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This study investigates the factors impacting the price difference between the interbank market and the exchange market for the
same bond using a large transaction dataset from July 2006 to June 2016 in China. We find that market liquidity and macrofactors
mainly affect the price difference between the two markets for the same bond. And individual bond liquidity explains only a small
part of the price difference. We also find that the interaction between liquidity and credit risk is an important factor affecting the

price difference, and the effect is greater during financial crisis.

1. Introduction

The value of China’s bond market exceeded 91 trillion yuan
in issues by the end of May 2019, making it the world’s
second-largest bond market after that of the US. China’s
corporate bond market is divided into an interbank market
and an exchange market. In the interbank bond market,
commercial banks, insurance companies, security compa-
nies, and other financial institutions buy, sell, and
repurchase bonds. Participants in this bond market make
inquiries to close deals with selected counterparties. On the
contrary, the exchange bond market is dominated by
nonbank financial institutions and individuals. Bond trading
in the exchange market, such as stock trading, is conducted
by many investors bidding together and negotiated by ac-
tuarial institutions.

There are two types of corporate bonds in China. One
type is issued by a department of the central government or a
state-owned enterprise, while the other is issued by listed
companies. The first corporate bond type is traded on both
the exchange market and the interbank market, whereas the
second type of corporate bond is traded only on the ex-
change market. The first type was issued earlier and is larger
in size than the second type.

China’s corporate bond market began to sprout as early
as the 1980s. Since then, China has transitioned from a

planned economy to a market economy. In August 1993, the
“corporate bond management regulations” were promul-
gated by the State Council, and the first type of corporate
bond began to be issued. The regulations require issuers
raising funds for the construction of large- and medium-
sized projects in China to declare an issue of at least 1 billion
yuan. From the beginning of 2006, the first type of corporate
bonds grew rapidly. By the end of 2015, the first type of
corporate bond issuance had grown in value to reach 16.82
trillion yuan (Chinese monetary unit), and the volume of
transactions had reached 675.13 trillion yuan. By compar-
ison, the second type of corporate bonds started late. On
August 14, 2007, “the company’s bond issuance pilot ap-
proach” was promulgated by China Securities Regulatory
Commission, and on September 24, 2007, the 07 Yangtze
Power bond was issued for the first time. The two types of
corporate bonds are fixed-income securities based on an
enterprise’s credit and are important channels for the en-
terprise to raise funds directly from the public.

Most of the first type of corporate bonds in China is each
traded simultaneously in both the interbank market and the
exchange market. However, there are price differences when
the same bond is traded in the two markets at the same time.
The price difference for the same bond equals the difference
in the spread between them, because the same Treasury
interest rate for the same bond in both markets is subtracted
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when calculating the spreads. Through detailed descriptive
statistics about the pricing difference between the two
markets, we find mean is 0.46% and standard deviation is
0.49%, as is shown in Figure 1. What causes the price dif-
ference? Some scholars analyze the investor structure of the
two markets and argue that the different types of participants
in the two markets result in different compensation for
liquidity.

We adopt a different approach. From the perspective of
individual bonds, we investigate the factors impacting the
liquidity on bond spreads from different dimensions, in-
cluding trading activity and price shocks, using a large
transaction dataset for a 10-year period in China. Moreover,
we introduce stock market liquidity and macrofactors and
find that both of them affect bond spreads. Our study also
finds that interaction between credit risk and liquidity is an
important factor influencing bond spreads, and this effect is
greater during financial crisis. Specifically, we investigate a
large transaction dataset from July 2006 to June 2016, in-
cluding the monthly data of 3716 bonds in China’s bond
market. We identify 1224 individual bonds that are traded
simultaneously in the exchange market and the interbank
market. Our sample includes the 2007-2008 crisis period and
contains more comprehensive information from China’s
corporate bond market. We consider structural differences
between the interbank market and the exchange bond
market.

This study aims to provide a deeper understanding of the
influencing factors of the price difference of the two markets
for the same bond in China. Our research contributes to the
literature in four ways.

First, we select corporate bonds traded simultaneously in
both the interbank market and the exchange market as the
sample and take the difference between the prices of the two
markets for the same bond to eliminate the effect of credit
risk on spreads. Scholars mainly adopt two methods when
studying the influencing factors of spreads. The first category
is based on the principle that credit risk proxies are con-
trolled [1-4]. The second category is based on the principle
of taking price differences between bonds with similar credit
characteristics so that the credit risk component is ap-
proximately separated from spreads [5, 6]. Longstaff et al. [6]
strip the credit risk and extract liquidity risk by using the
residual in the credit default swap market. Helwege et al. [5]
investigate the nondefault spread by using matched pairs of
bonds based on Crabbe and Turner [7] and Dick-Nielsen
et al. [1]. Our sample comprises the same bonds traded in
both markets, and thus, each same bond has the same credit
risk. Our method of eliminating the effect of credit risk on
spreads is more accurate and reliable than those used in the
existing literature.

Second, we decompose yield spreads into three parts: a
liquidity component, a credit risk component, and the in-
teraction between liquidity and credit risk, and our finding
that the interaction between liquidity and credit risk sig-
nificantly affects spreads is in line with that of Rossi [8].
Moreover, we study temporal effect of the interaction be-
tween liquidity and credit risk on bond spreads, especially
during the global financial crisis of 2008/2009.
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FiGure 1: The price differences between the interbank market and
the exchange market in China.

Third, we study the influence of bond market liquidity
and stock market liquidity on spreads from the two di-
mensions of trading activity and price shocks. The effects of
individual bond liquidity and market-level liquidity on bond
spreads are compared.

Finally, we study the influence of macrofactors on the
price difference of the two markets for the same bond. We
use several macrovariables to explain the price differences,
including inflation; GDP; monetary policy; the difference
between the 10-year treasury rate, the 2-year treasury rate,
and the 3-month treasury rate; and the spread between the
bond market index yield and the 10-year Treasury rate.

Our main findings are as follows: market liquidity and
macrofactors mainly affect the price difference between the
two markets for the same bond. Stock market information
can significantly explain the price difference, and the stock
market has liquidity spillover effects on the bond market.
Similar results are obtained by Chordia et al. [9] and
Goyenko and Ukhov [10]. And individual bond liquidity
explains only a small part of the price difference. The in-
teraction between liquidity and credit risk is an important
factor affecting the price difference, and the effect is greater
during financial crisis.

Overall, our research provides new channels to explain
the price difference of the two markets for the same bond at
the same time, which is of great significance to bond pricing
and risk hedging.

The rest of this paper is organized as follows. Section 2
presents a literature review. Section 3 provides the empirical
model. Section 4 describes the variables, data, and sample.
Section 5 elaborates on the empirical results. Section 6
outlines the results of the robustness tests. Section 7 analyzes
the timing characteristics of the interaction between li-
quidity and credit risk. Finally, Section 8 concludes.

2. Literature Review

Many scholars have studied the impact of corporate bond
spreads on different aspects, including individual liquidity,
market-level liquidity, and macrofactors [11-15]. It is well
documented that corporate bond spreads are explained by
individual liquidity [16-24]. Roll [23] shows that under
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certain assumptions, the percentage bid-ask spread of cor-
porate bonds is double the square root of the minus co-
variance between consecutive returns. Amihud [16]
constructs a proxy of illiquidity measure based on the
theoretical model of Kyle [25], while Downing et al. [21]
construct range of bond prices as a liquidity measure. Ren
and Li [26] construct the pricing model of defaultable bonds
under the influence of liquidity risk and find that the term
structure of bond spreads is very sensitive to liquidity risk.
Chen et al. [18] use zero trading days to measure liquidity.
Helwege et al. [5] use many liquidity proxies to explain
corporate bond spreads, including eflicient individual li-
quidity measures.

With regard to the impact of market-level liquidity on
corporate bond spreads, Brockman and Chung [27] show
that commonality in liquidity includes both market and
industry components. Comerton-Forde et al. [28] find that
aggregate market-level and specialist firm-level spreads
widen when specialists have large positions or lose money.
Helwege et al. [5] use a regression model to test whether
market-level liquidity measures help to explain the differ-
ences in bond spreads and find that they significantly im-
prove explanatory power. Ji and Cao [29] find that spreads
more reflect market liquidity premium rather than credit
risk premium. Bongaerts et al. [30] find that the liquidity
level and exposure to equity market liquidity risk affect
expected bond returns, while exposure to corporate bond
liquidity shocks carries an economically negligible risk
premium. These studies provide evidence supporting the
impact of market liquidity on corporate bond spreads. This
impact cannot be ignored, because there is a systematic
liquidity factor that affects corporate bond spreads by af-
fecting market liquidity. Many scholars have found evidence
of systematic liquidity factors [9, 31-36]. Chordia et al. [9]
provide evidence of a systematic liquidity factor in the bond
market and find that this is related to a contemporaneous
systematic liquidity factor of the stock market. Brockman
et al. [31] find that a systematic liquidity factor exists in the
stock market. Mancini et al. [36] conclude that there is a
systematic liquidity factor in the foreign exchange market,
which is linked to equity market liquidity. In addition,
several works in the literature provide evidence on whether
the systematic liquidity risk is priced [33, 37-40]. Pastor and
Stambaugh [39]; Acharya and Pedersen [37]; and Sadka [40]
demonstrate that a premium of systematic liquidity risk
exists. Sadka [40] provides evidence that the shocks of
systematic liquidity are persistent.

The third category focuses on the causal relationship
between macrofactors and corporate bond spreads. Kiiglik
[41] studies the effects of macroeconomic variables on the
nondefault component of emerging market yield spreads.
Han and Zhou [42] focus on the linkage between the
nondefaulting component and the macroeconomic condi-
tions. Guo et al. [43] find that monetary policy have a more
significant effect on spreads for medium-to-long-term
corporate bond but have little impact on the short term.
Ludvigson and Ng [44] investigate the linkages between
macrofactors and bond risk premia. Vodova [45] find that
monetary policy negatively impacts market liquidity. Valla

et al. [46]; Dinger [47]; and Vodova [45] find a negative
impact of GDP on market liquidity. In addition, Moussa [48]
finds that inflation and market liquidity are closely corre-
lated. See also Singh and Sharma [49], who propose that
macrofactors affect corporate bond spreads by affecting
market liquidity.

Some scholars eliminate the credit risk component in
order to further study the influence of the nondefault
component on spreads. In this regard, two major approaches
are adopted. The first is based on the principle of controlling
the credit risk component [1-4]. Longstaff [2] investigates
the impact of liquidity on the spreads between Treasury and
Refcorp bonds by controlling credit risk. Dick-Nielsen et al.
[1] investigate the contribution of illiquidity to corporate
bond spreads by controlling credit risk and bond charac-
teristics. Shin and Kim [3] use a similar approach to study
the impact of liquidity on yield spreads. These works reflect
the principle of controlling credit risk. The second approach
is based on the principle of approximately separating out the
credit risk component from the bond spreads [5, 11]. Instead
of credit controls, Dick-Nielsen et al. [1] run regressions on a
matched sample of corporate bonds using pairs of bonds
issued by the same firm with maturity close to each other.
Helwege et al. [5] separate out the credit risk component by
examining bonds that are issued by the same firm and
examine the effects of liquidity in a sample of bond pairs.
Ejsing et al. [11] extract liquidity premia and estimate li-
quidity and credit premia as latent factors in a state-space
framework.

Several studies discuss the effect of liquidity and credit
risk on bond spreads [50-52]. In fact, the previous literature
regarding the above tends to focus on how liquidity or the
credit component contributes to yield spreads indepen-
dently. Thus, these works tend to overlook whether an in-
teraction between liquidity and credit risk exists. Duffie and
Singleton [51] allow for liquidity effects by introducing a
stochastic process as the fractional carrying cost of the
defaultable instrument. Ericsson and Renault [52] investi-
gate the interaction between liquidity and credit risk in
theory and establish the existence of a credit component, a
liquidity component, and an interaction term. He and Xiong
[53] develop a theoretical model to analyze the interaction
between debt market liquidity and credit risk through so-
called rollover risk. He and Milbradt [54] show that cor-
porate default decisions interact with endogenous secondary
market liquidity via the rollover channel. Wang and Wu [55]
study the relation between trading variables and price
volatility and find strong evidence of a significant interactive
effect of liquidity and credit risk, magnifying during the
financial crisis period. Sperna Weiland et al. [56] propose a
novel way of modeling credit-liquidity interactions through
mutually exciting processes and find that, on average, the
credit-induced liquidity component accounts for 8% to 17%
of total yield spreads, but in the most distressed periods, it
can account for more than 40%. Chen et al. [50] develop a
structural credit risk model to examine how the interactions
of liquidity and default risk affect corporate bond pricing.

Most of these studies discuss the impact of the inter-
action term on corporate bond spreads by focusing on a



theoretical model, whereas this study investigates the impact
of the interaction term on the nondefault spread by sepa-
rating out the credit risk component from the bond spreads
through different empirical methods. Our empirical analysis
reveals the impact of the interaction term on the nondefault
spread in China’s corporate bond market. We provide ev-
idence of the impact of the interaction between liquidity and
credit risk on the nondefault spread from the cross-market
perspective. Several studies show that the bond market and
stock market have liquidity spillover effects [9, 57, 58].
Chordia et al. [9] investigate liquidity movements in Trea-
sury bond and stock markets over a period of more than
1800 trading days and find that bond and stock market
liquidity are significantly correlated. Goyenko and Ukhov
[10] provide evidence of liquidity linkage between bond and
stock markets. They propose that stock market liquidity
affects the bond market. Dimic et al. [57] find that time-
varying stock-bond correlation patterns vary significantly
between the time horizons. However, Chordia et al. [9];
Goyenko and Ukhov [10]; and Dimic et al. [57] do not
consider the interaction between liquidity and credit risk.
We investigate the impact of the interaction between li-
quidity and credit risk on the nondefault spread from dif-
ferent liquidity dimensions of bond market liquidity and
stock market liquidity. Our results show that the nondefault
spread can be significantly explained by the interaction
between liquidity and credit risk considering stock market
liquidity bond market liquidity.

In summary, the previous literature provides an im-
portant foundation for this study. Few of above research

Discrete Dynamics in Nature and Society

study price difference between the interbank market and the
exchange market, which will be studied in this paper.

3. Model

Referring to Helwege et al. [5] and Dick-Nielsen et al. [1], we
select corporate bonds traded simultaneously in both the
interbank market and the exchange market and take the
difference between the prices of the two markets for the same
bond to eliminate the effect of credit risk on spreads ac-
curately. We study the determinants of the price difference
of the two markets for the same bond in China’s corporate
bond market. Equation (1) presents a new model, which
eliminates the credit risk:

Price_dif j, = oty + ; x Liq_dif j; + &y x Inter_dif ;, + ¢,.

(1

In equation (1), Price_difjt is the difference between the
exchange market and the interbank market in price of the
individual bond, which is equal to spread difference. And
Liq_difj; is the difference between the exchange market and
the interbank market in liquidity of the individual bond.
Inter_dif;, is the difference between the exchange market and
the interbank market in the interaction between liquidity
and credit risk of the individual bond.

Equations (2)-(4) present new models that include
market-level liquidity and macrofactors:

Price_dif , = ap + a; x Liq_dif j, + & x Mar_liq;; + ay x Inter_dif j, + &, (2)
Price_dif ;, = &g + &y x Liq_dif j, + a3 x Macj, + ay x Inter_dif ;; + ¢, (3)
Price_difj, = &y + &y x Liq_dif , + &, x Mar_liq;, + a3 X Mac, + &t X Inter_dif ;, + . (4)

Mar_lig;, are the market-level liquidity proxies, and
Mac;, are the macrofactor proxies.

4. Variables, Data, and Sample

4.1. Liquidity and Credit Proxies. Referring to Shin and Kim
[3], we choose the following five liquidity measures in order
to comprehensively measure the liquidity premium: Turn-
over, Vol, Day, Amihud, and Range. Turnover, the frequency
with which market assets trade in a certain period, is one of
the most important proxies to reflect trading activity of the
market. Vol is obtained by dividing the total trading volume
with the number of months during which the issue is traded.
Day is defined as the number of trading days in the cor-
responding month. If the number of trading days is larger,
the bond is more active. Amihud [16] constructs a proxy of
illiquidity measure based on the theoretical model of Kyle

[25]. Following the Amihud measure, this study constructs
Amihud, a monthly illiquidity measure to describe liquidity.
It also constructs Range, one of the illiquidity measures used
by Downing et al. [21]. Amihud and Range describe the
liquidity measure of the price shocks’ impact dimension.
In this study, two credit risk variables are considered as
explanatory variables, Rating and Coupon. Rating is the
credit rating assigned to each bond. Our study adopts the
coding method of Covitz and Downing [19] and Shin and
Kim [3] for credit ratings: AAA=1,AA+=2,.. ,andC=14.
This study assigns the credit rating of bonds below C to 15.
In this way, we can quantify the credit level of the bond.
Coupon refers to the coupon rate of the individual bond.
Longstaft et al. [6] provide evidence that coupon is a proxy of
the nondefaulting component of bond yield spreads and find
that the coeflicient of coupon is significant at least at the level
of 10%. Bharath and Shumway [59] provide the results of



Discrete Dynamics in Nature and Society

regressing bond spreads on coupon and find that coupon has
a significantly positive correlation with bond spreads. See
also Chen et al. [60] and Lin et al. [61].

4.2. Data and Sample Description. This study uses a sample
of corporate bonds in the WIND database from July 2006 to
June 2016. This study collects data on bond liquidity and
credit risk from the WIND database, and bonds without
transactions are removed. When bonds have less than 1
year’s remaining trading time, they are often eliminated [5].
Thus, the corresponding observations are eliminated from
the sample.

This study identifies 1224 individual bonds traded si-
multaneously in the exchange market and the interbank
market in China as the sample. In addition, this study
collects data for the trading volume, trading days, yield-to-
maturity, highest price, lowest price, average price,
remaining life, age, credit rating, coupon rate, and historical
price, and the proxies of liquidity and credit risk are cal-
culated based on the above data. This study calculates the
differences of liquidity proxies. We calculate the price dif-
ference of the two markets for the same bond and analyze its
determinants in China’s corporate bond market.

4.3. Summary Statistics. The summary statistics for the
variables and the bond characteristics of the sample used in
this study are summarized in Table 1.

4.4. Pairwise Correlation Test. Table 2 shows the pairwise
correlation coefficients between liquidity proxies and
summarizes the differences in liquidity measures.

Bond trading activity can represent the level of liquidity
of bonds. Turnover, Vol, and Day are the liquidity proxies of
the bond transaction. Therefore, we need to investigate the
degree of correlation between them. As confirmed from
Panel A of Table 2, Turnover and Vol are highly positively
correlated, with a correlation coefficient of 0.8724, while
Turnover and Day seem to be quite weakly correlated, as are
Vol and Day. The reason is that if the trading volume of the
bond is high, the number of investments involved is large,
and thus, turnover is also large in China’s corporate bond
market. However, trading days are determined by the
market structure, for example, there are fewer trading days
in the interbank market, which comprises more institutional
investors than the exchange market. Similar to Panel A, in
Panel B, Turnover_diff and Vol_diff are highly positively
correlated, with a correlation coeflicient of 0.8661. Turn-
over_diff and Day_diff have a very weak correlation, with a
correlation coefficient of 0.2082, while the correlation co-
efficient of Vol_diff and Day_diff is only slightly larger at
0.2555. Amihud and Range are often used to measure the
impact of trading volume on prices and are commonly used
as liquidity proxies. In Table 2, Amihud is positively cor-
related with Range, with a correlation coefficient of 0.8343,
and Amihud_diff and Range_dift are also highly positively
correlated, with a correlation coefficient of 0.8307. This
shows that Amihud and Range are highly correlated.

Furthermore, in Panel B, Turnover_diff and Vol_diff have
the highest correlation, with a correlation coefficient of
0.8661, while the correlation of Vol_diff and Range_diff is
lowest, with a correlation coefficient of —0.0862.

5. Empirical Results

5.1. Summary Statistics of Liquidity Differences. This study
extracts the nondefault spread, which includes the liquidity
component and the interaction between liquidity and credit
risk, by calculating the individual bond price difference
between the exchange market and the interbank market and
then analyzes its determinants. By establishing a regression
model of the liquidity difference and spread difference, this
study investigates the impact of liquidity on the nondefault
spread. Summary statistics of liquidity differences are given
in Table 3.

5.2. Impact of the Interaction between Liquidity and Credit
Risk on Spreads. Our results show that individual liquidity
proxies have a significant effect on the price difference of the
two markets for the same bond. In Tables 4 and 5, the credit
risk is eliminated, and the interaction between liquidity and
credit risk is taken into account to study the marginal impact
of liquidity proxies on spreads, respectively. To investigate
the impact of liquidity, each regression is estimated using
only one measure of liquidity and the interaction between
liquidity and credit risk is controlled. Vol_diff, Day_dift, and
Range_diff are used to represent individual liquidity dif-
ference, while the cross-terms represent the interaction
between liquidity and credit risk, which cannot be removed
due to their nonlinear functional relationship. Table 4 shows
the estimated effects of liquidity on bond spreads and re-
gressions using the Spread_dif as the dependent variable,
including the subsamples and the full sample. We test all the
error terms in the regressions in the paper and find that the
error terms of the regression equations are normally dis-
tributed and stationary, in line with the basic assumptions of
the regression model.

The results show that there is a significant interaction
between liquidity and credit risk. In the full sample of Ta-
bles 4 and 5, the coefficients of the liquidity measures are
smaller when credit risk is completely controlled. The es-
timated effects of liquidity in Table 5 are nearly always lower
than those in Table 4. The reason is that the liquidity proxy
explains the components of credit risk, which shows that
there is a significant interaction between liquidity and credit
risk. Similar results can be found from Vol and Day. In
Tables 4 and 5, the coefficient of Vol decreases from —0.0018
to —0.0012, while the coefficient of Day decreases from
0.1596 to 0.0647 in the full sample. Similar results are found
in the subsamples of high rating bonds and low rating bonds
in Tables 4 and 5. The coeflicients of the liquidity measures in
Table 5 are smaller than those in Table 4. For example, the
coefficient of Vol drops from —0.0022 to —0.0010 in the high
rating bonds of Tables 4 and 5 while it declines from —0.0015
to —0.0014 in the low rating bonds. The coefficient of Day
drops from 0.0809 to 0.0529 in the high rating bonds of
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TaBLE 1: Summary statistics of bonds in the sample.

Mean Median Maximum Minimum Std. dev. Jarque-Bera Probability =~ Observations
Spread 2.7281 2.6652 35.5890 0.0506 1.1285 2479641.0000 0.01 13722
Turnover 0.0724 0.0311 2.1587 0.0001 0.1204 934967.7000 0.01 13722
Vol 79.2567 36.6094 2810.1350 0.0102 125.5374 1289959.0000 0.01 13722
Day 4.6155 2.0000 23.0000 1.0000 5.3099 11975.5100 0.01 13722
Amihud 0.0153 0.0004 3.5210 0.0001 0.1019 106000000.0000 0.01 13722
Range 0.0256 0.0006 5.6814 0.0001 0.1602 108000000.0000 0.01 13722
Time-to-Maturity 5.1315 5.1808 17.1973 1.0685 1.6668 4235.8130 0.01 13722
Age 2.1097 1.8603 12.5890 0.0932 1.3961 5600.3490 0.01 13722
Coupon 7.0229 7.0000 9.1000 3.5000 0.9200 259.2570 0.01 13722
Rating 3.4575 4.0000 15.0000 1.0000 1.2309 219525.1000 0.01 13722

Spread is the difference between the yield-to-maturity on the corporate bond and the corresponding Treasury rate. Turnover is the frequency of market assets
traded in a certain period of time, and the calculation method is the ratio of the trading volume and the circulation market value. Vol is the average of the total
trading volume (yuan), and Day is the number of trading days in the corresponding month. Amihud and Range are illiquidity measures. Time-to-Maturity
denotes the remaining years of the bond. Age denotes years since issuance. Coupon is the annual coupon interest. Rating is the credit rating of each bond. The
sample period is July 2006 to June 2016, and the sample includes 1224 bonds.

TaBLE 2: Pairwise correlations between liquidity proxies.

Turnover Vol Day Amihud Range
Panel A: liquidity proxies
Turnover 1.0000
Vol 0.8724 1.0000
Day 0.0238 0.0249 1.0000
Amihud -0.0880 —-0.0925 —-0.0344 1.0000
Range —-0.0941 —-0.0989 -0.0172 0.8343 1.0000
Turnover_diff Vol_diff Day_dift Amihud_diff Range_diff
Panel B: differences in liquidity measures
Turnover_diff 1.0000
Vol_dift 0.8661 1.0000
Day_diff 0.2082 0.2555 1.0000
Amihud_diff —-0.1425 -0.1052 -0.1270 1.0000
Range_diff -0.1205 —-0.0862 -0.1096 0.8307 1.0000

For Panel A, the meanings of liquidity proxies are shown in Table 1. For Panel B, the variables are the differences between the exchange market and the
interbank market for the corresponding variables of individual bonds. The sample period is July 2006 to June 2016; the sample includes 1224 bonds.

TABLE 3: Summary statistics of differences in liquidity measures.

Variable Mean Median Maximum Minimum Std. dev. Jarque-Bera Probability ~ Observations
Panel A: all bonds
Turnover_diff —-0.0972 -0.0568 0.6881 -2.1164 0.1529 164007.4000 0.01 6784
Vol_diff —-106.2037 —63.5312 527.2476 —2808.4630 158.4403 283567.2000 0.01 6784
Day_diff 4.9148 2.0000 22.0000 —12.0000 6.4997 964.8958 0.01 6784
Amihud_diff 0.0294 0.0012 3.5206 -0.2771 0.1424 13802006.0000 0.01 6784
Range_diff 0.0498 0.0025 5.6514 -0.1763 0.2239 14038398.0000 0.01 6784
Panel B: high rating bonds
Turnover_diff -0.0749 —-0.0435 0.3059 —1.4227 0.1211 44359.4900 0.01 2185
Vol_diff -96.0034 —57.8675 392.7113 —2808.4630 148.9268 318762.9000 0.01 2185
Day_diff 4.6691 2.0000 22.0000 —11.0000 6.2821 392.0431 0.01 2185
Amihud_diff 0.0239 0.0009 3.3447 -0.0378 0.1382 7660864.0000 0.01 2185
Range_diff 0.0430 0.0018 4.8422 -0.0393 0.2170 5477773.0000 0.01 2185
Panel C: low rating bonds
Turnover_diff -0.1079 —-0.0648 0.6881 -2.1164 0.1649 97938.2000 0.01 4599
Vol_diff —111.0498 —67.0638 527.2476 —2526.0090 162.5571 96771.0800 0.01 4599
Day_diff 5.0315 3.0000 22.0000 —12.0000 6.5980 592.4450 0.01 4599
Amihud_diff 0.0320 0.0015 3.5206 -0.2771 0.1443 7172313.0000 0.01 4599
Range_diff 0.0530 0.0028 5.6514 -0.1763 0.2270 8748478.0000 0.01 4599

The table shows the summary statistics for variables used in the study. The meanings of liquidity proxies are shown in Tables 1 and 2. The sample period is July
2006 to June 2016.
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TaBLE 4: Marginal impact of liquidity proxies on bond spreads.

Vol Day Range Vol x coupon Day x coupon Range x coupon
High rating —0.0022*** 0.0809*** -0.1267 0.0003*** —0.0045* 0.0387
(~3.06) (4.51) (-0.26) (2.93) (-1.82) (0.52)
Low rating -0.0015** 0.2109*** 1.4225** 0.0002* -0.0197*** -0.1700**
(-1.98) (11.55) (2.26) (1.83) (-8.06) (-1.97)
Full sample -0.0018*** 0.1596*** 0.5125 0.0002*** -0.0132*** —0.0461
(-3.41) (12.03) (1.34) (3.02) (-7.37) (-0.85)

The table shows the marginal impact of liquidity proxies on bond spreads, for the full sample, the subsample of high rating bonds, and the subsample of low
rating bonds. Bond spreads are regressed directly on each liquidity proxy by controlling credit risk and interaction. The meanings of liquidity proxies are
shown in Tables 1 and 2. The cross-terms are interactions. The sample period is July 2006 to June 2016. The t-statistics are given in parentheses, and *, **, and

ok ok

represent significance at the 10%, 5%, and 1% level, respectively.

TaBLE 5: Marginal impact of liquidity proxies on the nondefault spread based on equation (1).

Vol_diff Day_diff Range_diff Vol_diff x coupon Day_diff x coupon Range_diff x coupon
High rating -0.0010** 0.0529*** 0.1678 0.0001** —0.0075*** —0.0149
(=2.15) (4.75) (0.52) (2.11) (—4.92) (-0.30)
Low rating —0.0014** 0.0764*** 0.4507 0.0002** -0.0099*** —0.0473
(-2.36) (5.28) (0.87) (2.07) (=5.21) (~0.66)
Full sample —0.0012*** 0.0647*** 0.2682 0.0001*** -0.0086"** -0.025
(-2.93) (6.71) (0.91) (2.62) (-6.71) (~0.60)
Adj—R2 (%) 0.2387 0.7718 0.1243 0.2406 0.7978 0.1445

The table shows the marginal impact of liquidity proxies on the nondefault spread based on equation (1), for the full sample, the subsample of high rating
bonds, and the subsample of low rating bonds. The nondefault spread is regressed directly on each liquidity proxy by controlling interaction. The adjusted R-
squares for the full sample are reported. The meanings of liquidity proxies are shown in Tables 1 and 2. The cross-terms are interactions. The sample period is
July 2006 to June 2016. The t-statistics are given in parentheses, and *, **, and *** represent significance at the 10%, 5%, and 1% level, respectively.

Tables 4 and 5 while it declines from 0.2109 to 0.0764 in the
low rating ones. The coefficient of Range is significant at the
level of 5% in the low rating bonds in Table 4. According to
the empirical results, there is a significant correlation be-
tween the nondefault spread and the interaction between
liquidity and credit risk. For example, the coefficients of
Vol_dift x Coupon and Day_diff x Coupon are significant at
the level of 1% in the full sample in Table 5. In conclusion,
our empirical results confirm that the interaction between
liquidity and credit risk is priced in China’s corporate bond
market.

As Tables 4 and 5 show, only a small part of the
nondefault spread is explained by liquidity proxies, and the
interaction between liquidity and credit risk is significantly
priced. To investigate these results thoroughly, the related
regression results are given in Tables 6 and 7. Regression
results without the interaction between liquidity and credit
risk are shown in Model 1 of Tables 6 and 7. The regression
result of Model 1 in Table 6 shows that the regression
coefficient of Vol is significant at the level of 1%, and the
sign is in line with expectations, while the regression co-
efficient of Range is very significant. The regression result of
Model 1 in Table 7 gives the impact of liquidity differences
on the nondefault spread without considering interaction.
It shows that the regression coeflicient of Vol diff is sig-
nificant at the level of 1%, while the regression coefficient of
Range_diff is significant at the level of 10%. In addition,
Adj-R* of Model 1 in Table 6 is 19.4355%, while Adj-R* of
Model 1 in Table 7 is only 0.1540%, which shows that a
small part of the nondefault spread is explained by liquidity
proxies.

The interaction between liquidity and credit risk is
considered to examine whether the interaction is priced. In
Model 2 of Table 6, the coeflicient of Vol x Coupon is very
significant, and Adj-R” is 19.4831%, which is higher than
19.4355% of Model 1 in Table 6. In Model 2 of Table 7, the
significance of the coefficient of Vol_diff x Coupon is 1%,
and Adj-R® is 0.2406%, which is higher than 0.1540% of
Model 1 in Table 7. This shows that the interaction between
liquidity and credit risk is significantly priced. The reason is
that both liquidity and credit risk are closely related to
market factors and macrofactors, and when market con-
ditions change, liquidity and credit risk must comove and
induce interaction. Adj-R> of Model 2 in Table 6 is much
larger than that of Model 2 in Table 7, which indicates that
liquidity proxies explain only a small fraction of the non-
default spread. Similar conclusions are obtained in Model 3
of Tables 6 and 7.

Opverall, the empirical research in Tables 6 and 7 shows
that after the nondefault spread is extracted and interaction
is considered, only a small part of the nondefault spread is
explained by liquidity proxies, and the nondefault spread
may be affected by other important factors.

5.3. Impact of Bond Market Liquidity and Stock Market Li-
quidity on Spreads. The impact of market liquidity on
spreads cannot be ignored, because there is a systematic
liquidity factor. Market liquidity affects the nondefault
spread by the systematic liquidity factor.

Bond market liquidity and stock market liquidity are
taken into account as market liquidity factors. This study
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TaBLE 6: Impact of liquidity proxies on bond spreads for the full sample.

Model C Vol Day Range Volxcoupon  Dayxcoupon  Rangexcoupon  Adj-R* (%)

. -0.1002  —0.0003***  0.0633***  0.1523*** 19.4355
(~1.49) (-3.54) (32.38) (2.77)

2 0.0268 —0.0019*** 0.0636"** 0.1530*** 0.0002*** 19.4831
(0.34) (-3.51) (32.50) (2.79) (3.02)

3 —0.5341%** —0.0003*** 0.1600"** 0.1429*** —-0.0132*** 19.7471
(-5.97) (-3.76) (12.06) (2.60) (=7.37)

4 -0.1094 —0.0003*** 0.0632*** 0.4717 -0.0461 19.4338
(-1.60) (-3.55) (32.31) (1.24) (-0.85)

5 —0.4169"** —-0.0018*** 0.1598™** 0.3451 0.0002*** —-0.0132*** -0.029 19.7878
(-4.16) (-3.39) (12.05) (0.90) (2.87) (=7.34) (-0.53)

The table shows the impact of liquidity proxies on bond spreads for the full sample, and bond spreads are regressed on the liquidity proxies by controlling
credit risk and interaction. The meanings of liquidity proxies are shown in Tables 1 and 2. The interaction between liquidity and credit risk is represented by
the cross-terms. The sample period is July 2006 to June 2016. The ¢-statistics are given in parentheses, and *, **, and *** represent significance at the 10%, 5%,

and 1% level, respectively.

TaBLE 7: Impact of liquidity proxies on the nondefault spread for the full sample based on equation (1).

Model C Vol_diff Day_diff Range_diff Vol_diff xcoupon Day_diff x coupon Range_diff x coupon Adj—R2 (%)

1 0.1166***  —0.0002*** 0.0003 0.0804* 0.1540
(7.77) (-2.95) (0.21) (1.86)

2 0.1214***  —0.0012*** 0.0008 0.0824* 0.0001*** 0.2406
(8.04) (-3.06) (0.50) (1.91) (2.62)

3 0.1248***  —0.0002***  0.0639*** 0.0752* -0.0086*** 0.7978
(8.32) (~3.37) (6.66) 1.74) (-6.71)

4 0.1165***  —0.0002*** 0.0003 0.2541 -0.025 0.1445
(7.77) (-2.97) (0.20) (0.86) (~0.60)

5 0.1270*** -0.0007* 0.0616*** 0.0416 0.0001 -0.0082*** 0.005 0.7942
(8.41) (-1.82) (6.31) (0.14) 1.32) (-6.31) (0.12)

The table shows the impact of liquidity proxies on the nondefault spread for the full sample based on equation (1). The nondefault spread is regressed on the
liquidity proxies by controlling credit risk and interaction. The meanings of liquidity proxies are shown in Tables 1 and 2. The interaction between liquidity
and credit risk is represented by the cross-terms. The sample period is July 2006 to June 2016. The t-statistics are given in parentheses, and *, **, and ***

represent significance at the 10%, 5%, and 1% level, respectively.

chooses the liquidity proxies of bond market from two
perspectives, transaction activity and price impact, including
BML_Vol, BML_Range, and BML_Amihud to investigate
the explanatory power of bond market-level liquidity on
spreads. BML_Vol is the monthly trading volume of the
corporate bond market. BML_Range and BML_ Amihud are
illiquidity measures of the corporate bond market based on
Range and Amihud, respectively.

Table 8 presents the empirical results. Vol diff and
Range_diff are liquidity differences, and they represent the
transaction activity and price impact. Models 1-3 give the
basic regression models. Adj-R* of the regression equation in
Model 3 is 0.1681%. In Models 4-6, the market liquidity
proxies are introduced to investigate the impact of market
factors on the nondefault spread. In Model 4, the regression
coefficient of BML_Vol is significant at the level of 1%, and
Adj-R® of the regression equation increases from 0.1681% to
0.8264% when the proxy of bond market liquidity is con-
sidered. This suggests that bond market liquidity signifi-
cantly improves the explanatory power of the nondefault
spread and is priced. As proxies for liquidity, BML_Vol
represents trading activity, while BML_Range and
BML_Amihud represent price impact. In Model 6, the

regression coeflicient of BML_Amihud is significant at the
level of 1%, and Adj-R* of the regression equation increases
from 0.1681% to 0.3251%. This conclusion is similar to that
of Model 4.

Considering the spillover and linkage effects between the
bond market and stock market, the liquidity of the stock
market is used to explain the nondefault spread in Model 7.
Vol_diff and Range_diff are used as liquidity proxies, and
SML_Range is an illiquidity measure of stock market based
on Range. The Adj-R* of Model 7 is 0.8503% and increases
more than that of Model 3. Similar conclusions are found in
Models 8-10. This shows that stock market information can
significantly explain the nondefault spread, and the stock
market has liquidity spillover effects on the bond market.
Similar results are obtained by Chordia et al. [9] and
Goyenko and Ukhov [10]. Model 11 shows the regression
results containing all liquidity and market liquidity proxies.
The coefficient of Vol_diff is significant at the level of 1%,
and the signs are in line with expectations. The coefficients of
BML_Vol and SML_Range are all significant at the level of
1%, and the Adj-R? of Model 11 is 1.2797%. We find that the
price difference of the two markets for the same bond is
significantly related to stock market liquidity.
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5.4. Impact of Macrofactors on Spreads. Table 9 presents the
regression results.

Model 2 considers bond market and stock market li-
quidity. The coefficients of BML_Vol and SML_Range are
significant at the level of 1%, and Adj-R* of Model 1 is
1.354%. The regression coefficient of BML_Vol is negative,
because bond market liquidity is good and the liquidity
premium is small. However, the regression coefficient of
SML_Range is negative because of spillover effects between
the stock market and bond market. In other words, when
stock market liquidity is poor, bond market liquidity is good,
and thus, the premium of bond market liquidity is small.

Models 2-7 consider macrovariables to investigate the
impact of macrofactors on the price difference of the two
markets for the same bond. The following three macro-
variables are selected: Year102, Month3, and S1Oyear.
Year102 is the difference between the 10-year Treasury rate
and the 2-year Treasury rate. Month3 is the 3-month
Treasury rate, and S10year is the spread between the bond
market index yield and the 10-year Treasury rate. In Models
2-4, the coefficients of Year102, Month3, and S10year are
0.1141, —0.0907, and 0.1276, respectively, at a significance
level of 1%, while Adj-R* of Model 4 is significantly im-
proved compared with Model 1. This shows that macro-
factors have good explanatory power for the price difference
of the two markets for the same bond. Similar conclusions
are obtained in Models 5-7. CPI, which is the consumer
price index, is used to explain the nondefault spread as the
proxy of macrofactor; the coefficients of CPI are all sig-
nificant at the 1% level in Models 8-12. This shows that CPI
can explain the nondefault spread well, and macrofactors are
the explanatory variables of the nondefault spread. GDP is a
good proxy of macrofactors; the empirical results of Model 6
show that the coefficient of GDP is very significant, and Adj-
R? is also improved compared with Model 1. The circulation
of currency, represented by M,, is an important macro-
variable. The empirical result of Model 7 shows that the
coefficient of M, is very significant, and Adj-R* is 1.5476%.

In Model 8, all macrofactors are considered to investi-
gate the impact of macrofactors on spreads. Macrofactors
and market factors are all considered in Model 9. In this
model, the regression coefficient of Range_diff is not sig-
nificant, which means that the nondefault spread is not
sensitive to illiquidity proxy using extreme values in China’s
corporate bond market. Range_diff is replaced by Ami-
hud_diff in Models 10-12, and the coeflicients of Ami-
hud_diff are very significant. In Model 9, the coefficient of
SML_Range is not significant; a similar result is obtained
from Model 10. In Model 11, the coefficient of Range_dift is
significant at the level of 10%. Because the macrofactors
contain stock market information, better liquidity in the
stock market will result from, for example, loose monetary
policy. In addition, the interaction between liquidity and
credit risk is represented by the cross-terms in Models 1-12.

Because macrofactors contain stock market information,
SML_Range is removed, and the regression result is given in
Model 12. Adj-R* of Model 12 is 2.8771%, and is slightly
improved, while Adj-R* of Model 12 is 17.12 times bigger
than that of Model 1, which indicates that the proxies of
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liquidity explain only a small part of the nondefault spread,
and the nondefault spread is also affected by the unknown
factors. In other words, a systematic liquidity factor exists,
and it affects the liquidity of individual bonds in the bond
market.

These empirical results show that market liquidity risk
and macro risk factors are the main determinants of the
price difference of the two markets for the same bond.

6. Robustness Tests

6.1. Price Impact. To investigate the robustness of our re-
sults, a series of robustness tests are performed. Range is
replaced by Amihud to investigate the impact of liquidity
proxy on the price difference of the two markets for the same
bond from the perspective of price impact in Table 10.

In Model 1, the coefficient of Vol is —0.0002 and is
significant at the level of 1%, while the regression coefficient
of Amihud is also significant at the level of 1%, and the sign is
in line with expectations. In Model 2, the coeflicient of
BML_Vol is significant at the level of 1%, and Adj-R® is
improved 3.6 times compared with Model 1, which indicates
that market liquidity has explanatory power for the non-
default spread. In Model 3, the coefficients of Year102 and
S10year are 0.1389 and 0.1521 and are significant at the level
of 1%, while the coefficients of Year102, S10year, CPI, GDP,
and M, are also significant at the level of 1% in Model 4. In
addition, Adj-R* of Models 3 and 4 is 1.9262% and 2.7850%,
respectively and is significantly improved over that of Model
1, which indicates that macrofactors are significant ex-
planatory variables for the nondefault spread, and our
empirical results are robust in the Chinese corporate bond
market.

Model 5 shows the empirical results including the in-
teraction between liquidity and credit risk. The coefficient of
Vol x Coupon is 0.0002 and is significant at the level of 1%,
while the coeflicient of Day x Coupon is also significant at
the level of 5%. Adj-R* of Model 5 is greater than that of
Model 4, suggesting that the interaction between liquidity
and credit risk is significantly priced in the Chinese cor-
porate bond market. In addition, the empirical results of
Models 1-5 show that the coefficients of Amihud_diff are all
very significant in the Chinese corporate bond market.

6.2. Trading Activity. Trading activity is an important aspect
of liquidity, and Turnover is a commonly used measure of
liquidity. To investigate the robustness of our results,
Vol _diff is replaced by Turnover_diff to investigate the
impact of liquidity proxy on the price difference of the two
markets for the same bond from the perspective of trading
activity in Table 11.

The empirical results of Models 1-5 show that the co-
efficients of Turnover_diff are all significant at the level of
1%, and the sign is in line with expectations. Adj-R* of Model
1 is 0.2989%, while Adj-R2 of Model 2 is 0.9703%, and the
coefficient of BML_Vol is significant at the level of 1%. This
indicates that market liquidity has good explanatory power
for the nondefault spread, and this result is robust. In Model
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3, the coefficients of Year102 and S10year are 0.1379 and
0.1520 and are significant at the level of 1%, while the co-
efficients of Year102, S10year, CPI, GDP, and M, are also
significant at the level of 1% in Model 4. In addition, Adj-R*
of Models 3 and 4 are 1.9797% and 2.8449% and are sig-
nificantly improved compared with Model 1, which indi-
cates that macrofactors are significant explanatory variables
for the nondefault spread, and our empirical results are
robust. The interaction between liquidity and credit risk is
considered in Table 11 in order to investigate whether it is
priced. Similar results are obtained to those in Model 5. The
coefficient of Turnover x Coupon is 0.2129 and is significant
at the level of 1%, while the coefficient of Day x Coupon is
also significant at the level of 5%; Adj-R® of Model 5 is
3.0494% and is greater than that of Model 4. This suggests
that the interaction between liquidity and credit risk is
significantly priced in the Chinese corporate bond market.
In addition, the empirical results of Models 1-5 show that
the coefficients of Amihud_diff are all very significant. The
empirical results of Table 11 show that our results are robust.

6.3. Subsamples. The robustness test results for subsamples
are given in Table 12. In Panel A, the empirical results of the
high credit rating subsample show that the coefficients of
Turnover_diff, BML_Vol, S10year, CPI, GDP, and Turn-
over x Coupon are all significant at the level of 1%. This
shows that market liquidity and macrofactors have ex-
planatory power for the price difference of the two markets
for the same bond and the interaction is significantly priced
in the Chinese corporate bond market. In addition, the
coefficient of BML_Amihud is significant at the level of 5%
in the subsample of low credit rating, while the coeflicient is
at the level of 10% in the subsample of high credit rating,
which shows that the nondefault spread of low credit rating
bonds is more susceptible to market factors than that of high
credit rating bonds. The coefficients of Year102 and M, are
significant at the level of 1% in the subsample of low credit
rating, while their coefficients are significant at the level of
5% in the subsample of high credit rating, which shows that
the nondefault spread of low credit rating bonds is more
susceptible to macrofactors than that of high credit rating
bonds.

In Panel B of Table 12, the sample is divided into two
parts associated with coupon. Similar results are obtained in
Panel B. The empirical results of the high coupon subsample
show that the coefficients of BML_Vol, Year102, S10year,
CPI, GDP, and Turnover x Coupon are all significant at the
level of 1%, while the empirical results of the low coupon
subsample show that the coefficients of BML_Vol, Year102,
S10year, CPI, and Day x Coupon are all significant at the
level of 1%. This shows that market liquidity and macro-
factors have explanatory power for the nondefault spread
and interaction is significantly priced. In addition, the co-
efficient of BML_Amihud is significant at the level of 5% in
the high coupon subsample, while the coefficient is at the
level of 10% in the low coupon subsample, which shows that
the nondefault spread of high coupon bonds is more sus-
ceptible to market factors than that of low coupon bonds.

Discrete Dynamics in Nature and Society

In Panel C of Table 12, the sample is divided into two
parts associated with age. The coeflicients of BML_Amihud,
S10year, CPI, and M, are not significant in the high age
subsample, while their coefficients are significant at the level
of 1% in the low age subsample. The reason for this is that
bonds of high age are often held as asset allocation, and thus,
they are less affected by macrofactors, while bonds of low age
are more active and are sensitive to macrofactors. The co-
efficient of Day x Coupon is not significant, and the coef-
ficient of Turnover x Coupon is significant at the level of 5%
in the high age subsample, while their coefficients are sig-
nificant at the level of 1% in the low age subsample. This
shows that bonds of low age are sensitive to interaction.

In addition, Adj-R? of the subsamples is high, ranging
from 1.7487% to 6.2333%, and is far higher than that
considering liquidity proxies. This shows that our results are
robust. Only a small part of the nondefault spread is
explained by liquidity proxies, and market liquidity and
macrofactors have good explanatory power for the price
difference of the two markets for the same bond for the
following reasons. There is a systematic liquidity factor, and
it affects the liquidity of individual bonds in the bond
market. Macrofactors and stock market liquidity affect the
nondefault spread by affecting the systematic liquidity factor
of the bond market.

In Panel A of Table 12, the coefficients of Turn-
over x Coupon are 0.2361 and 0.2009 and are significant at
the level of 1% for the high credit rating and low credit rating
subsamples. In Panel B, the coefficient of Turnover x Co-
upon is 0.3689 and is significant at the level of 1% in the high
coupon subsample, while the coefficient of Day x Coupon is
also significant at the level of 1% in the low coupon sub-
sample. In Panel C, the coefficient of Turnover x Coupon is
0.2434 and is significant at the level of 5% in the high age
subsample, while the coefficients of Turnover x Coupon and
Day x Coupon are also significant at the level of 1% in the
low age subsample. This shows that the interaction between
liquidity and credit risk is significantly priced and has good
explanatory power for the price difference of the two
markets for the same bond, and our results are robust in
China’s corporate bond market. The reason is that although
liquidity and credit risk are two different types of risk, they
mutually influence each other. Ericsson and Renault [52]
find that liquidity and credit risk are correlated and when
market liquidity is poor, credit risk of bonds is large, which
suggests that there liquidity and credit risk interact. We find
that the price difference of the two markets for the same
bond is significantly related to the interaction between li-
quidity and credit risk.

7. Interaction between Liquidity and Credit
Risk during the Financial Crisis

7.1. Temporal Characteristics of Average Spreads. We study
the temporal characteristics of the monthly average spreads
in the Chinese corporate bond market, namely, the inter-
bank market and the exchange market. The characteristics of
average spreads are very similar, probably because they are
subject to common systematic risk. From May 2007 to
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January 2010, the average spreads gradually increase and
reach the maximum value in March 2012. Then, the average
spreads gradually decrease. The main reason that the spreads
increase from May 2007 to January 2010 is the outbreak of
the global financial crisis, leading investors to demand a
higher premium for compensation. From October 2010 to
March 2012, the liquidity of China’s financial market is
small, and liquidity risk is increasing; thus, the spreads
gradually increase. Since April 2012, China has carried out a
series of financial reforms, and liquidity has gradually im-
proved; market liquidity tends toward stability, and thus, the
spreads slowly become smaller.

Based on the above analysis and Dick-Nielsen et al. [1],
we divide the period from July 2006 to June 2016 into two:
the period of financial crisis from May 2007 to December
2009, and the normal period on either side of it.

7.2. Impact of Interaction between Liquidity and Credit Risk on
Spreads. We choose the basic liquidity and credit risk
proxies and use their cross-terms to represent the interac-
tion. To study the impact of the interaction on spreads, we
divide the sample into the financial crisis period and the
normal period. The relevant empirical results are shown in
Tables 13 and 14.

The regression results containing the interaction are
given in Table 13 and those containing only liquidity and
credit risk are given in Table 14. Both in the normal period
and during the financial crisis, the Adj-R® of the regression
models with the interaction significantly increases. For
example, the increase of Adj-R* was the largest (from 0.4797
to 0.5389) in the exchange market during the financial crisis
period. In addition, some variables are significant because
interaction variables are considered. The t-statistic of
Amihud increases from —0.18 to 2.36 owing to the con-
sideration of interaction in the interbank market during the
financial crisis. This suggests that the interaction between
liquidity and credit risk is an essential explanatory variable
for the spreads. We now turn to the empirical results
considering the interaction.

In the whole sample, the dummy variable is introduced
to test the significance of the impact of the interbank market
and the exchange market on the test results. The dummy
variable of the interbank market is set to 1, and that of the
exchange market is set to 0. As shown in Table 14, the
regression coefficient of the dummy variables has high
significance, which indicates that the impact of the two
trading markets on the spreads is significant in the normal
period. However, the coefficient of the dummy variable is
not significant in Table 13. The reason may be that liquidity
and credit risk have a major impact on the spreads during
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the financial crisis. In the whole sample, the regression
coeflicients of Age, Coupon, and Age * Coupon are signif-
icant at the level of 1%, and the signs are in line with ex-
pectations during the financial crisis, while the regression
coefficients of Vol, Age, Volatility, Coupon,
Vol  Volatility, Age * Volatility, and Age * Coupon are
significant at the level of 1%, and the signs are in line with
expectations in the normal period. This shows that the
impact of the interaction between liquidity and credit risk
cannot be ignored. In addition, the coefficients of
Age * Volatility and Age * Coupon increase from —0.0465
and —0.0489 to 0.0476 and —0.1432, respectively, from the
normal period to the financial crisis, because the interaction
between liquidity and credit risk has a greater impact on the
spreads during the financial crisis. And we study samples of
Chinese corporate bond markets in the normal period and
crisis period, respectively, and compare and analyze the
empirical results. We find that liquidity risk and credit risk
have highly persistent spreads, and the liquidity risk spreads
of the price shock dimension produce a break point during
the crisis, which is consistent with the findings of Sibbertsen
et al. [62]; Wegener et al. [63]; Wegener et al. [64]; and
Phillips and Shi [65].

To ensure the robustness of the results, we perform
regression analysis of the interbank market and the exchange
market independently. In the interbank market, similar
results are found. The regression coefficients of Age, Cou-
pon, and Age * Coupon are significant at the level of 1%, and
the  regression  coefficients of Amihud and
Amihud * Coupon are significant at the level of 5% during
the financial crisis. The regression coefficients of Amihud,
Age, Coupon, Amihud * Coupon, and Age * Coupon are
significant at the level of 1%, and the signs are in line with
expectations in normal times. This shows that the impact of
the interaction between liquidity and credit risk cannot be
ignored. In addition, the coefficients of Amihud % Coupon
and Age * Coupon increase from —15.8072 and —0.0761 to
—52.4023 and —0.1476, respectively, from the normal period
to the financial crisis period. On the exchange market, the
regression coefficients of Day, Age, Coupon, and
Age * Coupon are significant at the level of 1% during the
financial crisis. The regression coefficients of Vol, Volatility,
Coupon, Vol * Volatility, Age * Coupon, and Vol * Coupon
are significant at the level of 1% in the normal period. This
shows that the impact of the interaction between liquidity
and credit risk cannot be ignored. In addition, the coefficient
of Age * Coupon increases from —0.0221 to —0.1832 from the
normal period to the financial crisis. This shows that the
interaction between liquidity and credit risk is present in
China’s bond market and has a greater impact on the spreads
during the financial crisis.
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8. Conclusion

This study analyzes the impact factors of the price difference
between the interbank market and the exchange market for
the same bond in China. We identify 1224 individual bonds
based on a large transaction dataset from July 2006 to June
2016 in China’s bond market. The main conclusions are as
follows.

First, we study the impact of liquidity on the price
difference between the two markets for the same bond from
different individual liquidity dimensions, such as trading
activity and price shocks, and find that individual bond
liquidity is an important factor affecting bond spreads, but it
explains only a small part of spreads.

Second, we introduce the interaction between liquidity
and credit risk into our models. Our study finds that inter-
action between credit risk and liquidity is an important factor
influencing bond spreads, and this effect is greater during
financial crisis. Some scholars provide several reasons. He and
Milbradt [54] propose that starting from the observation that
bond transaction costs increase in times of distress, a decrease
in bond market liquidity results in rollover losses, which in
turn increases default risk. According to Sperna Weiland et al.
[56], the reason that higher credit risk can imply lower li-
quidity is the cost of market making. Our results produce the
following reason: both liquidity and credit risk are closely
related to market factors and macrofactors, and when market
conditions change, liquidity and credit risk must comove and
induce interaction. The greater the interaction between li-
quidity and credit risk, the more risk premium that investors
demand.

Third, we find that market liquidity and macrofactors
mainly affect the price difference between the two markets
for the same bond. We choose proxies of different dimen-
sions to investigate the explanatory power of market li-
quidity and macrofactors on spreads. The results are all
robust.

Our study contributes to the literature by providing new
explanatory channels on spreads. The results of this study
offer interesting insights for corporate bond investors. In
this study, we do not consider the problem of how to es-
timate a structural model to better capture the interaction by
the theoretical models, which may be an important research
direction in the future.
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Based on the transaction data and related borrowers’ characteristics of Renrendai.com, this study conducts an empirical study on
the influencing factors of the investor’s herd behavior and rationality of herd behavior on a Chinese online lending platform. We
mainly find that investors” herd behavior exists significantly on Renrendai.com; there is an “inverted U-shaped” relationship
between the number of bids and the herd behavior of investors. When the number of bids exceeds a certain amount, the time
required for the order to obtain another bid will be prolonged, and the investors’ herd behavior will be slowed down; herd behavior

on Renrendai.com in Chinese market is a partly rational pursuit, but irrational in general.

1. Introduction

Internet Finance (ITFIN), the dynamic integration of In-
ternet technology and finance, implements its function by a
financial service system created by cloud computing and big
data, which shows a significant difference with the tradi-
tional finance industry. By June 2019, the number of online
investment users had reached 170 million, accounting for
19.9% of Chinese Internet users [1]. After nearly a decade of
rapid development, the P2P online lending platform has
become an important supplement to traditional financial
lending industry. These figures clearly show that the research
on the P2P platform has become an important part of fi-
nancial market.

Traditional financial institutions do not need to act as the
intermediaries between lenders and borrowers. Compared
with the traditional financial lending market, the P2P online
lending industry has three main characteristics in a typical
lending process: Firstly, in online lending, borrowers get
their money from many investors, which disperses the de-
fault risk of investors to a certain extent. Secondly, online
lending provides a platform for investors on which they can
check borrowers’ private and loan information, besides
invest behaviors of other investors. Through observation of
the abovementioned information, investors then may make

their own decisions. Thirdly, information asymmetry occurs
between investors and borrowers, lacking related expert
domain knowledge to judge a borrower’s credit level and the
probability of default, and investors can only use published
information about borrowers and behavior of other inves-
tors. Some research has addressed such issues; for example,
Freedman and Jin found the P2P online lending market
Prosper has more significant problems of adverse selection
and information asymmetry [2]. Consequently, the above-
mentioned characteristics of P2P online lending may lead to
investors’ behavior on the platform being easily influenced
by other investors. In order to ensure the success of listing
they invest in, investors may invest in a relatively popular
listing, which leads to herd behavior among investors.
Herd behavior is initially a phenomenon in zoology in
which groups of animals (sheep, cattle, etc.) move together
to forage or seek habitat. This phenomenon was later applied
in human sociology to describe the concerted action and
thinking of people. In the finance field, herd behavior mainly
refers to the imitation behavior of investors in the financial
market who ignore their own information and follow the
decisions of most people in the market. Many scholars in the
finance field have given the concept and definition of herd
behavior from different research perspectives [3-6]. Others
also examine herd behavior of investors [7] and borrowers
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[8] at the platform level in the P2P market. Recent studies
conduct empirical analysis on the relationship between herd
behavior and other investors’ emotion [9]. From the per-
spective of investor decision-making rationality, herd be-
havior can be divided into rational herding and irrational
herding. Rational herd behavior refers to the behavior that
investors rationally imitate and follow the decisions of other
investors under the circumstance of information asymmetry
from the perspective of profit making. Irrational herd be-
havior refers to the investors blindly following the decisions
of other investors in the investment process. Several studies
have been undertaken on the decision-making process of
herd behavior [10, 11]. The herd behavior often stems from
the “sense of belonging” of individuals to the group, such as
feeling secure when they make the same decision with the
group, or individual investors directly choose to follow
institutional investors’ decisions due to the consideration of
opportunity cost and information acquisition ability when
making investment decisions. However, whether the herd
behavior of investors in the Chinese P2P platform is rational
is still a controversial issue. In this paper, we explore the
existence and rationality of herd behavior and tries to ex-
plore the factors influencing herd behavior.

