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Correspondence should be addressed to Héctor A. Echavarria-Heras; heheras@icloud.com

Received 13 August 2021; Accepted 8 October 2021; Published 27 December 2021

Academic Editor: Jorge-Antonio Lopez-Renteria
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We examine the comportment of the global trajectory of a piecewisely conceived single species population growth model.
Formulation relies on what we develop as the principle of limiting factors for population growth, adapted from the law of the
minimum of Liebig and the law of the tolerance of Shelford. )e ensuing paradigm sets natality and mortality rates to express
through extreme values of population growth determining factor. Dynamics through time occur over different growth phases.
Transition points are interpreted as thresholds of viability, starvation, and intraspecific competition. In this delivery, we focus on
the qualitative study of the global trajectory expressed on continuous time and on exploring the feasibility of analytical results
against data on populations growing under experimental or natural conditions. All study cases sustained fittings of high re-
producibility both at empirical and interpretative slants. Possible phase configurations include regimes with multiple stable
equilibria, sigmoidal growth, extinction, or stationarity. Here, we also outline that the associating discrete-time piecewise model
composes the logistic map applied over a particular region of the phase configuration. Preliminary exploratory analysis suggests
that the logistic map’s chaos onset could surpass once the orbit enters a contiguous phase region.

1. Introduction

As a rule, mathematical models that attempt to describe the
dynamics of two or more populations, subject to a specific
type of interaction in an ecosystem, are formulated based on
too rigid hypotheses, resulting in poor concordance of the
model’s predictions with the natural process. )e high de-
gree of complexity of biological phenomena and their sig-
nificant spatial-temporal variations do not assimilate by
single-rule models, which are incapable of presenting the
functional diversity required by levels of reliable prediction.
However, when trying to include more biological

information in the model hypotheses, it is often possible to
fall into the opposite situation: creating models or tech-
niques so complicated that they are also inoperative from an
analytical standpoint.

From the traditional point of view, in building amodel, it
is necessary to include the most representative processes of
the system that we are trying to describe to maintain sim-
plicity as much as possible without losing relevant infor-
mation. )e problem reduces to a quest for those key
processes that govern the interaction dynamics we are in-
terested in studying. For example, in demographic ecology,
the dynamics of a population depend on the correlation
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between opposing influences such as birth generating and
growth inhibitory processes. Each of these effects depends
on a series of factors inherent to population growth. For
example, births depend on age composition, sex proportion,
fertility, available food, and so on. Correspondingly, the
growth inhibition process may be set by population density,
disease, abiotic factors such as temperature, humidity,
pollution, and others. As the number of determining factors
increases, the model’s complexity affects tractability and
interpretability. An alternative approach is considering a
horizontal integration of complexity through a piecewise
modeling strategy. While embracing this approach to gain
interpretative strength, it would be desirable to imbue the
construct of a mechanistic profile. )is work explains how
we build a piecewise population model (PPM) by following a
systematic way, that is, creating a piecewise description of
population growth by relying upon a logical deductive ap-
proach. An ad hoc logical system that could sustain such an
enterprise is what we comprehend as a principle of limiting
factors (PLF) for population growth. )is paradigm entailed
the derivation of a PPM as a collection of submodels called
growth phases that continuously compose the global trend of
population size. Each growth phase describes the dynamics
over a specific time interval. )e naming composite further
refers to the principle of limiting factors-driven piecewise
population model, which also represents utilizing the PLF-
PPM acronym.

As we elucidate in what follows, the PLF-PPM can be
arranged by following ideas in [1–3]. Mainly, the construct
presented here reviews the approach in [3] to consider a
modification taking into account the abatement effect that
the population induces on an external resource necessary to
guarantee its growth and permanence. )e present PLF-
PPM formulation also includes a specific scaling or
weighting of population size to model the increase in
mortality promoted by low population densities [4]. )e
resulting device allows meaningful ecological interpretation
of consequential growth phases. Mainly for keeping this
paper’s extension manageable, we focus on the continuous-
time form of the PLF-PPM. Nevertheless, we judged that it is
pertinent to advance an outline of the next discrete-time
version, whose detailed exploration will be addressed in the
second part of this work. We include several study cases that
show the empirical and interpretative adequacy of the
present paradigm.)e Appendix presents a qualitative study
of associating continuous-time global trajectory.

2. Materials and Methods

2.1. 6e General Piecewise Population Growth Model Setup.
)roughout this paper, symbol R stands for the set of real
numbers and R+ denotes the subset of R whose elements are
positive. Correspondingly, the size of a population at a
positive time t represents employing x(t) and formally
stands as a function having domain R+ and range XR, a
proper subset of R+, that is, x(t): R+⟶ XR ⊆R+. For the
case of an isolated population, a customary assumption
establishes the existence of a function G (x): XR⟶ R such
that

_x(t) � G(x(t)) · x(t), (1)

where _x(t) stands for the rate of change of the number x(t)

of individuals in the population at time t. )e function G(x)

is interpreted as an average estimate of the influence of all
the processes that govern population growth. More spe-
cifically, this function embodies the average growth rate for
each individual in the population. In the following, we will
refer to G(t) as the per capita growth rate or the intrinsic
growth rate of x(t).

Determining the function G(x) in a closed form is
usually impossible or very complicated. However, from an
empirical perspective, it is possible to suppose that the
function G(x) admits expansion as a power series, with
which we would obtain

G(x) � 􏽘
∞

i�0
aix

i
. (2)

)en, for example, neglecting the anxn terms with n≥ 2,
we could consider the approximation

G(x) � r − kx. (3)

)e above characterization of the intrinsic growth rate
G(x) establishes the form of the differential equation (1) that
leads to the identification of the so-called logistic curve,
commonly adopted as a model of population growth in a
limited environment. Although it is feasible to give a bio-
logical interpretation to equation (3) model, it shows the
fragility inherent in all simplified models, which mainly
relates to the lack of suitable complexity. Moreover, the
variation of population size could compose an outstanding
array of patterns. )en, maintaining a single association rule
for G(x), through the full extension of XR, no matter how
complex such a rule conceives, it could render insufficient to
imbue a consistent reproducibility of observed population
values. A traditional approach to adapt G(x) is by con-
sidering a polynomial approximation of degree n derived
from the infinite series of equation (2). Nevertheless, this
approach bears a disadvantage since at gaining reproduc-
ibility strength, we could lose interpretability.

Before getting into matters on suitable complexity
embedding ofG(x), we introduce some notation conven-
tions. Given a functionS(t): A⟶ B and a subset C⊆A,
the restriction of S(t) to the set, C denotes S(t)|C: C⟶ B,
it is formally defined by

S(t)|C � S(t) for each t in C. (4)

A second method of adapting the complexity attending
to an optimal reproducibility criterion is conceiving G(x) as
a composite of m operating modes, each one characterized
by a continuous and differentiable function
Gi(x) : Ri[x]⟶ R being Ri[x] a region defined through

Ri[x] � x|pi−1 <x≤pi􏼈 􏼉, (5)

for i � 1, 2, . . . , m. )e components of the vector
P � (p0, . . . , pm) represent breakpoints for transition
among the operating modes Gi(x). We also assume that the
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collection of regionsRi[x] provides a covering for the range
of x(t), that is, XR ⊆ ∪m

1 (Ri[x]). We could formally set

Gi(x) � G(x)|Ri[x] . (6)

So, we can represent G(x)expanded by the Gi(x) sub-
models for i � 1, 2, . . . , m, namely,

G(x) � 􏽘
m

i�1
χ Ri[x]( 􏼁Gi(x), (7)

with χ(Ri[x]) representing the characteristic function of
Ri[x], namely,

χ Ri[x]( 􏼁 �
1, if x(t) ∈ Ri[x],

0, if x(t) ∈ Ri[x]
c
,

1.􏼨 (8)

Equation (7) intends to provide a piecewise de-
scription of the intrinsic population growth rate in the
autonomous differential equation (1). Discretizing the
resulting differential equation, we can identify the pa-
rameters defining the Gi(x) submodels describing the
phases of population growth, as well as the threshold
parameters p0, p1, . . . , pm that represent the transition
points between the growth phases Gi(x); given assumed
continuity properties of G(x), the phase changes must be
set as continuous transitions between the submodels,
that is, we have

Gi pi( 􏼁 � lim
x⟶p−

i

Gi+1(x), for i � 1, 2, . . . , m − 1. (9)

But, in the general settings, the transition between phases
at breakpoints p0, p1, . . . , pm can occur in a discontinuous
way.

In the settings of the model of equation (1), the function
f(x) � G(x)x is interpreted as the natural growth rate of
the population. )en, defining fi(x) � Gi(x)x for
i � 1, 2, . . . , m and keeping the notation convention
entailing the associated domain regions, according to
equation (6), we set

fi(x) � f(x)|Ri[x] . (10)

)is way, we can propose a piecewise expanded form of
equation (1), namely,

_x(t) � 􏽘
m

i�1
χ Ri[x]( 􏼁fi(x), forx(0) � x0, (11)

whereRi[x] and χ(Ri[x]) are defined by equations (5) and
(8) one to one.

)e non-autonomous form of the dynamical system of
equation (11) addresses similarly by replacing f(x) by a
continuous and differentiable function
f(x, t): XR × R⟶ R and interprets x(t) and t as a forced
form of the natural growth rate of the population. )e
extension of equation (11) to the non-autonomous case
f(x, t) follows by setting submodel fi(x, t):Ri[x, t]⟶ R

being Ri[x, t] � Ri[x] × R for i � 1, 2, . . . , m. )is way, a
piecewisely expanded non-autonomous form of equation
(11) could be expressed by

_x(t) � 􏽘
m

1�1
χ Ri[x, t]( 􏼁fi(x, t), withx(0) � x0, (12)

where χ(Ri[x, t]) symbolizes the characteristic function of
the rectangle Ri[x, t]. Nevertheless, in this paper, we focus
on the autonomous case.

To provide a piecewise representation of the solution
x(t) to the dynamical system of equation (11), we conceive
trajectory sectors xi(t) for i � 1, 2, . . . , m defined by

xi(t) � x(t)|Ti(t). (13)

For Ti(t)⊆R+, the interval Ti(t) � x− 1(Ri[x]). Since
x(t) varies continuously, we must set the consistency
condition

xi ti( 􏼁 � lim
t⟶t−

i

xi+1(t), (14)

for ti � x− 1( pi) being pi the breakpoint for the transition
from fi(x) to fi+1(x). )en, we arrange

x(t) � 􏽘
m

i�1
χ Ti(t)( 􏼁 xi(t), for x(0) � x0, (15)

with χ(Ti(t)) being defined by

χ Ti(t)( 􏼁 �
1, if t ∈ Ti(t),

0, if t ∈ Ti(t)
c
.

􏼨 (16)

In any event, usually assembling equation (11) relies on
an empirical description that abides by the highest repro-
ducibility criterion. Regularly, such an approach disregards
any phenomenological explanation of population growth. In
this work, we explain a systematic way to obtain a collection
of submodels that mimic the global trend of population size
x(t), where each one of them describes the dynamics over a
specific time interval, that is, we build a piecewise de-
scription of both _x(t) and x(t) as given by equations (11)
and (13) one to one by relying on a logical deductive ap-
proach. )is can be obtained by following [1–3]. )e cor-
responding derivation is based on the use of the ecological
principle of limiting factors. )e construct presented here
corresponds to a modification of the slant in [3]. To consider
the abatement effect that the population induces on an
external resource necessary to guarantee its growth and
permanence, the present formulation also includes a specific
scaling or weighting of population size to model the increase
in mortality promoted by low population densities [4].

2.2. 6e Principle of Limiting Factors. German Physiologist
Justus Von Liebig [5], studying the growth of certain plants,
realized that to guarantee their development, there had to be
a set of essential nutrients. Some had to be abundant, and
others were required only in small quantities. A significant
discovery of Liebig was that the absence of some nutrient
could not be replaced with any other that appeared in
abundance. Moreover, a medium that contained all the
nutrients in abundance except one of them, which appeared
in insufficient quantity, would allow plant growth until the
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nutrient was utterly depleted. )e absence of some element
limited growth. In addition, when growth occurred, the
latter turned out to be controlled by the nutrient appearing
in lesser proportion. Liebig called this regularity the law of
the minimum. Later, in [6], the North American Ecologist
V. E. Shelford extended the domain of Liebig’s law to what is
now known as the law of tolerance. Shelford pointed out that
when there is an excess of a specific element, this can be as
limiting as its deficiency. It follows that all the processes that
determine the dynamics of a population will occur in in-
tensities governed by the minima or maxima of the factors
that nourish these processes. We refer to this notion as the
principle of limiting factors (PLF) for simplicity and fol-
lowing the tradition. It intends to interpret the law that limits
a process through the maximum and minimum of factors
acting in the analyzed system.

2.3. 6e Principle of Limiting Factors-Driven Piecewise Pop-
ulation Growth Model. Considering the validity of the
principle of limiting factors, let us construct a mathematical
model to interpret the performance of a population whose
size at time t is denoted by x(t). We suppose that departing
from a value x(0) � x0, the population growth depends on
an external resource whose availability at time t is modeled
by a continuous and differentiable function R(t) with rank
in R+. We will also assume that the natural growth rate of the
population size _x(t) as given by equation (2) expresses
through a function f(x) � G(x)x that determines on a first
instance by the intensities of two opposing processes, one of
birth N(x) yielding offspring and another M(x) deter-
mining the death of the individuals, that is,

f(x) � βN(x) − μM(x), (17)

where β and μ are positive scaling parameters [2, 3], N(x)

stands for the strength of the process leading to increasing
population size, that is, the rate at which the number of
newborn in the population is generated, and M(x) repre-
sents the intensity of the growth-inhibiting process, that is,
the mortality rate. We assume that N(x) and M(x) both
express through continuous and differentiable functions.

)en, according to the principle of limiting factors, we
assume that N(x) depends essentially on two factors: one
being the size of the population x(t) and the second one
taken as the amount of feeding energy available; this sym-
bolized employing R(x). We suppose that before the pop-
ulation began exhausting the resource R(x), this is kept at a
constant value F0. Additionally, we think through that the
total weight of the population expresses in the same units of
energy as R(x). Let us also undertake that each individual in
the x(t) pool maintains an energy consumption equal to a
proportion k of its weight. )en, we can assume in the first
instance that R(x) represents using the linear model

R(x) � F0 − kx(t). (18)

)en, resource availability R(xo) will plentifully suit
feeding requirements of the initial population xo

whenever the condition R(xo)≫ kxo satisfies or

equivalently according to equation (18) whenever
F0 ≫ 2kx0 holds. We will then have that if the amount of
energy consumed by the population at time t, i.e., kx(t),
is less than R(x), there will be enough food for all in-
dividuals, that is, the availability of energy will guarantee
that the population can participate in the reproduction
process unrestrictedly, so we can establish the assump-
tion that the birth rate will be proportional to the size of
the population, that is, we can set the equality
N(x) � x(t). In the case in which kx(t) exceeds R(x),
then only as many individuals of the population ener-
getically equivalent to R(x) will be able to feed. )ere-
fore, the reproductive potential of the population will be
limited. )at is, according to Liebig’s principle, energy
availability will be a limiting factor for population
growth. )en, N(x) � R(x). )us, we can define N(x) by

N(x) � min
t

kx(t), R(x){ }. (19)

Solving the inequality kx(t)< F0 − kx(t), we can ex-
press equation (19) in the equivalent form

N(x) � min
t

x(t), E{ }, (20)

where the constant E � F0/2k is interpreted as a starvation
threshold since if x(t) grows maintaining levels higher than
E, the number of offspring will turn to be controlled by the
external factor F0 and the rate of individual energy con-
sumption k that could eventually lead to the decline of the
population.

Concerning the intensity of the natural death process
M(x), we will consider this, considering Shelford’s law of
tolerance based on population density as the critical factor.
According to Allee’s principle, reduced population levels will
restrict the number of interactions between individuals,
making mating difficult, implying decreasing recruitment,
favoring even a lower number of individuals, and eventually
leading to the total depletion of the population. In this
circumstance, we will say that the strength of the mortality
process will be proportional to the size of the population,
that is, M(x) � ax(t), where a is a positive constant. On the
other hand, at high population sizes, density upsurges, the
struggle for resources intensifies, and so does the trans-
mission of diseases, thereby increasing mortality. In this
case, we take the intensity of the mortality process as being
proportional to the number of encounters between the in-
dividuals, that is, M(x) � bx2(t) where b ∈ R+. )en,
according to Shelford’s law of tolerance, we can express
M(x) in the form

M(x) � max
t

ax(t), bx
2
(t)􏽮 􏽯. (21)

In summary, the PLF and equations (11) and (17) imply
the piecewise continuous form

_x(t) � 􏽘

m

i�1
χ Ri[x]( 􏼁fi(x), forx(0) � x0, (22)

where fi(x) and Ri[x]i � 1, 2, 3, 4 are given by

4 Complexity



f1(x) � βE − μbx(t)
2

R1[x] � x(t)|(x(t) >E )∧ x(t)>
a

b
􏼒 􏼓􏼚 􏼛

f2(x) � βx(t) − μbx(t)
2

R2[x] � x(t)|(x(t) <E)∧ x(t)>
a

b
􏼒 􏼓􏼚 􏼛

f3(x) � (β − μa)x(t) R3[x] � x(t)|(x(t) <E )∧ x(t)<
a

b
􏼒 􏼓􏼚 􏼛

f4(x) � βE − μax(t) R4[x] � x(t)|(x(t) >E )∧ x(t)<
a

b
􏼒 􏼓􏼚 􏼛

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (23)

with χ(Ri[x]) representing the characteristic function of
Ri[x] for i � 1, 2, 3, 4 (cf. equation (8)). In what follows, the
principle of limiting factors-driven piecewise population
growth model of equations (22) and (23) will be referred to
as PLF-PPM for short.

Since x(t) stands for the solution to equation (22), then
according to equation (15), we have that xi(t) � x(t)|Ti(t) for

i � 1, 2, 3, 4, stands for the ith sector of the PLF driven
trajectory x(t) having range inRi[x], and correspondingly,
this sets Ti(t) � x − 1(Ri[x]). )en, xi(t) solves the differ-
ential equation _xi(t) � fi(x(t)) with xi(t) satisfying xi(0) �

xi0 ∈ Ri[x] and the restriction t ∈ Ti(t). )erefore, we have

x1(t) �
λ1 C − e

−2t
���
βμbE

√

􏼒 􏼓

C + e
−2t

���
βμbE

√ x(t) ∈ R1[x], t ∈ T1(t) x10 �
λ1(C − 1)

C + 1
λ1 �

���
βE

μb

􏽳

x2(t) �
Cλ2

λ2e
−βt

+ C
x(t) ∈ R2[x], t ∈ T2(t) x20 �

βC

β + μbC
λ2 �

β
μb

x3(t) � Ce
(β−μa)t

x(t) ∈ R3[x], t ∈ T3(t) x30 � C

x4(t) � Ce
− μat

+ λ4 1 − e
− μat

􏼐 􏼑 x(t) ∈ R4[x], t ∈ T4(t) x40 � C λ4 �
βE

μa

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (24)

with λi being the equilibrium solutions as determined by the
natural growth rates fi(x(t)) (cf. equation (24)). Addi-
tionally, the submodels xi(t) composing the solution x(t) as
given by equation (15) determine by the order relationship
that E and a/b satisfy. Accordingly, the global trajectory
x(t)could fit to three possible topologies, one type
M1 associating to the statement M1: (E> a/b), another
form M2 consistent to M2: (E> a/b); and a third form M3
associating to M3: (E> a/b) the phase composite
P1(t, x(t)) for M1 models will include regions
R1[x],R2[x], and R3[x] , that is,
P1(t, x(t)) � ∪ i≠4 Ri[x]􏼈 􏼉⋃ ​ (0,∞). Correspondingly, for
models M2, phase arrangement becomes
P2(t, x(t)) � ∪ i≠2 Ri[x]􏼈 􏼉⋃​ (0,∞). In turn, phase portrait
for models M2 and the regionsR2[x] andR4[x] is mutually
exclusive. For models M3 , the phase combination turns to
P3(t, x(t)) � ∪ i≠2,4 Ri[x]􏼈 􏼉⋃ ​ (0,∞) . )e Appendix pres-
ents a qualitative study of trajectories resulting from
equation (22).

3. Results

3.1. Analytic Exploration. To study the varied forms of the
global trajectory x(t) derived from the PLF-PM, we begin by
setting the array of possible phase configurations associated
with the basic parameters a, b, E, β, and μ (cf. equations (22)
and (23)). We depart from the ordering relationship for the
external energy E and the ratio of mortality from population
density proportions, a/b, that yields a first model type
classification (Mi, i � 1, 2, 3 ). We have to consider models
M1 associated to the inequality E> a/b, where the range of
x(t) composes the regions: R1[x] � a/b<E< x{ },
R2[x] � a/b< x<E{ }, and R3[x] � x< a/b<E{ } (cf.
equation (23)). For model type M2 where the relationship
E> a/b holds, the range of x(t) will be divided into the
regions R1[x], R3[x], and R4[x] � x< a/b<E{ } (cf.
equation (23)). For model type M3 linking to the ordering
E � a/b, the range of x(t) will be divided into the regions
R1[x] andR3[x]. We can be aware that regionsR2[x] and
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R4[x] are mutually excluding. Besides, it also requires
classifying possible phase arrangements according to a Birth
to Mortality Scaled Ordering (BMSi, i � 1, 2, 3), namely,
BMS1: when (β< μa), BMS2: if (β> μa), and BMS3:
whenever (β � μa). Additionally, each model type Mi with
i � 1, 2 determines possible placements of the initial con-
dition, and each one associated to composing phase regions
Ri[x] with i � 1, 2, 3, 4 determines an initial condition or-
dering (ICik(i) with i � 1, 2 and k(i) � 1, 2, . . . , 5), namely,
IC11: for (E< xo), IC12: whenever (a/b<xo <E), IC13: when
(xo < a/b) , IC14: if (xo � E), and IC15: whenever (xo � a/b).
Correspondingly, IC21: for (xo <E), IC22: whenever
(E< xo < a/b), IC23: when (xo > a/b),IC24: if (xo � E), and
IC25: whenever (xo > a/b). )e possible phase arrangements
typify according to a three-dimensional conjunction oper-
ator H[i, j, k(i)] � (Mi∧BMSj∧ICik(i)) for i and k(i) as
specified. Table 1 summarizes phase arrangements for model
type M1, and Table 2 summarizes those corresponding to
model type M2. In addition to theH[i, j, k(i)] conjunctions,
we must consider the positioning of the equilibrium solu-
tions inside their associated regions. For this reason, in the
presentation of results, we could use the Oλ(i, j) indicator
for i � 1, 2, 4 designating equilibrium λi and j � 1, 2, 4 de-
scribing regionRi[x]. )en, for instance, Oλ(1, 1) identifies
the placement of equilibrium λ1 inside region R1[x]; cor-
respondingly, Oλ(2, 3) labels positioning of λ2 inside region
R3[x] and so on. Yet given Oλ(i, j), this relates to dis-
tinguishing how the initial condition is positioned relative to
the equilibrium solution λi. Resulting orderings generically
symbolize through ICλ(i, j) for i � 1, 2, 4 associated to the
equilibrium solution λi and j � 1, 2 labeling the ordering of
x0 relative to λi. )is way, ICλ(i, 1) stands for (x0 < λi) and
ICλ(i, 2) stands for (x0 > λi). Besides described symbols, we
could refer to direct inequalities that a given equilibrium
satisfies relative to thresholds defining regions.

)en, for instance, the statement
(H[2, 2, 1]∧ ICλ(i, j)∧ICλ(1, 1)) ≡ 1 signifies that we have
a model type M1 with β> μa and that the initial condition
satisfies a/b<xo, the λ1 equilibrium in regionR1[x], that is,
λ1 > a/b , and finally that a/b<xo < λ1. In the Appendix, we
present an extended qualitative study of the performance of
the global trajectory x(t) under conjunctions
H[i, j, k(i)]∧Oλ(i, j)∧ICλ(i, j).

Figure 1(a) shows the performance of the PLF-PM
composite trajectory x(t) for the H[1, 1, 1] configuration.
Particularly, shown placement a/b< λ1 <E derives from the
auxiliary ordering E> μa2/βb. )e global trajectory x(t)

initiates in a regionR1[x] according to the x1(t) rule. )en,
since for β< μa population size decreases, continuity of
linked trajectory projects a time t1 such that x(t) reaches the
E threshold, that is, x(t1) � E, and then x(t) enters into the
regionR2[x] switching to the x2(t) rule. )e settings imply
the existence of a second time t2 so that x(t) touches the a/b
frontier, thereby getting into the regionR3[x] and following
according to the x3(t) rule. But, since β< μa, eventually x(t)

vanishes. H[1, 1, 2] and H[1, 1, 3] configurations similarly
tied to the β< μa ordering also drive population size to
vanish Figure 1(b) pertains to the H[2, 1, 1] arrangement.
Composite trajectory x(t) begins in the region R1[x]

according to the x1(t) rule, but β< μa, and then population
size decreases, so at a time t1, it reaches the a/b threshold,
that is, x(t1) � a/b, entering into the region R4[x] and
subsequently abiding by the rule x4(t). )e decreasing trend
implies population size touching the E boundary at a second
time t2, thereby placing within the region R3[x] and then
switching again, this time to the x4(t) rule. Afterward,
population size keeps decreasing following an asymptotic
trend to extinction. )e faith of the PLF-PM composite
trajectory x(t) for H[2, 1, 2] and H[2, 1, 3] is extinction
equally. Figure 1(c) pertains to the H[3, 1, 1] conjunction
corresponding to the xo >E ordering. )en, in the begin-
ning, population size x(t) places in the region R1[x] and
decreases according to the x1(t) rule. Subsequently, it as-
ymptotically approaches the value λ1 <E , but on its trend, it
hits the E boundary at time t1 switching to rule x3(t) holding
in region R3[x]. )e condition β< μa drives population to
extinction. For H[3, 1, 2] conjunction, the initial condition
placement x(0)<E keeps the population size within region
R3[x] where it progresses to extinction according to the
x3(t) trajectory.

Assume (Oλ(2, 1)∧H[1, 2, 1]) ≡ 1; then, the condition
BMS1: (β< μa) holds; additionally, the λ2 equilibrium lo-
calizes above E, that is, Oλ(2, 1) : (λ2 >E), and these or-
derings appear in conjunction with M1: (E> a/b) and
IC11: (E<xo). Particularly, λ2 > E implies λ1 >E so the
initial condition placement E<xo < λ1 sets the x(t) trajec-
tory to increase according to the x1(t) rule, approaching the
asymptotic limit λ1 and staying within regionR1[x]. On the
other hand, whenever we have E< λ1 < xo, population size
x(t) decreases asymptotically towards λ1 . )is establishes λ1
as a stable equilibrium in region R1[x] (see Figure 2(a)).
Alternatively, under the statement
(Oλ(2, 2)∧H[1, 2, 2]) ≡ 1, since we have β> μa, the or-
dering λ2 > a/b; then, since Oλ(2, 2) implies λ2 <E, we
could have a/b< xo < λ2 <E or a/b< λ2 < xo <E. If
a/b< xo < λ2 <E gets true, x(t) will behave according to the
x2(t) law, and then it will decrease from xo and approach the
asymptotic limit λ2 . For a/b< λ2 <xo <E, the population
size x(t) still conforming to the x2(t) growth law will in-
crease from xo and approach λ2.)us, λ2 stands for a stable

Table 1: Basic phase arrangementsH[1, j, k(i)] determined by the
PLF-PM and phase arrangements for model type M1 associated to
the E> a/b ordering.

H[i, j, k(i)] M1 BMSi BMSi ICi k(i) ICi k(i)

H[1, 1, 1] E> a/b BMS1 β< μa IC11 E<xo

H[1, 1, 2] E> a/b BMS1 β< μa IC12 a/b<xo <E

H[1, 1, 3] E> a/b BMS1 β< μa IC13 xo < a/b<E

H[1, 1, 4] E> a/b BMS1 β< μa IC14 xo � E

H[1, 1, 5] E> a/b BMS1 β< μa IC15 xo � a/b
H[1, 2, 1] E> a/b BMS2 β> μa IC21 E<xo

H[1, 2, 2] E> a/b BMS2 β> μa C22 a/b<xo <E

H[1, 2, 3] E> a/b BMS2 β> μa IC23 xo < a/b<E

H[1, 2, 4] E> a/b BMS2 β> μa IC24 xo � E

H[2, 2, 5] E> a/b BMS2 β> μa IC25 xo � a/b
j � 1, 2 sign discriminates ordering between β and μa, and the composing
index k(i) differentiates the position of the initial condition among the
phase regions constituting a model type M1.
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Table 2: Basic phase arrangements H[2, j, k(i)] determined by the PLF-PM and phase arrangements for model type M2 associated to the
E< a/b) ordering.

H[i, j, k(i)] M2 BMSi BMSi ICi k(i) ICi k(i)

H[2, 1, 1] E< a/b BMS1 β< μa IC11 E<xo

H[2, 1, 2] E< a/b BMS1 β< μa IC12 a/b<xo <E

H[2, 1, 3] E< a/b BMS1 β< μa IC13 xo < a/b<E

H[2, 1, 4] E< a/b BMS1 β< μa IC14 xo � E

H[2, 1, 5] E< a/b BMS1 β< μa IC15 xo � a/b
H[2, 2, 1] E< a/b BMS2 β> μa IC21 E<xo

H[2, 2, 2] E< a/b BMS2 β> μa C22 a/b<xo <E

H[2, 2, 3] E< a/b BMS2 β> μa IC23 xo < a/b<E

H[2, 2, 4] E< a/b BMS2 β> μa IC24 xo � E

H[2, 2, 5] E< a/b BMS2 β> μa IC25 xo � a/b
j � 1, 2 sign discriminates ordering between β and μa, and the composing index k(i) differentiates the position of the initial condition among the phase
regions constituting a model type M2

xo
x (t)

E

λ1

λ2

a/b

t1 t2

R1 [x]

R2 [x]

R3 [x]

(a)

xo

x (t)

E

λ4

a/b

t1 t2

R1 [x]

R4 [x]

R3 [x]

(b)

xo

x (t)
E

R1 [x]

R3 [x]

t1

(c)

Figure 1: Examples of the construction of the PLF-PM composite trajectory x(t) forH[i, 1, 1] for i � 1, 2, 3; these configurations include a
BMS1: (β< μa) condition. (a) Composite trajectory x(t) for H[1, 1, 1]. (b) Composite trajectory x(t) for H[2, 1, 1]. (c) Composite
trajectory x(t) for H[3, 1, 1].

xo

λ1

xo

E

a/b

x (t)

x (t)

R1 [x]

R1 [x]

R2 [x]

R3 [x]

t

(a)

E

xo

λ2

xo

a/b

x (t)

x (t)

R1 [x]

R2 [x]

R2 [x]

R3 [x]

t

(b)

Figure 2: Continued.
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equilibrium in the regionR2[x] (see Figure 2(b)). Under the
H[2, 2, 2] arrangement, population size x(t) begins in the
region R4[x] following the x4(t) rule with λ4 >E. If
E< x0 < λ4 < a/b,x(t) increases as it asymptotically ap-
proaches λ4. On the other hand, if E< λ4 < x0 < a/b, x(t)

decreases while asymptotically approaching λ4 . )erefore,
the condition ((E< λ4 < a/b)∧H[2, 2, 2]) ≡ 1 bears a stable
equilibrium at λ4 (see Figure 2(c)). Whenever λ4 > a/b, the λ4
equilibrium lies within region R1[x]. Since E<xo < a/b,
population size increases according to rule x4(t)

approaching λ4 reaching the a/b boundary at time t1
switching to rule x1(t), since λ1 > a/b population size in-
creases asymptotically towards λ1 staying within region
R1[x] (see Figure 2(d)).H[1, 2, 3] andH[2, 2, 3] bear x(t)

increasing fromE< xo and could approach asymptotically λ4
whenever this equilibrium solution lies within regionR4[x]

or λ1 if λ4 > a/b.
For H[1, 3, 1], population size x(t) starts in the region

R1[x] and controls by x1(t) with equilibrium solution λ1
satisfying a/b< λ1 <E<x0. Hence, x(t) decreases and at-
tains the E threshold at a time t1, transferring to rule x2(t)

and then asymptotically approaching the equilibrium so-
lution λ2 � a/b (see Figure 3(a)). For the arrangement
H[1, 3, 2], the initial condition sets x(t) to acquire the x2(t)

law in R2[x] and then it approaches the equilibrium so-
lution λ2. Correspondingly, the H[1, 3, 3] composite x(t)

obeys the x3(t) rule in region R3[x], but since β � μa, it
remains stationary at xo. )ese configurations suggest a
maximum limiting effect of resource scarcity. ForH[2, 3, 1],
population size x(t) begins within the region R1[x] and
since λ1 < a/b places in region R4[x], then x1(t) decreases,
intersecting a/b at a time t1 where it switches to rule x4(t),
ultimately approaching the equilibrium solution λ4 � E. A
H[2, 3, 2] arrangement sets E< x0 < a/b, and population
size starts within the region R4[x] and sets by x4(t)

approaching the λ4 � E equilibrium (see Figure 3(b)). For

H[2, 3, 3], the conditions x0 <E and β � μa set population
size beginning within the regionR3[x], following x3(t) that
remains stationary at x0. ForH[3, 3, 1], initial condition sets
population size x(t) within the region R1[x], following
x1(t). Since β � μa and E � a/b implies λ1 � E, then x(t)

decreases to λ1 (see Figure 3(c)). For H[3, 3, 2], we have
x0 <E, and population size starts within the region R3[x]

and follows to growth law x3(t) but since β � μa, it remains
stationary at x0 (see Figure 3(d)). Configurations in Figure 3
suggest a maximum limiting effect of resource scarcity on
population growth; even a BMS1: (β< μa) condition does
not perform.

In summary, the PLF-PPM’s continuous-time global
population size trajectory can stand an outstanding array of
different performances. It could model population decline
whenever the ordering β< μa holds (see Figure 1). Alter-
natively, β> μa could induce conditional stability
depending on the achieved parametric arrangement (e.g.,
Figure 2). Also, the statement β> μa could entail a purely
growing regime for population size x(t)

(e.g.((E< λ4 < a/b)∧H[2, 2, 2] ≡ 1) shown in Figure 2(d).
Furthermore, β � μa circumstance signposts a maximum
effect of resource abatement on population growth (e.g.,
H[3, 3, 1] shown in Figure 3(c)). Moreover, for critical
values of E threshold, this configuration could exacerbate
Allee effects, and this is due to random influences which
could promote vanishing of population size. Furthermore,
the ratio a/b in the settings of the PLF-PPM is interpreted as
an Allee threshold since x(t)< a/b implies ax(t)> bx2(t),
so population size below a/b controls the mortality process
as entailed by the M(x) setup (cf. equation (21)). It is also
pertinent to emphasize that for model type M1, even
though population size places below the starvation
threshold E, its dynamics could take place under an Allee
effect regime. Correspondingly, for M2 type models,
population could evolve in a regime combining both

λ1

λ4

a/b

xo

E

x (t)

R1 [x]

R4 [x]

R3 [x]

t1

(c)

a/b

xo

λ4

xo

E

x (t)

x (t)

R1 [x]

R4 [x]

R3 [x]

t

(d)

Figure 2: Examples of the construction of the PLF-PM composite trajectory x(t) for H[i, 2, k] for i � 1, 2, and k � 1, 2, 3; referred
configuration entitles the BMS2: (β> μa) condition. (a) )e statement ((λ2 >E)∧H[1, 2, 1]) ≡ 1 holds, λ1 is a stable equilibrium in the
regionR1[x]. (b) Under the ((λ2 <E)∧H[1, 2, 2]) ≡ 1 statement, λ2 places in regionR2[x] and becomes a stable equilibrium solution. (c)
Whenever ((E< λ4 < a/b)∧H[2, 2, 2]) ≡ 1, the λ4 equilibrium places inR4[x]; since E<xo < a/b, x(t) increases, reaching the a/b boundary
at time t1, and switches to rule x1(t) but since λ1 > a/b, x(t) increases asymptotically towards λ1 staying within regionR1[x]. (d) In turn, if
((E< λ4 < a/b)∧H[2, 2, 2]) ≡ 1, then λ4 stands for a stable equilibrium solution in the region R4[x].
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starvation and Allee effects. Consequently, by adapting the
number of factors defining N(x) and M(x) in equation
(17) so as to suit specific modeling aims, we could endure
the PLF-PPM suitable predictive strength. In what follows,
we explain the performance of the PLF-PPM model of
equation (22) as an exploratory tool given different
datasets.

4. Study Cases

In what follows, we explain the performance of the PLF-
PPM model of equation (22) as an exploratory tool given
different datasets. We address data of Armstrong [7] on the
growth of populations of asexual Dugesia tigrina, data re-
ported by Huisman [8] on developing experimental pop-
ulations of the unicellular green algae Chlorella vulgaris, a
study by Davidson [9] on a sheep population introduced in
Tasmania, data by Pearl [10] on the growth of Drosophila
melanogaster, and data reported by Hughes and Tanner [11]
on the slow decline of an Agaricia agaricites population on
Jamaican reefs. Fitted parameters, associated standard de-
viations, and concordance correlation coefficient values [12]
are given in Table 3. All required PLF-PPM fits were
achieved by using the Berkeley Madonna Software Version

8.3.18. Besides, acquiring the resource abatement function
R(x) relied on using equation (18) setting E � F0/2k for
k � 1, which assures getting a proxy for the maximum
depletion rate.

Armstrong [7] maintained populations of asexual
Dugesia tigrina, in an arrangement of finger bowls. Bowls
contained 120 ccs of water each and were kept at a tem-
perature of 25°C. Every other day, each population received
0.1 ccs of freshly killed brine shrimp. )e bowls were
cleaned at the end of the feeding period. )e initial pop-
ulation size in every bowl amounted to 35 worms. Re-
production occurred only by transverse fission, with each
worm dividing to produce a tail that developed into a new
individual. For data assembly, a tail was any recent fission
product not adequately developed to consume food. In the
experiment, tails were added to the population’s artificially
increasing reproductive efficiency. Because this method
amounts to exogenous addition of biomass, we focused on
data of population control named 1–0 without tails added
to fit the PLF-PM. )e plot of the CCC � 0.9920 global
trajectory is shown in Figure 4(a). Associated estimated
parameter values are presented in Table 3. Acquired or-
derings were β> μa and xo < a/b< λ1 < λ2 <E< λ4 corre-
sponding to a H[1, 2, 3] arrangement composing regions

xo

E

a/b

x (t) R1 [x]

R2 [x]

R3 [x]

t1

(a)

xo

a/b

E

x (t) R1 [x]

R4 [x]

R3 [x]

t1

(b)

xo

E

x (t)
R1 [x]

R3 [x]

t

(c)

E

xo

R1 [x]

R3 [x]

t

(d)

Figure 3: Examples of the shape of the global trajectory x(t) forH[i, 3, k(i)]configuration. (a))e x(t) path for theH[1, 3, 1] conjunction
population size x(t) starts in the region R1[x] and approaches asymptotically the equilibrium solution λ2 � a/b. (b) For H[2, 3, 2],
population size x(t) begins in the regionR1[x] according to x1(t) and decreases and then switches to rule x4(t) to approach asymptotically
λ4 � E. (c) H[3, 3, 1] ordering sets x(t) initially within the region R1[x] and then x(t) decreases to λ1 � E. (d) For H[3, 3, 2], we have
x0 <E, and population size starts within the region R3[x] and follows growth law x3(t) but since β � μa, it remains stationary at x0.
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R1[x],R2[x], and R3[x]. Population size places initially
within the regionR3[x] and acquires the form x3(t) until it
reaches the upper boundary at a/b at time t1 � 4.43 where it
gets into the region R2[x] switching to rule x2(t),
approaching the asymptotic limit λ2. Since dynamics
mainly describe the regionR2[x], mortality could perhaps
be explained by cannibalism induced by high intraspecific
competition. )e author inferred about food scarcity for
population levels near the equilibrium. Nevertheless, the
PLF-PM identifies an energy threshold E well above the
equilibrium level, which explains the shape of the resource
depletion trajectory proxy shown in Figure 4(b). )erefore,
population regulation is solely controlled by density-de-
pendent mortality.

Huisman [8] studied the growth of experimental pop-
ulations of the unicellular green algae Chlorella vulgaris.
Populations were raised in continuous cultures incubated at
20°C and administered with plentiful nutrients andO2.)us,
growth limitation is exclusively associated with incident
light energy. We handpicked data on population G.
Figure 5(a) shows the global trajectory associated with the
CCC � 0.9946 fit of the PLF-PM. )e values of estimated
parameters are presented in Table 3. Acquired parametric
orderings were β> μa and xo < a/b< λ2 <E conforming to
H[1, 2, 3] composing regions R1[x],R2[x], and R3[x].
Population size places initially within the region R3[x] and
rules by x3(t) until it reaches the upper boundary at a/b at
time t1 � 3.7 where it goes into the region R2[x] switching
to rule x2(t), approaching the asymptotic limit λ2. )e
equilibrium value λ2 was practically attained at the end of the
18th day, with regulation by recruitment of new individuals
and mortality dominated by individual properties. )is
photosynthetic organism synthesizes biomass based on a
combination of factors like light, CO2, and nutrients. )e
threshold E could be conceived as the biomass size such that
the aggregated life enduring factors become limiting factors.
Because there were sufficient CO2 and nutrients in this case,

the E threshold could be interpreted as the level of available
light energy. Our analysis sustains the assumption in [8] that
population growth in Chlorella vulgaris is limited exclusively
by incident light. )erefore, the value of the E threshold
estimated by the fit of the PLF-PPM determines a resource
abatement function that suggests that the amount of inci-
dent light for the G-labeled population in Huisman’s ex-
periment was not limiting (see Figure 5(b)); this is because
the equivalent of E in biomass units lies well above the
equilibrium level λ2.

Davidson [9] studied a sheep population introduced in
Tasmania. We acquired related proxy data from [13]
representing the averages of the number of individuals
taken on periods of 5 years. )e recorded data span a total
of 120 years. )e first average corresponds to 1814–1819,
and we arranged for 1819 to stand for year zero. )e global
trajectory acquired from the CCC � 0.9484 fit of the PLF-
PM is shown in Figure 6(a). )e obtained parametric
orderings were β> μa and xo < a/b< λ1 < λ2 <E< λ4, as-
sociated to a H[1, 2, 3] arrangement that composes re-
gions R1[x],R2[x], and R3[x]. Population size places
initially within the region R3[x] and progressed
according to rule x3(t). )e fit points out that within the
region R3[x], population growth was slow at the begin-
ning, which suggests that reproduction was limited by a
reduced number of individuals. Population size crossed
the a/b threshold at the beginning of year 6 (1825).
Population growth switched to rule x2(t), associated with
recruitment and mortality controlled by population size.
)us, fitted trajectory increased approaching the equi-
librium λ2 placing inside R2[x] (see Figure 6(a)). Besides,
it can be learned from Figure 6(b) that in spite of sur-
passing two records and another two almost reaching the
E threshold, their influence was not strong enough so as to
change the damped oscillating trend about λ2 imposed by
rule x2(t). Indeed, the dominance of the dynamic ar-
rangement endured by the x2(t) rule stayed over some

90

80

70

60

50

40

30

20

10

0

Po
pu

lat
io

n 
(n

um
be

r o
f w

or
m

s)

0 20 40 60 80 100 120
Time (days)

0.0276E
λ2

λ1

a/b
xo

t1

(a)

90

80

70

60

50

40

30

20

10

0
0 20 40 60 80 100

Time (days)

0.
02

60
 ×

 R
 (x

)

(b)

Figure 4: Fit of the PLF-PPM to data of Armstrong [7] relates to the growth of an experimental population of planarian Dugesia tigrina. (a)
Fitted trajectory lines. (b) Proportion (0.0260 × R(x)) of resource abatement function.
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Table 3: Estimated values of initial population size x9 and basic parameter a, b, β, μ, E, produced by fitting the PLF-PPM of equation (22) to
the listed datasets.

Dataset
Fitted parameters

xo A b B μ E a/b λ1 λ2 λ4 CCC

Armstrong [7] 34.31 3.59 0.09 0.03 0.0050 3077.43 39.88 47.4100 79.91 6.5e+ 03 0.9920
0.06 0.38 0.06 0.00 0.0003 625.18 — — — — —

Huisman [8] 0.75 186.53 39.71 0.68 0.0010 174 4.69 2.12e+ 3 16.51 2.1e+ 3 0.9946
0.11 49.65 15.31 0.02 0.0002 84.56 — — — — —

Pearl [10] 3.96 1.89 0.08 0.25 0.0092 628.30 22.18 38.27 318.28 9.0e−3 0.9913
1.15 0.48 0.00 0.01 0.0001 37.48 — — — — —

Davidson [9] 85.73 146 0.56 0.18 1.94e+ 4 1974 260.71 1.02e+ 3 1.69e+ 3 1.2e+ 4 0.9484
58.10 41.79 1.75 0.02 0.0000 178.63 — — — — —

Hughes and Tanner [11] 213.42 1186.56 1.57 0.09 1.64e+ 4 376.55 755.77 180.74 360.98 752.05 0.9340
1.5153 309.59 1.95 0.05 9.49e− 5 104.61 — — — — —

Records right below parameter estimates correspond to associated standard errors. Calculated a/b ratio, equilibria λ1, λ2, λ4, and concordance correlation
coefficient (CCC) values are also displayed.
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time long enough to induce the trend to equilibrium
suggested by the PLF-PPM fit.

We now consider the construction of the global tra-
jectory x(t) associated with a fit of the PLF-PM to data of
[10], taken from [14]. Pearl [10] maintained populations
of Drosophila melanogaster in bottles using yeast as food
and fitted a logistic curve to the associated data expressed
as the counted number of adult flies in a particular day.
Sang [15] criticized the procedure, quarreling that the
experiments did not keep the yeast constant but as a
growing population on its own. )e plots associated with
the PLF-PPM fit displayed in Figure 7(a) produced the
parameter orderings β> μa and x0 < a/b<E< λ2 that
conform to aH[1, 2, 3] arrangement, that is, a model type
M1 with BMS2: (β> μa) and IC13: (xo < a/b). Phase ar-
rangement includes regions R1[x],R2[x], and R3[x]. At
the beginning of the growth process, x(t) stays in the
region R3[x] but the statement BMS2: (β> μa) ≡ 1, forces
associating a rule x3(t) to increase, and then it reaches the
a/b boundary at t1 � 10, thereby entering the regionR2[x]

and then progressing asymptotically to λ2 following rule
x2(t). )e fit shows that the fly population is entirely
controlled by density-dependent mortality. In contrast to
Sang [15], the PLF-PPM fit demonstrates that energy did
not play a decisive role ((E> λ2); also, see Figure 7(b)), so
we can close that variations in feeding energy did not
determine the dynamics since otherwise x1(t) would
compose the global trajectory x(t). )e application of the
FDM sustains the assumption that in Pearl’s experiment,
energy does not provide a criterion to define a carrying
capacity. Furthermore, the equilibrium λ2 is not expressed
in terms of E but solely as a function of the scaling pa-
rameters β, μ, and b.

Hughes and Tanner [11] reported a slow decline of the
coral population on Jamaican reefs over 16 years. We
fitted the PLF-PM to data on Agaricia agaricites colonies
recorded during 1977–1993. )e authors established that
local extinction is explained by increased mortality rates
plus the adverse effects of two hurricanes, Allen (in 1980)
and Gilberto (in 1988). Also relevant in explaining the
decline was the impossibility of recovery because of a
recruitment failure. Figure 8(a) shows the global trajec-
tory associated with the fit CCC � 0.9340 of the PLF-PM.
)e values of the parameter estimates are given in Table 3.
Acquired parametric orderings were β< μa and
xo < λ2 <E< λ1 < a/b conforming to a H[2, 1, 3] arrange-
ment and composing regions R1[x],R2[x], and R3[x].
Population size places initially within the region R3[x]

and rules by x3(t). Food was not limiting. Perhaps per-
turbation set its level under the upper boundary of the
R3[x] region where Allee effects dominate mortality.
)en, possibly a recruitment failure impeded compen-
sation to the abatement effects linked to the β< μa or-
dering. )en, our analysis corroborates the assumption of
Hughes and Tanner [11]. In any event, recruitment failure
could not associate with resource reduction (see
Figure 8(b)).

