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L. Jódar, Spain
Jong Soo Jung, Republic of Korea
Henrik Kalisch, Norway
Hamid Reza Karimi, Norway
Satyanad Kichenassamy, France
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Mitsuharu Ôtani, Japan
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Antonio Suárez, Spain
Wenchang Sun, China
Robert Szalai, UK
Sanyi Tang, China
Chun-Lei Tang, China
Youshan Tao, China
Gabriella Tarantello, Italy
Nasser-eddine Tatar, Saudi Arabia
Susanna Terracini, Italy

Gerd Teschke, Germany
Alberto Tesei, Italy
Bevan Thompson, Australia
Sergey Tikhonov, Spain
Claudia Timofte, Romania
Thanh Tran, Australia
Juan J. Trujillo, Spain
Ciprian A. Tudor, France
Gabriel Turinici, France
Milan Tvrdy, Czech Republic
Mehmet Unal, Turkey
Stephan A. van Gils, The Netherlands
Csaba Varga, Romania
Carlos Vazquez, Spain
Gianmaria Verzini, Italy
Jesus Vigo-Aguiar, Spain
Yushun Wang, China
Qing Wang, USA
Qing-WenWang, China
Shawn X. Wang, Canada
Jing Ping Wang, UK
Youyu Wang, China
Peixuan Weng, China
Noemi Wolanski, Argentina
Ngai-Ching Wong, Taiwan
Patricia J. Y. Wong, Singapore
Zili Wu, China
Yonghong Wu, Australia
Shanhe Wu, China
Tie-cheng Xia, China
Xu Xian, China
Yanni Xiao, China
Fuding Xie, China
Naihua Xiu, China
Daoyi Xu, China
Zhenya Yan, China
Xiaodong Yan, USA
Norio Yoshida, Japan
Beong In Yun, Korea
Vjacheslav Yurko, Russia
Aacik Zafer, Turkey
Sergey V. Zelik, UK
Jianming Zhan, China
Meirong Zhang, China
Chengjian Zhang, China
Weinian Zhang, China
Zengqin Zhao, China
Sining Zheng, China



Tianshou Zhou, China
Yong Zhou, China

Qiji J. Zhu, USA
Chun-Gang Zhu, China

Malisa R. Zizovic, Serbia
Wenming Zou, China



Contents

Dynamics of Delay Differential Equations withTheir Applications, Chuangxia Huang, Zhiming Guo,
Zhichun Yang, and Yuming Chen
Volume 2013, Article ID 467890, 1 page

Positive Stability Analysis and Bio-Circuit Design for Nonlinear Biochemical Networks, Yonghui Sun,
Zhinong Wei, and Guoqiang Sun
Volume 2013, Article ID 717489, 8 pages

Stability of a Functional Differential Systemwith a Finite Number of Delays,
Josef Rebenda and Zdeněk Šmarda
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Delay differential equations have attracted a rapidly grow-
ing attention in the field of nonlinear dynamics and have
become a powerful tool for investigating the complexities of
the real-world problems such as infectious diseases, biotic
population, neuronal networks, and even economics and
finance.When employing delay differential equations to solve
practical problems, it is very crucial to be able to completely
characterize the dynamical properties of the delay differential
equations. In spite of the amount of published results recently
focused on such systems, there remain many challenging
open questions. The basic purpose of this special issue is to
extend the applications of the relatively new approaches and
theories for delay differential equations and to see the latest
developments. The authors were invited to submit original
research articles as well as review articles that stimulated the
continuing efforts in delay differential equations and related
theories.The topics included in this special issue are invariant
sets and attractor; boundedness analysis; stability and bifur-
cation analysis; asymptotic analysis and synchronization; the
existence and uniqueness or nonexistence of equilibrium
point, periodic solutions, and almost periodic solutions;
impulsive and stochastic control; and modeling and simula-
tion analysis.

The response to this special issue on dynamics of delay
differential equations with their Applications was beyond our
expectation. We received 49 papers in the interdisciplinary
research fields. This special issue includes twenty-six high-
quality peer-reviewed articles. These articles contain several

new, novel, and innovative techniques and ideas that may
stimulate further research in every branch of pure and applied
sciences.
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fascinating fields further.The authors hope that problems dis-
cussed and investigated in this special issue may inspire and
motivate discovering new, innovative, and novel applications
in all areas of delay differential equations.
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This paper is concerned with positive stability analysis and bio-circuits design for nonlinear biochemical networks. A fuzzy
interpolation approach is employed to approximate nonlinear biochemical networks. Based on the Lyapunov stability theory,
sufficient conditions are developed to guarantee the equilibrium points of nonlinear biochemical networks to be positive and
asymptotically stable. In addition, a constrained bio-circuits design with positive control input is also considered. It is shown that
the conditions can be formulated as a solution to a convex optimization problem, which can be easily facilitated by using theMatlab
LMI control toolbox. Finally, a real biochemical networkmodel is provided to illustrate the effectiveness and validity of the obtained
results.

1. Introduction

In the past decades, biochemical networks, such as metabolic
networks [1] and genetic networks [2], have received con-
siderable attention and become a hot research topic [3–5].
A great number of results have been obtained, such as gene
expression data modeling [6–9] and dynamic analysis of
biochemical networks [10, 11].

It is not surprising that dynamical system theory plays
a central role in understanding biological and physiological
processes [4, 12] since it provides a powerful tool to quantita-
tively analyze these biochemical networks from a systematic
viewpoint. In addition, dynamical system theory is important
and useful for the development of synthetic and systems
biology, which has a great potential in gene therapy and drug
design [13].

It is worth noting that dynamical models of many biolog-
ical and physiological processes, such as metabolic systems
and endocrine systems [1], biochemical reactions [12], are
derived from mass and energy balance considerations that
take nonnegative chemical concentrations as dynamic states.
Hence, state trajectories of such biochemical systems remain
in the nonnegative orthant of the state space for arbitrary
nonnegative initial conditions. Such systems are commonly
referred to as nonnegative systems or positive systems in the
literature [14–17]. In this paper, we call them positive systems

for convenience. A subclass of positive dynamical systems
are compartmental systems [18], which involve dynamical
models that are characterized by conservation laws (e.g.,
mass and energy) capturing exchange of materials between
coupled macroscopic subsystems known as compartments.
Each compartment is assumed to be kinetically homoge-
neous. That is, any material entering the compartment is
instantaneously mixed with materials of the compartment.
There have been some studies on this kind of systems with
application to biochemical networks [4, 19].

Recently, there have been some results on stability anal-
ysis of gene networks with some special regulation functions
[20–25]. However, due to nonlinearity and complexity of bio-
chemical networks, there does not exist a systematic approach
to stability analysis of such nonlinear biochemical networks.
It is noted that the fuzzy interpolation approach proposed in
[26] can be seen as a promising way of dealing with nonlinear
complex systems. In [27], the authors firstly used the fuzzy
approximation method to investigate the robust stability of
stochastic biochemical regulatory networks, where, however,
the positive constraint of network states was ignored.

On the other hand, there have been some other results
on bio-circuits design for biochemical networks. In [28],
an external optimal control input was applied to stabilize a
gene regulatory system. In [29], a simple robust circuit has
been designed for the S-system model without considering
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stochastic noises. In [30], a robust engineering principle
was proposed for stochastic biochemical regulatory networks
with parameter uncertainties and disturbances. However,
most of the aforementioned results paid little attention to
the positive constraint of the states of biochemical networks,
not to mention constrained bio-circuits with positive control
input. In many cases, the states of those studied systems
would become negative in simulation, which could be seen
as the main drawbacks of these results.

In this paper, the T-S fuzzy system is employed to
approximate nonlinear biochemical networks by interpolat-
ing several local linear systems. A positive stability condition
and a bio-circuits design procedure will be developed for the
nonlinear biochemical networks. In addition, a constrained
bio-circuits design with positive control input will also be
considered. Finally, a real biochemical network is given to
illustrate the effectiveness of the obtained results.

The rest of the paper is organized as follows. In Section 2,
some useful definitions and lemmas for positive systems are
introduced. In Section 3, by using the fuzzy approximation
approach, a sufficient condition for positive stability will be
derived for nonlinear biochemical networks. In Section 4,
bio-circuits design will be developed from a systematic point
of view. In addition, a constrained bio-circuits design with
positive control input will also be considered. In Section 5, a
real biochemical network is given to illustrate the effective-
ness of the obtained results. Finally, the paper will be closed
with a conclusion.

2. Notation and Preliminaries

Notation. R denotes the set of real numbers, R𝑛 stands for
the vector space of all 𝑛-tuples of real numbers, and R𝑛×𝑚 is
the space of 𝑛 × 𝑚 matrices with real entries. For 𝑥 in R𝑛, 𝑥

𝑖

denotes the 𝑖th component of 𝑥. R𝑛×𝑚
+

denotes the sets of all
𝑛 × 𝑚 real matrices with nonnegative entries and R𝑛

+
≜ {𝑥 ∈

R𝑛 : 𝑥 ⪰ 0}. For a real matrix 𝐴, 𝐴 ⪰ 0(≻ 0) means that all
its entries are nonnegative (positive). 𝐴T is the transpose of
𝐴, and𝐴−1 is the inverse of𝐴. The notation 𝑃 > 0means that
𝑃 is symmetric and positive definite. The following notations
of matrices are used throughout this paper: 𝐴

𝑖
= [𝑎
𝑖

𝑘𝑗
], 𝐵
𝑖
=

[𝑏
𝑖

1
; 𝑏
𝑖

2
; . . . ; 𝑏

𝑖

𝑛
].

Consider a general nonlinear system

𝑑𝑥

𝑑𝑡

= 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) ,

𝑥 (0) = 𝑥
0
,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector and 𝑢(𝑡) ∈ R𝑚 is the
control input. The nonlinear function 𝑓(𝑥(𝑡), 𝑢(𝑡)) satisfies
𝑓(0, 0) = 0 and 𝑓 ∈ C2; that is, 𝑓 has the second-order
continuous derivative with respect to 𝑥 and 𝑢.

Firstly, some definitions and useful lemmas for positive
nonlinear systems are given as follows.

Definition 1. Given any positive initial condition 𝑥(0) = 𝑥
0
∈

R𝑛
+
, the unforced nonlinear system (1) is said to be positive if

the corresponding trajectory 𝑥(𝑡) ∈ R𝑛
+
for all 𝑡 ≥ 0.

Definition 2. Let 𝑓 = [𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
]
T
: D ⊆ R𝑛

+
→ R𝑛 the

nonlinear function f is positive (or essentially nonnegative in
[19]) if 𝑓

𝑖
(𝑥(𝑡)) ≥ 0, for all 𝑖 = 1, 2, . . . , 𝑛 and 𝑥(𝑡) ∈ D ⊆ R𝑛

+
.

Lemma 3 (see [19]). Consider the unforced nonlinear system
(1). If 𝑓 is positive and continuously differentiable in D ⊆ R𝑛

+

and 𝑓(0) = 0, then 𝐴 ≜ 𝜕𝑓/𝜕𝑥|
𝑥=0

is positive (essentially
nonnegative).

Lemma 3 implies that if a nonlinear system is positive,
then its linearization is also positive.

Theorem 4. For the unforced system (1), if the nonlinear
function 𝑓 is positive, and if there exists a Lyapunov function
𝑉(𝑥(𝑡)) > 0 and 𝑉(0) = 0 satisfying the following inequality:

(

𝜕𝑉 (𝑥 (𝑡))

𝜕𝑥

)

T
𝑓 (𝑥 (𝑡)) < 0, (2)

for all nonzero 𝑥(𝑡) ∈ R𝑛
+
, then the equilibrium point 𝑥(𝑡) = 0

of the nonlinear system (1) is asymptotically stable.

As a special case of the nonlinear system (1), the following
linear system is considered

𝑑𝑥

𝑑𝑡

= 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑥 (0) = 𝑥
0
,

(3)

where𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚. Some useful results from [14]
are presented as follows.

Definition 5. A real matrix𝑀 is called a Metzler matrix if its
off-diagonal elements are nonnegative, that is

𝑀
𝑖𝑗
≥ 0, 𝑖 ̸= 𝑗. (4)

Lemma6. Theunforced linear system (3) is positive if and only
if 𝐴 is a Metzler matrix.

Lemma 7. Theunforced positive linear system (3) is asymptot-
ically stable if and only if there exists a positive definite diagonal
matrix 𝑃 such that

𝑃𝐴 + 𝐴
T
𝑃 < 0. (5)

Remark 8. It follows from the physical consideration that all
the states of biochemical networks should stay in the positive
orthant. Thus, positive systems are suitable for quantitatively
studying biochemical networks, such as gene microarray
data modeling [6–8] and bio-circuits design for biochemical
networks [3, 4].

3. Positive Stability Analysis of Nonlinear
Biochemical Networks

As pointed out in Introduction, many applications in bio-
chemical processes give rise to nonlinear dynamical systems,
such as genetic networks, metabolic pathways andmembrane
transports, to cite just a few examples. Consider the nonlinear
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system (1) for representation of biochemical networks, which
describes complex interactions betweenmolecules. It is noted
that the states of the system denote the concentrations of the
molecules, the nonlinear function𝑓 is the regulation function
and the control input 𝑢(𝑡) can be seen as the external sources,
such as drugs, proteins, or other chemical complexes.

For a general nonlinear biochemical network (1), it is very
difficult if not impossible to find a suitable Lyapunov function
𝑉 such that the condition (2) is satisfied, especially when the
positive constraint of the states should be also maintained.
However, the T-S fuzzy interpolation approach provides a
way to approximate the nonlinear biochemical network and,
thus, potentially provides a simplified method for positive
stability analysis and bio-circuits design.

Consider a nonlinear biochemical network described by
a T-S fuzzy system

𝑅
𝑖

: IF 𝑧
1
(𝑡) is 𝑀𝑖

1
and ⋅ ⋅ ⋅ 𝑧

𝑟
(𝑡) is 𝑀𝑖

𝑟
,THEN

̇𝑥 (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) ,

(6)

where 𝑖 = 1, 2, . . . , 𝐿 and 𝐿 is the number of fuzzy rules;
𝑧
1
(𝑡), 𝑧
2
(𝑡), . . . , 𝑧

𝑟
(𝑡) are the premise variables and 𝑀

𝑖

𝑙
(𝑖 =

1, 2, . . . , 𝐿, 𝑙 = 1, 2, . . . , 𝑟) are the fuzzy sets; 𝑢(𝑡) and 𝑦(𝑡) are
the control input and output, respectively; 𝐴

𝑖
, 𝐵
𝑖
, and 𝐶

𝑖
are

the known matrices of appropriate dimensions.
By using a center average defuzzifier, product inference,

and a singleton fuzzifier, the global dynamics of the T-S fuzzy
system (6) cab be described by

̇𝑥 (𝑡) =

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) (𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡)) ,

𝑦 (𝑡) =

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) 𝐶

𝑖
𝑥 (𝑡) ,

(7)

where 𝛼
𝑖
(𝑧(𝑡))’s are the so-called normalized activation func-

tions in relation to the 𝑖th submodel such that

𝛼
𝑖
(𝑧 (𝑡)) =

∏
𝑟

𝑙=1
𝑀
𝑖

𝑙
(𝑧
𝑙
(𝑡))

∑
𝐿

𝑖=1
∏
𝑟

𝑙=1
𝑀
𝑖

𝑙
(𝑧
𝑙
(𝑡))

, 0 ≤ 𝛼
𝑖
(𝑧 (𝑡)) ≤ 1. (8)

Now, we are in the position to develop the global positive
stability results for the unforced biochemical network (7);
that is, 𝑢 = 0.

Theorem 9. If there exists a diagonal matrix 0 < 𝑃 ∈ R𝑛×𝑛

such that the following LMI conditions

𝐴
T
𝑖
𝑃 + 𝑃𝐴

𝑖
< 0, (9)

𝑎
𝑖

𝑘𝑗
𝑝
𝑗𝑗
≥ 0, 𝑘, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑗, (10)

hold for 𝑖 = 1, 2, . . . , 𝐿, then the unforced biochemical network
(7) is positive and asymptotically stable.

Proof. Construct the following quadratic Lyapunov function
candidate for the unforced biochemical network (7)

𝑉 (𝑥 (𝑡)) = 𝑥
T
(𝑡) 𝑃𝑥 (𝑡) , (11)

where the diagonal matrix 𝑃 > 0 is to be determined.

Taking the derivative along the trajectory of (7), one can
readily get

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

= ̇𝑥
T
(𝑡) 𝑃𝑥 (𝑡) + 𝑥

T
(𝑡) 𝑃 ̇𝑥 (𝑡)

= [

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧(𝑡))𝐴

𝑖
𝑥(𝑡)]

T

𝑃𝑥 (𝑡)

+ 𝑥
T
(𝑡) 𝑃 [

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) 𝐴

𝑖
𝑥 (𝑡)]

=

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) 𝑥

T
(𝑡) [𝐴

T
𝑖
𝑃 + 𝑃𝐴

𝑖
] 𝑥 (𝑡) .

(12)

Then, it follows immediately from condition (9) that

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

< 0, (13)

for all nonzero 𝑥(𝑡), and 𝑑𝑉(𝑥(𝑡))/𝑑𝑡 = 0 if and only if
𝑥(𝑡) = 0. Hence, the unforced biochemical network (7) is
asymptotically stable.

Furthermore, since 𝑃 = diag(𝑝
11
, . . . , 𝑝

𝑛𝑛
) is a positive

definite diagonal matrix, that is, 𝑝
𝑖𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, it can

be deduced from the LMI condition (10) that matrix 𝐴
𝑖
is a

Metzler matrix for every local linear model of (7). Moreover,
it follows from condition (8) that the membership function
satisfies

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) = 1, 0 ≤ 𝛼

𝑖
≤ 1, (14)

which together with the fact that 𝐴
𝑖
is Metzler can guarantee

the unforced biochemical network (7) to be positive. Hence,
together with condition (13), it can be concluded that the
equilibrium point of the unforced biochemical network (7)
is positive and asymptotically stable. The proof is thus
completed.

Remark 10. It is noted that the obtained sufficient condition
for positive stability is in the formof linearmatrix inequalities
(LMIs), which could be efficiently solved by using the Matlab
LMI control toolbox. Comparedwith the results developed in
[20–25], the regulation function is no longer needed to satisfy
a sector condition; thus, the regulation function considered
here is more general.

4. Bio-Circuits Design for Nonlinear
Biochemical Networks

If the equilibrium point of the unforced nonlinear biochem-
ical network (7) is not stable, bio-circuits design would
become necessary for these complex biological systems to
work properly, which would be useful for drug design and
gene therapy. In this paper, the following smooth controller
is employed to stabilize the biochemical network (7):
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𝑅
𝑖

: IF 𝑧
1
(𝑡) is 𝑀𝑖

1
and ⋅ ⋅ ⋅ , 𝑧

𝑟
(𝑡) is 𝑀𝑖

𝑟
,THEN

𝑢 (𝑡) = 𝐾
𝑖
𝑥 (𝑡) , 𝑖 ∈ {1, 2, . . . , 𝐿} ,

(15)

which can be rewritten as

𝑢 (𝑡) =

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) 𝐾

𝑖
𝑥 (𝑡) , (16)

where 𝐾
𝑖
, 𝑖 = 1, 2, . . . , 𝐿 are the feedback gains of the bio-

circuits to be determined.
The controlled biochemical network (7) can be described

as follows:

̇𝑥 (𝑡) =

𝐿

∑

𝑗=1

𝐿

∑

𝑖=1

𝛼
𝑗
𝛼
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) 𝑥 (𝑡) ,

𝑦 (𝑡) =

𝐿

∑

𝑖=1

𝛼
𝑖
(𝑧 (𝑡)) 𝐶

𝑖
𝑥 (𝑡) .

(17)

Then, the following bio-circuits design results would
guarantee the positivity and asymptotic stability of the non-
linear biochemical network (17).

Theorem 11. There exists a smooth control scheme 𝑢(𝑡) =

∑
𝐿

𝑖=1
𝛼
𝑖
(𝑧(𝑡))𝐾

𝑖
𝑥(𝑡) such that the biochemical network (17) is

positive and asymptotically stable, if there exist a diagonal
matrix 0 < 𝑃 ∈ R𝑛×𝑛 and matrices 𝑄

𝑖
, 𝑖 = 1, 2, . . . , 𝐿 such

that the following LMI conditions

𝑃𝐴
T
𝑖
+ 𝑄
𝑗
𝐵
T
𝑖
+ 𝐴
𝑖
𝑃 + 𝐵

𝑖
𝑄
𝑗
< 0, (18)

𝑎
𝑖

𝑘𝑠
𝑝
𝑠𝑠
+

𝑚

∑

𝑡=1

𝑏
𝑖

𝑘𝑡
𝑞
𝑗

𝑡𝑠
≥ 0, 𝑘, 𝑠 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑠, (19)

hold for 𝑖, 𝑗 = 1, 2, . . . , 𝐿.

Moreover, the feedback gains can be computed as

𝐾
𝑗
= 𝑄
𝑗
𝑃
−1

, 𝑗 = 1, 2, . . . , 𝐿. (20)

Proof. Construct the following quadratic Lyapunov function
for the biochemical network (17)

𝑉 (𝑥 (𝑡)) = 𝑥
T
(𝑡) 𝑃
−1

𝑥 (𝑡) , (21)

where the diagonal matrix 𝑃 > 0 is to be determined.

Taking the derivative along the trajectory of system (17),
one has

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

= ̇𝑥
T
(𝑡) 𝑃
−1

𝑥 (𝑡) + 𝑥
T
(𝑡) 𝑃
−1

̇𝑥 (𝑡)

=
[

[

𝐿

∑

𝑗=1

𝐿

∑

𝑖=1

𝛼
𝑗
𝛼
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) 𝑥 (𝑡)

]

]

T

𝑃
−1

𝑥 (𝑡)

+ 𝑥
T
(𝑡) 𝑃
−1
[

[

𝐿

∑

𝑗=1

𝐿

∑

𝑖=1

𝛼
𝑗
𝛼
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) 𝑥 (𝑡)

]

]

=

𝐿

∑

𝑗=1

𝐿

∑

𝑖=1

𝛼
𝑗
𝛼
𝑖
𝑥
T
(𝑡)

× [(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
)

T
𝑃
−1

+ 𝑃
−1

(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
)] 𝑥 (𝑡) ,

𝑖, 𝑗 = 1, 2, . . . , 𝐿.

(22)

It is noted that

(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
)

T
𝑃
−1

+ 𝑃
−1

(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) < 0, 𝑖, 𝑗 = 1, 2, . . . , 𝐿,

(23)

which is equivalent to

𝑃(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
)

T
+ (𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) 𝑃 < 0, 𝑖, 𝑗 = 1, 2, . . . , 𝐿.

(24)

Therefore, it follows immediately from conditions (18) and
(20) that

𝑑𝑉 (𝑥 (𝑡))

𝑑𝑡

< 0, (25)

for all the nonzero 𝑥(𝑡), and 𝑑𝑉(𝑥(𝑡))/𝑑𝑡 = 0 if and only if
𝑥(𝑡) = 0. Hence, the controlled biochemical network (17) is
asymptotically stable.

On the other hand, since 𝑃 is a positive definite diagonal
matrix, that is, 𝑝

𝑖𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, it follows from

conditions (19) and (20) that the off-diagonal elements of
matrix (𝐴

𝑖
+ 𝐵
𝑖
𝐾
𝑗
) are nonnegative; that is,

𝑎
𝑖

𝑘𝑠
+

∑
𝑚

𝑡=1
𝑏
𝑖

𝑘𝑡
𝑞
𝑗

𝑡𝑠

𝑝
𝑠𝑠

= 𝑎
𝑖

𝑘𝑠
+

𝑚

∑

𝑡=1

𝑏
𝑖

𝑘𝑡
𝑘
𝑗

𝑡𝑠
≥ 0,

𝑘, 𝑠 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑠, 𝑖, 𝑗 = 1, 2, . . . , 𝐿.

(26)

This implies that for any 𝑖, 𝑗 = 1, 2, . . . , 𝐿, 𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
is a

Metzler matrix for every linear local model. Similar to the
proof ofTheorem 9, from condition (14), it can be concluded
that the controlled biochemical network (17) is positive.
Therefore, together with condition (25), one can conclude
that the controlled biochemical network (17) is positive and
asymptotically stable. The proof is, thus, completed.
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It is worth pointing out that in many practical applica-
tions, drugs or chemical complexes delivered to the human
body are often taken as control inputs to biochemical systems,
and in this case, control signals have to be nonnegative.
Therefore, it is necessary to consider the positive constraints
of control inputs when designing bio-circuits. We have the
following results.

Theorem 12. There exists a positive smooth control scheme
𝑢(𝑡) = ∑

𝐿

𝑖=1
𝛼
𝑖
(𝑧(𝑡))𝐾

𝑖
𝑥(𝑡), that is, 0 ⪯ 𝑢(𝑡), such that the

biochemical network (17) is positive and asymptotically stable,
if there exist a diagonal matrix 0 < 𝑃 ∈ R𝑛×𝑛 and matrices
𝑄
𝑖
, 𝑖 = 1, 2, . . . , 𝐿 such that the following LMI conditions

𝑃𝐴
T
𝑖
+ 𝑄
𝑗
𝐵
T
𝑖
+ 𝐴
𝑖
𝑃 + 𝐵

𝑖
𝑄
𝑗
< 0,

𝑎
𝑖

𝑘𝑠
𝑝
𝑠𝑠
+

𝑚

∑

𝑡=1

𝑏
𝑖

𝑘𝑡
𝑞
𝑗

𝑡𝑠
≥ 0, 𝑘, 𝑠 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑠,

𝑞
𝑗

𝑡𝑠
≥ 0, 𝑡 = 1, 2, . . . , 𝑚, 𝑠 = 1, 2, . . . , 𝑛,

(27)

hold for 𝑖, 𝑗 = 1, 2, . . . , 𝐿.

Moreover, the feedback gains can be computed as

𝐾
𝑗
= 𝑄
𝑗
𝑃
−1

, 𝑗 = 1, 2, . . . , 𝐿. (28)

Remark 13. It is noted that the positive feedback control law
is only available in some special cases. When 𝐴

𝑖
is a Metzler

matrix and 𝐵
𝑖

⪰ 0, it is impossible to design a positive
feedback bio-circuit.

Remark 14. In many practical applications, the concentra-
tions of some materials should be rigorously kept below or
above a certain level, otherwise they may have side effects on
blood or other chemical complexes. In other words the states
of biochemical networks should be subject to some kinds of
constraints. How to deal with such scenarios is one of our
future research interests.

5. Design Example In Silico for
the Proposed Method

Consider a two-compartment model [31], which describes
the kinetics of a drug in the human body.The drug is injected
into the blood where it exchanges linearly with the tissues;
the drug is irreversibly removed with a nonlinear saturative
characteristic from the blood and with a linear one from the
tissue.Themodel can be expressed by the following nonlinear
differential equations:

̇𝑥
1
= −(𝑎

11
+

𝑉
𝑀

𝑉
𝑚
+ 𝑥
1

)𝑥
1
+ 𝑎
12
𝑥
2
+ 𝑏
1
𝑢,

̇𝑥
2
= 𝑎
21
𝑥
1
− (𝑎
02
+ 𝑎
22
) 𝑥
2
,

𝑦 = 𝑐
1
𝑥
1
,

(29)

where 𝑥
1
, 𝑥
2
are the drug masses in blood and tissues,

respectively; 𝑢 is the drug input 𝑦 is the measured drug

output in the blood; 𝑎
11
, 𝑎
12
, 𝑎
21
, 𝑎
22
, and 𝑎

02
are the con-

stant rate parameters; 𝑉
𝑀

and 𝑉
𝑚
are the Michaelis-Menten

parameters; 𝑏
1
and 𝑐
1
are the input and output parameters,

respectively.
Let the premise variable 𝑧

1
(𝑡) = 𝑥

1
(𝑡), then the member-

ship functions can be chosen as

𝑀
1

1
(𝑧
1
(𝑡)) =

𝑉
𝑚

𝑉
𝑚
+ 𝑥
1
(𝑡)

, 𝑀
2

1
(𝑧
1
(𝑡)) =

𝑥
1
(𝑡)

𝑉
𝑚
+ 𝑥
1
(𝑡)

.

(30)

By using 𝑀
1

1
and 𝑀

2

1
, the biochemical network (29) can be

expressed by the following T-S fuzzy model

Plant Rule 1 : IF 𝑧
1
(𝑡) is 𝑀1

1
,THEN

̇𝑥 (𝑡) = 𝐴
1
𝑥 (𝑡) + 𝐵

1
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
1
𝑥 (𝑡) ,

Plant Rule 2 : IF 𝑧
1
(𝑡) is 𝑀2

1
,THEN

̇𝑥 (𝑡) = 𝐴
2
𝑥 (𝑡) + 𝐵

2
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
2
𝑥 (𝑡) ,

(31)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡)]

T and

𝐴
1
= [

− (𝑎
11
+ 𝑉
𝑀
/𝑉
𝑚
) 𝑎

12

𝑎
21

− (𝑎
02
+ 𝑎
22
)
] ,

𝐵
1
= [

𝑏
1

0
] , 𝐶

1
= [𝑐
1
0] ;

𝐴
2
= [

−𝑎
11

𝑎
12

𝑎
21

− (𝑎
02
+ 𝑎
22
)
] ,

𝐵
2
= [

𝑏
1

0
] , 𝐶

2
= [𝑐
1
0] .

(32)

Let 𝑎
11

= 0.1, 𝑎
21

= 2, 𝑎
12

= 0.5, 𝑎
22

= 0.1, 𝑎
02

=

0.6, 𝑉
𝑀

= 1, 𝑉
𝑚

= 0.5, and 𝑏
1
= −1; Figure 1 shows that the

state trajectories of biochemical network (29) are divergent
under 𝑢 = 0 with the initial condition 𝑥(0) = [0.1, 4]

T.
For convenience, we use the same initial conditions in the
following simulations.

5.1. Bio-Circuits Design without Constraints. In this case
study, we will consider the bio-circuits design for the bio-
chemical network (31) without constraints. Solving the LMI
conditions (18)-(19) leads to the feasible solutions as follows:

𝑃 = [

8.5971 0

0 39.6566
] ,

𝑄
1
= 𝑄
2
= [34.1204 −10.3198] .

(33)

Then the feedback gains can be calculated as 𝐾
1
= 𝐾
2
=

[3.9688, −0.2602], which could guarantee the controlled bio-
chemical network (31) to be positive and asymptotically
stable. The dynamic response of the controlled biochemical
network can be seen in Figure 2, and the evolution of the
control input can be seen in Figure 3. It can be observed that
the control input is negative in some stage.



6 Abstract and Applied Analysis

0 2 4 6 8 10
0

50

100

150

200

250

300

350

Times (s)

𝑥
(
𝑡
)

Drug masses

𝑥
1

𝑥
2

Figure 1: Time response of the biochemical network under 𝑢 = 0.
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Figure 2: Time response of the controlled biochemical network.

5.2. Bio-Circuits Design with Positive Control Constraints.
In most situations, the control input 𝑢(𝑡) is the drug or the
mixture of some biochemical complexes, which should be
constrained to be positive. From Theorem 12, the elements
of nonsymmetric matrixes 𝑄

1
, 𝑄
2
should satisfy conditions

(27). By using the constrained LMI algorithm, the following
feasible solutions are obtained:

𝑃 = [

1.1517 0

0 9.6618
] ,

𝑄
1
= 𝑄
2
= [5.3937 3.7805] .

(34)
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Figure 3: Evolution of the control input without constraints.
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Figure 4: Time response of the biochemical network under positive
control.

Then, the feedback gains can be calculated as 𝐾
1
= 𝐾
2
=

[4.6831, 0.3913]. The state response of the biochemical net-
work under this constrained control can be seen in Figure 4,
and the evolution of the positive control input𝑢(𝑡) can be seen
in Figure 5, where the control signal remains to be positive all
the time.

Remark 15. By using the fuzzy interpolation approach, bio-
circuits can be easily implemented for the nonlinear bio-
chemical network (29), which could guarantee it to be
positive and asymptotically stable. Although the stability
conditions for this biochemical network can also be derived
by the method proposed in [29], the positivity of the states
cannot be guaranteed. This would greatly reduce the signifi-
cance of those results in real application such as drug delivery.
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Figure 5: Evolution of the control input with constraints.

6. Discussion

In this paper, the fuzzy interpolation approach has been
employed to approximate nonlinear biochemical networks
for positive stability analysis and bio-circuits design. A few
results on sufficient conditions for positivity and asymptotic
stability of the network have been obtained in terms of
a number of linear matrix inequalities. In addition, the
positive constraint on control input is also considered for
bio-circuits design. Finally, a real biochemical networkmodel
was provided to illustrate the effectiveness and validity of the
obtained results.

Due to the transcription, translation, diffusion, and
translocation processes of genes, time delays are inevitable
in describing the dynamics of biochemical networks [7]. In
addition, biochemical networks are often subject to intrinsic
and extrinsic perturbations such as gene expression noises,
mutation and disturbance from uncertain environment, and
the fractal and chaotic features of systems [32]. Therefore,
how to design constrained robust bio-circuits for such bio-
chemical networkswill be an interesting and challenging task.
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The paper is devoted to the study of asymptotic properties of a real two-dimensional differential system with unbounded
nonconstant delays.The sufficient conditions for the stability and asymptotic stability of solutions are given.Usedmethods are based
on the transformation of the considered real system to one equation with complex-valued coefficients. Asymptotic properties are
studied by means of Lyapunov-Krasovskii functional. The results generalize some previous ones, where the asymptotic properties
for two-dimensional systems with one or more constant delays or one nonconstant delay were studied.

1. Introduction

There are a lot of papers dealing with the stability and asymp-
totic behaviour of 𝑛-dimensional real vector equations with
delay. Among others we should mention the recent results
[1–13]. Since the plane has special topological properties
different from those of 𝑛-dimensional space, where 𝑛 ≥ 3

or 𝑛 = 1, it is interesting to study asymptotic behaviour of
two-dimensional systems by using tools which are typical
and effective for two-dimensional systems. The convenient
tool is the combination of the method of complexification
and the method of Lyapunov-Krasovskii functional. Using
these techniques we obtain new and easy applicable results
on stability, asymptotic stability, or boundedness of solutions
of real two-dimensional differential system

𝑥


(𝑡) = A (𝑡) 𝑥 (𝑡)

+

𝑚

∑

𝑘=1

B
𝑘
(𝑡) 𝑥 (𝜃

𝑘
(𝑡))

+ ℎ (𝑡, 𝑥 (𝑡) , 𝑥 (𝜃
1
(𝑡)) , . . . , 𝑥 (𝜃

𝑚
(𝑡))) ,

(1)

where 𝜃
𝑘
(𝑡) are real functions, A(𝑡) = (𝑎

𝑖𝑗
(𝑡)), B

𝑘
(𝑡) =

(𝑏
𝑖𝑗𝑘

(𝑡)) (𝑖, 𝑗 = 1, 2; 𝑘 = 1, . . . , 𝑚) are real squarematrices, and

ℎ(𝑡, 𝑥, 𝑦) = (ℎ
1
(𝑡, 𝑥, 𝑦

1
, . . . , 𝑦

𝑚
), ℎ
2
(𝑡, 𝑥, 𝑦

1
, . . . , 𝑦

𝑚
)) is a real

vector function, 𝑥 = (𝑥
1
, 𝑥
2
), 𝑦
𝑘

= (𝑦
1𝑘

, 𝑦
2𝑘

). It is supposed
that the functions 𝜃

𝑘
, 𝑎
𝑖𝑗
are locally absolutely continuous on

[𝑡
0
,∞), 𝑏

𝑖𝑗𝑘
are locally Lebesgue integrable on [𝑡

0
,∞), and

the function ℎ satisfies Carathéodory conditions on [𝑡
0
,∞)×

R2(𝑚+1).
Delayed differential equations recently gain more impor-

tance in applications in science and real world. They can be
found in applications in medicine (control of drug therapies
and neurological, physiological, and epidemiological mod-
els), biology (predator-prey models and blowflies lifecycle),
chemistry (chemical kinetics), physics (private communi-
cation and signal masking), and engineering (machining
operation on a lathe). Equation (1) represents a generalization
of many of these models. Particularly, (1) in this general
form has an application in modeling of multiple regenerative
effect in tool chatter. Obtained results on stability give the
possibility to find the best spindle speeds and depth-of-cut
for themachines for chatter-free high-productivity operation.
For more details, see [14].

