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Advanced wireless systems face an ever-increasing num-
ber of challenges, such as the limited availability of the
radio frequency spectrum and the demand for faster data
transmissions, better quality of service, and higher network
capacity. Yet, the true challenge faced by new communication
technologies is to achieve the expected performance in real-
world wireless channels. System designers classically focus
on the impact of the radio channel on the received signals
and use propagation models for testing and evaluating
receiver designs and transmission schemes. The needs for
such models evolve as new applications emerge with different
bandwidths, terminal mobility, higher carrier frequencies,
new antennas, and so forth. Furthermore, channel char-
acterization also yields the fundamental ties to classical
electromagnetics and physics as well as the answers to some
crucial questions in communication and information theory.
In particular, it is of outstanding importance for designing
transmission schemes which are efficient in terms of power
or spectrum management. Advanced channel modeling is
also recognized as a major topic by two on-going research
programs in Europe: the Network of Excellence in Com-
munications NEWCOM++ and the European COST 2100
Action “Pervasive Mobile & Ambient Wireless Communica-
tions.” While the former only includes a number of European
partners (see http://www.newcom-project.eu/), the latter is
a large network of coordinated national research projects in
the fields of interest to participants coming from different EU
and non-EU countries (see http://www.cost2100.org/).

The objective of this special issue, published following
an initiative by NEWCOM++ and COST 2100 partners,

is to highlight the most recent advances in the area of
propagation measurement and modeling. We received 25
high-quality submissions, which were peer-reviewed by
experts in the field, and we selected 9 papers for inclusion
in this special issue. These articles cover the gamut from
electromagnetic models to experimental characterizations of
complex environments as well as the measurement-based
parameterization and analysis of geometry-based stochastic
models.

Three papers deal with the modeling of complex media
or environments. One of the challenges of emerging or future
technologies is indeed the large variety of application scenar-
ios, for which classical models might not apply. Furthermore,
more and more techniques rely on adaptive and/or multiple
antenna signal processing, so that the dynamic and spatial
behaviors of the propagation channel should be covered as
well.

The paper by Molina-Garcia-Pardo et al. proposes the
experimental characterization and modeling of propaga-
tion in tunnels, at various frequencies in the 2.8–5 GHz
band. Path loss, large-scale correlation, and fading statistics
are derived from measurements conducted by means of
a vector network analyzer. It is shown that the tunnel
behaves as a low-loss waveguide, and the fading is strongly
dependent on the distance. An extension to a multiple-
input multiple-output (MIMO) channel model is also
presented.

The paper by Moraitis et al. presents experimental results
related to the propagation inside a passenger aircraft, at
various frequencies between 1.8 and 2.45 GHz. Empirical
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formulas are inferred for the path loss, slow- and fast-
fading, and interference modeling. A comparison with a
physical-optics-based ray-tracing model is also successfully
conducted.

The paper by Cheffena and Ekman combines fading
measurements from 2.45 up to 60 GHz with wind speed
data to study the dynamic effects of swaying vegetation
on radiowave propagation. A simulation model based on a
multiple mass-spring system is developed and empirically
validated. The outputs of the model are the fading first- and
second-order statistics.

Two papers cover the area of physical models. Physi-
cal models traditionally consist of electromagnetic theory
combined with engineering expertise that allows making
reasonable assumptions about the propagation mechanisms
involved. Provided that the correct propagation phenomena
are identified, such theoretical models are capable of making
very accurate predictions in a deterministic manner. The
output being specific to particular locations rather than
being an average value, the model can be applied to very
wide ranges of system and environment parameters, certainly
well beyond the range within which measurements have
been made. The two drawbacks of such models are the
computational effort and the required accuracy of the
geometrical and electrical properties of the environment.
These two issues are dealt with by the following papers.

The paper by Jemai and Kürner investigates the per-
formance boundaries of a calibrated ray-tracing model
in indoor scenarios. It is indeed well known that the
precision of ray-tracing tools is limited by the accuracy
of the environmental description. The proposed approach
improves the prediction accuracy by means of a calibration
procedure, whose sensitivity is further analyzed in the paper.

The paper by Valcarce et al. applies a finite-difference
time-domain (FDTD) method in the framework of WiMAX
femtocells. Two optimization methods are proposed to tackle
the issue of computational complexity. Calibration is also
carried out. The paper eventually presents mobile WiMAX
system-level simulations that make use of the developed
model.

Finally, the last set of papers deals with geometry-based
models for MIMO systems. In geometrical channel models,
the channel impulse response is related to the location of
scatterers, the location of which is chosen stochastically. A
further important generalization is the existence of multiple
clusters of scatterers. Geometry-based models emulate the
physical reality and thus reproduce many effects implicitly:
small-scale fading, correlation of the signals at different
antenna elements, and even large-scale changes of delays
and directions. Due to the close relationship with physical
reality, it is also relatively easy to parameterize that model, for
example, from measurement results. In a first step, the matrix
impulse responses are measured with a channel sounder.
High-resolution algorithms are then employed to extract the
required information.

Two papers deal with multipath clustering. The paper by
Czink et al. presents the so-called Random-Cluster Model,
which is a stochastic time-variant frequency-selective MIMO
channel model directly parameterized from experimental

data. A fully automated clustering algorithm is used to
identify multipath clusters which define the model. The
approach is then validated based on different metrics applied
to indoor data.

The paper by Materum et al. presents a methodology
to identify multipath clusters in an automatic way. The
approach is then applied to the clustering at the mobile
station in small urban macrocell at 4.5 GHz. Each identified
cluster is manually confronted with its physical counterpart,
and conclusive results are drawn on the various propagation
mechanisms.

The last paper on geometry-based modeling by Zhang
et al. investigates several possible simplifications of geom-
etry-based models in view of reducing their complexity
without compromising their accuracy. The analysis relies
on simulation and experimental results and a number of
metrics.

Finally, the paper by Sivasondhivat et al. focuses on
the modeling of the double-directional power spectrum in
urban macrocells when considering dual-polarized MIMO
transmissions. In particular, the separability of the power
spectrum between the base station and the mobile is
investigated, and a model is proposed and validated, based
on the sum of polarization pairwise Kronecker product
approximation.
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varying between 50 m and 500 m. Simple channel models that can be used for simulating MIMO links are also proposed.
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1. Introduction

Narrowband wireless communications in confined environ-
ments, such as tunnels, have been widely studied for years,
and a lot of experimental results have been presented in the
literature in environmental categories ranging from mine
galleries and underground old quarries to road and railway
tunnels [1–4].

However, in most cases, measurements dealt with chan-
nel characterization for few discrete frequencies, often
around 900 MHz and 1800 MHz. For example, in [5, 6]
Zhang et al. report statistical narrowband and wideband
measurement results. In [7], results on planning of the
Global System for Mobile Communication for Railway
(GMS-R) are presented. In [8], simulations and measure-
ments are also described in the same GSM frequency band.
In [9], the prediction of received power in the out-of-zone
of a dedicated short range communications (DSRC) system
operating inside a typical arched highway tunnel is discussed,
and in this case the channel impulse response was measured
with a sounder at 5.2 GHz whose bandwidth is on the order
of 100 MHz. Recently, in [10], measurement campaigns have
been performed in underground mines in the 2–5 GHz band

but the results cannot be extrapolated to road and railway
tunnels since the topology is quite different. In a mine gallery,
roughness is very important, the typical width is 3 m, the
geometry of the cross-section is not well defined and lastly,
there are often many changes in the tunnel direction.

Furthermore, to increase the channel capacity in tunnels,
space diversity both at the mobile and at the fixed base
station can be introduced. However, good performances of
multiple input multiple output (MIMO) techniques can be
obtained under the condition of a small correlation between
paths relating each transmitting and receiving antennas. This
decorrelation is usually ensured by the multiple reflections
on randomly distributed obstacles, giving often rise to a
wide spread in the direction of arrival of the rays. On the
contrary, a tunnel plays the role of an oversized waveguide
and decorrelation can be due to the superposition of
the numerous hybrid modes supported by the structure
[11]. Experimental results at 900 MHz for a (4, 4) MIMO
configuration, are described in [12]. This paper shows that
the antenna arrays must be put in the transverse plane of the
tunnel to minimize the coupling between elements.

The objective of this work is thus to extend the previous
approaches by investigating the statistics of the electric field
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Figure 1: Cross-section of the tunnel.

distribution in the 2.8–5 GHz frequency range in a tunnel
environment for MIMO applications. Empirical formulas
based on the experimental results are also proposed.

We proceed in two steps: (1) determination of the mean
path loss and of the statistical distribution of the average field
which can be received by the various antennas of an MIMO
system. This first approach can thus be used to determine the
average power related to the H matrix of an MIMO link, (2)
field distribution and correlation in a transverse plane.

The paper is distributed as follows. Section 2 explains the
experiments in detail and more specifically the environment
and methodology of the measurements that has been fol-
lowed. Section 3 investigates path loss and axial correlation
while, in Section 4, field statistics in the transverse plane are
analyzed. Section 5 deals with the transverse spatial corre-
lation and Section 6 presents the principle of modeling the
MIMO channel and gives an example of application. Finally,
Section 7 summarizes the contributions of the present work
and gives conclusions.

2. Environment, Measurement Equipment,
and Methodology

2.1. Description of the Environment. The measurement cam-
paign was performed in a 2-way tunnel, situated in the
French Massif Central mountains. This straight tunnel,
3.4 km long, has a semicircular shape, as shown in Figure 1.
The diameter of the cylindrical part is 8.6 m and the
maximum height of the tunnel is 6.1 m. The tunnel was
empty with no pipes, cables, or lights. However, every 100 m
there are small safety zones, 1 m wide and few meters long,
where an extinguisher is hung. It is difficult to estimate the
roughness accurately but it is on the order of a centimetre.
The tunnel was closed to traffic during the experiments, to
make measurements in stationary conditions.

2.2. Measurement Equipment. Since we want to explore the
channel response in a very wide frequency band (2.8–5 GHz),
we have chosen to make measurements in the frequency
domain rather than in the time domain, so as to get better
accurate results. The complex channel transfer function
between the transmitting (Tx) and receiving (Rx) antennas

VNA Virtual array Virtual array

Rx Tx

RF/
optics

Fiber Optics
/RFI

Amplifiers

G G

Figure 2: Principle of the channel sounder setup.

has thus been obtained by measuring the S21 parameter with
a vector network analyzer (VNA Agilent E5071B). The Rx
antenna is directly connected to one port of the VNA using
a low attenuation coaxial cable, 4 m long, a 30 dB low-noise
amplifier being inserted or not, depending on the received
power. Using a coaxial cable to connect the Tx antenna to the
other port of the VNA would lead to prohibitive attenuation,
the maximum distance between Tx and Rx being 500 m. The
signal of the Tx port of the VNA is thus converted to an
optical signal which is sent through fibre optics, converted
back to radio frequency and amplified. The signal feeding
the vertical biconical transmitting (Tx) antenna has a power
of 1 W. The phase stability of the fibre optics link has been
checked and the calibration of the VNA takes amplifiers,
cables, and optic coupler into account. The block diagram
of the channel sounder is depicted in Figure 2.

The wideband biconical antennas (Electrometrics EM-
6116) used in this experiment have nearly a flat gain, between
2 and 10 GHz. Indeed, the frequency response of the two
antennas has been measured in an anechoic chamber, and the
variation of the antenna gain was found to be less than 2 dB
in our frequency range. Nevertheless, we have subtracted the
antenna effect in the measurements, as it will be explained in
Section 3.

It must also be emphasized that, in general, the radiation
pattern of wideband antennas is also frequency dependent.
This is not a critical point in our case since, in a tunnel,
only waves impinging the tunnel walls with a grazing angle of
incidence contribute to the total received power significantly.
This means that, whatever the frequency, the angular spread
of the received rays remains much smaller than the 3 dB
beam width of the main antenna lobe in the E plane, equal to
about 80◦, the antenna being nearly omnidirectional in the
H plane.

Since the channel transfer function may also strongly
depend on the position of the antennas in the transverse
plane of the tunnel, both Tx and Rx antennas were mounted
on rails. The position mechanical systems are remote con-
trolled, optic fibres connecting the step by step motors to the
control unit.

2.3. Methodology. The channel frequency response has been
measured for 1601 frequency points, equally spaced between
2.8 and 5 GHz, leading to a frequency step of 1.37 MHz.

The rails supporting the Tx and Rx antennas were put
at a height of 1 m and centred on the same lane of this
2-lane tunnel. For each successive axial distance d, both
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Figure 3: Configuration of the wideband MIMO measurements.

Table 1: Equipment characteristics and measurement parameters.

Frequency band 2.8–5 GHz

Number of frequency
points

1601

Antenna
Biconical antenna
(Electrometrics
EM-6116)

Transmitter power 20 dBm

Dynamic range >100 dB

Position in the transverse
plane

12 positions every 3 cm
(λ/2 at 5 GHz)

Positions along the
longitudinal axis

From 50 m to 202 m
every 4 m

From 202 m to 500 m
every 6 m

Number of acquisitions at
each position

5

the Tx and Rx antennas were moved in the transverse
plane on a distance of 33 cm, with a spatial step of 3 cm,
corresponding to half a wavelength at 5 GHz. A (12, 12)
transfer matrix is thus obtained, the configuration of the
measurements being schematically described in Figrue 3.
Fine spatial sampling was chosen for measurements in the
transverse plane because, as recalled in the introduction,
antenna arrays for MIMO applications have to be put in this
plane to minimize correlation between array elements.

Due to the limited time available for such an experiment
and to operational constraints, it was not possible to
extensively repeat such measurements for very small steps
along the tunnel axis. In the experiments described in this
paper, the axial step was chosen equal to 4 m when 50 m <
d < 202 m and to 6 m when 202 m < d < 500 m. This is not
critical because we are interested, in the axial direction, by
the mean path loss and by the large-scale fluctuation of the
average power received in the transverse plane. At each Tx
and Rx position, 5 successive recordings of field variation
versus frequency are stored and averaged.

It must be noted that in the case of a single input
single output (SISO) link, a number of papers have already
been published on the small-scale variation of a narrowband
signal along the tunnel axis. For example, [13] describes
results of experiments carried out in a wide tunnel at a
frequency of 900 MHz. A summary of the measurement
parameters and equipment characteristics is summarized in
Table 1.

3. Path Loss and Correlation Along
the Longitudinal Axis

3.1. Path Loss. The path loss is deduced from the mea-
surement of the S21( f ,d) scattering parameter. However,
as briefly mentioned in the previous section, it can be
more interesting to subtract the effects of the variation of
the antenna characteristics with frequency by introducing
a correction factor C( f ). We have thus made preliminary
measurements by putting the two biconical antennas, 1 m
apart, in an anechoic room. Let Sanech

21 ( f ) be the scattering
parameter measured in this configuration. The correction
factor is thus given by C( f ) = |Sanech

21 ( f )| − 〈|Sanech
21 ( f )|〉,

where 〈x〉means the average of x over the frequency band.
The path loss in tunnel, taking this correction into

account, is given by

PL( f ,d) = −20 · log10

(∣∣S21( f ,d)
∣∣)− (− 20 · log10C( f )

)
.

(1)

Figure 4 shows the variation of PL( f ,d) versus frequency,
for d = 50 m. The fluctuation of the field amplitude is
due to the combination in phase or out of phase of the
various modes excited by the transmitting antenna, the phase
of the propagation constant depending on frequency but
also on the order of the hybrid modes propagating in the
tunnel. To extract the variation of the mean path loss versus
frequency, it is interesting to average such curves, obtained
at any distance d, for the various transverse positions of
the antennas. Furthermore, one can also average over few
frequencies, considering a frequency bandwidth smaller than
the channel coherence bandwidth. In this example, the
coherence bandwidth being on the order of 10 MHz, PL( f ,d)
was averaged over 7 frequencies around f, the frequency step
being 1.37 MHz, and over the 144 successive combinations
of the transverse positions of the Tx and Rx antennas. The
average value 〈PL( f ,d)〉 is also plotted in Figure 4.

The curves “measurements” in Figure 5 represent the
variation of 〈PL( f ,d)〉 versus axial distance at 3 and
5 GHz. The path loss, at 3 GHz, corresponding to free-
space conditions, has been also plotted. We see that, in this
frequency range, the path loss is only slightly dependent on
frequency.

To deduce from these curves a simple theoretical model
of the mean path loss PL( f ,d), these curves must be
smoothed again by introducing a running mean over the
axial distance. To get a very simple approximate analytical
expression of PL( f ,d), it is assumed that PL( f ,d) is the
product of two functions, one depending on f and one
depending on d [14].

Furthermore, it is usually expressed in terms of two path
loss exponents, nPL0 f and nPL0 d which indicate the rate at
which the path loss decreases with frequency and distance,
respectively, [15]. This leads to

PL( f ,d) = (PL0 + 10 · nPL0 f log10( f (GHz))
)

+ 10nPL0 dlog10(d).
(2)

The constant PL0 and the path loss exponents have been
determined by minimizing the mean square error between
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the measurements and the model. The following values were
found: PL0 = 86 dB, nPL0 f = 0.82, and nPL0 d = 0.57.
The corresponding curves for 3 and 5 GHz have also been
plotted in Figure 5. It must be outlined that all these values
were deduced from measurements between 50 and 500 m
and consequently, they are valid only in this range of axial
distance.

It can be interesting to compare this value of nPL0 d to
those already published in the literature and corresponding
to attenuation factors measured for ultra-wideband systems
in indoor environments. However, in this case, the range is
much smaller, typically below 50 m. In line of sight (LOS)
conditions, values from 1.3 to 1.7 were reported by [16, 17],
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Figure 6: Axial correlation between receiving arrays 4 m (for
50 m < d < 202 m) or 6 m (for 202 m < d < 500 m) apart for three
frequencies and their corresponding breakpoints.

while for non-LOS, nPL0 d may reach 2 to 4 as mentioned in
[18, 19]. The small value that we have obtained comes from
the guiding effect of the tunnel.

The comparison between 〈PL( f ,d)〉 and the predicted
path loss PL( f ,d) shows that the difference in their values
is characterized by a standard deviation σPL = 2.7 dB.
〈PL( f ,d)〉 can thus be modeled by (2) and by adding a
random variable XσPL with zero mean and standard deviation
σPL:

〈PL( f ,d)〉model = PL( f ,d) + XσPL . (3)

3.2. Axial Correlation. One can expect that the variation of
the average received power between one transverse plane
and another will depend on the distance d, high-order
propagating modes suffering important attenuation at large
distances. To study this point, we have calculated, for a given
frequency, the amplitude ρaxial of the complex correlation
coefficient between the (12, 12) transfer matrix elements
measured at a distance d and the matrix elements measured
at the distance d + Δd, d varying between 50 m and 500 m.
Let us recall that the step Δd is equal 4 m while 50 m < d <
202 m and 6 m when 202 m < d < 500 m.

Curves in Figure 6 give the variation of ρaxial for three
frequencies: 3, 4, and 5 GHz. As one can expect from the
modal theory, the correlation is an increasing function of
distance. At 3 GHz, for example, the correlation between 2
receiving arrays, 4 m apart, varies from 0.6 at 50 m, to reach
an average value of 0.9 at a distance of 200 m. If we now
compare results obtained at 3 and 5 GHz, we see that the
correlation increases less rapidly at 5 GHz, because high-
order modes suffer less attenuation. By examining the shape
of these curves, we observe two regions: the first one, at short
distance from the transmitter, where the correlation increases
nearly linearly, and the other where the average value of the
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correlation does not vary appreciably. A two-slope model
seems thus well suited to fit the average variation of the
correlation function.

In Figure 6, the three vertical lines correspond to the
positions of the breakpoint between the two slopes, for
the three frequencies, respectively. This breakpoint thus
occurs at distance dbreakpoint axial from the transmitter and by
plotting all curves for frequencies between 2.8 and 5 GHz, the
following empirical formula giving has been obtained:

10 log10

(
dbreakpoint axial

) = 16.8 + 1.2 f (GHz). (4)

At the breakpoint and beyond this distance, the average
correlation between the fields received by the array elements,
6 m apart, is equal to ρbreakpoint = 0.88, with a standard
deviation σρ axial = 0.06, this result remaining valid in all
the frequency range. In the first zone, that is, for d <
dbreakpoint axial, the average variation of ρaxial is modelled by

〈
ρaxial

〉 = ρbreakpoint + 0.06
(
dbreakpoint axial − d

)
(5)

the standard deviation σρ axial being also equal to 0.06.
This leads to the following expression for modeling the

variation of the correlation coefficient along the tunnel axis:

ρaxial,model =
〈
ρaxial

〉
+ Xρ axial. (6)

4. Field Distribution in the Transverse Plane

4.1. Field Distribution Function. In the transverse plane, the
field distribution was first studied by considering, for a
given axial distance d, the 12 × 12 possible combinations of
the Tx and Rx antennas, and 7 close frequencies, within a
10 MHz band, as earlier explained. This has been done for
various frequency bands between 2.8 and 5 GHz. We have
compared the measured data to those given by a Rayleigh,
Weibull, Rician, Nakagami and Lognormal distribution, and
then using the Kolmogorov-Smirnov [20] test to decide
what distribution best fits the experimental results. A Rice
distribution appears to be the optimum one, whatever the
frequency. The mathematical expression of its probability
density function (PDF) is given by

f
(
x | ν, σRICE

) = x

σ2
RICE

exp

(
−(x2 + ν2

)

2σ2
RICE

)

I0

(
xν

σ2
RICE

)

.

(7)

In this formula, I0(·) is the modified Bessel function of the
first kind with order zero and ν and σRICE are parameters to
be adjusted. The first order moment is expressed as

E(x) =
√
π

2
σRICEL1/2

(

− ν2

2σ2
RICE

)

=
√
π

2
σRICEL1/2(−K),

(8)

L1/2 being a Laguerre polynomial.
Before explaining how the two parameters of the Rice

distribution have been found, let us recall that, in the
mobile communication area, a Rice distribution usually

characterizes the field distribution in line of sight (LOS)
conditions and in presence of a multipath propagation.
Usually a K factor is introduced and defined as the ratio of
signal power in dominant component, corresponding to the
power of the direct ray, over the scattered, reflected power.
One can follow the same approach by defining a K factor
in a given receiving zone which is, in our case, defined by
the segment 33 cm long in the transverse plane of the tunnel,
along which measurements were carried out.

4.2. Ricean K Factor. Knowing the (12, 12) matrix whose
elements are the S21 complex values for successive positions
of the Tx and Rx antennas in the transverse plane, one
can calculate K at a distance d and a frequency f, from the
following expression:

K =
∣∣〈S21

〉∣∣2

〈∣∣S21 −
〈
S21
〉∣∣2
〉 . (9)

It must be clearly outlined that, in a tunnel, the K factor
cannot be easily interpreted. Indeed, there is no contribution
of random components to the received power, the position
of the 4 reflecting walls being invariant. K could be related to
richness in terms of propagation modes having a significant
power in the receiving transverse plane, a high number
of modes giving rise to a high fluctuating field. However,
quantifying the relationship between K and mode richness
is not easy since the field fluctuation depends not only on
the amplitude of the modes but also on their relative phase
velocity. In a tunnel, one can conclude that K just gives an
indication on the relative range of variation of the received
power in a given zone.

Curves in Figure 7 have been plotted for 2 frequencies: 3
and 5 GHz. In the transverse zone of investigation (33 cm),
for distances smaller than 200 m, the K factor is below
−15 dB, which means that the received power strongly
varies in the transverse plan, nearly following a Rayleigh
distribution. However, K increases with distance and reaches
0 dB or more beyond 400 m, the constant part of the
distribution becoming equal to or greater than the random
part.

This increase of K is due to the fact that the contribution
of high-order modes becomes less important leading to less
fluctuation of the transverse field. The same interpretation
based on the modes can be made to interpret the influence
of frequency on the K values. The variation of K is of course
related to the variation of the correlation coefficient along the
tunnel axis, as described in the previous section.

By following the same approach as for the path loss,
described in Section 3, and thus by averaging K over groups
of 7 frequencies and over 144 successive combinations of the
transverse positions of the transverse positions of the Tx and
Rx antennas, an empirical expression of the average K factor
in terms of frequency and distance can be found. It is given
by

K = (K0 + 10 · nK0 log10( f (GHz))
)

+ 10 · (n0 + 10 · nn0 log10( f (GHz))
)
log10(d).

(10)
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Figure 7: Variation of the K factor at 3 and 5 GHz, versus distance,
and deduced from measurements. Its average variation calculated
from an empirical mathematical expression is also plotted.

Table 2: Parameters to be introduced in (10) for modeling the
variation of the K factor.

K0 nK0 n0 nn0 σK

Values −79 6.73 3.6 −0.37 4.9

The best fit between the results given by (10) and those
extracted from the measurements was obtained for the values
of the parameters given in Table 2. The standard deviation
between (10) and the measured K is given by σK .

The curves labelled “model” in Figure 7 have been
obtained by applying (10) and the above values for the
parameters.

Let X be a random variable of zero mean. To completely
describe the model, we can add to K such a random variable
with a standard deviation of σK and labeled XσK :

Kmodel = K + XσK . (11)

4.3. Determination of the Ricean Parameters and Modeling of
the Field Variation in the Transverse Plane. K is related to the
field distribution parameters of the Rice distribution by

K = ν2

2σ2
RICE

. (12)

The mean value of K is deduced from (10) for a given
frequency and distance, and by assuming a mean value of
1 of the amplitude of the field distribution E(x) = 1, the
field distribution parameters ν and σRICE can be calculated.
Note that mean value of the field would be determined by the
large-scale fading, and fast variations around the mean value
by the Rice distribution. Therefore, σRICE can be computed
using (8) and (12):

σRICE =
√

2
π

1
L1/2

(− K) . (13)
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Figure 8: PDFs of the field amplitude in a transverse plane
either deduced from measurements or calculated assuming a Rice
distribution: (a) d = 50 m and f = 5 GHz, (b) d = 500 m and
f = 3 GHz.

By knowing σRICE, ν is immediately deduced from (12).
As an example, curves (a) and (b) in Figure 8 compare the
PDFs deduced from the measurements to those assuming
a Rice distribution, for d = 50 m and f = 5 GHz,
and d = 500 m and f = 3 GHz, respectively. We see
the rather good agreement between measurements and the
empirical formulation; the confidence level of the Smirnoff-
Kolmogorov test remaining below 0.05.

5. Transverse Spatial Correlation

The knowledge of the spatial correlation in the transverse
plane is of special interest for MIMO systems. It is assumed,
for simplicity, that the correlations at the transmitter and at
the receiver are separable [21]. Furthermore, since the Rx and
Tx antenna arrays are situated in the same transverse zone of
the tunnel, one can expect that the correlation statistics are
the same for the Tx site and for the Rx site and thus, in the
following, they are not differentiated.

For each axial distance d, and for each frequency f, the
amplitude of the complex correlation function ρtrans was
deduced from the 12 × 12 channel matrix, whose elements
are associated to the successive positions of the Tx and Rx
antennas in the transverse plane. Let s be the spacing between
two receiving points. Figure 9 shows, for f = 3 GHz, the
variation of ρtrans versus the axial distanceand for different
values of s: 3, 9, 21, and 33 cm.
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Figure 9: Transverse correlation at 3 GHz versus axial distance and
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ρtrans is of course a decreasing function of the antenna
spacing. Furthermore, for a given spacing, the correlation
in the transverse plane increases when the axial distance
increases, at least until the end of a zone, named A in
Figure 9, occurring at a point called “breakpoint trans.” This
remark is connected to the comments made in Section 4
concerning the axial correlation, where we have outlined
that, when the axial distance increases, the high-order modes
are more and more attenuated, leading to a less fluctuating
electromagnetic field. Beyond the “breakpoint trans” (zone
B in Figure 9), ρtrans keeps an average high value, even if local
decreases are observed. The local decreases can be explained
by the field pattern in the transverse plane of the tunnel.
Indeed, this pattern does not present translation symmetry
since it results from the combining of many modes, both in
amplitude and in phase.

By analyzing results in the whole frequency range, it
appears that the width of zone A slightly increases with
frequency, as it occurred in the case of the longitudinal
correlation (Section 4). Again, using all measured frequen-
cies, an empirical formula giving the position of the “break-
point trans” point is given by

10 log10

(
dbreakpoint trans

) = 16 + 1.7 f (GHz). (14)

In zone B, one can calculate the mean value ρtrans(s, zone
B, f ) by averaging ρtrans(s,d, f ) over the axial distance d. The
results are the curves plotted in Figure 10, versus frequency
and for different values of s: 3, 9, 21, and 33 cm.

It appears that ρtrans(s, zone B, f ) is nearly frequency
independent and that an empirical formula fitting the
experimental results can be obtained:

ρtrans(s, zoneB) = 0.98− 0.0042s (cm). (15)
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Figure 10: Average correlation in zone B, versus frequency, and for
four antenna spacing.

The difference between (15) and the measured corre-
lation is a random variable of zero mean and standard
deviation σρ trans:

σρ trans(s, zoneB) = 0.02 + 0.0025s (cm). (16)

The modeling of the ρtrans in zone A assumes an average
linear variation with distance. The adequate formula in this
zone is

ρtrans(s,d, f ) = ρtrans(s, zoneB) + 0.04
(
dbreakpoint trans − d

)
.

(17)

In this formula, the implicit dependence on frequency comes
from the value of dbreakpoint trans. The standard deviation
around this value is nearly frequency independent and is
modeled by

σρtrans (s) = 0.0324 + 0.0033s (cm). (18)

Finally, for a given antenna spacing, the correlation between
two antenna elements is modeled by

ρtrans,model = ρtrans + Xσρ trans. (19)

6. Full Model

The previous sections have proposed empirical formulas,
based on experimental results, to model the path loss and
the field fluctuation and correlation in a transverse plane.
These formulas can be applied to randomly generate the
transfer matrices H of an MIMO link in a straight tunnel
having an arched cross-section, which is the shape of most
road and railway tunnels. The transmitting and receiving
arrays are supposed to be linear arrays, whose axes are
horizontal and situated in the transverse plane of the tunnel,
this configuration being quite usual. An approach based on
the Kronecker model [21] was chosen for its simplicity.
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To determine the various elements of H, the following
steps can be followed:

(1) define the system parameters, such as frequency,
distance between the transmitter and the receiver,
number of array elements at the transmitter and at
the receiver, element spacing and number of snap-
shots, corresponding to the number of realizations to
be simulated;

(2) determine a value for the path loss PL( f ,d) using (3);

(3) compute a K factor from (11). We recall that in (3)
and in (11), the value given by the model is the sum of
two terms: a deterministic one plus a random variable
whose standard deviation is known;

(4) knowing K and PL( f ,d), the elements of a Gtrans

matrix, having the same size as H, are randomly
chosen in a normalized Ricean distribution;

(5) as mentioned in Section 4, it was assumed that the
correlations between either the transmitting elements
or the receiving elements follow the same distribu-
tion. The terms of the correlation matrices at the
transmitting and receiving sites, RRx and RTx, are thus
deduced from (19).

The Kronecker model leads to

H = PL( f ,d)R1/2
Rx Gtrans

(
R1/2

Tx

)T
. (20)

To give an example of application of this formula, let us
consider a 4 × 4 MIMO system at 4 GHz, an array element
spacing of 0.8 λ (6 cm at 4 GHz) and a distance d between
the transmitter and the receiver of 250 m.

The channel capacity of a MIMO system for a given
channel realization H can be computed as [22]

C = log2

(
det
∣
∣
∣
∣IN +

SNR
M

HH†
∣
∣
∣
∣

)
, (21)

where IN is the N × N identity matrix, ( )† is the transpose
conjugate operation and SNR is the signal-to-noise ratio
at the receiver. The channel capacity C was calculated by
assuming a fixed SNR equal to 10 dB. A constant SNR
was chosen because we want to emphasize the influence of
correlation and field distribution in the transverse plane. To
compute the capacity assuming a fixed transmitting power,
the contribution of the path loss must be added, which is
straightforward.

The model was applied by considering 1000 realizations
and the cumulative probability density function of the
capacity is plotted in Figure 11 (curve “model”). To be
able to compare this distribution to experimental results, a
large number of measured values are needed. To increase
this number we have thus calculated the capacity not only
at 4 GHz, but also for all frequencies within a 100 MHz
band around 4 GHz. We see in Figure 11, the rather good
agreement between results deduced from the experiments
(curve “measurements”) and those given by the model.
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Figure 11: Application of the MIMO model for a 4 × 4 MIMO
system, for a frequency of 4 GHz and for a distance of 250 m.

7. Conclusion

The statistics of the electromagnetic field variation in a
tunnel has been deduced from measurements made in an
arched tunnel, which is the usual shape of road and railway
tunnels, and in a frequency range extending from 2.8 to
5 GHz. Both the methodology of the experiments and the
analysis were aimed at predicting the performance of an
MIMO link in a wide frequency band.

It was shown, by subtracting the antenna effect, that the
path loss is not strongly dependent on frequency and that the
attenuation constant keeps small values, the tunnel behaving
as a low-loss guiding structure. Along the investigated
transverse axis of the tunnel, over 33 cm long, the small-
scale fading follows a Ricean distribution. However, for
distances between the transmitting and receiving antennas
up to 200 m, theK factor is below −15 dB, meaning that the
field is nearly Rayleigh distributed. It also appeared that K
is an increasing function of distance, reaching 0 dB at about
400 m.

Empirical formulas to model the main propagation char-
acteristics were proposed and applied to generate transfer
matrices of an MIMO link.

Acknowledgments

This work has been supported by the European FEDER
funds, the Region Nord-Pas de Calais, and the French
ministry of research, in the frame of the CISIT project.

References

[1] Y. Yamaguchi, T. Abe, and T. Sekiguchi, “Radio wave propa-
gation loss in the VHF to microwave region due to vehicles in
tunnels,” IEEE Transactions on Electromagnetic Compatibility,
vol. 13, no. 1, pp. 87–91, 1989.



EURASIP Journal on Wireless Communications and Networking 9

[2] M. Lienard and P. Degauque, “Natural wave propagation
in mine environments,” IEEE Transactions on Antennas and
Propagation, vol. 48, no. 9, pp. 1326–1339, 2000.

[3] D. Didascalou, J. Maurer, and W. Wiesbeck, “Subway tunnel
guided electromagnetic wave propagation at mobile commu-
nications frequencies,” IEEE Transactions on Antennas and
Propagation, vol. 49, no. 11, pp. 1590–1596, 2001.

[4] X. Yang and Y. Lu, “Research on propagation characteristics of
millimeter wave in tunnels,” International Journal of Infrared
and Millimeter Waves, vol. 28, no. 10, pp. 901–909, 2007.

[5] Y. P. Zhang and Y. Hwang, “Characterization of UHF radio
propagation channels in tunnel environments for microcel-
lular and personal communications,” IEEE Transactions on
Vehicular Technology, vol. 47, no. 1, pp. 283–296, 1998.

[6] Y. P. Zhang, G. X. Zheng, and J. H. Sheng, “Radio propagation
at 900 MHz in underground coal mines,” IEEE Transactions on
Antennas and Propagation, vol. 49, no. 5, pp. 757–762, 2001.

[7] C. Briso-Rodriguez, J. M. Cruz, and J. I. Alonso, “Measure-
ments and modeling of distributed antenna systems in railway
tunnels,” IEEE Transactions on Vehicular Technology, vol. 56,
no. 5, part 2, pp. 2870–2879, 2007.

[8] T.-S. Wang and C.-F. Yang, “Simulations and measurements
of wave propagations in curved road tunnels for signals
from GSM base stations,” IEEE Transactions on Antennas and
Propagation, vol. 54, no. 9, pp. 2577–2584, 2006.

[9] G. S. Ching, M. Ghoraishi, N. Lertsirisopon, et al., “Analysis
of DSRC service over-reach inside an arched tunnel,” IEEE
Journal on Selected Areas in Communications, vol. 25, no. 8, pp.
1517–1525, 2007.

[10] M. Boutin, A. Benzakour, C. L. Despins, and S. Affes, “Radio
wave characterization and modeling in underground mine
tunnels,” IEEE Transactions on Antennas and Propagation, vol.
56, no. 2, pp. 540–549, 2008.

[11] J.-M. Molina-Garcia-Pardo, M. Lienard, P. Degauque, D. G.
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1. Introduction

Airplanes seem to be the last remaining frontier where
wireless communications and Internet access are still not
available [1]. Airlines are increasingly interested in providing
passengers with in-flight wireless services allowing a similar
entertainment or business experience as their terrestrial
counterparts [2]. The so-called “in-cabin wireless networks”
will allow the passengers to use their own personal equip-
ment such as mobile phones, laptops, or PDAs while the air-
craft is en-route. The typical onboard infrastructure contains
an in-cabin wireless access point, a service integrator/server
and an aircraft-to-satellite link, in order to connect the in-
cabin network to the terrestrial backbone network through a
satellite, as shown in Figure 1.

To succeed in the implementation of such wireless
communication systems inside aircraft, and to assess their
expected performance, it is necessary to have at our disposal
an in-depth and thorough characterization of the in-cabin
channel. Furthermore, to avoid interference from outside

networks, or interfering with external networks, it is essential
to assess and limit the attenuation introduced by the body of
the aircraft.

Up to now, only few measurement campaigns have been
conducted in this type of scenarios, for example, [2] and
[3], at very specific frequency bands. Scarce deterministic
prediction and capacity planning studies [4–8] have been
carried out. Simple empirical, regression-based models have
been developed in [9]. As for deterministic models, they have
been mainly based on (Uniform Theory of Diffraction) UTD
techniques [6]. Some of the references also provide presence
of passenger effects [10] and wideband measurements, that
is, delays spread, not considered in this paper. Some of these
studies have been performed in relation to the use of Ultra-
wideband (UWB) systems [10, 11], a technique likely to be
used in Wireless Personal Area Networks (WPAN) for linking
computers and peripherals at very short distances.

A major concern in the use of wireless passenger-carried
electronic devices (PEDs) aboard aircraft is their electromag-
netic compatibility (EMC) with aircraft electronic systems.
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Figure 1: In-cabin wireless network infrastructure.

Intentional PED emitters are protected by frequency sep-
aration regulated by the International Telecommunication
Union (ITU). Therefore, any intentional emission from an
arbitrary PED is out of band for any aircraft NAV/COM sys-
tem today [1]. Due to frequency separation WLAN 802.11b
should not be a candidate to interfere with sensitive aircraft
navigation and communication systems. WLAN is out of
band to any current aircraft navigation or communication
system. Consequently, Bluetooth, for example, currently is
exempt from restrictions on wireless emitters inside the
cabin [12]. Intentional emitters can be allowed aboard
aircraft according to RTCA/DO233 recommendations if their
safe use is demonstrated [13]. For A340-600 the safe use
and compatibility of WLAN has been demonstrated in the
aircraft environment at a power level artificially increased
250 times. Bluetooth has been investigated by Intel [14].
Lufthansa already provides a certified wireless service in
the cabin in combination with portable electronic devices.
During tests conducted thus far, even nonessential systems
such as in-flight entertainment that are qualified to low
susceptibility levels have not been observed to be disturbed
[1]. From a technical point of view there is no general
objection to the use of these services.

The first goal of this paper is to describe the narrowband
measurement campaign performed and provide an adequate
channel characterization of the in-cabin environment for
personal wireless communications at GSM, UMTS, and ISM
bands. This paper provides an empirical in-cabin path loss
model together with a statistical characterization of the
multipath environment, that is, the spatial distribution of
the received signal, that is, a standing wave, complementing
the results provided in the aforementioned papers. Our
results refer to the aisle as well as the passenger seats. The
insertion loss caused by the seat backrests is also defined
and quantified. Additionally, entry loss measurements were
conducted to evaluate the outdoor-to-indoor attenuation

introduced by the body of the aircraft at different seats along
its length.

The reported measurements were performed inside a
Boeing 737–400 aircraft at three different frequency bands:

(i) 1.8 GHz representative of GSM services,

(ii) 2.1 GHz for UMTS networks,

(iii) 2.45 GHz for WLAN and Bluetooth links.

The measurements have been performed using standard
antennas. An alternative to providing in-cabin coverage is
using radiating cables, also called leaky feeders, laid along the
roof of the cabin [3].

The second target was to develop a simple, site-specific
model for in-cabin and outdoor-indoor propagation based
on Physical Optics (PO) techniques. The approach followed,
and the comparisons between predictions and measure-
ments are presented in some detail. The main purpose of
developing an EM based, site-specific tool is the need to
extend the modeling to all possible types of aircraft. The
reported measurements have been performed in a medium-
sized plane. Consequently, the empirical models derived for
this aircraft will not be usable in much larger airplanes, with a
much larger size, and different configuration: distribution of
seats, and so forth. However, once an EM model is properly
validated and fine-tuned, it will be possible to use it in
any new aircraft configuration, and especially, at different
frequency bands that need analysis. Thus, the contribution
made in this paper is expected to be of immediate practical
interest.

The remainder of this paper is organized as follows.
Section 2 presents the experimental setup for the in-cabin
and outdoor-to-cabin measurements, a detailed description
of the aircraft, and the measurement procedure are discussed.
In Section 3, we show the empirical path loss model and
corresponding extracted parameters from the measurement
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data, moreover, the fading statistics of the in-cabin radio
channel are given. Additionally, the entry losses into the
cabin for different locations along the length of the aircraft
have also been extracted. Section 4, discusses the physical,
PO-based model developed together with implementation
details. A comparison between measurements and predic-
tions is presented both for the in-cabin and penetration
cases. Finally, Section 5 is devoted to summarizing the work
presented in the preceding sections.

2. Experimental Setup

2.1. Measurement Environment. The Boeing 737–400 [15]
is a short-haul aircraft with a seating capacity of 156
passengers, all in economy class configuration, arranged in
26 rows. The aircraft dimensions are overall aircraft length
38.4 m, height 11.15 m, maximum cabin width and height
3.54 m and 2.2 m, respectively, and length of the passengers
area 22 m. Seats are called A, B, and C from window to aisle
on the left side of the aisle facing the direction of flight,
and D, E, and F from aisle to window on the right side of
the aisle. The aisle width is 0.5 m. The seat height is 1.15 m
above the floor and the distance between the seat centers
is 43 cm. The distance between rows is 81 cm. The seats
have textile covers. The passenger luggage compartments are
located 1.68 m above the floor, 1.16 m apart, and 45 cm over
the passenger heads. The ground plan of the measurement
environment is shown in Figure 2.