)e PLF-PPM displayed high reproducibility strength
in all performed fits, as it derives from the high CCC values
included in Table 3. Moreover, parallel plots of resource
abatement explain that fitted values of initial resource
availability thresholds E explain the occurrence of recorded
equilibrium levels. Results point towards the consistency of
the PLF-PPM as an exploratory tool. Nevertheless, the
direct fitting procedure endured by the Berkeley Madonna
software relied upon apportioning initial values of
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Figure 7: Fit of the PLF-PPM to data of Pearl [10] relates to the growth of an experimental population of the fruit fly Drosophila
melanogaster. (a) Fitted trajectory lines. (b) Proportion (0.5066 × R(x)) of resource abatement function R(x).
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Figure 9: )e PLF-PPM composite trajectory x(t) for the H[1, 1, 1] configuration. (a) a/b<
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βE/μb
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<E derived from the auxiliary

ordering E> μa2/βb. )is panel shows that the global trajectory x(t) reaches the E threshold at a time t1. (b) Population size keeps
decreasing, so it touches the a/b frontier. (c) Since β< μa, the population becomes extinct.
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parameter estimates. Necessarily, this brought about high
sensibility associated to local minimum problems at the
non-linear acquisition of final estimates. Detected incon-
veniences suggest revision aimed at adapting techniques
that could lessen the experienced parameter estimation
burden.

4.1. Outline of the Discrete-Time Setup of the PLF-PPM.
Although this paper focuses on addressing the analysis of the
PLF-PPM arrangement trajectories on continuous time, we
consider it pertinent at this setting to outline the associated
discrete-time form. For this reason, we let fi(xn) denote the

discrete-time form of the phase model fi(x) as given by
equation (22) for i � 1, 2, 3, 4. Also, let Ri[xn] be the cor-
responding range of application of the rule fi(xn). )en, if
χ(R1[xn]) stands for the characteristic function of R1[xn],
we get

xn+1 � xn + 􏽘
4

i�1
χ Ri xn􏼂 􏼃( 􏼁fi xn( 􏼁, (25)

for n � 0, 1, 2, . . . , with x0 being placed on one of the regions
Ri[xn]. )en,

f1 xn( 􏼁 � βE − μbx
2
n R1 xn􏼂 􏼃 � xn| xn >E( 􏼁∧ xn >

a

b
􏼒 􏼓􏼚 􏼛

f2 xn( 􏼁 � βxn − μbx
2
n R2 xn􏼂 􏼃 � xn| xn <E( 􏼁∧ xn >

a

b
􏼒 􏼓􏼚 􏼛

f3 xn( 􏼁 � (β − μa)xn R3 xn􏼂 􏼃 � xn| xn <E( 􏼁∧ xn <
a

b
􏼒 􏼓􏼚 􏼛

f4 xn( 􏼁 � βE − μaxn R4 xn􏼂 􏼃 � xn| xn >E( 􏼁∧ xn <
a

b
􏼒 􏼓􏼚 􏼛

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (26)

)e parametrization r � 1 + β and s � μb and then the
change of variable (r/s)zn � xn will bring the logistic map as
a submodel composing the seek for discrete-time formu-
lation. Concomitantly, equation (25) transforms into

zn+1 � 􏽘
m

1�1
χ Ri zn􏼂 􏼃( 􏼁θi zn( 􏼁, (27)

where

θ1 zn( 􏼁 �
s(1 − r)E

r
+ zn 1 − rzn( 􏼁, R1 zn􏼂 􏼃 � zn| zn >

sE

r
􏼒 􏼓∧ zn >

sa

rb
􏼒 􏼓􏼚 􏼛

θ2 zn( 􏼁 � rzn 1 − zn( 􏼁 R2 zn􏼂 􏼃 � zn| zn <
sE

r
􏼒 􏼓∧ zn >

sa

rb
􏼒 􏼓􏼚 􏼛

θ3 zn( 􏼁 � r −
sa

b
􏼒 􏼓zn R3 zn􏼂 􏼃 � zn| zn <

sE

r
􏼒 􏼓∧ zn <

sa

rb
􏼒 􏼓􏼚 􏼛

θ4 zn( 􏼁 �
s(r − 1)E

r
+ 1 −

sa

b
􏼒 􏼓zn R4 zn􏼂 􏼃 � zn| zn >

sE

r
􏼒 􏼓∧ zn <

sa

rb
􏼒 􏼓􏼚 􏼛

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (28)

Equivalently,
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Figure 11:)e shape of the PLF composite trajectory x(t) under an extinction configuration. (a))e global trajectory x(t) for theH[2, 1, 1]

decreases from xo > a/b>E until it reaches the a/b threshold at time t1. )e x(t) trajectory keeps decreasing, and it hits the E threshold at a
particular time t2. Later, since β< μa, population size keeps decreasing until it becomes extinct. (b) Case H[2, 1, 2] where population size
decreases from E<xo < a/b and reaches the E boundary at a time t1 and then it progresses to extinction. (c)H[2, 1, 3]configuration, where
departing from xo <E< a/b, the population becomes extinct.
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Figure 12: )e shape of the PLF composite trajectory x(t) for the H[1, 2, 1] configuration. (a) )e condition ((λ2 <E)∧H[1, 2, 1]) ≡ 1,
where the trajectory departs from xo >E> a/b and decreases as it approaches asymptotically the equilibrium solution λ2 placed in region
R2[x]. (b) In the case ((λ2 >E)∧H[1, 2, 1]) ≡ 1, departing from E<xo < λ1 , the trajectory increases and asymptotically approaches λ1. (c)
E< λ1 < xo, where population size decreases to λ1, which establishes λ1 as a stable equilibrium in the region R1[x].
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Figure 13:)e shape of the PLF composite trajectory x(t) for theH[1, 2, 2] configuration. (a))e case ((λ2 >E)∧H[1, 2, 2]) ≡ 1 where the
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Figure 15: )e construction of the global trajectory x(t) under the H[2, 2, 1] arrangement. (a) Since xo > a/b, population size initiates
dynamics within the regionR1[x] according to the x1(t)rule that bears the equilibrium solution λ1 >E. If E< a/b< λ1 <x0, population size
decreases as it approaches λ1. (b) If E< a/b <x0 < λ1, population size increases approaching λ1 asymptotically. (c) Whenever
E< λ1 < a/b<x0, population size initiates within the regionR1[x] and decreases towards λ1, entering into the regionR4[x] at a time t1 and
then switching to rule x4(t), but β/μa> 1, and then E< λ4 < a/b<xo, so x(t) keeps decreasing as it approaches asymptotically λ4.
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Figure 16: )e behavior of the global trajectory x(t) under the H[2, 2, 2] arrangement. (a) Population size begins in the region R4[x]

following x4(t) with λ4 >E; if E<x0 < λ4 < a/b , population size increases as it approaches λ4. (b) On the other hand, if E< λ4 < x0 < a/b ,
population size decreases approaching λ4 asymptotically. (c)Whenever λ4 > a/b, λ4 equilibrium lies within the regionR1[x], and then, since
E< xo < a/b, population size increases according to rule x4(t) approaching λ4 reaching the a/b boundary at time t1 switching to rule x1(t);
then, since λ1 > a/b, population size increases asymptotically towards λ1 staying within region R1[x].
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Figure 17: )e form of the global trajectory x(t) for the H[2, 2, 3] composite. (a) )e initial condition xo < E sets population size x(t)
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Figure 18: )e construction of the global trajectory x(t) for theH[1, 3, k] composite (k � 1, 2, 3). (a) ForH[1, 3, 1], population size starts
at xo >E in regionR1[x] and is controlled by x1(t) that bears the asymptotic limit λ1 �

����
aE/b

√
satisfying a/b< λ1 <E<x0, and population

size decreases reaching the E threshold at a certain time t1 switching to growing rule x2(t) and will asymptotically approach the equilibrium
solution λ2 � a/b. (b) For the arrangementH[1, 3, 2], the initial condition placement a/b<xo <E sets population size behaving according to
the x2(t) law in R2[x], and population size approaches the equilibrium solution λ2 � a/b. (c) Correspondingly, the H[1, 3, 3] composite
sets xo <E, and population size obeys the x3(t) rule in region R3[x], but since β � μa, it remains stationary at the xo value.
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Figure 19: )e assemblage of the global trajectory x(t) for the H[2, 3, k] composite (k � 1, 2, 3). (a) For the H[2, 3, 1] arrangement,
population size x(t) begins at xo > a/b within regionR1[x] then λ1 < a/b places in regionR4[x], x(t) decreases, and intersects a/b at a time
t1. )en switches to rule x4(t) which decreases and approaches the equilibrium solution λ4 � E. (b) For the case H[2, 3, 2], we have
E< x0 < a/b, population size starts within the region R4[x] and sets by x4(t) approaching the λ4 � E equilibrium. (c) For H[2, 3, 3], the
condition x0 <E and β � μa set population size beginning within the region R3[x] and following x3(t) that remains stationary at x0.

Complexity 17



λ1

xo

E

x (t)

R1 [x]

R3 [x]

t

(a)

E

xo

λ1

x (t)

R1 [x]

R3 [x]

t

(b)

E

xo

λ1

x (t)
R1 [x]

R3 [x]

t1

(c)

Figure 21: )e global trajectory x(t) for the H[3, 2, k] composite (k � 1, 2, 3). (a) For H[3, 2, 1], we havexo >E, so x(t) begins in region
R3[x], according to the x1(t) rule, so if E< λ1 <x0, it asymptotically decreases approaching λ1 >E. (b) Alternatively, the E<x0 < λ1
ordering sets population size increasing to λ1. (c) ForH[3, 2, 2], conditions x(0)<E and β> μa place x(t) inside regionR3[x] increasing
according to x3(t) until it hits the E boundary at a timet1, and then it switches to the x1(t) rule progressing towards the equilibrium solution
λ1 in R1[x].
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Figure 20: )e form of the global trajectory x(t) for the H[3, 1, k] composite (k � 1, 2, 3). (a) )e case H[3, 1, 1] is associated toxo >E;
then, at the beginning, dynamics are set by the path x1(t) prevalent in regionR1[x] that asymptotically approaches the value λ1 <E; then,
population size decreases and hits the E boundary at the time t1 switching to x3(t) holding in regionR3[x] which drives the population to
extinction. (b) For the case H[3, 1, 2], the initial condition placement x(0)<E keeps the population size within the region R3[x] as it
progresses to extinction according to the x3(t) trajectory.
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Figure 22: )e comportment of the global trajectory x(t) for theH[3, 3, k] composite k � 1, 2, 3). (a) ForH[3, 3, 1] condition, x0 >E sets
population size x(t) to begin within the regionR1[x] following x1(t). Since β � ua and E � a/b imply λ1 � E, then x(t) decreases to λ1 (b)
For H[3, 3, 2], we havexo <E, and population size starts within the region R3[x] and follows to growth law x3(t) but since β � ua, it
remains stationary at xo.
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(29)

For the sake of conciseness, we avert a detailed study of
the performance of the discrete-time form of the PLF-PPM
to an upcoming second part of this work. In the meantime,
the parametrization of equation (25) given by equation (29)
bears insight since it suggests that given the condition on the
parameter r that renders upset of chaos in the logistic map
submodel θ2(zn), once the resulting orbit crosses the upper
boundary of the region R2[zn], dynamics will be set by the
θ1(zn) submodel so the systemwill escape the chaotic regime
and approach an equilibrium point in the region R1[zn] or
the θ1(zn) orbit could get back again to the chaotic regime
determined by the logistic map θ2(zn). Alternatively, the
θ2(zn) orbit could reach the lower boundary of the region
R2[zn] then switching to the θ3(zn) dynamics ruling in
R3[zn]. )en depending in the paramter odering zn could
decrease steadily and eventually vanish, or else wander
aound in region R3[zn] before getting back to the chaotic
regime.

5. Discussion

Regulation by extreme value is observed in a plentiful of
biological processes covering varied scales. It manifests on
cellular structures such as mitochondria, where the maxima
or minima of a periodical chemical reaction rule the for-
mation of observed patterns [16]. Also, in the ecological
settings, variables such as physical stress due to high or low
temperatures, salinity, soil water content, wind velocities,
and long or short exposures to air express better through
extreme values than standard measures of central tendency
[17, 18]. )e notion of biological control by extreme values
dates back to Justus Von Liebig, who established the law of
the minimum. It states that an organism’s growth rate is
regulated by the nutrient present in the minimum [5].
Generally, any factor that slows down potential growth in an
ecosystem is described as a limiting factor. Acknowledgment
of lower-upper tolerance limits for a process drove gener-
alization of the law of the minimum into the law of the
tolerance of Shelford [6].

Furthermore, the interaction of limiting factors can
indirectly influence the effect of other factors not in
themselves limiting. )is paradigm, known as the principle
of limiting factors, has proven to be very useful in studying
whole or parts of ecosystems [13, 19]. )e joint Liebig–
Shelford paradigm adopted here bears that population

growth control occurs by balancing birth and mortality
processes, the first determined by factor inducing the
minimum offspring and the second by forcing the maximum
number of deaths among individuals. )is notion sustains
the formal piecewise setup expressed by equation (22) and
refers to PLF-PPM. Such a paradigm could allow a piecewise
account of population dynamics composing growth phases
delimited by density dependence cooperation and compe-
tition [20–23], thresholds of starvation, and critical density
or extinction [20, 24]. )e present PLF-PPM conceives
growth phases controlled by limiting factors acting over
domains bounded by population size thresholds. )e first
version of a PLF-PPM addressed a predator-prey model
where Liebig’s law governs the natality process of the prey
population [1]. Echavarŕıa and Gomez [25] and Echavarŕıa
et al. [26] extended these ideas to formulate models in which
the mortality rate is set by the maximum value of factors that
depend on population size. Montiel-Arzate et al. [3] adopted
the referred Liebig–Shelford principle of limiting factors to
formulate a functionally diverse population growth model.
)e approach in [3] relied on a parametrization of the birth
process that rendered qualitative exploration burdensome,
explaining why it is missing. Besides, Montiel-Arzate et al.
[3] did not include a specific parametrization of mortality
due to Allee effects which we incorporate here represented
by the term ax(t) as described by equation (21). Present
settings allowed exhaustive qualitative exploration of the
PLF-PPM global trajectory x(t) presented in the Appendix.
Even considering only population size and an external re-
source as limiting factors, the present formulation ensures a
set of 20 basic orderings, each one associated to a different
distribution of phases, which conform to an outstanding
array of varying operation modes for the PLF-PPM. Such a
flexible structure endures a sound interpretative strength
displayed in the fitting results of the addressed study cases.
Particularly, present settings allow visualization of abate-
ment of resources controlling the birth process.

Nevertheless, a direct fitting procedure that relies on
estimates’ initial values brought high sensibility associated
with local minimum problems at the non-linear acquisition
of final values. )ese inconveniences suggest revision aimed
to adapt a maximization of reproducibility strength criterion
and simulation techniques that could lessen the parameter
estimation burden experienced. Another point concerns
adaptation of a symbolic manipulation code aimed at
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automatically exploring phase arrangement and their im-
plications for stability. Yet another essential issue left un-
touched here concerns exploring the outlined discrete-time
version of the PLF-PPM of equation (25) and its alternate
form (29). In the meantime, the parametrization of equation
(29) already suggests that even conditions on the parameter r

rendering upset of chaos in the logistic map submodel
θ2(zn) once the resulting orbit crosses the upper boundary of
the regionR2[zn] dynamics will be set by the θ1(zn) sub-
model, so the system will escape chaos before the orbit gets
back again to the chaotic regime determined by the logistic
map θ2(zn). Given the present results, no doubt that the
suggested adaptation of codes to enhance both qualitative
exploration and parameter fitting procedures will strengthen
the applicability of offered PLF-PPM. Meanwhile, its present
form already provides an outstanding research tool through
which critical ecological parameters can be identified and be
meaningfully interpreted.

6. Conclusions

)is paper elucidates a logical deductive approach to
establishing a piecewise structured model to interpret the
growth of a single species population. )e offered PLF-
PPM derives as a logical consequence of what we coined as
a principle of limiting factors for population growth, a
paradigm adapted by merging Liebig’s law of the minimum
and the tolerance law of Shelford. )e formal approach
explains by the extreme value characterization of the birth
N(x(t)) and mortality M(x(t)) processes in equation (15).
Conceived forms allow the selection of the factors that play
the decisive role in controlling population growth at a given
time. )e flexibility from a piecewise structure imbues the
PLF-PPM with a noticeable reproducibility strength.
Considered study cases briefly elaborate on this. )e PLF-
PPM bears as well an outstanding interpretative advantage.
Such a feature infuses our construct with the capability of
identifying different growth phases. )ese associate with
regions of the dominance of crucial factors determining
population dynamics such as a starvation regime, pop-
ulation size viability, or regimes of high population density
effects. We only contemplated one external factor, E, and
population size itself to describe N(x(t)) and M(x(t)).
Concomitantly, the number of possible phase configura-
tions was over ten times the number of parameters in-
volved, which is the reason why ensuing parametrization
proved to be seemingly adequate given addressed datasets.
Nevertheless, as the number of explaining factors increases,
more parameters are required. )en, the tied analytical
exploration becomes complicated. )en particularly, ac-
quiring suitable complexity could lead to local minimum
difficulties connected to non-linear estimation. In this
order of ideas, a quest for efficient parameter estimation
methods that enhance the practical advantages derived
from the PLF-PPM seems necessary. Such an endeavor
concerns the research aims to pursue in a further paper.
Another relevant research subject is pending, which is
exhaustively exploring the discrete-time PLF-PPM con-
struct outlined by equation (25).

Appendix

To study the diverse configurations of the phase portrait as-
sociated with the model of equation (22), we depart from the
fundamental order relationship for the external energyE and the
ratio of mortality from population density proportions, a/b, that
yields a first model type classification (Mi, i � 1, 2).We have to
consider model type M1 associated to the inequality E> a/b,
where the range of x(t) composes the regions:
R1[x] � a/b<E< x{ }, R2[x] � a/b<x<E{ }, and
R3[x] � x< a/b<E{ }. For model type M2, where the rela-
tionship E< a/b holds, the range of x(t) will be divided into the
regionsR1[x], R3[x], andR4[x] � a/b<x<E{ } . For model
type M3 linking to the ordering E � a/b, the range of x(t) will
be divided into the regionsR1[x] andR3[x]. Besides, it is also
required to classify possible phase portrait arrangements
according to the Birth to Mortality a−Scaled Ordering
(BMSi, i � 1, 2, 3), namely, BMS1: when (β< μa), BMS2: if
(β> μa), and BMS3: whenever (β � μa). Finally, the placement
of the initial condition placement determines a third classifi-
cation pointer (ICik(i) with i � 1, 2 and k(i) � 1, 2, . . . , 5),
namely, IC11 for (E< xo), IC12: whenever (a/b<xo <E), IC13:
whenever (xo < a/b), IC14: if (xo � E), and IC15: whenever
(xo � a/b). Correspondingly, IC21: for (xo <E), IC22:

whenever (E< xo < a/b), IC23: when (xo > a/b),IC24: if
(xo � E), and IC25: whenever (xo � a/b). )e possible phase
portrait arrangements typify according to a three-dimensional
conjunction operator R[i, j, k(i)] � (Mi∧BMSj∧ICik(i)) for
i and k(i) as specified. Tables 1 and 2 summarizes phase ar-
rangements and corresponding parameter orderings.

(A). Analysis of Trajectories forOrderings of the
H[1, 1, k] Type

We begin by analyzing case H[1, 1, 1] associated to con-
junction (M1∧BMS1∧IC11): model type M1: (E> a/b)),
Birth to Mortality Scaled Order (BMS1): (β< μa), and
initial condition ordering (IC11): ( xo >E). Given this
parametric arrangement, the range XR � ∪ i�1,2,3Ri[x] is
associated. )en, since xo >E, at the beginning of the
growth process, population size departs from a value
x(0)>E and its dynamics are set by the path x1(t) pre-
vailing in region R1[x].

x1(t) �
λ1 C − e

− 2t
���
βμbE

√

􏼒 􏼓

C + e
−2t

���
βμbE

√ , lim
t⟶∞

x1(t) � λ1, (A.1)

where λ1 �
�����
βE/μb

􏽰
and C can be determined from the

condition x(0) � xo.
Besides, in R1[x], the growth law, _x(t) � βE − μbx2(t),

applies; therefore, _x(t)< 0 whenever x(t)>
�����
βE/μb

􏽰
and the

trajectory x(t) will monotonically decrease towards
�����
βE/μb

􏽰
.

Since we also have β< μa, then β/μb< a/b<E which implies
βE/μb<E2, and thus the equilibrium placement�����
βE/μb

􏽰
<E<x0 holds. )en, departing from x0, the tra-

jectory asymptotically decreases towards
�����
βE/μb

􏽰
<E. But,

by continuity, while x1(t) approaches
�����
βE/μb

􏽰
<E, it will

first hit the E value at a particular time t1, that is, x1(t1) � E
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(see Figure 9(a))). )en, it keeps forward entering into the
region R2[x] with dynamics switching to x2(t), namely,

x2(t) �
β

Ce
− βt

+ μb
,with, lim

t⟶∞
x(t) �

β
μb

, (A.2)

where C can be determined from the condition x(t1) � E.
Since _x(t) is continuous, it turns out that x(t) will keep

decreasing. But, since β< μa, we have β/μb< a/b<E; besides,
in region R2[x], we have _x(t) � (β − μbx)x; then, _x(t)< 0
for x> β/μb. )erefore, population size will decrease as-
ymptotically approaching the value β/μb. But under the
inequality β/μb< a/b and given the continuity of x(t), there
is a real number t2 such that x(t2) � a/b (see Figure 9(b)).
Next, x(t) switches to the growth form x3(t) holding in
region R3[x], namely,

x3(t) � xoe
(β− μa)t

,with, lim
t⟶∞

x(t) � 0, (A.3)

and since β< μa, the population size decreases until it
eventually becomes extinct. So, for the phase portrait ar-
rangement H[1, 1, 1], population size displays the global
path shown in Figure 9(c).

We now undertake case H[1, 1, 2]: (M1∧BSM1∧IC12):

model type M1: (E> a/b), Birth to Mortality Scaled Order 1
(BMS1): (β< μa), and initial condition ordering
(IC12): ( a/b<xo <E). Based on the previous analysis, we
obtain that whenever a/b<xo <E, population size x(t)

places initially within the region R2[x] according to the
x2(t) law approaching the asymptotic limit β/μb. Since for
the case H[1, 1, 2], the inequality β/μb< a/b holds, pop-
ulation size decreases, so it eventually reaches the a/b
threshold at a time t1 (see Figure 10(a)). After that, it enters
the region R3[x] and again since β< μa, it will keep de-
creasing now according to the x3(t) law, thereby becoming
extinct (see Figure 10(a)).

We now explain the performance of x(t) in the case
H[1, 1, 3]: (M1∧BMS1∧IC13): model type M1: (E> a/b)

and Birth to Mortality Scaled Order 1 (BMS1): (β< μa) and
initial condition ordering (IC13): ( xo < a/b<E). For this
arrangement, population size initially is placed within the
region R3[x] and then evolves according to growth law
x3(t), but since we have β< μa, it keeps decreasing until it
eventually vanishes (see Figure 10(b)).

(B). Analysis of Trajectories forOrderings of the
H[2, 1, k] Type

Let us now analyze the global trajectory x(t) for an
H[2, 1, 1] arrangement. We have that the initial condition
placement xo > a/b>E applies. At the beginning of the
growth process, population size x(t) will take on a
x1(t) form as given by equation (A.1) which decreases for
t≥ 0 and asymptotically approaches a value

�����
βE/μb

􏽰
. Now,

for H[2, 1, 1], the statement β< μa is true. )en, μa/β> 1
implying μa2/βb> a/b and since parameters satisfy the
condition defining model type M2, we have μa2/βb> a/b>E

and consequently a2/b> βE/μ, namely, (a/b)2 > βE/μb.Tak-
ing also into account that βE/μb> 0 , it follows that

a/b>
�����
βE/μb

􏽰
. )en, due to the continuity of x(t) while

approaching
�����
βE/μb

􏽰
, there must be a real number t1 such

that x(t1) � a/b (see Figure 11(a)).)en, for t≥ t1, dynamics
will take place in the region R4[x], where population size
behaves according to the x4(t) rule, namely,

x4(t) � xoe
− μat

+
βE

μa
1 − e

− μat
􏼐 􏼑, with lim

t⟶∞
x(t) � λ4,

(A.4)
where λ4 � βE/μa. Since the condition β< μa implies
β/μa< 1, then λ4 <E.

Inside R4[x], the dynamical system shapes
_x � βE − μax, and then _x(t)< 0 for x(t)> βE/μa and
population size will decrease while asymptotically
approaching the equilibrium solution βE/μa placing below
E, but on its way to reach βE/μa, by continuity, the x(t)

trajectory will necessarily cross the E threshold at a specific
time t2. Once entering the regionR3[x], population size will
be controlled by x3(t) but since β< μa, the population
eventually vanishes (see Figure 11(a)).

Considering the analysis above, the construction of the x(t)

path in the caseH[2, 1, 2] follows through.)e initial condition
placement E<xo < a/b implies population entering the region
R3[x] and again population becomes extinct (see Figure 11(b)).
)e H[2, 1, 3] case encompasses the statement
(M2∧BMS1∧IC23) ≡ 1, so we have that the initial condition
satisfies xo <E< a/b.)erefore, population size starts within the
region R3[x] and behaves according to rule x3(t), but again,
since β< μa, the trend will be decreasing, and eventually, the
population will become extinct (see Figure 11(c)). In summary,
the H[i, 1, k] arrangements for i � 1, 2 and k � 1, 2, . . . , 5
imply the population’s extinction.

(C). Analysis of Trajectories forOrderings of the
H[1, 2, k] Type

We address the case H[1, 2, 1]: (M1∧BMS2∧IC21): model
type M1: (E> a/b ), Birth to Mortality Scaled Order
(BMS2): (β> μa), and initial condition ordering
(IC11): ( xo >E). Two additional orderings determine the
phase arrangement. )ey are associated to the placement rel-
ative to E of the equilibrium solution λ2 � β/μb associated to
the dynamical system prevailing in the regionR2[x]. We have
to take into account the additional (β/μb<E)) and (λ2 >E))
orderings.

Assume ((λ2 <E)∧H[1, 2, 1]) ≡ 1. Since xo >E, at the
beginning of the process, population size will be set by x1(t)

(see equation A.1), the law that prevails inR1[x], where λ1 ������
βE/μb

􏽰
and C can be determined from the condition

x(0) � xo. Besides, inR1[x], the dynamical system takes on
the form, _x(t) � βE − μbx2, that is associated to the equi-
librium solution λ1 �

�����
βE/μb

􏽰
�

����
λ2 E

􏽰
, and as we explained

_x(t)< 0 for x(t)> λ1 . Besides, the β> μa ordering implies
λ2 > a/b or equivalently λ2 E> aE/b> a2/b2; then, λ1 > a/b.
Since the additional ordering condition λ2 < E applies, we
would have λ2 E<E2 which implies E> λ1 > a/b. )en, in its
approach to λ1 , the x1(t) trajectory will hit the E threshold,
i.e., there exists a real number t1 such that x1(t1) � E, and
then for t> t1, population size x(t) turns to be controlled by

Complexity 21



x2(t) (see equation (A.2)). )erefore, the trajectory ap-
proaches asymptotically the equilibrium solution λ2. But
since we established λ2 > a/b, then x2(t) remains in region
R2[x] (see Figure 12(a)).

If ((λ2 >E)∧H[1, 2, 1]) ≡ 1, then βE/μb> E2 holds,
implying λ1 >E ; then, the condition E< xo < λ1 will set the
x(t) trajectory to increase according to the x1(t) rule, and it
will approach the asymptotic limit λ1 while staying within
the region R1[x] (see Figure 12(b)). On the other hand,
whenever we have E< λ1 <xo, the population size x(t) will
decrease asymptotically towards λ1 (see Figure 12(c)).
)erefore, this establishes λ1 as a stable equilibrium in the
region R1[x].

We now consider case H[1, 2, 2]: (M1∧BMS2∧IC12):

model type M1: (E> a/b)), Birth to Mortality Scaled order
(BMS2): (β> μa), and initial condition placing
(IC12): (a/b< xo < E)). Assume ((λ2 >E)∧H[1, 2, 2]) ≡ 1.
Under this conjunction, the β> μa ordering implies λ2 > a/b,
so we have a/b<xo <E< λ2 . On the other hand, λ2 E> aE/b,
and since E> a/b implies aE/b> a2/b2, then we have
λ2 E> a2/b2 or equivalently λ1 > a/b. Now since λ2 >E

applies, we would have λ2 E>E2 which implies a/b<E< λ1 .
)erefore, at the beginning of the growth process, pop-
ulation size places inside R2[x] and for t> 0, it behaves
according to the law x2(t)(see equation (A.2)).

For x(t)< λ2 , _x(t)> 0, so population size will grow
logistically in region R2[x] approaching the limit λ2 that
places in the region R1[x]; therefore, for a specific value t1,
the statement x(t1) � E fulfills, and from that moment the
population will grow logistically, according to growth law
x1(t) approaching asymptotically to the λ1 equilibrium (see
Figure 13(a)).

Assume now that ((λ2 >E)∧H[1, 2, 2]) ≡ 1. Since
β> μa, the ordering λ2 > a/b maintains; then, since λ2 <E,
we could have a/b<xo < λ2 <E or a/b< λ2 <xo <E. If the
ordering a/b< xo < λ2 <E is true, the population size x(t)

will behave according to the x2(t) law, and then it will
decrease from xo and approach the asymptotic limit λ2 . For
a/b< λ2 < xo <E, the population size x(t) is still clinching to
the x2(t) law and then will increase from xo and approach
λ2 .)en, λ2 shows a stable equilibrium (see Figure 13(b)).

We now consider case H[1, 2, 3]: (M1∧BMS2∧IC13):

model type M1: (E> a/b)) and Birth to Mortality Scaled
order (BMS2):(β> μa) and initial condition placing
(IC12): ( xo < a/b<E). Assume also that
((λ2 >E)∧H[1, 2, 3]) ≡ 1. )en, as we have explained the
order relationship xo < a/b<E< λ2 , the population size
x(t) places initially within the region R3[x] and grows
according to the x3(t) trajectory (see equation (A.3)),
which is the reason why the population will initiate an
increasing exponential growth. When crossing by the value
x(t) � a/b, the population will stop growing exponentially
and will be governed by x2(t), the logistic law inR2[x], and
will asymptotically approach the equilibrium solution
λ2.But since E< λ2, eventually, population size will reach
the level E so dynamics will turn to be set by the x1(t)

growing pattern, and it consequently will asymptotically
approach the λ1 threshold placed in the R1[x] region (see
Figure 14(a)).

Similarly, the analysis of the conjunction
((λ2 <E)∧H[1, 2, 3]) is true. As the inequality
x0 < a/b< λ2 <E holds, once the population size reaches the
a/b boundary, it switches from the rule x3(t) to x2(t) and
remains in region R2[x] approaching the asymptotic limit
λ2 (see Figure 14(b)).

(D).Analysis ofTrajectories forOrderings of the
H[2, 2, k] Type

We now consider the arrangement H[2, 2, 1]:
(M2∧BMS2∧IC21): model type (M2: E< a/b), Birth to
Mortality Scaled order (BMS2): (β> μa), and initial con-
dition placing (IC21): (xo > a/b). )e range of x(t) will
compose the regionsR3[x], R4[x], andR1[x].)en, β> μa

which leads to βE/μb> bE/a but E2 < aE/bimplying λ1 >E.
)en, since xo > a/b, population size x(t) begins within the
regionR1[x]. If E< a/b< λ1 < x0, population size decreases
as it approaches λ1 (see Figure 15(a)). On the other hand, if
E< a/b < x0 < λ1, population size increases approaching
λ1 asymptotically (see Figure 15(b)).

Now, since λ1 >E, this equilibrium solution could place
such that E< λ1 < a/b<x0. Again population size initiates
dynamics within the regionR1[x] and models according to
the x1(t)rule. )erefore, population size x(t) decreases
towards λ1, but since the whole trajectory x(t) is continuous,
there exists a real number t1 such that (t1) � a/b, so for
t> t1, the population now places within the region R4[x]

and behaves according to rule x4(t) (see equation (A.4)),
where λ4 � βE/μa. Moreover, x4(t) decreases whenever it
attains values above λ4 and increases if it places below λ4. We
have β/μa> 1, and then λ4 >E. )erefore, E< λ4 < a/b< xo

holds, and then x(t) decreases as it approaches asymptot-
ically λ4 (see Figure 15(c)).

Assume that theH[2, 2, 2] arrangement holds. )en, we
have E< a/b, so the range of x(t) composes regions
R3[x],R4[x], andR1[x]. Since E<xo < a/b, population size
x(t) initially places within the region R4[x] following the
x4(t) law. But β> μa implies βE/μa>E; therefore, λ4 >E.
We have two possible orderings for the placement of λ4
relative to a/b, namely, O1(λ4, a/b): (E< λ4 < a/b) and
O2(λ4, a/b): (E< a/b< λ4). Additionally, conditioned on
O1(λ4, a/b) ≡ 1, we have to take into account the location of
xo comparative to λ4 . )at is, O11(λ4, xo): (E< xo

< λ4 < a/b)) or O12(λ4, xo): (E< λ4 <xo < a/b)). Assume
(O11(λ4, xo)∧H[2, 2, 2]) ≡ 1. )us, x(t) increases and ap-
proaches λ4 staying within R4[x] (see Figure 16(a)). Un-
dertake now (O12(λ4, xo)∧H[2, 2, 2]) ≡ 1; accordingly, x(t)

starts above λ4, so for t> 0, population size will decrease
while approaching asymptotically this value, again staying
within R4[x] (see Figure 16(b)).

Whenever ((λ4, < a/b)∧H[2, 2, 2]) ≡ 1, the λ4 equilib-
rium lies within the region R1[x]. )en, since E<xo < a/b,
population size increases according to rule x4(t)

approaching λ4. Continuity of x(t) implies the existence of a
real number t1 > 0 such that x4(t1) � a/b, so for t> t1,
population size models by rule x1(t). Now, we have
f4(x) � βE − μax(t); then, f1(a/b) � βE − μb(a/b)2. Ad-
ditionally, by continuity of f(x), it follows that
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f1(a/b) � f4(a/b) and since we assumed a/b< λ4, neces-
sarily f4(a/b)> 0. )erefore, f1(a/b)> 0, that is, we also
have βE − μb(a/b)2 > 0 which in turn sets βE> μb(a/b)2 or
equivalently

�����
βE/μb

􏽰
> a/b, that is, λ1 > a/b. )erefore,

population size increases asymptotically towards λ1 staying
within region R1[x] for t> t1 (see Figure 16(c)).

Whenever we have the H[2, 2, 3] composite statement,
the initial condition xo <E places population size x(t)

within the regionR3[x] obeying the exponential growth law
x3(t), and since β> μa, it will increase for t> 0.)is way,
continuity of x3(t) implies the existence of a time t1 such
that x3(t1) � E. )en, for t> t1, the behavior of x(t) sets
through x4(t). Again the statement β> μa implies λ4 >E, so
we could have ((E< λ4 < a/b) or (E< a/b< λ4) orderings.
Assume ((E< λ4 < a/b)∧H[2, 2, 2]) ≡ 1. )en, x(t) initiates
in R3[x] and increases as it approaches λ4 staying within
R4[x]. (see Figure 17(a)). Undertake now
((E< a/b< λ4)∧H[2, 2, 2]) ≡ 1. )en, the λ4 equilibrium
places within the regionR1[x] so by continuity, population
size reaches the a/b boundary switching to rule x1(t) and
satisfying f1(a/b)> 0 which implies λ1 > a/b. )erefore,
x(t) approaches λ1 asymptotically (see Figure 17(b)).

(E). Analysis of Trajectories forOrderings of the
H[1, 3, k] Type

We begin by analyzing case H[1, 3, 1] associated to con-
junction (M1∧BMS1∧IC11): model type M1: (E> a/b) and
Birth to Mortality Scaled Order (BMS3): (β � μa) and initial
condition ordering (IC11): ( xo >E). Given this parametric
arrangement, at the beginning of the growth process, pop-
ulation size departs from a value x(0)>E, and its dynamics
are set by the path x1(t) (see equation (A.1)) prevailing in
region R1[x], with λ1 �

�����
βE/μb

􏽰
. Since β � μa, we have

λ1 �
����
aE/b

√
, but we also have E> a/b; then, E2 > aE/b, and

therefore we obtain λ1 <E. On the other hand, if E> a/b, we
also have aE/b > (a/b)2 and consequently λ1 > a/b.)erefore,
a/b< λ1 <E<x0, and population size x(t) decreases
approaching λ1. But since λ1 lies in region R2[x], eventually
population size will cross the E threshold at a particular time
t1 and will switch to growing rule x2(t). )is law is associated
with the equilibrium solution λ2 � a/b, so population as-
ymptotically approaches this value (see Figure 18(a)).

For the arrangement H[1, 3, 2], we have the initial con-
dition placement a/b< xo <E. )en, population size begins
within the region R2[x] and behaves according to the x2(t)

law. )erefore, population size approaches the equilibrium
solution λ2 � β/μb, but since β � μa, we have λ2 � a/b. )en,
population size approaches asymptotically the a/b boundary
(see Figure 18(b)). In turn, the H[1, 3, 3] composite en-
compasses the initial condition placement xo <E; therefore,
population size obeys the x3(t) rule, and since β � μa, it re-
mains stationary at the xo value (see Figure 18(c)).

(F). Analysis of Trajectories forOrderings of the
H[2, 3, k] Type

We now consider the arrangement H[2, 3, 1]:
(M2∧BMS3∧IC21): model type M2: (E< a/b)), Birth to

Mortality Scaled order (BMS3):(β � μa), and initial condition
placing (IC21): xo > a/b). )e range of x(t) will compose the
regions R3[x], R4[x], and R1[x] )en, since xo > a/b,
population size x(t) begins within the regionR1[x] and hangs
onto the x1(t) trajectory. Now, the E< a/bimplies aE/b< a2/b2
and since β � μa, we have λ1 �

����
aE/b

√
; therefore, λ1 < a/b.

Consequently, λ1 places in region R4[x], and the x1(t) tra-
jectory decreases, so on its approach to λ1, it will intersect the a/b
boundary at a time t1. Subsequently, x(t) switches to the rule
x4(t) valid inR4[x]. Now, the β � μa setting implies λ4 � E,
so since by continuity, we have x4(t1) � a/b, and population
size decreases and approaches the equilibrium solution λ4
matching the E threshold (see Figure 19(a)). )e case
H[2, 3, 2] is associated to the conjunction (M2∧BMS3∧IC22),
so initial value xo fulfils E< x0 < a/b, and then population size
starts within the region R4[x] and holds to growth law x4(t)

approaching the λ4 � βE/μa equilibrium which under the
condition β � μa satisfies λ4 � E. )erefore, x(t) decreases
asymptotically to E (see Figure 19(b)). Finally, for H[2, 3, 3],
the condition x0 <E sets population size beginning within the
region R3[x] following the x3(t) growth law. Again, the
condition β � μa sets x3(t) to remain stationary at x0 (see
Figure 19(c)).

(G). Analysis of Trajectories forOrderings of the
H[3, 1, k] Type

We begin by analyzing case H[3, 1, 1] associated to con-
junction (M3∧BMS1∧IC31): model type M3: (E � a/b) and
Birth to Mortality Scaled Order (BMS1): (β< μa) and initial
condition ordering IC31: ( xo >E). Given this parametric
ordering, population size confines only to regionsR1[x] and
R3[x]. At the beginning of the growth process, population
size departs from a value x(0)>E and its dynamics are set by
the path x1(t) prevalent in regionR1[x], so it asymptotically
approaches the value λ1 �

�����
βE/μb

􏽰
. Again, the β< μa or-

dering implies
�����
βE/μb

􏽰
<E, and then population size de-

creases and eventually hits the E boundary following the
x3(t) rule holding in the region R3[x] which since β< μa

drives the population to extinction (see Figure 20(a)). )e
analysis of the case H[3, 1, 2] is straightforward since the
initial condition placement x(0)<E keeps the population
size cling to region R3[x] where it progresses to extinction
according to the x3(t) trajectory (see Figure 20(b)).

(H).Analysis ofTrajectories forOrderingsof the
H[3, 2, k] Type

Whenever the H[3, 2, 1] ordering achieves, we have to
consider the conjunction (M3∧BMS2∧IC31): model type
M3: (E � a/b), Birth to Mortality Scaled Order
(BMS1): (β> μa), and initial condition ordering
(IC31): ( xo >E). )is way, population size x(t) begins in
region R1[x], and thus it obeys x1(t) rule, so it asymp-
totically approaches the value λ1 �

�����
βE/μb

􏽰
. Correspond-

ingly, the β> μa ordering implies λ1 >E, and then
population size decreases to λ1whenever E< λ1 <xo (see
Figure 21(a)). On the other hand, whenever E<x0 < λ1 ,
population size increases to λ1 (see Figure 21(b)).
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Similarly, for the case H[3, 2, 2], the range of x(t)

composes the regions R3[x]and R1[x]. )e initial condi-
tion x(0)<E places population size initially inside the re-
gionR3[x]. )e ordering β> μa sets population size x(t) to
increase according to the x3(t) trajectory keeping inside the
regionR3[x] until it hits the E boundary at a time t1. Later,
it switches to the x3(t) rule progressing towards the equi-
librium solution λ1 (see Figure 21(c)).

(I). Analysis of Trajectories for Orderings of the
H[3, 3, k] Type

)e H[3, 3, 1] ordering links to conjunction
(M3∧BMS2∧IC31): model type M3: (E � a/b) and Birth to
Mortality Scaled Order (BMS3): (β � μa) and initial con-
dition ordering (IC31): (xo >E) )e range of x(t) will
compose the regions R3[x]and R1[x]. )en, population
size x(t) begins within the region R1[x] and follows the
x1(t) trajectory. Now, β � μa and E � a/b imply λ1 � E.
Consequently, if E � a/b � λ1 <x0, then x(t) decreases as it
approaches λ1 (see Figure 22(a)).

)e case H[3, 3, 2] is associated to the conjunction
M3∧BMS3∧IC32 so initial population size xo satisfies
xo <E. )en, population size starts within the region
R3[x] and embraces to growth law x3(t) which under the
condition β � ua remains stationary at xo. )erefore, x(t)

decreases asymptotically to E (see Figure 22(b)). Simi-
larly, the H[3, 3, 3] arrangement corresponds to the case
H[3, 3, 2].
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*e concept of Sustainable Development has given rise to multiple interpretations. In this article, it is proposed that Sustainable
Development should be interpreted as the capacity of territory, community, or landscape to conserve the notion of well-being that
its population has agreed upon. To see the implications of this interpretation, a Brander and Taylor model, to evaluate the
implications that extractivist policies have over an isolated community and cooperating communities, is proposed. For an isolated
community and through a bifurcation analysis in which the Hopf bifurcation and the heteroclinic cycle bifurcation are detected, 4
prospective scenarios are found, but only one is sustainable under different extraction policies. In the case of cooperation, the
exchange between communities is considered by coupling two models such as the one defined for the isolated community, with
the condition that their transfers of renewable resources involve conservation policies. Since human decisions do not occur in a
continuum, but rather through jumps, the mathematical model of cooperation used is a Filippov System, in which the dynamics
could involve two switching manifolds of codimension one and one switching manifold of codimension two.*e exchange in the
cooperation model, for specific parameter arrangements, exhibits n-periodic orbits and chaos. It is notable that, in the cases in
which the system shows sliding, it could be interpreted as a recovery delay related to the time needed by the deficit community to
recover, until its dependence on the other community stops. It is concluded (1) that a sustainability analysis depends on the way
well-being is defined because every definition of well-being is not necessarily sustainable, (2) that sustainability can be visualized as
invariant sets in the nonzero region of the space of states (equilibrium points, n-periodic orbits, and strange attractors), and (3)
that exchange is key to the prevalence of the human being in time.*e results question us on whether Sustainable Development is
only to keep us alive or if it also implies doing it with dignity.

1. Introduction

Sustainable Development is a concept that has become
relevant [1] since due to the series of criticisms that had been
made regarding the global model of economic growth, which
put the survival of all living species on the planet at risk,
including the human being. Reports such as “Limits to
Growth” [2] warned about the capacity of the planet in the
face of the dynamics proposed from the socioeconomic
point of view to generate growth.

*e global impact of the concept did not lead to a ho-
mogeneous school of thought on Sustainable Development,
but to the establishment of families of conceptual positions
that tried to adapt the concept to their interpretations, as in
the case of corporate sustainability and environmental
sustainability, which made the word sustainability a suffix or
the Latin American case in which the language allowed the
differentiation between “sostenible” and “sustentable,” to
eradicate the economic character that the concept was taking
on political agendas or its interpretations that gave rise to
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weak/strong sustainability [3], to sustainable landscapes [4]
and to the widely recognized approach of Elkington [5], and
the triple bottom line is sustainability from social, economic,
and environmental dimensions.

*e interpretationmade in this article of the definition of
Sustainable Development proposed by [1]: “satisfying
present needs without compromising the satisfaction of the
needs of future generations,” assumes (1) that the system of
needs is not a unique set, but is defined according to the
territory, landscape, or community and the ways of life in
them, (2) that the system of needs does not have important
changes from one generation to another, (3) that satisfying
needs has the purpose of generating well-being, and (4) that
this well-being must exist for this generation and any future
generation. In this sense, sustainability is an emerging ex-
pression of the territory, landscape, or community, which
results from the interactions of its socio-ecological com-
ponents, so its analysis must be carried out according to
systemic and dynamic form [6]. In this article, then, it will be
said that a territory, landscape, or community is sustainable
if the notion of well-being that its population has agreed
upon is a conservation law and symmetry of time, in the
nonnegative region of the space of states.

*is interpretation has different implications: (1) if the
system of needs depends on the territory, landscape, or
community and their ways of life, there cannot be a single
sustainability, but there are sustainabilities, (2) if the system
of needs can go from one generation to another without
important changes, it is because the way in which it is
defined has prioritized what is really important, whatever
that means, (3) the set of all definitions that could be
proposed for well-being would not necessarily lead to
Sustainable Development because many of them will only be
valid in the short term, and (4) restricting sustainability to
the economic, social, and environmental dimensions is
insufficient to capture the complexity of a definition of well-
being that can be perpetuated over time as well as fallacious
environmental, social, and economic sustainability consid-
erations that ignore the interdependence that exists between
these dimensions and others to make socio-ecological sys-
tems viable in the long term.

But the most important implication about well-being, as a
conservation law, is that in Sustainable Development well-
being cannot increase or decrease, unless there are exchanges
of information, matter, and energy from one territory,
landscape, or community to another, which is completely
contrary to the case in which a territory is eroded to guarantee
the well-being of another, without compensation for the
resources taken being sufficient for its recovery.

Here we study the case in which two socio-ecological
systems have exchanges, constituting a new socio-ecological
system on which it is not clear how these exchanges will
determine their sustainability. In this sense, the purpose of
this article is to present the first approach to the study of
exchanges between territories, landscapes, and communities
within the framework of Sustainable Development from
discontinuous piecewise smooth systems and explain the
implications of this approach for two communities, based on
the analysis of their dynamic behavior.

Due to it is the first approximation, the mathematical
model has variables that define a very simple notion of well-
being, based on populations and available renewable re-
sources, with which it will seek to demonstrate the con-
servation of well-being.

*e mathematical model used for this purpose is a
Filippov system [7, 8]. *e choice of this type of system
resides in the fact that human decisions do not necessarily
occur continuously, but rather through jumps defined by
ranges of tolerance to events.

For an introduction to Filippov’s systems, see [9–13]. An
equivalent formulation in part is found in [14]. For a review
of piecewise linear systems, it can be reviewed [15–18].
Regarding the limit cycles in Filippov’s systems, it is rec-
ommended to review [19]. On the bifurcations of these
systems, there are articles from [20–26], together with more
specialized articles such as [27–29] for periodic orbits,
[30, 31] for sliding bifurcations or the Hopf bifurcation
compendium of [32]. Other topics that may be of interest are
the numerical aspects of the solution of these differential
systems [33, 34] or stochastic perturbations to periodic
orbits with sliding [35, 36].

