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Lightweight reinforced concrete (LWC) is widely used in various reinforced concrete (RC) applications, such as its use in diverse
types of reinforced concrete slabs. �e aim of this study is to analyze the behavior of reinforced foam concrete slabs (�at slab type)
that are exposed to �re conditions under the in�uence of eccentric loads as well as concentric loads. �is analysis has been done
using the �nite element method by a (ANSYS) software program. �e validity of the adopted models was veri�ed through
comparison with a previous experimental study.�e studied specimens were eleven reinforced concrete �at slabs with a thickness
of 150mm. �e lightweight polystyrene foam concrete was used in these specimens with a density of 1820 kg/m3. �e results
showed that the �re e�ect lead to a decrease in the maximum carrying load of foam concrete slabs by 25%. Also, by comparing the
�nite element results with the selected experimental study, the results showed a great agreement with the analytical study used in
this research.

1. Introduction

�e use of lightweight concrete has been widespread since
the 18th century. �ere was a necessary need to use this type
of concrete to reduce the cost of reinforced concrete
structures. Looking at the main factors that have e�ects on
reducing the weight and density of concrete, the weight and
type of the aggregate used as well as the ratio between coarse
aggregate and �ne aggregate are the main factors that can be
used for this purpose.

It is also possible to use foam in its various forms in
mixed concrete materials in order to produce the lightweight
concrete. Numerous and varied studies have dealt with the
use of foam in the production of lightweight concrete. Due
to the availability of manufacturing foam of di�erent types in
many countries, it can be used in a simple way to produce
this type of concrete. In 2014, M. Tech Scholar [1] have made

an analytical study of twomixtures of foam concrete, the �rst
mixture of foam concrete with sand and the second mixture
without sand, and the study dealt with many experiments to
determine the proportions of the concrete mixture to reach
a density of 1900 kg/m3. �is study concluded that the ratio
of the mixture which is used in the study is not suitable for
the production of foam concrete which can be used in
structural purposes because the compressive strength
resulting from the concrete was less than 17.0MPa, after 28
days of casting.

Helal et al. [2] conducted a practical study for the
purpose of improving the preformed foam concrete, which
was produced with a density of 1300 to 1900 kg/m3. �is
study relied on the use of two types of materials that are
added to concrete (�y ash and silica fume) in addition to use
of a water reducing agent. �e results of this study were
good, as these materials showed a clear improvement in the
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structure of concrete pores, as well as an increase in strength,
in addition to a reduction in concrete’s absorption of water.
'e results also showed that these materials had slightly
increased the thermal conductivity of concrete.

According to the study conducted by Wan Ibrahim et al.
[3], the effect of polyolefin fibers on the properties of foam
concrete was studied (such as flexural strength and com-
pressive strength).'e density of concrete that is used in this
study ranged from 1300 to 1600 kg/m3. 'e researchers used
in the study polyolefin sized fibers at relatively low volume
fraction with percentages ranging from 0.0%, 0.20%, 0.40%,
and 0.60%.'e results of the study were that the compressive
strength and flexural strength of foam concrete were slightly
affected as a result of using the mentioned fibers by 4.3% and
9.3%, respectively.

Also, the researchers of Lee et al. (2017) [4] have
conducted their study on slabs and beams of foam concrete,
which was produced using a type of lightweight foam
mortar, and the density of concrete ranged from 1700 to
1800 kg/m3. Accordingly, the concrete’s compressive
strength was 20MPa. 'e results of this study were that the
mortar used led to a decrease in the maximum load from
8.0% to 34.0%, when compared to that of reinforced
concrete with natural density using the same type of
mortar.

By reviewing the reviews and previous studies, it was
found that foam concrete can be used successfully in
reinforced concrete structures by using additives and dif-
ferent types of fibers. Concrete slabs made of structural
polystyrene foam can be used to replace hollow block panels
and thermally insulated layers.

Several design models were developed for punching shear
strength; however, these models vary significantly in the
considered parameters and mechanisms in developing the
model [5–9]. For example, the European concrete design code
(EC2) [5] model is semiempirical. In contrast, the FIB model
design code (MC) [6] is physically based.'us, there are many
reviews that have studied the performance of flat slabs when
exposed to fire. References [10–18]. Despite the diversity of
these studies, it was noted that the behavior of polystyrene foam
concrete when exposed to fire was not studied.

El-Fitiany and Youssef [13] in their study conducted
a simple method to predict the flexural and behavior of
reinforced concrete sections during exposure to high tem-
peratures. 'is proposed method was validated experi-
mentally by an analytical study. Wang [14] experimentally
studied the structural behavior of reinforced foam concrete
flat slab exposed to fire under diverse loading such as
concentric and eccentric. 'e eleven flat slab specimens with
square dimensions of 1750mm length and 150mm thick-
ness were tested. 'e central column with a square cross
section 200× 200mm was located at the center of each slab.
'e results in that study showed that the maximum load of
the specimens with light weight foam concrete were reduced
compared to those of specimens with normal concrete.

'e main purpose of this study is to identify the effi-
ciency of structural lightweight polystyrene foam concrete
flat slabs under varies parameters when these slabs are ex-
posed to fire.

