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Tensor decompositions, also named tensor factorizations,
are very useful tools for representing and analyzing multi-
dimensional data in a compact way. In some cases, tensor
decompositions can be viewed as generalizations of matrix
decompositions, such as the singular value decomposition
(SVD), to higher-order arrays. In addition to enabling
multidimensional data processing, tensor models have
properties that become possible to solve undetermined
solution problems under conditions more relaxed than
conventional matrix approaches [1–3].

Recent developments in multilinear algebra have made
possible the application of tensor analysis in several areas. In
particular, tensor approaches have gained considerable
space in wireless communications and mobile networks [4].
!e proposition of new factorizations of tensors, as well the
study of uniqueness and identifiability conditions, has a
great potential to provide remarkable improvements in these
fields.

Indeed, in the literature, one can find a wide range of
applications of tensor and multilinear algebra in problems
such as Internet traffic [5], missing data problems [6], big-
data analysis [7], neuron networks [8], image processing [9],
design of mobile communication systems [10, 11], and
development of receivers for wireless systems [12].

Although much research has been done within this
subject, many challenges are still to be explored. !e
proposition of new tensor decompositions, factorization
algorithms, and mathematical properties has a great
potential to bring significant impacts in several areas. !e
purpose of this special issue is to publish original efforts

presenting recent advances in tensor decompositions
with applications in communication systems and mobile
computing.

B. Kurt et al. propose the use of tensor techniques for
modeling network flows, which is exploited to solve recovery
information problems. !e novelty of this work consists in
the first application of multiway methods for network
monitoring, being an interesting alternative for recovering
the true flow length distribution from the sampled traffic
data. !e data is modeled as a three-way array, with each
characteristic being estimated using a nonnegative tensor
factorization. !e proposed tensor factorization scheme is
validated with synthetic data and applied to real-world data
with two different sampling methods.

P. R. B. Gomes et al. address the problem of joint
downlink (DL) and uplink (UL) channel estimation for
millimeter wave (mmWave) multiple-input multiple-output
(MIMO) systems and develop two tensor-based semiblind
receivers by capitalizing on the multilinear structure and
sparse nature of the received signal at the BS equipped with a
hybrid analog-digital beamforming (HB) architecture. !is
paper shows the benefits of jointly estimating both the DL
and UL channels as a single problem by concentrating most
of the processing burden for channel estimation at the BS
side, which are attractive features for massive MIMO
systems.

L. Liu et al. present a new algorithm to estimate the
direction of arrival (DOA) and polarization parameters
of signals impinging on an array with electromagnetic
(EM) vector-sensors by exploiting the canonical polyadic
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decomposition (CPD) of tensors. In addition to spatial and
temporal diversities, further information from the polari-
zation domain is exploited. !e authors show that the pa-
rameters can be estimated by virtue of the diversities of the
spatial and polarization belonging to the factor matrices,
rather than using conventional subspace methods.

M. T. de Oliveira et al. address a practical DOA problem
by proposing a low-cost antenna array-based drone tracking
device for outdoor environments. !e proposed solution is
divided into hardware and software parts.!e hardware part
of the proposed device is based on off-the-shelf components
such as an omnidirectional antenna array, a 4-channel
software defined radio (SDR) platform with carrier fre-
quency ranging from 70MHz to 6GHz, a FPGA mother-
board, and a laptop. !e software part includes algorithms
for calibration, model order selection (MOS), and DOA
estimation, including specific preprocessing steps and a
tensor-based estimator to increase the DOA accuracy.

With this special issue, we hope that readers will be
interested in applications of tensor decompositions and they
will find this issue helpful for their research.
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Received 27 February 2019; Revised 7 June 2019; Accepted 25 July 2019; Published 15 September 2019

Academic Editor: Miguel Garcia-Pineda

Copyright © 2019 Paulo R. B. Gomes et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this paper, we address the problem of joint downlink (DL) and uplink (UL) channel estimation for millimeter wave (mmWave)
multiple-input multiple-output (MIMO) systems. Assuming a closed-loop andmultifrequency-based channel training framework
in which pilot signals received by multiple antenna mobile stations (MSs) are coded and spread in the frequency domain via
multiple adjacent subcarriers, we propose two tensor-based semiblind receivers by capitalizing on the multilinear structure and
sparse feature of the received signal at the BS equipped with a hybrid analog-digital beamforming (HB) architecture. As a �rst
processing stage, the joint estimation of the compressed DL and UL channel matrices can be obtained in an iterative way by means
of an alternating least squares (ALS) algorithm that capitalizes on a parallel factors model for the received signals. Alternatively, for
more restricted scenarios, a closed-form solution is also proposed. From the estimated e�ective channel matrices, the users’
channel parameters such as angles of departure (AoD), angles of arrival (AoA), and path gains are then estimated in a second
processing stage by solving independent compressed sensing (CS) problems (one for each MS). In contrast to the classical
approach in the literature, in which the DL and UL channel estimation problems are usually considered as two separate problems,
our idea is to jointly estimate both the DL and UL channels as a single problem by concentratingmost of the processing burden for
channel estimation at the BS side. Simulation results demonstrate that the proposed receivers achieve a performance close to the
classical approach that is applied on DL and UL communication links separately, with the advantage of avoiding complex
computations for channel estimation at the MS side as well as dedicated feedback channels for each MS, which are attractive
features for massive MIMO systems.

1. Introduction

In recent years, millimeter wave (mmWave) massive mul-
tiple-input multiple-output (MIMO) technology has been a
subject of increasing interest in both academia and industry
for future wireless standards due to its great potential to
provide substantial gains in data rates and energy e�ciency.
However, due to the severe path loss over the mmWave
frequency bands, large antenna arrays should be deployed at
the base station (BS) and mobile stations (MSs) to provide
su�cient beamforming gain in mmWave MIMO scenarios
[1]. In this context, the implementation of fully digital

beamforming architectures becomes prohibitive due its
expensive cost, hardware constraints, and power con-
sumption of high-resolution analog-to-digital converters
(ADC) and digital-to-analog converters (DAC) per antenna
port [2, 3]. To overcome these practical limitations, hybrid
analog-digital beamforming (HB) architectures that split the
signal processing between analog and digital domains using
a reduced number of radio frequency (RF) chains (assumed
to be smaller than the number of antennas) have been in-
vestigated [4, 5]. In the HB architectures, the digital part
performs baseband processing using microprocessors, while
the analog part can be implemented at the RF domain using
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different analog approaches such as phase-shifter networks
[6], switches [3, 7], or lenses [8].

To fully benefit from the beamforming gains in
mmWave MIMO systems, an accurate channel estimation is
crucial to realize the hybrid precoding designs in which the
analog part is used to improve the signal power, while the
digital part is designed to suppress interuser interferences
[9–11]. For this purpose, several channel estimation tech-
niques such as [12–16] have been proposed. -e authors of
[12] proposed an iterative method based on the least squares
estimation (LSE) concept and sparse message passing (SMP)
algorithm. In this method, the location of nonzero entries of
the channel vector is detected through the SMP, while the
LSE is used for estimating the channel coefficients at each
iteration. Zhu et al. [13] proposed an auxiliary beam pair
design for mmWave channel estimation in which the best
auxiliary beam pair is fed back to the transmitter via a
feedback channel. -e method proposed by Ghauch et al.
[14] consists of a subspace-based approach that exploits the
channel reciprocity in time-division duplexing (TDD)
MIMO systems for hybrid precoding design. It iteratively
estimates the dominant singular modes of the channel in-
stead of the entire channel. In contrast, the works [15, 16]
explore the angular sparsity of mmWave channels and use
compressed sensing (CS) theory to estimate only the channel
parameters from which the mmWave channel can be
reconstructed. In [15], the angular spreads over the angle of
arrival (AoA) and angle of departure (AoD) are considered
in the channel modeling, while the low-rank structure of the
channel is exploited to reduce the number of samples needed
to recover the mmWave channel. Similarly, but disregarding
the angular spreads in the spatial domains, the method in
[16] uses the 2D unitary ESPRIT algorithm for spatial pa-
rameters estimation, while the path gains are estimated by
means of the LS criterion.

-e researchers [17–21] have proposed CS-based and
tensor-based channel estimators for mmWave MIMO sys-
tems, respectively. -ey assume the conventional channel
training framework, where the DL and UL channel esti-
mation problems are treated separately (as two decoupled
procedures at the MS and BS, respectively). In particular, for
frequency division duplexing (FDD) systems, where channel
estimation is usually carried at the power-limited MS side,
computational complexity plays a significant role due to the
large number of channel coefficients to be estimated. An
interesting approach to deal with this problem exploits the
poor scattering nature of the mmWave channels via CS
techniques [22, 23]. For instance, in [17, 18], the intrinsic
sparse feature of the mmWave channel is exploited and CS-
based channel estimation algorithms are formulated.
However, the adaptive algorithm proposed in [17] can be
applied to estimate the DL or UL channel separately. In [19],
a layered pilot transmission scheme is proposed to UL
channel estimation, while [20, 21] exploit the DL commu-
nication of wideband mmWave channels. -e main idea in
[21] is to divide the overall channel estimation problem into
three smaller CS subproblems via tensor-based modeling to
estimate the channel parameters (AoDs, AoAs, and delays)
with less computational complexity. -e system model is

formulated as a parallel factors (PARAFAC) decomposition
[24], and tensor-based algorithms combined with CS tools
are proposed to solve the channel estimation problem.
However, Zhou et al. [19] only considered the UL channel
estimation, while Zhou et al. and Araújo and de Almeida
[20, 21] focused on the DL case. On the other hand, Shen
et al. [25] proposed a closed-loop based training framework,
where theMSs directly feed the received pilots back to the BS
without channel estimation. -erein, a simplified approach
is adopted, in which the UL channel is modeled as an ad-
ditive white Gaussian noise (AWGN) term. Moreover, in
[25], only the DL channel could be estimated. Different from
[25], we are interested in a joint estimation of the UL and DL
channels, and a more realistic multipath channel model that
fits to mmWave MIMO scenario and HB architecture is
considered.

In this paper, we study the problem of joint DL and UL
channel estimation in the context of mmWave MIMO
systems that employ HB architectures. Initially, we propose a
novel closed-loop and multifrequency-based channel
training framework in which the pilot signals received by
multiple MSs are coded and spread in the frequency domain
and then fed back to the BS over the same UL resources.
Making use of the proposed framework for channel esti-
mation, the received closed-loop signal at the BS can be
modeled as a three-way array (i.e., a third-order tensor) that
follows a PARAFAC model. By capitalizing both on the
multidimensional and sparse structures of the received
signal, we propose two tensor-based semiblind receivers for
joint DL and UL channel estimation. -e first receiver is an
iterative solution based on the alternating least squares
(ALS) algorithm [26]. -e second is a closed-form solution
based on the least squares Khatri-Rao factorization (LS-
KRF) algorithm [27]. In the proposed receivers, we first
obtain joint estimates of the compressed DL and UL channel
matrices. -en, we exploit the sparse representation of the
DL and UL channels to individually recover the channel
parameters (AoDs, AoAs, and path gains) of each user via
CS-based techniques. -e proposed framework allows
concentrating most of the processing burden for channel
estimation at the BS side, i.e., avoiding unnecessary com-
putational overhead for channel estimation at the power-
limited MS side. Our simulation results reveal that the
proposed receivers achieve a performance close to the
classical framework that treats the estimation of DL and UL
channels as separate problems.

In summary, the main contributions of this paper can be
listed as follows:

(i) We propose a novel closed-loop and multifre-
quency-based channel training framework for
channel estimation that focuses jointly on the DL
and UL communication links. -e proposed
framework concentrates the processing burden for
joint channel estimation at the BS, avoiding pro-
cessing with high computational cost at the MS side.

(ii) We show that, by making use of the proposed
framework for channel estimation, the received
closed-loop signal can be modeled as a third-order
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tensor that follows a PARAFAC model. -en,
we formulate two tensor-based semiblind
receivers (iterative and closed-form ones) for joint
DL and UL channel estimation by capitalizing on
a tensor structure of the received closed-loop
signal.

(iii) We study the identifiability issues under which the
DL and UL channel matrices can be jointly and
uniquely estimated using the proposed receivers.
Useful lower bounds on the number of subcarriers
required to accomplish the joint channel estimation
are derived.

-e rest of this paper is structured as follows: In
Section 2, we provide as a presentation complement some
important tensor definitions, tensor algebra operations,
and a brief overview on the PARAFAC decomposition. In
Section 3, we present the proposed channel training
framework, and the system and channel models. Section 4
formulates the two proposed tensor-based semiblind re-
ceivers for joint DL and UL channel estimation. In Section
5, we analyze the identifiability conditions of the proposed
receivers. Simulation results are provided in Section 6.
Conclusions and perspectives for future work are drawn in
Section 7.

1.1. Notation and Properties. Scalars, column vectors, ma-
trices, and tensors are denoted by nonbold lowercase letters
a, bold lowercase letters a, bold uppercase letters A, and
calligraphic uppercase letters A, respectively. -e super-
scripts ·{ }T, ·{ }∗, ·{ }H, and ·{ }† denote the transpose, complex
conjugate, conjugate transpose, and pseudoinverse oper-
ations. ‖ · ‖F represents the Frobenius norm of a matrix or
tensor. -e (i, r)-th entry of A is denoted by [A]i,r. -e
operator diag(a) converts a into a diagonal matrix, while
Di(A) consists in a diagonal matrix formed by the i-th row
of A. vec(A) converts A to a vector a by stacking its col-
umns on top of each other, while unvecI×R(a) converts
a ∈ CIR to a matrix A ∈ CI×R. vecd(A) converts the di-
agonal elements of A into a vector. ∘ denotes the outer
product operator. -e Kronecker and Khatri-Rao products
are denoted by ⊗ and ◇, respectively. -e Khatri-Rao
product between the matrices A � [a1, . . . , aR] ∈ CI×R and
B � [b1, . . . , bR] ∈ CJ×R corresponds to a column-wise
Kronecker product, i.e.,

A◇B � a1 ⊗ b1, a2 ⊗ b2, . . . , aR ⊗ bR􏼂 􏼃 ∈ CIJ×R
. (1)

We shall make use of the following two properties of the
Kronecker and Khatri-Rao products:

AC◇BD � (A⊗B)(C◇D), (2)

vec ABCT
􏼐 􏼑 � (C◇A)vecd(B), (3)

a⊗ b � vec(b ∘ a) ∈ CIJ
, (4)

where B is assumed to be a diagonal matrix in (3). In both
cases, the matrices have compatible dimensions.

2. Tensor Preliminaries

In order to facilitate the presentation of the proposed re-
ceivers, we provide below a brief overview on some im-
portant tensor definitions and tensor algebra operations. We
also introduce the PARAFAC decomposition and its dif-
ferent representation forms.

2.1. Tensor Definitions and Basic Operations. -roughout
this paper, the definitions and operations involving tensors
are in accordance with [28, 29]. A tensor is defined here as a
multidimensional array. -e order of a tensor corresponds
to the number of dimensions. It can be seen as a general-
ization of a matrix to higher-order dimensions. For instance,
a scalar is a tensor of order 0, a vector is a tensor of order 1,
and a matrix is a tensor of order 2. An n-mode fiber of a
tensor is a vector obtained by varying the n-th index and
keeping all the other indexes fixed. Slices are two-di-
mensional sections of a tensor, obtained by fixing all but two
indices. -e operator A⊔ nB denotes the concatenation of
two matrices along the n-th mode of a tensor. -e 1 mode, 2
mode, and 3 mode unfolding matrices of the third-order
tensor X ∈ CI1×I2×I3 , denoted by [X](1) ∈ CI1×I2I3 ,
[X](2) ∈ CI2×I1I3 , and [X](3) ∈ CI3×I1I2 , are obtained by
collecting all the 1 mode, 2 mode, and 3 mode fibers to be
columns of the resulting matrices, respectively. -e n-mode
product between the tensor X and a matrix A ∈ CRn×In is
denoted by Y � X × nA, which is equivalent in a matrix
fashion to [Y](n) � A[X](n) (n � 1, 2, 3).

2.2. PARAFAC Decomposition. By definition, the PARAlell
FACtor (PARAFAC) analysis decomposition of a third-
order tensor X ∈ CI1×I2×I3 , introduced by [24], is the fac-
torization of X in a sum of R third-order rank-one tensors
each one being formed by the outer product of three
vectors. Mathematically, the PARAFAC decomposition of
X ∈ CI1×I2×I3 is given by

X � 􏽘
R

r�1
ar

(1) ∘ a(2)
r ∘ a

(3)
r , (5)

where R is the rank of the PARAFAC decomposition and is
defined as the minimum number of rank-one tensors for
whichX holds exactly.-e vector a(n)

r ∈ C
In denotes the r-th

column of the factor matrix A(n) � [a(n)
1 , . . . , a(n)

R ] ∈ CIn×R

along the n-th mode (n � 1, 2, 3).
-e PARAFAC decomposition can also be represented

in terms of the frontal slices of X as follows:

Xi3
� A(1)

Di3
A(3)

􏼐 􏼑A(2)T ∈ CI1×I2 , (6)

for i3 � 1, . . . , I3.
By using n-mode product notation, equations (5) and (6)

can be written as

X � I3,R×1A
(1)

×2A
(2)

×3A
(3)

, (7)

where I3,R denotes a third-order identity tensor of size
R × R × R. Its elements are equal to 1 when all indices are
equal and 0 elsewhere.
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-e 1 mode, 2 mode, and 3 mode unfolding matrices of
X admit the following factorizations with respect to the
factor matrices A(n) (n � 1, 2, 3):

[X](1) � A(1) A(3)◇A(2)
􏼐 􏼑

T
, (8)

[X](2) � A(2) A(3)◇A(1)
􏼐 􏼑

T
, (9)

[X](3) � A(3) A(2)◇A(1)
􏼐 􏼑

T
. (10)

3. System and Channel Models

In this section, we introduce the proposed closed-loop and
multifrequency channel training framework. -en, we formu-
late our DL and UL signal models. In addition, the considered
mmWave massivo MIMO channel model is also presented.

3.1. Downlink Signal Model. Consider a wireless commu-
nication system operating in the FDD mode, where a BS
equipped with NBS antennas serves simultaneously U MSs
equipped with NMS antennas. We assume that the BS em-
ploys a hybrid beamforming architecture using MRF
RF chains. Due to the different instants of time dedicated
to DL and UL communications, the beamforming
matrix associated with DL transmission is denoted
by W � WRFWBB ∈ CNBS×MRF , while the beamforming
matrix associated with UL reception is denoted by
F � FRFFBB ∈ CNBS×MRF . Note that equal beamforming ma-
trices can also be considered in the transmission and re-
ception phases without loss of generality. -e BS transmits a
length-T pilot sequence sp ∈ CT over the p-th spatial di-
rection using the beamforming vector wp ∈ CNBS

(p � 1, . . . , P and P≤MRF). -e received signal at the u-th
MS over P different directions is given by

Yu � HuWS + V(DL)
u ∈ C

NMS×T
, (11)

where Hu ∈ CNMS×NBS denotes the DL channel matrix
associated with the u-th MS,W � [w1,w2, . . . ,wP] ∈ CNBS×P

denotes the transmission beamforming matrix, S � [s1, s2,
. . . , sP]T ∈ CP×T concatenates the pilot sequences to be sent
by each transmission beam. -e matrix V(DL)

u ∈ C
NMS×T is

the additive white Gaussian noise (AWGN) term at the u-th
MS.

During the training phase, we assume identity matrices
for the digital beamforming matrices, while the analog
beamforming matrices have constant unit modulus entries
with random phases. -us, the entries ofW and F are chosen
uniformly from a unit circle scaled by a constant 1/

����
NBS

􏽰
, i.e.,

[W]i,j �
1
����
NBS

􏽰 e
jϑi,j ,

[F]i,j �
1
����
NBS

􏽰 e
jφi,j ,

(12)

where ϑi,j and φi,j ∈ [− π, π] follow a uniform distribution.
Since this work deals with the channel estimation problem,

the optimum design of the beamforming matrices is not
addressed here.

3.2.Uplink SignalModel. -e pilot signal (11) received at the
u-th MS is fed back to the BS after a multifrequency coding
operation (i.e., no channel estimation is done at the MS
side). More specifically, we assume that Yu (u � 1, . . . , U) is
coded and spread in the frequency domain across K adjacent
subcarriers over which the fading channel is assumed to be
constant. -e coded signal of the u-th MS transmitted at the
k-th subcarrier can be expressed as

Yk,u � diag ck,u􏼐 􏼑Yu ∈ C
NMS×T

, (13)

where ck,u ∈ CNMS denotes a known code vector associated
with the k-th subcarrier and used by u-th MS. It is worth
noting that the coding vectors used by the different MSs do
not need to be orthogonal. As will be discussed later, the
linear independence assumption is enough. In practice, this
means that these codes can be locally generated at each MS
as pseudorandom sequences, i.e., no prior signaling and
coordination between MSs is necessary [30].

In the UL communication, the BS employs Q beam-
forming vectors fq ∈ CNBS (q � 1, . . . , Q and Q≤MRF) to
receive the coded uplink pilot signals over a set ofQ different
spatial directions. -e received closed-loop signal at the BS
associated with the k-th subcarrier is then given by

Xk � FH 􏽘

U

u�1
GuYk,u + V(UL)⎛⎝ ⎞⎠

� FHGe􏼐 􏼑diag ck( 􏼁YT
e + FHV(UL) ∈ CQ×T

,

(14)

where Ge � [G1,G2, . . . ,GU] ∈ CNBS×UNMS denotes an ex-
tended version of the UL channel matrix that concatenates
the U UL channel matrices Gu ∈ CNBS×NMS (u � 1, . . . , U) of
all MSs, Ye � [YT

1 ,YT
2 , . . . ,YT

U] ∈ CT×UNMS denotes an ex-
tended matrix that concatenates the feedback signals sent by
all MSs, ck � [cTk,1, c

T
k,2, . . . , cTk,U]T ∈ CUNMS is an extended

code vector that contains the coding vectors of all MSs with
respect to the k-th subcarrier, and FHV(UL) represents the
filtered noise term at the output of the RF chains.

3.3. Conventional× Proposed Channel Training Framework.
-e conventional framework for channel estimation, sum-
marized in Figure 1, assumes channel reciprocity in TDD or
treat the DL and UL channel estimation as two separated
problems in FDD, i.e., solved independently at the MS and
BS, respectively. For the DL channel estimation, the BS first
sends pilot signals to all MSs. At theMS side, the DL channel
estimation can be performed bymeans of the state-of-the-art
least squares (LS), minimummean square error (MMSE), or
CS-based estimators. -en, the estimated DL channel is
reported back to the BS via dedicated UL resources [30]. To
solve the UL channel estimation problem, a pilot signal is
sent to the BS by eachMS. Finally, the UL channels of all MSs
are estimated by the BS. In practice, the DL channel esti-
mated from UL pilots under the reciprocity assumption may
not be accurate due to radio frequency distortions or a
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different carrier frequency such as in FDD. In addition, the
conventional framework for channel estimation may imply a
high computational complexity at the MS side, especially for
power-limited devices.

In the proposed framework, summarized in Figure 2,
no processing for channel estimation is performed at the
MSs side. In contrast to the conventional approach, the
received pilot signals at each MS are fed back to the BS
after a multifrequency coding operation across a set of
adjacent subcarriers. After this closed-loop procedure, the
joint DL and UL channel estimation can be performed at
the BS from the received signal given in (14). We can note
that the proposed framework alleviates computational
overhead due to channel estimation at the power-limited
devices, by shifting this processing burden to the BS side.
Furthermore, it also relaxes channel reciprocity as-
sumptions since the DL and UL channels can be estimated
jointly from (14).

After estimating the UL and DL channels, the BS may
report the estimated parameters (AoDs, AoAs, and path
gains) to theMS.-en, eachMS can rebuild an estimation of
the DL channel (according to procedure presented in Sec-
tion 4.5) before decoding the information data. -is ap-
proach reduces the overhead since a number of DL channel
parameters reported to the MS is much smaller with respect
to the size of the DL channel matrix in an mmWave MIMO
system.

3.4. Channel Model. In (11) and (14), we consider a general
formulation in which the DL and UL channels are com-
pletely independent. In other words, the channels do not
share any reciprocity in the angular or path gain domains.
We also assume that the UL channels are constant across the
K adjacent subcarriers used in the multifrequency coding
operation. Due to the severe path loss, mmWave channels
can be modeled by a narrow-band clustered channel model
with few Lu dominant paths between the u-thMS and the BS.
-eDL channel matrixHu ∈ CNMS×NBS associated with the u-
th MS can be written as [19]

Hu � 􏽘

Lu

l�1
αu,laMS θu,l􏼐 􏼑aBS ϕu,l􏼐 􏼑

T
, (15)

where αu,l denotes the complex path gain of the u-th MS
related to the l-th path in the DL communication. -e path
gains are modeled as circular symmetric Gaussian
random variables with zero mean and unit variance.
aMS(θu,l) ∈ CNMS and aBS(ϕu,l) ∈ C

NBS are the antenna array
response vectors evaluated at the angle of arrival θu,l and
angle of departure ϕu,l uniformly distributed in the interval
[0, 2π]. -roughout this paper, we assume uniform linear
arrays (ULAs) at the BS and MSs. However, the proposed
method can be applied to arbitrary array geometries
without loss of generality. For ULA configurations with
interantennas spacing equals to d � λ/2, where λ denotes
the wavelength of the signal, the array response vectors at
the MS and BS can be formulated as

aMS θu,l􏼐 􏼑 �
1

����
NMS

􏽰 1, e
jπ cos θu,l , . . . , e

jπ NMS− 1( )cos θu,l􏼔 􏼕
T
,

aBS ϕu,l􏼐 􏼑 �
1
����
NBS

􏽰 1, e
jπ cos ϕu,l , . . . , e

jπ NBS− 1( )cos ϕu,l􏼔 􏼕
T
.

(16)

In matrix form, Hu can be rewritten as

Hu � AMSdiag(α)AT
BS, (17)

where α �
����������
NMSNBS/Lu

􏽰
[αu,1, αu,2, . . . , αu,Lu

]T ∈ CLu de-
notes the vector that contains the Lu path gains in the DL.
-e array response matrices AMS ∈ CNMS×Lu and
ABS ∈ CNBS×Lu at the MS and BS are expressed as

AMS � aMS θu,1􏼐 􏼑, aMS θu,2􏼐 􏼑, . . . , aMS θu,Lu
􏼐 􏼑􏽨 􏽩,

ABS � aBS ϕu,1􏼐 􏼑, aBS ϕu,2􏼐 􏼑, . . . , aBS ϕu,Lu
􏼐 􏼑􏽨 􏽩.

(18)

-eUL channel matrixGu ∈ CNBS×NMS from the u-th MS
to the BS can be represented in a similar way. We define Gu

as follows

Gu � ABSdiag(β)AT
MS, (19)

where ABS ∈ CNBS×Mu and AMS ∈ CNMS×Mu are now
functions of the spatial parameters in the UL, while β ������������

NMSNBS/Mu

􏽰
[βu,1, βu,2, . . . , βu,Mu

]T ∈ CMu denotes the
vector that contains the Mu path gains of the UL channel.

UL channel

DL channel

Received UL pilots

Received DL pilots

UL training pilots

DL training pilots u-th MS 
DL channel estimation

BS
UL channel estimation

Estimation DL channel (Via dedicated feedback channel)

Figure 1: Conventional training framework. -e DL and UL channel estimation problems are solved independently. -e BS first transmits
pilot sequences. -en, the DL channel is estimated at the MS side. -e estimated DL channel is fed back to the BS via dedicated uplink
resources. -e UL channel is estimated at the BS side. -e text in blue refer to DL communication, while the text in red refer to UL
communication.
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4. Proposed Tensor-Based Semiblind
Receivers for Joint DL and UL
Channel Estimation

Our aim is to jointly estimate the DL and UL channel
matrices Hu and Gu of each MS (u � 1, . . . , U) by solving a
multiuser channel estimation problem at the BS. To this end,
we first rewrite the received closed-loop signal (14) using a
tensor formalism. -en, by capitalizing on its multidi-
mensional structure, we formulate two tensor-based semi-
blind receivers to initially obtain the estimates for the
compressed channel matrices. As a final step, we exploit the
sparse representation of the DL and UL channels to estimate
their parameters by decoupling the multiuser channel es-
timation problem into multiple single-user ones solved in a
parallel way via separate CS problems.

