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The theory of means has its roots in the work of the Py-
thagoreans who introduced the harmonic, geometric, and
arithmetic means with reference to their theories of music
and arithmetic. Later, Pappus introduced seven other means
and gave the well-known elegant geometric proof of the
celebrated inequalities among the harmonic, geometric, and
arithmetic means.

Nowadays, the families and types of means that are being
investigated by researchers and the variety of questions that
are being asked about them are beyond the scope of any single
survey, with the voluminous book Handbook of Means and
Their Inequalities by P. S. Bullen being the best such reference
in this direction. The theory of means has grown to occupy a
prominent place in mathematics with hundreds of papers on
the subject appearing every year.

The strong relations and interactions of the theory of
means with the theories of inequalities, functional equations,
and probability and statistics add greatly to its importance.

Continuous versions of some means and inequalities
among them tie it with real analysis and the theory of
integration. The fact that centers of triangles and simplices
can be viewed as means of points in the Euclidean spaces
makes the subject of interest to geometers.

Positivity and copositivity tests in the theory of forms
naturally give rise to questions on internality tests of means

arising from forms, making this aspect of the subject of
interest to algebraists as well. Extensions of Gauss’s outstand-
ing discoveries that relate the evaluation of certain elliptic
integrals to iterations of the arithmetic and geometric means
that led to the beautiful arithmeticogeometric mean resulted
in so many interesting results and lines of research. A quick
look at the table of contents of the book Pi and the AGM by
J. M. Borwein and P. B. Borwein shows how extensive this
line of research is and also shows that the subject is related to
almost everything.

The theory of means has applications in so many other
diverse fields. Quoting from the preface of the aforemen-
tioned book of P. S. Bullen, these include electrostatics, heat
conduction, chemistry, and even medicine.

This issue contains several papers that pertain to some of
the the aforementioned subjects.

One of the papers is an exposition of certain elementary
aspects of the subject, together with several open problems
that are within the comprehension of a graduate student. It
is hoped that such questions will lead to contributions from
experts and amateurs alike.

Mowaffaq Hajja
Peter S. Bullen

Janusz Matkowski
Edward Neuman

Slavko Simic
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We raise several elementary questions pertaining to various aspects of means. These questions refer to both known and newly
introduced families of means, and include questions of characterizations of certain families, relations among certain families,
comparability among the members of certain families, and concordance of certain sequences of means.They also include questions
about internality tests for certain mean-looking functions and about certain triangle centers viewed as means of the vertices. The
questions are accessible to people with no background in means, and it is also expected that these people can seriously investigate,
and contribute to the solutions of, these problems. The solutions are expected to require no more than simple tools from analysis,
algebra, functional equations, and geometry.

1. Definitions and Terminology

In all that follows, R denotes the set of real numbers and J

denotes an interval in R.
By a data set (or a list) in a set 𝑆, wemean a finite subset of

𝑆 in which repetition is allowed. Although the order in which
the elements of a data set are written is not significant, we
sometimes find it convenient to represent a data set in 𝑆 of
size 𝑛 by a point in 𝑆𝑛, the cartesian product of 𝑛 copies of 𝑆.

We will call a data set 𝐴 = (𝑎
1
, . . . , 𝑎

𝑛
) in R ordered if

𝑎
1
≤ ⋅ ⋅ ⋅ ≤ 𝑎

𝑛
. Clearly, every data set in R may be assumed

ordered.
A mean of 𝑘 variables (or a 𝑘-dimensional mean) on J is

defined to be any functionM : J𝑘 → J that has the internal-
ity property

min {𝑎
1
, . . . , 𝑎

𝑘
} ≤M (𝑎

1
, . . . , 𝑎

𝑘
) ≤ max {𝑎

1
, . . . , 𝑎

𝑘
} (1)

for all 𝑎
𝑗
inJ. It follows that ameanMmust have the property

M(𝑎, . . . , 𝑎) = 𝑎 for all 𝑎 in J.
Most means that we encounter in the literature, and all

means considered below, are also symmetric in the sense that
M (𝑎
1
, . . . , 𝑎

𝑘
) =M (𝑎

𝜎(1)
, . . . , 𝑎

𝜎(𝑛)
) (2)

for all permutations 𝜎 on {1, . . . , 𝑛}, and 1-homogeneous in the
sense that

M (𝜆𝑎
1
, . . . , 𝜆𝑎

𝑘
) = 𝜆M (𝑎

𝜎(1)
, . . . , 𝑎

𝜎(𝑛)
) (3)

for all permissible 𝜆 ∈ R.

IfM andN are two 𝑘-dimensional means on J, then we
say that M ≤ N if M(𝑎

1
, . . . , 𝑎

𝑘
) ≤ N(𝑎

1
, . . . , 𝑎

𝑘
) for all

𝑎
𝑗
∈ J. We say thatM < N ifM(𝑎

1
, . . . , 𝑎

𝑘
) < N(𝑎

1
, . . . , 𝑎

𝑘
)

for all 𝑎
𝑗
∈ J for which 𝑎

1
, . . . , 𝑎

𝑘
are not all equal. This

exception is natural since M(𝑎, . . . , 𝑎) and N(𝑎, . . . , 𝑎) must
be equal, with each being equal to 𝑎. We say that M and N

are comparable ifM ≤N orN ≤M.
A distance (or a distance function) on a set 𝑆 is defined to

be any function 𝑑 : 𝑆 × 𝑆 → [0,∞) that is symmetric and
positive definite, that is,

𝑑 (𝑎, 𝑏) = 𝑑 (𝑏, 𝑎) , ∀𝑎, 𝑏 ∈ 𝑆,

𝑑 (𝑎, 𝑏) = 0 ⇐⇒ 𝑎 = 𝑏.

(4)

Thus ametric is a distance that satisfies the triangle inequality

𝑑 (𝑎, 𝑏) + 𝑑 (𝑏, 𝑐) ≥ 𝑑 (𝑎, 𝑐) , ∀𝑎, 𝑏, 𝑐 ∈ 𝑆, (5)

a condition that we find too restrictive for our purposes.

2. Examples of Means

The arithmetic, geometric, and harmonic means of two pos-
itive numbers were known to the ancient Greeks; see [1,
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pp. 84–90]. They are usually denoted by A, G, and H,
respectively, and are defined, for 𝑎, 𝑏 > 0, by

A (𝑎, 𝑏) =
𝑎 + 𝑏

2
,

G (𝑎, 𝑏) = √𝑎𝑏,

H (𝑎, 𝑏) =
2

1/𝑎 + 1/𝑏
=
2𝑎𝑏

𝑎 + 𝑏
.

(6)

The celebrated inequalities

H (𝑎, 𝑏) < G (𝑎, 𝑏) < A (𝑎, 𝑏) ∀𝑎, 𝑏 > 0 (7)

were also known to the Greeks and can be depicted in the
well-known figure that is usually attributed to Pappus and
that appears in [2, p. 364]. Several other less well known
means were also known to the ancient Greeks; see [1, pp. 84–
90].

The three means above, and their natural extensions to
any number 𝑛 of variables, are members of a large two-
parameter family ofmeans, knownnowas theGinimeans and
defined by

𝐺
𝑟,𝑠
(𝑥
1
, . . . , 𝑥

𝑛
) = (

𝑁
𝑟
(𝑥
1
, . . . , 𝑥

𝑛
)

𝑁
𝑠
(𝑥
1
, . . . , 𝑥

𝑛
)
)

1/(𝑟−𝑠)

, (8)

where𝑁
𝑗
are the Newton polynomials defined by

𝑁
𝑗
(𝑥
1
, . . . , 𝑥

𝑛
) =

𝑛

∑

𝑘=1

𝑥
𝑗

𝑘
. (9)

Means of the type 𝐺
𝑟,𝑟−1

are known as Lehmer’s means, and
those of the type 𝐺

𝑟,0
are known as Hölder or power means.

Other means that have been studied extensively are the
elementary symmetric polynomial and elementary symmetric
polynomial ratiomeans defined by

(
𝜎
𝑟

𝐶𝑛
𝑟

)

1/𝑟

,
𝜎
𝑟
/𝐶
𝑛

𝑟

𝜎
𝑟−1
/𝐶
𝑟−1
𝑛

, (10)

where 𝜎
𝑟
is the 𝑟th elementary symmetric polynomial in 𝑛

variables, and where

𝐶
𝑛

𝑟
= (

𝑛

𝑟
) . (11)

These are discussed in full detail in the encyclopedic work [3,
Chapters III and V].

It is obvious that the power meansP
𝑟
defined by

P
𝑟
(𝑎
1
, . . . , 𝑎

𝑛
) = 𝐺
𝑟,0
(𝑎
1
, . . . , 𝑎

𝑛
) = (

𝑎
𝑟

1
+ ⋅ ⋅ ⋅ + 𝑎

𝑟

𝑛

𝑛
)

1/𝑟

(12)

that correspond to the values 𝑟 = −1 and 𝑟 = 1 are nothing but
the harmonic and arithmetic meansH andA, respectively. It
is also natural to set

P
0
(𝑎
1
, . . . , 𝑎

𝑛
) = G (𝑎

1
, . . . , 𝑎

𝑛
) = (𝑎

1
. . . 𝑎
𝑛
)
1/𝑛

, (13)

since

lim
𝑟→0

(
𝑎
𝑟

1
+ ⋅ ⋅ ⋅ + 𝑎

𝑟

𝑛

𝑛
)

1/𝑟

= (𝑎
1
. . . 𝑎
𝑛
)
1/𝑛 (14)

for all 𝑎
1
, . . . , 𝑎

𝑛
> 0.

The inequalities (7) can be written as P
−1
< P
0
< P
1
.

These inequalities hold for any number of variables and they
follow from the more general fact that P

𝑟
(𝑎
1
, . . . , 𝑎

𝑛
), for

fixed 𝑎
1
, . . . , 𝑎

𝑛
> 0, is strictly increasing with 𝑟. Power means

are studied thoroughly in [3, Chapter III].

3. Mean-Producing Distances and
Distance Means

It is natural to think of the mean of any list of points in any
set to be the point that is closest to that list. It is also natural
to think of a point as closest to a list of points if the sum of its
distances from these points isminimal.Thismode of thinking
associates means to distances.

If 𝑑 is a distance on 𝑆, and if 𝐴 = (𝑎
1
, . . . , 𝑎

𝑛
) is a data set

in 𝑆, then a 𝑑-mean of 𝐴 is defined to be any element of 𝑆 at
which the function

𝑓 (𝑥) =

𝑛

∑

𝑖=1

𝑑 (𝑥, 𝑎
𝑖
) (15)

attains its minimum. It is conceivable that (15) attains its min-
imum at many points, or nowhere at all. However, we shall be
mainly interested in distances 𝑑 on J for which (15) attains
its minimum at a unique point 𝑥

𝐴
that, furthermore, has the

property

min {𝑎 : 𝑎 ∈ 𝐴} ≤ 𝑥
𝐴
≤ max {𝑎 : 𝑎 ∈ 𝐴} (16)

for every data set 𝐴. Such a distance is called amean-produc-
ing or amean-defining distance, and the point 𝑥

𝐴
is called the

𝑑-mean of𝐴 or themean of 𝐴 arising from the distance 𝑑 and
will be denoted by 𝜇

𝑑
(𝐴). AmeanM is called a distance mean

if it is of the form 𝜇
𝑑
for some distance 𝑑.

Problem Set 1. (1-a) Characterize those distances on J that are
mean-producing.

(1-b) Characterize those pairs of mean producing distan-
ces on J that produce the same mean.

(1-c) Characterize distance means.

4. Examples of Mean-Producing Distances

If 𝑑
0
is the discrete metric defined on R by

𝑑
0
(𝑎, 𝑏) = {

1 if 𝑎 ̸= 𝑏,

0 if 𝑎 = 𝑏,
(17)

then the function 𝑓(𝑥) in (15) is nothing but the number
of elements in the given data set 𝐴 that are different from
𝑥, and therefore every element having maximum frequency
in 𝐴 minimizes (15) and is hence a 𝑑

0
-mean of 𝐴. Thus the

discrete metric gives rise to what is referred to in statistics as
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“the”mode of 𝐴. Due to the nonuniqueness of the mode, the
discrete metric is not a mean-producing distance.

Similarly, the usual metric 𝑑 = 𝑑
1
defined on R by

𝑑
1
(𝑎, 𝑏) = |𝑎 − 𝑏| (18)

is not a mean-producing distance. In fact, it is not very diffi-
cult to see that if 𝐴 = (𝑎

1
, . . . , 𝑎

𝑛
) is an ordered data set of

even size 𝑛 = 2𝑚, then any number in the closed interval
[𝑎
𝑚
, 𝑎
𝑚+1

]minimizes

𝑛

∑

𝑗=1


𝑥 − 𝑎
𝑗

 (19)

and is therefore a 𝑑
1
-mean of 𝐴. Similarly, one can show that

if 𝐴 is of an odd size 𝑛 = 2𝑚 − 1, then 𝑎
𝑚
is the unique 𝑑

1
-

mean of 𝐴. Thus the usual metric on R gives rise to what is
referred to in statistics as “the”median of 𝐴.

On the other hand, the distance 𝑑
2
defined on R by

𝑑
2
(𝑎, 𝑏) = (𝑎 − 𝑏)

2 (20)

is a mean-producing distance, although it is not a metric. In
fact, it follows from simple derivative considerations that the
function

𝑛

∑

𝑗=1

(𝑥 − 𝑎
𝑗
)
2

(21)

attains its minimum at the unique point

𝑥 =
1

𝑛
(

𝑛

∑

𝑗=1

𝑎
𝑗
) . (22)

Thus𝑑
2
is amean-producing distance, and the corresponding

mean is nothing but the arithmetic mean.
It is noteworthy that the three distances that come to

mind most naturally give rise to the three most commonly
used “means” in statistics. In this respect, it is also worth
mentioning that a fourth mean of statistics, the so-called
midrange, will be encountered below as a very natural limiting
distance mean.

The distances 𝑑
1
and 𝑑
2
(and in a sense, 𝑑

0
also) aremem-

bers of the family 𝑑
𝑝
of distances defined by

𝑑
𝑝
(𝑎, 𝑏) = |𝑎 − 𝑏|

𝑝

. (23)

It is not difficult to see that if𝑝 > 1, then𝑑
𝑝
is amean-produc-

ing distance. In fact, if𝐴 = (𝑎
1
, . . . , 𝑎

𝑛
) is a given data set, and

if

𝑓 (𝑥) =

𝑛

∑

𝑗=1


𝑥 − 𝑎
𝑗



𝑝

, (24)

then

𝑓


(𝑥) = 𝑝 (𝑝 − 1)

𝑛

∑

𝑗=1


𝑥 − 𝑎
𝑗



𝑝−2

≥ 0, (25)

with equality if and only if 𝑎
1
= ⋅ ⋅ ⋅ = 𝑎

𝑛
= 𝑥. Thus 𝑓

is convex and cannot attain its minimum at more than one
point.That it attains itsminimum follows from the continuity
of 𝑓(𝑥), the compactness of [𝑎

1
, 𝑎
𝑛
], and the obvious fact that

𝑓(𝑥) is increasing on [𝑎
𝑛
,∞) and is decreasing on (−∞, 𝑎

1
].

If we denote the mean that 𝑑
𝑝
defines by 𝜇

𝑝
, then 𝜇

𝑝
(𝐴) is the

unique zero of

𝑛

∑

𝑗=1

sign (𝑥 − 𝑎
𝑗
)

𝑥 − 𝑎
𝑗



𝑝−1

, (26)

where sign(𝑡) is defined to be 1 if 𝑡 is nonnegative and −1
otherwise.

Note that no matter what 𝑝 > 1 is, the two-dimensional
mean 𝜇

𝑝
arising from 𝑑

𝑝
is the arithmetic mean. Thus when

studying 𝜇
𝑝
, we confine our attention to the case when the

number 𝑘 of variables is greater than two. For such 𝑘, it is
impossible in general to compute 𝜇

𝑝
(𝐴) in closed form.

Problem 2. It would be interesting to investigate comparabil-
ity among {𝜇

𝑝
: 𝑝 > 1}.

It is highly likely that no two means 𝜇
𝑝
are comparable.

5. Deviation and Sparseness

If 𝑑 is a mean-producing distance on 𝑆, and if 𝜇
𝑑
is the

associated mean, then it is natural to define the 𝑑-deviation
D
𝑑
(𝐴) of a data set 𝐴 = (𝑎

1
, . . . , 𝑎

𝑛
) by an expression like

D
𝑑
(𝐴) = 𝜇

𝑑
{𝑑 (𝜇
𝑑
(𝐴) , 𝑎

𝑖
) : 1 ≤ 𝑖 ≤ 𝑛} . (27)

Thus if 𝑑 is defined by

𝑑 (𝑥, 𝑦) = (𝑥 − 𝑦)
2

, (28)

then 𝜇
𝑑
is nothing but the arithmetic mean or ordinary

average 𝜇 defined by

𝜇 = 𝜇 (𝑎
1
, . . . , 𝑎

𝑛
) =

𝑎
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑛

𝑛
, (29)

andD
𝑑
is the (squared) standard deviation 𝜎(2) given by

𝜎
(2)

(𝑎
1
, . . . , 𝑎

𝑛
) =

𝑎1 − 𝜇


2

+ ⋅ ⋅ ⋅ +
𝑎𝑛 − 𝜇



2

𝑛
. (30)

In a sense, this provides an answer to those who are puzzled
and mystified by the choice of the exponent 2 (and not any
other exponent) in the standard definition of the standard
deviation given in the right-hand side of (30). In fact, distance
means were devised by the author in an attempt to remove
that mystery. Somehow, we are saying that the ordinary
average 𝜇 and the standard deviation 𝜎

(2) must be taken
or discarded together, being both associated with the same
distance 𝑑 given in (28). Since few people question the
sensibility of the definition of 𝜇 given in (29), accepting the
standard definition of the standard deviation given in (30) as
is becomes amust.
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It is worth mentioning that choosing an exponent other
than 2 in (30) would result in an essentially different notion
of deviations. More precisely, if one defines 𝜎(𝑘) by

𝜎
(𝑘)

(𝑎
1
, . . . , 𝑎

𝑛
) =

𝑎1 − 𝜇


𝑘

+ ⋅ ⋅ ⋅ +
𝑎𝑛 − 𝜇



𝑘

𝑛
, (31)

then 𝜎
(𝑘) and 𝜎(2) would of course be unequal, but more

importantly, theywould not bemonotonewith respect to each
other, in the sense that there would exist data sets 𝐴 and 𝐵
with 𝜎(2)(𝐴) > 𝜎(𝑘)(𝐵) and 𝜎(2)(𝐴) < 𝜎(𝑘)(𝐵). Thus the choice
of the exponent 𝑘 in defining deviations is not as arbitrary as
some may feel. On the other hand, it is (27) and not (31) that
is the natural generalization of (30).This raises the following,
expectedly hard, problem.

Problem 3. Let 𝑑 be the distance defined by 𝑑(𝑥, 𝑦) =

|𝑥 − 𝑦|
𝑘, and let the associated deviation D

𝑑
defined in (27)

be denoted byD
𝑘
. IsD
𝑘
monotonewith respect toD

2
for any

𝑘 ̸= 2, in the sense that

D
𝑘
(𝐴) > D

𝑘
(𝐵) ⇒ D

2
(𝐴) > D

2
(𝐵)? (32)

We end this section by introducing the notion of sparse-
ness and by observing its relation with deviation. If 𝑑 is a
mean-producing distance on J, and if 𝜇

𝑑
is the associated

mean, then the 𝑑-sparseness S
𝑑
(𝐴) of a data set 𝐴 =

(𝑎
1
, . . . , 𝑎

𝑛
) in J can be defined by

S
𝑑
(𝐴) = 𝜇

𝑑
{𝑑 (𝑎
𝑖
, 𝑎
𝑗
) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} . (33)

It is interesting that when 𝑑 is defined by (28), the standard
deviation coincides, up to a constant multiple, with the
sparsenss. One wonders whether this pleasant property char-
acterizes this distance 𝑑.

Problem Set 4. (4-a) Characterize thosemean-producing dis-
tances whose associated mean is the arithmetic mean.

(4-b) If 𝑑 is as defined in (28), and if 𝑑 is another mean-
producing distance whose associated mean is the arithmetic
mean, does it follow that D

𝑑
 and D

𝑑
are monotone with

respect to each other?
(4-c) Characterize those mean-producing distances 𝛿 for

which the deviation D
𝛿
(𝐴) is determined by the sparseness

S
𝛿
(𝐴) for every data set 𝐴, and vice versa.

6. Best Approximation Means

It is quite transparent that the discussion in the previous sec-
tion regarding the distance mean 𝜇

𝑝
, 𝑝 > 1, can be written

in terms of best approximation in ℓ𝑛
𝑝
, the vector space R𝑛

endowed with the 𝑝-norm ‖ ⋅ ⋅ ⋅ ‖
𝑝
defined by

(𝑎1, . . . , 𝑎𝑛)
𝑝 = (

𝑛

∑

𝑗=1


𝑎
𝑗



𝑝

)

1/𝑝

. (34)

If we denote by Δ = Δ
𝑛
the line in R𝑛 consisting of the

points (𝑥
1
, . . . , 𝑥

𝑛
) with 𝑥

1
= ⋅ ⋅ ⋅ = 𝑥

𝑛
, then to say that

𝑎 = 𝜇
𝑝
(𝑎
1
, . . . , 𝑎

𝑛
) is just another way of saying that the point

(𝑎, . . . , 𝑎) is a best approximant in Δ
𝑛
of the point (𝑎

1
, . . . , 𝑎

𝑛
)

with respect to the 𝑝-norm given in (34). Here, a point 𝑠
𝑡
in

a subset 𝑆 of a metric (or distance) space (𝑇,𝐷) is said to be a
best approximant in 𝑆 of 𝑡 ∈ 𝑇 if 𝐷(𝑡, 𝑠

𝑡
) = min{𝐷(𝑡, 𝑠) : 𝑠 ∈

𝑆}. Also, a subset 𝑆 of (𝑇,𝐷) is said to be Chebyshev if every 𝑡
in 𝑇 has exactly one best approximant in 𝑆; see [4, p. 21].

The discussion above motivates the following definition.

Definition 1. Let J be an interval inR and let𝐷 be a distance
on J𝑛. If the diagonal Δ(J𝑛) of J𝑛 defined by

Δ (J
𝑛

) = {(𝑎
1
, . . . , 𝑎

𝑛
) ∈ J
𝑛

: 𝑎
1
= ⋅ ⋅ ⋅ = 𝑎

𝑛
} (35)

is Chebyshev (with respect to 𝐷), then the 𝑛-dimensional
mean 𝑀

𝐷
on J defined by declaring 𝑀

𝐷
(𝑎
1
, . . . , 𝑎

𝑛
) = 𝑎 if

and only if (𝑎, . . . , 𝑎) is the best approximant of (𝑎
1
, . . . , 𝑎

𝑛
) in

Δ(J𝑛) is called the Chebyshev or best approximation 𝐷-mean
or the best approximation mean arising from𝐷.

In particular, if one denotes by𝑀
𝑝
the best approximation

𝑛-dimensional mean on R arising from (the distance on R𝑛

induced by) the norm ‖ ⋅ ⋅ ⋅ ‖
𝑝
, then the discussion above says

that𝑀
𝑝
exists for all 𝑝 > 1 and that it is equal to 𝜇

𝑝
defined

in Section 4.
In view of this, one may also define 𝑀

∞
to be the best

approximationmean arising from the∞-norm of ℓ𝑛
∞
, that is,

the norm ‖ ⋅ ⋅ ⋅ ‖
∞

defined on R𝑛 by

(𝑎1, . . . , 𝑎𝑛)
∞ = max {𝑎𝑗


: 1 ≤ 𝑗 ≤ 𝑛} . (36)

It is not very difficult to see that 𝜇
∞
(𝐴) is nothing but what

is referred to in statistics as the mid-range of 𝐴. Thus if 𝐴 =

(𝑎
1
, . . . , 𝑎

𝑛
) is an ordered data set, then

𝑀
∞
(𝐴) =

𝑎
1
+ 𝑎
𝑛

2
. (37)

In view of the fact that 𝑑
∞
cannot be defined by anything like

(23) and 𝜇
∞
is thus meaningless, natural question arises as to

whether

𝑀
∞
(𝐴) = lim

𝑝→∞

𝜇
𝑝
(𝐴) (or equivalently = lim

𝑝→∞

𝑀
𝑝
(𝐴))

(38)

for every 𝐴. An affirmative answer is established in [5,
Theorem 1]. In that theorem, it is also established that

lim
𝑝→𝑞

𝜇
𝑝
(𝐴) (or equivalently lim

𝑝 → 𝑞

𝑀
𝑝
(𝐴)) = 𝑀

𝑞
(𝐴)

(39)

for all 𝑞 and all 𝐴. All of this can be expressed by saying that
𝜇
𝑝
is continuous in 𝑝 for 𝑝 ∈ (1,∞] for all 𝐴.
We remark that there is no obvious reason why (38)

should immediately follow from the well known fact that

lim
𝑝→∞

‖𝐴‖
𝑝
= ‖𝐴‖

∞ (40)

for all points 𝐴 in R𝑛.