2. Materials and Methods

'e validity of the adopted models was verified through
a comparison with a previous experimental study which was
conducted by Riad and Shoeib [18]. In their study, two concrete
mixes were used, one for the light weight concrete specimens
and another mix was for the normal concrete specimens.
Polystyrene foam, silica fume, and super plasticizer were used
in the mix in order to achieve the self-compacting lightweight
concrete; also, fine crushed stone of nominal maximum size of
10mm was used as a coarse aggregate. Steel rebars with grades
(240/350) and (360/520) were used. 'e yield strength and
ultimate tensile strength for a mild steel (240/350) were
(240MPa) and (350MPa), respectively, and this steel was 8mm
in diameter. 'e proof strength of high tensile steel deformed
rebars with grade (360/520) was 360MPa and ultimate tensile
strength of these were 520MPa. 'is rebars with bar sizes of
(12mm) and (16mm).

3. Numerical Program

3.1. Numerical Specimens and Parameters. 'e numerical
specimens included eleven tested RC simply supported square
slabs with typical dimensions of 150mm thickness and
1750mm length.'e clear span was equal to 1650mm.'eRC
column is square with 200mm in the case of the concentric
load. In the case of an eccentric load, the column was extended
above the slab compression face by 200mm for all tested
specimens. 'e typical concrete specimen’s dimensions and
reinforcement details are shown in Figure 1 as the experimental
specimens that are presented by Riad and Shoeib [18].

'e main parameters in this work are the effect of the
percentage of tension steel reinforcement (0.40% and 0.70%)
and type of vertical loads (concentric or eccentric) on the
performance of flat slab when exposed to fire. Five speci-
mens with normal-weight concrete and six specimens with
polystyrene foam concrete slab have been tested.

'e eleven tested specimens are divided into four groups
as shown in Figure 2 and as follows:

(i) 'e first group (3 control specimens) studies the
behavior of normal-weight concrete with different
load types and steel ratios.

(ii) 'e second group (2 specimens) studies the behavior
of normal-weight concrete exposed to fire from 0 to
500°C and is loaded by 30% of the ultimate with
gradual increasing to ultimate load after cooling by air.

(iii) 'e third group, (3 specimens), and considers the
effect of the load type and main steel ratios on the
behavior of lightweight concrete

(iv) 'e fourth group (3 specimens) is similar to the
second group but by using lightweight concrete
instead of the normal concrete.

3.2. Modeling Slabs by ANSYS. 'is section presents ele-
ments types, real constant, material properties, numerical
concepts, boundary conditions, and analysis types so as
process together with load stepping.
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3.2.1. Elements Types. �ere are mainly four elements
used at the analysis; the names, shapes, number of degree
of freedom, and some properties are shown below in
Table 1.

3.2.2. Loads and Boundary Conditions. Similarly, for the
experimental slabs, all joints at the border of the slab are
modeled as a simply supported, which was constrained in
the UY. Two nodes in the X direction are constrained in the
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Figure 1: Typical dimensions and RFT for tested specimens.
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UX and another two nodes, in the Y direction UY. �e dis-
placement is applied at the column head based on its position.
�e displacement is applied at a single node on upper plate
using the incremental displacement method. �e support and
the displacement applied are presented in Figure 3.

4. Verification of the Analytical Model

Table 2 shows the veri�cation of the analytical model and
experimental slabs which was tested by Riad and Shoeib [18];
the table divided into two main categories related to the
output of the analysis. �e �rst category shows the failure
loads for each specimen at experimental and analytical models
and the percentage of di�erence between both. �e second
category is the same but for the de�ection at edge of column.

4.1. Crack Patterns and Load-De�ection Curves. Table 3
shows the propagation of cracks of the slabs specimen 1,
3, 6, and 8 just before failure using the �nite element model
and actual failure shape and load–de�ection curves.

4.2.Parametric StudyandE�ect ofEccentricity on theBehavior
of a Flat Slab. To study the e�ect of eccentricity on the
behavior of lightweight concrete, the specimens are divided
to four groups, each group includes eight specimens related
to the ratios of steel (0.4 and 0.7 which are called U and H,

respectively), the eccentricity which varies from 0.5 to 1 with
a 25% increasing �xed percentage, type of concrete, and
heating intensity or temperature are as shown in the table
below. Table 4 has been expressed as a database at the
nonlinear �nite element analysis for the same slab cross
section and steel grade as the experimental program.

4.3. Parametric Study Database Analysis and Results. A
nonlinear �nite analysis is conducted using ANSYS software, to

Speci
mens

Group
1

Group
2

Group
3

NACH NACU NFCH NFEH LACH LAEH LACU

Group
4

LFCH LFEH LFCUNACU

Figure 2: Main groups of specimens. N∗ normal-weight concrete (NWC), L ∗ lightweight concrete (LWC), A ∗ without �re, F ∗ exposed to
�re, C ∗ under concentric load, E ∗ under eccentric load,U ∗ 0.4% Rft (Reinforced steel ratio) from gross area of slab, andH ∗ 0.7% Rft from
gross area of slab.

Table 1: Summary for the elements needed at modeling.

Properties\element Concentric element Steel reinforcement
element Lead Plate and Supports

Name Solid65 (structural
concentric element)

Solid75 (thermal
concentric element) Link180 Solid185

Shape

x

z

Y

SOLID 70

x

z

Y

x

z

Y

No. of nodes 8 8 3 8

Properties

1-capable of plastic-
deformation

1-having thermal
degree-of-freedom

1-Pro�cient in plastic-
deforcement 1-Plastic and hyper-elastic

2-cracking in 3-
orthogonal direction 2-using at heat condition 2-connected between nodes 2-allows for stress-sti�ening

3-crushing 3-2 materials share the
same nodes

3-creep so as large de�ection
together with large strain

ANSYS
R15.0

ELEMENTS
MAT NUM

Applied disp.