4.1. PARAFAC Modeling. According to (6) and (7), the
noiseless term in the received closed-loop signal (14) can be
interpreted as the k-th frontal slice of the following third-
order PARAFAC decomposition:

X � I3,U·NMS
×1 FHGe􏼐 􏼑×2Ye×3C ∈ C

Q×T×K
, (20)

obtained by concatenating the K signal matrices Xk􏼈 􏼉
K
k�1

associated with the different adjacent subcarriers along the
third mode of X, i.e.,

X � X1 ⊔3X2 ⊔3 . . . ⊔3XK. (21)

By analogy with (7), the following correspondence holds:

A(1)
,A(2)

,A(3)
􏼐 􏼑⟷ FHGe,Ye,C􏼐 􏼑,

I1, I2, I3, R( 􏼁⟷ Q, T, K, UNMS( 􏼁.
(22)

-e three dimensions, or modes, of X stands for the
number of receive beams, pilot sequence length, and number
of subcarriers. -e matrix F can be seen as a compression
matrix associated with the first mode of X which reduces
the size of the first mode from NBS to Q RF chains (i.e.,
number of beams). -e k-th row of the multifrequency
codingmatrixC ∈ CK×UNMS contains the code values used by
the U MSs at the k-th subcarrier, i.e.,

C � c1, c2, . . . , cK􏼂 􏼃
T ∈ CK×UNMS . (23)

Estimates of the channel parameters (AoDs, AoAs, and
path gains) that build up the channel matrices Hu􏼈 􏼉

U

u�1
and Gu􏼈 􏼉

U

u�1 can be obtained by fitting the noisy version of
X to a PARAFAC decomposition. In the following, we

formulate the first stage of the proposed receivers that
consists of estimating the factor matrices FHGe ∈ CQ×UNMS

and Ye ∈ CT×UNMS in an iterative or closed-form way. Once
the factor matrices are estimated, the second stage of the
proposed receivers is to solve U independent CS problems
that yield to channel parameter estimation of each MS, as
will be shown later.

4.2. First Stage: Bilinear Alternating Least Squares (B-ALS
Receiver). According to (8)–(10), we can obtain the fol-
lowing representations for the unfolding matrices
[X](1) ∈ CQ×TK, [X](2) ∈ CT×QK, and [X](3) ∈ CK×QT of
X in terms of its factor matrices:

[X](1) � Φ C◇Ye( 􏼁
T
, (24)

[X](2) � Ye(C◇Φ)
T
, (25)

[X](3) � C Ye◇Φ( 􏼁
T
, (26)

where we denote Φ � FHGe for the simplicity of
representation.

Since the multifrequency coding matrix C is assumed to
be known at the BS while the DL and UL channel-state
information are not available, the proposed B-ALS receiver
consists of estimating Φ and Ye in an alternating way from
[X](1) and [X](2) by optimizing, respectively, the following
two nonlinear LS problems:

􏽢Φ � argmin
Φ

[X](1) − Φ C◇Ye( 􏼁
T

�����

�����
2

F
,

􏽢Ye � argmin
Ye

[X](2) − Ye(C◇Φ)
T����
����
2
F.

(27)

-e solutions of which are given by 􏽢Φ � [X](1)

[(C◇ 􏽢Ye)
T]† and 􏽢Ye � [X](2)[(C◇ 􏽢Φ)T]†, respectively.

Each iteration of the bilinear ALS-PARAFAC algorithm
contains only two LS updating steps. At each step, one
factor matrix is updated, while the other is assumed fixed to
its value obtained in the previous step [31]. -is procedure
is repeated until the convergence of the algorithm, denoted
by

ε(i)
� [X](1) − 􏽢Φ C◇ 􏽢Ye􏼐 􏼑

T
������

������

2

F
, (28)

the residual error between the received signal tensor and the
reconstructed signal tensor at the i-th iteration. We declare
that the first stage has converged at the i-th iteration when

Coded DL pilots (shared uplink channel)
UL channel

DL channel

Received UL pilots

Received DL pilotsDL training pilots
feedback of the received DL pilots

Via multiple coded subcarriers

u-th MS 
Joint DL and UL

channel estimation

BS

Figure 2: Proposed closed-loop and multifrequency-based training framework. -e DL and UL channels are jointly estimated. -e BS first
transmits pilot sequences. -e MSs encode the received pilots and then feed them back to the BS. -e BS jointly estimates the DL and UL
channels. -e text in blue refer to DL communication, while the text in red refer to UL communication.
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ε(i)
− ε(i− 1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ σ, (29)

where σ is a threshold. In our computational simulations, we
set σ � 10− 6. Convergence to the global minimum is always
achieved within a few iterations due to the knowledge of the
frequency spread matrix at the BS. -e proposed B-ALS
receiver is summarized in Algorithm 1.

4.3. Alternative Closed-Form Solution to the First Stage.
In contrast to the B-ALS receiver, the second proposed
receiver named LS-KRF is an alternative closed-form so-
lution that can be employed in particular cases in which
K≥UNMS. -e idea is to filter the received signal tensor X
by exploiting the knowledge of the multifrequency coding
matrix C and then solve a set of rank 1 approximation
problems.

Initially, by multiplying both sides of [X]T(3) in (26) by
the pseudoinverse of CT from the right-hand side, we obtain

Ye◇Φ � [X]
T
(3) CT

􏼐 􏼑
†

� y1 ⊗φ1, . . . , yUNMS
⊗φUNMS

􏽨 􏽩 ∈ CQT×UNMS .
(30)

According to property in (4), the i-th column of (30)
(i � 1, . . . , UNMS) can be rewritten as

yi ⊗φi � vec φi ∘ yi( 􏼁, (31)

which denotes the vectorization operation of the rank 1
matrix Ψi � φi ∘ yi ∈ CQ×T. By defining UiΣiVH

i as the sin-
gular value decomposition (SVD) of Ψi, estimates for
φi ∈ CQ and yi ∈ CT (i � 1, . . . , UNMS) can be obtained by
truncating the SVD of Ψi to a rank 1 approximation, i.e.,
[27]

􏽢φi �
��
σ1

√
u1,

􏽢yi �
��
σ1

√
v∗1 ,

(32)

where u1 ∈ CQ and v1 ∈ CT are the corresponding first left
and right singular vectors of Ui and Vi, respectively. σ1
denotes the largest singular value of the matrix Σi. Final
estimates for 􏽢Φ and 􏽢Ye are obtained by repeating this SVD
computation i � 1, . . . , UNMS times in parallel, one for each
column of (30). -e pseudocode of the LS-KRF receiver is
summarized in Algorithm 2.

4.4. Second Stage: Sparse Formulation to DL and UL Channel
Parameters Estimation. Once the matrices 􏽢Φ and 􏽢Ye are
estimated, the second stage of the proposed receivers
consists in estimating the channel parameters (AoDs,
AoAs, and path gains) to reconstruct the channel ma-
trices 􏽢Hu and 􏽢Gu related to each MS. -anks to the
knowledge of the multifrequency coding matrix C, the
estimated factor matrices are not affected by permutation
of columns ambiguity. -erefore, the first stage provides
automatic separation of the compressed users’ channels.
From 􏽢Φ and 􏽢Ye, the multiuser channel estimation
problem can be decoupled into U single-user ones as
formulated below.

Let us rewrite the block representation of 􏽢Φ, defined as
􏽢Φ � 􏽢Φ1,

􏽢Φ2, . . . , 􏽢ΦU􏽨 􏽩 ∈ CQ×UNMS , (33)

where
􏽢Φu � FH 􏽢Gu ∈ C

Q×NMS , u � 1, . . . , U. (34)

where 􏽢Gu ∈ CNBS×NMS denotes the estimated UL channel
matrix related to the u-th MS. By replacing 􏽢Gu for (19), and
then vectorizing (34) according to the property in (3), we have

􏽢φu � vec 􏽢Φu􏼐 􏼑 � 􏽢AMS◇ F
H 􏽢ABS􏼐 􏼑􏽢β. (35)

Using the property in (2), we straightforwardly obtain

􏽢φu � INMS
⊗FH􏼐 􏼑 􏽢AMS◇ 􏽢ABS􏼐 􏼑􏽢β ∈ CQNMS , (36)

where INMS
denotes an identity matrix of size NMS × NMS.

-e same procedure can directly be applied in the u-th
block 􏽢YT

u of the estimated factor matrix:

􏽢Ye � 􏽢YT
1 , 􏽢YT

2 , . . . , 􏽢YT
U􏼔 􏼕 ∈ CT×UNMS , (37)

where

􏽢YT
u � STWT 􏽢HT

u + V(DL)T
u ∈ CT×NMS . (38)

􏽢Hu ∈ CNMS×NBS denotes the estimated DL channel matrix
defined above in (17). Similar to (36), we obtain the fol-
lowing vector formulation:

􏽢yu � INMS
⊗ STWT

􏼐 􏼑 􏽢AMS◇ 􏽢ABS􏼐 􏼑􏽢α + v(DL)
u ∈ C

TNMS ,

(39)

where 􏽢yu � vec(􏽢YT
u) and v(DL)

u � vec(V(DL)T
u ).

From (36) and (39), two independent CS problems can be
formulated to jointly estimate the parameters of the DL and
UL channels of the u-th MS. We assume that grid quanti-
zation errors are neglected, i.e., the AoDs and AoAs are drawn
from a uniform angle grid of N points contained in the set
0, 2π/N, . . . , 2π(N − 1)/N{ }, with N≫ Lu and N≫Mu.
Based on this assumption, we can obtain the following sparse
formulations for the vectors 􏽢yu and 􏽢φu, respectively:

􏽢yu � INMS
⊗ STWT

􏼐 􏼑ΣDα, (40)

􏽢φu � INMS
⊗ FH􏼐 􏼑ΣDβ, (41)

where ΣD ∈ CNMSNBS×N2
denotes the known dictionary

matrix used to solve the sparse signal recovery problem,
defined as

ΣD � AMS ⊗ABS ∈ C
NMSNBS×N2

. (42)

-e matrices AMS ∈ CNMS×N and ABS ∈ CNBS×N that
make the dictionary are given by

AMS � aMS(0), aMS
2π
N

􏼒 􏼓, . . . , aMS
2π(N − 1)

N
􏼠 􏼡􏼢 􏼣,

ABS � aBS(0), aBS
2π
N

􏼒 􏼓, . . . , aBS
2π(N − 1)

N
􏼠 􏼡􏼢 􏼣,

(43)
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and contain all points of the uniform angle grid. -e left-
hand side matrices (INMS

⊗ STWT) and (INMS
⊗FH) are called

measurement matrices of the sparse problems. α ∈ CN2
and

β ∈ CN2
are sparse vectors obtained by augmenting the

vector gains α and β with zero elements, respectively.
Estimates for the parameters of the channel matrices Hu

and Gu can be obtained by applying CS algorithms in the
estimated sparse vectors (40) and (41). Many efficient al-
gorithms such as orthogonal matching pursuit (OMP) [22],
structured compressive sampling matching pursuit (S-
CoSaMP) [25], and fast iterative shrinkage-thresholding
(FISTA) [23], to name a few, can be used to solve these two
sparse signal recovery problems. In a simplified view, the
estimates for the path gains 􏽢α and 􏽢β correspond to nonzero
entries of the estimated sparse vectors α and β, while esti-
mation for the spatial parameters (AoDs and AoAs) are
obtained by selecting the columns of the dictionary matrix
ΣD related to the positions of the estimated path gains in the
sparse vector. In our numerical results, we adopt the OMP
algorithm to estimate the UL and DL channel parameters for
simplicity reasons, although any state-of-the-art CS-based
algorithm is equally applicable to solve problems (40) and
(41).

Remark: Compared to (36), the sparse signal recovery
problem formulated from (39) naturally incorporates the DL
noise contribution in its structure. For this reason, the
proposed closed-loop framework for channel estimation can
lead to some performance degradation in the DL channel
estimation compared to UL channel estimation. -erefore,
we can observe a trade-off between DL channel estimation
accuracy performed by the BS and reduction of the pro-
cessing cost for channel estimation at the MS side. -is
discussion is reinforced by means of numerical simulations
in Section 6.

4.5. Joint DL and UL Channel Estimation. Finally, from the
estimated channel parameters (AoDs, AoAs, and path
gains), the BS can construct the estimated DL and UL
channel matrices 􏽢Hu and 􏽢Gu of the u-th MS according to
relations (17) and (19) as follows:

􏽢Hu � 􏽢AMSdiag(􏽢α)􏽢AT
BS, (44)

􏽢Gu � 􏽢ABSdiag(􏽢β)􏽢AT
MS. (45)

As previously presented in Section 4.4, the proposed
receivers decouple the multiuser channel estimation prob-
lem into 2U single-user ones (U problems dedicated to each
communication link) that can be solved independently for
each MS. Since 2U digital processing units are available at
the BS, the second stage of the proposed receivers can be
computed in parallel. -erefore, its processing delay can be
kept constant (i.e., it does not increase with the number of
MSs), when the BS is equipped with multiple (at least 2U)
digital processing units. -e parallelized processing for the
second stage of the proposed receivers is illustrated in
Figures 3 and 4. In addition, the overall pseudocode of the
proposed two-stage tensor-based receivers for joint DL and
UL channel estimation is summarized in Algorithm 3.

5. Identifiability Issues

In this section, we examine the identifiability issues under
which the compressed DL and UL channel matrices Φ and
Ye can be jointly and uniquely recovered using the proposed
receivers.

5.1. B-ALSReceiver. Unique LS solutions for the compressed
DL and UL channel matrices Φ and Ye obtained from
(24) and (25) require that (C◇Ye)

T ∈ CUNMS×KT and

(1) Set i � 0;
Initialize randomly the factor matrix 􏽢Ye(i�0);

(2) i⟵ i + 1;
(3) From [X](1), obtain a LS estimate of 􏽢Φ(i):

􏽢Φ(i) � [X](1)[(C◇ 􏽢Ye(i− 1))
T]†;

(4) From [X](2), obtain a LS estimate of 􏽢Ye(i):
􏽢Ye(i) � [X](2)[(C◇ 􏽢Φ(i))

T]†;

(5) Repeat steps 2–4 until convergence. -e convergence is achieved when |ε(i) − ε(i− 1)|≤ 10− 6, where ε(i) is the residual error
computed in the i-th iteration.

ALGORITHM 1: Pseudocode of the B-ALS receiver.

(1) Apply the unvecQ×T operator in the i-th column of (30) to obtain the rank 1 matrix Ψi ∈ CQ×T;
(2) Compute the SVD Ψi � UiΣiVH

i . -en, obtain the estimates for the i-th columns of 􏽢Φ and 􏽢Ye as:
􏽢φi �

��σ1
√ u1 and 􏽢yi �

��σ1
√ v∗1 ,

where u1 ∈ CQ and v1 ∈ CT are the first left and right singular vectors ofUi andVi, respectively, and σ1 is the largest singular value;
(3) Repeat steps 1-2 for all columns of (30).

ALGORITHM 2: Pseudocode of the LS-KRF receiver.
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(C◇Φ)T ∈ CUNMS×KQ have full row rank to be right in-
vertible. Hence, the following two conditions must be
satisfied:

KT≥UNMS,

KQ≥UNMS.
(46)

Combining these conditions yields the following lower
bound on the number of subcarriers required for the
multifrequency coding at the MS:

K≥max⎛⎝Ø
UNMS

T
,
UNMS

Q ⌉⎞⎠, (47)

where Øx⌉ denotes the smallest integer number that is greater
or equal to x.

5.2. LS-KRF Receiver. -e LS-KRF receiver requires that the
following necessary and sufficient uniqueness condition be
satisfied:

A = [A1, A2, ..., AU]
estimated factor matrix

in the ALS stage

A2A1 AU

Processor #1
CS stage

Processor #2
CS stage

Processor #U
CS stage

G1 G2 GU

...

...

...

Figure 3: Illustration of the parallelized processing for the estimation of U uplink channels.-e u-th block 􏽢Au of the estimated factor matrix
􏽢A is forwarded and processed for a dedicated processor.

B = [Y1
T, Y2

T,..., YU
T]

estimated factor matrix
in the ALS stage

Y2
TY1

T YU
T

Processor U + 1
CS stage

Processor U + 2
CS stage

Processor 2U
CS stage

H1 H2 HU

...

...

...

Figure 4: Illustration of the parallelized processing for the estimation of the U downlink channels.-e u-th block 􏽢YT
u of the estimated factor

matrix 􏽢B is forwarded and processed for a dedicated processor.

1 First Stage. estimation of the compressed channel matrices
(1.1) From the received signal tensor X in (20), obtain the estimated factor matrices 􏽢Φ and 􏽢Ye via B-ALS or LS-KRF described in

Algorithms 1 and 2, respectively,
(2) Second Stage. parameters estimation and channels reconstruction

(2.1) From 􏽢Φ � [ 􏽢Φ1,
􏽢Φ2, . . . , 􏽢ΦU] and 􏽢Ye � [􏽢YT

1 , 􏽢YT
2 , . . . , 􏽢YT

U], obtain the estimates of the channel parameters (AoDs, AoAs, and path
gains) for each MS by applying a CS recovery algorithm (e.g., OMP) to problems (40) and (41) independently

(2.2) -e BS constructs the estimated DL and UL channel matrices 􏽢Hu and 􏽢Gu according to (44) and (45), respectively.

ALGORITHM 3: Overall pseudocode of the proposed receivers for joint DL and UL channel estimation.

Wireless Communications and Mobile Computing 9



K≥UNMS. (48)

Note that this condition indicates that the application of
the LS-KRF receiver requires a more restricted scenario
compared to the proposed B-ALS receiver since the number
of frequency resources (subcarriers) increases with the
number of antennas at the MSs and active MSs. On the
contrary, the LS-KRF receiver is a closed-form solution in
contrast to the iterative B-ALS receiver.

6. Simulation Results

In this section, we present a set of simulation results to
evaluate the performance of the proposed joint DL and UL
channel estimator. We compare the proposed channel
training framework with the conventional training
framework illustrated in Figure 1, where the CS-based
OMP algorithm [22] is applied at both MSs and BS to
estimate the channel parameters in a decoupled way. -e
OMP algorithm is also considered as the second stage of
our algorithm, according Section 4.4. -e MSs and the BS
employ uniform linear arrays with half-wavelength-spaced
antennas. We set NBS � 32, NMS � 16, U � 2, N � 64, and
equal signal-to-noise ratio (SNR) for the DL and UL
communications in all experiments. -e obtained results
are averaged over 1000 independent Monte Carlo runs. At
each run, the DL and UL channel matrices with Lu � 3 and
Mu � 3 paths per user and HB matrices are generated in
accordance with equations (17), (19), and (12), respectively.
-e pilot signal S is a binary phase shift keying (BPSK)
modulated matrix, and the multifrequency coding
matrix C has random coefficients following a uniform
distribution.

-e receiver’s performance is evaluated in terms of
the normalized mean square error (NMSE) measures
between the estimated and true DL and UL channel
matrices:

NMSE( 􏽢H) �
􏽐

U
u�1 Hu − 􏽢Hu

����
����
2
F

􏽐
U
u�1 Hu

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
F

,

NMSE( 􏽢G) �
􏽐

U
u�1 Gu − 􏽢Gu

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
F

􏽐
U
u�1 Gu

����
����
2
F

.

(49)

In our experiments, we evaluate the accuracy of
channel estimation in terms of the NMSE metric for
different values of signal-to-noise ratio (SNR), number of
transmission (P) and reception (Q) beams, number of
training subcarriers (K), and length of the pilot sequences
(T).

Figures 5 and 6 show the NMSE as a function of the
number of transmission (P) and reception (Q) beams for
different values of SNR, and fixed values U � 2, T � 16, and
K � 25. According Figure 6, the proposed method out-
performs the classical framework to the UL channel esti-
mation, while the DL performance is worse in all the
simulated SNR ranges as shown in Figure 5. From this
experiment, we can observe the trade-off between DL

channel estimation accuracy and computational com-
plexity. In other words, the proposed framework con-
centrates most of the processing burden for channel
estimation at the BS side, while a better performance of the
DL channel estimation comes at the expense of a high
computational cost to complex channel estimation pro-
cessing at the MS side when the conventional framework is
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Figure 5: NMSE vs. number of transmission beams P for the DL
channel estimation: U � 2, T � 16, and K � 25.
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Figure 6: NMSE vs. number of reception beams Q for the UL
channel estimation: U � 2, T � 16, and K � 25.
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utilized. On the contrary, the performance loss at DL is
compensated with more accurate estimations at UL. In
addition, the NMSE performance is not influenced by the
number of RF chains when P and Q are greater than 12.
-is result reveals that the proposed framework provides a
good channel estimation accuracy even when the BS is
equipped with a few number of RF chains, which is the case
in HB architectures.

In Figures 7 and 8, the NMSE performance is evaluated
as a function of the number of subcarriers (K). An increase of
K leads to an improved performance only until K � 32
subcarriers in the DL channel estimation, while for the UL
channel estimation this value is approximately equal to
K � 64 subcarriers. -is result shows that the proposed
closed-loop channel training framework can operate with
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Figure 7: NMSE vs. number of subcarriers K for the DL channel
estimation: U � 2 and T � 16.
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Figure 9: NMSE vs. length of the training sequence T for the DL
channel estimation: U � 2, P � 8, and K � 25.
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Figure 8: NMSE vs. number of subcarriers K for the UL channel
estimation: U � 2 and T � 16.
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Figure 10: NMSE vs. length of the training sequence T for the UL
channel estimation: U � 2, P � 8, and K � 25.
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few frequency resources to jointly estimate the MS channels
with high accuracy.

Figures 9 and 10 depict the NMSE performance in terms
of the length of the pilot sequence (T). In this experiment, we
also set U � 2, P � 8, and K � 25. Here, we conclude that
short pilot sequences are necessary to estimate the DL and
UL channels from the proposed method. Low variability in
the NMSE values is observed when T> 15. For a massive
MIMO scenario, this result implies in a substantial reduction
in the pilot overhead to joint DL and UL channel estimation.

7. Conclusion and Perspectives

In this paper, we have addressed the joint DL and UL
channel estimation problem for multiuser FDD massive
MIMO systems with HB architecture. As contributions of
this work, we firstly proposed a novel closed-loop and
multifrequency-based channel training framework that
concentrates most of the processing burden for channel
estimation at the BS side. We have shown that making use of
the proposed framework, the received closed-loop signal
follows a third-order PARAFAC model, which can be
exploited by two tensor-based semiblind receivers followed
by compressed sensing recovery of the channel parameters.
Additionally, we have also provided an identifiability study.
We have compared our proposed approach with the con-
ventional channel training framework, where the DL and UL
channel estimation problems are treated as two decoupled
problems, i.e., solved by the MSs and BS, separately.
Compared to the conventional framework, the proposed
receivers have shown a superior performance in the esti-
mation of the UL channel, while the performance of the DL
channel estimation exhibits some degradation. It is worth
noting that such a degradation is the price to pay for the
complexity reduction at the MS by transferring the pro-
cessing burden associated with the DL channel estimation to
the BS. Perspectives include the extension of the proposed
modeling to frequency- and time-selective channels.
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In this paper, we develop a framework to estimate network �ow length distributions in terms of the number of packets. We model
the network �ow length data as a three-way array with day-of-week, hour-of-day, and �ow length as entities where we observe a
count. In a high-speed network, only a sampled version of such an array can be observed and reconstructing the true �ow statistics
from fewer observations becomes a computational problem. We formulate the sampling process as matrix multiplication so that
any sampling method can be used in our framework as long as its sampling probabilities are written in matrix form. We
demonstrate our framework on a high-volume real-world data set collected from amobile network provider with a random packet
sampling and a �ow-based packet sampling methods. We show that modeling the network data as a tensor improves estimations
of the true �ow length histogram in both sampling methods.

1. Introduction

Monitoring network statistics is crucial for the maintenance
and infrastructure planning for network service providers.
Statistical information about tra�c patterns helps a service
provider to characterize its network resource usage and user
behavior, to infer future tra�c demands, to detect tra�c and
usage anomalies, and to provide insights to improve the
performance of the network [1]. However, network moni-
toring has become a di�cult task due to increasingly high-
volume and high-speed data over modern networks, and in
most cases, it requires special hardware. For this reason,
sampling [2] becomes a viable approach for extracting
statistics from such high-speed networks. In this work, we
are interested in one of the most important network sta-
tistics, the �ow length distribution (FLD).

A network �ow is de�ned as a set of Internet protocol
(IP) packets with the same signature observed within a
limited time period.�e �ow signature is composed of the IP
and port pairs of both the source and destination nodes
together with level-3 protocol types such as transport control

protocol (TCP) or user datagram protocol (UDP). A �ow
starts with the arrival of the �rst packet and terminated when
the interpacket timeout is exceeded. �e total number of
packets in a �ow is referred to as the �ow length and the
length distribution of a set of �ows that are terminated in a
time window is called �ow length distribution.

In this work, we are using one of the most popular
methods for collecting per-�ow information, i.e., passive
measurement. In this method, network packets are pro-
cessed as they pass through a passive measurement beacon
connected to the network, e.g, router. �e beacon keeps a
look-up table for �ow identi�cation. �e beacon processes a
packet by searching its corresponding �ow inside the look-
up table using its signature. If such a �ow is found, its
statistics are updated. Otherwise, the packet is treated as the
�rst packet of a new �ow, and the new �ow is inserted into
the table. Once a �ow is terminated, its statistics are
transferred to a storage.

�e �ow length histogram can be calculated exactly by
processing every packet that passes through the measure-
ment beacon. In order to implement such a direct method,
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the monitoring beacon needs to maintain a table to hold
information for all active flows on the network. However,
substantial amount of concurrent flows with very short
packet interarrival times of current high-speed networks (on
the order of 10Gbps to 100Gbps inside carrier’s network
today) make this brute-force counting method very costly to
implement. First of all, this method would require a large
amount of memory to record the flow table. Secondly, in a
high-speed link, the interarrival times between packets,
which may be as small as 8 nanoseconds in an OC-768 link,
may be smaller than the time required to process flow hash
operations such as identifying the packet and updating the
flow statistics.

.e characteristics of the network traffic data inevitably
lead to the development of alternative methods for mea-
surement such as random sampling, where a fraction of the
network traffic is randomly selected and processed. .e
simplest sampling method is the uniform packet sampling
[3–6], used in commercial systems [7, 8]. In uniform
sampling, each packet is selected with a predefined constant
probability. .is approach is easy to implement since it does
not require the flow identification of each packet. However,
recovering the true flow length distribution from the ran-
dom packet sampled traffic is a challenging problem. .e
unbiased estimator of the original flow length n for sampling
probability π is 􏽢n(m) � m/π, where m is observed flow
length. .e relative error of this estimator, calculated as��������
1/(π − 1)

􏽰
[3], grows unboundedly for short flows as the

sampling rate gets smaller. .e high error on the small flow
lengths comes from the fact that most of the samples are
collected from longer flows.

Flow-based adaptive sampling methods [9–14] were
proposed for more accurate flow length estimation. In these
methods, each incoming packet is processed and then
sampled with a probability that is a function of the current
sampled length of the flow that the packet belongs to. Here,
the main idea is to use a smaller memory by compressing the
flow statistics counters in the router. However, these
methods need to be implemented on specialized and ex-
pensive hardware due to the mandatory packet identification
and look-up step.

Both packet-based and flow-based adaptive sampling
methods rely on numerical methods to recover the true FLD.
In this work, we propose a framework that can be used to
recover the true FLD from the sampled observation obtained
by any sampling method. .is framework uses a variant of
the nonnegative tensor factorization NTF model, which we
call the thin nonnegative tensor factorization (.inNTF),
where the “thin” prefix emphasizes that the factorization is
applied directly to the samples, or namely “thinned” data.

In our framework, the network traffic data is modeled as
a 3-way array, containing the number of flow length ob-
servations, with dimensions interpreted as (1) flow length,
(2) hour-of-day, and (3) day-of-week to capture the hourly
and daily periodicity in the data. .e nonnegative factor-
ization of this tensor basically gives us estimates in the form
of a nonparametric mixture model. .erefore, our model is
an improvement of the nonparametric flow length models in
[3, 6] by having the capability of modeling data with an

arbitrary amount of mixture components and use the
periodicity.

While the ordinary NTF model [15] factorizes an ob-
servation tensor, the.inNTF directly factorizes its sampled
version and recovers the original tensor from the estimated
factors. We take a fully Bayesian approach here and provide
a generative model for the TNTF and a variational Bayes
algorithm for inference. .e contributions in this paper can
be listed as follows:

(i) We model one week of flow length observations as a
3-dimensional tensor and observe the periodic
behavior.

