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Following a brain injury, individuals need to relearn lost
skills, such as grasping, and learn new strategies to achieve
goal-directed actions in daily activities. Yet the ability to learn
and adapt is often disrupted. In this special issue, we called
for new insights into the brain networks that support learn-
ing after brain injury, biomarkers of learning, and factors that
may impact learning following brain injury.

In their review, L. Carey et al. developed and applied a
novel methodology to identify key themes and topics to
advance our thinking in relation to learning following
brain injury, by searching the concepts of neuroplasticity,
stroke recovery, and learning and finding the intersection of
topics that link them. Using machine learning and natural
language-processing technologies, the authors identified 23
intersecting themes (topics) from over a quarter of a mil-
lion publications, with a time-linked pattern emerging. An
important and unique feature of this approach was the ability
to not only identify what is common across these contribut-
ing bodies of knowledge but also identify gaps in available lit-
erature. For example, while transfer of learning has been
extensively researched in the learning literature, it did not
emerge in relation to stroke recovery, neural plasticity, or
their intersection. This highlights a gap in the knowledge
base that informs stroke rehabilitation and also provides
a clear direction for future research and potential applica-
tions from the field of learning. Overall, findings from this
review identified foundation literature that may be synthe-

sised to advance a neuroscience informed approach to
stroke rehabilitation.

To date, attention has largely been focused on motor
learning after stroke. Building on this literature, F. Alnajjar
et al. employed a computational approach to investigate the
motor control system for adaptation in healthy individuals
and in recovery poststroke. They aimed to determine
whether neuromuscular control strategies are comparable
between healthy individuals during their adaptation to an
unfamiliar environment and stroke survivors during their
recovery. Results revealed that computed muscle synergy
characteristics changed both in healthy participants under
unfamiliar environment conditions and in stroke survivors
following motor recovery. The authors concluded that
change in muscle synergies during recovery from moderate
stroke most likely represents an adaptation of existing syn-
ergies, similar to what occurs in healthy individuals when
neurons adapt to an unfamiliar environment. Further, a
relationship between muscle synergies and energy con-
sumption was found. Findings suggest that training leads
to gradual adaptation to the new environment, with impli-
cations for energy consumption.

Knowledge of brain networks that support learning after
brain injury is critical not only to advance knowledge of bio-
markers of recovery facilitated by learning-based therapies
but also to guide development of tailored interventions. K.
Wadden et al. report on white matter biomarkers associated
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with motor change in individuals with stroke. Individual
variability is identified as a key issue in the application
and effectiveness of adjunctive therapies, such as continu-
ous theta burst stimulation (cTBS, ie., repetitive brain
stimulation), when paired with skilled motor practice.
The authors investigated the white matter microstructure of
a motor learning network, named the constrained motor
connectome (CMC), as well as the corticospinal tract (CST)
of lesioned and nonlesioned hemispheres. Individuals cate-
gorised as responders vs. nonresponders, based on change
in motor behaviour, showed significant differences in the
microstructural properties in the CMC, but not in CST.
These findings revealed a potential new biomarker for
training-facilitated motor recovery that extends beyond the
CST alone. The relationship between the complex white mat-
ter motor network and the responsiveness of individuals to
cTBS paired with motor practice was highlighted.

P. Goodin et al. looked beyond sensorimotor networks
and brain structure to whole brain functional regions that
may be important in learning and recovery. Factors such as
mood, common poststroke, are associated with poorer recov-
ery and worse cognitive outcomes and negatively impact
response to rehabilitation in acute and subacute phases of
recovery. The authors therefore sought to investigate the
relationship between level of depressive symptom score and
intrinsic brain activity in varying brain regions in 63 stroke
survivors at 3 months poststroke. They investigated changes
in low-frequency fluctuations in brain signals associated with
poststroke depressive symptoms, specifically whether inter-
action effects might be observed. Significant interaction
effects were found, involving frontostriatal and cerebellar
regions, including insula. Further investigation is recom-
mended given the role of these regions in sensorimotor pro-
cessing and learning.

Two papers advance our understanding of potential
biological markers of brain plasticity and learning through
animal models of brain injury. J. Houlton et al. investi-
gated the involvement of brain-derived neurotrophic fac-
tors (BDNF) in improving learning in aged mice after
stroke. They established an animal model of stroke that
induced delayed impairment in spatial memory. Spatial
performance and memory were trained and monitored
using a touchscreen and visual pairwise discrimination task.
The treatment group received a BDNF decoy, TrkB-Fc. Aged
mice exhibited greater stroke-induced cognitive deficits rela-
tive to young controls but also significant improvement in
learning, which was dampened in the presence of the BDNF
decoy. As concluded by the authors, these findings suggest
age-related differences in recovery of cognitive function, with
potential reopening of a critical window for recovery that is
being mediated by BDNF. The role of BDNF in improving
learning in aged mice after stroke was revealed.

B. Pijjet et al. presented data on the influence of matrix
metalloproteinase-9 (MMP-9) on dendritic spine density
and morphology in an animal model of traumatic brain
injury (TBI). The injury caused a marked decrease in spine
density as well as spine shrinkage in the cerebral cortex ipsi-
lateral to the injury, when compared to sham animals and the
contralateral side, both one day and one week after the insult.

Neural Plasticity

Decreased spine density was also observed in the dentate
gyrus of the hippocampus. In mice lacking MMP-9, no effects
of TBI on spine density and morphology were observed,
further implying a role for MMP-9 in brain plasticity.

Through this special issue, we have sought to bring
together a themed collection of new insights and pathways
to the investigation of learning following brain injury, focus-
ing on markers of neural plasticity. We thank the authors for
their contributions and hope this issue serves to stimulate
further research across multiple disciplines and fields of
related research. Perhaps in a decade, a similar review to that
conducted by L. Carey et al. may reveal a rich intersection of
knowledge across the fields of neural plasticity, learning, and
stroke recovery?
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Background. One in three survivors of stroke experience poststroke depression (PSD). PSD has been linked with poorer recovery of
function and cognition, yet our understanding of potential mechanisms is currently limited. Alterations in resting-state functional
MRI have been investigated to a limited extent. Fluctuations in low frequency signal are reported, but it is unknown if interactions
are present between the level of depressive symptom score and intrinsic brain activity in varying brain regions. Objective. To
investigate potential interaction effects between whole-brain resting-state activity and depressive symptoms in stroke survivors
with low and high levels of depressive symptoms. Methods. A cross-sectional analysis of 63 stroke survivors who were assessed
at 3 months poststroke for depression, using the Montgomery-Asberg Depression Rating Scale (MADRS-SIGMA), and for
brain activity using fMRI. A MADRS-SIGMA score of >8 was classified as high depressive symptoms. Fractional amplitude of
frequency fluctuations (fALFF) data across three frequency bands (broadband, i.e., ~0.01-0.08; subbands, i.e., slow-5: ~0.01-
0.027 Hz, slow-4: 0.027-0.07) was examined. Results. Of the 63 stroke survivors, 38 were classified as “low-depressive
symptoms” and 25 as “high depressive symptoms.” Six had a past history of depression. We found interaction effects across
frequency bands in several brain regions that differentiated the two groups. The broadband analysis revealed interaction effects
in the left insula and the left superior temporal lobe. The subband analysis showed contrasting fALFF response between the two
groups in the left thalamus, right caudate, and left cerebellum. Across the three frequency bands, we found contrasting fALFF
response in areas within the fronto-limbic-thalamic network and cerebellum. Conclusions. We provide evidence that fALFF is
sensitive to changes in poststroke depressive symptom severity and implicates frontostriatal and cerebellar regions, consistent
with previous studies. The use of multiband analysis could be an effective method to examine neural correlates of depression
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after stroke. The START-PrePARE trial is registered with the Australian New Zealand Clinical Trial Registry, number

ACTRN12610000987066.

1. Introduction

Post stroke, patients frequently experience motor, sensory,
cognitive, and behavioural changes, all of which may impact
recovery [1]. Changes to a stroke survivor’s mood are also
common [2], with depression as the most frequently reported
psychiatric disorder following ischaemic stroke [3]. Post-
stroke depression (PSD) is estimated to affect approximately
one-third of survivors [4, 5], compared to about one-sixth of
the nonstroke population [6, 7].

PSD is associated with poorer recovery prospects [8],
including increased disability [9], worse cognitive outcomes
[10-12], decreased quality of life [13], and increased risk of
mortality [14]. In particular, PSD negatively impacts
response to rehabilitation in acute and subacute phases of
recovery [15]. However, our understanding of the potential
mechanisms underlying the negative impact of depressive
symptoms on recovery and rehabilitation is currently lim-
ited. Determining factors that may assist in the identification
of those “at risk” of developing poststroke depression may
aide in the recovery process and/or prediction of response
to rehabilitation.

The value of biomarkers of stroke recovery that focus
on brain structure and function has recently been
highlighted in consensus-based recommendations [16]. Neu-
roimaging markers of depression may be used to provide new
insight into neural mechanisms underlying depression, to
predict the likelihood of future depressive symptoms, and/or
to predict readiness to engage in treatment or treatment
response. All are important reasons to identify stroke survi-
vors with underlying vulnerabilities that may be “at risk” of
developing depression.

One approach has been to investigate the relationship
between lesion location and depression; however, despite a
large number of studies, findings are equivocal [17-20].
These findings suggest that lesion location alone is unlikely
to be an informative biomarker associated with PSD. A
meta-analysis of behavioural, biochemical, and neuroimag-
ing markers of PSD found associations with reduced cerebral
blood flow and regional volume reductions [21].

In the broader literature of clinical depression, the disor-
der is not considered to be caused by independent, localised
changes within specific brain regions but is thought to be par-
tially due to disruption of communication between areas
[22]. Several meta-analyses of fMRI cohort studies of clinical
depression have found changes in brain activation and con-
nectivity [23-25]. Findings highlight alteration of brain
regions consistent with the current system-level models of
depression. It may therefore be useful to examine biomarkers
of PSD using resting-state methods that focus on intrinsic
brain activity and whole brain [26].

Resting-state fMRI methods focus on low frequency fluc-
tuations (LFF) present within the blood oxygen level-
dependent (BOLD) signal (0.01 to ~0.1 Hz) [27] which in

part reflect intrinsic neuronal activity [28, 29]. Several
methods have been developed that evaluate different aspects
of the signal. For example, local or regional correlations
between BOLD time series are able to be examined, collec-
tively known as functional connectivity [30]. These func-
tional connectivity analyses focus on temporal correlations
of the BOLD signal.

The spectral (frequency) characteristics of signal within
individual voxels during resting-state can also be examined,
typically by taking the sum amplitude of low frequency fluc-
tuations (ALFF) [31] or a ratio of LFF over the entire esti-
mated spectra (fractional ALFF, fALFF) [32]. Of these two
methods, fALFF has been shown to be robust against physi-
ological artefacts and vascular effects [33, 34], which are
common poststroke given changes to neurovasculature
post-stroke [35].

While methods typically focus on the full LFF range,
spectral measures allow the exploration of subbands, which
have been suggested to be important for a scope of physio-
logical and function processes within the brain [36, 37].
Wang et al. [38, 39] used fALFF to examine LFF and sub-
bands of slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.07)
in medication of naive participants with major depressive
disorder over two studies. Both studies found similar
changes in LFF measures when depressed participants were
compared to controls.

Wang et al. [39] also found areas that displayed an
interaction effect between controls and those with depres-
sion and subband signal changes. Their results showed that
the areas of the left ventromedial prefrontal cortex, left infe-
rior frontal gyrus, and bilateral precuneus showed changes
in amplitude in the slow-5 band, but not slow-4. This sug-
gests that examination of subbands may be useful in identi-
fying regions that are associated with depressive symptoms.
It also highlights the value of investigating for an interaction
effect in brain regions.

To date, PSD studies of resting-state changes have not
been widely employed, have focused on functional connec-
tivity from specific regions, e.g., within the default mode net-
work (DMN) and anterior cingulate, and have included
participants of varying times post stroke. Results from these
studies have been inconsistent. For example, Lassalle-
Lagadec et al. [40] found correlations at 10 days post stroke
between the depression score and the left middle temporal
cortex and precuneus and at 3 months with the neostriatum.
Vicentini et al. [41] found an association with the posterior
cingulate cortex and depression score at approximately 1-
month poststroke, while Liu et al. [42] failed to find any
regional correlations of the posterior cingulate with a
depression score in a cohort of chronic stroke survivors.
More recently, Balaev et al. [43] explored changes in the
default mode network and found changes post treatment.
Only one study, by Egorova et al. [44], used voxelwise spec-
tral analysis of fALFF and found mean differences between
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depressed and nondepressed stroke survivors in the frontal
and insular regions.

While examining main effects that can be informative for
identifying brain regions for further examination, they give
no information regarding how intrinsic activity in these
regions may influence the individual depressive symptom
score. Furthermore, finding regions that show differing
response depending on regional activity may help identify
potential biomarkers and predict severity of depressive
symptoms [45, 46].

Our aim was to examine the interaction effects between
the amplitude of whole-brain resting-state signal (using
broadband and subband fALFF) and depressive symptom
score, in stroke survivors with high and low levels of depres-
sive symptoms. We hypothesised that there would be a sig-
nificant interaction effect in frontolimbic regions with the
depressive symptom score, such that the high depressive
score group would show a positive association between the
depressive symptom score and increases in regional brain
signal response.

2. Methods

2.1. Participants. Sixty-three participants (44 female) with
advanced imaging from the STroke imAging pRevention
and Treatment (START) cohort [47] were included in the
current study. Participants were three months post their first
ischaemic stroke episode, diagnosed clinically, and confirmed
via brain imaging. They were required to be medically stable,
be 18 years or older, speak English, not have a significant dis-
ability prior to stroke, and be able to give informed consent.
Stroke participants were excluded if they had a brainstem
infarct, previous neurological dysfunction, or evidence of uni-
lateral spatial neglect or were not suitable for MRI.

2.2. Clinical Data, Depression Symptom Assessment, and
Group Formation. Data was obtained on age, sex, and history
of depression prior to their stroke. Stroke severity was mea-
sured using the National Institute of Health Stroke Scale
(NIHSS) [48]. We assessed for depressive symptoms using
the structured interview guide for the Montgomery-Asberg
Depression Rating Scale (MADRS-SIGMA) [49]. The
MADRS-SIGMA is a 10-item structured interview that
enquires into participants’ range of depressive symptoms
including reported sadness, inner tension, concentration dif-
ficulties, and pessimistic thoughts. Each item is scored on a
range from 0 (no symptoms present) to 6 (high levels of
symptoms present). Total scores on the MADRS-SIGMA
range from 0 to 60 with higher scores indicating higher levels
of depressive symptoms. Participants were placed into low or
high depressive symptom groups based on the MADRS-
SIGMA cut-oft score of >8. This cut-off was chosen as it has
been shown to give the optimal sensitivity and specificity
(0.85,0.71, AUC = 0.91 [95%CI = 0.84-0.98]) for the classifi-
cation of poststroke depression from a sample of 150 stroke
patients [50].

2.3. MRI Acquisition. Imaging data was acquired on a 3 Tesla
Siemens Trio scanner. Resting-state functional data was

acquired using an echo planar imaging (EPI) sequence over
7 minutes (TR = 3000 ms, TE = 30 ms, 3 mm isotropic voxels,
72 x 72 matrix, 44 slices, 216 mm FOV). Participants were
instructed to “Close your eyes and rest. You do not need to
think about anything in particular” and were also instructed
that they should stay awake throughout the scan. Following
the scan, this was confirmed by participant report. Resting-
state acquisition was consistently conducted after a touch
activation task to the fingertips.

A high-resolution 1mm isotropic MPRAGE scan
(TR=1900ms, TE =2.55ms, 256 X 256 matrix, 160 slices,
216 mm FOV) was collected for coregistration to the func-
tional data, segmentation, and normalisation to MNI space.
2D FLAIR (fluid attenuation inverse recovery sequence;
1 mm isotropic, TR = 6000 ms, TE = 388 ms, 100 mm FOV)
was acquired axially for delineation of infarcts.

2.4. Lesion Mask Creation. Axial FLAIR images were used to
identify and draw a mask around the primary infarct hyper-
intensity using MRicron (http://www.mccauslandcenter.sc
.edu/mricro/mricron/index.html). Masks were quality checked
and modified as necessary by a neurologist (BC) to ensure
they accurately represented the infarct.

2.5. Resting-State Preprocessing and Analysis. A customised
data cleaning pipeline optimised for preprocessing of stroke
data was constructed [51]. The pipeline used functions from
DCMstack (https://github.com/moloney/dcmstack), Analy-
sis of Functional NeuroImages (AFNI) [52], SPM12 v6685
(http://www fil.ion.ucl.ac.uk/spm/software/spm12/), Advanced
Normalization Tools (ANTSs) [53], Numpy [54], Scipy [55],
and Nibabel (https://github.com/nipy/nibabel), combined
under the NiPype framework [56].

Anatomical image preprocessing consisted of segmenta-
tion using the new segmentation method and coregistration
to the mean EPI image [51]. White matter and cerebrospinal
fluid (CSF) masks were created by thresholding the seg-
mented white matter and CSF images at 0.99 and eroding
two times using a 3 x 3 x 3mm structure element to mini-
mise partial volume effects. Normalisation to Montreal Neu-
rological Institute (MNI) space was achieved by transforming
an MNI space 3 x 3 x 3 mm template image to subject space,
then using the inverse transformation matrix to warp the T1
image from subject space to MNI space. Stroke participants
had their FLAIR and lesion mask included in the pipeline,
which were coregistered to the T1 image and coregistered
to the EPI image [51].

Prior to preprocessing, we conducted systematic, visual
quality inspection of each participant’s resting-state data.
Participants were excluded if their data were shown to have
consistent, excessive motion or noticeable distortions. No
participants were excluded on this basis. Preprocessing of
EPI data included despiking, slice timing correction to the
central slice, and realignment to the first volume. Motion
and physiological related artefact were regressed from the
data using the Friston 24 parameter model [57] and aComp-
Cor [58], taking the top five components each for white mat-
ter and CSF mask extracted signals. The global signal from
within the brain mask was also regressed. This can help
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attenuate residual motion and physiological effects not
removed by prior cleaning [59]. In connectivity-based mea-
sures, global signal regression is thought to alter the covari-
ance structure of the data, introducing artefactual negative
correlations [60, 61]. However, as fALFF is derived from
voxel-based spectral data, there is no evidence that this step
impacts individual or group measures. After cleaning, images
were normalised to MNI space using the inverse transform
matrix computed from the EPI space T1 image. The data
were then smoothed using a 6 mm Gaussian kernel.

2.6. fALFF Calculation and Analysis. We employed fALFF
broadband and subband (slow-5/slow-4) measures to exam-
ine for potential associations between the resting-state brain
activity and poststroke depressive symptom score. fALFF
maps were calculated using the method outlined by Zuo
etal. [34]. Briefly, data were linearly detrended and using Fast
Fourier Transform, converted to the frequency domain. The
square root of the transform was used to convert the power
spectra to spectral magnitude. fALFF was defined as the
voxel-wise ratio of the sum of LFF data (~0.01Hz to
0.08Hz) over the sum of the entire spectra (~0Hz to
0.33 Hz). Slow-5 and slow-4 bands were calculated by taking
frequency bands from ~0.01 to 0.027 and 0.027 to 0.07 Hz,
respectively, and dividing over the entire spectra. Participant
fALFF maps were then z-scored by subtracting the global
fALFF mean value from each voxel and divided by the global
fALFF standard deviation.

Second level analysis was performed in SPM 12 using
cluster-based familywise error correction (cFWE) to control
multiple comparisons, with the cluster forming threshold
set to p < 0.001 [62] and spatial threshold set to p < 0.05.

An interaction model of the group x MADRS-SIGMA
was used, which initially included covariates of age, sex,
and NIHSS. No significant voxels were found for covariates
(all cFWE > 0.05), so these were removed from the model
and the data were reanalysed. Significant clusters were local-
ised using the automatic anatomical labelling (AAL) atlas
[63] as found in the Wake Forest University PickAtlas
v3.0.5 [64, 65]. fALFF amplitudes for significant clusters were
extracted and used in further analysis.

2.7. Statistical Analysis. Demographic data were analysed
using the statistical package R [66] for between-group com-
parisons. We examined differences in sex membership and
prestroke history of depression between groups using chi-
square tests with p values simulated based on 10,000 reshuf-
fles. Two sample t-tests were used to examine differences
between groups for age and NIHSS.

2.8. Data Visualisation. fMRI data were visualised using
mricroGL (http://www.mccauslandcenter.sc.edu/mricrogl/).
Extracted fALFF data were visualised using Seaborn (https://
seaborn.pydata.org/).

3. Results

3.1. Demographics. Demographic and clinical information
for the low and high depressive symptom score groups is pre-
sented in Table 1.
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TaBLE 1: Demographic and clinical information for the low and
high depressive symptom score groups.

Group Low High

n 38 25

Age (mean, SD) 64.68 (13.56) 59.28 (12.26)
Sex (no. of females) 28 19
(Mm‘:zfssggGMA seore 229 (2.31) 14.88 (6.67)"**
History of depression 0/38 (0%) 6/25 (24%)**

Reported sadness (yes/no) 5/33 (13.1%) 15/10* (60%)

Reported discouragement

(yes/no) 4/34 (10.5%)

15/10** (60%)

Reported loss of interest

0,
(yes/no) 3/35 (7.9%)

16/9%* (64%)

On antidepressant
medication (yes/no)

NIHSS (mean, SD) 0.58 (1.20) 0.84 (1.28)

*p<0.05, **p<0.01, and ***p <0.001. MADRS-SIGMA = Montgomery-
Asberg Depression Rating Scale using Structured Interview Guide.

1/37 (2.6%) 3/22 (13.6%)

Two sample t-tests showed no significant difference
between the two groups for age (£(55.06) =1.64, p=0.10)
or NIHSS (#(49.01)=0.81, p=0.42). Chi-square tests
showed no significant difference between the groups for sex
(x*=0.67, p=0.57).

The high depressive symptom score group showed a sig-
nificantly increased MADRS-SIGMA score compared to the
low group (#(27.83) =9.08, p <0.001), as expected. There
were also significantly higher counts of reported sadness
(x* =5.99, p=0.021), discouragement (y* =7.58, p =0.012,)
and loss of interest in daily activities (y* =7.72, p =0.008)
in the high depressive symptom score group compared to
low. No significant differences were observed between the
low and high groups for counts of antidepressant usage
(x*=2.23,p=0.29).

The high depressive symptom score group showed a
greater number of participants with a prestroke history
of depression (x*=10.08, p =0.002). There did not appear
to be a significant difference in the MADRS-SIGMA score
between those with a history of depression (M =20.00,
SD =8.53) and those without (M =13.26, SD =5.25) in the
subgroup analysis of the high depressive symptom score
group (#(6.25) =1.83, p=0.11).

3.2. Lesion Overlap. The overlap of lesion locations across all
participants and the groups is shown in Figure 1. Lesion loca-
tions across all participants showed the largest overlap in the
left and right hemispheres, in an area including the internal
capsule, corona radiata, and insula. Damage to the right
hemisphere extended to lateral parietal regions. The low
and high depressive symptom score groups showed the great-
est overlap in the right internal capsule/corona radiata.

3.3. Functional Connectivity fALFF Results. Examination of
the interaction between the group and MADRS-SIGMA
score showed several regions across the three bands of inter-
est that had an increased slope for the high depressive
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Overlap

FiGureg 1: Overlap of lesion locations for all participants, low depressive symptom score group, high depressive symptom score group, and
overlap of lesion location for the low and high groups. For columns All, Low, and High, cooler colours indicate lower numbers of
participants with overlapping lesions, and warmer colours indicate higher numbers of participants with overlapping lesions. For the Overlap
column, green =low depressive symptom score group, dark blue = high depressive symptom score group, and light blue = overlap between the
two groups. All brain images are shown in neurological convention.

TaBLE 2: Regions that showed significant group x MADRS-SIGMA score interaction effects for broadband (0.01-0.08 Hz), slow-4 band (0.027
to 0.067 Hz), and slow-5 band (0.01-0.027 Hz) of interest. Peak voxel region, coordinates in the MNI space, cluster size (k) and statistical

values (¢, z, *, and p) of regions are reported.

Region MNI coords (xyz) k tlz r p
Broadband

Left superior temporal lobe -36 -39 27 72 5.06/4.59 0.30 0.006
Left insula -3021-9 49 4.82/4.41 0.28 0.035
Slow-4

Left thalamus -15-27 12 44 4.60/4.24 0.26 0.025
Right caudate 1812 15 59 4.48/4.14 0.25 0.006
Slow-5

Left cerebellum, posterior lobe -30 -66 -24 45 4.28/3.98 0.24 0.030

symptom score group compared to the low depressive symp-
tom score group. No significant increases or decreases in the
slope were found for the low depression symptom score
group. Cluster location, coordinates, and summary informa-
tion for the three bands are shown in Table 2. R-squared
values were calculated using the formula 7 = \/t?/(£* + df),
where ¢ is the peak voxel value of the cluster and df is the
degrees of freedom. Regions and cluster interaction effects
are presented in Figure 2.

4. Discussion

A significant interaction effect was observed between groups
with low and high depressive symptoms. Our data showed
that for the high depressive symptom score group, (those
who scored greater than 8 on the MADRS-SIGMA), the
increased symptom score was associated with increased
fALFF amplitude in the left insula, superior temporal lobe,
thalamus and cerebellum, and right caudate. Conversely, no

significant association was found between the fALFF ampli-
tude and low depressive symptom score group. Such an inter-
action effect has not been previously described.

The interaction effect found adds a novel insight as it
maps a linear relationship with signal changes in brain
regions with depressive symptom scores, separable by low
and high depressive symptoms. In addition, the fact that
these differential effects were observed in the same regions
for patients with and without depressive symptoms provides
further support for a role for this set of regions in depression.
For example, we observed an interaction effect in the insula.
The insula has been extensively associated with depression
in prior studies of nonstroke depression, yet it is unclear if
insula is hyper- or hypoactivated, with variable reports
depending on the use of positive or negative stimuli, the stage
(first episode vs. repeated), or severity (major vs. subthresh-
old) of depression [67].