2.2. Measurment Setup. The measurements were made by
transmitting a continuous wave (CW) signal, at the three
aforementioned frequency bands, from a fixed transmitter to
a fixed receiver, and recording the signal level. The measure-
ment setup is sketched in Figure 3. The transmitter output
power was 0 dBm and antenna utilized at 1.8 GHz was a
vertically polarized patch with a 7.5 dBi gain. The vertical and
horizontal 3-dB beamwidths were 70◦ and 75◦, respectively.
For the measurements at 2.1 and 2.45 GHz a discone antenna
with a semispherical gain of 0 dBi was used. The receive
hardware was placed on a trolley, which was stationary at
each measurement position. After amplification, the received
signal was fed to a spectrum analyzer which was used as

Table 1: Transmitter and receiver characteristics.

Transmitter

Frequency 1.8 GHz 2.1 GHz 2.45 GHz

Power output 0 dBm

Antenna gain 7.5 dBi 0 dBi 0 dBi

EIRP 7.5 dBm 0 dBm 0 dBm

Receiver

Receiver sensitivity −90 dBm

Antenna gain 1.64 dBi 1.63 dBi 0.75 dBi

LNA gain 26.3 dB 28.1 dB 26.2 dB

Total loss 3.7 dB 4.7 dB 5.3 dB

Total measurable path loss 122 dB 115 dB 112 dB

a receiver using the zero-span setting. The auxiliary video
output of the spectrum analyzer was then sampled at 1 kHz
and the values were stored to a portable PC. At the receive
side, a vertically polarized omnidirectional antenna was used
having a gain of between 0.75 and 1.64 dBi, depending on
the frequency. The transmitter and receiver characteristics
are summarized in Table 1.

2.3. Measurement Procedure. Different sets of measurements
were conducted inside the aircraft. In the first, the received
power was measured at different points along the aisle as well
as at the passenger seats in order to identify the decay rate
of the average received power with increasing distances from
the transmitter. Additionally, a statistical characterization of
the multipath scenario, that is, its spatial variations, was also
performed. Finally, the measurements have been compared
with predictions carried out with a deterministic model.

During the measurements, the aircraft was in parked
position and the cabin had no passengers. Under these
conditions, the channel can be regarded as stationary or, at
least, quasistationary. Small time variations were observed
barely exceeding a standard deviation of one dB, due to the
presence of the people involved in the measurements.

While performing the measurements along the aisle, the
transmit and receive antennas were at 1.8 and 1.7 m above the
floor, respectively, and were always aligned to point at each
other, thus preserving the line-of-sight (LoS) condition. The
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transmitter was placed at the beginning of the aisle (Figure 2)
and recordings were performed starting with the receiver
located 1 m away from the transmitter up to 21 m in steps
of 1 m, as indicated in Figure 2. At each position, the receive
antenna was shifted by ±4λ with respect to the nominal
measurement position in steps of λ (in all, 9 recordings), so as
to obtain uncorrelated measurements. It should be pointed
out that the spatial variations thus observed, due to a spatial
standing wave generated by the multipath, are much stronger
than the time variations mentioned above.

Then, the nine recordings were averaged [16]. Each
recording lasted 10 seconds so that a total of 90 k samples
(9 × 10 s × 1000 samples/s) were used to calculate the local
mean of the received power at each nominal measurement
position. From the local mean the average path loss (dB) was
calculated.

Similar measurements were also conducted at the seats.
The measurements were taken at every seat from row 2
up to row 26, and at each of the three frequency bands.
The transmitter was located at the same position as that
given in Figure 2, at 1.8 m above the floor and the receiver
was placed at each seat with the antenna a few centimeters
below the head of the backrest (approximately 1.10–1.12 m
above the cabin floor). Hence, the passenger seat intercepted
the direct path between the transmitter and receiver, giving
rise to an obstructed line-of-sight (OLoS) condition. Each
recording, again, lasted 10 seconds, that is, 10 k samples

which were averaged to find the mean power (local mean)
at each passenger seat. In all, 150 sets of power recordings,
corresponding to all the measurement seats, were collected
(25 rows × 6 seats/row).

A final measurement set was gathered for evaluating the
attenuation (entry loss) due to the fuselage in an outdoor-to-
indoor configuration, typical of interference paths between
the in-cabin network and outside networks. Attenuation
measurements were taken at five different positions along
the aircraft’s length. The horizontal separation between
the transmitter and the aircraft was always kept at 4.7 m.
Attenuation measurements were taken at rows 5, 10, 12, 15,
and 20. The measurements corresponding to rows 10, 12, and
15 were performed with the transmitter shaded by the wing,
as shown in Figure 4. These measurements were performed
with the transmitter outside the aircraft at the height of
1.65m above the ground.

The receiver was placed at the seats A, B, and C in order
to collect the measurements as indicated in Figures 4 and
5. The receiver height was approximately 1.10–1.12 m above
the floor. Each measurement lasted 10 seconds and, again,
10 k power samples were collected from which the average
received power was computed. The average path loss was
then calculated for each seat. From the actual geometry of
the link, we calculated the distance between the transmitter
and the receiver at each position.
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3. Measurement Results

3.1. Path Loss Modeling. A model to predict the path loss
inside the aircraft cabin, along the aisle, can be formulated
using the following relationship [17]:

PL(d) = FSL(d0) + 10n log10

(
d

d0

)
(dB), (1)

where PL(d) is the average path loss value (dB) at a distance
d (m) from the transmitter to the receiver, FSL(d0) is the
free-space path loss (dB) at a reference distance d0, and

n is the path loss exponent (decay rate) that characterizes
how fast the path loss increases with increasing transmitter-
receiver separation. This model is quite standard in indoor
propagation studies and corresponds, in linear units, to a
power law of exponent n with the inverse of the path length.
What needs to be worked out is the adequate parameter, n,
for the specific case of in-cabin propagation, where wave-
guide effects may be present.

In our case, the reference distance, d0, was set to 1 m,
therefore, the free-space path loss is 37.5, 38.9, and 40.2 dB
for 1.8, 2.1, and 2.45 GHz, respectively. Taking into account
the model in (1), when performing the measurement
analysis, the path loss parameter (decay rate) n was found
to be 2.1 at 1.8 GHz, 2.2 at 2.1 GHz and 2.3 at 2.45 GHz.
The mean square error (MSE) between the measured and
the predicted values was found to be 2.38, 3.15, and 3.26 dB,
respectively. A comparison between the measured and the
model results is presented in Figure 6 for the three bands.
Given the small MSE values observed, it can be concluded
that the model describes the propagation environment along
the aisle with great accuracy.

Due to the specific aircraft structure (tunnel-like), path
loss exponents lower than 2, indicating the presence of clear
wave-guiding effects, could have been expected. In our case,
the decay factor was found to be slightly greater than 2.
This can be attributed to the heavy cluttered environment
in the cabin. The waveguide effect is counterbalanced as
the aircraft interior is comprised of materials that do not
enhance the wave-guide propagation phenomenon; the floor
is covered with a thick carpet while the seats are made of
a non-reflective textile. Moreover, the gaps between rows of
seats trap the transmitted rays, and hence, the wall-reflected
power cannot fully arrive at the receiver.
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Figure 7: Path loss model results at the seats of the aircraft at: (a)
1.8 GHz, (b) 2.1 GHz, and (c) 2.45 GHz.

To describe the path loss at the seats where OLoS
conditions exist, we can utilize (1) but the power decay factor
is expected to be greater than 2. Applying (1) to the measured
path loss at the passenger seats, the path loss exponent was
found to be between 2.0 and 3.1 at 1.8 GHz, 2.5 and 3.4 at 2.1
GHz and between 2.5 and 3.9 at 2.45 GHz. The overall mean
square error (MSE) between the measured and the predicted
values was found to be 4.8, 5.6, and 5.0 dB, respectively.

From an ensemble study of all 150 seats, the average
path loss factor, n, was found to be 2.6, 3.1, and 3.2 at 1.8,
2.1 and 2.45 GHz, respectively. A comparison between the
measurements and the model at all the seats is presented
in Figure 7 for the three frequencies. The small MSE values
observed indicate that the model describes the in-cabin
propagation environment with great accuracy, both at the
corridor and seats.

From the measurements at the seats, we can define
the average seat insertion loss due to the backrests. For
performing such calculation, the free-space loss FSLi at each
seat (150 of them) was carried out taking into account the
actual Tx-Rx linear distance di. The average insertion loss
was calculated using

Lseat = 1
N

N∑

i=1

(
PL

meas
i − FSLi

)
(dB), (2)

where FSLi is the free-space loss at the ith seat, PL
meas
i is the

average measured path loss at the i-th passenger seat andN is
total number of measurement seats (N = 150). According
to the above expression, the average passenger seat backrest
insertion loss was 7.7 dB at 1.8 GHz, 8.1 dB at 2.1 GHz, and
9.6 dB at 2.45 GHz, respectively.

3.2. Fading Statistics (Spatial Variability of the Channel due to
Multipath). As said in Section 2.3, the channel is practically
stationary, in time, while there are very marked spatial vari-
ations due to multipath. In the measurements, it was found
that the channel response remained practically constant for
periods of over 7 seconds (the envelope autocorrelation
function remained invariant over time at a level above 0.9),
for the whole ensemble of measurement locations (aisle and
seats), and of all three frequency bands.

Using the local mean of the received power as a reference,
the ensemble of fade depths for a specific location was
calculated as [16]

Fk = Pk − P (dB), (3)

where Fk is the k-th fade depth (in dB), Pk is the kth received
power sample and P is the measured local mean power, both
in dB. From these fade depths, the average (M), standard
deviation (Σ), 90% percentile, minimum value, and dynamic
range (DR) were calculated for each one of the measured
locations along the aisle and at the seats. Note that one
location along the corridor is actually represented by a set
of nine points, including the nominal location, in a ±4λ line.

Table 2, summarizes these statistical results at five differ-
ent locations along the aisle at the three measurement fre-
quencies. Additionally, Table 3 presents the average statistics
for all 150 passenger seats at the three frequencies.
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Table 2: Fading statistics along the aisle of the Boeing 737–400.

f [GHz] dTx−Rx [m] P [dBm] PL [dB] M [dB] Σ [dB] 90% [dB] min{Fi}[dB] DR[dB] K-factor [dB]

1.8

1 −6.7 38.5 −0.25 1.07 1.37 −3.7 4.9 13.6

5 −8.4 40.1 −0.28 1.14 1.40 −4.3 5.9 13.1

10 −13.9 45.6 −0.30 1.21 1.47 −4.7 6.3 12.7

15 −19.9 51.7 −0.32 1.15 1.50 −4.5 6.9 12.2

20 −17.9 49.6 −0.35 1.33 1.55 −5.2 7.0 11.3

Overall average −0.30 1.18 1.46 −4.5 6.2 12.6

2.1

1 −12.3 37.3 −0.30 1.13 1.41 −4.3 5.6 13.5

5 −18.9 44.0 −0.32 1.21 1.47 −4.7 6.3 12.9

10 −27.3 52.4 −0.36 1.33 1.52 −5.1 6.7 12.3

15 −22.6 47.6 −0.38 1.36 1.57 −5.5 7.3 11.8

20 −27.9 53.0 −0.40 1.41 1.63 −5.8 7.8 11.2

Overall average −0.35 1.29 1.52 −5.1 6.7 12.3

2.45

1 −19.4 41.1 −0.32 1.22 1.48 −4.9 6.0 13.8

5 −26.4 48.0 −0.34 1.33 1.53 −5.5 6.7 12.5

10 −25.9 47.6 −0.37 1.36 1.59 −6.0 7.7 12.0

15 −34.9 56.5 −0.40 1.44 1.62 −6.2 7.8 11.5

20 −29.5 51.1 −0.42 1.51 1.68 −6.3 8.1 10.9

Overall average −0.37 1.37 1.58 −5.8 7.2 12.1
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Figure 8: Indicative cumulative distribution functions: (a) at the corridor of the aircraft, and (b) at the seats of the aircraft.

Cumulative distribution functions (CDFs) for the enve-
lope of the received signal (in linear units) were computed
for each receive antenna location. In all cases, it was found
that the spatial fading statistics corresponded very well with
a Rice distribution with average K parameter (direct-to-
multipath power ratio) between 12.1 and 12.6 dB in the aisle,
and between 7.3 and 8.1 dB at the seats. The Cramer-von-
Mises criterion was used to estimate the goodness-of-fit [18]
to the Rice distribution.

Example CDFs are presented in Figure 8 for both the aisle
and the seats of the aircraft. The Rayleigh CDF is also shown

for comparison. It can be observed how the K-factors are
lower at the seats than along the aisle. This is due to obstruc-
tion of the direct ray by the backrests of the various seats.

Along the aisle, from the extracted results, only a slight
increase in the dynamic range of the fades (also confirmed
by the other parameters) was observed as the distance
between the receiver and the transmitter was increased.
However, overall, the fading statistics can be regarded as
range independent. Thus, the K-factor only decreased with
increasing distance by approximately 2 dB between first and
the last sections of the measured data (Table 2).
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Table 3: Average fading statistics for ensemble of seats.

Frequency 1.8 GHz 2.1 GHz 2.45 GHz

P[dBm] −33.8 −41.0 −45.8

PL[dB] 65.6 66.0 67.5

M [dB] −1.4 −1.7 −1.8

Σ [dB] 2.6 2.8 2.7

90% [dB] 2.9 3.1 2.8

min{Fi} [dB] −11.0 −13.5 −14.7

DR [dB] 12.6 15.7 16.3

K-factor [dB] 8.1 7.5 7.3

On the other hand, the fade dynamic range, DR,
increases, also confirmed by the other statistics (M, Σ, and
90% percentile), at the seats in comparison with the results
along the aisle, see Tables 2 and 3. The lower K-ratios at
the seats, are due to the OLoS propagation condition due
to the obstruction of the direct path. The received signal
envelope though, still follows quite well a Rice distribution,
see Figure 8(b).

From the above discussion, it is possible to complete the
model in (1). This model describes the average of the path
loss at distance d. However, a three-stage model is usually
assumed when describing the actual loss [19], which includes
a distance dependent term, that in (1), slow variations due to
shadowing and faster (in time and space) variations due to
multipath. In our case, the new expression for (1) becomes

PL(d) = PL(d) + X(0, σL) + Y + Z

= FSL(d0)+10n log 10
(
d

d0

)
+X(0, σL)+Y +Z (dB),

(4)

where PL(d) represents the path loss at one particular point
and time which is given by the sum of an average, distance-
dependent term, PL(d), a spatially slowly varying term,
X(0, σL), which can be modelled as a zero-mean Gaussian
term with a standard deviation or location variability,
σL, which can be equated to the MSE of the fittings in
Section 3.1, that is, 2.38, 3.15, and 3.26 dB, for the aisle paths
at the three frequencies of interest, and 4.8, 5.6, and 5.0 dB
for the seats. The last two terms, Y and Z, would be the space
and time variability terms due to multipath. In this section
we have characterized Y in linear units as Rice distributed.
The time variations, as said, are negligible in this case.

It should be pointed out that the measurements per-
formed provide a limited accuracy when used for extracting
passenger seat model parameters. This has been due to the
fact that the measurements were taken at only one position
per measurement location, that is, no spatial averaging has
been carried out. However, in the time domain, variations
due to the quasistatic nature of the channel have been
smoothed out through time averaging of ten consecutive
snapshots.

3.3. Indoor-Outdoor Penetration Loss. To evaluate the loss
caused by the fuselage, including its openings (windows,
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Figure 9: Basic outline of the physical optics calculation.

Tx Aperture

Seats

Figure 10: Schematic diagram of the modeling approach employed.

etc.) to indoor-to-outdoor paths, we compared the free-space
loss for the true distance, di, between a transmitter situated
outside the aircraft and a receiver placed at seats A, B, and C,
as indicated in Figure 5. Distance di could easily be calculated
using simple geometry. The attenuation for each row was
calculated by averaging the measurements at seats A, B, and
C according to

ELi = PL
meas
i − FSLi (dB) (5)

where ELi is the average entry loss for row i, FSLi is the
average free-space loss for row i, and PL

meas
i is the average

measured path loss. The data processing here also includes
the averaging over all tree seats, A, B, and C, of the same
row. The entry loss results are summarized in Table 4 for each
frequency band. There is a clear increase in the attenuation
values especially for rows 10, 12, and 15, for which the
transmitter was located under the wing. On average, the
attenuation was approximately 4.8 dB larger.

4. Comparison With EM Techniques

4.1. Physical Optics Basics. In this section, a comparison
between the above measurements and simple electromag-
netic modeling results based on the application of PO
techniques is presented. First, we briefly describe the imple-
mentation used and, then, present the obtained results.
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Table 4: Measured attenuation introduced by the haul of the
aircraft.

Frequency
[GHz]

Row dTx−Rx[m] Pi[dBm] PL
meas
i [dB] FSLi[dB] ELi[dB]

1.8

5 5.93 −13.25 63.91 53.0 10.9

10 5.92 −18.14 68.80 53.0 15.8

12 5.95 −18.29 69.32 53.0 16.0

15 5.93 −17.87 68.53 53.0 15.5

20 5.94 −12.91 63.57 53.0 10.6

2.1

5 5.93 −23.61 66.91 54.3 12.6

10 5.92 −28.86 72.16 54.3 17.8

12 5.95 −28.24 71.54 54.3 17.2

15 5.93 −28.42 71.72 54.3 17.4

20 5.94 −23.67 66.97 54.3 12.6

2.45

5 5.93 −29.84 69.29 55.5 13.8

10 5.92 −34.26 73.71 55.5 18.2

12 5.95 −34.77 74.22 55.5 18.7

15 5.93 −34.53 73.98 55.5 18.5

20 5.94 −29.93 69.38 55.5 13.9

PO uses the concept of (equivalent) surface currents over
the surface of an object or an aperture. The currents result
from the overall tangential part of the incident electric and
magnetic field intensity vectors. The resulting reradiated field
is obtained by integrating the surface current densities over

the scattering object surface [20] or, alternatively, aperture.
Here, only the basic PO formulas will be presented, more
details on the numerical implementation of the method can
be found in [21]. It must be borne in mind that the propaga-
tion along the aircraft cabin can be calculated by considering
the radiation of successive apertures. In addition, wall
scattering effects can also be taken into account using PO.

The principle for the calculation of the received field
strength originating at an aperture is outlined in Figure 9.
The figure can be interpreted as a point source (antenna)
followed by a concatenation of two apertures, each corre-
sponding to planes where the field strength is calculated.
These apertures can be taken to be along the cabin length and
have the same shape as its cross-section. The apertures have
to be tightly sampled in a regular mesh with a sub-lambda
step. Here, for the tests carried out at 2.1 GHz (λ = 0.1429),
the step size was 2 cm (14 samples per wave length).

First, the surface of all apertures has to be discretized,
then the tangential components, Et and Ht, of the incident
electric and magnetic fields, Ei and Hi, are calculated at all
points of the first aperture as

Et = n̂ × [(Ei + REi )× n̂],

Ht = n̂ × [(Hi + RHi )× n̂],
(6)

where R is the reflection coefficient which is dependent on
the incidence angle and the electrical parameters of the object
(R is zero in the case of an aperture), and the vector cross-
product with the normal to the surface, n, represents the
calculation of the tangential component.

The electric and magnetic current densities, J and M, are
calculated as

J = n̂×Ht, M = −n̂ × Et . (7)

The reradiated fields, Er and Hr , at each point of the
following aperture are calculated as

Er = 1
4π

∫∫

S
(r̂×M)

1 + jk0|r|
|r| e− jk0|r|dS,

Hr = − 1
4π

∫∫

S
(r̂× J)

1 + jk0|r|
|r| e− jk0|r|dS,

(8)

where r is the vector from each elementary area, dS, at the
previous aperture to the point at the following aperture
and k0 is the wave number. The total electric and magnetic
field, E and H, at a given calculation point of the aperture is
obtained as

E = Er + Z0 · (Hr × r̂), H = Hr +
1
Z0

· (r̂ × Er ).

(9)

4.2. In-Cabin Propagation. The in-cabin propagation sce-
nario has a complex geometry, including multiple diffrac-
tions by, and multiple transmissions though, the seat back-
rests, and multiple reflections off the walls. Therefore, to
physically model the wave propagation phenomenon within
the cabin, a simplified numerical approach was attempted.
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Figure 13: Example of PO results (path loss in dB) for all rows.
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Figure 15: Comparison of simulated and measured values, A seat.

Due to the nature of the in-cabin problem, which can be
decomposed into multiple screens, PO was chosen as the
most suitable approach.

The field was calculated over subsequent apertures
formed by the space of the cabin above the seats, by seat
backrests and by the walls, the ceiling and the floor of the
cabin. The field over the aperture in each row of seats is
reradiated onward to obtain the field over the next aperture.
This procedure is repeated for all rows. Figure 10 illustrates
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Figure 16: Comparison of simulated and measured values, B seat.

40

50

60

70

80

Pa
th

lo
ss

(d
B

)

0 5 10 15 20 25
Row number

Free space loss
Physical optics
Measurement

Propagation loss C seat

Figure 17: Comparison of simulated and measured values, C seat.

this approach in a schematic form. Figure 11 shows the
actual cross-section of the cabin. Figures 12 and 13 show
examples of obtained path loss maps. In Figure 12 the
assumed simplified shape of the cabin cross-section is shown
where perpendicular surfaces are considered in lieu of the
actual curved ones.

The field over each subsequent aperture is calculated
as a sum of the field reradiated directly from previous
aperture and the contributions coming from reflections off
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Figure 19: Propagation loss inside the cabin as a function of
distance from the window.

the walls, ceiling and the floor. In all cases PO techniques
were assumed.

For verifying the accuracy of the model, a vertically
polarized transmitter was set in the centre of the modelled
cabin at a height of 1.8 m and the frequency was 2.1 GHz. The
relative permittivity and conductivity for calculating the wall
reflection coefficient was εr = 4 and σ = 0.03 S/m, respectively.
An additional attenuation term was added to the part of the
apertures corresponding to the backrests, to account for the
transmission loss. The calculation of this loss was performed
assuming a 10 cm thick dielectric slab of conductivity σ =
0.1 S/m.

Figure 14 shows a comparison between the simulated
and measured path loss values as the receiver is moved
along the aisle at the height of 1.7 m. Figures 15, 16, and
17 show the simulated path loss at positions of the receiver
1.15 m above the floor for each seat as a function of the
seat row number. The simulation results at each position

have been calculated using a similar averaging process about
the nominal prediction point as for the measurements.
Because of the symmetry, only one side of the cabin
with seats A, B, and C is shown. Note in Figure 12 the
strong spatial variability of the predicted field strength. The
discrepancies between measurements and predictions may
be due to additional scattering effects not considered in the
EM simulations. However, the simulations differ from the
measurements by no more than 10 dB.

Although the simulation procedure is quite complex,
several simplifications have been made. The apertures are
made up of sections of rectangular shape which do not quite
correspond to real cabin cross-sections. No scattering from
the back and front of the cabin has been considered.

Further improvements towards a more realistic simu-
lation of the propagation channel would mean to include
additional attenuation terms due to passenger bodies, which
could be modeled as lossy dielectric cuboids.

4.3. Outdoor-to-Indoor Propagation: Entry Loss. Also the
outdoor-to-indoor case has been simulated. For a given
point inside the cabin, the resulting received signal strength
was calculated as a sum of the contributions from all 26
windows on the external transmitter side of the aircraft. The
windows were treated as reradiation apertures using the same
approach as above. The real propagation scenario shown in
Figures 4 and 5 is translated into that shown in Figure 18
where the simulation approach followed is depicted.

In the case of the rows 10, 12, and 15, the contribution
from each of the windows above the wing was reduced
by 6 dB to account for the diffraction losses due to the
shadowing by the wing. This diffraction loss introduced
corresponds to that for grazing incidence on a knife-edge.
From the measurements (Section 3.3) on average, the excess
attenuation observed at those seats for which the transmitter
was below the wing was approximately 4.8 dB larger.

Figure 19 shows the evolution of the propagation loss
at 2.1 GHz as a function of the distance from the window
inside the cabin for the 5th, 10th, 12th, 15th , and 20th rows.
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The measured propagation losses in Table 4 are within the
range of the simulated values, although the simulations show
higher propagation loss as the distance from the window
increases.

5. Conclusion

This paper presented propagation measurements and chan-
nel characterization conducted inside a Boeing 737–400. The
objective was to understand the propagation mechanisms
involved in the setting up of in-cabin wireless networks.
The measurements were conducted in the aisle as well as
at the seats at three different frequency bands (1.8, 2.1, and
2.45 GHz) representative of various different services. It has
been shown how the path loss is distance dependent with
additional random variations due to shadowing and multi-
path. Furthermore, it has been shown how the propagation
exponent for aisle paths barely exceeds a value of two, close
to the free-space law. This means that the expected waveguide
effect which would lead to exponents below two is attenuated
due to the seat rests and to the materials used that prevent
the generation of strong multipath. For the seat paths, the
attenuation law may be larger than three, in some cases. The
spatial variations have been split into slow and fast. The slow
variations can be characterized by their standard deviations,
which are in the order of 3 dB for aisle paths while, for seat
paths are larger, in the order of 5 dB. The faster variations
have been quantified and characterized by means of Rice
distributions. For interference paths between in-cabin and
external networks, the excess loss with respect to free-space
has been quantified, being in the order of approximately 10
to 14 dB, increasing with frequency.

The disadvantage of empirically derived models is that
they are not suitable for aircraft very different from those
where the measurements have been performed. The need
for a generalization of results has led us to study a physical,
site-specific approach. A model based on Physical (PO) tech-
niques has been presented. Comparisons between measure-
ment and predictions have shown a fairly good agreement.
The slow received signal variations in the measurements
seem to be slightly larger than in the predictions. Thin can
be attributed to propagation mechanisms not considered
in the modeling. Still, EM, site-specific models can provide
a flexible way of producing acceptably accurate perditions
for all possible aircraft configurations without the need to
perform new measurements.
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1. Introduction

In a given environment, radiowaves are subjected to dif-
ferent propagation degradations. Among them, vegetation
movement due to wind can both attenuate and cause a
fading effect to the propagating signal. Operators cannot
guarantee a clear line-of-sight (LOS) to wireless customers as
vegetation in the surrounding area may grow or expand over
the years and obstruct the path. Fade mitigation techniques
(FMTs) such as adaptive coding and modulation can be
used to counteract the signal fading caused by swaying
vegetation. For example, during windy conditions (high
signal fading), power efficient modulation schemes such as
BPSK and QPSK (which are less sensitive to propagation
impairments compared to high-order modulation schemes)
can be used to increase the link availability, while spectral
efficient modulation schemes such as 16 QAM and 64 QAM
can be applied during calm wind conditions (less signal
fading) [1]. An extra coding information can also be added
to the channel so that errors can be detected and corrected
by the receiver. FMTs need to track the channel variations
and adjust their parameters (modulation order, coding rate,
etc.) to the current channel conditions. In order to design,

optimize, and test FMT, data collected from propagation
measurements are needed. However, such data may not be
available at the preferred frequency, wind speed conditions,
and so forth. Alternatively, time series generated from
simulation models can be used. In this case, the simulated
time series need to have similar dynamical and statistical
characteristics as those obtained from measurements [1].

The signal attenuation depends on a range of factors such
as tree type, whether trees are in leaf or without leaf, whether
trees are dry or wet, frequency, and path length through
foliage [2, 3]. For frequencies above 20 GHz, leaves and
needles have large dimensions compared to the wavelength,
and can significantly affect the propagation conditions.
The ITU-R P.833 [4] provides a model for predicting the
mean signal attenuation though vegetation. The temporal
variations of the relative phase of multipath components due
to movement of the tree result in fading of the received signal
as reported in, for example, [5–10]. The severity of the fading
depends on the rate of phase changes which further depends
on the movement of the tree components. Therefore, for
accurate prediction of the channel characteristics, the motion
of trees under the influence of wind should be taken into
account. This requires the knowledge of wind dynamics and
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the complex response of a tree to induced wind force. In our
previous work, a heuristic approach was used to model the
dynamic effects of vegetation [10]. In this paper, we develop
a theoretical model based on the motion of trees under the
influence of wind, and is validated in terms of first- and
second-order statistics using available measurements.

The paper begins in Section 2 by giving a brief descrip-
tion of the measurement setup for measuring signal fad-
ing after propagating through vegetation and for measur-
ing meteorological data (wind speed and precipitation).
Section 3 discusses the wind speed dynamics. The motion of
trees and their dynamic effects on propagating radiowaves as
well as the validation of the proposed simulation model are
dealt with in Section 4. Finally, conclusions are presented in
Section 5.

2. Measurement Setup

To characterize the influence of vegetation on radiowaves,
measurements were performed in [7] for a broad range
of frequencies, including 2.45, 5.25, 29, and 60 GHz, in
various foliage and weather conditions. A sampling rate of
500 Hz was used to collect the radio frequency (RF) signals
using a spectrum analyzer, multimeter, and a computer with
General Purpose Interface Bus (GPIB) interface. In order to
understand the behavior of radiowaves propagating through
vegetation under different weather conditions, meteorolog-
ical measurements including wind speed and precipitation
were also performed in [7]. The wind speed was recorded
every 5 seconds, and the precipitation data every 10 seconds.

The measurements were taken at two different locations,
referred to as Site 1 and Site 2. The trees at Site 1 were
deciduous trees, and were considered both when the trees
were in full leaf and when they were without leaf. Site
2 was populated by several coniferous trees which made
a wall of trees. Table 1 gives a general site information.
A detailed description of the measurements can be found
in [7]. An example of received signal at 29 GHz after
propagating through dry leaved deciduous trees (Site 1) is
shown in Figure 1, and the corresponding measured wind
speed is shown in Figure 2. These figures indicate a strong
dependency of the signal variation transmitted through
vegetation on the wind speed. For a closer look, Figures 3
and 4 show examples of typical measured signals during low
(1 to 3 m/s) and high (≥4.5 m/s) wind speed conditions for
leaved dry deciduous trees (Site 1) at 29 GHz. As expected, we
can observe that the signal variation increases with increasing
wind speed. Accurate modeling of the channel is needed
when designing mitigation techniques for the fast and deep
signal variations are like the ones shown in Figures 1 and 4.
In order to do this, a good knowledge of wind dynamics and
trees motions due to wind is required.

3. Wind Dynamics

Trees sway mostly due to wind. Understanding the dynamic
characteristics of wind is therefore essential when describing
the complex response of a tree to induced wind force
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Figure 1: Measured signal fading after propagating through dry
leaved deciduous trees (Site 1) at 29 GHz. A sampling rate of 500 Hz
was used to collect the signal.
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Figure 2: Measured wind speed for the corresponding signal fading
shown in Figure 1. The wind speed was measured every 5 seconds.

and their dynamic effects on propagating radiowaves. The
turbulent wind speed power spectrum can be represented by
a Von Karman power spectrum [11], and it can be simulated
by passing white noise through a shaping filter with transfer
function given by [12, 13]

HF(s) = KF
(
1 + sTF

)5/6 , (1)

where KF and TF are the gain and time constant of the
shaping filter, respectively. A close approximation of the 5/6-
order filter in (1) by a rational transfer function is given
by [12]

HF(s) = KF
(g1TFs + 1)

(
TFs + 1

)(
g2TFs + 1

) , (2)
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Table 1: Site description [7].

Site Path length Foliage depth Description

Site 1 63.9 m
14.3 m 3 foliated maple trees

7.6 m 1 foliated flowering crab tree

Site 2 110 m 25 m Several spruce and one pine tree creating a wall
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Figure 3: Typical measured signal at 29 GHz for leaved dry
deciduous trees (Site 1) during low-wind speed conditions (1 to
3 m/s). A sampling rate of 500 Hz was used to collect the signal.
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Figure 4: Typical measured signal at 29 GHz for leaved dry decidu-
ous trees (Site 1) during high-wind speed conditions (≥4.5 m/s). A
sampling rate of 500 Hz was used to collect the signal.

where g1 = 0.4 and g2 = 0.25. Tf and KF are defined as

TF = Lr
wm

, (3)

KF ≈
√

2π
B(1/2, 1/3)

TF
Ts

, (4)

n(t)
HF
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Figure 5: Model for simulating wind speed. n(t) is a white Gaussian
noise with zero mean and unite variance, HF is the low-pass filter
defined in (2), nc(t) is a colored noise, kσ is a model parameter (see
Table 2), wm is the mean wind speed, σw = wmkσ , and w(t) is the
resulting wind speed.

Table 2: kσ values for different terrain types at 10 meter height [14].

Type Coastal Lakes Open Built-up areas City centers

kσ 0.123 0.145 0.189 0.285 0.434

where wm is the mean wind speed and Lr is the turbulence
length scale that corresponds to the site roughness. The
turbulence length can be calculated from the height, h, above
the ground, expressed as Lr = 6.5h [14]. Ts is the sampling
period and B designates the beta function, and is given by

B(u, y) =
∫ 1

0
zu−1(1− z)y−1dz. (5)

Figure 5 shows the model for simulating wind speed.
In the model, a white Gaussian noise n(t) (where t is the
time) with zero mean and unite variance is transformed
into colored noise nc(t) by smoothing it with the filter given
in (2). The static gain KF defined in (4) ensures that the
resulting colored noise nc(t) has a unit variance. The wind
speed w(t) is then obtained by multiplying nc(t) by the
standard deviation of the turbulent wind σw and adding the
mean wind speed wm. kσ is a constant which depends on
the type of the terrain [14]; see Table 2. This wind model is
used in Section 4.1 to describe the displacement of tree due
to induced wind force.

4. The Dynamic Effects of Vegetation
on Radiowaves

4.1. The Motion of Trees. A tree is a complex structure
consisting of a trunk, branches, subbranches, and leaves.
The tree responds in a complex way to induced wind forces,
with each branch swaying and dynamically interacting with
other branches and the trunk. During windy conditions,
first-order branches sway over the swaying trunk, and
second-order branches sway over the swaying first-order
branches. Generally, smaller branches sway over swaying
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Figure 6: Path length difference. L1+L2 is the path length of the LOS
component, L3 + L4 is the path length of the multipath component
at rest, L5 + L6 is the path length of the multipath component when
displaced, x is the displacement, d is the distance from the LOS path
to the position of a tree component. Tx and Rx are the transmitting
and receiving antennas.
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larger branches, and leaves vibrate over swaying smaller
branches. The overall effect minimizes the dynamic sway of
the tree by creating a broad range of frequencies and prevents
the tree from failure [15]. Radiowaves scattered from these
swaying tree components have a time varying phase changes
due to periodic changes of the path length which results in
fading of the received signal. Figure 6 illustrates the path
length difference due to displacement of a tree component
from rest, and is given by (see Appendix A)

ΔL ≈ x
d
(
L1 + L2

)

L1L2
, (6)

where L1 + L2 is the path length of the LOS component. L1

is the distance from the transmitter to a point parallel to a
position of a tree component, d is the distance from the point
to the position of a tree component, L2 is the distance from
the point parallel to a position of a tree component to the
receiver, and x is the displacement.

A dynamic structure model of tree was reported in
[15], and is extended here to include dynamic wind force
and mathematical description of the motion of each tree
component; see Figure 7. In the model, tree components
(the trunk, branches, and subbranches) are attached with
each other using springs which resulted in a multiple mass-
spring system. This tree model is further used in Section 4.2
to model the signal fading due to swaying vegetation. For
simplicity, we use a tree model with a trunk and just three
branches and three subbranches, as seen in Figure 7. This
simple model is sufficient to recreate the rich dynamic
behavior of the fading from a real tree, as is demonstrated
in the simulations in Section 4.2. Using Newton’s second law
and the Hooke’s law, the equations of motion (displacement)
for the tree components in Figure 7 can be formulated using
second-order differential equations:

m0ẍ0(t) = −ẋ0(t)
(
c0 + c1 + c3 + c5

)
+ ẋ1(t)c1 + ẋ3(t)c3

+ ẋ5(t)c5 − x0(t)
(
k0 + k1 + k3 + k5

)
+ x1(t)k1

+ x3(t)k3 + x5(t)k5 + f0(t),

m1ẍ1(t) = −ẋ1(t)
(
c1 + c2

)
+ ẋ2(t)c2 + ẋ0(t)c1

− x1(t)
(
k1 + k2

)
+ x2(t)k2 + x0(t)k1 + f1(t),

m2ẍ2(t) = c2
(
ẋ1(t)− ẋ2(t)

)
+ k2

(
x1(t)− x2(t)

)
+ f2(t),

m3ẍ3(t) = −ẋ3(t)
(
c3 + c4

)
+ ẋ4(t)c4 + ẋ0(t)c3

− x3(t)
(
k3 + k4

)
+ x4(t)k4 + x0(t)k3 + f3(t),

m4ẍ4(t) = c4
(
ẋ3(t)− ẋ4(t)

)
+ k4

(
x3(t)− x4(t)

)
+ f4(t),

m5ẍ5(t) = −ẋ5(t)
(
c5 + c6

)
+ ẋ6(t)c6 + ẋ0(t)c5

− x5(t)
(
k5 + k6

)
+ x6(t)k6 + x0(t)k5 + f5(t),

m6ẍ6(t) = c6
(
ẋ5(t)− ẋ6(t)

)
+ k6

(
x5(t)− x6(t)

)
+ f6(t),

(7)

where mi, ki, and ci are the mass, spring constant, and
damping factor of tree component i, respectively. The spring
constant ki describes the stiffness of the wood material.
While the damping factor ci describes the energy dissipation
due to swaying tree component (aerodynamic damping)
and dissipation from internal factors such as root/soil
movement and internal wood energy dissipation [15]. ẍi(t),
ẋi(t), and xi(t) are the acceleration, velocity, and position
(displacement) of tree component i, respectively. fi(t) is the
time varying induced wind force on tree component i, and is
given by [16]

fi(t) =
Cdρwi(t)

2Ai
2

, (8)

where Cd is the drag coefficient, ρ is the air density, Ai is
the projected surface area of the tree component, and wi(t)
is the wind speed (can be simulated using the model shown
in Figure 5).
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The time varying displacement, xi(t), of each tree
component can then be obtained by solving (7) using state-
space modeling:

ẏ = Ay + Bu, (9)

x = Cy + Du, (10)

where y = [
x0(t) · · · x6(t) ẋ0(t) · · · ẋ6(t)

]T
is the state

vector, u = [
f0(t) · · · f6(t)

]T
is the input vector, and x =

[
x0(t) · · · x6(t)

]T
is the output vector. The matrices A, B,

C, and D are obtained from (7); see Appendix B. Note that
(9) and (10) are for continuous time and can be converted to
discrete time using, for example, bilinear transformation.

4.2. Signal Fading due to Swaying Tree. Former studies
on the measurements used here suggested that the signal
envelope can be represented using the extreme value or
lognormal distribution [7]. However, our study shows
that the Nakagami-Rice distribution can well represent the
measured signal envelop through vegetation. The Chi-Square
test has been performed to verify the fitness of Nakagami-
Rice and measured signal distribution. For all frequencies,
the hypothesis was accepted for 5% significance level.
Furthermore, the majority of reported measurement results
suggest Nakagami-Rice envelop distribution [8, 17–19].
Therefore, Nakagami-Rice envelop distribution is assumed
in the developed simulation model, with the K-factor given
by

K = Pd
P f

, (11)

where Pd and Pf are the power in the direct and diffuse
components, respectively. From our measurements, we esti-
mated the Ricean K-factors under different wind conditions
using the moment-method reported in [20]; see Figure 8.
The reduction of the K-factor suggests that the contribution
of the diffuse component increases with increasing wind
speed. We can also observe that the K-factor decreases with
increasing frequency (due to smaller wavelength).

The time series for the received power is obtained as
|h(t)2|, where h(t) is the complex impulse response due to
the multipath in the vegetation. For a Ricean distributed
signal envelope, the impulse response h(t) can be expressed
as the sum of the direct and diffuse signal components as
shown in

h(t) = ad exp( jθ)
︸ ︷︷ ︸

Direct

+
N=7∑

i=1

a f exp
[
j
(
θi − 2π

λ
ΔLi(t)

)]

︸ ︷︷ ︸
diffuse

,
(12)
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Figure 8: Ricean K-factors as function of average wind speed
estimated from measurements at 2.45, 5.25, 29, and 60 GHz after
propagating through dry leaved deciduous trees (Site 1).

where the first term in (12) is the contribution of the direct
signal component. ad =

√
Pd (Pd is as defined in (11)), and θ

are the amplitude and phase of the direct signal, respectively.
The second term in (12) is the contribution of the diffuse
component which is the sum of signals scattered from the
tree components. N = 7 is the total number of scattering
tree components (the trunk, branches, and subbranches; see
Figure 7). a f =

√
Pf /N is the amplitude of each scattered

signal (assumed to be equal for all scattered components),
where Pf is as defined in (11), θi is the phase uniformly
distributed within the range [0, 2π], λ is the wavelength,
and ΔLi(t) is the time varying path length difference due to
displacement of the ith tree component shown in Figure 7.
Note from (12) that the time varying path length difference,
ΔLi(t), results in time varying phase changes which in turn
gives a fading effect to the received signal. Following the same
approach as in (6), ΔLi(t) for i = 1, 2, . . . , 6 are given by

ΔL0(t) ≈ x0(t)
d0
(
L1 + L2

)

L1L2
,

ΔL1(t) ≈ (x0(t) + x1(t)
)d1

(
L1 + L2

)

L1L2
,

ΔL2(t) ≈ (x0(t) + x1(t) + x2(t)
)d2

(
L1 + L2

)

L1L2
,

ΔL3(t) ≈ (x0(t) + x3(t)
)d3

(
L1 + L2

)

L1L2
,

ΔL4(t) ≈ (x0(t) + x3(t) + x4(t)
)d4

(
L1 + L2

)

L1L2
,

ΔL5(t) ≈ (x0(t) + x5(t)
)d5

(
L1 + L2

)

L1L2
,

ΔL6(t) ≈ (x0(t) + x5(t) + x6(t)
)d6

(
L1 + L2

)

L1L2
,

(13)
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where L1, L2, and di are as defined in (6), and xi(t) is obtained
from the state-space model in (9) and (10).