On the applications of Filippov systems, the works have
been mainly oriented to friction oscillators [31, 37–41],
neural networks activated by discontinuous functions
[42–46], memristor-based neural networks [47–53], neural
networks with switching control using the Filippov system
with delay [54–57], and electronic converters [58]. On issues
related to Sustainable Development, the number of papers is
much more limited, with approaches from the analysis of
communities [59], from the analysis of companies [60] and
others that touch on close issues such as energy systems
[61–64], pest or disease control [65–67], HIV behavior
[68, 69], behavior longterm communities [70], or com-
munications security [71]. It is also worth mentioning a
novel approach to the study of systems using multiple
switching regions that have been proposed in [72].

For the simulation, tools such as SLIDECONT [73] or
smooth solvers [74] have been developed for the analysis of
sliding bifurcation of Filippov systems. Numerical contin-
uation methods of these systems have also been proposed
[41]. More recently there is the TC-hat software from [75],
COCO [76], and MAMBO [77].

*e rest of the paper is structured as follows. After this
introductory section, two sections are presented in which (1)
the effect of the variation of the extraction capacities in an
isolated community is modeled and simulated, using a two-
dimensional continuous model, see Section 2, and (2) the
effect of the exchange of resources between two communities,
based on a Filippov system, see Section 3. In these models,
seeking to have a first approximation of sustainability as
conservation of the well-being of territory, landscape, or
community, it is assumed that well-being is having renewable
resources, which oversimplifies a plausible definition of well-
being, but allows the presentation of the possibilities of this
interpretation of sustainability, as will be seen in the discussion
of results’ sections, see Section 4, and of conclusions, see
Section 5. *e article ends with the proposal for future re-
search in this line of work, see Section 6.
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2. Effect of the Variation of the Extraction
Capacities in a Community

*emathematical model on which this article is based is the
one developed by Brander and Taylor [78], who presented a
general equilibrium model to represent the dynamic in-
teraction between renewable resources and population,
seeking to explain the case of Easter Island.

*e Brander and Taylor model has been modified by
authors to achieve a better approximation to modern sys-
tems of extraction and use of renewable resources, obtaining
differential systems of greater dimension and elaboration.
For example, multiple economic activities have been in-
corporated, adding to the extraction of resources and the
production of manufactured goods [79] or proposing ag-
riculture as a parallel and different activity to extraction [80].
Institutional adjustments and some economic structures of
property rights have also been included, which restrict the
conditions of extraction and consumption that could mit-
igate or dampen the cycles of abundance and famine [81, 82]
or the consideration of conservation policies that were based
on resource extraction charges [83].

Most of the models based on differential equations
emerged from the Brander and Taylor model as well as other
models of the same type that study the dynamic relationship
between population and resources and contemplated isolated
societies, without considering migrations or exchanges of
information, matter, or energy. However, one can findmodels
with differential equations that somehow incorporate this
coupling between societies. For example, in [84], a model is
presented that tries to capture the effect that migration has on
the degradation of natural resources; in [85], a model is used
to investigate the emergent effects of the movement of people,
goods, and natural resources, between two societies that have
characteristics similar to those of Easter Island; a different
coupling method is used in [86], where two new state vari-
ables are proposed: the capital inventory and a social de-
velopment index, for the construction of a dynamic migration
network between municipalities of a region in Colombia;
finally, in [87], a socio-ecological model of multiple human
populations is proposed, which exploit their natural resources
or that of another population when their own are scarce,
finding that the increase in interacting communities accel-
erates and aggravates the collapse.

*is article, in contrast to [87], studies the long-term
effect of economic cooperation between two communities,
for which a simplified version of [80] of the Brander and
Taylor model was used so that the extraction of resources is
considered as the only economic activity developed.

*e system of differential equations for the represen-
tation of the dynamics of an isolated community considers
that the population change is given by the extraction speed
that the population L has of its available renewable resources
S, from a per-capita extraction rate ϵ [85] and the minimum
per-capita caloric requirements σ of its population, in
consideration of a conversion factor from mass units of the
extracted resource to caloric units ϕ, while for the change in
available renewable resources S, it is assumed that the

renewable resource is regenerated if it is above the T limit
(strong growth effect), at a rate of ρ up to that reaches its
carrying capacity K (growth limit of the renewable re-
sources) and that depends on the mentioned extraction that
the population makes of the resources, as shown in the
following equation:

dL

dt
� ϕεLS − σL,

dS

dt
� ρS

S

T
− 1􏼒 􏼓 1 −

S

K
􏼒 􏼓 − εLS.

(1)

System (1) has 4 equilibrium points:

P1 � (0, 0),

P2 � (0, T),

P3 � (0, K),

P4 � −
ρ KTϵ2ϕ2 − Kϵϕσ − Tϵϕσ + σ2􏼐 􏼑

KTϕ2ϵ3
,
σ
ϵϕ

⎛⎝ ⎞⎠.

(2)

Following Figure 1, equilibrium P1 is always a stable
node, and P2 is always an unstable saddle-type node, making
the Allee effect considered for the resources in the model
remarkable. *e Allee effect occurs when the regeneration
rate slows down at low resource density [88].

When ε gradually increases, P3 and P4 collide in what is
called a branch point BP. In this collision, K � σ/Kϕ and
−ρ(KTϕ2ϵ2 − Kϕσϵ − Tϕσϵ + σ2)/ϕ2ϵ3KT � 0. When solv-
ing for ε, we found that BP occurs at εBP � σ/Kϕ, and if
ε< εBP population is negative and P4 is unstable while P3 is
stable, equilibrium population is positive and P4 becomes a
stable focus if ε> εBP until the Hopf bifurcation H is reached,
see Figure 1. To prove the existence of a Hopf bifurcation, we
define the Jacobian matrix as

J �

ϕεS − σ ϕεL

−εS −
KTεL − 2ρKS + KTρ + 3ρS

2
− 2ρTS

KT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3)

whose eigenvalues are

λ1,2 �
1
2

TrJ ±
�����������

TrJ2 − 4DetJ
􏽱

􏼒 􏼓. (4)

TrJ corresponds to the trace of J and DetJ to its de-
terminant. When solving for ϵ, the trace evaluated at P4, we
find that a Hopf bifurcation occurs at ϵH � 2σ/(K + T)ϕ
since P4 has a pair of pure imaginary eigenvalues, satisfying
the equilibrium condition, giving rise to the instability of the
P4 focus. Furthermore, the system undergoes the Hopf
bifurcation as long as the real part of eigenvalues really
change sign by crossing zero. *e previous condition can be
proved by demonstrating that the cross speed of the real part
with respect to the control parameter is nonzero. Since
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(1/2)TrJ is the real part of the eigenvalues, the cross speed is
given by

d
dϵ

[Re(λ(ϵ))]ϵ�ϵH �
ϕρ(K + T)

3

8σKT
≠ 0, (5)

so that the transversality condition is satisfied. Finally,
according to the sign of the first Lyapunov coefficient,
l1 � −1.675825e − 07, and the Hopf bifurcation is super-
critical giving rise to a stable limit cycle [89]. Numerical
continuation of periodic orbits and detection of heteroclinic
bifurcation HTC were developed using MATCONT [90].

On the contrary, the nodes P3 and P4 collide at ε ≈ 0.3,
making the node P3, related to load capacity, go from stable
to unstable (chair type), while node P4 makes it from un-
stable to stable, for a positive increment of ϵ.

At ε ≈ 0.55 a Hopf bifurcation occurs, giving rise to the
instability of the P4 node, which becomes a repulsive node,

while an attractor limit cycle emerges, that becomes large,
for positive increases of ϵ, until in ϵ ≈ 0.7, it gives rise to
heteroclinic orbits between the nodes P2 and P3, forming a
heteroclinic cycle, from which the limit cycle disappears.

Note that, before the branch point BP, the amount of
resources extracted does not meet the population’s need,
leading to its disappearance. From BP and up to the Hopf
bifurcation H, the resources extracted are sufficient to
sustain a specific amount of population, gradually de-
creasing the support capacity of the system. Between H and
the heteroclinic bifurcation HTC, the population-resources
relationship enters into a dynamic of oscillation between
scarcity and abundance, which becomes critical when the
HTC is exceeded, at which time, followed by a moment at
maximum abundance, the population will grow so large that
it will critically deplete resources, leading to the collapse of
the population and its resources.

12000
10000

8000
6000
4000
2000

0
0

0.2
×10-4 0.4

0.6
∈

S

L
0.8

1 -1000
0

1000
2000

3000

BP

H HTC

(a)

0

-500
0 0.2 0.4 0.6 0.8 1

500

1000

1500

2000

2500

3000

3500

∈

L

BP

H

HTC

×10-4

(b)

0
0 0.2 0.4 0.6 0.8 1

2000

4000

6000

8000

10000

12000

∈

S

BP

H

HTC

×10-4

(c)

Figure 1: Steady-state change for an isolated community when the per-capita extraction rate ϵ is taken as the control parameter. *e solid
line represents stable equilibrium points, and the dashed line represents unstable equilibrium points.*e shaded area represents limit cycles.
(a) Bifurcation diagram, (b) projection on ϵ-L plane, and (c) projection on ϵ-S plane. Parameter values for this simulation are σ � 0.14,
ϕ � 0.4, K � 12000, T � 700, and ρ � 0.03.
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3. Effect of Resource Exchange between
Two Communities

In this section, the dynamics of exchange between two
communities for the supply of their population’s needs are
considered, in which decision-makers are willing to enforce
rules on resource extraction, have a conservation policy, and
have a complete understanding of the socio-ecological
system that allows them to define clear extraction limits.

3.1. Exchange with Continuous Coupling. *e model for two
communities, see system (6), assumes that each population
keeps the proportion Ci, i � 1, 2, while exchanging the
proportion (1 − Ci) of the resources that produces but also
protects an amount equal to its unextracted resources to the
amount received by the exchange Si⟶j, i � 1, 2, i≠ j, in
caloric units:

dL1

dt
� C1ϕ1ε1L1S1 + 1 − C2( 􏼁ϕ2ε2L2S2 − σ1L1,

dS1
dt

� ρ1S1
S1
T1

− 1􏼠 􏼡 1 −
S1
K1

􏼠 􏼡 − ε1L1 S1 − S2⟶1( 􏼁,

dL2

dt
� C2ϕ2ε2L2S2 + 1 − C1( 􏼁ϕ1ε1L1S1 − σ2L2,

dS2

dt
� ρ2S2

S2

T2
− 1􏼠 􏼡 1 −

S2

K2
􏼠 􏼡 − ε2L2 S2 − S1⟶2( 􏼁.

(6)

*e resource conservation policy is given by equation
(7), which is a conversion factor between the resources of the
two communities:

Si⟶j �
1 − Ci( 􏼁ϕiϵiSi

ϕjϵj
. (7)

For simplicity, simulations have been carried out with
normalized Si, considering si � Si/Ki.

3.2. Exchange Rules between Communities. For the repre-
sentation of resources’ exchange rules between communi-
ties, it was considered that the exchange proportions Ci

depend on levels of resources that are defined for each
community, understanding that a level is a set of states of
available renewable resources, such that, if the level between
the communities is different, there is an exchange from the
community with greater resources to the community with
fewer resources, and if the level is the same, no exchanges are
made. *is representation implies that the exchange rates Ci

change according to the available level of resources that the
two communities have at each instant of time.

In this way, it is assumed that cooperation is a decision
that is made mutually under certain considerations related to
resource stocks, whose main objective is to mitigate the
overexploitation of natural resources of the needy community
(understand a needy community as one that has brought its
available renewable resources to a deficit threshold).

*e 4-dimensional space of states has two switching
regions Σi, i � 1, 2, each of which defines the decision change
limits, also defining two levels of available renewable re-
sources by community: deficit and surplus. Considering that
the communities would not be willing to have their levels
defined differently to avoid exposing their resources in the
exchange measures, it has been considered that the levels of
each community have the same thresholds.

3.3. Behavior with Exchange Rules through Filippov Systems.
To represent the rules defined above and taking into account
that they define a discontinuous system, we will now present
the formalism of Filippov’s systems [8] required to obtain
the differential system that models the exchange between
two communities.

3.3.1. Formalism of Filippov’s Systems. In Filippov systems
with a commutation surface, the state space is divided into
two regions R1 and R2 through a surface Σ, defined as the set
0 of a smooth scalar function h. *us, we have

_x � f(x) �
f1(x), x ∈ R1,

f2(x), x ∈ R2,
􏼨 , x(0) � x0 ∈ R

n
, (8)

where f1 and f2 are smooth vector fields. *e regions R1
and R2 and the surface Σ are defined as

R1 � x ∈ Rn
: h(x)> 0􏼈 􏼉,

R2 � x ∈ Rn
: h(x)< 0􏼈 􏼉,

Σ � x ∈ Rn
: h(x) � 0􏼈 􏼉.

(9)

In this case, the dynamics on Σ are classified in

(i) Sliding Region. Σ
∧

� x ∈ Rn: Lf1
h(x) · Lf2

h(x)􏽮

< 0,Lf1
h(x)< 0}, Σ

∧
⊂ Σ, when both vector fields

f1(x) and f2(x) point to Σ
(ii) Escaping Region. Σe � x ∈ Rn:{ Lf1

h(x) · Lf2
h(x)

< 0,Lf1
h(x)> 0}, Σe ⊂ Σ

(iii) Crossing Region. Σc � x ∈ Rn: Lf1
h(x) · Lf2

h􏽮

(x)> 0}, Σc ⊂ Σ

Here, Lf1,2
h(x): � ∇h(x) · f1,2(x) is defined as the Lie

derivative of h(x) with respect to the vector field f1,2. Once
the evolution of the system reaches the sliding surface, the
dynamics can be defined as a linear combination of the
vector fields (f1 and f2) through the Filippov formalism [8],
namely,

_x � fΣ(x), x ∈ Σ
∧

, (10)

where

fΣ � (1 − λ)f1(x) + λf2(x), (11)

and λ is the solution of

0 � ∇h(x)
T

· fΣ(x),

0 � h(x).

⎧⎨

⎩ (12)
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On the contrary, the trajectory of the system leaves the
sliding region as soon as the vector fields f1,2 become
tangent to Σ, that is, making λ � 0 and λ � 1, and we obtain
Lf1

h(x) � 0 or Lf2
h(x) � 0.

Now, if we consider a system with two commutation
surfaces Σ1 and Σ2, according to Filippov’s formalism, the
state space will be divided into four regions R1, R2, R3, and
R4:

R1: f1 for h1 > 0, h2 > 0,

R2: f2 for h1 < 0, h2 > 0,

R3: f3 for h1 < 0, h2 < 0,

R4: f4 for h1 > 0, h2 < 0.

(13)

In this case, the trajectories of the system can evolve in
any of thementioned regions as well as on the regions Σ1 and
Σ2. Additionally, the system can evolve on the commutation
surface of codimension two, defined by the intersection of
the two commutation surfaces of codimension one (i.e.,
Σ � Σ1 ∩Σ2):

Σ � x ∈ Rn
: h(x) � 0, h(x) �

h1(x)

h2(x)
􏼢 􏼣􏼨 􏼩. (14)

Now, the codimension 1 sliding vector fields are defined
as f±Σ with respect to each switching surface Σ±1,2, i.e.,

_x � fΣ+1
� 1 − λ1( 􏼁f1(x) + λ1f4(x), λ1 �

Lf1
h1(x)

Lf1−f4
h1(x)

,

_x � fΣ−1
� 1 − λ2( 􏼁f2(x) + λ2f3(x), λ2 �

Lf2
h1(x)

Lf2−f3
h1(x)

,

_x � fΣ+2
� 1 − λ3( 􏼁f1(x) + λ3f2(x), λ3 �

Lf1
h2(x)

Lf1−f2
h2(x)

,

_x � fΣ−2
� 1 − λ4( 􏼁f3(x) + λ4f4(x), λ4 �

Lf3
h2(x)

Lf3−f4
h2(x)

.

(15)

If a path is followed on one of the sliding surfaces 􏽐
±
1,2,

the attractiveness can be characterized according to the first-
order output conditions (tangency conditions). Whenever
λ1,2,3,4 � 0 and λ1,2,3,4 � 1, the exit conditions of the first
order are expressed by

Lf1
h1(x) � 0,

Lf2
h1(x) � 0,

Lf1
h2(x) � 0,

Lf2
h2(x) � 0,

Lf3
h1(x) � 0,

Lf4
h1(x) � 0,

Lf3
h2(x) � 0,

Lf4
h2(x) � 0.

(16)

*e vector field of sliding on the commutation surface Σ
can be defined through the convexmethod of Filippov [8]. In
this way, the dynamics on Σ are

FΣ(x) � 􏽘
4

i�1
λi(x)fi(x), (17)

where

λi(x)≥ 0∧ 􏽘

4

i�1
λi(x) � 1, (18)

taking into account that FΣ(x) must be tangent to Σ, that is,
LFΣ

hi(x) � 0, i � 1, 2. Clearly, it can be seen from the above
that there is no single solution for the coefficients λi(x) since
we now have a system of three equations with four un-
knowns. In the literature, two systematic methods allow
defining the codimension 2 sliding vector field under certain
conditions, the bilinear combination [91] and the method
calledmoments of solutions [92] although the ambiguity that
arises when considering multiple switching surfaces remains
a problem under study. A nonlinear formulation of the
sliding vector field called hidden dynamics is proposed in
[93], which has been effective in modeling real mechanical
phenomena such as friction.

*e bilinear interpolation method was originally in-
troduced by Seidman [91] and further studied in [92]. *e
idea is to obtain a vector field on the intersection by forming
a bilinear interpolation among the four vector fields:

fB≔ (1−α
∧
)(1−β

∧
)f1 +(1−α

∧
)β
∧
f2 +α
∧
(1− β
∧
)f3 +α

∧
β
∧
f4,

(19)

where α
∧
and β
∧
are smooth functions of x ∈ Σ, between

[0, 1]. Under the orthogonality conditions (LFB
(h1)(x) �

LFB
(h2)(x) � 0), α

∧
and β
∧
can be found by solving the

following nonlinear system equations:

(1 − α
∧

)(1 − β
∧

)
Lf1

h1

Lf1
h2

⎡⎣ ⎤⎦ +(1 − α
∧

)β
∧ Lf2

h1

Lf2
h2

⎡⎣ ⎤⎦

+ α
∧

(1 − β
∧

)
Lf3

h1

Lf3
h2

⎡⎣ ⎤⎦ + α
∧
β
∧ Lf4

h1

Lf4
h2

⎡⎣ ⎤⎦ � 0.

(20)

Assuming that we are following a trajectory on Σ, the
second-order conditions are defined by

Lf
􏽘

+

1

h1(x) � 0,

Lf
􏽘

−

1

h1(x) � 0,

Lf
􏽘

+

2

h2(x) � 0,

Lf
􏽘

−

2

h2(x) � 0.

(21)

3.3.2. Filippov System Model. *e variation in the exchange
rates of each community is assumed according to the fol-
lowing rule:
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C1 �
C

+
1 , if h1 > 0,

C
−
1 , if h1 < 0,

⎧⎨

⎩

C2 �
C

+
2 , if h2 > 0,

C
−
2 , if h2 < 0.

⎧⎨

⎩

(22)

Based on the Filippov formalism, the dynamics of re-
source exchange between two communities can be rewritten
in state space by making x � [L1, S1, L2, S2]

T, h1 � S1 − αT,
and h2 � S2 − αT, αT being the decision threshold for both
communities, that is,

_x � f(x) �

f1(x), x ∈ R1

f2(x), x ∈ R2

f3(x), x ∈ R3

f4(x), x ∈ R4

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, x(0) � x0 ∈ R
4
, (23)

where

f1(x) �

C
+
1ϕ1ϵ1L1S1 − σ1L1 + 1 − C

+
2( 􏼁ϕ2ϵ2L2S2

ρ1S1
S1

T1
− 1􏼠 􏼡 1 −

S1

K1
􏼠 􏼡 − ϵ1L1 S1 − S2⟶1( 􏼁

C
+
2ϕ2ϵ2L2S2 − σ2L2 + 1 − C

+
1( 􏼁ϕ1ϵ1L1S1

ρ2
S2

T2
− 1􏼠 􏼡 1 −

S2

K2
􏼠 􏼡S2 − ϵ2L2 S2 − S1⟶2( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

f2(x) �

C
−
1ϕ1ϵ1L1S1 + 1 − C

+
2( 􏼁ϕ2ϵ2L2S2 − σ1L1

ρ1S1
S1

T1
− 1􏼠 􏼡 1 −

S1

K1
􏼠 􏼡 − ϵ1L1 S1 − S2⟶1( 􏼁

C
+
2ϕ2ϵ2L2S2 + 1 − C

−
1( 􏼁ϕ1ϵ1L1S1 − σ2L2

ρ2S2
S2

T2
− 1􏼠 􏼡 1 −

S2

K2
􏼠 􏼡 − ϵ2L2 S2 − S1⟶2( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

f3(x) �

C
−
1ϕ1ϵ1L1S1 + 1 − C

−
2( 􏼁ϕ2ϵ2L2S2 − σ1L1

ρ1S1
S1

T1
− 1􏼠 􏼡 1 −

S1

K1
􏼠 􏼡 − ϵ1L1 S1 − S2⟶1( 􏼁

C
−
2ϕ2ϵ2L2S2 + 1 − C

−
1( 􏼁ϕ1ϵ1L1S1 − σ2L2

ρ2S2
S2

T2
− 1􏼠 􏼡 1 −

S2

K2
􏼠 􏼡 − ϵ2L2 S2 − S1⟶2( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

f4(x) �

C
+
1ϕ1ϵ1L1S1 + 1 − C

−
2( 􏼁ϕ2ϵ2L2S2 − σ1L1

ρ1S1
S1

T1
− 1􏼠 􏼡 1 −

S1

K1
􏼠 􏼡 − ϵ1L1 S1 − S2⟶1( 􏼁

C
−
2ϕ2ϵ2L2S2 + 1 − C

+
1( 􏼁ϕ1ϵ1L1S1 − σ2L2

ρ2S2
S2

T2
− 1􏼠 􏼡 1 −

S2

K2
􏼠 􏼡 − ϵ2L2 S2 − S1⟶2( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

Furthermore, the switching manifold is defined as

Σ1 � x ∈ R4
: S1 − αT � 0􏽮 􏽯,

Σ2 � x ∈ R4
: S2 − αT � 0􏽮 􏽯.

(28)

It is worth to mention that, due to parameter configu-
ration, the flow does not enter into switching manifold of
codimension two, and it can be seen in Section 3.4.1 for more
details. By solving f ±Σ1,2

� 0, we found that there exists an
equilibrium point outside the sliding region, and thus, the
system does not have pseudoequilibrium points. Analytical
expressions of tangency points are

Lf1
h1(x) � ρ1S1

S1
T1

− 1􏼠 􏼡 1 −
S1
K1

􏼠 􏼡 − ϵ1L1 S2 −
1 − C

+
2( 􏼁ϕ2ϵ2S2
ϕ1ϵ1

􏼠 􏼡 � 0,

Lf4
h1(x) � ρ1S1

S1

T1
− 1􏼠 􏼡 1 −

S1

K1
􏼠 􏼡 − ϵ1L1 S2 −

1 − C
−
2( 􏼁ϕ2ϵ2S2
ϕ1ϵ1

􏼠 􏼡 � 0,

Lf1
h2(x) � ρ2S2

S2

T2
− 1􏼠 􏼡 1 −

S2

K2
􏼠 􏼡 − ϵ2L2 S2 −

1 − C
+
1( 􏼁ϕ1ϵ1S1
ϕ2ϵ2

􏼠 􏼡 � 0,

Lf2
h2(x) � ρ2S2

S2
T2

− 1􏼠 􏼡 1 −
S2
K2

􏼠 􏼡 − ϵ2L2 S2 −
1 − C

−
1( 􏼁ϕ1ϵ1S1
ϕ2ϵ2

􏼠 􏼡 � 0.

(29)

Because αT is the decision threshold for both commu-
nities, then we can replace S1 and S2 in the above equations
since it is supposed that the decision-making threshold is
equal in both communities. Next, we can solve for L1 and L2
to graph sliding regions, see the yellow región in Figure 2.

3.4. Dynamics of Exchange between Communities with One
Decision Level. From the system defined by the vector fields
presented in equations (24)–(27), we will present the results
of the simulations carried out under the following condi-
tions, which represent the exchange policy between the two
communities:

(i) Similar parameter configurations are considered
between the two communities that exchange their
resources, except in the case of the effective ex-
traction rate and regeneration rate of renewable
resources of each community

(ii) It is assumed that the effective rate of extraction of
the second community ϵ2 is high in consideration of
that defined for the first community so that, by
depleting its resources more quickly, it does not
count on the cooperation of the community one,
and it will collapse and disappear (as in the case of
high extraction of resources from the isolated
community presented in Section 2).

(iii) It is assumed that the renewable resources of each
community are regenerated at different rates, that is,
ρ1 ≠ ρ2. *is is to suggest that the physiographic,
climatic, and productive conditions of the two
communities are not necessarily the same, and each
one has its complexity.

(iv) It is assumed that the switching regions that define the
decision thresholds of the communities are in the
same percentage value of resources since they are
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framed in the same collaboration policy, guaranteeing
that their exchanges occur under equal conditions.

(v) Whenever a community is at the deficit threshold,
the collaboration policy says that the community at
the surplus threshold will cooperate with up to a
certain percentage of its resources, indicating that
cooperation only occurs in one direction.

(vi) If the two communities are at the same threshold,
the exchanges C1 � C2 � 1 are closed, leaving them
as if they were isolated communities. In the case
where they are at the surplus threshold, the ex-
change would not be necessary, while in the case
where they are at the deficit threshold, the exchange
would not be probable since the communities would
be putting at risk the little resource that they have
left to sustain their populations.

*e initial condition of the simulations is found in the
surplus thresholds for the two communities so that there is
room to show resource management errors, represented in
their extraction measures in contrast to the resource

regeneration capacity and how a policy of cooperation based
on exchange becomes an alternative for the community on
the threshold of deficit.

*e simulations presented show the results for parameter
arrangements that led to obtaining periodic and chaotic
behaviors (see Section 3.4.2), which are verified in the pro-
jections of the steady-state diagram presented in Section 3.4.3.

*e general parameter values used in these simulations
are σi � 0.14, ρ1 � 0.03, ρ2 � 0.04, Ti � 700, Ki � 12000,
ϵ2 � 7e− 5, and ϕi � 0.4. *e initial condition considered was
(L1, S1, L2, S2) � (2000, 10400, 2500, 8600), the values for
the exchange decision through the switching regions were
set at 30%, and the exchange rate defined when the com-
munity i cooperates with the other was 25% (i.e.,
1 − Ci � 0.25, i � 1.2).

*e effective extraction rate ϵ1 is taken as a control
parameter to perform the steady-state analysis presented in
Section 3.4.3. With this configuration, it is avoided to reach
the switching manifold of codimension two, which corre-
sponds to the intersection between the two switching
manifolds Σi of codimension one, described in equation (14).
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Figure 2: Periodic behavior induced by switching regions for ϵ1 � 4.7e−5.
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To present the simulations of this 4-dimensional system,
3-dimensional projections were used to allow the switching
manifolds to be adequately visualized. It should be under-
stood then that the switching regions will appear with a
smaller dimension than they have. *is was achieved by
using the spaces s1 − L1 − s2 and s2 − L2 − s1. Also, it was
considered that the colors facilitate the reading of the
simulations. *e three-dimensional projection of the
switching region Σ1 at h1 � 0.3 is colored blue, while the
region Σ2 at h2 � 0.3 is colored orange. *e sliding regions
were drawn in yellow. *e trajectory in orange corresponds
to that defined by the vector fields fi, in what we have called
the “thresholds,” while in blue and green, to contrast with
the colors of the switching regions and the projections of the
landslide trajectories.

*e corresponding time series of the resource variables si

and the signal of the exchange variable Ci were added to the
three-dimensional projections, considering that (1) the so-
lution for the case of communities is drawn on a continuous
line coupled, (2) the dotted line shows the trajectory of the
case of communities that evolve in isolation Ci � 1, and (3)
the colors correspond to the colors used in the three-di-
mensional projection.

3.4.1. Periodic Behavior. For the first simulation, it has been
considered to compare the behavior between two com-
munities under the effects of two scenarios: (1) noncoop-
eration and (2) cooperation, considering a relatively low
extraction rate from community one ϵ1, see Figure 2.

In the noncooperation scenario, presented through
dotted lines in the time series of Figures 2(c) and 2(d), it is
shown how the first community has reached a nonzero
equilibrium value of its resources, while the second has
disappeared.

In the cooperation scenario, a 1-periodic behavior is
obtained with sliding over the switching manifold of
community two Σ2, which means that, through the exchange
of resources, community two no longer disappears,
achieving that the two communities are preserved in time,
through a periodic cycle, see Figures 2(a) and 2(b).

*e black signal, in Figures 2(c) and 2(d), shows the
behavior of exchanges between communities; while com-
munity 1 does not receive resources (C2 �1), community two
does through periodic pulses that satisfy their noncontin-
uous needs (0.75<C1 < 1).

In this way, due to the configuration of the system, we see
that the management of the socio-ecological system shown
by community one, in scenarios of cooperation or nonco-
operation, allows it to be maintained over time, while
community two only achieves it through cooperation.

*e exchange avoids collapse and leads to a process of
recovery of the community in deficit, which is not im-
mediate, since it must overcome a delay that occurs while
sliding over the switching manifold, possibly related to the
recovery of its resources and education for cultural
transformation and sustainable management, to finally
appreciate recovery and stop dependence on the other
community.

3.4.2. Chaotic Behavior. For the second simulation, again, it
has been considered to compare the behavior between the
two communities under the scenarios of (1) noncooperation
and (2) cooperation, but now a relative extraction rate of the
one ϵ1 community has been considered high, see Figure 3.

In the noncooperation scenario, which is shown through
dotted lines in the time series of Figures 3(c) and 3(d),
isolated communities obtain opposite effects; the first
community reaches the equilibrium of its resources despite
having considerably increased its resource extraction rate ϵ1,
while the second community disappears.

In the cooperation scenario, chaotic behavior is obtained
with sliding over the switching manifold of community two
Σ2, which means that, through the exchange of resources,
community two no longer disappears, achieving that the two
communities are preserved in time, with their trajectory
confined to a region of state space, see Figures 3(a) and 3(b).

*e black signal, in Figures 3(c) and 3(d), shows the
behavior of exchanges between communities; while com-
munity 1 remains without receiving resources (C2 �1),
community two continues depending on the other com-
munity, but now, through irregular pulses that satisfy their
noncontinuous needs (0.75<C1 < 1).

Under this system configuration, the management of the
socio-ecological system shown by community one, in sce-
narios of cooperation or noncooperation, again allows it to
be maintained over time, while community two only ach-
ieves it through cooperation.

In the cooperation scenario, for the extraction value
relatively higher than the one used in the periodic system
configuration of Section 3.4.1, the exchange once again
avoids collapse and leads to a process of recovery of the
community in deficit but this implies that the contributing
community enters into a chaotic behavior confined to states
that do not expose their resources and that the receiving
community oscillates between the thresholds of surplus and
deficit, achieving this long in the first. It draws the attention
of community two that, leaving the deficit threshold, they
must slide in the switching manifold during irregular
(chaotic) periods that perhaps express different levels of
consciousness, although their extraction policy is the same.

3.4.3. Steady-State Analysis. In this final simulation, a set of
diagrams containing the steady-state mappings are pre-
sented, obtained for each of the state variables by the var-
iation of the parameter ϵ1 in the range of values where
resource exchanges occur between the communities, in-
volving sliding over the switching manifold Σ2.

For the elaboration of this diagram, a total of 3000
simulations were carried out from an initial condition
centered on (L1, S1, L2, S2) � (2000, 10400, 2500, 8600), in
which each simulation took a value of the ϵ1 parameter in the
range of 4.6 × 10− 5 to 5.5 × 10− 5. *is range of the control
parameter was chosen for convenience, for two reasons: (1) it
is the range in which sliding occurs over the switching
manifold Σ2, giving rise to the periodic and chaotic be-
haviors that were already mentioned in Sections 3.4.1 and
3.4.2, and (2) in this range, the system does not reach the
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codimension two switching region. *e simulations were
carried out until reaching the time t � 10, 000, sampling the
maximum and minimum values of the last 1000 units of
time, in consideration of the changes in the behavior that the
switching manifold makes on the periodic behavior of the
orbits, as shown in Figure 3(d). In this way, the simulations
presented in Figure 4 were obtained, where the represen-
tations of the upper steady-state, in green, map the maxi-
mums of the solution, while those of the lower part, in red,
map their minima.

In this analysis, as ϵ1 increases in the selected range, the
system shows changes in periodicity and chaos in the dy-
namics of the behavior of community one (population and
resources), without deviating it from the surplus threshold,
see Figures 4(a) and 4(c), while community two exhibits
behaviors of period one for the population and periodicity
and chaos for resources when they are at the deficit
threshold, see Figures 4(b) and 4(d). For the final interval of
the analysis, the exchange was found to occur without
sliding, through orbits of period one.

4. Discussion of Results

In this section, the results obtained will be discussed to un-
derstand (1) the effect of the variation of the extraction ca-
pacities in an isolated community, using a two-dimensional
continuous model, see Section 2, and (2) the effect of the
exchange of resources between two communities, based on a
Filippov system, see Section 3, considering that, to have a first
approximation of sustainability as conservation of well-being
in a territory, landscape, or community, it is assumed that well-
being is having renewable resources, which, as mentioned in
the introduction, oversimplifies a plausible definition of well-
being, but allows the presentation of the possibilities of the
interpretation proposed in this article for sustainability.

In the first place, regarding the effect of the variation in
extraction capacities in an isolated community, it is notable
that, following the bifurcation diagram in Figure 1, the
dynamics of the system involves four prospective scenarios:
(1) negligence: in which the extraction is insufficient to
sustain the population, (2) harmony: in which the extraction
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Figure 3: Chaotic behavior induced by switching regions for ϵ1 � 5.3e−5.
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and recovery of resources are in equilibrium, (3) instability:
in which there are continuous oscillations between scarcity
and abundance, and (4) collapse: in which the excess in the
extraction of resources leads to the disappearance of the
population and the resources.

In this case, the conservation of well-being could only be
appreciated in the harmony scenario, through the invariant
set of equilibrium point type that the system defines for a
certain level of extraction, so it is concluded that a territory,
community, or landscape isolated, and it is only sustainable
if it finds the balance between its population and the ex-
traction of resources that it does for its maintenance, in
consideration of the regenerative capacity of the resources.

*is result, and its corresponding scenarios, can be
compared with the current situation of humanity as a large
community in a space with limited resources: planet Earth,
with only the scenario that we call harmony being sustainable.

Second, on the effect of the exchange of resources between
two communities based on a Filippov system, the results have
allowed us to see through simulations and the dynamics
emerging from the interaction between two communities that

share their resources in pursuit of well-being, through invariant
sets such as periodic orbits and strange attractors, who allow us
to conclude that sustainability can take different invariant
forms within the notion of well-being, in addition to the
equilibrium form shown for an isolated community.

*e reason why the exchange between the two com-
munities reaches sustainability under these multiple ge-
ometries (equilibrium point, periodic orbit, or strange
attractor), although one of the communities has been
configured not to be sustainable without the exchange, is as
follows: (1) there were clear conservation policies (repre-
sented through the switching manifolds) and (2) the policies
had perfect control (the system was programmed deter-
ministically). However, achieving sustainability through
exchange makes the consuming community stabilize while
the resource-rich community becomes unstable.

*is is where an interpretation of well-being as several
renewable resources fails because the instability of the stock
reflects the socio-ecological instability of the one who con-
tributes the resources to ensure that the community at the
threshold of deficit can satisfy its demands for resources,
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without questioning or regulating the needs of the extractivist
community, meaning that the contributing community
maintains the stability of the relationship, despite the stability of
its other socio-ecological dimensions. In other words, satisfying
the needs of an extractive community despite another com-
munity can generate socio-ecological instabilities in the com-
munity that it contributes (violence, tyrannies, wage abuses,
inhumane living conditions, etc.?). So, speaking of sustain-
ability, the definition of what is well-being must be multidi-
mensional, involving at least people, animals (domestic or
livestock), and ecosystems.

About sliding, it shows how a community is trapped in a
set of transition states between one threshold and another
while regulating the population. *is can be derived from a
biological impulse of humanity that, without clear controls,
tends to deteriorate its well-being, falling into the tragedy of
commons ground.

*e values of the exchange constants, together with the
values of the extraction rates, proved to be conditioning factors

for the development or deterioration of the communities,
suggesting that they should be careful with their definition,
before proclaiming a national or international exchange policy.

5. Conclusions

*e exchange avoids collapse and leads to a process of recovery
of the community in deficit, which is not immediate, since it
must overcome a delay that occurs while sliding over the
switching manifold, possibly related to the recovery of its re-
sources and education for cultural transformation and sus-
tainable management, to finally appreciate recovery and stop
dependence on the other community.

*e approach made in this paper from mathematical
modeling for the analysis of the sustainability of territories,
communities, and landscapes, between which theremay ormay
not be exchanges, understanding that sustainability occurs
when well-being is a law of conservation of the spatial unit of
analysis, allows to understand that
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Figure 5: Steady state for economic cooperation between two communities when you have two switching regions. Parameter setting is
Ci � 0.75, σi � 0.14, ρ1 � 0.03, ρ2 � 0.04, Ti � 700, Ki � 12000, β1 � 5.8e−5, ϵ2 � 7e−5, and yϕi � 0.4.
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(i) Without exchange possibilities, a population will
depend on the extraction rate and the regeneration
capacity of its resources, to prevail or disappear.

(ii) *e exchange of resources is key to the survival of the
human species, without this implying sustainability.
*is cooperation uses redundancy in the other to
maintain itself.

(iii) A definition of well-being limited to the number of
resources as a need can generate undesirable in-
stabilities in the contributing socio-ecological sys-
tems unless that is the sustainability that we wish to
establish.

(iv) Sustainability can be visualized in the attraction
basins of the invariant sets of socio-ecological
systems whose states do not include null values, so it
can be said that there are sustainabilities and that
sustainability analyzes have many opportunities
from modeling and analysis with Filippov systems
and bifurcation theory.

6. Future Research

*e coupling introduces two new parameters into the sys-
tem, hi and Ci. As future work, it is proposed to evaluate the
effect that varying one of the two has on the exchange
dynamics, given that the change of the switchingmanifold or
the exchange values, would allow evaluating which would be
the threshold that leads to the best performance of the
system, even if those values are not equal.

It is also proposed to consider the existence of more than
one switching region for the definition of the decision levels
of the system, as proposed in Figure 5.

Finally, it is proposed to establish sets of needs that allow
defining in a multidimensional way the well-being of the
territory, community, or landscape and promoting socio-
ecological arrangements that allow us not only to have life
but to have it with dignity.

Data Availability

*e data used to support the findings of the study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the study of this paper.

Acknowledgments

Christian Erazo acknowledges support from University
Antonio Nariño through the Research Project 2018216.

References

[1] G. H. Brundtland, Our Common FutureOxford University
Press, Oxford, UK, 1987.

[2] D. Meadows, “Limits to growth, a report for the club of
Rome’s project on the predicament of mankind,” Universe
Books, Chelsea Green Publishing, Hartford, VT, USA, 1972.

[3] R. K. Turner, “Sustainability: principles and practice,” in
Sustainable Environmental Economics and Management:
Principles and Practice, R. K. Turner, Ed., pp. 3–36, Belhaven
Press, London, UK, 1993.

[4] J. Wu, “Landscape sustainability science: ecosystem services
and human well-being in changing landscapes,” Landscape
Ecology, vol. 28, no. 6, pp. 999–1023, 2013.

[5] J. Elkington, “Enter the triple bottom line,” in <e Triple
Bottom Line: Does it All Add up? Assessing the Sustainability of
Business and CSR, A. Henriques and J. Richardson, Eds.,
pp. 1–186, Earthscan, London, UK, 2004.

[6] J. M. Redondo, “Landscape sustainability analysis: method-
ological approach from dynamical systems,” in Journal of
Physics: Conference SeriesIOP Publishing, Bristol, UK, 2019.

[7] A. F. Filippov, “Differential equations with discontinuous
right-hand side,” American Mathematical Society Transla-
tions, vol. 42, no. 2, pp. 354–362, 1964.

[8] A. F. Filippov, “Equations with the right-hand side contin-
uous in x and discontinuous in t,” in Differential Equations
with Discontinuous Righthand Sides, pp. 3–47, Springer,
Berlin, Germany, 1988.

[9] M. A. Teixeira, “Stability conditions for discontinuous vector
fields,” Journal of Differential Equations, vol. 88, no. 1,
pp. 15–29, 1990.

[10] Y. A. Kuznetsov, S. Rinaldi, and A. Gragnani, “One-parameter
bifurcations in planar Filippov systems,” International Journal
of Bifurcation and Chaos, vol. 13, no. 8, pp. 2157–2188, 2003.

[11] M. Guardia, T. M. Seara, and M. A. Teixeira, “Generic bi-
furcations of low codimension of planar Filippov systems,”
Journal of Differential Equations, vol. 250, no. 4, pp. 1967–
2023, 2011.

[12] I. Remco, H. Nijmeijer, Dynamics and Bifurcations of Non-
smooth Mechanical Systems, Vol. 18, Springer Science &
Business Media, Berlin, Germany, 2013.

[13] M. Di Bernardo, C. J. Budd, A. R. Champneys et al., “Bifur-
cations in nonsmooth dynamical systems,” SIAM Review,
vol. 50, no. 4, pp. 629–701, 2008.

[14] V. Utkin, “Variable structure systems with sliding modes,”
IEEE Transactions on Automatic Control, vol. 22, no. 2,
pp. 212–222, 1977.

[15] E. Freire, E. Ponce, F. Rodrigo, and F. Torres, “Bifurcation sets
of continuous piecewise linear systems with two zones,” In-
ternational Journal of Bifurcation and Chaos, vol. 8, no. 11,
pp. 2073–2097, 1998.

[16] V. Carmona, E. Freire, E. Ponce, and F. Torres, “On sim-
plifying and classifying piecewise-linear systems,” IEEE
Transactions on Circuits and Systems I: Fundamental <eory
and Applications, vol. 49, no. 5, pp. 609–620, 2002.

[17] E. Ponce, J. Ros, and E. Vela, “Limit cycle and boundary
equilibrium bifurcations in continuous planar piecewise
linear systems,” International Journal of Bifurcation and
Chaos, vol. 25, no. 3, Article ID 1530008, 2015.

[18] J. Llibre, E. Ponce, and J. Ros, “Algebraic determination of
limit cycles in a family of three-dimensional piecewise linear
differential systems,” Nonlinear Analysis: <eory, Methods &
Applications, vol. 74, no. 17, pp. 6712–6727, 2011.

[19] B. R. de Freitas, J. Llibre, and J. C. Medrado, “Limit cycles of
continuous and discontinuous piecewise-linear differential
systems in R3,” Journal of Computational and Applied
Mathematics, vol. 338, pp. 311–323, 2018.

Complexity 13



[20] R. Cristiano and D. J. Pagano, “Two-parameter boundary
equilibrium bifurcations in 3D-filippov systems,” Journal of
Nonlinear Science, vol. 29, no. 6, pp. 2845–2875, 2019.

[21] O. Makarenkov and J. S. W. Lamb, “Dynamics and bifur-
cations of nonsmooth systems: a survey,” Physica D: Non-
linear Phenomena, vol. 241, no. 22, pp. 1826–1844, 2012.

[22] A. Colombo, M. di Bernardo, S. J. Hogan, and M. R. Jeffrey,
“Bifurcations of piecewise smooth flows: perspectives,
methodologies and open problems,” Physica D: Nonlinear
Phenomena, vol. 241, no. 22, pp. 1845–1860, 2012.

[23] F. Dercole, F. Della Rossa, A. Colombo, and Y. A. Kuznetsov,
“Two degenerate boundary equilibrium bifurcations in planar
Filippov systems,” SIAM Journal on Applied Dynamical
Systems, vol. 10, no. 4, pp. 1525–1553, 2011.

[24] M. R. Jeffrey and A. Colombo, “*e two-fold singularity of
discontinuous vector fields,” SIAM Journal on Applied Dy-
namical Systems, vol. 8, no. 2, pp. 624–640, 2009.

[25] M. R. Jeffrey and S. J. Hogan, “*e geometry of generic sliding
bifurcations,” SIAM Review, vol. 53, no. 3, pp. 505–525, 2011.

[26] M. R. Jeffrey, “Nondeterminism in the limit of nonsmooth
dynamics,” Physical Review Letters, vol. 106, no. 25, Article ID
254103, 2011.

[27] Z. Du, Y. Li, andW. Zhang, “Bifurcation of periodic orbits in a
class of planar Filippov systems,” Nonlinear Analysis: <eory,
Methods & Applications, vol. 69, no. 10, pp. 3610–3628, 2008.

[28] Z. Du and Y. Li, “Bifurcation of periodic orbits with multiple
crossings in a class of planar Filippov systems,”Mathematical
and Computer Modelling, vol. 55, no. 3-4, pp. 1072–1082,
2012.

[29] B. N. Arne, “Non-periodic motion caused by grazing inci-
dence in an impact oscillator,” Journal of Sound and Vibra-
tion, vol. 145, pp. 279–297, 1991.

[30] M. Di Bernardo, P. Kowalczyk, and A. Nordmark, “Bifur-
cations of dynamical systems with sliding: derivation of
normal-form mappings,” Physica D: Nonlinear Phenomena,
vol. 170, no. 3-4, pp. 175–205, 2002.

[31] M. Di Bernardo, P. Kowalczyk, and A. Nordmark, “Sliding
bifurcations: a novel mechanism for the sudden onset of chaos
in dry friction oscillators,” International Journal of Bifurcation
and Chaos, vol. 13, no. 10, pp. 2935–2948, 2003.

[32] D. J. W. Simpson, “A compendium of Hopf-like bifurcations
in piecewise-smooth dynamical systems,” Physics Letters A,
vol. 382, no. 35, pp. 2439–2444, 2018.

[33] L. Dieci and L. Lopez, “Sliding motion in Filippov differential
systems: theoretical results and a computational approach,”
SIAM Journal on Numerical Analysis, vol. 47, no. 3,
pp. 2023–2051, 2009.

[34] L. Dieci and L. Lopez, “A survey of numerical methods for
IVPs of ODEs with discontinuous right-hand side,” Journal of
Computational and Applied Mathematics, vol. 236, no. 16,
pp. 3967–3991, 2012.

[35] D. J. W. Simpson, “On resolving singularities of piecewise-
smooth discontinuous vector fields via small perturbations,”
Discrete & Continuous Dynamical Systems-A, vol. 34, no. 9,
pp. 3803–3830, 2014.

[36] D. J. W. Simpson and R. Kuske, “Stochastic perturbations of
periodic orbits with sliding,” Journal of Nonlinear Science,
vol. 25, no. 4, pp. 967–1014, 2015.

[37] C. Erazo, M. E. Homer, P. T. Piiroinen, and M. Di Bernardo,
“Dynamic cell mapping algorithm for computing basins of
attraction in planar Filippov systems,” International Journal of
Bifurcation and Chaos, vol. 27, no. 12, Article ID 1730041,
2017.

[38] E. Bossolini, M. Brns, and K. U. Kristiansen, “Canards in
stiction: on solutions of a friction oscillator by regularization,”
SIAM Journal on Applied Dynamical Systems, vol. 16, no. 4,
pp. 2233–2258, 2017.

[39] E. Blokhina, D. Galayko, D. Fournier-Prunaret, and O. Feely,
“Sliding in a piecewise-smooth dynamical system with a hold-
on effect,” Physics Letters A, vol. 378, no. 42, pp. 3085–3092,
2014.

[40] M. Guardia, S. J. Hogan, and T. M. Seara, “An analytical
approach to codimension-2 sliding bifurcations in the dry-
friction oscillator,” SIAM Journal on Applied Dynamical
Systems, vol. 9, no. 3, pp. 769–798, 2010.

[41] P. Kowalczyk and P. T. Piiroinen, “Two-parameter sliding
bifurcations of periodic solutions in a dry-friction oscillator,”
Physica D: Nonlinear Phenomena, vol. 237, no. 8, pp. 1053–
1073, 2008.

[42] A. Pratap, “Finite-time synchronization criterion of graph
theory perspective fractional-order coupled discontinuous
neural networks,”Advances in Difference Equations, vol. 2020,
p. 1, 2020.