U

1

APR 29 2018
12:31:43

Figure 3: Support condition and applied displacement.
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predict the ultimate loads and de�ection for the constructed
parametric study database. �e �nite element predicted failure
loads and de�ection at edge of column. Figure 4 presents the
crack propagation before ultimate from the �nite elementmodel.

In case of the study of the behavior of lightweight RC, �at
slabs with RFT percentages equal to 0.7% and 0.4% when
applying the concentric and changing eccentric vertical load
e/t� 0.5, 0.75 and 1.0.

Table 2: Veri�cation of the analytical model and tested specimens of Riad and Shoeib [18].

Group Specimen Specimens code
Failure load (kN) De�ection at edge of column (mm)

Experimental Analytical % di�. Experimental Analytical % di�.

G1
S1 NACH 462 483.7 4.7 13.92 13.4 −3.74
S2 NAEH 382 417.6 9.3 12.3 11.65 −5.28
S5 NACU 383 396.95 3.64 15.1 14.67 −2.85

G2 S3 NFCH 444 451.23 1.65 15.15 17.43 15.0
S4 NFEH 298.7 311.73 4.36 15 14.85 −1.0

G3
S6 LACH 430 459.7 6.9 17.72 16.04 −9.48
S7 LAEH 367 406.4 10.73 11.4 12.28 7.71
S11 LACU 343 376.6 9.8 15.5 14.55 −6.13

G4
S8 LFCH 332 341.33 3 19.75 19.44 −1.57
S9 LFEH 238 272.24 14.38 14.33 13.23 −7.68
S10 LFCU 278 286.7 3.13 15.9 15.95 0.5

2.N ∗ normal-weight concrete, L ∗ lightweight concrete, A ∗ without �re, F ∗ exposed to �re, C ∗ under concentric load, E ∗ under eccentric load,U ∗ 0.4% rft
from gross area of slab, H ∗ 0.7% rft from gross area of slab.

Table 3: Summary of �nite element models, cracks, and load-de�ection curves.
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In case of high RFTpercentage equal to 0.7%, the e�ect of
applying the concentric and the changing eccentric vertical
load LAE1H, LAE2H and LAE3H with e/t� 0.5, 0.75, and 1.0,
respectively, on the behavior of lightweight RC �at slabs was
noted as the following.

It is clear from Figures 5 and 6, when applying the
eccentric vertical load LAE1H, LAE2H, and LAE3H with e/
t� 0.5, 0.75, and 1.0, respectively, on the tested specimens
with high RFT% that the ultimate load decreased compared
to a concentric control specimen (LACH) by percentage
11.59%, 30.19%, and 44.15%, respectively, and the de�ection

corresponding to the ultimate load decreased with per-
centage 23.44%, 28.43% and 34.16%, respectively. It is also
noted that the sti�ness of these tested specimens increased
by increasing the eccentric vertical load, although the
sti�ness of the eccentric specimen with e/t� 1.0 becomes
similar to concentric control specimen, as shown in Figure 5.

In case of usual RFTpercentage equals to 0.4%, the e�ect
of applying the concentric and the changing eccentric
vertical load LAE1U, LAE2U, and LAE3U with e/t� 0.5, 0.75,
and 1.0, respectively, on the behavior of a lightweight RC �at
slab was noted as shown in �gures 5 to 8.

Table 4: Parametric study database of slabs.

Group Specimens Specimens code Type of concrete Heating temp (C°). Eccentricity ratio (e\t) Main RFT% Flexure RFT

G1

1 NACH

NWC Non

No

H

17 Ø 16
2 NAE1H 0.5 17 Ø 16
3 NAE2H 0.75 17 Ø 16
4 NAE3H 1.0 17 Ø 16
5 NACU No

U

10 Ø 16
6 NAE1U 0.5 10 Ø 16
7 NAE2U 0.75 10 Ø 16
8 NAE3U 1.0 10 Ø 16

G2

9 NFCH

NWC 500°

No

H

17 Ø 16
10 NFE1H 0.5 17 Ø 16
11 NFE2H 0.75 17 Ø 16
12 NFE3H 1.0 17 Ø 16
13 NFCU No

U

10 Ø 16
14 NFE1U 0.5 10 Ø 16
15 NFE2U 0.75 10 Ø 16
16 NFE3U 1.0 10 Ø 16

G3

17 LACH

LWC Non

No

H

17 Ø 16
18 LAE1H 0.5 17 Ø 16
19 LAE2H 0.75 17 Ø 16
20 LAE3H 1.0 17 Ø 16
21 LACU No

U

10 Ø 16
22 LAE1U 0.5 10 Ø 16
23 LAE2U 0.75 10 Ø 16
24 LAE3U 1.0 10 Ø 16

G4

25 LFCH

LWC 500°

No

H

17 Ø 16
26 LFE1H 0.5 17 Ø 16
27 LFE2H 0.75 17 Ø 16
28 LFE3H 1.0 17 Ø 16
29 LFCU No

U

10 Ø 16
30 LFE1U 0.5 10 Ø 16
31 LFE2U 0.75 10 Ø 16
32 LFE3U 1.0 10 Ø 16

N ∗ normal-weight concrete, L ∗ lightweight concrete, A ∗ without �re, F ∗ exposed to �re, C ∗ under concentric load, E1 ∗, E2 ∗ and E3 ∗ under eccentric load
(e/t)� 0.5, 0.75 and 1.0 respectively, U ∗ 0.4% rft from gross area of slab, H ∗ 0.7% rft from gross area of slab.