Examples of simulated signal fading due to swaying
tree using the new model for low- and high-wind speed
conditions are shown in Figures 9 and 10, respectively. The
simulation parameters are given in Table 3. In general, Ai
values in the range 10 to 80 m2, mi values in the range
0.01 to 30 kg, ki values in the range 5 × 102 to 5 ×
104 N/m2, ci values in the range 0 to 35 can be used in the
model. These parameter ranges are obtained by performing
simulations using different tree parameters and comparing
the simulated first and second-order statistics to these of
measurements from Site 1 (since the new model is intended
for modeling signal fading due to a single tree). Then, the
parameter ranges are defined based on the agreements found
between the measured and simulated first- and second-
order statistics. Finally, realistic values within the defined
parameter ranges are assigned to each tree component;
see Table 3 (no curve fitting or numerical optimization is
used). For example, as shown above the parameter range
found for mi is between 0.01 to 30 kg, from this a realistic
value for m0 (the trunk) should be close to the upper
limit of the parameter rage,that is, somewhere between 15
to 30 kg. In this case, 20 kg is randomly chosen from the
realistic value range for m0; see Table 3. The same selection
process based on realistic values within parameter ranges is
performed for the other tree parameters. Comparisons of the
cumulative distribution functions (CDFs), autocorrelation
functions (ACFs), level-crossing rates (LCRs), and average
fade durations (AFDs) of the measured and simulated
received signals at different frequencies are shown in Figures
11–18. The LCRs and AFDs are normalized to the Root-
Mean-Square (RMS) level. The CDF describes the prob-
ability distribution of a random variable. While the ACF
is a measure of the degree to which two time samples of
the same random process are related and is expressed as
[21]

Rh
(
t1, t2

) = E
{
h
(
t1
)
h
(
t2
)}

, (14)

where E is the expectation, h(t1) and h(t2) are random
variables obtained by observing h(t) at time t1 and t2, respec-
tively. The LCR measures the rapidity of the signal fading. It
determines how often the fading crosses a given threshold in
the positive-going direction [22]. The AFD quantifies how
long the signal spends below a given threshold, that is, the
average time between negative and positive level-crossings
[22]. The CDF, ACF, LCR, and AFD determine the first- and
second-order statistics of the channel.

The effect of wind speed on the channel statistics can
be observed from Figures 11–14 which show comparisons
of measured (leaved dry deciduous trees (Site 1) at 29 GHz)
and simulated channel statistics during low- and high-
wind speed conditions. We can observe from Figure 11
that the probability the received signal is less than a given
threshold increases with increasing wind speed. Note also
from Figure 12 how fast the ACF decays during high wind
speed compared to low wind speed conditions. The increase
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Figure 9: Simulated signal fading using the new model at 29 GHz
during low wind speed conditions (wm = 2 m/s). All simulation
parameters are given in Table 3.

rate of signal changing activity during windy conditions
can be implied from the LCR curves in Figure 13. In
addition, the effect of high wind speed which results in
deep signal fading with short durations can be observed
from the AFD curves shown in Figure 14. The frequency
dependency of the channel is evident from Figure 15–
18 which show comparisons between measured (leaved
dry deciduous trees (Site 1) at 2.45, 5.25, and 60 GHz)
and simulated channel statistics during high wind speed
conditions (wm = 5 m/s). The probability that the received
signal is less than a given threshold increases with increasing
frequency; see Figure 15. We can also observe from Figure 16
that the autocorrelation function decays more rapidly for
high frequency compared to low-frequency signals. The
increasing rate of signal changing activity and the increasing
existence of deep signal fading with increasing frequency
can be observed from the LCR and AFD curves shown in
Figures 17 and 18, respectively. The frequency dependency
of the channel statistics is directly related to the signal
wavelength. As the frequency increases, the signal wavelength
decreases which results in increasing sensitivity to path
length differences caused by swaying tree components. In
general, the agreements found between the measured and
simulated received signals in terms of both first- and second-
order statistics are satisfactory; see Figures 11–18. Moreover,
the results shown in Figures 11–18 suggest that the swaying
of tree components with wind can highly impact the quality
and availability of a given link, and should be consid-
ered when designing and evaluating systems at different
frequencies.

5. Conclusion

In this paper, we use available measurements at 2.45, 5.25,
29, and 60 GHz, and wind speed data to study the dynamic
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Table 3: Simulation parameters.

Wind parameters Other parameters

wm = 2 m/s (low wind) Cd = 0.35 [16] K-factor for 2.45 GHz = 6 dB (at wm = 5 m/s)

wm = 5 m/s (high wind) ρ = 1.226 kg/m3 [16] K-factor for 5.25 GHz = 1 dB (at wm = 5 m/s)

kσ = 0.434 Ts = 0.002 s K-factor for 29 GHz = 11 dB (at wm = 2 m/s)

h = 10 m K-factor for 29 GHz = −5 dB (at wm = 5 m/s)

K-factor for 60 GHz = −6 dB (at wm = 5 m/s)

L1 = 3000 m and L2 = 100 m

Tree parameters

d0 = 1.0 m A0 = 66.2 m2 m0 = 20 kg k0 = 1.0× 104 N/m c0 = 20.0

d1 = 3.0 m A1 = 21.0 m2 m1 = 1.0 kg k1 = 1.0× 103 N/m c1 = 15.0

d2 = 3.7 m A2 = 7.80 m2 m2 = 0.02 kg k2 = 7.0× 103 N/m c2 = 2.00

d3 = 2.5 m A3 = 22.9 m2 m3 = 2.0 kg k3 = 6.0× 102 N/m c3 = 14.0

d4 = 2.7 m A4 = 9.70 m2 m4 = 0.03 kg k4 = 8.0× 103 N/m c4 = 1.80

d5 = 2.8 m A5 = 23.5 m2 m5 = 2.5 kg k5 = 1.1× 103 N/m c5 = 14.5

d6 = 3.2 m A6 = 10.4 m2 m6 = 0.04 kg k6 = 5.0× 103 N/m c6 = 2.00
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Figure 10: Simulated signal fading using the new model at 29 GHz
during high wind speed conditions (wm = 5 m/s). All simulation
parameters are given in Table 3.

effects of vegetation on propagating radiowaves. A new
simulation model for generating signal fading due to a
swaying tree has been developed by utilizing a multiple
mass-spring system to represent a tree and a turbulent
wind model. The model is validated in terms of first- and
second-order statistics such as CDF, ACF, LCR, and AFD
using measurements. The agreements found between the
measured and simulated first- and second-order statistics
of the received signals through vegetation are satisfactory.
Furthermore, Ricean K-factors for different wind speeds are
estimated from measurements. In general, the new model
has similar dynamical and statistical characteristics as those
observed from measurement results and can be used for
simulating different capacity enhancing techniques such as
adaptive coding and modulation and other fade mitigation
techniques.
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Figure 11: CDFs of measured (dry leaved deciduous trees (Site 1))
and simulated (using the new model) signals at 29 GHz during low
(wm = 2 m/s) and high (wm = 5 m/s) wind speed conditions. All
simulation parameters are given in Table 3.

Appendices

A. Path Length Difference due to Swaying
Tree Component

Using a trigonometric analysis of the paths shown in
Figure 6, L3 and L4 can be expressed as

L3 =
√
L2

1 + d2 = L1

√
√
√

1 +
d2

L2
1

,

L4 =
√
L2

2 + d2 = L2

√
√
√

1 +
d2

L2
2
.

(A.1)
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Figure 12: ACFs of measured (dry leaved deciduous trees (Site 1))
and simulated (using the new model) signals at 29 GHz during low
(wm = 2 m/s) and high (wm = 5 m/s) wind speed conditions. All
simulation parameters are given in Table 3.
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Figure 13: LCRs of measured (dry leaved deciduous trees (Site 1))
and simulated (using the new model) signals at 29 GHz during low
(wm = 2 m/s) and high (wm = 5 m/s) wind speed conditions. All
simulation parameters are given in Table 3.

Assuming L1 � d and L2 � d, Taylor approximation can be
applied to yield

L3 ≈ L1

(

1 +
d2

2L2
1

)

,

L4 ≈ L2

(

1 +
d2

2L2
2

)

.

(A.2)
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Figure 14: AFDs of measured (dry leaved deciduous trees (Site 1))
and simulated (using the new model) signals at 29 GHz during low
(wm = 2 m/s) and high (wm = 5 m/s) wind speed conditions. All
simulation parameters are given in Table 3.
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and 60 GHz during high (wm = 5 m/s) wind speed conditions. All
simulation parameters are given in Table 3.

L3 + L4 is the path length when a tree component is at rest,
and by using (A.2), we get

L3 + L4 ≈ L1 + L2 +
d2

2

(
L1 + L2

L1L2

)

. (A.3)

L5 +L6 is the path length when a tree component is displaced.
Again performing a trigonometric analysis of Figure 6 and
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Figure 16: ACFs of measured (dry leaved deciduous trees (Site
1)) and simulated (using the new model) signals at 2.45, 5.25,
and 60 GHz during high (wm = 5 m/s) wind speed conditions. All
simulation parameters are given in Table 3.
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Figure 17: LCRs of measured (dry leaved deciduous trees (Site
1)) and simulated (using the new model) signals at 2.45, 5.25,
and 60 GHz during high (wm = 5 m/s) wind speed conditions. All
simulation parameters are given in Table 3.

applying a Taylor approximation by assuming L1 � d + x
and L2 � d + x, L5 + L6 can be expressed as

L5 + L6 ≈ L1 + L2 +
(d + x)2

2

(
L1 + L2

L1L2

)
. (A.4)
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Figure 18: AFDs of measured (dry leaved deciduous trees (Site
1)) and simulated (using the new model) signals at 2.45, 5.25,
and 60 GHz during high (wm = 5 m/s) wind speed conditions. All
simulation parameters are given in Table 3.

The difference in path length when a tree component is at
rest and when it is displaced is then given by

ΔL = (L5 + L6
)− (L3 + L4

)

≈
(

2dx + x2

2

)(
L1 + L2

L1L2

)

.
(A.5)

Assuming further x� d (which is valid for trees not located
very near the transmitter or the receiver), the path length
difference can then be expressed as

ΔL ≈ xd

(
L1 + L2

L1L2

)

. (A.6)

B. Matrices for the State-Space Model

The state, y, and input, u, vectors defined in (9) and (10) are
given by

y = [x0(t) · · · x6(t) ẋ0(t) · · · ẋ6(t)
]T

, (B.1)

u = [ f0(t) · · · f6(t)
]T
. (B.2)

By taking the first derivation of (B.1),

ẏ = [ẋ0(t) · · · ẋ6(t) ẍ0(t) · · · ẍ6(t)
]T

, (B.3)

where the double derivations ẍ0(t) · · · ẍ6(t) in (B.3) are
defined in (7). From (9), ẏ is given by

ẏ = Ay + Bu, (B.4)
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where y and u are as defined in (B.1) and (B.2). In order (B.4)
to be equal to (B.3), the matrices A and B have to be equal to

A =
(

07×7 I7×7

A21 A22

)

, (B.5)

where 07×7 and I7×7 are 7 × 7 zero and identity matrices,
respectively. A21 and A22 in (B.5) are given by

A21 =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
(
k0 + k1 + k3 + k5

)

m0

k1

m0
0

k3

m0
0

k5

m0
0

k1

m1
−
(
k1 + k2

)

m1

k2

m1
0 0 0 0

0
k2

m2
− k2

m2
0 0 0 0

k3

m3
0 0 −

(
k3 + k4

)

m3

k4

m3
0 0

0 0 0
k4

m4
− k4

m4
0 0

k5

m5
0 0 0 0 −

(
k5 + k6

)

m5

k6

m5

0 0 0 0 0
k6

m6
− k6

m6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(B.6)

A22 =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
(
c0 + c1 + c3 + c5

)

m0

c1

m0
0

c3

m0
0

c5

m0
0

c1

m1
−
(
c1 + c2

)

m1

c2

m1
0 0 0 0

0
c2

m2
− c2

m2
0 0 0 0

c3

m3
0 0 −

(
c3 + c4

)

m3

c4

m3
0 0

0 0 0
c4

m4
− c4

m4
0 0

c5

m5
0 0 0 0 −

(
c5 + c6

)

m5

c6

m5

0 0 0 0 0
c6

m6
− c6

m6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(B.7)

B =
(

07×7

B21

)

, (B.8)

where B21 in (B.8) is a diagonal matrix expressed as B21 =
diag{1/m0 · · · 1/m6}.

The output vector x in (10) is defined as

x = [x0(t) · · · x6(t)
]T
. (B.9)

From (10), x is given by

x = Cy + Du. (B.10)

For (B.10) to be equal to (B.9), the matrices C and D have to
be equal to

C = (I7×7 07×7
)
,

D = (07×7
)
.

(B.11)
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1. Objective and Introduction

The blind prediction, based on a priori approximate
knowledge of material parameters, often shows an obvious
mismatch with the measurements. Even if predicted path loss
values are accurate enough like, for example, in [1], time dis-
persion parameters could show a significant mismatch. Ray
tracing-based conventional deterministic modeling methods
use geometrically accurate data and rely on tabulated values
for the electrical parameters of the building materials. For
instance, the authors in [2] made direct measurements of
the building materials. However, the material parameters
remain approximate and impossible to define accurately for
each building, especially when the building materials are a
heterogeneous mixture of unknown components, for which
no electromagnetic measurement values are available. There-
fore, a calibration of these material parameters, reducing
the mismatch between the model and the measurements, is
required. The issue of deterministic modeling calibration has
been addressed in very few works. In [3], only the dielectric
constant of each wall have been tuned separately and the
gradient method is used to estimate the solution. However,

using the gradient method in conjunction with this tuning
provides generally a local minimum and does not necessarily
provide the optimal solution.

As the relation between power taps and material param-
eters is a nonlinear combinatorial relationship, the simulated
annealing approach used in this paper provides the general
optimal solution by simultaneously changing the dielectric
constant and loss tangent of all material parameters with
a changing step at each range of iterations. The method
proposed converges to a global solution and avoids to be
dropped into a local minimum as the gradient method
does. The performance and robustness of this calibration
procedure is analyzed in this paper by means of an indoor
measurement campaign within an office building.

This paper is organized as follows. Section 2 presents
the ray tracing model. Section 3 investigates the calibration
process and the calibration algorithm. Subsequently, the
conducted measurement campaigns and the calibration
results for an indoor office environment are highlighted in
Section 4. Finally, Section 5 addresses the sensitivity of the
calibration to the measurements and assesses the boundary
of the modeling methods.
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2. The Wideband Semideterministic
Prediction Model

The prediction model has been presented earlier by the
authors in [4–6]. It has been derived by means of two core
components; a geometric engine and an electromagnetic
engine. While the geometric engine derives the propagation
paths based on the accurate information of the 3D building
database, the electromagnetic engine computes the prop-
agation mechanisms and integrates the antenna radiation
patterns.

The model requires an accurate 3D indoor database with
detailed information describing the scattering objects (walls,
doors, and windows), their thickness and their dielectric
properties. The required building parameters introduced in
the database are the relative dielectric constant εr and the loss
tangent tan δ. According to their electromagnetic material
properties, the structures of the building are classified
into N different classes with common dielectric material
parameters.

Besides free-space propagation, the propagation tool
computes the Fresnel equations, considering multiple
reflections and transmission through walls. Depending
on whether the antennas is horizontally or vertically
polarized, the system considers the corresponding reflec-
tion/transmission coefficients and also the angle of departure
(AoD) and angle of arrival (AoA) corresponding to each
path. Interactions up to the 3rd order reflection have
been considered. Many simulations have confirmed that
this order provides a compromise between the accuracy of
channel parameter (path loss and delay dispersion) and the
reasonable computation time, which is also in accordance
with [7]. The tool supports as much transmissions as the
wave encounters in its propagation path. It accounts for the
single diffraction using the uniform theory of diffraction
(UTD) [8].

Thus, the channel model could be represented as a power
delay profile (PDP) expressed by

h(τ) =
Lp∑

k=1

αkδ
(
τ − τk

)
, (1)

where P is the number of taps, αk and τk are the power
and time of arrival (ToA) of the kth tap. The deterministic
channel modeling provides channel characteristics with an
infinite bandwidth. Hence, an infinite discrete time resolu-
tion is achieved, enabling all MPCs to be resolved. However,
as the measurement bandwidth is generally limited, the
resolution of the measurement equipment could not enable
the detection of all multipath components. Each group of
closely spaced MPCs has been represented with a particular
tap delay Lp, the power of which is the sum of these MPCs
power. The PDP could then be written as

h(τ) =
Lp∑

k=1

kn∑

n=1

αknδ
(
τ − τk

)
, (2)

whereby kn is the number of MPCs clustered together to form
the kth tap.

Since typically only 2D radiation patterns (horizontal
and vertical) are available, the developed model derives the
3D antenna radiation pattern through a bilinear interpo-
lation knowing the measured 2D patterns in E- and H-
planes [9]. Moreover, for a better accuracy, the system model
integrates also 3D measured antenna patterns within an
anechoic chamber.

3. Model Calibration

The calibration consists in extracting relevant multipath
components (MPCs), for instance once reflected paths,
simultaneously from the model and measurement. After-
wards, the simulated annealing is performed to optimize the
material parameters.

3.1. Extraction of Parameters for Calibration. The measured
and predicted PDPs hmeas and hmod are given by

hmeas(τ) =
Lpmeas∑

k=1

(
αk
)

measδ
(
τ − τk

)
,

hmod (τ) =
Lp mod∑

k=1

(
αk
)

mod δ
(
τ − τk

)
.

(3)

After identifying the direct path, according to the arrival
time corresponding to the distance separating Tx and Rx,
particular P power taps (e.g., once reflected paths) with a
power above the noise threshold have been extracted from
the measurement and the model simultaneously. The noise
threshold is computed from each measurement based on
a dynamic noise clipping. Hence, two vectors of power

taps have been formed which are [[(αk)meas]
P
n=1]

T
and

[[(αk) mod ]Pn=1]
T

. The calibration uses the electromagnetic
engine, the power tap matrices and the involved building
structures to optimize the material parameters incorporated
by the deterministic model.

3.2. Simulated Annealing Algorithm: Practical Implementa-
tion for Material Parameters Estimation. The “Simulated
Annealing” is analogous to the phenomenon of heating
a material and letting it cool gradually until reaching a
steady state. By the cooling process, the material reaches
a global optimum, for which a global minimum energy
crystalline structure is dissipated. Starting with an initial
solution s (set of material parameters for the N classes) at
a relatively high chosen temperature T0, a neighbor solution
s′ is afterwards generated as a next solution for which the
evolution in cost, ΔE(s, s′) = E(s′)− E(s), is evaluated. If the
cots decreases, the generated neighbor solution becomes the
current one, otherwise the algorithm decides with a certain
probability whether s remains or s′ becomes the current
solution. The probability of accepting a transition, causing
a decrease ΔE(s, s′) in the cost, is called the acceptance
function and is set to e−ΔE/T . T is the parameter that
corresponds to temperature in the analogy with the physical
annealing process. The algorithm runs L steps with the same



EURASIP Journal on Wireless Communications and Networking 3

Table 1: Simulated annealing algorithm parameters.

Notation Meaning

s A random solution as a set of material parameters

E(s) Objective function

T0 Initial temperature of the stepped geometric decrease

A Geometric decrease coefficient

L Number of steps running with constant temperature

ST Maximum steps the algorithm runs without many
changes

temperature. Afterwards, the changing step of the parameters
is decreased geometrically with the factor A towards zero.
The process is stopped after ST steps if the objective function
remains unchanged. The final solution is considered as the
absolute optimum. The four configuration parameters (T0,
A, L, and ST ) considered by the algorithm are described in
Table 1.

The initial material properties are defined using tab-
ulated values available in literature and knowledge of the
construction material category. The electromagnetic prop-
erties of some different conventional building materials, for
example, at the WLAN frequencies can be found in literature
[2, 10, 11]. However, some materials are a mixture of
unknown components, for which no electromagnetic mea-
surement values are available. Therefore, the optimization
process starts from a common value for all these materials,
corresponding, for example, to the concrete (εr = 4.95,
tan δ = 0.01) at ambient temperature as measured in [11].
The optimized objective (cost) function is defined as the root
mean square error between the measured and the predicted
tap powers for all M measurements with Pm propagation
paths each. A total of 990 indoor planes (walls) of the
building have been grouped into 20 different classes of
structures. Starting from an initial set of material parameters
as initial solution for structure classes, the initial objective
function is computed at each new iteration i as

Ci = 1
M

M∑

m=1

1
Pm

√
√√
√
√

Pm∑

n=1

((
αmn

)
mod −

(
αmn

)
meas

)2
i , (4)

where M is the number of conducted measurements, Pm is
the number of paths within the measurement m, and αmn
are the power taps from (1). The parameters (αmn) mod and
(αmn)meas denote the predicted and measured powers of the
MPCs, respectively.

4. Measurement Campaign and
Calibration Results

4.1. Measurement Campaign. The measurements have been
conducted within an indoor office building environment,
for which the antenna placements are depicted in Figure 2.
In the frequency domain, a vector network analyzer is
connected through a GPIB connection to a notebook. It
sweeps the channel with a bandwidth of 100 MHz around the
central frequency 2.45 GHz. The channel impulse response

Rx Tx

(a)

(b)

Figure 1: (a) A measurement configuration within an office room
with (b) a 3D ray tracing.

in the time domain is obtained by the inverse fast Fourier
transform (ifft) of the measured complex channel transfer
function. In order to overcome the leakage problem of side
lobes, while preserving a reasonable pulse width within
the channel impulse response, a Hamming window is
applied. Two identical WLAN directional antennas, with
14 dBi gain and a half-power beam width of 30◦, have been
connected to the ports of the VNA via two cables of 10 m
length each. The corresponding radiation patterns have been
measured in 3D in an anechoic chamber at the frequency
of 2.45 GHz and have been introduced into the model.
Both antennas can be directed in azimuth and elevation
in the range 0–350◦ with steps of 10◦ and are positioned
at a height level of 1.25 m. Using directional antennas is
favorable for focusing the reception on a specific direction
targeting a better identification of reflections impinging
from the surrounding environment. The performance has
been investigated in terms of RMS delay spread (στ [ns]),
maximum excess delay (τmax [ns]) and path loss (L [dB]),
which is computed considering the sum over all MPCs
powers above the noise threshold. The channel parameters
have been computed considering a noise clipping. A total
number of 38 measurements corresponding to 4 transmitter
locations, associated with 20 receiver positions on the second
floor have been conducted, whereby different antenna tilts
(with steps of 90◦) have been considered at some positions.
These locations are shown in Figure 2. The building database
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Figure 2: Indoor transmitter and receiver locations.

gathers 900 elementary planes constituting the structures
(walls, doors, windiws, cupboards, bookshelves, and tables),
as shown in Figure 1.

The offices where the measurements have been con-
ducted are representative of the entire institute building and
gather most of the building structures. Moreover, 9 aligned
measurements starting at 3 m from the transmitter have been
conducted on the floor (as depicted in Figure 2) due to its
characteristics enabling LOS conditions and wave-guiding
effects.

4.2. Calibration Performance. The calibration has been per-
formed using a set of three measurements for LOS (Tx2-
Rx1, Tx2-Rx2) and for NLOS (Tx1-Rx5) as presented in bold
squares in Figure 2. Figure 3 displays the PDP (before and
after calibration).

The positions Tx2-Rx1 is included in the calibration,
Tx1-Rx2 in the neighbor room, and Tx4-Rx1 situated on
the corridor are both not used as calibration data. The
initial cost function prior to calibration amounts to 5.2 dB,
whereas the one after calibration is 1.3 dB. The PDPs have
been normalized referring to the direct path power. The good
match of the model is resumed in Table 2 regarding channel
parameters.

Though initially not included in the calibration, the
measurements Tx1-Rx2 and Tx4-Rx1 show a good match
with the calibrated model. As expected, the measurement
Tx2-Rx1 shows a better match than the other measurements
not included in the calibration. However, the advantage
of the model resides in providing globally more accurate
parameters at any location within the environment without
need of huge measurement campaigns to cover the whole

Table 2: Summary of results for the three positions.

Position Parameter Measurement Uncalibrated Calibrated

Tx2-Rx1
στ [ns] 10.3 2.8 8.1

τmax [ns] 170 60 160

L [dB] 42.9 44.5 42.2

Tx1-Rx2
στ [ns] 16 5.5 13.8

τmax [ns] 170 70 120

L [dB] 41.2 43.8 40.4

Tx4-Rx1
στ [ns] 11.8 1.3 7.9

τmax [ns] 160 40 170

L [dB] 28.8 28.3 28.7

building. This is an advantage over the statistical modeling
as presented, for example, in [6].

4.2.1. Overall Analysis. An overall improvement of the cali-
brated model compared to the uncalibrated one is obviously
noticeable in most cases. The delay dispersion parameters are
considerably improved as the power taps are calibrated. This
is demonstrated in Table 3 showing the overall improvement
by the new calibrated model in terms of prediction error over
all measurements, where the mean, the standard deviation,
the minimum, and the maximum error are denoted byΔ, Δσ ,
Δmin, and Δmax. Hence, the calibrated model delivers globally
a significant improvement in characterizing the channel. A
mean prediction error of 1.5 dB and a standard deviation of
4 dB are provided by the calibrated model. At a few positions,
channel parameters did not improve due to the presence
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Figure 3: PDP for the measurements (a) Tx2-Rx1 (used as
calibration data), (b) Tx1-Rx2 (not used as calibration data), and
(c) Tx4-Rx1 (not used as calibration data).

Table 3: Overall prediction error of the model before and after
calibration.

Parameter Statistics Uncalibrated Calibrated

στ [ns]

Δ 8 4

Δσ 5.1 4.7

Δmin 1.5 −5.6

Δmax 22.8 18.1

τmax [ns]

Δ 46 11.9

Δσ 48.1 30.1

Δmin −40 −30

Δmax 140 80

L [dB]

Δ 1.6 1.3

Δσ 9.1 4

Δmin −23.5 −10.5

Δmax 21.1 7.3

Table 4: Path loss prediction error statistics of COST 231 models
and calibrated ray tracing.

Model OSM MWM Ray tracing

Δ −5.3 −4.1 1.3

Δσ 10.5 9.2 4

Δmax 26.8 17.8 7.3

Δmin −14.8 −17.4 −10.5

of other objects with different materials or due to other
propagation mechanisms not considered by the model.

4.2.2. Performance Over COST 231 Models. COST 231
models (one slope model and multiwall model) [12] are
narrowband indoor prediction models. These models have
been fitted using the same measurements used for the ray
tracing. These models are given by the following equations

LOSM = 50.7 + 17.3 log(d) [dB], (5)

whereas the MWM model is given by

LMWM = 40 + 20 log(d) + c +
∑

w

Lwkw [dB], (6)

where the constant loss c = −6.7 dB and the wall loss Lw =
15.7 dB have been determined by calibration. A comparison
of the results of the calibrated model performance over the
conventional COST 231 models for all 38 measurements
are summarized in Table 4. It is obvious that the calibrated
model outperforms the two empirical models. An average
error of 1.3 dB is achieved by the ray tracing model, whereas
the ones of OSM and MWM remain between −6 and −4 dB.
Compared to the COST 231 models, which have a standard
deviation between 11 and 9 dB, the calibrated ray tracing
model achieves a smaller standard deviation of 4 dB.

Originally, empirical models provide less accuracy com-
pared to ray tracing models, as they only consider the
direct path between the transmitter and the receiver. This
is the main cause of their weakness especially within a rich
multipath indoor environment.
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5. Sensitivity of the Calibration to
the Measurements

Analyzing the performance of the calibration reveals some
investigations to be dealt with comprehensively. In this
section, the degree of the model performance improvement
added by the calibration is assessed as a function of the
calibration set size. First, the effect of one measurement
is investigated. Subsequently, the impact of increasing the
calibration set size has been analyzed.

5.1. Single Measurement-Based Calibration. The optimiza-
tion on a single measurement is useful to provide an insight
into the degree of improvement to be expected with an
adequate choice of material parameters. Each of the 38
measurements has been used for calibration of the model
and the cost function for this measurement as well as
the modeling error are computed for all measurements.
Obviously, by virtue of their representative locations in the
building, some measurements perform better than others
when used for calibration. For instance, measurements 10
and 20 provide the best match with a cost of 1.2 to 1.5 dB
(see Figure 4), whereas other measurements (2, 13, and 31)
deliver the worst match with an error between 5 and 7 dB.

Each measurement of the 38 has been used singularly
for calibration. The overall results of the improvement using
one measurement are shown in Figure 5, where ε denotes
the absolute average prediction error between the model and
the measurements for the complete set of 38 measurements,
expressed by

ε = 1
38

38∑

i=1

∣
∣Δi
∣
∣, (7)

where Δi is the prediction error for the ith measurement.
The uncalibrated plot (dashed line) is constant as it is

the difference between the measurement and prediction for
all the set of data before calibration. It is noticeable that the
average error reaches an optimum of 3 dB. However, at some
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Figure 5: Average error for all measurements with a calibration set
of one measurement for (a) path loss, (b) RMS delay spread, and (c)
maximum excess delay.

other, less representative locations of the entire building, the
calibration results are rather degraded.

5.2. Measurement Set Size Influence. In order to keep the
computation time reasonable with the increasing number of
possible combinations, all possible combinations from the
first 15 measurements have been considered (n = 1, . . . , 15).
The remaining 15 measurements have been added to the set
(one each new calibration process) without combination. At
each calibration computation, the resulting cost function is
recorded and plotted versus the calibration set size (number
of measurements) in Figure 6. The cost function undergoes
an exponential decay with the variation trend given by the
equation in the figure.

Figure 7 shows the average of the errors between the
measurements and the calibrated model for all combinations
of the 30 measurements, when the number of measurements
used to optimize the floor plan is increased. ε denotes
the absolute average prediction error for all measurements
together. At each calibration process, the calibration set size
is incremented by one measurement and the calibration
error for all positions is computed. All combinations of
measurements have been considered to derive the average
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error. The overall degree of improvement in terms of time
dispersion and path loss parameters is illustrated in Figure 7.

Henceforth, the remarkable fact which flows from these
results is that the error diminishes as the calibration set
size increases. This error reaches a fluctuation status around
the number of 10, where the modeling error starts to
fluctuate around a constant value. This reveals effectively
the performance boundary of this deterministic model. It is
noteworthy that the prediction error of path loss and time
dispersion parameters exhibits a general decay trend with
increasing calibration set size. However, a judicious calibra-
tion requires a compromise between a best performance and
a lower computation time and complexity.

6. Conclusions

This paper addresses the subject of a new deterministic
model calibration technique based on simulated annealing,
which improves the model performance by means of a few
pilot measurements.

The basic facts that emerge from this paper are mainly the
model performance improvement and the performance limit
reached with more measurements. Indeed, the calibrated
model outperforms the standard uncalibrated one with a
mean error of 1.3 dB and a standard deviation of 4 dB.
With an increasing size of the calibration set, the calibration
reaches a steady state for a number of measurements of 10
and starts to deviate around a constant value which shows
the performance limit of the ray tracing modeling method.
The calibration positions should be chosen in a way to cover
the different kinds of rooms in the building in order to enable
the coverage of major structures within the environment.

Besides its advantage of compensating for the tedious
task of manually tuning the building dielectric parameters
plan, the calibration produces an optimized building plan
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Figure 7: Average error for all measurements in terms of (a) path
loss, (b) RMS delay spread, and (c) maximum excess delay with
increasing size of the calibrating measurement set.

that works for any conventional ray tracing model. It has
been shown that, though the model accuracy improves with
an increasing number of measurements used for the opti-
mization, it is indeed bounded and tends to a steady state.
The calibration modeling error starts to fluctuate around its
extremum after a certain number of measurements, which
obviously shows the limits of the deterministic modeling by
means of ray tracing.

Directional antennas (as used in this paper) enhance the
signal strength and the impinging waves from a certain direc-
tion. Omnidirectional antennas can also be used as in [6].

The more the structures a floor plan has the bigger
the calibration set size should be in order to optimize all
material parameters. Furthermore, the calibrating measure-
ments should involve main propagation paths reflected on
the structures to be calibrated.
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1. Introduction

The finite-difference time-domain (FDTD) [1] method for
electromagnetic simulation is today one of the most efficient
computational approximations to the Maxwell equations. Its
accuracy has motivated several attempts to apply it to the
prediction of radio coverage [2, 3], though one of the main
limitations is still the fact that FDTD needs the implemen-
tation of a highly time-consuming algorithm. Furthermore,
the deployment of metropolitan wireless networks in the
last years has recently triggered the need for radio network
planning tools that aid operators to design and optimize
their wireless infrastructure. These tools rely on accurate
descriptions of the underlying physical channel in order
to perform trustworthy link- and system-level simulations
with which to study the network performance. To increase
the reliability of these tools, accurate radiowave propagation
models are thus necessary.

Propagation models like ray tracing [4, 5] have been
around already for some time. They have shown to be

very accurate, as well as efficient from the computational
point of view, except in environments like indoor where too
many reflections need to be computed. In [6], a discrete
model called Parflow has been proposed in the frequency
domain, reducing a lot the complexity of the problem but
bypassing the time-related information such as the delays of
the different rays.

The FDTD model, which solves the Maxwell equations
on a discrete spatial and temporal grid, can be also
considered as a feasible alternative for this purpose. This
method is attractive because all the propagation phenom-
ena (reflections, diffractions, refractions, and transmission
through different materials) are implicitly taken into account
throughout its formulation. In [7], a hybridization of FDTD
with a geometric model is proposed. In this approach, FDTD
is applied only in small complex areas and combined with
ray tracing for the more open space regions. Yet, the running
time of such an approach is still too large to consider it for
practical wireless networks planning and optimization. The
evaluation of the FDTD equations at the frequencies of the
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current and future wireless networks (UMTS, WiMAX, etc.)
requires the use of extremely small spatial steps compared
to the size of the obstacles within the scenario. In femtocell
environments such as residential areas, this would lead to the
use of matrices that require extremely large memory spaces,
making infeasible its computation on standard off-the-shelf
computers. In order to solve this issue, a reformulation
of the problem at a lower frequency [8] is possible and
necessary.

The main contribution of this paper is thus the intro-
duction of a heuristics-based calibration approach that solves
the lower-frequency approximation by directly matching the
FDTD prediction to real WiMAX femtocell measurements.
The outcome of this calibration procedure will be the
properties of the materials that best resemble the recorded
propagation conditions. These can be later reused for further
simulations in similar scenarios and at the same frequency.
Nevertheless, propagation models always perform better if
a measurements-based calibration is carried out in situ [9].
Hence, the approach presented here can also be implemented
in a coverage prediction tool and be subject to calibration
with new measurements for increased accuracy of the FDTD
model in a given scenario.

Over the last few years, the traditional central processing
units (CPUs) have started to face the physical limits of their
achievable processing speed. This has lead to the design
of new processor architectures such as multicore and the
specialization of the different parts of computers. On the
other hand, programmable graphics hardware has shown
an increase on its parallel computing capability of several
orders of magnitude, leading to novel solutions to com-
pute electromagnetics [10]. Graphics chipsets are becoming
cheaper and more powerful, being their architecture well
suited for the implementation of parallel algorithms. In [11],
for instance, a ray-tracing GPU implementation has been
proposed. FDTD is an iterative and parallel algorithm, being
all the pixels updated simultaneously at each time iteration.
This fact makes FDTD an extremely suitable method to be
implemented on a parallel architecture [12]. By following the
recently released compute unified device architecture (CUDA)
[13], this paper presents an efficient GPU implementation
of an FDTD model able to reduce further the computing
time.

One final problem to address when dealing with FDTD is
the proper configuration of the absorbing boundary condition
(ABC). For efficiency reasons, the convolutional perfectly
matched layer (CPML) is to be used. In order to provide the
highest absorption coefficient for the problem of interest,
adequate parameters must be chosen so a method for the
calibration of the CPML parameters is presented.

2. WiMAX Femtocells

Due to the flexibility of its MAC and PHY layers and to
the capability of supporting high data rates and quality of
service (QoS) [14], wireless interoperability for microwave
access (WiMAX) is considered one of the most suitable
technologies for the future deployment of cellular net-
works.

On the other hand, femtocell access points (FAPs) are
pointed out as the emerging solution, not only to solve
indoor coverage problems, but also to reduce network cost
and improve network capacity [15].

Femtocells are low-power base stations designed for
indoor usage that have the objective of allowing cellular net-
work service providers to extend indoor coverage where it is
limited or unavailable. Femtocells provide radio coverage of
a certain cellular network standard (GSM, UMTS, WiMAX,
LTE, etc.) and they are connected to the service provider via
a broadband connection, for example, digital subscriber line
(DSL). These devices can also offer other advantages such as
new applications or high indoor data rates, and thus reduced
indoor call costs and savings of phone battery.

According to recent surveys [16], around 90% of the
data services and 60% of the mobile phone calls take
place in indoor environments. Scenarios such as homes or
offices are the favorite locations of the users, and these
areas will support most of the traffic in the following years.
WiMAX femtocells appear thus as a good solution to improve
indoor coverage and support higher data rates and QoS.
Furthermore, there are already several companies involved
in the manufacture [17] and deployment [18] of these
OFDMA-based devices.

Since a massive deployment of femtocells is expected
to occur as soon as of 2010, the impact of adding a new
femtocell layer to the existing macrocell layer stills needs to
be investigated. The number and position of the femtocells
will be unknown, and hence a controlled deployment of
macrocells throughout traditional network planning can no
longer be a solution used by the operator to enhance the
network performance. Therefore, a detailed analysis of the
interference between both layers, femto and macro, and the
development of self-configuring and self-healing algorithms
and techniques for femtocells are needed. Due to this,
accurate network link-level and system-level simulations
will play an important role to study these scenarios before
femtocells are widely deployed.

Since femto-macrocell deployments will take place in
hybrid indoor/outdoor scenarios, propagation models able
to perform well in both environments are required. On
the one hand, empirical methods [19] such as Xia-Bertoni
or COST231 Walfish-Ikegami are not suitable for this task
because they are based on macrocell measurements and are
specifically designed for outdoor environments. Ray tracing
has shown excellent performance in outdoor scenarios
but its computational requirements become too large [20]
when they come to compute diffraction- and reflections-
intense scenarios. For instance, in indoor environments this
results in long computation times [21], forcing ray-based
approaches to restrict the amount of reflections that are
computed. The same happens in cases where the simulation
of street canyons requires a large number of reflections. On
the other hand, finite-difference methods such as FDTD are
able of accounting for all of the field interactions as long as
the simulation is run until the steady state and the grid reso-
lution describes accurately the environment. Therefore, these
methods appear as an appealing and accurate alternative [22]
for the modeling of hybrid indoor/outdoor scenarios.



EURASIP Journal on Wireless Communications and Networking 3

3. Optimal FDTD Implementation

Since femtocells are designed to be located indoors and have
an effect only in the equipment premises and a small sur-
rounding area, in the case of low-buildings residential areas,
properly tuned bidimensional propagation models should be
able to precisely predict the channel behavior. The problem
under consideration (femtocells coverage prediction) can be
thus restricted to the two-dimensional case. Considering
typical femtocells antennas with a vertical polarization and
following the terminology given in [23], the FDTD equations
can be written in the TMZ mode as follows:

Hx|n+1
i, j+1/2 = Hx|ni, j+1/2−Db|i, j+1/2

·
[Ez|n+1/2

i, j+1 − Ez|n+1/2
i, j

Δκyj+1/2

+ΨHx,y |n+1/2
i, j+1/2

]
,

Hy|n+1
i+1/2, j = Hy|ni+1/2, j+Db|i+1/2, j

·
[Ez|n+1/2

i+1, j − Ez|n+1/2
i, j

Δκxi+1/2

+ΨHy,x |n+1/2
i+1/2, j

]
,

Ez|n+1/2
i, j = Ca|i, j · Ez|n−1/2

i, j + Cb|i, j

·
[
ΨEz,x |ni, j −ΨEz,y |ni, j +

Hy|ni+1/2, j −Hy|ni−1/2, j

Δκxi

−
Hx|ni, j+1/2 −Hx|ni, j−1/2

Δκyj

]
,

(1)

where H is the magnetic field and E is the electrical field in
a discrete grid sampled with a spatial step of Δ. Db, Ca, and
Cb are the update coefficients that depend on the properties
of the different materials inside the environment.ΨHx,y ,ΨHy,x ,
ΨEz,x , andΨEz,y are discrete variables with nonzero values only
in some CPML regions and are necessary to implement the
absorbing boundary.

However, the propagation of TMZ cylindrical waves in
2D FDTD simulations is by nature different from the 3D case.
In order to minimize the error caused by this approximation,
the current model is calibrated using femtocell measure-
ments recorded in a real environment (see Section 5). This
guarantees that the final simulation result resembles the real
propagation conditions as faithfully as possible. It is also
to be noticed that femtocell antennas are omnidirectional
in the horizontal plane, emitting thus much less energy in
the vertical direction. Moreover, in residential environments
containing houses with a maximum of two floors, the main
propagation phenomena occur in the horizontal plane. That
is why restricting the prediction to the 2D case is only
acceptable for this or similar cases, and not appropriate for
constructions with bigger open spaces such as airports, train
stations, or shopping centers.

From the computational point of view, restricting the
problem to the 2D case is still not enough to achieve
timely results for the study of femtocells deployments
and their influence into the macrocell network. FDTD is
very computationally demanding and therefore a specific

implementation must be developed. The main purpose of
this section is thus to present two techniques that aid to
solve the scenario within reasonable execution times. The
first technique reduces the complexity of the problem by
increasing the spatial step used to sample the scenario, that
is, it chooses a simulation frequency lower than that of the
real system. The second technique presents a programming
model that optimizes memory access for implementations in
standard graphics cards.

3.1. Lower-Frequency Approximation and Model Calibration.
The running time of the FDTD method depends, among
other things, on the number of time iterations required to
reach the steady state, that is, the stable state of the coverage
simulation. To summarize, this number of iterations depends
on the following.

(i) The number of obstacles inside the environment
under consideration: the more the walls are, the more
reflective and diffractive effects that will occur.

(ii) The size of the environment in FDTD cells: a larger
environment will need more iterations for the signal
to reach all the cells of the scenario.

In order to accurately describe the environment, the number
of obstacles should not be reduced. It is thus interesting to
try to reduce the size of the problem, which can be achieved
by using a larger spatial step Δ. To describe the simulation
scenario, Δ must also be small compared to the size of the
obstacles. Furthermore, to avoid dispersion of the numerical
waves within the Yee lattice, the spatial step also needs to
be several times smaller than the smallest wavelength to be
simulated [24]. For example, an freal = 3.5 GHz WiMAX
simulation would require a spatial step smaller than λ =
8.5 cm according to

Δ = λ

Nλ
. (2)

Numerical dispersion in 2D FDTD simulations causes
anisotropy of the propagation in the spatial grid. However,
these effects can be reduced if a fine enough spatial grid is
used. It is shown in [25] that with Nλ = 10, the velocity-
anisotropy error is Δvaniso ≈ 0.9%, introducing thus a
distortion of about 9 cells for every 1000 propagated cells.
However, these errors become meaningless after the calibra-
tion procedure introduced in Section 5.3, which corrects the
power distribution so that it resembles the real propagation
case according to the recorded measurements.