[43] A. Pratap, “Quasi-pinning synchronization and stabilization
of fractional order BAM neural networks with delays and
discontinuous neuron activations,” Chaos, Solitons and
Fractals, vol. 131, 2020.

[44] A. Pratap, R. Raja, J. Cao, C. P. Lim, and O. Bagdasar,
“Stability and pinning synchronization analysis of fractional
order delayed Cohen-Grossberg neural networks with dis-
continuous activations,” Applied Mathematics and Compu-
tation, vol. 359, pp. 241–260, 2019.

[45] X. Yang, Q. Song, J. Liang, and B. He, “Finite-time syn-
chronization of coupled discontinuous neural networks with
mixed delays and nonidentical perturbations,” Journal of the
Franklin Institute, vol. 352, no. 10, pp. 4382–4406, 2015.

[46] M. Forti and P. Nistri, “Global convergence of neural net-
works with discontinuous neuron activations,” IEEE Trans-
actions on Circuits and Systems I: Fundamental <eory and
Applications, vol. 50, no. 11, pp. 1421–1435, 2003.

[47] C. Chen, “Finite-time Mittag-Leffler synchronization of
fractional-order delayed memristive neural networks with
parameters uncertainty and discontinuous activation func-
tions,” Chinese Physics B, vol. 29, p. 4, 2020.

[48] S. Liu, Y. Yu, S. Zhang, and Y. Zhang, “Robust stability of
fractional-order memristor-based Hopfield neural networks
with parameter disturbances,” Physica A: Statistical Mechanics
and Its Applications, vol. 9, pp. 845–854, 2018.

[49] A. Abdurahman, H. Jiang, and C. Hu, “General decay syn-
chronization of memristor-based Cohen-Grossberg neural
networks with mixed time-delays and discontinuous activa-
tions,” Journal of the Franklin Institute, vol. 354, no. 15,
pp. 7028–7052, 2017.

[50] Z. Cai, L. Huang, M. Zhu, and D. Wang, “Finite-time sta-
bilization control of memristor-based neural networks,”
Nonlinear Analysis: Hybrid Systems, vol. 20, no. 37, pp. 37–54,
2016.

[51] Y. Gu, Y. Yu, and H. Wang, “Synchronization for fractional-
order time-delayed memristor-based neural networks with
parameter uncertainty,” Journal of the Franklin Institute,
vol. 353, no. 15, pp. 3657–3684, 2016.

[52] H. Bao, J. H. Park, and J. Cao, “Matrix measure strategies for
exponential synchronization and anti-synchronization of
memristor-based neural networks with time-varying delays,”
AppliedMathematics and Computation, vol. 270, pp. 543–556,
2015.

14 Complexity



[53] H. Wu, R. Li, S. Ding, X. Zhang, and R. Yao, “Complete
periodic adaptive antisynchronization of memristor-based
neural networks with mixed time-varying delays,” Canadian
Journal of Physics, vol. 92, no. 11, pp. 1337–1349, 2014.

[54] Z. Cai and L. Huang, “Lyapunov-Krasovskii stability analysis
of delayed Filippov system: applications to neural networks
with switching control,” International Journal of Robust and
Nonlinear Control, vol. 30, no. 2, pp. 699–718, 2020.

[55] Z. Cai, L. Huang, and L. Zhang, “Improved switching con-
trollers for finite-time synchronization of delayed neural
networks with discontinuous activations,” Journal of the
Franklin Institute, vol. 354, no. 15, pp. 6692–6723, 2017.

[56] Z. Cai, L. Huang, D. Wang, and L. Zhang, “Periodic syn-
chronization in delayed memristive neural networks based on
Filippov systems,” Journal of the Franklin Institute, vol. 352,
no. 10, pp. 4638–4663, 2015.

[57] H. Wu, “Robust almost periodic dynamics for interval neural
networks with mixed time-varying delays and discontinuous
activation functions,” Abstract and Applied Analysis,
vol. 2013, Article ID 630623, 13 pages, 2013.

[58] J. A. Taborda, F. Angulo, and G. Olivar, “Bifurcation analysis
on nonsmooth torus destruction scenario of delayed-pwm
switched buck converter,” International Journal of Bifurcation
and Chaos, vol. 19, no. 7, pp. 2193–2212, 2009.

[59] A. Jorge, G. Olivar, and F. Angulo, “Smooth and Filippov
models of sustainable development: bifurcations and nu-
merical computations,” Differential Equations and Dynamical
Systems, vol. 21, pp. 173–184, 2013.
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R. J. Escalante-González 1 and Eric Campos 2

1Electrical, Electronic and Mechatronics Department, Technological Institute of San Luis Potośı, Tecnológico Avenue,
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+is work is dedicated to the study of an approach that allows the generation of hidden attractors based on a class of piecewise-
linear (PWL) systems. +e systems produced with the approach present the coexistence of self-excited attractors and hidden
attractors such that hidden attractors surround the self-excited attractors. +e first part of the approach consists of the generation
of self-excited attractors based on pairs of equilibria with heteroclinic orbits.+en, additional equilibria are added to the system to
obtain a bistable system with a second self-excited attractor with the same characteristics. It is conjectured that a necessary
condition for the existence of the hidden attractor in this class of systems is the rupture of the trajectories that resemble
heteroclinic orbits that join the two regions of space that surround the pairs of equilibria; these regions resemble equilibria when
seen on a larger scale. With the appearance of a hidden attractor, the system presents a multistable behavior with hidden and self-
excited attractors.

1. Introduction

+ere are two classes of attractors according to [1], which are
defined as follows: the first class is given by those classical
attractors excited from unstable equilibria called self-excited
attractors whose basin of attraction intersects at least a
neighborhood of an equilibrium point [2], and they are not
difficult to find via numerical methods, and the second class
is called hidden attractors whose basin of attraction does not
contain neighborhoods of equilibria. +e localization of this
last class represents a more difficult task which has led to
interesting approaches as the analytical-numerical algorithm
suggested in [1] for the localization of hidden attractors of
Chua’s circuit.

Definition 1 (see [2]).“An attractor is called a self-excited
attractor if its basin of attraction intersects with any open
neighborhood of an unstable fixed point. Otherwise, it is
called a hidden attractor.”

A hidden attractor is commonly observed in systems
without equilibria or systems with a stable equilibrium point.
+erefore, these classes of systems could serve as a starting
point in the search for hidden attractors. However,
according to the definition, a hidden attractor could be
found in a system with any type and number of equilibria as
well as any kind of attractors. Multistability is usually related
to the existence of more than one attractor. Different sce-
narios of multistability are reported in [3].
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Arnold Sommerfeld worked with one of the first dy-
namical systems with oscillating behavior but no equilibria
[4]. In 1994, a conservative system without equilibria that
presents a chaotic flow was reported in [5]. +is system,
known as Sprott case A, presents two quadratic nonline-
arities, and it is a particular case of the Nose-Hoover system
[6]. After this work, several three-dimensional systems
without equilibria with chaotic attractors have been re-
ported, like the one in [7] with two quadratic nonlinearities
based on the Sprott system case D, the one in [8] with three
quadratic nonlinearities, or the piecewise-linear system re-
ported in [9]. In [10], three methods are used to produce
seventeen three-dimensional systems without equilibria
with chaotic flows, which present only quadratic
nonlinearities.

Four-dimensional systems without equilibria with cha-
otic or hyperchaotic attractors have also been reported. For
instance, systems with quadratic and cubic nonlinearities
with hyperchaotic attractors are reported in [11, 12].+e first
piecewise-linear system without equilibria that exhibits a
hyperchaotic attractor is reported in [13]. It is the result of
the approximation made to the quadratic nonlinearities of
an extended diffusionless Lorenz system. In [14], a four-
dimensional system without equilibria with chaotic mul-
tiwing butterfly attractors is presented.

Since the double-scroll attractor in Chua’s circuit, there
exists an interest to generate double-scroll and multiscroll
attractors. In circuits based on Chua’s circuit, the imple-
mentation of piecewise-linear resistors with multiple seg-
ments is not an easy task due to their irregular breakpoints
and slopes. Some approaches for self-excited scroll attractors
have been reported in [15–19]. Recently, in [20], an approach
for the generation of multiscroll hidden attractors with any
number of scrolls in a system without equilibria was in-
troduced. In [21], two systems with multiscroll hidden
attractors are constructed by introducing nonlinear func-
tions into Sprott system case A. In [22], a no-equilibrium
system with a multiscroll hidden chaotic sea is introduced.
In [23], a memristive system with chaotic attractors is
presented. +e multiscroll hidden attractors and multiwing
hidden attractors exhibited by the system are sensitive to the
transient simulation.

In [24], the widening of the basins of attraction of a class
of piecewise-linear systems is studied. Also, a system with a
double-scroll hidden attractor along with two double-scroll
self-excited attractors is introduced. Based on this result, it is
natural to think about the possibility of generating hidden
attractors via multistable systems with double-scroll self-
excited attractors.

An approach that allows the generation of hidden
attractors based on a kind of piecewise-linear (PWL) system
is studied in this work. +e study reveals a relationship
between the emergence of a hidden attractor and the ex-
istence of trajectories that, when are seen on a larger scale,
resemble heteroclinic orbits joining the self-excited
attractors.

+e study performed in this work suggests that some
classes of systems with a multistable behavior could be
designed geometrically to exhibit hidden and self-excited

attractors. Chaotic scroll attractors have been widely studied
and have been found useful in the design of pseudorandom
number generation [25]. It has been demonstrated that the
number of scrolls on some classes of systems affects the
properties of the generated sequences determining if they
fulfill the statistical test of the NIST and affecting the stream
ciphering of images [26]. Some chaotic systems can be re-
stored by reconstructing the attractor, which is not desirable
in an encryption algorithm since it would reduce the security
[27]. In a hidden scroll attractor, the restoration of the
system is harder [27]. +us, the class of systems discussed in
this work could lead to the development of new crypto-
graphic algorithms with more complex multistable systems
with self-excited and hidden scroll attractors.

+e structure of the article is as follows: In Section 2, a
class of piecewise-linear systems with double-scroll self-
excited chaotic attractors is introduced. In Section 3, ad-
ditional equilibria are considered to generate two self-ex-
cited attractors. In Section 4, the transitory behavior of the
trajectories surrounding the self-excited attractors of the
system is studied. In Section 5, the relation between the
emergence of a hidden attractor and the existence of tra-
jectories that, when are seen on a larger scale, resemble
heteroclinic orbits joining the self-excited attractors is dis-
cussed. Finally, conclusions are given in Section 6.

2. Heteroclinic Chaos

To introduce the approach, let us first consider a partition P

of the metric space X ⊂ R3, endowed with the Euclidean
metric d. Let P � P1, . . . , Pη􏽮 􏽯(η> 1) be a finite partition of
X, that is, X � ∪1≤i≤ηPi, and Pi ∩Pj � ∅ for i≠ j. Each el-
ement of the set P is called an atom and each atom contains a
saddle equilibrium point. Due to these atoms, Pi have a
saddle equilibrium point, then within each atom there is a
stable manifold and also an unstable manifold. +ese stable
manifolds Ws and unstable manifolds Wu are necessary for
the mechanism of expansion and contraction present in
chaotic dynamics.

Let T: X⟶ X, with X ⊂ R3, be a piecewise-linear
dynamical system whose dynamics is given by a family of
subsystems of the form

_x � Ax + f(x)B, (1)

where x � (x1, x2, x3)
T ∈ R3 is the state vector, and A �

αij􏽮 􏽯 ∈ R3×3 is a linear operator, B � (β1, β2, β3)
T is a

constant vector, and f is a functional. +e vector f(x)B is a
constant vector in each atom Pi such that the equilibria are
given by x∗eqi

� (x∗1eqi

, x∗2eqi

, x∗3eqi

)T � − f(x)A− 1B ∈ Pi, with
i � 1, . . . , η.

Oscillations of the flow around the equilibria x∗eqi
are

desired. Let us assign a negative real eigenvalue λ1 � c to the
complexification of the operator A(AC) with the corre-
sponding eigenvector v1, and a pair of complex conjugate
eigenvalues with positive real part λ2 � a + ib and λ3 � a − ib

with the corresponding eigenvectors v2 and v3. Additionally,
we restrict b/a≥ 10. +us the stable and unstable manifolds
are given by Ws

x∗eqi

� x + x∗eqi
: x ∈ span v1􏼈 􏼉􏽮 􏽯 and Wu

x∗eqi

�
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x + x∗eqi
: x ∈ span v2, v3􏼈 􏼉􏽮 􏽯, where v1, v2 and v3 are given as

follows:

v1 �

1

0

1
2
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,

v2 �

0

− 1

0
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,

v3 �

− 1

0

1
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.

(2)

+e matrix of the linear operator A is defined as follows:

A �

a

3
+
2c

3
b

2c

3
−
2a

3

−
b

3
a

2b

3

c

3
−

a

3
− b

2a

3
+

c

3
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. (3)

In this work, we denote the local stable and unstable
manifolds of an equilibrium point x∗eq as Ws

x∗eq
and Wu

x∗eq
,

respectively, and they are responsible for connecting the
equilibria of a dynamical system. Recall that a heteroclinic
orbit is a path that joins two equilibrium points in the phase
space. Similarly, a homoclinic orbit is a path that starts and
ends at the same equilibrium point.

We also denoted the closure of a set Pi as cl(Pi).+us, for
each pair of atoms Pi and Pj, i≠ j, if cl(Pi)∩ cl(Pj)≠∅, then
these atoms are adjacent and the switching surface between
them is given by the intersection, i.e., SWij � cl(Pi)∩ cl(Pj).

Each SWij has associated an equation of the form
􏽢Ax1 + 􏽢Bx2 + 􏽢Cx3 + D � N12 · xT + D � 0, with 􏽢A> 0 where
N12 � (􏽢A, 􏽢B, 􏽢C) is the normal vector. +en the atoms Pi, i �

1, 2 are defined as follows:

P1 � x ∈ R3
: x3 > 0,N12 · xT ≤ − D􏽮 􏽯

∪ x ∈ R3
: x3 ≤ 0,N12 · xT < − D􏽮 􏽯,

P2 � x ∈ R3
: x3 > 0,N12 · xT > − D􏽮 􏽯

∪ x ∈ R3
: x3 ≤ 0,N12 · xT ≥ − D􏽮 􏽯.

(4)

Remark 1. +e divergence of the PWL system (1) consid-
ering the linear operator A given by (3) is ∇ � 2a + c, so the

system is dissipative in each atom of the partition P if
2a< |c|.

With the atoms of a P partition containing a saddle
equilibrium point in each of them as defined above, it is
possible to generate heteroclinic orbits. To generate a het-
eroclinic orbit, at least two equilibria are required.+erefore,
consider a partition with two atoms P � P1, P2􏼈 􏼉, the con-
stant vector B ∈ R3 is defined as follows:

B �

−
a

3
−
2c

3

b

3

a

3
−

c

3
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, (5)

and the functional f is given by

f(x) �
− α, x ∈ P1,

α, x ∈ P2,
􏼨 (6)

with α> 0. So the equilibria are at x∗eq1 � (− α, 0, 0)T ∈ P1 and
x∗eq2 � (α, 0, 0)T ∈ P2, and the stable and the unstable
manifolds are given by

W
s
x∗eq1

� x ∈ R3
: | x1 + α � 2x3, x2 � 0􏽮 􏽯,

W
u
x∗eq1

� x ∈ R3
: | x1 + x3 � − α􏽮 􏽯,

W
s
x∗eq2

� x ∈ R3
: | x1 − α � 2x3, x2 � 0􏽮 􏽯,

W
u
x∗eq2

� x ∈ R3
: | x1 + x3 � α􏽮 􏽯.

(7)

Proposition 1 (see [28, 29]). “:e hyperbolic system given by
(1), (3), (5), and (6) generates a pair of heteroclinic orbits if the
switching surface between the atoms P1 and P2 is given by the
plane SW12 � x ∈ R3: 2x1 − x3 � 0􏼈 􏼉.”

+e points where the stable and unstable manifolds
intersect at SW are given by

xin1
� cl W

s
x∗eq1

􏼒 􏼓∩ cl W
u
x∗eq2

􏼒 􏼓 �
α
3

, 0,
2α
3

􏼒 􏼓
T

,

xin2
� cl W

s
x∗eq2

􏼒 􏼓∩ cl W
u
x∗eq1

􏼒 􏼓 � −
α
3

, 0, −
2α
3

􏼒 􏼓
T

.

(8)

+ese points xin1 and xin2 belong to SW12 and xin1 ∈ P1
and xin2 � P2. Because these points xin1 and xin2 belong to the
stable manifolds Ws

x∗eq1
and Ws

x∗eq2
, respectively, they are

points whose trajectories remain in atoms P1 and P2, re-
spectively. +us, the heteroclinic orbits are defined as
follows:

HO1 � x ∈ φ xin1
, t􏼐 􏼑: t ∈ (− ∞,∞)􏽮 􏽯,

HO2 � x ∈ φ xin2
, t􏼐 􏼑: t ∈ (− ∞,∞)􏽮 􏽯.

(9)
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For the system given by (1), (3), (5), and (6), it is possible
to find several points x0 ∈ HOi such that |xeqi

− x0|< ε with ε
arbitrarily small and i � 1, 2. +us, one can find initial
conditions for the simulation of the heteroclinic orbits as
close to the equilibria as desired. One example of the initial
condition formula for P1 is as follows:

x10 �

2
3
αe

− (2kaπ/b)
− α

0

−
2
3
αe

− (2kaπ/b)
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, (10)

and for P2

x20 �

−
2
3
αe

− (2kaπ/b)
+ α

0

2
3
αe

− (2kaπ/b)
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, (11)

with k ∈ Z+.

Example 1. Consider the system (1), (3), (5), and (6) with
SW12 � x ∈ R3: 2x1 − x3 � 0􏼈 􏼉 and the parameters
a � 0.2, b � 5, c � − 3, α � 1.

+e above-defined system fulfills Proposition 1, so it
presents a heteroclinic orbit. From (10) and (11), two initial
conditions,

x01 � (− 0.9999976751050959, 0, − 2.3248949041393315e − 6)
T
,

x02 � (0.9999976751050959, 0, 2.3248949041393315e − 6)
T
,

(12)

are chosen with k � 50 to simulate the two heteroclinic
orbits shown in Figure 1(a). A double-scroll attractor with
heteroclinic chaos is generated, and it is shown in Figure 1(a)
for the initial condition x0 � (0, 0, 0)T.

+e unstable manifolds Wu
x∗eq1

� x ∈{ R3: x1 + x3 + 1 �

0} and Wu
x∗eq2

� x ∈ R3: x1 + x3 − 1 � 0􏼈 􏼉 and the stable
manifolds Ws

x∗eq1
� x ∈ R3: (x1 + 1)/2 � x3; x2 � 0􏼈 􏼉 and

Ws
x∗eq2

� x ∈ R3: (x1 − 1)/2 � x3; x2 � 0􏼈 􏼉. +e intersection
points are given by cl(Ws

x∗eq2
) ∩ cl(Wu

x∗eq1
) � (− (1

/3), 0, − (2/3))T, cl(Ws
x∗eq1

)∩ cl(Wu
x∗eq2

) � ((1/3), 0, (2/3))T.

Proposition 2 (see [29]). “If the partition P contains more
than two atoms P1, P2, . . . , Pk􏼈 􏼉, with 2< k ∈ Z+, and each
atom is a hyperbolic set defined as above. Furthermore, the
atoms by pairs Pi and Pi+1 fulfill Proposition 1. :en, the
system generates 2(k − 1) heteroclinic orbits.”

Proof. A direct consequence of Proposition 1. □

3. Emergence of Multiscroll Attractors through
Multiple Heteroclinic Orbits

According to the Proposition 2, it is possible to generate
multiscroll attractors based on multiple heteroclinic orbits.
So in this Section, we consider more than two hyperbolic sets
in the partition with the aim of studying the existence of
heterocyclic cycles and the attractors exhibited by the system
when varying the location of the equilibria.

Consider the partition P � P1, P2, P3, P4􏼈 􏼉 along with the
piecewise-linear dynamical system (1), with A and B given
by (3) and (5), respectively.+us the functionf(x) is defined
in the four atoms as follows:

f(x) �

− α − c, x ∈ P1,

α − c, x ∈ P2,

− α + c, x ∈ P3,

α + c, x ∈ P4,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

where α, c> 0. +e equilibria are at

x∗eq1 �

− (c + α)

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq2 �

− (c − α)

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq3 �

(c − α)

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq4 �

(c + α)

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(14)

so x∗eq1 ∈ P1, x∗eq2 ∈ P2, x∗eq3 ∈ P3 and x∗eq4 ∈ P4. +e location
of the equilibria according to the parameters 0< α and 0< c

is as follows:

(i) +e equilibria are on the x1 axis and for α � c the
system only have three equilibria. Otherwise, it has
four equilibria.

(ii) For α< c the distance of the equilibria x∗eq1 and x∗eq4
to the origin O � (0, 0, 0)T are the same d(x∗eq1 , O) �

d(x∗eq4 , O) and also for d(x∗eq2 , O) � d(x∗eq3 , O).
(iii) For c � 2α, all equilibria are at the same distance

d(x∗eq1 , x
∗
eq2

) � d(x∗eq2 , x
∗
eq3

) � d(x∗eq3 , x
∗
eq4

) � 2α.
(iv) +e other case is when c≠ 2α, and d(x∗eq1 , x

∗
eq2)

� d(x∗eq3 , x
∗
eq4) � 2α, but d(x∗eq2 , x

∗
eq3)≠ 2α.

In this section, we are especially interested in the case of
c≠ 2α such that c> α with switching surfaces given by
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SW12 � cl P1( 􏼁∩ cl P2( 􏼁 � x ∈ R3
: 2x1 − x3 � − 2c􏽮 􏽯,

SW23 � cl P2( 􏼁∩ cl P3( 􏼁 � x ∈ R3
: 2x1 − x3 � 0􏽮 􏽯,

SW34 � cl P3( 􏼁∩ cl P4( 􏼁 � x ∈ R3
: 2x1 − x3 � 2c􏽮 􏽯,

(15)

which fulfill that

SWi(i+1) ∩ x ∈ R3
: x3 > 0􏽮 􏽯 ∈ Pi,

SWi(i+1) ∩ x ∈ R3
: x3 ≤ 0􏽮 􏽯 ∈ Pi+1.

(16)

+is way of defining the switching surfaces provokes that
the intersections between them and the stable manifolds
contain a point, and the intersections between them and the
unstable manifolds are the empty set, i.e., Wu

x∗eq1
∩ SW12 � ∅

and Ws
x∗eq1
∩ SW12 ≠∅.

Let us define two points, pb � Ws
x∗eq1
∩ SW12 and pa �

Ws
x∗eq3
∩ SW23 as shown in Figure 2.+en pa and pb are given

as follows:

pa �

−
(c − α)

3

0

−
2(c − α)

3
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,

pb �

α
3

− c

0

2α
3
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.

(17)

+e set cl(Wu
x∗eq2

)∩ SW12 can be written as follows:

x ∈ R3
: x � (0, ε, 0)

T
+ pb, ε ∈ R􏽮 􏽯, (18)

and the set cl(Wu
x∗eq2

)∩ SW23 can be written as follows:

x ∈ R3
: x � (0, ε, 0)

T
+ pa, ε ∈ R􏽮 􏽯. (19)

Consider the transformation z(2) � Q− 1(x − x∗eq2), since
Q− 1(0, ε, 0)T � (0, − ε, 0)T, so z(2) � (0, ε, 0)T +Q− 1(pb

− x∗eq2), where Q− 1(pb − x∗eq2) is a point on the plane
z

(2)
2 − z

(2)
3 . And z(2) � (0, ε, 0)T + Q− 1(pa − x∗eq2), where

Q− 1(pa − x∗eq2) is also a point on the plane z
(2)
2 − z

(2)
3 . +en,

the set (18) in z(2) coordinates is given by

x1

-2
2

x 2

-1

1

x 3

-1

1

(a)

x1

-2
2

x 2

-1

1

x 3

-1

1

(b)

Figure 1: In (a) the heteroclinic loop of the system (1), (3), (5), and (6) with the switching surface x ∈ R3: 2x1 − x3 � 0􏼈 􏼉, the parameters
a � 0.2, b � 5, c � − 3, α � 1, and the initial conditions x01 � (− 0.9999976751050959, 0, − 2.3248949041393315e − 6)T (red) and
x02 � (0.9999976751050959, 0, 2.3248949041393315e − 6)T (blue), and in (b) a double-scroll attractor that emerges from a heteroclinic orbit
using the following initial condition x0 � (0, 0, 0)T and the same parameters.

SW12

x1

x 3

SW23 SW34

pb

pa

γ – αα

xeq1* xeq2* xeq3* xeq4*

Wuxeq2*

Wsxeq2*

Figure 2: Projection of the stable and unstable manifolds and
switching planes onto the x1 − x3 plane. +e diagram shows the
location of the unstable manifold marked with red lines, the stable
manifold marked with blue lines, and switching planes marked
with green lines.
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z(2) ∈ R3
: z(2)

� 0, ε,
2α
3

􏼒 􏼓
T

, ε ∈ R􏼨 􏼩, (20)

and the set (19) in z(2) coordinates is given by

z(2) ∈ R3
: z(2)

� 0, ε,
2(α − c)

3
􏼠 􏼡

T

, ε ∈ R
⎧⎨

⎩

⎫⎬

⎭. (21)

+us, the sets (20) and (21) are orthogonal lines to the
z

(2)
3 axis. +e points pa and pb in z(2) coordinates will be

denoted as follows:

paz �

0

0

2(α − c)

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

pbz �

0

0

2α
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(22)

With the uncoupled system in z(2) coordinates, we can
analyze the flow on the plane z

(2)
2 − z

(2)
3 close to z∗(2)

eq2 .

_z
(2)
2 � az

(2)
2 − bz

(2)
3 ,

_z3 � bz
(2)
2 + az

(2)
3 ,

(23)

r _r � z
(2)
2 z2

. (2)
+ z

(2)
3 z3

. (2)
� ar

2
, (24)

_r � ar, (25)

r � r0e
at

. (26)

It follows from (22) that if α � c − α, then the points paz

and pbz are at the same distance from z∗ (2)
eq2 � (0, 0, 0)T.

+us, from (26), it follows that the trajectories with initial
conditions paz and pbz remain in P2 for all t< 0.

Our case study is c − α≠ α, such that c> α. Let us
consider the case c − α> α, and it can be seen from (22) that
pbz is closer to z(2)

eq2 than paz, this is, d(pbz, z(2)
eq2)

< d(paz, z(2)
eq2). +en, if c is sufficiently big with respect to α,

the trajectory with the initial condition paz will eventually
reach the set given by (20) for t< 0; i.e., the trajectory of the
initial condition pa ∈ SW23 reaches the switching plane
SW12 and not the equilibrium point x∗eq2.+is means that in x
coordinates, the heteroclinic orbit from x∗eq2 to x∗eq3 does not
exist. Similarly, when pbz is further than paz from z∗ (2)

eq2
, this

is, d(paz, z(2)
eq2

)< d(pbz, z(2)
eq2

), for c sufficiently small, the
trajectory with the initial condition pbz will eventually reach
the set given by (21) for t< 0, i.e., the trajectory of the initial
condition pb ∈ SW12 reaches the switching plane SW23 and

not the equilibrium point x∗eq2 . +is means that in x coor-
dinates, the heteroclinic orbit from x∗eq2 to x

∗
eq1 does not exist.

+e next proposition warranty the existence of hetero-
clinic orbits when c belongs to an interval of real numbers
where the case c − α≠ α is considered, such that c> α.

Proposition 3. :e hyperbolic system given by (1), (3), (5),
and (13) with the switching surfaces given in (15) generates six
heteroclinic orbits if

α e
− aτ cos(bτ) − 1( 􏼁

e
− aτ cos(bτ)

> c> α 1 − e
− aτ cos(bτ)( 􏼁, (27)

where

τ �
arctan(b/a) + π/2

b
. (28)

Proof. To find the values of c for which these heteroclinic
orbits exist, let us assume pa is a point of the heteroclinic
orbit joining x∗eq2 and x∗eq3 , i.e.,

lim
t⟶− ∞

φ(pa, t) � x∗eq2 ,

lim
t⟶∞

φ(pa, t) � x∗eq3 .
(29)

Because pa ∈Ws
x∗eq3

then limt⟶∞φ(pa, t) � x∗eq3 . For the
other part of the heteroclinic orbit, we analyze the system in
z(2) coordinates, we have paz, pbz, z∗ (2)

eq2 , and the orbit is
given by z(2)(t). We assume that z(2)(0) � paz, so we want
that z(2)(t) remains in P2 for all t< 0. +us, we need to find
the first maximum in the component z

(2)
3 of the trajectory

whose initial condition is paz for t< 0. According to (22), the
third component of paz and pbz are (2(α − c)/3)< 0 and
0< (2α/3), respectively. +is maximum gives us the inter-
section point between the trajectory z(2)(t) and the axis z

(2)
3 .

+en we can compare the third component of the trajectory
z(2)(t) and the point pbz, in terms of α and c to ensure that
z(2)(t) remains in P2 for all t< 0.

+e trajectory z(2)(t) for the initial condition
z(2)
0 � (z

(2)
10 , z

(2)
20 , z

(2)
30 )T is as follows:

z
(2)
1 (t) � z

(2)
10 e

− ct
,

z
(2)
2 (t) � z

(2)
20 e

at cos(bt) − z
(2)
30 e

at sin(bt),

z
(2)
3 (t) � z

(2)
20 e

at sin(bt) + z
(2)
30 e

at cos(bt).

(30)

+is set of equations is analyzed for t< 0. +e same analysis
can be done for 0< t by using the following set of equations:

z
(2)
1 (t) � z

(2)
10 e

ct
, (31)

z
(2)
2 (t) � z

(2)
20 e

− at cos(bt) + z
(2)
30 e

− at sin(bt), (32)

z
(2)
3 (t) � − z

(2)
20 e

− at sin(bt) + z
(2)
30 e

− at cos(bt). (33)

Since we are looking for the first maximum in z
(2)
3 (t) for

0< t.
+en from (33) with the initial condition paz given in (22),
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z
(2)
3 (t) �

2(α − c)

3
e

− at cos(bt), (34)

_z
(2)
3 (t) � −

2(α − c)

3
e

− at
(b sin(bt) + a cos(bt)), (35)

_z
(2)
3 (t) � −

2(α − c)

3
e

− at

������

a
2

+ b
2

􏽱

cos bt − arctan
b

a
􏼠 􏼡􏼠 􏼡􏼠 􏼡,

(36)

to find the maximum, we equate to zero

0 � −
2(α − c)

3
e

− at

������

a
2

+ b
2

􏽱

cos bt − arctan
b

a
􏼠 􏼡􏼠 􏼡􏼠 􏼡.

(37)
+us, it turns out that

bt − arctan
b

a
􏼠 􏼡 �

π
2

+ nπ, with n ∈ Z,

t �
arctan(b/a)

b
+

π
2b

+
nπ
b

, with n ∈ Z.

(38)

We will call tmax the time for the first maximum.+us, it
follows that

tmax �
arctan(b/a) + π/2

b
(39)

then from (34),

z
(2)
3 tmax( 􏼁 �

2(α − c)

3
e

− atmax cos btmax( 􏼁. (40)

+is maximum z
(2)
3 must be part of P2, since pbz belongs to

P1 it follows from (22) that

2α
3
>
2(α − c)

3
e

− atmax cos btmax( 􏼁,

α e
− atmax cos btmax( 􏼁 − 1􏼐 􏼑

e
− atmax cos btmax( 􏼁

> c.

(41)
Now, let us assume pb is a point of the heteroclinic orbit

joining x∗eq2 and x∗eq1, i.e.,

lim
t⟶− ∞

φ(pb, t) � x∗eq2 ,

lim
t⟶∞

φ(pb, t) � x∗eq1 .
(42)

Because pb ∈Ws
x∗eq1

then limt⟶∞φ(pb, t) � x∗eq1.
Following the same procedure described above but

looking for a minimum, due to the third component of pbz is
0< (2α/3). It is found that

tmin �
arctan(b/a) + π/2

b
. (43)

+en from (33) and the point pbz given in (22),

z
(2)
3 tmin( 􏼁 �

2α
3

e
− atmin cos btmin( 􏼁. (44)

+is minimum z
(2)
3 must be part of P2, since paz belongs to

P3 it follows from (22) that

2(α − c)

3
<
2α
3

e
− atmin cos btmin( 􏼁,

c> α 1 − e
− atmin cos btmin( 􏼁􏼐 􏼑.

(45)

+en defining τ � tmax � tmin

α e
− aτ cos(bτ) − 1( 􏼁

e
− aτ cos(bτ)

> c> α 1 − e
− aτ cos(bτ)( 􏼁. (46)

+e same conclusion applies to the point x∗eq3 due to the
symmetry of the system. Finally, the heteroclinic orbit from
x∗eq1 to x

∗
eq2 and the one from x∗eq4 to x

∗
eq3 are always present in

the system as there are no more switching surfaces. □
To illustrate the effect of the parameters c, α, a, and b on

the existence of heteroclinic orbits of the system given by (1),
(3), (5), (13), and (15), we use Proposition 3 to determine the
open interval of real values for c given by

Γ � α 1 − e
− aτ cos(bτ)( 􏼁,

α e
− aτ cos(bτ) − 1( 􏼁

e
− aτ cos(bτ)

􏼠 􏼡, (47)

with τ � (arctan(b/a) + π/2)/b. So, six initial conditions
were calculated as in (10) and (11) with k � 50 for the pa-
rameters a � 0.2, b � 5, c � − 3, and α � 1. Four cases of
different values of c are analyzed.+e first two correspond to
c1,2 ∈ Γ and the last two correspond to cL,U ∉ Γ:.

(1) For this case c1 ∈ Γ, with
c1 � α(1 − e− aτ cos(bτ)) + 0.00001, so there exist six
heteroclinic orbits, as shown in Figure 3(a).

(2) For c2 � ((α(e− aτ cos(bτ) − 1)/e− aτ cos(bτ))

− 0.00001) ∈ Γ, in this case, there exist also six het-
eroclinic orbits as shown in Figure 3(b).

(3) In this case cL � α(1 − e− aτ cos(bτ)) ∉ Γ, then there
exist four heteroclinic orbits, as shown in Figure 3(c).
+e green orbit stating close to x∗eq2 cannot reach x∗eq1
and goes to P3. In the same way, the yellow orbit
starting close to x∗eq3 cannot reach x

∗
eq4 and goes to P2.

+en there is no heteroclinic orbits from x∗eq2 to x∗eq1
and from x∗eq3 to x∗eq4 .

(4) For cU � (α(e− aτ cos(bτ) − 1)/e− aτ cos(bτ)) ∉ Γ,
there also exist four heteroclinic orbits as shown in
Figure 3(d). +e red orbit stating close to x∗eq2 cannot
reach x∗eq3 and goes to P1. In the same way, the blue
orbit starting close to x∗eq3 cannot reach x∗eq2 and goes
to P4. +en there is no heteroclinic orbit from x∗eq2 to
x∗eq3 , nor vice versa.

+e open interval Γ is given as Γ � (cL, cU), where

cL � α 1 − e
− aτ cos(bτ)( 􏼁 ≈ 1.8826170015164836,

cU �
α e

− aτ cos(bτ) − 1( 􏼁

e
− aτ cos(bτ)

≈ 2.1329942639693464.

(48)

+e four cases mentioned generate three types of systems
determined by c and Γ. For instance, for c � 2 ∈ Γ and α � 1
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corresponds to the above first and second cases. +en the
system presents six heteroclinic orbits which comprise three
heteroclinic loops between equilibria: x∗eq1 and x∗eq2 ; x

∗
eq2 and

x∗eq3 ; x
∗
eq3 and x∗eq4 . For c � 1.5< cL, then c ∉ Γ, and this case

corresponds to the above third case. So there are four
heteroclinic orbits, and two of them comprise a heteroclinic
loop between equilibria x∗eq2 and x∗eq3. For cU < c � 3, then
c ∉ Γ, and this case corresponds to the above fourth case. So
there are four heteroclinic orbits that comprise two heter-
oclinic loops, but now between equilibria: x∗eq1 and x∗eq2 ; x

∗
eq3

and x∗eq4. +e above three cases generate self-excited
attractors as shown below:.

(1) For c � 2 ∈ Γ, the system presents a self-excited
attractor with four scrolls which are shown in
Figure 4(a), and its corresponding three heteroclinic
loops are shown in Figure 4(d). According to [30], a
scroll attractor can be considered a multiscroll
attractor when it has at least three scrolls. +us the
attractor shown in Figure 4(a) is a multiscroll
attractor. +e scrolls are generated around each
equilibrium point of the system x∗eqi

, with
i � 1, 2, 3, 4.

(2) For c � 3, c> cU, then c ∉ Γ. +e system presents
bistability; the two double-scroll self-excited
attractors are shown in Figure 4(b). In this case, two
heteroclinic orbits are lost, the system exhibits four

heteroclinic orbits, i.e., two heteroclinic loops, as
shown in Figure 4(e). One double-scroll self-excited
attractor oscillates around equilibria x∗eq1 and x∗eq2,
while the other self-excited attractor oscillates
around equilibria x∗eq3 and x∗eq4. +e basin of attrac-
tion of each self-excited attractor has surrounded
both attractors.

(3) For c � 1.5, c< cL, then c ∉ Γ. +e system presents
only one double-scroll self-excited attractor, shown
in Figure 4(c). In this case, two heteroclinic orbits are
also lost, but only a heteroclinic loop is exhibited.
+e heteroclinic orbits are shown in Figure 4(f ). +e
double-scroll self-excited attractor oscillates around
equilibria x∗eq2 and x∗eq3.

Based on the results reported in [24] about the relation
between the location of the symmetric equilibria and the size
of the basin of attraction, we could ponder the possible
existence of a hidden attractor for the case c> cU because
there are oscillations surrounding the two self-excited
attractors as a hidden attractor exists. However, the simu-
lations of these systems let us know that hidden attractors are
not present. For example, if the c value is increased, then also
the distance between the two self-excited attractors in-
creases. +is provokes that some initial conditions in the
basins of attraction of both attractors generate transitory
oscillations resembling a double-scroll attractor. However,

x1
-5

5
x 2

-1

1

x 3

-1

1

(a)

-5
5

x 2

-1

1

x 3

-1

1

x1

(b)

x1
-5

5

x 2

-1

1

x 3

-1

1

(c)

-5
5

x 2

-1

1
-1

1

x 3
x1

(d)

Figure 3: Heteroclinic orbits of the system given by (1), (3), (5), (13), and (15) for the parameters a � 0.2, b � 5, c � − 3, α � 1 and different
values of c. +ere are six heteroclinic orbits for: (a) c1 � α(1 − e− aτ cos(bτ)) + .00001, and (b) c2 � (α(e− aτ cos(bτ) − 1) /e− aτ cos(bτ))

− .00001. Four heteroclinic orbits for (c) cL � α(1 − e− aτ cos(bτ)), and (d) cU � (α(e− aτ cos(bτ) − 1)/e− aτ cos(bτ)).
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after some time, these transitory oscillations converge to one
of the double-scroll self-excited attractors.

We analyze the trajectory for the initial condition x0 �

(0, 0, 0)T and different values of c fulfilling cU < c. +e first
case is c � 5 and t ∈ [0, 40] in arbitrary units (a.u). +e
equilibria are at

x∗eq1 �

− 6

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq2 �

− 4

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq3 �

4

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq4 �

6

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(49)

Figure 5(a) shows the trajectory which consists of the
transitory behavior resembling a double-scroll attractor and

after a short time reaches a double-scroll self-excited
attractor around equilibria x∗eq1 and x∗eq2.

Increasing the value of c to 15, the equilibria are
located at

x∗eq1 �

− 16

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq2 �

− 14

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq3 �

14

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq4 �

16

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(50)

And the transitory time to reaches the self-excited
attractor is increased. In Figure 5(b), the trajectory is shown
for t ∈ [0, 60]a.u. Now, for c � 100 the equilibria are
located at
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1
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x1
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-1

1
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-1

1

(d)
x 2

-1

1

x 3

-1

1

x1
-5

5

(e)

x1
-3

3

x 2

-1

1

x 3

-1

1
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Figure 4: Attractors and heteroclinic orbits of the system are given by (1), (3), (5), (13), and (15) for α � 1 and different values of c. For c � 2
the system is exhibited in (a) a quad-scroll attractor, and in (d) six heteroclinic orbits. For c � 3 the system is exhibited in (b) two double-
scroll attractors, and in (e) four heteroclinic orbits. For c � 1.5 the system is exhibited in (c) a double-scroll attractor and in (f) four
heteroclinic orbits.
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x∗eq1 �

− 101

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq2 �

− 99

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq3 �

99

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq4 �

101

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(51)

+e transitory time lasts longer for the same initial
condition. Figure 5(c) shows the transitory oscillations of the
trajectory for t ∈ [0, 300]a.u. After a long time, the trajectory
reaches a double-scroll self-excited attractor around equi-
libria x∗eq1 and x∗eq2 ; see Figure 5(d) for t ∈ [356.6, 400]a.u.
Continuing to increase the value to c � 1000, then this sets
the equilibria at

x∗eq1 �

− 1001

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq2 �

− 999

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq3 �

999

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

x∗eq4 �

1001

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(52)

Figure 5(e) shows the transitory oscillation of the
trajectory when t ∈ [0, 300]a.u., again, transitory time
increases, and after this long time, the trajectory again
reaches a double-scroll self-excited attractor around
equilibria x∗eq1 and x∗eq2, see 5f for t ∈ [3091, 3200]a.u.

In brief, for c � 5 it took the trajectory around 35 a.u. To
converge to a self-excited attractor, for c � 15 around 50 a.u.

x1
-9

9
x 2

-3

4

x 3

-3

1

(a)

x1
-26

25

x 2

-10

10

x 3

-10

10

(b)

x1
-175

176

x 2

-80

79

x 3

-75

75

(c)

x1
-102

-92

x 2

-1

1

x 3

-1

4

(d)

x1
-1755

1746
x 2

-794

803

x 3

-746

754

(e)

x1
-1002

-990

x 2

-2

1

x 3

-1

4

(f )

Figure 5: Trajectory of the system given by (1), (3), (5), (13), and (15) for the initial condition x � (0, 0, 0)T, a � 0.2, b � 5, c � − 7, α � 1 and
different values of c: (a) c � 5, the transitory oscillation of double-scroll exhibited and after some time converge to one of the double-scroll
self-excited attractors, t ∈ [0, 40]a.u.; (b) c � 15, the transitory oscillation of double-scroll exhibited and after some time converge to one of
the double-scroll self-excited attractors, t ∈ [0, 60]a.u.; (c) c � 100, the transitory oscillation of double-scroll exhibited for t ∈ [0, 300]a.u.;
(d) c � 100, double-scroll self-excited attractor for t � [356.6, 400]a.u.; (e) c � 1000, the transitory oscillation of double-scroll exhibited for
t ∈ [0, 300]a.u.; (f ) c � 1000, the double-scroll self-excited attractor for t � [3091, 3200]a.u.
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To converge, for c � 100 around 350 a.u. And for c � 1000
around 3090 a.u. +us, transitory time seems to increase for
some initial conditions when c increases. In all the cases, the
trajectories reach a self-excited attractor. □

4. Route to a Self-Excited Attractor

In this section, the transitory behavior presented in the
previous section is studied in order to visualize the route of
the transitory double scroll to a self-excited attractor. +e
idea is to estimate two regions R1, R2 ⊂ SW23, such that any
trajectory φ(x0), with x0 ∈ R1 ∪R2, will eventually go to the
self-excited attractor Aself1 or Aself2. +ese regions are
symmetric with respect to the origin and are crossed by the
trajectories of the transitory double scroll.

Consider the point pa and its symmetric point pc � − pa:

pa �

−
c − α
3

0

−
2(c − α)

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

pc �

c − α
3

0

2(c − α)

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(53)

+ese points are the intersections of the local manifolds
in SW23 and are shown in Figure 6.

+e trajectories with initial conditions in the points
pa, pc ∈ SW23 converge to equilibria xeq3 and xeq2, respec-
tively. So, the transient oscillation of the trajectory that
resembles a double-scroll attractor interferes when the
trajectory reaches neighborhoods N(pa) ⊂ SW23 and
N(pc) ⊂ SW23 around pa or pc, respectively, because each
trajectory with initial condition in N(pa) or N(pc) is led to
one of the self-excited attractors Aself1 or Aself2, respectively.
So, the aim is to visualize the route to a self-excited attractor
when N(pa)∩R1 ≠∅ and N(pc) ∩R2 ≠∅.

+us, the study in this section has the following struc-
ture: First, two regions R1 and R2 are estimated. +e regions
are then evaluated numerically to verify their validity. Fi-
nally, based on the geometry of the system and the obser-
vation of the simulations, conjecture about the necessary
conditions for the existence of the hidden attractor.

To simplify the study, some assumptions are made to
restrict the systems to a subset of the class.

Assumption 1. +e parameter values fulfill the following
relations: (b/a)≥ 25, 2≥ |c/b|≥ (7/5) and (c/α)≥ 10.

To start the analysis, let us find the points in SW23 where
the vector fields of P2 and P3 are tangent to the plane SW23.
+ese points will be called tangent points and can be found
from the following equation:

(2, 0, − 1)

a

3
+
2c

3
b

2c

3
−
2a

3

−
b

3
a

2b

3

c

3
−

a

3
− b

2a

3
+

c

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x3

2
− x1eqi

x2

x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� − (a + c)x1eqi
+
3(c − a)

2
x3 + 3bx2 � 0. (54)

It follows that

x2 �
(a + c)

3b
x1eqi

−
(c − a)

2b
x3, with i � 1, 2. (55)

For the vector field of P2, x1eq2 � − c + α, then

x2 �
(a + c)

3b
(− c + α) −

(c − a)

2b
x3, (56)

while for the vector field of P3, x1eq3 � c − α:

x2 �
(a + c)

3b
(c − α) −

(c − a)

2b
x3. (57)

According to (16), if x3 > 0 then SW23 belongs to P2, and
the tangent points to consider in SW23 for x3 > 0 are given by
(56). And if x3 ≤ 0, then SW23 belongs to P3 and the tangent
points are given by (57). An illustration of the tangent points
in SW23 is shown in Figure 7, where the points for P2 are
indicated by a dotted line, while for P3 are drawn as a
continuous line.
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As a starting point to propose the region R1 defined by
four points p1, . . . , p4, consider the point in
cl(Wu

xeq2
)∩ SW23 given by (19) that fulfills (56):

pt1 �

−
c − α
3

−
2a(c − α)

3b

−
2(c − α)

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (58)

and in z(2) coordinates

pt1z2 �

0

2a(c − α)

3b

−
2(c − α)

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (59)

+epoints in z(2) coordinate system are denoted with the
suffix z2. If we evaluate the trajectory with an initial con-
dition in x0 � pt1z2, under the vector field of P2 and ig-
noring the effect of the vector field of P1 and P3, reaches the
point pt2z2 ∈ SW23. +e flow φ could go from P2 to P3
through the segment pt1z2 pt2z2. +us, trajectories with

SW12 SW23 SW34

x1

x 3

xeq1
* xeq2

* xeq3
* xeq4

*

pe

pa

pd

pc

(a)

SW12

SW23

SW34
paz2

pdz2

pez2
pcz2

z(2
)

3

z(2)1

(0, – )2(γ–α)
3

(  , 0)4(γ–α)
3zeq1

*(2)

zeq2
*(2)

zeq3
*(2)

(b)

Figure 6: Projection of the manifolds on (a)(x1 − x3) plane and (b)(z
(2)
1 − z

(2)
3 ) plane. +e stable and unstable manifolds are marked with

blue and red solid lines, respectively, the switching surfaces with green lines.

x1

x2

x2

x3

R2

R1

I1

I2

p2

p1

p3

p4

pa

pc

SW23

To P2
To P3x 3

SW12 SW23 SW24

Figure 7: Illustration of the local manifold of the system. Stable manifolds are in blue, unstable manifold in red, and switching surfaces in
green. +e points where the vector field of P2 is tangent to SW23 are in a red dotted line, while the points where the vector field of P3 are
tangent to SW23 are in a continuous black line. +e symmetric regions R1 and R2 are in white.
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initial condition are close to Aself1 but not in the attractor
cross SW23 close to the segment pt1z2 pt2z2 then R1 should
include this segment. However, when the vector field of all
atoms is considered, trajectories with initial conditions close
to pt1z2 could reach SW23 in points whose second com-
ponent in z(2) coordinates are further from 0 than the
second component in z(2) coordinates of pt2z2. +us, let us
propose the region R1 based on a larger segment
pa1z2 pa2z2 such that pt1z2 pt2z2 ⊂ pa1z2 pa2z2. Consider
the initial condition paz2 given in z(2) coordinates by

paz2 �

0

0

−
2(c − α)

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (60)

then, the radius with respect to z∗eq2 would be (2(c − α)/3).
Remember that only the vector field of P2 is considered and
the trajectory rotates around the axis z

(2)
1 . Let us think in an

imaginary and impossible case when a trajectory with an
initial condition in paz2 rotates around the axis z

(2)
1 and

reaches SW23, but instead of the normal increment of radius,
let us imagine that the increment in radius corresponds to an
evolution time t � 2π/b (360°). +us, the z

(2)
2 component of

this point is further from 0 than the z
(2)
2 component of pt2z2.