International Journal of Mathematics and Mathematical Sciences 5

Problem Set 5. Suppose that 𝛿
𝑝
is a sequence of distances on

a set 𝑆 that converges to a distance 𝛿
∞

(in the sense that
lim
𝑝→∞

𝛿
𝑝
(𝑎, 𝑏) = 𝛿

∞
(𝑎, 𝑏) for all 𝑎, 𝑏 in 𝑆). Let 𝑇 ⊆ 𝑆.

(5-a) If 𝑇 is Chebyshev with respect to each 𝛿
𝑝
, is it

necessarily true that 𝑇 is Chebyshev with respect to
𝛿
∞
?

(5-b) If 𝑇 is Chebyshev with respect to each 𝛿
𝑝
and with

respect to 𝛿
∞
and if 𝑥

𝑝
is the best approximant in𝑇 of

𝑥 with respect to 𝛿
𝑝
and 𝑥

∞
is the best approximant

in 𝑇 of 𝑥 with respect to 𝛿
∞
, does it follow that 𝑥

𝑝

converges to 𝑥
∞
?

We end this section by remarking that if 𝑀 = 𝑀
𝑑
is

the 𝑛-dimensional best approximation mean arising from a
distance 𝑑 on J𝑛, then 𝑑 is significant only up to its values of
the type 𝑑(𝑢, V), where 𝑢 ∈ Δ(J𝑛) and V ∉ Δ(J𝑛). Other values
of 𝑑 are not significant. This, together with the fact that

every mean is a best approximation mean arising

from a metric,
(41)

makes the study of best approximationmeans less interesting.
Fact (41) was proved in an unduly complicated manner in
[6], and in a trivial way based on a few-line set-theoretic
argument in [7].

Problem 6. Given a mean M on J, a metric 𝐷 on J is
constructed in [6] so that M is the best approximation
mean arising from 𝐷. Since the construction is extremely
complicated in comparison with the construction in [7], it is
desirable to examine the construction of𝐷 in [6] and seewhat
other nice properties (such as continuity with respect to the
usualmetric)𝐷 has.This would restoremerit to the construc-
tion in [6] and to the proofs therein and provide raison d’être
for the so-called generalizedmeans introduced there.

7. Towards a Unique Median

As mentioned earlier, the distance 𝑑
1
on R defined by (23)

does not give rise to a (distance) mean. Equivalently, the 1-
norm ‖ ⋅ ⋅ ⋅ ‖

1
on R𝑛 defined by (34) does not give rise to a

(best approximation) mean. These give rise, instead, to the
many-valued function known as the median. Thus, following
the statistician’s mode of thinking, one may set

𝜇
1
(𝐴) = 𝑀

1
(𝐴) = the median interval of 𝐴

= the set of all medians of 𝐴.
(42)

From a mathematician’s point of view, however, this leaves a
lot to be desired, to say the least.The feasibility and naturality
of defining 𝜇

∞
as the limit of 𝜇

𝑝
as 𝑝 approaches ∞ gives

us a clue on how the median 𝜇
1
may be defined. It is a

pleasant fact, proved in [5,Theorem 4], that the limit of𝜇
𝑝
(𝐴)

(equivalently of 𝑀
𝑝
(𝐴)) as 𝑝 decreases to 1 exists for every

𝐴 ∈ R𝑛 and equals one of the medians described in (42).This
limit can certainly be used as the definition of themedian.

Problem Set 7. Let 𝜇
𝑝
be as defined in Section 4, and let 𝜇∗ be

the limit of 𝜇
𝑝
as 𝑝 decreases to 1.

(7-a) Explore how the value of 𝜇∗(𝐴) compares with the
common practice of taking the median of 𝐴 to be the
midpoint of the median interval (defined in (42) for
various values of 𝐴.

(7-b) Is 𝜇∗ continuous on R𝑛? If not, what are its points of
discontinuity?

(7-c) Given 𝐴 ∈ R𝑛, is the convergence of 𝜇
𝑝
(𝐴) (as 𝑝

decreases to 1) to 𝜇∗(𝐴)monotone?

The convergence of 𝜇
𝑝
(𝐴) (as 𝑝 decreases to 1) to 𝜇∗(𝐴)

is described in [5, Theorem 4], where it is proved that the
convergence is ultimately monotone. It is also proved in
[5, Theorem 5] that when 𝑛 = 3, then the convergence is
monotone.

It is of course legitimate to question the usefulness of
defining the median to be 𝜇∗, but that can be left to statis-
ticians and workers in relevant disciplines to decide. It is also
legitimate to question the path that we have taken the limit
along. In other words, it is conceivable that there exists, in
addition to𝑑

𝑝
, a sequence𝑑

𝑝
of distances onR that converges

to 𝑑
1
such that the limit 𝜇∗∗, as 𝑝 decreases to 1, of their

associated distancemeans 𝜇
𝑝
is not the same as the limit 𝜇∗ of

𝜇
𝑝
. In this case, 𝜇∗∗ would have as valid a claim as 𝜇∗ to being

themedian. However, the naturality of 𝑑
𝑝
may help accepting

𝜇
∗ as a most legitimate median.

Problem Set 8. Suppose that 𝛿
𝑝
and 𝛿
𝑝
, 𝑝 ∈ N, are sequences

of distances on a set 𝑆 that converge to the distances 𝛿
∞

and 𝛿
∞
, respectively (in the sense that lim

𝑝→∞
𝛿
𝑝
(𝑎, 𝑏) =

𝛿
∞
(𝑎, 𝑏) for all 𝑎, 𝑏 in 𝑆, etc.).

(8-a) If each 𝛿
𝑝
, 𝑝 ∈ N, is mean producing with corre-

sponding mean 𝑚
𝑝
, does it follow that 𝛿

∞
is mean

producing? If so, and if the mean produced by 𝛿
∞

is
𝑚
∞
, is it necessarily true that𝑚

𝑝
converges to𝑚

∞
?

(8-b) If 𝛿
𝑝
and 𝛿

𝑝
, 𝑝 ∈ N ∪ {∞}, are mean producing

distances with corresponding means𝑚
𝑝
and𝑚

𝑝
, and

if 𝑚
𝑝
= 𝑚


𝑝
for all 𝑝 ∈ N, does it follow that 𝑚

∞
=

𝑚


∞
?

8. Examples of Distance Means

It is clear that the arithmetic mean is the distance mean
arising from the the distance 𝑑

2
given by 𝑑

2
(𝑎, 𝑏) = (𝑎 − 𝑏)

2.
Similarly, the geometric mean on the set of positive numbers
is the distance mean arising from the distance 𝑑G given by

𝑑G (𝑎, 𝑏) = (ln 𝑎 − ln 𝑏)2. (43)

In fact, this should not be amazing since the arithmetic mean
A on R and the geometric mean G on (0,∞) are equivalent
in the sense that there is a bijection 𝑔 : (0,∞) → R, namely
𝑔(𝑥) = ln𝑥, for which G(𝑎, 𝑏) = 𝑔

−1A(𝑔(𝑎), 𝑔(𝑏)) for all
𝑎, 𝑏. Similarly, the harmonic and arithmetic means on (0,∞)

are equivalent via the bijection ℎ(𝑥) = 1/𝑥, and therefore
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the harmonic mean is the distance mean arising from the
distance 𝑑H given by

𝑑H (𝑎, 𝑏) = (
1

𝑎
−
1

𝑏
)

2

. (44)

The analogous question pertaining to the logarithmic mean
L defined by

L (𝑎, 𝑏) =
𝑎 − 𝑏

ln 𝑎 − ln 𝑏
, 𝑎, 𝑏 > 0, (45)

remains open.

Problem 9. Decide whether the mean L (defined in (45)) is
a distance mean.

9. Quasi-Arithmetic Means

A 𝑘-dimensional mean M on J is called a quasi-arithmetic
mean if there is a continuous strictly monotone function 𝑔
from J to an interval I in R such that

M (𝑎
1
, . . . , 𝑎

𝑘
) = 𝑔
−1

(A (𝑔 (𝑎
1
) , . . . , 𝑔 (𝑎

𝑘
))) (46)

for all 𝑎
𝑗
in J. We have seen that the geometric and harmonic

means are quasi-arithmetic and concluded that they are
distance means. To see that L is not quasi-arithmetic, we
observe that the (two-dimensional) arithmetic mean, and
hence any quasi-arithmetic mean M, satisfies the elegant
functional equation

M (M (M (𝑎, 𝑏) , 𝑏) ,M (M (𝑎, 𝑏) , 𝑎)) =M (𝑎, 𝑏) (47)

for all 𝑎, 𝑏 > 0. However, a quick experimentation with a
random pair (𝑎, 𝑏) shows that (47) is not satisfied byL.

This shows that L is not quasi-arithmetic, but does not
tell us whether L is a distance mean, and hence does not
answer Problem 9.

The functional equation (47) is a weaker form of the
functional equation

M (M (𝑎, 𝑏) ,M (𝑐, 𝑑)) =M (M (𝑎, 𝑐) ,M (𝑏, 𝑑)) (48)

for all 𝑎, 𝑏, 𝑐, 𝑑 > 0. This condition, together with the
assumption that M is strictly increasing in each variable,
characterizes two-dimensional quasi-arithmetic means; see
[8, Theorem 1, pp. 287–291]. A thorough discussion of quasi-
arithmetic means can be found in [3, 8].

Problem 10. Decidewhether ameanM that satisfies the func-
tional equation (47) (together with any necessary smoothness
conditions) is necessarily a quasi-arithmetic mean.

10. Deviation Means

Deviation means were introduced in [9] and were further
investigated in [10]. They are defined as follows.

A real-valued function 𝐸 = 𝐸(𝑥, 𝑡) on R2 is called a
deviation if 𝐸(𝑥, 𝑥) = 0 for all 𝑥 and if 𝐸(𝑥, 𝑡) is a strictly
decreasing continuous function of 𝑡 for every 𝑥. If 𝐸 is a

deviation, and if 𝑥
1
, . . . , 𝑥

𝑛
are given, then the 𝐸-deviation

mean of 𝑥
1
, . . . , 𝑥

𝑛
is defined to be the unique zero of

𝐸 (𝑥
1
, 𝑡) + ⋅ ⋅ ⋅ + 𝐸 (𝑥

𝑛
, 𝑡) . (49)

It is direct to see that (49) has a unique zero and that this zero
does indeed define a mean.

Problem 11. Characterize deviation means and explore their
exact relationship with distance means.

If 𝐸 is a deviation, then (following [11]), one may define
𝑑
𝐸
by

𝑑
𝐸
(𝑥, 𝑡) = ∫

𝑡

𝑥

𝐸 (𝑥, 𝑠) 𝑑𝑠. (50)

Then 𝑑
𝐸
(𝑥, 𝑡) ≥ 0 and 𝑑

𝐸
(𝑥, 𝑡) is a strictly convex function in 𝑡

for every 𝑥.The𝐸-deviationmean of 𝑥
1
, . . . , 𝑥

𝑛
is nothing but

the unique value of 𝑡 at which 𝑑
𝐸
(𝑥
1
, 𝑡)+ ⋅ ⋅ ⋅+𝑑

𝐸
(𝑥
𝑛
, 𝑡) attains

its minimum. Thus if 𝑑
𝐸
happens to be symmetric, then 𝑑

𝐸

would be a distance and the 𝐸-deviation mean would be the
distance mean arising from the distance 𝑑

𝐸
.

11. Other Ways of Generating New Means

If 𝑓 and 𝑔 are differentiable on an open interval J, and if 𝑎 <
𝑏 are points in J such that 𝑓(𝑏) ̸=𝑓(𝑎), then there exists, by
Cauchy’s mean value theorem, a point 𝑐 in (𝑎, 𝑏), such that

𝑓


(𝑐)

𝑔 (𝑐)
=
𝑔 (𝑏) − 𝑔 (𝑎)

𝑓 (𝑏) − 𝑓 (𝑎)
. (51)

If 𝑓 and 𝑔 are such that 𝑐 is unique for every 𝑎, 𝑏, then we call
𝑐 the Cauchymean of 𝑎 and 𝑏 corresponding to the functions
𝑓 and 𝑔, and we denote it byC

𝑓,𝑔
(𝑎, 𝑏).

Another natural way of defining means is to take a
continuous function 𝐹 that is strictly monotone on J, and to
define the mean of 𝑎, 𝑏 ∈ J, 𝑎 ̸= 𝑏, to be the unique point 𝑐 in
(𝑎, 𝑏) such that

𝐹 (𝑐) =
1

𝑏 − 𝑎
∫

𝑏

𝑎

𝐹 (𝑥) 𝑑𝑥. (52)

We call 𝑐 themean value (mean) of 𝑎 and 𝑏 corresponding to
𝐹, and we denote it byV(𝑎, 𝑏).

Clearly, if 𝐻 is an antiderivative of 𝐹, then (53) can be
written as

𝐻


(𝑐) =
𝐻 (𝑏) − 𝐻 (𝑎)

𝑏 − 𝑎
. (53)

ThusV
𝐹
(𝑎, 𝑏) = C

𝐻,𝐸
(𝑎, 𝑏), where 𝐸 is the identity function.

For more on the these two families of means, the reader
is referred to [12] and [13], and to the references therein.

In contrast to the attitude of thinking of the mean as the
number that minimizes a certain function, there is what one
may call the Chisini attitude that we now describe. A function
𝑓 on J𝑛 may be called a Chisini function if and only if the
equation

𝑓 (𝑎
1
, . . . , 𝑎

𝑛
) = 𝑓 (𝑥, . . . , 𝑥) (54)



International Journal of Mathematics and Mathematical Sciences 7

has a unique solution 𝑥 = 𝑎 ∈ [𝑎
1
, 𝑎
𝑛
] for every ordered data

set (𝑎
1
, . . . , 𝑎

𝑛
) in J. This unique solution is called the Chisini

mean associated to 𝑓. In Chisini’s own words, 𝑥 is said to be
the mean of 𝑛 numbers 𝑥

1
, . . . , 𝑥

𝑛
with respect to a problem,

in which a function of them 𝑓(𝑥
1
, . . . , 𝑥

𝑛
) is of interest, if the

function assumes the same value when all the 𝑥
ℎ
are replaced

by themean value 𝑥:𝑓(𝑥
1
, . . . , 𝑥

𝑛
) = 𝑓(𝑥, . . . , 𝑥); see [14, page

256] and [1]. Examples of such Chisini means that arise in
geometric configurations can be found in [15].

Problem 12. Investigate how the families of distance, devia-
tion, Cauchy, mean value, and Chisini means are related.

12. Internality Tests

According to the definition of a mean, all that is required of a
functionM : J𝑛 → J to be amean is to satisfy the internality
property

min {𝑎
1
, . . . , 𝑎

𝑘
} ≤M (𝑎

1
, . . . , 𝑎

𝑘
) ≤ max {𝑎

1
, . . . , 𝑎

𝑘
} (55)

for all 𝑎
𝑗
∈ J. However, one may ask whether it is sufficient,

for certain types of functions M, to verify (55) for a finite,
preferably small, number of well-chosen 𝑛-tuples. This ques-
tion is inspired by certain elegant theorems in the theory of
copositive forms that we summarize below.

12.1. Copositivity Tests for Quadratic and Cubic Forms. By a
(real) form in 𝑛 variables, we shall always mean a homoge-
neous polynomial 𝐹 = 𝐹(𝑥

1
, . . . , 𝑥

𝑛
) in the indeterminates

𝑥
1
, . . . , 𝑥

𝑛
having coefficients in R. When the degree 𝑡 of a

form 𝐹 is to be emphasized, we call 𝐹 a 𝑡-form. Forms of
degrees 1, 2, 3, 4, and 5 are referred to as linear, quadratic,
cubic, quartic, and quintic forms, respectively.

The set of all 𝑡-forms in 𝑛 variables is a vector space (over
R) that we shall denote by F (𝑛)

𝑡
. It may turn out to be an

interesting exercise to prove that the set

{

{

{

𝑑

∏

𝑗=1

𝑁
𝑒
𝑗

𝑗
:

𝑑

∑

𝑗=1

𝑗𝑒
𝑗
= 𝑑

}

}

}

(56)

is a basis, where𝑁
𝑗
is the Newton polynomial defined by

𝑁
𝑗
=

𝑛

∑

𝑘=1

𝑥
𝑗

𝑘
. (57)

The statement above is quite easy to prove in the special case
𝑑 ≤ 3, and this is the case we are interested in in this paper.
We also discard the trivial case 𝑛 = 1 and assume always that
𝑛 ≥ 2.

Linear forms can be written as 𝑎𝑁
1
, and they are not

worth much investigation. Quadratic forms can be written as

𝑄 = 𝑎𝑁
2

1
+ 𝑏𝑁
2
= 𝑎(

𝑛

∑

𝑘=1

𝑥
𝑘
)

2

+ 𝑏(

𝑛

∑

𝑘=1

𝑥
2

𝑘
) . (58)

Cubic and quartic forms can be written, respectively, as

𝑎𝑁
3

1
+ 𝑏𝑁
1
𝑁
2
+ 𝑐𝑁
3
,

𝑎𝑁
4

1
+ 𝑏𝑁
2

1
𝑁
2
+ 𝑐𝑁
1
𝑁
3
+ 𝑑𝑁
2

2
.

(59)

A form 𝐹 = 𝐹(𝑥
1
, . . . , 𝑥

𝑛
) is said to be copositive if

𝑓(𝑎
1
, . . . , 𝑎

𝑛
) ≥ 0 for all 𝑥

𝑖
≥ 0. Copositive forms arise

in the theory of inequalities and are studied in [14] (and in
references therein). One of the interesting questions that one
may ask about forms pertains to algorithms for deciding
whether a given form is copositive. This problem, in full
generality, is still open. However, for quadratic and cubic
forms, we have the following satisfactory answers.

Theorem 2. Let 𝐹 = 𝐹(𝑥
1
, . . . , 𝑥

𝑛
) be a real symmetric form

in any number 𝑛 ≥ 2 of variables. Let v(𝑛)
𝑚
, 1 ≤ 𝑚 ≤ 𝑛, be the

𝑛-tuple whose first 𝑚 coordinates are 1’s and whose remaining
coordinates are 0s.

(i) If𝐹 is quadratic, then𝐹 is copositive if and only if𝐹 ≥ 0
at the two test 𝑛-tuples

k
(𝑛)

1
= (1, 0, . . . , 0) , k

(𝑛)

𝑛
= (1, 1, . . . , 1) . (60)

(ii) If 𝐹 is cubic, then 𝐹 is copositive if and only if 𝐹 ≥ 0 at
the 𝑛 test 𝑛-tuples

k
(𝑛)

𝑚
= (

𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, . . . , 1,

𝑛−𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0) , 1 ≤ 𝑚 ≤ 𝑛. (61)

Part (i) is a restatement of Theorem 1(a) in [16]. Theo-
rem 1(b) there is related and can be restated as

𝐹 (𝑎
1
, . . . , 𝑎

𝑛
) ≥ 0, ∀𝑎

𝑖
∈ R,

⇐⇒ 𝐹 ≥ 0 at the 3 𝑛-tuples

(1, 0, . . . , 0) , (1, 1, . . . , 1) , (1, −1, 0, . . . , 0) .

(62)

Part (ii) was proved in [17] for 𝑛 ≤ 3 and in [18] for all 𝑛. Two
very short and elementary inductive proofs are given in [19].

It is worth mentioning that the 𝑛 test 𝑛-tuples in (61)
do not suffice for establishing the copositivity of a quartic
form even when 𝑛 = 3. An example illustrating this that
uses methods from [20] can be found in [19]. However, an
algorithm for deciding whether a symmetric quartic form 𝑓

in 𝑛 variables is copositive that consists in testing𝑓 at 𝑛-tuples
of the type

(

𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑎, . . . , 𝑎,

𝑟

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, . . . , 1,

𝑛−𝑚−𝑟

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0) ,

0 ≤ 𝑚, 𝑟 ≤ 𝑛, 𝑚 + 𝑟 ≤ 𝑛

(63)

is established in [21]. It is also proved there that if 𝑛 = 3, then
the same algorithm works for quintics but does not work for
forms of higher degrees.

12.2. Internality Tests for Means Arising from Symmetric
Forms. Let F (𝑛)

𝑡
be the vector space of all real 𝑡-forms in 𝑛

variables, and let𝑁
𝑗
, 1 ≤ 𝑗 ≤ 𝑑, be the Newton polynomials

defined in (57). Means of the type

M = (
𝐹
𝑟

𝐹
𝑠

)

1/(𝑟−𝑠)

, (64)
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where 𝐹
𝑗
is a symmetric form of degree 𝑗, are clearly sym-

metric and 1-homogeneous, and they abound in the literature.
These include the family of Gini means 𝐺

𝑟,𝑠
defined in (8)

(and hence the Lehmer andHöldermeans).They also include
the elementary symmetric polynomial and elementary sym-
metric polynomial ratio means defined earlier in (10).

In view of Theorem 2 of the previous section, it is tempt-
ing to ask whether the internality of a functionM of the type
described in (64) can be established by testing it at a finite
set of test 𝑛-tuples. Positive answers for some special cases of
(64), and for other related types, are given in the following
theorem.

Theorem3. Let 𝐿,𝑄, and𝐶 be real symmetric forms of degrees
1, 2, and 3, respectively, in any number 𝑛 ≥ 2 of nonnegative
variables. Let v(𝑛)

𝑘
, 1 ≤ 𝑘 ≤ 𝑛, be as defined in Theorem 2.

(i) √𝑄 is internal if and only if it is internal at the two test
𝑛-tuples: k(𝑛)

𝑛
= (1, 1, . . . , 1) and V(𝑛)

𝑛−1
= (1, 1, . . . , 1, 0).

(ii) 𝑄/𝐿 is internal if and only if it is internal at the two test
𝑛-tuples: k(𝑛)

𝑛
= (1, 1, . . . , 1) and V(𝑛)

1
= (1, 0, . . . , 0).

(iii) If 𝑛 ≤ 4, then 3√𝐶 is internal if and only if it is internal
at the 𝑛 test 𝑛-tuples

k
(𝑛)

𝑚
= (

𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, . . . , 1,

𝑛−𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0) , 1 ≤ 𝑚 ≤ 𝑛. (65)

Parts (i) and (ii) are restatements of Theorems 3 and 5 in
[16]. Part (iii) is proved in [22] in a manner that leaves a lot to
be desired. Besides being rather clumsy, the proof works for
𝑛 ≤ 4 only. The problem for 𝑛 ≥ 5, together with other open
problems, is listed in the next problem set.

Problem Set 13. Let𝐿,𝑄, and𝐶 be real symmetric cubic forms
of degrees 1, 2, and 3, respectively, in 𝑛non-negative variables.

(13-a) Prove or disprove that 3√𝐶 is internal if and only if it
is internal at the 𝑛 test 𝑛-tuples

k
(𝑛)

𝑚
= (

𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, . . . , 1,

𝑛−𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0) , 1 ≤ 𝑚 ≤ 𝑛. (66)

(13-b) Find, or prove the nonexistence of, a finite set 𝑇 of
test 𝑛-tuples such that the internality of 𝐶/𝑄 at the 𝑛-
tuples in 𝑇 gurantees its internality at all nonnegative
𝑛-tuples.

(13-c) Find, or prove the nonexistence of, a finite set 𝑇 of
test 𝑛-tuples such that the internality of 𝐿 ± √𝑄 at
the 𝑛-tuples in 𝑇 guarantees its internality at all non-
negative 𝑛-tuples.

Problem (13-b) is open even for 𝑛 = 2. In Section 6 of [15],
it is shown that the two pairs (1, 0) and (1, 1) do not suffice as
test pairs.

As for Problem (13-c), we refer the reader to [23],
where means of the type 𝐿 ± √𝑄 were considered. It is
proved in Theorem 2 there that when 𝑄 has the special form

𝑎∏
1≤𝑖<𝑗≤𝑛

(𝑥
𝑖
− 𝑥
𝑗
)
2, then 𝐿 ± √𝑄 is internal if and only

if it is internal at the two test 𝑛-tuples k(𝑛)
𝑛

= (1, 1, . . . , 1)

and k
(𝑛)

𝑛−1
= (1, 1, . . . , 1, 0). In the general case, sufficient and

necessary conditions for internality of 𝐿 ± √𝑄, in terms of
the coefficients of 𝐿 and 𝑄, are found in [23, Theorem 3].
However, it is not obvious whether these conditions can be
rewritten in terms of test 𝑛-tuples in the manner done in
Theorem 3.