A scenario for the study of femto-to-macro interference
has a typical size of around 100 × 100 meters so sampling
the scenario with Δ = 0.85 cm is not feasible in terms of
computer implementation. A frequency reduction is thus
necessary [26] to cope with memory and computational
restrictions. This frequency reduction comes obviously at a
cost because the reflections, refractions, transmissions, and
diffractions behave differently depending on the frequency.
Since the physical properties of the different materials are
frequency dependent, reflections, refractions and transmis-
sions through materials will vary. To overcome this problem,
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Figure 1: Example of a calibrated femtocell coverage prediction
subject to diffraction errors due to lower-frequency FDTD simu-
lation.

the approach presented here consists on performing a cali-
bration of such parameters. This calibration, based on real
measurements, will find values for the materials parameters
in order to model, at a lower frequency, their behavior at
the real frequency. This search is performed by minimizing
the root mean square error (RMSE) between simulation
and measurements, and the details of such a method are
described in Section 5.3.

The effects of simulating with a lower frequency for
WiMAX at 3.5 GHz have been already studied in [8], where
it was shown that even after calibration, the predictions
are still subject to an error due to diffractive effects.
Nevertheless, it is well known that reflections dominate over
diffractions in indoor environments, and the main power
leakage of the femtocell from indoor to outdoor occurs by
means of transmissions through wooden doors and glass
windows (see Figure 1). Furthermore, in streets like the one
shown in the current scenario, canyon effects caused by
reflections are the main propagation phenomenon so it is
clear that diffraction is not a significant propagation means
in femtocell environments.

Additionally, it was shown in [8] that the absolute value
of the error due to diffraction is limited and that the overall
error of the simulation will depend only on the number
of diffractive obstacles. In Section 5.4 a postprocessing filter
is proposed as a means to reduce the fading errors due to
this phenomenon. For comparative purposes, an unfiltered
lower-frequency prediction is shown in Figure 1. The more
accurate postprocessed prediction is explained later and
displayed in Figure 9.

3.2. Parallel Implementation on GPU. If the previously
described simplification reduces the size of the environment
to simulate, the focus of this section is to present an
implementation of the algorithm that reduces further the
simulation time. In wireless networks planning and opti-
mization, the aim is to run several system-level simulations
to test hundreds of combinations of parameters for each
base station. This implies that several base stations (emitting
sources) must be simulated. It is thus necessary to reach
simulation times on the order of seconds for each source. In
order to reach this objective and since each cell of an FDTD

environment performs similar computation (update of the
cell own field values taking into account the neighboring
cells), an approach is the use of parallel multithreaded
computing.

The implementation of finite-difference algorithms on
parallel architectures such as field-programmable gate-arrays
(FPGAs) [27] and graphics processing units [28] has been
recently highly regarded by the FDTD community. For
instance, speeds of up to 75 Mcps( mega cells per second)
have been claimed [29] for a 2D implementation in an
FPGA. However, FPGAs are costly devices whose use is not
as common as that of GPUs, which are present today in
almost every personal computer. Therefore, the interest on
programmable graphics hardware has increased and some
solutions are already being proposed [10] as a feasible means
of achieving shorter computation times for this type of
algorithms.

By programming an NVIDIA GPU device with the
new CUDA architecture [13], a 2D-FDTD algorithm has
been implemented. With this technology, it is not necessary
to be familiarized with the graphics pipeline and only
some parallel programming and C language knowledge are
necessary to exploit the properties of the GPU. This reduces
the learning curve for scientists interested in quickly testing
their parallel algorithms, while eliminating the redundancy
of general purpose computing on GPU (GPGPU) code based
on graphics libraries such as OpenGL.

The number of single instruction, multiple thread (SIMT)
multiprocessors in each GPU varies between different cards,
and each multiprocessor is able to execute a block of parallel
threads by dividing them into groups named warps. Depend-
ing on the features (memory and processing capability) of
a given multiprocessor, a certain number of threads will be
executed parallely. It is thus important to balance the amount
of memory that a thread will use, otherwise the memory
could be fully occupied by less threads than the maximum
allowed by the multiprocessor. It is in the programmer
best interest to maximize the number of threads to be
executed simultaneously [30]. Therefore and to maximize
the multiprocessor occupancy, five different types of kernels
(GPU programs) have been designed to compute different
parts of the scenario as shown in Figure 2. The central
area is the computational domain containing the scenario
that needs to be simulated. Meanwhile, the other four areas
represent the four absorbing boundary regions at the limits
of the environment.

To compare the performance of such an implementation
with traditional nonparallel approaches, the simulation of
a 1200 × 1700 pixels scenario has been tested under three
different platforms. 3000 iterations were required to reach
the steady state in this environment. MATLAB, which makes
use of the AMD core math library (ACML) and is thus
very optimized for matrices computation, is used as the
nonparallel reference. Then a standard laptop graphics card
(GeForce 8600M GT) and a high-performance computing
card (TESLA C870) are tested. The main differences between
these two cards are the number of multiprocessors (4 and
32) and the card memory (256 MB and 1.5 GB). The different
performance results can be checked in Table 1.
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Figure 2: Fragmentation of the simulation scenario for indepen-
dent kernels execution.

Table 1: Performance of the algorithm running on different
platforms when computing three thousand iterations of a scenario
of size 1200× 1700.

MATLAB GF 8600M GT TESLA C870

Running time: 72 min 43 s 8 s

Usable speed: 1.42 Mcps 142.24 Mcps 764.55 Mcps

Gross speed: 1.48 Mcps 148.79 Mcps 799.72 Mcps

The achieved running time (8 seconds) for a complete
radio coverage can be considered as a reasonably quick
propagation prediction, fulfilling thus the requirements in
terms of speed for wireless network planning in the presence
of randomly distributed femtocells. This way, a high number
of network configurations can be tested within acceptable
times by the operator.

4. Calibration of the Absorbing
Boundary Condition

FDTD is a precise method for performing field predictions in
small environments and it has been widely applied in several
areas of the industry, such as the simulation of microwave
circuits or antennas design. But during many years, the
computation of precise solutions in unbounded scenarios
remained a great challenge.

In 1994 Berenger introduced the perfectly matched layer
(PML) [31], an efficient numerical absorbing material
matched to waves of whatever angle of incidence. The next
improvement of this method occurred in 2000, when Roden
and Gedney presented a more efficient implementation
called convolutional perfectly matched layer (CPML) [32],
which has since been one of the better regarded choices for
this purpose.

However, the CPML must be carefully configured in
order to properly exploit its full potential. The absorptive
properties of the CPML depend mainly on the wave k-vector,

which is a function of the type of source being used, and
it will therefore present different reflection coefficients for
simulations performed at different frequencies. A proper
selection of parameters is thus necessary.

An error function based on the reflection error of the
CPML is presented next, as well as a continuous optimization
approach to find its minimum in the solutions space formed
by the CPML parameters.

4.1. The CPML Error Function

4.1.1. The Optimization Parameters. The CPML method
maps the Maxwell equations into a complex stretched-
coordinate space by making use of the complex frequency-
shifted (CFS) tensor

sw = κw +
σw

aw + jωε0
, w = x, y, z, (3)

where, following the notation of [24], w indicates the
direction of the tensor coefficient.

In order to avoid reflections between the computational
domain (CD) and the CPML boundary due to the disconti-
nuity of sw, the losses of the CPML must be zero at the CD
interface. These losses are then gradually increased [31] in
an orthogonal direction from the CD interface to the outer
perfect electric conductor (PEC) boundary. A polynomial
grading of aw, κw, and σw has shown [24] to be quite efficient
for this task:

aw(w) = aw,max

(
d −w
d

)ma

,

κw(w) = 1 + (κw,max − 1)
(
w

d

)m
,

σw(w) =
(
w

d

)m
σw,max,

(4)

where d is the depth of the CPML, m and ma are the grading
orders. An approximate optimal σw,max can also be estimated
to outcome a given reflection error R(0) with

σw,opt = − (m + 1) ln[R(0)]
2ηd

, (5)

where η is the impedance of the background material [24].
However, which precise values of amax, κmax, and σmax

to choose for a specific FDTD simulation remains an open
question. The solution to this problem is thus the com-
bination of parameters that configures the most absorbing
CPML for a given source and number of FDTD time steps.
Since the optimal value of σmax is close to (5), the factor
Fσ = σmax/σw,opt can be defined for notation simplicity and
be subject to the optimization process. The intervals to search
for the optimal solution when using a continuous soft source
are presented in Table 2 and can be defined as

amax ∈ [a1
max, a2

max],

κmax ∈ [κ1
max, κ2

max],

Fσ ∈ [F1
σ ,F2

σ ].

(6)
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Table 2: Typical properties of the search parameters.

Range Precision n

amax [0, 0.5] 0.0001 20

κmax [1, 50] 0.1 15

Fσ [0.5, 1.5] 0.01 12
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Computational
domain
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Figure 3: Sounding points in a 2D grid of size (Dx ,Dy). The depth
of the extended grid in each direction varies depending on the
position of the source.

4.1.2. The Error Function. This section presents CPML cali-
bration results for 2D TMZ simulations where the electrical
field Ez is the output magnitude from each FDTD simulation.
In order to evaluate a given solution we compare it to a
reference simulation that is free of reflections at the border.
This reference simulation must be computed [24] using a
grid large enough to avoid that reflections bounce back into
the computational domain. As long as the FDTD simulation
is implemented with first-order derivatives, a wavefront can
only advance one cell per time step. In order to construct
the extended grid in this case, the number of cells that must
be added to the original grid in each direction can be thus
calculated by simply considering the number of FDTD steps
and the position of the source (see Figure 3).

To assess the optimal CPML configuration, it is necessary
to analyze the time evolution of the simulated grid. For the
sake of efficiency and to provide a reasonable estimation of
the behavior of the CPML, the grid will be sounded only
at certain key points. The highest reflection error occurs
typically near the borders and corners of the CD so a
homogeneous selection of sounding points is that shown in
Figure 3.

The output of the reference simulation will therefore be
the value of the electrical field Ezref|nip , jp at each sounding
point p with coordinates (ip, jp) and at time step n. Defining
similarly the output of each optimization simulation as

Ez|nip , jp , the relative error for the same sounding point and
at the same time step is

εrel|nip , jp =
∣∣
∣
∣
Ez|nip , jp − Ezref|nip , jp

maxn
{
Ezref|nip , jp

}
∣∣
∣
∣. (7)

Each optimization simulation performs N FDTD time
steps. Therefore to obtain an indicator of the relative error
value over the time, the RMS relative error is computed for
each sounding point:

εrelRMS |ip , jp =

√√
√
√√

1
N

N−1∑

n=0

(
εrel|nip , jp

)2
. (8)

Finally, and in order to obtain a general indicator of the
error for the whole scenario, the average value of (8) for all
the sounding points is to be computed. The error function
for a given combination of parameters can be thus defined as

error(amax, κmax,Fσ) = 1
Np

Np−1∑

p=0

εrelRMS |ip , jp . (9)

Numerical experiments have shown that (9) does not
vary much by adding more sounding points. Np = 8
represents therefore a good compromise between sounding
efficiency and reliability of the error function.

4.2. The Calibration Process

4.2.1. The Optimization Algorithm. The objective of this
section is to present a method to compute the combination
of (amax, κmax,Fσmax ) that minimizes (9). Several tests indicate
that (9) is unimodal along the amax, κmax, and Fσ dimensions,
that is, (9) has only one minimum in the region given by
(6). In order to find the optimum without evaluating the
error function at a large number of candidate solutions, a
smarter approach can be applied by minimizing (9) along
each dimension sequentially and independently. Algorithm 1
presents this approach, being the stop condition the location
of a satisfactory minimum lower than ε or the evaluation of
a maximum number nmax of iterations.

In order to find the minimum of the error function for
each dimension of the space of solutions, it is necessary to
evaluate (9) at several positions within the search intervals
(6). Each of these evaluations needs to perform an FDTD
simulation, which is the most time-consuming part of the
algorithm. To minimize these, a Fibonacci search algorithm
[33] is to be used. This algorithm narrows down the search
interval by sequentially evaluating the error function at
two positions within the interval and reusing one of these
evaluations in the next step. Therefore only one function
evaluation is necessary at each step. Table 2 contains the
precision achieved for the example intervals and the required
length n of the Fibonacci sequence for each parameter.

4.3. ABC Calibration Results. Figure 4 presents a contour
plot of the error function described by (9). The function
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κmax,opt ⇐ U(κ1
max, κ2

max)
Fσ ,opt ⇐ U(F1

σ ,F2
σ )

n⇐ 1
errorn ⇐ ε
while errorn ≥ ε and n ≤ nmax do
amax,opt ⇐ arg minamax{error(amax, κmax,opt,Fσ ,opt)}
κmax,opt ⇐ arg minκmax{error(amax,opt, κmax,Fσ ,opt)}
Fσ ,opt ⇐ arg minFσ {error(amax,opt, κmax,opt,Fσ )}
errorn = error(amax,opt, κmax,opt,Fσ ,opt)
n + +

end while

Algorithm 1: Minimization of the error function by means of
coordinatewise minimization subroutines.
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Figure 4: Contour plot of the error function with κmax,opt ≈ 1.06
for a modulated Gaussian pulse of width 0.4 nanosecond and an
oscillating frequency of 3.5 GHz. The graph also shows the solutions
found by Algorithm 1 and the evolution until the optimum.

values were obtained by computing the error at 2500
different locations of the 2D space of solutions given by
(amax,Fσ) for the optimal value of κmax. The size of the FDTD
scenario for this example is of 256× 256 cells with the source
located at the coordinates (is, js) = (128, 128) and being
the spatial and time steps 8.6 mm and 10.5 picoseconds,
respectively. The CPML has a depth of 16 cells and a total
of N = 800 FDTD time steps were performed to compute
each value of the error function. The applied source was a
Gaussian pulse with a temporal width of 400 picoseconds
and modulated with a sinusoidal frequency of 3.5 GHz,
which is the frequency of WiMAX in Europe.

Figure 4 also displays the error points found at each
iteration of Algorithm 1 after minimizing in the amax and Fσ
dimensions. In this example, Fσ is initialized with a random
value within its range and the optimal solution is reached
in just 3 iterations. Without fixing κmax and optimizing in
all three dimensions, the minimum is reached in only 4
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Figure 5: Time evolution of the relative error (solid line) at the
upper left point (see Figure 3). The dash-dotted line is the value of
the electrical field at the same sounding point.

iterations. But clearly the number NFDTD of required FDTD
simulations is much greater and can be calculated by

NFDTD = 4 · [(namax − 2
)

+
(
nκmax − 2

)
+
(
nFσ − 2

)]
. (10)

To obtain, for instance, the precision shown in Table 2,
NFDTD accounts for a total of 164 simulations. Using the
previously mentioned parallel computing architecture, these
can be computed in less than 2 minutes on a laptop graphics
card.

Once the algorithm has converged, the quality of the
solution can be tested by computing an FDTD simulation
using the obtained CPML calibration parameters. Figure 5
presents the change over time of the relative error at a corner
point in the scenario described by Figure 3. It is clear in this
example that the relative error never exceeds 5·10−6, yielding
thus an excellent absorption coefficient.

5. Calibration of the Propagation Model

In FDTD, the parameters that define each material and
therefore play an active role in the final simulation result are
three:

(i) relative electrical permittivity εr ;

(ii) relative magnetic permeability μr ;

(iii) electrical conductivity σ .

Due to the 2D and lower-frequency simplifications
applied to this model, it should not be expected that the
values of the materials parameters at the real frequency
perform the same as at the simulation frequency. The correct
values of these parameters must be therefore chosen carefully
in order for the simulation result to resemble faithfully the
reality. As advanced in Section 3.1, this can be achieved
by using real coverage measurements to find the proper
combination of parameters that better match the prediction
to the measurements.
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Table 3: Main parameters of experimental femtocell.

EIRP 12 dBm

Center frequency 3.5 GHz

Transmitter height 77 cm

Vertical Beamwidth 9◦

Tilt 0◦

5.1. Coverage Measurements. In order to measure the accu-
racy of the presented model, a measurements campaign has
been performed. The chosen scenario was a residential area
with two-floor houses in a medium-size British town. The
femtocell excitation is an oscillatory source implemented on
a vector signal generator and configured as shown in Table 3.
The emitting antennae are omnidirectional in the azimuth
plane with a gain of 11 dBi in the direction of maximum
radiation.

Since one of the main objectives of this work is to
introduce a propagation model for the study of interference
scenarios in femtocells deployments, the measurements have
been performed mainly outdoors. This way, the indoor-
to-outdoor propagation case, proper of femto-to-macro
interference scenarios, is characterized. Figure 6 shows the
collected power data laid over a map of the scenario under
study.

5.1.1. Measurements Postprocessing. Raw power measure-
ments are not yet useful for the calibration of a finite-
difference propagation model. The data must first undergo a
postprocessing phase during which outliers will be removed.
Such postprocessing is detailed next.

Removal of Location Outliers. The location of the outdoor
measurement points has been obtained using GPS coor-
dinates but these coordinates are sometimes subject to
errors. At this stage every measurement matching the next
properties must be removed: out of range GPS coordinates,
coordinates inside of a building, no GPS coverage or
coordinates outside of the scenario.

Removal of Noise Bins. In areas of low coverage, it is possible
that the measured signal becomes indistinguishable from
the background noise. Those measurements are thus also
classified as outliers. In order to clearly distinguish signal
from noise, a large recording of the noise in the examined
frequency band and location area has been performed. This
way, the noise has been found to follow an approximate
normal distribution with mean of N = −132 dBm and a
standard deviation of σN = 3.2 dB. Any measurement value
that falls within a 2σN range of N is thus considered to be an
outlier.

Spatial Filtering. The used source is a narrowband frequency
pulse. Therefore, the collected measurements are also subject
to narrowband fading effects which are usually modelled
using random processes. In order for these measurements
to be useful for the calibration of deterministic models, the
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Figure 6: Power measurements and simulation scenario. The
location of the transmitter is marked with a magenta square.
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Figure 7: Power measurements after postprocessing.

randomness due to fading needs to be removed. Hence, a
spatial filtering of the measurements has been applied by
following the 40-Lambda averaging criterion [34]. The final
state of the measurements is shown in Figure 7.

5.2. The Materials Error Function. The objective of the model
tuning is to configure the materials involved in the FDTD
simulation so that they show in the computational domain a
similar behavior to the reality. If (εrm ,μrm , σm) represents the
properties of material m, a solution s to a problem involving
Nm materials is thus Ωs

Nm
:

Ωs
Nm
=

Nm⋃

m=1

(εrm ,μrm , σm). (11)

Each measurement point p (with p ∈ [0,Np − 1] and Np

the number of points) is assigned a measured power value
Pmesp . Similarly and for an FDTD prediction calibrated with
Ωs
Nm

the same point can be assigned a predicted power value
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Pspredp . The error of the prediction at point p can be then
expressed as

Esp = Pmesp − Pspredp , (12)

being MEs = Esp the mean error of all Np points, which can
also be interpreted as the offset between the measurements
and the predictions. Once the model is calibrated, the tuned
mean error MEt is computed. Then the ME of any other
prediction can be greatly reduced by simply adding MEt to
the predictions.

The root mean square error is often used as a good
estimate of the accuracy of a propagation model. The RMSE
will hence be the error function subject to minimization.
For an FDTD configuration Ωs

Nm
, the RMSE can be thus

computed as

RMSE
(
Ωs
Nm

) =

√
√√
√
√

1
Np

Np−1∑

p=0

|Esp|2. (13)

5.3. Metaheuristics-Based Calibration. Once the error func-
tion has been defined, a brute-force approach to find an
optimal solution to the problem could be, for instance, to
test all possible Ωs

Nm
until a solution that minimizes (13) is

found. Since the properties of the materials are all real, the
space of solutions for Ωs

Nm
is infinite and a smarter approach

is needed. In this work, a meta-heuristics optimization
algorithm is proposed as a feasible way of searching the
space of solutions. The algorithm applied here is simulated
annealing, though the same concept also applies to other
heuristic algorithms, as long as they are properly configured.

Simulated Annealing (SA) [35] is an optimization algo-
rithm based on the physical technique of annealing, widely
used in metallurgy. From the point of view of the minimiza-
tion of an error function, SA works by setting the state of the
system to a solution Ωs

Nm
, and evaluating neighbor solutions

Ωs′
Nm

to try to find a better one (RMSE(Ωs′
Nm

) < RMSE(Ωs
Nm

)).
If a better solution is found, then the current state of the
system is updated to the new solution Ωs′

Nm
. If, however, a

worst solution is found, the state of the system is set to this
new neighbor solution with probability P. P is called the
acceptance probability function (APF) and it is a function
of RMSE(Ωs

Nm
), RMSE(Ωs′

Nm
), and a variable T called the

temperature that is progressively decreased as the calibration
progresses. The acceptance probability function must meet
certain requirements in order to accept better solutions than
the current state and worst solutions when the temperature
is high, that is, at the beginning of the calibration process. A
simple APF that follows these criteria is

P
(
Ωs
Nm

,Ωs′
Nm

,T
) = e(RMSE(Ωs

Nm )−RMSE(Ωs′
Nm ))/T , (14)

but the user of SA is free to choose any APF to its conve-
nience.

The way the temperature T is decreased is also subject
to many implementations. In this paper, the value of the
temperature at each stage k is obtained as follows:

Tk = f ∗ Tk−1, (15)
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Figure 8: Evolution of the RMSE of the FDTD prediction when
choosing the materials parameters using simulated annealing. The
temperature is expressed in natural units, T1 = 10 and f = 0.9326.

with k ∈ [2,LT] and LT is the number of different
temperature levels. f is called the annealing factor and it is
related to the rate with which the temperature decreases from
one stage to the next one.

The evolution of the state of the system by means of
SA is displayed in Figure 8, as well as the evolution of
the temperature. For this calibration, LT = 100 different
levels of temperature have been defined and the system
is let free to test NT = 20 different neighbors at each
temperature level. This way, the physical process of annealing
is resembled much more faithfully than if the temperature
was decreased at each SA iteration. The idea behind this
is to allow the system to perform a deeper search at each
temperature level before decreasing its chances of escaping
local minima.

The way neighbor solutions are chosen can also be
decided freely by the user. Since the purpose here is to find
the optimal values of different materials, only one material is
modified at each stage. Furthermore, only one parameter of
this material is modified. This way, a local search in the very
neighborhood of the current state is guaranteed.

The calibration displayed in Figure 8 is performed using
the measurements and scenario shown in Figure 6. For
this scenario and according to the most commonly used
construction materials in the United Kingdom, five different
materials have been assumed: air as the background material,
plaster for the inner walls, wood for the doors and furniture,
glass for the windows, and brick for the houses outer walls.
The final values of the parameters for these materials after the
calibration are shown in Table 4. The electrical conductivity
σ is expressed in S·m−1 and the refraction index n, computed
as n = √εr · μr , is provided as reference.

5.4. Fading Removal Filter. The spatial step for this cali-
bration is Δ = 12 cm with Nλ = 10 for good isotropic
propagation, yielding thus a wavelength of λ = 1.2 m.
This means that the simulation frequency is approximately
fsim = 250 MHz, while the real frequency of the WiMAX
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Table 4: Calibrated parameters of the materials at 3.5 GHz.

εr μr σ n

Air 1.8824 0.7280 7.2273 · 10−4 1.1706

Plaster 1.1182 1.2779 0.0196 1.1954

Wood 1.7522 0.2802 0.0440 0.7007

Glass 5.1358 1.2516 0.0045 2.5353

Brick 3.5789 7.661 0.0014 5.2390
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Figure 9: Filtered coverage prediction of a WiMAX femtocell with
a 3.5 GHz measurements-based calibrated FDTD model.

measurements is freal = 3.5 GHz. Following the terminology
presented in [8], the frequency reduction factor is defined as

FRF = fsim

freal
, (16)

which has in this case a value of FRF ≈ 0.071. Due to
the reasons expressed in Section 3.1, a prediction performed
with the final calibration results of Table 4 is still subject to
errors at diffracting obstacles. Such an error is limited and
can be easily evaluated for each obstacle with

νsim =
√

FRFνreal,

E = 20 log

⎛

⎝

√
(νreal − 0.1)2 + 1 + νreal − 0.1
√

(νsim − 0.1)2 + 1 + νsim − 0.1

⎞

⎠,
(17)

where ν is a geometrical parameter that depends on the
specific disposition of the scenario (see [36] for details).

Since diffraction introduces wrong fading effects, a
spatial (2D) average moving filter has been applied as a
postprocessing method to reduce the impact of the frequency
reduction. A decrease of up to 0.33 dB has been observed
in the value of the RMSE, and up to 3 dB in macrocell-
calibrated models. A coverage prediction performed by the
calibrated FDTD model and postprocessing filter is shown
in Figure 9 along with the measurements used for the
calibration.

After the postprocessing filter, the final obtained RMSE
is of 6 dB and a comparison between the FDTD predictions
and the measurements is displayed in Figure 10.
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5.5. Accuracy Validation. Finally, in order to assess the
accuracy of the FDTD propagation model, calibrations have
been performed at the real and several lower frequencies. The
analyzed range of simulated frequencies comprises values
of FRF| freal=3.5 GHz between 10−2 and 1, being displayed in
Figure 11 the errors of the simulations after calibration. From
this figure it is also clear how the filtering introduced in
the previous section contributes to the reduction of the
RMSE.

Furthermore, the data also shows that proper lower-
frequency calibrations of the model are able to reach
performances close to that of the true frequency. However,
the simulation frequency should not be reduced indefinitely.
This is because of the increase in the size of the spatial
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Figure 13: WiMAX system-level simulation in a hybrid femto-
cell/macrocell scenario.

step as fsim decreases. If Δ becomes too large, the spatial
resolution might not be enough to accurately describe
the simulation scenario and the diffraction phenomena,
bypassing some features of the environment. As a conse-
quence of this, the error grows quickly and reaches values
that could be achieved with simpler propagation models.
Therefore, a compromise between the computational com-
plexity and the model accuracy must be achieved. For the
scenario under consideration, Figure 11 shows that a value
of FRF ≈ 0.071 has been chosen. This value, located
in the elbow of the RMSE curve guarantees a low error
without compromising the execution time and is used in
Section 6 to perform system-level simulations of WiMAX
femtocells.

In order to examine the achievable accuracy in the
overall scenario, a different measurements route has also
been used to test the coverage prediction. For this pur-
pose, the transmitter was placed in a different room
within the femtocell premises and new measurements
were recorded along the street. When compared to the
FDTD prediction performed with FRF ≈ 0.071 the total
error was RMSE ≈ 7.2 dB which differs 1.2 dB from
the originally calibrated error. This indicates that the
accuracy of the model calibration can be improved by
taking more points into consideration. Nevertheless it also
indicates that the results presented in Table 4 can still be
used in similar scenarios while keeping reasonable RMSE
levels.

The reduction of the simulation frequency also has
an effect on the interference patterns that arise in the
simulation as a result of phase differences in the propagated
waves. In order to analyze the phase behavior of the
simulation, the received power distribution is illustrated
in Figure 12 as a box plot. The lower and upper limits
of the boxes represent the first and third quartiles, while
the red horizontal line is the median of the data. The
mean received power is indicated by a dark dot and the
extremes of the whiskers are located one standard deviation
below and above the mean. Due to the calibration of
the received power, it is clear from this figure that the
overall power distribution remains approximately invariant
for those values of FRF, where a low-prediction error can be
achieved.

6. System-Level Simulations (SLSS)

The applicability of the presented propagation predictions to
the study of a macro-femtocell hybrid scenario is presented
here by means of mobile WiMAX (IEEE 802.16e-2005)
system-level simulations with private access femtocells. The
target of this experimental evaluation is to show how a
measurements-based calibrated FDTD model can help the
operator to predict common interference problems between
users of the macrocell and the femtocell.

The scenario used for this experimental evaluation
was the same residential street presented in Figure 6. A
nonuniformly deployed WiMAX hybrid network formed
by one macrocell and five femtocells was used for this
case of study. The femtocells were located in five different
households along the street, while the macrocell is positioned
in an area located further away from the street under
consideration. This is realistic, since femtocells are mainly
aimed at users with poor indoor macrocell coverage. To
perform the system-level simulation, different traffic maps
were used for both the indoor and outdoor environments.
There is one indoor traffic map per femtocell and house,
which contains two randomly positioned users, and there
is one outdoor traffic map in the street, containing five
users.

The static system-level simulator functions by record-
ing hundreds of snapshots with random positions of the
macrocell and femtocell users. As the power distribution
remains constant with the reduction of the FRF (see
Figure 12) and the location of the users varies between
different snapshots, particular phase errors at given sites
in the coverage prediction do not affect the final SLS
statistics. Furthermore, it has been experimentally confirmed
that the probability of outage, as well as the average
throughput of the different cells in the system-level simu-
lations, is not altered by the reduction of the simulation
frequency.

This case of study makes use of private access fem-
tocells, which means that indoor users are allowed to
connect, depending on the signal quality, to their own
femtocell or to the macrocell. On the other hand, out-
door users are only allowed to connect to the macrocell.
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For illustration purposes of the applicability of the pre-
sented propagation model, only downlink is consid-
ered.

It is illustrated in Figure 13 that an outdoor user
connected to a distant macrocell is jammed due to the
interference coming from nearby femtocells. In this case,
the green users are successful, while the blue users suffer
outage in downlink. A user will be successful or in outage
depending on whether they are able or not of obtaining
their requested throughputs and QoS from the network
in order to use their services (video). In the example
shown here, it occurs that there are three users on the
street connected to the macrocell, who are using the same
WiMAX subchannel as another femtocell user during the
same time interval (symbol). In this case and as predicted
by the FDTD model, the signal level of the carrier is smaller
than the signal power of the interference, resulting thus in
a poor signal quality. Due to this, the macrocell user is
jammed and the communication cannot be supported by the
network.

7. Conclusion

In this paper, the coverage prediction of WiMAX femtocells
by means of a calibrated FDTD model is studied. The
reduction of the simulation frequency is proposed as a
simplification of the problem which is required for compu-
tational reasons. The use of a parallel architecture such as the
computation on a graphics card is also proposed as a feasible
mean of reducing the computation time.

An optimal method to obtain an acceptable com-
bination of parameters, which maximizes the absorbing
properties of the CPML boundary condition for FDTD
electromagnetic simulations, is also proposed. Furthermore,
an error function that measures the relative error of the
electrical field prediction near the CPML has been modelled.
In addition to this, a Fibonacci search-based method is
presented as a fast way to explore the solutions space
and reach the minimum point without falling in the need
to compute the error function at thousands of different
solutions.

A method for the calibration of the materials involved
in the FDTD simulation has also been presented. This
model tuning approach, based on simulated annealing, is
introduced as a way to match the propagation predictions
to the reality. Then, a spatial averaging filter has been used
as a mean to solve prediction errors at diffractive obstacles
due to the lower-frequency simplification. The accuracy of
the method has been validated by performing calibrations at
a wide range of simulation frequencies, analyzing the power
distribution and evaluating the predictions with a different
measurements route.

Finally, system-level mobile WiMAX simulations that
use this FDTD propagation model have been presented.
This exemplifies the interference caused by indoors-located
WiMAX femtocells to outdoor users of the macrocell. This
way, the need for hybrid indoor/outdoor propagation models
is evinced.
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[8] Á. V. Rial, G. de la Roche, and J. Zhang, “On the use of a lower
frequency in finite-difference simulations for urban radio
coverage,” in Proceedings of the 67th IEEE Vehicular Technology
Conference (VTC ’08), pp. 270–274, Singapore, May 2008.

[9] X. Liming and Y. Dacheng, “A recursive algorithm for radio
propagation model calibration based on CDMA forward pilot
channel,” in Proceedings of the 14th IEEE Personal, Indoor and
Mobile Radio Communications (PIMRC ’03), vol. 1, pp. 970–
972, Beijing, China, September 2003.

[10] P. P. M. So, “Time-domain computational electromagnetics
algorithms for GPU based computers,” in Proceedings of
the International Conference on Computer as a Tool (EURO-
CON ’07), pp. 1–4, Warsaw, Poland, September 2007.

[11] T. Rick and R. Mathar, “Fast edge-diffraction-based radio wave
propagation model for graphics hardware,” in Proceedings of
the 2nd International ITG Conference on Antennas (INICA ’07),
pp. 15–19, Munich, Germany, March 2007.

[12] W. Yu, R. Mittra, T. Su, Y. Liu, and X. Yang, Parallel Finite-
Difference Time-Domain Method, Artech House, Boston, Mass,
USA, 2006.



EURASIP Journal on Wireless Communications and Networking 13

[13] NVIDIA CUDA Compute Unified Device Architecture Program-
ming Guide, NVIDIA, Santa Clara, Calif, USA, 1st edition,
November 2007.

[14] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals
of WiMAX Understanding Broadband Wireless Networking,
Prentice-Hall, Boston, Mass, USA, 2007.

[15] “Femtoforum,” http://www.femtoforum.org/.

[16] G. Mansfield, “Femtocells in the US market—business drivers
and consumer propositions,” in Proceedings of the FemtoCells
Europe Conference, London, UK, June 2008.

[17] “PC6530 OFDMA(IEEE802.16e-2005) Femtocell Technology
Platform,” Tech. Rep., picoChip, Bath, UK, 2008.

[18] D. Williams, “WiMAX Femtocells—a technology on demand
for cable MSOs,” in Proceedings of the FemtoCells Europe
Conference, London, UK, June 2008.
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1. Introduction

Multiple-input multiple-output technology (MIMO) [1]
made its way in the recent years from an information-
theoretic shooting star [2] to actual products on the mass
market [3, 4]. Currently the 3GPP [5] is standardising
MIMO for the next generation’s mobile communications,
what is called Long Term Evolution (LTE) as well as IEEE is
standardising MIMO for WiMAX [6]. Already information
theory told that the promise of increased spectral efficiency
of MIMO systems is only available when the radio channel
permits, but this seems to have faded out of people’s memory.

Despite this fact, numerous algorithms were developed,
mostly considering ideal uncorrelated i.i.d. Rayleigh fading
channels between the transmit and receive antennas, which
is only true in rich-scattering environments with sufficiently
large antenna spacings at both transmitter and receiver.
Otherwise, the performance of the algorithms deteriorates.
To reach the goal of gigabit transmissions over the wireless
link, one needs to include the knowledge of the actual
channel into the algorithms. Thus, an accurate model of the
propagation channel is paramount.

One can distinguish between three different types of
MIMO channel models: (i) channel models for developing
signal-processing algorithms, for example, [7, 8]. These
models describe the radio channel by the correlations between
the different links, established between individual antenna
elements. This makes the model mathematically tractable,
yet inaccurate when it comes to reflecting real-world propa-
gation conditions, because current correlation-based models
always base on the Rayleigh-fading (or, to some extent,
Ricean fading) assumption. While the so-called “Kronecker”
model [7] is favoured by many people because it can be
treated by random-matrix theory [9], the Weichselberger
Model [8] shows a much better fit to measurement data
[10, 11]. (ii) channel models for MIMO deployment in a
given environment, for example, ray-tracing [12, 13]. These
models try to predict MIMO conditions given a map (or
floor plan) for optimal positioning of MIMO-enabled base
stations, which comes with high demands on computational
power and accuracy of environment data bases; (iii) channel
models for testing of algorithms and systems, for example,
[14–16, Chapter 6.8]. These models typically represent a
certain kind of propagation scenario (like indoor offices,
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or outdoor picocells), without considering a specific prop-
agation environment. This is achieved by modelling the
propagation environment in a stochastic way. Such models
usually have a medium complexity and represent realistic
channels very well, however a closed-form expression of the
channel model, as in the first case, does not exist. The major
difference between these models is their ability to describe
time variation.

A time-variant channel is an essential feature of mobile
communications. The 3GPP Spatial Channel Model (SCM)
[14] is well suited for simulating random-access communi-
cations. It models the channel in blocks (so-called “drops”),
during which the channel only undergoes Doppler fading,
but after a drop, the channel changes completely. This
assumption makes it impossible to test signal processing
algorithms that track the channel parameters between dif-
ferent snapshots. Additionally, the abrupt changes between
the drops are challenging for hardware testing using channel
simulators, since the device under test and the channel
model need to be synchronized. A major improvement is
the WINNER II geometry-based stochastic channel model
[15], which includes a smooth transition between drops.
This smooth transition is only provided by the full imple-
mentation of the WINNER II model. The popular down-
scaled version “clustered-delay line” does not provide the
basis to track the channel! The COST 273 MIMO channel
model [16, Chapter 6.8] does not use the concept of drops,
but intrinsically models the channel in a smooth way. While
the user is moving through a randomly-generated map,
he is illuminated via groups of different propagation paths
depending on his location on this map. When the receiver
moves out of a certain region “visibility region”, a particular
group of paths fades out, and vice versa. Unfortunately, the
COST 273 model is not yet completely parametrised, nor
fully implemented.

1.1. Contribution. In this paper, we present the novel
Random-Cluster Model (RCM), a geometry-based stochastic
MIMO channel model for time-variant frequency-selective
channels. The application of the RCM focuses on algorithm
and system testing, yet it is parametrised directly from
measurements.

The Random-Cluster Model uses multipath clusters to
model the radio channel. Generally, multipath clusters can
be seen as groups of propagation paths having similar
parameters. We concisely define a cluster by its mathematical
description provided in Section 2.2. Clusters allow to charac-
terise the propagation environment in a compact way using
much less parameters than characterisation by individual
multipath components (MPCs). This data reduction is the
primary purpose for using clusters in radio channel models.
Clusters were first only observed in delay domain by Saleh
and Valenzuela [17]. Their concept was extended to the
joint angle-of-arrival/delay domain in [18]. Recently [19]
developed a test to prove the existence or non-existence of
clusters in propagation path estimates from channel mea-
surements, showing that clusters indeed exist independent
of the authors’ view. We were able to match clusters to real-
world scattering objects [20].

Several innovations were necessary to construct the
RCM, some of which have been introduced in conference
papers. First, to accurately parametrise the RCM, automatic
clustering techniques are necessary. The first semiautomatic
approach for clustering MIMO channel data was introduced
in [21]. We gradually extended these ideas by a meaningful
joint clustering approach [22], a power-weighted clustering
algorithm [23], a criterion to decide on the number of
clusters, a reasonable initial guess, and the ability to track
clusters over multiple time-variant snapshots [24]. The
mere fact that clusters can be tracked demonstrates that
clustering makes sense showing that they obviously stem
from scattering objects. The automatic parametrisation by
identifying clusters without user intervention turned out to
be essential to process a large amount of multiantenna
measurement data.

Regarding the ability to describe time-variant channels,
the RCM is capable to model random-access channels, and,
in addition, to cover continuous transmission in a time-
variant environment as well by creating smoothly time-
variant channel realisations. A major innovation of the
RCM is the concept of linearly moving clusters. In this
article, we will use the RCM to model smoothly time-
variant channels. (A first description of the RCM, modelling
random-access channels only was provided in [25], and [26]
briefly outlines the ideas of using clusters for time-variant
channel modelling.)

The RCM is a stochastic MIMO channel model, yet it
is parametrised directly from measurements. By double-
directional MIMO channel measurements in a specific envi-
ronment, a single multivariate pdf of the cluster parameters is
created, which is representative for the electromagnetic wave
propagation in this environment. The parameters of a single
realisation are drawn from this distribution. In this way, the
RCM is a stochastic channel model, deriving its parameters
directly from measurements.

The complexity of the RCM should be divided into
(i) the parametrisation complexity and (ii) the execution
complexity. Regarding the parametrisation complexity, the
RCM is parametrised automatically from measurements,
even if the number of parameters appears to be high.
The execution complexity of the RCM is governed by the
calculation of the channel matrix, as in all other prominent
physical channel models [27]. It adds up to 22 · LNTxNRxB
real operations, where L denotes the number of MPCs, NTx

andNRx denote the number of transmit and receive antennas,
respectively, and B denotes the number of frequency samples,
for which the channel matrix is calculated.

The ultimate challenge for any channel model is its
comparison to measurements. We will describe the exten-
sive validation of the RCM against measurements using
three different validation metrics: (i) mutual informa-
tion [2], (ii) channel diversity [28], and (iii) the novel
Environment Characterisation Metric [29]. We find that
the RCM is able to reflect the measured time-variant
environment noticeably well. Additionally, we will demon-
strate why the popular mutual information “capacity” is
a poor validation metric for time variant MIMO channel
models.
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1.2. Organisation. This article is organised as follows.
Section 2 provides a first overview of the features of the
Random Cluster Model. Section 2.1 outlines the structure
of the RCM, Section 2.2 details the description of the
environment by multipath clusters. The initialisation of
the model is provided in Section 2.3, and details on the
implementation of the time variance are given in Section 2.4.
Section 3 describes the model validation by first outlining
the validation framework. We then introduce the validation
metrics used in Section 3.2, followed by the validation results
in Section 3.3. Finally, Section 4 concludes the article. In
Appendix A, we provide an overview of the measurements
used for parametrisation and validation.

2. The Random-Cluster Model

The RCM is based on the concept of multipath clusters. The
most significant feature of the RCM is that it is parametrised
directly from channel measurements by an automatic proce-
dure. In this way, the RCM is specific to the environment; it
closes the gap between channel measurements and channel
modelling. Nonetheless it is a stochastic model as we will
clarify shortly.

The novel approach of the RCM is to describe the
time-variant geometry of the channel completely by sta-
tistical cluster parameters. Clusters provide a compact way
of describing the underlying propagation environment. To
accurately parametrise the clusters, we extract their parame-
ters from measurements. An important feature of the MIMO
channel also reflected by the model is the coupling between
propagation paths in space and time, also known as the
double-directional MIMO channel model [30]. To enable
time-variance, clusters may move, relative to the Tx or Rx.
By this, the RCM creates correlated snapshots in time of the
propagation environment.

Summarising, the model has the following properties. It
is

(i) cluster-based,

(ii) propagation-based, but stochastic,

(iii) double-directional,

(iv) time-variant.

What the RCM Provides. The main focus of the RCM is
link-level simulation, for both algorithm testing and device
testing. It is well suited to reflect time-variant scenarios that
are similar, but not equal to the ones measured before. A
major feature is that the parametrisation of the RCM, directly
derived from measurements, is achieved automatically. In
this way it perfectly fills the gap between channel sounding
and channel simulation. Typical applications include testing
in specifically challenging channel situations, or in specific
application scenarios.

In contrast to “playback simulations” [31] where pre-
viously recorded impulse response data from a channel
sounder are used to directly model the environment, the
RCM is neither fixed in bandwidth, antenna array parame-
ters, or simulation duration.

What the RCM Does Not Provide. By the way it is para-
metrised, the RCM is very specific in reflecting a certain
type of environment. Being rooted in the COST 273 model
[16, Chapter 6.8], one might think that the RCM is an all-
purpose model. The model user will be warned that it does
not perform like this. Many aspects that make a model very
general have been intentionally omitted in the RCM in order
to reduce complexity, for example, a dedicated path loss
calculation, or a description of general environments.

