
Security and Communication Networks

Malware Analysis and Vulnerability
Detection Using Machine Learning
2022

Lead Guest Editor: Farrukh A. Khan
Guest Editors: Muhammad Faisal Amjad and Hammad Afzal

Malware Analysis and Vulnerability Detection
Using Machine Learning 2022

Security and Communication Networks

Malware Analysis and Vulnerability
Detection Using Machine Learning 2022

Lead Guest Editor: Farrukh A. Khan
Guest Editors: Muhammad Faisal Amjad and
Hammad Afzal

Copyright © 2023 Hindawi Limited. All rights reserved.

is is a special issue published in “Security and Communication Networks.” All articles are open access articles distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Chief Editor
Roberto Di Pietro, Saudi Arabia

Associate Editors
Jiankun Hu  , Australia
Emanuele Maiorana  , Italy
David Megias  , Spain
Zheng Yan  , China

Academic Editors
Saed Saleh Al Rabaee  , United Arab
Emirates
Shadab Alam, Saudi Arabia
Goutham Reddy Alavalapati  , USA
Jehad Ali  , Republic of Korea
Jehad Ali, Saint Vincent and the Grenadines
Benjamin Aziz  , United Kingdom
Taimur Bakhshi  , United Kingdom
Spiridon Bakiras  , Qatar
Musa Balta, Turkey
Jin Wook Byun  , Republic of Korea
Bruno Carpentieri  , Italy
Luigi Catuogno  , Italy
Ricardo Chaves  , Portugal
Chien-Ming Chen  , China
Tom Chen  , United Kingdom
Stelvio Cimato  , Italy
Vincenzo Conti  , Italy
Luigi Coppolino  , Italy
Salvatore D'Antonio  , Italy
Juhriyansyah Dalle, Indonesia
Alfredo De Santis, Italy
Angel M. Del Rey  , Spain
Roberto Di Pietro  , France
Wenxiu Ding  , China
Nicola Dragoni  , Denmark
Wei Feng   , China
Carmen Fernandez-Gago, Spain
AnMin Fu  , China
Clemente Galdi  , Italy
Dimitrios Geneiatakis  , Italy
Muhammad A. Gondal  , Oman
Francesco Gringoli  , Italy
Biao Han  , China
Jinguang Han  , China
Khizar Hayat, Oman
Azeem Irshad, Pakistan

M.A. Jabbar  , India
Minho Jo  , Republic of Korea
Arijit Karati  , Taiwan
ASM Kayes  , Australia
Farrukh Aslam Khan  , Saudi Arabia
Fazlullah Khan  , Pakistan
Kiseon Kim  , Republic of Korea
Mehmet Zeki Konyar, Turkey
Sanjeev Kumar, USA
Hyun Kwon, Republic of Korea
Maryline Laurent  , France
Jegatha Deborah Lazarus  , India
Huaizhi Li  , USA
Jiguo Li  , China
Xueqin Liang , Finland
Zhe Liu, Canada
Guangchi Liu   , USA
Flavio Lombardi  , Italy
Yang Lu, China
Vincente Martin, Spain
Weizhi Meng  , Denmark
Andrea Michienzi  , Italy
Laura Mongioi  , Italy
Raul Monroy  , Mexico
Naghmeh Moradpoor  , United Kingdom
Leonardo Mostarda  , Italy
Mohamed Nassar  , Lebanon
Qiang Ni, United Kingdom
Mahmood Niazi  , Saudi Arabia
Vincent O. Nyangaresi, Kenya
Lu Ou  , China
Hyun-A Park, Republic of Korea
A. Peinado  , Spain
Gerardo Pelosi  , Italy
Gregorio Martinez Perez  , Spain
Pedro Peris-Lopez  , Spain
Carla Ràfols, Germany
Francesco Regazzoni, Switzerland
Abdalhossein Rezai  , Iran
Helena Rifà-Pous  , Spain
Arun Kumar Sangaiah, India
Nadeem Sarwar, Pakistan
Neetesh Saxena, United Kingdom
Savio Sciancalepore  , e Netherlands

https://orcid.org/0000-0003-0230-1432
https://orcid.org/0000-0002-4312-6434
https://orcid.org/0000-0002-0507-7731
https://orcid.org/0000-0002-9697-2108
https://orcid.org/0000-0001-8842-493X
https://orcid.org/0000-0002-4335-8331
https://orcid.org/0000-0002-0589-7924
https://orcid.org/0000-0001-5089-2025
https://orcid.org/%200000-0003-4750-7864
https://orcid.org/0000-0002-8964-0746
https://orcid.org/0000-0002-5450-3207
https://orcid.org/0000-0003-1960-9986
https://orcid.org/0000-0002-6315-4221
https://orcid.org/0000-0002-4450-3983
https://orcid.org/0000-0002-6502-472X
https://orcid.org/0000-0001-8037-1685
https://orcid.org/0000-0003-1737-6218
https://orcid.org/0000-0002-8718-111X
https://orcid.org/0000-0002-2079-8713
https://orcid.org/0000-0001-9327-0138
https://orcid.org/0000-0002-3600-0016
https://orcid.org/0000-0003-1909-0336
https://orcid.org/0000-0002-8531-9226
https://orcid.org/0000-0001-9575-2990
https://orcid.org/0000-0002-8131-3206
https://orcid.org/0000-0002-1632-5737
https://orcid.org/0000-0002-2988-700X
https://orcid.org/0000-0001-6455-502X
https://orcid.org/0000-0003-1688-0113
https://orcid.org/0000-0003-2621-582X
https://orcid.org/0000-0002-5082-5727
https://orcid.org/0000-0002-4993-9452
https://orcid.org/0000-0003-4059-2728
https://orcid.org/0000-0001-7311-6459
https://orcid.org/0000-0001-5605-7354
https://orcid.org/0000-0002-2421-2214
https://orcid.org/0000-0002-7023-7172
https://orcid.org/0000-0003-4227-6067
https://orcid.org/0000-0001-9166-0570
https://orcid.org/0000-0002-7256-3721
https://orcid.org/0000-0001-8069-3801
https://orcid.org/0000-0002-5115-0928
https://orcid.org/0000-0002-6532-2081
https://orcid.org/0000-0003-4588-3196
https://orcid.org/0000-0003-0723-7847
https://orcid.org/0000-0003-4384-5786
https://orcid.org/0000-0001-8005-8701
https://orcid.org/0000-0003-2341-0996
https://orcid.org/0000-0002-3465-995X
https://orcid.org/0000-0002-8709-2678
https://orcid.org/0000-0001-8852-8317
https://orcid.org/0000-0001-8857-4436
https://orcid.org/0000-0001-7318-7644
https://orcid.org/0000-0002-8441-781X
https://orcid.org/0000-0003-1183-736X
https://orcid.org/0000-0002-3812-5429
https://orcid.org/0000-0001-5532-6604
https://orcid.org/0000-0001-6943-0760
https://orcid.org/0000-0001-8529-499X
https://orcid.org/0000-0003-0923-0235
https://orcid.org/0000-0003-0974-3639

De Rosal Ignatius Moses Setiadi  ,
Indonesia
Wenbo Shi, China
Ghanshyam Singh  , South Africa
Vasco Soares, Portugal
Salvatore Sorce  , Italy
Abdulhamit Subasi, Saudi Arabia
Zhiyuan Tan  , United Kingdom
Keke Tang  , China
Je Sen Teh  , Australia
Bohui Wang, China
Guojun Wang, China
Jinwei Wang  , China
Qichun Wang  , China
Hu Xiong  , China
Chang Xu  , China
Xuehu Yan  , China
Anjia Yang  , China
Jiachen Yang  , China
Yu Yao  , China
Yinghui Ye, China
Kuo-Hui Yeh  , Taiwan
Yong Yu  , China
Xiaohui Yuan  , USA
Sherali Zeadally, USA
Leo Y. Zhang, Australia
Tao Zhang, China
Youwen Zhu  , China
Zhengyu Zhu  , China

https://orcid.org/0000-0001-6615-4457
https://orcid.org/0000-0002-5159-3286
https://orcid.org/0000-0003-1976-031X
https://orcid.org/0000-0001-5420-2554
https://orcid.org/0000-0003-0377-1022
https://orcid.org/0000-0001-5571-4148
https://orcid.org/0000-0002-9366-5671
https://orcid.org/0000-0003-3474-4115
https://orcid.org/0000-0001-6137-6667
https://orcid.org/0000-0002-9726-7232
https://orcid.org/0000-0001-6388-1720
https://orcid.org/0000-0002-7958-6571
https://orcid.org/0000-0003-2558-552X
https://orcid.org/0000-0001-5458-541X
https://orcid.org/0000-0003-0598-761X
https://orcid.org/0000-0003-0667-077X
https://orcid.org/0000-0001-6897-4563
https://orcid.org/0000-0003-4365-9713
https://orcid.org/0000-0001-6562-8243

Contents

An Improved Big Data Analytics Architecture for Intruder Classification Using Machine Learning
Muhammad Babar  , Sarah Kaleem  , Adnan Sohail, Muhammad Asim  , and Muhammad Usman
Tariq 

Research Article (7 pages), Article ID 1216192, Volume 2023 (2023)

KTSDroid: A Framework for Android Malware Categorization Using the Kernel Task Structure
Saneeha Khalid  , Khalid Imran  , and Faisal Bashir Hussain 

Research Article (20 pages), Article ID 7827823, Volume 2023 (2023)

DQfD-AIPT: An Intelligent Penetration Testing Framework Incorporating Expert Demonstration
Data
Yongjie Wang, Yang Li  , Xinli Xiong, Jingye Zhang, Qian Yao, and Chuanxin Shen
Research Article (15 pages), Article ID 5834434, Volume 2023 (2023)

Design and Analysis of Machine Learning Based Technique for Malware Identification and
Classification of Portable Document Format Files
Sultan S. Alshamrani 

Research Article (10 pages), Article ID 7611741, Volume 2022 (2022)

https://orcid.org/0000-0001-6653-6076
https://orcid.org/0000-0001-7416-9675
https://orcid.org/0000-0002-6423-9809
https://orcid.org/0000-0002-7605-3040
https://orcid.org/0000-0001-6089-4243
https://orcid.org/0009-0004-0080-812X
https://orcid.org/0000-0002-5819-6160
https://orcid.org/0009-0005-1211-3699
https://orcid.org/0000-0001-8194-9354

Research Article
An Improved Big Data Analytics Architecture for Intruder
Classification Using Machine Learning

Muhammad Babar ,1 Sarah Kaleem ,2,3 Adnan Sohail,2 Muhammad Asim ,3,4

and Muhammad Usman Tariq 5

1Robotics and Internet of Tings Lab, Prince Sultan University, Riyadh 11586, Saudi Arabia
2Computing and Technology Department, Iqra University, Islamabad 44000, Pakistan
3EIAS Data Science Lab, Prince Sultan University, Riyadh 11586, Saudi Arabia
4School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
5Abu Dhabi University, Abu Dhabi 59911, UAE

Correspondence should be addressed to Sarah Kaleem; sarahkaleem33887@iqraisb.edu.pk

Received 18 October 2022; Revised 21 January 2023; Accepted 11 April 2023; Published 4 December 2023

Academic Editor: Chien-Ming Chen

Copyright © 2023 Muhammad Babar et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Te approval of retrieving information on the Internet originates several network securities matters. Intrusion recognition is
a critical study in network security to spot unauthorized admission or occurrences on protected networks. Intrusion detection has
a fully-fedged reputation in the current era. Research emphasizes several datasets to upsurge system precision and lessen the false-
positive proportion. Tis article proposes a new intrusion detection system using big data analytics and deep learning to address
some of the misuse and irregularity detection limitations. Te proposed method could identify any odd activities in a network to
recognize malicious or unauthorized action and permit a response during a confdentiality break.Te proposed system utilizes the
big data analytics platform based on parallel and distributed mechanisms. Te parallel and distributed platforms improve the
training time along with the accuracy.Te experimentation appropriately classifes the information as either normal or abnormal.
Te proposed system has a recognition proportion of 96.11% that pointedly expands overall recognition accuracy related to
existing strategies.

1. Introduction

Te eminence and number of cyberattacks have amplifed
pointedly as the services upsurge due to the Internet [1, 2].
Te demand and the execution of safety actions are needed
to avoid and comprehend the cyberattacks, i.e., many
dangerous software packages such as trojans, malware, vi-
ruses, and other unknown hacking tactics [3, 4]. Hence,
there is a need for a method that must drastically improve
the security of the system’s networks to avoid cyberattacks.
Data integrity, confdentiality, and availability will not be
limited as an upshot [5]. Every network may be considered
a target, and all the systems are vulnerable. As a result, it is
susceptible to illegal access and disclosing private and
erogenous data [6, 7]. A frewall is a versatile and essential

component of any security system. It confgures the security
policy but cannot protect us from malicious activities. Only
the text of a packet’s caption is examined in this frewall
situation, whereas both materials and captions of a package
are read in an intrusion detection system (IDS) [8]. Te IDS
is a more dynamic method for defending sensitive and
private data.

According to the defnition, an intrusion is any act that
compromises data integrity, confdentiality, or availability
[9]. IDS still needs to be fully formed and considered
a comprehensive safeguard despite playing a vibrant role in
scheming and safeguarding a secure structure. An IDS
distinguishes intrusions and issues a warning in the form of
an alert to guarantee that resources are not compromised
[10]. An IDS acts as a deterrent to illegal access to

Hindawi
Security and Communication Networks
Volume 2023, Article ID 1216192, 7 pages
https://doi.org/10.1155/2023/1216192

https://orcid.org/0000-0001-6653-6076
https://orcid.org/0000-0001-7416-9675
https://orcid.org/0000-0002-6423-9809
https://orcid.org/0000-0002-7605-3040
mailto:sarahkaleem33887@iqraisb.edu.pk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/1216192

information. It ofers a user-friendly interface for nonexpert
workers to activate the systems professionally. In current
years, online fraud has become more predominant in China.
However, a community clamor exploded the previous year
after a phone scam targeted a college student. An IDS is
a network security system formerly intended to distinguish
vulnerability against a sole application. Te IDS is out-
of-band on the network structure and is not in the correct
communication path between the transmitter and receiver of
data [11]. Instead, IDS on edge would engage a TAP or
SPAN port to check a copy of the inline trafc fow stream
[12]. Te IDS was built in this manner as the complexity of
the analysis essential for intrusion detection could not be
steered at a rate that could persevere the equipment on the
network [13]. As previously noted, the IDS is also a listen-
only device, as the attackers can exploit vulnerabilities
quickly after gaining network access.

Deep learning (DL) is a class of ML methods considered
by some computation layers that permit an algorithm to
learn suitable predictive features [14, 15]. Te advent of deep
learning has squeezed many machine learning-based ap-
plications. Te victory is based on two foremost benefts: (1)
it afords the capability to learn nonlinear relationships
between parameters and (2) it permits one to leverage in-
formation from unlabelled data that does not belong to the
problem. Furthermore, DL practices could be used in cases,
where massive or complex data processing challenges ML or
conventional data analysis methods [16]. Currently, the
researchers are relying upon the DL technique. Deep
learning may be employed along with other automation
techniques, e.g., rule- and heuristics-based and machine
learning techniques [17].

Unauthorized movements on a computer network are
referred to as intrusion. It was either passively or aggres-
sively successful. Data collection and eavesdropping are used
in a passive intrusion. In the event of full of life, however,
intrusion occurs and is accomplished through destructive
packet forwarding, packet dropping, and whole attacks [18].
An IDS aims to classify an intruder before it imposes actual
harm to the system. Currently, the current security methods
that are unrealistic are utilized to avoid security faults.
Hence, the misuse recognition method cannot classify un-
identifed attacks. Anomaly-based detection is realized by
increasing the accuracy rate of intrusion detection using
deep learning methods. In this research, an improved system
is proposed for addressing the precise recognition of the
intrusion. Te classical LSTM is modifed to classify, in-
vestigate, and produce estimates of the intruders based on
time series data.

Te reaming of the paper is organized as follows. Section
2 elaborates the detailed literature review along with related
work. Section 3 represents the proposed methodology. Af-
terward, Section 4 discusses the results and discusses on
results. Finally, Section 5 concludes the manuscript.

2. Related Work

An IDS is observed as a hazardous element in shielding
systems that store critical information, intellectual property,

and other digital resources. Te complete system could
rapidly crumble and cast doubt on the long-term viability if
a private party has access to the information [19]. An IDS has
conventionally maintained administrators in detecting in-
trusions and managing risks [20]. On the other hand, the act
of IDS is steadily endangered. Te technology hackers use to
hijack a network and the counter-technology administrators
are deployed to combat these attacks. Tis has outstripped
the opportunity and measure of IDS [21]. Soft computing is
one of the policies that aid in reducing detection costs [22].
Because of their learning and fexibility, capabilities are used
to construct utilities in the intrusion detection industry. Te
ability to detect threats and attacks is critical to their pre-
vention, and accurate threat detection is vibrant. Numerous
intrusion detection models have been proposed in the
context of security. In the current research, the neural
network method has become one of the most often utilized
soft computing strategies [23].

IDSs have been presented based on anomaly detection
using an unsupervised ANN [24]. A hybrid data mining
method combined k-means clustering with the SMO clas-
sifcation algorithm for classifying network intrusions [25].
Te NSL-KDD dataset was utilized with k-means clustering
to reduce the dimensionality of the training dataset. SMO
has completed the classifcation process to classify the in-
truders. Te suggested approach (k-mean + SMO) achieved
a 94.48 percent positive detection rate while lowering the
false alarm rate to 0. A novel edge-up methodology called
cluster center and nearest neighbor was created and
implemented that computed two distances [26]. Te KDD
Cup 99 dataset was utilized in the tests. It trains the dataset
before it is divided into multiple subsets. Normal and ab-
normal CANN profles are created using SVM that do not
outperformK-NN in classifying R2L andU2L attacks [27]. A
new hybrid approach, DT-SVM, was presented, and
a foundation classifer that uses two classifers, including
SVM and a decision tree was used. Tis mixed technique
aimed to increase detection accuracy while minimizing
computational complexity.

A hierarchical hybrid detection method was proposed
that integrates misuse and anomaly detection algorithms
[28]. Tis hybrid method outperforms the traditional
models. Multicategory classifers were employed to upsurge
intrusion detection accuracy [29]. Te study’s main goal was
to use all the classifers’ excellent features. Te results of the
tests show that the accuracy of detecting denial of service
attacks has increased. A hybrid method with several metrics
is proposed and applied for better accuracy [30]. Finally, the
hybrid model’s results were compared to other primary
algorithms that better detect intrusion. Te SVM algorithm
accuracy is 94%, and the result also shows a signifcant
percentage of (FP), (TP), (FN), and (TN) alarms when using
a hybrid model. A novel IDS based on a data gain criterion
and unique SVM was proposed for extracting noteworthy
features from the network trafc archives domain to cate-
gorize and detect future intrusions [31]. Machine learning
techniques have acknowledged considerable attention in the
middle of the intrusion detection scholars to report facts-
based weaknesses in detecting methods [32]. Unsupervised

2 Security and Communication Networks

techniques like k-means, SOM, and one-class SVM out-
performed the others, although their ability to correctly
identify all attack types needed to be more consistent.

Deep learning has glimmered much attention in aca-
demia and industry as a newfangled hotspot in neural
networks. Deep knowledge has formed excellent results in
the feld of intrusion detection. It is claimed and proved that
an LSTM recurrent neural network could detect intrusions
realistically. Te suggested classifer successfully distin-
guished between DOS attacks and network probes, each with
a time series of events. With a 93.82 percent accuracy rate,
LSTM surpassed the winning entries in the KDD Cup 99
competition, according to experiments. Machine learning
employs a compound architecture or a series of nonlinear
operations to obtain high-level abstractions in data. LSTM is
applied to an RNN in this article. Te NSL-KDD dataset is
used to train the model and measure its performance.

3. Proposed Methodology

Te proposed system performs processing in a parallel
fashion. It utilizes the big datasets using the big data analytics
platform. Te proposed approach utilizes the LSTM model
of learning. It preprocesses information with an un-
supervised flter and classifes it with the LSTM algorithm.
Te proposed system is fabricated from many processes that
process data to classify irregularities in network trafc. Te
multiple functions are processed in a parallel manner. Te
proposed system adds various layers to address the limi-
tation of intrusion detection accuracy. Te block model of
the proposed scheme is depicted in Figure 1, where the
detailed structure is provided in Figure 2.

Te proposed hybrid approach combines two leading
deep learning convolution-based models. Te proposed
technique adds three convolutional layers to design the
hybrid method. Te endangered gradient delinquent, where
the neural network’s efciency diminishes due to inadequate
training, is one limitation of widespread RNNs. Usual RNNs
with a gradient-based learning method reduce as their
signifcance and intricacy rise. Amending the sceneries
professionally at the initial stages is time consuming and
computationally exhaustive. RNNs might practice the ob-
ligation to discover to remember the critical data and then
loop back to the network if the data are not recognized.
Although network trafc collection comprises several im-
practical, imprecise unrelated data, and noisy data that afect
the result across normal and abnormal network trafc
categorization. As a result, preprocessing is essential to
expand the recognition capacities of classifers.

Preprocessing permits standardizing and cleaning of the
data; the preprocessing is carried out so that the in-
appropriate information does not encumber classifer ac-
curacy, and redundant data are removed. Te big datasets
are preprocessed before being translated into the format
required for the proposed improved modifed LSTM model.
Te proposed modifed LSTM model will be a multilayered
sequential model, including two LSTM layers followed by
a thick layer that predicts the detection rate. Te sequential
class came from the Keras Models library, while the

Embedding, Masking, LSTM, Dropout, and Dense types
came from the Keras Layers library. Initially, an instance of
the Sequential class is created to utilize as a proposed
modifed model. In addition, the Embedding, Masking,
LSTM, Dropout, and Dense layers are added to it.

Te LSTM layer is added to the sequential model to start
the modeling building. Te embedding layer for data form
follows it, and the masking layer for pretrained embeddings.
Te frst parameter is the number of neurons or nodes
required for the LSTM layer. A dropout layer is added to the
proposed layer using the second parameter. Finally, a thick
layer is added at the end to make the model more resilient.
Te convolutional layers accomplish the operation over the
input K. Te output of the coating can be calculated as
equation (1). To compute the more diverse and rich rep-
resentation of the input, multiple flters have been used.

CN Yi,j􏼐 􏼑 � 􏽘
a/2

x �−a/2
􏽘

n/2

l�−n/2
Fz (l, m)Zi−l,j−m. (1)

Later the rectifed linear unit is processed that is applied
after convolution operation. ReLU can be calculated as
follows:

RECT(Z) � max(O, Z). (2)

ReLU provides faster convergence during training and
performs better than other activation functions like Sigmoid
because it overcomes the vanishing gradient problem since
the gradient is linear function. Finally, the polling layer is
processed. Tere are diferent types of polling such as av-
erage, maximum, and minimum polling. Maximum polling
is the most popular pooling technique, which takes the
largest value over the input x. Let p be the size of the polling
flter, and the output of the polling operation is computed as
follows:

M Zi(􏼁 � max Zi+n,i+m􏽮 􏽯. (3)

4. Experimental Results and Discussion

Te experimental results and discussion are discussed in this
section. Big data processing is based on the parallel and
distributed mechanism, where the big data are divided into
various chunks (blocks), and each piece is loaded and
processed in parallel. It is imperative to decide the number of
parallelisms that howmany blocks (nodes) are required to be
loaded at a time for computations and processing. Tis
concept is known as the level of equality. We utilized the
Apache Spark big data open-source platform.

RNN can be used to solve sequence problems. LSTM is
being exploited to manage sequence problems. Te rec-
ommended techniques based on LSTM with selecting 41
features in an NSL-KDD dataset are adopted to increase the
accuracy. Te dataset is divided into 70-30 training and
testing rats.Te text labels in the target data are frst encoded
into an integer. Te same preprocessing technique turns all
text inputs in the training and test data into integers. Instead
of memorizing the data displayed during training, the

Security and Communication Networks 3

machine learning model aims to discover patterns that
generalize well to new data. Te proposed model performs
well on unseen instances that were not used to train the
model. Figure 3 shows the model prediction on the evalu-
ation dataset (held-out data). Figure 4 depicts the loss, which
is reasonably encouraging when compared to earlier tra-
ditional procedures.

It is evident from the graph that the proposed classifer
accuracy is improved. Te classifer accurately recognises
incursions with 20 epochs.

Te model loss is also reported for 20 epochs with
a batch size of 64. Compared to previous strategies, the
model converges after 20 cycles which is a level-headedly
short time. Figure 5 demonstrates the model building time
over several epochs. Te accuracy analysis of diferent
models is also shown in Figure 6.

Te confusion matrix is used to generate most perfor-
mance metrics. When making predictions, the classifcation
model becomes perplexed. To obtain a logic of precise and
error in prediction, the normalization process is carried out.

Big Data Sets

Pre-Processing

Conversion Reduction Cleansing Transformation Merging

TrainingTesting

Convolution-2

Hidden

Output

NODE-1 NODE-2 NODE-N

Convolution-1

NSL KDD

Figure 1: Proposed block model.