13. Extension of Means, Concordance
of Means

The two-dimensional arithmetic meanA(2) defined by

A
(2)

(𝑎
1
, 𝑎
2
) =

𝑎
1
+ 𝑎
2

2
(67)

can be extended to any dimension 𝑘 by setting

A
(𝑘)

(𝑎
1
, . . . , 𝑎

𝑘
) =

𝑎
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑘

𝑘
. (68)

Although very few people would disagree on this, nobody
can possibly give a mathematically sound justification of the
feeling that the definition in (68) is the only (or even the best)
definition that makes the sequence𝐴(𝑘) ofmeans harmonious
or concordant. This does not seem to be an acceptable defini-
tion of the notion of concordance.

In a private communication several years ago, Professor
Zsolt Páles told me that Kolmogorov suggested calling a
sequenceM(𝑘) of means on J, whereM(𝑘) is 𝑘-dimensional,
concordant if for every𝑚 and 𝑛 and every 𝑎

𝑖
, 𝑏
𝑖
in J, we have

M
(𝑛+𝑚)

(𝑎
1
, . . . , 𝑎

𝑛
, 𝑏
1
, . . . , 𝑏

𝑚
)

=M
(2)

(M
(𝑛)

(𝑎
1
, . . . , 𝑎

𝑛
) ,M
𝑚
(𝑏
1
, . . . , 𝑏

𝑚
)) .

(69)

He also told me that such a definition is too restrictive and
seems to confirm concordance in the case of the quasi-arith-
metic means only.

Problem 14. Suggest a definition of concordance, and test it
on sequences ofmeans that you feel concordant. In particular,
test it on the existing generalizations, to higher dimensions,
of the logarithmic meanL defined in (45).

14. Distance Functions in Topology

Distance functions, which are not necessarily metrics, have
appeared early in the literature on topology. Given a distance
function 𝑑 on any set𝑋, one may define the open ball 𝐵(𝑎, 𝑟)
in the usual manner, and then one may declare a subset 𝐴 ⊆

𝑋 open if it contains, for every 𝑎 ∈ 𝐴, an open ball𝐵(𝑎, 𝑟)with
𝑟 > 0. If 𝑑 has the triangle inequality, then one can proceed in
the usual manner to create a topology. However, for a general
distance 𝑑, this need not be the case, and distances that give
rise to a coherent topology in the usual manner are called
semimetrics and they are investigated and characterized in
[24–29]. Clearly, these are the distances𝑑 for which the family
{𝐵(𝑎, 𝑟) : 𝑟 > 0} of open balls centered at 𝑎 ∈ 𝑆 forms a local
base at 𝑎 for every 𝑎 in𝑋.
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15. Centers and Center-Producing Distances

A distance 𝑑 may be defined on any set 𝑆 whatsoever. In
particular, if 𝑑 is a distance on R2 and if the function 𝑓(𝑋)
defined by

𝑓 (𝑋) =

𝑛

∑

𝑖=1

𝑑 (𝑋,𝐴
𝑖
) (70)

attains its minimum at a unique point 𝑋
0
that lies in the

convex hull of {𝐴
1
, . . . , 𝐴

𝑛
} for every choice of 𝐴

1
, . . . , 𝐴

𝑛
in

R2, then 𝑑 will be called a center-producing distance.
The Euclidean metric 𝑑

1
on R2 produces the Fermat-

Torricelli center. This is defined to be the point whose distan-
ces from the given points have a minimal sum. Its square,
𝑑
2
, which is just a distance but not a metric, produces the

centroid. This is the center of mass of equal masses placed at
the given points. It would be interesting to explore the centers
defined by 𝑑

𝑝
for other values of 𝑝.

Problem 15. Let 𝑑
𝑝
, 𝑝 > 1, be the distance defined on R2 by

𝑑
𝑝
(𝐴, 𝐵) = ‖𝐴 − 𝐵‖

𝑝, and let 𝐴𝐵𝐶 be a triangle. Let 𝑍
𝑝
=

𝑍
𝑝
(𝐴, 𝐵, 𝐶) be the point that minimizes

𝑑
𝑝
(𝑍, 𝐴) + 𝑑

𝑝
(𝑍, 𝐵) + 𝑑

𝑝
(𝑍, 𝐶)

= ‖𝑍 − 𝐴‖
𝑝

+ ‖𝑍 − 𝐵‖
𝑝

+ ‖𝑍 − 𝐶‖
𝑝

.

(71)

Investigate how 𝑍
𝑝
, 𝑝 ≥ 1, are related to the known triangle

centers, and study the curve traced by them.

The papers [30, 31] may turn out to be relevant to this
problem.
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point,”Comptes RendusMathématiques, vol. 9, no. 2, pp. 95–100,
1987.

[31] P. Penning, “Expoints,”Nieuw Archief voorWiskunde, vol. 4, no.
1, pp. 19–31, 1986.



Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2013, Article ID 283127, 7 pages
http://dx.doi.org/10.1155/2013/283127

Research Article
On Some Intermediate Mean Values

Slavko Simic

Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia

Correspondence should be addressed to Slavko Simic; ssimic@turing.mi.sanu.ac.rs

Received 25 June 2012; Revised 9 December 2012; Accepted 16 December 2012

Academic Editor: Mowaffaq Hajja

Copyright © 2013 Slavko Simic.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We give a necessary and sufficient mean condition for the quotient of two Jensen functionals and define a new class Λ
𝑓,𝑔
(𝑎, 𝑏) of

mean values where 𝑓, 𝑔 are continuously differentiable convex functions satisfying the relation 𝑓(𝑡) = 𝑡𝑔(𝑡), 𝑡 ∈ R+. Then we
asked for a characterization of 𝑓, 𝑔 such that the inequalities𝐻(𝑎, 𝑏) ≤ Λ

𝑓,𝑔
(𝑎, 𝑏) ≤ 𝐴(𝑎, 𝑏) or 𝐿(𝑎, 𝑏) ≤ Λ

𝑓,𝑔
(𝑎, 𝑏) ≤ 𝐼(𝑎, 𝑏) hold for

each positive 𝑎, 𝑏, where𝐻,𝐴, 𝐿, 𝐼 are the harmonic, arithmetic, logarithmic, and identric means, respectively. For a subclass of Λ
with 𝑔(𝑡) = 𝑡𝑠, 𝑠 ∈ R, this problem is thoroughly solved.

1. Introduction

It is said that themean𝑃 is intermediate relating to themeans
𝑀 and𝑁,𝑀 ≤ 𝑁 if the relation

𝑀(𝑎, 𝑏) ≤ 𝑃 (𝑎, 𝑏) ≤ 𝑁 (𝑎, 𝑏) (1)

holds for each two positive numbers 𝑎, 𝑏.
It is also well known that

min {𝑎, 𝑏} ≤ 𝐻 (𝑎, 𝑏) ≤ 𝐺 (𝑎, 𝑏)

≤ 𝐿 (𝑎, 𝑏) ≤ 𝐼 (𝑎, 𝑏) ≤ 𝐴 (𝑎, 𝑏) ≤ 𝑆 (𝑎, 𝑏)

≤ max {𝑎, 𝑏} ,

(2)

where

𝐻 = 𝐻(𝑎, 𝑏) := 2(
1

𝑎
+
1

𝑏
)

−1

;

𝐺 = 𝐺 (𝑎, 𝑏) := √𝑎𝑏; 𝐿 = 𝐿 (𝑎, 𝑏) :=
𝑏 − 𝑎

log 𝑏 − log 𝑎
;

𝐼 = 𝐼 (𝑎, 𝑏) :=

(𝑏
𝑏

/𝑎
𝑎

)
1/(𝑏−𝑎)

𝑒
;

𝐴 = 𝐴 (𝑎, 𝑏) :=
𝑎 + 𝑏

2
; 𝑆 = 𝑆 (𝑎, 𝑏) := 𝑎

𝑎/(𝑎+𝑏)

𝑏
𝑏/(𝑎+𝑏)

(3)

are the harmonic, geometric, logarithmic, identric, arith-
metic, and Gini mean, respectively.

An easy task is to construct intermediate means related to
two given means𝑀 and𝑁 with𝑀 ≤ 𝑁. For instance, for an
arbitrary mean 𝑃, we have that

𝑀(𝑎, 𝑏) ≤ 𝑃 (𝑀 (𝑎, 𝑏) ,𝑁 (𝑎, 𝑏)) ≤ 𝑁 (𝑎, 𝑏). (4)

The problem ismore difficult if we have to decide whether
the given mean is intermediate or not. For example, the
relation

𝐿 (𝑎, 𝑏) ≤ 𝑆
𝑠
(𝑎, 𝑏) ≤ 𝐼 (𝑎, 𝑏) (5)

holds for each positive 𝑎 and 𝑏 if and only if 0 ≤ 𝑠 ≤ 1, where
the Stolarsky mean 𝑆

𝑠
is defined by (cf [1])

𝑆
𝑠
(𝑎, 𝑏) := (

𝑏
𝑠

− 𝑎
𝑠

𝑠 (𝑏 − 𝑎)
)

1/(𝑠−1)

. (6)

Also,

𝐺 (𝑎, 𝑏) ≤ 𝐴
𝑠
(𝑎, 𝑏) ≤ 𝐴 (𝑎, 𝑏) (7)

holds if and only if 0 ≤ 𝑠 ≤ 1, where theHöldermean of order
𝑠 is defined by

𝐴
𝑠
(𝑎, 𝑏) := (

𝑎
𝑠

+ 𝑏
𝑠

2
)

1/𝑠

. (8)
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An inverse problem is to find best possible approximation
of a given mean 𝑃 by elements of an ordered class of means
𝑆. A good example for this topic is comparison between the
logarithmic mean and the class 𝐴

𝑠
of Hölder means of order

𝑠. Namely, since 𝐴
0
= lim
𝑠→0

𝐴
𝑠
= 𝐺 and 𝐴

1
= 𝐴, it follows

from (2) that

𝐴
0
≤ 𝐿 ≤ 𝐴

1
. (9)

Since𝐴
𝑠
is monotone increasing in 𝑠, an improving of the

above is given by Carlson [2]:

𝐴
0
≤ 𝐿 ≤ 𝐴

1/2
. (10)

Finally, Lin showed in [3] that

𝐴
0
≤ 𝐿 ≤ 𝐴

1/3
(11)

is the best possible approximation of the logarithmicmean by
the means from the class 𝐴

𝑠
.

Numerous similar results have been obtained recently.
For example, an approximation of Seiffert’s mean by the class
𝐴
𝑠
is given in [4, 5].
In this paper we will give best possible approximations

for a whole variety of elementary means (2) by the class 𝜆
𝑠

defined below (see Theorem 5).
Let 𝑓, 𝑔 be twice continuously differentiable (strictly)

convex functions on R+. By definition (cf [6], page 5),

𝑓 (𝑎, 𝑏) := 𝑓 (𝑎) + 𝑓 (𝑏) − 2𝑓(
𝑎 + 𝑏

2
) > 0, 𝑎 ̸= 𝑏,

𝑓 (𝑎, 𝑏) = 0,

(12)

if and only if 𝑎 = 𝑏.
It turns out that the expression

Λ
𝑓,𝑔
(𝑎, 𝑏) :=

𝑓 (𝑎, 𝑏)

𝑔 (𝑎, 𝑏)
=
𝑓 (𝑎) + 𝑓 (𝑏) − 2𝑓 ((𝑎 + 𝑏) /2)

𝑔 (𝑎) + 𝑔 (𝑏) − 2𝑔 ((𝑎 + 𝑏) /2)

(13)

represents a mean of two positive numbers 𝑎, 𝑏; that is, the
relation

min {𝑎, 𝑏} ≤ Λ
𝑓,𝑔
(𝑎, 𝑏) ≤ max {𝑎, 𝑏} (14)

holds for each 𝑎, 𝑏 ∈ R+, if and only if the relation

𝑓


(𝑡) = 𝑡𝑔


(𝑡) (15)

holds for each 𝑡 ∈ R+.
Let 𝑓, 𝑔 ∈ 𝐶∞(0,∞) and denote by Λ the set {(𝑓, 𝑔)} of

convex functions satisfying the relation (15).There is a natural
question how to improve the bounds in (14); in this sense we
come upon the following intermediate mean problem.

Open Question. Under what additional conditions on 𝑓, 𝑔 ∈
Λ, the inequalities

𝐻(𝑎, 𝑏) ≤ Λ
𝑓,𝑔
(𝑎, 𝑏) ≤ 𝐴 (𝑎, 𝑏), (16)

or, more tightly,

𝐿 (𝑎, 𝑏) ≤ Λ
𝑓,𝑔
(𝑎, 𝑏) ≤ 𝐼 (𝑎, 𝑏), (17)

hold for each 𝑎, 𝑏 ∈ R+?
As an illustration, consider the function 𝑓

𝑠
(𝑡) defined to

be

𝑓
𝑠
(𝑡) =

{{{

{{{

{

𝑡
𝑠

− 𝑠𝑡 + 𝑠 − 1

𝑠 (𝑠 − 1)
, 𝑠 (𝑠 − 1) ̸= 0;

𝑡 − log 𝑡 − 1, 𝑠 = 0;

𝑡 log 𝑡 − 𝑡 + 1, 𝑠 = 1.

(18)

Since

𝑓


𝑠
(𝑡) =

{{{{{{{

{{{{{{{

{

𝑡
𝑠−1

− 1

𝑠 − 1
, 𝑠 (𝑠 − 1) ̸= 0;

1 −
l
𝑡
, 𝑠 = 0;

log 𝑡, 𝑠 = 1,

𝑓


𝑠
(𝑡) = 𝑡

𝑠−2

, 𝑠 ∈ R, 𝑡 > 0,

(19)

it follows that 𝑓
𝑠
(𝑡) is a twice continuously differentiable

convex function for 𝑠 ∈ R, 𝑡 ∈ R+.
Moreover, it is evident that (𝑓

𝑠+1
, 𝑓
𝑠
) ∈ Λ.

We will give in the sequel a complete answer to the above
question concerning the means

𝑓
𝑠+1
(𝑎, 𝑏)

𝑓
𝑠
(𝑎, 𝑏)

:= 𝜆
𝑠
(𝑎, 𝑏) (20)

defined by

𝜆
𝑠
(𝑎, 𝑏)

=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑠 − 1

𝑠 + 1

𝑎
𝑠+1

+ 𝑏
𝑠+1

− 2((𝑎 + 𝑏) /2)
𝑠+1

𝑎𝑠 + 𝑏𝑠 − 2((𝑎 + 𝑏) /2)
𝑠

, 𝑠 ∈ R/ {−1, 0, 1} ;

2 log ((𝑎 + 𝑏) /2) − log 𝑎 − log 𝑏
1/2𝑎 + 1/2𝑏 − 2/ (𝑎 + 𝑏)

, 𝑠 = −1;

𝑎 log 𝑎 + 𝑏 log 𝑏 − (𝑎 + 𝑏) log ((𝑎 + 𝑏) /2)
2 log ((𝑎 + 𝑏) /2) − log 𝑎 − log 𝑏

, 𝑠 = 0;

(𝑏 − 𝑎)
2

4 (𝑎 log 𝑎 + 𝑏 log 𝑏 − (𝑎 + 𝑏) log ((𝑎 + 𝑏) /2))
, 𝑠 = 1.

(21)

Those means are obviously symmetric and homogeneous
of order one.

As a consequencewe obtain somenew intermediatemean
values; for instance, we show that the inequalities

𝐻(𝑎, 𝑏) ≤ 𝜆
−1
(𝑎, 𝑏) ≤ 𝐺 (𝑎, 𝑏) ≤ 𝜆

0
(𝑎, 𝑏) ≤ 𝐿 (𝑎, 𝑏)

≤ 𝜆
1
(𝑎, 𝑏) ≤ 𝐼 (𝑎, 𝑏)

(22)

hold for arbitrary 𝑎, 𝑏 ∈ R+. Note that

𝜆
−1
=
2𝐺
2 log (𝐴/𝐺)
𝐴 − 𝐻

; 𝜆
0
= 𝐴

log (𝑆/𝐴)
log (𝐴/𝐺)

;

𝜆
1
=
1

2

𝐴 − 𝐻

log (𝑆/𝐴)
.

(23)
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2. Results

We prove firstly the following

Theorem 1. Let 𝑓, 𝑔 ∈ 𝐶2(𝐼) with 𝑔 > 0. The expression
Λ
𝑓,𝑔
(𝑎, 𝑏) represents a mean of arbitrary numbers 𝑎, 𝑏 ∈ 𝐼 if

and only if the relation (15) holds for 𝑡 ∈ 𝐼.

Remark 2. In the same way, for arbitrary 𝑝, 𝑞 > 0, 𝑝 + 𝑞 = 1,
it can be deduced that the quotient

Λ
𝑓,𝑔
(𝑝, 𝑞; 𝑎, 𝑏) :=

𝑝𝑓 (𝑎) + 𝑞𝑓 (𝑏) − 𝑓 (𝑝𝑎 + 𝑞𝑏)

𝑝𝑔 (𝑎) + 𝑞𝑔 (𝑏) − 𝑔 (𝑝𝑎 + 𝑞𝑏)
(24)

represents a mean value of numbers 𝑎, 𝑏 if and only if (15)
holds.

A generalization of the above assertion is the next.

Theorem 3. Let 𝑓, 𝑔 : 𝐼 → R be twice continuously
differentiable functions with 𝑔 > 0 on 𝐼 and let 𝑝 = {𝑝

𝑖
},

𝑖 = 1, 2, . . . , ∑ 𝑝
𝑖
= 1 be an arbitrary positive weight sequence.

Then the quotient of two Jensen functionals

Λ
𝑓,𝑔
(𝑝, 𝑥) :=

∑
𝑛

1
𝑝
𝑖
𝑓 (𝑥
𝑖
) − 𝑓 (∑

𝑛

1
𝑝
𝑖
𝑥
𝑖
)

∑
𝑛

1
𝑝
𝑖
𝑔 (𝑥
𝑖
) − 𝑔 (∑

𝑛

1
𝑝
𝑖
𝑥
𝑖
)
, 𝑛 ≥ 2, (25)

represents a mean of an arbitrary set of real numbers
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝐼 if and only if the relation

𝑓


(𝑡) = 𝑡𝑔


(𝑡) (26)

holds for each 𝑡 ∈ 𝐼.

Remark 4. It should be noted that the relation 𝑓(𝑡) = 𝑡𝑔(𝑡)
determines 𝑓 in terms of 𝑔 in an easy way. Precisely,

𝑓 (𝑡) = 𝑡𝑔 (𝑡) − 2𝐺 (𝑡) + 𝑐𝑡 + 𝑑, (27)

where 𝐺(𝑡) := ∫𝑡
1

𝑔(𝑢)𝑑𝑢 and 𝑐 and 𝑑 are constants.

Our results concerning the means 𝜆
𝑠
(𝑎, 𝑏), 𝑠 ∈ R are

included in the following.

Theorem 5. For the class of means 𝜆
𝑠
(𝑎, 𝑏) defined above, the

following assertions hold for each 𝑎, 𝑏 ∈ R+.

(1) The means 𝜆
𝑠
(𝑎, 𝑏) are monotone increasing in 𝑠;

(2) 𝜆
𝑠
(𝑎, 𝑏) ≤ 𝐻(𝑎, 𝑏) for each 𝑠 ≤ −4;

(3) 𝐻(𝑎, 𝑏) ≤ 𝜆
𝑠
(𝑎, 𝑏) ≤ 𝐺(𝑎, 𝑏) for −3 ≤ 𝑠 ≤ −1;

(4) 𝐺(𝑎, 𝑏) ≤ 𝜆
𝑠
(𝑎, 𝑏) ≤ 𝐿(𝑎, 𝑏) for −1/2 ≤ 𝑠 ≤ 0;

(5) there is a number 𝑠
0
∈ (1/12, 1/11) such that 𝐿(𝑎, 𝑏) ≤

𝜆
𝑠
(𝑎, 𝑏) ≤ 𝐼(𝑎, 𝑏) for 𝑠

0
≤ 𝑠 ≤ 1;

(6) there is a number 𝑠
1
∈ (1.03, 1.04) such that 𝐼(𝑎, 𝑏) ≤

𝜆
𝑠
(𝑎, 𝑏) ≤ 𝐴(𝑎, 𝑏) for 𝑠

1
≤ 𝑠 ≤ 2;

(7) 𝐴(𝑎, 𝑏) ≤ 𝜆
𝑠
(𝑎, 𝑏) ≤ 𝑆(𝑎, 𝑏) for each 2 ≤ 𝑠 ≤ 5;

(8) there is no finite 𝑠 such that the inequality 𝑆(𝑎, 𝑏) ≤
𝜆
𝑠
(𝑎, 𝑏) holds for each 𝑎, 𝑏 ∈ R+.

The above estimations are best possible.

3. Proofs

3.1. Proof of Theorem 1. We prove firstly the necessity of the
condition (15).

Since Λ
𝑓,𝑔
(𝑎, 𝑏) is a mean value for arbitrary 𝑎, 𝑏 ∈ 𝐼;

𝑎 ̸= 𝑏, we have

min {𝑎, 𝑏} ≤ Λ
𝑓,𝑔
(𝑎, 𝑏) ≤ max {𝑎, 𝑏} . (28)

Hence
lim
𝑏→𝑎

Λ
𝑓,𝑔
(𝑎, 𝑏) = 𝑎. (29)

From the other hand, due to l’Hospital’s rule we obtain

lim
𝑏→𝑎

Λ
𝑓,𝑔
(𝑎, 𝑏) = lim

𝑏→𝑎

(
𝑓


(𝑏) − 𝑓


((𝑎 + 𝑏) /2)

𝑔 (𝑏) − 𝑔 ((𝑎 + 𝑏) /2)
)

= lim
𝑏→𝑎

(
2𝑓


(𝑏) − 𝑓


((𝑎 + 𝑏) /2)

2𝑔 (𝑏) − 𝑔 ((𝑎 + 𝑏) /2)
)

=
𝑓


(𝑎)

𝑔 (𝑎)
.

(30)

Comparing (29) and (30) the desired result follows.
Suppose now that (15) holds and let 𝑎 < 𝑏. Since 𝑔(𝑡) >

0 𝑡 ∈ [𝑎, 𝑏] by the Cauchy mean value theorem there exists
𝜉 ∈ ((𝑎 + 𝑡)/2, 𝑡) such that

𝑓


(𝑡) − 𝑓


((𝑎 + 𝑡) /2)

𝑔 (𝑡) − 𝑔 ((𝑎 + 𝑡) /2)
=
𝑓


(𝜉)

𝑔 (𝜉)
= 𝜉. (31)

But,

𝑎 ≤
𝑎 + 𝑡

2
< 𝜉 < 𝑡 ≤ 𝑏, (32)

and, since𝑔 is strictly increasing,𝑔(𝑡)−𝑔((𝑎+𝑡)/2) > 0, 𝑡 ∈
[𝑎, 𝑏].

Therefore, by (31) we get

𝑎 (𝑔


(𝑡) − 𝑔


(
𝑎 + 𝑡

2
)) ≤ 𝑓



(𝑡) − 𝑓


(
𝑎 + 𝑡

2
)

≤ 𝑏 (𝑔


(𝑡) − 𝑔


(
𝑎 + 𝑡

2
)) .

(33)

Finally, integrating (33) over 𝑡 ∈ [𝑎, 𝑏]we obtain the assertion
fromTheorem 1.

3.2. Proof of Theorem 3. We will give a proof of this assertion
by induction on 𝑛.

By Remark 2, it holds for 𝑛 = 2.
Next, it is not difficult to check the identity
𝑛

∑

1

𝑝
𝑖
𝑓 (𝑥
𝑖
) − 𝑓(

𝑛

∑

1

𝑝
𝑖
𝑥
𝑖
)

= (1 − 𝑝
𝑛
)(

𝑛−1

∑

1

𝑝


𝑖
𝑓 (𝑥
𝑖
) − 𝑓(

𝑛−1

∑

1

𝑝


𝑖
𝑥
𝑖
))

+ [(1 − 𝑝
𝑛
) 𝑓 (𝑇) + 𝑝

𝑛
𝑓 (𝑥
𝑛
) − 𝑓 ((1 − 𝑝

𝑛
) 𝑇 + 𝑝

𝑛
𝑥
𝑛
)] ,

(34)
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where

𝑇 :=

𝑛−1

∑

1

𝑝


𝑖
𝑥
𝑖
; 𝑝


𝑖
:=

𝑝
𝑖

(1 − 𝑝
𝑛
)
, 𝑖 = 1, 2, . . . , 𝑛 − 1;

𝑛−1

∑

1

𝑝


𝑖
= 1.