(a) (b) (c) (d)

Figure 4: Crack propagation before failure from the �nite element model. (a) e/t� 0. (b) e/t� 0.5. (c) e/t� 0.75. (d) e/t� 1.0.
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It is clear from Figures 7 and 8, when applying the
eccentric vertical load LAE1U, LAE2U, and LAE3U with e/
t� 0.5, 0.75, and 1.0, respectively, on the tested specimens
with usual RFT% that the ultimate load decreased compared
to concentric control specimen (LACU) by percentage
15.10%, 31.40%, and 47.27%, respectively, and the de�ection
corresponding to the ultimate load decreased with per-
centage 10.65%, 17.73%, and 24.74%, respectively. It is also
noted that the sti�ness of these tested specimens increased
by increasing the eccentric vertical load, although the ec-
centric specimen with e/t� 0.5 have the same sti�ness of
concentric control specimen as shown in Figure 7.

On studying the behavior of lightweight RC, �at slabs
which had been exposed to �re with RFT percentages equal

to 0.7% and 0.4% when applying the concentric and
changing eccentric vertical load e/t� 0.5, 0.75 and 1.0.

4.3.1. Discussion for Specimens with High RFT Percentage
Equal to 0.7%, e/t (0 to1) and Exposed to Fire. Figures 9 and
10 illustrate that when applying the eccentric vertical load
LFE1H, LFE2H, and LFE3H with e/t� 0.5, 0.75, and 1.0,
respectively, on the tested specimens were exposed to �re
with high RFT% that the ultimate load decreased comparing
to concentric control specimen (LFCH) by percentage
20.24%, 44.10%, and 61.58%, respectively. �e corre-
sponding de�ection to the ultimate load decreases with
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Figure 5: E�ect of e/t ratio on the load-de�ection curves for LWC
with high RFT%.
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percentage 31.94%, 33.28%, and 38.58%, respectively. �e
sti�ness of those tested specimens increased by increasing
the eccentricity, although the sti�ness of the eccentric
specimen with e/t� 1.0 becomes similar to concentric
control specimen as shown in Figure 9.

4.3.2. Discussion for Specimens with Usual RFT Percentage
Equal to 0.4%, e/t (0 to1) and Exposed to Fire. Figures 9 and
10 illustrate that the applying eccentric vertical load LFE1U,
LFE2U, and LFE3U with e/t� 0.5, 0.75, and 1.0, respectively,
on the tested specimens which exposed to �re with usual

RFT% that will cause a decreasing in the ultimate load
when comparing it to the concentric control specimen
(LFCU) by percentage 27.76%, 55.94%, and 63.20%, re-
spectively. Also, the corresponding de�ection to the ulti-
mate load decreases with percentage 26.96%, 32.79%, and
34.29%, respectively.

�e sti�ness of these tested specimens will be increased
by increasing the eccentric vertical load, although the ec-
centric specimen with e/t� 0.5 have the same sti�ness of
concentric control specimen as shown in Figures 11 and 12.

For more clari�cation, Figure 13 presents the relation
between variation of eccentricity(e/t) and de�ection during
the �re process with a constant load for LWC specimens at
high and usual RFT% (0.7% and 0.4%, respectively). Related
to the control specimen (LFCH), the de�ection of high RFT
% decreased by approximately 16.5%. Similarly for control
specimen (LFCU), the de�ection of usual RFT% decreased
by approximately 13.3%.

5. Comparison of Parametric Study Database-
Ultimate Loads and Loads from Different
Codes Using the Proposal Factors for ACI 318
and BS 8110

Related to the experimental tests, reduction factors of
concrete compressive strength in foam concrete depending
on the reduction factors in lightweight concrete strength
have been proposed by Riad and Shoeib [18]. In addition to,
reduction factors in compressive strength of lightweight
concrete exposed to 500°C �re for ACI-318 and BS-8110
codes were also proposed. �is part discusses the compar-
ison between the results of the �nite element analysis, ex-
perimental tests, and di�erent codes (ACI 318 and BS 8110)
related to the mentioned reduction factors.
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Figure 9: E�ect of e/t ratio on the load-de�ection curves for LWC
with high RFT% when exposed to �re.
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Figure 14 appears in case LWC specimens were not
exposed to �re by using the proposal reduction factors for
ACI-318 and BS-8110 codes, the prediction load closes to
database-ultimate loads by average percentage 24.0% and
16.25%, respectively, compared to the load using the re-
duction factors of these codes when increased e/t ratio to 0.5,
0.75, and 1.0. Figure 15 shows the comparison between the
�red LWC database-ultimate loads and di�erent codes
which using the proposal factors.

Moreover, in case of LWC specimens that were ex-
posed to �re, by using the proposal reduction factors for
ACI-318 and BS-8110 codes, the prediction load closed to
database-ultimate loads by an average percentage of
18.6% and 12.4%, respectively, compared to the load
using the reduction factors of these codes when increased
e/t ratio to 0.5, 0.75, and 1.0 as shown before in
Figures 5–8.