Themain idea of the investigation, the combination of the
method of complexification and the method of Lyapunov-
Krasovskii functional, was introduced for ordinary dif-
ferential equations in the paper by Ráb and Kalas [15].
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The principle was transferred to differential equations with
delay by Kalas and Baráková [16]. The results for several
constant delays can be found in papers by Rebenda [17, 18].
Differential equations with one nonconstant delay are studied
by Kalas [19] and Rebenda [20].

We extend such type of results to differential equations
with a finite number of nonconstant delays. We introduce the
transformation of the considered real system to one equation
with complex-valued coefficients. We present sufficient con-
ditions for stability and asymptotic stability of a solution and
the conditions under which all solutions tend to zero. The
applicability of the results is demonstrated with an example.

At the end of this introduction we append an overview of
notations used in the paper and the transformation of the real
system to one equation with complex-valued coefficients.

Consider the following:

R: set of all real numbers,

R
+
: set of all positive real numbers,

R0
+
: set of all nonnegative real numbers,

R
−
: set of all negative real numbers,

R0
−
: set of all nonpositive real numbers,

C: set of all complex numbers,

C: class of all continuous functions [−𝑟, 0] → C,

𝐴𝐶loc(𝐼,𝑀): class of all locally absolutely continuous
functions 𝐼 → 𝑀,

𝐿 loc(𝐼,𝑀): class of all locally Lebesgue integrable
functions 𝐼 → 𝑀,

𝐾(𝐼 × Ω,𝑀): class of all functions 𝐼 × Ω → 𝑀

satisfying Carathéodory conditions on 𝐼 × Ω,

Re 𝑧: real part of 𝑧,

Im 𝑧: imaginary part of 𝑧,

𝑧: complex conjugate of 𝑧.

Introducing complex variables 𝑧 = 𝑥
1
+ 𝑖𝑥
2
, 𝑤
1

= 𝑦
11

+

𝑖𝑦
12
, . . . , 𝑤

𝑚
= 𝑦
𝑚1

+ 𝑖𝑦
𝑚2
, we can rewrite system (1) into an

equivalent equation with complex-valued coefficients:

𝑧


(𝑡) = 𝑎 (𝑡) 𝑧 (𝑡) + 𝑏 (𝑡) 𝑧 (𝑡)

+

𝑚

∑

𝑘=1

[𝐴
𝑘
(𝑡) 𝑧 (𝜃

𝑘
(𝑡)) + 𝐵

𝑘
(𝑡) 𝑧 (𝜃

𝑘
(𝑡))]

+ 𝑔 (𝑡, 𝑧 (𝑡) , 𝑧 (𝜃
1
(𝑡)) , . . . , 𝑧 (𝜃

𝑚
(𝑡))) ,

(2)

where 𝜃
𝑘
∈ 𝐴𝐶loc(𝐽,R) for 𝑘 = 1, . . . , 𝑚, 𝐴

𝑘
, 𝐵
𝑘
∈ 𝐿 loc(𝐽,C),

𝑎, 𝑏 ∈ 𝐴𝐶loc(𝐽,C), 𝑔 ∈ 𝐾(𝐽 × C𝑚+1,C), 𝐽 = [𝑡
0
,∞).

The relations between the functions are as follows:

𝑎 (𝑡) =

1

2

(𝑎
11

(𝑡) + 𝑎
22

(𝑡)) +

𝑖

2

(𝑎
21

(𝑡) − 𝑎
12

(𝑡)) ,

𝑏 (𝑡) =

1

2

(𝑎
11

(𝑡) − 𝑎
22

(𝑡)) +

𝑖

2

(𝑎
21

(𝑡) + 𝑎
12

(𝑡)) ,

𝐴
𝑘
(𝑡) =

1

2

(𝑏
11𝑘

(𝑡) + 𝑏
22𝑘

(𝑡)) +

𝑖

2

(𝑏
21𝑘

(𝑡) − 𝑏
12𝑘

(𝑡)) ,

𝐵
𝑘
(𝑡) =

1

2

(𝑏
11𝑘

(𝑡) − 𝑏
22𝑘

(𝑡)) +

𝑖

2

(𝑏
21𝑘

(𝑡) + 𝑏
12𝑘

(𝑡)) ,

𝑔 (𝑡, 𝑧, 𝑤
1
, . . . , 𝑤

𝑚
)

= ℎ
1
(𝑡,

1

2

(𝑧 + 𝑧) ,

1

2𝑖

(𝑧 − 𝑧) ,

1

2

(𝑤
1
+ 𝑤
1
) , . . . ,

1

2𝑖

(𝑤
𝑚

− 𝑤
𝑚
))

+ 𝑖ℎ
2
(𝑡,

1

2

(𝑧 + 𝑧) ,

1

2𝑖

(𝑧 − 𝑧) ,

1

2

(𝑤
1
+ 𝑤
1
) ,

1

2𝑖

(𝑤
1
− 𝑤
1
) , . . . ,

1

2𝑖

(𝑤
𝑚

− 𝑤
𝑚
)) .

(3)

Conversely, putting

𝑎
11

(𝑡) = Re [𝑎 (𝑡) + 𝑏 (𝑡)] ,

𝑎
12

(𝑡) = Im [𝑏 (𝑡) − 𝑎 (𝑡)] ,

𝑎
21

(𝑡) = Im [𝑎 (𝑡) + 𝑏 (𝑡)] ,

𝑎
22

(𝑡) = Re [𝑎 (𝑡) − 𝑏 (𝑡)] ,

𝑏
11𝑘

(𝑡) = Re [𝐴
𝑘
(𝑡) + 𝐵

𝑘
(𝑡)] ,

𝑏
12𝑘

(𝑡) = Im [𝐵
𝑘
(𝑡) − 𝐴

𝑘
(𝑡)] ,

𝑏
21𝑘

(𝑡) = Im [𝐴
𝑘
(𝑡) + 𝐵

𝑘
(𝑡)] ,

𝑏
22𝑘

(𝑡) = Re [𝐴
𝑘
(𝑡) − 𝐵

𝑘
(𝑡)] ,

ℎ
1
(𝑡, 𝑥, 𝑦

1
, . . . , 𝑦

𝑚
)

= Re𝑔 (𝑡, 𝑥
1
+ 𝑖𝑥
2
, 𝑦
11

+ 𝑖𝑦
12
, . . . , 𝑦

𝑚1
+ 𝑖𝑦
𝑚2

) ,

ℎ
2
(𝑡, 𝑥, 𝑦

1
, . . . , 𝑦

𝑚
)

= Im𝑔 (𝑡, 𝑥
1
+ 𝑖𝑥
2
, 𝑦
11

+ 𝑖𝑦
12
, . . . , 𝑦

𝑚1
+ 𝑖𝑦
𝑚2

) ,

(4)

equation (2) can be written in real form (1) as well.

2. Preliminaries

We consider (2) in the case when
lim inf
𝑡→∞

(|Im 𝑎 (𝑡)| − |𝑏 (𝑡)|) > 0 (5)

and study the behavior of solutions of (2) under this
assumption. This situation corresponds to the case when the
equilibrium 0 of the autonomous homogeneous system

𝑥


= A𝑥, (6)
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whereA is supposed to be regular constant matrix, is a centre
or a focus.

This case is included in the case lim inf
𝑡→∞

(|𝑎(𝑡)| −

|𝑏(𝑡)|) > 0 considered in [21], but in this special case, we are
able to derive more useful results as we will see later in an
example. The idea is based on the well-known result that the
condition |𝑎| > |𝑏| in an autonomous equation 𝑧



= 𝑎𝑧 + 𝑏𝑧

ensures that zero is a focus, a centre, or a node while under
the condition | Im 𝑎| > |𝑏| zero can be just a focus or a centre.
Details are found in [15].

A simple example shows that, in some cases, the results
of this paper can be applied more suitably than those given in
[21].

Regarding (5) and since the delay functions 𝜃
𝑘
satisfy

lim
𝑡→∞

𝜃
𝑘
(𝑡) = ∞, there are numbers 𝑇

1
≥ 𝑡
0
, 𝑇 ≥ 𝑇

1
, and

𝜇 > 0 such that

|Im 𝑎 (𝑡)| > |𝑏 (𝑡)| + 𝜇 for 𝑡 ≥ 𝑇
1
,

𝑡 ≥ 𝜃
𝑘
(𝑡) ≥ 𝑇

1
for 𝑡 ≥ 𝑇 (𝑘 = 1, . . . , 𝑚) .

(7)

Denote

𝛾 (𝑡) = Im 𝑎 (𝑡) + √(Im 𝑎(𝑡))
2

− |𝑏 (𝑡)|
2sgn (Im 𝑎 (𝑡)) ,

𝑐 (𝑡) = −𝑖𝑏 (𝑡) .

(8)

Notice that, unlike the function 𝛾 introduced in [21], the
previously defined function 𝛾 need not be positive.

Since |𝛾(𝑡)| > | Im 𝑎(𝑡)| and |𝑐(𝑡)| = |𝑏(𝑡)|, the inequality




𝛾 (𝑡)





> |𝑐 (𝑡)| + 𝜇 (9)

is valid for 𝑡 ≥ 𝑇
1
. It can be easily verified that 𝛾, 𝑐 ∈

𝐴𝐶loc([𝑇1,∞),C).
For the rest of this section, denote that

̃
𝜗 (𝑡)

=

Re (𝛾 (𝑡) 𝛾


(𝑡) − 𝑐 (𝑡) 𝑐


(𝑡)) −






𝛾 (𝑡) 𝑐



(𝑡) − 𝛾


(𝑡) 𝑐 (𝑡)







𝛾
2
(𝑡) − |𝑐 (𝑡)|

2
.

(10)

The stability and asymptotic stability are studied under
the following assumptions.

(i) The numbers 𝑇
1
≥ 𝑡
0
, 𝑇 ≥ 𝑇

1
, and 𝜇 > 0 are such that

(7) holds.
(ii) There exist functions 𝜘, 𝜅

𝑘
,  : [𝑇,∞) → R such that





𝛾 (𝑡) 𝑔 (𝑡, 𝑧, 𝑤

1
, . . . , 𝑤

𝑚
)

+𝑐 (𝑡) 𝑔 (𝑡, 𝑧, 𝑤
1
, . . . , 𝑤

𝑚
)





≤ 𝜘 (𝑡)




𝛾 (𝑡) 𝑧 + 𝑐 (𝑡) 𝑧






+

𝑚

∑

𝑘=1

𝜅
𝑘
(𝑡)





𝛾 (𝜃
𝑘
(𝑡)) 𝑤

𝑘

+𝑐 (𝜃
𝑘
(𝑡)) 𝑤

𝑘





+  (𝑡) ,

(11)

for 𝑡 ≥ 𝑇, 𝑧, 𝑤
𝑘

∈ C (𝑘 = 1, . . . , 𝑚), where 𝜘,  ∈

𝐿 loc([𝑇,∞),R).

(iii) ̃
𝛽 ∈ 𝐴𝐶loc([𝑇,∞),R0

+
) is a function satisfying

𝜃


𝑘
(𝑡)

̃
𝛽 (𝑡) ≥

̃
𝜆
𝑘
(𝑡) a.e. on [𝑇,∞) , (12)

where ̃
𝜆
𝑘
is defined for 𝑡 ≥ 𝑇 by

̃
𝜆
𝑘
(𝑡) = 𝜅

𝑘
(𝑡) + (





𝐴
𝑘
(𝑡)





+





𝐵
𝑘
(𝑡)





)

×





𝛾 (𝑡)





+ |𝑐 (𝑡)|





𝛾 (𝜃
𝑘
(𝑡))





−





𝑐 (𝜃
𝑘
(𝑡))






.

(13)

(iv) There exists a function Λ̃ ∈ 𝐿 loc([𝑇,∞),R) which
satisfies the inequalities ̃

𝛽


(𝑡) ≤ Λ̃(𝑡)
̃
𝛽(𝑡), Θ̃(𝑡) ≤ Λ̃(𝑡)

for almost all 𝑡 ∈ [𝑇,∞), where the function Θ̃ is
defined by

Θ̃ (𝑡) = Re 𝑎 (𝑡) +
̃
𝜗 (𝑡) + 𝜘 (𝑡) + 𝑚

̃
𝛽 (𝑡) . (14)

If 𝐴
𝑘
, 𝐵
𝑘
, 𝜅
𝑘
, 𝜃


𝑘
are locally absolutely continuous on

[𝑇,∞) and ̃
𝜆
𝑘
(𝑡) ≥ 0, 𝜃



𝑘
(𝑡) > 0 on [𝑇,∞), the choice ̃

𝛽(𝑡) =

max
𝑘=1,...,𝑚

[
̃
𝜆
𝑘
(𝑡)(𝜃


𝑘
(𝑡))
−1

] is admissible in (iii).
From the assumption (i), it follows that







̃
𝜗






≤






Re (𝛾𝛾



− 𝑐𝑐


)






+






𝛾𝑐


− 𝛾


𝑐







𝛾
2
− |𝑐|
2

≤

(






𝛾






+






𝑐






) (





𝛾




+ |𝑐|)

𝛾
2
− |𝑐|
2

=






𝛾






+






𝑐











𝛾




− |𝑐|

≤

1

𝜇

(






𝛾






+






𝑐






) ;

(15)

hence, the function ̃
𝜗 is locally Lebesgue integrable on [𝑇,∞).

Moreover, if ̃
𝛽 ∈ 𝐴𝐶loc([𝑇,∞),R

+
) and𝜘 ∈ 𝐿 loc([𝑇,∞), then

we can choose

Λ̃ (𝑡) = max(Θ̃ (𝑡) ,

̃
𝛽


(𝑡)

̃
𝛽 (𝑡)

) , (16)

in (iv).
Finally, if (𝑡) ≡ 0 in (ii), then (2) has the trivial solution

𝑧(𝑡) ≡ 0. Notice that in this case the condition (ii) implies
that the functions 𝜘(𝑡), 𝜅

𝑘
(𝑡) are nonnegative on [𝑇,∞) for

𝑘 = 1, . . . , 𝑚, and due to this, ̃𝜆
𝑘
(𝑡) ≥ 0 on [𝑇,∞). The case

(𝑡) < 0 is omitted since it can be replaced by (𝑡) ≡ 0.

3. Main Results

The aim is to generalize the results for ordinary differential
equations published in [15] as well as the results contained
in [16] (one constant delay), [18] (a finite number of constant
delays), and [20] (one nonconstant delay). In the proof of the
crucial theorem, we use the following auxiliary result.
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Lemma 1. Let 𝑎
1
, 𝑎
2
, 𝑏
1
, 𝑏
2
∈ C and |𝑎

2
| > |𝑏
2
|. Then

Re𝑎1𝑧 + 𝑏
1
𝑧

𝑎
2
𝑧 + 𝑏
2
𝑧

≤

Re (𝑎
1
𝑎
2
− 𝑏
1
𝑏
2
) +





𝑎
1
𝑏
2
− 𝑎
2
𝑏
1










𝑎
2






2

−




𝑏
2






2
, (17)

for 𝑧 ∈ C, 𝑧 ̸= 0.

The proof of Lemma 1 can be found, for example, in [15,
page 131] or [17, page 101].

Theorem 2. Let the conditions (i), (ii), (iii), and (iv) hold and
(𝑡) ≡ 0.

(a) If

lim sup
𝑡→∞

∫

𝑡

Λ̃ (𝑠) 𝑑𝑠 < ∞, (18)

then the trivial solution of (2) is stable on [𝑇,∞).

(b) If

lim
𝑡→∞

∫

𝑡

Λ̃ (𝑠) 𝑑𝑠 = −∞, (19)

then the trivial solution of (2) is asymptotically stable
on [𝑇,∞).

Proof. Choose arbitrary 𝑡
1

≥ 𝑇. Let 𝑧(𝑡) be any solution of
(2) satisfying the condition 𝑧(𝑡) = 𝑧

0
(𝑡) for 𝑡 ∈ [𝑇

1
, 𝑡
1
], where

𝑧
0
(𝑡) is a continuous complex-valued initial function defined

on 𝑡 ∈ [𝑇
1
, 𝑡
1
]. Consider the Lyapunov functional

𝑉 (𝑡) = 𝑈 (𝑡) +
̃
𝛽 (𝑡)

𝑚

∑

𝑘=1

∫

𝑡

𝜃𝑘(𝑡)

𝑈 (𝑠) 𝑑𝑠, (20)

where

𝑈 (𝑡) =




𝛾 (𝑡) 𝑧 (𝑡) + 𝑐 (𝑡) 𝑧 (𝑡)





. (21)

To simplify the computations, denote that 𝑤
𝑘
(𝑡) =

𝑧(𝜃
𝑘
(𝑡)) andwrite the functions of variable 𝑡without brackets,

for example, 𝑧 instead of 𝑧(𝑡).
From (20) we get

𝑉


= 𝑈


+
̃
𝛽


𝑚

∑

𝑘=1

∫

𝑡

𝜃𝑘(𝑡)

𝑈 (𝑠) 𝑑𝑠 + 𝑚
̃
𝛽





𝛾𝑧 + 𝑐 𝑧






−

𝑚

∑

𝑘=1

𝜃


𝑘

̃
𝛽





𝛾 (𝜃
𝑘
) 𝑤
𝑘
+ 𝑐 (𝜃

𝑘
) 𝑤
𝑘





,

(22)

for almost all 𝑡 ≥ 𝑡
1
for which 𝑧(𝑡) is defined and𝑈



(𝑡) exists.
Denote thatK = {𝑡 ≥ 𝑡

1
: 𝑧(𝑡) exists, 𝑈(𝑡) ̸= 0} andM =

{𝑡 ≥ 𝑡
1

: 𝑧(𝑡) exists, 𝑈(𝑡) = 0}. It is clear that the derivative
𝑈


(𝑡) exists for almost all 𝑡 ∈ K; hence, we focus on the set
M.

In view of (9) we have 𝑧(𝑡) = 0 for 𝑡 ∈ M. For almost all
𝑡 ∈ M, we compute

𝑈


±
(𝑡) = lim
𝜏→ 𝑡±

𝑈 (𝜏) − 𝑈 (𝑡)

𝜏 − 𝑡

= lim
𝜏→ 𝑡±

𝑈 (𝜏)

𝜏 − 𝑡

= lim
𝜏→ 𝑡±





𝛾 (𝜏) [𝑧 (𝜏) − 𝑧 (𝑡)] − 𝑐 (𝜏) [𝑧 (𝜏) − 𝑧 (𝑡)]






𝜏 − 𝑡

= ±






𝛾 (𝑡) 𝑧



(𝑡) + 𝑐 (𝑡) 𝑧


(𝑡)







= ±




𝛾 (𝑡) 𝑔

∗

(𝑡) + 𝑐 (𝑡) 𝑔
∗

(𝑡)




,

(23)

where

𝑔
∗

(𝑡) =

𝑚

∑

𝑘=1

(𝐴
𝑘
(𝑡) 𝑤
𝑘
(𝑡) + 𝐵

𝑘
(𝑡) 𝑤
𝑘
(𝑡))

+ 𝑔 (𝑡, 0, 𝑤
1
(𝑡) , . . . , 𝑤

𝑚
(𝑡)) .

(24)

Hence, 𝑈 has one-sided derivatives a.e. inM. According
to [22, Chapter IX., Theorem (1.1)] or [23], the set of all 𝑡

such that 𝑈


+
(𝑡) ̸=𝑈



−
(𝑡) can be at most countable; thus, the

derivative 𝑈
 exists for almost all 𝑡 ∈ M, and for these 𝑡,

𝑈


(𝑡) = 0.
In particular, the derivative 𝑈

 exists for almost all 𝑡 ≥ 𝑡
1

for which 𝑧(𝑡) is defined; thus, (22) holds for almost all 𝑡 ≥ 𝑡
1

for which 𝑧(𝑡) is defined.
Now return the attention to the setK. For almost all 𝑡 ∈

K, it holds that𝑈𝑈


= 𝑈(√(𝛾𝑧 + 𝑐 𝑧)(𝛾 𝑧 + 𝑐𝑧))



= Re[(𝛾 𝑧+

𝑐𝑧)(𝛾


𝑧+𝛾𝑧


+𝑐


𝑧+𝑐 𝑧


)]. As 𝑧(𝑡) is a solution of (2), we have

𝑈𝑈


= Re{(𝛾 𝑧 + 𝑐𝑧)

× [𝛾


𝑧 + 𝑐


𝑧

+ 𝛾(𝑎𝑧 + 𝑏𝑧 +

𝑚

∑

𝑘=1

(𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘
) + 𝑔)

+𝑐(𝑎 𝑧 + 𝑏𝑧 +

𝑚

∑

𝑘=1

(𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘
) + 𝑔)]}

= Re{(𝛾𝑧 + 𝑐𝑧)

× [𝛾


𝑧 + 𝑐


𝑧 + (𝛾𝑎 + 𝑐𝑏) 𝑧

+ (𝛾𝑏 + 𝑐𝑎) 𝑧
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+ 𝛾(

𝑚

∑

𝑘=1

(𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘
) + 𝑔)

+𝑐(

𝑚

∑

𝑘=1

(𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘
) + 𝑔)]} ,

(25)

for almost all 𝑡 ∈ K.
Short computation gives (𝛾𝑎+𝑐𝑏)𝑐 = (𝛾𝑏+𝑐𝑎)𝛾, and from

this we get

𝑈𝑈


≤ Re{(𝛾𝑧 + 𝑐𝑧) (𝛾𝑎 + 𝑐𝑏) (𝑧 +

𝑐

𝛾

𝑧)}

+ Re{(𝛾𝑧 + 𝑐𝑧) [𝛾

𝑚

∑

𝑘=1

(𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘
)

+ 𝑐

𝑚

∑

𝑘=1

(𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘
)]}

+ Re [(𝛾𝑧 + 𝑐𝑧) (𝛾𝑔 + 𝑐𝑔)]

+ Re [(𝛾𝑧 + 𝑐𝑧) (𝛾


𝑧 + 𝑐


𝑧)]

≤ 𝑈
2 Re(𝑎 +

𝑐

𝛾

𝑏)

+ 𝑈 (




𝛾




+ |𝑐|) (

𝑚

∑

𝑘=1





𝐴
𝑘
𝑤
𝑘
+ 𝐵
𝑘
𝑤
𝑘





)

+ 𝑈




𝛾𝑔 + 𝑐𝑔





+ 𝑈
2R𝑒

𝛾


𝑧 + 𝑐


𝑧

𝛾𝑧 + 𝑐𝑧

,

(26)

for almost all 𝑡 ∈ K.
Applying Lemma 1 to the last term, we obtain

Re
𝛾


𝑧 + 𝑐


𝑧

𝛾𝑧 + 𝑐𝑧

≤
̃
𝜗. (27)

Using this inequality together with (13), assumption (ii),
and the relation Re (𝑎 + (𝑐/𝛾)𝑏) = Re 𝑎, we obtain

𝑈𝑈


≤ 𝑈
2

(Re 𝑎 +
̃
𝜗 + 𝜘)

+ 𝑈

𝑚

∑

𝑘=1

(𝜅
𝑘





𝛾 (𝜃
𝑘
) 𝑤
𝑘
+ 𝑐 (𝜃

𝑘
) 𝑤
𝑘





)

+ 𝑈 (




𝛾




+ |𝑐|)

× (

𝑚

∑

𝑘=1





𝐴
𝑘










𝑤
𝑘





+





𝐵
𝑘










𝑤
𝑘










𝛾 (𝜃
𝑘
)




−





𝑐 (𝜃
𝑘
)





(




𝛾 (𝜃
𝑘
)




−





𝑐 (𝜃
𝑘
)




))

≤ 𝑈
2

(Re 𝑎 +
̃
𝜗 + 𝜘)

+ 𝑈{

𝑚

∑

𝑘=1

[𝜅
𝑘
+ (





𝐴
𝑘





+





𝐵
𝑘





)





𝛾




+ |𝑐|





𝛾 (𝜃
𝑘
)




−





𝑐 (𝜃
𝑘
)





]

×




𝛾 (𝜃
𝑘
) 𝑤
𝑘
+ 𝑐 (𝜃

𝑘
) 𝑤
𝑘





}

≤ 𝑈
2

(Re 𝑎 +
̃
𝜗 + 𝜘)

+ 𝑈

𝑚

∑

𝑘=1

̃
𝜆
𝑘





𝛾 (𝜃
𝑘
) 𝑤
𝑘
+ 𝑐 (𝜃
𝑘
) 𝑤
𝑘





,

(28)

for almost all 𝑡 ∈ K.
Consequently,

𝑈


≤ 𝑈 (Re 𝑎 +
̃
𝜗 + 𝜘) +

𝑚

∑

𝑘=1

̃
𝜆
𝑘





𝛾 (𝜃
𝑘
) 𝑤
𝑘
+ 𝑐 (𝜃

𝑘
) 𝑤
𝑘





,

(29)

for almost all 𝑡 ∈ K.
Recalling that 𝑈(𝑡) = 0 for almost all 𝑡 ∈ M, we can see

that inequality (29) is valid for almost all 𝑡 ≥ 𝑡
1
for which 𝑧(𝑡)

is defined.
From (29) we have

𝑉


≤ 𝑈 (Re 𝑎 +
̃
𝜗 + 𝜘 + 𝑚

̃
𝛽)

+

𝑚

∑

𝑘=1

(
̃
𝜆
𝑘
− 𝜃


𝑘

̃
𝛽)





𝛾 (𝜃
𝑘
) 𝑤
𝑘
+ 𝑐 (𝜃

𝑘
) 𝑤
𝑘






+
̃
𝛽


𝑚

∑

𝑘=1

∫

𝑡

𝜃𝑘(𝑡)





𝛾 (𝑠) 𝑧 (𝑠) + 𝑐 (𝑠) 𝑧 (𝑠)





𝑑𝑠.

(30)

As ̃
𝛽(𝑡) fulfills condition (12), we obtain

𝑉


(𝑡) ≤ 𝑈 (𝑡) Θ̃ (𝑡)

+
̃
𝛽


(𝑡)

𝑚

∑

𝑘=1

∫

𝑡

𝜃𝑘(𝑡)





𝛾 (𝑠) 𝑧 (𝑠) + 𝑐 (𝑠) 𝑧 (𝑠)





𝑑𝑠,

(31)

Hence,

𝑉


(𝑡) − Λ̃ (𝑡) 𝑉 (𝑡) ≤ 0, (32)

for almost all 𝑡 ≥ 𝑡
1
for which the solution 𝑧(𝑡) exists.

Notice that, with respect to (9),

𝑉 (𝑡) ≥ (




𝛾 (𝑡)





− |𝑐 (𝑡)|) |𝑧 (𝑡)| ≥ 𝜇 |𝑧 (𝑡)| , (33)

for all 𝑡 ≥ 𝑡
1
for which 𝑧(𝑡) is defined.

Suppose that condition (18) holds, and choose arbitrary
𝜀 > 0. Put

Δ = max
𝑠∈[𝑇1 ,𝑡1]

(




𝛾 (𝑠)





+ |𝑐 (𝑠)|) , 𝐿 = sup

𝑇≤𝑡<∞

∫

𝑡

𝑇

Λ̃ (𝑠) 𝑑𝑠,

𝛿 = 𝜇𝜀Δ
−1

(1 + 𝑚
̃
𝛽 (𝑡
1
) (𝑡
1
− 𝑇
1
))

−1

exp{∫

𝑡1

𝑇

Λ̃ (𝑠) 𝑑𝑠 − 𝐿} ,

(34)



6 Abstract and Applied Analysis

where 𝜇 > 0, 𝑇
1

≥ 𝑡
0
, and 𝑇 ≥ 𝑇

1
are the numbers from

condition (i).
If the initial function 𝑧

0
(𝑡) of the solution 𝑧(𝑡) satisfies

max
𝑠∈[𝑇1 ,𝑡1]

|𝑧
0
(𝑠)| < 𝛿, then the multiplication of (32) by

exp{− ∫

𝑡

𝑡1

Λ̃(𝑠)𝑑𝑠} and the integration over [𝑡
1
, 𝑡] yield

𝑉 (𝑡) exp{−∫

𝑡

𝑡1

Λ̃ (𝑠) 𝑑𝑠} − 𝑉 (𝑡
1
) ≤ 0, (35)

for all 𝑡 ≥ 𝑡
1
for which 𝑧(𝑡) is defined. From (33) and (35) we

get

𝜇 |𝑧 (𝑡)| ≤ 𝑉 (𝑡) ≤ 𝑉 (𝑡
1
) exp{∫

𝑡

𝑡1

Λ̃ (𝑠) 𝑑𝑠}

≤ [ (




𝛾 (𝑡
1
)




+





𝑐 (𝑡
1
)




)




𝑧 (𝑡
1
)





+
̃
𝛽 (𝑡
1
) max
𝑠∈[𝑇1 ,𝑡1]

|𝑧 (𝑠)|

×(

𝑚

∑

𝑘=1

∫

𝑡1

𝜃𝑘(𝑡1)

(




𝛾 (𝑠)





+ |𝑐 (𝑠)|) 𝑑𝑠)]

× exp{∫

𝑡

𝑡1

Λ̃ (𝑠) 𝑑𝑠}

≤ [Δ max
𝑠∈[𝑇1,𝑡1]





𝑧
0
(𝑠)






+
̃
𝛽 (𝑡
1
) max
𝑠∈[𝑇1 ,𝑡1]





𝑧
0
(𝑠)





Δ

×

𝑚

∑

𝑘=1

(𝑡
1
− 𝜃
𝑘
(𝑡
1
))]

× exp{∫

𝑡

𝑡1

Λ̃ (𝑠) 𝑑𝑠} ;

(36)

that is,

𝜇 |𝑧 (𝑡)| ≤ Δ max
𝑠∈[𝑇1 ,𝑡1]





𝑧
0
(𝑠)





(1 + 𝑚

̃
𝛽 (𝑡
1
) (𝑡
1
− 𝑇
1
))

× exp{𝐿 − ∫

𝑡1

𝑇

Λ̃ (𝑠) 𝑑𝑠} < 𝜇𝜀.

(37)

Thus, we have |𝑧(𝑡)| < 𝜀 for all 𝑡 ≥ 𝑡
1
, and we conclude

that the trivial solution of (2) is stable.
Now suppose that condition (19) is valid. Then, in view

of the first part of Theorem 2, for 𝐾 > 0, there is a 𝜌 > 0

such that max
𝑠∈[𝑇1 ,𝑡1]

|𝑧
0
(𝑠)| < 𝜌 implies that the solution 𝑧(𝑡)

of (2) exists for all 𝑡 ≥ 𝑡
1
and satisfies |𝑧(𝑡)| < 𝐾, where 𝐾 is

arbitrary real constant. Hence, from this and (33), we have

|𝑧 (𝑡)| ≤ 𝜇
−1

𝑉 (𝑡) ≤ 𝜇
−1

𝑉 (𝑡
1
) exp{∫

𝑡

𝑡1

Λ̃ (𝑠) 𝑑𝑠} , (38)

for all 𝑡 ≥ 𝑡
1
. This inequality, with condition (19), gives

lim
𝑡→∞

𝑧 (𝑡) = 0, (39)

which completes the proof.

Remark 3. Theorem 2 represents a generalization of previous
results.

If we take 𝐴
1
(𝑡) = 𝐴(𝑡), 𝐴

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, 𝐵

1
(𝑡) =

𝐵(𝑡), 𝐵
𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, and 𝜃

1
(𝑡) = 𝑡 − 𝑟, where 𝑟 > 0,

we get Theorem 4 from [16].
If we take 𝜃

𝑘
(𝑡) = 𝑡 − 𝑟

𝑘
, where 𝑟

𝑘
> 0, 𝑘 = 1, . . . , 𝑚, we

obtainTheorem 1 from [18].
If we take 𝐴

1
(𝑡) = 𝐴(𝑡), 𝐴

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚,

𝐵
1
(𝑡) = 𝐵(𝑡), 𝐵

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, and 𝜃

1
(𝑡) = 𝜃(𝑡),

we get Theorem 2.2 from [20].

The next theorem involves the function  in (ii); thus,
it is more general than Theorem 2. A part of the proof of
Theorem 2 is utilized in the proof of Theorem 4.

Theorem 4. Let the assumptions (i), (ii), (iii), and (iv) hold
and

𝑉 (𝑡) =




𝛾 (𝑡) 𝑧 (𝑡) + 𝑐 (𝑡) 𝑧 (𝑡)






+
̃
𝛽 (𝑡)

𝑚

∑

𝑘=1

∫

𝑡

𝜃𝑘(𝑡)





𝛾 (𝑠) 𝑧 (𝑠) + 𝑐 (𝑠) 𝑧 (𝑠)





𝑑𝑠,

(40)

where 𝑧(𝑡) is any solution of (2) defined for 𝑡 → ∞. Then

𝜇 |𝑧 (𝑡)| ≤ 𝑉 (𝑠) exp(∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉)

+ ∫

𝑡

𝑠

 (𝜉) exp(∫

𝑡

𝜉

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜉,

(41)

for 𝑡 ≥ 𝑠 ≥ 𝑡
1
, where 𝑡

1
≥ 𝑇.

Proof. Following the proof of Theorem 2, we have

𝑉


(𝑡) ≤




𝛾 (𝑡) 𝑧 (𝑡) + 𝑐 (𝑡) 𝑧 (𝑡)





Θ (𝑡)

+
̃
𝛽


(𝑡)

𝑚

∑

𝑘=1

∫

𝑡

𝜃𝑘(𝑡)





𝛾 (𝑠) 𝑧 (𝑠) + 𝑐 (𝑠) 𝑧 (𝑠)





𝑑𝑠

+  (𝑡)

≤ Λ̃ (𝑡) 𝑉 (𝑡) +  (𝑡) ,

(42)

a.e. on [𝑡
1
,∞). Using this inequality, we get

𝑉


(𝑡) − Λ̃ (𝑡) 𝑉 (𝑡) ≤  (𝑡) , (43)

a.e. on [𝑡
1
,∞). Multiplying (43) by exp(− ∫

𝑡

𝑠

Λ̃(𝜉)𝑑𝜉) gives

[𝑉 (𝑡) exp(−∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉)] ≤  (𝑡) exp(−∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉) ,

(44)

a.e. on [𝑡
1
,∞). Integration over [𝑠, 𝑡] yields

𝑉 (𝑡) exp(−∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉) − 𝑉 (𝑠)

≤ ∫

𝑡

𝑠

 (𝜉) exp(−∫

𝜉

𝑠

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜉,

(45)
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and multiplying (45) by exp(∫𝑡
𝑠

Λ̃(𝜉)𝑑𝜉), we obtain

𝑉 (𝑡) ≤ 𝑉 (𝑠) exp(∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉)

+ ∫

𝑡

𝑠

 (𝜉) exp(∫

𝑡

𝜉

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜉.

(46)

The statement now follows from (33).

Remark 5. Theorem 4 generalizes theorems contained in
previous papers.

If we take 𝐴
1
(𝑡) = 𝐴(𝑡), 𝐴

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, 𝐵

1
(𝑡) =

𝐵(𝑡), 𝐵
𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, and 𝜃

1
(𝑡) = 𝑡 − 𝑟, where 𝑟 > 0,

we get Theorem 2 from [16].
If we take 𝜃

𝑘
(𝑡) = 𝑡 − 𝑟

𝑘
, where 𝑟

𝑘
> 0, 𝑘 = 1, . . . , 𝑚, we

obtainTheorem 2 from [18].
If we take 𝐴

1
(𝑡) = 𝐴(𝑡), 𝐴

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚,

𝐵
1
(𝑡) = 𝐵(𝑡), 𝐵

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, and 𝜃

1
(𝑡) = 𝜃(𝑡),

we get Theorem 2.7 from [20].

The last of the main propositions gives the conditions
under which all solutions of (2) tend to zero.