(35)

Therefore, by induction hypothesis and Remark 2, we get
𝑛

∑

1

𝑝
𝑖
𝑓 (𝑥
𝑖
) − 𝑓(

𝑛

∑

1

𝑝
𝑖
𝑥
𝑖
)

≤ max {𝑥
1
, 𝑥
2
, . . . 𝑥
𝑛−1
} (1 − 𝑝

𝑛
)

× (

𝑛−1

∑

1

𝑝


𝑖
𝑔 (𝑥
𝑖
) − 𝑔(

𝑛−1

∑

1

𝑝


𝑖
𝑥
𝑖
))

+max {𝑇, 𝑥
𝑛
} [(1 − 𝑝

𝑛
) 𝑔 (𝑇) + 𝑝

𝑛
𝑔 (𝑥
𝑛
)

−𝑔 ((1 − 𝑝
𝑛
) 𝑇 + 𝑝

𝑛
𝑥
𝑛
)]

≤ max {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}

× ((1 − 𝑝
𝑛
)(

𝑛−1

∑

1

𝑝


𝑖
𝑔 (𝑥
𝑖
) − 𝑔(

𝑛−1

∑

1

𝑝


𝑖
𝑥
𝑖
))

+ [(1 − 𝑝
𝑛
) 𝑔 (𝑇) + 𝑝

𝑛
𝑔 (𝑥
𝑛
) − 𝑔 ((1 − 𝑝

𝑛
) 𝑇 + 𝑝

𝑛
𝑥
𝑛
)] )

= max {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} (

𝑛

∑

1

𝑝
𝑖
𝑔 (𝑥
𝑖
) − 𝑔(

𝑛

∑

1

𝑝
𝑖
𝑥
𝑖
)) .

(36)
The inequality

min {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} ≤ Λ

𝑓,𝑔
(𝑝, 𝑥) (37)

can be proved analogously.
For the proof of necessity, put 𝑥

2
= 𝑥
3
= ⋅ ⋅ ⋅ = 𝑥

𝑛
and

proceed as inTheorem 1.

Remark 6. It is evident from (15) that if 𝐼 ⊆ R+ then 𝑓 has to
be also convex on 𝐼. Otherwise, it shouldn’t be the case. For
example, the conditions ofTheorem 3 are satisfiedwith𝑓(𝑡) =
𝑡
3

/3, 𝑔(𝑡) = 𝑡2, 𝑡 ∈ R. Hence, for an arbitrary sequence {𝑥
𝑖
}
𝑛

1

of real numbers, we obtain

min {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} ≤

∑
𝑛

1
𝑝
𝑖
𝑥
3

𝑖
− (∑
𝑛

1
𝑝
𝑖
𝑥
𝑖
)
3

3 (∑
𝑛

1
𝑝
𝑖
𝑥
2

𝑖
− (∑
𝑛

1
𝑝
𝑖
𝑥
𝑖
)
2

)

≤ max {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} .

(38)

Because the above inequality does not depend on 𝑛, a
probabilistic interpretation of the above result is contained in
the following.

Theorem 7. For an arbitrary probability law 𝐹 of random
variable𝑋 with support on (−∞, +∞), one has

(𝐸𝑋)
3

+ 3 (min𝑋) 𝜎2
𝑋
≤ 𝐸𝑋
3

≤ (𝐸𝑋)
3

+ 3 (max𝑋)𝜎2
𝑋
.

(39)

3.3. Proof of Theorem 5, Part (1). We will prove a general
assertion of this type. Namely, for an arbitrary positive
sequence x = {𝑥

𝑖
} and an associated weight sequence p =

{𝑝
𝑖
}, 𝑖 = 1, 2, . . ., denote

𝜒
𝑠
(p, x)

:=

{{{{{{

{{{{{{

{

∑𝑝
𝑖
𝑥
𝑠

𝑖
− (∑𝑝

𝑖
𝑥
𝑖
)
𝑠

𝑠 (𝑠 − 1)
, 𝑠 ∈ R/ {0, 1} ;

log (∑𝑝
𝑖
𝑥
𝑖
) − ∑𝑝

𝑖
log 𝑥
𝑖
, 𝑠 = 0;

∑𝑝
𝑖
𝑥
𝑖
log𝑥
𝑖
− (∑𝑝

𝑖
𝑥
𝑖
) log (∑𝑝

𝑖
𝑥
𝑖
) , 𝑠 = 1.

(40)

For 𝑠 ∈ R, 𝑟 > 0 we have

𝜒
𝑠
(p, x) 𝜒

𝑠+𝑟+1
(p, x) ≥ 𝜒

𝑠+1
(p, x) 𝜒

𝑠+𝑟
(p, x) , (41)

which is equivalent to

Theorem 8. The sequence {𝜒
𝑠+1
(p, x)/𝜒

𝑠
(p, x)} is monotone

increasing in 𝑠, 𝑠 ∈ R.
This assertion follows applying the result from [7, Theo-

rem 2] which states the following.

Lemma 9. For −∞ < 𝑎 < 𝑏 < 𝑐 < +∞, the inequality

(𝜒
𝑏
(p, x))𝑐−𝑎 ≤ (𝜒

𝑎
(p, x))𝑐−𝑏(𝜒

𝑐
(p, x))𝑏−𝑎 (42)

holds for arbitrary sequences p, x.

Putting there 𝑎 = 𝑠, 𝑏 = 𝑠 + 1, 𝑐 = 𝑠 + 𝑟 + 1 and 𝑎 = 𝑠,
𝑏 = 𝑠 + 𝑟, 𝑐 = 𝑠 + 𝑟 + 1, we successively obtain

(𝜒
𝑠+1
(p, x))𝑟+1 ≤ (𝜒

𝑠
(p, x))𝑟𝜒

𝑠+𝑟+1
(p, x),

(𝜒
𝑠+𝑟
(p, x))𝑟+1 ≤ 𝜒

𝑠
(p, x) (𝜒

𝑠+𝑟+1
(p, x))𝑟.

(43)

Since 𝑟 > 0, multiplying those inequalities we get the
relation (41), that is, the proof of Theorem 8.

The part (1) of Theorem 5 follows for 𝑝
1
= 𝑝
2
= 1/2.

A general way to prove the rest of Theorem 5 is to use an
easy-checkable identity

𝜆
𝑠
(𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
= 𝜆
𝑠
(1 + 𝑡, 1 − 𝑡) , (44)

with 𝑡 := (𝑏 − 𝑎)/(𝑏 + 𝑎).
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Since 0 < 𝑎 < 𝑏, we get 0 < 𝑡 < 1. Also,

𝐻(𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
= 1 − 𝑡

2

;
𝐺 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
= √1 − 𝑡2;

𝐿 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
=

2𝑡

log (1 + 𝑡) − log (1 − 𝑡)
;

𝐼 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)

= exp((
1 + 𝑡) log (1 + 𝑡) − (1 − 𝑡) log (1 − 𝑡)

2𝑡
− 1) ;

𝑆 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)

= exp(1
2
((1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡))) .

(45)

Therefore, we have to compare some one-variable
inequalities and to check their validness for each 𝑡 ∈ (0, 1).

For example, we will prove that the inequality

𝜆
𝑠
(𝑎, 𝑏) ≤ 𝐿 (𝑎, 𝑏) (46)

holds for each positive 𝑎, 𝑏 if and only if 𝑠 ≤ 0.
Since 𝜆

𝑠
(𝑎, 𝑏) is monotone increasing in 𝑠, it is enough to

prove that

𝜆
0
(𝑎, 𝑏)

𝐿 (𝑎, 𝑏)
≤ 1. (47)

By the above formulae, this is equivalent to the assertion
that the inequality

𝜙 (𝑡) ≤ 0 (48)

holds for each 𝑡 ∈ (0, 1), with

𝜙 (𝑡) :=
log (1 + 𝑡) − log (1 − 𝑡)

2𝑡

× ((1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡))

+ log (1 + 𝑡) + log (1 − 𝑡).

(49)

We will prove that the power series expansion of 𝜙(𝑡)
have non-positive coefficients. Thus the relation (48) will be
proved.

Since

log (1 + 𝑡) − log (1 − 𝑡)
2𝑡

=

∞

∑

0

𝑡
2𝑘

2𝑘 + 1
;

log (1 + 𝑡) + log (1 − 𝑡) = −𝑡2
∞

∑

0

𝑡
2𝑘

𝑘 + 1
;

(1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡)

= 𝑡
2

∞

∑

0

𝑡
2𝑘

(𝑘 + 1) (2𝑘 + 1)
,

(50)

we get

𝜙 (𝑡)

𝑡2

=

∞

∑

𝑛=0

(−
1

𝑛 + 1
+

𝑛

∑

𝑘=0

1

(2𝑛 − 2𝑘 + 1) (𝑘 + 1) (2𝑘 + 1)
) 𝑡
2𝑛

=

∞

∑

0

𝑐
𝑛
𝑡
2𝑛

.

(51)

Hence,

𝑐
0
= 𝑐
1
= 0; 𝑐

2
= −

1

90
, (52)

and, after some calculation, we get

𝑐
𝑛
=

2

(𝑛 + 1) (2𝑛 + 3)
((𝑛 + 2)

𝑛

∑

1

1

2𝑘 + 1
− (𝑛 + 1)

𝑛

∑

1

1

2𝑘
) ,

𝑛 > 1.

(53)

Now, one can easily prove (by induction, e.g.) that

𝑑
𝑛
:= (𝑛 + 2)

𝑛

∑

1

1

2𝑘 + 1
− (𝑛 + 1)

𝑛

∑

1

1

2𝑘
(54)

is a negative real number for 𝑛 ≥ 2. Therefore 𝑐
𝑛
≤ 0, and the

proof of the first part is done. For 0 < 𝑠 < 1 we have

𝜆
𝑠
(𝑎, 𝑏)

𝐿 (𝑎, 𝑏)
− 1

=

(1 − 𝑠) ((1 + 𝑡)
𝑠+1

+ (1 − 𝑡)
𝑠+1

− 2) log ((1 + 𝑡) / (1 − 𝑡))
2𝑡 (1 + 𝑠) (2 − (1 + 𝑡)

𝑠

− (1 − 𝑡)
𝑠

)
−1

=
1

6
𝑠𝑡
2

+ 𝑂 (𝑡
4

) (𝑡 → 0) .

(55)

Therefore, 𝜆
𝑠
(𝑎, 𝑏) > 𝐿(𝑎, 𝑏) for 𝑠 > 0 and sufficiently

small 𝑡 := (𝑏 − 𝑎)/(𝑏 + 𝑎).
Similarly, we will prove that the inequality

𝜆
𝑠
(𝑎, 𝑏) ≤ 𝐼 (𝑎, 𝑏) (56)

holds for each 𝑎, 𝑏; 0 < 𝑎 < 𝑏 if and only if 𝑠 ≤ 1.
As before, it is enough to consider the expression

𝐼 (𝑎, 𝑏)

𝜆
1
(𝑎, 𝑏)

= 𝑒
𝜇(𝑡)

𝜈 (𝑡) := 𝜓 (𝑡) , (57)

with

𝜇 (𝑡) =
(1 + 𝑡) log (1 + 𝑡) − (1 − 𝑡) log (1 − 𝑡)

2𝑡
− 1;

𝜈 (𝑡) =
(1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡)

𝑡2
.

(58)



6 International Journal of Mathematics and Mathematical Sciences

It is not difficult to check the identity

𝜓


(𝑡) = −
𝑒
𝜇(𝑡)

𝜙 (𝑡)

𝑡3
. (59)

Hence by (48), we get 𝜓(𝑡) > 0, that is, 𝜓(𝑡) is monotone
increasing for 𝑡 ∈ (0, 1).

Therefore

𝐼 (𝑎, 𝑏)

𝜆
1
(𝑎, 𝑏)

≥ lim
𝑡→0
+

𝜓 (𝑡) = 1. (60)

Bymonotonicity it follows that 𝜆
𝑠
(𝑎, 𝑏) ≤ 𝐼(𝑎, 𝑏) for 𝑠 ≤ 1.

For 𝑠 > 1, (𝑏 − 𝑎)/(𝑏 + 𝑎) = 𝑡, we have

𝜆
𝑠
(𝑎, 𝑏) − 𝐼 (𝑎, 𝑏) = (

1

6
(𝑠 − 1) 𝑡

2

+ 𝑂 (𝑡
4

))𝐴 (𝑎, 𝑏)

(𝑡 → 0
+

) .

(61)

Hence, 𝜆
𝑠
(𝑎, 𝑏) > 𝐼(𝑎, 𝑏) for 𝑠 > 1 and 𝑡 sufficiently small.

From the other hand,

lim
𝑡→1
−

[
𝜆
𝑠
(𝑎, 𝑏)

𝐼 (𝑎, 𝑏)
− 1] =

𝑒 (𝑠 − 1) (2
𝑠+1

− 2)

2 (𝑠 + 1) (2𝑠 − 2)
− 1 := 𝜏 (𝑠) .

(62)

Examining the function 𝜏(𝑠), we find out that it has the
only real zero at 𝑠

0
≈ 1.0376 and is negative for 𝑠 ∈ (1, 𝑠

0
).

Remark 10. Since 𝜓(𝑡) is monotone increasing, we also get

𝐼 (𝑎, 𝑏)

𝜆
1
(𝑎, 𝑏)

≤ lim
𝑡→1
−

𝜓 (𝑡) =
4 log 2
𝑒
. (63)

Hence

1 ≤
𝐼 (𝑎, 𝑏)

𝜆
1
(𝑎, 𝑏)

≤
4 log 2
𝑒
. (64)

A calculation gives 4 log 2/𝑒 ≈ 1.0200.

Note also that

𝜆
2
(𝑎, 𝑏) ≡ 𝐴 (𝑎, 𝑏) . (65)

Therefore, applying the assertion from the part 1, we get

𝜆
𝑠
(𝑎, 𝑏) ≤ 𝐴 (𝑎, 𝑏), 𝑠 ≤ 2;

𝜆
𝑠
(𝑎, 𝑏) ≥ 𝐴 (𝑎, 𝑏), 𝑠 ≥ 2.

(66)

Finally, we give a detailed proof of the part 7.
We have to prove that 𝜆

𝑠
(𝑎, 𝑏) ≤ 𝑆(𝑎, 𝑏) for 𝑠 ≤ 5. Since

𝜆
𝑠
(𝑎, 𝑏) is monotone increasing in 𝑠, it is sufficient to prove

that the inequality

𝜆
5
(𝑎, 𝑏) ≤ 𝑆 (𝑎, 𝑏) (67)

holds for each 𝑎, 𝑏 ∈ R+.

Therefore, by the transformation given above, we get

log
𝜆
5

𝐴

= log[2
3

(1 + 𝑡)
6

+ (1 − 𝑡)
6

− 2

(1 + 𝑡)
5

+ (1 − 𝑡)
5

− 2
]

= log[ 2
15

15 + 15𝑡
2

+ 𝑡
4

2 + 𝑡2
]

≤ log[1 + 𝑡
2

+ 𝑡
4

/4

1 + 𝑡2/2
] = log(1 + 𝑡

2

2
)

=
𝑡
2

2
−
𝑡
4

8
+
𝑡
6

24
− ⋅ ⋅ ⋅

≤
𝑡
2

2
+
𝑡
4

12
+
𝑡
6

30
+ ⋅ ⋅ ⋅

=
1

2
((1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡))

= log 𝑆
𝐴
,

(68)

and the proof is done.
Further, we have to show that 𝜆

𝑠
(𝑎, 𝑏) > 𝑆(𝑎, 𝑏) for some

positive 𝑎, 𝑏 whenever 𝑠 > 5.
Indeed, since

(1 + 𝑡)
𝑠

+ (1 − 𝑡)
𝑠

− 2 = (
𝑠

2
) 𝑡
2

+ (
𝑠

4
) 𝑡
4

+ 𝑂 (𝑡
6

) , (69)

for 𝑠 > 5 and sufficiently small 𝑡, we get

𝜆
𝑠

𝐴
=
𝑠 − 1

𝑠 + 1

( 𝑠+1
2
) 𝑡
2

+ ( 𝑠+1
4
) 𝑡
4

+ 𝑂 (𝑡
6

)

(
𝑠

2
) 𝑡2 + (

𝑠

4
) 𝑡4 + 𝑂 (𝑡6)

=

1 + (𝑠 − 1) (𝑠 − 2) 𝑡
2

/12 + 𝑂 (𝑡
4

)

1 + (𝑠 − 2) (𝑠 − 3) 𝑡2/12 + 𝑂 (𝑡4)

= 1 + (
𝑠

6
−
1

3
) 𝑡
2

+ 𝑂 (𝑡
4

) .

(70)

Similarly,

𝑆

𝐴
= exp(1

2
((1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡)))

= exp(𝑡
2

2
+ 𝑂 (𝑡

4

)) = 1 +
𝑡
2

2
+ 𝑂 (𝑡

4

) .

(71)

Hence,

1

𝐴
(𝜆
𝑠
− 𝑆) =

1

6
(𝑠 − 5) 𝑡

2

+ 𝑂 (𝑡
4

) , (72)

and this expression is positive for 𝑠 > 5 and 𝑡 sufficiently
small, that is, 𝑎 sufficiently close to 𝑏.
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As for the part 8, applying the above transformation we
obtain

𝜆
𝑠
(𝑎, 𝑏)

𝑆 (𝑎, 𝑏)

=
𝑠 − 1

𝑠 + 1

(1 + 𝑡)
𝑠+1

+ (1 − 𝑡)
𝑠+1

− 2

(1 + 𝑡)
𝑠

+ (1 − 𝑡)
𝑠

− 2

× exp (−1
2
((1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡))) ,

(73)

where 0 < 𝑎 < 𝑏, 𝑡 = (𝑏 − 𝑎)/(𝑏 + 𝑎).
Since for 𝑠 > 5,

lim
𝑡→1
−

𝜆
𝑠

𝑆
=
𝑠 − 1

𝑠 + 1

2
𝑠

− 1

2𝑠 − 2
, (74)

and the last expression is less than one, it follows that the
inequality 𝑆(𝑎, 𝑏) < 𝜆

𝑠
(𝑎, 𝑏) cannot hold whenever 𝑏/𝑎 is

sufficiently large.
The rest of the proof is straightforward.
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We continue to adopt notations and methods used in the papers illustrated by Yang (2009, 2010)
to investigate the monotonicity properties of the ratio of mixed two-parameter homogeneous
means. As consequences of our results, the monotonicity properties of four ratios of mixed
Stolarsky means are presented, which generalize certain known results, and some known and new
inequalities of ratios of means are established.

1. Introduction

Since the Ky Fan [1] inequality was presented, inequalities of ratio of means have attracted
attentions of many scholars. Some known results can be found in [2–14]. Research for the
properties of ratio of bivariate means was also a hotspot at one time.

In this paper, we continue to adopt notations and methods used in the paper [13, 14]
to investigate the monotonicity properties of the functions Qif (i = 1, 2, 3, 4) defined by

Q1f
(
p
)
:=

g1f
(
p;a, b

)

g1f
(
p; c, d

) ,

Q2f
(
p
)
:=

g2f
(
p;a, b

)

g2f
(
p; c, d

) ,

Q3f
(
p
)
:=

g3f
(
p;a, b

)

g3f
(
p; c, d

) ,

Q4f
(
p
)
:=

g4f
(
p;a, b

)

g4f
(
p; c, d

) ,

(1.1)
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where

g1f
(
p
)
= g1f

(
p;a, b

)
:=
√
Hf

(
p, q
)
Hf

(
2k − p, q

)
, (1.2)

g2f
(
p
)
= g2f

(
p;a, b

)
:=
√
Hf

(
p, p +m

)
Hf

(
2k − p, 2k − p +m

)
, (1.3)

g3f
(
p
)
= g3f

(
p;a, b

)
:=
√
Hf

(
p, 2m − p

)
Hf

(
2k − p, 2m − 2k + p

)
, (1.4)

g4f
(
p
)
= g4f

(
p;a, b

)
:=
√
Hf

(
pr, ps

)
Hf

((
2k − p

)
r,
(
2k − p

)
s
)
, (1.5)

the q, r, s, k,m ∈ R, a, b, c, d ∈ R+ with b/a > d/c ≥ 1,Hf(p, q) is the so-called two-parameter
homogeneous functions defined by [15, 16]. For conveniences, we record it as follows.

Definition 1.1. Let f : R
2
+ \ {(x, x), x ∈ R+} → R+ be a first-order homogeneous continuous

functionwhich has first partial derivatives. Then,Hf : R
2×R

2
+ → R+ is called a homogeneous

function generated by f with parameters p and q ifHf is defined by for a/= b

Hf

(
p, q;a, b

)
=
(
f(ap, bp)
f(aq, bq)

)1(p−q)
, if pq

(
p − q

)
/= 0,

Hf

(
p, p;a, b

)
= exp

(
apfx(ap, bp) lna + bpfy(ap, bp) ln b

f(ap, bp)

)

, if p = q /= 0,

(1.6)

where fx(x, y) and fy(x, y) denote first-order partial derivatives with respect to first and
second component of f(x, y), respectively.

If limy→xf(x, y) exits and is positive for all x ∈ R+, then further define

Hf

(
p, 0;a, b

)
=
(
f(ap, bp)
f(1, 1)

)1/p

, if p /= 0, q = 0,

Hf

(
0, q;a, b

)
=
(
f(aq, bq)
f(1, 1)

)1/q

, if p = 0, q /= 0,

Hf(0, 0;a, b) = afx(1,1)/f(1,1)bfy(1,1)/f(1,1), if p = q = 0,

(1.7)

and Hf(p, q;a, a) = a.

Remark 1.2. Witkowski [17] proved that if the function (x, y) → f(x, y) is a symmetric and
first-order homogeneous function, then for all p, q Hf(p, q;a, b) is amean of positive numbers
a and b if and only if f is increasing in both variables on R+. In fact, it is easy to see that the
condition “f(x, y) is symmetric” can be removed.

If Hf(p, q;a, b) is a mean of positive numbers a and b, then it is called two-parameter
homogeneous mean generated by f .

For simpleness, Hf(p, q;a, b) is also denoted byHf(p, q) or Hf(a, b).
The two-parameter homogeneous function Hf(p, q;a, b) generated by f is very

important because it can generates many well-known means. For example, substituting
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L = L(x, y) = (x − y)/(lnx − lny) if x, y > 0 with x /=y and L(x, x) = x for f yields Stolarsky
means HL(p, q;a, b) = Sp,q(a, b) defined by

Sp,q(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q

p

ap − bp

aq − bq

)1/(p−q)
, if pq

(
p − q

)
/= 0,

L1/p(ap, bp), if p /= 0, q = 0,

L1/q(aq, bq), if q /= 0, p = 0,

I1/p(ap, bp), if p = q /= 0,
√
ab, if p = q = 0,

(1.8)

where I(x, y) = e−1(xx/yy)1/(x−y) if x, y > 0, with x /=y, and I(x, x) = x is the identric
(exponential) mean (see [18]). Substituting A = A(x, y) = (x + y)/2 for f yields Gini means
HA(p, q;a, b) = Gp,q(a, b) defined by

Gp,q(a, b) =

⎧
⎪⎨

⎪⎩

(
ap + bp

aq + bq

)1/(p−q)
, if p /= q,

Z1/p(ap, bp), if p = q,

(1.9)

where Z(a, b) = aa/(a+b)bb/(a+b) (see [19]).
As consequences of our results, the monotonicity properties of four ratios of mixed

Stolarskymeans are presented, which generalize certain known results, and some known and
new inequalities of ratios of means are established.

2. Main Results and Proofs

In [15, 16, 20], two decision functions play an important role, that are,

I = I
(
x, y
)
=

∂2 ln f
(
x, y
)

∂x∂y
=
(
ln f
(
x, y
))

xy =
(
ln f
)
xy,

J = J
(
x, y
)
=
(
x − y

)∂(xI)
∂x

=
(
x − y

)
(xI)x.

(2.1)

In [14], it is important to another key decision function defined by

T3
(
x, y
)
:= −xy(xI)xln

3
(
x

y

)
, where I =

(
ln f
)
xy, x = at, y = bt. (2.2)

Note that the function T defined by

T(t) := ln f
(
at, bt

)
, t /= 0 (2.3)
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has well properties (see [15, 16]). And it has shown in [14, (3.4)], [16, Lemma 4] the relation
among T ′′′(t), J(x, y) and T3(x, y):

T ′′′(t) = t−3T3
(
x, y
)
, where x = at, y = bt, (2.4)

T ′′′(t) = −Ct−3J
(
x, y
)
, where C = xy

(
x − y

)−1(lnx − lny
)3

> 0. (2.5)

Moreover, it has revealed in [14, (3.5)] that

T3
(
x, y
)
= T3

(
x

y
, 1
)

= T3

(
1,

y

x

)
. (2.6)

Now, we observe the monotonicities of ratio of certain mixed means defined by (1.1).

Theorem 2.1. Suppose that f : R+ × R+ → R+ is a symmetric, first-order homogenous, and three-
time differentiable function, andT3(1, u) strictly increase (decrease) with u > 1 and decrease (increase)
with 0 < u < 1. Then, for any a, b, c, d > 0 with b/a > d/c ≥ 1 and fixed q ≥ 0, k ≥ 0, but q, k are
not equal to zero at the same time,Q1f is strictly increasing (decreasing) in p on (k,∞) and decreasing
(increasing) on (−∞, k).

The monotonicity of Q1f is converse if q ≤ 0, k ≤ 0, but q, k are not equal to zero at the same
time.