Our empirical analysis proceeds as follows: first, we
explore whether the herd behavior exists in Chinese market
and the relationship between the education level of bor-
rowers and other related factors and herd behavior of
lenders; second, we identify whether the herd behavior is
rational. This study contributes to the current literature in
two ways: first, we use a new proxy, the time it takes for an
order to receive the next bid, to identify the herd behavior,
which can reflect the herd behavior better; third, we study
the rationality of herd behavior not only from the per-
spective of repayment performance but also from the per-
spective of the decision-making process of investors.

This study is organized as follows: Section 2 reviews the
literature in herd behavior and P2P online lending market.
Section 3 introduces data, variables, and methodology.
Section 4 presents the empirical results. The conclusions and
future research directions are summarized in Section 5.

2. Related Literature and Hypothesis

2.1. Whether There Is Herd Behavior. When an investor
makes decisions in the P2P online lending market, there is
some information he or she may take into consideration. The
first kind of information is the borrower’s and order’s in-
formation, some of which are not verified. The second kind
of information is the hidden information obtained by an
investor through observing the behavior of previous in-
vestors. If an investor is an expert with judging ability, and
he can make decisions independently; otherwise, the be-
havior of the “pioneer” can affect investors’ decision making
significantly. Under the circumstance, investors may ignore
their own intelligence and imitate the behavior of others.
Moreover, the rule of the P2P online lending market states
only when the number of bidamount meets the ask of the
order can it be completed. The abovementioned terms lead
to the result that orders that have received partial bids are

Discrete Dynamics in Nature and Society

more likely to succeed than those that have not received any
bids in the same period. If an investor bids for an order that
is not fully completed finally, the money invested will be
returned to their account, and they will not receive interest
income in a period of time and will have to find other orders
to bid again. Therefore, fail to bid an order will cause the
opportunity cost (loss of interest income) and additional
search costs (time lost to search for other orders); investors
may be more willing to bid orders that have been partially
bided in order to reduce the cost, which may lead to in-
vestors rushing to bid some order, and then, a herd behavior
of investors is engendered. Studies on the herding behavior
on the P2P lending platform are plentiful. Krumme and
Herrero [12] discovered the herd behavior exists on Prosper,
an online lending platform. Similar research is conducted by
Herzenstein et al. [13]. Berkovich [14] made further research
considering the cost of bidding; investors are more willing to
invest in orders that have been or will be filled, which also
proves the existence of herd behavior on Prosper. Others
have also been undertaken on trend of herd behavior. Based
on Popfunding, an online lending platform, the borrowers
on which are mainly with low credit rating, Lee and Lee [15]
proved the existence of herd behavior and the effect di-
minished with the increase of financing proportion. Yum
et al. [16] found that the herd behavior of investors in
Popfunding was based on information asymmetry. Not until
investors had enough information to analyze and make
decisions do they stop imitating others. By analyzing the
data of Chinese Renrendai platform, Liao et al. [17] found
that investors on the platform had a significant herding
behavior, and with the increase of order completion, herd
behavior marginally decreased. Moreover, the study also
verified that herding behavior had a significant relationship
with the information asymmetry of the platform. Li [18], Li
[19], Lv [20], and other scholars have also proved the ex-
istence of herd behavior in Chinese online loan market.

Existing research on the existence of herd behavior of
investors on the P2P lending market is mainly carried out
from the perspective of the influence of the number of bids
in the current period to the number of bids in the future or
using the average time interval to measure the herd behavior.
Most of the research uses the data from the unit of listings or
a relative long time period, which cannot fully reflect the
chasing behavior of investors. This study uses the time spent
for the next bid to verify the existence of investors’ herd
behavior, which is more meticulous and in accordance with
the premise that herd behavior decision making happens
orderly. Based on the abovementioned literature, we raise
the first hypothesis:

H1: Controlling the information of the borrower and the
order, the higher the number of bids received by the order is,
the faster the next bid will be obtained; that is, herd behavior
exists in the Renrendai P2P online lending market.

In the study of Lee and Lee [15], the number of bids had a
positive effect on herding behavior, but this effect decreased
with the increase in the number of bids gradually; that is to
say, the herding behavior of investors presented a trend of
diminishing marginally with the increase of bids. For ex-
ample, if there are two orders with the same loan amount
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and the fundraising ratio of both orders is 50%, while order
A currently has 20 bids and order B has 5, it is obvious that
the average bid amount of order B is much larger than that of
order A. If an investor makes a decision choice with an
imitation strategy, he will not invest in order A by simply
comparing the number of bids received for the two orders,
but invest in order B by considering the potential risks of
order A, which means order A may lose the trust of investors
due to the large number of bids it has received. Therefore, if
there are too many bids an order has received, investors’
herd behavior may slow down to some extent. It may take
more time for the order to get the next bid. The speed of
order completion also slows down consequently. That is to
say, there is an inverted U-shaped relationship between
investors’ herd behavior and the number of bids in the P2P
online lending market. Based on the abovementioned
analysis, hypothesis 2 is proposed.

H2: In the Renrendai P2P online lending market, the
strength of herding behavior changes with the bidding state
and herding behavior, and the number of bids an order has
received has an “inverted U-shaped” relationship; when the
number of bids is too large, investors’ trust may decrease,
and then, the order needs more time to obtain the next bid.

2.2. Is the Herd Behavior Rational? From the perspective of
the rationality of herd behavior, herd behavior can be di-
vided into rational herd behavior and irrational herd be-
havior. Rational herd behavior of investors can maximize
their investment, which means investors can benefit from
imitating others’ investment decisions. On the contrary,
irrational herd behavior is the blind herd behavior of in-
vestors. Studies on whether herd behavior in the current P2P
lending platform is rational are plentiful. Using data of
Prosper, Zhang and Liu [21] found that investors’ herd
behavior is rational after controlling unobserved heteroge-
neity and payoff externalities, while Luo and Lin [22]
measured the rationality of herd by the potential loss benefit
and found herd behavior is irrational on Prosper. Chen et al.
[23] made an empirical analysis on the data of China’s
Paipaidai platform and found that investors in Paipaidai
showed obvious herding behavior, which was irrational
because investors’ herding behavior did not have a positive
impact on the repayment performance of orders. Zeng
Jianghong and Yang Shuai [24] found that potential lenders
would comprehensively consider the characteristics of the
loan target and the behavior of previous lenders when
making decisions, which is a manifestation of rational herd
behavior. As to the definition of whether the behavior of
investors is rational, Herzenstein et al. [13] use the impact of
herd behavior on the reimbursement to define the rational
degree of herd behavior, which means investors’ rational
herd behavior can reduce the loan default rates. If there is no
positive relationship between herding behavior and repay-
ment performance, investors’ herd behavior will not bring
benefits for themselves, and then, the herd behavior is
irrational.

There is still no unanimous conclusion about whether
the herd behavior in the Chinese online lending platform is

rational. We follow the work of Herzenstein [13] to measure
the rationality of the herd and consider the decision process
of lenders and conduct the third hypothesis.

H3: Herd behavior of investors can reduce the proba-
bility of default in the Renrendai P2P online lending market.

3. Data, Variables, and Methodology

3.1. Data. The data used in this study mainly come from the
P2P lending platform Renrendai in China. Founded in 2010,
Renrendai is one of the earliest online lending information
intermediary platforms in China. Either complexity of data
fetching or the diversity of data makes Renrendai a great
choice. In 2017, the Renrendai platform ranked second
among the top 100 online lending platforms in China. Hence,
empirical research based on large-scale data provided by the
Renrendai platform made the research results of this study
more meaningful. The Renrendai platform introduced au-
tomatic bidding service in 2014. In order to eliminate the
impact of automatic bidding service, our sample consists of
the order, borrower, and bid information of the Renrendai
platform with an order ID ranging from 123500 to 173500;
orders in this range occurred before the introduction of
automatic bidding service. We eliminate the orders that have
not received bids; at last, 11,545 orders including 494,682
bidding information are obtained, and the bid data mainly
include bid time, amount, and some other information.

3.2. Variables and Methodology. Table 1 formally defines all
of our main variables.

SEC is the time it takes for an order to receive the next
bid, obtained by subtracting the time of this bid from the
time of the next bid. We measure the herd behavior of
investors using SEC. At present, the number of orders with a
loan of more than 100,000 Yuan on the Renrendai platform
has exceeded 35%, and the number of bids with a high loan
amount is relatively high. Therefore, we use Ln (bids), the
natural logarithm of the bids received by the orders, as the
independent variable. Velocity represents the average bid
rate of the order, obtained by dividing the total bid time of
the order by the total bid amount. We measure the degree of
herd behavior using velocity. The faster the orders succeed,
the more significant the investor herd behavior is. Default is
a dummy variable equal to 1 if the order is default and 0
otherwise. We measure the rationality of herd behavior
using default.

We follow the work of Herzenstein et al. [13] to study the
influence of the number of bids received for orders on in-
vestors’ herd behavior. According to the characteristics of
the data in Renrendai, we measure investors’ herd behavior
by the time it takes for orders to be bid again. The empirical
model is used to analyze whether the number of bids re-
ceived for the order can significantly shorten the time
needed for the order to get the bid again, so as to verify the
existence of herd behavior of investors in P2P online lending
platforms. Our model to verify the existence of herd be-
havior is as follows: Control; includes controlling variables
such as BA, order information, and borrower information.
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TaBLE 1: Variable definition.

Main variables Definition
SEC The time it takes for an order to receive the next bid, measured in seconds
Bid i . Ln (bids) The natural logarithm of the number of bids an order has received
id information 2 . . .
Ln® (bids) The square of the natural logarithm of the number of bids an order has received
BA The bid amount
PER Current proportion of investment received for orders
RATE Interest rate of orders
Default A dummy variable equals 1 if the order is default and 0 otherwise
Order information Velocity The average bid speed of the order, obtained by dividing the total bid time of the order by the total bid
amount
Lnam The natural logarithm of the amount of an order
DUR Repayment term of orders
GEN A dummy variable equals 1 if the borrower is a man and 0 otherwise
AGE The age information of the borrower ranges from 22 to 60 years
HOU A dummy variable equals 1 if the borrower has a real estate and 0 otherwise
Borrower CRE The borrower’s credit rating, including AA, A, B, C, D, E, and HR, which are evaluated by the
information platform
HOUSEDEBT A dummy variable equals 1 if the borrower has a house debt and 0 otherwise
EDU The borrower’s education level, 4 = master’s degree or above; 3 =bachelor’s degree; 2 = college degree;
and 1 = high-school degree or below
SEC = B, + B,Ln (bids) + B;Control, + &. (1) TaBLE 2: Descriptive statistics of hypothesis 1 and hypothesis 2.

In our second hypothesis, we add the square of the
independent variables into our model to analyze the time
required to obtain another bid based on different order
bidding status in an order. Model 2 is as follows:

SEC = B, + B,Ln (bids) + ,Ln” (bids) + ;Control, + ¢.
(2)

To test the rationality of investors’ herd behavior, we
construct the logit model to study whether orders with herd
behavior have a lower default rate, that is, whether in-
vestors can better identify the risks of orders by imitating
the behaviors of other investors. The independent variable
of this model is the average bid rate of the order, in the
whole process of a bid, the dependent variable is the order
default, and the control variable mainly includes the order
information and the borrower information. Model 3 is as
follows:

[P(Default =1)
n

m] = f3, + 3 Velocity + f8;Control; + ¢.

(3)

4. Empirical Results

4.1. Descriptive Statistics. Table 2 reports the mean, standard
deviation, minimum, and maximum for the variables used in
hypotheses 1 and 2. The average bid amount is 1245.42 Yuan,
the average loan interest rate is 12.81%, and the average
repayment term is 29.13 months, which is basically con-
sistent with the characteristics of high interest rate and small
loan amount in the online lending market. The highest
amount order has reached 500,000 (e'*!?) Yuan, which
indicates that the development of Renrendai is a relatively

Variable Mean Stal}dgrd Min Max
deviation

Ln (bids) 3.339 1.312 0.000 6.607
Ln? (bids) 12.873 8.616 0.000 43,648
PER 0.449 0.310 0.000 1.003
BA 1245.415 3301.238 50.000 200000.000
RATE 12.814 0.806 9.500 24.000
Lnam 11.103 0.569 8.006 13.122
DUR 29.128 9.502 3.000 36.000
GEN 0.727 0.445 0.000 1.000
AGE 38.921 8.657 22.000 65.000
HOU 0.612 0.487 0.000 1.000
CRE 4,902 0.649 0.000 6.000
HOUSEDEBT  0.456 0.498 0.000 1.000
EDU 1.979 0.711 1.000 4,000

mature platform and a relatively large amount of borrowing
can be accepted by investors. The average age of the bor-
rowers is 38.92 years, 73% of the borrowers are male bor-
rowers, 61% of the borrowers have a real estate, and 46% of
the borrowers have a house debt.

The variables involved in the model are tested for
multicollinearity. We use VIF to test the multicollinearity of
independent variables as we test in Table 3. As shown in
Table 3, the VIF value of all independent variables does not
exceed 5, so there is no multicollinearity between variables.
The correlation coefficient between all independent variables
is also tested, and related results are shown in Table 4.
According to the test results in Table 4, the correlation
between the RATE and DUR is 0.73, which conforms to the
fact that the longer is the loan duration, the higher is the loan
rate, so we delete DUR in our following model.

Descriptive statistics and correlation tests also were
carried out for independent variables and control variables
in hypothesis 3, and the test result is shown in Table 5. There



Discrete Dynamics in Nature and Society 5
TaBLE 3: Result of the VIF test.
Variable VIF 1/VIF
DUR 3.529 3.529
RATE 3.061 3.061
CRE 1.635 1.635
Lnbids 1.505 1.505
HOU 1.394 1.394
Lnam 1.384 1.384
PER 1.329 1.329
BA 1.103 1.103
AGE 1.078 1.078
EDU 1.035 1.035
GEN 1.008 1.008
Mean VIF 1.642
TaBLE 4: Correlation between the control variables and the main independent variables.

Second  Lnbids PER BA RATE Lnam DUR GEN AGE HOU CRE EDU

Second 1.000
. —-0.036 1.000

Lnbids (0.000)

-0.036 0.404 1.000
PER " (0.000)  (0.000)
BA -0.003 -0177 0116  1.000

(0.063)  (0.000)  (0.000)

-0116  —0.027 —0.069  0.007  1.000
RATE " (0.000)  (0.000)  (0.000)  (0.000)
Lnam 0035 0316 —0.004 0040 0164  1.000

(0.000)  (0.000)  (0.014)  (0.000)  (0.000)
pur 0110 0059 0413 0007 0732 0030 1000

(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)
GEN 0.002  -0.023 0017 -0.001 -0.035 —0.036 -0.058  1.000

(0.108)  (0.000)  (0.000)  (0.313)  (0.000)  (0.000)  (0.000)
AGE 0028 0058 0002 0006 -0146 0208 -0.094 0012  1.000

(0.000)  (0.000) (0.110)  (0.000) (0.000) (0.000)  (0.000)  (0.000)
Hou 0066 0010 0043 0028 0422 0115 0479 0060 0020 1000

(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)
CRE 0012 0140  —0.071  0.004) -0.124 0315 0300 -0.054  0.065 0030  1.000

(0.000)  (0.000)  (0.000)  (0.004)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)
EDU 0.002 00200 0021 0006 —0.040)  0.093  -0.020 -0.010 —0.089 —0.077 —-0.014  1.000

(0.246)  (0.000)  (0.000)  (0.000) (0.000) (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)

TaBLE 5: Descriptive statistics and correlation tests for hypothesis 3.

Mean Standard deviation Min Max  Velocity Lnam RATE DUR GEN AGE HOU CRE EDU
Velocity 35.561 164.531 0.000 3862.833  1.000
Lnam 10.828 0.636 8.006  13.122 0.047 1.000
RATE 12.905 1.041 9.500  24.000 -0.210 -0.084 1.000
DUR 28.407 10.122 3.000 36.000 -0.206 0418 0.421 1.000
GEN 0.737 0.440 0.000 1.000 0.012 -0.077 0.001 -0.076 1.000
AGE 38.092 8.607 22.000  65.000 0.050 0.196 -0.113 0.010 -0.003 1.000
HOU 0.585 0.493 0.000 1.000 -0.121  0.337 0.238 0.402 -0.058 0.097 1.000
CRE 4.723 1.076 0.000 6.000 0.049 0.533 -0.274 0.454 -0.077 0.138 0.080 1.000
EDU 1.970 0.719 1.000 4.000 -0.012 0.016 -0.007 -0.001 -0.005 -0.114 -0.029 -0.020 1.000
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F1GURE 1: The time distribution of bid according to minutes. This figure illustrates the evolution of bid numbers measured in minute degree.
The x-axis denotes the time, and the y-axis denotes its magnitude.

TaBLE 6: Existence of investor herd behavior.

Model 1 Model 2
Variables
Model 1a Model 1b Model 2a Model 2b
Lnbids —10.611% * = —10.653% * * —22.981 % * * —23.040% * *
(<0.001) (<0.001) (<0.001) (<0.001)
. 1.930% * = 1.933% % =
In? bids (<0.001) (<0.001)
PER —33.381% * * —33.201% % * —31.657% * * —31.473% x *
(<0.001) (<0.001) (<0.001) (<0.001)
BA —0.001% % = —0.001% % = —0.001% % = —0.001% % =
(<0.001) (<0.001) (<0.001) (<0.001)
RATE —45.741 % % * —45.739% % * —46.079% % * —46.077* % *
(<0.001) (<0.001) (<0.001) (<0.001)
Lnam 22.097 % * * 22.662% % * 21.588% * * 22.155% % *
(<0.001) (<0.001) (<0.001) (<0.001)
GEN —2.166* —2.222% —1.993x —2.050%
(-0.062) (-0.055) (-0.086) (-0.077)
AGE 0.379% * * 0.350% * * 0.380* * * 0.351% *
(<0.001) (<0.001) (<0.001) (<0.001)
HOU —21.188% * * —21.584 % * —20.703% * * —21.100% %
(<0.001) (<0.001) (<0.001) (<0.001)
CRE —4.373% % * —4.525% % * —4.024% * * —4.176% % *
(<0.001) (<0.001) (<0.001) (<0.001)
—3.022% % = —3.040% * *
EDU (<0.001) (<0.001)
Constant 448.556% * x 450.420% * * 472,109 * * 474.019% % *
(<0.001) (<0.001) (<0.001) (<0.001)
N 491502 491502 491502 491502
Adjusted R-squared 0.017 0.018 0.018 0.018

Note: * * *, * %, and * denote statistical significance levels at 1%, 5%, and 10%, respectively.

in this model, the average loan amount is 59893.05 Yuan, the
average loan interest rate is 12.905%, and the average re-
payment term is 28.407 months, which is basically consistent

is no strong correlation between the variables used in model
3, which conforms to the requirements of the empirical
model for variables. Among the 11,545 loan orders selected
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with the characteristics of high loan interest rate and small
loan in the online lending market.

4.2. Results on the Existence of Investor Herd Behavior.
We started with equation (1) to explore the existence of herd
behavior. Then, we ran equation (2) to study the change
trend of herd behavior. Figure 1 reports the time distribution
of bid number according to minutes. As is shown clearly,
most transactions happened in the daytime, and the number
of bids happened from 8:00 to 23:00 account to 99.32% of the
total number. It is obvious that rare lenders bid at night. In
this section, we collect the 491502 bids in the daytime.
The results of the equations mentioned above are shown
in Table 6, which shows that, with the increase of the number
of bids received by the order, later investors speed up the
bidding speed, and the time needed for the order to get bid
again is gradually shortened. In other words, there is a
significant herd behavior of investors on the Renrendai
online lending platform. Model 2 in Table 6 shows that, after
introducing the square of the natural logarithm of the
number of bids received for an order, the result still supports
model 1 and verifies hypothesis 2. The abovementioned
results show that orders that have got bids need less time to
get other bids, but if there are too many bids, the process
may decrease. In other words, the herd behavior of investors
and the number of bids orders received show an “inverted
U” relationship. The decision-making process of investors is
not only influenced by the number of bids orders have
received but also a relatively large number of bids may
decrease investors’ trust. Listings with higher rates and
borrowers with high credit degrees or borrowers who own
houses are more attractive for lenders. Furthermore, when
we introduce education degrees, results show that, for
borrowers with higher education levels, herd behavior of
lenders is more obvious, which means lenders trust bor-
rowers with relatively high education degrees more.

4.3. Results on Rational Verification of Investor Herd Behavior.
The regression result of model 3 is shown below in Table 7.
The velocity of orders has no significant decrease on the
borrower default rate; that is to say, the herd behavior of
investors does not help investors to improve the investment
efficiency and reduce the risk. In addition, listings with
higher rates increase the default rate and borrowers with
better credit degrees and higher education levels decrease the
default rate, while whether borrowers owning houses have
no influence on the default rates. Combining the conclusion
from Section 4.2, when investors make decision, they pursue
listings with higher rate and borrowers with high credit
degree, high education level, and borrowers who own house.
Although, some of the characteristics they pursue may
decrease the default rate. Overall, their herd behavior cannot
decrease the default rate. Therefore, the herd behavior of
investors in the P2P online lending market is partly rational
pursuit, but it is irrational in general. It is worth noting that
the house variable, which has a significant impact on the
herd behavior of investors, has no significant impact on the
default rate of orders, indicating that real estate cannot be

7
TABLE 7: Rational verification of investor herd behavior.
Variables 1) 2) 3)
Velocit 0.001 0.001 0.001
Y (~0.701) (~0.696) (~0.769)
Lnam 0.267 0.266 0.316
(=0.19) (-0.193) (-0.131)
0.131% = 0.131% * 0.129% *
RATE (~0.011) (=0.01) (=0.014)
0.083% % * 0.083% % = 0.083% % *
DUR (<0.001) (<0.001) (<0.001)
~0.126 -0.132 -0.18
GEN (=0.715) (~0.703) (~0.606)
0.037% 0.037 = 0.033%
AGE (~0.056) (~0.054) (=0.096)
0.004 -0.048 -0.048
HOU (-0.987) (—0.871) (-0.874)
—2.264% % * —2.269% % * —2.261 % % *
CREDIT (<0.001) (<0.001) (<0.001)
0.118 0.226
HOUSEDEBT (~0.727) (~0.511)
—0.461* * *
EDU (~0.004)
Constant —7.838% % * —7.842% % —7.244% % *
(<0.001) (<0.001) (-0.001)
N 11545 11545 11545
Pseudo R? 0.609 0.608 0.616

Note: # * *, % %, and * denote statistical significance levels at 1%, 5%, and
10%, respectively.

used as a symbol of the borrower’s solvency in the P2P
online lending market.

4.4. Robustness Test

4.4.1. Adding Further Control Variables. To examine
whether the herd behavior still exists after considering other
factors that may affect the herd behavior of investors, we
regress equations (1) and (2) on an expanded set of control
variables such as income of borrowers, whether the bor-
rowers owe house debt, and whether the borrowers own
cars. CAR and HOUSEDEBT are dummy variables to
measure whether borrowers have a car or owe a house debt.
INCO is a variable to measure the borrower’s income level
(6 =job income equals to 50000 Yuan or above; 5=job
income between 20000 Yuan and 50000 Yuan; 4 =job in-
come between 10000 Yuan and 20000 Yuan; 3 = job income
between 5000 Yuan and 10000 Yuan; 2=job income be-
tween 2000 Yuan and 5000 Yuan; and 1 = job income equals
to 2000 Yuan or below). The results of estimation of
equations (1) and (2) are reported in Table 8. Similar to the
results in Table 6, we find the herd behavior still exists after
adding further control variables.

4.4.2. Expanding the Samples. In this section, robustness test
on our hypothesis 1 and 2 is conducted by reconsidering the
analysis from Section 4.2 by including the bids that occur in
the night (23:00 to the 8:00 of the next day) to our samples.



TaBLE 8: Adding further control variables for model 1 and 2.
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. Model 1 Model 2
Variables
Model 1a Model 1b Model 1c Model 2a Model 2b Model 2¢
Lnbids —10.677% % * —10.676% % * —10.687* % * —23.079% x = —23.140% = * —23.257* % %
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
. 1.935% % = 1.945% % * 1.962% % =
Ln” bids (<0.001) (<0.001) (<0.001)
PER —33.076* * * —33.063* * * —33.018% * * —31.346% * * —31.323% * * -31.263% * *
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
BA —0.001 * % = —0.001 % % = —0.001 % % = —0.001* % = —0.001 % % = —0.001* % *
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
RATE —45.501 % = * —45.524% x * —45.450% * % —45.839% % —45.865% * * —45.792% % %
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
Lnam 23.170% * 23.079% * 21.383 s 22.6653% * 22.568% * * 20.821 % s
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
GEN —2.411% * —2.719% * —2.603x* * —2.239% —2.555x* * —2.435% *
(-0.038) (-0.019) (-0.025) (-0.054) (—0.028) (-0.036)
AGE 0.305% * = 0.300% * = 0.278* * = 0.305% * = 0.301% x * 0.278* * *
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
HOU —16.847* * * —17.691 % x x* —18.548% % * —16.342% * * =17.209% * * —18.085x% % *
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
CRE —4.329% % * —4.211% % * —3.691% % = —3.979% * x* —3.855% % * —3.318x* x *
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
EDU —3.002% * = —2.993% * * —3.121% x = —3.0203% * —3.012% % = —3.143* * *
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
—6.675% * * —6.516% * * —7.506% * * —6.704% * * —6.541 % * * —7.559% % *
HOUSEDEBT (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
CAR 4.100% = =* 2.533% * 4.223% % % 2.614% *
(-0.001) (-0.041) (<0.001) (-0.035)
2.225% % * 2.286% % *
INCO (<0.001) (<0.001)
Constant 442.821 % x * 443.279% x * 452.218% % * 466.414% x * 467.004% * * 476.390% % *
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)
N 491502 491502 491502 491502 491502 491502
Adjusted R-squared 0.018 0.018 0.018 0.018 0.018 0.018
Note: # * *, % %, and * denote statistical significance levels at 1%, 5%, and 10%, respectively.
TaBLE 9: Expanding the bids occurred at night.
) Model 1 Model 2
Variables
Model 1a Model 1b Model 2a Model 2b
Lnbids —9.554% % % —9.605% % * —16.008* % * —16.080* * *
(<0.001) (<0.001) (<0.001) (<0.001)
2. 1.007% % = 1.010% * =
In” bids -0.002 -0.002
PER —47.040% * * —46.823% % * —46.156% * * —45.936* * *
(<0.001) (<0.001) (<0.001) (<0.001)
BA —0.001* % = —0.001% % = —0.001% % = —0.001% % =
(<0.001) (<0.001) (<0.001) (<0.001)
RATE —58.092% * = —58.088% * * —58.274% x * —58.271% %
(<0.001) (<0.001) (<0.001) (<0.001)
Lnam 29.646% * * 30.319% % =* 29.374% % x 30.048% *
(<0.001) (<0.001) (<0.001) (<0.001)
GEN —1.408 —-1.475 -1.316 -1.383
(-0.385) (-0.363) (-0.417) (-0.394)




Discrete Dynamics in Nature and Society 9
TasLE 9: Continued.
. Model 1 Model 2
Variables
Model 1a Model 1b Model 2a Model 2b
AGE 0.541 % * * 0.508* * * 0.542% % * 0.508% * *
(<0.001) (<0.001) (<0.001) (<0.001)
HOU —25.011% % = —25479% % —24.754% % % —25.223% % %
(0.001) (0.001) (0.001) (0.001)
CRE —7.009% % * —7.190% % * —6.826% * * —7.006% % *
(<0.001) (<0.001) (<0.001) (<0.001)
—3.597* * * —3.607* * *
EDU (<0.001) (<0.001)
Constant 243.391x % x 545.576% * 555.828% * 558.060% * *
(<0.001) (<0.001) (<0.001) (<0.001)
N 494854 494854 494854 494854
Adjusted R-squared 0.014 0.014 0.014 0.014
Note: # * #*, % %, and = denote statistical significance levels at 1%, 5%, and 10%, respectively.
TaBLE 10: Using alternative dependent variable and independent variable.
BA BA BA BA
Bids —4.847% x * —6.206% * * —11.468% * * —14.016% * *
(<0.001) (<0.001) (<0.001) (<0.001)
Cum 0.007 % % = 0.0083% % =
(<0.001) (<0.001)

. 0.019% * * 0.021 % * =
Bids’ (0.001) (0.001)
RATE —15.332% * 54121 % % * —18.486% * * 62.783% * *

(-0.017) (<0.001) (—0.004) (<0.001)
GEN —23.121% * —29.457 % * % —18.482x% —25.272% *
(-0.023) (-0.004) (-0.069) (-0.013)
AGE 3.936% * * 0.748 5.021% % 1.426* * *
(<0.001) (-0.163) (<0.001) (-0.008)
HOU 202.361 % * * 207.980* % * 187.658 s 192.159% * =
(<0.001) (<0.001) (<0.001) (<0.001)
CRE 68.253% * * 67.464% % * 96.594 % % * 99.732% x x
(<0.001) (<0.001) (<0.001) (<0.001)
EDU 49.256% * * 19.182% % 57.611% % x 23.423% x *
(<0.001) (-0.003) (<0.001) (<0.001)
Constant 995.712% *x x* 140.726 1049.379% * * 51.063
(<0.001) (-0.157) (<0.001) (~0.606)
N 483770 483770 483770 483770
Adjusted R-squared 0.016 0.022 0.023 0.029

Note: * * *, % %, and * denote statistical significance levels at 1%, 5%, and 10%, respectively.

The results are reported in Table 9, and the results still
support our hypothesis 1 and 2 that investors on the
Renrendai platform showed a significant herd behavior and
there is an “inverted U-shaped” relationship between herd
behavior and the number of bids orders have received.

4.4.3. Using an Alternative Dependent Variable and Inde-
pendent Variable. We also reestimate our model by using
alternative dependent variables to measure the herd be-
havior. As to the independent variables, we add the cu-
mulated bid amount as our main independent. As shown in
Table 10, with the increase of cumulated bid amount,

investors increase their bid amount, while with the increase
of the number of bids an order has received, investors de-
crease their bid amount. It is reasonable. Other things being
equal, the more bids an order has got, the less the average
amount of bids would be and lenders may believe other
investors do not trust the orders. These results also support
our hypothesis that herd behavior exist in Chinese P2P
Online Lending Markets.

4.4.4. Robustness Test for Hypothesis 3. In this section, the
robustness test on our hypothesis 3 is conducted by
reconsidering the analysis from Section 4.3 by introducing
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TaBLE 11: Robustness test for hypothesis 3.
Variables 1) 2) (3)
Velocit 0.001 0.001 0.001
Y (~0.705) (~0.7) (~0.768)
Lnam 0.164 0.164 0.23
(-0.471) (-0.471) (-0.328)
0.136% * * 0.136% x * 0.133% *
RATE (—0.009) (-0.008) (-0.011)
0.089% *x =* 0.089% * = 0.088% * =
DUR (<0.001) (<0.001) (<0.001)
-0.133 -0.138 -0.18
GEN (~0.701) (~0.69) (~0.607)
0.034 = 0.034 0.031
AGE (~0.083) (~0.08) (=0.124)
0.005 -0.043 —-0.046
HOU (~0.984) (~0.884) (~0.88)
—2.269% % * —2.273% % * —2.264% % *
CREDIT (0.001) (0.001) (0.001)
0.107 0.106 0.085
INCO (~0.307) (~0.312) (~0.427)
0.109 0.213
HOUSEDEBT (—0.748) (-0.536)
—0.452% * *
EDU (=0.004)
Constant —7.259% % % —7.269% % * —6.782% x *
(—0.001) (-0.001) (-0.002)
N 11545 11545 11545
Pseudo R* 0.610 0.609 0.617

Note: # * *, % *, and * denote statistical significance levels at 1%, 5%, and
10%, respectively.

INCO (the definition of INCO is the same as in 4.4.1) as the
control variable. As shown in Table 11, we find the herd
behavior of investors in the P2P online lending market is the
blind pursuit behavior after adding further control variables,
which is similar compared to the results in Table 7.

5. Conclusions

The primary aim of this study is to investigate the existence
of herd behavior in Chinese online lending market
Renrendai and whether the herd behavior is rational. Spe-
cifically, we conduct an empirical test and come to the
following conclusions:

Firstly, there is a significant herd behavior of investors on
the Renrendai online lending platform, which is consistent
with studies of other scholars. Secondly, there is an “inverted
U-shaped” relationship between investor herd behavior and
the number of bids. With the increase of the number of bids,
the time required for the order to be bid again increases, and
investor herd behavior decreases. Thirdly, we get the con-
clusion that the herd behavior in Renrendai is partly ra-
tional, but is irrational in general. This is different from the
results of American online lending platform Prosper. Fur-
thermore, our study includes real estate and real estate debt
as control variables, which is of great significant for herd
behavior. In a Chinese traditional view, house is a symbol of
wealth, and house may represent the repayment ability of

Discrete Dynamics in Nature and Society

borrowers. In this study, it is proven investors’ herd behavior
is more likely to occur in the listings of borrowers who own a
property, while our study also proves it is irrational to pursue
the “house-owner-borrowers.”
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This paper proposes a generalized bond pricing model, accounting for all the effects of credit risk, liquidity risk, and their
correlation. We use an informed trading model to specify the bond liquidity payoft and analyze the sources of liquidity risk. We
show that liquidity risk arises from reduced information accuracy and market risk tolerance, and it is market risk tolerance that
links credit and liquidity. Then, we extend the traditional bond pricing model with only credit risk by incorporating liquidity risk
into the framework in which the probabilities of the two risk events are estimated by a joint distribution. Using numerical
examples, we analyze the role of the correlation between credit and liquidity in bond pricing, especially during a financial crisis.
We document that the varying correlation between default and illiquidity explains the phenomenon of bond death spiral observed
in a financial crisis. Finally, we take the US corporate bond market as an example to demonstrate our conclusions.

1. Introduction

Unlike government bonds, corporate bonds require risk
compensation, which is referred to as yield spreads. The risk
of corporate bonds is typically classified into two categories:
credit risk and liquidity risk [1-5]. During the financial crisis
of 2007-2008, these two risk premia increased alternately,
leading to a substantial decline in bond prices, a phenom-
enon known as the bond death spiral. Empirical evidence
shows that credit and liquidity risks interact with each other,
and this interaction plays a crucial role in bond pricing. For
example, some previous work documents that credit is
correlated with liquidity spreads in the US bond market [6],
which was particularly pronounced during the subprime
crisis [7, 8]. As the correlation between the two risk factors in
regression models renders the empirical results hard to
interpret, researchers try to disentangle the two sources of
risk in yield spreads to provide a robust analysis of yield
spreads [9-12]. While this issue is empirically analyzed in

the literature, there is a lack of theoretical analysis of the way
in which the correlation arises and how it impacts yield
spreads.

This paper proposes a generalized bond pricing model,
accounting for all the effects of credit risk, liquidity risk, and
their correlation. First, we incorporate liquidity risk into the
traditional bond pricing model. The two important devel-
opments in the corporate bond literature are the structural-
form [13] and reduced-form models [14]. The former
provides a perfect explanation of corporate bond prices,
while the latter is better able to evaluate the default prob-
ability and default loss using historical data. One of problems
with these models is that most traditional models deal with
credit risk only and ignore the effects of liquidity risk and its
correlation with credit risk. Inspired by Jarrow et al. [15]
who proposed a method for pricing callable bonds by
considering credit risk and call risk within a unified
framework, we consider both credit and liquidity risks as a
factor that leads to the potential termination of obligations.
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Similar to default, liquidating a bond can also be regarded as
an event that terminates a loan contract from the bond-
holders’ perspective. Therefore, we extend the traditional
one-risk model to a two-risk model in which credit risk and
liquidity risk are correlated.

Second, we explore the key factor that results in the
correlation between the two risks. We note that liquidity risk
encompasses multiple dimensions and is more complex than
credit risk. Thus, we focus on liquidity risk to gauge how the
correlation arises. While there is an extensive literature on
liquidity risk, there is no unified aggregate proxy for liquidity
[16-18]. One of the measures of bond liquidity is the
marketability discount, which is the loss due to the quick sale
of a bond. Market microstructure theory on marketability
discount provides distinct views of liquidity. These models
consider various factors such as information asymmetry,
imperfect competition, and funding constraints to interpret
the determination of the marketability discount [19-22].
Some studies incorporate these factors into traditional
trading models and analyze their effects on asset trading,
explaining changes in asset prices in different periods
[23, 24]; others examine the role of these factors in asset
pricing by calculating the deviation between the asset cash
flows and trading price in a single-period model [21, 25-27].
Regardless of the approach used, these models all reach
similar conclusions about the factors that impact the trading
price. In particular, most of these articles show a strong
linkage between information asymmetry and marketability
discount.

Since liquidity loss arises from the trading process, in
this paper, we use an informed trading model to specify a
bond’s marketability discount and analyze the sources of
liquidity risk. We document that liquidity risk arises from
reduced information accuracy and market risk tolerance.
The reduction in market risk tolerance is due to the concerns
about poor firm performance and worsening market con-
ditions. Thus, market risk tolerance is related to the inci-
dence of default, while information accuracy is irrelevant to
default. In other words, changes in the correlation between
credit and liquidity are driven by changes in market risk
tolerance. Moreover, to calculate the probabilities of default
and trade with a nonzero correlation, we adopt a Frank
Copula function to describe the joint distribution of the two
events.

Third, using numerical examples, we analyze the role of
the correlation between credit and liquidity in bond pricing
and explain the phenomenon of bond death spiral observed
in a financial crisis. We find that a positive correlation
between default and trade decreases yield spreads, while a
negative one increases them. In addition, we analyze both
credit-leading crisis and liquidity-leading crisis by dividing
the crisis time interval into sufficiently short subintervals.
We explore the effect of the varying correlation, which arises
from decreasing market risk tolerance, on both credit and
liquidity risk premia in each subinterval. We find that,
during a financial crisis, a decrease in market risk tolerance
changes the correlation from positive to negative, which
leads to the risk contagion, ultimately resulting in the bond
death spiral.
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Fourth, we take the US corporate bond market as ex-
ample to illustrate how the correlation between credit risk
and liquidity risk influences bond prices under different
market conditions. Using a Markov-switching model to
describe the changes of the relationship between yield
spreads and risk factors, we show that the correlation plays
an important role in bond market during financial crisis.
Moreover, the changes of correlation parameters during a
crisis are consistent with what our bond pricing model
predicts and provide evidence in support of the numerical
analysis.

The remainder of the paper is structured as follows.
Section 2 describes the model framework. Section 3 discusses
the method of estimating parameters in our model. Section 4
uses numerical examples to show how the correlation in-
fluences bond prices, particularly the role of the correlation
in bond pricing during the crisis time. Section 5 provides the
empirical analysis of the US bond market. Section 6
concludes.

2. The Model Framework

There are two alternative approaches to modeling credit risk:
the structural model [13] and the reduced model [28]. The
traditional structural approach assumes a stochastic process
for firm value to evaluate bonds, while the reduced approach
assumes an exogenous process for a firm’s default time and
recovery rate. From a theoretical point of view, the structural
model better explains the process for bond prices. However,
the perfect information assumption in this model contra-
dicts with the theoretical and empirical evidence on credit
market equilibrium [29]. Since most information used in
this model is not readily available, previous research finds
that the structural model is not able to accurately explain real
yield spreads [30-32]. In contrast, the reduced model is
better able to evaluate the probability and loss of credit risk
by using historical default and trade data instead of the
companies’ asset value information.

In this paper, we adopt the reduced modeling approach
to analyze our research issues. However, the traditional
reduced model deals with credit risk only. Jarrow et al. [15]
propose a reduced-form approach for valuing callable
corporate bonds by characterizing the call probability via an
intensity process. Following this line of thought, we develop
a model framework that accommodates both credit risk and
liquidity risk, in which the two risks are characterized by two
events, default and trade, meaning the end of a lending
relationship.

Assume that the economic uncertainty is characterized
by a filtered probability space {Q, F, P}satisfying the usual
conditions, where Q is the sample space, F is the set of
events, and P is the statistical probability measure. We use
{v,T), (Y1), (Y, 7,)} to denote the cash flows from a
zero-coupon corporate bond under various scenarios. The
first claim (Y, T') represents the obligation of the firm to pay
Y dollars at maturity T. The second claim (Y 4, 7;) represents
the case of default, in which investors receive a residual value
Y ; dollars at the default time 7. Y, is just part of the bond’s
face value, and the ratio of Y, to Y is referred to as the
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recovery rate, denoted as y,. The third claim (Y, 7,) rep-
resents the case of trade, where investors sell the bond for Y,
dollars at time 7,. The payoff of this trade is less than the
present value of its future cash flow due to imperfect market
conditions. In theory, the trade price is based on the bond
cash flow, but is also determined by several other factors that
are exogenous. We refer to y, = (Y,/Y) as the payoff ratio.
Both the default recovery rate and the liquidity payoff ratio
depend on market conditions and can be stochastic.

Accordingly, without the cost of time, the payoft from a
zero-coupon bond with a face value of $1 and maturity date
of T can be expressed as follows:

Z = ydl{rd<‘rs,‘rd<T} + ysl{rs<rd,rs<T} + 1{T<Td,T<1s}a (1)

where 1;, is an indicator function. Let 7 be the instanta-
neous risk-free interest rate and r be risky interest rate.
Assume that the process of the risk-free rate is independent
of that of the risky rate. The value of the bond at time t is
given as

( T
V(t,T)=E2 e RCRACE

' T, T
e_J rf(u)du el L r(u)du

t t

-
e J , Ty lwdu Ez},

(2)

where V is the value of the bond, Q is the equivalent (to P)
probability measure such that all discounted bond prices are
martingales with respect to the information set at time ¢, and
EQ is the expectation operator under probability measure Q.
As we seq, the value of the bond consists of two parts,
EQ ‘{\; T?}f ”]» and E2{Z}. The former is the discounted
value at the risk-free rate (which is not the focus of this
paper), and the latter is the discounted value at the risky
interest rate, and the primary source of yield spreads.

The default and trade probabilities are P; = P[7;<T,
17, <71,] and P, = P[r,<T,1,<14], respectively. Then, the
expected payoff Z from the zero-coupon bond is

EXZ} = y Py + y,P,+1P,, (3)

where P, represents the probability of holding the bond
until maturity. Apparently, P; + P, +P,, = 1.

Equation (3) represents a generalized model framework
that accounts for the effects of the incidences of both default
and trade. Importantly, in this model, default and trade are
allowed to be correlated. To value a bond, we need to
evaluate bondholders’ losses arising from default or trade
and the instantaneous probabilities of the two related events.

3. Estimating Liquidity Payoff and
Probabilities of Default and Trade

3.1. Liquidity Payoff. Reduced pricing models use historical
data to estimate the default loss. However, it is difficult to
estimate the loss of trade using historical data, as liquidity
risk is more complex than credit risk. Illiquidity can be
defined as the value that bondholders must give up for bond
liquidating. As discussed in Section 2, the liquidity payoft is
the bond’s cash flow minus its marketability discount. The
payoft ratio can be expressed as

ye=y(1-w), (4)

where y is the value of the bond with face value of $1
considering credit risk only and w is the marketability
discount. As the estimation of y is well defined in previous
bond pricing models [14, 33], y, can be obtained if the
expression of marketability discount w is known.

Equation (4) implies that liquidity risk arises from the
trading process, and we can measure liquidity loss in terms
of marketability discount. Note that information risk is
identified as a crucial factor in the trading process [34-36].
In particular, previous studies show that information
asymmetry is one of the most important factors affecting
bond prices [37, 38]. Therefore, to examine the marketability
discount, we consider a bond trading discount model with
information asymmetry.

3.1.1. Marketability Discount. Following Lambert et al. [27],
we assume that there are two types of investors in the bond
market: a limited number of informed investors (such as
institutional investors) and infinite uninformed investors
(such as individual investors) who have no private infor-
mation but can learn from market prices. The market is
competitive, and all investors are risk averse and maximize
their personal utilities.

At any time before maturity, let Yrepresent the present
value of the bond’s cash flow considering default risk and P
represent its trading price. We first consider informed in-
vestors’ behavior in the market. As the superior trader in the
market, an informed trader owns private information about
the bond value Y, , =Y +e¢,,, where ¢, is an error with a
mean of 0 and variance of 02, (the precision is denoted by
IT,,). Correspondingly, the precision of the informed in-
vestor’s evaluation of the bond is IT;, = IT, + IT,,. Thus, the
expected bond value based on his private information is

m

EITI0,] = EIT)+ [ (V- BT, 9

where Q) is the information set for the informed investor.
Equation (5) indicates that the conditional expectation of
bond value is composed of two parts: the expected bond
value and the evaluation error.

We suppose the informed trader has constant absolute
risk tolerance A;,. Based on his belief as to how his demand
affects the market, this investor chooses his demand for
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bonds, D;,, to maximize his profits, S;,, which are given as
follows:
S =1E[Y]Q;] - P - i O (6)
m n 2/\1nnm mn

Taking the partial derivative of S;, with respect to D;,
and setting it equal to 0 gives

Dy, = (E[Y]Qy,] = P)IT A, (7)

Similarly, for an uninformed trader, the value of the
bond is Y, =Y +¢,,, where ¢, is an error with mean 0,
variance o2, and precision I1,,. The uninformed trader’s
constant absolute risk tolerance is A, and her demand for
bonds is D,,,. Thus, her expected value and profit function
are as follows, respectively:

E[YIQ,] =E[Y]+ E (Yo — E[Y]), (8)
Sun = {E[?mm] -pP- %}Dm. (9)

Taking the derivative of equation (9) with respect to D,
and setting it equal to 0 yields

Dun = (E [YlQun] - P)Hun/lun' (10)
Let L be the supply in the bond market and N (M)
represent the number of informed (uninformed) traders.

The market clearing condition is as follows:

ND,, + MD,, = L. (11)

As assumed, there are infinite uninformed investors in
the market with limited wealth. They do not have any private
information about the bond value, but they can analyze
market prices to infer the private information owned by
informed investors. For simplicity, we assume that M is large
(i.e, M — +00) and A, is small (i.e., A, — 0), and the
product of Mand A, converges to a nonnegative constant w,
or MA,, — w.

We can prove that the value the uninformed trader
learns from market prices can be expressed as follows:

Ve -1
Yleam =Y+ En — (NAinHis) L. (12)

See the proof in Appendix A.
Similar to equation (8), we have the following:

- ~. II
E[Y|Qun] = E[Y] + % (Ylearn + E[Ylearn])’ (13)

un

where Il is the precision of ¢, and I1,, =11, +II, is
the precision of a uninformed investor’s evaluation of the
bond.

Thus, we can derive the marketability discount w, as
follows:

w=E[Y]-E[Pl=1T""E(L)A"}, (14)

where IT and A are given as follows:
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_ NALIL, + MA,IT

H m mn un un’ 15
NA, + MA,, (15
A =NA, + MA,,. (16)

The proofs of equations (14) to (16) are provided in
Appendix B. Equation (14) is the gap between the trading
price of a bond and its future cash flow.

3.1.2. Decomposition of Marketability Discount. The trading
discount model provides a method to measure the mar-
ketability discount, and equations (14) to (16) show that the
marketability discount depends on a variety of variables,
such as participants’ information accuracy, risk tolerance,
number of participants, and amount of supply. Now, we
simplify these expressions and explore the economic im-
plications of the model.

Based on equation (15), IT can be considered as the
weighted average value of IT;, and IT,, where the weights are
NA, (NA, + MA,) ! and MA,, (NA, + MA,,) ", respec-
tively. NA,, (MA,,) measures all informed (uninformed)
traders’ risk tolerance or wealth. Thus, IT measures the
market average information accuracy level, and it does not
change with wealth but can be affected by information
transparency. Since Ais the sum of two risk tolerances of
informed and uninformed investors as can be seen in
equation (16), it measures total risk tolerance of all investors,
which is referred to as the market risk tolerance. Unlike IT, A
can be affected by wealth.

The changes of these two factors, information accuracy IT
or the market risk tolerance A, are closely related to bond
supply. Accordingly, in equation (14), L can be divided into
two parts: Ly; and L. Ly is caused by information asym-
metry, and L, is caused by reduced market risk tolerance.

Similarly, marketability discount is also influenced by
market average information accuracy level and market risk
tolerance, and thus, the marketability discount in equation
(14) can be rewritten as follows:

w=(IT""E(Ly))(E(L)A ') =TT (17)

Equation (17) says that an increase in IT* leads to an
increase in liquidity risk. This is because a decrease in the
average information accuracy of the market IT, which can be
due to the inaccuracy of firms’ information disclosure or the
lack of investors’ capability of gathering and processing
information, will have a negative effect on trading, as shown
in dramatic crashes in the US stock market, most notably the
1929 and 1987 crashes. In a market where uninformed
investors are unable to distinguish hedging activity from
information-based trades, large numbers of such investors
may revise downward their expectations when there are,
what appear to be, infinitesimal shifts in information or
other small shocks that lead to lower prices [39]. Thus,
equation (17) implies that the liquidity loss can be due to the
reduction in information accuracy.

In addition, an increase in 1* can also result in higher
liquidity risk. This is because the total risk tolerance A
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declines as a result of the deterioration of a firm’s own
performance or poor macroeconomic conditions, which
might lead to bond default. In the case of firms’ poor
performance, lack of confidence in the firms’ capability of
meeting their obligations makes investors more cautious
when trading to avoid losses, reducing A, (x = inorun). In
the case of poor economic conditions, traders may not have
sufficient funds to absorb trading losses, leading to decreased
risk tolerance, A .. The former fear of loss arises directly from
the deteriorating financial health of firms, while the latter is a
macroeconomic factor that indirectly increases traders’ fear
of default via the aggregate market liquidity. These two types
of fear make investors more cautious when making trading
decisions and more sensitive to default risk, leading to a
lower value of A*. Thus, equation (17) implies that the li-
quidity loss can also be due to the reduced market risk
tolerance.

Identifying the sources of liquidity risk has several
implications. First, it provides an explanation of liquidity
risk in bond pricing and a method to calculate liquidity
payoff. Plugging the expression of marketability discount in
equations (17) into (4) gives the payoff ratio as follows:

y,=y-1I"A" (18)

Second, it provides a theoretical explanation about the
correlation between credit and liquidity risks in bond
markets. Previous studies [8, 9] show that liquidity risk is
related to default risk, and their impacts on yield spreads are
not independent of one another, but these studies are not
able to explain the causes of the correlation. We find that
bond liquidity risk arises from reduced information accu-
racy and market risk tolerance. The first factor reflects the
opacity of information and investors’ ability to capture the
information, which are determined by exogenous factors
such as market regulations and the overall quality of market
investors. This factor is independent of the credit level of
bonds. In contrast, reduced market risk tolerance arises from
deterioration of the firm’s performance and worsening
economic conditions, both of which contribute significantly
to corporate default and make investors more concerned
about the loss of their investments. In conclusion, there are
significant differences between these two factors. The former
is independent of default risk, while the latter is related to
default risk. Moreover, a decrease in market risk tolerance
not only aggregates the marketability discount but also
influences the correlation between credit and liquidity risks.

3.2. Probabilities of Default and Trade. The traditional re-
duced-form model provides a framework for us to price
corporate bonds, whereas the trading discount model
specifies liquidity loss as a trading process. Given our dis-
cussions in Section 3.1, we can obtain a generalized bond
pricing model by combining the traditional and trading
methods. Plugging equation (18) into (3), we obtain the
expected payoff of a zero-coupon bond as follows:

E{Z} = yPy+(y—TI"A")P, + P, (19)

In this section, we turn our attention to estimating the
probabilities of default and trade. Following Jarrow et al. [15]
who characterized both the call and default as a point
process, we assume that both default and trade arrive with an
intensity process, where their intensities are h, (¢) and h, (t),
respectively. For a sufficiently small number A, the intensity
process can be expressed as

hy()A=P(t<ty<t+Alr;>t) :%’
' (20)
h(t)A = P(t<t,<t+Alr,>t) =%(t)(t)'

Then, for x € [t,t + A], the marginal distributions can be
calculated as follows:

Fy(x)=1—-¢ M0
.\ (21)
F(x)=1-¢ 0

Since the incidences of default and trade are not inde-
pendent, we use a joint distribution function to describe the
probabilities of the two events. To this end, we assume time
7, and 7, have a joint probability density function f (7, 7,)
and a joint probability distribution function F (7, 7).
Therefore, in the interval [t,t + A], the probabilities of the
two events, P;(A)and P (A), can be expressed as

A (OF OF
Pd(A)—L (aly_m—ab_x)dx, (22a)
4 (OF OF
P (A) = ~—lymroo = = lxzy AV 22b
0= [ (P )0

Given that risk varies with macroeconomic and market
conditions, we divide the interval [0, T] into N subintervals
[titi] (i=1,...,N), where N is big enough so that each
subinterval is very short. In each subinterval, the proba-
bilities can be written as P;; = P[r;<t;,,,T; < 7®;] and
P, =Pt <t;,7,<14D;], where @, is the information set
at time ¢; in which 7;>t;and 7, > t,.

Proposition 1. The probabilities of the two events in [0,T]
are given by

(23a)

(23b)

Proof. See Appendix C



By specifying the joint distribution function F (x, y), the
probabilities of the two events can be estimated using
equations 23a and 23b. With the estimates of the losses of
default and trade, we are able to price bonds using equation
(19), which accounts for liquidity risk, credit risk, and their
correlation. We use the Frank Copula function as the cu-
mulative distribution function in our numerical analysis,
which is as follows:

F(.X,y) = C(u, V) = _éln{l + (eia” _e_la)se;m/ B 1)})

(24)

where « # 0 and u and v represent the distribution functions
of default and trade, respectively. The marginal distributions
are given as follows:
hae "N (P, + 1)
WY (e 1)

(25)
Che MY (Y, 1)
YWY (e 1)
where
Y, = exp{—oc(l - eihdx)} -1, 06)

¥, = exp{—(x(l - eihfy)} -1

As noted, the impacts of reduced information accuracy
and market risk tolerance on bond pricing differ from each
other. Information accuracy influences ki, (t) and y,, while
market risk tolerance impacts h,(t), y,, and a. O

4. Numerical Analysis

The correlation between credit and liquidity risks has an
effect on the estimated probabilities of default and trade. In
this section, we analyze the influence of the correlation on
bond pricing and investigate the role it plays in explaining
bond death spiral in a financial crisis. For simplicity, we
assume that all parameters in our model are constants in
each subinterval [t;,t;,,].

4.1. Correlation and Bond Pricing. The correlation between
credit and liquidity risks varies over time and thus parameter
o changes. In general, a slight decline in the credit level in a
company makes investors more sensitive to bond prices and
increases the turnover rates, resulting in a positive corre-
lation parameter . As >0 means that an increase in credit
risk reduces liquidity risk, a positive a represents a negative
correlation between credit and liquidity. However, if the
credit level drops drastically, investors™ fear of default in-
creases sharply, thereby decreasing the market risk tolerance
substantially. Then, the demand for bonds in the market is
reduced, leading to fewer transactions, and thus a negative a.
a < 0 means that an increase in credit risk increases liquidity
risk and thus represents a positive correlation between credit
and liquidity. As stated in Section 3, the correlation between
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credit risk and liquidity risk is influenced by the percentage
of market risk tolerance A" in trading cost w. Then,
aoc (-A*/w). Here, we assume that « is linearly related to
(A*/w), and a = 10 — 20 (A" /w).

In this analysis, we consider various values of « to gauge
the influence of the correlation on bond pricing. To this end,
we consider bonds with a face value of 100 dollars and
maturities ranging from 1 to 30years. We use the average
annualized yield spreads of these bonds as a measure of risk
impact on bond prices. The model parameters are specified
as follows: h; =0.1, hy,=0.2, y; =0.5 y, =y(1l —w), and
w = 0.3, 1" ranges from 0 to 0.3, and & (a = 10 — 20 (A" /w))
ranges from -10 to 10 (a = 0 means no correlation). The
results are plotted in Figure 1(a).

Figure 1(a) shows that the yield spreads of bonds with
different maturities vary with the value of the correlation
parameter . As noted, a positive o implies active trading in
the market, which means that it is easy for investors to trade
bonds to reduce their holding risk, resulting in lower yield
spreads. On the contrary, in the case of a negative «, it is
difficult for investors to sell their bonds, as the probability of
default is high. Thus, investors have to lower the prices to sell
or continue to hold their bonds with high credit risk, which
decreases the payoff of bonds directly or indirectly, leading
to a higher yield spreads. Mathematically, a positive cor-
relation parameter a reduces the probability of both default
and trade, or P,=Plr;<T,71;<7,] and
P, =P[r,<T,1,<714]. Conversely, a negative correlation
parameter « can lead to a higher probability of both risk
events, or P; + P, for both short- and long-term bonds.
Moreover, the changes in yield spreads become less pro-
nounced when the absolute value of the correlation pa-
rameter, |af, is higher.

To further analyze the correlation effects, we consider the
o effects of investment grade and speculative grade bonds. To
illustrate, we use parameter values for investment grade
bonds as follows: h;=0.05, h,=04, y;=0.75
y,=y(l-w), w=0.3, A" ranges from 0 to 0.3, and
ala =10 — 20 (A*/w)) ranges from -10 to 10 (a« = 0 means no
correlation). For speculative grade bonds, these values are
hy;=0.35,h; =0.4, y; =0.35 y,=y(1 —w),w=0.3,and «
ranges from -10 to 10. We use ((r, — r)/r,), where r is the
average yield spread of bonds with different maturities when
a # 0 and r is the yield spread when « = 0, as a proxy for the
correlation effect. Figure 1(b) plots the correlation effect as a
function of a. The figure shows that speculative grade and
short-term bonds are more sensitive to «, regardless of
whether « is positive or negative.

4.2. Correlation and Yield Spreads during a Financial Crisis.
A financial crisis can be driven by either a sharp drop in the
credit level of bonds or the lack of liquidity as a result of poor
macroeconomic conditions. Accordingly, there are two
types of crisis: credit-leading crisis and liquidity-leading
crisis. While the market reacts quickly to credit or liquidity
shocks, it takes time for the market to fully absorb the in-
formation. In this section, we analyze various stages of the
two types of crisis to show the role that correlation plays in
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FiGure 1: The influence of correlation parameter « on yield spreads.

explaining the changes in yield spreads and risk premia in
different stages and interpret the way in which bond death
spiral forms during a financial crisis.