Theorem 6. Let the assumptions (i), (ii), (iii), and (iv) be sat-
isfied. Let Λ̃(𝑡) ≤ 0 a.e. on [𝑇

∗

,∞), where 𝑇
∗

∈ [𝑇,∞). If

lim
𝑡→∞

∫

𝑡

Λ̃ (𝑠) 𝑑𝑠 = −∞,  (𝑡) = 𝑜 (Λ̃ (𝑡)) , (47)

then any solution 𝑧(𝑡) of (2) existing for 𝑡 → ∞ satisfies

lim
𝑡→∞

𝑧 (𝑡) = 0. (48)

Proof. Choose arbitrary 𝜀 > 0. According to (47), there is 𝑠 ≥

𝑇
∗ such that (𝑡) ≤ (1/2)𝜇𝜀|Λ̃(𝑡)| for 𝑡 ≥ 𝑠 and

∫

𝑡

𝑠

 (𝜏) exp(∫

𝑡

𝜏

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜏

≤

𝜇𝜀

2

∫

𝑡

𝑠

[−Λ̃ (𝜏)] exp(∫

𝑡

𝜏

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜏

=

𝜇𝜀

2

∫

𝑡

𝑠

(

𝑑

𝑑𝜏

[exp(∫

𝑡

𝜏

Λ̃ (𝜎) 𝑑𝜎)])𝑑𝜏

=

𝜇𝜀

2

[exp(∫

𝑡

𝜏

Λ̃ (𝜎) 𝑑𝜎)]

𝑡

𝑠

=

𝜇𝜀

2

[1 − exp(∫

𝑡

𝑠

Λ̃ (𝜏) 𝑑𝜏)] <

𝜇𝜀

2

,

(49)

for 𝑡 ≥ 𝑠. From (47) we have exp(∫𝑡
𝑠

Λ̃(𝜏)𝑑𝜏) → 0 as 𝑡 → ∞;
hence, there is 𝑆 ≥ 𝑠 such that exp(∫𝑡

𝑠

Λ̃(𝜏)𝑑𝜏) < 𝜇𝜀(2𝑉(𝑠))
−1

for 𝑡 ≥ 𝑆. Considering this fact and (41), we get

𝜇 |𝑧 (𝑡)| < 𝑉 (𝑠)

𝜇𝜀

2𝑉 (𝑠)

+

𝜇𝜀

2

= 𝜇𝜀, (50)

for 𝑡 ≥ 𝑆. This completes the proof.

Remark 7. Theorem 6 is a generalization of results published
in the papers [16, 18, 20].

If we take 𝐴
1
(𝑡) = 𝐴(𝑡), 𝐴

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, 𝐵

1
(𝑡) =

𝐵(𝑡), 𝐵
𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, and 𝜃

1
(𝑡) = 𝑡 − 𝑟, where 𝑟 > 0,

we get Theorem 3 from [16].
If we take 𝜃

𝑘
(𝑡) = 𝑡 − 𝑟

𝑘
, where 𝑟

𝑘
> 0, 𝑘 = 1, . . . , 𝑚, we

obtainTheorem 3 from [18].
If we take 𝐴

1
(𝑡) = 𝐴(𝑡), 𝐴

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚,

𝐵
1
(𝑡) = 𝐵(𝑡), 𝐵

𝑘
≡ 0, for 𝑘 = 2, . . . , 𝑚, and 𝜃

1
(𝑡) = 𝜃(𝑡),

we get Theorem 2.14 from [20].

4. Corollaries and Examples

FromTheorem 2 we easily obtain several corollaries. We give
an example which shows that it is worth to consider the case
(5).

Corollary 8. Let 𝑎(𝑡) ≡ 𝑎 ∈ C, 𝑏(𝑡) ≡ 𝑏 ∈ C, | Im 𝑎| > |𝑏|.
Suppose that lim

𝑡→∞
𝜃
𝑘
(𝑡) = ∞, 𝜃

𝑘
(𝑡) ≤ 𝑡, for 𝑡 ≥ 𝑇

1
, where

𝑇
1
≥ 𝑡
0
. Let 𝜌

0
, 𝜌
1
, . . . , 𝜌

𝑚
: [𝑇
1
,∞) → R be such that





𝑔 (𝑡, 𝑧, 𝑤

1
, . . . , 𝑤

𝑚
)




≤ 𝜌
0
(𝑡) |𝑧| +

𝑚

∑

𝑘=1

𝜌
𝑘
(𝑡)





𝑤
𝑘





, (51)

for 𝑡 ≥ 𝑇
1
, |𝑧| < 𝑅, |𝑤

𝑘
| < 𝑅, 𝑘 = 1, . . . , 𝑚, 𝑅 > 0 and 𝜌

0
∈

𝐿 loc([𝑇1,∞),R).
Let ̃

𝛽 ∈ 𝐴𝐶loc([𝑇1,∞),R
+
) satisfy

𝜃


𝑘
(𝑡)

̃
𝛽 (𝑡)

≥ (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

(𝜌
𝑘
(𝑡) +





𝐴
𝑘
(𝑡)





+





𝐵
𝑘
(𝑡)





) ,

(52)

a.e. on [𝑇
1
,∞) for 𝑘 = 1, . . . , 𝑚. If

lim sup
𝑡→∞

∫

𝑡

max(Re 𝑎 + (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

𝜌
0
(𝑠)

+𝑚
̃
𝛽 (𝑠) ,

̃
𝛽


(𝑠)

̃
𝛽 (𝑠)

) 𝑑𝑠 < ∞,

(53)

then the trivial solution of (2) is stable. If

lim
𝑡→∞

∫

𝑡

max(Re 𝑎 + (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

𝜌
0
(𝑠)

+𝑚
̃
𝛽 (𝑠) ,

̃
𝛽


(𝑠)

̃
𝛽 (𝑠)

) 𝑑𝑠 = −∞,

(54)

then the trivial solution of (2) is asymptotically stable.

Proof. Choose 𝑇 ≥ 𝑇
1
such that 𝜃

𝑘
(𝑡) ≥ 𝑇

1
for 𝑡 ≥ 𝑇, 𝑘 =

1, . . . , 𝑚. Denote that 𝑧 = 𝑧(𝑡) and 𝑤
𝑘
= 𝑧(𝜃
𝑘
(𝑡)) again. Since
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𝑎, 𝑏 ∈ C are constants, then also 𝛾 and 𝑐 are constants, and we
have ̃

𝜗(𝑡) ≡ 0. Using condition (51) we get





𝛾𝑔 (𝑡, 𝑧, 𝑤

1
, . . . , 𝑤

𝑚
) + 𝑐𝑔 (𝑡, 𝑧, 𝑤

1
, . . . , 𝑤

𝑚
)





≤ (




𝛾




+ |𝑐|) (𝜌

0
(𝑡) |𝑧| +

𝑚

∑

𝑘=1

𝜌
𝑘
(𝑡)





𝑤
𝑘





)

=





𝛾




+ |𝑐|





𝛾




− |𝑐|

(




𝛾




− |𝑐|) (𝜌

0
(𝑡) |𝑧| +

𝑚

∑

𝑘=1

𝜌
𝑘
(𝑡)





𝑤
𝑘





)

≤





𝛾




+ |𝑐|





𝛾




− |𝑐|

(𝜌
0
(𝑡)





𝛾𝑧 + 𝑐𝑧





+

𝑚

∑

𝑘=1

𝜌
𝑘
(𝑡)





𝛾𝑤
𝑘
+ 𝑐𝑤
𝑘





) ,

(55)

and it follows that condition (ii) holds with

𝜘 (𝑡) =





𝛾




+ |𝑐|





𝛾




− |𝑐|

𝜌
0
(𝑡) , 𝜅

𝑘
(𝑡) =





𝛾




+ |𝑐|





𝛾




− |𝑐|

𝜌
𝑘
(𝑡) , (56)

and (𝑡) ≡ 0.
Condition (53) implies that Re 𝑎 ≤ 0. Since





𝛾




+ |𝑐|





𝛾




− |𝑐|

=

|Im 𝑎| + √|Im 𝑎|
2

− |𝑏|
2

+ |𝑏|

|Im 𝑎| + √|Im 𝑎|
2

− |𝑏|
2

− |𝑏|

= (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

,

(57)

in view of (14) we obtain

̃
𝜆
𝑘
(𝑡) = (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

× {𝜌
𝑘
(𝑡) +





𝐴
𝑘
(𝑡)





+





𝐵
𝑘
(𝑡)





} ,

Θ̃ (𝑡) =Re 𝑎 +





𝛾




+ |𝑐|





𝛾




− |𝑐|

𝜌
0
(𝑡) + 𝑚

̃
𝛽 (𝑡)

=Re 𝑎 + (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

𝜌
0
(𝑡) + 𝑚

̃
𝛽 (𝑡) ,

(58)

and the assertion follows from (16) andTheorem 2.

Now we show an example that, under certain circum-
stances, Corollary 8 is more useful than Corollary 1 from [21].

Example 9. Consider (2), where 𝑎(𝑡) ≡ −√5 + 2𝑖, 𝑏(𝑡) ≡ 1,
𝐴
𝑘
(𝑡) ≡ 0, 𝐵

𝑘
(𝑡) ≡ 0, for 𝑘 = 1, . . . , 𝑚, and

𝑔 (𝑡, 𝑧, 𝑤
1
, . . . , 𝑤

𝑚
) =

2

√3

𝑒
𝑖𝑡

𝑧 +

𝑚

∑

𝑘=1

𝑘

2𝑚𝑡

(√15 − √14) 𝑒
−𝑡

𝑤
𝑘
.

(59)

Assume that 𝑡
0

= 𝑚 and 𝑅 = ∞, 𝜃
𝑘
(𝑡) = 𝑘 ln 𝑡. Put 𝑇 =

𝑒
𝑡0

= 𝑒
𝑚.Then, 𝜌

0
(𝑡) ≡ 2/√3, 𝜌

𝑘
(𝑡) = (𝑘/2𝑚𝑡)(√15−√14)𝑒

−𝑡.
We have

max(

|𝑎| − |𝑏|

|𝑎|

Re 𝑎 + (

|𝑎| + |𝑏|

|𝑎| − |𝑏|

)

1/2

𝜌
0
(𝑡) + 𝑚𝛽 (𝑡) ,

𝛽


(𝑡)

𝛽 (𝑡)

)

= max(−

2

3

√5 + √2

2

√3

+ 𝑚𝛽 (𝑡) ,

𝛽


(𝑡)

𝛽 (𝑡)

)

≥

2

3

(√6 − √5) > 0,

(60)

for

𝜃


𝑘
(𝑡) 𝛽 (𝑡) =

𝑘

𝑡

𝛽 (𝑡) ≥ (

|𝑎| + |𝑏|

|𝑎| − |𝑏|

)

1/2

× {𝜌
𝑘
(𝑡) +





𝐴
𝑘
(𝑡)





+





𝐵
𝑘
(𝑡)





}

=

𝑘

𝑚𝑡√2

(√15 − √14) 𝑒
−𝑡

,

(61)

where 𝑘 ∈ {1, . . . , 𝑚}; hence, we cannot apply Corollary 1
from [21].

On the other hand, if we use

𝜃


𝑘
(𝑡)

̃
𝛽 (𝑡) =

𝑘

𝑡

̃
𝛽 (𝑡) =

𝑘√3

2𝑚𝑡

(√15 − √14) 𝑒
−𝑡

≥ (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

{𝜌
𝑘
(𝑡) +





𝐴
𝑘
(𝑡)





+





𝐵
𝑘
(𝑡)





} ,

(62)

where 𝑘 ∈ {1, . . . , 𝑚}, we have

max(Re 𝑎 + (

|Im 𝑎| + |𝑏|

|Im 𝑎| − |𝑏|

)

1/2

𝜌
0
(𝑡) + 𝑚

̃
𝛽 (𝑡) ,

̃
𝛽


(𝑡)

̃
𝛽 (𝑡)

)

= max(−√5 + 2 + 𝑚

√3

2𝑚

(√15 − √14) 𝑒
−𝑡

, −1)

≤ −√5 + 2 +

√3

2

(√15 − √14) < −

12

100

< 0;

(63)

thus, Corollary 8 guarantees the stability and also asymptotic
stability of the trivial solution of the considered equation.

The following corollary gives sufficient conditions for
stability of the trivial solution of (2).

Corollary 10. Assume that the conditions (i), (ii), and (iii) are
valid with (𝑡) ≡ 0. If ̃

𝛽(𝑡) is monotone and bounded on [𝑇,∞)

and if

lim sup
𝑡→∞

∫

𝑡

[Θ̃ (𝑠)]
+

𝑑𝑠 < ∞, (64)

where [Θ̃(𝑡)]
+

= max{Θ̃(𝑡), 0}, then the trivial solution of (2)
is stable.



Abstract and Applied Analysis 9

Proof. Suppose firstly that ̃
𝛽 is nonincreasing on [𝑇,∞).

Then, ̃
𝛽


≤ 0 a.e. on [𝑇,∞).
If ̃

𝛽(𝑇
2
) = 0 for some 𝑇

2
≥ 𝑇, then ̃

𝛽(𝑡) ≡ 0 on [𝑇
2
,∞).

Consequently, Λ̃ has to satisfy only the inequality Θ̃(𝑡) ≤ Λ̃(𝑡)

a.e. on [𝑇
2
,∞), so we may choose Λ̃(𝑡) = Θ̃(𝑡) on [𝑇

2
,∞). It

follows that Λ̃(𝑡) = Θ̃(𝑡) ≤ max{Θ̃(𝑡), 0} = [Θ̃(𝑡)]
+
.

On the other hand, if ̃
𝛽(𝑡) > 0 on [𝑇,∞), we may put

Λ̃(𝑡) = max{Θ̃(𝑡),
̃
𝛽


(𝑡)/
̃
𝛽(𝑡)}. Then,

Λ̃ (𝑡) = max{Θ̃ (𝑡) ,

̃
𝛽


(𝑡)

̃
𝛽 (𝑡)

} ≤ max {Θ̃ (𝑡) , 0} = [Θ̃ (𝑡)]
+

.

(65)

In both cases, Λ̃ satisfies condition (iv) and the inequality
Λ̃(𝑡) ≤ [Θ̃(𝑡)]

+
on [𝑇
2
,∞); hence,

lim sup
𝑡→∞

∫

𝑡

Λ̃ (𝑠) 𝑑𝑠 ≤ lim sup
𝑡→∞

∫

𝑡

[Θ̃ (𝑠)]
+

𝑑𝑠 < ∞. (66)

Now assume that ̃
𝛽 is nondecreasing on [𝑇,∞). Then,

̃
𝛽


≥ 0 a.e. on [𝑇,∞).
If ̃

𝛽(𝑡) ≡ 0 on [𝑇,∞), we may treat it as previously
mentioned.

Otherwise, there is some 𝑇
3

≥ 𝑇 such that ̃
𝛽(𝑡) > 0 on

[𝑇
3
,∞), and we may choose Λ̃(𝑡) = max{Θ̃(𝑡),

̃
𝛽


(𝑡)/
̃
𝛽(𝑡)} on

[𝑇
3
,∞). Clearly Λ̃ satisfies condition (iv) on [𝑇

3
,∞). Since

̃
𝛽


≥ 0 a.e. on [𝑇,∞), it follows that ̃
𝛽


/
̃
𝛽 ≥ 0 a.e. on [𝑇

3
,∞).

Hence,

Λ̃ (𝑡) = max{Θ̃ (𝑡) ,

̃
𝛽


(𝑡)

̃
𝛽 (𝑡)

}

≤ max{[Θ̃ (𝑡)]
+

,

̃
𝛽


(𝑡)

̃
𝛽 (𝑡)

}

≤ [Θ̃ (𝑡)]
+

+

̃
𝛽


(𝑡)

̃
𝛽 (𝑡)

,

(67)

and then

lim sup
𝑡→∞

∫

𝑡

Λ̃ (𝑠) 𝑑𝑠

≤ lim sup
𝑡→∞

∫

𝑡

[Θ̃ (𝑠)]
+

𝑑𝑠 + lim sup
𝑡→∞

∫

𝑡 ̃
𝛽


(𝑡)

̃
𝛽 (𝑡)

𝑑𝑠

≤ lim sup
𝑡→∞

∫

𝑡

[Θ̃ (𝑠)]
+

𝑑𝑠 + lim sup
𝑡→∞

(ln (
̃
𝛽 (𝑡)))

− ln (
̃
𝛽 (𝑇
3
)) < ∞,

(68)

since ̃
𝛽 is bounded on [𝑇,∞).

The statement follows fromTheorem 2.

We can derive several consequences fromTheorem 4.

Corollary 11. Let the conditions (i), (ii), (iii), and (iv) be
fulfilled and

lim sup
𝑡→∞

∫

𝑡

𝑠

 (𝜉) exp(−∫

𝜉

𝑠

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜉 < ∞, (69)

for some 𝑠 ≥ 𝑇.
If 𝑧(𝑡) is any solution of (2) existing for 𝑡 → ∞, then

𝑧 (𝑡) = 𝑂[exp(∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉)] . (70)

Proof. From the assumptions and (45) we can see that there
are 𝐾 > 0 and 𝑆 ≥ 𝑠 such that for 𝑡 ≥ 𝑆 we have

𝑉 (𝑡) exp(−∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉) − 𝑉 (𝑠)

≤ ∫

𝑡

𝑠

 (𝜉) exp(−∫

𝜉

𝑠

Λ̃ (𝜎) 𝑑𝜎)𝑑𝜉

≤ 𝐾 < ∞.

(71)

Then,

𝜇 |𝑧 (𝑡)| ≤ 𝑉 (𝑡) ≤ (𝐾 + 𝑉 (𝑠)) exp(∫

𝑡

𝑠

Λ̃ (𝜉) 𝑑𝜉) . (72)

Corollary 12. Let the assumptions (i), (ii), (iii), and (iv) hold,
and let

lim sup
𝑡→∞

Λ̃ (𝑡) < ∞,  (𝑡) = 𝑂 (𝑒
𝜂𝑡

) , (73)

where 𝜂 > lim sup
𝑡→∞

Λ̃(𝑡). If 𝑧(𝑡) is any solution of (2)
existing for 𝑡 → ∞, then 𝑧(𝑡) = 𝑂(𝑒

𝜂𝑡

).

Proof. In view of (73), there are 𝐿 > 0, 𝜂∗ < 𝜂, and 𝑠 > 𝑇 such
that 𝜂∗ > Λ̃(𝑡) for 𝑡 ≥ 𝑠 and (𝑡)𝑒

−𝜂𝑡

< 𝐿 for 𝑡 ≥ 𝑠. From (41)
we get

𝜇 |𝑧 (𝑡)| ≤ 𝑉 (𝑠) 𝑒
𝜂
∗
(𝑡−𝑠)

+ 𝐿∫

𝑡

𝑠

𝑒
𝜂𝜏

𝑒
𝜂
∗
(𝑡−𝜏)

𝑑𝜏

≤ 𝑉 (𝑠) 𝑒
𝜂
∗
(𝑡−𝑠)

+ 𝐿𝑒
𝜂
∗
𝑡
𝑒
(𝜂−𝜂
∗
)𝑡

− 𝑒
(𝜂−𝜂
∗
)𝑠

𝜂 − 𝜂
∗

≤ 𝑉 (𝑠) 𝑒
𝜂
∗
(𝑡−𝑠)

+

𝐿

𝜂 − 𝜂
∗
𝑒
𝜂𝑡

= 𝑂 (𝑒
𝜂𝑡

) .

(74)

Remark 13. If 𝜌(𝑡) ≡ 0, we can take 𝐿 = 0 in the proof
of Corollary 12, and taking inequalities (74) into account we
obtain the following statement: there is an 𝜂

∗

< 𝜂
0
< 𝜂 such

that 𝑧(𝑡) = 𝑜(𝑒
𝜂0𝑡

) holds for the solution 𝑧(𝑡) of (2).

5. Conclusion

We studied asymptotic behavior of real two-dimensional
differential system with a finite number of nonconstant
delays.We considered the case corresponding to the situation
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when the equilibrium point 0 of autonomous system (6) is
a stable focus or a stable centre. We utilized the method
of complexification and the method of Lyapunov-Krasovskii
functional. Criteria for stability and asymptotic stability of the
solutions as well as conditions ensuring that all solutions of
(2) tend to zero are derived. At the end we supplied several
corollaries and an example which shows that in some cases
the criteria obtained in this paper are more applicable than
the criteria presented in [21].

Acknowledgments

The first author was supported by the Project CZ.1.07/2.3.00/
30.0039 of Brno University of Technology. The work of
the second author was realised in CEITEC—Central Euro-
pean Institute of Technology—with research infrastructure
supported by the Project CZ.1.05/1.1.00/02.0068 financed
from European Regional Development Fund and by the
Project FEKT-S-11-2-921 of Faculty of Electrical Engineering
and Communication, Brno University of Technology. This
support is gratefully acknowledged.

References

[1] J. Baštinec, L. Berezansky, J. Dibĺık, and Z. Šmarda, “On the
critical case in oscillation for differential equations with a single
delay and with several delays,” Abstract and Applied Analysis,
vol. 2010, Article ID 417869, 20 pages, 2010.
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[4] J. Dibĺık, “Asymptotic representation of solutions of equation
̇𝑦(𝑡) = 𝛽(𝑡)[𝑦(𝑡)−𝑦(𝑡−𝜏(𝑡))],” Journal of Mathematical Analysis

and Applications, vol. 217, no. 1, pp. 200–215, 1998.
[5] J. Dibĺık, “A criterion for existence of positive solutions of

systems of retarded functional differential equations,”Nonlinear
Analysis, Theory, Methods and Applications, vol. 38, no. 3, pp.
327–339, 1999.
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A coupled system of nine identical cells with delays and D
3
× D
3
-symmetry is considered. The individual cells are modelled by

a scalar delay differential equation which includes linear decay and nonlinear delayed feedback. By analyzing the corresponding
characteristic equations, the linear stability of the equilibrium is given.We also investigate the simultaneous occurrence of multiple
periodic solutions and spatiotemporal patterns of the bifurcating periodic oscillations by using the equivariant bifurcation theory of
delay differential equations combined with representation theory of Lie groups. Numerical simulations are carried out to illustrate
our theoretical results.

1. Introduction

Over the past decades, symmetry has become a topic of
considerable attention in the research of nonlinear dynamical
systems [1–11]. In general, the symmetry reflects a certain
spatial invariant of the dynamical systems. The work of
Golubitsky et al. [1] shows that systems with symmetry can
lead to multiple patterns of oscillation, which are predictable
based on the theory of equivariant bifurcations. It is well
known that the introduction of time delays into some systems
is more reasonable and realistic [12]. Wu and coworkers
[3, 13, 14] extended the theory of equivariantHopf bifurcation
to delay differential equations.

An artificial neural network is an information processing
device that is inspired by the way biological nervous systems,
such as the brain, process information simultaneously. It has
many applications in different areas including pattern recog-
nition, associative memory, signal processing, and combina-
torial optimization. There has been an increasing interest in
the investigation of neural networks (see, e.g., [4–6, 9–11, 15])
since Hopfield [16] constructed a simplified neural network
model. Ring networks have been found in a variety of neural
structures such as cerebellum [17] and even in chemistry and
electrical engineering. In the field of neural networks, rings
are studied to gain insight into the mechanisms underlying
the behavior of recurrent networks [15, 18]. The dynamical

behavior of ring networks has been investigated in more
detail. For example, in order to understand which patterns
occur in a particular system, Huang and Wu [4] studied the
following ring neural network of three identical neurons with
delayed feedback:

̇𝑥
𝑖
(𝑡) = − 𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡 − 𝜏))

− [𝑔 (𝑥
𝑖−1
(𝑡 − 𝜏)) + 𝑔 (𝑥

𝑖+1
(𝑡 − 𝜏))] , 𝑖 (mod 3) ,

(1)

where ̇𝑥 = d𝑥/d𝑡, 𝑥
𝑖
(𝑡) represents the state of the 𝑖th neuron

at time 𝑡,𝑓 represents the nonlinear self-feedback function, 𝑔
is the connection function between neurons, and 𝜏 ≥ 0 is the
time delay. Afterward, some researchers have been studying
many ring networkswithD

𝑛
-symmetry (see [5–8]). However,

previous work just has considered the individual network but
not investigated the interactions between multiple networks.

In fact, a wide variety of natural and artificial systems
possess a hierarchic structure or functioning and can natu-
rally be modeled by coupled subnetwork. For example, the
brain may be conceived as a dynamic network of coupled
neurons. In order to describe the complicated interaction
between billions of neurons in large neural network, the
neurons are often lumped into highly connected subnetworks
[19]. Coupled networks of nonlinear dynamical systems can
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𝑥00 𝑥01 𝑥02

𝑥10 𝑥11 𝑥12

𝑥20 𝑥21 𝑥22

Figure 1: Architecture of model (2).

exhibit rich dynamics, such as synchronization, symmetric
bifurcation, and chaos. The spatio-temporal dynamics of
systems of several coupled nonlinear oscillators is presently
receiving great attention and a significant body of research
has been carried out [9–11, 20, 21]. It must be pointed out that
the hierarchical network of neuronal oscillators withD

3
×D
3
-

symmetry investigated in [20, 21] is described by a system of
ordinary differential equations (ODEs), and the effect of time
delays is not considered.

Motivated by the above ideas, in this paper, we consider
the two-level hierarchical system which is composed of three
coupled modules of interacting nonlinear neuron oscillators
with time delays, modeled by the following system of delay
differential equations (DDEs):

̇𝑥
𝑖,𝑗
(𝑡) = − 𝑥

𝑖,𝑗
(𝑡) + 𝑓 (𝑥

𝑖,𝑗
(𝑡 − 𝜏)) + 𝑔 (𝑥

𝑖,𝑗−1
(𝑡 − 𝜏))

+ 𝑔 (𝑥
𝑖,𝑗+1

(𝑡 − 𝜏)) + ℎ (𝑥
𝑖−1,𝑗

(𝑡 − 𝜏))

+ ℎ (𝑥
𝑖+1,𝑗

(𝑡 − 𝜏)) , 𝑖, 𝑗 = 0, 1, 2 (mod 3) ,

(2)

where 𝑓, 𝑔, ℎ ∈ 𝐶
1

(R,R), 𝑓(0) = 𝑔(0) = ℎ(0) = 0,
and ℎ represents the connection function between different
modules. The individual elements are represented by a scalar
equation, consisting of a linear decay term and a nonlinear
time-delayed self-feedback. The architecture of the model is
given in Figure 1.

It is easy to see that all cells are identical, all couplings
within each group are identical, and all groups are identically
coupled to each other in this model. Therefore, these lead to
a D
3
× D
3
-symmetry of the associated system. the model is a

natural extension of system (1) and is a particularly simple
example of a symmetric system exhibiting a hierarchical
structure with two levels: a “macro” level concerning the
interactions between the groups and a “micro” level concern-
ing the interactions within the groups. On the other hand,
system (2) can be regarded as a special example of the general
Hopfield neural networks with delays [16].

Although model (2) is a little simple, it would be of
great significance for applications to have a detailed analysis
and then to understand possible mechanisms behind the
observed behaviour. In this paper, our main purpose is to
reveal how the time delay can affect the stability of system (2),

the simultaneous occurrence of multiple periodic solutions,
and spatio-temporal patterns of the bifurcating periodic
oscillations depending on the D

3
× D
3
-symmetry.

The rest of the paper is organized as follows. In Section 2,
the associated characteristic equation is analyzed and the
linear stability of the equilibrium is given. In Section 3,
we discuss the existence of multiple branches of periodic
oscillations and their spatio-temporal patterns with the help
of symmetric bifurcation theory of delay differential equa-
tions coupled with representation theory of Lie groups. An
example and numerical simulations are presented to illustrate
the results in Section 4. In Section 5, a brief discussion is
drawn to conclude this paper.

2. Distribution of Characteristic Roots and
Linear Stability

It is clear that (2) admits the trivial solution, 𝑥 = 0. The
linearization of (2) at this equilibrium point is given by

̇𝑥
𝑖,𝑗
(𝑡) = − 𝑥

𝑖,𝑗
(𝑡) + 𝑎𝑥

𝑖,𝑗
(𝑡 − 𝜏) + 𝑏𝑥

𝑖,𝑗−1
(𝑡 − 𝜏)

+ 𝑏𝑥
𝑖,𝑗+1

(𝑡 − 𝜏) + 𝑐𝑥
𝑖−1,𝑗

(𝑡 − 𝜏)

+ 𝑐𝑥
𝑖+1,𝑗

(𝑡 − 𝜏) , 𝑖, 𝑗 = 0, 1, 2 (mod 3) ,

(3)

where 𝑎 = 𝑓


(0), 𝑏 = 𝑔


(0), and 𝑐 = ℎ


(0). Regarding 𝜏 as
the parameter, let 𝐴(𝜏) denote the infinitesimal generator of
the semigroup generated by linear system (3). We first deter-
mine when 𝐴(𝜏) has a pair of purely imaginary eigenvalues.

The characteristic matrix of (3) is

Δ (𝜏, 𝜆) = (𝜆 + 1) Id
9
−𝑀e−𝜆𝜏, 𝜆 ∈ C, (4)

where Id
𝑛
denotes the identity matrix of order 𝑛, 𝑀 =

circ(𝑀
1
, 𝑐Id
3
, 𝑐Id
3
) is a circle block matrix, and 𝑀

1
=

circ(𝑎, 𝑏, 𝑏) is a circulant matrix of order 3. Then we have the
following lemma.

Lemma 1. The associated characteristic equation of (3) is

detΔ (𝜏, 𝜆) =
2

∏

𝑞=0

2

∏

𝑝=0

Δ
𝑝𝑞
= 0, (5)

where Δ
𝑝𝑞
= 𝜆+1− (𝑎+ 2𝑏 cos(2𝑞𝜋/3) + 2𝑐 cos(2𝑝𝜋/3))e−𝜆𝜏.

Proof. Let 𝜒 = ei(2𝜋/3), V
𝑞

= (1, 𝜒
𝑞

, 𝜒
2𝑞

)
T, and V

𝑝𝑞
=

(V
𝑞
, 𝜒
𝑝V
𝑞
, 𝜒
2𝑝V
𝑞
)
T. Then

𝑀V
𝑝𝑞
= (𝑎 + 2𝑏 cos

2𝑞𝜋

3

+ 2𝑐 cos
2𝑝𝜋

3

) V
𝑝𝑞
. (6)

Hence
Δ (𝜏, 𝜆) V

𝑝𝑞

= [𝜆 + 1 − (𝑎 + 𝑐𝜒
𝑝

+ 𝑐𝜒
−𝑝

+ 𝑏𝜒
𝑞

+ 𝑏𝜒
−𝑞

) e−𝜆𝜏] V
𝑝𝑞

= [𝜆 + 1 − (𝑎 + 2𝑏 cos
2𝑞𝜋

3

+ 2𝑐 cos
2𝑝𝜋

3

) e−𝜆𝜏] V
𝑝𝑞
.

(7)

The conclusion is obtained.
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Note that

Δ
00
= 𝜆 + 1 − (𝑎 + 2𝑏 + 2𝑐) e−𝜆𝜏,

Δ
01
= Δ
02
= 𝜆 + 1 − (𝑎 + 2𝑐 − 𝑏) e−𝜆𝜏,

Δ
10
= Δ
20
= 𝜆 + 1 − (𝑎 + 2𝑏 − 𝑐) e−𝜆𝜏,

Δ
11
= Δ
12
= Δ
21
= Δ
22
= 𝜆 + 1 − (𝑎 − 𝑏 − 𝑐) e−𝜆𝜏,

(8)

we have

detΔ (𝜏, 𝜆) = Δ
00
(Δ
01
)
2

(Δ
10
)
2

(Δ
11
)
4

. (9)

In this paper, for the sake of simplicity, we consider only
the case where characteristic equation (5) may have a pair
of purely imaginary roots of multiplicity 4, that is, focus on
the distribution of zeros of the factor Δ

11
. The other cases

are simpler and can be handled in a similar way, and we omit
them. Therefore, throughout this paper we suppose

(H) |𝑎 + 2𝑏 + 2𝑐| < 1, |𝑎 + 2𝑐 − 𝑏| < 1, |𝑎 + 2𝑏 − 𝑐| < 1,
𝑎 − 𝑏 − 𝑐 < −1.

The following result about the distribution of the characteris-
tic roots is obtained.

Lemma 2. Assume that (H) holds. Define

𝜏
𝑠
=

arc cos (1/ (𝑎 − 𝑏 − 𝑐)) + 2𝑠𝜋

√(𝑎 − 𝑏 − 𝑐)
2

− 1

, 𝑠 = 0, 1, 2, . . . , (10)

𝛽 = √(𝑎 − 𝑏 − 𝑐)
2

− 1.
(11)

Then

(i) for all 𝜏 ⩾ 0, all zeros of the factors Δ
00
, Δ
10
, and Δ

01

have negative real parts,
(ii) when 𝜏 ∈ [0, 𝜏

0
), all roots of the characteristic equation

(5) have negative real parts; when 𝜏 ∈ (𝜏
𝑠
, 𝜏
𝑠+1
), the

characteristic equation (5) has exactly 2𝑠+2 roots with
positive real parts; the other roots have negative real
parts; at (and only at) 𝜏 = 𝜏

𝑠
, 𝐴(𝜏) has a pair of

purely imaginary eigenvalues ±i𝛽 of multiplicity 4, and
all other eigenvalues of𝐴(𝜏) are not integer multiples of
±i𝛽,

(iii) for each fixed 𝑠 ∈ N, there exist 𝛿 > 0 and 𝐶1-smooth
mapping 𝜆 : (𝜏

𝑠
− 𝛿, 𝜏
𝑠
+ 𝛿) → C such that 𝜆(𝜏

𝑠
) = i𝛽

and 𝜆(𝜏) + 1 − (𝑎 − 𝑏 − 𝑐)e−𝜏𝜆(𝜏) = 0 for all 𝜏 ∈ (𝜏
𝑠
−

𝛿, 𝜏
𝑠
+ 𝛿). Moreover, (d/d𝜏)Re 𝜆(𝜏)|

𝜏=𝜏𝑠
> 0,

(iv) the generalized eigenspace 𝑈
±i𝛽(𝐴(𝜏𝑠)) consists of

eigenvector of 𝐴(𝜏
𝑠
) associated with ±i𝛽. Moreover,

𝑈
±i𝛽 (𝐴 (𝜏𝑠))

= {

2

∑

𝑞=1

2

∑

𝑝=1

(𝑦
𝑝𝑞
𝜖
𝑝𝑞

+ 𝑧
𝑝𝑞
𝜍
𝑝𝑞

) , 𝑦
𝑝𝑞
, 𝑧
𝑝𝑞
∈ R, 𝑝, 𝑞 = 1, 2} ,

(12)

where

𝜖
𝑝𝑞

(𝜃) = Re {ei𝛽𝜃V
𝑝𝑞
}

= cos (𝛽𝜃)Re {V
𝑝𝑞
} − sin (𝛽𝜃) Im {V

𝑝𝑞
} ,

𝜍
𝑝𝑞

(𝜃) = Im {ei𝛽𝜃V
𝑝𝑞
}

= sin (𝛽𝜃)Re {V
𝑝𝑞
} + cos (𝛽𝜃) Im {V

𝑝𝑞
} ,

𝑓𝑜𝑟 𝜃 ∈ [−𝜏, 0] .

(13)

Proof. For 𝛾 ∈ R, let 𝑞
𝛾
(𝜆) = 𝜆 + 1 − 𝛾e−𝜆𝜏. If 𝜆 = 𝛼 + i𝛽 is

a zero of 𝑞
𝛾
(𝜆), then 1 + 𝛼 + i𝛽 = 𝛾e−(𝛼+i𝛽)𝜏, from which it

follows that

(1 + 𝛼)
2

+ 𝛽
2

= 𝛾
2e−2𝛼𝜏. (14)

Thus, we claim that all the zeros of 𝑞
𝛾
(𝜆) have negative real

parts provided that |𝛾| < 1. Noticing that (H) holds and
applying the above discussions to the factors Δ

00
, Δ
10
, and

Δ
01
, we obtain conclusion (i).
In what follows, we consider the distribution of zeros of

the factor Δ
11
. For 𝜏 = 0, Δ

11
= 0 becomes 𝜆 = 𝑎−𝑏− 𝑐−1 <

−2. Let i𝛽 (𝛽 > 0) be a root of Δ
11
= 0, then

i𝛽 + 1 − (𝑏 + 𝑐 − 𝑎) ei(𝜋−𝜏𝛽)

= √1 + 𝛽
2ei arc cos(1/√1+𝛽2)

− (𝑏 + 𝑐 − 𝑎) ei(𝜋−𝜏𝛽) = 0.
(15)

Thus,

√1 + 𝛽
2
= 𝑏 + 𝑐 − 𝑎,

arc cos 1

√1 + 𝛽
2

= 𝜋 − 𝜏𝛽 + 2𝑠𝜋, 𝑠 ∈ Z.
(16)

Therefore, Δ
11
= 0 has a pair of purely imaginary roots ±i𝛽 if

and only if

𝛽 = √(𝑎 − 𝑏 − 𝑐)
2

− 1,

𝜏 =

arc cos (1/ (𝑎 − 𝑏 − 𝑐)) + 2𝑠𝜋

√(𝑎 − 𝑏 − 𝑐)
2

− 1

:= 𝜏
𝑠
, for some 𝑠 ∈ N.