4 Security and Communication Networks

LS
TM

-1
LS

TM
-2

Activation Function

Dataset – NLS-KDD

Sequential Data

D
en

se

Softmax Classifier

D
et

ec
tio

n

Spark Cluster ManagerSpark Driver Program

Embedding Layer

Masking Layer

Normal AbNormal

…Worker Node 1 Worker Node 2 Worker Node N
EXE EXE EXECache Cache Cache

Figure 2: Proposed model structure.

0.7

0.75

0.8

0.85

0.9

0.95

1

1 3 5 7 9 11 13 15 17

AC
CU

RA
CY

TRAIN
TEST

Figure 3: Proposed modifed LSTM model accuracy rate.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 3 5 7 9 11 13 15 17

LO
SS

TRAIN
TEST

Figure 4: Proposed modifed LSTM model loss rate.

Security and Communication Networks 5

5. Conclusion

Te current security methods could be more efcient in
avoiding security faults. An intrusion detection process has
become an important part of network security. Hence, the
misuse recognition method cannot classify unidentifed
attacks. Te irregularity recognition practice is utilized to
detect anomalies. Anomaly-based detection is realized by
increasing the accuracy rate of intrusion detection using
deep learning methods. In this article, an improved meth-
odology is proposed for accurately detecting the intrusion
using a modifed LSTM algorithm. Te proposed system
utilizes the big data analytics platform based on parallel and
distributed mechanisms. Te parallel and distributed plat-
form improves the training time along with the accuracy.
Te classical LSTM is modifed to classify, investigate, and
produce estimates of the intruders based on time series data.
Te proposed modifed LSTM is compared with traditional
algorithms and their modifed versions. It is evident from the
results that the proposed system outperforms the existing
approaches.Te proposed method works well when it comes
to detecting assaults. In terms of detection rate, the proposed
method knocks existing techniques. Te proposed system

accurately classifes data as normal or abnormal. Te pro-
posed method has a detection rate of 96.11 percent, which is
implausible. Filter layers like dropout ten eliminate non-
sensical, noisy, and irrelevant data from the source data.

Data Availability

Te data used to support the fndings of this study are in-
cluded within the article.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

Muhammad Babar proposed the methodology, wrote the
original draft, and validated the study. Sarah Kaleem pro-
posed the methodology, wrote the original draft, and vali-
dated the study. Adnan Sohail reviewed and edited the
manuscript and formally analysed the study. Muhammad
Asim reviewed and edited the manuscript and acquired the
funding. Muhammad Usman Tariq reviewed and edited the
manuscript and visualized the study.

Acknowledgments

Te authors would like to acknowledge the support of Prince
Sultan University for paying the Article Processing Charges.

References

[1] M. K. Kagita, N. Tilakarathne, T. R. Gadekallu,
P. K. R. Maddikunta, and S. Singh, “A review on cybercrimes
on the Internet of Tings,” in Deep Learning for Security and
Privacy Preservation in IoT, Signals and Communication
Technology, pp. 83–98, Springer, Singapore, 2022.

[2] I. Almomani, M. Ahmed, and L. Maglaras, “Cybersecurity
maturity assessment framework for higher education in-
stitutions in Saudi Arabia,” PeerJ Computer Science, vol. 7,
p. e703, 2021.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Epochs

Exisitng
Proposed

Se
co

nd
s -

 1
4

m
s/

ste
p

Figure 5: Model building time.

76.61 77.1

94.62 93.97 95.17 96.11

50
55
60
65
70
75
80
85
90
95

100

SOM-ANN
SVM
Modified SVM

K-Mean
Modified K-Mean
Proposed

Figure 6: Accuracy analysis of diferent models.

6 Security and Communication Networks

[3] A. Sedik, O. S. Faragallah, H. S. El-sayed et al., “An efcient
cybersecurity framework for facial video forensics detection
based on multimodal deep learning,” Neural Computing and
Applications, vol. 34, no. 2, pp. 1251–1268, 2022.

[4] R. Deepalakshmi, R. Vijayalakshmi, C. SamRuben, R. Pandiya
Rajan, and J. Pradeep, “Application of artifcial intelligence in
cybersecurity: a detailed survey on intrusion detection sys-
tems,” in An Interdisciplinary Approach to Modern Network
Security, pp. 1–22, CRC Press, Boca Raton, FL, USA, 2022.

[5] E. N. Witanto, Y. E. Oktian, and S.-G. Lee, “Toward data
integrity architecture for cloud-based AI systems,” Symmetry,
vol. 14, no. 2, p. 273, 2022.

[6] M. I. Talukdar, R. Hassan, M. S. Hossen, K. Ahmad, F. Qamar,
and A. S. Ahmed, “Performance improvements of AODV by
black hole attack detection using IDS and digital signature,”
Wireless Communications and Mobile Computing, vol. 2021,
Article ID 6693316, 13 pages, 2021.

[7] S. Sanober, I. Alam, S. Pande et al., “An enhanced secure deep
learning algorithm for fraud detection in wireless commu-
nication,” Wireless Communications and Mobile Computing,
vol. 2021, Article ID 6079582, 14 pages, 2021.

[8] H. A. Hassan, E. E. Hemdan, W. El-Shafai, M. Shokair, and
F. E. A. El-Samie, “Intrusion detection systems for the internet
of thing: a survey study,” Wireless Personal Communications,
vol. 128, no. 4, pp. 2753–2778, 2022.

[9] A. Takkar and R. Lohiya, “A survey on intrusion detection
system: feature selection, model, performance measures,
application perspective, challenges, and future research di-
rections,” Artifcial Intelligence Review, vol. 55, no. 1,
pp. 453–563, 2022.

[10] A. Kim, M. Park, and D. H. Lee, “AI-IDS: application of deep
learning to real-time Web intrusion detection,” IEEE Access,
vol. 8, pp. 70245–70261, 2020.

[11] A. Palshikar, “What distinguishes binary from multi-class
intrusion detection systems: observations from experi-
ments,” International Journal of Information Management
Data Insights, vol. 2, no. 2, Article ID 100125, 2022.

[12] D. A. Kumar and S. Venugopalan, “Intrusion detection
systems: a review,” International Journal of Advanced Re-
search in Computer Science, vol. 8, no. 8, pp. 356–370, 2017.

[13] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran,
A. Al-Nemrat, and S. Venkatraman, “Deep learning approach
for intelligent intrusion detection system,” IEEE Access, vol. 7,
pp. 41525–41550, 2019.

[14] I. Idrissi, M. Azizi, and O. Moussaoui, “Accelerating the
update of a DL-based IDS for IoT using deep transfer
learning,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 23, no. 2, pp. 1059–1067, 2021.

[15] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and
F. Ahmad, “Network intrusion detection system: a systematic
study of machine learning and deep learning approaches,”
Transactions on Emerging Telecommunications Technologies,
vol. 32, no. 1, Article ID e4150, 2021.

[16] S. E. Whang, Y. Roh, H. Song, and J.-G. Lee, “Data collection
and quality challenges in deep learning: a data-centric ai
perspective,” Te VLDB Journal, vol. 32, no. 4, pp. 791–813,
2023.

[17] A. Khan, S. H. Khan, M. Saif, A. Batool, A. Sohail, and
M. Waleed Khan, “A survey of deep learning techniques for
the analysis of COVID-19 and their usability for detecting
omicron,” Journal of Experimental and Teoretical Artifcial
Intelligence, vol. 2023, pp. 1–43, 2023.

[18] S. Sharma and A. Kaul, “A survey on Intrusion Detection
Systems and Honeypot based proactive security mechanisms

in VANETs and VANET Cloud,” Vehicular Communications,
vol. 12, pp. 138–164, 2018.

[19] R. Yang, R. Wakefeld, S. Lyu et al., “Public and private
blockchain in construction business process and information
integration,” Automation in Construction, vol. 118, Article ID
103276, 2020.

[20] A. Stewart, Te Community Defense Approach: A Human
Approach to Cybersecurity for Industrial and Manufacturing
Systems, University of Cincinnati, Cincinnati, OH, USA, 2019.

[21] L. Balke, “China’s new cybersecurity law and US-China
cybersecurity issues,” Santa Clara Law Review, vol. 58,
p. 137, 2018.

[22] A. H. Hamamoto, L. F. Carvalho, L. D. H. Sampaio, T. Abrão,
and M. L. Proença, “Network anomaly detection system using
genetic algorithm and fuzzy logic,” Expert Systems with Ap-
plications, vol. 92, pp. 390–402, 2018.

[23] V. Gowdhaman and R. Dhanapal, “An intrusion detection
system for wireless sensor networks using deep neural net-
work,” Soft Computing, vol. 26, no. 23, pp. 13059–13067, 2021.

[24] M. Ozkan-Okay, R. Samet, Ö. Aslan, and D. Gupta, “A
comprehensive systematic literature review on intrusion
detection systems,” IEEE Access, vol. 9, pp. 157727–157760,
2021.

[25] Gadal, S. M. Ali Mohamed, and R. A. Mokhtar, “Anomaly
detection approach using hybrid algorithm of data mining
technique,” in Proceedings of the 2017 International Confer-
ence on Communication, Control, Computing and Electronics
Engineering (ICCCCEE), pp. 1–6, IEEE, Khartoum, Sudan,
January, 2017.

[26] W.-C. Lin, S.-W. Ke, and C.-F. Tsai, “CANN: an intrusion
detection system based on combining cluster centers and
nearest neighbors,” Knowledge-Based Systems, vol. 78,
pp. 13–21, 2015.

[27] S. Peddabachigari, A. Abraham, C. Grosan, and J. Tomas,
“Modeling intrusion detection system using hybrid intelligent
systems,” Journal of Network and Computer Applications,
vol. 30, no. 1, pp. 114–132, 2007.

[28] V. Hajisalem and S. Babaie, “A hybrid intrusion detection
system based on ABC-AFS algorithm for misuse and anomaly
detection,” Computer Networks, vol. 136, pp. 37–50, 2018.

[29] L. S. Liu and H. Y. Fu, “Intrusion detection model based on
multi-category feature fusion,” in Proceedings of the In-
ternational Conference on Frontiers of Electronics, Information
and Computation Technologies, pp. 1–5, Yangzhou, China,
May, 2021.

[30] Y. Mirsky, D. Tomer, Y. Elovici, and A. Shabtai, “Kitsune: an
ensemble of autoencoders for online network intrusion de-
tection,” 2018, https://arxiv.org/abs/1802.09089.

[31] G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescapé,
“A hierarchical hybrid intrusion detection approach in IoT
scenarios,” in Proceedings of the GLOBECOM 2020-2020 IEEE
Global Communications Conference, pp. 1–7, IEEE, Taipei,
Taiwan, December, 2020.

[32] I. Guarino, G. Bovenzi, D. Di Monda, G. Aceto, D. Ciuonzo,
and A. Pescapé, “On the use of machine learning approaches
for the early classifcation in network intrusion detection,” in
Proceeding sof the 2022 IEEE International Symposium on
Measurements & Networking (M&N), Padua, Italy, July, 2022.

Security and Communication Networks 7

https://arxiv.org/abs/1802.09089

Research Article
KTSDroid: A Framework for Android Malware Categorization
Using the Kernel Task Structure

Saneeha Khalid , Khalid Imran , and Faisal Bashir Hussain

Bahria University, Islamabad, Pakistan

Correspondence should be addressed to Saneeha Khalid; saneeha.nust@gmail.com

Received 11 October 2022; Revised 3 November 2022; Accepted 24 November 2022; Published 13 May 2023

Academic Editor: Hammad Afzal

Copyright © 2023 Saneeha Khalid et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Te penetration of malicious applications in the Android market has enhanced the signifcance of designing malware mitigation
systems for Android. Malware detection systems are being developed by examining applications using static and dynamic analysis
techniques.Te use of code obfuscation has highlighted the importance of dynamic analysis as many static analysis schemes can be
evaded by code obfuscation strategies. In order to record the true working of the application, a volatile memory-based solution for
application analysis is presented in this study. Time-based memory dumps are collected after interactions with an application.
Process-specifc artifacts of the application under analysis are extracted by examining the kernel task structure of memory. Te
features in the kernel task structure belong to nine broad categories based on their semantics. An important contribution of the
study is the analysis of the kernel task structure for determining the set of efective categories and features for Android malware
categorization. Tree of the most important categories and fourteen valuable features are reported. Te proposed system cat-
egorizes the applications into fve classes: adware, banking Trojans, riskware, SMS Trojans, and benign. Te proposed system is
able to categorize applications with an average F1-score of 0.984, which is the highest score reported so far for multiclass Android
malware categorization with a minimum number of kernel task structure-based features.

1. Introduction

Te tremendous rise in smartphone usage has transformed
working patterns all over the world. Many business and
personal tasks are performed using smartphones as they are
considered more accessible and easier to use as compared to
other devices. Te adaptability of smartphones all over the
world is due to the highly efcient and usable operating
systems such as Android, iOS, and Windows. Android is the
most used operating system for smartphones and holds
a major market share of 71.45 percent (https://www.statista.
com/statistics/272698/global-market-share-held-by-mobile-
operating-systems-since-2009/). Te success of Android can
be attributed to the large number of Android-compatible user
applications. Tese applications are frequently used by users
and are considered reliable by a large population. Te
malicious application developers take advantage of the usage
and popularity of Android and are developing a large number

of malicious applications for the platform. According to
statistics, 10.5 million Android malware infections were de-
tected in 2019 and 0.48 million new Android malware in-
fections per month were found in 2020 (https://www.statista.
com/statistics/680705/global-android-malware-volume/).

Te increasing rate of malware penetration in An-
droid is a serious threat [1]. Terefore, many schemes
have been proposed to mitigate this issue. Signature-
based schemes have dominated malware detection
techniques, but their major drawback is the inability to
detect zero day malware. Signature-based schemes are
also known to be less efcient against malware variants
[2]. A more generic approach to malware detection and
categorization is the creation of generic behavior pat-
terns. Machine learning-based methods are used for
creating generic patterns; however, the selection of useful
and signifcant features is important for creating efective
classifcation systems.

Hindawi
Security and Communication Networks
Volume 2023, Article ID 7827823, 20 pages
https://doi.org/10.1155/2023/7827823

https://orcid.org/0000-0001-6089-4243
https://orcid.org/0009-0004-0080-812X
https://orcid.org/0000-0002-5819-6160
mailto:saneeha.nust@gmail.com
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/680705/global-android-malware-volume/
https://www.statista.com/statistics/680705/global-android-malware-volume/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7827823

In order to analyze malicious Android applications using
machine learning approaches, static and dynamic analysis
techniques can be used [3]. Static analysis refers to analyzing
an application by examining its structure and code without
execution. Static analysis becomes less efective when the
applications use code obfuscation techniques for hiding the
code semantics [4].

Obfuscation refers to arranging the structure of code in
a way that reverse engineering becomes difcult [5].
Common obfuscation schemes include class encryption,
code reordering, refection, junk code insertion, and control
fow modifcation [6]. In order to minimize the efect of
obfuscation, dynamic analysis techniques are widely being
used at present. Dynamic analysis refers to analyzing the
application by executing it in a sandbox. Tese techniques
extract the runtime activity of applications; therefore, they
are more resilient against obfuscation techniques [7].

Dynamic analysis helps analyze the runtime behavior of
an application with the help of network activity [8], runtime
API usage [9], and volatile memory usage [10]. Te usage of
volatile memory for extracting dynamic features has gained
signifcant attention in recent past, as the true working of the
application is visible by extracting memory artifacts. Also,
code obfuscation schemes become inefective, as memory-
based artifacts show the actual essence of the executed code.

Many recent studies [11–13] have highlighted the im-
portance of volatile memory-based artifacts for Android
malware detection. Process metadata features present in the
kernel task structure of memory represent an important
source of information for malicious application detection
[12, 14, 15].Te kernel task structure is used by the operating
system for managing the running processes. It contains all
the information about the running application which is
needed by the kernel for managing the process. Te in-
formation in the kernel task structure is contained in
a number of features, which are grouped into nine cate-
gories: task_state, mem_info, scheduling_info, signal_info,
process_credentials, I/O_statistics, openfle_info, CPU_s-
pecifc_state, and others. Tese categories contain related
features as per their semantics. In addition to direct features,
the categories of the kernel task structure also contain
a number of structures (structs) that can be traversed for
extracting deep features. However, existing studies lack the
in-depth working on these features in terms of extraction
and analysis. It has been observed that only initial categories
and structures are investigated for extraction of features.Te
analysis of all categories for the selection of most relevant
features for malware identifcation and categorization needs
to be thoroughly investigated. Additionally, existing studies
have focused on the evaluation of process metadata features
for the detection of malicious applications only. Te eval-
uation of these features for categorizing malicious appli-
cations into respective classes is not performed.

In this study, KTSDroid, a malware mitigation frame-
work based on process-specifc artifacts from volatile
memory, is proposed. Te proposed framework captures
volatile memory dumps while executing the application
under analysis. Te application’s behavior profle is gener-
ated by analyzing process-specifc artifacts (process

metadata) from the kernel task structure in memory.
KTSDroid extracts direct features from all nine categories of
the kernel task structure. In addition to direct features, the
nine categories of the kernel task structure are traversed up
to a depth of six levels for the generation of a feature set. In
order to ascertain that the extracted features contain useful
information about the malicious behavior of the application,
a time-based memory dump extraction process is con-
ducted. In addition to this, random events are generated on
the application before the capture of each dump to ensure
interactions. As a result, four dumps with interactions are
generated for each application in the dataset. Each dump is
then utilized for the extraction of the kernel task structure
for the process (application) under analysis. Overall, the
contributions of the study are as follows:

(1) Te study proposes a kernel task structure-based
Android malware categorization framework by
utilizing multiple time-based memory dumps with
interactions.

(2) Te kernel task structure of memory is utilized for
the extraction of features. To the best of our
knowledge, this is the frst study to explore nine
categories of the kernel task structure for the ex-
traction of features w.r.t. the Android platform. In
addition to this, traversal of each category to a depth
of six levels is performed. A comprehensive feature
set comprising 526 process specifc features, grouped
into nine distinct categories, is used for analysis.

(3) Te efectiveness of kernel task structure features is
reported against fve distinct Android application
classes, i.e., adware, banking Trojans, riskware, SMS
Trojans, and benign.

Te rest of the paper is organized as follows: details of the
kernel task structure are discussed in Section 2. Section 3
presents the related work. Proposed methodology for feature
extraction and selection is presented in Section 4. Results for
the proposed methodology are reported in Section 5. Section
6 discusses the results, and fnally, conclusion is presented in
Section 7.

2. Overview of the Kernel Task Structure

KTSDroid utilizes the kernel task structure of memory for
feature set extraction. In order to device an efective malware
mitigation strategy, the understanding of the design and
layout of the kernel task structure is important. Tis section
briefy introduces the functions of this structure and
highlights the categories in which features are organised
within it.

Te kernel task structure, also known as process control
block, is a data structure in the kernel space of memory that
contains important information about the running pro-
cesses. Te operating system uses this structure for man-
aging all the running processes by dynamically allocating the
structure to each process. In order to analyze the task
structure of a particular process, the PID of the process can
be used. Te information in the kernel task structure is

2 Security and Communication Networks

efective in identifcation and classifcation of malware be-
cause it describes the target application in running state and
hence overcomes the problems caused by code obfuscation
techniques. Information contained in the Android kernel
task structure can be grouped into nine categories. Features
from all these categories are utilized by KTSDroid for
malware categorization. Te information contained in each
category is listed in Table 1.

3. Related Work

Recently, the design of memory-based schemes for Android
malware categorization has gained substantial attention due
to their strong resilience against various obfuscation
schemes. Many studies [13, 16, 17] have associated the ef-
fectiveness of memory-based artifacts for malicious Android
application detection with their ability to represent the
runtime execution of the application. Diferent strategies are
adapted by researchers to analyse memory for malicious
application detection. Some of the studies [10, 18] have
utilized volatile memory dumps against malicious applica-
tions in the form of images and classifed them on the basis
of diferences in images. However, the complete memory
dump contains a number of other processes as well, and the
analysis is not specifc to the process (application) under
evaluation. Memory-based features are used by [19] for
classifying Android applications into benign and malicious
classes. Tirty two features using diferent plugins for vol-
atility are extracted and used for analysis. Te study has not
incorporated time-based capturing of features, and the
proposed dataset is built using only one memory snapshot.
Another approach is the use of process metadata features,
available in the kernel task structure of memory. Tese
features contain useful information about the process be-
havior and can be used to create a malware detection system.
Tis section highlights the memory-based frameworks that
have used process metadata features from the kernel task
structure for application analysis, as they are closer to the
approach presented by this study.

Wang and Li [12] proposed a framework for the de-
tection of malware on the Android platform using machine
learning with a feature set from the kernel task structure. A
total of 112 features grouped into 5 categories are extracted
from the task struct using 1275 malware samples and 1275
benign samples. Principal component analysis, chi-squared
statistic, correlation, and information gain are used as di-
mension reduction methods. Te proposed framework is
evaluated by using 4 diferent machine learning algorithms
(Naive Bayes, decision tree, neural network, and K-nearest
neighbors). It is shown that the proposed framework can
achieve 94% to 98% accuracy and less than 10% false
positive rate.

Alawneh et al. [14] proposed a malware detection system
that can identify trojanized malware. Te focus of the study
is on improved detection time rather than the accuracy of the
model. In the experiment, 112 felds were extracted from the
kernel process control block and grouped into fve cate-
gories, including mem_info, CPU_scheduling_info, sig-
nal_info, task_state, and others. For dataset creation, a total

of 2400 apks (1200 benign and 1200 malware) were used.
Features were recorded for 15 seconds for each apk. Te
study is evaluated by using a back propagation neural
network (BPNN). Te model is evaluated by considering the
feature set, and it is reported that the best result is achieved
by selecting 43 features out of 112, with 96.8% detection
accuracy, which takes around 30 seconds for training the
classifer and 73 µs for malware detection after 100ms of
information mining.

Shahzad et al. [15] proposed a real-time malware de-
tection framework, namely, TstructDroid, for Android-
based devices. 110 benign and 110 malicious applications
are used for dataset creation. Out of 99 preliminary task
structure felds, 32 felds are shortlisted for dataset creation
using time series feature shortlisting techniques. After
shortlisting features, time series blocks are created and then
frequency information is calculated using the discrete cosine
transform. Te framework achieves a detection rate of 90-
93.6% with a false alarm rate between 5.4% and 7.3%.

Kim and Choi [20] proposed a malware detection
method for the Android platform. Features are extracted
from the proc flesystem of the Linux platform. Te proc
flesystem is a virtual flesystem which provides an interface
to the kernel structures, i.e., it permits communication
between the user space and the Linux kernel. A total of 36
features out of 59 features are selected from three classes:
memory, CPU, and network. Feature extraction was per-
formed periodically every 10 seconds, against the applica-
tions being executed. Support vector machine (SVM) is used
as a classifer for performance evaluation in the experimental
setup. A TPR of 95.97%, an FPR of 0.67, a precision of
96.63%, and an accuracy of 98.85 were achieved after feature
selection. Te results are computed for six applications only.

A summary of the related work on kernel task structure-
based malware detection is presented in Table 2. It is per-
tinent to highlight that the studies have only classifed the
applications into malicious and benign categories. De-
termining the category or nature of the malware is signif-
icant for understanding the criticality of threat and efective
mitigation. Another important observation is the availability
of a large number of kernel task structure-based features in
Android, whereas previous works have focused on a limited
set of features.

4. KTSDroid Android Malware Categorization
Using the Kernel Task Structure

KTSDroid is an Android malware detection and categori-
zation framework that uses dynamic memory information
extracted from the programs’ kernel task structure. Te
architecture of KTSDroid is shown in Figure 1 that has three
components: feature extraction, feature selection, and
classifcation. During feature extraction, initially, Android
applications are executed and interactions are made to
obtain process-specifc memory dumps. Tese dumps are
further analyzed for extracting process metadata features
from the kernel task structure. In the second phase, a step-
by-step approach is adapted for investigating signifcant
categories and features. Finally, the selected features are used

Security and Communication Networks 3

to classify the applications into respective benign or malware
classes. In the remaining of this section, the aforementioned
three core components of the KTSDroid framework are
discussed in detail.

4.1.KTSDroidFeatureExtraction. KTSDroid uses a dynamic
analysis scheme based on volatile memory artifacts for
application analysis. Tis section covers the details of the
memory-based feature extraction process. Te dataset under
analysis consists of N apk fles, and each apk belongs to
a class Ci, where i ranges from 1  to 5. In order to formulate
a malware detection system using these apks, each apk must
be processed to extract volatile memory-based features.

Te overall process of feature extraction can be divided
into two major steps: memory dump extraction and process
metadata extraction by traversing the kernel task structure.
Te details are provided in the subsections as follows, and an
overall view of the feature extraction process is shown in
Figure 2.

4.1.1. Memory Dump Extraction. Te dynamic nature of the
proposed system requires the applications to be executed in
a controlled environment for evaluation. For this purpose,
an AVD (Android virtual device) environment is chosen,
where the AVD is confgured for application installation and
memory dump extraction. Te AVD is created with the
Nexus 6P hardware profle and Android 9.0 (Google APIs)
system image with x86_64 architecture. Te host system is
Ubuntu 18.04, and communication between the host system
and the virtual device is carried out by using ADB (Android
debug bridge).