+en, we could take pa2z2 � pt1z2 and find the z
(2)
2 com-

ponent of pa1z2 from
����������������������������

2(c − α)

3
e

a(2π/b)
􏼠 􏼡

2

−
2(c − α)

3
􏼠 􏼡

2

􏽶
􏽴

. (61)

By using Assumption 1,

����������������������������

2(c − α)

3
e

a(2π/b)
􏼠 􏼡

2

−
2(c − α)

3
􏼠 􏼡

2

􏽶
􏽴

≤ c

����������������

2
3
e

a(2π/b)
􏼒 􏼓

2
−

2
3

􏼒 􏼓
2

􏽳

≤ 0.5388c<
3c

5
. (62)

Remember that z
(2)
2 � − x2, then, the points pa1 and pa2

are given by

pa1 �

−
c − α
3

3c

5

−
2(c − α)

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

pa2 �

−
c − α
3

−
2a(c − α)

3b

−
2(c − α)

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(63)

where − (2a(c − α)/3b) is the tangent coordinate given by
(56) for x3 � − (2(c − α)/3).

So, let us propose the region R1 delimited by the fol-
lowing four points:

p1 � pa1 +
c

10
, 0,

c

5
􏼒 􏼓

T

,

p2 � pa1 −
c

10
, 0,

c

5
􏼒 􏼓

T

,

p3 � pa2 + −
c

10
, −

(c − a)(− c/5)

2b
, −

c

5
􏼠 􏼡

T

,

p4 � pa2 +
c

10
, −

(c − a)(c/5)

2b
,
c

5
􏼠 􏼡

T

.

(64)

Because R2 is symmetric to R1 with respect to the origin,
then the symmetric region R2 is delimited by the points:

q1 � − p1,

q2 � − p2,

q3 � − p3,

q4 � − p4.

(65)

+ese regions R1 and R2 have been proposed taking into
consideration that points pd and pe shown in Figure 6(b) are
part of the regions. In Figure 8, R1 and R2 are shown in z(2)

coordinates.
Now, let us analyze some scenarios on these regions to

see if the proposed regions are good candidates, at least in an
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estimated manner. In order to simplify the scenarios, in the
following, it is considered that trajectories in P1 ∪P2 rotate
only around the stable manifold of xeq2, i.e., if only the vector
field of P2 is considered.

Let us define the set R1b as follows:

R1b � z(2) ∈ R3
: z

(2)
1 ∈ −

c

5
,
c

5
􏼔 􏼕􏼚 􏼛. (66)

First, let us verify that the points in R2 go to R1b.
+e evaluation of the vector field in pc1z2 tells us that the

spin is counterclockwise in z(2) coordinates. From Figures 8
and 6(b), it is not hard to see that the points below the
segment pcz2 pc1z2 produce trajectories that can perform a
turn of π around the z

(2)
1 axis without reaching SW23 again.

+e time that corresponds to a turn of 2π is T � 2π/b. +e
point pc1z2 is given by

pc1z2 �

4(c − α)

3

3c

5

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (67)

Consider the trajectory with an initial condition in
pc1z2, and an evolution time that corresponds to a turn of π
around the z

(2)
1 axis. After this time, the first component of

the state vector can be found from

z
(2)
1 �

4(c − α)

3
􏼠 􏼡e

c(π/b)
. (68)

If z
(2)
1 ≤ c/5 means that the trajectory with an initial

condition in pc1z2 reaches R1b. Consider Assumption 1 for a
big value of z

(2)
1 (when c is too big):

4(c − α)

3
􏼠 􏼡e

c(π/b) ≤
4c

3
e

c(π/b) ≤ 0.0164c<
c

5
. (69)

+us the set z(2) ∈ R2: z
(2)
2 ≥ 0, z

(2)
3 ≤ 0􏽮 􏽯 reaches the set

R1b.
Now consider the point q2z2 given by

q2z2 �

23c

15
−
4α
3

3c

5

c

10
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. (70)

+e angle produced by the radius from the point q2z2 to
the z

(2)
1 axis and the plane z

(2)
1 − z

(2)
2 is given by

arctan
c/10
3c/5

􏼠 􏼡 � arctan
1
6

􏼒 􏼓 � 0.1654. (71)

Let us consider that the trajectory with the initial con-
dition in q2z2 evolves for a duration time that corresponds to
π − 2(0.1654) � 2.8113. +e first component of the state
vector after this duration is given by

z
(2)
1 �

23c

15
−
4α
3

􏼒 􏼓e
c(2.8113/b)

. (72)

As before, if z
(2)
1 ≤ c/5 means that the trajectory with an

initial condition in q2z2 reaches R1b. Consider again As-
sumption 1 for a big value of z

(2)
1 :

23c

15
−
4α
3

􏼒 􏼓e
c(2.8113/b) ≤

23c

15
􏼒 􏼓e

c(2.8113/b) ≤ 0.0299c<
c

5
.

(73)

+us, q2z2 reaches the region R1b. Moreover, since the
points in the segment q2z2 pc1z2 produce a radius whose
angle with the plane z

(2)
1 − z

(2)
2 is between 0 and 2.8113, the

trajectories starting in this segment also reach the set R1b.
Now consider the point pcuz2 given by

pcuz2 �

23c

15
−
4α
3

0

c

10
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. (74)

+e trajectories with the initial condition in the segment
pcz2 pcuz2 can turn π/2 without reaching SW23. +us, let us
consider that the trajectory with the initial condition in
pcuz2 evolves for a duration time that corresponds to π/2.
+e first component of the state vector after this duration is
given by

z
(2)
1 �

23c

15
−
4α
3

􏼒 􏼓e
c(π/2b)

. (75)

If z
(2)
1 ≤ c/5 means that the trajectory with an initial

condition in pcuz2 reaches R1b, consider Assumption 1 for a
big value of z

(2)
1 :

23c

15
−
4α
3

􏼒 􏼓e
c(π/2b) ≤

23c

15
􏼒 􏼓e

c(π/2b) ≤ 0.17c<
c

5
. (76)

SW23

To P2

To P3

q3z2

p1z2
p4z2

pa2z2
p3z2

paz2
pa1z2 R1

p2z2

pc2z2

q4z2

pcuz2

pcz2 R2

q2z2

pc1z2
q1z2

z3
(3)

z2
(3)

Figure 8: Regions R1 and R2 on the projection z
(2)
2 − z

(2)
3 .
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+us the trajectories with the initial condition in the set
z(2) ∈ R2: z

(2)
2 ≥ 0, z

(2)
3 ≥ 0􏽮 􏽯 converge to the set R1b.

Now consider the point q3z2

q3z2 �

23c

15
−
4α
3

3cc − 23ac

30b
+
2aα
3b

c

10
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. (77)

To estimate if that the trajectory starting in q3z2 is not
going to reach SW23 when the radius form an angle of 3π/2

with the plane z
(2)
1 − z

(2)
2 , let us consider the following ex-

aggerated scenario:+e radius size corresponds to a duration
equivalent to 3π/2 , but the z

(2)
1 component corresponds to a

duration equivalent to π/2 of oscillation, i.e., when the radius
form an angle of 3π/2 with the plane z

(2)
1 − z

(2)
2 , a smaller

radius than the real one is considered; also, a larger value of
z

(2)
1 than the real value is considered.

+en to obtain the radius:

r � e
a(3π/2b)

������������������������

3cc − 23ac

30b
+
2aα
3b

􏼒 􏼓
2

+
c

10
􏼒 􏼓

2
􏽳

. (78)

Under Assumption 1 for the largest radius:

e
a(3π/2b)

������������������������

3cc − 23ac

30b
+
2aα
3b

􏼒 􏼓
2

+
c

10
􏼒 􏼓

2
􏽳

≤ e
a(3π/2b)

�������������������

3cc − 23ac

30b
􏼒 􏼓

2
+

c

10
􏼒 􏼓

2
􏽳

,

e
a(3π/2b)

�������������������

3cc

30b
−
23ac

30b
􏼒 􏼓

2
+

c

10
􏼒 􏼓

2
􏽳

≤ e
a(3π/2b)

������������������

−
1c

5
−
23c

750
􏼒 􏼓

2
+

c

10
􏼒 􏼓

2
􏽳

,

e
a(3π/2b)

������������������

−
1c

5
−
23c

750
􏼒 􏼓

2
+

c

10
􏼒 􏼓

2
􏽳

� ce
a(3π/2b)

��������������

−
173
750

􏼒 􏼓
2

+
1
10

􏼒 􏼓
2

􏽳

,

ce
a(3π/2b)

��������������

−
173
750

􏼒 􏼓
2

+
1
10

􏼒 􏼓
2

􏽳

≤ 0.3036c.

(79)

+e value of z
(2)
1 after a duration equivalent to 90° is

given by

z
(2)
1 �

23c

15
−
4α
3

􏼒 􏼓e
c(π/2b)

. (80)

Under Assumption 1 for the biggest z
(2)
1

23c

15
−
4α
3

􏼒 􏼓e
c(π/2b) ≤

23c

15
􏼒 􏼓e

c(π/2b)
,

23c

15
􏼒 􏼓e

c(π/2b) ≤ 0.17c<
c

5
.

(81)

In z(2) coordinates, a specific value of z
(2)
1 SW23 fulfills

z
(2)
3 � − (2(c − α)/3) + (z

(2)
1 /2). At this angle of 3π/2 the

radius is r � − z
(2)
3 . +en, if the values found for this scenario

fulfill the following inequality, it can be concluded that the
trajectory with an initial condition in q3z2 does not reach
SW23 after a duration that corresponds to an oscillation of
π/2:

− 0.3036c> −
2(c − α)

3
+ 0.085c, (82)

under Assumption 1 for the worst case

− 0.3036c> −
18c

30
+ 0.085c � − 0.515c. (83)

+en, the trajectory remains for the duration that cor-
responds to π/2. Also, the trajectory does not reach SW23
when the radius is at an angle of 3π/2 with the plane z

(2)
1 −

z
(2)
2 even when the radius growth is exaggerated. It can be

concluded that the trajectory with the initial condition in
q3z2 could reach SW23 until the second time it approaches
SW23 and reaches R1b.

Since q3z2 is the point in the set z(2) ∈ R2: z
(2)
2 ≤ 0􏽮 􏽯 that

produces the largest radius of that set, the trajectories with
the initial condition in this set also reach R1b. +en the
trajectories starting at R2 reach R1b.

Now to estimate if the trajectories that start in R2 reach
R1 ⊂ R1b is enough to verify the trajectories starting in the
segment q1z2q2z2 since these produce the largest radius in
R1b.

Consider the points q1z2 and q2z2

Complexity 15



q1z2 �

17c

15
−
4α
3

3c

5

−
c

10
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,

q2z2 �

23c

15
−
4α
3

3c

5

c

10
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,

(84)

both points produce the same radius with a different angle.
However, more oscillation time before reaching SW23 is
expected from q1z2. +us, consider the trajectory with the
initial condition in q1z2 and the evolution time that cor-
responds to 3π/2 + 0.1651 � 4.8775, which is an exaggerated
angle since SW23 is reached before that.

r � e
a(4.8775/b)

������������

3c

5
􏼒 􏼓

2
+

c

10
􏼒 􏼓

2
􏽳

� ce
a(4.8775/b)

���
37
100

􏽲

. (85)

Under Assumption 1,

c

���
37
100

􏽲

e
a(4.8775/b) ≤ 0.7393c. (86)

Consider the points p1z2, pa1z2 and p2z2

p1z2 �

c

5

−
3c

5

2α
3

−
17c

30
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,

pa1z2 �

0

−
3c

5

−
2(c − α)

3
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,

p2z2 �

−
c

5

−
3c

5

2α
3

−
23c

30
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.

(87)

+e minimum radius in the segment pa1z2, pa2z2 is as
follows:

r �

�����������������

3c

5
􏼒 􏼓

2
+

2α
3

−
17c

30
􏼒 􏼓

2
􏽳

. (88)

Under Assumption 1, the radius from the segment
pa1z2, pa2z2 is as follows:

�����������������

3c

5
􏼒 􏼓

2
+

2α
3

−
17c

30
􏼒 􏼓

2
􏽳

≥

������������

3c

5
􏼒 􏼓

2
+ −

c

2
􏼒 􏼓

2
􏽳

,

c

�����������

3
5

􏼒 􏼓
2

+ −
1
2

􏼒 􏼓
2

􏽳

� 0.781c.

(89)

Since 0.7393c< 0.781c even when the increment of
radius was exaggerated, it is expected that the trajectories
with an initial condition in R2 reach R1 or a self-excited
attractor. In the same way, the trajectories with an initial
condition in R1 reach R2 or go to a self-excited attractor.

To verify the region for the parameters a � 0.2, b � 5,
c � − 7 and α � 1, seven trajectories have been simulated and
are shown in Figure 9(a) for c � 10 and c � 100 in
Figure 9(b).

Now consider two sets of initial conditions in SW23, I1
and I2, such that subsets N(pa) and N(pc) of these sets
produce trajectories that end in one of the self-excited
attractors. +ese sets are drawn by circles in Figure 7.

It is easy to see that if c increases, then the regions R1 and
R2 grow, but the subsets of initial conditions in I1 and I2 that
reach a self-excited attractor without reaching SW23 again
are reduced.

Let us look at the system in z(2) coordinates, as c grows,
SW23 and pcz2 are further from the z∗eq2 and then it takes
more time for the trajectories close to pcz2 to travel along the
z

(2)
1 direction to get close to z∗eq2; however, the expansion

along z
(2)
2 and z

(2)
3 remains the same; then the subsets of

initial conditions that reach the self-excited attractors
without reaching SW23 again shrink in I1 and I2 but never
disappear. As pc and pa belong to R1 and R2, respectively,
then there will always be an intersection of these regions R1
and R2 with the subsets of initial conditions that reaches the
self-excited attractors in the regions I1 and I2.

+is explains why as c is increased, it is easy to find initial
conditions such that the transitory lasts long. +en we come
to the conjecture that a necessary condition for the existence
of a hidden attractor is that the intersection of regionsR1 and
R2 with those sets given by I1 and I2 must be empty, i.e.,
N(pa)∩R1 � ∅ and N(pc) ∩R2 � ∅.

5. Emergence of Hidden Attractors

In this section, a modification is made to the previous class of
systems to meet the conjecture requirement. A way to
produce N(pa)∩R1 � ∅ and N(pc) ∩R2 � ∅ and allow
the existence of a hidden attractor is by modifying the
commutation surface SW23 between the two self-excited
attractors. Consider the following switching planes:
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SW12 � cl P1( 􏼁∪ cl P2( 􏼁 � x ∈ R3
: 2x1 − x3 � − 2c, x1 < 0􏽮 􏽯,

SW23 � cl P2( 􏼁∪ cl P3( 􏼁 � x ∈ R3
: x1 � 0􏽮 􏽯,

SW34 � cl P3( 􏼁∪ cl P4( 􏼁 � x ∈ R3
: 2x1 − x3 � 2c, x1 > 0􏽮 􏽯.

(90)

Note that the switching surface SW23 has a new location
while the switching surfaces SW12 and SW34 keep their
original locations.+is new arrangement keeps the existence

of the two heteroclinic loops and thus the two self-excited
attractors. +e new projections of the system in x and z(2)

coordinates are shown in Figure 10.
To study the emergence of a hidden attractor, the same

procedure is followed as in the previous section.
Let us find the points in SW23 where the vector fields of

P2 and P3 are tangent to the plane SW23. +ese points can be
found from the following equation:

(1, 0, 0)

a

3
+
2c

3
b

2c

3
−
2a

3

−
b

3
a

2b

3

c

3
−

a

3
− b

2a

3
+

c

3
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− xeqi

x2

x3
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� − xeqi

(a + 2c)

3
+ bx2 +

2c − 2a

3
x3 � 0,

x2 � xeqi

(a + 2c)

3b
−
2c − 2a

3b
x3, with i � 1, 2.

(91)

+en for the vector field of P2 we have the following
expression:

x2 �
− (c − α)(a + 2c)

3b
−
2c − 2a

3b
x3. (92)

For the vector field of P3 the expression is as follows:

x2 �
(c − α)(a + 2c)

3b
−
2c − 2a

3b
x3. (93)

Consider the point in cl(Wu
xeq2
∩ SW23) that fulfills (92):

pt1 �

0

−
a(c − α)

b

− (c − α)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (94)

and in z(2) coordinates

pt1z2 �

0

a(c − α)

b

− (c − α)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (95)

x1-25

25x2

-10

10

x3

-12

12

(a)

x1-250

250x2

-100

100

x3

-120

120

(b)

Figure 9: Seven trajectories of the system given by (1), (3), (5), (13), and (15) starting in R1 with a � 0.2, b � 5, c � − 7, α � 1 and different
values of c: (a) c � 10 and (b) c � 100.
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If we evaluate the trajectory with initial condition in
x0 � pt1z2, under the vector field of P2 ignoring the effect of
the vector field of P1 and P3, reaches the point pt2z2 ∈ SW23.
+e flow φ could go from P2 to P3 through the segment
pt1z2pt2z2. +us, trajectories with initial condition close to
Aself1 but not in the attractor cross SW23 close to the segment
pt1z2 pt2z2, then, R1 should include this segment. However,
when the vector field of all atoms is considered, trajectories
with initial conditions close to pt1z2 could reach SW23 in
points whose second component in z(2) coordinates is
further from 0 than the second component in z(2) coordi-
nates of pt2z2. +is allows us to propose the region R1 based
on a larger segment pi1z2 pi2z2 such that
pt1z2 pt2z2 ⊂ pi1z2 pi2z2. Consider the initial condition
piz2 given in z(2) coordinates by

piz2 �

0

0

− (c − α)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (96)

then, the radius with respect to z∗eq2 would be (c − α). Re-
member that only the vector field of P2 is considered and the
trajectory rotates around the axis z

(2)
1 . Let us think in an

imaginary and impossible case when a trajectory with an initial
condition inpiz2 rotates around the axis z

(2)
1 and reaches SW23,

but instead of the normal increment of radius, let us imagine
that the increment in radius corresponds to an evolution time
t � 2π/b (360°). +us, the z

(2)
2 component of this point is

further from 0 than the z
(2)
2 component of pt2z2. +en, we

could takepi2z2 � pt1z2 and find the z
(2)
2 component ofpa1z2

from
�����������������������

e
a(2π/b)

(c − α)􏼐 􏼑
2

− (c − α)
2

􏽲

. (97)

Consider Assumption 1, then,

�����������������������

e
a(2π/b)

(c − α)􏼐 􏼑
2

− (c − α)
2

􏽲

≤ c

�����������

e
a(2π/b)

􏼐 􏼑
2

− 1
􏽲

≤ 0.80815c ≈
4c

5
.

(98)

Remember that z
(2)
2 � − x2, then, the points pi1 and pi2

are given by

pi1 �

0

4c

5

− (c − α)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

pi2 �

0

−
a(c − α)

b

− (c − α)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(99)

where − (a(c − α)/b) is the tangent coordinate given by (92)
for x3 � − (c − α).

Let us propose a region R1 delimited by the following
four points:

p1 � pi1 + 0, 0,
c

5
􏼒 􏼓

T

,

p2 � pi1 − 0, 0,
c

5
􏼒 􏼓

T

,

p3 � pi2 + 0, −
2c − 2a

3b
􏼒 􏼓 −

c

5
􏼒 􏼓, −

c

5
􏼒 􏼓

T

,

p4 � pi2 + 0, −
2c − 2a

3b
􏼒 􏼓

c

5
􏼒 􏼓,

c

5
􏼒 􏼓

T

.

(100)

+en, the symmetric region R2 is delimited by the points:

x 3

x1

pe

pj

pc

pa

pi
pd

(a)

z(2
)

3

z(2)1

z*(2)

z*(2)

z*(2)

z*(2)

eq1

eq2

eq3

eq4

SW12

SW23

SW34

pez2
pjz2

pcz2

paz2

piz2
pdz2

(0, –(γ–α))

( ) , 4(γ–α)
3

(γ–α)
3

(b)

Figure 10: Projection of the manifolds on (a) x1 − x3 and (b) z
(2)
1 − z

(2)
3 . +e stable and unstable manifolds are marked with blue and red

solid lines, respectively, the switching surfaces with green lines.
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q1 � − p1,

q2 � − p2,

q3 � − p3,

q4 � − p4.

(101)

+e regions R1 and R2 have been proposed taking into
consideration that p d and pe are part of the regions and pa

and pc are not. In Figure 11, R1 and R2 are shown in z(2)

coordinates.
Now, let us analyze some scenarios on these regions to

see if the proposed regions are good candidates, at least in an
estimated manner. In order to simplify the scenarios, in the
following, it is considered that trajectories in P1 ∪P2 rotate
only around the stable manifold of xeq2, i.e., if only the vector
field of P2 is considered. Since p1z2 − pi and piz2 − p2z2 are
given by

p1z2 − pi �

2c

15

−
4c

5

2c

15

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

pi − p2z2 �

2c

15

4c

5

2c

15
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.

(102)

Let us define the set R1b as follows:

R1b � z(2) ∈ R3
: z

(2)
1 ∈ −

2c

15
,
2c

15
􏼔 􏼕􏼚 􏼛. (103)

First, let us verify that the points in R2 go to R1b. +e
evaluation of the vector field in pj1z2 tells us that the spin is
counterclockwise in z(2) coordinates.

Consider the point q2z2 given by

q2z2 �

22c

15
−
4α
3

4c

5

7c

15
−
α
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (104)

+e angle produced by the radius from the point q2z2 to
the z1(2) axis and the plane z

(2)
1 − z

(2)
2 is given by

arctan
(7c/15) − (α/3)

(4c/5)
􏼠 􏼡 � arctan

7
12

−
5α
12c

􏼠 􏼡. (105)

Under Assumption 1, the angle obeys the following
inequality:

arctan
7
12

−
5α
12c

􏼠 􏼡≤ arctan
7
12

􏼒 􏼓≤ 0.5281. (106)

Consider then that the trajectory with an initial con-
dition in q2z2 evolves for a duration that corresponds to
π − 2(0.5281) � 2.0854. If after this duration the first
component of the state vector z

(2)
1 ≤ 2c/15 means that the

trajectory with initial condition in q2z2 reaches R1b. After
this duration, z

(2)
1 is given by

z
(2)
1 �

22c

15
−
4α
3

􏼒 􏼓e
c(2.0854/b)

. (107)

Under Assumption 1 for a big value of z
(2)
1 :

22c

15
−
4α
3

􏼒 􏼓e
c(2.0854/b) ≤

22c

15
􏼒 􏼓e

c(2.0854/b) ≤ 0.0791c<
2c

15
.

(108)

+us, q2z2 reaches the region R1b. Moreover, since the
points in the segment q2z2q1z2 produce a radius whose angle
with the plane z

(2)
1 − z

(2)
2 is between 0 and 0.5281, the tra-

jectories with the initial condition in this segment also reach
the set R1b.

Now consider the point q3z2

q3z2 �

22c

15
−
4α
3

2cc − 17ac

15b
+

aα
b

7c − 5α
15

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. (109)

+e angle of the radius at q3z2 with the plane z
(2)
1 − z

(2)
2 is

as follows:

SW23

To P2

To P3

q3z2

p1z2

paz2

piz2

p4z2
pi2z2

p3z2

pi1z2 R1
p2z2

pj2z2
q4z2

pjuz2
pjz2

pcz2

R2

q2z2
pj1z2
q1z2

z3
(3)

z2
(3)

Figure 11: Regions R1 and R2 on the projection z
(2)
2 − z

(2)
3 .
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− arctan
((2cc − 17ac)/15b) + aα/b

(7c − 5α)/15
􏼠 􏼡 � − arctan

2cc − 17ac + 15aα
7bc − 5bα

􏼠 􏼡. (110)

Under Assumption 1, the angle should be less than

− arctan
2cc − 17ac + 15aα

7bc − 5bα
􏼠 􏼡≤ − arctan

2c

6.5b
−
17a

6.5b
+
1.5a

6.5b
􏼒 􏼓,

− arctan
2c

6.5b
−
17a

6.5b
+
1.5a

6.5b
􏼒 􏼓≤ − arctan −

4
6.5

−
17

6.5(25)
+

1.5
6.5(25)

􏼠 􏼡 � 0.6179.

(111)

To verify that the trajectory starting in q3z2 is not going
to reach SW23 when the radius form an angle of 3π/2 with
the plane z

(2)
1 − z

(2)
2 , let us consider the following exag-

gerated scenario: +e radius size corresponds to a duration
equivalent to 10π/9 , but the z

(2)
1 component corresponds to

a duration equivalent to 2π/3 of oscillation, i.e., when the
radius forms an angle of 3π/2 with the plane z

(2)
1 − z

(2)
2 a

smaller radius than the real one is considered; also, a larger
value of z

(2)
1 than the real value is considered.

+en to obtain the radius,

r � e
a(10π/9b)

���������������������������

2cc − 17ac

15b
+

aα
b

􏼒 􏼓
2

+
7c − 5α

15
􏼒 􏼓

2
􏽳

. (112)

Under Assumption 1 for the largest radius,

e
a(10π/9b)

���������������������������

2cc − 17ac

15b
+

aα
b

􏼒 􏼓
2

+
7c − 5α

15
􏼒 􏼓

2
􏽳

≤ e
a(10π/9b)

�������������������

2cc − 17ac

15b
􏼒 􏼓

2
+

7c

15
􏼒 􏼓

2
􏽳

,

e
a(10π/9b)

c

�����������������

2c − 17a

15b
􏼒 􏼓

2
+

7
15

􏼒 􏼓
2

􏽳

≤ 0.5984c.

(113)

+e value of z
(2)
1 after the duration that corresponds to

2π/3 is as follows:
22c

15
−
4α
3

􏼒 􏼓e
c(2π/3b)

. (114)

Under Assumption 1, for the biggest value of z
(2)
1

22c

15
−
4α
3

􏼒 􏼓e
c(2π/3b) ≤

22c

15
􏼒 􏼓e

c(2π/3b)
,

22c

15
􏼒 􏼓e

c(2π/3b) ≤ 0.07814c<
2c

15
.

(115)

+e points in SW23 fulfills the following equation:

z
(2)
3 � − (c − α) + z

(2)
1 . (116)

At this angle of 3π/2 the radius is r � − z
(2)
3 . +en, if the

found values for this scenario fulfill the following inequality,
it can be concluded that the trajectory with an initial

condition in q3z2 does not reach SW23 after a duration that
corresponds to an oscillation of 120°:

− .5984c> − (c − α) + 0.07814c. (117)

Under Assumption 1 and the worst case,

− .5984c> −
9c

10
+ 0.07814c � − 0.82186c. (118)

+en, the trajectory remains for the duration that cor-
responds to 2π/3. Furthermore, since z

(2)
1 < 2c/15 the tra-

jectory reaches R1b. Since q3z2 is the point in the set
z(2) ∈ R2: z

(2)
2 ≤ 0􏽮 􏽯 that produces the largest radius of that

set, the same conclusion applies to the points in this set.
For the trajectories with the initial condition in the set

z(2) ∈ R2: z
(2)
2 > 0􏽮 􏽯 the duration is equivalent to more than

2π/3. +us, the trajectories that start in R2 reach the set R1b.
Now to verify that the trajectories that start in R2 reach

R1 ⊂ R1b is enough to verify the trajectories starting in the
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segment q1z2q2z2, since these produce the largest radius in
R1b.

Consider the points q1z2 and q2z2

q1z2 �

6c

5
−
4α
3

4c

5

c

5
−
α
3
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,

q2z2 �

22c

15
−
4α
3

4c

5

7c

15
−
α
3
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.

(119)

+e largest radius is at q2z2 while the smaller angle is at
q1z2, then let us consider that radius of q2z2 with the angle of
q1z2 and the end position at 3π/2 with respect to the plane
z

(2)
1 − z

(2)
2 , which is more than the possible rotation. +e

angle is given by

arctan
(c/5) − (α/3)

(4c/5)
􏼠 􏼡 � arctan

1
4

−
5α
12c

􏼠 􏼡. (120)

Under Assumption 1, the smallest angle is as follows:

arctan
1
4

−
5α
12c

􏼠 􏼡≥ arctan
5
24

􏼒 􏼓 � 0.2054. (121)

+us for 3π/2 − 0.2054 � 4.507
���������������

4c

5
􏼒 􏼓

2
+

7c

15
−
α
3

􏼒 􏼓
2

􏽳

e
a(4.507/b)

. (122)

Under Assumption 1 for the biggest radius,
���������������

4c

5
􏼒 􏼓

2
+

7c

15
−
α
3

􏼒 􏼓
2

􏽳

e
a(4.507/b) ≤

������������

4c

5
􏼒 􏼓

2
+

7c

15
􏼒 􏼓

2
􏽳

e
a(4.507/b)

,

������������

4c

5
􏼒 􏼓

2
+

7c

15
􏼒 􏼓

2
􏽳

e
a(4.507/b) ≤ c

���
193
225

􏽲

e
a(4.507/b) ≤ 1.1091c.

(123)

Consider the points p1z2, pa1z2, and p2z2

p1z2 �

2c

15

−
4c

5

α −
13c

15

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

pa1z2 �

0

−
4c

5

α − c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

p2z2 �

−
2c

15

−
4c

5

α −
17c

15

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(124)

+e minimum radius in the segment pa1z2, pa2z2 is as
follows:

����������������

4c

5
􏼒 􏼓

2
+ α −

13c

15
􏼒 􏼓

2
􏽳

. (125)

Under Assumption 1 for the smallest radius,
����������������

4c

5
􏼒 􏼓

2
+ α −

13c

15
􏼒 􏼓

2
􏽳

≥

�������������

4c

5
􏼒 􏼓

2
+

23c

30
􏼒 􏼓

2
􏽳

� 1.1081c.

(126)

1.1092c ≈ 1.1081c, even when the angle of rotation was
exaggerated, it is expected that the trajectories with an initial
condition in R1 reach R2 or a self-excited attractor. In the
same way, the trajectories with an initial condition in R2
reach R1 or go to a self-excited attractor.

Let us look at the system in z(2) coordinates, as in the
previous section with the previous switching surfaces, as c

grows, SW23 and pcz2 is further from the z∗eq2 and then it
take more time for the trajectories close to pcz2 to travel
along the z

(2)
1 direction to get close to z∗eq2. However, the

expansion along z
(2)
2 and z

(2)
3 remains the same; then the

subsets of initial conditions that reach the self-excited
attractors without reaching SW23 again shrink in I1 and I2
but this time, as opposed to the previous case there exist a
value of c such that the intersection disappear.

+en for a sufficiently big value of c we have a region R1
such that any trajectory starting there remains crossing R1
for t> 0. +en, we could expect that exists either a periodic
orbit, a hidden limit cycle, a hidden chaotic attractor, or a
combination of the previous, which should go through R1
and R2.
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Also, as small differences in the initial conditions in R1
could eventually produce a big separation of trajectories in
SW23, sensitivity to initial conditions could also be expected.
However, the formal proof is out of the scope of this work.

To verify the region for the parameters a � 0.2, b � 5,
c � − 7, α � 1 and c � 10 seven trajectories have been sim-
ulated and are shown in Figure 1(a).

+e simulations of the two particular cases coincide with
the conjecture. In Figure 12(b) it is shown the hidden
attractor for the parameters a � 0.2, b � 5, c � − 7, α � 1 and
c � 10 and the initial condition x0 � (0, 0, 0)T for
t ∈ [50000, 50100]. In Figure 1(c), it is shown the projection
of the hidden attractor and the two self-excited attractors
onto the plane x1 − x2 for the same parameters.

6. Conclusions

In this work, an approach for the generation of multiscroll
attractors was studied based on heteroclinic orbits. Partic-
ularly, we presented a quad-scroll self-excited attractor,
which is split into two double-scroll self-excited attractor, so
the system bifurcates from monostability to biestability. +e
approach is based on the coexistence of double-scroll self-
excited attractors surrounded the equilibria and presenting
heteroclinic orbits. Increasing the distances between the
double-scroll self-excited attractors generates a heteroclinic-
like orbit between the equilibria of two different double-
scroll self-excited attractors. It is possible to generate hidden
attractors surrounding the self-excited attractors by

x1-25

25x2
-10

10

x 3

-12

12

(a)

x1-25

25x2
-10

10

x 3

-12

12

(b)

21-12
x1

-11

11

x 2

(c)

Figure 12: In (a), seven trajectories of the system given by (1), (3), (5), (13), and (90) starting in R1 with a � 0.2, b � 5, c � − 7, α � 1 and
c � 10. In (b), hidden attractor for the same parameters and the initial condition x0 � (0, 0, 0)T for t ∈ [50000, 50100]. In (c), the projection
of the self-excited attractors and the hidden attractor onto the plane x1 − x2.
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breaking the heteroclinic-like orbit. +e study revealed a
relationship between the existence of a hidden attractor and
the trajectories that, when are seen on a larger scale resemble
heteroclinic orbits which join the self-excited attractors. +e
findings suggest that new classes of multistable systems with
a different number of self-excited and hidden attractors can
be designed with a geometric approach.
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[9] R. J. Escalante-González and E. Campos-Cantón, “Generation
of chaotic attractors without equilibria via piecewise linear
systems,” International Journal of Modern Physics C, vol. 28,
no. 01, Article ID 1750008, 2017.

[10] S. Jafari, J. C. Sprott, and S. M. R. Hashemi Golpayegani,
“Elementary quadratic chaotic flows with no equilibria,”
Physics Letters A, vol. 377, no. 9, pp. 699–702, 2013.

[11] Z. Wang, S. Cang, E. O. Ochola, and Y. Sun, “A hyperchaotic
system without equilibrium,” Nonlinear Dynamics, vol. 69,
no. 1-2, pp. 531–537, 2012.

[12] V.-T. Pham, “Sundarapandian vaidyanathan, christos volos,
sajad jafari, and sifeu takougang kingni. A no-equilibrium
hyperchaotic system with a cubic nonlinear term,” Optik,
vol. 127, no. 1, pp. 3259–3265, 2016.

[13] C. Li, J. C. Sprott, W. +io, and H. Zhu, “A new piecewise
linear hyperchaotic circuit,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 61, no. 12, pp. 977–981,
2014.

[14] F. R. Tahir, S. Jafari, V.-T. Pham, C. Volos, and X. Wang, “A
novel no-equilibrium chaotic system with multiwing butterfly
attractors,” International Journal of Bifurcation and Chaos,
vol. 25, no. 4, Article ID 1550056, 2015.

[15] J. A. K. Suykens, A. Huang, and L. O. Chua, “A family of
n-scroll attractors from a generalized Chua’s circuit,” Archiv
fur Elektronik und Ubertragungstechnik, vol. 51, no. 3,
pp. 131–138, 1997.

[16] W. K. S. Tang, G. Q. Zhong, G. Chen, and K. F. Man,
“Generation of N-Scroll attractors via sine function,” IEEE
Transactions on Circuits and Systems I: Fundamental :eory
and Applications, vol. 48, no. 11, pp. 1369–1372, 2001.

[17] M. . E. Yalçin, J. A. K. Suykens, and J. Vandewalle, “Families of
scroll grid attractors,” International Journal of Bifurcation and
Chaos, vol. 12, no. 1, pp. 23–41, 2002.

[18] B. Aguirre-Hernández, E. Campos-Cantón, J. A. López-
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0e aim of this work is the design of an adaptive controller based on Mamdani-type fuzzy inference systems. 0e input control is
constructed with saturation functions’ fuzzy-equivalents, which works as the adaptive scheme of the controller.0is control law is
designed to stabilize the error system to synchronize a pair of chaotic nonhomogeneous piecewise systems. Finally, an illustrative
example as numerical evidence is developed.

1. Introduction

0e synchronization phenomena among dynamical systems
are a widely studied topic in the last decades due to the vast
amount of applications in science and engineering [1–3]. In
the related literature, dynamical systems and synchroniza-
tion applications in many fields can be found, from biology
[4, 5], mechanical systems [6–9], chemistry [10], physics
[11, 12], fuzzy modeling [13–16] to secure communications
[17–19], amongmany others. In general, it is said that a set of
dynamical systems achieve synchronization if trajectories in
each system approach a common trajectory.

Among the systems studied in synchronization, the ones
that stand out are the chaotic systems; chaotic systems
exhibit more complex dynamics, and they must satisfy the
next conditions according to Devaney’s definition of chaos
[20]: (i) sensitive dependence to initial conditions, (ii) dense
periodic orbits, and (iii) must be transitive. Many works
consider the problem of chaos synchronization; in [21], the
authors synchronize chaotic systems by linking them with
common signals. Chua et al. [22] explore the synchroni-
zation phenomena in Chua’s circuit, proven to be the

simplest electronic circuit to exhibit chaotic behaviour; on
the contrary, Femat and Soĺıs-Perales [23] discuss several
phenomena involved with chaos synchronization, and a
feedback controller is implemented to illustrate such syn-
chronization. In [24], chaos synchronization between two
coupled chaotic dynamical systems is presented. Conditions
for global asymptotic synchronization are presented and a
new method for the analysis of the stability of the syn-
chronization is reported, but different techniques and ap-
plications are still developed for this type of system in the last
years. In [25], the authors present the design of a rule-based
controller for a class of master-slave chaos synchronization,
and unlike traditional methods, the control law obtained
from this method has less maximum magnitude of the
control signal and reduces the actuator saturation phe-
nomenon in mechanical systems. AL-Azzawi and Aziz [26]
present the synchronization between two nonhomogeneous
hyperchaotic systems. A nonlinear control is used to achieve
synchronization and also report a stability analysis of the
error dynamics system using Lyapunov’s second method
and Cardano’s method. In [27], higher-order adaptive PID
controllers as a new generation of PID controllers for chaos
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synchronization is designed, and in [28], the authors study
the collected dynamics of a n-coupled piecewise linear
systems with different numbers of scrolls.

Along the synchronization schemes and controllers
designed, the adaptive type has been proven useful
depending on the application [29–32], and this kind of
controller allows the optimization of the energy necessary to
accomplish the synchronization between systems.

Wu et al. [29] study the synchronization of two chaotic
systems which are not identical and use adaptive controllers
to adjust the parameters of the systems such that the two
systems will synchronize. In [25], the design of a rule-based
fuzzy controller for a class of master-slave chaos synchro-
nization is presented; however, the whole control action is
substituted by the fuzzy controller, while Xi et al. propose an
adaptive robust finite-time control method based on a global
sliding surface for the synchronization of a class of chaotic
systems in [32].

0e main contribution of this work is the design of an
adaptive synchronization scheme based on a Mamdani-type
inference system, an equivalence with saturation functions is
used, and the stability of the error system is proven using
Lyapunov stability theory. Both, master and slave systems
can be described in as many pieces as necessary. In order to
provide evidence of energy optimization, a comparison
between fixed gain and adaptive gain in the same syn-
chronization scheme is reported in a satisfactory fashion.

0e rest of this work is organized as follows. Section 2
presents the problem statement and the systems description.
Section 3 introduces the basic concepts of synchronization
and Mamdani fuzzy inference system (FIS). Section 4
presents the main results with an example as numeric ev-
idence; finally, in Section 5, the conclusions are presented.

2. Problem Statement

Consider a classic master-slave synchronization scheme as

Master: _x � f(x), (1)

Slave: _y � g(y) + u, (2)

where both the master and slave system are piecewise
switching systems [33–36] of the form

_z � Az + B, (3)

with

B �

B1 if z ∈ D1

B2 if z ∈ D2

⋮ ⋮ ⋮

Bj if z ∈ Dj

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

that undergo chaotic behaviour, where x, y ∈ R3 are the
state variables, Bj � (bj1, bj2, bj3)

T, which are the switching
laws of the piecewise chaotic systems, and u ∈ R3 is the
actuator in charge of achieve the synchronization of the slave
over the master. Moreover, the domains Dj satisfy R3 �

∪m
j�1Dj and ∩ m

j�1Dj � ∅ for m> 1. 0e objective of this
work is to design the controller u as an adaptive controller of
the form

u �

u1 if y ∈ E1

u2 if y ∈ E2

⋮ ⋮ ⋮

uk if y ∈ Ek

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

for k � 1, 2, . . . , n, using a Mamdani-based fuzzy inference
system for each uk to synchronize the master and slave
systems, optimizing the energy usage for the control action.
Consequently, there are three major objectives to develop in
this work:

(1) 0e equivalence relation between the fuzzy-based
controller and the saturation functions

(2) Achieve adaptive synchronization between systems
(3) Ensure asymptotic stability of the error system via

Lyapunov’s theory

3. Preliminaries

In this section, the basic concepts of synchronization and
fuzzy inference system design will be presented; this concept
will be convenient to understand how it is possible to achieve
the principal objective of this work.

3.1. Synchronization Scheme. Consider the master-slave
synchronization scheme defined in [37] as

Master: _x � f(x),

Slave: _y � g(y) + u,
(6)

with x, y ∈ Rn as the system states and

u � −Pe + f(x) − g(y), (7)

where P � diag p2
1, p2

2, p2
3􏼈 􏼉. 0e synchronization is achieved

when the master and slave system synchronize, i.e., when the
synchronization objective,

lim
t⟶∞

‖y(t) − x(t)‖ � 0, (8)

is reached.

Definition 1 (see [3]). A system of the form _x � f(x) is
called master system if its flow x(t) is independent. A system
of the form _y � g(y) + u is called slave system of the master
system if its flow y(t) is constrained by the flow of themaster
system.

From the previous definition, a slave system is con-
strained by a master system via a specific condition, which
means that a slave systemwill be controlled towards amaster
system under a specific control law. 0is phenomenon is
called the synchronization of the slave and master systems
under such a specific condition [3, 38].
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3.2. Fuzzy Inference System Design. 0e design of the fuzzy
inference systems considers an IF-THEN fuzzy rules based
on the form [39]

Ri: IF e isMi, THENp isHi, (9)

where e is the error between two states, and the input of the
membership functions is

M−1(e) �

1, if e<Φ−1,

1
Φ−1

e, if Φ−1 ≤ e≤Φ0,

0, if e>Φ0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M0(e) �

−
1
Φ−1

e + 1, if Φ−1 ≤ e<Φ0,

−
1
Φ1

e + 1, if Φ0 ≤ e≤Φ1,

0, elsewhere,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1(e) �

0, if e<Φ0,

1
Φ1

e, if Φ0 ≤ e≤Φ1,

1, if e>Φ1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

withΦ−1 � −Φ1, while the output membership functions are
singletons, defined as

H−1(p) �
1, if p � Ω−1,

0, elsewhere,
􏼨

H0(p) �
1, if p � Ω0,

0, elsewhere,
􏼨

H1(p) �
1, if p � Ω1,

0, elsewhere.
􏼨

(11)

0e input and output membership functions are
depicted in Figure 1. Now, consider theMamdani-type fuzzy
inference system, with product in the antecedent and center
of average as the defuzzifier method. 0en, the fuzzy in-
ference system is written as

p(e) � 􏽘

1

i�−1

Mi(e)

􏽐
1
j�−1 Mj(e)

⎧⎨

⎩

⎫⎬

⎭Ωi � 􏽘

1

i�−1
Xi(e)Ωi, (12)

where Ωi refers the crisp value of the output regarding of e.
0e function Xi(e) must satisfy the following conditions
[40, 41]:

(i) Xi(e) is a locally Lipschitz continuous and bounded
function

(ii) Xi(0) � 0
(iii) Xi(e) � Xi(−e)

0e designed rule base matrix is given in Table 1.
Only two rules are fired at the same time [41, 42], for any

value of e. Moreover, it satisfies

􏽘

1

i�−1
Xi(e) � 1, (13)

which is a linear convex combination.

4. Main Results

Consider the synchronization error as e � y − x. 0e error
dynamics are defined as

_e � g(y) − f(x) + u, (14)

where the controller u is

u � −Pe + f(x) − g(y), (15)

with P � diag p2
1, p2

2, p2
3􏼈 􏼉. In the following, given the sec-

torial functions provided from the FIS (15), it is necessary to
consider the matrix of adapting P � diag p2

1(e1),􏼈

p2
2(e2), p2

3(e3)}. 0en, we can establish the following result.

Lemma 1. 0e controller u � −Pe + f(x) − g(y) can be
expressed as

u � −

Ω11 sat
e1

Φ11
􏼠 􏼡􏼠 􏼡

2

e1

Ω21 sat
e2

Φ21
􏼠 􏼡􏼠 􏼡

2

e2

Ω31 sat
e3

Φ31
􏼠 􏼡􏼠 􏼡

2

e3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ f(x) − g(y). (16)

Proof. For each l � 1, 2, 3, it is possible to rewrite (15) as

pl el( 􏼁 �

Ωl
1

Φl
1

el, if el

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Φl

1,

Ωl
1, if el

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>Φl

1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

0us, each FIS can be written as a piecewise linear
function as follows:

Complexity 3



pl el( 􏼁 � Ωl
1

el

Φl
1

, if el

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Φl

1,

1, if el

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>Φl

1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

� Ωl
1

el

Φl
1

, if
el

Φl
1

≤ 1,

1, if
el

Φl
1

> 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

� Ωl
1 sat

el

Φl
1

⎛⎝ ⎞⎠.

(18)

Substituting (18) in each pl of (15), it is possible to
rewrite u as

u � −

Ω11 sat
e1

Φ11
􏼠 􏼡􏼠 􏼡

2

e1

Ω21 sat
e2

Φ21
􏼠 􏼡􏼠 􏼡

2

e2

Ω31 sat
e3

Φ31
􏼠 􏼡􏼠 􏼡

2

e3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ f(x) − g(y), (19)

as previously stated.

Once the piecewise controller is described, whose fuzzy
component is the candidate to work as the adaptive scheme,
in the following result, we formalize this assertion. □

Theorem 1. 0e synchronization scheme formed by (1) and
(2) achieves synchronization under the adaptive controller
(16). 0us, the error system (14) is asymptotically stable.

Proof. Consider the quadratic Lyapunov candidate
function:

V(e) �
1
2
e

T
Pe. (20)

From Lemma 1, it is known that

Pe �

Ω11 sat
e1

Φ1
􏼠 􏼡􏼠 􏼡

2

e1

Ω21 sat
e2

Φ1
􏼠 􏼡􏼠 􏼡

2

e2

Ω31 sat
e3

Φ1
􏼠 􏼡􏼠 􏼡

2

e3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

0e time derivative of (20) is computed as

_V(e) �
1
2

zV

ze1
+

zV

ze2
+

zV

ze3
􏼠 􏼡,

� e
T

_e,

� e
T
(g(y) − f(x) + u).

(22)

Substituting the adaptive control law (16) in (22),

M–1 M0 M1

Φ–1 Φ0 Φ1

e

(a)

H–1

Ω–1 Ω0 Ω1

p(e)

H0 H1

(b)

Figure 1: Membership functions: (a) input; (b) output.

Table 1: Fuzzy rule base.

