 (37)

x L2((0,1) x (0, 1) x (11, T5))s

where
L2(0,1) = {w =0},
Jy (x)dx
HL(0,1)=H'(0,1)nL2(0,1), (38)
) _ [ ¢eH*(0,1) _
- {550 -0}
For every
U:((p,u,w,v,e,w,z)TG%, (39)

U = (oA uh, yA VA, ON WA, 2N) T € .,

we equip # with the inner product defined by

1

1 1
<U,U>y = ypIJ ulidx + YPzJ vodx + )/SJ vy dx
0 0

0
1 1 1
+ ﬁpsj wibdx + wJ P Pdx + Y5J v, Y, dx
0 0 0
1 1
+ be (P ¥ +y@)dx+ lﬁJ 0.0, dx
0 0
1l p7,
+ yJ J J sly, (s)lzzdsdpdx.
0J0Jr,

(40)
The domain of ¢ is given by
Uedip,0eH(0,1)nHL(0,1),y € H*(0,1) N Hy(0,1)

U, w e Hi(O, 1),ve H(l)(O, 1),2(x,0,s,t)=v
z,z, € L*((0,1) % (0,1) X (71, 7,))

D(ed) =
(41)

Clearly, 2(&/) is dense in #. Now, we can give the
following existence result.

Theorem 1. Let U, € # and assume that (4) holds. Then,

there exists a unique solution U € €(R,, Z) of problem (19).
Moreover, if Uy € D(H), then

UeB(R,, 2() NG (R,, 7). (42)
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Proof. First, we prove that the operator &/ is dissipative. For
any U, € Z() and by using (40), we have

1 1 r7,
<HU,U>g = —yylj vidx - yJ J leey (s)|vz(x, 1,s, t)dsdx
0

0Jr
1l n 1
—yj J J |‘u2(s)|zpzdsdpdx—ﬁkj wldx.
0Jole, 0

(43)

For the third term of the right-hand side of (43), we have

1l 1, 1o d
_J J J |‘uz(5)|zpzdsdpdx:—§J J L |y2(s)|d—Pz dpdsdx

0J0JT, 0Jr1,

1 r1,
:_%J J |[,¢2(s)|22(x,1,s, t)dsdx

0Jr,
1 1 p1,
+ —J J |ty (5)12° (x, 0, s, t)dsdx.
2 0JT,

(44)

By using Young’s inequality, we get

1 p7, 1 T, 1
—J J lety () lvz(x, 1, s, t)dsdx < — J | py(s) | ds J Vidx
0Jr1, 2 T 0

1 1 7,
+ EJ J i, (5)12%(x, 1, 5, t)dsdx.

0Jr,

(45)

Substituting (44) and (45) into (43), using the fact that
z(x,0,s,t) =v(x, t) and (4), we obtained

T

) o 1
<dU,U>g <~y <,ul —J [ gy (s) | ds)J vzdx—ﬁkJ wldx<0.
0

T 0
(46)
Hence, the operator « is dissipative.

Next, we prove the operator of is maximal. It is sufficient
to show that the operator (Id — &f) is surjective.

Indeed, for any F = (fl,fz,f3,f4,f5,f6,f7)T € I, we prove
that there exists a unique V=(¢,u,v,v,0,w,z) € D()

such that
(Id- )V =F. (47)

That is

p-u=f,
PIM_M(Pxx_bWx:Ple’
y-v=f,

°T,

|ty (5) |2 (%, 1, s, t)ds = p,fys

L

PZV_(SV/xx+h¢x+fw+ﬁwx+MlV+J
0-w=f,

psw — lexx TYVx— kwxx = p3f6’

sz,(x, p, s, t) + zp(x, P s, t) =sf,,
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We note that the last equation in (48) with z(x,0,s, t) =
v(x, t) has a unique solution given by

P
zZ(x, py 5, t) =€ Pv+ seSPJ e“f,(x,0,s,t)do, (49)
0

then

1
z(x, 1,5, t)=e" v+ seSJ e“f,(x, 0,5, t)do, (50)
0

4 T2 _
Py=pytEtp + §V+J [t (s)]eds,

hy=py(f; + )

Ty

h3 =P3(f5 +f6) +Yf3x_kf5xx'

We multiply (52) by ¢, v, 0, respectively, and integrate
their sum over (0, 1) to get the following variational formula-
tion:

B((p.v:0). (99.0)=1(99.8). (9
where
B: (HL(0,1)xH)(0, 1) x H (0,1))" — R (55)
is the bilinear form defined by
B((%w)@)) (fp, v, 9) =mj <P<de+VﬂJ PP dx
0 0
1
+ VbL (Vo +ov,)dx
1 N 1 N
+W4J wwdxwéj v, Y dx
0 0
'l SEE
+V:3J Gx?/dHﬁYJ v, Odx
0 0
1 1 R
+ ﬁp3J 00dx + ﬁ(l+k)2J 0,6 dx,
0 0
I': (H,(0,1)x Hy(0,1) x H,(0,1)) — R (56)

is the linear functional given by

= 1 1 1
r(a,@,e) =J hladﬁj h217/dx+J hfdx.  (57)

0 0 0

By = py(fy + )+t - j (5) %) s -

we have
u=@-frv=y-frw=0-f,. (51)

Inserting (50) and (51) into (48), (48), and (48), we get

P1P — HPyy — bl//x = hl’
U - avjxx + b(Px + :Bex = hZ’ (52)
rhoy0 — (1+ k)0, + yy, = hs,

where

i X (53)
| stscole | e a5 ndods +

T

Now, for V=H!(0,L)x H}(0,L) x H! (0, L), equipped
with the norm

(@, 9, O)I5, = oI5+l I3+ 115 +ly I5-+1O13+16,13,  (58)

then, we have

1 1
B((9, v, 0), (9, ¥,0)) = mJO ¢dx + WJO @ldx
1

+ypy | yldx+ Y5J ydx
0

1
0
1 1
+pB| Gdx+ B+ k)J 0% dx
0 0
1

+2yb| @ vdx,
0

we have

Ul + gy’ + 2bg y =

N =
L —
<
A/~
-
=
+
Tl
<
~

(3]
+
=
N
A/
<
+
NS
2
-
(3]



by assuming € — b* > 0, we get
v v
- —>0,pu,—— >0, (61)
# Yy . U

then, for some M, > 0,

B((¢, ¥, 0), (¢, v,0)) = Ml (9, v, O) I3 (62)

Thus, B is coercive. Consequently, using the Lax-
Milgram theorem, we conclude that the existence of a unique
solution ((¢, ¥, 0)) in V satisfies

u=¢-f, eHL(0,1),
v=y - f3 € Hy(0,1), (63)
w=0-f;€HL(0,1).

Substituting ¢, y, 0 into (50) and (51), respectively, we
have
u,0 e HL(0, 1),
y e H}(0,1), (64)
2,2, € L*((0,1) x (0, 1) X (1, 7,)).

Let ¢ € H}(0,1) and denote

1

$=¢wyi[¢@wa (65)

0

which gives us @ € H'(0,1). Now, we replace (¢, ¥, 8) by
(9,0,0) in (54) to obtain

1 ~ 1 -~ 1 o~ 1 =~
mJ svs?dﬁwj %%dwaj wx<de=J h, pdx.
0 0 0

O (66)

We get

1

1 = 2
WJ ¢, 9 dx = J (hy —yp,p —yby,) pdx,  (67)
0

0
which yields
VHQ, = VPP — by, — by € L2(0,1). (68)

Thus,

e H*(0,1). (69)
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Moreover, (52) also holds for any every @ € C'([0, 1]).
Then, by using integration by parts, we obtain

1 1
WJ <Px¢xdx=J (hi —ypi@ = yby,)pdx.  (70)
0 0

Then, we get for any ¢ € C'(]0, 1])
¢.(1)9(1) — ¢, (0)9(0) =0. (71)

Since ¢ is arbitrary, we get that ¢, (0) = ¢, (1) = 0. Hence,
@ € H2(0,1). Using similar arguments as above, we can
obtain

v e H*(0,1) N Hy(0,1),

6 € H2(0,1). 72)

Finally, the application of regularity theory for the linear
elliptic equations guarantees the existence of unique U € 9( /)
such that (47) is satisfied.

Consequently, we conclude that </ is a maximal dissipative
operator. Hence, by Lumer-Philips theorem (see [25, 26]), we
have the well-posedness result. This completes the proof.

3. Stability Results

We prepare the next lemmas (Lemmas 2-7) which will be
useful to introduce the Lyapunov function in (104).

Lemma 2. The energy functional E associated with our prob-

lem defined by

+ BIT (165 + p;67 ] dx
2 0 X 3Vt
y 1 ¢l pr,
+ fj J J sluy(s)12° (x, p, s, t)dsdpdx
2 0J0JT,;
(73)
satisfies
1 1
E'(t)S—kﬁJ fodx—yr]OJ yidx <0, (74)
0 0

where 1, =p, — f:j | u,(s) | ds>0.
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Proof. Multiplying (19) by yg,, (19) by yy,, and (19) by f30,
then integration by parts over (0, 1), we get

d 1
Vab | o0 gty oy ey 2k ]
0

i d
+W1J ydx+ gd_J [16 + p,07] dx (75)
0

1 T,
+ VJ th |."‘2(5)|Z(x) 1,s, t)dsdx =0.
0

T

Now, multiplying (19) by z | u,(s) | and integrating the
result over (0,1) % (0,1) x (7, 7,), we get

d)/ 1 pl 7y
o ||| i1 pos dsdpa

0JoJr

1 ¢l p7,
=—yJ J J 1y (5)lzz,,(x, p> 5, t)dsdpdx

0J0Jr,

y 1 ¢l p7, d )

:_5[ J J ety (s )|dpz (x, p, s, t)dsdpdx
1 r7y
J J |1, (5)

T, 1 r7y
J | 1, (s) | ds)J ylidx - ;/J J |1, (8)12%(x, 1, s, t)dsdx.

x,O s, 1) - (x, 1,s, t))dsdx

N\‘ﬁ

N~

T 0J1

(76)

From (75) and (76), we get (73) and (74).
Now, using Young’s inequality, (74) can be written as

T2

1
| (5) | d)j yidx.
1 0

(77)

E'(t) < —k/J’J:) Oredx —y (#1 - J

T

Then, by (4), there exists a positive constant #, such that

1 1
E'(0) kB Gdx—yn, | vide (78)
0 0

Thus, the functional E is nonincreasing.

Lemma 3. The function

F(t)= rwtwdﬂbﬁleJ:%(y)dydﬁ Jv/dx
(79)

satisfies

Fi(t) <

S (! 1 1
_EJO yldx - /43L yldx + elL @rdx

1 1 1
+ c(] + Ez) JO wfdx + CJO Gfxdx (80)

1 g1,
+CJ J Iyz(s)lzz(x,l,s, t)dsdx,

0Jr,

where i, =& — (b*/u) > 0

Proof. Direct computation, using integration by parts and
Young’s inequality, for & > 0, yields

F’ _ ! 2 bz ! 2 ! 2
(1) =-0 ‘/’xdx— 5_; O‘I/dx+P2 Oll’zdx
b 1
- 2 J wtj e >dydx—ﬁj0 Y6, dx

1 T, 1
-J WJ 4, ($)1z(x, 1, 5, t)dsdx < —6J yldx
0

T 0

(E— b—2>J 2dx+c<1+ ;)Jl yidx
0 1/ Jo
e (oo

1 T,
- J WJ ety (5)|z(x, 1, s, t)dsdx.

0 T

By Cauchy-Schwartz’s inequality, it is clear that

J; (JO f/)t(y)dy> e J; <J: <p,dx> zdx < J: 0dx. (82)

So, estimate (81) becomes

F’ ! 2 bz ! 2 1 ! 2
(<=8 yidx—[E—— || yidx+c(1+— || ydx
0 /o &/ Jo

1 1 1 T,
+ 81J ¢, dx — ﬁj Y0, dx - J IIIJ e, (8)|z(x, 1, s, t)dsdx,
0 0 0

T

(83)
where the Cauchy-Schwartz, Young, and Poincaré’s inequal-

ities have been used, for &, > 0.
By the fact that u& > b%, we get the desired result (80).

Lemma 4. Assume that ((4)) holds. Then, the function

1 1
Fit)= | vipds+ | viguds (84)
0 0



satisfies

b
Fi(t)<- J xdx+cJ
A1) 2p, %

1 & u\ (!
+CJ J Iyz(s)lzz(x, Ls, t)dx + (— - —)J oV, dx.
0Jr, P> P1/Jo

(85)

Proof. By differentiating F,, then using (19), integration by

parts gives
! 0 b
2dx+<—— y)J dx+—J 2dx
JO q)x pz Pl q)xWxx Pl wx

Hq J B Jl
-—— Vv (dex -—| 0 x(dex
Prlo ! prlo

2J0
%J 2 |ty (5)12°(x, 1, s, t)dsdlx.
0 T

(86)

Thanks to Young, Cauchy-Schwartz, and Poincaré’s
inequalities to estimate terms in RHS of (86). For §,, ,, 85,
8, >0, we have

£ 1 c
-2 | @ydx< 81J @ldx + TJ vdx, (87)
P2 Jo 0 1Jo
(! b c [t
-— . dx <0 J “dx + —J dx, (88)
P2 0 I//t(P 2 0 ¢ 462 0 lllt
B b ¢ 2
= — 89
o, 0, dx < 83J0 @rdx + 1, J 0; dx, (89)

1 1 T, 1
——J (ij lpty (5)|z(x, 1, s, t)dsdxs84J <p§dx
P2 Jo T 0

c 1 p7, (90)
2

bl 1’ bl .

+ 1, JO JTI ey (s)|z" (x, 1,5, t)ds

The replacement of (87)-(90) into (86) and
settingd, = 8, =05 = 8, = b/8p,helps to obtain (85).

Lemma 5. The function

F3(0==-—P1J0q%¢dx (o1)

satisfies
) 1 3[" 1
Fy(t) < _P1J @7 dx + 7J @ldx + CJ yldx. (92)
0 0

Proof. Direct computations give

Fi(t) = —p, J gotdx+‘uj (pzdx+bJ @, ydx. (93)
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Estimate (92) easily follows by using Young’s and Poin-
caré’s inequalities

1 1
Fi(t) S—plj (pfdx+[4J cpidx+65J 2 dx + —J yldx,
0 0

(94)
setting 85 = p/2 to obtain (92).
Lemma 6. The function
1
F (t) = p3J 0,0dx (95)

satisfies
/ L g 2
Ft) < -5 Jo Odx + CJ yidx + CJ 0, dx. (96)
Proof. Direct computations give

1 1 1 1
Fi(t) = —lJ 0%dx + yJ 0,y dx - kJ 0.0,.dx+ p3J 0 dx.
0 0 0 0
(97)
By using Young and Poincaré’s inequalities, we get (96).

Lemma 7. The function

&@=fjj”wﬂm@wuwmnm@m (98)

0J0Jr,
satisfies

Il gty 1
Fi(t) < _'lzj J J sluy(s)12° (x, p, s, t)dsdpdx + yIJ yldx
0

0J0J1,;

1 r7,
| [ 1 s s,

0Jr,
(99)
where 1, is a given positive constant.

Proof. By differentiating F. with respect to ¢ and using the
last equation in (Hyp1l), we have

1 1 pry
o= | |
0J0Jr
d 1 pl pry
:——J J J se” Py, (s)|2% (x, p, s, t)dsdpdx
dp Jo Jo 7,

—ﬂﬁwwmf

e Pl (s)lzz,(x, p; s, t)dsdpdx

Z(x,1,5t) -2 (x,0,5, t)] dsdx.

(100)
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Using the fact that z(x,0,s,t) =
e <1, forall 0 < p <1, we obtain

—s) and e~ <

v, (x, t

1 ¢l p7,
Fio =, [ || s pus dsdpd

0J0JT
Jl JTZ
0Jr

T, 1
+ J /7% (s)ldsJ yrdx.
0

Ty

el (s)12% (%, 1, s, t)dsdx (101)

We have —e™* <
(4), we get (99).
We state and prove the decay result in Theorem 8.

—e Vs €1y, T,]. Set n, =¢ ™, and by

Theorem 8. Let ((4)) hold. Then, there exist positive constants
A, and A, such that the function ((73)) satisfies, for any t > 0

E(t) < Ae™™, zf — =

(102)
2P1

E(t) < C(E,(0)+ Ey(0) L, if &2 2.

(103)
P2 Pi

Proof. We define a class of an appropriate Lyapunov func-
tion as

Z(t)=NE(t) + N, F,(t) + N,F,(t) + F5(t) + F(t) + N5 F;5(t),

(104)

where N, N;, N,, and N; are positive constants to be
selected later.

Differentiating (104) and by (74), (80), (85), (92), (96),
and (99), we have

1 N, o e
Z (1)<~ T_CNz_C yedx—[py =Ny ]| ¢rdx
Jo 0

1 ',
YN 1+ — ) = Nye—pNs—c J yidx
£ 0
bN, _3u 2 o
{2—‘02 2” @dx — N“u3JOt// dx

1

—[Ns#, —cN, - ch}J J iy (5)12%(x, 1,5, t)dsdx

0

1 o1 1 pl o7,
_EJ Oidx—qulJ J J slu,y (5)12% (%, p, s, t)dsdpdx
0 0Jo

1
—[NKB—cN, —cN, - ] [ 6% dx + N, (i ”) [ 0., dx.
Jo P2 P1
(105)

By setting &, = p;/2N, we obtain

Sf/(t)g—{@—ch—c}J wzdx—&J @rdx
0
1
- %_3_'” @rdx
2p, 200077
1
_[Y’/ION_CNI(l+N1)_CN2_AM1N5_C}‘[ yydx
0

1 1y
— [N51, —cNy - ch]J I |ty (5)|2% (x, 1, 5, t)dsdx

0Jr,

o1 1
—N1y3J y?dx — [Nk —cN, — cN, — C]J 67 dx
0 0

1 1 ¢l 7,
- %J Gidx—NSmJ J J slyz(s)lzz(x, p, s, t)dsdpdx
0

0J0J1,

ol
+N,(— - — W A%
2<P2 pi))o?

Next, we carefully choose the constants, starting by N, to
be large enough such that

(106)

1 bz_l\;z s, (107)
and N, so that
ocZ:@—CNZ—(»O, (108)
and N large enough such that
a3 =Ngn, —cN; —cN, > 0. (109)

We arrive at

1 1 1
.SZ"(t)s—(xz[ wﬁdx—ocoj yidx - gJ (pfdx—oclj @ldx
Jo 0 0

1
- [ynoN - c]J yidx — [kBN — C}J 07 dx — - : j 0dx
0

(110)

1 p1,y 1
—043J J |‘uz(s)|zz(x, 1,s, t)dsdx+ocsj QW dx
T, 0

0
e )
—(x4J J J sluy (5)12% (x, p s, t)dsdpdx,
0Jr,
where g =p,N, = (£~ (V/u))Ny, &, = Nsny, a5 = Nykg =

Nz((5/p2) - (P‘/P1))-
Now, let us define the related function

L(t) = Ny Fy () + Ny Fy (1) + F5 (1) + Fy (1) + N5 Fs(1),
(112)



10
then

18(1)] < dx

1 b N 1
NIJ [y, |dx + LJ
0 g 0

+ N,
2

1 1
+ plL o, pldx + P3J0 10,0|dx

wJO ¢ (y)dy

1 1
J wzdx+NzJ W, @, + @, |dx
0 0

1 ¢l 1,
+N5J J J Se‘SPhuz(S)lzz(x,p’ s, t)dsdpdx.

0JoJr
(113)

Thanks to Young, Cauchy-Schwartz, and Poincaré’s
inequalities, we get

1
ISUNScJ(¢f+wf+wi+¢i+w2+93+9®dx
0

1 pl p17,
+cJ J J sluy (5)12% (x, p, s, t)dsdp < cE(t).

0J0Jr,

(114)
Then,
1(6)| = | Z(t) - NE(t)| < cE(1). (115)
Thus,
(N=-c)E(t) < Z(t) < (N +c)E(t). (116)
One can nowNlarge enough such that
N—-¢>0,kfN —c>0,Nyn, —c>0. (117)
We get
LE(t) < ZL(t) < c;E(t), V=0, (118)
and using (73), (110), and (116), and the fact that
1 1
J efdng 6; dx, (119)
0 0
which gives
1
L' (t) <k E(t) + “SJO @Y, dx, V0. (120)

for some k, c,, ¢; > 0.

Case 1. If ky = (8/p,) —
the form

(plpy) =0, in this case, ((120)) takes

L'(t) < -k,E(t), Vt=0. (121)
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The combination of (118) and (121) gives

LNty <-MZ(t), Vt=0,A =2 (122)

Finally, by integrating (122) and recalling (118), we
obtain the first result of (103).

Case 2. If ky = (8/p,) — (ulp,) #0, then

kyp?yd .
AT /710 f b
ANy vy 7
(123)
2
kol < Y g <o,
2N,p,
Let
E(t) = Elg v..0,2) = Ey (1), (124)
be denoted by
Ey(t) = E(9p v, 0, 2,). (125)
Then, we have
<wk4aMme%M (126)

The last term in (120), by using (19), and Young’s
inequality, and by setting K = —p, a5/, we have

‘x5J1 (PxWXde == S—PIJ qu’ttdx + b_J IVX
0 U u

=-K < d Ul Y, dx — J; wt%dx] >

ba
J (Pthtdx+ MSJ V’x

d 1
<-K (dt U l//(/’xtdx Jo Wt(dex] >

1
b“5j WRdx + @J %dx+|1<|J
U

(127)

Let

1

1
N(t) = J Yo, dx — J v, dx, (128)
0 0
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then (120)

Z(t)+ KN (t) < —k,E\(t) + E’Z‘SJ yldx + 'K'J vl dx

0
1

! K
+IKI[ gideskoro) + B[ i
0 0

(129)
where
bas
ky =k, - o <|K| 3 ) (130)
Let
G(t) = Z(t) + KN (t) + N;(E,(t) + E,(1)). (131)

If Ny > max {C, | K|-c,,|K|,|K|/4C}, indeed,

1

1
wml:lj wsoxtdxmj Yol < © j P+ | j Y2

IJ vidx + - J @dx < E,(t) + CyE, (1),

(132)
where C, = max {2/y&, 2/yu, 2/yp, }. By (118), we obtain

G(t) < ¢ Ey (1) = IKI(Ey(£) + CoE (1)) + N3 (Eq (£) + Ey (1))

< (N3y+¢;, = Cy | K|)E (t) + (N3—|K | )E,(t).
(133)
It is not hard to prove
my (i (8) + By (1)) < G(1) <my (B, (1) + Ex(t),  (134)

where my, m, > 0. By using (129) and (128), we obtain

G'(t)= 2" (1) + K (1) + N3 (Ey(t) + Ex(1))
< —k,E, (t) + <—CN3 + 4>J Y, dx
0
Choosing N; such that
K
CN, - % >0, (136)
we have

G'(t) < —k,E, () (137)

11

Integrating (137), we get

[ By < (600~ 6l1) = - 6(0) = 2 (E0) + B0,
(138)
using the fact that
(tE (1)) =tE|(t) + E, (t) < E,(¢). (139)
We get that
E, () < ”C“_j(El(O) + E,(0)), (140)

which is desired to be the second result of (103). This com-
pletes the proof.

4. Conclusion

This paper studied the asymptotic behavior of a one-
dimensional thermoelastic system with distributed time
delay; namely, an integral damping term on a time interval
[t -1, t—1,] is taken into account. Beside the distributed
delay term, a standard undelayed damping is included in
the model (—u,¢,). We established the well-posedness of
the system, and we proved stability estimates by means of
appropriate Lyapunov functions. Exponential decay esti-
mates are proved by nonclassical condition between the delay
damping coefficient and the coeflicient of the undelayed one
which is satisfied. Several papers have been proposed for
models including both undelayed and delayed damping of
the same form, and exponential stability results have been
obtained if the coefficient of the delay is smaller than the
one of the undelayed term. This analysis has been extended
to the case of a distributed delay in [16]. Also in this case,
there are now a few literature, dealing with different PDE
models, including thermoelastic systems. Typically, under
the assumption (4), the system keeps the same properties,
the one without delay but only with a standard frictional
damping c¢,, for some coefficient c. Then, this paper intro-
duced a considerable novelties different from those of [15].
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This paper is aimed at presenting some coincidence point results using admissible mapping in the framework of the partial b-metric
spaces. Observed results of the article cover a number of existing works on the topic of “investigation of nonunique fixed points.”
We express an example to indicate the validity of the observed outcomes.

1. Introduction and Preliminaries

In 1974, Ciri¢ [1] published the first paper on nonunique
fixed point theory. Despite Banach’s theorem, Ciri¢ [1]
focused only on the existence of a fixed point, but not the
uniqueness. The motivation of Ciri¢ [1] was inspired by
Banach’s motivation. As it is known, Banach’s fixed point
theorem is abstracted from Picard’s paper, in which Picard
[2] analyzed both the existence and uniqueness of the solu-
tion of the certain differential equation (see [3-5]). On the
other hand, not all differential or integral equations have a
unique solution. In the differential/integral equations, non-
unique solutions are also crucial, for example, periodic solu-
tions. Consequently, Ciri¢ [1] investigated the corresponding
fixed point theorems that would be a tool in finding periodic
solutions of the differential/integral equations. In the last five
decades, a number of nonunique fixed point results have
been reported in two ways: either proposing a new contrac-
tion type or changing the structure. The first example for
the changing the contraction inequality, in the standard set-
up, was given by Achari [6] in 1976 and Pachpatte [7] in
1973. Fifteen years later, Ciri¢ and Joti¢ [8] proposed a new
type of contraction inequalities in the context of complete
metric space. This trend was followed by the attractive results

[9-13]. On the other hand side, in [14-17], the authors
observed several characterizations of the unique fixed point
results in the setting of complete b-metric spaces. Indeed,
among the several extensions of metric structure, the true
extension is the b-metric space. For this reason, observed
nonunique fixed theorems in the context of b-metric space
is very interesting and important, see also [18-20]. In addi-
tion, in [21-23], the characterization of fixed point theorems
in partial metric spaces is crucial due to the potential applica-
tion in the domain theory of computer science. Regarding the
applied mathematics, nonunique fixed point results in cone
metric spaces have taken attention [24].

In this paper, we consider a nonunique fixed point theo-
rem in the context of the very general frame, partial b-metric
spaces. An illustrative example is a set-up to indicate the
validity of the main theorem.

Let M be a nonempty set, a real number s> 1, and N =
{1,2,3, ---}.In this case, the triplet (M, p,, s) forms a partial
b -metric space, on short p,-ms.Undoubtedly, b-metric spaces
(and ordinary metric spaces) are closely related to partial b
-metric spaces. Definitely, a b-metric space (s > 1) is a partial
b-metric space with zero self-distance and a partial metric
space is a partial b-metric space with s = 1. Moreover, a par-
tial b-metric can define a b-metric space. Indeed, for example,
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let p, be a partial b-metric on M. Then, the functions blp, b,,
bym : M — M, where

[ p(wv), ifu#v,
bt v) = {O, ifu=v, W
b'y(1y) = 2py (1, y) = py (1 1) = Py (12 ) (2)
by (1 y) = py(tsy) —min {p,(u, u), p, (1> )} (3)

are b-metrics on M.

Definition 1. A function p, : M x M — [0,00) is a partial
b-metric on M if for all u, y,w € M, it satisfies the follow-
ing conditions:

(Py)u=y = p,(uu) = py(,y) = p,, (> )

(Py) 2y (11> u) < pyb(u, y)

(Py) 30 (1 y) <p(y> u)

(Py) 42 (1 ) < s[py (4, w) + py (W, u)] = py(w, w)

Example 1. (see [25]). Let p, be a partial metric on the set M.
Then, the functions p, : M x M — [0,00) are given for all
u,y €M by

(1) py(u,y) =p(u,y) + b(u, y) is a partial b-metric on M
(where b is a b-metric (s > 1) on M)

(2) py(t,y) = [p(u, )] for r>1, define a partial b-met-
rics on M with coefficient s =27

Remark 2. From (pb), and (pb),, it follows that if u, y € M are
such that p, (4, y) =0, then u=y.

Definition 3. (see [26, 27]). Let {u,} be a sequence on the
p,-ms(M, p,,s=1)

(1) {u,} is p,-convergent to u € M if lim,_, p,(u,u,)
= py (> 1)

() {u,} is p,-Cauchy if lim, . _,,p; (u,, u ) exists and is
finite

(3) {u,} is 0-p,-Cauchy if lim,, ,_, . p, (1, ;) = 0

(4) (M, p,,s>1) is p,-complete if every p,-Cauchy
sequence in M is p,-convergent

lim pb (”w uq) = ’}Lngopb(un’ M) :Pb(u’ M) (4)

n,q—00

(5) (M, p,,s>1) is 0-p,-complete if every 0-p,-Cauchy
sequence we can find u € M such that

lim pb(“n’”q) =nlggopb(un’u) =pb(u’ Ll) =0 (5)

n,q—00
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Moreover, in [26], the following interesting results were
proved.

Lemma 4. (see [26]). Every p,-complete p,-ms (M, p,,s>1) is
0 - p,, -complete.

Lemma 5. (see [26]). The p,-ms (M, p,,s>1) is 0 - p, -com-
plete if and only if the b -metric space (M, b,,s> 1) is com-
plete, where the b -metric bp was defined in (3).

They also showed that the converse affirmation does not
hold.
Let R, S to self-mappings on the set M. We say that

(i) S commutes with R on M if RSu = SRu for all u e M

(ii) a point z € M is a point of coincidence of R and S if we
can find u* € M such that z = Ru* = Su*

(iii) a point u* € M is a common fixed point of R and S if
Ru* =u* = Su*

We will use the following notations:
C(RS) ={ueM|Ru=Su}M* =M\ C.R,S),,. (6)

In [28], the notion of R-3-admissible mapping was introduced
as follows:

(i) Let the function : M x M — [0,00) and R,S: M
— M. The mapping S is said to be R-3-admissible if

B(Ru, Ry) = I implies 3(Su, Sy) = 1, (7)

forall u,y e M.

In case that R=1I,, the mapping S is said to be f3
-admissible.

Let (M, p,,s>1) be a p,-ms and f; M x M — [0,+00).
The space M is -regular if for every sequence {z,} in M such
that z, — z and (z,,2,,;) > 1, there exists a subsequence

{z,,} of {z,,} such that

Bleurz.) 2 1, (8)
forall I e N.

Lemma 6. Let R, S : M — M such that S is a R-3-admissible.
If there exists u, € M such that B(Ru,, Su,) > 1, then

B(Ruw Run+1) 21, (9)

where the sequence {u,} in M is defined by Su,, = Ru,,,, for
each n € NU{0}.

Proof. By the assumption B(Ru, Su,) > 1, since the mapping
S is R--admissible, we get

B(Ruy, Ru,) = B(Ruy, Suy) = 1 implies B(Ru;, Ru,) = B(Suy, Sup) 2 1,

(10)
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and by induction, it follows that
B(Rit Rtyy) 2 1, (11)
for ne N U {0}.

2. Main Results

Following the idea in [29], we state the following results use-
ful in the sequel.

Lemma 7. Let (M, p,,s>1) be a p,-ms. If {u, } is a sequence
in M such that there exists {z,,} in M, satisfying the inequality

Py (s i) < Py (U g5 ) (12)
for any n € N, then the sequence is {u,} and is 0-p,-Cauchy.
Proof. First of all, by (12), we get

Pyt i) < E"py (g 1) (13)

for all n e N. On the other hand, by using (pb),, we can
derive that

Pb(”n n+q) $(Pp (> Upi1)
+pb(un+l’un+q)) Py (Usr> Upir)
< 5Py (s Ui
+ Dy (1 Unia) + Py (Ur2 s un+q)
=Py (U1 Uns1) = Po(Upszs Uiz *

Sspb(un’ un+1) +s pb( n+1> un+2)+”'

gq-1
Z pb(un+l> un+l)
I=1

un+1) +pb<un+1> un+2)+'“

q-1
Z Pb(uwrl’ un+l)'
=1

(14)

+qub (”n+q—l > un+q) -
<sf [Pb(un’

Py (un+q—1’ un+q)]__

(1) If c€[0,1/s), by (13) and (14), we get

q-1
I+1 n+l
pb(”n’umq) < Z sc pb ”O’ul Zpb Upils n+l
1=0 =1
q-1
<sc” (sc)lpb(uo, up)
1=0
21— (sc)?
=sc — 0asn,q — oo.
1-sc

(15)

Therefore, {u,} is a 0-p,-Cauchy sequence.

(2) If ce[1/s,1), thus ¢" —> 0 (as n —> 00). Moreover,
there exits I € N such that ¢/ < 1/s. This means I > —
log s/log c. Again, by (13) together with (14), we have

!
Py <”n1> “<n+1)1) <s [Ph(””L Uppi1)+ 4Py, (“n1+1-1» ”(n+1)1}
-1

- Z Py (”nuj) unl+j)
j=1

-1 -1

< Z Cnhjph(uw u) - Z Py (unl+j’ unl+j) (16)

Jj=0 j=1
ss Cnlz Py(to> 1)
j=0

s <Py (ugs uy)
1-¢

<c

— 0asn — 00.

Thereby, letting A=c' < 1/s by Case (i), we get that the
sequence {u,,} is 0-p,-Cauchy sequence, which means that

lim pj, (u,, uy) =0. (17)

1,q—00

On the other hand,

20 (st 14 ) < (o4 (g 1)
Py (” lnil+1> Y )) —Py (”l[n/l]ﬂ’ ul[n/l]+1)
[P (ul[n/ n/l]+1)+ AU l’un)i|
Py (ul[n/l]+1’ “1[n/1]+1) +o APy (s ”H)))
(18)

and using (13), we have

Py (ul[n/l]’ “n) <s {Cl[n/q+"‘+cn_1]l’b(”o’ u)

Uy, U
SSzcl[n/l]Pb( 0 ) 0asn 0.

1-c¢

(19)

Finally, combining relations (19) and (17) and keeping in
mind (pb),, we have
Py (U g) < [Pb (”w Ul[n/q>
Py (“1 (il uq)] Y (”zwzp “1[n/1]>
<spy (“n: Uggyn
+5p, <”1[n/1]» ”zw) +5°p, (ul[q,,], uq)
Py <ul[n/[]’ ul[n/[]) —Py (ul[q/l]’ “z[q/l])
<SPy (”w “1[n/1]>
+5p, <u,[n,,], ul[q,l]) +5°p, (ul[q,,], uq> — 0asn, g — 00.

(20)

Thereupon, the sequence {u,} is 0-p,-Cauchy.



Theorem 8. Let (M, p,,s> 1) be a complete p,-ms and two
mappings R, S : M — M. Suppose that there exists x € (0, 1)
such that

B(Ru, Ry) min {p, (Su, Sy), p,(Sy, Ry)}
——min {b,(Su, Ry), b,(Sy, Ru) } (21)

<« max {p,(Ru, Ry), p,(Su, Ru)},
forallu,y € M, such thatu#y whenu, y € C.(R, S),,. Suppose
also that
(a) S(M) cR(M) and (R(M), py,s) is a 0-p,-complete
py-ms

(b) S is R-B-admissible, and there exists u, € M such that
B(Ruy, Suy) > 1

(c) M is B-regular

Then, the mappings S and R have a point of coincidence.

Proof. Let u, be an arbitrary point in M, such that S(Ru,, S
uy) > 1. Thus, since S(M) c R(M), there exists u; € M such
that Su, = Ru,. Thereupon, Su; € S(M) c R(M) and we can
find u, € M such that Su; = Ru,. In this way, we can build a
sequence {u,} €M as follows:

having defined u,, € M, weletu, , € M such that Su, = Ru,,,,
(22)

for all ne NU{0}. Letting u=u, and y=u,,; in (reflT1)
and taking into account Lemma 6, we have

min {pb(sun’ Sun+1)>pb(sun+l’ Run+1 )}’
—— min {bp,m(suw Run+1)’ bp,m (Sunﬂ’ Run)}

< ﬁ(Run’ Run+1) min {pb(sun’ Sun+1)’pb(sun+1’ Run+1)}
——min {b,(Su,,;,Ru,)}

< K max {ph(Run’ Run+1)’pb(sun’ Run)}'
(23)
Keeping in mind (22), we get
min {pb(RurH-l’ Run+2)’pb (Run+1’ Run)’pb (Run+2’ Run+l)}
—— min {bp (Run+1’ Run+1 )’ bp (Run+2’ Run)}

< K max {pb(Run’ Run+1)’pb(Run+1’ R(un))}
= Kpb(RuwRunH)’

which is equivalent with

min {pb(RunH’ Run+2)’pb(Run+1’ Run)}
—— min {bp (Run+1’ Run+1)’ bp (R”n+2’ Run)} (25)

< Kpb(Run’ Run+1)'

Journal of Function Spaces

Therefore, we get

pb(RunH’ Run+2) < Kpb(Ruw Run+1)’ (26)

for any n € NU {0}.Let now {z,} be a sequence in M, with
z,=Ru, ; =Su,,n € NU{0}. First of all, we mention that
z, #2,,, for every n € N. Indeed, if we suppose that there
exists m, € NU{0} such that z, =z thus by (22),

we have

my+1>

Rum0+1 = Sum(, = Zmo = Zm0+1 = Sum0+l’ (27)

so that z,, ,, is a point of coincidence. Thus, z, #z,,, for
every NU {0} and (28) can be rewritten as

pb(zwznﬂ) SKpb(Zn—l’Zn)' (28)

Therefore, according to Lemma 7, the sequence {z,} is 0
-p,-Cauchy. Since the space is 0-p,-complete, it follows
that there is ze€ M such that

lim p,(z, 2,) = lim p,(z,,2) =p,(2,2) = 0. (29)

1,§—00

But, on the other hand, since z,=Ru,,; and the space
(R(M), py»s) is 0-p,-complete, we can find u, € M, with
z=Ru,. Thus,

lim p, (Su,,, Ru, ) = lim p, (Ru,, Ru, ) = p,(Ru,, Ru, ) =0.

n—o00

(30)

Supposing that Ru, # Su, for u=u, and y=u, and taking
into account the f-regularity of the space M, we have

min {p, (Su,, Su.), p,(Su, Ru,)) }
—min {b,(Su,,Ru,),b,(Su,, Ru, ) }

< <B(z,,z) min {p,(Su,, Su,), p,(Su, Ru,)}
- min {b,(Su,,Ru,), b, (Su,, Ru, ) }

= B(Ru,,, Ru, ) min {p, (Su,,Su,), p,(Su,, Ru,)}
- min {b,(Su,,Ru,),b,(Su,, Ru, ) }

< max {p, (Ru,,Ru,), p,(Su,, Ru, ) }.
(31)
If min {pb<sun,’su*)’pb(su*>Ru*>} =ph(su*>Ru*)’ the
above inequality becomes
pb(su*’ Rl/l*) — min {pb (sunl’ Su*)’pb(su*> Ru*)}
—min {b,(Su,,Ru,), b,(Su,, Ru,, ) } (32)
< x max {p, (Ru,,Ru,), p,(Su,, Ru, ) }.

Letting ] — o0 and taking into account (28) and (30), we get

Pp(Su,, Ru,) =0, (33)



Journal of Function Spaces

and by (pb),, (pb),, we have Su, = Ru, If min {p, (Su,,, Su,),
py(Su,, Ru,)} =p,(Su,, Su,), we find that lim,_.p,(Su,
Su,)=0. On the other hand, by (pb),,

py(Ste, Ru,) < s[py, (Su,, Su,, ) + py(S(hy, R, )| = py (S Sty )
(34)

and then, p,(Su,,Ru,) =0, as | —> co. This proves that z
=Su, =Ru,, that is, z is a point of coincidence for S
and R.

Example 2. Let M =[0,00) and p, : M x M — [0,00) be a

partial b-metric, where p,(u,y) = (max {u,y})*. Let the
mappings S,R : M — M,

+1
O ifueo,1],
Su= 2
3, ifu>1,
+2 (35)
”4 , ifueo,1],
Ru=
u+5
, ifu>1,
10

and the function 8 : M x M — [0,00),

1
2, forx=v=—,
2
ﬁ(x) V) _ 3, forx=v= 3, (36)

1, forx,v=>4,
0, otherwise.
Obviously, since x = Ru >4 for u > 35 we have

(i) For u,y>35

B(Ru, Ry) =1 = B(Su, Sv) = 3(3,3) =3 > 1,
(5 3) = BRO) RO) =2= BS(0).50) =5 (5. 5) =2
B(3,3) = B(R(25), R(25)) =3 = B(S(25), $(25)) = B(3,3) = 3.
(37)

Moreover,

B(Ru, Ry) min {p, (Su, Sy), p,b(Sy» Ry) }
—— min {b,(Su, Ry), b,(Sy, Ru) }

<min {p(3,3), (3, Ry}
=9,<«-16 <x-max {p,(Ru, Ry), p,(Su, Ru)},

(38)

for any 9/16 <k < 1.

(ii) All other cases are uninteresting due to the way the
function 3 was defined

Consequently, by Theorem 8, the mappings S, R have
points of coincidence. These are 1/2 = §(0) = R(0), respec-
tively, 3 = §(25) = R(25).

Corollary 9. Let (M, p,,s>1) be a complete p,-ms and two
mappings R, S : M — M. Suppose that there exists x € (0, 1)
such that

min {p,,(Su, Sy), py (Sy> Ry) }
——min {b,(Su, Ry), b,(Sy, Ru) } (39)

< x max {p,(Ru, Rv), p, (Su, Ru)},

for every u,y € M, such that u+y when u,y € C,(R,S),. If S
(M) c R(M) and (R(M), p,, s) is a 0-p,-complete p,-ms, then
the mappings S and R have a point of coincidence.

Proof. 1t is enough to choose 3(u, ) =1 in Theorem 8.

Theorem 10. Let (M, p,,s>1) be a complete p,-ms and a
mapping S: M — M. Suppose that there exists x € (0,1)
such that

P(uy) min {p,(Su, Sy). py(Sy ) }
— min {b,(Su,y), b,(Sy, u) } (40)
<k max {p, (, ), py (S, u) },

for every u, y € M, such that u + y. Suppose also that

(a) S is B-admissible, and there exists u, € M such that f3
(ug, Suy) > 1

(b) M is B-regular
Then, the mapping S has a fixed point.

Proof. Put R =1,, in Theorem 8.

Corollary 11. Let (M, p,,s=>1) be a complete p,-ms and a
mapping S: M — M. Suppose that there exists x € (0,1)
such that

min {p;, (Su, Sy), p, (S y) }
—— min {bp(Su,y), b,(Sy» u)} (41)
<k max {p,(1,y), py(Sth, u)},
forevery u,y € M,u # y. Then, the mapping S has a fixed point.

Proof. It is enough to choose 3(u, y) =1 in Theorem 10.

Theorem 12. Let (M, p,,s > 1) be a complete p,-ms and two
mappings R, S : M —> M. Suppose that there exist x € (0, 1)



and a > 0 such that
B(Ru, Ry)M(u, y) = a- Ny (u, y) < kp; (S, Ru)py, (Sy, Ry),
(42)
where

Mg (uy) = min {[p, (S, )1, [Py (Sy. Ry))’}
N () = min {b,(St, Ry)b, (Sy, Ru), p, (Sus Ry)py (Sit, Sy)» py(Sy, Ru)py (Ru, Ry) },
(43)

for every u,y € M, such that u#y when u,y € C.(R,S),,.
Suppose also that:
(a) S(M) cR(M) and (R(M),p,,s) is a 0-p,-complete
py-ms
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(b) S is R-B-admissible, and there exists u, € M such that
B(Ruy, Suy) > 1

(c) M is B-regular

Then, the mappings S and R have a point of coincidence.

Proof. Starting with a point u, € M such that S(Ru,, Su,) > 1,
we build the sequences {u,}, {z,} as in Theorem 8,

z,=Ru,,, =Su,, foralln e N. (44)

Using the same arguments, we can assume that z, #z
also, for all n € N. Thus, for u=u,, y=u,,,,

n+1>

M;,R(un’ un+1) =min {[pb(sun’ Sun+l)]2’ Lpb(sunﬂ’ Run+1)}2}

=[Py (Zns> Zn)]z’

Né,R(un’ un+1) = min

=min {pb(zn’znﬂ)]z’ [pb(znﬂ’znﬂz} (45)
{ bp(Sun’ Run+l)bp(sun+l’ Run)’pb(sun’ Run+1)pb(sun’ Sun+l)’ }
Pb(sun+1’Run)pb(Run’Runﬂ) (46)

. { bp(zn’ Zn)bp(zm—l’ Zn—l)’ pb(zn’ Zn+1)pb(zn’ Zn+1)’ }
= min =0,

pb(znﬂ’ un—l)pb(un—l’ Zn)

and taking into account Lemma 6, (42) becomes

M}S,R(un’ un+1) < ﬁ(Run’ Run+l )Mé,R(un’ un+l) —a- Né,R(un’ un+1)

< Kpb(sun’ Run) 'pb(sunﬂ’ RunH)'
(47)

Taking into account (46), the above inequality turns into

U)b(zwznﬂ)]z < Kpb(zn’zn—l)Pb(an’zn)’ (48)
or equivalent (since z,, # z,,,;)
pb(zn’zn+1) < Kpb(zn’zn—l)' (49)

M3 (s, ) = min { [p, (Su, Su,)]7, Iy (Sut R, )P .

Accordingly, from Lemma 7, it follows that the sequence
{z,} is 0-p,-Cauchy and due to the completeness of the
space, there exists z€ M such that limn — ocop,(z,),z)
=p,(z,z) =0. Following the corresponding lines in Theo-
rem 8, we can find u, € M such that Ru, =z. Supposing
that Ru, #Su” for u=u, and y=u, and taking into
account the assumption (c),

Mé’R (u”l’ u*) = ﬁ(Ru“N Ru*>M§>R (uf’z’ u*) -a Né,R (unz’ u*)
< Kpb (Surll’ Runl) 'pb(susﬂ Ru* )7
(50)

where

(51)

Ngg(t,>u,) =min {b,(Su,, Ru,)b, (Su,, Ru, ), p, (St » Ru, )p, (Su,, Su,, ), p, (Sts., Ru,, )p, (Rus,, Ru, ) }.
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Since lim;_, Nz (u,,u,) =0 and lim_ ., =p,(Su,,, Ru, ) -
P, (Su,, Ru,) =0 (by) letting | — oo in (50), we have

either [p, (Su,, Ru,)]> =0 orllirgo Py, (Sty» Su*)]2 =0. (52)

(1) If [p, (Su,, Ru,)]* = 0, it follows that Su, = Ru,.
(2) If limy_ o [py (Su,, » Su,)]* =0, by (pb),

py(Ru,, Su,) <s[p,(Ru,, Su, ) + py (Su,, Su, )| = py, (St Su, )
s[p, (Ru,, Sun[) +pp (Sunl, Su,)] — 0asl— oo,

(53)

IN

so p,(Ru,, Su,) =0
Thereupon, Ru, = Su, =z and z is a point of coincidence
of Rand S.

Example 3. Let M ={a,,a,, a3, a,, 05} and the partial b
-metric p, : M x M — [0,4+00) defined as follows (Table 1).

Mé,R(‘xZ’ as)

Py(Say, Ray )py,(Sars, Rexs)

Mé,R((XS’ ay) = min {[pb(Sas, 5“4)]2> [Py (Sory, Ravy)]
N (a5, @) = min {b,(Sas, Ray)b, (Sexy, Rats ),

Py(Sas, Rag)py,(Sery, Rety)

So, for any « € (0, 1), the inequality (42) holds. Therefore,
the mappings S, R have a point of coincidence, which is z = a,

Corollary 13. Let (M, p,, s > 1) be a complete p,-ms and two
mappings R,S: M — M. Suppose that there exist x € (0,1)

= min {[p, (S, Sas I [py (Sas, Rats)]
N p(ay, &) = min {b,(Saty, Ras)b, (Sets, Ry ),

=Py, 03)py(an, )

7
Let the function 8 : M x M — [0,+00), with
L for (1) € {(05,03). (a5, )},

B(u,y) =< 2, for(u,y)=(ayt,), (54)

0, otherwise,

and two mappings S, R : M — M (Table 2).
First of all, we remark that

B(as, a3) = B(Ray, Ras) =1 = f(Sa,, Sas) = (a3, &) = 1,
Blaz, ;) = B(Ras, Rayy) =1 = B(Sas, Say) = By, &) =2,
B(az, &) = B(Ray, Ray) =2 = f(Say, Say) = (e, &) = 2,

(55)

which shows as that (b) holds. Also, it is easy to see that (a)
and (c) are satisfied, so it remains to be verified (42). We
distinguish two cases as follows:

(1) (uy)=

(ap, a5)

)P} = min {[py (a5, @)% [pyb(e a3) P} =9,

b =min {b,(as, a3)b,(ay, as), -+ } =0, (56)
= Py (@3> &) Py (> &3) =22 - 3 = 66.
2) (uy) = (as, ay)

2} =min {[p,(a,, a)]%, [py (e, 0‘2)]2} =1
} 0, (57)

b =min {b,(ay, 6,)b,(ay, a3),

=3.-1=3.

and a > 0 such that
Mgg(t,y) = a- Ngp(u, y) < kp, (Su, Ru)p, (S, Ry),  (58)

where

Mg (u,y) =min {[p,(Su, Sy) 1%, [p, (Sy, Ry)|},
Ngg(u,y) = min {b,(Su, Ry)b,(Sy, Ru), p,(Stt, Ry)p, (Sui, Sy), p, (Sy, Ru)p, (Ru, Ry) },

(59)
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TaBLE 1
py(4:)) ! % %3 %y %5
a 0 2 6 30 42
o, 2 1 3 21 31
a 6 3 2 14 22
a, 30 21 14 5 7
as 42 31 22 7 6
TABLE 2
2! &%) a3 Oy s
S as as a, a, a,
o, as o, a, a

for every u,y €M, such that u#y when u,y € C.(R,S),,.
Then, the mappings S and R have a point of coincidence pro-
viding that S(M) c R(M) and (R(M), py,s) is a 0-p,-com-
plete p,-ms.

Proof. Put S(u, y) =1 in Theorem 12.

Theorem 14. Let (M, p,,s > 1) be a complete p,-ms a map-

ping S: M — M. Suppose that there exists x € (0,1) and
a>0 such that

B, y)Ms(u, y) = a- Ng(u, y) < p, (Su, u)p, (Sy: y),  (60)

where

M(u, y) = min {[p,,(Su, $y) 1%, [Py (Sy, »)* >

Ni(u, y) = min {b, (Su, y)b,(Sy, u), py(Sti )Py (St ), py(Sy> )Py (1,7) }»

(61)

for every u,y € Mu#y. Suppose also that

(a) S is B-admissible, and there exists u, € M such that f3
(ug Suy) = 1

(b) M is B-regular
Then, the mapping S possesses a fixed point.
Proof. Choose R =1I,; in Theorem 12.
Corollary 15. Let (M, p,, s> 1) be a complete p,-ms a map-

ping S: M — M. Suppose that there exists k€ (0,1) and
a> 0 such that

Mg(u,y) —a-Ng(u, y) < kp, (Su, u)p,(Sy ), (62)

where
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M(u, y) = min {[p,(Su, $y)I%, [P, (Sy »)I°}>
N(u, y) = min {b,(Su, y)b,(Sy: ), py (St y)py (Sths SY), Py (Sy, w)py (1, ¥) }»
(63)

for every u,y € M, u#y. Then, the mapping S possesses a
fixed point.

Proof. Put B(u, y) =1 in Theorem 14.

Theorem 16. Let (M, p,, s> 1) be a complete p,-ms and two
mappings R, S : M — M. Suppose that there exist x € (0, 1)
and a > 0 such that

B(Ru, Ry)M g (1, y) < - N5 (1, 9), (64)

where

M3 (1) = py(Stt, SY)py (Sys Ry) — a - min {b,(Su, Ry), b, (Sy, Ru) },

py(Sts Ry) + py,(Sy» Ru)
2s ?

N2 (1) = py (Rut, Ry) - max {pb<5u, Rut) py (59, Ry),

(65)

for every u,y € M, such that u#y when u,y € C.(R,S),,.
Suppose also that

(a) S(M) cR(M) and (R(M),p,,s) is a 0-p,-complete
py-ms

(b) S is R-B-admissible and there exists u, € M such that
B(Ruy, Suy) > 1

(c) M is B-regular

Then, the mappings S and R have a point of coincidence.

Proof. We will only sketch the proof, because, basically, we
use the same technique that was used in the above theorems.
Indeed, for u=u,, y =u,,,, where the sequences {z,}, {u,}
are defined in Theorem 8, we have

M%,R(”n’ Upy1) = Py (Sthys Sthyy1 )Py (Sthyyrs Rty y)
——a-min {b,(Su,, Ri,,), b,(Sih,,,,, Ru,) }
=pb(zn’zn+1)pb(zn+l’ Zn)
—a-min {b,(2,2,) b, (2,115 2,-1) }

= [pb(zn’ Zn+1)]2’



Journal of Function Spaces

2 = .
NS'R(un’ un+l) _pb(Run) Runﬂ) max { Pb(sun’ Runﬂ) +Pb(Sun+1’ Run)

2s
Ph(zn—l’ Zn)’Pb(Zn’ZrH-l)’
- max Pb(zn’zn) +pb(zn+1’zn71)
2s

Spb(znfl’zn) : mpb(znfl’zn) - max

pb(znfl’zn)’pb(zn’znﬂ)’ }

Pb(sun’ R”n)’pb(sunﬂ’ R”n+1)’ }

Pb(zn’ Zn) + S[Ph(zn+1’ Zn) +Pb(zn’zn+1)] _pb(zn’zn)
2s

zZ, ,Zn + Z,, 2y,
: {pb(znfl’zn)’ph(zwZn+l)’ Pb( - )Zpb( +1)}

=Pb(zn—l’zn) +max

pb(znfl’zn) - max {pb(znfl’zn)’pb(zn’zn+l)}‘

(66)

Thus, the inequality (64) becomes

[pb(zn’ Zn+1)}2 < Kpb(zn—l’ Zn) - max {pb(zn—v Zn)’Pb(zn’ Zn+l)}'
(67)

Since for the case max {p,(2,_1>2,)> Py (2w Zpi1) } = Py (2,5
Zn+1) we get [pb(zn’zn+1)]2 < Kpb(zn—l’ zn) 'pb(zn’ zn+1)’ or
P2 Zp1) < 6Py (2,215 2,,) < Py(2,-1>2,,)> Which is a contra-
diction, we conclude that max {p,(z,_,,2,), P, (2, Z,1)} =
Pp(2,_1>2,,) and then (67) becomes

pb(zn’znﬂ) < Kpb(zn—l’zn)’ (68)

for any n € IN. Therefore, by Lemma L2A and using similar
arguments as in Theorems 8 and 12, there exists u, € M
such that

lim p, (Su,,, Ru, ) = lim p, (Ru,, Ru,) = p,(Ru,, Ru, ) =0.
n—00

n—00

(69)

Finally, we claim that Su, = Ru,. From the assumptions (c),
there exists a subsequences {u,, } of {u,} such that B(u,,
u,) > 1. Thus, replacing u by u, and y by u,, we get (as

%

| — )
lim M3 (u,,u,) = lim [p, (Su,, Su,)p,(Su,, Ru,)
——a-min {b,(Su,,Ru,),b,(Su,, Ru, ) }|
=Py (S, Ru,) - lim [p, (Su,,, Su,),
lim N§p (u,,u.) = lim p, (Ru,, Ru,)

n—oo

Py (St Ruty, ), py(Stts Rut, ),

AN 5, (Sta,,» Rut,.) + py (Sut,, Rus, )

2s

(70)

Consequently, (64) becomes p;(Su,, Ru,) -lim,,_,,[p,(Su,,»

Su,) =0 and the rest is just a verbatim repetition of the lines
in the previous proofs.

Corollary 17. Let (M, p,, s > 1) be a complete p,-ms and two
mappings R, S : M —> M. Suppose that there exist x € (0, 1)
and a > 0 such that

Mé,R(”’)’)SK'NiR(”’J’)’ (71)
where

M3 (1, y) = P, (Sts, Sy)p, (Sys Ry) — a - min {b,(Su, Ry), b, (Sy, Ru)},

Py(Sts Ry) +py (Sy» Ru)}

Na(5) = pu(Ras Ry) - {50 R (59 R), .

(72)
for every u,y € M, such that u+y when u,y € C.(R,S),,. If S

(M) c R(M) and (R(M), py, s) is a 0-p,-complete p,-ms, then,
the mappings S and R have a point of coincidence.

Proof. Let (u, y) =1 in Theorem 16.

Theorem 18. Let (M, p,,s>1) be a complete p,-ms and a
mapping S : M —> M. Suppose that there exist k€ (0,1)
and a > 0 such that

B(u, y)M3 (1, y) < k- N3(u, y), (73)

where

M{(u,y) = py (S, Sy)py (Sy» y) — @~ min {b,(Su, y), b,(Sy, u) },

Pu(Sthy) + py(Sys “)}’

N3(00) = ) - {pu(5 ),y P22

(74)

for every u, y € M. Suppose also that

(i) S is B-admissible, and there exists u, € M such that
B(Ruy, Suy) > 1

(ii) M is B-regular
Then, the mapping S admits a fixed point.
Proof. Choose R=1,,.
Corollary 19. Let (M, p,, s > 1) be a complete p,-ms and two

mappings R, S : M — M. Suppose that there exist x € (0, 1)
and a > 0 such that

Mg(u,y) < Ni(u,y), (75)

where
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M3 (u, y) M3 (1 y) = py (St Sy)py (87> y) = a- min {b,,(Su y), b,(Sy» )},

Su, y) +p,(Sy, u
N3(03) = ) - m {pu(5 ), py (), P2 PR,

(76)

for every u, y € M. Then, the mapping S has a fixed point.
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The aim of the paper is twofold: we introduce new positive linear operators acting on continuous functions defined on a simplex
and then estimate differences involving them and/or other known operators. The estimates are given in terms of moduli of

smoothness and K-functionals. Several applications and examples illustrate the general results.

1. Introduction

Differences of positive linear operators were intensively
investigated in the last years; see [1-14] and the references
therein. The operators involved in these studies act usually
on continuous functions defined on real intervals, and the
differences are estimated in terms of moduli of smoothness
and K-functionals. In some papers, operators having equal
central moments up to a certain order are considered. Other
articles deal with operators constructed with the same funda-
mental functions and different functionals in front of them.

The study of differences of positive linear operators is
important from a theoretical point of view, but also from a
practical one. Let (U,) and (V) be certain positive linear
operators. If we know that |U,(f) — V,,(f)]| is small, we can
choose (U,,) or (V) taking into account other qualities of
them like shape-preserving properties and smoothnes-
s/Lipschitz preserving properties.

This paper is concerned with differences of positive linear
operators acting on continuous functions defined on simpli-
ces. For the sake of simplicity, we consider only the case of
the canonical simplex in R?, where the notation is simpler,
but the results can be easily translated to an arbitrary simplex
in R".

We consider the bivariate versions of some classical oper-
ators like Bernstein, Durrmeyer, Kantorovich, and genuine
Bernstein-Durrmeyer operators. These bivariate versions

were already studied in literature from other points of view.
We introduce the bivariate versions of other operators: U’
(see [15, 16]) and the operators defined in [17]. All these
operators are constructed with the fundamental Bernstein
polynomials on the two-dimensional simplex. A different
kind of operator is the bivariate version of the univariate Beta
operator of Mithlbach and Lupas (see [18-20]); we introduce
it and use it in composition with the Bernstein operator to get
a useful representation of U®.

We get estimates of differences of the abovementioned
operators, in terms of suitable moduli of smoothness and K
-functionals.

To resume, the aim of our paper is twofold: we introduce
new operators on a simplex and then estimate differences
involving them and other known operators.

The list of applications and examples can be enlarged. In
particular, we will be interested for a future work in studying
differences of bivariate versions of operators, which preserve
exponential functions (see [21-23]). We also intend to
deepen the study of the newly introduced Beta operators on
the simplex and to consider the composition of it with other
operators, leading to new applications and-why not-new the-
oretical aspects/problems. Given a Markov operator (ie., a
positive linear operator which preserves the constant func-
tions), the study of its iterate is important not only in
Approximation Theory but also in Ergodic Theory and other
areas of research. We intend to investigate from this point of
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view the newly introduced operators, which are in fact Mar-
kov operators.

We end this Introduction by presenting some notation
and a fundamental inequality expressed in Lemma 1. Section
2 contains the main theoretical results, while Section 3 is
devoted to applications and examples.