Te features used by the system are based on memory;
therefore, memory dump extraction is the frst step in ap-
plication analysis. In order to extract a memory dump, LiME
(Linux Memory Extractor) (https://github.com/
504ensicsLabs/LiME), a loadable kernel module needs to
be compiled for the target kernel of AVD and loaded into the
device. LiME is an open-source loadable kernel module
(LKM) for Linux-based devices, which allows the acquisition
of complete volatile memory dumps. For the LiME module

to be loaded by the target kernel, the kernel needs to be
compiled with loadable kernel module support for the target
device. It is because Android does not have default support
for loadable kernel modules. KTSDroid uses Goldfsh kernel
4.4, compiled with loadable kernel module support.

KTSDroid uses a Python application for automating the
process of scanning a local directory containing a dataset of
apk fles, installing the application (apk fle) on the virtual
device, simulating pseudorandom user input using monkey
(https://developer.android.com/studio/test/other-testing-
tools/monkey) against the installed application and capturing
a memory dump of the virtual device. For analysis, a total of
four volatile memory dumps were obtained. Te frst dump
was taken right after the application installation. Te sun-
sequent dumps were taken after event generation on the apk.
Te events were triggered using Monkey and included 150,
1500, and 4000 events. Acquiring volatile memory dumps
during diferent states of the application adds variability to the
dump and hence contributes to a rich data collection that
comprises 10,000 memory dumps. Simulating user inputs is
required to ensure code coverage and triggering of the
malicious behavior. Installation and execution of applications
(benign/malicious) are performed while the device is running
in the read-only mode. Running the device in the read-only
mode is required to keep changes made by the applications
nonpersistent and ensure the device is in a clean state after
every restart. Although process-specifc features are consid-
ered during the study, but to ensure smooth execution of the
application and the device, a single application is considered
for installation and analysis at a time.

4.1.2. Process Metadata Extraction. Te memory dump
extraction process produces a set of four memory dumps for
each apk in the data set. To extract digital artifacts from these
volatile memory dumps, the Python application is extended
to use the volatility framework (https://www.
volatilityfoundation.org/) as a library. Volatility is an
open-source collection of tools used for the analysis of
volatile memory samples of Mac, Windows, Linux, and
Android-based devices. In order to use volatility for the
analysis of the memory dump of the target Android device,

Table 1: Information in categories of the kernel task structure.

KTS category Information
task_struct State of the process like exit code and process execution domain

mem_info Major and minor page faults, heap address of the process, start and end address of
code segment, and start and end address of data segment

scheduling_info Priority of the process, scheduling state, scheduling policy, execution time, waiting
time, snapshot of user, and system CPU time

signal_info Signal sources, the signal handler, and timers related to the process
process_credentials Ownership and process capabilities

I/O_statistics Block I/O delay and I/O statistics like number of byte read, number of read system
call, and number of write system calls

openfles_info Opened fles related to the process like maximum number of fle descriptor and
opened fle descriptor

CPU_specifc_state CPU state of the process, which includes diferent register states and fault info

Others Miscellaneous information about the process like age of the process and tracer
information

4 Security and Communication Networks

https://github.com/504ensicsLabs/LiME
https://github.com/504ensicsLabs/LiME
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://www.volatilityfoundation.org/
https://www.volatilityfoundation.org/

Ta
bl

e
2:

Re
la
te
d
w
or
k
on

m
al
w
ar
e
de
te
ct
io
n
us
in
g
ke
rn
el

ta
sk

st
ru
ct
ur
e
fe
at
ur
es
.

St
ud

y
N
um

be
r

of
ef
ec
tiv

e
fe
at
ur
es

Fe
at
ur
e
se
le
ct
io
n
te
ch
ni
qu

es
A
lg
or
ith

m
cl
as
sif

ca
tio

n
Re

po
rt
ed

pe
rf
or
m
an
ce

D
at
a
se
ts

iz
e

M
ul
tic
la
ss

cl
as
sif

ca
tio

n
K
TS

ca
te
go
ry

an
al
ys
is

W
an
g
an
d

Li
[1
2]

10
–4

0
ou

to
f1

12
PC

A
,c
or
re
la
tio

n,
IG

,a
nd

ch
i-s
qu

ar
e

N
äı
ve

Ba
ye
s,
de
ci
sio

n
tr
ee
s,
an
d
ne
ur
al

ne
tw
or
k

A
C
C
:9

4%
–

98
%

12
75

m
al
w
ar
e,
12
75

be
ni
gn

×
Pa

rt
ia
l

A
la
w
ne
h

et
al
.[
14
]

43
ou

to
f1

12
Lo

gi
st
ic

re
gr
es
sio

n
N
eu
ra
ln

et
w
or
k

A
C
C
:9

6.
80
%

12
00

m
al
w
ar
e,
12
00

be
ni
gn

×
×

Sh
ah
za
d

et
al
.[
15
]

32
ou

to
f9

0
C
or
re
la
tio

n
D
ec
isi
on

tr
ee
s
(J
48
)

A
C
C
:9

3%
–

96
%

11
0
m
al
ic
io
us
,1

10
be
ni
gn

×
×

K
im

an
d

C
ho

i[
20
]

36
ou

to
f5

9
M
an
ua
l

Su
pp

or
tv

ec
to
r
m
ac
hi
ne
s
(S
V
M
)

A
C
C
:9

8.
85
%
,

6
m
al
ic
io
us

×
×

Security and Communication Networks 5

a profle for the target kernel is generated. Te profle is used
by the volatility framework for locating and parsing in-
formation in the memory dump. Te Linux_pslist plugin of
volatility, which collects active tasks by walking through the
kernel task structure, is utilized for extracting the features of
the running application.

Te kernel task structure is a combination of many
structs, as each feld in the structure may also be a struct
containing other felds. Tis makes it a cascaded structure
with a lot of information about the running process. Te
Python-based application iterates the kernel task structure
six levels deep for the extraction of features. Te depth of
features explored in this study is shown in Figure 3. Te
extracted information is recorded into a csv fle with col-
umns representing the features and rows representing the
memory dumps. Each record consists of 526 felds from the
kernel task structure.

4.2. KTSDroid Feature Selection. Te feature extraction
process produces a rich set of features for each apk in the
dataset. In order to design an efective malware categori-
zation system, all of these features need to be analyzed for

their signifcance in malware detection. For this purpose,
a feature selection process is designed to gauge the im-
portance of features. Feature selection is an important part of
formulating a machine learning-based system, as using
signifcant features positively impacts the performance of the
classifcation system. Feature selection helps improve the
training time, reduce the complexity of the model, and
improve performance. Feature selection is also a useful way
of handling overftting which results in enhanced model
generalization [21].

Feature selection methods can be divided into two broad
categories: wrapper-based methods and flter-based
methods. Wrapper-based methods use a classifcation al-
gorithm to fnd the efectiveness of features, and flter-based
methods use statistical techniques to fnd the importance of
a feature in output prediction [22]. Tis study uses methods
from both of these techniques for fnalizing the set of im-
portant features.

Te feature extraction process iterates through the kernel
task structure to extract a rich set of 526 features. Tese
features belong to nine categories as per the general cate-
gorization of the kernel task structure. As the number of

Extracted Feature Set

Selected Feature Set

Feature Extraction

Feature Selection

Classification

Data Set

ADB AVD LKM Time Based Dumps Volatility

Forward
Selection

Constant
Elimination

Information
Gain

Correlation

Figure 1: KTSDroid framework for feature extraction, feature selection, and classifcation.

6 Security and Communication Networks

features is quite large, selecting the most efective features is
signifcantly important. Te feature selection approach used
in this study comprises two steps. In the frst step, all cat-
egories of the kernel task structure are analyzed to fnd the
categories that are not signifcant for malware categoriza-
tion. Te reason for using this strategy is that all the features
in a certain category are related to each other semantically. It
may be possible that the information present in a certain
category is not an efective identifer of malicious behavior.
Terefore, fnding the signifcant categories that contain
information related to malware identifcation is important.
Once important categories are identifed, the selected cat-
egories are parsed to fnd the most signifcant features for
malware categorization. Details of these steps are described
in the subsections as follows.

4.2.1. Signifcant Kernel Task Structure Category
Identifcation. Te frst step of feature selection is the
identifcation of signifcant categories of the kernel task
structure for malware categorization. For this purpose, the
set of all features is grouped category-wise and labeled for
each class. All categories are then represented by the set
CTall, where CTall � ct1, ct2, ct3, ct4, ct5, ct6, ct7, ct8, ct9􏼈 􏼉.
Each category, cti, contains a number of features, as shown
in Table 3.

Te initial process of feature selection focuses on eval-
uating the signifcance of a complete category instead of
evaluating each feature individually because the features in
each category are semantically related to each other. For
example, mem_info contains features related to memory
usage, and IO_statistics refer to features related to IO op-
erations. As the features are semantically related, a broader

landscape of feature importance can be extracted by looking
into the signifcance of each category for classifcation.

In order to fnd the set of signifcant categories, CTsig,
where CTsig ⊆CTall, a wrapper-based selection method, is
used. Wrapper methods use the evaluation metrics of the
classifcation model to fnd the best set of features. Features
are supplied to the classifcation system, and performance is
measured. Te set of features that report the highest per-
formance in optimal time is selected [22]. Many wrapper-
based feature selection methods are available. For this study,
the wrapper method of forward selection is used. It utilizes
a model and threshold value of performance measures to fnd
the best set of features. In forward selection, a classifcation
model is created for each feature in the dataset. Te model’s
performance is recorded, and the best performing feature is
selected. In each step, the next best feature is added to the
model and the process continues. Tis method is very
resource-intensive, as there aremany features in a dataset, and
testing each of them one by one is a time- and resource-
intensive task [23]. However, in this experiment, the com-
plexity of forward selection is reduced to only nine features
(CTall � ct1, ct2, ct3, ct4, ct5, ct6, ct7, ct8, ct9􏼈 􏼉) as a complete
category of features is considered at a time. Tis reduces time
and resource complexity by a large amount.

While applying wrapper-based methods, the selection of
a suitable classifcation algorithm according to the type of
data is important. It should also be considered that in all
wrapper methods, classifcation is performed a number of
times on subsets of features; therefore, the process must be
concluded when a certain threshold for performance is
achieved. In this work, the model used for classifcation in
forward selection is random forest. Random forest is an
ensemble of decision trees. It is recommended as a classifer

Scenario - 2
Extract pid

Execute
Application

Extract package
Event Generator

(150 events)

Scenario - 3

Scenario - 4

apk

apkapk

Scenario - 1

Install
Application (apk)

Extract KTS
- task stat
- mem info
- sched info
- signal info
- process creds
- I/O statistics
- open file info
- CPU specific state
- others

Event Generator
(1500 events)

Event Generator
(4000 events)

Capture device
memory dump

csv file

Figure 2: KTSDroid feature extraction process.

Security and Communication Networks 7

for Android malware detection by a number of studies
[24–26].Te iterations of measuring classifcation results are
terminated when the performance metrics become constant
and adding new categories does not add to the performance
enhancement. After applying forward selection, the set of all
categories CTall is reduced to a smaller set CTsig, where
CTsig � cti ctm􏼈 􏼉 and m is the number of signifcant
categories for malware classifcation.

4.2.2. Signifcant Feature Selection. After the identifcation
of important categories of the kernel task structure, the next
step is to fnd the most minimal and efective feature set for
Android malware categorization. For this purpose, a three-
phase process is used. In the frst phase, features are analyzed
to fnd the set of constant features. All constant features are
identifed and dropped from further analysis. In the second
phase, the remaining set of features is evaluated for their

task_struct

task_state nblocks
ngroups

locked_shm
mq_bytes
unix_inflight

dirtied_when
i_blkbits
i_blocks
i_bytes
.
.

.

arg_end
arg_start
brk
.
.
exe_file
mmap

.

f_flags
f_mode
f_pos
f_version
f_cred
.
.

vm_end
vm_pgoff
vm_start
vm_file
.
.

jit_keyring
securebits
group_info
user
.

f_flags
f_mode
f_pos
f_version
f_inode
.
.mm

mem_info

last_arrival
last_queued
pcount
run_delay

.

deadline
dl_density
dl_throttled
.
.
dl_timer

.

.
dl

.

sched_info

state
on_cpu
prio
.
.

sche_info

.

is_rel
state
base

.

clockid
index
cpu_base

active_bases
max_hang_time
nr_events
nohz_active

.

cgtime
cmaj_flt
cnivcsw
.
.
cputimer

.

.

checking_timer
running
cputime_atomic

.

counter

.
signal

sas_ss_size
sas_ss_sp

signal_info

real_cred
cred

Process Credentials

counter

ioac
delays
I/O statistics

nblocks
ngroups
usage

jit_keyring
securebits
group_info
. jit_keyring

securebits
group_info
.

nblocks
ngroups
usage

counter

blkio_count
blkio_delay
flags
.
.

rchar
read_bytes
wchar
.
. close_on_exec

max_fds
open_fds
.
.

stime

.

files
open_file_info

thread
CPU_specific_state counter

fpregs_active
last_cpu
.
.

last_switch_count
start_time
btrace_seq
.
.

Others

cr2
error_code
.
.
fpu

fdt
.

maj_flt
min_flt
nr_dirtied
stime
.
.

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

exit_state
exit_code
exit_signal
pdeath_signal
jobctl
personality

(i)
(ii)

(iii)
(iv)
(v)

(vi)

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

(viii)
(ix)

(i)
(ii)

(iii)
(iv)

(i)
(ii)

(i)
(ii)

(i)

(i)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

(viii)
(ix)

(i)
(ii)

(iii)
(iv)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

(viii)

(vi)
(vii)

(viii)

(i)
(ii)

(iii)
(iv)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(ii)
(i)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)

(i)
(ii)

(iii)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(vi)

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

(i)
(ii)

(iii)
(iv)
(v)

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

(i)
(ii)

(iii)

(i)

(i)

(ii)

(i)
(ii)

(iii)

(i)

(i)

(i)
(ii)

(iii)
(iv)

(i)
(ii)

(iii)
(iv)
(v)

(vi)

(i)
(ii)

(iii)

(i)
(ii)

Figure 3: Kernel task structure-extracted categories and features.

8 Security and Communication Networks

mutual information (MI) values against the output class.
Features with insignifcant MI values are not considered for
further analysis. Finally, in the last phase, the dimensions of
the data are further reduced by removing the linearly cor-
related features. All phases of feature selection are applied to
each category separately because of the following two
reasons:

(1) Evaluating the features category wise makes the
results manageable and easy to understand

(2) Te fnal result of feature selection summarizes the
contribution of each category of the kernel task
structure in the fnal feature set.

(1) Phase 1: Constant Feature Elimination. Te feature for
which the values remain the same for all classes is referred to
as a constant feature. Tese features increase the di-
mensionality of the feature set and can be a cause of the slow
convergence of the training algorithm [22]. Using these
features has no efect on the predictive power of the model;
only the complexity of the model increases. Terefore, such
features can be dropped from the dataset. In order to fnd
constant features, a statistical measure of variance can be
used [27]. Variance measures the variability in the values of
a variable and can be used to check the constant nature of
a feature. It measures the spread in the values of a variable by
calculating the average squared distance from the mean.
Variance is widely used in feature selection by setting
a threshold value for the variability of values against a fea-
ture. In this study, we are interested in fnding features that
have no variance in values; therefore, the threshold value is 0.
If the value for variance is zero, it indicates that the feature is
constant and can be dropped from further analysis.

KTSDroid groups the extracted features category-wise;
therefore, all features in a category, cti, where cti ∈ CTsig are
evaluated for variance. If fij is the jth feature in the ith

signifcant category, then equation (1) illustrates the process
of feature selection through variance.

f
temp
ij �

fij var fij􏼐 􏼑> 0

ϕ otherwise

⎧⎨

⎩

⎫⎬

⎭, (1)

where i ranges from 1, . . . , m andm is the number of selected
categories; j ranges from 1, . . . , n and n is the number of
features in the ith category.

In equation (1), the feature fij is tested using variance as
given by equation (2). It is selected as f

temp
ij if the value for

variance is greater than zero.

var �

�������������

1
N

􏽘

N

i�1
xi − x(􏼁

2

􏽶
􏽴

. (2)

Initially, Fsel
i is an empty set for ith category. After testing

all features in a category, the selected features are added to
set Fsel

i , as shown in the following equation:

F
sel
i ←􏽛

n′

j�1
f
temp
ij , (3)

where n′ is the number of nonconstant features.
Constant feature elimination is the most basic step of

feature selection. Te feature set after constant feature
elimination is stored for further analysis using mutual in-
formation in phase two of feature selection.

4.2.3. Phase 2: Mutual Information (MI). Mutual in-
formation, also referred to as information gain, is one of the
most commonly used flter-based methods for feature se-
lection [28]. Its working is based on entropy, and it measures
the reduction in entropy after the transformation of
a dataset. It estimates the dependency between a feature and
the output. In this work, mutual information is chosen for
feature signifcance evaluation as it estimates linear as well as
nonlinear relationships between feature and output as
compared to other univariate feature selection methods like
F-test that only fnds the linear dependencies between two
variables [29]. Another important point to be considered is
the size of the features to be evaluated. Te features need to
be tested individually; therefore, an efcient algorithm in
terms of time and resource usage must be used. Mutual
information can be easily applied to a large number of
features because of its lower complexity and computation
time [30].

Mutual information helps in fnding signifcant features
by estimating the dependency of output on a feature. Sig-
nifcant features are always related to the output in some
way. However, features that are insignifcant in the pre-
diction of output always have low or no dependency on
output. If the value of mutual information for a feature is
zero, it indicates that the output is independent of the
feature. Higher values show a higher dependency between
the feature and the output.

Te feature set produced by constant feature elimination
Fsel

i for each category, as shown by equation (3), is evaluated
to fnd the value of mutual information against all features. If
fij is the jth feature in the ith category, then equation (4)
represents the application of mutual information and the
selection of signifcant features based on a threshold T.

f
temp
ij �

f
sel
ij MI f

sel
ij􏼐 􏼑>T

ϕ otherwise

⎧⎨

⎩

⎫⎬

⎭, (4)

Table 3: Number of features in kernel task structure categories.

KTS category Number of features
task_state 5
mem_info 212
scheduling_info 91
signal_info 83
process_credentials 75
I/O_statistics 18
openfle_info 12
CPU_specifc_state 20
Others 17

Security and Communication Networks 9

where i ranges from 1, . . . , m andm is the number of selected
categories; j ranges from 1, . . . , n′ and n′ is the number of
nonconstant features in the ith category. T is the threshold
value.

MI f
sel
ij ; C􏼐 􏼑 � H f

sel
ij􏼐 􏼑�H f

sel
ij |C􏼐 􏼑. (5)

In equation (4), fsel
ij is tested for mutual information

with respect to output class C by using equation (5). Te
feature, fsel

ij , is selected as f
temp
ij if the value for mutual

information is greater than threshold T. Te set of all
selected features (f

temp
ij) is moved to set Ftemp, as shown in

equation (6). Finally, the set of selected features, Fsel
i , is

replaced by the set of selected features using mutual
information as shown in the following equation:

F
temp
i ←􏽛

n″

j�1
f
temp
ij , (6)

where n″ is the number of features with the MI score greater
than threshold T

F
temp
i ←F

temp
i . (7)

In order to select the features based on mutual in-
formation, the selection of a threshold value (T) is extremely
important, as features with MI scores greater than the
threshold will be included in the Fsel

i set. In order to fnd the
optimal value for T, the feature set is evaluated at diferent
threshold values (T � 0.0, 0.1, . . . , t) against a performance
metric. Te threshold value starts from zero and is increased
by 0.1 for feature set selection. Te process stops for T � t,
where t is a threshold value for which the performance
becomes constant or starts decreasing. Te complete algo-
rithm for feature selection for all categories using mutual
information is shown in Algorithm 1.

After the selection of features using mutual information,
the updated feature set Fsel

i for each category is analyzed to
fnd linearly correlated features.

4.2.4. Phase 3: Correlation. Correlation is a statistical
measure for fnding the linear dependency between two
variables. For feature selection, correlation can be used to
fnd features, which have a strong linear relationship [31]
among themselves. It is benefcial, as two features having
a strong linear dependency on each other will have almost
the same efect on the output variable. Terefore, they may
be replaced by any one of them. Tis helps reduce the di-
mensionality of the data and the complexity of the
model [32].

KTSDroid computes correlation for all features within
a selected category. Fsel

i is the set of features obtained after
eliminating features with mutual information values less
than the desired threshold. If fsel

ij and fsel
ik represent two

features from the set of selected features for a category, then
the application of correlation can be described by equation
(8). Here, one of the features is selected as f

temp
ij if the two

have a correlation value of 0.95.

f
temp
ij �

f
sel
ij corr f

sel
ij , f

sel
ik􏼐 􏼑> 0.95

ϕ otherwise

⎧⎨

⎩

⎫⎬

⎭. (8)

If fsel
ij and fsel

ik are represented by f1 and f2, then cor-
relation between the two features can be defned by the
following equation:

corr �
􏽐

n″

i�1 f1i − f1􏼐 􏼑 f2i − f2􏼐 􏼑
�����������������������

􏽐
n″

i�1 f1i − f1􏼐 􏼑
2

f2i − f2􏼐 􏼑
2

􏽱 , (9)

where n″ is the number of features with the MI score greater
than threshold T

Equation (9) refers to the person coefcient for fnding
correlation. A value close to 1 indicates a positive linear
relationship, and a value close to −1 indicates a negative
linear relationship. A value of 0 indicates that both features
are linearly independent. Te set of linearly correlated
features is grouped into a set Ftemp by using equation (7).
Finally, all correlated features are removed from the selected
feature set using the following equation:

F
sel
i ←F

sel
i − F

temp
i . (10)

4.3. KTSDroid Classifcation. Te selected set of features
after applying a number of feature selection techniques can
now be evaluated for performance using a classifcation
model. Random forest (RF) is a classifcationmodel that uses
decision trees as the underlying base classifer. It works by
creating a number of trees and later accumulating the results
from each. Each tree is generated using bagging and
a bootstrap sample of data [33]. Given a training set D,
bagging generates M new training sets Di, where Di is
generated from D uniformly and with replacement. Sam-
pling with replacement means that in each set Di, some
features will be unique and some will duplicate. After the
generation of trees, the fnal result is obtained by either
averaging, weighted averaging, or voting [34]. RF has a low
bias as the trees are unpruned and fully grown. Te cor-
relation among the trees is also low; each tree is built in-
dependent of its peers [26].

KTSDroid used RF for the evaluation of the selected
feature set. It has been chosen for classifcation as the de-
tection of malware is a rule formation problem, and RF
generates a number of rule sets in the form of trees. It is also
not prone to overftting and does not require retraining to
fne-tune a large number of parameters. Overall, it is an
efcient ensemble classifcation model with low bias and
variance. Many malware analysis studies have also reported
higher performance measures with RF as compared to other
classifers [24–26]. In this work, the fnal result of classif-
cation is obtained by voting on the results of candidate trees.

5. Experiments and Results

Te dataset used for this study is CICMalDroid 2020 [35],
developed by the Canadian Institute of Cyber Security.
Applications belonging to fve distinct classes: adware,

10 Security and Communication Networks

banking Trojans, riskware, SMS Trojans, and benign, are
selected for analysis. Te data set consists of 3000 appli-
cations, where each malware class has 500 samples and each
benign class has 1000 samples. As the data set consists of apk
fles, each apk needs to be processed in order to extract useful
artifacts. Te feature extraction process executes each apk
and extracts four memory dumps with interactions. Te
time-based memory dump extraction ensures the capture of
malicious activity. Each dump is processed to traverse the
kernel task structure for the extraction of features. Nine
categories of the kernel task structure are traversed six levels
deep to generate a comprehensive dataset of 526 features.
Overall, the dataset used by the study consists of a total of
12,000 records, with 2000 records against each malware class
and 4000 records against the benign class. A summary of
dataset details is presented in Table 4.

Te comprehensive analysis of kernel task structure
results in a rich set of features. KTSDroid analyzes these
features by using a number of feature selection techniques.
Te fnal set of selected features is then used for classi-
fcation. Te remaining part of this section discusses the
results of all applied feature selection techniques and
classifcation. Te results are organised according to the
sequence of applied techniques. Initially, the results for
fnding the most signifcant categories are reported. Af-
terwards, the results for fnding the most important
features from the signifcant categories using a three-
phase process are shown. Finally, classifcation results
on the fnal feature set for categorizing applications into
fve classes are presented.

5.1. Signifcant Kernel Task Structure Category Identifcation.
Te feature extraction process results in the generation of
a large feature set for each apk in the dataset. In order to
identify important features, a feature selection approach
depicted in Figure 4 is adopted. In the frst step of feature
selection, the set of all categories (CTall) is analyzed to fnd
the set of signifcant categories (CTsig). For this purpose,
a wrapper-based method of forward selection is used. Te
results of the frst iteration of forward selection for selecting
the most signifcant category are shown in Table 5.

It can be inferred from the results that the most sig-
nifcant category for malware categorization in terms of the
F1-score for all malware classes is mem_info. Terefore, it is
selected in the frst iteration. All categories are then added
for evaluation after sorting them by their individual F1-
scores from the frst iteration. Te process of forward se-
lection includes many iterations of feature combinations.
Te result of each step is not shown in the paper, as many
results are intermediate and keep changing when new cat-
egories are added. An overall summary of important results
of the forward selection process is shown in Figure 5. From
the graph, it can be observed that the best performance is
achieved by combining mem_info, process_credentials and
signal_info categories. Combining these three categories
helps in achieving an average F1-score of 0.95. It should also
be noted that adding other categories does not signifcantly
improve the performance of the system.