Input (e) Output (p(e))

M−1 H−1
M0 H0
M1 H1
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_V(e) � e
T

g(y) − f(x) −

Ω11 sat
e1

Φ1
􏼠 􏼡􏼠 􏼡

2

e1

Ω21 sat
e2

Φ1
􏼠 􏼡􏼠 􏼡

2

e2

Ω31 sat
e3

Φ1
􏼠 􏼡􏼠 􏼡

2

e3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ f(x) − g(y)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

� −eT

Ω11 sat
e1

Φ1
􏼠 􏼡􏼠 􏼡

2

e1

Ω21 sat
e2

Φ1
􏼠 􏼡􏼠 􏼡

2

e2

Ω31 sat
e3
Φ1

􏼠 􏼡􏼠 􏼡

2

e3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

� −e
T

Ω11 sat
e1

Φ11
􏼠 􏼡􏼠 􏼡

2

0 0

0 Ω21 sat
e2

Φ21
􏼠 􏼡􏼠 􏼡

2

0

0 0 Ω31 sat
e3

Φ31
􏼠 􏼡􏼠 􏼡

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e,

� −e
T
Pe< 0,

(23)

which ensures the negativeness of (22) and consequently the
asymptotic stability of the error system.

0e following example illustrates the effectiveness and
performance of the controller design, which comes to
corroborate what we claim and prove. □

Example 1. According to [43], we synthesized the following
master system:

_x �

0 1 0

0 0 1

−a1 −a2 −a3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠x +

−β1
−β2

a1β3 + a2β1 + a3β2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (24)

where a1 � 3/2, a2 � 1, a3 � 1, and

β1 �
5 if x2 ≥ 0,

−5 if x2 < 0,
􏼨

β2 �
14 if x3 ≥ 7,

0 if x3 < 7,
􏼨

β3 �
4 if x1 ≥ 0,

−4 if x1 < 0.
􏼨

(25)

In Figure 2, the 3D phase portrait plot of system (24) is
depicted under initial conditions x0 � (0, 4, 10)T, and we
can see that the master system presents a 8-scroll chaotic
attractor in three different directions. 0e projections in the
planes (x1, x2), (x1, x3), and (x2, x3) for the system are
shown in Figure 3.

Now, following the samemethodology used to design the
master system, consider the slave system as

Complexity 5
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Figure 3: Plane projections for the master system: (a) (x1, x2); (b) (x1, x3); (c) (x2, x3).
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Figure 2: 3D phase portrait of the master chaotic system.
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Figure 4: Slave system plane projections: (a) (y1, y2); (b) (y1, y3); (c) (y2, y3).
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Figure 5: Synchronized slave system plane projections: (a) (y1, y2); (b) (y1, y3); (c) (y2, y3).
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Figure 6: Error dynamics.
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Figure 7: Continued.
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_y �

0 1 0

0 0 1

−􏽥a1 −􏽥a2 −􏽥a3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠y +

0

0

􏽥a1
􏽥β3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + u, (26)

with 􏽥ai � 3/5, for i � 1, 2, 3, and

􏽥β3 �
4 if y1 ≥ 0,

−4 if y1 < 0.
􏼨 (27)

Unlike the master system, the slave system only presents
a double scroll chaotic attractor by taking the initial con-
dition point y0 � (1, −2, −5)T, whose projections in the
planes (y1, y2), (y1, y3), and (y2, y3) for the slave system,
when u � (0, 0, 0)T, are shown in Figure 4.

0e control law u is designed according to Lemma 1, and
its explicit expression is given by

u � −Pe + f(x) − g(y),

� −

Ω11 sat
e1

Φ11
􏼠 􏼡􏼠 􏼡

2

e1

Ω21 sat
e2

Φ21
􏼠 􏼡􏼠 􏼡

2

e2

Ω31 sat
e3

Φ31
􏼠 􏼡􏼠 􏼡

2

e3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

0 1 0

0 0 1

−a1 −a2 −a3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x,

+

−β1

−β2

a1β3 + a2β1 + a3β2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

0 1 0

0 0 1

−􏽥a1 −􏽥a2 −􏽥a3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
y −

0

0

􏽥a1
􏽥β3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(28)

Adaptive p3
Fixed p3

0.1 0.2 0.3 0.4 0.50
t

–10

–8

–6

–4

–2

0

p3

(c)

Figure 7: Evolution of pl(el) trough time: (a) p1(e1); (b) p2(e2); (c) p3(e3).

8 Complexity



whereΩl
1 � 10 andΦl

1 � 1/10, for l � 1, 2, 3. 0e projections
in the planes (y1, y2), (y1, y3), and (y2, y3) for the syn-
chronized slave system are shown in Figure 5. It is clear that
the slave system now exhibits the trajectories of the master
system andwent from a double scroll chaotic attractor to a 8-
scroll chaotic attractor.

0e errors between the master and slave systems are
depicted in Figure 6, and these errors tend asymptotically to
the origin as intended.

4.1. EnergyOptimization. One of the advantages of using the
adaptive synchronization proposed in this work is the op-
timization of the energy used to induce the dynamics of the
master system in the slave system. Comparing the

magnitude of pl(el), l � 1, 2, 3, against the magnitude of a
fixed value shows clearly that the energy consumption is
vastly improved.

At first, high values of pl(el) are injected in the fuzzy
actuator in order that the error el reaches its following
adaptive domain interval Al � (−Φl

1,Φ
l
1), and then, the

value of pl(el) decays until the error reaches the next interval
of adaptation. Hence, the power stills decaying whilst the
error system tends to zero.

Figure 7(a) shows the behaviour of the adaptive p1(e1)

(blue line) and the behaviour of a fixed not adaptive value of
p1 (dotted red line). 0is behaviour is also presented among
the adaptives p2(e2) and p3(e3) (blue lines) and their re-
spective fixed no adaptive values p2 and p3 (in red dots),
depicted in Figures 7(b) and 7(c), respectively.
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–0.3 –0.1 0 0.1 0.3 0.5–0.5
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e2 vs p2
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(a)
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(c)

Figure 8: Comparative between the adaptation domains for (a) Φl
1 � 0.1; (b) Φl

1 � 0.25; (c) Φl
1 � 0.5.
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0e energy optimization can be modified according the
application where it is planned to be used by modifying the
adapting interval Al of each pl(el). 0is can be better ap-
preciated in Figures 8(a)–8(c).

5. Conclusions

An adaptive synchronization scheme was provided using as
adaptation law a Mamdani-type fuzzy inference system. An
equivalence is given to express the fuzzy inference system as
saturation functions and evidence is provided to ensure the
stability of the error system between the master and the slave
systems.
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project nos. 5564.19-P, 8085.20-P, and 11122.21-P. J. R.
Pulido–Luna wants to thank CONACyT for the DSc
scholarship.

References

[1] A. Pikovsky, M. Rosenblum, and J. K. Synchronization, “A
universal concept in nonlinear sciences,” in 0e Edinburgh
Building, Cambridge University Press, Cambridge, UK, 1st
edition, 2001.

[2] S. Boccaletti, “0e synchronized dynamics of complex sys-
tems,” Monograph Series on Nonlinear Science and Com-
plexity, vol. 6, 2008.

[3] A. C. J. Luo, “A theory for synchronization of dynamical
systems,” Communications in Nonlinear Science and Nu-
merical Simulation, vol. 14, no. 5, pp. 1901–1951, 2009.

[4] Z. Qu, “Chaos in the genesis and maintenance of cardiac
arrhythmias,” Progress in Biophysics and Molecular Biology,
vol. 105, no. 3, pp. 247–257, 2011.
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[23] R. Femat and G. Soĺıs-Perales, “On the chaos synchronization
phenomena,” Physics Letters A, vol. 262, no. 1, Article ID 5060,
1999.

10 Complexity
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Designing chaotic systems with different properties helps to increase our knowledge about real-world chaotic systems. In this
article, a piecewise linear (PWL) term is employed to modify a simple chaotic system and obtain a new chaotic model. (e
proposedmodel does not have any equilibrium for different values of the control parameters.(erefore, its attractor is hidden. It is
shown that the PWL term causes an offset boostable variable. (is feature provides more flexibility and controllability in the
designed system. Numerical analyses show that periodic and chaotic attractors coexist in some fixed values of the parameters,
indicating multistability. Also, the feasibility of the system is approved by designing field programmable gate arrays (FPGA).

1. Introduction

Chaotic systems are characterized by sensitivity to initial
conditions, known as the butterfly effect, and unpredict-
ability. Recently, the analyzing, designing, and applications
of chaotic systems have been progressed in different fields.
(e existence of chaotic behaviors in real-world systems
[1, 2] encourages proposing physical [3], biological [4, 5],
economic [6], and engineering [7, 8] chaotic models. Pre-
vious studies suggested that chaotic systems have different
numbers and geometric forms of equilibria, e.g., chaotic
systems with no [9–11], a line [12], a circle [13], a curve [14],
and a surface [15] of equilibria. Chaotic oscillators can be
applied in functional subsystems of digital and radio-wave

communication systems such as compression, filter, en-
cryption, and modulation [16].

Most classical and well-known attractors, such as Lor-
enz, Rössler, Chua, and Chen, are excited from unstable
equilibria. So, there is at least one unstable equilibrium in
these attractors’ basins of attraction. Hence, they are called
self-excited attractors [17]. However, about ten years ago,
Leonov et al. showed that the Chua’s circuit has another kind
of attractor for which its basin of attraction does not collide
with unstable manifolds [18]. Such attractors are called
hidden attractors. Strange attractors in systems with no
equilibria are placed in this category [19, 20]. Exploring the
basin of attraction [21] and parameter switching [22] al-
gorithms can detect the hidden attractors of the system.
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(e existence of different stable attractors divides the
phase space into different regions demonstrating as the
basin of attractions [23–26]. Sometimes attractors coexist
with each other and are characterized by the initial con-
ditions. Systems with these separated attractors (and their
corresponding basins of attraction) are called multistable
[27–29]. Altering a multistable system to a monostable one
[30] or synchronization of some multistable systems to
luck on a particular attractor [31] are two different con-
trolling approaches related to multistable systems. As
there is no analytical way to investigate the detect coex-
isting attractors, numerical approaches are used in most
researches [32]. Also, varying initial conditions, as a bi-
furcation parameter, may help in finding coexisting
attractors, especially in systems with extreme multi-
stability [28, 33].

Piecewise linear (PWL) systems are in the category of
switching systems with different affine or nonlinear func-
tions in diverse regions of the state variables [34]. Chua’s
system is one of the most popular PWL systems, which
shows chaotic behavior [35]. Different PWL systems have
been proposed with multiscroll chaotic attractors and dif-
ferent numbers of equilibria [36, 37]. Primarily, polynomial
approaches have been used to generate such chaotic
attractors [38, 39]. As PWL functions can generate various
chaotic attractors [40], they can be used in controlling [41]
and dynamics editing [42]. Also, error state feedback con-
trollers are proposed, which synchronize master-slave PWL
chaotic system [43, 44].

Controlling the amplitude of the chaotic attractors is
divided into partial and total control schemes [45]. More-
over, researches showed that these approaches might help to
find the multistability in systems [46]. Boosting a state
variable through adding a DC offset to the variable (offset
boosting) is a property that exists in some chaotic systems
[47]. (e offset boostable variables of a system can even
change from unipolar signal to bipolar one and vice versa
[48]. Also, researches have shown that conditional symmetry
could be preserved for the asymmetric systems using the
offset boosting variables which provides polarity balance in
these systems [49].

(e remainder of this paper is organized as follows:
the proposed chaotic system is introduced and statisti-
cally analyzed in Section 2. In Section 3, the system’s
dynamical properties are analyzed using the bifurcation
diagram and Lyapunov exponents diagram. (e offset
boosting property is studied in Section 4. Section 5 in-
cludes the FPGA realization of this system. Finally, the
discussion and conclusion of this study are presented in
Section 6.

2. Hidden Chaotic Hyperjerk System with
PWL Term

To study the effect of a PWL term on the dynamical
properties of chaotic systems, a simple 4D chaotic hyperjerk
system is considered as [50]

_x � y,

_y � z,

_z � w,

_w � −1.02w + 1.64x
2

− 1.36y
2

+ 0.28xy + 2.42xz + 1.45,

(1)

where x, y, z, and w are the state variables of this ordinary
differential equation. Analyzing the steady state,
( _x, _y, _z, _w) � (0, 0, 0, 0), shows that this system does not
have any equilibria, and its chaotic responses are in the
group of hidden attractors. In this work, this system is
modified with one PWL term as

_x � y,

_y � z,

_z � w,

_w � −1.02w + 1.64x
2

− 1.36y
2

+ 0.28xy + 2.42xz + 1.45 + a|y − x − b|.

(2)

(e system has two control parameters (a and b) and five
nonlinearities (one of them is an absolute function of x and
y, g(x, y) � a|y − x − b|). For a> 0, this system does not
have any equilibria.(erefore, its chaotic attractor is hidden.
Equation (3) determines the volume contraction rate of
system (2):

∇V �
z _x

zx
+

z _y

zy
+

z _z

zz
+

z _w

zw
� −1.02. (3)

As ∇V< 0, the proposed model is dissipative and has the
condition of exhibiting bounded attractors. (e state spaces
of system (2), Figure 1, show that it has chaotic attractor
when a � 3.5, b � 1, and (x0, y0, z0, w0) � [−2.77, −0.53,

2.7, −0.34]. Also, both the piecewise linear functions g(x, y)

and the attractor are plotted in the 3D phase space of the
system shown in Figure 2.

It should be noted that the fourth-order Runge–Kutta
(RK4) [51] method with time-step h � 0.001 was used to do
the numerical simulations.

3. Dynamical Analysis

To analyze the effect of parameters of PWL term in the
system dynamics, the bifurcation diagram of system (2) is
plotted as the bifurcation parameter changes from −1 to 4.5
in Figure 3(a).(e parameter b is 1, and the initial conditions
are (−2.77, 0.53, 2.7, −0.34). (e bifurcation diagram shows
that the system exhibits both period-doubling and period-
halving routes to chaos in different parameter values. Also,
Lyapunov exponents (LEs) of the system are computed for
the same conditions and a runtime of t � 40000 s in
Figure 3(b). To calculate the LEs of the system, the Wolf
method [52] is used. (e largest Lyapunov exponent (LLE,
shown in green) is positive when the bifurcation diagram
displays chaotic behavior.
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Also, changing the control parameter b results in dif-
ferent dynamical behaviors in this system. To investigate, the
bifurcation diagram of the system is plotted in Figure 4(a), in
which b changes from −0.2 to 2.8. Figure 4(a) shows that
different values of this parameter result in period-doubling
and period-halving routes to chaos. Figure 4(b) shows the

corresponding LEs. Both panels of Figure 4 are plotted when
a � 3.5 and (x0, y0, z0, w0) � (−2.77, 0.53, 2.7, −0.34).

Different initial conditions are checked for constant
values of the parameters. (is system has two coexisting
attractors, a chaotic one and a limit cycle one, when a � 3.9
and b � 1. Figure 5 displays these attractors in red and blue
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Figure 1: Attractor of system (2) and its projections in (a) xy, (b) yz, and (c) zw planes and (d) xyz space with a � 3.5 and b � 1 and the
initial conditions are (x0, y0, z0, w0) � (−2.77, 0.53, 2.7, −0.34).
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colors for the initial conditions equal to
(−2.77, −0.4021, 6.2522, −0.0634) and (−2.77, −0.4140,

−1.5095, −0.3374), respectively.

4. Offset Boosting of the Attractors

One or more state variables are offset boostable in some
chaotic systems if adding a DC offset to this variable can
boost the attractor in its dimension line. In this system,
variable z is offset boostable, and by the transformation
z⟶ z + k where k is a constant, the system’s attractor
moves forward and backward in the z dimension. So,
equation (2) changes to

_x � y,

_y � z + k,

_z � w,

_w � −1.02w + 1.64x
2

+ −1.36y
2

􏼐 􏼑

+ 0.28xy + 2.42x(z + k) + 1.45 + a|y − x − b|.

(4)

Considering this transformation in system (1), without
the PWL term, shows that variable z is not offset boostable in
the original system. In this case (Figure 6(a)), the attractor of
the system changes from limit cycle to chaotic one as k varies
from −3 to 3, with the step size equal to 0.5. However, in
system (2), changing the parameter k from −30 to 30 boosts
the attractor, as shown in Figure 6(b). It should be noted that
increasing the parameter k alters the state variable z from a
bipolar signal to a unipolar one.

To better represent the effect of the offset boosting pa-
rameter, the average of the state variables should be ana-
lyzed. (e average of offset boostable variables should
increase linearly as the parameter k increases, while other
state variables’ averages should remain constant. Figure 7(b)
shows that these conditions are satisfied in system (2) while
the original system does not have this feature. In system (1),
Xmean does not remain constant, and Zmean has some
fluctuations.

5. FPGA Implementation of 4D PWL
Hyperjerk System

Digital implementations of a chaotic system have incredible
importance in capturing the main characteristics of non-
linear systems. Recent literature has shown an increasing
interest in hardware implementation of nonlinear models
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Figure 4: (a) Bifurcation diagram and (b) Lyapunov exponents of system (2) when parameter b changes and a � 3.5. (e initial conditions
are (−2.77, 0.53, 2.7, −0.34).
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[53–57]. Field programmable gate arrays (FPGA) became a
vital tool in characterizing the applications of different
implementations of chaotic systems. Many references have
shown the practical implementation of nonlinear systems
using FPGA [58–62]. (e main attraction of FPGA is its
lower power consumption compared to other hardware
platforms [63–67].

(e proposed 4D PWL hyperjerk system is implemented
in the FPGA platform, which has high throughput and
utilizes fewer resources. (e system’s schematic and power
analysis chart show the number of resources used for the
implementation and its utilization percentage of power. (e

phase space diagram of the system is obtained using Xilinx
System Generator tool [64, 66, 67]. (is tool is integrated
withMATLAB software, and a Simulink diagram is designed
using Xilinx blocks which are readily available in the system
generator tool kit. Xilinx block sets used in the Simulink
design are configured according to the IEEE 754 standard
with 32/16 (input/output) bits floating-point and latency
equal zero. A forward Euler (FE) numerical method is used
to design an integrator of each state equation of system (2).
(e general form of the FE numerical method and its dis-
cretized state equation of system (2) are shown in equations
(5) and (6), respectively, as
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Figure 6: Projection of systems (1) and (2) in the zw plane. Varying the control parameter k, (a) from −3 to 3 in system (1), shows that this
system is not offset boostable. However, in (b), when k changes from −30 to 30 in system (2), the system shows offset boostable property. In
both panels, a � 3.5, b � 1, and (x0, y0, z0, w0) � (−2.77 − 0.53 2.7 − 0.34).
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un+1 � un + hf un−1( 􏼁, (5)

xn+1 � xn + h yn−1( 􏼁,

yn+1 � yn + h zn−1( 􏼁,

zn+1 � zn + h wn−1( 􏼁,

wn+1 � wn + h −1.02wn−1(

+ 1.64x
2
n−1 − 1.36y

2
n−1

+ 0.28xn−1yn−1

+ 2.42xn−1zn−1 + 1.45

+ a yn−1 − xn−1 − b
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼑.

(6)

(e step size h is set to 0.001. Also, the parameter values
a � 3.5 and b � 1 are generated using Xilinx constant
block. (e state phase diagram is produced and shown in
Figure 8 when (x0, y0, z0, w0) � (−2.77, −0.53, 2.7, −0.34).
Following the Simulink design [56, 57], the system is then
synthesized and implemented through Vivado design tool,
and its VHDL or VERILOG description is automatically
generated. An elaborated design of system (2) using the
Kintex 7 xc7k160t-1fbg484 chip is presented in Figure 9.
Hardware-software cosimulation is performed with Kintex
7 KC705 kit to prove that the proposed system is imple-
mented using hardware [66, 67]. (e utilization of re-
sources and power is presented in Table 1 and Figure 10,
respectively.

6. Discussion and Conclusion

About ten years ago, Leonov et al. discovered a kind of
attractor in which the basin of attraction did not intersect
with neighborhoods of equilibria [68]. Such attractors are

different from the previously known ones, which can be
excited from unstable equilibria. Investigating hidden
attractors in real-world systems has received much interest
as they may cause undesired dynamics and stability issues.
Systems with no equilibria are an important subgroup of
hidden attractors. (erefore, we were motivated to design a
system with no equilibria which employed the absolute
function as the nonlinear term.

Numerical results showed that taking the polarity in-
formation from one term of the proposed system makes it
have offset boosting property. Due to this rare feature, the
proposed system’s attractor is moved through the z-axis
when the control parameter k is changed as z⟶ z + k in
equation (2), while the other state variables’ average
remained constant. Comparing the proposed system with
the original system indicated that this property was inserted
through the absolute function. (e offset boostable variable
z allowed adjusting the location of the attractor in its di-
rection, which provides controllability in this system.

Using the absolute function made the proposed system a
piecewise linear (PWL) one. PWL systems mostly consist of
two or more affine functions. (ese affine functions provide
the situation in which adding more equilibria and switching
surfaces provide multiscroll attractors [34, 37]. Although, in
the proposed system, a general case was considered with
nonlinear terms that empower the attractors’ complexity,
this claim can be confirmed by comparing the bifurcation
diagrams derived from both these subgroups of PWL
systems.

Chaotic systems have been frequently used in encryption
block of secure communication systems according to their
robustness against noise and attack [69]. Previous studies
suggested that the chaos-encrypted images, both grayscale
and RGB, have no correlation with the original image [70].

Table 1: Resource utilization table for the 4D PWL hyperjerk system implemented in FPGA.

S. no. Name of resources Utilization of resources Total available resources Percentage of utilization
1 FF 256 202800 0.13
2 LUT 753 101400 0.74
3 I/O 129 285 45.26
5 DSP48 40 600 6.67
6 BUFG 1 32 3.13

Dynamic:

Clocks:

Signals:

Logic:

DSP:

I/O:

Device Static:

0.003 W

0.025 W

0.010 W

0.034 W

0.122 W

0.113 W

(1%)

(13%)

(5%)

(18%)

(63%)

(37%)

37%

63%

63%

18%

13%

0.192 W (63%)

Figure 10: Power utilization of the FPGA implemented 4D PWL hyperjerk system.

8 Complexity



Also, the quality of the image does not decrease during the
decryption process. Chaotic systems also have been used to
generate random numbers in cryptography [71]. To improve
the application of chaotic systems, optimization methods
can be used [72]. (ese single and multiobjective optimi-
zation methods have used different numerical approaches to
increase (or decrease) the Lyapunov exponents [73],
Kaplan–Yorke dimension [74], and complexity indexes [75].
Future works can focus on optimizing the indexes of the
proposed system to provide its application in image en-
cryption and random number generator.
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the respective text part, and there are no additional data
requirements for the simulation results.

Conflicts of Interest

(e authors declare no conflicts of interest.

Acknowledgments

(e authors extend their gratitude to the Deanship of Sci-
entific Research at King Khalid University for funding this
work through research groups program under grant number
R.G.P.1/72/42.

References

[1] H. D. Abarbanel, R. Brown, J. J. Sidorowich, and
L. S. Tsimring, “(e analysis of observed chaotic data in
physical systems,” Reviews of Modern Physics, vol. 65, p. 1331,
1993.

[2] H. Korn and P. Faure, “Is there chaos in the brain? II. ex-
perimental evidence and related models,” Comptes Rendus
Biologies, vol. 326, pp. 787–840, 2003.

[3] R. Rollins and E. Hunt, “Exactly solvable model of a physical
system exhibiting universal chaotic behavior,” Physical Review
Letters, vol. 49, p. 1295, 1982.

[4] K. Aihara, T. Takabe, and M. Toyoda, “Chaotic neural net-
works,” Physics Letters A, vol. 144, pp. 333–340, 1990.

[5] Q. Xu, X. Tan, D. Zhu, H. Bao, Y. Hu, and B. Bao, “Bifur-
cations to bursting and spiking in the chay neuron and their
validation in a digital circuit,” Chaos, Solitons & Fractals,
vol. 141, Article ID 110353, 2020.

[6] M. Frank and T. Stengos, “Chaotic dynamics in economic
time-series,” Journal of Economic Surveys, vol. 2, pp. 103–133,
1988.

[7] B. Bao, N. Wang, Q. Xu, H. Wu, and Y. Hu, “A simple third-
order memristive band pass filter chaotic circuit,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 64,
pp. 977–981, 2016.

[8] J. Kengne, G. D. Leutcho, and A. N. K. Telem, “Reversals of
period doubling, coexisting multiple attractors, and offset
boosting in a novel memristive diode bridge-based hyperjerk
circuit,” Analog Integrated Circuits and Signal Processing,
vol. 101, pp. 379–399, 2019.

[9] S. Jafari, J. Sprott, and S. M. R. H. Golpayegani, “Elementary
quadratic chaotic flows with no equilibria,” Physics Letters A,
vol. 377, pp. 699–702, 2013.
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et al., “Error-feedback control of multistability,” Journal of the
Franklin Institute, vol. 354, pp. 7346–7358, 2017.

[31] R. Sevilla-Escoboza, J. Buldú, A. Pisarchik, S. Boccaletti, and
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Due to the growing of the use of Internet and communication media, image encryption is rapidly increased. Image sharing
through unsafe open channels is vulnerable for attacking and stealing. For protecting the images from attacks, encryption
techniques are required. Recently, new and efficient chaos-based techniques have been suggested to develop secure image
encryption.-is study presents a novel image encryption framework based on integrating the chaotic maps and color codes.-ree
phases are involved in the proposed image encryption technique. Piecewise chaotic linear map (PWLCM) is used in the first phase
for permuting the digital image. In the second phase, substitution is done using Hill cipher which is the mixing of color codes with
the permuted image. -e third phase is implemented by XORing, a sequence generated by the chaotic logistic map (CLM). -e
proposed approach enhances the diffusion ability of the image encryption making the encrypted images resistant to the statistical
differential attacks. -e results of several analyses such as information entropy, histogram correlation of adjacent pixels, unified
average changing intensity (UACI), number of pixel change rate (NPCR), and peak signal-to-noise ratio (PSNR) guarantee the
security and robustness of the proposed algorithm. -e measurements show that the proposed algorithm is a noble overall
solution for image encryption. -orough comparison with other image encryption algorithms is also carried out.

1. Introduction

Images are a substantial source of information not limited to
the daily routine of a common person, but having diverse
applications in various fields of military, medical, and in-
dustry. For example, we may enumerate military image
records, trusted video conferencing, satellite imagery,
planetary motion images, and keeping a person’s medical
record [1]. -e requirements of consistent, fast, and robust
techniques to store and transmit digital images have led to
the development of novel encryption techniques. -e in-
formation conveyed through images is very complex as

compared to simple text. Data sent through open channels
such as Internet can be illegally accessed and restored.
-erefore, the progress in the field of image encryption
creates diverse opportunities and applications in upcoming
future. Several assessment criteria including the information
entropy, correlation between adjacent pixels, peak signal-to-
noise ratio (PSNR), the number of pixels change rate
(NPCR), and unified average changing intensity (UACI)
related to the image encryption are essential for performance
evaluation of the encryption algorithms. -e algorithm for
which the values of these criteria fulfill the standard ex-
pectation level can resist the statistical and differential
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attacks [2]. Moreover, for resisting the brute-force attacks,
an algorithm with large key space and sensitive to initial
conditions is recommended.

Imaging technology meets chaos and propagation re-
quirements compared with traditional encryption systems;
chaotic systems [3] have powerful features, such as non-
periodicity, nonlinearity, unpredictability, and extreme

sensitivity to initial conditions [4]. Matthews [5] introduced
the concept of chaotic function in cryptography. He sug-
gested that a random sequence can be generated by iterating
a nonlinear function with certain conditions. In 1998, [6]
Friedrich first applied the chaotic system to image en-
cryption. Since then, image encryption based on chaotic
systems has gradually become the main field of cryptography

Secret
key
K1

Iterate PWLCM 
for the sequence 

of length L

Sort the
sequence

Permuted sequence is generated 
by comparing positions of 

chaotic and sorted sequences

Reshape plain 
image in one 
dimensional 
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Figure 1: Flowchart of the proposed image encryption algorithm.

Input. Color image I, secret key K1 � (ξ0, η), PWLCM (1)
Output. Image array PM with scrambled pixels
Step 1. One-dimensional arrayP of size L � m × n × 3 is created by reshaping the original image matrix I to one-dimensional array,

where m, n are the number of rows and columns, respectively, of the original image matrix I

Step 2. Using PWLCM (1) with the keyK1, generate the chaotic sequence X � x1, x2, ..., xL􏼈 􏼉 and sort the resulting sequence X �

x1, x2, ..., xL􏼈 􏼉 in ascending order
Step 3. Compute the position vector of X in X and note down the transformed positions TRAN � p1, p2, ..., pL􏼈 􏼉

Step 4. -e array P is permuted using TRAN to get PM

ALGORITHM 1: (Pixel permutation).
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[7]. Chen and Mao used chaotic 3D cat maps [8] and Baker
maps [9] to create permuted image in their proposals. Guan
used a chaotic 2D cat map [10] to swap pixels in 2005.
Patidar et al. [11] presented image encryption scheme based
on substitution-diffusion using chaotic standard map and
chaotic logistic maps.

In 2014, [12] Zhang and Wang proposed a new multi-
image encryption algorithm based on mixed pixels and
piecewise linear chaotic mapping. It is the fastest way to
solve the problem. Many researchers have designed image
encryption techniques by using various combinations of
chaotic maps such as logistic map and Baker map [13], tent
and logistic map [14], and the logistic-sine-coupling map
[15].-e security and efficiency of algorithms is improved by

these suggestions. Liao et al. [16] recently implemented a
shorthand strategy based on the enlarged channel model’s
probability. He also used critical functions and pixel cor-
relation functions [17] for stenographic purpose.

Chaos system plays a vital role in the different fields of
mathematics. Many complicated systems can be investi-
gating through chaos systems. Chaotic maps have very in-
teresting features such as sensitivity to the initial value: a
completely different sequence is generated with the small
change in the initial value. Other features may include
nonperiodicity, the map which is used to generate the
chaotic sequence is nonperiodic, and randomness behavior,
the chaotic sequences which are generated by the chaotic
map are mostly pseudorandom sequences with complex

Figure 2: Schematic representation of key mixing with color codes.

Input. Permuted array PM, K2 � (color 1, color 2, color 3), where color 1 � (R1, G1, B1),color 2 � (R2, G2, B2), and
color 3 � (R3, G3, B3) are any three random secret colors in (R, G, B) format and k is any random integer, such that
gcd(k, 256) � 1.

Output. An array Q of order L
Step 1. Computing self-invertible matrix
(a) Make a matrix K11 (mod256) of order 3× 3 as K11 �

R1 G1 B1
R2 G2 B2
R3 G3 B3

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

(b) Take a random integer k ∈ (1, 256), such that gcd(k, 256) � 1
(c) Calculate K12 � k(I3 − K11)mod256, K21 � k− 1(I3 + K11)mod256, andK22 � −K11mod256,

where I3 is the identity matrix.
(d) Form a 6× 6 self-invertible matrix Kp as Kp �

K11 K12
K21 K22

􏼢 􏼣

Step 2. Making submatrices Mi

(a) Convert one-dimensional array PM into submatrices of order6 × 1. -e ith matrix is Mi, where i � 1, 2, . . . , (L/6).

(b) Key mixing is performed using the subsequent formula of Hill cipher Ci � Kp × Mi(mod256).

(c) Concatenate all the Ci’s in the form of one-dimensional array again as Q � C1
����C2‖ . . . ‖C(L/6)􏽮 􏽯.

ALGORITHM 2: (Key mixing with color codes).

Input. An arrayQ, secret key K3 � (ϕ0, β), CLM (2).
Output. Encrypted image CI
Step 1. With key K3 and CLM (2), generate a sequence R � r1, r2, . . . , rL􏼈 􏼉

Step 2. -e sequence R is transformed into a sequence of integers using the following formula: DF � floor(mod(Ri × 1014, 256)).
Step 3. Bitwise XOR each element of Q with element of DF at the corresponding positions and preceding ciphered pixel as

Ci � DFi ⊕Qi ⊕Ci−1, i � 1, 2, . . . , L.

Step 4. Reshape array C in the form of a matrix CI of order L � m × n × 3
Step 5. Convert resulting matrix in step (4) to get the cipher image

ALGORITHM 3: (Pixel diffusion).

Complexity 3



structures. Due to these features, security of image en-
cryption can be improved because without knowing the
correct values of control parameters and initial conditions,
an attacker cannot predict the chaos map. -ese features of
chaotic maps enable them to be highly recommended for

creating the confusion and diffusion in image encryption.
For instance, see references [18–23].

-e present study is inspired by the above cited inves-
tigations and their applications to different areas. -e core
goal of this work is to make advanced venture in the regime

2 2.2 2.4 2.6 2.8 3
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3.2 3.4 3.6 3.8 4
0

0.1
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1

ϕn

Figure 3: Bifurcation diagram of CLM.

Input. Encrypted imageCI, secret keys K1, K2, K3, PWLCM (1), CLM (2).
Output. Plain color image I

Step 1. -e encrypted image matrix CI is placed in an array of size L � m × n × 3
Step 2. As in step 1 and step 2 in Algorithm 3, the receiver generates a sequence R of size L by secret key K3 and CLM (2)
Step 3. Each element of CI in step 2 is passing through the following formula:
Dj � CIj ⊕DFj ⊕Dj−1, j � 1, 2, . . . , L.

Step 4. By using key K2, receiver generates matrix Kp as in Algorithm 2, which is self-invertible matrix
Step 5.Convert one-dimensional array D into submatrices DMjof order 6 × 1
Step 6. Key mixing is reversed by using the formula
Bj � Kp × DMj(mod256), j � 1, 2, . . . , L.

Step 7. Rewrite all Bj’s in the form of one-dimensional array DQ
Step 8. By iterating the PWLCM and using the shared secret key K1, get a sequence X and get X by sorting X in ascending order
Step 9. -e permutation array is computed by inverse transform position (TRAN)− 1

Step 10. Use (TRAN)− 1 on DQ to get P

Step 11. Reshape P in a matrix form of order L � m × n × 3 and converted to image I

ALGORITHM 4: (Image decryption).

Orignal

(a)

Encrypted

(b)

Decrypted

(c)

Figure 4: Sample Lena (colored 256× 256 pixels). (a) Original image. (b) Encrypted image. (c) Decrypted image.
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Figure 5: Histogram analysis of encrypted image of Lena (colored 256× 256 pixels). (a) Red component. (b) Green component. (c) Blue
component.
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Figure 6: Correlation (row wise) of original image of Lena. (a) Red component. (b) Green component. (c) Blue component.
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of image encryption using chaotic maps. More accurately,
this manuscript deals with developing and analyzing a novel
image encryption that comprises three phases: pixel per-
mutation process, substitution process, and pixel diffusion
process. -e permutation sequence for the first phase is
generated by PWLCM, and the pixels of the plain image are
then permuted according to the permutation sequence.
Instead of using S-boxes for substitution phase, the sub-
stitution of pixels in the permuted image is determined by
Hill cipher whose key is generated by color codes. -e same
key is used in the decryption process because it is self-in-
vertible. At the end, the diffusion process is completed by
CLM to ensure the secrecy of the entire image encryption
technique. -e effectiveness of the proposal is shown by
several experimental results. By using information entropy
analysis along with other indicative parameters such as
entropy, PSNR, UACI, NPCR, and correlation factors, the
proposed image encryption technique is compared with
some existing techniques.

-e remaining study is outlined as follows.-e proposed
image encryption algorithm is given in Section 2. In Section
3, we present the decryption process. Section 4 is based on
the details of implementation results generated by executing

the encryption and decryption algorithm to some test im-
ages. Section 5 consists of assessments of the algorithm
in different aspects. Section 6 concludes the presented work.

2. The Proposed Image Encryption Algorithm

To develop an algorithm, following three aspects should be
considered:

(1) -e evaluation and implementation of the algorithm
must be simple and easy

(2) -e design of the encryption algorithm must resist
the known attacks

(3) For the algorithms, the concepts and basic ideas must
be well established and reliable

Keeping in mind all the three aspects, an efficient and
secure technique for image encryption is proposed here,
using the chaotic logistic map and color codes.

For the image selection, the size of m × n × 3 pixels
image is recommended for its encryption. -e original
image is processed into one-dimensional array for en-
cryption, but the encrypted image is again of the size
m × n × 3.

100 200 300
Pixel value on location (x, y)

60

80

100

120

140

160

180

200

220

240

260

Pi
xe

l v
al

ue
 o

n 
lo

ca
tio

n 
(x

 +
 1

, y
)

(a)

0 100 200
Pixel value on location (x, y)

0

50

100

150

200

250

Pi
xe

l v
al

ue
 o

n 
lo

ca
tio

n 
(x

 +
 1

, y
)

(b)

100 150 200
Pixel value on location (x, y)

40

60

80

100

120

140

160

180

200

220

Pi
xe

l v
al

ue
 o

n 
lo

ca
tio

n 
(x

 +
 1

, y
)

(c)

Figure 7: Correlation (column wise) of original image of Lena. (a) Red component. (b) Green component. (c) Blue component.
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Figure 8: Correlation (diagonal wise wise) of original image of Lena. (a) Red component. (b) Green component. (c) Blue component.
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Figure 9: Correlation (row wise) of encrypted image of Lena. (a) Red component. (b) Green component. (c) Blue component.

Complexity 7



-ere are three phases involved in encryption; pixel
permutation, substitution process using Hill cipher with
color codes, and pixel diffusion. In the first phase, the
piecewise linear chaotic map is used for permuting the
pixels, so that the statistical structure of the plain image is
dissipated into long-range statistics of the cipher image. -e
permuted image is then mixed with a self-invertible key
matrix generated by secret color codes, in the second phase.
Finally, confusion is achieved by XORing with another
chaotic map to make the relationship between the statistics
of the cipher image and the value of the key as complex as
possible to thwart attempts of cryptanalyst. -e designed
flowchart shown in Figure 1 summarizes our proposed
encryption algorithm.

2.1. PermutationProcess. -ree keys K1, K2, andK3 are used
in three phases, respectively, of our proposed encryption
algorithm. -e first phase changes the position of pixels of
the original image I.-e piecewise chaotic linear map is used
to permute the pixels. Using K1, iterate the piecewise chaotic
linear map (PWLCM) to get a chaotic sequence and sort the
obtained chaotic sequence in ascending order. By comparing

the positions of the chaotic sequence and sorted sequence,
obtain the permutation sequence. -is permutation se-
quence is used to permute the one-dimensional array of the
plain image.

2.1.1. Piecewise Linear Chaotic Map (PWLCM). -ere are
many different ways to generate the chaotic sequences or the
piecewise chaotic maps for the encryption. -e authors of
[24] proposed hyperchaotic encryption based on multiscroll
piecewise linear systems. -e manuscript [25] describes
maximal unstable dissipative interval to preserve multiscroll
attractors via multisaturated functions.

-e piecewise linear chaotic map is defined [26] as

ξn+1 � f ξn, η( 􏼁 �

ξn

η
, if 0≤ ξn ≤ η,

ξn − η( 􏼁

(0.5 − η)
, if η< ξn ≤ 0.5,

1 − ξn, if 0.5< ξn < 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Figure 10: Correlation (column wise) of encrypted image of Lena. (a) Red component. (b) Green component. (c) Blue component.
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Figure 11: Correlation (diagonal wise) of encrypted image of Lena. (a) Red component. (b) Green component. (c) Blue component.

Table 1: Lena (colored 256× 256 pixels) image correlation coefficient values.

Direction
Red Green Blue

Original Cipher Original Cipher Original Cipher
Horizontal 0.9910 0.0046 0.9889 0.0005 0.9846 0.0084
Vertical 0.9781 0.0009 0.9741 0.0028 0.9709 −0.0032
Diagonal 0.9648 −0.0012 0.9613 0.0030 0.9563 −0.0022

Table 2: -e comparison of values of information entropy.

Image encryption algorithm Entropy values
Reference [30] 7.9967
Reference [31] 7.9970
Proposed algorithm 7.9990

Table 3: Comparison of NCPR and UACI values.

Image encryption algorithm NPCR UACI
Reference [30] 99.61 33.46
Reference [31] 99.22 33.40
Reference [32] 99.61 33.41
Proposed algorithm 99.61 33.46

Complexity 9



has many dynamic properties, for example, Lyapunov ex-
ponent, random-like behavior, and uniform unvarying
density function. For these attributes, PWLCM is highly
recommended for cryptographic purposes. -e conditions
and parameters of PWLCM are as follows:

(1) ξ0 ∈ [0, 1), where ξ0 is the initial value

(2) η ∈ (0, 0.5), where η is the control parameter

(3) K1 � (ξ0, η), where K1 is the secret key of the per-
mutation process

Table 4: Estimate of critical values of NPCR and UACI.

Image encryption algorithm Obtained value NPCR test results
0.05 level 0.01 level 0.001 level

-eoretical NPCR values
99.5693% 99.5527% 99.5341%

Proposed algorithm

99.61% Pass Pass Pass
UACI test results

0.05 level 0.01 level 0.001 level
-eoretical UACI values

33.2824–33.6447% 33.2255–33.7016% 33.1594–33.7677%
Proposed algorithm 33.46% Pass Pass Pass

(a) (b)

Figure 12: Experimental results for the performance evaluation of data loss attacks. (a), (b) Cipher images and decryption result of
corresponding images using our algorithm with 1% salt and pepper noise.

(a) (b)

Figure 13: Experimental results for the performance evaluation of data loss attacks. (a), (b) Cipher images and decryption result of
corresponding images using our algorithm with 5% salt and pepper noise.
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-e following Algorithm 1 describes the permutation
process.

2.2. Substitution Process Using Hill Cipher and Color Codes.
-e Hill cipher [27, 28] is a polygraphic block cipher
invented by Lester S. Hill in 1929. It serves a significant role
in cryptography because of its simplicity, high speed, high
throughput, and resistance against frequency analysis
attack.

-eHill cipher method requires an invertible key matrix,
so that the decryption can be allowed. To overcome the
difficulty of having an invertible key matrix, self-invertible
matrix is introduced by Acharya et al. [29]. -e substitution
process is carried out by employing Hill cipher which uses

the self-invertible key matrix based on color codes, making
the substitution phase simple and efficient.

RGB color format is a model that adds red, blue,
and green colors in different quantities and produces new
colors. Total bits that each color uses are 8, and hence, they
can have any integer value from 0 to 255. -ere are 256 ×

256 × 256 � 16777216 possibilities of generating different
colors. Any three colors, color1, color2, and color3, from
these possible colors can be selected as our second secret
keyK2. Now, K2is used to generate a self-invertible matrix of
order 6× 6. -e permuted image array PM is divided into
(L/6) submatrices of order 6×1. -ese submatrices are
multiplied one by one withK2. -e resulting matrices are
combined once again to make a one-dimensional array Q.
Figure 2 shows the schematic representation of key mixing

(a) (b)

Figure 14: Experimental results for the performance evaluation of data loss attacks. (a), (b) Cipher images and decryption result of
corresponding images using our algorithm with 10% salt and pepper noise.

Table 5: Performance of MSE and PSNR.

Salt and pepper noise (%) MSE PSNR
1 8716.6 8.7273
5 8815.9 8.8263
10 8926.2 9.6253

Orignal

(a)

Encrypted

(b)

Decrypted

(c)

Figure 15: Sample onion (colored 198×135 pixels). (a) Original image. (b) Encrypted image. (c) Decrypted image.
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Figure 16: Histogram of cipher image of onion (colored 198×135 pixels). (a) Red component. (b) Green component. (c) Blue component.
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Figure 17: Correlation (row wise) plot of plain onion image. (a) Red component. (b) Green component. (c) Blue component.
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with color codes. -e Algorithm 2 describes the substitution
process.

2.3.PixelDiffusionProcess. In the final phase, using keyK3, a
sequence of real numbers, is generated by iterating CLM (2)
and converted into integer’s sequence using Algorithm 3. To
create diffusion, one-dimensional array Q is bitwise XORed
with the integer sequence. -e resulting one-dimensional
array is reshaped as a matrix of order m × n × 3 again, and
cipher image is generated by this matrix.

2.3.1. Chaotic Logistic Map (CLM). -e final phase is a
combination of a chaotic logistic map and XOR operation to
apply the diffusion of pixels. Due to this change of pixel
value, the pixels of the cipher image drastically change with
even small one bit change in the plain image. For this
process, we generate a random sequence using CLMwhich is
defined as follows:

ϕn+1 � g ϕn( 􏼁 � βϕn 1 − ϕn( 􏼁. (2)

-e conditions and parameters of CLM are defined as

(1) ϕ0 ∈ (0, 1), where ϕ0 is the initial state of the system
(2) β ∈ (0, 4), where β is the bifurcation control

parameter

-e chaotic behavior of the CLM with infinite period is
shown in Figure 3.

-e following Algorithm 3 describes the diffusion
process.

3. Image Decryption Process

-e following image decryption algorithm is used to re-
vert back to the encryption algorithm for getting the
original image. -e decryption process also comprises
three stages. In the first stage, the XOR operation is
eradicated with the sequence generated with key K3. -e
effect of color mixing is wiped out by multiplying with the
self-invertible key matrix generated by key K2. Finally, a
random sequence and ultimately the inverse of permu-
tation is constructed using key K1. To reverse the
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Figure 18: Correlation (row wise) plot of color components of onion cipher image. (a) Red component. (b) Green component. (c) Blue
component.
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permutation, the inverse permutation is used. -e original
image is obtained by transforming the subsequent array
into image form.

-e following Algorithm 4 describes the decryption
process.

4. Implementation of Proposed Algorithms

For the evaluation of the proposed scheme, we used Matlab
2018a. -e algorithms of pixel permutation, key mixing using
Hill cipher with color codes, and pixel diffusion are executed
to get the encrypted image and decryption algorithm to again
get the plain image back.-e standard colored images of Lena
with (256× 256) pixels are taken for the testing of our pro-
posal.We perform the encryption usingK1 � (0.766, 0.3432),
K2 � (purple haze, bright neon pink, fire brick, 123), and
K3 � (0.7666, 3.999). For comparison purpose, we take
image of Lena to compare our results with many other
schemes present in the literature. -e sample input and
output of Lena image by proposed algorithms is shown in
Figure 4. -e proposed algorithm takes 12.41 seconds to
encrypt the Lena image.

5. Results, Analysis, and
Performance Evaluation

In this section, proposed algorithm is evaluated by analyzing
the statistical and differential parameters. We have devel-
oped the guidelines, both generally and specifically to
compare the algorithm with different techniques. For per-
forming correct encryption and decryption, these guidelines
should be followed when choosing certain parameters in-
volved in the algorithms.

5.1. Statistical Histogram Analysis. Figure 5 shows the his-
togram of red, green, and blue channels of the cipher image.
It is clearly observed that the histogram of the cipher image
is fairly uniform. It is evident that no information is leaked
from the cipher image of the dispersal of pixels in the
original image.

5.2. Correlation Analysis of Adjacent Pixels. -e confusion
and diffusion can be tested by using correlation analysis
between neighboring pixels in the original image and the
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Figure 19: Correlation (column wise) of original image of onion. (a) Red component. (b) Green component. (c) Blue component.
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corresponding encrypted image. -e correlation is calcu-
lated by using the following formula:

Cr �
n 􏽐

n
t�1 xtyt − 􏽐

n
t�1 xt 􏽐

n
t�1 yt( 􏼁

n 􏽐
n
t�1 xt( 􏼁

2
− 􏽐

n
t�1 xt( 􏼁

2
􏼐 􏼑 n 􏽐

n
t�1 yt( 􏼁

2
− 􏽐

n
t�1 yt( 􏼁

2
􏼐 􏼑

,

(3)

where xt and yt are the values of two neighboring pixels and
n is the total number of pixels taken for calculating corre-
lation. -e highest value of correlation coefficient equals 1
and shows that the adjacent pixels are having high corre-
lation. So, our encryption algorithm must encrypt the image
with correlation coefficients very small and near to zero, so
that the cryptanalyst cannot get any valuable information.
Figures 6–8 display the correlation of the original image
pixels in row, column, and diagonal directions, respectively.
Figures 9–11 show the correlation of the cipher image pixels
in row, column, and diagonal directions, respectively. Ta-
ble 1 gives the values of correlation of scattering pixels in the
horizontal, vertical, and diagonal directions for the plain and
cipher image. -e value obtained from equation (3) for
cipher image is close to zero which shows that adjacent
pixels in cipher image are almost uncorrelated.