(ii) We propose a novel tensor factorization scheme,
.inNTF, which is able to find the factors of a latent
tensor from its sampled counterpart. By doing so,
we also solve the reconstruction problem.

(iii) We apply.inNTF to real-world data sampled with
two different sampling methods: uniform random
packet sampling and flow-based adaptive sampling.

.e structure of the paper is as follows. In Section 2, we
provide the related works on network sampling and tensor
factorization. In Section 3, we describe our real-world data
and how we visualize it as a tensor. Additionally, we describe
the sampling methods that we used to sample the data. In
Section 4, we describe our .inNTF model and the varia-
tional Bayes algorithm for estimating the factors. In Section
5, we describe our real-world data collection architecture. In
Section 6, we present our synthetic and real-world experi-
ments and results. Finally, in Section 7, we draw our
conclusions.

2. Related Work

Sampling methods have long been applied to network traffic
monitoring. A survey on fundamental network sampling
strategies is given in [2]. Uniform packet sampling is ex-
tensively studied by various authors. Duffield et al. [3]
propose the first nonparametric model for flow length
distribution and provide a maximum likelihood estimation
to recover the flow lengths. Riberio et al. [4] show that using
protocol specific information gives better flow length dis-
tribution estimates in TCP flows. Yang and Michailidis [6]
adopt the maximum likelihood approach to estimate both
flow length and flow volume (number of bytes in a flow)
distributions. Additionally, they model the data with a
nonparametric mixture model of two components, where
the first component models small flows and the second
models large ones.

Flow-based sampling methods are proposed as alter-
natives to the uniform packet sampling since packet
sampling has theoretical limitations when recovering true
flow statistics [5]. .ese methods process every incoming
packet and apply sampling conditionally. Kumar et al.
[13, 16] propose two different algorithms where the flow
size counters are compressed statistically. .ey also pro-
pose a nonuniform packet sampling algorithm based on
sketch counting [12]. Hu et al. [10, 14] propose another
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nonuniform packet sampling algorithm, called adaptive
nonlinear sampling (ANLS), for estimating flow lengths per
each flow and then adopt this method to flow volume [11].
In our experiments, we are going to use ANLS as an ex-
ample of flow-based sampling methods since it is the
current state-of-the-art nonuniform sampling method.

Nonnegative tensor factorization is the generalization of
the nonnegative matrix factorization (NMF) [17] to mul-
tiway arrays. In NMF, a nonnegative matrix is approximated
with a multiplication of two nonnegative matrices. Mini-
mizing the Kullback–Leibler divergence between the initial
matrix andmultiplied factors is a popular formulation of this
method and can be solved with fixed-point iterations [18] or
full Bayesian methods [19]. NMF has been used in many
applications such as spectral data analysis [20], face rec-
ognition [17], and document clustering [21].

Modeling the flow length distribution as a mixture of
distributions is first proposed by [6]. However, according to
our best knowledge, there is no previous work that models a
large volume of flow length data as a tensor. .is work fills a
gap in the literature by introducing tensor factorization
methodology to network monitoring.

3. Problem Description

We describe our problem as a tensor thinning problem,
where the count entities of the original flow lengths are
stored in a tensor. We formulate the sampling process as a
matrix multiplication operated on this data tensor. In order
to do that, each sampling model should be represented as a
matrix that transforms the original data tensor to a sampled
one. We provide matrices for two sampling models: uniform
packet sampling and ANLS flow-based packet sampling.

3.1. Notation and Indexes. For a clear notation, the scalar
values are denoted by lightface letters, such as the index
variable j and its maximum value J. .e vectors are rep-
resented by boldface lower case letters, such as vector x.
Boldface upper case letters represent matrices, such as F, H,

and D, and the tensors are represented with calligraphic
upper case letters, i.e, X. .e individual entries in matrices
and tensors are written like scalars, i.e., fi,r and xi,j,k. .e
index denotes all the entries in the given dimension. For
example si,: is the ith row of the S matrix and Xi,:,: is the ith

slice of the tensor X in the first dimension.
.e index parameters are also fixed for clarity. .e list of

indexes and their ranges and semantic descriptions are given
in Table 1. For example, the i index always represents an
original flow length, while ] presents a sampled flow length.
.e range of ] starts from 0, since all of the packets of a flow
may be discarded during the sampling process yielding a
zero-length sampled flow, which is never observed.

3.2.DataTensor. .eoriginal flow length data is represented
in an I × J × K tensor X, with individual elements xi,j,k,
regarded as the number of flows that has length i measured
at the hour j of the day k. In this setup, I is the maximum flow
length value, J is the hours of the day, and K is the days of the

week. For our real-world data, collected continuously for
1week, these values are I � 2, 000, 000, J � 24, and K � 7.

Working with large maximum flow size is not feasible for
two reasons. First, learning a mixture model where each flow
component has 2 million parameters is not a good for-
mulation for this problem. Secondly, 99.9% of flows in our
data have less than 100 packets, which means the tensor X
will be very sparse for i> 100. .e clamping process can be
defined as

Xi,j,k �

Xi,j,k, for i< Imax,

􏽘
l≥Imax

Xl,j,k, for i � Imax,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where X is the clamped tensor. .e clamping does not
require any change in the model and inference equations
that are given in Section 4. .erefore, for notational clarity,
we only use X as the generic original data tensor.

Figure 1 shows the vertical slices of our unsampled real-
world data tensor X, collected at the backbone of a mobile
operator during a one week period, fromMonday to Sunday,
and clamped at Imax � 50..e intensity images are generated
from the logarithm of the flow length counts. .e daily and
hourly patterns are easily recognizable in the original FLD
data.

3.3. Sampling Methods. Independent of the sampling
method, we can define an I × (I + 1) size Smatrix, where I is
the maximum flow length with entries si,] interpreted as the
probability of sampling ] packets from an original flow of
length i. Naturally, S is a lower diagonal matrix of the form:

S �

s1,0 s1,1 0 0 · · · 0

s2,0 s2,1 s2,2 0 · · · 0

⋮ ⋮ ⋮ ⋮ · · · ⋮

sI,0 sI,1 sI,2 sI,3 · · · sI,I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where its lth row defines a probability distribution for the
sampled flow length of a flow of size l. Given a flow size
distribution x ∈ Z≥I, where Z≥ is the set of nonnegative
integers, the expected sampled flow length distribution would
be given by 􏽢y � STx. It immediately follows that the sampled
flow size distribution y has length I + 1, with y0 being the
proportion of sampled flows with none of their packets
sampled. During the sampling process, this value will never be
observed naturally since the flow identification is performed
only on selected packets. In all experiments throughout this
paper, the y vector (orY tensor, which will be described later
on) will be element-wise multiplied with a binary mask vector

Table 1: Indexes in the model.

Index Range Description
I [1, I] Original flow lengths
N [0, I] Sampled flow lengths
J [1, J] Hours of day
K [1, K] Days
R [1, R] Components
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m (or binary mask tensor M), whose entries are set to 1
except the ones corresponding to zero-sampled flow lengths,
in order to simulate the real-life scenario.

For any given sampling method, we can calculate the S
matrix directly if a closed-form expression is available.
Otherwise, it can be approximated by simulating the sampling
process and counting the sampling statistics. In this paper,
both uniform random sampling and the ANLS provide
closed-form expressions for the calculation of S matrix.

An important practical issue is that, if the original tensor
X is clamped at Imax, the S matrix must also be clamped. In
that case, a last row entry sImax,] must present the probability
of selecting ] packets from a flow of length greater or equal to
Imax. .is clamping operation can be done by calculating
a full-size S matrix first and setting sImax ,]∝􏽐

I
i�Imax

si,] with a
naive assumption that after Imax, the original flow sizes are
uniformly distributed.

3.3.1. Uniform SamplingMethod. In uniform sampling, each
packet is processed with a fixed probability of π, irrespective
of the flow it belongs to. In this method, the sampling matrix
entries si,] are calculated directly through Binomial distri-
bution with i trials and π success probability, i.e.,

si,] �

i
]􏼒 􏼓π](1 − π)i− ], for ]≤ i,

0, otherwise.

⎧⎪⎨

⎪⎩
(3)

Algorithm 1 describes how the flow table is updated with
uniform sampling upon the arrival of a new packet. .e
algorithm uniformly draws a random number in interval
[0, 1], and if it is less than π, the packet is processed; oth-
erwise, the packet is discarded. For processing the packet, a
look-up operation is performed on the flow table to find and
update the flow that the packet belongs to. If no such flow is
found, a new flow is created using the packet’s signature.

Figure 2(a) shows the top 10 × 11 entries of the lower
diagonal Smatrices with different sampling probabilities. As
the sampling probability π gets smaller, fewer packets from a
flow gets observed, and the flow may even be missed when
none of its packets are observed. .e rightmost sampling
matrix shows the case when π � 1/64, where the matrix has a
very high concentration of zero-length sampled flows.

Figure 2(b) shows the original Monday data (the leftmost
matrix) and its sampled versions under uniform sampling
with the probabilities shown on the top sampling matrices.
Here, we see that for π � 1/64, the observed flow lengths are
mostly less than 10, while the majority are not observed at all.

3.3.2. ANLS Sampling Method. .e ANLS [10] will be used
as the representative of the flow-based adaptive sampling
methods. In ANLS, each packet is sampled according to the
number of packets previously sampled from its corre-
sponding flow. If a sampled flow has length x, the probability
of its next packet to be sampled (p(x; u)) is calculated as

f(x; u) �
(1 + u)x − 1[ ]

u
, (4)

p(x; u) �
1

[f(x − 1; u) − f(x; u)]
. (5)

Here, f(x; u) is a monotonically increasing function of
flow length x, parametrized with u, which makes p(x; u)

monotonically decreasing. u determines the tendency of
sampling packets. As u gets smaller, more packets are
sampled and estimating original flow lengths gets easier.

.e ANLS method is described in details in Algorithm 2.
Prior to the sampling, f and p are calculated in the Setu-
pANLS function, according to equations (4) and (5). During
sampling, for each incoming packet, a look-up operation is
performed unconditionally. If the corresponding flow is
found, it is updated with probability relative to its current
observed size. Otherwise, a new flow is created, ensuring that
every flow is observed with at least one packet.

We calculate the sampling matrix S recursively for ANLS.
In this method, the first packet is always sampled since
p(1, u) � 1 independent of u. We start by assigning all zero
sampling probabilities as s:,0 � 0 and s1,1 � 1. .e recursive
equation for calculating the samplingmatrix can be deduced as

si,]∝ si− 1,]− 1p(i − 1, u) + si− 1,](1 − p(i − 1, u)). (6)

Figure 3 shows the ANLS sampling matrices for first 10
flow lengths and the Monday data sampled with them, re-
spectively, similarly to Figure 2. First, we can see that when u
is small, the S matrix looks like identity and as u gets larger,
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Figure 1: Slices of the original flow length tensor X.
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Figure 2: Sampling matrices for two different sampling schemes.

(1) function Sample Uniformly Random π, flow_table, packet
(2) if π > rand_double (0, 1) then
(3) flow� flow_table·look-up (packet)
(4) if flow is null then
(5) flow� new Flow (packet)
(6) else
(7) flow·length+� 1
(8) flow_table·insert_or_update (flow)

ALGORITHM 1: Uniform packet sampling algorithm.

(1) function Setup ANLSu
(2) f[0]� 0
(3) for i ∈ [1, I] do
(4) f[i] � ((1 + u)i − 1)/u
(5) p[i] � 1/(f[i − 1] − f[i])

(6) return f, p
(7) function SampleWithANLS (p, flow_table, packet)
(8) flow� flow_table·look-up (packet)
(9) if flow is null then
(10) flow� new Flow (packet)
(11) else if p[flow·length] > rand_double (0, 1) then
(12) flow·length+� 1
(13) flow_table·insert_or_update (flow)

ALGORITHM 2: ANLS sampling algorithm.
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the sampling probability of large flows decreases. Secondly,
compared to uniform sampling, the ANLSmethod has much
higher sampling ratios than uniform sampling. However,
operating with such high sampling ratios would require
specialized hardware in real time.

4. Methodology

Our methodology is based on the nonnegative factorization
of the data tensor. Our model, which we call .inNTF,
introduces the sampling matrix as a constant factor to the
original NTF with the Poisson–Gamma observation model.
.e rationale for using factorization for recovering true flow
sizes is that the flow size distributions have daily periodic
behavior, as we show in Section 3. Inferring the factors,
instead of the original matrix, requires less parameter es-
timation and results in smoother estimates compared to the
standard maximum likelihood estimation described in [3].
In this section, we first describe the original tensor factor-
ization model and we provide our novel version: the
.inNTF. At the end of the section, we present the full-
Bayesian variational Bayes algorithm for the inference.

4.1. Nonnegative Tensor Factorization. NTF is the general-
ization of the 2-dimensional NMF model to multiple di-
mensions. In NTF, an N-dimensional tensor is
approximated by the multiplication of lower dimensional
factors. Unlike NMF, tensor factorization can be done in
multiple ways. In this work, we are going to use the
PARAFAC [22–24] factorization scheme. In PARAFAC, an

I1 × I2 × · · · × IN tensor is approximated by In × R matrices
for n ∈ [1, N]. Here, R is the number of components, i.e., the
number of clusters in the data. Figure 4 shows the PAR-
AFAC factorization of our FLD tensor X, into 3 factors: an
I × R factor F for representing the flow length clusters, a
J × R factorH for representing hourly behavior, and a K × R

factor D for representing the daily behavior of the data.
Every single entry of the X tensor is approximated by

xi,j,k ≈ 􏽢xi,j,k � 􏽘
r

fi,rhj,rdk,r. (7)

Bro [25] explains that the PARAFAC factorization is
unique under certain circumstances, where uniqueness is
defined as begin unable to rotate the factorization without loss
of fit. NMF and NTF are statistical models that impose
nonnegativity constraint without uniqueness property. .e
uniqueness may be important if individual factors are of
special interest. In our case, we are concerned with the es-
timation of the original data tensor X from sampled tensor
Y, but not the individual factors for any interpretation. Our
problem is more close to a missing value imputation problem;
hence, uniqueness is not a requirement.

4.2. 4in Nonnegative Tensor Factorization. .inNTF is
basically an NTFwith an additional constant factor, which in
our case is the sampling matrix S. Figure 5 shows the
graphical models of the NTF and the .inNTF models for
factorizing original and sampled flow length observations. In
the graphical models, the shaded nodes are the observed
entities and the unshaded ones are the latent entities.

S (u = 0.01) S (u = 0.02) S (u = 0.05) S (u = 0.1) S (u = 0.2) S (u = 0.5)

0 1 2 3 4 5 6 7 8 109
Sampled flow lengths

0 1 2 3 4 5 6 7 8 109
Sampled flow lengths

0 1 2 3 4 5 6 7 8 109
Sampled flow lengths

0 1 2 3 4 5 6 7 8 109
Sampled flow lengths

0 1 2 3 4 5 6 7 8 109
Sampled flow lengths

0 1 2 3 4 5 6 7 8 109
Sampled flow lengths

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10O
rig

in
al

 fl
ow

 le
ng

th
s

(a)
Monday

k = 1
u = 1/1

Monday
k = 1

u = 1/100

Monday
k = 1

u = 1/50

Monday
k = 1

u = 1/20

Monday
k = 1

u = 1/10

Monday
k = 1

u = 1/5

Monday
k = 1

u = 1/2

Hours (j)
0 6 12 18

Hours (j)
0 6 12 18

Hours (j)
0 6 12 18

Hours (j)
0 6 12 18

Hours (j)
0 6 12 18

Hours (j)
0 6 12 18

Hours (j)
0 6 12 18

50

40

30

20

10

50

40

30

20

10

50

40

30

20

10

50

40

30

20

10

50

40

30

20

10

50

40

30

20

10

50

40

30

20

10

Fl
ow

 le
ng

th
 (i

)

(b)

Figure 3: Visualization of the Monday slice with uniform and ANLS sampling methods.
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In Section 3.3, we have described the sampling process as
a matrix multiplication operation with a sampling matrix S.
In .inNTF, this sampling matrix operates on the original
tensor X and creates a thinned version of it, which we call
Y, by down-sampling its entries according to a sampling
scheme, as shown in Figure 6. .e entries of Y tensor y],j,k

presents the number of flows of sampled-length ], at hour j
at day k. .e ⊗1 operation denotes the 1-mode product of
matrix ST and tensor X, which corresponds to the set of
matrix multiplications Y:,:,k � STX:,:,k for k ∈ [1, K].

In this scheme, one can immediately suspect thatx can be
estimated by (ST)− 1⊗1Y. However, this solution is not fea-
sible for several reasons. First, the S matrix is not square and
hence not invertible. Instead, its pseudoinverse can be cal-
culated, but this does not impose nonnegativity. Moreover,
the top slice of theY tensor, which stores the number of flows
with zero-sampled size, is never observed and hence must be
estimated. .erefore, we need a solid statistical model and an
inference method to estimate X under this model.

In .inNTF, we observe theY tensor, but try to factorize
the X tensor, which is latent (Figure 5(b)). In the end, the
factors ofX are going to provide us an approximation 􏽢Xwhich
solves the original flow length distribution reconstruction
problem. We mathematically express this approximation as

y],j,k ≈ 􏽢y],j,k � 􏽘
i,r

s],ifi,rhj,rdk,r, (8)

where F,H, and D are described in exactly the same way in
the original NTF case. In Subsections 3.3.1 and 3.3.2, we
described two different Smatrices for two different schemes.
.inNTF model can be employed with any sampling
method as long as it is described with a sampling matrix.

4.3. Generative Model. Taking the Bayesian approach, we
first provide a generative model for the .inNTF and then
describe how we can estimate the posterior probabilities of
model parameters (in this case, the factor matrices) con-
ditioned on the sampled flow length observationsY and the
sampling matrix S using the well-known Bayes rule. Table 2
contains all tensors and matrices used in the model together
with their index sets.

.e original and latent data tensor X and the sampled
and observed data tensorY have nonnegative integer entries.
.e natural probability distribution for this type of count
data is the Poisson distribution. We assume that each entry
of a latent 5-dimensional tensorW is drawn from a Poisson
distribution whose parameters are functions of sampling
matrix S and factors F,H, and D, such as

w],i,j,k,r ∼ PO w],i,j,k,r; s],ifi,rhj,rdk,r􏼐 􏼑, (9)

where the Poisson distribution is defined as

PO(w; λ) � exp(w log λ − λ − log Γ(w + 1)). (10)

We choose the prior distributions for the factor entries as
the Gamma distribution since it is the conjugate prior of
Poisson distribution [26]. For each entry of factor F, we write

fi,r ∼ G fi,r; a
f
i,r,

b
f
i,r

a
f
i,r

⎛⎝ ⎞⎠, (11)

where the Gamma distribution is described as

G(f; κ,Θ) � exp (κ − 1) logf −
f

Θ
− κ logΘ − log Γ(κ)􏼠 􏼡,

(12)

with shape parameter κ and scale parameter θ. In our
generative model, the parameters for Gamma distributions
are κ � a

f
i,r and Θ � b

f
i,r/a

f
i,r respectively. .is means that

the mean of fi,r is κΘ � b
f
i,r, which is independent of a

f
i,r. .e

variance of fi,r becomes κΘ2 � (b
f
i,r)

2/af
i,r, which means that

as a
f
i,r gets smaller, the factors gets sparser.
In order to avoid repetition, we are going to omit the

equations regarding the factors H and D throughout the
paper..ese factors behave exactly like factor F, and it is easy
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k
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Figure 4: PARAFAC factorization.
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Figure 5: Graphical models representing the dependency structure
of NTF and .inNTF models in PARAFAC scheme.
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to derive equations related to these factors once their cor-
responding equation for F is given.

Finally, we generateX andY tensor fromW. Each entry
w],i,j,k,r of W can be interpreted as the number of original
flows of length i, generated on hour j, day k, by cluster r, and
observed as length ]. By summingW over dimensions cluster
(r) and original lengths (i), we get the sampled observations
tensorY. Similarly, by summingW over dimensions cluster
(r) and sampled lengths (]), we get the original flow length
tensor X. .e whole generative process is summarized in
Algorithm 3. .e set of all indexes and tensors in the model
are summarized in Tables 1 and 2, respectively.

4.4. Variational Bayes. After defining the generative model,
we can inter the factors F,H, andD of a sampled flow length
observation tensor Y. In the original NMF paper, Lee, and
Seung [17] provide fixed-point update equations for in-
ferring the factors. Bro [25] gives similar fixed-point
equations for updating the factors in PARAFAC factoriza-
tion. Cemgil [19] shows that these updates correspond to
the Kullback–Leibler minimization between the original
matrix (or tensor X) and the approximated one ( 􏽢X) and
also provides a full Bayesian variational algorithm for the
matrix factorization. Ermis et al. [15] provide a similar
variational algorithm for the Gamma–Poisson tensor
factorization.

We start our Bayesian inference by calculating the
posterior distributions over the factors F,H, and D condi-
tioned on observed tensor Y. For notational clarity, we
introduce θ � (AF,BF,AH,BH,AD,BD) as the list of model
hyperparameters. .e log-likelihood observingY under the
model parameters θ is written as

logp(Y ∣ θ, S) � log􏽚
F,H,D

dFdH dD􏽘
W

p(Y,W,F,H,D ∣ θ, S).

(13)

.is log-likelihood is intractable due to the integration
over the latent factors, but it is lower bounded as

logp(Y ∣ θ, S)≤Lθ

� 〈logp(Y,W,F,H,D | θ, S)〉q(W, F,H,D)

+ Hq(W,F,H,D),

(14)

where q is an auxiliary joint distribution of latent factors.
.is bound is tight when q(W, F,H,D) � p(W, F,H,D |

Y, θ, S). However, this is also intractable to calculate. In-
stead, we use a variational approximation [27] for q such that

q(W)∝ exp 〈logp(Y,W, F,H,D ∣ θ)〉q(F,H,D)􏼐 􏼑,

q(F)∝ exp 〈logp(Y,W, F,H,D ∣ θ)〉q(W,H,D)􏼐 􏼑,

q(H)∝ exp 〈logp(Y,W, F,H,D ∣ θ)〉q(W,F,D)􏼐 􏼑,

q(D)∝ exp 〈logp(Y,W, F,H,D ∣ θ)〉q(W,F,H)􏼐 􏼑,

(15)

where we iteratively update the posterior distribution of each
factor by calculating the expectation of the logarithm of the
full joint likelihood p(Y,W,F,H,D) under the posteriors
of all other latent factors.

4.5. Update Equations. Here, we provide the update equa-
tions for q(W) and q(F)..e updates of q(H) and q(D) can
be easily deduced from the update equations of q(F). .e full
joint likelihood whose expectation will be calculated at each
step is

Jθ � logp(Y,W, F,H,D|θ)

� logp(Y ∣W) + logp(W ∣ F,H,D) + logp(F | θ)

+ logp(H ∣ θ) + logp(D ∣ θ),

(16)

where Y |W is a degenerate distribution (δ()) to make sure
the summation of 􏽐i,rW equalsY. By inserting the necessary
Poisson and Gamma distributions given in the generative
model in the equation (16), we get the following expression:

Jθ � 􏽘
],j,k

m],j,klog δ y],j,k − 􏽘
i,r

w],i,j,k,r
⎛⎝ ⎞⎠

+ 􏽘
i,r

􏽘
],j,k

m],j,k􏼒w],i,j,k,rlog s],ifi,rhj,rdk,r − s],ifi,rhj,rdk,r

− log Γ w],i,j,k,r + 1􏼐 􏼑􏼓

+ 􏽘
i,r

a
f

i,r − 1􏼐 􏼑logfi,r − fi,r

a
f

i,r

b
f

i,r

− a
f

i,r log
b

f

i,r

a
f

i,r

− log Γ a
f

i,r􏼐 􏼑⎛⎝ ⎞⎠

+ 􏽘
j,r

a
h
j,r − 1􏼐 􏼑log hj,r − hj,r

ah
j,r

bh
j,r

− a
h
j,r log

bh
j,r

ah
j,r

− log Γ a
h
j,r􏼐 􏼑⎛⎝ ⎞⎠

+ 􏽘
k,r

a
d
k,r − 1􏼐 􏼑log dk,r − dk,r

ad
k,r

bd
k,r

− a
d
k,r log

bd
k,r

ad
k,r

− log Γ a
d
k,r􏼐 􏼑⎛⎝ ⎞⎠.

(17)

4.5.1. Update Rule for q(W). Considering the terms in the
log-likelihood expression in equation (17), that only includes
w],i,j,k,r, we find that

Table 2: Tensors in the model and their corresponding index sets.

Tensor Index set Description
X i, j, k Original flow length tensor
Y ], j, k Sampled flow length tensor
M ], j, k Mask tensor
W ], i, j, k, r Latent variable tensor
F i, r Flow length factor
H j, r Hour of day factor
D k, r Day of week factor
S i, ] Sampling matrix
AF, BF i, r Gamma priors for F
AH, BH j, r Gamma priors for H
AD, BD k, r Gamma priors for D
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q wv,:,j,k,:􏼐 􏼑∝ expm],j,klog δ y],j,k − 􏽘
i,r

w],i,j,k,r
⎛⎝ ⎞⎠

+ 􏽘
i,r

m],j,k􏼒w],i,j,k,r log s],ifi,rhj,rdk,r

− log Γ w],i,j,k,r + 1􏼐 􏼑􏼓

∝multinomial w],j,k,:, xi,j,k, p],i,j,k,r􏼐 􏼑
m],j,k

,

(18)

where, w],j,k,:,: becomes multinomial distributed. .e ex-
pectation of W is calculated as

p],i,j,k,r �
exp s],i +〈logfi,r〉 +〈log hj,r〉 +〈log dk,r〉􏼐 􏼑

􏽐i,r exp s],i +〈logfi,r〉 +〈log hj,r〉 +〈log dk,r〉􏼐 􏼑
,

〈w],i,j,k,r〉 � y],j,kp],i,j,k,r.

(19)

4.5.2. Update Rule for q(F). Similarly, considering the terms
in log-likelihood equation (17) that only includes fi,r, we
find that

q fi,r􏼐 􏼑∝ 􏽘
],j,k

m],j,k〈w],i,j,k,r〉 + a
f
i,r − 1⎛⎝ ⎞⎠logfi,r

− 􏽘
],j,k

m],j,ks],i〈hj,r〉〈dk,r〉 +
a

f
i,r

b
f

i,r

⎛⎝ ⎞⎠fi,r

∝Gamma fi,r; α
f

i,r, β
f

i,r􏼐 􏼑,

(20)

where fi,r becomes Gamma distributed with shape and scale
parameters

αf
i,r � a

f
i,r + 􏽘

],j,k

m],j,k〈w],i,j,k,r〉, (21)

βf
i,r �

a
f

i,r

b
f
i,r

+ 􏽘
],j,k

m],j,ks],i〈hj,r〉〈dk,r〉⎛⎝ ⎞⎠

− 1

. (22)

We calculate the expectation of fi,r and the logarithm
of fi,r as

〈fi,r〉 � αf

i,rβ
f

i,r, (23)

〈logfi,r〉 � Ψ αf
i,r􏼐 􏼑 + log βf

i,r. (24)

.e variational Bayes algorithm that uses the above
equations is given in Algorithm 4. .e calculation of the
lower bound is given in Appendix. .e exact derivations of
all equations can be found in [28].

4.6. Computational Complexity. .e nonnegative tensor
factorization is an NP-hard problem [29]. .e variational
Bayes algorithm we introduced in Algorithm 4 is an iterative
solution that converges to a local maximum solution. .e
complexity of each iteration is determined by the leading
term, which is the equation (19). In general, calculating a
.inNTF model with R components for a κ-dimensional
tensor with all dimensions of length N has O(κN(κ+1)R)

complexity for a single iteration.