(17)

Clearly, for each fixed 𝑠, 𝜏
𝑠
⩾ 0. Since

d
d𝜆

Δ
11
(𝜆)








𝜆=i𝛽,𝜏=𝜏𝑠

= 1 + (𝑎 − 𝑏 − 𝑐)𝜏e−𝜆𝜏
𝜆=i𝛽,𝜏=𝜏𝑠

= 1 + 𝜏
𝑠
(i𝛽 + 1)

̸= 0,

(18)

there exist 𝛿 > 0 and𝐶1-smoothmapping𝜆 : (𝜏
𝑠
−𝛿, 𝜏
𝑠
+𝛿) →

C such that 𝜆(𝜏
𝑠
) = i𝛽 and 𝜆(𝜏) + 1 − (𝑎 − 𝑏 − 𝑐)e−𝜏𝜆(𝜏) = 0 for
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all 𝜏 ∈ (𝜏
𝑠
− 𝛿, 𝜏
𝑠
+ 𝛿). Differentiating Δ

11
= 0 with respect to

𝜏, we have

𝜆


(𝜏
𝑠
) =

− (𝑎 − 𝑏 − 𝑐) 𝜆 (𝜏
𝑠
) e−𝜆(𝜏𝑠)𝜏𝑠

1 + (𝑎 − 𝑏 − 𝑐) 𝜏
𝑠
e−𝜆(𝜏𝑠)𝜏𝑠

=

−𝜆 (𝜏
𝑠
) [𝜆 (𝜏

𝑠
) + 1]

1 + 𝜏
𝑠
[𝜆 (𝜏
𝑠
) + 1]

.

(19)

Therefore,

Re 𝜆 (𝜏
𝑠
) =

𝛽
2

(1 + 𝜏
𝑠
)
2

+ 𝜏
2

𝑠
𝛽
2

> 0. (20)

So far, the proof of (ii) and (iii) is complete (for more details
see XI.2 in [22]). It remains to verify (iv).

Note that V
11

= V
22
, V
12

= V
21
; it follows from

the proof of Lemma 1 and the above discussions that the
eigenspace of 𝐴(𝜏

𝑠
) associated with ±i𝛽 is spanned by

ei𝛽𝜃V
11
, ei𝛽𝜃V

12
, ei𝛽𝜃V

21
, ei𝛽𝜃V

22
, e−i𝛽𝜃V

11
, e−i𝛽𝜃V

12
, e−i𝛽𝜃V

21
,

and e−i𝛽𝜃V
22
. Hence, the space has the real basis {𝜖11, 𝜍11,

𝜖
12

, 𝜍
12

, 𝜖
21

, 𝜍
21

, 𝜖
22

, 𝜍
22

}. On the other hand, the eigenspace
𝐴(𝜏
𝑠
) associated with i𝛽

𝑝𝑞
is of dimension 4, and the multi-

plicity of the characteristic root 𝜆 = i𝛽
𝑝𝑞

is also 4. According
to the folk theorem in functional differential equations (see
[23]),𝑈

±i𝛽(𝐴(𝜏𝑠))must coincide with the eigenspace of𝐴(𝜏
𝑠
)

associated with±i𝛽.Therefore, conclusion (iv) is correct.This
completes the proof.

FromLemma 2 (ii), we can draw the following conclusion
about the linear stability of system (2).

Theorem 3. If the assumption (H) is satisfied, then the
equilibrium 𝑥 = 0 of system (2) is asymptotically stable for
𝜏 ∈ [0, 𝜏

0
); the equilibrium 𝑥 = 0 is unstable for 𝜏 > 𝜏

0
.

3. Multiple Patterns of Oscillation

It follows from Lemma 2 that 𝐴(𝜏) has a pair of purely
imaginary eigenvalues ±i𝛽 of multiplicity 4 and all other
eigenvalues of 𝐴(𝜏) are not integer multiples of ±i𝛽 at 𝜏 =

𝜏
𝑠
(𝑠 = 0, 1, . . .). Thus, the Hopf bifurcation may provide

some asynchronous periodic solutions at each 𝜏
𝑠
.

The symmetry of a system is important in determining
the patterns of oscillation. In order to explore the symmetry
of system and analyze the spatio-temporal patterns of the
bifurcated periodic solutions, we need the following defini-
tion.

Let D
3
denote the dihedral group of order 6, which is

generated by cyclic groupZ
3
together with the flip 𝜅 of order

2. Define the action of Γ := D
3
× D
3
on R9 by

((𝜌, 1) ⋅ 𝑥)
𝑖,𝑗
= 𝑥
𝑖+1,𝑗

, ((1, 𝜌) ⋅ 𝑥)
𝑖,𝑗
= 𝑥
𝑖,𝑗+1

,

((𝜅, 1) ⋅ 𝑥)
𝑖,𝑗
= 𝑥
3−𝑖,𝑗

, ((1, 𝜅) ⋅ 𝑥)
𝑖,𝑗
= 𝑥
𝑖,3−𝑗

, 𝑖, 𝑗 mod 3,
(21)

where 𝜌 is the generator of Z
3
and 𝜅 denotes the flip.

Lemma 4. System (2) is Γ-equivalent.

Proof. Let mappingF : 𝐶([−𝜏, 0],R9) → R9 be

(F (𝜙))
𝑖,𝑗
= − (𝜙)

𝑖,𝑗
(0) + 𝑓 ((𝜙)

𝑖,𝑗
(−𝜏))

+ 𝑔 ((𝜙)
𝑖,𝑗−1

(−𝜏)) + 𝑔 ((𝜙)
𝑖,𝑗+1

(−𝜏))

+ ℎ ((𝜙)
𝑖−1,𝑗

(−𝜏))

+ ℎ ((𝜙)
𝑖+1,𝑗

(−𝜏)) , 𝑖, 𝑗 (mod 3) ,

(22)

where

𝜙 = (𝜙
00
, 𝜙
01
, 𝜙
02
, 𝜙
10
, 𝜙
11
, 𝜙
12
, 𝜙
20
, 𝜙
21
, 𝜙
22
)
T

∈ 𝐶 ([−𝜏, 0] ,R
9

) ,

F (𝜙) = ((F (𝜙))
00
, (F (𝜙))

01
, (F (𝜙))

02
,

(F (𝜙))
10
, (F (𝜙))

11
, (F (𝜙))

12
,

(F (𝜙))
20
, (F (𝜙))

21
, (F (𝜙))

22
)
T
∈ R
9

.

(23)

Then
(F ((𝜌, 1) 𝜙))

𝑖,𝑗

= −((𝜌, 1) 𝜙)
𝑖,𝑗
(0) + 𝑓 (((𝜌, 1) 𝜙)

𝑖,𝑗
(−𝜏))

+ 𝑔 (((𝜌, 1) 𝜙)
𝑖,𝑗−1

(−𝜏)) + 𝑔 (((𝜌, 1) 𝜙)
𝑖,𝑗+1

(−𝜏))

+ ℎ (((𝜌, 1) 𝜙)
𝑖−1,𝑗

(−𝜏)) + ℎ (((𝜌, 1) 𝜙)
𝑖+1,𝑗

(−𝜏))

= −(𝜙)
𝑖+1,𝑗

(0) + 𝑓 ((𝜙)
𝑖+1,𝑗

(−𝜏))

+ 𝑔 ((𝜙)
𝑖+1,𝑗−1

(−𝜏))

+ 𝑔 ((𝜙)
𝑖+1,𝑗+1

(−𝜏)) + ℎ ((𝜙)
𝑖,𝑗
(−𝜏))

+ ℎ ((𝜙)
𝑖+2,𝑗

(−𝜏))

= ((𝜌, 1)F (𝜙))
𝑖,𝑗
,

(F ((𝜅, 1) 𝜙))
𝑖,𝑗

= −((𝜅, 1) 𝜙)
𝑖,𝑗
(0) + 𝑓 (((𝜅, 1) 𝜙)

𝑖,𝑗
(−𝜏))

+ 𝑔 (((𝜅, 1) 𝜙)
𝑖,𝑗−1

(−𝜏)) + 𝑔 (((𝜅, 1) 𝜙)
𝑖,𝑗+1

(−𝜏))

+ ℎ (((𝜅, 1) 𝜙)
𝑖−1,𝑗

(−𝜏)) + ℎ (((𝜅, 1) 𝜙)
𝑖+1,𝑗

(−𝜏))

= −(𝜙)
3−𝑖,𝑗

(0) + 𝑓 ((𝜙)
3−𝑖,𝑗

(−𝜏))

+ 𝑔 ((𝜙)
3−𝑖,𝑗−1

(−𝜏)) + 𝑔 ((𝜙)
3−𝑖,𝑗+1

(−𝜏))

+ ℎ ((𝜙)
4−𝑖,𝑗

(−𝜏)) + ℎ ((𝜙)
2−𝑖,𝑗

(−𝜏))

= ((𝜅, 1)F (𝜙))
𝑖,𝑗
.

(24)
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Similarly, we can prove that

(F ((1, 𝜌) 𝜙))
𝑖,𝑗
= ((1, 𝜌)F (𝜙))

𝑖,𝑗
,

(F ((1, 𝜅) 𝜙))
𝑖,𝑗
= ((1, 𝜅)F (𝜙))

𝑖,𝑗
.

(25)

Therefore,F isD
3
×D
3
-equivalent.This completes the proof.

Lemma 5. Let Γ act on R4 by

(𝜌, 1) ⋅ (

𝑥
1

𝑥
2

𝑥
3

𝑥
4

) =

(

(

(

(

(

−

1

2

0 −

√3

2

0

0 −

1

2

0 −

√3

2

√3

2

0 −

1

2

0

0

√3

2

0 −

1

2

)

)

)

)

)

(

𝑥
1

𝑥
2

𝑥
3

𝑥
4

),

(1, 𝜌) ⋅ (

𝑥
1

𝑥
2

𝑥
3

𝑥
4

) =

(

(

(

(

(

(

(

−

1

2

−

√3

2

0 0

√3

2

−

1

2

0 0

0 0 −

1

2

−

√3

2

0 0

√3

2

−

1

2

)

)

)

)

)

)

)

(

𝑥
1

𝑥
2

𝑥
3

𝑥
4

),

(𝜅, 1) ⋅ (

𝑥
1

𝑥
2

𝑥
3

𝑥
4

) =(

𝑥
1

𝑥
2

−𝑥
3

−𝑥
4

),

(1, 𝜅) ⋅ (

𝑥
1

𝑥
2

𝑥
3

𝑥
4

) =(

𝑥
1

−𝑥
2

𝑥
3

−𝑥
4

).

(26)

Then R4 is an absolutely irreducible representation of Γ, and
the restricted action of Γ on KerΔ(𝜏, i𝛽) is isomorphic to the
action of Γ on R4 ⊕R4.

Proof. It is straightforward to verify the absolute irreducibil-
ity of the representation of Γ onR4 by the definition (see [1]).
Note that

KerΔ (𝜏, i𝛽)

= {

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
, 𝑎
𝑝𝑞
, 𝑏
𝑝𝑞
∈ R, 𝑝, 𝑞 = 1, 2} .

(27)

Define 𝐽 : KerΔ(𝜏, i𝛽) → R4 ⊕R4 by
2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞

→ 𝐵(𝑎
11
, 𝑏
11
, 𝑎
12
, 𝑏
12
, 𝑎
21
, 𝑏
21
, 𝑎
22
, 𝑏
22
)
T
,

(28)

where the matrix

𝐵 =

(

(

(

(

(

1 0 1 0 1 0 1 0

0 1 0 −1 0 1 0 −1

0 1 0 1 0 −1 0 −1

−1 0 1 0 1 0 −1 0

0 1 0 1 0 1 0 1

−1 0 1 0 −1 0 1 0

−1 0 −1 0 1 0 1 0

0 −1 0 1 0 1 0 −1

)

)

)

)

)

. (29)

The nonsingularity of the matrix 𝐵 implies that 𝐽 :

KerΔ(𝜏, i𝛽) ≅ R4 is a linear isomorphism. It is easy to see
that

(𝜌, 1) ⋅ (

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
)

=

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) ei((−1)

𝑝+1
2𝜋/3)

V
𝑝𝑞
,

(1, 𝜌) ⋅ (

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
)

=

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) ei((−1)

𝑞+1
2𝜋/3)

V
𝑝𝑞
,

(𝜅, 1) ⋅ (

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
)

= (𝑎
21
+ i𝑏
21
) V
11
+ (𝑎
22
+ i𝑏
22
) V
12

+ (𝑎
11
+ i𝑏
11
) V
21
+ (𝑎
12
+ i𝑏
12
) V
22
,

(1, 𝜅) ⋅ (

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
)

= (𝑎
12
+ i𝑏
12
) V
11
+ (𝑎
11
+ i𝑏
11
) V
12

+ (𝑎
22
+ i𝑏
22
) V
21
+ (𝑎
21
+ i𝑏
21
) V
22
.

(30)

Therefore, a straightforward calculation shows that

𝐽((𝜌, 1) ⋅ (

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
))

= (𝜌, 1) ⋅ 𝐽(

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
) ,

𝐽((1, 𝜌) ⋅ (

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
))

= (1, 𝜌) ⋅ 𝐽(

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
) ,
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𝐽((𝜅, 1) ⋅ (

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
))

= (𝜅, 1) ⋅ 𝐽(

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
) ,

𝐽((1, 𝜅) ⋅ (

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
))

= (1, 𝜅) ⋅ 𝐽(

2

∑

𝑝=1

2

∑

𝑞=1

(𝑎
𝑝𝑞
+ i𝑏
𝑝𝑞
) V
𝑝𝑞
) .

(31)

This concludes the proof.

Let 𝜔 = 2𝜋/𝛽 and let 𝑃
𝜔
be the Banach space of all

continuous 𝜔-periodic functions 𝑥 : R → R9. Then for the
circle group 𝑆1, Γ × 𝑆1 acts on 𝑃

𝜔
by

(𝛾, ei𝜃) ⋅ 𝑥 (𝑡) = 𝛾 ⋅ 𝑥 (𝑡 + 𝜔

2𝜋

𝜃) ,

(𝛾, ei𝜃) ∈ Γ × 𝑆1, 𝑥 ∈ 𝑃
𝜔
.

(32)

Denote by 𝑆𝑃
𝜔
the subspace of 𝑃

𝜔
consisting of all 𝜔-periodic

solutions of system (3) with 𝜏 = 𝜏
𝑠
. Then

𝑆𝑃
𝜔

= {

2

∑

𝑞=1

2

∑

𝑝=1

(𝑦
𝑝𝑞
𝜖
𝑝𝑞

+ 𝑧
𝑝𝑞
𝜍
𝑝𝑞

) , 𝑦
𝑝𝑞
, 𝑧
𝑝𝑞
∈ R, 𝑝, 𝑞 = 1, 2} ,

(33)

where

𝜖
𝑝𝑞

(𝑡) = Re {ei𝛽𝑡V
𝑝𝑞
}

= cos (𝛽𝑡)Re {V
𝑝𝑞
} − sin (𝛽𝑡) Im {V

𝑝𝑞
} ,

𝜍
𝑝𝑞

(𝑡) = Im {ei𝛽𝑡V
𝑝𝑞
}

= sin (𝛽𝑡)Re {V
𝑝𝑞
} + cos (𝛽𝑡) Im {V

𝑝𝑞
} .

(34)

Therefore, for 𝜖
𝑝𝑞

(𝑡), 𝜍
𝑝𝑞

(𝑡) (𝑝, 𝑞 = 1, 2), we have the
following properties.

Lemma 6.

(𝜌, 1) ⋅ 𝜖
𝑝𝑞

= 𝜖
𝑝𝑞 cos

2𝑝𝜋

3

− 𝜍
𝑝𝑞 sin

2𝑝𝜋

3

,

(𝜌, 1) ⋅ 𝜍
𝑝𝑞

= 𝜍
𝑝𝑞 cos

2𝑝𝜋

3

+ 𝜖
𝑝𝑞 sin

2𝑝𝜋

3

,

(1, 𝜌) ⋅ 𝜖
𝑝𝑞

= 𝜖
𝑝𝑞 cos

2𝑞𝜋

3

− 𝜍
𝑝𝑞 sin

2𝑞𝜋

3

,

(1, 𝜌) ⋅ 𝜍
𝑝𝑞

= 𝜍
𝑝𝑞 cos

2𝑞𝜋

3

+ 𝜖
𝑝𝑞 sin

2𝑞𝜋

3

,

(𝜅, 1) ⋅ 𝜖
𝑝𝑞

= 𝜖
3−𝑝,𝑞

, (𝜅, 1) ⋅ 𝜍
𝑝𝑞

= 𝜍
3−𝑝,𝑞

,

(1, 𝜅) ⋅ 𝜖
𝑝𝑞

= 𝜖
𝑝,3−𝑞

, (1, 𝜅) ⋅ 𝜍
𝑝𝑞

= 𝜍
𝑝,3−𝑞

.

(35)

Proof. For 𝑖, 𝑗 (mod 3) and 𝑡 ∈ R, note that

𝜖
𝑝𝑞

𝑖,𝑗
(𝑡) = cos(𝛽𝑡 +

2𝑖𝑝𝜋

3

+

2𝑗𝑞𝜋

3

) ,

𝜍
𝑝𝑞

𝑖,𝑗
(𝑡) = sin(𝛽𝑡 +

2𝑖𝑝𝜋

3

+

2𝑗𝑞𝜋

3

) ,

(36)

we have
((𝜌, 1) ⋅ 𝜖

𝑝𝑞

(𝑡))
𝑖,𝑗

= 𝜖
𝑝𝑞

𝑖+1,𝑗
(𝑡) = cos(𝛽𝑡 +

2 (𝑖 + 1) 𝑝𝜋

3

+

2𝑗𝑞𝜋

3

)

= cos(𝛽𝑡 +
2𝑖𝑝𝜋

3

+

2𝑗𝑞𝜋

3

+

2𝑝𝜋

3

)

= 𝜖
𝑝𝑞

𝑖,𝑗
cos

2𝑝𝜋

3

− 𝜍
𝑝𝑞

𝑖,𝑗
sin

2𝑝𝜋

3

,

((𝜌, 1) ⋅ 𝜍
𝑝𝑞

(𝑡))
𝑖,𝑗

= 𝜍
𝑝𝑞

𝑖+1,𝑗
(𝑡) = sin(𝛽𝑡 +

2 (𝑖 + 1) 𝑝𝜋

3

+

2𝑗𝑞𝜋

3

)

= sin(𝛽𝑡 +
2𝑖𝑝𝜋

3

+

2𝑗𝑞𝜋

3

+

2𝑝𝜋

3

)

= 𝜍
𝑝𝑞

𝑖,𝑗
cos

2𝑝𝜋

3

+ 𝜖
𝑝𝑞

𝑖,𝑗
sin

2𝑝𝜋

3

,

((𝜅, 1) ⋅ 𝜖
𝑝𝑞

(𝑡))
𝑖,𝑗

= 𝜖
𝑝𝑞

3−𝑖,𝑗
(𝑡) = cos(𝛽𝑡 +

2 (3 − 𝑖) 𝑝𝜋

3

+

2𝑗𝑞𝜋

3

)

= cos(𝛽𝑡 +
2𝑖 (3 − 𝑝) 𝜋

3

+

2𝑗𝑞𝜋

3

) = 𝜖
3−𝑝,𝑞

𝑖,𝑗
,

((𝜅, 1) ⋅ 𝜍
𝑝𝑞

(𝑡))
𝑖,𝑗

= 𝜖
𝑝𝑞

3−𝑖,𝑗
(𝑡) = sin(𝛽𝑡 +

2 (3 − 𝑖) 𝑝𝜋

3

+

2𝑗𝑞𝜋

3

)

= sin(𝛽𝑡 +
2𝑖 (3 − 𝑝) 𝜋

3

+

2𝑗𝑞𝜋

3

) = 𝜍
3−𝑝,𝑞

𝑖,𝑗
.

(37)
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Table 1: The maximal isotropy subgroups of Γ × 𝑆1 and associated fixed point subspaces.

No. Σ Fix(Σ, 𝑆𝑃
𝜔
) dim Fix(Σ, 𝑆𝑃

𝜔
)

1 ⟨(𝜅, 1, 1), (1, 𝜅, 1)⟩ (𝑦, 𝑧, 𝑦, 𝑧, 𝑦, 𝑧, 𝑦, 𝑧) 2

2 ⟨(𝜅, 1, 1), (1, 𝜅, −1)⟩ (𝑦, 𝑧, −𝑦, −𝑧, 𝑦, 𝑧, −𝑦, −𝑧) 2

3 ⟨(𝜅, 1, −1), (1, 𝜅, 1)⟩ (𝑦, 𝑧, 𝑦, 𝑧, −𝑦, −𝑧, −𝑦, −𝑧) 2

4 ⟨(𝜅, 1, −1), (1, 𝜅, −1)⟩ (𝑦, 𝑧, −𝑦, −𝑧, −𝑦, −𝑧, 𝑦, 𝑧) 2

5 ⟨(𝜌, 1, 𝑒
−2𝜋𝑖/3

), (1, 𝜌, 𝑒
−2𝜋𝑖/3

)⟩ (𝑦, 𝑧, 0, 0, 0, 0, 0, 0) 2

6 ⟨(𝜌, 1, 𝑒
−2𝜋𝑖/3

), (1, 𝜌, 𝑒
2𝜋𝑖/3

)⟩ (0, 0, 𝑦, 𝑧, 0, 0, 0, 0) 2

7 ⟨(𝜌, 1, 𝑒
2𝜋𝑖/3

), (1, 𝜌, 𝑒
−2𝜋𝑖/3

)⟩ (0, 0, 0, 0, 𝑦, 𝑧, 0, 0) 2

8 ⟨(𝜌, 1, 𝑒
2𝜋𝑖/3

), (1, 𝜌, 𝑒
2𝜋𝑖/3

)⟩ (0, 0, 0, 0, 0, 0, 𝑦, 𝑧) 2

9 ⟨(𝜌, 1, 𝑒
−2𝜋𝑖/3

), (1, 𝜅, 1)⟩ (𝑦, 𝑧, 𝑦, 𝑧, 0, 0, 0, 0) 2

10 ⟨(𝜌, 1, 𝑒
−2𝜋𝑖/3

), (1, 𝜅, −1)⟩ (𝑦, 𝑧, −𝑦, −𝑧, 0, 0, 0, 0) 2

11 ⟨(𝜌, 1, 𝑒
2𝜋𝑖/3

), (1, 𝜅, 1)⟩ (0, 0, 0, 0, 𝑦, 𝑧, 𝑦, 𝑧) 2

12 ⟨(𝜌, 1, 𝑒
2𝜋𝑖/3

), (1, 𝜅, −1)⟩ (0, 0, 0, 0, 𝑦, 𝑧, −𝑦, −𝑧) 2

13 ⟨(1, 𝜌, 𝑒
−2𝜋𝑖/3

), (𝜅, 1, 1)⟩ (𝑦, 𝑧, 0, 0, 𝑦, 𝑧, 0, 0) 2

14 ⟨(1, 𝜌, 𝑒
−2𝜋𝑖/3

), (𝜅, 1, −1)⟩ (𝑦, 𝑧, 0, 0, −𝑦, −𝑧, 0, 0) 2

15 ⟨(1, 𝜌, 𝑒
2𝜋𝑖/3

), (𝜅, 1, 1)⟩ (0, 0, 𝑦, 𝑧, 0, 0, 𝑦, 𝑧) 2

16 ⟨(1, 𝜌, 𝑒
2𝜋𝑖/3

), (𝜅, 1, −1)⟩ (0, 0, 𝑦, 𝑧, 0, 0, −𝑦, −𝑧) 2

17 ⟨(𝜌, 𝜌, 1), (𝜅, 𝜅, 1)⟩ (0, 0, 𝑦, 𝑧, 𝑦, 𝑧, 0, 0) 2

18 ⟨(𝜌, 𝜌, 1), (𝜅, 𝜅, −1)⟩ (0, 0, 𝑦, 𝑧, −𝑦, −𝑧, 0, 0) 2

19 ⟨(𝜌
2

, 𝜌, 1), (𝜅, 𝜅, 1)⟩ (𝑦, 𝑧, 0, 0, 0, 0, 𝑦, 𝑧) 2

20 ⟨(𝜌
2

, 𝜌, 1), (𝜅, 𝜅, −1)⟩ (𝑦, 𝑧, 0, 0, 0, 0, −𝑦, −𝑧) 2

Therefore

(𝜌, 1) ⋅ 𝜖
𝑝𝑞

= 𝜖
𝑝𝑞 cos

2𝑝𝜋

3

− 𝜍
𝑝𝑞 sin

2𝑝𝜋

3

,

(𝜌, 1) ⋅ 𝜍
𝑝𝑞

= 𝜍
𝑝𝑞 cos

2𝑝𝜋

3

+ 𝜖
𝑝𝑞 sin

2𝑝𝜋

3

,

(𝜅, 1) ⋅ 𝜖
𝑝𝑞

= 𝜖
3−𝑝,𝑞

, (𝜅, 1) ⋅ 𝜍
𝑝𝑞

= 𝜍
3−𝑝,𝑞

.

(38)

Similarly, we can prove that

(1, 𝜌) ⋅ 𝜖
𝑝𝑞

= 𝜖
𝑝𝑞 cos

2𝑞𝜋

3

− 𝜍
𝑝𝑞 sin

2𝑞𝜋

3

,

(1, 𝜌) ⋅ 𝜍
𝑝𝑞

= 𝜍
𝑝𝑞 cos

2𝑞𝜋

3

+ 𝜖
𝑝𝑞 sin

2𝑞𝜋

3

,

(1, 𝜅) ⋅ 𝜖
𝑝𝑞

= 𝜖
𝑝,3−𝑞

, (1, 𝜅) ⋅ 𝜍
𝑝𝑞

= 𝜍
𝑝,3−𝑞

.

(39)

It is clear that if 𝑥 is a periodic solution of system (2),
then so is (𝛾, ei𝜃)𝑥 for every (𝛾, ei𝜃) ∈ Γ × 𝑆

1. The spatial-
temporal symmetry of a bifurcation of periodic solutions 𝑥(𝑡)
can be completely characterized by the isotropy group Σ

𝑥
=

{(𝛾, ei𝜃) ∈ Γ × 𝑆
1

| (𝛾, ei𝜃)𝑥 = 𝑥} ≤ Γ × 𝑆
1, and it is easy to

verify that the isotropy group of (𝛾, ei𝜃)𝑥 is (𝛾, ei𝜃)Σ
𝑥
(𝛾, ei𝜃)−1,

which is conjugate to Σ
𝑥
. The maximal isotropy subgroups

Σ
𝑚

(𝑚 = 1, 2, . . . , 20) of Γ × 𝑆1 are listed in Table 1. For each
subgroup Σ𝑚, the Σ𝑚-fixed-point set

Fix (Σ𝑚, 𝑆𝑃
𝜔
)

= {𝑥 ∈ 𝑆𝑃
𝜔
| (𝛾, ei𝜃) 𝑥 = 𝑥, ∀ (𝛾, ei𝜃) ∈ Σ𝑚}

(40)

is a subspace of 𝑆𝑃
𝜔
. According to Lemma 6, it is easy to verify

that dim Fix(Σ𝑚, 𝑆𝑃
𝜔
) = 2, 𝑚 = 1, 2, . . . , 20.

Together with Lemma 2, Lemmas 4–6 allow us to apply
the equivariant Hopf bifurcation theorem for delay differen-
tial equations due to Wu [3] to obtain the following result
on the spatio-temporal patterns of the bifurcated periodic
solutions.

Theorem 7. Assume that (H) is satisfied. Then for system (2),
near each 𝜏

𝑠
(𝑠 = 0, 1, . . .) there exist 100 distinct branches of

periodic solutions bifurcated from the equilibrium 𝑥 = 0. More
precisely, for each isotropy group Σ𝑚 (𝑚 = 1, 2, . . . , 20) and a
chosen basis {𝛿

1
, 𝛿
2
} of Fix(Σ𝑚, 𝑆𝑃

𝜔
), there exist 𝛼

0
> 0, 𝜏

∗

0
>

0, 𝜎
0
> 0, and a 𝐶1-smooth mapping (𝜏∗, 𝜔∗, 𝑥∗) : R2

𝛼0

→

R×R+×𝐶(R,R9), whereR2
𝛼0

= {𝛼 ∈ R2 | |𝛼| < 𝛼
0
}, such that

for each 𝛼 ∈ R2
𝛼0

, 𝑥∗ = 𝑥
∗

(𝑡; 𝛼) is an 𝜔∗(𝛼)-periodic solution
of system (2) with 𝜏 = 𝜏

𝑠
+ 𝜏
∗

(𝛼), and

𝛾 ⋅ 𝑥
∗

(𝑡) = 𝑥
∗

(𝑡 −

𝜔
∗

(𝛼)

2𝜋

𝜃) , (𝛾, ei𝜃) ∈ Σ𝑚,

𝜔
∗

(0) =

2𝜋

𝛽

, 𝜏
∗

(0) = 0,

𝑥
∗

(𝑡; 𝛼) = (𝛿
1
, 𝛿
2
) 𝛼 + 𝑜 (|𝛼|) , as |𝛼| → 0.

(41)

Furthermore, for |𝜏 − 𝜏
𝑠
| < 𝜏

∗

0
, |�̃� − 2𝜋/𝛽| < 𝜎

0
, every �̃�-

periodic solution 𝑥(𝑡) of system (2) with ‖𝑥
𝑡
‖ < 𝜎

0
, 𝛾 ⋅ 𝑥(𝑡) =

𝑥(𝑡−(�̃�/2𝜋)𝜃) for (𝛾, ei𝜃) ∈ Σ𝑚 and 𝑡 ∈ Rmust be of the above
type.
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Figure 2: Trajectories 𝑥
𝑖,𝑗
(𝑖, 𝑗 = 0, 1, 2) of system (42) when 𝜏 = 2.6.
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Figure 3: System (42) has multiple periodic solutions when 𝜏 = 3.

4. An Example and Numerical Simulations
As a simple example, we consider the following specific
Hopfield model with D

3
× D
3
-symmetry:

̇𝑥
𝑖,𝑗
(𝑡) = − 𝑥

𝑖,𝑗
(𝑡) − 0.6 tanh (𝑥

𝑖,𝑗
(𝑡 − 𝜏))

+ 0.3 tanh (𝑥
𝑖,𝑗−1

(𝑡 − 𝜏))

+ 0.3 tanh (𝑥
𝑖,𝑗+1

(𝑡 − 𝜏))

+ 0.4 tanh (𝑥
𝑖−1,𝑗

(𝑡 − 𝜏))

+ 0.4 tanh (𝑥
𝑖+1,𝑗

(𝑡 − 𝜏)) ,

(42)

where 𝑖, 𝑗 = 0, 1, 2 (mod 3).
Clearly, the origin is an equilibrium of system (42). It is

easy to compute 𝑎 = −0.6, 𝑏 = 0.3, and 𝑐 = 0.4 and verify
that the hypothesis (H) holds. According to (10), we obtain

𝜏
𝑠
= 2.9476 + 7.5641𝑠, 𝑠 = 0, 1, . . . . (43)

From Theorem 3, the origin is asymptotically stable if 𝜏 <

𝜏
0
= 2.9476. It follows from Theorem 7 that the equivariant

Hopf bifurcation occurs at 𝜏
0

= 2.9476 and there exist
100 distinct branches of periodic solutions bifurcated from
the origin. To illustrate the analytical results found, we give
some numerical simulations. Figure 2 shows that the origin
of system (42) is stable when 𝜏 = 2.6. Figure 3 shows that
four periodic orbits occur simultaneously when 𝜏 = 3.
Unfortunately, we cannot verify the existence of all other
bifurcated periodic orbits since they may be unstable.
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5. Discussion

In this paper, we have studied a coupled system of nine
identical cells with delays and D

3
× D
3
-symmetry. By

choosing the time delay 𝜏 as a bifurcation parameter and
analyzing the corresponding characteristic equation, we have
shown that under some assumption, the equilibrium of the
model loses its stability and periodic solutions via Hopf
bifurcation occur when 𝜏 passes through a critical value.This
implies that the time delay can be regarded as a source of
instability and oscillatory response of the networks and is able
to alter the dynamics of system (2) significantly.Moreover, the
spatio-temporal patterns of bifurcating periodic solutions are
explored clearly by employing the symmetric bifurcation the-
ory of delay differential equations combined with representa-
tion theory of Lie groups. FromTheorem 7, we have obtained
the conclusion that the small-scale network with a special
structure may have a large number of periodic oscillations.
Therefore, it is natural that the large-scale network possesses
complicated dynamics generally.

Further investigations such as the stability, direction and
global existence of the periodic solutions bifurcating from
the local Hopf bifurcations are essential in order to fully
understand the periodic phenomenon of the system. We can
compute the normal forms directly by using the method due
to Faria and Magalháes [24, 25]. However, this is a complex
and prolix task. In addition, we would like to point out that
codimension two mode interactions may take place if the
assumption (H) is not satisfied. For example, if 𝑎+2𝑏+2𝑐 = 1,
|𝑎+2𝑐−𝑏| < 1, |𝑎+2𝑏−𝑐| < 1, and 𝑎−𝑏−𝑐 < −1, then system
(2) undergoes a fold-Hopf bifurcation when 𝜏 passes through
a critical value. Therefore, it is possible to study secondary
bifurcations and more complex behaviours in this coupled
network. We leave them for our future work.
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The global exponential stability for bidirectional associative memory neural networks with time-varying delays is studied. In our
study, the lower and upper bounds of the activation functions are allowed to be either positive, negative, or zero. By constructing
new and improved Lyapunov-Krasovskii functional and introducing free-weightingmatrices, a new and improved delay-dependent
exponential stability for BAM neural networks with time-varying delays is derived in the form of linear matrix inequality (LMI).
Numerical examples are given to demonstrate that the derived condition is less conservative than some existing results given in the
literature.

1. Introduction

A class of neural networks related to bidirectional associative
memory (BAM) has been introduced by Kosko [1]. This
model generalized the single-layer autoassociative Hebbian
correlator to a two-layer pattern-matched heteroassociative
circuit. It is an important model with the ability of informa-
tion memory and information association, which is crucial
for various applications such as pattern recognition, solving
optimization problems, and automatic control engineering
[2–10]. In [1, 11], Kosko investigates the global stability of
BAM models and obtains a severe constraint of having a
symmetric connectionweightmatrix. Since it is impossible to
maintain an absolutely symmetric connection weight matrix,
asymmetric connection has been a focus of this field. Some
of these applications require that there should be a well-
defined computable solution for all possible initial states.
From a mathematical point of view, this means that the
equilibrium point of the designed cellular neural networks
(CNNs) is globally asymptotically stable (GAS) or globally
exponentially stable (GES). Moreover, in biological and
artificial neural networks, time delays arise in the process
of information transmission; for example, in the electronic
implementation of analogue neural networks, time delays

occur in the communication and response of neurons owing
to the finite switching speed of amplifiers. It is known that
they can create an oscillatory or an unstable phenomenon.
Therefore, the study of the stability and convergent dynamics
of BAM neural networks with delays has raised considerable
interest in recent years; see for examples [5, 7, 9, 10, 12–23]
and the references cited therein. In [14, 15, 18, 20–22, 24–
27], several sufficient conditions on the global exponential
stability of BAM neural networks with time-varying delays
have been derived. It is worth pointing out that the given
criteria in [14, 15, 18, 20–22, 24–27] required the following
hypothesis: the time-varying delays are continuously differ-
entiable, the derivative of time-varying delays is smaller than
one, and activation functions are bounded andmonotonically
nondecreasing. The common approach for studying stability
of BAM neural networks is Lyapunov stability theory. With a
properly designed Lyapunov-Krasovskii functional as well as
introducing free-weightingmatrices, onemay derive stability
criteria in term of linear matrix inequality (LMI) which is
easily solved by several available algorithms.