Te application of forward selection for category analysis
reduces the set of all categories CTall to a set of three sig-
nifcant categories. Tis process reduces the overall size of

(1) procedure Extracting_Signifcant_Features_using_MI
(2) for i⟵ 1 to m do
(3) Load the set of all features in the category (Fsel

i)

(4) //Fsel
i   is  the  feature  set after constant  featureelimination

(5) F
temp
i � []

(6) T � 0.0 //T  is  the  threshold
(7) Previous F1 Score � 0.94
(8) //F1 score after  removing  constant  features
(9) Current F1 Score � 0
(10) while Current F1 Score< � Previous F1 Score do
(11) forj⟵ 1 to Fsel

i .len() do
(12) f

temp
ij ⟵fsel

ij

(13) Score�Mutual Information(f
temp
ij , C)

(14) if Score<T then
(15) F

temp
i .append(f

temp
ij)

(16) end if
(17) end for
(18) Current F1 Score⟵F1 Score(F

temp
i , C)

(19) if Current F1 Score≥ Previous F1 Score then
(20) T � T + 1
(21) end if
(22) end while
(23) Fsel

i ⟵F
temp
i

(24) end for
(25) end procedure

ALGORITHM 1: Algorithm used by KTSDroid for feature selection using mutual information.

Security and Communication Networks 11

Table 4: Dataset details.

Application class Number of samples Number
of memory dumps Events generated Total samples

Adware 500 4 0, 150, 1000, 4000 2,000
Banking Trojans 500 4 0, 150, 1000, 4000 2,000
Riskware 500 4 0, 150, 1000, 4000 2,000
SMS Trojans 500 4 0, 150, 1000, 4000 2,000
Benign 1000 4 0, 150, 1000, 4000 4,000

Input Data: Set of All categories

Output Data : Set of Significant categories
CTsig = {ct1, ct2,ctk}

Category Selection

Mutual Information

Feature Selection

For All
Categories

Constant Feature elimination

Linearly corelated features

CTall = {task_struct, mem_info, signal_info, process_cred, openfiles_info, CPU_speficic_state, scheduling_info, others }

Forward Selection (Wrapper Method)

Extract Features from each Category cti, where i ranges 1 to m
Input Data : Fi = {f1, f2, f3,fn} , where n = total features in ith category

Fsel i= {f1, f2, f3,fn'}

Fsel i= {f1, f2, f3,fn''}

Fsel i= {f1, f2, f3,fn'''}

Remove Feature fi j if variance (σ2 = s2=
∑ (xi–x)2

n – 1
) == 0

) > 0.95Remove Feature f i j if correlation (r =
∑ (x–x)(y–y)

∑ (x–x)2∑ (y–y)2

Remove Feature f i j if MI (I (X;Y)) < TH (X) – H (X | Y)

Figure 4: KTSDroid feature selection process.

Table 5: Results for fnding the most signifcant KTS category using forward selection.

KTS category
F1-score

Adware Banking Trojan Riskware Trojan SMS Benign
task_state 0 0.3 0 0 0
mem_info 0.928 0.927 0.937 0.92 0.92
signal_info 0.768 0.891 0.775 0.834 0.761
process_credentials 0.926 0.912 0.939 0.904 0.963
Scheduling_info 0.597 0.797 0.503 0.70 0.55
IO_statistics 0.668 0.759 0.732 0.767 0.658
Openfle_info 0.531 0.665 0.616 0.758 0.686
CPU_state 0.843 0.756 0.699 0.789 0.702
Others 0.304 0.441 0.252 0.284 0.290

12 Security and Communication Networks

the dataset by 30 percent.Te set of signifcant categories can
now be defned as

CTsig
� ctmem info, ctprocess credentials, ctsignal info􏽮 􏽯. (11)

Further improvement in performance can be achieved
by fnding themost important and efective features from the
selected categories, which are discussed in the next section.

5.2. Signifcant Feature Selection. In order to fnd signifcant
features, the features in each of the selected categories are
evaluated using a three-phase process. Te results of each
phase are discussed as follows.

5.2.1. Phase 1: Constant Feature Elimination. Te frst phase
of signifcant feature selection focuses on constant feature
evaluation and removal from the selected categories of
mem_info, process_credentials, and signal_info. Te set
of nonconstant features for a category Fsel

i is found by
using equations (1) and (2). Te results of applying
constant feature elimination on each category are shown
in Table 6.

Te results show that a large number of constant features
are present in all selected categories. It indicates that

a substantial number of features show the same behavior for
malicious and benign applications. It can be inferred that
these features are indicative of the general working of the
application and are not specifc to the malicious actions.
After removing these constant features, the size of the
dataset is further reduced by 49 percent. Now, the remaining
features will be gauged based on their mutual information
values against the output class.

5.2.2. Phase 2: Mutual Information (MI) for Feature
Selection. Mutual information measures the signifcance of
a feature by estimating the dependency of output on the
feature. After constant feature elimination, the features in
each category are evaluated formutual information scores by
using equations (4) and (5). Te results of mutual in-
formation against all features in the selected categories are
shown in Figures 6–8.

S_1 S_2 S_3 S_4 S_5 S_6
0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.928

0.945

0.957 0.957 0.956 0.956

Category Combinations

F-
Sc

or
e

Combination Name Categories in a combination

S-1 mem_info

S-2 mem_info and process_credentials,

S-3 mem_info, process_credentials and signal info,

S-4 mem_info, process_credentials, signal_info, and openfiles_info,

S-5 mem_info, process_credentials,signal_info, openfiles_info and IO_statsistics

S-6 mem_info, process_credentials, signal_info, openfiles_info and IO_statsistics

Figure 5: Forward selection results for signifcant category identifcation.

Table 6: Constant feature elimination results.

KTS category Total
features

Constant
features Remaining features

Mem_info 212 131 81
Process_credentials 75 34 47
Signal_info 83 27 56

Security and Communication Networks 13

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Features (me_info)

M
I s

co
re

M
_F

1
M

_F
3

M
_F

5
M

_F
7

M
_F

9
M

_F
11

M
_F

13
M

_F
15

M
_F

17
M

_F
19

M
_F

21
M

_F
23

M
_F

25
M

_F
27

M
_F

29
M

_F
31

M
_F

33
M

_F
35

M
_F

37
M

_F
39

M
_F

41
M

_F
43

M
_F

45
M

_F
47

M
_F

49
M

_F
51

M
_F

53
M

_F
55

M
_F

57
M

_F
59

M
_F

61
M

_F
62

M
_F

64
M

_F
66

M
_F

68
M

_F
70

M
_F

72
M

_F
74

M
_F

76
M

_F
78

Figure 6: MI scores for mem_info features.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Features (Process_credentials)

M
I S

co
re

s

P_
F1

P_
F3

P_
F5

P_
F7

P_
F1

1

P_
F1

3

P_
F1

5

P_
F1

7

P_
F1

9

P_
F2

1

P_
F2

3

P_
F2

5

P_
F2

7

P_
F2

9

P_
F3

1

P_
F3

3

P_
F3

5

P_
F3

7

P_
F3

9

P_
F4

1

P_
F4

3

P_
F4

5
Figure 7: MI scores for process_credentials features.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Features (signal_info)

M
I S

co
re

s

S_
F1

S_
F3

S_
F5

S_
F7

S_
F9

S_
F1

1
S_

F1
3

S_
F1

5
S_

F1
7

S_
F1

9
S_

F2
1

S_
F2

3
S_

F2
5

S_
F2

7
S_

F2
9

S_
F3

1
S_

F3
3

S_
F3

5
S_

F3
7

S_
F3

9
S_

F4
1

S_
F4

3
S_

F4
5

S_
F4

7
S_

F4
9

S_
F5

1
S_

F5
3

Figure 8: MI scores for signal_info features.

14 Security and Communication Networks

From the results, it can be seen that many features have
very low values for mutual information. It means that the
dependency between these features and output is very less.
In order to drop features with low MI scores, a step-by-step
approach is used. Features are not dropped abruptly; instead,
they are dropped based on a certain threshold value (T) of
MI scores. Initially, the threshold (T) is set to 0.1. All
features below the MI score of 0.1 are dropped, and per-
formance in terms of the F1-score is measured. If there is
improvement in performance, the threshold value T is
updated by a factor of 0.1 and the process of performance
measurement is repeated. Te updation of the threshold
value T is stopped until it reaches a value t at which the
performance becomes constant.

Te result of feature reduction at each threshold value
and corresponding performance is shown in Table 7. It can
be observed that at T� 0.6, the performance becomes
constant, so the iterations for threshold updation can be
stopped. Observing the performance against all thresholds
reveals that the best performance is reported at a threshold
value of 0.4.Terefore, the features at a threshold value of 0.4
are selected for further analysis. It can be observed that the
number of features is now reduced to twenty-eight, of which
twenty-one belong to mem_info, four belong to proces-
s_credentials, and three belong to signal_info. Te names of
selected features along with their MI scores are shown in
Table 8.

5.3. Phase 3: Correlation for Feature Selection. Te selection
of features based on mutual information greatly reduces the
size of the feature set. However, as two linearly correlated
features have the same output, one of them can be dropped
from analysis in order to reduce the dimensionality of the
data. For this purpose, correlation is calculated for all fea-
tures in a category. Two features are considered correlated if
the value of the correlation coefcient as represented in Eqn.
(9) is 0.95. Te correlation matrix for all features in selected
categories is shown in Figures 9–11. Te number of cor-
related features and the size of the fnal set of features after
the removal of correlated features is shown in Table 9.

Te fnal set of features, after the removal of correlated
features, now contains fourteen features in total. Table 10
shows the name, category, and depth of each feature in the
kernel task structure.

5.4. Classifcation. Te application of feature selection re-
sults in a reduced set of efective features. Features belonging
to each category are now combined together and classifed
using random forest. In order to apply random forest, the
length of each tree and the number of trees in the ensemble
need to be assessed. KTSDroid uses unpurged trees to in-
corporate all features, as the feature set is now reduced to
a manageable size. In order to estimate the number of trees
inside the ensemble of random forest, the performance on
the fnal feature set is evaluated for a diferent number of
trees. Te performance is evaluated for three, fve, seven,
nine, and eleven trees. It is observed that the highest average
F1-score of 0.985 is reported for nine trees; therefore, the
number of tress in the random forest ensemble is set to nine.

In order to ascertain the efectiveness of feature selection
approaches, the performance is calculated at all steps of
feature selection, i.e., forward selection (FS), constant feature
elimination (CFE), mutual information (MI), and correla-
tion (Corr). It can be observed from Figures 12 and 13 that
each stage of feature selection results in the reduction of the
feature set and the enhancement of performance. Tis
highlights the preciseness of the proposed feature selection
scheme represented in Figure 4.

One of the important contributions of the study was to
evaluate the signifcance of kernel task structure features for
multiclass classifcation for Android applications. For this
purpose, the performance measures are analyzed for each
class individually. Table 11 and Figure 14 show the per-
formance of the fnal feature set for each class. Te table
shows that adware, riskware, and benign application types
are classifed by an F1-score of 0.99, and banking and SMS
Trojans are classifed by a 0.96 F1-score. Te high rate of
detection is proof of the efectiveness of memory-based
solutions for Android malware categorization in general
and kernel task structure-based features in particular.

KTSDroid is compared with two studies based on
memory-based artifacts for Android malware analysis.
Comparison is conducted in terms of the explored categories
of the kernel task structure, number of features, number of
output classes, and performance. Te comparison shown in
Table 12 highlights that KTSDroid has explored the maxi-
mum number of categories from the kernel task structure
and reported an accuracy of 0.985 using the least number of
features for fve output classes.

Table 7: Performance for MI thresholds.

Treshold for MI score
(T) Features in mem_info Features

in process_credentials Features in signal_info F1-score

0.0 81 47 47 0.942
0.1 56 14 33 0.956
0.2 35 12 19 0.964
0.3 24 11 6 0.974
0.4 21 4 3 0.987
0.5 13 4 2 0.980
0.6 12 4 1 0.980

Security and Communication Networks 15

Table 8: Selected features using mutual information (MI).

Rep Feature name MI score
M_F1 task ->mm->mmap -> vm_fle -> f_inode -> i_generation 1.51
M_F2 task ->mm->mmap_base 1.50
M_F3 task ->mm-> brk 1.50
M_F4 task ->mm->mmap_legacy_base 1.49
M_F5 task ->mm-> start_brk 1.49
M_F6 task ->mm-> end_data 1.49
M_F7 task ->mm-> start_code 1.49
M_F8 task ->mm-> start_data 1.49
M_F9 task ->mm-> end_code 1.48
M_F10 task ->mm->mmap -> vm_fle -> f_inode -> i_ino 1.43
M_F11 task ->mm-> shared_vm 0.74
M_F12 task ->mm-> total_vm 0.64
M_F13 task ->mm-> hiwater_vm 0.59
M_F14 task ->mm-> exec_vm 0.47
M_F15 task ->mm-> env_end 0.43
M_F16 task ->mm-> start_stack 0.43
M_F17 task ->mm-> arg_end 0.42
M_F18 task ->mm-> arg_start 0.42
M_F19 task ->mm-> env_start 0.42
M_F20 task ->mm-> highest_vm_end 0.41
M_F21 task ->mm->mm_count -> counter 0.41
P_F1 task -> cred -> session_keyring -> last_used_at 1.51
P_F2 task -> real_cred -> session_keyring -> last_used_at 1.51
P_F3 task -> real_cred -> session_keyring -> serial 1.50
P_F4 task -> cred -> session_keyring -> serial 1.50
S_F1 task -> sas_ss_sp 1.49
S_F2 task -> signal -> ioac -> rchar 0.60
S_F3 task -> signal -> ioac ->wchar 0.46
S_F4 task -> signal -> real_timer -> base -> cpu_base -> clock_was_set_seq 0.38

M_F1

M_F2

M_F3

M_F4

M_F5

M_F6

M_F7

M_F8

M_F9

M_F10

M_F11

M_F12

M_F13

M_F14

M_F15

M_F16

M_F17

M_F18

M_F19

M_F20

M_F21

M
_F

1

M
_F

2

M
_F

3

M
_F

4

M
_F

5

M
_F

6

M
_F

7

M
_F

8

M
_F

9

M
_F

10

M
_F

11

M
_F

12

M
_F

13

M
_F

14

M
_F

15

M
_F

16

M
_F

17

M
_F

18

M
_F

19

M
_F

20

M
_F

21

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

1

-0.2

-0.24

-0.18

-0.24

-0.24

-0.24

-0.24

-0.24

-0.078

-0.032

-0.19

-0.19

-0.19

-0.19

-0.19

-0.19

-0.19

-0.017

-0.19

-0.056

-0.2 -0.24 -0.18 -0.24 -0.24 -0.24 -0.24 -0.24 -0.078 0.032 -0.19 -0.19 -0.19 -0.19 -0.19 -0.19 -0.19-0.017-0.19 -0.056

1

0.97

0.97 0.97 0.97 0.97 0.97 0.97

0.96 0.99 0.99 0.99 0.99 0.99 0.99

0.97

0.97

0.97

0.97

0.97

0.97 0.98 0.98 0.98 0.98 0.98 0.980.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99 0.99 0.99 0.99 0.99 0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1

1

1

1

1

1

0.98 0.98 0.98 0.98 0.98 0.980.97

1

1

1

1

1

1

1

1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1

1

1

1 1 110.99

0.99

0.99

0.99

0.99

0.99

0.96 0.061 -0.06

-0.065

-0.065

-0.065

-0.065

-0.065

-0.065

-0.059

-0.047

-0.044

-0.052

-0.052

-0.052

-0.052

-0.052

-0.052

0.052

0.047

0.052

0.052

0.052

0.052

0.052

0.97

0.98

0.98

0.98

0.98

0.98

0.98

0.99

0.99

0.99 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99

0.99

0.98

0.98

0.98

0.98

0.98

0.98

0.97 0.98 0.980.98 0.98 0.98 0.98

1 1 1 1 1 1

0.99 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99 0.99 0.99

0.99

0.99

0.99

0.99

0.99

-0.011

-0.015

-0.015

-0.015

-0.015

-0.015

-0.015

-0.0095

0.98

0.98

0.98

0.98

0.98

0.98

-0.047

0.061 0.052

-0.065 -0.059 -0.065 -0.065 -0.065 -0.065 -0.065 -0.0062

0.047 0.052 0.052 0.052 0.052 0.052

-0.06

-0.011

-0.052

-0.015 -0.015 -0.015 -0.015 -0.015 -0.015-0.0095

-0.044 -0.052 -0.052 -0.052 -0.052 -0.052

1

1

1 1

1

1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1

1

1 1 1 1

1

0.99 0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99

0.99 0.99 0.99 0.99 0.99 0.99

0.99 0.99 0.99 0.99 0.99

1

1

1

1

1

0.0062 0.053

0.053

0.054 0.052

0.052

0.052

0.052

0.052

0.052

0.052

0.063 0.073-0.01

-0.06 -0.06 -0.06 -0.06 -0.06 -0.060.460.84

0.37

0.052 0.052 0.052 0.052 0.052-0.011 -0.01

0.054

-0.011 0.84

-0.06

-0.06

-0.06

-0.06

-0.06

-0.06

0.46

0.063

0.073

-0.045

-0.045 -0.045 -0.045 -0.045 -0.045

-0.045

-0.045

-0.045

-0.045

-0.045

0.37

-0.045

-0.01

-0.01

-0.01

-0.01

-0.01

-0.01

-0.01 -0.01-0.01-0.01-0.01-0.01

0.047

0.047

0.056

0.056

0.033

0.045

0.033 0.045

Figure 9: Correlation matrix of mem_info features.

16 Security and Communication Networks

P_
F1

P_
F2

P_
F3

P_
F4

P_F1 P_F2 P_F3 P_F4

1.0

0.8

0.6

0.4

0.2

0.0

1

1

1

1

-0.056

-0.056

-0.056

-0.056

1

1

1

1

-0.056

-0.056 -0.056

-0.056

Figure 10: Correlation matrix of process_cred features.

S_
F1

S_
F2

S_
F3

1.0

0.8

0.6

0.4

0.2

0.0

1

S_F1 S_F2 S_F3

0.0037 -0.011

0.0037

-0.011 0.0031

0.00311

1

Figure 11: Correlation matrix of signal_info features.

Table 9: Correlation results.

KTS category Original features Correlated features Reduced features
mem_info 21 12 9
process_credentials 2 4 2
signal_info 0 3 3

Table 10: Final feature set used by KTSDroid.

Rep Feature name Depth
M_F1 task ->mm->mmap -> vm_fle -> f_inode -> i_generation 6
M_F2 task ->mm->mmap_legacy_base 3
M_F3 task ->mm-> end_data 4
M_F4 task ->mm->mmap_base 3
M_F10 task ->mm->mmap -> vm_fle -> f_inode -> i_ino 6
M_F11 task ->mm-> shared_vm 3
M_F12 task ->mm-> total_vm 3
M_F14 task ->mm-> exec_vm 3
M_F20 task ->mm->mm_count -> counter 4
P_F1 task -> real_cred -> session_keyring -> last_used_at 4
P_F3 task -> real_cred -> session_keyring -> serial 4
S_F1 task -> sas_ss_sp 2
S_F2 task -> signal -> ioac -> rchar 4
S_F3 task -> signal -> ioac ->wchar 4

Security and Communication Networks 17

6. Discussion

KTSDroid analyzes the efect of memory-based features on
Android malware categorization. Te kernel task structure
of memory is used for the extraction of process-specifc
features. It is thoroughly analyzed for nine categories up to
a depth of six levels, as compared to existing studies that
have worked with fve categories for a depth of three. A large
number of features are extracted, which are then evaluated
for signifcance. KTSDroid uses a minimal set of fourteen
features and is able to classify malicious applications with

high performance. Te high performance of KTSDroid can
be attributed to the following important points:

(1) Process-specifc features from the kernel task
structure are used for creating behavior profles for
applications. Tese features are better representative
of the application’s behavior as compared to general
memory usage features, as they are shared by
a number of processes.

(2) Five additional categories of the kernel task structure
are explored for feature extraction by KTSDroid.
Among these, the category of process_credentials is
found to be the second most important for malware
categorization by the forward selection method, as
shown in Table 5. Features from the category of
process_credentials are included in the fnal feature set.

(3) Te deep exploration of the kernel task structure
enables the extraction of features beyond the depth
of three (as per previous studies). Te features be-
yond the depth of three constitute seventy-one
percent of the fnal feature set. Te high percent-
age of features from deeper structures of the kernel
task structure highlights the importance of traversing
deeper levels of the kernel task structure.

7. Conclusion

Dynamic analysis-based solutions for malware analysis have
replaced static analysis solutions due to the inability of static
analysis to explore the runtime working of the application.
Tis study has proposed a dynamic analysis-based malware
categorization system that extracts volatile memory-based

FS FS+CF FS+CF+MI FS+CF+MI+Corr
0

50

100

150

200

250

300

350

400

N
um

be
r o

f F
ea

tu
re

s

Figure 12: Dimensionality reduction by feature selection methods.

FS FS+CF FS+CF+MI FS+CF+MI+Corr
0.93

0.94

0.95

0.96

0.97

0.98

0.99

F!
-S

co
re

Figure 13: Performance improvements by feature selection
methods.

Table 11: KTSDroid performance for malicious and benign classes.

Class F1-score Precision Recall
Adware 0.992 0.988 0.996
Banking Trojans 0.967 0.972 0.962
Riskware 0.992 0.989 0.995
SMS Trojans 0.968 0.969 0.968
Benign 0.993 0.994 0.992

Banking Trojans
0.94

0.95

0.96

0.97

0.98

0.99

1

BenignAdware Riskware SMSware

F1-Score
Precision
Recall

Figure 14: KTSDroid performance for multiclass application
categorization.

Table 12: KTSDroid comparison with existing studies.

Signifcant
categories

Number
of

features

Number
of output
classes

Performance

Wang et al. 2 out of 5 40 2 0.98 (F1-score)
Tstructdroid — 32 2 98 (accuracy)
KTSDroid 3 out of 9 14 5 0.985 (F1-score)

18 Security and Communication Networks

artifacts for malicious Android application detection and
categorization. A time-based memory dump extraction
process with interactions is conducted to ensure the capture
of malicious actions of the applications. Te kernel task
structure from all memory dumps is analyzed for the ex-
traction of process-specifc features. A large number of
process-specifc features grouped into nine categories are
extracted. A comprehensive analysis is conducted on the
extracted set of features to fnd the most important cate-
gories of the kernel task structure for malware categoriza-
tion. Te most signifcant features of the selected categories
are also reported in the study.Te proposed system is able to
classify malicious applications into fve distinct classes by
using a small number of features with high performance.

Data Availability

Te data supporting the fndings of this study are available
on the following git repository: https://github.com/
saneehaAmir/KTSDroid.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] P. Stirparo, I. N. Fovino, and I. Kounelis, “Data-in-use
leakages from Android memory — test and analysis,” in
Proceedings of the 2013 IEEE 9th International Conference on
Wireless and Mobile Computing, Networking and Commu-
nications (WiMob), pp. 701–708, Lyon, France, October 2013.

[2] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A
survey on heuristic malware detection techniques,” in Pro-
ceedings of the Te 5th Conference on Information and
Knowledge Technology, pp. 113–120, Shiraz, Iran, May 2013.

[3] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio,
G. B. Junquera, and P. L. de Geus, “Identifying Android
malware using dynamically obtained features,” Journal of
Computer Virology and Hacking Techniques, vol. 11, no. 1,
pp. 9–17, 2015.

[4] Y. Ding, M. Naber, C. L. E. Pafen, J. H. Fabius, and
S. Van der Stigchel, “Saccades reset the priority of visual
information to access awareness,” Vision Research, vol. 173,
pp. 1–6, 2020.

[5] A. Aghamohammadi and F. Faghih, “Lightweight versus
obfuscation-resilient malware detection in android applica-
tions,” Journal of Computer Virology and Hacking Techniques,
vol. 16, no. 2, pp. 125–139, 2020.

[6] M. Hammad, J. Garcia, and S. Malek, “A large-scale empirical
study on the efects of code obfuscations on android apps and
anti-malware products,” in Proceedings of the Proceedings of
the 40th International Conference on Software Engineering,
pp. 421–431, Association for Computing Machinery, New
York, NY, USA, May 2018.

[7] L. Massarelli, L. Aniello, C. Ciccotelli, L. Querzoni, D. Ucci,
and R. Baldoni, “Android malware family classifcation based
on resource consumption over time,” in Proceedings of the
2017 12th International Conference on Malicious and Un-
wanted Software (MALWARE), pp. 31–38, Fajardo, PR, USA,
October 2017.

[8] M. Gohari, S. Hashemi, and L. Abdi, “Android malware
detection and classifcation based on network trafc using
deep learning,” in Proceedings of the 2021 7th International
Conference onWeb Research (ICWR), pp. 71–77, Tehran, Iran,
May 2021.

[9] H. Gao, S. Cheng, and W. G. D. Zhang, “GDroid: android
malware detection and classifcation with graph convolutional
network,” Computers & Security, vol. 106, Article ID 102264,
2021.