(1) function RandInit (S,AF,BF,AH,BH,AD,BD)
//Sample factor F from Gamma (AF,BF)

(2) for all i ∈ [1, I], r ∈ [1, R] do
(3) fi,r ∼ G(fi,r ; a

f
i,r, (b

f
i,r/a

f
i,r))

//Sample factor H from Gamma (AH,BH)
(4) for all k ∈ [1, K], r ∈ [1, R] do
(5) hj,r ∼ G(hj,r ; ah

j,r, (bh
j,r/a

h
j,r))

//Sample factor D from Gamma (AD,BD)
(6) for all j ∈ [1, J], r ∈ [1, R] do
(7) dk,r ∼ G(dk,r ; ad

k,r, (bd
k,r/a

d
k,r))

//Sample latent tensor W from Poisson distributions
(8) for all ] ∈ [1, I + 1], i ∈ [1, I], j ∈ [1, J], k ∈ [1, K], r ∈ [1, R] do
(9) w],i,j,k,r ∼ PO( w],i,j,k,r ; s],ifi,rhj,rdk,r)

(10) return {F, H, D, W}
(11) function GenerateData (S,AF,BF,AH,BH,AD,BD)

//Randomly initialize factors and latent tensor
(12) F,H,D,W{ }⟵RandInit (S,AF,BF,AH,BH,AD,BD)

//Generate original tensor x
(13) for all i ∈ [1, I], j ∈ [1, J], k ∈ [1, K] do
(14) xi,j,k � 􏽐],rW],i,j,k,r

//Generate sampled tensor Y
(15) for all ] ∈ [1, I + 1], j ∈ [1, J], k ∈ [1, K] do
(16) y],j,k � 􏽐i,rw],i,j,k,r

(17) return {F, H, D, W, X, Y}

ALGORITHM 3: TNTF generative model.
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5. Data Collection

Applying a tensor model to the flow length estimation
problem requires high-volume data collected over a long
period, to capture the timely behavior of the network. .e
already available online data sets do not fulfill this re-
quirement. .erefore, we collected our own real-world data
from a mobile network service provider in Turkey [30]. .e
architecture of our system and the description of the data we
collected are presented as follows.

5.1. SystemArchitecture. .e system architecture of a mobile
operator’s general packet radio service (GPRS) network
infrastructure, including radio access and core network
elements, is illustrated in Figure 7. IP traffic generated or
received by mobile devices between mobile station (MS) and
packet data network PDN, e.g., IP Multimedia Subsystem
(IMS), is tunneled in the core network of mobile operators
through serving GPRS support node (SGSN) and gateway
GPRS support node (GGSN) via the user data part of the
GPRS tunneling protocol (GTP) [31]. .e GTP message
exchanges include information such as the size of the traffic,
IP session start and end time, and device and user identifiers.

.e Gn interface (Gn is an interface between SGSN and
GGSN where GTP is the main protocol for network packets
flowing through) carries user packets to be transferred be-
tween the mobile users and the Internet together with
control packets necessary for the universal mobile tele-
communications service (UMTS) core network [32]. All
packets in this channel are carried by the GTP, which is an
IP-based protocol for carrying GPRS data within UMTS
networks, used for data encapsulation in order to keep the
core network independent of the protocols that are being
used between MS and the packet-switched network.

.e Gn interface carries mainly two types of GTP
message structures or packets: GTP-C and GTP-U. GTP-C is
used for signaling between SGSN andGGSN in core network
which carries packet data protocol (PDP) context messages
such as activating and deactivating user session, configuring
service parameters or updating the session. GTP-U is used
for transmitting user data between the radio access network

and core network. In our experiments, we filtered out GTP-
C packets (since they are not considered to be part of a flow
due to flow definition), which makes 10% of the total Gn
traffic. .erefore, the sampling is applied to GTP-U packets
only. GTP is carried mainly over UDP.

5.2. Data Extraction Process. .e mobile operator network
consists of several districts with more than 10 regional core
areas throughout Turkey. .e average total traffic in all
regional areas consists of approximately over 15 billion
packets in the uplink direction and over 20 billion packets in
the downlink direction daily. .is corresponds to approx-
imately 80 terabytes of total data flowing in uplink and
downlink daily inside the mobile operator’s core network as
a whole. In this work, the Gn interface which connects the
SGSN and GGSN nodes are mirrored, and the network
traffic is transferred into a FLD server located at mobile
operator’s technology center in the core network. A speed of
200Mbit/sec at peak hours can be observed through one of
the mirrored interfaces in the core network.

Wemonitored the network traffic in one of the servers of
a mobile operator continuously for 10 days. We developed a
packet extraction tool inside the monitoring server shown in
Figure 7, which parses each GTP-U packet and stores the
packet signature together with packet length and arrival
time, discarding their payload. .e stored network data is
processed offline for extracting the true flow lengths.

After the data collection and flow extraction, the total
number of packets collected is found to be 4 × 1011, which
makes up around 2.5 × 1010 flows. Figure 8 shows the cu-
mulative flow length distribution of the data. We see that
most of the flows have less than 5 packets, and 99.9% of them
have less than 100 packets.

6. Experiments and Results

We designed two sets of experiments in order to verify our
model: synthetic and real-world experiments. In each set, we
sampled the original data with both uniform and ANLS
models with different sampling parameters..en, we tried to
recover the original tensor with .inNTF models. .e

(1) function .inNTF_VB (Y, S, AF,BF,AH,BH,AD,BD)
//Randomly initialize factors and latent tensor

(2) F,H,D,W{ }⟵RandInit (S,AF,BF,AH,BH,AD,BD)
(3) repeat
(4) Calculate αf

i,r, β
f

i,r and 〈fi,r〉 as in equations (21)–(23).
(5) Calculate αh

j,r, β
h
k,r and 〈hj,r〉 similarly.

(6) Calculate αd
k,r, β

d
k,r and 〈dk,r〉 similarly.

(7) Calculate 〈logfi,r〉 as in equation (24).
(8) Calculate 〈logfi,r〉 similarly.
(9) Calculate 〈logfi,r〉 similarly.
(10) Calculate 〈w],i,j,k,r〉 as in equation (19).
(11) Calculate lower bound
(12) until Max iterations are reached or lower bound converged
(13) return F, H, D, X

ALGORITHM 4: Variational Bayes algorithm.
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.inNTF model takes a single parameter R which is the
number of components in each factor. Additionally, we also
represented data as I × JK matrix by unfolding theX tensor
in the first dimension as described in [28] and applied the 2-
dimensional version of .inNTF, which we simply call thin
nonnegative matrix factorization (.inNMF). For Uniform
sampling, we used the maximum likelihood estimation
(MLE) defined in [3] as the baseline. For ANLS, we used
both MLE and its own unbiased estimator of the model as
baselines.

Both.inNMF and.inNTF models explain the data as
a linear combination of R flow length distributions, stored in
the columns of F matrix. In the .inNMF model, we have
JK coefficient sets for this combination. On the other hand,
in .inNTF, we have J coefficients for hour-of-day and K
coefficients for day-of-week..e Cartesian products of these
coefficient sets make a total of JK coefficients and create a
dependency between the hour and day attributes. .erefore,
we expect that .inNTF captures the periodicity and give
better estimates.

During the experiments, we always run the stochastic
algorithms, i.e., .inNMF, .inNTF, and MLE, for 10 times
and keep the parameters of the model with the highest lower
bound value. .en, we reported the success of our algorithm
with the weighted mean relative distance (WMRD) metric as
this was used in all previous flow size estimation works. .e
WMRD is a metric which gives more weights to the relative
differences that occur with larger frequency. It is formulated as

wmrd(x, 􏽢X) �
􏽐i xi − 􏽢xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽐i xi + 􏽢xi( 􏼁/2
, (25)

where x is an original flow size distribution measured at the
end of the hour and 􏽢x is its estimated version. For the whole
tensor X, we calculate the average WMRD value.

Additionally, we report the Kullback–Leibler divergence
between the original and the estimated tensors, since this is
the metric minimized during the variational Bayes algo-
rithm..e KL divergence between two distributions x and 􏽢X

is calculated as

KL(x, 􏽢x) � 􏽘
i

xi log
􏽢xi

xi

􏼠 􏼡. (26)

6.1. Experiments on Synthetic Data. We prepared our syn-
thetic experiments to test the validity of our models. In this
experiment set, we used the generative model of the
.inNTF model as described in Algorithm 3 to generate a
small network with maximum flow size I � 10, J � 24 and
K � 7. .e original synthetic flow length distribution X is
generated by a generative model with 3 components, where
each component is a column in the F factor. We selected
these 3 components as exponential, inverted exponential,
and uniform random distributions. .erefore, in experi-
ments, we used .inNMF-R3 and .inNTF-R3 models,
where the suffix R3 shows that the model has 3 components.
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Figure 7: Placement of our monitoring server inside the premises of the mobile operator running a commercial cellular network.
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Figure 8: Cumulative flow lengths in the real-world data.
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We sampled the synthetic data with uniform and ANLS
sampling methods with different sampling parameters. .e
sampling was done simply by randomly drawing a sampled
size for each flow according to the sampling probabilities in
the S matrix. By this way, we ignored the flow splitting
problem, and this gave us an ideal data for the .inNTF
model. We report and compare the mean standard deviation
of these WMRD values for all experiments.

.e .inNTF model always performed best with the
uniform sampling model, as shown in Table 3 as expected. On
ANLS sampling, the MLE and the ANLS estimators per-
formed better with high sampling probabilities, when
u ∈ (0.01, 0.02, 0.05), as shown in Table 4. On the other hand,
when the sampling probability of the ANLS model decreases,
the.inNMF helped with better estimations. From the initial
results, we conclude that the factorization is definitely helpful
for more difficult uniform sampling method and helps lower
the sampling probabilities in flow-based packet sampling..e
results are also visible in Figure 9.

6.2. Experiments on Real-World Data. .e original data
collected from a mobile network provider as we described in
Section 5 are sampled with both sampling methods. How-
ever, this time, we simulated the real network offline by
feeding the packets one by one to the monitoring server, as
described in Section 5, .is way, we were able to create the
actual conditions on a sampler installed at a network pro-
vider’s backbone. .is also created the flow splitting
problem, since we applied a 30 seconds timeout in our flow
hash. We set the maximum flow length as I � 100, meaning
that X100,:,: entries show the count of flows that have more
than 99 packets..is clamping decision was made according
to the cumulative distribution of flow lengths as shown in
Figure 8. We also clamped the sampling matrices S so that
they exactly match the model.

Since the number of components in the original flow
distribution is unknown, we run our experiments with
R ∈ [2, 3, 4] components for .inNMF and .inNTF. .e
rest of the experiment is similar to the synthetic one. .e
sampled Y matrix with shape 100 × 24 × 7 is factorized and
􏽢X is reconstructed with the estimated factors. We reported
and compared the mean and standard deviation of 24 × 7
WMRD and KL values.

.e factorization models, both .inNMF and .inNTF
helped lower the WMRD score in both uniform and ANLS
sampling methods. .inNTF-R4 model consistently gave
lower error than the MLE baseline for uniform model as
shown in Table 5 and Figure 10. Indeed, our factorization
framework improved results overall for uniform sampling.
However, since recovering true estimates in uniform sam-
pling is quite difficult, we see less impact of the factorization
as the sampling ratio increases.

Figure 10 also gives the KL values between the true and
estimated flow length distributions. While the scale of this
metric is different, it gives consistent results with the
WMRD. .is shows that our model, which minimizes the
KL metric, also minimizes the commonly used WMRD
metric; hence, the model is suitable for this problem.

Another important issue is that for uniform sampling,
3-way factorization is more successful than the 2-way
factorization. .e periodicity information which is cap-
tured by the .inNTF model helps improve the estimates
and makes it a more successful model for this sampling
method.

In ANLS, all our factorization models gave lower error
values than the MLE and unbiased estimator of ANLS as
shown in Table 6 and Figure 11. Since ANLS is a more
powerful sampling method than uniform sampling, the
effect framework is slightly less for small sampling parameter
u. However, both .inNMF and.inNTF gave better result
while sampling smaller number of packets (when u is large).
Furthermore, since we are trying to recover the same
original data in both experiments, we can compare our
.inNMF and .inNTF models under two sampling
methods. We see that, in both methods, as the number of
components increases, the models gave lower error rates.
However, with the uniform sampling method, 3-di-
mensional methods give better results, while with ANLS, 2-
dimensional models perform slightly better.

6.3. Effect of Clamping. .e choice of where to clamp the
data can be given by multiple factors. First of all, one can set
the clamping value Imax according to a value of special
interest. Otherwise, we would like to choose a small Imax so
that we deal with a dense tensor and less parameters. On the
other hand, we would like to set Imax as high as possible so
that the clamped portion of the data is as small as possible.

We run the best algorithms found in previous section for
uniform and ANLS sampling methods with Imax ∈
25, 50, 75, 100{ }. .e WMRD values are given in Figure 12.
In bothmethods, Imax � 25 gave relatively poor performance
and Imax � 100 was generally the best choice. Also the results
with Imax ≥ 50 are closer to each other..is is consistent with
the graph in Figure 8, where the cumulative flow lengths do
not change much after Imax � 50. A final remark from this
experiment is that as the clamping value increases,

Table 3: Uniform sampling results on synthetic data.

Period .inNMF-R3 .inNTF-R3 MLE
2 0.53 0.49 0.88
4 0.63 0.59 1.20
8 0.65 0.61 1.29
16 0.68 0.61 1.41
32 0.74 0.61 1.37
64 0.85 0.61 1.50

Table 4: ANLS sampling results on synthetic data.

U .inNMF-R3 .inNTF-R3 MLE ANLS
0.01 0.29 0.27 0.09 0.15
0.02 0.31 0.29 0.17 0.27
0.05 0.33 0.32 0.36 0.28
0.1 0.35 0.34 0.51 0.38
0.2 0.38 0.36 0.59 0.67
0.5 0.48 0.47 0.72 0.70
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Figure 9: Synthetic experiment results.

Table 5: Uniform sampling results on real data.

Period
�inNMF �inNTF

MLE
R� 2 R� 3 R� 4 R� 2 R� 3 R� 4

2 0.23 0.24 0.23 0.21 0.25 0.22 0.41
4 0.55 0.52 0.53 0.50 0.48 0.49 0.69
8 0.94 0.93 0.94 0.91 0.90 0.87 0.97
16 1.15 1.11 1.11 1.09 1.05 1.04 1.05
32 1.25 1.24 1.24 1.16 1.13 1.10 1.22
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Figure 10: Real-world data results with Uniform sampler.

Table 6: ANLS sampling results on real data.

U
�inNMF �inNTF

MLE ANLS
R� 2 R� 3 R� 4 R� 2 R� 3 R� 4

0.01 0.03 0.02 0.01 0.05 0.04 0.03 0.05 0.12
0.02 0.04 0.03 0.02 0.06 0.04 0.03 0.08 0.21
0.05 0.04 0.03 0.02 0.07 0.05 0.04 0.13 0.39
0.1 0.06 0.05 0.04 0.08 0.07 0.05 0.17 0.61
0.2 0.08 0.08 0.08 0.10 0.09 0.07 0.21 0.70
0.5 0.13 0.13 0.11 0.16 0.15 0.13 0.33 0.94
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estimation becomes harder with small sampling rates. .is
explains the results in uniform sampling with sampling rate
1/64.

7. Conclusions

In this work, we introduced a novel nonnegative tensor
factorization model called .inNTF, which extends the
classic nonnegative tensor factorization with an additional
constant factor that can represent a network packet sampling
method. We showed that this model can be employed to
improve the current reconstruction algorithms in recovering
the original flow length distributions.

We tested our model with two different types of sam-
pling methods: the uniform packet sampling method and a
flow-based packet sampling method, called ANLS. We

described how to use these methods by showing how to build
their sampling matrices.

In order to test our model, we collected high-volume
data from a mobile network provider for a long period in
order to observe the periodical behavior of the flow length
distribution. In experiments on synthetic and real-world
data, our models gave promising results by lowering the
estimation errors compared to the baselines of each sam-
pling method. We conclude that our model can be used to
decrease estimation errors or to decrease the sampling
probabilities without increasing the estimation error.

An important issue left as future work is the online
execution of the .inNTF model. .eoretically, the
.inNTFmodel can be used online once sufficient data from
the target network is collected, and the flow length distri-
bution components, i.e., the F factor, are inferred..e power
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of our model is that this inference can be done directly from
the sampled observations. Once the F factor is estimated, for
each incoming observation, the corresponding entries in
other factors can be inferred by keeping F constant during
the inference. Moreover, F can be updated periodically, say
weekly, in a sliding window fashion and kept up to date with
the networks flow length behavior.

Appendix

Variational Lower Bound Calculation

.e calculation of the lower bound includes a few arithmetic
tricks. We provide a Bayesian nonnegative matrix factor-
ization [28] tutorial for the detailed derivation and coding
tricks. .e final form of the lower bound equation is

Lθ � 〈logp(Y,W, F,H,D|θ)〉q(W,F,H,D) + Hq(W,F,H,D)

� − 􏽘
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Applications of direction of arrival (DoA) techniques have dramatically increased in various areas ranging from the traditional
wireless communication systems and rescue operations to GNSS systems and drone tracking. Particularly, police forces and
security companies have drawn their attention to drone tracking devices, in order to provide the safeness of citizens and of clients,
respectively. In this paper, we propose a low cost antenna array based drone tracking device for outdoor environments.The proposed
solution is divided into hardware and software parts.The hardware part of the proposed device is based on off-the-shelf components
such as an omnidirectional antenna array, a 4-channel software defined radio (SDR) platform with carrier frequency ranging from
70MHz to 6 GHz, a FPGAmotherboard, and a laptop.The software part includes algorithms for calibration, model order selection
(MOS), and DoA estimation, including specific preprocessing steps and a tensor-based estimator to increase the DoA accuracy.
We evaluate the performance of our proposed low cost solution in outdoor scenarios. According to our measurement campaigns,
we show that when the array is in the front fire position, i.e., with a DoA ranging from −60∘ to 60∘, the maximum and the average
DoA errors are 6∘ and 1,9∘, respectively.

1. Introduction

Applications of direction of arrival (DoA) techniques have
dramatically increased in various areas ranging from the
traditional wireless communication systems [1, 2] and rescue
operations [3] to GNSS systems [4–7] and drone tracking
in public and private events. In the last years Unmanned
Aerial Vehicles (UAVs) have been amajor concern of airspace
control bodies and military due to possible terrorist attacks
and illegal activities. In 2015, there were more than nine
hundred incidents involving drones and aircrafts in the
United States [8], whereas, in April 2016, a UAV reached an
aircraft landing at the Heathrow airport in London [9]. In
2016 in Dubai, four drones invaded the airport interrupting

the landings and take-offs, causing an estimated loss of one
million dollars [10]. In October 2017 in Canada, the first
reported collision of a drone and a commercial airplane has
occurred [11]. Recently police forces and security companies
have drawn their attention to drone tracking devices in order
to provide the safeness of citizens and of clients, respectively.
In this sense, the development of low cost devices for drone
tracking is fundamental to fit such demands.

In general, the DoA estimation techniques can be broadly
classified into conventional beamforming techniques, maxi-
mum likelihood techniques, and subspace-based techniques
[12–14]. In [15] the authors proposed to estimate the DoA of a
signal impinging the Electronically Steerable Parasitic Array
Radiator (ESPAR) antenna with twelve parasitic elements by
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using a support vector machine (SVM) technique. In the
anechoic chamber the result of the experiments reaches 0.67∘
estimation error. No hardware details were provided.

To overcome the effects of multipath propagation on
the performance of DoA estimation, the authors of [16]
proposed a frequency domainmultipath resolution subspace-
based approach, which makes RSS-based DoA estimation
applicable in multipath scenarios for small-size and low-
power sensor networks. This approach was verified with
Monte Carlo simulations with high SNR.

Aiming at the growth of connected cars systems, the
authors in [17] developed a 4×4 MIMO antenna system
and proposed the DoA function for a circular phased array
antenna. Since the focus of this paper is on the methodology
and basic characteristics of DoA function, no measurement
or hardware information was provided.

In [18], DoA estimation using an ESPAR with 12 parasitic
elements and one active monopole is carried out for wireless
sensor network (WSN) applications. The authors calibrated
the ESPAR array using an anechoic chamber. Since the
focus of [18] is on the calibration, no outdoor or indoor
measurement campaigns were performed by the authors.

An improvement of ESPAR antennas is proposed in
[19]. The authors developed a Multiple Beam Parasitic Array
Radiator (MBPAR) antenna that can realize six beams at the
same time without the use of diodes, which increases the
communication capacity. To validate the proposed design, a
prototype was fabricated at 2.45 GHz. The antenna has the
efficiency from 94.2 % to 95.7 % over the 2.4G-WLAN bands.
No DoA measurements were provided.

In [20], a square shaped 16 element antenna array is
connected to switches so that a four-channel SDR can select
four antennas at each side of the square, allowing a 360∘
DoA estimation in outdoor environments. Each side of the
square performs a ±45∘ azimuth estimation. According to the
authors, three Yagi antennas were used as sources at specific
points, and a maximum DoA error of 5∘ is achieved. No
information is provided about the real distance between the
sources and the receive array.

In [21], a four-element quasi-Yagi antenna array system
is applied for DoA estimation using the MUSIC algorithm,
whereas the Minimum Description Length (MDL) criterion
is used to estimate the number of dominant multipath
components. Only two measurements were performed for
two specific positions, showing an error of 1∘. However, no
information is provided about the experimental scenario.

In [22], several DoA estimation techniques are compared
considering a horizontal uniform linear array (ULA) with
12 elements inside an anechoic chamber. The measurements
were conducted varying the DoA from −20∘ to 20∘ in steps of4∘.TheDoA estimation errors were smaller than 2∘.TheMin-
Norm approach [12] outperformed MUSIC [23] although it
has a higher standard deviation.

Finally, in [24], the authors developed system using five-
port reflectometers that allow simultaneously measuring the
DoA and Time of Arrival (ToA) of coherent and incoherent
signals, connected to seven quasi-Yagi antennas, with one
reflectometer for each antenna. The MUSIC algorithm is
applied for the DoA estimation, providing an error of 2∘ for

one source and 0,5∘ for two sources. The measurements were
performed in a nonreflective environment.

In order to detect the presence of drones and to track
them, there is a variety of mechanical, optical, or antenna
array based solutions in the market. For instance, the
mechanical solution in [25] detects a drone within 3 km for
targets up to 55 cm in diameter and classifies the model of the
drone within 1.1 km.The position accuracy (azimuth) in [25]
is 1∘. In [26], a rechargeable portable drone tracking device
candetect and indicate the direction of a drone in a 360∘ plane
even with weak line of sight (LoS) component. The device in
[26] allows the communication with other devices by using
an Application Programming Interface (API) framework. No
technical information and patent about the principles behind
the device in [26] and its DoA accuracy were provided. In
[27], an antenna array based system is shown to detect with
a 1 km range and with 1∘ accuracy or with a 7 km range and
with 3∘ accuracy.

In [28], a mobile application (app) is proposed for drone
detection. According to the developers, the app has an
average range of 106 meters. The system allows the detection
of almost 95 % of all types of drones. However, the solution
in [28] does not indicate the position or the direction of the
drone.

In terms of drone tracking, there are recent works on
received signal strength (RSS)-based DoA estimation. For
example, [29, 30] propose to estimate the DoA using arrays of
Yagi-Uda directional antennas for the localization of drones
exploiting by their incoming NTSC signal in a measurement
campaign. The work [29] proposes a complete hardware and
software framework using arrays of directional antennas and
formulates a novel DoA estimation correction procedure. In
[30], a novel DoA estimation algorithm for the localization
of drones is validated by using an AD-FMCOMMS5-EBZ
software defined radio (SDR). Finally, [31] implemented tests
to detect and locate UAVs at 900MHz. The authors used
MUSIC combined with spatial smoothing and MDL. The
work [30] has a similar objective to our proposal; however
the authors did not concern in to present the accuracy of the
system and in use of low cost equipment.

In this paper, we propose a low cost antenna array based
drone tracking device for outdoor environments. To the best
of our knowledge, there are no state-of-the-art low cost
off-the-shelf antenna array based devices applied to drone
tracking. The problem of drone tracking is challenging due
to the several possible modulation schemes for the data
transmission, multipath propagation, and the possible long
operational distances. The proposed framework can also
exploit tensor-based techniques, such as the Parallel Factor
Analysis (PARAFAC). In contrast to the subspace-based
methods, the tensor-based approach shows to be robust in
real scenarios.

The remainder of this paper is divided as follows. In
Section 2, the data model is presented. Next, in Section 3, we
propose a low cost antenna array based drone tracking device
for outdoor environments, including a complete description
of the hardware and software, and the steps involved for
assembling, calibration, and signal processing. In Section 4,
we validate our proposed solution by means of measurement
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campaigns in an outdoor scenario. In Section 5, conclusions
are drawn.

2. Data Model

We assume 𝑑 be far-field sources transmitting narrow-band
signals.These planar wavefront signals impinge over a receive
antenna array with 𝑀 omnidirectional elements that are
uniformly and linearly disposed. The space Δ between two
adjacent antennas is equal to 𝜆/2, where 𝜆 is the wavelength
of the carrier signal. The received signals at the antenna array
can be written in a matrix form as follows:

X = AS +N ∈ C𝑀×𝑁, (1)

where A ∈ C𝑀×𝑑 is the steering matrix and its 𝑖-th steering
vector is given by

a (𝜇𝑖) = [1 𝑒𝑗𝜇𝑖 𝑒2𝑗𝜇𝑖 ⋅ ⋅ ⋅ 𝑒𝑗(𝑀−1)𝜇𝑖]T ∈ C𝑀×1, (2)

where 𝜇𝑖 is the spatial frequency that can be mapped into
the direction of arrival of the 𝑖-th source, 𝜃𝑖, by the following
expression: 𝜇𝑖 = 2𝜋Δ sin 𝜃𝑖/𝜆. S ∈ C𝑑×𝑁 is the symbol matrix
with N being the number of snapshots. N ∈ C𝑀×𝑁 stands for
the noisematrix whose elements are assumed to beComplex-
Valued Circularly Symmetric Gaussian and identically and
independently distributed (i.i.d.) random variables.

Given (1) and assuming that the noise and the signal are
uncorrelated, the covariance matrix can be computed by

RXX = E {xxH} = ARSSA
H + RNN, (3)

where x is one column vector from X, (⋅)H is the Hermitian
operator, and 𝐸{⋅} is the expected value operator. In practice,
the sample covariance matrix is calculated as follows:

R̂XX = XXH

𝑁 ∈ C𝑀×𝑀. (4)

The DoA techniques used along this paper exploit the
sample covariance matrix in (4). As shown in Section 3,
the matrix X is preprocessed before we compute the sample
covariance matrix R̂XX.

The goal of our proposed drone tracking device is to esti-
mate the direction of arrival (DoA) 𝜃1 of the line of sight (LoS)
component from a drone in an outdoor scenario. We assume
that there is no obstruction of the LoS component. Therefore,
the LoS component is assumed to have the greatest power in
comparison with the non-LoS components. Mathematically,
we can express it as󵄩󵄩󵄩󵄩a (𝜇1) s (𝜇1)󵄩󵄩󵄩󵄩F > 󵄩󵄩󵄩󵄩a (𝜇𝑖) s (𝜇𝑖)󵄩󵄩󵄩󵄩F , (5)

for 𝑖 = 2, . . . , 𝑑. The operator ‖ ⋅ ‖F stands for the Frobenius
norm.

3. Proposed Low Cost Antenna Array Based
Drone Tracking Device

In this section, we detail the proposed low cost antenna array
based drone tracking device. In Section 3.1, we describe the

To PC

uProc & FPGA
Motherboard

SDR
Daughterboard

Power Divider

TX

RX

Figure 1: Assembled components for the hardware calibration
of four receive channels. The components are a microprocessor
(uProc), a FPGA motherboard, a SDR, a power divider, and cables.

steps for the hardware calibration. The calibration ensures
phase alignment for all the four channels of the SDR,
allowing the DoA estimation. In Section 3.2, we present the
assembling of the hardware components of the proposed
drone tracking device. In Section 3.3, we propose a signal
processing framework for DoA estimation.

3.1. Hardware Assembling for the Calibration. In order to
perform the measurements, the SDR should be calibrated,
such that all the receive channels become in phase.The phase
imbalance may be caused by different time initialization of
the oscillators and by hardware imperfections. The hardware
vendor provides a software [32] for clock calibration of the
local oscillator. However, this software does not perform
phase calibration.

Therefore, in order to perform the phase calibration,
the hardware components are first assembled according to
Figure 1. Note that the SDR transmits the signal from one
channel and receives it in four channels that should be
calibrated.

As shown in Figure 1, the SDR is a 4×4 MIMO plat-
form named ADFMCOMMS5 [33], with two AD9361 [34]
Integrated Circuits (ICs) that contain 2 transmitters and two
receivers each, ranging from 70 MHz to 6.0 GHz, and have
a channel bandwidth ranging from 200 kHz to 56 MHz.
The platform is connected to a microprocessor and a FPGA
motherboard [35] that configures the SDR and transmits the
SDR data to the PC. As shown in Figure 1, the cables for
calibration should have the same length. Moreover, a power
division component is included in order to lead the signal to
the four receive channels at the same time and to reduce the
power of the transmitted signal to avoid damaging.