For scenarios close to the measured ones, the RCM will
still perform better than other (even standardised) models
available, but proper parametrisation is always necessary.

The RCM is definitely not intended for supporting
MIMO deployment. Since the model does not include any
geometry, it is not suited for predicting the properties of
the electromagnetic field in specific locations on a map,
particularly not in environments that were not measured
before.

2.1. General Model Structure. In the following we describe
the RCM by its flow diagram shown in Figure 1. The
RCM consists of two major parts: the initialisation, and the
implementation of smooth time variation:

(1) During initialisation, a first snapshot of the scenario
is generated from the environment parameter func-
tion.

(2) The implementation of the smooth time variation is
split in two parts: (i) moving the clusters introduces
small-scale changes to the environment and generates
the Doppler-induced fading; (ii) the birth/death-
process accounts for shadowing and large-scale
changes.

Both of these parts rely on an accurate parametrisation
of the environment. In the next paragraphs we will first
detail how the environment is described. Subsequently we
will explain the model flow step by step.

2.2. Environment Description—Multipath Clusters. Multi-
path clusters are the basis for the RCM. Each cluster is
described by a number of parameters (Table 1), which are
stacked into the cluster parameter vector Θc. We distinguish
between the cluster location parameters (mean delay, azimuth
and elevation positions), cluster spread parameters (delay
spread, angular spreads), cluster power parameters (power of
the cluster and power of the snapshot in which the cluster
exists), cluster number parameters (number of paths within
the cluster, average number of coexisting clusters in the same
snapshot), and cluster movement parameters (change rates
of the cluster location and power parameters, and cluster
lifetime).

A time-variant environment may contain transitions
between different propagation conditions, for example, from
LOS to NLOS and back. Clusters in these propagation condi-
tions have quite different properties. Different propagation
conditions are mainly reflected by two simple parameters:
the snapshot power and the number of clusters. These two
parameters are included in the set of cluster parameters,



4 EURASIP Journal on Wireless Communications and Networking

Draw and place
MPCs

within clusters

Draw and place
MPCs

within clusters

Move clusters
(i.e. paths in the clusters)

Update cluster powers

Evaluate cluster death
and mark dying clusters

Draw number of
new clusters

Yes

No

B
ir

th
/d

ea
th

 p
ro

ce
ss

C
lu

st
er

 m
ov

em
en

t

Invoke system model

Invoke system model

In
it

ia
lis

at
io

n

Initialisation:
t′ = 0

Draw initial
clusters from

Θenv

t′ = t′ + Δts

H(t = 0,Δ f )

t′modΔtΛ == 0?

Draw initial parameters
of new clusters from

Θenv

H(t = t′,Δ f )

Figure 1: Flow diagram of the Random-cluster model.

being cluster selection parameters. They label clusters for
specific propagation conditions in a statistical way.

2.2.1. Geometrical Interpretation. A straight-forward exten-
sion of a MIMO channel description by single, discrete
MPCs, is the usage of multipath clusters.

Clusters are able to describe a double-directional wave-
propagation environment in the same way as multipath
components do. Figure 2 illustrates this concept. A cluster
represents a unique link between the transmitter and the

Table 1: Cluster parameters of a single cluster, contained in Θc.

Symbol Cluster parameter

τ Cluster mean delay

ϕTx Azimuth cluster position at Tx

ϕRx Azimuth cluster position at Rx

θTx Elevation cluster position at Tx

θRx Elevation cluster position at Rx

στ Cluster delay spread

σϕTx Cluster azimuth spreads seen from Tx

σϕRx Cluster azimuth spreads seen from Rx

σθTx Cluster elevation spreads seen from Tx

σθRx Cluster elevation spreads seen from Rx

σ2
γ Cluster mean power

ρ
Total snapshot power, in which the
cluster occurs

Nc
Number of clusters coexisting in the
snapshot

Np Number of paths within a cluster

Δσ2
γ

Change rate of cluster power per travelled
wavelength in dB

Δτ
Change rate of cluster mean delay per
travelled wavelength

ΔϕRx
Change rate of cluster mean AOA per
travelled wavelength

ΔϕTx
Change rate of cluster mean AOD per
travelled wavelength

ΔθRx
Change rate of cluster mean EOA per
travelled wavelength

ΔθTx
Change rate of cluster mean EOD per
travelled wavelength

Λ Cluster lifetime

receiver having a certain power, a certain direction of
departure, direction of arrival, and delay. Extending the
concept of a single MPC, a cluster shows a certain spread in
its parameters, describing the size of the cluster in space.

This leads to a significant reduction in the number of
parameters. One cluster describing a manifold of multipath
components showing similar propagation parameters is
described by only 21 parameters (see Table 1), while a single
MPC already needs 12 parameters (such seemingly large
numbers of parameters are necessary for a time-variant
description of clusters and propagation paths).

When we look at a cluster that stems from multiple
bounces of an electromagnetic wave on its way from Tx to
Rx, Figure 2 shows how a cluster appears when perceived
from Tx and Rx separately. The cluster splits up in two
parts. For single-bounce scattering, these two parts of a
cluster overlap physically. For a direct path (line-of-sight),
the cluster contains only a strong, single path. From the
cluster parameters, one cannot deduct whether the cluster
stems from single or from multiple-bounces scattering. From
a modelling perspective concentrating on clusters, however,
this knowledge is redundant (the same applies to MIMO
modelling by multipath components). Note that we are using
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Figure 2: Geometrical interpretation of the RCM, demonstrated for
a single cluster.

multiple clusters to describe the multipath structure of the
radio channel, but Figure 2 shows just one cluster.

2.2.2. Environment pdf. In a measured environment, differ-
ent kinds of clusters occur. We regard the parameters of these
clusters as an ensemble of a multivariate distribution, which
we call the environment pdf, (we use the established statistical
notation, where θc is the argument of the pdf of the random
vector Θc),

Θenv=̇ fΘc(θc). (1)

The environment pdf characterises the multipath structure
in a specific measured environment. In this way, the envi-
ronment is completely parametrised by a description that is
purely statistical. In some cases, this multivariate distribution
may be multimodal and does not necessarily follow a simple
closed-form distribution.

2.2.3. Parametrisation. The parameters of the RCM are char-
acterized by the environment pdf, which can conveniently be
estimated from MIMO channel measurements in a straight-
forward way.

(1) MIMO channel measurements provide multiple
impulse responses of the scenario. While the chan-
nel sounder continuously records frequency-selective
MIMO channel matrices at each time instant “snap-
shots”, the transmitter is moved to capture the time-
variant properties of the scenario.

(2) Propagation paths are estimated from each snapshot
of the channel measurements using a high-resolution
parameter estimation. For this purpose we used
the Initialization-and-Search-Improved SAGE (ISIS)
estimator [32] to estimate 100 paths from every
measured snapshot.

(3) We identify and track clusters in these propagation
paths using the fully automatic framework presented
in [24]. This framework has the following key
features.

(a) The initial guess algorithm identifies the cluster
locations by separating clusters as far as possible
in the parameter space while taking already
existing clusters from previous snapshots into
account. The number of clusters is estimated by
a power-threshold criterion.

(b) The clustering is optimized using the KPow-
erMeans algorithm [23], which makes clusters
as compact as possible. This is achieved by
including the concept of path power into the
classic KMeans algorithm and by enabling joint
clustering by appropriate scaling of the input
data.

(c) Clusters are tracked using a Kalman filter
between snapshots, where a probabilistic cluster
fitting criterion decides whether a cluster has
actually moved or has to be regarded as new.

As a result we obtain the parameters of all clusters in the
measured environment, as described in Table 1. The change-
rate parameters and cluster lifetimes are determined by the
tracking of the clusters. Typical examples of the change-
rate parameters and more discussion about their physical
interpretation are provided in [33].

(1) We estimate the environment pdf from all identified
clusters using a kernel density estimator (KDE) [34].

The KDE approximates the underlying distribution by a sum
of kernels. In this way, even multimodal distributions can
be described easily. As result, the environment pdf can be
written as

Θenv = fΘc(θc) =
1
NK

NK∑

i=1

K
(
θc,μΘi

, CΘi

)
, (2)

where μΘi
and CΘi denote the mean and covariance of the ith

kernel, and NK denotes the number of kernels used.
To parametrise the environment pdf for the RCM, we use

Gaussian kernels, hence a Gaussian mixture pdf, such that

K
(
θc,μΘi

, CΘi

)
= 1

(2π)D/2
∣
∣CΘi

∣
∣1/2

× exp
(
−1

2

(
θc − μΘi

)T
C−1
Θi

(
θc − μΘi

))
,

(3)

where D = 21 denotes the dimension of the cluster parame-
ter vector. We used Gaussian kernels for their low complexity
and analytical tractability. Furthermore, Gaussian kernels
manage to describe all kinds of (continuous) pdfs with low
error [35].

The kernel parameters μΘi
and CΘi need to be estimated.

The input data for this estimation are the identified clusters
from a measurement route.

A straight-forward way to find the kernel parameters is
to choose the NK equal to the total number of identified
clusters. Each individual identified cluster is used as (mean)
parameter for an individual kernel. The variances of the
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kernel can then be estimated using the minimum average
mean integrated squared error (AMISE) criterion [35]. This
parametrisation approach is the most accurate one, although
the number of kernels may become quite large.

Of course, the obtained environment pdf is very specific
to the measured environment since it is directly parametrised
from measurements.

Figure 3 shows four different two-dimensional cuts of
the same environment pdf, which was evaluated from a
measurement run at 2.55 GHz in the office environment,
described in the appendix. These two-dimensional pdfs are
colour coded from black (low probability) to white (high
probability).

It becomes obvious that the environment pdf is indeed
a multimodal distribution, strongly depending on which
parameters are observed. For example, Figure 3(a) demon-
strates that clusters with large mean delay usually have
weaker power, which was to be expected. Additionally,
Figure 3(b) details from which Rx directions clusters with
stronger power appear. Some of the cluster parameters are
even intrinsically correlated. For instance, Figures 3(c)-3(d)
show that there is a correlation between the cluster azimuth
spreads. Additional values of the environment pdf can be
found in [33, 36, Chapter 7.4].

2.3. RCM Initialisation. The initialisation procedure gener-
ates the first snapshot of the model.

2.3.1. Drawing Initial Cluster Parameters. The environment
pdf Θenv provides a description for all kinds of clusters that
were identified in the environment. To actually generate
a snapshot, the momentary propagation condition of the
environment must be selected. This is done by determining
the intended snapshot power and the number of clusters
(which are the cluster selection parameters). Their joint
distribution function is contained in the environment pdf.

Thus, we draw cluster parameters in a stepwise proce-
dure.

(i) First, we obtain the pdf of the number of clusters,
f (Nc), by marginalizing the environment pdf to the
number of clusters, which is done by integrating the
environment pdf over the other dimensions. Then
the actual number of clusters for the first snapshot,
Ñc, is determined by drawing a random sample from
this pdf. Since the number of clusters must be an
integer number, the ceiling of the drawn value is
assigned to Ñc.

(ii) Then, we obtain the pdf of the snapshot power
(given the number of clusters) by conditioning the
environment pdf on the chosen number of clusters
Ñc, and marginalising it to the snapshot power.
From this marginal distribution f (ρ | Ñc), the
intended snapshot power, ρ̃, is determined by drawing
a random sample from this pdf. This intended
snapshot is only used as a selection criterion for the
clusters to be drawn in the next steps. In general, the
sum power of the clusters will not exactly match the
intended snapshot power.

(iii) Finally, to select a specific type of clusters, the
environment pdf is conditioned on both the number
of clusters and on the intended snapshot power,
f (Θc | Ñc, ρ̃). From this final distribution, we draw
Ñc cluster parameter sets Θ̃c.

These parameters are drawn from a multivariate sum-of-
Gaussian distribution, which sometimes leads to invalid
parameters because of the Gaussian tails. For this reason,
the drawn spread parameters and the mean delay are lower-
bounded by zero, the number of paths within a cluster is
rounded to the next larger integer and lower bounded by
one, and the drawn cluster lifetime is rounded to the closest
integer value larger or equal to one. In this way, we can retain
the low-complexity kernel density estimation but still create
valid cluster parameters for the model.

These (post-processed) cluster parameters specify the
multipath structure of the initial snapshot.

2.3.2. Placing Multipath Components within the Clusters.

(1) In every cluster c, the corresponding number of paths
(which is an initial cluster parameter drawn before),
Ñp,c, is placed as follows. Every path is described by
the path parameters: complex amplitude (γ), total
delay (τ), and the azimuth and elevation of arrival
and departure, respectively, (ϕTx/Rx, θTx/Rx).

The delay is drawn from a Gaussian distribution with its
mean and variance given in the cluster parameters. Similarly,
the angular parameters are drawn from a wrapped Gaussian
distribution [37] (in the wrapped Gaussian distribution, all
realisations are mapped to their principal value in [−π,π)),
where the mean and variance are again determined in the
cluster parameters (Table 1). All paths within a cluster show

the same amplitude, |γp,c| =
√
ρc/Ñp,c, determined by the

total cluster power and the number of paths within a cluster,
and have a random phase, which is drawn from a uniform
distribution U(−π,π).

After having placed paths in all clusters, the propagation
environment of the initial snapshot is completely specified by
its multipath structure.

2.3.3. Generating the MIMO Channel Matrix “System Model”.
To calculate the MIMO channel matrix, we use the common
approach of a bandwidth filter and antenna filters [38].

The time-dependent MIMO channel transfer matrix is
calculated from the multipath structure as

H
(
t,Δ f

) =
Ñc∑

c=1

Ñp,c∑

p=1

γp,c(t)

· aRx

(
ϕRx,p,c(t), θRx,p,c(t)

)

· aT
Tx

(
ϕTx,p,c(t), θTx,p,c(t)

)

· e− j2πΔ f τp,c(t),

(4)
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Figure 3: Exemplary marginal distributions of the environment pdf.

at a certain frequency bin Δ f equidistantly spaced on a
limited bandwidth between [ f0 − B/2, f0 + B/2], where
f0 denotes the carrier frequency and B the simulated
bandwidth. The antenna array patterns are described in
aTx/Rx(ϕTx/Rx, θTx/Rx), and the subset p, c denotes the pth path
in cluster c. This calculation dominates the computational
complexity of the model (a low-complexity implementation
of this equation is also available in [39]).

For the exemplary implementation of the RCM that
we validated (see Section 3), we imply an 8 × 8 MIMO
configuration with uniform linear arrays at both link
ends, a bandwidth of 20 MHz, and 32 frequency bins.
The centre frequency was set to either 2.55 GHz or to
5.25 GHz matching the measurement. An 8×8 configuration
provides a much tougher test whether a model renders
the spatial environment properties correctly than the 4 × 4
or 2 × 2 configurations envisaged for LTE. By including
the actual antenna array pattern, the RCM can easily
be extended to arbitrary array configurations other than
ULAs.

2.4. Implementation of the Time Variation. After the gener-
ation of the initial snapshot, the RCM generates channels
correlated in time. The implementation of the time variation,
based on the novel idea of linearly moving clusters, is an
integral part of the model. In this way, both stationary and
nonstationary time-variant channels can be modelled.

2.4.1. Time Bases. We distinguish between small-scale and
large-scale time variations. Small-scale variations, which
introduce fading, take place every sampling instant. Large-
scale variations, reflecting changes in the propagation struc-
ture, occur in less frequent intervals.

For this reason, the RCM distinguishes between two time
bases: the sampling time interval, Δts, and the cluster-lifetime
interval, ΔtΛ, where ΔtΛ = NΛ ·Δts. Cluster lifetimes, Λc, are
multiples of ΔtΛ (see Table 1).

2.4.2. Large-Scale Variation—Cluster Birth/Death Process. In
time-variant scenarios, where at least one of the transceivers
is moving, the propagation conditions can change

significantly. To introduce these large-scale changes into the
model, we included a cluster birth/death process.

This birth/death process is motivated from observations
in measurements, where clusters smoothly show up, exist
over a period of time, and eventually fade away. We reflect
this behaviour in our model by three parameters: (i) the
cluster lifetime, responsible for the cluster death, (ii) a cluster
birth pdf, and (iii) a fade-in/fade-out coefficient.

The lifetime of each cluster is already intrinsically defined
in the cluster parameters (see Table 1), which was drawn
from the environment pdf when the cluster was created.
Cluster death is implemented by decreasing the lifetime of
each cluster in every cluster lifetime interval, ΔtΛ. Dying
clusters are fading out during the next cluster lifetime
interval.

An additional probability mass function (pmf), describ-
ing the number of cluster births per cluster lifetime interval,
is also extracted from the measurements. The extraction
method and examples of extracted parameters are pro-
vided in [33]. According to this pmf, a number of new
clusters are drawn every cluster lifetime interval. After
drawing the number of new clusters, the actual parameters
of these new clusters are drawn in the same way as
described in the initialisation procedure in Section 2.3.1.
New-born clusters fade in during the next cluster lifetime
interval.

The appearance or disappearance of clusters is done
exponentially in the small-scale updates, controlled by
the cluster fade-in/fade-out coefficient |σin/out|dB. Empirical
evaluations showed that a maximum cluster attenuation of
10 dB provides best results, hence |σin/out|dB = 10/NΛ.

Note that our approach is different from using “visibility
regions” [40], which cannot be used since we do not consider
the actual geometry of the environment.

2.4.3. Small-Scale Variation—Cluster Movement. The RCM
models small-scale changes by the movement of the clus-
ters in parameter space. In every sampling time interval,
the parameters of the paths within a cluster are linearly
incremented. These increments are provided in the cluster
parameters Θc of the respective cluster (see Table 1).
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The update equations of the pth path in the cth cluster for
a moving station with speed v (in wavelengths per second)
are given as

τp,c(t + Δts) = τp,c(t) + Δτc · vΔts,
ϕTx,p,c(t + Δts) = ϕTx,p,c(t) + ΔϕTx,c · vΔts,

ϕRx,p,c(t + Δts) = ϕRx,p,c(t) + ΔϕRx,c · vΔts,

θTx,p,c(t + Δts) = θTx,p,c(t) + ΔθTx,c · vΔts,

θRx,p,c(t + Δts) = θRx,p,c(t) + ΔθRx,c · vΔts,
∣
∣
∣γp,c(t + Δts)

∣
∣
∣

dB
=
∣
∣
∣γp,c(t)

∣
∣
∣

dB
+ Δσ2

γ,c · vΔts.

(5)

In this way, clusters are moving in delay (causing Doppler
shifts) and in angles, and they smoothly change their power.
The speed v is a scalar defining how fast clusters move. The
“direction” of movement is defined by the cluster movement
parameters.

These small-scale changes intrinsically introduce cor-
related fading. This repeated update inherently creates a
Doppler spectrum, where each individual path contributes
with its Doppler shift νp,c = − f0 · v · Δτc (equal for all
paths within a cluster). Of course, linear movement is just a
first-order approximation of the true movement of clusters,
a more complex method can be found in [41]. However,
the model validation will show that modelling movements
linearly is sufficient to accurately reflecting the time-variant
propagation environment.

Whenever a cluster is fading in or fading out due to the
birth/death process, the path weights, γp,c, are additionally
updated over the course of one cluster-lifetime interval by

∣∣
∣γp,c(t + Δts)

∣∣
∣

dB
=
∣∣
∣γp,c(t + Δts)

∣∣
∣

dB
± |σin/out|dB. (6)

3. Model Validation

Validation is paramount, it scrutinises whether a model
reflects important properties of the propagation channel.
Particularly for MIMO channels, models need to reflect the
spatial structure of the channel correctly.

We validated the RCM against MIMO channel mea-
surements carried out with an Elektrobit Propsound CS
wideband channel sounder at two centre frequencies of
2.55 GHz and 5.25 GHz. Details about the measurements
and the validated scenarios are presented in Appendix A.
For validation we will use three different validation metrics
reflecting the spatial structure of the channels.

3.1. Validation Framework. We use the following procedure
to validate the RCM (Figure 4).

(1) Perform radio channel measurements in representa-
tive scenarios and estimate propagation paths [32]
from the measurements for every snapshot of the
channel.

(2) Parametrise the RCM (see Section 2.2.3).

Measurements
Estimated discrete paths RCM model

parameterization

RCM parameters

System model

RCM
parametric model

System model

Reference
channels

Comparison
by validation

metrics

Modelled
channels

Figure 4: Validation framework.

(3) Generate reference channels by applying the system
model (see Section 2.3.3) to the estimated paths
parameters.

(4) Generate smoothly time-variant modelled channels by
invoking the RCM.

(5) Compare the modelled channels with the reference
channels according to the cdf of different validation
metrics.

3.2. Validation Metrics. Before detailing the validation
results, we present the different validation metrics. We
concentrate on the validation of the spatial properties of the
modelled channels.

3.2.1. Mutual Information. For the purpose of comparison
with literature we take mutual information (MI) for model
validation [42, 43]. (Quite frequently the term “capacity” is
misused for mutual information.) However, we will show
later in this section that MI has an intrinsic disadvantage,
which disqualifies it as a good metric for validating the
double-directional multipath structure of a time-varying
channel.

We use the narrowband MI at frequency Δ f and time t,
which is defined as

I
(
t,Δ f

) = log2det
[

I +
SNR
Nt

Hn
(
t,Δ f

)
HH
n

(
t,Δ f

)]
, (7)

where Hn(t,Δ f ) denotes the normalised channel matrix,
hence Hn = const ·H. We use the normalisation to keep the
receive SNR constant, which corresponds to perfect power
control at the Tx. In this case, the channel transfer matrix at
every time instant is normalized separately as

Hn
(
t,Δ f

) = 1

(1/M)
∑
Δ f

∥
∥H
(
t,Δ f

)∥∥2
F

H
(
t,Δ f

)
, (8)

where M denotes the number of frequencies. Then, the
validation metric reflects the spatial structure of the channel
best. We chose an SNR of 10 dB for the following validation
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evaluations. For creating a cdf, we use all time realisations
and frequencies as our ensemble of samples.

The deficiencies of MI as a validation metric will now be
demonstrated by a meaningful example. This example will
also highlight the difference between average MI and ergodic
capacity.

In Figure 5(a) we consider a single snapshot measured in
the cafeteria environment (see Appendix A.2). This snapshot
is described by a number of propagation paths with their
parameters power, AoA, AoD, and delay. We now calculate
the channel matrix of this scenario using the system model
(4). Then, we create further channel realisations by just
changing the phases of the paths randomly, but do not alter
any other parameter. This method was introduced in [44]
to generate multiple MIMO fading realisations from a single
measurement. Note that this does not change the spatial
structure of the channel at all. Finally, we calculate the MI
for all these realisations according to (8).

Figure 5(b) shows the cdf of the so-computed MI. The
MI varies considerably, even though the spatial structure of
the channel remains the same. The reason for this effect
is the fading created by randomly changing the phases
of the paths. One can see that mutual information fails
to reflect the spatial structure of a single realisation of
an environment. A validation metric reflecting the spatial
structure should provide one unique result, and not a wide-
spread distribution. For this reason, MI is not suited to
assess whether a channel model provides a correct spatial
representation of the scenario or not.

As the spatial structure determines which gains the
channel offers, the RCM strives to reflect the spatial structure
as accurately as possible. Thus, also the validation metric
should be specific to the spatial structure. Nevertheless, as
MI is frequently used for validating MIMO channel models,
we will also use MI in this paper, for reasons of comparison,
but point out its deficiencies in the results.

3.2.2. Environment Characterisation Metric. The Environ-
ment Characterisation Metric (ECM) [29] is directly applied
to the path parameters rather than to the channel matrix.
This section shortly describes the significance of the ECM.
For better readability, we will (i) enumerate all paths in each
time instant from l(t′) = 1, . . . ,L(t′), disregarding cluster
structures for the time being, and (ii) skip the time index t′

in the following derivations whenever it is redundant.
The metric copes with path parameters in different units

(angles and delay). For every path l, the angular data is
transformed into its coordinates on the unit sphere for both
Rx and Tx. For angles of arrival the transformation is given
as
[
xRx,l yRx,l zRx,l

]

= 1
2

[
sin
(
ϕRx,l

)·sin
(
θRx,l

)
sin
(
ϕRx,l

)·cos
(
θRx,l

)
cos
(
θRx,l

)]
,

(9)

for angles at the Tx it reads similarly. The delays are scaled by
the maximum expected delay that occurs in the considered

snapshots [45], hence τ̃l = τl/(τ
(max)
l ). So, every path is now

described by seven dimensionless parameters collected in

π l =
[
xRx,l yRx,l zRx,l xTx,l yTx,l zTx,l τ̃l

]T
, (10)

and by its power |γl|2. When considering only azimuthal
propagation, the z-direction must be excluded. (Since the
elevation estimation from our data was not trustworthy, we
excluded elevation in the validation.)

The environment characterization metric (ECM) is
defined as the empirical covariance matrix of the path
parameter vector π,

Cπ =
∑L

l=1

∣
∣γl
∣
∣2(π l − π)(π l − π)T
∑L

l=1

∣∣γl
∣∣2 , (11)

with the mean parameter vector given as π = (
∑L

l=1 |γl|2π l)/
(
∑L

l=1 |γl|2).
The ECM has the following properties [29].

(i) The metric is system independent as it is calculated
from the propagation paths directly. Additionally,
the metric is independent of the phases of the
propagation paths.

(ii) The main diagonal contains the directional spreads
(comparable to the azimuth and elevation spreads)
at Rx and Tx, and the (normalized) rms delay spread.
In this way, the ECM jointly represents the spatial
structure, and wideband properties of the channel.

(iii) The trace tr{Cπ} is the sum of the directional spreads
[46] at Rx and Tx plus the (normalized) delay spread.

(iv) The determinant det{Cπ} describes the volume
spanned in the parameter space.

We use the ECM for the following two purposes.

(1) Validating the spatio-temporal multipath structure:
the singular values of the ECM (SV-ECM) can be
interpreted as the fingerprint of the scenario, by
which one can judge the compactness of the paths
in the channel. Assuming that the parameters of
all paths span a multidimensional ellipsoid, the
SVs describe the lengths of the main axes of this
ellipsoid. In this way, it transforms the traditional
view of individual parameter spread values into a
joint-spread approach. These properties make the
SV-ECM genuinely suited for comparing channels.
Calculating the SV-ECM for the example shown in
Figure 5(a), the snapshot would result in the same
values of the SV-ECM, no matter which phases the
paths have. This demonstrates that the SV-ECM is a
consistent metric, reflecting the multipath structure
of the channel.

(2) Validating the time-variance: the rate of change of
the ECM shows how strongly the parametric channel
changes between two neighbouring time instants.
To quantify the rate of change between two ECM
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Figure 5: Why mutual information (MI) is no good validation metric: (a) multipath structure of an environment; each MPC is represented
by a color-coded dot. (b) MI cdf computed from environment (a) by adding random phases to the paths, but not changing them otherwise.

matrices of adjacent snapshots, we use the Frobenius
inner matrix product [47] as

ξ(Cπ(t′), Cπ(t′ + Δts))

=
tr
{

Cπ(t′)TCπ(t′ + Δts)
}

‖Cπ(t′)‖F‖Cπ(t′ + Δts)‖F
,

(12)

where tr{·} denotes the matrix trace operator, and
‖ · ‖F denotes the Frobenius matrix norm. The
Frobenius inner product quantifies how similar the
eigenvectors of the two matrix arguments are. For
collinear matrices, we have ξ = 1, while for
orthogonal matrices, ξ = 0.

3.2.3. Diversity Measure. Spatial diversity describes the num-
ber of independent fading links between the Tx and Rx
antenna arrays. In a full-diversity system, where all links
between the Tx and Rx arrays are independent, one observes
a spatial diversity of NTxNRx [48]. This diversity is directly
linked with the uncoded bit-error ratio (BER) performance
of MIMO systems [1].

Channel correlation reduces this diversity significantly.
Ivrlac and Nossek provided the Diversity Measure [28], a way
to quantify the available diversity directly from the MIMO
channels without taking the detour via BER simulations.
We will use this measure to quantify the diversity in both
the measured and the modelled channels, and subsequently
compare the results.

The Diversity Measure D(R) of a MIMO system
described by a channel matrix H with channel correlation
matrix R = E{vec(H)vec(H)H} is given by

D(R) =
(

tr(R)
‖R‖F

)2

. (13)

Invoking the channel correlation matrix implicitly assumes
the channel to be stationary over the time period of a sliding
window. We want to bring to attention that the channel

correlation matrix used here is entirely different from the path
covariance matrix used as ECM in (11). To estimate samples
of the channel correlation matrix, we chose a sliding window
over W = 8 snapshots and all frequencies, that is,

R(t) = 1
MW

∑

Δ f

t′+WΔts∑

t=t′
vec
{

H
(
t,Δ f

)}
vec
{

H
(
t,Δ f

)}H, (14)

with H(t,Δ f ) defined in (4). These estimated correlation
matrices for all time instants are taken as ensemble to obtain
the cdf of (13).

3.3. Validation Results. This paper presents validation results
for two particularly interesting scenarios, (i) a measurement
route in an office scenario, without line of sight between
transmitter and receiver, and (ii) a route within a cafeteria
(large room) mostly with LOS between transmitter and
receiver (see Figure 11 in Appendix A.2). The Tx was moved
through the rooms while the Rx was placed at a fixed
position. The cafeteria scenario is a particularly challenging
one, difficult to represent by any MIMO channel model,
as it is a combination of two totally different propagation
environments, depending on whether the LOS between Rx
and Tx is blocked or not. For validation we generated
smoothly-time varying channels using the RCM and used
the three validation metrics described in the previous
paragraphs. The validation of more scenarios can be found
in [36, Chapter 4].

First, we use the ECM to validate the spatiotemporal mul-
tipath structure. Figure 6 compares the SV-ECM of the mod-
elled paths with those identified directly from measurements
“reference channels”, both at 2.55 GHz and at 5.25 GHz,
neglecting elevation. The ECM offers five SVs, shown as
dashed lines (RCM) and solid lines (measurements). We
observe that, judging from the ECM, the multipath structure
is quite similar at the two carrier frequencies in both
scenarios. The NLOS office scenario is much better matched
at 2.55 GHz than at 5.25 GHz. At 5.25 GHz, the third and
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Figure 6: Model validation using the Environment Characterisation Metric. Shown are the distributions of the five singular values of the
ECM.
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Figure 8: Model validation using mutual information.
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Figure 9: Model validation using the diversity measure.

fourth SV-ECM of the modelled channels obviously have
a positive bias. The reason for this poor match is an
environment pdf that has little variation, particularly in
the cluster receive azimuth position domain. This leads to
reduced randomness when drawing the parameters of the
scenarios, resulting in steeper SV-ECM cdfs. Considering
the cafeteria scenario, there is much stronger variability,
but still the environment is represented quite well. In both
scenarios, the smallest SV-ECM of the modelled channels has
a significant negative bias. We found the reason for this to be
outlier paths that were estimated from the measurement, but
these are not modelled by the RCM.

In a second step, we use the collinearity between
two ECM matrices to validate the time variance. Figure 7
quantifies how strongly the channels change from snapshot
to snapshot. In detail, the figure shows the cdfs of the ECM

distances evaluated between all two adjacent time instants for
both the modelled channels and the reference channels. A
value of ξ = 1 indicates that the channels did not change,
while smaller numbers indicate changes in the multipath
structure.

In the NLOS office scenario, where the SNR of the
measurement was only average, we observe that the model
has a slightly lower number of small changes than the
reference channels (rightmost part of Figure 7(a)). This is
due to the path parameter estimation algorithm, which
always estimates a number of outlier paths that appear at
random in any single time snapshot. In the cafeteria scenario,
we observe much stronger changes than in the office scenario
due to the changes in the LOS part of the environment. The
measurement SNR was high, so random outliers were no
problem, as the rightmost part of the curves show. Between



EURASIP Journal on Wireless Communications and Networking 13

the outage probabilities of 10−2 and 1, the model fits the
measurement very well, which is the statistically relevant
part. The few much larger changes that are observed in the
measurements occur during the abrupt transition from LOS
to NLOS.

Next, we present the validation using mutual information.
Figure 8 shows the cdf of the evaluated mutual information
for both modelled and reference channels at both carrier
frequencies. We observe that the MI of the modelled channels
have a negative bias in both scenarios. This could be already
expected from the ECM validation, where the spreading of
the paths (strongest SV-ECM) was also slightly too low. We
discourage the use of MI for validating the spatial structure
of the radio channel, since MI is influenced by both spatial
structure and fading.

Finally, Figure 9 compares the Diversity Measure values
of the modelled channels with the reference channels. In
both scenarios, diversity is slightly overmodelled. While this
is also a common effect of analytical channel models, there
is no connection here. It may also happen that the RCM
undermodels diversity. This result could also have been
expected from the MI cdfs, where the cdf of the modelled
channels showed a sligtly steeper slope than the cdf of the
reference channels.

4. Conclusions

The presented Random-Cluster Model is well able to reflect
the spatial properties of measured time-variant MIMO chan-
nels, even if the properties of the environment are varying
between LOS and NLOS. By its direct parametrisation from
measurement data, the RCM is specific to the measured
environment. Since the RCM is propagation-based, the RCM
is also scalable in carrier frequency, in bandwidth, and
in its antenna array configuration. Still, it is a stochastic
model. The propagation environment is described using a
multivariate pdf of the cluster parameters. Depending on the
accuracy of the estimation of this pdf from measurements,
the parametrisation complexity is scalable. Time variance is
implemented by linear cluster movement. Using the recom-
mended clustering algorithm in combination with a Kernel
Density Estimator, the RCM is parametrised automatically
without user interaction.

Validation showed a close fit between the channels mod-
elled by the RCM, and reference channels obtained from the
measurements. Even though the RCM was only successfully
validated against indoor measurements, the model structure
is also well suited to represent outdoor radio channels,
when adapting the parameters, respectively. This renders the
RCM to be ideally suited to model particularly interesting
propagation conditions that were measured before.

Appendix

A. Channel Measurements

This appendix describes the channel measurement equip-
ment and the investigated scenarios.

Table 2: Parameter settings for the PropSound Channel SounderCS.

Parameter 2.55 GHz 5.25 GHz

Transmit power [dBm] 26 26

Bandwidth [MHz] 200 200

Chip frequency [MHz] 100 100

Number of TX antennas 56 50

Number of RX antennas 8 32

Code length [μs] 2.55 2.55

Channel sampling rate [Hz] 92.6 59.4

Cycle duration [μs] 1542.24 8415.00

TX antenna height [m] 1.53 1.53

RX antenna height [m] 1.05 0.82

A.1. Equipment

We employed a wideband radio channel sounder, EB
Propsound CS [49], which utilizes periodic pseudorandom
binary signals. The sounder is described in more detail
in [50]. In sounding, M-sequences with adjustable code
lengths are transmitted and multiplexed by switching the
transmit and receive antennas. The spread spectrum signal
has 100 Mchip/s chip rate and switches through all the
antennas with the cycle rates presented in Table 2. Thus,
sequential radio channel measurement between all possible
TX and RX antenna pairs is achieved. The number of antenna
elements used is inversely proportional to the cycle rate.
The sounder was operated in burst-mode, that is, after four
measuring cycles there was a break to allow real-time data
transfer to the hard disk unit. During the measurements,
a real-time display of the received impulse responses (IRs)
could be monitored from the control laptop computer. In
addition to basic data handling features, the post-processing
tools include the ISIS (Initialization and Search Improved
SAGE) software to identify individual MPCs by a super-
resolution SAGE algorithm employing maximum likelihood
techniques for parameter estimation [51].

The selected antenna arrays (Figure 10) are able to
capture largely the spatial characteristics of the radio channel
at both link-ends. The 2.55 GHz array (Figure 10(a)) used
at the TX consists of 28 dual-polarized patch elements.
The elements are positioned in a way that allows channel
probing in the full azimuth domain. The upper ring of
antenna elements in the ODA was not operative on one
link end, so elevation information was not extracted from
the measurements. Figure 10(b) shows the uniform circular
array with 7 + 1 monopoles used at the RX end at 2.55 GHz.
It supports full azimuth direction probing but not the
elevation. At 5.25 GHz both TX and RX had 25 element patch
arrays shown in Figure 10(c). Their properties are similar
to the 2.55 GHz patch array. Table 3 shows the azimuth and
elevation coverage of the antennas.

All antennas had been calibrated in an anechoic chamber.
The signal model on which SAGE is based is using the
measured array pattern data for calculating the angles of
impinging or outgoing waves. In the calibration process, the
antenna pattern of each single element was measured in
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(a) 3 × 8 ODA,
2.55 GHz

(b) 7 + 1 UCA, 2.55 GHz (c) 2 × 9 ODA,
5.25 GHz

Figure 10: Antenna arrays. (a) 2.55 GHz omni-directional patch array (ODA), (b) 2.55 GHz circular monopole array (UCA), (c) 5.25 GHz
ODA.
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Figure 11: Measured scenarios.

Table 3: Antenna parameters.

Antenna Azimuth coverage Elevation coverage

3× 8 ODA 2.55 GHz −180◦ · · · 180◦ −55◦ · · · 90◦

7 + 1 UCA 2.55 GHz −180◦ · · · 180◦ 0◦ · · · 60◦

2× 9 ODA 5.25 GHz −180◦ · · · 180◦ −55◦ · · · 90◦

amplitude and phase over azimuth and elevation, resulting
in an azimuth/elevation matrix. This measurement was
done for both horizontal and vertical polarisation. To
minimize the interference of WLAN and Bluetooth, one
center frequency for the measurements was chosen to be
2.55 GHz. Still, there seems to have been (spurious) radiation
from these devices above 2.45 GHz, so we had to expect
an enhanced noise floor in the IRs. The ensuing smaller
dynamic range resulted in a smaller number of paths that
ISIS could extract from the measurement. At the other center
frequency of 5.25 GHz we did not observe any interference.

A.2. Scenarios

We took measurements on 28 different routes [36], of which
we analyse two particularly interesting ones in this paper. The

outer walls of the building were reinforced concrete or brick-
stone walls, while inside walls were mostly of plasterboard
with internal metal mounts.

The first measurement, NLOS throughout, was done in
an office environment, where the receiver was fixed in the
corridor and the transmitter was moved along a route in an
office (Figure 11(a)).

The second measurement, predominantly LOS, was
recorded in a cafeteria with metal tables and chairs. The
receiver was fixed on a table, and the transmitter was moved
along a route in the room. The Tx-Rx distance variation
was large, and the LOS between transmitter and receiver was
sometimes shadowed by an elevator (Figure 11(b)). People
were moving randomly in the environment.
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1. Introduction

The clustering of multipaths has started to be considered
as an aspect of multiple-input multiple-output (MIMO)
propagation channel models [1–3]. Given that they exist
and depending on the target MIMO application, accurate
knowledge of them in the channel is one of the ways to
take advantage of the benefits of MIMO systems, especially
that of spatial multiplexing systems, wherein these clusters
could act as additional channels. Characterizing multipath
clusters should therefore be satisfactorily accurate and this
hinges on the reality of these clusters. This starts by
identifying them appropriately. Many previous studies (e.g.,
[1, 4–7]) identified multipath clusters manually/visually after
some preprocessing. Manual clustering approaches are the
majority of the methods used in identifying multipath
clusters. Distinct from these manual clustering approaches
are automatic clustering approaches [8–11], which on the

other hand are the minority. These automatic clustering
approaches were made in response to the cumbersomeness
of identifying clusters manually from large estimated channel
data derived from channel sounding. Table 1 shows a
comparison of these two approaches. Each approach has its
own strengths and weaknesses. One big deficiency of current
automatic clustering approaches is their lack of physical
realism, that is, the multipath clustering results may not
correspond to physical objects in the environment, thus they
may just be numerical and inaccurate. In contrast, manual
approaches could check the physical validity of the clustering
results.

In this paper, a middle ground approach developed
inductively from employing each approach is presented.
It tries to draw the advantages of automatic and manual
clustering. The automatic clustering approach is applied to
estimated channel data, and then verified by manual cluster-
ing. The general goal is basically to understand the behavior
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Table 1: Comparison of two multipath cluster identification
approaches.

Automatic clustering Manual clustering

– real-world clusters are complicated – unwieldy and subjective

– mathematically trackable – physically trackable

– number-based – object-based

– “better” number processor – “better” object processor

Table 2: Medav-RUSK-Fujitsu wideband MIMO channel sounder.

Carrier frequency 4.5 GHz

Bandwidth 120 MHz

BS antenna
Uniform rectangular array

2× 4× 2 elements (row × col. × pol.)

V & H polarized patch antennas

MS antenna
Stacked uniform circular array

2× 24× 2 elements (row × col. × pol.)

V & H polarized patch antennas

Transmit signal Wideband multitone

Maximum delay setting 3.2 μs

Number of MIMO channels 1536

Table 3: Small urban macrocell scenario.

BS height ∼ 85 m

MS height ∼ 1.80 m

BS-MS distance ∼ 230–400 m

Structure type residential & industrial

of multipath clusters. However, the specific focus of this
paper is to identify clusters more effectively. The outcomes
consisted of overlapping clusters, which was attributed to
automatic clustering, and clusters with clear delineation,
attributed to the manual clustering approach. The result
demonstrates the need for the physical interpretation and
validation of automatic clustering results, which is an initial
step done in this paper. This paper is structured then as
follows. In Section 2, the source of the estimated MIMO
channel data is described. This is followed by an overview
of the approach in Section 3. The details of the approach are
discussed in Sections 3.1 and 3.2, which refer to automatic
and manual multipath clustering, respectively. Sections 2–
3.2 comprise the highlighted part of the framework behind
this paper as portrayed in Figure 1. After these sections, the
results and subsequent discussions are laid out in Section 4.
Finally, conclusions are summarized and drawn.

2. Estimated MIMO Channel

After a macrocell site survey and planning for a mea-
surement campaign in Kawasaki City, Kanagawa, Japan,
channel sounding was performed using the Medav-RUSK-
Fujitsu MIMO channel sounder [12]. Pertinent details of this
wideband channel sounder and the measurement site are in
described in Tables 2 and 3, respectively. The array antennas

Macrocell
site survey and

planning for
measurement

campaign

Channel sounding

and parameter

estimation

Middle ground

multipath clustering

Manual
multipath clustering

Automatic
multipath clustering

Number of
multipath clusters:

average rank aggregation

Global optimization:
simulated annealing

Local optimization:
K-means clustering

MIMO
channel analysis

and modeling

(not included

in this paper)

Figure 1: Overall framework. The prominent group presented in
this paper shows the progression of the middle ground multipath
clustering approach from the automatic clustering optimization to
manual multipath clustering.

that were used were carefully calibrated in an anechoic
chamber, which is important for path parameter estimation
[13, 14]. A map of the small urban macrocell showing the
base station (BS) and mobile station (MS) positions is shown
in Figure 2. Photographs of selected positions are shown in
Figure 3. With this measurement setup, time snapshots of
the channel were taken after midnight under a clear spring
weather while the MS was moved at a slowly walking pace
along the street. In between MS positions, the MS movement
covers a 20 m length route, starting and ending with static
measurements.