6. Conclusion

�emain purpose of this study is to identify the e¬ciency of
structural lightweight polystyrene foam concrete �at slabs
when these slabs are exposed to �re by the �nite element
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method. In this study, reinforced foam concrete flat slabs
were exposed to fire under eccentric and concentric loads.
'e validity of the adopted models was verified through
comparison with a previous experimental study which has
been conducted by Riad and Shoeib [18]. By using the
software analysis (ANSYS), crack patterns, load-deflection
curves, steel strains, and deflection during the fire were
analyzed in this study. 'e following are concluded in this
work:

(1) 'e density of lightweight structural concrete that
was produced using fibers and additives was 1820 kg/
m3, and the compressive strength of concrete
reached 30.0MPa.

(2) When comparing the behavior of lightweight
structural flat slabs which manufactured using
polystyrene foam with that of normal-weight con-
crete flat slabs, we found the following:

(i) 'e maximum load was low in the lightweight
foam concrete slab with rates ranging from 7.0%
to 4% for concentric load and eccentric load,
respectively; this is compared to the maximum
load of normal-weight concrete.

(ii) A decrease in the number of cracks in light-
weight foam concrete as well as an increase in
the width of cracks was observed.

(iii) When calculating the theoretical punching
shear force in ACI-318 and BS-8110 codes, the
proposed modification factors of foam concrete
can be equal to 1.24 and 1.163, respectively.

(3) By comparing the behavior of the structural light-
weight polystyrene foam concrete flat slab and
normal-weight concrete flat slab exposed to fire, we
find that:

(i) A decrease in the maximum load of foam con-
crete and normal-weight concrete was observed
by 25% and 13%, respectively.

(ii) 'e recommended reduction factors in com-
pressive strength according to ACI-318 and BS-
8110 codes are 0.68 and 0.56 instead to 0.82 and
0.70, respectively.

(4) It is highly recommended to study more specimens
with different types of foams and fibers.
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)e responses of flat reinforced concrete (RC) floor slabs with openings subjected to horizontal in-plane cyclic loads in addition to
vertical service loads were investigated using nonlinear finite element analysis (FEA). A finite element model (FEM) was designed
to perform a parametric analysis.)e effects of opening sizes (7%, 14%, 25%, and 30% of the total area of the slab), opening shapes
(elliptical, circular, L-shaped, T-shaped, cross, and rectangular), and location on the hysteretic behavior of the floor slab were
considered. )e research indicated that openings in RC floor slabs reduce the energy absorption capacity and stiffness of the floor
slab. )e inclusion of 30% opening on the floor slab causes a 68.5%, 47.3%, and 45.6% drop in lateral load capacity, stiffness, and
lateral displacement, respectively, compared to the floor slab with no openings.)e flat RC floor slab with a circular opening shape
has increased efficiency. )e placement of the openings is more desirable by positioning the openings at the intersection of two-
column strips.

1. Introduction

As a primary horizontal structural element of building
structures, the floor slab is susceptible to loads in and out of a
plane, which are mostly attributable to lateral loads [1, 2]. It
is therefore important to consider the combined effect of in-
plane and out-of-plane loads when designing a slab of
concrete for a building. It resists vertical forces for most of its
design life. However, the floor structure can withstand
horizontal seismic stresses during an earthquake that could
last only between 10 and 100 seconds. It is termed a dia-
phragm during this brief period when the floor structure
must withstand both gravity and horizontal forces [1].

)e performance of the diaphragm action of the floor
slab is controlled primarily by its in-plane stiffness. )e floor
diaphragm is considered rigid if it translates only on a plane
and rotates as a rigid body about the vertical axis, whereas a
flexible diaphragm is one in which the lateral force distri-
bution to vertical lateral load resisting elements is depending
on the tributary area. Finally, a stiff diaphragm is one that
behaves in between the two [3–5]. An experimental and

analytical investigation was carried out at Lehigh University
[6] to identify in-plane seismic behavior of floor diaphragm
with scaled models representing a portion of a floor system
in a building structure with various loading and support
conditions. )e diaphragm forces were applied in the plane
of the floor system, both monotonically and cyclically. )e
hysteresis behavior was identified after the floor slab system
experienced inelastic deformation.

In many structures, a reasonable estimate of the inertial
force distribution can be achieved by assuming that the slabs
act as a rigid diaphragm, but for structures with large
openings and with noncompact shapes, diaphragm defor-
mation of the floors must be explicitly considered in the
analysis. Many building codes, including Euro code and
ACI, have stated that failing to account for floor diaphragm
flexibility when estimating the seismic response of floor
diaphragms with large openings and noncompact or highly
elongated in-plane shapes can lead to errors.

)e effect of openings on the seismic capacity of floor
diaphragm has been investigated by several researchers, and
it has been confirmed that the presence of openings on the
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floor diaphragm results in a substantial decrease in load
capacity of the floor diaphragm. Previous research has in-
dicated that the inelastic seismic response of the RC floor
diaphragm is highly affected by the presence of openings,
especially when cracking and yielding in the floor system. A
micro FEM approach was used to identify the effect of
opening size and out-of-plane loading on the inelastic
seismic behavior of beam-supported floor diaphragm with
the opening [7]. Openings or reentrant corners in the di-
aphragm must be properly placed and adequately reinforced
[8].

In building, damage due to earthquake generally initiates
at locations of structural weakness, and these weaknesses are
mostly found at discontinuities in mass, stiffness, and
strength of vertical and horizontal lateral load resisting el-
ements. Nowadays because of architectural aesthetics and
ventilation, floor slabs with openings have been used in
many building structures. Besides building services, in-
cluding stairways, elevators, air ducts, and pipes also need to
pass through floor slabs, and in this process, there is
weakness induced in the floor slab. Since it is necessary to
understand the behavior of floor slabs with openings, dif-
ferent analytical studies based on experimental tests were
conducted. But still, there is limited knowledge on the
characteristics of RC floor slabs with different locations,
shapes, and sizes of openings.