Based on the above discussion, we propose to study
the problem of global exponential stability of BAM neural
networks with time-varying delays and generalized activa-
tion functions. The main contributions of our works are
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that the system consists of both memoryless and delayed
activation functions, and the lower and upper bounds of
the activation functions are allowed to be either positive,
negative, or zero which is more general than systems con-
sidered in [14, 15, 18, 21, 22, 24–27]. By constructing a
new and improved Lyapunov-Krasovskii functional which
contains some integral terms of the activation functions, less
conservative results are obtained by introducing appropriate
free-weightingmatrices and by using some improved integral
inequality. Finally, two numerical examples are presented to
show that our result is less conservative than some existing
ones.

Notations. Throughout the paper,R denotes the set of all real
numbers. ∗ denotes the elements below the main diagonal
of a symmetric block matrix. diag{⋅ ⋅ ⋅ } denotes the diagonal
matrix. For symmetric matrices𝑋 and 𝑌, the notation𝑋 > 𝑌

(resp.,𝑋 ≥ 𝑌) means that thematrix𝑋−𝑌 is positive definite
(resp., nonnegative). 𝜆

𝑚
(⋅) and 𝜆

𝑀
(⋅) denote the smallest and

largest eigenvalue of given square matrix, respectively.

2. Model Description and Preliminaries

Consider the following BAM neural network with time-
varying delays of the form

̇𝑢
𝑖
(𝑡) = − 𝑐

𝑖
𝑢
𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑎
(1)

𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑡))

+

𝑚

∑

𝑗=1

𝑎
(2)

𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑡 − ℎ (𝑡))) + 𝐼

𝑖
,

̇V
𝑗
(𝑡) = − 𝑑

𝑗
V
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑏
(1)

𝑗𝑖

̃
𝑓
𝑖
(𝑢
𝑖
(𝑡))

+

𝑛

∑

𝑖=1

𝑏
(2)

𝑗𝑖

̃
𝑓
𝑖
(𝑢
𝑖
(𝑡 − 𝑑 (𝑡))) + 𝐼

𝑗
,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

(1)

where 𝑢
𝑖
(𝑡) and V

𝑗
(𝑡) are the state of the 𝑖th neurons from

the neural field 𝐹
𝑢
and the 𝑗th neurons from the neural

field 𝐹V, at time 𝑡, respectively; 𝑐
𝑖
and 𝑑

𝑗
denote the neuron

charging time constants and passive delay rates, respectively;
𝑎
(1)

𝑖𝑗
and 𝑏

(1)

𝑗𝑖
are the synaptic connection strengths; 𝑎(2)

𝑖𝑗
and

𝑏
(2)

𝑗𝑖
are delayed synaptic connection strengths; ̃𝑓

𝑖
(⋅) and 𝑔

𝑗
(⋅)

denote the activation functions of the 𝑖th neurons from the
neural field 𝐹

𝑢
and the 𝑗th neurons from the neural field 𝐹V,

respectively; 𝐼
𝑖
and 𝐼
𝑗
denote the external inputs; and 𝑑(𝑡)

and ℎ(𝑡) represent the time-varying differentiable functions
which satisfy

(i) 0 ≤ 𝑑 (𝑡) ≤ 𝑑,
̇

𝑑 (𝑡) ≤ 𝜏 < 1,

(ii) 0 ≤ ℎ (𝑡) ≤ ℎ,
̇
ℎ (𝑡) ≤ 𝜇 < 1,

(2)

where 𝑑, ℎ, 𝜇, and 𝜏 are positive scalars.

The initial conditions associated with (1) are assumed to
be

𝑢
𝑖
(𝑠) =

̃
𝜙
𝑖
(𝑠) , V

𝑗
(𝑠) = 𝜑

𝑗
(𝑠) , 𝑠 ∈ [−max {𝑑, ℎ} , 0] ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(3)

Throughout this paper, we make the following assump-
tion on the activation function ̃

𝑓
𝑖
(⋅), 𝑔
𝑗
(⋅).

(A1) ̃
𝑓
𝑖
(⋅) and 𝑔

𝑗
(⋅) are bounded on R.

(A2) For any 𝛼, 𝛽 ∈ R, 𝛼 ̸=𝛽, there exist four con-
stant matrices 𝐸 = diag(𝐸

1
, 𝐸
2
, . . . , 𝐸

𝑛
), 𝐹 =

diag(𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑛
),𝑀 = diag(𝑀

1
,𝑀
2
, . . . ,𝑀

𝑚
), and

𝑁 = diag(𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑚
) satisfying

𝐸
𝑖
≤

̃
𝑓
𝑖
(𝛼) −

̃
𝑓
𝑖
(𝛽)

𝛼 − 𝛽

≤ 𝐹
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑁
𝑗
≤

𝑔
𝑗
(𝛼) − 𝑔

𝑗
(𝛽)

𝛼 − 𝛽

≤ 𝑀
𝑗
, 𝑗 = 1, 2, . . . , 𝑚.

(4)

It is clear that under (A1) and (A2), the system (1) has at
least one equilibrium; see [20]. In order to simplify our proof,
we shift the equilibrium point 𝑢∗ = (𝑢

∗

1
, 𝑢
∗

2
, . . . , 𝑢

∗

𝑛
)
𝑇, V∗ =

(V∗
1
, V∗
2
, . . . , V∗

𝑚
)
𝑇 of system (1) to the origin. Let 𝑥

𝑖
(𝑡) = 𝑢

𝑖
(𝑡)−

𝑢
∗

𝑖
, 𝑦
𝑗
(𝑡) = V

𝑗
(𝑡) − V∗

𝑗
, 𝑓
𝑖
(𝑥
𝑖
(𝑡)) =

̃
𝑓
𝑖
(𝑥
𝑖
(𝑡) + 𝑢

∗

𝑖
) −

̃
𝑓
𝑖
(𝑢
∗

𝑖
),

𝑔
𝑗
(𝑦
𝑗
(𝑡)) = 𝑔

𝑗
(𝑦
𝑗
(𝑡) + V∗

𝑗
) − 𝑔
𝑗
(V∗
𝑗
), 𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝑑(𝑡))) =

̃
𝑓
𝑖
(𝑥
𝑖
(𝑡 −

𝑑(𝑡)) + 𝑢
∗

𝑖
) −

̃
𝑓
𝑖
(𝑢
∗

𝑖
), 𝑔
𝑗
(𝑦
𝑗
(𝑡 − ℎ(𝑡))) = 𝑔

𝑗
(𝑦
𝑗
(𝑡 − ℎ(𝑡)) + V∗

𝑗
) −

𝑔
𝑗
(V∗
𝑗
), 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝑚. Then the system (1)

can be transformed to

̇𝑥 (𝑡) = − 𝑐
𝑖
𝑥
𝑖
(𝑡) +

𝑚

∑

𝑗=1

𝑎
(1)

𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑡))

+

𝑚

∑

𝑗=1

𝑎
(2)

𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑡 − ℎ (𝑡))) ,

̇𝑦 (𝑡) = − 𝑑
𝑗
𝑦
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑏
(1)

𝑗𝑖
𝑓
𝑖
(𝑥
𝑖
(𝑡))

+

𝑛

∑

𝑖=1

𝑏
(2)

𝑗𝑖
𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝑑 (𝑡))) .

(5)

The activation functions 𝑓
𝑖
(⋅) and 𝑔

𝑗
(⋅) satisfy the following

properties.

(H1) 𝑓
𝑖
and 𝑔

𝑗
are bounded on R.
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(H2) For any 𝛼, 𝛽 ∈ R, 𝛼 ̸=𝛽, there exist constant matrices
𝐸 = diag(𝐸

1
, 𝐸
2
, . . . , 𝐸

𝑛
), 𝐹 = diag(𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑛
),

𝑀 = diag(𝑀
1
,𝑀
2
, . . . ,𝑀

𝑚
), and 𝑁 = diag(𝑁

1
,

𝑁
2
, . . . , 𝑁

𝑚
) satisfying

𝐸
𝑖
≤

𝑓
𝑖
(𝛼) − 𝑓

𝑖
(𝛽)

𝛼 − 𝛽

≤ 𝐹
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑁
𝑗
≤

𝑔
𝑗
(𝛼) − 𝑔

𝑗
(𝛽)

𝛼 − 𝛽

≤ 𝑀
𝑗
, 𝑗 = 1, 2, . . . , 𝑚.

(6)

(H3) 𝑓
𝑖
(0) = 0 and 𝑔

𝑗
(0) = 0, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

Rewrite the system (7) into the vector form
̇𝑥 (𝑡) = −𝐶𝑥 (𝑡) + 𝐴

1
𝑔 (𝑦 (𝑡)) + 𝐴

2
𝑔 (𝑦 (𝑡 − ℎ (𝑡))) ,

̇𝑦 (𝑡) = −𝐷𝑦 (𝑡) + 𝐵
1
𝑓 (𝑥 (𝑡)) + 𝐵

2
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡))) .

(7)

The initial conditions associated with (7) are assumed to be
𝑥
𝑖
(𝑠) = 𝜙

𝑖
(𝑠) , 𝑦

𝑗
(𝑠) = 𝜑

𝑗
(𝑠) , 𝑠 ∈ [−max {𝑑, ℎ} , 0] ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

(8)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇, 𝑦(𝑡) = (𝑦

1
(𝑡),

𝑦
2
(𝑡), . . . , 𝑦

𝑚
(𝑡))
𝑇, 𝐶 = diag(𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
), 𝐷 =

diag(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
), 𝐴
1
= (𝑎
(1)

𝑖𝑗
)
𝑚×𝑛

, 𝐴
2
= (𝑎
(2)

𝑖𝑗
)
𝑚×𝑛

, 𝐵
1
=

(𝑏
(1)

𝑖𝑗
)
𝑛×𝑚

, 𝐵
2
= (𝑏
(2)

𝑖𝑗
)
𝑛×𝑚

, 𝑓(⋅) = (𝑓
1
(⋅), 𝑓
2
(⋅), . . . , 𝑓

𝑛
(⋅))
𝑇,

𝑔(⋅) = (𝑔
1
(⋅), 𝑔
2
(⋅), . . . , 𝑔

𝑚
(⋅))
𝑇.

Definition 1 (see [14]). The trivial solution of system (7) is said
to be globally exponentially stable if there exist constants 𝑘 >
0 and 𝜌 ≥ 1 such that

‖𝑥(𝑡)‖
2

+




𝑦(𝑡)






2

≤ 𝜌𝑒
−2𝑘𝑡

(




𝜙





2

+




𝜑





2

) , ∀𝑡 ≥ 0, (9)

where one denotes




𝜙





2

+




𝜑





2

= sup
−max{𝑑,ℎ}≤𝑠≤0





𝜙(𝑠)






2

+ sup
−max{𝑑,ℎ}≤𝑠≤0





𝜑(𝑠)






2

.

(10)

Lemma 2 (see [28]). If there exist symmetric positive-definite
matrix 𝑋

33
> 0 and arbitrary matrices 𝑋

11
, 𝑋
12
, 𝑋
13
, 𝑋
22
,

and 𝑋
23
such that

𝑋 =
[

[

[

𝑋
11

𝑋
12

𝑋
13

𝑋
𝑇

12
𝑋
22

𝑋
23

𝑋
𝑇

13
𝑋
𝑇

23
𝑋
33

]

]

]

≥ 0, (11)

then,

− ∫

𝑡

𝑡−ℎ(𝑡)

̇𝑥 (𝑠)𝑋
33

̇𝑥 (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡−ℎ(𝑡)

[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − ℎ (𝑡)) ̇𝑥
𝑇

(𝑠)]

×
[

[

[

𝑋
11

𝑋
12

𝑋
13

𝑋
𝑇

12
𝑋
22

𝑋
23

𝑋
𝑇

13
𝑋
𝑇

23
0

]

]

]

[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ (𝑡))

̇𝑥 (𝑠)

]

]

𝑑𝑠.

(12)

Lemma 3 (see [25]). For any real vectors 𝑎, 𝑏 and any matrix
𝑄 > 0 with appropriate dimensions, it follows that

2𝑎
𝑇

𝑏 ≤ 𝑎
𝑇

𝑄𝑎 + 𝑏
𝑇

𝑄
−1

𝑏. (13)

Lemma 4 (see [25]). Suppose that (H2) holds; then

∫

𝑢

V

[𝑓
𝑖
(𝑠) − 𝑓

𝑖
(V)] 𝑑𝑠 ≤ [𝑢 − V] [𝑓

𝑖
(𝑢) − 𝑓

𝑖
(V)] ,

𝑖 = 1, 2, . . . , 𝑛,

∫

𝑢

V

[𝑔
𝑗
(𝑠) − 𝑔

𝑗
(V)] 𝑑𝑠 ≤ [𝑢 − V] [𝑔

𝑗
(𝑢) − 𝑔

𝑗
(V)] ,

𝑗 = 1, 2, . . . , 𝑚.

(14)

3. Main Result

In this section, we present a theorem which states the con-
ditions that guarantee the global exponential stability of the
system (7) employing the Lyapunov stability theory and linear
matrix inequality approach.

Theorem 5. Under the assumptions (H1)–(H3), for given
four diagonal matrices 𝐸 = diag(𝐸

1
, 𝐸
2
, . . . , 𝐸

𝑛
), 𝐹 =

diag(𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑛
), 𝑀 = diag(𝑀

1
,𝑀
2
, . . . ,𝑀

𝑚
), and 𝑁 =

diag(𝑁
1
, 𝑁
2
, . . . , 𝑁

𝑚
) and positive constants 𝑑, ℎ, 𝜏, 𝜇, and

𝑘, the system (7) is globally exponentially stable with the
convergent rate 𝑘, if there exist positive matrices 𝑃

𝑖
, 𝑊
𝑖
, 𝑍
𝑖
,

𝑖 = 1, 2, 𝑄
𝑗
, 𝑗 = 1, 2, 3, 4, positive diagonal matrices 𝐾 =

diag(𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
), 𝑅 = diag(𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑚
), and positive-

definite matrices

𝑆 =
[

[

[

𝑆
11

𝑆
12

𝑆
13

𝑆
𝑇

12
𝑆
22

𝑆
23

𝑆
𝑇

13
𝑆
𝑇

23
𝑍
1

]

]

]

,

𝑇 =
[

[

[

𝑇
11

𝑇
12

𝑇
13

𝑇
𝑇

12
𝑇
22

𝑇
23

𝑇
𝑇

13
𝑇
𝑇

23
𝑍
2

]

]

]

,

(15)

such that the following LMI holds:

Ξ =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Σ
1

1
Σ
1

2
Σ
1

3
0 0 0 Σ

1

7
Σ
1

8

∗ Σ
2

2
0 0 0 0 0 0

∗ ∗ Σ
3

3
Σ
3

4
Σ
3

5
0 Σ
3

7
Σ
3

8

∗ ∗ ∗ Σ
4

4
Σ
4

5
0 Σ
4

7
0

∗ ∗ ∗ ∗ Σ
5

5
Σ
5

6
Σ
5

7
0

∗ ∗ ∗ ∗ ∗ Σ
6

6
0 0

∗ ∗ ∗ ∗ ∗ ∗ Σ
7

7
Σ
7

8

∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ
8

8

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (16)
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where
Σ
1

1
= 2𝑘𝑃

1
− 𝑃
1
𝐶 − 𝐶

𝑇

𝑃
1
− 2𝑘𝐸

𝑇

𝐾 − 2𝑘𝐾
𝑇

𝐸

+ 𝐸
𝑇

𝐾𝐶 + 𝐶
𝑇

𝐾𝐸 + 𝑄
1
+ 𝑑𝐶
𝑇

𝑍
1
𝐶

+ 𝑒
−2𝑘𝑑

(𝑑𝑆
11
+ 𝑆
𝑇

13
+ 𝑆
13
) +𝑊

1
,

Σ
1

2
= 𝑒
−2𝑘𝑑

(𝑑𝑆
12
+ 𝑆
𝑇

23
− 𝑆
13
) ,

Σ
1

3
= 2𝑘𝐾,

Σ
1

7
= 𝑃
1
𝐴
1
− 𝐸
𝑇

𝐾𝐴
1
− 𝑑𝐶
𝑇

𝑍
1
𝐴
1
,

Σ
1

8
= 𝑃
2
𝐴
2
− 𝐸
𝑇

𝐾𝐴
2
− 𝑑𝐶
𝑇

𝑍
1
𝐴
2
,

Σ
2

2
= 𝑒
−2𝑘𝑑

(𝑑𝑆
22
− 𝑆
𝑇

23
− 𝑆
23
) − 𝑒
−2𝑘𝑑

𝑄
1
,

Σ
3

3
= ℎ𝐵
𝑇

1
𝑍
2
𝐵
1
+ 𝑄
3
− 2𝐾𝐶𝐹

−1

,

Σ
3

4
= ℎ𝐵
𝑇

1
𝑍
2
𝐵
2
,

Σ
3

5
= 𝑃
2
𝐵
1
− 𝑁
𝑇

𝑅𝐵
1
− ℎ𝐵
𝑇

1
𝑍
2
𝐷,

Σ
3

7
= 𝐾𝐴

1
+ 𝑅𝐵
1
,

Σ
3

8
= 𝐾𝐴

2
,

Σ
4

4
= ℎ𝐵
𝑇

2
𝑍
2
𝐵
2
− (1 − 𝜏) 𝑒

−2𝑘𝑑

𝑄
3

− (1 − 𝜏) 𝑒
−2𝑘𝑑

𝐹
−1

𝑊
1
𝐹
−1

,

Σ
4

5
= 𝑃
2
𝐵
2
− 𝑁
𝑇

𝑅𝐵
2
− ℎ𝐵
𝑇

2
𝑍
2
𝐷,

Σ
4

7
= 𝑅𝐵
2
,

Σ
5

5
= 2𝑘𝑃

2
− 𝑃
2
𝐷 − 𝐷

𝑇

𝑃
2
− 2𝑘𝑁

𝑇

𝑅 − 2𝑘𝑅
𝑇

𝑁

+𝑁
𝑇

𝑅𝐷 + 𝐷
𝑇

𝑅𝑁 + 𝑄
2
+ ℎ𝐷
𝑇

𝑍
2
𝐷

+ 𝑒
−2𝑘ℎ

(ℎ𝑇
11
+ 𝑇
𝑇

13
+ 𝑇
13
) +𝑊

2
,

Σ
5

6
= 𝑒
−2𝑘ℎ

(ℎ𝑇
12
+ 𝑇
𝑇

23
− 𝑇
13
) ,

Σ
5

7
= 2𝑘𝑅,

Σ
6

6
= 𝑒
−2𝑘ℎ

(ℎ𝑇
22
− 𝑇
𝑇

23
− 𝑇
23
) − 𝑒
−2𝑘ℎ

𝑄
2
,

Σ
7

7
= 𝑑𝐴
𝑇

1
𝑍
1
𝐴
1
+ 𝑄
4
− 2𝑅𝐷𝑀

−1

,

Σ
7

8
= 𝑑𝐴
𝑇

1
𝑍
1
𝐴
2
,

Σ
8

8
= 𝑑𝐴
𝑇

2
𝑍
1
𝐴
2
− (1 − 𝜇) 𝑒

−2𝑘ℎ

𝑄
4

− (1 − 𝜇) 𝑒
−2𝑘ℎ

𝑀
−1

𝑊
2
𝑀
−1

.

(17)

Proof. Choose the Lyapunov-Krasovskii function candidate
for the system (7) to be

𝑉 (𝑡) =

5

∑

𝑙=1

𝑉
𝑙
(𝑡) , (18)

where

𝑉
1
(𝑡) = 𝑒

2𝑘𝑡

𝑥
𝑇

(𝑡) 𝑃
1
𝑥 (𝑡)

+ 2

𝑛

∑

𝑖=1

𝑘
𝑖
𝑒
2𝑘𝑡

∫

𝑥𝑖(𝑡)

0

[𝑓
𝑖
(𝑠) − 𝐸

𝑖
𝑠] 𝑑𝑠

+ 𝑒
2𝑘𝑡

𝑦
𝑇

(𝑡) 𝑃
2
𝑦 (𝑡)

+ 2

𝑚

∑

𝑗=1

𝑟
𝑗
𝑒
2𝑘𝑡

∫

𝑦𝑗(𝑡)

0

[𝑔
𝑗
(𝑠) − 𝑁

𝑗
𝑠] 𝑑𝑠,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−𝑑

𝑒
2𝑘𝑠

𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

𝑒
2𝑘𝑠

𝑦
𝑇

(𝑠) 𝑄
2
𝑦 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝑑(𝑡)

𝑒
2𝑘𝑠

𝑓
𝑇

(𝑥 (𝑠)) 𝑄
3
𝑓 (𝑥 (𝑠)) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ(𝑡)

𝑒
2𝑘𝑠

𝑔
𝑇

(𝑦 (𝑠)) 𝑄
4
𝑔 (𝑦 (𝑠)) 𝑑𝑠,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−𝑑(𝑡)

𝑒
2𝑘𝑠

𝑥
𝑇

(𝑠)𝑊
1
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ(𝑡)

𝑒
2𝑘𝑠

𝑦
𝑇

(𝑠)𝑊
2
𝑦 (𝑠) 𝑑𝑠,

𝑉
5
(𝑡) = ∫

𝑡

𝑡−𝑑

∫

𝑡

𝑠

𝑒
2𝑘𝜃

̇𝑥
𝑇

(𝜃) 𝑍
1
̇𝑥 (𝜃) 𝑑𝜃 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

∫

𝑡

𝑠

𝑒
2𝑘𝜃

̇𝑦
𝑇

(𝜃) 𝑍
2
̇𝑦 (𝜃) 𝑑𝜃 𝑑𝑠.

(19)

The derivative of 𝑉(𝑡) along the trajectories of system (7) is
given by

𝑉
1
(𝑡) = 2𝑘𝑒

2𝑘𝑡

𝑥
𝑇

(𝑡) 𝑃
1
𝑥 (𝑡) + 2𝑒

2𝑘𝑡

𝑥
𝑇

(𝑡) 𝑃
1
̇𝑥 (𝑡)

+ 4𝑘

𝑛

∑

𝑖=1

𝑘
𝑖
𝑒
2𝑘𝑡

∫

𝑥𝑖(𝑡)

0

[𝑓
𝑖
(𝑠) − 𝐸

𝑖
𝑠] 𝑑𝑠

+ 2

𝑛

∑

𝑖=1

𝑘
𝑖
𝑒
2𝑘𝑡

̇𝑥
𝑖
(𝑡) [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝐸

𝑖
𝑥
𝑖
(𝑡)]

+ 2𝑘𝑒
2𝑘𝑡

𝑦
𝑇

(𝑡) 𝑃
2
𝑦 (𝑡) + 2𝑒

2𝑘𝑡

𝑦
𝑇

(𝑡) 𝑃
2
̇𝑦 (𝑡)

+ 4𝑘

𝑚

∑

𝑗=1

𝑟
𝑗
𝑒
2𝑘𝑡

∫

𝑦𝑗(𝑡)

0

[𝑔
𝑗
(𝑠) − 𝑁

𝑗
𝑠] 𝑑𝑠

+ 2

𝑚

∑

𝑗=1

𝑟
𝑗
𝑒
2𝑘𝑡

̇𝑦
𝑗
(𝑡) [𝑔
𝑗
(𝑦
𝑗
(𝑡)) − 𝑁

𝑗
𝑦
𝑗
(𝑡)]
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≤ 𝑒
2𝑘𝑡

{2𝑘𝑥
𝑇

(𝑡) 𝑃
1
𝑥 (𝑡) + 2𝑥

𝑇

(𝑡)

× 𝑃
1
[−𝐶𝑥 (𝑡) + 𝐴

1
𝑔 (𝑦 (𝑡))

+𝐴
2
𝑔 (𝑦 (𝑡 − ℎ (𝑡)))]

+ 4𝑘[𝑓 (𝑥 (𝑡)) − 𝐸𝑥 (𝑡)]
𝑇

𝐾𝑥 (𝑡)

+ 2[𝑓 (𝑥 (𝑡)) − 𝐸𝑥 (𝑡)]
𝑇

× 𝐾 [−𝐶𝑥 (𝑡) + 𝐴
1
𝑔 (𝑦 (𝑡))

+𝐴
2
𝑔 (𝑦 (𝑡 − ℎ (𝑡)))]

+ 2𝑘𝑦
𝑇

(𝑡) 𝑃
2
𝑦 (𝑡)

+ 2𝑦
𝑇

(𝑡) 𝑃
2
[−𝐷𝑦 (𝑡) + 𝐵

1
𝑓 (𝑥 (𝑡))

+𝐵
2
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))]

+ 4𝑘[𝑔 (𝑦 (𝑡)) − 𝑁𝑦 (𝑡)]
𝑇

𝑅𝑦 (𝑡)

+ 2[𝑔 (𝑦 (𝑡)) − 𝑁𝑦 (𝑡)]
𝑇

𝑅

× [−𝐷𝑦 (𝑡) + 𝐵
1
𝑓 (𝑥 (𝑡))

+𝐵
2
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))] } .

(20)

By (H2), we have

−2𝑓
𝑇

(𝑥 (𝑡)) 𝐾𝐶𝑥 (𝑡) ≤ −2𝑓
𝑇

(𝑥 (𝑡)) 𝐾𝐶𝐹
−1

𝑓 (𝑥 (𝑡)) ,

−2𝑔
𝑇

(𝑦 (𝑡)) 𝑅𝐷𝑦 (𝑡) ≤ −2𝑔
𝑇

(𝑦 (𝑡)) 𝑅𝐷𝑀
−1

𝑔 (𝑦 (𝑡)) .

(21)

Substituting (21) into (20), we obtain

𝑉
1
(𝑡) ≤ 𝑒

2𝑘𝑡

× {2𝑘𝑥
𝑇

(𝑡) 𝑃
1
𝑥 (𝑡) − 2𝑥

𝑇

(𝑡) 𝑃
1
𝐶𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑃
1
𝐴
1
𝑔 (𝑦 (𝑡)) + 2𝑥

𝑇

(𝑡) 𝑃
1
𝐴
2

× 𝑔 (𝑦 (𝑡 − ℎ (𝑡))) + 4𝑘𝑓
𝑇

(𝑥 (𝑡)) 𝐾𝑥 (𝑡)

− 4𝑘𝑥
𝑇

(𝑡) 𝐸
𝑇

𝐾𝑥 (𝑡) − 2𝑓
𝑇

(𝑥 (𝑡)) 𝐾𝐶

× 𝐹
−1

𝑓 (𝑥 (𝑡)) + 2𝑓
𝑇

(𝑥 (𝑡)) 𝐾𝐴
1
𝑔 (𝑦 (𝑡))

+ 2𝑓
𝑇

(𝑥 (𝑡)) 𝐾𝐴
2
𝑔 (𝑦 (𝑡 − ℎ (𝑡)))

+ 2𝑥
𝑇

(𝑡) 𝐸
𝑇

𝐾𝐶𝑥 (𝑡)

− 2𝑥
𝑇

(𝑡) 𝐸
𝑇

𝐾𝐴
1
𝑔 (𝑦 (𝑡))

− 2𝑥
𝑇

(𝑡) 𝐸
𝑇

𝐾𝐴
2
𝑔 (𝑦 (𝑡 − ℎ (𝑡)))

+ 2𝑘𝑦
𝑇

(𝑡) 𝑃
2
𝑦 (𝑡) − 2𝑦

𝑇

(𝑡) 𝑃
2
𝐷𝑦 (𝑡)

+ 2𝑦
𝑇

(𝑡) 𝑃
2
𝐵
1
𝑓 (𝑥 (𝑡))

+ 2𝑦
𝑇

(𝑡) 𝑃
2
𝐵
2
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 4𝑘𝑔
𝑇

(𝑦 (𝑡)) 𝑅𝑦 (𝑡) − 4𝑘𝑦
𝑇

(𝑡)𝑁
𝑇

𝑅𝑦 (𝑡)

− 2𝑔
𝑇

(𝑦 (𝑡)) 𝑅𝐷𝑀
−1

𝑔 (𝑦 (𝑡))

+ 2𝑔
𝑇

(𝑦 (𝑡)) 𝑅𝐵
1
𝑓 (𝑥 (𝑡))

+ 2𝑔
𝑇

(𝑦 (𝑡)) 𝑅𝐵
2
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 2𝑦
𝑇

(𝑡)𝑁
𝑇

𝑅𝐷𝑦 (𝑡)

− 2𝑦
𝑇

(𝑡)𝑁
𝑇

𝑅𝐵
1
𝑓 (𝑥 (𝑡))

− 2𝑦
𝑇

(𝑡)𝑁
𝑇

𝑅𝐵
2
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))} ,

𝑉
2
(𝑡) = 𝑒

2𝑘𝑡

{𝑥
𝑇

(𝑡) 𝑄
1
𝑥 (𝑡)

− 𝑒
−2𝑘𝑑

𝑥
𝑇

(𝑡 − 𝑑)𝑄
1
𝑥 (𝑡 − 𝑑)

+ 𝑦
𝑇

(𝑡) 𝑄
2
𝑦 (𝑡)

− 𝑒
−2𝑘ℎ

𝑦
𝑇

(𝑡 − ℎ)𝑄
2
𝑦 (𝑡 − ℎ)} ,

𝑉
3
(𝑡) = 𝑒

2𝑘𝑡

× {𝑓
𝑇

(𝑥 (𝑡)) 𝑄
3
𝑓 (𝑥 (𝑡))

− (1 −
̇

𝑑 (𝑡)) 𝑒
−2𝑘𝑑(𝑡)

𝑓
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡)))

× 𝑄
3
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 𝑔
𝑇

(𝑦 (𝑡)) 𝑄
4
𝑔 (𝑦 (𝑡))

− (1 −
̇
ℎ (𝑡)) 𝑒

−2𝑘ℎ(𝑡)

× 𝑔
𝑇

(𝑦 (𝑡 − ℎ (𝑡))) 𝑄
4
𝑔 (𝑦 (𝑡 − ℎ (𝑡)))}

≤ 𝑒
2𝑘𝑡

{𝑓
𝑇

(𝑥 (𝑡)) 𝑄
3
𝑓 (𝑥 (𝑡))

− (1 − 𝜏) 𝑒
−2𝑘𝑑

𝑓
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡)))

× 𝑄
3
𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 𝑔
𝑇

(𝑦 (𝑡)) 𝑄
4
𝑔 (𝑦 (𝑡))

− (1 − 𝜇) 𝑒
−2𝑘ℎ

𝑔
𝑇

(𝑦 (𝑡 − ℎ (𝑡)))

× 𝑄
4
𝑔 (𝑦 (𝑡 − ℎ (𝑡)))} ,

(22)

𝑉
4
(𝑡) = 𝑒

2𝑘𝑡

{𝑥
𝑇

(𝑡)𝑊
1
𝑥 (𝑡)

− (1 −
̇

𝑑 (𝑡)) 𝑒
−2𝑘𝑑(𝑡)

𝑥
𝑇

(𝑡 − 𝑑 (𝑡))

× 𝑊
1
𝑥 (𝑡 − 𝑑 (𝑡))

+ 𝑦
𝑇

(𝑡)𝑊
2
𝑦 (𝑡) − (1 −

̇
ℎ (𝑡)) 𝑒

−2𝑘ℎ(𝑡)

× 𝑦
𝑇

(𝑡 − ℎ (𝑡)) (𝑠)𝑊
2
𝑦
𝑇

(𝑡 − ℎ (𝑡))}
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≤ 𝑒
2𝑘𝑡

{𝑥
𝑇

(𝑡)𝑊
1
𝑥 (𝑡) − (1 − 𝜏) 𝑒

−2𝑘𝑑

× 𝑥
𝑇

(𝑡 − 𝑑 (𝑡))𝑊
1
𝑥 (𝑡 − 𝑑 (𝑡))

+ 𝑦
𝑇

(𝑡)𝑊
2
𝑦 (𝑡) − (1 − 𝜇) 𝑒

−2𝑘ℎ

× 𝑦
𝑇

(𝑡 − ℎ (𝑡)) (𝑠)𝑊
2
𝑦
𝑇

(𝑡 − ℎ (𝑡))} .

(23)

By (H2), we have

− 𝑒
−2𝑘𝑑

𝑥
𝑇

(𝑡 − 𝑑 (𝑡))𝑊
1
𝑥 (𝑡 − 𝑑 (𝑡))

≤ −𝑒
−2𝑘𝑑

𝑓
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡))) 𝐹
−1

𝑊
1

× 𝐹
−1

𝑓 (𝑥 (𝑡 − 𝑑 (𝑡))) ,

− 𝑒
−2𝑘ℎ

𝑦
𝑇

(𝑡 − ℎ (𝑡)) (𝑠)𝑊
2
𝑦
𝑇

(𝑡 − ℎ (𝑡))

≤ −𝑒
−2𝑘ℎ

𝑔
𝑇

(𝑦 (𝑡 − ℎ (𝑡)))𝑀
−1

𝑊
2

×𝑀
−1

𝑔 (𝑦 (𝑡 − ℎ (𝑡))) .

(24)

By (24), we conclude that

𝑉
4
(𝑡) ≤ 𝑒

2𝑘𝑡

{𝑥
𝑇

(𝑡)𝑊
1
𝑥 (𝑡) − (1 − 𝜏) 𝑒

−2𝑘𝑑

× 𝑓
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡))) 𝐹
−1

𝑊
1
𝐹
−1

× 𝑓 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 𝑦
𝑇

(𝑡)𝑊
2
𝑦 (𝑡) − (1 − 𝜇) 𝑒

−2𝑘ℎ

× 𝑔
𝑇

(𝑦 (𝑡 − ℎ (𝑡)))𝑀
−1

𝑊
2
𝑀
−1

× 𝑔 (𝑦 (𝑡 − ℎ (𝑡)))} .

(25)

𝑉
5
(𝑡) = 𝑑𝑒

2𝑘𝑡

̇𝑥
𝑇

(𝑡) 𝑍
1
̇𝑥 (𝑡)

− ∫

𝑡

𝑡−𝑑

𝑒
2𝑘𝑠

̇𝑥
𝑇

(𝑠) 𝑍
1
̇𝑥 (𝑠) 𝑑𝑠

+ ℎ𝑒
2𝑘𝑡

̇𝑦
𝑇

(𝑡) 𝑍
2
̇𝑦 (𝑡)

− ∫

𝑡

𝑡−ℎ

𝑒
2𝑘𝑠

̇𝑦
𝑇

(𝑠) 𝑍
2
̇𝑦 (𝑠) 𝑑𝑠

≤ 𝑒
2𝑘𝑡

{𝑑 ̇𝑥
𝑇

(𝑡) 𝑍
1
̇𝑥 (𝑡)

− 𝑒
−2𝑘𝑑

∫

𝑡

𝑡−𝑑

̇𝑥
𝑇

(𝑠) 𝑍
1
̇𝑥 (𝑠) 𝑑𝑠

× ℎ ̇𝑦
𝑇

(𝑡) 𝑍
2
̇𝑦 (𝑡)

− 𝑒
−2𝑘ℎ

∫

𝑡

𝑡−ℎ

̇𝑦
𝑇

(𝑠) 𝑍
2
̇𝑦 (𝑠) 𝑑𝑠} .