Proof. Since f(x, y) > 0 for (x, y) ∈ R+ × R+, so T ′(t) is continuous on [p, q] or [q, p] for
p, q ∈ R, then (2.13) in [13] holds. Thus we have

ln g1f
(
p
)
=

1
2
lnHf

(
p, q
)
+
1
2
lnHf

(
2k − p, q

)
=

1
2

∫1

0
T ′(t11)dt +

1
2

∫1

0
T ′(t12)dt, (2.7)

where

t12 = tp + (1 − t)q, t11 = t
(
2k − p

)
+ (1 − t)q. (2.8)

Partial derivative leads to

(
ln g1f

(
p
))′ =

1
2

∫1

0
tT ′′(t12)dt −

1
2

∫1

0
tT ′′(t11)dt

=
1
2

∫1

0
tT ′′(|t12|)dt −

1
2

∫1

0
tT ′′(|t11|)dt

(
by[13], (2.7)

)

=
1
2

∫1

0
t

∫ |t12|

|t11|
T ′′′(v)dv dt,

(2.9)
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and then

(
lnQ1f

(
p
))′ =

(
ln g1f

(
p;a, b

))′ −
(
ln g1f

(
p; c, d

))′

=
1
2

∫1

0
t

∫ |t12|

|t11|
T ′′′(v)dv dt − 1

2

∫1

0
t

∫ |t12|

|t11|
T ′′′(v; c, d)dv dt

=
∫1

0
t(|t12| − |t11|)

∫ |t12|
|t11| (T

′′′(v;a, b) − T ′′′(v; c, d))dv

|t12| − |t11|
dt

:=
∫1

0
t(|t12| − |t11|)h(|t11|, |t12|)dt,

(2.10)

where

h
(
x, y
)
:=

⎧
⎪⎨

⎪⎩

∫y
x (T

′′′(v;a, b) − T ′′′(v; c, d))dv
y − x

, if x /=y,

T ′′′(x;a, b) − T ′′′(x; c, d), if x = y.

(2.11)

Since T3(1, u) strictly increase (decrease) with u > 1 and decrease (increase) with 0 < u < 1,
(2.4) and (2.6) together with b/a > d/c ≥ 1 yield

T ′′′(v;a, b) − T ′′′(v; c, d) = v−3(T3(av, bv) − T3(cv, dv))

= v−3
(
T3

(
1,
(
b

a

)v)
− T3

(
1,
(
d

c

)v))
> (<)0, for v > 0,

(2.12)

and therefore h(x, y) > (<)0 for x, y > 0. Thus, in order to prove desired result, it suffices to
determine the sign of (|t12| − |t11|). In fact, if q ≥ 0, k ≥ 0, then for t ∈ [0, 1]

|t12| − |t11| =
t212 − t211

|t12| + |t11|
= 4t

q(1 − t) + kt

t12 + t11

(
p − k

)
=

{
> 0, if p > k,

< 0, if p < k.
(2.13)

It follows that

(
lnQ1f

(
p
))′ =

{
> (<)0, if p > k,

< (>)0, if p < k.
(2.14)

Clearly, the monotonicity of Q1f is converse if q ≤ 0, k ≤ 0.
This completes the proof.

Theorem 2.2. The conditions are the same as those of Theorem 2.1. Then, for any a, b, c, d > 0 with
b/a > d/c ≥ 1 and fixed m, k with k ≥ 0, k +m ≥ 0, but m, k are not equal to zero at the same time,
Q2f is strictly increasing (decreasing) in p on (k,∞) and decreasing (increasing) on (−∞, k).
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The monotonicity of Q2f is converse if k ≤ 0 and k +m ≤ 0, but m, k are not equal to zero at
the same time.

Proof. By (2.13) in [13]we have

ln g2f
(
p
)
=

1
2
lnHf

(
p, p +m

)
+
1
2
lnHf

(
2k − p, 2k − p +m

)

=
1
2

∫1

0
T ′(t22)dt +

1
2

∫1

0
T ′(t21)dt,

(2.15)

where

t22 = tp + (1 − t)
(
p +m

)
, t21 = t

(
2k − p

)
+ (1 − t)

(
2k − p +m

)
. (2.16)

Direct calculation leads to

(
ln g2f

(
p
))′ =

1
2

∫1

0
T ′′(t22)dt −

1
2

∫1

0
T ′′(t21)dt =

1
2

∫1

0

∫ |t22|

|t21|
T ′′′(v)dv dt, (2.17)

and then

(
lnQ2f

(
p
))′ =

(
ln g2f

(
p;a, b

))′ −
(
ln g2f

(
p; c, d

))′

=
1
2

∫1

0

∫ |t22|

|t21|
T ′′′(v;a, b)dv dt − 1

2

∫1

0

∫ |t22|

|t21|
T ′′′(v; c, d)dv dt

=
1
2

∫1

0
(|t22| − |t21|)h(|t21|, |t22|)dt,

(2.18)

where h(x, y) is defined by (2.11). As shown previously, h(x, y) > (<)0 for x, y > 0 if T3(1, u)
strictly increase (decrease) with u > 1 and decrease (increase) with 0 < u < 1; it remains to
determine the sign of (|t22| − |t21|). It is easy to verify that if k ≥ 0 and k +m ≥ 0, then

|t22| − |t21| =
t222 − t221
|t22| + |t21|

= 4
k +m(1 − t)
|t22| + |t21|

(
p − k

)
=

{
> 0, if p > k,

< 0, if p < k.
(2.19)

Thus, we have

(
lnQ2f

(
p
))′ =

{
> (<)0, if p > k,

< (>)0, if p < k.
(2.20)

Clearly, the monotonicity of Q2f is converse if k ≤ 0 and k +m ≤ 0.
The proof ends.
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Theorem 2.3. The conditions are the same as those of Theorem 2.1. Then, for any a, b, c, d > 0 with
b/a > d/c ≥ 1 and fixed m > 0, 0 ≤ k ≤ 2m, Q3f is strictly increasing (decreasing) in p on (k,∞)
and decreasing (increasing) on (−∞, k).

The monotonicity of Q2f is converse ifm < 0, 2m ≤ k ≤ 0.

Proof. From (2.13) in [13], it is derived that

ln g3f
(
p
)
=

1
2
lnHf

(
p, 2m − p

)
+
1
2
lnHf

(
2k − p, 2m − 2k + p

)

=
1
2

∫1

0
T ′(t32)dt +

1
2

∫1

0
T ′(t31)dt,

(2.21)

where

t32 =
(
tp + (1 − t)

(
2m − p

))
, t31 =

(
t
(
2k − p

)
+ (1 − t)

(
2m − 2k + p

))
. (2.22)

Simple calculation yields

(
ln g3f

(
p
))′ =

1
2

∫1

0
(2t − 1)

(
T ′′(t32) − T ′′(t31)

)
dt =

1
2

∫1

0
(2t − 1)

∫ |t32|

|t31|
T ′′′(v;a, b)dv dt.

(2.23)

Hence,

(
lnQ3f

(
p
))′ =

(
ln g3f

(
p;a, b

))′ −
(
ln g3f

(
p; c, d

))′

=
1
2

∫1

0
(2t − 1)

∫ |t32|

|t31|

(
T ′′′(v;a, b) − T ′′′(v; c, d)

)
dv dt

=
1
2

∫1

0
(2t − 1)(|t32| − |t31|)h(|t31|, |t32|)dt,

(2.24)

where h(x, y) is defined by (2.11). It has shown that h(x, y) > (<)0 for x, y > 0 if T3(1, u)
strictly increase (decrease) with u > 1 and decrease (increase) with 0 < u < 1, and we have
also to check the sign of (2t− 1)(|t32| − |t31|). Easy calculation reveals that ifm > 0, 0 ≤ k ≤ 2m,
then

(2t − 1)(|t32| − |t31|) = (2t − 1)

(
t232 − t231

)

|t32| + |t31|

= 4(2t − 1)2
tk + (1 − t)(2m − k)

|t32| + |t31|
(
p − k

)

=

{
> 0, if p > k,

< 0, if p < k,

(2.25)
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which yields

(
lnQ3f

(
p
))′ =

{
> (<)0, if p > k,

< (>)0, if p < k.
(2.26)

It is evident that the monotonicity of Q3f is converse if m < 0, 2m ≤ k ≤ 0.
Thus the proof is complete.

Theorem 2.4. The conditions are the same as those of Theorem 2.1. Then, for any a, b, c, d > 0 with
b/a > d/c ≥ 1 and fixed k, r, s ∈ R with r + s /= 0, Q4f is strictly increasing (decreasing) in p on
(k,∞) and decreasing (increasing) on (−∞, k) if k(r + s) > 0.

The monotonicity of Q4f is converse if k(r + s) < 0.

Proof. By (2.13) in [13], lnHf(pr, ps) can be expressed in integral form

lnHf

(
pr, ps

)
=

⎧
⎨

⎩

1
r − s

∫ r
s T

′(pt
)
dt, if r /= s,

T ′(pr
)
, if r = s.

(2.27)

The case r = s /= 0 has no interest since it can come down to the case of m = 0 in Theorem 2.2.
Therefore, we may assume that r /= s. We have

ln g4f
(
p
)
= ln

√
Hf

(
pr, ps

)
Hf

((
2k − p

)
r,
(
2k − p

)
s
)

=
1
2

1
r − s

∫ r

s

T ′(pt
)
dt +

1
2

1
r − s

∫ r

s

T ′((2k − p
)
t
)
dt,

(2.28)

and then

(
ln g4f

(
p
))′ =

1
2

1
r − s

∫ r

s

tT ′′(pt
)
dt − 1

2
1

r − s

∫ r

s

tT ′′((2k − p
)
t
)
dt

=
1
2

1
r − s

∫ r

s

t
(
T ′′(pt

)
− T ′′((2k − p

)
t
))
.

(2.29)

Note that T ′′(t) is even (see [13, (2.7)]) and so t(T ′′(pt) − T ′′((2k − p)t)) is odd, then make use
of Lemma 3.3 in [13], (ln g4f(p))

′ can be expressed as

(
ln g4f

(
p
))′ =

1
2

r + s

|r| − |s|

∫ |r|

|s|
t
(
T ′′(∣∣pt

∣∣) − T ′′(∣∣(2k − p
)
t
∣∣))dt

=
1
2

r + s

|r| − |s|

∫ |r|

|s|
t

∫ |t42|

|t41|
T ′′′(v)dv dt,

(2.30)
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where

t42 = pt, t41 =
(
2k − p

)
t. (2.31)

Hence,

(
lnQ4f

(
p
))′ =

(
ln g4f

(
p;a, b

))′ −
(
ln g4f

(
p; c, d

))′

=
1
2

r + s

|r| − |s|

∫ |r|

|s|
t

∫ |t42|

|t41|

(
T ′′′(v;a, b) − T ′′′(v; c, d)

)
dv dt

=
1
2

r + s

|r| − |s|

∫ |r|

|s|
t(|t42| − |t41|)h(|t41|, |t42|)dt,

(2.32)

where h(x, y) is defined by (2.11). We have shown that h(x, y) > (<)0 for x, y > 0 if T3(1, u)
strictly increase (decrease) with u > 1 and decrease (increase) with 0 < u < 1, and we also
have

sgn(|t42| − |t41|) = sgn
(
t242 − t241

)
= sgn(k) sgn

(
p − k

)
. (2.33)

It follows that

sgnQ′
4f

(
p
)
= sgn(r + s) sgn(k) sgn

(
p − k

)
sgnh(|t41|, |t42|)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

> (<)0, if k(r + s) > 0, p > k,

< (>)0, if k(r + s) > 0, p < k,

< (>)0, if k(r + s) < 0, p > k,

> (<)0, if k(r + s) < 0, p < k.

(2.34)

This proof is accomplished.

3. Applications

As shown previously, Sp,q(a, b) = HL(p, q;a, b), where L = L(x, y) is the logarithmic mean.
Also, it has been proven in [14] thatT′

3(1, u) < 0 if u > 1 andT′
3(1, u) > 0 if 0 < u < 1. From the

applications of Theorems 2.1–2.4, we have the following.

Corollary 3.1. Let a, b, c, d > 0 with b/a > d/c ≥ 1. Then, the following four functions are all
strictly decreasing (increasing) on (k,∞) and increasing (decreasing) on (−∞, k):

(i) Q1L is defined by

Q1L
(
p
)
=

√
Sp,q(a, b)S2k−p,q(a, b)

√
Sp,q(c, d)S2k−p,q(c, d)

, (3.1)

for fixed q ≥ (≤)0, k ≥ (≤)0, but q, k are not equal to zero at the same time,
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(ii) Q2L is defined by

Q2L
(
p
)
=

√
Sp,p+m(a, b)S2k−p,2k−p+m(a, b)

√
Sp,p+m(c, d)S2k−p,2k−p+m(c, d)

, (3.2)

for fixed m, k with k ≥ (≤)0 and k +m ≥ (≤)0, but m, k are not equal to zero at the same
time,

(iii) Q3L is defined by

Q3L
(
p
)
=

√
Sp,2m−p(a, b)S2k−p,2m−2k+p(a, b)

√
Sp,2m−p(c, d)S2k−p,2m−2k+p(c, d)

, (3.3)

for fixed m > (<)0, k ∈ [0, 2m] ([2m, 0]).
(iv) Q4L is defined by

Q4L
(
p
)
=

√
Spr,ps(a, b)S(2k−p)r,(2k−p)s(a, b)

√
Spr,ps(c, d)S(2k−p)r,(2k−p)s(c, d)

, (3.4)

for fixed k, r, s ∈ R with k(r + s) > (<)0.

Remark 3.2. Letting in the first result of Corollary 3.1, q = k yields Theorem 3.4 in [13] since√
Sp,kS2k−p,k = Sp,2k−p. Letting q = 1, k = 0 yields

G(a, b)
G(c, d)

= Q1L(∞) <

√
Sp,1(a, b)S−p,1(a, b)

√
Sp,1(c, d)S−p,1(c, d)

< Q1L(0) =
L(a, b)
L(c, d)

. (3.5)

Inequalities (3.5) in the case of d = c were proved by Alzer in [21]. By letting q = 1, k = 1/2
from Q1L(1/2) > Q1L(1) > Q1L(2), we have

A(a, b) +G(a, b)
A(c, d) +G(c, d)

>

√
L(a, b)I(a, b)

√
L(c, d)I(c, d)

>

√
A(a, b)G(a, b)

√
A(c, d)G(c, d)

. (3.6)

Inequalities (3.6) in the case of d = c are due to Alzer [22].

Remark 3.3. Letting in the second result of Corollary 3.1, m = 1, k = 0 yields Cheung and Qi’s
result (see [23, Theorem 2]). And we have

G(a, b)
G(c, d)

= Q2L(∞) <

√
Sp,p+1(a, b)S−p,−p+1(a, b)

√
Sp,p+1(c, d)S−p,−p+1(c, d)

< Q2L(0) =
L(a, b)
L(c, d)

. (3.7)

When d = c, inequalities (3.7) are changed as Alzer’s ones given in [24].
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Remark 3.4. In the third result of Corollary 3.1, letting k = m also leads to Theorem 3.4 in [13].
Putm = 1/2, k = 1/4. Then from Q3L(1/4) > Q3L(1/2), we obtain a new inequality

He1/2(a, b)
He1/2(c, d)

>

√
L(a, b)I1/2(a, b)

√
L(c, d)I1/2(c, d)

. (3.8)

Puttingm = 1/2, k = 1/3 leads to another new inequality

A1/3(a, b)
A1/3(c, d)

>

√
S1/6,5/6(a, b)I1/2(a, b)

√
S1/6,5/6(c, d)I1/2(c, d)

. (3.9)

Remark 3.5. Letting in the third result of Corollary 3.1, k = 1/2 and (r, s) = (1, 0), (1, 1), (2, 1),
and we deduce that all the following three functions

p −→

√
Lp(a, b)L1−p(a, b)

√
Lp(c, d)L1−p(c, d)

, p −→

√
Ip(a, b)I1−p(a, b)

√
Ip(c, d)I1−p(c, d)

, p −→

√
Ap(a, b)A1−p(a, b)

√
Ap(c, d)A1−p(c, d)

,

(3.10)

are strictly decreasing on (1/2,∞) and increasing on (−∞, 1/2), where Lp = L1/p(ap, bp), Ip =
I1/p(ap, bp), and Ap = A1/p(ap, bp) are the p-order logarithmic, identric (exponential), and

power mean, respectively, particularly, so are the functions
√
LpL1−p,

√
IpI1−p,

√
ApA1−p.

4. Other Results

Let d = c in Theorems 2.1–2.4. Then, Hf(p, q; c, d) = c and T ′′′(t; c, c) = 0. From the their
proofs, it is seen that the condition “T3(1, u) strictly increases (decreases) with u > 1 and
decreases (increases) with 0 < u < 1” can be reduce to “T ′′′(v) > (<)0 for v > 0”, which is
equivalent with J = (x−y)(xI)x < (>)0, where I = (ln f)xy, by (2.4). Thus, we obtain critical
theorems for the monotonicities of gif , i = 1 − 4, defined as (1.2)–(1.5).

Theorem 4.1. Suppose that f : R+×R+ → R+ is a symmetric, first-order homogenous, and three-time
differentiable function and J = (x − y)(xI)x < (>)0, where I = (ln f)xy. Then, for a, b > 0 with
a/= b, the following four functions are strictly increasing (decreasing) in p on (k,∞) and decreasing
(increasing) on (−∞, k):

(i) g1f is defined by (1.2), for fixed q, k ≥ 0, but q, k are not equal to zero at the same time;

(ii) g2f is defined by (1.3), for fixed m, k with k ≥ 0 and k +m ≥ 0, but m, k are not equal to
zero at the same time;

(iii) g3f is defined by (1.4), for fixed m > 0 and 0 ≤ k ≤ 2m;

(iv) g4f is defined by (1.5), for fixed k, r, s ∈ R with k(r + s) > 0.

If f is defined on R
2
+ \ {(x, x), x ∈ R+}, then T ′(t) may be not continuous at t = 0, and

(2.13) in [13] may not hold for p, q ∈ R but must be hold for p, q ∈ R+. And then, we easily
derive the following from the proofs of Theorems 2.1–2.4.



12 International Journal of Mathematics and Mathematical Sciences

Theorem 4.2. Suppose that f : R
2
+ \ {(x, x), x ∈ R+} → R+ is a symmetric, first-order homogenous

and three-time differentiable function and J = (x − y)(xI)x < (>)0, where I = (ln f)xy. Then for
a, b > 0 with a/= b the following four functions are strictly increasing (decreasing) in p on (k, 2k) and
decreasing (increasing) on (0, k):

(i) g1f is defined by (1.2), for fixed q, k > 0;

(ii) g2f is defined by (1.3), for fixed m, k with k > 0 and k +m > 0;

(iii) g3f is defined by (1.4), for fixed m > 0 and 0 ≤ k ≤ 2m;

(iv) g4f is defined by (1.5), for fixed k, r, s > 0.

If we substitute L,A, and I for f , where L,A, and I denote the logarithmic, arithmetic,
and identric (exponential) mean, respectively, then from Theorem 4.1, we will deduce some
known and new inequalities for means. Similarly, letting in Theorem 4.2 f(x, y) = D(x, y) =
|x−y|,K(x, y) = (x+y)| ln(x/y)|, where x, y > 0 with x /=y, we will obtain certain companion
ones of those known and new ones. Here no longer list them.

Disclosure

This paper is in final form and no version of it will be submitted for publication elsewhere.
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In this paper, for the difference of famous means discussed by Taneja in 2005, we study the Schur-
geometric convexity in (0,∞) × (0,∞) of the difference between them. Moreover some inequalities
related to the difference of those means are obtained.

1. Introduction

In 2005, Taneja [1] proved the following chain of inequalities for the binary means for (a, b) ∈
R2

+ = (0,∞) × (0,∞):

H(a, b) ≤ G(a, b) ≤ N1(a, b) ≤ N3(a, b) ≤ N2(a, b) ≤ A(a, b) ≤ S(a, b), (1.1)

where

A(a, b) =
a + b

2
,

G(a, b) =
√
ab,

H(a, b) =
2ab
a + b

,

N1(a, b) =

(√
a +

√
b

2

)2

=
A(a, b) +G(a, b)

2
,

(1.2)
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N3(a, b) =
a +

√
ab + b

3
=

2A(a, b) +G(a, b)
3

,

N2(a, b) =

(√
a +

√
b

2

)⎛

⎝

√
a + b

2

⎞

⎠,

S(a, b) =

√
a2 + b2

2
.

(1.3)

The meansA,G,H, S, N1 andN3 are called, respectively, the arithmetic mean, the geometric
mean, the harmonic mean, the root-square mean, the square-root mean, and Heron’s mean.
TheN2 one can be found in Taneja [2, 3].

Furthermore Taneja considered the following difference of means:

MSA(a, b) = S(a, b) −A(a, b),

MSN2(a, b) = S(a, b) −N2(a, b),

MSN3(a, b) = S(a, b) −N3(a, b),

MSN1(a, b) = S(a, b) −N1(a, b),

MSG(a, b) = S(a, b) −G(a, b),

MSH(a, b) = S(a, b) −H(a, b),

MAN2(a, b) = A(a, b) −N2(a, b),

MAG(a, b) = A(a, b) −G(a, b),

MAH(a, b) = A(a, b) −H(a, b),

MN2N1(a, b) = N2(a, b) −N1(a, b),

MN2G(a, b) = N2(a, b) −G(a, b)

(1.4)

and established the following.

Theorem A. The difference of means given by (1.4) is nonnegative and convex in R2
+ = (0,∞) ×

(0,∞).

Further, using Theorem A, Taneja proved several chains of inequalities; they are
refinements of inequalities in (1.1).
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Theorem B. The following inequalities among the mean differences hold:

MSA(a, b) ≤
1
3
MSH(a, b) ≤

1
2
MAH(a, b) ≤

1
2
MSG(a, b) ≤ MAG(a, b), (1.5)

1
8
MAH(a, b) ≤ MN2N1(a, b) ≤

1
3
MN2G(a, b) ≤

1
4
MAG(a, b) ≤ MAN2(a, b), (1.6)

MSA(a, b) ≤
4
5
MSN2(a, b) ≤ 4MAN2(a, b), (1.7)

MSH(a, b) ≤ 2MSN1(a, b) ≤
3
2
MSG(a, b), (1.8)

MSA(a, b) ≤
3
4
MSN3(a, b) ≤

2
3
MSN1(a, b). (1.9)

For the difference of means given by (1.4), we study the Schur-geometric convexity of
difference between these differences in order to further improve the inequalities in (1.1). The
main result of this paper reads as follows.

Theorem I. The following differences are Schur-geometrically convex in R2
+ = (0,∞) × (0,∞):

DSH−SA(a, b) =
1
3
MSH(a, b) −MSA(a, b),

DAH−SH(a, b) =
1
2
MAH(a, b) −

1
3
MSH(a, b),

DSG−AH(a, b) = MSG(a, b) −MAH(a, b),

DAG−SG(a, b) = MAG(a, b) −
1
2
MSG(a, b),

DN2N1−AH(a, b) = MN2N1(a, b) −
1
8
MAH(a, b),

DN2G−N2N1(a, b) =
1
3
MN2G(a, b) −MN2N1(a, b),

DAG−N2G(a, b) =
1
4
MAG(a, b) −

1
3
MN2G(a, b),

DAN2−AG(a, b) = MAN2(a, b) −
1
4
MAG(a, b),

DSN2−SA(a, b) =
4
5
MSN2(a, b) −MSA(a, b),

DAN2−SN2(a, b) = 4MAN2(a, b) −
4
5
MSN2(a, b),

DSN1−SH(a, b) = 2MSN1(a, b) −MSH(a, b),

DSG−SN1(a, b) =
3
2
MSG(a, b) − 2MSN1(a, b),

(1.10)
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DSN3−SA(a, b) =
3
4
MSN3(a, b) −MSA(a, b),

DSN1−SN3(a, b) =
2
3
MSN1(a, b) −

3
4
MSN3(a, b).

(1.11)

The proof of this theorem will be given in Section 3. Applying this result, in Section 4,
we prove some inequalities related to the considered differences of means. Obtained
inequalities are refinements of inequalities (1.5)–(1.9).

2. Definitions and Auxiliary Lemmas

The Schur-convex function was introduced by Schur in 1923, and it has many important
applications in analytic inequalities, linear regression, graphs and matrices, combinatorial
optimization, information-theoretic topics, Gamma functions, stochastic orderings, reliability,
and other related fields (cf. [4–14]).

In 2003, Zhang first proposed concepts of “Schur-geometrically convex function”
which is extension of “Schur-convex function” and established corresponding decision
theorem [15]. Since then, Schur-geometric convexity has evoked the interest of many
researchers and numerous applications and extensions have appeared in the literature (cf.
[16–19]).

In order to prove the main result of this paper we need the following definitions and
auxiliary lemmas.

Definition 2.1 (see [4, 20]). Let x = (x1, . . . , xn) ∈ R
n and y = (y1, . . . , yn) ∈ R

n.