Let S:={(x,y) € R*|x,y>0,x+y<1} be the canonical
simplex in R? and E(S) denote a space of real-valued contin-
uous functions of two variables defined on S, containing the
polynomials. Throughout the paper, we will denote by 1 the
constant function, namely,

1:S— R, 1(x,y)=1,(xy)€S, (1)

and pr;: S— R,i=1,2,will denote the ith coordinate
functions restricted on S, which are given by

pri(xy) =xandpr,(x,y) =y, (xy) €S (2)

Let F: E(S) — R be a positive linear functional such
that F(1) = 1. Set

bf = F(pr,),

j 3)
b§1>]>,i,je]N.

bf = F(pry),

= £ (pri=b{1) (-

Then, one has

F(pr) - (of)

2
= 0., = F(pri) - (1) =

vV

F F
Hio=0, 0= 0,

e

Let C*(S) be the space of all real-valued (continuous)
functions, differentiable on int (S) and whose partial deriva-
tives of order <2 can be continuously extended to S, having

1£1=sup {|f (% ¥)]: (x.y) €S} < 0. ()
Lemma 1. If f € C*(S), then
(F(F) = £ (6] 05) | < My {uudy + )

f xy ||’ }
Proof. Consider the line segment connecting (b!, b)) with (

t,,t,) € S. From Taylor’s formula (see [24], p.245), there is
a point (c;, ¢,) on this line segment, different from (b, bl)

where M £ :=max {

x|l yy

Journal of Function Spaces

and (¢, 1,), such that

fltnt) =1 (b5 05) + £ (01 67) (1 - 8]
o, (6105 (-8
+ %{fxx(cl’ ) (tl - bf)z (7)
+2f(c1n &) (tl - bf) (tz - b;)

-+ yy(CpCz)(tz - bg)z}.

Therefore, we can write
= f(vF b0 )1 (0] 5) (pra - bi1)
1, (587 (pro - ¥51))
< 5 {7l (pra = 11) 421, | - of1)
(o bF)|+HfWH<P’2 bZFl)Z} (8)
<3 { (1t 7 ]) (or- 01
(ol ) o)}
<y (pri=0f1) "+ (pra-2f1)’),

which gives the result.

xy

2. Difference of Bivariate Positive
Linear Operators

Denote by C(S) the space of real-valued continuous func-

tions on S with the norm ||f]| = (ma)txs|f(x,y)|,f € C(S). Let
x,y)€

K be a set of nonnegative integers and for k,l € K let p;; €
C(S), pi; =0, satisfy Y jcxpr; = 1. Let Fy;: E(S) — R and
Gy, : E(S) — R, k, 1 € K, be positive linear functionals such
that F; (1) =1 and Gy;(1) =1. Moreover, let D(S) be the
set of all f € E(S) for which

Z Fi(f)Pry € C(S)s

kleK

Z Gia(f)Pr; € C(S).-

kleK

Now, consider the bivariate positive linear operators V/
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and W acting from D(S) into C(S) defined, for f € D(S), by

V) (xy) = Y Fr(Hp( ),

kleK

y)= Z Gy (f)Piy(%:7)s

kleK

(10)
W(f)(x

respectively. For future correspondences, we denote

G F
o(x%y)= Z (/"20 +P‘2’6’+P‘0’§[+P‘02>Pkl(x’ ») (11)

k,leK
Fei 1 Fry G 1.6k
(bl bt )—(bl RO

where |-| is the /,-norm in R?
In the following, we adopt the definitions of K-functional
and modulus of smoothness from [25, 26]. Let

d = sup
kleK

(12)

S(h)={xeS|x+hteSfor0<t<1},heR> (13)

For r € N, rth order differences on the subset S(rh) are
defined as

A f(x)= i(—l)f-k<;>f(x+kh). (14)

The rth order modulus of smoothness of f is a function

w, : C(S) x (0,00) — [0,00) given by
w,(fra)= sup [ 4]l a>0. (15)
0<|h<a

Let C'(S) be the space of all real-valued (continuous)
functions, differentiable on int (S) and whose partial deriva-
tives of order <r can be continuously extended to S, with the
seminorm

|9|cr(5) = Z

Y1ty =1

r
<00,y;20,i=1,2,y, +y,=r1.

_99
oxN ayY2
(16)

For f € C(S), we shall use the following K-functional:

K, (1) =inf {1 = g]l + 19less

@ 9€C )} 7)

Then, there exist ¢;, ¢, > 0 such that for any ¢ > 0 (see [25,
26])

K, (f ) <0,(f.) SO, (o), (18)

Here, ¢, depends only on r (for the general definition on
the L, 1 <p < oo, spaces of functions on bounded domains,
see [25] or, on unbounded domains see [27], p.341.

Theorem 2. If f € D(S) N C*(S), then
((V=W)(N)(xy)| < Myo(xy) +w,(f,6),  (19)
where M is defined in Lemma 1.

Proof. Let (x,y) € S. From Lemma 1, we get

[(V=-W)(£) @) < Y [Fulf) -

k,leK

< % st - (4708

k,JeK
+|Galh) = (0705 [+ (01 15
F (B ) <My Y piey) e + i + il + 5
kleK
v (£5|(067) - (67 657)|) < Mpo(y) + @i (£.9).
(20)

Gri()|Prs(y)

Theorem 3. If f € C(S), then

(V= W) )| <7,0,(F.8) + 105 (£ 1/ (5.)),
(21)

where 1,1, > 0, and & = sup; leK{|bF"l Gk’1| + |b§k’l - bZGk"|}

Proof. Let g € C*(S). From Theorem 2, we get

(V=W))< V(- g)(xp)|+|W(g-f)(xy)]
+{(V=W)(g)(xy)| <2|f - gl + Myo(x.y)

Jo(br ) o (o))

where M is the same notation as in Lemma 1 for g. Since

(22)

partial derivatives of g exist and are continuous everywhere
in §, it follows that g is differentiable at every point of the line

segment connecting the points (bf"'l, b; *) and (bG” bG” ) in
S, k,1e K. By the mean value theorem (see, e.g., [24] p-
239), there is a point (a,, a,) on this line segment such that

(7965 - g (67,657) = v ) (0 - )

¢ gy o) (o -5,

(23)
From (16), we get
() o8 st o
o [o2 - 02 < gl sup ol -] 29)
‘bF“ b4} <01glcsy ko L€ K.




Moreover, since M, < |g] c(s)» (22) gives that

[(V=W)(H)xp)<2]f - gl +0lglcs,

(25)
+0(x9)|9|cs) < Ki(f>6) + Ky (f, 0(xy))-

Finally, from (18), we obtain

(V= W)(F) (0 2)| <@, (f8) + 1,05 (£ /o (7))
(26)

3. Applications

3.1. Difference of Bivariate Bernstein Operators and Their
Durrmeyer Variants. For every n>1,f € C(S), and (x,y) €S
, the nth bivariate Bernstein operator B, : C(S) — C(S) is
defined by

k 1
B = X (e )paies)
ki=0.--p NPT (27)
k+i<n
where
n'

Pugi(%y) = mxkyl(l —X —J’)nfkfl, (28)

with k,1=0, -, n,k+1<n,(x,y) €8, (see, e.g., [28], p. 115).
For f e L'(S), the bivariate Durrmeyer operators M,
: L1(S) — C(S) are defined by

M(HE)= Y 0n+lﬂn+%JJ:}MA&0

k1=0,---n
k+l<n
f(s, t)dt ds)h,k,z(x, ),
(29)
see, e.g., [29].
Now, denoting
k 1
Fn,k,z(f) =f i ,0<k+1<n,
1 pl=s
G (f) = (n+1)(n+ 2)J J Pois(s O (5 )dt ds,
oJo
(30)

the bivariate Bernstein operators and bivariate Durrmeyer
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operators can be written as

B,(f)xy)= )
kI=0,--n
k+i<n

M,(H)xy)= )
kl=0--n
k+l<n

Fr g1 (f)Pnps(%7)>

(31)
Gt (/)P s (%:7)s

respectively.

Proposition 4. For bivariate Bernstein operators and their
Durrmeyer variants, the following properties hold:

(i) If f € C*(S), then

K&—MMﬂmﬂBMWWﬂ+%(,¥L) (32)

n+3

where Mf is the same as in Lemma 1 and

(- =y +x+y)’ + (F+y +2)n+ 4 _ 1

o(6y)= (n+3)2(n+4)

T n+4
(33)

(ii) If f € C(S), then

33> + 1,0, (f, G(x,y>)-

n+

IG&—A%XfX%yNSnmn<ﬂ
(34)

Proof. We need to evaluate the terms in (11). So, we get the
following results:

ban,k,l _ 5 b;‘n‘k,l _ l
n n (35)
bGn,k,l _ k+1 bGn,k,l _ I+1
! +3772 n+3’
0 <k + 1< n. Therefore, we easily obtain that
F, G, k+1)(n+2-k
5 =0,y = % >
(n+3)(n+4) (36)
‘MFn,k,I _ MGn,k,I _ (I+)(n+2-1)
02 $ro2 (n+3)2(n+4) '
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Using Maple, one obtains

(k+1)(n+2-k)
(n+3)*(n+4)

a(xy)= )
kl=0,---n
k+l<n

(n+3)*(n+4)

. (l+1)(n+2—l)]

=y +x+y)n’+ (P +y +2)n+4
pugaoy) = & Jr Jntd
(n+3)"(n+4)

(37)

It is easy to verify that o(x, y) <
Now, for 8, we obtain

1/(n+4).

8= max { bFn,kJ _ bGn‘k,l + ‘bFn,k,l _ bGn,k,l }
0<k+l<n ! ! 2 2
n-3k| | n-3l 3 (38)
= max + = .
osk+isn | |n(n+3)|  |n(n+3) n+3

The rest of the proof follows from Theorems 2 and 3.

3.2. Difference of Bivariate Bernstein Operators and the
Bivariate Operators A,,. Let IT, be the space of polynomials
over [0, 1] of degree at most . In [17], Aldaz et al. introduced
a Bernstein operator A, : C[0, 1] — IT, that fixes 1 and x°.
The operators A, are given by

_N k(k=1)\'"?\ (n (1 = )
>—,§f<(n(n_1)> ><k> (1=

(39)

Here, for f € C(S) and (x, y) € S, we introduce the bivar-
iate form of the operators A,, as follows

(k-1) [I(I-1)
A, (f)(xy) = f(\/ \/ )Pn, 1(%7)-
kil= OZ ( 1) n(n - 1) o

k+l<n

Denoting

for k,1=0,---,n, k+1<n, we get

5
b Fugr _ E bFn‘k,I _ 1
n’ 2 n’
nkl k_ 1)
- (n-1y
Hz?)kl = //‘03“ = P‘z?)kl = Ho, Ekl =
2
5= kln(l)ax { bfn,k,l _ b?n,k,z + ‘bgn‘k,l _ bZGn,k,l } =
L= ).--’n
k+l<n
(42)

Proposition 5. For bivariate Bernstein operators and bivari-
ate operators A,, the following properties hold:

(i) If f € C*(S), then

(ii) If f € C(S), then

(B =) s (£.2). ()

3.3. Difference of Bivariate Bernstein Operators and Bivariate
Genuine Bernstein-Durrmeyer Operators. In 1987, Chen [30]
and Goodman and Sharma [31] constructed the following
positive linear operators

Un,l(f)(x) :f( )pnO( ) f( )pnn(x)
+ ank

- jopn,z,k,1<t>f<t>dt,

n—l

where n € N,f € C[0, 1], and

Poi(x) = (Z)xk(l—x)”k,xe 0,1,0<k<n. (46)

For the historical background of these operators, we refer
to [32]. In 1991, Goodman and Sharma [33] constructed and
studied the multivariate form of the operators U, ; on a sim-
plex. In [34], Sauer deeply studied the multivariate genuine
Bernstein-Durrmeyer operators. Here, for f e L'(S), we



consider the bivariate form given by
U, (F)(5:3) = £(0,0) (1~ - )" + F(L, 0)" + £(0, 1)y”
n—1 1
+ ZPn,o,z(x’)’)(” - 1)J0Pn_2)l_1(t)f(0, t)dt
I=1

1

+ 3 Pacal8 )0 1) poases (s 0)s
k=1 0
+ kipn,k,n—k(x’y)(n - 1)

1
- j Pran (D (11— 1)t
0
+ Z Pujei(%y)(n=1)(n-2)
k+il<n—1
k>1,1>1

1 p1-t
- j j Do (5 0F(s t)dsdt

oJo

(47)
with the bivariate Bernstein’s fundamental functions given by
(28) (see [33], Formula 1.7). These operators satisfy U, (f)(
x,y) = f(x, y) at the vertices of S.
Proposition 6. For bivariate Bernstein operators and bivari-

ate genuine Bernstein-Durrmeyer operators, the following
properties hold:

(i) If f € C*(S), then

(B, = Up) () (% 3)| < Myo(x, y), (48)

where Mf is the same as in Lemma 1 and

(x+y—x2—y2)(n—1)< 1

n(n+1) T 2(n+1)’

o(xy) = (49)

(ii) If f € C(S), then

(B, = U) () (3) <1, (f3 /o (x7)). (50)

Proof. If we denote

k 1
Fpa(f) ’=f<;, ;>,0Sk+ls n,

Guno(f) =f(1,0),k=n,1=0,

Gn,O,n(f) :f(O’ 1)> k= 0, /= n,
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1

Goolf) = (- 1>j0pn,z,k,1<s>f<s, 0)ds, 1 <k<n—1,1=0,

1

Goi(f)=(n- 1)J0Pn—2,l—1(t)f(0’ t)ydt,k=0,1<l<n-1,

1

Goni () = (- 1>J0pn,z,k,l<t>f<t, 1-1)

-dt,1<k<n-1,l=n-k,

Goa(f) = (n=1)(n - 2)“07 Prssria (s DF ()

sdsdt,1<k+Il<n-1,

(51)
then for the bivariate Bernstein operators, we have
B,(N)oy)= Y Fura(N)Pusa(x).
kl=0,--n (52)

k+i<n

The bivariate genuine Bernstein-Durrmeyer operators
are given by

Un (f) ('x’y) = Z Gn,k,l(f)pn,k,l(x’ y)
k,é{:ol,m,n (53)
+i<n

Now, for 0 < k + 1< n, we get

k l k I

F?’l FYI GYI GVI
b, ,k,lzz,bz ‘kJ:;’bl ,k,z:;,bz ,k,l:Z. (54)
Hence, we obtain
Foki _ Gkl _ k(n B k)
o0 =00 Ry (55)
0.2 0T 2 (n+ 1)
Therefore, § =0 and
k(n-k) I(n-1)
G(x’ y) = Z 2 2 Pn,k,l(x’ y)
=0 on n*(n+1) n*(n+1)
k+i<n
~ (x+y—x2 —yz)(n— 1)
= Sy , (%) €8.

(56)

The proof is concluded by using Theorems 2 and 3.



Journal of Function Spaces

4. The Difference U’ — 048

Let p >0 and n € N. The operators U, : C[0, 1] — [], are
introduced by Paltanea in [35] (see also [15, 16]). These oper-
ators are defined by

n-1 ke 1(1 t)(n—k)p—l
Z(J Bke (n-0p) ) (s7)

P () +F(0) (1= )" + f(1)x"

where f€C[0,1], x€[0,1], and SB(-,
function.

Here, for f € L'(S), we consider the bivariate form of
these operators, given by

-) are Euler’s Beta

Unf (% y) =£(0 0)(1—x—y)"+f(1’0)x”+f(0:1)y”

+ FZ,O,l(f)pn,O,l(x’y)
=1

Z nkO pnkO x’y)

=1
-1

+ FZ,k, (f)Pnkn k('x y)
+ k=1 Z nkl(f)Pnkl(x ¥)>
k>11>1
k+l<n-1,
(58)
where
N L (T
Fn,(),l( ’
(lP>( -Dp)
gy =9 0
n,k,0 (kp, (n - k) )
kp— k)p- —
, f t f(t 1-t)dt
Fopni(f) = (kp, (n—k)p) ’
. .U s LleL (1 — s — 1) KDL (s pydsdi
n,k,l 'U skp- ltlp 1(1 5— t)(”fkfl)pfldsdt '
(59)

It can be easily seen that, for p = 1, we obtain the genuine
Bernstein-Durrmeyer operators U,,. On the other hand, these
operators have the following limiting behavior.

Theorem 7. For any f € C(S), one has lim Uh(f)=B,(f),

p—c0

uniformly.

7
Proof. Letf:prj,j:O, 1,---. Then,
(kp+j—1) - (kp)
Fnkl(pﬂl) T EE
L | (60)
; P i\ =
plgann,k,z(Pf]l)—( ) =pr} (n n)
Since
1,j=0, , _
B, () - { ™ () = Bk (o)
0,j>0, (61)
_(kp 1) (kp)
(np+j=1) - (np)
we get

Jim F o (prf) = pﬂ( ) lim Fy,(pri) = (k)j=pr’{ (%0)
Pkanﬁ,k,n—k (P"i) = <§)J :P"{ (S n; k>~

(62)

Similar results can be obtained for prj ,j=0,1,---.
Using Korovkin’s theorem (see [36], p. 534, C.4.3.3), it
follows lim Fhuv(f) = f(uin, vin). Therefore,

p—00

lim UA(f)=

p—00

B,(f).f € C(9)- (63)

Proposition 8. For the bivariate operators U, the following
properties hold:
(i) If f € C*(S), then
(UL = U) () (% 7)< Myo(x, ), (64)

where Mf is the same as in Lemma 1 and

(nr+np+2)(x+y-x>—-y)(n—-1)
n(np+1)(nr+1) '

o(x,) =

(i) If f € C(S), then

(U= U y) < (f3/o(x).  (66)

P P
Proof. Since b,"*' = k/n, b,"*' = l/n, we get

Jid k(n—k) F, ln=1)
Hap” —W’//‘o,z —m- (67)



Therefore, § =0 and

(nr+np+2)(x+y-x>=y*)(n-1)

n(np +1)(nr+1) (68)

o(xy) =

5. Difference of Bivariate Bernstein Operators
and Their Kantorovich Variants

In 2017, F. Altomare et al. [37] introduced Kantorovich oper-
ators on S as follows

C,(Nxy)= )
k=0, --
k+l£n

k+as l+at
P”klx’ 2”5](<n+a n+a)d5dt’

(69)

where p, ;. ,(x, y) is given by (28). It can be easily seen that, for

a=1, we obtain Kantorovich operators K, introduced in
(38].
If we denote

k+as I+at
=2 7
Gl =201 (g g e 0
the bivariate Kantorovich operators can be written as
CNEY= D Gl Pulxy).
kl=0,--n (71)
k+l<n

Proposition 9. For bivariate Bernstein operators and bivari-

ate Bernstein-Kantorovich operators, the following properties
hold:

(i) If f € C*(S), then

(B~ €59 < Mot y) v (£ 5 ) (72)

where Mf is the same as in Lemma 1 and

(73)

(ii) If f € C(S), then

B~ € ) <101 (£ 5y )+ (7, /)

(74)

Proof. As in the previous examples, taking Bernstein opera-
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tors as

B,(f)(xy)= Z Fri(F)Pupei(%7)s

k1=0.---n (75)
k+l<n
we get
v = f bk = f
n n
(76)
Gy _ 3k+a g, 3l+a
Y 3(m+a) ? 3(n+a)
Therefore, we easily obtain that
2
Fri ki a
1=, = -
Hro = P‘zo 18(n+a)2
) (77)
P
02 02 18(n+a)2
Then
a? a?
o(x.y)= Z Pug(%7)
KO O )? 9(n+a)
k+I<n
(78)
Moreover, we have
5= Onlgalx { bfk,l _ bIGk,l n ’bfk,z _ bZGk,l }
<K+I<n
(79)

a|l3k—-n|  a|3l-n] 4qa
= max + < .
osk+izn | 3n(n+a)  3n(n+a) 3(n+a)
Then, the proof follows from Theorems 2 and 3.
6. A Beta Operator on C(S)
For p € (0,00), f € C(S), and (x, y) €, let us define

(), (%) €{(0,0),(1,0), (0, 1)},
JosP (1= 5)PII N f (s, 0)ds

B(Px p(1-x)) x€(0,1),y=0,
[ (1= 0PI (0, de
'g‘z’jp(f)(xy)’) = B(py, p(1-y)) ,x=0,y€(0,1),

féu""'l(l - u)”(l_")_lf(u, 1-u)du
B(px, p(1-x))
[P (1= s = )P PP f (s, 1) dsdt
HSSP"’lt!’J”l (1—s— )PP P dsdt

,y=1-xx€(0,1),

, (%, p) €int (S).
(80)

For p = n € N, this is the bivariate version of the operator
B,,; see [39] and the references therein.
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Theorem 10. %, is a positive linear operator acting between
C(S) and C(S). Moreover,

B,(1)=1, (81)

and if ¢, (x, ) =priprh(x,y), (x,y) €S, i>0, j> 0, integers,
then

e px(px+1) - (px+i—1)
935;)(‘/’1',]')( ) plp+1) - (p+i—1) (82)
ey +1) - (py+j-1)
plp+1)-(p+j-1)

Proof. It is easy to prove (81) and (82) by direct calculation. It
remains to prove that if f € C(S), then, B,(f) € C(S). To do

this, it suffices to verify that %,(f) is continuous at each
point of the boundary of S. Let us prove that if 0 < a < 1 then

(xy)h—m>(a,0) Bp(f)(x7) = By (£)(@0)- -

(xy)€int (S)

Let V(g : C(S) — R, V,0/(9) = B,(g)(a,0). For (x,
y) €int (S) define U, ) : C(S) — R, Uy, (9) = B,(9)(x,
), g € C(S). Then, U,y and V , are positive linear func-
tionals of norm 1.

Let £ > 0. Then, there exists a polynomial function p on §
such that || f - p||, < /4. Using (82), it is easy to verify that

(x,y)h—rn>(a,0) U(x,y) (p) = V(a,O) (p) (84)

(xy)eint ()
Consequently, there exists § > 0 with

ICGey) = (a,0)]]; <. (85)

N ™

’U(x,y) (p) - V(a,O) (p)‘ S

So, if ||(x, ¥) — (a,0)]|, < &, we have

’U(m ()= Vo) (f ’ ‘U = Uy (P)’
+ ’U(x,y) (?) = Vi) (P) ’ + ‘V(a,o) () = Vi (f )‘ (86)

€
SIf =Pl t 5 +lP-flloo =2
This shows that

(X’J’)h—m>(a,0) Uty (F) = Viag) (). f € C(S), )

(xy)eint (S)

and then (83) is proved.
The continuity of 9B,(f) at the other boundary points

can be proved similarly.

Proposition 11. For each f € C(S), one has

lim % (f) f. (88)

p—>00

Proof. Using Theorem 10, it is easy to verify that (88) is valid
for the functions 1, pry, pr,, pr + pri. But these functions
form a Korovkin test system (see [36], p. 534, C.4.3.3), so that
(88) holds for each f € C(S).

In what follows, we formulate a

Conjecture 12. If f € C(S) is convex and (x,y) € S, then, the
function p— RB,,(f)(x, y) is decreasing on (0, c0).
It is supported by the following facts.

(i) The unidimensional version of the conjecture is valid:
see [14, 40].

(ii) B, is a positive linear operator preserving the affine
functions; this implies

B,(f)=f>f € C(S)convex. (89)
Now, (88) combined with (89) support the conjecture.

(iii) The conjecture is valid for the functions prll‘,prlz‘,
(1-pr, ‘P”z)k’ keN

In the sequel, we present two results under the hypothesis
that the conjecture is true. To this end, let us introduce some
notation.

Let f € C*(S) and

m (f)::min fxx(x }’)_

<5y
}

) )es

(90)

XX 4

{
m,(f) = min {fyy<x »)
{fute

Then, the functions ¢(x,y)=f(x,y) — 1/2m,(f)x* - 1/2

my(f)y” and y(xy):=12M,(f)x* + 112M,(f)y’ - f(x,y)
are convex on S; indeed, for each of them, the Hessian matrix
is positive semidefinite.

M(f) = max {fyy<x, »+

fyy(%:7) \

Theorem 13. If f € C*(S) and o > p > 0, then

o-p

o 1)y MR =)+ malf)y(1 =)

<B,()(%7) - Bo(f) (%)

< St 1w 7y MR =)+ May (I =) () €5
(1)
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Proof. Let 0 > p > 0. If the Conjecture is true, we have &,(¢
)2 B, (¢) and B, (y) =2 B,(y). Thus

X p-0o)(1-x)
_t%g(f)(x>y)+Eml(f)(0_+1)(p+1) (92)
y (p—o)(1-y)
F3mU e
Consequently,

Bo() (%) = Bo(f)(%.7)

—a (93)
> e ey M=) )y (1 =)

Moreover,

0s@Awm”-@Awmﬁ=§Mwﬁ

S0 (R - 8,1 5) + B () 9)
(94)
Now,

Bp(f)(%:y) = Bo(f)(%:)
<__I°P
T 2(0+1)(p+1)

+M,(f)y(1-y)].

(M (f)x(1=x)  (95)

So, combining (93) and (95), we have proved the
theorem.

Theorem 14. If f € C*(S) and o > p > 0, then

(n-I)(o-p)
)

2(no+1)(np+1)

[m; (f)x(1 - x)

(Y-S VNN - Vi) o
< M[M (f) (1 — )
(no +1)(np+1)
My(fly(L =) (x.y) €
Proof. It is easy to verify that Uy =B, o B, and, if u:= pr,
then
By 1) 5y) = (EELLEDE

np+1

Using these facts and supposing that the conjecture is
true, we have

UL(9) 2 Us(9) and Uri(y) 2 Uy(y),0 > p>0. (98)

Journal of Function Spaces

Now,

0<UN(g)(xy) = Un(e)(xy) = Un(f)(xy)

SULN) = 5 K= m ) g

(no+1)(np+1

(n-1)(0-p)

—W)’(l_}’)mz(f)-
Thus,
UB(F)(69) - V() (5 7) 2 =P et -5

2(no+1)(np+1)
+my(f)y(1 =)l
(100)

From Uf(y) = U%(y), we get a similar upper bound for

UL(f)(x, ) = U(f)(x, y), which concludes the proof.
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In this article, our main purpose is to define the (p,q)-variant of Szdsz-Durrmeyer type operators with the help of Dunkl
generalization generated by an exponential function. We estimate moments and establish some direct results of the
aforementioned operators. Moreover, we establish some approximation results in weighted spaces.

1. Introduction and Preliminaries

The well-known Bernstein operators [1] and the g-Bernstein
operators have become very important tools in the study of
approximation theory and several branches of applied sciences
and engineering [2, 3]. A good approach to introduce the
(p, q)-analogues in approximation theory is given by
Mursaleen et al. [4] by an idea of newly introduced integers
known as(p, g)-integers and which is [a],, = (p* - q*/p - q),
a=0,1,2,---,q€(0,p)and p € (g, 1]. In (p, q)-calculus, there
are generally two types of exponential functions which are
defined as follows:

0 h
_ (a(h-1)12) Y
e,,(V)= ) p ,
Pq ()’) F;) [h]p,q!
(1)

h

_ N’ ah-12) Y
Ep,q(y) - Z q( (h-1) >[h] ;-
h=0 pq’

In 1950, Szasz [5] defined positive linear operators on
[0, 00), and the Dunkl modification of these operators were
given by Sucu [6] who was motivated by the work of
Cheikh et al. [7]. The new generalization of these Szész
operators [6] in quantum calculus (via g-analogue) was

introduced in [8] by Igoz and Cekim. Very recent work
on the quantum Dunkl analogue in postquantum calculus
studied in [9] for a set of all continuous functionsfdefined
on[0, co)denote it asf € C[0,00); for parameterd > —(1/2),
they designed the following operators:

1 = ([a]fivqy )h (h(h—l)/Z)f
eA’P,q([(x]p)qy) i Yapa(M (2)

. <ph+2/16h _ qmz/\eh)
PP - q%)

Dypa(fsy) =

Lemma 1. For f(t)=1,t,t%, we have

Da,p,q(l ’y) = 1’
Dypg(t5) =y

o ((q/p> (o] p,qy)

erpa([0,,7)

1
)’équ(’z ) Sy T

¥+ ﬂ [1-2A]
o g [ ]P,q

[ ]M 1+ ZA]M;V.

(3)
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Moreover, for every A >—(1/2) and 0 < g<p <1, where
exponential functions and recursion relations are given by
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[ h
- Y
erpq(y) = ), pPI =, (4)
- ;;) Vapa(P)
R+1)2]-1 o) (1) i [h12)- j j
. Hl[(:(;f )/2] P ((pZ) PP ( )1 ZMI)H;— J+1<(p2)1p2 _ (qz)qu) -
y}t,p,q( ) - (p _ q)h >
e+l
pz)t(—l) +1 (pZ/\eh+1+h+l _ q2/\6h+1+h+1)
h+1)= h), (6)
y/\,p,q( ) (p_ q) YA,p,q( )
0 0, forh=0,2,4,--, )
" 1, forh=,1,3,5, .
For h=0,1,2, ---n, the number [1/2] denotes the greatest o h
integer functions. R, (y) = [“]M <[ ]P"fy ) (h(h-1)/2)
The g-analogues of Szdsz operators on the Dunkl type “pa e ([a] y) Yapq (™) ’
have been studied by several authors in [10-12] and for post- AP
quantum calculus in [9, 13-15]. We also refer some useful L (142)6,)(1+200,-1)12) h+220, B
research articles on these topic (see [16-33]). Some conver- Capat) =P ' ' ([oc]mt) EM( q[“]pﬂt)’
gence properties of operators through summability tech- (10)

niques can be examined in [34-39].

2. New Operators and Estimations of Moments

Here, with the motivational work of [9, 28], we design a
different version of the(p, q)-Szdsz-Durrmeyer operators
compared to the previous one, and we define it by ((9)). To
obtain a generalized version of the approximation in Dunkl
form generally, we take positive sequences p=p_  and q=¢,
for every 0<g,<1 and q,<p, <1, and also satisfy the
following results:

lim p, — 1,

xX—00

lim g, — 1,

ax—00

lim p§ — m,
a—00

lim g5 —n,
oa—>00

where the numbers m and n belong to (0, 1].

Definition 2. Let 0< g<p<1,A>—(1/2) and 6;, be defined
by (7). Then, for every f € C[0,00) and y € [0,00), we have

1 0o PO
ocpq (fsy)= Z Repay WJ @a,p,q(t)f<ﬁ,—,1)dp)qt’

©)

where

a €N and {>a. Moreover, for all a €N, the gamma
functions in the postquantum calculus are defined as follows:

I, (a)= J :° PR Cand g (1)
and
Fp,q(oc+ 1)= % = [oc}m[(x— I]P)ql"p,q(oc— 1)= [“]P,q‘
(12)
Note that
[A+1+26;],, = qlh+2A6;], +p"*%, (13)
[h+2+226;], = ¢’ [h+2)0;], + (p+ )% (14)

For more detailed properties of the (p, g)-analogue of the
beta and gamma functions, see [40, 41].

Lemma 3. For the operators in (9), we have oS’aM( ;y)=1:

1

Y+
(g

Jorf(t)=

Sapaf3) S 2,

¥+ @(1+ [2],,* [1+2A]M>y+

. forf(t)=
(15)

[

and
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q q2+2/\ [1 _ ZA]

€rpa ((q/P)[ lp. qy)

for f(£) =
(16)

Proof. We prove this Lemma by using the results obtained in
(11), (12), (13), and (14). Therefore, for f(t) =1, we easily
see that

(e8] 1 00
Sapal hZ Rapay) 226, ] J Capq(t)dpqt
1
= ;;) Repa¥) W I, ,(h+210;+1)
=1.

(17)

Take f () = t. Then, we have

pmz»\e,
an z mﬂ‘Pﬂ h 1 tx] [h"'ZAeh]p

((h+2A6y) (h+2A6,-1
X1 P
L (e )

1
= zz wpgV

P26, ]
« J P 2B IR 20 (_aend
0

h+2A0;,+1
E,, (—q[ot] " t) dyt

1 & 1
=—)> R, _— h+2A0, +2
M;,q,; pall )ph [ +226;],,! Lra h+2)
1 00
= R, y)ﬁ[thZ/\Gth U,
[a],.4 70
— 1 $ R h+2)\0 h+2/\9,, 1-h
= ) Rapg(0) (alh+246,),,, »
[],.4 70

n
q ) ([a]‘g)qy) . (pmz/\eh _ qmuoh)
PP - q%)

210,+1

[
1 i ([“]quy ) plha-1)2)

[a]P a%hpa ([‘x]p qy> Papa(P) b

2h
p v ([a]l’ﬂy ) pl2h(2h=1)2) 220y,
[, 4e0pq ([tx] N qy) i Vapa(2h)

=qDyp (t5y) +

2h+1
P N ([a]p)qy ) pEIT1)2) 220,
[, €004 ([“]My) 7o Vapg(2h+1)

h
M . (MM)/ ) 1)
[0y g€1pq (0157 0 PralP)

2A+1

+

2qy+

Y ()

+(q+[2]p,q)P“ y+q’y’, forf(t)=

Similarly,

e (19)

A
Sapq(tsy) Sy + .

apsq

If f(t) = £, then

N 2 © ph+2)u5,
S, )= ) R -
“PLI( )’) Z “P‘i(y) h 1[ ] [h+2A9h]

©0 h+2A0;,+2
((h+2A6),) (h+2A6, "
« [O P +2)8,,) (+216,—1)/2) ([a]Mt> E,, <—q[(x]Mt) dy gt
1

S 1
_ Z Rpa (V) 2h72[h+2)t9] ’Pq(h+2/\0h+3)

tx] g i
e Z Ropa () e [1+h+216,), [2+h+216,],,
el Z apa )P+ 208,
P[ pag 1=0
+ 2 e
¥ q(p : ) ¥ z mu,p,q(y)pz 1226, [h+2)»9h]w
plol,y i

+q) & .
i ® 3@) Z mw,,,(y)}?z 420,

plad,, o

h
- 7 © ([a]P,q)') .
Perpq (["‘] p,qy) i Vapa®)

q(p+29) S ([“]qu ) PH-12)
Play 13 Yape)

1+2A0,,

P

. <ph+2/19,, _ qh+2/19,,>
P -

. <ph+2/\0, h+2/\8,> (P+q [e5)
et ) plaly, i Vapa(®)

()" iy,

(20)

We apply the results 8;, defined by (7) and separate it into
even and odd terms, i.e., take i=2m and i =2m + 1 for all m
=0, 1,2, -+, and applying (2) and Lemma 1, we easily see that

Supa(t37) 24 Dy (£57)
21
LA+ 2q)p™

(o]
2A+1

L prap

(]

wpaq(£3)) (21)

Da,p,q<1 ;y)’

and



ap.q (tz )
(1 + [z]p)q) N

[

S:x\pq( ;) <D

+ a,p,q(t;y) (22)

2],
+ #Da,‘o,q(l 3Y)-
og

These conclusions complete the proof of Lemma 3.

Lemma 4. Let A, = (t —y)l, for 1= 1, 2; then, we have

L
(@]

A .
ap.qg 1

forl=1,

2]
21 4142\ -1 Pq I1=2
Wy, (oo 0By~ g0 fr

(23)

3. Approximation in Weighted Spaces

To obtain the approximation in weighted Korovkin spaces,
we take the weight function o(y)=1+»* and on [0, c0)
consider B,(,), C,(,), and C(’;(y) such that

By ={f : If ()| S s (1+y7)}, (24)
where # fdepends on f,
Copy) = {f : f € C[0,00) ﬂBU(y)},
and lim —2= f0) k},

y=0o 1+ y?

-{rirecy, .

where k is a constant, C[0,00) is the set of continuous
functions on [0, 00), Cy[0, 00) is the set of all bounded and
continuous functions on [0, 00) equipped with the norm
Hf”Cs = SUP,00) | (¥)| and on o(y), a norm is given by

1f loty) = SuPyefoe) (Lf DT +5%),

Theorem 5. Let q, € (0, 1), p, € (q,, 1}, and Q(y) ={f(y): y
€ [0,00) and ([0,00)/1 + y?) is convergent as y—oo}. Then,

for each f € Q(y) N C[0,00), the sequence {&ap @ }0@1

verges uniformly to f on each compact subset of [0,00) if
and only if lim =1 and lim =1

con-

(X"OOq(X lX‘?OOp(X

Proof. Since the operators 52,1, 4, defined by (9) are positive

and linear on [0, 00), if lim, —

1, then (1/[a], ,
for every f e C[0,00)NQ(y), the operators SQ,PW% (fsy)
converge uniformly to f(y) as @ — oo if and only if

a—ocoda — 1 and hmaﬂoopa
) — 0. Therefore, from Korovkin’s theorem

Shpg (t3y) —yi=1,2. (26)

In another way for all f € C[0,00) N Q(y), if we assume
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£§,Pavqa (fs;y) converges uniformly to f(y), when «
approaches to oo, then clearly g, — 1 and p, — 1. Sup-
pose in the case where the sequences (g,) and (p,) do not
converge to 1 and [a], , — (1/p—q) as a — co. Thus,
from Lemma 3, we have

Shpoa (£53) — ¥+ (P—q)+y, (27)
and

Stpa, (53) — 3"+ (0 =) (2], + A+ 1+

Dy + (=02,
(28)

which leads to contradiction, and hence, g, — 1 and p,
—>1as a— oo.

Theorem 6. Let the sequences of positive numbers 0< g, < 1
and q, <p, < 1 satisfy q, — 1 and p, — 1 as a approaches

to 0. Then, for every f € C (y on [0, 00), we have

hm

Sana SN -1, = (29)

Proof. Take f(t)=t for i=0,1,2. Since by Theorem 5,

s g, (t'3y) converges to y' uniformly for i=0,1,2, from

Lemma 3, we conclude that

. A
Jim |85, (15) = 1] =0 (30)
Iff(t) =
SrpatN =Y 1 1
CS)A £ _ —su Porda < up ——
‘ wpor (1Y) 7Y oy) y;}f 142 [oc]qua y>§)1+y
(31)
Then, we have
. A SN _
otll»ngoHCS)“’Pw%(t’y) yHa(y) O (32)
Similarly, if we take i = 2, we have
’05“ (Fs5y) - Sapya, (£'37) —y2’
3y - =su
whetc "3 ) y;op 1+y2

1

< (1 +pA+1 +1)su 33

[, 4, ([ st b, yz(? 1+y? 33)
2]y, 4. 1

a2, 20 L7
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which implies that

lim

a—00

a7 =0 (34)

These explanations complete the proof of Theorem 6.

Let the modulus of the continuity of f for any 6 > 0 and
p > 0 be defined as follows:

w,(f368) = sup sup |f(t) - f(y)]; (35)
[t=y|Sy:t€[0,p]
where it is obvious that lims_ g, w,(f;68)=0 and for f €
C[0,00)
ro-sons (1+ 5 a0 o

Theorem 7. Take the numbers q=q,, p=p, with the posi-
tive sequences q, € (0, 1), p, € (q,, 1] satisfying q, — 1 and
po— 1 as a—0o. Let w,(f ;6) be defined on the inter-
val [0, p+ 1] € [0,00) for p>0. Then, for every f € C’;(y) on
[0, 00), we have

Supall 1) ~F0)| S6;(1+ P)34) + 20001 (£ 5/5,01)).
(37)

where M is a constant depending only on f.

Proof. Let y€[0,p] and t<p+1 for p>0. Then, clearly
one has

(1) = f()| S6G(1+p7)(t-y)*. (38)

Also, when y€[0,p] and t>p+1 for p>0, then for a
given § >0

0= Swpa(fslt =3 % (2 1)),
(3)

From (38) and (39), we easily see that

-5 568 (1) -7+ (145w 0530),

which implies that

Sappa, O =FO)]57)
<6G(1+p°)Sh, 4 (Dr57) (41)

t_
T (1+ | 6” ;y)wp+1(f;8).

The Cauchy-Schwartz inequality gives us

1/2
Sty (=) S8, ((t=y5p)"™. (42)

From an easy calculation, this leads us to

Srpa 1) =) S Shp 0 (FO - £33 (43)

Therefore, in view of (41)-(43), clearly we get

Stpa 1) =10)|
<6%,(1+p")Sh, o (D557) (44)
1
+ (14 5% 4, ;y><“2>)wpﬂ<f ),

Finally, if we take 8=(, (y)) (172) oS’ﬁpq( 53 Y)s

then we use a denumerable to get the result.

4. Pointwise Approximation

In an approximation process for measuring the smoothness
of a continuous function, we need Peetre’s K-functional
[42] defined as follows.

Definition 8. Letf € C[0,00), and for a givend > 0of theK
-functional, we have

K(f58) = inf {(S19" ¢y 00) * If = Ve, )¢ ¥ € Chl0.00)}.

y€[0,00)

(45)

Now, from [43], there exists a positive constant &
such that

K;(f38) £ €{min (1,8)|f] ¢ 000 + 2 (£3VE) |, (46)
where the modulus of continuity of order two is given by

@, (f38) = sup sup |f(y+2h)=2f(y +h)+f(y)]. (47)

0<h<dy€[0,00)

Moreover, the classical modulus of continuity is given by

w(f;8)=sup sup |f(y+h)=f(y)]- (48)

0<h<8y€[0,00)

Theorem 9. Suppose q, and p, are the sequences of positive
numbers satisfying q,, € (0, 1), p,, € (q, 1] such that q, — 1,
P, — 1 as « — co. Let us define an auxiliary operator such

that T 4,4(f39) = Supg(f39) + F ) = F(([a] gy + D[], )-
Then, for every y € C3[0,00), we have

P (49)

Lo UM

vi) —v0)| 0.0




where ©,(») =8,() + (ol y + D)lal, , =% and 8,(y)

is defined in Theorem 7.

Proof. Let y € C3[0,00). We easily get 7 “p 4, (1;y)=1and

[y, ) +1

Tapa,(£59) = Supa (£53) 4y = —ito— =y, (50)
Partla
where we easily know that
|$80,0. 02| S 1A (51)
Therefore,

a 1
Tapua 39| 5 |Sapa ) +0) —f<”f’f—y+> <3/f].

Pode
(52)

In view of the Taylor series expansion, we have
t

y(t)=w() + (=)' () + J (t-xpy" (x)dx. (53
Y

On operating 77, p 4,» We conclude that

ap A (V/ y) V/(y) :W’(y)ga,pa,qa(t_y;y)

(V) (I, 1\
| (faf;q ) o
(54)
Since we know that
[ o wad eyl

(071 0,) 1 , Loy,
[ G I R & S N
(55)

we get
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—y)z}w

(56)

« 1
T e W52) = v/(y)‘ {5{;; L ((E=9)50) + ([ ]f,;iy;

Hence, the above discussion completes the proof.

Theorem 10. Let ., be defined by (9); then, for every y

€ C3[0,00), there exists an absolute constant € > 0 such that

Sy ¥52) f(y)\<%{w2<f V®;‘”>

+ min (1, 6“4(”) |f} +w<f; [041)
Pata

(57)

where ©,(y) is defined by Theorem 9.

Proof. In the view of the result asserted by Theorem 9, we
prove this theorem. For all f € C4[0,00) and v € C3[0,00),
we have

Stpua,V5) f(>}=

o 1
T apua, W) =f ) +f A -f)
(o]

T ha W39) = ¥0)|

f ”*’7“ —f(y)‘
(5.,

<4|f -y +0,0)|lv"||
. (o0 1
' (f ‘([ Tpon )yu>

By taking the infimum over all ¥ € C%[0,00) and using

(45), we get
O\, of £ [ 1
< 4 ) (f '(H l)“[a],,a,qﬂ
<%{wz <f; Yo )> emin (15 %207 f|}
1
”(f ’ H)

We consider the Lipschitz-type maximal function by [44]
and obtain the local approximation such as for f € C[0,00],
0<x<1,andt,y € [0,00). We recall that

() -
T (60)

(58)

II/\

Shpa i) ~f)| <4

(59)

wc(fsy)= sup

t#y,te[O,oo)

Theorem 11. For all f € Cg[0,00) and « € (0, 1], we have

2 =) Sef32)8 )™, (61)

apa Ut(
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where thew, (f ; y)Lipschitz maximal function is defined by
(60), andd,,(y)is defined by Theorem 7.

Proof. We prove Theoreml11 by applying (60) and the well-
known Hélder inequality:

Snpoa39) ~F0)| £ Shy g (F() - £ ]53)
SOUf NSy, g, (It =31
<0,(f37)(Stpoa,(157)

. (Sipa,qa (|t —}/|2 ;}/)> (x12)

=0, (S0 (820)
(62)

)231,2)

t—yl

The desired results are proven.

We next denote

C3[0,00) = {1// : y € Cyl0,00)and y', y" € CB[O,OO)},

Wil mey = ¥l cy000) + HV’IHCB[O,OO) + H‘/’,/Hcg[o,oo)’

1¥llcyj0.00) = GS[‘;P>|1/’(}’)\-

y
(63)

Theorem 12. Let v € C2[0,c0). Then, &*

wp..q, defined by (9)

satisfies

1)
50,0, 039) ~¥0)| = (VE0)+ 20 Wl e,
(64)

Proof. From the Taylor series expansion of order two, we
have

for (0Xs (y, t). Let
o5°=y?(}1£)lw’(y>| =[1¥"llc, 000y = ¥l 10000

- ” ) (66)
T = sup [y ()| = [V [| ¢, 000 = 1¥llcz 0.00)
y[0,00)

Then, we have

1 1
(0 =v0) S Sle=s1+ 57975 (I=21% 509 ¥l ey

(67)

Therefore, we have

1
Shpa Wsy) = V’(}’)‘ < <é“2,pn,qa(lt “59) + 5 Sap,a, (=) w)) V]l 2 0.00)

A a1,
5 ((hna @) " + 58500059 ) Wy

(68)

This completes the proof of Theorem 12.
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In this paper, we consider fractional differential equations with the new fractional derivative involving a nonsingular kernel,
namely, the Caputo-Fabrizio fractional derivative. Using a successive approximation method, we prove an extension of the
Picard-Lindelof existence and uniqueness theorem for fractional differential equations with this derivative, which gives a set of

conditions, under which a fractional initial value problem has a unique solution.

1. Introduction

Due to the demonstrated applications of fractional operators
in various and widespread fields of many sciences, such as
mathematics, physics, chemistry, engineering, and statistics
[1-4], various operators of a fractional calculus have been
found to be remarkably popular for modelling of numerous
varied problems in these sciences. We mention here some
of these definitions, such as Riemann-Liouville, Hadamard,
Griinwald-Letnikov, Weyl, Riesz, Erdélyi-Kober, and
Caputo. Compared with an integer order, a significant fea-
ture of a fractional order differential operator appeared in
its hereditary property. In other words, when we describe a
process by a fractional operator, we predict the future state
by its current as well as its past states. Therefore, the memory
and hereditary properties of materials and systems can be
intervened in the modeling of a process by making use of dif-
ferential equations of an arbitrary order. So, in recent years,
fractional differential equations have been paid a great inter-
est and also have appeared in new areas for applications of
initial and boundary value problems of such equations. The
Riemann-Liouville definition for the fractional derivative is
one of the most widely used definitions and has many appli-
cations. But this definition had its drawbacks, such as the fact

that the derivative of a constant function is not zero, and in
practical examples, we need the value of fractional derivatives
as initial values. The Caputo fractional derivative does not
have the above weaknesses and is believed to be one of the
most efficient definitions of fractional derivative applied in
many areas of science and engineering.

However, the new definition suggested by Caputo and
Fabrizio [5], which has all the characteristics of the old defi-
nitions, assumes two different representations for the tempo-
ral and spatial variables. In fact, they claimed that the
classical definition given by Caputo appears to be particularly
convenient for mechanical phenomena, related with plastic-
ity, fatigue, damage, and with electromagnetic hysteresis.
When these effects are not present, it seems more appropriate
to use the new Caputo-Fabrizio operator.

The main advantage of the Caputo-Fabrizio approach is
that the boundary conditions of the fractional differential
equations with Caputo-Fabrizio derivatives admit the same
form as for the integer-order differential equations. On the
other hand, the Caputo-Fabrizio fractional derivative has
many significant properties, such as its ability in describing
matter heterogeneities and configurations with different
scales [6-8]. Therefore, there are some certain phenomena
that cannot be well-modeled using the Riemann-Liouville,
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Caputo, or other standard fractional operators [5, 9-13]. For
an example, in issues related to material heterogeneities, we
encounter some problems that are not well described by the
above fractional operators. Also, later, some other definitions
with a nonsingular kernel, such as the Atangana-Baleanu [6]
fractional derivative, were defined.

Many researchers have shared their contributions to
obtain properties of many models with new and old defini-
tions of fractional derivatives. In [14], we have the analytic
solutions of a viscous fluid with the Caputo and Caputo-
Fabrizio fractional derivatives. In [15], the authors used the
fractional derivative with a nonsingular kernel to model a
Maxwell fluid and found semianalytical solutions. In [16],
we found a comparison approach of two latest fractional
derivatives models, namely, Atangana-Baleanu and Caputo-
Fabrizio, for a generalized Casson fluid and obtained exact
solutions. In [17-19], the authors also used the Caputo-
Fabrizio fractional derivative to model some important
examples.

Due to the abovementioned applications, the existence of
solutions for nonlinear differential equations is an attractive
research topic and has been studied using different tech-
niques of nonlinear analysis [20-23]. One of the most impor-
tant theorems in ordinary differential equations is Picard’s
existence and uniqueness theorem. This theorem, which is
applied on first-order ordinary differential equations, can
be generalized to establish existence and uniqueness results
for both higher-order ordinary differential equations and
for systems of differential equations. This theorem is a good
introduction to the broad class of existence and uniqueness
theorems that are based on fixed-point techniques [24-30].

In this paper, we obtain an extension of Picard’s theorem
for differential equations with the Caputo-Fabrizio fractional
derivative. This theorem provides conditions for which a
fractional initial value problem involving the Caputo-
Fabrizio derivative has a unique solution. On the other hand,
the proof of this extension of Picard’s theorem provides a
way of constructing successive approximations to the
solution.

2. Preliminaries

In this section, we recall some notations and definitions
which are needed throughout this paper. Further, some
lemmas and theorems are stated as preparations for the main
results. First, in the following, we provide some basic con-
cepts and definitions in connection with the new Caputo-
Fabrizio derivative.

The well-known left-sided Caputo fractional derivative
“Dj. , of a function f(x) € H'(0, b) with 0 < a < 1, is defined

by
“Dj.,g(t) = T

In [5], Caputo and Fabrizio proposed the new operator
by replacing the singular kernel (x —t)™* with e **=1/(1-®)
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and 1/I'(1 — ) with N(«)/(1 — «) in the Caputo definition
to obtain the following definition.

Definition 1. Let g be a given function in H'(a,b). The

Caputo-Fabrizio derivative of fractional order a € [0,1] is
defined as

ors0) = (To0) | o e [y 2] v 2

a

where N(«) is a normalization function [5]. Also, if a cer-
tain function g does not satisfy in the restriction g € H'(a, b),
then its fractional derivative is redefined as

D2 9(0) = S [ (g10) - g0 exp ot~

l-a ), -
(3)
Clearly, as mentioned in [5], if one sets 0= (1 —a)/a €|
0,00] and e = 1/(1 + o) € [0, 1], then the Caputo-Fabrizio def-
inition becomes

i) = [ g e [ e @

g a

where N(0) = N(co0) =1, and

lim exp {— t%‘] —8(x—1). (5)

o—0

Also, the fractional derivative of order (n + o) when n > 1
and « € [0, 1] is defined by the following

Dl (g(1)="Di (D g (1)) (6)

Definition 2. Let g € H'(a, b), then its fractional integral of an
arbitrary order is defined as follows:

IG0) = e 00+ s [ aods 20
)

It is clear, in view of the above definition, that the ath
Caputo-Fabrizio derivative of a function g is average between
g and its first-order integral. Therefore,

a

2(1-a) N 20
(2-@)N(a) ~ (2-a)N(a)

-1. (8)

So, we arrive at the following

0<a<l. 9)

The Laplace transform of the Caputo-Fabrizio derivative
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is

g =g0) )

WD)} = =

Theorem 3 (Picard theorem [31]). Let D be an open set in (
t,x)-space. Let (t,, x°) € D and a and b be positive constants
such that the set

R={(tx)llt -t <@ lx—x<b}, (1)
is contained in D. Suppose that the function g is defined, con-
tinuous on D, and satisfies a Lipschitz condition with respect

to x in R. Let

M = ta >
(lg}c';lggzlg( x)|

) (12)
A =min {a, —}
M
Then, the following initial value problem
x' = g(t,2), x(tg) =, (13)

has a unique solution, x(t), on the interval (t,— A, t,+A).
For this solution in the domain (t,— A, t,+ A), we have

lx(t) - x°| < MA. (14)

Note that by the mean-value theorem, the Lipschitz condi-
tion will be satisfied if we have |(0/0x)g(t, x) | <K.

3. Extension of Picard Theorem

Picard’s Theorem 3 guarantees the existence and uniqueness
of the solution of the following initial value problem of first-
order differential equations:

Y feym ez, (15)
Y(to) = (16)

In proving this theorem, the solution is obtained by the
well-known successive approximations method (Picard-Lin-
del6f method) [31]. In this method, the approximate solution
for solving (15) is defined by

t

Yir1 = Yo +J f(5>)’k(5))ds,

ty

keN. (17)

By continuing this process, when k — oo, the exact solu-
tion is obtained. In practice, the exact solution is approxi-
mated for a sufficient large k by y,.

In this section, we consider the following differential
equation

o' Dfu(t) = g(t u), (18)

such that ¢ € J =10, 1], with the initial condition u(0) = u,,
where {¥D? denotes the fractional Caputo-Fabrizio deriva-
tive. We extend Picard’s theorem to this problem, and by
the successive approximation method, an iterative process
is provided to obtain the solution. We state the following
generalized Picard existence and uniqueness theorem.

Theorem 4. Suppose that the function g is defined, continuous
on an open set O in (t, u)-space, and satisfies

lg(t,u) —g(t,v)| <klu-v|, 0<k<l. (19)

Let M = max,; | g(t, u) | . Then, the fractional differential
equation (18) has a unique solution such that u(0) = u,.

To prove the theorem, first, we need to establish the fol-
lowing lemma.

Lemma 5. The function u(t) is the solution of (18) under the

initial condition u(0) = u, if and only if it satisfies the follow-
ing integral equation:

it O 4(0)

2a !
+ Z=aN@ Lg(s, u(s))ds.

u(t)=uy+

Proof. If u(t) is a solution of (18), then taking the fractional
integral of order «, we obtain (20). The second part of the
theorem comes from differentiating equation (20).

In the reminder of the proof, using the successive approx-
imation method, we show that the sequence defined by

Uy (t) = tg,

uy () =ug+ %g(t uy)

' <2—z§xN<a> J gts s
(21)

2(1-a)
Wﬂ(t’ Uy (1))

’ wiﬁjﬂ“’ tn1 (5))ds,

u,, (t)=u,+

converges to a function, which is a solution of (20), and then
we show that this solution is unique.

Lemma 6. For each m, the function u,,(t) is defined, continu-
ous on ] and satisfies

lu,, (t) — ugl <M. (22)



Proof. We prove the lemma by induction. Since

2(1-a)

luy () = o (1) < ng(t, ug (1))l

2a t
* | e o

2(1-a) 2a !
= (2—0c)N(oc)M+ (2-a)N(a) MJO >
. ds< M
- (2-a)N(a)
2a
FemaN@ MM

the result is obviously true for m = 0. Let us suppose that
forte],

[, (1) — upl <M. (24)

This yields that f (¢, u,,(t)) is defined on J, and since f (¢
,u,,(t)) is continuous at ¢, one asserts that

um+mt>=zm-+(§§f5§§§zg<num<o> .
T | 9 s
is defined and continuous. Indeed, we have
i1 (1)~ 1] < % 19t 14, (1))
. ﬁjm () s < %M (26)
+ @—i;CNm)MJ;dS - M.

Lemma 7. The sequence {u,,(t)} converges uniformly on ] to
a continuous function u(t).

Proof. It is obvious that the convergence of the series

yields convergence of the sequence {u,,(t)}. For t € ], let us
denote

d, (1) = [t (1) = (1)),

(28)
Ey(t) = g(t: 1 (1)) = g(ts (1))
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Then, for each n, one has

2(1-a)
(2-a)N(a)

2« t
+ —(2 — N @) JOIFn(s)Ids

d,(t) < [E,(2)]

2029 -

= Z-an@ )~ a0 "
2a t

a1

_ t
2(1-a) kd . 2a kj

= - an@ Ot G e
: dn—l (S)dS = ngI:fxdn—l (t)’

ty

where k is the Lipschitz constant of g and 0 < k < 1. Now,
we show that for each #, we have

d, () < MK". (30)
From Lemma 6, we have
do(t) = 1y (1) ~ g (1) < M. (31)

By induction, let d,,(¢) < Mk". Then, from (29) and (8),
one writes

(0 <K, (0= 20 k1)
+ (2_2% kJZ d,(s)ds < % kMK o)
+ (zﬂi%kMk”J;ds < %Mk”“
+ (z_jc%Mk"“ = MK™!.
Therefore,
2d,,(t) gMik“. (33)

Since 0 < k < 1, the uniform convergence of (27) follows
from the Weierstrass test or by a simple comparison test.

Lemma 8. The function u(t) is satisfied in (18), and we have
u(0) = u,.

Proof. First, let us show that |u(t) — u, | is bounded. That is,
[u(t) — uyl < B, (34)

for some constant B. We can deduce that g(t, u(t)) is defined
for t € J. For t € J and & > 0 and for a sufficiently large m, one
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has
[u(t) = ugl < lu(t) — u,, ()| + |u,,(t) —ugl <e + M < B. (35)

Then, by the Lipschitz condition of g, we have

|j 95 4(s)) - g(s 4, (5))ds| < j 1905 u(s))
0 0 (36)

t

—g(s, u,,(s))lds < kj lu(s) — u,,(s)lds < ke.

0

Therefore, limm_,oofgg(s, u,,(s)) = fgg(s, u(s))ds. Now,
by taking the limit with respect to m on both sides of the fol-
lowing equation

_ 2(1 -«
um(t) - uO + (2 _ (X)N((x) g(t’ umfl(t)) (37)
2a t
* T | s
we obtain
P Gl
(0=t + G 96 4(0) "

2a t
—_— , ds.
+ Z-aN@ Jog(s u(s))ds
Now, we prove the uniqueness of the solution.

Lemma 9. The solution u(t) of the integral equation (7) satis-
fying the condition u(t,) = u,, is the unique solution of (18)
with this initial condition.

Proof. Suppose that there exist two solutions u, () and u, ()
of the integral equation (7) on J subject to the condition u,
(to) = uy(t,) = uy,. First, since u, (t) and u,(t) are continuous
functions, there exists a constant B > 0 such that in the closed
interval J, we have

4, (£) = ()] < B. (39)
Let us suppose that for each positive integer m,
lu, (t) — u,y(t)| < k™B. (40)

Then, from (7), we have |u, (t) — u,(t) | <k"*'B. There-
fore, by induction, |u,(¢) —u,(¢) | is less than each term of
the convergent geometric series of B/(1 — k). This yields that
for each ¢, |uy(t) — u,(t) | <e, and therefore, we have u,(t)
=u,(1).

By proving the above lemma, the proof of Theorem 3 is
completed. Note that the iterative process (21) provides a
constructive approach to obtain the solution. We describe
the following simple example where the hypotheses of Theo-

5
rem (4) hold:
CFD(X t =
o D)= (41)
u(0)=0
By assuming C=2(1-«a)/(2 - a)N(«) and D=2a/(2 -
o)N(«), the results of using (21) are as follows:
Uy (t) =0,
u,(t)=C+ Dt,
t)= ¢ +In (Dt+C+1
)= prrern T >
= C
us(f) = C/(Dt+C+1)+In (Dt+C+1)+1
t
1
+DJ .
0C/(Ds+C+1)+In (Ds+C+1)+1
(42)

To ensure the results, let us choose a=1. In this
case, it is easy to show that the obtained sequence 0, ¢,1n

(t+1),--- converges to the exact solution u(t) =+/2t+1 - 1.

4. Conclusion

By Picard’s theorem, we can study the existence and unique-
ness of a solution of first-order differential equations. Also,
this theorem can be applied to ensure the existence of a
unique solution of higher-order ordinary differential equa-
tions and for systems of differential equations. On the other
hand, this theorem is an essential tool in fixed-point theory.
Therefore, a generalization of this theorem for fractional dif-
ferential equations would be interesting. In this paper, we
proved an extension of this theorem to the initial value prob-
lems of fractional ordinary differential equations with the
Caputo-Fabrizio derivative, and by the successive approxi-
mation method, an iterative process was provided to obtain
the solution.
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In this article, we introduce the notions of a soft inf-comparable contraction and soft comparable Meir-Keeler contraction in a soft
metric space. Furthermore, we prove two soft fixed point theorems which assure the existence of soft fixed points for these two types
of comparable contractions. The obtained results not only generalize but also unify many recent fixed point results in the literature.