(26)

By Lemma 2, we obtain

− ∫

𝑡

𝑡−𝑑

̇𝑥
𝑇

(𝑠) 𝑍
1
̇𝑥 (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡−𝑑

[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑑) ̇𝑥
𝑇

(𝑠)]

×
[

[

𝑆
11

𝑆
12

𝑆
13

𝑆
𝑇

12
𝑆
22

𝑆
23

𝑆
𝑇

13
𝑆
𝑇

23
0

]

]

×
[

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)

̇𝑥 (𝑠)

]

]

𝑑𝑠

= ∫

𝑡

𝑡−𝑑

(𝑥
𝑇

(𝑡) 𝑆
11
+ 𝑥
𝑇

(𝑡 − 𝑑) 𝑆
𝑇

12
+ ̇𝑥
𝑇

(𝑠) 𝑆
𝑇

13
) 𝑥 (𝑡) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑

(𝑥
𝑇

(𝑡) 𝑆
12
+ 𝑥
𝑇

(𝑡 − 𝑑) 𝑆
22
+ ̇𝑥
𝑇

(𝑠) 𝑆
𝑇

23
)

× 𝑥 (𝑡 − 𝑑) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑

(𝑥
𝑇

(𝑡) 𝑆
13
+ 𝑥
𝑇

(𝑡 − 𝑑) 𝑆
23
) ̇𝑥 (𝑠) 𝑑𝑠

= 𝑥
𝑇

(𝑡) 𝑑𝑆
11
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝑑) 𝑑𝑆
𝑇

12
𝑥 (𝑡)

+ ∫

𝑡

𝑡−𝑑

̇𝑥
𝑇

(𝑠) 𝑑𝑠𝑆
𝑇

13
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑑𝑆
12
𝑥 (𝑡 − 𝑑) + 𝑥

𝑇

(𝑡 − 𝑑) 𝑑𝑆
22
𝑥 (𝑡 − 𝑑)

+ ∫

𝑡

𝑡−𝑑

̇𝑥
𝑇

(𝑠) 𝑑𝑠𝑆
𝑇

23
𝑥 (𝑡 − 𝑑)

+ 𝑥
𝑇

(𝑡) 𝑆
13
∫

𝑡

𝑡−𝑑

̇𝑥 (𝑠) 𝑑𝑠

+ 𝑥
𝑇

(𝑡 − 𝑑) 𝑆
23
∫

𝑡

𝑡−𝑑

̇𝑥 (𝑠) 𝑑𝑠

= 𝑥
𝑇

(𝑡) 𝑑𝑆
11
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝑑) 𝑑𝑆
𝑇

12
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑑𝑆
12
𝑥 (𝑡 − 𝑑)

+ 𝑥
𝑇

(𝑡 − 𝑑) 𝑑𝑆
22
𝑥 (𝑡 − 𝑑) + [𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑)]

𝑇

× [𝑆
𝑇

13
𝑥 (𝑡) + 𝑆

𝑇

23
𝑥 (𝑡 − 𝑑)]

+ [𝑥
𝑇

(𝑡) 𝑆
13
+ 𝑥
𝑇

(𝑡 − 𝑑) 𝑆
23
]

× [𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑)] ,
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− ∫

𝑡

𝑡−ℎ

̇𝑦
𝑇

(𝑠) 𝑍
2
̇𝑦 (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡−ℎ

[𝑦
𝑇

(𝑡) 𝑦
𝑇

(𝑡 − ℎ) ̇𝑦
𝑇

(𝑠)]

×
[

[

𝑇
11

𝑇
12

𝑇
13

𝑇
𝑇

12
𝑇
22

𝑇
23

𝑇
𝑇

13
𝑇
𝑇

23
0

]

]

×
[

[

𝑦 (𝑡)

𝑦 (𝑡 − ℎ)

̇𝑦 (𝑠)

]

]

𝑑𝑠

= ∫

𝑡

𝑡−ℎ

(𝑦
𝑇

(𝑡) 𝑇
11
+ 𝑦
𝑇

(𝑡 − ℎ) 𝑇
𝑇

12
+ ̇𝑦
𝑇

(𝑠) 𝑇
𝑇

13
) 𝑦 (𝑡) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

(𝑦
𝑇

(𝑡) 𝑇
12
+ 𝑦
𝑇

(𝑡 − ℎ) 𝑇
22
+ ̇𝑦
𝑇

(𝑠) 𝑇
𝑇

23
)

× 𝑦 (𝑡 − ℎ) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ

(𝑦
𝑇

(𝑡) 𝑇
13
+ 𝑦
𝑇

(𝑡 − ℎ) 𝑇
23
) ̇𝑦 (𝑠) 𝑑𝑠

= 𝑦
𝑇

(𝑡) ℎ𝑇
11
𝑦 (𝑡) + 𝑦

𝑇

(𝑡 − ℎ) ℎ𝑇
𝑇

12
𝑦 (𝑡)

+ ∫

𝑡

𝑡−ℎ

̇𝑦
𝑇

(𝑠) 𝑑𝑠𝑇
𝑇

13
𝑦 (𝑡)

+ 𝑦
𝑇

(𝑡) ℎ𝑇
12
𝑦 (𝑡 − ℎ) + 𝑦

𝑇

(𝑡 − ℎ) ℎ𝑇
22
𝑦 (𝑡 − ℎ)

+ ∫

𝑡

𝑡−ℎ

̇𝑦
𝑇

(𝑠) 𝑑𝑠𝑇
𝑇

23
𝑦 (𝑡 − ℎ)

+ 𝑦
𝑇

(𝑡) 𝑇
13
∫

𝑡

𝑡−ℎ

̇𝑦 (𝑠) 𝑑𝑠

+ 𝑦
𝑇

(𝑡 − ℎ) 𝑇
23
∫

𝑡

𝑡−ℎ

̇𝑦 (𝑠) 𝑑𝑠

= 𝑦
𝑇

(𝑡) ℎ𝑇
11
𝑦 (𝑡) + 𝑦

𝑇

(𝑡 − ℎ) ℎ𝑇
𝑇

12
𝑦 (𝑡)

+ 𝑦
𝑇

(𝑡) ℎ𝑇
12
𝑦 (𝑡 − ℎ)

+ 𝑦
𝑇

(𝑡 − ℎ) ℎ𝑇
22
𝑦 (𝑡 − ℎ) + [𝑦 (𝑡) − 𝑦 (𝑡 − ℎ)]

𝑇

× [𝑇
𝑇

13
𝑦 (𝑡) + 𝑇

𝑇

23
𝑦 (𝑡 − ℎ)]

+ [𝑦
𝑇

(𝑡) 𝑇
13
+ 𝑦
𝑇

(𝑡 − ℎ) 𝑇
23
]

× [𝑦 (𝑡) − 𝑦 (𝑡 − ℎ)] .

(27)

Substituting (27) into (26), we have

𝑉
5
(𝑡) ≤ 𝑒

2𝑘𝑡

{𝑑 ̇𝑥
𝑇

(𝑡) 𝑍
1
̇𝑥 (𝑡)

+ 𝑒
−2𝑘𝑑

[𝑑𝑥
𝑇

(𝑡) 𝑆
11
𝑥 (𝑡)

+ 2𝑑𝑥
𝑇

(𝑡) 𝑆
𝑇

12
𝑥 (𝑡 − 𝑑)

+ 2[𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑)]
𝑇

× [𝑆
𝑇

13
𝑥 (𝑡) + 𝑆

𝑇

23
𝑥 (𝑡 − 𝑑)]

+ 𝑑𝑥
𝑇

(𝑡 − 𝑑) 𝑆
22
𝑥 (𝑡 − 𝑑)]

+ ℎ ̇𝑦
𝑇

(𝑡) 𝑍
2
̇𝑦 (𝑡)

+ 𝑒
−2𝑘ℎ

[ℎ𝑦
𝑇

(𝑡) 𝑇
11
𝑦 (𝑡)

+ 2ℎ𝑦
𝑇

(𝑡) 𝑇
12
𝑦 (𝑡 − ℎ)

+ 2[𝑦 (𝑡) − 𝑦 (𝑡 − ℎ)]
𝑇

× [𝑇
𝑇

13
𝑦 (𝑡) + 𝑇

𝑇

23
𝑦 (𝑡 − ℎ)]

+ ℎ𝑦
𝑇

(𝑡 − ℎ) 𝑇
22
𝑦 (𝑡 − ℎ)]} .

(28)

From (22), (25), and (28) we obtain

𝑉 (𝑡) ≤ 𝑒
2𝑘𝑡

𝜉
𝑇

(𝑡) Ξ𝜉 (𝑡) , (29)

where Ξ is defined as in (16), and 𝜉(𝑡) = [𝑥(𝑡), 𝑥(𝑡 −

𝑑), 𝑓(𝑥(𝑡)), 𝑓(𝑥(𝑡−𝑑(𝑡))), 𝑦(𝑡), 𝑦(𝑡−ℎ), 𝑔(𝑦(𝑡)), 𝑔(𝑦(𝑡−ℎ(𝑡)))].
Since the matrix Ξ given inTheorem 5 is the negative definite
matrix, we have 𝑉(𝑡) ≤ 0, for all 𝑡 ≥ 0 which implies that
𝑉(𝑡) ≤ 𝑉(0). From the definition of 𝑉(𝑡) in (20), we obtain

𝑉 (0) = 𝑥
𝑇

(0) 𝑃
1
𝑥 (0)

+ 2

𝑛

∑

𝑖=1

𝑘
𝑖
∫

𝑥𝑖(0)

0

[𝑓
𝑖
(𝑠) − 𝐸

𝑖
𝑠] 𝑑𝑠

+ ∫

0

−𝑑

𝑒
2𝑘𝑠

𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−𝑑(0)

𝑒
2𝑘𝑠

𝑓
𝑇

(𝑥 (𝑠)) 𝑄
3
𝑓 (𝑥 (𝑠)) 𝑑𝑠

+ ∫

0

−𝑑(0)

𝑒
2𝑘𝑠

𝑥
𝑇

(𝑠)𝑊
1
𝑥 (𝑠) 𝑑𝑠

+ 𝑦
𝑇

(0) 𝑃
2
𝑦 (0)

+ 2

𝑚

∑

𝑗=1

𝑟
𝑗
∫

𝑦𝑗(0)

0

[𝑔
𝑗
(𝑠) − 𝑁

𝑗
𝑠] 𝑑𝑠

+ ∫

0

−ℎ

𝑒
2𝑘𝑠

𝑦
𝑇

(𝑠) 𝑄
2
𝑦 (𝑠) 𝑑𝑠
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+ ∫

0

−ℎ(0)

𝑒
2𝑘𝑠

𝑔
𝑇

(𝑦 (𝑠)) 𝑄
4
𝑔 (𝑦 (𝑠)) 𝑑𝑠

+ ∫

0

−ℎ(0)

𝑦
𝑇

(𝑠)𝑊
2
𝑦 (𝑠) 𝑑𝑠

+ ∫

0

−𝑑

∫

0

𝑠

𝑒
2𝑘𝜃

̇𝑥
𝑇

(𝜃) 𝑍
1
̇𝑥 (𝜃) 𝑑𝜃 𝑑𝑠

+ ∫

0

−ℎ

∫

0

𝑠

𝑒
2𝑘𝜃

̇𝑦
𝑇

(𝜃) 𝑍
2
̇𝑦 (𝜃) 𝑑𝜃 𝑑𝑠

≤ 𝜆
𝑀
(𝑃
1
)




𝜙





2

+ 2𝐾
𝑀
(𝐹 − 𝐸)





𝜙





2

+ [𝜆
𝑀
(𝑄
1
) + 𝜆
𝑀
(𝑄
3
) (𝐹 − 𝐸) + 𝜆

𝑀
(𝑊
1
)]

× ∫

0

−𝑑

𝑒
2𝑘𝑠

𝑥
𝑇

(𝑠) 𝑥 (𝑠) 𝑑𝑠 + 𝜆
𝑀
(𝑃
2
)




𝜑





2

+ 2𝑅
𝑀
(𝑀 − 𝑁)





𝜑





2

+ [𝜆
𝑀
(𝑄
2
) + 𝜆
𝑀
(𝑄
4
) (𝑀 − 𝑁) + 𝜆

𝑀
(𝑊
2
)]

× ∫

0

−ℎ

𝑒
2𝑘𝑠

𝑦
𝑇

(𝑠) 𝑦 (𝑠) 𝑑𝑠

+ 𝜆
𝑀
(𝑍
1
) ∫

0

−𝑑

∫

0

𝑠

̇𝑥
𝑇

(𝜃) ̇𝑥 (𝜃) 𝑑𝜃 𝑑𝑠

+ 𝜆
𝑀
(𝑍
2
) ∫

0

−ℎ

∫

0

𝑠

̇𝑦
𝑇

(𝜃) ̇𝑦 (𝜃) 𝑑𝜃 𝑑𝑠,

(30)

where 𝐾
𝑀
= max

1≤𝑖≤𝑛
(𝑘
𝑖
), 𝐹 − 𝐸 = max

1≤𝑖≤𝑛
(𝐹
𝑖
− 𝐸
𝑖
), 𝑅
𝑀
=

max
1≤𝑗≤𝑚

(𝑟
𝑗
) and𝑀−𝑁 = max

1≤𝑗≤𝑛
(𝑀
𝑗
− 𝑁
𝑗
).

It follows from Lemma 3 that

̇𝑥
𝑇

(𝜃) ̇𝑥 (𝜃)

= [−𝐶𝑥 (𝜃) + 𝐴
1
𝑔 (𝑦 (𝜃)) + 𝐴

2
𝑔 (𝑦 (𝜃 − ℎ (𝜃)))]

𝑇

× [−𝐶𝑥 (𝜃) + 𝐴
1
𝑔 (𝑦 (𝜃)) + 𝐴

2
𝑔 (𝑦 (𝜃 − ℎ (𝜃)))]

= 𝑥
𝑇

(𝜃) 𝐶
𝑇

𝐶𝑥 (𝜃) + 𝑔
𝑇

(𝑦 (𝜃)) 𝐴
𝑇

1
𝐴
1
𝑔 (𝑦 (𝜃))

+ 𝑔
𝑇

(𝑦 (𝜃 − ℎ (𝜃))) × 𝐴
𝑇

2
𝐴
2
𝑔 (𝑦 (𝜃 − ℎ (𝜃)))

− 2𝑥
𝑇

(𝜃) 𝐶
𝑇

𝐴
1
𝑔 (𝑦 (𝜃)) − 2𝑥

𝑇

(𝜃) 𝐶
𝑇

𝐴
2

× 𝑔 (𝑦 (𝜃 − ℎ (𝜃)))

+ 2𝑔
𝑇

(𝑦 (𝜃)) 𝐴
𝑇

1
𝐴
2
𝑔 (𝑦 (𝜃 − ℎ (𝜃)))

≤ 3𝑥
𝑇

(𝜃) 𝐶
𝑇

𝐶𝑥 (𝜃)

+ 3𝑔
𝑇

(𝑦 (𝜃)) 𝐴
𝑇

1
𝐴
1
𝑔 (𝑦 (𝜃))

+ 3𝑔
𝑇

(𝑦 (𝜃 − ℎ (𝜃))) 𝐴
𝑇

2

× 𝐴
2
𝑔 (𝑦 (𝜃 − ℎ (𝜃))) ,

̇𝑦
𝑇

(𝜃) ̇𝑦 (𝜃)

= [−𝐷𝑦 (𝜃) + 𝐵
1
𝑓 (𝑥 (𝜃)) + 𝐵

2
𝑓 (𝑥 (𝜃 − 𝑑 (𝜃)))]

𝑇

× [−𝐷𝑦 (𝜃) + 𝐵
1
𝑓 (𝑥 (𝜃)) + 𝐵

2
𝑓 (𝑥 (𝜃 − 𝑑 (𝜃)))]

= 𝑦
𝑇

(𝜃)𝐷
𝑇

𝐷𝑦 (𝜃) + 𝑓
𝑇

(𝑥 (𝜃)) 𝐵
𝑇

1
𝐵
1
𝑓 (𝑥 (𝜃))

+ 𝑓
𝑇

(𝑥 (𝜃 − 𝑑 (𝜃)))

× 𝐵
𝑇

2
𝐵
2
𝑓 (𝑥 (𝜃 − 𝑑 (𝜃)))

− 2𝑦
𝑇

(𝜃)𝐷
𝑇

𝐵
1
𝑓 (𝑥 (𝜃)) − 2𝑦

𝑇

(𝜃)𝐷
𝑇

𝐵
2

× 𝑓 (𝑥 (𝜃 − 𝑑 (𝜃)))

+ 2𝑓
𝑇

(𝑥 (𝜃)) 𝐵
𝑇

1
𝐵
2
𝑓 (𝑥 (𝜃 − 𝑑 (𝜃)))

≤ 3𝑦
𝑇

(𝜃)𝐷
𝑇

𝐷𝑦 (𝜃) + 3𝑓
𝑇

(𝑥 (𝜃)) 𝐵
𝑇

1
𝐵
1
𝑓 (𝑥 (𝜃))

+ 3𝑓
𝑇

(𝑥 (𝜃 − 𝑑 (𝜃))) 𝐵
𝑇

2
× 𝐵
2
𝑔 (𝑦 (𝜃 − ℎ (𝜃))) .

(31)

Substituting (31) into (30), we obtain the bound of 𝑉(0) as
follows:

𝑉 (0) ≤ 𝜆
𝑀
(𝑃
1
)




𝜙





2

+ 2𝐾
𝑀
(𝐹 − 𝐸)





𝜙





2

+ (

1 − 𝑒
−2𝑘𝑑

2𝑘

)

× [𝜆
𝑀
(𝑄
1
) + 𝜆
𝑀
(𝑄
3
) × (𝐹 − 𝐸) + 𝜆

𝑀
(𝑊
1
)]

+ 𝜆
𝑀
(𝑃
2
)




𝜑





2

+ 2𝑅
𝑀
(𝑀 − 𝑁)





𝜑





2

+ (

1 − 𝑒
−2𝑘ℎ

2𝑘

)

× [𝜆
𝑀
(𝑄
2
) + 𝜆
𝑀
(𝑄
4
) (𝑀 − 𝑁) + 𝜆

𝑀
(𝑊
2
)]

+

𝑑
2

2

𝜆
𝑀
(𝑍
1
) [3𝜆
𝑀
(𝐶
𝑇

𝐶)




𝜙





2

+ 3𝜆
𝑀
(𝐴
𝑇

1
𝐴
1
)




𝜑





2

+ 3𝜆
𝑀
(𝐴
𝑇

2
𝐴
2
)




𝜑





2

]
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+

ℎ
2

2

𝜆
𝑀
(𝑍
2
) [3𝜆
𝑀
(𝐷
𝑇

𝐷)




𝜑





2

+ 3𝜆
𝑀
(𝐵
𝑇

1
𝐵
1
)




𝜙





2

+ 3𝜆
𝑀
(𝐵
𝑇

2
𝐵
2
)




𝜙





2

] .

(32)

Thus,

𝑉 (0) ≤ 𝜒
1





𝜙





2

+ 𝜒
2





𝜑





2

, (33)

where

𝜒
1
= 𝜆
𝑀
(𝑃
1
) + 2𝐾

𝑀
(𝐹 − 𝐸) + (

1 − 𝑒
−2𝑘𝑑

2𝑘

)

× [𝜆
𝑀
(𝑄
1
) + 𝜆
𝑀
(𝑄
3
) (𝐹 − 𝐸) + 𝜆

𝑀
(𝑊
1
)]

+

3𝑑
2

2

𝜆
𝑀
(𝑍
1
) 𝜆
𝑀
(𝐶
𝑇

𝐶)

+

ℎ
2

2

𝜆
𝑀
(𝑍
2
) [3𝜆
𝑀
(𝐵
𝑇

1
𝐵
1
) + 3𝜆

𝑀
(𝐵
𝑇

2
𝐵
2
)] ,

𝜒
2
= 𝜆
𝑀
(𝑃
2
) + 2𝑅

𝑀
(𝑀 − 𝑁) + (

1 − 𝑒
−2𝑘ℎ

2𝑘

)

× [𝜆
𝑀
(𝑄
2
) + 𝜆
𝑀
(𝑄
4
) (𝑀 − 𝑁) + 𝜆

𝑀
(𝑊
2
)]

+

3ℎ
2

2

𝜆
𝑀
(𝑍
2
) 𝜆
𝑀
(𝐷
𝑇

𝐷)

+

𝑑
2

2

𝜆
𝑀
(𝑍
1
) [3𝜆
𝑀
(𝐴
𝑇

1
𝐴
1
) + 3𝜆

𝑀
(𝐴
𝑇

2
𝐴
2
)] .

(34)

On the other hand, we have

𝑉 (𝑡) ≥ 𝑒
2𝑘𝑡

{𝜆
𝑚
(𝑃
1
) ‖𝑥(𝑡)‖

2

+ 𝜆
𝑚
(𝑃
2
)




𝑦(𝑡)






2

} . (35)

Therefore,

‖𝑥(𝑡)‖
2

+




𝑦(𝑡)






2

≤ 𝜌𝑒
−2𝑘𝑡

{




𝜙





2

+




𝜑





2

} , (36)

where 𝜌 = max(𝜒
1
, 𝜒
2
)/min(𝜆

𝑚
(𝑃
1
), 𝜆
𝑚
(𝑃
2
)) ≥ 1. Therefore,

the system (7) is global exponentially stable with the conver-
gent rate 𝑘 > 0. This completes the proof.

Remark 6. In hypothesis (H2), lower bounds 𝐸
𝑖
, 𝑁
𝑗
and

upper bounds 𝐹
𝑖
, 𝑀
𝑗
, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

of activation functions are allowed to be either positive,
negative, or zero. Clearly, hypothesis (H2) in our paper is
more general than those given in [14, 15, 18, 21, 22, 24–27].
Hence, our result is less conservative than some existing
results given in the literature.

4. Numerical Examples

Example 1. Consider the BAM neural networks in (7) with
𝐶 = diag(1, 1, 1),𝐷 = diag(2, 2, 2), 𝐴

1
= 𝐵
1
= 0,

𝐴
2
=
[

[

0.05 0.25 0.05

0.1 0.05 0.15

0.15 0.15 0.05

]

]

,

𝐵
2
=
[

[

0.75 0.75 0.95

0 0.50 0.15

0.15 0.15 0.05

]

]

.

(37)

In this example, the activation function and time delay are
given as follows: 𝑓

1
(𝑥) = 𝑓

2
(𝑥) = 𝑓

3
(𝑥) = (1/2)(|𝑥 + 1| − |𝑥 −

1|),𝑔
1
(𝑦) = 𝑔

2
(𝑦) = 𝑔

3
(𝑦) = (1/2)(|𝑦+1|−|𝑦−1|), 𝑑(𝑡) = 0.5,

ℎ(𝑡) = 1. It follows that 𝑑 = 0.5, 𝜏 = 0.3, ℎ = 1, and 𝜇 =

0.3. The assumption (H2) is satisfied with 𝐹 = diag(1, 1, 1),
𝑀 = diag(1, 1, 1), 𝐸 = 𝑁 = 0. Let 𝑘 = 0.1. By using the LMI
Toolbox in MATLAB, the LMI (16) of Theorem 5 is feasible
with 𝑘 = 0.1 and a set of solutions of (16) is given by

𝑃
1
=
[

[

28.6382 0.6843 0.7501

0.6843 28.2061 1.0981

0.7501 1.0981 27.7326

]

]

,

𝑃
2
=
[

[

11.7631 0.5671 0.4170

0.5671 25.8296 0.7934

0.4170 0.7934 26.2860

]

]

,

𝑄
1
=
[

[

14.4157 −0.0495 −0.0610

−0.0495 14.4217 −0.0911

−0.0610 −0.0911 14.4462

]

]

,

𝑄
2
=
[

[

12.8030 −0.9294 −0.9704

−0.9294 16.9982 −0.4287

−0.9704 −0.4287 17.2419

]

]

,

𝑄
3
=
[

[

16.7725 0.4495 0.2528

0.4495 15.0669 0.5969

0.2528 0.5969 13.1708

]

]

,

𝑄
4
=
[

[

11.9146 −0.2010 −0.3870

−0.2010 15.1767 −0.6757

−0.3870 −0.6757 15.3739

]

]

,

𝑊
1
=
[

[

14.6218 1.0858 0.9997

1.0858 13.0260 1.3001

0.9997 1.3001 11.6739

]

]

,

𝑊
2
=
[

[

8.4065 −0.0639 −0.2523

−0.0639 11.9959 0.1677

−0.2523 0.1677 11.6957

]

]

,

𝑍
1
=
[

[

13.3993 0.2142 0.3899

0.2142 13.5746 0.3941

0.3899 0.3941 13.7729

]

]

,

𝑍
2
=
[

[

2.3511 0.7468 0.6736

0.7468 11.2627 0.3500

0.6736 0.3500 11.7724

]

]

,
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𝑆
11
=
[

[

12.4617 −0.0242 −0.0266

−0.0242 12.4732 −0.0399

−0.0266 −0.0399 12.4949

]

]

,

𝑆
12
=
[

[

−1.1535 −0.0211 −0.0257

−0.0211 −1.1444 −0.0335

−0.0257 −0.0335 −1.1320

]

]

,

𝑆
13
=
[

[

−0.9075 −0.0415 −0.0544

−0.0415 −0.9093 −0.0805

−0.0544 −0.0805 −0.9019

]

]

,

𝑆
22
=
[

[

12.2314 −0.0115 −0.0101

−0.0115 12.2463 −0.0163

−0.0101 −0.0163 12.2626

]

]

,

𝑆
23
=
[

[

1.6306 0.0129 0.0208

0.0129 1.6430 0.0270

0.0208 0.0270 1.6490

]

]

,

𝑇
11
=
[

[

8.6800 −0.5650 −0.6089

−0.5650 12.0158 −0.3052

−0.6089 −0.3052 12.2653

]

]

,

𝑇
12
=
[

[

−1.8596 −0.2702 −0.2795

−0.2702 −1.2902 −0.1294

−0.2795 −0.1294 −1.2317

]

]

,

𝑇
13
=
[

[

−1.7089 −0.3795 −0.4069

−0.3795 −0.6642 −0.2437

−0.4069 −0.2437 −0.5078

]

]

,

𝑇
22
=
[

[

8.2813 −0.2103 −0.2276

−0.2103 10.2975 −0.1027

−0.2276 −0.1027 10.4221

]

]

,

𝑇
23
=
[

[

1.9707 0.1871 0.1870

0.1871 2.3062 0.0783

0.1870 0.0783 2.3346

]

]

,

𝐾 =
[

[

14.9427 0 0

0 14.2734 0

0 0 13.4467

]

]

,

𝑅 =
[

[

5.8315 0 0

0 8.1963 0

0 0 8.3562

]

]

.

(38)

Thus, the system (7) is 0.1-exponentially stable and the value
𝜌 = 13.4606. The solution of the closed-loop system satisfies

‖𝑥(𝑡)‖
2

+




𝑦(𝑡)






2

≤ 13.4606𝑒
−2(0.1)𝑡

{




𝜙





2

+




𝜑





2

} , ∀𝑡 ∈ R
+

.

(39)

By applyingTheorem 5 and by solving the LMI (16) using
MATLAB LMI Toolbox, we obtain the convergence rate
𝑘 which guarantees that the global exponential stability is
0.998. In Table 1, we give comparison of maximum allowable
convergence rate 𝑘 obtained by Theorem 5 and by other

Table 1: Maximum allowable convergence rate.

𝜏 = 𝜇 0 0.3 0.5 0.7 0.9
[24] — 0.459 0.455 0.455 0.455
[29] — 0.445 0.424 0.408 0.407
[25] — 0.52 0.47 0.39 0.21
This paper 0.998 0.998 0.998 0.998 0.998

methods in some previous existing results. From Table 1, it is
shown that the proposed global exponential stability criterion
is less conservative than those obtained in [24, 25, 29].

Example 2. Consider the BAM neural networks in (7) with

𝐶 =
[

[

5 0 0

0 5 0

0 0 5

]

]

,

𝐴
1
=
[

[

−0.72 −0.44 −0.21

−0.72 −0.83 −0.1

−0.01 0.01 −0.04

]

]

,

𝐴
2
=
[

[

−0.01 −0.12 −0.24

0.17 −0.33 −0.43

−0.25 0.33 −0.05

]

]

,

𝐷 =
[

[

5 0 0

0 5 0

0 0 5

]

]

,

𝐵
1
=
[

[

−0.31 −0.31 0.92

0.34 −0.33 −0.78

0.34 0.47 0.25

]

]

,

𝐵
2
=
[

[

−0.83 −0.12 −0.52

−0.65 0.5 −0.14

−0.05 −0.14 −0.65

]

]

.

(40)

In this example, the activation function and time-varying
delay are given as follows: 𝑓

1
(𝑥) = 𝑓

2
(𝑥) = 𝑓

3
(𝑥) =

(1/2)(|𝑥 + 1| − |𝑥 − 1|), 𝑔
1
(𝑦) = 𝑔

2
(𝑦) = 𝑔

3
(𝑦) = (1/2)(|𝑦 +

1| − |𝑦 − 1|), 𝑑(𝑡) = sin2(0.5𝑡), ℎ(𝑡) = 0.1cos2(𝑡); the
assumption (H2) is satisfied with𝐸 = diag(−0.2, −0.25, −0.2),
𝐹 = diag(0.3, 0.4, 0.5), 𝑁 = diag(−0.2, −0.25, −0.2), 𝑀 =

diag(0.3, 0.4, 0.5). It follows that 𝑑 = 0.5, 𝜏 = 0.3, ℎ = 0.1,
and 𝜇 = 0.3. Let 𝑘 = 0.1. By using the LMI Toolbox in
MATLAB, the LMI (16) is feasible with 𝑘 = 0.1 and a set of
solutions of (16) is given by

𝑃
1
=
[

[

110.3704 −30.1135 −5.4152

−30.1135 90.3013 8.8948

−5.4152 8.8948 115.0609

]

]

,

𝑃
2
=
[

[

43.9625 −2.3031 7.3341

−2.3031 38.1671 4.9969

7.3341 4.9969 62.3183

]

]

,
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𝑄
1
=
[

[

125.4489 −1.8802 0.9399

−1.8802 127.5495 −1.0063

0.9399 −1.0063 130.0399

]

]

,

𝑄
2
=
[

[

100.3079 −4.1254 −0.7526

−4.1254 101.8490 1.0897

−0.7526 1.0897 114.9297

]

]

,

𝑄
3
=
[

[

136.0956 −4.2919 38.6712

−4.2919 90.4808 19.2022

38.6712 19.2022 113.1213

]

]

,

𝑄
4
=
[

[

42.6986 −34.8491 −15.2241

−34.8491 96.7728 2.0801

−15.2241 2.0801 145.8684

]

]

,

𝑊
1
=
[

[

140.8059 25.3914 −0.9357

25.3914 146.4301 −4.4760

−0.9357 −4.4760 11.6128

]

]

,

𝑊
2
=
[

[

105.4681 −0.1405 5.1590

−0.1405 107.4419 16.7637

5.1590 16.7637 134.1991

]

]

,

𝑍
1
=
[

[

69.1695 −24.4444 −4.5155

−24.4444 48.7177 7.8545

−4.5155 7.8545 65.4657

]

]

,

𝑍
2
=
[

[

99.9490 1.3357 35.2470

1.3357 80.2179 10.6682

35.2470 10.6682 111.8243

]

]

,

𝑆
11
=
[

[

103.3199 −2.9895 0.4043

−2.9895 103.2019 −0.1404

0.4043 −0.1404 106.3073

]

]

,

𝑆
12
=
[

[

−2.9235 −0.6314 0.1584

−0.6314 −2.4889 −0.1672

0.1584 −0.1672 −1.9572

]

]

,

𝑆
13
=
[

[

1.0569 −2.4649 0.0237

−2.4649 0.4090 0.2113

0.0237 0.2113 2.4210

]

]

,

𝑆
22
=
[

[

97.0839 −2.1772 0.0865

−2.1772 96.3284 0.1980

0.0865 0.1980 98.4407

]

]

,

𝑆
23
=
[

[

8.9358 −1.7429 −0.3501

−1.7429 7.0242 0.7119

−0.3501 0.7119 8.3850

]

]

,

𝑇
11
=
[

[

105.0332 −0.4193 0.0331

−0.4193 105.2266 0.3043

0.0331 0.3043 107.5064

]

]

,

𝑇
12
=
[

[

−1.5261 −0.6096 −0.1149

−0.6096 −1.2415 0.0894

−0.1149 0.0894 0.3340

]

]

,

Table 2: Maximum allowable convergence rate.

𝜏 = 𝜇 0 0.3 0.5 0.7
Convergence rate 𝑘 0.81 0.638 0.48 0.221
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Figure 1: Time responses of state variables.

𝑇
13
=
[

[

−7.6562 −3.2414 −0.6934

−3.2414 −5.7650 0.5527

−0.6934 0.5527 4.8321

]

]

,

𝑇
22
=
[

[

104.9648 −0.5090 −0.0471

−0.5090 105.1940 0.0964

−0.0471 0.0964 106.5444

]

]

,

𝑇
23
=
[

[

2.6072 0.1420 0.2077

0.1420 2.6111 −0.0404

0.2077 −0.0404 2.2053

]

]

,

𝐾 =
[

[

106.5957 0 0

0 63.3921 0

0 0 6.3380

]

]

,

𝑅 =
[

[

86.0059 0 0

0 72.0231 0

0 0 71.2919

]

]

.

(41)

Thus, the system (7) is 0.1-exponentially stable and the value
𝜌 = 14.1811. The solution of the closed-loop system satisfies

‖𝑥(𝑡)‖
2

+




𝑦(𝑡)






2

≤ 14.1811𝑒
−2(0.1)𝑡

{




𝜙





2

+




𝜑





2

} , ∀𝑡 ∈ R
+

.

(42)

The maximum allowable convergence rate 𝑘 for different
values of 𝜏 = 𝜇 is given in Table 2. The trajectory of solutions
of BAM neural networks with time-varying delays is shown
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in Figure 1, where the initial conditions are chosen as 𝜙
1
=

cos(𝑠), 𝜙
2
= sin(𝑠),𝜙

3
= sin(𝑠) − 1, 𝜑

1
= cos(𝑠) + 1, 𝜑

2
=

sin(𝑠) − 2, 𝜑
3
= cos(𝑠) + 1, 𝑠 ∈ [−0.5, 0].

5. Conclusion

This paper has proposed a new sufficient condition guar-
anteeing the global exponential stability criteria for bidi-
rectional associative memory neural networks with time-
varying delays and generalized activation functions. The
developed stability condition is in terms of LMI, which can
be easily solved by some existing software packages. Further-
more, the proposed stability conditions are less conservative
than some works in the literature.
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This paper is concerned with a delay Lotka-Volterra model under regime switching diffusion in random environment. Permanence
and asymptotic estimations of solutions are investigated by virtue of 𝑉-function technique, 𝑀-matrix method, and Chebyshev’s
inequality. Finally, an example is given to illustrate the main results.

1. Introduction

The delay differential equation

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑥 (𝑡) (𝑎 − 𝑏𝑥 (𝑡) + 𝑐𝑥 (𝑡 − 𝜏)) (1)

has been used to model the population growth of certain
species and is known as the delay Lotka-Volterramodel or the
delay logistic equation. The delay Lotka-Volterra model for 𝑛
interacting species is described by the 𝑛-dimensional delay
differential equation

𝑑𝑥 (𝑡)

𝑑𝑡

= diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡)) (𝑏 + 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏)) ,

(2)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛, 𝑏 = (𝑏

1
, . . . , 𝑏

𝑛
)
𝑇

∈ 𝑅
𝑛

+
, 𝐴 =

(𝑎
𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛, 𝐵 = (𝑏

𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛. There is an extensive

literature concerned with the dynamics of this delay model
and have had lots of nice results and we here only mention
the work of Ahmad and Rao [1], Bereketoglu and Győri [2],
and Freedman and Ruan [3], and in particular, the books by
Gopalsamy [4], Kolmanovskĭı and Myshkis [5], and Kuang
[6] among many others.

In the equations above, the state 𝑥(𝑡) denotes the popula-
tion sizes of the species. Naturally, we focus on the positive
solutions and also require the solutions not to explode at
a finite time. To guarantee the positive solutions without

explosion (i.e., the global positive solutions), some conditions
are in general needed to impose on the system parameters.
For example, it is generally assumed that 𝑎 > 0, 𝑏 > 0, and
𝑐 < 𝑏 for (1) while much more complicated conditions are
required on matrices 𝐴 and 𝐵 for (2) [7] (and the references
cited therein).