(i) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤
∑k

i=1 y[i] for k =
1, 2, . . . , n − 1 and

∑n
i=1 xi =

∑n
i=1 yi, where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are

rearrangements of x and y in a descending order.

(ii) Ω ⊆ R
n is called a convex set if (αx1 + βy1, . . . , αxn + βyn) ∈ Ω for every x and y ∈ Ω,

where α and β ∈ [0, 1] with α + β = 1.

(iii) Let Ω ⊆ R
n. The function ϕ: Ω → R is said to be a Schur-convex function on Ω if

x ≺ y onΩ implies ϕ(x) ≤ ϕ(y). ϕ is said to be a Schur-concave function onΩ if and
only if −ϕ is Schur-convex.

Definition 2.2 (see [15]). Let x = (x1, . . . , xn) ∈ R
n and y = (y1, . . . , yn) ∈ R

n
+.

(i) Ω ⊆ R
n
+ is called a geometrically convex set if (xα

1y
β

1 , . . . , x
α
ny

β
n) ∈ Ω for all x,y ∈ Ω

and α,β ∈ [0, 1] such that α + β = 1.

(ii) Let Ω ⊆ R
n
+. The function ϕ: Ω → R+ is said to be Schur-geometrically convex

function on Ω if (lnx1, . . . , lnxn) ≺ (lny1, . . . , lnyn) on Ω implies ϕ(x) ≤ ϕ(y). The
function ϕ is said to be a Schur-geometrically concave on Ω if and only if −ϕ is
Schur-geometrically convex.

Definition 2.3 (see [4, 20]). (i) The set Ω ⊆ R
n is called symmetric set, if x ∈ Ω implies Px ∈ Ω

for every n × n permutation matrix P .
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(ii) The function ϕ : Ω → R is called symmetric if, for every permutation matrix P ,
ϕ(Px) = ϕ(x) for all x ∈ Ω.

Lemma 2.4 (see [15]). Let Ω ⊆ R
n
+ be a symmetric and geometrically convex set with a nonempty

interiorΩ0. Let ϕ : Ω → R+ be continuous onΩ and differentiable inΩ0. If ϕ is symmetric onΩ and

(lnx1 − lnx2)
(
x1

∂ϕ

∂x1
− x2

∂ϕ

∂x2

)
≥ 0 (≤ 0) (2.1)

holds for any x = (x1, . . . , xn) ∈ Ω0, then ϕ is a Schur-geometrically convex (Schur-geometrically
concave) function.

Lemma 2.5. For (a, b) ∈ R2
+ = (0,∞) × (0,∞) one has

1 ≥ a + b
√
2(a2 + b2)

≥ 1
2
+

2ab

(a + b)2
, (2.2)

a + b
√
2(a2 + b2)

− ab

(a + b)2
≤ 3

4
, (2.3)

3
2
≥

√
a + b

√
2
(√

a +
√
b
) +

√
a +

√
b

√
2
√
a + b

≥ 5
4
+

ab

(a + b)2
. (2.4)

Proof. It is easy to see that the left-hand inequality in (2.2) is equivalent to (a − b)2 ≥ 0, and
the right-hand inequality in (2.2) is equivalent to

√
2(a2 + b2) − (a + b)
√
2(a2 + b2)

≤ (a + b)2 − 4ab

2(a + b)2
, (2.5)

that is,

(a − b)2

2(a2 + b2) +
√
2(a2 + b2)(a + b)

≤ (a − b)2

2(a + b)2
. (2.6)

Indeed, from the left-hand inequality in (2.2) we have

2
(
a2 + b2

)
+
√
2(a2 + b2)(a + b) ≥ 2

(
a2 + b2

)
+ (a + b)2 ≥ 2(a + b)2, (2.7)

so the right-hand inequality in (2.2) holds.
The inequality in (2.3) is equivalent to

√
2(a2 + b2) − (a + b)
√
2(a2 + b2)

≥ (a − b)2

4(a + b)2
. (2.8)
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Since

√
2(a2 + b2) − (a + b)
√
2(a2 + b2)

=
2
(
a2 + b2

)
− (a + b)2

√
2(a2 + b2)

(√
2(a2 + b2) + (a + b)

)

=
(a − b)2

2(a2 + b2) + (a + b)
√
2(a2 + b2)

,

(2.9)

so it is sufficient prove that

2
(
a2 + b2

)
+ (a + b)

√
2(a2 + b2) ≤ 4(a + b)2, (2.10)

that is,

(a + b)
√
2(a2 + b2) ≤ 2

(
a2 + b2 + 4ab

)
, (2.11)

and, from the left-hand inequalities in (2.2), we have

(a + b)
√
2(a2 + b2) ≤ 2

(
a2 + b2

)
≤ 2
(
a2 + b2 + 4ab

)
, (2.12)

so the inequality in (2.3) holds.
Notice that the functions in the inequalities (2.4) are homogeneous. So, without loss of

generality, we may assume
√
a +

√
b = 1, and set t =

√
ab. Then 0 < t ≤ 1/4 and (2.4) reduces

to

3
2
≥

√
1 − 2t√
2

+
1√

2
√
1 − 2t

≥ 5
4
+

t2

(1 − 2t)2
. (2.13)

Squaring every side in the above inequalities yields

9
4
≥ 1 − 2t

2
+

1
2 − 4t

+ 1 ≥ 25
16

+
t4

(1 − 2t)4
+

5t2

2(1 − 2t)2
. (2.14)

Reducing to common denominator and rearranging, the right-hand inequality in (2.14)
reduces to

(1 − 2t)
(
16t2(2t − 1)2 + (1/8)(16t − 7)2 + (7/8)

)

16(2t − 1)4
≥ 0, (2.15)

and the left-hand inequality in (2.14) reduces to
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2(1 − 2t)2 + 2 − 5(1 − 2t)
2(1 − 2t)

= −1 + 2t
2

≤ 0, (2.16)

so two inequalities in (2.4) hold.

Lemma 2.6 (see [16]). Let a ≤ b, u(t) = ta + (1 − t)b, v(t) = tb + (1 − t)a. If 1/2 ≤ t2 ≤ t1 ≤ 1 or
0 ≤ t1 ≤ t2 ≤ 1/2, then

(
a + b

2
,
a + b

2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (a, b). (2.17)

3. Proof of Main Result

Proof of Theorem I. Let (a, b) ∈ R2
+.

(1) For

DSH−SA(a, b) =
1
3
MSH(a, b) −MSA(a, b) =

a + b

2
− 2ab
3(a + b)

− 2
3

√
a2 + b2

2
, (3.1)

we have

∂DSH−SA(a, b)
∂a

=
1
2
− 2b2

3(a + b)2
− 2
3

a
√
2(a2 + b2)

,

∂DSH−SA(a, b)
∂b

=
1
2
− 2a2

3(a + b)2
− 2
3

b
√
2(a2 + b2)

,

(3.2)

whence

Λ := (lna − ln b)
(
a
∂DSH−SA(a, b)

∂a
− b

∂DSH−SA(a, b)
∂b

)

= (a − b)(lna − ln b)

(
1
2
+

2ab

3(a + b)2
− 2
3

a + b
√
2(a2 + b2)

)

.

(3.3)

From (2.3)we have

1
2
+

2ab

3(a + b)2
− 2
3

a + b
√
2(a2 + b2)

≥ 0, (3.4)

which impliesΛ ≥ 0 and, by Lemma 2.4, it follows thatDSH−SA is Schur-geometrically convex
in R2

+.
(2) For

DAH−SH(a, b) =
1
2
MAH(a, b) − 1

3
MSH(a, b) =

a + b

4
− ab

3(a + b)
− 1
3

√
a2 + b2

2
. (3.5)
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To prove that the functionDAH−SH is Schur-geometrically convex in R2
+ it is enough to

notice that DAH−SH(a, b) = (1/2)DSH−SA(a, b).
(3) For

DSG−AH(a, b) = MSG(a, b) −MAH(a, b) =

√
a2 + b2

2
−
√
ab − a + b

2
+

2ab
a + b

, (3.6)

we have

∂DSG−AH(a, b)
∂a

=
a

√
2(a2 + b2)

− b

2
√
ab

− 1
2
+

2b2

(a + b)2
,

∂DSG−AH(a, b)
∂b

=
b

√
2(a2 + b2)

− a

2
√
ab

− 1
2
+

2a2

(a + b)2
,

(3.7)

and then

Λ := (lna − ln b)
(
a
∂DSH−SA(a, b)

∂a
− b

∂DSH−SA(a, b)
∂b

)

= (a − b)(lna − ln b)

(
a + b

√
2(a2 + b2)

− 1
2
− 2ab

(a + b)2

)

.

(3.8)

From (2.2) we have Λ ≥ 0, so by Lemma 2.4, it follows that DSH−SA is Schur-
geometrically convex in R2

+.
(4) For

DAG−SG(a, b) = MAG(a, b) −
1
2
MSG(a, b) =

1
2

⎛

⎝a + b −
√
ab −

√
a2 + b2

2

⎞

⎠, (3.9)

we have

∂DAG−SG(a, b)
∂a

=
1
2

(

1 − b

2
√
ab

− a
√
2(a2 + b2)

)

,

∂DAG−SG(a, b)
∂b

=
1
2

(

1 − a

2
√
ab

− b
√
2(a2 + b2)

)

,

(3.10)

and then

Λ := (lna − ln b)
(
a
∂DSH−SA(a, b)

∂a
− b

∂DSH−SA(a, b)
∂b

)

= (a − b)(lna − ln b)

(

1 − a + b
√
2(a2 + b2)

)

.

(3.11)
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By (2.2)we infer that

1 − a + b
√
2(a2 + b2)

≥ 0, (3.12)

so Λ ≥ 0. By Lemma 2.4, we get that DAG−SG is Schur-geometrically convex in R2
+.

(5) For

DN2N1−AH(a, b) = MN2N1(a, b) −
1
8
MAH(a, b)

=

(√
a +

√
b

2

)⎛

⎝

√
a + b

2

⎞

⎠ − 1
4
(a + b) − 1

2

√
ab − 1

8

(
a + b

2
− 2ab
a + b

)
,

(3.13)

we have

∂DN2N1−AH(a, b)
∂a

=
1

4
√
a

√
a + b

2
+
1
4

(√
a +

√
b

2

)(
a + b

2

)−1/2

− 1
4
− b

4
√
ab

− 1
8

(
1
2
− 2b2

(a + b)2

)

,

∂DN2N1−AH(a, b)
∂b

=
1

4
√
b

√
a + b

2
+
1
4

(√
a +

√
b

2

)(
a + b

2

)−1/2

− 1
4
− a

4
√
ab

− 1
8

(
1
2
− 2a2

(a + b)2

)

,

(3.14)

and then

Λ = (lna − ln b)
(
a
∂DN2N1−AH(a, b)

∂a
− b

∂DN2N1−AH(a, b)
∂b

)

=
1
4
(a − b)(lna − ln b)

⎛

⎜
⎝

√
a + b

√
2
(√

a +
√
b
) +

√
a +

√
b

√
2
√
a + b

− 5
4
− ab

(a + b)2

⎞

⎟
⎠.

(3.15)

From (2.4)we have

√
a + b

√
2
(√

a +
√
b
) +

√
a +

√
b

√
2
√
a + b

− 5
4
− ab

(a + b)2
≥ 0, (3.16)

so Λ ≥ 0; it follows that DN2N1−AH is Schur-geometrically convex in R2
+.
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(6) For

DN2G−N2N1(a, b) =
1
3
MN2G(a, b) −MN2N1(a, b)

=
a + b

4
+

√
ab

6
− 2
3

(√
a +

√
b

2

)⎛

⎝

√
a + b

2

⎞

⎠,

(3.17)

we have

∂DN2G−N2N1(a, b)
∂a

=
1
4
+

b

12
√
ab

− 1
6
√
a

√
a + b

2
− 1
6

(√
a +

√
b

2

)(
a + b

2

)−1/2
,

∂DN2G−N2N1(a, b)
∂b

=
1
4
+

a

12
√
ab

− 1

6
√
b

√
a + b

2
− 1
6

(√
a +

√
b

2

)(
a + b

2

)−1/2
,

(3.18)

and then

Λ = (lna − ln b)
(
a
∂DN2G−N2N1(a, b)

∂a
− b

∂DN2G−N2N1(a, b)
∂b

)

= (lna − ln b)

⎛

⎜
⎝

1
4
(a − b) −

√
a −

√
b

6

√
a + b

2
−
(a − b)

(√
a +

√
b
)

12

(
a + b

2

)−1/2
⎞

⎟
⎠

=
1
6
(a − b)(lna − ln b)

⎛

⎜
⎝

3
2
−

√
a + b

√
2
(√

a +
√
b
) −

√
a +

√
b

√
2
√
a + b

⎞

⎟
⎠.

(3.19)

By (2.4) we infer that Λ ≥ 0, which proves that DN2G−N2N1 is Schur-geometrically convex in
R2

+.
(7) For

DAG−N2G(a, b) =
1
4
MAG(a, b) −

1
3
MN2G(a, b)

=
a + b

8
+

1
12

√
ab − 1

3

(√
a +

√
b

2

)⎛

⎝

√
a + b

2

⎞

⎠,

(3.20)

we have

∂DAG−N2G(a, b)
∂a

=
1
8
+

b

24
√
ab

−
√
a + b

12
√
2a

−
√
a +

√
b

12
√
2(a + b)

,

∂DAG−N2G(a, b)
∂b

=
1
8
+

a

24
√
ab

−
√
a + b

12
√
2b

−
√
a +

√
b

12
√
2(a + b)

,

(3.21)
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and then

Λ = (lna − ln b)
(
a
∂DAG−N2G(a, b)

∂a
− b

∂DAG−N2G(a, b)
∂b

)

= (lna − ln b)

⎛

⎜
⎝

a − b

8
−

√
a + b

(√
a −

√
b
)

12
√
2

−
(a − b)

(√
a +

√
b
)

12
√
2(a + b)

⎞

⎟
⎠

=
(a − b)(lna − ln b)

8

⎛

⎜
⎝1 − 2

3

⎛

⎜
⎝

√
a + b

√
2
(√

a +
√
b
) +

√
a +

√
b

√
2
√
a + b

⎞

⎟
⎠

⎞

⎟
⎠.

(3.22)

From (2.4) we have Λ ≥ 0, and, consequently, by Lemma 2.4, we obtain that DAG−N2G is
Schur-geometrically convex in R2

+.
(8) In order to prove that the function DAN2−AG(a, b) is Schur-geometrically convex in

R2
+ it is enough to notice that

DAN2−AG(a, b) = MAN2(a, b) −
1
4
MAG(a, b) = 3DAG−N2G(a, b). (3.23)

(9) For

DSN2−SA(a, b) =
4
5
MSN2(a, b) −MSA(a, b)

=
a + b

2
− 1
5

√
a2 + b2

2
− 1
5

(√
a +
√
b
)√

2(a + b),

(3.24)

we have

∂DSN2−SA(a, b)
∂a

=
1
2
− a

5
√
2(a2 + b2)

− 1
5

√
a + b

2a
−

√
a +

√
b

5
√
2(a + b)

,

∂DSN2−SA(a, b)
∂b

=
1
2
− b

5
√
2(a2 + b2)

− 1
5

√
a + b

2b
−

√
a +

√
b

5
√
2(a + b)

,

(3.25)
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and then

Λ = (lna − ln b)
(
∂DSN2−SA(a, b)

∂a
− ∂DSN2−SA(a, b)

∂b

)

=(lna − ln b)

⎛

⎜
⎝
a − b

2
− a2 − b2

5
√
2(a2 + b2)

− 1
5

⎛

⎝

√
a(a + b)

2
−

√
b(a + b)

2

⎞

⎠−

(√
a +

√
b
)
(a − b)

5
√
2(a + b)

⎞

⎟
⎠

=
(a − b)(lna − ln b)

5
√
2

(
5√
2
− a + b√

a2 + b2
−

√
a + b

√
a +

√
b
−
√
a +

√
b√

a + b

)

.

(3.26)

From (2.2) and (2.4) we obtain that

5√
2
− a + b√

a2 + b2
−

√
a + b

√
a +

√
b
−
√
a +

√
b√

a + b
≥ 5√

2
−
√
2 − 3√

2
= 0, (3.27)

so Λ ≥ 0, which proves that the function DSN2−SA(a, b) is Schur-geometrically convex in R2
+.

(10) One can easily check that

DANAN2−SN2(a, b) = 4DSN2−SA(a, b), (3.28)

and, consequently, the function DAN2−SN2 is Schur-geometrically convex in R2
+.

(11) To prove that the function

DSN1−SH(a, b) = 2MSN1(a, b) −MSH(a, b) =

√
a2 + b2

2
− a + b

2
−
√
ab +

2ab
a + b

(3.29)

is Schur-geometrically convex in R2
+ it is enough to notice that

DSN1−SH(a, b) = DSG−AH(a, b). (3.30)

(12) For

DSG−SN1(a, b) =
3
2
MSG(a, b) − 2MSN1(a, b)

=
1
2

⎛

⎝a + b −
√
ab −

√
a2 + b2

2

⎞

⎠,

(3.31)
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we have

∂DSG−SN1(a, b)
∂a

=
1
2

(

1 − b

2
√
ab

− a
√
2(a2 + b2)

)

,

∂DSG−SN1(a, b)
∂b

=
1
2

(

1 − a

2
√
ab

− b
√
2(a2 + b2)

)

,

(3.32)

and then

Λ = (lna − ln b)
(
a
∂DSG−SN1(a, b)

∂a
− b

∂DSG−SN1(a, b)
∂b

)

=
(a − b)(lna − ln b)

2

(

1 − a + b
√
2(a2 + b2)

)

.

(3.33)

By the inequality (2.2) we get that Λ ≥ 0, which proves that DSG−SN1 is Schur-
geometrically convex in R2

+.
(13) It is easy to check that

DSN3−SA(a, b) =
1
2
DAG−SG(a, b), (3.34)

which means that the function DSN3−SA is Schur-geometrically convex in R2
+.

(14) To prove that the function DSN1−SN3 is Schur-geometrically convex in R2
+ it is

enough to notice that

DSN1−SN3(a, b) =
1
6
DAG−SG(a, b). (3.35)

The proof of Theorem I is complete.

4. Applications

Applying Theorem I, Lemma 2.6, and Definition 2.2 one can easily prove the following.
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Theorem II. Let 0 < a ≤ b. 1/2 ≤ t ≤ 1 or 0 ≤ t ≤ 1/2, u = atb1−t and v = bta1−t. Then

MSA(a, b) ≤
1
3
MSH(a, b) −

(
1
3
MSH(u, v) −MSA(u, v)

)
≤ 1

3
MSH(a, b)

≤ 1
2
MAH(a, b) −

(
1
2
MAH(u, v) −

1
3
MSH(u, v)

)
≤ 1

2
MAH(a, b)

≤ 1
2
MSG(a, b) −

(
1
2
MSG(u, v) −

1
2
MAH(u, v)

)
≤ 1

2
MSG(a, b)

≤ MAG(a, b) −
(
MAG(u, v) −

1
2
MSG(u, v)

)
≤ MAG(a, b),

(4.1)

1
8
MAH(a, b) ≤ MN2N1(a, b) −

(
MN2N1(u, v) −

1
8
MAH(u, v)

)
≤ MN2N1(a, b)

≤ 1
3
MN2G(a, b) −

(
1
3
MN2G(u, v) −MN2N1(u, v)

)
≤ 1

3
MN2G(a, b)

≤ 1
4
MAG(a, b) −

(
1
4
MAG(u, v) −

1
3
MN2G(u, v)

)
≤ 1

4
MAG(a, b)

≤ MAN2(a, b) −
(
MAN2(u, v) −

1
4
MAG(u, v)

)
≤ MAN2(a, b),

(4.2)

MSA(a, b) ≤
4
5
MSN2(a, b) −

(
4
5
MSN2(u, v) −

4
5
MSN2(u, v)

)
≤ 4

5
MSN2(a, b)

≤ 4MAN2(a, b) −
(
4MAN2(u, v) −

4
5
MSN2(u, v)

)
≤ 4MAN2(a, b),

(4.3)

MSH(a, b) ≤ 2MSN1(a, b) − (2MSN1(u, v) −MSH(u, v)) ≤ 2MSN1(a, b)

≤ 3
2
MSG(a, b) −

(
3
2
MSG(u, v) −

3
2
MSG(u, v)

)
≤ 3

2
MSG(a, b),

(4.4)

MSA(a, b) ≤
3
4
MSN3(a, b) −

(
3
4
MSN3(u, v) −MSA(u, v)

)
≤ 3

4
MSN3(a, b)

≤ 2
3
MSN1(a, b) −

(
2
3
MSN1(u, v) −

3
4
MSN3(u, v)

)
≤ 2

3
MSN1(a, b).

(4.5)

Remark 4.1. Equation (4.1), (4.2), (4.3), (4.4), and (4.5) are a refinement of (1.5), (1.6), (1.7),
(1.8), and (1.9), respectively.
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[12] N. Elezović and J. Pečarić, “A note on Schur-convex functions,” The Rocky Mountain Journal of
Mathematics, vol. 30, no. 3, pp. 853–856, 2000.

[13] J. Sándor, “The Schur-convexity of Stolarsky and Gini means,” Banach Journal of Mathematical Analysis,
vol. 1, no. 2, pp. 212–215, 2007.

[14] H.-N. Shi, S.-H. Wu, and F. Qi, “An alternative note on the Schur-convexity of the extended mean
values,” Mathematical Inequalities & Applications, vol. 9, no. 2, pp. 219–224, 2006.

[15] X. M. Zhang, Geometrically Convex Functions, An’hui University Press, Hefei, China, 2004.
[16] H.-N. Shi, Y.-M. Jiang, and W.-D. Jiang, “Schur-convexity and Schur-geometrically concavity of Gini

means,” Computers & Mathematics with Applications, vol. 57, no. 2, pp. 266–274, 2009.
[17] Y. Chu, X. Zhang, and G. Wang, “The Schur geometrical convexity of the extended mean values,”

Journal of Convex Analysis, vol. 15, no. 4, pp. 707–718, 2008.
[18] K. Guan, “A class of symmetric functions for multiplicatively convex function,” Mathematical

Inequalities & Applications, vol. 10, no. 4, pp. 745–753, 2007.
[19] H.-N. Shi, M. Bencze, S.-H. Wu, and D.-M. Li, “Schur convexity of generalized Heronian means

involving two parameters,” Journal of Inequalities and Applications, vol. 2008, Article ID 879273, 9 pages,
2008.

[20] B. Y. Wang, Foundations of Majorization Inequalities, Beijing Normal University Press, Beijing, China,
1990.



Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2012, Article ID 730962, 13 pages
doi:10.1155/2012/730962

Research Article
Complete Moment Convergence of Weighted Sums
for Arrays of Rowwise ϕ-Mixing Random Variables

Ming Le Guo

School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, China

Correspondence should be addressed to Ming Le Guo, mleguo@163.com

Received 5 June 2012; Accepted 20 August 2012

Academic Editor: Mowaffaq Hajja

Copyright q 2012 Ming Le Guo. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The complete moment convergence of weighted sums for arrays of rowwise ϕ-mixing random
variables is investigated. By using moment inequality and truncation method, the sufficient
conditions for complete moment convergence of weighted sums for arrays of rowwise ϕ-mixing
random variables are obtained. The results of Ahmed et al. (2002) are complemented. As an
application, the complete moment convergence of moving average processes based on a ϕ-mixing
random sequence is obtained, which improves the result of Kim et al. (2008).

1. Introduction

Hsu and Robbins [1] introduced the concept of complete convergence of {Xn}. A sequence
{Xn, n = 1, 2, . . .} is said to converge completely to a constant C if

∞∑

n=1

P(|Xn − C| > ε) < ∞, ∀ε > 0. (1.1)

Moreover, they proved that the sequence of arithmetic means of independent identically
distributed (i.i.d.) random variables converge completely to the expected value if the variance
of the summands is finite. The converse theorem was proved by Erdös [2]. This result has
been generalized and extended in several directions, see Baum and Katz [3], Chow [4], Gut
[5], Taylor et al. [6], and Cai and Xu [7]. In particular, Ahmed et al. [8] obtained the following
result in Banach space.
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Theorem A. Let {Xni; i ≥ 1, n ≥ 1} be an array of rowwise independent random elements in a
separable real Banach space (B, ‖ · ‖). Let P(‖Xni‖ > x) ≤ CP(|X| > x) for some random variable X,
constant C and all n, i and x > 0. Suppose that {ani, i ≥ 1, n ≥ 1} is an array of constants such that

sup
i≥1

|ani| = O
(
n−r), for some r > 0,

∞∑

i=1

|ani| = O(nα), for some α ∈ [0, r).
(1.2)

Let β be such that α + β /= − 1 and fix δ > 0 such that 1 + α/r < δ ≤ 2. Denote s = max(1 + (α + β +
1)/r, δ). If E|X|s < ∞ and Sn =

∑∞
i=1 aniXni → 0 in probability, then

∑∞
n=1 n

βP(‖Sn‖ > ε) < ∞
for all ε > 0.