4.2.1. Credit-Leading Crisis. Credit-leading crisis is caused
by a sudden drop in the credit level of bonds, which may be
due to significant news events or reported changes in
fundamentals. This drop decreases investors’ risk tolerance,
leading to a substantial decrease in market risk tolerance.
The sudden and disruptive re-pricing of Euro area sovereign
credit risk in 2008-2012 is a vivid example. To avoid crisis,
Euro area governments announced a set of rescue packages
to increase confidence in their banking systems [39]. As
noted in Section 4.1, in this case correlation parameter, «
changes from positive to negative. On the contrary, as we see
in Section 3, a decrease in market risk tolerance results in a
lower liquidity payoff. Investors tend to sell their bonds as
quickly as possible in the market to reduce their risk. To
alleviate price shocks, in this case, investors tend to split a sell
order into several trades rather than executing in a single
trade [1]. For this reason, we assume that reduced market
risk tolerance does not change the parameters of trade in-
tensity. Additionally, due to the deterioration of market
conditions, companies are prone to conceal information
from investors, which reduces information accuracy.

In summary, credit crash influences the credit level,
market risk tolerance, payoft of liquidity, and information
accuracy, which in turn impact yield spreads. To illustrate,
we consider these in four stages. The changes in model
parameters in each stage are described as follows:

(1) In the first stage, credit risk rises. In other words,
default payoft y,; declines and default intensity h,
rises. Thus, the value of the bond’s cash flow

decreases, and the marketability discount w increases
slightly. Then, liquidity payoff y, falls, given that y,
equals y(1 —w).

(2) In the second stage, the market risk tolerance de-
crease significantly, namely, (1" /w) rises. As a result,
the correlation parameter a changes from positive to
negative.

(3) In the third stage, the payoft of liquidity drops. As
part of liquidity, reduced market risk tolerance de-
creases the payoft of liquidity.

(4) Payoft of liquidity continues to decline due to
worsening information transparency.

The changes in these parameters in these stages are
plotted in Figure 2.

Figure 3 plots the average values of yield spreads as well
as credit and liquidity premia for bonds with various ma-
turities considered in different stages. In each period, yield
spreads increase over time. From Figures 2 and 3, we see that
increases in yield spreads are caused not only by increases in
liquidity and credit risks but also by changes in the corre-
lation parameter. In stage 2, while both default and trade
parameters remain unchanged, the yield spreads increase
significantly due to the sharp drop in market risk tolerance.

The credit and liquidity risk premia presented in Figure 3
also show an up-trend during all the periods. At the first two
stages, credit risk plays a dominant role in the changes in
yield spreads, as default parameters change substantially.
During these two periods, liquidity risk moves up mildly.
The increase in (A*/w) in stage 2 is the primary reason for
the increase in liquidity risk in stage 3. A significant drop in
trade payoft caused by transaction dilemma brings a notable
increase in liquidity premium, which accounts for a large
part of the yield spreads.
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4.2.2. Liquidity-Leading Crisis. Liquidity-leading crisis is
caused by a sudden drop in market liquidity. During such a
crisis, investors become more sensitive to market risk, which
triggers flight-to-liquidity. Wegener et al.’s [40] study points
out that the global financial crisis caused a traditional li-
quidity crisis that also affected the German covered bond
market. Wegener et al. [12] discuss the reason of the increase
of sovereign credit risk in Europe and find that the financial
crisis in the US is a trigger for the EMU debt crisis. The
bursting US home price bubble lead to flight-to-quality
effects to Germany and a loss of investors confidence in the
fiscal situation of the peripheral countries. In other words,

Discrete Dynamics in Nature and Society

bond investors’ risk tolerance declines, lowering market
risk tolerance. Consequently, the correlation parameter
changes from positive to negative, as noted in Section 4.1.
The lack of capital not only results in flight-to-liquidity but
also tightens corporations’ capital constraints, which in
turn increases the likelihood of default. Thus, credit risk
increases correspondingly.

Similar to the credit-leading crisis analyzed in Section
4.2.1, liquidity-leading crisis also has effects on yield spreads
through its impacts on the payoff of liquidity, correlation
level, credit level, and degree of information accuracy. As the
deterioration of information accuracy does not impact credit
risk and the correlation between credit and liquidity, as
shown in Section 4.2.1, we demonstrate the effects of li-
quidity crisis in only three stages:

(1) Liquidity risk rises substantially. Due to the increase
of marketability discount w, liquidity payoff y_ drops
quickly.

(2) The market risk tolerance drops, and (A*/w) grows
up. Then, the correlation parameter « changes
quickly from positive to negative.

(3) Credit level declines due to tightened capital con-
straints, as we can see that the default payoft declines
and default intensity increases in this period.

In Section 4.1, we note that the correlation effect can be
influenced by the credit level. To provide a full picture of the
role of correlation in the liquidity-leading crisis, we consider
both investment and speculative bonds. The parameters for
these two types of bonds are as follows: h; = 0.05, h, = 0.4,
y4 =075, y, = 0.875, and « = 2 represent the initial state of
an investment grade bond and h; = 0.35, h, = 0.4, y; = 0.35,
y, =0.775, and « = 2 represent the initial state of a spec-
ulative grade bond. The corresponding parameters are
presented separately in Figures 4(a) and 4(b).

Figures 5(a) and 5(b) plot the yield spreads and risk
premia of these two types of bonds in three different periods.
Similar to the conclusion in the analysis of crisis-leading
risk, yield spreads rise over time in every step in a liquidity-
leading crisis. However, for different bonds, the correlation
plays a different role during the crisis. In particular, in the
second period, yield spreads are relatively stable in
Figure 5(a), but rise significantly in Figure 5(b). Thus, for
speculative grade bonds, the effect of correlation is much
stronger. The risk premia plotted in Figures 5(a) and 5(b)
also corroborate this. For investment grade bonds, the credit
risk premium changes mildly in the first two periods and
then shoots up, while for speculative grade bonds, it begins
to increase in period 2 and rises further thereafter.

The numerical results show that speculative grade bonds
can be easily crashed by liquidity-leading crisis, and the
crash is worse and earlier than investment grade bonds. This
is consistent with the US market data in the financial crisis of
2008 [1].

Our analysis demonstrates two types of crisis in the bond
market. As noted, default and liquidity risks are correlated,
which widens risk spreads. High credit risk leads to dete-
rioration of liquidity and vice versa. These two types of risk
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FIGURE 4: Parameter settings for liquidity-leading crisis (investment-grade/speculative-grade bond).
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in the bond market influence one another, forming a
continuous cycle of risk. A decreasing credit level leads to
reduced investors’ risk tolerance, which leads to a greater
and negative correlation parameter a and higher liquidity
risk. The lack of liquidity further lowers investors™ risk
tolerance. As a result, credit and liquidity risks become more
correlated, and credit risk increases further. This process
continues, which can trigger a bond death spiral in the bond

market. In such a death spiral, the reduction in information
accuracy acts as a catalyst.

5. An Illustration with US Data

We take the US corporate bond market. We remove the
following types of bonds from our sample: bonds that are not
listed or traded in the US public market, bonds with a
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TaBLE 1: Estimated coeflicients for the Markov-switching model.

Transition probabilities

C y % SP Expected duration
Statel State2
Statel 2.008:x (0.00) 0.0083 3 (0.00) 131.92 0.99 (0.00) 0.06 (0.32)
State2 4.582% %% (0.00) 0.011### (0.00) 17.32 0.01 (0.32) 0.94 (0.00>)

Note. This table provides the estimated coefficients for the Markov-switching model:ys, = &; + B;y, X SP,+¢;,, where i = 1 or 2 represents different states. We
rely on the transaction records in Bloomberg for the sample period from January 2006 to December 2018. The liquidity risk is proxied by y proposed by Bao
etal. [41], based on the bond price trading deviation theory, to make a comparative study. The credit risk is proxied by the current S&P rating, and all ratings
are assigned a number to facilitate the analysis; for example, 22 refers to a D rating, . .. and 1 refers to AAA. The first two columns show the values of & and 8
for the two regimes, where the second row of each regression result reports the p-values for the HAC statistics calculated by Newey-West standard errors. # * *
indicates the significance at the 1% level. The third column is the expected duration of each regime. The last two columns report the transition probabilities
between different states and the corresponding p-values for HAC statistics calculated by Newey-West standard errors.
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FIGURE 7: Yield spreads, liquidity risk, and the correlation parameters during financial crisis.

maturity of less than one year, convertible bonds, bonds that
trade under $10 or above $1000, bonds with floating rate,
bonds with a floating coupon rate, bonds with less than one
year to maturity, bonds that nonzero-trading months are less
than 20, government-related or financial institution-related
bonds, and bonds without Standard and Poor’s ratings. Our
final sample includes 9972 corporate bonds. As an example
to document how the correlation between credit and li-
quidity affects bond prices. We use the transaction records in
Bloomberg for the sample period from January 2006 to
December 2018.

We model the yield spread with a two-state Markov-
switching regime to analyze the changes in yield spread
during different time periods as follows:

ys; = a; + By, X SP, + &, (27)
where i = 1 or 2 represent different regimes. The dependent
variable ys, is the corporate bond yield spread, and the
independent variable SP, x y, is the product of credit risk
and liquidity risk, which are measured by the S&P rating
level and illiquidity proxy proposed by Bao etal. [41], re-
spectively. Our ADF test on the two variables shows they are
both stationary, and the ADF-statistics of ys, and SP, x y,
are -6.64 and -6.57, respectively.

Table 1 provides the results for equation (27). Our model
distinguishes regimes which are highly persistent. The
probability of remaining in the present state is 99% and 94%,
respectively. The smoothed probabilities are given in Fig-
ure 6. For most of the time, the correlation between credit
risk and liquidity risk affects the yield spread slightly and this
state is more stable. However, at the end of 2007, the regime
of the regression model changes, and the correlation plays a

more important role in bond pricing, that is, the deterio-
ration of market leads to changes in the premia of credit risk,
liquidity risk, and their correlation.

The Markov-switching model confirms that the corre-
lation between credit risk and liquidity risk can significantly
influence the yield spread, especially during the financial
crisis.

To analyze how the correlation changes during crisis, we
plot three correlation parameters for different months in
Figure 7. In early 2007, default risk in subprime mortgages
increased dramatically, leading to the so-called subprime
crisis. This crisis deteriorated the overall credit of the cor-
porate bond market, which caused great losses in bond
prices in Figure 7(a). Following the credit crisis, the liquidity
premium increased slightly in 2007, as shown in Figure 7(b),
similar to the analysis in Section 4.2.1. Meanwhile, the
correlation in Figure 7(c) between credit risk and liquidity
risk kept climbing during this period. The increased cor-
relation eventually triggered a series of defaults in the
market, including the bankruptcy of Lehman. Due to this
high credit risk, the liquidity risk and yield spreads further
increased. The combination of rising credit and liquidity
risks constituted an ongoing spiral, in which market con-
ditions constantly deteriorated, as shown in our analysis.
During the bond death spiral, lower information accuracy
also caused greater market volatility around the time of the
Federal Reserve bailout of Bear Stearn, which had an impact
on the liquidity risk and bond prices, but did not influence
correlation parameters, as shown in Figure 7(c).

Note: Figure 7 plots the yield spreads, liquidity risk, and
correlation parameters of the U.S. corporate bonds; the
sample period is from February, 2006 to February, 2012.
Figure (c) plots Pearson, Kendall, and Spearman correlation
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parameters with 20-month rolling window. The three ver-
tical lines represent the subprime crisis, downfall of Bear
Stearns, and Lehman bankrupt.

6. Conclusion

In this paper, we propose a generalized bond pricing model
that incorporates credit risk, liquidity risk, and their cor-
relation. We analyze the way in which the correlation be-
tween the two risks arises and explore the role of the
correlation in explaining bond pricing.

Using the trading model, we specify the liquidity payoft
and show that liquidity risk arises from two sources: in-
formation accuracy and market risk tolerance. It is the
market risk tolerance rather than information accuracy that
links credit and liquidity. By adopting a joint probability
distribution, Frank Copula function, we calculate the
probabilities of default and trade. Using numerical exam-
ples, we show how the correlation determines yield spreads
under various market conditions. We show that a credit-
leading crisis and a liquidity-leading crisis interact with each
other and can result in a drastic decline in bond prices. Our
model provides an explanation for the bond death spiral
observed in a financial crisis. Moreover, we analyze the
influence of the correlation in the US corporate bond market
in different periods, and the empirical results provide evi-
dence in support of our numerical analysis.

Appendix
A

Proof. of equation (12). B
Substituting equation (5) into Dy, = (E[Y|€;,] — P)II;,
Ain gives the following:

Dy, = A, JLE[Y] + A I, Y, — A, TT,, P.

1€ 1In

(A1)

Equation (A.1) shows that D, is a linear function of
private information and price.

Substituting equations (A.1) and (10) into equation (11)
yields

P = A(NAGIT, + NAGILY ) + oI, E[Y]Q,,] - L),

(A.2)

where A = (NA,IT,, + wIl,)"'. Equation (A.2) suggests
that, for the uninformed trader, P is a linear function of the

informed trader’s information and the supply of bonds.
Solving for Y., from equation (A.2), we obtain

Yin = (NA/\inHis)_l (P -A (N/‘innv + wHunE [Y|Qun] - L))
(A.3)

P = (NE[Y|Q, |1, Ay, + ME[Y]Q,, |TT

1’ in
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Because the market bond supply is not observable, to get
the private information of the informed trader, the unin-
formed trader can infer the private information Y, as
follows:

Ylearn = (‘NAAinHis)_1 (P - A(I\]Ainnv + wHunE[Ylgun]))'
(A.4)

Thus, there is a deviation between Y., and Y,,, and
Yearn Can be rewritten as

Ylearn =Y, - (NAAinHi£)7 1L. (ASD)

B

Proof. of equations (14)-(16).
Based on equation (5), the expected value of cash flows
for informed investors E[Y|Q;,] is

E[E[Y|Qy,]] = E[Y] +g— (E[Y,] -EIY]) = E[Y].

m

(B.1)

Plugging Y;, = Y + ¢, into equation (A.5), we obtain the
cash flows for uninformed investors:

Yleam =Y +(£in - (NAinHis)_ 1L) =Y * earn- (BZ)

We denote the precision of &, as Il,.,; then, the
expected value for uninformed investors is

\Va Ve I earn
E[Ylﬂun] = E[Y] + l_ll— (Ylearn - E[Ylearn])‘ (B3)

un

The expected value of E [Y’lQun] is

ELE[TI0,]] = ET)+ 222 (E[Yieun] - E[Y i)
= E[Y].
(B.4)
Substituting equations (7) and (10) into equation (11)
gives
N (E[YQ,] = P)Tipdiy + M (E[Y1Qy,] = P)Tphyy = L.
(B.5)

Solving for P from equation (B.5) gives

un/lun - L) (NHinAin + MHun)Lun)_ 1' (B6)
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Given that E[Y|Q,,] = E[Y] and E[E[Y|Q,,]] = E[Y],
the expected value of equation (B.6) is

E[P] = (NE[Y]TI, A, + ME[Y]TT, Ay, — E[L]) (NTI Ay, + MTTA,,) "

Rearranging equation (B.7) gives

E[Y] - E[P] = E[L] (NI, A, + MIT, A,.)"".  (B.8)
Namely,
\V N/‘innin + Mlunnun o
E[Y]-E[P] = 1 5 E[L]
N in +M un (B9)

(NA, + MA,) "
O

C

Proof. of Proposition 1.

P;; and P; represent the probabilities of default and
trade, respectively, in each subinterval [t;,t;,,]. As P,; =
Plry<1,15<tiqlt, >t 15 >1t] and
P, =Plr <14 1, <t |1, > 1, 74> 1], following equations
22a and 22b, we obtain

tit (OF, OF;
P, = Y -1 )
i L <8x|y+°° axl}”‘)dx

P _J~ti+1 aF1| %| d
si . ay xX=+00 ay x=y }’»

(C.1a)

(C.1b)

where F; is the joint distribution in subinterval [¢;,t;,,]. Let
P, =P,; + P, represents the probability of any event oc-
curring in subinterval [t;,t;,,] and p* = P[r<t,,,] is the
probability of any event occurring in the first k periods.
Then,p* can be written as

!
szl‘n(l—Pi)-

(C.3)

Using the formula of total probability, we get the
probabilities of default and trade in interval [0, T] as follows:

Py=) Py (1-p), (C.4a)
i=1
p, = iPs,,-(l -p). (C.4b)

I
—_

Plugging equation (C.3) into equations C.4a and C.4b,
we obtain

13
in’*in (B7)
G i
Py=Y Py T1(1-P), (C.5a)
i=1 1
n i
P,=) P,[](1-P). (C.5b)
i=1 1
O
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This paper employs the threshold cointegration methodology to assess the long- and short-run dynamics of asymmetric ad-
justment between economic policy uncertainty (EPU) of China-India, China-Japan, China-Korea, India-Japan, India-Korea, and
Japan-Korea pairs using monthly EPU data ranging from January 1997 to April 2020. The relationship between the EPU pairs is
examined in terms of Engle-Granger and threshold cointegrations. The findings provide evidence of long-run threshold
cointegration and that the adjustments towards the long-run equilibrium position are asymmetric in the short run for the China-
India and India-Japan EPU pairs in M-TAR specification with nonzero threshold values. Also, the results suggest a unidirectional
causal relationship between China-India, China-Japan, and India-Korea EPU pairs in the long and short run using the spectral
frequency domain causality approach. However, a bidirectional causal relationship between China-Korea, India-Japan, and Japan-
Korea pairs exists in the long and short run. Therefore, the findings provide some clues to economic policymakers within the Asian

subregion for possible policy uncertainty synergies and spillovers among the Asian countries.

1. Introduction

Weakening global economic growth in recent years has been
attributed to heightened uncertainty in the economic pol-
icies of advanced economies. Global issues such as 1997-98
Asian financial crisis, September 11 terrorist attacks in the
United States (US), Gulf War II, 2008 global financial crisis,
European sovereign debt crisis, Brexit referendum, and
Covid-19 pandemic are perceived to have raised economic
policy uncertainty (EPU) with consequential effects on
private domestic demand in many economies. Usually, the
rise in uncertainty after such events may lead to a gradual
widespread of “wait” and “see” attitude, resulting in post-
poned spending projects until anticipation for economic
activity to become more obvious [1, 2]. Although EPU
linkages are considered at the cross-country level, the impact
of such uncertainty on economic activity and the behaviour

of economic agents at the household and firm levels cannot
be underestimated [3-6]. The key question that has lingered
in the minds of international macroeconomists and poli-
cymakers is the extent to which EPU shocks emanating from
one country affect the economic policy uncertainty as well as
the business cycles in another country. Specifically, small
open economies with free capital mobility, sizeable open-
ness, and a large financial sector are greatly influenced by the
international transmission of EPU shocks.

Emerging market economies have experienced large
swings in business cycles, financial market returns, and
macroeconomic fundamentals due to EPU shock trans-
mission from advanced and developed economies. For ex-
ample, EPU spillovers from the United States (US) and the
European Union (EU) would have crucial global conse-
quences because of their relatively large size, strong trade,
and financial linkages with other economies. Aside looking
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at EPU impact from the global perspective, regional and
subregional EPU linkage is eminent due to regional and
subregional economic integration. Economies within the
same subregion with considerable large financial sectors are
likely to experience increased EPU codependency, especially
during postmajor economic, financial, and political shocks.

The Asian economies have emerged as force in the global
economic architecture in production, trade, and financial
sector. For example, the Asian financial sector which is
highly susceptible to shock from uncertainty represents 37%
of the total world banking and insurance market capital-
isation [7-9]. Again, the Asian economy over the last decade
has increased its share of global Gross Domestic Product
(GDP) from 24% to 31%, and with a deepened regional
integration, the possibility of policy uncertainty shocks to
transmit from one Asian country to another would be ap-
parent. This regional integration that underpins the eco-
nomic policy linkages of the Asian economies is evident in
the revival of China’s relationships with India, Japan, and
South Korea, as well as the reboot of China, Japan, and the
Republic of Korea trilateral summit. The possible regional
integration of the Asian economy and its contagion effects
prevailed during the 1997/98 Asian financial crisis that
started in Thailand and spread across the subregion.
Therefore, examining the comovement of EPU among the
Asian countries is of great importance because of its impact
on array of economic activities such as stock markets,
housing price, commodity prices, and many more [10-22].

In this paper, we investigate the EPU linkages among
four Asian countries, comprising China, Japan, South Korea,
and India using threshold cointegration techniques to de-
termine the long- and short-run asymmetric adjustments
and comovement of EPUs between these countries. Our
choice of threshold cointegration method over the tradi-
tional linear cointegration method is based on its ability to
detect the presence of a long-run relationship between time
series variables and to unearth asymmetries in adjustment
towards fundamental values with respect to positive and
negative shocks. Thus, the power of linear cointegration test
is lower in an asymmetric adjustment process [23]. More-
over, because the nexus of time series variables is higher in
harsh periods than in tranquil periods, it makes it important
to use threshold cointegration to be able to detect the
presence of long-run equilibrium relationship with asym-
metric adjustments towards the fundamental values between
EPUs. Enders and Siklos [24] threshold cointegration
method is employed to study the asymmetric long-run re-
lationship between EPU of the four Asian countries because
the impact of economic issues such as EPU is mostly
nonstationary and nonlinear.

In addition, we focus our study on Asian countries,
precisely China, Japan, South Korea, and India because of
their economic size and power within the Asian subregion,
and the EPU shock of one of these countries can easily
influence the EPU and other macroeconomic factors of the
other. Moreover, the widespread 1997/98 Asian financial
crises across other Asian countries give a clear indication of
how contagious policy inconsistency in one of these
countries could be, which is motivating enough for our study
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to focus on Asian countries. Focusing on Asia as an
emerging economy brings about interesting dynamics to the
study of EPU linkages among countries because of the
central role the Asian economy plays in global production
networks [25-28] and the evidence of most of the Asian
emerging economies catching up financially with the ma-
tured economies [29, 30]. Although any of the Asian
countries could have been selected for this study but due to
limitation of data on EPU of most of the developing
countries, only these four Asian countries have complete
data over the whole sample period.

Studies that focus on EPU regarding the Asian economy
investigate the impact of EPU spillovers of advanced
economies on the Asian financial markets, most especially
the stock markets [31-33]. None of the previous studies
explicitly focused on investigating EPU shock transmission
among the Asian countries that showed widespread con-
tagion of the 1997/98 Asian financial crisis. The study that is
close to ours is Balcilar et al.’s study [34], they investigated
the impact of EPU shock transmission of US and EU on local
EPU and other macroeconomic factors of the Asian econ-
omy using quantile vector autoregression (QVAR) but did
not examine EPU linkages among the Asian countries. To
the best of our knowledge, this is the first study to investigate
the transmission of EPU shocks from one Asian country to
another using a threshold cointegration approach. The
findings of the study reveal a long-run relationship between
the EPU pairs of the countries and the adjustment of positive
deviations in the short run was more rapid in general than
negative deviations, implying that EPU of one country re-
sponds quickly when another country’s EPU increases.
Additionally, the Granger causality tests in the frequency
domain suggest both unidirectional and bidirectional cau-
salities of the EPU pairs in the long and short run.

Therefore, using the threshold cointegration would
uncover the upward and downward adjustments of the
short-run deviation of one country’s EPU shock transmis-
sion to other country’s EPU in the long-run. Knowing the
extent to which local EPUs of Asian countries link together
would help policymakers of the Asian economies to be on
their guard and watch economic policies of not only the
advanced economies but countries within their subregion so
that they can mitigate any possible adverse effects these
uncertainties may bring to bear on their economies. The
results from the empirical analysis showed long-run
threshold cointegration with asymmetry in the short run, in
particular for China-India and India-Japan. Again, a uni-
directional causal relationship between China-India, China-
Japan, and India-Korea EPU pairs in the long and short run
using the spectral frequency domain causality approach were
observed. Finally, long- and short-run bidirectional causal
relationship between China-Korea, India-Japan, and Japan-
Korea pairs were found. These findings present important
policy implication for dealing with uncertainty spillover in
the region. The rest of the study is organised as follows.
Section 2 reviews the relevant literature while Section 3
outlines the methodology and description of the data.
Section 4 presents the empirical results, and the conclusion
of the study is provided in Section 5.
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2. Literature Review

EPUs over the period have surged at the bane of the global
financial crisis (GFC) and the Eurozone’s serial crises as well
as partisan policy disputes in the US. As suggested by the
Federal Open Market Committee [35], the uncertainty about
US and European fiscal, regulatory and monetary policies
contributed to a steep economic decline in 2008/09 and slow
recovery afterwards. According to Klofiner and Sekkel [36],
the uncertainty spillover that increases notably around
turbulent times accounts for more than 25% of the dynamics
of the policy uncertainty index. These policy uncertainties
have a significant impact on financial markets and a growing
interest in the literature relating to the link between EPU and
international financial markets, most especially the stock
markets, which have led several researchers to focus on this
area. Thus, studies by Brogaard and Detzel [37], Arouri et al.
[38], Bahmani-Oskooee and Saha [12], Adam [39], Asafo-
Adjei et al. [40], and Chiang [41] have demonstrated that
heightened uncertainty hurts stock returns. Moreover,
Pastor and Veronesi [42], Liu and Zhang [43], Tsai [44], and
Jurado et al. [19] with different research orientations focus
on the impact of uncertainty on stock market volatility and
find that the inclusion of EPU can enhance the predictability
of stock returns. This assertion confirms Hansen et al.’s [45]
finding, which indicates that an upward shift in stock vol-
atility is due to heightened policy uncertainty.

Specifically, Pastor and Veronesi [46] showed that higher
policy uncertainty is associated with lower stock prices,
higher volatility, and higher correlations among stock
returns. Using Granger causality tests, Sum [47] investigated
the effect of US EPU on five ASEAN countries comprising of
Indonesia, Malaysia, Philippines, Singapore, and Thailand
and found that US EPU harms stock market returns of
related countries. Chulia et al. [48] examined the impact of
US policy and US equity market uncertainties on domestic
and other stock market returns. Their findings provide
evidence that an uncertainty shock lessons stock market
returns both in developed and developing countries in
uncertain times. In addition, Trung [49] tests the impact of
U.S. uncertainty on emerging economies and finds that an
upward shift in U.S. policy uncertainty inhibits international
capital inflows and investment activity, which causes stock
prices to fall in emerging economies. Bhattarai et al. [50]
investigated the spillover indices of US uncertainty shock on
fifteen emerging market economies (EMEs) by utilizing the
panel vector autoregressive (VAR) method. They found
evidence that the US uncertainty has harmful effects on EME
stock prices, exchange rates, country spreads, and capital
inflows into them. Akadiri et al. [51] found evidence of
causality between international tourism arrivals (ITAs) and
EPU of three regions of America, Europe, and Asia-Pacific
using annual frequency panel data that consist of 12
countries in a multivariate Granger causality model setting.
Their results revealed two-way causality relationship be-
tween ITAs and EPU in France, Ireland, and United States
and one-way causality relationship from ITAs to EPU in
Brazil, Canada, China, and Germany, while between ITAs
and EPU in Chile, Japan, South Korea, Russia, and Sweden,

there were no causality relationships. To establish the nexus
between EPU and carbon dioxide (CO,) emissions, Adams
et al. [52] used the World Uncertainty Index to analyse the
long-run relationship of EPU, energy consumption, and
CO, emissions for countries including Brazil, China, India,
Israel, Russia, Saudi Arabia, South Africa, Turkey, Ukraine,
and Venezuela over the period 1996 to 2017. Their results
based on the panel pooled mean group-autoregressive
distributed lag model showed a significant association be-
tween EPU and CO, emissions in the long run. The causality
analysis conducted also revealed bidirectional relationship
between EPU and CO, emissions.

Beside numerous studies that focus on EPU, stock price
movements, and other macroeconomic variables, other
studies focus on cross-country effects of uncertainty. For
example, Kl6fner and Sekkel [36] used the policy uncertainty
index to examine cross-country EPU effects of six developed
countries and found evidence of a significant spillover effect of
policy uncertainty from the US and the United Kingdom
(UK) to other countries which are the recipients of policy
uncertainty shock during and after the crises period. Luk et al.
[53] studied EPU spillovers of US, Europe, Mainland China,
and Japan in small open economies, using Hong Kong as a
case study. They constructed EPU for Hong Kong from 1998
to 2016 and found large spillovers of uncertainty from major
economies to Hong Kong. Cekin et al. [54] investigated the
dependence structure of EPU in four Latin American
economies (Brazil, Chile, Colombia, and Mexico) and by
employing vine copula modelling with various forms of tail
dependence, they found significant dependencies in economic
uncertainty among the Latin American economies. By
adopting QVAR model approach, Balcilar et al. [34] extended
their examination of external EPU spillovers of US and EU to
the local EPU of five Asian economies (China, Hong Kong,
Japan, South Korea, and India). They found that global
economic policy uncertainties makeall Asian countries’ do-
mestic EPU fragile, except China and Hong Kong. Bai et al.
[55] investigated the economic risk contagion among major
economies including the US, UK, Germany, France, Japan,
and China using an innovative spillover analysis method in
time and frequency domains. The empirical results showed
that in time-domain framework, the economic uncertainty of
the six largest economies are strongly connectedwith the US
happens as both major risk spillover contributors and receiver
in the frequency domain, especially, at the short-term fre-
quency. Their results also revealed that the static net EPU
spillover effects indicate on average that the US is the key
transmitter, while the UK and China are the major spillover
receivers.

Even though there are vast number of studies on EPU
shock spillover linkages between developed and developing
economies and its impact on the financial markets, none of
the studies enumerated examines EPU linkages among the
Asian countries, having in mind the widespread contagion of
the 1997/98 Asian financial crisis across the Asian subregion.
Also, our adoption of the threshold cointegration method of
Enders and Siklos [24] differentiates our study from the
existing studies in terms of methodology as none of the
studies to the best of our knowledge has used the approach



employed in our study to investigate EPU shock trans-
mission across developed and emerging economies in
general and among the Asian economies in particular.

3. Methodology and Data Description

3.1. Threshold Cointegration and Error Correction Model.
To investigate the dynamic adjustment properties from EPU
of one country to the other, the threshold cointegration test
technique introduced by Enders and Siklos [24] is followed
to identify the existence of an asymmetric long-run rela-
tionship between the EPUs of four Asian countries. To start
with, Engle and Granger [56] long-run cointegration test is
used to establish the stability, linearity, and long-run rela-
tionship between the EPU pairs of countries. The test is
performed under the assumption that the linearity in the
adjustment to the long-run equilibrium, as well as an in-
crease or decrease in the deviation from the long-run
equilibrium relationship, is symmetric. The long-run rela-
tionship between the EPU pairs of the four countries is
estimated as follows:

EPU]-J = ay + a,EPU;; + u;, (1)

where EPU;, and EPU,,, respectively, represent EPU of
country j and i at time t and y, is the normally distributed
residual or error term with zero expected mean and constant
variance.

To cater for the presence of nonlinearity in the variables
and the adjustment process, the linear cointegration tech-
nique cannot detect as such. Therefore, for this reason, we
apply Enders and Siklos [24] threshold cointegration where
the long-run cointegration is linear but the adjustment to
long-run equilibrium level is nonlinear. Therefore, we em-
ploy the threshold autoregressive (TAR) and momentum
threshold autoregressive (M-TAR) models of Enders and
Siklos [24] threshold cointegration to estimate the long-run
cointegration and nonlinear adjustments to the long-run
equilibrium level. The TAR model is specified as follows:

k
Ay = Iiprptey + (1= 1)pophyy + Z Vil + &> (2)
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where y, is the residual in equation (1) substituted into
equation (2) and ¢, is a zero-mean, constant variance, in-
dependent identically distributed (iid) random variable. I,
denotes the Heaviside indicator function specified as

1, ify,_ =1,

TAR: I, = { _ (3)
0, ify,_,<r,

where 7 is the threshold value that is endogenously suggested
by Chan [57]. The M-TAR model is also specified by
replacing the indicator variable I, and the level of previous
period’s residual y,_, in equation (2), respectively, by M, and
the change in the level of previous period’s residual Ay, ,
with the Heaviside indicator function stated as follows:
{ 1, ifAy,_ =1,
M-TAR: M, = (4)
0, ifAp,_ <t

If y,_, and Ap,_, are above the threshold value 7, then the
adjustment coeflicient is p,,_,, while on the other hand, the
adjustment coefficient becomes p,y,_;, if y,_; and Ay,_, are
below the threshold value 7. The threshold procedure in-
volves three stages. The first stage is to estimate the TAR and
M-TAR models for the cointegration procedure. At this
stage, the null hypothesis of no cointegration (H,: p; = p, =
0) is tested by comparing the critical values of the F-statistics
with their corresponding actual values ® in accordance with
Enders and Siklos [24]. If the null hypothesis of no coin-
tegration is rejected, the long-run cointegration between the
EPU of country j and the EPU of country i exists and this
takes us to the second stage of the threshold cointegration
procedure. In the second stage, the symmetry of the null
hypothesis (H,: p; = p,) is estimated. If we reject the null
hypothesis of symmetry, thus |p,|# |p,|, there exists non-
linear threshold cointegration between the EPU of country j
and the EPU of country i. We proceed to stage three where
we estimate the threshold vector error correction model
(TVECM) to adjust the short-run deviation from the long-
run equilibrium. TAR specification of TVECM expression
for EPU of country j and country i is stated as follows:

n n
AEPU;, = a0 + Ipy jpyy + (1- It)Pz,jP‘t—l + ;ﬁj,kAEPUi,t—k + ;"'gj,t’ (5)
n n
AEPU;, = ajo + Lipy g + (1 = I)pa bty + Z o AEPU;; 4 + Zﬂi,kAEPU -k T Eip> (6)
k k

where p, and p,, respectively, denote the speed of adjustment
parameters for positive (above) and negative (below) de-
viations for one country’s EPU from its long-run equilib-
rium, a;, and a;, are the constant terms, and AEPU;, ; and

AEPU;, ;. are the adjustments of EPU for country j and
country i. respectively. a;;, a;,, B;;> and f;, are the coeffi-
cients that quantify the short-term relationship among the
EPU of country j, its lag, and the EPU of country i while ¢;,
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and ¢; ; represent white noise disturbance terms. For M-TAR
specification of TVECM expression, we replace I, in
equations (5) and (6) by M, as defined by equation (4).
Because the parameters of the vector autoregression
(VAR) model comprise of complex nonlinear functions, it
complicates the statistical inference for the feedback mea-
sures over time [58, 59]. For this reason, we follow a Granger
causality test in the frequency domain introduced by
Breitung and Candelon [60] which is more useful if the
causal links between variables change according to fre-
quency such as the short and long run. We, therefore, adopt
the spectral frequency domain approach to investigate the
causal relationship between two time series variables based
on bivariate spectral density matrix of VAR among different
frequencies. According to Breitung and Candelon [60], the
null hypothesis (H,)M Yo (w) =0 corresponds to

EPU; = L, EPU;, | +---+ L, EPU,,

EPU, = L,EPU,, | +---+1,EPU;, ,

3.2. Data Description. The monthly EPU index data com-
plied on four major Asian countries including China, India,
Japan, and South Korea by Baker et al. [61] is used for the
study. The index is based on the news coverage frequency of
policy-related economic issues which serves as a proxy for
policy-related economic uncertainty. There are many un-
certainty measures for developed economies but less is said
about emerging and developing economies as available EPU
indices for developing countries are scanty in time scope.
The EPU index that provides a scaled measure of the ap-
pearance of uncertainty in news surrounding economic
issues is sourced from http://www.policyuncertainty.com.
The data range from January 1997 to April 2020 during
which the world experienced different categories of regional
and global financial crises, such as the 1997-1998 Asian
financial crisis, 2007-2009 global financial crises, 2010 Eu-
ropean debt crisis, and 2015 stock market crash in China.

Figure 1 presents the time series plots of EPU of China,
India, Japan, and South Korea. As shown in Figure 1, major
regional and global events such as the 1997-98 Asian fi-
nancial crises, 9/11 terrorist attacks in 2001, 2007-08 global
financial crises, 2010 European debt crises, and Chinese
stock market crash in 2015 broadly reflect spikes in the
comovement of EPUs among China, India, Japan, and South
Korea. We observe that the comovement of countries” EPUs
during periods of such crises intensifies, confirming the fact
that economic policymakers and the public including both
local and foreign investors, are usually uncertain about the
consequences of policy directions of a country in the periods
of economic crisis.

Table 1 reports the main descriptive statistics of the
variables over the period January 1997 to April 2020. On
average, China has the highest EPU index among the EPU of
the other countries, with India recording the lowest EPU
index. The EPU of China exhibits higher variability than the

Hj: R(w)B = 0, where f3 is the vector of the coefficients on a
given EPU index and
). (7)

R(w)z(

The F-statistics in equation (7) are distributed as
F(2,T-2p) for we (0, ), where T is the number of
observations that measure the VAR model of order p.
Performing the frequency domain analysis would allow us to
observe nonlinear and causality cycles for high or low fre-
quencies, and by presenting the relationship between the
EPUs of the countries in a VAR system, a bidirectional
relationship between the EPU; of country j and EPU; of
country i in the short- and long-run is expressed as follows:

cos(w) cos(Qw) ...

cos (pw)
sin (pw)

sin(w) sin(2w) ...

+0,EPU;,_ +---+ 0,EPU;,_, +¢,, (8)

+0,EPU;, ) +---+0,EPU;,_, +¢;;. (9)

other EPUs as shown by its minimum, maximum, and the
standard deviation statistics, while Japan has lowest fluc-
tuations in its EPU index as shown by its low standard
deviation over the entire sample period. Overall, the EPU
index of all countries are not normally distributed according
to their skewness, kurtosis, Jarque-Bera test, and Shapiro
test which indicate the presence of fat tails and confirms the
stylized fact about the distribution of time series data being
asymmetric.

Preliminary investigation of the comovement between
the EPU pairs is carried out by assessing the unconditional
correlation between the pairs and the results are presented in
Table 2. The results show that the correlation coefficients of
all the pairs are positive, indicating that the EPUs move in
the same directional in pairs. The results also reveal a strong
correlation between the Korea-China pair and Japan-India
pair while a weak correlation can be observed between India-
China pair.

4. Results and Discussion

4.1. Unit Root Test. We start our analysis by performing unit
root tests to check whether the series are stationary or not
using an autoregressive model. The augmented Dick-
ey-Fuller (ADF) test, Phillips-Perron unit root test and
Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test
[62-64] are applied to test for the stationarity of the time
series data used in our study as per the following equation:

k-1
Ax, = (D - 1)x,_; + Z MAx,_; +y, + v,

i=1

(10)

where x, is the series at time ¢, y, = g + pt is the deter-
ministic term (g, is the constant term and y,t is the de-
terministic trend), and v, is a white noise process.


http://www.policyuncertainty.com

6
900
800 |
700
600 |
é 500 |
é 400
300
200
100 A
LU e o e o L L L L L s L L L) o i R L L L R M L
2000M01 2005M01 2010M01 2015M01 2020M01
—— South Korea —— Japan
—— India —— China
FIGURE 1: The relationship between the EPU indices
TasLE 1: Descriptive statistics.
EPU_China EPU_India EPU_Japan EPU_Korea
Mean 154.9016 94.7735 110.1837 128.7583
Min. 8.3459 24.9398 48.8858 22.4275
Max. 852.0525 283.6891  239.0284 538.1768
Std. Dev. 138.6951 46.954 36.4347 70.4422
Skewness 2.1668 1.2326 1.1455 1.7319
Kurtosis 4.7689 1.8143 1.4204 5.0573
Jarque-Bera = 493.03" 111.54* 86.495* 446.74*
Shapiro 0.7389* 0.9122* 0.9210* 0.8779*

Note: *denotes the rejection of null hypothesis at 5% significance level.

TaBLE 2: Unconditional linear correlation.

EPU_C EPU_I EPU_]J EPU_K
EPU_C 1
EPU_I 0.0004 1
EPU_]J 0.2171 0.6212 1
EPU_K 0.6594 0.2587 0.3509 1

The results of the unit root tests of all series are shown in
Table 3. In Table 3, the null hypothesis of all series at the level
having unit roots cannot be rejected based on McKinnon
[65] critical values at 5% level of significance using the ADF
test, but after taking the first difference of the series, the ADF
unit root test shows that all series are stationary at 5% level of
significance, indicating that the series are integrated of order
1, I(1). In addition to the ADF test, the Perron unit root test
rejects the existence of unit root for all series at level, except
Chinese EPU (EPU_C), which cannot be rejected at level,
but after taking the first difference, the null hypothesis is
rejected at 5% significance level, implying stationarity of
EPU_C at first difference.

Moreover, the results of KPSS test show the rejection of
the null hypothesis of stationarity of all series at level at 5%
significant level. However, at first difference of all series, the
stationarity hypotheses cannot be rejected at 5% level of
significance. This indicates the presence of unit roots in the
series at level but are however stationary after taking the first
difference. It is key to note that all the variables have unit
root problems in the presence of structural breaks. The
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structural break occurs around in 1997 mostly for EPU of
India, Japan and South Korea, which brings to light the
commencement of the Asian financial crisis. Moreover, a
substantial break in China’s EPU occurs around February
2018 where the Sino-US trade conflict intensified. In all, the
ADEF test and KPSS test confirm the presence of unit root in
all series at level but the series are stationary after taking the
first difference while the Phillip-Perron unit root test results
indicate stationarity of series at level, except EPU_C that is
stationary after taking first difference. Because the Phil-
lip—Perron unit root test suffers from serious size distortions
in the pure autoregressive case even in moderately large
samples [66], we conclude based on the results of the ADF.

4.2. Testing for Nonlinear Characteristics of the Variables.
To be able to proceed with the nonlinear cointegration
analysis, we employ the nonlinear unit root test proposed by
Kapetanios et al. [67], which has been considered as a
nonlinear version of the ADF test. The purpose of Kape-
tanios, Snell, and Shin (KSS) test is to outline a testing
procedure to specify the presence of nonstationary against a
nonlinear exponential smoothing transition autoregressive
(ESTAR) process which is globally stationary. The KSS is
given by the following ESTAR specification:

Ay, = gy [1-e 00 | g, (11)

where y, is the time series of interest, ¢ is the unknown
parameter, and ¢, is an iid error with mean zero and constant
variance.  The  exponential  transition  function
[1-e 009" is adopted in the test to present the non-
linear adjustment. When ¢ = 0 is assumed, then equation
(11) becomes

2
Ay, = (Pyt—l[l - 579(%1) ] +&. (12)

The null hypothesis of unit root, Hy: 6 =0, is tested
against the nonlinear ESTAR process, H, >0, in equation
(12). Because according to Kapetanios et al. [67] the null
hypothesis cannot be directly tested, a reparameterization of
equation (12) is suggested by computing a first-order Taylor
series approximation to obtain auxiliary regression equation
given by

Ay, =Y,fo1+5t- (13)

The case where the errors in equation (13) are serially
correlated, it is extended with p augmentations to correct for
serially correlated errors to become

p
Ay, = vyl + ijAyt—j +&. (14)
i1

The null hypothesis of nonstationarity to be tested with
either equation (13) or (14) is Hy: y = 0 against the alter-
native H,: p<0. The f-test statistics is given by
t = (Y/se(y)), where y is the ordinary least square (OLS)
estimate of y and se (}) is the standard error of J. The critical
values of the t statistics of the KSS unit root test are given for
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three cases referred to the model with the raw data, the
demeaned data, and the detrended data at 1%, 5%, and 10%
levels. In the case of our study, we present the KSS test results
using critical values for the model with the raw data.

Table 4 presents the results of KSS unit root test. The null
hypothesis of linear stationary cannot be rejected for China’s
EPU at 5% significant level indicating that China’s EPU does
not exhibit nonlinear characteristics. However, the null
hypothesis of linear stationary is rejected for India’s EPU,
Japan’s EPU, and Korea’s EPU, which imply they are
nonlinear stationary. Because three out of the four EPU
indices exhibit nonlinear behaviour, it is therefore worth
employing nonlinear models to investigate the nonlinear
relationships between the EPU pairs.

4.3. Engle-Granger Cointegration. We apply the Engle-
Granger cointegration test procedure as the first step to our
cointegration analysis based on the estimation of equation
(1) to ascertain the presence of long-run relationship be-
tween the EPU pairs of countries. Table 5 presents the
models’ residuals for all EPU pairs and the test results show
that the null hypothesis of no cointegration is rejected at 5%
level. This means that each EPU is cointegrated with one
another, confirming the long-run relationship between all
the EPU pairs of the countries. According to the long-run
regression results in Table 5, a change in one country’s EPU
would influence the movement in other country’s EPU in the
same direction.

4.4. Enders-Siklos Cointegration Test Results. We employ
Enders and Siklos [24] test to investigate the nonlinear
threshold cointegration and the results are displayed in
Tables 6 and 7. Both Tables 6 and 7 show the threshold effects
and focus on convergence, threshold cointegration, and
adjustment in the long-run equilibrium following a devia-
tion in EPUs in the model expressed as the linear combi-
nations of the pair of EPU variables. In both tables, the first
column shows the various cointegration model specifica-
tions and the second and the third columns show the values
of the adjustment parameters p; and p,, while the fourth and
the fifth columns, respectively, show the F statistic for the
null hypothesis of no cointegration and the test results for
the symmetric adjustment. Specifically, Table 6 exhibits the
TAR parameter estimates by assuming a threshold value for
each model to be zero which is deterministic in nature. The
point estimates in the TAR model show the convergence of
long-run equilibrium and that the speed of convergence for
positive divergence is almost the same as the speed of
convergence of negative divergence from the long-run
equilibrium of all the paired EPU models, although the
larger of the ¢ statistics is the positive adjustment parameter
p; which is greater than the 5% critical value, except the
EPUs of India-Japan model where the larger of the ¢ statistics
is the negative adjustment parameter p,. For all the models,
the F-joint statistics (thus hypothesis that p, = p, = 0) are
greater than the 5% critical value, implying that the null
hypothesis of no cointegration is rejected at 5% significance
level. This suggests long-run relationship between the EPU
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TaBLE 4: KSS unit root test results.

EPU_C EPU_I EPU_]J EPU_K
—2.3455 —4.509" —4.2881" —5.6913*

Note: *represents significance at 5% level corresponding to —2.94 critical
value.

Test statistics

pairs of countries. On the other hand, F-equal statistics (thus
hypothesis that p, = p,) that test the null hypothesis of
symmetric adjustment is lower than the 5% critical value for
all the models, indicating that the null hypothesis of sym-
metric adjustment cannot be rejected. This implies the speed
of adjustment from positive deviation is not significantly
different from the speed of adjustment from negative de-
viation, signifying the rate at which one country’s EPU
responds to rise or fall in another country’s EPU which is
almost the same according to the TAR model.

Because the threshold value is not always zero, we follow
the approach of Chan [57] to search for approximate
threshold values to estimate consistent M-TAR models of all
the EPU pairs. The threshold values with a minimum value
of Akaike Information Criteria (AIC) obtained are 34.814 for
China-India EPU pair, —31.058 for China-Japan EPU pair,
57.357 for China-Korea EPU pair, 7.932 for India-Japan
EPU pair, 25.746 for India-Korea EPU pair, and 2.575 for
Japan-Korea EPU pair. Table 7 shows a similar analysis as in
Table 6 using the M-TAR specification to check for asym-
metric movement in one country’s EPU in relation to
changes in another country’s EPU. Similarly, the larger of
the ¢ statistics is the positive adjustment parameter p; which
is greater than 5% critical value, implying the test statistics
are significant at 5% level except for the EPUs of China-
Korea model where the larger of the ¢ statistics is the negative
adjustment parameter p,. The M-TAR model estimates
suggest convergence in the long-run equilibrium and the
speed of convergence for positive deviation is faster than the
speed of convergence for negative deviation for China-India
and India-Japan models, indicating an asymmetric adjust-
ment in EPU pairs between these countries. The null hy-
pothesis of no cointegration is rejected in all models as the
value of F-joint statistics is greater than 5% critical value.
This indicates that all models show a long-run equilibrium
relationship between the EPU pairs of countries. To detect
the possibility of asymmetric adjustment, the null hypothesis
of symmetric adjustment cannot be rejected for most of the
models, except for China-India and India-Japan combina-
tions, where the F-equal statistics are greater than 5% critical
value, indicating that the speed of adjustment of positive and
negative deviations from long-run equilibrium is different.
Thus, China’s EPU reverts quickly to the equilibrium path
whenever the EPU of India rises more than a fall and vice
versa. Likewise, a rise in Japan’s EPU leads to India’s EPU
reverting quickly to the equilibrium path more than a fall in
Japan’s EPU and it is also true for the converse.

4.5. The Error Correction Model Estimation Results in M-TAR
Specification. To finally analyse the asymmetric cointegra-
tion adjustment, we estimate the M-TAR error correction
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TaBLE 5: Engle-Granger cointegration results.
EPU_C/EPU_I EPU_C/EPU_]J EPU_C/EPU_K EPU_I/EPU_]J EPU_I/EPU_K EPU_J/EPU_K
Test statistics -9.0694" —-8.7004" -16.3803" -18.9545" -16.6225" -17.7117*

Note: *represents 5% significance level with a corresponding critical value equal to —1.95 level. Each column represents EPU pair combination of the models’

residuals.
TaBLE 6: Enders-Siklos cointegration test results according to the TAR model.

Model Py I pL=p,=0 PL=p2 Conclusion
EPU_C/EPU_I  -0.228* (-4.267)  0.202* (-2.782) 12.21* (0.000)  0.091 (0.764) Cointegration exist/symmetric adjustment
EPU_C/EPU_J  -0.249* (-4.954) -0.153* (-2.209) 14.223* (0.000) 1.315 (0.253) Cointegration exist/symmetric adjustment
EPU_C/EPU_K -0.432* (-6.481)  0.350" (—4.138)  27.252* (0.000) 0.651 (0.420) Cointegration exist/symmetric adjustment
EPU_I/EPU_] 0.229* (-3.870)  —0.304* (-4.278) 15.224* (0.000) 0.723 (0.396) Cointegration exist/symmetric adjustment
EPU_I/EPU_K  -0.214* (-4.091) -0.206" (-2.751) 11.546* (0.000) 0.007 (0.933) Cointegration exist/symmetric adjustment
EPU_J/JEPU_K  -0.231* (-4.511) -0.172* (-2.383) 12.419* (0.000) 0.461 (0.498) Cointegration exist/symmetric adjustment

Note: *represents significance at 5% level. Numbers in parenthesis and square brackets are t-values and p values, respectively.

TasLE 7: Enders-Siklos cointegration test results according to the M-TAR model.

Model I P pL=p,=0 PL=P2 Conclusion

EPU_C/EPU_I  -0.365" (—4.601) —0.163" (-3.184) 14.812* (0.000) 4.871* (0.028) Cointegration exist/asymmetric adjustment
EPU_C/EPU_J  -0.223* (-4.081) -0.508" (-3.279) 13.520* (0.000) 0.034 (0.853) Cointegration exist/symmetric adjustment
EPU_C/EPU_K -0.368" (-3.371) —0.410* (-6.868) 26.940* (0.000)  0.13 (0.719)  Cointegration exist/symmetric adjustment
EPU_I/EPU_J  -0.375* (-5.645) —0.160* (-2.384) 17.766* (0.000) 5.686* (0.018) Cointegration exist/asymmetric adjustment
EPU_I/EPU_K  -0.304" (-4.116) -0.165" (-3.141) 12.699* (0.000) 2.515 (0.114) Cointegration exist/symmetric adjustment
EPU_J/EPU_K  -0.265* (-4.604) -0.151* (-2.447) 13.207* (0.000) 1.91 (0.168)  Cointegration exist/symmetric adjustment

Note: *represents significance at 5% level. Numbers in parentheses and square brackets are ¢-values and p values, respectively.

model (M-TVECM) specified in the modified equations (5)
and (6) to establish the short-run relationships between the
EPUs of the countries. Though only China-India and India-
Japan EPU models produced asymmetry in the adjustment
mechanism as shown in Table 7, the adjustment parameters
p, and p, which represent the coefficients of the long-run
relationship between the EPU pairs for the remaining
models showed the significance of both positive and negative
adjustments at 5% level, and since |p, | # |p,|, we estimate the
M-TVECM for all the EPU pairs and the results are pre-
sented in Table 8. In Table 8, we have 12 M-TVECM esti-
mated and each model comprises of each country’s EPU as a
dependent variable yielding three models each with the
corresponding independent variables. The results suggest
that the speed of adjustment of positive deviation is quicker
than the negative one for most models except for three
models where Korea is the dependent variable with the
adjustment of negative deviations being more rapid than the
positive ones. Because the coefficients of the error correction
term which represent the coefficients of the long-run rela-
tionship are significant, we conclude that long-run rela-
tionship exists between the EPU pairs. Specifically, for the
models where China’s EPU is the dependent variable, the
adjustment of the positive deviation of India’s EPU is sig-
nificant at 10% level, showing a positive relationship be-
tween India’s EPU and China’s EPU in the short run while
the adjustment of the positive deviation of Korea’s EPU is
significant at 1% level and the joint coefficient of Korea’s
EPU positively impacts China’s EPU in the short run. The

adjustment of both positive and negative deviations of Ja-
pan’s EPU is not significant at 5% level, indicating the failure
of China’s EPU to respond to the deviation of Japan’s EPU in
the short run. These results imply that upward movements in
the EPU of India and Korea will cause upward movement in
China’s EPU as well.

In addition, models where India’s EPU acts as the de-
pendent variable, the adjustment of the positive deviation of
China’s EPU is although significant at 5% level and India’s
EPU rarely reacts to the deviation of China’s EPU in the
short run but instead converges to the equilibrium value in
the long run. The adjustment of the positive deviation of
Japan’s EPU is significant at 1% level and Japan’s EPU in-
fluences India’s EPU positively in the short run. In the same
breath, India’s EPU responds to a positive deviation of
Korea’s EPU in the short run, as the adjustment of the
positive deviation of Korea’s EPU is significant at 1% level,
indicating a positive relationship between Korea’s EPU and
India’s EPU in the short run. These results imply that the
increase in Japan’s EPU and Korea’s EPU caused an increase
in India’s EPU. Furthermore, having Japan’s EPU as the
dependent variable in the model, the adjustment of positive
deviation of China’s EPU is significant at 5% level but Ja-
pan’s EPU rarely responses to short-run movements in
China’s EPU, instead it returns to the equilibrium path in the
long run. Similarly, the fluctuations in India’s EPU neither
influences Japan’s EPU in the short run nor the adjustment
in either direction of the deviation of India’s EPU is sig-
nificant at 5% level, implying that the movement in India’s
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EPU does not impact the movement in Japan’s EPU in the
short run. In addition, the adjustment of the positive de-
viation of Korea’s EPU is significant at 1% level, showing a
negative relationship between Korea’s EPU and Japan’s EPU
in the short run, implying that a rise in Korea’s EPU leads to
a fall in Japan’s EPU.

Moreover, having Korea’s EPU as the dependent variable
in the model, we observe that the adjustment of the negative
deviations of China’s EPU and India’s EPU and that of
Japan’s are significant at 1% level and these variables have a
negative relationship with Korea’s EPU in the short run
except India’s EPU, implying that upward movements in
EPUs of China and Japan result in downward movement in
Korea’s EPU. Therefore, the abovementioned findings
suggest both unidirectional and bidirectional movements
between the EPUs of the countries in the short run either in
the same or opposite direction to the bidirectional move-
ments. In summary, movements in India’s EPU affect
China’s EPU in the short run but not in the reverse case;
while there is no significant short-run relationship between
China’s and Japan’s EPUs, Japan influences China’s EPU in
the long run and this is consistent with Bai et al. [53] who
found China to be the principal receiver of EPU spillover.
For the case of China-Korea and India-Korea EPU pairs,
there is a bidirectional movement between the pairs but in
the opposite direction. Thus, while upward movement in
Korea’s EPU results in the upward movements in China’s
and India’s EPUs, upward movements in both China’s and
India’s EPUs result in downward movement in Korea’s EPU
and this relationship suggests a diversification potential for
investors. Also, an upward movement in Japan’s EPU causes
India’s EPU to move in the same direction in the short run
but the movement in India’s EPU in either direction does
not impact movement in Japan’s EPU in the short run. We
can again infer from the M-TVECM that movements in
EPUs of Japan and Korea impact the movement in the other
in the opposite direction, indicating a significant negative
relationship between these two variables in the short run.
Thus, a rise in Japan’s EPU results in a decline in Korea’s
EPU while an increase in Korea’s EPU also results in a
decline in Japan’s EPU which again provides diversification
opportunities for investors.

4.6. Estimating Causality among the EPUs in the Frequency
Domain. As a final step in our analysis, we explore the
existence of spectral causality among the EPU indices of the
countries over the short and long run by estimating equa-
tions (7), (8), and (9). The test statistics for all frequencies in
the interval (0, ) are computed at 5% significance level and
the frequencies correspond to a wavelength of (271/w) ~ 2
years. The 5% critical value for the F-statistics with 2 and
(T - 2p) degrees of freedom corresponding to 2 and 272
degrees of freedom where the value of T is 280 observations
and p is 4 (VAR order) is computed. Figure 2 shows the
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Granger causality between the EPUs of China and India in
the frequency domain and at the 5% significance level. The
null hypothesis that China’s EPU does not Granger cause
India’s EPU cannot be rejected, implying that China’s EPU
does not significantly influence India’s EPU in short and
long run. On the other hand, India’s EPU does cause China’s
EPU at frequencies corresponding to 5 to 6 months in the
long run and 2 to 3 months in the short run. This shows a
unidirectional causality between China’s and India’s EPU in
the short and long run which indicates that the movement in
India’s EPU affects China’s EPU through the short and long
run.