5.3. Information Entropy Analysis. Entropy is a measure-
ment of unpredictability of the pixel concentrations in
the encrypted image. For an 8 bit image, the encryption
algorithm with a value of the entropy close to 8 is considered
as a good algorithm. It is calculated by the following
equation:

H(C) � 􏽘
2N−1

i�0
P Ci( 􏼁log2

1
P Ci( 􏼁

, (4)

where C be a ciphered image and P(Ci) is the probability of
character Ci in encrypted image. For the security of the
image encryption algorithm, it should be least possible to
predict the original image from the encrypted image. With
the entropy value 8, there are less chances of predicting plain
image from cipher image. Using Matlab R2018a, the entropy
value of encrypted image obtained from the proposed en-
cryption turns out to be 7.9990. Table 2 gives a brief
comparison of obtained information entropy value with
various image encryption algorithms. -e resulting value
depicts that entropy of the proposed encryption is close
enough to the ideal value 8. It guarantees that there is no loss
of information.
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Figure 20: Correlation (column wise) of encrypted image of onion. (a) Red component. (b) Green component. (c) Blue component.
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5.4. Sensitivity Analysis of the Proposed Algorithm. -e net
pixel change rate (NPCR) and unified average changing
intensity (UACI) are two measuring criteria used for in-
vestigating the effect of altering one pixel of the plain image
on the cipher image. Both indicators are defined by the
following formulas, respectively:

NPCR �
􏽐i,jK(i, j)

w × h
× 100, (5)

UACI �
1

w × h
􏽘
i,j

X(i, j) − X′(i, j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

255
⎡⎢⎢⎣ ⎤⎥⎥⎦ × 100, (6)

where w and h show the width and height of ciphered image,
respectively. X represents cipher image corresponding to
plain image, while X′ represents the cipher image corre-
sponding to plain image with change of one pixel, respec-
tively. If X(i, j)≠X′(i, j), thenK(i, j) � 1; else, K(i, j) � 0.

-eNPCR and UACI measures indicate the resistance of
the algorithm against differential attacks, such as a ci-
phertext-only attack, a plaintext attack, or a known plaintext
attack. -e higher values of NPCR and UACI give the best
security measures. -e comparison of the NPCR and UACI

values of encrypted Lena image is given in Table 3. -e
estimate of critical values of NPCR and UACI of proposed
scheme is given in Table 4.

5.5. Mean Square Error Analysis. In the cipher image of test
image Lena, we add 1%, 5%, and 10% salt and pepper noise
as shown in Figures 12(a), 13(a), and 14(a) , respectively.-e
corresponding decrypted images of noised cipher images are
shown in Figures 12(b), 13(b), and 14(b), respectively. From
these figures, it is evident that when the cipher image bear
salt and pepper noise or data loss attacks, the decrypted
image preserves hugemajority of original image information
having only a small portion of uniformly distributed noise.

-e mean square error (MSE) is the measurement of
difference between the original and cipher images. -e high
value of MSE is related to a high difference between original
image and cipher image. It can be calculated by the following
equation:

MSE �
1

m × n × 3
􏽘

m− 1

i�0
􏽘

n− 1

i�0
IP(i, j) − ID(i, j)( 􏼁

2
, (7)
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Figure 21: Correlation (diagonal wise) of original image of onion. (a) Red component. (b) Green component. (c) Blue component.
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where m, n represent the number of rows and columns,
respectively. IP and IDrepresent the plain image and cipher
image, respectively. For the difference between the plain
image and cipher image, MSE≥ 30 db.-eMSE of proposed
image algorithm is given in Table 5.

5.6. Peak Signal-to-Noise Ratio Analysis. -e peak signal-
to-noise ratio (PSNR) measures the conformity between
the plain and cipher images. It can be calculated using the
following formula:

PSN � 10. log
2552

MSE
(db). (8)

-e value of PSNR should be as low as possible between
the plain and cipher images for good encryption algorithms.
-e value of PSNR of the proposed algorithm is given in
Table 5.
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Figure 22: Correlation (diagonal wise) of encrypted image of onion. (a) Red component. (b) Green component. (c) Blue component.

Table 6: Correlation coefficient values of two adjacent pixels of onion (198×135 pixels) ciphered image.

Direction
Red Green Blue

Original image Cipher image Original image Cipher image Original image Cipher image
Horizontal 0.9826 −0.0007 0.9786 −0.0068 0.9648 0.0003
Vertical 0.9900 −0.0034 0.9880 0.0046 0.9751 −0.0018
Diagonal 0.9721 −0.0054 0.9675 −0.0083 0.9427 −0.0021

Table 7: Comparison of size of key space.

Image encryption algorithms Size of key space
Reference [30] 2193
Reference [31] 2233
Reference [32] 2138
Reference [34] 2194
Proposed algorithm 2282
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-e proposed algorithms are also applied to another
sample colored image of onion (198×135 pixels). -e en-
tropy value of onion image is 7.9975.-e resulting encrypted
and decrypted images are shown in Figure 15.-e histogram
of cipher image and correlation of neighboring pixels of
plain and cipher images are shown in Figures 16–22 , re-
spectively. Table 6 illustrates the values of correlation of
neighboring pixels of cipher image of onion.

5.7. Key Space Analysis. -e key space is all the possibilities
of keys that can be utilized in the encryption algorithm. -e
size of key space is treated as a significant aspect of the
algorithm. It should be huge enough to avoid brute-force
attacks. With today’s computing abilities, an algorithm can
resist exhaustive attacks [33] if the size of key space is larger
than 2128. -ere are three keys involved in our proposed
image encryption algorithm. -e secret keys K1and
K3contain parameters of associated chaotic maps which are
ξ0, η, ϕ0, and β.By considering the precision of these pa-
rameters to be 252, the total number of possibilities of
choosing these two keys will be (252)2 × (252)2 � 2208. -e
key K2 � (color 1, color 2, color 3, k) is a combination of
three random colors and a random number k. -e number
of possibilities for choosing three colors are
16777216P3 � 4.722365638 × 1021 � 272. -e integers that
satisfy the condition gcd(k, 256) � 1 are 128 � 27. So the
total possibilities of choosing K2 are 272 × 22 � 274. -e total
size of key space is 2208 × 274 � 2282 > 2128. -erefore, our
proposed algorithm is resistant against the brute-force at-
tacks because the size of the key space is large enough.
Table 7 lists the key space size of several schemes.

-e computational complexity is analyzed as follows.
Assume that a fastest computer can calculate 280 com-

putations in one second. So, in one year, the number of
computations performed by the computer is
280 × 365(days) × 24(hr) × 60(min) × 60(sec). Hence, the
total of (2282/280 × 365 × 24 × 60 × 60) � 1053 years is re-
quired. To resist the brute-force attack against this en-
cryption algorithm, this computational load is large enough.

5.8.Key SensitivityAnalysis. An image encryption algorithm
should be highly sensitive to its secret key, that is, a variation
of single bit in secret key should yield a totally different
cipher result. A highly sensitive key may contribute towards
the security of the image encryption algorithm. -e output
of our decryption algorithm is totally changed with a slight
modification in any part of the key K � (K1, K2, K3).
Making even a slight variation in value of one part of

encryption key ξ0 as 0.7660000000000001, the image will be
produced but not same as plain image. So, it is observed that
the cipher image does not contain any clue or gesture about
the original image. -e proposed algorithm is highly sen-
sitive to secret keys.

6. Conclusion

-is study presents a novel color image scheme based on
chaotic maps. In contrast to the traditional chaos-based
cryptosystems, the suggested cryptosystem is proposed using
Hill cipher and color codes. -e confusion phase is done by
the piecewise chaotic linear map. -e Hill cipher with color
codes is employed for the substitution phase. -e diffusion
process is performed by a chaotic logistic map and bitwise
XOR. -e key space size of the encryption algorithm is
adequately high to combat brute-force attacks. Also, the
algorithm is highly sensitive to keys. Several experimental
tests have been carried out with detailed numerical analysis
which exhibits the robustness of the suggested algorithm
against numerous attacks such as statistical and differential
attacks. -e proposed image encryption algorithm is highly
secure which is demonstrated by performing different as-
sessment tests. -e results of these experiments and per-
formance tests are compared with different algorithms and
summarized in Table 8.
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Due to the complex behavior of a multiscroll chaotic system, it is a good candidate for the secure communications. In this paper,
by adding an additional variable to the modified Lorenz-type system, a new chaotic system that includes only linear and piecewise
items but can generate 4n+ 4 scroll chaotic attractors via choosing the various values of natural number n is proposed. Its
dynamics including bifurcation, multistability, and symmetric coexisting attractors, as well as various chaotic and periodic
behaviors, are analyzed by means of attraction basin, bifurcation diagram, dynamic map, phase portrait, Lyapunov exponent
spectrum, and C0 complexity in detail. )emechanism of the occurrence for generating multiscroll chaotic attractors is presented.
Finally, this multiscroll chaotic system is implemented by using the Altera Cyclone IV EP4CE10F17C8 FPGA. It is found that this
FPGA-based design has an advantage of requiring less resources for 0% of the embedded multipliers and 0% of the PLLs of this
FPGA are occupied.

1. Introduction

As indicated in many open literatures, the chaotic system
that can generate multishape chaotic attractors has complex
dynamical behaviors so that it is difficult to decode its in-
formation when it is used in the field of secure communi-
cations. Hence, exploring the multishape chaotic system and
analyzing its complex dynamical behaviors through theo-
retical analysis, numerical simulations, implementations,
and applications is a hot topic all the time, and many re-
searchers exert much effort to investigate this research area.
To date, many kinds of multiscroll chaotic systems have been
presented [1–7]. For example, according to Chua’s circuit
and using the sine function, a multiscroll chaotic system was
introduced and implemented by an electronic circuit, which
consists of the commercial trigonometric function chip
AD639 and the corresponding auxiliary chips and basic
circuit elements [1]. Based on the cellular neural networks
and using the trigonometric function, a multiscroll chaotic
system was given and analyzed in [2]. By using the hy-
perbolic tangent function series as the unique nonlinear

function, a multiscroll chaotic system was presented and
confirmed by an electronic circuit which is constructed by a
unity gain voltage buffer, a single current-feedback opera-
tional amplifier, and a transconductor in [3]. In [4], the
theories, methods, and applications of generatingmultiscroll
chaotic attractors were summarized. Based on the saturated
function series, a multiscroll chaotic system that can gen-
erate 1D n-scroll, 2D n×m-grid scroll, and 3D n×m×l-grid
scroll chaotic attractors was presented and implemented by
using an electronic circuit in [8]. By using the Chen chaotic
system and the sine function, a multiscroll chaotic and
hyperchaotic system was given in [9]. An improved high-
order Chua’s circuit that can generate multiscroll chaotic
attractor by introducing the signum function series was
presented and analyzed in [10]. Also, multiwing chaotic
systems that can generate multiwing chaotic attractors have
also been concerned intensively and many good topologies
were presented, such as multiwing Lorenz chaotic system
[11], grid multiwing chaotic system [12], 3D grid multiwing
chaotic system [13], 2N-butterfly wing chaotic system [14],
and fractional-order multiwing chaotic system [15]. All these
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achievements enrich the chaos theory and the nonlinear
circuit and precede their potential application in practical
engineering.

In addition, because of the applications of chaotic system
in digital secure communication, the realization of chaotic
system via digital signal processing circuit attracts people’s
attention. For example, the multiscroll chaotic systems were
implemented in DSP [16], FPGA [17, 18], ARM [19, 20], and
Arduino [21, 22]. Generally speaking, as indicated in [23],
the implementation based on FPGA has more merits in-
cluding more flexibility and lower cost. )erefore, in this
paper, based on the modified Lorenz-type chaotic system
that includes only linear and piecewise items, a new 4D
piecewise linear chaotic system that can generate 4n+ 4
scroll chaotic attractors is proposed and analyzed. By
employing attraction basin, bifurcation diagram, dynamic
map, phase portrait, Lyapunov exponent spectrum, and C0
complexity, its dynamical behaviors including multistability,
bifurcation, and chaotic and period behaviors are investi-
gated. Also, the mechanism of generating multiscroll chaotic
attractors is described theoretically. It is found that sym-
metrical coexisting attractors will appear in the system with
respect to different initial conditions. In addition, the
multiscroll chaotic signal generator is implemented by using
the digital chip FPGA. Notably, since 0% of the embedded
multipliers and 0% of the PLLs of the Altera Cyclone IV
EP4CE10F17C8 FPGA are occupied in the realization of the
proposed chaotic generator, the new multiscroll chaotic
system has the advantage of low FPGA resource required.

)e paper is organized as follows. In Section 2, the
mathematical model of 4D linear piecewise chaotic system is
presented. In Section 3, the dynamical behaviors of the
proposed chaotic system are analyzed. In Section 4, the
mechanism of generating multiscroll chaotic attractors is
presented and some numerical simulations are provided.
)e FPGA implementation of the proposed multiscroll
chaotic system is shown in Section 5. Finally, some con-
cluding remarks are presented in Section 6.

2. A New 4D Piecewise Linear Chaotic System

In [24], based on the traditional Lorenz system, the modified
3D Lorenz-type chaotic system that includes only linear and
piecewise items was introduced. Its differential equations are

_x � a(y − x),

_y∓ � ∓sgn(x)z,

_z± � ± |x|∓b,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where a and b are positive constant parameters and x, y, and
z are variables. Here, by adding an additional variable w into
equation (1), the following new 4D system that includes only
linear and piecewise items can be obtained.

_x � a(y − x),

_y∓ � ∓16sgn(4x)z ± 16sgn(4y)w,

_z± � ± 16|x|∓b,

_w � −cw + f(z),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where

f(z) � 􏽘
n

k�−n

sgn(4z + 0.5k), (3)

where sgn () is the signum function, a, b, and c are positive
constant parameters, x, y, and z and w are variables, and n is
a natural number.

Taking n� 0, obviously, there are two modes in system
(2). One mode is ẏ� ẏ- and ż � ż+ which is denoted byM (−,
+), and the other mode is ẏ� ẏ + and ż � ż- which is denoted
by M(+, −). For f (z)� sgn (4z), its value depends on the sign
of z. If z> 0, f (z)�1. If z< 0, f (z)�−1. However, if z� 0, f
(z)� 0. It is the same for sgn (4x) and sgn (4y).

)us, from system (2), one can obtain that this chaotic
system has the six following equilibrium points:

[X, Y, Z, W] �

S+1,+2 � (( ± b/16), ( ± b/16), (1/c), (1/c)), with z> 0,

S+0,−0 � (( ± b/16), ( ± b/16), 0, 0), with z � 0,

S−1,−2 � (( ± b/16), ( ± b/16), (−1/c), (−1/c)) with z< 0,

⎧⎪⎪⎨

⎪⎪⎩
(4)

where X, Y, Z, andW are denoted by the equilibrium points
of system (2). )e Jacobian matrix of system (2) at the
equilibrium points is

J �

−a a 0 0

∓128δ(4X)Z ± 128δ(4Y)W ∓16sgn(4X) ± 16sgn(4Y)

± 16sgn(X) 0 0 0

0 0 8δ(4Z) −c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

where δ() is the delta function and it is the differential of sgn
(). For δ (4Z), its value equals zero for all Z, except Z� 0

where it is infinite. When Z� 0, the related equilibrium
points are S + 0,-0. Because the value of δ (0) equals infinity,
the corresponding eigenvalues of equation (5) cannot be
calculated. However, we can obtain the characteristic
equation of the Jacobian matrix (5) at S + 0,-0. For example,
choosing a� 32, b� 2.4, and c� 16, the characteristic
equation of equation (5) at S+0,-0 is

λ4 + 48λ3 + 512λ2 + 8192λ − inf � 0, (6)

where “inf” is positive infinite. )en, the Routh array can be
derived to know the roots’ characteristics of equation (6) for
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judging the stability of system (2) under the above pa-
rameters. Its Routh array is

s4

s3

s2

s1

s0

1 512

48 8192

341.3

8192 + 0.14 × inf

–inf

–inf

–inf

. (7)

)erefore, based on the Routh-Hurwitz criterion, for
the characteristic equation of the Jacobian matrix (5) at
S + 0,-0, it has three roots with negative real part and one
root with positive real number, since the number of
changes in sign of the first column of the Routh array is
one. Hence, these two equilibrium points (S+0,-0) are
unstable point so that the system’s trajectory will be
departed rapidly at S + 0,-0.

However, for S + 1, + 2 and S-1,-2, even if the Jacobian
matrices of system (2) under two modes are different
from each other, the characteristic equation of the Ja-
cobian matrix (5) in both two modes is identical and
given by

(λ + c) λ3 + aλ2 + 256a􏼐 􏼑 � 0. (8)

)us, under these four equilibrium points (S + 1, + 2 and
S − 1, −2), the sets of eigenvalues are the same. Based on the
above parameters, the eigenvalues of the Jacobian matrix (5)
of the system under two modes is (−37.7489,
2.8744 + 14.4482i, 2.8744–14.4482i, −16) which means that
all these four equilibrium points are index-2 saddle foci.
)us, the system’s trajectory will be in a spiral movement at
these four equilibrium points which result in four-scroll
attractors. For example, under the initial condition (x0, y0, z0,
w0)�(0.01, 0.01, 0.01, 0.01), the time-domain waveforms, the
phase portraits, and the Poincaré maps from the numerical
simulations by using the Matlab software for system (2)
under two modes which are shown in Figures 1 and 2,
respectively, can be obtained.

Figures 1(a) and 1(b) show the phase portrait of system
(2) under M (-, +) and Figures 2(a) and 2(b) show its phase
portrait under M (+, -). Figures 1(c) and 2(c) show the
respective time series and Figures 1(d) and 2(d) show the
corresponding Poincaré maps. Moreover, based on the Wolf
method [25, 26], by using the ode45 algorithm and choosing
the simulation time T�1000s with time step being 0.002s in
Matlab software, the calculated Lyapunov exponents of
system (2) under M (-, +) are LE1 � 2.88, LE2 � 0,
LE3 � −12.15, and LE4 � −38.43, and the calculated results
under M (+, -) are LE1 � 2.95, LE2 � 0, LE3 � −12.22, and
LE4 � −38.44. From phase portraits, time series, Poincaré
maps in Figures 1 and 2, and the Lyapunov exponents, one
can determine that system (2) in both two modes under the
above given parameters and initial conditions is in chaotic
operation and it has four-scroll chaotic attractors. Note that,
because M (+, −) is similar to M (−, +), only M (−, +) is
investigated in the following sections.

3. Dynamical Behaviors of the New
Chaotic System

3.1. Chaotic Attractors for Various Parameters. Suppose that
the parameters b � 2.4, c � 16, n � 0, and (x0, y0, z0,
w0)�(0.01, 0.01, 0.01, 0.01) are fixed and parameter a is
changed from 11.2 to 171.2. )e Lyapunov exponent
spectrum and their enlargement are shown in Figures 3(a)
and 3(b), respectively. One can see that system (2) is
always in chaotic operation when a is within (11.2, 171.2),
since LE1 is bigger than zero. Figure 4(a) shows the bi-
furcation diagram about parameter a versus y under the
initial condition (x0, y0, z0, w0)�(0.01, 0.01, 0.01, 0.01)
(blue case) and (x0, y0, z0, w0)�(0.01, −0.01, −0.01, 0.01)
(red case). From Figure 4, some typical phase portraits can
be obtained.

Case 1. )e red color and the blue color in Figure 4(a) are
mixed in both positive and negative of y. )at is to say, the
four-scroll chaotic attractors under two types of initial
conditions will appear. For example, let a� 19.2; the four
chaotic attractors are shown in Figure 4(b).

Case 2. In Figure 4(a), the red color is only filled in the
positive of y, while the blue color is only filled in the
negative of y. Hence, under the initial condition (x0, y0, z0,
w0)�(0.01, −0.01, −0.01, 0.01), it has two-scroll chaotic
attractors in the positive of y. However, under the initial
condition (x0, y0, z0, w0)�(0.01, 0.01, 0.01, 0.01), only two-
scroll chaotic attractors will appear in the negative of y.
For example, choose a � 40; the numerical simulations are
shown in Figure 4(c).

Case 3. Both red and blue colors in Figure 4(a) are filled in
the negative of y. Hence, under the initial condition (x0,
y0, z0, w0)�(0.01, -0.01, −0.01, 0.01) and (x0, y0, z0,
w0)�(0.01, 0.01, 0.01, 0.01), only two-scroll chaotic
attractors in the negative of y will appear. For example,
take a � 48; the two-scroll chaotic attractors are shown in
Figure 4(d).

Case 4. Both the red color and the blue color in Figure 4(a)
are filled in the positive of y. Hence, under the initial
condition (x0, y0, z0, w0)�(0.01, −0.01, −0.01, 0.01) and (x0,
y0, z0, w0)�(0.01, 0.01, 0.01, 0.01), only two-scroll chaotic
attractors in the positive of y will appear. For example,
choose a� 60.8; the two-scroll chaotic attractors are shown
in Figure 4(e).

Case 5. In Figure 4(a), the red color is only filled in the
negative of y, while the blue color is only in the positive of y.
Hence, under the initial condition (x0, y0, z0, w0)�(0.01,
−0.01, −0.01, 0.01), it has two-scroll chaotic attractors in the
negative of y. But, under the initial condition (x0, y0, z0,
w0)�(0.01, 0.01, 0.01, 0.01), it has two-scroll chaotic
attractors in the positive of y. For example, choose a� 112;
the numerical simulations are shown in Figure 4(f ).
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Note that the influence of parameters b and c on the
dynamical behaviors can also be analyzed by using the above
technique. Here, under the initial condition (x0, y0, z0,
w0)�(0.01, 0.01, 0.01, 0.01) (blue case) and (x0, y0, z0,
w0)�(0.01, −0.01, −0.01, 0.01) (red case), only the bifurcation
diagram about the variation of parameters b and c is pre-
sented and shown in Figure 5.

3.2. C0 Complexity Analysis on System Parameters. As in-
dicated in [27], C0 complexity is defined as the proportion of
irregular components in the sequence, and C0 algorithm
based on fast Fourier transform removes the regular part of
the signal transformation domain and leaves the irregular
part. )e larger the proportion of the irregular part in the
sequence is, the closer the corresponding time series is to the
random, and the greater the complexity is. Hence, C0 al-
gorithm can be used to calculate the randomness of chaotic
time series; that is to say, it can be adopted to describe the
complexity of chaotic time series [28].

When the length of chaotic time series of the new
system is selected as N � 8000 and the complex parameter
is selected as r � 10, also C0 algorithm is used to calculate
the complexity of x sequence with respect to varying
parameter a, as shown in Figure 6(a). From Figures 6(a)
and 3(a), one can obtain that a large C0 complexity value
corresponds to a positive Lyapunov exponent, indicating
that the complexity of x sequence is high. Comparing
Figure 6(a) with Figure 4(a), the C0 complexity curve has
good consistency with its bifurcation diagram. Similarly,
the C0 complexity of z sequence with respect to varying
parameter b is shown in Figure 6(b), and the C0 com-
plexity of w sequence with respect to varying parameter c
is shown in Figure 6(c). By combining Figures 6(b) and
5(a), as well as Figures 6(c) and 5(b), one can see that the
C0 complexity of the proposed system in the chaotic state
is greater than that of the proposed system in its other
states.

Hence, from C0 complexity, it can effectively distinguish
the dynamic characteristics of continuous chaotic time series
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Figure 1: Numerical simulations for the proposed multiscroll chaotic system under mode 1: M (−, +). (a) y versus z, (b) y versus w, (c) t
versus y and t versus z, and (d) Poincaré map in y versus z under x � y.

4 Complexity



–0.25
–0.2

–0.15
–0.1

–0.05
0

0.05
0.1

0.15
0.2

0.25

z

–0.2 0 0.2 0.4–0.4
y

(a)

–0.08

–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

w

–0.2 0 0.2 0.4–0.4
y

(b)

–0.4

–0.2

0

0.2

0.4

0.6

y, 
z

105 110 115 120100
t

y
z

(c)

–0.1

–0.05

0

0.05

0.1

0.15

z

–0.2 0 0.2 0.4–0.4
y

(d)
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versus y and t versus z, and (d) Poincaré map in y versus z under x � y.
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Figure 3: Lyapunov exponents for the proposed multiscroll chaotic system under M (-, +) with variation of α. (a) LE1, LE2, LE3, and LE4. (b)
Closed-up view of LE1 and LE2.
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and can well describe the complexity of the proposed chaotic
time seriescin.

3.3. DynamicMap of the NewChaotic System. Under a� 112
and initial condition being (x0, y0, z0, w0)�(0.01, 0.01, 0.01,
0.01), dynamic map that is used to describe the dynamics of

the proposed chaotic system with respect to the common
influence of the varying parameters b and c is described in
Figure 8. Obviously, there are three different color regions
suggesting three different dynamic behaviors in Figure 8.
)e cyan area marked with L indicates that when the values
of parameters b and c are within this region, the proposed
chaotic system will be in a chaotic state, and the maximum
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Figure 4: Numerical simulations for the proposed multiscroll chaotic system under mode 1: M (−, +) with variation of a under the initial
condition (x0, y0, z0, w0)�(0.01, 0.01, 0.01, 0.01) (blue case) and (x0, y0, z0, w0) � (0.01, −0.01, −0.01, 0.01) (red case). (a) Bifurcation diagram,
(b) a� 19.2, (c) a� 40, (d) a� 48, (e) a� 60.8, and (f) a� 112.
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Lyapunov exponent corresponding to this area is positive.
)e blue area marked with H indicates that when the values
of parameters b and c are within this region, the proposed
chaotic system will be in a quasi-periodic state, and there are
two maximum Lyapunov values, both of which are zero
corresponding to the blue area. )e green area marked with
G indicates that the proposed chaotic system will be in a
periodic state under these parameters values, while there is
only one maximum Lyapunov exponent whose value is zero
in the green region. Hence, the dynamics of the proposed
chaotic system for various parameters b and c can be vividly
described in the dynamics map.

)en different parameters b and c are selected in three
regions of the dynamic map of the proposed chaotic system,
and the maximum Lyapunov exponents for different pa-
rameters are calculated. )e calculated results are summa-
rized in Table 1, where the first point b� 2.4 and c� 16 is
chosen in the L region, the second point b� 1.5 and c� 33 is
chosen in theH region, and the third point b� 3 and c� 55 is
chosen in the G region. According to the calculated results,
one can judge that the proposed chaotic system moves in
chaotic state, quasi-periodic state, or periodic state when the
different parameters are chosen. In order to verify the
maximum Lyapunov exponents of the proposed chaotic
system under different parameters, we have given the time-
domain diagrams and phase diagrams of this system in three
different dynamical regions, as shown in Figure 7. Hence,
based on the relationship [29] between the dynamical
characteristics of the nonlinear system and the values of the
Lyapunov exponents, one can see that the dynamic be-
haviors of the proposed chaotic system are consistent with
the results judged by the calculated Lyapunov exponents.
Besides, the analysis method described above can also be
employed to investigate the dynamics of the proposed
chaotic system with respect to other different parameters.

3.4. Attraction Basin and Multistability. )e attraction do-
main is an important tool to analyze coexisting attractors
with respect to different initial states of the dynamical
system. Here, under a� 112, b� 2.4, c� 16, x0 � 0.01, and
w0 � 0.01, the attraction basin of the proposed chaotic
system is described in Figure 9. One can see that the basin of
attraction contains two different color regions, indicating
the coexisting characteristic of different state attractors; that
is, the proposed chaotic system is of multistability. Among
them, the pink region marked with E suggests that if the
initial state starts from this region, the proposed chaotic
system will be in one chaotic state. However, the yellow
region marked with F indicates that if the initial state starts
from this region, the proposed chaotic system will be in
another chaotic state, which is symmetric to chaotic state in
region E.)at is to say, the initial trajectories of the proposed
chaotic system from the pink region or the yellow region will
enter two the symmetric chaotic motion states eventually
and respectively.

As shown in Case 5 of Section 3.1, where the initial
condition y0�0.01 and z0�0.01 is chosen in region F, the
initial condition y0�−0.01 and z0�−0.01 is chosen in region
E, respectively; they finally display two symmetric coexisting
chaotic attractors in Figure 4(f ). Hence, there is multi-
stability in the proposed chaotic system whose motion
trajectories starting from different initial states in chaotic
region (pink and yellow regions) always enter one of the
symmetric chaotic states.

4. Multiscroll Chaotic Attractors Generation

In this section, the system parameters are designed to generate
multiscroll chaotic attractors. From the theoretical analysis of
four-scroll chaotic attractors generation in system (2) under
n� 0, one can see that system (2) has 6 equilibrium points
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Figure 5: Bifurcation diagram of the proposed multiscroll chaotic system under mode 1: M (−, +) with the initial condition (x0, y0, z0, w0) =
(0.01, 0.01, 0.01, 0.01) (blue case) and (x0, y0, z0, w0) = (0.01, −0.01, −0.01, 0.01) (red case). (a) Variation of b under a� 32 and c� 16; (b)
variation of c under b� 2.4 and c� 16.
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where two of them are unstable saddle point and the remaining
four are index-2 saddle foci. For the unstable point, it cannot
form the scroll attractors, since the trajectory of the system will

be away from it quickly. So, the four index-2 saddle foci are
essential to generate the four-scroll chaotic attractors. )us, in
order to obtain the multiscroll chaotic attractors, it is necessary
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Figure 6:C0 complexity analysis of the proposed chaotic system under mode 1:M (−, +) for the initial condition being (x0, y0, z0, w0) � (0.01,
0.01, 0.01, 0.01). (a) Related to parameter a when b� 2.4 and c� 16. (b) Related to parameter b when a� 32 and c� 16. (c) Related to
parameter c when a� 32 and b� 2.4.

Table 1: Lyapunov exponents of the proposed chaotic system with varying parameters under a� 112.

Parameter values
Lyapunov exponents

Dynamics Curves
LE1 LE2 LE3 LE4

b� 2.4, c� 16 1.33 0 −15.06 −114.07 Chaos Figures 7(a) and 7(b)
b� 1.5, c� 33 0 0 −30.49 −114.16 Quasi-period Figures 7(c) and 7(d)
b� 3, c� 55 0 −1.71 −54.66 −108.59 Period Figures 7(e) and 7(f)
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to add the index-2 saddle foci to the system. Here, let a� 32,
b� 2.4, and c� 16, and changing the values of n, the 4n+4

scroll chaotic attractors can be generated. For example, let
n� 1; the equilibrium points of system (2) are

t

–0.2

0

0.2

z

85 90 95 10080

85 90 95 10080

0.05

0.15

0.25

y

(a)

0.30.20.10
y

–0.2

–0.1

0

0.1

0.2

z

(b)

92 94 96 98 10090
t

–0.1

0

0.1

z

92 94 96 98 10090
0.05

0.1

0.15

y

(c)

–0.1

–0.05

0

0.05

0.1

z

0.15 0.20.10.050
y

(d)

100989290 9694
t

–0.4

0

0.4

z

92 94 96 98 10090
–0.5

0

0.5

y

(e)

–0.4

–0.2

0

0.2

0.4

z

0.3 0.60–0.3–0.6
y

(f )

Figure 7: Different dynamics of the proposed chaotic systemwith respect to the initial condition being (x0, y0, z0,w0) � (0.01, 0.01, 0.01, 0.01)
and a� 112. For b� 2.4 and c� 16, (a) time-domain waveforms and (b) chaotic attractor. For b� 1.5 and c� 33, (c) time-domain waveforms
and (d) quasi-periodic attractor. For b� 3 and c� 55, (e) time-domain waveforms and (f) periodic attractor.
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[X, Y, Z, W] �

S+3,+4 � (( ± b/16), ( ± b/16), (3/c), (3/c)), with z> 0.125,

S+01,+02 � (( ± b/16), ( ± b/16), (2/c), (2/c)), with z � 0.125,

S+1,+2 � (( ± b/16), ( ± b/16), (1/c), (1/c)), with 0< z< 0.125,

S+0,−0 � (( ± b/16), ( ± b/16), 0, 0), with z � 0,

S−1,−2 � (( ± b/16), ( ± b/16), (−1/c), (−1/c)), with − 0.125< z< 0,

S−01,−02 � (( ± b/16), ( ± b/16), (−2/c), (−2/c)), with z � −0.125,

S−3,−4 � (( ± b/16), ( ± b/16), (−3/c), (−3/c)), with z< − 0.125.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

)e Jacobian matrix of system (2) at the equilibrium
points is

J �

−a a 0 0

∓128δ(4X)Z ± 128δ(4Y)W ∓16sgn(4X) ± 16sgn(4Y)

± 16sgn(X) 0 0 0

0 0 8 􏽘
1

k�−1

δ(4Z + 0.5k)− c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

From equation (10) and the definition of δ (), one can see
that it has δ (4Z-0.5) whose value will be infinite under
Z�0.125, δ (4Z) whose value will be infinite under Z� 0, and
δ (4Z+ 0.5) whose value will be infinite under Z�−0.125.
)us, under these three cases, the corresponding eigenvalues
of equation (10) can also not be calculated.

Of course, the same technique in Section 2 can be used
and the same results can be obtained; that is, S + 01, + 02, S + 0,-

0, and S-01,-02 are unstable point. Hence, the system’s tra-
jectory will be departed rapidly at these six equilibrium
points. However, for S + 3, + 4, S + 1, + 2, S-1,-2, and S-3,-4, the
corresponding eigenvalues of equation (10) can be obtained
and the results are the same as those in Section 2. )erefore,

all these eight equilibrium points are index-2 saddle foci,
which are necessary to form eight-scroll chaotic attractors.
For example, based on a� 32, b� 2.4, c� 16, and n� 1 and
under the initial condition (x0, y0, z0, w0)�(0.01, 0.01, 0.01,
0.01), the numerical simulations by using the ode45 algo-
rithm with variable step size and the simulation time
T�1000s with time step being 0.002s in Matlab software are
shown in Figure 10. One can see that the proposed multi-
scroll chaotic system has eight-scroll chaotic attractors. In
addition, for the same conditions of simulation algorithm
and simulation time, the calculated Lyapunov exponents of
the proposed multiscroll chaotic system under this case are
LE1 � 2.76, LE2 � 0, LE3 � −11.37, and LE4 � −39.35.
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Figure 8: Dynamic map of the proposed chaotic system under mode 1: M (−, +) under a� 112.
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5. FPGA Implementation

In this section, the proposed multiscroll chaotic system is
implemented by using FPGA. Here, the second-order
Runge–Kutta method and the fixed-point data format
32Q26, where 1 bit is the sign part, 5 bits is the integer part,
and 26 bits is the decimal part, are applied to calculate the
multiscroll chaotic system.

5.1. Two-Stage Iteration. Based on the second-order Run-
ge–Kutta method, the discretization about system (2) under
M (−, +) can be derived for implementing it in FPGA and its
results are

xk+1 � xk + Δt × a yk − xk( 􏼁( 􏼁,

yk+1 � yk + Δt × −16zksgn 4xk( 􏼁 + 16wksgn 4yk( 􏼁( 􏼁,

zk+1 � zk + Δt × 16 xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − b􏼐 􏼑,

wk+1 � wk + Δt × −cwk + 􏽘
n

k�−n

sgn 4zk + 0.5k( 􏼁⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

whereΔt is the discrete time step. DefiningVk�(xk, yk, zk,wk)
T, the proposed multiscroll chaotic system can be expressed
as follows:

Vk+1 � Vk + Δt × G Vk( 􏼁. (12)

Based on the second-order Runge–Kutta method [30],
there are two stage iteration routines. In stage 1, the state
vector is updated as follows:

Vk+(1/2) � Vk +
h

2
× G Vk( 􏼁, (13)

where h is the discrete time gap and h� 1/128 is taken for the
implementation in experimental results.Vk + 1/2 indicates the
intermediate results in a half step, that is, Δt� h/2.

In stage 2,Vk + 1 is updated based onVk + 1/2 from stage 1,
and its formula is as follows:

Vk+1 � Vk + h × G Vk+(1/2)􏼐 􏼑. (14)

5.2. Verilog HDL Implementation. Here, Verilog HDL lan-
guage [31, 32] is used to realize the digital chaotic system in
FPGA. Notably, in programming, after initial state is de-
fined, state machine method is applied to split the whole
digital chaotic generator into several subprocesses, which
includes nine states (S0, S1, S2, S3, S4, S5, S6, S7, and S8) and
the corresponding state machine flowchart is shown in
Figure 11. We have the following:

(i) S0: calculation about 4x, 4y, and 4z by using shift
operation.

(ii) S1: implementation of sgn (4x), sgn (4y), |x|, and
sgn (4z + 0.5k) operations where k� -n:n.

(iii) S2: add up all sgn (4z + 0.5k), parallel imple-
mentation of ax and ay operations, and parallel
implementations to get the results of 16sgn (4x)z
and 16sgn (4y)w.

(iv) S3: parallel implementations to get the results of
-cw and f (z).

(v) S4: parallel implementations to get the results of ẋ,
ẏ, ż, and ẇ.

(vi) S5: select 32 bits to present ẋ, ẏ, ż, and ẇ.
(vii) S6: according to the second-order Runge–Kutta

method expressed in equations (13) and (14), the
variables ẋ, ẏ, ż, and ẇ are iterated. Obviously,
there are two iterative stages. When the iteration is
in stage 1, implement the operation in equation
(13) and then direct to state S0. When the iteration
is in stage 2, implement the operation in equation
(14) and then direct to state S7.
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Figure 9: )e basin of attraction of the proposed chaotic system under mode 1: M (−, +) under a� 112, b� 2.4, c� 16, x0 � 0.01, and
w0 � 0.01.
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(viii) S7: add a positive offset to the results obtained in
state S6 to avoid negative outputs.

(ix) S8: output the digital chaotic signal to the external
digital-to-analog converter (DAC) chip and direct
to state S0.

)e top-layer RTL viewer of the realization is shown in
Figure 12, where we have the following: “clock” (the clock
for FPGA, the input clock is set as 50MHz in our experi-
ments), “rst1” (the reset for FPGA), “clock1” and “clock2”
(the clock for external DAC chip), “wreset1” and “wreset2”
(the reset for external DAC chip), “ouput_en” (the output is
valid under the high level signal), “x[13..0]” (the digital
output of x in each step), “y[13..0]” (the digital output of y in
each step), “z[13..0]” (the digital output of z in each step), “w
[13..0]” (the digital output of w in each step), “dac_y[13..0]”
(the output of y[13..0] to the external DAC chip), and “dac_x
[13..0]” (the output of z[13..0] to the external DAC chip).

5.3. Experimental Results. After writing the Verilog HDL
program for the multiscroll chaotic system successfully, this

program can be downloaded into FPGA via USB Blaster so
that it is converted to a hardware list and then be configured
into FPGA to form the corresponding digital circuits. )e
Altera Cyclone IV EP4CE10F17C8 FPGA, which has
available internal resources including 10320 logic elements,
423936 RAMs implement bits, 2 PLLs, and 46 hardware
multipliers, is adopted. Also the external DAC chip AD9767
(14 bits) with two output channels is applied in the hardware
platform.

)e architecture of experimental hardware platform for
the proposed chaotic system is shown in Figure 13. Notably,
the proposed chaotic system can generate chaotic attractors
containing negative signals; however, the digital chip
AD9767 whose conversion rate up to 125 Msps can only
process positive signals, so that a positive number should be
added for each output of FPGA (+ in Figure 13). In order to
keep consistency with the simulation results, the DAC
output signal needs to be subtracted by the same positive
number; that is, a subtraction unit before being captured by
the digital oscilloscope GDS 3254 should be needed. )e
experimental results based on FPGA technology are shown

(a) (b)

(c) (d)

Figure 14: Phase portraits of chaotic system with n� 0 and n� 1 from the experimental results: (a) y versus z with n� 0, (b) y versus w with
n� 0, (c) y versus z with n� 1, and (d) y versus w with n� 1.
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in Figure 14. By comparing Figures 14(a), 14(b), 14(c), and
14(d) with Figures 1(a), 1(b), 10(a), and 10(b), respectively,
one can see that the results from these two sides are in good
agreement with each other.

In our experiments, the input clock is set as 50MHz and
the total thermal power dissipation is obtained as 77.01mW
by employing the PowerPlay Power Analyzer Tool in the
software Quartus II. )e other hardware resources required
to implement the new multiscroll chaotic system based on
FPGA chip are listed in Table 2. In this FPGA imple-
mentation, 22% of the logic elements, 18% of the logic
registers, 24% of the RAMs, 0% of the embedded multipliers,
and 0% of the PLLs of the Altera Cyclone IV EP4CE10F17C8
FPGA are occupied, where the resource utilization rates are
determined by the ratio of the required number of resources
to the total number of resources in the Altera Cyclone IV
EP4CE10F17C8 FPGA board. Besides, the throughput of
this digital implementation is given as 100Mbits/s, the last
two lines provide that there are 16 clock cycles required to
evaluate a single iteration, and the delay time is given as
320 nanoseconds when using a 50MHz clock signal. In
addition, the comparisons on FPGA implementations be-
tween some existent chaotic systems given in [33, 34] and the
proposed chaotic system are shown in Table 3. In summary,
one can see that the calculation accuracy of the second-order
Runge–Kutta method is sufficient to meet the requirements
of the proposed chaotic system, and it requires fewer FPGA’s
resources. Hence, in this paper, the FPGA realization is
feasible, the resource consumption is reasonable, the op-
eration is stable and the output speed is fast.

6. Conclusion

Based on the modified Lorenz-type system and adding an
additional variable, a novel chaotic system that can generate
multiscroll chaotic attractors is proposed. Attraction basin,
bifurcation diagram, dynamic map, phase portrait, Lyapu-
nov exponent spectrum, and C0 complexity are carried out
for this proposed chaotic system to analyze its dynamical

behaviors. Research results show that there are some typical
dynamics including multistability, bifurcation, chaotic
attractors, quasi-periodic attractor, and periodic attractor in
this proposed chaotic system. For the different initial con-
ditions, symmetric coexisting attractors will occur in this
system. Moreover, theoretical analysis, numerical simula-
tions, and FPGA implementations together demonstrate
that the 4n+ 4 scroll chaotic attractors can be obtained by
selecting the value of the natural number n. Compared with
other existent FPGA implementations of the chaotic gen-
erators, the proposed multiscroll chaotic system has an
advantage of requiring less resources, especially only re-
quiring 0% of the embedded multipliers and 0% of the PLLs
of the FPGA chip. Hence, this work will benefit chaotic
secure communications, which will be our future work.
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Recently, megastable systems have grabbed many researchers’ interests in the area of nonlinear dynamics and chaotic systems. In
this paper, the oscillatory terms’ coefficients of the simplest megastable oscillator are forced to blink in time.+e forced system can
generate an infinitive number of hidden attractors without changing parameters. +e behavior of these hidden attractors can be
chaotic, tori, and limit cycle. +e attractors’ topology of the system seems unique and looks like picture frames. Besides, the
existence of different coexisting attractors with different kinds of behaviors reflects the system’s high sensitivity. Using the sample
entropy algorithm, the system’s complexity for different initial values is assessed. In addition, the circuit of the introduced forced
system is designed, and the possibility of implicating the system with analog elements is investigated.

1. Introduction

Simple and elegant oscillators are interesting for researchers
in the fields of nonlinear dynamics [1]. Faghani et al. have
introduced many of these simple oscillators, generating
chaotic time series [2]. An equilibrium point in the basin of
attraction is considered an important feature for chaotic
attractors [3]. +erefore, attractors can be classified into two
main groups based on this feature: self-excited attractors and
hidden attractors [4]. For self-excited attractors, at least one
fixed point can be found in their basin of attraction [5]. On
the other hand, no-equilibrium exists in the basin of at-
traction of a hidden attractor [6]. Different kinds of oscil-
lators with hidden attractors have been introduced yet.
Instances for oscillators with hidden attractors can be
chaotic dynamics which have one stable equilibrium [7], a

line of equilibriums [8], or a surface of equilibriums [9] in
their basin. Hidden attractors’ existence in real-world sys-
tems also has been demonstrated [10]. Besides the classifi-
cation among attractors based on their equilibrium(s), an
important category of chaotic systems is the forced dynamics
(time-variant systems) [11]. As one of the oldest examples,
Van der Pol forced oscillator can be mentioned [12]. Forcing
nonlinear systems is a method to generate strange attractors
when the original versions of nonlinear systems are unable
to generate chaotic behaviors [11].

Besides properties such as the existence and topology of
fixed points and dynamics’ time variability, some other
features have grabbed researchers’ attention. Oscillators with
time delays in their equations [13], fractional equations [14],
fuzzy differential equations [15], those with hyperchaos [16],
and others with synchronization among a group of them [17]
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can be examples of chaotic systems with specific features.
Multistability is another of these features [18]. A system can
be named multistable when it has more than one attractor
without any change in its parameters [19]. In these systems,
initial conditions determine trajectories which finally are
attracted to which one of the attractors [20]. Multistability is
sometimes considered a nonproper phenomenon that may
make unexpected situations when it can also be used as a
control strategy to switch among different attractors [21].
Multistable systems with uncountable infinitive attractors
are called extreme multistable [22] when the ones with
countable infinitive attractors are referred megastable [23].
+e attractors of multistable systems can have chaotic or
hyperchaotic behaviors [24], as well as some other features
such as having a number of scrolls [25]. Multistable systems
can have some applications such as secure communication
[26]. Multistability is also investigated in natural phenomena
such as the brain [27].

Besides the mentioned features, topology and the shape
of strange attractors are considered as other important
features that an oscillator may have [28]. Some chaotic
dynamics with different types of symmetries have been
introduced [29]. Among features related to the topology of
attractors, ones which have multiscrolls are interesting for
researchers [30]. Assessing the stability of multiscrolls
attractors [31] and finding methods to preserve multiscrolls
[32] are topics that grab much attention. Besides, some
methods have been introduced to use multiscroll attractors
such as switches in systems [33]. In addition, chaotic systems
with some modifications sometimes have been used to
generate Brownian motions [34]. +ese Brownian motions
are also generated with fractional systems [35]. Besides all of
these features, if an oscillator has simple algebraic equations,
it can be its advantage [36].

Complexity is another feature that has been investigated
among chaotic systems [37]. Richman et al. [38] have de-
rived sample entropy (SamEn) from approximate entropy
that is used for assessing the complexity of chaotic systems
[39]. With this method, the complexity of the time series
generated by the introduced system is investigated in this
work.

+e feasibility of chaotic dynamics has been a matter of
interest since Lorenz discovered the first chaotic system [40].
To assess chaotic oscillators’ feasibility, they have been
simulated (with software such as Pspice [41]) and imple-
mented (with analog circuits [42]). For instance, some
fractional chaotic systems have been implicated with analog
circuits [43] and/or digital circuits (such as field-pro-
grammable gate array (FPGA) [44]), and their feasibility has
been shown [45]. +e possibility of the implication of a
chaotic system that has a multiscroll attractor has been
demonstrated [46]. Besides, multistable systems are also
implicated with both digital and analog circuits. For in-
stance, the FPGA realization of a jerk multistable system has
been investigated [47]. In another work, multistable systems
with circles [48] or other strange curves of equilibrium

points [49] have been realized using FPGA. Assessing the
realization of the synchronization among chaotic systems is
another matter of interest for researchers [50]. Such circuits
can have different applications. Predicting the time series of
chaotic systems [51], image encryption [52], secure com-
munication [53], and random number generation [54] is an
example of their application. In this paper, the introduced
forced system’s analog circuit is designed and simulated with
Pspice to show its feasibility.

In this paper, the equations of a chaotic system are
presented which are megastable. In this system, oscillator
terms are forced to blink during the time. +e dynamical
system is introduced in Section 2. +is system, which is
inspired by the simplest megastable equations, has un-
countable attractors. Coexisting limit cycles, torus, and
chaotic attractors are investigated in this model in Section 2.
In Section 3, the complexity of the system is assessed. Finally,
the results are concluded in Section 5.

2. The Proposed System

+e proposed model is inspired by the simplest megastable
model, which was introduced by Jafari et al. [55]:

_x � − y, _y � 0.1x + sin(y). (1)

When (− y) and (0.1x) on the right side of equations have
the responsibility of making oscillations. Some examples of
transient trajectories and attractors of equation (1) are
plotted in Figure 1.+e system’s only equilibrium point is (0,
0) in the center of the smallest limit cycle. Consequently,
because other attractors have no equilibrium in their basin,
they can be considered hidden attractors.