Chow [4] established the following refinement which is a complete moment
convergence result for sums of (i.i.d.) random variables.

Theorem B. Let EX1 = 0, 1 ≤ p < 2 and r ≥ p. Suppose that E[|X1|r + |X1| log(1 + |X1|)] < ∞.
Then

∞∑

n=1

n(r/p)−2−(1/p)E

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣
− εn1/p

)+

< ∞, ∀ε > 0. (1.3)

The main purpose of this paper is to discuss again the above results for arrays of
rowwise ϕ-mixing random variables. The author takes the inspiration in [8] and discusses
the complete moment convergence of weighted sums for arrays of rowwise ϕ-mixing random
variables by applying truncation methods. The results of Ahmed et al. [8] are extended to ϕ-
mixing case. As an application, the corresponding results of moving average processes based
on a ϕ-mixing random sequence are obtained, which extend and improve the result of Kim
and Ko [9].

For the proof of the main results, we need to restate a few definitions and lemmas for
easy reference. Throughout this paper, Cwill represent positive constants, the value of which
may change from one place to another. The symbol I(A) denotes the indicator function of A;
[x] indicates the maximum integer not larger than x. For a finite set B, the symbol �B denotes
the number of elements in the set B.

Definition 1.1. A sequence of random variables {Xi, 1 ≤ i ≤ n} is said to be a sequence of
ϕ-mixing random variables, if

ϕ(m) = sup
k≥1

{
|P(B | A) − P(B)| ;A ∈ 	k

1 , B ∈ 	∞
k+m, P(A) > 0

}
−→ 0, as m −→ ∞, (1.4)

where 	k
j = σ{Xi; j ≤ i ≤ k}, 1 ≤ j ≤ k ≤ ∞.

Definition 1.2. A sequence {Xn, n ≥ 1} of random variables is said to be stochastically
dominated by a random variable X (write {Xi} ≺ X) if there exists a constant C, such that
P{|Xn| > x} ≤ CP{|X| > x} for all x ≥ 0 and n ≥ 1.
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The following lemma is a well-known result.

Lemma 1.3. Let the sequence {Xn, n ≥ 1} of random variables be stochastically dominated by a
random variable X. Then for any p > 0, x > 0

E|Xn|pI(|Xn| ≤ x) ≤ C
[
E|X|pI(|X| ≤ x) + xpP{|X| > x}

]
, (1.5)

E|Xn|pI(|Xn| > x) ≤ CE|X|pI(|X| > x). (1.6)

Definition 1.4. A real-valued function l(x), positive andmeasurable on [A,∞) for someA > 0,
is said to be slowly varying if limx→∞l(xλ)/l(x) = 1 for each λ > 0.

By the properties of slowly varying function, we can easily prove the following lemma.
Here we omit the details of the proof.

Lemma 1.5. Let l(x) > 0 be a slowly varying function as x → ∞, then there exists C (depends only
on r) such that

(i) Ckr+1l(k) ≤
∑k

n=1 n
rl(n) ≤ Ckr+1l(k) for any r > −1 and positive integer k,

(ii) Ckr+1l(k) ≤
∑∞

n=k n
rl(n) ≤ Ckr+1l(k) for any r < −1 and positive integer k.

The following lemma will play an important role in the proof of our main results. The
proof is due to Shao [10].

Lemma 1.6. Let {Xi, 1 ≤ i ≤ n} be a sequence of ϕ-mixing random variables with mean zero. Suppose
that there exists a sequence {Cn} of positive numbers such that E(

∑k+m
i=k+1 Xi)

2 ≤ Cn for any k ≥ 0, n ≥
1, m ≤ n. Then for any q ≥ 2, there exists C = C(q, ϕ(·)) such that

Emax
1≤j≤n

∣∣∣∣∣∣

k+j∑

i=k+1

Xi

∣∣∣∣∣∣

q

≤ C

[
C

q/2
n + E max

k+1≤i≤k+n
|Xi|q

]
. (1.7)

Lemma 1.7. Let {Xi, 1 ≤ i ≤ n} be a sequence of ϕ-mixing random variables with
∑∞

i=1 ϕ
1/2(i) < ∞,

then there exists C such that for any k ≥ 0 and n ≥ 1

E

(
k+n∑

i=k+1

Xi

)2

≤ C
k+n∑

i=k+1

EX2
i . (1.8)
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Proof. By Lemma 5.4.4 in [11] and Hölder’s inequality, we have

E

(
k+n∑

i=k+1

Xi

)2

=
k+n∑

i=k+1

EX2
i + 2

∑

k+1≤i<j≤k+n
EXiXj

≤
k+n∑

i=k+1

EX2
i + 4

∑

k+1≤i<j≤k+n
ϕ1/2(j − i

)(
EX2

i

)1/2(
EX2

j

)1/2

≤
k+n∑

i=k+1

EX2
i + 2

k+n−1∑

i=k+1

k+n∑

j=i+1

ϕ1/2(j − i
)(

EX2
i + EX2

j

)

≤
(

1 + 4
n∑

i=1

ϕ1/2(i)

)
k+n∑

i=k+1

EX2
i .

(1.9)

Therefore, (1.8) holds.

2. Main Results

Now we state our main results. The proofs will be given in Section 3.

Theorem 2.1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise ϕ-mixing random variables with EXni =
0, {Xni} ≺ X and

∑∞
m=1 ϕ

1/2(m) < ∞. Let l(x) > 0 be a slowing varying function, and {ani, i ≥ 1, n ≥
1} be an array of constants such that

sup
i≥1

|ani| = O
(
n−r), for some r > 0,

∞∑

i=1

|ani| = O(nα), for some α ∈ [0, r).
(2.1)

(a) If α + β + 1 > 0 and there exists some δ > 0 such that (α/r) + 1 < δ ≤ 2, and s =
max(1 + ((α + β + 1)/r), δ), then E|X|sl(|X|1/r) < ∞ implies

∞∑

n=1

nβl(n)E

[

sup
k≥1

∣∣∣∣∣

k∑

i=1

aniXni

∣∣∣∣∣
− ε

]+

< ∞, ∀ε > 0. (2.2)

(b) If β = −1, α > 0, then E|X|1+(a/r)(1 + l(|X|1/r)) < ∞ implies

∞∑

n=1

n−1l(n)E

[

sup
k≥1

∣∣∣∣∣

k∑

i=1

aniXni

∣∣∣∣∣
− ε

]+

< ∞, ∀ε > 0. (2.3)
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Remark 2.2. If α + β + 1 < 0, then E|X| < ∞ implies that (2.2) holds. In fact,

∞∑

n=1

nβl(n)E

[

sup
k≥1

∣
∣
∣
∣∣

k∑

i=1

aniXni

∣
∣
∣
∣∣
− ε

]+

≤
∞∑

n=1

nβl(n)
∞∑

i=1

|ani|E|Xni| + ε
∞∑

n=1

nβl(n)

≤ C
∞∑

n=1

nβ+αl(n)E|X| + ε
∞∑

n=1

nβl(n) < ∞.

(2.4)

Remark 2.3. Note that

∞ >
∞∑

n=1

nβl(n)E

[

sup
k≥1

∣
∣
∣
∣
∣

k∑

i=1

aniXni

∣
∣
∣
∣
∣
− ε

]+

=
∞∑

n=1

nβl(n)
∫∞

0
P

{

sup
k≥1

∣
∣
∣
∣
∣

k∑

i=1

aniXni

∣
∣
∣
∣
∣
− ε > x

}

dx

=
∫∞

0

∞∑

n=1

nβl(n)P

{

sup
k≥1

∣
∣∣∣∣

k∑

i=1

aniXni

∣
∣∣∣∣
> x + ε

}

dx.

(2.5)

Therefore, from (2.5), we obtain that the complete moment convergence implies the complete
convergence, that is, under the conditions of Theorem 2.1, result (2.2) implies

∞∑

n=1

nβl(n)P

{

sup
k≥1

∣∣∣∣∣

k∑

i=1

aniXni

∣∣∣∣∣
> ε

}

< ∞, (2.6)

and (2.3) implies

∞∑

n=1

n−1l(n)P

{

sup
k≥1

∣∣∣∣∣

k∑

i=1

aniXni

∣∣∣∣∣
> ε

}

< ∞. (2.7)

Corollary 2.4. Under the conditions of Theorem 2.1,

(1) if α + β + 1 > 0 and there exists some δ > 0 such that (α/r) + 1 < δ ≤ 2, and s =
max(1 + ((α + β + 1)/r), δ), then E|X|sl(|X|1/r) < ∞ implies

∞∑

n=1

nβl(n)E

[∣∣∣∣∣

∞∑

i=1

aniXni

∣∣∣∣∣
− ε

]+
< ∞, ∀ε > 0, (2.8)

(2) if β = −1, α > 0, then E|X|1+(α/r)(1 + l(|X|1/r)) < ∞ implies

∞∑

n=1

n−1l(n)E

[∣∣∣∣∣

∞∑

i=1

aniXni

∣∣∣∣∣
− ε

]+
< ∞, ∀ε > 0. (2.9)

Corollary 2.5. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise ϕ-mixing random variables with
EXni = 0,{Xni} ≺ X and

∑∞
m=1 ϕ

1/2(m) < ∞. Suppose that l(x) > 0 is a slowly varying function.
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(1) Let p > 1 and 1 ≤ t < 2. If E|X|ptl(|X|t) < ∞, then

∞∑

n=1

np−2−(1/t)l(n)E

[

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xni

∣
∣
∣
∣
∣
− εn1/t

]+

< ∞, ∀ε > 0. (2.10)

(2) Let 1 < t < 2. If E|X|t[1 + l(|X|t)] < ∞, then

∞∑

n=1

n−1−(1/t)l(n)E

[

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xni

∣
∣
∣
∣
∣
− εn1/t

]+

< ∞, ∀ε > 0. (2.11)

Corollary 2.6. Suppose that Xn =
∑∞

i=−∞ ai+nYi, n ≥ 1, where {ai,−∞ < i < ∞} is a sequence of
real numbers with

∑∞
−∞ |ai| < ∞, and {Yi,−∞ < i < ∞} is a sequence of ϕ-mixing random variables

with EYi = 0, {Yi} ≺ Y and
∑∞

m=1 ϕ
1/2(m) < ∞. Let l(x) be a slowly varying function.

(1) Let 1 ≤ t < 2, r ≥ 1 + (t/2). If E|Y |r l(|Y |t) < ∞, then

∞∑

n=1

n(r/t)−2−(1/t)l(n)E

[∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣
− εn1/t

]+
< ∞, ∀ε > 0. (2.12)

(2) Let 1 < t < 2. If E|Y |t[1 + l(|Y |t)] < ∞, then

∞∑

n=1

n−1−(1/t)l(n)E

[∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣
− εn1/t

]+
< ∞, ∀ε > 0. (2.13)

Remark 2.7. Corollary 2.6 obtains the result about the complete moment convergence of
moving average processes based on a ϕ-mixing random sequencewith different distributions.
We extend the results of Chen et al. [12] from the complete convergence to the complete
moment convergence. The result of Kim and Ko [9] is a special case of Corollary 2.6 (1).
Moreover, our result covers the case of r = t, which was not considered by Kim and Ko.

3. Proofs of the Main Results

Proof of Theorem 2.1. Without loss of generality, we can assume

sup
i≥1

|ani| ≤ n−r ,
∞∑

i=1

|ani| ≤ nα. (3.1)
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Let Snk(x) =
∑k

i=1 aniXniI(|aniXni| ≤ n−rx) for any k ≥ 1, n ≥ 1, and x ≥ 0. First note that
E|X|sl(|X|1/r) < ∞ implies E|X|t < ∞ for any 0 < t < s. Therefore, for x > nr ,

x−1nrsup
k≥1

E|Snk(x)| = x−1nrsup
k≥1

E

∣
∣
∣
∣
∣

k∑

i=1

aniXniI
(
|aniXni| > n−rx

)
∣
∣
∣
∣
∣

(EXni = 0)

≤
∞∑

i=1

E|aniXni|I
(
|aniXni| > n−rx

)
≤

∞∑

i=1

E|aniX|I
(
|aniX| > n−rx

)

≤
∞∑

i=1

|ani|E|X|I(|X| > x) ≤ nαE|X|I(|X| > x)

≤ xα/rE|X|I(|X| > x) ≤ E|X|1+(α/r)I(|X| > nr) −→ 0 as n −→ ∞.

(3.2)

Hence, for n large enough we have supk≥1E|Snk(x)| < (ε/2)n−rx. Then

∞∑

n=1

nβl(n)E

[

sup
k≥1

∣∣∣∣∣

k∑

i=1

aniXni

∣∣∣∣∣
− ε

]+

=
∞∑

n=1

nβl(n)
∫∞

ε

P

{

sup
k≥1

∣∣∣∣∣

k∑

i=1

aniXni

∣∣∣∣∣
≥ x

}

dx

=
∞∑

n=1

nβ−r l(n)ε
∫∞

nr

P

{

sup
k≥1

∣∣∣∣∣

k∑

i=1

aniXni

∣∣∣∣∣
≥ εn−rx

}

dx

≤ C
∞∑

n=1

nβ−r l(n)
∫∞

nr

P

{

sup
i

|aniXni| > n−rx

}

dx

+ C
∞∑

n=1

nβ−r l(n)
∫∞

nr

P

{

sup
k≥1

|Snk(x) − ESnk(x)| ≥ n−rx
ε

2

}

dx := I1 + I2.

(3.3)

Noting that α + β > −1, by Lemma 1.5, Markov inequality, (1.6), and (3.1), we have

I1 ≤ C
∞∑

n=1

nβ−r l(n)
∫∞

nr

∞∑

i=1

P
{
|aniXni| > n−rx

}
dx

≤ C
∞∑

n=1

nβ−r l(n)
∫∞

nr

nrx−1
∞∑

i=1

E|aniXni|I
(
|aniXni| > n−rx

)
dx

≤ C
∞∑

n=1

nβ+αl(n)
∫∞

nr

x−1E|X|I(|X| > x)dx

≤ C
∞∑

n=1

nβ+αl(n)
∞∑

k=n

∫kr+1

kr

x−1E|X|I(|X| > x)dx
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≤ C
∞∑

n=1

nβ+αl(n)
∞∑

k=n

k−1E|X|I(|X| > kr) ≤ C
∞∑

k=1

k−1E|X|I(|X| > kr)
k∑

n=1

nβ+αl(n)

≤ C
∞∑

k=1

kβ+αl(k)E|X|I(|X| > kr) ≤ CE|X|1+((1+α+β)/r)l
(
|X|1/r

)
< ∞.

(3.4)

Now we estimate I2, noting that
∑∞

m=1 ϕ
1/2(m) < ∞, by Lemma 1.7, we have

sup
1≤m<∞

E

(
m∑

i=1

aniXniI
(
|aniXni| ≤ n−rx

)
− E

m∑

i=1

aniXniI
(
|aniXni| ≤ n−rx

)
)2

≤ C
∞∑

i=1

Ea2
niX

2
niI
(
|aniXni| ≤ n−rx

)
.

(3.5)

By Lemma 1.6, Markov inequality, Cr inequality, and (1.5), for any q ≥ 2, we have

P

{

sup
k≥1

|Snk(x) − ESnk(x)| ≥ n−rx
ε

2

}

≤ Cnrqx−qEsup
k≥1

|Snk(x) − ESnk(x)|q

≤ Cnrqx−q

⎡

⎣

(
∞∑

i=1

Ea2
niX

2
niI
(
|aniXni| ≤ n−rx

)
)q/2

+
∞∑

i=1

E|aniXni|qI
(
|aniXni| ≤ n−rx

)
⎤

⎦

≤ Cnrqx−q
(

∞∑

i=1

Ea2
niX

2I
(
|aniX| ≤ n−rx

)
)q/2

+ Cnrqx−q
∞∑

i=1

E|aniX|qI
(
|aniX| ≤ n−rx

)

+ C

(
∞∑

i=1

P
{
|aniX| > n−rx

}
)q/2

+ C
∞∑

i=1

P
{
|aniX| > n−rx

}

:= J1 + J2 + J3 + J4.

(3.6)

So,

I2 ≤
∞∑

n=1

nβ−r l(n)
∫∞

nr

(J1 + J2 + J3 + J4)dx. (3.7)

From (3.4), we have
∑∞

n=1 n
β−r l(n)

∫∞
nr J4dx < ∞.

For J1, we consider the following two cases.
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If s > 2, then EX2 < ∞. Taking q ≥ 2 such that β + (q(α − r)/2) < −1, we have

∞∑

n=1

nβ−r l(n)
∫∞

nr

J1dx

≤ C
∞∑

n=1

nβ−r+rql(n)
∫∞

nr

x−q
(

∞∑

i=1

a2
ni

)q/2

dx

≤ C
∞∑

n=1

nβ−r+rql(n)nq(α−r)/2nr(−q+1) ≤ C
∞∑

n=1

nβ+(q(α−r)/2)l(n) < ∞.

(3.8)

If s ≤ 2, we choose s′ such that 1+ (α/r) < s′ < s. Taking q ≥ 2 such that β+ (qr/2)(1+ (α/r)−
s′) < −1, we have

∞∑

n=1

nβ−r l(n)
∫∞

nr

J1dx

≤ C
∞∑

n=1

nβ−r+rql(n)
∫∞

nr

x−q
(

∞∑

i=1

|ani||ani|s
′−1E|aniX|2−s

′
|X|s

′
I
(
|aniX| ≤ n−rx

)
)q/2

dx

≤ C
∞∑

n=1

nβ−r+rql(n)nqα/2n−(qr/2)(s′−1)
∫∞

nr

x−q(n−rx
)(q/2)(2−s′)

dx

≤ C
∞∑

n=1

nβ+(qr/2)(1+(α/r)−s′)l(n) < ∞.

(3.9)

So,
∑∞

n=1 n
β−r l(n)

∫∞
nr J1dx < ∞.

Now, we estimate J2. Set Inj = {i ≥ 1 | (n(j + 1))−r < |ani| ≤ (nj)−r}, j = 1, 2, . . .. Then
∪j≥1Inj = N, where N is the set of positive integers. Note also that for all k ≥ 1, n ≥ 1,

nα ≥
∞∑

i=1

|ani| =
∞∑

j=1

∑

i∈Inj
|ani|

≥
∞∑

j=1

(
�Inj
)(
n
(
j + 1

))−r ≥ n−r
∞∑

j=k

(
�Inj
)(
j + 1

)−rq(k + 1)rq−r .

(3.10)

Hence, we have

∞∑

j=k

(
�Inj
)
j−rq ≤ Cnα+rkr−rq. (3.11)
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Note that

∞∑

n=1

nβ−r l(n)
∫∞

nr

J2dx

= C
∞∑

n=1

nβ−r+rql(n)
∫∞

nr

x−q
∞∑

j=1

∑

i∈Inj
E|aniX|qI

(
|aniX| ≤ n−rx

)
dx

= C
∞∑

n=1

nβ−r+rql(n)
∞∑

j=1

(
�Inj
)(
nj
)−rq ∞∑

k=n

∫ (k+1)r

kr

x−qE|X|qI
(
|X| ≤ x

(
j + 1

)r)
dx

≤ C
∞∑

n=1

nβ−r+rql(n)
∞∑

j=1

(
�Inj
)(
nj
)−rq ∞∑

k=n

kr(−q+1)−1E|X|qI
(
|X| ≤ (k + 1)r

(
j + 1

)r)

= C
∞∑

n=1

nβ−r l(n)
∞∑

k=n

kr(−q+1)−1
∞∑

j=1

(
�Inj
)
j−rq

(k+1)(j+1)−1∑

i=0

E|X|qI
(
ir < |X| ≤ (i + 1)r

)

≤ C
∞∑

n=1

nβ−r l(n)
∞∑

k=n

kr(−q+1)−1
∞∑

j=1

(
�Inj
)
j−rq

2(k+1)−1∑

i=0

E|X|qI
(
ir < |X| ≤ (i + 1)r

)

+ C
∞∑

n=1

nβ−r l(n)
∞∑

k=n

kr(−q+1)−1
∞∑

j=1

(
�Inj
)
j−rq

(k+1)(j+1)∑

i=2(k+1)

E|X|qI
(
ir < |X| ≤ (i + 1)r

)

:= J ′2 + J ′′2 .

(3.12)

Taking q ≥ 2 large enough such that β + α − rq + r < −1, for J ′2, by Lemma 1.6 and (3.11), we
get

J ′2 ≤ C
∞∑

n=1

nβ−r l(n)
∞∑

k=n

kr(−q+1)−1nα+r
2(k+1)−1∑

i=0

E|X|qI
(
ir < |X| ≤ (i + 1)r

)

= C
∞∑

k=1

kr(−q+1)−1
2(k+1)−1∑

i=0

E|X|qI
(
ir < |X| ≤ (i + 1)r

) k∑

n=1

nβ+αl(n)

≤ C
∞∑

k=1

kβ+α−rq+r l(k)
2(k+1)−1∑

i=0

E|X|qI
(
ir < |X| ≤ (i + 1)r

)

≤ C + C
∞∑

i=3

E|X|qI
(
ir < |X| ≤ (i + 1)r

) ∞∑

k=[i/2]

kβ+α−rq+r l(k)

≤ C + C
∞∑

i=3

iβ+α−rq+r+1l(i)E|X|qI
(
ir < |X| ≤ (i + 1)r

)
≤ C + CE|X|1+((β+α+1)/r)l

(
|X|1/r

)
< ∞.

(3.13)
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For J ′′2 , we obtain

J ′′2 ≤ C
∞∑

n=1

nβ−r l(n)
∞∑

k=n

kr(−q+1)−1
∞∑

j=1

(
�Inj
)
j−rq

(j+1)(k+1)∑

i=2(k+1)

E|X|qI
(
ir < |X| ≤ (i + 1)r

)

≤ C
∞∑

n=1

nβ−r l(n)
∞∑

k=n

kr(−q+1)−1
∞∑

i=2(k+1)

E|X|qI
(
ir < |X| ≤ (i + 1)r

) ∞∑

j=[i(k+1)−1]−1

(
�Inj
)
j−rq

≤ C
∞∑

n=1

nβ−r l(n)
∞∑

k=n

kr(−q+1)−1
∞∑

i=2(k+1)

nr+αir(1−q)k−r(1−q)E|X|qI
(
ir < |X| ≤ (i + 1)r

)

= C
∞∑

k=1

k−1
∞∑

i=2(k+1)

ir(1−q)E|X|qI
(
ir < |X| ≤ (i + 1)r

) k∑

n=1

nβ+αl(n)

≤ C
∞∑

k=1

kβ+αl(k)
∞∑

i=2(k+1)

ir(1−q)E|X|qI
(
ir < |X| ≤ (i + 1)r

)

≤ C
∞∑

i=4

iβ+α+1+r−rqE|X|qI
(
ir < |X| ≤ (i + 1)r

)
≤ CE|X|1+((β+α+1)/r)l

(
|X|1/r

)
< ∞.

(3.14)

So
∑∞

n=1 n
β−r l(n)

∫∞
nr J2dx < ∞. Finally, we prove

∑∞
n=1 n

β−r l(n)
∫∞
nr J3dx < ∞. In fact, noting

1 + (a/r) < s′ < s and β + (qr/2)(1 + (α/r) − s′) < −1, using Markov inequality and (3.1), we
get

∞∑

n=1

nβ−r l(n)
∫∞

nr

J3dx ≤ C
∞∑

n=1

nβ−r l(n)
∫∞

nr

(
∞∑

i=1

nrs′x−s′E|aniX|s
′

)q/2

dx

≤ C
∞∑

n=1

nβ−r l(n)nqrs′/2n−r(s′−1)(q/2)nα(q/2)
∫∞

nr

x−s′(q/2)dx

≤ C
∞∑

n=1

nβ−r+r(q/2)+α(q/2)l(n)nr(−s′(q/2)+1) ≤ C
∞∑

n=1

nβ+(qr/2)(1+(α/2)−s′)l(n) < ∞.