Figure 3 shows the causality of China’s EPU and Japan’s
EPU in the short and long run. The figure reveals China’s
EPU does not Granger cause Japan’s EPU either in the short
or long run at 5% significance level. This implies that the
movement in China’s EPU does not influence Japan’s EPU
in the short and long run. Japan’s EPU Granger causes
China’s EPU at frequencies corresponding to 3 to 4 months
in the long run, indicating unidirectional causality. This
finding indicates that movement in Japan’s EPU affects the
movement in China’s EPU in the long run. Figure 4 shows
the frequency domain causality of China’s EPU and Korea’s
EPU in the short and long run. Korea’s EPU Granger causes
China’s EPU at 5% significant level at frequencies corre-
sponding to 3 to 4 months in the long run, while China’s
EPU Granger causes Korea’s EPU at frequencies corre-
sponding 2 to 6 months in the short through to the long run.
This is an indication of bicausality which implies that EPUs
of both China and Korea influence each other in the long
run.

Figure 5 displays the Granger causality of Japan’s EPU
and India’s EPU in the frequency domain. The figure reveals
the rejection of the null hypothesis that EPU of Japan does
not Granger cause the EPU of India at all frequencies sig-
nificant at 5% level which is rejected, indicating the
movement in EPU of Japan affects movement in India’s EPU
in the long and short run. In the reverse case, India’s EPU
Granger causes Japan’s EPU at significant frequencies
corresponding to 2 to 3 months in the short run. The result
shows bidirectional causality between the EPUs of Japan and
India implying that movement in one EPU influences the
other in the short and long run. Figure 6 depicts the fre-
quency domain Granger causality of Korea’s EPU and In-
dia’s EPU at frequencies significant at 5% level. The null
hypothesis that India’s EPU does not Granger cause Korea’s
EPU cannot be rejected at all frequencies at 5% significance
level, indicating that movement in India’s EPU does not
significantly influence the movement in Korea’s EPU while
Korea’s EPU Granger causes India’s EPU at frequencies
corresponding to 2 to 3 months in the long run, implying the
influence of Korea’s EPU on the movement in India’s EPU.

Finally, Figure 7 shows the Granger causality of Korea’s
EPU and Japan’s EPU in the frequency domain. The EPU of
Korea Granger causes the EPU of Japan at significant
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FIGURE 3: The frequency domain causality between China’s and
Japan’s EPU indices. The part of the lines above the critical value-
line indicates rejection of the null hypothesis of no Granger
causality.

frequencies at 5% level corresponding to 2 to 3 months in the
short run, implying that movement in Korea’s EPU influ-
ences Japan’s EPU in the short run. For the converse, Japan’s
EPU Granger causes Korea’s EPU at frequencies corre-
sponding to 3 to 5 months in the long run and 2 to 3 months
in the short run. This implies a bidirectional causality be-
tween Korea’s EPU and Japan’s EPU in the long and short
run. Thus, movements in both EPUs impact the other. The
causal relationship between the EPU pairs of the countries is
evidenced by the integration of the Asian economy through
the formation of greater trade and investment linkages
underpinned by East Asia’s supply chain and production
fragmentation and served as an engine of global trade and
economic growth [66].
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5. Conclusion

We have investigated the linkages between EPU pairs of four
Asian countries from January 1997 to April 2020 by ex-
amining the cointegration, asymmetric cointegration, and
causal relationship in the frequency domain between the
EPU pairs of China, India, Japan, and South Korea, allowing
for asymmetric adjustments towards long-run equilibrium.
The Engle-Granger cointegration test reveals the existence of
long-run relationships between the EPU pairs. Because the
Engle-Granger cointegration lacks a threshold adjustment in
the long-run, we employed the TAR and M-TAR models,
following Enders and Siklos [24], to determine the asym-
metric response of each EPU in the combination of China-
India, China-Japan, China-Korea, India-Japan, India-Korea,
and Japan-Korea EPU models. The TAR and M-TAR models
support the threshold adjustment between the EPU pairs,
which further discloses asymmetries in the EPU model
adjustment process. Though the null hypothesis of no
cointegration was rejected for both TAR and M-TAR
models, the null hypothesis of symmetric adjustment was
not rejected for all models with TAR specification with zero
threshold value. However, for the M-TAR model with
nonzero threshold values, the symmetric adjustment null
hypothesis was rejected for China-India and India-Japan
EPU pairs, indicating asymmetry in the adjustment of
positive and negative divergence from the long-run equi-
librium. We, therefore, estimated the M-TVECM using the
M-TAR specification. The findings show that the EPUs
influence each other in the short run and the threshold error
term shows the speed of adjustment for positive deviation
which is faster than the negative deviations for all models,
except the case where Korea’s EPU is the dependent variable
where the speed of adjustment for negative deviations is
more rapid than the adjustment of positive deviations. In all,
apart from the Korea’s EPU that responds quickly to the
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decline in other EPUs in the short run, the remaining EPUs
respond quickly to a rise in value of the other EPU indices.

In addition, the bivariate analysis to establish long- and
short-run relationship between the EPU pairs of the
countries in the frequency domain reveals both unidirec-
tional and bidirectional Granger causality between the EPU
pairs. The findings suggest a unidirectional causality between
China-India, China-Japan, and India-Korea EPU pairs
where India and Japan Granger cause China’s EPU in the
long and short run while Korea’s EPU Granger causes In-
dia’s EPU in the long run, indicating that both India and
Japan influence movement in China’s EPU and Korea’s EPU
which, on one hand, influence the movement in India’s EPU.
However, the bidirectional causality between China-Korea
pair in the long and short run exists. The findings also reveal
bidirectional causality between India-Japan and Japan-
Korea EPU pairs in the long and short run showing that each
EPU influences movement in the other EPU in the pair in
either long run or short run or both.

The linkages and comovements between the EPU pairs of
countries established in our study provide policy implica-
tions to the policymakers and local and international in-
vestors of these countries, as well as the countries within the
Asian subregion. Heightened economic policy inconsistency
spawns fear in investors, leading to “wait” and “see” attitudes
which can “impede business prospects and households’
consumption and this can threaten all facets of the economy
including weakened stock market performance, increased
unemployment rate, volatile financial market, rising infla-
tion, etc. Therefore, economic policymakers should be aware
of the potential EPU linkages among countries so that
prudent measures could be put in place to instill confidence
of a growing economy in the investment community.

Data Availability

The economic policy uncertainty data were supplied by
https://www.policyuncertainty.com/about.html and eco-
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made freely available.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] N. Bloom, “The impact of uncertainty shocks,” Econometrica,
vol. 77, no. 3, pp. 623-685, 2009.

[2] G. Caggiano, E. Castelnuovo, and G. Nodari, Uncertainty and
Monetary Policy in Good and Bad Times, Melbourne Institute,
Melbourne, Australia, 2017.

[3] B. S. Bernanke, “Irreversibility, uncertainty, and cyclical in-
vestment,” The Quarterly Journal of Economics, vol. 98, no. 1,
pp. 85-106, 1983.

[4] C. D. Carroll, “Buffer-stock saving and the life cycle/per-
manent income Hypothesis,” The Quarterly Journal of Eco-
nomics, vol. 112, no. 1, pp. 1-55, 1997.


https://www.policyuncertainty.com/about.html

14

[5] N. Bloom, S. Bond, and J. V. Reenen, The Dynamics of In-
vestment under Uncertainty, IFS Working Papers from In-
stitute for Fiscal Studies, London, UK, 2001.

[6] R. Bansal and A. Yaron, “Risks for the long run: a potential
resolution of asset pricing Puzzles,” The Journal of Finance,
vol. 59, no. 4, pp. 1481-1509, 2004.

[7] S. Gilchrist, J. W. Sim, and E. Zakrajek, Uncertainty, Fi-
nancial Frictions, and Investment Dynamics, National Bureau
of Economic Research, Cambridge, MA, USA, 2014.

[8] D. Caldara, C. Fuentes-Albero, S. Gilchrist, and E. Zakrajsek,
“The macroeconomic impact of financial and uncertainty
shocks,” European Economic Review, vol. 88, pp. 185-207,
2016.

[9] A. Sheng, C. S. Ng, and C. Edelmann, ASIA FINANCE 2020
Framing a New Asian Financial Architecture, Oliver Wyman,
Fung Global Institute, Hong Kong, China, 2020.

[10] C. Christou,J. Cunado, R. Gupta, and C. Hassapis, “Economic
policy uncertainty and stock market returns in Pacific-Rim
countries: evidence based on a Bayesian panel VAR model,”
Journal of Multinational Financial Management, vol. 40,
pp. 92-102, 2017.

[11] F. Balli, G. S. Uddin, H. Mudassar, and S.-M. Yoon, “Cross-
country determinants of economic policy uncertainty spill-
overs,” Economics Letters, vol. 156, pp. 179-183, 2017.

[12] M. Bahmani-Oskooee and S. Saha, “On the effects of policy
uncertainty on stock prices: anasymmetric analysis,” Quan-
titative Finance and Economics, vol. 3, no. 2, pp. 412-424,
2019a.

[13] T. C. Chiang, “Economic policy uncertainty, risk and stock
returns: evidence from G7 stock markets,” Finance Research
Letters, vol. 29, pp. 41-49, 2019.

[14] E.-C. Chung and D. R. Haurin, “Housing choices and un-
certainty: the impact of stochastic events,” Journal of Urban
Economics, vol. 52, no. 2, pp. 193-216, 2002.

[15] H. Yu, “Government policies and housing price instability,”
Public Policy Review, vol. 22, no. 2, pp. 74-115, 2008.

[16] D. Su, X. Li, O.-R. Lobon{, and Y. Zhao, “Economic policy
uncertainty and housing returns in Germany: evidence from a
bootstrap rolling window,” Zbornik Radova Ekonomskog
Fakulteta U Rijeci: Casopis Za Ekonomsku Teoriju I Praksu/
Proceedings of Rijeka Faculty of Economics: Journal of Eco-
nomics and Business, vol. 34, no. 1, pp. 43-61, 2016.

[17] J.-H. Jeon, “The impact of asian economic policy uncertainty:
evidence from Korean housing market,” The Journal of Asian
Finance, Economics and Business, vol. 5, no. 2, pp. 43-51, 2018.

[18] L.Karnizovaand J. Li, “Economic policy uncertainty, financial
markets and probability of US recessions,” Economics Letters,
vol. 125, no. 2, pp. 261-265, 2014.

[19] K. Jurado, S. C. Ludvigson, and S. Ng, “Measuring uncer-
tainty,” American Economic Review, vol. 105, no. 3,
pp. 1177-1216, 2015.

[20] H. Mumtaz and K. Theodoridis, “Common and country
specific economic uncertainty,” Journal of International
Economics, vol. 105, pp. 205-216, 2017.

[21] L. O. Olanipekun, H. Giingor, and G. Olasehinde-Williams,
“Unraveling the causal relationship between economic policy
uncertainty and exchange market pressure in BRIC countries:
evidence from bootstrap panel Granger causality,” SAGE
Open, vol. 9, no. 2, 2 pages, 2019.

[22] P. Alessandri and H. Mumtaz, “Financial regimes and un-
certainty shocks,” Journal of Monetary Economics, vol. 101,
pp. 31-46, 2019.

[23] N. S. Balke and T. B. Fomby, “Threshold cointegration,”
International Economic Review, vol. 38, pp. 627-645, 1997.

Discrete Dynamics in Nature and Society

[24] W. Enders and P. L. Siklos, “Cointegration and threshold
adjustment,” Journal of Business & Economic Statistics, vol. 19,
no. 2, pp. 166-176, 2001.

[25] T. Ito and P.-L. Vézina, “Production fragmentation,
upstreamness, and value added: evidence from Factory Asia
1990-2005,” Journal of the Japanese and International Econ-
omies, vol. 42, pp. 1-9, 2016.

[26] M. Helble and B.-L. Ngiang, “From global factory to global
mall? East Asia’s changing trade composition and orienta-
tion,” Japan and the World Economy, vol. 39, pp. 37-47, 2016.

[27] J. Aizenman and S.-1. Fukuda, “The pacific rim and the global

economy: future financial and macro challenges,” Journal of

International Money and Finance, vol. 74, pp. 229-231, 2017.

B. Shepherd, “Mega-regional trade agreements and Asia: an

application of structural gravity to goods, services, and value

chains,” Journal of the Japanese and International Economies,

vol. 51, pp. 32-42, 2018.

[29] S.-I. Fukuda, “Finance in asia rising: growth and resilience in

an uncertain global economy,” 2013.

H. Ito and M. Kawai, “Trade invoicing in major currencies in

the 1970s-1990s: lessons for renminbi internationalization,”

Journal of the Japanese and International Economies, vol. 42,

pp. 123-145, 2016.

[31] Y. Wanhai, Y. Guo, H. Zhu, and Y. Tang, “Oil price shocks,
economic policy uncertainty and industry stock returns in
China: asymmetric effects with quantile regression,” Energy
Economics, vol. 68, pp. 1-18, 2017.

[32] R. Li, S. Li, D. Yuan, and K. Yu, “Does economic policy
uncertainty in the U.S. influence stock markets in China and
India? Time-frequency evidence,” Applied Economics, vol. 52,
no. 39, p. 4300, 2020.

[33] T.C. Chiang, “Economic policy uncertainty and stock returns:

evidence from the Japanese market,” Quantitative Finance

and Economics, vol. 4, no. 3, pp. 430-458, 2020.

M. Balcilar, Z. A. Ozdemir, H. Ozdemir, and M. Wobhar,

“Transmission of US and EU economic policy uncertainty

shock to Asian economies in bad and good times,” Discussion

Paper Series, IZA Instittute of Labor Economics, vol. 18, 2020.

http://www .federalreserve.gov/monetarypolicy/

fomcminutes20091216.htmFederal Open Market Committee,

“Minutes of the December 2009 Meeting,” 2009, HYPER-

LINK http://www.federalreserve.gov/monetarypolicy/

fomcminutes20091216.htm.

S. Klof3ner and R. Sekkel, “International spillovers of policy

uncertainty,” Economics Letters, vol. 124, no. 3, pp. 508-512,

2014.

J. Brogaard and A. Detzel, “The asset-pricing implications of

Government economic policy uncertainty,” Management

Science, vol. 61, no. 1, pp. 3-18, 2015.

[38] M. Arouri, C. Estay, C. Rault, and D. Roubaud, “Economic
policy uncertainty and stock markets:long run evidence from
the us,” Finance Research Letters, vol. 18, pp. 136-141, 2016.

[39] A. M. Adam, “Susceptibility of stock market returns to in-

ternational economic policy: evidence from effective transfer

entropy of Africa with the implication for open innovation,”

Journal of Open Innovation: Technology, Market, and Com-

plexity, vol. 6, no. 3, p. 71, 2020.

E. Asafo-Adjei, D. Agyapong, S. K. Agyei, S. Frimpong,

R. Djimatey, and A. M. Adam, “Economic policy uncertainty

and stock returns of Africa: a wavelet coherence analysis,”

Discrete Dynamics in Nature and Society, vol. 2020, Article ID

8846507, 2020.

[28

[30

[34

[35

(36

(37

[40


http://www.federalreserve.gov/monetarypolicy/fomcminutes20091216.htm
http://www.federalreserve.gov/monetarypolicy/fomcminutes20091216.htm
http://www.federalreserve.gov/monetarypolicy/fomcminutes20091216.htm
http://www.federalreserve.gov/monetarypolicy/fomcminutes20091216.htm

Discrete Dynamics in Nature and Society

[41] T. C. Chiang, “Financial risk, uncertainty and expected
returns: evidence from Chinese equity markets,” China Fi-
nance Review International, vol. 9, no. 4, pp. 425-454, 2019.

[42] L. Péastor and P. Veronesi, “Political uncertainty and risk
premia,” Journal of Financial Economics, vol. 110, no. 3,
pp. 520-545, 2013.

[43] L. Liu and T. Zhang, “Economic policy uncertainty and stock
market volatility,” Finance Research Letters, vol. 15, pp. 99-
105, 2015.

[44] 1.-C. Tsai, “The source of global stock market risk: a viewpoint
of economic policy Uncertainty,” Economic Modelling, vol. 60,
pp. 122-131, 2017.

[45] L. P. Hansen, T. J. Sargent, and T. D. Tallarini, “Robust
permanent income and pricing,” Review of Economic Studies,
vol. 66, no. 4, pp. 873-907, 1999, https://econpapers.repec.
org/article/ouprestudhttps://econpapers.repec.org/article/
ouprestud/.

[46] L. Pastor and P. Veronesi, “Uncertainty about government
policy and stock prices,” The Journal of Finance, vol. 67, no. 4,
pp. 1219-1264, 2012.

[47] V. Sum, “The ASEAN stock market performance and eco-
nomic policy uncertainty in the United States,” Economic
Papers: A Journal of Applied Economics and Policy, vol. 32,
no. 4, pp. 512-521, 2013.

[48] H. Chulia, R. Gupta, J. M. Uribe, and M. E. Wohar, “Impact of
US uncertainties on emerging and mature markets: evidence
from a quantile-vector autoregressive approach,” Journal of
International Financial Markets, Institutions and Money,
vol. 48, pp. 178-191, 2017.

[49] N. B. Trung, “The spillover effect of the US uncertainty on
emerging economies: a Panel VAR Approach,” Applied
Economics Letters, vol. 26, no. 3, pp. 210-216, 2019.

[50] S. Bhattarai, A. Chatterjee, and W. Y. Park, “Global spillover
indices of US uncertainty,” Journal of Monetary Economics,
vol. 19, 2019.

[51] S. S. Akadiri, A. A. Alola, and G. Uzuner, “Economic policy
uncertainty and tourism: evidence from the heterogeneous
panel,” Current Issues in Tourism, vol. 23, no. 20, p. 2507, 2019.

[52] S. Adams, F. Adedoyin, E. Olaniran, and F. V. Bekun, “Energy

consumption, economic policy uncertainty and carbon

emissions; causality evidence from resource rich economies,”

Economic Analysis and Policy, vol. 68, pp. 179-190, 2020.

P. Luk, M. Cheng, P. Ng, and K. Wong, “Economic policy

uncertainty spillovers in small open economies: the case of

Hong Kong,” Pacific Economic Review, vol. 25, no. 1, 2018.

[54] S. E. Cekin, A. K. Pradhan, A. K. Tiwari, and R. Gupta,

“Measuring co-dependencies of economic policy uncertainty

in Latin American countries using vine copulas,” The

Quarterly Review of Economics and Finance, vol. 14, 2019.

L. Bai, X. Zhang, Y. Liu, and Q. Wang, “Economic risk

contagion among major economies: new evidence from EPU

spillover analysis in time and frequency domains,” Physica A:

Statistical Mechanics and its Applications, vol. 535, 2019

https://ideas.repec.org/s/eee/phsmap.html.

[56] R. F. Engle and C. W. J. Granger, “Co-integration and error
correction: representation, estimation, and testing,” Econo-
metrica, vol. 55, no. 2, pp. 251-276, 1987.

[57] K.S. Chan, “Consistency and limiting distribution of the least
squares estimator of a threshold autoregressive model,” The
Annals of Statistics, vol. 21, no. 1, pp. 520-533, 1993.

[58] J. Geweke, “Measurement of linear dependence and feedback
between multiple time Series,” Journal of the American Sta-
tistical Association, vol. 77, no. 378, pp. 304-313, 1982.

(53

(55

15

[59] Y. Hosoya, “The decomposition and measurement of the
interdependency between second-order stationary processes,”
Probability Theory and Related Fields, vol. 88, no. 4,
pp. 429-444, 1991.

[60] J. Breitung and B. Candelon, “Testing for short- and long-run
causality: a frequency-domain approach,” Journal of Econo-
metrics, vol. 132, no. 2, pp. 363-378, 2006.

[61] S.R. Baker, N. Bloom, and S. J. Davis, “Measuring economic
policy uncertainty *,” The Quarterly Journal of Economics,
vol. 131, no. 4, pp. 1593-1636, 2016.

[62] D. A. Dickey and W. A. Fuller, “Likelihood ratio statistics for
autoregressive time series with a unit root,” Econometrica,
vol. 49, no. 4, pp. 1057-1072, 1981.

[63] P. C.B. Phillips and P. Perron, “Testing for a unit root in time
series regression,” Biometrika, vol. 75, no. 2, pp. 335-346,
1988.

[64] D. Kwiatowski, P. C. B. Peter, P. Schmidt, and Y. Shin,
“Testing the null hypothesis of stationarity against the al-
ternative of a unit root: how sure are we that economic time
series have a unit root?,” Journal of Econometrics, vol. 54,
pp. 159-178, 1992.

[65] J. G. McKinnon, “Numerical distribution functions for unit
root and cointegration tests,” Journal of Applied Econometrics,
vol. 11, no. 6, pp. 601-618, 1996.

[66] G. W. Schwert, “Tests for unit roots: a Monte Carlo inves-
tigation,” Journal of Business and Economic Statistics, vol. 7,
pp. 147-159, 1989.

[67] G. Kapetanios, A. Snell, and Y. Shin, “Testing for unit root in
the nonlinear STAR framework,” Journal of Econometrics,
vol. 112, pp. 359-379, 2003.


https://econpapers.repec.org/article/ouprestud
https://econpapers.repec.org/article/ouprestud
https://econpapers.repec.org/article/ouprestud/
https://econpapers.repec.org/article/ouprestud/
https://ideas.repec.org/s/eee/phsmap.html

Hindawi

Discrete Dynamics in Nature and Society
Volume 2021, Article ID 6668912, 9 pages
https://doi.org/10.1155/2021/6668912

Research Article

Hindawi

Dynamic Cross-Correlations Analysis on Economic Policy
Uncertainty and US Dollar Exchange Rate:

AMEF-DCCA Perspective

Ruwei Zhao' and Yian Cui®?

ISchool of Business, Jiangnan University, Wuxi, Jiangsu 214122, China
2Research Institute, Shenzhen Stock Exchange, Shenzhen 518038, China

Correspondence should be addressed to Yian Cui; yacui@szse.cn

Received 11 October 2020; Revised 7 December 2020; Accepted 9 January 2021; Published 30 January 2021

Academic Editor: Giancarlo Consolo

Copyright © 2021 Ruwei Zhao and Yian Cui. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this paper, we employ the multifractal detrended cross-correlation analysis (MF-DCCA) as the measurement instrument for
the dynamic cross-correlation inspection between US economic policy uncertainty (EPU) index and US dollar exchange rate
return (Ret). By calculating the cross-correlation statistics, we find mild acceptance of cross-correlation between EPU and Ret
qualitatively. With further application of ME-DCCA methodology, we find strong power law cross-correlation existence within all
scaling orders. Also, apparent persistence of cross-correlation has been discovered with significant Hurst exponents of all orders.
Besides, we find that long-term cross-correlation demonstrates more persistence and higher degree of multifractality than those in
the short term. Finally, we utilize the rolling window and binominal measurement analysis as revisits of the model. The results are

consistent with model statements.

1. Introduction

It is well documented that macro factors demonstrate
powerful influence in pricing financial assets, such as stocks
and bonds [1-3]. However, few studies concentrate on the
exchange market. Also, to have a better observation of
economic policy fluctuation in a quantitative way, Baker
et al. [4] develop the novel economic policy uncertainty
index with the retrieval of mainstream newspapers, which is
widely employed in the financial academic field [5-22]. With
this view, we connect the prevailing economic policy un-
certainty index with US dollar, the world’s largest trading
currency, to check if US macro policy adjustment would
shed light on the fluctuation of US dollar exchange rate. Due
to the introduction of Fractal Market Hypothesis (FMH)
suggested by Mandelbrot and Van Ness [23], many re-
searchers are inclined to employ fractal analysis method-
ology, such as multifractal detrended cross-correlation
analysis (MF-DCCA), as the statistical instrument for the
fractal characteristics discovery between nonstationary

financial time series [24-32]. Zhang et al. [25] carried out a
study regarding the correlation between media news and
stock market index return with MF-DCCA approach. They
found quantitative evidence for the cross-correlation mul-
tifractality existence between media news and SSE 50 index
return. They further conducted the rolling window analysis,
and the results show that scaling exponents are all above
critical values, showing strong evidence of multifractality
persistence between media news and index return. Zhou
et al. [28] took an information content investigation of fi-
nancial derivatives in China market. With ME-DCCA ap-
proach, they found that put-call ratio demonstrates
antipersistent cross-correlation with 50 ETF return.
Meanwhile, for the option-to-stock volume ratio, no sig-
nificant cross-correlation was detected.

In this study, we employ the economic policy un-
certainty index, constructed through semantic analysis
techniques with hundreds of mainstream newspapers, as
the representative of national economic policy fluctua-
tion. Many prior studies have confirmed the applicability
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of the economic policy uncertainty index and MF-DCCA
approach [5-22, 24-32]. With this view, we utilize the
MEF-DCCA as a vehicle to check the existence of multi-
fractal cross-correlation between US economic policy
uncertainty index and US dollar exchange rate index
return. We calculate the fluctuation function and find
widespread power law cross-correlation existence.
Moreover, the cross-correlations between series demon-
strate strong persistence with significant exponents of all
scaling orders. In addition, we calculate the time turning
point and break the whole-time length into short-term
and long-term periods. We find that long-term cross-
correlation performs much better in persistence and
multifractality compared with those in the short term. In
the end, we revisit the MF-DCCA model with the rolling
window and binominal measurement analysis. The results
confirm series multifractality with the qualified exponents
and close distances between arithmetic average and cross-
correlation exponents.

Our study contributes to the existing literature from
three perspectives. First, we utilize the novel US economic
policy uncertainty index as the measurement for the US
economic policy fluctuation and concatenate it with the
US dollar exchange rate index with MF-DCCA method-
ology. Particularly, we find strong power law cross-cor-
relation existence between US economic policy
fluctuation and US dollar exchange rate return within all
scaling orders. Also, the cross-correlations demonstrate
reliable persistence with significant exponents. With this
view, our empirical findings were consistent with the fi-
nancial studies associated with MF-DCCA [24-32]. Sec-
ond, our study originates from the exchange market
perspective, providing deeper insight into the evolution
dynamics of the US dollar exchange rate. Third, as the
world’s largest trading currency, our findings would
provide valuable suggestions for investor’s risk manage-
ment in the US dollar exchange market by hedging with
economic fluctuation.

The rest of this paper is organized as follows: Section 2
describes the data. Section 3 illustrates the multifractal cross-
correlation methodology. Section 4 demonstrates the em-
pirical results. Section 5 concludes the paper.

2. Literature Review

In this study, we investigate whether multifractal cross-
correlation between economic policy uncertainty and US
dollar index exists with the application of multifractal
detrended cross-correlation analysis (MF-DCCA). With
this view, we develop the review from the impact of
economic policy uncertainty on asset pricing and the
application of MF-DCCA in financial time series
perspectives.

2.1. Economic Policy Uncertainty. Many studies have
revealed that macro factors, such as changes in economic
policies, present significant power in pricing financial assets.
Bhamra et al. [3] and Chen [2] provided theoretical models
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embedded with economic uncertainty to answer the credit
spread puzzles. However, to have a general measurement of
economic policy uncertainty in a quantitative way, Baker
et al. [4] constructed a novel index of economic policy
uncertainty based on the analysis of newspaper coverage
frequency, which is widely employed by financial re-
searchers. Lee et al. [5] connected the China economic policy
uncertainty index with US household portfolio changes.
They found that US household would decrease stock
holdings with increasing China economic policy uncer-
tainty, especially for the states with more exports to China.
Attig et al. [6] studied the relation between economic policy
uncertainty index and company dividend payout policy
internationally. The empirical findings suggest that corpo-
rate executives prefer to distribute more dividends to
shareholders in the higher EPU times. Yang et al. [14] in-
vestigated whether economic policy uncertainty index holds
prediction for the excess return. They found that the greater
dispersion of economic policy uncertainty index would
result in a higher rate of excess return in China’s stock
market. Hsieh and Nguyen [11] carried out a study on
economic policy uncertainty index and illiquidity return
premium. They found that the premium between illiquidity
and liquidity portfolios would be larger when the economic
policy uncertainty index begins to have an upward trend.

2.2. Multifractal Detrended Cross-Correlation Analysis.
Extensive studies contribute to methodology development
of nonstationary time series analysis. Kantelhardt et al. [33]
proposed multifractal detrended fluctuation analysis (MF-
DFA) for the examination of nonstationary time series,
extending prior detrended fluctuation analysis (DFA)
proposed by Peng et al. [34, 35]. Podobnik and Stanley [36]
put forward detrended cross-correlation analysis (DCCA)
enabling cross-correlation investigation between two
nonstationary time series. However, detrended cross-cor-
relation analysis is from the single fractal perspective,
resulting in potential information loss of the time series. To
have deeper insight into two nonstationary time series,
Zhou [37] advanced the prevailing multifractal detrended
cross-correlation analysis (MF-DCCA) by combining MEF-
DFA with DCCA. Ruan et al. [24] studied the multifractal
characters among China’s agricultural futures returns.
They found credible multifractality existences among
soybean, soymeal, and soyoil futures returns. Cai et al. [29]
studied the cross-correlations between crude oil price and
implied volatility indices. They found that the cross-cor-
relation multifractalities are ubiquitous between series.
Alaoui et al. [30] studied the cross-correlation
between Bitcoin price and volume. With the application of
MEF-DCCA, they found adequate evidence supporting the
cross-correlation multifractality between Bitcoin price and
volume. Wang et al. [31] examined the cross-correlation
between crude oil and agriculture futures under the shock
of COVID-19. They found that the persistence between
series is greatly enhanced after the involvement of COVID-
19 and the cross-correlation between crude oil and sugar
future presents strongest multifractality.
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3. Data Description

We obtain the daily data of US EPU index by downloading it
directly from the website (http://www.policyuncertainty.
com/us_monthly.html). US daily EPU index is based on
the article archives from Access World News NewsBank
service. The Access World News NewsBank database con-
tains over 1000 newspapers from widely known to small
local newspapers across US. The measure for this index is the
number of articles that contain at least one term from each of
3 sets of terms. The first set is economic or economy. The
second is uncertain or uncertainty. The third set is legislation
or deficit or regulation or congress or federal reserve or
white house. We derive US dollar index as proxy for US
foreign exchange market from Yahoo Finance. The sample
periods of US daily EPU index and US dollar index are from
1 January 1985 to 8 October 2020.

In addition, we employ two log values as proxies for the
cross-correlation inspection between EPU and US dollar
index. The calculation processes are as follows:

Ret, = ln(£>,
P (1)

EPU, =In(epu,),

where P, is the closing price of US dollar exchange rate at day
t and EPU, is the daily value of EPU index. Table 1 reports
the descriptive statistics of EPU index and US dollar ex-
change rate return. As we can see in Table 1, the means of Ret
and EPU (0.00 and 4.39) are smaller than the medians (0.00
and 4.40), showing a left-skew character, which is consistent
with negative numbers of skewness (—0.08 and —0.13). For
the kurtosis, the two series demonstrate sharp peak char-
acteristics with values greater than 3 (5.22 and 3.39). In
addition, we calculate the Jarque-Bera coeflicients within
each series to check the normality existence. We can find
that both series present strong rejections of the normal
distributions with coeflicients significant at 1% levels
(1878.42*** and 83.08***). Also, the standard deviation of
EPU (0.68) is much larger than that of Ret (0.01), indicating
a higher level of volatility.

4. Methodology

In this section, we employ the prevailing MF-DCCA ap-
proach to check whether multifractality exists between the
US dollar exchange rate and US economic policy uncer-
tainty. We first utilize the methodology proposed by
Podobnik and Stanley [36] to have a qualitative cross-cor-
relation examination between series. Second, we apply the
MF-DCCA approach to check if the correlations hold
multifractality with the changes of scaling parameters.

4.1. Cross-Correlation Test. Before the MF-DCCA inspec-
tion, we employ a cross-correlation statistics proposed by
Podobnik and Stanley [36] to have a qualitative cross-cor-
relation check between US dollar exchange rate return and
US economic policy uncertainty index. The cross-correlation

3
TaBLE 1: Descriptive statistics of Ret and EPU.

Variable Ret EPU
Mean 0.00 4.39
Median 0.00 4.40
Standard deviation 0.01 0.68
Max 0.03 6.69
Min -0.04 1.20
Skewness —-0.08 -0.13
Kurtosis 5.22 3.39
Jarque-Bera 1878.42%** 83.08""*
N 9129 9129

The Ret and EPU terms are short for the daily US dollar exchange rate
return and the US economic policy uncertainty index. N refers to the
number of observations. ***Statistical significance at 1% level.

statistics is constructed through two steps. Firstly, we need to
have a cross-correlation indicator. The indicator C; is created
as follows:

C = Zzlm X Yk-i 2)
\/ZIICV:I xlzc ZkN:1 )’i

where {x,} and {y,} are the two time series with equal
lengths of N.

Secondly, we calculate the cross-correlation statistics
with the involvement of prior indicator C,. The statistics
construction process is as shown in the following
equation:

25 G
Q. (m) =N ;ﬁ’ (3)

where C; is the cross-correlation indicator, N is the
number of observations, and m works as the degree of
freedom. The cross-correlation statistics Q. (m) follow
the y*(m) distribution with m degrees of freedom. The
null hypothesis of the cross-correlation test proposed by
Podobnik and Stanley [36] states that the cross-corre-
lation indicator C; demonstrates no significant difference
from zero. With this view, we compare the cross-cor-
relation statistics Q.. (m) and chi-square critical value
x* (m) with m degrees of freedom to see whether the value
of the cross-correlation statistics Q.. (m) is greater than
that of the chi-square critical value y* (m). If so, the null
hypothesis would be rejected and a reliable cross-cor-
relation between two time series can be confirmed in a
statistical way.

4.2. MF-DCCA. Zhou [37] proposed the multifractal cross-
correlation analysis (MF-DCCA) for the cross-correlation
inspection between time series, which is widely employed in
the academic field. With this view, we employ the prevailing
MEF-DCCA methodology as a vehicle to check if the mul-
tifractal cross-correlation exists between the return of US
dollar exchange rate and US economic policy uncertainty
index. The MF-DCCA approach is derived from the
detrended fluctuation analysis. The five detailed construc-
tion steps are as follows.
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Step 1. We have two equal-length time series {x;} and {y;}
as the indicators of the US dollar exchange rate return and
US economic policy uncertainty index, where k is from 1 to
N. N denotes the number of the total observations. After-
wards, two other detrended profiles X (i) and Y (i) are
created by original time series {x;} and {y,}, where i is from
1 to N, respectively. The detailed calculation process is as

follows:
X (@)= Z (% — %),
kjl (4)

Y@ =Y (n-7)

k=1

where X and y are arithmetic average values of the time
series {x;} and {y,}. With this view, it is easy to find that X
(N)=Y (N)=0.
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N, = int<ﬁ>, (5)
s
where N refers to the number of total observations. “int” is
the symbol of integer function, which accounts for the
collection of the maximum integer toward the real number.
In addition, the total number N sometimes cannot be di-
vided completely by scale s without any remainder. This
would generate a short part segment ignorance at the end of
each profile. To maximize the value of the entire series, we
regenerate N, segments from the end to the top of the profile.
As a result, each profile holds two N, segments after this
procedure.

Step 3. To acquire the local trend of each of the two Nj
segments, we perform a polynomial fitness check with each
segment. As a result, the variance of each segment v is
constructed as follows:

- ; 2 :
Step 2. We further divide two detrended profiles X (i) and Y 1fv=1,2,3,..., N, the variance of segment v, F* (1, 5), is
G . . as follows:
(i) into N, nonoverlapping segments. Each segment is a
separate time series with s observations. The calculation
process of length interval Nj is as follows:
2 1 : . Ny, . ny.
F(v,5) =< Y IX((v=Ds+i) = pL @)Y (v = Ds +4) = py ()] (6)
i=1
If v=N, +1, N, +2, N; +3,..., 2N, the variance of seg-
ment v, F%(v,s), is as follows:
13 . . ) .
F*(v,s) = ; YIX(N=(v=N)s+i) = pr() - [Y (N = (v=N)s +i) - pj (i), (7)
i=1

where p! (i) is the n-th-order polynomial fitness check of
segment 7.

Step 4. We take the arithmetic average of all the detrended

segment variances, which generates the g-th order of the

fluctuation function. The fluctuation functions are con-

structed by the values of q. The equations are as follows.
If g#0,

1/q

P oW o2
F,(s) = [W Z [F (v,s)] :| ) (8)
s p=1
Ifg=0,
12N )
= — 1 )| 9
Fy(s) exp[4Ns U; n[F (v s)]] 9)

Generally speaking, the fluctuation function F(s) is
determined by the time length s under a certain value of . In
addition, the fluctuation function equals the traditional
detrended cross-correlation analysis process when the value
of q is 2. With this view, we repeat the procedures from Step
2 to Step 4 with various selections of s, which is an essential
part of the multifractal analysis and, finally, leads to our last
procedure, Step 5.

Step 5. Due to the multilength value selection of s, the
fluctuation function F, (s) with different scaling orders g can
be observed by checking the gradient of the log—log plots of
F q(s) versus s. If the time series X (i) and Y (i) present a
cross-correlation with multifractal property, the fluctuation
function F, (s) would demonstrate a power law relationship
with a large enough time length s between the two time

series:
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Fq (s) ~ Sny(q)) (10)

where H yy (q) is on behalf of the gradient of the log-log plots
of F,(s) with the variation in the values of q. Hyy (q) is
estimated by the ordinary least-squares process.

With this view, we find that the slopes of the functions
F,(s) and Hyy (q) varied upon the value changes of scaling
order q. Also, when q=2, Hyy (q) works as the standard
Hurst exponent. If the scaling exponent, Hyy (2), is larger
than 0.5, we believe that a persistent cross-correlation exists.
However, if the scaling exponent of H xy (2) is less than 0.5,
we believe that persistent cross-correlation between the time
series X (i) and Y (i) does not exist. If the scaling exponent
Hyy (2) is equal to 0.5, the cross-correlation between the
time series X (i) and Y (i) shows no significance. With
widespread application of the Hurst exponent, H xy (2) has
been commonly viewed as the generalized Hurst exponent.
Thus, if the scaling exponent H xy (q) is equal to a constant
by any given value of scaling order g, the time series cross-
correlation is believed to hold the monofractal characteristic.
In contrast, if Hyy (q) monotonously decreases with the
increasing value of g, the time series are determined to be
cross-correlated with multifractal property. Additionally, we
can derive from equations (4) and (6) that when q is greater
than zero, the segment v, which is on behalf of the large
fluctuation of F? (v, s), plays a vital role in valuing fluctuation
function F q (s). With this view, the scaling exponent H xy (q)
could be employed as a proxy for the illustration of the large
fluctuation scaling character. Conversely, if g is less than
zero, the scaling exponent H xy (q) would be responsible for
the small fluctuation scaling character.

5. Empirical Results

5.1. Cross-Correlation Test. To have a qualitative view of the
cross-correlation between the US dollar exchange rate and
US economic policy uncertainty index, we follow the work of
Podobnik and Stanley [36] by calculating cross-correlation
indicator, C;, and statistics, Q. (). Figure 1 demonstrates
the cross-correlation statistic Q.. (1) and chi-square critical
value y° (m) at 5% significant level with degrees of freedom
from 1 to N-1. The black and green lines are responsible for
the critical value of X2 (m) and statistic Q.. (m), respectively.
We can find that partial Q. (m) statistics are equal to the
critical values; thus, the null hypothesis of no cross-corre-
lations cannot be fully accepted, which would result in a
cross-correlation between US dollar exchange rate and US
economic policy uncertainty index.

5.2. Multifractal Detrended Cross-Correlation Analysis.
Section 5.1 provides qualitative evidence that US dollar
exchange rate return and US economic policy uncertainty
index would have cross-correlation with significant statis-
tics. To have a more solid cross-correlation inspection in a
quantitative way, we utilize the prevailing multifractal
detrended cross-correlation analysis as the vehicle, which is
extensively employed in the time series studies. We calculate

the fluctuation function Fyyq (S)) with growing scaling order

log10(Qcc(m))

ol . . . . . .
0 0.5 1 1.5 2 2.5 3 3.5 4
log10(m)
—o— EPU-Ret
—— Critical

FIGURE 1: Log-log plot of cross-correlation statistic Q.. (m) for EPU
and Ret.

q from —10 to 10 by one step length. Figure 2 plots the log-
log trend of Fyyq (S)) varying upon the time length s between
US dollar exchange rate return and US economic policy
uncertainty index (Ret and EPU). The lines increasing from
bottom to the top are on behalf of corresponding scale orders
from —10 to 10. It is easy to find that F,,q (S)) demonstrates
apparent rising trend with the gradual increase of s with all
scale orders, showing a power law correlation existence
within the two time series.

As one of the essential inspection procedures for US
dollar exchange rate return and US economic policy un-
certainty index cross-correlation check, we calculate the
Hurst exponent conditional on scaling order. Figure 3 shows
the Hurst exponent evolution pattern upon variation of
order q. We can find that the Hurst exponent values of US
economic policy uncertainty index and US dollar exchange
rate return (EPU-Ret) demonstrate downward pattern with
increasing scale order. However, all values are greater than
0.5, indicating cross-correlation persistence between US
economic policy uncertainty index and US dollar exchange
rate return (EPU-Ret).

In order to have a deep insight of Hurst exponent
evolution conditional on the time length s, we follow the
methodology proposed by Podobnik et al. [38]. Podobnik
et al. [38] divided the whole-time length into two parts, the
short-term length and long-term length with a cutoff point
at §*, which indicates a fundamental change in Hurst ex-
ponent linear tendency. If the time length S is greater than
that of §*, we attribute it as long-term length and vice versa.
As shown in Figure 2, log; (8*) is equal to 2.2 (§* equals
158), marked by the vertical dashed line. Figure 4 presents
the short-term and long-term Hurst exponent evolutions.
We can find that the long-term Hurst exponents for EPU-
Ret are all larger than those in the short term, indicating a
more persistent cross-correlation compared with that in the
short term. Also, we can find that both long-term and short-
term Hurst exponents decline as scaling order g increases.
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FIGURE 2: Log-log plot of F,,q (S) versus s for EPU and Ret.
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FIGURE 3: Hurst exponent H (g) versus g for the EPU-Ret.
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FIGURE 4: Short-term and long-term Hurst exponent H (g) versus q
for the EPU-Ret.

With this view, the large fluctuation holds less cross-cor-
relation than the small one. In addition, we introduce AH,,
the difference between max and min Hg, proposed by Yuan
et al. [39], as the measurement instrument of multifractality
degree. A smaller value of AH, refers to a lower degree of
multifractality. AH, is constructed as follows:
AH, = max(H,) - min(H,)). (11)
As reported in the last row of Table 2, we can find that
long-term AH, (0.1559) is larger than that in the short term
(0.1071), indicating a more stable cross-correlation within
series.

5.3. Rolling Window Analysis. In this section, we perform the
MF-DCCA with rolling window approach to check the
cross-correlation dynamic character between US dollar
exchange rate return and US economic policy uncertainty
index. Due to sample size expansion, we take a four times
multiplier of the rolling window setting of Zhang et al. [40]
with 2000 trading days as window length and 32, 64, 128,
256, 512, and 1024 as scale s. Also, to have a more general
view of trend evolution, we follow the work of Zhang et al.
[41] with g as 2, 6, and 10. Figure 5 presents the Hurst
exponent evolution following rolling window methodology.
It is easy to find that the exponent line never moves down
0.5, showing reliable cross-correlation persistence between
EPU and Ret. In addition, we perform two other robustness
tests with window sizes of 1500 and 2500 as shown in
Figures 6 and 7, respectively. It is easy to find that all the lines
are above 0.5, which are consistent with findings in Figure 5.

5.4. A Binomial Measure from P-Model. Podobnik and
Stanley [36] proposed that when scale order g equals 2, the
Hurst exponent within two autoregressive fractional inte-
grated series of same random noise would roughly bear an
equivalence to the mean value of the corresponding indi-
vidual Hurst exponents. Also, Zhou [37] found that if
multifractality can be discovered through an iterative way,
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TaBLE 2: Short-term and long-term Hurst exponent H (q) versus g.

EPU-Ret

q §* =158

S<§* §>8*
-10 0.7491 0.8863
-9 0.7415 0.8833
-8 0.7335 0.8801
-7 0.7255 0.8765
-6 0.7174 0.8725
-5 0.7097 0.8676
—4 0.7026 0.8613
-3 0.6963 0.8530
-2 0.6912 0.8420
-1 0.6874 0.8279
0 0.6848 0.8115
1 0.6833 0.7945
2 0.6822 0.7789
3 0.6809 0.7661
4 0.6787 0.7563
5 0.6749 0.7490
6 0.6697 0.7436
7 0.6633 0.7394
8 0.6562 0.7360
9 0.6490 0.7331
10 0.6419 0.7305
AH, 0.1071 0.1559

Window = 2000

0.9

| ‘ 1993/03/12 |
1998/09/02
2004/02/23
2009/08/15
2015/02/05
2020/07/28

q=2
q==6
qg=10

F1GURE 5: Dynamic Hurst exponents evolution for EPU-Ret (¢ =2,
6, and 10, and window =2000).

the following equation for two binomial measure series
would exist:

H. (9 +H,,(q)
=

ny (Q) = (12)

Figure 8 plots the Hurst exponents evolution with three
time series. We can find that the exponents of H,, (q) and

Window = 1500

0.95

0.5
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F1GURE 6: Dynamic Hurst exponents evolution for EPU-Ret (g =2,
6, and 10, and window = 1500).
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F1GURE 7: Dynamic Hurst exponents evolution for EPU-Ret (9 =2,
6, and 10, and window =2500).

Hyy (q) demonstrate downward patterns with reduced values
as g increases, indicating multifractality existence of EPU
and Ret series. Also, the arithmetic average of Hy, (q) and
Hyy (q) presents larger value than that of H,y, (q) as g below 0
and vice versa for g greater than 0. In addition, the dif-
ferences between the arithmetic average and H,, (q) are
small and almost symmetrically distributed. Taking this view
into consideration, we believe that the differences can be
offset and H,, (q) and (Hy () + Hyy (q))/2 are roughly equal
within the whole scaling orders.
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and Ret-Ret.

6. Conclusions

Multifractal detrended cross-correlation analysis has been
confirmed as a trustworthy instrument for the detection of
cross-correlation multifractality properties between series by
many studies in the financial field. With this view, we utilize
the fashionable logarithmic US economic policy uncertainty
index as the proxy of the US economic policy uncertainty
and concatenate it with the matching US dollar exchange
rate return. We calculate the cross-correlation statistics and
find weak evidence in the existence of cross-correlation
between US dollar exchange rate return and US economic
policy uncertainty index in the qualitative view. To have
more quantitative insight of the multifractal cross-correla-
tion character within series, we employ the MF-DCCA
methodology. We find that US dollar exchange rate return
and US economic policy uncertainty index present power
law cross-correlations with all the scaling orders, confirming
the multifractality property between series. Besides, we find
that the Hurst exponents between US dollar exchange rate
return and US economic policy uncertainty index are all
above the critical values with all scaling orders, confirming
reliable cross-correlation persistence. Also, the long-term
cross-correlation demonstrates more persistence and higher
degree of multifractality with larger exponents. Finally, we
perform additional rolling window and binomial measure
checks. We find that both results are consistent with the
model statements.

Data Availability

The EPU and US dollar index data used to support the
findings of this study are included within the article.
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This paper focuses on investigating the dynamic cross-correlation relationship between online sentiment and returns of major
global stock markets based on the MF-DCCA method. We use Daily Happiness (DHS), an index derived from Twitter posts
through textual analysis as a proxy of online sentiment. By dividing the global financial markets into developed and developing
ones, we are able to test the heterogeneous relationship between stock market performance and sentiment at different economic
developing level. Empirical results show that there exists a power-law cross-correlation relationship between financial market and
online sentiment in some developed countries and all developing countries, and the relationship is more stable in the developing
countries. Moreover, we apply rolling window analysis to capture the dynamic evolution characteristics and find the relationship
has a strong consistency over time. Our work provides a much more delicate perspective to test the relationship between online

sentiment and financial markets performance and enriches the existing literature.

1. Introduction

Investor behavior in financial market cannot be fully
explained by classical financial theory under the hypothesis
of completely rational person. The behavioral financial
theory takes human behavioral bias including limited in-
vestor attention [1-3] and emotional behavior into con-
sideration, guiding researchers to examine the relationship
between sentiment and financial market performance.
Various proxies have been come up with the aim of cap-
turing sentiment precisely, including closed-end fund dis-
count [4, 5], indices extracted from financial and market
indicators [6], and indices generated by textual analysis
through either financial newspapers [7] or social media
[8, 9]. Compared with others, the sentiment indicator, based
on social media information, is exogenous to financial
markets and can be acquired at high frequencies, making it
practical in sentiment study.

The interaction between media sentiment and stock market
activity began to draw widespread attention since Tetlock [7]
found that the emotional orientation of Wall Street Journal

content has the function of predicting board movements of
stock market, and high media pessimism reveals a downward
price pressure on stock market. Alanyali [8] did a similar re-
search based on Financial Times press issues. With the rapid
development of modern technology, social media contains not
only newspapers but also Internet social platforms, making
capturing social media sentiment through Internet search
engine data possible. Various proxies have been employed to
represent online sentiment, and these sentiment proxies can be
based on Facebook posts [9, 10], Google search [11, 12], or
Baidu search index [13, 14]. In particular, Bollen et al. [15]
analyze the text content of daily Twitter and found that the
sentiment index derived from Twitter is correlated with Dow
Jones Industrial Average over time. Another widely used
sentiment indicator based on Twitter posts is Daily Happiness
Index (DHS), an index extracted from 10% of all tweets using
textual analysis. DHS is derived from the worldwide social
media Twitter with millions of thousands of users, and the
massive users around the world ensure the rationality of using
DHS to measure online sentiment. Compared with the sen-
timent index extracted from financial market, DHS provides a
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broader horizon of sentiment. In fact, a strand of recent papers
have documented a link between sentiment proxies strictly
exogenous to financial markets and stock returns, including the
loss of sports games [16], morning sunshine [17], TV program
[18], and even sunspots and the stars [19]. Meanwhile, DHS is
strictly exogenous to the financial market and avoids the en-
dogenous problems that may arise later. The existing literature
using DHS as a sentiment proxy mainly focuses either on the
linear relationship between sentiment and stock market per-
formance [20-22] or on the lead-lag Granger causality rela-
tionship in developed financial markets [23]. These research
methods have shortcomings in capturing the microdynamic
changes and nonlinear relationship between sentiment and
stock market performance. A more simulation model is ur-
gently needed to generate more pervasive and accurate profile
of sentiment.

Deepening of globalization not only enables people from
different countries to share messages via the same social media,
but also makes financial markets worldwide connect with each
other [24-27] more intensely. Thus, it is of great importance to
characterize the correlation between online sentiment and fi-
nancial market performance in a worldwide perspective and
turther study the heterogeneity of the relationship between
sentiment and different markets. In this paper, we investigate
the cross-correlation between online sentiment and returns of
major global financial markets. Specifically, we choose Daily
Happiness (DHS) as the exogenous proxy for online sentiment
and characterize the nonlinear relationship between sentiment
and stock market returns dynamically through MF-DCCA,
which has been proved to be practical in simulating multifractal
features of financial market.

Our research may contribute to the existing literature in
two ways: On one hand, we characterize the dynamic re-
lationship between online sentiment and stock market
return using MF-DCCA, and the cross-correlation between
the two is distinguished in different wavebands. Thus, a
much more delicate perspective has been found to test the
relationship between sentiment and financial markets. On
the other hand, previous researches mainly use DHS as a
sentiment proxy of either the US market [7] or other in-
dividual market [9,10]. In this paper, we divide the global
stock market into subsamples according to the economic
development level and compare the similarities and dif-
ferences of the cross-correlation relationship between online
sentiment and stock market performance.

The rest of the paper is organized as follows. Section 2
introduces the model and methodology, Section 3 describes
the data in this study, Section 4 presents the empirical re-
sults, and Section 5 concludes the paper.

2. Methodology

We mainly follow the rationale of Zhou [27], using MF-DCCA
(multifractal detrended cross-correlation analysis) model to
assume the dynamic relationship between online sentiment
and stock market. MF-DCCA model is a Frontier approach to
measure nonlinear and unstable correlations. This research
branch is originated from [28], in which DEA model is pro-
posed and gradually became the most widely used nonlinear
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analyzed method. Subsequent studies continue to optimize
DEA model [29-31]. Podobnik and Stanley [32] creatively
apply DEA to the long-range cross-correlation analysis of two
nonstationary series and construct a new method named
DCCA. On this basis, Zhou [27] added multifractal function
method into DCCA and proposed ME-DCCA. MF-DCCA has
advantages in fitting nonlinearity and multifractals in the cross-
correlation between time series in the financial market and has
been widely used [32-38].

For any two equal-time series of length N {x;}, {y;},
i=1,2,...,N, there are five main steps to construct MF-
DCCA algorithm.

Step 1. Construct two accumulated differential se-
quences as profiles:

t
X, = Z (= %),
k=1

t
Y, =Y (-7, t=12 ..., N,

kl_lN (D
fzﬁ,;xk’

1 N
7=N2yk,

>~
I
—

where X and y are the mean values of the time series,
respectively.

Step 2. Divide X, and Y, into N, =int(N/s)
nonoverlapping segments of equal lengths s. Notably,
N is often difficult to maintain as an integer multiple of
s, which will cause the part of the end of the sequence
that is less than s to be discarded by calculating
int(N/s). To solve this, we perform the same seg-
mentation process from the end forward again and
finally get 2 N nonoverlapping parts containing all the
information in the original time series.

Step 3. For each segment, evaluate the local trend with
least squares fit, and then calculate the difference be-
tween the original time series and the fitting polynomial
to get the detrended covariance.

For segment A = 1,2,..., N,

N

F2 (s, 1) = % S IX tyeri 06 = X (O [Y 1y (0) = T (K-
k=1
(2)

For the flashback segment A = N+ 1,N +2,...,2N|,

N

1< —
F*(s,\) = 3 ZIXN—(/\—N)erk (k) = X, (O|]Y N-r-nyssk (k)
P

=Y, (k).
(3)



Discrete Dynamics in Nature and Society

Step 4. Take the average value of all the detrended
covariances to obtain the g-order fluctuation function.

For any g #0,
1 e 2 9/2,1/q
o) =10 ; [F* (s, 1)]" 312, (4)
For any g =0,
1 2N, X
F,(s) = exp{4—Ns ;1 [F* (s, 1]} (5)

It is worth noting that MF-DCCA degenerates to the
conventional DCCA method when g = 2.

Step 5. Draw a log-log graph with F,_ (s) set as the y axis
and s as the x axis, and observe the trends at different
scales. Specifically, there exists a power-law cross-
correlation relationship of the following form if the
two series have long-range cross-correlation:

F(s)-~s"o, (6)

where the scaling exponent H,, (q) for each q can be
obtained by observing the slope of the log-log plots of
F,(s) versus s through ordinary least squares.

H,, (q) <0.5 reveals that the two series fluctuate towards
the opposite direction. On the contrary, when H,, (9) > 0.5,
there is a positive cross-correlation between the two se-
quences; that is, when one sequence fluctuates in the positive
direction, the other will also fluctuate in the same direction.
No significant cross-correlation relationship  exists
iftH,,(q) = 0.5.1fq = 2, MF-DCCA collapses to DCCA, and
the exponent H,), (q) is equivalent to the generalized Hurst
exponent.

3. Data

We use the Daily Happiness Index (DHS) extracted from
Twitter as a proxy for online sentiment in accordance with
previous literature [20-23]. DHS is compiled by
Hedonometer using Amazon’s Mechanical Turk service and
natural language text analysis algorithm (For more details on
DHS, see http://hedonometer.org/index.html). DHS con-
veys 10% of all daily Twitter information (Nearly 50 million
text messages). Massive real social data ensure the authority
of DHS in measuring the online sentiment. We obtain DHS
index from September 10™, 2008, to August 31*, 2019.
We use market size and trading volume as the basis for
selecting representative financial markets in this study. Our
empirical sample includes the world’s top 20 stock market
daily data indices, covering Asian, European, and American
main stock exchanges. Among these 20 indices, S & P500,
NASDAQ, and Dow Jones Industrial Average and other four
indices are all from USA. We choose the two highest-ranked
indices, S & P 500 and NASDAQ as representatives in order
to solve multicollinearity between indices. Meanwhile, we
drop Shanghai Composite Index from our sample because
Twitter is prohibited in Chinese Mainland, and DHS cannot

reflect the online sentiment of local Chinese mainland ef-
fectively. Our final sample is, thus, containing 11 stock
market indices of 10 countries in total (All stock market data
used in this paper are from YAHOO! Finance: http://finance.
yahoo.com). The developed markets include the United
States (S & P500 and NASDAQ), the United Kingdom
(FTSE), Germany (DAX), France (FCHI), Japan (Nikkei),
and South Korea (KOSPI), and the developing countries
include Brazil (BVSP), Mexico (MXX), India (BSE), and
Indonesia (JKSE), respectively. The time interval is from
September 10™, 2008, to August 31%, 2019, and non-
synchronized time period data is excluded in each group to
ensure comparability. Table 1 presents daily summary sta-
tistics of return (%) of each financial market indices in our
final sample, whereas Figure 1 depicts the trend for DHS.

This table shows the descriptive statistics for our sen-
timent indicator-DHS and 11 major global market index
returns, including the United States (S & P500 and NAS-
DAQ), the United Kingdom (FTSE), Germany (DAX),
France (FCHI), Japan (Nikkei), and South Korea (KOSPI),
and the developing countries include Brazil (BVSP), Mexico
(MXX), India (BSE), and Indonesia (JKSE), respectively.
Mean represents the mean value of each variable, while Std.
stands for standard deviation. We also report the quartile of
each variable. Figures are expressed in percentage.

4. Empirical Results

4.1. Cross-Correlation Test. It is necessary to verify whether
there is a cross-correlation between online sentiment and
stock market returns before using MF-DCCA for dynamic
cross-correlation analysis. Following previous studies
[29, 30, 34, 35], we employ Q.. statistic test to quantitatively
measure the cross-correlations between online sentiment
and stock market returns. The cross-correlation statistic Q.
between the time series {x;} and {y;} is defined as

2

Q. (m)=N*Y) (7)
i=1

G

]
N—-i
where their cross-correlation function is shown as follows:

Yo ., returndhs;
‘TN 2N 2 (8)
\/Zk=1 return; Y, dhs;

According to Podobnik and Stanley [29], the cross-
correlation statistic Q. (1) is approximately y* (m) distributed
with m degrees of freedom. The null hypothesis of y? test is that
there is no cross-correlation between the two series. In other
words, if the statistic Q.. (mm) is larger than the critical value of
Chi-Square test, the null hypothesis is rejected, indicating that
two series are cross-correlated.