On the other hand, population systems are often subject
to environmental noise, and the system will change signifi-
cantly, which may change the dynamics behavior of solutions
significantly [8, 9]. It is therefore necessary to reveal how
the noise affects the dynamics of solutions for the delay
population systems. In fact, many authors have discussed
population systems subject to white noise [7–18]. Recall that
the parameter 𝑏

𝑖
in (2) represents the intrinsic growth rate of

species 𝑖. In practice, we usually estimate it by an average value
plus an error term. According to the well-known central limit
theorem, the error term follows a normal distribution. In
terms of mathematics, we can therefore replace the rate 𝑏

𝑖
by

𝑏
𝑖
+𝜎
𝑖

̇𝑤(𝑡), where ̇𝑤(𝑡) is a white noise (i.e.,𝑤(𝑡) is a Brownian
motion) and 𝜎

𝑖
≥ 0 represents the intensity of noise. As a

result, (2) becomes a stochastic differential equation (SDE, in
short)

𝑑𝑥 (𝑡) = diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 + 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎𝑑𝑤 (𝑡)] ,

(3)

where 𝜎 = (𝜎
1
, . . . , 𝜎

𝑛
)
𝑇. We refer to [7] for more details.
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To our knowledge, much attention to environmental
noise is focused on white noise. But another type of envi-
ronmental noise, namely, color noise, say telegraph noise,
has been studied by many authors (see [19–25] and the
references cited therein). In this context, telegraph noise can
be described as a random switching between two or more
environmental regimes, which differ in terms of factors such
as nutrition or rain falls [23, 24]. Usually, the switching
between different environments is memoryless and the wait-
ing time for the next switch has an exponential distribution.
This indicates that we may model the random environments
and other random factors in the system by a continuous-
time Markov chain 𝑟(𝑡), 𝑡 ≥ 0 with a finite state space
𝑆 = {1, 2, . . . , 𝑁}. Therefore, stochastic delay population
system (3) in random environments can be described by the
following stochastic model with regime switching:

𝑑𝑥 (𝑡) = diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] .

(4)

The mechanism of ecosystem described by (4) can be
explained as follows. Assume that, initially, the Markov chain
𝑟(0) = 𝜄 ∈ 𝑆. Then the ecosystem (4) obeys the SDE

𝑑𝑥 (𝑡)

= diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 (𝜄) + 𝐴 (𝜄) 𝑥 (𝑡) + 𝐵 (𝜄) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎 (𝜄) 𝑑𝑤 (𝑡)] ,

(5)

until the Markov chain 𝑟(𝑡) jumps to another state, say 𝜍.
Therefore, the ecosystem (4) satisfies the SDE

𝑑𝑥 (𝑡)

= diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 (𝜍) + 𝐴 (𝜍) 𝑥 (𝑡) + 𝐵 (𝜍) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎 (𝜍) 𝑑𝑤 (𝑡)] ,

(6)

for a random amount of time until the Markov chain 𝑟(𝑡)

jumps to a new state again.
It should be pointed out that the stochastic popula-

tion systems under regime switching have received much
attention lately. For instance, the stochastic permanence and
extinction of a logistic model under regime switching were
considered in [20, 24], asymptotic results of a competitive
Lotka-Volterra model in random environment are obtained
in [25], a new single-species model disturbed by both white
noise and colored noise in a polluted environment was
developed and analyzed in [26], and a general stochastic
logistic systemunder regime switchingwas proposed andwas
treated in [27].

In [28], some results have been obtained for (4), such as
existence of global positive solutions, stochastically ultimate
boundedness, and extinction. In contrast to the existing
results, our new contributions in this paper are as follows.

(i) The stochastic permanence of solutions is derived.
(ii) The asymptotic estimations of the solutions are

obtained, which is related to the stationary probability
distribution of the Markov chain.

The rest of the paper is arranged as follows. For con-
venience of the reader, we briefly recall the main result of
[28] in Section 2. The main results of this paper are arranged
in Sections 3 and 4. Section 3 is devoted to the stochastic
permanence. The asymptotic estimations of the solutions are
obtained in Section 4. Finally, an example is given to illustrate
our main results.

2. Properties of the Solution

Throughout this paper, unless otherwise specified, let
(Ω,F, {F

𝑡
}
𝑡≥0

, 𝑃) be a complete probability space with a
filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is
right continuous and F

0
contains all 𝑃-null sets). Let 𝑤(𝑡),

𝑡 ≥ 0, be a scalar standard Brownian motion defined on this
probability space. We also denote by 𝑅

𝑛

+
the positive cone in

𝑅
𝑛, that is, 𝑅𝑛

+
= {𝑥 ∈ 𝑅

𝑛

: 𝑥
𝑖
> 0 for all 1 ≤ 𝑖 ≤ 𝑛} and

denote by 𝑅

𝑛

+
the nonnegative cone in 𝑅

𝑛, that is, 𝑅𝑛
+

= {𝑥 ∈

𝑅
𝑛

: 𝑥
𝑖
≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛}. If 𝐴 is a vector or matrix, its

transpose is denoted be 𝐴
𝑇. If 𝐴 is a matrix, its trace norm

is denoted by |𝐴| = √trace(𝐴𝑇𝐴), whilst it operator norm is
denoted by ‖𝐴‖ = sup{|𝐴𝑥| : |𝑥| = 1}.Moreover, let 𝜏 > 0 and
denote by 𝐶([−𝜏, 0]; 𝑅

+
) the family of continuous functions

from [−𝜏, 0] to 𝑅
+
.

In this paper we will use a lot of quadratic functions
of the form 𝑥

𝑇

𝐴𝑥 for the state 𝑥 ∈ 𝑅
𝑛

+
only. Therefore,

for a symmetric 𝑛 × 𝑛 matrix 𝐴, we naturally introduce the
following definition:

𝜆
+

max (𝐴) = sup
𝑥∈𝑅
𝑛
+
,|𝑥|=1

𝑥
𝑇

𝐴𝑥. (7)

For more properties of 𝜆+max(𝐴), please see the appendix in
[7].

Let 𝑟(𝑡) be a right-continuous Markov chain on the
probability space, taking values in a finite state space 𝑆 =

{1, 2, . . . , 𝑁}, with the generator Γ = (𝛾
𝑢V) given by

𝑃 {𝑟 (𝑡 + 𝛿) = V | 𝑟 (𝑡) = 𝑢} = {

𝛾
𝑢V𝛿 + 𝑜 (𝛿) , if 𝑢 ̸= V,

1 + 𝛾
𝑢V𝛿 + 𝑜 (𝛿) , if 𝑢 = V,

(8)

where 𝛿 > 0, 𝛾
𝑢V is the transition rate from 𝑢 to V and 𝛾

𝑢V ≥ 0

if 𝑢 ̸= V, while 𝛾
𝑢𝑢

= −∑V ̸= 𝑢 𝛾𝑢V. We assume that the Markov
chain 𝑟(⋅) is independent of the Brownian motion 𝑤(⋅). It is
well known that almost every sample path of 𝑟(⋅) is a right-
continuous step functionwith a finite number of jumps in any
finite subinterval of 𝑅

+
. As a standing hypothesis, we assume

in this paper that the Markov chain 𝑟(𝑡) is irreducible. This is
a very reasonable assumption as it means that the system can
switch fromany regime to any other regime.This is equivalent
to the condition that for, any 𝑢, V ∈ 𝑆, one can find finite
numbers 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
∈ 𝑆 such that 𝛾

𝑢𝑖1
𝛾
𝑖1𝑖2

, . . . , 𝛾
𝑖𝑘V

> 0.
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Under this condition, theMarkov chain has a unique station-
ary (probability) distribution 𝜋 = (𝜋

1
, 𝜋
2
, . . . , 𝜋

𝑁
) ∈ 𝑅

1×𝑁

which can be determined by solving the following linear
equation:

𝜋Γ = 0 (9)

subject to

𝑁

∑

𝑖=1

𝜋
𝑖
= 1, 𝜋

𝑖
> 0, ∀𝑖 ∈ 𝑆. (10)

For the fundamental theory of stochastic differential equa-
tions, one can refer to [12, 29].

For convenience and simplicity in the following discus-
sion, for any constant sequence 𝑓

𝑖
(𝑘), (1 ≤ 𝑖 ≤ 𝑛, 𝑘 ∈ 𝑆),

let

̌
𝑓 = max
1≤𝑖≤𝑛,𝑘∈𝑆

𝑓
𝑖
(𝑘) ,

̌
𝑓 (𝑘) = max

1≤𝑖≤𝑛

𝑓
𝑖
(𝑘) ,

̂
𝑓 = min
1≤𝑖≤𝑛,𝑘∈𝑆

𝑓
𝑖
(𝑘) ,

̂
𝑓 (𝑘) = min

1≤𝑖≤𝑛

𝑓
𝑖
(𝑘) .

(11)

To proceed, we first state a result, whose proof can be found
in [28].

Assumption 1. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]} +max
𝑘∈𝑆






𝐶𝐵 (𝑘)






≤ 0,

(12)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
).

Assumption 2. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]} +max
𝑘∈𝑆






𝐶𝐵 (𝑘)






< 0,

(13)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
).

Assumption 3. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

|𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]}

+ 𝑐
−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)






≤ 0,

(14)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
) and 𝑐 = min

1≤𝑖≤𝑛
𝑐
𝑖
.

Theorem 1. (1)Under Assumption 1, for any given initial data
{𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

𝑛

+
), there is a unique solution

𝑥(𝑡) to (4) on 𝑡 ≥ −𝜏 and the solution will remain in 𝑅
𝑛

+
with

probability 1, namely, 𝑥(𝑡) ∈ 𝑅
𝑛

+
for all 𝑡 ≥ −𝜏 almost surely.

(2) Under Assumption 2, for any given initial data {𝑥(𝑡) :

−𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅
𝑛

+
) and any given positive constant

𝑝, there are two positive constant 𝐾
1
(𝑝) and 𝐾

2
(𝑝), such that

the solution 𝑥(𝑡) of (4) has the properties that

lim sup
𝑡→∞

𝐸|𝑥 (𝑡)|
𝑝

≤ 𝐾
1
(𝑝) , (15)

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

𝐸|𝑥 (𝑠)|
𝑝+1

𝑑𝑠 ≤ 𝐾
2
(𝑝) . (16)

(3) Solutions of (4) are stochastically ultimately bounded
under Assumption 2; that is, for any 𝜀 ∈ (0, 1), there exists a
positive constants𝐻 = 𝐻(𝜀), such that the solutions of (4)with
any positive initial value have the property that

lim sup
𝑡→+∞

𝑃 {|𝑥 (𝑡)| > 𝐻} < 𝜀. (17)

(4) Under Assumption 3, for any given initial data {𝑥(𝑡) :

−𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅
+
), the solution 𝑥(𝑡) of (4) has the

properties that

lim sup
𝑡→∞

1

𝑡

log |𝑥 (𝑡)| ≤

𝑛

∑

𝑖=1

𝜋
𝑘
𝛽 (𝑘) 𝑎.𝑠., (18)

where 𝛽(𝑘) =
̌

𝑏(𝑘)−(1/2)�̂�
2

(𝑘). Particularly, if ∑𝑁
𝑘=1

𝜋
𝑘
𝛽(𝑘) <

0, then

lim sup
𝑡→∞

1

𝑡

log |𝑥 (𝑡)| < 0 𝑎.𝑠. (19)

That is, the population will become extinct exponentially with
probability 1.

3. Stochastic Permanence

Definition 2. Equation (4) is said to be stochastically per-
manent if, for any 𝜀 ∈ (0, 1), there exist positive constants
𝐻 = 𝐻(𝜀), 𝛿 = 𝛿(𝜀) such that

lim inf
𝑡→+∞

𝑃 {|𝑥 (𝑡)| ≤ 𝐻} ≥ 1 − 𝜀,

lim inf
𝑡→+∞

𝑃 {|𝑥 (𝑡)| ≥ 𝛿} ≥ 1 − 𝜀,

(20)

where 𝑥(𝑡) is the solution of (4) with any positive initial value.
It is obvious that if a stochastic equation is stochastically

permanent, its solutions must be stochastically ultimately
bounded. For convenience, let

𝛼 (𝑘) =
̂
𝑏 (𝑘) −

1

2

̌𝜎
2

(𝑘) , 𝛽 (𝑘) =
̌

𝑏 (𝑘) −

1

2

�̂�
2

(𝑘) , (21)

and we impose the following assumptions.

Assumption 4. For some 𝑢 ∈ 𝑆, 𝛾
𝑖𝑢

> 0 (for all 𝑖 ̸= 𝑢).

Assumption 5. ∑
𝑁

𝑘=1
𝜋
𝑘
𝛼(𝑘) > 0.

Assumption 6. For each 𝑘 ∈ 𝑆, 𝛼(𝑘) > 0.

Let 𝐺 be a vector or matrix. By 𝐺 ≫ 0, we mean all
elements of𝐺 are positive, and by𝐺 ≥ 0, wemean all elements
of 𝐺 are nonnegative. We also adopt here the traditional
notation by letting

𝑍
𝑁×𝑁

= {𝐴 = (𝑎
𝑖𝑗
)
𝑁×𝑁

: 𝑎
𝑖𝑗
≤ 0, 𝑖 ̸= 𝑗} . (22)
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Lemma 3 (see [29]). If𝐴 = (𝑎
𝑖𝑗
)
𝑁×𝑁

∈ 𝑍
𝑁×𝑁 has all of its row

sums positive, that is,

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
> 0, ∀1 ≤ 𝑖 ≤ 𝑁, (23)

then 𝐴 > 0.

Lemma 4 (see [29]). If 𝐴 ∈ 𝑍
𝑁×𝑁, then the following

statements are equivalent:

(1) 𝐴 is a nonsingular 𝑀-matrix.

(2) All of the principal minors of 𝐴 are positive; that is,
















𝑎
11

⋅ ⋅ ⋅ 𝑎
1𝑘

...
...

...
𝑎
1𝑘

⋅ ⋅ ⋅ 𝑎
𝑘𝑘
















> 0 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑘 = 1, 2, . . . , 𝑁. (24)

(3) 𝐴 is semipositive; that is, there exists 𝑥 ≫ 0 in 𝑅
𝑁 such

that 𝐴𝑥 ≫ 0.

Lemma 5 (see [23]). Assumptions 4 and 5 imply that there
exists a constant 𝜃 > 0 such that the matrix

𝐴 (𝜃) = diag (𝜉
1
(𝜃) , 𝜉
2
(𝜃) , . . . , 𝜉

𝑁
(𝜃)) − Γ (25)

is a nonsingular 𝑀-matrix, where

𝜉
𝑘
(𝜃) = 𝜃𝛼 (𝑘) −

1

2

𝜃
2

̌𝜎
2

(𝑘) , ∀𝑘 ∈ 𝑆. (26)

Lemma 6 (see [23]). Assumption 6 implies that there exists a
constant 𝜃 > 0 such that the matrix 𝐴(𝜃) is a nonsingular 𝑀-
matrix.

Lemma 7. If there exists a constant 𝜃 > 0 such that 𝐴(𝜃) is a
nonsingular 𝑀-matrix and 𝐵(𝑘) ≥ 0 (𝑘 = 1, 2, . . . , 𝑁), then
the global positive solution 𝑥(𝑡) of (4) has the property that

lim sup
𝑡→∞

𝐸(

1

|𝑥 (𝑡)|
𝜃

) ≤ 𝐻, (27)

where 𝐻 is a fixed positive constant (defined by (42) in the
proof).

Proof. Define 𝑉(𝑥) = ∑
𝑛

𝑖=1
𝑥
𝑖
on 𝑥 ∈ 𝑅

𝑛

+
. Then

𝑑𝑉 (𝑥 (𝑡)) = 𝑥
𝑇

(𝑡) [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] .

(28)

Define also

𝑈 (𝑥) =

1

𝑉 (𝑥)

on 𝑥 ∈ 𝑅
𝑛

+
. (29)

Let 𝑦(𝑡) = 𝑥(𝑡 − 𝜏). Applying the generalized Itô formula, we
derive from (28) that

𝑑𝑈 = −𝑈
2

𝑑𝑉 + 𝑈
3

(𝑑𝑉)
2

= −𝑈
2

𝑥
𝑇

{[𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 + 𝐵 (𝑟 (𝑡)) 𝑦] 𝑑𝑡

+ 𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) } + 𝑈
3





𝑥
𝑇

𝜎 (𝑟 (𝑡))







2

𝑑𝑡

= { − 𝑈
2

𝑥
𝑇

[𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 + 𝐵 (𝑟 (𝑡)) 𝑦]

+ 𝑈
3





𝑥
𝑇

𝜎 (𝑟 (𝑡))







2

} 𝑑𝑡 − 𝑈
2

𝑥
𝑇

𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)

(30)

dropping 𝑥(𝑡) from 𝑈(𝑥(𝑡)), 𝑉(𝑥(𝑡)) and 𝑡 from 𝑥(𝑡), 𝑦(𝑡),
respectively. By Lemma 4, for given 𝜃, there is a vector ⃗𝑞 =

(𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑁
)
𝑇

≫ 0 such that

⃗
𝜆 = (𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑁
)
𝑇

:= 𝐴 (𝜃) ⃗𝑞 ≫ 0, (31)

namely,

𝑞
𝑘
(𝜃𝛼 (𝑘) −

1

2

𝜃
2

̌𝜎
2

(𝑘)) −

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
> 0 ∀1 ≤ 𝑘 ≤ 𝑁. (32)

Define the function 𝑉 : 𝑅
+

× 𝑆 → 𝑅
+
by 𝑉(𝑈, 𝑘) =

𝑞
𝑘
(1 + 𝑈)

𝜃. It follows from the generalized Itô formula that

𝐸𝑉 (𝑈 (𝑡) , 𝑟 (𝑡)) = 𝑉 (𝑈 (0) , 𝑟 (0))

+ 𝐸∫

𝑡

0

𝐿𝑉 (𝑈 (𝑠) , 𝑥 (𝑠 − 𝜏) , 𝑟 (𝑠)) 𝑑𝑠,

(33)

where

𝐿𝑉 (𝑈, 𝑥, 𝑦, 𝑘)

= 𝑞
𝑘
𝜃(1 + 𝑈)

𝜃−1

{ − 𝑈
2

𝑥
𝑇

[𝑏 (𝑘) + 𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦]

+ 𝑈
3





𝑥
𝑇

𝜎 (𝑘)







2

} + 𝑞
𝑘

𝜃 (𝜃 − 1)

2

× (1 + 𝑈)
𝜃−2

𝑈
4





𝑥
𝑇

𝜎 (𝑘)







2

+

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
(1 + 𝑈)

𝜃

= 𝑞
𝑘
𝜃(1 + 𝑈)

𝜃−2

× { − (1 + 𝑈)𝑈
2

𝑥
𝑇

[𝑏 (𝑘) + 𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦]

+ (1 + 𝑈)𝑈
3





𝑥
𝑇

𝜎 (𝑘)







2

+

1

2

(𝜃 − 1)𝑈
4





𝑥
𝑇

𝜎 (𝑘)







2

}

+

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
(1 + 𝑈)

𝜃

.

(34)
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It is easy to see that, for all 𝑥 ∈ 𝑅
𝑛

+
,

−

𝑥
𝑇

𝐴 (𝑘) 𝑥

𝑉
2

≤ 𝐾,

−

𝑥
𝑇

𝑏 (𝑘)

𝑉

+






𝑥
𝑇

𝜎 (𝑘)







2

− 𝑥
𝑇

𝐴 (𝑘) 𝑥

𝑉
2

≤ 𝐾,

(35)

where𝐾 is a positive constant, while

𝑥
𝑇

𝑏 (𝑘)

𝑉

−

1

2

(𝜃 + 1)






𝑥
𝑇

𝜎 (𝑘)







2

𝑉
2

≥
̂
𝑏 (𝑘) −

1

2

(𝜃 + 1) ̌𝜎
2

(𝑘)

=
̂
𝛽 (𝑘) −

1

2

𝜃 ̌𝜎
2

(𝑘) .

(36)

Consequently,

− (1 + 𝑈)𝑈
2

𝑥
𝑇

[𝑏 (𝑘) + 𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦]

+ (1 + 𝑈)𝑈
3





𝑥
𝑇

𝜎 (𝑘)







2

+

1

2

(𝜃 − 1)𝑈
4





𝑥
𝑇

𝜎 (𝑘)







2

= −𝑈
2

𝑥
𝑇

𝑏 (𝑘) − 𝑈
3

𝑥
𝑇

𝑏 (𝑘) − 𝑈
2

𝑥
𝑇

𝐴 (𝑘) 𝑥

− 𝑈
3

𝑥
𝑇

𝐴 (𝑘) 𝑥 − 𝑈
2

𝑥
𝑇

𝐵 (𝑘) 𝑦 − 𝑈
3

𝑥
𝑇

𝐵 (𝑘) 𝑦

+ 𝑈
3





𝑥
𝑇

𝜎 (𝑘)







2

+

1

2

(𝜃 + 1)𝑈
4





𝑥
𝑇

𝜎 (𝑘)







2

≤ −(

𝑥
𝑇

𝑏 (𝑘)

𝑉

−

1

2

(𝜃 + 1)






𝑥
𝑇

𝜎 (𝑘)







2

𝑉
2

)𝑈
2

+ (−

𝑥
𝑇

𝑏 (𝑘)

𝑉

+






𝑥
𝑇

𝜎 (𝑘)







2

− 𝑥
𝑇

𝐴 (𝑘) 𝑥

𝑉
2

)𝑈

−

𝑥
𝑇

𝐴 (𝑘) 𝑥

𝑉
2

≤ −(𝛼 (𝑘) −

1

2

𝜃 ̌𝜎
2

(𝑘))𝑈
2

+ 𝐾 (1 + 𝑈) .

(37)

Substituting (37) into (34) yields

𝐿𝑉 (𝑈, 𝑥, 𝑦, 𝑘)

≤ 𝑞
𝑘
𝜃(1 + 𝑈)

𝜃−2

{−(𝛼 (𝑘) −

1

2

𝜃 ̌𝜎
2

(𝑘))𝑈
2

+ 𝐾 (1 + 𝑈)}

+

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
(1 + 𝑈)

𝜃

= (1 + 𝑈)
𝜃−2

× {−[𝑞
𝑘
𝜃 (𝛼 (𝑘) −

1

2

𝜃 ̌𝜎
2

(𝑘)) −

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
]𝑈
2

+ (𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
)𝑈

+ (𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
)} .

(38)

Now, choose a constant 𝜅 > 0 sufficiently small such that it
satisfies ⃗

𝜆 − 𝜅 ⃗𝑞 ≫ 0, that is,

𝑞
𝑘
(𝜃𝛼 (𝑘) −

1

2

𝜃
2

̌𝜎
2

(𝑘)) −

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
− 𝜅𝑞
𝑘
> 0 ∀1 ≤ 𝑘 ≤ 𝑁.

(39)

Then, by the generalized Itô formula again,

𝐸 [𝑒
𝜅𝑡

𝑉 (𝑈 (𝑡) , 𝑟 (𝑡))]

= 𝑉 (𝑈 (0) , 𝑟 (0))

+ 𝐸∫

𝑡

0

[𝜅𝑒
𝜅𝑡

𝑉 (𝑈 (𝑠) , 𝑟 (𝑠))

+𝑒
𝜅𝑡

𝐿𝑉 (𝑈 (𝑠) , 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏) , 𝑟 (𝑠))] 𝑑𝑠.

(40)

It is computed that

𝜅𝑒
𝜅𝑡

𝑉 (𝑈, 𝑖) + 𝑒
𝜅𝑡

𝐿𝑉 (𝑈, 𝑥, 𝑦, 𝑖)

≤ 𝑒
𝜅𝑡

(1 + 𝑈)
𝜃−2

× {𝜅𝑞
𝑘
(1 + 𝑈)

2

− [𝑞
𝑘
𝜃 (𝛼 (𝑘) −

1

2

𝜃 ̌𝜎
2

(𝑘)) −

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
]𝑈
2

+(𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
)𝑈 + (𝑞

𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
)}

≤ 𝑒
𝜅𝑡

(1 + 𝑈)
𝜃−2

× {−[𝑞
𝑘
𝜃 (𝛼 (𝑘) −

1

2

𝜃 ̌𝜎
2

(𝑘)) −

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
− 𝜅𝑞
𝑘
]𝑈
2

+ (𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
+ 2𝜅𝑞

𝑘
)𝑈

+(𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
+ 𝜅𝑞
𝑘
)}

≤ 𝑛
−𝜃

𝑞𝜅𝐻𝑒
𝜅𝑡

,

(41)
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where

𝐻 =

1

𝑞𝜅

𝑛
𝜃max
𝑖∈𝑆

{ sup
𝑈∈𝑅+

(1 + 𝑈)
𝜃−2

× {−[𝑞
𝑘
𝜃 (𝛼 (𝑘)−

1

2

𝜃 ̌𝜎
2

(𝑘))

−

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
− 𝜅𝑞
𝑘
]𝑈
2

+ (𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
+ 2𝜅𝑞

𝑘
)𝑈

+ (𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
+ 𝜅𝑞
𝑘
)} ∨ 1} .

(42)

This implies

lim sup
𝑡→∞

𝐸 [𝑈
𝜃

(𝑥 (𝑡))] ≤ lim sup
𝑡→∞

𝐸 [(1 + 𝑈 (𝑥 (𝑡)))
𝜃

] ≤ 𝑛
−𝜃

𝐻.

(43)

For 𝑥(𝑡) ∈ 𝑅
𝑛

+
, note that (∑𝑛

𝑖=1
𝑥
𝑖
(𝑡))
𝜃

≤ (𝑛max
1≤𝑖≤𝑛

𝑥
𝑖
(𝑡) )
𝜃

≤

𝑛
𝜃

|𝑥(𝑡)|
𝜃. Consequently,

lim sup
𝑡→∞

𝐸(

1

|𝑥 (𝑡)|
𝜃

) ≤ 𝐻. (44)

The required assertion (27) is obtained.

Assumption 7. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]} +max
𝑘∈𝑆






𝐶𝐵 (𝑘)






< 0,

(45)

where𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
). Moreover for each 𝑘 ∈ 𝑆,𝐵(𝑘) ≥ 0.

Theorem 8. Under Assumptions 4, 5, and 7, (4) is stochasti-
cally permanent.

The proof is a simple application of the Chebyshev’s
inequality, Lemmas 5 and 7, and Theorem 1(3). Similarly, we
have the following result.

Theorem 9. Under Assumptions 6 and 7, (4) is stochastically
permanent.

4. Asymptotic Properties

Lemma 10. Under Assumption 2, for any given initial data
{𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

+
), the solution 𝑥(𝑡) of

(4) with any positive initial value has the property

lim sup
𝑡→∞

log (𝑥 (𝑡))

log 𝑡
≤ 1 𝑎.𝑠. (46)

Proof. By Theorem 1 (1), the solution 𝑥(𝑡) will remain in 𝑅
𝑛

+

for all 𝑡 ≥ −𝜏 with probability 1. Denote 𝑉(𝑥) = ∑
𝑛

𝑖=1
𝑥
𝑖
, on

𝑥 ∈ 𝑅
𝑛

+
. It is known that

𝑑𝑉 (𝑥 (𝑡))

= 𝑥
𝑇

(𝑡) [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] .

(47)

We can also derive from this that

𝐸( sup
𝑡≤𝑢≤𝑡+1

𝑉 (𝑥 (𝑢)))

≤ 𝐸𝑉 (𝑥 (𝑡)) +max
𝑘∈𝑆

|𝑏 (𝑘)| ∫

𝑡+1

𝑡

𝐸 |𝑥 (𝑠)| 𝑑𝑠

+max
𝑘∈𝑆

|𝐴 (𝑘)| ∫

𝑡+1

𝑡

𝐸|𝑥 (𝑠)|
2

𝑑𝑠 +max
𝑘∈𝑆

|𝐵 (𝑘)|

× ∫

𝑡+1

𝑡

𝐸 (|𝑥 (𝑠)| |𝑥 (𝑠 − 𝜏)|) 𝑑𝑠

+ 𝐸( sup
𝑡≤𝑢≤𝑡+1

∫

𝑢

𝑡

𝑥
𝑇

(𝑠) 𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠)) .

(48)

From (15), we know that lim sup
𝑡→∞

𝐸|𝑥(𝑡)| ≤ 𝐾
1
(1) and

lim sup
𝑡→∞

𝐸|𝑥(𝑡)|
2

≤ 𝐾
1
(2). By the well-known BDG’s

inequality [29] and the H ̈older’s inequality, we derive that

𝐸( sup
𝑡≤𝑢≤𝑡+1

∫

𝑢

𝑡

𝑥
𝑇

(𝑠) 𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠))

≤ 3max
𝑘∈𝑆

|𝑏 (𝑘)| 𝐸(∫

𝑡+1

𝑡

|𝑥 (𝑠)|
2

𝑑𝑠)

1/2

≤ 𝐸(9 ̌𝜎∫

𝑡+1

𝑡

𝑥
2

(𝑠) 𝑑𝑠)

1/2

≤ 𝐸( sup
𝑡≤𝑢≤𝑡+1

𝑥 (𝑢) ⋅ 9 ̌𝜎∫

𝑡+1

𝑡

𝑥 (𝑠) 𝑑𝑠)

1/2

≤ 𝐸[(

1

2

sup
𝑡≤𝑢≤𝑡+1

𝑥 (𝑢))

2

+ 9 ̌𝜎∫

𝑡+1

𝑡

(𝑥 (𝑠) 𝑑𝑠)
2

]

1/2

≤ 𝐸(

1

2

sup
𝑡≤𝑢≤𝑡+1

𝑥 (𝑢) + 9 ̌𝜎
2

∫

𝑡+1

𝑡

𝑥 (𝑠) 𝑑𝑠)

≤

1

2

𝐸( sup
𝑡≤𝑢≤𝑡+1

𝑥 (𝑢)) + 9 ̌𝜎
2

∫

𝑡+1

𝑡

𝐸 (𝑥 (𝑠)) 𝑑𝑠.

(49)

Combining the inequality above with

∫

𝑡+1

𝑡

𝐸 (|𝑥 (𝑠)| |𝑥 (𝑠 − 𝜏)|) 𝑑𝑠

≤

1

2

∫

𝑡+1

𝑡

𝐸|𝑥 (𝑠)|
2

𝑑𝑠 +

1

2

∫

𝑡+1

𝑡

𝐸|𝑥 (𝑠 − 𝜏)|
2

𝑑𝑠,

(50)
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we get that

𝐸( sup
𝑡≤𝑢≤𝑡+1

𝑉 (𝑥 (𝑢)))

≤ 𝐸𝑉𝑥 (𝑡) +max
𝑘∈𝑆

|𝑏 (𝑘)| ∫

𝑡+1

𝑡

𝐸 |𝑥 (𝑠)| 𝑑𝑠

+ (max
𝑘∈𝑆

|𝐴 (𝑘)| +

1

2

max
𝑘∈𝑆

|𝐵 (𝑘)|)∫

𝑡+1

𝑡

𝐸|𝑥 (𝑠)|
2

𝑑𝑠

+

1

2

max
𝑘∈𝑆

|𝐵 (𝑘)| ∫

𝑡+1

𝑡

𝐸|𝑥 (𝑠 − 𝜏)|
2

𝑑𝑠

+ 3max
𝑘∈𝑆

|𝑏 (𝑘)| 𝐸(∫

𝑡+1

𝑡

|𝑥 (𝑠)|
2

𝑑𝑠)

1/2

.

(51)

Recalling the following inequality |𝑥| ≤ ∑
𝑛

𝑖=1
𝑥
𝑖
≤ 𝑉(𝑥) for

any 𝑥 ∈ 𝑅
𝑛

+
, we obtain

lim sup
𝑡→∞

𝐸( sup
𝑡≤𝑢≤𝑡+1

𝑥 (𝑢))

≤ max
𝑘∈𝑆

|𝑏 (𝑘)| 𝐾
1
(1)

+ (max
𝑘∈𝑆

|𝐴 (𝑘)| +max
𝑘∈𝑆

|𝐵 (𝑘)|)𝐾
1
(2)

+ 3max
𝑘∈𝑆

|𝑏 (𝑘)| (𝐾 (2))
1/2

.

(52)

It is following from (52) that there is a positive constant 𝑀
such that

𝐸( sup
𝑘≤𝑡≤𝑘+1

|𝑥 (𝑡)|) ≤ 𝑀, 𝑘 = 1, 2, . . . . (53)

Let 𝜀 > 0 be arbitrary. Then, by Chebyshev’s inequality, we
have

𝑃( sup
𝑘≤𝑡≤𝑘+1

|𝑥 (𝑢)| > 𝑘
1+𝜀

) ≤

𝑀

𝑘
1+𝜀

, 𝑘 = 1, 2, . . . . (54)

Applying the well-known Borel-Cantelli lemma [24], we
obtain that for almost all 𝜔 ∈ Ω

sup
𝑘≤𝑡≤𝑘+1

|𝑥 (𝑢)| ≤ 𝑘
1+𝜀

(55)

holds for all but finitely many 𝑘. Hence, there exists a 𝑘
0
(𝜔),

for almost all 𝜔 ∈ Ω, for which (55) holds whenever 𝑘 ≥ 𝑘
0
.

Consequently, for almost all𝜔 ∈ Ω, if 𝑘 ≥ 𝑘
0
and 𝑘 ≤ 𝑡 ≤ 𝑘+1,

log (|𝑥 (𝑡)|)

log 𝑡
≤

(1 + 𝜀) log 𝑘
log 𝑘

= 1 + 𝜀. (56)

Therefore, lim sup
𝑡→∞

(log(|𝑥(𝑡)|)/ log 𝑡) ≤ 1 + 𝜀 a.s. Letting
𝜀 → 0, we obtain the desired assertion (46).

Lemma 11. If there exists a constant 𝜃 > 0 such that 𝐴(𝜃) is a
nonsingular 𝑀-matrix and for each 𝑘 ∈ 𝑆, 𝐵(𝑘) ≥ 0, then the
global positive solution 𝑥(𝑡) of SDE (4) has the property that

lim inf
𝑡→∞

log (|𝑥 (𝑡)|)

log 𝑡
≥ −

1

𝜃

𝑎.𝑠. (57)

Proof. Let 𝑈 : 𝑅
𝑛

+
→ 𝑅

𝑛

+
be the same as defined by (29);

for convenience, we write 𝑈(𝑥(𝑡)) = 𝑈(𝑡). Applying the
generalized Itô formula, for the fixed constant 𝜃 > 0, we
derive from (37) that

𝑑(1 + 𝑈 (𝑡))
𝜃

≤ 𝜃(1 + 𝑈 (𝑡))
𝜃−2

× [−𝑈
2

(𝑡) (𝛼 (𝑟 (𝑡)) −

1

2

𝜃 ̌𝜎
2

(𝑟 (𝑡)))

+ 𝐾
1
𝑈 (𝑡) + 𝐾

1
+

̌
𝑏] 𝑑𝑡

− 𝜃(1 + 𝑈 (𝑡))
𝜃−1

𝑈
2

(𝑡) 𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) .

(58)

By (43), there exists a positive constant𝑀 such that

𝐸(1 + 𝑈 (𝑡))
𝜃

≤ 𝑀 on 𝑡 ≥ 0. (59)

Let 𝛿 > 0 be sufficiently small such that

𝜃 [(|�̂�| +

1

2

𝜃 ̌𝜎
2

+ 𝐾
1
) 𝛿 + 3max

𝑘∈𝑆

|𝜎 (𝑘)| 𝛿
1/2

] <

1

2

. (60)

Then (58) implies that

𝐸[ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑡))
𝜃

]

≤ 𝐸 [(1 + 𝑈 ((𝑘 − 1) 𝛿))
𝜃

]

+ 𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿










∫

𝑡

(𝑘−1)𝛿

𝜃(1 + 𝑈 (𝑠))
𝜃−2

× [−𝑈
2

(𝑠) (�̂� (𝑟 (𝑠))

−

1

2

𝜃 ̌𝜎
2

(𝑟 (𝑠)))

+𝐾
1
(𝑈 (𝑠) + 1) ] 𝑑𝑠










}

+ 𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿










∫

𝑡

(𝑘−1)𝛿

𝜃(1 + 𝑈 (𝑠))
𝜃−1

𝑈
2

× (𝑠) 𝑥
𝑇

(𝑠) 𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠)










} .