A maximum likelihood multidimensional parameter
estimation algorithm was used to extract the delay (τ),
azimuth (φ), and co-elevation (θ) angle of departure (AoD),
φ and θ angle of arrival (AoA), and the four complex
polarimetric weights (γVV, γVH, γHV, γHH) including the dif-
fuse components [15, 16], where V and H denote the
vertical polarization and horizontal polarization, respec-
tively. Briefly, the co-elevation angle is referred to here
as the elevation angle. The estimation algorithm is based
on the double-directional channel concept, which makes
the results independent of the antennas used [17]. The
measurement site and the estimated channel are precursors
to the multipath clustering progression described in Figure 1.

3. Bicombinational Multipath Clustering

There has been basically two views in identifying multipath
clusters in order to achieve a supposed satisfactorily accurate
cluster channel model. One view is manual clustering,
which is usually done through visual or manual means
while the other is automatic clustering, which is performed
algorithmically (see Table 1). Manual clustering could be
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Figure 2: BS and MS positions in the measurement site. The BS
antenna was placed on top of a building which was the highest one
in that location (Figure 3(c)), whereas the MS positions were along
the street. The average height of the buildings around the BS was
less than half its height.

seen to operate like “group of patterns are seen, therefore
they are clusters,” whereas for automatic clustering “group
of patterns are numerically optimized, so they are clusters.”
Thus, one approach depends on what is seen, but the other
on numbers. Visual reliance per se or numerical reliance per
se tend to focus only on their respective results. The approach
of this paper tries to combine the strengths of each view.

Given the backdrop notion that modeling clusters starts
by their correct identification, three factors were considered
in the middle ground clustering approach. These factors are
listed in Table 4.

In this paper, the multidimensional Euclidean distance
was used primarily as the similarity/dissimilarity measure
(see Section 3.1), whereas for the significance measure, clus-
ters were considered primarily by their power (specifically,
power proportion; see Section 4.1), and for the validation
measure, they were verified: (i) numerically by the average
rank aggregation (Section 3.1.3) of their clustering validity
indices, and (ii) manually by their corresponding or asso-
ciated scatterers and propagation mechanisms. It is noted
that this is an important step in validating clusters produced
by automatic clustering as it connects with the physical
environment. It has been observed that this validation
is lacking in many existing publications on multipath
clusters.

A middle ground approach developed inductively from
employing each view [18, 19], and then both views are
presented here. In the automatic clustering side, a locally
optimal clustering algorithm was used together with a
stochastically global optimization strategy. The results of the

(a) A view from the BS

(b) A view from an MS position near the southeast
side of Figure 2

BS

(c) A view of the BS from an MS position

Figure 3: Views of the measurement site.

optimization are evaluated using the average rank aggrega-
tion of several optimal clustering validity indices in order to
find the best number of clusters. In the manual clustering
side, the goal is to verify the automatic clustering results
in relation to the physical environment (see Section 3.2).
The progression of this bicombinational multipath clustering
approach is presented in Figure 1. After preprocessing the
estimated channel, the multipath clustering problem is
optimally solved both on the global and local scales through
simulated annealing and K-means clustering. As shown
in Figure 1, the number of multipath clusters are then
evaluated after these optimization stages. These optimization
and evaluation stages make up the automatic multipath
clustering section. Afterwards, the results are used in the
manual clustering section. Combining these two sections
together gives the middle ground clustering approach. Since
the focus is to identify multipath clusters in a better way, the
modeling aspect in Figure 1 is not included in the paper, but
should be done in the future.
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Table 4: Factors considered in the middle ground clustering approach.

Factor Possible quantification Gives an answer to

Similarity/dissimilarity measure Multidimensional distance, probability
density function, . . .

How near/far are multipaths from each
other?

Significance measure Shape, size, power, mutual information,
target application performance, . . .

Which multipaths are considered?

Validation measure Clustering validity index, physics,
scatterers, . . .

How are the identified clusters validated?

Before presenting the details of the multipath clustering
approach in Sections 3.1, 3.2, other related aspects of
processing the estimated channel are described as follows.

Preprocessing. The clustering was done jointly in all the
spatial and temporal dimensions of the channel parameters.
The lth path channel data for clustering is denoted here as

Xl =
[
τl φ

AoD
l θAoD

l φAoA
l θAoA

l

]
, (1)

which represent the delay and direction dimensions. Before
automatic clustering was performed, the angular data in X
were first transformed to their direction cosines in order
to transform them into a linear scale. Thus dim{X} = 7
as a result of mapping the two-unit spherical dimensions
(azimuth and elevation) to three-unit Cartesian dimen-
sions (S2 → R3). Included with this preprocessing is
the normalization or scaling of each dimension in X to
have zero mean and unit variance. Further, the strongest
paths that represent the line of sight (LoS) were removed
using the single path estimate. This was based on the
goal of only modeling clusters that are due to multipath
mechanisms. It also follows the identification framework
proposed in [20], where the LoS component is subtracted.
In addition, six snapshots of every MS position shown in
Figure 2 were combined for automatic clustering. This six-
snapshot frame corresponds to a physical distance of about
2.5 m, which is the resolution of the channel sounder. This
snapshot framing was done for all the snapshots in an
MS position. Dynamic parameters are not considered in
this paper, so only a static six-snapshot frame of every MS
position were used. Furthermore, because of the limitations
of the channel sounder for dynamic outdoor measurements,
the Doppler dimension was not included. Specifically, the
storage system of the channel sounder could not write as fast
as the system measures the next Doppler block due to the
time length in processing the buffered data before storage.
Furthermore, it was not feasible to reduce the number of
antenna elements at the BS and MS, and also the number
of frequency bins in order to match the rate of the storage
system.

Pruning. After determining the number of multipath clus-
ters, cluster pruning was performed as suggested in [9]. The
pruning was done simultaneously in six dimensions. These
dimensions are the cluster power, the root-mean-square
(rms) delay spread, and the rms spreads of the φ and θ AoDs

and AoAs. In the multipath cluster pruning implementation,
all paths run into a loop. In that loop, a path is pruned
if all the remaining cluster power and clusters spreads
without it are ≥99% of the unpruned cluster power and rms
spreads.

Propagation Mechanism Classes. As was done in [1, 4, 21],
different propagation mechanism classes were considered,
which are also adopted here. These propagation mechanism
classes basically depend on the layout of the measurement.
Thus they belong to the property of the scatterers in
the environment. The considered propagation mechanism
classes are (i) BS direction, (ii) facing BS direction, and
(iii) street direction classes. Each one is divided further
into two: (a) roof direction and (b) ground direction classes.
Knowing these propagation mechanisms classes could show
how multipath clusters are related to the measurement site.
These classes are based on the direction where a cluster
comes from as seen at the MS. Figure 2 roughly shows
these directions. Since the viewpoint was at the MS, the
street direction was used as a reference in determining the
BS direction and facing BS direction. So the BS direction
refers to those multipaths whose azimuth AoAs come from
the left side of the street, while those that are from the
right side are the facing BS directions. The limiting 86-
degree field-of-view of the MS patch antennas was used
to determine the extent of the street direction region.
From the estimated MIMO channel data, the azimuth AoA
reference was placed at 0◦. This reference was parallel
to the street direction for all the MS positions. For the
elevation propagation mechanism classes, the roof direction
classes are those multipaths whose co-elevation AoAs are
above the MS (θ < 90◦), and otherwise for the ground
directions.

3.1. Automatic Multipath Clustering. The local and global
optimizations done in solving the multipath clustering
problem, and the evaluation of the number of multipath
clusters are described in what follows.

3.1.1. Locally Optimal Clustering. Without consistent repro-
ducibility, manual cluster identification methods can become
unwieldy and subjective when applied to large estimated
channel data derived from channel sounding. So the use
of clustering algorithms has been an alternative. Here,
the K-means algorithm [22] for clustering the estimated
channel data was used. It has been used previously in
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[9, 10]. The K-means clustering algorithm gives a locally
optimal solution to a nondeterministic polynomial-time-
hard (NP-hard) problem [23–26]:

minimize
K∑

k=1

L∑

l=1

Vkld
(

Xl,µk
)

subject to
K∑

k=1

Vkl = 1, Vkl ∈ {0, 1},
(2)

where K is the number of clusters, Vkl is the assignment
indicator of Xl to the kth cluster (Vkl ∈ VK×L), µk is the
kth cluster centroid, and d(Xl,µk) is the distance measure
between Xl and µk. As was mentioned, the multidimensional
Euclidean distance was used for d. The power was not used
in weighing the distance measure in the K-means clustering
implementation as was done in [9], because clustering
result trials done by the authors converged to almost the
same results. Moreover, it also lessens the computation time
because of the use of simulated annealing (Section 3.1.2).
Using the distance measure on the dimensions of X, a cluster
is then seen as a group of multipaths having similar delay and
direction which are spread around a certain centroid.

K-means clustering with the multidimensional Euclidean
distance was used instead of kernel-based K-means and/or
spectral clustering methods [27]. Though admittedly
these methods could group nonconvex-shaped clusters, as
opposed to multidimensional Euclidean K-means, the deter-
mination of the tuning parameters that these approaches
use is not straightforward. In the end, nonconvex multipath
clusters could be more complicated to model, given that they
have been verified to physically exist and are significant. In
this paper, K-means clustering, which is a partitional way
of clustering, was used because it is dynamic in moving
Xl’s from one cluster to another [28]. This is in contrast
to hierarchical clustering methods (e.g., single-linkage [11]),
which are static in the sense that Xl’s assigned to a cluster
cannot be moved to other clusters in later iterations to
minimize the objective function [28]. Using K-means to
solve (2) is an expectation-maximization (EM) variation in
the hard sense [29].

3.1.2. Globally Optimal Clustering. Equation (2) is an opti-
mization problem and its objective function could have many
local minima. It is a combinatorial minimization problem
where K-means is only able to guarantee locally optimal
solutions, that is, in general its result is one among the local
minima and may not be the global minima. Using simulated
annealing, this local minima feature of K-means could be cir-
cumvented at the price of expensive computation. Simulated
annealing is a globally stochastic optimization strategy that
is conceptually a Monte Carlo method modeled according to
physical annealing from statistical mechanics [30], which is
a form of the Metropolis-Hastings algorithm [31, 32]. It has
been used in various combinatorial optimization problems
and has been also successful in circuit and antenna array
design problems [30, 33]. A pseudocode using simulated
annealing with clustering is shown in Table 5.

The statistical polynomial-time cooling schedule [34]
was used for the initial value and reduction of the control
parameter T , and also for the stopping condition. Using
this cooling schedule, the initial value of T was iteratively
calculated through several Markov chains using (3) until the
initial acceptance ratio χ0 is achieved. Here χ0 was set to 0.9:

Tini =
〈
Δd+

〉
[

ln

(
m2

m2χ0 −m1
(
1− χ0

)

)]−1

. (3)

In (3), m1, initially zero in the first Markov chain, is the
number of Markov transitions from i to j, where di � dj ;
m2, also initially zero, is the number of Markov transitions
from i to j, where di < dj ; and 〈Δd+〉 is the average Δd for m2

transitions (i.e., Δd > 0, Δd = dj − di). For the reduction of
T at the ith iteration, it was obtained as

Ti = Ti−1

[

1 +
Ti−1 ln(1 + δ)

3σdTi−1

]−1

, (4)

where δ is the decrement parameter, which was set to 0.1, and
σdTi−1

is the standard deviation of d in the Markov chain at
Ti−1. Finally, convergence is reached when the stop criterion

∣
∣
∣
∣∣

T
〈
d
(
Tini

)〉
∂
〈
ds(T)

〉

∂T

∣
∣
∣
∣∣ < ε (5)

is satisfied, where 〈ds(T)〉 is the smoothed 〈d(T)〉 over the
length of the Markov chains, whereas ε is the stop parameter,
which was set to 1 × 10−3. The statistical polynomial-time
cooling schedule is a thorough approach and theoretically
based way of running simulated annealing as compared to
empirical cooling schedules. For the theoretical basis of the
control parameter cooling schedule, readers are referred to
[34].

In Table 5, µini is randomly chosen from X; however, it
is further refined by the long Markov chains and the nearest
neighborhood-based centroid selection. At most, 30 nearest
neighborhood paths of µc in X were the candidates for the
random selection of µn. The closeness was measured using
the multidimensional Euclidean distance. In the same table,
the constant N0 was set to 3, which was a compromise
between efficiency of the available computing resource and
effectiveness of the simulated annealing implementation. It
is noted that a deterministic cluster centroid initialization
could also be used as was done in [35]. However, by virtue of
the large search space of multipath centroids in running the
K-means clustering algorithm inside simulated annealing,
closer solutions to (2) are achieved because simulated
annealing could jump away from being trapped in a local
minima.

In condensed matter physics, annealing is a thermal
process for achieving low energy states of a solid. It starts by
heating the solid until it melts, and continuous by cooling
it carefully until its lowest-energy state is reached. Low
temperature, however, does not guarantee that the lowest-
energy state [30] will be attained. The heating temperature
must be high enough, and then cooling down must be
sufficiently slow in order to generate a sequence of states of
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Table 5: Clustering with simulated annealing pseudocode.

T Control parameter

µini ∈ Rdim{X}×K Initial µ

µn ∈ Rdim{X}×K Nearest neighborhood-based µ

{dc,µc, Vc} Current values

{db,µb, Vb} Best values

{df,µf, Vf} Feasible values

R ∈ [0, 1) Uniformly distributed random number

Nmax = N0 · dim{X} Length of the Markov chains [34]

(1) for K = 2 to Kmax do
(2) get the initial value of T based on X
(3) {dc,µc, Vc} ⇐ K-means⇐ {X,µini,K}
(4) {db,µb, Vb} ⇐ {dc,µc, Vc}
(5) while true do
(6) for N = 1 to Nmax do
(7) select µn among the nearest neighborhood of µc in X
(8) {df,µf, Vf} ⇐ K-means⇐ {X,µn,K}
(9) Δ = df − dc

(10) if Δ ≤ 0 or exp(−Δ/T) > R then
(11) {dc,µc, Vc} ⇐ {df,µf, Vf}
(12) if dc < db then
(13) {db,µb, Vb} ⇐ {dc,µc, Vc}
(14) end if
(15) µc ⇐ µn

(16) end if
(17) end for
(18) reduce T
(19) break if stopping condition is met
(20) end while
(21) return {µb, Vb}
(22) end for

Algorithm 1

the solid, and not to miss the lowest-energy state, otherwise
the solid will become metastable. When the cooling is
done this way, the solid could reach thermal equilibrium
at each temperature. A large number of gradations is thus
presented by the slow-cooling temperature schedule. This
annealing process was simulated by [31] where the energy
difference at each state of the solid is accepted when they
reach thermal equilibrium, which could be described by the
Boltzmann distribution. The temperature of the annealing
process corresponds then to the control parameter T . So
Table 5 could then be concisely described by allowing K-
means clustering to be run through long Markov chains,
with sufficiently high initial T , which is then carefully
decreased, the accepted solution to (2) approaches the global
minima in the stochastic sense. In contrast to other clustering
algorithms [8–11, 36], their results may only be locally
optimal.

3.1.3. Number of Clusters (K). Determining the best K
is difficult because it requires a priori knowledge of the
formation of multipath clusters in the environment, which

is not practically available. Nonetheless, it could be found
by evaluating the clustering results using criteria set forth
by clustering validity indices. These criteria are mainly based
on cohesion (compactness) and separation measures of the
clusters. So a clustering validity index tells the quality of
clustering results that could give the best grouping. The
indices that were used are described in what follows. These
indices are optimizing in nature, that is, the maximum or
minimum values of their arguments indicate the appropriate
clustering.

(a) Silhouette Index. The Silhouette index slk could measure
how similar a multipath l is to all multipaths in its own
cluster Ck compared to all multipaths of the cluster nearest
to it [37]. It is expressed as

slk =
(
blk − alk

)

arg max
{
blk, alk

} , (6)

where

alk = 1
|Ck|

∑

X∈Ck

d
(

Xl, Xl′
)
l′ /= l (7)

is the average distance of Xl to Xl′ in Ck; whereas

blk = arg min
k′ /= k

⎧
⎨

⎩
1

∣
∣Ck′

∣
∣

∑

Xl′∈Ck′

d
(

Xlk, Xl′k′
)
⎫
⎬

⎭ (8)

is the average distance of Xl of Ck to all Xl′ of the nearest Ck′ .
A slk = +1 means well-separated clusters whereas−1 signifies
the opposite. Following [8], the best K could be found as

KSI = arg max
K

{
1
K

∑

k

(
1

∣∣Ck

∣∣

∑

l∈Ck

slk

)}

. (9)

(b) Davies-Bouldin Index. This index is a function of the
ratio of the intracluster separation sum (Si) to the intercluster
separation [38]. The best K is found as

KDB = arg min
K

⎧
⎨

⎩
1
K

∑

k

(

arg max
k′ /= k

{
Sk + Sk′

d
(
µk,µk′

)

})⎫⎬

⎭, (10)

where

Si = 1
∣∣Ci

∣∣

∑

l∈Ci

d
(

Xl,µi
)
. (11)

(c) Caliński-Harabasz Index. This index is a ratio of the
trace of the between-cluster scatter matrix to the trace of
the within-cluster scatter matrix [39]. The best K using this
index is

KCH = arg max
K

{
Trace(B)/(K − 1)
Trace(W)/(L− K)

}

, (12)

where B and W are, respectively, given as

B =
∑

k

∣
∣Ck

∣
∣d
(
µk,µ

)
dT(µk,µ

)
,

W =
∑

k

∑

l∈Ck

d
(

Xl,µk
)
dT(Xl,µk

)
,

(13)
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where µ is the global centroid of the estimated channel in an
MS position.

The Davies-Bouldin index and Caliński-Harabasz index
were also used in [9]. Clustering algorithms that have
basically the same objective function as that in (2) could
result in being over-clustered or under-clustered as K is
varied [40]. When the clustering results in either case, clus-
tering validity indices that use intracluster and intercluster
separation measures have a tendency to decrease or increase
monotonically. This effect makes it difficult to determine the
number of clusters. Moreover, the K ’s determined by (9),
(10), and (12) are based on the clustering results of only
a single value of K considered in its argument. Instead of
considering only a single K , the Kim-Parks index [40], and
the dynamic index [41] considered here give a validity that
considers all the K ’s used. Considering all the K ’s used in
a clustering validity index could avoid the monotone effect
[40, 41]. A disadvantage of using these two clustering validity
indices is the increase in computation time.

(d) Kim-Parks Index. This index is a function of the sum
of (i) the total intracluster separation, as a measure of
under-partition, and (ii) an over-partition function of the
minimum distance between cluster centroids. Using it, the
best K is taken as

KKP = arg min
K

{(
1
K

∑

k

Sk

)

+
K

arg mink′ /= k
{
d
(
µk,µk′

)}

}

,

(14)

where each summand of the argument is normalized as
xarg = (x − xmin)/(xmax − xmin).

(e) Dynamic Index. This index tries to include the geometri-
cal aspect of X while taking into account the affinity of each
cluster [41]. It determines the best K as

KDI = arg min
K

{
arg max

{
d
(
µk,µk′

)}

arg mink′ /= k
{
d
(
µk,µk′

)}

+
ζ

K

∑
l

∑
k var

(
Xl ∈ Ck

)

∑
l var

(
Xl
)

}

,

(15)

where

ζ = arg max
{
d
(

Xl, Xl′
)}

arg minl /= l′
{
d
(

Xl, Xl′
)} ·

∑
l var

(
Xl
)

∑
l

∑2
k=1 var

(
Xl ∈ Ck

) ,

(16)

whereas var(·) denotes the variance.

Average Rank Aggregation. For different K ’s, each argument
in KSI, KDB, KCH, KKP, and KDI—denoted here by κ(K)—has
a different scale from one another, an example of which is
shown in Table 6. Since these κ(K)’s differ in evaluating the
qualities of the clustering results, it is also not straightfor-
ward to normalize them to one scale. To address these issues
and to not only depend on one clustering validity index

Table 6: Example κ(K) for K = 2 to K = 6.

K
κ(K)

κSI κDB κCH κKP κDI

2 0.547 0.703 12.806 0.554 43.286

3 0.074 0.358 33.817 0.074 22.074

4 0.044 0.542 34.866 1.019 26.626

5 0.03 0.671 33.326 1.619 31.477

6 −0.047 0.463 27.885 1.501 26.531

Table 7: Average rank aggregation applied to the data in Table 6.

K
sr(κ)

srSI srDB srCH srKP srDI sr(〈∀sr〉)
2 5 1 1 4 1 2

3 4 5 4 5 5 5

4 3 3 5 3 3 4

5 2 2 3 1 2 1

6 1 4 2 2 4 3

result, the weighted voting aggregation of [42] was adopted
but with a proposed modification: instead of scoring κ(K)’s
by weighted votes, they are scored by their statistical rank—
sr(κ). This removes the bias in the determination of the best
K as it does not depend on the weights. The rank aggregation
strategy is shown in Table 7 using the κ(K) example in
Table 6. The result suggests that the best K is 3 based on
the highest sr(·) of the sr(κ) average of all clustering validity
indices. The next highest sr(·)’s could be checked as well if
the clustering result of the highest one does not meet the
criteria. As a comparison, when weights are used and are
determined optimally or heuristically, the use of the average
rank aggregation strategy offers a significant reduction in the
overall computation time.

3.2. Manual Multipath Clustering. Real-world clusters could
have irregular shapes like nonspherical or nonellipsoidal
multipaths groupings, which could be readily recognized by
the human eye, but not automatically by mathematical algo-
rithms [8]. Several aspects that contribute to this irregular
shaping are the dimensionality of X and manifold cluster
characteristics due to the physical environment. Accommo-
dating functionalities, for example, contracting projections
and separators [43], which address these shapes adaptively
in the mathematical clustering algorithm would result in an
inefficient algorithm. Thus, the authors consider that the
human aspect should not be ignored in the cluster validation
analysis, especially in the verification of the physical realism
of the clustering of multipath estimates as was also similarly
done in [1, 4, 6], and not just fully depend on mathematical
clustering results. This validation then incorporates the so-
called domain knowledge (from data-mining terminology) in
validating clusters.

Drawing selected principles from a procedure outlined in
[18], and with the aid of careful mapping of the directional
orientation on fisheye photographs of measured positions at
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Figure 4: Outcome of the clustering approach at one position of an MS measurement location.

the MS, corresponding scatterers of each cluster were visually
identified. This was done by viewing the automatic clustering
results in several dimensions in conjunction with fisheye
photographs of the MS position where automatic clustering
was performed. A fisheye image is basically a projection of a
hemispherical image to a plane. The following criteria were
used in verifying the results of automatic clustering:

(i) within-processing limitations,

(ii) non-overlapping in delay,

(iii) scatterer existence.

The channel sounder resolution is included in (i). For
the case of using the multidimensional Euclidean K-means
algorithm, its processing limitation results in verifying only
observable convex-shaped clusters. The non-overlapping
criterion was used in order to delineate clusters from paths
that may not be part of it, thus keeping the verity of cluster
dispersion. Delay overlap of the clusters was allowed only

in one dimension. As was done in [10], singleton clusters
were not included as clusters since the results show that they
have relatively weak power. However, it is also recognized
that a singleton cluster could be considered as a cluster of
rays if they have significant power [44]. When clusters have
been verified, statistics are gathered such as their most likely
scatterer type, the number of clusters, and the propagation
mechanism class. This manual clustering is seen as an
important step in validating clusters produced by automatic
clustering as it connects with the physical environment,
which is lacking in many existing publications on multipath
clustering.

4. Results and Discussion

Applying the clustering approach presented in Section 3
to the estimated channel described in Section 2, Figure 4
shows one of the results. The automatic clustering result in
Figure 4(a) was verified by the manually identified clusters
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Figure 5: Another example showing four multipath clusters.

in Figure 4(b). The cluster-scattering objects were attributed
to the single-storey and two-storey concrete buildings. To
further verify these two clusters, their power profiles were
examined, which are shown in Figures 4(c)–4(j). Comparing
the plots in this figure, the two clusters are clearly seen
in the azimuth-delay profiles than in the azimuth-elevation
profiles due to the intersection of cluster elevation AoAs.
These two clusters were not only observable at the MS and BS
side through their azimuth-delay profiles but could also be
confirmed through their AoA-AoD profiles (except slightly
for the AoD profiles due to the closeness of the cluster
elevation directions). Similarly, Figure 5 shows a result with
four multipath clusters. Two of the cluster-scattering objects
were attributed to the asphalt road, whereas the other two
were attributed to the concrete wall and concrete sidewalk.
These results confirmed that the clustering approach was able
to capture clusters that fall within its capability andlinebreak
criteria.

Using the manual clustering criteria set forth in
Section 3.2 also resulted in clusters that were classified as
mathematical clusters, which are hereafter called α-clusters.
Many of the clusters that fall into this category are those that
overlap with other clusters in their scenarios, whereas others
are singleton clusters. Among the criteria, the overlapping—
in delay and/or direction—of these clusters was the main
reason why they were classified as α-clusters. Figure 6 shows
an example of these clusters, where the overlapping of three
clusters could be seen. Possible grounds for these α-clusters
are (i) other components (far clusters, clusters at the locality
of the BS, nonclusters, dynamic paths, etc.), or (ii) errors
(plane wave model failure, estimation errors, spectral line
splitting, etc.). Because of the channel sounding setup at
the measurement site, the authors determined to identify
clusters at the MS side. As Figures 2 and 3 show, the BS
was located on the highest building in the macrocell setup.
Thus, the plausibility of having clusters at the BS was low.
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Figure 6: A mathematical clustering result—overlapping clusters.

Table 8: Percentage of cluster propagation mechanism classes.

Classes Ground [%]a Roof [%]a Overall [%]a

Street direction 10.63
/
16.93 12.2

/
13.39 22.83

/
30.32

BS direction 5.12
/
7.09 6.3

/
5.12 11.42

/
12.21

Facing BS direction 4.72
/
7.48 6.69

/
4.33 11.41

/
11.81

aα-clusters/β-clusters.

This could also be examined in the AoA-AoD profiles in both
the azimuth and elevation dimensions in Figures 4(f), 4(j),
5(f), 5(j), 6(f), and 6(j). The narrowness of the AoD range
spanned by the clusters in these power profiles indicates the
absence of clustering at the BS side.

4.1. Power Proportion. Collecting the clustering results of
the approach applied to the estimated MIMO channel data,
the significance measure (see Section 3) of the clusters are
examined here in terms of their power proportion. The use

of power proportion as a measure of cluster significance
has been also used in [6]. For a certain MS measurement
location, this power proportion is defined here as the ratio of
the cluster path power to the total path power. For a cluster
Ck, it is expressed as

PCk
p =

∑
l∈Ck

(1/2)
(∣
∣γVV,l

∣
∣2

+
∣
∣γVH,l

∣
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+
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∣γHV,l

∣
∣2

+
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∣γHH,l

∣
∣2
)

∑
l (1/2)
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∣∣2

+
∣∣γVH,l

∣∣2
+
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∣∣2
+
∣∣γHH,l

∣∣2
) .

(17)

α-clusters were found to represent the majority of clustering
outcomes in terms of their power proportion. On the other
hand, the minority were categorized as small clusters, which
are hereafter called β-clusters. The cumulative distribution of
the power proportion of these clusters is shown in Figure 7.
The plot shows that β-clusters have a relatively smaller power
proportion than α-clusters. Their low values were due to the
removal of the strongest component as described in Section 3
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Table 9: Material-type percentage of the β-cluster scatterers.

Material type
Street direction BS direction Facing BS direction

Overall [%]
Ground [%] Roof [%] Ground [%] Roof [%] Ground [%] Roof [%]

Metal 5.9 12.3 7.8 3.4 2 3.9 35.3

Concrete 8.8 6.9 3.9 2.9 6.9 1 30.4

Asphalt 15.2 − 0.5 − 1 − 16.7

Brick 0.5 5.8 − − 1 2 9.3

Mixed (metal, concrete, foliage, window) − 5.4 − − − 2.9 8.3
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Figure 7: Distribution of the power proportion.

(Preprocessing). Thus, in using the approach, α-clusters and
β-clusters resulted, where the distinctions between the two
are as follows: (i) α-clusters were mainly a result of the
mathematical/automatic clustering approach, whereas β-
clusters were that of the manual clustering approach; (ii)
many α-clusters had overlapping clusters whereas β-clusters
had clear-cut delineation of their associated/corresponding
scatterers, thus they have physical meaning; (iii) α-clusters
had more energy than β-clusters. The results show that
these overlapping clusters could basically be considered as
outcomes of automatic clustering since they comprised the
majority of the observed channel in terms of their power
proportion. Furthermore, only a few clusters had a clear
delineation of their dispersion. There is a difficulty then in
judging the physical realism of overlapping clusters. This
overlapping defeats the concept of spatial multiplexing,
where cluster channel models that are used in simulations
must be satisfactorily accurate. Moreover, this further points
to a need for the physical interpretation and validation
of clustering results, which is an initial step done in this
paper, and further refinement or improvement is called for.
This may somehow address the arbitrariness in identifying
clusters. From these results, one may infer partial clustering
of the channel at the MS. However, there is indeed a great deal

of arbitrariness in defining and determining clusters [7]. For
example, the general consensus is that a cluster is a group
of paths that have “similar” characteristics but is “distinct”
from other path groups, but its quantification may differ
from one automatic clustering to another (like the power-
weighted multipath component distance [9]; cosine angle for
directions and absolute delay difference [11]). Furthermore,
from the systems-engineering view, cluster scatterers may
not be important, which may be contrary to the radio-
propagation-engineering view. Hence, the characteristics of
these clusters are shown in what follows.

4.2. Cluster Scatterer Mechanism Classes. As discussed in
Section 3, propagation mechanism classes were taken from
the results. Table 8 shows the cluster propagation mech-
anism classes whereas Table 9 gives the type of scatterers
corresponding to the clusters. Since β-clusters had a clearer
delineation than α-clusters, only β-clusters are included in
Table 9.

As a comparison, in a similar area [45], the BS direction
and facing BS direction were noted to have strong multipath
contributions. For street directions, it has been observed that
later-arriving multipaths propagate through street canyons
[46], and in [47] it was observed that a significant number of
multipaths comes from such directions. These observations
are consistent with the values in Table 8, where the street
direction dominated. In the same table, the BS direction
and facing BS direction classes have almost the same
contribution. Furthermore, the cluster scatterers were mostly
metallic-type materials followed by concrete, asphalt, and
brick, as shown in Table 9.

4.3. Cluster Characteristics. The condensed parameters of the
cluster characteristics considered are the following:

(i) cluster average power (Pave)

(ii) number of clusters

(iii) cluster fading factor (κ)

(iv) cluster delay

(v) cluster spreads (στ , σφ, σθ)

(vi) cluster polarization ratios.

The cluster fading factor is defined here as the ratio of
the power of the strongest cluster to that of all the other
clusters. It is pointed out that σφ was computed according
to the circular angular spread calculation in [48] to avoid the
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Table 10: Summary of cluster statistical parameters in urban/suburban macrocellular environments.

Cluster parameters

Kawasaki, Japan [this paper] Helsinki, Finland [6] Louvain-la-Neuve, Belgium [7]

Street residential-industrial Streetc Squarec Residential Campus Science park

(230–400 m)a (∼ 500 m)a (∼ 300 m)a (300–400 m)a (50–400 m)a (260–450 m)a

Meanb Stdevb Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Pave [dB] −15.35
/− 28.17 13.83

/
11.24 − − − − −10.24d 5.18d −9.02d 5.6d −8.16d 5.72d

K 6.83
/
7.11 0.99

/
4.76 14 − 10 − 1.01 0.61 1.11 0.59 1.6 0.73

κ [dB] 4.26
/
1.43 5.24

/
5.33 3.65 2.29 2.26 1.99 −0.14 6.39 2.5 6.53 −1.4 6.54

τ [μs] 1.11
/
1.1 0.271

/
0.255 2.83 1.04 1.38 0.46 0.22d 0.21d 0.19d 0.21d 0.13d 0.13d

σφAoD [◦] 4.67
/
1.34 5.55

/
1.25 − − − − − − − − − −

σφAoA [◦] 29.43
/
8.42 15.18

/
20.8 4.2 1.94 4.57 2.07 11.09 2.04 9.18 2.13 11.74 1.89

σθAoD [◦] 2.83
/
1.17 3.86

/
1.25 − − − − − − − − − −

σθAoA [◦] 6.8
/
3.83 4.63

/
2.84 − − − − − − − − − −

στ [ns] 29.35
/
16.5 37.32

/
23.9 27.22 40.68 28.5 42.57 10.46 1.78 8.28 1.88 9.1 1.78

XPR [dB]e − − 10.39 4.69 10.72 2.37 − − − − − −
XPRBS

V [dB] 8.63
/
8.73 5.2

/
5.37 − − − − − − − − − −

XPRBS
H [dB] 9.77

/
9.88 4.59

/
4.95 − − − − − − − − − −

XPRMS
V [dB] 9.24

/
8.61 4.46

/
5.95 − − − − − − − − − −

XPRMS
H [dB] 9.15

/
10.01 4.95

/
5.87 − − − − − − − − − −

CPR [dB] −0.52
/− 1.28 3.74

/
4.8 − − − − − − − − − −

aBS-MS distance.
bα-clusters

/
β-clusters.

csingle realization.
d50th percentile data.
esingle-input multiple-output (SIMO).

ambiguous 2π periodicity. The four cross-polarization ratios
and co-polarization ratio of the clusters were computed,
respectively, as follows:

XPRBS
V = 10 log10
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The cross-polarization ratio (XPR) indicates the degree of
polarization of the paths in a cluster incur from being
vertically polarized to being horizontally polarized, or vice
versa, whereas the copolarization ratio (CPR) shows the
degree of vertical polarization with respect to the horizontal

polarization. In the notation in (18)–(21), XPRMS
V , for

example, is the XPR at the MS for paths that originated with
V polarization, with the channel assumed to be reciprocal.

The mean and standard deviation of the cluster charac-
teristics are placed together in Table 10. In the table, stdev
refers to the standard deviation. The mean and standard
deviation of the data in [6, 7] were also calculated and
then tabulated. Observing this table, the angular spreads
at the MS were larger than at the BS, indicating further
that the degree of cluster scattering was concentrated
at the MS. The σφAoA of the α-clusters was remarkable
due to their overlapping characteristics. Compared to
the COST 273 MIMO channel model [3], its corresponding
σφAoA is 35◦. Overall, the results are relatively comparable
given the difference of the measured routes and setup.
In addition, the results were influenced mostly by the
different clustering criteria used by each author. These
criteria basically give the cluster definition. It is also noted
that the high delay resolution of the channel sounder that was
used could include or exclude clusters that were subsequently
identified by the methodology discussed in Section 3. Future
target applications may have different capabilities (e.g.,
transmission scheme) and/or may not have such resolution
in place in user terminals right away.

4.4. Parameter Correlation. To examine any linear depen-
dencies among the cluster parameters, their correlation
coefficients were taken. The computed correlation coefficient
matrices of the α- and β-cluster parameters are portrayed
in Figures 8(a) and 8(b), respectively. From these matrices,
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Figure 8: Correlation coefficient matrix of the cluster parameters.

Table 11: Medium-to-large correlation among the α-cluster
parameters.

Parameter 1 Parameter 2
Correlation
coefficient

Azimuth AoD spread Elevation AoD spread 0.86

Power Delay −0.58

Azimuth AoA spread Elevation AoA spread 0.56

Power Elevation AoD spread 0.52

Fading factor Elevation AoD spread 0.52

Fading factor Delay −0.47

Elevation AoA spread XPRBS
V −0.41

Table 12: Medium-to-large correlation among the β-cluster param-
eters.

Parameter 1 Parameter 2 Correlation coefficient

Delay spread Azimuth AoD spread 0.65

Fading factor CPR 0.53

Power Delay −0.41

K Fading factor −0.35

medium-to-large correlation coefficients are tabulated in
Tables 11 and 12. Not included in the table are those
polarization parameters that correlated due to the reciprocity
of the channel.

Considering the common results of both clusters, the
correlation between cluster power and delay and also that
of fading factor and delay are apparent, given that clusters
with long delays have smaller power than those with short
delays.

For α-clusters in the considered macrocell, the azimuth
and elevation AoD spread correlation could indicate that the
spreading at the BS was concentrated toward the MS given
that their spreads are also small as seen in Table 10. For the

azimuth and elevation AoA spread correlation, it could attest
that the spreading becomes proportional to the scattering
object. These two results may seem to be connected with
the correlation between the elevation AoD spread and (i)
the power, and also (ii) the fading factor, thus signifying the
concentration of these α-clusters. In the case of the elevation
AoA spread and the XPRBS

V correlation, it may roughly follow
that polarization rotation still occurs even when the cluster
elevation dispersion is narrow.

For the β-clusters, the correlation between the delay
spread and azimuth AoD spread corresponds to the majority
of the propagation mechanism class. In the considered
macrocell, the street direction is somehow concentric from
the BS, which is lateral to where the MS is located (see
Figure 2). Thus a large cluster azimuth AoD spread corre-
sponds to those multipaths that would incur more delays in
going through those street canyons. This delay spread and
angular spread correlation has also been observed in [49].
For the correlation between the fading factor and CPR, it
could show that the dominant clusters were vertically polar-
ized. Lastly, the negative correlation between the number of
clusters and the fading factor could indicate that when there
are more clusters in the scenario, the tendency of having
dominant clusters is somehow dampened. These correlation
results are consistent with the observed results previously
discussed in this paper.

5. Conclusions

In this paper, a methodology has been presented with the
goal of identifying multipath clusters in a better way. Part
of it is a globally optimized automatic clustering approach,
which was used to identify multipath clusters at the mobile
station from estimated MIMO channel parameters derived
from a small urban macrocell measurement at 4.5 GHz.
The other part of the approach is the successive manual
clustering verification, in which the automatic clustering
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results were validated by identifying their corresponding
or associated scatterers in the physical environment. Using
this approach resulted in having (i) mathematical clusters,
which are mostly characterized by overlapping clusters
and are basically an outcome of automatic clustering, and
(ii) small clusters, which have small power but clearly
delineated clusters as produced by the manual clustering
approach.

The overlapping of clusters makes it difficult to judge
their physical realism, which further leads to the need for
the physical interpretation of automatic clustering results,
which is an initial step done in this paper and needs further
improvement. This may somehow address the arbitrariness
in identifying clusters. Due to the standoff present in defining
clusters and their physical analysis, the authors proceeded to
show the characteristics of both the mathematical clusters
and small clusters. It was found that the street propagation
mechanism class dominated. As a result of manual clustering,
the physical realism of multipath clusters was also identified
in terms of the type of the scatterer material. Metallic
materials, followed by concrete, and then asphalt were the
major types of cluster scatterers. It was found that the
considered cluster characteristics agree with existing results,
however, the difference largely depends on the criteria set
forth by the clustering approach.

It is expected that the statistical property of the wireless
channel will be different in other environments, for other
frequency bands (e.g., 0.7, 30, and 60 GHz), and for other
channel sounder resolutions. Secondary reasons for the
differences are the modeling and various approaches used in
the channel estimation and the subsequent channel analysis,
synthesis, verification, errors, and application goals. With
the use of the high-resolution channel sounder at 4.5 GHz
in the urban macrocell considered here, it is noted that the
target application and its available processing could define
if the cluster characteristics in the evaluation would aid in
its overall design. The disadvantages of the methodology
are the expensive computation of simulated annealing in
automatic clustering and the considerable user interaction
required in the manual clustering approach. On the other
hand, the automatic clustering results are better since they
are not confined to local minima limitations, and the
manual clustering approach could give an aspect of the
physical scattering realism of the clusters, which is lacking
in many automatic clustering results in the available litera-
ture. Furthermore, this bicombinational clustering approach
underscores the importance of incorporating validation in
cluster identification. It is noted that further research work
on improving the multipath clustering approach, as well
as doing the channel analysis/modeling further is vital
in order to understand the characteristics of multipath
clusters.
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1. Introduction

The pioneering work by Winters [1], Telatar [2], Foschini
and Gans [3] ignited enormous interest in multiple input
multiple output (MIMO) systems as they have the potential
to provide remarkable spectral efficiencies when the channel
exhibits rich scattering. Wideband wireless systems with
multiple antennas have been recognized as one of the most
promising candidates for next generation mobile systems
which are also known as IMT-Advanced systems. It is
well known that the propagation conditions have a crucial
impact on the design, simulation, and deployment of new
communication systems. Therefore, it is of great interest to
characterize and model the wideband MIMO channel to
enable accurate simulations of system performance. Prop-
agation characteristics have been investigated thoroughly
based on measured data from channel sounding in various

different scenarios [4–8]. An overview of the state-of-the-
art channel models is provided in [9]. These channel models
can be divided into two major categories: (a) the correlation
based models, for example, the Kronecker model [10] and
the Weichselberger model [11]; and (b) the parametric or
geometry-based stochastic models (GBSMs), for example,
the COST 259 directional channel model (DCM) [12],
the COST 273 channel model [13], the 3rd Generation
Partnership Project (3GPP) spatial channel model (SCM)
[14], and the WINNER channel model [15, 16], and so
forth. Because of their simplicity, the correlation-based
models are widely used for analyzing and designing space-
time transmission technologies. The GBSM is more complex
and less easy to use. One feature of a GBSM is that the
simulation is divided into a number of drops which can
be thought as channel segments with infinite time. Within
each drop, different random geometries are generated. This
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modeling methodology is adopted by the International
Telecommunication Union (ITU) for the evaluation of IMT-
Advanced systems [17].