(3.15)

Thus, we complete the proof in (a). Next, we prove (b). Note that E|X|1+α/r < ∞ implies that
(3.2) holds. Therefore, from the proof in (a), to complete the proof of (b), we only need to
prove

I2 = C
∞∑

n=1

n−1−r l(n)
∫∞

nr

P

{

sup
k≥1

|Snk(x) − ESnk(x)| ≥ n−rx
ε

2

}

dx < ∞. (3.16)
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In fact, noting β = −1, α + β + 1 > 0, α + β − r < −1 and E|X|1+α/rl(|X|1/r) < ∞. By taking q = 2
in the proof of (3.12), (3.13), and (3.14), we get

C
∞∑

n=1

n−1+r l(n)
∫∞

nr

x−2
∞∑

i=1

Ea2
niX

2I
(
|aniX| ≤ n−rx

)
dx ≤ C + CE|X|1+(α/r)l

(
|X|1/r

)
< ∞. (3.17)

Then, by (3.17), we have

I2 ≤ C
∞∑

n=1

n−1−r l(n)
∫∞

nr

n2rx−2E|Sxn − ESxn|2dx

≤ C
∞∑

n=1

n−1+r l(n)
∫∞

nr

x−2
∞∑

i=1

Ea2
niX

2
niI
(
|aniXni| ≤ n−rx

)
dx

≤ C
∞∑

n=1

n−1+r l(n)
∫∞

nr

x−2
∞∑

i=1

Ea2
niX

2I
(
|aniX| ≤ n−rx

)
dx

+ C
∞∑

n=1

n−1−r l(n)
∫∞

nr

∞∑

i=1

P
{
|aniX| > n−rx

}
dx

≤ C
∞∑

n=1

n−1+r l(n)
∫∞

nr

x−2
∞∑

i=1

Ea2
niX

2I
(
|aniX| ≤ n−rx

)
dx + C < ∞.

(3.18)

The proof of Theorem 2.1 is completed.

Proof of Corollary 2.4. Note that

[∣∣∣∣∣

∞∑

i=1

aniXni

∣∣∣∣∣
− ε

]+
≤
[

sup
k≥1

∣∣∣∣∣

k∑

i=1

aniXni

∣∣∣∣∣
− ε

]+

. (3.19)

Therefore, (2.8) and (2.9) hold by Theorem 2.1.

Proof of Corollary 2.5. By applying Theorem 2.1, taking β = p − 2, ani = n−1/t for 1 ≤ i ≤ n,
and ani = 0 for i > n, then we obtain (2.10). Similarly, taking β = −1, ani = n−1/t for 1 ≤ i ≤ n,
and ani = 0 for i > n, we obtain (2.11) by Theorem 2.1.

Proof of Corollary 2.6. Let Xni = Yi and ani = n−1/t∑n
j=1 ai+j for all n ≥ 1, −∞ < i < ∞.

Since
∑∞

−∞ |ai| < ∞, we have supi|ani| = O(n−1/t) and
∑∞

i=−∞ |ani| = O(n1−1/t). By applying
Corollary 2.4, taking β = (r/t) − 2, r = 1/t, α = 1 − (1/t), we obtain

∞∑

n=1

n(r/t)−2−(1/t)l(n)E

[∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣
− εn1/t

]+
=

∞∑

n=1

nβl(n)E

[∣∣∣∣∣

∞∑

i=−∞
aniXni

∣∣∣∣∣
− ε

]+
< ∞, ∀ε > 0.

(3.20)

Therefore, (2.12) and (2.13) hold.
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By using the theory of means, various refinements of Huygens’ trigonometric and hyperbolic
inequalities will be proved. New Huygens’ type inequalities will be provided, too.

1. Introduction

The famous Huygens’ trigonometric inequality (see e.g., [1–3]) states that for all x ∈ (0, π/2)
one has

2 sinx + tanx > 3x. (1.1)

The hyperbolic version of inequality (1.1) has been established recently by Neuman
and Sándor [3]:

2 sinhx + tanhx > 3x, for x > 0. (1.2)

Let a, b > 0 be two positive real numbers. The logarithmic and identric means of a and
b are defined by

L = L(a, b) :=
b − a

ln b − lna
(for a/= b); L(a, a) = a,

I = I(a, b) :=
1
e

(
bb

aa

)1/(b−a)

(for a/= b); I(a, a) = a,

(1.3)
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respectively. Seiffert’s mean P is defined by

P = P(a, b) :=
a − b

2 arcsin((a − b)/(a + b))
(for a/= b), P(a, a) = a. (1.4)

Let

A = A(a, b) :=
a + b

2
, G = G(a, b) =

√
ab,

H = H(a, b) = 2
/
(
1
a
+
1
b

) (1.5)

denote the arithmetic, geometric, and harmonic means of a and b, respectively. These means
have been also in the focus of many research papers in the last decades. For a survey of
results, see, for example, [4–6]. In what follows, we will assume a/= b.

Now, by remarking that letting a = 1 + sinx, b = 1 − sinx, where x ∈ (0, π/2), in
P,G, and A, we find that

P =
sinx
x

, G = cosx, A = 1, (1.6)

so Huygens’ inequality (1.1) may be written also as

P >
3AG

2G +A
= 3

/
(

2
A

+
1
G

)
= H(A,A,G). (1.7)

Here H(a, b, c) denotes the harmonic mean of the numbers a, b, c:

H(a, b, c) = 3
/
(
1
a
+
1
b
+
1
c

)
. (1.8)

On the other hand, by letting a = ex, b = e−x in L,G, and A, we find that

L =
sinhx

x
, G = 1, A = coshx, (1.9)

so Huygens’ hyperbolic inequality (1.2)may be written also as

L >
3AG

2A +G
= 3

/
(

2
G

+
1
A

)
= H(G,G,A). (1.10)

2. First Improvements

Suppose a, b > 0, a/= b.
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Theorem 2.1. One has

P > H(L,A) >
3AG

2G +A
= H(A,A,G), (2.1)

L > H(P,G) >
3AG

2A +G
= H(G,G,A). (2.2)

Proof. The inequalities P > H(L,A) and L > H(P,G) have been proved in paper [7] (see
Corollary 3.2). In fact, stronger relations are valid, as we will see in what follows.

Now, the interesting fact is that the second inequality of (2.1), that is, 2LA/(L + A) >
3AG/(2G+A) becomes, after elementary transformations, exactly inequality (1.10), while the
second inequality of (2.2), that is, 2PG/(P +G) > 3AG/(2A+G) becomes inequality (1.7).

Another improvements of (1.7), respectively, (1.10) are provided by

Theorem 2.2. One has the inequalities:

P >
3
√
A2G >

3AG

2G +A
, (2.3)

L >
3
√
G2A >

3AG

2A +G
. (2.4)

Proof. The first inequality of (2.3) is proved in [6], while the first inequality of (2.8) is a well-
known inequality due to Leach and Sholander [8] (see [4] for many related references). The
second inequalities of (2.3) and (2.4) are immediate consequences of the arithmetic-geometric
inequality applied for A, A, G and A, G, G, respectively.

Remark 2.3. By (2.3) and (1.6), we can deduce the following improvement of the Huygens’
inequality (1.1):

sinx
x

> 3
√
cosx >

3 cosx
2 cosx + 1

, x ∈
(
0,

π

2

)
. (2.5)

From (2.1) and (1.6), we get

sinx
x

>
2L∗

L∗ + 1
>

3 cosx
2 cosx + 1

, x ∈
(
0,

π

2

)
.

(
2.5′

)

Similarly, by (2.4) and (1.9), we get

sinhx
x

>
3
√
coshx >

3 coshx

2 coshx + 1
, x > 0. (2.6)

From (2.2) and (1.9), we get

sinhx
x

>
2P ∗

P ∗ + 1
>

3 coshx

2 coshx + 1
, x > 0.

(
2.6′

)

Here, L∗ = L(1 + sinx, 1 − sinx), P ∗ = P(ex, e−x).
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We note that the first inequality of (2.5) has been discovered by Adamović and
Mitrinović (see [3]), while the first inequality of (2.6) by Lazarević (see [3]).

Now, we will prove that inequalities (2.2) of Theorem 2.1 and (2.4) of Theorem 2.2
may be compared in the following way.

Theorem 2.4. One has

L >
3
√
G2A > H(P,G) >

3AG

2A +G
. (2.7)

Proof. Wemust prove the second inequality of (2.7). For this purpose, we will use the inequal-
ity (see [6]):

P <
2A +G

3
. (2.8)

This implies G/P > 3G/(G + 2A), so (1/2)(1 +G/P) > (2G +A)/(G + 2A).
Now, we will prove that

2G +A

G + 2A
>

3

√
G

A
. (2.9)

By letting x = G/A ∈ (0, 1), inequality (2.9) becomes

2x + 1
x + 2

> 3
√
x. (2.10)

Put x = a3, where a ∈ (0, 1). After elementary transformations, inequality (2.10)
becomes (a + 1)(a − 1)3 < 0, which is true.

Note. The Referee suggested the following alternative proof: since P < (2A + G)/3 and the
harmonic mean increases in both variables, it suffices to prove stronger inequality 3

√
A2G >

H((2A +G)/3, G) which can be written as (2.9).

Remark 2.5. The following refinement of inequalities
(
2.6′

)
is true:

sinhx
x

>
3
√
coshx >

2P ∗

P ∗ + 1
>

3 coshx

2 coshx + 1
, x > 0. (2.11)

Unfortunately, a similar refinement to (2.7) for themean P is not possible, as by numeri-
cal examples one can deduce that generallyH(L,A) and 3

√
A2G are not comparable. However,

in a particular case, the following result holds true.

Theorem 2.6. Assume that A/G ≥ 4. Then one has

P > H(L,A) >
3
√
A2G >

3AG

2G +A
. (2.12)

First, prove one the following auxiliary results.
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Lemma 2.7. For any x ≥ 4, one has

3
√
(x + 1)2

(
2 3
√
x − 1

)
> x

3
√
4. (2.13)

Proof. A computer computation shows that (2.13) is true for x = 4. Now put x = a3 in (2.13).
By taking logarithms, the inequality becomes

f(a) = 2 ln

(
a3 + 1

2

)

− 9 lna + 3 ln(2a − 1) > 0. (2.14)

An easy computation implies

a(2a − 1)
(
a3 + 1

)
f ′(a) = 3(a − 1)

(
a2 + a − 3

)
. (2.15)

As 3
√
42 + 3

√
4 − 3 = 2 3

√
2 + ( 3

√
2)2 − 3 = ( 3

√
2 − 1)( 3

√
2 + 3) > 0, we get that f ′(a) > 0 for

a ≥ 3
√
4. This means that f(a) > f( 3

√
4) > 0, as the inequality is true for a = 3

√
4.

Proof of the theorem. We will apply the inequality:

L >
3

√

G

(
A +G

2

)2

, (2.16)

due to the author [9]. This implies

1
2

(
1 +

A

L

)
<

1
2

(

1 + 3

√
4A3

G(A +G)2

)

= N. (2.17)

By letting x = A/G in (2.13), we can deduce

N <
3

√
A

G
. (2.18)

So

1
2

(
1 +

A

L

)
<

3

√
A

G
. (2.19)

This immediately gives H(L,A) > 3
√
A2G.

Remark 2.8. If cosx ≤ 1/4, x ∈ (0, π/2), then

sinx
x

>
2L∗

L∗ + 1
> 3
√
cosx >

3 cosx
2 cosx + 1

, (2.20)

which is a refinement, in this case, of inequality
(
2.5′

)
.
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3. Further Improvements

Theorem 3.1. One has

P >
√
LA >

3
√
A2G >

AG

L
>

3AG

2G +A
, (3.1)

L >
√
GP >

3
√
G2A >

AG

P
>

3AG

2A +G
. (3.2)

Proof. The inequalities P >
√
LA and L >

√
GP are proved in [10]. We will see, that further

refinements of these inequalities are true. Now, the second inequality of (3.1) follows by the
first inequality of (2.3), while the second inequality of (3.2) follows by the first inequality of
(2.4). The last inequality is in fact an inequality by Carlson [11]. For the inequalities onAG/P,
we use (2.3) and (2.8).

Remark 3.2. One has

sinx
x

>
√
L∗ > 3

√
cosx >

cosx
L∗ >

3 cosx
2 cosx + 1

, x ∈
(
0,

π

2

)
, (3.3)

sinhx
x

>
√
P ∗ >

3
√
coshx >

coshx
P ∗ >

3 coshx

2 coshx + 1
, x > 0, (3.4)

where L∗ and P ∗ are the same as in
(
2.6′

)
and

(
2.5′

)
.

Theorem 3.3. One has

P >
√
LA > H(A,L) >

AL

I
>

AG

L
>

3AG

2G +A
, (3.5)

L > L · I −G

A − L
>
√
IG >

√
PG >

3
√
G2A >

3AG

2A +G
. (3.6)

Proof. The first two inequalities of (3.5) one followed by the first inequality of (3.1) and the
fact that G(x, y) > H(x, y) with x = L, y = A.

Now, the inequality H(A,L) > AL/I may be written also as

I >
A + L

2
, (3.7)

which has been proved in [4] (see also [12]).
Further, by Alzer’s inequality L2 > GI (see [13]) one has

L

I
>

G

L
(3.8)

and by Carlson’s inequality L < (2G +A)/3 (see [11]), we get

AL

I
>

AG

L
>

3AG

2G +A
, (3.9)

so (3.5) is proved.
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The first two inequalities of (3.6) have been proved by the author in [5]. Since I > P
(see [14]) and by (3.2), inequalities (3.6) are completely proved.

Remark 3.4. One has the following inequalities:

sinx
x

>
√
L∗ >

2L∗

L∗ + 1
>

L∗

I∗
>

cosx
L∗ >

3 cosx
2 cosx + 1

, x ∈
(
0,

π

2

)
, (3.10)

where I∗ = I(1 + sinx, 1 − sinx);

sinhx
x

>
sinhx

x

(
ex cothx−1 − 1

coshx − sinhx/x

)

> e(x cothx−1)/2 >
√
P ∗ >

3
√
coshx >

3 coshx

2 coshx + 1
.

(3.11)

Theorem 3.5. One has

P >
3

√

A

(
A +G

2

)2

>

√

A

(
A + 2G

3

)
>
√
AL > H(A,L) >

AL

I
>

3AG

2G +A
, (3.12)

L >
3

√

G

(
A +G

2

)2

>
√
IG >

√

G

(
2A +G

3

)
>
√
PG >

3
√
G2A >

3AG

2A +G
. (3.13)

Proof. In (3.12), we have to prove the first three inequalities, the rest are contained in (3.5).
The first inequality of (3.12) is proved in [6]. For the second inequality, putA/G = t > 1

By taking logarithms, we have to prove that

g(t) = 4 ln
(
t + 1
2

)
− 3 ln

(
t + 2
3

)
− ln t > 0. (3.14)

As g ′(t)t(t + 1)(t + 2) = 2(t − 1) > 0, g(t) is strictly increasing, so

g(t) > g(1) = 0. (3.15)

The third inequality of (3.12) follows by Carlson’s relation L < (2G +A)/3 (see [11]).
The first inequality of (3.13) is proved in [9], while the second one in [15]. The third

inequality follows by I > (2A + G)/3 (see [12]), while the fourth one by relation (2.9). The
fifth one is followed by (2.3).

Remark 3.6. The first three inequalities of (3.12) offer a strong improvement of the first
inequality of (3.1); the same is true for (3.13) and (3.2).

4. New Huygens Type Inequalities

The main result of this section is contained in the following:
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Theorem 4.1. One has

P >
3

√

A

(
A +G

2

)2

>
3A(A +G)
5A +G

>
A(2G +A)
2A +G

>
3AG

2G +A
, (4.1)

L >
3

√

G

(
A +G

2

)2

>
3G(A +G)
5G +A

>
G(2A +G)
2G +A

>
3AG

2A +G
. (4.2)

Proof. The first inequalities of (4.1), respectively, (4.2) are the first ones in relations (3.12),
respectively, (3.13).

Now, apply the geometric mean-harmonic mean inequality:

3
√
xy2 = 3

√
x · y · y >

3
(
1
x
+

1
y
+

1
y

) =
3

(
1
x
+

2
y

) ,
(4.3)

for x = A, y = (A + G)/2 in order to deduce the second inequality of (4.1). The last two
inequalities become, after certain transformation,

(A −G)2 > 0. (4.4)

The proof of (4.2) follows on the same lines, and we omit the details.

Theorem 4.2. For all x ∈
(
0,

π

2

)
, one has

sinx + 4 tan
x

2
> 3x. (4.5)

For all x > 0, one has

sinhx + 4 tanh
x

2
> 3x. (4.6)

Proof. Apply (1.6) for P > (3A(A +G))/(5A +G) of (4.1).
As cosx + 1 = 2cos2(x/2) and sinx = 2 sin(x/2) cos(x/2), we get inequality (4.5). A

similar argument applied to (4.6), by an application of (4.2) and the formulae coshx + 1 =
2cosh2(x/2) and sinhx = 2 sinh(x/2) cosh(x/2).

Remarks 4.3. By (4.1), inequality (4.5) is a refinement of the classical Huygens inequality (1.1):

2 sinx + tanx > sinx + 4 tan
x

2
> 3x.

(
4.3′

)
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Similarly, (4.6) is a refinement of the hyperbolic Huygens inequality (1.2):

2 sinhx + tanhx > sinhx + 4 tanh
x

2
> 3x.

(
4.4′

)

We will call (4.5) as the second Huygens inequality, while (4.6) as the second hyper-
bolic Huygens inequality.

In fact, by (4.1) and (4.2) refinements of these inequalities may be stated, too.
The inequality P > A(2G +A)/(2A +G) gives

sinx
x

>
2 cosx + 1
cosx + 2

, (4.7)

or written equivalently:

sinx
x

+
3

cosx + 2
> 2, x ∈

(
0,

π

2

)
. (4.8)

Acknowledgments

The author is indebted to Professor Edward Neuman for his support and discussions on this
topic. He also thanks the Referee for a careful reading of the paper and a new proof of
Theorem 2.4.

References

[1] C. Huygens, Oeuvres Completes 1888–1940, Sociéte Hollondaise des Science, Haga, Gothenburg.
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Seiffert has defined two well-known trigonometric means denoted by P and T. In a similar
way it was defined by Carlson the logarithmic mean L as a hyperbolic mean. Neuman and
Sándor completed the list of such means by another hyperbolic mean M. There are more known
inequalities between the means P, T, and L and some power means Ap. We add to these
inequalities two new results obtaining the following nice chain of inequalities A0 < L < A1/2 <
P < A1 < M < A3/2 < T < A2, where the power means are evenly spaced with respect to their
order.

1. Means

A mean is a function M : R
2
+ → R+, with the property

min(a, b) ≤ M(a, b) ≤ max(a, b), ∀a, b > 0. (1.1)

Each mean is reflexive; that is,

M(a, a) = a, ∀a > 0. (1.2)

This is also used as the definition of M(a, a).
We will refer here to the following means:

(i) the power means Ap, defined by

Ap(a, b) =
[
ap + bp

2

]1/p
, p /= 0; (1.3)
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(ii) the geometric mean G, defined as G(a, b) =
√
ab, but verifying also the property

lim
p→ 0

Ap(a, b) = A0(a, b) = G(a, b); (1.4)

(iii) the first Seiffert mean P, defined in [1] by

P(a, b) =
a − b

2 sin−1((a − b)/(a + b))
, a /= b; (1.5)

(iv) the second Seiffert mean T, defined in [2] by

T(a, b) =
a − b

2 tan−1((a − b)/(a + b))
, a /= b; (1.6)

(v) the Neuman-Sándor mean M, defined in [3] by

M(a, b) =
a − b

2 sinh−1((a − b)/(a + b))
, a /= b; (1.7)

(vi) the Stolarsky means Sp,q defined in [4] as follows:

Sp,q(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
q(ap − bp)
p(aq − bq)

]1/(p−q)
, pq

(
p − q

)
/= 0

1
ep

(
aap

bb
p

)1/(ap−bp)

, p = q /= 0

[
ap − bp

p(lna − ln b)

]1/p
, p /= 0, q = 0

√
ab, p = q = 0.

(1.8)

The mean A1 = A is the arithmetic mean and the mean S1,0 = L is the logarithmic
mean. As Carlson remarked in [5], the logarithmic mean can be represented also by

L(a, b) =
a − b

2 tanh−1((a − b)/(a + b))
; (1.9)
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thus the means P,T,M, and L are very similar. In [3] it is also proven that these means can
be defined using the nonsymmetric Schwab-Borchardt mean SB given by

SB(a, b) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
b2 − a2

cos−1(a/b)
, if a < b

√
a2 − b2

cosh−1(a/b)
, if a > b

(1.10)

(see [6, 7]). It has been established in [3] that

L = SB(A,G), P = SB(G,A), T = SB(A,A2), M = SB(A2,A). (1.11)

2. Interlacing Property of Power Means

Given two means M and N, we will write M < N if

M(a, b) < N(a, b), for a/= b. (2.1)

It is known that the family of power means is an increasing family of means, thus

Ap < Aq, if p < q. (2.2)

Of course, it is more difficult to compare two Stolarsky means, each depending on two
parameters. To present the comparison theorem given in [8, 9], we have to give the definitions
of the following two auxiliary functions:

k
(
x, y
)
=

⎧
⎪⎨

⎪⎩

|x| −
∣∣y
∣∣

x − y
, x /=y

sign(x), x = y,

l
(
x, y
)
=

{
L
(
x, y
)
, x > 0, y > 0

0, x ≥ 0, y ≥ 0, xy = 0.

(2.3)

Theorem 2.1. Let p, q, r, s ∈ R. Then the comparison inequality

Sp,q ≤ Sr,s (2.4)

holds true if and only if p+q ≤ r+s, and (1) l(p, q) ≤ l(r, s) if 0 ≤ min(p, q, r, s), (2) k(p, q) ≤ k(r, s)
ifmin(p, q, r, s) < 0 < max(p, q, r, s), or (3) −l(−p,−q) ≤ −l(−r,−s) ifmax(p, q, r, s) ≤ 0.

We need also in what follows an important double-sided inequality proved in [3] for
the Schwab-Borchardt mean:

3
√
ab2 < SB(a, b) < a + 2b

3
, a /= b. (2.5)
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Being rather complicated, the Seiffert-type means were evaluated by simpler means,
first of all by power means. The evaluation of a given mean M by power means assumes the
determination of some real indices p and q such that Ap < M < Aq. The evaluation is optimal
if p is the the greatest and q is the smallest index with this property. This means thatM cannot
be compared withAr if p < r < q.

For the logarithmic mean in [10], it was determined the optimal evaluation

A0 < L < A1/3. (2.6)

For the Seiffert means, there are known the evaluations

A1/3 < P < A2/3, (2.7)

proved in [11] and

A1 < T < A2, (2.8)

given in [2]. It is also known that

A1 < M < T, (2.9)

as it was shown in [3]. Moreover in [12] it was determined the optimal evaluation

Aln 2/ lnπ < P < A2/3. (2.10)

Using these results we deduce the following chain of inequalities:

A0 < L < A1/2 < P < A1 < M < T < A2. (2.11)

To prove the full interlacing property of power means, our aim is to show thatA3/2 can be put
between M and T. We thus obtain a nice separation of these Seiffert-type means by power
means which are evenly spaced with respect to their order.

3. Main Results

We add to the inequalities (2.11) the next results.

Theorem 3.1. The following inequalities

M < A3/2 < T (3.1)

are satisfied.
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Proof. First of all, let us remark that A3/2 = S3,3/2. So, for the first inequality in (3.1), it is
sufficient to prove that the following chain of inequalities

M <
A2 + 2A

3
< S3,1 < S3,3/2 (3.2)

is valid. The first inequality in (3.2) is a simple consequence of the property of the mean M
given in (1.11) and the second inequality from (2.5). The second inequality can be proved by
direct computation or by taking a = 1 + t, b = 1 − t, (0 < t < 1) which gives

√
1 + t2 + 2

3
<

√
3 + t2

3
, (3.3)

which is easy to prove. The last inequality in (3.2) is given by the comparison theorem of the
Stolarsky means. In a similar way, the second inequality in (3.1) is given by the relations

S3,3/2 < S4,1 =
3
√
AA2

2 < T. (3.4)

The first inequality is again given by the comparison theorem of the Stolarsky means. The
equality in (3.4) is shown by elementary computations, and the last inequality is a simple
consequence of the property of the mean T given in (1.11) and the first inequality from (2.5).

Corollary 3.2. The following two-sided inequality

x

sinh−1x
< A3/2(1 − x, 1 + x) <

x

tan−1x
, (3.5)

is valid for all 0 < x < 1.

Acknowledgment

The authors wish to thank the anonymous referee for offering them a simpler proof for their
results.

References

[1] H.-J. Seiffert, “Problem 887,” Nieuw Archief voor Wiskunde, vol. 11, no. 2, p. 176, 1993.
[2] H.-J. Seiffert, “Aufgabe β16,” Die Wurzel, vol. 29, pp. 221–222, 1995.
[3] E. Neuman and J. Sándor, “On the Schwab-Borchardt mean,” Mathematica Pannonica, vol. 14, no. 2,

pp. 253–266, 2003.
[4] K. B. Stolarsky, “Generalizations of the logarithmic mean,” Mathematics Magazine, vol. 48, no. 2, pp.

87–92, 1975.
[5] B. C. Carlson, “The logarithmic mean,” The American Mathematical Monthly, vol. 79, pp. 615–618, 1972.
[6] J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational

Complexity, John Wiley & Sons, New York, NY, USA, 1987.



6 International Journal of Mathematics and Mathematical Sciences

[7] B. C. Carlson, “Algorithms involving arithmetic and geometric means,” The American Mathematical
Monthly, vol. 78, pp. 496–505, 1971.
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