Our findings provide insight into how brain signal is dif-
ferentially associated with the depression score in those with
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MADRS score
MADRS score
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fALFF broadband left insula fALFF broadband left superior temporal
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F1GURE 2: Cluster locations showing a significant interaction effect between the low and high depressive symptom score groups with the mean
cluster fALFF response plotted against the MADRS-SIGMA score for broadband, slow-4 band, and slow-5 band (green represents low
depressive symptom score group, blue represents high depressive symptom score group, and bands along regression line represent the
95% confidence interval). (a) Broadband: left insula. (b) Broadband: left superior temporal. (c) Slow-4: left thalamus. (d) Slow-4: right
caudate. (e) Slow-5: left cerebellum. In the high depressive symptom group, high response from these regions was associated with an
increased depressive symptom score. The low depressive symptom group showed no significant association between these regions and

depressive symptom score. All brain images are shown in neurological convention.
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and without depressive symptoms. Further, these results sug-
gest that MADRS-SIGMA and fALFF analyses could poten-
tially be used to identify individuals at risk of developing
poststroke depression. This is important given the negative
impact poststroke depression has been shown to have on
the participation of everyday activities [68] and readiness to
engage in the process of rehabilitation [8], which has also
been shown to be negatively impacted [9-13]. Additionally,
these results suggest that analysis using multiple fALFF fre-
quency bands may be better than single band to study neural
correlates of PSD.

In the nonstroke depression literature, alterations of
resting-state activity to depressive symptoms have been well
established [69] and may even allow for the exploration of
different depressive subgroups [70]. Meta-analyses focusing
on studies of resting-state changes in participants with
depression have found associations with a large number of
areas across the brain, including cortical, subcortical, and
cerebellar locations, that show divergence of response from
healthy controls [23-25].

Despite suggestions that resting-state methods may be a
better approach to examine changes post stroke [71, 72],
they have not been widely employed in PSD research.
Most studies that have used functional connectivity have
focused on specific regions of interest to investigate con-
nectivity changes, e.g., from a default mode network and
anterior cingulate [40-43, 73]. These studies showed incon-
sistent results, potentially due to differing times post stroke,
methods used, and possible inclusion of artefact, a common
issue with correlation-based methods [58] if not adequately
controlled for. In our study, we utilised fALFF, which has
been shown to be less susceptible to physiological artefact
[34], performed a voxel-wise approach, and examined broad
and subfrequency bands. We found significant differences in
response to the depression score as a function of fALFF
amplitude between those who presented with low depressive
symptoms and those with high depressive symptoms.

The five significant clusters we found were located within
the left insula, superior temporal lobe, thalamus, cerebellum,
and right caudate. The insula, thalamus, and caudate are all
part of the fronto-limbic-thalamic circuit [74], which is
thought to be a major component in the neurocircuitry of
depressive illness [22, 75-79]. The posterior superior tempo-
ral lobe and insula are also associated with social emotional
processing [80], although the involvement of the superior
temporal region with depression is currently not well under-
stood [81]. The insula has extensive connections to fronto-
limbic areas and has previously been linked to aberrant
emotional and interoceptive processing in depression [67].
The insula is also reported to have a role in homeostasis
through the regulation of sympathetic and parasympathetic
systems [82], in salience and selective attention, especially
during challenging tasks [83], in motor learning [84] and in
motor recovery from stroke [85]. The cerebellum has long
been known for connections with the somatomotor cortex
[86, 87], but recently, subdivisions within the cerebellum
have been discovered which are functionally connected with
a wide range of cortical functional networks [88]. A recent
voxel-based lesion symptom mapping study [89] also found

an association between the cerebellum and a measure of
depressive symptoms, the geriatric depression scale. Interest-
ingly, their results are also within a subdivision of the left supe-
rior cerebellum, which has been shown to have extensive
functional connections to networks of the cerebrum including
cognitive, emotional processing and salience networks [90].

Examination of fALFF amplitudes across several bands
allowed us to uncover associations between regions and
PSD that otherwise would have been hidden. Examining
the frequency characteristics of signals is a widely used
method in electromagnetic physiology research [91, 92], but
has been slow to emerge within functional MRI analyses.
Subbands within the low frequency resting-state range have
previously been identified [36, 37], and the use of spectral
methods such as fALFF has shown distinct spatial differences
between them [34]. If broadband range alone had been
examined, alterations within the caudate, thalamus, and cer-
ebellum would not have been detected. This suggests that
within the “resting-state range” of 0.01 to 0.08 Hz, different
regions have unique oscillatory characteristics which are
associated with depressive symptom severity. In the non-
stroke depression literature, these areas are thought to be
involved in cognitive and emotional modulation [93] and
are considered to be central to the emotional dysregulation
that is a hallmark of the condition [94-96].

The analysis performed in this study had similarities with
that described by Egorova et al. [44]. Egorova et al. also inves-
tigated stroke survivors at 3 months post stroke, but used a
different measure of depression (Patient Health Question-
naire-9), which had a lower proportion with depression
(31%), and 40% of their depressed group (8/20) had a prior
stroke. Only 2% (1/44) of the nondepressed group had a prior
stroke, potentially impacting the findings. Egorova et al.
reported mean differences between the low and high depres-
sive symptom score groups in the dorsolateral prefrontal,
precentral, and middle frontal regions. In contrast, we did
not find any significant differences between the groups in frontal
regions. Similar to our study, Egorova et al. found a significant
association with the depression scores, in the left insula/superior
temporal gyrus; however, in contrast, this was observed in the
slow-4 subband and not the broadband as we reported. Further,
our study found an interaction effect in both of these regions
separately. Differences in the findings could be due to the differ-
ence in models used to examine the data. Egorova et al. exam-
ined only the group main effects, which in the General Linear
Model framework compares the distance between slopes of
the groups. In contrast, an interaction term examines differ-
ences in how the slopes interact with a third variable (in this case
MADRS-SIGMA scores). We did not test group differences, as
in the presence of a significant interaction effect interpre-
tation of main effects may be misleading [97]. Thus, the
studies asked different, but complementary, questions.

A caveat of our study is that the groups were determined
by the cut-off score rather than a diagnosis made by a clini-
cian. The cut-off score of >8 was used in this study to denote
the high depressive symptom score. This cut-off, determined
by Sagen et al. [50], had an AUC of 0.91 to correctly classify
the depressed state of poststroke patients. However, it must
be acknowledged that depression is a multifaceted disorder



with idiosyncratic presentation of symptoms and a simple
cut-oft score may incorrectly classify some individuals as
depressed when they are not depressed and vice versa.
Optimally, determination of group placement requires
examination from a clinician trained to identify and make
a diagnosis of mood disorders. A second caveat of this study
is the presence of overlap between voxels that showed a sig-
nificant interaction effect and voxels that were affected by
lesion damage. These regions of overlap however occurred
in voxels where 3 or less participants showed damage.
This would have affected less than 8% of the total low
MADRS-SIGMA group or less than 12% of the total high
MADRS-SIGMA group and only in a subset of voxels where
a significant interaction was found.

A few methodological issues and their potential impact
are highlighted. A scanning acquisition time of 7 minutes
was selected, following pilot protocol testing, to optimize
comfort for the patient while achieving adequate signal-to-
noise and robust findings. While longer acquisition periods
may be recommended for resting-state functional connectiv-
ity analyses [98, 99], voxelwise methods based on BOLD fre-
quency spectrum have been shown to reach a stable state
around 5 minutes [100]. The impact of head motion on
BOLD fluctuations was minimized by the following: careful
preparation and support positioning of the patient; real-
time monitoring of motion, with repeating scan if excessive
motion was evident; systematic, quality inspection of each
participant’s resting-state data prior to inclusion in data
analysis; motion regression and global signal regression
(see Methods); and standardization (z-scoring) of ALFF
and fALFF based on evidence that it serves to decouple
amplitudes from head motion [100]. We did not censor
periods of high motion from the analysis, as missing data
may introduce artefact into the spectra [100]. Finally, delay
in the hemodynamic response function of the BOLD
response is identified as an issue impacting functional con-
nectivity data analysis following stroke [101]. A potential
advantage of using a frequency spectra analysis (rather than
time domain analysis) is that the hemodynamic lag is not
such an issue in spectral methods of analysis.

5. Conclusion and Implications

In summary, this study provides evidence that fALFF, a
measure of resting-state activity, is sensitive to changes in
poststroke depressive symptom severity and implicates the
frontostriatal and cerebellar regions consistent with previous
studies. Significant interaction effects between the resting-
state fALFF values and MADRS-SIGMA score were observed
in the left insula, superior temporal lobe, thalamus, and cer-
ebellum and in the right caudate across several frequency
bands. These regions showed differing activity patterns when
coupled with the MADRS-SIGMA score between those who
scored low on the MADRS-SIGMA compared to those who
scored high. These results may be useful in identifying “at
risk” individuals for PSD and guide further exploration of
brain regions and networks vulnerable to altered functioning
in PSD. Identification of “at risk” individuals has clinical
implications for planning clinical pathways and as a factor
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in the effectiveness of rehabilitation therapies due to impact
on a patient’s “readiness for change,” which further impacts
on when therapeutic interventions should be targeted.

Evidence of an interaction effect is also of value in better
understanding the neural mechanisms underlying poststroke
depression, in particular the association with the amplitude
of resting signals of certain brain regions in different groups
of patients. The possibility of manipulating brain signal
activity in key areas, such as insula, to differentially impact
depressive symptoms in stroke patients is appealing. Given
the role of the insula in multimodal sensory and cognitive
emotional processing, and in learning, the potential to influ-
ence brain signal activity through such experiences suggests a
worthwhile area of investigation.
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Traumatic brain injury (TBI) occurs when a blow to the head causes brain damage. Apart from physical trauma, it causes a wide
range of cognitive, behavioral, and emotional deficits including impairments in learning and memory. On neuronal level, TBI
may lead to circuitry remodeling and in effect imbalance between excitatory and inhibitory neurotransmissions. Such change in
brain homeostasis may often lead to brain disorders. The basic units of neuronal connectivity are dendritic spines that are tiny
protrusions forming synapses between two cells in a network. Spines are dynamic structures that undergo morphological
transformation throughout life. Their shape is strictly related to an on/off state of synapse and the strength of synaptic
transmission. Matrix metalloproteinase-9 (MMP-9) is an extrasynaptically operating enzyme that plays a role in spine
remodeling and has been reported to be activated upon TBI. The aim of the present study was to evaluate the influence of
MMP-9 on dendritic spine density and morphology following controlled cortical impact (CCI) as animal model of TBI. We
examined spine density and dendritic spine shape in the cerebral cortex and the hippocampus. CCI caused a marked decrease in
spine density as well as spine shrinkage in the cerebral cortex ipsilateral to the injury, when compared to sham animals and
contralateral side both 1 day and 1 week after the insult. Decreased spine density was also observed in the dentate gyrus of the
hippocampus; however, in contrast to the cerebral cortex, spines in the DG became more filopodia-like. In mice lacking MMP-
9, no effects of TBI on spine density and morphology were observed.

1. Introduction

Traumatic brain injury caused by an external mechanical
force evokes a variety of brain responses, including focal
extrasynaptic matrix degradation, neuronal loss within hip-
pocampus area, glia activation, synaptic remodeling, and ion
channels activity changes [1, 2]. On a neurotransmission level,
a massive glutamate efflux, increased level of extracellular glu-
tamate, and hyperactivation of NMDAR receptor channels
followed by their loss are observed [3]. These events are also
strictly related to dendritic spine remodeling [4]. Dendritic
spines are small membranous protrusions that undergo
plastic morphological changes under both physiological
(e.g., development or learning and memory) and pathological
(e.g., neurodegeneration, psychiatric disorders) conditions
[5-7]. Several recent reports have described changes in den-
dritic spine density and size following brain trauma [8-16].

MMP-9 is pericellularly acting endopeptidase, classified
as a gelatinase due to its ability to cleave gelatin [17-21].
Through involvement in extracellular matrix remodeling, it
regulates numerous cell processes and physiological func-
tions [22-26]. Aside from physiological role, MMP-9 takes
part in such central nervous system pathological events as
injury, stroke, or epileptogenesis, as well as neuropsychiatric
disorders such as schizophrenia or addiction [27-35]. Impor-
tantly, previous reports have also indicated that MMP-9 is a
crucial dendritic spine shape modulator [36-41] and its level
is altered posttrauma [28, 40, 42-45]. To what extent upon
brain injury MMP-9 is involved in altering dendritic spines
number and shape is yet unknown. To bridge this gap, we
set out to analyze the effects of MMP-9 levels on TBI-
stimulated plastic changes of the dendritic spines in the
mouse brain. For this, we used controlled cortical impact
(CCI) as an animal model of traumatic brain injury [46].
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First, we describe influence of CCI on density and morphol-
ogy of dendritic spines in the cerebral cortex and hippocam-
pus 24 hours and 7 days of postbrain injury. Next, we assess
the effects of missing MMP-9 due to the gene knockout (KO)
on spine density and shape following TBI.

2. Materials and Methods

2.1. Animals. The study was performed on adult (12-14
weeks old) C57BL/6] male mice (Animal House, Center for
Experimental Medicine, Bialystok, Poland), MMP-9 homo-
zygous knockout mice (MMP-9 KO), and their WT siblings
(MMP-9 WT) on a C57BL/6] background [47]. All mice were
maintained in the Animal House of the Nencki Institute.
Animals were housed in individual cages under controlled
environment (temperature 22 + 1°C, humidity 50-60%, with
free access to food and water and a 12h light/dark cycle).
All procedures were performed in accordance with the Ani-
mal Protection Act in Poland, directive 2010/63/EU, and
were approved by the Ist Local Ethics Committee (Permis-
sions Numbers: 383/2012; 609/2014).

2.2. Induction of TBI with CCI. Mice were subjected to unilat-
eral cortical contusion using the controlled cortical impact
protocol [28, 46, 48] following anesthesia evoked with 4%
isoflurane (Aerrane; Baxter, UK) in 100% oxygen with a
delivery rate of 41/min. During the surgery, concentration
of isoflurane was maintained at the level of 3% in 100% oxy-
gen with delivery of 0.6 1/min (Combi Vet Anesthesia System;
Rothacher; Switzerland). For deeper sedation, briefly before
the injury, mice were injected subcutaneously with butorpha-
nol (10 ug/30 g body weight). After skull exposure by midline
scalp incision, craniectomy was performed using a 5mm &
trephine (Fine Science Tools FST; Germany) over the left
parietotemporal cortex between the lambda and bregma
(Figure 1(a)). The bone piece was carefully removed without
disrupting the dura. For TBI execution, we used Leica Impact
One device equipped with an electrically driven metallic pis-
ton controlled by a linear velocity displacement transducer
(Leica Biosystems, KAWA.SKA; Poland). After craniectomy,
the adjustable CCI equipment was mounted on the left ste-
reotaxic arm at an angle of 20° from vertical. CCI was deliv-
ered according to the protocol [28] using the following
parameters: & 3 mm: flat tip; depth: 0.5 mm from the dura;
velocity: 5m/s, and dwell time: 100 ms. After injury, bleeding
was strictly controlled, a piece of sterile plastic was placed
over the craniectomy area, and the incision was sutured with
nylon stitches (Sigmed; Poland). Next, the animals were
returned to the heated home cages for postsurgical recovery.
Sham-injured animals underwent identical anesthesia and
craniectomy procedures, but were not subjected to CCI.
The following number of animals was subjected to procedure
per each time point: C57BL/6] (n=5 CCI, n=5 sham),
MMP-9 WT (n=5 CCI, n=3 sham), and MMP-9 KO
(n=5 CCI, n=3 sham).

2.3. Nissl Staining. To verify cerebral cortex degeneration, we
performed Nissl staining. 24 hours and 7 days after the
injury, mice were anesthetized and perfused with 0.37%
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sulfide solution (5 ml/min, 4°C) for 5 min followed by perfu-
sion with 4% paraformaldehyde in 0.1 M sodium phosphate
buffer, pH 7.4 (5ml/min, 4°C) for 10 min. The brains were
removed from the skull and postfixed in buffered 4% parafor-
maldehyde for 4h at 4°C, and then cryoprotected in a
solution containing 30% glycerol in 0.02 M potassium
phosphate-buffered saline for 48 h. Samples were then frozen
on dry ice and stored at -80°C. Frozen brains were sectioned
in the coronal plane (40 yum) with a sliding cryostat (Leica
Biosystems, KAWA.SKA; Poland). The sections were
mounted on microscope gelatin-covered slides, dried, and
stained with cresyl violet. Pictures of Nissl-stained sections
were taken using the light microscope Nikon Eclipse Ni
equipped with PlanApo 2x objective.

2.4. Dendritic Spine Analysis. Dendritic spines were visualized
using lipophilic dye Dil (1,1'-dioctadecyl-3,3,3',3'-tetra-
methylindocarbocyanine perchlorate, #D282 Life Technolo-
gies, Warsaw, Poland). 24 hours and 7 days after CCI, mice
were sacrificed and their brains were collected. Next, they were
cut into 130 ym sections on vibratome (Leica VT 1000S, Leica
Biosystems Nussloch GmbH, Wetzlar, Germany). Slices were
processed for Dil staining. Random dendrite labeling was per-
formed using 1.6 ym tungsten particles (Bio-Rad, Hercules,
CA, USA) coated with Dil. Dye was delivered to cells using
Gene Gun (Bio-Rad). After staining, slices were fixed with
0.4% paraformaldehyde in phosphate-buffered saline (PBS;
overnight at 4°C) and placed on microscopic slides. Z-stacks
of dendrites from the 2nd and 3rd layers of the perilesional
cortex and the dentate gyrus (DG) were acquired using the
LSM780 confocal system equipped with 40x objective (Plan
Apochromat 40x/1.4 Oil DIC) (Zeiss, Poznan, Poland). Dil
emission was excited using a HeNe 594 nm laser. For each
image, the following parameters were applied: 70 nm pixel
size, 300 nm Z-intervals, averaging 4. Maximum intensity
projections of Z-stacks covering the length of dendrite were
analyzed using semiautomatic SpineMagick! software [49]. It
allows marking dendritic spine head and base manually. Next,
the software marks automatically spine edges that can be
adjusted manually to fully reflect the spine shape [49]. For
each animal, 5-7 single dendrites from selected brain areas
(one dendrite per neuron per image) were analyzed. First,
dendritic spine density was calculated. In the next step, den-
dritic spines were examined according to the following mor-
phological parameters: spine area, head width, spine length,
and a scale-free parameter - the length divided by the width
(length to width ratio) (Figure 2(a)). This parameter reflects
the spine shape—the higher the ratio, the more filopodial
spine is.

To determine group size, we used assumption on the
basis of sample size determination and the following
equation:

n:1+2C(§)2, (1)

where # is the group size, C is a constant dependent on the
value of o and power selected (here it equals 10.51 for 0.9
power and 0.05 significance level), s is an estimate of the
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FI1GURE 1: Decrease in spine density after controlled cortical impact (CCI). (a) Schematic representation of injured area. Nissl-stained brain
sections from animals at 1 and 7 days after CCI (CCI: animals after controlled cortical impact; sham: animals subjected to craniectomy
without cortical injury). (b) Spine density (number of spines per 1 ym of dendrite length) in ipsi- and contralateral 2nd and 3rd cortex
layers of C57Bl6/] mice, 1 and 7 days after CCI and sham procedures; right panel shows representative dendrites pictures. (c) Spine
density in ipsi- and contralateral dentate gyrus of C57Bl6/] mice, 1 and 7 days after CCI and sham procedures; right panel shows
representative dendrite pictures. Data are presented as mean + SEM. Statistical analysis was carried out using one-way ANOVA followed
by Tukey’s post hoc test. Asterisks indicate statistical significance from the CCI and sham groups, respectively. *P < 0.05; ***P <0.001;
¥ P < 0.0001.

population standard deviation of the variable, and d is the  increased the group size and it varied between 15 and 25
magnitude of the difference. With the above-estimated  depending on the experiment (5 to 7 pictures per animal,
values, the group size is 10. In our experiments, we  3-5 animals per group).
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F1GURE 2: Time-dependent changes in dendritic spines shape after controlled cortical impact (CCI). (a) Spine shape parameters: A: spine area;
B: spine length; C: head width; B/C: length/width ratio. (b) Spine area calculated in the ipsi- and contralateral cortex and hippocampus of
C57Bl6/] mice, 1 and 7 days after CCI and sham procedures. (c) Head width calculated in the ipsi- and contralateral cortex and
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cortex and hippocampus of C57Bl6/] mice, 1 and 7 days after CCI and sham procedures. (e) Length/width ratio calculated in the ipsi- and
contralateral cortex and hippocampus of C57Bl6/] mice, 1 and 7 days after CCI and sham-operated animals. Data are presented as mean
+ SEM. Statistical analysis was carried out using one-way ANOVA followed by Tukey’s post hoc test. Asterisks indicate statistical
significance from the CCI and sham groups, respectively. *P < 0.05; **P < 0.01; ***P <0.001; ****P < 0.00013.3.

2.5. Statistical Analyses. All results are expressed as mean
+ SEM. The appropriate tests were chosen (see below),
taking into account whether data had normal distribution
and equal variation. All analyses were conducted using
GraphPad Prism, version 7.02 (GraphPad Software Inc.,
La Jolla, CA). Differences between the experimental groups
were considered significant if the type 1 error was less
than 5%.

3. Results

3.1. Decrease in Spine Density in the Cerebral Cortex and the
Hippocampus Evoked by Controlled Cortical Impact (CCI).
To induce TBI in mice, we used controlled cortical impact

(CCI) as described by Bolkvadze and Pitkidnen [46]. To
describe morphological changes evoked by injury, the brains
were collected 24 hours and 7 days post-CCI. Control ani-
mals (sham-operated) were subjected to craniectomy only
and sacrificed together with the animals that underwent
CCIL The Nissl staining revealed time-dependent cerebral
cortex degeneration within the injured area (Figure 1(a)).
In sham-operated animals, hardly any tissue damage was
observed. A separate batch of animals was used to perform
dendritic spine analyses. Animals were subjected to CCI or
sham surgery. Twenty-four hours or 7 days later, their brains
were collected to perform analyses of dendritic spines from
ipsi- and contralateral sides. For this, we used lipophilic dye
that incorporates into cell membranes and marks the whole



cell contour. Sections were imaged using a confocal micro-
scope, as described in Materials and Methods. Spine density
was calculated as a number of protrusions per 1um of
dendrite length. Twenty-four hours and 7 days after CCI,
spine density was decreased in the 2nd and 3rd layers of
the ipsilateral cerebral cortex, as compared to the contralat-
eral hemisphere (24h ****P <0.0001; 7d *P =0.0135) and
sham animals (24h ****P<0.0001; 7d ***P=0.0003;
Figure 2(b)). Similar effect was observed in the DG where
24 hours and 7 days after TBI spine density were significantly
lower compared to the contralateral side (24h *P < 0.0001;
7d *P=0.0001; Figure 1(c)) and sham-operated animals
(24h *P=0.0251; 7d ****P < 0.0001; Figure 1(c)).

3.2. Dendritic Spines Become Shorter and Wider in Injured
Cerebral Cortex Area. Next, we aimed at more detailed
analysis of morphological alterations following trauma. For
this, we used a semiautomatic software to evaluate dendritic
spine shapes on the basis of the following parameters:
length, head width, and length to width ratio that describes
the spine shape, with its increase reflecting filopodial shape
(Figure 2(a)). The parameters were measured at two time
points, 1 and 7 days after CCI. Dendritic spines shrank in
the ipsilateral cerebral cortex following trauma as their areas
were smaller both 24 hours and 7 days after brain injury,
compared to the contralateral cortex (24h ****P <0.0001;
7d **P =0.0057; Figure 1(b)). Significant difference between
ipsilateral hemisphere and sham-operated animals was
observed only after 24 hours (***P =0.0005), while in the
DG, no significant differences were observed (Figure 2(b)).
Head width (width at the widest point of the spine)
increased both in the cortex and DG in injured hemi-
spheres, compared to the contralateral hemisphere (cortex:
24h **P<0.0015; 7d ****P>0.0001; DG: 7d *P=0.033)
and animals that underwent sham surgeries (cortex: 24h
*#**P>0.0001; 7d ****P > 0.0001; DG: 24h ***P =0.0005;
7d**P =0.0086) (Figure 2(c)). Next parameter, spine length,
reflects the distance from the bottom to the top of the spine
(Figure 2(d)). In the ipsilateral cortex, spine length was
decreased compared to the contralateral hemisphere in both
time points (24 h ***P =0.0006; 7d **P = 0.0097) and sham-
operated animals (24h ***P=0.0021; 7d *P =0.0043). In
contrast, in the ipsilateral DG, spines were longer than
in animals after sham operation (24h **P=0.0021; 7d
*P=0.0166), and no difference compared to the contra-
lateral hemisphere was observed. Decrease of the ratio
between the length and width of the spine was observed in
the ipsilateral cerebral cortex when compared to the contra-
lateral side (Figure 2(e), 24 h: **P <0.0001; 7d *P=0.0182)
and sham animals (24h: **P =0.0061; 7d ***P =0.0010).
While in the ipsilateral DG, opposite effect was noticed,
where the length/width ratio increases in response to
TBI compared to contralateral DG (24h *P=0.0166;
7d *P=0.026) as well as in comparison to sham animals
(24h *P =0.0402; 7d *P = 0.037; Figure 2(e)).

3.3. Deficiency of MMP-9 Impairs the Effect of Brain Injury on
Spine Density Decline. Since MMP-9 is one of the key
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modulators of dendritic spines shape and its role in TBI
and subsequent epileptogenesis has been recently highlighted
[28], we set out to evaluate whether the lack of MMP-9 affects
morphological changes observed in WT animals. For this, we
used mice missing MMP-9 (MMP-9 KO) and their wild-type
littermates (WT MMP-9). We focused on 7-day post-CCI
time point. As we reported in the previous report, MMP-9
activity was the highest during first week after brain injury
[28]. After CCIin WT and KO MMP-9 animals, we analyzed
dendritic spines as described above. 1 week after the brain
injury, spine density was decreased in the ipsilateral cerebral
cortex of WT animals as compared to the contralateral side of
the injured brain (**P=0.0011; Figure 3(a)) and sham-
operated animals (**P = 0.0067; Figure 3(a)). However, this
phenomenon was not observed in MMP-9 KO mice
(Figures 3(a) and 3(b)).

3.4. MMP-9 Is Required for Spine Shape Remodeling upon
Injury. To further unravel the influence of MMP-9 on the
postinjury morphological changes of dendritic spines, we
analyzed basic spine parameters (Figure 2(a)). We focused
on length to width ratio and spine head width as these
parameters indicate whether protrusions undergo plastic
changes. In WT animals, in the ipsilateral cerebral cortex
area, we observed increase in head width compared to
contralateral hemisphere (****P < 0.0001; Figure 4(a)) and
sham-operated animals (* P = 0.0477; Figure 4(a)). Similarly,
to the cerebral cortex, in the ipsilateral dentate gyrus of
hippocampus WT MMP-9 mice, head width was signifi-
cantly bigger compared to the contralateral hippocampus
(**P=0.0020; Figure 5(a)) and sham-operated animals
(**P =0.0061; Figure 5(a)). On the contrary, in MMP-9 KO
animals, following CCI, no alterations in dendritic spine
morphology were detected in both analyzed structures
(Figures 4(a) and 5(a)). In the injured cerebral cortex, WT
MMP-9 mice length/width ratio decreased, while in the
ipsilateral dentate gyrus increased (Figures 4(b) and 5(b)).
The changes in the ipsilateral cortex was significant com-
pared to the contralateral side of the brain (**P =0.0048;
Figure 4(b)) and sham animals (*P =0.0316; Figure 4(b)),
whereas in MMP-9 KO mice, no differences were observed
(Figure 4(b)). In the DG, ratio between the spine length
and width in ipsilateral hemisphere was significantly higher
compared only to sham animals (**P = 0.0016; Figure 5(b)).
Similarly, to the cortex, the changes between the CCI and
sham groups were not significant (Figure 5(b)).