In the present study, flat RC floor slabs responses with
different opening sizes, opening shapes, and locations of the
openings under horizontal direct cyclic loading and vertical
service loads were addressed utilizing an FEM approach. An
FEA software, Abaqus/CAE, conducted the modeling and
analysis to account for in-plane deformation and ultimate
load capacity due to displacement-based cyclic load similar
to that of the experimental investigation conducted in
Lehigh University.

2. Finite Element Analysis of the Flat RC
Floor Slab

)e present study used the finite element approach to gather
the relevant data regarding the behavior of floor diaphragms
with openings using FEA, the Abaqus/CAE software. To
check whether the simulation results reflect the real-world
results, the flat floor slabs tested at Lehigh University in 1986
[6] were used for validation. )e behavior of materials,
support conditions, and loading procedures used in the
experimental study by [6] was applied in the FEM. After the
validation of the FEM, parametric study and sensitivity
analysis were carried out by taking opening size, location,
shape, service load, steel grade, and concrete grade as a
parameter.

2.1. Concrete Element Types. In the present study, C3D8
(linear 8-node hexahedral brick elements) was used for
modeling concrete material.

2.2. Reinforcement Bars. For elastic design analysis, the
reinforcement was usually neglected in the FEM since the

stiffness contribution of concrete is much greater than the
reinforcement, but in the nonlinear analysis, the modeling of
reinforcement is needed basically in determining the ulti-
mate capacity of a structure. )e reinforcing bars were
modeled as beam elements that are one-dimensional line
elements in three-dimensional space that have stiffness as-
sociated with deformation in the line. Both elastic and plastic
properties were included in the elastic option used to assign
the modulus of elasticity and Poisson’s ratio, and in the
plastic option, the true stress and strain values were used to
model its plastic property. Table 1 shows the mechanical
properties of reinforcing bars that were used in the simu-
lation that was taken from the experimental study conducted
by [6].

2.3. Concrete Constitutive Model. Concrete exhibits non-
linearity both in compression and tension; this poses dif-
ficulties in numerical analysis. Parameters needed to model
concrete under compound stress were included in Abaqus/
CAE software in the concrete damaged plasticity (CDP)
model. One of the strength hypotheses most often applied to
concrete is the Drucker–Prager hypothesis. On the basis of
nondilatational strain energy, failure is defined by a cone-
shaped boundary surface. )e advantage of using this cri-
terion is surface smoothness and thereby no complications
in the numerical application. )e drawback is that it is not
fully consistent with the actual behavior of concrete [9]. )e
CDP model used in Abaqus/CAE software is a modification
of the Drucker–Prager strength hypothesis. )e CDP model
parameters for uniaxial compression relations (Table 2) were
adopted from the methods discussed by [10].

)e tensile behavior of concrete utilized the bilinear
model (Figure 1). )e cracking opening was utilized instead
of the tensile strain and was computed as a ratio of the total
energy supplied (GF) per unit area required to create a crack
in the concrete. )us, the brittle behavior of concrete is
defined by stress-cracking displacement rather than a stress-
strain response [9].

Several complicated degradation mechanisms occur
under uniaxial cyclic loading circumstances. Microcracks
develop, close, and interact with each other. During uniaxial
cyclic testing, it is noticed that the elastic stiffness recovers a
little when the load changes sign. An essential element of
concrete behavior under cyclic loading is the influence of
stiffness recovery on the concrete’s stiffness. As the load
changes from tension to compression, the effect is generally
more apparent, causing tensile cracks to close, resulting in
the recovery of compressive stress [11].

)e concrete damaged plasticity model supposes that the
reduction of the elastic modulus is expressed in terms of a
scalar degradation variable (d) as in the following equation
[11]:

E � (1 − d)Eo, (1)

where Eo is the initial (undamaged) modulus of elasticity.
In Abaqus/CAE, default values of stiffness recovery

factors wt � 0 and wc � 1 were used to illustrate the uniaxial
load cycle behavior of concrete. In the present study, all
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damage properties of concrete (Figure 2) were derived from
a single known quantity average compressive strength of
concrete (fcm).

2.4. Finite Element Model Geometry, Mesh, and Boundary
Condition. )e geometrical FEM of the flat RC slab sup-
ported on the column was plotted after the material
properties were defined (Figure 3). )e slab was supported
on one edge by a shear wall and the opposite edge by
columns. Overhanging slabs, equal to one-quarter of the
panel dimension, were added on all noncontinuous sides to
represent parts of the floor slabs of adjacent bays since the
test specimen by [6] represents an interior panel of a pro-
totype building. )e center-to-center span length and
thickness of the RC floor slabs were 1,630mm in both di-
rections and 56mm, respectively, and the column dimen-
sions were 136mm× 136mm with no capital.

In an FEM simulation, the mesh size is an essential factor
in determining the validity of the analysis results. A coarse
mesh can produce less precise outcomes while the finer mesh
might extend the computation cost. )ere is no specific
regulation on the mesh size. )erefore, an iterative method
was employed to find the appropriate mesh size for the
model. In the present study, a mesh size of 50mm× 50mm
was appropriate to concrete and reinforcement bars gen-
erated using a mesh module (Figure 4).