Figure 2 shows the cross-correlation test result between
stock market returns and online sentiment measured by
DHS in developed countries, while Figure 3 exhibits the test
results in the developing ones. The horizontal axis indicates
the degrees of freedom m after the natural logarithm, and the
vertical axis is the statistic Q.. (). Full line marked with
circles is the cross-correlation statistics of online sentiment
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TaBLE 1: Descriptive statistics: DHS and return (%) of financial market indices.
Obs. Mean Std. Min 25% Median 75% Max
DHS 4002 6.021 0.046 5.774 5.987 6.020 6.053 6.357
S & P500 2758 0.040 1.242 -9.035 -0.374 0.065 0.551 11.580
NASDAQ 2758 0.056 1.341 -9.142 —0.455 0.096 0.681 11.806
FTSE 2663 0.017 0.904 —4.838 —-0.434 0.024 0.515 3.840
DAX 2640 0.033 1.406 -7.073 —0.565 0.069 0.675 11.402
FCHI 2787 0.020 1.421 -9.037 —-0.618 0.037 0.686 11.176
Nikkei 2644 0.031 1.548 —11.406 -0.659 0.068 0.811 14.150
KOSPI 2648 0.022 1.182 -10.571 —0.460 0.040 0.586 11.946
BVSP 2640 0.037 1.707 -11.393 —0.846 0.030 0.904 14.656
MXX 2726 0.025 1.162 -7.008 -0.510 0.036 0.573 11.005
BSE 2734 0.039 1.278 —-10.956 —-0.556 0.055 0.635 17.339
JKSE 2736 0.060 1.248 -10.690 -0.478 0.100 0.640 7.640
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FIGURE 1: Evolution of daily happiness index during 2008-2019.

and the corresponding financial market. Full line repre-
senting the critical value of the y*(m) distribution Q.. (m)
with m degrees of freedom at the 5% significance level is
shown as comparison. We set freedom m ranging from 1 to
1500.

The results in Figure 2 show that, in the United States,
Japan, and Germany, the cross-correlation statistics Q. (1)
of these four financial markets are all lager than the
critical value regardless of degrees of freedom, suggesting
a significant cross-correlation between online sentiment
and financial market return in these countries. As to the
other two developed countries, South Korea and UK, the
cross-correlation statistics Q.. (m) are quite close to or
even lower than the critical value of y* (m) distribution at
5% significant level under large degrees of freedom. The
empirical results show that, in the developed countries,
the relationship between online sentiment and stock
market return is heterogeneous. When it comes to the
developing countries, we can see that, in Figure 3, the
cross-correlation statistics Q.. (m) are all higher than the

critical value. To sum up, the cross-correlation between
online sentiment and financial market return is stronger
in the developing countries compared with that in the
developed ones. The empirical results provide a com-
plementary to Zhang et al. [21] by analyzing the different
dynamic correlations between financial markets and
sentiment in developing and developed countries, re-
spectively. In addition, compared with Da et al. [11, 12],
we are concerned about the cross-correlation rather than
linear relationship between online sentiment and stock
market performance.

4.2. MF-DCCA. In the Q. (m) test of cross-correlation,
South Korea, UK, and France cannot reject the null hy-
pothesis; that is, there is insufficient evidence to prove that
there is a significant cross-correlation between financial
market return and the online sentiment measured by DHS
index. The other seven countries reject the null hypothesis,
confirming a significant cross-correlation between financial
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FIGURE 2: The cross-correlation statistics between online sentiment (DHS) and stock market return in developed countries: (a) US: SP500,
(b) US: Nasdaq, (c) Japan: Nikkei, (d) Korea: KOSPI, (e) Germany: DAX, and (f) UK: FTSE.

market return and online sentiment. The cross-correlation
test based on the statistics Q. (m) gives a clue for the
presence of cross-correlation qualitatively. In this part, we
try to test the cross-correlations quantitatively by estimating
the cross-correlation exponent using MF-DCCA method.

In this paper, the range of the slitting length s is set to
10 <s< (N/4) (N is the length of the financial market return
sequence in each group), and the fluctuation function order q is
set to be ranging from —10 to 10. The corresponding online
sentiment sequence belongs to the small-band sequence when
q < 0; otherwise, it belongs to the large-band sequence. Figure 4
shows the log-log plots of log(F q (s)) versus log(s) as g =
-10,-9,...,9,10 for the fluctuation function of financial
markets and investor sentiment in both developed coun-
tries(left side) and developing ones (right side). It can be seen
that all curves belonging to 8 financial markets overall present
an obvious linear trend despite the fluctuation with the changes
of different interval length s. The empirical results demonstrate
that there is a significant power-law cross-correlation between
financial markets and online sentiment.

In Figure 4, the fluctuation function of financial market
returns and online sentiment in various countries shows a

relatively stable trend before log (s*), and after that, the trend
changed significantly. s* is the “crossover” defined by
Podobnik et al. [32]. We use the crossover to divide the
cross-correlation between two sequences into short-term
relationships (when s<s*) and long-term relationships
(when s> s*). Specifically, in the developed countries, the
“crossover” of the cross-correlation relationship between the
market return of S & P500 (USA), NASDAQ (USA), Nik-
kei225 (Japan), and DAX (German) and online sentiment
occurs at about 245 days, 255 days, 95 days, and 102 days,
respectively. Among the developing countries, the “cross-
over” of the cross-correlation between the return of the
BVSP (Brazil), JKSE (Indonesia), MXX (Mexico), BSE
(India), and online sentiment is at about 79 days, 96 days, 61
days, and 161 days, respectively.

We further construct the scaling exponent H, , (q) of the
fluctuation function between the return of eacﬂ financial
market and online sentiment under different time length s
and different order g, so as to explore the heterogeneity of
markets in different countries. Table 2 shows the average
value of scaling cross-correlation exponents H,, (q) in the
developed countries and developing countries under
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FIGURE 3: The cross-correlation statistics between online sentiment (DHS) and stock market return in developing countries: (a) Brazil:

BVSP, (b) Indonesia: JKSE, (c) Mexico: MXX, and (d) India: BSE.

different order g for long term (S>S*) and short term
(§<8*). As is shown, when g =2, ny(Z) are all greater
than 0.5 in different countries, proving a strong positive
cross-correlation between financial market return and
online sentiment. In other words, financial market returns
tend to change in the same direction as online sentiment
measured by DHS does. However, it is also noteworthy that,
in our sample, the fluctuation scaling exponent H,, (g) in
the developed countries is smaller than that in the devel-
oping countries. In addition, in the developed countries,
H,, (q) is close to 0.5 (ny (2) = 0.5564) in the short term
(when s <s*), which means that the degree of synergy be-
tween the financial markets and online sentiment is low.

To further study the multifractal nature of the cross-
correlation coefficient between financial market and online
sentiment, we calculate the degree of multifractal AH, under
different wavebands:

AH, = max (H,) - min (H,). 9)

The greater the AH, is, the greater the degree of mul-
tifractal is. The last three rows of Table 2 show the crossover
between the two under different order g. Overall, the fractal
degree of the cross-correlation between financial market and
online sentiment in the developing countries is significantly
greater than that in the developed countries. The empirical
results show that the relationship between financial market
return and online sentiment is more stable in the developed
countries, whereas they have weaker cross-correlation re-
lationship compared with the developing countries. It is easy
to conclude that although the cross-correlation between the
return of financial markets and online sentiment in devel-
oping countries is stronger, the volatility is also greater, and
the relationship is more unstable.
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FIGURE 4: Log-log plots of log (F q (s)) versus log(s) for the developed (developing) financial markets return and online sentiment: (a) US:
SP500, (b) US: Nasdagq, (c) Brazil: BVSP, (d) Indonesia: JKSE, (e) Japan: Nikkei, (f) Germany: DAX, (g) Mexico: MXX, and (h) India: BSE.

TaBLE 2: Average value of scaling cross-correlation exponents
H,,(q) for the stock market returns and online sentiment in
developed and developing countries.

Developed Developing

Q countries countries

S<§* S>8* S<S§* S>8*
-10 0.6630 0.8555 0.8045 1.0520
-9 0.6562 0.8520 0.7976 1.0478
-8 0.6487 0.8482 0.7899 1.0432
-7 0.6405 0.8441 0.7814 1.0383
-6 0.6317 0.8396 0.7723 1.0329
-5 0.6222 0.8346 0.7626 1.0270
—4 0.6121 0.8289 0.7526 1.0202
-3 0.6014 0.8218 0.7424 1.0119
-2 0.5900 0.8125 0.7320 1.0012
-1 0.5782 0.7997 0.7220 0.9864
0 0.5668 0.7816 0.7141 0.9656
1 0.5583 0.7569 0.7130 0.9356
2 0.5564 0.7249 0.7270 0.8932
3 0.5628 0.6873 0.7588 0.8384
4 0.5738 0.6485 0.7962 0.7788
5 0.5838 0.6124 0.8261 0.7235
6 0.5901 0.5814 0.8453 0.6767
7 0.5931 0.5557 0.8564 0.6388
8 0.5937 0.5349 0.8622 0.6083
9 0.5928 0.5179 0.8648 0.5839
10 0.5912 0.5040 0.8657 0.5640
AH (g<0) 0.0848 0.0559 0.0825 0.0656
AH (g>0) 0.0354 0.2528 0.1526 0.3716
AH (all) 0.1066 0.3515 0.1526 0.4880

Considering different wavebands (<0 or g>0), the
degree of fractal in the small waveband (q <0) of financial
markets and online sentiment in developing countries is
significantly smaller than that in the large waveband (g > 0).
This supplement shows that, in the developing countries, the
cross-correlation between financial markets and online
sentiment is more stable in small wave band.

This finding is consistent with most studies except Zhang et
al. [40], whose work proves that, in the long run, the rela-
tionship between internet activity and Chinese market volatility
is more accurate. This may partially be due to the difference
between China and our sample countries in financial market
composition as well as internet development level.

4.3. Rolling Windows Discussion. Grech and Mazur [39]
argued that the exponent at a given time depends on the
time-window length. To rule out the impact of time-window
length, we redo the empirical test using MF-DCCA based on
rolling windows. MF-DCCA based on rolling window is
practical in capturing the dynamic evolution characteristics
of the cross-correlation relationship between the financial
market of various countries and the online sentiment
measured by DHS. Following Wang et al. (2010), we set one
year (about 250 trading days) as the time interval and 1
trading day as the step size of the rolling window. Figures 5
and 6 are the results of cross-correlation relationship be-
tween financial market return and online sentiment through
rolling window test.
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FiGgure 5: The dynamic evolution of the cross-correlation between financial market return and online sentiment in developed countries

(g=2): (a) US: SP500, (b) US: Nasdag, (c) Japan: Nikkei, and (d)

It can be seen from the figures that the cross-corre-
lation relationship between financial market returns and
online sentiment shows strong consistency over time, and
this finding applies to all countries. Moreover, the cross-
correlation relationship has declined rapidly with the
short sharp drop of the global financial market at the end
of 2015. The scaling exponent H,, (2) of some countries
even fell below the critical value, which indicates that the
cross-correlation relationship between financial market
return and online sentiment can be affected by
macroeconomic environment and even changed from
positive to negative.

Table 3 shows the statistical characteristics of the
dynamic cross-correlation between financial market
returns and online sentiment in various countries.

Germany: DAX.

Overall, the averages of scaling exponent index H ,, (2) are
all greater than 0.5 regardless of the nationality, giving a
clue that the financial markets and online sentiment
generally show a positive cross-correlation worldwide.
Besides, the standard deviation of the H,,(2) of the de-
veloping markets is generally larger than that of the de-
veloped country markets; this implies that financial
markets in the developing countries tend to fluctuate
more and more easily be affected by online sentiment, and
this situation has improved in the developed countries.
Zhang et al. [20] focus on testing whether there exists the
linear or nonlinear Granger causality between sentiment
and major financial markets returns, and they find out a
strong relationship in the USA, but in the Middle East and
North Africa, there only exists one direction Granger
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TABLE 3: Statistical characteristics of dynamic cross-correlation between financial markets return and online sentiment.

Mean Std Min Max
S & P500 0.6684 0.0848 0.4595 0.8569
NASDAQ 0.6705 0.0746 0.4648 0.8347
Nikkei 0.6878 0.0638 0.5027 0.8514
DAX 0.6739 0.0627 0.4869 0.8128
BVSP 0.6798 0.0834 0.4291 0.8728
JKSE 0.6448 0.0813 0.4197 0.8478
MXX 0.6450 0.0763 0.4023 0.8317
BSE 0.6685 0.0650 0.5011 0.8104
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causality pattern from DHS to market returns. Different
from theirs, we find evidence that the developing coun-
tries tend to be fluctuated more intensely by online
sentiment; this may be because we focus on dynamic
correlations, while Zhang et al. [23] were concerned with
causality relationship between sentiment and financial
market performance.

5. Conclusion

In this paper, we investigate the cross-correlation between
financial market return and online sentiment based on MF-
DCCA method. We choose representative financial markets
covering developed and developing countries in different
regions and calculate the market index returns, and Daily
Happiness Index (DHS) is applied as a proxy variable for
online sentiment.

We firstly find that there is no generic cross-correlation
between financial market returns and online sentiment in the
developed countries; specifically, we do not find a cross-
correlation relationship between financial market return and
online sentiment in South Korea and UK. Yet, our research
shows that there exists a power-law cross-correlation relation-
ship between financial market and online sentiment in some
developed countries and all developing countries represented by
Brazil and India in our sample, and the cross-correlation re-
lationship is stronger than that in the developed ones.

We further set the different time interval lengths and
retest the cross-correlation relationship and find that
whether in the long-term or short term, there is a significant
positive cross-correlation between the financial market
returns and online sentiment; that is, the financial market
returns tend to change in the same direction as online
sentiment does measured by the Daily Happiness Index
(DHS). It is worth noting that the cross-correlation between
financial market return in the developed countries and
online sentiment is weak in the short term. Moreover, we
study the cross-correlation under different fractal degrees
ranging from —10 to 10. The empirical results show that
cross-correlation between financial markets and online
sentiment in the developed countries is more stable.

Finally, we perform rolling window analysis to capture
the dynamic evolution characteristics of cross-correlation
relationship. We find that the cross-correlation relationship
between financial market and online sentiment has a strong
consistency over time, but the cross-correlation relationship
between financial markets and online sentiment in the
developing countries fluctuates more drastically.

Our findings confirm the dependency between online
sentiment and global financial markets, and we also suggest the
heterogeneous relationship between sentiment and market
performance in different economies. As is shown, the emerging
financial markets in the developing countries fluctuate drasti-
cally and show a certain degree of instability compared with the
developed ones. The underlying mechanism on explaining this
may be attributed to the degree of market maturity, regulatory
effectiveness, and financial literacy of market participants. This
needs an interdisciplinary analysis from a more holistic per-
spective. We leave these questions for future research.
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The aim of this paper is to forecast monthly crude oil price with a hierarchical shrinkage approach, which utilizes not only LASSO
for predictor selection, but a hierarchical Bayesian method to determine whether constant coefficient (CC) or time-varying
parameter (TVP) predictive regression should be employed in each out-of-sample forecasting step. This newly developed method
has the advantages of both model shrinkage and automatic switch between CC and TVP forecasting models; thus, this may
produce more accurate predictions of crude oil prices. The empirical results show that this hierarchical shrinkage model can
outperform many commonly used forecasting benchmark methods, such as AR, unobserved components stochastic volatility

(UCSV), and multivariate regression models in forecasting crude oil price on various forecasting horizons.

1. Introduction

Crude oil price is one of the key indicators of the global
macroeconomy and financial markets [1-6]. However, the
oil price prediction is a complex process since various factors
affect oil pricing [2] and the influence degree of these factors
on oil price varies over time [7-11]. So, finding a proper oil
price forecasting method, which is not merely able to select
the important predictors but also reflect the dynamics of
predictors impact, is of interest for a wide range of appli-
cations [12-19].

A vast of literatures [2, 4, 5, 11, 13, 18, 20-25] indicate
that except for previous oil prices, other parameters such as
basic oil supply, demand and oil stock effects, financial
market forces, market sentiment and uncertainty, macro-
economy, and geopolitical influences are also main influ-
encing factors. If adding all these explanatory variables into
the multivariate regression or autoregression (AR) class
framework, it may lead to overfitting and misspecification
problems and thereby constrain the forecast accuracy
[7, 26, 27]. Additionally, time-varying effect of these pa-
rameters should be also considered in oil price forecasting,

but drawing the time-varying effect into regression models
would make the overfitting problem worse [7, 11, 28].

In this study, we introduce a prevailing Bayesian ap-
proach which not only overcomes overparametrization and
misspecification problems in oil price prediction, but also
discusses the time-varying properties of explanatory pa-
rameters in both short and long oil price forecasting hori-
zons. This study mainly makes three contributions to the
literature on oil price forecasting as follows.

First, we can estimate a large number of explanatory
parameters with limited observations. Usually, low-fre-
quency dataset is easier to access and process than high-
frequency dataset; putting more informative explanatory
variables into the model can help macroeconomists, poli-
ticians, and other market participants get more compre-
hensive information on the crude oil price. Further, we
implement least absolute shrinkage and selection operator
(LASSO) shrinkage method to handle all the considered
endogenous and exogenous explanatory factors and select
the most powerful influential factors automatically. Al-
though previous studies [6, 29-33] simulate that LASSO-
based approaches show better out-of-sample forecasts and
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surpass both AR class models and time-varying parameter
models, it is unclear whether LASSO operator is also out-
performing other commonly used benchmark models in oil
price forecasting. Examining the LASSO operator effec-
tiveness may help oil market decision-makers identify sig-
nificant influential indicators efficiently and seize investment
opportunities.

Besides, for better explaining the oil price, we introduce
more comprehensive exogenous (see Table 1) and endog-
enous variables (e.g., observations from previous time steps)
as regression predictors. On the one hand, bringing previous
oil prices into the regression enables comparison with
autoregression models (AR) and time-varying vector
autoregression (TVP-VAR) models, which are commonly
used and proved models in energy price prediction that can
generate accurate forecasts [18, 34-37]. On the other hand,
we introduce a more comprehensive exogenous factors
framework, which avoids model misspecification. Most of
the oil price forecasting studies [3, 16, 34, 38-40] only focus
on several key oil price predictors and ignore the rest due to
the limited variables processing capacity; this leads to error
of misspecification, while using the LASSO operator in this
study can shrink the coefficient on unimportant explanatory
variables to zero and include all the exogenous variables
within the model without having to worry about multi-
indicators’ processing capacity.

Second, it has been well documented that the predictive
ability of the forecast parameters on crude oil prices varies
over time [7-11, 18, 41]. This motivates us to study the time-
varying properties of the regression coefficients. Shrinkage
model in time-varying parameters is described by [28] and is
considered an effective forecasting method [32]. Accord-
ingly, we apply LASSO for the time-varying regression
model in the oil market and evaluate oil price forecasting
performance. This Bayesian-based estimation method can
predict both long-term and short-term forecast horizons via
monthly information. With hierarchical shrinkage in oil
price predictors, we can select the most relevant predictors
and pick out time-varying parameters automatically. It is
worth noting that few works investigate parameters dynamic
properties incorporating a large set of predictors in a single
model. Our study provides empirical evidence regarding the
most powerful contributor in forecasting oil prices and
judges its dynamic properties simultaneously.

Third, we extend our ideas for using the mean of the log
predictive likelihood (MLPL) to check the entire of predictive
distribution robustness, which fill gaps of the commonly used
forecasting performance measurement—the mean of the
squared forecast errors (MSFE) and the mean of the absolute
value of the forecast errors (MAFE) [19, 23, 27, 28] —which
can only judge the point forecasts. We also examine the
forecasting performance by changing regressors, dependence
variables, and rolling window estimation regimes for ro-
bustness check. Our out-of-sample evidence indicates that
LASSO hierarchical shrinkage models outperform other
competing models in most cases; LASSO can select infor-
mational variables automatically and efficiently.

The remainder of this paper is organized as follows:
Section 2 presents the econometric approach and
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comparison models. Section 3 introduces our data. Section 4
provides the out-of-sample empirical results and discussion.
In Section 5, we present the robustness checks, and Section 6
concludes.

2. Empirical Models and
Computation Processes

2.1. Empirical Models. Crude oil has both commodity and
financial properties. As aforementioned, apart from the
previous oil prices, we still have hundreds of influencing
exogenous variables and seasonal adjustment should also be
taken into account. In this case, the suitable full model for
forecasting crude oil price is given by

k p-1 11
Oil,,, =c+ Z BrxXi + Z a,Oil,_, + Z y;dum; + &,
k=1 r=0 j=1

(1)

where Oil,,, is the future crude oil price we want to forecast
at h-periods ahead, c is the intercept, and ¢, ~ N (0, ¢?) is the
error term. Zle Bixie represents the sum of exogenous
variables part, k is the number of explanatory variables, and
By is the kth regression parameter. Y 2 a,Oil,_, includes the
sum of p lags of oil price;ar, is the rth lag coefficient.
Z}ilyjdumj is the sum of 11 monthly dummies which is
added for seasonal adjusting. y; is the jth dummy variable
coefficient. In total, the number of potential independent
variables should be m =1+k + p + 11.

Each part of the model (interceptZ}ily jdum;,

Zf;ol a,0Oil,_,, or 22:1 Bix) can be excluded from the
model. Briefly, the computation steps can analyze models by
adding different terms into the model, then judging the
time-varying properties, and selectively do LASSO shrinkage
for the variable parameters in both constant variance
(homoskedasticity of ¢,) and stochastic variance (hetero-
skedasticity of o,) regimes. So, the model structure is di-

versifying to the following three restrictive forms:

(1) AR(p) model

p-1 11
Oil,, =c+ Z a,Oil,_, + Z yydum; + & (2)
r=0 j=1

The model specifies that the future crude oil price
depends linearly on its past values.

(2) Multivariate regression model

k 11
Oil,, =c+ Z BrXwe + Z yjdum]- + Ene (3)
k=1 =1

The model considers the effect of several key exog-
enous variables but excludes endogenous variables’
influence on the oil price.
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TaBLE 1: Variable definitions.

Category Label Definition Unit Data source
Crude oil price WII WII spot price . Dollars per barrel
Brent Europe Brent spot price Enerev Information
Crude oil supply OS_World Crude oil production, world Thousand barrels A dmi;gl}i,stration (EIA)
Crude oil demand OD_cons Total petroleum consumption per day
Crude oil stocks OD_stocks Total petroleum stocks Million barrels
Gold price P_gold Gold fixing price US dollars per troy
ounce
Trade weighted US dollar index: broad, Federal Reserve Bank of St. Louis
Exchange rate US_ex .
goods, index Percentage

Stock market price index ~ S&P500 S&P500 index

. . Dollars per million Energy Information
Natural gas price P_gas Henry Hub Natural Gas Spot Price btu Administration (EIA)
Market sentiment VIX VIX index .
Macroeconomy affecting ~ IP_total Industrial production: total index Percentage Federal Reserve Bank of St. Louis
factors Kilian Kilian index Kilian’s website

EPU Global policy uncertainty Percentage Economic pohcy uncertainty
- website
Political change Percentace of
Google Google trend index & Google trends

popularity

All the variables are calculated by the first log difference in order to make them stationary, except for the Kilian index, which is naturally stationary series.

Neither measures of these variables are seasonally adjusted.

(3) The unobserved components stochastic volatility
(UCSV) model

11
Oil,, =c+ Z y;dum; + &, (4)
=1

which assumes that the future oil price consists of com-
ponents with a direct interpretation that cannot be observed.

These three models are commonly used and proved that
they can generate relatively accurate linear regression pre-
diction [18, 34-37, 42-45]. Same as the full model (equation
(1)), these three restricted model versions can also do hi-
erarchical parameter shrinkage and decide which variable
parameter varies with time. In Section 4.2, we compare the
tull model and the three restricted models in prediction
performance with the same prior choices and basic model
structures. The specific econometric method computation
processes are as follows.

2.2. Judging Time-Varying Properties and Forecasting
Power of Predictors. To briefly describe the computation
processes, the full variable model (equation (1)) can be
simplified as

Oil,,;, = ﬁ:zt T &
B =Bii+ve
where the variable of interest, Oil,,,, can be defined as
Oil,,;, =log(p;,) — log(p,). The variable matrix z, = [1, x|,

- X Alog(py), - .., Alog(p;_p,1), dumy, ..., dum,, ], and
the corresponding coefficients matrix of z, is 3; = [¢, 8,

(5)

!

te ’ﬁk+p+11 ] .
In equation (5), we assume ¢ ~ N(0,07) and
v, ~ N (0, Q). 07 can be stochastic or constant volatility. The
errors are assumed to be independent of each other and

independent at all leads and lags. Q is of dimension m x m,
which can be large relative to the number of observations. To
keep the model relatively brief, we assume ( is a diagonal
matrix, Q = diag(w?, . . ., @%).Q introduces shrinkage in the
time variation then switches the constant coeflicients to
time-varying coefficients. If w; is zero, the ith (i = 1,...,m)
coeflicient is constant over time, and larger values of w; mean
more time variation. In order to elicit w;, Belmonte et al. [28]
separate the model into two parts, one part is constant
(represented by fz,) and the other part is time-varying
(represented by f3,z,). Equation (5) will change to

Oilyyy, = Pz, + Bezy + &>
B = Beot + Ve (6)
ﬁo =0,

where B =p; and B, = f; - B. Then, let B,, = B;,/w; and
transform equation (6) to

r r
Oil,,, = Zﬁizi,t + Z WiBiZie + Epips
i=1 i=1

Bit = Bi1 + Vips

ﬁi,o =0,

(7)

where v;; ~N(0,1) fori=1,...,r.

Through implementing LASSO in terms of equation (7),
we can judge the time-varying properties and forecasting
power of predictors. Four possible computation cases are
discussed as follows:

(1) w; shrank to 0, but f3; is not shrunk to 0; then, the ith
variable parameter is constant over time

(2) Both w; and f3; shrank to 0; then, the ith variable is
irrelevant for forecasting the oil price



(3) w; is not shrunk to 0, but f; shrank to 0; then, the ith
Varlable parameter has small time-varying charac-
teristics (since B;, = 0, the coefficient will volatile
around a value of zero)

(4) Both w; and f§; are not shrunk to 0; then, the ith
variable is relevant for forecasting the oil price and
the time-varying coeflicient is unrestricted around
zero

2.3. Hierarchical Parameter Shrmkage The parameters of
interest are B= (By,....B) B = (ﬁw osBuy)s and
w=(w,...,w,); we can use the Bayes1an LASSO
shrinkage priors to estimate these parameters. According to
the study of [28], the LASSO shrinkage can be obtained by
starting from normal hierarchical priors for § and w.

Hierarchy shrinkage 1: for the constant coefficients, the
priori for f; (i=1,...,m) 1is independent with
ﬁ,lr ~ N (0, TZ) and exponential mixing density
THA ~ exp(AZ/Z) A is the shrmkage parameter for constant
coefficients and we assume A? ~ Gamma (al, a,). So, the first
hierarchy is conditional on A to estimate 77 then obtain f3;.

Hierarchy shrinkage 2: from equation (4), we can infer
that the time-varying parameters f8,(for t = 1,...,T) prior is
of the form B,|8,, ~ N(B,_;,1,), where B, = 0 The hier-
archical pr10r1 of w;, conditionally independent with
w; IE ~ N (0, f ), is also with exponential mixing density
£l ~ exp(k*/2). The shrinkage parameter x lies at the
bottom  of the hierarchy and we  assume
x> ~ Gamma (b;, b,). The second hierarchy is conditional on
K; we can in turn to derive & and w;, at last, judge whether 8
is time-varying or not.

For the two hierarchy shrinkage processes mentioned
above, we set the prior hyperparameters a, =a, =b, =
b, = 0.001, which implies proper but very noninformative
priors. For constant coefficients model, which removes the
TVP part of the model, we set b, = 100000 to make wi shrink
very close to zero and its prior variance is 0.1.

To complete these two hierarchical shrinkage compu-
tations, [28] provides Markov Chain Monte Carlo (MCMC)
algorithm blocks and precise steps to draw the parameter
posteriors. After using a nonparametric kernel smoothing
algorithm on the parameter posteriors, we can obtain an
approximation of the oil price predictive density.

As LASSO shrinkage can be applied to both constant
coeflicients and time-varying coefficients, the full model and
restricted models can derive several versions for the
following:

(1) LASSO on constant coefficients and time-varying
parameters: both constant and time-varying part use
LASSO priors and do hierarchical shrinkage.

(2) LASSO only on constant coefficients: this model
omits the time-varying part (3;_, w;f;,2;, in equa-
tion (7)) LASSO priors and uses a relatively non-
informative and nonhierarchical normal prior for w;.

(3) LASSO only on time-varying parameters: this model
omits the constant part (3, B;z;,) LASSO priors
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and uses a relatively noninformative and nonhier-
archical normal prior for f3;.

(4) TVP regression model: this model is traditional
time-varying multivariate parameter model which
does not hierarchical shrinkage for parameters. Use
noninformative LASSO priors for both w; and f.

(5) Constant coefficients model: this model removes the
time-varying part (3, w;f;,z;,) by setting prior
hyperparameters b, = 100000, b, = 0.001, which
implies an extremely tight prior on w; with prior
concentrated very close to 0.

2.4. Evaluation Criteria. The results of predictive density or
forecasting points from the previous steps are useful to
quantitatively compare the out-of-sample predictive per-
formance among different models. Following the conven-
tion in the literature on prediction measurement, we use
point forecasting loss functions of MAFE and MSFE to
demonstrate the ranking of model forecasts [17, 23, 29, 31].
Further, since researchers and policymakers focus more on
total distribution forecast uncertainty than just a point
forecast, we also adopt the mean of the log predictive
likelihood (MLPL) to evaluate the entire predictive distri-
butions. The specific formulations of these three measuring
statistics are listed below:

T-h

Y 0il,,, - Oily, |,

T-h-ty+1 5

MAFE =

1 T-h .
MSFE = m;‘; (Ollt+h Ollt+h) 5

MLPL = — h_to — Z log[ p(Oil,,, = Oil;, , IData, ) |.

(8)

Respectively, T is the end date, ¢, is the start date, 4 is
prediction length, Oil,,, is the predictive median of oil price,
and Oil!,, is the corresponding real value. Smaller MAFE
and MSFE and larger MLPL indicate stronger forecasting
ability.

3. Data

This paper uses two prevailing proxies in crude oil pricing:
the monthly spot price of Brent crude oil as dependent
variable and West Texas Intermediate (WTI) oil futures for
robustness check. Both datasets span from January 2004 to
December 2018 yielding t=180 observations; the out-of-
sample evaluation period consists of the last 110
observations.

On the foundation of previous studies [3, 16, 34, 38-40],
we select a relatively comprehensive predictors framework
to forecast crude oil price and use available real-time data.
The exogenous variable dataset consists of crude oil fun-
damentals (include crude oil supply, demand, and stocks),
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capital market prices (gold price, exchange rate, and stock
market price index), substitute product price (natural gas
price), market sentiment index (volatility index), macro-
economic influencing factors (industrial production and
Kilian indexes), and political change (global policy uncer-
tainty and Google trend). This variable set not only captures
the information in both the supply and demand of crude oil
but also includes activities related to the financial market and
macroeconomy. Accordingly, they are widely used variables
for crude oil price forecasting.

The ADF and PP test in Table 2 indicate that no variables
have unit roots after first-order logarithmic difference,
which means all the series are stationary time series, so we
can use these series for further econometric modeling. The
two dependent variables—WTT and Brent—are left-skewed,
leptokurtic, and nonnormal distribution. Within 20 lags, the
Q-statistics of both WTI index and Brent spot price series
show significant autocorrelation, which suggest that past oil
prices have influences on the current oil price, so it is
reasonable to include AR terms in the model.

To examine whether the current oil price is affected by
the past oil prices, we further include the logged first dif-
ference of 12 lags of the Brent crude oil price index in the
model. In addition, an intercept and 11 monthly dummies
(omitting the January dummy) are designed to distinguish
monthly or seasonal effects on the crude oil prices.

All the explanatory variables are standardized to have
mean zero and variance one. The model can flexibly include
an intercept, different numbers of lags, 11 monthly
dummies, and 12 predictors listed above. In addition, it can
forecast oil prices a month ahead (short term) and a year
ahead (long term).

In summary, the full variable model includes 36 coef-
ficients to estimate with fewer than 15 years of data, which is
a relatively short dataset. Omitting 12 predictors and 11
dummies, the model leads to AR models or TVP-AR models.
If the lags are further excluded, it leads to TVP models or
multivariate regression models. If only 11 dummies are left
in the model, model form changes to UCSV model. In total,
for each sample size rolling window estimation, we compute
20 different versions of full models and 100 competing
models to check the models” robustness.

4. Empirical Results

4.1. Time-Varying and Shrinkage Parameters Results. This
section focuses on time-varying and shrinkage coefficients
represented by w? and 77.w; close to zero means the ith
(i=1,...,m) coefficient is constant over time; larger values
of w; allow for more time variation. While the smaller value
of 7% ensures a higher degree of shrinkage, larger 72 indicates
the prior is more dispersed and shrinkage is less. In order to
better explain the time-varying and shrinkage properties, we
post the full model (LASSO shrinkage on both constant
coefficients and time-varying parameters) results for Brent
oil as an instant.

These results show moderate shrinkage in most coefhi-
cients, but the shrinkage degree varies. Table 3 shows that in
one-month ahead (h=1) forecasting, w? for crude oil

consumption, gold price, and industrial production index
tend to shrink more than the coefficients on other variables,
which indicate that the influence on crude oil price from
these three variables is relatively time-invariant. In contrast,
in short-term forecasting, the impacts of crude oil pro-
duction on oil prices vary over time. The 77 of gas price,
industrial production index, and the Kilian index shrink
most among all exogenous variables; this signifies that the
role of substitute product of oil, production level, and
macroeconomic factors will not exert a significant effect on
crude oil price in the short term. Instead, the three repre-
sentative market uncertainty variables—VIX, EPU, and
Google trend—show low-level shrinkage, so the policy
uncertainty, market sentiment, and topic heat have a greater
effect on the oil prices in the short term.

In the long-run (h=12) forecasting, crude oil stocks,
SP500, and the Kilian index show larger w? than other
variables, which means larger time variation in these co-
efficients. Moreover, the Kilian index presents the largest 72,
which indicates that Kilian’s index is a powerful predictor for
oil price long-term forecasting. In the contrary, trade-
weighted US dollar index, gas price, and production level are
relatively unimportant factors.

Table 4 exhibits that the half-year ago oil prices have big
impact on current oil price in the short-run forecasting; the
influences from the end and beginning of the quarter are
moderate. Table 5 depicts that the crude oil prices bear little
relationship to the cycle of the seasons, because all the
monthly dummies shrink more than the most of the other
predictors and lags.

4.2. Forecasting Results Evaluation. In the tables, all the
results are presented relative to the corresponding full model
(LASSO on both constant coefficients and TVPs); smaller
MAFE or MSFE, or larger MLPL than full model statistics
indicate that the restricted model is forecasting better than
the benchmark model.

The upper metrics of Table 6 results indicate that in one-
month ahead forecasting, there is evidence that LASSO on
constant coefficients outperforms other restricted models in
both stochastic and constant volatility, which meet the short-
term forecasting expectation that the majority coefficients do
not change over time. Table 3 results are consistent with
Table 6 and proved our opinion again.

In terms of the latter forecast metrics—the annual
forecasting horizon—coefficients tend to show more time
variation, so the full model has the best performance.

It is worth noting that the TVP regression models and
constant coefficients models produce the worst forecasts in
both cases according to MLPL. The results verified again that
the new Bayesian hierarchical LASSO outperforms the
traditional counterparts and enhances the prediction ac-
curacy. Additionally, the bad performance of LASSO only on
time-varying parameters indicates that the inclusion of time-
variant parameters in the model is necessary for the oil prices
forecasting.

To sum up, all results exhibit the advantages of the Bayesian
hierarchical shrinkage. Firstly, putting a LASSO prior allows
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TaBLE 2: Descriptive statistics.

WTI BRENT OD_CONS OD_STOCKS OS_WORLD P_GOLD US_EX
Mean 0.0009 0.0015 —-0.0001 0.0003 0.0004 0.0028 0.0003
Median 0.0058 0.0069 —-0.0008 0.0005 0.0005 0.0027 0.0002
Maximum 0.0929 0.0851 0.0242 0.0090 0.0094 0.0537 0.0440
Minimum —0.1442 —0.1351 —-0.0264 —0.0086 —-0.0064 —0.0904 -0.0178
Std. dev. 0.0389 0.0395 0.0107 0.0033 0.0029 0.0222 0.0070
Skewness —0.8849*** —0.9662*** -0.0293 —2.2210 —0.0453 —0.4846*** 1.4488***
Kurtosis (excess) 1.7698*** 1.5476*** -0.5727 -0.0127 -0.1753 1.4502%** 8.2127***
Jarque-Bera 46.7237*** 45.7129*** 2.4715 1.4584 0.2903 22.6911*** 565.6776***
Q(20) 45.1300*** 40.8931*** 282.3031*** 108.7411%** 43.0371*** 27.1741 26.0612
PP test -9.4826""* -9.7966*** —20.9879*** —14.3289*** —13.5263*** —15.2111*%** 12.0550***
ADEF —6.6839*** —9.7414*** —3.2129** —3.7359*** —7.0902*** —15.1254*** —-11.9771***

SP500 P_GAS VIX IP_TOTAL EPU KILIAN Google
Mean 0.0019 —0.0010 0.0010 0.0004 0.0035 13.7941 0.0046
Median 0.0045 —0.0034 -0.0072 —0.0005 0.0041 2.1302 0.0000
Maximum 0.0444 0.1649 0.3703 0.0162 0.2831 187.8978 0.3358
Minimum —0.0806 -0.1766 -0.2111 —0.0222 —0.2448 -163.4310 -0.2320
Std. dev. 0.0172 0.0549 0.0887 0.0072 0.0835 79.2186 0.1000
Skewness —1.0534*** 0.1095 0.6745*** 0.1728 0.3511% 0.3115* 0.8297***
Kurtosis (excess) 3.1059*** 1.1509*** 1.5779*** 0.0032 1.2777*%** —0.7538** 1.0399***
Jarque-Bera 105.0568*** 10.2378*** 32.1443*** 0.8914 15.8510*** 7.1318*** 28.6037***
Q(20) 40.0941*** 24.4420 33.8112** 219.2882%** 33.3670** 1659.5120%** 18.3661
PP test —11.2842*** —13.9759*** -16.6098"** —20.3007*** —15.4433*** -2.1650** —14.1582***
ADEF —5.3398*** —13.8972%** —7.2381*** —3.9125%** -10.8053*** —2.6820*** —14.0785**
Symbols *, **, and *** denote rejections of the null hypothesis at the 10%, 5%, and 1% significance levels, respectively. The Jarque-Bera statistic is used to test

the null hypothesis of the normal distribution. Q(20) is the Ljung-Box Q statistics with lag order of 20. ADF refers to the statistics from the augmented

Dickey-Fuller unit root tests. The entire sample period is from January 2004 to December 2018.

TaBLE 3: Posterior means and standard deviation of w? and 72 for exogenous predictors.

. h=1 h=12
Predictor W2 2 2 2

1.691E - 03 1.721E-02 5.852 E-02 4.832E-03

INTERCEPT 4.552E-03 3.507E-02 1.455E - 02 7.005E-03
1.223E-03 1.668E — 02 2.247E-04 5.939E-03

OD_CONS 2.203E-03 3.193E-02 3.202E-04 8.661E—-03
1.558E-03 2.320E-02 1.132E-03 5.094E - 03

OD_STOCKS 2.308E-03 4.347E-02 2.140E - 03 8.442E-03
4.510 E-03 2.039E-02 3.591E-04 4.553E-03

OS_PROD 6.680E-03 3.548E-02 7.997E - 04 6.569E — 03
GOLD 6.845E-03 1.688E - 02 3.195E - 04 4.943E-03
1.034E - 02 3.506E - 02 4.571E-04 7.695E - 03

US EX 1.507E -03 1.884E - 02 6.058E — 04 4.508E - 03
- 2.977E-03 3.919E-02 1.079E-03 8.013E-03
SP500 1.162E-03 2.338E-02 1.441E - 03 5.481E-03
2.443E-03 5.809E - 02 1.869E - 03 8.684E-03

GAS 9.481E - 04 1.380E - 02 6.770E - 04 4.342E-03
1.799E - 03 2.929E-02 1.408E-03 8.098E-03

VIX 2.877E-03 2.454 E-02 4.482E - 04 9.406 E-03
5.570E-03 5.135E-02 5.983E—-04 1.401E-02

P 8.177E-04 1.453E-02 4.197E-04 4.817E-03
1.542E-03 2.883E-02 8.323E-04 7.580E—-03

EPU 2.595E-03 2.019E - 02 3.585E-04 6.666 E—03
6.928E—-03 3.991E-02 1.467E-03 8.442E-03

KILIAN 2.884E—-03 1.426E-02 1.337 E-03 1.239 E-02
7.256E —03 3.152E-02 1.705E-03 1.370E-02

Google 3.367E-03 2.978 E-02 9.316E—-04 7.450E-03
6.438E - 03 5.414E - 02 9.836E - 04 9.335E-03

Note. The bold text noted indicates relatively larger value among all w? and 72, while the underlined text represents values relatively smaller ones.
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TaBLE 4: Posterior means and standard deviation of w? and 7> for
lags.

Lags 2 h=1 2 2 h=12 2
w; T w; T
1 4292 E-03 2.350E-02 4613E-04 5.335E-03
8.873E-03 4.947E - 02 1.124E-03 7.308E -03
2 1.407E—-03 1.517E-02 7.182E—-04 4.762E-03
4,063E—-03 2.832E-02 9.439E - 04 6.510E - 03
3 1.484E—-03 1.716E-02 6.976E — 04 8.312E—-03
3.116E—03 3.761E—02 1.287E—-03 1.249E - 02
4 1.040E—-03 1.587E—02 4530E—04 4.833E-03
2.353E-03 3.271E-02 9.666E—04  7.340E-03
5 1.268E—03 1.499E —02 9913E—-04 4.767E-03
3.672E-03 3.030E-02 1.152E-03 7.669E—03
6 9.445E - 04 1.849E - 02 7.573E-04  4.690E—03
1.875E—-03 3.977E-02 1.374E-03 7.282E-03
7 1.563E—-03 2.183 E—-02 3.827E-04 4.349E-03
3.164E—03 4417E-02 6.040E-04 6.625E—03
3 1.746E—03 2.010E-02 6.014E — 04 5.303E-03
3.673E-03 3.964E - 02 1.525E-03 8.904E - 03
9 1.387E—-03 1.336E—-02 3.603E-04 4.652E-03
2.672E-03 2.807E—02 6.767E—-04  6.961E—-03
10 1.591E-03 1.191E-02 8.393E-04 5.798E-03
2.848E—-03 2.392E-02 1.430E—-03 1.116E-02
1 4.017E-03 1.635E—02 5.315E—04 5.441E—-03
7.294E-03 3.271E-02 1.024E-03 7.460E - 03
1 1.307E-03 1.288E -02 1.031 E-03 5.542E-03
2.731E-03 2.699E - 02 1.667E—03 7.646E—03

Note. The bold text noted indicates relatively larger value among all w? and
72, while the underlined text represents values relatively smaller ones.

TaBLE 5: Posterior means and standard deviation of w? and 7* for
monthly dummies.

Dummies ) h=1 ) ) h=12 5
w; T w; T
1 1.137 E-02 3.553 E-02 1.498E-03 5.688E-03
2.505E-02 7.022E-02 2.571E-03 1.037E-02
) 1.972E-03 1.617E-02 1.490E-03 6.749E-03
6.910E-03 3.400E-02 3.898E-03 1.077E-02
3 1.996E-03 1.851E-02 6.993E-04 5.422E-03
5533E-03 4477E-02 1.383E-03 8.975E-03
4 1.788E-03 1.732E-02 8.008E-04 5.116E-03
5.006E-03 3.710E-02 1.551E-03 7.011E-03
5 1.322E-03 1.895E-02 1.404E-03 5.145E-03
3.293E-03  4.164E-02 2.564E-03 7.389E-03
6 7115E-03 1.769E-02 1.425E-03 6.803E-03
1.534E-02 3.484E-02 2453E-03 9.165E-03
7 2.157E-03 1.658E-02 7.892E-04 5.889E-03
5331E-03 3.614E-02 1.423E-03 9.500E-03
3 1.415E-03 1.627E-02 3.182E-03 5.242E-03
3.236E-03 3.636E-02 7.964E-03 8.526E-03
9 3.228E-03 1.909E-02 1.314E-03 6.328E-03
8.431E-03 3.732E-02 3.359E-03 9.615E-03
10 2274E-03 1.932E-02 6.981E-04 5.538E-03
5342E-03 4.034E-02 1.450E-03 8.144E-03
11 4155E-03 1.898E-02 1.020E-03 5.402E-03
9.748E-03 5.034E-02 1.884E-03 7.023E-03

Note. The bold text noted indicates relatively larger value among all w? and
72, while the underlined text represents values relatively smaller ones.

the data to decide whether the coefficients are time-varying and
by how much they vary and restricts the TVP regression
models coeflicients wandering too widely which can obtain a
better forecast performance. Secondly, in allusion of the
misspecification problem, LASSO priors can automatically
discover the lack of time variation in coeflicients and shrinking
the coefficients of unnecessary variables to zero, which improve
the prediction accuracy and solve misspecification efficiently.
Thirdly, hierarchical shrinkage in time-varying series facilitates
researchers’ start with a very flexible model with a relatively
short dataset; the model results allow researchers and practi-
tioners identify the most powerful predictors more efficiently
then make the right investment decisions.

To investigate whether forecast performance varies over
time, we present Figure 1, which uses the model with LASSO
prior to both constant coeflicients and time-varying pa-
rameters (TVPs) with forecasting horizon h=1 (similar
patterns are found with the other computation results).

From (a) and (b) in Figure 1, it can be seen that the constant
and stochastic volatility versions of the model forecast roughly
as well as each other; however, many conflicts occur during the
time of the shale oil revolution in 2014. MAFE, MSFE, and
MLPL will have a similar pattern for most of the time, but
inconsistent during periods of oil price intense volatility. What
is happening is that the heteroskedastic version includes too
much increase in volatility which began with the shale oil
revolution since MLPL measures the whole distribution pre-
diction performance. This has little impact on the point
forecasts MAFE and MSFE which do not differ by much
between the constant and stochastic versions of the model.

5. Robustness Checks

5.1. Robustness to Different Models’ Specification. Firstly, we
conduct the robustness check by changing the variable set;
the out-of-sample performance of AR, multivariate, and
UCSV models are shown in the following tables.

Tables 7-9 indicate that, like the full model, smaller
MAFE and MSFE and larger MLPL are also observed in
LASSO on constant coefficients and LASSO on both con-
stant and TVPs in AR, multivariate, and UCSV models.
These results suggest that hierarchical shrinkage method can
also outperform other competing models even with changes
in the model structures.

5.2. Robustness Check by Alternative Estimation Window.
In this section, we change the estimation window from
the recursive rolling window to the rolling window; the
results are shown in Table 10. LASSO on constant coeffi-
cients and TVPs and LASSO only on constant results are
qualitatively similar in both rolling window and recursive
rolling window.

Further, we change three in-sample window sizes sug-
gested by [6, 46, 47] to check the robustness of hierarchical
shrinkage models. In 40%, 50%, and 60% different out-of-
sample evaluation periods, the results show that models with
LASSO shrinkage exhibit lower MAFE and MSFE and higher
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TABLE 6: Measures of forecast performance for log return of Brent with the full models.

Constant variance Stochastic variance

MAFE MSFE MLPL MAFE MSFE MLPL
Model (h=1)
LASSO on constant and TVPs 0.072 0.009 2.886 0.088 0.013 2.126
LASSO only on constant coeff. 0.061 0.007 3.377 0.075 0.010 2.896
LASSO only on TVPs 0.112 0.021 1.970 0.107 0.018 1.696
TVP regression model 0.100 0.016 2.222 0.114 0.019 1.589
Constant coeff. model 0.100 0.016 2.189 0.106 0.017 1.658
Model (h=12)
LASSO on constant and TVPs 0.373 0.223 0.545 0.407 0.265 0.414
LASSO only on constant coeff. 0.389 0.224 0.468 0.463 0.340 0.325
LASSO only on TVPs 0.678 0.809 0.308 0.710 0.842 0.232
TVP regression model 0.648 0.707 0.295 0.709 0.833 0.226
Constant coeff. model 0.658 0.717 0.289 0.689 0.809 0.227

Note. The value noted in bold and underlined text indicates a model performing the best out of all models, while the bold and italic text represents a model
performing the worst. MSFE, MAFE, and MLPL refer to the mean squared forecast error, mean absolute forecast error, and mean log predictive likelihood,
respectively.
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FiGURE 1: Forecasting performance measurement of models with LASSO prior on constant and time-varying coeflicients, h = 1. (a) is the
absolute forecast errors, (b) is the forecast errors squared, and (c) is the log predictive likelihood.

MLPL in most cases, suggesting the out-of-sample results of ~ 5.3. Robustness to Alternative Dependent Variable.
the hierarchical shrinkage are robust to different compu- Table 11 reports the main out-of-sample forecasting results
tation algorithms and sample sizes. of another prevailing proxy of crude oil prices, WTIL. The
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TABLE 7: Measures of forecast performance for log return of Brent with autoregression (AR) models.

Constant variance Stochastic variance

MAFE MSFE MLPL MAFE MSFE MLPL
Model (h=1)
LASSO on constant and TVPs 0.067 0.008 2.825 0.089 0.014 1.969
LASSO only on constant coeff. 0.061 0.007 3.209 0.079 0.010 2.722
LASSO only on TVPs 0.098 0.015 1.989 0.104 0.016 1.822
TVP regression model 0.090 0.013 2.299 0.100 0.015 1.960
Constant coeff. model 0.091 0.013 2.275 0.097 0.014 1.996
Model (h=12)
LASSO on constant and TVPs 0.293 0.163 0.673 0.480 0.385 0.359
LASSO only on constant coeff. 0.337 0.207 0.502 0.462 0.321 0.313
LASSO only on TVPs 0.549 0.485 0.358 0.637 0.684 0.299
TVP regression model 0.557 0.523 0.337 0.586 0.533 0.281
Constant coeff. model 0.557 0.520 0.337 0.576 0.506 0.275

Note. The value noted in bold and underlined text indicates a model performing the best out of all models, while the bold and italic text represents a model
performing the worst. MSFE, MAFE, and MLPL refer to the mean squared forecast error, mean absolute forecast error, and mean log predictive likelihood,
respectively.

TaBLE 8: Measures of forecast performance for log return of Brent with multivariate models.

Constant variance Stochastic variance

MAFE MSFE MLPL MAFE MSFE MLPL
Model (h=1)
LASSO on constant and TVPs 0.061 0.007 3.350 0.077 0.011 2.696
LASSO only on constant coeff. 0.059 0.006 3.556 0.071 0.008 3.203
LASSO only on TVPs 0.069 0.009 3.022 0.081 0.011 2.383
TVP regression model 0.072 0.008 3.037 0.077 0.010 2.953
Constant coeff. model 0.072 0.008 3.029 0.076 0.010 2.874
Model (h=12)
LASSO on constant and TVPs 0.320 0.168 0.663 0.386 0.236 0.470
LASSO only on constant coeff. 0.328 0.165 0.538 0.303 0.153 0.546
LASSO only on TVPs 0.363 0.213 0.566 0.395 0.244 0.452
TVP regression model 0.376 0.221 0.480 0.314 0.175 0.482
Constant coeff. model 0.376 0.223 0.479 0.343 0.197 0.439

Note. The value noted in bold and underlined text indicates a model performing the best out of all models, while the bold and italic text represents a model
performing the worst. MSFE, MAFE, and MLPL refer to the mean squared forecast error, mean absolute forecast error, and mean log predictive likelihood,
respectively.

TaBLE 9: Measures of forecast performance for log return of Brent (h=1) with UCSV models.

Constant variance Stochastic variance

MAFE MSFE MLPL MAFE MSFE MLPL
Model (h=1)
LASSO on constant and TVPs 0.064 0.007 3111 0.076 0.010 2.969
LASSO only on constant coeff. 0.060 0.007 3.229 0.066 0.007 3.474
LASSO only on TVPs 0.069 0.009 2.879 0.075 0.010 2.750
TVP regression model 0.070 0.008 2.898 0.069 0.008 3.071
Constant coeff. model 0.070 0.008 2.909 0.068 0.008 3.148
Model (h=12)
LASSO on constant and TVPs 0.280 0.137 0.807 0.283 0.138 0.629
LASSO only on constant coeff. 0.297 0.157 0.530 0.269 0.117 0.774
LASSO only on TVPs 0.281 0.137 0.778 0.275 0.135 0.768
TVP regression model 0.298 0.160 0.511 0.276 0.121 0.706
Constant coeff. model 0.301 0.160 0.517 0.283 0.124 0.799

Note. The value noted in bold and underlined text indicates a model performing the best out of all models, while the bold and italic text represents a model
performing the worst. MSFE, MAFE, and MLPL refer to the mean squared forecast error, mean absolute forecast error, and mean log predictive likelihood,
respectively.
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TaBLE 10: Measures of forecast performance for log return of Brent with recursive rolling window results.
Constant variance Stochastic variance

MAFE MSFE MLPL MAFE MSFE MLPL
Model (h=1)
LASSO on constant and TVPs 0.066 0.008 3.273 0.083 0.012 2.438
LASSO only on constant coeff. 0.061 0.007 3.460 0.076 0.010 2.955
LASSO only on TVPs 0.078 0.010 2.750 0.088 0.013 2.423
TVP regression model 0.074 0.009 3.003 0.079 0.010 2.625
Constant coeff. model 0.074 0.009 2.991 0.077 0.010 2.696
Model (h=12)
LASSO on constant and TVPs 0.315 0.170 0.712 0.391 0.260 0.463
LASSO only on constant coeff. 0.306 0.166 0.592 0.328 0.206 0.702
LASSO only on TVPs 0.363 0.228 0.597 0.439 0.318 0.406
TVP regression model 0.411 0.270 0.481 0.392 0.253 0.486
Constant coeff. model 0.412 0.274 0.480 0.370 0.223 0.479

Note. The value noted in bold and underlined text indicates a model performing the best out of all models, while the bold and italic text represents a model
performing the worst. MSFE, MAFE, and MLPL refer to the mean squared forecast error, mean absolute forecast error, and mean log predictive likelihood,

respectively.
TaBLE 11: Measures of forecast performance for log return of Brent with WTT forecasting.
Constant variance Stochastic variance

MAFE MSFE MLPL MAFE MSFE MLPL
Model (h=1)
LASSO on constant and TVPs 0.075 0.009 2.629 0.093 0.014 1.883
LASSO only on constant coeft. 0.063 0.007 3.131 0.080 0.011 2.476
LASSO only on TVPs 0.137 0.029 1.626 0.129 0.029 1.390
TVP regression model 0.115 0.022 1.891 0.111 0.021 1.413
Constant coeff. model 0.114 0.022 1.912 0.112 0.021 1.432
Model (h=12)
LASSO on constant and TVPs 0.333 0.202 0.612 0.388 0.265 0.422
LASSO only on constant coeff. 0.340 0.192 0.529 0.482 0.427 0.419
LASSO only on TVPs 0.642 0.732 0.308 0.696 0.859 0.218
TVP regression model 0.630 0.766 0.291 0.651 0.812 0.208
Constant coeff. model 0.629 0.771 0.293 0.673 0.856 0.204

Note. The value noted in bold and underlined text indicates a model performing the best out of all models, while the bold and italic text represents a model
performing the worst. MSFE, MAFE, and MLPL refer to the mean squared forecast error, mean absolute forecast error, and mean log predictive likelihood,

respectively.

results are quite close to Brent oil, which provides further
support for the superiority of the hierarchical shrinkage
method in alternative proxy of crude oil price forecasting.

6. Conclusions

In this paper, we predict the crude oil price based on the
Bayesian hierarchical shrinkage method with a relatively
short dataset and comprehensive variables framework. This
method avoids overfitting and misspecification problems
faced by linear regression prediction and improves the oil
price forecasting accuracy. It also takes parameters dynamic
properties into account. So, practitioners or policymakers
can easily identify the most powerful indicators and do
appropriate strategies during different periods.

The point and distribution forecasting performance
statistics suggest that the hierarchical shrinkage models
exhibit significantly better out-of-sample forecasting per-
formance than other competing models in both homo-
skedasticity and heteroskedasticity versions. Our results are
robust to a wide range of model settings, including various

model structures, different out-of-sample sizes, alternative
estimation rolling windows, and crude oil proxies. There-
fore, our study provides evidence regarding which indicators
are informative and powerful to improve forecasting ac-
curacy in the oil market.

Data Availability

The Brent and WTI crude oil price data are openly available
on the website of EIA at https://www.eia.gov/dnav/pet/
pet_pri_spt_s1_d.htm.
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By combining the similarity matching (SM) method with the utilities additives discriminates (UTADIS) method, we propose a
hybrid SM-UTADIS approach to detect falsified financial statements (FFS) of listed companies. To evaluate the performance of
this hybrid approach, we conduct experiments using the annual financial ratios of listed traditional Chinese medicine (TCM)
companies in China. There are three stages in the detection procedure. First, we use the cosine similarity matching method to
select matched companies for each considered company, derive the deviation data of each considered company as a sample dataset
to capture the intrinsic law of the financial data, and further divide these into training and testing datasets for the next two stages.
Second, we put the training dataset into the UTADIS to train the SM-UTADIS model. Finally, we use the trained SM-UTADIS
model to classify the testing dataset and evaluate the performance of the proposed method. Furthermore, we use other approaches,
such as single UTADIS and logistic and SM-logistic regression models, to detect FFS. By comparing these results to those of the

hybrid SM-UTADIS approach, we find that the proposed hybrid approach greatly improves the accuracy of FES detection.

1. Introduction

Falsified financial statements (FFS) are deliberate mis-
statements of material facts by management in a company’s
accounts with the aim of deceiving investors and creditors.
FFS primarily consist of overstating profit, sales, or assets or
understating liabilities, expenses, or losses [1,2]. Such ille-
gitimate behaviours have a severe effect on the global
economy because they significantly undermine the confi-
dence of investors and creditors. Falsified financial state-
ments have become a serious problem worldwide, especially
in some fast-growing countries like China, where FFS often
cause investor failure, such as huge losses.