To compensate the phase errors previously explained, the
first step is to extract the phase of the elements of the matrix
X. The phase 𝜙(𝑚, 𝑖) is defined as follows:

𝜙 (𝑚, 𝑖) = ∠𝑥 (𝑚, 𝑖) = arctan ( Im {𝑥 (𝑚, 𝑖)}
Re {𝑥 (𝑚, 𝑖)} ) , (6)

where 𝑥(𝑚, 𝑖) is the element in position 𝑚, 𝑖 of the measured
matrixX.The operators ∠, Im{⋅} and Re{⋅} stand for the phase
operator, the imaginary part of a complex number and the
real part of a complex number, respectively.
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RX A1 RX A2 RX A3 RX A4

Figure 2: Proposed low cost antenna array based drone tracking
device with 4 element ULA and a 4 × 4 MIMO SDR.

Since each channel is related to each line of the matrix X,
in order to compute the phase shift between two channels, we
compute the phase difference of two consecutive antennas

𝜔 (𝑚, :) = Φ (𝑚, :) −Φ (𝑟, :) ∈ C1×𝑁, (7)

where Φ stands for the matrix containing the calculated
phases by (6), 𝑟 indicates the reference channel, and𝑚 varies
from 1 toM.This reference channel can be randomly selected
from 1 to 𝑀 and is the input of the SDR that is used as a
reference to compensate the phase imbalance from the other
inputs. Since the vector 𝜔(𝑚, :) is the𝑚-th row ofmatrixΩ, in
case𝑚 = 𝑖, the 𝑖-th row ofΩ is filled with zeros. Finally, since
the phase difference may slightly vary for different samples in
the same row of Ω due to the thermal noise, we compute the
arithmetic mean of the elements of each row of Ω, obtaining
the vector 𝜔 ∈ C𝑀×1 and its𝑚-th element is given by

𝜔 (𝑚) = 1𝑁
𝑁∑
𝑛=1

Ω (𝑚, 𝑛) . (8)

Hence, in order to compensate the phase shift between
two different channels, we compute the vector c ∈ C𝑀×1. The𝑚-th element is given by

c (𝑚) = e−𝑗𝜔(𝑚). (9)

Note that the compensation vector c is computed only once
for the system initialization. The calibrated outputs of the
antenna array are given by the following expression:

Xc = diag {c}X, (10)

where the operator diag{⋅} transforms its argument vector
into the main diagonal of a diagonal matrix.

3.2. Hardware Assembling for the Drone Tracking Measure-
ment Campaign. After the hardware has been calibrated,
the next step is to assembly it in order to perform the
measurements.

The four-element omnidirectional antenna array is con-
nected to the calibrated hardware composed of the FPGA
motherboard and SDR daughterboard according to Figure 2.
Each antenna is dual band (from 2400MHz to 2483.5MHz

and from 4900 MHz to 5875 MHz ) [36] and has linear
polarization with 3.7 dBi of gain. The space Δ between two
consecutive antennas is equal to 5.99 cm. The operational
frequency𝑓 = 2.5GHz is themaximum frequency that avoids
aliasing.

3.3. Framework for DoA Estimation. Here, we first propose a
sample selection approach for DoA estimation by automatic
phase deviation detection. Then, we formulate a DoA esti-
mation framework exploiting preprocessing techniques and
model order selection schemes.

Figure 3 depicts the flowchart of the proposed signal
processing solution for DoA estimation.

As shown in Box 2 of the Figure 3, the phase deviation
correction proposed in Section 3.1 returns a matrix Xc that is
used in the sample selection scheme in Section 3.3.1.

3.3.1. Sample Selection for DoA Estimation by Automatic
Phase Deviation Detection. As exemplified Xc in Figure 4,
empirically we observed that the hardware causes phase
deviations on the samples in random time instants.Therefore,
we propose an approach to select the samples with phase
deviations for the DoA estimation.

Note that the phase compensation proposed in Section 3.1
has been applied to the samples, whose matrix Φ containing
the phases are depicted in Figure 4. Furthermore, note that
there are significant deviations that can degrade the DoA
estimation process. The main objective here is to remove
these phase deviations.

As shown in Figure 5, such ripples can be better visualized
by computing the phase difference in the time dimension
according to the following expression:

𝛾 (𝑚, 𝑖) = (𝜙 (𝑚, 𝑖 + 1) − 𝜙 (𝑚, 𝑖))2 , (11)

where 𝛾(𝑚, 𝑖) is the value containing the quadratic difference
of two consecutive time samples 𝑖 and 𝑖 + 1 of the 𝑚-th
channel.The𝜙(𝑚, 𝑖), from (6), is the element in position (𝑚, 𝑖)
of the matrix Φ.

Figure 5 draws the Γ that contains the result of (11). By
detecting the peaks, we can identify which samples should
be removed. For this task, we apply the approach proposed
in [37], which returns the green curve with the value of the
threshold.Therefore, the samples whose phase differences are
greater than the threshold are removed. The result after the
samples removed is presented in the following equation:

Xcs = [Xc (:, 1 : 𝑁1) | Xc (:, 𝑁2 : 𝑁3) | ⋅ ⋅ ⋅ |
Xc (:, 𝑁𝑇−1 : 𝑁𝑇)] , (12)

where Xcs is the matrix with the selected samples. Note that𝑁𝑇 = 𝑁 and the values of N𝑡, for 𝑡 = 1, . . . , 𝑇, are found by
comparing the phase difference values with the threshold in
Figure 5.

3.3.2. DoA Estimation Framework. According to Figure 3,
the matrix Xcs given in (12) is used to improve the DoA
estimation with preprocessing schemes. There are several
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Figure 3: Flowchart of the proposed solution for DoA estimation.
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DoA estimation schemes in the literature, such as beamform-
ing approaches and subspace-based approaches. Examples
of beamforming are Delay and Sum [38] and Capon [39],
whereas examples of classical subspace-based approaches are
MUSIC [23] and ESPRIT [40].

The DoA estimation schemes assume that the model
order 𝑑 is known. In practice, model order selection tech-
niques should be applied to estimate the model order 𝑑, as
depicted in Figure 3.

In the flowchart of Figure 3, we adopted the Exponential
Fitting Test (EFT) [43, 44] as the model order selection
scheme. The EFT has the deflation property that allows us
to find suitable thresholds as a function of the Probability
of False Alarm (Pfa). By exploiting the deflation property
and by finding suitable thresholds, the EFT has been the
only scheme in the literature to estimate 𝑑 = 1 in the
presence of a strong LoS signal and 𝑑 = 0 in the only
noise (no signal) measurements. We have compared several
schemes in the literature such as Akaike Information Crite-
rion (AIC) [45], Efficient Detection Criterion (EDC) [46],
Minimum Description Length (MDL) [47], Stein’s unbiased
risk estimate (SURE) [48], RADOI [49], ESTimation ERror
(ESTER) [50], and Subspace-based Automatic Model Order
Selection (SAMOS) [51]. The M-EFT [43, 44, 52] has also
been suitable, but an even smaller Pfa was required to
find the thresholds. The computation of the thresholds of
the EFT requires an extremely low Pfa. The complexity of
such a computation is prohibitive. Therefore, we propose in
Appendix A an extrapolation algorithm to compute such
thresholds. Note that our proposed extrapolation algorithm
has been applied in [53–56], although no details are provided.
The reason for extremely low Pfa may be related to the
noise behaviour as shown in Appendix B. Note that the
Ilmenau Package for Model Order Selection (IPM) [57]
with MATLAB and Java implementation of the model order
selection schemes can be found at the LASP homepage
(https://lasp.unb.br/index.php/publications/softwares/).

In order to further improve the accuracy of DoA esti-
mation schemes, preprocessing schemes can be applied
beforehand. We consider in this work the Vandermonde
Invariation Technique (VIT) [58], Spatial smoothing (SPS)
[59], and Forward Backward Averaging (FBA) [60, 61] as
a preprocessing schemes. As depicted in Figure 3, after the

https://lasp.unb.br/index.php/publications/softwares/
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Table 1: Selected state-of-the-art DoA estimation schemes.

Delay And Sum [38] 𝑃DS (𝜃) = w (𝜃)H Rxxw (𝜃)
w (𝜃)H w (𝜃) . (13)

Capon [39] 𝑃CAP(𝜃) = 1
w (𝜃)H R−1xxw (𝜃) . (14)

MUSIC [23] 𝑃M𝑈𝑆𝐼𝐶(𝜃) = 1
wH (𝜃)VnVH

nw (𝜃) , (15)
ESPRIT [40]

Ψ = J1U+s J2Us (16)
Ψ

EVD= EΦEH , with Φ = diag [𝜙1, . . . , 𝜙𝑑] (17)𝜇𝑖 = ∠(𝜙𝑖), 𝑖 = 1, . . . , 𝑑 (18)
preprocessing step, a matrix Z is returned and used by the
DoA methods summarized in Table 1.

In Table 1, the vector w(𝜃) in (13), (14), and (15) vary
according to the candidate values of 𝜃. The value of 𝜃 that
maximizes the expression in (13), (14), and (15) is the 𝜃1,
since, in Section 2, the data model assumes that the LoS
component faces no obstacles. Therefore, the component
corresponding to the greatest power should be the same
component with DoA equal to 𝜃1. Us ∈ C𝑀×𝑑 is signal
subspace, which is equal to the 𝑑 eigenvectors corresponding
to the 𝑑 greatest eigenvalues, whereasVn ∈ C𝑀×𝑀−𝑑 is a basis
for the noise subspace, composed by the𝑀− 𝑑 eigenvectors
associated with to the 𝑀 − 𝑑 smallest eigenvalues. In (17)
and (18), Φ is the diagonal matrix that has the eigenvalues
of Ψ. We compute all the spatial frequencies and the one
whose component has the greatest power is the 𝜇1 that can
be mapped to 𝜃1.
3.4. Tensor-Based DoA Estimation. In this subsection, a
tensor factorization, namely, the PARAFAC decomposition,
is applied. The PARAFAC decomposition generates three
factor matrices from a received tensor X, whose structure
is detailed in this subsection. One factor matrix corresponds
to the estimate of the steering matrix A containing DoA
information. In this subsection A is extracted from tensorX
to estimate the DoA of the impinging signal.

We first consider an unchanging sequence of 𝑁 symbols
transmitted periodically. Such symbols can be found in a
header or footer or even in the payload of a message. Alter-
natively, repeating sequences of symbols can be extracted
from time periods when no data is being transmitted, but
the carrier of the transmitter is active. An example is given
as follows. Since the oscillators at the transmitter and at
the receiver are never exactly the same, a small frequency
deviation or constant phase change is observed at the receiver.
At an MSK receiver, if the deviation is positive, a sequence
of ones can be extracted and if the deviation is negative a
sequence of zeros is observed.

The symbols corresponding to the sequence from the 𝑖-th
source is represented by the vector c𝑖 ∈ C𝑁×1. Accordingly,
we can build a received signal matrix

X𝑖 (𝑝) = 𝛾𝑖 (𝑝) a𝑖 (𝜇𝑖) cT𝑖 , ∈ C𝑀×𝑁 (19)

where 𝑝 is the period corresponding to the sequence trans-
mission. Generalizing for 𝑑 signals we find

X (𝑝) = AD𝛾 (𝑝)CT, ∈ C𝑀×𝑁, (20)
where D𝛾(𝑝) = diag([𝛾1(𝑝) 𝛾2(𝑝) . . . 𝛾𝑑(𝑝)] )T and C =[c1 c2 . . . c𝑑].

For 𝑃 transmitted sequences, the symbols can be concate-
nated along the third dimension to form the received signal
tensor

X = [X (1) ⊔3 X (2) ⊔3 . . . ⊔3 X (𝑃)]
∈ C𝑀×𝑁×𝑃, (21)

where ⊔3 represents concatenation along the third dimen-
sion. Since the slices of X can be written as (20), X has a
PARAFAC structure and can be decomposed into three factor
matrices A,C and Γ, where Γ contains the diagonals ofD𝛾(𝑝)
along its rows. To factorize X, we first rewrite it in three
different matrix representations or unfoldings

X(1) = A (C ⬦ Γ)T , (22)
X(2) = C (Γ ⬦ A)T , (23)
X(3) = Γ (A ⬦ C)T , (24)

where ⬦ is the Khatri-Rao (column-wise Kroenecker) prod-
uct.

It is known that minimizing (22), (23), and (24) in the
least squares sense [62] leads to the following solutions:

Â =X(1) [(C ⬦ Γ)T]+ , (25)
Γ̂ =X(2) [(Γ ⬦ A)T]+ , (26)
Ĉ =X(3) [(A ⬦ C)T]+ . (27)

We consider the well-known Alternating Least Squares
(ALS) algorithm to solve (25), (26), and (27) in an iterative
way. Since C is known, the estimation step (27) is skipped,
and the ALS algorithm alternates between the estimations of
A and Γ in a two-step approach [63].

Once convergence is achieved, we use Â to extract the
DoA of the 𝑖-th source as follows:

𝜃𝑖 = argmax
𝜃

aH𝑖 (𝜃) â𝑖 (28)
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Table 2: Number of frames captured at each 10∘ step of the measurement campaign.

DoA −90∘ −80∘ −70∘ −60∘ −50∘ −40∘ −30∘ −20∘ −10∘ 0∘ 10∘ 20∘ 30∘ 40∘ 50∘ 60∘ 70∘ 80∘ 90∘
Frames 31 29 29 30 33 34 32 29 24 30 32 24 30 33 26 31 43 41 31

Table 3: RMSE for the schemes in Table 1 without the preprocessing using the measurements from Figure 8.

Algorithm DS CAP. MUS. ESP. TEN.
RMSE 2.3∘ 1.7∘ 4.0∘ 2.8∘ 1.7∘
Variance of the RMSE 4,3∘ 1.1∘ 11.5∘ 4.1∘ 4.4∘

Tx Rx

Figure 6: Photo taken during the measurement campaigns of the
outdoor scenario pointing out the positions of the transmitter and
of the antenna array based receiver.

4. Experiments

In this section, we validate our proposed drone tracking
device with measurement campaigns in an outdoor scenario.
In Section 4.1, the setup for the measurement campaign is
described, whereas, in Section 4.2, we present the obtained
results.

4.1. Experimental Setup. In Figure 6, we depict the outdoor
scenario used for the measurement campaigns. On the right-
hand, we placed our drone tracking device, proposed in
Section 3, as the receiver, whereas, on the left-hand, the
transmitter is placed. The transmitter is a 2x2 MIMO SDR
platformASPR4 [64], with frequencies ranging from 50MHz
to 6.0 GHz, a channel bandwidth varying from 200 kHz to 56
MHz and a maximum power of 10 dBm at the output port.

As shown in Figure 7, the distance between the transmit-
ter and the receiver is 48 m. Both transmitter and receiver
are placed on tripods 115 cm above the ground. Note that the
red “X” in Figure 7 is the location from where the photo in
Figure 6 has been taken.

Both the transmitter and the receiver were set up using
a MSK message signal, at 2.48 GHz carrier frequency and
250 kbps of data rate. Before starting the experiment, the2.48 GHz frequency was scanned and no noise source was
detected. In order to verify that the receiver properly works
and measures the Bit Error Rate (BER), we have to decode
the signal. To this purpose, the transmitted package must be
known and consists of pseudo random sequences of length
1024 bits and a header and footer with 16 bits each defined as
0xFFFF and 0x0000, respectively. Therefore, the total size of
the package is 1056 bits. The transmitter uses both sampling
frequency and bandwidth of 2MHz. At the receiver side, a 4

MHz sampling frequency and 4 MHz bandwidth are used.
Each captured frame at the receiver has 5120 samples.

As shown in Figure 7, the transmitter is fixed and the
receiver rotates from +90∘ to −90∘ in steps of 10∘. According
to Table 2, which presents the number of captured frame per
DoA, at each 10∘ step, about 31 frames of size 5120 samples are
captured.

4.2. Experimental Results. This subsection shows the perfor-
mance of the DoA estimation schemes shown in Table 1.
During the measurement campaign, the achieved Bit Error
Rate (BER) was 10−4.

Figure 8 shows the DoA calculated by rotating the base
array over the time. Our proposed device works for a DoA
ranging from −60∘ to 60∘. The DS, Capon, MUSIC, ESPRIT,
and Tensor combined with preprocessing schemes are shown
in Figure 9(b).

In Tables 3 and 4, we present the Root Mean Square
Error RMSE for the schemes in Table 1 with and without pre-
processing schemes using the measurements from Figure 6,
respectively. The equation for RMSE is given by

RMSE (𝜃1) = √ 1𝑄
𝑄∑
𝑞=1

(𝜃(𝑞)1 − 𝜃(𝑞)1 )2 (29)
where 𝑞 is one realization of a total of 𝑄 realizations for
each 10∘ stage of the measurement campaign. In other words,
the acquired data at each 10∘ degree step is reshaped into
small matrices. The computation of the DoA is individually
performed for each of these matrices. In our experiment,
we chose empirically matrices of size 4 × 1000. Since, as
shown in Table 2, at each 10∘ step 31 frames of size 5120
samples are captured, in average there are approximately 𝑄 =158matrices depending on the data reduction performed in
Section 3.3.1. The variables 𝜃 and 𝜃 stand for the actual and
the estimated DoA, respectively.

Comparing Tables 3 and 4 we can note that, except for
the Tensor, the algorithms presented improvement in terms
of RMSE after incorporating the preprocessing. CAPON and
the Tensor increased the variance with the preprocessing.
The smallest RMSE was achieved by the DS approach after
preprocessing. Note that the ESPRIT assumes the shift
invariance property, while both MUSIC and ESPRIT exploit
the property of the orthogonality between signal and noise
subspaces. Note that both assumptions are approximations
and, therefore, their exploitation may cause additional errors.
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Table 4: RMSE for the schemes in Table 1 with the preprocessing using the measurements from Figure 8.

Algorithm DS CAP. MUS. ESP. TEN.
RMSE 1,6∘ 1,7∘ 1,7∘ 1,9∘ 2,7∘

Variance of the RMSE 2,3∘ 2,5∘ 2,4∘ 1,8∘ 23,7∘

Table 5: Comparison between the obtained results and the DoA estimation in practical measurements results already available in the
literature.

Drone detect solutions General DoA solutions
Solutions Proposed [25] [27] [20] [21] [22] [24] [15]
DoA precision 1.9∘ 1∘ 1-3∘ 5∘ 1∘ 4∘ 0.5-2∘ 2∘
Uses anechoic chamber No x x No Yes Yes Yes Yes
Low cost Yes No No Yes Yes Yes Yes Yes

In Table 5, we compare the DoA estimation results
obtained with our framework and with the state-of-the-
art approaches. Furthermore, we show that, even without
involving anechoic chamber in our tests, precise results are
obtained in comparison to references that implemented its
tests in a nonreflexive environment. The ‘x’ means that the
commercial solutions did not provide such information.
Finally, we provide the information about which of the
solutions has low cost.

As shown in Table 6, the total cost of the proposed drone
tracking solution is US$ 2.222, whereas the solutions in [25]
and [27] cost US$ 226.000 and US$ 120.000, respectively.
Therefore, our proposed off-the-shelf solution costs less than
2 % of the commercial solutions in [25, 27].

5. Conclusions

In this paper, we have proposed a low cost antenna array
based drone tracking device for outdoor environments. The
proposed solution is divided into hardware and software
parts. The hardware part of the proposed device is based on
off-the-shelf components such as an omnidirectional antenna
array, a 4-channel SDR platform with carrier frequency
ranging from 70MHz to 6 GHz, a FPGAmotherboard, and a
laptop. The software part includes algorithms for calibration,
model order selection (MOS), andDoAestimation, including
specific preprocessing steps to increase the DoA accuracy.
We have evaluated the performance of our proposed low cost
solution in outdoor scenarios. Our measurement campaigns
have shown that when the array is in the front fire position,
i.e., with a DoA ranging from −60∘ to 60∘, the maximum
and the average DoA errors are 6∘ and 1,9∘, respectively. Our
proposed off-the-shelf solution costs less than 2 % of com-
mercial solutions in [25, 27]. In order to further improve our
analysis of the proposed system and our results, experiments
in an anechoic chamber can be performed. Moreover, the
performance of the proposed framework can be improved
by incorporating interpolation schemes. Perspectives also
include the adoption of a more realistic noise model to
simplify the computation of the thresholds of the Exponential
Fitting Test (EFT).

Appendix

A. Proposed Extrapolation Algorithm to
Find the EFT Thresholds for Extremely
Low Probability of False Alarm

In this appendix we propose an extrapolation algorithm to
estimate the thresholds of the EFT algorithm in cases that the
Probability of False Alarm (Pfa) is extremely low.

The EFT is based on the approximation that the profile of
the ordered noise eigenvalues has an exponential behaviour.
The profile 𝑎(𝑀,𝑁) can be expressed as

𝑎 (𝑀,𝑁)
= √ 12 ( 15𝑀2 + 2 − √ 225(𝑀2 + 2)2 − 180𝑀𝑁(𝑀2 − 1) (𝑀2 + 2)).

(A.1)

Given that 𝑑 = 𝑀 − 𝑃∗, our goal is to vary 𝑃 such that
we find 𝑃∗ that 𝜆̂𝑀−𝑃 ≪ 𝜆𝑀−𝑃, where 𝜆̂𝑀−𝑃 and 𝜆𝑀−𝑃 stand
for predicted (𝑀 − 𝑃)th noise eigenvalue and𝑀 − 𝑃 stands
for actual eigenvalue, respectively. Note that the EFT assumes
that smallest eigenvalue is a noise eigenvalue. Therefore, 𝑃
varies from 1 to 𝑀 − 1. Using (A.1), [44] has derived the
following expression:

𝜆̂𝑀−𝑃 = (𝑃 + 1) ⋅ ( 1 − 𝑎 (𝑃 + 1,𝑁)1 − 𝑎 (𝑃 + 1,𝑁)𝑃+1) ⋅ 𝜎2, (A.2)

𝜎2 = 1𝑃 + 1
𝑁∑
𝑖=0

𝜆𝑀−𝑖, (A.3)

where 𝜎2 is the estimated noise power.
In order to improve further the performance of the

EFT approach, thresholds coefficients 𝜂𝑃 are computed using
noise-only simulated data following Complex-Valued Circu-
larly Symmetric Gaussian and identically and independently
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Table 6: Price table for the hardware of the proposed drone tracker device.

Hardware Cost (US$)
AD-FMCOMMS5-EBZ-ND [33] 1080
4 × Dual-Band Antenna 2.4 & 5GHz [36] 11
ZYNQ 7000 Zc702 [35] 999
Power Divider 2.4-6GHz 30Watts RoHS IP67 [41] 109
5 × cable 305mm HPP100 SMA [42] 23
Total 2222
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Figure 7: Top view of the outdoor scenario for the measurement campaigns including the positions of the transmitter and of the antenna
array based receiver.
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Figure 8: Comparison between the DoA estimation schemes by
varying the DoA from +60∘ to −60∘ with steps of 10∘.

distributed (i.i.d.) as indicated in Section 2. Depending on the𝜂𝑃, we have two hypothesis:
H𝑃 : 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑀−𝑃 − 𝜆̂𝑀−𝑃𝜆̂𝑀−𝑃
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜂𝑃 (A.4)

H𝑃 : 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜆𝑀−𝑃 − 𝜆̂𝑀−𝑃𝜆̂𝑀−𝑃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 > 𝜂𝑃 (A.5)

where H𝑃 : 𝜆𝑀−𝑃 is a noise eigenvalue and H𝑃 : 𝜆𝑀−𝑃 is
a signal eigenvalue. In order to have all 𝜂𝑃 depending of the
Pfa, we can define the Pfa as

Pfa = Pr [d̂ ̸= 0 | d = 0] . (A.6)

Note that the 𝜂𝑃 thresholds are obtained by Monte Carlo
simulations carried out in the only-noise scenario following
the steps in [44] and by choosing the following amount of
realizations:

I = 10
Pfa
. (A.7)
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Figure 9: Comparison of the DoA estimation error between the DoA estimation schemes from Table 1 by varying the angle from −90∘ to 90∘
with steps of 10∘.
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Figure 10: Log linear extrapolation based on two points given by Pfas and thresholds 𝜂𝑃.
Depending on the noise behaviour and the parameters

of the scenario [54, 56], the thresholds can be extremely
low.Therefore, the computational complexity of (A.7) can be
prohibitive. In order to overcome such limitation, we propose
an extrapolation approach to compute the thresholds for
extremely low values of Pfa.

Sincewewish to estimate values outside the known limits,
we can use an extrapolation method and approximate the
descending side of the curve as a decreasing exponential. In
order to simplify the approximation, we adopt a logarithmic
scale as exemplified in Figure 10.

Given the two known points in Figure 10 obtained by
Monte Carlo simulations and given the linear extrapolation

in (A.8), we can compute the two unknown constants a and
b.

Pfa = a ⋅ 𝜂P + b. (A.8)

The constants a and b are given by (A.9) and (A.10)
by using the two known points (log10(Pfa1), 𝜂1) and(log10(Pfa2), 𝜂2).

𝑎 = log10 (Pfa2/Pfa1)(𝜂2 − 𝜂1) (A.9)

𝑏 = log10 (Pfa2) − 𝜂2 ⋅ ( log10 (Pfa2/Pfa1)(𝜂2 − 𝜂1) ) (A.10)
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Figure 11: Thresholds for extrapolated data using computation with M=4 and N=41.

By replacing a and b in (A.8), we obtain the expression
for the 𝜂𝑃 in (A.11).

𝜂𝑃 = log10 (Pfa) − (log10 (Pfa2) − (𝜂2/ (𝜂2 − 𝜂1)) ⋅ log10 (Pfa2/Pfa1))
log10 (Pfa2/Pfa1) / (𝜂2 − 𝜂1) . (A.11)

Following the framework of Figure 3, we set up the EFT
with a Pfa = 10−263 and we obtained the following values for
the thresholds: 𝜂1 = 1.5810, 𝜂2 = 1.7810, and 𝜂3 = 2.1840.

Note that there are only three thresholds, since the
smallest eigenvalue is assumed as a noise eigenvalue in the
EFT approach. In Figures 11(a), 11(b), and 11(c), we depict
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Figure 12: Power spectral density estimate of the only-noise samples
captured by the 1st antenna of the antenna array.
the extrapolation curves for the thresholds 𝜂1, 𝜂2, and 𝜂3,
respectively.

B. Noise Analysis

In Section 2, the noise is assumed to be Complex-
Valued Circularly Symmetric Gaussian and identically
and independently distributed (i.i.d.). The EFT relies
on these properties of the noise. Due to extremely low
values of the Pfa in Appendix A, we analyze the noise
behaviour.

According to Figure 12, the Power Spectrum Den-
sity (PSD) is not flat, indicating that the noise is time
correlated.

In Figure 13, we depict the normalized histogram for
antenna 3. Note that the Gaussian approximation has errors
that can be reduced with an improved model.
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In this paper, the topic of coherent two-dimensional direction of arrival (2D-DOA) estimation is investigated. Our study jointly
utilizes the compressed sensing (CS) technique and the parallel profiles with linear dependencies (PARALIND)model and presents
a 2D-DOA estimation algorithm for coherent sources with the uniform rectangular array. Compared to the traditional PARALIND
decomposition, the proposed algorithm owns lower computational complexity and smaller data storage capacity due to the process
of compression. Besides, the proposed algorithm can obtain autopaired azimuth angles and elevation angles and can achieve the
same estimation performance as the traditional PARALIND, which outperforms some familiar algorithms presented for coherent
sources such as the forward backward spatial smoothing-estimating signal parameters via rotational invariance techniques (FBSS-
ESPRIT) and forward backward spatial smoothing-propagator method (FBSS-PM). Extensive simulations are provided to validate
the effectiveness of the proposed CS-PARALIND algorithm.

1. Introduction

Array signal processing has aroused considerable concerns in
recent decades owing to its extensive engineering application
in satellite communication, radar, sonar, and some other
fields [1–4]. In array signal processing, spectrum estimation,
also known as direction of arrival (DOA) estimation, is a
crucial issue. Till now, there are already many neoteric algo-
rithms [5–8] proposed for DOA estimation with linear array,
which include estimating signal parameters via rotational
invariance techniques (ESPRIT) algorithm [5, 6], multiple
signal classification (MUSIC) algorithm [7], and propagator
method (PM) [8]. Compared with linear array, rectangular
array can measure both azimuth angle and elevation angle,
and hence 2D-DOA estimation with rectangular array has
motivated enormous investigations. Many traditional DOA
estimation methods have already been extended to 2D-DOA
estimation [9–12]. For example, the 2D-ESPRIT algorithms
[9–11] have utilized the invariance property to obtain the 2D-
DOA estimation with uniform rectangular array, and the 2D-
MUSIC [12] algorithm has also proved to be applicable. Some
other algorithms such as angle estimation with generalized

coprime planar array [13] and 2D-DOA estimation with
nested subarrays [14] have better performance for 2D-DOA
estimation as well.