4. Discussion

Here, we show that traumatic brain injury caused by the con-
trolled cortical impact induces acute (within 1 day post-TBI)
changes in the dendritic spine number and morphology, as
well as prolonged (up to 7 days after the injury) spine remod-
eling. Spine density decreases following brain trauma in the
ipsilateral side both in the cerebral cortex and the dentate
gyrus of the hippocampus. Following trauma dendritic spines
in the ipsilateral cerebral cortex shrink, get shorter and their
heads get wider, thus being converted into more mushroom-
like shape. On the other hand, spines in the DG on the



Neural Plasticity

Cortex
1 wk post-CCI
WT MMP-9 KO MMP-9
Sham Ipsi Contra Sham Ipsi Contra
1.5+ 1.5 4
u
\g 1.0+ \‘8/_. 1.0
z ol
] ]
2 05 z 03
& &
0.0 0.0

Sham

CCI CCI
IpsiContra

Sham  CCI CCI

Ipsi Contra

()

7
DG
1 wk post-CCI
WT MMP-9 KO MMP-9
-
Sham Ipsi Contra Sham Ipsi Contra
1.54 . 15 ~
] ok £
= =
P P
& 10 & 10
fnd fnd
< <
E 0.5 .E 0.5
& &
0.0- 0.0 -
Sham  CCI CCI Sham  CCI CCI
Ipsi Contra Ipsi Contra

(b)

F1GURE 3: Effect of lack of functional MMP-9 on spine density in animals after controlled cortical impact (CCI). (a) Spine density in ipsi- and
contralateral 2nd and 3rd cortex layers of animals with different mmp-9 gene expression levels 1 week after CCI and sham surgeries; upper
panel shows representative dendrites pictures. (b) Spine density in the ipsi- and contralateral dentate gyrus of animals with different mmp-9
gene expression levels 1 week after CCI and sham surgeries; upper panel shows representative dendrite pictures. Data are presented as
mean + SEM. Statistical analysis was carried out using one-way ANOVA followed by Tukey’s post hoc test. Asterisks indicate statistical

significance from the CCI and sham groups, respectively. **P < 0.01.

ipsilateral side get longer and thinner, assuming more filopo-
dial form. Lack of MMP-9 activity in the brain abrogates the
effects evoked by the trauma, both as far as the spine dynam-
ics (reflected by changes in the density) and morphological
plasticity are concerned.

Dendritic spines are protrusions containing the majority
of excitatory synapses, thus gating inputs received by the
nerve cell [4, 50]. The density and morphology of dendritic
spines are regulated by synaptic activity, and so spines
undergo dynamic turnover throughout life. Filopodia-
shaped spines are more prominent in the developing brain
and are considered “immature” [51]. Some reports indicate
that these are spine precursors during synapse formation
[52]. Spines considered “mature” are more mushroom-
shaped, allowing stabilizing the spine by gathering more neu-
rotransmitter receptors in the head [53]. Other feature of
such shape is that the narrow spine neck might also compart-
mentalize calcium necessary for synaptic transmission to
occur [54]. When the brain is challenged by injury, spines
respond accordingly to maintain milieu homeostasis [7].

First, we measured dendritic spine density. Spine number
has been shown to be related to overall synaptic activity, e.g.,
in the hippocampus transient enhancement of dendritic
spine density accompanies early long-term potentiation
(LTP) in the dentate gyrus [55]. Previous studies on dendritic
spine plasticity evoked by TBI in animal models showed
decreased spine density in the hippocampus and the cerebral
cortex at various times after brain injury (24 hours to 35

days) [9, 11, 13, 16]. Furthermore, one study expands these
observations up to 1.5 years, showing changes that last not
only shortly after brain injury but also continue into chronic
stages of TBI. Moreover, they take place in widespread
regions beyond the site of acute trauma [12].

Dendritic spine loss is accompanied by dendrite defor-
mation and swelling [15]. Our results are essentially in agree-
ment with the abovementioned data; however, they extend
those observations by describing the detailed shape parame-
ters. In the present study, we show that 24-hour postinjury
dendritic spine density decreases in the ipsilateral side in
the cortex and the hippocampus, which is consistent with
the previous report [8, 11]. We further demonstrate that 7
days after injury the number of spines per dendrite length
is still decreased in the cortex and the DG. Dendritic spine
loss one-week posttrauma was also shown in the CA1 of
the hippocampus [12]. Since our TBI conditions were far less
severe, we conclude that even mild injury then can result in
substantial changes in the brain.

Furthermore, we also show a detailed morphological
analysis of dendritic spines in the cortex and hippocampus
after traumatic brain injury. Here, we demonstrate that
after brain trauma induced by CCI, dendritic spines in
the cerebral cortex, ipsilaterally to the injury side, are get-
ting shorter and their heads become wider, when com-
pared to sham-operated animals and the contralateral
side of the injured cerebral cortex. Overall, the spine plas-
ticity observed in the cerebral cortex ipsilateral to the
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F1GURE 4: Effects of MMP-9 on spine shape changes in the cerebral cortex layers of animals 1 week post-CCI. (a) Head width calculated in the
ipsi- and contralateral cortex and hippocampus of C57Bl6/] mice, 7 days after CCI and sham procedures. (b) Length/width ratio calculated in
the ipsi- and contralateral cortex and hippocampus of C57Bl6/] mice, 7 days after CCI and sham-operated animals. (c) Dendrite pictures from
the ipsi- and contralateral cortex and sham animals. (d) Representative dendrite pictures from the ipsi- and contralateral cortex and sham
animals. Data are presented as mean + SEM. Statistical analysis was carried out using one-way ANOVA followed by Tukey’s post hoc test.
Asterisks indicate statistical significance from the CCI and sham groups, respectively. *P < 0.05; **P < 0.01.

injury and in a deeper located DG showed similar pattern of
spine morphological alterations, except for the length/width
ratio. This morphological parameter is believed to reflect
spine maturity [4, 39, 52]. The greater this value, the spine
is more filopodial-shaped, ie., immature. This finding
deserves a special comment. The filopodia-like spines are
presumably prone to support initiation of synaptic plasticity
processes [4, 36, 50]. Therefore, this result may suggest that
DG may undergo synaptic plasticity that may predispose this
brain structure to support epileptogenesis that is a frequent
consequence of TBI [56, 57].

In the present study, we show that TBI-driven dynamics
and morphological plasticity of dendritic spines are MMP-9-
dependent. Increases in MMP-9 following TBI have previ-
ously been reported both in the animal brain and human
cerebrospinal fluid, blood plasma, and serum [9, 30, 44-47,

58, 59]. The possible role of MMP-9 in controlling spine
dynamics has been previously demonstrated in the DG, fol-
lowing treatment with excitotoxic kainic acid, where MMP-
9 KO mice were found to be resistant to spine loss [60, 61].
Similarly, recently, Nagaoka et al. [62] have reported that
MMP-9 controls spine dynamics in the neocortex of fragile
X mental retardation protein KO mice.

Furthermore, in our study, missing MMP-9 has entirely
abrogated dendritic spine morphological plasticity provoked
by TBI both in the cerebral cortex ipsilateral to the injury
and in the dentate gyrus. This finding goes well along with
multiple data showing a pivotal role of MMP-9 in regulation
of dendritic spine size and shape [29, 63, 64].

Finally, we shall stress that previous studies [28, 40]
demonstrated that MMP-9 KO mice brain showed limited
brain damage after CCI. However, the extend of this
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Fi1GURE 5: Effects of MMP-9 on spine shape changes in the dentate gyrus of animals 1 week post-CCI. (a) Head width calculated in the ipsi-
and contralateral hippocampus of C57Bl6/] mice, 7 days after CCI and sham procedures. (b) Length/width ratio calculated in the ipsi- and
contralateral hippocampus of C57Bl6/] mice, 7 days after CCI and sham-operated animals. (c) Dendrite pictures from the ipsi- and
contralateral dentate gyrus and sham animals. (d) Representative dendrite pictures from the ipsi- and contralateral dentate gyrus and
sham animals. Data are presented as mean + SEM. Statistical analysis was carried out using one-way ANOVA followed by Tukey’s post
hoc test. Asterisk indicate statistical significance from the CCI and sham groups, respectively. *P < 0.05; **P < 0.01.

protection against brain damage (MMP-9 KO still demon-
strated almost 40% of the cortical injury area as compared
to WT) does not seem to explain the entire abrogation of
TBI effects on the spines in the MMP-9 KO brains.

5. Conclusions

Herein, we have provided a detailed analysis of TBI-evoked
density and morphological plasticity of the dendritic spines.
We have found that in result of the injury, there is a decrease
in spine density both very close (ipsilateral cerebral cortex)
and more distal (hippocampal dentate gyrus on the ipsilateral

side) to the locus of the injury. However, the spines located
on neurons close to the injury assume more mushroom-like
shape, whereas those in DG become more filopodia-like.
Missing MMP-9 previously shown to exert control of the
spine density and morphology abrogated the aforementioned
plasticity entirely. Considering the previously reported role
of MMP-9 in posttraumatic epileptogenesis (PTE) that might
be supported by abnormal synaptic plasticity, and a well-
documented role of this enzyme in the plasticity of dendritic
spines, it is tempting to suggest that MMP-9-dependent
dendritic spine dynamics and morphological plasticity con-
tribute to PTE.
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Stroke remains a leading cause of disability worldwide. Recently, we have established an animal model of stroke that results in
delayed impairment in spatial memory, allowing us to better investigate cognitive deficits. Young and aged brains show different
recovery profiles after stroke; therefore, we assessed aged-related differences in poststroke cognition. As neurotrophic support
diminishes with age, we also investigated the involvement of brain-derived neurotrophic factor (BDNF) in these differences.
Young (3-6 months old) and aged (16-21 months old) mice were trained in operant touchscreen chambers to complete a visual
pairwise discrimination (VD) task. Stroke or sham surgery was induced using the photothrombotic model to induce a bilateral
prefrontal cortex stroke. Five days poststroke, an additional cohort of aged stroke animals were treated with intracerebral
hydrogels loaded with the BDNF decoy, TrkB-Fc. Following treatment, animals underwent the reversal and rereversal task to
identify stroke-induced cognitive deficits at days 17 and 37 poststroke, respectively. Assessment of sham animals using Cox
regression and log-rank analyses showed aged mice exhibit an increased impairment on VD reversal and rereversal learning
compared to young controls. Stroke to young mice revealed no impairment on either task. In contrast, stroke to aged mice
facilitated a significant improvement in reversal learning, which was dampened in the presence of the BDNF decoy, TrkB-Fc. In
addition, aged stroke control animals required significantly less consecutive days and correction trials to master the reversal
task, relative to aged shams, an effect dampened by TrkB-Fc. Our findings support age-related differences in recovery of
cognitive function after stroke. Interestingly, aged stroke animals outperformed their sham counterparts, suggesting reopening
of a critical window for recovery that is being mediated by BDNF.

1. Introduction

Poststroke disability can include impairments in motor,
sensory, visual, and cognitive functions [1]. Cognitive impair-
ments, like motor impairments, can persist for years, leading to
increased burden on caregivers and society [2, 3]. An added
complication of cognitive impairments is that epidemiological
evidence shows that impairments arising from strokes to the
prefrontal cortex (PFC) or parietal cortex can take several
months before becoming apparent [2, 4-6]. Whilst cognitive
impairments are present in the traditional middle cerebral
artery occlusion models of stroke, cognitive assessment in
these models are often confounded by the presence of gross

motor impairments that are required to be intact in order to
complete the cognitive tasks themselves [7]. Furthermore,
our knowledge of the mechanisms that underlie cognitive
impairments following stroke remains inadequate and addi-
tional research is still required to determine which interven-
tion to use and at what time point should treatment begin.

In an effort to assess changes in cognition following
stroke, several groups have established stroke models target-
ing the PFC, reporting deficits in spatial memory and execu-
tive function in the absence of motor impairment [8-10].
The rationale for targeting the PFC is that it is one of several
key areas involved in higher order cognitive processing, such
as executive function, attention, behavioural inhibition, and
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goal-directed learning [11, 12]. In addition, the PFC region is
linked with normal age-related cognitive decline, as well as
behavioural impairments in neurodegenerative disorders in
both rodents and humans [13-15]. As many as 92% of stroke
survivors report some form of cognitive decline, including
impairments in attention, working memory, and executive
function, which includes cognitive flexibility [16, 17]. Cog-
nitive flexibility is what allows one to adapt to new and unex-
pected conditions in our day-to-day lives; without it, even the
smallest of tasks would become a huge ordeal.

Preclinical assessment of cognitive impairments is limited
by the absence of tests that are considered to be translational.
This, however, has changed in recent years with the develop-
ment of touchscreen-based cognitive testing for rodents that
allow us to assess components of human-based cognition
which are assessed using the Cambridge Neuropsychological
Test Automated Battery (CANTAB) assessment tools [18-
21]. Importantly, various behavioural tests have been devel-
oped to assess cognitive impairments linked to disease-based
genetic mutations using identical paradigms in both humans
and rodents [18, 19]. In addition, lesions to the medial
PFC (mPFC) have been shown to play a role in impaired
reversal learning, specifically when rodents are presented
with complex images using touchscreens [22, 23].

Given the translatability of the touchscreen technology, we
aimed to further characterise our PFC stroke model to see if
this extends to impaired cognitive flexibility as assessed using
the visual discrimination (VD), reversal, and rereversal tasks.
As 75-89% of all strokes occur in people aged 65 and over
[24], we also aimed to assess how aged mice would perform
on this task. Moreover, neurotrophins such as brain-derived
neurotrophic factor (BDNF), which play an important role in
regulating plasticity, have been shown to diminish with age
[25, 26]. Therefore, we also investigated the involvement of
BDNF in the poststroke recovery of cognitive function as we
and others have previously reported this neurotrophin to be
critical for poststroke recovery of motor function [27-30].

2. Methods

2.1. Animals and Surgical Procedures. All procedures
described in this study were carried out in accordance with
the guidelines on the care and use of laboratory animals set
out by the University of Otago, Animal Research Committee
and the Guide for Care and Use of Laboratory Animals (NIH
Publication No. 85-23, 1996). Mice were housed under a
12-hour light/dark cycle with ad libitum access to food
and water. All young animals were paired based on initial
learning rates on the VD task and then randomly assigned
to either sham or stroke surgery. Aged animals were also
grouped based on their initial learning rate and randomly
assigned to either sham, stroke, or stroke+TrkB-Fc treat-
ments. All assessments were carried-out by observers blind
as to the treatment group. For the initial experiment com-
paring the effect of age and stroke, focal stroke to the PFC
of young (3-6 months old, n=13) and aged (16-21
months old, n=10) male C57BL/6] mice was induced by
photothrombosis as previously described [10]. Under iso-
flurane anaesthesia (2-2.5% in O,), mice were placed in a
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TaBLE 1: Summary showing treatment group sizes included for
analysis at the start of the experiment and for both the reversal
and rereversal tasks. Animal numbers that were excluded for both
the reversal and rereversal tasks are shown in brackets.

. Final n Final n for
Treatment group Starting n for reversal rereversal
Young sham 13 12 (1) 12 (1)
Young stroke 13 11 (2) 11 (2)
Aged sham 9 7 (2) 7 (2)
Aged stroke 10 8(2) 7 (3)
Aged stroke+IgG-Fc 10 8(2) 7 (3)
Aged stroke+TrkB-Fc 16 11 (5) 10 (6)

stereotactic apparatus and the skull was exposed through
a midline incision, cleared of connective tissue, and dried.
A cold light source (KL1500 LCD, Zeiss) attached to a 40x
objective giving a 2mm diameter illumination was posi-
tioned 1.2mm anterior to Bregma, and 0.2mL of Rose
Bengal solution (Sigma-Aldrich; 10g/L in normal saline)
was administered through intraperitoneal (i.p.) injection.
After five minutes, the brain was illuminated through the
intact skull for 22 minutes, creating bilateral lesions to
the PFC [10]. Young (n = 13) and aged (n = 9) sham animals
received the same surgery as above, with a 0.2 mL injection of
saline (i.p.) instead of Rose Bengal. Another cohort of aged
mice (16-21 months old) also received the above stroke sur-
gery prior to TrkB-Fc (n=16) or IgG-Fc (n =10) hydrogel
administration, as described in Section 2.2.

Data obtained from animals in the study were collected
across three cohorts due to the limited availability of the aged
animals. We tried to keep treatment group size consistent
across these cohorts; however, we noted the high attrition
and mortality rates of our aged animals in some groupings,
in particular the TrkB-Fc cohort. Therefore, some of the sham
animals were reallocated and used in the stroke cohorts. A
summary of the initial group sizes and number of mortalities
between treatment groups can be seen in Table 1.

2.2. In Vivo Drug Dosing. A hyaluronan/heparan sulfate
proteoglycan biopolymer hydrogel (HyStem-C, BioTime
Inc., Alameda, CA) was employed to locally deliver
TrkB-Fc or human IgG-Fc (antibody and vehicle control)
five days poststroke to the peri-infarct cortex as described
previously [27, 31].The timinign of treatment fits with the
critical period when we know plasticity exists, that is, 3-14-
days poststroke onset [32]. The stroke core is fully formed
by 3 days, and we and others have shown that starting treat-
ments 3-5 days poststroke does not interfere with the stroke
itself but changes the state of plasticity and improves func-
tional recovery, including treatments that alter BDNF and
TrKB signalling [27, 28, 33]. Therefore, consistent with pre-
vious studies we administered TrkB-Fc or IgG-Fc five days
poststroke. Following stroke, BDNF expression remains ele-
vated for at least 3 weeks [27, 33, 34]. Similar profiles have
been detected when using hydrogel delivery systems, with
reports of small peptides (including TrkB-Fc) still being
released 4 weeks after administration [25, 29, 30]. Therefore,
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FiGURk 1: Experimental timeline illustrating the sequence of events in the current experiment. The dotted line represents pretraining prior to
stroke surgery. The solid line refers to postsurgery events, with reference to the number of days after stroke.

hydrogel administration from 5 days poststroke would still
be releasing TrkB-Fc or IgG-Fc at the start of the rereversal
period, thereby inhibiting the later stroke-induced BDNF
response and later BDNF-mediated learning.

A total of 7.5 uL of HyStem-C was impregnated with either
TrkB-Fc (5 ug/mL) or human IgG-Fc (5 yug/mL). HyStem-C
was prepared according to the manufacturer’s instructions.
In brief, TrkB-Fc or human IgG-Fc was added to the HyStem/-
Gelin-S mix (component 1 of hydrogel), followed by the addi-
tion of Extralink (component 2 of the hydrogel) ina 4: 1 ratio.
The impregnated HyStem-C mix was injected immediately
after preparation into the stroke cavity using a 30-gauge needle
attached to a Hamilton syringe at stereotaxic coordinates
1.2mm AP, 0 mm ML, and 0.75 mm DV.

2.3. Behavioural Assessment. The VD task has previously
been used to identify an animal’s perceptual ability, as well
as testing their performance on an associative learning task
[20]. Often, VD is paired with the reversal learning task in
order to test behavioural flexibility, which can be disrupted
as a consequence of have a neurological condition [20, 22].

Initial protocols for VD and reversal learning were
adapted from those first described by Mar et al. and Brigman
and Rothblat [21, 22]. Mice were trained to discriminate
between two images, a solid white flash or wheel, presented
in a spatially pseudorandomised manner, across a maximum
of 30 trials per session. The two images were chosen follow-
ing personal communication with a representative from
Campden Instruments Ltd. (Julie Gill, personal communica-
tion, 2014), who observed equal salience following the pre-
sentation of both stimuli, which has been recently validated
in environmentally enriched animals [35]. Animals were
randomly allocated to learn either the flash or wheel stimuli
during the initial VD learning task. When we established
the randomisation, we also ensured that stimuli allocation
was balanced between testing chambers and sequential runs.
Correct responses for one stimulus resulted in an audio tone
and reward (S+, correct), whilst responses for the other
stimulus resulted in no reward (S —, incorrect) and a five
second “time-out” period, during which time the house
light was turned on. Incorrect responses were followed
by a correction trial, where the same image was repeatedly
presented in the same position, until a correct response
was made.

Acquisition criterion for the VD task was >80% correct
responses across 30 trials within 60 minutes, with the crite-
rion needing to be achieved over two consecutive days. Once
the criterion was reached, animals were matched into groups
based on initial learning rates (days to acquisition) before

being randomly allocated to one of the treatment groups. Fol-
lowing surgery, animals were allowed up to a week to recover
before undergoing food deprivation, refamiliarization on the
original VD stimuli for four sessions, and then beginning
the reversal task at 17 days poststroke. In this task, the stimu-
lus that previously elicited a reward becomes nonrewarded,
and vice versa (S+ — S — ). Lastly, all animals then underwent
the rereversal task at 3 days poststroke, where the correct and
incorrect stimuli were switched back to their original
responses. The criterion for the reversal and rereversal task
was the same as the VD criterion. Animals were tested daily
until criterion was met for all tasks. This experimental time-
line is shown diagrammatically in Figure 1.

The data obtained for the VD and both the reversal and
rereversal tasks include the number of consecutive days
required to reach criteria, total number of trials to reach cri-
teria, total number of correction trials made to reach criteria,
and total intertrial interval (ITT) touches to make criteria.

2.4. Infarct Volume. At the completion of the VD task,
animals were anesthetised and transcardially perfused with
4% paraformaldehyde (PFA). The brains were removed and
postfixed for 1 hour in 4% PFA before being transferred to
30% sucrose. The brains were cut coronally with a section
thickness of 40 ym on a sliding microtome with a freezing
stage, with all sections stored in cryoprotectant at -20°C.
Infarct volume was determined by histological assessment
using a previously published cresyl violet staining protocol
[36]. Infarct volume was quantified using Image] (National
Institutes of Health, USA) by an observer blind as to the treat-
ment groups and was based on obtaining measurements from
every 6th section through the entire infarct (area in mm?),
with infarct volume being quantified as follows:

infarct volume (mm3) = (area (mmz) x section thickness

X section interval).

(1)

2.5. Statistical Analysis. The number of sessions required to
complete the reversal task was plotted on a Kaplan-Meier
curve, and group performance was compared using the Cox
proportional-hazard regression model. Due to the effects of
heteroscedasticity (collection of random variables) and posi-
tive skewing effects, all reversal and rereversal task variable
data were log transformed prior to being analysed. Data from
the other variables collected for both young and aged and
stroke and sham animals were analysed using a two-way anal-
ysis of variance (ANOVA), followed by Sidak’s multiple
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FIGURE 2: Schematic representation of the mean infarct area in aged (dark blue) and young (light blue) mice following a 22-minute bilateral
PEC stroke. Stroke damage extends from 1.54 to 0.14 AP (a). Infarct volume was measured for both the left (blue bar) and right (red bar)
hemispheres and for the whole brain (pink dots; b) in young stroke, aged stroke, and aged+TrkB-Fc stroke animals. Data are expressed as

mean + S.E.M. for n=10-14 per group.

comparisons post hoc test. Data from aged sham, aged stroke,
and aged stroke+TrkB-Fc animals were analysed with a one-
way ANOVA, followed by Sidak’s multiple comparisons post
hoc test. The Cox proportional hazard regression model was
performed using STATA 13.0, with all remaining analyses
being performed using Prism 6.0.

2.6. Exclusion Criteria. Conducting studies in aged rodents is
notoriously difficult, with higher levels of attrition reported
poststroke [37]. In the present study, one aged sham animal,
one aged stroke+saline animal, one aged stroke+IgG-Fc ani-
mal, and three aged stroke+TrkB-Fc animals were sacrificed
and excluded from reversal analysis due to attrition/mortality.
Two young stroke animals, one aged stroke+saline animal,
and one aged stroke+IgG-Fc animal were excluded because
they showed no visible infarcts following cresyl violet staining.
Furthermore, one aged sham animal, one young sham animal,
and one aged stroke+TrkB-Fc animal were excluded from all
analysis as they failed to meet the reversal criterion. Another
aged stroke+TrkB-Fc animal was excluded due to an unsuc-
cessful hydrogel injection. Furthermore, one aged stroke
+saline animal, one aged stroke+IgG-Fc animal, and one aged
stroke+TrkB-Fc animal also died during rereversal testing
and were excluded from rereversal analysis. The final number
of animals per treatment group for the reversal and rereversal
tasks are shown in Table 1.

3. Results

3.1. Infarction Volume Quantification. Histological assess-
ment of infarct volume was assessed at day 56 post-
stroke, using cresyl violet staining (Figure 2). Damage
following a stroke to the PFC extended into the primary
motor cortex (M1), anterior cingulate cortex (ACC), and
the supplementary motor cortex (Figure 2(a)). No differences

were found in asymmetry between damage to the left and
right hemispheres following a bilateral PFC stroke in both
young and aged animals treated with saline (young—left:
0.759 +0.151 mm’, right: 0.822+0.172 mm’; aged—left:
0.581+0.172 mm?>, right: 0.845 +0.276 mm? p = 0.6816,
F(1,32)=0.1714; Figure 2(b)). Furthermore, no differ-
ences were found between the average total stroke volume
between these groups (young: 1.58+0.274 mm?; aged:
1.38 +0.404 mm?; p = 0.5950, F(1,32) =0.2883).

Aged stroke animals treated with IgG-Fc or TrkB-Fc
showed no asymmetry between left and right hemi-
spheres following a PFC stroke (IgG-Fc—left: 0.632+
0.139 mm’, right: 0.640+0.205 mm? TrkB-Fc—left:
0.621 +£0.170 mm?, right: 0.665 +0.221 mm?®; p=0.9247,
F(1,30) =0.0090; Figure 2(b)) and presented with average
stroke volumes similar to aged and young stroke animals
(IgG-Fc—1.28 £0.259 mm?; TrkB-Fc, 1.29+0.186 mm?;
p=0.9739, F(1,30)=0.0011). These data suggest that
any behavioural differences seen in vivo between young
and aged animals and also between aged animals treated with
IgG-Fc and TrkB-Fc is unlikely to be due to differences in
stroke volume.