1. Introduction and Preliminaries

It is the main feature of mathematical study to produce dif-
ferent methods and tools to perceive the behavior of systems
that we have difficulty understanding with known methods.
In particular, it may be necessary to deal with systems that
contain uncertainties and to use inaccurate data in different
situations. With this motivation, one of the mathematical
tools used to deal with the necessities of systems established
with uncertainty and to analyze the models created by the
uncertainties and uncertainties already existing in the data
is the Fuzzy Set Theory. Fuzzy sets were introduced by Zadeh
[1] for dealing with the uncertainties on its own limits.
Another mathematical tool to deal with the uncertainties is
the soft set that was introduced by Molodtsov [2]. In this
paper, we shall focus on the soft set theory. The topology
based on the soft sets was defined by Cagman et al. [3]. They
also considered the basic topological notions over soft sets.
On the other hand, a soft real set and soft real number were
proposed successfully by Das and Samanta [4]. Furthermore,
the same authors in considered the notions of a soft metric
and its topology, properly. After then, Abbas et al. [5] proved
a fixed point theorem by introducing the notion of soft con-
traction mapping over the soft metric space. Application
potential of the soft sets in various distinct research topics
is very rich and wide, for example, the smoothness of func-

tions, game theory, operation research, probability theory,
and measurement theory. For more details on soft sets and
application, we can refer to, e.g., [3, 4, 6-12].

As usual, R denotes real numbers and R*:=[0,00).
Furthermore, the letters Z,IN denote integers and natural
numbers, respectively. The symbol B(R) denotes the collec-
tion of all nonempty bounded subsets of RR.

We shall denote an initial universe 2. We set & as a set of
parameters. As usual, 2* denotes the collection of all subsets
of Q. For a nonempty subset S of 9, we consider a set-valued
mapping T : S — 22 for all 7 ¢ A with T(z) = ¢. We define a
pair (T, A) on Q as

(T,S)={(T(r),7): Te P}. (1)

Here, (T,S) is called a soft set [2]. The symbol &(Q2)
represents the collection of all soft sets on Q.

A soft set (T, S) on Q is called null soft [11] (respectively,
absolute soft set [11]) represented by, respectively, SifT'(7) =
(respectively,T(7) = S) for allt € S. We presume that (T, S;)
and (T,, S,) are two soft sets on Q. We define the intersection
[11] of the mentioned two sets above as a soft set (T5,S;),
denoted by (T,,S,) N7 (T,,S,) = (T3, S;), where S; =8, nS,,
and for each 7€ S;, T5(7) = T,(7) N T, (7). As expected, we
define the union of (T,,S;) and (T,,S,) [11] as a soft set
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(T;,S;), denoted by (T,,A)U™(T,,B)=(T,, C) where S, =
S, US, and for each T € S;,

(1), ifreS\S,,
Ts(t) =< T,(1), ifreS,\Sy, (2)
(1)U T,y (1), ifreS NS,.

We use the notation (T¢, &) to indicate the complement
[11] of soft set (T, %) on Q where T¢ : X — 2 is a mapping
given by T°(7) =Q\ T(7) for all 7 € 2.

A mapping T : P — B(R) is called a soft real set [13].
The symbol R* () is used to denote the set of all nonnega-
tive soft real numbers. If (T, &) is a singleton soft set, then it
is called a soft real number. Regarding the corresponding soft
set, soft real numbers will be denoted as ¥, 7, £, etc. In partic-
ular, 0 and 1 are the soft real numbers where 0(7) =0, 1(1)
=1 forall T € .

For two soft real numbers, for all 7€ &, we have the
following inequalities [13]:

Definition 1.

(1) The mapping ¢ : R* () - R*(P) is called soft
increasing, if

r<E=¢(r)<¢(1). (3)

(2) The mapping ¢ : R* () - R*(P) is called soft
continuous at a~€"R*(2), if for every y~>~0, there
exists 87>~0 such that 0<"X — a~<~¢ implies

$(X) —¢(a”)<y- (4)

Moreover, ¢ : R*(2) —» R* () is called soft continuous
at every point a of R* (%), then we call ¢ as a continuous
mapping.

A soft set (T, ) on Q is called a soft point [4, 14],
denoted by x, if there is a unique 7 € & such that T(7) =
{x} for some 7€ P and T(w) = ¢ for all we P\ {7}.

Definition 2 (see). Let X = (T, %) be an absolute soft set, and
let $9(X) be the collection of all soft points of X. A mapping
d: SP(X) x SP(X) — R*(P) is called a soft metric on X if
d satisfies the following conditions for all Xp o Xp Xy € X:

X%, 7)270,

(M1)d(
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(Mz)a(&;,&;) =0ifand only if x, =X,
(M3)d(x;,,x,) =d(x,, X, ),
(M), )< Ay ) + A, ).

The triple (X, d, %) is called a soft metric space, in short,
S.M.S.

For the sake of simplicity, we set ./ = (X, d, P).

Suppose . is a s.m.s. and y is a nonnegative soft real
number. A soft open ball with the center x, and radius y is
defined by B(x,,y)={y, € X: ;i(x:,yErN)Cf/}. Analo-
gously, a soft closed ball with center x, and radius ¥ is Bx,
Jl={y, € X 3(@,ye:”)s”)~/}. We set that a soft
set(F, P)is soft open inXwith respect tod if and only if all
soft points of (F, E) are interior points of (F, %).

In a soft metric space ./, a sequence of soft points {x, , }
is called convergent in ./ if there is a soft point y,~€~X such
that

lim d(x.,, 7,) = 0. (5)

n—o0

Furthermore, a sequence {x, ,}, is said to be a Cauchy in
M it

lim d(x;,,%,;) =0. (6)

i,j—00

Moreover, if each Cauchy sequence in X converges to
some point of X, then .# is called complete soft metric space.
Let = (Y,5, ") be another soft metric space. A soft
mapping (f,¢): # — N is soft continuous at a point
x,” € SP(X), if for each B((f, ¢)(X,), 7) of A, there exists

B(x;),8) such that
£ (B3),8) ) B((f 9)(%1), ). ?)

In other words, for every y~>"0, there exists >0 such
that d(x),y,7)<"8 implies that &((f,)(x), (fs@)(
x),7))<"y. Moreover, if (f,¢) is soft continuous for each
point of $9(X), then it is called soft continuous mapping.

2. Soft Fixed Points for the Soft Inf-
Comparable Contraction

In this section, we first introduce the notion of soft inf
-comparable mapping v : R* (%) - R*(%).

Definition 3 (see [15]). Let & be a parameter set and v : R*
(P) - R*(P). We call y a soft inf-comparable mapping if
it satisfies the following two axioms:
(y)y(r7)< 7 forall T € R* (%) \ {0} and y(0) =0,
(w)lim inf~ _y(7,”)<"7 for all 77>0.
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Lemma 4. Let y : R*(P) > R*(DP) be a soft inf-comparable
mapping. Then, lim,_ w"(T)=0 for all T>0, where y"
denotes the n-th iteration of y.

Proof. Let 77>~0 be fixed. If yj (7) =
we have

0 for some n, € N, then

Y (@) =y (Y™ (7)) =y(0) =0, (3)

which implies that

y"*(7)=0, forallreN. (9)
Thus, we conclude that
lim y"(7) =0. (10)

n—-0o0

If v"(77)>~0 for each n €N, then we take ¢, =v"(7),

and

O =¥ (1) =y (¥" (7)) = y(T,,), (11)

for all n € IN. By the condition (y,) of the soft inf-compara-
ble mapping y, we have that for all n € N,

Opnt1 =w<0n~)<~o’jn' (12)

Keeping (y,) in mind and considering that the soft
sequence{o,, }Hs bounded from below and also that the soft
sequence is strictly decreasing, one can find an v">~0 such
that

limo,=v. (13)

n
n—-00

We assert that v = 0. If not, suppose that v~>~0, then we
find

=limo,,, = hrn inf y(0,) = lim inf y(o,”)<™V, (14)
n—00

0,—V
a contradiction. So we obtain that lim,_, .y"(7) = 0.

We introduce the notion of soft inf-comparable contrac-
tion, as follows:

Definition 5. Let M be a soft metric space and let y : R*
(P) > R*(P) be a soft inf-comparable mapping. A map-
ping (f,¢): M — M is called a soft inf-comparable con-
traction if for each soft points x,, y, € SP(X),

d((f,9) (%) (f9) 7))
<y (max {d(%,5,). d(%, (£.9)(5). 45 (£ 0)5) } ).
(15)

Example 6. Set & =(R,d, P) where the soft metric is

expressed as

d,(p ) = max {p, 7}, d(x,) = | -y,
3 (16)
(%, y,) = gdw(P’ 7) +d(x, y),

with & =1[0,00), ¢(t) = (2/3)t for t € [0,00).
Let y : R* (%) - R* (%) be denoted by
.5
y@)="a (17)

and let f(x) = (2/5)x. Consequently, we find

A 9)(5) (9)(7) = (2x<2,3>},,§y(2,3>r> = 2 max {p.7) + 2kl

max {p, 7} + |x -y,
max Ll
p 3P x-
i 1) .3 1
Yoy Vame | =5 MAX T 3T o4

3 +1
= — — X[,
Has

1 3 1
) - EJ": 5T 5\}’\-
(18)

As a result, (f, @) forms a soft inf-comparable contrac-
tion on Z.

We say that a soft point x, € $Z(X) is a soft fixed point
of a self-soft-mapping (f, ¢) if (f, ¢)(x,) =x,.
Theorem 7. Let v : R* (%) —» R*(P) be a soft inf-compa-

rable mapping. Let (f,¢): M — M be a soft inf-comparable
contraction on a complete soft metric space M. Then, a soft

mapping (f, @) possesses a soft fixed point.

Proof. Let ;g; € SP(X) be given. For each n e NU {0}, we

put
A= (o)) =0 () oy 9

Then, we have for each ne N U {0}

d(x.xl) =d((ho) (=2). (o) (x2))

<y (max {a(e 2L )od (0 oo (522 ) 4

.00 (%)) ) = (5
st ) d(xat) )

(
'(

Since v : R*(P) > R*(P) is a soft inf-comparable
mapping, we can conclude that for each n € N U {0},

Zi(;g:,x:;lj)sw(d(xn 1, 57)) (21)



By induction, we obtain that

Ao )sy(a(eto ) ) v (a(e )
<y (a(2,).

(22)
By Lemma 4, we obtained that
1im£1<;¢“,32{11> =0. (23)

In what follows, we check whether the sequence {x” } is
Cauchy: for each &, there is n, € N such that if n, k > n, then

d (xf; , X0 ~> <& (24)

Suppose, on the contrary, that the statement () is false.
Then, there exists €7>~0 such that, for any r € N, there are
n,, k, € N with n, > k, > r satisfying that

(1) n, is even and k, is odd

() gl(x’;;r , x;‘;r DEN:

(3) n, is the smallest even number such that condition
(2) holds

By (1) and (2), we conclude that

~_~T7 k, n, o~ ~7 k. n,—2 ~ n.—2 _n,—1

< d(x%,xr;y >S d (x,kr,xnf2 +d Xr, X1,

r n-1 n ~ ~~ 7 n-2 n-1 r n,—1 T
+d<x,nﬂ,xT;’ )S 8+(7l(xrnﬁz,xfnri1 +d Xr, > %r, |-

Letting r — 00, we obtain that

lim,_,_.d (x’ﬁ;r X ) =z (26)
On the other hand,

~_~"7 /k:I n—-1~ ~7 /kt—/l /717—3 5 n-3 _n,-2

< d(kaH,xTLFI <d X o Xt +d Xr, Xt
w2 p1~\ o= 3 03 n2 ~( n=2 n-1
+d(x,ﬂr72,xf;ﬁl )S e+d(x1n'73,xfnriz +d Xr, o Xr, |-

(27)
Letting r — 00, we obtain that
lim, . d (xl;'cy__l1 X! _11) =z (28)
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By the above arguments, we obtain that
(k) =a(oton (o (x0))

- ~f k-1 n-1
< 1//<max {d<xrk,_1’xrn,_1)>d

Taking lim,_,  inf, we get €”<"¢&. This implies a contra-
diction. So the sequence {x" } is Cauchy.

Since ./ is complete, there exists x* € X such that
9?;’:—>x~jasn—>oo, (30)

that is,

gi(fcf,f*)%(_)asnﬁoo. (31)

T

Notice also that

<y (max {a(3, 5 ) (a0 ). d(%5 (1.0 (%)) )

(32)

Taking n — oo, we get that

d( (o) (%)%
<y (max {0,0..d (% (f.9) (%) ) })+0<d((fr ) (%2). 5%,

and this is a contradiction unless d((f, ¢)(x*), x*) = 0. Thus,
(f>@)(x;) =X} completes the proof.

Example 8. Consider Example 6. All hypotheses of Theorem
7 are fulfilled. Thus, we can conclude that 0, is a fixed soft
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point of the soft inf-comparable Meir-Keeler contraction

(f> ).

3. Observation on the Soft Comparable Meir-
Keeler Contractions

We start this section by recalling the Meir-Keeler contraction
in the standard setting.

Definition 9. (see). A self-mapping g on a metric space (X, d)
is called a Meir-Keeler contraction if the following is fulfilled:
for any # > 0, there is y > 0 such that

n<d(x,y)<n+y=d(gx,gy) <n forallx,yeX. (34)

The mapping ¢ : R* () x R*(P) x R*(P) - RY(P) is
said to be soft comparable, if the following two axioms are
fulfilled:

(¢,) ¢ is a soft increasing and soft continuous function in
each coordinate

(4,) for @ € R* () \ {0}, p(@
,w;) =0 if and only if w; = w, = w; —O

Now, we introduce the notion of soft comparable Meir-
Keeler contraction.

W) <@, and $(wy, w,

Definition 10. Let ¢ : R*(P) x R*(P) x R*(P) - R*(P)
be soft comparable. A self-soft-mapping (f, ¢) on a soft met-
ric space ./ is called a soft comparable Meir-Keeler contrac-
tion if for each soft real number #~>"0, there is y~>~0 such
that

1< ¢(A(E5,). (% (19)(%) ). d(7 (F.9) (1) ))

<+ =d((f9)(%): () (7)<
(35)

for each soft points x}, y, € SP(X).

Example 11. Set % =(R,d, %) where the soft metric is

expressed as

dy(p, 7) =max {p, 7}, d(x,y) =[x = y|,

d(%,,77) = dy(p7) +d(x, ),

with & = [0,00), ¢(t) = (1/3)t for ¢t € [0,00).
Let ¢ : R*(2) x R* () x R*(P) —» R*(P) be denoted
by

$(wy, Wy, w3) = — - max {ZOT’ w,, ZJ;}, (37)

=W

5

where

0 =d (% 5,),

@, =d(%, (f9) (%)), (38)

(v (fr9)(7))-
Let f(x) = (1/2)x. Then,
((f ‘P)( ) (f> ‘P)(Yr)) = gl(%x(l/l'»)p’%y(lﬂ)r)
= % max {p, 7} + %|x—y|,

&, = d(%,,7,) = max {p, 7} + [x ),
@ - a(@gx(us)p)  max {p, §p} tle- 2o =p+ 2 pxl,

1l —T+1
y- =Tl

(1 1
w; =d Vo3 Yapy | =MaX T 3T+

So we can conclude that

¢ (@), @y, @5, 1)
3 -

_ - 3 _ 3
= 4 "max {wl,wz,w3 }2 Zwlzz(max{p,r}+|x—y|).

(40)
Consequently, a soft mapping (f, ¢) forms a soft compa-
rable Meir-Keeler contraction on Z.

We establish the following fixed point results for the soft
comparable Meir-Keeler contraction.

Theorem 12. Let M be a complete soft metric space, and let
¢ : RY(P) xR (P) x R*(P) - R*(P) be a soft compara-
ble. Let (f,@): M — M be a soft comparable Meir-Keeler
contraction on M. Then, (f, @) possesses a soft fixed point.

Proof. Let chgvn € SP(X) be given. For each n € NU {0}, we

put
A= (00 (E)) = (), @)

So, for each n € N U {0} we have

) i ol >}

(42)



If;i(g;i, xk )<~ d(xk xk+1 ) for some k € IN, then by the
above inequality and the condltlons of the function ¢, we
have

()< o0 ) (30, ) (R )

(43)

which implies a contradiction. Hence, for each n € N, we
find

Zi(;?,x¢+“)< d(xI; 1,;2?). (44)
n n+l k-1

Thus, the sequence {d(x" 922\{11 )} is decreasing and con-
verges to a soft real number, say y">"0. In other words,
d(xﬁ »xpt) — 9, as n— oo.

Notice that =inf {d(x" x”“) neNU{0}}. We
claim that y = 0. Suppose, on the contrary, that y~>~0. Since
(f,¢) is a soft comparable Meir-Keeler contraction, corre-
sponding to ¥, there exists #7>~0 and k € N such that

v (o) A ) () ) e
=) =) o))<y

(45)

;?;’,;;1711): nelN
U {0}}. Thus, we obtain that El(iz,fgfl) — 0, as n — 0.

As a next step, we check whether the sequence {x } is

This is a contradiction since y = inf {d(

Cauchy in /. Suppose, on the contrary, it is not. Thus, there
exists a soft real number £7>70 such that for any k € N, there
are my, n, € N with n;, > m; > k satisfying

d (xfmkk , xZ’;k N) >7E. (46)

Further, corresponding to m, >k, we can choose 7, in
such a way that it is the smallest integer with n; > m; >k

~S/.om ne ~ ~
and d(x; "k,xT’n‘k )>"¢. Therefore,

Zi(x?k/ , x”k;2~> <E. (47)

So, we derive that

N S AN P
£< d<x1mk,x1nk >< d( ,kaZ> d( nkz,xTnk ,)
Soml e~ \ o~ 2 m-1 ~ nk—l T
+d<xTnk],xTnk )< s+d<xfn o Xo, +d SHRTE S B

(48)
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for all k € N. As k — oo, the inequality above yields that
Icl;r{;d(xr X! ) =&. (49)

On the other hand, we have

Sl o\ L g o et 2 mel
+d (x,mk , xfnk) +d (xrnk , x,nk“> +d (xTnk+1 Lk

(50)
Letting k — oo in the above inequality, we get
P m+l m+l |~
klingod (thkﬂ x/\nk+l> =& (51)

Since (f, @) is a soft comparable Meir-Keeler contraction,
we have

(i) =2( o (<), o) (2,)

7 /r\nk/ e+l ~ ~3( wmy my+1 3 my+1 nk+1 7 mk+1
d (mek > x‘r,,kﬂ > <'d (xrmk > me,‘ﬂ +d mekﬂ > M d x"'nk > Ty
<al < )+ a “mrl /m\ki
= xTnk > xTnk+1 Xz T+l meku

Taking k — oo in the above inequalities, we get that

(53)

£<TP(8, 8 €7)<E, (54)

and this is a contradiction. Thus, the sequence {;;’; }is

Cauchy.
Keeping the completeness of .# in mind, one can find
x? € X such that

X — X% asn — 00, (55)
that is,
a(g,ﬁ)ﬁﬁasnﬁoo. (56)
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And, we also have
d((fo) (%) 2 )=d((Fo) (<) (Fo) (%))
+d((f9) (1) x07)

-(»E,(f«p)(xﬁ ))d(5 (o) (%)) (57)

Taking k — oo in the inequality above,

&(<f,so>(a%3) :)<¢(6 A(f,9)(%))+0

a contradiction unless d((f, ¢)(x*), x?) = 0. Thus, (f, ¢)

(x7) = X7 which completes the proof.

Example 13. Consider Example 11. One can easily check all
hypotheses of Theorem 12. Consequently, we conclude that
0, is a fixed soft point of the soft comparable Meir-Keeler
contraction (f, ¢).

We next introduce the notion of soft generalized Meir-
Keeler contraction, as follows:

Definition 14. Let (X, d, P) be a soft metric space. A mapping
(f,): (X,d, P) - (X,d,P) is called a soft generalized
Meir-Keeler contraction if for any soft real number #~>~0,
there exists >0 such that for each soft point x,,y, € SP

(X),
{ (% (19)(5)): 4T (£ 0) 7)) (% (Fo0) (7))}
Ty =d((9) (%) (o) )<7
(59)

It is clear that the soft generalized Meir-Keeler contrac-
tion is a comparable soft Meir-Keeler contraction; we can
easily conclude the following corollary.

Corollary 15. A soft generalized Meir-Keeler contraction
on(f, p)which is a complete soft metric spaceMlpossesses a

fixed soft point.
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We consider a fixed-point problem for mappings involving a rational type and almost type contraction on complete metric spaces.
To do this, we are using F-contraction and (H, ¢)-contraction. We also present an example to illustrate our result.

1. Introduction

The beginning of metrical fixed point theory is related to
Banach’s Contraction Principle, presented in 1922 [1], which
says that any contraction self-map on M has a unique fixed
point whenever (M, d) is complete. Afterwards, the crucial
role of the principle in existence and uniqueness problems
arising in mathematics has been realized which fact directed
the researchers to extend and generalize the principle in
many ways (see [2-7]).

In the studies of generalizations and modifications of
contractions, an interesting generalization was given by War-
dowski [8] using a new concept F-contraction. Then, many
authors gave some results using this concept in different type
metric spaces. One of them is given by Jleli et al. [9] by intro-
ducing a family % of functions H : [0,00)’ — 0,00) with the
certain assumption. Also, you can find this type generaliza-
tions in [10-12].

In this paper, we consider a fixed-point problem for map-
pings involving a rational type contraction and almost con-
traction. Firstly, we recall some basic on the notions of F
-contraction and (H, ¢)-contraction.

2. Preliminaries

Let & be the family of all functions F : R* = [0,00) — R sat-
isfying the following conditions:

(F1) F is nondecreasing;

(F2) for every sequence {a,} of positive numbers
lim =0 if and only if lim,_,,  F(«,) = —00;

n~>+ooan n

(F3) there exists k €0, 1] such that lim, . a*F(a) =0.
({81

Definition 1. (see [8]). Let (M, d) be a metric space and Y
: M — M be a mapping. Given F € &, we say that Y is F
-contraction, if there exists T > 0 such that

wyeM,d(Yu, Yy)>0=1+F(d(Yu, Yy)) < F(d(wy)).
(1)

Taking in (1) different functions F € &, one gets a variety
of F-contractions, and some of them being already known in
the literature. You can see this contractions in [8]. In addi-
tion, Wardowski concluded that every F-contraction Y is a
contractive mapping, i.e.,

A(Yu, Yy) <d(u,y), forally,y € M, Yu # Yy. (2)
Thus, every F-contraction is a continuous mapping.

Theorem 2. (see [8]). Let (M, d) be a complete metric space
(C.M.S) and let Y : M — M be an F-contraction. Then, Y
has a unique fixed point in M.

In [9], Jleli et al. introduced a family F of functions H
: [0,400% — 0,+00 satisfying the following conditions:

(H1) max {«, B} <H(a, B,y) for all a, 8,y € 0, +00;

(H2) H(0,0,0) = 0;

(H3) H is continuous.

Some examples of functions belonging to F are given as
follows:
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(i) H(a, B,y) =
(i) H(a, B,y) =
(iii) H(a, B, y) =

Using a function H € &, the authors of [9] introduced the
following notion of (H, §)-contraction.

a+f+yforalla,f,ye€0,+00
max {a, B} +7v for all a, B,y € 0, +c0
a+f+af+yforalafye0,+00

Definition 3. (see [9]). Let (M, d) be a metric space, ¢ : M
— 0, +00 be a given function, and H € #. Then, Y : M —

M is called a (H, ¢)-contraction with respect to the metric
d if and only if

H(d(Yu, Yy), ¢(Yu), ¢(Yy))

3
<kH(d(p.y), ¢(1), ¢(y)) forally, y € M, e
for some constant k € ]0, 1.
Now, we set
Zy={pueM: ¢(u)=0},
p= {0 (n) =0} @

Fy={ueM:Yu=pu}.

Furthermore, we say that Y is a ¢-Picard operator if and
only if the following condition holds

FynZ,={c}and YY"y —¢,asn — +oo,foreach y € M.
(5)

Theorem 4. (see [9]). Let (M, d) bea C.M.S, ¢ : M — 0, +c0
be a given function and H € . Suppose that the following
conditions hold

(A1) ¢ is lower semicontinuous (Ls.c.);

(A2) Y: M — M is a (H, §)-contraction with respect to
the metric d.

Then,

FycZ; (6)

(i) Y is a ¢-Picard operator
(ii) For all y € M and for all n € N, we have

n

d(Y'u,q) < %

H(d(Yp, p), ¢(Yp), (1)), (7)

where {¢} = Fy N Z, = Fy.
Recently, Vetro ([13]) generalized Theorem 4 by using F
-H-contraction.

Definition 5. (see [13]). Let (M, d) be a metric space and let
Y : M — M be a mapping. The mapping Y is called an F -
H-contraction if there exists F € %, H € #, a real number,
7>0and ¢ : M — 0,4+00) s.t.
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T+ F(H(d(Yp, Yy), ¢(Yu), ¢(Yy))) < F(H(d(w, y), (1), $(¥)))>

(8)

for all y,y € M with H(d(Yu, Yy), ¢(Yu), ¢(Yy)) >0

We remark that every F-contraction is an F-H-contrac-
tion such that H € # defined by H(x, y,z) =x + y + z for all
x,9,2€0,+00 and ¢ : M — 0, +0co defined by ¢(u) =0 for
all ye M.

Lemma 6. (see [13]). Let (M, d) be a metric space and let Y
: M — M be an F - H-contraction with respect to the functions
FeF HeH, ¢ : M — 0,+c0, and the real number T > 0. If
{u,} is a sequence of Picard starting at y, € M, then

lim H(d(!"n—l’ Hn)’ (p(”n—l)’ (/5([4”)) = 0’ (9)

n—+00

and hence

lim d(p, ), p,) =

Oand lim ¢(u,) = 0. (10)
n—+00 n—+00
Theorem 7. (see [13]). Let (M,d) bea CM.SandY : M —
M be an F - H-contraction with respect to the functions F €
F, H € X, the real number T > 0, and a Ls.c. function ¢ : M
— 0, +00 such that (8) holds; that is,

T+ F(H(d(Yu, Yy), ¢(Yu), §(Yy))) < F(H(d(p ), $(1)> $()))>

(11)
for all yu,y € M with H(d(Yu, Yy), $(Yu), ( )) > 0. Then,
Y has a unique fixed point ¢ such that ¢(g) =

Theorem 8. (see [13]). Let (M, d) bea CM.SandletY : M
— M be a mapping. Assume that there exists a continuous

function F that satisfies the conditions (F,) and (F,), a func-
tion H € %, a real number v > 0, and a Ls.c. function ¢ : M
— 0, +00 such that (8) holds; that is,

T+ F(H(d(Yu, Yy), ¢(Yp), ¢(Yy))) < F(H(d(p ), $(1)> $(y)))>

(12)

forall u,y € M with H(d(Yu, Yy), ¢(Yp), ( )) > 0. Then,

Y has a unique fixed point ¢ such that ¢(c)

3. Main Results

We first introduce the rational type F-H-contraction.

Definition 9. Let (M, d) be a metric space and Y : M — M be
a mapping. Y is called a rational type F - H-contraction if
there exists F € %, H € #, a real number 7>0, and ¢ : M
— 0, +00 s.t.

T+ F(H(d(Yp, Yy), §(Yu), §(Yy))) < F(H(M
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for all u,y € M with H(d(Yu, Yy), ¢(Yu), $(Yy)) > 0 where

M(p, ) = max {d(% " d(w Yu)[1 +4d(y, YV))]}_ (14)

1+d(Yu, Yy)

Lemma 10. Let (M, d) be a metric space and Y : M — M be a
rational type F - H-contraction with respect to the functions
FeF HeX, ¢ : M — 0,+00, and the real number 1 > 0.
If {u,} is a sequence of Picard starting at p, € M, then

lim H(d(p, 1> ) $(#-1)> $(14,,)) = 0, (15)

n—+00
and hence
lim d(u,_;,u,)=0and hm ¢(p,) =0. (16)

Proof. By replacing the contradiction in [[13], (29)] with con-
tradiction (13) and following the proof of [[13], Lemma 1],
we immediately have the desired result.

Theorem 11. Let (M, d) bea C.M.SandletY : M — M be an
rational type F - H-contraction with respect to the functions
Fe %, He X, the real number T> 0, and a Ls.c. function ¢

: M — 0, +00 such that (13) holds for all y,y € M with H(d(
Yu, Yy), (Yu), ( y)) > 0. Then, Y has a unique fixed point
G such that ¢(¢) =

Proof. First, we shall proof the uniqueness. Arguing by con-
tradiction, we assume that there exist ¢, w € M such that ¢
=Y, w= Yw, and ¢ # w. The hypothesis ¢ # w ensures, by
the property (H,) of the function H, that

H(d(Yg, Yw), ¢(Ys), p(Yw)) =2 d(Ys, Yw) = d(g, w) > 0.

(17)
Using (13) with g =¢ and y = w, we obtain

T+ F(H(d(Ys, Yw), ¢(Yc), p(Yw)))
=T+ F(H(d(c, w), $(c), p(w)))

a
(
< F(H(M (6 w), 6(6) $(w)
(6. Vo)1 + d(w, Yu))
e 600,60 )

SF(H( {d@,w) a

Ao e g6 w)) )

SF<H(max {d@, w), &

< F(H(d(g, w), ¢(5), p(w))),

(18)

which is a contradiction. So, we have w =¢, and the fixed
point is unique.

Now, we can show the existence of a fixed point. Take a
point y, € M and create the {y,} sequence starting at y,.
We emphasize that if y,_, =y, for some k€N, then ¢=
Yoy = M = Yy = Y; that is, ¢ is a fixed point of Y such
that ¢(¢) = 0. In fact, by Lemma 10, H(d(¢;_;> 4 ) (1)
$(u,)) =0 and by the property (H,) of the function H, we

have ¢(g) =
€N.

In this step, we show that {y, } is a Cauchy. By Lemma
10, we say that

0. So, we can suppose that y, , # p,, for every n

0<h, ;=H(d(p, 1> thy)> $(t1)> $(,)) = 0 asn — +0o0.
(19)

There exists k € ]0, 1 such that k¥ F(h,) — 0 as n — +co
by he property (F;) of F. Using (13) with y=p, , and y=
u,, we get

F(H(d([’ln’ [’ln+l)’ ¢(Mn)’ ¢(Mn+l)))
< F(H(M(Aun—l’ Ml’l), ¢(Mn—1)’ (p(nun))) -
< F(H(max {d(l[/ll’l—l’ #n)’
d(py_p Yih, o )[1 +d(p Yii,))]
e S o, ). o) -
< F(H(d(p, 1 ) $(#1)> $(1,))) = T
< F(H(d(pgs 1) (th)> $(11))) — 17,

(20)
for all n € IN; that is,
F(h

)< F(h,)—1<---<F(hy)—ntforallne N. (21)

n

From

0= lim K F(h,) < lim KS(F(hy)-nt)<0,  (22)

n—+00 n—+00
we deduce that
lim h¥n=0. (23)
n—+00

This provides that ) '] h,, is convergent. By the property
(H,) of the function H, also, the series Y%7 d(u,, ph,,,) is
convergent and hence {4, } is a Cauchy sequence. Now, since
(M, d) is complete, there exists ¢ € M such that

lim p, =c. (24)

n—+00

By (13), taking into account that ¢ is a Ls.c. function, we
have

0<¢(¢) <liminf¢(u,) =0; (25)

n—+00

that is, ¢(¢) = 0. Now, show that ¢ is a fixed point. If there
exists a subsequence {u, } of {,} such that y, =g orY

H,, = Y6, forall k € N, then ¢ is a fixed point. Otherwise, we

can assume that y, # ¢ and Yy, # Y¢ for all n € N. So, using
(13) with y =y, and y = ¢, we deduce that

$(Yu,), $(Y<)))
) 9(6)))-

+ F(H(d(Yp, Yo),

26
< F(H(M(u,» )> d(u 20



Since T > 0, we obtain

H(d(Yu,, Y5), ¢(Yu,), (Y5)) (27)
H(M(u,>6), (p,.), $(c)) foralln € N,
and so
d(s, Y¢) <d(c, ph,,y) +d(Yp,, Y)
<d(G ) +H(A (Y, Y6), ¢(Yuy,), ¢(Y5))
<d(6s phyyy) + H(M(ph,>6) $(1,), 9(6))
<d (6 phyyy) + H(max {d(p, <),
d(p,, Yu,)[1+4d(s Yo))]
s } Bl11,)» 6(<))
<d(6, ) + H(max {d(y,, c),
d(p, )1 +d(s Yg))]
e },¢<un>,¢<c>>,
(28)
for all n € N.

Finally, letting n — +co in the above calculations and
using that H is continuous in (0,0, 0), we deduce that d(g,
Y¢) <H(0,0,0) =0; that is, ¢ = Y.

Imposing that F is a continuous function and relaxing the
hypothesis (F,), we can give t Theorem 12.

Theorem 12. Let (M, d) be a CM.S and Y : M — M be a
mapping. Assume that there exists a continuous function F
that satisfies the conditions (F,) and (F,), a function H € ,
a real number T > 0, and a Ls.c. function ¢ : M — 0, +00 s.t.

+ F(H(d(Yw, Yy), ¢(Yu), 6(YY))) (29)
<FHM(py), o), (1))
for all y,y € M with H(d(Yu, Yy), ¢(Yu),

( )) > 0. Then,
Y has a unique fixed point ¢ such that ¢(g) =

Proof. Following the similar arguments as in the proof of
Theorem 11, we obtain easily the uniqueness of the fixed
point. The existence of a fixed point, we take a point y, € M
and create the {y, } sequence starting at y,. Clearly, if y,_,
=y, for some k€N, then ¢=p, | =u, =Yy, =Yg; that
is, ¢ is a fixed point of Y such that ¢(¢) = 0 (see the proof of
Theorem 11), and so we have already done.

So, we can suppose that y,_, # p,, for every n € N. Now,
showing that {4, } is a Cauchy. Let us admit the opposite.
Then, there exists a positive real number € and two sequences
{m,} and {n,} such that

ny > my > kandd(ymk, Mnk) >e> d(ymk, P‘n,;l) forall k e N.
(30)

By Lemma 10, we say that d(u,,_;,p,) = 0, ¢(u
n — +00. This implies

,) —0,as
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lim d (#m Hy ) = lim d (mGfpunrl) =e (31

k—+00

Now, the hypothesis that d(u,, , ,, ) > € ensures that

H(d(ymk, ynk> , ¢>(ymk), ‘/5(/"nk>) >0forallke N. (32)

Using the continuity of H, we have

kli{rnooH (d (.”m,;v Aunk—l) ¢ (Mmk—l) ¢ (#n,;l))

- 1 (a{) (o) 9(s)) 0
= H(e,0,0) > 0.

Using again (29), with g =, _, andy=p, _;, we get

e F(H (b, )- 6, )- (1))
F(H( (pl,,,k,l MFI) ¢(!‘nw)"p(“"f')))

d(‘umk—]’nun,;l)’
{1t Vo) [T d (1 Vi, ))] (0 ()-8 (000)
1+ d(YI"mA—l' Yﬂnk—l)
d(.“mrl’ anl)’

() [+ (o)) () #(0)

1+d([4mk,plm)

(34)

for all ke N. Letting k — +0o0 in the previous inequality,
since the function F is continuous, we get

T+ F(H(&,0,0))) < F(H(s, 0,0))), (35)

which leads to contradiction. It follows that {y, } is a Cauchy
sequence.

Now, since (M, d) is complete, there exists some ¢ € M
such that

lim p, =¢. (36)

n—+0o
By (29), using lower semicontinuity of ¢, we get

0 < ¢(c) <liminf¢(u

n—+00 ) =05 (37)
that is, ¢(¢) =0. Now, show that ¢ is a fixed point of Y.
Clearly, ¢ is a fixed point of Y if there exists a subsequence
{u, } of {u,} such that y, =¢ or Yy, =Yg, for all keN.
Otherwise, we can assume that y, #¢ and Yy, # Y¢ for all
n € N. Then, the property (H,) of the function H ensures that
H(d(Yu,, Yc), ¢(Yu,), $(Yg)) >0 for all neN. So, using
(29) with =y, and y = ¢, we deduce that
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+ F(H(d(Yu,, Y6), d(Yu,) $(Y5)))
SF( (M(p,>6)> St )> $(S)))
< F(H(max {d(u,, c),
d(p, Y, )[1+4d(s Y0))]
1+d(Yu,, Yq)

}, ¢(u,) $(c))) foralln € N.
(38)

Since T > 0, we conclude that

H(d(Yu,, Y¢), ¢(Y,), §(Y))
< F(H(max {d(4,, <),
Ay, Yp,)[1+4d(s Yg))]
1+d(Yu,, Yq)

},¢(un),¢<c>)> forall n € N,
(39)

and so

d(, Y¢) <d(6, ph,,,) +d(Yp,, Ys)
<d(6 pypy) +H(A(Yp,, Y6), ¢(Yr,,), 9(Y<))
<d (6, pyyy) + H(max {d(p,,, c)

>

(g Yu,)[1 +d(6, Y6))]
e S S ARC)
=d(6 pyyy) + H(max {d(y,,<)
d(p 1)1 +d(6, YG))]
At ST, 000, 906),

(40)

for all n € N. Finally, letting n — +0o and using that H is
continuous in (0, 0, 0), we deduce that d(g, Y¢) < H(0,0,0)
=0; that is, ¢ = Yg.

Definition 13. Let (M, d) be a metric space andlet Y : M —
M be a mapping. The mapping Y is called almost F - H
-contraction if there exists a function F € &, H € &, a real
number 7 >0, and L >0 and a Ls.c. function ¢ : M — 0, +00
such that

+F(H(A(Yp, Yy), ¢(Yu), §(Y7)))

(41)
< F(H(d(p y) + Ld(y, Y), (1), $(1)))s

for all y,y € M with H(d(Yu, Yy), ¢(Yu), $(Yy)) > 0.
Theorem 14. Let (M, d) bea C.M.SandletY : M — M be an
almost F - H-contraction with respect to the functions F € &,
H e %, the real number T >0, and L > 0 and a Ls.c. function
¢: M — 0,+00 s.t.

+F(H(A(Yp, Yy), ¢(Yu), §(Y7)))

(42)
< F(H(d(p,y) +Ld(y, Yu), o(1), $(1)))>

forall yu,y € M with H(d(Yu, Yy), (Yu), $(Yy)) > 0. Then,
Y has a fixed point ¢ such that ¢(¢) =

Proof. The existence of a fixed point we take a point y, € M
and create the {u,} sequence starting at y,. We stress that
if w,_, = for some k€N, then ¢=p,_, =p, =Yy, _; =Yg;
that is, ¢ is a fixed point of Y such that ¢(¢) = 0. In fact, by

Lemma 10, H(d(py_y i)> $(py)> (1)) =0 and by the
property (H,) of the function H, we have ¢(¢) =0. So, we
can suppose that p, | # p,, for every n € N.

Now, showing that {y,} is a Cauchy. By Lemma 10, we
say that

0< hn—l = H(d(nun—l’ [/ln), ¢(Mn—l)’ ¢(Mn)) — 0asn — +00.
(43)

The property (F;) of the function F ensures that there

exists k €]0,1[ such that K*F(h,) —0 as n— +co. Using
(42), with p=p, ; and y =y, , we get

F(H(d (s i)
F(H(d(ph,> ) + L (s Y, 1)> 9(th1)> (1)) = T
F(H(d (-1 )> 9(th)> $(11))) = T
< F(H(d(pg phy)> p(19)> $(11))) — 1T,

D(tn)> P (Hs1)))

IN

IN

(44)
for Vn € IN; that is,

F(h,)<F(h, ) -1<--<F(hy)—ntforallne N. (45)

n

From

0= lim K F(h,) < lim K (F(hy)-nt)<0,  (46)

n—+00 n—+00

we deduce that

lim kfn=0. (47)
n—+00

This ensures that the series Y./ h,, is convergent. By the
property (H,) of the function H, also, the series Y %) d(u,,
Y1) is convergent, and hence {y,} is a Cauchy sequence.
Now, since (M, d) is complete, there exists some ¢ € M such
that

lim p, =c. (48)

n—+00

By (42), using lower semicontinuity of ¢, we get

0< (<) <liminfg(u,) = 0; (49)

n—+0o

that is, ¢(¢) = 0. We assert that ¢ is a fixed point of Y. Clearly,
¢ is a fixed point of Y if there exists a subsequence {u, } of

{u,} such thaty, =gor Yy, =Y, forall k € N. Otherwise,

we can assume that y, #¢ and Yy, # Y for all n€IN. So,
using (42) with = p, and y =, we deduce that



+ F(H(d(Yp,, Y6), ¢(Yu,), $(Y<)))

(50)
< F(H(d(p,» <) + Ld(s, Y, )> §(p1,) $()))-

Since 7 > 0, this inequality leads to

H(d(Yp,, Y6), (Yp,,), $(Y))
H(d(p,>) + Ld(s, Yy, ), $(1,), $(c)) foralln € N,

(51)
and so
d(s, Yo) <d(6 py,y) +d(Yu,, Y5)
<d(G phyyy) + H(A(Yp,, Y6), ¢(Y,,), 9(Y6))
<d(6 phyer) + H(d(p,> 6) + Ld(s, Ypu,), §(p4,)> 6(6))s
(52)

for all n e N.

Finally, letting n — +co in the above calculations and
using that H is continuous in (0,0, 0), we deduce that d(g,
Y¢) < H(0,0,0) =0; that is, ¢ = Y.

Example 15. Let M = [0, 1] endowed with the standart metric

d(p,y) =|u—7y| for all u,y € M. Consider the mapping Y
: M — M defined by
/2 €0,1
Yyu= : : ) (53)
1; u=1

Clearly, Y is nota F — contraction but Y is an almost F-H
-contraction with respect to the functions F € # defined by
F(a)=In « for all «>0,H € # defined by H(a, b, c) = max
{a,b} +¢ for all a,b,ce€0,+0c0, the real number 7=1In2
and L=4, and a Ls.c. function ¢ : M — 0, +c0,¢(t) =t for
all t € M, indeed.

Case 1. p=0,y =1, we have

T+ F(H(d(Yw, Yy), ¢(Yu), ¢(YY)))

=7+ F(H(d(Y0, Y1), $(Y0), $(Y1)))
=7+ F(H(d(0,1),$(0), (1))) (54)
=7+ F(H(1,0,1))=In 4

<In 6= F(H(d(0,1) +4d(1, Y0), $(0), $(1)))
= F(H(d(p, y) + Ld(y, Yu), $(t), $(1)))-

Case 2. p=1,y =0, we have

T+ F(H(d(Yp, Yy), ¢(Yp), ¢(Yy)))
=7+ F(H(d(Y1,Y0),$(Y1),$(Y0)))
=7+ F(H(d(1,0), ¢(1), $(0))) (55)
=7+ F(H(1,1,0))=In2<In5
= F(H(d(1,0) +4d(0, Y1), ¢(1), $(0)))
= F(H(d(p, y) + Ld(y, Yp), (1), ¢(1)))-
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Case 3. u, y € (0, 1) with u >y, we have

T+ F(H(d(Yp, Yy), ¢(Yu), ¢(Yy)))

(56)

p+y)n (4y —p)}
7)

= F(H(d(py) + Ld(y, Yp), $(1), $(v)))-
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The main result in this paper is to prove, in Bourgain type spaces, the existence of unique local solution to system of initial value
problem described by integrable equations of modified Korteweg-de Vries (mKdV) by using linear and trilinear estimates, together
with contraction mapping principle. Moreover, owing to the approximate conservation law, we prove the existence of global

solution.

1. Introduction and Main Results

For an effective approach to solving problems arising in mod-
ern science and technology, one cannot do without research-
ing nonlinear problems of mathematical physics. The rapid
development of new technology and the emergence of its high
speed allow researchers to build and consider increasingly
complex multidimensional models describing various phe-
nomena, which are modeled, as a rule, using nonlinear partial
differential equations (systems). However, now it has become
clear that without the development of analytical methods, it is
impossible to get a complete idea of the essence of the phe-
nomenon. Analytical methods provide not only a reliable tool
for debugging and comparing various numerical methods but
also sometimes anticipate some scientific discoveries, make it
possible to study the properties of models, to detect the pres-
ence of certain effects as a result of the existence or nonexis-
tence of objects (solutions) with the required properties.
Therefore, at present, fundamental research is being inten-
sively carried out aimed at proving theorems of existence,
uniqueness, and regularity of solutions of nonlinear partial dif-
ferential equations.

In the present paper, a coupled system of modified
Korteweg-de Vries equations is considered as follows:

0,u+05u+0,(w”) =0,

0v+ Posv+0,(u'v) =0, (x, 1) e R} 0< <1,
u(3.0) = (3

(1)
v(x,0) = vy(x).

The dynamics of solutions in the Korteweg-de Vries
equations (KdV) and the modified Korteweg-de Vries equa-
tions (mKdV) are well studied due to the complete integrabil-
ity of these equations (see [1-6]). For KdV equations, the
studies date back to the 1970s, although some results have
been obtained very recently (please see [7]). We extend the
results in [7] and consider a coupled system of mKdV-type
equations on the line in Equation (1).

For mKdV equations, many problems have been studied.
It is proved that the mKdV equation is locally [8] and glob-
ally [9] well-posed in H(T) for s>1/2. Global well-
posedness in L?(T) is shown in [10].
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For 0< <1, the author in [7] proved that the IVP
(Equation (1)) is locally well-posed for the given data (u,
v) € H'(R) x H°(R), s > —1/2. Oh in [11] used the Fourier
transform restriction norm method and proved that the next
IVPp

O,u+05u+0,(v') =0, u(x, 0) = uy(x),

0,v+ POy +0,(uv) =0, v(x,0)=v,(x),0<f<1,

(2)

is locally well-posed for data with regularity s > 0.

For 8 =1, the system (Equation (1)) reduces to a special
case of a broad class of nonlinear evolution equations consid-
ered by Ablowitz et al. [12] in the inverse scattering context.
In this case, the well-posedness issues along with existence
and stability of solitary waves for this system are widely stud-
ied in the literature, using the technique developed by Kenig
et al. in [13, 14].

Well-posedness for the nonperiodic gKdV equation in
spaces of analytic functions has been proved by Grujic and
Kalisch [15].

A class of suitable analytic functions for our analysis is
the analytic Gevrey class G*(R) = G®* introduced by Foias
and Temam [16], defined as follows:

% = {f <L fllgn = | M0 fA(c”)de<00}’ (3)

for seR and § >0 with (-) =(1+]-|). For § =0, the space
G®* coincides with the standard Sobolev space H*. For all
0<8' <8 and s,5" € R, we have

1
G»* G ie|fll g < s |If |l oo (4)

which is the embedding property of the Gevrey spaces.

New minimal conditions are used to show the local well-
posedness of solution by using linear and trilinear estimates,
together with contraction mapping principle. By imposing a
more appropriate conditions with the help of the approxi-
mate conservation law, we obtain an unusual global existence
result in Gevery spaces.

Proposition 1 (Paley-Wiener Theorem) [17]. Let § > 0, s € R.
Then, f € G®* if and only if it is the restriction to the real line
of a function F which is holomorphic in the strip {x + iy : x,
y€R, |y| <8} and satisfies

Sup|[E(x + i), < co. (5)
lyl<é

Remark 2. In the view of the Paley-Wiener Theorem, it is nat-
ural to take initial data in G®*, to obtain the best behavior of
solution and may be extended to be globally in time. It means
that given (1, v,) € G x G** for some initial radius & > 0,
we then estimate the behavior of the radius of analyticity
8(T) over time.
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The first main result on local well-posedness of Equation
(1) in analytic spaces reads as follows.

Theorem 3. Let § > 0 and s> —1/2. Then for any (u,, v,) €

G x G%%, there exists T =T(||(ug, vy)|| grsxes) and unique
solution (u,v) of Equation (1) on [0, T| such that

(1, v) € C([o, 1), G&S) x c([o, 1), G&S). (6)

Moreover, the solution depends on (u,, v,), where

1
T= . ; 5 = (7)
(16C° + 16C°|| (g vo) || oo+

Furthermore, the solution satisfies the following:

1
1)y, e, < 2C0 i Vo) [ grgrn b= 5+ (8)

with constant C > 0 depending only on s and b.

An effective method for studying lower bounds on the
radius of analyticity, including this type of problem, was
introduced in [18] for 1D Dirac-Klein-Gordon equations. It
was applied in [19] to the modified Kawahara equation and
in [20] to the nonperiodic KdV equation (for more details,
please see [20-23]).

The second result for the problem (Equation(1)) is given
in the next theorem.

Theorem 4. Let s> -1/2,0< < 1, and §,> 0. Assume that
(14 vy) € G®* x G®%, then the solution in Theorem 3 can be

extended to be global in time and for any T' >0, we have
the following:

(,v) € c( [o, T’} , G‘s(T')’S) x c( {0, T’] , G‘S(T')>S), 9)
with
6(T’) = min {80, CIT"(Z“’“)}, (10)

where 0, > 0 can be taken arbitrarily small and C, >0 is a
constant depending on wy, &, s, and o,,.

The third result is Gevrey’s temporal regularity of the
unique solution obtained in the Theorem 3. A nonperiodic

function f(x) is the Gevrey class of order r, i.e., f(x) € G, if
there exists a constant C > 0 such that

l0Lf (x)l < C* (1) 1=0,1,2, -+, (11)

if r =1f(x) is analytic.
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Here, we will show that for x € R, for every ¢ € [0, T] and
7,1€{0,1,2, -}, there exist C > 0 such that

di0Lu(x, t)‘ < (R,
(12)

dlolv(x, t)‘ < (P (),

ie, (u(~t),v(-t)) € G'(R) x G'(R) in spacial variable and
(u(x,-),v(x,-)) € G*([0, T]) x G*([0, T]) in time variable.
Also,

0L u(x, t)‘ < (D), (13)

dlalv(x, t)‘ < (), (14)
where Equations (13) and (14) do not hold forl < d < 3.

Theorem 5. Let s>—-1/2,0< 3< 1, and 8> 0. If (uy,v,) €
G x GO, then the solution (u,v) € C([0, T], G**) x C([o,
T), GOT)%) given by Theorem 4 belongs to the Gevrey class
G*([0, T]) x G*([0, T]) in time variable. Furthermore, it is
not belong to G*([0, T]) x G*([0, T]), I<d<3int.

The proof of Theorem 5 is similar to that in [1].

The paper is organized as follows. In Section 2, we define
the function spaces and linear and trilinear estimates. In Sec-
tion 3, we prove Theorem 3, using the linear and trilinear
estimates, together with contraction mapping principle. In
Section 4, we prove the existence of fundamental approxi-
mate conservation law. In the last section, Theorem 4 will
be proved using the approximate conservation law.

2. Preliminary Tools and Analytic
Function Spaces

2.1. Function Spaces. We define the analytic Bourgain spaces
related to the modified Korteweg-de Vries type equations.
The completion of the Schwartz class S(R?) is given by

Xg,s,b(le) = Xg,s,h, fors,b e R, & >0, subjected to the norm:

[wly, = (j 1 (- ) wn (s n>|2d<:dn)
(15)

We often use without mention, the definition Xj , =
Xs.s» Where

172

ol = (] @890 (=) on@omPacan)
(16

For any interval I, we define the localized spaces
Xg,s,bORX I) =X§:ib with norm:

Il =inf {IWllg s W], =w} (7)

2.2. Linear Estimates. We have the trilinear estimate
(Equations (15) and (16)) defined in the analytic Bourgain

spaces. Since the spaces Xg’s,b is continuously embedded in
C([0, T], G°), provided b >1/2.

Lemma6. Let b > 1/2, s € R, and § > 0. Then, for all T > 0, we
have the following:

X&S’b‘—)C([O, 1], G5’S> . (18)
Proof. First, we note that the operator A defined by
Awn*(§ t) = E&Flwn* (¢, t), (19)

satisfies

(20)

@l = 4wl s = [ Aw]y.

where Xf , is introduced in [7]. We observe that Aw belongs
to C(RR, H*) and for some C > 0, we have the following:

[Aw]| g pr) < CllAW] g - (21)

Thus, it follows that w € C([0, T, G**) and
l@leomay < Cliwly (22)

Taking the Fourier transform with respect to x of the
Cauchy problems (Equation (1)), after an ordinary calcula-
tion, we localize in t by using a cut-off function, satisfying
y e CP, with y=1in [-1, 1], suppy C [-2,2], and y(t) =
y(t/T). We consider the operator A, I' given by the follow-
ing:

Alu v](8) =y (£)S(t)ug — l//T(t)J S(t = v)0,F,(v)dv,

Tlu, v](t) = w(£)Sp(t)vo — va(f)J Sp(t = V)0 Fy(v)dv,
(23)

where S(t) =e % and Sp(t) = ¢'P%. are the unitary groups
associated with the linear problems.

The nonlinear terms defined by F, = (uv?) and F, = (u?v)
will be treated in the next lemmas.



Lemma 7. Let s, b € R and § > 0. For some constant C > 0, we
have the following:

lw()S(0)uolly, , < Clltoll s

(24)
Hll/(t)sﬁ(t)"ouxgsh < Clvoll goss
for all uy, v, € G°.
Proof. By definition, we have the following:
w(Ss(m = Co(0)| LRG0
B (25)

=c| ey (n-p0) )i 0)dcan.

It follows that

vostmly, =C| My (1 n-pe))”
Jon(n= B0 | Ton ) Pacan
= Sl o)
R

(] =) 1= )

(26)

Since b > 1/2, we have the following:

JR‘V//\(W 3)‘ (1+I17 e I) dn

CJ ‘W\ ;7 /3(3 ‘dmcj ‘1///\(;7 /3(3). (27)
><<1+|17—/3( I) dn<cC.

Lemma8. Lets€ R, -1/2<b' <0<b<b' +1,0<T<1 and
8 > 0, then for some constant C > 0, we have the following:

t
‘wj S(E=V)3E, (o v)dv|  <CTY o, F
0 Xosb o
L !
s sste—varvias| - ser o,
0 X[I;S,b 8sb
(28)
Proof. Define
t
szT(t)J Sp(t = V)0, Fy(x, v)dv. (29)
0
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We have, by Equation (19), the following:

t 3
AWN (L, t) = wT(t)J (e"'“‘”ﬁ‘ )ea'C'asz/\X(c, v)dv
0

=y2(0)] [S5(t - V)@AF)] A )y
(30)

Thus,

w =AW =
Wl = 1AWl =

wT(t)JOSB(t - v)0,AF,(x,v)dv

B
X

(31)

Owing to Lemma 6 in [7], we get the following:

‘/’T(t)J;Sﬁ(t —v)0,AF,(x,v)dv

?

< CTY 19 AF, || s
Xﬁh H X 2” Xs,b’
= CTl‘b+b'||BxF2||

xB -
8’

(32)

This completes the proof.

Lemma9. Let © € S(R) be a Schwartz function in time, s € R,
and 8§ >0. If =1/2< b < b’ < 1/2, then for any T > 0, we have
the following:

b'-b
H@T(t)wHX&sﬁ <CT ||wHX8,s,b,,

b'-b
|Or (el <CT |y
S, 8.s,b

where C depends only on b and b’

Proof. The proof of Lemma 9 for § =0 can be found in
Lemma 13 of [14], for § > 0 as one merely has to replace w
by Aw, where the operator is defined in Equation (19).

Lemma 10 [20]. Let s€ R, §>0, -1/2<b<1/2, and T > 0.
Then, for any time interval I C [0, T|, we have the following:

I @&wlly, , <Cllwly

(34)
IOl < Cllwllysr.

where x,(t) is the characteristic function of I and C depends
only on b.

2.3. Trilinear Estimates. We have the trilinear estimate in the
following lemmas.
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Lemma 11. Lets>—1/2,8 > 0,b> 1/2, and b’ be as in Lemma
8. Then,

(), < Cllulx,,,

J0.64) < Clulf,

VHX/" 4

(35)

v ||X§,s.h '
Proof. We observe, by considering the operator A in (19), that

Ml = (2m) 2e élfla*aws(znyZJ (YN
]R4

=), = G,y - 1) (Lo, my)dC Ay dn,

= AMEAV,
(36)
since 8[¢| < 8[¢ — ¢, + 8¢, = ] +6]C,|.
Then,
o)l =0y (- )" 3, fum) @)
< |0, (AuAuAv)| s
(37)

Thanks to Proposition 2.3 of [7], for some C > 0, we have
the following:

2 2
0. (AuAuav)ls < CllAul, 4v], = Cllull, , IVl -
(38)
This completes the proof.

3. Proof of Theorem 3

3.1. Existence of Solution. We estimate terms in Equation
(23). For this end, we define By, = X5}, X Xg)s,b and N°* =
G x G, with norms [ u, ), , = max {[ul, - V] }

and similar for N%,
Lemma 12. Let s> —1/2,8 > 0, and b > 1/2. Then, for all (u,,

vy) €N and 0< T < 1, with some constant C > 0, we have
the following:

(Al I Dl , < (100 v0) s + TN ()5, )
(39)
| A[u, v] = Alu™, v], T[u, v] = T'[u", V*]HB&Sﬁ
<CT¥||(u—u",v =), ,
< (I I, + 1l 169 g, + 10 Y)I, ),
(40)

for all (u,v), (u*,v*) € Bs -

Proof. To prove estimate of Equation (39), we have the fol-
lowing:

2
1AL ]Il , < Cllugllges + CT ully, , 1V "
< || (190 vo) [l yos + CT[ V)15, .-
I'u, <C .+ CT¢u))?
I Wl = Cllollo + CT Wil g,

< C||(ugs vo) o + CT || ()15, .-

Therefore, from Equations (41) and (42), we obtain the
following:

(Al ) T, (1 vl + T 03, ).

(43)

Dlls,,, <

For the estimate of Equation (40), we observe that

t
S(t =)0, (w? —uv*?) (x, v)dv,

0

Alu, v] - Alu”,

vI=vr(0)|

T[u,v] - T[u*, v*] =1//T(t)J;Sﬁ(t—v)a (12 = wv") (x,v)dv,
(44)

where

w=0, (v -uv) =0 [v(u+u")(u-u)+u?(v-v")],

@ =9, (u? - u'v?) =0, [u(v+v ) (v—v) + v (u-u")].

(45)

We will show that Ax T is a contraction on the ball
B(0, R) to B(0, R), where B(0, R) is given in Equation (46).

Lemma 13. Let s > —1/4, § > 0, and b > 1/2. Then, for all (u,,
vy) € N°, such that the map AxT : B(0,R) — B(0,R) is a
contraction, where B(0, R) is given by the following:

B(0.R) = {(1v) € By, s vl <R}, (46)

with R = 2C||(ug, V)| yos-

Proof. From Lemma 12, for all (u, v) € B(0, R), we have the
following:

(Al V], Tl W) 5, , < Cll (g0 o) s + CTE (w93,

R
< — +CTéR.
2
(47)

We choose T sufficiently small such that T¢ < 1/4CR?;
hence,
(Al ], Tl

V) ||B&$Yh <R, ¥Y(u,v) € B(0,R). (48)



Thus, A x I’ maps B(0, R) into B(0, R), which is a con-
traction, since
) (Afu ]~ A, v, Tl v] = Tla* ']y
<CT(u=u,v=v")],,
* * * *\ (12
X <H(”> I, + 1069 lg, 1059, + (Vv )HBMb)’
* * 3 * *
<3CTR (= ',y =)y, < 2=t v =)l s

(49)

for all (u,v) € B(0, R). Hence, (A, I'): B(0, R) — B(0, R) is
a contraction.

3.2. The Uniqueness. Uniqueness of the solution in C([0, T7,
G*) x C(]0, T, G**) can be proved by the following standard
argument.

Suppose that (u,v), (u*,v*) € C([0, T], G>*) x C([0, T],
G®*) are solutions to Equation (1) with (v(-,0), u(- 0)) = (v*
(- 0), u*(-,0)) in GO x G, Setting 9= u — u* and w = v — v*,
we see that 9, w solves the Cauchy problem:

0,9+ 0,9+0,(w’ —u*v’)=0, 9(0)=0, (50)

0w+ 0w+ 0, (v —u’v*) =0,  w(0)=0. (51)

Thus, by Equation (50), we have the following:

%at||9(t, Nz = %BtJRSZ(t, x)dx:J 9(t, x)0,9(t, x)dx

R

- _J 9(t, x)2, (v — u*v?)dx = 0,
(52)

since we have the following:

J 9(t, x)229(t, x)dx = 0. (53)

Thanks to Equation (53), we have the following;
3,19(t, )% = -2J 9(t, )0, [*9(t,x)]dx.  (54)
R

Integrating by parts of the last integral, we obtain the
following:

3,19(t, I = —Jmaxvz(t, & (Lx)dx,  (55)

from which we deduce the inequality as follows:

10,019t ) 1z2 | < (|07 o 191172 (56)
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Since u, u* € C([0, T], G>*), we have that u and u* are con-
tinuous in ¢ on the compact set [0, T] and are G in x. Thus, we
can conclude that

HaxVZHLOOSc<oo. (57)

Therefore, from Equations (56) and (57), we obtain the dif-
ferential inequality:

0,19t ) ||%2| < c||9(t) |7, O<t<T. (58)
Solving it gives the following:
19(8) 172 < €||9(0) |7, 0<t<T. (59)

Since IIS(O)IIEZ =0, from Equation (59), we obtain that
9t)=0,0<t<T, or u=u*.
Now by Equation (51), we have the following:

|0,]|e(t, )[[72] < cl|eo() |7, O<t<T. (60)
Solving it gives the following:

[w(t)]?: < ejw(0)]]72, 0<t<T. (61)
Since "CU(O)”iz =0, from Equation (61), we obtain that
w(t)=0,0<t<T,orv=v"

3.3. Continuous Dependence of the Initial Data. To prove
continuous dependence of the initial data, we will prove the
following.