With the current upsurge in FFS, there is an increasing
demand for greater transparency and consistency and for
more information to be incorporated in financial statements.
Detecting FFS has attracted considerable attention from
investors, creditors, regulators, academic researchers, etc.

FFS detection has always been an important but complex
task for accounting professionals, and this problem has been
difficult for traditional internal audits to solve effectively. In
fact, detecting FFS is a classification problem because we can
classify FFS as a group and non-FFS as another group.
Hence, there are many studies in the literature regarding FFS
detection which introduce advanced techniques or construct
formal models, such as statistical models, data mining
techniques, and multicriteria decision models. The classic
statistical models mainly include logistic regression models,
discriminant analysis, and probit models. Among these
models, logistic regression is the most widely used approach
to detect FES, and it was developed by statistician Cox [3].
Beasley [4] applies logistic regression to analyze 75 fraud and
75 nonfraud firms and derives that nonfraud firms have
boards with significantly higher percentages of outside
members than fraud firms. Ines et al. [5] explore fraud in
financial statements using logistic regression and find that
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performance pressure on managers is a factor leading to
fraud in the financial statements. Hansen et al. [6] introduce
a powerful generalized qualitative-response model, EGB2, to
predict management fraud based on data developed by an
international public accounting company; therefore, the
EGB2 model mainly consists of Probit and logistic tech-
niques. The results indicate a good predictive ability for both
symmetric and asymmetric cost assumptions. In addition,
Persons [7] uses logistic regression to predict fraudulent
financial reporting. Spathis [8] uses logistic regression
analysis estimated using financial ratios from companies to
determine which ratios are related to FFS. Chen et al. [9]
screen important variables using stepwise regression, and
then they match logistic regression, support vector machine,
and decision trees to construct classification models for
comparison. Ye et al. [L0] adopt a random forest approach to
detect FFS by learning imbalanced data.

With the development of artificial intelligence, neural
networks are developed rapidly and used in economic pre-
diction problems. For example, Zhang et al. [11] use Long
Short-Term Memory (LSTM) networks to predict stock price
movement. The results show that the LSTM model outper-
forms other models with the best prediction accuracy. Also,
neural networks have a better performance in FFS detection.
Green and Choi [12] develop a neural network fraud clas-
sification model using endogenous financial data. A classi-
fication model from the learned behaviour pattern was
applied to a test sample. During the preliminary stage of an
audit, a financial statement classified as fraudulent signals an
auditor to increase substantive testing. By combining feature
selection and machine learning classification, Yao et al. [13]
propose an optimized financial fraud detection model. Jan
[14] finds that variables screened with an artificial neural
network (ANN) and processed by CART yield the best
classification results in the detection of financial statements
fraud. Fanning and Cogger [15] use ANN to develop a model
for detecting management fraud. Using publicly available
predictors of fraudulent financial statements, they develop a
model using eight variables with a high probability for de-
tection. Pazarskis et al. [16] apply 30 financial ratios and
several statistical tests to create a model that uses ratios as
predictors in the analysis of financial statements for fraud.
Temponeras et al. [17] present a new predictive model for
fraud detection using a deep dense artificial neural network.
Kirkos et al. [18] explore the effectiveness of data mining
classification techniques in detecting companies that issue
FFS. To identify factors associated with FES, they investigate
the performances of decision trees, neural networks, and
Bayesian belief networks in the identification of fraud fi-
nancial statements. Gupta and Gill [19] implement three data
mining methodologies, a decision tree, naive Bayesian clas-
sifier, and genetic programming, to detect FFS. The three data
mining methods for the detection of financial statement fraud
were compared on the basis of two important evaluation
criteria: sensitivity and specificity.

Different from natural world data, financial statement
data are often irregular and it is hard to capture their in-
trinsic law. To date, the statistical models and data mining
techniques have not derived ideal results. Hence, many
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researchers borrowed multiple-criteria decision-making
models to identify FFS. Multiple-criteria decision-making
(MCDM) or multiple-criteria decision analysis (MCDA) is a
subdiscipline of operations research that explicitly evaluates
multiple conflicting criteria in decision-making (both in
daily life and in settings such as business, government, and
medicine); Zionts [20] popularized the acronym. The ap-
proach was first summarized comprehensively in a book by
Roy Bernard [21]. The significant approach in MCDA is
utilities additives (UTA) method, which is based on pref-
erence disaggregation that aims at the estimation of an
additive utility function through the analysis of global
judgments (ranking or grouping of alternatives) of decision-
makers. Lagréze and Siskos [22] assess the additive utility
functions that aggregate multiple criteria in a composite
criterion, using linear programming to estimate the pa-
rameters of the utility function. Siskos et al. [23] analyze the
UTA method and its variants to summarize the progress
made in this field. The UTA method is a well-known
preference disaggregation method applied in many sorting
problems. Furthermore, Corrente et al. [24] integrate the
multiple-criteria hierarchy process and UTA method for
dealing with MCDA in case of a hierarchical structure of the
family of evaluation criteria. Mousseau et al. [25] consider
the inverse multiple-criteria sorting problem (IMCSP) with
UTA and other sorting methods for determining which
actions to implement to provide guarantees on object
classification. Mota [26] uses the approach to support
project managers to focus on the main tasks of a project
network.

Zopounidis and Doumpos [27] propose the UTADIS
method based on the preference disaggregation approach
and estimate a set of additive utility functions and utility
profiles using linear programming techniques to minimize
misclassification errors in sorting problems. They present
the application of the UTADIS method in two real-world
classification problems concerning the field of financial
distress. Kosmidou et al. [28] use UTADIS to investigate the
performance of small and large UK banks over multiple
criteria, such as asset quality, capital adequacy, liquidity, and
efficiency/profitability. The results determine the key factors
that classify a bank as small or large and provide us with
responsible banking decision-makers for future readjust-
ments. Mehregan et al. [29] use the UTADIS method to
classify securities and to form a profitable investment
portfolio. Doumpos et al. [30] propose a robust multicriteria
approach that can be used to provide early warning signals
for possible future capital shortfalls that banks may face.
These research results show that the proposed MCDA ap-
proach provides models with strong discriminative power.
Recently, Spathis et al. [31] apply UTADIS classification
method to detect factors associated with FFS; a jackknife
procedure approach is used for model validation and
comparison with multivariate statistical techniques, namely,
discriminant and logistic analysis. The results indicate that
the UTADIS methodology achieves relatively good results in
detecting FFS.

Based on this, we borrow the UTADIS idea to detect the
FFS of companies. The sample data are chosen from the
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financial ratios of listed traditional Chinese medicine (TCM)
companies in China, which is a historical and prosperous
industry. The reasons why we choose this industry as our
research sample are the following: (1) There is a necessary
sample size of FFS for our research in this sector. (2) There
are few mixed businesses in TCM industry, and the main
business of this sector is relatively concentrated. This will
ensure that the selected samples have the homogeneous
feature in their main business. Accordingly, this also can
reduce the interference of unrelated noises.

As we know, in the real world, the data of each financial
ratio may change drastically over time. For example, the
outbreak of an epidemic will raise the income of almost all of
the companies in the TCM sector, whereas an increase in
material costs will result in a decline in that sector. Ac-
cordingly, related financial ratios will change sharply, in-
ducing FFS misjudgments. However, we observe that the
operating performance of a company is usually similar to
other companies in the same sector; therefore, such com-
panies should have similar changes in their financial ratios.
In view of this, we introduce the cosine similarity algorithm
to help us select companies most similar to the matched
companies and use their financial data to compute the
deviation of the considered company. Then, the deviation
data are used for UTADIS classification (more details in
Section 2). The merit of the financial deviation data is that
they reflect the intrinsic law of a considered company,
making it easier to detect FFS with UTADIS. This is the main
contribution of this paper, that is, based on the UTADIS
method, we combine the similarity algorithm with UTADIS
and formulate an integrated method, SM-UTADIS, for
detecting FFS.

The remainder of this paper is organized as follows. In
Section 2, we describe the proposed SM-UTADIS meth-
odology, including the similarity computation, UTADIS
method, and classification procedure. Section 3 provides the
results obtained using the SM-UTADIS classification
method and reports the comparisons with the single
UTADIS and logistic regression approaches. Concluding
remarks and opportunities for future research are presented
in Section 4.

2. Model Description

For convenience, we first introduce the following notations
that are used throughout the paper:

(1) Considered company A, (c=1, 2, ..., C): the c-th
considered company whose annual financial data we
classify into FFS and non-FES groups.

(2) Candidate matching company #m (m=1, 2, ..., L):
the m-th candidate matching company.

(3) Matched company #M, (9=1, 2, 3, ..., Q): the g-th
matched company with Q < L; these matched com-
panies are selected from the above candidate
matching companies.

(4) Variables or financial ratios Ri(i=1,2,...,J;1=
1,2,...,Cor L) represent the i-th variable or

financial ratio of company #I In this paper, we
choose the same financial ratios for all companies
(including considered and candidate matching
companies), and each different right superscript
represents a different company. In total, there are J
financial ratios for each company.

We propose a hybrid classification model that combines
the SM and UTADIS methods, as illustrated in Figure 1. As
shown in Figure 1, the procedure has three stages. In the SM
stage, the cosine similarity matching algorithm is applied to
select matched companies for each considered company.
Using the initial financial data, we compute the deviation
data of each considered company and gather all of the
deviation financial data into the research sample. We further
divide the research sample into training and testing datasets
for the next two stages. In the second stage, we put the
training dataset into the UTADIS to train the model. In the
last stage, we put the testing data into the well-trained
UTADIS model to predict the testing data and evaluate the
classification performance of the proposed method.

In the detection procedure, the key algorithms are the
cosine SM method in Stage 1 and UTADIS in Stages 2 and 3.
Thus, we provide more explicit descriptions of the algo-
rithms in the two following subsections.

2.1. Similarity Matching Method. The operating perfor-
mance of a company is usually similar to other companies in
the same industry. Therefore, there should be similar
changes in the financial ratios of these companies. In view of
this, for each considered company, we use the cosine sim-
ilarity matching algorithm to select the most similar
matched companies and to obtain the deviation data of each
considered company. Without loss of generality, the algo-
rithm for considered company A, is as follows:

Step 1—Computation of cosine similarity: Cosine
similarity is a measure of the similarity between two
vectors of an inner product space that measures the
cosine of the angle between them [32]. Here, we give the
cosine similarity between considered company A, and
the candidate matching company #m (m =1, 2, ..., L)
as follows:

s;, = cos (6,
[R[]R™
ZLl R x R}

T (BT ()

(m=12,...,L),

(1)

where S/ represents the similarity between considered
company A, and candidate matching company #m
(m=1,2,...,L), R° = (R,RS, ... , RS) represents the
financial ratio vector of considered company A,, and
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FiGure 1: The procedure of FFS detection with the SM-UTADIS method.

= (RY,RY, ..., R}") represents the financial ratio
vector of candidate matching company #m.

Step 2—Selection of matched companies: Now we rank
the matched companies_ {S m=1,2,...,L} in
descending order with S > S > > S and choose the
first several companies as the matched companies. For
example, if we choose P (P<L) matched compames,
we only choose companies with Sl,Sz, ...»Sp, and
denote the P companies as the matched companies for
considered company A..

Step 3—Computation of data deviation: Denote ﬁf as
the j-th financial ratio of the p-th (p=1, 2, ..., P)
matched company, and using the corresponding fi-
nancial data of the matched companies, we derive the
deviation data of the j-th financial ratio for considered
company A, as follows:

c P 3P
= _ RS- (1/P) Y5, RY|
/ 1/p)y*_ RY

p=17"j

(2)

Thus, we derive the deviation sample data for inputting
into the UTADIS.

2.2. UTADIS Method. Following Zopounidis and Doumpos
[27] and Spathis et al. [31], we give a brief description of the
UTADIS method as follows.

Let A= (ay,a,,...,a,) be a set of n annual financial
datasets described along a set of m attributes or evaluation
criteria x;, x,,...,x;; here, the attributes correspond to
financial ratios. The goal is to classify the n annual financial
datasets into g ordered classes C,,C,,...,C,, which are
defined as C,>C,>--->C, (C, is preferred to C,, C, is
preferred to C;, and so on).

For each evaluation criterion Xx; (i=1,2,...,])), the interval

X;= [x;‘"“n x7™] of its values is deﬁned here x;“‘“ and x7*

represent the minimal and maximal values, respectively, of
criterion X; for all of the alternatives belonging to A. The
internal X ; can be d1v1ded 1n£o a; L equal intervals [x, i X,
i=1,2,. ]l,x =x7"x;" = x7*. a; depends on the
number of estimate points of the marginal utility u;. Every

. j
break point x; can be determined using the following formula:

Jj=

(3)

min i—1 max min
rin , L= L (i
] aj_l ) ]

i
xj—x

Our aim is to estimate the marginal utilities at each of
these breakpoints. Suppose that the evaluation of each al-
ternative a on the criterion Xjis x; (a) € [x, i x’]“] and the
marginal utility of each alternatlve a € Aand u;[x;(a)] can
be roughly estimated through the linear interpolation:

i, (@) - X i+ i
;[ @] = uj(x)) + —m 7 (wi(x7) - ()
J J

(4)

To achieve monotonicity of the criteria, the following

conditions and the monotonicity constraints must be
satisfied:

W) ()20, Vi

wjp = ui(x") —uj(x)) 20 Vi,

)0 ©
. i—1

”J(x;): Wik

Using these transformations, (4) can be rewritten as

x; (a) -

][x (“)]—Zw + 1+1 i] wj;- (6)

X
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The total utility U (a) of each alternative a € A can be
expressed as

3

Ua) = ) u(x;(a)) € [0,1]. (7)
j=1

-
Il

Estimations of the total utility model (marginal utilities
of all breakpoints x’ (i =1,2,... »a;_)) and utility thresh-
olds are accomplished through the solution of the following
linear program:

minF = Z o @+ + Z [0 (a)+0 (a)]

aeCy acCy, (8)
+eet Z o (a),
aECq
subject to
Z u; [xj (a)] -t,+0 (a)20, VaeC,,
=1
Z u; [xj (a)] -t —0 (a)< -6
J;ll N Ya € Ck’
Z u; [xj (a)] —ty+0 (a)=0
o (9)

NgE

U [xj (a) - tg1— o (a)] < -6, Vace Cq,

-
Il
—

aj

<

NgE
\8
I
=

I
—

i
tk_l—tkz(s, k:2,3,...,q—1,
wﬁZO,UJr(a)ZO,o* (a) =0.

-
I
—

Here, 0" (a) and ¢~ (a) are the two possible errors
(misclassification errors) relative to the global utility U(a);
an overestimation error ¢ (a) represents cases in which an
alternative, according to its utility, is classified in a lower
class than the class to which it belongs (e.g., an alternative is
classified in class C, while belonging to class C;), whereas an
underestimation error ¢~ (a) represents cases in which an
alternative, according to its utility, is classified in a higher
class than the class to which it belongs. The threshold t; is
used to denote the strict preference relation between the
utility thresholds that distinguish the classes; >0 is used to
denote the strict preference relation between the utility
thresholds that distinguish the classes.

By comparing each utility with the corresponding utility
thresholds #; (£, >, > -+ >f,_;), we derive a decision rule for
each alternative a to distinguish each class from the others:

U(a)Zflza € C]:

t,<U(a)<t,=a € C,,

(10)
t,<U(a) <t ,=acCy,

U(a)<t,;=acC,

Next, we examine the detection of FFS. In this study,
only two classes of annual financial samples are considered,
that is, non-FFS (group C, ) and FFS (group C,), and the rule
for the classification of a sample as FES or non-FES is as
follows:

U(a)zt==acC,,

(11)

Ua)<t=a€(C,,

where ¢ is the corresponding utility threshold.

Based on the above classification rule, we classify the data
into two classes: non-FFS and FFS. Here, the FES class is the
fraudulent financial data.

3. Experiment Results and Discussion

In this section, using the real financial data of the TCM
sector in China, we evaluate the performance of the pro-
posed SM-UTADIS approach. The computation results of
this section are obtained using Matlab software.

3.1. Selection of Fraud Companies and Nonfraud Companies
Experiment Results and Discussion. Currently, there are
about 150 companies listed in the TCM sector in China, but
most are involved in mixed business areas, and the main
profit of some is not earned through traditional Chinese
medicine. Such companies must be discarded; otherwise,
they will obscure the evolving law of financial ratios as it
relates to companies whose business is purely related to
TCM. In addition, we must choose companies with financial
ratios that include falsified data, but too much non-FFS data
will dilute and hinder the identification process. Hence, only
24 TCM companies are used in our research. Among these
24 companies, three considered companies are regarded as
fraud companies as they were accused of fraud in some years
by the China Securities Regulatory Commission (CSRC).
The other 21, as the candidate matching companies, are non-
FFS, which are free of fraud. Of course, there is at least one
annual financial data point in the fraudulent statements. For
simplicity, we label the three considered companies as Al,
A2, and A3, and the other 21 non-FFS candidate matching
companies are labelled #1, #2, ..., #21.

Next, we use the annual financial data of the three
considered companies to evaluate the classification perfor-
mance of the proposed SM-UTADIS method. The annual
financial data cover the period from 2001 to 2016, and the
data are collected from the Wind website (http://www.wind.
com.cn/). If a company’s financial statement in a specific
year is identified as fraudulent by the CSRC, it is classified as
a fraudulent observation. In contrast, financial statements
that are free from falsified allegations are classified as
nonfraudulent observations.

For each falsified company, we first identify the earliest
year in which financial statement fraud was committed. Each
period covers the years before and after the year of the event.
Thus, seven consecutive annual financial statements are used
in most cases except for some class in which consecutive
annual financial statements are accused of fraud or the
related data are not published. We get 36 firm-year
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observations (i.e., annual financial statements) of the three
considered companies as our research sample, out of which 24
are nonfraudulent (Class C;) and 12 are fraudulent (Class C,).
Next, we divide these 36 annual observations into two groups:
a training dataset and a testing dataset. To get better training
and testing effects, the proportion of training and testing data
is set to 1:1, respectively. Moreover, to maintain the ratio-
nality and validity of the division, we try to distribute the data
of each company into the training and testing datasets as
equally as possible. Therefore, the 6 falsified and 12 non-
falsified annual observations are treated as the training
dataset, and the rest are treated as the testing dataset.

3.2. Choice of Financial Ratios. Based on Green and Choi
[12], Mironiuc et al. [33], and Shin-Ying Huang et al. [34], 12
explanatory variables or financial ratios are selected as the
sample variables; the definitions and measurements of these
financial ratios (financial ratios that describe both the
structure of the company assets and the level of the recorded
performance care) are summarized in Table 1.

3.3. Similarity Computation and Matched Company Selection
of Financial Ratios. For classification purposes, we match
each falsified considered company with nonfalsified candidate
matching companies in the same sector using cosine simi-
larity analysis. In fact, we only need to compute the similarity
of nonfraudulent years between the considered company and
its candidate matching companies from the training dataset. If
fraudulent data were included in the similarity computation,
it would decrease identification efliciency because it would
distort characteristics that are similar in the real world. Hence,
for each considered company A; (i=1, 2, 3), we select its
nonfalsified annual financial data from the training dataset
and the corresponding data of non-FFS candidate matching
companies #1-#21 in the same years, and, using (1), we can
compute the similarity between considered company (CM)
A, and its non-FFS candidate matching companies (CMC)
#1-#21. The results of the similarity analysis are given in the
following table.

Choosing the similarity threshold is the key issue for
improving classification accuracy in the following training
and forecasting stages. If the threshold value is too big, the
number of matched companies will be small. However, if the
threshold value is too small, the number of matching
companies will become lagger. In fact, the threshold value
will directly affect the selection of matched companies, and
this will further affect the accuracy of the training and testing
results. We hope to choose a suitable threshold that will
allow for ideal training and testing accuracy. Through many
trials, the 0.70 threshold value provides the best perfor-
mance. After many trials and adjustments, we select our
matched companies, and the similarity values are greater
than 0.70. In Table 2, the first three maximal values are
highlighted in grey for each considered company. There are
two matched companies, #3 and #14, for considered com-
pany A;, three matched companies, #1, #9, and #20, for
considered company A,, and one matched company, #18, for
considered company Aj. Based on the initial financial data of
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each considered company and its matched companies, by
(2), we can easily get the deviation data of all considered
companies and further divide the data into a training dataset
and a testing dataset. This concludes the data preparation for
the next two stages.

3.4. Results and Discussion. Applying the proposed SM-
UTADIS method to the training dataset, we get the marginal
utility of each financial ratio as shown in Figure 2. The
classification results and the utility threshold ¢ are shown in
Table 3.

In Figure 2, we see that the most significant ratios for
discrimination in the training dataset are Ry, R,y, and Ry,;
their weights are 27.4971%, 23.7773%, and 12.8746%, re-
spectively. The next is R, with a weight of 7.3757%. The other
ratios show no significant differences in their contribution to
FFS detection. Table 3 shows that the threshold ¢ is 0.349489.
Using classification rules (10), Table 3 shows that there are
no misclassifications.

Furthermore, the prediction ability of the trained model
developed by the UTADIS method is also tested using the
testing dataset. Using the trained model, we derive classifi-
cation results for the testing dataset. The results are presented
in Table 4. To make it clear, the misclassifications are high-
lighted in grey. There are two misclassifications in the testing
dataset; we summarize the type I error, type II error, and
overall error in Table 5. Here, a type I error corresponds to an
overestimation error 0~ (a), meaning that an FFS observation
is classified as non-FFS, whereas a type II error corresponds to
an underestimation error ¢*(a), meaning that a non-FFS
observation is classified as FFS. According to the results in
Table 5, the overall error rate is 11.1111%, and type I and type
IT errors are 16.6667% and 8.3333%, respectively.

3.5. Comparison with Single UTADIS Results and Discussion.
To evaluate the performance of the proposed SM-UTADIS
approach, we compare its classification results with those of
single UTADIS using the same initial data of considered
company A, (c=1, 2, 3). Figure 3 illustrates the marginal
utility of each financial ratio. Similar to the SM-UTADIS
analysis, Figure 3 shows that the most significant ratios for
discrimination in the training dataset are also Ry and R,
and their weights change to 24.3604% and 19.2855%, re-
spectively. The other ratios show no significant differences in
their contribution to FFS detection. Table 6 shows that there
is no identification error in the training process. Using the
trained model, we predict the testing dataset, and the
classification results are shown in Table 7. Table 7 shows that
there are 13 misclassification errors. The type I, type II, and
overall errors are summarized in Table 8. Compared with
Table 5, the classification results using the proposed SM-
UTADIS are far superior to the results with single UTADIS.

3.6. Comparison of Logistic and SM-Logistic Models.
Logistic regression is another popular method for FFS de-
tection; it is widely used in many research areas, such as
finance and social sciences. To test the performance of our
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TaBLE 1: Definition and measurement of financial ratios.

Notation Definition of ratio Measurement
R, Return on equity (ROE) Net income/Average equity

Earnings before interest and taxes to ret ts (EBIT . .
R, Ariings before fteres anROag(;zs 0 return on assets Earnings before interest and taxes/Average total assets
R, Return on assets [Net income + interest * (1 — tax rate)]/Total assets
R, Net profit to total operating income Net profit/Total operating income
R Operating profit to total operating income Operating profit/Total operating income
Ry Operating profit ratio (Sales — Operating Costs — Operating expenses)/Sales
R, Current ratio Current assets/Current liabilities
R Quick ratio (Current assets — Inventory — Prepaid expenses)/Current liabilities
R, Growth rate of net profit (Net profit/Net profit in prior annual term) — 1
Ry Growth rate of net assets (Current net assets/Net assets in prior annual term) — 1
Ry, Total assets turnover ratio Revenue/Average total assets
Ry, Ratio of liabilities to assets Total debts/Total assets

TaBLE 2: Similarity between considered company A; (i=1, 2, 3) and

non-FFS candidate matching companies #1-#21.

CM CMC Similarity value
#1 —0.00493
#2 —0.24823
#3 0.927066
#4 0.219229
#5 —0.15931
#6 0.128307
#7 0.30172
#8 0.352593
#9 0.103669

#10 —0.04005
A, #11 —0.09919
#12 —0.89803
#13 0.325353
#14 0.786474
#15 0.474157
#16 0.402147
#17 0.022846
#18 0.398805
#19 0.034669
#20 —0.023900
#21 0.205393
#1 0.719112
#2 0.235432
#3 —0.099010
#4 0.559809
#5 0.129897
#6 0.435574
#7 0.632609
#8 0.251317
#9 0.705876
#10 0.647896
A, #11 0.537107
#12 0.167555
#13 0.378416
#14 0.109826
#15 0.052887
#16 0.055193
#17 0.670442
#18 —0.195400
#19 0.586637
#20 0.781885
#21 0.550248

TasLE 2: Continued.

CM CMC Similarity value
#1 -0.06277
#2 0.101022
#3 0.301448
#4 -0.07407
#5 —0.002910
#6 —0.733340
#7 —0.101370
#8 0.031707
#9 —0.022590

#10 —0.073700
As #11 —0.489810
#12 —0.297000
#13 —0.808090
#14 0.147712
#15 —0.043480
#16 —0.019510
#17 0.074003
#18 0.891208
#19 —0.354680
#20 —0.036140
#21 —0.012560

proposed SM-UTADIS method, we use logistic regression
and SM-logistic regression (a combination of SM and lo-
gistic regression) to classify the same training and testing
datasets and further compare the classification results with
those of SM-UTADIS. The results of logistic and SM-logistic
regression are presented in Tables 9 and 10, respectively.
Comparing Table 9 with Table 10, we see fewer classification
errors with the SM-logistic regression method than with
single logistic regression; this implies that the SM technique
improves the classification accuracy rate. However, the
classification result of the SM-logistic regression method is
not better than that of the SM-UTADIS method. Tables 5
and 10 show that the type L, type II, and overall errors with
SM-logistic regression are far higher than those with SM-
UTADIS (see Table 5). Therefore, by comparing the clas-
sification results of three approaches, we find that the su-
periority of the SM-UTADIS method over logistic regression
and single regression is clear, whether classifying the
training dataset or the testing dataset.
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FIGURE 2: Marginal utility of each financial ratio with the SM-UTADIS method (training dataset).
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TaBLE 3: Classification results with the SM-UTADIS method (training dataset).

Considered company Year Actual class Utility value Estimated class
2001 C 0.419078 C
" 2003 C 0.349516 G
! 2009 C 0.358020 C
2011 G 0.381929 C,
2003 C 0.387177 G
A 2005 o 0.358557 G
2 2008 c 0.375054 C
2013 C 0.413359 G
2003 C, 0.350032 C,
N 2005 C, 0.350784 G
3 2010 of 0.354496 C
2012 o 0.396284 G

Utility threshold t 0.349489

n 2005 G, 0.341412 C,
! 2007 C, 0.328442 C,
N 2004 G, 0.323764 C,
2 2011 C, 0.339731 C,
N 2006 G, 0.349420 G
3 2008 C, 0.346697 G,

TaBLE 4: Forecasting results with the trained SM-UTADIS model (testing dataset).

Considered company Year Actual class Utility value Estimated class
2002 G 0.349590 C
n 2004 C 0.349710 C
! 2010 C 0.358811 C
2012 C 0.386387 G
2005 C 0.350307 G
A 2006 C 0.380931 C:
2 2008 G 0.357234 G
2014 C 0.312229 C,
2004 C 0.352612 C,
N 2009 C 0.350430 C:
3 2011 o 0.351601 C:
2014 C 0.365781 C:

Utility threshold t 0.349489

A 2006 G, 0.316715 C,
! 2008 C, 0.353189 C
N 2010 G, 0.325583 C,
2 2012 C, 0.339748 C,
0 2007 G, 0.345021 C,
3 2013 C, 0.050622 G,

TaBLE 5: Error summary with the SM-UTADIS method.

Actual class  Total amounts ~ Number of errors identified ~ Type I errors ~ Type II errors  Overall errors

. G 12 0
Training dataset C, 6 0 0 0 0
. C 12 1 .
Testing dataset c 6 1 16.6667% 8.3333% 11.1111%
2
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FIGURE 3: Marginal utility of each financial ratio using single UTADIS (training dataset).
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TaBLE 6: Classification results using the single UTADIS method (training dataset).

13

Considered company Year Actual class Utility value Estimated class
2001 C 0.337953 C
" 2003 C 0.360633 G
! 2009 C 0.422805 C
2011 C 0.459080 C,
2003 C 0.442766 C
A 2005 C 0.360602 C:
2 2008 C 0.334531 C
2013 C 0.369313 G
2003 C 0.392187 G
N 2005 C 0.460778 C:
3 2010 o 0.319150 of
2012 C 0.347777 C:

Utility threshold t 0.319139

0 2005 G, 0.304669 C,
! 2007 C, 0.283387 C,
N 2004 C, 0.290913 C,
2 2011 C, 0.261104 C,
A 2006 G, 0.303683 C
3 2008 C, 0.316627 G,

TasLE 7: Forecasting results using the trained single UTADIS model (training dataset).

Considered company Year Actual class Utility value Estimated class
2002 C 0.429631 G,
A 2004 C, 0.474130 G
! 2010 C 0.441629 C
2012 o} 0.437099 G
2005 C 0.303503 C,
A 2006 C, 0.352361 G
2 2008 C, 0.382830 C,
2014 o 0.269696 C,
2004 o} 0.444084 G
N 2009 C, 0.280839 G,
3 2011 C 0.347777 C
2014 C, 0.469747 G

Utility threshold t 0.319139

A 2006 G, 0.285334 G,
! 2008 C, 0.431728 C
N 2010 C, 0.293083 G,
2 2012 C, 0.363316 C
N 2007 G, 0.363351 G
3 2013 C, 0.428283 C

TaBLE 8: Error summary using single UTADIS method.

Actual class

Total amounts

Number of errors identified

Type I errors

Type II errors

Overall errors

G

12

0

Training dataset C 6 0 0 0 0
Testing dataset G 12 3 66.67% 25% 38.8889%

C, 6 4

TaBLE 9: Error summary with single logistic regression method.
Data Actual class Total amount Number of errors identified Type I errors (%) Type II errors (%) Overall errors (%)
Training dataset < 12 ! 50 8.3333 22.2222
C, 6 3

Testing dataset gl 162 é 83.3333 16.6667 38.8889

2
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TaBLE 10: Error summary with SM-logistic regression method.
Data Actual class Total amount Number of errors identified Type I errors Type II errors (%) Overall errors (%)
. C 12 1
Training dataset C, 6 0 0 8.3333 5.5556
. C 12 3
Testing dataset C 6 5 33.3333% 25.0000 27.7778
2

4. Conclusions

Combining the SM method with UTADIS, a hybrid SM-
UTADIS approach is proposed to detect falsified financial
statements by classifying financial ratio data into FFS and
non-FFS groups. To evaluate the performance of this hybrid
method, we conduct experiments using the annual financial
ratios of listed companies in the TCM sector in China.
Compared with UTADIS and logistic and SM-logistic re-
gression models, the results show that the hybrid SM method
can improve the clustering accuracy, and the SM-UTADIS
method has the highest prediction accuracy.

The main contributions of this paper are summarized as
follows:

(1) From the candidate matching companies, the cosine
similarity algorithm is introduced to select out the
matched companies, similar to the considered
companies. Based on this, we use the financial data of
matched companies to compute the deviation of the
considered company by SM method. The financial
deviation data obtained by SM method can reflect
the intrinsic law of a considered company more
clearly and make it easier to detect FFS with
UTADIS.

(2) We formulate a hybrid SM-UTADIS method by
combining the cosine SM algorithm with UTADIS
method for detecting FES.

(3) We give an empirical analysis by taking the tradi-
tional Chinese medicine industry as our research
sample and prove the outperformance of the pro-
posed hybrid method.

The proposed hybrid method can also be used for FFS
detection in other industries. Here, the traditional Chinese
medicine industry is just chosen as an example to test our
hybrid method in this paper. Note that the industry of re-
search samples had better have the homogeneous feature in
their main business. The usefulness of this study first comes
from the possibility of applying current working methods in
financial fraud detecting and the improvement of classifi-
cation methods. The development direction of future re-
search is to expand the sample of the analyzed companies,
focus on specific activity objects, determine the character-
istics of each department, and improve the proposed model
according to the specific economic environment of each
company, so as to provide the best possible guarantee for the
existence of fraud.

The importance of this topic and its results stems from
the promotion of the method to identify financial fraud,

which may contribute to the successful prevention and
detection of these catastrophic actions.
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Based on data of 31 provinces in China for the period 2007-2017, this paper establishes spatial models by means of a tran-
scendental logarithmic production function and analyzes the impact of regional credit and technological innovation on regional
economic growth. The Jenks natural breaks method, kernel density function, and Moran index are introduced for spatial statistical
analysis. Spatial weight matrices are constructed from two aspects of geographical characteristics and innovative input char-
acteristics. The empirical results show significant spatial heterogeneity and spatial autocorrelation in economic growth, regional
credit, and technological innovation. Both regional credit and technological innovation are important impacts to economic
growth, whereas the interaction of regional credit and technological innovation has a negative effect on provincial economic
growth. Therefore, we argue that China should rationally allocate regional credit resources, strengthen technological innovation
capabilities, and boost the integrated development of regional credit and technological innovation. It is a particularly important

way to facilitate regional economic integration and sustainable development.

1. Introduction

Entering a new era, China is in a critical period of economic
high-quality growth with the increase of uncertainties in the
international economic situation and the competitive
landscape. To successfully surmount this critical period, we
must heighten the proportion of science and technology and
knowledge-intensive industries, stimulate technical inno-
vation as the “first driving force,” and take the road of re-
gional innovation-driven development. In the recent years,
regional credit and technological innovation have brought
into play more and more vital effect in the transformation
and upgrading of China’s economy [1,2]. In terms of the
ranking of the World Intellectual Property Organization
(WIPO), Chinese synthesize ranking of scientific and
technological innovation was 14" in 2019. In addition, the

value of contract deals in domestic technical markets by type
of contracts of China increased by more than 26.56% in
2019. Furthermore, the contribution rate of scientific and
technological progress to the GDP has risen to 58.5% in
2018. Accordingly, in the process of China’s modernization,
technological innovation as the main driving force of eco-
nomic development should be placed at the core.

In this economic situation, having a solid financial
system is essential to provide an effective financing, risk
management, and the sustainable development of China’s
economy [3]. According to the National Bureau of Statistics
of China, the outstanding loans in local and foreign cur-
rencies of all financial institutions in China reached 23
trillion dollar in 2019, an increase of 2.4 trillion dollar over
2018. Figure 1 serves as the trend of financial institution
credit measured by the logarithm of loan-based metrics
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(InRC), technological innovation measured by the logarithm
of patent-based metrics (InRD), and total economic output
measured by the logarithm of the GDP (InGDP) of China
from 2007 to 2018. As can be seen from Figure 1, InGDP and
InRC maintained steady and rapid growth. Actually, rea-
sonable credit supply creates a favorable financial envi-
ronment for high-quality economic development. InRD has
remained high, mainly because of China’s increasing em-
phasis on technological innovation in the recent years [4].
Meanwhile, technological innovation highly depends on the
support of credit supply [2,5,6]. Credit supply has a direct
impact on technological innovation and its transformation
efficiency. Analyzing financial dependence and technolog-
ical innovation [5] shows that firms in external finance-
dependent industries generate a better patent portfolio. By
comparing the trends of InGDP, InRC, and InRD, it is also
found that there is a certain correlation and similarity among
them.

Most researchers focus on the Chinese technological
innovation surge, interestingly, while few have been known
about the impact of regional credit and technological in-
novation on regional economic growth in China. From a
regional perspective, is there spatial heterogeneity and a
regional correlation in China’s economic growth? Does
China’s regional credit level promote or restrain regional
economic growth? How does regional credit affect regional
economic growth through technological innovation? In the
process of implementing an innovation-driven development
strategy, exploring the influence of regional credit and
technological innovation on economic growth is conducive
to optimizing an innovation ecosystem and realizing the
coordinated development of multiagent economy.

The following structure is arranged as follows. Section 2
is the literature review. Section 3 introduces the model
specification and description of variables, including the
spatial econometric model, variable selection, and spatial
weight matrix construction. Section 4 uses spatial statistical
analysis technology to analyze the dynamic evolution trend
and spatial agglomeration effect of regional credit, tech-
nological innovation, and economic growth. Section 5 an-
alyzes the empirical results of the static spatial model and
dynamic spatial model. Section 6 draws the research con-
clusion and gives policy recommendations.

2. Literature Review

2.1. Regional Credit and Economic Growth. Finance is the
core of modern economy and plays an important role in
regulating the economy. The relationship between regional
credit and economic growth has attracted great attention in
the available theoretical and empirical literature. By com-
paring countries’ economic growth performance, we sum-
marize three main views on the relationship between
regional credit and economic growth. First, financial credit
has a positive effect on steady-state economic growth [7-10].
Diallo and Al-Titi [11] theoretically and empirically inves-
tigated the positive effect of bank credit on regional eco-
nomic growth. Second, the link between regional credit and
economic growth is not significant [12,13]. Zhang [13]
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Ficure 1: InGDP, InRC, and InRD of China from 2007 to 2018.

explained that the contribution of bank credit development
to economic growth was not significant in China. Third,
financial credit has a negative effect on economic growth
[14,15]. Sassi and Gasmi [14] explained the negative effect of
credit on economic growth and the heterogeneity of the
credit. Meanwhile, credit supply is unbalanced in the region
[16], and it is not matched and not coordinated with the
good situation of regional economic development, which
restricts the development of regional economy to a certain
extent. However, China’s credit supply under the dominance
of economic growth indicates that China is a puzzling ex-
ample to the general financial credit literature.

2.2. Technological Innovation and Economic Growth.
Statistical evaluation and quantitative analysis of techno-
logical innovation are the hot spots and trends of current
scientific and technological research. Many studies focus on
firms’ capabilities for innovation [17], technological inno-
vation output, the intensity of technological innovation [18],
and sustainable innovation [19]. Innovation is the main
engine of socioeconomic development for an increasing
number of economic agents and countries. In particular,
technological innovation is an important independent factor
to reveal the change of economic growth [20,21]. Conse-
quently, technological innovation has always been an in-
triguing research topic for scholars and policy makers. The
existing literature has two main views on the impact of
technological innovation on regional economic growth.
First, an efficient regional innovation system plays a sig-
nificant and positive role in promoting regional economic
growth in China [22,23]. Zhou and Luo [24] analyzed that
technological innovation had a delayed positive effect on
economic growth. China hopes to stimulate the develop-
ment of regional economy through the research of tech-
nological innovation. Second, there are significant regional
differences in technological innovation [25,26]. Through
econometric tools, Santana et al. [25] aimed to analyze the
link between technological innovation and sustainable de-
velopment in different countries and regions. The research
indicated that technological innovation could produce
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different types of impacts according to the analysis of the
development stages of different regions. The improvement of
technological innovation capability is of great significance to
innovation-driven development, innovation ecology, and
regional economic synergy.

2.3. Regional Credit, Technological Innovation, and Economic
Growth. A region’s short-term growth depends on capital
accumulation, while its long-term growth depends on
technological innovation. A proper allocation of credit funds
in a region can easily reduce transaction costs and achieve
economies of scale. A well-developed and perfect credit
mechanism can facilitate the intertemporal and inter-re-
gional turnover of funds for the real economy, which is
conducive to the growth and innovation of regional tech-
nologies. Technological innovation is the main driving force
of regional economic growth in the new era. The integration
of regional credit and technological innovation is a double-
edged sword for economic growth.

Firstly, regional credit and technological innovation
coordinate and play a synergistic effect to jointly promote
regional economic growth. On the one hand, the deep in-
tegration of credit resources and technological innovation
promotes the emergence and development of new nonbank
credit institutions, breaks the monopoly of bank credit
funds, and effectively optimizes the credit market system. On
the other hand, the deep integration promotes financial
innovation and provides diversified financing channels for
innovative small and medium-size enterprises (SMES). Si-
multaneously, it reduces the financing transaction costs of
SMES, improves their market profitability, and creates new
advantages for regional economic growth. Therefore, the
interactive integration of regional credit and technological
innovation plays a role in economic growth. For example,
Amore et al. [6] believe that the growth of financial credit
could accelerate the accumulation of regional capital, en-
hance the financing capacity of enterprises in the region, and
effectively promote the output of technological innovation.
Pradhan et al. [23] explore the panel unit root test, panel
cointegration test, and vector correction model to study the
interaction among financial credit, economic development,
and technological innovation of 49 European countries from
1961 to 2014. The results verify that, in the long run, both
financial development and innovation are the causative
factors of economic growth. Jia et al. [27] believe that in-
novation is the intermediate variable of financial develop-
ment promoting economic growth.

Secondly, there are potential risks in the process of
integration of regional credit and technological innovation,
which will have an inhibitory effect on regional economic
growth. On the one hand, the incentive of regional inno-
vation policy makes some innovative enterprises exaggerate
the economic effect of enterprises and expand blindly in
order to obtain funds. As a result, enterprises fall into a
vicious circle of “repaying old debts with new debts,” which
eventually leads to the bankruptcy of enterprises and in-
creases the nonperforming loan rate of credit institutions.
On the other hand, there is serious information asymmetry

between credit institutions and innovative enterprises. It is
difficult for credit institutions to grasp the core production
technology and market competitiveness of enterprises in
time and completely. As a result, it is unable to accurately
evaluate the business performance and market prospects of
enterprises, resulting in the mismatch of credit resources
and increasing the potential risk of credit funds. Jiang and
Ding [28] considered that the ratio of total financial deposits
and loans to the local gross national product (GNP)
inhibited the improvement of the quality of economic
growth and was not conducive to technological innovation
and the increase of economic growth. Zhang [29] used the
spatial econometric model of 30 regions of China to study
the positive effect of credit funds and technological inno-
vation on regional economic growth, but the interaction
between credit funds and technological innovation had no
significant effect on economic growth. The prosperity of the
technological innovation is a new development paradigm of
global economy, while Brown et al. [30] considered that
credit markets did not play an important role in funding its
development. Also, they found that credit market devel-
opment was not a major impediment to the expansion of the
high-tech sector. Distortions in financial sector lower eco-
nomic growth by reducing the speed of technological in-
novation [31,32]. These research studies provide various
evidences for the role of regional credit in the process of
innovation-driven regional economic growth.

2.4. Summary of the Aforementioned Literature. The afore-
mentioned literature shows a significant gap in the con-
clusion of previous studies. Compared with the available
literature, this paper makes three primary contributions.
Firstly, although regional credit, technological innova-
tion, and economic growth have attracted great attention
theoretically and empirically in the existing literature, most
of the literature only considers two aspects of them. For
example, Onder and Ozyildirim [10], Diallo and Al-Titi [11],
and Ouyang and Li [15] only explore the relationship be-
tween regional credit and economic growth. Santana et al.
[25], Pradhan et al. [23], and Zhou and Luo [24] only explore
the nexus between technological innovation and economic
growth. However, only few researchers have studied the
nexus among regional credit, technological innovation, and
economic growth, such as Amore et al. [6], Pradhan et al.
[23], Jiang and Ding [28], and Brown et al. [30]. This paper
considers the impact of regional credit and technological
innovation and their integration (coordination) on eco-
nomic growth of China from the national perspective.
Secondly, although many scholars have analyzed the
imbalance and incoordination of regional economic dis-
tribution, they seldom introduce spatial factors. Traditional
econometric models, such as the ordinary least squares
estimation, panel unit root test, panel cointegration test, and
vector correction model, ignore the spatial effects and may
be considered biased [4]. The spatial effect is the essential
characteristic of spatial econometric analysis. Only Zhang
[29] and Li and Zhou [32] introduce spatial models, while
Zhang [29] does not consider spatial heterogeneity and



dynamic evolution, and Li and Zhou [32] ignore the in-
fluence of other factors (institutional factors, open condi-
tions, etc.) other than explanatory variables on the explained
variables. This paper establishes static spatial panel models
and dynamic spatial panel models by means of transcen-
dental logarithmic production function and analyzes the
impact of regional credit and technological innovation on
regional economic growth in China. Simultaneously, the
Jenks natural breaks method, kernel density function, and
Moran index are introduced for spatial statistical analysis.
Thirdly, the spatial weight matrix setting form is limited.
The spatial weight matrix is the main tool to abstract spatial
and reflect a spatial effect. It is one of the core contents of the
spatial econometric model. The setting and optimization of
spatial weight matrices have always been the focus of at-
tention. Li and Zhou [32] only constructed the weight matrix
based on adjacency and geographical distance, and the spatial
dependent structure of reaction variables had limitations.
Spatial weight matrices are constructed from the spatial
adjacency matrix, geographical distance weight matrix, and
innovation capital input weight matrix in this paper.

3. Model Specification and
Variables Description

3.1. Model Specification. Most of the existing literature is
according to the Cobb-Douglas production function, which
regards credit as an input factor. But, in the actual economic
system, not only the input factors have an impact on output,
but also the interaction of input factors will have an impact
on output. Transcendental Logarithmic Production function
is a variable substitution elastic production function model,
which is generally used to analyze the interaction between
input factors [33,34]. This paper establishes a transcendental
logarithmic production function model to analyze the im-
pact of regional credit, technological innovation, and their
interaction on economic growth.

In GDP;, = 8, InRC;, + 3, InRD;, + 3; In(RC;,) * In(RD;,)
+yIn X, + ¢,
(1)

where GDP denotes the gross domestic product, RC denotes
the regional credit, and RD denotes technological innova-
tion. The interaction term, In(RC) * In(RD), denotes the
influence of the integration of regional credit and techno-
logical innovation on economic growth. X denotes other
control variables affecting economic growth, B;,f,,5;,y
denote the coefficients of each variable, respectively, ¢ de-
notes the error perturbation term, i represents a certain
region, and ¢ represents a certain year ranging from 2007 to
2017.
The output elasticity of regional credit is as follows:
o(InGDP,,)
Z= 3(nRC,) B, + B3 In(RD,,). (2)

The impact of regional credit on economic growth is not
only related to the scale and structure of regional credit but
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also to technological innovation. When f3; In (RD) > 0, it says
that technological innovation enhanced the impact of re-
gional credit on economic growth. When S;In(RD) <0, it
says that technological innovation restrained the impact of
regional credit on economic growth. When 3, In (RD) = 0, it
says that the impact of regional credit on economic growth
had nothing to do with technological innovation.

In addition to regional credit and technological inno-
vation, regional economic growth will be affected by a series
of other factors, such as provincial material capital (K;),
labor input (L;), and consumption level (C;). By incor-
porating these control variables into the equation, equation
(1) can be transformed into

InGDP;, = 8, InRC;, + 8, InRD;, + B;In(RC,,) * In(RD;,) + y, In K,
+yp,InL, +y;InC, + ¢,
(3)

Equation (3) is a traditional panel model. If the spatial
effect of the gross domestic product is taken into consid-
eration, the spatial lag is brought into equation (3) and the
static spatial panel model is established. The basic models of
static spatial panel models include spatial autoregressive
models (SAR) and spatial error models (SEM). Equations (4)
and (5) are the SAR and SEM.

In GDP,, = pW (In GDP,,) + B, In(RC;,) + B, In(RD;,)
+ B3 1In(RCy) * In(RDy,) (4)
+ Y InKy +y,In Ly +y;InCyy + &,

InGDP;, = 8, InRC;, + 3, InRD;, + B; In(RC;,) * In(RD;,)
+y;InK; +y,InL, + p;InCy, + \We, + iy,
(5)
where p and A, reflecting the spatial spillover of gross
domestic product, respectively, represent the estimated
parameters of spatial lag and spatial error. W is a spatial
weight matrix, which reflects the spatial relationships
among the various regions. If the dynamic effect and the
spatial effect of the gross domestic product are taken into
consideration, the first-order lag and spatial lag are brought
into equation (3). The dynamic spatial panel models are
established as follows:
InGDP;, = 7InGDP;(, ;, + pW (In GDP;;)
+ By In(RCy) + B, InRD;, (RDy,)
+ B3 In (RCy )  In (RD;) (6)
+y,InK;, +y,InL;
+y3InCy + & = AWey, + 1y,
where 7 denotes the estimated parameter of first-order lag of

the gross domestic product, which reflects the impact of the
past relevant factors on the current gross domestic product.

3.2. Selection of the Spatial Weight Matrix

3.2.1. Spatial Adjacency Matrix (W1). In order to establish a
spatial econometric model, this paper firstly defines the
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space distance. The distance here is generalized, and it can be
geographic distance or can be other economic sense of the
distance. The spatial data of n regions are expressed as
{x;}\,, where i denotes the region i. w;; denotes the spatial
distance between the region i and the region j, and then, the
spatial weight matrix W can be defined as

Wy -0 Wy

Wy oo Wy

where w; =0(i = 1,...,n). Because the distance from re-
gion i to region j is the same as that from region j to region i,
that is, w;; = wj;, the spatial weight matrix W is a symmetric
matrix. The most commonly used spatial weight matrix is the
adjacency matrix (W;). Specifically, if regions i and j have a
common boundary, the weight is 1; otherwise, it is 0.

3.2.2. Geographical Distance Weight Matrix (W2). In order
to enhance the robustness of the results, this paper not only
constructs the spatial adjacency matrix (W;) but also con-
siders the geographical distance weight matrix (W,) and the
innovation capital input weight matrix (W;). The geo-
graphical distance weight matrix (W) is constructed by the
reciprocal of the spherical distance between provincial
capitals. Namely,

1 4
dij’ 1 ]:

Wi = (8)
0, i=j.

In formula (8), d;; is the spherical distance between the
provincial capital city of i province and that of j province,
indicating that the closer the distance is, the closer the re-
lationship between provinces is. The advantage of this ap-
proach is that it takes full account of the actual situation of
interaction and interaction between provinces which are
close but not adjacent in space.

3.2.3. Innovation Capital Input Weight Matrix (W3). The
weight matrix based on spatial adjacency and geo-
graphical distance does not reflect the correlation of
regional economic characteristics. Lin et al. [35] took the
spatial correlation of social and economic characteristics
into consideration and constructed the weight matrix of
social and economic distance. Substantively, it mainly
embodies the ability of transforming the research
achievements of technological innovation into technol-
ogies and products, and it is the materialized achieve-
ment of technological innovation in promoting
economic and social development. Naturally, we con-
sider establishing the distance weight matrix (W3) of
innovation capital input. Wj reflects the correlation
between research and experimental development ex-
penditure and geographical distance. Significantly, W3 is
beneficial to the robustness test of the results. The specific
formula is as follows:

T, T, T T
W, = Wﬁiag(%,%,?, : —") 9)

where T; = (1/(t; — t, + 1)) Zf;to T, represents the average
expenditure on research and experimental development
(R&D) in Province i during the investigation period. T =
(/(n(t, -ty + 1) X5, Z:Lto T, represents the average
expenditure on total research and experimental develop-
ment (R&D) during the investigation period, and ¢ is in
different periods.

3.3. Variables Description

3.3.1. Explained Variable: Economic Growth (GDP). In
empirical analysis, there are generally two methods to
measure regional economic growth. Firstly, the GDP of each
region is adopted and converted into the real GDP expressed
in terms of the base year constant price by the GDP index.
Second is GDP per capita. GDP per capita can only ap-
proximate regional economic development. If regional
growth is to be properly measured, the most direct measure
is the real GDP at constant prices. Therefore, this paper uses
the real GDP, expressed in constant prices on the basis of
2007, to reflect regional economic growth. Data source:
China Statistical Yearbook (2007-2017).

3.3.2. Core Explanatory Variables. Regional credit (RC): in
previous studies, credit supply is considered as an important
financial service to promote economic growth and is often
used as an important indicator of credit. Credit supply is the
main source of enterprise financing, which can measure the
important role of financial credit in economic growth.
Because of considering the availability and validity of the
data, the balance of credit funds of financial institutions is
used to reflect regional credit development. Data sources: the
Statistical Yearbook of each province, Statistical Bulletin of
National Economic and Social Development of each prov-
ince, and Regional Financial Operation Report of the
People’s Bank of China.

Technological innovation (RD): as for the measurement
index of technological innovation, the research literature
mainly selects the input index and output index of tech-
nological innovation. In practice, there is great uncertainty
from R&D input to output. The patent data can reflect the
application value of technological innovation and the pro-
vincial technological innovation information, so most lit-
erature adopts the number of patents granted as the
measurement index of the technological innovation output,
such as [6]. Following the general practice, this paper adopts
the number of patents granted in each province as the
measurement index of technological innovation in the
province. Data source: China Statistical Yearbook
(2007-2017).

3.3.3. Control Variables. According to economic theory and
the availability and validity of data, the control variables are
as follows: provincial capital investment (K) is expressed by



total investment in fixed assets in the whole country, labor
input (L) is expressed by the number of employed persons in
urban units, and consumption level (C) is expressed by total
retail sales of regional social consumer goods. In order to
reduce the influence of heteroscedasticity on the model, we
take the logarithmic form of all variables to be dimen-
sionless. Table 1 shows descriptive statistics of all the var-
iables used. All variables have good statistical characteristics.

4. Spatial Feature Analysis

This section firstly describes geospatial distribution char-
acteristics of regional credit, technological innovation, and
economic growth from a macro perspective. Secondly, the
kernel density function is used to reflect the dynamic
evolution trend of regional credit, technology innovation,
and economic growth. Finally, the Moran index and LISA
are adopted to depict whether the spatial agglomeration
phenomenon exists in the regional credit, technological
innovation, and economic growth in Chinese provinces.

4.1. Geospatial Characteristics Analysis. The Jenks natural
breaks classification is designed to place variable values into
naturally occurring data categories [36]. We utilize the Jenks
natural breaks method to distinguish logical breakpoints in
economic datasets by grouping similar values of “mini-
mizing differences in the sum of squares within a class and
maximizing differences in the sum of squares between
groups” [36,37]. We employ GeoDa to yield the geospatial
distribution characteristics of regional credit, technological
innovation, and economic growth of Chinese 31 provinces.
The 31 provinces are itemized according to the Jenks natural
breaks algorithm [38,39], which is shown in Figures 2-4.
Different colors indicate different levels of geospatial dis-
tribution. As the color deepens, the level of development of
regional credit, technological innovation, and economic
growth increases gradually. If the classification value is
superior to the average value, the development level of the
region will have a spillover effect. Conversely, if the value is
less than the average, the development level of this region
has a weak impact on the development of neighboring
provinces.

(1) Figure 2 shows the geospatial distribution of regional
economic growth. As can be seen, the regions with
high economic growth are mainly concentrated in
the eastern and central regions of China. The lower
economic growth is concentrated in northwest
China. Also, this concentration is continuously
changing in a ladder form from west to east, which
shows that the economic growth of neighboring
provinces influences each other. Furthermore, this
proves the existence of the spatial spillover effect of
economic growth.

(2) Figure 3 shows the geographic spatial distribution of
regional credit. Clearly, the areas with large credit
supply are mainly concentrated in the southeast
coastal areas of China, where the economy is rela-
tively developed, forming a financial cluster. In
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addition, Sichuan, Henan, and Hubei have higher
credit level, but no obvious agglomeration area.

(3) Figure 4 shows the geospatial distribution of tech-
nological innovation levels. It can be seen that
Shandong, Jiangsu, Shanghai, Zhejiang, Fujian, and
Guangdong have higher technological innovation
levels. The lower technological innovation levels are
concentrated in the western and northern parts of
China.

4.2. Spatiotemporal Dynamic Evolution. For the spatial
heterogeneity feature measure, the existing literature usually
uses the kernel density estimation method, Dagum Gini
coeflicient, Theil index, and coefficient of variation. Al-
though the calculation methods and processes are different,
the conclusions are not much different. The kernel density
estimation method is the most popular method now. The
main idea of kernel density estimation is to reflect its
evolution trend by dynamic changes of specific graphical
features such as kurtosis, skewness, and symmetry in the
index distribution map. On the basis of the practice of Jiang
et al. [40], Ma et al. [41], Yang et al. [42], and Zhao [43],
taking 2007, 2009, 2011, 2013, 2015, and 2017 as measuring
time points, this paper adopted the kernel density estimation
method to comprehensively depict the spatial distribution
characteristics and spatiotemporal dynamic evolution of
regional credit, technology innovation, and economic
growth. By comparing the kernel density estimation curves
(Figures 5-7), we come to the following conclusion:

(1) The overall economic growth level of China’s
provinces has grown steadily. During the inspection
period, the center of the distribution curve of real
GDP logarithm showed a trend of gradually shifting
to the right, indicating that China’s provincial eco-
nomic growth level is gradually increasing. This
feature is consistent with the overall description. The
peak value of the main peak increases gradually, and
the width of the main peak shows a weak trend of
narrowing, indicating that the gap of economic
growth between provinces in China tends to be
narrow. The density distribution curve always has a
trailing phenomenon, and its distribution tends to
extend to the right, indicating that the provinces with
higher economic growth show an upward trend, and
some provinces have a lower level of economic
growth. From the shape of the curve, the uni-
polarization phenomenon of the distribution is
obvious, and its peak value first increases and, then,
decreases, but the decrease range is small, indicating
that the economic growth level of each province is
advancing smoothly as a whole.

(2) The spatial distribution of credit levels in various
provinces in China tends to converge. During the
inspection period, the center of the density distri-
bution curve of the credit funds of 31 provincial
financial institutions gradually shifted to the right,
indicating that the overall credit level of China’s
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TaBLE 1: Statistical description of variables.
Variables Mean Std. dev. Min Max
Economic growth (InGDP) 9.289 1.051 5.833 11.293
Regional credit (InRC) 9.568 1.104 5.390 11.886
Technological innovation (InRD) 9.371 1.713 4.220 13.078
Intersection of regional credit and technological innovation (InRC * InRD) 91.470 25.501 22.831 155.435
Capital investment of provinces (InK) 9.068 1.019 5.600 10.959
Labor input (InL) 5.907 0.926 2.178 7.947
Consumption level (InC) 8.423 1.145 4.724 10.584

Data source: China Statistical Yearbook.
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FIGURE 3: Geospatial distribution of regional credit in Chinese 31

provinces in 2017.

provinces showed a gradual upward trend. The main
peak of the distribution curve showed a significant
upward trend, and the main peak width decreased
year by year. It shows that the absolute gap of credit
levels in various provinces is shrinking. The distri-
bution curve shows a tailing phenomenon to the left,
and its distribution ductility tends to converge from
broadening, indicating that the provinces with high
credit levels are on the rise and the gap with the
average level is shrinking year by year. The ductility
gap has been shrinking year by year. The single
polarization phenomenon of distribution has always
existed, and its peak value rises stepwise, indicating
that the polarization phenomenon of provincial

credit level is gradually alleviated and controlled over
time.