3.2. Survival Curve of Reversal and Rereversal Tasks. Lesion
studies have previously illustrated the involvement of the
PEC in behavioural flexibility on the reversal task [20, 22].
Furthermore, the learning capacity of aged animals with
stroke to the PFC during VD tasks in the operant touchsc-
reen chambers has yet to be established. Therefore, the
Kaplan-Meier survival curves and Cox regression analyses
were used to look at the number of days each group needed
in order to reach the criterion for the reversal task (assessed
at poststroke day 17) and rereversal task (assessed at post-
stroke day 37) (Figure 3). A test for proportional-hazard
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FIGURE 3: Survival curve of the number of sessions each animal is required to make to reach the criterion (>80% accuracy across two
consecutive days) in the reversal (a) or rereversal (b) tasks. Aged animals (sham—dotted blue line; stroke—solid blue line) take longer to
learn both tasks compared to young animals (sham—dotted red line; stroke—solid red line). Aged stroke animals performed better than

aged sham controls.

assumption showed that both the reversal and rereversal data
sets showed no proportionality (data not shown).

A significant interaction effect of age and stroke was seen
across the reversal task (p<0.0001; x>=27.18; df =4;
Figure 3(a)). Young sham animals completed the reversal
task approximately 7.9 times faster than aged sham animals
(hazard ratio (HR): 7.913, p = 0.0004, 95% confidence inter-
val (CI): 2.498-25.07). Stroke to the PFC of young animals
had no significant effect of learning in the reversal task
(HR: 1.348, p =0.3814, CI: 0.592-3.06). Interestingly, stroke
to the PFC of aged animals facilitated improved learning in
the reversal task, with aged stroke animals completing the
task approximately 4.2 times faster than their aged-matched
sham counterparts (HR: 4.283, p=0.0272, CI: 2.460-
11.221). No significant differences were seen between the
performance of young animals and that of aged stroke ani-
mals in the reversal task (HR: 1.125, p=0.5936, CIL
0.4662-2.715).

A significant interaction effect of age and stroke was also
seen across all animals in the rereversal task (p=0.0007;
x* =15.02; df = 4; Figure 3(b)). Young sham animals were
found to master the rereversal task approximately 2.4
times faster than aged sham animals; however, this result
only trended towards significance (HR: 2.447, p=0.0533,
CIL: 0.829-5.136). Similar to the performance on the rever-
sal task, there was no significant difference between young
sham and young stroke animals on the rereversal task
(HR: 1.848, p=0.2075, CI: 0.7112-4.801). However, aged
stroke animals were found to outperform their aged-
matched sham counterparts, mastering the rereversal task
1.8 times faster (HR: 1.833, p=0.0473, CL: 0.2166-4.006).
No significant differences were seen between the perfor-
mance of young and aged stroke animals in the rereversal
task (HR: 1.333, p=0.1293, CI: 0.5169-3.44).

These data indicate that there is an age-related decline
in cognitive flexibility in mice. In addition, stroke to the
PFC of aged mice appears to reopen a critical window for
the improvement of recovery that results in the facilitation

of performance across both of these tasks, albeit, to
different extents.

3.3. Performance in the Reversal Task after PFC Stroke. To
investigate the performance of age-matched animals after
PEC stroke in the reversal task, a two-way ANOVA was per-
formed on log-transformed data (Figure 4). Throughout the
reversal task, an overall effect of age and stroke surgery was
seen in the number of consecutive days required to meet
the criterion (stroke, p=0.0261, F(1,35)=>5.394; age,
p<0.0001, F(1,35)=25.24; Figure 4(a)), total number
of correction trials (stroke, p=0.0054, F(1,35)=8.784;
age, p < 0.0001, F(1, 35) = 20.49; Figure 4(c)), and total num-
ber of ITI touches (stroke, p=0.0367, F(1,35) =4.71; age,
p=0.0015, F(1,35) = 11.82; Figure 4(d)). An age effect but
not stroke effect was also observed in the total number
of trials required to meet the reversal criterion (stroke,
p=0.1546, F(1,35)=2012; age, p<0.0001, F(I,35)=
36.29; Figure 4(b)). However, no significant interactions
were observed between age and stroke effects across all
of these measures (consecutive days, p =0.1509, F(1,35) =
2.156; total trials, p =0.0926, F(1,35) =2.994; total correc-
tion trials, p = 0.1460, F(1, 35) = 2.211; and total ITI touches,
p=0.1709, F(1,35) = 1.9151).

Sidak’s multiple comparison test confirmed that aged
sham animals require significantly more consecutive days
(p=0.0003), total trials (p <0.0001), total correction trials
(p=0.0008), and total ITI touches (p =0.0090) to make the
criterion in the reversal task, relative to young sham animals.
Furthermore, no significant differences were seen between
young sham and young stroke animals across any of these var-
iables (consecutive days, p =0.9163; total trials, p =0.9969;
total correction trials, p=0.6816; and total ITI touches,
p=0.9384). However, aged stroke animals were found
to require significantly less consecutive days (p =0.0463),
total correction trials (p=0.0265), and total ITI touches
(p=0.0316) to reach the criterion in the reversal task,
relative to aged sham control animals. In contrast, there was
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FIGURE 4: The effect of age (young (red) versus aged (blue)) and PFC stroke (filled boxes) on the number of consecutive days (a), total
trials (b), total correction trials (c), and total ITI touches (d) required to master the reversal task compared to sham (open boxes)
controls. $$=p<0.01, $$$=p <0.001, and $$$$=p <0.0001 compared to young sham. *=p<0.05 compared to aged-matched

sham controls.

no significant difference seen in the number of total trials
(p=0.1604) that were required from aged stroke animals
to make the reversal criteria relative to aged sham ani-
mals. Relative to young stroke animals, aged stroke ani-
mals were found to require significantly more total trials
to master the reversal task (p=0.0217); however, no
other differences were observed between these two groups
across the other variables (consecutive days, p=0.764;
total correction trials, p=0.1597; and total ITI touches,
p =0.4730). Moreover, aged stroke animals required sig-
nificantly more consecutive days to master the reversal
task compared to young sham animals (p=0.0403), but
no differences were seen in the number of total trials
(p=0.1136), total correction trials (p=0.4319), or total
ITI touches (p=0.2664).

Together these data support an age-related reduction of
performance across the reversal task in aged sham mice.
Moreover, stroke to aged mice appears to enhance reversal
learning, an effect not observed in young mice.

3.4. Performance in the Rereversal Task after PFC Stroke.
To investigate the performance of age-matched animals
after stroke to the PFC in the rereversal task, a two-
way ANOVA was conducted on log-transformed data
collected from day 37 poststroke (Figure 5). Assessment
of the rereversal task revealed a greater variability in the
data compared to the reversal task data. No effect of
either age or stroke surgery was observed in the number
of consecutive days (stroke, p=0.4563, F(1,33)=0.5853;
age, p=0.5686, F(1,33)=0.3317; Figure 5(a)), total trials
(stroke, p=0.3358, F(1,33)=0.953; age, p=0.9121,
F(1,33)=0.0123; Figure 5(b)), and total ITI touches
(stroke, p=0.1694, F(1,33)=1.976; age, p=0.3378,
F(1,33) =0.800; Figure 5(d)). However, a significant effect
of age but not stroke was seen in the total number of correc-
tion trials required to make the reversal criterion (stroke,
p=0.4252, F(1,33)=0.652; age, p<0.0140, F(1,33)=
7.734; Figure 5(c)). In addition, a significant interaction
between age and stroke surgery was only seen in the
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F1GURE 5: The effect of age (young (red) versus aged (blue)) and PFC stroke (filled boxes) on the number of consecutive days (a), total trials
(b), total correction trials (c), and total ITI touches (D) required to master the rereversal task compared to sham (open boxes) controls.

total number of trials required to make the criterion
(total trials, p=0.0288, F(1,33) =5.253; consecutive days,
p=0.0513, F(1,33)=4.089; total correction trials, p=
0.9596, F(1,33) =0.0263; total ITIs, p = 0.4912, F(1,33) =
0.4849).

Sidak’s multiple comparison test failed to find a signif-
icant difference between the performance of young and
aged sham animals in the rereversal task (consecutive
days, p=0.2679; total trials, p=0.3497; total correction
trials, p=0.2851; and total ITI touches, p=0.6882). Fur-
thermore, no significant differences were found between
young sham and young stroke animals (consecutive days,
p=0.7331; total trials, p=0.7229; total correction trials,
p=0.9267; and total ITI touches, p=0.9341) or between
aged sham and stroke animals (consecutive days, p = 0.3097;
total trials, p = 0.1738; total correction trials, p = 0.9473; and
total ITI touches, p=5610). Lastly, aged stroke animals
performed similarly to both young sham (consecutive
days, p=0 to >0.9999; total trials, p >0.9999; total correc-
tion trials, p=0.8266; and total ITI touches, p=0.5451)
and young stroke animals (consecutive days, p=0.7297;

total trials, p=0.1738; total correction trials, p=0.2664;
and total ITT touches, p=0.9889) in the rereversal task.

3.5. TrkB-Fc Blocks the Stroke-Induced Improvement in
Performance. To investigate the involvement of BDNF sig-
nalling in reversal and rereversal learning after PFC stroke,
performance was compared between aged sham animals
and aged stroke animals treated with either IgG-Fc or the
BDNF scavenger, TrkB-Fc (Figure 6). A Cox regression anal-
ysis of the Kaplan-Meier curves revealed a significant treat-
ment effect (p=0.0124, x*=9.16, df =3; Figure 6(a)).
Specifically, aged stroke animals treated with IgG-Fc com-
pleted the reversal task approximately 1.3 times faster than
aged sham animals (HR: 1.310, p=0.0272, CL 0.4369-
3.684). Moreover, aged stroke animals treated with TrkB-Fc
completed the reversal task approximately 3.1 times slower
than aged stroke control animals (HR: 3.136, p = 0.0073, CI:
0.8256-11.91), performing similarly to aged sham animals
(HR: 0.9144, p =0.8758, CI: 0.297-2.811).

A one-way ANOVA was performed on log-transformed
data from all animals, and it confirmed a significant
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FIGURE 6: Survival curve of the number of sessions each animal is required to make to reach the criterion (>80% accuracy across two
consecutive days) in the reversal (a) or rereversal (b) tasks. Aged stroke animals (solid blue line) take longer to learn both tasks compared
to aged sham controls (dotted blue line). Aged stroke animals performed better than aged sham controls. This effect was blocked
following the administration of the BDNF decoy, TrkB-Fc (solid black line).

treatment effect for the number of consecutive days
(p=0.0144, F(2,23) =5.174; Figure 7(a)), total number of
trials (p=0.0019, F(2,23)=8.346; Figure 7(b)), total
number of correction trials (p=0.0015, F(2,23)=8.757;
Figure 7(c)), and total number of ITI touches (p =0.0201,
F(2,23) =4.656; Figure 7(d)) to reach the criterion on the
reversal task. Sidak’s multiple comparison test further
revealed that aged stroke animals treated with IgG-Fc
required significantly less consecutive days (p=0.0346),
total trials (p=0.0013), total correction trials (p =0.0048),
and total ITT touches (p =0.0184) compared to aged sham
animals. TrkB-Fc treatment was found to block this stroke-
induced effect, with TrkB-Fc-treated aged stroke animals
requiring significantly more consecutive days (p =0.0222)
and correction trials (p=0.0029) to reach the criterion
relative to aged stroke control animals. No significant
differences were observed in the number of total trials
(p=0.0538) or total ITIs (p=0.0987) between stroke
+TrkB-Fc-treated animals and aged stroke controls on
the reversal criterion. Finally, TrkB-Fc-treated aged stroke
animals performed the same as aged sham animals across
all variables (consecutive days, p=0.9992; total trials,
p=0.1405; total correction trials, p=0.9798; and total
ITI touches, p=0.5304).

Analysis of the rereversal task revealed a significant effect
of treatment across all animals as detected using a Cox
regression analysis of the Kaplan-Meier survival curves
(p=0.0473, x*=7.67, df =3; Figure 6(b)). Aged stroke
animals treated with IgG-Fc completed the rereversal task
similarly to aged sham animals (HR: 1.212, p=0.0831, CI:
0.316-3.225). However, aged stroke animals treated with
TrkB-Fc completed the rereversal task approximately 3.9
times slower than aged stroke control animals (HR:
3911, p=0.0012, CI: 0.722-6.014), with the performance
of the TrkB-Fc-treated animals being similar to aged sham
controls (HR: 1.142, p = 8208, CI: 0.363-3.59).

A one-way ANOVA was performed on log-transformed
rereversal data, which confirmed a significant treatment
effect on the total number of correction trials (p =0.0117,
F(2,21) =5.598; Figure 8(c)) and ITI touches (p =0.0049,
F(2,21) =7.008; Figure 8(d)) but not on the number of con-
secutive days (p =0.3397, F(2,21) =0.3397; Figure 8(a)) or
the total number of trials (p=0.1154, F(2,21)=2.41;
Figure 8(b)). In addition, Sidak’s multiple comparisons
revealed that aged stroke mice treated with IgG-Fc required
significantly more total correction trials (p = 0.0465) and ITI
touches (p =0.0315) to make a rereversal compared to aged
sham animals. However, no significant difference was seen
in the number of consecutive days (p = 0.6556) or total num-
ber of trials (p =0.0426) between these animals. Treatment
with TrkB-Fc was shown to dampen the stroke-induced
effect, with TrkB-Fc-treated stroke animals performing sim-
ilarly to aged sham animals across all variables (consecutive
days, p=0.8495; total trials, p=0.5158; total correction
trials, p=0.5119; and total ITI touches, p=0.8860).
Conversely, TrkB-Fc-treated aged stroke animals required
significantly more total correction trials (p=0.0091) and
total ITI touches (p = 0.0049) to complete the rereversal task
compared to aged stroke animals. However, no difference
was observed between these treatment groups in regard to
the number of consecutive days (p =0.3085) or total trials
taken (p =0.4114).

4. Discussion

In recent years, touchscreen-based cognitive testing has been
designed to target components of human-based cognition in
rodents, thereby maximising the translational potential of
preclinical experiments [18, 19, 21]. In the present study,
we used this technology to demonstrate an age-related
decline in cognitive flexibility on the VD task in mice. In
addition, we showed that stroke to the PFC had no effect
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FiGureg 7: The effect of PFC stroke and TrkB-Fc treatment on the number of consecutive days (a), total trials (b), total correction trials (c), and
total ITT touches (d) required to master the reversal task. Aged sham: nonfilled blue box; aged stroke+IgG-Fc (hydrogel control): filled blue
box; aged stroke+TrkB-Fc: filled grey box. $ = p < 0.05 and $$ = p < 0.01 compared to aged sham. * = p < 0.05 and ** = p < 0.01 compared to

TrkB-Fc-treated aged stroke animals.

on reversal learning in young mice, but facilitated an
improvement in learning in aged mice. Finally, we show that
this stroke-induced improvement in learning observed in the
aged mice was BDNF dependent, as the improvement in
learning was blocked following administration of the BDNF
decoy, TrkB-Fc.

The PFC is a region of the brain that is heavily involved
with complex cognitive processes, such as behavioural
flexibility [22]. Extensive evidence demonstrates that set-
shifting performance is critically dependent on the dorsolat-
eral prefrontal cortex (PFC) in primates or the medial
prefrontal cortex (mPFC), which is the rodent homolog [38,
39]. Age-related alterations in both the architecture and
molecular composition of the PFC are known to contribute
to cognitive decline seen in healthy aged animals [40, 41].
Consistent with this, our study revealed an age-related decline
in VD reversal learning, with aged sham animals requiring
more consecutive days, trials, correction trials, and ITI

touches to reach the criterion compared to young sham ani-
mals. This finding is supported by human, primate, and
rodent reversal studies that have reported cognitive slowing
in aged cohorts using other cognitive assessments [40-43].
Moreover, this age-related cognitive slowing is not only appli-
cable to behavioural flexibility but other cognitive domains
such as spatial memory, attention, and working memory
[43, 44]. Nonetheless, it is important to emphasise that these
aged mice could still demonstrate the same degree of cognitive
flexibility as young mice; however, they just required a longer
period to reach this potential. It is also interesting to note that
this age-related effect appears to be dampened in the rerever-
sal task where the animals switch their learning back to the
original stimuli pairing, indicating that the ability to adapt
to previously learnt tasks remains intact in aged animals.
The young versus age difference we report highlights
the need to assess both young and aged cohorts as they
respond differently to strokes, including eliciting a different
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F1Gure 8: The effect of PFC stroke and TrkB-Fc treatment on the number of consecutive days (a), total trials (b), total correction trials (c), and
total ITT touches (d) required to master the rereversal task. Aged sham: nonfilled blue box; aged stroke: filled blue box; aged stroke+TrkB-Fc:
filled grey box. $ =p <0.05, $$ =p <0.01, and $$$ =p < 0.001 compared to aged sham. * = p < 0.05 compared to TrkB-Fc-treated aged

stroke animals.

molecular/transcriptional response [31, 45] and therefore
potentially requiring different pharmacological and or phys-
ical therapies to enhance recovery.

In contrast to previous reports [22, 23], our findings
showed that a stroke to the PFC had no effect on VD reversal
and rereversal learning in young mice, yet it improved per-
formance in aged mice. There are a few possible explanations
for these observations. Clinical studies have revealed that
whilst unilateral lesions to the PFC fail to affect performance
on a VD reversal task, bilateral lesions to the PFC cause
severe impairments in this task [46]. This finding suggests
that a larger lesion involving both cortices is required to
create this deficit in cognitive flexibility in humans, which
is also supported by reports of dementia in patients with
global vascular impairment [47]. A second explanation
for a lack of stroke-induced impairment seen in the
present study may lie in the neural circuitry that has been
proposed to control cognitive flexibility. Lesion and stroke

studies utilising touchscreen-based VD reversal tasks have
highlighted the involvement of the mPFC, orbitofrontal
cortex (OFC), and dorsolateral striatum in facilitating
performance [8, 9, 48, 49], whereas the ventromedial
PFC (vmPFC) and basolateral amygdala (BLA) play a role
in restricting performance [48, 49]. It is possible then, that
the site of the PFC strokes in the present experiment may
have played an inhibitory role in reversal learning, similar
to the BLA or vmPFC. In addition, we highlight that the
age-associated improvement in cognitive flexibility is
associated with an elevation in BDNF levels.

Human and rodent studies have both illustrated that
younger brains recover more effectively than aged brains
[50-52], possibly due to altered genetic and cellular
responses observed in aged animals [53]. Whilst age-related
differences in infarct volume have been investigated, these
findings remain inconclusive [45, 54, 55], and age-related
differences in infarct expansion and resolution and changes
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in peri-infarct plasticity remain poorly understood. Further-
more, as the current study observed similar infarct volumes
between young and aged animals, we propose that the
remaining neurons in nuclei found in peri-infarct regions
in young mice are likely to have a greater functional reserve,
relative to old animals. The volume of the PFC has been
reported to decrease with age, which could mean that the
proportion of the PFC affected in the current stroke model
may have been more detrimental to aged animals [56]. How-
ever, the exact function of this age-related loss of volume
remains debated, with aged brains presenting with changes
to dendritic arbour and sprouting profiles that have been
proposed to help maintain the same number of synapses
throughout the brain [57], thereby compensating for any cell
death [58]. It is possible that the differences in functional
reserve is solely plasticity mediated and dependent on
changes in BDNF levels. However, much needed research is
still needed to confirm these hypotheses.

The BDNF-mediated facilitation of reversal learning/-
cognitive flexibility that was observed in the current study
may reflect a reopening of a critical window for functional
recovery of cognition after stroke. Whilst the therapeutic
potential of BDNF has been illustrated in preclinical stroke
models [27-29], clinical success has been challenged by
poor blood-brain barrier (BBB) permeability, short half-life,
and off-target effects. However, with recent advances in tech-
nology, novel biomaterial drug-delivery systems offer the
ability to circumvent these issues and provide regenerative
agents directly to the injured brain. With this in mind,
studies are underway assessing VD reversal task learning in
aged stroke animals that receive recombinant human BDNF
(rhBDNF) via a hydrogel implanted into the stroke cavity.
We hope this may be able to “tap into” this BDNF-
mediated mechanism to further promote recovery after
stroke. It has also been postulated that a combinational treat-
ment may be required to provide functional recovery in
stroke patients especially in aged populations. Supporting
this, Clarkson et al. have reported that aged mice receiving
motor cortex strokes required treatment with BDNF and a
BDNF-inducing AMPAKkine in order to gain the same level
of functional recovery seen in young mice receiving BDNF
treatment alone [28]. Future work in our lab hopes to inves-
tigate the therapeutic potential of this combinational
approach, as this highlights the need to not only assess
changes in BDNF but also the need to assess the role of
AMPA receptor-mediated plasticity [28].

The lack of stroke-induced impairment seen in young
mice is a limitation of the current study; however, this finding
does match the clinical presentation of cognitive symptoms
that are seen in humans following stroke. Cognitive impair-
ments in elderly stroke patients are well documented; how-
ever, very few studies have reported these impairments in
younger patients [55]. To improve our stroke model, future
work could investigate the effect of focal lesions in Cerebral
Autosomal Dominant Arteriopathy with Subcortical Infarcts
and Leukoencephalopathy (CADASIL) mice. These geneti-
cally modified mice present with an abnormal regulation of
blood flow and neurovascular dysfunction, which is known
to be an underlying cause for vascular cognitive impairment
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[59]. In light of this, we would expect our focal lesion models
to have a more pronounced effect on cognitive flexibility in
young mice, which may result in a detectable impairment
in reversal learning.

The brain is known to undergo significant functional
reorganisation in response to motor learning in the reaching
task, and subsequent motor maps expand into neighbouring
regions after stroke and brain injury, a process known as
plasticity [60, 61]. Functional recovery resulting from this
reorganisation has also been found to be dependent on
BDNF signalling [27-30]. BDNF, like most neurotrophins,
plays a critical role in neuronal development, differentiation,
and survival. In addition, BDNF plays a central role in
modulating components of synaptic plasticity both during
development and throughout adulthood [62]. Such functions
are mainly mediated via the release of BDNF that is regulated
by neuronal activity [62, 63]. Collectively, these findings sup-
port the idea that BDNF is likely to play a role during the
reparative phase after stroke, a period where the brain repairs
itself to try compensate for the damaged tissue. Further sup-
port comes from clinical studies that have shown that aerobic
exercise is sufficient to facilitate cognitive recovery (including
cognitive flexibility) [64], an effect that is thought to be some-
what mediated by elevations in BDNF levels [65]. In conjunc-
tion with our study, these findings support the potential of
BDNF to facilitate recovery of cognitive function in humans,
not only after stroke but also with normal ageing.

BDNF is believed to have a beneficial effect on stroke
recovery via several mechanisms: increased angiogenesis
[66] and neurogenesis [67], increased brain repair [68], and
enhanced synaptic plasticity [27, 69]. It is reasonable to pre-
dict that age-related changes in the BDNF-TrkB signalling
pathway may have altered the responsiveness of the peri-
infarct tissue to these mechanisms of plasticity in the aged
mice of the current study. However, whether or not the
expression of BDNF and its high-affinity receptor, TrkB, is
reduced or increased in aged rodents remains a matter of
debate [28, 70, 71]. We are currently investigating age-
related changes in neurotrophin signalling pathways and
treatments in the hope to better understand the functional
role of BDNF throughout stroke-induced cognitive impair-
ments. Because BDNF is associated with cognitive flexibility
[48, 72], treatment with this trophic factor or other pharma-
cological agents that stimulate an increase in BDNF expres-
sion may be an effective therapy in alleviating slowing
cognitive flexibility in other models of cognitive impairment.

The touchscreens require mice to be tested daily for an
extended period of time in order to learn the task and then
to perform both the reversal and rereversal tasks poststroke.
Previous experiments have reported that PFC BDNF levels
have been found to remain stable whilst rodents undergo
classical learning, memory, and/or extinction tasks [73, 74].
These findings indicate that the learning experiences alone
are not enough to significantly affect PFC BDNF expression.
Therefore, the most parsimonious explanation for the stroke-
induced improvement in cognitive flexibility observed in the
current study in aged mice is that BDNF levels are elevated as
a result of the stroke, which also fits with TrkB-Fc’s ability to
dampen this response.
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Overall, this study suggests that aged animals still have
the capacity to learn and undertake complex cognitive tasks
using an operant-based touchscreen, allowing the touchsc-
reens to be used to investigate impairments and interventions
in cognitive disorders. Furthermore, stroke to the PFC of
young animals has no effect on cognitive flexibility, whereas
stroke to the PFC of aged animals resulted in a significant
improvement in performance in both the reversal and
rereversal tasks. In addition, aged stroke mice treated with
the BDNF decoy, TrkB-Fc, blocked the stroke-induced
improvement in cognitive flexibility. Finally, we demonstrate
that stroke to the PFC of aged mice reopens a critical window
for functional recovery that is BDNF dependent.
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Aim. Neural plastic changes are experience and learning dependent, yet exploiting this knowledge to enhance clinical outcomes
after stroke is in its infancy. Our aim was to search the available evidence for the core concepts of neuroplasticity, stroke
recovery, and learning; identify links between these concepts; and identify and review the themes that best characterise the
intersection of these three concepts. Methods. We developed a novel approach to identify the common research topics among
the three areas: neuroplasticity, stroke recovery, and learning. A concept map was created a priori, and separate searches were
conducted for each concept. The methodology involved three main phases: data collection and filtering, development of a
clinical vocabulary, and the development of an automatic clinical text processing engine to aid the process and identify the
unique and common topics. The common themes from the intersection of the three concepts were identified. These were then
reviewed, with particular reference to the top 30 articles identified as intersecting these concepts. Results. The search of the three
concepts separately yielded 405,636 publications. Publications were filtered to include only human studies, generating 263,751
publications related to the concepts of neuroplasticity (1 =6,498), stroke recovery (n =79,060), and learning (n =178,193). A
cluster concept map (network graph) was generated from the results; indicating the concept nodes, strength of link between
nodes, and the intersection between all three concepts. We identified 23 common themes (topics) and the top 30 articles that
best represent the intersecting themes. A time-linked pattern emerged. Discussion and Conclusions. Our novel approach
developed for this review allowed the identification of the common themes/topics that intersect the concepts of neuroplasticity,
stroke recovery, and learning. These may be synthesised to advance a neuroscience-informed approach to stroke rehabilitation.
We also identified gaps in available literature using this approach. These may help guide future targeted research.
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1. Introduction

Neuroplasticity can be defined as the ability of the nervous
system to respond to intrinsic or extrinsic stimuli by reorga-
nizing its structure, function, and connections [1]. Neural
plastic changes are associated with development [2] and
learning [3, 4]. They occur throughout the lifespan [5] and
may be enhanced following injury [6]. They are influenced
by experience [7] and the context [8, 9] in which that experi-
ence occurs. The major drivers of neuroplastic change are
meaningful behavior [10]. Evidence of neural plastic changes
can be observed at various levels, e.g., cellular/synaptic
changes, changes in the structure and function of brain
regions and networks, and changes in behavior such as
improved skill and adaptability [11, 12]. Strong scientific
evidence demonstrates that the brain has remarkable
capacity for plasticity and reorganisation, yet exploiting this
knowledge to enhance clinical outcomes is in its infancy.