Lemma 14. Let s > —1/2, 8 > 0, and b > 1/2. Then, for all (u,,
Vo), (ug, vi) € N%, if (u,v) and (u*,v*) are two solutions to
Equation (1) corresponding to initial data (uy,v,) and (uj,
vy ), we have the following:

u—utv=v?)

Hc([o,T])G&S)Z <4CC|| (ug = ug> vy = vg) o<

(62)
Proof. If (u,v) and (u*,v*) are two solutions to Equation

(1), corresponding to initial data (ug,v,) and (ug,vy), we
have from Lemma 6 as follows:

[|u—u’ HC([O,T],GM) <Collu-ully, ,» )
[[v=v" HC([O,T],G&S) <Collv—v" ||X§,s,h'

By taking (u,v), (u*,v*) € B(0,R) and T <1/4CR, we
have the following:

3
o=l < Clu = 855 v0 = v)lyee + 3 1 =57 =¥y

3
V="l = It = 5,90 =45 s + 3=,y

(64)
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Thus,

(= v =)y, <ACH| (g — 3 v = v oo (65)

Then,
0= "9 =9") ey S ACOC = 8396 = 95 -
(66)
This completes the proof of Theorem 3.
4. Approximate Conservation Law
We have the following:
()| 2 = J (u® +v%)dx, (67)
R

which is conserved for a solution (u, v) of Equation (1). We
are going to show an approximate conservation law for a
solution to Equation (1) based on the conservation of the
L*(R) norm of solution.

Theorem 15. Let k € [0,1/2) and 0< T, < T, < 1, T, be as in
Theorem 3 with s = 0; there exist b=1/2+ ¢ and C > 0, such
that for any § > 0 and any solution (u,v) € Bg’%’b to the Cau-

chy problem (Equation (1)) on the time interval [0, T,], we
have the estimate:

sup | (u(t), v())|IRso < [|(4(0), v(0))Ixe0 + CO™[| (w6 v)[, .-

te[0,T]
(68)

Moreover, we have the following:

Lemma 16. Given « € [0,—1/2), there exist b=1/2+¢, C> 0,
and (u, v) € By, ,,; we have the following:

1(G1 Gy, , < COTN w3, (70)

where G, =0, [(AuAvAv) — A(w?)], G,=0,[(AuAuAv) -
A(u?v)], and the operator A is given by Equation (19).

Proof. Let L, = (AuAvAv) — A(uv?). Then,

[ ——re
- ]R2< 7(3 2(1-b) 11 M ml-
Lqu n >
(71)

4 —
1Gilx,, = Hh ()

(1-¢)

We shall calculate the Fourier transform of L, as follows:

|E(C’ ’7)| = ‘(AMEAv) - A(/M;Z)’
- C’ (eama » 70 My *) &n) - 25\5\(',; # V7 x)((, ;1)’

=C

,[ (e‘;‘(l\a(cl) ’71)66‘!1"1)((2’ ’72)36‘(7{'7(2‘5(( =8 =Cpn—my =)
]R“

= a1 P(C 1) P(C Gy = Epm =1y — ’72)) d¢,dC,ydrn, dr,
< C[ (eawmesmz\eawc—zrfz\ _ eam)

JRY

X (81 10)9(Cos 1) 9(C = §y = 8oy = 11y = 1,)|dE, AT
(72)

Now using Corollary 7.3 in [21], let 0 € [0, 1]; we have the
following:

16 D102 BIE—1-0] _ (L]

1), v(£)[| 30 < || (1(0), v(0))|[ 350 + C8*|| (4(0), v(0) || §0-
8 1020 < 100 (0D o + G500 O 8- LGN s sy
(69) )
We need the following estimate. For x € [0, 1/2) c [0, 1], one can see that
2
G, = | T s L
(1-¢) ; “{1-¢)
I R N R O A o A
]R4
= C(40)™ L [ NG A1) ) P (Epr 1) x N = = E) V(= 8y = $pom =11y = 1) Ay,
IR4

<f1—(3>17h'

2
Llnr

(74)



Now by taking s = —x € (=1/2, 0], we obtain the following:
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d¢,dC,dn, dn,

1Gilx,,, < Cl49)" e

(r-e)”

b,\

C(()S j eslma(Cp M) 85|(z|$<('2, 1) ea‘(_[l_{z‘i;(c —8=Cun—n—ny)
R* : (C - Cl - C2>S

2
LM

< C(40)

Gln-a) (- p)

<n7(3>17b

Then,

2 2
Gy, = 8% [Aully,, 1AvIEy = C8%uly,,, 1%

< C8"||(u,v)

3
[E

(76)
Now let L, = (AuAuAv) — A(u*v). Then,

2 2
Gallx,, , < COllAull, Al = COJully, 7]
K 3
<Co(w )3,
(77)

By Equations (76) and (77), we have the following:

1G> Ga)llg,, , < CO"|(usv) (78)

3
B0,

Proof (Theorem 15). Let U(¢, x) = Au(t, x), V (¢, x) = Av(t, x)
which are real-valued since the multiplier A is even and u, v
are real-valued. Applying A to Equation (1), we obtain the
following:

o,U+0,U+0,(UV?) =G, (79)

0,U+0U+0,(UV)=G,, (80)

where G, =0, [(AuAvAv) — A(w?)] and G, =0, [(AuAuAv)
- A(u*v)).

By multiplying both sides of Equation (79) by U and
Equation (80) by V and integrating with respect to space var-
iable, we get the following:

J Ua,de+J Uaide+J UaX(UVZ)dx=J UG, dx,
R R R R

J Vo, Vdx + J Vo, Vdx + J Vo, (U*V)dx = J VG,dx.
R R R R

{9) J 0, =) 0 1, = ) o) Sl - BG4 0 GG )
]Ré

x d¢,dC,dny, dn,

(S ¢ *(z>s<’7*’71 U (S (2>3>b

2
Lm

(75)

Then,

J (Ud,U + VatV)dx+J (Ua§U+Va§V)dx+J [Uo,(UV?)
R

R R

+ Vo, (U*V)]dx = J (UG, + VG,)dx,
R

J (Ud,U + V3, V)dx + J 3,(3,Ud,U +0,Vd,V)dx

+J ax(UZVZ)dx=J (UG, + VG,)dx.
R R

Noting that afCU(x, t) — 0 as |x | — 00 (see [20]), we
use integration by parts to obtain the following:

%atJ (U2+V2)dx=J (UG, + VGy)dx.  (83)
R R

Integrating the last equality with respect to ¢ € [0, T,], we
obtain the following:

J]R(UZ(Tl,x) + Vz(Tl,x))dx: LR(UZ(O, x) + Vz(O,x))dx

; zJ Yo (H)(UG, + VG, )dxdt.
R !

(84)
Thus,

2 2 2 2
[[4(T1) oo + IV(T1)l[goo = [[(0) [ Goo + [IV(0) [ gas

+2 (85)

J Xor, (D(UG, + VG,)dxdt|.
]RZ

By using Holder’s inequality, Lemma 10, Lemma 9, and
the fact that

1 11 1
—<l-b< -, -<b-1<=. (86)
2 22 2
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Since b > 1/2 + &, we obtain the following:

JRZX[O,TI](t)(UGl +VG,)dxdt| < HX[O,TI](t)U .
0,1-b
X HX[O,TI](t)Gl ou + HX[O,TI](t)V X X[O’Tl](t)GzHbe,l

<Ol IGillyzy +CllVllgsn, [Gollyen
<clonUl,, lenGill, +ClonVly lenGlly
<ClUl,, IGilx,, + CIVIys IGallys, -

(87)

where ©p =1 for t€[0,T,]; we can conclude from
Lemma 16:

|, Xor (UG, + VGoydsat| sClUl, 1G],

2 2
+ClVll IGallys, < C8%uly,, VI

e,
2 2 2 2
+ Ol VI =2C8% ul V1%

<2C8"||(u, v)

4
8,4,
(88)

Therefore,

(T 1) G + V(T2 oo < [18(0) G0 + 1V(0) I goa + 2C8 | (s ).,
2/|(w(T1), v(T1))lIeo < 2/|(14(0), ¥(0)) [0 +2C8%| (1 ¥) 5,
t:{gg]ll(”(t)’ V(1)) lxeo < 11 ((0), v(0))[s0 + CO%|| (1 v)][ 3,

(89)

Finally, by using Equation (8), we conclude that

t:{:}lg]ll(u(t)» v(1)) [0 < 11(2(0), v(0))[a0 + C*| (w(0), ¥(0)) -

(90)

5. Proof of Theorem 4

Let §, >0, s>—1/2, and « € (0, 1/2) be fixed, and (u, v,) €
N%>, Then, we have to prove that the solution (u,v) of
Equation (1) satisfies the following:

(1,v) € c([o, T'},G‘S(T/)‘) x c([o, T'] , G‘S(T’)’S), (91)
where
8(T’> =min {80, CIT'_”K}, forall T' >0,  (92)

and C, >0 is a constant depending on u, v, 6, s, and «. By

Theorem 3, there is a maximal time T" = T* (u,, vy, &, $) €
(0,00], such that

(u,v) € c<[o, T, G‘SU’S) X c([o, T, G5°’S). (93)

If T* = 00, it is done.
If T* < 00, as we assume henceforth, it remains to prove
the following:

(,v) € c( [o, T'] , G ""*”K~S> x c( {o, T’] , GclTl’”""), forall T' > T".

(94)

5.1. The Case S = 0. Fixed T' > T*; we will show that, for § > 0,
sufficiently small

sup (95)
te[0.T)1(u(0), ¥(0)) 50 < 20/(0), (O] gy

In this case, by Theorem 3 and Theorem 15 with

1
(16C° +32C° || (1(0), v(0))|[x200)

T, = (96)

1/e”
the smallness conditions on § will be
ZT, K2 2
0 <6, T—C(? 27| (u(0), v(0))[lya0 <1, C>0.  (97)
0

Here, C is the constant in Theorems 15.
By induction, we check that

sup {|(u(t), v(£))leo < [|(1(0), v(0)) [ yao + nC8*2(|(u(0), ¥(0)) [ soo-

te[0,nT,]

(98)

sup || (1(8), () [Fon <2 (4(0), V(O) 2o (99)

te[0,nT,]

for ne{l,---,m+1}, where meNN is chosen so that
T' € [mT,, (m+1)T,). This m does exist; by Theorem
3 and the definition of T, we have the following:

1
(16C° +16C°|| (1(0), v(0)) 2500 )

T, < <T*,henceT0<T'.

1/e

(100)

In the first step, we cover the interval [0, T,], and
by Theorem 15, we have the following:

t:[;ll;]ll(u(t)s V()30 < [1(1(0), v(0)) [0
+ €8 (u(0), v(0)) [ o < | (1(0), v(0)) oo
+ 8%} (4(0), v(0)) |30

(101)
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since 6 <8,; we used the following:

[1((0), v(0)) [ oo < [1(1(0)> ¥(0))| yooo- (102)

This satisfies Equation (98) for n = 1, and Equation (99) is
following and using again ||(u(0), v(0))]| yeo < ||(4(0), v(0))
|| yooo as well as the following:

€O (u(0), ¥(0)) 2o < 1. (103)

Suppose now that Equations (98) and (99) hold for some
n€{1,---,m} and we prove that it holds for n + 1, we estimate
the following:

sup || (u(t), v(1))[so < [[w(nTo)[an
te[nTy,(n+1)T)

+ C8"[(u(nTy), v(nTy)) [ yao < || (w(nTonTy), v(nTo))||p0

+C8"2%|(14(0), v(0)) |00 < | (14(0), v(0)) [0

+nC8*2%(u(0), ¥(0)) [ xguo + C8*2%|(14(0), v(0)) |00
(104)

satisfying Equation (98) with n replaced by n+1. To get
Equation (99) with # replaced by # + 1, it is then enough to have
the following:

(1 +1)C8"2(|(u(0), ¥(0)) 3300 < 1, (105)

but this holds by Equation (97), since n+1<m+1< T'/ T,
+1<2T'/T,.
Finally, Equation (97) is satisfied for & € (0, §,,) such that

27’
S €2 (u(0), ¥(0)) [ son =1. (106)

0

Thus, § = C, T, where
1/x
o | )
1~ A .
C2*(|(1(0), v(0)) [0 (16C + 32C% | (14(0), ¥(0)) | 2500

(107)

5.2. The General Case. For all s, by Equation (4), we have u,,
Vo € GO € G20,
For case s =0, it is proved that there is a T, > 0, such that

(u,v) € C([o) T,), G&,/Lo) % C([O, T,), Ga(,/z,o))

1=1/x 1-1/x
(u,v)eC([O, T’],GZ” *’)xC([o,T’],Gz"T >°), forT' > T,

(108)

where o > 0 depends on u, v, &,, and «.

Journal of Function Spaces

Applying again the embedding Equation (4), we now
conclude that

(1,v) € c([o, T,), Ga(,/4,s) N C([o’ T, Gs(,/4,s),

(wyyec(fo.1]. G"T"W’f) xc([o.1], G“T"”K’S), for T' > T,,
(109)

which imply Equation (94). The proof of Theorem 4 is now
completed.
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The purpose of the paper is to introduce a new analogue of Phillips-type Bernstein operators (%}, .f) (1, v) and (3},
products (£,,,,f)(w,v) and (@, .f)(u, v), their Boolean sums (&, .f)(u,v) and (7
interpolate a given function on the edges, respectively, at the vertices of triangle using quantum analogue. Based on Peano’s
theorem and using modulus of continuity, the remainders of the approximation formula of corresponding operators are
evaluated. Graphical representations are added to demonstrate consistency to theoretical findings. It has been shown that

f)(u,v), their

)(u,v) on triang?e T },» which

nm,q.

parameter g provides flexibility for approximation and reduces to its classical case for g = 1.

1. Introduction and Essential Preliminaries

In 1912, Bernstein constructed polynomials to provide a con-
structive proof of the Weierstrass approximation theorem [1,
2] using probabilistic interpolation, which is now known as
Bernstein polynomials in approximation theory. In computer-
aided geometric design (CAGD), the basis of Bernstein polyno-
mials plays a significant role to preserve the shape of the curves
and surfaces.

Further, with the development of g-calculus (quantum ana-
logue), the first g-analogue of Bernstein operators (rational)
was constructed by Lupas in [3]. In 1997, Phillips [4] initiated
another generalization of Bernstein polynomials based on the
g-integers (quantum analogue) called g-Bernstein polynomials.
The g-Bernstein polynomials attracted a lot of attention and
were studied broadly by several researchers. One can find a sur-
vey of the obtained results and references on the subject in [5].

Computer-aided geometric design (CAGD) is a disci-
pline which deals with computational aspects of geometric
objects. It emphasizes on the mathematical development of
curves and surfaces such that it becomes compatible with
computers. Popular programs, like Adobe’s Illustrator and
Flash, and font imaging systems, such as Postscript, utilize
Bernstein polynomials to form what are known as Bézier
curves [6-9].

The approximating operators on triangles and their basis
have important applications in finite element analysis and
computer-aided geometric design [10] etc. Starting with the
paper [11] of Barnhill et al, the blending interpolation
operators were considered in the papers [12-14].

In this paper, we construct new operators based on quan-
tum analogue of Phillips. Bernstein-type operators also interpo-
late the value of a given function on the boundary of the
triangle. Also, we will discuss some particular cases. Using mod-
ulus of continuity and Peano’s theorem, the remainders of the
corresponding approximation formulas are evaluated. The
accuracy of the approximation is also illustrated by graphics
of given functions with suitable Bernstein-type approximation.
For more information regarding such operators, their proper-
ties and their remainders one can refer to [15-28].

In this paper, we would like to draw attention to the
Phillips g-analogue of the Bernstein operators and obtain
new results using g-analogue on triangles. To present results
by Phillips, we recall the following definitions. For other
relevant works, one can see [29].

Let g>0. For any m=0,1,2, -, the g-integer [m]q is
defined by
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and the g-factorial [m],! by

] =1, 2], ], =12, [0)1=1. (2)

For integers 0 <i<m, the g-binomial or the Gaussian
coefficient is defined by

m [m}q!

Clearly, for g=1,

[m], =m, [m],! =ml!, [n:] = (T) (4)

The g-binomial coefficients are involved in Cauchy’s
g-binomial theorem (cf. [30], Chapter 10, Section 10.2).
The first one is a g-analogue as an extension to Newton’s
binomial formula:

Ms

)
S

(au + bv)qm = q(l(l—l))/Z l l ‘| A"ty (5)
q

I
'M§

(T+u)(1+qu)---- (1 +qm’1u)

Following Phillips, we denote

It follows from (6) that

™

Il
(=]

bui(q;u)=1, uel01], (®)

1

for integers k >i> 0. These recurrence relations are satisfied
by g-binomial coefficients

LA
L] T

when g = 1, both the relations reduce to the Pascal identity. In
the next section, we construct quantum analogue of operators
studied in [31] on triangles.

Journal of Function Spaces

2. Construction of New Univariate Operators
on Triangle

In [31], the authors considered only the standard triangle
sufficient due to affine invariance as

forh > 0.

(10)

V)EIRZquo,vzo,u+vSh},

Tn={(u

Let A = {i((h—v)/m),i=0,m} and A} = {j((h - u)/n),
j=0,n} be uniform partitions of the intervals [0,k —v]
and [0, h — u], respectively.

In 2009, they [31] constructed some univariant
Bernstein-type operators on triangle 7, as follows:

(BLSf) (u, v me,u, <( v),v>,

(11)
(Bf) (1, v quu, (,i(h u)),

where

m\ . 1

i uh—u-v) (12)
Pi(tv) = , 0<u+vsh,
m,i (h—V)m

ny\ . .

(')ww_”_vyj (13)
(V) = J =a) , 0<u+v<h,
respectively.

Consider a real-valued function f defined on 7, as done in
[31]. Through the point (1, v) € 7, one considers the parallel
lines to the coordinate axes which intersect the edges I';, i =1,
2, 3, of the triangle at the points (0, v) and (h — v, v), respec-
tively (u,0) and (u, h — u) ([31], Figure 1).

Let A" ={i((h-v)/m),i=0,m} and A? = {j((h - u)/n),
j=0,n} be uniform partitions of the intervals [0, 4 —v]
and [0, h — u], respectively.

We define the new Phillips-type Bernstein operators
B and B, . on triangle by using quantum calculus as

follows:

(B )wy) =4 &

f(0.h), (0,h)eT,
n~ ]qh >
njlt V)t mm (=) ) (Y \ (1,0
() w0 = ]Zoq,,( ) SRS
f(h,0), (h,0)eT,
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where
m
RECEoE
1
Prui(17) 4 ek 0 < u+ v < h (except the point(0, h)),
(15)
n
[ } VIS (h-u=g'v)
Qi v) = u 0 < u+v < h (except the point(0, 1)),

(h=w’
(16)

respectively. These operators reduce to Phillips-type operator
n [0,1]. One can note that the bases (15) and (16) of the
operators constructed using quantum calculus are different
from the bases (12) and (13) of the operators constructed
by Blaga and Coman [31]. In case g = 1, corresponding oper-
ators reduce to its classical case on triangles. Now, we gener-
alize various results of [31] in quantum calculus frame.
For the sake of convenience, we use the following nota-
tion onwards:

(h—v)" =Z [m] uimﬁ (h—v—q'u)
i=0 1 q =0

(h—u)" = Z [nl V’Anili (h—u—-g'v).
q

Theorem 1. If f is a real-valued function defined on 7, then
(i) B of =fonl, Ul
(ii) (Q‘?fn’qei())(u, v)=uli=0, I(dex(%’zw) =1)
(iii) (B}, q020) (1> v) = % + ((u(h = u=v))/[m],)

Vi, i=0,1,j€N,
B e ) uv)=4 heu—
( mas) (V) vf<u2+—“( “mV)isojen,

(18)

where e;;(u, v) = u'v/ and dex (B
of the operator A, ,

fn,q) is the degree of exactness

Proof. By definition, (B}, .f)(0, h) = f(0,
late the moments only on I\ (0,h). The interpolation
property (i) follows from the relations

h). So we will calcu-

5 1, ifi=0,
pm,i(o’ V) = .

0, i+0,
1, ifi=m,

0, i+m.

ﬁm,i(h -V V) = {

3
Regarding the property (ii), we have
. |::| szzl( —V—qsu) (h )m
u _ -V _
(B v ZO (h=v)" N
"]tz r-en
(000 ) 1 =YL a5,
mamio)e i=0 (h=v)" [m}q
§ (mq/[m]q)[ ] Wl (= v = gou)
= Z q
0 (h=v)""
m—1
W T - - )
. m=1 i g
i=0 (h_")nH
m—1 -
WIS =y = gu)
m=1 i
=u 4 po =u,
i=0 (l’l—V)
) m I O
Y e ) (V)= g Mo —v)?
(Bhge) )= 2 T i)
i+ ngmg) { , } W T = v-g'u)
=(h=v) g
* i=0 (h=v)"
(a+qliq >/[m]q>m WTT 2 = v=gu)
v u il
=(h-v) 2 e
m VL1 v )
TP? e (e
m—1
— (atm=1,00m,) (1011~ 1])[ , }unm”w v-qu)
! 9
i=0 (h=v)"
- {m 2} WIS v )
e qm—lquz”‘2 i,
O T, & (="
u  gqm-1] v
Bgen ) (V) = (h=v) o+ = (20)
( o [m], [m],
or equivalently,
u 1 u(h—u-v)
B e (V) =(h=V)— +t* |1 - — | =P+ ——~
(i) )= = ( [m}q) i,



Remark 2. In the same way, it can be proved that if f is a real-
valued function defined on 7, then

(i) B, f=fonl UT;
(ii) (B;, q€07) (s
(i) (%), ge00) (s v) =V + (v(h—u=v))/[n],)

v)=vl,j=0, 1(dex(%,,,) =1)

u'v/, j=0,1,ieN
B e ) (u,v) = ) o
( i ])( V=) iy Yy , j=2,ieN.
],
(22)

Based on the following approximation formula
f=Boof + Ronaf> (23)

we present the following results.

Theorem 3. If f(.,v) € C[0, h — v], then

N e R

where modulus of continuity of the function f with respect
to the variable u is denoted by w(f(.,v);9).

Further, if § = 1/, /[m],, then

Proof. Since by definition, (B}, .f)(0,h)=f(0,h) and hence
remainder will be zero at (0, ) due to interpolation. We have

ij (h—v
u,v)—f M,v .
[m],

K%%OWWHSgAAmwﬂ

Journal of Function Spaces

Since
il (h =) L i) ,
If (u, v) —f< q[m]q ,v) | < (5 |u-— ‘i[m]q |+1>w(f(.,v), )
(27)
one obtains
m il (h—v
|<=%fn,qf>(“’ v)l< Zﬁm,i(u’ V) (% lu- Hq[(m] )|+1)w(f(-’v) ;0)
i=0 q
i (h=v)\> 12
< 1+7 me,uv u- Hyh =) w(f(.v);8)
i=0 [m]q
{1+ h[m]” ) w(f(.v);90)
(28)
As
]’12
max{u(h—u-v)| = (29)
it follows that
h

|(9§:qu) (,v)] < st o

For § =1/, /[m],, we obtain

1

|(@:‘n,qf)(u, V)| < (1+Z>w F(ov);

[m],

Theorem 4. If f(.,v) € C?[0, h], then

(B ) === 0 e ) Ee o)
q
(32)
[CAICUIE 8[i]qﬂ2&f (1,v) € T (33)
where
M; max‘f” u, v)‘ (34)

Proof. As dex(%,,,,) =1, by Peano’s theorem, one obtains

(Fnaf) )= | Halwrsnf®e e (33)
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where the kernel

FHoy(w,v5t) = ‘%za,q [(u - t)J

=(u=t), = ) Pui(t¥) <[i]q =
i=0 q

=
|
<
|
~
SN—
+

does not change the sign(#,,(u, v;t) <0,u€[0,h—v]). By
the Mean Value Theorem, it follows that

h—v
Hoo(u, v t)dt,
0

(Faf ) ) =120 ) Ee(0h-v)

(37)
After an easy calculation, we get

(h—u-v)

(‘%zmrf) (,v) = _MZTf(Z’O) &v),  (38)

where & € [0, h —v].
By using it in Equation (32), we get

2

I(%Z,qf)(u, v)| < 8[?11} M yf s
q

(u,v) €T, (39)

Remark 5. From (32), it follows that

(i) if f(.,v) is a concave function, then (&, .f)(u,v) 20,
ie.,

(Bhaf ) () < F (1) (40)

(if) if f(.,v) is a convex function, then (%, .f)(u,v) <0,
ie.,

(Bhaf ) () 2 f () (41)

forue[0,h—v] and v €0, h].

Remark 6. For the remainder %, f of the approximation
formula

[=Byof + R, f (42)
We also have the following:

(A) If f(u,.) € C[0, h — u], then

I(%thf)(u,v)lg 1+ h[n] w(f(,.);8), uelo,hl.
q

26\/7

(43)
And for § = l/m,
|<<%Z,qf)(u, V)| < (1 + g>w Fw) s [1”] , uel0,h
q
(44)

(B) If f(u,.) € C*[0, h], then

v _ v(h=u=v) o,
(‘%n,qf) (w,v) = _Tn]qf( Num), nel0,h-u,
()= ot w0 <3
(45)
where
.%ijf:r%%x‘f(i’j)(u, v)‘ (46)

3. Product Operators

Let P, 4= 8,8, and @
of operators 9, , and %, .

We have

= B, 4B n,q e the products

mn,q

([m]q - [i]q)h i),

('@mn,qf) (u’ V) =

), (,v) € T\ {(0, h), (h, 0)},

(47)



Remark 7. The nodes of the operator &, = are the g-ana-

logue of the nodes, which are given in [31], Figure 2, for
i=0,m;j=0,n,and ve|[0,hl

mn,q

Theorem 8. The product operator P
relations:

(i) (P yungf ) (1 0) = (B, 4f) (4, 0)
(ii) (P gf)(0,v) = (B,,,) (0 V)

satisfies the following

mn,q
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(iii) (Prngf )t h—u) =f(u,h—u), u,v € [0, h]

The above proofs follow from some simple computation.
The property (i) or (ii) implies that (P, .f)(0,0)=f
(0,0).

Remark 9. The product operator &, . interpolates the func-
tion f at the vertex (0,0) and on the hypotenuse u + v = h of
the triangle 77,

The product operator @,,,, ., given by

(@nm,qf) (u’ V) =

has the nodes, which are g-analogue of nodes given in [31],
Figure 3, for i=0,m, j=0,n, u € [0, 4], and the properties:

(©) (Qungf) (1, 0) = (9B,,,f) (4, 0)
(i) (@,f)(0,v) = (%’Z 4)(0,v)
(iii) (Qpof)(h=v,v)=f(h=v,v),u,v€[0,h]

Let us consider the approximation formula

f=Prnaf + Rnf- (49)

Theorem 10. If f € C(F ) and 0< q < 1, then

e e N <[m]q—[i]q>h+[i]qv
S Zzpmz( 4 )Qn1<[]q [m} 4 >| [J]q [m]q[n]q I

o (h=v) \| o (=)
;]; mz qn;(] [m]q ’V> Hq [m}q
- u(h—u—v)’
- [m],

O O T M (P Y L
;onpmz( )Qn,j<[]q [m]q ) Mq [m}q[n]q
- v(h—u-v)
- 1],
(52)
while
m n B h _
Zzpml(u’v)qn,j <Mq([m]1/)’v> =1 (53)
i=0 j=0 q
It follows
|(Fimf ) (wv)1 < (51 \/”(h[mL]‘ i é\/v(h [_n?_v) + 1>w(f;6 &)
(54)



Journal of Function Spaces 7

0.2

0 0 0.2
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Figure 1: Operators B, .f, B, .f Py qf » and 8, f approximating function on triangular domain for h=1, m =6, n=6, and q=0.70.
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FiGure 2: Operators By, .f, B, .f Py qf » and 8, f approximating function on triangular domain for h =1, m =6, n=6, and q=0.99.
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Ficure 3: Operators B, .f, B, .f s Py of > and S, f approximating function on triangular domain for h =1, m = 15, n =15, and g = 0.70.
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FiGure 4: Operators By, .f, By, .f» Py of > and S, f approximating function on triangular domain for h =1, m = 15, n =10, and g = 0.99.
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Since
uth-u-v) h?
[m] = 4[m]’
, i - i (55)
at —u—v)S , forall (u,v) e T,
1], 4[n],
We have
|(Fimf ) 02 o1 |w(f:6,,8,)
268, /[m q 28 /|n

: (@fn_J)(u, V) < (1+h)w

(56)
4. Boolean Sum Operators
Let
g =Bl D B = Bl + B~ B B, -
T yma =By, @ e%’fn,q = %’Z’q + %’fn’q - %";’q%fn,q,

be the Boolean sums of the Phillips-type Bernstein oper-
ators 9, , and %, .

Theorem 11. For the real-valued function f defined on T,
we have

Csjmn,qf‘agh :f|agh' (58)
Proof. We have
Snal = (B + Bry = By BN (59)

The interpolation properties of %
properties (i)-(iii) of the operator 2,

mq B, together with
1mp1y that

(Sunaf) (1:0) = (Bl of ) (1,0) + £(,0) =~ (Bl ) (,0) = £ (1, 0),

(Smngl)(0:) =£(09) = (B10f ) (0.¥) + (B ) (0.) = F(0, ),

(Smnaf) (b= w) = f (s h—u) + f (s b= ) = f (s h = ) = f (u, = ),
(60)

for all u, v € [0, hl.
Let %5, o be the remainder of the Boolean sum approx-
imation formula

f = £mn,qf + ‘%ré;tn qf (61)

I ! ;
[m], /[,

Journal of Function Spaces

Theorem 12. If f € C(T},), then

(8, 09| < <1+g) PP

[m]

+ (1 + g)w flu [n]q +(I+hw
£ 1 ’ 1 ’
[ml, /11l
(62)

forall (u,v) € T,

Proof. From the equality
f_&mn,qf:f_‘%br;,qf—'—f_‘%;,z}f_ (f_‘@mn,qf)’ (63)

we get

(im0 <[ (il G| + | (5 ) 0]
4| (Ritaf ) (wv)|
(64)

Now, from (25), (44), and (50), we follow the proof (62).

Remark 13. Analogous relations can be obtained for the
remainders of the product approximation formula

=Q + R =3B, %’“ +9§2 65
nm, nmq

and for the Boolean sum formula

S =T sl + Fipof = (Brg @ By )f + Rlf. (66)

5. Graphical Analysis

Let us consider a function for graphical analysis. In
Figure 1(a), we have presented the graph of function f(u, v)
=sin (10u) + cos (5v) on triangular domain. The graph of
Phillips Bernstein operator %, .f based on quantum
analogue on triangular domain is shown in Figure 1(b). Sim-
ilarly, other operators &, .f, £, .f> and 8, .f approxi-
mating function are shown in Figures 1(c)-1(e) for various
values of g, m, n, and h. One can observe from Figures 1-5
that operators are approximating function better as g
approaches to 1 for fixed value of m and n.

Also from these figures, one can observe that operator is
approximating function better with increasing values of m
and » and by fixing g on triangular domain.
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Thus, we have constructed Phillips-type g-Bernstein

operators over triangular domain which hold the end point
interpolation property on some edges and vertices of triangle.

Hence, it can be concluded that after introducing one

extra parameter g in Lupas Bernstein operators, we have
more modeling flexibility for approximation on triangular
domain.
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A new rule for calculating the parameter ¢ involved in each iteration of the MHSDL (Dai-Liao) conjugate gradient (CG) method is
presented. The new value of the parameter initiates a more efficient and robust variant of the Dai-Liao algorithm. Under proper
conditions, theoretical analysis reveals that the proposed method in conjunction with backtracking line search is of global
convergence. Numerical experiments are also presented, which confirm the influence of the new value of the parameter ¢ on the
behavior of the underlying CG optimization method. Numerical comparisons and the analysis of obtained results considering
Dolan and Moré’s performance profile show better performances of the novel method with respect to all three analyzed

characteristics: number of iterative steps, number of function evaluations, and CPU time.

1. Introduction and Background Results

The topic of our research is solving the unconstrained non-
linear optimization problem
min f(x), xeR”, (1)
where the function f : R” — R is continuously differentia-
ble and bounded below. Following the standard notation,
gy = Vf(x;) denotes the gradient, s,_; =x; —x,_; and y,_,
=i — 9i_,- Using an extended conjugacy condition
T
A Yy =~tgSic >0, (2)

Dai and Liao in [1] proposed the conjugate gradient (CG)
method

Xjey1 = Xp + gy, (3)

where the step size «,, is a positive parameter, x; is an already
generated point, x;,, is a new iterative point, and d, is a suit-
able search direction. The search directions d, are generated
by the conceptual formula

~Yo> k=0,
dy = { DL (4)
i+ B Ay k=1,

where the conjugate gradient coefficient 3" is defined by

T T
kDLzy(t) — i ¢ Ik Sk-1

= , t>0, (5)
dz—ﬁ’kq dz—l)ﬁﬂ

wherein > 0 is a scalar.
Some well-known formulas for defining 3, have been
created by modifying the conjugate gradient parameter
kDL [2-9]. One of them is denoted as BkMHSDL and defined
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The backtracking line search.
Require: Nonlinear objective function f(x), search direction d,, previous point x;, and real quantities 0 < w < 0.5 and ¢ € (0, 1).
La=1.
2: While f(x + ad)) > f(x;) + wagy dy, do a = ag.
3: Return o = a.
ALGORITHM 1:
in [7] by ficient ﬁkDK of the form
9GS _, 9
ﬁMHSDL =Y (t) = Tk k1 -t k7k-1 (6) DK _ Iyl _)’E—lskﬂ 9 _ llye, P _}’2_151{71 Ii S
k 1 T T 5 ﬁk‘YTk+T 5 ) =% Tt > | & s
di_ Vi di_ Vi ViaSer 1Skl Vit Yeadier sl dici

where >0 is a scalar as in (5) and y,_| =g, -
GGy

The family of CG methods for nonlinear optimization
has reached great popularity lately, thanks to the various
benefits and advantages it possesses. The most important
property is based on computationally efficient iterations
arising from a simple CG rule. This property initiates the
high efficiency of CG methods with respect to analogous
methods for nonlinear optimization. Moreover, global con-
vergence is ensured under suitable conditions. Finally, the
application of various CG methods in solving image resto-
ration problems has become an important research topic
[10, 11].

Since the parameter ¢ is important for the numerical
behavior of Dai-Liao (DL) CG methods [12], one of the most
important problems in the implementation of the DL class
CG method is to determine a proper value t >0 which will
give desirable results. Many scientists have invested a lot of
time and effort in the previous period to determine the best
definition of the nonnegative parameter t in the DL class
CG methods. So far, the research in finding the appropriate
value of t has evolved in two directions. One group of
methods is aimed at finding an appropriate fixed value for ¢
[1, 2, 6-8], while methods from another group promote
appropriate rules for computing values of ¢ in each iteration,
which ensure a satisfactory decrease of the objective. In our
research, we will pay attention to the second research stream:
find the parameter t whose values change through iterations
so that the faster convergence is achieved. The value of the
parameter t defined in the kth iteration will be denoted by ¢
(k) =t;.

In order to complete the presentation, we will restate the
main principles proposed so far for computing t,. Hager and
Zhang in [13, 14] proposed the DL CG method (5), known as
CG-DESCENT, where t(k) = t;, is defined by

(gl

ly, 17
{(K) =ty =220 7)
Yi-15k-1

Dai and Kou [15] suggested the conjugate gradient coef-

(8)

where 7, is the scaling parameter arising from the self-scaling
memoryless BFGS method. Clearly, the Dai and Kou (DK)
method is a member of the DL class CG methods, which is
determined by

2 T
lyial”  Yiasia 9)

t(k) = th = Tk + .
T 2
YicrSk-1 sl

The results given in [15] confirm that the DK iterations
outperform many existing CG methods. Following the devel-
opment of DL methods, Babaie-Kafaki and Ghanbari [16]
defined two new ways to calculate the value of the parameter
t in (5), as in the following two formulas:

SiVke1 L e
t(k)EkS::klkzl ||k1||,
Hsk—1|| HSk_1|| (10)
_ Vi
)=y, =

Andrei in [17] proposed the new rule for calculating ¢ in
order to define Y(¢) in (5) and defined a new variant of the
DL class CG methods, denoted by DLE, with

T
Sk 1V k-
t) == (2 (1)
-1

Lotfi and Hosseini in [18] proposed the following rule for
determining the parameter ¢(k), using the expression

_ o el
t(k) =ty == max < tre, V=5, (12)
Sk-1Vk-1
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1: Assign k=0 and d, = —g,,.
2: If

STOP;
else go to Step 3.

: Compute x| = x; + apdy.

: Compute t; by (16).
: Calculate BiP" by (18).

O 0 N1 O\ U AW

Effective Dai-Liao (EDL) CG method.
Require: An initial point x;, and quantities 0 <e<1,0< < 1.

19l < & and ((If Ceear) = f () DL+ (£ (i0)])) <6,

: Calculate o € (0, 1) using Algorithm 1 (backtracking line search).

: Calculate 10 Vi = Yir1 ~ 9o Sk = Xjey1 — Xk

: Compute dy,; = ~gy,, + By d-
: Let k:=k + 1, and go to Step 2.

ALGORITHM 2:

where

(1= hyl| G D19k + (FhyerVirSe1) il iy [ llsic 1P
gfskq + (ggsk—l/sz—lyk—l)hk”gk—l Hr”Sk—l”2

T
h = C + max {—Sk-lyk-zl ,o} gl
(ISl

* o—
tre =

(13)

and v > 1/4, C, and r are three positive constants.

On the basis of the above overview of the main CG
methods and motivated by the strong theoretical properties
and computational efliciency of modified Dai-Liao CG
methods proposed by many researchers, we suggest a new
way of calculating the value of the parameter ¢(k). As a con-
sequence, the corresponding CG method of DL type, termed
as the Effective Dai-Liao (EDL) method, is proposed and its
convergence is proven. Numerical testing and comparison
with other known DL variants are presented in order to show
the effectiveness of the introduced method. Analysis of gen-
erated numerical results exhibits that the proposed EDL
method is efficient compared with other DL-type methods.

The global organization of sections is described as fol-
lows. Introduction, motivation, and a brief overview of the
preliminary results are given in Section 1. A new rule for cal-
culating the variable parameter #(k) is proposed in Section 2.
An effective algorithm and global convergence of the EDL
method initiated by #(k) are given in the same section. The
new EDL method is tested in Section 3 on some unlimited
optimization test problems and compared against some
known variants of the DL class methods. Finally, concluding
remarks are presented in the last concluding section.

2. A Modified Dai-Liao Method and
Its Convergence

Popularity in defining new rules for calculating ¢(k) is a guaran-
tee that such an approach is effective and still insufficiently
explored. The idea for defining a new parameter ¢; comes from
previously described rules for computing #(k), particularly from

the paper Li and Ruan [19] and from the idea which can be
found in the paper Yuan et al. [11]. Further, analyzing the
results from [1, 2, 6-8], we conclude that the scalar t was
defined by a fixed value of 0.1 in related numerical experiments.
Also, numerical experience related to the fixed valued ¢ = 1 was
reported in [1]. According to this experience, our intention is to
define variable values ¢(k) inside the interval (0, 1).

To successfully define ¢(k) with values belonging to the
interval (0, 1), let us start from the definition of the quantity
L, which was used in defining the direction d, in [19]. The
parameter L, was defined by L, =s}_s,_,/s}_y;, €(0,1),k
>0, where

Sk
Vi =Yt (max {0,— -1 1} + 1)sk_1. (14)

p
llsiy

By putting y;_, into L, the following can be obtained:

Li=— Ske15k-1 !
St (Ve + (max {0 (s e /flsia [7) } + 1))
- [ I
Sz—lyk—l + (max {0’_(52—1)’k—1/||5k—1”2)} + 1) [IS¥k-1 ||2 .

(15)

Further, with certain modifications and substitutions in
the equation defining L, as well as using the function max,
which chooses the maximum between the value of the
expression d;_, g, and 1, we come to a new definition of the
parameter t(k). As described in advance imposed desired
restrictions, the novel parameter ¢ is defined by

gl
max {1,d{_,g, } + (max {0, (d,g/lgl’) } +1) gl
(16)

=
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TaBLE 1: Summary results of EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6 methods with respect to NI

Test function MHSDL3 MHSDL4 MHSDL5 EDL MHSDL6
Extended penalty 1466 2243 2231 1259 1371
Perturbed quadratic 1203710 754291 746557 305622 423037
Raydan 1 159055 110587 106586 55477 75154
Raydan 2 1636 441 441 70 209
Diagonal 1 116788 78844 73512 30978 20332
Diagonal 2 176983 270434 271595 515000 271295
Diagonal 3 150328 98647 104417 47155 37711
Hager 8666 5219 5157 3234 3625
Generalized tridiagonal 1 1862 1471 1485 639 877
Extended TET 1357 5954 5915 4030 2664
Diagonal 4 30693 19589 19332 8040 12012
Diagonal 5 1721 25120 25120 60 216
Extended Himmelblau 1777 8023 7946 1376 3682
Perturbed quadratic diagonal 2940970 2115659 2027128 1136414 1352704
Quadratic QF1 1270802 799192 786032 309509 325415
Extended quadratic penalty QP1 770 594 575 560 543
Extended quadratic penalty QP2 399671 240530 245254 96620 137799
Extended quadratic exponential EP1 462 606 606 513 526
Extended tridiagonal 2 3119 2176 2177 1132 1455
ARWHEAD (CUTE) 88824 69868 67413 40713 48669
ENGVALLI (CUTE) 2323 1407 1415 552 820
INDEF (CUTE) 20 31 1080 23 36240
QUARTC (CUTE) 173913 262291 262291 524299 262181
Diagonal 6 1824 508 508 70 227
Generalized quartic 1208 1403 2846 1265 1154
Diagonal 7 3217 655 655 653 580
Diagonal 8 511 698 698 686 596
Full Hessian FH3 1456 5353 5350 2523 3176

It is easy to verify that t; defined by (16) satisfies

2 2
verie ol _ lal

SO+ gl 1+ gl

(17)

Accordingly, t; € (0, 1), which was our initial intention.
Clearly, greater values of ||g, | lead to values t; ~1. Further,
since the trend ||g,[|—0 is expectable, we can expect smaller
values t;\0 in late iterations. Therefore, t; is suitable for
defining corresponding conjugate gradient coefficient Y ()
or Y,(t) and further DL CG iterations (4).

Considering t =t; in (6), it is reasonable to propose a
novel variant of the Dai-Liao CG parameter 5;° which is

subject to the following rule during the iterative process:

T
« GiSk-1
kT .
A1 Vi

(18)

Before the main algorithm, it is necessary to define the

EDL _ Ngill® = (gi V1911195 i |

=Y (t*) : t
k 1k
dz—l)’lﬂ

backtracking line search as one of the most popular and prac-
tical methods for computing the step length o in (3). The
procedure for the backtracking line search proposed in [20]
starts from the initial value a = 1 and generates output values
which ensure that the goal function decreases in each itera-
tion. Consequently, it is appropriate to use Algorithm I,
restated from [21], in order to determine the primary step
size .

Algorithm 2 describes a computational framework for
the EDL method.

It is necessary to examine the properties of the EDL
method and prove its convergence.

Assumption 1.

(1) The level set M ={xeR"| f(x)<f(x,)}, defined
upon the initial point x;, of the iterative method (3),
is bounded.

(2) The goal function f is continuous and differentiable
in a neighborhood &% of M with the Lipschitz
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TaBLE 2: Summary results of EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6 methods with respect to NFE.
Test function MHSDL3 MHSDL4 MHSDL5 EDL MHSDL6
Extended penalty 54876 73764 73429 46820 49791
Perturbed quadratic 56691737 34287604 33885701 13168688 18486375
Raydan 1 5066739 3364983 3236335 1551846 2170553
Raydan 2 6554 1162 1162 159 428
Diagonal 1 5004640 3256274 3022015 1200086 744278
Diagonal 2 353976 540878 543200 1030010 542600
Diagonal 3 6339146 3998904 4229565 1798032 1400076
Hager 192474 107413 106534 59187 69735
Generalized tridiagonal 1 37429 27860 28138 10760 15177
Extended TET 19546 77422 76925 40340 29334
Diagonal 4 713120 425023 418666 155027 242443
Diagonal 5 6874 50460 50460 140 442
Extended Himmelblau 45972 192362 190524 26104 80854
Perturbed quadratic diagonal 135901222 94177165 90238441 48147512 57702654
Quadratic QF1 55972697 33836473 33243711 12316721 12853424
Extended quadratic penalty QP1 17016 12882 12565 11116 10544
Extended quadratic penalty QP2 13015888 7454686 7584960 2743358 4030601
Extended quadratic exponential EP1 14914 18463 18463 14132 15133
Extended tridiagonal 2 36450 22564 22379 9687 12920
ARWHEAD (CUTE) 4296028 3305257 3182138 1846606 2230650
ENGVALLI (CUTE) 40462 22432 22898 8209 12858
INDEF (CUTE) 1808 2182 5995 2060 104962
QUARTC (CUTE) 347926 524662 524662 1048648 524422
Diagonal 6 7394 1416 1408 159 468
Generalized quartic 14364 21842 48770 16695 14103
Diagonal 7 6454 6838 6838 3891 4521
Diagonal 8 6098 6938 6938 4161 5494
Full Hessian FH3 60792 212799 212701 89890 114962

continuous gradient g. This assumption implies the

existence of a positive constant L > 0 satisfying

llg(w) —g)l < Ljju-v],

Yu,veP. (19)

Assumption 1 initiates the existence of positive constants

D and y satisfying

lu-v||<D, Vu,veP,

gl <,

The conditions from Assumption 1 are assumed. In view
of the uniform convexity of f, there is a constant 6 > 0 that

satisfies

(9(u) = g(v))" (u=v) 2 0)lu—v|?,

(20)

Yue P

forallu,ve #, (21)

or equivalently,

£(w) 2 £3) + g0)" (=) + 2 Ju= v,

forallu,ve /.

(22)
It follows from (21) and (22) that
Sfflyk_l 20||5k71||2’ (23)
T 0 2 24)
Fre) = F05) 2 =90 s + 5 lsalP
By (19) and (23), one concludes
Ollsictll® < sicyier < Lllsea |1 (25)
where the inequality implies 0 < L.
The inequality (25) initiates
sz—lyk—l = “k—ldzfl)’kq >0. (26)



Journal of Function Spaces

TaBLE 3: Summary results of EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6 methods with respect to CPU time (sec).

Test function MHSDL3 MHSDL4 MHSDL5 EDL MHSDL6
Extended penalty 29.75 34.11 31.42 18.30 24.27
Perturbed quadratic 40532.66 24358.20 24947.84 8335.80 13225.80
Raydan 1 3054.67 1904.48 1692.06 690.91 1184.86
Raydan 2 6.77 1.58 1.66 0.31 0.77
Diagonal 1 7834.03 5106.41 4592.28 1476.89 486.09
Diagonal 2 885.13 1428.05 1447.02 2352.11 1513.50
Diagonal 3 13614.27 8416.77 9064.30 3132.02 1916.30
Hager 586.63 325.75 333.41 142.06 198.13
Generalized tridiagonal 1 66.14 35.59 34.42 15.19 21.63
Extended TET 20.50 78.34 82.94 41.23 31.45
Diagonal 4 134.53 77.86 87.88 30.41 55.34
Diagonal 5 18.06 134.73 121.09 0.56 1.84
Extended Himmelblau 11.13 44.47 44.36 6.19 18.30
Perturbed quadratic diagonal 91655.55 58226.16 60920.06 32179.38 36383.83
Quadratic QF1 62610.50 31552.48 28679.91 8832.11 8465.34
Extended quadratic penalty QP1 7.56 7.25 6.98 4.98 4.94
Extended quadratic penalty QP2 3814.16 2128.86 2288.55 671.52 1204.72
Extended quadratic exponential EP1 9.11 10.23 8.55 8.00 8.02
Extended tridiagonal 2 11.13 8.83 6.95 4.08 5.25
ARWHEAD (CUTE) 2709.42 2336.92 2369.28 1266.80 1689.80
ENGVALLI (CUTE) 19.47 11.33 11.81 4.03 6.70
INDEF (CUTE) 2.44 2.89 10.70 1.92 774.34
QUARTC (CUTE) 3106.56 4818.58 4808.70 7138.72 4735.39
Diagonal 6 6.75 1.92 2.03 0.38 1.34
Generalized quartic 7.16 11.53 21.05 7.53 9.78
Diagonal 7 5.98 8.20 8.28 4.56 6.25
Diagonal 8 6.17 8.20 8.08 4.72 7.69
Full Hessian FH3 30.08 66.45 79.48 35.77 43.42

Pp:r (ps) <t

10
-»- MHSDL3 —+— EDL
—— MHSDL4 MHSDL6
-=- MHSDL5

FiGure 1: NI performance profile for EDL, MHSDL3, MHSDL14,
MHSDL5, and MHSDL6 methods.

Taking into account a;_; > 0 and the last inequality, we
conclude

dz—ﬂ’k—l >0. (27)

Lemma 2. [22, 23]. Let Assumption 1 be accomplished and the
points {x, } be generated by the method (3)-(4). Then, it holds

[¢9)

y lol” _ oo, (28)

2
k=0 Il

Lemma 3. Consider the proposed Dai-Liao CG method,
including (3), (4), and (18). If the search procedure guarantees
(27), for all k> 0, then the next inequality holds

i di <=l gll’, (29)
for some 0<c<1.

Proof. The inequality (29) will be verified by induction. In the
initial situation k = 0, one obtains gl d, = —||g,||*. Since c < 1,
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FIGURre 2: NFE performance profile for EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6 methods.
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F1GURre 3: CPU performance profile for EDL, MHSDL3, MHSD14,
MHSDL5, and MHSDL6 methods.

obviously (29) is satisfied in the basic case. Suppose that (29)
is valid for some k > 1. Taking the inner product of both the
left- and right-hand sides in (4) with the vector g}, the fol-
lowing can be obtained:

gidi=—l|gel* + B gidicy
2 T T
- /
e <|gk| (Ige VlgiaDlgkgwa| _ . s ) S
A1V D 1Y

llgell* - (Hgkl‘J/Hgk—lH)Igzgk—d gl —t: % g,
D1V k=1Vk-1
=g’ + llgill® = (Hng\lngmH)Igfgk,llgzdk_l 7t;%5d’“‘)2'
A1k A Vi
(30)

2
==llgell” +

Using (17) in common with (27) and «;_; >0, we con-
clude

« F—1 (gfdkfl)z

t > 0. (31)
dﬁmﬂ

Now from (30), (31), and

0.< B _ Hgkl\z_(IlngII/Ing_1H)\glgk_l\ S ||€k”2 .
dk—lyk—l /\lgkdk—l |
(32)
it follows that
? T
B /
grd<—|1g.lI” + Al (||9kT|| Hgk_l||)|gkgk_l‘gzdk,1
Iy
HngZ T 1 s
/\|gzdk—1| } ‘ A
(33)

In view of A > 1, the inequality (29) is satisfied for ¢ = (1
—(1/2)) in (33) and arbitrary k > 0.

The global convergence of the proposed EDL method is
confirmed by Theorem 4.

Theorem 4. Let Assumption 1 be true and f be uniformly con-
vex. Then, the sequence {x,} generated by (3), (4), and (18)

Sulfills

liin inf|| g,/ = 0. (34)

Proof. Suppose the opposite, i.e., (34) is not true. This implies
the existence of a constant ¢; > 0 such that

llgill = ¢;» forallk. (35)

Squaring both sides of (4) implies

2
il = lgel* = 2B gy + (BEP) il (36)

Taking into account (18), we can get

2 T T
- /
—2fPLgTd, =2 (||9k|| (g Hgk—lll)‘gkgk%{ 1 i Sk-1 >5Ed1f-1

dLJ’H dZ—lJ’k—l
T 2
- ||9k||2 = (l9x H/Hykqll)\yigkﬂ T4 X akfl(gl&dkfl)
== T Jipr ~ by ———— |
iy d Vi

(37)



Now from (31) and (32), it follows that

2 _ / ~ T ~
(ngH 911949l g
k-1 k-1

II I?
gt =220

“2pPLgTY <2 19kl

2
< lad”

/\|gEdk_1|

(38)
Now, an application of (18) initiates

g0t 1gel” = (Igi 17119111 |9k Gics | — tigisin
dz k-1
gkgk (19 1711s1 D] 98 Gor | = 1 G Skr
d; k-1
- 19k (9% = (196 W11 gxci ) Gar = tisicn)]
- 9“k71||dk71”2
_ 195Gk = gia + 91 = U9 1191 1) G 1 — s
9“k71||dk71||2
=i ll + 11951 (= (g 111G I+ £ lIsga )
9“k71||dk71“2
= Gt L+ 11 = (1 Gi 171 Gar DN G | + L lIsra 1)
oy [|dy_y HZ
il + gkl = 1gill] + NIk 1)
Oak—IHdk—le
= Ga L+ 19kt = Gl + E Ik [])
Oy ||y [|°
_ 19l12lIgk = Gia |l + e s ]])
Q“k—ludk—le
_ @)l _
90‘k-1\|dk-1H2

_ereg)lgl
e

< l9ellCllge

_ llgkliCligx

_ gl Cllgx -

_ ladlls,

< Igell LISl + £ ISk 1)
- 9ak_1\|dk_1H2
L+ )1l || dir |

B0y [|dir |1°

(39)

Using t; € (0,1) and (38) and (39) in (36), we obtain

lg,ll® N L+ 1)) gell?
A 0?||d
[

2 2L+t
g2 +2 "gk" , CLr )’ [N

:(”§ (ZL”")>|| alf —(M+(2L”k)>| o’

_ (A+2)9 +/\(2L+tk) g ”
162 I

2 2 2
dill” < llgil” +2 gl

(40)

Next, dividing both sides of (40) by ||g,||* and using (35),
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it can be concluded that
I, ]I s 2)0* + A(2L +t})? 1
g, II* A0 a
lgal* A6 -6 .
Idel*> — (A+2)6% + A2L + t})?

(41)

The inequalities in (41) imply

Z lgell*
o lldell”

S YR LL: S %)
S (A+2)07 + A2L +11)? '

Therefore, ||g,|| > ¢, causes a contradiction with Lemma
2.

3. Numerical Experiments

The implementation of the EDL method is based on Algo-
rithm 2. This section is intended to analyze and compare
the numerical results obtained by the EDL method and four
variants of the MHSDL class methods (6). These variants
are defined by t =t5, t =t;, t = t}5, and t = £, and denoted,
respectively, as MHSDL3, MHSDL4, MHSDL5, and
MHSDL6. The obtained results are not compared with the
values f,; and t,,, because in [16], the authors have already
shown that t,; and f, initiate better numerical performances
compared to f;, and t;,.

The codes used in the testing experiments for the above
methods are written in MATLAB R2017a and executed on
the Intel Core i3 2.0 GHz workstation with the Windows 10
operating system. Three important criteria are analyzed in
each individual test case: number of iterations (NI), number
of function evaluations (NFE), and processor time (CPU).

The numerical experiment is performed using 28 test
functions presented in [24], where much of the problems
are taken over from the CUTEr collection [25]. All methods
used in the testing of an arbitrary objective function start
from the same initialization x,. Each function is tested 10
times with gradually increasing dimensions #n =100, 500,
1000, 3000, 5000, 7000, 8000, 10000, 15000, and 20000.

The uniform terminating criteria for each of the five con-
sidered algorithms (EDL, MHSDL3, MHSDL4, MHSDLS5,
and MHSDL6) are

gl <&

) 0| _ s (43)
Ll

where e = 107° and & = 107'¢. The backtracking line search is
based on the parameters w =0.0001 and ¢ = 0.8 for all five
algorithms. Specific parameters used only in the MHSDL6
method are defined as C=1,v=0.26, and r = r, = vl g,_, .
Summary numerical results for EDL, MHSDL3,
MHSDL4, MHSDL5, and MHSDL6 methods, executed on
28 test functions, are arranged in Tables 1-3. Tables 1-3
show the numerical outcomes corresponding to all three
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criteria (NI, NFE, and CPU) for the EDL, MHSDL3,
MHSDL4, MHSDLS5, and MHSDL6 methods.

We utilized the performance profile given in [26] to com-
pare numerical results for three criteria (NI, NFE, and CPU)
generated by five methods (EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6). The upper curve of the selected
performance profile corresponds to the method that shows
the best performance.

Figures 1-3 plot the performance profiles for the numer-
ical values included in Tables 1-3, respectively. Figure 1 pre-
sents the performance profiles of the NI criterion generated
by the EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6
methods. In this figure, it is noticeable that EDL, MHSDL3,
MHSDL4, MHSDL5, and MHSDL6 methods solved all tested
functions, wherein the EDL method shows the best perfor-
mances in 57.14% of test functions compared with MHSDL3
(25.00%), MHSDL4 (0.00%), MHSDL5 (0.00%), and
MHSDL6 (17.86%). From Figure 1, it is observable that the
graph of the EDL method comes first to the top, which means
that the EDL outperforms other considered methods with
respect to the NI.

Figure 2 presents the performance profiles of the NFE of
the EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6
methods. It is observable that EDL, MHSDL3, MHSDL4,
MHSDL5, and MHSDL6 generated solutions to all tested
cases, and the EDL method is the best in 67.86% of the func-
tions compared with MHSDL3 (17.86%), MHSDLA4 (0.00%),
MHSDLS5 (0.00%), and MHSDL6 (14.28%). From Figure 2, it
is observed that the EDL graph first comes to the top, which
confirms that the EDL is the winner with respect to the NFE.

Figure 3 contains graphs of the performance profiles cor-
responding to the CPU time of the EDL, MHSDL3,
MHSDL4, MHSDL5, and MHSDL6 methods. It is obvious
that EDL, MHSDL3, MHSDL4, MHSDL5, and MHSDL6
solved all tested functions. Further analysis gives that the
EDL method is the winner in 67.86% of the test cases com-
pared with MHSDL3 (17.86%), MHSDL4 (0.00%), MHSDLS5
(0.00%), and MHSDL6 (14.28%). Figure 3 demonstrates that
the graph of the EDL method first comes to level 1, which
indicates its superiority with respect to the CPU time.

From the previous analysis of the results shown in
Tables 1-3 and Figures 1-3, it can be concluded that the
EDL method produces superlative results in terms of all three
basic metrics: NI, NFE, and CPU.

4. Conclusion

A novel rule which determines the value #(k) of the parame-
ter ¢ in each iteration of the Dai-Liao-type CG method is pre-
sented. The proposed expression for defining #(k) is denoted
by t;. Considering ¢ =t} in (6), a novel variant of the Dai-
Liao CG parameter 3;°" is defined and a novel Effective
Dai-Liao (EDL) conjugate gradient method is proposed.
The convergence of the EDL method is investigated, and
the global convergence on a class of uniformly convex func-
tions is established. By numerical testing, we have shown that
there is a significant influence of the scalar size of ¢} on the
convergence speed of the EDL method. Numerical compari-

sons on large-scale unconstrained optimization test func-
tions of different structures and complexities confirm the
computational efficiency of the algorithm EDL and its supe-
riority over the previously known DL CG variants, such as
MHSDL3, MHSDL4, MHSDLS5, and MHSDL6. During the
testing, we tracked the number of iterations (NI), number
of function evaluations (NFE), and spanned processor time
(CPU) performances for each function and each method.
Analysis of the obtained performance profiles introduced
by Dolan and Moré revealed that the EDL method is the most
efficient.

We are convinced that the obtained results will be a moti-
vation for further research in defining new values of the
parameter f; in the Dai-Liao CG methods. Future research
would include research in finding some more efficient rules
to calculate the parameter t, during the iterative process.
We hope that our proposal of the new expression for defining
the parameter ¢ will initiate further research in that direction.
It is evident that finding novel approaches in defining differ-
ent values of t and the conjugate gradient parameter f3, is an
inexhaustible topic for scientific research, and our approach
is only one possible direction in this research.
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In this paper, we propose a notion of the Gdérnicki-Proinov type contraction. Then, we prove the uniqueness and existence of the
fixed point for such mappings in the framework of the complete metric spaces. Some illustrative examples are also expressed to

strengthen the observed results.