[10] A. S. Bozkir, E. Tahillioglu, M. Aydos, and I. Kara, “Catch
them alive: a malware detection approach through memory
forensics, manifold learning and computer vision,” Com-
puters & Security, vol. 103, Article ID 102166, 2021.

[11] H.Wang, H. He, andW. Zhang, “Demadroid: object reference
graph-based malware detection in Android,” Security and
Communication Networks, vol. 2018, Article ID 7064131,
16 pages, 2018.

[12] X. Wang and C. Li, “Android malware detection through
machine learning on kernel task structures,”Neurocomputing,
vol. 435, pp. 126–150, 2021.

[13] W. Zhang, H. Wang, H. He, and P. Liu, “DAMBA: detecting
android malware by ORGB analysis,” IEEE Transactions on
Reliability, vol. 69, no. 1, pp. 55–69, 2020.

[14] H. Alawneh, D. Umphress, and A. Skjellum, “Android mal-
ware detection using neural networks & process control block
information,” in Proceedings of the 2019 14th International
Conference on Malicious and Unwanted Software (MAL-
WARE), pp. 3–12, Nantucket, MA, USA, August 2019.

[15] F. Shahzad, M. Akbar, S. Khan, and M. Farooq, “Tstructdroid:
realtime malware detection using in-execution dynamic
analysis of kernel process control blocks on android,”
Technical Report, National University of Computer &
Emerging Sciences, Islamabad, Pakistan, 2013.

[16] A. Ali-Gombe, A. Tambaoan, A. Gurfolino, and G. G. Richard
III, “App-agnostic post-execution semantic analysis of An-
droid in-memory forensics artifacts,” in Proceedings of the
Annual Computer Security Applications Conference, pp. 28–
41, Austin, TX, USA, December 2020.

[17] Y. Dai, H. Li, Y. Qian, and X. Lu, “A malware classifcation
method based on memory dump grayscale image,” Digital
Investigation, vol. 27, pp. 30–37, 2018.

[18] A. De Lorenzo, F. Martinelli, E. Medvet, F. Mercaldo, and
A. Santone, “Visualizing the outcome of dynamic analysis of
Android malware with VizMal,” Journal of Information Se-
curity and Applications, vol. 50, Article ID 102423, 2020.

[19] A. H. Lashkari, B. Li, T. L. Carrier, and G. V. Kaur, “Volatile
memory analyzer for malware classifcation using feature
engineering,” in Proceedings of the 2021 Reconciling Data
Analytics, Automation, Privacy, and Security: A Big Data
Challenge (RDAAPS), pp. 1–8, IEEE, Hamilton, Canada, May
2021.

[20] H. H. Kim and M. J. Choi, “Linux kernel-based feature se-
lection for Android malware detection,” in Proceedings of the
Te 16th Asia-Pacifc Network Operations and Management
Symposium, pp. 1–4, Hsinchu, Taiwan, September 2014.

[21] J. Abawajy, A. Darem, and A. A. Alhashmi, “Feature subset
selection for malware detection in smart IoT platforms,”
Sensors, vol. 21, no. 4, p. 1374, 2021.

[22] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A
review on feature selection in mobile malware detection,”
Digital Investigation, vol. 13, pp. 22–37, 2015.

[23] N. Maleki and H. Rastegari, “An improved method for packed
malware detection using PE header and section table

Security and Communication Networks 19

https://github.com/saneehaAmir/KTSDroid
https://github.com/saneehaAmir/KTSDroid

information,” International Journal of Computer Network and
Information Security, vol. 11, no. 9, 2019.

[24] J. Jung, H. Kim, D. Shin et al., “Android malware detection
based on useful API calls and machine learning,” in Pro-
ceedings of the 2018 IEEE First International Conference on
Artifcial Intelligence and Knowledge Engineering (AIKE),
pp. 175–178, IEEE, Laguna Hills, CA, USA, September 2018.

[25] P. Agrawal and B. Trivedi, “Machine learning classifers for
Android malware detection,” in Data Management, Analytics
and Innovation, pp. 311–322, Springer, Berlin, Germany,
2021.

[26] H. J. Zhu, T. H. Jiang, B. Ma, Z. H. You, W. L. Shi, and
L. Cheng, “HEMD: a highly efcient random forest-based
malware detection framework for Android,” Neural Com-
puting & Applications, vol. 30, no. 11, pp. 3353–3361, 2018.

[27] S. Khalid and F. B. Hussain, “Evaluating dynamic analysis
features for android malware categorization,” in Proceedings
of the 2022 International Wireless Communications and
Mobile Computing (IWCMC), pp. 401–406, IEEE, Dubrovnik,
Croatia, May 2022.

[28] T. A. Alhaj, M. M. Siraj, A. Zainal, H. T. Elshoush, and
F. Elhaj, “Feature selection using information gain for im-
proved structural-based alert correlation,” PLoS One, vol. 11,
2016.

[29] A. Salah, E. Shalabi, and W. Khedr, “A lightweight android
malware classifer using novel feature selection methods,”
Symmetry, vol. 12, no. 5, p. 858, 2020.

[30] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman,
Te Elements of Statistical Learning: Data Mining, Inference,
and Prediction, vol. 2, Springer, Berlin, Germany, 2009.

[31] A. M. Kowshalya, R. Madhumathi, and N. Gopika, “Corre-
lation based feature selection algorithms for varying datasets
of diferent dimensionality,” Wireless Personal Communica-
tions, vol. 108, no. 3, pp. 1977–1993, 2019.

[32] X. F. Song, Y. Zhang, D. W. Gong, and X. Z. Gao, “A fast
hybrid feature selection based on correlation-guided clus-
tering and particle swarm optimization for high-dimensional
data,” IEEE Transactions on Cybernetics, vol. 52, no. 9,
pp. 9573–9586, 2022.

[33] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123–140, 1996.

[34] I. Ahmad, M. Basheri, M. J. Iqbal, and A. Rahim, “Perfor-
mance comparison of support vector machine, random forest,
and extreme learning machine for intrusion detection,” IEEE
Access, vol. 6, pp. 33789–33795, 2018.

[35] S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, “Efective
and efcient hybrid android malware classifcation using
pseudo-label stacked auto-encoder,” Journal of Network and
Systems Management, vol. 30, pp. 22–34, 2022.

20 Security and Communication Networks

Research Article
DQfD-AIPT: An Intelligent Penetration Testing Framework
Incorporating Expert Demonstration Data

Yongjie Wang,1,2 Yang Li ,1,2 Xinli Xiong,1,2 Jingye Zhang,1,2 Qian Yao,1,2

and Chuanxin Shen1,2

1College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China
2Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, Hefei 230037, China

Correspondence should be addressed to Yang Li; ly_20d@163.com

Received 9 August 2022; Accepted 7 October 2022; Published 4 May 2023

Academic Editor: Muhammad Faisal Amjad

Copyright © 2023 YongjieWang et al.Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te application of reinforcement learning (RL) methods of artifcial intelligence for penetration testing (PT) provides a solution to
the current problems of high labour costs and high reliance on expert knowledge for manual PT. In order to improve the efciency
of RL algorithms for PT, existing research has considered bringing in the knowledge of PTexperts and combining it with the use of
imitative learningmethods to guide the agent in its decision-making. However, the disadvantage of using imitation learning is also
obvious; that is, the performance of the strategies learned by the agent hardly exceeds the demonstrated behaviour of the expert
and it can also cause expert knowledge overftting. At the same time, the expert knowledge in the currently proposed method is
poorly interpretable and highly scenario-dependent. Te expert knowledge used in these methods is not universal. To address
these issues, we propose an intelligent PT framework named DQfD-AIPT. Te framework encompasses the process of collecting
and using expert knowledge and provides a rational defnition of the structure of expert knowledge. To solve the overftting
problem, we perform PTpath planning based on the deep Q-learning from demonstrations (DQfD) algorithm. DQfD combines
the benefts of RL and imitation learning to efectively improve the PT strategy and performance of agents while avoiding
overftting. Finally, we conducted experiments in a simulated network scenario containing honeypots. Te experimental results
proved the efectiveness of expert knowledge incorporation. In addition, the DQfD algorithm can improve the efciency of
penetration testing more efectively than that by the classical deep reinforcement learning (DRL) method and can obtain a higher
cumulative reward. Not only that, due to the incorporation of expert knowledge, in scenarios with honeypots, the DQfD method
can efectively reduce the probability of interacting with honeypots compared to the classical DRL method.

1. Introduction

With the development of the Internet, the network envi-
ronment is increasingly complex, and cyber security threats
that we face are increasing day by day. Globally, protecting
modern systems and infrastructure is becoming a challenge
in the feld of computer security. Te traditional approach to
system security assessment takes a defender’s perspective by
solidifying and enhancing system security against attackers
[1]. Penetration testing is used as a positive method to attack
and test a target system against authorised networks from
the attacker’s point of view. We can conduct vulnerability
detection and security assessment through potential threat

paths [2]. However, with the increase in network size and
system complexity, the number of hosts in the network, and
the complexity of confguration information, the efciency
of performing penetration testing will be afected by the AoI
(age of information) [3, 4]. Performing PTmanually involves
a lot of repetitive actions and procedures [5]. As a result,
automated and intelligent penetration testing was born out
of this need.

Early research included automated penetration testing
tools and related theoretical studies. Automated penetration
testing tools integrate modules for scanning, penetration
attacks, and payload selection, such as Metasploit [6].
However, human intervention is still required for the critical

Hindawi
Security and Communication Networks
Volume 2023, Article ID 5834434, 15 pages
https://doi.org/10.1155/2023/5834434

https://orcid.org/0009-0005-1211-3699
mailto:ly_20d@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5834434

target identifcation and load selection in this tool. In terms
of theoretical research, attack trees, attack graphs, and
planning domain programming languages (PDDLs) are
representative. Methods such as attack graphs plan attack
paths through formal representation of the target network
confguration information and state transfer analysis [6, 7].
However, all these methods require in-depth knowledge of
the target network’s information in advance and cannot
model the uncertainty in the penetration testing process.
Recent advances in artifcial intelligence have provided
a new approach to the current research on automated and
intelligent penetration testing. In particular, RL methods are
proving to be a general and efective approach. RL can be
used to solve the problem of optimal performance of an
agent in a given environment. A model-free approach to RL,
for example, allows an agent to learn a strategy by interacting
with the environment, with little reliance on prior knowl-
edge of the environment. Te method is analogous to
a human player interacting with a game in order to complete
the game objectives and learn relevant solution strategies [8].

Te Markov decision process (MDP) is a paradigm of
RL. Schwartz and Hanna [9] and Zhou et al. [10] trained the
agent for path planning by formalising PTas MDP and using
the DRL algorithm in a constructed penetration test sim-
ulation environment. Te problem is that the training
process takes a long time to converge and that the simulation
environment is poorly simulated. Zennaro et al. [11]
combine RL and imitation learning approaches and classify
PT problems according to scenarios. Tey provide a priori
knowledge to the agent for a specifc network scenario
structure, which better guides the agent to explore their
problem space and thus obtain a better solution. On the
downside, its expert knowledge is limited by the constructed
penetration test scenarios and is less interpretable and
generalisable. Chen [12] proposed an intelligent PT
framework named GAIL-PT. GAIL-PT collects expert
knowledge via Metasploit and uses GAIL (generative
adversarial imitation learning) in imitation learning for path
planning. However, the complexity of the A3C-GAIL and
DPPO-GAIL algorithms used in the experiments is still high.
Te above research takes full account of the characteristics of
the penetration testing problem and uses imitative learning
methods for intelligent penetration testing while in-
corporating expert knowledge. Te use of expert knowledge
with decision aids as inputs can go some way to improving
the PT strategy of the agent, allowing it to be trained in
a direction close to the behaviour of the expert [13].
However, the aim of imitation learning methods for training
models is to ft the trajectory distribution of model-
generated strategies to the trajectory distribution of the
input. Terefore, using imitation learning in combination
with RL makes it difcult to make policy enhancements to
that part of the environment that has not been explored. In
conclusion, the following challenges need to be stressed:

(i) Challenge 1: the penetration testing expert knowl-
edge provided to the agent is poorly interpretable,
usually dependent on specifc network scenarios, and
not universally applicable.

(ii) Challenge 2: the use of imitation learning is tending
to produce an overftting of expert knowledge,
making it difcult to balance exploration and ex-
ploitation of the environment. Te higher com-
plexity of the algorithms used for intelligent
penetration testing leads to slower convergence and
lower efciency.

To address these challenges, we frst propose an in-
telligent PT framework called DQfD-AIPT that incorporates
expert knowledge. DQfD-AIPT contains mainly the col-
lection and exploitation of expert knowledge and the
training of agents. At the same time, we have rationalised
expert knowledge. Second, we use the DQfD algorithm
based on the reinforcement learning with expert demon-
strations (RLED) framework, combining both supervised
and unsupervised methods to construct the loss function.
Te algorithm also uses prioritized experience replay (PER)
for experience sampling to balance expert data and in-
teraction data to prevent overftting. Ultimately, experi-
ments were conducted in a simulated network scenario
containing honeypots to verify the efectiveness of expert
knowledge incorporation and to test the performance of the
DQfD algorithm. Te experiments show that the DQfD
algorithm has better penetration testing performance than
the classical DRLmethod. For the experimental platform, we
selected the CyberBattleSim (CBS) platform developed by
Microsoft, which features high simulation and support for
RL algorithms and is currently a more well accepted in-
telligent PT simulation platform.

Te main contributions of this paper are as follows:

(i) To address the problems of poor interpretability of
expert knowledge and dependence on specifc sce-
narios, we propose an intelligent PT framework
named DQfD-AIPT that incorporates expert
knowledge.Te construction of an expert knowledge
base is carried out through two methods: the
transformation of abstract expert knowledge and the
collection of PTtraces in diferent network scenarios.
At the same time, we also defne the form and
structure of expert knowledge.

(ii) To address the problem of overftting of expert
behaviour due to imitation learning, we use the
DQfD algorithm incorporating expert demonstra-
tion data, together with a PER mechanism for
sampling of expert data and interaction data. With
the guidance of the expert demonstration data and
interaction data, the efciency and overall perfor-
mance of the training process of the agent are ef-
fectively improved.

Te organization of this paper is as follows: In Section 2,
we provide an overview of research advances in PT, in-
telligent PT, and use of expert knowledge. In Section 3, we
explain and outline the RL covered in this paper. In Section
4, we describe the method that we used and the specifc
implementation details of the method. In Section 5, we
describe the procedure and hyperparameter settings of the
experiments, while the results are analysed and evaluated.

2 Security and Communication Networks

Finally, in Section 6, we summarise our work and further
articulate future research directions.

2. Related Work

In this section, wemainly introduce the basic concepts of PT,
the research progress of intelligent PT, and the importance
of expert knowledge in the PT process. In the end, we
conclude with a summary of the problems in the
current study.

2.1. PTand ItsAutomation. PT is a method of simulating real
attacks with the aim of assessing the security of computer
systems and networks. PTassesses information security from
the attacker’s perspective. Trough PT of companies, or-
ganisations, or departments, we understand their in-
formation security policies and network vulnerabilities and
give possible solutions and remedies to improve network
security [14]. As network equipment and defence detection
systems continue to upgrade, the complexity of performing
the PTprocess has increased dramatically. Te entire testing
process involves skilled cyber security experts generating
attack plans to discover and exploit vulnerabilities in net-
works and applications. A team of highly experienced testers
is therefore essential, whomust control all tasks manually. In
addition to this, there are a large number of repetitive actions
and deterministic steps in the PT process, which will lead to
the problem of the high time cost of conducting PT man-
ually. In summary, PTcurrently appears to be a costly means
of assessing the vulnerability of network systems [15, 16].

To address the high cost and reliance on manual PT,
methods and tools to implement automated PT have been
proposed. In terms of theoretical research, early studies such
as attack trees, attack graphs, and PDDL are representative.
Tese methods plan attack paths through formal repre-
sentations of target network confguration information and
state transfer analysis [3, 4]. On the one hand, these
abovementioned methods require full knowledge of the
network topology and the confguration of each machine,
which is unrealistic from the attacker’s point of view. On the
other hand, these methods focus on a regular representation
of known information and then fnd the path of attack by
means of planning. Te uncertainty of a real PT process is
not well modeled. Tat is, the uncertainty of system
knowledge must be obtained using remote tools before
a planned attack can be executed.

In terms of the development of automated PT tools,
mature automated PT tools include APT2 PT suite,
Autosploit PT tool, and Awesome-Hacking tools [2]. Tese
PT tools have signifcantly improved the efciency of PTand
simplifed the process of conducting PTmanually. However,
there is still the problem of not being able to intelligently
select the attack payload and of targeting only a single host.
Tere is still a need to base the correct choice of attack
methods and means on the decisions of PT experts. Te use
of intelligent planning techniques to improve the automa-
tion of attack path discovery is still the key to achieving
automated PT [17].

2.2. Intelligent PTUsing RLMethods. With the development
of algorithms in the feld of artifcial intelligence, there have
been new advances in the study of automated PT. Artifcial
intelligence-driven PTmethods are able to intelligently select
attack targets and attack payloads based on the current state
of the target network. Te RL approach learns how to map
the current state to an action and provides an idea how to do
so. Te agent learns the PT strategy by interacting with the
environment composed of the target network and based on
the feedback from the interaction. Te process by which we
build a simulated environment for PT to train an agent is
similar to how a player interacts with a game to discover its
solution [9].

A precondition for applying RL for intelligent PT is the
need to formalise the PT process into the RL paradigm.
Sarraute et al. [18], Schwartz et al. [19], Hu et al. [20], and
Zennaro [11] et al. formalised the penetration testing process
as a partially observableMarkov decision process (POMDP).
Tey incorporated the attacker’s observations of the envi-
ronment into the attack process. However, as the size of the
network scenario expands, the computational complexity
increases and is still not applicable to large-scale networks.
Durkota and Lisý [21] proposed the model penetration test
as an MDP, in which the action space consists of specifc
vulnerabilities and the state space consists of the results of
attack actions. Te goal of the whole model is to minimize
the expected loss value. Hofmann [22], based on Durkota,
ignores the structure of the target network and relies instead
on expressing the uncertainty of PT in the form of possible
action outcomes. Tis is essentially a model-free approach
[9] that requires minimal prior knowledge of the environ-
ment. However, POMDP is more realistic in most cases.
However, considering the computational complexity and the
efciency of the reinforcement learning algorithm, the MDP
model is still a better scheme to balance the computational
efciency and modeling rationality.

In recent years, a variety of RL algorithms have been used
extensively in addressing intelligent PT. Schwartz and
Hanna [9] constructed the network attack simulator
(Nasim) and used known network confgurations as states,
available scans and exploits as actions, and used table-based
Q-learning methods and neural network-based DQN
methods to achieve intelligent discovery of attack paths.
Zhou et al. [10] combined various improvements with the
DQN algorithm and proposed the NDSPI-DQN algorithm
to optimise PT path discovery. Te algorithm efectively
reduces the action space of the agent and is experimentally
validated based on Nasim. Zhang [2] introduced the mul-
tidomain action selection module on the basis of intelligent
PT. Tis module can efectively identify the actions that can
be used according to a specifc state, reducing unnecessary
exploration by an agent. Finally, this method combined with
the deep deterministic policy gradient (DDPG) algorithm is
verifed in a simulated environment.

2.3. Use of Expert Knowledge. Expert guidance often plays
a key role in solving real-world problems. As a method
highly dependent on expert knowledge, reference to

Security and Communication Networks 3

experienced expert knowledge is often helpful to exploit the
vulnerability of the target system, so as to achieve the target
at a lower cost. From the perspective of research status, the
current research is mainly focused on solving the problems
of state space explosion, action space explosion, and sparse
reward caused by penetration testing using the re-
inforcement learning algorithm. Most of them focus on the
algorithm itself, often ignoring the characteristics of expert
decision-making in the penetration test process and the
analysis of specifc network scene structures.

Zennaro et al. [11] simplifed the penetration testing
problem with diferent structures in the form of a capture
fag challenge and demonstrated how the performance of an
agent can be improved by relying on diferent forms of prior
knowledge provided to the agent. Te experiments show that
by incorporating prior knowledge, the agent can better ex-
plore the space of their problems and thus efectively obtain
solutions. However, the CTF scenarios constructed for the
experiments were only simplifed versions and were not
experimented on relatively complex scenarios. Chen [12] frst
proposed a generic intelligent PT framework based on GAIL.
GAIL-PT addresses the problem of high labour costs due to
the intervention of security experts and high-dimensional
discrete action spaces. Te study used a variety of algorithms
for experiments, but the results showed that the complexity of
the A3C-GAIL and DPPO-GAIL algorithms, which combine
GAIL, is still relatively high.

Te main idea of imitation learning is to match the
behavioural strategies of an agent with the behaviour of an
expert by means of training. Imitation learning can be di-
vided into behavioural cloning [23], inverse reinforcement
learning [24], and generative adversarial imitation learning
[25]. However, imitation learning tends to focus on imi-
tating the behaviour and trajectories of experts, making it
difcult to enhance and contribute to the performance of the
agent in the environment when combined with RL methods.
Tis method is essentially an exploration and exploitation of
the environment without enhancement for the strategy in
the application of RLmethods. Recently, demonstration data
have been shown to help solve difcult exploration problems
in RL. Subsequently, a framework known as reinforcement
learning with expert demonstration (RLED) was proposed.
Tis framework is suitable for scenarios where rewards are
provided by the environment. Todd Hester et al.of the
Google DeepMind team [26] propose the DQfD algorithm
based on the RLED framework.Te method is pretrained on
presentation data while combining the features of supervised
and unsupervised learning to construct a loss function and
using PER in order to achieve a balanced amount of
demonstration data in the training data. By training deep
neural networks in this way, the results show that DQfD
outperforms imitation learning, which only imitates expert
trajectories, as well as classical deep Q networks in terms of
average overall performance.

2.4. Brief Summary. We have summarised the current
progress in intelligent penetration testing research in the
previous section. Traditional penetration testing has high

reliance on expert knowledge and high labour costs. In the
process of changing from manual to intelligent PT, the cost
of manual time is efectively reduced. Tis goes some way to
solving one of the major dilemmas of current manual PT.
However, as the complexity of the target system increases, the
performance of penetration testing using classical RL methods
also encounters bottlenecks.Te problem is that real-world PT
relies on expert experience and the profciency of the pene-
tration tester. Knowledge reasoning between successive states
during real PT is missing in the training of the agent, but in the
course of a real penetration test, this is quite important.
Considering the integration of expert knowledge into in-
telligent PT can efectively solve these problems.

In the exploration of incorporating expert knowledge in
PT, previous studies have mainly used imitative learning
methods. Tese studies have been conducted by processing
collected expert knowledge and combining it with imitative
learning methods for PT path planning. On the one hand,
the expert knowledge collected is usually highly relevant to
the target network scenario and not universally applicable.
Te interpretability of this expert knowledge is relatively
poor. On the other hand, the use of a combination of im-
itative and RL was efective in guiding the agent to ft the
expert knowledge trajectory to some extent. However, im-
itative learning is more concerned with imitating the be-
haviour of the expert than the strategies of the testing expert.
Tis will lead to problems of expert knowledge overftting.
As a result, agents trained using imitation learning often
struggle to outperform experts. In conclusion, the current
research in the feld of intelligent penetration testing in-
corporating expert knowledge can be further enhanced with
regard to the interpretability of expert knowledge and the RL
methods used.

3. Preliminaries

3.1. Classical RL Method and Its Improvements

3.1.1. Q-Learning. Q-learning is a value-based RL algorithm.
Q is Q(s, a), which is the expected gain from taking an action
a(a ∈ A) in a state s(s ∈ S) at a given time. Te main idea of
the algorithm is to construct aQ table of states and actions to
store Q values and then select the action that yields the
greatest beneft based on the Q value. Q-learning uses
temporal diference (TD) to update Q values, with the
updated formula shown in the following equation:

Q st, at(􏼁⟵ Q st, at(􏼁 + α rt + cmax
at+1

st+1, at+1(􏼁 − Q st, at(􏼁􏼢 􏼣,

(1)

where α is the learning rate, c is the discount factor, at and st

are the action and state at moment t, respectively, st+1 is the
next state after performing action at, at+1 is the possible
action to be performed in the state st+1, and rt is the im-
mediate reward obtained.

3.1.2. Deep Q-Learning. Q-learning takes a tabular approach
to storing Q values. Terefore, when facing the RL

4 Security and Communication Networks

assignment with a high-dimensional state space and action
space, the limited space of the table cannot store all states
and actions, which limits the performance of the algorithm
[27]. Algorithms that combine the advantages of deep
learning give a better solution to this problem. Minh [28]
proposed the deep Q-network (DQN), which is an extension
of Q-Learning. Te algorithm replaces the Q value table in
Q-learning with a neural network. Tis transforms the
original problem of convergence of action value function
solving into a function ftting problem for neural networks.