)e individual elements were connected properly after
assembling all elements. )e reinforcements were repre-
sented in the concrete region as embedded elements to
ensure that the interactions between the reinforcement and
concrete elements are fully bonded. )e columns were di-
rectly tied to the slab using the option constraints embed-
ment and tie.

)e boundary conditions were developed using the
boundary option with the initial step after the modeling and
assembly of the section. )e bottom surfaces of the sup-
porting columns were fixed against all translation and ro-
tation, and the slab nodes attached to the wall were
restrained against translation in all directions (Figure 5).

2.5. Model Loading Conditions. )e service gravity load was
applied as a pressure force (Figure 6(a)) that was kept
constant throughout the analysis, and the cyclic lateral load
(Figure 6(b)) was applied with gradually increasing dis-
placement amplitude using the loading spectrum (Figure 7)
that provides more effective data regarding the hysteretic
behavior of members or structures.

)e vertical load applied to the RC floor slabs constituted
a full-service live load of 3.8 kN/m2 and an additional service
deal load of 3.9N/m2. A series of concentrated forces were
applied, which were spaced at the center of 540mm in each
direction. A single vertical (gravity) load simulator con-
trolled all point loads within one-panel width, including
those in the quarter panel extension portions.

2.6. FEM Validation. )e response of flat RC floor slabs
without openings and slabs with different opening sizes,
shapes, and locations was studied using FEM. Considering
the accuracy and reliability of the numerical simulation
software, the ultimate load and lateral displacement results
of the flat RC floor slab in this study were extracted to verify
the reliability of the model. )e FEM results were compared
to the experimental results obtained by [6].)e ultimate load
and lateral displacement results are shown in Table 3, and
the hysteretic curve for FEM and experiment results is
shown in Figure 8. When the slab hysteretic curve, ultimate
load, and lateral displacement obtained by FEM and ex-
periment are compared, it is noticeable that the value es-
timated by the model deviates slightly from the experiment,
but it is within the permissible range. Furthermore, the
simulated hysteretic curve of the slab is essentially consistent
with the experiment. As a result, the FEM result appears to
be in excellent agreement with the experimental result.

2.7. Parametric Study of Flat RC Slabs. )e parametric study
examined the effects of different opening sizes, opening
shapes, and opening locations of flat RC floor slabs subjected
to cyclic in-plane and out-of-plane loads (Table 4).

Table 1: )e mechanical property of reinforcement bars.

Name Area (mm2) Yield stress (MPa) Yield strain Ultimate stress (MPa) Ultimate strain Modulus of elasticity (GPa)
D2 13.4 368 0.00193 411 0.00783 191
D3 21.5 590 0.00272 590 0.00625 190

Table 2: Default parameters of the CDP model under compound
stress [10].

Parameter Value
Dilatation angle 36°
Eccentricity 0.1
fbo/fco (ratio of biaxial to uniaxial compressive strength) 1.16
Κ 0.667
Viscosity parameter 0

fctm

0.2fctm

Crack opening, w

GF = area under the
stress-crack opening

relation 

wc = 5GF/fctmwc = GF/fctm

Figure 1: Stress-crack opening relation for uniaxial tension.
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To investigate the effect of opening size on flat RC slabs four
different opening sizes were considered: 7%, 14%, 25%, and 30%
of the total area of the slab. )ese openings were placed in the
middle slab area. According to [12], any size of the opening is
permitted in an area that is common to the intersecting middle
strips if the requirements of both strength and serviceability are
satisfied. In this study, half of the interrupted reinforcements
were replaced on each side of the opening to maintain the full
out-of-plane capacity of the slab.

)e effect of the shape of the opening was investigated by
considering elliptical, circular, L-shaped, T-shaped, cross,
and rectangular openings (Figure 9). )ese openings were
14% of the total area of the slab found at the intersection of
the two middle strips of the slab.

In the present study, three opening locations were se-
lected. )ese were the intersection of two middle strips, the
intersection of two-column strips, and the intersection of the
middle and column strip.

3. Results and Discussion

3.1. Effect of Opening Size on the Middle Strip of Flat RC Floor
Slabs. It can be seen from Figure 10 that as opening size
increases in flat RC floor slab, there is a substantial de-
crease in its lateral load-carrying capacity. )e numerical
simulation shows that the inclusion of 30% opening in the
floor slab causes a 68.54% drop in lateral load-carrying
capacity of the floor slab system.
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Figure 2: CDP model: (a) compressive behavior and (b) tensile behavior of the analyzed concrete.

(a) (b)

(c) (d)

Figure 3: (a) Geometric model of a flat slab without opening, (b) embedded reinforcement of the flat slab without opening, (c) geometric
model of a flat slab with opening, and (d) embedded reinforcement of the flat slab with opening.
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)e relation between opening size and lateral load-
carrying capacity can be expressed by the following equation
using nonlinear regression:

y � 0.095x
2

− 5.638x + 124.87, (2)

where y is the lateral load-carrying capacity (kN) and x is the
opening size (%).

Figure 11 shows that lateral displacement decreases as
opening sizes increase in flat floor slabs; it can be said that
solid slabs (slab without opening) show high inelastic de-
formation compared to the one with an opening. From the
present study, it can be observed that the inclusion of 30%
opening causes a drop of 45.55% in stiffness.

)e relation between opening size and lateral dis-
placement can be expressed by equation (3) using nonlinear
regression:

y � 0.0027x
2

− 0.164x + 5.6, (3)

where y is the lateral displacement (mm) and x is the
opening size (%).

)e energy absorption capacity and stiffness of the floor
slab decrease as the opening size gets higher (Figure 12).