1. Introduction and Preliminaries

The history of the fixed point theory goes back about a
century. Banach’s result initiated the metric fixed point the-
ory in 1922 [1]. The first outstanding extension of this initial
theorem was given by Kannan [2] in 1968. In this first gener-
alization, Kannan [2] removed the necessity of the continuity
of the contraction mapping. Recently, Gornicki [3] expressed
an extension of Kannan type of contraction but the continu-
ity condition was assumed. After then, Bisht [4] refined the
result of Gérnicki [3] by replacing the continuity condition
for the considered mapping with orbitally continuity or
p-continuity. Very recently, Gérnicki [5] improved these
two mentioned results by introducing new contractions,
“Geraghty-Kannan type” and “¢-Kannan type.” He proved
the existence of a fixed point for such mappings. On the other
hand, Proinov [6] discussed some existing results and noted
that these results are particular cases of Skof [7]. He also pro-
posed a very general fixed point theorem that also contains
the result of Skof [7].

We first recall the pioneer theorem of Banach [1] and
Kannan [2]. On a complete metric space (X, d), a mapping
T : X — X admits a unique fixed point if there exists 0 < #
<1 such that

d(Tu, Tv) <k-d(u,v), (1)
and
d(Tu, Tv) <K -{d(u, Tu) +d(v, Tv)}, (2)

for all u, v € X. The inequality (1) belongs to Banach [1] and
(2) belongs to Kannan [2]. By using the “asymptotic regular-
ity” concept, Gornicki [3] proved an extension of Kannan
Theorem 1.2. Before giving this interesting result, we recol-
lect the interesting concepts:

Let T be a self-mapping on a metric space (X, d) and {
T"u} be the Picard iterative sequence, for an initial point u
eX.

(o) The set O(T,u) ={T"u:n=0,1,2,---} is called the
orbit of the mapping T at u.

The mapping T is said to be [3, 5]:

(0-¢) orbitally continuous at a point w € X if for any
sequence {u,} in O(T,u) for some u € X, lim,_, d(u,, w)
=0 implies lim,_, d(Tu,, Tw) =0.

(p-¢) p -continuous at a pointwe X (p=1,2,3,---) if for
any sequence {u,} in Xlim,  d(T?'u,, w)=0 implies
lim, . d(T*u,, Tw)=0.

n—0o0

n—00

n—00
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(a-r) asymptotically regular at a point u e X if lim,_, d

n—o00
(T"u, T"™'u) = 0. If T is asymptotically regular at each point
of X, we say that it is asymptotically regular.

Remark 1. In [8], it is shown that p-continuity of T and the
continuity of Tp are independent conditions for the case

p>1.

Theorem 2 (see [3, 5]). On a complete metric space (X, d), a
continuous asymptotically regular mapping T : X — X admits
a unique fixed point if there exist 0< k<1 and 0<K < +oo
such that

d(Tu, Tv) <k-d(u,v) + K-{d(u, Tu) +d(v, Tv)}, (3)
forall u,veX.

Later, the assumption of continuity of the mapping T was
replaced with weaker notions of continuity.

Theorem 3 (see [4]). On a complete metric space (X, d) and a
mapping T : X — X. Suppose that there exists 0 < K < 1 such
that

d(Tu, Tv) <k-d(u,v) + K- {d(u, Tu) +d(v, Tv)}, (4)

forallu,v € X. Then, T admits a unique fixed point if either T
is (0-c) or (p-c) for p> 1.

In [5], some generalizations of Theorems 2 and 3 are con-

sidered, by replacing the constant k with some real-valued
functions.

Theorem 4 (see [5]). Let (X, d) be a complete metric space
and T : X — X be an (a-r) mapping such that there exist
Y : [0,00) = [0,00) and 0< K < 0o such that

d(Tu, Tv) < ¢(d(u,v)) + K- {d(u, Tu) +d(v, Tv)}, (5)
for all u,veX. Suppose that:

(i) ¢(0) <0 for all 0> 0 and ¢ is upper semicontinuous
(ii) either T is (o-c) or T is (p-c) for some p > 1

Then, T has a unique fixed point u, € X and for each u
€X, T"u— u, as n — 0o.

Theorem 5 (see [5]). Let (X, d) be a complete metric space
and T : X — X be an (a-r) mapping such that there exist
¢:[0,00) > [0,1) and 0<K < oo such that

d(Tu, Tv) <g(d(u,v)) - d(u,v) + K- {d(u, Tu) + d(v, Tv)},
(6)
for all u,veX. Suppose that:

(1) ¢(6,) > 1=0,—0;
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(2) either T is (o-c) or T is (p-c) for some p > 1

Then, T has a unique fixed point u, € X and for each u
€eX, T"u— u, as n — 0o.

On the other hand, very recently, Proinov announced
some results which unify many known results [6].

Theorem 6 (see [6]). Let (X, d) be a complete metric space
and T : X — X be a mapping such that

y(d(Tu, Tv)) < ¢(d(u, v)), (7)

for all u,veX with d(Tu, Tv) >0, where the functions v,
¢ : (0,00) > R are such that the following conditions are
satisfied:

(p,) 9(0) < (0) for any 0> 0;

(p,) v is nondecreasing;
(p;) limsup,_,,, ¢(0) <y(e+) for any e> 0.

Then, T admits a unique fixed point.

Theorem 7 (see [6]). Let (X,d) be a complete metric space
and T : X — X be a mapping such that

y(d(Tu, Tv)) < ¢(d(u, v)), (8)

for all u,v e X with d(Tu, Tv) >0, where v, ¢ : (0,00) > R
are two functions such that the following conditions are
satisfied:

(0,) $(6) <w(0) for any 0> 0

(p.) infy. .y (0) > —co0 for any ¢

(ps) limsup,_,,, ¢(6) < liminf,_,y(0) or limsup,_,¢(6)
<liminf,_,,, ¢(0) for any e > 0;

(pe) limsup,_,, ¢(0) <liminfy_,,y(0) for any e > 0;

(p,) if the sequences (y(0,)) and (¢(0,)) are convergent
with the same limit and (y(0,)) is strictly decreasing, then
0, — 0asn— oo

Then, T admits a unique fixed point.

Lemma 8 (see [6]). Let (u,) be a sequence in a metric space
(X, d) such that d(u,,u,,;) — 0 as n — co. If the sequence
(u,) is not Cauchy, then there exist e > 0 and two subsequences
{s}> {r} of positive integers such that

klgl(;lod(uskﬂ’ urk+1) =et,

,}Eg)d(usk’ u’k) = klingod(usk*l’ u'k) = ]}E&d(usk’ u7k+1) =e
(9)

Lemma 9 (see [6]). Let (u,,) be a sequence in a metric space
(X, d) such that d(u,,u,,;) — 0 as n— oco. If the sequence
(u,) is not Cauchy, then there exist e > 0 and two subsequences
{s.}> {rc} of positive integers such that
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lim d(u u, )—e+,

k—00

kli_{l(;lod(usﬁ]’ urk+1) = kli_{god(uskﬂ’ ur ) - klin(;lod(u ur +1) =e
(10)

In the end of this section, we recall the notions of a-orbital
admissible and triangular a-orbital admissible mappings [9]
with mention that these notions were extended in many direc-
tions, see, e.g., [10] and it could be potentially extended also to
several approaches of recent developments in fixed point the-
ory. See, for instance, [11-21].

On a metric space (X, d), a self-mapping T is called

(i) a-orbital admissible if

a(u, Tu)>1= oc(Tu, Tzu) >1, (11)

for any u, v € X, where a : X x X — [0,00)

(ii) triangular a-orbital admissible if it is a-orbital admis-
sible and the following condition is satisfied

a(u,v)=landa(v, Tv) 2 1= a(u, Tv) 2 1, (12)

for any u, v,w e X

Lemma 10. If for an triangular a-orbital admissible mapping
T : X — X there exists uy € X such that a(uy, Tu,) > 1, then

a(u, u,) 2 1, foralln,p € N, (13)

where the sequence {u,} is defined as u,,; = Tu,,

Let (X, d) be a metric space and the function o : X x X
— [0,00). The following conditions will be used further:

R 1f for a sequence {u,} in X such that u, — u and
a(u,, u,,;) =1 for all n € N, then there exists a subsequence
{u, } of {u,} such that a(u, ,u)>1.

(%) For all u,veFixyT={zeX:Tz=z}, we have
a(u,v) > 1.

2. Main Results

Let A be the set of all functions ¢ : (0,00) — R. For ¢, € A,
we are considering the following conditions:

(a;) ¢(0) <y(0) for 0>0

(ay) limsup,_,,, #(0) < liminf,_,y(0), for any e >0

(as) limsup,_, ,¢(0) < liminf,_,,, y(0), for any e >0

(ay) limsup,_,,, ¢(0) <y(e+ ), for any e >0

Definition 11. Let (X, d) be a metric space, the functions v,
peAand a: X xX—[0,00). An (a-r) mapping T : X - X
is said to be (o, y, ¢)-contraction if there exists 0 < K < co
such that

a(uw, VI)y(d(u,v)) < d(d(u,v)) + K- {d(u, Tu) +d(v, Tv)},

(14)
for each u, v € X with d(Tu, Tv) >0

Theorem 12. On a complete metric space (X, d) an (a, y, ¢)
-contraction T : X — X has a fixed point provided that

(1) the functions v, ¢ € A satisfy (a,) and either (a,) or
(513)

(2) T is triangular a-orbital admissible and there exists
uy € X such that a(u,, Tu,) > 1

(3) either T is (o-c) or T is (p-c), for some p > 1

Moreover, if property (U) is satisfied, then the fixed point
of T is unique.

Proof. Let u be any point (but fixed) in X and we build the
sequence {u, }, where u, =u and u, = T"u for any n € N. If
there exists my € N such that T™u=T""y=T(T™u),
then T"™u is a fixed point of T. For this reason, we can sup-
pose that T"u# T"'u, for every n € NU {0} and we claim
that {u,} is Cauchy sequence. Assuming the contrary, that
the sequence {u,} is not Cauchy, from Lemma 1, it follows
that we can find e and two subsequences {s;} and {r;} of
positive integers such that (9) holds. Letting u = u, and v =

u, in (14), we have a(uy,u,)>1 (taking into account
(1.8)), and then,

IA

ll’(d<“sk+1s7f‘rk+1)) “(usk’”rk)‘//( ( sk+l’urk+l)>
ity 5, (0 (Tt )

({0 1,)) + K
(At tr) + 1)),

or denoting & = d(u, ., t, ;) and { =d(u,, u, )

(15)

I/\

l//(Ek) < ¢(ck) +K- {d(usk’ usk+1) + d( u, +1)} (16)

Taking into account the asymptotically regularity of T,
from (9), it follows that

¢ —e+and(, —e. (17)
Thus, letting the limit in (16), we have
hmmft//( ) <liminfy/(&;) <limsup¢({;) <limsup¢(0).
O—e+ k—co k—o00 0—e
(18)
This contradicts the assumption (a,).
Similarly, if we consider that the functions v, ¢ satisfy

(a3), the conclusion follows in the same way, but taking into
account Lemma 2.



Therefore, {u,} is a Cauchy sequence, and because the
space (X, d) is complete, there exists u, such that

(19)

limu, =u,.
n—00

We claim that u, is a fixed point of T.

If T is orbitally continuous, then since {u,} € O(T, u)
and u, — u,, we have u,, , =Tu, - Tu, as n— oco. The
uniqueness of the limit gives Tu, =u,.

If T is p-continuous, for some p >1, by (19), we have
lim, T 'u,=u* which implies lim,_ T?u,="Tu"*
(because T is p-continuous). Therefore, by uniqueness of
the limit, we have Tu, =u,.

Now, supposing that there exists v, € X such that T,
=v,#u,=Tu,, from (14) and taking into account the
property (U), we have

IN

v(d(u,v,)) <a(u,v,)y(d(Tu,, Tv,))
P(d(u,,v,)) + K- {(d(u,, Tu,) + (d(v,, Tv,))}
P(d(u,,v,))

(@d(u,v.)) <y((d(u.,v.)),

IN

®) V*
®) V*
(20)
which is a contradiction. Therefore, u, = v,.
Letting ao(u, v) = 1 in Theorem 12, we get the following:

Corollary 13. Let (X, d) be a complete metric space and an (a-
r) mapping T : X — X. Suppose that there exists 0 <K < co
such that

v(d(u,v)) <¢(d(u,v)) + K- {d(u, Tu) +d(v, Tv)}, (21)

for each u, v € X with d(Tu, Tv) > 0, where v, ¢ € A. Suppose
also that:

(1) the functions v, ¢ € A satisfy (a,) and either (a,) or
(a3)

(2) either T is (o-r) or T is (p-0), for some p > 1

Then, T has a unique fixed point.

Corollary 14. Let (T,d) be a complete metric space and T
: X — X be an (a-r) mapping such that
d(Tu, Tv) <g(d(u, v))d(u, v) + K- {d(u, Tu) + d(v, Tv)},
(22)
for each u,v € X, where 0<K < 0o and the function ¢ : (0,
00) — (0, 1) is such that limsupy_,,,6(0) < 1 for any e > 0. If

T is either (o-c) or (p-c) for some p > 1, then T has a unique
fixed point.

Proof. Let y(8) =0 in Corollary 1.

Taking w(6) = 0 and ¢(0) = k - 0, with k € [0, 1) Corollary
1 becomes:
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Corollary 15. Let (T,d) be a complete metric space and
T:X—X be an (a-r) mapping. If there exist ke[0,1)
and 0<K < oo such that

d(Tu, Tv) <kd(u,v) + K- {d(u, Tu) +d(v, Tv)}  (23)

for each u,veX, then T admits a unique fixed point pro-
vided that T is (o-c) or (p-c) for some p > 1.

Theorem 16. Let (X, d) be a complete metric space, a : X x
X — [0,00), ¥, ¢ € A such that (a;) and (a,) are satisfied. Let
T : X — X be an (a-r) mapping. Suppose that there exists 0
< K < 00 such that

y(a(u, v)d(Tu, Tv)) < @(d(u, v)) + K- {d(u, Tu) +d(v, Tv)},
(24)

for each u,v € X with d(Tu, Tv) > 0. Suppose also that

(i) v is nondecreasing and limsup,_,,, <y(e+ ) for any
e>0

(ii) T is triangular a-orbital admissible and there exists
u, € X such that a(u,, Tu,) > 1

(iii) the mapping T is either (o-c) or (p-c)

Then, the mapping T possesses a fixed point. Moreover,
the fixed point is unique, provided that property (U) is
satisfied.

Proof. Let {u,} be the sequence defined as in the previous
theorem, as u,, = T"u, where u € X is arbitrary but fixed. Let-
ting u=u, and v=u, in (2.7), we have

w(‘x(usk’ urk)d(usk'H > u’k“))
< ('b(d(uSk’ u”k)) +K- {d(ufk’ u5k+1) + d(MSk’ u5k+1) }’
(25)
and taking into account the assumptions (i), (ii), and Lemma
3, we get
1//(d<usk+l’ urk"'l)) < ¢(d(u5k’ ufk)) +K
’ {d(usk’ u5k+1) + d(ufk’ ufk’rl) }’

Setting & =d(u, 4, ) and { =d(u,,u, ) and since

$(0) < y(0), we get

W(Ek) s (p(ck) +K- {d(usk’ u3k+l) + d(urk’ urk+l) }
< V/((k) +K- {d(usk) u5k+1) + d(urk’ urk+1) }

(26)

(27)

On the other hand, from 1.5 that§, - e+,{, - e+ and
then, letting the limit as k — oo in the above inequality, since
T is an (a-r) mapping and taking into account the second
part of the assumption (i), we have
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yle+) = lim y(§,) <limsupg((,) <limsupg(6) < (e +),

k—o00 O—e+

(28)

which is a contradiction. Thus, the sequence {u,,} is Cauchy
on a metric space, so there exists u, such that u, — u, asn
— oo and following the lines of the previous proof, we get
that u, is the unique fixed point of T.

Again, letting a(u,v)=1 for any u,veX we get the
following:

Theorem 17. Let (X, d) be a complete metric space, and two
functions y, ¢ € A such that ( a;) is satisfied. Let T : X - X
be an (a-r) mapping. Suppose that there exists 0 < K < 0o such
that

y(d(Tu, Tv)) < ¢(d(u, v)) + K- {d(u, Tu) +d(v, Tv)},
(29)

for each u, v € X with d(Tu, Tv) > 0, where v, ¢ € A. Suppose
also that

(i) v is nondecreasing and limsup,_,,, <y(e+) for any
e>0

(ii) the mapping T is either (o-c) or (p-c)

Then, the mapping T possesses a unique fixed point.

Theorem 18. Let (X, d) be a complete metric space, and two
functions v, ¢ € A such that (a,) is satisfied. Let T : X — X be
an (a-r) mapping. Suppose that there exists 0 < K < oo such that

y(d(Tu, Tv)) <g(d(u, v))w(d(u,v)) + K- {d(u, Tu) +d(v, Tv)},
(30)

for each u,v e X with d(Tu, Tv) > 0, where w € A and ¢ : (0,
00) — (0, 1). Suppose also that

(i) v is nondecreasing and limsup,_,,,¢(0) <1 for any
e>0

(ii) the mapping T is either (o-c) or (p-c)

Then, the mapping T possesses a unique fixed point.
Proof. Take ¢(0) = a(0)y(0), for 8 >0 in Theorem 17.

Next, we consider mappings that satisfy a similar condi-
tion as (14), but for which the asymptotic regularity condi-
tion is not necessary.

Definition 19. Let (X, d) be a complete metric space, « : X
x X — [0,00) and v, p € A. A mapping T : X — X is called
(o, W, ¢)-contraction of type 2 if there exists 0 < K < co such
that

a(w, V)y(d(Tu, Tv)) < ¢(d(u, v)) + K- {d(u, Tu) +d(v, Tv)}
~d(u, Tv)d(v, Tu),
(31)

for each u, v € X with d(Tu, Tv) > 0.

Theorem 20. On a complete metric space (X, d), an (a, y, ¢)
-contraction of type 2, T : X — X has a fixed point provided
that property (R) and the following conditions hold:

(A) T is triangular a-orbital admissible and there exists
uy € X such that a(uy, Tuy) > 1

(B) v, ¢ satisfy the assumptions (a,;) and (a,)
(C) vy is nondecreasing
(D) limsup,_,,, ¢(0) <liminf,_,,w(0), for any e> 0

Moreover, if the property (U) holds, the fixed point of T
is unique.

Proof. Let {u} be a sequence in X defined as
u, =T"u,, foreveryn € N, (32)

where u is an arbitrary but fixed point in X. Replacing in
(31) and taking into account (11), we have

Y (A (thyy Uy )) < @ty )y (d(Th, oy, Tuy))
< @A (s ) K- {d (s Tuyy) + d(uy, Tuy )}
Aty T )10, Tit )
= (d(u, > uy)) + K- {d(u, 5 u,) + (1, 14,00) }
A1ty )1 0,) = (111, 1,)),
(33)

or setting x,, = d(u,_,, u,) (we can suppose that x, > 0) and
taking into account the condition (a,) for any 8 > 0, we get

W(xn) < (tb(xn—l) < l//(xn—l)' (34)

If the condition (C) holds, from the above inequality, we
get x, <x,_,, for every n € N. Consequently, being positive
and strictly decreasing, the sequence {x,} is convergent
and there is x >0 € X such that x, — x. If we assume that
x>0, then from the above inequality, we have

¢(x+) = lim y(x,) <limsup@(x,) <limsupp(0) < ¢(x +),

n—00 n—00 O0—x+
(35)
which is a contradiction. Thus,
lim x, =x=0. (36)

n—o00

The aim for the next step is to prove that the sequence
{u,} is Cauchy. Supposing by contradiction, the sequence



{u,} is not Cauchy, by (36), and taking into account
Lemma 1, we can find e>0 and two subsequences {u, }

and {u, } of {u,} such that (9) holds. Taking u=u,

and v=u,
k

in (14) and keeping in mind (1.7), we have

V(s> ) < e(ias e y (d(Tus, Tuy, )
<¢(d(uy, ))++K {d(u,

d(usk u’k‘”)d( > u5k+1)'

sgr) (Ut 0) }

(37)
Letting the limit as k — co in the previous inequality

(since d(uy .y u,,,) > e+ and d(ug,u, ) —e and using
(2.11), we get

liminfy (6) < liminfy (d(u, 1, 4, 1))

O—e+ k—co ) (38)
<limsup¢ (d (ug, u,, ) ) <limsup¢(6).
500 O—e

This is a contradiction to (a,). Thus, {u,} is a Cauchy
sequence on a complete metric space, so it is convergent.
Let u, =lim, ,_u, and we claim that u, is a fixed point
of T. From (31) and (R), for u=u, and v= u,, we have

W(d(unJrl’T”*))Sa( n
< @(d(uy 1))+ +K - {d(uy, 1) +d(uy, Tuy )}

' d(un’ Tu*)d(u*’ un+1)'
(39)
Since lim,_ . d(u,,,, Tu,)=d(u,, Tu,) and lim, . d
(u,,u,)=0 if we suppose that d(u,, Tu,) >0, the above

inequality yields
liminf (0) <liminfy(d(u,,;, Tu,))

0—d(u,,Tu,)
<limsup¢(d(u,, u,)) <limsup¢(0),

n—00 6—0

(40)

which is a contradiction to (D). Therefore, d(u,,Tu,)
=0, that is u, is a fixed point of T. As in the Theorem
12, adding the condition (U) to the statement of Theo-
rem 20, we are able to prove that the fixed point is
unique. Indeed, if we suppose that v, € X is such that
Tv, =v, #u, =Tu,, from (2.10), we have

y(d(u,,v,)) <a(u,,v,)y(d(Tu,, Tv,))
<¢(d(u,,v,))++K-{d(u,, Tu,)+d(v,, Tv,)}
(d(u,, Tv,)+d(v,, Tu,)).
(41)

Letting n — 0o in the above inequality and keeping
in mind (a,), we have

y(d(u,,v.)) < P(d(w,

which is a contradiction.

v))<wdu,v)),  (42)
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Example 21. Let the set X ={A;, A,, A;, A, As} endowed
with the distance d: X x X — [0,00), where d(u,u) =0, d

(u,v)=d(v,u) for any u,v € X and
d(A;, Ay) =d(Ay, Ay) =d(A3 Ay) =1,
d(A}, A;) =d(Ay, Ay) =d(Ay As) =2,
d(A}, Ay) =d(Ay, As) =d(A3, As) =3,d(A, As) =4

(43)
Let the mapping T : X — X defined by
TA =A,, TA,=A,, TAy=Ag, TA, = A, TA; = A,. (44)
Let also the function a : X x X — [0,00), with

2, if(u,v)=(A;A),fori=1,2,3,4,5
s if(u,v) € {(As5, Ay), (Ap A3) }

0, otherwise

—

a(u,v) =

(45)

Then, T does not satisfy Banach, neither Kannan type
condition. Indeed, letting for example u=A,,v=A4,,

d(TA,, TA;)=d(A,,As) =4>2k
=kd(A,,A;)forany0 <k <1,
d(TA,, TA;)=d(A,A;) =4>3K

=K-{d(A,A}) +d(A3,A5) }
=K-{d(A,, TA,) + d(A;, TA;)},  (46)
1
forany0 <K < 3
On the other hand, T is not (a-r), so Theorem 3 can-
not be applied. Let the functions y, ¢ € A, ¢(6) =6, y(0)

=0/2, for >0 and K =8. For an easier reading, we will
set

Au,v) = ¢(d(u,
~d(u, Tv)d(v, Tu) =

v))+K-{d(u, Tu) +d(v, Tv)}

d(L;’ ") 8 (47)

Ad(u, Tu) +d(v, Tv) }d(u, Tv)d(v, Tu).

Let us check that the mapping T is an (a, vy, ¢)-con-
traction of type 2. For this purpose, we must consider
the following cases:

(i) u=A,v=A,,

a(A, Ay (d(TA, TA)) =

33
2d(A, A5) =4 < =

(48)
=A(AL4)

(i) u=A,,v=A4,,
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a(Ay, AW (d(TA,, TAy)) = 2d(A,, As) =8 < 193 = A(A,, A,)
(49)

(i) u=A,v=A,
99
a(ApL Ay(d(TA, TA)) =2d(A}, Ay) =2< 5 =A(A,Ay)
(50)

(iv) u=A;,v=A,,

w(A, As)y(d(TA,, TAs)) = 2d(A), Ay) =2 <98 =A(A,, A5)
(51)

(V) u=A;,v=A4,
97
a(A3 Ag)y(d(TA;, TAy)) =d(As, Ay) =3< 3 =A(As Ay)
(52)

Moreover, it is easy to see that all the assumptions of The-
orem 20 are satisfied, so that T has a unique fixed point.

Example 22. Let the set X = [0,00) be endowed with the usual
distance d on R. Consider the mapping T : X — X defined by

1-u, if0<u<l
Tu= . (53)
In(1+¢"), ifu>1

Then, Tis neither continuous, a contraction, nor (a-r).
Define the function a : X x X — [0,00) by

, 11 ]

2, ifuel=, —,1% v=_—
12 2

Aa) =0 iy '

0, otherwise

Consider also, the functions v, ¢ € A, where y/(0) = ¢’

and ¢(0) =0+ 1, for 8> 0. Let, for example, K = 64. Using
the same notation as in Example 1, taking into account the
definition of the function &, we have the following:

(i) u=1/4,v=1/2

11 1 1 17 11 11
o a)rla(rirs)) =2 T =o(4(53)) (5 3)

(55)

IA

(i) u=1,v=1/2

(iii)) u=2,v=1

(2, ) y(d(T2, T1)) =" (") =11 & < (d(2,1)) + A(2, 1).

(57)

Since it easy to check that all the assumptions of Theorem

20 are verified, we can conclude that T has a unique fixed
point.

Corollary 23. Let (X,d) be a complete metric space and a

mapping T : X — X such that for all u,v € X with d(Tu, Tv)
>0,

y(d(Tu, Tv)) < ¢(d(u, v)) + K- {d(u, Tu) +d(v, Tv)}
~d(u, Tv)d(v, Tu),
(58)

where 0 < K < 1 and the functions v, ¢ € A are such that

(a) v, ¢ satisfy (a,) and (a,)
(b) y is not decreasing

Then, T admits a unique fixed point.
Corollary 24 (Theorem 6). Let (X, d) be a complete metric

space and a mapping T : X — X such that for all u, v € X with
d(Tu, Tv) > 0,

y(d(Tu, Tv)) < ¢(d(w. v)), (59)
where the functions y, ¢ € A are such that

(a) v, ¢ satisfy the assumptions (a;) and (a,)
(b) v is not decreasing

Then, T admits a unique fixed point.
Proof. Let a(u, v) =0 and K = 0 in Theorem 20.

Corollary 25. Let (T,d) be a complete metric space and
T :X — X be a mapping such that

y(d(Tu, Tv)) <q(d(u, v))y(d(u, v)) + K- {d(u, Tu) + d(v, Tv)}
~d(u, Tv)d(v, Tu),
(60)



for each u,v e X with d(Tu, Tv) >0, where 0< K <00 and
the functions ¢:(0,00) — (0,1), y:(0,00)— (0,1) are
such that

(i) limsup,_,,,¢(0) < I for any e> 0

(ii) y is nondecreasing

Then, T has a unique fixed point.
Proof. Let $(0) =¢(d(u, v))w(d(u,v)) in Corollary 4.

Corollary 26. Let (X,d) be a complete metric space and a
mapping T : X — X. Suppose that there exist 0< k<1 and
0<K < oo such that for all u,veX,

d(Tu, Tv) <kd(u,v) + K - {d(u, Tu) +d(v, Tv)}d(u, Tv)d(v, Tv).
(61)
Then, T admits a unique fixed point.

Proof. Let a(u, v) =0, y(0) =0 and ¢(0) =k -0, with 0 < k < 1
in Theorem 20.
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In accordance with the quantum calculus, we introduced the two variable forms of Hermite-Hadamard- (% %-) type inequality
over finite rectangles for generalized ¥W-convex functions. This novel framework is the convolution of quantum calculus,
convexity, and special functions. Taking into account the g, g,-integral identity, we demonstrate the novel generalizations of the
H F -type inequality for §,q,-differentiable function by acquainting Raina’s functions. Additionally, we present a different
approach that can be used to characterize % % -type variants with respect to Raina’s function of coordinated generalized ¥
-convex functions within the quantum techniques. This new study has the ability to generate certain novel bounds and some
well-known consequences in the relative literature. As application viewpoint, the proposed study for changing parametric values
associated with Raina’s functions exhibits interesting results in order to show the applicability and supremacy of the obtained
results. It is expected that this method which is very useful, accurate, and versatile will open a new venue for the real-world

phenomena of special relativity and quantum theory.

1. Introduction

Recently, a nonrestricted analysis is recognized as quantum
calculus (in short, g-calculus) and has initiated numerous §
-mathematical formulation as g+ 17. In 1707-1783, Euler
proposed g-calculus theory. Accordingly, Jackson [1]
explored the investigation of g-integrals efficiently. The pre-
viously mentioned outcomes prompted an escalated presen-
tation on quantum theory in the 20" Century. As an
application perspective, the concept of g-calculus has been
potentially utilized in quantum mechanics, special relativity
theory, anomalous diffusion equations, orthogonal polyno-
mials, fractional calculus, and henceforth. In [2, 3], authors
contemplated the g-derivatives on finite intervals of real line
and amplified several new generalizations of classical convex-

ity, g-version of Griiss, g-Cebysev’s, and g-Polya-Szeg6 type
inequalities. Over the most recent couple of years, the subject
of g-theory has become a fascinating theme for several
researchers, and new developments have been investigated
in the relative literature (see [4-6]).

Within the framework of g-calculus, mechanothermody-
namics, translimiting states, analysis, and generalization of
experimental data, several special approaches are being
developed to assess the quantum calculus in terms of a gener-
alized energy states (see [7, 8]).

Convex functions have potential applications in many
intriguing and captivating fields of research and furthermore
played a remarkable role in numerous areas, such as coding
theory, optimization, physics, information theory, engineer-
ing, and inequality theory. Several new classes of classical
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convexity have been proposed in the literature (see [9-14]).
Mathematical inequalities are viewed as the prominent
framework for assembling the qualitative and quantitative
characterization in the area of applied analysis. A persistent
development of intrigue has emerged to address the prereq-
uisites of issue for rich utilization of these variants. Numer-
ous generalizations were investigated by several scientists
who thus utilized different procedures for introducing and
proposing these bounds [15-17]. Additionally, many authors
demonstrated various forms of inequalities such as
Ostrowski, Lyenger, Opial, Hardy, and Olsen, and the most
distinguished one is the Hermite-Hadamard inequality.
Here, we intend to find the novel version of Z'7 -type
inequality in the frame of §,g,-integral on coordinated gen-
eralized W-convex functions that correlates with Raina’s
function. Also, we shall represent the application of our find-
ings in the Mittag-Leftler and hypergeometric functions
which show the applicability of the suggested scheme.

Let &: 7 CR— R be a convex function such that ¢,
< @,. Then,

gﬁﬂwﬁ< !

72 G(p) +%(9,)
: _%_%J F(2)dz< ZPV TP (g

2

The inequality (1) is a well-known paramount in related
literature and plays a pivotal role in optimization, coding,
and fractional calculus theory [18, 19].

In [20], Dragomir proposed the two-variable version of
the # 7 -type inequality for convex functions as follows:

Theorem 1. (see [20]). Let € : A+ R be the coordinated con-
vex on A. Then, the following inequalities hold:

© <P1+‘P2 ¢+ ¢, 1 J ¢1 ¢2 d
2 2 PP #

1 Pt
vatel, o M

1 (2R
= (92— 9:1)(4:-¢) L: ngl e v)dudy

PR J‘%?( 6)du+ —
T4, -9 " HoPreK (i

?;

" e d L (g d
'L,(%%)”+%—%LJ(%”)V

1 2
— | g(¢,,v)d
’ ¢’2_¢1 Jqﬁl ((PZ V) Y
< G(@1 @) +9(91585) + G902 ¢1) + T (92 ¢5) .

4
)

In [21], Kunt et al. established the §-7Z 7 -type inequality
for functions of two variables utilizing convexity on rectangle
from the plane R?.

Theorem 2. Let G : A= [¢,, ¢,| x [¢,, ¢,] CR* — R be con-
vex on the coordinates on A with 0<q,,q, <1 and ¢, <@,
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¢, < ¢,. Then, one has the following inequalities:

?<@i/’1 +‘l’2’ ‘A]zi/jl + ‘pz) < 1 1 J‘w2 ?<H’ %ﬁlﬁl + ¢z> d71 u+ 1
q,+1 g+ 1 2 |p- ¢, e+l J, " $,-¢;
) J (‘11‘!’1 i 2) v) d v
¢ 4 +1 o

1 “% [% S v), d d
—_ V) d- - v
@2 0)( 2= 8) )y, 1y, 7 V00t e

o3 (my d
2 {(1+q2>(¢2—¢,)1 (b B1)p

IA

IA

1+‘Iz (Pz [,g#%w’ at
sz
¢l
T,
1'*"11 ¢2 6, o

<‘11‘12 G(pp ¢ )*‘11 (¢
- 1+

$,) + 8,5 (9 ¢1) + Z(95¢5)
( .

+2)(1+3,)
(3)

For many useful consequences on the coordinates on
rectangle from the plane R* with the various sorts of variants
for mappings that hold numerous types of convex mappings,
see [22-24] and the references cited therein.

Owing to the above-mentioned work, this research is
aimed at exploring the novel generalizations of # 7 -type
inequalities on the coordinates by the use of generalized ¥
-convex functions which are elaborated. An auxiliary identity
is derived with respect to the g, g,-derivative by the correlation
of Raina’s function. Considering this new approach, we derive
certain novel quantum bounds of 77 -type variants for coor-
dinated generalized ¥-convex mappings. Meanwhile, we
recapture remarkable cases in the relative literature. For the
change of parameter in Raina’s function, we generate numer-
ous new outcomes depending on hypergeometric and Mittag-
Leffler functions. This new study may stimulate further inves-
tigation in this dynamic field of inequality theory.

2. Prelude

This segment evokes certain earlier ideas and necessary
details related to the notion of a coordinated generalized ¥
-convex set and coordinated generalized ¥-convex function
by considering Raina’s function.

Assume that a finite interval of real numbers .#, and we
say that a mapping & : .# — R is known to be convex if

Glx+(1-0y)<lCx)+(1-0)%(y),x,ye I, {€[0,1].
(4)

In [20], Dragomir introduced a new term in convexity
theory, which is known as the coordinated convex function
described as follows:

Definition 3. Let a mapping & : V™ — R be said to be convex
on the coordinates, for all , 6 € [0, 1] with (x, y), (u,v) € V, if
the partial functions
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Glx+(1-0u,0y+ (1-0)v)
<{0€(x,y) +{(1-6)Z(x,v) (5)
+(1-0)08(u,y)+(1-0)(1-0)8(u, v),

holds for all {,6 €0, 1] and (x, y), (4, v) € V.
In [25], Raina contemplated the subsequent class of func-
tion

L N AP
Fr (1) = FHOM () = t, 6
WO=FP =3 e

where y, p > 0,|t| <R and
A= ((0), ML), -A(p), ), )

is a bounded sequence of R*. Also, setting y =1, p=0 in (6)
and

forp=0,1,2,3---, (8)

where the parameters 9, (i=1,2,3) are assumed to be
real or complex (provided that 9;=0,-1,-2,---) and the
symbol (z), mentions the value

(2), = F(If(z)p) =z(z+1) - (z+p-1),

p:()) 1)2,...,

©)

and its domain is restricted as |t | <1 (with t € C), then we
attain the subsequent hypergeometric function,

F (1) =F(9,39,39551) = i wtp

Y . (10
p=0

P

Furthermore, if A=(1,1,---) with y=29,,(R(9,)>0),
A=1 and its domain is restricted as t € C in (6), then we
attain the subsequent Mittag-Leffler function

< 1
Esl(t):;,)wtp- (11)

Next, we mention a novel concept that reunites the coor-
dinated convex function and Raina’s function as mentioned
above.

Definition 4. For y,A >0 and A = (1(0), A(1), ---A(p), ---) is
assumed to be a bounded sequence of R*. A nonempty set
A is known to be a coordinated generalized ¥ -convex set

?(z+(97$’p(x—z),w+697§,P(y—w)> €A, (12)

holds for all {8¢€0,1], (xy),(zw) €A, and 9/7’;,’](.)
denotes Raina’s function.

Definition 5. For y,A>0 and A = (A(0), A(1), ---A(p), -+-) is
assumed to be a bounded sequence of R*. A mapping &
: A — R is said to be a coordinated generalized ¥ -convex, if

?(z + C?]’}’P(x— z),w+ 9%;";,()/— w))
<L0%(x,y) +{(1 - 0)%(x, w) (13)
+(1-0)0%(z,y) + (1-0)(1 - 0)%(z w),

holds for all {,0 €0, 1] and (x, ), (z, w) € A.

Remark 6. Setting Ffip(x -¢,)=x-¢,>0and F};”)p(y -¢,)
=y — ¢, >0 in Definition 5, we get Definition 3.
Furthermore, we demonstrate some essential ideas and
preliminaries in g-analog for a single and two-variable
senses.
Let 7=[0;,0] CR, and let % =[0;,Q,] %30y CR?
with constants g, g, € (0,1), k=1,2.

Tariboon and Ntouyas [2, 3] studied the concept of g
-derivative, g-integral, and characteristics for finite interval,
which has been shown as

Definition 7. Assume that a continuous mapping & : ¥ — R

and t € 7. Then, one has g -derivative of & on # at t which is
stated as

_9(t)-%(qt+(1-q)e)

D-G(t) = , t#0;. 14
Qg ( ) (1—q)(t—Q1) Ql ( )
Clearly, we see that

lim 2.9(t)= ngq?(gl). (15)

P, !

We say that the mapping & is g-differentiable over 7, also
p, 239(1) exists Vi € 7.

Observe that if 9; =0 in (14), then OQZq? = QZq‘g, where
2,9 is a well-defined g-derivative of &(¢), i.e, it is mentioned
as

P.9(1) = L((i)_'qi(gt) . (16)

Definition 8. Assume that a continuous mapping & : ¥ — R

is symbolized as 9% g, given that @%? is g -differentiable
from # — R defined by

ngég: ngé(mgég)' (17)

Therefore, the higher order g-differentiable is defined as
o259 7 - R



Definition 9. Assume that a continuous mapping & : # — R
and the g -integral on 7 is stated as

(1-3)(t-) ) gA"G(qn"t

n=0

d,\ =
1 qz (18)

+(1-gN")Q), Vief.

Next, if o; =0 in (18), then we have a new formulation of
g-integral, which is pointed out as

Jt?( 2)dyz = Zq/\ (") (19)

0

Theorem 10. Assuming that a continuous mapping G : f
— R, the following assumptions hold:

t
Q DEJ
Q;
t
J Q;
Q;

2,9 (2),, dgz=9(t) -

G(2),,dzz = G(1),

2,9 (2),, dgz = (1), (20)

Z(Q:), @€(Qpt).

t
J Q
Q
Theorem 11. Assuming that a continuous mapping G : ¢
— R and a € R, then the following assumptions hold:
Jt t t
Q

9,(2),, 472

Q;

[©,(2) + 9,(2)],, dgz = J G(2)y,dzz + J

Q;

9 (z, )dzdw

ol (1-9)(1-g,)(t—a)(t

Jt Jt
67

for (t,t,) € Q1> Q,) X @3, Q4.

Theorem 14. Consider a continuous mapping in two-variable
sense& : B — R, then the following assumptions hold:

2
Q-Q3 a%»@z

Q aal to, a% £
t (t
L),
£t
L),

r Jt %2, w), dy 20, dq,w = F(0,1)),

2
Q1:Q3 a’qz @2 g(z) w)

Qd; 2y, d5 w=Z(, 1)),
Q a%ZQs a@zw e

s 6;1% Y(z, w)
0,93,%,93,w

=9(tt)-G(tt) - G(ypt)
+G(pta)s 0 ts) €(Qppt) X

dzdw,

Q7Y

(Qpty)-
(24)
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t g,(2)

Q;

o dqz‘

J; (a%, (z))91 dqz = aJ
| (21)

In [26], Kalsoom et al. introduced the quantum integral
identities in a two-variable sense as follows:

Definition 12. Consider a continuous mapping in two-
variable sense& : Z — R, then the partial g, -derivative, g,
-derivative, and §,g, -derivative at (z,w) € Q;, Q,] X 03 Q4]
are, respectively, stated as

o a%?(z, w) _Z(zw)—Z(qz+ (1 —4;)epw)
- P > Z:ré Q]:
%,2 (1-3)(z @)
Qza‘b?(z’ w) _ ?(Z’ LU) - Z(Z q2w+ ( q )Q3)
= , W#Qs
0.03,w (1-9)(w—0s)
Q15Q3 %1'@2Z(z’ UJ) — 1
05,2,05,w (1=9)(1=g,)(z—e)(w—03)
x[Z(qz+ (1 —qp)en w+ (1 —4,)e3)
- 9@ z+(1-9q,)epw)
—%(z,qw+ (1 —-17g,)03) + Z(z,w)], z#Q,w#Q;.
(22)

Definition 13. Consider a continuous mapping in two-
variable sense? : % — R, then the definite g, g, -integral on

[015Q,] X @3, Q4] is stated as

[e9)

-Q) ) Zq’f%"? @+ (1

m=0 n=0

—g91)endyt + (1-5)es), (23)

Theorem 15. Suppose that &,,%, : % — R are continuous
mappings of two variables. Then, the following properties hold

for (t,t;) €@ Q2] X Q35 Q4)s
[©1(zw) + Gy(z, w)], dy z,,d5 w

t, (t
=J J 1 (2, )Q dg z,,dq w

Q3 Q;

g

t ot
+J J (2, )quz%d w,

Q37 Q

t; ot
= aJ J Yz, )Q dq ZQ3dq2w
Q3 Q)
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3. Quantum 7% -Type Inequality for
Generalized V-Convex on the Coordinates

This section addresses the §,-# 7 -type inequality on the
coordinates via generalized ¥-convex functions.

Theorem 16. For y,p >0 with A= (A(0), -+, A(p)) as the
bounded sequence of positive real numbers and let G : A—
R be the coordinated generalized ¥ -convex and partially dif-
ferentiable function on A° with 0<q,,q, < 1, then the follow-
ing inequalities hold:

© (51+1)‘P1+9/y\,p(¢2_‘/)1) (62+1)¢1+g¢,p(¢2_¢1)
1+7q, 1+49,
1 P+ o (P0;)
[
Zgy,p((/)z _(PI) P1

) (P" (@+1)¢; + 9?,,o(‘pz - ‘/’1))
P

dg, 4

1

1+3,

1 ¢1+'(7;i/t,p(¢2_¢1)
+ o2 J
ny,p(‘/’z - ¢1) ¢

= gA
) ((‘h + 1), + 'f'y,p(‘/’z -9 ’ v) dqz"
L

1+4q,
1 j“P} *g&p(‘l’z’%)
<
*G/T/y\,p(% - ‘Pl)g;,p(ﬁbz —¢;) g,

G(uv)y dg vy dy pt

¢1+g?/,p<¢2’¢1)
J ¢1 9

¢

g
qz 1 J‘Pz"‘d'y,p(‘/’z_%)
<1 G(w ;) dy
2(1+3,) <9¢,p<<pz—so1> o o

1 ‘Pz"“%;,p(%_%) )

G (1> ¢5),, dg 1t
y,p((PZ_(PI) P o

¢1+9:;L,p(¢2_¢1)

. !
2(1+7q,) gﬁ,p(‘/’z —¢1) )y,

?((Pl’ V)q;l d@.”)
1 '¢1+9¢,p(¢2_¢1)
G(9v),dyv
F (b2 1) g, ot
+

9,5(9019,) + 8 (92 ;) + G (9,5, $5)
(1+7,)(1+7,)

(26)

Proof. Since & is the coordinated generalized ¥-convex on A
and partially differentiable mappings on A°, clearly, we see

that the mapping ¥, :[¢, ¢, + 9;})((/)2 -¢)]~ R,
?ﬁ(\/) =Z(u,v) is a g.enerali.zed ‘P—con?zex on [¢, ¢, +
F,,(¢,—¢,)] and a differentiable function on (¢,,¢, +

‘O;?,P(% —¢,)) for all pefp, ¢, + ‘ij;,p((PZ - ¢,)]. Then, by
using the G, -% 7 -type inequality, we obtain

© (@ +1)¢, + g/y\,p(% —-¢y)
# 1+3,

1 J‘¢1+g¢,p(¢z_¢1)
< - 00
- )

- gﬁ,p(ﬁbz ‘Pl
§,8,(4,) + s, ($,)

AT AN )

Gu(v), g,V (27)

which can be written as

of ) @t V9 F),(6:-9)
# 1+9,

<

1 ¢1+g;‘/,p(¢z’¢l)
J G(u,v)y dg,v

i/t,p(gbz - ¢1) ¢

F
< LG (1) + Z (1 ¢,)
- 1+,

, (!‘ € {‘Pvﬁ"l + 97;9(% - (pl)D’
(28)

Applying §,-inegration on the above inequalities over
[P, 9, + 9%(4)2 - ¢,)], we have

1 P *‘9;\,,7(‘/’2"/’1)
Aij gl u
g:y,p(cpz - (pl) [

1

<
9;)/t,p(‘/’z - <P1)9$,p(¢z -¢) J‘Pl
.rbﬁg;\,p(‘lﬁz"pl)

dg, 4

(@ +1)¢; + g});,p((pZ —¢1)
1+4,
P1
P+ Ty (92-01)

s ([/t, V)(ﬁldézv‘ﬁdql‘u

S 1A i 3, Jsvﬁx“i?,p (®-91)
1+ 9 gy,p ((/’2 - q)l)
1 P *9;\,,:(‘/’2"1’1)
o
g:y,p(‘;oz - (pl)

(1 p,),, do i
P

g(u ¢2)¢1d51.“:| :

(2!

(29)
Adopting the same procedure for the mapping €, :
(@1 1+ Fyp (92— 91)] > RG, (1) = G, v), we have
1 ‘Pl*‘g;,p(?sz’?sl)
A J g
Jy,p((pz - (/)1) h

- A
(@ + e, +9Ay,p(¢z -¢1) v dou
1+q1 ] 9

1 J% +F ,(92=01)
<
- A A

‘G;y,p((l)z - gol)gy,p((pZ - (/51)

¢ (30)
J‘pl‘*gi:,p(‘f’z_‘bl)

¢ f(‘u, v)¢1 dqzvfﬁdqlﬂ
1
~ F _
< IA . q, J‘p]*'J'y,p(‘f’z )
1+4, gy,p(ﬁbz - ¢1) ¢
1 J¢1+g¢,p(¢z‘¢1)

t o
‘gy,p((pZ - ¢>1)

Z(¢y v)dn d;izv

, G(9,, v)¢l dqzv} .



Adding (29) and (30), yields

1 ¢l+g¢,p(¢2_¢l)
| v
zgy,p ((Pz - §01) ¢

(@ +1)¢, +97;,p(¢2_¢1) d
Bt 1+g iy
2
P
1 J¢1+9¢¢<¢2—¢1)3?
+ -
27,,(9, = ¢1) Jo,

dﬁz v+

@+ D)o, + F) (9~ )
. ,V
1+’q‘1 ]

1

1 +g¢,p (p2=91)

P
Fo(#2 = 91)F (¢ —¢>>J
Yp\ T2 1 Ysp\ T2 1/ 7¢

¢1+9’;‘4p<¢z_¢1)
. J g (u, )¢ dq2v d
b
~ oA
4, J¢1+Jy,p<¢2¢l)
< — G ¢1), dg 1t
[2(1""12)97;,;;(%_%) ¢ i
1 ¢1+%¢,p(‘ﬂz’¢1)?( ¢ ) d
= U ®,), a5 H
2(1""12)‘0}";\,;)((/’2_9"1)&1 i
ql ¢1+'7;,p(¢z’¢1)?( ) J
+ — P1V)g dg v
2(1+ ‘J1)g$,p(¢2 —¢1)Jg, b
1 b1+ Ty 0 (6261
+ — Z(@,v), dz v|.
2(14)F, (92 - 1) Dy, o

(31)

Also, by considering the §-Z 7 -type inequality, we
have

g<(QI + D)o, + g;/\,p(‘%’z -

?1) (@ +1)¢, +'9T¢,p(¢2 —-¢;)
1+, ’ 1+3,

g 1 rﬁf};p(%—wl)? (ﬂ) (@ + )¢, + F) (¢,
)

-9\
F _ 1+3 ath
y,p((PZ 2 ?

1

(32)

?<(‘11 + 1) + '/'yp(‘/’z ‘Pl) (G +1)¢, + g}yt,p(% - ¢1)>

1+7, 1+,
1 ¢‘+g?’+’(¢l_¢l)? (@, + g, + g;,p(q’z -¢)) d
S ool 1+7 ) et
"fy,p(¢2 - ¢1) ¢ D ,

(33)

Adding the inequalities (32) and (33), we have the
following inequality:
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g<(q1 +1)¢; + ‘G}é,p(‘/’z -¢) i (G + )¢y + gjy\,p((pZ - ¢1)>
1+3,

1+79,

1 91+ Ty o (92-91)
Sy J gl u
z'jy,p((pZ - q)l) P

1 ¢+, (B2=01)
e R J g
'jy,p(¢2 - ¢1) 4

Consequently, we have

9 ( 1
2(1+9,) ],p((Pz

= o2
(G + 1)y + */;y,p(‘/)z - ¢1) du
1+7, C
P
= ZA
(@ + Do, +'{y,p(‘/’2 -9) v dv.
tra o
(34)

J¢1+g¢,p<¢z_¢1)?( ¢ ) J
H ¢y a1
(Pl) 1 nd

9 (ZIH
2(1+7,)

( 1
gﬁ,p ((P 4! )

G(p1>¢1) + (9, ‘/51)) 9
" 2(

J‘% +g¢,p(‘l’z_‘l’1)

1+, 2(1+3,)

ﬁ%%%%m)

G(p1 ) + Z(9292)

- 2(165@2) (

1+7, )

1 J¢1+J}/,p<¢2 ¢1)g( ) d
— P> V)y dath
Fh (62— 1) v

¢

g (%
2(1+79,)

g;,p((pZ B!

G(p1,91) + G (915 ‘/’2)) 4,
" 2(

ol

1+9, 2(1+q,)

¢, +'g:¢,p<¢2_¢l)

. G(9, v)gb1 d;bv>
G(9r,91) + (92, 9,)

1+9, )

(35)

Adding the above inequalities yields

1 1
2(1+3,) g;,p(‘PZ ~-¢

r)l +Fy ,(92-01)
)

9 1
2(1+79,) (¢ ?)

1+q1 (

1""11 (9%

VP

‘h‘b G(p>¢y)+7,

?M%M%O

P +g¢,p(¢2_q)l>

G(u¢,),, dg 1
Py

¢1+g¢,p(¢2’¢l)
F(pro)y dy

¢

w%mwo
. G(9, v)¢ldqzv

(‘/’1’ ‘/’2) +9,5(9) $,) + Z(9, ‘/52)

(1+q,)(1+7,)

(36)

A combination of (31), (34), and (36) gives (36). This

completes the proof.
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Corollary 17. In Theorem 16, if we choose 4,4, 1~, we
have the following new double inequality:

© 2‘P1+gz o(P2—9;) 2¢1+97;,p(¢2_¢1)
2 2

g - agh
1 ) [(muw(% " <#, 2¢,+ JY§(¢2 - ¢>1)> i

< -
- A
Zgy,p ((pZ ~P1) ),

A _ —~ A
. ; 1 J¢,+%,p(¢z 451)? @, + 1), + gj’p(% -¢)) v )dv
272 (6, - 9,) 1+3,

1'*"" ($2-91) ) > }
(9, 7
o ¢, "4

P ¢1 + g(‘Pz’ $5) + G(9 b)) + TP 42) .
4

1 P+T (091 (91+F),(6:-6))
S A J J G(wv)dvdu
gy,p ((PZ - (Pl)gy,p((bZ - (/) ) 1 4,
] 0T (9:-9) .
< 7 ( <P1)J Gt 1), dg 1
1+ F o (92-91)
J ‘bl, ¢2)¢ldq,[4
?;
¢ ¢2 ¢1
I T
¢
g( )

(37)

Remark 18. In Theorem 16,

(i) letting yp(q)Z ¢)=¢,—¢, and F Gﬁ\ ((pz ¢,) =
¢, — ¢, along with g,, 4, — 17, then We ‘attain Theo-
rem 1 in [20]

(ii) letting ‘G/T)A/,p(QDZ ~¢))=¢,—¢, and 9’?,,;(% —¢) =
¢, — ¢,, then we attain Theorem 4 in [21]

4. Quantum Integral Identity for Coordinated
Generalized V-Convex Functions

The following identity plays a significant role in inaugurating
the main consequences of this paper. The identification is
expressed as follows.

Lemma 19. For y,p>0 with A= (A0),--,A(p)) as the
bounded sequence of positive real numbers and let a twice par-
tially 4,9, -differentiable mapping G : A— R be defined on
A’ (the interior of A). If the second-order partial §,q, -deriva-
tives are continuous and integrable over A with 0<q,,q, <1,
then the following equality holds:

Y4, (9195 01, 6,)(9)

((QI + 1), + g/y\,p((PZ -¢) @+1)¢,+ gﬁ,p(ﬂbz - ¢1)>

=€ ! R ]
1+79, 1+9,

91+ T, (02791) 4+ 1)¢, +F -
_ 1 J VP @ <[4, (qz )¢1 y,p(¢2 ¢1)> dq‘l’t
?1) "

1 =
‘(;;y,p((l)Z - I+4,

1

7
_ 1 J¢l+g¢,p<¢2_¢l)?<(ql+1)¢l +%¢,p(‘l’2_‘/’1)’v) dyv
‘G"‘y,p(% -¢) )y 1+q, "
1 P+ T (92=91) [D1+F,0(62-61)
g (u, d- v, d-
T (02 907 (65 ¢1>J L, AT
(38)
where
Yq,,qz (@192 91 6,)(9)
== (gA o8 e
=22 (7,(0:- 9003, 0,- ) | | #(¢0)
0J 0o
R PR G O R et ) B
‘Pzaq1(¢la@29 0 Ea
1 1
o ¢ 6)6{ 1+@]X{0’1+%},
o-2) st (i
A(,6) = ‘Ilz 1 q; ‘121
0 c—r), 0.0 e< ,1}40, A],
( q; 9 1+7q, 1+q,
1 1 1 1
- T) (9_ T)> (,0) ¢ (7,\:1:| X (7,\:1:|-
( q; q; ¢ 1+, 1+q,
(39)

Proof. Consider

A A o
13(Z0:- 907,040 | | #(¢0)
. (p,,qslaé,,qz?(% + (g;,p((l’z ?1), ¢, +657';,p(¢2 - ¢1))
‘Plaqlcﬁblaﬁze 0
1(143,) (1/(1+3,)
:qlqz<g’¢,p(9"z_‘Pl)‘o}/y\,p(‘pz_ﬁbl)) x {L J {0

0
.Magl%g(%+c9;,p(¢2—¢1),¢1+99}§,p(¢2—¢1)) 6t
(plaqlnglaqze g, 0%q,

0
1 p1(143,) 1
+J J 9<<—r>
L Jo R

1+q)
(9’1 + (9';@(‘/’2 —¢1) b+ eg;,p(‘/’z - ¢1))
(Plaqlggblaﬁze 0

1/(14g,) 1 1
+ J J C<9 - T>
0 1/(1+3,) 1

ot 92,@2?(% + Cg?,p(‘l’z —¢1): ¢y + Gg;/\,p((/)Z - ‘/’1))

1 rl 1 1
TS 202
1/(144,)d 1/(1+3,) 9 UF)

(‘Pl + (9"3,,)(‘/’2 —¢1): ¢, +6'07'$
‘Plaqlcﬁblaéze

dg,00d5,¢

(P1¢1a a9

dg,00d5,¢

dg, 00d3, ¢

¢1¢la 99

,p(‘pz - ‘/’1)) d;h@od;,l(}
0



0 0

) ) 1/(1+q,) (1/(1+q,)
=019, (gy,p((PZ - <Pl)"oiy,p(¢2 - ¢1)> {J J CG

25,2591+ 07),0

)¢ + 99’?,;1(% - ¢1))

105,60 $,05,0

1 1/(143,)
+J J 1)
U(1+3,)J 0

(@1 + cgﬁ,p(‘l’z

. 4’1‘1’18 a9

—p1) 997;,;1(5‘52

dg, 00dz, ¢
0

-4))

10,6 $,05,0

1/(1+3,) (1
+J j Lo
0 1/(1+g,)

2 A
. @159, aﬁl > g <(P1 * (gY»P((PZ

—¢1) ¢+ egi;,p(ﬁbz

3,005 ¢
0

=)

‘P1aq1(¢’1aqze

1 1
+J J ¢’]
(143, 1/(143,)
(@1 + cgﬁ,p(‘l’z

. 4’1‘1’18 9.

—p1) 997;,;1(5‘52

dq,005,¢
0

-4))

‘/’1aq C¢1aqze

1 1/(1+g,) (1/( l+q2
T

Pr ¢1 % QZ

+{f¥ ‘P1)>¢1+9‘7¢,p(¢2

dg,00d3, ¢
0

_¢1))

(Plaq (¢1an6

1/( 1+q2
Jl/ (1+4,) JO

_‘P1¢1 qlqz <(p1+('j)/p P = 91) ¢1+9

(6:-91))

dg,00d5,¢
0

(Plaq1(¢l 52
U(143,) (1
B J Jl/ (143,)

1 ¢1 ‘11 ‘12

+C9yp P =P1) ¢ "’09;\/,;;(?‘52

d; 6,d; ¢

£ 9
0

-41)

(Plaqlc(pl qz

1 !
ﬁ Jl/(uql)Ju(u@z)u(u%)
2 A
. P19 aﬁl o ?<(P1 + {gY:P((pZ

909+ 0, (8- )))

déz 90 dﬁl c
0

‘P1aq1(¢1aqze

= {qlqz (973,‘,((,02 - ¢1)9¢,p(¢2 - ¢1)> j:f]f@

‘P1¢lal

(‘P1 + cgﬁ,p(‘l’z —¢1)s ¢ + 697;,p(¢2

dqze dqlc}
0

-91)

10,6 $,95,0
1

~0.(Floa- 0050 90) [ [

0J0o

‘4’1¢1a 914,

<‘P1 + Cgi,p(‘/’z 1) b+ 09;,p(¢2

dg,00d5,¢
0

_¢1))

‘Plaélc‘plaéze
-4 (g;'\,p(‘/’z - <P1)93,p(¢2 - ¢l)) [:)J:)(

2 A
X 022,991+ 17,

Q=) + 99’?,;1(%

dg,00d5,¢
0

=2

195, 6,05,0
(1+4,) 1
+QZ<g¢,p((Pz"Pl)g;,p(¢z*¢1))jo JOG

ot agl »ﬁzg(q)l +{F ;,p((PZ

—¢1) G'Gj:}l},p((pZ

dg, 00dz, ¢
0

-41)

P azhc (plaaze

d3,00d5,¢
0
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+4, (gi,p(q)z - (pl)g}l/p((bz B ‘Pl))JlJ”(Hﬁl)(

0Jo
o aél,@?j(‘l’l +cg¢,p(‘P2 —P1)s ¢y + 9g¢,p(¢2 é ))

d 005 ¢
105, ¢,05,0 i
1pl
+ (?fA (92 ‘P1) (0 z_¢1))[J
JoJo
. (Pl,%agl@z?(% +(9¢,p(‘Pz_‘P1)’ ¢, +9g¢,p(¢2_¢1)> 4.0.d. ¢
<Plaql(¢1ang . 9,7 07q,
1/(1+q,) ¢1
- (97%((/)2 - (Pl)g;p((p2 - ¢1))L Jo
. (P,>¢|a§p§zg(¢l +C?¢)P(<p2—<p1), ¢, +09¢,P(¢z—¢1)> i 0.d- ¢
q)la%((plang . 9, 0%q,

1 (1/(14G,)
- (Fhata- 007,002 -00) | |
. (pl,¢latz'i],ﬁz?(¢l + Cg?z,p(‘/’z —P1)s ¢y + 99’3,;:(‘#2 - ‘/’1))
(pla;h((#lang 0
N V(4,) s
+ (gy,p(()o ‘Pl) (62 ¢1)>J J

0 0
+Cg¢,p(‘/’2_‘/’1)’¢1 +99:¢‘p(¢2_¢1)> i 0 ¢
9,009,906 o

(40)

d, 0yd, ¢

2
. P azil 1 g (‘Pl

In view of Definition 12 and Definition 13, we conclude
the following identities with the aid of the last nine integrals
appearing in the aforementioned identities as follows:

1002 005,0:-0) [ [ 40

. zpl,gbla%l,?h?((pl + (g;);,p((Pz —9): 0+ 69’;);,;;(‘/52 - ‘/’1))

d 6,d-
¢,0;0¢,0;0 I
g( (p ) 1 J\¢I+J¢,p(¢2 (Pl)g( ¢ ) d
=-(¢p) - tr $2)g6dg, 4
g )y we
1 J‘Pl*"‘y,p(vsz"bl)
- Z(9,,v) dsz
g:}/},p(gbZ_(Pl) o v
1 J¢1+g o (P21 J’¢1er o ($2=¢1)
9—;}, (‘PZ (Pl) yp(¢2 ) P [
G(wv) d» Vo dg ths
(41)
A ) 1,1
QZ (gy,p((l)z - (pl)‘o;y,p((pz - ¢1)> J.OJOG
02,2,9 (904 073,(02 - 9.9, +0%) (9, - 91))
.<p1¢1 414, 1 yp\T2 171 PpAT2 1 4. 0,d- ¢
g( ¢ ) 1 ¢]+g¢,p(¢2_ 1) ( ) d
=-%(¢,, — 7J. (% , Vs
» eg?,p(¢2 - <Pl) [ ’
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1

0(F 01~ 00,4, m)”:
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0
‘Pl ¢1 ’11 9> ( +(g (Pl)’¢l +0g¢,p(¢2 _¢1))

o e
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(g)t (¢, ‘Pl) (¢ ¢1))J I
0 Jo
R A R L i G ) I .
‘PlaqlCleaqu o 0"

_ _?<(q1 +1)p, + g';,p(‘/"z -¢1) ’¢2> ’

1+9,
(47)

1/(1+g,)

(o005 0-90) [ |

0Jo

(pl,qﬂlagl,qz?(q’l + (9'?,,0(902 —91): ¢ +9’97}A/,p(¢2 - ¢1)) i 0,d ¢
¢,0;,0$,0,0 0 o0
-g (‘Pz» (9, + 1)¢11+ %;},p(ﬁbz - ¢’1)> )
T4
(48)

(143, (1/(1+3,)
(Fholos-o070a-00)[ ]
' ¢,,¢,a§1,,ng<(/’1 + (gé,p((/)Z — 1) ¢y + 95;%(% - ¢1))
195, 9103,0 0
_ _g((% + 1) + g'/y‘,p((l’z —¢) (@+1)¢; + gﬁ,p(ﬁbz - ‘/’1))

dg, 0043, ¢

1+4, ’ 1+4,
(49)

Combining (42), (43), (44), (45), (46), (47), (48), and
(49), we have the identity (38). This is the proof of Lemma 19.