(3) China’s provincial technological innovation capa-

bility has shown an overall upward trend year by
year. During the inspection period, the center of the
density distribution curve of the 31 provincial patent
application grants gradually shifted to the right,
indicating that the technological innovation capa-
bility of China’s provinces showed an upward trend.
The distribution curve had a tailing phenomenon,
and the distribution curve always had a single po-
larization phenomenon. The peak value of the main
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FIGURE 4: Geospatial distribution of technological innovation in
Chinese 31 provinces in 2017.

peak first rises and then rises, and the width of the
main peak does not change much, indicating that the
technical innovation ability of each province has
progressed smoothly.

4.3. Spatial Autocorrelation Analysis. Spatial heterogeneity
(spatial structure) mainly examines the spatial imbalance of
regional credit, technological innovation, and economic
growth, while spatial autocorrelation (spatial interaction)
mainly reflects the spatial agglomeration effect of regional
credit, technological innovation, and economic growth. If
the spatial characteristics of the data are strongly influenced
by the observation location, the adjacent spatial units in-
teract with each other, and the adjacent areas tend to have
more similarities than the remote areas. The Moran index
(Moran’s I) [44] is the most popular method for estimating
spatial autocorrelation in the literature.

4.3.1. Global Spatial Autocorrelation Analysis. For the
purpose of testing the spatial correlation of economic growth,
regional credit, and technological innovation, this paper uses
the spatial adjacent weight matrix and global Moran’sI to
estimate. From Table 2, we find that Moran’s I of economic
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TaBLE 2: Global Moran’sI in China from 2007 to 2017.

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

InGDP  0.359***  0.358"**  0.367***  0.362***  0.357***  0.350***  0.346"**  0.346***  0.361***  0.378***  0.371***

InRC 0.384***  0.380"**  0.349***  0.350***  0.347*** 0.353***  0.356**"  0.353"**  0.348"**  0.367"**  0.388*"*

InRD 0.349***  0.362"**  0.396"**  0.397***  0.422***  0.415***  0.402**" 0.420"** 0.411"** 0.430"** 0.439*""

sk ok
>

growth in 2007-2017 is concentrated in 0.346-0.378 and
passed the significance level test of 1%. In 2016, Moran’s I of
economic growth reached its highest value of 0.378. It shows
that the economic growth of 31 provinces in China is not
randomly distributed in space, but has positive autocorre-
lation in space and presents strong spatial agglomeration in
geographical space. From 2007 to 2017, Moran’s I of regional
credit concentrated between 0.347 and 0.388 and passed the
significance test under 1% level. It shows that a positive spatial
autocorrelation exists in the credit of the provinces and re-
gions. From 2007 to 2017, Moran’sI of technological in-
novation concentrated between 0.349 and 0.464, and all of
them passed the significance test at the level of 1%. The lowest
Moran’s I was 0.349 in 2007 and the highest was 0.464 in
2017. The results show that there is a strong positive auto-
correlation in the space of technological innovation in 31
provinces in China, and the trend is strengthening year by
year. Compared with economic growth and regional credit,
technological innovation has the strongest positive spatial
autocorrelation and shows stronger spatial agglomeration
characteristics in geographic space.

By comparing Moran’sI of the economic growth, re-
gional credit, and technological innovation, we find that they
have similar spatial agglomeration characteristics. That is to
say, the provinces with the high Moran’s I value are close to
the provinces with high index value, and the provinces with
low Moran’sI value are close to the provinces with low
index value. This agglomeration indirectly reflects the im-
balance of economic growth, regional credit, and techno-
logical innovation in China’s provinces. In addition, this
paper also finds that there are certain correlations and
similarities among the three trends of economic growth,
regional credit, and technological innovation.

4.3.2. Local Spatial Autocorrelation Analysis. In order to
further analyze the local agglomeration characteristics of
economic growth, regional credit, and technological innova-
tion in different provinces of China, this paper took the year of
2017 as an example and undertook a local indicator of spatial
association (LISA) analysis [45]. The LISA agglomeration maps
allowed us to explore the local spatial autocorrelation
(Figures 8-10). Local Moran’s I scatter plots were divided into
four quadrants. The positive spatial correlation is distributed in
the first and third quadrants, while the negative spatial cor-
relation is distributed in the second and fourth quadrants.
From Figure 8, we can see that the high-high agglom-
eration, are mostly distributed in Shandong, Jiangsu,
Shanghai, Anhui, and Fujian of eastern coastal areas of China.
The provinces with low-low agglomeration are Xinjiang,
Tibet, Qinghai, and Gansu provinces of northwest China. As

, and *denote statistical significance levels at 1%, 5%, and 10%, respectively.

can be seen from Moran’s I scatter plots, the provinces in
quadrants 1 and 3 account for the majority, which reflects that
the level of technological innovation in China shows a strong
positive spatial correlation. The differentiation of “high-high”
and “low-low” basically conforms to the spatial pattern of
China’s economic development from east to west. It fully
demonstrates that China’s economy has obvious spatial au-
tocorrelation and spatial heterogeneity in geographical spatial
distribution. The spatial distribution of regional credit and
technological innovation is similar to that of economic
growth (Figures 9 and 10).

5. Spatial Econometric Analysis

5.1. Model Recognition. Traditional econometric models do
not involve such spatial effects, and the estimates are biased.
Upon the abovementioned analysis, we find that there are
spatial autocorrelation among regional credit, technological
innovation, and economic growth. This means that the
geographic distance and spatial effect are both significant
factors affecting regional economic growth.

According to the model discriminant criteria of Anselin
et al. [46], the SLM model and the SEM model are tested by
the Lagrange multiplier (LM). LM (error) and Robust-LM
(error) are used to test the spatial correlation of the residual,
while LM (lag) and Robust-LM (lag) are used to test the
spatial lag of the model. Table 3 shows the results. The values
of LM (lag) and Robust-LM (lag) were 9.886 and 9.804,
respectively, and were significant; the values of LM (error)
and Robust-LM (error) were 0.105 and 0.023, respectively,
and were not significant. It shows that the SAR model is
better than the SEM model.

Furthermore, the Hausman test shows that the Hausman
statistic is 183.65 and has passed the significance test of 1%,
indicating that the spatial fixed effect model is more ap-
plicable. In general, the fixed effect model works better when
the subject is a specific individual. Compared with the
random effect model, Lee and Yu [47] believe that the fixed
effect model is more robust and simpler in calculation.
According to the different control of space and time effect,
the model of the spatial fixed effect can be divided into the
time fixed effect, space fixed effect, mixed effect (that is, no
space fixed effect and no time fixed effect), and both fixed
effect. This paper also estimates the four spatial econometric
models and finds that the model fits better under the dual
fixed effect of space and time. In fact, there are obvious
regional differences in China’s economic growth. Mixed
effects and time effects ignore these differences. Spatial both
fixed effects take into account both temporal and regional
impacts and also distinguish spatial correlation from spatial
heterogeneity and missing variables [48]. Therefore, both
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FIGURE 9: LISA agglomeration map and Moran’s I scatter plot of regional credit in 2017.

fixed effects can more accurately reflect the actual situation
of regional economic growth. Therefore, the both fixed effect
model of SAR is adopted in this paper.

5.2. Estimation Results Analysis. To enhance the validity and
robustness of spatial models, we simultaneously employ
three kinds of weight matrices to estimate the static SAR
models. The regression results are shown in the models (1),

(2), and (3) in Table 4. The spatial weight matrices in static
spatial panel model (1), (2), and (3) are the spatial adjacency
matrix (W), spherical distance weight matrix (W,), and
innovation capital input weight matrix (W3). The spatial
correlation coefficient of model (1) is 0.229, which is sig-
nificant at 1%, higher than that of model (2) and model (3). It
shows that the economic growth of adjacent provinces af-
fects each other, but that of nonadjacent provinces is not
strong. According to the adjusted statistics of R, SigmaZ,
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FIGURE 10: LISA agglomeration map and Moran’s I scatter plot of technological innovation in 2017.

TasLE 3: The results of the LM test.

Test Statistic
Lagrange multiplier (error) 0.105
Robust Lagrange multiplier (error) 0.023
Lagrange multiplier (lag) 9.886"""
Robust Lagrange multiplier (lag) 9.804***

***, **, and *denote statistical significance levels at 1%, 5%, and 10%,
respectively.

and Log-L, the models (1), (2), and (3) have goodness of fit.
From the estimation results of explanatory variable coeffi-
cients in the model, there is little difference among ex-
planatory variable coeflicients and the significance test.
The static spatial panel model ignores the influence of
other factors (institutional factors and open conditions)
other than explanatory variables on the explained variables.
Therefore, this paper uses the first-order lag of regional
economic growth to represent other potential influencing
factors of regional economic growth and establishes a dy-
namic spatial econometric model of SAR. The models (4),
(5), and (6) in Table 4 give the estimation results of the
dynamic spatial panel model established based on the weight
matrices W, W,, W. It can be seen from Table 4 that, in the
dynamic spatial panel model, the spatial correlation coef-
ficients of the three models are 0.001, 0.379, and 0.001,
respectively, and all of them are significant at the level of 5%.
The spatial correlation coefficient of spatial model (4) is
lower than that of the static panel. The spatial correlation
coefficients of dynamic model (5) and (6) are significantly
positive, which is not consistent with the estimation of the
spatial correlation in the static model. Compared with the
spatial correlation coefficient of model (4) and model (5), the
spatial correlation coefficient of model (6) is relatively
higher, which explains to some extent that the economic

growth of one region depends on other regions, not only
because of the adjacent and adjacent geographical locations
of the two regions. In the dynamic space panel, expressed in
the dependent variable of first-order lag other potential
factors and other potential factors impact on regional
economic growth from the separated space structure factors,
spatial correlation changed, regional economic growth as a
dynamic, continuous economic system, and the potential
factors of its influence is very important. Therefore, it is
necessary to establish a dynamic spatial panel model. The
regression coeflicients of dynamic factors in models (4), (5),
and (6) are, respectively, 0.897, 0.879, and 0.897, which are
all significant at the level of 1%, further verifying the positive
influence of other factors on regional economic growth.
In the dynamic spatial panel model, Sargan statistic, Log-
L, and other statistics all have good fitness. From the esti-
mation results of explanatory variable coefficients in the
model, the estimation results of model (6) have passed the
significance test, which is obviously superior to the esti-
mation results of other models. Therefore, this paper chooses
the estimation results of model (6) for discussion. The re-
gional credit regression coefficient is 0.011, and the tech-
nological innovation regression coefficient is 0.052, which is
significant at the level of 1%. That is to say, if the provincial
credit level and technological innovation increase by one
unit, the provincial economic growth level will increase by
1.1% and 5.2%, respectively. Therefore, the regional credit
level and technological innovation have significant positive
effects on provincial economic growth. In the recent years,
with the gradual rise of China’s financial market, the market
system is becoming increasingly sound, the scale is
expanding, the structure is becoming more reasonable, and
the role of financial credit level in promoting economic
growth is becoming increasingly obvious. People’s
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TABLE 4: Regression results of SAR.

T Static spatial panel model Dynamic spatial panel model

P Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)
InRC 0.024** 0.022** 0.022** 0.005 0.001 0.011***
InRD 0.026 0.028 0.027 0.053*** 0.046™** 0.052***
InRC x InRD -0.001 —-0.001 —-0.001 —0.004"** —-0.004""* —-0.005""*
InK 0.061"*** 0.073*** 0.069"** 0.001* 0.008** 0.006**
InL 0.074*** 0.071%** 0.070** 0.073*** 0.057*** 0.065**
InC 0.347*** 0.416™** 0.400"** 0.029"* 0.0627** 0.032%**
T (dynamic factors) 0.897*** 0.879*** 0.897***
p (spatial factors) 0.229%** —-0.540 -0.092 0.001** 0.379*** 0.001***
Cons 0.157*** 0.144*"* 0.125***
Sigma® 0.001*** 0.001*** 0.001***
Adj-R2 0.898 0.981 0.993
Obs. 341 341 341 310 310 310
Log-L 719.601 742.055 736.742 871.341 886.382 884.562
Sargan statistic 777.308"** 761.571*** 776.856"""

EEE I
>

, and *denote statistical significance levels at 1%, 5%, and 10%, respectively. This paper makes a comparative analysis of the spatial models with

“InRC xInRD” and without “InRC X InRD” and finds that the estimation results of models are robust. Limited to the length of the paper, the experimental

results are omitted. Interested readers can obtain it from the authors.

understanding of technological innovation is deepening
gradually, R&D funds are increasing everywhere, patent
authorization is increasing day by day, and the level of
technological innovation plays an increasingly important
role in stimulating the economy.

The intersection of regional credit and technological
innovation (InRC * InRD) is —0.005 at the level of 1%. That is
to say, the interaction between regional credit and tech-
nological innovation will reduce regional economic growth
by 0.5% for each additional unit. This shows that, in the
process of development, financial credit has a significant
delayed effect on the support of technological innovation
and inhibits the current economic growth. On the one hand,
under the incentive of regional innovation policies, some
innovation-oriented enterprises exaggerate their economic
effects and implement blind expansion in order to raise
funds. This will lead enterprises into a vicious circle of
“borrowing new debt to repay old debt,” which will even-
tually lead to the bankruptcy of enterprises and increase the
nonperforming loan ratio of credit institutions. On the other
hand, due to the serious information asymmetry between
credit institutions and innovative enterprises, it is difficult
for credit institutions to grasp the core production tech-
nology and market competitiveness of enterprises in a timely
and complete manner. As a result, credit institutions are
unable to accurately assess the business performance and
market prospects of enterprises, leading to the mismatch of
credit resources, thus increasing the potential risk of credit
funds. In a word, the integration degree of financial credit to
technological innovation in China is not enough. There are
still many problems in technological finance to the economic
growth of provinces.

In terms of control variables, the capital investment,
labor input, and consumption level of every province are
significantly positive in six models, which shows that the
material capital, labor input, and consumption level of
every province have a significant positive effect on pro-
vincial economic growth during the survey period. The

higher the consumption level of each province, the stronger
the consumption capacity of the province and the faster the
economic growth. Capital investment and labor input are
one of the important input factors of regional economic
growth. The amount of capital investment and labor input
directly affects the production of economic sectors.
Speeding up the construction of regional human capital
and education level plays an important role in regional
economic growth.

6. Conclusions

Using panel data of 31 provinces in China from 2007 to 2017,
this paper establishes static spatial panel models and dy-
namic spatial panel models based on transcendental loga-
rithmic production function and empirically analyses the
impact of regional credit and technological innovation on
regional economic growth in China. The kernel density
function and Moran index are introduced for spatial sta-
tistical analysis. Spatial weight matrices are constructed from
two aspects of geographical characteristics and innovative
capital input characteristics. Through spatial statistical
analysis and spatial econometric analysis, the following
conclusions are drawn: (1) There are spatial heterogeneity
and spatial correlation in economic growth, regional credit,
and technological innovation of China’s provinces and re-
gions. When studying the impact of regional credit and
technological innovation on economic growth, we should
not neglect the influence of geographical factors and spatial
effects. (2) Regional credit and technological innovation
have significant positive effects on provincial economic
growth. (3) Regional credit has a significant delayed effect on
the support of technological innovation and inhibits re-
gional economic growth. In the process of increasing the
level of financial credit and technological innovation, they
lack more and deeper integration and interaction. Regional
credit and technological innovation have not yet achieved
coordinated development.
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Based on the abovementioned conclusions, this paper
provides policy recommendations for China heading for a
sustainable economic growth. (1) China government de-
partments should strengthen the free flow of credit between
regions, which is conducive to the rational and optimal
allocation of financial credit funds in multilevel regions.
Accelerating the strategic layout of the multilevel regional
financial credit center and regional credit cooperation is
conducive to the integration of financial credit market and
promoting the long-term stable growth of regional econ-
omy. (2) For regions with better economic development, the
Chinese government has relaxed financial control, which is
conducive to the integration of financial credit capital into
technological innovation and the reduction of financing
costs for technological innovation of enterprises. This is the
institutional guarantee for innovative enterprises to build a
sound financial environment. (3) Exploring the integration
mode of technological innovation and regional credit is
beneficial to improving the depth and breadth of techno-
logical innovation and financial credit integration and re-
alizing the coordinated development of technological
innovation and regional credit.
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Although energy-related factors, such as energy intensity and energy consumption, are well recognized as major drivers of carbon
dioxide emission in China, little is known about the time-varying impacts of other macrolevel nonenergy factors on carbon
emission, especially those from macroeconomic, financial, household, and technology progress indicators in China. This paper
contributes to the literature by investigating the time-varying predictive ability of 15 macrolevel indicators for China’s carbon
dioxide emission from 1982 to 2017 with a dynamic model averaging (DMA) method. The empirical results show that, firstly, the
explanatory power of each nonenergy predictor changes significantly with time and no predictor has a stable positive/negative
impact on China’s carbon emissions throughout the whole sample period. Secondly, all these predictors present a distinct
predictive ability for carbon emission in China. The proportion of industry production in GDP (IP) shows the greatest predictive
power, while the proportion of FDI in GDP has the smallest forecasting ability. Interestingly, those Chinese household features,
such as Engel’s coefficient and household savings rate, play very important roles in the prediction of China’s carbon emission. In
addition, we find that IP are losing its predictive power in recent years, while the proportion of value-added of the service sector in
GDP presents not only a leading forecasting weight, but a continuous increasing prediction power in recent years. Finally, the
dynamic model averaging (DMA) method can produce the most accurate forecasts of carbon emission in China compared to

other commonly used forecasting methods.

1. Introduction

As an important part of the atmosphere, greenhouse gases,
i.e., carbon dioxide (CQO,), nitrous oxide, and methane, act
just like a blanket, can absorb infrared radiation, and prevent
it from escaping into outer space, maintaining the tem-
perature of Earth’s atmosphere and surface. However, since
the beginning of the Industrial Revolution in the early 1800s,
the concentration of greenhouse gases, especially CO,, in the
atmosphere, has greatly increased because of the great
consumptions of fossil fuels. The level of CO, in the at-
mosphere has increased by more than 40 percent, from
about 280 parts per million (ppm) in the 1800s to 400 ppm
recently. The increase in CO, causes the gradual warming of
the Earth’s atmosphere and surface, which is known as
global warming. The process of global warming would cause

serious natural and societal effects such as extreme weather
events, a rise in sea levels, and increasing ocean acidification.

In addition, China has become the largest CO, emissions
country in the world, by the end of 2019, with a share as
much as 28.8% of the total amount [1]. Thus, determining
the major factors that would have an effect on the growth
rate of China’s carbon emissions is a key task for policy-
makers. Our research contributes to the literature on this
issue in the following three points.

Firstly, many research studies have proved the impacts of
energy-related factors, such as energy consumption per
capita, total energy consumption, fossil fuel energy con-
sumption, renewable energy consumption, nuclear energy
consumption, and coal consumption, on CO, emission (see
[2-9] and among many others). This paper, however, pays
attention to those nonenergy indicators from
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macroeconomy (especially from finance sectors), household
wealth conditions, and technical progress level, which have
not been investigated in a comprehensive framework in
previous research studies. More specifically, the Chinese
household features, such as household wealth or saving
(consumption) behaviors, have not been investigated re-
garding their impacts on China’s CO, emission in the
previous literature. In addition, patent number is commonly
used as a proxy of technical progress in extant research
studies. However, these patent data are not available for
China in the early 1980s. Therefore, in our research, we use
the ratios of total R&D to GDP as well as the number of
college students to China’s population as the other two
proxies to measure the technical progress condition in
China.

Secondly, in terms of research methods, constant co-
efficient (CC) models, i.e., multivariate linear regression,
cointegration, VECM, or ARDL, which have the advantages
of providing simple and easy estimates, are widely used for
investigating the impacts of different factors on the Chinese
CO, emission. It is, however, well documented in economic
and econometric researches that CC models have the ob-
vious shortcoming that they cannot depict the time-varying
effects of one variable on another. It is also well known that
major policy switching, business cycle, and economy cer-
tainty may alter the dependence structure between CO,
emission and its influential factors. Thus, it is very important
and necessary to account for these time-varying effects by
using models with time-varying parameter (TVP) setting.
The TVP method is useful for exploring the time-varying
connections between the explanatory variable and the
explained variable because it can produce the time-varying
parameters for explanatory variables. Thus, we utilize both
traditional CC and TVP OLS models to forecast China’s CO,
emission in recent years and evaluate their performances
within several evaluation criteria.

Lastly, many recent research studies use a large number
of factors to detect their impacts on China’s CO, emission
(see [10, 11] and among many others). But using too many
explanatory variables in an econometric model, no matter it
is a CC or TVP model has some clear drawbacks. Koop and
Korobilis [12] indicate that a model with too many ex-
planatory variables often leads to overfitting in-sample and,
thus, forecasting poorly out-of-sample. Besides, studies have
shown that a fixed set of explanatory variables may not
always be related to the explained variable throughout a long
time period [3, 13-18]. In other words, during different time
periods and/or under different policy conditions, the in-
fluence of each determinant on China’s CO, emission may
not be fixed. Research studies further indicate that a model
with the fixed set of predictors may behave inconsistently
over time [19-21]. These problems can be solved by per-
forming a dynamic model selection process at each time
point, while the computational burden of this process is
huge. In the process of dynamic model selection, if n pre-
dictors are given, we need to evaluate 2n models at each time
point, so throughout the evaluation period of T, the total
number of models to be assessed will be as large as 2 nT. This
computational task would be difficult to achieve when #n and
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T are large. Therefore, the model averaging method, such as
Bayesian model averaging (BMA) and forecast combination,
is a preferred choice for improving the forecasting accuracy.
Model averaging method is useful for achieving stable and
accurate forecasts. However, either forecast combination or
BMA method is difficult to capture each model’s time-
varying contribution because the weights they assigned for
combining different models are fixed over time [19, 21, 22].
To address these problems, we further utilize a dynamic
model averaging (DMA) method, which is proposed by
Raftery et al. [23] and widely employed in recent researches
[24-27], to carry out our task of forecasting China’s CO,
emission with many predictors. Using two forgetting factors,
DMA combines different models in a dynamic way, allowing
the coefficients of predictors and the sets of predictors to
change over time. These two forecasting factors can also
simplify the model selection process which has a huge
computational task.

The remainder of this paper is organized as follows:
Section 2 reviews the extant literature on the topic of im-
pactors on China’s carbon emission. Section 3 describes the
data used in this paper. Methodologies are introduced in
Section 4. Section 5 analyzes the empirical results and
Section 6 concludes the paper.

2. Literature Review

Numerous studies have been trying to investigate the factors
that would influence CO, emissions. Various variables, such
as population activities, energy consumption patterns,
economic growth, innovation and technology, urbanization
process, and government policies, are used in these studies to
explain their effects on carbon emissions. These impact
factors can be summarized into three major categories.
Firstly, energy consumption is an output of human
activities that produces carbon emission. From this per-
spective, population growth, population density, and ur-
banization process in an economy are supposed to play
significant roles in carbon dioxide emissions. Zhang and Tan
[28] investigate the connections between CO, emissions and
population factors using the Stochastic Impacts by Re-
gression on Population, Affluence, and Technology (STIR-
PAT) method. They found a positive connection between
carbon emissions and population. STIRPAT method is also
adopted by Guan et al. [29] to discuss the main drivers of
China’s CO, emissions. According to their results, CO,
emission is negatively correlated with disposable income,
population density, and development of tertiary industries,
whereas positively correlated with GDP per capita, sec-
ondary industries, and urban employment. Employing four
Chinese megacities (Beijing, Tianjin, Shanghai, and
Chonggqing) as cases, Shi et al. [30] conclude that the im-
provement of resident living standards and the development
of manufacturing in these cities are the main drivers of
carbon emission per capita from 2010 to 2015. Yao et al. [31]
use the mediating effect model and the threshold regression
model, finding that the urbanization in China helps to
decline the carbon emission scale, carbon intensity, and
carbon emission per capita in recent years. Based on the data
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of consumption level, population size, and population
structure in China from 1978 to 2008, Zhu and Peng [32] use
the ridge regression method and find that the urbanization
of population is the key driver for the growth of China’s CO,
emission. Moreover, population structure, population age,
urbanization, and household size are also significantly as-
sociated with carbon emissions. Ma et al. [33] further note
that wealth, economic structure, energy structure, pop-
ulation structure, and the development of technology are
also major influential factors of China’s carbon emission.
Meng et al. [34] investigate the impact of local officials’
promotion incentives on China’s CO, emission. The results
indicated the significant influence of age, tenure, and local
officials’ promotion sources on total CO, emissions.

Secondly, economic growth is regarded as another
major driver of excessive energy consumption in China
[28, 29, 35]. It is agreed that there are significant positive
connections among China’s CO, emission and economic
growth and energy consumption. Based on China’s energy
consumption data from 2005 to 2016, Ma et al. [36] find
that aggressive economic output and increasing energy
consumption basically promote China’s carbon emissions.
More specifically, CO, emissions from China’s energy
consumption mainly come from industry, residential
consumption sector, transportation industry, and tertiary
industry. Using the structural decomposition analysis
(SDA) approach, Chen et al. [37] measure the construction
industry CO, emissions difference between the USA and
China by the structural decomposition analysis (SDA) and
found that the four largest contributors to the difference of
China and USA construction carbon emissions are energy
intensity, final demand ration effect, final demand effect,
and the carbonization factor effect. These findings suggest
the adverse interaction between construction carbon
emissions and economic growth. Thus, they propose that
the Chinese government should take efforts to change the
economic development mode. By formulating the indus-
trial subsector decomposition analysis in Tianjin province,
China, Kang et al. [38] find that the economic growth is the
most important influential factor for driving the growth of
CO, emissions, while energy efficiency improvement is
crucial to promote the decreases of CO, emissions. By
using the LMDI method, Wang and Yang [39] show that
the main influential factors for the industrial CO, emis-
sions in Beijing-Tianjing-Hebei economic band including
the rapid economic growth, energy structure, and energy
intensity. Ma et al. [40] also employ the LMDI method to
examine the connection between economic growth and
household CO, emissions in China. Their results show that
energy intensity and economic growth are the two primary
drivers of carbon emission fluctuations. By using the
DPSIR and PLS-SEM methods, Wei et al. [35] find that the
economic development level and the urbanization are the
two main drivers for CO, emissions. In summary, sus-
tainable economic growth and long-term industrial
transformation would lead to the continued growing for
the total CO, emissions [41].

Lastly, financing activities can adjust the economic
structure and improve economic efficiency, since finance

sector is generally considered to be of low resource con-
sumption and high value-added. So many researchers
suggest that improving finance sector is an effective way to
reduce carbon dioxide intensity. Jalil and Feridun [42] ex-
plore the influence of energy consumption, economic
growth, and financial development on China’s CO, emis-
sions from 1953 to 2006 and prove that a decrease in carbon
emissions can be caused by financial development. Other
empirical analysis also confirms that the development of
tertiary industries, including finance sector development, is
the key influential factor for CO, emission decreases
[29, 43]. By applying spatial econometric analysis, Xu et al.
[44] reach a conclusion that China’s financial structure is
negatively related to the carbon emission, meaning that
optimizing financial structure is an effective strategy for
reducing CO, emissions. The research of Zhang et al. [45]
shows that carbon emission trading (CET) market, which is
one of the promising financial market, has a significant
impact on the decrease of China’s CO, emissions in recent
years. This conclusion is consistent with Zhou et al. [46] but
quite different from the study of Mo et al. [47], which reveals
that China’s carbon emissions trading program cannot
support low carbon energy consumption, and other policies
are necessary to complete China’s CET trading mechanism.
Except for the factors listed above, foreign direct investment
(FDI) is another significant contributor to carbon emission
reduction [31, 48, 49], implying that financial development
can attract more FDI inflow and evolve superior technology
to reduce carbon emission [50]. However, other researchers
debate that due to economy globalization, financing activ-
ities are conducive to the expansion of industrialization,
which may bring more FDI, faster economic growth, and
thus larger CO, emissions [51-54]. Recently, the results of
[36] show that China’s tertiary industries account for an
increasing proportion of energy consumption. Using the
Granger causality test and ARDL bound test, Zhang and
Zhang [11] investigate the short-term and long-term dy-
namic and casual relationship between China’s CO, emis-
sions and GDP, exchange rate, FDI, and trade structure from
1982 to 2016. They find the negative effects of the exchange
rate and the trade in services on China’s carbon emissions
and the positive impact of FDI inflows on it. These results
come to a consensus with Zhang [55], indicating that the
financial industry in China is an important factor for pro-
moting CO, emissions. Zhang [55] examines the impact of
China’s financial development on CO, emissions by various
econometric techniques, including the Granger causality
test, cointegration test, and variance decomposition. The
empirical results show that the financial development of
China, especially the financial intermediation scale, is an
important influential factor for the increase of CO, emis-
sions. In addition, even though the results show that FDI has
the least impact on CO, emission in China among the
concerned financial development indicators because it only
accounts for a small proportion in the GDP of China (see
also in [49]), Zhang [55] also insists that FDI is an important
CO, emission influential factor due to the utilization of
China’s FDI in carbon-intensive sectors. In summary, it can
be seen from the above literature that financial sectors have



important effects on carbon emission in China, but there are
no widely accepted relationships between them.

3. Data

To account for both changes in China’s carbon emission and
total population, we use carbon emission per capita to
measure the carbon emission levels in China (see also in
[11, 45]). Furthermore, as explained above, we do not focus
on those predictors directly related to energy sectors, such as
energy consumption per capita, total energy consumption,
fossil fuel energy consumption, renewable energy con-
sumption, nuclear energy consumption, and coal con-
sumption. In contrast, we utilize 15 indicators from three
nonenergy categories: (1) China’s macroeconomic indices,
especially those from financial sectors (see [11, 45, 55] and
among many others). (2) Indicators on China’s household
wealth conditions and saving behaviors: we think that these
indicators are key bases for a family to decide what kinds of
energy and how much energy it will consume within a time
period, which will influence the carbon emissions in China
consequently. (3) Technical progress indices: as documented
in many studies [10, 35], technology development can not
only improve the energy production and consumption with
lower carbon emission but also promote better methods for
energy conservation and environment protection. To ac-
count for both data available and data matching, we collect
the data we need covering a time period from 1982 to 2017.
All data are recorded in annual frequency with 36 obser-
vations for each of them. Table 1 presents the detailed
definitions of these indicators.

Table 1 reveals that the 15 nonenergy predictors are
selected from three general categories: macroeconomic,
household feature, and technical progress indicators. In
addition, macroeconomic indicators are further divided into
four specific sorts from macroeconomic aggregate, macro-
economic structure, financial market, and international
trade. Table 2 then shows the descriptive statistics for these
variables.

To ensure stationary, all data are transformed in the
forms of natural logarithm growth rate, which is a method
commonly used in time series analysis. Table 2 indicates that
the growth rates vary greatly among them, indicating some
interesting macroeconomic overviews in China. For ex-
ample, firstly, in terms of macroeconomic structure, the
proportions of both agriculture and industry productions to
GDP of China have negative means, but the share of value-
added of the service sector in the GDP keeps a positive mean
of 2.4 percent. That is to say, the service sector in GDP is
becoming more and more important in determining the
GDP growth of China. However, the industry and agri-
culture sectors are losing this power. Additionally, we can
also see that the Chinese public finance revenue maintains a
negative 0.2 percent annual growth rate, and the public
expenditure, however, keeps a positive 0.2 percent growth
rate. These two numbers further reveal that the Chinese
government is trying to lower down the tax and other fi-
nancial burdens in the real economy and increase the public
welfare in the past few decades. Secondly, as far as the
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Chinese household features are concerned, we find that
Engel’s coeflicient continues to decrease, while the saving
rate is increasing, which together imply that the Chinese
family is becoming more and more affluent with more
money being saved since 1982. Finally, with regard to the
technical progress indices, we can see that both R&D and
college students keep a positive growth rate in China, in-
dicating the continuous improvement in the innovation
capabilities and scientific research strength in China.

In addition, we find that almost all the variables are
skewed distributed with excess kurtosis. Considering this,
most of the variables reject the null hypotheses of normality
distribution based on the Jarque-Bera statistics. However,
most results in Ljung-Box Q test indicate no rejections for
the null hypotheses of no autocorrelation up to 5th lag order.
The most important results are that all the variables con-
sidered here reject the null hypotheses of one unit root
according to the ADF and/or P-P statistics, implying that all
the time series are stationary and can be modeled directly
without further transforms.

4. Methodology

4.1. TVP Model and Dynamic Model Averaging (DMA)
Forecasts. Although the constant coefficient (CC) models
such as autoregression (AR) or multivariable regression have
the advantages of providing simple estimation and
straightforward explanations, they also possess the draw-
backs that the regressor coefficients of the CC model are
fixed. In contrast, the time-varying parameter (TVP) ap-
proach is a very natural way to depict the time-varying
relationships between explanatory variables and explained
variable because it allows the parameters of explanatory
variables to be time-varying. As mentioned by Primiceri
[56], Koop et al. [57], and Wei and Cao [24], a basic TVP
model can be defined as follows:

Yt :xt/—lﬁt+st’ (1)
Bi =Bt + 15 (2)

where y, is the target variable to be forecasted at time t. x,_; is
a 1 x m vector of predictors, in which the lagged dependent
variable y; is usually included besides other exogenous
variables. f3, is an mx1 vector of coefficients,
g ~1.i.d.N(0,V,), and #, ~ i.i.d. N (0, W,).

For the TVP model defined in equations (1) and (2), the
predictors in x,_; are assumed to be fixed throughout the
whole forecasting time period, which may cause the over-
parameterization problem and a loss of forecasting preci-
sion. However, the dynamic model averaging (DMA) and
dynamic model selection (DMS) can facilitate the problem
of the TVP model because they allow both the predictor sets
(forecasting models) and the coefficients of predictors to be
time-varying. Therefore, following Raftery et al. [23], Koop
and Korobilis [12], Wei and Cao [24], and Wei et al., [25], we
utilize DMA and DMS methods to forecast China’s carbon
emission. The DMA (DMS) method can be written as
follows:
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TaBLE 1: Definitions of the explained variable and various nonenergy predictors.
Category (frequency) Variable Definition Calculation Unit
Explained variable Carbon CO, emission per capita Total CO, emission d}Vldeq by the total Tons.per
(annual) population in China capita
Predictors (annual)
Macroeconomic GDP Nominal GDP per capita Nominal GDP .d1v1.ded b}r the total Yuan. per
aggregate population in China capita
. Proportion of agriculture production to  Agriculture production divided by GDP o
Agriculture total GDP in China v
Macroeconomic Indust Proportion of industry production to total Industry production divided by total %
structure Y GDP GDP in China ’
Service added Proportion of value-added of the service Value-added of the service sector o
sector to total GDP divided by GDP in China ’
Proportion of foreign direct investment in . . . o
FDI China to total GDP FDI divided by GDP in China %
Proportion of total loan by financial . . . o
Total loan intermediation in China to total GDP Total loan divided by GDP in China %
Financial market . Proportion of total public revenue in China Total public revenue divided by GDP in
Public revenue . %
to total GDP China
Public Proportion of total public expenditure in Total public expenditure divided by total %
expenditure China to total GDP GDP ’
M, Proportion of M, in China to total GDP M, divided by GDP in China %
Exchange rate The exchange rate of RMB against US dollar Nominal exchange rate of RMB against  Yuan/
International trade US dollar dollar
. Proportion of service trade to total trade in Service trade divided by total
Service trade . . . . ) %
China international trade in China
Engel’s . . Food expenditure of China’s family o
Household feature coeflicient Proportion of income spent on food divided by family’s income v
Total saving Proportion of family saving to GDP China’s family saving divided by GDP %
R&D Proportion of total research & development Total research & development (R&D) %
Technical progress (R&D) expenditure to GDP in China expenditure divided by GDP in China ’
prog College Proportion of college student number to College student number divided by total %
student population in China population in China ’
TaBLE 2: Descriptive statistics for energy returns.
Mean St. deviation Skewness Kurtosis Jarque-Bera Q (5) ADF P-P
Carbon 0.043 0.043 1.138%** 1.518* 10.910%** 31.304*** —2.998** -2.958""
GDP 0.135 0.060 0.843* 0.327 4.299 26.065%"* —3.257%F -2.867*
Agriculture —-0.041 0.044 0.299 0.581 1.013 5.622 —5.405"*" —5.208"""
Industry -0.003 0.023 0.632 1.521* 5.708* 7.783 —3.741*** —3.738%**
Service added 0.024 0.033 1.336™"* 3.510""" 28.374*"* 7.828 -3.965""" -3.990""*
FDI 0.021 0.221 2.254** 4.726*** 62.208** 7.876 —5.487*** —4.507***
Total loan 0.017 0.108 -2.173"** 9.359%** 155.310""* 3.502 -2.625" —6.299""*
Public revenue -0.002 0.062 —-0.794* 0.130 3.701 39.392 -2.6927 -2.599*
Public expenditure 0.002 0.065 -0.156 -0.156 0.177 27.427 -2.618" —-2.628"
M, 0.001 0.073 0.821" 1.457 7.024** 8.349 —4.1027** —4.040"""
Exchange rate 0.036 0.097 2.172%** 5.338*** 69.084** 16.384*** —5.047*** —4.219%**
Service trade 0.012 0.109 -0.516 1.831%* 6.443"* 6.985 -2.625" -5.967***
Engel’s coefficient -0.020 0.036 -0.824" 3.051%** 17.539*** 1.974 —4.148*** —-5.500%"*
Total saving 0.008 0.037 0.231 -0.258 0.410 7.547 -2.399* —3.925%**
R&D 0.016 0.105 1.163"*~ 3.965""* 30.830""" 14.908** —3.435"" -3.516""
College student 0.081 0.080 1.053** 0.357 6.652** 36.586 -2.710* -2.110

Notes: the Jarque-Bera statistic tests the null hypothesis of normal distribution. Q (5) is the Ljung-Box statistics that test the null hypothesis of no serial
correlation for up to 5 orders. ADF are the statistics of Augmented Dickey-Fuller unit root test. P-P refers to the statistics of Phillips—Perron unit root tests.
Symbols ***, **, and * indicate the rejections of null hypothesis at 1%, 5%, and 10% significance levels, respectively.
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x,_, for k=1, 2, ..., K indicates a set of pre-
dictors, ¢, ~ .i.d.N (0, V¥), and 5, ~ i.i.d. N (0, W ). For
the set x;_; with m predictors, there would be K = 2" possible



combinations of these predictors. The uncertain factors in
these K models can then be incorporated by DMA and DMS
in a dynamic way:

ADMA
”(t|t Lk)X¢— 1ﬁt g

7= xfﬁ) &
where YU ={y,...,y, 1} mpoip = Pr(L, = kY1) is
the probability (or weight) assigned to model k, and the
equation L;=k denotes that model k is chosen at time t.
DMA approach obtains its forecasts by averaging all the K
models in terms of their historical forecasting performances,
calculated by the probability, 77 ;,_; ). However, DMS selects
the model which has the highest probability, 7z, x-).
The DMA and DMS methods discussed above have the
drawback of heavy computational when the sample length is
long or the number of predictors is large. So Raftery et al.
[23] propose a Kalman filter method which involves two
forgetting factors, A and a, to simplify the estimation process
without loss of forecast accuracy. A, which is a forgetting
factor with 0 <A <1, can simplify the covariance matrix of
t(ki, which is important for the calculation of ﬁ(k) This
simplified process is given as follows:

(4)

(k)
/3t|t1 Bt (5)
w _ s 6)
Ztlt—l - th—llt—l’

where Z(‘t | is the covariance matrix of B*). Then, the
parameter estimation is achieved by the following updating
equations:

1
£ ®'5 k) CIAY
Xy lztlt 1% 1) (yt_xt—l t-1 )

(7)

(k) 5(k) (k) (k)
ﬁt|t ﬁt—lh—l + Zr\r lxt 1 (V

(k) (k) (k) (k) ( ) s (k) (k) (k) 5 (k)
Ze = Zyply — g Xps 1<V X1 g1 X 1) 121
(8)

For the probability, 7, ), if a transition probability
matrix is used, K =2" model combinations should be
considered at each time in point. m is the number of pre-
dictors, and if the sample period is long or m is large, it is
computationally infeasible to operate the Markov switching
in the K x K matrix. However, the use of the forgetting
factor, @ (0 <a<1), provides an effective way for reducing
the calculation error and time. Based on this forgetting
factor, the probability for the forecasting model k is defined
as follows:

o
T (¢-1)t-1,k)

K o 4
hIn T 1)t-1,0)

(9)

T(tt-1k) =

and the updating equation is defined as follows:
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. _ ”(tlt—Lk)fk(J’AY )
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where f,(y,]Y""!) is the predictive density of model €. In
summary, the steps through equations (5)-(10) consist of a
complete process of Kalman filter updating and prediction
method. Furthermore, Raftery et al. [23] indicate that a BMA
(Bayesian model averaging) method can be regarded as a
special case of the DMA model with A=a=1.

(10)

4.2. Model Evaluation. Various statistical criteria can be
used to quantitatively assess the forecasting performance of
different models. Following the mainstream of literature in
this field, two loss functions, mean squared forecast error
(MSFE) and mean absolute forecast error (MAFE), are used
in this paper. MSFE and MSAE are simply defined as
follows:

M
MSFE = M Z (v _j)t)2>

t=1

M
MAFE = M~ Y|y, - 7], (11)

t=1

where M is the total number of forecasting methods, y,
denotes the true observation, and ¥, is the forecast set
achieved by different forecasting methods.

However, the two loss functions discussed above can
hardly offer us the significance levels of forecasting dif-
ference among various models. Therefore, this paper uti-
lizes the model confidence set (MCS) test which is proposed
by Hansen et al. [58] and widely used in recent research
studies [24, 25, 59], to achieve this goal and to determine
the superior models. The MCS test is developed from
several traditional and standard model evaluation methods
[60-63] but with more obvious advantages over these
traditional ones. Firstly, the MCS test uses a bootstrap
method to obtain the test statistics, reducing the influence
of outliers in the data. Secondly, it does not have to specify a
benchmark mode. Finally, this test does not limit the
number of the “best” model to be one. The MCS process is
as follows.

Suppose that we have a model set, M, = {1,...,m,}
which includes a finite number of objects (models). These
models are evaluated over the sample, t=1, ..., n, and under
aloss function i. The purpose of MCS is to select a model set,
M*, which consists of the best models from M,. The set of
superior models can be defined as follows:

M* = {u € My: E(di,w’t) <0, forallve MO}, (12)

whered,,, =L, ,—L,, is the relative performance of model u
and model v, for any u, v € My, in which L, is the loss of
model u in period t, and E(d;,,,) is the mathematical ex-
pectation of d,,, MCS test is performed by a series of
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significance tests, in which the models that are found to be
significantly worse than other elements of M are eliminated.
The null hypothesis of this test can be identified as follows:

Ho i E(dy ) =0, forallu,v € M < M, (13)

The MCS process consists of an equivalence test, 8, and an
elimination rule, eyr. 8, examines the hypothesis Hy for any
two models in M,. When H, is rejected, ey, is used to identify
the model that is to be removed from M. A model set, M| ,
which consists of the set of “surviving” models, and which are
named as the MCS, can be obtained by repeating these two
tests. The significance level, o, of the MCS test is generally set to
be 0.1 by Hansen et al. [58] and among many others. If the p
value of one MCS test is larger than 0.1, the corresponding
model is a “surviving” model and it has the forecasting ac-
curacy that is superior to other competitive models.

In the MCS test, two statistics, the range statistic (T)
and the semiquadratic statistic (Tsq), are commonly utilized.
They are calculated as follows:

Tr = max M,
wveM Var(di’w)

_ (ai,uv)z

(14)

where d,,, = (1/n) Y} d;,,,. The null hypothesis in
equation (13) cannot be rejected when the p values of T and
Tsq are larger than 0.1. The asymptotic distributions of these
two test statistics depend on nuisance parameters, so they are
nonstandard. However, these conditions do not pose any
obstacles because the distribution of these two statistics can
be easily estimated by the bootstrap methods and thus
implicitly solve the problem of nuisance parameter. To get
more robust conclusions, except for T and Tsq, four more
test statistics, i.e., Taw T, Tr and Tp, are used in our
research. A more detailed discussion of these test statistics
can be found in Hansen et al. [58].

5. Empirical Results

5.1. Time-Varying Contributions of Single Explanatory Var-
iable to Carbon Emission. In this section, we firstly examine
the time-varying effects of individual predictors on China’s
carbon emission by using the simple univariate TVP re-
gression model denoted in equations (1) and (2). For clarity,
Figure 1 represents the time-varying coefficients for only 9
predictors in the univariate TVP regression.

Figure 1 shows that the explanatory power of each
predictor really changes significantly with time. In general,
no predictors always have positive or negative impacts on
carbon emissions in China throughout the estimation time
period. For example, through 1985 to 1990, the proportion
of industry production to GDP (IP) offers negative effects,
while from 1991 to 2017 it has large positive impacts on
China’s carbon emission. GDP per capita has a positive
impact on carbon emission in most years, but experiences an
obvious decreasing explanatory power from 2004 and ends

up with a small negative effect in 2017. Similar results can
also be evidenced for other predictors in Figure 1. Moreover,
we can see that the impacts of different predictors vary
greatly with time. In particular, IP seems to provide the
largest positive impact in recent years. The proportion of
value-added of the service sector to total GDP (service
added), however, has the largest negative effects on China’s
carbon emission from 2000.

In summary, it is interesting but difficult to quantify the
overall contributions of various predictors on China’s car-
bon emission in a time-varying way. The empirical findings
in this section only give us the in-sample fitting results of
time-varying effects of explanatory variables on carbon
emission within a univariate TVP model. Thus, to obtain the
out-of-sample forecasting evaluations, we have to seek helps
from various forecasting results in multivariate TVP models
and model combination methods.

5.2. Forecasting Results of Different Models. In the extant
literature, to identify what factors are important for deter-
mining carbon emission in China is usually investigated by
multivariate constant coefficient (CC) OLS regression
models. Nevertheless, as discussed above, a better way to
solve this problem is to seek help from TVP models. Fur-
thermore, to take the different contributions of various
explanatory variables at different time periods or market
conditions into account, we further employ several com-
monly used combination forecasting approaches in this
paper. In summary, nine models are considered here: CC
OLS, TVP OLS, equal weighted, BMA, BMS, DMA95,
DMS95, DMA99, and DMS99. The recursive out-of-sample
forecasting approach is applied to all the nine models. The
descriptions of these models in details are as follows:

(1) CC OLS: a constant coeflicient multivariate regres-
sion model with all the 15 explanatory variables

(2) TVP OLS: a time-varying parameter multivariate
regression model with all the 15 explanatory
variables

(3) Equal weighted: the equal-weighted averaging of K
OLS models, i.e., the equal-weighted DMA model. In
this paper, we have 15 explanatory variables, which
means that we have K=2'"=32,768 models to
combine

(4) BMA: DMA forecasting with A = a = 1

(5) BMS: DMS forecasting with A = =1

(6) DMA95:  dynamic model averaging with
A=a=0.95

(7) DMS95: dynamic model selection with A = & = 0.95

(8) DMA95:  dynamic model averaging with
A=a=0.99

(9) DMS95: dynamic model selection with A = a = 0.99

To get a visible overview of the performances for these
forecasting models, Figure 2 shows the predictive results
through 1985 to 2017. The blue line with circles denotes the
true growth rate of carbon emission per capita in China,
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FIGURE 1: Estimations of time-varying coefficients of univariate TVP regression models.
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FIGURE 2: Carbon emission forecasting results by various models.

while other lines with different colors and markers are the
forecasting results made by various models. We can see in
Figure 2 that, in general, most models can produce similar
forecasts to the real observations. In particular, during the
period of 2000 to 2009, the growth rate of carbon emission
experiences large fluctuations. We can see that those
combination methods, such as BMA, BMS, DMA, and DMS,
make more accurate predictions than others. In addition, we
also find that the equal-weighted averaging model seems to
offer too “mild” forecasts to follow the changing trend of real
carbon emissions. Tables 3 and 4 report the results of
forecasting errors and MCS test, respectively.

Table 3 shows the MSFE and MAFE of various models.
Moreover, the R* of a Mincer-Zarnowitz regression is also
reported in this table [64]. The Mincer-Zarnowitz approach
is a regression of the real dependent variable against its fitted
values produced by a forecasting model, which is also a
commonly accepted approach to assess the forecast accuracy
of a model. Like the meaning of ordinary adjusted R” in a
multivariate regression, a larger R> of a Mincer-Zarnowitz
regression indicates a better forecasting accuracy for a
model.

Table 3 shows that, in general, dynamic combination
(selection) methods, i.e., DMA, DMS, BMA, and BMS,
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TaBLE 3: Results of loss functions for different forecasting models.

Loss functions

Models MSFE MAFE Mincer-Zarnowitz
CC OLS 0.00164 0.03140 0.20793

TVP OLS 0.00135 0.02807 0.32244
Equal weighted 0.00211 0.03553 -0.02215
BMA 0.00117 0.02554 0.39684

BMS 0.00118 0.02579 0.38466
DMA95 0.00117 0.02588 0.43213
DMS95 0.00119 0.02606 0.40760
DMA99 0.00116 0.02552 0.40446
DMS99 0.00118 0.02589 0.38941

Note: the bold numbers in this table indicate the smallest MSFE and MAFE and the largest R> of a Mincer-Zarnowitz regression, respectively.

TABLE 4: Results of the MCS test.

MSFE MAFE

Models Tx Tso Tt To Ty Tp Tx Tso Tiax To Tr Ty
CC OLS 0.0532 0.836 0.0421 00190 01068 0.0557 0.0228 0.081 0.0253 0.0107 0.0967 0.0185
TVP OLS 01092 05285 04836 04916 0.6097 04238 01343 04919 06017 0.0717 0.1814 0.4870
Equal weighted ~ 0.0992 03116  0.0604 0.0006 0.0309 0.0683  0.0511  0.2200 0.0696 0.0094 0.0967  0.0336
BMA 09511 09700 09242 09280 09335 09495 09386 09386 09419 09701 09711 0.9419
BMS 09153 09700 09242 0.8302 0.8526 0.9495 0.9034 09277 0.8650 0.9701 09711  0.8950
DMA95 09511 09700 09251 09280 09335 09495 09034 09099 0.8386 0.6742 0.6997  0.8950
DMS95 09153 09664 09242 04916 0.6097 09495 0.8443 09099 0.8386 02473 03541  0.8950
DMA99 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DMS99 09153 09700 09242 09280 09335 009495 0.8443 09099 0.8386 0.4055 04750  0.8950

Notes: the underlined numbers indicate those p values smaller than 0.1, implying that the corresponding prediction models cannot survive the MCS tests. The
bold numbers indicate p values of 1.000, showing that the corresponding prediction models perform better than all other competitive models. MSFE and
MAFE denote mean squared forecast error and mean absolute forecast error, respectively.

produce close forecasting errors. In particular, under the
MSFE and MAFE criteria, the DMA method with forgetting
factors A = « = 0.99 (DMA99) produces the smallest pre-
diction errors of 0.00116 and 0.02552, respectively. The
equal-weighted averaging method, however, obtains the
largest forecasting errors of 0.00211 and 0.03553, respec-
tively. With regard to Mincer-Zarnowitz regression, the
DMA method with forgetting factors A = & = 0.95 (DMA95)
gets the largest R” of 0.43213, implying again the superiority
of DMA approach to individual CC or TVP models, as well
as other combination methods.

In addition, to obtain a statistically robust conclusion
about the forecasting accuracy of all the competitive models,
we further conduct the MCS test on the forecasting results.
Table 4 offers us a clearer picture of the performances of
various prediction models. Firstly, no matter under MSFE or
MAFE criteria with various statistics, the DMA method with
forgetting factors A =a =0.99 (DMA99) can definitely
survive with the largest p values of 1.0, revealing its dom-
inance over other models. Secondly, we find that the CC OLS
and equal-weighted averaging models cannot survive in the
MCS tests under many statistical criteria with p values
smaller than 0.1. This means that, on the one hand, constant
coefficient (CC) model can rarely describe the true rela-
tionships between carbon emission in China and those
commonly used explanatory variables and thus cannot

provide accurate predictions for it. On the other hand, even
if the equal-weighted averaging method is applied, it also
lacks the ability to depict the time-varying contributions of
different predictors in different time periods.

In summary, the empirical results in both Tables 3 and 4
supply strong evidence that the dynamic model averaging
method (DMA) can produce better forecasting accuracy
than other predictive models. This finding also verifies the
rationality of considering both the TVP models and a model
averaging (selection) procedure in forecasting the carbon
emissions in China.

5.3. Contributions of Various Predictors in Forecasting China’s
Carbon Emission. In this section, we are to understand how
much each predictor contributes to explaining the growth
rate of carbon emission in China in the past few decades.
This question is answered through a measurement called
“inclusion probability,” which measures the total weights
obtained by one predictor through all the K=2" combi-
nations of models in a DMA forecasting process. To be more
formal, the inclusion probability for a predictor x; is the sum
of the probabilities (77 (;jyy_14,11)) that a given predictor would
be included in the forecasting model k (k=1, 2, ..., K) of
DMA at time ¢. In this paper, as we have 15 predictors, the
inclusion probability of predictor x; (i=1,2, .. .,15) willbe a
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number summed through K=2"" = 32,768 combinations of
forecasting models. A predictor with a higher inclusion
probability would be assigned more prediction weights, thus
contributing more important predictive power.

Figure 3 presents the overall picture of the time-varying
contributions (inclusion probabilities) of the 15 nonenergy
predictors in forecasting growth rate of carbon emission in
China. Firstly, we find that all the 15 indicators present a
steady but distinct predictive ability for carbon emission in
China over the past few decades. At the beginning of the
prediction period, i.e., 1985 to 1994, the DMA method needs
to calculate the historical performance of different model
(predictor) combinations, and thus, the inclusion proba-
bilities for different predictors show small dispersions with
similar time-varying trends. In particular, at the first pre-
diction time point in 1985, the DMA method assigns all the
predictors with the same inclusion probability of 0.5. As time
goes by, however, with the different performances of various
predictors, we can see that the inclusion probabilities begin
to split up.

Secondly, predictors with major or minor contributions
to predict carbon emissions in China are identified. It is clear
that the proportion of industry production in GDP (IP)
shows the greatest predictive power than others, while the
growth rate of FDI to GDP (FDI) in China has the smallest
forecasting ability. Interestingly, those Chinese household
features, such as Engel’s coefficient and household savings
rate, are observed as the second and third important factors
in explaining carbon emission in China. They provide more
contributions than other factors from financial market,
international trade, and technical progress sectors. That is to
say, the household wealth and saving behavior are extremely
important elements to determine China’s family energy
consumptions and thus have great predictive power for the
carbon emission in China. Moreover, we also find that the
proportion of value-added of the service sector to GDP
(service added) has a large prediction ability to carbon
emission in China. However, GDP per capita in China, an
important index of macroeconomic development level, just
makes moderate explanatory ability. Additionally, other
factors except for those mentioned above, supply relatively
small and similar forecasting power to carbon emission in
China.

Finally, taking the time-varying trends for various
inclusion probabilities into account, we get several inter-
esting results as follows: first, although the IP index holds
the largest forecasting weight among all the predictors, it
clearly experiences a declining trend in its predictive power
especially in recent years. Similarly, we also find the de-
creasing prediction power of the two household factors, i.e.,
Engel’s coefficient and household saving since the year
2009. Then, it is worth mentioning that the proportion of
value-added of the service sector to GDP (service added)
presents not only a leading forecasting weight, but a
continuous increasing prediction power in recent years.
Notably, in 2016 and 2017, the inclusion probabilities
assigned to service added becomes the second largest one
among all the factors, implying its emerging status in
explaining the carbon emission in China. In addition, other
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factors from financial markets, international trade, and
technical progress have relatively small but increasing
weights in recent years.

5.4. Robustness Checks of Model Forecasting Results. In this
section, we utilize two alternative model evaluation methods
to further check the forecasting performances of various
predictive models. On the one hand, the forecasting di-
rectional accuracy of a model is also very important for
investors and regulators’ decision making. Degiannakis and
Filis [65] opine that Direction-of-Change (DoC) is the core
of market timing and portfolio trading strategies. Thus,
following Degiannakis and Filis [65] and Zhang et al. [59],
we adopt the Direction-of-Change (DoC) test as another
model evaluation approach. In detail, DoC is a ratio that
accounts for the accurate predictions to the total predictions
in the direction of a forecasted variable by a model. As-
suming that p, is a dummy variable, it takes the value of 1 if
the prediction model correctly forecasts the direction of
carbon emission growth rate at time ¢, and 0 otherwise. It is
defined as follows:

L ity >y, andy >y, g,
p=9L ity <y andy <y, (15)

0, otherwise,

where y, and ¥, are the actual growth rate of carbon
emission and the forecasted growth rate of carbon emis-
sion made by a specific model, respectively. Mathemati-
cally, the DoC ratio is 1/q YL, p,, where q is the length of
the out-of-sample forecasting period. A larger DoC rate,
e.g., close to 1, indicates a better forecasting of directional
changes by a model. In order to investigate the statistical
significance of directional accuracy, we also use PT statistic
proposed by Pesaran and Timmermann [66]. The null
hypothesis of PT tests is that the DoC rate of a prediction
model is smaller than or equal to the DoC rate of random
walk forecasts.

Table 5 reveals similar results to those reported in Ta-
bles 3 and 4: DMA and DMS methods, as well as the BMA
and BMS, show very close DoC rates from 0.742 to 0.774,
indicating that dynamic model combination (selection)
methods can beat traditional TVP OLS and equal-weighted
combination approaches in predicting the directional
changes in the Chinese carbon emission growth rate. The
constant coeflicient (CC OLS) model, however, fails to pass
the PT test with the lowest DoC rate of 0.548.

In addition, we employ the out-of-sample R* (R% )
criterion proposed by Campbell and Thompson [67] to
assess prediction accuracy. The out-of-sample R* of a
forecasting model is defined as follows:

~ \2
RE o —1- 22:1 (k= J%)
008 = q — 2
ket (;Vk - )’k,bench)

(16)

where y;, ¥, and Yy, are, respectively, the actual
growth rate of carbon emission, the forecasted growth rate
of carbon emission made by a specific model, and the
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FIGure 3: Inclusion probability (forecasting weights) for various nonenergy predictors.