However, in many practical situations, the complex prop-
agation environment usually leads to the presence of coherent
signals, which makes it complicated to obtain the valid DOA
estimation.Therefore, the research on coherent angle estima-
tion has gained great significance.The algorithms mentioned
above are only applicable to noncoherent sources and the
coherent sources will lead to severe invalidity for these
methods. Some other coherent estimationmethods including
traditional forward spatial smoothing (FSS) or forward back-
ward spatial smoothing (FBSS) [15, 16] algorithm have good
estimation performance. Exploiting coprime multiple-input
multiple-output (MIMO) radar, [17] has proposed the DOA
estimation method for mixed coherent and uncorrelated
targets and [18] obtained the DOA estimation of coherent
sources via fourth-order cumulants.

The trilinear decomposition, namely, parallel factor
(PARAFAC) technique [19–21], has been widely employed to
resolve the problem of angular estimation with rectangular
array [22]. However, the decomposition of PARAFAC model
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fails to work if it contains coherent sources. The parallel
profiles with linear dependencies (PARALIND) model [23,
24] discussed in this paper can be regarded as a generalization
of PARAFAC model and is efficient to solve the problem
of coherent DOA estimation, where the PARAFAC method
usually cannot present significant results. In [25, 26], the
PARALIND decomposition method has already been suc-
cessfully applied to obtain the coherent sources estimation
withMIMO radar and acoustic vector-sensor array. However,
the traditional algorithms based on PARALIND decomposi-
tion involve heavy computational burden and huge capacity
consumption of data storage.

Compressed sensing (CS) [27, 28] has aroused con-
siderable concern, which is introduced to areas including
channel estimation, image, beamforming, and radar [29–
32]. Specifically, the angular information of sources can
be structured as a sparse vector and hence the CS tech-
nique can be directly utilized [33, 34]. By applying CS
theory, many novel parameter estimation algorithms have
been proposed for different scenarios. Reference [35] pro-
posed a CS-based angle estimation method for noncircular
sources which can be applied to MIMO radar, while [33,
34] combined the CS technique with PARAFAC model
and proposed an estimation algorithm for joint angle and
frequency. Based on the CS PARAFAC model, a 2D-DOA
estimation method was presented in [36] with a uniform
rectangular array, whereas it works only for noncoherent
sources.

In this paper, we propose a CS-PARALIND algorithm
for coherent sources to extract the DOA estimates with a
uniform rectangular array by generalizing thework presented
in [36] and the CS theory for PARALIND decomposition.
We first construct the received data model which can be
transformed to the PARALIND model. Then, we compress
the data model and perform the PARALIND decomposition
on it to achieve the estimation of compressed direction
matrices. Finally, to acquire the 2D-DOA estimation, we
formulate a sparse recovery problem which can be solved
by the orthogonal matching pursuit (OMP) method [37].
Note that the compression process only compresses the
directional matrix and the source matrix while the coherent
matrix remains the same. Therefore, the coherent structure
of impinging signals is not destroyed after compression.
Comparing to [36], we summarize the main contributions of
our research in this paper:(1) We construct the received data model of coherent
signals for uniform rectangular array which is suitable for the
PARALIND decomposition.(2) We generalize the method in [36] and propose the
compressed sensing PARALIND (CS-PARALIND) model.
Notably, there is no existing report for CS-PARALIND
decomposition so far as we know.(3) We develop the CS-PARALIND decomposition
method to obtain the coherent 2D-DOA estimation for
uniform rectangular array and give the detailed description
of it.

In this paper, the proposed algorithm can obtain
autopaired 2D-DOA estimation of coherent signals. In
addition, the corresponding correlated matrix can also be
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Subarray 1 Subarray 2 Subarray N

Source

k
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Figure 1: The structure of uniform rectangular array.

obtained. The proposed algorithm can attain the same
angle estimation performance as the traditional PARALIND
method [25]. Compared to the FBSS-ESPRIT and the FBSS-
PM algorithm, our method can achieve better DOA esti-
mation performance. In addition, due to the process of
compression, the proposed algorithm consumes lower com-
putational burden and requires limited storage capacity in
practical application. The Cramér-Rao bound (CRB) for
the DOA estimation with uniform rectangular array is also
provided in this paper. A series of simulation results verify
the effectiveness of our approach.

The remainder of our paper is organized as follows:
Section 2 presents the received datamodel of coherent signals
with uniform rectangular array. Section 3 depicts the detailed
derivation of the proposed CS-PARALIND algorithm as
well as the uniqueness certification and complexity analysis.
Numerical simulations are exhibited in Section 4, and we
conclude this paper in Section 5.

Notation. ⊕, ∘, and ⊗, respectively, represent Hadamard
product, Khatri–Rao product, and Kronecker product. (.)𝐻,(.)𝑇, (.)∗, (.)−1, and (.)+ stand for the operations of conjugate-
transpose, transpose, conjugation, inverse, and pseudoin-
verse. The Frobenius norm and l0–norm are denoted by ‖ ∙‖𝐹 and ‖ ∙ ‖0. diag(b) is a diagonal matrix composed of
elements in vector b while diag−1(A) produces a column
vector composed of the diagonal elements ofmatrixA.𝐷𝑛(A)
denotes a diagonalmatrix which consists of the n-th row ofA.𝑠𝑝𝑎𝑛(H) represents the subspace spanned by the columns of
H. V𝑒𝑐(A)means stacking the columns of matrix A. 𝜕means
partial derivatives.

2. Data Model

Assume that there are 𝐾 far-field narrow-band signals with
DOA (𝜃𝑘, 𝜑𝑘) impinging on a uniform rectangular array
consisting of𝑀 × 𝑁 sensors, where 𝜑𝑘 is the azimuth angle
of the 𝑘-th signal, 𝜃𝑘 represents the elevation angle, and the
distance between any two adjacent elements is 𝑑. The sources
number K is known and the noise is additive white Gaussian
which is assumed to be independent and uncorrelated with
received signals. Figure 1 shows the structure of the array.
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For the first subarray in the uniform rectangular array, the
received data at 𝑡-th time can be represented as [36]

x1 (𝑡) = A𝑥s0 (𝑡) + n1 (𝑡) , (1)

where A𝑥 = [a𝑥(𝜃1, 𝜑1), a𝑥(𝜃2, 𝜑2), ⋅ ⋅ ⋅ , a𝑥(𝜃𝐾, 𝜑𝐾)]
denotes the directional matrix of the first subarray with
a𝑥(𝜃𝑘, 𝜑𝑘) = [1, exp(𝑗2𝜋𝑑 cos𝜑𝑘 sin 𝜃𝑘/𝜆), ⋅ ⋅ ⋅ , exp(𝑗2𝜋(𝑀 −1)𝑑 cos𝜑𝑘 sin 𝜃𝑘/𝜆)]𝑇 and 𝑗 = √−1. The received noise of the
first subarray is denoted by n1(𝑡), and s0(𝑡) is the𝐾×1 source
vector of the K signals. Then it follows that the received data
of 𝑛-th subarray at 𝑡-th time can be written as [36]

x𝑛 (𝑡) = A𝑥Φ
𝑛−1s0 (𝑡) + n𝑛 (𝑡) , (2)

where Φ = diag(e𝑗2𝜋𝑑 sin 𝜃1 sin𝜑1/𝜆, ⋅ ⋅ ⋅ , e𝑗2𝜋𝑑 sin 𝜃𝐾 sin𝜑𝐾/𝜆) and
n𝑛(𝑡) stands for the received noise of the 𝑛-th subarray.
Therefore, the received data of the entire rectangular array can
be denoted by [38]

x (𝑡) = [[[[[[[

x1 (𝑡)
x2 (𝑡)...
x𝑁 (𝑡)

]]]]]]]
=
[[[[[[[[

A𝑥
A𝑥Φ...

A𝑥Φ𝑁−1

]]]]]]]]
s0 (𝑡) +

[[[[[[[

n1 (𝑡)
n2 (𝑡)...
n𝑁 (𝑡)

]]]]]]]
, (3)

or more compactly as

x (𝑡) = (A𝑦 ∘ A𝑥) s0 (𝑡) + n (𝑡) , (4)

where A𝑦 = [a𝑦(𝜃1, 𝜑1), a𝑦(𝜃2, 𝜑2), ⋅ ⋅ ⋅ , a𝑦(𝜃𝐾, 𝜑𝐾)] with
a𝑦(𝜃𝑘, 𝜑𝑘) = [1, exp(𝑗2𝜋𝑑 sin𝜑𝑘 sin 𝜃𝑘/𝜆), ⋅ ⋅ ⋅ , exp(𝑗2𝜋(𝑁 −1)𝑑 sin𝜑𝑘 sin 𝜃𝑘/𝜆)] and n(𝑡) is the noise of the whole
rectangular array with n(𝑡) = [n1(𝑡)𝑇,n2(𝑡)𝑇, . . . ,n𝑁(𝑡)𝑇]𝑇.

By exploiting 𝐽 snapshots, the received data can be
denoted as [36]

X̃ = [x (𝑡1) , x (𝑡2) , ⋅ ⋅ ⋅ , x (𝑡𝐽)] , (5)

where X̃ stands for the noisy received signals, and rewriting
(5) in matrix form, we obtain [38]

X̃ =
[[[[[[[[

X̃1
X̃2...̃
X𝑁

]]]]]]]]
=
[[[[[[[[

A𝑥𝐷1 (A𝑦)
A𝑥𝐷2 (A𝑦)...
A𝑥𝐷𝑁 (A𝑦)

]]]]]]]]
S0 +

[[[[[[[

N1
N2...
N𝑁

]]]]]]]
= [A𝑦 ∘ A𝑥] S0 + N,

(6)

where S0 = [s0(𝑡1), s0(𝑡2), ⋅ ⋅ ⋅ , s0(𝑡𝐽)] ∈ C𝐾×𝐽 and X̃𝑛 =
A𝑥𝐷𝑛(A𝑦)S0 + N𝑛. The noise of J snapshots is N =[n(𝑡1),n(𝑡2), ⋅ ⋅ ⋅ ,n(𝑡𝐽)] ∈ C𝑀𝑁×𝐽.

The received data matrix shown in (6) is a traditional
PARAFAC model [19–22], the decomposition of which is
usually nonunique if there exist coherent signals [19].

Assume that among the K received sources, there are 𝐾1
groups of coherent signals; then (6) can be represented as [25]

X̃ = [A𝑦 ∘ A𝑥] ΓS + N, (7)

where S ∈ C𝐾1×𝐽 is the source matrix of 𝐽 snapshots of𝐾1 noncoherent signals. Γ ∈ C𝐾×𝐾1 is the corresponding
correlated matrix satisfying ΓS = S0.

3. CS-PARALIND Decomposition-Based
Algorithm

The PARALIND algorithm suffers from expensive computa-
tional cost, especially in the case of large number of sensors
or snapshots. Specifically, the angular information of received
sources can be structured as a sparse vector and hence the
CS technique can be directly utilized [33]. To counter this
problem, we bring in the CS theory by compressing the
received signal in (7) to a smaller matrix, followed by the
PARALINDdecomposition and, finally, acquire the 2D-DOA
estimates by exploiting sparse recovery method.

3.1. Compression. We compress the received data X ∈
C𝑀×𝐽×𝑁 into a smaller matrix X󸀠 ∈ C𝑀

󸀠×𝐽󸀠×𝑁󸀠with three
compression matrices U ∈ C𝑀×𝑀

󸀠

, V ∈ C𝑁×𝑁
󸀠

, and W ∈
C𝐽×𝐽

󸀠

, with𝑀󸀠 < 𝑀, 𝐽󸀠 < 𝐽 and𝑁󸀠 < 𝑁, which is illustrated
in Figure 2.

The three compression matrices can be constructed via
some random special matrices, e.g., the random Gaussian,
Bernoulli, andpartial Fouriermatrices or theTucker3 decom-
position introduced in [33, 39].

Applying U, V, and W to (7), we can obtain the com-
pressed received data X̃󸀠 ∈ C(𝑀

󸀠𝑁󸀠×𝐽󸀠) as [27]

X̃󸀠 = (V𝑇 ⊗ U𝑇) X̃(𝑀𝑁×𝐽)W
= (V𝑇 ⊗ U𝑇) [A𝑦 ∘ A𝑥] ΓSW + (V𝑇 ⊗ U𝑇)NW. (8)

And according to the property of Khatri–Rao product [33],
we have (V𝑇 ⊗ U𝑇)(A𝑦 ∘ A𝑥) = (V𝑇A𝑦) ∘ (U𝑇A𝑥), and then
(8) can be further simplified to

X̃󸀠 = [A󸀠𝑦 ∘ A󸀠𝑥] ΓS󸀠 +N󸀠, (9)

where A󸀠𝑥
(𝑀󸀠×𝐾) = U𝑇A𝑥, A󸀠𝑥

(𝑀󸀠×𝐾) = U𝑇A𝑥, A󸀠𝑦
(𝑁󸀠×𝐾) =

V𝑇A𝑦, S󸀠
(𝐾×𝐽󸀠) = SW, and N󸀠 = (V𝑇 ⊗ U𝑇)NW.

3.2. PARALIND Decomposition. To transform (9) to PAR-
ALIND model, we define Ỹ = X̃󸀠

𝑇

, or equivalently,

Ỹ = (ΓS󸀠)𝑇 (A󸀠𝑦 ∘ A󸀠𝑥)𝑇 +N󸀠𝑇 = Y + N󸀠𝑇, (10)

where Y = (ΓS󸀠)𝑇(A󸀠𝑦 ∘ A󸀠𝑥)𝑇 denotes the noise-free
compressed received matrix.
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Figure 2: Compression processing.

Obviously, (10) is equivalent to the PARALIND model
[20] and the least fitting for it amounts to [23]

min
Γ,S,A󸀠𝑦,A󸀠𝑥

󵄩󵄩󵄩󵄩󵄩󵄩Ỹ − (ΓS󸀠)𝑇 (A󸀠𝑦 ∘ A󸀠𝑥)𝑇󵄩󵄩󵄩󵄩󵄩󵄩2𝐹 . (11)

Under noise-free condition, (10) can be rewritten as

Y = [Y1,Y2, ⋅ ⋅ ⋅ ,Y𝑁󸀠] = [(ΓS󸀠)𝑇𝐷1 (A󸀠𝑦)A󸀠𝑥𝑇, (ΓS󸀠)𝑇
⋅ 𝐷2 (A󸀠𝑦)A󸀠𝑥𝑇, ⋅ ⋅ ⋅ , (ΓS󸀠)𝑇𝐷𝑁󸀠 (A󸀠𝑦)A󸀠𝑥𝑇] , (12)

where Y𝑛 = (ΓS󸀠)𝑇𝐷𝑛(A󸀠𝑦)A󸀠𝑥𝑇 ∈ C𝐽
󸀠×𝑀󸀠 , 𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁󸀠.

After vectoring Y𝑛, we have [38]

V𝑒𝑐 (Y𝑛) = V𝑒𝑐 ((ΓS󸀠)𝑇𝐷𝑛 (A󸀠𝑦)A󸀠𝑥𝑇)
= (A󸀠𝑥𝐷𝑛 (A󸀠𝑦) ⊗ S󸀠𝑇) V𝑒𝑐 (Γ𝑇) . (13)

Stacking these vectors by columns

[[[[[[[

V𝑒𝑐 (Y1)
V𝑒𝑐 (Y2)...
V𝑒𝑐 (Y𝑁󸀠)

]]]]]]]
=
[[[[[[[[[

A󸀠𝑥𝐷1 (A󸀠𝑦) ⊗ S󸀠𝑇

A󸀠𝑥𝐷2 (A󸀠𝑦) ⊗ S󸀠𝑇...
A󸀠𝑥𝐷𝑁󸀠 (A󸀠𝑦) ⊗ S󸀠𝑇

]]]]]]]]]
V𝑒𝑐 (Γ𝑇) . (14)

Equation (14) also can be denoted as

V𝑒𝑐 (Y) = [(A󸀠𝑦 ∘ A󸀠𝑥) ⊗ S󸀠𝑇] V𝑒𝑐 (Γ𝑇) . (15)

Then under noise environment, V𝑒𝑐(Γ𝑇) can be obtained by

V𝑒𝑐 (Γ𝑇) = [(A󸀠𝑦 ∘ A󸀠𝑥) ⊗ S󸀠𝑇]+ V𝑒𝑐 (Ỹ) . (16)

Now we can update the value of Γ via transforming V𝑒𝑐(Γ𝑇)
to its original modality.

According to (11), the least square (LS) update for S󸀠𝑇 is

S󸀠𝑇 = Ỹ (((A󸀠𝑥 ∘ A󸀠𝑦) Γ)𝑇)+ . (17)

From (12), it follows that the covariance matrix of Y𝑛 can
be written as

𝑁󸀠∑
𝑛=1

Y𝑛
𝐻Y𝑛 = (𝑁󸀠∑

𝑛=1

Y𝑛
𝐻 (ΓS󸀠)𝑇𝐷𝑛 (A󸀠𝑦))A󸀠𝑥

𝑇

= A󸀠𝑥
∗(𝑁󸀠∑
𝑛=1

𝐷𝑛∗ (A󸀠𝑦) (ΓS󸀠)∗ (ΓS󸀠)𝑇𝐷𝑛 (A󸀠𝑦))A󸀠𝑥
𝑇.

(18)

As A󸀠𝑥 is of full column rank and∑𝑁󸀠𝑛=1𝐷𝑛∗(A󸀠𝑦)(ΓS󸀠)∗(ΓS󸀠)𝑇𝐷𝑛(A󸀠𝑦) is nonsingular [24],
we can obtain A󸀠𝑥

∗ via

A󸀠𝑥
∗ = (𝑁󸀠∑

𝑛=1

Ỹ𝑛
𝐻 (ΓS󸀠)𝑇𝐷𝑛 (A󸀠𝑦))

⋅ (𝑁󸀠∑
𝑛=1

𝐷𝑛∗ (A󸀠𝑦) (ΓS󸀠)∗ (ΓS󸀠)𝑇𝐷𝑛 (A󸀠𝑦))
−1

= (𝑁󸀠∑
𝑛=1

Ỹ𝑛
𝐻 (ΓS󸀠)𝑇𝐷𝑛 (A󸀠𝑦))

⋅ (𝑁󸀠∑
𝑛=1

((ΓS󸀠)∗ (ΓS󸀠)𝑇) ⊕ (A󸀠𝑦𝐻A󸀠𝑦))
−1 .

(19)

Substitute Y𝑛 of (12) into the following

(ΓS󸀠)∗ Y𝑛A󸀠𝑥 = (ΓS󸀠)∗ (ΓS󸀠)𝑇𝐷𝑛 (A󸀠𝑦)A󸀠𝑥𝑇A󸀠𝑥. (20)

Taking the diagonal elements of both sides in (20), we have

diag−1 ((ΓS󸀠)∗ Y𝑛A󸀠𝑥)
= ((ΓS󸀠)∗ (ΓS󸀠)𝑇)
⊕ (A󸀠𝑥𝑇A󸀠𝑥) diag−1 (𝐷𝑛 (A󸀠𝑦)) .

(21)
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By enforcing left multiplication operation of (21), we get

diag−1 (𝐷𝑛 (A󸀠𝑦)) = (((ΓS󸀠)∗ (ΓS󸀠)𝑇)
⊕ (A󸀠𝑥𝑇A󸀠𝑥))−1 diag−1 ((ΓS󸀠)∗ Ỹ𝑛A󸀠𝑥) .

(22)

And hence, A𝑦 can be easily obtained form (22).
For the PARALIND decomposition above, according to

(17), (18), and (19), we repeatedly update the estimation of
A󸀠𝑥, A

󸀠
𝑦, S
󸀠, and Γ until convergence. Define the sum of

squared residuals (SSR) of the k-th iteration as 𝑆𝑆𝑅𝑘 =∑𝑁󸀠𝑀󸀠𝑖=1 ∑𝐽󸀠𝑗=1 |𝑐𝑖𝑗|2,where 𝑐𝑖𝑗 is the (𝑖, 𝑗) element of C = Ỹ −(Γ̂Ŝ󸀠)𝑇(Â󸀠𝑦 ∘ Â󸀠𝑥)𝑇. Define the convergence rate of PARALIND
decomposition as 𝑆𝑆𝑅𝑟𝑎𝑡𝑒 = (𝑆𝑆𝑅𝑘 − 𝑆𝑆𝑅𝑘−1)/𝑆𝑆𝑅𝑘−1 [40].
When 𝑆𝑆𝑅𝑟𝑎𝑡𝑒 is smaller than a certain small value (deter-
mined by the noise level), then the above iteration process
can be considered convergent.

Based on the PARALIND decomposition, the estimates
of A󸀠𝑥 and A󸀠𝑦 can be achieved by

Â󸀠𝑥 = A󸀠𝑥ΠΔ𝑥 +W𝑥 = U𝑇A𝑥ΠΔ𝑥 +W𝑥, (23)

Â󸀠𝑦 = A󸀠𝑦ΠΔ𝑦 +W𝑦 = V𝑇A𝑦ΠΔ𝑦 +W𝑦, (24)

whereΠ stands for the permutationmatrix andΔ𝑦 andΔ𝑥 are
the diagonal scalingmatrix ofA󸀠𝑦 andA

󸀠
𝑥. In addition,W𝑥 and

W𝑦 denote the estimation error.

Remark 1. In the proposed algorithm, the scale ambiguity can
be eliminated by direct normalization while the permutation
ambiguity makes no difference in the angle estimation.

3.3. DOA Estimation with Sparsity. By utilizing Â󸀠𝑥, Â
󸀠

𝑦, the
2D-DOA estimation can be obtained with sparsity. With
noiseless case, we use â󸀠𝑥𝑘 and â󸀠𝑦𝑘 to denote the 𝑘-th column
of Â󸀠𝑥, Â

󸀠

𝑦, respectively. From (23) and (24), it follows that [36]

â󸀠𝑥𝑘 = U𝐻𝜌𝑥𝑘a𝑥𝑘, (25)

â󸀠𝑦𝑘 = V𝐻𝜌𝑦𝑘a𝑦𝑘, (26)

where a𝑥𝑘 and a𝑦𝑘 represent the 𝑘-th column in the direc-
tional matrices A𝑥 and A𝑦. In addition, 𝜌𝑥𝑘 and 𝜌𝑦𝑘 denote
the scaling coefficients.

Then we construct two Vandermonde matrices A𝑠𝑥 ∈
C𝑀×𝑄 and A𝑠𝑦 ∈ C𝑁×𝑄 (𝑄 >> 𝑀,𝑄 >> 𝑁), the columns of
which consist of the steering vectors corresponding to each
potential source location [36].

A𝑠𝑥 = [a𝑠𝑥1, a𝑠𝑥2, ⋅ ⋅ ⋅ , a𝑠𝑥𝑄]

=
[[[[[[[[[

1 1 ⋅ ⋅ ⋅ 1
𝑒𝑗2𝜋𝑑g(1)/𝜆 𝑒𝑗2𝜋𝑑g(2)/𝜆 ... 𝑒𝑗2𝜋𝑑g(𝑄)/𝜆... ... ... ...

𝑒𝑗2𝜋(𝑀−1)𝑑g(1)/𝜆 𝑒𝑗2𝜋(𝑀−1)𝑑g(2)/𝜆 ⋅ ⋅ ⋅ 𝑒𝑗2𝜋(𝑀−1)𝑑g(𝑄)/𝜆

]]]]]]]]]
, (27)

A𝑠𝑦 = [a𝑠𝑦1, a𝑠𝑦2, ⋅ ⋅ ⋅ , a𝑠𝑦𝑄]

=
[[[[[[[[[

1 1 ⋅ ⋅ ⋅ 1
𝑒𝑗2𝜋𝑑g(1)/𝜆 𝑒𝑗2𝜋𝑑g(2)/𝜆 ... 𝑒𝑗2𝜋𝑑g(𝑄)/𝜆... ... ... ...

𝑒𝑗2𝜋(𝑁−1)𝑑g(1)/𝜆 𝑒𝑗2𝜋(𝑁−1)𝑑g(2)/𝜆 ⋅ ⋅ ⋅ 𝑒𝑗2𝜋(𝑁−1)𝑑g(𝑄)/𝜆

]]]]]]]]]
, (28)

where g is a sampling vector with g(𝑞) = −1 + 2𝑞/𝑄, 𝑞 =0, 1, . . . , 𝑄.A𝑠𝑥 andA𝑠𝑦 can be referred to as the overcomplete
dictionary for our 2D-DOA estimation [36]. Then (25), (26)
can be converted to

â󸀠𝑥𝑘 = U𝑇A𝑠𝑥x𝑠𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝐾, (29)

â󸀠𝑦𝑘 = V𝑇A𝑠𝑦y𝑠𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝐾, (30)

where x𝑠𝑘 and y𝑠𝑘 are sparse, the estimates ofwhich can be cast
as an optimization problem, subject to 𝑙0-norm constraint.

min 󵄩󵄩󵄩󵄩󵄩â󸀠𝑥𝑘 − U𝐻A𝑠𝑥x𝑠𝑘
󵄩󵄩󵄩󵄩󵄩2𝐹 ,𝑠𝑡. 󵄩󵄩󵄩󵄩x𝑠𝑘󵄩󵄩󵄩󵄩0 = 1, (31)

min 󵄩󵄩󵄩󵄩󵄩â󸀠𝑦𝑘 − V𝐻A𝑠𝑦y𝑠𝑘
󵄩󵄩󵄩󵄩󵄩2𝐹 ,𝑠𝑡. 󵄩󵄩󵄩󵄩y𝑠𝑘󵄩󵄩󵄩󵄩0 = 1. (32)

x𝑠𝑘 and y𝑠𝑘 can be gained by the OMP recovery method [37].
Denote the maximummodulus of elements in x𝑠𝑘 and y𝑠𝑘

as 𝑞𝑥𝑘 and 𝑞𝑦𝑘, respectively.Then the corresponding elements
g(𝑞𝑥𝑘) and g(𝑞𝑦𝑘) inA𝑠𝑥 andA𝑠𝑦 are just the sin 𝜃𝑘 cos𝜑𝑘 and
sin 𝜃𝑘 sin𝜑𝑘 estimation. Define 𝑟𝑘 = g(𝑞𝑥𝑘) + 𝑗g(𝑞𝑦𝑘) and
the estimates of elevation angles and azimuth angles can be
obtained by

𝜃̂𝑘 = sin−1 (𝑎𝑏𝑠 (𝑟𝑘)) , 𝑘 = 1, 2, . . . , 𝐾, (33)

𝜑̂𝑘 = 𝑎𝑛𝑔𝑙𝑒 (𝑟𝑘) , 𝑘 = 1, 2, . . . , 𝐾, (34)

where 𝑎𝑏𝑠(.) outputs the modulus value and 𝑎𝑛𝑔𝑙𝑒(.) com-
putes the angular part of a complex number. Finally, the
autopaired estimates of elevation and azimuth angles can
be attained by employing the paired relationship in the
directionalmatrices obtained by PARALINDdecomposition.

3.4. The Procedure of the Proposed Algorithm. Till now, the
angle estimation of received coherent signals with a uniform
rectangular array has been acquired andwe provide themajor
steps as follows:
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Step 1. Compress the received data X̃, construct the PAR-
ALINDmodel Ỹ according to (8), and then initialize the value
of A󸀠𝑥, A

󸀠
𝑦, Γ, and S󸀠.

Step 2. According to (16), (17), (19), and (22), repeatedly
update the estimates of A󸀠𝑥, A

󸀠

𝑦, S
󸀠, and Γ according to the

convergence conditions.

Step 3. According to (31)-(34), the elevation and azimuth
angles can be estimated by A𝑠𝑥 and A𝑠𝑦.