Corollary 20. In Lemma 19, if we choose §,, 4, — 1~, we have
the following new identity:

20, +F 20, +F* (6,- ¢,
A@p 9 by §,)(Z) = Z( ¢+ yZ( -9;) i ¢, + y,;((pz ¢ ))
1 J% + o (92-91) "

_g;/\,p(q)Z_(Pl) [
. (M 26, +9*¢,2P(¢2—¢1>> e I

¢,-¢))
LT (- A (g
'J¢J Fyo($2 ¢1)g<2<p1 +£¥W((p2 (pl),\/) v
¢, 2
1 J‘%"‘g;,p(‘/’z_‘%’l)
Fyp (92— )Ty (b= 91) S

¢1+9¢.p(¢2_¢1)
. J G(u,v)dvdy,

¢
(50)

where

MA@ 92 1 $,) (%) = (gi,p((PZ - ¢1)g¢,p(¢2 - ¢1)) J()Jo&[(() 6)

. azg((Pl + (%,p(% )¢, + egﬁ,p(% - ¢1))

0{o0 Ad,
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¢, (C-0)¢ [o, ﬂ x [o, ﬂ
1 1
A(,0) o o {01 Z}X(Z’ﬂ’ (51)
6(( - 1), ((—9)e<5,1 X{O,E},
C-0@-1), (- Q)EC x(é,l}.

5. Certain New g, g,-Integral Estimates
for Generalized ¥-Convex Functions

The following results exhibit some practice related to Lemma 19
on quantum calculus for generalized ¥-convex on coordinates.

Theorem 21. For y,p>0 with A= (A(0), -, A(p)) as the
bounded sequence of positive real numbers and let a mapping
& : A R be a twice partially 4,4, -differentiable on A° such
that continuous partial q,q, -derivatives , , 851@2 Gl 405,
(y,05,0 is integrable on A with 0<q,,q,<1. If
| .6, anI an, &1 ,04n,C4,04n, 6|” is a generalized ¥ -convex
on the coordinates on A for o > 1, where 6! + 7' = 1. Then,
the following inequality holds:

)Yq,,qz (#1905 615 ﬁbz)(?)’ <q,4, <g¢,p(¢2 - ¢l)g;,p(¢2 - ¢1))
(B (qn q/\z))li(l/g) x [B,(gN > gn,)
. @19, afi/\l N, (4)2’ ¢1) ’

[ qAI Z¢1

+B3(g7;5 gN;)

o’ ,
| P$n T anpan, ((P16¢2) +B4(¢Z/\pq/\2)

1 anI c¢1 aq/\z

et aflf\, qAZ?(‘PP‘p ) !

Bs(q/ > an,)

%aq/\lcsbl q/\2
. ¢I¢lan1qu (‘Pv‘/’z)a e
(PlanJC¢1 ‘1/\2
(52)
where
810 22) - (53)
1 q ,q = ,
PR (14gn)’ (1 gn)°
9
B g ,A = ,
) P (a8 (8
(54)
- 1+g. +ad +A2_3AA_AA3
B;(9,,q,) = Gt 99 — 9492

q,9,(1+ q/\1)3(1 + ‘1/\2)3(1 +q,+ ﬁ) (1 +q,+ ﬁg) ’
(55)
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~ =2 2223 ~3-3

1+, + L+ G+ T — 34,8, — ) — 85+ 64,8 — T — Td + 59D

B,(3,3,) =
) 4,8,(1+9n,) (1 +gn,)° (1+3,+a7)(1+3,+33)
(56)
Bs(q,9,) = ( 2q; — 641 + 2419, + 24,95 — 44, — 44,9, — 24,4,
- 2@?‘12 2‘11‘12 + 16?1?@2 4@? + 2@?212 - 231?42 4@?213
+ 4473, + 63, + 875 + 10q;q; + 10474, — 645 — 67

*4% - 4@1@2 + 2@1@2 + 4@1@2 +94,9, — 2@;)
19,9,(1+ q/\z)3(1 + q/\2)3(1 +q, + @f) (1 +q,+ ﬁg)
(57)
Proof. Taking into consideration the §,g,-integral power
mean inequality, the generalized ¥-convexity of

|<P1)¢1aq/\1 a1 9,047,890, 6" on the coordinates on A with

the aid of Lemma 19, we have

|Y2,0,(00 92 91:9)(9)|

<q,9, (‘G/T)y\p(? 901) (¢2 - ‘/51))

. (Plv‘pla%qu?((Pl + Cg/\ ( ) (pl + egﬁ,p((pZ - ¢1))
91 a%c‘/’l %

{ r¥ia (o C%y:(:; C; Z;>e¢l M } -y 60dy ¢ }

ngz(‘c;ip(? q’l) (¢ _‘/51)>

(” ce|0qu0quc)
< (2,0)]

| ot aq/\l qug((Pl +CJVP(

@ q/\ cfbl

1—(1/0)

) ¢, +6g§:,p(¢2 - ¢1)) ’

a 1o

B R R D R O Y) | I .
“Gan,Yol%n,
¢|Bqu(¢]an29 ) 0 ! !

=q,9, (g¢p<¢ 901) (¢2 - ‘/51))

1(143,) (1(143,) 1(143,) (1
. U J {Bod, Oty L + J J ¢
0 0 0 1/(1+4,)

1
: (r—e> d, 0,d; ¢
qz 0 ) 1
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1 1(1+4,) 1 - 5 o 9 q Vo
o] 0) dean MR, TN
V()0 4 9,941,84,94n,9
o(1-0) 9 ¢1aq/\, A G ¢2) ’
1 1 1 1 [ aq/\ {«5, q/\z d 0.d
+J J ( - () (A— — 9) dé OOdZZ ( X 3 ( ¢ ) I 9/, "0 ‘1/\1(
1/(1+q,)J 1/(1+g,) 4 12 0 : ! {(1—6) P17 AN 9N, ‘Pz 1
‘Plaq/\l((bl q/\z
% ALGA ?(‘Pl"/’l) ’
- 1_( 1—-0 Pu1” AN 9N
¢ 91 ¢\az/\1 Zd) ((PZ ¢2) L ( )( ) (Plaq/\ (¢1 q/\z i i
‘Plaq/\| C¢| W\z A A 1
= = —1/o
o — e aqu o ¢2) ’ =9,9, (%,p(% — ) Fp(br — ¢1)) (B1(q/>97,))
(L/(1+qn,) (1/(1+gA,) ) qA %1 ’1/\2 o -
x (9 o P ¢\azl\| 4N ((PZ ¢1) <p1,¢,a;/\,,q/\2?(¢1’¢2>
JO JU O I 3%, A 02 ) ’ {BZ(qu’%) o0 | IS 60,0
B T (00 0)| % an S|
4 prody Can,.an, 2?1 v Yanan, ¢ 1 %1
(1-00-9) W AT e e U N } |
(58)
U(1+gn,) ¢l 1 This completes the proof of Theorem 21.
d  6,d, ¢ + {((— -0
97, 707 qn
: 0 U(1+qn,) \9N ) Corollary 22. In Theorem 21, if we choose q,,q,— 1~, we
col 8;,\1 an, (goz, 6,)|” have the following new inequality:
(4,0
(2] q/\l o) A A
, © 20+ F, (0, = 9;) 20, +F, (6, — ¢))
2 b
6(1 N C) (pl,tl)laq/\1 qn, (§01> ¢2) 2 2
2 qA (¢1
o 1 4T (92-91) 20, + F) (6, — ¢))
0T 05 ) o [T 2 Tl 0,
C(l - 9) ‘/'y,p((PZ - (PI) vP;
? q/\1 (¢1
1 947,9:-¢) (20, + F* (9, — ¢,)
2 o 1 ) 2 1
(pl,gblaq/\l N, ((P1’¢ ) T g _ J g yg v |dv
1-0(1 -0 Fop(b2—9))
L 2 q/\ Csbl Jo ) .
1 J?:*“%,p(wr%)rﬁf%p(a’f%)?( Jdvd
— w, v)dvdy
g:,p(‘/’z - ‘Pz)g’;\,p(% —¢1) g, 9
1 1/(1+gA,) 1
d 6 d + 9 _ < (‘Pz P <¢z $1)
B € Jl/(1+q/\1)J0 (‘1/\1 C) 10
_ ;) o .
0 P19 aq/\quz G(92 1) ‘ {\azmz, $,)/0500|" + |0°Z (9, $,)1206|" + [0°F (9, $,)/0636” + [0°F (¢, ¢1>/a<aﬂl”}
¢ a’l/\l C‘pl aq/\ 0 !
(59)
2 o
0(1 N C) ‘P1>¢’1a¢1/\1 qn, (q)l’ ¢2)
o q/\ (¢ Remark 23. In Theorem 21,
g
{1-0 P19 asAl,qug(q’p ¢,) ‘ (i) letting yp((PZ ¢1)=¢,—¢, and ‘/'y,p((pz - ¢)) =
( ) o aq/\l (vﬁl aq/\ 0 ¢, — ¢,, then we attain Theorem 5 in [21]
5 2, (‘P1’¢ ) ¢ (ii) letting 5 (‘Pz ¢)=¢, - ¢, and F yp(¢2 ¢,) =
(1-0)(1—6) 0t ‘qcz ¢, — ¢, along with g,,g, — 17, then we attain Corol-
L P W\ ¢’1 Jo lary 1 in [21] and Theorem 4 in [27], respectively

1 1 1 1 Theorem 24. For y,p>0 with A= (A(0),---,A(1)) as the
dop Opdgn €+ J J ( - ) ( > bounded sequence of positive real numbers and let a mapping
V(1+qn)d 1(1eqny) \9 g : A= R be a twice partially §,q, -differentiable on A°(the
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interior of A) such that continuous partial q,q, -derivatives

019, 821@2 03,G9,05,0 is integrable on A with 0<q;,q, <
L If|%¢ i~ q/\zg/(P an,$6,9n, 0" is ageneralzzed ¥ -con-

vex on the coordinates on A for o> 1 where o~ +
Then, the following inequality holds

‘Yq,,qz (‘/’1"/’2’(/)1»(/’2)(?)‘ <q,4, (g;},p(‘/’z - (Pl)gi,p(gbZ - ¢1)>

(U 40 0 qu,() ’

4
x [( ‘Pp%a‘l/\p‘l/\z ((PZ’ ¢2)/ ¢Iaq/\1(¢laq/\26

+ q/\l‘ (e a;/\pq/\z ((pl’ ¢2)/ ‘/’Jaq/\ (¢1 ‘1/\2

+ q/\z‘ (e az/\pq/\z ?((1)2) ¢1)/ Q19N (¢1

)

+ ‘1/\1‘1/\2‘ gol,fb,a;/\,,q/\z?((pl’ ‘451)/«) an, (¢, a0
1o
M1+ an)(1+any)]
(60)
where 9 ((,0) is defined as in (38).

Proof. Taking into consideration the §,g,-Holder integral

inequality, the generalized ¥ -convexity of
2

| 9.6, 997a7, F7 9,94n, 9, Oan, 6" on the coordinates on A with

the aid of Lemma 19, we have

Y2,0,(00: 02 010 02)(9)| <08 (F4, (02 = 90)F,(6, — 91))

{j [

[0.0,23,2.9 (91 +EF,(0, — 9 «sl +0F) (8, — )
’ 2 m{vﬁl

0,9, 4, q2?(¢1 +(g¢p(¢2 — 1) (pl +99¢,p(¢2 - ¢1))

oy qlc¢|
'dqﬁodaf}

<0, (%), — 9P (62— 1))

i
11 1B
xKLMﬂ@@%%&M%Q

?1)> "'99';,;7((452 - ¢1>)
2 aq/\\ (¢, a‘i/\ze

‘ P18 a;mmz?@'l + (‘O};»p(‘f’z -

H 69

- 1o
|¢.)¢, B;AP%?(% +(9¢p(‘4’z — 1) "'9'7;1'&(“51 B ¢‘)) d 0d
| 0,94,89,940,0 ‘ o e
1/B8
:ql%(?)‘ ( )(J J |/ (3, 6) ‘ 0 q/\e dq/\lc>
Oopan, G (9 ¢
Puob Zangn, T Y2 T2
™ »P1 glq{ JJ(@ quZG dq/\c
[ RN q/\z 0J0

2 o
4 |t aq/\1 Aah, ((Pl’ o)
1 ‘1/\1 (‘Pl

110( C)OdAOdA(
[ o0ty

0J0
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O o G008 (1 (!
l’(bl 1 2 2) 1
+ |2t Zannan JOJOC( 6>0dq/\ 0 dq/\lc

91 aq/\l C(p] aq/\ 0

2 o
[N aq/\, N, ((Pl’ ¢1)
12 an Cvﬁl q/\z

H(l 01— 0)ydy 0 d%c} N

0 (702~ 00730, 0) ([ [ 1000 000, :

x K|¢,¢ aq/\ an G (92 $2)/ 5, 0gn, o, 9gn, o

N ‘¢ 6,900, (91 92)1 5,04, 9,940,0

+qn,

‘P1>¢182A1"1/\2?((p2’¢1) Py ‘1/\1 (¢1 q/\z
+q/\1q/\2 ¢],¢162A1,qA2?<(P1’¢1) [N q/\ cgb aq/\ 0‘ )

M(1+a7)(1+a0))]" (61)

This completes the proof of Theorem 21.

Corollary 25. In Theorem 21, if we choose q,;,q,— 1~, we
have the following new inequality:

'?(2% + g’é,p(‘/’z — ;) 2¢,+ Wyt,p(‘l’z - ¢1)>

2 ’ 2
1 91+ (#2-9)) 2¢, + F -
-— J © ([4; ¢1 y,;;(¢2 ¢1) d(fl
"fy,p((PZ - (Pl) 91
+ T ($,— A _
- 1 j% Fyp($2 ¢1)g 2¢, + gw((pz ;) ) dv
Frp(b2—=¢1) Jg 2

J"Pl*"’t‘ip(%’%)
(P2 = 81) Jg,
P 9:/\
9,9, ( F0 (0, (PI)
4 ’ ) 4(B+ 1)“
% M fppﬂb;a;/\;mz?(q’? ¢2)/¢1an Cwb,a

2
+ ‘q;l,qﬁ,aq/\l,q/\,?(qjl’ ¢2)/(p q/\lcgb aq/\ 6

1
(o 901)
J¢1+‘C]$,p(¢2_¢l)

F}"

(6= 9)

2
+‘<pp¢zaq/\pq/\2 (@2 91)/ 9,941,8,940,0
llo
@]

2
+ ‘ 9’1"4516‘1/\1’@/\2?((/)1’ ¢1) q/\l <¢1 q/\z

Remark 26. In Theorem 21,

(i) letting 9]},";)((;)2 -¢,)=¢,—¢, and gﬁ,p(cpz -¢,)=

¢, — ¢,, then we attain Theorem 6 in [21]

(ii) letting *Gjﬁ,p(‘/’z ~¢)=¢,—¢, and ‘o}));t,p(ﬁbz - ¢)) =
¢, — ¢, along with g,g, — 17, then we attain Theo-
rem 3 in [27]

6. Applications

This section contains some useful utilities of our findings
derived in the previous sections. For appropriate and suitable
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selections of parameters y, p, and A in the special functions
stated in (6), (10), and (11). Taking into account Raina’s
function (6), we shall derive outcomes for the hypergeo-
metric function and Mittag-Leffler function as particular
cases.

6.1. Hypergeometric Function. Letting y =1 and p =0, and

forp=0,1,2, -, (63)

then for Theorem 16, Lemma 19, and Theorems 21-24,
the following results hold.

Theorem 27. Suppose A= (A(0),---,A(p)) is the bounded
sequence of positive real numbers and let G : O=[p,, ¢, +

F (915923950, =) x [, ¢+ F (9,359,595, 6, — )]
R is the coordmated generalized ¥ -convex and partially
differentiable function on O° with 0<4q,,q,<1, then the
following inequalities hold:

@ @+ D +F(9,59: 950, —¢;) (@+1)¢,+F(9,59,59, ¢, ¢))
1+73, ’ 1+3,

J (0, +F(9,59,:95,0,-9,)
_297-9 59,5950, - ‘PI)J
G, + 1), + F(9;5 9 9, ¢
<” : : 1+g 21) it
¥ 1
i 6§, +F(9;39,393.0,-6,)
- J ’
T 279,399, 6,-¢)) ¢

<(q +1)(P1+g(’91i92;‘93>‘/’2_(/)1))v> dqv
1+49, 4 2

1 J“I’z*‘g(st 395959,-9;)

991,92,93,(/)2 1) F (959,395 ¢, - ¢)) )

J 1+ F(9139:393,0,-¢;)

)¢ dqzv d

J“Pl +F(9139,93.0,-91)

(8 1
< — G(u, d;
2(1+7,) (9(9 93959, -91) (.41l q‘”)

9, @1+ F(9139,95.90,-91)
g
2(1+4,) \F(9;59;; 93 (23 J(p, (e ¢2)¢ a
’q\l ¢, +F(9,:9,:95.6,-¢,)
+ G(9;v), d;
2(1+3,) \F (59 93 b2 L, n)o Bt
ql ¢+ F(9,:92:93.,— (Pj d
2(1+q,) \F (9,593 9 ¢, - Jqﬁl “(ex V)¢1 A

< 48,591 ¢1) +9,15(9182) + T 9(92, 81) + F (92 45) ]

(1+9)(1+7;)

(64)

Lemma 28. Suppose A= (A(0),---,A(p)) be the bounded
sequence of positive real numbers and let a twice partially g,
q, -differentiable mapping & : O=[@,, ¢, + F(9,;9,; 95, ¢,
— @) X[ ¢; + F (9,539,595, ¢, — ¢;)] = R defined on O
(the interior of O). If the second-order partial 4,4, -derivatives
are continuous and integrable over O with 0<q,,q, < 1, then
the following equality holds:

13

V.00 92 01 9:)(9)
(@00 T 051009, m0) By 197105380

1+7, 1+4,
1 rﬁ?(\",:-"z;-"j«pf%)
F(9139,395 9, 9))
. (.” @+ )¢, + F (9,539,395 ¢, - ¢1)) du - 1
1+, o F(9159,595 6, - 1)

.J¢,+~7(51;92;937¢.7’¢1)g<(q1 + D, +F(9,59,59%, ¢,-9,) v) A
o I+q, o

1 J“Pﬁg(slisz?ssa%"!’x)

+
F(91392395 0, = 9)F(9;39,3 95, 6, - ) ¢
6+ F(9159,395.6,-¢,)

’ L 1 V), 3.V, d5 1

(65)
where

Y; qz(‘Pl @2 1 $:)(9) =7,9,(F (959,595, 9, — 9))
1 1
F (913955956, ¢;) j

) zp,,‘p‘a%,@?(% +CF (91393950, —9,): ¢, + 0F (9,359,595, 6, - ¢))
9,05, 9,03,0 0

g, 00d5, Sf v,
(66)

and 9 ({,0) given in (38).

Theorem 29. Suppose A= (A(0), -+, A(p)) is the bounded
sequence of positive real numbers and let a mapping &
0=l +F(9,595 950, — )] X[, ¢, + F(9,59,;
95 ¢,— ¢,)] — R be a twice partially §,q, -differentiable on
O" such that continuous partial q,q, -derivatives , 02

A5,
?/¢aq (4,05,0 is integrable on O with 0<q;,q,<1. If
|‘/’1 $ q/\1 AN

on the coordinates on O for o =1 where o~1+ '
Then, the following inequality holds:

?/%aq,\ Co,9n, 0|” is a generalized ¥ -convex

9092 61 92)(9)| STL(F(939,3 95,9, 9)
9159,395 ¢, ¢;)) (B, (g7, q/\z))l_ug

99, aéf\,,qu ?((PZ’ ¢1) ’

(
(

4,4,
- F

X [Bz(q/\v gn;) +B3(gA;5 q0,)

(21 aq/\z C‘PJ aq/\
gn,an, 9 (@ ¢>)" Ianan, (9 ¢>)”
¢ rd’2 rrz 19 197 271
[t q2 B,(9/ > a7,) ¢ ?)A q2
9 q/\ 4, q/\z PN ¢, qu
1o
32 Cpp o)
91 9N AN Tl
+Bs(gnp, gn,) : = >
P aq/\z (¢1 aq/\ 0
(67)

where B;(q;,4,), B>(q,,45), B5(d), 42)> B4(d;,4,), and Bs(
4,,q,) are given in (53), (54), (55), (56), and (57),
respectively.

Theorem 30. Suppose A= (A(0),---,A(p)) is the bounded
sequence of positive real numbers and let a mapping & : O
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=[pp @+ F(9;59,3 950, — 9] X[, ¢, + F (959,53 9s,
¢, — ;)] — R be a twice partially §,q, -differentiable on O°
such that continuous partial q,q, -derivatives , 8%@2 Gl
05,09, 05,0 s integmble on O with 0<q,,q,<1. If
| 2,

P1b1 79N ql\z
on the coordinates on O for o > 1 where 0~ + 7' = 1. Then,
the following inequality holds:

! .91, 89, %n, 0|” is a generalized ¥ -convex

‘qu,qz (P19 15 ¢2)(?)‘ <9,8,(F (93939590, — )
F(9,39,395 6, = 90) (o3l €. 9)|ﬁoquﬁoqu,C) "

[

+ ‘1/\1‘ Prty aéquAg?((Pl’ $2)/ 9,990,%9, an o

P19, a;/\I,q/\zg((p? 4)2)/(/; an, C(pl
(68)

+ q/\2’ [ a;/\l QS ?((PZ’ ¢1 )/ i ‘1/\1 c("z

AN g,6,90,00, 9 (@1 1), M(¢%A9

)

(a1 +an)] s

where 9/((, 0) is defined as in (38).

6.2. Mittag-Leffler Function. Setting v=(1,1,---) having y
=9, R(I,) >0 and p=1, then from Theorem 16, Lemma
19, and Theorems 21-24, the following results hold.

Theorem 31. Let G : S=[p,, 0, + Eg (¢, —¢,)| x ¢, ¢, +
Ey (¢, ;)] = R be the coordinated generalized ‘¥'-convex

and partially differentiable function on 8° with 0<q,;,q,< 1,
then the following inequalities hold:

@ @+ D)p; + By (9, —¢;) @+ 1), +Eg ($,— ;)
1+3, ’ 1+7q,
1 ¢1+E, (9-9;)
< 7J v
2E, (- 9)) 0

) (9, +1)¢; +Eg (¢, ¢;)
H’ 1+,

) d- +;
o W3R, (6,7 4))

] J¢1+ES‘ (¢2_¢‘)?(@1 +1)g, + EA‘\% (¢,-¢1) , v) d, v
0 I+, o
1 ¢ +Ey, (9,=9;) (¢:+Es, ($,-9;)
< J J v
ES, (- (PI)E9, (¢, ¢)) ®, ¢,
4
(V) 0, o, B3 < 5 (69)

¢ +Ey, (Po=¢1)
J Gt ), dy

1+Eg, (9,-91)
J G ¢,), dg 1
®

1

¢1+Es, (¢2-¢,)
? (PI’ )¢1dqzy

J¢,+Es, ($:-¢, )

1
Ey (¢, - ¢1)
q
" (lj‘b (
1+q1 (

1""11 (Es,( 6,
qﬂz G(pp¢1) +7; ?(‘Pz ¢2)
(I+g,)(1+

=

98 (95 ¢1) + C(92 ¢2)
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Lemma 32. Let a twice partially q,q, -differentiable mapping
G S=pp o+ F(9,39,595 0, 9))] X [¢), ¢, + F (9,59,
950, —¢,)] — R defined on §°(the interior of S). If the
second-order partial §,q,-derivatives are continuous and integra-
ble over 8 with 0<q,, q, < 1, then the following equality holds:

YE{,,ZIZ (@195 615 9,) (%)
% (@ + D)o, +Eg (9,-9;) (@, +1)¢; + Eg (¢,-1)
1+, ’ 1+3,
1 J.¢’+E9’([P2_(p’)g< (§2+1)¢1+E91(¢2_¢1))
T h o o “ >
ES,((P27¢1) ? 1+4, o
1 ¢, +Ey, ($,-¢,) g, +1 +E —
dq - J ?((‘h )P, AS, (P2 —91) )V>
! E9 (¢ ¢1) I+ q; ¢,
cd; v+
& Ey (9, —9,)Ey
.[W*ESI (6,-¢1)

1 J'<P,+Es, (92791)
i ((/)2 - ¢1) [

¢ ( )¢ d‘lzvq’l dqz ]

where

1pl

Y0 0,00 92610 6:)(9)
=q,4, (ES, (- ‘P1)E91 (¢, - ‘/51)) X LL‘Q{({’ 0)

puds a%,ng(‘l’z + (ESI (P2=91)s ¢, + 9E91 (¢,- ‘/51))
$105,0 $,05,0 0

- dy Ood; C,
(71)

and o/ ((, 0) given in (38).

Theorem 33. Let a mapping & : 8'=[¢,, ¢, + Ey (¢, — ¢, )]
X (¢ ¢, + Eg (¢, = ¢,)] = R be a twice partially q,q, -differ-
entiable on §° such that continuous partial q,q,-derivatives

s 82 qZ?/ 0,03,04,05,0 is integrable on 8 with 0<q,,q, <

L If|%¢ i D 9,94n,89,0n, 6| is a generalzzed ¥ -con-

vex on the coordinates on § for o> 1 where o™ +
Then, the following inequality holds:

o

02, (00 02 612 6,)(9)|
<q,9, (Es, (2 ‘P1)E9, (¢,- ¢1)) (B

X |:[EB2(‘1/\1> qn;)

W@ any)

<Pp¢zaé/\1,q/\zg(¢2’ ¢1) ’
91 a‘i/\I (‘1’1 aq/\ 0

2 o
) ‘/’1’¢laq/\ AN, (¢1’¢2)

+B3(97;5 aN;)

2 o
§0p¢;aq/\ AN, (902’¢1)

+B4(97;: aN;)

O':| 1/a
>

[ q/\ (‘bz 9 %%1

@19, aq/\1 qn, ((PI’ ¢1)

Bs(g/ > gn,)

‘P]aq/\ c¢1 q/\z
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where B,(q;,4,), B,(q,3,), B3(d,,45), B4(4;,q,), and
B;(q,,q,) are given in (53), (54), (55), (56), and (57),
respectively.

Theorem 34. Let a mapping & : S'=[p, ¢, + Eg (¢, — ¢, )]

X[, ¢, +Ey (¢,—,)] — R be a twice partially 4,4, dlﬁ'er—
where of (L 0) is defined as in (38).

7. Conclusion

The main objective of this paper will be a motivation source
for future studies. An auxiliary result in g,g,-integrals has
been derived. We established some new generalizations for
the ' -type inequality pertaining to g,q,-differentiable
mappings for generalized ¥-convex functions on coordinates
in the special Raina’s function sense that correlates with the
4,4,-identity. Some useful applications of our findings have
been illustrated with the association of the well-known spe-
cial functions (hypergeometric and Mittag-Leffler function).
Moreover, our findings are essentially applicable for obtain-
ing the solution of integral equations that interact withn
bodies subject to mixed boundary conditions (see [7, 8]).
For further potential investigation, we left the details for
futuristic research. Every aspect of the suggested scheme is
versatile and simple to execute. We apprehended noteworthy
special cases for varying the parametric values in the involve-
ment of special functions. This new study is explicit and via-
ble and can be effectively utilized in inequality theory, special
relativity theory, and quantum mechanics.
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Debnath and De La Sen introduced the notion of set valued interpolative Hardy-Rogers type contraction mappings on b-metric
spaces and proved that on a complete b-metric space, whose all closed and bounded subsets are compact, the set valued
interpolative Hardy-Rogers type contraction mapping has a fixed point. This article presents generalizations of above results by

omitting the assumption that all closed and bounded subsets are compact.

1. Introduction

There are numerous studies on interpolation inequalities in
literature. In 1999, Chua [1] gave some weighted Sobolev
interpolation inequalities on product spaces. Badr and Russ
[2] proved some Littlewood-Paley inequalities and interpola-
tion results for Sobolev spaces. Interpolation is considered as
one of the central concepts in pure logic. Various interpola-
tion properties find their applications in computer science
and have many deep purely logical consequences (see [3,
4]). Gogatishvili and Koskela [5] presented variant interpola-
tion properties of Besov spaces defined on metric spaces.
Going in the same direction in the setting of metric spaces
via contraction mappings, Karapinar [6] presented the con-
cept of an interpolative Kannan contraction mapping and
proved that this mapping admits a fixed point on complete
metric spaces. Later on, this notation has been extended into
several directions (see [7-18]).

In [6], Karapinar presented the interpolative Kannan
contraction as follows: a mapping K : (W, d,) — (W,d)
is an interpolative Kannan contraction if

1-

dy (Kw“,waﬂ <d[dy (w', Kw®)]" [dw (wb,wa)}
(1)
for all w®, w® e W with w®# Kw®, where §€[0,1) and ¢,

€ (0,1). This inequality was further refined by Karapinar
et al. [7] by

o) . [ o )
(2)
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for all w”, w’ € W\ fix(K), where 8 € [0, 1), , € (0,1), and
fix(K) = {w® € W : Ku* =w?}.

Gaba and Karapinar [9] further modified the interpola-
tive Kannan contraction concept in the following way: a
mapping K : (W,d,,) = (W,dy,) is a (,1,,1,)-interpola-
tive Kannan contraction, if

dy (Kw“, wa)} <8[dy (w®, Kw")]" [dw (wb, wa)} :
3)

for all w?, w® € W \ fix(K), where § € [0, 1), 1, 1, € (0, 1) with
1, + 1, < 1. Karapinar et al. [10] gave the interpolative Hardy-
Rogers type contraction as follows: a mapping K : (W, d,,)
— (W,dy,) is called an interpolative Hardy-Rogers type
contraction if

dy (Kw“,wa>

k3

<90 “dw (w“> wb)} (", K] [dW (wb’ waﬂ

X L—lp (dw (w”, wa> +dy (Kw“, wb))} 7 123]
(4)

for each w® w’e W\ fix(K), where 8 €[0,1) and 1;,1,, 15
€(0,1) with 1 +1, +145 < 1.

Later on, Debnath and De La Sen [12] extended the above
definition to set valued interpolative Hardy-Rogers type con-
traction mappings on b-metric spaces and proved that on
complete b-metric spaces, whose all closed and bounded sub-
sets are compact, the set valued interpolative Hardy-Rogers
type contraction mapping has a fixed point.

On the other hand, Bakhtin [19] and Czerwik [20] intro-
duced the notion of b-metric spaces.

Definition 1 (see [19, 20]). Let W be a nonempty set and
dy : Wx W — [0,00) be a function so that for all 7, , € € X
and some p > 1,

di(inf) =0 i=},
dyy (i, j) = dy (j> 1) (5)
dy (i, j) < pldw (i, €) +dy ()]

Then, d,, is a b-metric on W, and (W, d, p) is called a
b-metric space with a coefficient p > 1.

For related works in this setting, see [21-23]. From now
on, (W,dy, p) is a b-metric space with a coefficient p > 1.

In the whole paper, p>1 is the coefficient of the b-metric
space.

Definition 2 (see [20]). We have the following:

(a) A sequence {7,} in W is said to be Cauchy if lim
dW(nn’ ’/Im) =0
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(b) A sequence {7, } in W is said to be convergent to 7 if
Jim dy (17,,7) =0

(c) (W,dy,p) is said to be complete if every Cauchy
sequence {#,} in W is convergent

Denote by CB(W) the set of nonempty closed bounded
subsets of W. For A, B € CB(X), consider

Ay (A, B)=sup {d(w,B);we A}, (6)

where dy,(w, B) =inf {d,(w, i),y € B}. The functional
H,, : CB(W) x CB(W) — [0,00) defined by

Hy (A B) = max {8y (A, B), Ay(B,A)}  (7)

is known as the Pompieu-Hausdorff b-metric on CB(W). We
state the following known lemma.

Lemma 3 (see [24]). Let (W, dy,, p) be a b-metric space (p
>1). Let A,Be CB(W) and a € A. We have the two following
statements:

(i) For each € > 0, there is b € B so that

dy(a,b)<H, (A, B)+e (8)
(ii) For each h > 1, there is v € B so that

dy (a,v) <hHy, (A, B) (9)

This article presents two new generalizations of set val-
ued interpolative Hardy-Rogers type contraction mappings.
Namely, we ensure the existence of fixed points of such
maps on a complete b-metric space without considering
the assumption that all closed and bounded subsets must
be compact. Two examples are also presented.

2. Main Results

First, we define the notion of &-interpolative Hardy-Rogers
type contractions.

Definition 4. Consider a b-metric space (W,d,,, p). Also,
consider maps K : W —» CB(W) and & : W x W — R\ {0}.
Such a map K is called an &-interpolative Hardy-Rogers type
contraction if

[HW (Kw“, wa)} Hone?)

5

<é {dw (w“, wb)} K [dy (w, Kw™)]" [dw (wb, waﬂ

X {Zip (dw (w“, wa) +dy (Kw“, wb) )] 1_11_12_’3]

(10)
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for each w?, w® € W with
min {dw (w“, wb), dy (W, Kw?), dyy (wb, wa) } >0,
(11)

where 8 € [0, 1/p?) and 1}, 15,1, € (0, 1) with 4, + 1, + 15 < 1.

The following result ensures the existence of a fixed point
of &-interpolative Hardy-Rogers type contractions.

Theorem 5. Consider a complete b-metric space (W, d, p)
and consider an &-interpolative Hardy-Rogers type contrac-
tion map K. Also, consider the given assertions.

(I) There must exist wj € W and w$ € Kw§ such that &
(w, wi) =1

(I) For each w®, w® € W with &(w®, w®) = 1, we have &
(w', w?) = IVu© € Ku?, w € Ku’

(III) For each {w4} in W with w} —w and &(w?,
wh . ) =1VmeN, we have E(wi,w) = IVm € N

m+1

Then, K must have a fixed point in W.

Proof. By assertion (I) there are wj € W and w{ € Kw{ with
Ewhwi)=1.1f

min {dyy (wg, wy), dy (g, Kwg), dyy (wy, Kwi)} =0, (12)
then K has a fixed point. Suppose that
min {dy () wf),dy (w, Kuwg), dyy(w, Kw)} 0. (13)
By (10), we obtain

Hyy, (Kwg, Kwy)
= [Hy (Kwf, Kw§)] o)

<4 [[dw(wﬁ, w)]" [dy (wh, Kwp)]? [dyy (wf, Kwi)]?

1 . . . . 1-—1,—13
X [ZP (dy (wp, Kwh) + dy (Kuwg, wl)):| ] :

(14)
This leads to

1
—=dy (W, Kui)

1
< —H,,(Kwi Kw’
\/S W( 0 1)

<Vo [[dw(wﬁ’ wy)]* e (wo, Kuwg)|* [dyy (w, Kwi)]"

1 . . . . 1—11—12—13
x [ﬁ (o (1, Kot + dw<1<wo,w1>>} ] -

(15)

3
Since 1/1/8 > 1, there is w4 € Kw? such that
1
dy(wf, ws) < —dy (Wi, Kwf). (16)
w(wy, w3) 75 w(wh, Kwy)

Thus, by (15),

dyy (wf, wh) < Vo [[dw(wg, w)]" [dy (W wi)]” [dyy (W], w5)]”

1 . . . . 1—!1—12—13
x Lp (doy (1 w5 +dw<w1,w1>>} ]

(17)
Note that dy, (w§, ws) < pldy (W, w}) + dy (wf, ws)] <
2p max {d, (wf, wf), dy, (w], ws)}. Hence, by (17), we get
(W 5) < V3 ey (W) oy () [y 0 )]
 [max {dy (w, w), dyy (w], wh)} 770

(18)

Now, we consider max {d, (wf, w}), dy, (w}, ws)} =dy,
(w§, w}). Then, by (18), we get

dyy (w, w3) < V8| [dy (wg, w])]" [dy (wh, )] [dy (w, wi)]"

X [dyy (wp, )] |

(19)
This implies

dyy (W, wh) < Vodyy (Wi, wh). (20)

Note that when we take max {d, (w, w{), dy, (w{, w5)}
=dy (wf, ws) in (18), then we get dy, (w], wj) =0, that is,
w{ € Kw{; hence, this choice is not possible. As &(wf, w]) =
1 and w{ € Kwj and wj € Kw{, then by assertion (II), we
get &(w], wy) = 1. Again, we consider

min {dy (W, w3), dyy (W, Kwy), dyy (w5, Kwy)} >0, (21)

then by (10), we get
1

Vo

dyy (w5, Kwy)

IN

Hy (Kwy, Kw3)

[y (Kuwf, Kuws)$“2)

S S-S

< [[dw(w‘f,w?)]"[dw(W‘f’Kw?)}'2[dw(wg>1<w3)]’3

1

1=t —1,—13
5 (e, )+ dy (K, wﬁ))} ] .

X

—

(22)



Since 1/1/8 > 1, there is wd € Kw4 such that

a a 1 a a
dy (W), W) < —=dyy (w5, Kuj). (23)

v

Thus, by (22), we conclude
dyy (w5, w§) < Vo [{dwwf, w)] [dyy (WS, wh)]” [dy (w$, )]

[ ot )+ st )| ] -
(24)

Note that dy, (wf, ws) < p[dy (w], ws) + dy, (ws, ws)] <
2p max {d, (wf, w3), dy, (w5, w$)}. Hence, by (24), we get

(15, 05) < V[ ey (1, )] e (1, )] e (w5, )]
x [max {dy (w], w3), dy (w3, wg)}}lfzr,f,}} .

(25)

Now, we consider max {dy, (wf, w5), dy (w5, w§)} =dy,
(w}, w5). Then, by (18), we get

() < V[ [d (1 w1 [y (1 ) [ (1, )P
x dy (wf, wi)] .
(26)
This yields that
dyy (w5 wS) < Vody (wf, w3). (27)
Note that if we take max {d, (w{, w3), dy, (w5, w$)} =

dy (w3, w) in (25), then dy, (w5, ws) =0, that is, wj € Kwj,
which is not possible. From (27) and (20), we get

(s w) < (VB) iy (w0 ) (28)

Proceeding in this way, we can obtain a sequence {w?,}
in W with w? ., €e Kw?, §(wl,w? ;) =1 for all m e W and

m+1
dy (w?, 0, ) < (Jé)mdw(wg, wVmeN.  (29)
Also, by the construction of {w?,}, we get

min {d, (W,
>0Vm e IN.

wzﬁl)’ dW(wfn’ wan)’ dw(w;w wan+l)}

(30)
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By a triangular inequality, we have for n > m,

n—1 n-1 .

B ; ; i
dy(wiwy) < Y pldy (whwiy) < Y o/ (Vo) dy(wh, wi).

j=m j=m

(31)
Since the above series is convergent, {w? } is a Cauchy
sequence in W. Completeness of W gives w? in W such that
w? — w4. By considering assertion (III), we get &(w$, w?)
= 1Vm € N. Here, we claim w? € Kw?. If the claim is wrong,

then min {dy, (w?,w?),dy (w?, Kw?),dy (w, Kw?)} >0
for all m > my,, for some m, € N. From (10), we get

dyy (Wyy 1, Kwl)
< Hy (Kwy, Kwf)
= [Hyy (Kwf,, Kw?)$n?)

<0 [[dw(wa W) [y (wy, Kuwf, )] dy (w), Kwi)]*

1=t =113
x [% (gl K) + dyy (K wft))} }
S‘S[[dw(wfwwi)]h g (1 K ) g (8, K]

1 1=ty
[ o Kt iy )| }me
P
(32)

From the above, we get lim,, ,  d (w?,,, Kw?)=0. By

the triangular inequality, we have

a
m+1°

dy (W, K ) < pldy (1wl ) + dy (wl,, KV € N.
(33)

By taking the limit m — oo, we get d, (w?, Kw?) =0,
that is, w? € Kw?. Therefore, our claim is valid.

Example 1. Consider W = Z with dy, (w,, w,,) = (w, - w,,)*
for all w,, w,, € W. Define K : W — CB(W) by

K(w,) = <{0}’ w, €{0,1,2,3,--}

2 (34)
{-(w,-2)*}, w,e{-1,-2,-3,-}

and & : Wx W — R\ {0} by

1,
f(wn’ wm) = <

_[|wn| + |wm‘ +4]’

w,, w,, €{0,1,2,3,---}
otherwise.
(35)

Note that

Case 1. If w,w,>0 with w,+w,, we get H,
(Kw,, me)'f(w"’w”"> =0.
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Case 2. If w,, w,, < 0 with w,, # w,,, we get

HW (Kwn’ me)f(wn,wm)
_ 1 (36)

a 27 [walHw,|+4 7

(-, =2 + (, - 2)°)’]

Case 3. f w, <0 and w,, > 0, we get H,,(Kw,, me)f(wn,wm)

= 1[(~(uw, -2

After calculatlng the Values, it is easy to see that
For Casel: if w,, w,, > 0 with w, # w,,, we get

[Hy (Kw,, Kw,)|" )

g
=0< -[1-1-1-2
5 4

<

i —

[[dW(wn’ wm)]ll [dW(wn’ Kwn)]lz [dW(wm’ me)}%

1 1—t1—1—13
X [ﬁ(dw(wn»me) +dw(Kwn,wm))} 1

(37)

for each 11, 15,15 € (0,1) with i + 1, + 153 < 1.
For Case2: if w,, w,, <0 with w, # w,,,, we get

[Hyy (Kw,, Kuw,, )] )
1

27 [wal+w,[+4

[(—(wn -2+ (w,,-2)’)’]
Hl 1-1- i]

9
l [dW(wn’Kwn)]lz [dW(wm’I<wm)y3

IN

zi (w,, Kw )+dW(Kw,,,wm))} o ]
(38)

for each 11,145,145 € (0,1) with 1) + 1, + 15 < 1.
For Case3: if w,, <0 and w,, > 0, we get

[Hy (Kw,, Kw,,)] )

1 1 1 1
= +w|+4S 6<_|:1.1.1'_:|
(—(‘LU _2)2)21| [w,|+|w,, (81) 5 4

[[dW(wn’ wm)][1 [dW(wn’ Kwn)]lz [dW(wnv me)y3

1
< —
5

1—t—1,—13
x [i (Ao (1, K, +dW<Kwn,wm>>] ]

(39)

for each 1), 1,,15 € (0, 1) with 1, + 1, + 15 < 1. By keeping these
calculations in mind, one can check that all the hypotheses of
Theorem 5 are valid. Hence, K must have a fixed point.

The following definition presents a multiplicative &
-interpolative Hardy-Rogers type contraction.

Definition 6. Consider a b-metric space (W,d,,, p). Also,
consider the maps K: W — CB(W) and &: Wx W — [0,
00). Such K is called a multiplicative & -interpolative
Hardy-Rogers type contraction if

(w’, Kw")]? [dw (wb, wa)} :

$<dw<w Kw>+d T

(40)

for each w®, w? € W with

min {dw (w“, wb> s dy (W, Kw?), dyy (wb, wa> } >0,
(41)

where 8 € (0, 1/p%) and 1}, 1,,1; € (0, 1) with 4, + 1, + 15 < 1.

The following result concerns the existence of fixed
points for the above-defined mapping.

Theorem 7. Consider a complete b-metric space (W, d,,, p)
and consider a multiplicative & -interpolative Hardy-Rogers
type contraction map K. Also, consider the given assertions:

(i) There must exist w} € W and wf € Kwj§ such that §
(wh, wy) =1

(ii) For each w®,w’e W with &(w® w)>1, we have
E(wf, w?) > IVuf € Kw, w? € Kw®

(iii) For each {w$,} in W with w}, - w and §(w,, w
> 1Vm € N, we have §(wi, w) > 1Vm e N

am+1)

Then K possesses a fixed point in W.

Proof. Assertion (i) implies the existence of wj € W and w{
€ Kw§ with &(wf, w}) = 1. We consider

min {dy, (wg, w), dy (wg, Kwy), dy (w], Kwi)} > 0. (42)



Otherwise, K has a fixed point. Then, by (40), we obtain

Hyy (Kwg, Kwy)

< E(wf, wh)Hyy (Kuf) Ku)

<0 l[dw(WS) w)]" [dy (w, Kwp)]* dyy (wf, Kwi)]?

1 . . . . 1=t —t—13
| oy Kty () ] .
(43)

This yields that

1
—=dy (W, Kuwy)

Vo
1
< = Hy (K, Ku)

Ve

<V [[dw(WS’ w)] [dy (wh, Kwp)]? [dyy (wf, Kwi)]?

1 . . . . 1-—1—13
5 oy Kot iy () ] -

2p
(44)
Since 1/1/8 > 1, there is w$ € Kw? satisfying
dyy (w], wj) < ! dy (w], Kwf) (45)
Wit 82) = 75wt BEL-

Thus, by (44), we get
dyy (wf, w5) < V5 [[dw(w& wi)]" [dw (wg, wi)]* [dyy (wi, w5)]?

5 )+, w)| ] .
(46)

Since dy (why w8) < ply (1w ) + dy (0, w)] < 2p
max {dy, (w§, w}), dy, (Wi, ws)}, we get using (46),
(s w8) < VB [y (sl )] [y (10 )1 [y ()

x [max {dyy (wg, w}), dy (wi, wh)}] 77" |

(47)
Consider max {d, (wf, wy), dy (w], w3)} = dy, (w§, wi).
Then, by (47), we get
dy (w, w3) < V8[dy (wh, w)]" [dyy (wh, wi)]* [dy (wh, wi))*
X [dy (wf, wi)] .

(48)
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This implies that
dyy (Wl wd) < V8dyy, (wh, wh). (49)

If we take max {d,, (w§, wY), dy, (w, w3)} = dyy, (wf, w5)
in (47), then we get d\, (wf, w5) = 0, that is, w{ € Kw{, which
is not possible. Since &(w§, wi) = 1, w§ € Kw§, and wj € Kwy,
by assertion (ii), we get &(w{,w$) > 1. Applying (40) and
again assertion (ii), we can obtain a sequence {w?} in W

with w?,,, € Kw?, &(w?, w?,,) =1 for all m e W and

m+1

m
dy (wh, wh ) < (\/S> dy (wg, w)Vm € N. (50)
Also, by construction of {w? }, we know that

Ku*

m+1)}

min {dy, (W, Wy,,,)> dy (Wy,, Kwy,), dy (w
>0Vm € N.

a
m+1>

(51)
By a triangular inequality, we have for n > m,

n—1 n—1

du(utwh) < Y pldy (whwt)) < 3 pI(VB) dyy (i uf).

j=m j=m

(52)

This implies that {w? } is a Cauchy sequence in W.
Since W is complete, w? — w$ € W. By assertion (iii), we
get &(wh,w}) =1 for all m e N. Now, we claim that w? €
Kw?. Assume the claim is wrong, then min {d, (w?, w?),
dy (w?, Kw?), dy (w?, Kw?)} >0 for all m>m, for some
m, € N. Then by (40), we get

dyg (w1, Kuf)
< Hy, (Kwy,, Kw?)
= &(wy, wi)Hyy (Kwj, Kwl)

<6 {[dw(wfw wi)I" [dy (W), Kuwp,)]* [dyy (w], Kwi)]?

1

1=t =1—15
| o K)oy (R ) ]
p

<8 {[dw(wfm W) [y (wh,, Kwy ) [dyy (w), Kw?)]”

1 1=1—1,—13
[ o ) + ()| }meo-
P
(53)

From the above inequality, we get lim,,_,
w?) =0. By a triangular inequality, we have

dy(w? ,K

m+1°

iy (1 Kw') < pldy (W' ) + dy (1w, Kt Vim € N,

(54)

a
m+1>
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Hence, by taking the limit m — oo, we get d, (w?, K
w?) =0, that is, w? € Ku?.

Example 2. Consider W =Z with d, (w,,, w,,) = |lw, —w,, |
for all w,, w,, € W. Define K : W — CB(W) by

K(w,)= <{0}’ w, €{0,1,2,3,--} -

{0,2w,}, w,€{-1,-2,-3,--}

and & : Wx W - R-{0} by

(56)

I, w,w,€{0,1,23,}
—_—

0, otherwise.

One can see that all the hypotheses of Theorem 7 are
valid. Hence, K must have a fixed point.

Remark 8. Note that ([12], Theorem 2) is not applicable in
Example 2. It suffices to take x = -1 and y = -2, then Kx =
{0,~2} and Ky={0,-4}. Thus, we have H(Kx,Ky)=2, d
(x,y)=1,d(x,Kx)=1, d(y,Ky) =2, d(y, Kx) =0, and d(x,
Ky) = 1. One then writes

H(Kx Ky)=2>8 [(1’1 )1%)(2) (@ )] (57)

for all 6,1,4,1; € (0,1). Thus, our main results generalize
and improve the result given in [12]. Moreover, when con-
sidering the single valued case in Theorem 5 and Theorem
7, that is, for a self-mapping K : W — W, we get general-
izations of the main results in [9].
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In the present article, we construct (p, q)-Szdsz-Mirakjan-Kantorovich-Stancu operators with three parameters A, a, f. First, the
moments and central moments are estimated. Then, local approximation properties of these operators are established via K
-functionals and Steklov mean in means of modulus of continuity. Also, a Voronovskaja-type theorem is presented. Finally, the
pointwise estimates, rate of convergence, and weighted approximation of these operators are studied.

1. Introduction

During this decades, the applications of (p, g)-calculus tran-
spired as a new area in the field of operator approximation
theory. Many researchers constructed and discussed many
positive linear operators based on (p, q)-integers, (p,q)
-exponential functions, (p,q)-Gamma functions [1], (p,q)
-Beta functions, and so on. Since Mursaleen et al. first con-
structed (p, q)-Bernstein operators [2] and (p, q)-Bernstein-
Stancu operators [3], several generalizations of well-known
positive linear operators based on (p, g)-calculus have been
introduced and studied (see [4-11]). In [12], Acar first pro-
posed (p, q)-Szdsz-Mirakjan operators defined on [0, 0c0). In
[13], Kara et al. constructed a modified (p, q)-Szész-Mirakjan
as follows:

n—k [k]p,q

SA(fst) = i%(ﬂf(p >>f€ 0,00), (1)
k=0 (54

where 0 < g <p <1, f € C[0,00) and 2% (1) = (pklk=) g k=D12)
([n];qtk/[k]p’q!)ep)q(—[n]p,qpk‘”“q‘kt). Certain basic notations
of (p,q)-calculus are mentioned below (for details see

[14]): For each real number A, (p,q)-analogue of A
named [1], is defined by

_pa_qa

Hlpg P-q

p#q. (2)

And for each nonnegative integer #, the (p, q)-integer
[n],, and (p, q)-factorial [n], | are defined by

[H]P’q =pn—1 +pn—2q +pn—3q2+_“+pqn—2 + qn—l
P -q ,
e P#4q;
_)m"h p=g;
[n]q’ p =1 >
m, p=q=1,
] [2, -[n],., nx1;
[n]p,q! — { Pqtipq Pq (3)
1, n=0.

The (p,g)-analogue of the exponential function is
defined by

eq(t) = ) (4)
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Let f be an arbitrary function and a € R. The (p,q)
-Jackson integral [15] was defined by

[/ (- a1 ,ﬂf<Pm>o<q<p<l 5

And the (p, q)-Jackson integral over an interval [a, b]
(a<b) can be defined by

jbﬂu)dp,qu - J:fw)dp,qu ~[fude o)

a 0

We easily know that (p, g)-Jackson integral (6) is not
positive unless it is assumed that f is a nondecreasing
function. To solve this problem, Acar et al. [16] defined
the (p, q)-integral of the arbitrary function f on interval
[a,b](a<b) as follows:

0 n n

rf( u)dyqu=(p—q)(b- ’l)zpq+ f(t”(b a) M) 0<g<p<l

a =0

(7)

It is obvious that integral (6) and integral (7) of f on
[0,1] are equivalence.

The Kantorovich modification of positive linear opera-
tors on [0, 00) is a method to approximate the Riemann inte-
grable functions. The idea behind the Kantorovich
modifications mainly depends on replacing the sample value

f(kin) by nﬂi’fn u)du (see [17, 18]). By definite integral

substitution, we have nﬂi”l / u)du = L}f (k + u/n)du. How-

ever, two Kantorovich mod1ﬁcat1ons may be not equivalence
or cannot use definite integral substitution in g-calculus and
(p, g)-calculus. For the researches about (p, q)-Szész-Mirak-
jan-Kantorovich-operators, we can see [19-21]. Meantime,
the idea behind the Stancu modifications mainly depends
on replacing the sample value f(k/n) by f(k + a/n + ) with
two parameters 0 < a < 3 (see [22]). For the researches about
the Stancu modification of (p, q)-operators, we can see [23,
24]. All these achievements motivate us to construct the
Stancu and Kantorovich generalizations of (p, q)-Szdsz-Mir-
akjan (1) with three parameters A, «, 3 as follows:

Definition 1. For n€ N, 0<q<p<1,A>0,0<a<fand f

€ C[0,00), the (p,q)-Szdsz-Mirakjan-Kantorovich-Stancu
operators can be defined by
°° PRk, +ut +a
SWRTE 4 J Py e dy gths £ € [0,00).
k=0 [7’[ ] J + JB

(8)

2. Auxiliary Results

In order to obtain the approximation properties of the oper-

ators S‘ZZ();;( f;t), we need the following lemmas and
corollaries.
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Lemma 2. For t €[0,00), 0<q<p<1, A >0, we have jét)‘
dpgt =1/[A+1],,

Proof. Using (7),

1 0 n o\ A+l 0 A1\ 7
Ny e (p q _P-av (4 _ 1
Lt dpgt=(p=9) ). <pn+1> T > <pA+1> T,

n=0

Lemma 3. ([13], Lemma 4) For 0<q<p<I,neN, andt ¢
[0,00), we have

n—1
SPU158) = 1,89 (ust) =1, B (w5 8) =1 + P,
1],
n-2 2n—2
Sfl’q(u3;t)=t3+(2p+q)p " +P 1,
[n]P»q [n]p,q

(3p2 +2qp+q° ) P

(w5 t) =" + t
(u'51) o "
) (3p2 + 3qp + qZ)pZn—4 . p3n—3 ;
)5 5

The following lemma will tell us the relation between the
moment of the operators $9 and the moment of the opera-

.1
tors S, g

Lemma 4. For t € [0,00), n,meN, 0<q<p<1, A>0, 0<
a < f3, we have the following recursive relation:

Ship(u"51) =

Proof. By direct computation, we have

. © V"R ut o\
sz - $atof (TRt

L

_ 1 SERRS m! ok Mo id u
ey B BB )
1 mmi  foo Pk N i
— nlt P P4
([n]m + ﬁ)m ; =0 g (ko () < (1], ) ) Aj+1],,

m! . o

1 N i a(yl ) S
B ([”]p,q +/3)m ; Hit(m—i-j)! b S5 (1) Wi+1],,”
(12)

Hence, the proof of Lemma 4 is completed.

Then, the following lemma can be obtain immediately:
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Lemma 5. For t € [0,00), 0<g<p<1, A>0, 0<a<f, we
have

), ! !
Sii%(l’t)_Lsf,z,’;(u,t) = [n}p)quﬁ“‘ ], +B ([A+1]M +a>,

ghak (u2 ; t) =

it 3, 2G+¢4§+ 2y
: (1 +B) N ha ) (1], + )
1 1
' ([A+1]p,q M)H (17 B)°

1 2«
' ([zmz]pﬂ T, +“2>'

Lemma 6. Under the condition of Lemma 5, we can easily
obtain the following formulas for the first and second central
moments:

1 1
AR = Sp(u—t51) = ra—prl,
wp op M,  +B\A+1],,

n—1 n t 1
Bl (1) = Sp(u—t)?5t) = Py +

" (g =) (1 +B)’

((pr-a- 1 2+ 1 1
A+1],, A+1),, D1 )

(14)

Lemma 7. The sequences (p,), (q,) satisfy 0<q,<p, <1,
such that g, — L, p, —n €0,1], [n], . —> 00 asn—

00; then for any t € [0,00), 0<g<p< LA>0, 0<a<p, we
have

. Pl N _ 1
lim [n], AV (1) =~prrat o, (15)

lim [n],  BP"%(£) =yt (16)

noot Py oS
4 Pn’ n’/\ . p—
,}Lrgo[n]m:qnsm?ﬁ (u-1)*s51) =0. (17)
Proof. By [A+1], . =(A+ 1)E4¢ € (4,5 P,)> we have lim
nn n—oo
A+ I]P a = A+ 1. Thus, we easily obtain (15) and (16). As
n —> 00, We can rewrite

(2+a.p.)e" o, 0( 1 )
[];,4, ;...

-1 2 =2\ yn—-1
Shotn (ut 1) = t* + (3+24.p," + 4.0,7)P t3+o<[n]1 )

(");,.4, Pt

(18)

St (u? 5 1) = £ +

Set A(n)=(1/[A+1], ., )+a. Applying Lemma 4 and

([l 0, /7), o +B)' =1=(iBl[n], , +B)+o(1/n], ), i=
1,2, 3,4, we can also rewrite

["];,.4,

Am) (. B
Wy, + B Ty 7B (1 o +ﬁ>t
A(n) o 1
' []),q, t B ' (Mpqu)’
SZf&?ﬁ’A(uz;t): 17),a, . (t2+ P t> +
([n] o /3) []p,.q,

_(,_ 2B ,, P
i (1 My, +ﬁ>t T
2A(n) 1
WmM+N+%wM)’
"5, G+@w&wwg>
([n] oot /3)3 (]5,q,

+ 73[’1}’2’“"’”14(”) 2+o L
W +B) (]p,.4,
(1], + B)
_ (1_ = 3 >t3+ (2+%P;1)pn_l P2

poa, TP "lp,a,

3A 1
+ () 2+o0 ,
]y, * B ()54,
4 (
3
1 7+

__ < 3+24,0,' + 420,2)Py t3>
(0., +B) o

o g A 0( 1 )

<["]mn * ﬁ) (", a,

(8 .
- (1 o +/3>t +

4A(n)

5 1
+ [”}Pn,qn " ﬁt +o0 (["]PM) .

Combining S;’;naq;";/\((u _ t)4 1) = 24 (4 )(_l)msp,,,qn,)t(

m=0\m e

P ¢ Lo\
Sn,oc,ﬁ (u > t) -

20, A

(i, +B)’

Sy (51) =

S 50

(3+24,0, + 40" )P 5
", a,

(19)

u*™™ 5 t)t™, we can obtain

A _ _ -
[n]Pn"ZnSf:‘Zﬁ ((Ll B t)4 ; t) = (1 - zqnpnl + QiPnZ)PZ 1t3
+0(1) — 0,as n —> 00,
(20)

we obtain the required result.

Lemma 8. Let Cy[0, 00) be the set of real-valued continuous
bounded functions defined on [0, c0) endowed with the norm



Ifll= sup |f(x)|. Under the condition of Lemma 5, for

x€[0,00)

any f € Cy[0,00), we have

Sasf s < 1. (1)

Proof. In view of (8) and Lemma 5, the proof of this
lemma can be obtained easily.