After a brain injury, such as stroke, the person is
challenged to sense, move, communicate, and engage in daily
activities with the brain and body that are impacted by the
stroke. Immediate and long-term effects of stroke include
impairment in sensation, movement, cognition, psychologi-
cal and emotional functions, and reduced independence
and quality of life. There may be evidence of improvement
and some regaining of lost skill. A trajectory of spontaneous
and supported recovery over the days, weeks, and months
after stroke has been described [13, 14]. Yet rehabilitation
outcomes are currently suboptimal and variable [15, 16],
and evidence supporting novel or more effective treat-
ments is limited.

Neural plastic changes occur following brain injury, such
as stroke [17]. The changes may occur in the days, weeks,
months, and years following stroke [11, 13]. They may be
adaptive or maladaptive [18, 19]. For example, a person can
learn nonuse of the limb or develop dystonic postures follow-
ing sensory loss [20]. However, we have yet to harness this
window of opportunity for ongoing recovery both short-
and long-term after stroke. The continuum of recovery after
stroke presents opportunities for targeted rehabilitation to
harness and enhance these mechanisms of neural plasticity
for improved outcomes.

Neural plastic changes are experience and learning depen-
dent. Learning is the process of acquiring a relatively lasting
change in knowledge and skills [21]. Learning cannot be
measured directly, and assessment may address different
criterion indicators of learning [21]. The potential exists for
the phenomenon of neural plasticity to be shaped by the
experiences that occur following stroke [8, 9, 19] and to be
positively impacted by rehabilitation [9, 19, 22]. The ques-
tion is how can we build on and shape this experience and
drive positive plasticity to achieve better outcomes for
stroke survivors?

Neurorehabilitation may be defined as “facilitation of
adaptive learning” [23]. Stroke rehabilitation founded on
neuroscience is now recognised for its capacity to achieve
more restorative outcomes [1, 19]. Experience and learning-
dependent plasticity are core to this change [12, 23]. There
are different conditions under which that plasticity may be
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enhanced, facilitated, and/or consolidated. These different
conditions likely impact the type of neuroplasticity facilitated
and behavioral outcomes observed. An advanced under-
standing of these will help guide the development of
neuroscience-based interventions.

The aim of our scoping review was (i) to search the
evidence available in relation to the three core concepts of
neural plasticity, stroke recovery, and learning; (ii) to identify
how these concepts are linked to each other; and (iii) to
identify and discuss the themes/topics that best characterise
the intersection of these three concepts, in order to better
inform the neuroscience basis of stroke rehabilitation and
stroke recovery.

In relation to neural plasticity, we were interested in the
identification of evidence of neuroplastic changes, e.g., at
cellular and neural network levels. This included evidence
such as synaptic changes, brain networks, and functional
connectivity. We anticipated this literature would be primar-
ily found in neuroscience and neuroimaging type journals.
For the concept of stroke recovery, we were interested in
outcomes related to impairment, performance, participation,
and quality of life, at different times in the recovery trajectory
and in relation to rehabilitation. The concept of learning
focused on the process of change and included domains such
as experience, different types of learning, attention and
cognition, adaptation, environment, motivation, and goal.
Investigation of the links and intersection between these
concepts has the potential to reveal the following: (1) the type
of learning experience that can enhance neural plasticity;
(2) the evidence that links neural plasticity and improved
outcomes for stroke survivors; and (3) how the different
learning experiences linked with neural plasticity might
influence/contribute to better stroke outcomes.

In achieving our aim, we sought to develop and use a
methodology that would enable a broad and comprehensive
scoping of the current literature. This included identification
of key topics represented in the literature that relate to the
three core concepts and an approach that permits searching
and identification of related terms that may be used by
authors. This was important to maximise the likelihood that
a broad range of terms that are likely to have similar or over-
lapping meaning was able to be searched and accessed.

2. Methodology

A series of steps were conducted to identify the common
research interests among the three research areas: neuroplas-
ticity, stroke recovery, and learning. A concept map was first
developed to guide the review in relation to our aim. Figure 1
depicts the concept map comprising (a) the three main
concepts (neuroplasticity, stroke recovery, and learning);
(b) example main keywords related to each of the concepts;
(c) arrows depicting the associations among each of the
main concepts; and (d) numbers to indicate our key foci/
associations of interest. The target population was adult
humans with stroke. Health outcomes included improved
function, such as skill, performance, and quality of life.
Following the initial creation of the concept map, our
approach was to scope the literature available in relation to
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each of the three core concepts separately and then identify
the relationship (link) between each other. Given the amount
of literature for each of the concepts, we adopted a novel
approach to searching and clustering the large number of
papers and identifying the links and intersection. In particu-
lar, we employed an automatic text processing engine
(Section 2.3) to aid the process and identify the unique and
common topics among these research concepts. In this way,
we were able to map the identified topics to components 1,
2, and 3 in the proposed concept map. A narrative review
was then conducted of the common themes and the top
articles that were identified as intersecting the three concepts.

Our novel approach consisted of three main phases: data
collection and filtering, development of a clinical vocabulary,
and the development of an automatic clinical text processing
engine. The methodology to build the vocabulary and text
processing engine is comprised of three main technical
approaches: text mining [24]—to extract relevant informa-
tion from the research articles and structure data according
to our analysis; natural language processing (NLP) [25]—to
create word embeddings and topic ontology; and text analysis
[26]—to derive insights on how the three concepts are
linked together based on the identified topic associations.
The details of the techniques are further described in
Sections 2.2 and 2.3.

2.1. Data Collection and Filtering. A comprehensive literature
search was conducted using PubMed to assemble research
studies addressing neuroplasticity, stroke recovery, and
learning. First, we conducted three separate and broad
searches. We used the tree of MeSH headings associated with
each of these concepts to ensure broad and comprehensive
inclusion of data. For example, under the heading of learning
[F02.463.425], this included 25 subheadings and further
32 subheadings under these subheadings. As an inclusion
criteria for the collected studies, we selected research where
experiments were conducted on humans.

The PubMed database was accessed using the Entrez
Programming Utilities (E-utilities), a set of eight server side
programs that provide a programmatic interface to the
National Center for Biotechnology Information (NCBI)
database system [27]. A python helper library, used to inter-
act with the E-utilities and perform other formatting and

data managing tasks, is available at https://github.com/
alistairwalsh/informatician.

The three separate requests with the query terms
“neuroplasticity[MeSH],” “stroke[MeSH],” and “learning
[MeSH]” returned associated PubMed ID numbers, which
were then used to retrieve all the information available for
those articles. The resulting XML documents were then
searched for an English abstract along with their article title,
abstract, and index terms (i.e., mesh terms and/or keyword
lists) to produce a collection of studies that were searched
for terms of interest.

Three sources of data were collected and analysed for
each article retrieved: title, abstract, and index terms, as
identified in the article by the authors. This data was not only
selected for its availability but also based on the expectation
that key topic words should be captured in these sources.
Further, data collected across these data sources should
be comparable as the type of information included in
abstracts is relatively uniform, with clear expectations,
and is usually word limited, thus minimising bias due to
variance in article length.

2.2. Development of a Clinical Vocabulary. Following the
filtering of the collected documents, text mining tasks were
performed to gain insights on the associations between the
three concepts. Text mining is the process of extracting useful
information from unstructured data and customization
according to the requirements. For this purpose, it was neces-
sary to build a vocabulary/initial seed word list, which could
be used as the guide for text mining to extract relevant infor-
mation. Therefore, a clinical vocabulary comprising of prom-
inent topics in all three research areas was required. The
following steps were undertaken to develop the vocabulary.

2.2.1. Domain Knowledge from Experts. An initial vocabulary
was formed using the domain knowledge from experts. These
topic vocabulary terms are listed in Table 1. This initial
vocabulary included keywords as well as key phrases. Three
knowledge experts (LC, MN, and LB) contributed to the list.

2.2.2. Incorporating Index Terms Provided by Authors in
Articles Retrieved. Index terms (keywords provided by
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TaBLE 1: Domain knowledge from experts used for each of the three concept areas.

Neural Plasticity

Concept 1: Neural Plasticity

Concept 2: Stroke Recovery

Concept 3: Learning

Concept 3: Learning cont.

Cells

Post-stroke

Synapses Time
BDNF Trajectory
Brain Function
Brain regions Skill
Neuroimaging Impairment
Learning systems Movement
White matter Sensation
Functional connectivity Language
Brain activation Speech
Reorganisation Physical
Frontal Cognition
Networks/systems Mood
Brain network Activity
Connection Task
Behavior change Work
Consolidation Participation

Experience-dependent plasticity
Learning-dependent plasticity
Activity-dependent plasticity
Glial cells

Microglia

Astrocytes

Gliosis

Neuroimmunology

Blood brain barrier

Axons

Dendrites

Circulation

Neurogenesis

Progenitor cells

Experience-dependent

Activity-dependent

Experience Adaptation
Spontaneous Transfer
Implicit Complex, complexity
Enriched environment Metacognition

Multisensory Strategy
Multimodal Problem solve
Cross-modal Generalise

Long-term Novel
Potentiation Relearning
Environment Consolidation
Stimulation Well learnt
Performance Overlearn

Learning-dependent

Personal experience

Skill learning Environment
Motor learning Task complexity
Perceptual learning Task switching
Sensory learning Performance
Discrimination Human
Generalisation Individual
Reinforcement learning Motivation
Task-specific Cognition/cognitive
Sequence Concentration
Errorful Transmitters
Errorless Receptors
Challenge point Vision
Hearing
Perception
Emotion
Mood
Fatigue
Stress

authors) and MESH terms used by the authors for each
article were included to further enrich the vocabulary.

2.2.3. Word Embedding Technique to Expand the Vocabulary.
Word embedding is a machine learning technique that
intelligently captures the context of a word in a document,
i.e., capturing semantic and syntactic similarity as well as
identifying the relation with other words. This technique
was used to extract synonyms for the original list of terms
(i.e., as outlined in Table 1). The extracted model was applied
to the three sources of data from each article (i.e. title,
abstract, and index terms). A word2vec model was trained
from the collection of publications that can identify terms
that were being used in a similar context. For instance, the
word “consolidation” generated a similarly used word
list (“formation,” “reconsolidation,” “storage,” and “acquisi-
tion”). The generated similar words were manually reviewed
for relevance before adding to the vocabulary.

2.3. Development of an Automatic Clinical Text Processing
Engine. To analyse the associations between the concepts,
we developed an automatic clinical text processing engine,
which is capable of automatically extracting key terms from
documents and generating a concept link map. A series of
natural language processing (NLP) techniques and text
analysis were used for this purpose. NLP is known as the
application of computational techniques to analyse natural
language which is unstructured textual data [28]. The
developed text processing engine is comprised of an array
of NLP techniques to extract topics, calculate similarity,
and create a concept link map which was used for the analysis
of topic associations. The primary tasks of the developed
engine are explained below.

2.3.1. Automatic Term Extraction. Intelligent search algo-
rithms [29] were used to automatically extract relevant terms
from the abstracts, titles, and index terms provided by the
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FIGURE 2: The high-level process of the methodology.

authors of the publications. The developed vocabulary was
used for this purpose. The process generated lists of topics
being discussed for each publication.

2.3.2. Term Similarity Identification. Once the terms were
extracted, it was essential to identify the common terms
between the three groups. We used NLP techniques to auto-
matically group publications that have similar topics and
thereby identify unique and common clusters of topics.

2.3.3. Weight Concept Link Map. The results were then used
to generate a weighted concept link map illustrating the
topics that connect the concepts together. The output con-
cept map represented an overview of the topics that link the
three concepts together. Each connection was given a score
based on the number of publications, therefore allowing
filtering out only the important connections.

The high-level process of the text analysis engine is
illustrated in Figure 2.

2.4. Investigation of Time-Linked Patterns in Keywords Used
for Each Concept. We conducted a post hoc analysis to
explore if any time-related patterns emerged in relation to
the emergence of topics for each of the three concepts over

time. First, the three core concepts were analysed with the
date of the publication and for each topic; a percentage was
calculated for each year indicating the use of that topic in a
particular year (i.e., based on sum of times, each keyword
was mentioned each year, from 1975 to 2018). We then
analysed how the three concepts have been linked together
from 1975 to 2018 to explore the emergence of patterns in
the linking of concepts over time.

3. Results

Searching the three core concepts separately yielded 405,636
publications. Publications were filtered to include only
studies of humans, generating 263,751 publications from
the three groups. This included studies related to the
concepts of neuroplasticity (n=6,498), stroke recovery
(n=79,060), and learning (n = 178,193).

Figure 3 illustrates the topical associations between the
three main concepts generated from the automatic text
processing engine following the concept map. The three
main nodes in the generated concept map represent the focus
areas: neuroplasticity, stroke recovery, and learning. Each
line connected to the nodes represents topics discussed
related to the respective research area. The strength of
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each line is an indication of the quantity of publications.
The encircled components of the generated diagram are
based on the proposed concept link map in the methodol-
ogy. The numbers indicate the links between the concepts
as follows:

(1) Common themes being discussed in neuroplasticity
and learning

(2) Common themes being discussed in neuroplasticity
and stroke recovery

(3) Common themes being discussed in learning
and stroke recovery with common themes in
neuroplasticity

The common themes identified between the main con-
cepts are listed in Table 2, together with an indication of
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TaBLe 2: Common themes identified linking concepts of
neuroplasticity, stroke recovery, and learning.

Publication
count

Normalized

Topic
score

Common themes between neuroplasticity and learning (Link 1)

Synaptic plasticity 0.314 778
Consolidation 0.231 360
Long-term potentiation 0.145 340
Perceptual learning 0.145 280
Experience-dependent learning 0.059 150
Generalization 0.038 99
Experience-dependent plasticity 0.025 67
Short-term plasticity 0.022 58
Reinforcement learning 0.021 55

Common themes between neuroplasticity and stroke recovery
(Link 2)
Cortical activation 0.562 113
Rehabilitation 0.438 86

Common themes between neuroplasticity, stroke recovery, and
learning (Link 3)

Cognition 0.279 4032
Brain 0.141 3762
Stimulation 0.113 2830
Task-based learning 0.085 2136
Activity-based learning 0.073 1834
Motor learning 0.043 1090
Learning modifiers 0.041 1018
Skills 0.036 910
Movement 0.030 760
Impairment 0.029 732
Language 0.024 613
Connectivity 0.019 472
Speech 0.017 429
Neuroimaging 0.014 344
Neurorehabilitation 0.009 242
Motor control 0.008 203
BDNF 0.008 192
Skill learning 0.007 188
Functional connectivity 0.006 164
Brain injury 0.006 162
Brain activation 0.006 160
Sequence learning 0.004 107
Relearning 0.003 105

the number of publications and normalised score (weights)
for each theme.

The top 30 articles identified that intersect all three main
concepts: neuroplasticity, learning, and stroke recovery, are
listed in Table 3. These articles were selected according to
their weighting and are ordered with the most recent at the
top. It is noted that 15 articles are reviews and nine are con-
trolled trials. The full text of these articles was downloaded
and reviewed for the narrative review.

3.1. A Time-Based Analysis of the Terminology and the
Evolution of Topics over Time. A post hoc analysis of the
use of keywords (topics) for each concept and the evolution
of how the topics link together over time revealed two
outcomes: (1) overall topic distribution over time—this indi-
cated how frequently a given topic was addressed in research
studies each year thereby demonstrating the patterns over
time; (2) the emergence of topics—this indicated when
certain topics first appeared and how they evolved over time.
Based on the patterns identified by these outcomes, we
further examined the time-based topical associations to
observe how the link (intersection) between the three
concepts (neuroplasticity, learning, and stroke) had emerged
over time. For demonstration purposes, we created three
sets of publications based on the patterns detected by the
time-based topic distribution. Three time periods emerged:
(1) Early era (1975-1990); (2) Emerging era (1997-2003);
and (3) Recent era (2012-2018). These time periods
emerged primarily from the topic flow graph of neuroplas-
ticity. Using the publications in these three groups, we
analysed the evolution of the link between the three con-
cepts. This process was automated by the proposed text
mining approach.

Figure 4 highlights the outcomes of this analysis showing
the associations of the concepts according to the aforemen-
tioned time periods. The Early era (1975-1990) was charac-
terised by only a few topics in neuroplasticity. Prominent
topics were “Stimulation,” “Consolidation,” and “Synapses.”
The links between neuroplasticity, stroke, and learning are
established. This was followed by the Emerging era (1997-
2003), a time where many new topics (keywords) first
appeared, particularly in relation to neuroplasticity, and
more new directions of research were formed. The Recent
period (2012-2018) revealed the latest research topics. Many
new topics appeared in relation to all three concepts during
this period. The link, Neuroplasticity-Stroke, was expanded
with “Neurostimulation” and “Cortical activation” other
than “Brain”; the link Neuroplasticity-Learning became
stronger, with many more research studies; and the link
Learning-Stroke emerged, linking all three concepts together.

4. Discussion

The aim of this review was to identify the literature that links
neuroplasticity, stroke recovery, and learning in order to
advance our understanding of and provide direction for a
neuroscience-informed approach to stroke rehabilitation.
The concept map generated by the text processing engine
provides an efficient and rigorous approach to identify
associations between different research areas as well as
insights on important research themes and topics within a
large pool of research publications. Moreover, the weighted
link map provided a quantitative measure of the significance
of the relationship between the themes; thus, the important
topics could be identified. Finally, the intersection between
all three concepts was defined and common topics identified.
Time-linked patterns emerged from our analysis of the
evolution of the link between the three concepts.
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FIGURE 4: Generated comparison to demonstrate the evolution of topics over three selected time periods. The weight of the links is a

representation of the quantity of publications.

4.1. A Novel Methodology to Reveal the Presence and Absence
of Topics and How They Are Linked. The methodology used
to conduct this review is novel. Commonly, when commenc-
ing a literature review, a basic search term of interest will
return a very large number of articles. Subsequently, more
complex search terms are added until a manageable number
of articles are returned. This often means there is little knowl-
edge of the articles being excluded before the human
reviewers’ start to look at the final articles. The approach
detailed here of conducting an extremely broad search of
the literature databases and using natural language process-
ing to understand what is present means the choice of articles
to include and perhaps more importantly, knowing what is
being discarded from review, has the advantage of being
controlled and repeatable.

The intent of our approach was to identify key topics
related to the core concepts in a systematic and comprehen-
sive manner, thus scoping the currently available literature in
the field. To achieve this, our approach employed a broad
range of terms that represent the current literature and
captured words that might have similar or overlapping
meaning between studies and over time. The use of machine
learning approaches involving text mining, word embedding,
and natural language processing enhanced this feature of our
review. However, there are two important considerations
when conducting a literature search across different domains
and across large spans of time. First, do the different domains
use the same term to mean the same concept or are the same
terms used to mean different things in their own domain?
Second, has the meaning of a term changed over time or were
concepts referred to by a different term in the past? Word

embedding, which maps words to vectors of real numbers,
can help with this, as it understands the context. The mean-
ing of words and word relationships is derived from their
use in the text rather than any dictionary definition. In line
with this, it can describe what is in the current literature. It
does not however attempt to define or evaluate the termi-
nology used.

4.2. Themes and Topics Linking Neuroplasticity, Stroke
Recovery, and Learning. The approach used allowed the
existing literature to inform the themes and topics that link
the three main concepts. In this way, it not only confirmed
but also expanded the topics identified by domain experts.
The topics identified that linked only two concepts were
often quite specialised and limited. In comparison, 23 com-
mon themes/topics emerged from the intersection between
all three concepts. This is reinforcing and provides direction
to inform an integrated neuroscience and learning-based
approach to rehabilitation.

Our major focus was on themes, or topics, at the intersec-
tion of all three concepts. Cognition was the major theme
identified (see Table 3), highlighting the importance of this
topic. The review of the top 30 articles identified that
cognition was discussed both in the context of impairment
of cognitive functions post-stroke (e.g., [35]) and in the con-
text of cognitive and information processing perspectives
involved in learning. The evolution of cognitive processing
perspectives to a blended approach between neural science
and social-cognitive psychological science was highlighted
[44]. In addition, the importance of brain networks and
systems that support cognition and its role in recovery and
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learning-based rehabilitation was evident. For example, a
dissociation between disrupted memory modifications in
the presence of normal consolidation was reported and may
be related to differences in a lesioned brain structure linked
with macrostructure network anatomy and microstructural
white matter integrity [37]. Clearly, cognition is important,
highlighting the need to recognise and assess cognitive pro-
files of stroke survivors, even those with reported mild neuro-
logical impairment. The issue of cognitive decline [60, 61]
also needs to be considered.

As expected, Brain was also a topic that was represented
in a large number of publications. As well as being a focus
in its own right, it was often linked with terms such as brain
function, brain damage, brain injury, brain plasticity, brain
stimulation, brain imaging, brain activation, and brain net-
works. Stimulation was primarily referred to in the context
of brain stimulation and adjunct therapeutic stimulation
techniques, such as functional electrical stimulation (FES)
[41]. This theme highlights the search for and possible role
of adjunctive stimulation techniques to enhance neural
plastic changes and stroke recovery. It highlights an area of
research focus and proof of concept exploration of new
therapies to try to manipulate plasticity and recovery.

Different types of learning were identified in the context
of neuroplasticity and stroke recovery, representing a clear
intersection of all three concepts (Link 3). These included
task-based learning and activity-based learning. The common
focus on learning in the context of tasks and/or activities
(n=3,970 publications) was identified using this approach.
The topic of task-specific training, a term often used in
clinical settings, was also aligned. These learning approaches
are seen as potential enhancers of neural plasticity [49]. Task-
based learning and activity-based learning map to concepts
of learning-dependent plasticity. The role of learning that is
task- and/or activity-based appears to have relevance in the
context of stroke recovery and rehabilitation. For example,
changes in central nervous system (CNS) structure and
function may be modified by “activity,” together with motor
learning principles [55]. In fact, both neuroscience and
learning approaches that are integrated into rehabilitation
included task-based training as a core element of therapy,
consistent with recommendations [1, 9, 12, 23, 57].

Aligned with this focus on task- and activity-based
learning is skill and skill learning, focusing on the outcomes
of learning. Skill learning in the context of stroke recovery
and neurorehabilitation links learning-dependent plasticity
with restorative therapies. The goal of learning-dependent
plasticity is often the learning of a skill, such as juggling
and playing a musical instrument. In the context of stroke
recovery, it may be learning a sensorimotor skill, such as
learning to grasp a cup in a more normal manner following
paresis. We have clear evidence from animal studies that
training is a critical ingredient to this change [10, 62]. In
human studies, evidence suggests that skill learning, but not
strength training, induces cortical reorganization and cortical
changes may only occur with learning of new skills and not
just with repetitive use [9, 63]. For example, recent evidence
highlights that motor skill learning of a repeated sequence
altered cortical activation by inducing a more normal,
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contralateral pattern of brain activation, whereas increasing
general arm use did not induce motor learning or alter brain
activity [63].

A relatively large proportion of the publications (20.78%)
were focused on motor learning, movement, and motor con-
trol. This finding highlights the current focus on movement
outcomes, potentially at the expense of other functions or
more complex outcomes. A relatively small proportion of
articles focused on language and speech (9.2%). In compari-
son, focus on sensation (vision or touch) appeared to be
missing as did more complex outcomes such as daily activi-
ties and or transfer to novel and/or complex activities. This
likely reflects where the field currently is, i.e., in its infancy,
in relation to applying knowledge that integrates neural
plasticity with learning and valued stroke recovery outcomes.
Nevertheless, the value of learning paradigms, in particular
motor learning paradigms, is growing and a push to
“infuse” motor learning research into neurorehabilitation
practice is argued for in this literature [44]. An interesting
observation was that the capacity for functional restitution
after brain damage was different in sensory and motor sys-
tems [34]. The authors identified the role of adaptation
and perceptual learning and their linkages with plasticity,
as potentially important. Such findings further highlight
the importance of systematic investigation across different
functions.

Interestingly, experience-dependent learning was identi-
fied as a topic linking only neuroplasticity and learning (not
the 3-way intersection) in our review (Link 1). Experience-
dependent learning is closely aligned with experience-
dependent plasticity [12]. Experience-dependent plasticity
refers to the brain’s capacity to change in response to envi-
ronmental stimuli (and learning). It has been a major focus
of preclinical studies and has culminated in the evidence of
“enriched environments” to enhance recovery. Key features
of this type of plasticity include exposure to environments
that have multiple sensory attributes, social context etc.
[12]. The potential for enriched environments to impact
neural plastic changes and stroke recovery has been identi-
fied [8]; however, it did not emerge from the current review
that represents the collective focus of the field. Given the
existing link between experience and neural plasticity, the
potential to connect this link more strongly with stroke
recovery through targeted research is highlighted.

A few topics highlighted outcomes and/or mechanisms of
change at a neurobiological level. Those topics that spanned
underlying mechanisms or biomarkers included connectivity,
neuroimaging, BDNF, functional connectivity, and brain
activation. The neurobiological mechanisms underlying
recovery in patients with varying severity of impairment
and in the longer term, are incompletely understood. New
technologies are emerging and have a role in providing new
insights [64] and in helping to predict recovery and ability
to benefit from interventions [36, 65]. For example, a predic-
tive relationship was elucidated between the type of behavior,
e.g., specific visual or distributed memory, and the brain
lesion and network disruption [38]. This was possible using
machine learning and multiple measures of the brain and
behavior, ie., resting functional connectivity (FC), lesion
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topography, and behavior in multiple domains (attention,
visual memory, verbal memory, language, motor, and visual).
A key role of distributed brain network disruption, beyond
focal damage, was highlighted [38].

The process of and application of learning, including
sequence learning to relearning and neurorehabilitation, were
also identified as themes. Given the focus on learning and
search terms used, it was interesting to note that the current
literature often did not include topics that reflect a greater
specificity in the nature of the learning, e.g., implicit and
explicit learning. An exception was the identification of
sequence learning as the approach to motor skill learning
by Wadden et al. [36]. Again, this likely reflects the state of
the science in the application these concepts to stroke
rehabilitation. The issue of restitution of function, e.g.,
motor, versus adaptive motor learning strategies to compen-
sate for motor impairments was identified but not resolved
[39]. Nevertheless, we recommend this topic as an important
avenue for future research on the basis that the process of
learning is dynamic and could be disrupted following brain
injury, and specific types of learning might be more beneficial
following certain types of brain injury [23].