During the exploration and exploitation of the envi-
ronment, the transition data are stored in a replay bufer.
DQN uses randomly sampled data from the replay bufer to
train the neural network to approximate theQ function.Tis
method breaks the correlation between the training data and
makes the training process stable. Te DQN algorithm uses
the square of the error between the target Q value and the
estimated Q value as the loss function when updating the
parameters of the neural network, where the target Q value
yi at the i iteration is calculated as follows:

yi � Esi+1∼ε ri + cmax
ai+1

Q′ si+1, ai+1 | θi
′(􏼁|si, ai􏼢 􏼣, (2)

where θ’i are the parameters of the targetQ network.Te goal
of strategy learning is to update the parameters of the
strategy Q network by the mean square error between the
target Q value and the current Q value, where the loss
function of the algorithm at the i iteration is calculated as
follows:

Li θi(􏼁 � Esi,ai ∼ρ(·) yi − Q si, ai | θi(􏼁(􏼁
2

􏽨 􏽩, (3)

where ρ(si, ai) is the probability distribution of si and ai. θi

are the parameters of the strategy network. Te parameters
of the strategy network are assigned to the target network in
fxed steps of intervals. When optimizing the loss function,
the parameters of the target network θ’i are not updated.

3.1.3. Prioritized Experience Replay. Prioritized experience
replay is a technique for prioritizing experiences, whereby
important state transition experiences are replayed more
frequently. Tis method is efective because some transition
data contain more information that is worth learning.
Giving these transitions more opportunities to be played
back helps accelerate the overall learning process. Te core
idea of PER is to measure the importance of diferent
transition data through the TD error δ. Te larger the error
of the sample, the larger the value of the sample. Te
sampling probability of the state transition i is calculated as
follows:

P(i) �
p
α
i

􏽐kp
α
k

, (4)

where pi refers to the priority of the state transition i,
denoted as pi � |δi| + ∈, and ∈ is a positive number used for
numerical stability so that pi〉0. z is an exponential
hyperparameter representing the degree of the impact of the
TD error on the sample.

It is worth noting that the purpose of using experience
replay is to eliminate sample correlation, but the use of
prioritized sampling certainly forgoes random sampling.
Terefore, it is also necessary to reduce the training weights
of the high-priority state transition data. Te PER method
uses importance sampling weights to correct for deviations
in the state transition i. Te weights are calculated as follows:

ωi � [NP(i)]
− β

, (5)

where N refers to the capacity size of the replay bufer and β
is the annealing hyperparameter of the training process. To
implement the above method efciently, we store the pri-
orities in an efcient query line tree data structure and
sample the range of line segments during the training
process. We call this efcient query data structure a sum tree.

3.2. RL Formalisation for PT. An RL agent must be able to
perceive the state of the environment, have one or more
goals related to the state of the environment, and then take
action and infuence the state of the environment. In order to
implement intelligent PT in conjunction with an RLmethod,
we begin by modeling the penetration testing process as an
RL paradigm. MDP is a theoretical framework for achieving
goals through interactive learning. It is the classic formal
expression of sequential decision-making. Te actions of an
agent in an MDP afect not only the current immediate
reward but also the subsequent state and the future beneft.
Tus, the MDP is a mathematically idealised form of the
reinforcement learning problem. Te interaction process
between the agent and the environment in the MDP is
shown in Figure 1.

Te machines that learn and implement decisions in the
MDP are called agents. Everything that interacts with it
outside of the agent is referred to as the environment. Taking
the penetration testing process as an example, if the target
network is considered as a state variable environment, the
feedback from the environment to the actions of the agent is
considered as a reward. Te whole penetration testing
process can then be represented in the form of a 4-
tuple〈S, A, R, T〉, where S represents the state space, A

represents the action space, R represents the reward
function, and T represents the transfer function. Detailed
defnitions for specifc penetration testing questions are
given in Section 4.3.

4. Methods

In this section, we frst present an intelligent PT framework
incorporating expert knowledge and explain the details and
processes involved in this framework. We then detail the
collection and use of expert knowledge and present the RL
algorithm that we use that incorporates demonstration data.

4.1. DQfD-AIPT Framework. Manual PT relies on the ex-
perience and knowledge of experts. Expert knowledge and
the way of making decisions are also of great importance for
intelligent PT. By analysing the PTprocess and summarising

Security and Communication Networks 5

the characteristics of expert knowledge and RL, we propose
DQfD-AIPT for intelligent PT that incorporates expert
knowledge as shown in Figure 2. DQfD-AIPT consists of
three main phases: expert knowledge collection, input and
use of demonstration data, and interaction and training of
the agent. Our proposed framework is suitable for in-
telligent PT in simulated network scenarios and is char-
acterised by simplicity of use and generality. In the
following, we will explain the specifcs of each phase of the
framework.

4.1.1. Stage 1: Collection of Expert Knowledge. Te frst step
in combining expert knowledge for intelligent PT is the
collection and acquisition of expert knowledge. Te ac-
quisition of expert knowledge is an abstract and difcult
matter. Te difculty lies in the fact that the generation and
design of expert knowledge are often based on the experi-
ence and rules of experts. As the process of PT is usually
strongly correlated with the structure and vulnerability
distribution of the target network scenario, the actions taken
by penetration testers facing a specifc target network are
somewhat unpredictable. Considering the interpretability
and validity of expert knowledge, we propose two ways of
collecting expert knowledge:

(i) Method 1: As shown in Figure 3, frst, we transform
the abstract experience of the penetration tester into
an executable action that can interact with the
simulated environment. Tis executable action is
usually mapped to a specifc environmental state. For
example, a penetration tester decides to take a cer-
tain penetration exploit action based on the current
state of the target network. We can abstract this
expert knowledge and represent it in the form of
a state-action pair. Afterwards, the penetration test
simulation environment executes the action and
processes the result of the action and gives feedback.
Finally, the reward value R resulting from the exe-
cution of action A is integrated into the state S to-
gether with the new state S′. We obtain a complete
set of expert transition data that can be used by the
training of the agent and stored in an expert
knowledge base.

(ii) Method 2:We collect valid paths and traces of agents
completing PT objectives in multiple diferent sim-
ulated network scenarios (scenarios that are within
a fxed order of magnitude due to the uniformity of

expert knowledge). Tese trajectories consist of
multiple transition data, and the transition data are
obtained from tests of the agent against diferent
network scenarios. However, due to the structural
specifcity of the expert data that we designed, real-
world common open ports and services, for example,
have specifc bitmasks in the transition data. Tese
predefned bitmasks often override the confguration
of our simulated network environment. For exam-
ple, the agent collects expert data in multiple net-
work scenarios of size less than N. We can apply this
expert knowledge to the training of network sce-
narios of a size less thanN. In addition to this, we can
take valid transition data (reward values> 0 for
action execution) and store them in an expert
knowledge database.

4.1.2. Stage 2: Input of Expert Knowledge. Te transitional
data collected in the expert knowledge base can be used as
demonstration data to ensure that agents can learn the PT
strategy of experts through pretraining. Te demonstration
data input to the agent conform to the standard transition
data form of reinforcement learning algorithm and are used
for training and processing. Te detailed representation and
structure of transition data are shown in Figure 3.

Te transition data consist of a four-tuple: τ(S, A, R, S′),
where S is a valid observation of the current target network
state by the agent and also serves as the state input to the
neural network in the RL algorithm, A is the vector of
actions performed, consisting of the number of the agents’
actions, R is the reward value for executing action A under
the state S, and S′ is the new state to which the transition is
made after the execution of action A under the state S. Each
transition in the expert knowledge base has the same
structure and can be applied to the training of the agent as
demonstration data. Te observed state contains the agent’s
perception of the target network environment, which
contains statistically tractable information that has an im-
pact on the action decisions of the PT process. Tis in-
formation includes, among other things, the number of
hosts the agent has discovered, the number of hosts it
controls, the number of open services it has scanned, the
number of connection credentials it has obtained, and the
ports it has discovered.

4.1.3. Stage 3: Interaction and Training of the Agent. As the
agent interacts with the penetration test simulation envi-
ronment, the agent’s actions will change the state of the
environment, while the environment will give feedback to
the agent on rewards and penalties. Te agent adjusts the PT
strategy and actions based on the rewards. At this point, the
demonstration data extracted from the expert knowledge
base serve to assist the agent in making decisions and to
infuence the agent’s tendency to perform actions.Te better
transition data generated by the agent as it interacts with the
environment are also recorded and stored in the expert
knowledge base. In this way, the expert knowledge base is
continuously expanded with valid transition data. More

St Rt

Rt+1

St+1

Environment

Agent

At

Figure 1: Te agent interacts with the environment.

6 Security and Communication Networks

comprehensive and efective guidance is provided for the
training of the agent.

4.2.DQfDTraining. Te previous section described the basic
process of implementing our DQfD-AIPT framework in-
corporating expert knowledge. In particular, we highlighted
the process of collecting expert knowledge data. Tis section
will describe the DQfD RL algorithm and the specifc
implementation details of how the algorithm combined with
expert knowledge data can guide the agent in PT.

Based on the algorithm structure of DQN and combined
with the framework of DQfD, we implement the DQfD
algorithm, whose algorithm structure can be expressed as
shown in Figure 4. First, based on the algorithmic structure
of the DQN, we build a policy network and a target network
with the same structure. Each network consists of a multi-
layer structured neural network: an input layer, three fully

connected hidden layers, and an output layer. At the same
time, we implement PER through the tree storage structure
of the sum tree. PER draws those samples that are more
valuable at higher frequency than random samples, and PER
takes into account the importance of the diferent state
transition data by means of the TD error. Tis approach is
used to balance the proportion of demonstration data and
interaction data contained in the small batch of transition
data sampled. On this basis, we combine the demonstration
data from the expert knowledge base to improve algorithm
performance and learning efciency.

Te detailed process of the DQfD algorithm can be
described as follows.

4.2.1. Pretraining Stage. State transition data from the
constructed expert knowledge base are prepositioned in the
demonstration data area of the sum tree. In particular, it is
important to emphasise that the size of the demonstration
data area and the data flled by the sum tree are fxed.
Troughout the training process, the data in the demon-
stration area are not overwritten as new state transition data
are added to the sum tree. After the expert knowledge preset
was completed, the policy network was pretrained by
sampling batch-sized state transition data from the dem-
onstration data areas several times. Te pretraining process
updates the parameters of the Q network using a J(Q) loss
combining the three losses, where the J(Q) error is calcu-
lated as follows:

J(Q)s � JQ(Q) + λ1Jn(Q) + λ2JE(Q) + λ3JL2(Q), (6)

where J(Q)s is the joint loss containing the supervised loss,
λ1, λ2, and λ3 represent the constants, respectively, JQ(Q) is
the loss of DQN, Jn(Q) is the N-step return loss, JE(Q) is

Abstract Conversion

PT Expert
Experience

State-Action
Pair

Apply A
E

Execute
Penetration Testing

Simulation
Environment

Feedback

Transition
Save

Expert Knowledge Base

τ{τ1, τ2,.., τn}

τE (S, AE R , S′),

Figure 3:Te process of converting abstract expert knowledge into
transition data.

PT Expert Experience

τ{τ1, τ2,.., τn}

Expert
Knowledge Base

Stage ①

Penetration Testing
Simulation Environment

Reward

Observation of State

Action

RL Agent Stage ③
Demonstration Data

Stage ②

Effective Experience

τ (S, A, R, S′)

Figure 2: Framework structure of DQfD-AIPT.

Security and Communication Networks 7

a supervised loss, and JL2(Q) is a regularisation term ap-
plied to the neural network to alleviate overftting to the
presentation data and to prevent the strategy from over-
ftting to a small fraction of the experience in the expert
data. A detailed explanation of the Jn(Q) and JE(Q) is
given below.

For the Jn(Q) loss, the agent updates its Q-network with
a mixture target of 1-step and n-step return. Te in-
corporation of the N-step loss can help propagate the value
of the expert data to an earlier state, greatly enhancing
learning from the limited demo dataset. It also ensures that
the pretrained learned neural network value function esti-
mates satisfy the Bellman equation. Te calculation of Jn(Q)

can be expressed as follows:

rt + crt+1 + . . . + c
n− 1

rt+n−1 + maxαc
n
Q st+n, a(􏼁. (7)

JE(Q) is a supervised loss. Te incorporation of the su-
pervised loss is the key to the pretraining process. It can be
expressed as follows:

JE(Q) � max
a∈A

Q(s, a) + l aE, a(􏼁􏼂 􏼃 − Q s, aE(􏼁, (8)

where aE is the action corresponding to the expert dem-
onstration data in the state S. l(aE, a) is a margin function,
which is a measure of how well the currently executed action
matches the action demonstrated by the expert and can be
expressed as follows:

l aE, a(􏼁 �
0, aE � a,

k, aE ≠ a.
􏼨 (9)

In this way, the value of any action that difers from the
expert action aE is less than the value of the action aE. With
the supervised loss, the values of actions outside the range of
the demonstration data also become reasonable values,
resulting in a value-driven ε-greedy strategy that efectively
imitates the expert’s actions. Pretraining is a good starting
point for learning the task. Once the agent begins to interact
with the task, it continues to learn by sampling from its own
generated and demonstrated data.

4.2.2. Training Stage. After the pretraining phase, we get an
agent with expert experience. However, the agent does not
interact with the environment throughout the pretraining
phase. During the formal training phase, the agent frst
interacts with the environment to generate transition data,
and each transition data is stored in the interaction data area
of the sum tree structure. In addition, to avoid overftting of
the expert transition data early in the training process, the
interaction data area of the sum tree needs to be flled up by
the interaction of the agent with the environment before the
formal learning begins. After the maximum storage capacity
is reached, the agent-generated data will continuously cover
the interaction data area of the sum tree structure. Te fow
of the PER algorithm is presented in Algorithm 1.

In the pretraining phase, only the expert transition data
are extracted from the demonstration data areas for training.
In the formal training phase, the transition data from both
the demonstration data region and the interaction data area
could be extracted from the sum tree according to the PER
method. Te diference is that the supervised loss JE(Q) is

J (Q) = JDQ (Q) + λ1Jn (Q) + λ2JE (Q)+ λ3JL2 (Q)

Update θ

S
SInput of State

Pre-train Formal-train

Policy Net Target Net
A2

A1

An

A′
1

A′2

A′n

S′

Action
Environment

Parameters θ′ update

Sample with Priority

τE (S, AE, R, S′)
τExpert (τ1, τ2,.., τn) τInteration (τ1, τ2,.., τn)Sample

Pres
et Demonstration Area Interact Data Area

Experience Replay with
Priority

SumTree

τ{τ1, τ2,.., τn}

Expert Knowledge Base

τ (S, A, R, S′)

Figure 4: DQfD algorithm training process.

8 Security and Communication Networks

removed from the calculation of the joint loss J(Q)s, which
indicates that λ2 � 0.

In addition to this, the network update process is more
computationally expensive due to the forward propagation
process compared to the forward propagation process. Te
purpose of this form is to ensure that the replay bufer is
closer to the state distribution of the current policy and to
prevent network overftting.Terefore, the update frequency
of the target network in the pretraining phase is measured in
steps, and the step setting interval should not be too small. In
the formal training stage, the update frequency of the target
network is in episodes. In summary, the DQfD algorithm
combined with expert knowledge is presented in
Algorithm 2.

4.3. RL Settings for PT. In this paper, we model the PT
process as an MDP. We use the RL agent as an attacker who
penetrates the target system. Te target system constitutes
the environment in which the agent interacts with each
other. We take the formalisation of MDP as a basis and
consider the characteristics of the intelligent PT simulation
environment used for the experiments. We give the relevant
settings for the necessary elements required for RL. Te
relevant elements in the PT formalisation into an MDP can
be represented separately as follows:

(i) State space: A state space is a fnite set of states with
a nonfxed structure. In PTproblems, the state space
covers the range of changeable states of the target
network. In this paper, we take the awareness of the
target network environment by an agent through
observation as the state. Te representation of the
specifc states is shown in Figure 5.

(ii) Action space: Te action space contains all the
executable actions of the agent and does not change
with the current state of the environment. Tis
means that the output dimension of the neural
network is always fxed during the state-to-action

mapping process. In this paper, there are three main
types of actions for an agent:

① Local exploit: the local exploit action is the
process of exploiting the local resources of
a target host after taking control of that host.Te
outcome of this action exploitation is privilege
elevation, credential information leakage, sus-
picious link leakage, etc.

② Remote exploit: the remote exploit uses the
current controlled host as a springboard to ex-
ecute malicious commands by submitting them
in the local browser. Te outcome of the exploit
is to gain control of the target host, leaking
a suspicious link, etc.

③ Connect: the connect action acts on the dis-
covered hosts and connects to the target host by
means of the host credential information ac-
quired during the lateral movement. Te action
outcome is to control the target host.

(iii) Reward: the reward function is feedback from the
environment for the action taken by the agent, and
the calculation of the reward during the penetration
test can be expressed as follows:

R � Eval OutcomeS
A􏼐 􏼑 − Cost(Action). (10)

In the equation, Eval(OutcomeS
A) is an evaluation of

the outcome of the execution of an action by the agent.
Cost(Action) is the cost of performing the action.Te
classifcation of the exploit outcomes of the actions
and the corresponding values are shown in Table 1.

(iv) Transfer function: Te transfer function is a de-
scription of the probability of the environment to
make a state transfer under certain conditions. For
the model-free approach, learning is performed
from the experience generated during the in-
teraction, as the agent cannot directly rate the merit

Input: k: batch size, N: capacity of the sum tree, and n: the amount of transition currently stored by the sum tree, initialised the
sum tree structure
Output: Updated the sum tree structure after sampling the transitions
(1) if n<N then
(2) push the transition τ(S, A, R, S′) into the sum tree with maximal priority
(3) end if
(4) Start sampling batch-size transitions from the sum tree
(5) Calculate σ←SumTreeMaxPriority/k
(6) for steps t ∈ 1, 2, . . . k{ } do
(7) Sample k transition data with priority from the sum tree
(8) a←t∗σ, b←(t + 1)∗ σ,
(9) v← generate a random number between a and b

(10) Transition τt and corresponding priority are obtained according to a random number v

(11) Compute importance sampling weight for each transition τt

(12) end for
(13) Train this batch size of transition and compute the TD error according to the weight
(14) Update transition priority according to the TD error

ALGORITHM 1: Implements PER with the sum tree structure.

Security and Communication Networks 9

of the transformed state. Te transfer function is
unknown when formalising the PT process as
an MDP.

5. Experiment

First, we build PT simulation network scenarios on the CBS
platform developed byMicrosoft. Second, we build an expert

knowledge base containing transition data for multiple
network scenarios by using the expert knowledge collection
method introduced in Section 3. Finally, to validate the
efectiveness of our proposed method, we use the DQfD
algorithm and the DQN algorithm to perform PT path
planning under scenarios containing elements of network
defence deception (equipped with honeypots), respectively,
and the performance of the algorithms is evaluated by
specifc metrics.

5.1. Main Experimental Procedures

5.1.1. Experimental Platform. Our experiments were con-
ducted on the CyberBattleSim (CBS) platform developed by
the Microsoft security team. CBS is an experimentation
research platform to investigate the interaction of automated
agents operating in a simulated abstract enterprise network
environment.Te simulation provides high-level abstraction

Input:Dreplay: the experience replay area built by the sum tree, Ddemo: expert demonstration data area in Dreplay, Dinteract:
interactive data area in Dreplay, θ: weights for the policy network (randomly generated), θ′: weights for the target network (randomly
generated), fp: update target network frequency of pretraining, ff: update target network frequency of formal training, k: batch size,
j: number of pretraining gradient updates, E: episode number of training, and S: max steps per episode
Output: An agent trained with expert knowledge
(1) Push expert transition data into Ddemo and initialize their priority
(2) for steps t ∈ 1, 2, . . . j􏼈 􏼉 do
(3) Sample a batch size of k transitions from Ddemo with prioritization
(4) Calculate loss J(Q)s using the target network
(5) Perform a gradient descent step to update the weights for the policy network θ
(6) iftmodfp � 0thenθ′←θend if
(7) end for
(8) for episode u ∈ 1, 2, . . . E{ } do
(9) for step v ∈ 1, 2, . . . S{ } do
(10) Sample action A from the behaviour policy
(11) Te environment performs A and gives back R(reward), and the agent observes (S, A, R, S′)
(12) Push the transition τ(S, A, R, S′) into Dinteract, overwriting oldest interaction transition if over capacity of Dinteract

(13) Sample a batch size of k transitions from Dreplay with prioritization
(14) Calculate loss J(Q) using the target network
(15) Perform a gradient descent step to update the weights for the policy network θ
(16) S′←S, the state transitions from S to S′
(17) end for
(18) ifumodff � 0thenθ′←θend if
(19) end for

ALGORITHM 2: DQfD.

Discovered
Node Count

Owned
Node Count

Discovered Service
Count

Discovered
Credentials Count

Discovered Ports Discovered
Credentials

Running
Service

τ

)

)
S,

A,
R,

S′

State

Action

Reward

Next State

… … …

………

,

, , , , , ,

, , , , ,6 3 3 7

0

100

7 3 4 7

0 1 1 0

0 1 1 0

1 0

1 0

Agent Action Number

Reward for Action

Figure 5: Structure of transition data.

Table 1: Action execution outcome and evaluation.

Outcomes Evaluation
Leak new nodes 10
Leak credentials 5
Successful connection 20
Privilege promotion 10
Failed to exploit −10
Repetitive action −5

10 Security and Communication Networks

of computer networks and cyber security concepts. We
construct a simulated network scene through CBS and
encapsulate this network scene into a gym environment
where we can interact with an agent and further combine it
with RL-related algorithms for our experiments.

5.1.2. Network Scenario Building. We abstracted a real-
world enterprise network scenario and built a simulated
network scenario containing a honeypot based on the CBS
platform. Te topology of the network scenario is shown in
Figure 6.

Te simulated enterprise network scenario consists of
a DMZ zone, Trust-1 zone, and Trust-2 zone. Te Trust-1
and Trust-2 zones provide web services and database services
in the enterprise network. We have deployed honeypots in
two separate trust areas. Honeypots are replicas of sensitive
servers and hosts and provide some common services, open
more sensitive ports, and contain some invalid resources and
information. Honeypots are set up to consume the attacker’s
resources and to mitigate the impact of the attacker’s actions
on the enterprise network.Tis is a high fdelity construction
of a real-world network scenario. Te frewall between each
zone controls the access policy between zones. Te host
confguration information and frewall access policies and
vulnerability information for the simulated enterprise net-
work scenario are shown in Tables 2–4, respectively.

5.1.3. Penetration Testing Goals. In the simulated enterprise
network scenario, the attacker has initially gained control of
SpringBoot in the DMZ zone. Te attacker uses this as
a springboard machine for further lateral move. Te goal of
the PT process is to gain access to the control commands of
the database server in the Trust-2 area in order to get further
access to sensitive data and critical information. At the same
time, the agent needs to avoid getting caught in the honeypot
in the trust area. Tat is, the agent expects to obtain as many
cumulative rewards as possible at the least cost of
consumption.

5.1.4. Expert Knowledge Collection. For the construction of
the expert knowledge base, we convert the artifcial expe-
rience of successfully conducting PT into demonstration
transition data that can be understood and learnt by the
agent. In our experiments, we collected 1000 expert dem-
onstration data from each of 10 diferent structured network
scenarios and pushed them into the expert knowledge base.
Te scale of these network scenarios is all within a certain
size range. We preplace these expert demonstration data in
the demonstration data areas of the sum tree before
pretraining.

5.1.5. Evaluation Metrics

(i) Average cumulative reward: In the process of ap-
plying the RL algorithm to train an agent for pen-
etration testing, the cumulative reward earned in
each round can directly indicate the training of the

current round as the number of steps increases.
Terefore, the average cumulative reward over
multiple rounds can efectively show the average
performance of the agent throughout the whole
training process.

(ii) Probability of attacking honeypots:Te honeypots in
the simulated network scenario are hosts or servers
with a cyber deception defence role. We calculate the
number of times the honeypot is attacked in each
round as a percentage of the number of actions
performed by the agent. Tis metric assesses the
efectiveness of expert demonstration data for policy
training by the agent.

5.2. Experimental Results andAnalysis. We trained the agent
to perform PT using two algorithms, DQfD and DQN, re-
spectively. Te hyperparameter settings for the algorithms
and the DQfD-specifc parameter settings are shown in
Tables 5 and 6, respectively.

Te average of the cumulative rewards obtained by the
agent over the 200 round episodes of training was counted to
compare the performance of DQfD and DQN. Second, to
verify the efectiveness of the incorporated expert knowl-
edge, we counted the probability of attacking the honeypot
for Honeypot-1 and Honeypot-2, respectively. To ensure the
credibility of the experimental results, we conducted 10
experiments in the same network scenario. We plotted the
average results of the 10 experiments as graphs as shown in
Figures 7–9.

As can be seen from the experimental results in Figure 7,
the DQfD algorithm incorporating expert knowledge is able
to achieve the PT goal in fewer steps compared to the DQN
algorithm (DQfD within 500 steps and DQN within 3000
steps). Redundant repetitions, exploitation failures, and
actions that fall into the honeypot during the penetration test
often result in penalties. Terefore, the larger the reward
value accumulated in each round, the more it refects the
superiority of the agent’s PT path and action selection
strategy. Te DQfD algorithm accomplishes the goal faster
while earning more cumulative rewards in each round. Te
experimental results indicate that the DQfd algorithm im-
proves the performance of penetration testing to a certain
extent while demonstrating the superiority of fusing expert
knowledge.