3. Local Approximation

In this section, we will establish local approximation theorem
for the operators. For any f € C4[0,00), we consider the fol-
lowing F -functional:

H(f8) = inf J|f —hll+8]h""| 1, 22
(F58)= inf {If ~hl+aln"I} (22)
where 8 € (0,00) and w? = {h € C[0,00): h', h" € C4[0,00)}.
The usual modulus of continuity and the second-order mod-
ulus of smoothness of f can be defined as

w(f;9) :of\uﬁa Es[(?P)If(t+ u) = (1)),
wy(f36)= sup sup |f(t+2u)—f(t+u)+f(t)]

0<|u|<8x€[0,00)

(23)

By ([25], p.177, Theorem 2.4), there exists an absolute
positive constant C such that

%(f;(S)st2<f;\/5>,8>0. (24)

In the meantime, for f € C5[0,00) and h > 0, the Steklov
mean is defined as

hi2 phi2
fult)= %Jo Jo Rf(t+u+v)—f(t+2(u+v))|dudv.
(25)
Thus, f, € C3[0,00), and we can write
4 (h2 phi2
fu®) 0= 25| | Bfruey) 06

—f(t+2(u+v))—f(t)dudv.

It is obvious that |f,(t) — f(f) | <w,(f ; h) and ||f,, — flI<
w,(f s h). If f is continuous, then f,’, f,,"" € C4[0, 00) and

£ = % H:/Z (f(t+u+ g —f(t+u)>)du -

- ;Jm(f(t+h+2u) - f(t+2u))dul.

0
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Thus, we have ||f,'I<(5/h)w(f;h). Similarly, ||f,"" <
(9/h)w,(f s h).

Theorem 9. Under the condition of Lemma 7, then for all f
€ Cgl0,00) and t € [0,00), we have

0 -] < 20(5 B W)

Proof. For any 8 >0, we have |f(u) - f(¢) | <w(f5lu—-t]) <
(14 (Ju—t18))w(f;8). Applying Snj‘(fé’l to both ends and
using Lemma 5, we can obtain

Stk (f50) = £(8)] < S (£ () = £(0)] 51

< <1 + éSflt‘;f/”g’A(lu - t|;t))w(f;5)-
(29)

By using the Chauchy-Schwarz inequality and taking

8= /Bf:fg’l(t), we have
) 1 )
7500 = (1o 55 (w0750 Jutf59)

<2w (f, “Bifﬁ’/\(t)>'

(30)
Theorem 9 is proved.
Theorem 10. Under the condition of Lemma 7, then for all

f € Cyl0,00) and t € [0,00), there exists an absolute positive
constant C; = 4C such that

B VI’A n! n’/\ 2 n! n’A
S (f54) = ()] < Croos (f; J (AT (1)) "+ By <t>>

Apn’qn’A(t) D

a3

+w(f;

(31)

Proof. First, we define the following new positive linear oper-
ators as follows:

> n’/\ n’ n’)\ n” n’/\
Tl (f 1) = ST (F 54) = f (A () + )
+£(t), t € [0,00).

(32)

It is apparent from Lemma 5, Lemma 6, and Lemma
8 that

T G0 =L T s =0 (33)
A
|7t 50| <3170 (34)
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Now for any given function h € W? and u,t € [0,00),
we write Taylor’s expansion formula as follows:

h(u)=h(t)+h' () (u—-t)+ J ') (u-v)dv.  (35)
t
: P
By applying T)/%
above equality, we can obtain

operators to both sides of the

u

T (1) = Thd? (h(t) R (1) (u—t) + J

= h(t) + T2 (h’ (B)(u-t); t)

h"(v)(u—v)dv;t)

t

n,af
+ TZ’)‘(fE’A (J R (v)(u—-v)dv; t) .

t

(36)
Using (32), (33), and the following inequality,
Juh"(v)(u —v)dv| < r\h"(v)“u —v|dv
t t
<) 7)

J |u—v|dv

t

< (u-1)* "],

we can get

)
Thi (s ) = h(t)| =

10 ([ W vavsr)
t

< §Pwin? ( ; t)

o
K (v) (Ap”’q""\(t) - v> dv

Jh”(v)lu—v|dv
t

+

Aﬁ;‘j;‘* (t)+t
a3
t

a3 o
et )2 A
- ((at'0) "+ '

< St (= 02 ) I (A0 1) W'

(38)
By using (32) and (34), we have

il (s t) = h(1)| =

T 50+ (Al 0 1) ~20 ()
T (f = hst) = (F = ) (1)
Ty (s ) = ()|
G MORDEO]
<4|f - hll+ ((Afﬁf;;/‘(ﬂ) g Bﬁ;ﬁfé,A(t)) A"

n 71’/\'
rof ]t o)),

<

+

(39)

Taking the infimum on the right-hand side over all h € W?
and using (24), we complete the proof of Theorem 10.

Theorem 11. Under the condition of Lemma 7, then for all
f' € Cy[0, 00) and t € [0,00), we have

! n’/\ n> n’)‘ n n’A
Shts (f 1) = £(0)| < |4 1) |1 (1) + 2/ By (1)

(40)

Proof. Applying Sﬁ?f/’;’/\ to both sides of the equality f(u) = f
O +f' () (u—1t)+ f(u) - f(t) = f'(t)(u—t), using mean

value theorem and the Chauchy-Schwarz inequality and tak-

ing 8= /B 'ff[;’/\(t), we can obtain
LA ! 5, LA
Sh (F58) = F(8)] < | (0| ST (= £5.)] + Sty

(G =) = £ (5= 1) 52)
< If (1S5t = t3)] + S

n,af3

~ (|u—t| <1+ '”;t')w(f';a) ;t)

U@l o]+ o(r'59)
Ly (0 2.
. (Spqu,’\(lu _ t|;t) " Sn,a,ﬁ ((u t) > t))

0,8 1)
<If' (1)l Af:;‘f/g’l(t)‘ + w(f’ ; 6)

S (= 1)250)
| (1 VS - t))
6

) o
AL 0)|If ()] + 2/ Bl (1)

~ (f'; Bﬁ?f;‘%t))-

Theorem 12. Under the condition of Lemma 7, if f¢€
Cgl0,00), then

<

(41)

) ) 1
S (f50) ()] <5, [In], [l (]| f1 ——
5,4,
9 )
+ (E ] Pﬂ)qﬂBﬁTfﬁ () +2> w,
1
fs
[1);,4,

(42)



Proof. For te0,00), using the Steklov mean function
fu» we can write

St (5) = £(0) < St (1f = Flt) + [’ (= £1(0) 1)
1) (O
(43)

By Lemma 8 and properties of the Steklov mean,
we can obtain

SIr (U = Fubt) < USA(1f = DI S UF = Fll S @,(f 5 ).

(44)

By Taylor’s expansion formula, we have

4 n”1 1 n> n’)\
A )+ S5 B o)

Shoti = 1)) < 1y (][ AR

< alfsh)
.

n,a,8

Apn’qn’)\'(t) ’

9 -h LG
ﬁwz(f’ )Bn,a,ﬁ ().
Hence,

> n’)L 5 n! n’/\
Sl (1) = £(0)| < |4 1) (5 1)

9 )
(e B ) 2 ()

(46)

Setting h=1/,/[n], ,, we can get the desired result.

By the classic Korovkin theorem, we easily get the follow-
ing corollary:

Corollary 13. Under the condition of Lemma 7, then for all
f € Cy[0,00) and any A > 0, the the sequence {Si"aq;";/\(f 1)}
converges to f uniformly on [0, Al.

pn’qn’/\
Sn,zx,ﬁ

In this section, we show a Voronovskaja-type asymptotic for-

4. Voronovskaja-Type Theorem for

mula for the operators Sfl”f[;’l by means of the first, second

and fourth central moments.

Theorem 14. Under the condition of Lemma 7, then for all
f € Cy[0,00) satisfying f''(t) that exists at a point t € [0,00),
we can obtain

1

n—o00

tim [n],, (S0 (30~ 1(0)) = (a,/m = 1>f'(t) Ton
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Proof. By Taylor’s expansion formula for f, we have

F=f(0)+ £ (=) + 37 (1) =17 + $(us )~ 1),

(48)

where
) —ft)=f' O @=t) - 172f"" (1) (u - 1)* Wk ts
P(ust) = (u-t LT
0, u="t.
(49)

Applying L'Hospital’s Rule,

flw-f'e) 1

2L =0, (50)

1
lim¢(u;t) = ~lim

u—t 2 u—t
Thus, ¢(.5t) € Cy[0,00). Consequently, we can write
Ao o 1 o
1], (STt (F36) = £ (3)) =[], , Al () + S (1], Bl (1)

+ 1, o (S (95 D= 0231)).
(51)

By Schwarz’s inequality, we have

(S (@s w=1?31) < \/ (Si” (s 0)31)

. \/(S*f;ju’fg)‘((u —t)*; t).

(52)

We observe that ¢*(¢ ; t) = 0 and ¢*(.;t) € C5[0,00). Then,
it follows in Corollary 13 that

St (G (ust)st) = g2(t5 1) = 0. (53)

i [7]p,., St

n—-o00

Hence, from (17), we can obtain

lim [n], (sﬁj;j;;A (p(us ) (u 1) t)) =0.  (54)

Combining, we complete the proof of Theorem 14.

Corollary 15. Under the condition of Lemma 7, then for all
f”f” € Cg[0, 00), we have

lim [n], ,, (ST (F3) = (1)) = (“ A ﬁ)f ’(t)
#2710,

(55)

uniformly with respect to any finite interval I C [0,00).
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5. Pointwise Estimates

In this section we establish two pointwise estimates of the
operators Sn o ﬁ First, we compute the rate of convergence

locally by using functions belonging to the Lipschitz class.
We denote that f € Cg[0,00) is in Lip,,(y, D), y € (0,1], D
C [0,00) if it satisfies the following condition:

[f(u) = f(t)| <MJu—t]',ueD,te[0,00), (56)

where M is a positive constant depending only on y and f.

Theorem 16. The sequences (p,), (g,,) satisfy 0< g, <p, <
y € (0, 1] and D be any bounded subset on [0, o). If f € CB[
,00) N Lip,,(y, D), then for any t € [0,00), we have

Sk (F56)~ £ ()| sM((Bi"f;; o) +2d”(t;D)>,
(57)

where d(t;D)=inf {|lu—t|: ueD} denotes the distance
between t and D.

Proof. Let D be the closure of D. Using the properties of infi-
mum, and there is at least a point ¢, € D such that d(¢; E)
= |t —t, | . By the triangle inequality

—fE)[+If(6) = ft)]. (58)

By the monotonicity of Sfl"aq/} , we get

Sl (F30) ~f(x >)<Sf;”' (F () = F () bt) + 3l (1 () = £ (8 )
{S" A (u = t] 5 1) + St A(|t—t s t)}
{ﬁa 7 =l 0) + |1l
{ﬂ —t|";1) +2|t—t0\”}
(59)

Applying the well-known Holder inequality with a; = 2/y,
a, =2/2 -y, we obtain

o™ (£ 58) = £ (0)| < M{ S (=7 s 0)'" 4205 D) }

<M{Sp” Ao (|u

=M{ (Bﬁ"fﬁ ())w +2dV(t;D)}.
(60)

(25 0) " 4 2d7 (1 D)}

Second, we will give a local direct estimation of the opera-
tors S "aq" by using the Lipschitz-type maximal function of
the order y introduced by Lenze [26] as

If (u) - £ ()

P ,t€[0,00)andy € (0, 1].

(61)

@y(fst)= sup

u#t,u€[0,00)

Theorem 17. The sequences (p,,), (q,) satisfy 0< g, <p, <1
andy € (0,1]. Iff € C3[0,00) , then for any t € [0,00) , we have

St 0 - 1] e, (B )" 62)

Proof. Using the equality (61), we obtain

S (58 = £(0)| <@, (Fs Sl (u =1 51). (63)

By the well-known Hélder inequality, we have

IN

@, (f s ) (ju =15 1)

50 (Bt 0) "

St (f 3) = £(0)
(64)

[N

<

Thus, the proof of Theorem 17 is completed.

6. Rate of Convergence

Let B,[0, 00) be the set of all functions f defined on [0, c0)
satisfying the condition |f(t) | <C/(1 + t*) with an absolute
constant C; >0 which may depend only on f. C,[0,00)
denotes the subspace of all continuous functions f € B,[0,00)
with the norm ||fll, = sup |f(£)|/1+ % By C9[0,00), and
x€[0,00)
we denote the subspace of all functions f € C,[0,00) for which
lim [f(¢)]/1 + £ is finite. Meantime, we denote the modulus
X—+00

of continuity of f on the interval [0, a, a > 0 by

@, (f30) = sup sup |f(u)—f(t)]. (65)

|u—t|<du,te[0,a]

Theorem 18. Let f € C,[0,00), 0<g<p<1, and a> 0. Then,
for all t €0, a], we have

SR 3010 £ Cy 4+ 30 050+ 20, (5 /BLER 0 ).

(66)

Proof. For any t€[0,a] and u>a+1, we easily have 1<
(u—-a)’ < (u-t)% thus

f)=fOI<If @] +1f ()] <Cp(2+u* + )
=Cr(2+F+ (u—t+1)°) <Cp (24387 +2(u—1)%)
<Cr(4+38) (u—1)? <M (4+3a”) (u—t)%,

(67)



and for any t € [0, a, u € [0, a + 1]) and & > 0, we have

lu—t]

|f(”)—f(f)|Swa+1(|u—t|;t)s(1+ .

) wa+1 (f > 6) :
(68)
For (67) and (68), we can get

lu—t]

0 -1(0]= G4 36) =+ (1 5 Y 750).
(69)

Applying the Cauchy-Schwarz inequality and choosing &
=\/B Z‘);;(t), we have

Shap(f30)~f (t>\ < Sy p(f () = F(1)t)
<Cp(4+3a%) S0 (u-1)251)

n,a.3

-t
S (10 5 st Jountrso

<Cp(4+ 3a2)BR (1) + oo (f 56)

o,
Bl (t)
03 _ 2\ pPdA
) <1+ 5 —Cf(4+3a )Bn,a,ﬁ(t)
A
+2w,,, <f ; Bi%(t)) .
(70)

This completes the proof of Theorem 18.

7. Weighted Approximation

As is known, if f € C[0,00) is not uniform, the limit lim

§—0*
w(f;6) =0 may be not true. In [27], Ispir defined the fol-
lowing weighted modulus of continuity:

e VEER-FOL o
Q(f?a) _t€[0,00>,Ig<hS8 (1 + tz)(l +]’l2> f fe CZ[O, )’

(71)

and proved the properties of monotone increasing about
O(f;6) as §>0, alirgQ(f;é) =0 and the inequality

Q(f318) <2(1+7)(1+8%)Q(f:6),7>0.  (72)

Theorem 19. Under the condition of Lemma 7, f € C9[0,
00), then for sufficiently large n, the inequality

S (30 S (0] <K (1+£)70 (f ; %) 73)
P
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holds, where 0> 1/2 and K is a positive constant depending
only on f and n.

Proof. Applying (71) and (72), we can obtain

f (u) = f(®)] (u=t*)(1+2)Q(filu—t])

$(1+ -
gz<1+ lu;tl)(1+62)Q(f;6)(1+(u—t)2)(l+t2)

4(1+8) (1+2)Q(f 36), lu—1<8,
) 4(1+82)(1+t2)9(f;8)w, lu—t|>86.
(74)

Thus, for any & €(0,1/2) and u,t € [0,00), the above
inequality can be rewritten

£ () = F(O)] <51+ 2)Q(F 50) (i + W%)

(75)

Applying (16) and (17), there exists sufficiently large n
such that

g, St (4= 0230 <K (149,

, 09
[”]pqusif/ni’l((” —t)51) SKG(1+ )"
By Schwarz’s inequality, we can obtain
) P
Sf;fu’f;; (|u—t|;t)s\/sﬁja‘fﬁ (u=1t)*s1)
K
< L Vi+e,
", 0,
Spn,qn»l —tPf) < SanqM —H2.t Spww _tet
o3 (|u | > )— n,,3 ((” ) > ) .3 ((u ) ’ )
K
< 2 \J(1+2).
["p,a,
(77)

. A . . .
Using Si”aqﬁ as linear and positive and choosing § =1/
[n],, , » we can obtain

Sflffl‘;’A(f;f)—f(t)‘ <5(1+2)0( f; -
[];,4,

. (Z +K,(1+1%) +K2\/m>

<K(1+£)"0 (f; [n]l >
Puwn
(78)

for sufficiently large n and ¢t € [0,00), where K := 5 max {5/4,
Ky, Ky}
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Theorem 20. Under the condition of Lemma 7, then for any
f € CY[0,00), we have

Tim IS[5" (5 1) = £l = 0. (79)

Proof. Applying the Korovkin theorem [28], we only see that
it is sufficient to prove the following three conditions:

lim S5 (™ £) — ", =0,m=0,1,2.  (80)

n—co map

Since Sflf&?gl(l ;1) =1, the condition holds for m = 0. By

2
: a4t ",
Lim IS0 (25 1) = 2y < |——P -1
({7, +8)

2

sup +
e (P, +B)

Lemma 6, we can obtain

lim HSI::‘:ZEA(” it) - tHz = lim HAﬁﬁf;;“(t)H

n—0o n—0o 2

1 1 1
< +a| sup ——
(4, * P < (P‘ +1p 0, ) refoc0) L+ 17

>—>O,asn—>oo.

+ B sup

te0,00) 1 + 12

(81)

Hence, (80) holds for m = 1. Similarly, by Lemma 5, we
can write for m =2,

t? (1),

t 1 (82)

Ap Tt — 4 2(x> sup +
n 2 2
( Y R (Y )

1

[24 + l]p p

Thus, (80) holds for m=2. Hence, the proof is

2 5 1
+ +a” | sup 5 — 0,asn — oo.
A+ I]Pn’qn tefo00) 1 +1

0,00

Soe (f51) = £(1)

completed. lim su =0. 83
n_)oote[o,oli)) (1+12)"* (83)
Theorem 21. Under the condition of Lemma 7, then for any
f € CY]0,00) and x > 0, we have Proof. Let t, € (0,00) be arbitrary but fixed.
s oA i
St (f 6) = £(1)| St (f56) = £(1)| St (f56) = £(1)|
su 1+x < sup 1+x + sup 1+x
te[0,00) (1+12) te0,ty) (1+12) t€[t4,00) (1+12)
Spm‘]n’/\(l + uZ . f) ‘
s n.aB ’ (84)
<SR (f 5 8) = Fllg g+l su |
.3 (f ) f [0,t0) f Zte[to,go) (1 N t2)1+x
t
+ sup —lf( ) |1+K =1, +1, +1;.
teftyo0) (1 +12)
Applying | (t) | <llfll,(1 + £*), we have Pt 2. )
priving L =726 WlafSueg C ++50] i, (0ee)+507)
2\ 1+K - 2\ 1+
L wp |f(t) | ||f||2(1 + tZ) < ”f”2 (1 +t ) (1 +t ) 3||f||2
P etpen) (14 )7 ooy (1427 (14 8)° L Wl e
(1+2)" 3
(85) (86)
Let £ > 0. By Lemma 5, there exists N, € N, such that for
all n> Ny: Hence
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(104 1)|
. ’ £ €
[If1l, sup PN s é =+ =,VYn>N,.
teltpo0) (1 +12) (1+8)" 3
(87)
Thus
2
Lel< W ey N, (88)

(1+8)° 3

Next, for sufficiently large ,, such that ||f]l,/(1 + £2)* < &/6
. Then, I, + I; < 2¢/3,Vn > N,. Applying Corollary 13, there
exists N, € N, such that for all n> N,

A
SCRID

€
< —. 89
[0f) 3 ( )

Let N =max {N,, N, }. Combining (86), (88), and (89),
we have

St (5 6) = (1)

(1 + tz)l-Hc

<eV¥n=N. (90)

te[0,00)

Hence, the proof of Theorem 21 is completed.
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In this paper, a generalized algorithm to develop a class of approximating binary subdivision schemes is presented. The proposed
algorithm is based on three-point approximating binary and four-point interpolating binary subdivision schemes. It contains a
parameter which classifies members of the new class of subdivision schemes. A set of efficient properties, for instance,
polynomial generation and reproduction, support, continuity, and Holder continuity, is discussed. Moreover, applications of the

proposed subdivision schemes are given in order to demonstrate their variety, flexibility, and visual performance.

1. Introduction

Subdivision is a competent way of producing smooth curves
or surfaces in geometric modeling and computer graphics. It
repeatedly refines the initial polygonal shape. After each split
average step, we get closer to the limit curve, which is the
limit of an infinite series. A nice property of subdivision
schemes is that they are simple and local, which means that
local change in initial data will only have a local effect in
the resulting object. Subdivision schemes have become cele-
brated because of their simplicity and efficiency. There are
generally two main categories of subdivision schemes: inter-
polatory and approximating. For interpolating subdivision
schemes, limit curve always passes through initial control
points while for approximating subdivision schemes it may

or may not. Subdivision schemes play an integral role in
computer graphics due to their wide range of applications
in many fields such as engineering, medical science, space
science, graphic visualization, and image processing. Differ-
ential equations are used for mathematical modeling of many
phenomena. Different techniques are being used to solve
boundary value problems [1] and nonlinear problems [2].
Nowadays, subdivision schemes are also becoming a popular
tool to numerically solve boundary value problems [3]. Sub-
division algorithms are also a major field in many multiscale
techniques applied in data compression. In some applica-
tions, the given data need not be reproduced at each step of
the subdivision process, which needs the applications of sub-
division schemes. Several researchers in the area of continu-
ous geometry have been established classical subdivision
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schemes for various kinds of initial control data. In geometric
modeling and engineering, practical applications of subdivi-
sion curves are restricted due to their shortcomings, and to
overcome these shortcomings, a lot of work has been carried
out [4-17].

Deslauriers and Dubuc [18] presented a family of inter-
polating binary subdivision schemes. They used Lagrange
interpolating polynomial for construction of schemes. Hor-
man and Sabin (HS) [19] proposed a family of binary subdi-
vision schemes having cubic precision. Some members of the
HS family are interpolating and some are approximating.
Mustafa et al. [20] offered a family of binary subdivision
schemes which has alternating primal and dual symbols.
Ashraf et al. [21] discussed a family of binary subdivision
schemes based on Lane-Riesenfeld algorithm. Members of
the proposed family have quintic precision. Mustafa and Bari
[22] developed a family of univariate subdivision schemes for
curve generation and data fitting. Asghar and Mustafa [23]
presented a unified framework of stationary and nonstation-
ary subdivision schemes. Keeping in view this practice, we
present a generalized algorithm to develop a new class of
approximating binary subdivision schemes. Ghaffar et al.
[24-29] constructed geometric continuity conditions for the
construction of free-form generalized subdivision curves
with single shape parameter. These free-form complex shape
adjustable generalized curves can be obtained by using
shape-adjustable generalized subdivision schemes. These
newly proposed approaches not only take over the benefits
of classical subdivision curve and surface schemes but also
resolve the issue of shape adjustability of subdivision curves
and surfaces with the help of tension control shape parame-
ters. They modeled some complex curves and surfaces using
higher continuity conditions. The proposed masks of the
schemes provide an alternative approach to generate the
complex curves using higher continuity conditions with sim-
ple and straightforward calculation for the proposed algo-
rithm because they are blended with linear polynomials
rather than trigonometric functions. In 2020, Ashraf et al.
[17, 30, 31] proposed a new approach using the generalized
hybrid subdivision curve with shape parameters to solve the
problem in construction of some symmetric curves and sur-
faces. These curves are easily modified by the changing the
values of shape parameters.

In this paper, we offer a Lane-Riesenfeld-like algorithm
to derive a class of binary approximating subdivision
schemes. Our algorithm is based on the well-known four-
point interpolating binary subdivision scheme [18], which
is C' continuous, and three-point approximating binary
subdivision scheme [32], which has C? continuity. Consider-
ing ¢ smoothing stages as in the Lane-Riesenfeld algorithm,
our proposed algorithm allows us to derive a class of univar-
iate subdivision schemes. In fact, each member of the pro-
posed class is enumerated by ¢, and higher values of ¢ give
schemes with wider masks and support, higher continuity,
higher Holder regularity, and higher degree of polynomial
generation. The first member of the proposed class (corre-
sponding to ¢ =0) coincides with the three-point approxi-
mating binary subdivision scheme [32]. The proposed class
of schemes generates schemes of higher continuities and
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visually more smooth limit curves as compared to existing
families of schemes. The content of the paper is structured
as follows. In Section 2, fundamental definitions and con-
cepts are given. Section 3 presents a generalized algorithm
for construction of new class of subdivision schemes. Section
4 is devoted for properties of proposed schemes, such as
continuity, Holder continuity, and support of basic limit
function. Geometrical analysis and some beautiful examples
of limit curve are given in Section 5. Section 6 presents a
summary of the paper.

2. Preliminaries

Let the initial data be given by a set of control points
G'={g"€eR,ieZ}, and the set of control points at
refinement level h(h>0,h € N) is given by G"={g/' € R,
i€Z}. Define G"'={gl*! € R, i€ Z} recursively by the
following binary refinement rules:

gt = "b ugls

keZ

i€, (1)

where the finite set B={b,i€Z} is called mask. The
recursive algorithm associated with the repeated applica-
tion of (1) is called subdivision scheme and denoted by

S. The Laurent polynomial or symbol of the scheme S is
defined as

B(z)=) bz (2)

leZ.

Theorem 1 (see [33]). If a binary scheme S is convergent,
then the mask B={b, i€ Z} satisfies

szl = szlu =1 (3)
lez

leZ.

The symbol of a convergent scheme can be also be writ-
ten as

B(z) =B,,,, (zz) +2zB,, (zz), (4)

with Beven(z) = ZlEZbZIZI and Bodd(z) = ZleZbZHIZl'

Theorem 2 (see [33]). A binary scheme S associated with the
symbol

Bz = " s)

2771

is said to be C™ continuous if the subdivision scheme associ-
ated with the symbol L(z) is contractive.

Proposition 3 (see [34]). A binary scheme S generates polyno-
mials of degree m if and only if

B(1)=2,B(-1)=0and BV (-1)=0,j=1,2,---,m.  (6)
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TabLE 1: Mask of the R, schemes corresponding to different values of parameter ¢.

¢ Scheme Mask

0 3-point %[1, 5,10,10,5, 1]

1 5-point §16 [-1, 4, 44,124,170,124,44,4,~1]

2 6-point % [1,-13,-17,309,1338,2478,2478,1338,309,-17,-13, 1]

3 8-point ; [-1,22,-91,-580,1303,12362,31557,41928,31557,12362, 1303,-580,-91, 22,-1]

65536

Proposition 4 (see [34]). A binary scheme S reproduces poly-
nomials of degree n with respect to parametrization
{eh=(j+ T)/Zh}jEZ with T =BY)(1)/2, if and only if it gener-
ates polynomials of degree n and

j-1

B<J')(1)=2H(T—i), j=1,2,-n. (7)

i=0

3. Algorithm for Construction of Schemes

The well-known four-point interpolating binary subdivision
scheme [18] is given by
h h
95" =95
1 9 9 1 (®)
hl h h h h
Gain = 16971 T 169 t 169 T 1592

By considering (4), the symbol of the even part of scheme
(8) is as follows:

P, (2)= (ZJ2r 1) <—z2 +;Oz— 1). ©)

Now, consider the three-point approximating binary
subdivision scheme [32]

1 10 5

G = eIt g 90t g Tt
16 16 16 (10)
5 10 1

h h h h
Goin = 16911 169 + 1591
The symbol of scheme (10) is given by
1\ 5

T(z)zZ(%) . (11)

Let us now present the class of subdivision schemes,
namely, R={R, : ¢ >0, ¢ € N}. The symbol of the scheme

R, is obtained by applying symbol of the even part of scheme
(8) p-times on symbol of scheme (10) and given by

R, (2) = (Peven(2))7T(2) (12)

So by (9), (11), and (12), we have

z+ 1\?° /=22 +10z-1\?
R (z)=2 ,
@=2(7) ()

where {¢ >0, ¢ € N}. The members of the class R of subdi-
vision schemes can be categorized by varying ¢ =0, 1,2, -+,
in (13). By taking ¢ =0 in (13), we get three-point approxi-
mating binary scheme [32]. Table 1 presents mask of some
members of the proposed class.

(13)

4. Properties of the Proposed Schemes

In this section, we present some desirable properties of class
R of subdivision schemes, comprising of polynomial genera-
tion and reproduction, support, continuity, and Holder
continuity.

4.1. Polynomial Generation and Reproduction. If a subdivi-
sion scheme generates polynomials of degree up to d, then
the polynomial generation degree of the scheme is d. Also,
if the initial data G” = {g?, i € Z} is sampled from a polyno-
mial P of degree dy and the scheme yields precisely the same
polynomial in the limit, then the reproduction degree dj is
the maximal degree of polynomials that can be reproduced
by the scheme. Clearly, the reproduction degree is always less
than or equal to the generation degree. Now, we establish few
results about polynomial generation and polynomial repro-
duction of the proposed subdivision schemes.

Proposition 5. R, -scheme generates space of polynomials up
to degree ¢ + 4.

Proof. Since symbol of R,, -scheme satisfies the conditions
Ry(1)=2,R,(-1)=0and R)(-1)=0,j=1,2,--, 9 +4, (14)

so by Proposition 3, R,-scheme has ¢ + 4 polynomial gener-
ation degree.

In the view of Conti and Hormann [35], the standard

. . h o h . .
parametrization e = j/2" at level h € N is not appropriate
to analyze a subdivision scheme to reproduce space of

polynomials, and the relative shift 7, = (el —¢lt1)/2m!



TABLE 2: Support, degree of polynomial generation (d;), degree of
polynomial reproduction (dg), continuity (C), and HC of R,

-scheme for ¢ =0, 1,2, and 3.

Holder
10) Support dg dy C continuity
LB UB
0 4 1 3 4 4
1 5 1 4 4.678 4.678
2 11 6 1 5 5.299 5.332
3 14 7 1 5 5.871 5.968

between the parameterizations at iteration level i and h

+1 is important for polynomial reproduction of degree
dg > 1. By applying a more suitable parametrization e? =
(j+ T¢)/2h with shift parameter 7, = R((pl) (1)/2= (3¢ +5)/2,

we have the following result.

Proposition 6. R -scheme reproduces linear polynomial with
respect to parametrization {eﬁ‘ =+ ‘r(/,)/Zh}jEZ with shift T,
=(3p+5)/2.

Proof. It can be easily verified that

RY)(1)=27,=3¢+5,

il (15)
(t,—J), Jj=0.1.

Thus, by Propositions 4 and 5, R,-scheme reproduces
polynomial of degree one.

Table 2 presents the degree of polynomial generation and
reproduction of some of the proposed R,-schemes. It is
observed that the degree of polynomial generation is increas-
ing linearly with the value of parameter ¢.

4.2. Support. The support of a subdivision scheme quantifies
how much one vertex brought change in its neighboring ver-
tices, and its measure represents local support of the limit
curve. Basic limit function (BLF) of a convergent subdivision
scheme is a limit function of the initial data G = {g?,i € Z}
which is of the form

0 1, i=0,
gi = ) (16)
0, i#0.

By following [36], we determine that support of BLF of
R,-scheme is 3¢ + 5. BLF generated by the proposed R, and

R, schemes are demonstrated in Figure 1.

4.3. Continuity Analysis. Continuity of a subdivision scheme
is an essential parameter on which efficiency of a scheme
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depends. To investigate continuity of our proposed class,
we follow the approach as given in [33] and use the symbol
of R,-scheme.

Theorem 7. The R, -scheme has C?*3™% continuity, where ¢
=1,2,3,--, and v, = [ (¢ — 1)/2] (floor function).

Proof. The symbol of R, -scheme (13) can be simplified as

(z+1)P* %

R‘/’ (Z) = 2(,0+3—v(/J r‘/’ (Z), (17)

where v, = [ (¢ —1)/2].

Let S, be the subdivision scheme associated with the
¢
symbol r,(z). The scheme S, is contractive provided that
¢
15,1l _ = max {Xsez|ryls Xiez[rapnl} < 1. So, by Theorem 2,
R,-scheme has C***% continuity.
In Theorem 7, we discuss continuity of R,-scheme for

@=1,2,3,.--. It is to be noted that R;-scheme has C? con-
tinuity which is analyzed in [32].

Corollary 8. The R,-scheme has C* continuity.

Proof. By letting ¢ =1, the symbol of R,-scheme from (17)
and (18) is given by

Ro= ) (19
with
ri(z) = % (-2 +922 +9z-1). (20)

Let S, be the scheme corresponding to the symbol r,(z).
The scheme S, is contractive, as ||S, || =max {10/16, 10/

16} = (10/16) < 1. So, by Theorem 7, R,-scheme has C*
continuity.

Similarly, for different values of parameter ¢, continuity
of R,-scheme can be easily computed by using Theorem 7.

4.4. Holder Continuity Analysis. Continuity of a subdivision
scheme is related to the existence of derivative of subdivision
curve. For example, subdivision curve is said to be C™ contin-
uous if the m™ derivative of the curve exists and is continu-
ous everywhere in the given interval. On the other hand,
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FIGURE 1: (a, b) Basic limit functions generated by the proposed schemes R, and R, respectively.

Holder continuity (HC) of a subdivision scheme tells how
continuous the highest continuous derivative is. Therefore,
it is also important to find HC of subdivision schemes along
with continuity. Lower bound (LB) on HC of the proposed
class is calculated by using an interesting property of symbol
of R,-scheme, i.e., odd coefficients in Rq,(z) are nonnegative

and even coefficients are nonpositive.

Theorem 9. LB on the HC of R,-scheme is ¢ +5-log,
((3/12)? + 1), where ¢=0,1,2,---.

Proof. By (13), symbol of R, -scheme can be expressed as

z+1

re - (5) e o)

where U, (z) = (a(2))%b(2), a(z) = (-z*+10z-1)/8, and b
(z)=2. So LB on HC of R,-scheme is given by ¢+5-
log, || U, |- As we know [|U,[| =max (u°, u,), where u® is
the sum of odd and u, is the sum of even coefficients of
U,(2). We can write coefficients of U,,(z) in the following

u° a a,\" /b
LG e
u’ a, a° b°

Thus, we have

manner:

By eigenvalue decomposition, we have

)06 G0 -

which implies that

S N W

Thus, we have

Jugl=(3) 1 26)

Consequently, LB on HC of R,-scheme is ¢ +5 —log,

((3/2)? +1), where ¢=0,1, .
Upper bound (UB) on HC of R,-scheme is as follows.

Theorem 10. UB on HC of R,-scheme is ¢ +5—1og,(,),
where ¢ =0, 1, -+, and {, be the joint spectral radius of the
matrices Q, and Q; which are obtained by using symbol of

R, -scheme.

Proof. By (13), symbol of R, -scheme can be expressed as

Ry(2) = (sz—1> ) Q(2)> (27)

where Q,(z) = 2((~2* +10z - 1)/8). Let q,, q;, > q, be the
nonzero real coefficients of Q,(z). Also, Q, and Q; are the
matrices of order d x d defined by



(Qo)mn = qd+m—2n’ and (Ql)mn = qd+m—2n+1’ (28)

where m,n=1,2,---,d.
Let us denote joint spectral radius of both matrices Q,
and Q; by Cq,. Then, by Rioul [37] and Dyn [33], UB on

HC of R,-scheme is given by ¢ + 5 —log, ({,).

For different values of parameter ¢, upper and lower
bounds on the HC of R-schemes can be straightforwardly
computed by using Theorems 9 and 10. Table 2 summarizes
the continuity and HC of the proposed class of subdivision
schemes. It clearly indicates that as we go up for higher values
of parameter ¢, continuity and HC of R, -schemes also
increase. Moreover, newly generated R,-schemes have higher

order of continuity and HC as compared to their parent sub-
division schemes.

5. Geometrical Analysis of Proposed Schemes

The shape of an object is generally controlled by a control
polygon. The purpose of applying a subdivision scheme on
the control polygon is to generate visually smooth curves.
Figure 2 presents the behavior of some of the proposed
schemes. R,, R, and R, schemes are applied on the same ini-
tial polygon, and limit curves are obtained after three itera-
tions. It is evident that the proposed class offers more
choices to meet different designing needs.

5.1. Subdivision Rules for Endpoints. For closed curves, the
subdivision rules of Ry, R;, R,, and R, schemes can be defined
by their corresponding Laurent polynomial from (13). The
limit curves generated by these schemes are C3, C* C° and
C’ continuous, respectively. In case of dealing with open
polygons, these rules can be used to improve the interior of
the curve, while it is quite troublesome to improve the first
and last edges with the help of subdivision rules of the origi-
nal proposed schemes. So to handle the endpoints of an open
polygon, we need to supply additional points which are not
usually required in case of a closed polygon. Let g/ g" be the
first edge of the open polygon {G"=g} :k=0,--,2"m}.
Now, we define an additional control point g" 1> S an extrapo-
latory rule in the nonrefined polygon G", and then we can
compute the point g'*! through the proposed schemes by
applying subdivision to the subpolygon {g",, g", g, g"'}. We
select the point as g", =2gf! — g". The first edge of an open
control polygon {G"=gl' : k=0,1,-,2"m} can be refined
by using the following rules.

(i) Refinement rules of the proposed three-point
scheme R, are given by

5
gg“ = Zgg - 19}11’
; . (29)
h h h
g’ =190+ 791
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- - - Original

<=+~ The scheme R (C?)
—— The scheme R, (C*)
...... The scheme R, (C°)

FIGURE 2: Behavior of the proposed R;, R,, and R, schemes after
three iterations.

(ii) Refinement rules of the proposed five-point scheme
R, are given by

g 380 120, 4,
0 25670 25671 2567%
p_ 255 5 2, 1,

1 ﬁgo ﬁ% - ﬁgz’ (30)
132, 120 4
h+1 h h h
Sy Ry (A —
92 = 35690 " 25691 T 25692
4 171 44 ]
w1 _ A2y 171, 44, 1,
95 = 25690 " 25691 T 256927 25693

(iii) Refinement rules of the proposed six-point scheme
R, are given by

3070 1029 4 1
h+1 h h h h
= + - + s
9o 4096 9o 4096 91 4096 9> 4096 93
1306 2495 308 13
h+1 h h h h
= =+ - 5
! 4096 9o 4096 9 4096 9> 4096 93

po_ 283, 2491, 1338, 17 1
92 = 309690 " 20969 " 409692 ~ 409693 T 40969+
15 1337 , 2478 309 13
h+1 h h h h h
9 209670 " 20969 " 209692 " 209693 ~ 4096 94
(31)
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(a) (b)

FIGURE 3: Application of R,-scheme: (a) initial polygon and (b) the limit curve generated by R,-scheme at the third subdivision level.

0
0
() (b)

FIGURE 4: Application of R, -scheme: (a) initial polygon and (b) the limit curve generated by R, -scheme at the third subdivision level.

(a) (b)

FIGURE 5: Application of R, -scheme: (a) initial polygon and (b) the limit curve generated by R,-scheme at the third subdivision level.
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FIGURE 6: Application of R, -scheme: (a) initial polygon and (b) the limit curve generated by R, -scheme at the third subdivision level.
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~—— —
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~
(b)

FIGURE 7: Application of R,-scheme: (a) initial polygon and (b) the limit curve generated by R,-scheme at the third subdivision level.

(

(a) (b)

()

FIGURE 8: Application of R; -scheme: (a) initial polygon and (b) the limit curve generated by R, -scheme at the third subdivision level.
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...... Original curve ------ Original curve
—— Limit curve —— Limit curve

(a) (b)

FIGURE 9: Application of R, -scheme: (a, b) the initial polygon along with sharp features of limit curve generated by R;-scheme at the third
subdivision level.

(b) 4-point scheme [18] (c) 5-point scheme [19]

(d) Ry-scheme (e) R,-scheme (f) R,-scheme

F1GUrEe 10: Comparison of the existing and proposed subdivision schemes at the third subdivision level.
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(a) 3-point scheme [38]

(b) 4-point scheme [18]
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(c) 5-point scheme [19]

(d) Ry-scheme

(e) R,-scheme

(f) R,-scheme

Figure 11: Comparison of the existing and proposed subdivision schemes at the third subdivision level.

(iv) Refinement rules of the proposed eight-point
scheme R; are given by

pe1 65066 , 1028 , 580 , 22

_ h
9o = 5553690 " 6553691 T 6553692 T 65536 9%
33976 , 30254 1394 90
el _ h I b h
91 = 6553690 T 6553691 T 6553692~ 6553693
Iy,
65536 7%
pr 11246 42508, 12340, 580,
2 655367° 655367 6553672 6553673
2,
65536 7%
1119 31648 , 31558 1303
Bl _ h h h h (32)
= + + +
95 = 5553690 T 6553691 T 6553692 T 6553693
o , 1
6553674~ 65536 9%
536 12340 , 41928 , 12362
h+1 h h h h
= - + +
91 = 6553690~ 6553691 T 6553692 T 655363
580 , 2
6553674 " 65536 9%
93 1304 31557 , 31557
h+1 h h h h
= + +
9s 6553670 " 6553691 " 6553692 T 65536 %

L1303, o,
6553674~ 6553675 6553676

Similarly, we can refine the final edges of the open
polygon.

5.2. Applications and Comparison. Geometrical performance
of Ry, R;, R,, and R, schemes is depicted through several
examples. The proposed schemes have good continuity and
present smooth limit curves. Figures 3(a) and 4(a) present
initial control polygons of cap and elephant, respectively,
while Figures 3(b) and 4(b) are the limit curves obtained by
applying three iterations of R,-scheme on these initial poly-
gons. Figures 5(a) and 6(a) present initial control polygons
of flower and bird, respectively, while Figures 5(b) and 6(b)
are the limit curves obtained by applying three iterations of
R,-scheme on these initial polygons. Figures 7(a) and 8(a)
present initial control polygons of face of girls, while
Figures 7(b) and 8(b) are the limit curves obtained by apply-
ing three iterations of R,-scheme on these initial polygons,
respectively.

Figure 9 represents the initial polygon along with sharp
features of limit curve generated by R,-scheme at the third
subdivision level. Figures 10 and 11 present comparison of
some existing subdivision schemes (3-point scheme [38], 4-
point scheme [18], and 5-point scheme [19]) with the pro-
posed subdivision schemes (R, R,, and R, schemes). We have
chosen two different initial polygons, and limit curves are gen-
erated after three subdivision levels. It is clear from the figures
that the proposed schemes generate smooth limit curves.

6. Conclusion

Subdivision is an efficient way of constructing smooth curves
or surfaces in geometric modeling and computer graphics. In
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this paper, we have presented an elegant way of constructing
a class of approximating binary subdivision schemes by using
two well-known binary subdivision schemes. Several exam-
ples are provided to illustrate that the proposed schemes give
wide choice to geometric designers for generation of smooth
geometric models as per their own needs. Comparison with
some existing schemes is also given. Moreover, several
important properties like polynomial reproduction and gen-
eration, support of BLF, continuity, and HC of the proposed
scheme are discussed. Geometrical analysis of the limit curve
is also carried out.
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The problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708. A derangement is a permutation
that has no fixed points, and the derangement number D,, is the number of fixed point free permutations on an n element set.
Furthermore, the derangement polynomials are natural extensions of the derangement numbers. In this paper, we study the
derangement polynomials and numbers, their connections with cosine-derangement polynomials and sine-derangement

polynomials, and their applications to moments of some variants of gamma random variables.

1. Introduction and Preliminaries

The problem of counting derangements was initiated by
Pierre Rémond de Montmort in 1708 (see [1, 2]). A derange-
ment is a permutation of the elements of a set, such that no
element appears in its original position. In other words, a
derangement is a permutation that has no fixed points. The
derangement number D, is the number of fixed point free
permutations on an n(n > 1) element set.

The aim of this paper is to study derangement polyno-
mials and numbers, their connections with cosine-
derangement polynomials and sine-derangement polyno-
mials, and their applications to moments of some variants of
gamma random variables. Here, the derangement polynomials
D, (x) are natural extensions of the derangement numbers.

The outline of our main results is as follows. We show a
recurrence relation for derangement polynomials. Then, we
derive identities involving derangement polynomials, Bell
polynomials, and Stirling numbers of both kinds. In addition,
we also have an identity relating Bell polynomials, derange-
ment polynomials, and Euler numbers. Next, we introduce
the two variable polynomials, namely, cosine-derangement
polynomials D(9)(x, y) and sine-derangement polynomials

DY (x,y), in a natural manner by means of derangement

polynomials. We obtain, among other things, their explicit
expressions and recurrence relations. Lastly, in the final sec-
tion, we show that if X is the gamma random variable with
parameters 1,1, then D, (p), D\ (p, q), DY (p, q) are given
by the “moments” of some variants of X.

In the rest of this section, we recall the derangement num-
bers, especially their explicit expressions, generating function,
and recurrence relations. Also, we give the derangement poly-
nomials and give their explicit expressions. Then, we recall the
gamma random variable with parameters a, A along with their
moments and the Bell polynomials. Finally, we give the defini-
tions of the Stirling numbers of the first and second kinds.

As before, let D, denote the derangement number for n

>1,and let D, = 1. Then, the first few derangement numbers

D, (n>0) are 1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496,
1334961, ---. For n >0, the derangement numbers are given
by [3-5]

D"—n!—<n>(n— 1)!+<n>(n—2)!—<n>(n—3)!+-~~+(—1)"<n>0!
1 2 3 n

n n _1\k
=y ( )(n—k)!(—l)k:n!z (kll) .

k=0 \ k
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From (1), we note that [1-4, 6, 7]
< " 1
Z Dn —' = l—t e_t. (2)
n=0 n: -

By (2), we get

1_t§ _ f D,-nD, )5 (3)

n:

From (3), we can easily derive the following recurrence
relation [5, 8-11]:

(-1)" =D, —nD,_,, (n>1). (4)

n

Now, we consider the derangement polynomials which
are given by [10]

e = i D, (x)—. (5)

e 5 (o)
(6)

By comparing the coeflicients on both sides of (6), we get
(10]

i ( )Dlx”l (n=0). (7)

=0

On the other hand,
eft 0 00 tm
ot = e(x—l)t: Z tl Z (x_ 1>m_'
1-t 1-t = m! ®
= i n! i (x=1)" ﬁ
n=0 m=0 m' '

A continuous random variable X whose density function
is given by [12-14]

, ifx>0,

(10)

0, ifx<0,
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for some A > 0 and « > 0 is said to be the gamma random
variable with parameter «, A which is denoted by X ~ I'(a, A).
For X ~ I'(a, A), the n-th moment of X is given by

E[X"| = %J:O x"e ""x(/\x)“fldx

1 0 n+a—1 _~t
= T L t e 'dt (11)
_I'(a+n) (a+n)--

- AT (a) A"

(a+1)a

It is well known that the Bell polynomials are defined by
(15]

) = Z;] Bel,,(x) ;_r: (12)

When x=1, Bel, =Bel,(1)(n>0) are called the Bell
numbers.

The Stirling numbers of the first kind are defined as [16,
17

.= S

=0

L (n>0), (13)

where (x),=1, (x),=x(x—1) - (x—=n+1)(n>1).
As an inversion formula of (13), the Stirling numbers of
the second kind are defined by [16-18]

S,(m, 1) (x),(n 2 0). (14)

1]
I

2. Derangement Polynomials and Numbers

From (5), we have

1 (i m@%)h -f=1+ i (D, =D, 1) -
(15)

On the other hand,

e(x—l)tz i (x_l)n M=1+ i (x_l)n " (16)

Therefore, by (15) and (16), we obtain the following
lemma.

Lemma 1. For n > 1, we have
Dn(x) - nDn—I(x) =

(x-1)" (17)
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Replacing ¢ by 1 — ¢’ in (5), we get

e(l—x)(e‘—l) =t i D,(x) l (1 _ ez)l

-3 CUDE Y S0
m=0 =0 j=

(18)
From (18), we have
nooJ
Bel,(1-x)=) ) ~1)'Dy(x)8,(j, 1), (n 2 0).
j=0 I=0
(19)
It is easy to show that
1 onfeen) S (D& £
(1 x) el-1) _ 1 _
% ( )_g Tth:OBelm(l x)
(&8 n n tn
=y (> Bel,, (1-x)(-1)"" | -
n=0 m=0 m n
(20)
Replacing t by log (1 - £) in (20), we get
L e % (! lom 1 !
e _; mZ:O . Bel,,(1=x)(=1)"" (log (1-1))
o I 1 0 n
=y ¥ ( )Belm(l—x)(—l)lmz (~1)"8,(n, l)t'
20 m=0 \m nel n
!

> n : ~l-m "
] V;’ (; m=0 (m)Belm(l_x)(_l)nl Sl(”»l)>n!.
(21)

From (5) and (21), we have
n 1

1=0 m=0

( )Bel - x)(=1)""78, (n,1), (1= 0).

(22)

Therefore, by (19) and (22), we obtain the following
theorem.

Theorem 2. For n > 0, we have

Corollary 3. For n> 0, we have

Beln:i i (j)(—ulp,sz(',l),

(24)

Dn=§ mio (;)Belm(—l)”mlsl(n,l).

Replacing ¢ by —¢' in (5), we get

1

- e(l—x)e’
et +1

1]
DM itz inv2
)
3
=
B
D8

=
I
(=]
§
(=]

On the other hand, we have

2 et+1
leO tIOO tm

Z E - P Bel

<ZBel (1-x

lx

M8

where E, are the ordinary Euler numbers.

Therefore, by (25) and (26), we obtain the following
theorem.

Theorem 4. For n > 0, we have

y Bel,(1-x)E,_, ") 2 y
(I-x)
m=0 m



Now, we observe that

—1 _
1 V= 1 re—rtertz 1 e—t g e ‘ ert
1-t¢ 1-¢ 1-¢ 1-¢

)

k=0 L i+-+l,_=
k oo m
t t
. D, (r)—
| m |
k! = m!

5

>y (F
n=0 \k=0 [ +-+l,_=k ll’ ceey lr—l
n i
: DDy, -+~ Dy D, (1) | >
k n.

where r is a positive integer.
On the other hand,

(L) -5 (Dere-E (75

(29)

(28)

Therefore, by (28) and (29), we obtain the following
proposition.

Proposition 5. For r € N, we have
r+n-—1
(")-ak

> ¢ "\p, D, D (r)
1, P Pn-k(T)-
k=0 L+tl =k \1p ool k "

(30)
It is well known that [16, 18, 19]
e¥=cosx+isinx, i=+v-1. (31)
From (5), we note that
e—t (9] n
X+l
me »)t Z;) (x+ 1y) (x,y €R), (32)
—t 00 n
6 x iy)t Z (33)
By (9), (32), and (33), we get
n _ 1 . m
D(x+iy)=n!y w (34)
= m!
n _ 1 _
—iy)=n! z zy ,(n=0). (35)
m=0

From (34) and (35), we can derive the following
equations:
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-iy)\ t"
m >

~t

e _°° (X +iy)+D,(x
l_ecosyt—Z( 5

i (36)
et . < (D,(x+i x—iy)\ t"
(37)

We define cosine-derangement polynomials and sine-
derangement polynomials, respectively, by

—t n
1e te" cos yt = Z DY (x, y) (38)
n=0
et 9 "
- te”‘ sin yt = Z D! xy) (39)
n=0
Thus, we have
Dglc)(x)y) — Dn(x+iy) ;Dn('x_iy),
40
(s) Dn(x+iy)_Dn(x_iy> ( )
DY (x.y) = - (n20)
Therefore, we obtain the following theorem.
Theorem 6. For n > 0, we have
(C) n' u 1 . \m s m
Dy =5 (k=14 (x- 1= )",
m=0 .
D)= Y L1y (x-1-iy)")
mATA 21 =
(41)
Before proceeding further, we recall that
N (_1)” 2n 2n
cos yt = yt (42)
2,
From (38)and (42), we note that
020: D(C)( )ﬁ: < et cos (yt)
=" =11 4
00 co (k2] k
:Z B'Itlz ( )( l)mymek th'
1=0 I k=0 m=0 k!
00 n [k/2] fs "
— —1)" 2m , k—2m -
5 (5 ()2 (o)
(43)

Therefore, by comparing the coefficients on both sides of
(43), we obtain the following theorem.



Journal of Function Spaces

Theorem 7. For n > 0, we have

[n/2] n k
Z Z ank (_ I)mymek—Zm )
m=0 k=2m 2m
(44)
Corollary 8. For n > 0, we have
nle 1 m m
32_0 (=T i)+ (x = 1= iy)")
WA w o (n\ [k (45)
:Z Z Dn,( l)m 2m , k—2m
m=0 k=2m \ k 2m
By (38), we get
eV cos yt=(1-t ZD x,y);!
Ooﬂ 0 (46)
C tn
1+Z (D —nD< 1(x y))m

—_

n=

Thus, we have

cos yt = eI 4 o171 OZO: (Dn?(x,y) - mD!* 1(x,y)) t—m'
m=1
00 n (o] I o
=y (l—x)”% +y (l—x)l%z
n=0 : =0 *m=1
DY (x.y) - MDY (57))
=1+ i ((l—x)”+ i <n>(l—x)"m
n=1 m=1 m
(DY) (xy) - mD 1 (5.2)) ) -
(47)

Therefore, by (47) and (42), we obtain the following
theorem.

Theorem 9. For k € N, we have

”+Zl< ) (D) (6y) = mD}iL (5,
DY =2k
0, ifn=2k-1

By (38), we get

e(x—l)t

M8
S
=
=2

cos yt =

)

I
S
Mg L
/
)
—
ke
=
|
=
>
—
=
N—
3|
+
Al
™
\O
SN—

=
Il
—

On the other hand,

D cos yt = Z_ZO: (x— l)l_!mZ::o " (~1) )
o) [n12] n "
=1+ ) ()" (x = 1)y |
n=1 m=0 2m h:

Therefore, by (49) and (50), we obtain the following
theorem.

Theorem 10. For n > 1, we have

[n12] n
DY (x,y) - nD;(x.7) = Y ( )(—1)*"<x—1>"'2my2*".

m=0 2m
It is not difficult to show that

Y Do S (" @ )
Z,) Dy(x+ry) 5= > 12:3 l D7 (o) )
n= =

where r is a positive integer.
By comparing the coefficients on both sides of (47), we
get

Now, we observe that

Mg

0 t" o0 (e
anp (%)) == =— ( e_ e cos yt

o] nl ox\1-t )

—t . (&) ( ) tn
=t o t=t D\ (x,y)—
— € cosy nz:(:) (%) o

i © "

= nDnc—l (x’ y) N

] n!

(54)



Form (54), we note that

DY (5.3) =1, o DY) =Dy (5,0), (n21). (55)
Therefore, we obtain the following theorem.

Theorem 11. For n > 0, we have
D' (59) = 1, 2 DY (x,y) =D, (2, 9), (= 1), (56)

ox
In particular,

d 0 c
—D,(x)= 2D} (x,0) =nD?,

dx (x,0) =D\, (x), (n=1).

(57)
Corollary 12. D) (x, y) as a polynomial in x, for each fixed y,

and D, (x) are Appell sequences.
Before proceeding further, we recall that

sin yt = i (_l)n_l 2n—12n-1 (58)

n=1 (21’1 - 1)'
From (39)and (58), we note that
O t” t xt
Z DY)( ,y)mz 1-7¢ e sin yt
n=0

o) oo [(i-1)12]

Dy x
)
k=0 j=1 m=0
j . t
. Jj-2m-1, 2m+1 =

n .
. x]—Zm—lyZerlD
J

Therefore, by (59), we obtain the following theorem.

Theorem 13. For n > 0, we have

0 16=1)2) j n\
_ x]—Zm—1y2m+1Dn7]
=1 m=0 2m+ 1 j

(60)

By (35) and (37) and Theorem 13, we obtain the
following corollary.
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11>/21< j )

m=1 2m+1 (61)
( )x] 2m—1 2m+1D

J

Corollary 14. For n > 1, we have

D, (x+iy) -

x—iy) <
g "2

J=1

By (59), we see that

sin yt = el1™)! Z

k=1
0 m 00 k
(00 () =KD () ) (1= )
(62)

Therefore, by (62) and (58), we obtain the following
theorem.

Theorem 15. For m € N, we have

> <k> (D (e y) = kD, (9)) (1 =)
_ { (1", = 2m e
0, if n=2m.

It is easy to show that (9/0x)DY(x,y) =nD,(f_)1(x, ¥).

However, D{¥)(x, y) is not an Appell sequence, since Dés) (x,

y)=0.
We observe that

(&%) tn —t
Y DY(x.y) =7 e sin yt
n=0
OZO: i’l OZO: sl t2m+1
=) Di(x)5 ), (=1)"y™
1=0 Lo (2m+1)!
io: [(n=1)/2 n
n=1 m=0 <2m +1 )
2m+1 t
(_1)my " Dn—2m71(x)) o
(64)

Comparing the coefficients on both sides of (64), we have
the following theorem.
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Theorem 16. For n > 1, we have

[(n=1)/2] " 1
DP(xy)= ) =1)"y" D, (%)

m=0 2m+ 1
(65)
For r € N, we have
00 eft —t
Z DSIS) (x+1,y)= - te("”)t sin yt = — e sin yte'!
n=0
=) ] o0 m
3 (s) t mt
_ZDl (x,y)l'z —
1=0 = ’
00 n n n
(«) A
= D7 ()" | =
1
,;) ;) ( I > > !
(66)

Thus, we obtain

3. Further Remarks

As applications, we want to show that if X is the gamma ran-
dom variable with parameters 1,1, then D, (p),Dﬁf) (p>9)s
DY) (p, q) are given by the “moments” of some variants of X
. We let the reader refer to the papers [20-22] for some recent
papers related to this section.

Let X be a gamma random variable with parameters 1, 1
which is denoted by X ~ I'(1, 1). Then, we observe that

00

E [e(X—1+p)t:| _ J
0

where f(x) is the density function of X and p € R.
From (10) and (68), we can derive the following equation:

eI f () dx, (68)

E|:e(X—1+p)t:| _ JOO eI g e — oD JOO (1) gy
0 0
e’ = "
= = D, (p)—.
e ZO w(P) -
(69)

On the other hand, by Taylor expansion, we get

n

E|:e(X—l+p)t:| = i E[(X-1 +p)”]%- (70)

n=0

Therefore, by (69) and (70), we obtain the following
theorem.

Theorem 17. For n>0, X ~I'(1, 1), the moment of X — 1 +p
is given by

E[(X = 1+p)"]=D,(p)- (71)

When p=0,D, =D,(0)
Thus, we note that

D, = Z ( > ) ZE[XI} (72)

—E[(X-1)"], (n>0).

=0

For X ~ I'(1, 1), we note that the moment of X is given by
E[X"]=n!, (n>0).
Therefore, by (72), we obtain the following corollary.

Corollary 18. For n >0, X ~I'(1, 1), we have

D, = ;() ™,

(73)
" n
D,(p)= ). (p-1""n
=0 \'!
For X ~ I'(1,1), we have
—t
E|:e(X—1+p+iq)t:| — le te(p+iq)t) (74)
where p, g € R.
From (74), we note that
E[e(x_“"_"q)t} =& i (75)
1-¢
By (74) and (75), we get
-t
E[e(X—l+p+iq)t} +E[e(X—l+p—iq)t:| _ 126 tept cos qt
g (76)

On the other hand, by Taylor expansion, we get

E{e(X—1+p+iq)t} +E{ (X—1+p—iq) } ZE -1 +p+iq)n
. t"
+(X—1+p—1q)”}m
(77)
Therefore, by (76) and (77), we obtain the following
theorem.



Theorem 19. For n >0, X ~I'(1, 1), we have

E{(X—1+p+iq)”+(X—1+p—iq)”
2

|=p0pa. )
It is easy to show that
—t

E [e<X_1+P+iq)t] -E {e“‘”"_@t} = 2i—1e tept sin gt

A (s t"
=(21)Z D)( "Z)m’

n=1
(79)
where X ~T'(1,1).
Thus, we have
XL = X)), s
i
(50)

where X ~I'(1,1).

4. Conclusion

The introduction of derangement numbers D, goes back to
as early as 1708 when Pierre Rémond de Montmort consid-
ered some counting problem on derangements. In this paper,
we dealt with derangement polynomials D, (x) which are
natural extensions of the derangement numbers. We showed
a recurrence relation for derangement polynomials. We
derived identities involving derangement polynomials, Bell
polynomials, and Stirling numbers of both kinds. In addition,
we also obtained an identity relating Bell polynomials,
derangement polynomials, and Euler numbers. Next, we
introduced the cosine-derangement polynomials D' (x, y)

and sine-derangement polynomials D{¥)(x, y), by means of
derangement polynomials. Then, we derived, among other
things, their explicit expressions and recurrence relations.
Lastly, as applications, we showed that if X is the gamma ran-
dom variable with parameters 1,1, then Dn(p),DSf) (p.9)s

DY) (p, q) are given by the “moments” of some variants of X.