Of further interest is the fact that learning terms such as
generalization and transfer (included in the MESH term for
learning) did not emerge in any of the common themes. This
is of potential concern given that outcomes associated with
training and therapy need to be able to transfer to novel tasks
and complex settings. The issue of sustainable and gener-
alizable gains in motor skills and associated behaviors is
highlighted in the rehabilitation literature [23, 57]. It is
known that transfer to tasks that have not been directly
trained in therapy is often very limited [57]. Transfer of
gains in skills to personally-important real-life activities is
rarely spontaneous and relatively rarely reported. Improve-
ment in personally important, real-life activities is critical
[23]. However, sensorimotor rehabilitation is historically
focused on impairment reduction, with limited focus given
to transfer of gains to real-life activities. Greater attention
to outcomes that demonstrate different gradients of transfer
and generalisation is recommended.

Neuroplasticity, learning, and transfer to novel tasks
may be promoted by task complexity [12, 66, 67]. Different
neural networks are implicated for learning of sensorimotor
skills and transfer [68] and the value of metacognition
strategies suggested [69]. The need for specific strategies
to enhance transfer is supported by evidence from motor
learning and neuroscience [68, 69]. Activity-dependent
plasticity, defined as a form of neuroplasticity that
arises from the use of cognitive functions and personal
experience [67], would appear to be particularly relevant
in this context. Interestingly, preliminary evidence sug-
gests combined cognitive strategy and task-specific train-
ing improve transfer to untrained activities in subacute
stroke [70].

Finally, learning modifiers was also identified as a topic.
Factors that modify learning, its effectiveness, and impact at
different times in the recovery trajectory are of interest. These
factors ranged from factors such as BDNF [32] to adjunctive
therapies, such as transcranial direct current stimulation
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[31] and robotics [42, 51]. One of the top 30 articles
addressed the time course of skill reacquisition after stroke
[46]. Other factors that might be modifiers of learning
such as stress, concentration, perception, emotion, mood,
and fatigue were not identified as topics despite being
included as search terms.

4.3. The Evolution of Themes and Topics over Time. Further
analysis was carried out to explore the evolution and associ-
ations of topics over time. Our objective was to observe
how the topics in neuroplasticity, stroke recovery, and
learning had evolved over time (1975-2018) using the
collected sample of research studies from 1975 to 2018. Only
a few topics were identified in the early time period (1975-
1990). The link between neuroplasticity and stroke was
established via research focused on “Brain,” while the link
between neuroplasticity and learning was established via
studies on “Stimulation” and “Consolidation.” In contrast,
the Emerging era (1997-2003) showed the appearance of
many more topics in neuroplasticity and the links have more
weight indicating the availability of more research studies.
The analysis of research in the Recent era (2012-2018)
disclosed the emergence of many new topics. The link
between neuroplasticity and stroke recovery was further
expanded by studies on “cortical activation” and “neurosti-
mulation.” It was also observed that the link between stroke
recovery and learning was established in this time period,
thus linking all three concepts together.

As this analysis was automated by the text mining
approach described, further analysis and comparison using
different time periods will allow disclosing other interesting
patterns and insights regarding the associations among the
three concepts. We present this time-based topic analysis as
further contribution to the proposed approach as it enables
researchers to mine useful time-based patterns from many
publications without manual processing.

4.4. Recommendations for Future Research. Some recommen-
dations for future research emerge from our review. The
development of computational models of salient neural
processes [40], including plasticity and learning systems of
the brain in the context of stroke rehabilitation, is recom-
mended. While focus to date has been primarily on motor
function, we should not lose sight of the need to target other
functions, such as language and sensation. Further, system-
atic investigation of outcomes across a profile of outcomes,
including impairment and performance, activities, and
participation is recommended [71] to achieve the valued
outcomes articulated by people living with stroke [72]. We
should also give greater attention to the processes of learning
and how they map to different types of neural plastic
changes, i.e. experience-dependent, learning-dependent,
and activity-dependent plasticity. This is important as the
different types of plasticity are aligned with specific goals,
experiences, and learning conditions and may be more able
to be enhanced at different times in the recovery trajectory.
It is unlikely that one type of learning or principle of training,
such as intensity, is likely to meet the skill and activity
outcomes valued.
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The development of future interventions should match
neuroscience and learning principles to specific outcomes.
In particular, the need to systematically target the intersect
between neural plasticity and learning to achieve better
generalisation of training effects and transfer to novel tasks
in the context of stroke rehabilitation is critical. With fur-
ther understanding, the potential to individualise therapy
emerges. This may include the recognition of underlying
capacities that support a particular type of learning, through
genetic variations and strategies that influence modifiers of
learning, such as BDNF. Finally, future research should be
directed at discovering drivers of the different types of plas-
ticity, as well as when they might best be applied at different
times in the recovery trajectory.

5. Conclusions

In summary, the novel approach taken in this review allowed
us to identify and characterise not only the topics that are
currently being investigated in the literature but also those
that are not or are only infrequently mentioned. Identifica-
tion of the common intersecting themes linked with the
core concepts proposed now provides a foundation of litera-
ture that may be synthesised to advance a neuroscience-
informed approach to stroke rehabilitation. Further, such
an approach helps to identify gaps in the field that may be
important, as researched and recommended in related fields.
For example, the topics of transfer and generalisation have
been extensively researched in the field of learning, but did
not emerge as an intersection with neural plasticity and
stroke recovery. The review of the concepts of neural plastic-
ity, learning, and stroke recovery and the common themes
and topics that link them has provided direction for future
research, important in the development of new neuroscience
and learning-based therapeutic approaches. Finally, the
potential also exists to develop theoretical frameworks by
which new interventions may be conceptualised, incorporat-
ing knowledge of the intersection between contributing fields
of research.
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Understanding the complex neuromuscular strategies underlying behavioral adaptation in healthy individuals and motor recovery
after brain damage is essential for gaining fundamental knowledge on the motor control system. Relying on the concept of muscle
synergy, which indicates the number of coordinated muscles needed to accomplish specific movements, we investigated behavioral
adaptation in nine healthy participants who were introduced to a familiar environment and unfamiliar environment. We then
compared the resulting computed muscle synergies with those observed in 10 moderate-stroke survivors throughout an 11-week
motor recovery period. Our results revealed that computed muscle synergy characteristics changed after healthy participants
were introduced to the unfamiliar environment, compared with those initially observed in the familiar environment, and
exhibited an increased neural response to unpredictable inputs. The altered neural activities dramatically adjusted through
behavior training to suit the unfamiliar environment requirements. Interestingly, we observed similar neuromuscular behaviors
in patients with moderate stroke during the follow-up period of their motor recovery. This similarity suggests that the
underlying neuromuscular strategies for adapting to an unfamiliar environment are comparable to those used for the recovery
of motor function after stroke. Both mechanisms can be considered as a recall of neural pathways derived from preexisting
muscle synergies, already encoded by the brain’s internal model. Our results provide further insight on the fundamental
principles of motor control and thus can guide the future development of poststroke therapies.

1. Introduction

Behavioral adaptation to unpredictable environmental
changes is one of the most powerful capabilities for perform-
ing activities of daily living (ADL). For example, we can walk
not only on flat asphalt but also on gravel and we can easily
move from the living room to the kitchen no matter how
the furniture is arranged or even how frequently it is rear-
ranged. Moreover, behavioral adaptation has been found to
be essential for enhancing the quality of communication
between people [1]. Thus, without adaptability to our sur-
roundings, we would be unable to complete even simple
ADL. Clarifying the computational mechanisms that underlie

behavioral adaptation is necessary for understanding the
fundamental principles of the motor control system and
developing treatment for related disorders.

There have been many attempts to explain behavioral
adaptation in humans, by analyzing neuronal activity [2-7]
and biological control architectures [8-11] and by proposing
learning mechanisms based on biological systems [12-16].
However, the computational mechanism that governs behav-
ioral adaptation remains unsolved.

From the viewpoint of behavioral adaptation, the redun-
dancy of the musculoskeletal system plays a leading role in
adjusting our behavior to the environment, as Bernstein
pointed out half a century ago [17]. For instance, even the
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relatively simple motion of the shoulder joint is achieved by
the complex combination of at least nine muscles [18].
Investigating how the central nervous system (CNS) groups
and recruits muscles depending on the task and knowledge
of the surrounding environment may provide a fundamental
clue behind neuromuscular adaptability.

To explain the plausible biological computational mech-
anism for choosing the appropriate combination of muscles
to control point-to-point movements, several researchers
have proposed the notion of muscle synergy [19-23]. Mus-
cle synergy, defined as the relative weight of muscle activa-
tions driven by common excitation primitives, provides a
simple control algorithm, yet allowing for complex motor
behavior [7].

Some motor characteristics of human behavior could be
deciphered when behaviors were analyzed based on muscle
synergy [24, 25]. In our previous study [26], we introduced
two indices, based on muscle synergies, and experimentally
showed that they represent the efficiency by which basic
movement skills (e.g., upright balance skills) are adapted to
the environment. The purpose of the current study was to
determine whether neuromuscular control strategies are
comparable between healthy individuals during their adapta-
tion to an unfamiliar environment and stroke survivors dur-
ing their recovery. Note that we do not compare here how the
muscle synergy pattern is shaped in each case but how the
increasing or decreasing of muscle synergy dimensionality
is similar between adaptation/recovery. This similarity could
be related to the model adopted by the CNS to represent how
much it knows about the environment. We considered that
this would provide crucial insight and better understanding
for developing poststroke rehabilitation systems, better tai-
lored to the treatment of specific motor deficits. To facilitate
this study, we have focused on investigating the muscle syn-
ergy adaptability of a well-understood single-joint motor
task, such as shoulder flexion, which was introduced to the
poststroke patients and shoulder adduction introduced to
the healthy participants [27]. The reason for presenting two
different types of movements to each type of participants is
due to the nature level of the participants. Shoulder flexion
task was introduced to the patients due to their constrained
range of joint motion. For healthy participants, on the other
hand, shoulder adduction was introduced due to limitation
of the need of using robotic manipulandum capable to pro-
duce hard enough task to stimulate their muscle synergy
adaptation. Despite focusing on this task, we believe in the
generalization of synergy features [28].

We hypothesized that, in poststroke patients with
motor dysfunctions, the brain responds as if experiencing
an unknown environment due to the interruption of
established neural pathways, similar to what occurs when
healthy individuals experience an unfamiliar environment.
We also argue that the use of muscle synergy analysis for
clarifying the pathology of poststroke patients with unilat-
eral motor impairment could provide greater diagnostic
accuracy and may help to design more effective poststroke
rehabilitation programs than using common clinical tests,
which cannot illustrate progress at a neural level during
rehabilitation [29-32].

Neural Plasticity

In this study, we compared the behaviors of poststroke
patients during an eleven-week recovery phase with those
of healthy participants during performance of movements
in familiar and unfamiliar environments/tasks. We also ana-
lyzed changes in muscle synergy in both scenarios.

2. Materials and Methods

2.1. Experimental Setup and Protocol
2.1.1. Healthy Participants: Experimental Setup

(1) Participants. Nine healthy adults (age: 38.1 +7.8 years
(mean + standard deviation (SD))) participated in this exper-
iment. All participants were right handed and reported no
neurological or upper limb muscular impairments. The
experimental protocol was approved by the RIKEN ethics
committee. Written informed consent was obtained from
all participants.

(2) Robotic Manipulandum. Participants were asked to con-
trol the gripper position of a robotic manipulandum (Force
Dimension, Nyon, Switzerland) by using their right arm
(see Figure 1(a)). The manipulandum contains a bilateral
control system, allowing participants to experience the
computer-generated virtual space through the forces gener-
ated. The robot manipulandum was used to constrain motion
and generate an “unfamiliar” environment to healthy partic-
ipants, by introducing random stiffness “resistance” to the
arm movement, in various levels; three types of resistance
were used: 4, 7, and 10N. During the experiment, partici-
pants were seated on an adjustable chair with the right hand
holding the knob of the manipulandum from the side. A
monitor display showing the virtual space was placed in front
of the participant to provide feedback for the performance on
the assigned tasks.

(3) Electromyography (EMG). Six surface EMG electrodes
were placed on the participant’s right shoulder to record
the activity of primary muscles. Due to the nature of the
assigned task, comprising right hand horizontal shoulder
adduction, the following muscles were recorded: pectoralis
major (PM), deltoid anterior (AD), infraspinatus (IS), teres
major (TM), latissimus dorsi (LD), and biceps brachii (BI).
EMG electrodes were positioned in accordance with the
guidelines of Surface EMG for the Non-Invasive Assessment
of Muscles—European Community project [33]. EMG
signals were sampled at 1 kHz, high-pass filtered with a cutoft
frequency of 30Hz, root-mean-square rectified, and
smoothed using a moving average with a window length of
10 samples. The EMG from each muscle was normalized to
its peak value from the experimental set. EMG data were syn-
chronized with the manipulandum data through the use of a
common clock and trigger.

2.1.2. Healthy Participants: Experiment Protocol. The partici-
pants were asked to perform tasks in three different
environments:
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F1GURE 1: Experimental setup and protocol for healthy participants (more details are in [37]). (a) Participant posture, manipulandum, display
positions, and workspace (30 cm long). The white circle in the display illustrates the position of the manipulandum knob in the space. The
knob position was displayed to the participant to simplify tracking in the assigned task (the display moved horizontally with the knob
from the starting point to the ending point of the workspace). (b) Top view illustrating the relevant muscles in the upper torso and right
arm in the two tasks for the healthy group—left: the task in the standard environment; right: the task in the modified and adaptation
environment. Standard environment: move the knob from the starting point to the ending point 10 times (no resistance applied). Modified
environment: move the knob from the starting point to the ending point 20 times (no resistance and various resistances applied
randomly). Adaptation environment: move the knob from the starting point to the ending point 15 times for two sessions separated by
resting time (7-N resistance applied by the manipulandum at all trials). PM: pectoralis major; AD: deltoid anterior: IS, infraspinatus; TM:
teres major; LD: latissimus dorsi; BI: biceps brachii. (c) Side view illustrating the task for the poststroke group. Five muscles were recorded
in both the intact and the affected shoulder. Muscles that were shared with healthy participants are the PM, AD, IS, and BI. While BR,
brachioradialis, was newly introduced to accommodate the task.

(1) Standard Environment. We asked each participant to (2) Modified Environment. To introduce an unfamiliar

grasp the knob of the manipulandum and perform 10
trials of horizontal shoulder adduction from a
predefined starting position (see Figure 1(b)). To
ensure that the experimental constraints were sim-
ilar across individuals, we instructed participants
not to use their elbow, to maintain a constant con-
traction of their shoulder muscles, and to complete
each trial in 1s. In this environment, the manipu-
landum did not produce any significant resistance
on the participant’s arm. The starting and ending
points of the movement were denoted by the
manipulandum knob position and displayed on
the screen in front of the participants. Particularly
for this environment, participants were asked to
perform 20 practice trials for familiarizing them-
selves with the environment before the start of
data collection

environment to the participants, we modified the
manipulandum responses, compared to those used
in the standard environment. In this environment,
the manipulandum randomly applied resistance
varying from 4 ~ 10 N on the participant’s arm, oppo-
site to the movement’s direction (see Figure 1(b)).
The resistances were applied randomly. Thus, par-
ticipants could not predict the resistance, thereby
reducing the possibility of adaptation at this stage.
We asked each participant to repeat the horizontal
shoulder adduction task 20 times

(3) Adaptation Environment. Here, we examined the

participants’ adaptability to the unfamiliar environ-
ment through training. We determined this environ-
ment as unfamiliar, because even healthy participants
could not master the movement in a single trial [34].
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TaBLE 1: Patients’ demographics table.
Patient no. Sex/age SIAS Stroke type
P1 M/49 3 Cerebral infarction
P2 M/58 4 Cerebral infarction
P3 M/75 2 Cerebral infarction
P4 M/63 2 Brainstem infarction
P5 M/70 4 Cerebral infarction
P6 F/64 3 Acute subdural hematoma
P7 M/85 4 Cerebral infarction
P8 F/51 3 Cerebral infarction
P9 F/76 2 Cerebral infarction
P10 M/74 3 Cerebral infarction

P: patient; M: male; F: female; SIAS: stroke impairment assessment set.

At this stage, we asked participants to perform 30
trials of horizontal shoulder adduction. The partici-
pants were given a rest period of 120s after the first
15 trials to minimize muscle fatigue. In this environ-
ment, a resistance of 7N was applied continuously
for all trials (although we have done a pilot of resis-
tance varying from 4, 7, to 10N, the 7N resistance
is the one which we could see little change on the
initial computed muscle synergy. The 4N resistance
showed no muscle synergy changes, and in the 10N
resistance, it was hard for the participant to adapt
due to muscle fatigue)

2.1.3. Poststroke Patients: Experimental Setup

(1) Participants. Ten poststroke patients (age: 66.5+11.6
years (mean + SD)) participated in this experiment (see
Table 1). All patients were recruited 1.5~2 months after
stroke onset and were diagnosed with moderate unilateral
motor impairment according to the stroke impairment
assessment set (SIAS) (score, 2-4 out of 5) [35, 36]. The
experiment protocol for stroke patients was approved by
the ethics committee of the National Center for Geriatrics
and Gerontology, Aichi, Japan.

(2) Electromyography. Surface EMG was recorded from mus-
cles of the patient’s affected and intact shoulders, while per-
forming a shoulder flexion task, as described below. Five
primary muscles were recorded in each shoulder: PM, AD,
IS, BI, and brachioradialis (BR).

(3) Experiment Protocol. Due to the nature of the patients’
impairment and their constrained range of joint motion, we
asked the patients to do a simple bimanual shoulder flexion
task. This was to compare muscle synergy in the intact and
affected arms of the same patient, instead of just comparing
it with that in the arm of a healthy individual. A set of 10
to 15 trials for each session was conducted by each patient,
to avoid fatigue (see Figure 1(c)).

2.2. Muscle Synergy Computation. Muscle synergy has been
described as a systematization method by which some
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muscles are activated in synchrony to complete a task
[22, 37]. It defines how muscles are synchronized using
the following fixed matrix:

M=WC,
Me Rmxt’
W c RmX?’l,
CeR™.

Here, M refers to the time sequence signals activating
m muscles and ¢ is the length of the time sequence. W is
the fixed matrix defining the synchronization of m mus-
cles. n represents the number of synergies and should
be smaller than m. W is normalized as

where W) denotes the vector of size, expressed as
wl e R, (3)

We refer to W as the synergy space. C refers to the
control signal activating m muscles. Note that n time
sequence signals in C are changed to m signals in M
using matrix W in equation (1). Therefore, the dimen-
sionality for controlling m muscles is reduced from m
to n using this system. The conceptual image of this sig-
nal transformation is shown in Figure 2(a).

We can estimate W and C from recorded EMG data
using nonnegative matrix factorization (NMF) [38]. The syn-
ergy dimension (SyD) of the neural signal # is one of the
important parameters in determining the characteristics of
muscle synergy. An appropriate n must be chosen according
to the behavior, to estimate W and C. Thus, we chose n using
the following steps (see also the flowchart in Figure 2(b)):

(i) Acquisition of EMG data for m muscles and gen-
eration of time sequence data for muscle activa-
tions (M) by filtering the raw EMG data

(ii) Temporary definition of n as n, and estimation of
W, and C,, using NMF

(iii) Computation of the estimation error E as

E=M - Wntcnt (4)

(iv) Computation of the size of E, ie., the variance
accounted for (VAF), such that

E 2

iy
1Ml
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FIGURE 2: (a) A conceptual-mathematical model for identifying muscle synergies. (b) A flowchart that illustrates the process to estimate

n, W, and C.

where ||| denotes the Frobenius norm. If VAF was smaller
than a predefined threshold, we changed n, to (n, + 1) and
computed W,, and C,, again by NMF. VAF increases as n,
increases. The threshold is decided based on the behavior,
but, in general, we used approximately 90% as a threshold,
to indicate a good fit to the original data [38]. By such a
threshold, we guarantee that each recorded muscle curve
would be well reconstructed

The computation is continued by increasing #, to (1, + 1)
until VAF becomes larger than the threshold. We used the
value of 1, + I as the dimension of the neural signal, thereby
completing our selection of # and estimation of W and C.

2.3. Behavior Analysis Using Muscle Synergy. Both W and C
represent interesting features of human motor behavior, as
reported by Safavynia et al. [38]. Bizzi et al. [39] showed that
W is not specific to individuals but is specific to behavior.
Cheung et al. [40] analyzed muscle synergies in stroke survi-
vors and showed that, at the beginning of recovery, some
dimensions in synergy space W of the affected arm were
merged, in comparison with those of the intact arm.

To analyze behavior by muscle synergy, we asked partic-
ipants to repeat the assigned task several times (20-30 in
healthy participants, 10-15 in stroke patients) and then com-
puted n, W, and C for each trial, considering the time
between the starting/ending of the movement (approxi-
mately 1.55s). By comparing these parameters between trials,
we derived the features of the behaviors. In our previous

study [26], we introduced indices of similar W and C at each
trial and showed that they represent the ability of automatic
posture response in healthy participants. Here, we used the
same method for computing n, W, and C, to identify changes
in behavior during adaptation to an unknown environment.
In the case of adaptation analysis, #n represents the level of
adaptation to the environment.

3. Results

3.1. Healthy Participants. All healthy participants completed
the assigned tasks successfully.

3.1.1. Dimensions of Synergy Space

(1) Standard Environment. Figure 3(a) shows the dimension-
ality of the resulting muscle synergies in participants per-
forming the task in the standard environment. All
participants needed two-dimensional muscle synergies to
complete the task (i.e., the VAF SyD.2 was the minimum
number of synergies that exceeded the assigned >90% thresh-
old). The functional role of each synergy is illustrated in
Figure 3(b): Synergy #1 (wl) seems to mainly be involved
in activating the prime mover muscles (PM and AD), which
are primarily responsible for shoulder adduction. In contrast,
Synergy #2 (w2) seems to involve the manipulation of neu-
tralizer muscles (BI, LD, IS, and TM), which assist the
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FIGURE 3: Synergy space at the standard (familiar) environment. (a) The variance accounted for (VAF) (%) all possible identified synergies
from the recorded electromyograph while performing the task in the standard environment (mean+ SD, 9 participants). The dashed
vertical line identifies the estimated number of utilized synergies that exceeded the threshold (90%; represented by the horizontal dashed
line). (b) Muscle synergy vectors (W) for two-dimensional muscle synergies (SyD.2; mean + SD, 9 participants). The orders of wl and w2
were sorted based on their activation time (C). PM: pectoralis major; AD: deltoid anterior; BI: biceps brachii; LD: latissimus dorsi; IS:

infraspinatus; TM: teres major.

internal rotation of the shoulder joint and are essential to
complete the desired shoulder adduction.

(2) Modified Environment. Figure 4(a) shows the dimension-
ality of the resulting muscle synergies during task perfor-
mance in the modified environment. When resistance was
randomly applied, one-dimensional muscle synergy, on aver-
age, was observed in all participants for completing the task,
instead of the original two-dimensional synergies. The iden-
tified synergy in this environment seemed to involve both the
prime mover and neutralizer muscles (see Figure 4(b)),
which could, in turn, have led to the reduction in the range
of shoulder joint internal rotation, making the movement
uncomfortable (participants reported of being tired after a
few movements).

(3) Adaptation Environment. Figure 5(a) shows the dimen-
sionality of the resulting muscle synergies in participants
while performing the last 15 trials of the task in the modified
environment (resistance was applied continuously). After
behavioral adaptation to the unfamiliar environment, all par-
ticipants returned to using two-dimensional muscle syner-
gies to complete the task. The resulting synergies were

similar in function to those observed in the standard environ-
ment, i.e., wl and w2, which appeared to activate the prime
mover and neutralizer muscles, respectively (see Figure 5(b)).
Figure 6(a) shows the gradual transformation from one-
dimensional muscle synergy to two-dimensional muscle syn-
ergies over the 30 trials. The one-dimensional synergy
(SyD.1) gradually decreased to below the threshold. After
behavioral adaptation, the two-dimensional synergies
(SyD.2) recovered to control the movement (SyD.2 > 90).

3.1.2. Energy Consumption. To understand the mechanism of
muscle synergy formation during adaptation by the CNS, we
included the energy consumption calculations [41]. To inves-
tigate the changes in system energy consumption required to
complete the task in the adaptation environment [42, 43], we
measured the average total muscle activations over the trials
(see Figure 6(b)). We found that, after approximately 10 tri-
als, lower muscle activation was needed to complete the task,
indicating that joint movements and muscle activations are
gradually improved by task repetition through environmen-
tal interaction, thus minimizing energy consumption by the
movement, by finding more efficient motor solutions, i.e.,
correct muscle synergy recruitments, to complete the task.
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3.2. Poststroke Patients. All poststroke patients completed the
assigned tasks successfully.

3.2.1. Muscle Synergy Dimensionality for the Stroke-Affected
and Intact Arms. Figure 7 shows the dimensionality of the
resulting muscle synergies of the affected and intact arms of
the 10 patients (mean + SD). On average, one-dimensional
synergy was used to produce motion in the affected arm,
while two-dimensional synergies were used to produce
motion in the intact arm.

Regarding the functionality of the resulting synergies on
the intact arm, similar to the healthy participants, wl was
involved in activating the prime mover muscles, while w2
was involved in activating the neutralizer muscles. The one-
dimensional synergy in the affected arm, however, seemed
to activate all recorded muscles in synchrony, revealing an
abnormal synergy [44].

Figure 8 illustrates the adaptation process of the one-
dimensional synergy (SyD.1) in all patients over the 11-
week period in which they engaged in a regular rehabilitation
program. Although the synergy remained one-dimensional,
there were notable changes in the level of VAF, which resem-
bled the formation of two synergies. Interestingly, these

results indicate the gradual improvement in muscle recruit-
ment in patients. Instead, evaluation by SIAS was unable to
demonstrate this improvement along the test period for most
patients (SIAS index still unchanged).

4. Discussion

The results of this study suggest that the CNS utilizes sim-
ilar neuromuscular strategies both in the case of healthy
individuals, when they adapt to an unfamiliar environ-
ment, and in that of poststroke patients, when they
recover their motor function. Despite the energy ineffi-
ciency of movements produced by low-dimensional muscle
synergies, the CNS seems to opt for this module at the ini-
tial stages of facing a new situation (or when the internal
model is unable to predict appropriately the system out-
put), to handle any unpredictable environmental inputs.
By interacting with the environment, the CNS progres-
sively learns to recruit more muscle synergies to conserve
energy when it ascertains that the environment is now safe
or, in other words, when it rebuilds enough internal model
and is able to rely on it.
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FIGURE 5: Synergy space after being adapted to the unfamiliar environment. (a) The variance accounted for (VAF) all possible identified
synergies from the recorded electromyograph while performing the task in the adaptation environment (mean + SD, 9 participants). The
dashed vertical line identifies the estimated number of utilized synergies that exceeded the threshold (90%; represented by the horizontal
dashed line). (b) Muscle synergy vectors (W) in the two- dimensional synergies, SyD.2. PM: pectoralis major; AD: deltoid anterior;
BI: biceps brachii; LD: latissimus dorsi; IS: infraspinatus; TM: teres major.