TaBLE 5: Results of Direction-of-Change test.

TaBLE 6: Results of out-of-sample R-square test.

Models DoC rate PT statistic p value
CC OLS 0.548 0.568 0.285
TVP OLS 0.710*** 2.368 0.009
Equal weighted 0.677** 1.944 0.026
BMA 0.742*** 2.771 0.003
BMS 0.774*** 3.102 0.001
DMA95 0.677** 2.037 0.021
DMS95 0.774*** 3.102 0.001
DMA99 0.742*%** 2.771 0.003
DMS99 0.774*** 3.102 0.001

Notes: this table reports the Direction-of-Change (DoC) rates and the PT
statistics of Pesaran and Timmermann [66] test for all forecasting ap-
proaches. Statistical significance for DoC rate is based on the p values of the
PT statistic. Symbols *, **, and *** indicate the rejection of the null hy-
pothesis at the 10%, 5%, and 1% significance level, respectively.

forecasted growth rate of carbon emission made by the
benchmark model on time k and q represents the length of
the out-of-sample period. In this paper, we set CC OLS as
the benchmark model and compare its performance with
others. The R statistic evaluates the percent reduction in
mean squared forecast error (MSFE) of a forecasting model
relative to the benchmark. A positive value of R} ,q indi-
cates a superior forecasting accuracy of a specific model to
the benchmark. To estimate the significance of improve-
ment in MSFE obtained by one model, we use the Clark and
West [68] statistic, which implies the null hypothesis that
the MSFE of the benchmark model is not larger than the
MSFE of the interested model. The Clark and West [68]
statistic is defined as follows:

fi= (;Vk - j}k,bench)z (- ?k)z +(5’k,bench - )A’k)z’ (17)

Models R% o6 (%) MSFE-adjusted p value
TVP OLS 17.557** 1.952 0.025
Equal weighted -28.813* 1.455 0.073
BMA 28.796* 2.323 0.010
BMS 27.980%*" 2.492 0.006
DMA95 28.869"* 1.907 0.028
DMS95 27.569** 1.918 0.028
DMA99 29.102** 2.195 0.014
DMS99 28.140%** 2.350 0.009

Notes: this table presents the out-of-sample prediction performance based
on the out-of-sample R” test. The benchmark model is the CC OLS model. A
positive value of out-of-sample R implies that the forecasting model of
interest has higher prediction accuracy than the benchmark model. Symbols
*,**, and *** indicate the rejection of the null hypothesis at the 10%, 5%,
and 1% significance level, respectively.

where yy, ¥i, and ¥y p.nq, are, respectively, the actual growth
rate of carbon emission, the forecasted growth rate of carbon
emission made by a specific model, and the forecasted
growth rate of carbon emission made by the benchmark
model on time k, respectively. The MSFE-adjusted statistic is
the t-statistic from the regression of f, on a constant term. In
addition, the p value of the statistic can be obtained from the
standard normal distribution [68].

Table 6 also shows quite similar outcomes presented in
Tables 3 to 5. On the one hand, DMA and DMS methods, as
well as the BMA and BMS, exhibit alike out-of-sample R*
ranging from about 27% to 29%, implying again the superior
performances of dynamic model averaging (selection)
models to the benchmark CC OLS. Among them, DMA99
and DMA95 are the best ones in all these methods. On the
other hand, TVP OLS has better performance than the CC
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OLS, while the equal-weighted combination method fails to
beat the benchmark model.

6. Conclusions

A large amount of literature pays close attention to those
energy-related factors regarding their roles in explaining or
forecasting carbon emission in China. It is no surprise that
those energy-related factors, such as energy consumption
and energy intensity, have significantly great impacts on the
China’s carbon emission. This paper, in contrast, focuses on
the prediction power of nonenergy factors from macro-
economy, financial markets, household features, and tech-
nical progress sectors in China from a time-varying
perspective. This research may offer us a new viewpoint to
identify the underlying determinants of China’s carbon
emission and help the policymakers to introduce innovative
and effective regulations to reduce carbon emission in
China.

The major findings are listed as follows. Firstly, the
explanatory power of each predictor changes significantly
with time and no predictors always keep positive or negative
effects on China’s carbon emissions throughout the sample
period. Secondly, the proportion of industry production in
GDP (IP) presents the largest prediction power among all
the 15 predictors, but with a decreasing weight in recent
years. Similarly, two indices from household features, i.e.,
Engel’s coeflicient and household savings rate are observed
as the second and third important factors in forecasting
carbon emission in China. Thirdly, the proportion of value-
added of the service sector to GDP (service added) presents
not only a leading forecasting weight, but a continuous
increasing prediction power in recent years, especially since
the year 2016. This result reveals that the development of
service sector may bring significant changes in economic
structure and energy consumption in China and thus gives
more predictive power to future carbon emissions. Finally,
in terms of forecasting methods, we find that individual
constant coefficient (CC) and TVP models, as well as equal-
weighted averaging method, cannot provide satisfactory
forecasting accuracy for the growth rate of carbon emission
in China. However, the dynamic model averaging method
(DMA) can dominate other individual and combination
methods no matter in two simple evaluation criteria of
MSFE and MAFE or other rigorous statistical tests.

The empirical results obtained in this paper have several
important policy implications for the Chinese policymakers.
For example, first of all, the time-varying positive or negative
impacts of various predictors on China’s carbon emission
suggest that policymakers should not make fixed adminis-
trative policies to the factors that have effects on China’s
carbon emission considered in this paper. Then, both the
decreasing prediction power of IP and the increasing weight
of service added reveal that the Chinese government should
persist in promoting the development of service sector in
economy, especially those modern service industries, such as
communication, information technology, finance, logistics,
education, and medical care. The sustainable developments
in these industries may be effective ways to reduce carbon
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emission in China. We think that the Chinese regulators do
right efforts in this direction with the evidence that the IP/
GDP ratio decreases from about 44.6% in 1982 to about
40.4% in 2017, while the service added/GDP ratio increases
sharply from about 22.6% in 1982 to about 51.6% in 2017.
Finally, the household features measuring family wealth
should also be concerned for their important roles in
influencing the energy consumption behavior in Chinese
families. The increasing wealth in China’s family can ac-
celerate more consumption in clean energy, i.e., solar, wind,
and nuclear energy and thus reduce the carbon emission in
China. Fortunately, in 2018, the Chinese government begins
to massively cut taxes and administrative fees nationwide,
which should have an optimistic impact on the reduction of
China’s carbon emission in the following years.
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Financial data usually have the features of complexity and interdependence structure, such as asymmetric, tail, and time-varying
dependence. This study constructs a new multivariate skewed fat-tailed copula, namely, noncentral contaminated normal
(NCCN) copula, to analyze the dependent structure of financial market data. The dynamic conditional correlation (DCC) model is
also incorporated into constructing the time-varying NCCN copula model. This study comprehensively examines the effects of the
DCC-NCCN copula and related models on fitting dependence structures of Hong Kong stock markets. The results show that the
DCC-NCCN copula model can better depict the dependence structures of returns. Considering the flexibility and complexity, the

DCC-NCCN copula model is a relatively ideal, time-varying, multivariate skewed fat-tailed copula model.

1. Introduction

After suffering from loss in the stock market, Isaac Newton
ever said that “I can calculate the motions of the heavenly
bodies, but not the madness of people.” This reflects the
complexity of financial markets. In general, the financial
asset return series have relatively complex interdependence
structural features, such as asymmetric dependence, tail
dependence, and time-varying dependence. According to
whether it can depict asymmetric dependence and fat-tailed
dependence, copula can be divided into four categories:
symmetric thin-tailed copula, symmetric fat-tailed copula,
skewed thin-tailed copula, and skewed fat-tailed copula. The
examples above are normal copula, t-copula, skew-normal
copula, and skew-t-copula. The multivariate skew-normal
copula is the copula of the multivariate skew-normal dis-
tribution, such as Wei et al. [1] proposed the copula of the
multivariate skew-normal distribution of Azzalini and Valle
[2]. The multivariate skew-t-copula is the copula of the
multivariate skew-t distribution, such as Demarta and
McNeil [3] proposed the copula of the multivariate

generalized hyperbolic skew-t (GHST) distribution of
Barndorff-Nielsen [4]. Kollo and Pettere [5] propose the
copula of the multivariate skew-t distribution of Azzalini
and Capitanio [6]; Smith et al. [7] put forth the copula of the
multivariate skew-t distribution of Sahu et al. [8]; and Liu
et al. [9] advanced the copula of the multivariate extended
skew-t (EST) distribution by Arellano-Valle and Genton
[10].

Although these multivariate skew-t copulas are very
flexible, they are also highly complex and challenging to
apply. Considering both flexibility and complexity, these
multivariate skew-f copulas may not be very ideal. This study
constructs a new multivariate skewed fat-tailed distribution,
namely, the multivariate noncentral contaminated normal
(NCCN) distribution. The multivariate NCCN distribution
can be interpreted as a multivariate noncentral normal scale
mixture distribution, which is similar to the multivariate
normal variance-mean mixture distribution and multivar-
iate skew-normal scale mixture distribution. The multi-
variate NCCN distribution can also be interpreted as a
simplified mixture of two multivariate normal distributions.
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Then, the copula of the multivariate NCCN distribution can
be called the multivariate NCCN copula. Note that the
multivariate NCCN copula cannot be interpreted as a
mixture of two multivariate normal copulas. The NCCN
copula may be relatively ideal. The advantages are shown as
follows. First, the NCCN copula can flexibly describe pos-
itive and negative dependence. Second, according to Mar-
dia’s kurtosis, the NCCN copula has stronger tail
dependence than the normal copula. Third, the NCCN
copula can flexibly describe asymmetric dependence.
Fourth, the subclasses of the NCCN copula include normal
copula and contaminated normal (CN) copula. Note that the
flexibility of the CN copula is similar to the t-copula, but the
complexity of the CN copula is significantly lower than that
of the t-copula. Fifth, NCCN copula is suitable for two- and
higher-dimensional dependence structure modeling. Sixth
and the last, the flexibility of the NCCN copula is similar to
that of skew-t copulas, but the complexity of the NCCN
copula is significantly lower than that of skew-t copulas.

According to whether it can delineate the time-varying
dependence, the copula can be divided into two classes: static
copula and dynamic one. There are many options in
modeling dynamic structures, including the time-varying
parameter model [11], the dynamic conditional correlation
(DCC) model [12] and the dynamic condition-related im-
provement (DCC-Student-f) model [13], the time-varying
correlation (TVC) model [14], the asymmetric DCC
(ADCC) model [15,16], and the generalized autoregressive
score (GAS) model [17]. These dynamic models have pros
and cons, and we compare them as follows. The advantage of
the Patton model is that it does not limit the type of time-
varying parameters, and the dynamic structure is relatively
simple; the disadvantage is that the dimension is limited to
two dimensions, and the meaning to interpret the dynamic
structure is not very clear. The advantages of the DCC model
and TVC model are as follows: dimension is unlimited, the
dynamic structure is simple, and the interpretation meaning
of the dynamic structure is clear; the disadvantage is to limit
the type of time-varying parameters to the linear correlation
matrix. The advantage of the ADCC model is that it further
considers asymmetric dynamics based on the DCC model.
For the GAS model, the advantages are unlimited dimension
and time-varying parameter type. The interpretation of the
dynamic structure is relatively definite. The disadvantage is
that the dynamic structure is generally quite complex. There
are only a few studies on the dynamic multivariate skewed
fat-tailed copula, mainly including the dynamic asymmetric
copula (DAC) model given by Christoffersen et al. [18],
GAS-GHST copula model [19], and dynamic double
asymmetric copula (DDAC) model [20]. The above dynamic
structures provide ample potential options for building the
time-varying NCCN copula.

The contributions of this paper are as follows. First, a
new multivariate skewed fat-tailed distribution, namely,
multivariate NCCN distribution, is constructed. Second, the
copula of the multivariate NCCN distribution, namely,
multivariate NCCN copula, is proposed. Third, we adopt the
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DCC model to construct a new time-varying copula model,
namely, DCC-NCCN copula model. The last, employing the
Hang Seng Index (HSI), Hang Seng China Enterprises Index
(CEI), and Hang Seng China-Affiliated Corporations Index
(CCI) as our sample data, we compare the fitting effects of
the DCC-NCCN copula model with some other copula
models and perform the visualized dependence analysis of
Hong Kong stock markets.

2. Model Development

2.1. Fundamental Theory of the Copula. A copula is a mul-
tivariate cumulative distribution function (cdf) with uni-
form univariate margins and can be used to link univariate
margins to a joint cdf. According to Sklar’s theorem, for a d-
dimensional random vector (X,,...,X,) with joint cdf

F(xy,...,x4) and marginal cdfs F, (x;),...,F;(x,), there
exists a copula function C: [0, l]d — [0, 1] such that
F(xp,...,x4) =C(F;(x1), ..., Fy(x4)). (1)

The copula is unique if the random vector is continuous.
For a continuous random vector (X, ..., X,) with joint cdf

F(xy,...,x,), joint probability density function (pdf)
f(xy,...,x4), marginal cdfs F, (x,),...,F;(x;), marginal
pdfs f,(xy),..., f4(x,), and marginal quantile functions

F'(w),...,F;' (uy), the copula function and its pdf are,
respectively, given by

C(uy,...,uy) = F(F;1 (w,),....F; (ud)),

FC(uy . ouy)  S(F () Fy ()
(.. .ouy) = 3 = d -1
Oty ....» Oty [T, fi(F (w)),
(2)
where (uj,...,u,) € [0,1]%. According to Sklar’s theorem,

we can quickly get the copula of a given multivariate dis-
tribution. In particular, F, (X;),...,F;(X,) can be called
the uniform scores of the random variables X;, ..., X, and
O (F,(X,)),...,® " (F;(X,)) can be called the normal
scores of the random variables X, ..., X, where @' is the
quantile function of the univariate standard normal distri-
bution. Clearly, the uniform score follows the univariate
uniform distribution on [0, 1], and the normal score follows
the univariate standard normal distribution.

The copula function is closely related to many depen-
dence measures, such as Kendall’s tau, quantile dependence
(QD) coefficient, and Mardia’s skewness and kurtosis of
normal scores. These dependence measures are briefly de-
scribed in the following.

Kendall’s tau is also called Kendall’s rank correlation
coefficient. It can be utilized to measure global dependence.
Let (X,,X,) and (Y,,Y,) be independent and identically
distributed random vectors. For the bivariate continuous
random vector (X,,X,) with joint cdf F(x,,x,), copula
function C(u;,u,), and uniform scores (U,,U,), bivariate
Kendall’s tau is given by
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7(X1, X;) = P[(X, - Y})(X; - Y,) > 0]
- P[(X; -Y,) (X, -Y,)<0]
=2P[(X, -Y,)(X; - Y,)>0]
-1=4P(X,<Y,X,<Y,)-1
= 4E[F(X1,X2)] -1= 4E[C(U1,U2)] -1
(3)

The value range of bivariate Kendall’s tau is [-1,1].
Bivariate Kendall’s tau can be interpreted as the probability
of concordance minus the probability of discordance.

The quantile dependence coeflicient can be used to
measure local dependence. For a bivariate continuous
random vector (X, X,) with copula function C(u;, u,) and
uniform scores (U,,U,), the bivariate lower-lower (lower),
upper-upper (upper), upper-lower, and lower-upper
quantile dependence coefficients (LLQD, UUQD, ULQD,
and LUQD) are, respectively, given by

C(g,9)
Ao (X1, X,) = P(U,<qlU, <q) = %,

M (X, X,) =P(1-U,<ql1-U,<q)

_[29-1+C(-g1-9)]

q
[q-C(1-g9]
Alo(Xsz)=P(U2Sq|1—Ulgq)=%’
[ _C( )1_ )]
AOI(XI’XZ):P(l—UZSqIUlsq):¥’
(4)

where g€ [0, 1] is the quantile level. The value range of bi-
variate quantile dependence coefficients is [0,1]. If g =1,
then gy = A, =A;p =1y = 1. If g = (1/2), then Aoy = A, =
2C(1/2), (1/2) and A=Ay =1-2C(1/2), (1/2). If
q — 0, we can get the bivariate tail dependence coeflicients
(LLTD, UUTD, ULTD, and LUTD).

Mardia [21] proposed Mardia’s skewness and kurtosis.
For a multivariate continuous random vector X with mean
vector p and covariance matrix X, Mardia’s skewness and
kurtosis are, respectively, given by

3
By (X) = E{[(X—u)rzl(Y—m] }

i (5)
By (X) = E{ [(x —prs (X —m] }

where Y and X are independent identically distributed
random vectors. For a multivariate continuous random
vector with the multivariate normal distribution, multi-
variate Mardia’s skewness and kurtosis are 0 and d (d + 2),
respectively. Mardia’s skewness and kurtosis of normal
scores can also be called Gaussian skewness and kurtosis.

Gaussian skewness and kurtosis can be used to measure the
asymmetric dependence and tail dependence, respectively.
Note that the Gaussian skewness cannot measure the di-
rection of asymmetric dependence. For a multivariate
random vector with the multivariate normal copula, Mar-
dia’s skewness and kurtosis are not clear, but the Gaussian
skewness and kurtosis are 0 and d (d + 2), respectively. Note
that the tail dependence coefficients cannot reasonably
distinguish the strength of tail dependence. The two copulas
with the same tail dependence coefficients may have dif-
ferent Gaussian kurtosis.

2.2. Nonlinear Asymmetric GARCH (NAGARCH) Model.
Before modeling the dependence structure, we need to
model the marginal distribution. This study adopts the
NAGARCH model of Engle and Ng [22] to describe the
dynamics of financial asset return series. The parameteri-
zation form of the NAGARCH model is not unique, and the
distribution assumption is not unique. To easily explain the
parameter of the NAGARCH model, this paper adopts a
variance targeting (VT) form. To avoid the distribution
specification error, this paper does not assume a specific
distribution. We set the NAGARCH model:

Ve=pteg =utozz,

1 T
M=f;yt>

1 T
02_02_—282
1 - t>

Tt:l

af+1 =(1- ﬁ)o2 + ﬁof + oc(sf - af + 2yotst),
4 (6)
_ L 1,
6 = arg max (—lno -—z ), 0=(a,fy),
89 ; £ 5% B:y)
a>0,

B e (0,1),

yeR,

| oc(l +y2)sﬁ,

where y, is the return, g is the unconditional mean, o is the
unconditional standard deviation, o, is the conditional
standard deviation, ¢, is the residual with mean 0, and z, is
the standardized residual with mean 0 and variance 1.
The conditional variance ¢Z,, can be interpreted as the
asymmetric information shock item (&7 — o7 + 2yo,¢,) plus



the weighted average of unconditional variance o and
lagged conditional variance o?. This equation makes the
parameter representation clearer. Parameter « can control
the dynamics of the conditional variance: the larger a, the
stronger the dynamics of the conditional variance. In par-
ticular, when « =0, the model is a constant volatility model.
Parameter 5 can control the clustering and mean reversion
of the conditional variance: when f is close to 1, the con-
ditional variance shows stronger clustering and weaker
mean reversion; when f3 is close to 0, the conditional var-
iance shows weaker clustering and stronger mean reversion.
Parameter y can control the asymmetric dynamics of the
conditional variance: when y >0, the conditional variance
has a positive asymmetry; when y < 0, the conditional
variance has a negative asymmetry, and the negative value
impacts more on the conditional variance than the same
degree of a positive one. In particular, when y =0, the model
is the GARCH model. The conditional variance equation can
also be expressed as

ol =(1-p)a* + [/3 - (x(l + yz)]af +a(e + ya,)z. (7)

Clearly, all conditional variances can be insured to be
greater than 0 under given parameter constraints.

In terms of parameter estimation, we adopt the quasi-
maximum likelihood (QML) method to estimate the pa-
rameters of the NAGARCH model, that is, to apply the
maximum likelihood (ML) method to conduct the esti-
mation of the parameters of the NAGARCH-normal
model.

The NAGARCH model is used to filter the return series
to obtain the standardized residual series. Then, using the
empirical cdf, we transform the standardized residual series
into the uniform scores. For a standardized residual series
{2}, the empirical cdf is

T
Fp(2) = % Y I(z<2), (8)
t=1

where I (-) is the indicator function. The uniform scores can
be applied to further model the dependence structures.

2.3. Multivariate NCCN Distribution and Multivariate NCCN
Copula. We firstly introduce the multivariate NCCN dis-
tribution. Because the location and scale parameters of the
multivariate NCCN distribution cannot influence the
multivariate NCCN copula [23], this paper does not take the
location and scale parameters into account when defining
the multivariate NCCN distribution.

Let ¢ (x) and @ (x) be the pdf and cdf of the univariate
standard normal distribution N (0,1), ¢,(x, y;p) and
D, (x, y; p) be joint the pdf and joint cdf of the bivariate
standard normal distribution N, (0, 0, 1, 1, p) with the linear
correlation coefficient p, and ¢, (x; R) and @, (x; R) be the
joint pdf and joint cdf of the multivariate standard normal
distribution N4(0, R) with the linear correlation matrix R.
¢ (x), ¢, (x, y;:p), and ¢, (x; R) can be expressed as:
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1 1
d(x) = Eexp(—ycz), x eR,

X’ = 2pxy + yz) (5, 9)cR?

1
( > Vs ): -
¢, (%, y5p . TprP( 21— p)

) 1 1, d
gbd(x,R):Wexp(—ExR x), x e R".

(9)

The multivariate NCCN distribution can be interpreted
as a multivariate noncentral normal scale mixture distri-
bution [24]. The stochastic representation of the multivariate
NCCN distribution can be given by

[ X =(X,....X,) =VW Z,
Z:(Zl""’zd), NNd(Y’R)’
PW=a)=1-p,
P(W=b)=p,
ac€ (0,1),

p e (0,1),
Y= va) €RY
| (1-pla+pb=1,

where the random vector X follows the NCCN distribution.
The random vector Z follows the multivariate noncentral
normal distribution with correlation matrix R and non-
central parameter vector y. The random variable W is a two-
point distribution with probability parameter p, shape pa-
rameter a, and mean 1. Z and W are independent of each
other.

The multivariate NCCN distribution can also be inter-
preted as a simplified mixture of two multivariate normal
distributions [25]. The stochastic representation of the
multivariate NCCN distribution can also be given by

(X =(Xp. ., X)),

P X N R =1
N 4R | =1-p,

p 1~N( R)| =
\/E a\y» =D

] (11)
ae€ (0,1),
p€(0,1),
Y= yq)r€ RY
[ (1-pla+pb=1.
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The parameters of the multivariate NCCN distribution
can be divided into three parts: (1) a correlation matrix R, (2)
two tail parameters a and p, and (3) a skewness vector 7.
According to the two stochastic representations, the joint cdf
and pdf of the multivariate NCCN distribution can be easily
given by

NCCN, (x; R, a, p,y) = (1 - P)q)d(% g R)

+ Pq)d(% - R))
(12)

1- X
nceny (x; R, a, p,y) = Wﬁbd(ﬁ -Y R)

P X .
+ bd/zﬁbd(\/g - y; R>,
where x = (x;,...,x;)/€RY, (1-pla+pb=1, R is a
correlation matrix, ae (0,1), p e (0,1), and
Y= (¥ ..,ya)1€ R The multivariate NCCN distribution
family includes multivariate contaminated normal (CN)

distribution when y = 0 and multivariate normal distribu-
tion N, (y,R)whena — lorp — 1.

NCCN, (x, %5; p-a, P, Y1, 72) = (1 — p)%(

X1

R

va

The mean vector, covariance matrix, and linear corre-
lation matrix of the multivariate NCCN distribution are,
respectively, given as equations (13)-(15):

E(X)=E(WW)y=[(1-p)va +pVbly, (13)

Cov(X) = E(XX1) - E(X)E(X)! = R+ D (VW )yy!,
(14)

Corr (X) = diag(Cov (X))~ "?Cov (X)diag (Cov (X))~ 2.
(15)

Obviously, matrix R is not the linear correlation matrix
of the multivariate NCCN distribution. For the multivariate
CN distribution, E(X) = 0, Cov(X) = Corr(X) = R, Mar-
dia’s skewness is 0 and Mardia’s kurtosis is d (d + 2) E (W 2)
=d(d+2)[1+ (1-a)’(1/p)-1)] € (d(d +2),+00).

As to the two stochastic representations, any bivariate
marginal distribution of the multivariate NCCN distri-
bution is a bivariate NCCN distribution. The joint cdf and
pdf of the bivariate NCCN distribution can be easily
given by

X1

T Y R
Yl’\/a Y2: P Pz\/l; Y1’\/E Y2:pP s

(16)

1- X by b
ncen, (x5, X550, @, P, Y15 ¥2) = Tp‘pz(%_ VpT; - V25P> + §¢2(Tl1;_ Vl)TZ - Y25P>’

where  (x,,x,) €R%,  (1-pla+pb=1, pe (-1,1),
a€ (0,1), pe (0,1), and (y,,y,) € R% Note that this bi-
variate NCCN distribution can be regarded as the simplified
bivariate mixed-normal distribution.

The linear correlation coefficient of the bivariate NCCN
distribution is

p+D(W)yy,

Corr (X, X,) =
T L DWW+ DVW

(17)

Although the correlation parameter p is not equal to the
linear correlation coeflicient of the bivariate NCCN distri-
bution, it changes in the same direction as the linear cor-
relation coefficient. The two skewness parameters have a
substantial influence on the linear correlation coeflicient:
when y, =y, = + oo, Corr(X,,X,) = 1; when y, =y, =0,
Corr (X, X,) = p; and when Y, = -y, — £ 00,
Corr(X;,X,) = —1. The two tail parameters have a sub-
stantial influence on the linear correlation coefficient: when
a—1or p—1, Corr(X,,X,) =p.

Each univariate marginal distribution of the multivariate
NCCN distribution obviously follows the univariate NCCN
distribution. The cdf and pdf of the univariate NCCN dis-
tribution are, respectively,

NCCN (x;a, p,y) = (1 - p)@(% - y) + pq)(%— y),

1-
nccn(x;a,p,y) = \/ap(p(%_y> +%¢<%_)}>:
(18)

where x € R, (1-pla+pb=1,a¢€ (0,1), p e (0,1), and
y € R. It is difficult to simplify the quantile function of the
univariate  NCCN distribution, NCCN™' (u;a, p,y),
u € [0,1]. According to the cdf and pdf of the univariate
NCCN distribution, the quantile function can be calculated
by Newton’s method. Note that this univariate NCCN
distribution can be regarded as the univariate mixed-normal
distribution without location and scale parameters.

The mean, variance, skewness, and kurtosis of the
univariate NCCN distribution are



nccnd(NCCN_1 (uy;a, poyy)s - - -»NCCN™ ! (uy; a, p,yy); R, a, p, y)

Discrete Dynamics in Nature and Society

For the univariate CN distribution, E(X) = 0, D(X) = 1,
skewness (X) = 0, and kurtosis(X) = 3 + 3(1 — a)* ((1/p)
-1) € (3,400). Clearly, the two tail parameters a and p
inversely change with the kurtosis.

According to the above description, the flexibility of the
univariate, bivariate, and multivariate CN distributions are
similar to that of the univariate, bivariate, and multivariate ¢-
distributions, respectively. The flexibility of the univariate,
bivariate, and multivariate NCCN distributions are similar
to that of the univariate, bivariate, and multivariate skew-t
distributions, respectively.

According to Sklar’s theorem, the multivariate NCCN
copula function and its pdf can be easily expressed as

JugiRoa, p,y) = NCCNd(NCCNf1 (u;;a,p,7,)s- .., NCCN ™" (ug;a, p,y4); Roa, p, y),

(20)

6
E(X)=[(1-p)va + pVbly,
B(X) =1+y",
E(X*) =3y +9°)[(1 - p)a®® + pb™],
E(x")=(3+6y" +y")[(1 - p)a’ + pb°],
D(X) = E(X*) - E(X)%,
3 _ 2 3
skewness (X) = [E(X ) 3E(X)E(;§ )+2E(X) ]’
D(X)
4y 3 5 ~ .
kurtosis (X) = [E(x") - 4EOB(X )+6EZ(X) E(X?) - 3E(X) ]
D(X)
(19)
C(uy,...
C(Ml,...,ud;R,a,p,y) = Hlil -~
where  (uy, ..., uq) € [0, 119, R is a correlation matrix,

ac (0,1), pe (0,1),and y = (y,...,y4)1€ R Similar to
the multivariate NCCN distribution, subclasses of the
multivariate NCCN copula include multivariate normal
copula and multivariate CN copula. Clearly, the multivariate

(NCCN" (w3, p.y,); @ . 7;),

NCCN copula cannot be regarded as a mixture of two
multivariate normal copulas.

The bivariate NCCN copula function and its pdf can be
expressed as

C(up,upp,a, P, y1,12) = NCCNz(NCCN_1 (w130, p,71),NCCN™ ' (554, p, 7,); p, @, Vl’)’z)a

nccnz(NCCN_l (w130, p,71), NCCN ™' (550, p, 7,)i po @, oy Yz)

(21)

c(uy,uy; p,a, Poy1,Y2) =

where (u;,u,) € [0,1]%, p€ (-1,1), a € (0,1), p € (0,1),
and (y,,y,) € R%. The bivariate NCCN copula density
function diagrams are given in Figures 1 and 2.
According to the bivariate NCCN copula density
function diagrams, the meaning of parameters can be easily
understood. The correlation parameter p can affect global
dependence: when p is larger, the negative dependence is
weaker, and the positive dependence is stronger. The two tail
parameters a and p can affect the tail dependence: when they
are smaller, the tail dependence is stronger. The two
skewness parameters can affect the asymmetric dependence:
when y, <0 and y, <0, the lower-lower tail dependence is
stronger than the upper-upper tail dependence; when y, >0

nccn(NCCNf1 (uy:a, p,yy); @ poyy )ncen(NCCN ™' (w3, p, y,); @, ps yz)’

and y, > 0, the upper-upper tail dependence is stronger than
the lower-lower tail dependence; when y; <0 and y, >0, the
lower-upper tail dependence is stronger than the upper-
lower tail dependence; and when y, >0 and y, <0, the
upper-lower tail dependence is stronger than the lower-
upper tail dependence.

2.4. Time-Varying NCCN Copula. For the multivariate
NCCN copula, this paper further considers that the corre-
lation matrix may change over time and does not consider
the dynamics of other parameters.

The DCC model is a basic dynamic correlation model.
This study presents the DCC model as
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F1Gure 1: The bivariate NCCN copula density function. (a) p=-0.5, a=0.5, and p=0.5. (b) p=0.5, a=0.5, and p=0.5. (c) p=0.5, a=0.5,
and p=0.5.(d) p=-0.5,2=0.9,and p=0.5. (¢) p=0,a=0.9,and p=0.5. (f) p=0.5,2=0.9, and p=0.5. (g) p=-0.5,2=0.5,and p=0.9. (h)

p=0,a=0.5, and p=0.9. (i) p=0.5, a=0.5, and p=0.5.

, o
Q =Q=f;ztzi,

1 Qi = (1-PQ+PQ; + a(z,2, - Q) (22)
R, = diag (Qt)_(m)Qt diag (Qt)_(1/2)>
| a>0,¢€ (0,1),a<p,

where T is the sample size, z, = (zy...,24)! is the
standardized residual vector, R, is the conditional cor-
relation matrix of z,, Q, is similar to the conditional

covariance matrix, and Q is similar to the unconditional
covariance matrix and can be estimated by using the
sample mean of z,z,. Note that Q,,, can be interpreted as
an information shock term plus the weighted average of Q
and Q,.

Parameter a controls the dynamics of the conditional
correlation matrix: when « is large, the dynamics of the
conditional correlation matrix are strong. In particular,
when a=0, the model degenerates into the constant
conditional correlation (CCC) model. Parameter f
controls the clustering and mean reversion of the
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FIGURE 2: The bivariate NCCN copula density function. (a) y;=-2; y2=2. (b) y1=2; y2=2. (c) y1=-2; y,=-2. (d) y1=2; y,=-2.

conditional correlation matrix: when  is close to 1, the
conditional correlation matrix shows strong clustering
and weak mean reversion; when f is close to 0, the
conditional correlation matrix shows weak clustering and
strong mean reversion. The renewal equation of Q, can
also be expressed as

Qi1 = (1-P)Q+ (B - a)Q; + az,z;. (23)

In this renewal equation, Q,,, can be interpreted as the
weighted average of Q, Q,, and z,z;. Under the given parameter
constraints, R, can be guaranteed to be a true correlation matrix.

The common DCC-normal copula model can be given by

(v, = (s - - ’”dt)’ ~ C(ug;R,)

z, = (21 - ’Zdt)l’zit =0 (uit)’
1 T
Q=Q==)2zz
1=(= 2
&

Q1 = (1-P)Q+pQ, + “(ZtZ; -Q) (24)
R, = diag (Qt)_(I/Z)Qt diag (Qt)_(m)’

T d
0= arg maxZ(ln ¢q(z;R,) - ZIH‘P(Zit))’
6 t=1 i=1

L 0=(a,f),0>0,5€ (0,1),a<f,
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where u, follows the multivariate normal copula with time-
varying parameter matrix R, and z, follows the standardized
multivariate normal distribution with time-varying linear
correlation matrix R,. For a sample of uniform scores {u,},_,,

u, = (uy,, - -
Xy = NCCN™! (4ig; a, Py yi)s

2= 5 (x, = m),

1<,
Q]ZQ:?tzzlztzp

R, =sRs+mm' —yy',

t=1

0=(a,p,p ap),

ae (0,1),

p € (0,1),

Y=y va) €RY

[ @20,8€ (0,1),a<p,

where I; is an identity matrix, u, follows the multivariate
NCCN copula with time-varying parameter matrix R, x,
follows the multivariate NCCN distribution, and z, follows
the standardized multivariate NCCN distribution with time-
varying linear correlation matrix R,". Because the meaning
of R, is not very clear, we first portray time-varying R and
then get time-varying R,.

Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC) can be used to compare the fitting
effect of different models. The expressions for AIC and BIC are

AIC = -2LL + 2k,

(26)
BIC = -2LL + klnn,

where LL is the log-likelihood, k is the number of param-
eters, and # is the sample size. The smaller the AIC and BIC
are, the better the model is when we compare the models.

3. Empirical Results

3.1. Descriptive Statistics. This study employs the Hang Seng
Index (HSI), Hang Seng China Enterprises Index (CEI), and
Hang Seng China-Affiliated Corporations Index (CCI) from

Sug) ~CuiRya, p,y),x, = (x5 ..

Qi =(1-PQ+PQ, +a(z,21 - Q)s
Rr* = diag (Qt)i(I/Z)Qt diag (Qt)i(m)’

T d
6 = argmax Z <ln nceny (x5 Ry, a, pry) — Z Inncen (x5 a, p,y;) >
0 i=1

we can employ the ML method to estimate the parameter set

Similar to the DCC-normal copula model, the DCC-
NCCN copula model can be given by

’xdt),’

(25)

m=[(1-p)va + pVbly,s=[I,; +diag(yy’ —mm’)]m, (1-pla+pb=1,

the Hong Kong stock market as our sample, abbreviated as
HSI, CEI and CCI thereafter, respectively. We obtained three
daily closing price series from the period from Jan 1, 2005, to
Dec 31, 2018, with 3451 data, respectively. The data source can
be found at https://cn.investing.com, and we calculate the daily
logarithmic return, y, = 100 x (InP, —In P,_,), where P, is
the daily closing price at time ¢, and we have 3 return series,
with 3450 observations each.

The relative price (P,/P,) series are given in Figure 3.

The graph shows that all price series have strong dy-
namics and an upward trend. Considering long-term in-
vestment, CCI is the best choice, and HSI is the worst choice.
The return series are given in Figure 4.

Return series have significant dynamic characteristics,
and the dynamic process shows significant mean reversion.

The univariate descriptive statistics of returns are pre-
sented in Table 1.

As expected, the minimum values are negative, and the
maximum values are positive. The range of all returns is
large. The median and mean values are close to zero, where
the mean values are less than the median values. The
standard deviation values are greater than 1. According to
skewness, HSI is skewed to the left, and CEI and CCI are
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16 T T T T T T T T T T T T T
_16 | | | | | | | | | | | | |
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
@
T T T T T T T
_16 | | | | | | I | | | | | |
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
()
16 T T T T T T T T T T T T T
-16 | | | | | | | | | | | | |
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
(©)

FIGURE 4: Return series. (a) HSI. (b) CEIL (c) CCIL

skewed to the right. The kurtosis values are significantly
larger than 3, implying that returns have fatter tails than the
normal distribution. The skewness and kurtosis tests show
that the returns cannot follow the normal distribution.

Using the Ljung-Box Q(5) test method, the autocorre-
lation tests of the first four moments of returns are reported
in Table 2.

As for the tests, the autocorrelation of returns is weak,
but the autocorrelation of second-order, third-order, and
fourth-order moments of returns is strong, indicating that
the returns cannot have serial independence. The autocor-
relation of squared returns is particularly prominent, in-
dicating that the dynamic of volatility (variance or standard
deviation) is the most important.
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TaBLE 1: Univariate descriptive statistics of returns.

Min Max Median Mean Std. Skewness p value Kurtosis p value
HSI —13.582 13.407 0.067 0.017 1.483 —-0.009 0.829 12.571 <0.001
CEI -15.087 15.606 0.032 0.022 1.893 0.026 0.535 10.805 <0.001
CCI -10.059 12.953 0.058 0.028 1.693 0.103 0.014 8.691 <0.001

TaBLE 2: Autocorrelation tests of the first four moments of returns.
Statistics p value

Q'(5) Q(5) Q’(5) Q'5) Q5 Q(5) Q(5) Q'(5)
HSI 7.85 1838.73 534.72 1304.44 0.165 <0.001 <0.001 <0.001
CEI 9.18 1725.55 385.99 848.21 0.102 <0.001 <0.001 <0.001
CCI 11.01 1446.67 241.22 386.80 0.051 <0.001 <0.001 <0.001

Using window length 2x30+1=61, the moving
sample standard deviation series of returns are given in
Figure 5.

For each return series, the time-varying volatility can be
easily observed.

3.2. Fitting of the Marginal Distribution. We employ the
NAGARCH model to describe the dynamics of the return
series. Table 3 shows the estimation results of the
NAGARCH model.

The values of parameter « are greater than 0.05, indi-
cating significant time-varying volatility. The values of pa-
rameter f3 are close to 1, showing strong clustering and weak
mean reversion. The values of parameter y are less than 0,
exhibiting volatility asymmetry. The standard deviation
series of the NAGARCH model are given in Figure 6.

The standard deviation series of the NAGARCH model
are consistent with the moving sample standard deviation
series, indicating that the NAGARCH model can effectively
describe the time-varying volatility. Based on the
NAGARCH model, we can obtain the standardized residual
series. The univariate descriptive statistics of standardized
residuals are given in Table 4.

Compared with the return series, the range of stan-
dardized residual series is significantly reduced. The sample
mean values of standardized residuals are almost equal to 0,
and the sample standard deviation is almost equal to 1,
which can meet the theoretical requirements. The skewness
values of standardized residuals are quite different from
returns. The kurtosis values of standardized residuals are
smaller than returns. Based on the skewness and kurtosis
tests, standardized residuals cannot follow a normal
distribution.

Using the Ljung-Box Q(5) test method, the autocorre-
lation tests of the first four moments of standardized re-
siduals are reported in Table 5.

Based on the tests, the autocorrelation of the first four
moments of standardized residuals is not strong. The
standardized residual series can basically meet the serial
independence. In general, the NAGARCH model can ef-
fectively portray the dynamics of each return series.

Using the empirical cdf to transform standardized re-
siduals into uniform scores, uniform scores satisfy the serial
independence and follow a uniform distribution on [0,1].

3.3. Descriptive Analysis of Dependence Structures. To per-
form some sample analyses of the bivariate dependence
structures, the sample bivariate dependence measures of
uniform scores are reported in Table 6.

The bivariate global dependence measures are positive.
The bivariate global dependence is the smallest for CEI-CCI
and largest for HSI-CEIL The bivariate lower tail dependence
measures are larger than the upper ones, implying that the
bivariate dependence structures have stronger lower tail
dependence. The upper-lower and lower-upper tail depen-
dence measures are very close to zero. The Gaussian
skewness tests show that the bivariate dependence structures
are significantly asymmetric. The Gaussian skewness is the
smallest for HSI-CCI and largest for HSI-CEI. The Gaussian
kurtosis values are larger than 8, implying that the bivariate
dependence structures have stronger tail dependence than
the bivariate normal copula. The Gaussian kurtosis is the
smallest for HSI-CCI and largest for HSI-CEI. The Gaussian
skewness and kurtosis tests show that the bivariate depen-
dence structures cannot follow the normal copula.

The bivariate scatter plots of uniform scores are given in
Figure 7.

The points are mainly concentrated around the main
diagonal. The points in the lower-lower and upper-upper tail
regions are dense, but the points in the lower-upper and
upper-lower tail regions are sparse.

To understand the bivariate local dependence of uniform
scores, the sample quantile dependence curves of uniform scores
are given in Figure 8. The horizontal axis shows quantile levels,
and the vertical axis shows bivariate quantile dependence
coefficients.

The sample quantile dependence curves show the fol-
lowing features: (1) LLQD and UUQD curves are signifi-
cantly higher than ULQD and LUQD curves, indicating that
all bivariate dependence structures have a strong positive
dependence. (2) LLQD and UUQD curves are obviously not
coincident, and the LLQD curve is significantly higher than
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FIGURE 5: Moving sample standard deviation series. (a) HSIL. (b) CEL (c) CCL
TaBLE 3: Parameter estimation of the NAGARCH model.
« B y LL AIC BIC
HSI 0.0704 0.9877 -0.6550 —5479.13 10964.27 10982.71
CEI 0.0813 0.9875 -0.3187 —6407.51 12821.01 12839.45
CCI 0.0664 0.9894 —-0.4152 —6093.35 12192.7 12211.14

the UUQD curve at the low quantile levels, indicating that all
bivariate dependence structures are asymmetric, and the
lower tail dependence is significantly higher than the upper
tail dependence. (3) ULQD and LUQD curves are almost
coincident.

Using window length 2 x 30 + 1 = 61, moving sample
bivariate Kendall’s tau series of uniform scores are given in
Figure 9.

The time-varying bivariate global dependence can be
easily observed. From 2005 to 2007, the global dependence of
HSI-CCI is the largest. However, since 2008, the global
dependence of HSI-CEI is the largest.

3.4. Fitting of Dependence Structures. This paper considers
CCC-N, CCC-CN, CCC-NCCN, DCC-N, DCC-CN, and
DCC-NCCN copula models. Considering that the asym-
metric dependence between uniform scores is mainly in the
upper and lower tail, we can constrain all skewness

parameters of the NCCN copula to be equal. In addition, we
consider three common Archimedean copulas, namely,
Clayton, Gumbel, and Frank copulas.

(1) Clayton copula function:

-(1/6)

C(u,v;0)=<u_9+v_6—1) , (27)

where 0>0. Kendall’s tau of Clayton copula is
(6/(6 +2)).

(2) Gumbel copula function:

Clu v =expl{ (-nw’+ (']} 9)
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FiGcure 6: Standard deviation series of NAGARCH model. (a) HSI. (b) CEI (c) CCI.
TaBLE 4: Univariate descriptive statistics of standardized residuals.
Min Max Median Mean Std. Skewness p value Kurtosis p value
HSI —5.423 5.153 0.044 0.003 0.987 -0.241 <0.001 4.072 <0.001
CEI —4.619 4.466 0.007 0.004 0.989 -0.036 0.391 3.967 <0.001
CCI -5.719 5.736 0.022 -0.001 0.991 -0.108 0.010 4.402 <0.001
TaBLE 5: Autocorrelation tests of the first four moments of standardized residuals.
Statistics p value
Q'(5) Q’(5) Q’(5) Q'(5) Q'(5) Q’(5) Q'(5) Q'(5)
HSI 7.29 15.38 7.24 0.70 0.200 0.009 0.204 0.983
CEI 16.22 16.38 3.86 7.69 0.006 0.006 0.570 0.174
CCI 11.46 6.33 3.44 0.06 0.043 0.275 0.633 1.000
TaBLE 6: Sample bivariate dependence measures of uniform scores.
Kendall’s tau 10% LLQD 10% UUQD 10% ULQD 10% LUQD Gaussian skewness p value Gaussian kurtosis p value
HSI-CEI 0.747 0.809 0.701 <0.001 <0.001 0.155 <0.001 10.439 <0.001
IC_:IéII_ 0.728 0.780 0.655 <0.001 <0.001 0.083 <0.001 8.759 <0.001
CEI-CCI 0.672 0.728 0.609 <0.001 <0.001 0.101 <0.001 9.160 <0.001
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TasLE 7: Fitting results of bivariate copula models (HSI-CEI).
Copula model a B a p y AP ALL LL AIC BIC
Clayton 0 -542.16 9 9 9
Gumbel 0 -198.62 8 8 8
Frank 0 -159.71 7 7 7
CCC-N 0 0 6 6 6
CCC-CN 0.4569 0.3015 2 127.49 5 5 5
CCC-NCCN 0.4325 0.3197 -0.9133 3 162.49 4 4 4
DCC-N 0.0365 0.9955 2 375.83 3 3 3
DCC-CN 0.0374 0.9960 0.5593 0.4275 4 405.52 2 2 2
DCC-NCCN 0.0359 0.9962 0.7094 0.2338 —1.8581 5 428.98 1 1 1

where 0>1. Kendall’s tau of Gumbel copula is
1-(1/6).
(3) Frank copula function:

—0u -0y
C(u,v;0) = —lln 1+ (e 1)(e 1) (29)

where 0+0. Kenglall’s tau of Frank
1- (4/6)[1 - (1/6) [ (t/(e' = 1))dt].

For the Clayton, Gumbel, and Frank copulas, sample
Kendall’s tau can be used to estimate their parameters. For
other copulas, the maximum likelihood estimation (MLE)
can be used.

To compare the fitting effect, the CCC-N copula model
can be used as the benchmark model. Then, the parameter
increment AP and LL increment ALL of each copula model
can be calculated. Also, the models can be ranked by LL,
AIC, and BIC, respectively. The fitting results of bivariate
copula models are given in Tables 7-9.

The values of parameter « are greater than 0.02, and
the values of parameter f3 are close to 1. The values of two
tail parameters are not close to 1, implying that all bi-
variate dependence structures have stronger tail depen-
dence than the normal copula. The values of the skewness
parameter are negative, implying the lower tail depen-
dence is stronger than the upper tail dependence for each
bivariate dependence structure. The ALL values show that
the fitting of Clayton, Gumbel, Frank, CCC-N, CCC-CN,
CCC-NCCN, DCC-N, DCC-CN, and DCC-NCCN

copula is

copula models is improved in turn. In terms of ranking,
the DCC-NCCN copula model is the best.

To easily understand the fitting effect of the bivariate
local dependence, the quantile dependence curves of bi-
variate copula models are given in Figures 10-15.

Compared with the sample QD curves, the bivariate
Clayton copula model overestimates the degree of asym-
metric dependence in the upper and lower tails. The bi-
variate Gumbel copula model has a wrong asymmetric
direction on the upper and lower tail dependence, and it
overestimates the strength of the asymmetric tail depen-
dence. The bivariate Frank copula model cannot describe the
asymmetric dependence and seriously underestimates the
strength of the upper and lower tail dependence. The bi-
variate CCC-N copula model cannot describe the asym-
metric dependence and significantly underestimates the
degree of the lower tail dependence. The bivariate CCC-CN
copula model cannot describe the asymmetric dependence.
The bivariate CCC-NCCN copula model is basically correct.

To easily understand the fitting effect of the bivariate
time-varying global dependence, Kendall’s tau series of the
bivariate DCC-NCCN copula model are given in Figure 16.

Kendall’s tau series of the bivariate DCC-NCCN copula
model is basically consistent with moving sample Kendall’s
tau series. The results illustrate that the bivariate DCC-
NCCN copula model can better depict the bivariate time-
varying global dependence.

The 10% QD coefficient series of the bivariate DCC-
NCCN copula model are given in Figure 17. Note that the
10% ULQD and 10% LUQD coefficient series are omitted
because their values are very close to 0.
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TasLE 8: Fitting results of bivariate copula models (HSI-CCI).

Copula model o B a p y AP ALL LL AIC BIC
Clayton 0 -670.24 9 9 9
Gumbel 0 —264.77 8 8 8
Frank 0 —231.43 7 7 7
CCC-N 0 0 6 6 6
CCC-CN 0.3845 0.6094 2 41.47 5 5 5
CCC-NCCN 0.5012 0.4108 —1.3943 3 68.54 4 4 4
DCC-N 0.0283 0.9885 2 94.51 3 3 3
DCC-CN 0.0303 0.9892 0.4162 0.6339 4 123.37 2 2 2
DCC-NCCN 0.0312 0.9893 0.5994 0.3433 -1.9381 5 153.51 1 1 1
TaBLE 9: Fitting results of bivariate copula models (CEI-CCI).
Copula model o B a P y AP ALL LL AIC BIC
Clayton 0 —504.67 9 9 9
Gumbel 0 -222.81 8 8 8
Frank 0 -153.91 7 7 7
CCC-N 0 0 6 6 6
CCC-CN 0.6251 0.2729 2 47.38 5 5 5
CCC-NCCN 0.5638 0.3176 —1.5486 3 78.63 4 4 4
DCC-N 0.0357 0.9921 2 146.24 3 3 3
DCC-CN 0.0357 0.9926 0.7740 0.1827 4 167.95 2 2 2
DCC-NCCN 0.0358 0.9919 0.6832 0.2964 —2.0066 5 191.36 1 1 1
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— LL — LL
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(@
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0.4

0.6 0.8 1 0.6 0.8 1
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F1cure 10: QD curves of bivariate Clayton copula model. (a) HSI-CEL (b) HSI-CCI. (c) CEI-CCI.

The dynamic characteristics of 10% LLQD and 10%
UUQD coefficient series are consistent with Kendall’s tau
series. For each bivariate dependence structure, the time-
varying lower and upper tail dependence can be easily
observed.

In comparison with the fitting effects of the multivariate
copula models, the fitting results of multivariate copula
models are given in Table 10.

The fitting results of the multivariate copula models

are consistent with the fitting results of the bivariate
copula models. Based on LL values, the time-varying
dependence, tail dependence, and asymmetric depen-
dence all play an important role in improving the fitting
effect of a multivariate dependence structure. The mul-
tivariate DCC-NCCN copula model is the best choice.
Some diagrams of the multivariate CCC-NCCN
copula and DCC-NCCN copula models are given in
Figures 18-20. Compared with bivariate CCC-NCCN and
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FIGURE 13: QD curves of the bivariate CCC-N copula model. (a) HSI-CEI (b) HSI-CCI. (¢) CEI-CCL
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FIGURE 17: 10% QD coefficient series of the bivariate DCC-NCCN copula model. (a) HSI-CEI (b) HSI-CCI. (¢) CEI-CCL

TasLE 10: Fitting results of multivariate copula models (HSI-CEI-CCI).

Copula model a B a p y AP ALL LL AIC BIC
CCC-N 0 0 6 6 6
CCC-CN 0.5206 0.3727 2 152.02 5 5 5
CCC-NCCN 0.5139 0.3564 -1.3371 3 217.24 4 4 4
DCC-N 0.0310 0.9936 2 485.46 3 3 3
DCC-CN 0.0315 0.9943 0.5892 0.4450 4 546.89 2 2 2
DCC-NCCN 0.0314 0.9938 0.6669 0.3115 -2.0710 5 601.18 1 1 1
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FicURrE 18: QD curves of multivariate CCC-NCCN copula model. (a) HSI-CEI. (b) HSI-CCI. (c) CEI-CCI.
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FIGURE 20: 10% QD coefficient series of the multivariate DCC-NCCN copula model. (a) HSI-CEI (b) HSI-CCI. (¢) CEI-CCL

DCC-NCCN copula models, the effects of the multi-
variate CCC-NCCN copula and DCC-NCCN copula
models have no significant differences.

4. Conclusion

This study examines the effects of the DCC-NCCN copula
model and some other copula models on fitting dependence
structures of Hong Kong stock markets. The main conclusions
in this paper are as follows:

First, according to descriptive statistics and fitting re-
sults of the marginal distribution, return series of HSI,
CEJ and CCI all reveal significant time-varying vola-
tility. NAGARCH model can well depict the dynamic
characteristics of returns.

Second, descriptive statistics and fitting results show that
the bivariate dependence structures have strong positive
dependence, asymmetric dependence, tail dependence,
and time-varying dependence. For each bivariate depen-
dence structure, the lower tail dependence is higher than
the upper tail dependence.

Third, through the comparison of the DCC-NCCN copula
model and some other copula models, the DCC-NCCN
copula model can well describe the bivariate dependence
structures, but other copula models are not good. Con-
sidering the flexibility and complexity, the DCC-NCCN
copula model is a relatively ideal copula model.

Data Availability

The data used to support the findings of this study are public
and available on HK stock exchange or database.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this study.

Acknowledgments

This research was supported by the Key Program of National
Social Science Foundation of China under Grant 18AGLO001.

References

[1] Z.Wei, S. Kim, and D. Kim, “Multivariate skew normal copula
for non-exchangeable dependence,” Procedia Computer Sci-
ence, vol. 91, pp. 141-150, 2016.

[2] A. Azzalini and A. D. Valle, “The multivariate skew-normal
distribution,” Biometrika, vol. 83, no. 4, pp. 715-726, 1996.

[3] S. Demarta and A. J. McNeil, “The ¢ copula and related
copulas,” International Statistical Review, vol. 73, no. 1,
pp. 111-129, 2005.

[4] O. E. Barndorff-Nielsen, “Exponentially decreasing distri-

butions for the logarithm of particle size,” Proceedings of the

Royal Society of London, vol. 353, no. 1674, pp. 401-419, 1977.

T. Kollo and G. Pettere, “Parameter estimation and appli-

cation of the multivariate skew t-copula,” in Copula Theory

and Its Applications, pp. 289-298, Springer, Berlin, Germany,

2010.

A. Azzalini and A. Capitanio, “Distributions generated by

perturbation of symmetry with emphasis on a multivariate

skew t-distribution,” Journal of the Royal Statistical Society:

Series B (Statistical Methodology), vol. 65, no. 2, pp. 367-389,

2003.

M. S. Smith, Q. Gan, and R. J. Kohn, “Modelling dependence

using skew t copulas: bayesian inference and applications,”

Journal of Applied Econometrics, vol. 27, no. 3, pp. 500-522,

2012.

S. K. Sahu, D. K. Dey, and M. D. Branco, “A new class of

multivariate skew distributions with applications to Bayesian

regression models,” Canadian Journal of Statistics, vol. 31,

no. 2, pp. 129-150, 2003.

C.-S. Liu, M.-S. Chang, X. Wu, and C. M. Chui, “Hedges or

safe havens-revisit the role of gold and USD against stock: a

multivariate extended skew-t copula approach,” Quantitative

Finance, vol. 16, no. 11, pp. 1763-1789, 2016.

R. B. Arellano-Valle and M. G. Genton, “Multivariate ex-

tended skew-t distributions and related families,” Metron,

vol. 68, no. 3, pp. 201-234, 2010.

[11] A. J. Patton, “Modelling asymmetric exchange rate depen-
dence,” International Economic Review, vol. 47, no. 2,
pp. 527-556, 2006.

[12] R. Engle, “Dynamic conditional correlation: a simple class of
multivariate generalized autoregressive conditional hetero-
skedasticity models,” Journal of Business ¢ Economic Sta-
tistics, vol. 20, no. 3, pp. 339-350, 2002.

[13] M. Yahya, A. Oglend, and R. E. Dahl, “Temporal and spectral
dependence between crude oil and agricultural commodities:

(5]

(6]

[7

(8]

(9]

(10]



Discrete Dynamics in Nature and Society

a wavelet-based copula approach,” Energy Economics, vol. 80,
pp. 277-296, 2019.

[14] Y. K. Tse and A. K. C. Tsui, “A multivariate generalized
autoregressive conditional heteroscedasticity model with
time-varying correlations,” Journal of Business ¢ Economic
Statistics, vol. 20, no. 3, pp. 351-362, 2002.

[15] L. Cappiello, R. F. Engle, and K. Sheppard, “Asymmetric
dynamics in the correlations of global equity and bond
returns,” Journal of Financial Econometrics, vol. 4, no. 4,
pp. 537-572, 2006.

[16] Y. Cui and Y. Feng, “Composite hedge and utility maximi-
zation for optimal futures hedging,” International Review of
Economics & Finance, vol. 68, pp. 15-32, 2020.

[17] D. Creal, S. J. Koopman, and A. Lucas, “Generalized autor-
egressive score models with applications,” Journal of Applied
Econometrics, vol. 28, no. 5, pp. 777-795, 2013.

[18] P. Christoffersen, V. Errunza, K. Jacobs, and H. Langlois, “Is
the potential for international diversification disappearing? A
dynamic copula approach,” Review of Financial Studies,
vol. 25, no. 12, pp. 3711-3751, 2012.

[19] A. Lucas, B. Schwaab, and X. Zhang, “Conditional euro area
sovereign default risk,” Journal of Business ¢ Economic Sta-
tistics, vol. 32, no. 2, pp. 271-284, 2014.

[20] Y. Fang, L. Liu, and J. Liu, “A dynamic double asymmetric
copula generalized autoregressive conditional hetero-
skedasticity model: application to China’s and US stock
market,” Journal of Applied Statistics, vol. 42, no. 2,
pp. 327-346, 2015.

[21] K. V. Mardia, “Measures of multivariate skewness and kur-
tosis with applications,” Biometrika, vol. 57, no. 3,
pp. 519-530, 1970.

[22] R.F.Engleand V. K. Ng, “Measuring and testing the impact of
news on volatility,” The Journal of Finance, vol. 48, no. 5,
pp. 1749-1778, 1993.

[23] J. W. Tukey, “A survey of sampling from contaminated
distributions,” Contributions to Probability and Statistics,
pp. 448-485, Princeton University, Princeton, NJ, USA, 1960.

[24] G. Celeux and G. Govaert, “Gaussian parsimonious clustering
models,” Pattern Recognition, vol. 28, no. 5, pp. 781-793, 1995.

[25] A. Punzo and P. D. McNicholas, “Parsimonious mixtures of
multivariate contaminated normal distributions,” Biometrical
Journal, vol. 58, no. 6, pp. 1506-1537, 2016.

23