4. Performance Analysis

4.1. Complexity Analysis of the Proposed Algorithm. We ana-
lyze the complexity of the proposed algorithm in this sub-
section. For the proposed algorithm, the computational com-
plexity is 𝑂(𝑀󸀠𝑁󸀠𝑀𝑁𝐽 + 𝐽𝑀󸀠𝑁󸀠𝐽󸀠 + 𝑛1(𝑀󸀠𝑁󸀠𝐽󸀠(2𝐾2𝐾12 +2𝐾𝐾1 + 2𝐾 + 𝐾1) + 𝑀󸀠𝑁󸀠(2𝐾12 + 𝐾2 + 𝐾𝐾1 + 2𝐾) +𝐾2(𝐽󸀠𝑁󸀠 + 𝐽󸀠 + 𝑁󸀠2 + 𝑁󸀠 + 𝑀󸀠 + 2) + 𝐾3𝐾13 + 2𝐾3 +𝐾13 + 𝐾𝐾1𝐽󸀠(𝑁󸀠 + 1))) + 𝐾𝑃(𝑀 +𝑁)), where 𝑛1 denotes the
time of iterations. With regard to the traditional PARALIND
decomposition [23], it has (𝑛2(𝑀𝑁𝐽(2𝐾2𝐾12 + 2𝐾𝐾1 + 2𝐾 +𝐾1) + 𝑀𝑁(2𝐾12 + 𝐾2 + 𝐾𝐾1 + 2𝐾) + 𝐾2(𝐽𝑁 + 𝐽 + 𝑁2 +𝑁 + 𝑀 + 2) + 𝐾3𝐾13 + 2𝐾3 + 𝐾13 + 𝐾𝐾1𝐽(𝑁 + 1)) +2𝐾2(𝑀+𝑁)+6𝐾2), where 𝑛2 represents the time of iterations.
In the comparison of computational complexity, we have the
parameters of 𝑀 = 𝑁 = 10, 𝐾 = 3, and 𝐾1 = 2. In
addition, assume that 𝑛1 = 𝑛2 = 20, 𝑃 = 200, and𝑀󸀠/𝑀 =𝑁󸀠/𝑁 = 𝐽󸀠/𝐽 = 0.5.The comparison of complexity versus 𝐽 is
depicted in Figure 3, which concludes that the computational
burden of the proposed algorithm is decreased compared to
the traditional PARALIND algorithm.

4.2. CRB. Define A = [a𝑦(𝜃1, 𝜑1) ⊗
a𝑥(𝜃1, 𝜑1), ⋅ ⋅ ⋅ , a𝑦(𝜃𝐾, 𝜑𝐾) ⊗ a𝑥(𝜃𝐾, 𝜑𝐾)] and according
to [41], we derive the CRB

𝐶𝑅𝐵 = 𝜎22𝐽 {Re [D𝐻Π⊥AD ⊕ P̂𝑠
𝑇]}−1 , (35)

where 𝐽 is the number of snapshots and a𝑘 is the 𝑘-
th column of A. 𝜎2 denotes the noise power. Π⊥A =
I𝑀𝑁−A(A𝐻A)−1A𝐻 and I𝑀𝑁 is an𝑀𝑁×𝑀𝑁 identitymatrix.
D = [𝜕a1/𝜕𝜃1, 𝜕a2/𝜕𝜃2, ..., 𝜕a𝐾/𝜕𝜃𝐾, 𝜕a1/𝜕𝜑1, 𝜕a2/𝜕𝜑2,...,𝜕a𝐾/𝜕𝜑𝐾] and P̂𝑠 = (1/𝐽)∑𝐽𝑡=1 s(𝑡)s𝐻(𝑡).
4.3. Advantages. We summarize the advantages of the pro-
posed algorithm as follows:(1) The proposed algorithm possesses lower computa-
tional cost and requires smaller data storage, due to the
compression operation.(2)Theproposed algorithmcan be applied to the coherent
signals. Furthermore, the corresponding correlated matrix
also can be obtained.(3) The proposed algorithm can achieve the same angle
estimation performance with the traditional PARALIND
method and outperforms the FBSS-ESPRIT and FBSS-PM
algorithm.
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Figure 3: Comparison of complexity versus different snapshots (J).

5. Simulation Results

Suppose that 𝐾 = 3 signals with two coherent signals and
one noncoherent signal impinge on a rectangular array, where
the correlated matrix is Γ = [ 1 0 10 1 0 ]𝑇. In the following
simulations, we exploit the rootmean square error (RMSE) to
evaluate the DOA estimation performance and it is presented
by

𝑅𝑀𝑆𝐸 = 1𝐾
𝐾∑
𝑘=1

√ 1𝐿
𝐿∑
𝑙=1

(𝜑̂𝑘,𝑙 − 𝜑𝑘)2 + (𝜃̂𝑘,𝑙 − 𝜃𝑘)2, (36)

where 𝜑̂𝑘,𝑙, 𝜃̂𝑘,𝑙 are the estimations of 𝜑𝑘, 𝜃𝑘 in 𝑙-th simulation,
and the times of Monte-Carlo simulations are indicated by 𝐿.
In the following simulations, we set 𝐿 = 1000.

The locations of the three sources are (𝜃1, 𝜑1) = (15∘, 10∘),(𝜃2, 𝜑2) = (25∘, 30∘), and (𝜃3, 𝜑3) = (35∘, 50∘).𝑀,𝑁, 𝐽, 𝐾 are
the number of rows and columns of the rectangular array,
snapshots, and sources, respectively. And assume that the
rectangular array is uniform and the distance of any two
adjacent sensors is 𝜆/2.
Simulation 1. Figure 4 shows the 2D-DOA estimation results
of our proposed algorithm with SNR=0dB and SNR=20dB,
respectively. The size of PARALINDmodel is defined as𝑀×𝑁×𝐽.The received data matrix has the size of 10×10×200 in
this simulation, which becomes 7×7×140(𝑀󸀠×𝑁󸀠×𝐽󸀠) after
compression. Figure 4 indicates that the proposed algorithm
is effective for 2D-DOA estimation of coherent sources.

Simulation 2. In Figure 5, we exhibit the comparison of the
DOA estimation performance among the proposed algo-
rithm, FSS-ESPRIT, FSS-PM, FBSS-ESPRIT, and FBSS-PM
algorithm, and the traditional PARALIND algorithm. The
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Figure 4: DOA estimation of the proposed algorithm with (a) SNR=0dB, (b) SNR=20dB.
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received data matrix has the size of 10 × 10 × 100 and is
compressed to the size of 8 × 8 × 80. It is illustrated clearly
in Figure 5 that the approach algorithm can achieve the same
DOA estimation performance compared with the traditional
PARALIND algorithm and, furthermore, outperforms the
other four algorithms.

Simulation 3. TheDOA estimation performance result of the
proposed algorithm versus compression ratio is provided in
Figure 6, where the compression ratio is 𝑃 = 𝑀󸀠/𝑀 =𝑁󸀠/𝑁 = 𝐽󸀠/𝐽. In this part, the size of the original PARALIND
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Figure 6: DOA estimation performance under different compres-
sion ratio.

model is 15 × 15 × 200 with 𝑃 = 0.4, 𝑃 = 0.6, and 𝑃 = 0.8. It
is shown in Figure 6 that the estimation performance of our
method improves with P getting larger.

Simulation 4. The angle estimation performance of the pro-
posed algorithm versus 𝐽 is illustrated in Figure 7, where the
rectangular array is structured as 𝑀 = 10, 𝑁 = 10 and𝑀󸀠 = 𝑁󸀠 = 8, 𝐽󸀠/𝐽 = 0.8. It is verified in Figure 7 that the
proposed algorithm can obtain improved DOA estimation
accuracy with a larger snapshots.

Simulation 5. Figure 8 shows DOA estimation performance
of the proposed algorithm with varied𝑀. Assume that 𝑁 =𝑁󸀠 = 10 and 𝐽 = 𝐽󸀠 = 200 with𝑀󸀠/𝑀 = 2/3. It is attested
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Figure 8: DOA estimation performance under differentM.

by Figure 8 that the estimation performance of the proposed
method gets better with the increasing𝑀.

Simulation 6. The estimation performance of the proposed
method versus 𝑁 is illustrated in Figure 9, where 𝑀 =15, 𝐽 = 200 with 𝑀󸀠/𝑀 = 𝐽󸀠/𝐽 = 𝑁󸀠/𝑁 = 0.8.
It is indicated obviously that the proposed method obtains
improved performance with larger𝑁.

6. Conclusions

We jointly utilize the CS theory and the PARALIND decom-
position in this paper and propose a CS-PARALIND algo-
rithm with a uniform rectangular array to extract the DOA
estimates of coherent signals. The proposed algorithm can
attain autopaired 2D-DOA estimates, and benefiting from
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Figure 9: DOA estimation performance under different N.

the compression procedure, lower computational cost, and
smaller demand for storage capacity can be achieved. Exten-
sive simulations corroborate that the proposed approach
obtains superior estimation performance compared to the
traditional PARALIND algorithm and, significantly, outper-
forms the FBSS-PM and FBSS- ESPRIT algorithm.
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A new algorithm to estimate the direction of arrival (DOA) and polarization parameters of signals impinging on an array with
electromagnetic (EM) vector-sensors is presentedby exploiting the canonical polyadic decomposition (CPD) of tensors. In addition
to spatial and temporal diversities, further information from the polarization domain is considered and used in this paper.
Estimation errors of these parameters are evaluated by the Cramér-Rao lower bound (CRB) benchmark, in the presence of additive
white Gaussian noise (AWGN). The superiority of the proposed algorithm is shown by comparing with the derivative algorithms
of MUSIC and ESPRIT. In the proposed algorithm, the parameters can be estimated by virtue of the diversities of the spatial and
polarization belonging to the factormatrices, rather than the conventional subspacewhich is the foundation ofMUSIC andESPRIT.
Additionally, the classical CPD algorithm based on Alternating Least Squares (ALS) is introduced to verify the efficacy of the
proposed CPD algorithm. Results demonstrate that when the number of snapshots is greater than 50, the proposed algorithm
requires a smaller number of snapshots to achieve a high level of performance, compared against the subspace-based algorithms
and the ALS-based algorithm. Furthermore, in the matter of the array with a small number of sensors, the discovered advantage
concerning the Root Mean Square Error (RMSE) in estimating the DOA and the polarization state of the signal is noteworthy.

1. Introduction

Signal parameters estimation is of great significance in many
applications such as satellite navigation, wireless communi-
cation, radar, and sonar. An array of multiple sensors placed
in different spatial locations is used to estimate the signal
parameters, which mainly include spatial and polarization
parameters of the signal. The spatial parameter refers to the
direction of arrival (DOA) of the signal, while the polariza-
tion auxiliary angle and the polarization phase difference of
the signal can be regarded as the polarization parameters.
Among signal parameters estimation algorithms based on
matrix operations, some depend on exhaustive search, e.g.,
multiple signal classification (MUSIC) [1], whereas others do
not, e.g., estimation of the signal parameters via rotational
invariance techniques (ESPRIT) [2] and root-MUSIC [3].
One of the common features of the matrix-based algorithms

is that the matrix can only reflect the two-dimensional diver-
sity of the desired signal. Somemethods exploiting the signal-
subspace embodied by MUSIC, ESPRIT and their derivative
algorithms have been introduced in [4–12], in which the
tensor-based data model has been combined in [10–12].
Based on the Higher-Order Singular Value Decomposition
(HOSVD) of the measurement tensor, two algorithms of
parameters estimation combined with ESPRIT have been
developed in [10]. Similarly, in [11, 12], several tensor MUSIC
methods based on HOSVD have been derived. The existing
research results show that the performance of the subspace-
based tensor method is improved compared to the subspace-
based matrix method, and the computational complexity is
higher in the tensor method than in the matrix method
but of the same order. In [13], a greedy algorithm called
randomized multiple candidate iterative hard thresholding
for DOA estimation has been proposed. A set of potential
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candidates using the iterative hard thresholding algorithm are
first obtained, and then the best candidate can be selected
based on the a priori knowledge of the distribution of the
signal and noise matrices.

The canonical polyadic decomposition (CPD) of the
third-order tensor is a minimal decomposition into a sum of
rank-1 tensors [14]. The uniqueness of CPD, which is often
called essential uniqueness in engineering papers, has been
extensively studied in the field of algebraic geometry. The
property of uniqueness makes the CPD a basic tool for signal
separation, and it is widely used in telecommunication, array
processing, machine learning, etc. [15–20]. In [15], a novel
multiuser receiver for joint symbol and channel estimation by
capitalizing on a tensor modeling of the end-to-end system
has been proposed. The multiple invariance sensor array
processing has been linked to the uniqueness of CPD in [20].
It shows the uniqueness of single and multiple invariance
ESPRIT, which stems from a deterministic decomposition of
the third-order tensor signal model.Moreover, it provides the
DOA of the source with less restrictions of signal stationarity
than the aforementioned statistical approaches. In [21], a
method of DOA estimation for seismic plane waves has been
considered from a deterministic perspective using CPD. In
addition to temporal and spatial information, the different
propagation speed of waves is taken into account by using
the multidimensional feature of the tensor. In [22], a CPD-
based approach for distinguishing the signals with the same
DOA and copolarized state has been proposed. However, the
computational complexity of the algorithm is very high due
to the complexity of the problem model.

Themain purpose of this paper is to explore deterministic
decomposition of the third-order tensor signal model by
exploiting the uniqueness of CPD and then estimate the
signal parameters. The polarization diversity of the signal is
considered in this paper, in addition to the temporal and
spatial sampling employed by the most current parameters
estimation methods. Note that the proposed algorithm focus
on not only the DOA estimation but also the estimation
of polarization parameters delivered by the signal. The
strength of our approach is its excellent performance com-
pared against the traditional subspace-based algorithms such
as MUSIC, HOSVD-MUSIC, and HOSVD-ESPRIT given
shorter snapshots and the array with a small number of
sensors.

The rest of this paper is organized as follows. Section 2
reviews the CPD prerequisites. The tensor signal model is
derived in Section 3, and the introduction to traditional
subspace-based algorithms is also provided. The CPD-based
algorithm is proposed in Section 4, followed by the numerical
simulations in Section 5. Finally, the last part presents our
concluding remarks. The algebra notations involved in the
paper are shown in Table 1.

2. Prerequisites for CPD

Let the (𝑖, 𝑗, 𝑘)-th entry D(𝑖, 𝑗, 𝑘) of the third-order tensor
D ∈ C�×�×� be symbolized by 𝑑���. Herein, we define 𝑟D = 1;
i.e., there exist three nonzero vectors a ∈ C�, b ∈ C�, and

Table 1: Algebra notations.

𝑎 Scalar 𝑎
a Vector a
A MatrixA
A TensorA
A∗ Conjugate of A
A� Transpose of A
A� Conjugate transpose of A
A ⊚B Outer product betweenA andB
A ⊗ B Kronecker product between A and B
A ⊙ B Khatri-Rao product between A and B
A ∘ B Hadamard product between A and B𝑟A Rank of the matrix A
R Real number fieldR
C Complex number field C

c ∈ C� such thatD = a⊚b⊚c, whichmeans that 𝑑��� = 𝑎�𝑏�𝑐�
stands for all possible values of indices.

A third-order tensor F ∈ C�×�×� with general-rank can
be expressed as a sum of rank-one items:

F = �∑
�=1

D (𝑟) ⇐⇒ F = �∑
�=1

a� ⊚ b� ⊚ c�, (1)

where a� ∈ C�, b� ∈ C�, and c� ∈ C�. The decomposition
shown in (1) is called the polyadic decomposition (PD).
Particularly, if the number of rank-one terms 𝑅 is minimal,
then 𝑅 is the rank ofF (i.e., 𝑟F = 𝑅), and (1) is defined as the
CPD ofF.

Additionally, (1) can also be written as F = [A,B,C]�,
where the matrices A = [a1, . . . , a�] ∈ C�×�, B = [b1,. . . , b�] ∈ C�×�, and C = [c1, . . . , c�] ∈ C�×� are
defined as the first, second, and third factor matrix of F,
respectively. Obviously, the entries of F can be written as𝑓��� = ∑�

�=1 𝑎��𝑏��𝑐��. In addition, here is a potential scenario:
the CPD of a general-rank tensor F is not unique. Never-
theless, we still call that the CPD of F is unique when it
is only subject to the trivial indeterminacies, which include
that the rank-one terms D(𝑟) shown in (1) can be arbitrarily
permuted and the vectors belonging to any rank-one term
can be arbitrarily scaled. Similarly, the factormatrices for any
two CPDs F = [A,B,C]� and F = [A,B,C]� coincide up
to column permutation and scaling; for instance, A can be
obtained by scaling and permuting the columns of A (see [9]
for more details). Herein, for reshaping the tensor F into a
matrix F, we introduce the following definition.

Definition 1. Thematrix unfolding that yields𝑁� ∈ {1, . . . , 𝑁}
and the permutation T{1, . . . , 𝑁} = {𝑝1, . . . , 𝑝�}, 𝑝� ∈ {1,. . . , 𝑁} for the tensor A ∈ C�1×�2×...×�𝑁 is defined as
A(T,�󸀠) ∈ C

(�𝑝1�𝑝2 ...�𝑝𝑁󸀠
)×(�𝑝

𝑁󸀠+1
...�𝑝𝑁 ). The (𝑙1, 𝑙2)-th entry

ofA is given by

A(T,�󸀠) (𝑙1, 𝑙2) = 𝑎�1�2 ...�𝑁, (2)
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where 1 ⩽ 𝑚� ⩽ 𝑀� for 𝑛 ∈ {1, 2, . . . , 𝑁}, and 𝑙1 =𝑚�
𝑁󸀠
+∑�󸀠

�=2(𝑚�𝑛−1
− 1)∏�󸀠

�=�𝑀�𝑗
, 𝑙2 = 𝑚�𝑁

+∑�
�=�󸀠+2(𝑚�𝑛−1

−1)∏�
�=�𝑀�𝑗

. Assuming that 𝑁� = 2 and the permutation
T1{1, 2, 3} = {1, 2, 3}, the corresponding matrix unfolding of
(1) can be expressed as

F(T1,2) = [[[[[

F1...
F�

]]]]]
= [[[[[

B diag (a1)C�

...
Bdiag (a�)C�

]]]]]
= (A ⊙ B)C�, (3)

where F(T1,2)
∈ C��×�, F� = [𝑓���]�,��,�=1 symbolizes the 𝑖th

horizontal slice ofF, a� denotes the 𝑖th row of A, and diag(⋅)
is the diagonalization operator. What is more, in the case of𝑁� = 2, we can obtain the other matrix unfoldings:

F(T2,2)
= (B ⊙ C)A�,

F(T3,2)
= (C ⊙ A)B�, 𝑒𝑡𝑐, (4)

where T2{1, 2, 3} = {2, 3, 1} and T3{1, 2, 3} = {3, 1, 2}. This
paper mainly uses the algebraic algorithms described in [14,
23] to explore the application of CPD in signal parameters
estimation. The key of the algebraic algorithms presented in
[14, 21] is the following theorem, which has been derived in
[24].

Theorem 2. Define a third-order tensor F = [A,B,C]�, and
assume that the factor matrices B and C have full column rank
and any two columns selected from the factor matrix A are
linearly independent:

𝑟B = 𝑟C = 𝑅,𝑘A ⩾ 2, (5)

where 𝑘A represents the largest number such that every subset
with 𝑘A columns of the factor matrixA is linearly independent.
Then 𝑟F = 𝑅; the CPD of F can be computed by algebraic
algorithms uniquely.

One algebraic algorithm elaborated in [23] is adopted
in this paper. Herein, we consider the particular case of
F ∈ C2×�×� that conforms to Theorem 2. By (3), the matrix
unfolding ofF can be expressed as

F(T1,2)
= [F1

F2

] = [[
B diag (a1)C�

B diag (a2)C�
]] , (6)

which obtains the equations that

F1F
−1
2 = B diag (a1) diag (a2)−1 B−1,

F�
1F

−�
2 = C diag (a1) diag (a2)−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

D

C−1. (7)

Since 𝑘A ⩾ 2, the diagonal elements of the diagonal
matrix D are distinct. Therefore, the factor matrices B and C

can be uniquely recovered by the eigenvalue decomposition
(EVD) of (7), and then the matrix A can be easily identified
from (6). However, the factor matrices are not necessarily
square matrices in reality. Hence, we need to consider the
generalized inverse operation of the matrices to obtain the
CPD of the tensor.

Herein, in order to avoid ambiguity in signal modeling,
some of the main assumptions are stated as follows.

A1. Completely polarized wave: the horizontal and verti-
cal electric components located in the wavefront of the trans-
verse electromagnetic (TEM) wave are completely correlated.

A2. Far-field assumption: we assume that the distance
between the source and the receiving array is much larger
than the array aperture. Thus, the source of the signal can be
considered point-like. Moreover, the wavefront of the TEM
wave can be approximated as a plane at the sensor level.

A3.Narrow-band assumption: the reciprocal of the signal
bandwidth is much greater than the maximum propagation
time of the signal passing through the array aperture. Typ-
ically, the signal received by an array is a varying complex
envelope, which ismodulated at a carrier with high frequency
(HF). In order to facilitate the digital signal processing, the
intermediate frequency (IF) or baseband signal is usually
wanted. Hence, the analog down-conversion for the received
HF signal is a more common practice.

3. Signal Modeling

This section mainly focuses on the three-dimensional feature,
i.e., the vector-sensor enjoys in spatial, polarization, and time
diversities and then establishes the third-order tensor-based
signal model. In addition, conventional matrix-based solu-
tions are introduced briefly. Firstly, the diversities involved in
this paper are shown as follows.

Time Diversity. The baseband analog signal obtained by
down-conversion is a time-dependent function. Moreover,
the discrete-time signal can be obtained by sampling the
baseband analog signal in time domain. It is assumed that𝑅 signals with the complex amplitudes {𝑠�(𝑘), 𝑟 = 1, . . . , 𝑅}
impinge on the vector-sensor array. Thus, the time diversity
can be formulized as

𝑓(1) (𝑘) = �∑
�=1

𝑠� (𝑘) , (8)

where 𝑘 = 1, . . . , 𝐾, represents the snapshot at the instant 𝑡�.
Spatial Diversity.The spatial sampling of the array reflects

the spatial diversity. Consider a vector-sensor array com-
posed of 𝐿 EM vector-sensors located at b� ∈ R3 for 𝑙 =1, . . . , 𝐿. Combinedwith the timediversity, the signal received
by the array can be expressed as

𝑓(2) (𝑘, 𝑙) = �∑
�=1

𝑒−�2�(b𝑇𝑙 𝜖𝑟/�)𝑠� (𝑘) , (9)

where the symbol 𝜆 denotes the wave length of the sig-
nal impinged on the vector-sensor array. Moreover, 𝜖� =− [sin 𝜙� cos 𝜃� sin 𝜙� sin 𝜃� cos 𝜙�]� denotes the incident
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direction of the 𝑟th signal source associated with the azimuth
angle 𝜃� ∈ [0, 2𝜋) and the elevation angle 𝜙� ∈ [0, 𝜋].

Polarization Diversity. The EM vector-sensor is usually
composed of multiple magnetic and electric short dipoles
in a common spatial point. Hence, the EM vector-sensor is
capable of measuring multiple electromagnetic components
with the number of not less than one. For example, a three-
dipole sensor can measure the three components of the
electric field in three perpendicular directions. Furthermore,
the complete EM vector-sensor has the ability to obtain all
electromagnetic components (i.e., three electric components
and three magnetic components). In particular, if the vector-
sensor array is composed of a monopole, the orientations of
the monopoles cannot be the same; otherwise, the array will
degrade into a scalar-array. We formulate the polarization
diversity combined with the time diversity,

𝑓(3) (𝑘, 𝑗) = �∑
�=1

a�� (Ψ�) 𝑠� (𝑘) , (10)

where 𝑗 = 1, . . . , 𝐽, 𝐽 is the number of component measured
by an EM vector-sensor, 𝐽 = 3 for three-dipoles, and 𝐽 = 6
for complete EM vector-sensor. Moreover, a�� (Ψ�) represents
the 𝑗th component of the polarization steering vector a�(Ψ�),
and the symbol Ψ� = (𝜃�, 𝜙�, 𝛾�, 𝜂�) denotes the spatial-
polarization parameter of the 𝑟th signal source with respect
to the polarization auxiliary angle 𝛾� ∈ [0, 𝜋/2] and the
polarization phase difference 𝜂� ∈ [−𝜋, 𝜋).
3.1. Tensor-Based Signal Model. Consider the diversities
mentioned above, and assume that all the signals are cofre-
quency and incoherent. The spatial steering vector of the
signal with DOA (𝜃, 𝜙) is expressed as

a� (𝜃, 𝜙) = [𝑒−�2�(b𝑇1 𝜖/�), . . . , 𝑒−�2�(b𝑇𝐿𝜖/�)]� . (11)

The polarization steering vector of the signal with spatial-
polarization parameter Ψ = (𝜃, 𝜙, 𝛾, 𝜂) is given by

a� (Ψ) = BΞ�,�ℎ�,�,Ξ�,�

=
[[[[[[[[[[[[

− sin 𝜃 cos 𝜙 cos 𝜃
cos 𝜃 cos 𝜙 sin 𝜃0 − sin 𝜙

cos 𝜙 cos 𝜃 sin 𝜃
cos 𝜙 sin 𝜃 − cos 𝜃− sin 𝜙 0

]]]]]]]]]]]]

, (12)

where ℎ�,� = [cos 𝛾, sin 𝛾𝑒��]� and B ∈ R�×6 represents
the polarization selection matrix of the EM vector-sensor.
Particularly, B = I6×6 represents the complete EM vector-
sensor, and B = [I3×3, 03×3] symbolizes the three-dipole
sensor, where I denotes the identity matrix. Additionally, the
first three rows of the matrix Ξ�,� represent the projections
of the electric field component of the incident signal with
DOA (𝜃, 𝜙) in the three axial directions of the coordinate

system, and the last three rows of the matrix Ξ�,� represent
the projections of the magnetic field component in the three
axial directions. The spatial-polarization steering vector can
be further defined as

a (Ψ) = a� (𝜃, 𝜙) ⊗ a� (Ψ) . (13)

Hereby, let n(𝑘) denote the spatial white noise at the
instant 𝑡�, which is additive and Gaussian complex circular.
The vector-output of the array at the instant 𝑡� can be
expressed as

𝑦 (𝑘) = �∑
�=1

a (Ψ�) 𝑠� (𝑘) + n (𝑘) . (14)

Considering that the multidimensional nature of the
tensor just caters to the multidomain diversities of the signal,
the following spatial-polarization steering matrix can be
obtained by performing the outer product operations of (12)
and (11):

Ã (Ψ) = a� (Ψ) ⊚ a� (𝜃, 𝜙) . (15)

where Ã(Ψ) ∈ C�×�. Let s = [𝑠(1), . . . , 𝑠(𝐾)] denote the
consecutive 𝐾 snapshots of the signal; the tensor-output of𝐾 snapshots can be modeled as

Y = �∑
�=1

Ã (Ψ�) ⊚ s� +N

= �∑
�=1

a� (Ψ�) ⊚ a� (𝜃�, 𝜙�) ⊚ s� +N,
(16)

where Y ∈ C�×�×�. The tensor noise is expressed as N ∈
C�×�×�, which is yielded by the tensorization with respect to
the noise matrix N = [n(1), . . . ,n(𝑘)].
3.2. Traditional Subspace-Based Algorithms. Subspace de-
composition methods with respect to EVD and SVD are
the mainstream of MUSIC, ESPRIT, and their derivative
algorithms. Herein, we introduce the matrix-based MUSIC
algorithm and the tensor-based MUSIC algorithm based on
HOSVD.The covariance matrix for𝐾 snapshots correspond-
ing to (14) can be given by

R̂𝑦𝑦 = 1𝐾
�∑
�=1

𝑦 (𝑘)𝑦� (𝑘) , (17)

where R̂𝑦𝑦 ∈ C��×��. Then the eigenvector corresponding to
the small eigenvalues of R̂𝑦𝑦 can be written in a matrix form
Û�, where Û� ∈ C��×(��−�). Moreover, according to (11) and
(12), we need to construct a search matrix:

D�,� = a� (𝜃, 𝜙) ⊗ (BΞ�,�) . (18)

The solution of the matrix-based MUSIC algorithm can
be defined as

{𝜃�, 𝜙�} = argmax
�,�

det−1 {D�
�,�Û�Û

�
� D�,�} , (19)
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where 𝑟 = 1, . . . , 𝑅. The estimation of the polarization
parameter is detailed in Appendix A. For the tensor-based
MUSIC algorithm based onHOSVD [11], the following signal
model needs to be constructed:

Y (𝑘) = �∑
�=1

Ã (Ψ�) s� + N, (20)

where Y(𝑘) ∈ C�×�. The covariance tensor for 𝐾 snapshots is
expressed as

R̂YY = 1𝐾
�∑
�=1

Y (𝑘) ⊚ Y∗ (𝑘) , (21)

where R̂YY ∈ C�×�×�×�. Then, R̂YY is decomposed using the
HOSVD procedure as

R̂YY = K̂×1Û(1)×2Û(2)×3Û(3)×4Û(4), (22)

where ×� represents 𝑛-mode product, K̂ is the core tensor,
and Û(�) can be obtained by SVD of 𝑛-modematrix unfolding
of tensor R̂YY. Finally the parameters of the sources are
obtained by maximizing the following criterion:

{𝜃�, 𝜙� 𝛾�, 𝜂�}
= argmax

Ψ

󵄩󵄩󵄩󵄩󵄩Ã (Ψ) ×1Û(1)
0 Û(1)�

0 ×2Û(2)
0 Û(2)�

0

󵄩󵄩󵄩󵄩󵄩−1� , (23)

where Û(�)
0 is a truncated form of Û(�) (see [11] for specific

truncation methods). In addition, the HOSVD-ESPRIT algo-
rithm depending on translation invariant property of the
array is elaborated in Appendix B.