4.1. Features of Behavioral Adaptation in Healthy
Participants. The experimental results in healthy participants
revealed that the formation of muscle synergies is slightly
altered when experiencing sudden changes in the familiar
environment. The two-dimensional muscle synergies operat-
ing in the familiar environment were reduced to a single
dimension when participants were first presented to the
unfamiliar environment. However, this dimensionality
reduction was accompanied by a simultaneous increase in
muscle activations in response to the unfamiliar environ-
mental inputs, suggesting that all muscles may be placed
in a “standby” status, in order to promptly react to any
unpredictable or unsafe input potentially occurring in the
unseen environment/task, despite being energy inefficient.
Nevertheless, our experiments show that training leads to
a gradual adaptation to the new environment, resulting
in the quick recovery of muscle synergy dimensionality
to its original state. Moreover, the resulting energy con-
sumption gradually decreases after the proper motor solu-
tions are found. Note that the evaluation of the adaptation
to the new environment, at this stage, was considered
based on the computed muscle synergy of the healthy
arm performing in a familiar environment.

The abovementioned findings are based on the assump-
tion that movements required for the investigated task shared

a commonality across humans. While it is true that for some
specific tasks, muscle synergy vectors could vary between
individuals, for example, a bench press task at different veloc-
ities, Samani and Kristiansen [45], the investigated task and
perturbation experiments in this study have led us to con-
clude that muscle synergy vectors adequately account for
the EMG activity associated with elbow movements in the
pool of investigated subjects. This is also coherent with prior
findings that reported stereotyped patterns of motor modules
or synergies underlying the control of this motor task in
healthy humans, demonstrating complete muscle patterns
for specified arm movement task goals [23, 46].

4.2. Features of Motor Recovery after Stroke. Instead of
directly examining muscle synergies, the VAF level can be
used as it also seems to encode motor impairments. Our
results in poststroke patients showed a gradual decline in
the VAF over the recovery period. This could be interpreted
as an effort by the CNS to optimize arm movement by tuning
possible motor solutions, similar to what happens in healthy
participants dealing with unfamiliar environments. Notably,
some patients showed recovery in the number of recruited
muscle synergies, i.e., from one- to two-dimensional muscle
synergies, and their clinical score also improved. These
results suggest that the dimensionality of muscle synergy
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FIGURE 6: A gradual reduction in energy consumption as proper muscle synergies were recruited. (a) The gradual conversion of the one-
dimensional synergy (SyD.1>90%) to two-dimensional synergies (SyD.1<90%) through training in the adaptive environment
(mean + SD, 9 participants). (b) Changes in system energy through adaptation in the adaptation environment. Linear least-squares
regression line (R? = 0.5841) to illustrate the adaptation direction. System energy was computed as the total muscle activation needed to
complete a trial (mean, 9 participants). Greater muscle activations are associated with higher energy cost.

can be used to measure the level of motor function recovery.
A similar conclusion was deduced in a study by Cheung et al.
[40]. Note that at this stage, the recovery level was evaluated
based on the computed muscle synergy from the intact arm
of the same patient performing the same motor task.

4.3. Neurophysiological Interpretations of Adaptation and
Recovery. The question of whether muscle synergy during
stroke recovery is newly constructed or simply adapted
from existing synergies is a long-standing debate in neuro-
science [47]. Our results here suggest that muscle syner-
gies during recovery from moderate stroke most likely
represent an adaptation of existing synergies, similar to
what occurs in healthy individuals when neurons adapt
to an unfamiliar environment.

In this study, we found that both motor adaptation in
healthy participants and recovery in poststroke patients have
comparable features regarding synergy dimensionality.

Synergies in both cases varied as a function of the degree of
control system adaptation to the environment. We postulate
that, in healthy participants, the experience of the unfamiliar
environment causes a temporal obstruction in CNS neural
processes, as well as in muscles, which prevents the forma-
tion of efficient sets of muscle synergies, i.e., safety over-
comes the efficiency. This can be inferred by the
unregulated muscle activities and reduction in utilized mus-
cle synergy dimensions. Similarly, in poststroke patients,
lower dimension synergies operate in the stroke-affected
arm than in the intact arm. Over time, however, we found
that the dimensions of utilized synergies gradually increase
in both healthy and poststroke participants, leading to the
emergence of efficient motions.

4.4. Recruitment Strategies of Muscle Synergies and Internal
Model Uncertainty. Behavioral studies have shown that the
CNS employs various strategies during interaction with the
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environment to ensure the best possible protection for the
body with the lowest possible energy consumption [48, 49].
Hypothetically, these strategies are mainly chosen depending
on the accuracy of existing internal models representing the
surrounding environment. For instance, accreditation to
anticipatory movements is higher, when the internal model
is properly trained and the environment is stable and predict-
able. In contrast, compensatory and energy consuming reflex
movements increase, when the internal model is tacitly
inaccurate due to an unstable environment [48]. Other
behavioral studies on limb postural control have shown
that the activities of muscles around a joint can be modu-
lated to minimize the perturbing effects of unknown exter-
nal loads [50, 51]. These modulations gradually decrease
over the course of learning a novel motor task [48, 52].

The abovementioned literature findings are consistent
with our results. In our experimental conditions, both the
behaviors observed in the modified environment (healthy
participants) and in the initial stage of rehabilitation (post-
stroke participants) can be regarded as pure compensatory
movements in response to the new environmental condition,
i.e., different dynamics of arm motion in healthy participants
and different neural pathways in poststroke patients. How-
ever, these compensatory movements gradually change to
anticipatory movements through training and interaction
with the environment. The anticipatory movements correlate
with the tuned muscle synergies, which interact efficiently
with the familiar environment. In the unfamiliar environ-
ment, however, the simultaneous increase of muscle activi-
ties, although energetically expensive, may reflect a
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compensatory strategy to overcome the yet untrained
internal model. These otherwise inefficient muscle activi-
ties gradually decrease over the course of interaction with
the environment. In line with our findings, Kawato et al.
[53] argued that the alteration of muscle activities when
first learning new skills is effective in learning schemes
that take advantage of motor command errors resulting
from the feedback controller as learning signals during
building of internal models.

4.5. Towards Neurorehabilitation. Currently, most muscle
synergy studies are limited to offline synergy analysis, which
focuses on classifying motor skill or impairment levels. To
move beyond this stage and towards real application for
rehabilitation, a better understanding of synergy usage dur-
ing learning and adaptation is required. Testing various
training hypotheses directly in poststroke patients can be a
complicated task, due to the age of typical stroke patients
and related factors. Our muscle synergy analysis results sug-
gest that motor function recovery in poststroke patients is
comparable to adaptation to unfamiliar environments in
healthy participants. A natural next step would be to investi-
gate the introduction of multiple unfamiliar tasks, i.e., build a
stroke-like scenario in healthy participants, and test various
training/rehabilitation protocols to determine ways to
enhance the adaptation process, before using such protocols
in poststroke patients.

In our protocol, we tried to avoid/reduce muscle fatigue;
although this might not be fully possible, especially in the
case of more demanding scenarios (e.g., during repetitive
training tasks for poststroke treatment), it should be noted
that muscle fatigue reduces strength and increases perceived
effort, as observed in joint kinematics and movement com-
plexity analyses in healthy individuals [54]. However, these
changes due to muscle fatigue do not reflect alterations in
the overall principal component shape [55, 56]. In contrast,
our results are in agreement with prior results by Simkins
et al. [57], demonstrating that differences between joint
movements in pathological conditions are comparable to
the differences observed for able-bodied movement syner-
gies, further supporting the hypothesis that altered synergies
upon neurological injury are an expression of similar spinal
mechanisms, as those regulating intact synergies in multi-
joint movements. Furthermore, in their work, Simkins and
colleagues [57] argue that alterations in pathological syner-
gies during rehabilitation are shaped by plasticity at the spi-
nal level. Interestingly, Jacobs et al. [58] discussed that, in
tasks requiring high cortical involvement, the effect of train-
ing on the organization of intact muscle synergies is
expressed with changes in modular organization, while in
more basic, automated movements (e.g., walking), requiring
less cortical activity, no changes in synergy number and
structure are found. Equivalently, Torres-Oviedo et al. [22]
investigated synergy organization during postural control
(e.g., during walking) and showed that synergy robustness
does not depend on reflex pathways or from biomechanical
task constraints. In agreement with Krishnamoorthy et al.
[59], our results demonstrate that muscle synergies and their
organization are specific to the task, since they change with
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changes in stability conditions and new muscle synergies
emerge to account for changes in postural responses.

5. Conclusion

The goal of our study was to explore the computational
mechanism behind behavioral adaptation in humans when
encountering an unfamiliar environment and how it com-
pares to behavioral recovery in poststroke patients. Uncover-
ing this mechanism would enhance our understanding of
motor control and recovery and offer guidance to develop
new rehabilitation approaches for various neural disorders.
These results suggest that the CNS monitors the familiarity
of the internal model with the surrounding environment
and, relying on that, predicts the suitable motor control strat-
egy by tuning muscle synergy dimensionality. When the
internal models are immature, the CNS utilizes more muscles
with high activities, by recruiting fewer synergies, to compen-
sate for unexpected interactions with unfamiliar environ-
ments. These extra utilized muscles may work as an
additional neural feedback to update the internal model.
When learning occurs and the internal model representa-
tions are built up, the CNS decreases the movement energy
by increasing the recruited muscle synergies.

We conclude that abnormal muscle patterns in post-
stroke patients are similar to the patterns observed at the
beginning of neuronal network adaption in new environ-
ments. Changes in muscle synergy can be used as an indica-
tor of motor function recovery, as indicated by our
experiments in healthy participants and also supported by
prior results as a valid source to design metrics to quantify
acquisition of motor skills in healthy humans [26]. We are
currently developing an advanced rehabilitation system with
an online assistive robot that takes into account patient
pathology and interindividual synergy variability to support
motor function recovery. Future studies are required to
examine in more detail how muscle synergies are recruited
over the course of complex and continuous movements,
such as learning a sequence of whole-body movements
while driving a car or riding a bike. Such understanding
may not only enable finding new synergy-based indices
indicating the level of motor impairment in poststroke
patients but also predict their recovery level along with
their rehabilitation.
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Continuous theta burst stimulation (cTBS) is a form of noninvasive repetitive brain stimulation that, when delivered over the
contralesional hemisphere, can influence the excitability of the ipsilesional hemisphere in individuals with stroke. cTBS applied
prior to skilled motor practice interventions may augment motor learning; however, there is a high degree of variability in
individual response to this intervention. The main objective of the present study was to assess white matter biomarkers of
response to cTBS paired with skilled motor practice in individuals with chronic stroke. We tested the effects of stimulation of
the contralesional hemisphere at the site of the primary motor cortex (M1c) or primary somatosensory cortex (Slc) and a third
group who received sham stimulation. Within each stimulation group, individuals were categorized into responders or
nonresponders based on their capacity for motor skill change. Baseline diffusion tensor imaging (DTT) indexed the underlying
white matter microstructure of a previously known motor learning network, named the constrained motor connectome (CMC),
as well as the corticospinal tract (CST) of lesioned and nonlesioned hemispheres. Across practice, there were no differential
group effects. However, when categorized as responders vs. nonresponders using change in motor behaviour, we demonstrated a
significant difference in CMC microstructural properties (as measured by fractional anisotropy (FA)) for individuals in M1c and
Slc groups. There were no significant differences between responders and nonresponders in clinical baseline measures or
microstructural properties (FA) in the CST. The present study identifies a white matter biomarker, which extends beyond the
CST, advancing our understanding of the importance of white matter networks for motor after stroke.
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1. Introduction

Incomplete recovery of movement from stroke has led to
interest in adjunct interventions. One such intervention is
noninvasive brain stimulation that, when paired with ther-
apy, may augment the effects of rehabilitation [1-3]. Contin-
uous theta burst stimulation (cTBS) is a patterned form of
repetitive transcranial magnetic stimulation (rTMS) that
can suppress excitability of the primary motor cortex (M1)
[4]. Following a stroke, there is evidence that the contrale-
sional cortex exerts increased inhibition on the ipsilesional
cortex through interhemispheric signaling [5]. In individuals
with stroke, cTBS applied over the contralesional hemisphere
may modulate interhemispheric imbalances to the ipsile-
sional hemisphere [6]. However, a large degree of individual
variability in response to repetitive noninvasive brain stimu-
lation techniques has been observed [2, 7]. As a result, there
is an important focus on investigating biological markers
(“biomarkers”) that characterize “responders” and “nonre-
sponders” of noninvasive brain stimulation [2, 7].

To date, most research has focused on regional white mat-
ter (WM) tracts [2, 7] as biomarkers of recovery after stroke.
However, recovery from stroke involves a network of bihemi-
spheric pathways that extend between the contralesional and
ipsilesional motor cortices, secondary motor areas, and ipsile-
sional cerebellum [8]. In the current work, we hypothesized
that characterizing a specialized WM motor network associ-
ated with motor learning would explain response to ¢TBS
paired with motor skill practice in individuals with chronic
stroke [9]. We employed functional magnetic resonance
imaging- (fMRI-) guided tractography to constrain WM con-
nections associated with our previously identified gray matter
(GM) motor learning network associated with motor learning
in healthy individuals [9]. We named the resultant network
the “constrained motor connectome” (CMC) and hypothe-
sized that individual capacity for motor learning-related
change following cTBS paired with motor skill practice would
relate to residual integrity in the CMC [9].

The primary motor and somatosensory cortices (M1 and
S1, respectively) are two brain areas that support motor
recovery [10]. Hyperexcitability from both the contralesional
M1 and S1 (Mlc, Slc) correlates with reduced poststroke
motor function [11]. Yet, few studies have extended noninva-
sive brain stimulation sites beyond contralesional M1 [1, 3].
Meehan et al. [3] compared the effects of cTBS over contrale-
sional M1 versus S1 paired with motor practice and found
comparable improvements in movement time during motor
skill practice. Regardless of stimulation site, both M1 and
S1 stimulation groups showed larger amounts of motor
learning-related change compared to sham stimulation
paired with motor skill practice [3]. During repetitive TMS
over M1, stimulation spread of 2-3 cm over the cortex from
the centre of coil [12] as well as strong connections between
M1 and S1 [13] have been observed. Therefore, based on sim-
ilar effects of cTBS over M1c and to Slc previously observed
on movement time [3], and the proximity of the locus of
stimulation sites (i.e, 2cm apart), we hypothesized that
improvements in motor performance would be similar for
the M1c and Slc stimulation.

Neural Plasticity

The overarching objective of the current study was to test
whether a new brain-based biomarker, termed the CMC,
could identify the capacity to respond to ¢TBS over M1c/Slc
paired with motor skill practice. We first studied the effect of
cTBS over Mlc or Slc paired with motor skill practice on
motor learning. We discovered highly variable responses to
this intervention. We next categorized individuals in the M1c
and Slc groups into responders or nonresponders based on
the extent of their behavioural change. Given a lack of differ-
ence between individuals in the M1c and Slc groups, and to
maintain power to consider responder status, we next com-
bined responders from the two stimulation groups (Mlc and
Slc) into a sensorimotor (SM) cTBS group; the same was done
for the nonresponders. We hypothesized that the integrity of
the CMC [9] would explain response to ¢TBS over the SM
paired with motor skill practice.

2. Methods

2.1. Participants. Twenty-eight individuals (mean age = 63.0
years; standard deviation (SD)=12.88 years; 7 females)
who demonstrated chronic stroke-related unilateral upper
limb deficits were recruited. All experimental sessions were
completed at the University of British Columbia (UBC). Eth-
ical approval was granted from the Clinical Research Ethics
Board of UBC. All participants provided written informed
consent in accordance with the Declaration of Helsinki.

Inclusion criteria were (1) chronic cortical or subcortical
stroke (=6 months ago), (2) upper-extremity Fugl-Meyer
(UE-FM) motor impairment score greater than or equal to
15, and (3) a Montreal Cognitive Assessment (MoCA) score
greater than or equal to 26 [14]. Exclusion criteria were (1)
history of seizure/epilepsy, head trauma, a major psychiatric
diagnosis, neurodegenerative disorder, or substance abuse;
(2) taking any gamma-aminobutyric acid (GABA) ergic,
N-methyl-D-aspartate (NMDA) receptor antagonist, or
other drug known to influence the neural receptors that
facilitate neuroplasticity; or (3) contraindication to transcra-
nial magnetic stimulation (TMS) or magnetic resonance
imaging (MRI).

2.2. Experimental Design. Participants were pseudo-
randomly assigned to one of three stimulation groups: (1)
Milc ¢TBS (contralesional primary motor cortex), (2) Slc
cTBS (contralesional primary somatosensory cortex), or
(3) sham cTBS over contralesional M1 (Figures 1(a) and
1(b)). Pseudo-randomization was accomplished using a cus-
tom computer program that assigned individuals to a stim-
ulation group while accounting for age, sex, and Fugl-Meyer
(FM) score to ensure even distribution (Mlc, n=9; Slc,
n=11; and sham, n=8). The experimental protocol con-
sisted of seven sessions over 14 days. There were never more
than two days between sessions, and the retention session
was performed within 24 hours of the last practice session
(Figure 1). In session 1, participants underwent MR scan-
ning, clinical assessments of motor function and impairment
(Wolf Motor Function Test (WMFT) and FM, respectively),
and baseline performance on the experimental motor learn-
ing task, the serial targeting task (STT). During sessions 2
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FI1GURE 1: Experiment design and apparatus. (a) Experimental design and (b) serial tracking task (STT) apparatus and target locations.

to 6, participants received cTBS over the contralesional
hemisphere according to the stimulation group (Mlc, Slc,
and sham) immediately before STT practice. In session 7,
a no-cIBS STT retention test was employed to assess
motor learning.

In session 1, to assess upper-extremity motor function,
the WMFT was performed by a licensed physical therapist.
Mean performance time to complete 15 items of the WMFT
with the paretic and nonparetic arms was determined. Partic-
ipants’ WMFT rate was calculated to determine how many
times an individual could complete the task continuously
for 60 seconds (60 seconds divided by the performance time);
if an individual could not perform the task in 120 seconds, a
score of 0 was given [15]. In addition, individuals’ physical
impairment level was assessed via the upper-extremity (UE)
EFM scale (range 0-66; lower scores denote less paretic arm
function). Participant characteristics are shown in Table 1.

2.3. Serial Targeting Task. Participants performed the STT
seated. The paretic hand (pronated) was used to grasp a com-
puter mouse (housed in a custom frame) to control the
movements of an on-screen cursor (Wheel Mouse Optical,
Microsoft Corporation, Redmond, Washington, USE). Indi-
viduals were instructed to move the cursor as quickly and
accurately as possible to a series of sequentially appearing tar-
gets. The location of the participant’s hand in space was
occluded by an opaque surface affixed above the hand.
Embedded within the series of targets was a repeated six-
element sequence that was flanked by a six-element random

sequence. The participant performed four blocks of the STT
during each practice session (2 to 6). Each block was com-
prised of nine random sequences that each contained six
movements each, and eight repeated sequences that also con-
tained six movements each. Participants performed one
block of the STT in sessions 1 (baseline) and 7 (retention)
to index motor learning [3].

2.4. Exponential Curve Fitting. The primary dependent mea-
sure was response total time (RTT). Participants’ RTT was
calculated as the time to initiate movement plus movement
time. The sum RTT for all six movements within the repeated
and random sequences was calculated separately. The RTT
for repeated and random sequences in each block across
the seven sessions (baseline, session 1; practice, sessions 2
to 6; and retention, session 7) of task performance for each
participant was subsequently fit to separate exponential func-
tions using the following equation [16, 17]:

E(RTTy)=A+Be . (1)

E(RTT)) is the expected value of RTT on practice trial
N. A is the expected values of RTT after practice has been
completed (asymptote parameter). B is the expected
change in RTT from session 1 to session 7 (change score
parameter). Alpha («) is the exponential motor skill acqui-
sition rate parameter [18]. Our primary outcome measure
was B, which reflects an individual’s capacity for motor
change. A custom MATLAB (Version R2013b, The
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TaBLE 1: Participant characteristics.

Participant Stimulation group (M1c = 1; Slc = 2; sham = 3)

Lesion location (C = cortical;

a b
SC = subcortical) MOCA UEEM"™ PSD™ Age

ST1
ST2
ST3
ST4
ST5
ST6
ST7
ST8
ST9
ST10
ST11
ST12
ST13
ST14
ST15
ST16
ST17
ST18
ST19
ST20
ST21
ST22
ST23
ST24
ST25
ST26
ST27
ST28

W W W W W W W N DD DN DD DN DN NN = = === ==

w

C 28.0 55.0 270.0 59.0
SC 26.0 63.0 37.0 50.0
SC 30.0 62.0 67.0 65.0
SC 26.0 56.0 94.0 64.0
SC 26.0 59.0 120 82.0
SC 23.0 41.0 196.0 46.0
SC 26.0 62.0 20.0 62.0
SC 26.0 16.0  22.0 57.0
SC 25.0 30.0 160.0 57.0
SC 25.0 59.0 82.0 67.0
C 27.0 60.0 142.0 73.0
SC 27.0 56.0 83.0 71.0
C 25.0 60.0 350 85.0
SC 29.0 62.0 81.0 76.0
SC 29.0 540 23.0 60.0
SC 24.0 7.0 94.0 57.0
C 21.0 62.0 240 550
SC 23.0 11.0 36.0 93.0
C 29.0 18.0 33.0 33.0
C 27.0 62.0 31.0 69.0
SC 28.0 23.0 410 63.0
SC 30.0 350 27.0 56.0
SC 28.0 580 20.0 71.0
SC 26.0 49.0 1550 76.0
C 28.0 57.0 150 69.0
SC 24.0 61.0 18.0 79.0
SC 26.0 290 470 51.0
SC 21.0 570  27.0 83.0

C = cortical; M1c = contralesional primary motor cortex; PSD = poststroke duration; Slc = contralesional primary somatosensory cortex; SC = subcortical; UE

FM = upper-extremity Fugl Meyer.

MathWorks Inc., Natick, Massachusetts, USA) script was
used for all analyses.

2.4.1. Motor Practice Responder versus Nonresponder. The B
score was used to differentiate between responders and non-
responders. A positive B score reflects an individual’s capac-
ity for motor learning based on the performance plateau
prediction, while a negative B score indicates an absence of
motor learning-related change [19].

2.5. Transcranial Magnetic Stimulation Procedures. All par-
ticipants were screened for contraindications to rTMS [20].
TMS was performed using Magstim Rapid” and Plus' mag-
netic stimulators and a 70 mm diameter air-cooled figure-
of-eight coil (Magstim Co. Ltd., Whitland, Carmarthenshire,
UK) on sessions 2 to 6. During all TMS procedures, partici-
pants were seated in a reclining chair with their hands placed
in a relaxed position (elbow at 180 degrees flexion, forearm
pronated). For all stimulation, coil positioning was continu-
ously monitored using a Brainsight™ neuronavigation

system, which displayed each individual’s T1-weighted
MRI. The participants’ motor hotspot (Mlc) and resting
motor threshold (RMT) were determined as the site that
evoked a measurable MEP greater than or equal to 50 uV
peak-to-peak for 5 out of ten trials in the extensor carpi
radialis (ECR) muscle, at the lowest stimulus intensity at rest.
After identifying the ECR motor hotspot, the active motor
threshold (AMT) was determined as the lowest intensity to
evoke a 200 4V MEDP in at least five out of 10 TMS stimuli
[21], while participants maintained a 20% maximal isometric
voluntary hand grip contraction. Thereafter, cTBS was then
applied with the participant at rest in the theta burst pattern
of stimulation: three stimuli delivered at 50 Hz, grouped and
delivered at 5 Hz, in continuous blocks for a total of 600 stim-
uli over 40 seconds [4] at an intensity of 80% AMT. Sham
stimulation was performed with a dedicated coil that looked
and sounded like active stimulation but did neither mimic
the cutaneous sensation provided during active stimulation
nor induce any current in the underlying cortex (Magstim
Company Ltd.). Continuous TBS was delivered over the
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determined M1c “hotspot” or two cm posterior to this loca-
tion for Slc, consistent with previous work [1, 3], while sham
was delivered over the M1c hotspot. Following ¢TBS comple-
tion on sessions 2 to 6, after a five-minute break, participants
completed motor practice of the STT.

2.6. Magnetic Resonance Imaging Protocol. MR acquisition
was conducted at the UBC MRI Research Centre on a
Philips Achieva 3.0 T whole-body MRI scanner (Phillips
Healthcare, Andover, Massachusetts) using an eight-
channel sensitivity encoding head coil (SENSE factor =2.4)
and parallel imaging.

2.6.1. Anatomical Scan. A high-resolution T1-weighted ana-
tomical scan (TR =7.47ms, TE =3.65ms, flip angle © =6,
FOV =256 x 256 mm, 160 slices, and 1 mm® isotropic voxel)
was collected.

2.6.2. Diffusion-Weighted Magnetic Resonance Imaging
(DW-MRI). One high-angular resolution diffusion imaging
(HARDI) scan was performed using a single-shot echo-
planar imaging (EPI) sequence (TR =7096 ms, TE = 60 ms,
FOV =224 x 224 mm, 70 slices, and voxel dimensions =2.2
x 2.2 x 2.2 mm?). Diffusion weighting was applied across 60
independent noncollinear orientations (b =700 s/mm?),
along with five unweighted images (b = 0 s/mm?). Diffusion-
weighted images (DWIs) were corrected for motion and
distortion using the software package ExploreDTI v4.2.2
(http://www.exploredti.com; [22]). During motion and dis-
tortion correction, signal intensity was modulated and the
b-matrix was rotated [22].

2.6.3. Corticospinal Tract (CST). Diffusion-weighted images
were analyzed using ExploreDTI. All images remained in
native space. At each voxel of the CST, constrained spherical
deconvolution-based deterministic whole-brain fiber tracto-
graphy was initiated using the following parameters:
seedpoint resolution of 2 mm?>, 0.2 mm step size, maximum
turning angle greater than 40°, and fiber length range of 50
to 500 mm [23]. We used a constrained spherical deconvolu-
tion approach to analyze known pathways of the corticosp-
inal tract (CST), to ensure the inclusion of all tracts where
we could manually control their inclusion and exclusion
and reduce false positives (see Figure 2 for methods).