Figure 4: FEM mesh.

Figure 5: FEM boundary support conditions.

(a) (b)

Figure 6: Loading conditions: (a) applied service load as a pressure and (b) applied displacement-based cyclic lateral load.
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Figure 7: Cyclic loading history.
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From this parametric study, the inclusion of 30% opening on
the floor slab causes the drop of stiffness by 47.26%.

)e relation between opening size and stiffness can be
expressed by equation (4) using nonlinear regression:

y � −0.007x
2

− 0.115x + 22.541, (4)

where y denotes stiffness (kN/mm) and x denotes the
opening size (%).

3.2.EffectofOpeningShapeon theMiddleStripofFlatRCFloor
Slabs. Table 5 shows the effect of opening shapes on the
middle strip lateral load-carrying capacity, lateral dis-
placement, and stiffness of flat RC slabs. From the six types
of opening shapes, a higher value of lateral load capacity and
stiffness is seen in the circular opening shape. However, the
cross-opening shape exhibits minimum lateral
displacement.

3.3. Effect of Opening Location on Flat RC Floor Slabs.
Varying the location of the opening higher value of lateral
load-carrying capacity and inelastic deformation is observed

when the opening is provided at the intersection of two-
column strips of the flat RC floor slab. Reduced lateral
displacement is noticed where the opening is located at the
intersection of two middle strips. Table 6 illustrates the effect
of different opening locations.

3.4. Sensitivity Analysis. )e combinations from the Latin
hypercube sampling technique were modeled in Abaqus/
CAE, and their lateral load capacity was determined
(Table 7).

After the determination of the lateral load-carrying
capacity, regression is done to relate the input parameters or
find the correlation coefficient as follows:

y � −0.383Pd − 2.897Op + 0.458C + 0.013S + 95.767,

(5)

where y denotes the lateral load capacity, Pd is the service
load, Op is the opening size, C is the compressive strength of
concrete, and S is the steel reinforcement strength.

From the regression analysis, it is revealed that opening
size is the most influential factor in decreasing the lateral

Table 3: Comparison of FEM and experimental results.

Type of test Parameters FEM Experiment

F1VCY [6] Ultimate load (kN) 101.95 125.67
Lateral displacement (mm) 4.19 5.61
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Figure 8: Comparison of hysteretic curves of experimental and FEM results.

Table 4: A summary of configurations adopted in the parametric study.

Opening sizes (%) Opening shapes Opening locations
0 (without opening) Elliptical )e intersection of two middle strips7 Circular
14 L-shaped )e intersection of two-column strips25 T-shaped
30 Cross )e intersection of the middle and column stripRectangular
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(a) (b) (c)

(d) (e) (f )

Figure 9: Flat RC floor slab with different opening shapes: (a) elliptical opening, (b) circular opening, (c) L-shaped opening, (d) T-shaped
opening, (e) cross opening, and (f) rectangular opening.
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Figure 10: Effect of opening size on the lateral load capacity of the RC floor slab.
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Figure 11: Effect of opening size on the lateral displacement of the floor slab.
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Figure 12: Effect of opening size on the stiffness of the floor slab.

Table 6: Effect of different opening locations.

Opening location Lateral load-carrying capacity (kN) Lateral displacement (mm) Stiffness (kN/mm)
)e intersection of two middle strips 64.82 3.30 19.53
)e intersection of two-column strips 75.09 3.64 21.40
Intersection of the middle and column strip 70.33 3.37 20.54

Table 7: )e lateral load-carrying capacity of RC floor slabs from the Latin hypercube result.

Combos Lateral load capacity (kN) Combos Lateral load capacity (kN)
1 53.72 17 50.97
2 43.95 18 52.17
3 41.62 19 65.94
4 57.15 20 54.61
5 56.48 21 49.6
6 52.68 22 68.21
7 59.52 23 62
8 56.38 24 52.89
9 54.97 25 79.47
10 43.37 26 64.97
11 40.6 27 47.72
12 50.31 28 63.13
13 43.28 29 71.01
14 49.19 30 51.08
15 47.67 31 50.46
16 62.73 32 75.18

Table 5: Effect of different opening shapes.

Opening shape Lateral load-carrying capacity (kN) Lateral displacement (mm) Stiffness (kN/mm)
Rectangular 64.82 3.30 19.53
Elliptical 72.62 3.37 21.50
Circular 73.77 3.53 22.49
L-shaped 55.77 3.43 17.06
Cross 68.12 2.71 20.93
T-shaped 55.60 3.25 20.75
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load capacity of the RC floor slab since it has a higher
correlation coefficient.

4. Conclusion

)e nonlinear FEA was used to investigate the response of
flat RC floor slabs subjected to cyclic in-plane loading. )e
influence of the slabs’ aspect ratio, opening size, location,
and shape was evaluated. To analyze the hysteretic behavior
of concrete slabs, numerical simulation using FEA software,
Abaqus/CAE, is capable of producing accurate and suitable
estimations. Six types of opening shapes located on the
middle panel of the floor slab were included. )e energy
absorption capacity and stiffness of RC floor slabs can be
affected by the presence of openings. However, from these
opening shapes, better energy absorption capacity and
stiffness were observed in circular ones. )e opening located
at the intersection of two-column strips near the shear wall
support showed better performance compared with the two
other locations. It can be concluded that small opening sizes
are recommended especially in earthquake-prone areas since
the seismic capacity of the floor diaphragm is greatly affected
by the presence of openings.

Data Availability
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