In comparison with the broadly adopted traditional
tapped delay line (TDL) models in the GSM and IMT-2000
systems, there are two main challenges for the IMT-Advanced
channel model. Firstly, the TDL models in [18, 19] have an
invariant channel profile. (The “channel profile” stands for
the channel characteristics over a fading distance of tens of
wavelengths, in spatial, temporal, and frequency domains,
including the power delay profile (PDP), power angular spec-
trum (PAS), Doppler spectrum, and so forth.) However, even
for a single link, geometry-based MIMO channel models
need multiple channel profiles to accurately characterize the
extra degrees of freedom induced by employing multiple
antennas. As a result, far more random variables (RVs) have
to be embedded into the channel model than are required by
the TDL models. Secondly, because of the higher data rates
targeted with a system bandwidth of up to 100 MHz, many
more multipath components (MPCs) can be resolved, which
leads to an increase in the number of taps for wideband
MIMO channel models. Since the system level evaluation
of radio interface technologies (RITs) usually requires the
generation of multiple users dropped into a 19 hexagonal
cell network, these two challenges faced by GBSMs make
the evaluation a time consuming exercise. Hence, there
is an urgent need to simplify the geometry-based MIMO
channel models. As the correlation-based models have
greatly reduced computational complexity, several papers
have tried to bridge the gap between the correlated models
and GBSMs. The separability of spatial-temporal correlation
in the 3GPP SCM model is investigated in [20], which
proposed a correlation-based model to replace the geometry-
based model. A numerically efficient approximation of
spatial correlation models is proposed in [21], which shows
a good fit to the existing parametric models with a uniform
linear array (ULA) or uniform circular array (UCA) for an
angular spread (AS) smaller than 10◦. A simplified approach
to apply the 3GPP SCM model was suggested in [22], which
was also proposed for the evaluation of the 3GPP long-term
evolution (LTE) systems. Correlation-based replacements
of the GBSM can substantially reduce the computational
complexity. However, in such simplified models the antenna
geometries and radiation patterns cannot be altered easily
by the user of the model. On the other hand, this feature is
automatically enabled by the geometry-based modeling for
the propagation parameters and antennas.

In this paper, we investigate five possible simplifications
to the GBSM model. These simplifications are much more
straightforward than those obtained by converting a GBSM
to its correlation-based counterpart. A series of metrics
are proposed to evaluate the impact of the simplification
on the channel model behavior. These metrics cover var-
ious different perspectives of the assessment of RITs with
MIMO applications, including spatial multiplexing, spatial
diversity, symbol error probability, and temporal behavior.
The proposed simplifications and metrics are validated with
a baseline model which is extracted from MIMO channel
measurements in both indoor and outdoor environments.

A computational complexity analysis is also presented. Since
the simplifications are made under the original structure of
the GBSM, the ability to select values for physically-based
geometric parameters is maintained. Hence, the users of the
simplified models can control the antenna configurations
and link geometries as they do with the GBSM, while
experiencing lower computational effort.

The main contributions of this paper are as follows:

(i) a range of broadband metrics are proposed and used
for evaluating the full system behavior of wideband
MIMO channel models;

(ii) a series of potential simplifications to the IMT-
Advanced channel model are developed. The sim-
plified models have fixed and fewer parameters that
result in a negligible loss of performance as verified
by a range of metrics;

(iii) measurements of an indoor channel with both line-
of-sight (LOS) and scattered components were taken
in China. The data was used to fit a WINNER style
model [17] as the baseline GBSM. The metrics were
then used to compare the simplified models with the
GBSM and with the measured data;

(iv) the metrics were also evaluated with an outdoor
non line-of-sight (NLOS) channel in the WINNER
model [16] to demonstrate the validity of proposed
simplifications.

The rest of the paper is organized as follows. A GBSM
baseline model is briefly described in Section 2. A series
of metrics for evaluating the performance of simplified
wideband channel models are presented in Section 3. The
proposed simplifications are described in Section 4. A com-
parative analysis of the simulation results and conclusions are
given in Sections 5 and 6, respectively.

2. Baseline Channel Model

Currently, the primary channel model [17] for IMT-
Advanced system evaluation is based on the WINNER
channel model. Hence, in this paper we take the WINNER
model as a baseline. Consider a single downlink of a
wideband MIMO system with an S-element BS array and a
U-element MS array. The channel impulse response (CIR) at
time t, delay τ is modeled as

H(τ, t) =
√

K

K + 1
H0(t)δ(τ) +

√
1

K + 1

N∑

n=1

Hn(t)δ
(
τ − τn

)
,

(1)

where K is the Rician K-factor on a linear scale, H0(t) is
the channel coefficient matrix corresponding to the LOS ray,
N is the number of clusters, Hn(t), n = 1, 2, . . . ,N , is the
nth NLOS channel coefficient component, and δ(·) is the
Dirac delta function. Here, we assume that the clusters are
the zero-delay-spread-clusters (ZDSCs) defined in [15], that
is, a cluster is constituted by a number of rays, or propagation
paths, diffused in angle domains. The rays within the same
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cluster have the same propagation delay, and the power
dispersion of a cluster in angle domains is characterized
by cluster angular spread of departure (ASD) and cluster
angular spread of arrival (ASA). The elements of the U × S
matrix Hn(t) = (husn(t)) are given by

hus0(t) = cT
BS,s

(
φLOS

) ·X
(
ΦLOS

) · cMS,u
(
ϕLOS

)

· exp
[
jk‖v‖ cos

(
ϕLOS − φv

)
t
] (2)

for n = 0,

husn(t) =
√
Pn
M

M∑

m=1

cT
BS,s

(
φnm

) ·X
(
Φnm, κnm

) · cMS,u
(
ϕnm

)

· exp
[
jk‖v‖ cos

(
ϕnm − φv

)
t
]

(3)

for n = 1, 2, . . . ,N . In (2) and (3), (·)T stands for matrix
transposition, Pn is the power resulting from the nth cluster,
M is the number of rays in each cluster. The angles in (2)
and (3) are illustrated in Figure 1, where φLOS is the angle
of departure (AoD) for the LOS ray with respect to the BS
broadside, ϕLOS is the angle of arrival (AoA) for the LOS ray
with respect to the MS broadside, φnm is the AoD for the mth
ray of the nth cluster with respect to the BS broadside, while
ϕnm is the AoA with respect to the MS broadside, the mean
AoD and mean AoA of the nth cluster is defined as φn =
(1/M)

∑M
m=1 φnm and ϕn = (1/M)

∑M
m=1 ϕnm, respectively. φv

is the angle of the MS velocity vector v with respect to
the MS broadside. cBS,s(φnm) = [cV

BS,s(φnm), cH
BS,s(φnm)]T is

the complex antenna response of the sth element of the BS
array in the direction of φnm with respect to the reference
phase center of the array, with cV

BS,s(·) and cH
BS,s(·) referring

to the vertical and horizontal polarization directions, respec-
tively. The vector cMS,u(ϕnm) is defined similarly. Φnm =
[ΦVV

nm,ΦVH
nm ,ΦHV

nm ,ΦHH
nm ]T is the initial random phase vector

of the mth ray of the nth cluster. The superscripts used in
Φ
p1 p2
nm denote that the ray originates in the p1 direction and

arrives in the p2 direction. ΦLOS = [ΦVV
LOS,ΦHH

LOS]T is the
initial random phase vector for the LOS ray. The polarization
matrices X(ΦLOS) and X(Φnm, κnm) are given by

X
(
ΦLOS

) =
⎛

⎝
exp

(
jΦVV

LOS

)
0

0 exp
(
jΦHH

LOS

)

⎞
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X
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⎛
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exp
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jΦVV

nm

) √
κnm exp

(
jΦVH

nm

)

√
κnm exp

(
jΦHV

nm
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exp
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jΦVV

nm

)

⎞

⎠,

(4)

where κnm is the inverse of the XPR for the nth cluster
and mth ray. The XPR in decibels, is independent for
each cluster and ray, and follows the Gaussian distribution
N (μXPR, σ2

XPR). The constant k is the wave number 2π/λ with
λ denoting the carrier wavelength in meters.

For each drop, the parameters required by (2) and (3)
can be broken down into three sets: the LOS parameters
{K ,φLOS,ϕLOS,ΦLOS}, the cluster parameters {(Pn, τn,φn,

ϕn) : n = 1, 2, . . . ,N}, and the ray parameters
{(φnm,ϕnm,Φnm, κnm) : n = 1, 2, . . . ,N ; m = 1, 2, . . . ,M}.
According to the modeling methodology behind the WIN-
NER channel model, for a specific scenario, the root-
mean-square (RMS) delay spread (DS) τRMS, azimuth ASD
φRMS, azimuth ASA ϕRMS, standard deviation of sha-
dow fading (SF) σξ,dB, and the Rician K-factor KdB for
the LOS case are correlated log-normal RVs. Hence,
the 5-dimensional random vector L = [log10(τRMS),
log10(φRMS), log10(ϕRMS), σξ,dB,KdB] ∼ N (µL,ΣL), where
µL = [μDS,μASD,μASA, 0,μK ,dB] is the mean vector and ΣL

is the covariance matrix. The standard deviations of the
normal RVs in L are denoted by σX , and the cross-correlation
coefficients between the normal RVs in L are denoted by ρXY ,
where X and Y are placeholders for DS, ASD, ASA, SF, and K.
The detailed definitions of μX , σX , and ρXY are summarized
in Table 1, where E(·) is the expectation operator, Var(X)
stands for the variance of RV X , and Corr(X ,Y) denotes the
cross-correlation coefficient of two RVs X and Y . The five
parameters in L are called large-scale parameters (LSPs) [16]
since they are invariant in a channel segment, or drop, which
covers a fading distance of the order of tens of wavelengths.

The realization of the Rician-K factor together with
realizations of the other LSPs, that is, the realization of
the Gaussian random vector L, are drawn to follow the
distribution N (µL,ΣL). The LOS ray angles, φLOS and ϕLOS,
are geometrically determined by the relative positions of BS
and MS, and by the broadside orientations of both BS and
MS array. The cluster parameters, {τn}, {Pn}, and {(φn,ϕn)}
are sequentially generated according to the exponential
delay distributions, exponential/uniform power delay profile
(PDP), and wrapped Gaussian power angular spectrum
(PAS), respectively. The shape of delay distributions, PDP
and PAS, can be determined by realizations of the LSPs, that
is, τRMS, φRMS, and ϕRMS, which are generated together with
K as mentioned above. The ray parameters {(φnm,ϕnm) :
n = 1, 2, . . . ,N ; m = 1, 2, . . . ,M} are obtained by adding
predefined offset angles to φn or ϕn to follow Laplacian PASs
with given per cluster angular spread. The elements in the
initial phases ΦLOS and Φnm are independent and identically
distributed uniform in (−π,π). A detailed procedure of the
generation of these parameters can be found in [16]. Within
a drop, all these parameters are invariant. Thus, a single drop
cannot reflect the propagation characteristics for a given
scenario and multiple-drop simulation is needed even for
link-level performance evaluation.

3. Evaluation Metrics for Wideband
MIMO Channels

To evaluate the impact of various potential simplifications
to the channel model, proper metrics for wideband MIMO
channels are needed. Usually, spatial-temporal correlations
are used as two simple but fundamental metrics for MIMO
channel models. However, this paper aims to go further
and develops a thorough approach to studying the full
system behavior, through a more complex set of metrics.
This set includes mutual information, diversity gain, error
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Table 1: Definitions of first- and second-order statistics of LSPs.

μDS = E[log10(τRMS)] ρASD,DS = Corr[log10(φRMS), log10(τRMS)]

μASD = E[log10(φRMS)] ρASA,DS = Corr[log10(ϕRMS), log10(τRMS)]

μASA = E[log10(ϕRMS)] ρASD,SF = Corr[log10(φRMS), σξ,dB]

μK ,dB = E[KdB] ρASA,SF = Corr[log10(ϕRMS), σξ,dB]

ρASD,ASA = Corr[log10(φRMS), log10(ϕRMS)]

σ2
DS = Var[log10(τRMS)] ρDS,SF = Corr[log10(τRMS), σξ,dB]

σ2
ASD = Var[log10(φRMS)] ρASD,K = Corr[log10(φRMS),KdB]

σ2
ASA = Var[log10(ϕRMS)] ρASA,K = Corr[log10(ϕRMS),KdB]

σ2
K ,dB = Var[KdB] ρDS,K = Corr[log10(τRMS),KdB]

σ2
SF = Var[σξ,dB] ρSF,K = Corr[σξ,dB,KdB]

nth cluster

φnm
φn φLOS

BS broadside

BS array

mth ray

φv
v

ϕnm ϕn
ϕLOSMS broadside

MS direction
of travel

MS array

Figure 1: Definition of angles in WINNER channel model.

rate, and temporal behavior. Recall that, in the baseline
model, a scenario is characterized by multiple drops with
different realizations of LSPs. For either link- or system-level
simulation, the overall performance of all drops is concerned.
Based on this fact, these metrics are designed for evaluating
the average behavior over multiple drops. With such metrics,
we can try to examine whether the proposed simplified
model has equivalent behavior in the scenario level. The
proposed metrics are described in what follows.

3.1. Spatial Multiplexing Metric. Outage capacity is a widely
adopted metric to evaluate the spatial multiplexing ability of
an MIMO channel, because it is the main benefit provided
by this MIMO mode. The outage capacity, or the cumulative
distribution function (CDF) of the channel capacity, when
the channel is unknown to the transmitter is preferred to the
ergodic capacity which can be derived from the CDF. This is
because the ergodic capacity is often insensitive to the exact
channel characteristics, whereas the capacity distribution is
more easily affected. Hence, the outage capacity provides
a more rigorous test. The capacity of a time-invariant
frequency-selective fading MIMO channel is given by [23]

C = 1
B

∫

B
log2 det

[
IU +

ρ

S
H( f )H( f )†

]
d f , (5)

where (·)† stands for conjugate transpose, B is the band-
width, ρ denotes the signal-to-noise ratio (SNR) and H( f )
is the normalized frequency domain channel matrix with
unitary average channel power gain, that is,

E
(‖H( f )‖2

F

) = US. (6)

Note that H( f ) is the transform of the composite impulse
response with the delays, so the capacity obtained from (5) is
the broadband capacity. In (5), we have assumed equal power
allocation and no water filling is done both in the frequency
and space domains. Given an SNR ρ, the 100q% outage
capacity Cq is defined as the spatial multiplexing metric, that
is, Pr[C < Cq] = q.

3.2. Spatial Diversity Metric. When the channel is known to
the transmitter, spatial diversity is related to the dominant
eigenmodes of the channel matrix. Hence, we choose the
marginal CDF of each ordered eigenvalue of the chan-
nel correlation matrix as the spatial diversity metric. Let
λ(n)( f ), n = 1, 2, . . . ,U , be the eigenvalues of H( f )H( f )†

in descending order, that is,

λ(1)( f ) � λ(2)( f ) � · · · � λ(U)( f ). (7)

Note that, (7) implies that λ(n)( f ) = 0 for r < n � U , where
r = rank[H( f )H( f )†]. For n = 1, 2, . . . , r, the r empirical
distribution functions obtained from {λ(n)( f ) : f ∈
[−B/2,B/2]} are used as the spatial diversity metric. Note
that this approach is quite unusual. The eigenvalues are being
considered as random variables over frequency rather than
over different channel realizations for the same frequency.
For example, considering the maximum eigenvalue, a range
of values is obtained from measurements or simulations over
frequency and not over different channel realizations. This
reflects the focus of the paper on broadband metrics.

3.3. Symbol Error Probability. The exact symbol error prob-
ability (SER) of singular value decomposition (SVD)-based
MIMO receivers using uncoded transmission is derived in
[24] for flat-fading channels. We generalize the result to
the frequency selectivity case. If only the first m principal
eigen modes are activated for the SVD-based transmission
and the uncoded BPSK scheme is adopted, the symbol error
probability for a given SNR level ρ is given by

SER(ρ) = 1− 1
2mB

∫ B/2

−B/2
E

⎧
⎨

⎩

m∏

i=1

erfc

⎛

⎝−
√
ρλ(i)( f )

2S

⎞

⎠

⎫
⎬

⎭d f ,

(8)

where erfc(x) is the complementary error function. For a
fixed SER value, let the required SNR be ρ0 for the baseline
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model and ρ1 for the simplified model. The SNR shift, Δρ =
|ρ1 − ρ0|, is defined as the SER metric.

3.4. Temporal Behavior of MIMO Capacity. The capacity of
the time-variant MIMO channel is a stochastic process. The
temporal behavior of the MIMO channel model can be
partially reflected by the level crossing rate (LCR) across
a capacity level CT (denoted as LCR(CT)) and the average
fading duration (ADF) of the capacity process below CT

[25]. Let μC be the mean capacity, and σ2
C be the capacity

variance. Defining the standardized capacity values as C̃ =
(C − μC)/σC , we focus on the LCR(C̃T) which is the LCR of
the normalized capacity, C̃, across C̃T. Results are shown for
LCR(C̃T) normalized by the maximum Doppler frequency
fD, versus the outage probability given by Pout(C̃T) = Pr[C̃ <

C̃T] [25].

4. Potential Simplifications

4.1. Clipping Clusters with Lower Power. In [26], the compu-
tational complexity of channel model simulation was divided
into three different categories: (a) complexity of channel
coefficient generation, (b) number of required parameters,
and (c) the complexity of simulation. Both (a) and (c)
are proportional to the number of delay taps. Hence, the
computational complexity can be reduced if the number of
delay taps can be reduced. However, the impact of reducing
the number of delay taps needs to be investigated. The
clipping is based on the fact that the average power of
some clusters is relatively low with respect to the maximum
cluster power. Consider a scenario with N clusters, where
the average cluster power of the nth cluster is Pn in decibels.
Denote the cluster indexing set as I = {1, 2, . . . ,N}. For a
given cluster power threshold, Pth in decibels, the cluster is
clipped if its power is below this threshold when the power
of the dominant cluster is chosen as a reference. The reduced
number of clusters is an RV

Nclipped =
N∑

n=1

I
(
Pn < max

k∈I
Pk − Pth

)
, (9)

where I(A) is the indicator function of event A, namely,

I(A) =
⎧
⎨

⎩

1, event A is true,

0, otherwise.
(10)

As mentioned in [26], the computational time for simulation
is dominated by the convolution operation, and the time
required by such an operation is proportional to the number
of delay taps (or the number of clusters). Consequently, if we
normalize the computational time after clipping by the time
required before clipping, the normalized computational time
(NCT) can be defined as the ratio of the average number of
remaining clusters to the number of original clusters, that is,

NCT
(
Pth
) = 1− 1

N
E
(
Nclipped

)
. (11)
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Figure 2: The impact of clipping threshold on the efficiency and the
accuracy (averaged over 104-drop runs).

When the clipping threshold Pth = 0 dB, only the cluster
with maximum power remains. Thus the minimum NCT
is obtained, that is, NCT(0) = 1/N . When Pth → ∞,
no cluster will be clipped and NCT converges to one. The
NCT indicates the benefit gained by clipping the low-power
clusters. Figure 2(a) shows the relationship of NCT versus the
clipping threshold for the model parameterized in Table 3.
The NCT is averaged over 104 simulation runs. It shows
that the average computational complexity can be reduced by
more than 40% when a 25 dB clipping threshold is adopted
for the “Indoor LOS” case, while a 15% improvement can
be expected for the “Outdoor NLOS” case if Pth = 15 dB.
The NLOS case requires a higher clipping threshold with
respect to the LOS case to archive the same NCT reduction.
As for the LOS case, the power of LOS ray is stronger than the
NLOS rays such that most clusters were clipped out for a low
threshold. For the NLOS case, the power difference among
clusters is not so large as for the LOS case. So, even with a
lower threshold, clusters are more likely to be clipped.

To keep the total power of the remaining clusters unitary,
the loss of the power of the clipped clusters needs to be
compensated. For a given threshold, Pth, the indexing set I
can be separated into two disjoint sets, I0 = {n : Pn <
maxk∈I Pk−Pth} and its complement I1 = I\I0. If cluster n
is clipped subject to a certain threshold, its power, Pn, can be
combined with the power of the closest neighboring cluster
m which is given by

m = arg min
k∈I1

∣
∣τk − τn

∣
∣, ∀n ∈ I0. (12)
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A direct consequence of clipping clusters is the bias in the
RMS delay spread which is inversely proportional to the
coherent bandwidth, a critical parameter. For a given drop,
denotes the RMS delay spread before and after clipping with
a threshold Pth as τRMS and τ̃RMS, respectively. The mean
relative error (MRE) of the RMS delay spread versus the
clipping threshold is defined by

εDS
(
Pth
) = E

(∣∣τ̃RMS − τRMS
∣∣

τRMS

)

, (13)

which is plotted in Figure 2(b). It shows, as expected, that as
the threshold becomes larger, the relative error εDS becomes
smaller. The MRE of DS is more sensitive to the clipping
threshold in the NLOS case. Particularly, εDS is around 5%
when the clipping threshold Pth = 15 dB for the outdoor
NLOS case or Pth = 25 dB for the indoor LOS case.

4.2. Fixed RMS Delay Spread. In order to estimate a given
performance metric via Monte Carlo simulation, the number
of random samples required to achieve a given level of
confidence depends on the number of RVs involved in the
simulation. As mentioned above, random realizations of five
LSPs need to be drawn from their own distributions. The
angular spread at both ends of the link, that is, ASD and
ASA, will have a crucial impact on the spatial correlation
properties of the MIMO channel. Hence, we propose fixing
the RMS DS at its mean value to reduce the number of
RVs. Although this will change the per drop behavior of
the channel model, mainly in the delay domain, the average
behavior will only be slightly affected as shown in Section 5.

4.3. Fixed XPR. In addition to fixing the RMS DS as a
constant, we can also fix the XPR. The behavior of MIMO
systems with cross-polarized antennas was investigated in
[27] with the 3GPP/3GPP2 SCM model. These results
showed that the change in mean capacity as the XPR varies
is negligible for a ±45◦ cross-polarized 2 × 2 system. Hence,
we propose fixing the XPR at its mean value and investigate
the impact of this simplification on the metrics given in
Section 3.

4.4. Uncorrelated LSPs. The LSPs, DS, ASD, ASA, SF, and
Rician-K factor, are correlated in the baseline channel model.
However, as shown in Table 3, the parameters extracted
from field measurements show that some LSPs are weakly
correlated or even uncorrelated, for example, Rician-K factor
versus ASA or ASD, ASD versus ASA, DS versus ASA,
and so forth. Some similar weak correlation properties are
also reported in the literature [16, 17]. We remove the
correlations between the LSPs and investigate the impact of
this simplification.

5. Results and Discussions

5.1. Channel Measurements and Parameter Extraction

5.1.1. Measurement System. To extract the parameters
required by the baseline model, wideband channel data were

(a) TX array (b) RX array

Figure 3: Configurations of the antenna arrays used in the
measurements.

Table 2: General sounder parameters.

Item Setting

Center frequency 5.25 GHz

Chip rate 100 MHz

Sampling rate 200 MHz

TX power at antenna input 26 dBm

PN code length 511

Temporal snapshot rate 21.7 Hz

Number of elements of TX array 50

Number of elements of RX array 8

collected using the Elektrobit Propsound CS [28] MIMO
channel sounder, which uses pseudorandom binary signals
(PRBS) and time-division multiplexed (TDM) switching.
The transmitted power was 26 dBm and the length of the
PRBS was 511 symbols. The transmitter (TX) was equipped
with a dual-polarized omnidirectional array (ODA) with a
maximum of 50 elements. The receiver (RX) employed a
vertically polarized 8-element uniform circular array (UCA).
Figures 3(a) and 3(b) show, respectively, the configurations
of the TX and RX antenna arrays. Schematic plots of both
antenna arrays are given in Figure 4. The spacing between the
neighboring elements in both the ODA and the UCA is half a
wavelength. All 8×50 subchannels are sounded by activating
each TX-RX element pair consecutively within a time period
which is referred to as a measurement cycle. A temporal
snapshot refers to the impulse response measured within
a measurement cycle. The temporal snapshot rate is also
the cycle rate. The measurement settings are summarized in
Table 2.

5.1.2. Measurement Environment. Stationary measurements
were conducted in the corridor of a teaching building on
the campus of Beijing University of Posts and Telecommu-
nications (BUPT), China as the indoor scenario [29]. The
dimension of a single floor is 120× 45× 6 m3. The TX array
and RX array were located about 1.5 m and 2.5 m above
the floor level, respectively. All 8 × 50 elements on both
TX and RX arrays are enabled during the measurements.
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Figure 4: Schematic plots of the antenna arrays used in the
measurements.

Figure 5 illustrates the layout of indoor measurements in the
corridor. The RX was fixed as the base station and is marked
with the arrow denoting the reference direction. The TX
was measured at the 32 locations marked as “TX Position.”
At each spot, 100 temporal snapshots of raw data were
recorded. In this environment, the walls along the corridor
and between the rooms are made of bricks with plastic poster
boards on the surface. The floor has a marble surface and the
doors of the rooms are wooden. The entrance doors are made
of glass with aluminum frames.

5.1.3. Method of Noise Cut. Receiver noise was superimposed
on the measured CIRs. Hence, before either estimating
channel parameters or determining capacity in (5), we need
to choose an appropriate dynamic range of the measured
CIRs to perform the noise cut. Following [30], the per
subchannel dynamic noise cut method is applied in this
paper. Given a temporal snapshot, the noise floor Pfloor

was calculated for each subchannel. As a rule of thumb, a
6 dB noise margin Δnoise added to the estimated noise floor
can guarantee the noise is better cut. The per subchannel
dynamic range of a measured CIR is defined as

DR = min
{
Ppeak −

(
Pfloor + Δnoise

)
, DRmax

}
, (14)

where Ppeak is the peak value of PDP for the given subchannel
and DRmax = 25 dB is the predefined maximum dynamic
range.

5.1.4. Parameters for the Baseline Model. For each temporal
snapshot, the multipath channel is described by the superpo-
sition of L rays. The rays are characterized by the parameter

East

Lecture hall

Class room

Class room

Class room

U
p

Tx position

Rx position

5 m

Figure 5: Layout of the indoor measurements in the corridor.

set P = {(τ� ,φ� , θ� ,ϕ� , ϑ� , ν� , X�) : � = 1, 2, . . . ,L}. Here,
τ� , φ� , θ� , ϕ� , ϑ� , and ν� denote the excess delay, the azimuth
of departure, the elevation of departure, the azimuth of
arrival, the elevation of arrival, and the Doppler shift of the
�th ray. The polarization matrix reads X� = (α�,p2,p1 )2×2.
The complex entry α�,p2,p1 represents the weight for the
�th ray that originates in the p1 direction and arrives in
the p2 direction. Under the assumption of far-field and
planar wave propagation, the Space-Alternating Generalized
Expectation maximization (SAGE) algorithm [31, 32] is
utilized to estimate the parameter set P from each temporal
snapshot of the measured CIRs. The first- and second-order
statistics of these parameters in P correspond to the LSPs
described in Section 2, and are summarized in Table 3. The
estimated maximum Doppler shift fD is 1 Hz for the indoor
measurements.

For reasons of space a full description of the parameter
extraction methodology cannot be given here. However, the
references [16, 31, 32] contain the necessary details. The
basic approach can be summarized as below. The measured
data is taken and the SAGE algorithm [31, 32] is used
to obtain samples of the 7 parameters in P from each
temporal snapshot. Following the WINNER methodology
[16], these samples are then used to find the parameters
in the columns entitled “Indoor” in Table 3. Finally, these
tabulated parameters are sufficient to define the terms in
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Table 3: Parameters for the baseline channel model.

Parameter Unit Indoora Outdoorb Parameter Unit Indoora Outdoorb

μDS log10[s]
−7.70 −7.12 ρASD,DS 0.17 0.20

σDS 0.18 0.12 ρASA,DS 0.01 0.40

μASD

log10[◦]

1.60 1.19 ρASA,SF −0.02 −0.40

σASD 0.18 0.21 ρASD,SF −0.18 0.00

μASA 1.62 1.55 ρDS,SF −0.18 −0.70

σASA 0.22 0.20 ρASD,ASA 0.07 0.10

σSF

dB
3.0 4.0 ρASD,K — −0.09 N/A

μK 4.7 N/A ρASA,K −0.07 N/A

σK 0.9 N/A ρDS,K −0.32 N/A

rτ — 3.6 1.0 ρSF,K 0.57 N/A

μXPR dB
3.7 8.0 Cluster ASD ◦ 5 10

σXPR 9.6 3.0 Cluster ASA 11 22

N — 15 16 M — 20 20
aParameters for the indoor case are obtained from the measurements described in Section 5.1.
bThe NLOS case of the “Urban macrocell (C2)” scenario in the WINNER channel model [16].

the channel coefficients given in (2) and (3) by the steps
described in [16].

Besides the indoor LOS case, an outdoor NLOS case
is also selected as shown in Table 3. The parameters in
the columns entitled “Outdoor” are the same as those for
the NLOS case of the “Urban macrocell (C2)” scenario in
the WINNER channel model [16]. The definition of each
parameter can be found in Section 2.

5.2. Simulation Assumptions. To investigate the impact of the
proposed simplifications on channel behavior, we constrain
the antenna configuration and bandwidth to match the
measurement campaign. We select 9 elements from the
50-element MS array and 7 elements from the 8-element
BS array to form a 9 × 7 downlink MIMO channel. This
approach is both manageable from a complexity point of
view and is in agreement with the measurement configu-
ration described previously. The selected BS array is a 7-
element vertical polarized uniform circular array, that is, the
7+1 UCA without the central element. The MS antenna array
is a 9-element dual-polarized uniform circular array which
can be thought as the center ring of the 2 × 9 ODA (with
odd elements from no. 19 to no. 35 in Figure 4(a)). For both
antenna arrays, the element spacing is half a wavelength. The
field patterns of real antennas are embedded into the baseline
and simplified models to regenerate equivalent sets of MIMO
channel matrix realizations. The embedding of field patterns
is archived by substitution of the array patterns obtained
in an anechoic chamber as cBS,s and cMS,u into (2) and (3).
The channel coefficients are generated following [33] and
by replacing the scenario specific parameters in [33] with
those in Table 3. For the indoor case, all other parameters
of the model are set to match those obtained in the
measurement campaign. This includes reference directions
for both antenna arrays. The assumptions are summarized
in Table 4. The channel is sampled at a frequency four times

the maximum Doppler frequency. The results are obtained
by averaging over 1000 simulation runs(or drops) [14].
(The number of drops is chosen to be manageable from
a complexity point of view and also to ensure satisfactory
convergence of the metric.) The fading distance of 50
wavelengths is assumed for each drop.

For brevity, we designate the simplified models as “SM-”
suffixed with a letter. SM-A refers to the full model where the
clusters are clipped out with a 25 dB threshold for the indoor
LOS case or a 15 dB threshold for the outdoor NLOS case.
SM-B takes the full model and fixes RMS DS as a constant.
SM-C fixes XPR at its mean value and SM-D removes
the cross-correlations between LSPs. SM-E applies all the
simplifications in SM-A, B, C, and D simultaneously. The
designators are listed in Table 5. In the following simulation
results, the measured results are given as a reference for
Indoor scenario only.

5.3. Simulation Results and Discussion

5.3.1. Ordered Eigenvalue Distributions. The marginal CDFs
of the first five principal eigenvalues for the baseline and
simplified models are as shown in Figure 6. It can be seen that
the proposed simplifications have a very minor impact on
the distribution of the first principal eigenvalue. Removing
the cross-correlations between LSPs has made little change
to the distribution of ordered eigenvalues. Similarly, fixing
the RMS DS leads to a negligible effect on the eigenvalues.
As predicted, the impact on the spatial correlations is not
significant and hence there is little impact on the eigenvalues.
Figure 6(a) also tells us that the distortion of different
ordered eigenvalues differs when SM-C or SM-E is applied.
For example, with SM-C, λ(2) is underestimated while λ(4)

and λ(5) are overestimated with respect to the baseline model.
Figure 6(b) shows that for outdoor NLOS case, the ordered
eigenvalue distribution is less sensitive to all simplifications.
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Figure 6: CDFs of the first five principal eigenvalues for baseline
and simplified cases.

Note that in the measurement-based indoor baseline model,
the nonprincipal eigenvalues deviate from the measured
results. The relative deviation of the eigenvalue becomes
larger for smaller eigenvalues.

5.3.2. Outage Capacity. Broadband capacity are obtained by
integrating the narrowband capacity over the entire band-
width as in (5). The CDFs of MIMO capacity for the baseline
and simplified models are depicted in Figure 7. There are
three different SNR levels which represent the marginal,
medium, and high SNR cases. We see that the baseline and
simplified models always underestimate the MIMO capacity

Table 4: Assumptions of channel reconstruction.

Parameter Description

Carrier frequency 5.25 GHz

Bandwidth 100 MHz

BS antenna array 7-element UCA, vertical polarized

MS antenna array 9-element UCA, ±45◦ dual polarized

MS velocity 1.5 km/h (indoor) and 120 km/h (outdoor)

Sample density 2 samples per half wavelength

No. of drops 1000

No. of time samples
per drop

200

Delay sampling
density

5 ns

No. of frequency bins 1024

with respect to the measured result. This underestimation
comes from several aspects such as measurement errors
and possibly the lack of elevation spread in the models,
which was theoretically analyzed in [34]. For the indoor LOS
case, the variations in MIMO capacity due to the proposed
simplifications increase as the SNR increases. With SM-E,
the relative deviation of the capacity for an outage of 5%
at high SNR (ρ = 20 dB) is 4.23%. Since the use of SM-E
will lead to the maximum deviation in outage capacity, the
relative deviation of the capacity for outages of 5% due to the
application of any proposed simplified model will not exceed
5% in the high SNR regime. For the outdoor NLOS case, the
relative deviation is always less than 5%.

As shown in Figure 7(a), there is a deviation of the
baseline model from the measurements in the high SNR
case. This deviation is mainly caused by the deviation of
nonprincipal eigenvalues. For a given frequency f , denote
the measured and model generated U × S channel matrix as
H( f ) and H′( f ), respectively. Let λ(n) and λ′(n) be the ordered

eigenvalues of H( f )H( f )† and H′( f )H′( f )†, respectively,
where λ(1) � λ(2) � · · · � λ(U) and λ′(1) � λ′(2) � · · · �
λ′(U). Assume the eigenvalues can be divided into two sets:
the well fitted principal eigenvalues in L1 = {(λ(n), λ′(n)) :
n = 1, 2, . . . , r′} with negligible relative deviation; and small
eigenvalues in L2 = {(λ(n), λ′(n)) : n = r′ + 1, r′ + 2, . . . ,U}
with large deviations. When the SNR ρ → ∞, the capacity
deviation tends to

εC = lim
ρ→∞

U∑

n=1

log2

1 + (ρ/S)λ′(n)

1 + (ρ/S)λ(n)

=
r′∑

n=1

log2

(

1 +
Δλ(n)

λ(n)

)

+
U∑

n=r′+1

log2

(

1 +
Δλ(n)

λ(n)

)

,

(15)

where Δλ(n) = λ′(n)−λ(n). The first term in (15) approximates
to zero as the relative deviation Δλ(n)/λ(n) is very small. For
the eigenvalues in L2, the nonnegligible relative deviation
Δλ(n)/λ(n) causes the capacity deviation. In Figure 6(a), we
can take r′ = 4. For the probability of 0.5, we have
λ(5) = −4.0 dB = 0.40 and λ′(5) = −5.6 dB = 0.28. Thus,
Δλ(5)/λ(5) = −0.43, and log2(1+Δλ(n)/λ(n)) = −0.81 bit/s/Hz.
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Figure 7: CDFs of MIMO capacity for baseline and simplified cases.

For n = 6 and n = 7, larger deviations of eigenvalues
can be expected, which finally lead to the gap between
the measurements and the baseline model as shown in
Figure 7(a).

5.3.3. Symbol Error Probability. For the indoor case, consider
the baseline model extracted from the measurements con-
ducted in the LOS environment. The gain of the last three
MIMO eigenmodes is limited due to the presence of the
LOS ray. Consequently, we consider the SVD transmission
over the first four principal eigenmodes. The symbol error
rates for the baseline and simplified models are shown in
Figure 8(a). In the low SNR regime, all simplified models
perform almost identically to the baseline model. However,
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Figure 8: SVD symbol error probabilities for baseline and simpli-
fied cases.

Table 5: Designators for simplified models.

Designator Simplification

SM-A Clip out clusters with a 25 dB (for indoor LOS
case) or 15 dB (for outdoor NLOS case) threshold.

SM-B Fix the RMS DS as the mean value μDS in Table 3.

SM-C Fix the XPR as the mean value μXPR in Table 3.

SM-D Remove cross-correlations between all LSPs.

SM-E All simplifications in SM-A, SM-B, SM-C, and
SM-D.

in the high SNR regime, there is an approximate shift of 1 dB
in SNR for an SER of 10−2 due to both SM-A and SM-C
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Figure 9: Level crossing rates of standardized MIMO capacity for baseline and simplified cases when ρ = 20 dB.

Table 6: Comparisons between the baseline model and SM-E model.

Item
Indoor LOS Outdoor NLOS

Baseline SM-E Baseline SM-E

Complexity
No. of parameters 26 14 20 12

No. of RVs 6 4 5 3

NCT per drop 100% 57% 100% 85%

Accuracy
Relative deviation of C5% 0 <5% 0 <5%

SNR shift for SER of 10−2 0 <1 dB 0 <0.5 dB

LCR for outage below 10% Approximately equal

for the indoor LOS case. Again, the performance variation
due to both SM-B and SM-D is negligible. It is worth
noting that the performance of SM-E is nearly the same as
the baseline model across the whole SNR range. Although
conventional wisdom says that large delays will result in
higher error rates due to frequency-selective fading. However
according to (8), the frequency-selective channel is effectively
decomposed into a series of flat-fading channels, hence the
SER result here does not show any sensitivity to the delay
randomness. The symbol error rates for the outdoor case are
plotted in Figure 8(b) which shows negligible deviations of
all simplified models from the baseline model.

5.3.4. LCR for the Standardized MIMO Capacity. The nor-
malized LCR of standardized MIMO capacity at 20 dB SNR
is given in Figure 9 which shows that all simplified models
cross-capacity thresholds for outage levels below 10% at
nearly same rate. It means that all simplified models exhibit a
similar temporal behavior for MIMO capacity as the baseline
model for both indoor- and outdoor cases.

5.3.5. Comparisons. We compare the baseline model and the
simplified model, SM-E, from an accuracy and complexity
point of view in Table 6. The complexity of a channel model

is two fold: (a) the time for generating channel coefficients;
and (b) the time for convolution of the transmitted signal
and the channel [26]. Since the real computational time
depends on many factors such as the implementation of
the model and the computational power of the simulation
platform, we employ some indirect metrics and evaluate the
complexity. The number of parameters used is related to
the time of coefficient generation and is referred to as the
number of parameters required to describe a model. For
the baseline model, it equals the number of items listed in
Table 3, that is, 26 for the indoor LOS scenario and 20 for the
outdoor NLOS scenario. For SM-E, the following parameters
are not required: σDS, σXPR, and 10 (for LOS) or 6 (for
NLOS) cross-correlation coefficients. Hence, only 14 or 12
parameters are required to describe the SM-E model. The
number of RVs is another value of interest, since the metrics
of interest in simulation (e.g., bit error rate) require less time
to converge when the number of RVs in the model is reduced.
For the baseline model, there are 6 (for LOS) or 5 (for NLOS)
RVs, that is, 5 (for LOS) or 4 (for NLOS) random LSPs and
the random XPR. With SM-E, both DS and XPR are fixed as
constants and only 4 or 3 RVs remain. Recall that the NCT
measure can reflect the convolution reduction. The NCT is
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obtained by approximating (11) through simulation. The
results show that the SM-E is an acceptable tradeoff between
accuracy and complexity with respect to the baseline model.

6. Conclusion

In this paper, we have studied the simplification of the
GBSM by several approaches. The double-directional chan-
nel model developed under the IST-WINNER project is
employed as the baseline model. The parameters for the
indoor LOS baseline model are extracted by applying the
SAGE algorithm to the data obtained from channel measure-
ments. Four metrics are proposed to evaluate the impact of
the simplifications on the behavior of the channel models.
These include the MIMO capacity, eigenvalue distributions,
symbol error rate of SVD-transmission, and level crossing
rate of the MIMO capacity. Five different simplified models
are developed based on the baseline model with the following
modifications:

(i) SM-A: clipping clusters with a 25 dB (for indoor
LOS case) or 15 dB (for outdoor NLOS case) power
threshold,

(ii) SM-B: fixing the RMS DS at its mean value,

(iii) SM-C: fixing the XPR at its mean value,

(iv) SM-D: removing cross-correlations between LSPs,

(v) SM-E: all the above modifications.

The simulation results show that all these five simplified
models have a minor impact on all proposed metrics.
Compared to the baseline model, the SM-E can provide
much better computational efficiency with a negligible loss
of accuracy. Besides the two scenarios presented in this paper,
we have repeated the simulations for all other scenarios in
the WINNER model. All these simulation results support our
conclusion. However, for reasons of space we cannot present
those results in this paper. This means that fixed parameters
and fewer random parameters can be used to give similar
results. We have shown that simplification is possible and
perhaps further simplifications might follow to make the
models even more appealing. The simplified models have
been far more rigorously tested. Instead of only looking at
spatial and temporal correlations, we have looked at full
system behavior in terms of many metrics. Furthermore,
since the simplifications keep the original structure of the
GBSM, the antenna geometries and radiation patterns can
still be changed by the users as these parameters remain
part of the simplified model. We also find that the baseline
model underestimates the outage capacity with respect to the
measurements. This might be due to measurement errors,
modeling errors of nonprincipal eigenvalues or possibly the
neglect of angular spread in elevation. Hence, simplifications
of three-dimensional GBSMs will be considered in future
work.
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1. Introduction

It has been shown that the use of multiple antennas at a base
station (BS) and a mobile station (MS), called as multiple
input multiple output (MIMO) system, can promisingly
increase the data rate [1]. However, low correlation between
antennas is required in MIMO systems, in order to ensure
the data rate improvement [2]. This implies the need of large
antenna spacing, resulting in the size increase of the system.
As a candidate scheme to achieve the low correlation in
compact MIMO systems, the application of multiple polar-
izations to MIMO systems has been increasingly investigated
[3–6].

To evaluate and compare MIMO systems with multiple
polarizations, a channel model having the polarimetric
information in addition to azimuth and elevation angles
at the BS and MS is obviously needed [7, 8]. Recently,
for outdoor environments, standard channel models having
such information for polarimetric MIMO systems have been
defined in the spatial channel model (SCM), which was

presented in the 3rd Generation Partnership Project (3GPP)
standard body [9], and in the European co-operation in the
field of scientific and technical research (COST) actions 273
[10]. The further analytical extension of the SCM to the 3D
case has been recently done by Shafi et al., in [11].

Since the degree of depolarization of a propagation
channel directly affects the performance of the MIMO
systems with multipolarizations [12], a channel model
must accurately reproduce the polarization behavior of the
channel. However, due to the lack of reliable tools to
reproduce polarization mechanisms, the derivation of the
polarimetric channel model from measurements is still of
great significance [13–15].