We have witnessed that the study of some special num-
bers and polynomials was done intensively by using several
different means, which include generating functions, combi-
natorial methods, umbral calculus, p-adic analysis, probabil-
ity theory, special functions, and differential equations.
Moreover, the same has been done for various degenerate
versions of quite a few special numbers and polynomials in
recent years with their interests not only in combinatorial
and arithmetical properties but also in their applications to
symmetric identities, differential equations, and probability
theories. It would have been nicer if we were able to find
abundant applications in other disciplines.

It is one of our future projects to continue to investigate
many ordinary and degenerate special numbers and polyno-
mials by various means and find their applications in physics,
science, engineering, and mathematics.
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In this paper, we consider an auxiliary function G to combine and unify several existing fixed point theorems in the setting of the
complete partial b-metric space. We consider also some examples to support the observed main results.

1. Introduction and Preliminaries

The notion of the distance has been investigated and
improved from the beginning of the mathematics sciences.
The first formal definition was given by Hausdorft and Fre-
chet under the name of metric spaces. The formal definition
was extended, improved, and generalized in several ways. In
this paper, we shall consider the combination of notions of
partial metric space and b-metric space. Partial metric space,
defined by Matthews [1, 2] is the most economical way to cal-
culate the distance in computer science. So, it is important in
the setting of theoretical computer science. On the other
hand, b-metric is the most interesting and real generalization
of metric spaces; in this case, the triangle inequality is
replaced by a modified version of triangle inequality.For
more details on the advances of fixed point theory in the set-
ting of b-metric spaces, see e.g. [13]-[27].

In this paper, we shall propose a fixed point theorem by
using an auxiliary function G to combine, generalize, and
unify several fixed point results in the setting of the complete
partial b-metric spaces.

In [3], the authors proposed a new fixed point theorem in
the setting of metric spaces.

We consider the follow sets of functions:

(1) G be the set of the functions € : [0, c0)’ — [0, c0)
that satisfy the following conditions:

(f,) € is continuous,

(,) ©(0,0,0) =0,

(f;) max {1,v} < @(1,v, w), for all 7, v, w € [0, 00).
In [3], some examples of such a function were given.

) (rvw=T1T+v+w
(i) &(7,v,w) =max {7,v, 0}

(iii) €(r,v,w) = (r+v)(1 +w)

(2) @ be the set of functions v : [0, 00) — [0, 00) that
satisty the following conditions:

(b,) v is nondecreasing,

(b)) Yi1v'(u) <oco for each u>0. (Here, by v/, we
denote the ith iterate ohy.)

We mention that the functions y € ® are called (c)
-comparison functions. Moreover, it is not difficult to check
that ¢(u) < u for every u > 0.

(3) '={y: X —>[0,00) | yislower semicontinuous}

Theorem 1 (see [3]). Let (X,d) be a complete metric space,
a lower semicontinuous function y: X — [0,00), and a
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self-mapping T : X — X. If there exist ye® and TG
such that

G(d(Tx, Ty),y(Tx),y(Ty))
G(d(xy), y(x), y(0))>
SV M4 2(d(x, Tx), p(Tx), y(x)) + G(d(y Ty), p(T), y(y)) ’
2

(1)

for every x,y € X, then T has a unique fixed point.
Let X be a nonempty set.
(i) A function b : X x X — [0, 00) is a b-metric on X if

for a given real number s>1 and for all x,y,z€X
the following conditions hold:

(b1) b(x,y) =0 x =y,
(b2)b(x,y) = b(y> %), (2)
(b3)b(x,y) <s[b(x, 2) + b(z, y)].

The triplet (X, b,s>1) is called a b-metric space.

(ii) A function p : X x X — [0, c0) is a partial metric on
X if for all x, y, z € X the following conditions hold:

(Pr)x=y e plxx)=p(y)=pxy) Sx=y
(p2) p(%: %) < p(%, )
(p3) p(x:y) = p(y, x)
(Pa) P(x2y) < p(x:2) + p(2y) = p(2: 2)-

(3)

The pair (X, p) is said to be a partial metric space.

Combining these two concepts, Shukla [4] introduced the
notion of partial b-metric space as follows.

(iii) A function p, : X x X — [0, 00) is a partial b-met-

ric on X if for all x, y, z € X the following conditions
hold:

(pbl)x=y=’Pb(x,x)=Pb( ¥) = Pp(%: )
(sz) Py(6X) < py (1Y),
(%) Po(6:) =Py (9> %),
(k) Pu(53) <slpy(.2) + py(@9)] - py(2:2).

(4)

The triplet (X, p,,s>1) is said to be a partial b-metric
space.
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On a partial b-metric space (X, p;, s> 1) a sequence {x, }
is said to be

(i) convergent to x € X iflim,_, p, (x,,x) = b(x, x) (the
limit of a convergent sequence is not necessarily
unique)

(ii) Cauchy if lim, ,,, . p,(x,,x,) exists and its finite

P
Moreover, the partial b-metric space is complete if for
every Cauchy sequence {ax, } there exists x € X such that

lim p, (x, =p (6%, (5)

np—sco %p) = ,}Hgopb(xn’ x)

Let (X, p;, s > 1) be a partial b-metric space. We say thata
self-mapping T on X is continuous if for every sequence {x,, }
in X which converges to a point x € X we have

lim p,(Tx,, Tx) = lim pb(Txn, Txn+j) =p,(Tx, Tx). (6)
n—00

n—-00
In [5], the authors introduced the following new notions.

(i) On a partial b-metric space, a sequence {x,} is a 0

-Cauchy sequence if lim,,_,,p, (x,, x,) = 0

(ii) The space (X, p;, s> 1) is said to be 0-complete if for
each 0-Cauchy sequence {x,} in X, there exists a
point x € X such that

lim p, (x,, py(%x) =0 (7)

n,p—00

X,) = lim py (x,,, x) =

Moreover, they proved that if the partial b-metric space
(X, py» s> 1) is complete, then it is 0-complete.

For a better understanding of the connections between
these spaces (partial metric space, b-metric space, and partial
b-metric space), we mention some papers that can be
consulted [6-12].

Let @, be the set of functions ¢ : [0, c0) — [0,
satisty the following conditions:

(¢,)¢ is nondecreasing,

(6,)Y 1 s'¢'(u) < co for each u>0. (Here, by ¢, we
denote the ith iterate oh ¢.)

00) that

2. Main Results

The following is the main result of the paper.
Theorem 2. Let (X, p,, s > 1) be a 0-complete partial b -metric

space, a function yeI, €G , and a self-mapping T : X
— X . If there exists ¢ € O, such that

G(pyp(Tx, Ty), y(Tx), y(Ty))
pb(x ) y(x), ()
SO M0 g, (x, Tx), p(Tx), y(x)) + E(d 0 Ty). (T). ¥(2) ’
2s

(8)




Journal of Function Spaces

for every x,y € X . If T is continuous or p,, is continuous, then
T has a unique fixed point.

Proof. Starting with a point x,, € X, we consider the sequence
{x} defined by x,, = Tx,_,, n € N. Without losing the general-
ity, we can assume that for any n € N, we have b(x,, x,,,,) > 0.
Indeed, on the contrary, if there exists a positive integer j, such

that Xj, = Xj 1 We get that x, is a fixed point of T, because due
Jo+1 Jo

to the way the sequence was {x} defined, it follows that x; =
Tx; . Moreover, using this remark, we can easily see that

% (04 (5 X1 ) V() V(3011)) >0, foreveryne N, (9)

g(pb( n+1> n+2) Y(xn+l) Y(xn+2))

Again supposing that Z(p, (x,.%,.11) Y(3, ), (1)) =0

for some j, from (f;), we have

0<p, (xjo’xj0+1) < max {p,7 (xjo,xjoﬂ),y(xjo)} (10)

< ?(pb (xjo, ij+1)’ Y (xjo)’ 4 (xfo“) )

which is a contradiction. Taking x =x, and y=x,,, in (8)
we get

n’xn+l)>y(xn)’ Y(xn+l))’
) Y(T%4)) + (P (X1> TXi1)s ¥ (X1 )s V(T X))

?(pb(xn’ xn+1)’ Y(xn)’ Y(xnﬂ))’
? x xn+1)’ y(xn)’ Y(xn+1)) + g(pb('xrtJrl’ xn+2)’ Y(anrl)’ y(xn+2))

= f pb T'x Txn+1 (Txn)’Y(Tan)
G(py(x
< ¢ | max (X TX,), Y(x
< ¢ | max

2s

(11)

o

There are two possibilities, namely,
max {g(Pb ('xn’ Xntl )’ Y(xn)’ Y(‘xn+l)>’
?(Pb(xnﬂ’xnﬂ)’V(xnﬂ)”})(xnﬂ))} (12)
= G(d(Xp1 Xn12)> Y (%41 ) Y (Xi2) )

which leads us (since ¢(u) < u for any u > 0) to

g(d('xnﬁ-l’xn+2)’ Y( n+1) ( n+2))
S([)(?(Pb( n+1’xn+2) ( n+1)’Y( n+2))) (13)
<G(Pp(Xns1> Xn12)> Y(Xns1)> Y (Xni2))-

But, this is a contradiction, and then

max {G(d(X,, X,41)> Y(%,)> Y (Xpi1))>
?(d(xnﬂ’xnﬂ) (n+1)’yx” ))} (14)
= G(d(%, Xp11)> V(%05 Y (X1))-

Therefore, by (11) and taking into account (f;), we have

P (Xna1s Xiz) S MAX Py (X115 Xi2)> V(K1) }
< ?(ph(xnﬂ’xmz)’ Y(xnﬂ)’ Y(xn+2)) (15)

< ¢(?<Ph(xn’ xn+1)’ y(xn)’ y(xnﬂ)))’
foreveryn e NUO.

2s

X xn+1>’ Y(xn)’ V(xn+l))’ })
Xn+1> xn+2)’ Y(xn+1)’ y(xn+2))

Consequently, for every n € N, we obtain

Pb(xn’ xn+1) = (»b(?(/)b(xn—l’ xn)’ Y(xn—l)’ y(xn))) (16)
< ¢"(F(py(*0> 1), Y(%0)> ¥(%1)))-

Let p, m € N such that p < m. By applying the (triangle-
type inequality) (p,,), we have

Py (X %m) <[Py (%

p+1) +pb( p+1’xm>] _Pb(xpﬂ’xpﬂ)

< sy (¥ Xpr1) + Py (¥pi1 %)

< 5py (Xp> Xpe1) + 5 “p b (Xpe1> Xpi2)
+ 5[4 (Xps2s %m) | = Py (%p120 %p12)

< 5Py (%> Xpi1) + 57 [P (Xpa1s %p12)

<5Pb( p+1>
" 1Pb( Xm-1>% )’

(17)

+ 5Py (%p420 X )] -

Pb( p+1° p+2)+ Tt



and (17) leads us to

Py (5 5n) < o . (S oy (0 1), Y(x0) 1)
i=p
< g 2SSy (0 ) V(x0) )
i=p
1
= 51 (S =St )s

(18)

where S, = Y7 5'¢'(Z(p, (x0, x1), Y (%), y(x1))). Keeping in
mind (¢, ), we deduce that there exists S, — S as n — oo,
and from (18), we get

I
e

JJm py (x5 %) (19)

Consequently, {x,} is a 0-Cauchy sequence in a 0-
complete partial b-metric space, and then there exists ¢ € X
such that

lim p, (x,, Xp6) =pyp(66)=0.  (20)

pm—00

Xin) = }E&Pb(
Moreover, by (f;) together with (16), we have

Y(xn) < max {pb( n+1)’ Y( n)}
< ?(Pb(x n+1) ( n)’Y('an)) (21)
< ¢"(F(py(x0: x1) Y(%0)> (%1))

and using (¢,)

lim y(x,) = 0. (22)

n—00

Plus, by (¢,) and (20),

y(c) = 0. (23)

We claim that this point ¢ is in fact a fixed point of the
mapping T. If the mapping T is continuous, then by (6), we
have

Py(6:6) = lim py (Tx,, T¢) = lim py (Tx,, Txyy) = 0. (24)
Thus, applying the triangle inequality (p, ),

pb(c’ TC) < S[pb(<> xn+1) + PrXu+1> TC] - pb('xm—l’ xn+1)’ (25)
and together with (20) and (24), letting # — oo, we get p,
(¢, Tg) =0, that is, ¢ is a fixed point of T.

Let assume now that p, is continuous, that is, lim,_, p,
(x,, TS) = p, (¢, T6) Replacing x by x,, and y by ¢ in (8), we
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have (for every n € ]N)

G(py(xpe1> T6), Y(x41) G(py(Tx, T<), y(Tx,), y(Ts)

G(Py (% ©)> V(%) ¥(6)s
AN Gy (%, T,)s Y(5,)s Y(Tx,)) + E (04 (6 T6), ¥(), ¥(T5))
2s
G(pyp(% €)> V(%) (6))>
X X1 )0 Y (%) Y (Xni1)) + E(Pp (6> T6), (5)> (1))

2s
G(Pp(%4:6)> V(%) (5))
SN G0y (0 X01)> Y6 V(X)) + 4 (6 T)s 1(), 1(TQ)) [

2s

(26)

Letting n — co and taking into account (f;), we have

Z(py(s T), 0, y(Tq))
= lim & (py (%11, T6)> ¥ (¥s1)> ¥(T6))

G(Py(%6)> Y(%4)> ¥(5))>
<L MEX G, (0 B ) VD), V() + E (46 T, (), 7(T6)
2s

©(0,0,0) + ¥(py (s T5), 0, V(TC))}
2

= max {?(O, 0,0),

_ 9(py(5 T5), 0, y(T5))
2s

(27)

Consequently, €(p,(s, Ts),0,y(Tg)) =0. But,

(f;) into account, we get

0} <% (py (, Te), 0,y(Te) =0, (28)

taking

0 <max {p, (s, T¢),

which means p,(¢, T¢) =0. Thus, T¢=g.

As alast step, we claim that ¢ is the unique fixed point of
T. Supposing on the contrary, that there exists another point
v € X such that T¢ = ¢ # v = Tw. First of all, applying (8) with
x=v=y, we have

$(Z(0.y(v), y(v)) <Z(0.y(v), y(v)),  (29)

=y(Tv) =

g(0,y(v),y(v)) <

which implies that y(v)
in (8). We have

0.Letnowx=c¢and y=v
G(py(6:0),0,0)=F(py(Te, Tv), y
(

<¢ (max { @

<¢(¥(py(6:0), 0,

T¢), y(Tv))
(

(

G(pyp(60)¥(5), ¥ (v),
56 16) ¥(6), ¥(T6)) + E(py (v, Tv), y(v), y(Tv))
y

(P Y
2s
Z(py(60), 7(6)> ¥(v)),
(0,¥(5)> ¥(Ts)) + £(0, y(v), y(Tv))
)

)
max

2s

0)) < Z(py (6 v), 0,0). (30)

This is a contradiction. Therefore, p, (g, v) =0, that is, T

admits a unique fixed point.

In particular, letting G(t,v,w)=7T+v+w, for 7,v,w
€[0,00), we can omit the continuity conditions of the
mapping T or the partial b-metric p,.
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Theorem 3. Let (X, p,, s > 1) be a 0-complete partial b -metric
space, a function yeI, GeF , and a self-mapping T : X
—> X . If there exists ¢ € @, such that
Po(Tx Ty) +y(Tx) + y(Ty))
Py 7) +v(x) + (),
=P puloe T2 + 1(Tx) +960) + 2yl ) +9(T) +30) [ |

2s
(31)

for every x,y € X, then T has a unique fixed point.

Py (6 TS) +y(Xps1) +¥(T5))
<slpy(6 Tx,) + py (T, T6)]
- pb(Txn’ Txn) + Y(xnﬂ) + y(TC))
<8Py (6 X)) + 8[py (T, T6) +y(Tx,) + y(T6)]

pb(xn’

Proof. Of course, since the function G(7,v,w)=7T+v+w©

€ %, by Theorem 2, we have that the sequence {x,}

defined as x,=Tx, ; is convergent to a point ¢eX,
and moreover, (22) and (23) hold. We claim that this
point ¢ is a fixed point of T. For this purpose, by

(31), for x=¢ and y=g¢, we get

(32)

< 506 Xpy1) + 56 (max {pbm, &) +¥(5) + (<),

Xpe1) + V(%) +Y(%,01)) + £, (6 T6) +p(5) + V(TC)})
2s

<3Pu(6 Sy ) + 5 { 32 €) +5,) +1(5)

Letting n — 00, in the above inequality and keeping in
mind (19), (22), and (23), we get

Py (6 TS) + p(T¢) < s¢b (M)

< P& T5) +y(T)
2

(33)

>

which is a contradiction. Therefore, p,(¢, T¢) =0, that is,
T¢=c¢.

P (X Xit) + V(%) +¥(Xni1)) + Py(6 TG) +¥(6) + Y(TCD}
2s

As in the previous theorem, supposing that there exists v,
another fixed point of T, by (31), we have

2y(v) = py(Tv, Tv) +y(v) +y(Tv) < $(2y(v)) < 2y(v),
(34)

which is a contradiction. Thus, y(v) = 0 and taking x = ¢ and

y=vin (31), we have

Pu(6:0) = py(6:v) +¥(5) +y(v) = py (6, v) + () + y(v)

< (max {pu(6.0) +7(9) +10),

=¢(py(60)) < py(s0).

But, this is a contraction, so p, (g, v) = 0 which proves the
uniqueness of the fixed point.

Example 4. Let the set X = [0, 1] and the function p, : X x X
— [0, c0) be defined by p,(x,1/2) = p,(1/2,x) =1 for any
x€X and p,(x, y) = (max {x,y})’, otherwise. It easy to see

Pu(6, TS) +7(6) +¥(T3) + py(v, ) + y(v) + Y(Tv) }) (35)

2s

that p, is a partial b -metric space, with s = 2. Moreover, since

lim,, ,,_, Py (%, X,,) = lim (max {x,,x,,})* =0 implies

lim x, =0, we have

n,m—00""n

1,M—00

lim p,(x,,0) = p,(0,0) =0, (36)



which shows that (X, p,, s) is 0-complete. On the other hand,
taking, for example, the sequence {x,} in X, where x, = n/(2
n+1), we have lim, , . p,(x,,x,,) = 1/4, but lim, _, p, (x,
1/2) =1=p,(1/2,1/2) = 1. Thus, the space (X, p,,s) is not
complete.

Let the mapping T : X — X be defined as

Z, if xe[0,1),
Tx= (37)
1.
> ifx=1.
Choosing ¢(u) = u/2 and y(u) = u, we have
(i) f x=y=1, then
Pp(T1L T1) +y(T1) +y(T1))
1 5
B -
p(L 1) +y(1 ) (1)),
S| mex phu,ﬂ)w(ﬂ)w( )
2

(i) Ifx=1, y€[0,1), then

Pp(Tx, T1) +y(Tx) +y(T1))

_ x 1 . X N 1 73+x<2+x
AV V(Z) "2)" 2 2

Py 1) + 9(x) + p(1)),
SOLMIN (6, Tx) + (T) +y(x) + py (1, TL) + ¢(T1) +y(1))

4
(39)
(iii) If x, y € [0, 1), then
Po(Tx, Ty) +y(Tx) +y(Ty))
o oxy X N X +dx+dy  xXPHx+y
7pb(1’1)+y(i)+y(4)g 16 =T
Py(%:y) +y(x) +y())
SO gy (3, Tx) + y(Tx) +y(3) + y (T33) + (1Y) + 1)
4
(40)

(We considered here max {x, y} = x. The case max {x, y}
=y is similar.)

Consequently, by Theorem 3, the mapping T admits a
unique fixed point.

3. Conclusion

In this paper, we investigate the uniqueness and the existence
of a fixed point for certain contraction via the G-function in
one of the most general frames and complete the partial b
-metric space. Regarding that the metric fixed point theory
has a key role in the solution of not only differential equa-
tions and fractional differential equations but also integral
equations, our results can be applied in these problems.
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In this paper, a nonlinear integral equation related to infectious diseases is investigated. Namely, we first study the existence and
uniqueness of solutions and provide numerical algorithms that converge to the unique solution. Next, we study the lower and
upper subsolutions, as well as the data dependence of the solution.

1. Introduction

We consider the nonlinear integral equation

i=1

where n > 2 is an integer and 7; > 0,i=1,2, -+, n. In the case
n=1and f,; =0, (1) reduces to

x(t) = Jt g,(s,x(s))dst e R. (2)

t-1,

The integral equation (2) models the spread of certain
infectious diseases with periodic contact rate that varies sea-
sonally (see [1]). Several results related to certain mathemat-
ical aspects of (2) have been obtained by many authors (see,
e.g., [1-9] and the references therein). In particular, in [3],
using the Picard operator technique, the integral equation
(2) was investigated regarding the existence and uniqueness
of solutions and periodic solutions, lower and upper subsolu-
tions, the data dependence, and the differentiability of solu-
tions with respect to a parameter.

In this paper, we are concerned with the integral equation
(1). We first investigate the existence and uniqueness of solu-
tions and provide numerical algorithms that converge to the
unique solution. Next, we study the lower and upper subsolu-
tions, as well as the data dependence of the solution.

The next section is devoted to the main results of this
paper. Namely, in Subsection 2.1, we fix some notations that
will be used throughout this paper. In Subsection 2.2, we pro-
vide some lemmas that will be used in the proofs of our main
results. In Subsection 2.3, the existence and uniqueness of
solutions and periodic solutions are derived using the Banach
contraction principle. Moreover, an iterative algorithm based
on Picard iteration for approximating the unique solution is
provided. In Subsection 2.4, a Presic’ -type iterative algorithm
that converges to the unique solution is provided. Lower and
upper subsolutions type results are obtained in Subsection
2.5. Finally, in Subsection 2.6, the data dependence of solu-
tions is studied.

2. Results

We first fix some notations.

2.1. Notations. Let I = [a, 8] and J = [m, M|, where 0 < <
and 0 < m < M. Let

C(RxI,J)={f:RxI—],fiscontinuous}, )
X=C(R,I)={f : R—> I, f is continuous}.

The functional space X is equipped with the norm |-y,
where
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[|[| x = sup |x(£) , x € X. (4)
teR

Notice that (X, ||-||) is a Banach space.

2.2. Preliminaries. The following lemma will be useful later. It
can be easily proved by induction.

Lemma 1. Let {a,,} and {b,} be two real sequences. Then, for
alln>2,

laja, - a, = bbby b,|<|ayas - a,l|a; - by
+1by||azay - a,||a, — by (5)

+1b;b,|asas -+ a,||as — bs|+---+|a,||b,b,y - b,_,|
Nay; = b, |+ 1616y b,_g]|a, = b,

We recall the following result due to Pregic’ [10].

Lemma 2. Let (X, d) be a complete metric space, k a positive
integer and ¢ : X* — X a mapping satisfying the following
condition:

d(q)(xl’xz""’xk)’ (p(xZ’x3""’xk+1)) (6)
< qpd(x)5 X5) + God (x5, X3) - +q4d (X Xpey )

for all x;,--,x,; €X, where q,,q,, -+, q) are nonnegative
constants such that q, + q, + ---+q; < 1. Then,

(i) There exists a unique x* € X such that

*

X =(x", x", e x"). (7)

(ii) For all x;,x, -, x € X, the sequence {x,}CX
defined by

xP+k:(P(xp’xp+1>"" p+k71)’P21 (8)

is convergent to x*.

For more details about the above result, we refer to [11-15].

2.3. Existence and Uniqueness Result. Problem (1) is investi-
gated under the following conditions:

(C) fg;,€C(RXL]J),i=1,2,-,n.

(C2) For all i=1,2, -+, n, there exists a constant Lfi >0
such that for all t € R,

|fi(t u) —fi(t,v)|sti|u—v|,u,v€I. 9)

(C3) For all i=1,2, -+, n, there exists a constant L, >0
such that for all t € R,

Journal of Function Spaces
9:(t:u) = g;(t:v)| <Ly lu—v[,u,vel (10)

(C4) M" ([T (r; + 1) Yk (Ly, + Ly 1) < 1.
(C5) a/m"™ <[, (7;+1) < BIM".
We have the following existence and uniqueness result.

Theorem 3. Under conditions (C,)-(Cs), problem (1) admits
one and only one solution x* € X. Moreover, for all x, € X, the
sequence {x,} C X defined by

Xy (F) = ﬁ(fi(t,xp(t)) +JZ_ gi(s,xp(s))ds>,t€ R

i (11)

i

converges uniformly to x*.

Proof. Let us define the operator T : X — C(RR, R) by
T)(t) = [[Tix) (1), xe X, te R, (12)
i=1

where

t

gi(s,x(s)) ds, i=1,2, -, n.

T, () (6) = (6, x(1)) + j
(13)

i

By (C,),foralli=1,2,:--,nand t € R, one has
t

Mds=(,+1)M, (14)

i

T,(x)(t) <M + J

-7

which yields

T(x)(t) <M" ﬁ(rﬁl). (15)
i1
Then, using (C;), one deduces that
T(x)(t)<B teR. (16)

Similarly, by (C,), one has

t

Ti(x)(t)zm +J

mds=(t;+1)m, (17)
t—1;

i

which yields
T(x)(t)=m" ﬁ(rﬁ 1). (18)

Hence, using (C;), one obtains

T(x)(t)za teR. (19)
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Therefore, it follows from (16) and (19) that
TX c X. (20)

Moreover, the set of solutions to the integral equation (1)
coincides with the set of fixed points of the operator T. Next,
by Lemma 1, for all x,y € X and t € R, one has

On the other hand, by (C,) and (C;), foralli=1,2, ---, n,
one has

L) (6) = Ty (0)] < 1F(6%(6)) — £t y(0)]
“ | las ) - g5 6lds = Ly x(0) -y

t—1,

(22)

i

t
+ Lg[JH_|x(s) —y(s)|ds < (Lfi + Lgiri) 1% =yl
Therefore, using (14), (21), and (22), one obtains

IT(x)(6) = T)(6)] < M l(H (r;+ 1)> Y (g, + Lomi) I =yl

: (23)

which yields

n-1 n
(| Tx - Tyl < M" (H (r;+1) > Z(Lfk +Lgk'rk) lx =yl x, y € X.
i=1 k=1

(24)

Finally, using (C,), (20) and (24), the conclusion of the
theorem follows from the Banach contraction principle.

Now, we consider problem (1) under the additional
condition:

(C6) There exists w > 0 such that foralli=1,2,---, n,

fit+w,u)=f,(tu),g,(t+w,u)=g,(t,u),t e R,uel.

(25)

Theorem 4. Under conditions (C ;)-(C 6), problem (1) admits
one and only one w-periodic solution x* € X. Moreover, for
any w-periodic function x, € X, the sequence {x,} defined by

(11) converges uniformly to x*.

Proof. Let T : X — X be the operator defined by (12).
Notice that from the proof of Theorem 3, we know that
under conditions (C,)-(C;), one has TX c X. Let V be the
closed subset of X (with respect to the norm ||-||) defined by

V={xeX:x(t+w)=x(t),t € R}. (26)

For all x € V and t € R, using (C,), one obtains

n

T(x)(t+w) = H(f,.(t+w,x(t+w)) +J

t+w

i=1 t+w-T;

gi(5x(5)) ds)

+ Jt g;(o+w,x(0+ w)da))

t-T;

-1 (f,»(t, o)+ | a-(mx(a))do) - 7))

(27)

Hence, one has TV ¢ V. On the other hand, since V c X,
it follows from (24) that

n-1
[Tx - Tylly < M1 <H(Ti + 1)>

i=1

n
kZ: <Lfl< + Lngk> lx=yllx, x,ye V.
=1

(28)

Then, the conclusion of the theorem follows from the
Banach contraction principle.

2.4. Presic'-Type Approximation of the Unique Solution. Let
us consider the integral equation (1) under conditions (C,
)-(C5). Notice that by Theorem 3, (1) admits one and only
one solution x* € X.

Theorem 5. Under conditions (C;)-(C ), for any x;,%,, -+,
x, € X, the sequence {x,} defined by

Xpin(t) = ( I(t,xp(t)) + L, g, (s, xp(s))ds>
( 2( Xpiq (1 )) +JF gz(s’xp+1(s))ds>
’ (fn (t’ xp+n—1(t)) + J

p>1,teR

9 (S’ xp+n—1 (S)) dS) >

t-1,

(29)
converges uniformly to x*.

Proof. Consider the function ¢ : X" — X defined by

P(xys X0 %, ) (F) = ﬁ( i(6x;(2)) + J

i=1 =7;

g,(s xi(s))ds) ,teR,

(30)



that is,

where for all i= 1,2, ---, n, the operator T, is defined by (13).
Notice that from the considered assumptions, one has ¢(X")
C X, so ¢ is well-defined. On the other hand, using Lemma
L, for all x;, x,, -+, x,,,x,,,; € X and t € R, on has

@1 X5+ +5%, ) () = P(X5 X357+ +5X1 ) ()

n

= ﬁ T(x;)(t) - H Ti(xi01) (1)

<Th(x)(1)

Next, using (14), it holds that

Qo1 X550+, ) () = P(x5 X357+ +5X,01 ) (1)

n-1 L 33
sMn_1<H(T,-+1)> DT (1) = Te(®ea (8)]- =

i=1 k=1

On the other hand, under the considered assumptions, for
allk=1,2,-,n, one has

- + = k 3 X +11x*
ITe0) (1) = Tulsea ()] = (Ly, +7ily, )= Hia - (34)
Hence, one deduces that

llp(x1> X350 5%,) = (X5 X350+ X1 |

n

- 35
<M (H(Ti + 1)> Z(Lfk +TkLgk) [l = %1 [[x- )

i=1 k=1

Finally, using (C,) and Lemma 2, the desired result
follows.

2.5. Lower and Upper Subsolutions. We consider problem (1)
under conditions (C,)-(C;). We recall that by Theorem 3,
problem (1) admits one and only one solution x* € X. We
suppose also that

Foralli=1,2,---,n and t € R, the functions

fi(t,:): I—Jandg,(t,): I—] (36)

are nondecreasing.
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Theorem 6. Suppose that conditions (C ;)-(C ;) and (Cé) are
satisfied. If x € C(R, I) satisfies

<] (ﬂ(a )+

then

t

gi(s, x(s))ds) ,teR,  (37)

t-1;

x(t) <x*(t),t€R. (38)

Proof. Let T : X — X be the operator defined by (12). Then,
(39) is equivalent to

x(t) < T(x)(t), t € R. (39)
We shall prove that T is a nondecreasing operator, that is,

u,veX,u(t)<v(t),t e R== T(u)(t) < T(v)(t), t € R.

(40)
Let u, v € X be such that
u(t)y<v(t),teR. (41)
By (Cg), foralli=1,2,---,n and t € R, one obtains
oss (et + | aoundssrinm [ g
(42)
which yields
fibu)+| gt u(s))ds)
i=1 ) t’T; (43)
< (f,(t, o)+ als v(s))ds)
that is,
T(u)(t) < T()(1). (44)

This proves (40). Next, by (39), it holds that
x(t) < T(x)(t) < T*(x)(t) < - < TP (x)(t), (45)
for all nonnegative integer p and ¢ € R, where
T0(x) () =x(t) and T (x) (1) = T(TP () (). (46)
Hence, it holds that
x(t) <x,(t),t€R, (47)

where {x,} is the sequence defined by (11) with x, = x.
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On the other hand, by Theorem 3, one has

I}Lrlgoxp(t) =x"(t),teR. (48)

Therefore, passing to the limit as p — oo in (47), (38)
follows.

(Al) For j=1,2,3 and i=1,2,---,m, let ff]),ggj) e C(R
x I, J). We suppose that

(A2) For all i=1,2,---,n and j=1,2,3, there exists a

constant L 10 > 0 such that for all t € R,

i

1w =) sLplu=vhwvel. ()

Foralli=1,2,---,nand j=1,2, 3, there exists a constant
Lgm) > 0 such that for all t € R,

0/ (bu) =g (tv)| <Ly fu-vhuwvel  (50)

(A3) ML (m+ D)X (Lo + Lyom) <1, j=1,2
, 3.

(A4) a/m" <TTL (7;+1) < p/IM".

(A5) Foralli=1,2,---,n and t € R, the functions

fﬁz)(t,-)i 1—>]andg,(-2>(t>')’ r—17, (51)

are nondecreasing.
(A6) Foralli=1,2,--,n,t€eRand u€l,

flwy<fPtw < £V (b wand gl (tu) < g7 (b w) < g7 (1 0).
(52)

Notice that by (A ;)-(A ), it follows from Theorem 3 that
for all j=1, 2, 3, the integral equation

x0 =] (fﬁ”(t, ()«

i=1 t

) ‘glw (s, x(s))ds) ,teR, (53)

admits one and only one solution xU) € X. Moreover, for all
j=1,2,3 and x(()]) € X, the sequence {xl(,])} C X defined by

D0-T] (fﬁf’ (650 + J 9 (2 ds) JteR

i=1

(54)
converges uniformly to x).
Theorem 7. Under conditions (A,)-(Ag), one has
D) <xD (1) <2 (8), t € R. (55)

Proof. For all j=1,2,3, let TV : X — X be the operator
defined by

TO(x)(t) =

i=1

gfj) (s x(s))ds) ,xeX, teR.
(56)

From condition (A 5), the operator T'? is nondecreasing,
that is,

uveX,u(t)<v(t),te R= T (u)(t) < TA(v)(t), t € R.
(57)

Moreover, by (A¢), one has
TOw)(t) < THw)(t) < TP (w)(t), ue X, teR.  (58)
Let x(()l), x(()z), xé3) € X be such that

2)

V() <xP (1) < (1), e R (59)

Hence, by (57), one obtains
e (xg”) (t)<T® <x§f>) (t)<T® (x(()3>) (), teR. (60)

On the other hand, by (58), one has

T (ng) (t)<T® (ng) (), teR, (61)
T® (x(()3)> (t)<T® (x§f>) (), t€R. (62)

Therefore, using (60), (61), and (62), one deduces that
T (xé”) (t)<T? (xff)) (t)<T® (x(()3)> (t)teR, (63)
that is,
A <xP 1) <P (1), teR. (64)

Repeating the same argument, by induction, one deduces
that for all nonnegative integer p and f € R,

Ay <o (1) < (1), (65)

where {xl(,j) }, j=1,2,3, is the sequence defined by (54).
Finally, passing to the limit as p — o0 in (65), the desired
result follows.

2.6. Data Dependence of Solutions. Suppose that conditions
(C))-(Cs) are satisfied. Then, by Theorem 3, the integral
equation admits one and only one solution x* € X. Consider
now the perturbed problem

=11 (F,(r,y(t)) + j

i=1 t=1;

Gi(s,y(s))ds> ,teR, (66)



where F;,G;e CIRx1,]),i=1,2, -, n. Suppose that y* € X
is a solution to the integral equation (66).
We have the following data dependence result.

Theorem 8. Suppose that for alli=1,2, -
1, > 0 such that

-, n, there exist o;,

[fi(t,u) = Fi(t,u)[ <0y |gi(tu) = Gyt u)[ <mp t € R, u €1

(67)

Then,

% M”*l (H"/lil (T‘ + 1))2: l(ok +Tk’7k)
X" =y llx < - :
[1—M (T + 1) 1<Lf +L Tk):|
(68)
Proof. Let
SO =1]S»)(@)teR, (69)
i=1
where
SO =Fi6y0)+ | Glope)dsi=1,2
(70)
Then, for all £ € R, one has
<" () = y" (1) = [T(x")(t) = SO*)(1)| = f[Ti(X*)(t)— Si(r)(t)
(71)

where the operator T is defined by (12). Next, by Lemma 1
and (14), one obtains

I < To(x)() -+ T () (OITL (x7)(8) = S ) ()]
+ 8107 (OT5(x7)(8) - Ty ()OI T2 (x7) (1) = S,07) (D]
() Sua ) OIT () (1) = Su ™) (B)]

<M <i_[(r,» - 1)> DT (1) =S (8)].

(72)

On the other hand, using (C,) and (C;) and (67), for all
k=1,2,---,n, one has
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| Te(x™)(t) =

t

S (O] < |f(tx" (1))
Yl |9k(5%7(5)) = Ge(s: 57 (5)) | ds
<|fi(6x7 () = ity (D) + |fi(ty" (1) -

N |9k (5 X7 (5)) = gi (57" (5)) |ds
+| 1gk(sy () -

Jit-1
# oyt Lo millx =yl + 7 = (Ly, + Lo, 7 ) % =" g

+0, + TiHg-

Fi(t.y" (1))

Fi(ty"(1))]

9i(s>

Gi(s,y"(9))lds <Ly ||Ix" =y [l

(73)
Hence, by (72), it holds that
n—1
5" ="l <M (H(n ' 1))
i=1 (74)

.;[(Lfk +Lgkrk) X" =y |lx + 0% + Tknk},
-1

which yields

[1 -M"™ l<ﬁ(ri+ 1))
i= k

(ﬁ (r;+1) ) i (o + Tiy.)-
i=1

k=1

M=

1

(L, +Lgkrk)] I =" lix

(75)

Finally, by (C,), the desired result follows.
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In this paper, we introduce the notion of R-partial b-metric spaces and prove some related fixed point results in the context of this
notion. We also discuss an example to validate our result. Finally, as applications, we evince the importance of our work by
discussing some fixed point results on graphical-partial b-metric spaces and on partially-ordered-partial b-metric spaces.

1. Introduction and Preliminaries

Due to the fact that fixed point theory plays a very crucial role
for different mathematical models to obtain their solution
existence and has a wide range of applications in different
fields related to mathematics, this theory has intrigued many
researchers.

By the inception of the Banach fixed point theorem [1],
researchers are continuously trying to get the generalizations
of this classical result through different methodologies. For
instance, Czerwik [2] introduced the notion of b-metric
spaces, with a triangle inequality weaker than that of metric
spaces, in a view to generalize the Banach contraction princi-
ple. Moving on the same sequel, Matthews [3] introduced the
notion of a partial metric space, which was a part of the study
for denotational semantics of dataflow networks and gave a
generalized version of the Banach contraction principle.
The concept of partial metric spaces was further extended
to partial b-metric spaces by Shukla in [4]. A number of

researchers took keen interest in the generalized version of
the metric spaces some work is available in [5-27].

Recently, Gordgi et al. [28] introduced the notion of orthog-
onal sets and gave a new extension for the classical Banach
contraction principle. More details can be found in [29, 30].

After looking into the structure of orthogonal metric
spaces, introduced by [29, 30], and the binary relation used
with a metric, [31, 32], we introduce the notion of R-par-
tial b-metric spaces. We are also improving and generalizing
the concept of orthogonal contractions in the sense of R
-partial b-metric spaces and establish some fixed point theo-
rems for the proposed contractions.

Throughout this paper, we denote by N,R,Z, and R* the
set of natural numbers, real numbers, integer numbers, and
nonnegative real numbers, respectively.

Definition 1 (see [2]. Let H be a nonempty set and s > 1. Sup-
pose a mapping d : H x H— R* satisfies the following con-
ditions for all h,l,z € H :
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(bM1)d(h,1)=0ifand only if h=1;

(bM2)d(h,1)=d(L, h);

(bM3)d(h,1) <s[d(h, z) + d(z, 1)].

Then d is called a b-metric on H, and (H, d) is called
a b-metric space with coefficient s.

Definition 2 (see [3]. Let H be a nonempty set. Let p : Hx H
— R* satisfy the following for all h,l,z € H:
(pM1)h=1if and only if p(h, h) =p(h, 1) =p(L 1) ;
(pM2)p(h, h) < p(h. 1)
(pM3)p(h, 1) = p(L h) 5
(pM4)p(h, 1) < p(h, z) + p(z, 1) - p(z 2).
Then (H, p) is called a partial metric space.

Definition 3 [4]. A partial b -metric on H # & is a function
0 : Hx H — R* such that for all h,l,z € H , and for some s
>1, we have

(e1)h=lifand only if o(h, h) =o(h,]) =a(l,1);

(02)a(h,h)<a(h,]);

(03)a(h,1)=0(l,h);

(04)o(h,1) <s[o(h,z) + 0(z,1)] - 0(z, 2).

A partial b-metric space is denoted with (H,0,s). The
number s is called the coefficient of (H, g, s).

Remark 4 (see [4]. It is clear that every partial metric space
is a partial b -metric space with coefficient s=1 and every
b -metric space is a partial b -metric space with the same
coefficient and a zero self-distance. However, the converse

of this fact need not hold.

Example 1 [4]. Let H=R", p>1 be a constant and o : H X
H — R* be defined by

o(h1)=|h-1" +

(max {h,I})} for all h,leH. (1)
Then, (H, 0, s) is a partial b-metric space with coefficient

s=2P> 1, butitis neither a b-metric nor a partial metric space.

Definition 5 [33]. Let H be a nonempty set. A subset R of H* is
called a binary relation on H . Then, for any h, 1 € H , we say

that "his R -related to | , that is, KR1, or "h relates to | under
R if and only if (h,1) € R. (h,]) ¢ R means that "h is not R
—related to | or "h is not related to | under R .

Definition 6 [33]. A binary relation R defined on a nonempty
set H is called (a) reflexive if (h,h) e RVhe H;

() irreflexive if (h, h) ¢ R for some h € H;

(c) symmetric if (h,I) € R implies (I, h) e RVh,le H;

(d) antisymmetric if (h,1) e R and (I, h) e R imply h=1
Vh,le H;

(e) transitive if (h,1) € R and (I, z) € R imply (h,z) € R
Vhil, ze H;

(f) preorder if R is reflexive and transitive;

(g) partial order if R is reflexive, antisymmetric, and
transitive.

Definition 7 [32]. Let H be a nonempty set and let R be a
binary relation on H.
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(a) A sequence {h,} is called an R-sequence if
(VneN, h,Rh,,,). 2)
(b) Amap T : H— H is R-preserving if

Vh,le H,hRIl implies ThRTI. (3)
Definition 8 [32]. Let (H,d) be a metric space and R be a
binary relation on H . Then, (H, d, R) is called an R -metric

space.

Definition 9 [31]. A mapping T : H— H is R -continuous
at hy € H if for each R -sequence {h, }, . in H with h, —
hy , we get T(h,) — T(hy) . Thus, T is R -continuous on
H if T is R -continuous at each h, € H.

Definition 10 [31]. Amap T : H— H is an R -contraction,

if
d(Th, Tl) < kd(h, 1), (4)
for all h, [ € H with hRI[, where 0 < k < 1.

Khalehoghli et al. [31] extended the result of Banach in
the following way.

Theorem 11 [31]. If T is an R -preserving and R -continuous
R -contraction on an R -complete R -metric space with h,
€ H such that hyRl for each | € H . Then, T has a unique fixed
point.

2. Main Results

Let us begin this section with the definition of R-partial
b-metric spaces.

Definition 12. Let H # & and R be a reflexive binary relation
on H, denoted as (H,R) . Amap oy : Hx H— R" is called
an R -partial b -metric on the set H , if the following conditions
are satisfied for all h, I, z € H with either (W3R or IRh ), either
(hRz or zRh) and either (zR1 or IRz ):

(ogl)h=1if and only if o (h, h) = 0% (h, 1) = oy (1, 1);

Yog (h )5
(og3)og(h, 1) =0ox(l, h);
(og4)og(h, 1) <slog(h,z) +ox(z,])] —ox(z,z), where
s>1

Then, (H,R,0g,s) is called R-partial b-metric space
with the coefficient s > 1.

Remark 13. In the above definition, a set H is endowed with a
reflexive binary relation R and o : Hx H — R* satisfies
(ol) - (o4) only for those elements which are comparable
under the reflexive binary relation R . Hence, the R -partial
b -metric may not be a partial b -metric, but the converse is
true.

The following simplest example shows that the R-partial
b-metric with s > 1 need not to be a partial b-metric with s > 1.
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Example 2. Let H={-1,-2, 1,2} and let the binary relation
be defined by hRl if and only if h=1o0r h,1> 0. It is easy to
prove that o (h, 1) = max {|hl,|l| } is an R -partial b -metric
on H with s> 1, but oy is not a partial b -metric on H with
s>1. Indeed, for h=-2 and =2, we have oy (h, h) = og(
hi)=ox(ll)=2

In the coming definitions, let (H,R,0g,s) be an R
-partial b-metric space with the coefficient s > 1.

Definition 14. Let {h,} be an R -sequence in (H, R, oy, s) ,
that is, h,Rh,,,, or h,,,Rh, for each n e N . Then

n+1

(i) {h,} is a convergent sequence to some heH if

lim, 0% (h,, h)=0g(h,h) and h,Rh for each n
>k

(ii) {h,} is Cauchy if lim, ,, o (h,,h,,) exists and is
finite

Definition 15. (H,R, 0y, s) is said to be R -complete if for
every Cauchy R -sequence in H , there is he H with
lim,, . on(h,h,)=lim,_ ox(h,h)=0g(hh) and h,

Rh for each n > k.

Definition 16. We say that T : H — H is an R -property map,
if for any iterative R -sequence {h, : h,=T"h,he H} in (H
R, o, s) with lim,_, o (h,, h) =ox (h, h), h,Rh for some
n=kandlim, ox(h,, Th) <ox(h,h), we have that RRT
h or ThRh.

n—00

Definition 17. We say that T : H — H is R -0-continuous at
heH if for each R -sequence {h,} in (H,R,oy,s) with
lim,_ . ox(h,,h) =0, we have lim, , oy (Th,, Th)=0
Also, T is R -0-continuous on H if T is R -0-continuous for
each he H.

The following results help us to ensure the existence of
fixed points for self maps. Throughout, we assume that R
is a preorder relation.

Theorem 18. Let (H, R, 0y, s) be an R -complete R -partial
b -metric space with the coefficient s > 1 and let h, € H be such
that hyRl for eachle H . Let T : H— H be an R -preserv-
ing and an R -property map satisfying the following

o (Th Tl <kow(h,1) for all hleH with hRI,
(5)

where k€[0,1/s). Then, T has a fixed point h* € H and
Um(h*, h*) =

Proof. As hy € H is such that hyRI for each [ € H, then by
using the R-preserving nature of T, we construct an R
-sequence {h,} such that h,=Th, ,=T"h, and h,_Rh,
for each n € N. We consider h, # h,,, for each n € N U {0}.

n+1

Thus, by (5), we get

091<hn>hn+1) :UR(Thn—l’ Thn) Sko‘fR(hn—l’hn)’ (6)

for all n € N. This inequality yields
O (B i) < Ko (o, 1), (7)

for all n € N. To discuss the Cauchy criteria, we will consider
an arbitrary integer n > 1,m > 1 with m > nand use o along

(7) in the following way.

O (P> By) < S[OR (s Byi1) + O (Bsrs 1y)] = O (Birs Pi)
<50 (B Myir) + [0 (B> Bsa) + O (P 1))
=0 (N hia) < sog(hys n+1)+5 R (Mpe1> yia)
+ 50 (B By )+ t8" "0 (B By )
)

< sk"og (ho, hy) + K" o (hg, by

+ 5K 2o (hy, hy )+ 45" K" o (g, 1)
< sk [1+ sk + (sk)*+---| o (B, hy)
sk”
= mam(ho’hl)

(8)

Ask €0, 1/s) and s > 1, it follows from the above inequal-
ity that

lim og(h,,h,,)=0. 9)

n>"*m
n,Mm—00

Therefore, {h,} is a Cauchy R-sequence. Since H is R
-complete, there exists h* € H such that lim, ,,_, o (h,,h,,
)=lim,_,ox(h,,h")=ox(h*,h") and h,Rh" for each n
> k (for some value of k). Thus, from above, we obtain 0 =
lim, , ox(h, h,)=lim,_ og(h,h")=0x(h*,h") and

h,Rh* for each n>k. As h,Rh* for each n>k, from (5),
we get

ow(Th,, Th*) <kog(h,, h"). (10)
This inequality and the above findings imply

lim o (h,,,, Th") <o

n—oo

w(h* h")=0. (11)

As T is an R-property map, so we get h*RTh" or Th*
Rh*. Without any loss of generality, we take h*RTh". Thus,
by using oz with (5), we get the following for each n > k

og(h*, Th*) < sog (h*, hy,,) + 5o (B THY)

_O"R( n+l1> n+1) SO ( n+1) (12)
+sow(Th,, Th") < sox (h" ’hn+1)
+ skog (b, h*).

When # tends to infinity, the above inequality yields oy
(h*, Th*) = 0. Hence, we get oy (h*, Th*) =0, o (h*, h*) =



0 and oy (Th*, Th*) = 0. Therefore, h* = Th*, that is, h" is a
fixed point of T.

Remark 19. Note that the fixed point of T is unique if in the
above theorem we add (I): for each fixed points h* and I* of
T, we have h*RI* or I"Rh".

Since h* and I" are fixed points of T such that h*RI".
Then, we have T"h* =h*,T"I" =1" for all ne€ N. By the
nature of h,, we obtain

hyRh*andh RI". (13)
Since T is R-preserving, we have
T"hyRT"h*andT"hyRT"I", (14)

for all n € N. Therefore, by the triangle inequality and (5), we
get
ox (W, ") =ox(T"h", T"I") = slog (T"h", T"hy)
+0og(T"hy, T'1")] = o (T"hy, T"hy)  (15)
<sk"og (h*, hy) + sk"og (hy, 7).

Taking limit as n — co in the above inequality, we
obtain

o (h*, 1) =0, (16)
and so
h =1, (17)

Remark 20. Note that the condition “let h, € H be such that
hoRI for each 1€ H of Theorem18may be replaced with “let
hy € H be such that hyRTh, .”

Example 3. Let H = R and define o : Hx H — R* by

|lh=1% if h1>0,
on(h1) = (18)

0 otherwise.

The relation on H is defined by AR if and only if 4 =1 or
h,1>0. Clearly, (H,R,04,4) is an R-complete partial b
-metric space. Define a map T : H— H by

h
Th:(Z if k>0, (19)

0 otherwise.
Then, it is very simple to verify the following:

(1) If h=1,then Th=TI. Whileif h,1> 0, then Th, T1 > 0.
Thus, T is an R-preserving map

(2) Suppose that for any iterative R-sequence {h,} in H
with lim,_, o (h,, h) = ox (h, h), h,Rh for some n
>k, and lim,_, og(h,, Th) <ogx(h, h), then we get
hRTh
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(3) Consider h,, > 0 any real number, then Th,, > 0. Thus,
we have h, Th, > 0, that is, hyRTh,

(4) For each h,l € H with hRI[, we have
case (a) h=1:

1 1
ox(Th, TI)=0= 6 x0= Ram(h, D). (20)

case (b) h,1>0:

2

Wl
4 4

1

1
on(Th, TI) = ’ ik 1) = Teon(mD). (21)

Hence, by Theorem 18, T must has a fixed point.

Example 4. Let H=1R and define oy : Hx H — R* by

|h=1)* + (max {h,1})* if h,1>0,

Usn(h’l)=<

0 otherwise.
(22)

The relation on H is defined by hR[if and only if h = or
h,1>0.

Clearly, (H,R, 0%, 4) is an R-complete partial b-metric
space. Define a map T : H— H by

it h=>=0,

h
Th= (8 (23)

-1 otherwise.

Then, one can verify the following:

(1) Ifh=1,then Th=TI. Whileif h,1 >0, then Th, T[>0
. Thus, T is an R-preserving map

(2) Suppose that for any iterative R-sequence {h,} in H
with lim, o (h,, h) = ox (h, h), h,Rh for some n
>k, and lim,_,ox (h,, Th) <ox(h, h), then we get
hRTh

(3) If hy > 0 be some real number, then Th, > 0. Thus, we
get hy, Thy >0, that is, hyR Th,

(4) For each h, 1€ H with hRI, we have

Case (a) If h=1>0, then Th=TI>0. Thus,

o (Th T =0+ <max {g é})z = 3—16(max {h1})*

1
= gam(h, l).
(24)
Case (b) If h=1<0, then Th=TI=-1. Thus,
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Case (¢) If h,1>0, then Th, Tl > 0. Thus,

hol
o (Th, Tl) = ‘g -

2 o\ 1
G +(max {€,€}> =%am(h,l).

Hence, by Theorem 18, T must has a fixed point.

Remark 21. Note that the function oy defined in the above
example is neither a metric nor a b -metric nor a partial b -met-
ricon R . Indeed, o4 (4,1) =25, 053 (4,-1) =0, o (-1,1) =0,
ox(-1,-1)=0, that is, (04) and (bM3) do not exist.

Theorem 22. Let (H, R, 0, s) be an R -complete R -partial
b -metric space with the coefficient s > 1 and let h, € H be such
that hyRI for each 1€ H . Let T : H— H be an R -preserv-
ing and R -0-continuous map satisfying the following

ox (Th, Tl) <k max {og (h,1),04(h, Th),ox (L, T1)}, (27)

for all h, 1€ H with hR1, hRTh, and IRTI, where k € [0, 1/s).
Also, let for each R-sequence {h, } in H with h,Ra and h, R,
we have either aRb or bRa. Then, T has a fixed point h* € H
and o (h*,h*) =0.

Proof. As h, € H is such that hyRI for each [ € H, then by
using the R-preserving nature of T, we obtain an R
-sequence {h,} such that h,=Th, ,=T"h, and h,_Rh,
for each n € N. We take h,, # h,,,, for each n e NU {0}. Then
by (27), for each n € N, we get

ox (b i) = on (Th,y, Thy)
<k max {og(h, 1, h,),on(h, 1, Th, ), ox(h,, Th,)}
=k max {og (h,_1, h,), O (B1> ), O (B i) }
=k max {o (h,1>h,), O (B i) }-
(28)

If max {09{ (hn—l’ hn)’ Uy(hn’ hn+1)} = Gy(hn’ hn+1 )’ then
from the above inequality, we obtain that oy (h,, h,,,) <k
og(hy by ) <og(h,, by, ), which is a contradiction. There-
fore, we must have max {og (h,_,, h,), o (h,, h,1)} = o (
h, 1, h,). Again, from the above inequality, we have

n-1>""n
O (B By) < ko (b )Vn €N, (29)

On repeating this process, we obtain

og(hy h,py) <K'og(hg, hy)Vn e N. (30)

For m,n € N with m > n, by 04, we obtain

Gm(hn’ hm) < 5[09”( (hn’ hn+1) Tox (hn+1’ hm)] - U?i(hnﬂ’ hn+1)
Ssoy (hn’ hn+1) +s? [Gm(hn+l’ hn+2)
+ Um(hmz» hm)] - Gm(hn+2’ hn+2)
SSoy (hn’ hn+1) + SZGER(hnH’ hn+2)
+ 505 (Rpyps By )+ 48" "o (M )

Using (30) in the above inequality, we obtain

o (b, hy) < Koy (ho, hy) + 5K o (ho, by )
+ K" 2o (hg by )+ K" o (Bg, hy)
< sk [1+ sk + (sk)*+---] o (B, hy)
sk
= 1_—Sk0m(ho’h1)~
(32)

Ask€[0,1/s) and s > 1, it follows from the above inequal-
ity that

lim oy (h,,h,,)=0. (33)

1n,Mm—00

Therefore, {h,} is a Cauchy R-sequence. Since H is
R-complete, there exists h* € H such that lim,, ,_, . ox(h,,
h,,)=lim,_ ox(h,, h")=ox(h*,h*) and h,Rh" for each
n > k. Thus, from above, we obtain 0 =1lim, , _,.,ox(h,, h,,)
=lim,_, 0% (h,, h") =0k (h*,h") and h,Rh" for each n>
k. Since T is R-0-continuous, one gets that lim, , oy (h,,
h*) =0, which leads to lim,_, o (Th,, Th*) = 0. Obviously,
we have Th,RTh" for each n>k. Thus, h,RTh" for each
n>k. Since h,Rh* and h,RTh" for each n>k, we have
either W*RTh™ or Th*Rh". By using o4, we get the fol-
lowing for each n > k:

o (h, Th") < 50 (H, hyey) + s (y,y, TH)

(34)
—O0R (hn+1’ hn+1)‘

When 7 tends to infinity, the above inequality yields
og(h*, Th*)=0. Hence, we get oy (h*, Th*)=0, ox(h",
h*)=0, and ogx(Th*, Th*)=0. Therefore, we say that
h*=Th*, ie, h* is a fixed point of T.

Remark 23. Note that the fixed point of T is unique if in the
above result, we add the condition: for each fixed points h*
and I" of T , we have h*RI* or I"Rh".



Since h* = Th™, we have [ = TI* and h*RI". From (27),
we get

ox(h*, ") =ox(Th", TI")
<kmax {og (h",1"),oq(h", Th*),ox (I, TI")}
=kmax {og(h",1"),ou(h",h"),ou(I",1")}
=kog(h", ") <ogx (h",1").
(35)

It is a contradiction in the case o (h*, 1) # 0. Therefore,
we must have oy (h*,I") =0, that is, h* =1".

3. Applications to Graphical Partial b-Metric
Spaces and Partially-Ordered-Partial b
-Metric Spaces

In this section, we define a directed graph G on H, denoted by
G=(V(H),E(H)), with the vertex set V(H)=H and the
edge set E(H) such that E(H) c Hx H and {(h,h): he H}
CE(H). Also, E(H) has no parallel edge. Note that hPI
denotes the path between /4 and [, that is, there exists a finite

sequence {ki}fzo, for some finite j, such that k, = h, k; = I, and
(k;» k) € E(H) for i€ {0,1,---,j - 1}.

Definition 24. Let H # & be associated the above-defined G,
denoted as (H,G) . A map o, : HxH — R" is called a G
-partial b -metric on the set H , if the following conditions
are satisfied for all h, 1, z € H with hPl and z € hPl:

(ogl)h=lifand only if o(h, h) =05(h, 1) =0os(L1);

(062)a(h, h) <og(h,D);

(063)ag(h,1) = 06(L h);

(ogd)og(h 1) <slog(h, z) +o5(2,1)] —04(2 2),
s>1.

Then, (H, G,04,s) is called a G -partial b-metric space
with the coefficient s > 1.

where

Remark 25. If hPl and z € hPl, then we get hPz and zPl . Also
note if hPz and zPl, then we have hPl.

Thus, P is a preorder relation on H. Therefore, (H, G,
0, s) is also an R-partial b-metric space.

Definition 26. Let {h,} be a G -sequence in (H, G, 0, s) , that
is, h,Ph, ., or h,.,Ph, for each n . Then, we say that

n+1

(i) {h,} is a convergent sequence to h € H if lim
(h,, h) =05(h, h) and h,Ph for each n >k

e

n—00

(ii) {h,} is Cauchy if lim, ,, , o(h,,h,,) exists and is
finite

Definition 27. (H, G, 0, s) is said to be G -complete if for each
Cauchy G -sequence in H there is h € H with lim, ,,_,.,0s(
h,h,,) =lim,_o5(h,, h)=05(h,h) and h,Ph for each n
> k.
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Note that for a map T : H — H, the G-0-continuity and
G-property are defined in the same way as explained in the
last section.

Theorem 28. Let (H, G,0,s) be a G -complete G -partial b
-metric space with the coefficient s > 1 and let h, € H be such
that h,Pl for each 1€ H . Let T:H— H be an edge
preserving (if (h,1) € E(H) , then (Th, Tl) € E(H)) and a G
-property map satisfying the following

oo(Th, Tl) <kog(h1) for all hleH with hPl,

(36)

where k€ [0,1/s). Then, T has a fixed point h* € H and
og(h*,h™)=0.

By Remark 25, we know that P is a preorder relation on H
and (H, G, 0, s) is an R-partial b-metric space. Also, an edge
preserving map is path preserving. Thus, all the conditions of
Theorem 18 hold. Hence, T has a fixed point.

In the following, we obtain partially-ordered-partial b
-metric spaces from R-partial b-metric spaces, by consid-
ering ° as a partial order on H.

Definition 29. Let H #+ & be associated with a partial order ° ,
denoted as (H*) . Given a map o, : Hx H— R* . If the fol-
lowing conditions are satisfied for all h,1,z € H with h’l and
h°z’l:

(6,1)h=I1ifand only if o, (h, h) =0,(h, 1) =0,(L ]);

(0.2)0,(h,h)<0o,(h]);

(0.3)0.(h.1) = 0.(L h);

(0.4)0,(h,1) <s[o,(h,z) +0,(z,1)] —0.(z,2), where s > 1,
o

then (H,G,0,,s) is called a partially-ordered-partial b
-metric space with the coefficient s > 1.

As we discussed in the above, we state the following
result.

Theorem 30. Let (H,G,o0.,,s) be an ° -complete partially-
ordered-partial b -metric space with the coefficient s> 1 and
let hy € H be such that h,’l for eachle H . Let T: H— H
be order preserving (if h°l then Th°TI ), and an ° -property
map satisfying the following:

o.(Th, T <ko,(h1) for all hlcH with I,

(37)

where k€0, 1/s). Then, T has a fixed point h* €e H and
o, (h*,h")=0.

Remark 31. <— completeness is defined in the same way as G
-completeness.

4. Conclusion

By combining the concepts of orthogonality and the binary
relation, we introduced the notion of R-partial b-metric
spaces. We presented some related fixed point results. Some
illustrated examples and an application to graphical partial
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b-metric spaces and partially-ordered-partial b-metric spaces
have been provided. As perspectives, it would be interesting
to consider in this setting more generalized contraction
mappings involving simulation functions or more control
functions.
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