2.6.4. Constrained Motor Connectome (CMC). Data from the
CMC were first transformed into Montreal Neurological
Institute Space. DTI analyses were completed using Explor-
eDTL. DTI is recommended when long-range axonal
connectivity is of interest [24]. Therefore, for the CMC
analysis we used the more conservative DTI tractography
approach as we had no a priori guidelines to identify tracts
within this motor network. At each voxel of the CMC,
DTI-based deterministic whole-brain fiber tractography
was initiated using the following parameters: seedpoint res-
olution of 2mm?, FA threshold 0.2, 0.2 mm step size, max-
imum turning angle greater than 40 , and fiber length range
of 50 to 500 mm. FA values, the most commonly reported
measure of white matter microstructural integrity after
stroke, were extracted from reconstructed tracts and used

for statistical analyses [25]. FA is a quantitative, unit-less
measure of diffusion behaviour of water in the brain; a
value of zero indicates diffusion of water as isotropic, and
a value of one specifies a preferred direction of diffusion
along one axis [26].

We used a previously defined functional motor network
associated with motor learning in healthy individuals [9].
Selected binary masks of cortical GM clusters of activation
were used as ROIs for WM tractography. Each of the four
clusters encompassed multiple brain regions. Cluster one
included the primary somatosensory cortex, motor cortex,
precentral gyrus, bilaterally, and the right intraparietal, supe-
rior parietal, and inferior parietal cortices. Cluster two
included lobule V, VI, VIIIa, and VIIIb of the cerebellum,
bilaterally. Cluster three included right lobule VI and VIIa
Crus of the cerebellum. Cluster four included left intraparie-
tal and superior parietal cortices (Table 2 and Figure 2(b),
bl). The GM cortical clusters from the functional motor net-
work were derived from a whole-brain connectivity analysis
in MNI space, allowing for the clusters of activation from
the fMRI connectivity analysis to be overlaid on the DW
images converted to MNI space. The functional motor net-
work ROIs were used to isolate the underlying WM fiber
tracts of the CMC (Figure 2(b), bl).

2.7. Statistical Analyses. Four main investigative steps were
performed. These included (1) determining the effect of stim-
ulation group (Mlc, Slc, and sham) on motor sequence
learning, (2) separating individuals into motor practice
responders and nonresponders using the B score, (3) asses-
sing differences in demographic and clinical measures
between motor practice responders and nonresponders for
the SMc-cTBS group, and (4) testing for differences in WM
biomarkers between motor practice responders and nonre-
sponders for the SMc-cTBS group.

2.8. Differences in Motor Sequence Learning between cTBS
Groups in Individuals with Stroke during Practice
and Retention

2.8.1. Baseline Performance. Session 1 (baseline) motor
performance on the random and repeated sequences was
evaluated with a two-factor GROUP (Mlc, Slc, and
sham) x SEQUENCE (repeated, random) mixed-model
analysis of variance (ANOVA) with mean RTT as the
dependent variable.

2.8.2. Practice Performance. Performance of the repeated and
random sequences during cTBS paired with motor skill prac-
tice (sessions 2 to 6) was examined using a three-factor
GROUP (Mlg, Slc, and sham) x SEQUENCE (repeated, ran-
dom) x SESSION (sessions 2 to 6) mixed-model ANOVA
with mean RTT as the dependent variable. There were two
missing data points for practice days for two participants in
the sham group (n =6).

2.8.3. Retention Performance. To assess motor sequence
learning at retention (session 7), a two-factor GROUP
(Mlc, Slc, and sham) x SEQUENCE (repeated, random)
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FIGURE 2: (a, by, and b,) Diffusion tensor imaging. Fractional anisotropy (FA) maps were created for individuals, followed by whole-brain
tractography. This is an example of a single subject with a left hemispheric lesion. (a) Regions of interest (ROIs) for the nonlesioned (NL)
and lesioned (L) corticospinal tracts (CST) were manually drawn on the native DW image, followed by tractography. The first
cross-sectional ROI for the CST was delineated bilaterally (NL-CST and L-CST) in the axial plane [52]. First, a “SEED” ROI was
constructed around the PLIC at the level of the anterior commissure [53]. Second, a logical “AND” ROI was constructed around the CST
at the level of the mid-pons [54]. The “AND” function constrained the reconstruction to fibers passing through both the “SEED” and
“AND” ROL (b,;) The functional motor network mask (gray ROIs) was extracted and overlaid on the DW MNI image, followed by
tractography of the CMC (posterior and anterior views). (b,) The motor network mask (represented in red) was overlaid on the
diffusion-weighted image to create the constrained motor connectome (CMC).

TaBLE 2: Constrained motor connectome.

CMC MNI coordinates (X Y Z) mm?
Right postcentral gyrus 36 —28 70 4171
Left cerebellum (V) -16 =52 -22 704
Left superior parietal lobule -32 -56 62 124
Right cerebellum (VI) -26 —60 —26 114

The areas of the motor learning network were used as regions of interest,
overlaid on diffusion-weighted images prior to tractography.

mixed-model ANOVA was performed with mean RTT as the
dependent variable.

2.9. Effect of ¢TBS on Motor Sequence Learning for Motor
Practice Responders. Motor practice responders were identi-
fied as individuals who demonstrated a positive B (B> 0)
score for repeated sequences, and nonresponders were iden-
tified as individuals who demonstrated a negative B score
(B < 0) (see Figure 3 for subject-specific examples). We tested
the effect of stimulation (Mlc, Slc, and sham) on perfor-
mance for the motor practice responder group. Based on our
hypothesis that there would be similarities between the effect
of ¢cTBS over M1c and Slc on RTT, we performed a planned

independent t-test on the B score between Mlc and Slc
groups for motor practice responders.

We had an a priori hypothesis that groups receiving
inhibitory stimulation over the contralesional hemisphere
(M1c, S1c groups) would demonstrate greater improvements
in motor performance compared to individuals receiving
sham stimulation (sham group) [3, 27-31]. To evaluate the
effects of receiving stimulation, M1c and Slc groups were
combined into a contralesional sensorimotor (SMc-cTBS
group) group. To evaluate the effects of receiving active
cTBS stimulation over SMc compared to sham stimulation,
we performed a planned one-tailed independent t-test on B
score between SMc-cTBS and sham groups for motor prac-
tice responders.

2.9.1. Clinical Measures for Motor Practice Responders and
Nonresponders. To investigate whether differences existed
in clinical measures between responders and nonresponders,
we conducted independent group ¢-tests to assess differences
in demographic and clinical characteristics. Demographic
and clinical dependent variables included age, poststroke
duration, UE-FM score, and paretic WMFT rate. Fisher’s
exact test was used to assess differences between motor prac-
tice responders and nonresponders in stroke location
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FIGURE 3: (a, b, ¢, and d) Active cTBS motor practice responder and nonresponders. The top panel represents motor practice responders
(positive B score) following contralesional ¢TBS, delivered over the primary somatosensory cortex (Slc; Bscore =14.27; (a)) or primary
motor cortex (Mlc; Bscore =12.30; (b)), paired with motor skill practice. The bottom panel represents motor practice nonresponders
(negative b score) following contralesional cTBS, delivered over the primary somatosensory cortex (Slc; Bscore = —4.35; (c)) or primary
motor cortex (M1c; Bscore = —1.76; (d)) paired with motor skill practice.

TaBLE 3: Participant characteristics for motor practice responders and nonresponders in Mlc, Slc, and sham groups.

Group Stim group Age (yr) Stroke location (C, SC) PSD (months) UE FM Paretlrca:/eVMFT
Mean SD Mean SD Mean SD Mean SD

Mlc=5 C=5

};fli‘;nders Sle=7 663 1441 sC=12 758 7345 468 2008 387 1742
Sham =5
Mlc=4 C=2

Nonre sponders g1c 637 1134 sC=9 547 4543 491 2011 402 19.12
Sham =3

C = cortical; M1c = contralesional primary motor cortex; PSD = poststroke duration; Slc = contralesional primary somatosensory cortex; SC = subcortical; UE
FM = upper-extremity Fugl Meyer; WMFT = Wolf Motor Function Test.

(cortical, C; subcortical, SC) for these individuals (Table 3;
see Figure 4 for stroke locations).

2.9.2. WM Tractography for Motor Practice Responders and
Nonresponders. A multivariate analysis of variance (MAN-
OV A)was used to assess differences in WM-FA from the CMC
and NL- and L-CST between motor practice responders and

nonresponders within the SMc-cTBS group (Slc, M1c). The
dependentvariables forthe MANOV A were FA values for each
ROI(CMC,andNL-and L-CST). Posthocunivariate ANOV As
were performed onsignificant (p < 0.05) MANOV As.

In the event of a violation of sphericity (significant
Mauchly’s test, p <0.05), the Greenhouse-Geisser correction
was applied. Levene’s test for equality of variances was used
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FIGURE 4: Lesion figure for M1c and Slc (sensorimotor- [SM]-) ¢TBS motor practice responders versus nonresponders.

to test for homogeneity of variance, and degrees of freedom
were adjusted when the test was significant (p < 0.05). The
95% confidence intervals (CIs) of the mean difference (MD)
were used to describe the effect of stimulation on improve-
ments in motor performance (B score). Effect sizes were
reported as partial eta-squared (1 pz) where 0.01 is considered

a relatively small effect, 0.06 moderate, and more than 0.14 a
large effect [32]. Significance level for all statistical tests was
set at p <0.05, and post hoc tests, Bonferroni-corrected for
multiple comparisons, were conducted when appropriate.
Data are presented in the text as mean (M) plus or minus
SD or standard error (SE). All statistical procedures were
conducted using SPSS software (Version 21.0, IBM Corpora-
tion, Armonk, New York).

3. Results

3.1. Repeated versus Random Sequence Performance and
Learning between cTBS Stimulation Groups

3.1.1. Baseline Performance. During initial STT performance
(session 1), the random and repeated sequences trended
towards, but were not, statistically different (F; 55, =4.09, p
= 0.054,;7P2 =0.141;Figure5(a)). There was nobaseline differ-
ence in performance level between groups (Mlc, Slc, and
sham) asshown by thelack of significant main effect of GROUP
(Mg, Slc, and sham) (F(,,3 = 0.48, p=0.63, qu =0.037).
Additionally, there was no significant GROUP x SEQUENCE
interaction in session 1 (F ;3 = 0.084, p = 0.92, 77p2 =0.007).

3.1.2. Practice Performance. All groups (Mlc, Slc, and sham)
demonstrated improved motor performance on the STT, evi-
denced by an observed decrease in RTT across sessions 2 to 6
and a significant main effect of SESSIONS (F/, 5555 71) = 4.51,
p=0.009, P2 = 0.164; Figure 5(b)). Mauchly’s test indicated
that the assumption of sphericity had been violated
(x*(9) =27.63, p = 0.001); therefore, degrees of freedom were
corrected using Greenhouse-Geisser estimate of sphericity
(£=0.638) for main effect of SESSIONS. In addition, indi-
viduals showed superior repeated (M =13.88, SE =0.90)
compared to random sequence (M =15.59, SE =0.99) per-
formance across practice sessions, as revealed by the signifi-
cant main effect of SEQUENCE (F; »3) = 19.63, p =0.0019,
n pz =0.46). However, there was no main effect of GROUP
(Mlg, Slc, and sham) (F(,,3) = 0.066, p = 0.94, r]pz =0.006),
no significant interaction for SEQUENCE x SESSION
(Fl490 =0.37, p=0.83, 1,2=0016), or for GROUPX

SEQUENCE (F 5 5) = 0.29, p = 0.749, 1,2 = 0.025).

3.1.3. Retention Test Performance. Motor learning-related
change was shown by a main effect of SEQUENCE that
confirmed all groups were faster for repeated (M =12.34,
SE =0.772) compared to random sequence (M = 14.20, SE
=0.861) at retention (F(;,5) =29.94, p <0.001, 7’[P2 =0.55;
Figure 5(c)). However, the main effect of GROUP (Mlc,
Slc, and sham) (F(,5=0.38, p=0.68, #,>=0.030) and
the GROUP x SEQUENCE interaction (F;,5 =0.64, p=
0.53, r]pz =0.049) were not significant.
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FIGURE 5: (a, b, and c¢) Mean response total time (RTT) for repeated and random sequences. Stimulation groups (Mlc, Slc, and sham)
demonstrated similar performances for repeated and random sequences on session 1 (baseline), 2 to 6, and 7 (retention). (a) All groups
demonstrated initial faster RTTs for repeated compared to random sequence performance. (b) Collapsed across groups, all individuals
demonstrated faster performance for repeated compared to random sequences across the five days of practice: F(; ,5) =29.94, p <0.001.

(c) All groups demonstrated faster RTTs for repeated compared to random sequence during retention performance: F; 53 =19.63, p <

0.001. Error bars are SD of the mean.

3.1.4. Motor Practice Responders. Overall, there were 17
motor practice responders and 11 nonresponders, as indicated
by a positive B score for responders and a negative B score for
nonresponders (Mlc: 5 responders, 4 nonresponders; Slc: 7
responders, 4 nonresponders; and sham: 5 responders, 3 non-
responders) (see Figure 6 for normalized B score; normaliza-
tion factor of A + B; A =asymptote value; B =change score).
For motor practice responders, the first planned comparison
showed no significant difference for B score between Mlc
(M=5.87, SD=5.154) and Slc (M =5.66, SD=4.922)
groups for the performance of the repeated sequence
(t(10) = 0.074, p = 0.94, 95% CI [6.32, 6.76]).

Following the amalgamation of M1c and Slc groups into
the SMc-cTBS group, the second planned comparison dem-
onstrated a significantly larger improvement in motor

performance (B score) for the SMc-cTBS group (M =5.74,
SD =4.784) compared to the sham group (M =3.06, SD =
1.146), t5.54) = 1.82, p = 0.045, 95% CI [0.48, 5.86].

3.1.5. Clinical Baseline Measures for the SMc ¢TBS Group. In
the combined SMc-cTBS group, 12 of 20 participants
responded positively to ¢TBS paired with motor skill train-
ing, as evidenced by a positive B score. When considering
the individuals in the SMc-cTBS group, independent group
t-tests and a Fisher’s exact test (binary data for stroke loca-
tion [C: 1; SC: 0]) demonstrated no significant differences
in demographic (age: ;5 =0.08; p=0.93) or clinical
characteristics (stroke location: p=0.64; PSD: f(;5) =0.70,
p=0.49; UE-FM:f(y5) = 0.25, p=0.81; and paretic WMFT
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FIGURE 6: (a, b, and ¢) Motor skill acquisition curves for Slc, Mlc, and sham stimulation groups. Single-subject normalized motor skill
exponential curves for active ¢TBS stimulation groups (top panel) delivered over the contralesional primary somatosensory (Sl¢; (a)) and
contralesional primary motor cortex (Mlc; (b)) and for the sham stimulation group (bottom panel; (c)). Dotted black line indicates
individuals with negative B scores and identified as motor skill nonresponders. Solid grey line indicates individuals with positive B scores
and identified as motor practice responders. Dashed red line represents the mean motor skill acquisition curve for each stimulation group.

TaBLE 4: Comparison (mean and SD) of responder versus nonresponder DWI characteristics in the SMc-cTBS group.

DWI Mean Responders . Mearll\lonresponders . Ftest df ) p value
NL-CST 0.50 0.02 0.48 0.04 3.34 0.084
L-CST 0.42 0.08 0.46 0.05 0.94 0.345
CMC 0.48 0.01 0.46 0.01 7.69 0.013*

Significant effect of DW-FA between groups: Wilks” lambda =0.62, F 3 ;6 = 3.24, p =0.05. Post hoc univariate tests revealed FA from tracts of the CMC
(F(1,15) =7.69, p = 0.013) was significantly higher in responders versus nonresponders.

rate: f(;g) = 0.44, p=0.67) between responders (n =12) and
nonresponders (1 = 8).

3.1.6. White Matter Tractography for the SMc cTBS Group. In
the combined SMc-cTBS group, following the GROUP
(responder, nonresponder) x WM-FA (NL-CST, L-CST,
and CMC) MANOVA, there was a significant main effect
of GROUP (responder, nonresponder) for WM-FA in NL-

and L-CST and CMC (Wilks’ 1 =0.62, F5 ;¢ =3.24, p=
0.05, 7 P2:0.38). Post hoc univariate tests revealed that
WM-FA from tracts within the CMC (F(y,5)=7.69, p=
0.013; see Table 4, Figure 7) were significantly higher (greater
linear diffusion) in responders (CMC-FA: M =0.48, SD =
0.0149) compared to nonresponders (CMC-FA: M =0.46,
SD =0.0113). However, FA from the NL- and L-CST did not
significantly differ between responders and nonresponders
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FiGure 7: Comparison (mean [SD]) of responder versus
nonresponder of CMC in the SM-cTBS group. Error bars
represent SD.

(F<1)18) < 3.34, p=0.084; see Table 4). Therefore, group dif-
ferences in the microstructural integrity of the CMC network
had higher predictive value than CST tracts (see Figure 8 for
subject-specific examples of white matter tractography).

4. Discussion

We demonstrated that the residual white matter integrity of
the CMC was significantly different between motor practice
responders and nonresponders to contralesional cTBS paired
with skilled motor practice. We showed that independent of
receiving cTBS over the (1) contralesional primary motor
cortex (M1c), (2) contralesional primary somatosensory cor-
tex (S1), or (3) sham stimulation, individuals with chronic
stroke demonstrated the ability to learn a motor sequence.
This was supported by improved performance of both the
repeated and random sequences at retention and lower RTTs
for the repeated versus random sequence.

The lack of behavioural differences across stimulation
groups is consistent with variable interindividual responses
to noninvasive brain stimulation observed in previous studies
[2, 7]. This finding motivated our investigation into a sub-
group of “responders.” In the current work, motor practice
responders who received ¢TBS (regardless of stimulation
site) showed differences in RTT in comparison to data from
individuals who underwent sham stimulation. However, sim-
ilar to our past work [3], there was no motor learning-related
difference between the two stimulation groups (see also [3,
13, 33]). This led us to combine the stimulation group and
test whether a biomarker could be used to identify who
would respond to cTBS paired with skilled motor practice.
We discovered that the diffusivity properties of a network
that has been previously identified as important for motor
learning in healthy older adults, the CMC, also differed
between responders and nonresponders.

Our finding, that a complex WM motor network (the
CMC) is related to the responsiveness of individuals to cTBS
paired with motor practice, extends previous findings, show-
ing that greater anisotropy of white matter tracts is important
in stroke recovery [1, 2, 34-36]. Similar to previous studies,
responsiveness to noninvasive brain stimulation was not
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explained by standard demographics, such as age, or stroke
severity or paretic arm motor function [2, 7]. Contrary to
prior literature, poststroke duration [37, 38], stroke location
[39, 40], and corticospinal tract integrity [2, 7] did not char-
acterize responsiveness to cTBS paired with motor practice.
Inconsistency in measures that explain variability in response
to noninvasive brain stimulation may reflect the lack of gen-
eralization between stimulation protocols (i.e., continuous
versus intermittent TBS; brain region-stimulated [M1 versus
S1]; contralesional versus ipsilesional hemisphere) [41]. To
further the field of r'TMS and poststroke recovery, future
work is needed to define the specific impact of varying stim-
ulation parameters and sites.

Following stroke, spared bihemispheric neuronal con-
nections between direct pathways of the M1 and the CST,
as well as indirect pathways such as the reticulospinal
and/or rubrospinal, may contribute to positive capacity
for motor change [8, 9, 42, 43]. Given the bihemispheric
representation within the CMC, our findings may reflect
the overlap between pathways in the CMC and those
involved in interhemispheric signaling during ¢TBS stimu-
lation and motor learning.

Our methodological approach for evaluating motor per-
formance and stratifying responders and nonresponders
was closely based on previous segregation procedures [2].
We employed a curve-fitting technique to categorize motor
learning-related change from individual data across the
entire practice period [17, 19]. Assessment of each individ-
ual’s capacity for motor learning-related change in this man-
ner is not constrained to a predetermined set number of
trials, but is based on the curvilinear pattern of performance
change. As the field of stroke rehabilitation works to identify
biomarkers, curve fitting presents a refined method for
capturing behavioural states that could be applied to other
interventions [44]. In the motor practice responder group
(positive B score), there was a significant difference when
comparing SM-cTBS stimulation with sham stimulation in
change in response time. There was no difference between
cTBS groups (Mlc, Slc). Improvements in the performance
of complex motor skills involve broad networks and
strengthened connections between the sensory and motor
cortices [3]. Shorter response times across practice may
reflect enhancements in the encoding processes for force,
target direction, and egocentric coordinate transformations
that occur between motor and sensory cortices [3]. The inter-
action between M1 and S1 cortices during skill learning is
critical, and our behavioural findings may reflect the recipro-
cal strengthening of connections in individuals with undis-
rupted WM linkage between regions. Alternately, our
findings may indicate that individuals with a more intact
motor network at baseline have a greater capacity for motor
recovery. Rather than showing an isolated effect of cTBS on
M1 versus S1, our data suggest that in individuals with a
greater degree of WM integrity after stroke, it is likely that
a broad network of regions responds to ¢TBS to promote
motor learning.

4.1. Limitations. The identification of specific biomarkers
that distinguish responders from nonresponders is an
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FIGURE 8: Subject-specific examples of white matter tractography. Fractional anisotropy (FA) and overlaid red-green-blue-colored FA
tractography: red (left/right), green (anterior/posterior), and blue (superior/inferior). Examples of DW-WM tracts from the (a)
nonlesioned corticospinal tract (NL-CST), (b) lesioned corticospinal tract (L-CST), and (c) constrained motor connectome (CMC) for a

motor practice responder in the SMc-cTBS group.

important first step in understanding the mechanisms of
action of noninvasive brain stimulation paired with motor
practice [45]. A limitation of our study is the relatively small
sample size (n=28; Mlc=9, Slc=11, and sham=38). A
larger sample may help to verify the CMC as a biomarker
of cTBS response. Beyond our planned comparisons (two--
tailed and one-tailed independent ¢-test), we observed a lack
of behavioural effects and interactions between groups and
sequences (random, repeated) using inferential statistics for
performance of the serial tracking task. Furthermore, it is
important to consider that the B value, which measures the
expected change score, and was used to differentiate between
motor practice responders and nonresponders, may be indic-
ative of poor and good early performance, respectively. The
motor skill nonresponders may have performed the task fas-
ter earlier in practice and therefore demonstrated a ceiling
effect and less improvement in performance over the 5 days.
While additional independent t¢-tests demonstrated that
there was no statistical difference between the SM-cTBS
motor practice responders and nonresponders for repeated
sequence mean RTT at baseline, the group means showed
motor practice responders had worse baseline performance
(M =16.07, SD =6.25) compared to the motor skill nonre-
sponders (M =12.70, SD = 6.81). In addition, the predicted
asymptote value, A, which reflects estimated plateau in
performance, was not statistically different between motor
practice responders and nonresponders, demonstrating
similar practice-end motor performance levels. However,
future research should investigate the response to cTBS
over the contralesional hemisphere paired with motor
practice in a more homogeneously impaired group of indi-
viduals with stroke.

An important alternative interpretation of our findings is
that changes in motor performance may have been related to
the preexisting white matter microstructural characteristics
as opposed to a cTBS effect. With a larger sample, further
comparisons between M1c and Slc ¢ITBS and sham groups
are needed to determine the underlying factor of change. In
the current paper, we performed exploratory correlational
analyses to evaluate the relationships between DWI data
(CMC, NL-, and L-CST FA values) and exponential change
score (B value). This was done in two ways: one using data

from individuals with stroke in the SM-cTBS group and the
second using data from the entire group (SM-cTBS, sham
groups). Only CMC white matter integrity showed a relation-
ship with motor learning (B score) in the SM-cTBS group.
This relationship was not observed for the group when indi-
viduals in the sham condition were included. These findings
illustrate that greater integrity of the preexisting white matter
microstructural of the CMC appears an important factor to
drive larger change in motor performance when cTBS is
applied over M1c/Slc and paired with motor skill practice,
compared to motor skill practice alone.

The B value we calculated was based on the results of ses-
sions 1 to 7; however, there were two missing data points for
two participants in the sham group. We fit the data to the
performance curve and calculated the B value with the miss-
ing data points omitted. Yet, performance curves are a robust
method to capture the overall trend in performance data over
time; curves are less susceptible to outliers, missing data, and
random fluctuations than calculating the overall mean.
Therefore, we believe utilizing curves to be an appropriate
method to determine the capacity for performance change
when missing data points exist; however, we acknowledge
that missing data could bias the present findings and mini-
mize the accuracy of predicting the trend in the data.

Finally, the CMC is a group-level approach; the diffusion-
weighted images are normalized to MNI space to overlay a
common motor network mask. Ideally, individualized masks
created from an fMRI motor learning experiment prior to
receiving a noninvasive brain stimulation intervention, in
combination with the CMC, may help predict individualized
responses to cTBS paired with skilled motor practice. Never-
theless, past work has shown that masks generated in native
versus standard space do not yield significantly different
information pertaining to WM microstructural integrity
[46]. Our findings will support future work to investigate
the possible usefulness of using fMRI-guided DWT as a meth-
odological approach to identify biomarkers of recovery.

4.2. Future Studies. Individuals with stroke develop compen-
satory patterns of activation that promote rapid changes in
motor function [47]. However, these compensatory patterns
of activity may have long-term detrimental effects [48] that
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are independent of improvements in motor impairment.
Shifting individuals into a more normal pattern of activation
early post-stroke may be an important mechanism for
long-term motor recovery. As such, the capacity to determine
responder and nonresponder biomarker profiles for nonin-
vasive brain stimulation protocols is an important field of
inquiry. Future studies need to determine individual func-
tional and structural connectivity patterns associated with
changes in motor function that evolve naturally (sham stim-
ulation) compared to changes induced via noninvasive brain
stimulation. Serial imaging of fMRI and DTI connectivity has
been suggested as means for determining the relationship
between behavioural and brain changes; however, many
studies only examine changes pre- and post-intervention
[44] and consider individuals in the chronic phase of recov-
ery. Formulating experimental designs to investigate individ-
ual differences throughout interventions is essential to the
understanding of variations in outcome measures and,
furthermore, is central to derive maximal individualized
treatment effects. Indeed, not all individuals demonstrate
improvements over the same planned trajectory or number
of practice sessions practice [17, 49]. Thus, individualized
interventions are needed, based on persons’ own potential
for improvement.

5. Conclusions

The residual WM structure of a novel motor network in the
brain, in the chronic phase of stroke, has emerged as a poten-
tial biomarker of motor recovery. The underlying neuro-
physiological mechanisms that yield the relationship
between WM pathways and response to repetitive noninva-
sive brain stimulation needs further investigation. Findings
from repetitive noninvasive brain stimulation studies have
resulted in positive outcomes in stroke populations [50, 51].
However, the effects of noninvasive brain stimulation are
known to be variable, which suggests that there are specific
underlying mechanisms that drive activity-dependent plas-
ticity following noninvasive brain stimulation paired with
motor practice [51]. The findings from the present study
demonstrate the potential importance of evaluating wide-
spread, functionally relevant WM networks to characterize
response profiles of individuals with stroke.
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