Moreover, it is also important that a channel model
is applicable to any arbitrary array antennas under devel-
opment, the channel model must thus be independent of
the measurement antennas, which is known as the double-
directional channel model [16, 17]. It should be noted that
double-directional channel models aim to present the phys-
ical channel propagation alone by describing the parameters
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of multipaths. They are different from conventional channel
models, which mainly aim to present the statistics of a
transfer function between the BS and MS and thus the
effect of measurement antennas are included. Independent
and identically distributed (i.i.d.) Rayleigh and correlation
matrices-based MIMO channel models such as Kronecker
[2, 18] and Weichselberger et al., [19] MIMO channel models
are good examples of conventional channel models.

In [20], the authors have proposed an angular-delay
power spectrum density (PSD) channel model at the MS
based on a 3D double-directional measurements in a residen-
tial urban area in Tokyo. The PSD channel model was shown
to be able to predict the eigenvalue distributions of a diversity
system assumed for the MS. In this paper, the authors focus
on a site-specific double-directional PSD channel model by
extending the directional PSD channel model at the MS.

To do so, the following contributions are done.

(i) First, to motivate the study of channel modeling
for multiple polarized MIMO systems, the polar-
ization characteristics of the measured channel are
investigated. The benefit of exploiting a polarization
diversity is next shown by using the measurement
antennas.

(ii) Then, the separability of the joint polarimetric
angular PSD between the BS and MS of the mea-
sured propagation channel, which is a necessary
assumption for the angular-delay PSD channel model
in [20] when extended to the double-directional
PSD channel model, is investigated. This is done by
investigating the Kronecker separability of a joint
correlation matrix of reference polarized antennas at
the BS and MS.

The standard antenna configurations of a 3GPP
LTE channel model are used as reference in the
evaluations of the Kronecker separability, which are
based on the ergodic mutual information.

(iii) It should be noted that in the conventional Kronecker
product [2, 18], when single polarized antennas are
used at the BS and the MS, the validity of the
Kronecker separability of the joint correlation matrix
shows how well the joint angular PSD between the
BS and MS can be modeled as the product of the
marginal angular PSDs [21].

However, for multiple polarized MIMO systems, the
conventional Kronecker product is not suitable to
be used for evaluating the separability of the joint
angular PSD since the propagation channel polar-
izations are mixed with the antenna polarizations.
Moreover, the angular-delay PSD channel model
at the MS in [20] was proposed for each channel
polarization-pair, so the Kronecker separability of the
joint correlation matrix must be investigated for each
channel polarization-pair as well.

The authors propose a general form of the sum
of channel polarization pair-wise Kronecker product
approximation, which is shortly called “sum of

Kronecker products” herewith, to investigate the
separability of the joint polarimetric angular PSD.
By using the proposed sum of Kronecker products,
the error of the assumption that the joint correlation
matrix can be separated for each polarization-pair is
investigated. Also, its validity is compared with the
following Kronecker product approximations:

(a) conventional Kronecker product,

(b) 3GPP long-term evolution (3GPP LTE) Kro-
necker product [22].

(iv) Next, the polarimetric angular PSD models at the BS
are studied and their best-fit parameters are derived.
Then, by using the proposed sum of Kronecker
products, a double-directional PSD channel model
is presented. Finally, this double-directional PSD
channel model is evaluated by comparing the ergodic
mutual information of 3GPP LTE system scenario.

It should be noted that even though the validation
of Kronecker separability based on the proposed sum of
Kronecker products is done by using the standard antenna
configurations of a 3GPP LTE channel model, the term
“double-directional PSD channel model” is used here for the
presented PSD channel model due to the fact that extracted
channel parameters are independent of the measurement
antennas since the beam patterns of the measurement
antennas are taken into account in the multipath parameters
extraction [20].

This paper is organized as follows. Section 2 explains the
measurement system, measurement environment, and the
extraction of multipaths parameters. In Section 3, the math-
ematical expression of a polarimetric MIMO channel matrix
is first given. Following this, the polarization characteristics
of the measured channel are investigated and then the effect
of exploiting a polarization diversity is studied. In Section 4,
the concepts of different Kronecker product approximations,
that is, conventional Kronecker product, 3GPP LTE Kro-
necker product, and sum of Kronecker products proposed by
the authors are explained. The comparison among Kronecker
product approximations is done in Section 5. Based on the
validity of sum of Kronecker products shown in Section 5,
the double directional PSD channel model is presented in
Section 6. Section 7 presents the result of the evaluation
of the double directional PSD channel model. Finally, the
conclusion is given in Section 8.

2. Measurement and Channel
Parameters Extraction

The double-directional measurements were carried out in a
residential urban area in Minami-Senzoku, Ota-ku, Tokyo.
The measurement site consists of 4 streets, which were
divided into the measurement segments of about 10 m. The
MS was moved continuously to collect consecutive snap-
shots. The BS antenna used was a 2×4 polarimetric uniform
rectangular antenna array of dual-polarized patch antenna
elements. At the MS side, a 2 × 24 polarimetric circular
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Figure 1: Measurement site map.

Table 1: Measurement parameters.

Center frequency 4.5 GHz

Bandwidth 120 MHz

Excess delay window 3.2 μs

Transmitting power 10 W

BS antenna height 30 m

MS antenna height 1.65 m

Total measurement length 380 m

Total measurement snapshots 872

Distance to the BS 186 m –276 m

antenna array was used. The measurement was explained in
detail in [20]. Figure 1 shows the measurement map. Note
that the arrows in the figure show the moving direction of the
MS. The important parameters are summarized in Table 1.

By using a multidimensional gradient-based maximum-
likelihood estimator [23], multipath parameters were
extracted. A path is modeled as an optical ray with the
azimuth at BS (ABS), elevation at BS (EBS), azimuth at
MS (AMS), elevation at MS (EMS), delay, and a matrix of
polarimetric complex path weights, respectively. For the kth
multipath, it is modeled by

[
γVV,k γVH,k

γHV,k γHH,k

]

δ
(
φBS − φBS

k

)
δ
(
ϑBS − ϑBS

k

)
δ
(
φMS − φMS

k

)

× δ(ϑMS − ϑMS
k

)
δ
(
τ − τk

)
,

(1)

where γVV,k, γHV,k, γVH,k, and γHH,k are the polarimetric
complex path weights. The first and the second subscripts
show polarizations at the MS and BS, respectively. In this
paper, vertical and horizontal polarizations are defined as
ϑ and φ components of electric field. It is assumed that
the vertically placed infinitesimal electric and magnetic
dipoles as the reference vertically and horizontally polarized
antennas. This corresponds to Ludwig’s Definition 2 of the
polarization [24].

The quantities φBS
k , ϑBS

k , φMS
k , ϑMS

k , and τk denote the
ABS, EBS, AMS, EMS, and delay, respectively. The definitions
of the angle parameters at the BS and MS are depicted
in Figure 2. It should be noted that the extracted polari-
metric complex path weights were made independent of

the measurement antennas by incorporating the measured
beam patterns of the BS and MS antennas in the multipath
parameters estimator.

The measurement site is mostly characterized by
nonline-of-sight (NLOS) conditions. For some line-of-sight
(LOS) measurement snapshots, since their LOS paths are
deterministic, they are removed from the extracted multi-
paths, so that the considered channel becomes zero-mean
complex circularly symmetric Rayleigh in order to model the
NLOS component.

3. Polarimetric MIMO Channel Matrix,
Polarization Characteristics, and Effect of
Polarization Diversity

3.1. Polarimetric MIMO Channel Matrix. For wideband
MIMO systems having NBS and NMS antennas at the BS
and MS, respectively, where nMS = 1, . . . ,NMS and nBS =
1, . . . ,NBS, the (nMS,nBS) element of a MIMO channel matrix
at the frequency f , H( f ), can be expressed as a sum of
channel responses of all polarization-pairs, that is,

[H( f )]nMSnBS
=

∑

α,β={V,H}

[
Hβα( f )

]
nMSnBS

, (2)

where [Hβα( f )]nMSnBS
denotes the (nMS,nBS) element of

single polarization H( f ) of a {βα} polarization-pair. Note
that [H( f )]nMSnBS

and [Hβα( f )]nMSnBS
are defined in the

downlink direction. Accordingly, β and α show the channel
polarization at the MS and BS, respectively.

By using the extracted multipaths in Section 2,
[Hβα( f )]nMSnBS

can be expressed as the superposition of
all multipaths between the BS and MS as follows:

[
Hβα( f )

]
nMSnBS

=
K∑

k=1

γβα,k g
nMS
β

(
φMS
k , ϑMS

k

)
gnBS
α

(
φBS
k , ϑBS

k

)

× exp
(
j
[〈

kMS
k ( f ),�rnMS

〉
+
〈

kBS
k ( f ),�rnBS

〉]

− j2π f τ́k + jν
βα
k

)
,

(3)

where K = the number of extracted multipaths, gnBS
α (·) =

the complex amplitude gain of α component, electric field
of the nBSth element, gnMS

β (·) = the complex amplitude gain

of β component, electric field of the nMSth element, kBS
k (·) =

the wave vector at the BS, kMS
k (·) = the wave vector at the

MS, �rnBS = the position vector of the nBSth element, �rnMS =
the position vector of the nMSth element, 〈·, ·〉 = the inner
product of two vectors, τ́k = the excess delay, that is, τk − τ0,
τ0 = the delay of the first arriving multipath at a snapshot,

and ν
βα
k = a uniformly distributed random phase from 0 to

2π [25, 26].
In general, the vector amplitude gain of an antenna

element at either the BS or MS can be expressed as

gH(φ, ϑ)uH(φ, ϑ) + gV(φ, ϑ)uV(φ, ϑ), (4)
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Figure 2: Coordinate systems at the BS and MS.

where uH(φ, ϑ) and uV(φ, ϑ) are the H and V polarization
vectors in the direction (φ, ϑ), respectively. For the kth
multipath, uα,k(φBS

k , ϑBS
k ) and uβ,k(φMS

k , ϑMS
k ) are depicted in

Figure 2. It should be noted that [Hβα( f )]nMSnBS
is normalized

with respect to the delay of the first arriving multipath.
Moreover, when synthesizing Hβα( f ), their realizations

are independently generated based on the Monte Carlo

simulations of ν
βα
k . Since in this paper the authors focus on

the Kronecker separability of the measured channel, and that
the H( f )’s have the same spatial correlation characteristic,
H( f )’s can be thus considered as different realizations of
the random MIMO channel matrices. Accordingly, H( f ) is
simply expressed as H.

3.2. Polarization Characteristics of the Measured Channel.
Herein, the term cross-polarization ratio (XPR) is used
for the depolarization of each extracted path and can be
obtained at both the BS and MS as follows:

XPRBS
V [dB] = 10 log10

(
|γVV|2
|γVH|2

)

,

XPRBS
H [dB] = 10 log10

(
|γHH|2
|γHV|2

)

,

XPRMS
V [dB] = 10 log10

(
|γVV|2
|γHV|2

)

,

XPRMS
H [dB] = 10 log10

(
|γHH|2
|γVH|2

)

.

(5)

For a certain path, XPR shows how much the V polariza-
tion component changes to the H polarization component,
or vice versa. Due to the antenna deembedding, XPR is
purely from a propagation channel and does not change
with a measurement antenna. It should be noted that when
the effects of measurement antennas are also included, the
term cross-polarization discrimination (XPD) is often used
instead [27].

Table 2: XPRs and CPR.

Mean [dB] (STD [dB])

street I street II street III street IV

XPRBS
V 10.2 (10.6) 6.9 (9.9) 9.6 (10.6) 10.4 (8.8)

XPRBS
H 9.2 (9.0) 6.9 (8.2) 9.1 (9.3) 10.3 (8.5)

XPRMS
V 10.7 (9.2) 8.3 (8.9) 10.8 (9.3) 10.8 (8.7)

XPRMS
H 8.7 (9.4) 5.5 (8.7) 7.9 (9.5) 9.9 (8.8)

CPR 1.5 (8.6) 1.4 (8.7) 1.7 (8.9) 0.5 (7.6)

In addition to XPRs, the copolarization ratio (CPR),
which is the power ratio of covertical polarization γVV to
cohorizontal polarization γHH,

CPR [dB] = 10 log10

(
|γVV|2
|γHH|2

)

(6)

is also necessary to describe the polarization characteristics
of a path.

Figure 3 shows the cumulative distribution functions
(CDFs) of XPRs and CPR at the BS and MS for all
measurement streets. In the normal probability plot of CDFs,
if data comes from a normal distribution, the plot will appear
linear. Accordingly, the XPRs and CPR can be assumed to be
a log-normal distribution. Table 2 shows means and standard
deviations (STDs) of XPRs and CPR. As shown in the table,
the means of XPRs at the BS and MS have no big difference.
Lowest XPRs are found in street II (WE), which is completely
NLOS, and thus the more number of scatterings is expected
[20]. While, some obstructed LOS (OLOS) by rooftops in the
south side of street IV (EW) cause the highest XPRs among
all measurement streets.

On the other hand, the mean values of CPRs, which
indicate the gainimbalance between V and H transmitting
polarizations, are found to be 1.5, 1.4, 1.7, and 0.5 dB
for street I (NS) to street IV (EW), respectively. Their
positive values suggest that H polarization transmission
have on average bigger attenuation compared to that of V
polarization. In other words, the propagation in outdoor
macrocellular is in favor of vertical transmission [28].
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Figure 3: XPRs and CPR.

3.3. Effect of Polarization Diversity. To evaluate the contri-
butions of polarizations, the mutual ergodic information,
which is an important criterion from the viewpoint of
maximum achievable data rate, of a multiple polarized
MIMO system is compared with that of a single polarized
MIMO system. 4× 4 multiple polarized MIMO antennas are
selected from the BS and MS measurement antenna arrays
as shown in Figure 4. For a single polarized MIMO system,
vertically polarized antenna elements of no. 1, 3, 5, and 7 at
both ends are selected. While, the vertically and horizontally
polarized antenna elements of no. 2, 3, 6, and 7 at the BS and
2, 3, 5, and 8 at the MS are selected for a multiple polarized
MIMO system.

For each measurement snapshot, the authors synthesize
measurement-based random MIMO channel matrices, H,

according to (2) by Monte Carlo simulations. Each channel
realization is generated by the random phase method using
(3). The number of the realizations, Nr , is set to 400. The
number of the frequency bins, Nf , is set to 25 within a
bandwidth of 120 MHz, resulting to a channel separation of
5 MHz at each frequency bin. To take into account the change
of the antenna orientation during the movement of the MS,
the Na combinations of antenna array orientation are also
considered for each measurement snapshot. Na is set to 8
with the step of 45◦.

In case that the total power is equally allocated to each
BS antenna element and assuming that the channel state
information is only known at the MS [1], the ergodic mutual
information, I(na), of the nath MS orientation, where na =
1, . . . ,Na, is given by
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Figure 4: Selected BS and MS antenna arrays.

I
(
na
) = E

[

log2det

(

INMS +
SNR
NBS

H̃
(
na
)

H̃H
(
na
)
)]

, (7)

where INMS denotes the identity matrix of size NMS, and
SNR is the average signal-to-noise ratio at the MS. The
expectation is approximated by the sample average of the
Nr ×Nf realizations of H̃(na).

To appropriately evaluate the use of multiple polariza-
tions, the normalized instantaneous MIMO channel matri-
ces, H̃(nr ,n f )(na)s, where nr = 1, . . . ,Nr and n f = 1, . . . ,Nf ,
of both single and multiple polarized MIMO systems are
obtained with respect to the single polarized MIMO system.
In other words, the SNR is defined for the single polarized
MIMO system. Thus, for each instantaneous MIMO channel
matrix, H(nr ,n f )(na), H̃(nr ,n f )(na) is obtained as

H̃(nr ,n f )(na
)

= H(nr ,n f )
(
na
)

√
(
1/NrN f NaNBSNMS

)∑Nr
nr=1

∑Na
na=1

∑Nf

n f =1

∥
∥Hsingle

(nr ,n f )(na
)∥∥2
F

,

(8)

where ‖·‖F is the Frobenius norm and Hsingle
(nr ,n f )(na) is the

H(nr ,n f )(na) of the single polarized MIMO system.
H(nr ,n f )(na) is obtained by replacing φMS

k with {φMS
k −

φMS(na)} in (3), where φMS(na) = 0◦, 45◦, . . . , 315◦ for na =
1, . . . , 8, respectively. It should be noted that the differences
in received power fading among MS antenna orientations are
also considered when calculating I(na) in addition to those
realizations.

Figure 5 shows the ergodic mutual information of the
single and multiple polarized MIMO systems at an SNR of
10 dB. It is clear from the figure that the polarization diversity
promisingly increases the ergodic mutual information. When
comparing the ergodic mutual information of both systems
of each MS antenna orientation at all measurement snap-
shots, the average increases are 12%, 34%, 18%, and 26% for
street I (NS) to street IV (EW), respectively.

4. Reference Scenario and Polarimetric
Kronecker Product Approximations

In the previous section, the benefit of exploiting the polariza-
tion diversity in a MIMO system has been confirmed. Next,
the validity of polarimetric Kronecker separability of the
measured channel is investigated in this section. However,
in principle, since the validity of polarimetric Kronecker
separability depends not only on the characteristics of the
channel, but also on the polarized antennas, some standard
polarized antennas at the BS and MS have to be assumed in
the investigation.

4.1. Reference Scenario. As reference antennas, the standard
antenna configurations of the 3GPP LTE channel model
are used (see Annex C of [22]). For the BS, an antenna
configuration with 4 antenna elements, where 2 elements are
dual at slants of ±45◦ is assumed. For the MS antenna, the
authors assume Laptop scenario, which is shown in Figure 6.
The results of the other MS scenarios, i.e., handheld data
and handheld talk, are reported in [29]. Table 3 shows the
details of the BS and MS antenna configurations and their
parameter values with an azimuth power gain, G(φ), which
is mathematically defined as follows: The vector amplitude
gain of an antenna element at the BS and MS in (3) can
thus be defined in terms of power gain and the element
polarization vector, p, i.e.,

√
G(·)p(·). It should be noted that

G(φ), which is defined in Annex C of [22], is the normalized
power gain, which could cause inappropriate evaluation of
the impact of the antennas as it neglects the fundamental
fact that the higher the antenna gain is, the narrower is the
beamwidth. However, G(φ) is acceptable for this work since
the authors focus on comparing propagation models, not the
antennas. Thus, the definition of G(φ) can be used here for
compatibility purposes with the 3GPP LTE channel model.

G(φ) = −min

[

12
(

φ

φ3 dB

)2

,Gm

]

, |φ| ≤ 180◦. (9)

For the EBS, it is assumed that multipaths are confined
in the same horizontal plane. Note that the assumption
is reasonable for the measurement environment as will be
discussed in Section 6.2. For the MS antenna configurations,
it is assumed that an elevation power gain,G(ϑ), has the same
expression as in (9). The power gain for the MS antenna
configuration is then given as

G(φ, ϑ) = G(φ)G(ϑ), |φ| ≤ 180◦, |ϑ| ≤ 90◦. (10)

It should be noted that all element polarization vectors
for the BS and MS are assumed to be unchanged over all
directions according to [22].

4.2. Polarimetric Kronecker Product Approximations. In zero-
mean complex circularly symmetric Gaussian channels, H is
fully described by its second-order fading statistics, that is, by
a full channel correlation matrix, R, which is

R = E
[
vec(H) vec(H)H

]
, (11)
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Figure 5: Ergodic mutual information of the single and multiple polarized MIMO systems.

where vec(·) stacks the columns of H into a column vector,
while E(·) and (·)H are the expectation operator and the
Hermitian transpose, respectively.

The conventional Kronecker product approximation [2,
18] models R by RCon, which is the Kronecker product of
the BS and MS antenna correlation matrices, that is, RBS and
RMS, respectively. That is

RCon = 1
tr
(

RMS
)RBS ⊗ RMS, (12)

where ⊗ denotes the Kronecker product,

RBS = E
[

HTH∗],

RMS = E
[

HHH
]
.

(13)

(·)T and (·)∗ indicate the transpose and the complex
conjugate, respectively. Note that the denominator term,
tr(RMS), is used to equalize the traces of R and RCon.

For single polarization transmission, the conventional
Kronecker product approximation was experimentally
shown to well predict the ergodic mutual information and
ergodic capacity of MIMO systems in [18, 30, 31], in this
case, its validity of the performance prediction implies how
well the joint angular PSD between the BS and MS can be
modeled as the product of the marginal angular PSDs [21].

However, for multiple polarized MIMO systems, the
conventional Kronecker product is not suitable to be used
for evaluating the separability of the joint angular PSD
since the channel polarizations are mixed with the antenna
polarizations.

Recently, in the framework of 3GPP LTE, the 3GPP LTE
Kronecker product approximation has been proposed to
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Table 3: Reference antenna configurations.

Antenna configurations Value

BS See Figure 6

Type 2 spatially separated dual
polarized antennas

No. of elements 4

Element polarization vectors (p) ±45◦

Antenna spacing (dBS) 4 wavelengths (at 4.5 GHz)

Position vector (�rnBS ) −(dBS/2)uy for nBS = 1, 2

(dBS/2)uy for nBS = 3, 4

Parameters of G(φ) φ3 dB= 70◦, Gm = 20 dB

MS: Laptop scenario See Figure 7

Type 2 spatially separated dual
polarized antennas

No. of elements 4

Element polarization vectors (p) 0◦, 90◦

Antenna spacing (dMS) 2 wavelength (at 4.5 GHz)

Position vector (�rnMS ) −(dMS/2)uy for nMS = 1, 3

(dMS/2)uy for nMS = 2, 4

Parameters of G(φ) φ3 dB= 90◦, Gm = 10 dB

1
2

3
4

z

x

y

dBS

Broadside
direction

Figure 6: BS antenna configuration [22].

model the polarimetric 3GPP LTE channel model [22]. Here,
R is approximated by R3GPP, which is the Kronecker product
of the polarization covariance matrix and the BS and MS
spatial correlation matrices as follows:

R3GPP =
[

1
(
ρBS
)∗

ρBS 1

]

⊗Λ⊗
[

1
(
ρMS

)∗

ρMS 1

]

, (14)

where ρBS and ρMS are the spatial correlation coeffi-
cients between 2 identical omnidirectional antenna elements
assumed at the BS and MS, respectively, while Λ is the
polarization covariance matrix of the colocated polarization
antenna elements, Hpol. It is obtained as follows:

Λ = E
[
vec
(

Hpol
)

vec
(

Hpol
)H]. (15)

Laptop
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dMS

Side view

Figure 7: Laptop MS antenna configuration [22].
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Figure 8: 3GPP LTE Kronecker approximation for the Laptop
scenario.

In the Laptop scenario, Hpol is vectorized as [[H]11, [H]31,
[H]12, [H]32].

The definitions of ρBS, ρMS, andΛ are depicted in Figure 8
for the Laptop scenario. Note that (14) is only applicable for
the standard antenna configuration of the 3GPP LTE channel
model, which was presented in Figure 6.

Interesting work on the polarimetric Kronecker product
approximation has been proposed by Shafi et al., in [11].
Based on an analytical derivation by assuming certain PSD
models, the use of the sum of channel polarization pair-
wise Kronecker products has been proposed to model the
full correlation matrix of the 2D SCM model. However, its
validity has not been verified or compared with the above
mentioned Kronecker product approximations by using real
measurement data. Moreover, its extension to 3D case has
not been discussed.

By using the similar concept, the authors propose the
following general form of the sum of channel polarization
pair-wise Kronecker products approximation, which the
authors shortly call as the “sum of Kronecker products,” to
investigate the Kronecker separability of the joint correlation
matrix for each channel polarization pair

RSum =
∑

α,β={V,H}

1
tr
(

RMS
βα

)RBS
βα ⊗ RMS

βα , (16)
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where

RBS
βα = E

[
Hβα

THβα
∗],

RMS
βα = E

[
HβαHβα

H].
(17)

Hβα is a single polarization MIMO channel matrix for a βα
polarization pair defined in (3).

The MIMO channel matrix by using the Kronecker
product approximations, HKron, can be obtained as

vec
(

HKron) = R̂1/2vec(A), (18)

where R̂ is the approximated full correlation matrix. It is
replaced by either RCon, R3GPP, or RSum in the equation
above. A is an i.i.d. random fading matrix with zero-mean
and unity-variance, circularly symmetric complex Gaussian
entries. Note that in general once a correlation matrix
is given, whether or not it is the Kronecker model, and
all entries of the correlation matrix are according to the
correlated Rayleigh fading, (18) is always applicable.

5. Evaluation Criterion, Process, and Results

When extending the angular-delay PSD channel model in
[20] to the double-directional PSD channel model, it is
necessary to know the error of the assumption that the joint
correlation matrix can be separated for each polarization
pair. By using the proposed sum of Kronecker products, the
error is investigated in this section.

5.1. Criterion. The ergodic mutual information introduced
in Section 3.3 is used as a criterion to evaluate the Kronecker
product approximations. The ergodic mutual information
of the Kronecker product approximations, IKron(na), can
be obtained by replacing the normalized H(na) with the
normalized HKron(na) in (7). HKron(na) is an MIMO channel
matrix by applying the Kronecker product approximations
to the full correlation matrix of H(na).

However, it should be noted that the normalizations of
both measurement and Kronecker product approximations-
based instantaneous MIMO channel matrices in this section
are done with respect to an MS configuration considered as
shown in the following equation for the measurement-based
instantaneous MIMO channel matrix, H̃(nr ,n f )(na):

H̃(nr ,n f )(na
)

= H(nr ,n f )
(
na
)

√
(
1/NrN f NaNBSNMS

)∑Nr
nr=1

∑Na
na=1

∑Nf

n f =1

∥∥H(nr ,n f )
(
na
)∥∥2

F

.

(19)

The absolute percentage of the prediction error is
calculated as

εIKron

(
na
) =

∣
∣IKron

(
na
)− I

(
na
)∣∣

I
(
na
) × 100 [%]. (20)
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Figure 9: Average absolute errors of ergodic mutual information of
the Laptop scenario.

5.2. Process. This is how the authors proceed with the
evaluation.

(1) Synthesize measurement-based random MIMO
channel matrices, H, by using the same values of Nr ,
Nf , and Na as explained in Section 3.3.

(2) Obtain RCon, R3GPP, and RSum by using (12), (14),
and (16). The expectations of the correlation matrices
in (13), (15), and (17) are substituted into (18) to
synthesize the MIMO channel matrix by using the
Kronecker product approximations. This is repeated
Nr ×Nf times.

(3) Compare criteria calculated from HKron with H.

5.3. Results. In the evaluation, I(na) and IKron(na) are
calculated at an SNR of 10 dB. As an example, Figure 10
shows I(na) and IKron(na) at MS8 of the Laptop scenario.
The variation of I(na) and IKron(na) with the MS antenna
orientation can be clearly seen in the figure. Investigating
the accuracy of the predicted IKron(na) is done by comparing
I(na) and IKron(na) of the same MS antenna orientation at a
measurement snapshot.

Figure 9 shows the average εIKron over the MS antenna
orientations and the measurement snapshots in a street, as
a function of streets of the Laptop scenario. As can be seen,
the sum of Kronecker products approximation gives the most
accurate prediction of the ergodic mutual information as
compared to the others for all measurement streets. While
the 3GPP LTE Kronecker product approximation seems to be
the worst. This performance degradation could be because of
the use of the common correlation coefficients for different
colocated polarized antenna elements. Among all streets,
street II (WE), where multiple scattering occurs due to its
only NLOS characteristic, seems to be most suitable street
for applying the Kronecker product approximations.
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Figure 10: Ergodic mutual information at MS8 of the Laptop
scenario.

6. Double-Directional Channel Modeling

From the viewpoint of the propagation channel, the validity
of the sum of Kronecker product in (16) implies that the
joint angular PSD between the BS and MS can be reasonably
modeled as the product of the marginal angular PSDs at the
BS and MS when the same single channel polarization-pair is
considered. Mathematically, this can be expressed as

Pβα
(
φ́BS, ϑBS,φMS, ϑMS) ≈ Pβα

(
φ́BS, ϑBS)Pβα

(
φMS, ϑMS),

(21)

where Pβα(φ́BS, ϑBS,φMS, ϑMS), Pβα(φ́BS, ϑBS), and Pβα(φMS,
ϑMS) are the joint angular PSD, marginal angular PSDs at
the BS and MS for a {βα} polarization-pair, respectively.
Note that since measurement snapshots have different ABSs
toward the MS, the extracted ABS, φBS, are thus recalculated,
so that the ABS of the MS position becomes 0◦ when
obtaining PSDs relating to the ABS. φ́BS denotes the ABS
centered at the MS position.

Based on this approximation, the angular-delay PSD
channel model at the MS, which has been proposed by the
authors in [20], is extended to the double-directional PSD
channel model in this paper.

6.1. Angular-Delay PSD Model at MS [20]. In [20], the
authors studied the angular-delay channel parameters at
the MS in the measurements. The study was carried out
for the individual street to clarify the influence of the
street direction. By observing the street-based PSDs of
AMS (i.e., AMSPSDs), it was clear that they were not
ideally uniform. They consist of peak-like components and

Table 4: Angular-delay PSD model.

Channel parameter Proposed model

AMSPSD

Pcβα(φMS) truncated Gaussian PSD

Pr
βα(φMS) uniform PSD

EMSPSD

Pcβα(ϑMS) general double exponential PSD

Pr
βα(ϑMS) general double exponential PSD

EDPSD

Pcβα(τ́) general double exponential PSD

Pr
βα(τ́) general double exponential PSD

Power variation

Γcβα correlated log-normal distribution

Γr
βα correlated log-normal distribution

a residual part, which is the complementary part of the peak-
like components. Peak-like components were considered to
represent site-specific dominant propagation mechanisms.
The peak-like components are identified visually and each
is called a class. Table 4 of [20] summarized the identified
classes together with their mean EMSs and mean excess
delays.

By using their AMSs, mean EMSs, and mean excess
delays, the identified classes were connected to the street
directions to show their site-specific propagation mech-
anisms. Table 5 of [20] showed the classification result
according the following categorization: BS-direction, street-
direction, opposite BS-direction, and rooftop-diffraction. The
definition of each categorization was described in detail in
[20, Section 5].

For the classes and the residual part, the angular-delay
PSD channel models were next presented as a product of
marginal channel parameter PSDs.

A class or the residual part is considered to exist if its
power is larger than zero. While the residual part always exists
due to its large occupied AMS, a class can possibly disappear
at some measurement snapshots. To take the travel of the
MS into account, when a class or the residual part exists,
its polarization dependent power variation was modeled by
the lognormal distribution with the correlation coefficient
matrices between the power values of different polarization
pairs of the same multipath component.

In summary, the angular-delay PSD channel model for a
{βα} polarization pair was proposed as

Pβα
(
φMS, ϑMS, τ́

) =
Nc∑

c=1

ΓcβαP
c
βα

(
φMS)Pcβα

(
ϑMS)Pcβα

(
τ́
)

+ Γr
βαP

r
βα

(
φMS)Pr

βα

(
ϑMS)Pr

βα

(
τ́
)
,

(22)

where Pc,rβα(φMS), Pc,rβα(ϑMS), and Pc,rβα(τ́) are the AMSPSD,
PSD of EMS (i.e., EMSPSD), and PSD of excess delay (i.e.,
EDPSD) for a {βα} polarization pair of the cth class or the
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Table 5: Simulation conditions.

Parameters Value

Number of frequency bins (Nf ) 25 in a BW of 120 MHz

Number of antenna azimuth orientations (Na) 8 with a step of 45◦

Number of simulated power variation (Ns) 200

Number of simulated random phase (Nr) 200

Path generation of ABS

Path number 5

Path spacing 2◦

Path generation of AMS

Path number
of a class 4

of a residual part 16–21 (varies with streets)

Path spacing
for classes 3◦–5◦ (varies with classes)

for residual parts 14◦

Path generation of EMS

Path number
of a class 18

of a residual part 18

Path spacing
for classes 10◦

for residual parts 10◦

Path generation of excess delay

Path number
of a class 80

of a residual part 80

Path spacing
for classes 8 ns

for residual parts 8 ns

Path power Follow a corresponding marginal PSD

Path correlation 0 (independently random path phase)

Table 6: Absolute errors of ergodic mutual information.

CDF [%]

Street 10 50 90

I (NS) 10.7 1.7 0.5

II (WE) 4.0 5.1 9.7

III (SN) 4.4 7.0 6.9

IV (EW) 11.3 3.1 2.3

residual part, respectively. The excess delay, τ́, was obtained
as τ́ = τ − τ0, where τ0 denotes the delay of the first arriving
multipath at a measurement snapshot.

Γc,rβα is the power variation of the cth class or the residual
part andNc is the number of classes. All PSDs are normalized
to unity. The marginal PSD models are briefly summarized in
Table 4. Their best-fit parameters, which were obtained from
fitting the PSD models and their corresponding measured
PSDs, were listed in the tables in the appendix of [20].

However, since LOS paths traveling through the west side
streets were included in the BS-direction classes, that is, the
4th class of street I (NS) and the 2nd of street III (SN), the
best-fit parameters of the BS-direction classes obtained in
NLOS environments only are presented in Table 7.

6.2. Angular PSDs at BS. The measured PSD of φ́BS, that
is, ABSPSD, is found to be well described by the truncated
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Figure 11: ABSPSDs for a {VV} of street I (NS). 0◦ is the ABS
towards the MS.

Laplacian PSD [32]. For a {βα} polarization pair, the
truncated Laplacian PSD, Pβα(φ́BS), is expressed as follows:

Pβα
(
φ́BS)∝ exp

[

−
√

2
∣∣φ́BS − φ́BS

0,βα

∣∣

σφ́BS
βα

]

, (23)
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For a single channel polarization-pair

BS side

Generate ABSs
with fixed spacing
values
(see Table 4).
EBSs are set to 0
deg according to
(21).

MS side

Generate AMSs with
fixed spacing values
(see Table 4).

For all classes and the residual parts

Generate EMSs with
fixed spacing values
(see Table 4).

Generate the excess
delays with fixed spacing
values (see Table 4).

Product of marginal PSDs

Generate exist or not exist status for all classes (i.e. the generated
status is the same for all polarizations pairs).

Generate power variations in case of existence.

Obtain the joint angular PSD between the BS and MS according to (22) and (26).

Generate random phases.

Obtain the single channel polarization-pair MIMO channel according to (24).

Obtain the synthesized MIMO channel according to (23).

Figure 12: Simulation procedure.

Table 7: Best-fit parameters of BS-direction classes for NLOS environments.

Pcβα(φMS) VV/HV/HH/VH

Street Class no. φc,MS
0,βα [◦] σφc,MS

βα
[◦]

I (NS) 4 −102.6/ −104.8/ −103.0/ −92.0 9.2/13.5/9.3/32.5

III (SN) 2 69.7/69.8/68.9/83.1 11.6/26.3/9.5/36.5

Pcβα(ϑMS) VV/HV/HH/VH

Street Class no. ϑc,MS
0,βα [◦] σ+

ϑc,MS
βα

[◦] σ−
ϑc,MS
βα

[◦]

I (NS) 4 10.4/8.0/10.7/13.5 9.8/25.3/10.0/30.4 4.9/3.7/4.6/10.0

III (SN) 2 7.0/7.0/7.0/18.0 8.8/18.7/8.1/16.8 5.6/3.9/5.1/16.0

Pcβα(τ́) VV/HV/HH/VH

Street Class no. τ́c0,βα [ns] σ+
τ́cβα

[ns] σ−τ́cβα [ns]

I (NS) 4 4.0/4.0/4.0/4.0 7.6/7.8/7.9/8.8 −/ − / − /−
III (SN) 2 4.8/5.6/4.6/5.6 7.5/5.8/8.1/5.7 −/ − / − /−

f (Γ̌cβα) VV/HV/HH/VH

Street Class no. Life time Γ̌c,r0,βα [dB] σΓ̌c,rβα [dB]

I (NS) 4 0.98 −116.8/ −127.3/ −116.7/ −128.6 9.9/9.2/10.2/9.0

III(SN) 2 0.96 −117.6/ −128.6/ −117.9/ −129.4 10.4/8.3/9.9/8.3

where φ́BS
0,βα and σφ́BS

βα
are the mean ABS and spread parameter,

respectively. Their best-fit parameters are obtained from fit-
ting Pβα(φ́BS) and the measured ABSPSD, which is calculated
by summing the power of a {βα} polarization pair within a
1◦ angular bin. Figure 11 shows the measured and modeled
ABSPSDs of a {VV} polarization pair of street I (NS).
Interestingly, the main peak of the measured ABSPSD is
very close to 0◦ even though the measurements are in NLOS

environments. This implies that most multipaths between
the BS and MS travel over the rooftop of surrounding
buildings around the MS. Table 8 lists the best-fit parameters
of the ABSPSD model.

As to the PSD of EBS, for example, EBSPSD, the EBSPSD
is confined to its peak of between−9◦ and−7◦ depending on
streets. The EBSPSD is thus assumed to be a delta function
for simplicity, that is,
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Figure 13: Measured and modeled ergodic mutual information for the Laptop scenario.

Table 8: Best-fit parameters of Pβα(φ́BS).

VV/HV/HH/VH

Street φ́BS
0,βα [◦] σφ́BS

βα
[◦]

I (NS) 0.3/0.7/0.7/0.9 4.3/4.9/3.0/2.2

II (WE) 0.4/0.5/0.5/0.6 1.8/1.5/1.8/1.3

III (SN) 1.5/1.4/1.6/1.5 1.7/1.5/1.2/1.1

IV (EW) 1.5/2.5/2.3/1.7 2.5/2.3/2.6/2.0

Pβα
(
ϑBS) = δ

(
ϑBS). (24)

In other words, multipaths are assumed to be incident to the
horizontal plane. The BS antenna pattern, whose response
varies only in the ABS direction, is thus reasonable for the
measured environment.

Using (21)–(24), the double-directional PSD for a {βα}
polarization pair is proposed as

Pβα
(
φ́BS, ϑBS,φMS, ϑMS, τ́

)

= Pβα
(
φ́BS)Pβα

(
ϑBS)Pβα

(
φMS, ϑMS, τ́

)
.

(25)

7. Model Evaluation

To evaluate the double-directional PSD channel model, the
ergodic mutual information is used. The ergodic mutual
information from the synthesized MIMO channel by using
the proposed double-directional PSD channel model, that
is, HModel( f ), is compared with the results from the directly
synthesized MIMO channel matrix, H( f ). In the model
evaluation, the same reference scenario as in the evaluation
of the Kronecker separability is assumed.
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HModel( f ) is obtained by using the following equations:

[
HModel( f )

]
nMSnBS

=
∑

α,β={V,H}

[
HModel
βα ( f )

]
nMSnBS

, (26)

where [HModel
βα ( f )]

nMSnBS
denotes the (nMS,nBS) element of

single polarization HModel( f ) of a {βα} polarization pair, that
is,

[
HModel
βα ( f )

]
nMSnBS

=
K∑

k=1

γModel
βα,k gnMS

β

(
φMS
k , ϑMS

k

)
gnBS
α

(
φBS
k , ϑBS

k

)

×exp
(
j
[〈

kMS
k ( f ),�rnMS

〉
+
〈

kBS
k ( f ),�rnBS

〉]

− j2π f τ́k + jν
βα
k

)
,

(27)

γModel
βα,k =

√
Pβα
(
φ́BS
k , ϑBS

k ,φMS
k , ϑMS

k , τ́k
)
. (28)

Multipaths at the BS and MS are generated independently
as suggested by (25). That is

γModel
βα,k =

√
Pβα
(
φ́BS
)
Pβα
(
ϑBS
)
Pβα
(
φMS, ϑMS, τ́

)
. (29)

7.1. Simulation Procedure. Figure 12 shows the simulation
procedure diagram of multipaths at the BS and MS. All
simulation conditions are summarized in Table 5.

For the BS, 5 paths with equal ABS spacing are assigned,
so that the magnitude of paths approximately follows the
truncated Laplacian PSD of ABSPSD. The EBSs of all
multipaths are set to 0◦ according to (24).

For the MS, multipaths are generated according to the
simulation procedures described in [20, Section 7.2].

The generation of multipaths for the MS is briefly
summarized as follows.

(1) Generate multipaths for the classes and the residual
part. The numbers of multipaths and spacings of the
AMS, EMS, and excess delay are set according to the
values given in Table 5.

(2) For Ns simulations, generate “exist” or “not exist”
status of each class. In general, two-state Markov
model is used to generate the status [33]. For the
residual part, its status is always set to “exist.”

(3) In case of existence, generate power variations, Γcβα
and Γr

βα.

(4) For a realization of power variation,Na combinations
of antenna array orientation are considered as the
evaluation of the Kronecker separability.

After generating multipaths at the BS and MS, the Nr

simulations of random phases of polarizations between 0 to
2π are next generated, in order to calculate HModel( f ) accord-
ing to (26)–(29). As explained in Section 3.1, HModel( f ) is
simply expressed as HModel.

For the nath MS antenna orientation, the ergodic mutual
information of HModel, IModel(na), can be obtained by replac-
ing the normalized H(na) with the normalized HModel(na) in

(7). HModel(na) is a HModel when the MS antenna orientation
is φMS(na). It is obtained by replacing φMS

k with {φMS
k −

φMS(na)} in (27), where φMS(na) = 0◦, 45◦, . . . , 315◦ for
na = 1, . . . , 8, respectively. Similar to the evaluation of the
Kronecker separability, all ergodic mutual information are
calculated at an SNR of 10 dB.

7.2. Results. Figure 13 shows the CDFs of the measured
and modeled ergodic mutual information of all frequencies,
antenna array orientations, and power variations for the Lap-
top scenario. In general, there is a close agreement between
the measured and modeled results. Table 6 summarizes the
absolute percentage errors of modeled results from measured
results at 10%, 50%, and 90% CDFs. According to the table,
the difference was found to be within around 11%, 7%, and
10% at 10%, 50%, and 90% CDFs, respectively.

8. Conclusion

The improvement in the ergodic mutual information of a
multiple polarized MIMO system was first verified. Then, the
Kronecker separability of the joint polarimetric angular PSD
between the BS and MS of the measured propagation channel
was investigated by using the ergodic mutual information.
The authors showed that the joint polarimetric angular
PSD could be modeled as the product of the marginal
angular PSDs at the BS and MS when the same single
channel polarization pair is considered. From this result,
the extension of the angular-delay PSD model proposed
previously by the authors to the double-directional PSD
channel model was done. The double-directional PSD
channel model was verified by comparing the CDFs of the
measured and modeled ergodic mutual information. The
results were found to be in a good agreement with those
obtained from the measurement.
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