+ese equations are used as a platform to introduce the
new method of forcing, which is referred to as forcing os-
cillation terms to blink. To make the oscillation terms blink,
their coefficients should change during time. For this aim,
time-varying functions are multiplied by the coefficient of
the oscillatory terms. +ese time-variant functions should
oscillate between zero (to turn off oscillatory terms for
moments) and a positive threshold. In other words, these
time-variant oscillatory functions should not have negative
values. Note that if the coefficient of oscillation terms os-
cillates between a positive and a negative value, the tra-
jectory’s rotation direction changes repetitively. +ese
repetitive changes in the direction of the oscillator can
disturb its stability. +erefore, inspired from equation (1),
the oscillator is designed based on the following equations:

_x � − cos2(wt)y, _y � 0.1 sin2(wt)x + A sin(y). (2)

When cos2(wt) and sin2(wt) are coefficients of the
linear oscillatory terms, the power two for sin and cos
functions cause the coefficients to not have negative values.
Consequently, this coefficients’ oscillation between 0 and 1
caused the blinking of the equations’ oscillatory terms. +is
system’s fixed point is only (0, 0). +e system’s Jacobean is
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J �
0 − cos2(wt)

0.1 sin2(wt) A cos(y)
⎡⎣ ⎤⎦⟶

(x,y)�(0,0) 0 − cos2(wt)

0.1 sin2(wt) A
⎡⎣ ⎤⎦. (3)

+erefore, the eigenvalues are

|λI − J| � 0⟶
λ + cos2(wt)

− 0.1 sin2(wt) λ − A

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦⟶
(x,y)�(0,0)

λ2 − Aλ + 0.1cos2(wt)sin2(wt) � 0,

λ �
A ±

���������������������

1 − 0.4 cos2(wt)sin2(wt)

􏽱

2
.

(4)

In this paper, always A> 1 is considered. Paying at-
tention that 0< cos2(wt)sin2(wt)< 1, the eigenvalues of the
equilibrium are always positive.+erefore, the forced system
always has an unstable equilibrium.

3. Bifurcations and Lyapunov
Exponents’ Diagrams

+is work aims mainly to find possible chaotic behaviors in
the proposed blinking system. Different compositions of A

and w as the two bifurcation parameters may lead the system
to chaotic behaviors. +e ranges of these parameters are
considered so that the system does not have unbounded
solutions. Besides, ranges for the parameters have been
presented in a way that system has different dynamical
behaviors such as chaos, torus, and limit cycle. +erefore,
firstly, w � 0.8 is set, and the system’s bifurcation is plotted
for a range of A. Next, in the same way, A � 1 is set, and a
range for w is investigated. Finally, by fixing A � 1 and w �

0.8 and using the initial value (x0, 0) as the bifurcation
parameter, different coexisting attractors behaviors are
investigated.

+e Lyapunov exponents (LEs) and bifurcation dia-
grams are used as two powerful tools for investigating the

system’s behaviors for different parameters and initial
conditions in this section. For all LEs diagrams, the
smallest, which have the largest absolute value, is removed
in the related pictures. It is done for better visualization of
the other two.

Now, paying attention to Figure 2, the LE diagram shows
chaotic behaviors for large ranges of A values (one positive,
one zero, and one negative (does not drown) [56]). Inter-
estingly, by increasing the values of A, ranges that the system
has a chaotic behavior become thinner; however, the values
of the largest LEs increase.

Figure 2 shows LEs and bifurcation diagrams for a range
of w. +e LEs diagram in Figure 2 demonstrates chaotic
solutions for different large ranges of w values. Increasing
the values of w, the length of ranges that the system has a
chaotic behavior increases (Figure 3).

LEs and bifurcation diagrams (Figure 4) are plotted as a
function of the initial condition (x0, 0). It can be seen that, for
inner cycles, chaos can be detected. Besides, for the larger
values of x0, the system can present limit cycles (when one LE
is zero and the two other is negative [56]) and torus (when the
two largest LEs are zero and the other is negative [56]).

+e system’s detractors for different sets of parameters
and different initial conditions are plotted in Figures 5 and 6.
+ese attractors look like “picture frames.”
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Figure 1: Attractor and some transient responses for equation (1). Attractors are plotted with thicker lines when transient responses are
shown with thinner lines.
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4. Complexity-Based Sample
Entropy Algorithm

+e sample entropy (SamEn) is a mathematical algorithm
introduced to estimate the predictability of time series. It is
usually used for evaluating how much information needs to
predict the (t + 1)th output of a trajectory of systems using
its previous (t) outputs. Higher SamEn values indicate a
dynamical system exhibits lower levels of regularity.

In this way, for a given time series x(i){ }, when
(i � 0, 1, . . . , N − 1), SamEn algorithm is given by the fol-
lowing [38].

(1) Reconstruct the time series to be as follows:

Xi � xi, xi+τ , . . . , xi+(m− 1)τ􏽮 􏽯, (5)

where Xi ∈ Rm, m is the embedding dimension, and
τ is the time delay.

(2) Compute the vector pairs for a given tolerance pa-
rameter r by calculating the distance between Xi and
Xj as follows:

d Xi, Xj􏽨 􏽩≤ r, d Xi, Xj􏽨 􏽩

� max |x(i + k) − x(j + k)|: 0≤ k≤m − 1􏼈 􏼉.

(6)

(3) Calculate Cm
i (r), which represents the probability

that any vector Xj has a lower distance (r) than Xi, as
follows:

C
m
i (r) �

Bi

N − (m − 1)τ
, (7)

where Bi is the number of vectors Xj that have a
lower distance (r) than Xi.

(4) Obtain θm(r), which is the average of the natural
logarithm of the function Cm

i (r), as follows:

θm
(r) �

􏽐
N− (m− 1)τ
i�1 ln C

m
i (r)

[N − (m − 1)τ]
. (8)

(5) Repeat the above steps to obtain θm+1(r), and then,
calculate the SamEn as follows:
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Figure 2: Lyapunov exponents and bifurcation diagrams are related to parameterA for w � 0.8 when the initial conditions are set (0.01, 0).
(a)+e two largest Lyapunov exponents are plotted and zoomed.+erefore, the third, which is negative (and has the largest absolute value),
and also parts of the second cannot be seen for better visualization. (b) +e local maximums of the x variable time series. (c) +e local
maximums of the y variable time series.
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Figure 4: Lyapunov exponents and bifurcation diagrams for A � 1 and w � 0.8 when the initial conditions are set (x0, 0). (a) +e two
largest Lyapunov exponents are demonstrated. +erefore, the third, which is the most negative, is not shown. (b) x time-series local
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Figure 5: Trajectories when A andw are 2 and 0.5, respectively. (a)+e set initial values are (0, 2), (0, 8), (0, 30), (0, 80), and (0, 100). (b and
c) are zoomed versions of (a) for a better visualization.
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SamEn(m, r, N) � θm
(r) − θm+1

(r). (9)

Now, we employ the SamEn algorithm for m � 2 and
r � 0.2 × (StandardDeviation) to evaluate the complexity

of the multistability region of the megastable system (3).
Figure 7(a) plots the SamEn values of the system when the
parameter A and the initial value y0 change. As can be
observed in this figure, when A � 1, the system exhibits
higher complexity values. +e complexity values of the
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Figure 6: Trajectories for different sets of parameters and different initial values. (a) A � 2, w � 0.5, and the initial values are set
(0, 2), (0, 30), (0, 45), (0, 80), and (0, 150). (b) A � 1, w � 0.5, and the initial values are set (0, 2), (0, 9), (0, 15), and (0, 27).
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system begin decreasing by increasing the value of A.
Furthermore, Figure 7(b) shows the SamEn values for a
range of w and y0. +is figure demonstrates that the lower
complexity values appear when the initial value (y0) in-
creases. However, Figure 7(a) is also demonstrated this
behavior.

To further visualize the system’s complexity perfor-
mance for a particular set of parameters, Figure 7(c) depicts
its SamEn values when both initial values (y0 and x0)
change. +is figure shows the complexity values of the
system decrease when (y0) increases.

5. Circuit Design

+e analog circuit of the introduced forced system is sim-
ulated in this part. +e circuit is designed using simple

elements such as resistors, capacitors, and Op-Amps (Fig-
ure 8). To generate cos2(wt) and sin2(wt), an AC voltage
source is used. AD633/AD is used to generate the second
power of the AC voltage source. Considering AD633/AD
multiply its outputs to 0.1, the circuit of Op-Amp (U4A1A)
(considering R1� 1k and R2�10k) is used for compensa-
tion. In the same way, Op_Amp (U4A4A) and Op-Amp
(U4A6A) are used to compensate for the 0.1 coefficient of
AD633/AD. Time is rescaled so that T � t/α when α � (R �

10KΩ) × (C � 10nF) � 10000 is assumed. +e equations of
the implicated circuit are written as follows:

cos2(wαT) �
R7
R5

􏼒 􏼓1 −
R7
R6

R2R4
R1R3

0.1 sin2(wαT)y􏼐 􏼑􏼒 􏼓,

dx

d(αT)
� −

1
R10C1

R9
R8

􏼒 􏼓 0.1 cos2(wαT)y􏼐 􏼑,

dy

d(αT)
�

1
R16C2

R12
R11

0.1 sin2(wαT)x􏼒 􏼓 +
1

R16C2
sin

R15
R14

y􏼒 􏼓.

(10)

When x and y represent the outputs of the Op-Amps
U11A5A and U11A8A, respectively. +e values of the ele-
ments are selected as follows: R1 � 1KΩ, R2 � 1KΩ, R3 �

1KΩ, R4 � 1KΩ, R5 � 1KΩ, R6 � 1KΩ, R7 � 1KΩ,
R8 � 1KΩ, R9 � 1KΩ, R10 � 1KΩ, R11 � 1KΩ, R12 �

1KΩ, R13 � 1KΩ, R14 � 1KΩ, R15 � 1KΩ, R16 � 1KΩ,

C1 � 1nF, and C2 � 1KF. For w � 0.8 the frequency of AC
voltage is considered (w � 0.8) × (α � 10000)/2π ≈ 1273.
+e system phase space simulated by Matlab for w � 0.8 and
A � 1 is shown in Figure 9(a). Considering Figure 2, these
parameters are chosen so that the system has a chaotic
behavior. For the mentioned set of parameters, the circuit

5.0V

0V

–5.0V
–20V –16V –12V –8V –4V 0V

V (U11A5A:OUT)
4V 8V 12V 16V 20V

V (Y)

(b)

Figure 9: +e phase portrait of the simulated circuit. (a) +e phase space of the system when w � 0.8 and A � 1 (simulated with Matlab
2020). (b) +e result of the simulated circuit (Pspice, version 9.1).
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shown in Figure 8 is implicated in Pspice software (version
9.1). +e result of the simulated circuit is demonstrated in
Figure 9(b).

6. Conclusion

Considering recent interests in introducing new strange
attractors, this paper introduced a new method to force
oscillatory coupling terms of an oscillator. +is method,
which was named blinking forcing, considers oscillatory
coefficients for oscillatory terms.+emethod was implicated
on the simplest megastable system. +e megastable forced
dynamic could generate chaotic, torus, and limit cycle
trajectories in its different attractors without changing its
parameters. Complexity simulation analysis has demon-
strated that these coexisting attractors exhibit different
complexity values as the initial conditions vary. Besides, its
“picture frame” like strange attractors can be considered a
new topology that has not been proposed until yet, according
to the authors’ best knowledge. It is proposed that the in-
troduced blinking method of forcing oscillatory terms is to
be applied and studied on the other oscillators in the next
research studies.
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In this paper, we study a stochastic epidemic model with double epidemics which includes white noise and telegraph noise
modeled by Markovian switching. Sufficient conditions for the extinction and persistence of the diseases are established. In the
end, some numerical simulations are presented to demonstrate our analytical results.

1. Introduction

Compartmental models represent an important mathe-
matical tool to describe the spread of infectious diseases
[1–6]. A mathematical model that describes the spread of
infectious diseases currently known as the SIR model divides
the population into three classes, the sensitive S, infectious I,
and recovered R, and was firstly developed by Kermack and
Mckendrick [7] in 1927. To take into account the case of
recovered individuals who lose their immunity and return to
the susceptible compartment, we use SIRS epidemic models
investigated by many scientists (see, for example, [8–10]). In
classic SIRS epidemic models, the disease caused by one
virus but in the real world, there are certain diseases to which
the population is infected with two or more viruses (see
[11–14]). Zhao et al. [15] established the following SIRS
model describing the dynamics of two viruses (see Figure 1):

S′(t) � μ − β1S(t)I1(t) − β2S(t)I2(t) − μS(t) + δR(t),

I1′(t) � β1S(t)I1(t) − μ + c1( 􏼁I1(t),

I2′(t) � β2S(t)I2(t) − μ + c2( 􏼁I2(t),

R′(t) � c1I1(t) + c2I2(t) − (μ + δ)R(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where S(t) denotes the number of susceptible individuals at
time t, I1(t) and I2(t) are, respectively, the numbers of

infected individuals with virus A and virus B, R(t) denotes
the number of removed individuals at time, the parameters
β1 and β2 are the disease transmission coefficient with virus
A and virus B, respectively, μ represents the birth rate of the
population and the natural death rate of the population, c1
and c2 are the recovery rates of infectious individuals with
virus A and with virus B, and δ is the lost immunity rate.

However, the biological systems are necessarily touched
via the environmental noise, which can present an additional
degree of realism compared with their corresponding de-
terministic models.'us, it is an important component in an
ecosystem. Consequently, many works existing in the lit-
erature studied the effects of white noise on epidemic models
(see, for example, [16–18]). El Fatini et al. [19] studied a
stochastic epidemic model. 'ey assumed that environ-
mental perturbations are of the white noise type. 'ey
showed the existence and the uniqueness of the solution of
their proposed model. 'ey established sufficient conditions
for extinction by constructing some suitable Lyapunov
function. And they showed sufficient conditions for the
persistence of the disease under some conditions on pa-
rameters of the model. Liu et al. [20] investigated the dy-
namical behavior of a higher-order stochastically perturbed
SIRI epidemic model with relapse and media coverage. 'ey
showed sufficient measures for the existence and unique-
ness of an ergodic stationary distribution of their stochastic
model by constructing a suitable Lyapunov function. And
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they obtained sufficient conditions for the elimination of
the infectious disease. Tang et al. [21] investigated the
threshold of a class of the stochastic SIRS epidemic model
with with nonlinear incidence, which determines the ex-
tinction and persistence of the disease. In [22], Qi et al.

investigated the dynamics of a nonautonomous stochastic
SIS epidemic model with nonlinear incidence rate and
double epidemic. Rajasekar and Pitchaimani [23] have
formulated the following stochastic SIRS model with two
viruses:

dS(t) � μ − β1S(t)I1(t) − β2S(t)I2(t) − μS(t) + δR(t)􏼂 􏼃dt + σ1S(t)dB1(t),

dI1(t) � β1S(t)I1(t) − μ + c1( 􏼁I1(t)􏼂 􏼃dt + σ2I1(t)dB2(t),

dI2(t) � β2S(t)I2(t) − μ + c2( 􏼁I2(t)􏼂 􏼃dt + σ3I2(t)dB3(t),

dR(t) � c1I1(t) + c2I2(t) − (μ + δ)R(t)􏼂 􏼃dt + σ4R(t)dB4(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where Bi(t) for i � 1, 2, 3, 4 are independent standard
Brownian motions which are defined on a complete prob-
ability space (Ω,F,P) with filtration Ft􏼈 􏼉t≥ 0 satisfying the
usual conditions and σ2i for i � 1, 2, 3, 4 denote the intensity
of the white noise.

On the other hand, the white noise cannot express the
phenomena that the population may submit sudden cata-
strophic collisions in nature. 'e telegraph noise can be
illustrated as a switching between two or more regimes of
environment, which differ by factors such as nutrition or
socio-cultural factors [24–26]. In fact, switching between
environmental regimes is frequently memoryless and the
waiting time for the next switching follows the exponential
distribution [27]. So, the regime switching can be modeled
by a continuous-time Markov chain r(t){ }t≥0 taking values
in a finite-state space S � 1, . . . , m{ }. Many works have
introduced Markov process into their models. For example,
in [28], Zhang and Peng addressed a stochastic cholera
epidemic model with vaccination. 'ey presented the
threshold of a stochastic cholera epidemic model which
determines the extinction of the disease and the existence of
a unique ergodic stationary distribution. Wang et al. [29]

discussed the asymptotic properties of the solution of a
stochastic SIRS epidemic model with Bedding-
ton–DeAngelis incidence rate and Markovian switching.
'ey proved that the proposed model is stochastically as-
ymptotically stable in the large. In addition, they presented
threshold values and conditions which determine disease
extinction and persistence. In [30], Li et al. proposed a
stochastic SIRS model with vaccination and regime
switching. 'ey proved sufficient conditions for the ex-
tinction and the existence of the stationary distribution of
the population. Motivated by the above facts, in this work,
we will initially include telegraph noise into stochastic model
(1) to obtain a more realistic model. 'en, the following
stochastic white and telegraphic noise perturbations on the
diseases transmission coefficient are assumed:

β1dt⟶ β1(r(t))dt + σ1(r(t))dB1(t),

β2dt⟶ β2(r(t))dt + σ2(r(t))dB2(t).
(3)

'en, the stochastic SIRS epidemic model with two
viruses (1) can be expressed as the following stochastic
system under regime switching:

S (t) R (t)

ρI2

ρI1

μ

μI2

μI1

μS μR
βSI2

βSI1

δ

I2 (t)

I1 (t)

Figure 1: 'e compartmental diagram for the SIRS model with two epidemic diseases.

2 Complexity



dS(t) � μ(r(t)) − β1(r(t))S(t)I1(t) − β2(r(t))S(t)I2(t) − μ(r(t))S(t)􏼂

+δ(r(t))R(t)]dt − σ1(r(t))S(t)I1(t)dB1(t) − σ2(r(t))S(t)I2(t)dB2(t),

dI1(t) � β1(r(t))(t)I1(t) − μ(r(t)) + c1(r(t))( 􏼁I1(t)􏼂 􏼃dt

+σ1(r(t))S(t)I1(t)dB1(t),

dI2(t) � β2(r(t))S(t)I2(t) − μ(r(t)) + c2(r(t))( 􏼁I2(t)􏼂 􏼃dt

+σ2(r(t))S(t)I2(t)dB2(t),

dR(t) � c1(r(t))I1(t) + c2(r(t))I2(t) − (μ(r(t)) + δ(r(t)))R(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

'is article proposes a stochastic SIRS epidemic model
with regime switching and double epidemic hypothesis. Our
main purpose is to investigate the effect of the white and
telegraph noises on the spread dynamics of the disease in the
population. 'e rest of the paper is as follows. In Section 3, we
show the existence and uniqueness of a global positive solution
to system (4). In Sections 4 and 5, we study the existence of a
stochastic threshold for the extinction and the persistence in
mean of the disease. In last section, we present some numerical
simulations to demonstrate our main theoretical results.

2. Existence and Uniqueness of the
Nonnegative Solution

'roughout this paper, we let (Ω,F, Ft􏼈 􏼉t≥ 0,P) be a
complete probability space with a filtration Ft􏼈 􏼉t≥ 0 satis-
fying the usual conditions (i.e., it is increasing and right
continuous while F0 contains all P-null sets). Let r(t){ }t≥0
be a right-continuousMarkov chain on the probability space
(Ω,F, Ft􏼈 􏼉t≥ 0,P) taking values in a finite-state space S �

1, 2, . . . , m{ } with the generator Φ � (ϕuv)1≤u,v≤N given, for
δ > 0, by

P(r(t + δ) � v|r(t) � u) �
ϕuvδ + o(δ), if u≠ v,

1 + ϕuuδ + o(δ), if u � v.
􏼨

(5)

Here, ϕuv is the transition rate from u to v and ϕuv ≥ 0 if
u≠ v, while

ϕuu � − 􏽘
u≠ v

ϕuv. (6)

Suppose that the Markov chain r(t) is independent of
the Brownian motion B(·) and it is irreducible. Under this
condition, the Markov chain has a unique stationary dis-
tribution π � (π1, . . . , πN), which can be determined by
solving the linear equation πΦ � 0, subject to 􏽐

N
i�1 πi � 1,

and πi > 0, ∀i ∈ S. 'ereafter, for any vector
h � (h(1), . . . , h(N))T, let 􏽢h � mini∈M h(i){ } and
�h � maxi∈M h(i){ }.

We consider the following stochastic system:

dϑ(t) � f(t, ϑ(t), r(t))dt + g(t, ϑ(t), r(t))dB(t), (∗)
(7)

where B(t) is a d-dimensional standard Wiener process
defined on a complete probability space (Ω,F, Ft􏼈 􏼉t≥ 0,P).

Denoted by C1,2(Rd × S;R+), the family of all nonnegative
functions Q is defined on Rd × S such that they are con-
tinuously twice differentiable in ϑ. 'e operator L associ-
ated with (∗) is defined as follows:

LQ(ϑ, i) � Qt(t, ϑ, i) + Qϑ(t, ϑ, i)f(t, ϑ, i)

+
1
2
g

T
(t, ϑ, i)Qϑ,ϑ(t, ϑ, i)g(t, ϑ, i)

+ 􏽘
j∈S

ϕijQ(t, ϑ, j),

(8)

where Qϑ and Qϑ,ϑ represent the gradient and Hessian of Q
and T is the transpose of a matrix.

By Itô’s formula, if Q defined on Rd × S, we have

dQ(ϑ(t), i) � LQ(ϑ(t), i)dt + Qϑ(ϑ(t), i)g(ϑ(t), i)dB(t).

(9)

'e total population in system (4) verifies the following
equation:

d S(t) + I1(t) + I2(t) + R(t)( 􏼁

� μ − μ S(t) + I1(t) + I2(t) + R(t)( 􏼁􏼂 􏼃dt.
(10)

'us,

S(t) + I1(t) + I2(t) + R(t)

� 1 + S(0) + I1(0) + I2(0) + R(0) − 1( 􏼁e
− μ(r(t))t

, for all t≥ 0.

(11)

Since, for X(0) ∈ D, we have

S(t) + I1(t) + I2(t) + R(t) � 1, for all t≥ 0 a.s. (12)

Let

D � S + I1 + I2 + R( 􏼁 ∈ R4
+: S + I1 + I2 + R � 1􏽮 􏽯. (13)

By using the same method as in [31, 32], we can easily
prove the following theorem.

Theorem 1. Let X(0) � (S(0), I1(0), I2(0), R(0)) ∈ D,
then there is a unique solution (S(t), I1(t), I2(t), R(t)) to
system (4) on t≥ 0, and the solution will remain in D with
probability 1.

Firstly, we define the following expressions which we use to
determine the extinction of epidemics:
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􏽘

m

i�1
πiDi � 􏽘

m

i�1
πi − σ21(i) + β1(i) − (μ(i) + c1(i)􏼐 􏼑􏼑,

􏽘

m

i�1
πiAi � 􏽘

m

i�1
πi − σ22(i) + β2(i) − (μ(i) + c2(i)􏼐 􏼑􏼑.

(14)

3. Extinction

'is section is consecrated to give sufficient conditions so
that the epidemics die out. According to [33], we have the
following lemma.

Lemma 1. Suppose that there exists a function
U(u, i) ∈ C1,2(R3 × S;R+) and ρ(u) ∈ (R3×;R+) disap-
pears only at E0 such that

LU(u, i)≤ − ρ(u), for all (u, i) ∈ R3
× S,

lim
|x|⟶∞

inf
j∈S

U(u, i) �∞.
(15)

'en, the equilibrium E0 of system (4) is globally as-
ymptotically stable in probability.

By Lemma 1, we identify the conditions for stochastic
asymptotic stability of the disease-free equilibriumwhich are
presented by the following theorem.

Theorem 2. If β2(i)≥ σ22(i) and β1(i)≥ σ21(i) for all i ∈ S,
and

􏽘

m

i�1
πiDi < 0,

􏽘

m

i�1
πiAi < 0,

(16)

then the disease-free equilibrium E0 is globally stochastically
asymptotically stable on D.

Proof. We consider the following Lyapunov function:

H(S, I, R, i) � m1(1 − S)
2

+ η + ωi( 􏼁I
(1/η)
1

+ θ + ϖi( 􏼁I
(1/θ)
2 + m2R

2
, for all i ∈ S,

(17)

where m1, m2, η, and θ are real positive constants to be
determined later. By Itô’s formula, we calculate LH as
follows:

LH � − 2m1(1 − S) μ − μS − β1SI1 − β2SI2 + δR􏼂 􏼃 + m1σ
2
1S

2
I
2
1

+ m2σ
2
2S

2
I
2
2 +

1
η

η + ωi( 􏼁I
(1/η)
1 β1S − μ + c1( 􏼁􏼂 􏼃

+
1
2η

1
η

− 1􏼠 􏼡 η + ωi( 􏼁σ21S
2
I

(1/η)
1

+
1
θ

θ + ϖi( 􏼁I
(1/θ)
2 β2S − μ + c2( 􏼁􏼂 􏼃 +

1
2θ

1
θ

− 1􏼒 􏼓 θ + ωi( 􏼁σ22S
2
I

(1/θ)
2

+ 2m2R c1I1 + c2I2 − (μ + δ)R􏼂 􏼃 + 􏽘
k≠ i,k∈S

ϕik ωk − ωi + ϖk − ϖi( 􏼁

� − 2m1(1 − S)
2

+ 2m1β1SI1(1 − S) + 2m1β2SI2(1 − S)

− 2m1δ(1 − S)R + m1σ1S
2
I
2
1 + m1σ2S

2
I
2
2 +

1
η

η + ωi( 􏼁β1I
(1/η)
1 S

−
1
η

η + ωi( 􏼁 μ + c1( 􏼁I
(1/η)
1 +

1
2η

1
η

− 1􏼠 􏼡 η + ωi( 􏼁σ21S
2
I

(1/η)
1

+
1
θ

θ + ϖi( 􏼁β2I
(1/θ)
2 S −

1
θ

θ + ϖi( 􏼁 μ + c2( 􏼁I
(1/θ)
2

+
1
2θ

1
θ

− 1􏼒 􏼓 θ + ωi( 􏼁σ22S
2
I

(1/θ)
2 + m2c1RI1 + m2c2RI2 − m2(μ + δ)R

2

+ I
(1/η)
1 􏽘

k≠ i,k∈S
ϕik ωk − ωi( 􏼁 + I

(1/θ)
2 􏽘

k≠ i,k∈S
ϕik ϖk − ϖi( 􏼁.

(18)
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Using the fact that I≤ 1 − S and S, I ∈ D, we obtain

LH≤ − 2m1(1 − S)
2

+ 2m1β1I
(1/η)
1 + 2m1β2I

(1/θ)
2 + m1σ

2
1I

(1/η)
1 + m1σ

2
2I

(1/θ)
2

+
1
η

η + ωi( 􏼁β1I
(1/η)
1 S −

1
η

η + ωi( 􏼁 μ + c1( 􏼁I
(1/η)
1

+
1
2η

1
η

− 1􏼠 􏼡 η + ωi( 􏼁σ21S
2
I

(1/η)
+
1
θ

θ + ϖi( 􏼁β2I
(1/θ)
2 S

−
1
θ

θ + ϖi( 􏼁 μ + c2( 􏼁I
(1/θ)
2 +

1
2θ

1
θ

− 1􏼒 􏼓 θ + ωi( 􏼁σ22S
2
I

(1/θ)
2

+ m2c1 − m1δ( 􏼁RI1 + m2c2 − m1δ( 􏼁RI2 − m2(μ + δ)R
2

+ I
(1/η)
1 􏽘

k≠ i,k∈S
ϕik ωk − ωi( 􏼁 + I

(1/θ)
2 􏽘

k≠ i,k∈S
ϕik ϖk − ϖi( 􏼁,

(19)

for all η and θ≥ 1. Since we can choose
m2 <mini∈S (m1δ(i)/c1(i)), (m1δ(i)/c2(i))􏼈 􏼉, we obtain

LH≤ − 2m1(1 − S)
2

− m2(μ + δ)R
2

+
η + ωi( 􏼁

η
I

(1/η)
1

ηm1

η + ωi( 􏼁
σ21 + 2β1􏼐 􏼑􏼢

− μ + c1( 􏼁 +
1
2η
σ21 + β1S − σ21S

2
+

η
η + ωi(

􏽘
k≠ i,k∈S

ϕik ωk − ωi( 􏼁⎤⎥⎥⎦

+
θ + ωi( 􏼁

θ
I

(1/θ)
2

θm1

θ + ωi( 􏼁
σ22 + 2β2􏼐 􏼑 − μ + c2( 􏼁 +

1
2θ
σ22 + β2S􏼢

− σ22S
2

+
θ

θ + ϖi( 􏼁
􏽘

k≠ i,k∈S
ϕik ϖk − ϖi( 􏼁⎤⎥⎥⎦

≕ − 2m1(1 − S)
2

− m2(μ + δ)R
2

+
η + ωi( 􏼁

η
I

(1/η)
1

ηm1

η + ωi( 􏼁
σ21 + 2β1􏼐 􏼑􏼢

+
1
2η
σ21 + fi(S) +

η
η + ωi( 􏼁

􏽘
k≠ i,k∈S

ϕik ωk − ωi( 􏼁⎤⎥⎥⎦

+
θ + ωi( 􏼁

θ
I

(1/θ)
2

θm1

θ + ωi( 􏼁
σ22 + 2β2􏼐 􏼑 +

1
2θ
σ22 + gi(S)􏼢

+
θ

θ + ϖi( 􏼁
􏽘

k≠ i,k∈S
ϕik ϖk − ϖi( 􏼁⎤⎥⎥⎦,

(20)

where fi(x) � − σ21(i)x2 + β1(i)x − (μ(i) + c1(i)) and
gi(x) � − σ22(i)x2 + β2(i)x − (μ(i) + c2(i)). Note that the
functions fi(x) and gi(x) are all increasing on (0, 1), which
means

fi(x)≤fi(1)≕Di,

gi(x)≤gi(1)≕Ai,
(21)

then
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LH≤ − 2m1(1 − S)
2

− m2(μ + δ)R
2

+
η + ωi( 􏼁

η
I

(1/η)
1

ηm1

η + ωi( 􏼁
σ21 + 2β1􏼐 􏼑􏼢

+
1
2η
σ21 + Di +

η
η + ωi( 􏼁

􏽘
k≠ i,k∈S

ϕik ωk − ωi( 􏼁⎤⎥⎥⎦

+
θ + ϖi( 􏼁

θ
I

(1/θ)
2

θm1

θ + ϖi( 􏼁
σ22 + 2β2􏼐 􏼑 +

1
2θ
σ22 + Ai􏼢

+
θ

θ + ϖi( 􏼁
􏽘

k≠ i,k∈S
ϕik ϖk − ϖi( 􏼁⎤⎥⎥⎦.

(22)

Since the generator matrix Φ is irreducible, then for
D � (D1, . . . , Dm)T, there exists Ξ � (ω1, . . . ,ωm)T solution
of the Poisson system:

ΦΞ � − D + 􏽘
m

i�1
πiDi

⎛⎝ ⎞⎠ E
→

. (23)

And for A � (A1, . . . , Am)T, there exists Θ � (ϖ1, . . . ,ϖm)T

solution of the Poisson system:

ΦΘ � − A + 􏽘

m

i�1
πiAi

⎛⎝ ⎞⎠ E
→

, (24)

where E
→

denotes the column vector with all its entries equal
to 1.

Substituting (23) and (24) in (22), we get

LH≤ − 2m1(1 − S)
2

− m2(μ + δ)R
2

+
η + ωi( 􏼁

η
I

(1/η)
1

ηm1

η + ωi( 􏼁
σ21 + 2β1􏼐 􏼑􏼢

+
1
2η
σ21 +

η
η + ωi( 􏼁

Di − 􏽘
m

i�1
πiDi

⎛⎝ ⎞⎠ + 􏽘
m

i�1
πiDi

⎤⎥⎥⎦

+
θ + ϖi( 􏼁

θ
I

(1/θ)
2

θm1

θ + ϖi( 􏼁
σ22 + 2β2􏼐 􏼑 +

1
2θ
σ22􏼢

+
θ

θ + ϖi( 􏼁
Ai − 􏽘

m

i�1
πiAi

⎛⎝ ⎞⎠ + 􏽘
m

i�1
πiAi

⎤⎥⎥⎦.

(25)

Choosing η0 and θ0, such that

C1≕maxi∈S
σ21
2η0

+
η0

η0 + ωi( 􏼁
Di − 􏽘

m

i�1
πiDi

⎛⎝ ⎞⎠ + 􏽘

m

i�1
πiDi

⎧⎨

⎩

⎫⎬

⎭ < 0,

C2 ≔ maxi∈S
σ22
2θ0

+
θ0

θ0 + ϖi( 􏼁
Ai − 􏽘

m

i�1
πiAi

⎛⎝ ⎞⎠ + 􏽘
m

i�1
πiAi

⎧⎨

⎩

⎫⎬

⎭ < 0.

(26)
Since we choose η>max − ωi, η0, 1􏼈 􏼉 and

θ>max − ϖi, θ0, 1􏼈 􏼉 such that

m1 <min −
η + minωi

η max σ21 + 2max β1􏼐 􏼑
× C1,

⎧⎨

⎩

−
θ + minϖi

θ max σ22 + 2max β2􏼐 􏼑
× C2

⎫⎬

⎭.

(27)

According to Lemma 1, the proof is completed.

Theorem 3. Let (S(t), I1(t), I2(t), R(t)) be the solution of
system (4), then for any given initial value (S(0), I1
(0), I2(0), R(0)) ∈ D, model (4) has the following property:

lim sup
t⟶⟶∞

1
t
ln 1 − S + I1 + I2 + R( 􏼁

≤􏽘
m

i�1
πi

β21(i) − μ(i)σ21(i)

2σ21(i)
+
β22(i) − μ(i)σ22(i)

2σ22(i)
􏼠 􏼡, a.s.

(28)

If

􏽘

m

i�1
πi

β21(i) − μ(i)σ21(i)

2σ21(i)
+
β22(i) − μ(i)σ22(i)

2σ22(i)
􏼠 􏼡< 0 (29)
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holds, then the disease-free E0 is almost surely exponentially
stable in D. Namely, the diseases die out with probability one.

Proof. Consider the following function:

G S, I1, I2, R, i( 􏼁 � ln 1 − S + I1 + I2 + R( 􏼁. (30)

By Itô’s formula, we obtain

dG �
1

1 − S + I1 + I2 + R
− μ(r)(1 − S) − μ(r)I1 − μ(r)I2􏼂

− (μ(r) + 2δ(r))(r)R + 2β1(r)SI1 + 2β2(r)SI2􏼃dt

− 2σ21(r)
SI1

1 − S + I1 + I2 + R
􏼠 􏼡

2

dt − 2σ22(r)
SI2

1 − S + I1 + I2 + R
􏼠 􏼡

2

dt

+
2σ1(r)SI1

1 − S + I1 + I2 + R
dB1 +

2σ2(r)SI2

1 − S + I1 + I2 + R
dB2.

(31)

Note that

1
1 − S + I1 + I2 + R( 􏼁

− μ(r)(1 − S) − μ(r)I1 − μI2 − (μ(r) + 2δ(r))R􏼂 􏼃≤ − μ(r). (32)

'us, we have

dG≤ − 2σ1(r)
SI

1 − S + I1 + I2 + R
−

β1(r)

2σ21(r)
􏼠 􏼡 +

β21(r)

2σ21(r)
−
μ(r)

2
􏼠 􏼡dt

+ − 2σ2(r)
SI

1 − S + I1 + I2 + R
−

β2(r)

2σ22(r)
􏼠 􏼡 +

β22(r)

2σ22(r)
−
μ(r)

2
􏼠 􏼡dt

+
2σ1(r)SI1

1 − S + I1 + I2 + R
dB1 +

2σ2(r)SI2

1 − S + I1 + I2 + R
dB2.

≤
β21(r) − μ(r)σ21(r)

2σ21(r)
+
β22(r) − μ(r)σ22(r)

2σ22(r)
􏼢 􏼣dt +

2σ1(r)SI1

1 − S + I1 + I2 + R
dB1

+
2σ2(r)SI2

1 − S + I1 + I2 + R
dB2.

(33)
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Integrating both sides of (33) from 0 to t and dividing by
t, we get

G(t)

t
≤
G(0)

t

+
1
t

􏽚
t

0

β21(r(u)) − μ(r(u))σ21(r(u))

2σ21(r(u))
+
β22(r(u)) − μ(r(u))σ22(r(u))

2σ22(r(u))
􏼠 􏼡du

+
1
t

􏽚
t

0

2σ1(r(u))S(u)I1(u)

1 − S(u) + I1(u) + I2(u) + R(u)
dB1(u)

+
1
t

􏽚
t

0

2σ2(r(u))S(u)I2(u)

1 − S(u) + I1(u) + I2(u) + R(u)
dB2(u).

(34)

Let Fi(t) � 􏽒
t

0((2σi(r)S(u)Ii(u))/(1 − S(u) + I1(u)+

I2(u) + R(u)))dBi(u) (i � 1, 2), then

〈Fi(t), Fi(t)〉

� 􏽚
t

0

2σi(r(u))S(u)Ii(u)

1 − S(u) + I1(u) + I2(u) + R(u)
􏼠 􏼡

2

du≤ 4�σi, t<∞.

(35)

'en, by strong law of large numbers, we obtain

lim
t⟶∞

Fi(t)

t
� 0, a.s. (36)

By the ergodic theory of theMarkov chain, we can obtain

limsup
t⟶⟶∞

1
t

􏽚
t

0

β21(r(u)) − μ(r(u))σ21(r(u))

2σ21(r(u))
+
β22(r(u)) − μ(r(u))σ22(r(u))

2σ22(r(u))
􏼠 􏼡du

≤􏽘
m

i�1
πi

β21(i) − μ(i)σ21(i)

2σ21(i)
+
β22(i) − μ(i)σ22(i)

2σ22(i)
􏼠 􏼡, a.s.

(37)

Hence, if 􏽐
m
i�1 πi(((β

2
1(i) − μ(i)σ21 (i))/2σ21(i)) + ((β22(i)−

μ(i)σ22(i))/2σ22(i)))< 0, then the disease-free E0 is almost
surely exponentially stable in D.

4. Persistence

In this section, we explain sufficient conditions for the
persistence of two epidemics.

We define 〈h〉t � (1/t) 􏽒
t

0 h(u)du if h is an integrable
function on [0, +∞).

Definition 1. System (4) is said to be persistent in the mean,
if

liminf
t⟶∞

1
t

􏽚
t

0
I(u)du> 0, a.s. (38)

Let

R
s
0 � 􏽘

m

i�0
πi 2μ(i) + c1(i) + c2(i) +

σ1(i)

2
+
σ2(i)

2
− k1(i)μ(i)􏼠 􏼡.

(39)

Theorem 4. Let (S(t), I1(t), I2(t), R(t)) be the solution of
model (4). If Rs

0 > 0, then

liminf
t⟶∞
〈I1 + I2〉t≥ I

∗
,

liminf
t⟶∞

〈R〉t ≥
min 􏽢c1, 􏽢c2􏼈 􏼉

�μ + �δ
I
∗
,

liminf
t⟶∞

〈1 − S〉t ≥
�μ + �δ + min 􏽢c1, 􏽢c2􏼈 􏼉

�μ + �δ
􏼠 􏼡I

∗
,

(40)

where I∗ � (Rs
0/D) with D is positive constant.

Proof. By system (4), one can obtain that

L − ln I1( 􏼁 � − β1(i)S + μ(i) + c1(i) +
σ21(i)

2
S
2
,

L − ln I2( 􏼁 � − β2(i)S + μ(i) + c2(i) +
σ22(i)

2
S
2
.

(41)

Moreover,
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L S + I1 + I2( 􏼁 � μ(i) − μ(i)S − μ(i) + c1(i)( 􏼁

I1 − μ(i) + c2(i)( 􏼁I2 + δ(i)R,

LR � c1(i)I1 + c2(i)I2 − (μ(i) + δ(i))R.

(42)

So, we consider the Lyapunov function T defined on D

by

T S, I1, I2, i( 􏼁 � − ln I1 − ln I2

− k1(i) S + I1 + I2( 􏼁 − k2(i)R − υ(i),

(43)

where (k1(i), k2(i))T is the unique positive solution of the
following system:

β1(i) + β2(i) − k1(i)μ(i) + 􏽘
m

l�1
ϕilk1(l) � 0,

k1(i)δ(i) − k2(i)(μ(i) + δ(i)) + 􏽘
m

l�1
ϕilk2(l) � 0.

(44)

Using Itô’s formula, one can get that

dT � LTdt − σ1(i)S + k1(i)SI1􏼂 􏼃dB1(t)

− σ2(i)S + k2(i)SI2􏼂 􏼃dB2(t),
(45)

where

LT � − β1S + μ(i) + c1(i) +
σ21(i)

2
S
2

− β2(i)S + μ(i) + c2(i) +
σ22(i)

2
S
2

− k1(i) μ(i) − μ(i)S − μ(i) + c1(i)( 􏼁I1 − μ(i) + c2(i)( 􏼁I2 + δ(i)R􏼂 􏼃

− k2(i) c1(i)I1 + c2(i)I2 − (μ(i) + δ(i))R􏼂 􏼃 − 􏽘
m

l�1
ϕilk1(l) S + I1 + I2( 􏼁

− 􏽘
m

l�1
ϕilk2(l)R − 􏽘

m

l�1
ϕilυ(l).

(46)

Using the fact that S ∈ (0, 1), we deduce that

LT≤ 2μ(i) + c1(i) + c2(i) +
σ21(i)

2
+
σ22(i)

2
− k1(i)μ(i) − 􏽘

m

l�1
ϕilυ(l)

− β1(i) + β2(i) − k1(i)μ(i) + 􏽘

m

l�1
ϕilk1(l)⎡⎣ ⎤⎦S

− k1(i)δ(i) − k2(i)(μ(i) + δ(i)) + 􏽘
m

l�1
ϕilk2(l)⎡⎣ ⎤⎦R

+ k1(i) μ(i) + c1(i)( 􏼁 − k2(i)c1(i) − 􏽘
m

l�1
ϕilk1(l)⎡⎣ ⎤⎦I1

+ k1(i) μ(i) + c2(i)( 􏼁 − k2(i)c2(i) + 􏽘

m

l�1
ϕilk1(l)⎡⎣ ⎤⎦I2.

(47)
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From (44), we get that

LT≤ 2μ(i) + c1(i) + c2(i) +
σ21(i)

2
+
σ22(i)

2
− k1(i)μ(i) − 􏽘

m

l�1
ϕilυ(l)

+ β1(i) + β2(i) + k1(i)c1(i)􏼂 􏼃I1 + β1(i) + β2(i) + k1(i)c2(i)􏼂 􏼃I2.

(48)

In addition, we also have

LT≤ 2μ(i) + c1(i) + c2(i) +
σ21(i)

2
+
σ22(i)

2
− k1(i)μ(i) − 􏽘

m

l�1
ϕilυ(l)

+ �β1 + �β2 + �k1�c1􏽨 􏽩I1 + �β1 + �β2 + �k1�c2􏽨 􏽩I2

≤ 2μ(i) + c1(i) + c2(i) +
σ21(i)

2
+
σ22(i)

2
− k1(i)μ(i) − 􏽘

m

l�1
ϕilυ(l)

+ D I1 + I2( 􏼁

≔ − R0(i) − 􏽘
m

l�1

ϕilυ(l) + D I1 + I2( 􏼁, (49)

where

D � max �β1 + �β2 + �k1�c1,
�β1 + �β2 + �k1�c2􏽮 􏽯. (50)

Since the generator matrix Φ is irreducible, then for
R0 � (R0(1), . . . , R0(m))T, there exists Υ � (υ(1),

. . . , υ(m))T solution of the Poisson system:

ΦΥ � − R0 + 􏽘
m

i�1
πiR0(i)⎛⎝ ⎞⎠

1

1

·

·

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (51)

which implies that

LT≤ − R
s
0 + D I1 + I2( 􏼁. (52)

Integrating (45) from 0 to t and dividing by t on both
sides, we obtain

T(t)

t
≤
T(0)

t
− R

s
0 + D〈I1 + I2〉t −

M1(t)

t
−

M2(t)

t
, (53)

where Mj(t) � σj(i)SdBj(t) (for j � 1, 2) is a continuous
martingale with M(0) � 0 and its quadratic variation is as
follows:

〈Mj(t), Mj(t)〉 � 􏽚
t

0
σj(i)S(u)􏼐 􏼑

2
du≤ �σj􏼐 􏼑

2
t. (54)

'us, the strong law of large number for local martin-
gales [27] implies that

lim
t⟶∞

Mj(t)

t
� 0, a.s. (55)

Since (S, I1, I1, R) ∈ D, we can derive

T S, I1, I2, i( 􏼁 � − ln I1 − ln I2 − k1(i) S + I1 + I2( 􏼁

− k2(i)R − υ(i)≥ − �k1 − �k2 − �υ ≔ C.

(56)

Taking the superior limit on both sides of (45) and
combining with (52), (55), and (56), we deduce that

liminf
t⟶∞
〈I1 + I2〉t≥

R
s
0

D
≔ I
∗
, a.s. (57)

Integrating the third equation of (4) and dividing both
sides by t, we have

〈R〉t ≥
min 􏽢c1, 􏽢c2􏼈 􏼉

(�μ + �δ)
〈I1 + I2〉t −

R(t) − R(0)

(􏽢μ + 􏽢δ)t
. (58)

Since limt⟶∞((R(t) − R(0))/t) � 0 and using (57), we
get

liminf
t⟶∞

〈R〉t ≥
min 􏽢c1, 􏽢c2􏼈 􏼉

�μ + �δ
I
∗
. (59)

Furthermore, it follows by 1 − S � I + R that
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Table 1: Parameter values used in numerical simulations.

States Coefficients
μ β1 β2 δ c1 c2 σ1 σ2

1 0.25 0.5 0.6 0.5 0.4 0.3 0.2 0.1
2 0.3 0.6 0.4 0.4 0.2 0.4 0.12 0.2

0
0

0.2

0.4

0.6

0.8

1

S (t)
I1 (t)

I2 (t)
R (t)

0

1

1.2

1.4

1.6

1.8

2

×105
20 40 60 80 100 1 2 3 4 5

Figure 2: Sample paths of S(t) in blue, I1(t) in red, I2(t) in black, R(t) in green, and r(t) in brown in Example 1.

Table 2: Parameter values used in numerical simulations.

States Coefficients
μ β1 β2 δ c1 c2 σ1 σ2

1 0.01 0.9 0.8 0.4 0.2 0.3 0.6 0.8
2 0.01 0.8 0.8 0.4 0.3 0.2 0.7 0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1.2

1.4

1.6

1.8

2

0 020 40 60 80 100 1 2 3 4 5

S (t)
I1 (t)

I2 (t)
R (t)

Figure 3: Sample paths of S(t) in blue, I1(t) in red, I2(t) in black, R(t) in green, and r(t) in brown in Example 1.
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liminf
t⟶∞

〈1 − S〉t ≥
�μ + �δ + min 􏽢c1, 􏽢c2􏼈 􏼉

�μ + �δ
􏼠 􏼡I

∗
. (60)

'is completes the proof.

5. Simulation

In the following, we give numerical simulations to illustrate
the main theoretical results.

Example 1. We consider the Markov chain (r(t))t≥0 taking
values in S � 1, 2{ }, with generator defined by the following:

Φ �
− 1 1

2 − 2
􏼠 􏼡. (61)

'e parameter values of (4) are presented in Table 1.
Exact computations supply us 􏽐

2
i�1 πiDj � − 0.0352 and

􏽐
2
i�1 πiAj � − 0.0467. Consequently, by 'eorem 2, the

disease-free equilibrium E0 is globally stochastically as-
ymptotically stable on D. Figure 2 confirms this result.

Example 2. In this example, we use the parameter values
given in Table 2 and theMarkov chain used in Example 1. By
simply computing, we obtain Rs

0 > 0. 'eorem 4 shows that
the two epidemics persist in the population. Figure 3 con-
firms this result.

6. Conclusion

'is paper investigates a stochastic switched epidemic model
with double epidemic diseases and cure rate affected with a
composite of environmental perturbations modeled by
white and color noises. We established conditions for ex-
tinction and persistence of diseases.

'e theoretical result given in this paper shows that the
stationary distribution of Markov chain r(t) controls the
propagation of the epidemic in the population. To know, if
the Markov chain r(t) takes the values which lead to find
that 􏽐

m
i�1 πiDi < 0 and 􏽐

m
i�1 πiAi < 0, then the epidemic dis-

eases die out. We have given numerical simulations in order
to support and illustrate the main results of this paper.

In this perspective, we prepare to include Lévy noises
into epidemic models (4) to describe the effect of sudden and
dangerous phenomena such as pandemic, tsunami, and
volcano.
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