4. CPD-Based Algorithm

We hereby execute the CPD of the tensor-based signal
model to obtain the factor matrices, which are then used to
extract the parameters of the signals. Let Y = [A�,A�, S]�,
where A� = [a�(Ψ1), . . . , a�(Ψ�)] ∈ C�×�, A� =[a�(𝜃1, 𝜙1), . . . , a�(𝜃�, 𝜙�)] ∈ C�×�, and S = [s1, . . . , sR] ∈
C�×�. Assume that at least two factor matrices ofY have full
column rank and the 𝑘-rank of the rest factormatrix is not less
than 2, which are consistent with the Theorem 2. Moreover,
there are conditions in which 𝐽, 𝐿, and 𝐾 are not less than𝑅, respectively, and this cannot be ignored here to ensure the
uniqueness of the factor matrices.

4.1. Computation of CPD. As is well known, CPD of a third-
order tensor can be achieved by the classical Alternating Least
Squares (ALS) algorithm, which is detailed in Appendix C.
Differently, we hereby propose an EVD-based algebraic
method to achieve CPD of tensor. The tensor-based signal
model (16) can be unfolded as

Y(T1,2)
= [[[[[

Y1...
Y�

]]]]]
= [[[[[

A� diag (a1�) S�...
A� diag (a��) S�

]]]]]
, (24)

where a�� denotes the 𝑗th row of the A�, 𝑗 = 1, . . . , 𝐽.
According to (24), the following relationship can be easily
derived:

Y�1
Y†
�2
= A� diag (a�1� ) diag (a�2� )−1 A†

� ,
Y�
�1
(Y�

�2
)† = S diag (a�1� ) diag (a�2� )−1 S†, (25)

where 𝑗1 ̸= 𝑗2, 𝑗1, 𝑗2 = 1, . . . , 𝐽, and (⋅)† denotes the Moore-
Penrose inverse. From (24), we have Y� = A� diag(a��)S�, and𝑗 = 1, . . . , 𝐽. Hence, for any 𝑗, diag(a��) = A†

�Y�(S�)†. The
features of the CPD are demonstrated as follows:

(1) The columns of the factor matrix A� are the eigen-
vectors of Y�1

Y†
�2
. The corresponding eigenvalues are

the first 𝑅 larger eigenvalues, which are arranged in a
descending order.

(2) The eigenvectors corresponding to the 𝑅-large eigen-
values of Y�

�1
(Y�

�2
)† constitute the factor matrix S.

(3) The rows of factor matrix A� can be recovered thanks
to the relationship diag (a��) = A†

�Y�(S�)†.
Obviously, when 𝐽 > 2, there are various combinations(𝑗1, 𝑗2) that can be used for EVD. In order to make full use

of the statistical properties of (24), we select 𝐶2
� possible

combinations for EVD to obtainA�󸀠

� , S
�󸀠 , where 𝑗� = 1, . . . , 𝐶2

� .
We follow the convention that the (𝑗1, 𝑗2)-tuples are ordered
lexicographically: the 𝑗�1th tuple (𝑗1, 𝑗2) is preceding the 𝑗�2th
tuple (𝑗3, 𝑗4) if and only if 𝑗1 ⩽ 𝑗3, 𝑗2 ⩽ 𝑗4. According to the
trivial indeterminacies aforementioned for CPD uniqueness,
we know that A�󸀠1

� and A�󸀠2
� , 𝑗�1 ̸= 𝑗�2, coincide up to column

permutation and scaling. In order to achieve the addition of
multiple sets of results, we need to match the multiple sets of
results. That is to say, the eigenvectors in each factor matrix
obtained by the EVD need to be arranged in a descending
order according to the corresponding eigenvalues, and all
the eigenvectors need to be normalized. After the matching
process, Ã�󸀠

� and S̃�
󸀠

can be obtained, and then the following
statistical operations are performed:

A� = 1𝐶2
�

�2𝐿∑
�󸀠=1

Ã�󸀠

� ,

S = 1𝐶2
�

�2𝐿∑
�󸀠=1

S̃�
󸀠 .

(26)

Next, the factor matrix A� can be recovered according to
the results of (26).

4.2. Parameters Estimation from the Factor Matrices. From
the aforementioned tensor-based signal model, we can see
that the spatial-polarization parameters of signals can be
reflected by the factor matrices A� and the factor matrix A�

that only contains the spatial parameters of signals. Hence,
once the factor matrices are obtained, we first need to extract
the spatial parameters from A�.
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4.2.1. Estimation of Spatial Parameters. Spatial DOA (𝜃�, 𝜙�)
of the 𝑟th signal impinging on the array can be calculated
directly by solving the following equations:

[A�]1� = 𝑒−�2�(b𝑇1 𝜖𝑟/�)...
[A�]�� = 𝑒−�2�(b𝑇𝐿𝜖𝑟/�)

(27)

Obviously, any two equations belonging to (27) can be
used to derive the DOA of the 𝑟th signal. Therefore, we can
get𝐶2

� sets of solutions from (27). Improve the accuracy of the
estimated parameters by averaging multiple sets of solutions:

(𝜃�, 𝜙�) = 1𝐶2
�

�2𝐿∑
�=1

(𝜃�, 𝜙�)� , (28)

where (𝜃�, 𝜙�) represents the solution of the𝑚th subequations{[A�]�1�, [A�]�2�}. We follow the convention that the (𝑙1, 𝑙2)-
tuples are ordered lexicographically: the 𝑚th tuple (𝑙1, 𝑙2) is
preceding the 𝑛th tuple (𝑙�1, 𝑙�2) if and only if 𝑙1 ⩽ 𝑙�1, 𝑙2 ⩽ 𝑙�2.
Furthermore, we can construct the optimization problem as
follows to estimate the DOAs of the signals:

{𝜃�, 𝜙�} = argmin
�,�

󵄩󵄩󵄩󵄩𝜁�� ∘ a� (𝜃, 𝜙) − a:,��
󵄩󵄩󵄩󵄩2 , (29)

where a:,�� represents the 𝑟th column of the factor matrix
A� obtained by CPD, 𝜁�� represents the amplitude vector of
a:,�� , and the operator ‖ ⋅ ‖ denotes the 2-norm. The solution
method to (29) and its performance can be used as a further
work, and this paper discusses only the performance based
on the solution of (28).

4.2.2. Estimation of Polarization Parameters. Once the esti-
mation of DOA is obtained, the polarization parameters(𝛾�, 𝜂�) of the 𝑟th signal can be extracted from

a:,�� = BΞ�𝑟,�𝑟 [cos 𝛾�, sin 𝛾�𝑒��𝑟]� , (30)

where a:,�� represents the 𝑟th column of the factor matrix A�

obtained by CPD. Hereby, the estimated value of h�𝑟,�𝑟 can be
expressed as ĥ�𝑟,�𝑟 = Ξ−1�𝑟,�𝑟B−1a:,�� , and the estimated values of
the polarization parameters can be obtained by

𝛾� = arctan(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[ĥ�𝑟,�𝑟

]
2[ĥ�𝑟,�𝑟]1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ,

𝜂� = arg(([ĥ�𝑟,�𝑟
]
2[ĥ�𝑟,�𝑟]1) ,

(31)

where arctan(⋅) is the arctangent operator and the operator
arg(⋅) denotes phase acquisition.

Obviously, the estimation accuracy of the DOA only
depends on the factor matrix A� obtained by CPD, and the

estimation accuracy of the polarization parameters is affected
by both the estimation accuracy of the DOA and the matrix
A� obtained by CPD. It is well known that, in order to satisfy
the validity of the parameters estimation, the algorithm must
follow the premise of 𝐿 > 𝑅. According to [14], there exists
Kruskal bound ensuring the CPD uniqueness 𝑅 < (𝐽 + 𝐿 +𝐾 − 2)/2. With the noise present, the accuracy of the CPD is
severely impaired, when 𝑅 is very close to the bound. How-
ever, as (𝐽+𝐿+𝐾−2)/2 increases, the dependence of the CPD
accuracy on (𝐽+𝐿+𝐾−2)/2will rapidly weaken. In addition,
as can be seen from (26) and (28), the proposed algorithm
can obtain multiple sets of parameters estimation results in
each CPD and perform statistical operations on these results.
However, what is different is that the subspace-based meth-
ods requires sufficient statistical information, which is usually
obtained by increasing the number of sensors or snapshots,
to ensure the accuracy of the parameters estimation, even if
the number of the parameters to be estimated is very small.
We, therefore, conclude that the proposed algorithm can
achieve relatively desirable performance by using a smaller
number of snapshots as well as a smaller number of sensors
compared with the subspace-based methods.The subsequent
simulation results also justify the above theoretical analysis.

4.3. Computational Complexity. The parameters estimation
algorithm using EVD-based CPD of tensors is summarized
in Algorithm 1, which is easy to implement by row-by-row
access. Note that the computational complexity scales linearly
to the number of loops, since the procedure of the algorithm
runs serially.

In fact, the EVDs of (25) follow from the generalized
EVDs (GEVDs) of the matrix pencils (Y�1

,Y�2
) and (Y�

�1
,Y�

�2
).

In order to evaluate the complexity of the proposed algo-
rithm, we first need to know the number of multiplications
required by GEVD. An effective GEVD solution is given
by the method of QZ iteration [25, pp.413-414], in which𝑝𝐿𝐾𝑅 multiplications are required for two 𝐿 × 𝐾 matrices
with rank-𝑅, where the constant 𝑝 depends on the selected
iterative strategy, e.g., for Hessenberg-Triangular Reduction,𝑝 = 8. The Moore-Penrose inverse of the 𝑀 × 𝑁 matrix
or 𝑁 × 𝑀 matrix involves 4𝑀𝑁2 + 8𝑁3 multiplications,
where𝑀 > 𝑁. Additional 𝐽 × (𝑅𝐿𝐾 + 𝑅2𝐾) multiplications
are also required to recover the factor matrix A�. Therefore,
the computational complexity of the EVD-based CPD does
not exceed (𝑝𝐶2

� + 8 + 𝐽)𝐾 ⋅ [𝑂(𝐿2)], since the premise of𝐿, 𝐽,𝐾 > 𝑅 has been established. Furthermore, in order
to compare the computational complexity for the proposed
algorithm, we analyze the required number ofmultiplications
for subspace-basedmethods. For the aforementioned matrix-
based method, the computational complexity of obtaining
subspaces is approximately (𝐿+𝐾) ⋅ [𝑂(𝐿2)]. Considering the
operation process of HOSVD based on orthogonal iterations
[25, pp.454-455], the computational complexity of subspace
for tensor model is about (𝐾𝐽2+8𝐽2+𝑝𝐽)⋅[𝑂(𝐿2)]. Obviously,
the conclusion that the computational complexity of the CPD
algorithm is lower than that of the tensor-based HOSVD
methods can be obtained through the above analysis. Addi-
tionally, for the extraction process of the parameters, the
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Require: Y ∈ C�×�×�, 𝐿, 𝐽, 𝐾, 𝑅.
1: Reshape the matrcies Y1, . . . ,Y� ∈ C�×� by unfolding the tensorY;
2: For 𝑗� = 1 to 𝐶2

� do
3: CalculateY�1

Y†
�2
, Y�

�1
(Y�

�2
)†;

4: Obtain A�󸀠

� by executing the EVD of Y�1
Y†

�2
;

5: Obtain S�
󸀠

by executing the EVD of Y�
�1
(Y�

�2
)†;

6: Obtain Ã�󸀠

� and S̃�
󸀠

by matching processing.
7: End for

8: A� = 1𝐶2
�

�2𝐿∑
�󸀠=1

Ã�󸀠

� , S = 1𝐶2
�

�2𝐿∑
�󸀠=1

S̃�
󸀠

;

9: Recover A� according to diag(a��) = A†
�Y�(S�)†;

10: For 𝑟 = 1 to 𝑅 do
11: For𝑚 = 1 to 𝐶2

� do
12: Calculate (𝜃�, 𝜙�)� by solving equations {[A�]�1�, [A�]�2�};
13: End for

14: (𝜃�, 𝜙�) = 1𝐶2
�

�2𝐿∑
�=1

(𝜃�, 𝜙�)�;
15: ĥ�𝑟,�𝑟

= Ξ−1�𝑟 ,�𝑟B−1a:,�� ;

16: 𝛾� = arctan(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[ĥ�𝑟 ,�𝑟

]
2[ĥ�𝑟 ,�𝑟
]
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) , 𝜂� = arg(([ĥ�𝑟,�𝑟
]
2[ĥ�𝑟,�𝑟
]
1

) .

17: End for
Ensure: Ψ� = (𝜃�, 𝜙�, 𝛾�, 𝜂�), 𝑟 = 1, . . . , 𝑅.

Algorithm 1: EVD-based CPD for parameters estimation.

computational complexity of the search strategies is generally
much higher than that of the equation-solving methods,
under the premise of ensuring the estimation accuracy.
Therefore, the computational complexity of the proposed
algorithm is lower than that of the search-based methods.

Additionally, according to the procedure of the ALS-
based CPD described in Appendix C, the computational
complexity of the factor matrix S is not less than (5 + 𝐿 +𝐾) ⋅[𝑂(𝑅3)], since the premise of𝐿, 𝐽,𝐾 > 𝑅 has been established.
Similarly, the computational complexity of the factormatrices
A� and A� is not less than (5 + 2𝐾) ⋅ [𝑂(𝑅3)]. Therefore, the
computational complexity of the ALS-based CPD is about(15 + 𝐿 + 5𝐾)𝐺 ⋅ [𝑂(𝑅3)], where 𝐺 represents the number of
iterations. We use the Matlab 2016a to implement the after-
mentioned simulations on a computer with Intel Core i5
CPU6200U 2.3GHz and 8GB memory running Windows 10.
From the perspective of computing time, the time required
for ALS-based CPD is about twice that of EVD-based CPD
to obtain the subsequent simulation results.

5. Simulation Results

The superiorities of the proposed algorithm will be demon-
strated by the results of numerical simulations in this section.
We consider the following scenario with a uniform linear
array (ULA) separated by half wavelength. The array consists
of complete EM vector-sensors, and two signals with the
polarization parameters (𝛾1, 𝜂1) = (10∘, 90∘) and (𝛾2, 𝜂2) =(30∘, 90∘) impinge on the array from (𝜃1, 𝜙1) = (50∘, 90∘)
and (𝜃2, 𝜙2) = (120∘, 90∘), respectively. Both signals satisfy

the aforementioned assumptions A1 to A3. The modulation
modes of the signals are BPSK and QBPSK, respectively,
and the symbol transmission rate of both signals is 320𝐵.
Additionally, modulation frequency and sampling frequency
are 16kHz and 32kHz, respectively. The noise component
is assumed to be zero-mean additive white Gaussian noise.
Performance of the EVD-based CPD algorithm is com-
pared with three other subspace-based algorithms, MUSIC,
HOSVD-MUSIC, HOSVD-ESPRIT, and the ALS-based CPD
algorithm. The performances of the algorithms are evaluated
by the Root Mean Square Error (RMSE):

RMSE (𝜇) = √ 1𝑁𝑅
�∑
�=1

�∑
�=1

(𝜇�� − 𝜇�)2, (32)

where 𝜇� denotes one of the parameters {𝜃�, 𝜙�, 𝛾�, 𝜂�}, and𝜇�� is the estimation of 𝜇� in the 𝑛th trial. Throughout all
simulations, results are averaged by 500 Monte-Carlo trails
and compared with the Cramér-Rao lower bound (CRB)
benchmark, which is described in Appendix D.

Example 3. Assume that the number of complete EM vector-
sensors is 4, and the signal-to-noise ratio (SNR) is 30dB.The
proposed EVD-based CPD algorithm is compared with the
subspace-based algorithms and the ALS-based CPD algo-
rithm in terms of theDOARMSEversus the different number
of snapshots 𝐾. Figure 1 illustrates a superior performance of
the proposed EVD-based CPD algorithm with respect to the
other algorithms when the number of snapshots is larger than
50. It is worth noting that, when the number of snapshots is
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Figure 1: DOA RMSE versus𝐾 for 𝐿 = 4 and SNR=30dB.
greater than 100, the performance change of the ALS-based
CPD algorithm with the increase of snapshots is negligible.
In the case where the number of snapshots is extremely
small, the main reason for the poor performance of the EVD-
based CPD algorithm is that the number of the signals to be
estimated is close to the uniqueness condition for CPD.

Example 4. Scenarios with various numbers of sensors (𝐿 ∈{4, 6, 8}) are considered in this example. Each of these
scenarios is tested versus SNR, and the number of snapshots is
fixed to 𝐾 = 200. The following conclusions can be obtained
by observing Figure 2.

(1) For all algorithms in each case, RMSEs decrease
gradually with the increase of SNR. Note that the
EVD-based CPD algorithm performs better than the
other algorithms from case to case when SNR is
greater than 10dB.

(2) In the case of low SNR, i.e., SNR is less than 10dB,
the problem of the poor estimation accuracy for the
proposed EVD-based CPD algorithm is effectively
improved with the increase of the number of sensors.

(3) The accuracy of the DOA estimation for MUSIC
algorithm changes better obviously, as the number
of sensors increases. This is due to the fact that the
MUSIC algorithm determines the DOA by executing
an exhaustive search [21].

Example 5. Once the estimation of DOA is obtained in
Example 4, the polarization parameters can be estimated.
Figure 3 shows the estimation accuracy of the parameter𝛾 by the EVD-based CPD and the other algorithms in the
scenarios in Example 4. The differences in performance
between algorithms are similar to the tendencies emerged in

Figure 2. Similarly, the performance of the ALS-based CPD
is significantly improved as the number of sensors increases.
However, the RMSEs of the algorithms for 𝛾 are far away from
the CRB boundary, especially for 𝐿 = 4 and 𝐿 = 6. This
loss can be explained by the 2-step method of the estimation
process, which consists of estimating DOA parameters firstly,
and then corresponding polarization parameters in a second
step. In other words, the accumulation of errors in the 2-step
calculation leads to this loss.

6. Conclusion

In this paper, we proposed an EVD-based CPD approach for
tensors to tackle the problem of signal parameters estima-
tion. The procedure of the EVD-based CPD was described,
followed by expatiations and simulations of the EVD-based
CPD algorithm applied to the signal parameters estima-
tion. The traditional subspace-based algorithms, MUSIC,
HOSVD-MUSIC HOSVD-ESPRIT, and the classical ALS-
based CPD algorithm, were introduced to verify the efficacy
of the proposed EVD-based CPD algorithm.

The strength of the proposed algorithm lies in the estima-
tion of the factormatrices from the tensormodel of the signal,
which is then used to extract the signal parameters.The signal
parameters can be estimated by virtue of the diversities of
the spatial and polarization belonging to the factor matrixes.
Furthermore, when the number of sensors is small in the
array, the proposed algorithm achieves a lower RMSE.

Appendix

A. Polarization Parameters
Estimation of MUSIC

Through (18) and (19), we can construct a new matrix:

H �𝑟,  �𝑟
= D�

 �𝑟,  �𝑟
Û�Û

�
� D �𝑟,  �𝑟

. (A.1)

The polarization parameters estimation of the signals can
be expressed as

{𝛾�} = arctan{󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ℎ̂� (2)
ℎ̂� (1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨} , (A.2)

{𝜂�} = arg{ ℎ̂� (2)
ℎ̂� (1)} , (A.3)

where ℎ̂� = Gmin{H �𝑟,  �𝑟
,D�

 �𝑟,  �𝑟
D �𝑟,  �𝑟

}, 𝑟 ∈ [1, . . . , 𝑅], and
the operator Gmin(⋅) symbolizes the generalized eigenvector
corresponding to the least generalized eigenvalue.

B. HOSVD-ESPRIT Algorithm

The HOSVD-ESPRIT algorithm based on tensor model
can be adopted, when the array has translation invariant
property; i.e., the array consists of multiple spatial matching
subarrays. This section refers to the idea in [10] to derive the
HOSVD-ESPRIT model based on the vector-sensor arrays.
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Figure 2: DOA RMSE versus SNR for𝐾 = 200 and various numbers of sensors. (a) Array of 𝐿 = 4, (b) array of 𝐿 = 6, and (c) array of 𝐿 = 8.

Assume that the array is obtained by 𝐺 linear translations
of the reference subarray, which is obtained by selecting a
single vector sensor. Construct the spatial steering vector as
follows:

a� (𝜃, 𝜙) = a�� (𝜃, 𝜙) ⊗, . . . , ⊗a�1 (𝜃, 𝜙) , (B.1)

where a��(𝜃, 𝜙) ∈ C�𝑔×1 represents the 𝑔th spatial translation
vector, 𝐿� is the number of the 𝑔th spatial subarray, 𝐿 =Π�

�=1𝐿�, and 1 ⩽ 𝑔 ⩽ 𝐺. Therefore, the steering tensor can
be constructed as follows:

A (Ψ) = a� (Ψ) ⊚ a�1 (𝜃, 𝜙) ⊚, . . . , ⊚a�� (𝜃, 𝜙) . (B.2)
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Figure 3: Polarization parameter’s RMSE versus SNR for𝐾 = 200 and various numbers of sensors. (a) Array of 𝐿 = 4, (b) array of 𝐿 = 6, and
(c) array of 𝐿 = 8.

Furthermore, the tensor-output of 𝐾 snapshots can be
denoted as

Y = �∑
�=1

A (Ψ�) ⊚ s� +N, (B.3)

where Y ∈ C�𝐺×...×�1×�×�. According to (22), the HOSVD
expression of the tensorY can be obtained:

Y = S×1U(1)×2, . . . , ×�+2U(�+2), (B.4)

where the core tensor S of same size as Y. Use S[�] ∈
C�𝐺×...×�1×�×� to represent the truncated tensor ofS [10].The
low-rank approximation ofY can be expressed as

[H[�]]�
�+2

= (U(1)⊗, . . . , ⊗U(�+2) ⋅ [S[�]]�
�+2

, (B.5)
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Let A�+1 = [a��(𝜃1, 𝜙1), . . . , a��(𝜃�, 𝜙�)] and A1 = [a�(Ψ1),. . . , a�(Ψ�)];Φ�󸀠 denotes the second row ofmatrixA�󸀠 , where1 ⩽ 𝑔� ⩽ 𝐺 + 1. Additionally, if A = H[�]×�+2T, there is
Ψ�󸀠 = T−1Φ�󸀠T. Furthermore, the parameters estimation of
the 𝑔�th mode can be expressed as

Ψ��󸀠 = (J̃(�󸀠)1 ⋅ [H[�]]�
�+2
)† ⋅ J̃(�󸀠)2 ⋅ [H[�]]�

�+2
, (B.6)

where J̃(�
󸀠)

� = I
Γ
(𝑔󸀠 )
1

⊗J(�󸀠)� ⊗I
Γ
(𝑔󸀠 )
2

, 𝑖 = 1, 2, Γ(�󸀠)1 = Π�󸀠−1
�=1 𝐿�, Γ(�󸀠)2 =

Π�+1
�=�󸀠+1𝐿�, and J(�

󸀠)
� represents the selection matrix for 𝑔�th

mode. If the array is uniformly spaced in the 𝑔�th mode, the
maximum overlap case can be constructed as follows:

J(�
󸀠)

1 = [I�
𝑔󸀠
−1, 0(�

𝑔󸀠
−1)×1] ,

J(�
󸀠)

2 = [0(�
𝑔󸀠
−1)×1, I�

𝑔󸀠
−1] . (B.7)

C. ALS-Based CPD for the Third-Order Tensor

The approximate factor matrices of the third-order tensorY
can be obtained by a solution of the optimization problem:

min 󵄩󵄩󵄩󵄩󵄩Y − [A�,A�, S]�󵄩󵄩󵄩󵄩󵄩 . (C.1)

According to (3), optimization problem (C.1) can be
rewrite as a quadratic form:

min
󵄩󵄩󵄩󵄩󵄩󵄩Y�

(F1 ,2)
− S (A� ⊙ A�)�󵄩󵄩󵄩󵄩󵄩󵄩� . (C.2)

Furthermore, we can obtain the factor matrix S by the
following approximate form:

S = Y�
(F1 ,2)

(A� ⊙ A�) ((A�
� A�) ∘ (A�

�A�))−1 . (C.3)

In a similar way, the update methods of the factor
matrices A� and A� can be derived as

A� = Y�
(F2,2)

(S ⊙ A�) ((S�S) ∘ (A�
� A�))−1 ,

A� = Y�
(F3,2)

(A� ⊙ S) ((A�
�A�) ∘ (S�S))−1 . (C.4)

In order to obtain the optimal solution of the problem
(C.1), it is necessary to update the matrices A�, A�, and
S through multiple iterations until (C.1) converges to the
desired state.

D. Cramér-Rao Lower Bound for the
Vector-Sensor Array

Consider the situation described by (14) and establish its
matrix form:

𝑥 (𝑘) = A𝑠 (𝑘) + n (𝑘) , (D.1)

where A = [a(Ψ1) . . . a(Ψ�)] ∈ C��×� and 𝑠(𝑘) =[𝑠1(𝑘) . . . 𝑠�(𝑘)]� ∈ C�×1. The unknown parameters vector
can be denoted as

Ψ = [Ψ1 . . . Ψ�]� , (D.2)

where Ψ� represents the unknown parameters vector of the𝑟th source, 𝑟 ∈ [1, . . . , 𝑅]. Assume that matrix A in (D.1) is
column full rank matrix, and the Jacobian 𝜕A/𝜕Ψ is also full
rank. Further, set

Ã = [𝑎̃(1)1 . . . 𝑎̃(1)�1
. . . 𝑎̃(�)1 . . . 𝑎̃(�)�𝑅

] ,
𝑎̃(�)� = 𝜕a (Ψ�)𝜕Ψ� (𝑚) ,

(D.3)

where 𝑞� denotes the number of elements in vector Ψ�. The
main concern of this paper is to investigate the performance
of estimating Ψ in (D.1) from 𝑥(1), . . .𝑥(𝐾).

To simplify the after-mentioned expression of the
Cramér-Rao lower bound, two intermediate matrices are
constructed as follows:

U = R𝑠𝑠 (A�AR𝑠𝑠 + 𝜎2I)−1 A�AR𝑠𝑠,
P = I − A (A�A)−1A�, (D.4)

where R𝑠𝑠 denotes the covariance of the signal matrix S =[𝑠(1) . . . 𝑠(𝐾)], 𝜎2 is the noise variance, and I symbolizes a𝑅×𝑅 unit matrix. The Cramér-Rao lower bound of the unbiased
estimation ofΨ is

CRB (Ψ)
= 𝜎22𝐾 {Re [btr ((1 ⊠ U) ⊡ (Ã�PÃ)��)]}−1 , (D.5)

where 1 symbolizes a 𝑞×𝑞matrix with all entries equal to one,𝑞 = ∑�
�=1 𝑞�. Assume that Q<��> with dimension 𝑝� × 𝑝� is the(𝑖, 𝑗)-th block entry of the matrix Q; the block trace operator

btr(⋅), the block transpose operator 𝑏𝑇, the block Kronecker
product ⊠, and the block Hadamard product ⊡ are defined as
follows.

Definition D.1. Block trace operator is

[btr (Q)]�� = tr (Q<��>) . (D.6)

Definition D.2. Block transpose is

(Q��)
<��>

= Q<��>. (D.7)

Definition D.3. Block Kronecker product is

(Q1 ⊠Q2)<��> = [Q1]<��> ⊗ [Q2]<��> . (D.8)

Definition D.4. Block Hadamard product is

(Q1 ⊡Q2)<��> = [Q1]<��> [Q2]<��> . (D.9)
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