Te results in Figures 8 and 9 show that intelligence
trained using the DQfD algorithm has a signifcantly lower
probability of attacking the honeypot hosts in the Trust-1
region and Trust-2 region in each episode. Compared to
DQN, DQfD maintains a lower probability of attack
throughout the training convergence, always below 0.1. Te
reason for fuctuations in DQfD in the early stages is due to
the fact that in the early stages, the exploration rate ∈ is in the
process of decaying. However, there is still a high probability
of random exploration of actions. DQN has a high proba-
bility of attacking the honeypot in the early stages. As
training progresses, trial-and-error experience is learned
into the network model though. However, due to the lack of
guidance from expert knowledge, its ability to avoid

Security and Communication Networks 11

deception defences was not signifcantly improved com-
pared to DQfD.

Te experimental results efectively refect the role of
incorporating expert knowledge in the identifcation
and evasion of the deception defence components of
the scenario during the PT performed by the agent.

Te less the intelligence interacts with the honeypot
in each episode, the less the cost of completing PT will
be consumed. Tis will greatly weaken the role of hon-
eypot deployments from another perspective, where
expert knowledge can guide and modify the agent’s PT
strategy.

Table 3: Firewall policies for the enterprise network.

Sources Destination Service Rule
SpringBoot Windows7 HTTPS, RDP Permit
SpringBoot Tomcat HTTP, SSH Permit
SpringBoot Log4j HTTPS, RDP Permit
SpringBoot Honeypot-1 All permit
SpringBoot Trust-2 All deny
Trust-1 Trust-2 HTTPS, MySQL, FTP, HTTP, SSH Permit
Trust-1 DMZ All permit
Trust-2 Windows7 HTTPS, RDP Permit
Trust-2 Tomcat HTTP, SSH Permit
Trust-2 Log4j HTTPS, RDP Permit
Trust-2 Honeypot-1 All permit

Weblogic-1

Weblogic-2

SpringBoot

DMZ

Internet

Legend

Firewall

Database

Database

Honey Pot

Switch

Host

Web Server
Win7 Tomcat Log4j Honey Pot-1

Honey Pot-2

Trust-1 Area

Trust-2 Area

Figure 6: Enterprise network scenarios with honeypots.

Table 2: Host confguration information of the enterprise network.

Host ID Vulnerability Service Open port Value
Weblogic-1 CVE-2015-4852 HTTP 7001,5556 10
SpringBoot Scancachehistory HTTPS 8082 50
Windows7 CVE-2021-42287, scancachehistory RDP, HTTPS, SMTP, FTP 8080, 3389, 25, 21 100
Tomcat CVE-2017-12615 HTTP, SSH 8088, 22 100
Log4j CVE-2021-44228, scancredhistory HTTPS, RDP 3389, 8080 100
Honeypot-1 CVE-2016-10009 HTTPS, MySQL, FTP, SMTP, SSH 8080, 3306, 21, 25, 22, 2222 −200
Honeypot-2 CVE-2016-10009 HTTPS, MySQL, FTP, SMTP, SSH 8080, 3306, 21, 25, 22, 2222 −200
Database CVE-2017-4971 HTTPS, MySQL, FTP 3306, 8080, 21 200
Weblogic-2 CVE-2015-4852 HTTP 7001, 5556 100

12 Security and Communication Networks

6. Conclusion and Future Work

In this study, we focus on the efective use of expert
knowledge in the process of intelligent PT. In order to
address the poor interpretability of expert knowledge and
the overftting of algorithms to expert knowledge that exists
in the current study, we propose an intelligent PTframework
named DQfD-AIPT. DQfD-AIPT incorporates the collec-
tion of expert knowledge and guides the agent in the en-
hancement of PT strategies. Te expert knowledge that we
use is interpretable and generalisable for PT processes in
network scenarios at a fxed scale. At the same time, we
provide a detailed description of the process of transforming
and collecting expert knowledge and defne the structure of
expert knowledge. Our proposed DqfD-AIP framework is
generic and feasible. In terms of algorithms for combining
expert knowledge, we use the DQfD method based on the
RLED framework instead of traditional imitation learning.

Table 5: Hyperparameter setting of the algorithm.

Hyperparameter DQfD DQN
Batch size 512 512
Epsilon 0.9 0.9
Discount factor 0.015 0.015
Epsilon exponential decay 5000 5000
Epsilon minimum 0.1 0.1
Learning rate 0.01 0.01
Demonstration memory size 1000 ∗
Replay memory size 5000 5000
Target network update frequency 6 6
Max steps per episode 3000 3000
Training episode 200 200

Table 6: Special hyperparameter setting of the DQfD.

Hyperparameter Value
Pretrain step 1000
N-step return weight λ1 1.0
Supervised loss weight λ2 1.0
L 2 regularisation weight λ3 1.0
Expert margin l(aE, a)(a≠ aE) 0.8
N of N-step return 10
Prioritized replay exponent α 0.4
Prioritized replay constants ∈a 0.001
Prioritized replay constants ∈d 1.0
Prioritized replay importance sampling exponent β0 0.6

Step

Cu
m

ul
at

iv
e R

ew
ar

ds

0 500 1000 1500 2000 2500 3000

6000
5000
4000
3000

1000
2000

0
–1000
–2000

DQfD
DQN

Figure 7: Changes in the average cumulative reward value.

0 25 50 75 100 125 150
Episode

175 200

0.5

0.4

0.3

0.2

0.1

0.0

Ra
te

DQN
DQfD

HoneyPot-1

Figure 8: Probability comparison of attacking Honeypot-1.

HoneyPot-2

0 25 50 75 100 125 150
Episode

175 200

Ra
te

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

DQN
DQfD

Figure 9: Probability comparison of attacking Honeypot-2.

Table 4: Vulnerability information and exploitation results.

Vulnerability Type Outcome Cost
CVE-2015-4852 Remote exploit Privilege promotion 10
CVE-2016-10009 Remote exploit Privilege promotion 10
CVE-2017-12615 Remote exploit Privilege promotion 10
CVE-2021-44228 Remote exploit Privilege promotion 10
CVE-2021-42287 Remote exploit Privilege promotion 10
Scancachehistory Local exploit Live nodes leaked 5
Scancredhistory Local exploit Credential leaked 5

Security and Communication Networks 13

Te advantage of using the DQfD algorithm is that it
combines the advantages of supervised and unsupervised
learning. Te DQfD algorithm makes reasonable use of the
transition data from experience replay and avoids the
phenomenon of overftting of expert data. Te results of
experiments conducted in a network scenario with honey-
pots also indirectly indicate the validity of the expert
demonstration data. Experimental results also show that the
DQfD algorithm not only achieves higher cumulative re-
ward values faster in network scenarios with honeypots but
also makes better use of the expert demonstration data to
avoid getting trapped in honeypots compared to DQN.

Te efciency and difculty of PT depends on the
complexity of the target network structure. Most of the
expert knowledge that we currently collect is gathered
through training in network scenarios of a specifed size
range. Te coverage of expert knowledge is therefore rela-
tively small and limited by the representational form of the
transition data. In future research, we consider improving
the interpretability of expert knowledge by better converting
human PT experience into knowledge that can be accepted
and learned by an agent. [15, 27, 28].

Data Availability

As a result, the data for this experiment were generated
through training on the CBS platform, and no previous data
were used. Te transition data used in this article are
generated through self-constructed scenarios.

Additional Points

Our experiment was carried out on the basis of Microsoft’s
open source CBS platform (CyberBattleSim). CBS highly
abstracts the process of penetration testing from the network
scene in the real world and builds simulated network sce-
narios.Te agent algorithm interface is provided in CBS, and
the agent uses the interaction with the environment and the
reinforcement learning algorithm to obtain the penetration
test strategy. Te reinforcement learning method is an
unsupervised machine learning method and difcult to
repeat, and the data for simultaneous training are generated
in the process of interaction between the agent and the
concrete environment. Te difculty of penetration testing
depends on the complexity of network scenarios. In reality,
network scenarios are diverse, and the generation of tran-
sition data is also related to the structure of network
scenarios.

Conflicts of Interest

Tere are no conficts of interest regarding the publication of
this paper.

References

[1] A. Chowdhary, D. Huang, J. S. Mahendran, D. Romo,
Y. Deng, and A. Sabur, “Autonomous security analysis and
penetration testing,” in Proceedings of the 2020 16th

International Conference on Mobility, Sensing and Networking
(MSN), IEEE, Tokyo, Japan, December 2020.

[2] Y. Zhang, “Domain-independent intelligent planning tech-
nology and its application to automated penetration testing
oriented attack path discovery,” Electron. Inf. Technol, vol. 42,
pp. 2095–2107, 2020.

[3] M. A. Abd-Elmagid, N. Pappas, H. S. Dhillon, and
H. S. Dhillon, “On the role of age of information in the
Internet of Tings,” IEEE Communications Magazine, vol. 57,
pp. 72–77, 2019.

[4] Z. Fang, J. Wang, Y. Ren, Z. Han, H. V. Poor, and L. Hanzo,
“Age of information in energy harvesting aided massive
multiple access networks,” IEEE Journal on Selected Areas in
Communications, vol. 40, no. 5, pp. 1441–1456, 2022.

[5] F. Baiardi, “Avoiding the weaknesses of a penetration test,”
Computer Fraud & Security, vol. 2019, Article ID 10.1016/
s1361-3723(19)30041-7, pp. 11–15, 2019.

[6] F. Holik, “Efective penetration testing with Metasploit
framework and methodologies,” in Proceedings of the 2014
IEEE 15th International Symposium on Computational In-
telligence and Informatics (CINTI), IEEE, budapest, Hungary,
November 2014.

[7] N. Polatidis, E. Pimenidis, M. Pavlidis, S. Papastergiou, and
H. Mouratidis, “From product recommendation to cyber-
attack prediction: generating attack graphs and predicting
future attacks,” Evolving Systems, vol. 11, pp. 479–490, 2020.

[8] M. Sultana, A. Taylor, and L. Li, “Autonomous network cyber
ofence strategy through deep reinforcement learning,” Ar-
tifcial Intelligence and Machine Learning for Multi-Domain
Operations Applications III, SPIE, vol. 11746, , 2021.

[9] J. Schwartz and K. Hanna, “Autonomous penetration testing
using reinforcement learning,” 2019, https://arxiv.org/abs/
1905.05965.

[10] S. Zhou, J. Liu, D. Hou, X. Zhong, and Y. Zhang, “Auton-
omous penetration testing based on improved deep q-net-
work,” Applied Sciences, vol. 118823 pages, 2021.

[11] Zennaro, F. Massimo, and L. Erdodi, “Modeling penetration
testing with reinforcement learning using capture-the-fag
challenges: trade-ofs between model-free learning and
a priori knowledge,” 2020, https://arxiv.org/abs/2005.14165,
Article ID 12632.

[12] J. Chen, “GAIL-PT: a generic intelligent penetration testing
framework with generative adversarial imitation learning,”
2022, https://arxiv.org/.

[13] J. A. Bland, M. D. Petty, T. S. Whitaker, K. P. Maxwell, and
W. A. Cantrell, “Machine learning cyberattack and defense
strategies,” Computers & Security, vol. 92, Article ID 101738,
2020.

[14] K. Qian, “Ontology and reinforcement learning based in-
telligent agent automatic penetration test,” in Proceedings of
the IEEE International Conference on Artifcial Intelligence
and Computer Applications (ICAICA), IEEE, Dalian, China,
June 2021.

[15] D. Stiawan, “Cyber-attack penetration test and vulnerability
analysis,” International Journal of Online and Biomedical
Engineering, vol. 13, 2017.

[16] H. M. Z. A. Shebli and B. D. Beheshti, “A study on penetration
testing process and tools,” in Proceedings of the 2018 IEEE
Long Island Systems, Applications and Technology Conference
(LISAT), pp. 1–7, May 2018.

[17] M. C. Ghanem and T. M. Chen, “Reinforcement learning for
efcient network penetration testing,” Information, vol. 11,
no. 1, 6 pages, 2019.

14 Security and Communication Networks

https://arxiv.org/abs/1905.05965
https://arxiv.org/abs/1905.05965
https://arxiv.org/abs/2005.14165
https://arxiv.org/

[18] C. Sarraute, O. Bufet, and J. Hofmann, “Penetration tes-
ting��POMDP solving?,” 2013, https://arxiv.org/abs/1306.
4714.

[19] J. Schwartz, H. Kurniawati, and E. El-Mahassni, “Pomdp+
information-decay: incorporating defender’s behaviour in
autonomous penetration testing,” in Proceedings of the In-
ternational Conference on Automated Planning and Sched-
uling, pp. 235–243, Singapore, June 2020.

[20] Z. Hu, R. Beuran, and Y. Tan, “Automated penetration testing
using deep reinforcement learning,” in Proceedings of the 2020
IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW), September 2020.

[21] K. Durkota and V. Lisý, Computing Optimal Policies for Attack
Graphs with Action Failures and Costs, STAIRS, Gene-
va,Switzerland, 2014.

[22] J. Hofmann, “Simulated penetration testing: from “dijkstra”
to “turing test++,” in Proceedings of the International Con-
ference on Automated Planning and Scheduling, vol. 25,
pp. 364–372, Jerusalem Israel, June 2015.

[23] A. Kanervisto, J. Pussinen, and V. Hautamäki, “Bench-
marking end-to-end behavioural cloning on video games,” in
Proceedings of the 2020 IEEE conference on games (CoG),
IEEE, Osaka, Japan, August 2020.

[24] S. Arora and P. Doshi, “A survey of inverse reinforcement
learning: challenges, methods and progress,” Artifcial In-
telligence, vol. 297, Article ID 103500, 2021.

[25] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation
learning: a survey of learning methods,” ACM Computing
Surveys, vol. 50, pp. 1–35, 2018.

[26] T. Hester, M. Vecerik, O. Pietquin et al., “Deep q-learning
from demonstrations,” in Proceedings of the AAAI Conference
on Artifcial Intelligence, vol. 32, no. 1, New Orleans LA USA,
Febraury 2018.

[27] Y. Fenjiro and H. Benbrahim, “Deep reinforcement learning
overview of the state of the art,” Journal of Automation,
Mobile Robotics and Intelligent Systems, vol. 12, no. 3,
pp. 20–39, 2018.

[28] V. Mnih, Playing Atari with Deep Reinforcement Learning,
https://arxiv.org/abs/1312.5602, 2013.

Security and Communication Networks 15

https://arxiv.org/abs/1306.4714
https://arxiv.org/abs/1306.4714
https://arxiv.org/abs/1312.5602

Research Article
Design and Analysis of Machine Learning Based Technique for
Malware Identification and Classification of Portable Document
Format Files

Sultan S. Alshamrani

Department of Information Technology, College of Computer and Information Technology, Taif University,
P.O. Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to Sultan S. Alshamrani; susamash@tu.edu.sa

Received 5 July 2022; Revised 26 August 2022; Accepted 7 September 2022; Published 21 September 2022

Academic Editor: Muhammad Faisal Amjad

Copyright © 2022 Sultan S. Alshamrani. 'is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Modern day antivirus software, which is available commercially, is incapable of providing the protection from the malicious
portable document format (PDF) files and thus considered as a threat to system security. In order to mitigate the same to some
extent, a new PDF malware classification system based on machine learning (ML) is introduced in this paper. 'e novelty of this
system is that it will be inspecting the given PDF file both statistically and dynamically, which in turn will increase the accuracy of
finding the correct nature of the document. 'is method is nonsignature-based and hence can possibly distinguish obscure and
zero-day malware.'e experiment is carried out for this system by deploying five different classifier algorithms to find out the best
fit for the system. 'e best fit approach is analyzed by calculating the true positive rate (TPR), precision, false positive rate (FPR),
false negative rate (FNR), and F1-score for each of these classifier algorithms. Comparison of this work is carried out with
previously existing PDF classification systems. A malicious attack on to the proposed system is also implemented, which will in
turn obfuscate the malicious code inside the PDF file by making it hidden during the parsing phase by the PDF parser. It has been
inferred that the proposed approach achieved F1-measure of 0.986 by using the random forest (RF) classifier in comparison to
state-of-the-art where F1-measure was 0.978. 'us, our approach is quite effective in the identification of the malwares when
embedded in the PDF file in comparison to the existing systems.

1. Introduction

In the current generation of the digital world, most of the
activities are centric towards the usage of the Internet, and
thus, it becomes more important to safeguard our appli-
cations, data, and information in the presence of various
attackers who are always trying to devise new malicious
codes and attacks to compromise the resources. Hence,
malware analysis becomes one of the prime concerns today
as various malwares are generated by attackers and even
their properties are changing very rapidly day by day.
Nowadays, malware is not the same one that was there
before as they change its signatures with time and thus
difficult to trace. So, identification and classification of the
latest malware is one of the most sought-after areas of

research. 'ere are majorly two ways for malware identi-
fication: one is a signature-based detection technique and
the another one is behavior-based. 'e signature-based
technique is quick and efficient only for identifying known
malware and the behavior-based technique is able to identify
unknown and complex malware to some extent using
machine intelligence and other approaches, but the be-
havior-based technique is a complex one. None of the
methods can detect all kinds of malware, especially when the
count of malware is increasing day by day. In the signature-
based approach, unique signature is created by using the
attributes of the underlying object. 'e presence of digital
signature is efficiently detected by scanning the object by the
algorithm. In the behavioral-based approach, intended ac-
tions of objects are evaluated before such actions are carried

Hindawi
Security and Communication Networks
Volume 2022, Article ID 7611741, 10 pages
https://doi.org/10.1155/2022/7611741

mailto:susamash@tu.edu.sa
https://orcid.org/0000-0001-8194-9354
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7611741

out. 'is approach analyses the potential behavior of any
actions carried by objects before the actual execution of
behavior. 'e older malware was easy to detect as they were
able to hide their features, but the malware uses different
techniques like obfuscation [1–4] to hide their identity for a
longer span and even they can bypass the firewall and other
security checks present in the network or system. Also,
multiple types of malwares are used to launch the attack, so
the effects are more devastating.

'ere are majorly two ways for analyzing the malware:
static and dynamic. In the static approach, malware is
inspected without running the code it embeds, whereas in
the dynamic approach, it is inspected by running its code
[5, 6]. 'us, malware identification is one of the foremost
steps in themalware analysis process.'e static analysis does
not require executing any malware samples and is very
simple. 'ere is no need to cover each phase of the process
while performing static malware analysis. Dynamic analysis
involves the detailed analysis for malware detection. A
complete behavior of actions is thoroughly analyzed, while
the process remains under execution. 'is analysis requires
detailed monitoring for processes. Classification of malware
is also important as identification is. 'e various categories
of malware are viruses, trojan horse, worms, rootkits, ran-
somware, and key logger. 'ere are various ways by which
the classification can be carried out for malware such as
feature-based techniques [7, 8] and image classification
where the binary values are transformed to image. So, for
better classification, more information will be fruitful [9, 10].
For better classification, good classifiers are required to be
developed for the better and accurate classification of
malware using some latest machine intelligence techniques.

One of the most widely used document formats is PDF.
Despite the general public’s ignorance, it quickly emerged as
a critical attack vector for computers. Hackers may take over
a victim’s computer using dozens of flaws found in adobe
reader. In addition, antivirus software developers have a
difficult time protecting PDF files from assaults because of
the file’s complex internal structure and the vast variety of
obfuscation techniques already in use [11]. Most of us send
attachments in the PDF format since it is recognized for its
mobility and small weight. However, we have no idea what
kinds of assaults these files may be used for or propagated to.
'e three primary forms of PDF malware are vulnerabilities,
phishing, and exploitation of PDF features. Vulnerability in
the PDF reader’s API is exploited by exploit kits, allowing the
attacker to run an arbitrary code on the compromised
machine. In most cases, JavaScript code is included in the file
to do this. However, in phishing assaults, an unsuspecting
file is used to trick the user into clicking on an infected link.
'ese campaigns have just lately been uncovered, and they
are significantly more difficult to recognize. A malicious
programmay be downloaded or a website’s login credentials
may be stolen by any of these assaults.

'e static analysis makes use of some techniques for
identification such as file format inspection, string extrac-
tion, fingerprinting, which primarily used hash code values,
antivirus scanning, and disassembly where the machine code
is changed to assembly language [12]. Static methods are the

time taking ones and also more based on behavior analysis of
malware. But in the dynamic approach, the behavior is
monitored, while the file is executing for any malware
identification. So, it has more leverage to identify the
malware. Similarly, detection of malware is primarily done
through two ways: one is signature-based where the pre-
defined signatures, if there are any, of malware are used for
detection and the other one is a heuristic-based approach
where multiple factors are used that contrasts the malicious
behavior. One of the challenges in the signature-based ap-
proach is that attackers develop the malware by changing
their signatures so many times that they are hard to trace.
Hence, the heuristic approach is more favorable owing to its
capacity to identify polymorphic and some latest attacks.

Using heuristics, sequences of code, and string com-
parison, signature-based algorithms may determine if a PDF
is benign or malicious. However, this has not been dem-
onstrated to be effective against stealth assaults of the present
day. If one wants to find the hidden malicious behaviors of a
particular file, dynamic approaches are more successful since
they run the file in a supported environment and analyze the
process it goes through as well as the API calls it makes and
build a thorough record of its activities. One may learn a lot
about a file’s characteristics by looking at the execution log.
Because the attributes that are employed to identify malware
vary depending on the approach, this is true for all methods
of malware detection. Like in a signature-based byte se-
quence, all methods of malware detection,such as Dynamic
link libraries (DLL), behavior-based API and system calls,
heuristic used operation code, context-free grammars, and
some new techniques such as mobile-based used android
permissions and system calls are used [13].

'e novelty of the proposed approach given in this paper
is signature-less driven criteria. 'e suggested model will
evaluate the API calls processes inside the PDF file and will
thus look for the activities that will be performed throughout
the file’s processing. 'e detection may be dependent on the
system calls and JavaScript files inside the PDF file that have
been evaluated. 'e data mining technique is used in this
system to collect information from API requests. It is
possible to categorise a particular file as being either “Or-
dinary (O)” or a “Potentially Malicious (PM)” based on the
retrieved characteristics and statistics. Finally, these results
are sent via the classification block which maps the gathered
information with the algorithm’s findings and classifies the
file as “correct” or a “malicious” file.

'e main highlights of this paper are as follows:

(1) It provides a novel ML-based malware identification
approach for the PDF files

(2) It provides the training and testing implementation
of the proposed model under the various ML
approaches

(3) It also highlights the efficiency of the proposed ap-
proach under the simulated malicious attack

'e paper is divided into the sections as per their rel-
evance. 'e work already done in the context of malware
identification using the ML and PDF file based has been

2 Security and Communication Networks

elaborated in Section 2. 'e proposed techniques have been
defined in Section 3, which is followed by the dataset details
under Section 4. Results and the inference drawn have been
defined in Section 5. Also, the comparative analysis with
existing models has been done in Section 6. Conclusion is
highlighted in Section 7.

2. Related Work

In this part of the paper, the researchers’ main efforts are in
detecting and classifying malware using machine learning
(ML) and other approaches. Also, the work done pertaining
to the file types that are utilized for the malware identifi-
cation has also been expressed.

2.1. Malware Identification Related Work. Malware analysis
focuses on finding the operation modus of malware and how
it affects the programs and systems. Historically, signature-
based identification approaches were widely used. 'is
technique works against known malware quickly and ef-
fectively but does not work with respect to the zero-day
malware properly [14, 15]. A malware identification
framework oriented on the genetic algorithm (GA) and
signature generators [16] was proposed by authors. While
the authors claim that this methodology may identify un-
known malware, the paper does not include significant
information for the proposed framework, such as testing
results, the amount of malware studied, and a comparison to
other current studies. Fukushima et al. have defined [17] a
behavior-based detection method. New and encrypted
malware may be detected using the proposed approach on
Windows OS. In [18], a supervised ML method is suggested.
'e model utilized an SVM kernel basis that weighs the
frequency of each library call for the detection of Mac OS X
malware.

Recently, with the advent of intelligence techniques, ML
has also become one prominent way in malware analysis.
Deep learning is an ML subcomponent, which is a heritage
from artificial neural networks (ANNs). It is a novel method
and is widely utilized for the analysis of images and au-
tonomous cars, but is not enough for virus detection. Al-
though it quite effectively and significantly decreases the area
for features, it does not prevent assaults from evasion.
Shabtai et al. [19] proposed taxonomy for malware identi-
fication by reporting certain sorts of functions and selecting
features in the literature, using ML methods. 'ey focus
largely on the selection of features. In [20], author has
provided a detailed survey of ML for malware analysis. 'ey
have mentioned the challenges of datasets and the ways to
overcome them. Image transformation with ML is used for
malware identification by the author where the convolution
neural network (CNN) is utilized [21]. Similarly, the work in
the direction of tools usage and framework representation
for the malware analysis has been carried out by the re-
searchers recently [22–25].

2.2. File-BasedMalware IdentificationRelatedWork. In [26],
authors examined PDF design and JavaScript information

included in PDFs from top to bottom. With regard to design
and metadata, they created an extensive set of capabilities,
such as the count of bytes per second, the encoding scheme,
object names, catchphrases, and comprehensible strings in
JavaScript. Also, when the characteristics vary, it is difficult
to create antagonistic models since little changes are strong
for AI calculations. 'ey built up a classification model
utilizing discovery type models keeping structures and data
features to limit the danger of ill-disposed assaults. To ap-
prove the proposed model, they fabricated an adversarial
attack. In [27], authors have presented an outline of the PDF;
also, the current assaults are used to be carried out on PDF
malware through solid assault models gathered in nature.
'ey depicted how to play out a measurable examination of a
PDF record to discover the proof of implanted malware
utilizing programming strategies. 'ey examined some of
the new PDF malware detection apparatuses dependent on
AI that can uphold computerized scientific examinations;
recognizing dubious documents before a more profound, a
more definite statistical evaluation is released. 'ey exam-
ined the PDF constraints and other open issues, particularly
regarding the misuse of their weaknesses to possibly mis-
direct resulting measurable investigations. At last, they
recommended tips for improving the exhibition of such
frameworks enduring an onslaught and sketch promising
analysis. In [28], authors have focused on the malware
implanted in PDF files as a delegate instance of modern-day
cyber-attacks. 'ey started by giving a scientific classifica-
tion of the various methodologies used to produce PDF
malware. To combat PDF malware classifiers based on
learning, they have utilized an adversarial AI structure that
has been shown effective. For example, this method enables
us to identify existing flaws in learning-oriented PDF
malware locators and to identify fresh attacks that may
jeopardize such frameworks, along with the possibility of
protective measures. In [29], authors have planned and
executed a novel framework called AIMED, utilizing he-
reditary calculations to sidestep malware classifiers. 'eir
tests proved that an opportunity to accomplish ill-disposed
malware tests can be diminished up to half, contrasted with
exemplary arbitrary approaches. Also, they carried out
AIMED to create ill-disposed models utilizing individual
malware scanners as target and tried the adversarial docu-
ments against additional classifiers from both examination
and industry.'e created models accomplished up to 82% of
cross-avoidance rates among the classifiers.

In [30], authors have exhibited how the most pessimistic
scenario conduct of a malware classifier regarding explicit
vigor properties can be evaluated. Besides, they found that
preparation of classifiers that fulfill officially checked vigor
properties can build the avoidance cost of unbounded as-
sailants by dispensing with straightforward assaults avoid-
ances. 'ey proposed another distance metric that works on
the PDF tree structure and determined two classes of
strength properties including subtree inclusions and era-
sures. 'ey used the best in class irrefutably vigorous for
preparing a strategy to construct strong PDF malware
classifiers. A PDF malware classifier, PDFrate, is used by the
authors later in [31] to evaluate their methods. Using data

Security and Communication Networks 3

from a real network, they demonstrate that high quality
classifier arrangements can make the majority of predic-
tions. It is clear that the classifier cannot reliably predict the
outcomes of most avoidance efforts, including nine focusing
on imitation scenarios from two current projects. Over
100,000 PDF files as well as 100,000 Android apps are part of
their evaluation. In [32], authors presented “Hidost,” the
primary static AI based malware discovery framework
intended to work on various file extensions. Broadening a
formerly distributed and profoundly viable strategy, it
consolidates the coherent design of documents with their
substance for better identification precision. On account to
its specific plan and general list of capabilities, it is extended
to differentiate organizations whose coherent design is co-
ordinated as a chain of command.

In [33], authors presented a novel AI framework for
automating the discovery of malicious PDF files. Both of
the structure and data in the PDF are extracted, and a
sophisticated parsing mechanism is included. As a result, a
broad range of malware may be distinguished, comprising
parsing-based and non-JavaScript malware. Additionally,
with a cautious decision of the learning calculation,
their methodology has given an altogether higher exactness
contrasted with other static examination methods,
particularly within the sight of ill-disposed malware
control.

To identify JavaScript-induced malware, the authors of
[34] employed AI algorithms to get a sample of API ref-
erences that depict the malicious code. An important ap-
plication area was examined in this investigation, namely,
the placement of the malicious JavaScript code in PDF files.
Although their training data contained instances of malware,
they demonstrated that their strategy has been able to
identify new malware even when it was introduced into an
existing system that had not previously been exposed to such
malicious code. In [35], authors built up a framework that
utilizes various feature selection and AI-induced techniques
to set up the attributes of typical JavaScript code.

3. The Proposed Approach

PDF documents include a header, body, cross-reference
table (CRT), and a trailer. Components in the body include
information about the document itself, while the header
provides the information about the document’s current
version. Tables used to connect to objects are included in the
CRT.'e root object and the table locations of the objects in
the body area are included in the trailer part.

'e proposed ML-based malware categorization tech-
nique is explained here. For the most part, this system is
designed to scan the PDF file being inspected, sort out its
internal code, and determine if it is good or dangerous. 'e
hacker’s attempts to obfuscate file headers have also been
found to be blocked by the mechanism in place. 'is
technique does not identify the malware family contained
inside a particular file, but it does accurately classify the file’s
type [36]. System’s categorization procedure of the proposed
work is shown in Figure 1. Even if this is a high-level system
design, it provides a better idea of how the classifier is

implemented. To begin the inspection procedure, the PDF
file document must be uploaded to the system. After the
document is submitted, it is first analyzed for its information
and structure. It is tagged for additional assessment if it
follows the pattern of known harmful files. 'is saves a lot of
time and improves speed. In other circumstances, when it
does not fit the pattern of hostile instances, the feature
extraction module analyses the whole file structure and
derives the features from it. It is then given to the classifier
component for evaluation once characteristics have been
extracted from the PDF. 'e main ML algorithm is located
in the classifier component, and it is this algorithm that is
responsible for thoroughly examining the information
provided by the feature extractor component [37]. 'e
classifier will categorise the PDF file as either a “correct” or
an “infected” file after doing the necessary data analysis.

'ere may be some suspicious API references in the code
that can only be discovered via the dynamic code assess-
ment, which can only be done through a new static analysis.
'e static and dynamic code inspection both employed the
same monitoring method as with the PhoneyPDF to keep an
eye out for any API references. SpiderMonkey and Rhino are
two examples of open-source facilitators that have been used
to conduct dynamic investigations in the past.'e JavaScript
ECMA standard is seen by these translators, but they are
unable to comprehend JavaScript connections to the Ac-
robat PDF format, unless Adobe DOM duplication occurs
[38].

A reference design is developed by selecting a subset of
API reference that depicts the harmful JavaScript code.
Using a collection of PDF files that are either clean or
malicious, our system can automatically build a specific set.
Acrobat PDF API perceives all JavaScript objects, strategy,
and capacity constants as part of the “H” arrangement. 'is
enables us to define “Φ” as the arrangement of all JavaScript
objects, strategy, and capacity constants as well as constants.
'e total number of harmful and nonmalicious files is equal

Initial Evaluation

Input PDF

Feature Extraction

ML Classifier

Clean Malicious

Trained System

Predictions

Figure 1: Proposed layout working of the model.

4 Security and Communication Networks

to M. 'e following equation depicts the characteristic set
provided by all of the references.

􏽘

M

i�0
(Φ(H, i))> threshold. (1)

Also, it is to be noticed that Φ(H, i) may be holding two
values and signifies −1 and +1. Also, if result comes out +1,
then it signifies malicious PDF. If the value is −1, then it
signifies that the file is a safe one.

4. Dataset Details

An overview of the dataset is provided in this section that is
used in this proposed research. Following the benign set,
the malicious dataset that we analyzed was provided. A
total of 1200 PDF samples, both malicious and safe, have
been obtained for the investigation. An 800-sample
training set has been employed, and 400 samples have been
used for testing as depicted in Table 1. It must have been
important to have a ratio of good files to malicious files in
the training and testing sets of 1 : 1. 'e majority of the
samples are based on genuine cyber-attacks that have been
made public. Samples are gathered from a variety of lo-
cations over the Internet.

Because the JavaScript code is included in many of these
PDF files, some classifiers believe they are all malicious
because of the file’s large size.'e approach in this work, on
the other hand, does not use file size as a criterion for
determining whether or not a file is harmful. To demon-
strate this, the harmless JavaScript code is purposely
inserted into nondangerous PDF files in order to make
them seem as though they included the malicious Java-
Script code. All dangerous and safe PDFs have been an-
alyzed independently and the average size of safe and
malicious files was of only approximately 800 kB difference,
as shown in Table 2.

5. Implementation and Results

In this section, the various approaches that have been ex-
ecuted for the analysis and implementation of the proposed
model are described. Here, the training and testing part is
done consequently and the results inferred are discussed. A
variety of methods have been used to study and implement
this suggested approach, and they are all discussed in this
section. 'is system has been trained on 800 PDFs using
several ML classification techniques. With five alternative
algorithms, including stochastic gradient boosting (SGB),
random forest (RF), decision tree (DT), support vector
classifier (SVC), and logistic regression (LR), a comparison
is carried out to check how well the system performs under
these algorithms.

'e effectiveness of the proposed work is reflected by
confusion matrix parameters obtained after classification.
'e confusion matrix comprises of training, testing, vali-
dation, and a combined matrix that reflects
truepositive, truenegative, falsepositive, and falsenegative outcomes.
'ese parameters are further used to calculate the

performance parameters like precision, recall, and F1-score
using the following equations, respectively.

Precision �
truepositive

truepositive + falsepositive
, (2)

Recall �
truepositive

truepositive + falsenegative
. (3)

F1 score � 2∗
(precision∗ recall)
(precision + recall)

. (4)

Figure 2 signifies that deploying RF, LR, andDTtakes the
least amount of time possible, and thus, they perform the
classification in a faster manner. In comparison, the SGB’s
efficiency is average, whereas the SVC’s is poor.

'e “True Positive Rate (TPR)” is computed by placing
the various classifiers during testing, and the trend line is
produced. 'e system should have a higher TPR score in
order to be the optimal match. Figure 3 shows that the RF
approach has the highest TPR score among all the options.
Moreover, the SVC seems inappropriate for file functional
testing since it has the lowest TFR score value.

'e same holds true when this suggested system’s
“Precision Score (PS)” under various classifiers was tested.
Using Figure 4, it can be concluded that the RF is providing
an average PS ratio of approximately 96 percent and that the
SVC is providing the lowest PS at roughly 72 percent.

When calculating the “False Positive Rate (FPR)” when
testing the system, it is deduced from Figure 5 that the RF
has the lowest FPR score, which is preferred, and the SVC
has the highest FPR score, which demonstrates its
ineffectiveness.

During the calculation of the “False Negative Ratio
(FNR)” score, Figure 6 shows that the RF, DT, and SGB all
have the lowest FNR scores; hence, they come strongly
recommended. SVC and LR, at the other hand, have a high
FNR score.

In addition, RF has shown the best overall F1-score on
the dataset when compared to the SGB. 'e DT’s F1-score
remained similarly moderate. RF has shown to be the best fit
for our proposed system, whereas SVC had the worst results
when tested with our system.

A number of other PDF malware classification tech-
niques, created by a variety of authors, have been tested. It is
evident that our system has the best fit when utilizing the RF
classifier based on previous parts. Extraction of features
relies on API calls performed by the document as well as the
JavaScript code included inside its contents. 'e F1-score of
the various classifiers is determined, and it is inferred that for
the proposed classification method, it is higher in contrast to
other classifiers as mentioned in Table 3. 'e numbers
(F1-score) shown in the table are derived utilizing the same
dataset, through which the testing was executed earlier.

6. System Analysis under Attacks

Malicious samples are developed to resist our system after it
had been built, and it is supported by developing a

Security and Communication Networks 5

Table 1: File count for testing and training.

Safe files Malicious files Total files
Count for training 396 404 800
Count for testing 175 225 400
Total count 1200

Table 2: File size (kB) details of dataset for evaluation.

Category type of file Maximum size Minimum size Average size
Safe 21,365 2 10,657
Malicious 22,061 2 11,321

24

22

20

18

16

14

12

10

8

6

4

2

0

Ti
m

e (
s)

20 30 40 50 60
Testing Ration (%)

70 80 90 100 110

Stochastic Gradient Boosting
Logistic Regression
Decision Tree

Support Vector Classifier
Random Forest

Figure 2: Performance evaluation under various classifiers.

Stochastic Gradient Boosting
Logistic Regression
Decision Tree

Support Vector Classifier
Random Forest

20 30 40 50 60
Testing Ratio Value

70 80 90 100 110

100

95

90

85

80

75

70

65

60

Tr
ue

 P
os

iti
ve

 R
at

e (
%

)

Figure 3: Analysis of TPR under the testing phase.

6 Security and Communication Networks

mechanism to recognize those types of attackers during the
testing step. As a general rule, while parsing PDF files, the
parser first travels to the trailer and retrieves the location of
the first item in the list of items in the body. When the first
object has been entirely parsed, the program returns to the
cross-reference table (CRT) and receives the second item’s
address. Since the harmful code is not processed or read
when a PDF reader is requested, this work deleted the
references to the body section objects that contain the

dangerous code. Because of this, we may fool the parser into
thinking that the file is secure, even if it has a harmful code
inside it. If one wants to deceive the system into thinking a
malicious file is safe, onemay use this method.'is is despite
the fact that it has been tested using dynamic classifiers,
which means that it can be inspected throughout the course
of its execution. 'is code does not execute because it does
not include any references to the portions of the body
mentioned above. As a result, we may also send the

20 30 40 50 60

Testing Ratio Value

70 80 90 100 110

Fa
lse

 P
os

iti
ve

 R
at

e (
%

)

36
34
32
30
28
26
24
22
20
18
16
14
12
10

8
6
4

Logistic Regression
Decision Tree Random Forest

Support Vector Classifier

Figure 5: FPR evaluation under various classifiers.

100

95

90

85

80

75

70

Stochastic Gradient Boosting
Logistic Regression
Decision Tree

Support Vector Classifier
Random Forest

20 30 40 50 60
Testing Ratio Value

70 80 90 100 110

Pr
ec

isi
on

 (%
)

Figure 4: Precision evaluation under various classifiers.

Security and Communication Networks 7

malicious code-infected PDF file during dynamic analysis.
'e classification of documents under the malicious attacks
is given in Table 4.

7. Conclusion and Future Scope

A ML model that can identify JavaScript and malicious API
calls attacks in PDF files is provided in this paper. 'is work
also tried out a number of alternative classifiers, including

DT, RF, LR, SVC, and SGB, on the dataset to see how they
performed. 'e RF classifiers within this work have pro-
duced the best results. A comparison of this approach with
other PDF classifiers revealed that this proposed approach
has a high F1-score of 0.986, making it 4 percent more
efficient than the other most recent PDF classifiers. To
further enhance the system’s defense against malicious code
obfuscation methods, functionality is included to run an
object scanner within the PDF document to identify any
objects that are not being processed. Unparsed objects
containing the malicious code may be easily identified and
removed using this approach. Future plans include adding
support for other file formats. Use an advanced data mining
approach for more detailed insights of documents. 'e use
of ML during the detection and classification phase of
malware is highly useful, but it fails against evasion attacks;
thus, it must be explored in the future.

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

'e author declares that there are no conflicts of interest.

Acknowledgments

'is research was supported by Taif University Researchers
supporting Project number (TURSP-2020/215), Taif Uni-
versity, Taif, Saudi Arabia.

Table 3: Comparative analysis of the proposed model with existing
based on F1-score.

Tool reference details Classifier used F1-score
[39] SVM 0.828
[40] RF 0.982
[41] RF 0.778
[32] RF 0.818
[34] RF 0.980
[33] AdaBoost 0.960
[31] DT 0.658
[35] Bayesian 0.978
Proposed model RF 0.986

Table 4: Document classification under the malicious attack on the
proposed system.

Type of file
Normal stage Executing the malicious

attack
Classified Not classified Classified Not classified

Safe 109 16 119 6
Malicious 122 53 170 5

Stochastic Gradient Boosting
Logistic Regression
Decision Tree

Support Vector Classifier
Random Forest

20 30 40 50 60
Testing Ratio Value

70 80 90 100 110

Fa
lse

 N
eg

at
iv

e R
at

e (
%

)

40

35

30

25

20

15

10

5

Figure 6: Analysis of FNR under the testing phase.

8 Security and Communication Networks

References

[1] K. M. A. Alzarooni, “Malware Variant Detection,” Doctoral
Dissertation, UCL (University College London), London,
England, 2012.

[2] W. Stallings, L. Brown, M. D. Bauer, and A. K. Bhattacharjee,
Computer Security: Principles and Practice, pp. 978–980,
Pearson Education, Upper Saddle River, NJ, USA, 2012.

[3] S. Alam, R. N. Horspool, I. Traore, and I. Sogukpinar, “A
framework for metamorphic malware analysis and real-time
detection,” Computers & Security, vol. 48, pp. 212–233, 2015.

[4] A. Mehtab, W. B. Shahid, T. Yaqoob et al., “AdDroid: rule-
based machine learning framework for android malware
analysis,” Mobile Networks and Applications, vol. 25, no. 1,
pp. 180–192, 2020.

[5] Y. Alosefer, Analysing Web-Based Malware Behaviour
through Client Honeypots, Doctoral dissertation PhD 'esis,
Cardiff University, Cardiff, Wales, 2012.

[6] N. Idika and A. P. Mathur, “A survey of malware detection
techniques,” Technical Report, Purdue University, West
Lafayette, IN, USA, 2007.

[7] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification
of malware based on integrated static and dynamic features,”
Journal of Network and Computer Applications, vol. 36, no. 2,
pp. 646–656, 2013.

[8] J. Saxe and K. Berlin, “Deep neural network based malware
detection using two dimensional binary program features,” in
Proceedings of the 2015 10th International Conference on
Malicious And Unwanted Software (MALWARE), pp. 11–20,
IEEE, Fajardo, PR, USA, October 2015.

[9] L. Nataraj and B. S. Manjunath, “SPAM: signal processing to
analyze malware [applications corner],” IEEE Signal Pro-
cessing Magazine, vol. 33, no. 2, pp. 105–117, 2016.

[10] K. S. Han, J. H. Lim, B. Kang, and E. G. Im, “Malware analysis
using visualized images and entropy graphs,” International
Journal of Information Security, vol. 14, no. 1, pp. 1–14, 2015.

[11] D. Liu, H. Wang, and A. Stavrou, “Detecting malicious
JavaScript in pdf through document instrumentation,” in
Proceedings of the 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. 100–
111, IEEE, Atlanta, Georgia, June 2014.

[12] K. Chumachenko, Machine Learning Methods for Malware
Detection and Classification, Bachelor’s 'esis Information
Technology, Xamk Kouvolan kampus, Kouvola, Finland,
2017.

[13] Ö. A. Aslan and R. Samet, “A comprehensive review on
malware detection approaches,” IEEE Access, vol. 8,
pp. 6249–6271, 2020.

[14] A. Souri and R. Hosseini, “A state-of-the-art survey of mal-
ware detection approaches using data mining techniques,”
Human-centric Computing and Information Sciences, vol. 8,
no. 1, pp. 3–22, 2018.

[15] A. R. Javed, M. O. Beg, M. Asim, T. Baker, and A. H. Al-
Bayatti, “Alphalogger: detecting motion-based side-channel
attack using smartphone keystrokes,” Journal of Ambient
Intelligence and Humanized Computing, vol. 2020, pp. 1–14,
2020.

[16] M. F. Zolkipli and A. Jantan, “A framework for malware
detection using combination technique and signature gen-
eration,” in Proceedings of the 2010 Second International
Conference on Computer Research and Development,
pp. 196–199, IEEE, Kuala Lumpur, Malaysia, May 2010.

[17] Y. Fukushima, A. Sakai, Y. Hori, and K. Sakurai, “A behavior-
based malware detection scheme for avoiding false positive,”

in Proceedings of the 2010 6th IEEE Workshop on Secure
Network Protocols, pp. 79–84, IEEE, Kyoto, Japan, October
2010.

[18] H. H. Pajouh, A. Dehghantanha, R. Khayami, and
K. K. R. Choo, “Intelligent OS X malware threat detection
with code inspection,” Journal of Computer Virology and
Hacking Techniques, vol. 14, no. 3, pp. 213–223, 2018.

[19] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici,
“Detecting unknownmalicious code by applying classification
techniques on opcode patterns,” Security Informatics, vol. 1,
no. 1, pp. 1–22, 2012.

[20] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine
learning techniques for malware analysis,” Computers & Se-
curity, vol. 81, pp. 123–147, 2019.

[21] D. L. Vu, T. K. Nguyen, T. V. Nguyen, T. N. Nguyen,
F. Massacci, and P. H. Phung, “A convolutional transfor-
mation network for malware classification,” in Proceedings of
the 2019 6th NAFOSTED Conference on Information And
Computer Science (NICS), pp. 234–239, IEEE, Hanoi, Viet-
nam, December 2019.

[22] S. K. Sasidharan and C. 'omas, “ProDroid—an Android
malware detection framework based on profile hidden
Markov model,” Pervasive and Mobile Computing, vol. 72,
Article ID 101336, 2021.

[23] Y. Jian, H. Kuang, C. Ren, Z. Ma, and H. Wang, “A novel
framework for image-based malware detection with a deep
neural network,” Computers & Security, vol. 109, Article ID
102400, 2021.

[24] Y. Li, X. Wang, Z. Shi, R. Zhang, J. Xue, and Z. Wang,
“Boosting training for PDF malware classifier via active
learning,” International Journal of Intelligent Systems, vol. 37,
no. 4, pp. 2803–2821, 2022.

[25] A. R. Javed, W. Ahmed, M. Alazab, Z. Jalil, K. Kifayat, and
T. R. Gadekallu, “A comprehensive survey on computer fo-
rensics: state-of-the-art, tools, techniques, challenges, and
Future Directions,” IEEE Access, vol. 10, pp. 11065–11089,
2022.

[26] A. R. Kang, Y. S. Jeong, S. L. Kim, and J. Woo, “Malicious PDF
detection model against adversarial attack built from benign
PDF containing javascript,” Applied Sciences, vol. 9, no. 22,
p. 4764, 2019.

[27] D. Maiorca and B. Biggio, “Digital investigation of pdf files:
unveiling traces of embedded malware,” IEEE Security &
Privacy, vol. 17, no. 1, pp. 63–71, 2019.

[28] Y. Chen, S. Wang, D. She, and S. Jana, “On training robust
{PDF} malware classifiers,” in Proceedings of the 29th USENIX
Security Symposium (USENIX Security 20, pp. 2343–2360,
Berkeley CA. USA, August 2020.

[29] C. Smutz and A. Stavrou, “When a Tree Falls: Using Diversity
in Ensemble Classifiers to Identify Evasion in Malware De-
tectors,” in Proceedings of the 23rd Annual Network and
Distributed System Security Symposium, NDSS 2016, San
Diego, CA, USA, February 2016.

[30] N. Šrndić and P. Laskov, “Hidost: a static machine-learning-
based detector of malicious files,” EURASIP Journal on In-
formation Security, vol. 2016, no. 1, pp. 22–20, 2016.

[31] D. Maiorca, D. Ariu, I. Corona, and G. Giacinto, “A structural
and content-based approach for a precise and robust detec-
tion of malicious PDF files,” in Proceedings of the 2015 In-
ternational Conference on Information Systems Security and
Privacy (Icissp), pp. 27–36, IEEE, Angers, France, February
2015.

[32] I. Corona, D. Maiorca, D. Ariu, and G. Giacinto, “Lux0r:
detection of malicious pdf-embedded javascript code through

Security and Communication Networks 9

discriminant analysis of api references,” in Proceedings of the
2014 Workshop on Artificial Intelligent and Security Work-
shop, pp. 47–57, Scottsdale, ARI, USA, November 2014.

[33] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of
drive-by-download attacks and malicious JavaScript code,” in
Proceedings of the 19th International Conference on World
Wide Web, pp. 281–290, Raleigh North, CAR, USA, April
2010.

[34] A. Demontis, M.Melis, B. Biggio et al., “Yes, machine learning
can be more secure! a case study on android malware de-
tection,” IEEE Transactions on Dependable and Secure
Computing, vol. 16, no. 4, pp. 711–724, 2019.

[35] A. Pektaş and T. Acarman, “Malware Classification Based on
API Calls and Behaviour Analysis,” IET Information Security,
vol. 12, no. 2, 2017.

[36] P. Panda, I. Chakraborty, and K. Roy, “Discretization based
solutions for secure machine learning against adversarial
attacks,” IEEE Access, vol. 7, pp. 70157–70168, 2019.

[37] B. Chen, Z. Ren, C. Yu, I. Hussain, and J. Liu, “Adversarial
examples for cnn-based malware detectors,” IEEE Access,
vol. 7, pp. 54360–54371, 2019.

[38] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples:
attacks and defenses for deep learning,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 30, no. 9,
pp. 2805–2824, 2019.

[39] P. Laskov and N. Šrndić, “Static detection of malicious
JavaScript-bearing PDF documents,” in Proceedings of the
27th Annual Computer Security Applications Conference,
pp. 373–382, Orlando, FL, USA, December 2011.

[40] D. Maiorca, G. Giacinto, and I. Corona, “A pattern recog-
nition system for malicious pdf files detection,” in Interna-
tional Workshop on Machine Learning and Data Mining in
Pattern Recognition, pp. 510–524, Springer, Berlin, Heidel-
berg, 2012.

[41] C. Smutz and A. Stavrou, “Malicious PDF detection using
metadata and structural features,” in Proceedings of the 28th
Annual Computer Security Applications Conference, pp. 239–
248, Orlando, FL, USA, December 2012.

10 Security and Communication Networks