(61)
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It is computed that

𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿










∫

𝑡

(𝑘−1)𝛿

𝜃(1 + 𝑈 (𝑠))
𝜃−2

× [−𝑈
2

(𝑠) (�̂� (𝑟 (𝑠)) −

1

2

𝜃 ̌𝜎
2

(𝑟 (𝑠)))

+𝐾
1
(𝑈 (𝑠) + 1) ] 𝑑𝑠










}

≤ 𝐸{∫

𝑘𝛿

(𝑘−1)𝛿









𝜃(1 + 𝑈 (𝑠))
𝜃−2

[−𝑈
2

(𝑠) (�̂� −

1

2

𝜃 ̌𝜎
2

)

+𝐾
1
(𝑈 (𝑠) + 1) ]









𝑑𝑠}

≤ 𝜃𝐸{∫

𝑘𝛿

(𝑘−1)𝛿

(|�̂�| +

1

2

𝜃 ̌𝜎
2

+ 𝐾
1
) (1 + 𝑈 (𝑠))

𝜃

𝑑𝑠}

≤ 𝜃 (|�̂�| +

1

2

𝜃 ̌𝜎
2

+ 𝐾
1
)𝐸[∫

𝑡

(𝑘−1)𝛿

sup
(𝑘−1)𝛿≤𝑠≤𝑘𝛿

(1 + 𝑈 (𝑠))
𝜃

𝑑𝑠]

≤ 𝜃 (|�̂�| +

1

2

𝜃 ̌𝜎
2

+ 𝐾
1
) 𝛿𝐸[ sup

(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑡))
𝜃

] .

(62)

On the other hand, by the BDG’s inequality, we derive that

𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿











∫

𝑘𝛿

(𝑘−1)𝛿

𝜃(1 + 𝑈 (𝑠))
𝜃−1

𝑈
2

× (𝑠) 𝑥
𝑇

(𝑠) 𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠)











}

≤3𝐸{∫

𝑘𝛿

(𝑘−1)𝛿

[𝜃(1 + 𝑈 (𝑠))
𝜃−1

𝑈
2

(𝑠)]

2




𝑥
𝑇

𝜎 (𝑟 (𝑠))







2

}

1/2

≤3𝜃𝐸{∫

𝑘𝛿

(𝑘−1)𝛿

(1 + 𝑈 (𝑠))
2(𝜃−1)

𝑈
2

(𝑠)

|𝑥 (𝑠)|
2

|𝜎 (𝑟 (𝑠))|
2

|𝑥 (𝑠)|
2

}

1/2

≤ 3𝜃max
𝑘∈𝑆

|𝜎 (𝑘)| 𝐸{∫

𝑘𝛿

(𝑘−1)𝛿

(1 + 𝑈 (𝑠))
2𝜃

𝑑𝑠}

1/2

≤ 3𝜃max
𝑘∈𝑆

|𝜎 (𝑘)| 𝛿
1/2

𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑠))
2𝜃

}

1/2

≤ 3𝜃max
𝑘∈𝑆

|𝜎 (𝑘)| 𝛿
1/2

𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑠))
𝜃

} .

(63)

Substituting this and (62) into (61) gives

𝐸[ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑡))
𝜃

]

≤ 𝐸 [(1 + 𝑈 ((𝑘 − 1) 𝛿))
𝜃

]

+ 𝜃 {[�̂� +

1

2

𝜃 ̌𝜎
2

+ 𝐾
1
] 𝛿 +3max

𝑘∈𝑆

|𝜎 (𝑘)| 𝛿
1/2

}

× 𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑠))
𝜃

} .

(64)

Making use of (59) and (60), we obtain that

sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

𝐸 [(1 + 𝑈 (𝑡))
𝜃

] ≤ 2𝑀 on 𝑡 ≥ 0. (65)

Let 𝜀 > 0 be arbitrary.Then, by Chebyshev inequality, we have

𝑃{𝜔 : sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑡))
𝜃

> (𝑘𝛿)
1+𝜀

}

≤

2𝑀

(𝑘𝛿)
1+𝜀

, 𝑘 = 1, 2, . . . .

(66)

Applying the Borel-Cantelli lemma, we obtain that for almost
all 𝜔 ∈ Ω

sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑡))
𝜃

≤ (𝑘𝛿)
1+𝜀

(67)

holds for all but finitelymany 𝑘. Hence, there exists an integer
𝑘
0
(𝜔) > 1/𝛿 + 2, for almost all 𝜔 ∈ Ω, for which (67) holds

whenever 𝑘 ≥ 𝑘
0
. Consequently, for almost all 𝜔 ∈ Ω, if 𝑘 ≥

𝑘
0
and (𝑘 − 1)𝛿 ≤ 𝑡 ≤ 𝑘𝛿,

log (1 + 𝑈 (𝑡))
𝜃

log 𝑡
≤

(1 + 𝜀) log (𝑘𝛿)
log ((𝑘 − 1) 𝛿)

≤ 1 + 𝜀. (68)

Therefore lim sup
𝑡→∞

(log (1 + 𝑈(𝑡))
𝜃

/ log 𝑡) ≤ 1 + 𝜀 a.s. Let
𝜀 → 0, we obtain the desired assertion

lim sup
𝑡→∞

log (1 + 𝑈 (𝑡))
𝜃

log 𝑡
≤ 1 a.s. (69)

Recalling the definition of 𝑈(𝑡), this yields
lim sup

𝑡→∞
(log |𝑥(𝑡)|−𝜃/ log 𝑡) ≤ 1 a.s., which further

implies

lim inf
𝑡→∞

log (|𝑥 (𝑡)|)

log 𝑡
≥ −

1

𝜃

a.s. (70)

This is our required assertion (57).

Assumption 8. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

− 𝜆 = |𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]}

+ 𝑐
−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)






< 0,

(71)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
) and 𝑐 = min

1≤𝑖≤𝑛
𝑐
𝑖
. Moreover for

each 𝑘 ∈ 𝑆, 𝐵(𝑘) ≥ 0.
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Theorem 12. Under Assumptions 4, 5, and 8, for any given
initial data {𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

+
), the solution

𝑥(𝑡) of (4) obeys

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≤

1

𝜆

𝑁

∑

𝑖=𝑘

𝜋
𝑘
𝛽 (𝑘) 𝑎.𝑠.,

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≥

2𝑐

̂
𝜆

𝑛

∑

𝑘=1

𝜋
𝑘
𝛼 (𝑘) 𝑎.𝑠.,

(72)

where −̂𝜆 = min
𝑘∈𝑆

[𝜆min(𝐶𝐴(𝑘) + 𝐴
𝑇

(𝑘)𝐶)] < 0.

Proof. ByTheorem 1(1), the solution𝑥(𝑡)will remain in𝑅
+
for

all 𝑡 ≥ −𝜏 with probability 1. Define 𝑉(𝑥) = 𝑐
𝑇

𝑥 = ∑
𝑛

𝑖=1
𝑐
𝑖
𝑥
𝑖
,

for 𝑥 ∈ 𝑅
𝑛

+
. By generalized Itô formula, one has

𝑑𝑉 (𝑥 (𝑡)) = 𝑥
𝑇

(𝑡) 𝐶 [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] .

(73)

From Lemmas 5, 10, and 11, it follows that

lim
𝑡→∞

log (𝑉 (𝑥 (𝑡)))

𝑡

= 0 a.s. (74)

By (73), it has

𝑑 log𝑉 (𝑥 (𝑡))

= 𝑉
−1

(𝑥 (𝑡)) 𝑥
𝑇

(𝑡) 𝐶 [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)]

− 0.5𝑉
−2

(𝑥 (𝑡))






𝑥
𝑇

(𝑡) 𝐶𝜎 (𝑟 (𝑡))







2

𝑑𝑡.

(75)

Meanwhile,

𝛼 (𝑟 (𝑡)) ≤ 𝑉
−1

(𝑥 (𝑡)) 𝐶𝑏 (𝑟 (𝑡))

− 0.5𝑉
−2

(𝑥 (𝑡))






𝑥
𝑇

(𝑡) 𝐶𝜎 (𝑟 (𝑡))







2

≤ 𝛽 (𝑟 (𝑡)) ,

− 0.5𝑐
−1̂
𝜆 |𝑥 (𝑡)|

≤ 𝑉
−1

(𝑥 (𝑡)) 𝑥
𝑇

(𝑡) 𝐶 (𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏))

≤ |𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝐶)]}

+ 𝑐
−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)






|𝑥 (𝑡)| + 0.5𝑐

−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)







× (− |𝑥 (𝑡)| + |𝑥 (𝑡 − 𝜏)|) .

(76)

Substituting (76) into (75) yields

𝑑 log𝑉 (𝑥 (𝑡)) ≤ 𝛽 (𝑟 (𝑡)) 𝑑𝑡 − 𝜆 |𝑥 (𝑡)| 𝑑𝑡

+ 0.5𝑐
−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)






(− |𝑥 (𝑡)| + |𝑥 (𝑡 − 𝜏)|)

+ 𝑉
−1

(𝑥 (𝑡)) 𝑥
𝑇

(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) .

(77)

Hence,

log𝑉 (𝑥 (𝑡)) + 𝜆∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠

≤ log𝑉 (𝑥 (0)) + ∫

𝑡

0

𝛽 (𝑟 (𝑠)) 𝑑𝑠 + ∫

0

−𝜏

|𝑥 (𝑠)| 𝑑𝑠

+ ∫

𝑡

0

𝑉
−1

(𝑥 (𝑠)) 𝑥
𝑇

(𝑠) 𝐶𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠) .

(78)

Applying the strong law of large numbers for martingales, we
have

lim
𝑡→∞

1

𝑡

∫

𝑡

0

𝑉
−1

(𝑥 (𝑠)) 𝑥
𝑇

(𝑠) 𝐶𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠) = 0 a.s. (79)

Dividing both sides of (78) by 𝑡 and letting 𝑡 → ∞, we obtain
that

𝜆 lim sup
𝑡→+∞

1

𝑡

∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≤

𝑁

∑

𝑘=1

𝜋
𝑘
𝛽 (𝑘) a.s., (80)

which implies the required assertion (72).
On the other hand, it is observed from (75)-(76) that

𝑑 log𝑉 (𝑥 (𝑡)) ≥ 𝛼 (𝑟 (𝑡)) 𝑑𝑡 − 0.5𝑐
−1̂
𝜆 |𝑥 (𝑡)| 𝑑𝑡

+ 𝑉
−1

(𝑥 (𝑡)) 𝑥
𝑇

(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) .

(81)

Hence,

log𝑉 (𝑥 (𝑡)) + 0.5𝑐
−1̂
𝜆∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠

≥ log𝑉 (𝑥 (0)) + ∫

𝑡

0

𝛼 (𝑟 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑉
−1

(𝑥 (𝑠)) 𝑥
𝑇

(𝑠) 𝐶𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠) .

(82)

Consequently, one gets that

0.5𝑐
−1̂
𝜆 lim inf
𝑡→+∞

1

𝑡

∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≥

𝑁

∑

𝑘=1

𝜋
𝑘
𝛼 (𝑘) a.s., (83)

which implies the other required assertion (4.12).

Similarly, using Lemmas 6, 10, and 11, we can show the
following
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Theorem 13. Under Assumptions 5 and 8, for any given initial
data {𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

+
), the solution 𝑥(𝑡) of

(4) obeys

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≤

1

𝜆

𝑁

∑

𝑖=𝑘

𝜋
𝑘
𝛽 (𝑘) 𝑎.𝑠.,

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≥

2𝑐

̂
𝜆

𝑛

∑

𝑘=1

𝜋
𝑘
𝛼 (𝑘) 𝑎.𝑠.,

(84)

where −̂𝜆 = min
𝑘∈𝑆

[𝜆min(𝐶𝐴(𝑘) + 𝐴
𝑇

(𝑘)𝐶)] < 0.

5. Examples

In this section, an example is given to illustrate our main
results.

Example 1. Consider the two-species Lotka-Volterra system
with regime switching described by

𝑑𝑥 (𝑡) = diag (𝑥
1
(𝑡) , 𝑥
2
(𝑡))

× [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] ,

(85)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇, 𝑏(𝑟(𝑡)) = (𝑏

1
𝑟(𝑡)), 𝑏

2
(𝑟(𝑡)))𝑇,

𝜎(𝑟(𝑡)) = (𝜎
1
(𝑟(𝑡)), 𝜎

2
(𝑟(𝑡)))𝑇,

𝐴 (𝑟 (𝑡)) = (

𝑎
11

(𝑟 (𝑡)) 𝑎
12

(𝑟 (𝑡))

𝑎
21

(𝑟 (𝑡)) 𝑎
22

(𝑟 (𝑡))
) ,

𝐵 (𝑟 (𝑡)) = (

𝑏
11

(𝑟 (𝑡)) 𝑏
12

(𝑟 (𝑡))

𝑏
21

(𝑟 (𝑡)) 𝑏
22

(𝑟 (𝑡))
) ,

(86)

and 𝑟(𝑡) is a right-continuous Markov chain taking values in
𝑆 = {1, 2}, and 𝑟(𝑡) and 𝑤(𝑡) are independent. Here

𝑏
1
(1) = 5, 𝑎

11
(1) = −5, 𝑎

12
(1) = √10,

𝑏
2
(1) = 8, 𝑎

21
(1) = √10, 𝑎

22
(1) = −5,

𝑏
1
(2) = 4, 𝑎

11
(2) = −3, 𝑎

12
(2) = √2,

𝑏
2
(2) = 5, 𝑎

21
(2) = √2, 𝑎

22
(2) = −3,

𝑏
11

(1) = 0, 𝑏
12

(1) =

1

2

, 𝜎
1
(1) = √2,

𝑏
21

(1) = 1, 𝑏
22

(1) = 0, 𝜎
2
(1) = 2,

𝑏
11

(2) = 0, 𝑏
12

(2) =

√2

2

, 𝜎
1
(2) = √14,

𝑏
21

(2) =

√2

2

, 𝑏
22

(2) = 0, 𝜎
2
(2) = 4.

(87)

Let 𝐶 = 𝐼 ∈ 𝑅
2 × 2. It is easy to compute that

|𝑐| = √2, 𝑐 = 1,

max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]} ≤ −3 + √2,

−
̂
𝜆 = −5 − √10 < 0, max

𝑘∈𝑆






𝐶𝐵 (𝑘)






≤

√5

2

.

(88)

Then

−𝜆 = |𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]}

+ 𝑐
−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)






< 0.

(89)

Moreover, 𝛼(1) = 3, 𝛼(2) = −4, 𝛽(1) = 7, and 𝛽(2) = −2.
By Theorem 1(1), the solution 𝑥(𝑡) of (85) will remain in

𝑅
+
for all 𝑡 ≥ −𝜏 with probability 1. Let the generator of the

Markov chain 𝑟(𝑡) be

Γ = (

−1 1

2 −2
) . (90)

By solving the linear equation 𝜋Γ = 0, we obtain the
unique stationary (probability) distribution 𝜋 = (𝜋

1
, 𝜋
2
) =

(2/3, 1/3). Then

2

∑

1=1

𝜋
𝑘
𝛼 (𝑘) =

2

3

> 0,

2

∑

1=1

𝜋
𝑘
𝛽 (𝑘) = 4 > 0. (91)

Therefore, by Theorems 8 and 12, (85) is stochastically
permanent and the solutions have the following properties:

2

̂
𝜆

≤ lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠

≤ lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≤

4

𝜆

a.s.
(92)
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This paper concerns Razumikhin-type theorems on exponential stability of stochastic differential delay equations with Markovian
switching, where the modulating Markov chain involves small parameters. The smaller the parameter is, the rapider switching
the system will experience. In order to reduce the complexity, we will “replace” the original systems by limit systems with a simple
structure. Under Razumikhin-type conditions, we establish theorems that if the limit systems are 𝑝th-moment exponentially stable;
then, the original systems are 𝑝th-moment exponentially stable in an appropriate sense.

1. Introduction

The stability of time delay systems is a field of intense research
[1, 2]. In [2], the global uniformexponential stability indepen-
dent of time delay linear and time invariant systems subjected
to point and distributed delays was studied. Moreover, noise
and time delay are often the sources of instability, and they
may destabilize the systems if they exceed their limits [3].

Hybrid delay systems driven by continuous-timeMarkov
chains have been used to model many practical systems
in which abrupt changes may be experienced in the struc-
ture and parameters caused by phenomena such as com-
ponent failures or repairs. An area of particular interest
has been the automatic control of the underlying systems,
with consequent emphasis on the analysis of stability of the
stochastic models. For systems with time delay, there are
two approaches to proving stability that correspond to the
conventional Lyapunov stability theory. The first is based on
Lyapunov-Krasovski functionals, the second on Lyapunov-
Razumikhin functions. The latter one originated with Razu-
mikhin [4] for the ordinary differential delay equation which
is called Razumikhin-type theorem and was developed by
several people [5]. In his paper, Mao [6] was the first
who established a Razumikhin-type theorem for stochastic
functional differential equations (SFDEs). Roughly speaking,

a Razumikhin-type theorem states that if the derivative of
a Lyapunov function along trajectories is negative whenever
the current value of the function dominates other values
over the interval of time delay; then, the Lyapunov function
along trajectories will converge to zero. The Razumikhin
methods have been widely used in the study of stability for
functional and differential-delay systems. In this work, we
shall investigate stochastic differential delay equations with
Markovian switching (SDDEwMSs). The switching we shall
use will be a finite-state Markov chain, which incorporates
various considerations into the models and often results in
the underlying Markov chain having a large state space. To
overcome the difficulties and to reduce the computational
complexity, much effort has been devoted to the modeling
and analysis of such systems, in which one of the main ideas
is to split a large-scale system into several classes and lumping
the states in each class into one state; see [7–9]. Starting from
the work [10], by introducing a small parameter 𝜀 > 0, a
number of asymptotic properties of the Markov chain 𝑟

𝜀

(⋅)

have been established. One of the main results in [9] is that
a complicated system can be replaced by the corresponding
limit system having a much simpler structure. In [11, 12],
long-term behavior of SDEwMSs and SDDEwMSs was inves-
tigated, respectively, while in [13, 14] the stability of random
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delay system with two-time-scale Markovian switching was
studied. Using the stability of the limit system as a bridge,
the desired asymptotic properties of the original system is
obtained using perturbed Lyapunov function methods. In
this work, we shall establish a Razumikhin-type theorem for
SDDEwMSs.

The remainder of this work is organised as follows: in the
next section, we shall begin with the formulation of the prob-
lem. Section 3 investigates the Razumikhin-type theorem for
SDDEs driven by Brownianmotion.The exponential stability
for SDDEs driven by pure jumps is discussed in Section 4.

2. Preliminaries

Let (Ω,F, {F
𝑡
}
𝑡≥0

,P) be a complete probability space with
a filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions (i.e. it is
increasing and right continuous, and F

0
contains all P-null

sets). Throughout the paper, we let 𝐵(𝑡) = (𝐵
1
(𝑡), . . . , 𝐵

𝑚
(𝑡))

𝑇

be an 𝑚-dimensional Brownian motion defined on the
probability space (Ω,F, {F

𝑡
}
𝑡≥0

,P). If𝐴 is a vector ormatrix,
its transpose is denoted by 𝐴𝑇. Let | ⋅ | denote the Euclidean
norm in R𝑛 as well as the trace norm of a matrix. For 𝜏 >

0, 𝐶([−𝜏, 0];R𝑛

) denotes the family of continuous functions
from [−𝜏, 0] to R𝑛 with the norm ‖𝜑‖ = sup

−𝜏≤𝜃≤0
|𝜑(𝜃)|.

Denote by 𝐶
𝑏

F([−𝜏, 0];R
𝑛

) the family of all F measurable
and bounded𝐶([−𝜏, 0];R𝑛

)-valued random variable. We will
denote the indicator function of a set 𝐺 by 𝐼

𝐺
.

Let 𝑟(𝑡) (𝑡 ≥ 0) be a right-continuous Markov chain on
(Ω,F, {F

𝑡
}
𝑡≥0

,P) taking values in a finite state space S =

{1, 2, . . . , 𝑁} with the generator Γ = (𝛾
𝑖𝑗
)
𝑁×𝑁

given by

P {𝑟 (𝑡 + 𝛿) = 𝑗 | 𝑟 (𝑡) = 𝑖}

= {

𝛾
𝑖𝑗
𝛿 + ∘ (𝛿) , if 𝑖 ̸= 𝑗,

1 + 𝛾
𝑖𝑖
𝛿 + ∘ (𝛿) , if 𝑖 = 𝑗,

(1)

where 𝛿 > 0 and 𝛾
𝑖𝑗
is the transition rate from 𝑖 to 𝑗 sati-

sfying 𝛾
𝑖𝑗
> 0 if 𝑖 ̸= 𝑗 and 𝛾

𝑖𝑖
= −∑

𝑖 ̸= 𝑗
𝛾
𝑖𝑗
. We assume the

Markov 𝑟(⋅) is independent of the Brownian motion 𝐵(⋅). It
is well known that almost every sample path 𝑟(⋅) is a right-
continuous step function with finite number of simple jumps
in any finite subinterval of R

+
:= [0,∞). As a standing

hypothesis, we assume that the Markov chain is irreducible.
This is equivalent to the condition that for any 𝑖, 𝑗 ∈ S, we can
find 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
∈ S such that

𝛾
𝑖,𝑖1
𝛾
𝑖1,𝑖2

. . . 𝛾
𝑖𝑘,𝑗

> 0. (2)
Thus, Γ always has an eigenvalue 0. The algebraic inter-
pretation of irreducibility is rank(Γ) = 𝑁 − 1. Under
this condition, the Markov chain has a unique stationary
(probability) distribution 𝜋Γ = 0, subject to ∑𝑁

𝑗=1
𝜋
𝑗
= 1 and

𝜋
𝑗
> 0 for all 𝑗 ∈ S. For a real valued function 𝜎(⋅) defined on

S, we define
Γ𝜎 (⋅) (𝜅) := ∑

ℓ∈S

𝛾
𝜅ℓ
𝜎 (ℓ)

= ∑

ℓ ̸= 𝜅

𝛾
𝜅ℓ
(𝜎 (ℓ) − 𝜎 (𝜅)) ,

(3)

for each 𝜅 ∈ S.

Consider the following stochastic delay system with
Markovian swtching:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝐵 (𝑡) ,

𝑥
0
= 𝜉 ∈ 𝐶 ([−𝜏, 0] ;R

𝑛

) , 𝑟 (0) ∈ S,

(4)

where 𝑓 : R𝑛

×R𝑛

×S → R𝑛 and 𝑔 : R𝑛

×R𝑛

×S → R𝑛×𝑚.
To highlight the fast and slow motions, we introduce a

parameter 𝜀 > 0 and rewrite the Markov chain 𝑟(𝑡) as 𝑟𝜀(𝑡)
and the generator Γ as Γ𝜀. Γ𝜀 is given by

Γ
𝜀

=

1

𝜀

Γ̃ + Γ̂, (5)

where Γ̃/𝜀 represents the fast varying motions, and Γ̂ repre-
sents the slowly changing dynamics.Wedenote Γ𝜀 = (𝛾

𝜀

𝑖𝑗
)
𝑁×𝑁

,
Γ̃ = (𝛾

𝑖𝑗
)
𝑁×𝑁

, and Γ̂ = (𝛾
𝑖𝑗
)
𝑁×𝑁

. To the reduction of complex-
ity, Γ̃ needs to have a certain structure. Suppose that

S = S
1

∪ S
2

∪ ⋅ ⋅ ⋅ ∪ S
𝑙 (6)

with S𝑖

= {𝑠
𝑖1
, . . . , 𝑠

𝑖𝑁𝑖
} and𝑁 = 𝑁

1
+𝑁

2
+ ⋅ ⋅ ⋅ + 𝑁

𝑙
, and that

Γ̃ = diag (Γ̃1, . . . , Γ̃𝑙) , (7)

where for each 𝑘 ∈ {1, . . . , 𝑙} and Γ̃
𝑘 is a generator of a

Markov chain taking values in S𝑘. We impose the following
hypothesis:

(H1) For each 𝑘 ∈ {1, . . . , 𝑙}, Γ̃𝑘 is irreducible.
To highlight the effect of the fast switching, we rewrite the

system (4) as

𝑑𝑥
𝜀

(𝑡) = 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)) 𝑑𝑡

+ 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)) 𝑑𝑤 (𝑡) ,

𝑥
𝜀

0
= 𝜉 ∈ 𝐶 ([−𝜏, 0] ;R

𝑛

) , 𝑟
𝜀

= 𝑟
0
.

(8)

To assure the existence and uniqueness of the solution, we
give the following standard assumptions.

(H2) For any integer 𝑅, there is a constant ℎ
𝑅
> 0, such

that




𝑓 (𝑥, 𝑦, 𝜅) − 𝑓 (𝑥

1
, 𝑦

1
, 𝜅)





∨




𝑔 (𝑥, 𝑦, 𝜅) − 𝑔 (𝑥

1
, 𝑦

1
, 𝜅)






≤ ℎ
𝑅
(




𝑥 − 𝑥

1





+




𝑦 − 𝑦

1





)

(9)

for all 𝜅 ∈ S and those 𝑥, 𝑥
1
, 𝑦, 𝑦

1
∈ R𝑛 with |𝑥| ∨ |𝑥

1
| ∨ |𝑦| ∨

|𝑦
1
| ≤ 𝑅.
(H3)There is an ℎ > 0, such that for any 𝑥, 𝑦 ∈ R𝑛

, 𝜅 ∈ S,




𝑓 (𝑥, 𝑦, 𝜅)





∨




𝑔 (𝑥, 𝑦, 𝜅)





≤ ℎ (1 + |𝑥| +





𝑦




) ,

𝑓 (0, 0, 𝜅) ≡ 0, 𝑔 (0, 0, 𝜅) ≡ 0.

(10)

Under the assumptions (H2) and (H3), system (8) has a
unique solution denoted by 𝑥

𝜀,𝜉,ℓ

(𝑡) on 𝑡 ≥ −𝜏, where the
notation 𝑥𝜀,𝜉,ℓ emphasizes the dependence on the initial data
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(𝜉, ℓ). Moreover, for every 𝑝 > 0 and any compact subset 𝐾
of 𝐶([−𝜏, 0];R𝑛

), there exists a positive constant 𝐻 which is
independent of 𝜀 such that

sup
(𝜉,ℓ)∈𝐾×S

𝐸[ sup
−𝜏≤𝑠≤𝑡






𝑥
𝜀,𝜉,ℓ

(𝑠)







𝑝

] ≤ 𝐻, on 𝑡 ≥ 0. (11)

We will consider the stability of system (8), but the state
space of the Markov chain is large, and it is difficult to handle
(8) directly. So we will consider the average system of (8). To
proceed, lump the states in each S𝑘 into a single state and
define an aggregated process 𝑟𝜀(⋅) as

𝑟
𝜀

(𝑡) = 𝑘, if 𝑟𝜀 (𝑡) ∈ S
𝑘

. (12)

Denote the state space of 𝑟𝜀(𝑡) byS = {1, . . . , 𝑙}, the stationary
distribution Γ̃

𝑘 by 𝜇
𝑘

= (𝜇
𝑘

1
, . . . , 𝜇

𝑘

𝑁𝑘

) ∈ R1×𝑁𝑘 and 𝜇 =

diag(𝜇1, . . . , 𝜇𝑙) ∈ R𝑙×𝑁. Define

Γ = (𝛾
𝑖𝑗
)
𝑙×𝑙

= 𝜇Γ̂1 (13)

with 1 = diag (1
𝑁1
, . . . , 1

𝑁𝑙
) and 1

𝑁𝑘
= (1, . . . , 1)

𝑇

∈ R𝑁𝑘×1,
𝑘 = 1, . . . , 𝑙. It has been known that 𝑟𝜀(⋅) converges weakly to
𝑟(⋅) as 𝜀 → 0, where 𝑟(⋅) is a continuous-time Markov chain
with generator Γ and state space S (cf. [9]).

Define

𝑓 (𝑥, 𝑦, 𝑖) =

𝑁𝑖

∑

𝑗=1

𝜇
𝑖

𝑗
𝑓 (𝑥, 𝑦, 𝑠

𝑖𝑗
) , (14)

𝑔 (𝑥, 𝑦, 𝑖) 𝑔
𝑇

(𝑥, 𝑦, 𝑖) =

𝑁𝑖

∑

𝑗=1

𝜇
𝑖

𝑗
𝑔 (𝑥, 𝑦, 𝑠

𝑖𝑗
) 𝑔

𝑇

(𝑥, 𝑦, 𝑠
𝑖𝑗
) (15)

for each 𝑠
𝑖𝑗
∈ S𝑖 with 𝑖 ∈ {1, . . . , 𝑙} and 𝑗 ∈ {1, . . . , 𝑁

𝑖
}. It is

easily seen that 𝑓(𝑥, 𝑦, 𝑖) and 𝑔(𝑥, 𝑦, 𝑖) are the averages with
respect to the stationary distribution of the Markov chain.
Note that for any (𝑥, 𝑦) ̸= (0, 0), 𝑔(𝑥, 𝑦, 𝑠

𝑖𝑗
)𝑔

𝑇

(𝑥, 𝑦, 𝑠
𝑖𝑗
) are

nonnegative definite matrices, so we find its “square root” of
(15), which is denoted by 𝑔(𝑥, 𝑦, 𝑖). For degenerate diffusions,
we can see the argument in [15].

The averaged system of (8) is defined as follows:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

𝑥
0
= 𝜉, 𝑟 = 𝑟

0
.

(16)

3. Moment Exponential Stability

In this section, we shall establish the Razumikhin-type
theorem on the exponential stability for (8).

Let𝐶𝑝

(R𝑛

×S;R
+
) be the class of nonnegative real-valued

functions defined on R𝑛

× S that are 𝑝-times continuously
differentiable with respect to 𝑥. We give the following
assumption about 𝑉(𝑥, 𝑖) ∈ 𝐶

𝑝

(R𝑛

× S;R
+
) for some 𝑝 ≥ 4.

(H4) For each 𝑖 ∈ S, 𝑉(𝑥, 𝑖) → ∞ as |𝑥| → ∞.
Moreover, 𝜕𝑝𝑉(𝑥, 𝑖) = 𝑂(1), 𝜕

ℓ

𝑉(𝑥, 𝑖)(|𝑥|
ℓ

+ |𝑦|
ℓ

) ≤ 𝐾(|𝑥|
𝑝

+

|𝑦|
𝑝

+ 1) for 1 ≤ ℓ ≤ 𝑝 − 1, where 𝜕ℓ𝑉(𝑥, 𝑖) denotes the ℓth
derivative of 𝑉(𝑥, 𝑖) with respect to 𝑥 and 𝑂(𝑦) denotes the
function of 𝑦 satisfying sup

𝑦
|𝑂(𝑦)|/𝑦 < ∞.

Theorem 1. Let (H1)–(H3) hold; there is a function 𝑉(𝑥, 𝑖) ∈

𝐶
𝑝

(R𝑛

×S;R
+
) satisfying (H4), and there are positive constants

𝜆, 𝑐
1
, 𝑐
2
, and 𝑞 > 1 such that

(i) 𝑐
1
|𝑥|

𝑝

≤ 𝑉(𝑥, 𝑖) ≤ 𝑐
2
|𝑥|

𝑝,
(ii) E[max

𝑖∈SL𝑉(𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑖)] ≤ −𝜆E[max
𝑖∈S𝑉(𝑥(𝑡),

𝑖)] provided E[min
𝑖∈S𝑉(𝑥(𝑡 + 𝜃), 𝑖)] < 𝑞E[max

𝑖∈S

𝑉(𝑥(𝑡), 𝑖)], −𝜏 ≤ 𝜃 ≤ 0,

where

L𝑉 (𝑥, 𝑦, 𝑖) = 𝑉
𝑥
(𝑥, 𝑖) 𝑓 (𝑥, 𝑦, 𝑖)

+

1

2

trace [𝑉
𝑥𝑥
(𝑥, 𝑖) 𝑔 (𝑥, 𝑦, 𝑖) 𝑔

𝑇

(𝑥, 𝑦, 𝑖)]

+

𝑙

∑

𝑗=1

𝛾
𝑖𝑗
𝑉 (𝑥, 𝑗) .

(17)

Then, for all 𝜉 ∈ 𝐶([−𝜏, 0];R𝑛

),

lim sup
𝜀→0

E




𝑥
𝜀

(𝑡)





𝑝

≤ ]
2
𝑒
−]1𝑡

, (18)

where

]
1
= min{𝜆,

log 𝑞

𝜏

} ;

]
2
𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

]
2
=

𝑐
2

𝑐
1

sup
−𝜏≤𝜃≤0

E




𝜉





𝑝

.

(19)

Remark 2. Note that the conditions of Theorem 1 are suffi-
cient conditions for the average system (16) 𝑥(𝑡) (or the limit
process 𝑥(𝑡)). However the conclusion of Theorem 1 is about
the process𝑥𝜀(𝑡). Since the structure of the the average system
(16) is much simpler than that of 𝑥𝜀(𝑡), this theorem has
reduced the computational complexity for the system (8).

Remark 3. lim sup
𝜀→0

E|𝑥𝜀(𝑡)|𝑝 does exist by (11).

Proof of Theorem 1. Define

𝑉 (𝑥, 𝜁) =

𝑙

∑

𝑖=1

𝑉 (𝑥, 𝑖) 𝐼
{𝜁∈S𝑖} = 𝑉 (𝑥, 𝑖) , if 𝜁 ∈ S

𝑖

. (20)

Note that

𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) = 𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) ,

𝑁

∑

𝜅=1

𝛾
𝑙𝜅
𝑉 (𝑥, 𝜅) =

𝑁

∑

𝜅=1

𝛾
𝑙𝜅

𝑙

∑

𝑖=1

𝑉 (𝑥, 𝑖) 𝐼
{𝜅∈S𝑖} = 0.

(21)
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We extend 𝑟(𝑡) to [−𝜏, 0] by setting 𝑟(𝑡) = 𝑟(0); then,
E𝑉(𝑥𝜀(𝑡), 𝑟𝜀(𝑡)) is right continuous on 𝑡 ≥ −𝜏.

Let ] ∈ (0, ]
1
) be arbitrary, and define

𝑈 (𝑡) := 𝑒
]𝑡lim sup

𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

= 𝑒
]𝑡lim sup

𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) .

(22)

If we can show that 𝑈(𝑡) ≤ 𝑐
1
]
2
, then the proof is completed.

If 𝑡 ∈ [−𝜏, 0], by condition (i),

𝑈 (𝑡) ≤ lim
𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) = E𝑉 (𝜉, 0) ≤ 𝑐
2
E




𝜉 (0)






𝑝

≤ 𝑐
2
sup

−𝜏≤𝜃≤0

E




𝜉 (𝜃)






𝑝

= 𝑐
1
]
2
.

(23)

If 𝑡 ≥ 0, we will prove that 𝑈(𝑡) ≤ 𝑐
1
]
2
. Otherwise, there

exists the smallest 𝜌 ∈ (0,∞) such that all 𝑡 ∈ [−𝜏, 𝜌), 𝑈(𝑡) ≤

𝑐
1
]
2
and 𝑈(𝜌) ≥ 𝑐

1
]
2
as well as 𝑈(𝜌 + 𝛿) > 𝑈(𝜌) for all

suffieciently small 𝛿.
For 𝑡 ∈ [𝜌 − 𝜏, 𝜌),

lim sup
𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

= 𝑒
−]𝑡
𝑈 (𝑡)

≤ 𝑒
−]𝑡
𝑈 (𝜌) = 𝑒

−]𝑡
𝑒
]𝜌lim sup

𝜀→0

E𝑉 (𝑥
𝜀

(𝜌) , 𝑟
𝜀

(𝜌))

≤ 𝑒
]𝜏lim sup

𝜀→0

E𝑉 (𝑥
𝜀

(𝜌) , 𝑟
𝜀

(𝜌)) .

(24)

If lim sup
𝜀→0

E𝑉(𝑥𝜀(𝜌), 𝑟𝜀(𝜌)) = 0, then
lim sup

𝜀→0
E𝑉(𝑥𝜀(𝑡), 𝑟𝜀(𝑡)) = 0, 𝑡 ∈ [𝜌 − 𝜏, 𝜌).

Since (𝑥
𝜀

(𝑡), 𝑟
𝜀

(𝑡)) converges to (𝑥(𝑡), 𝑟(𝑡)) with proba-
bility one (see Lemma 2.3 in [12]), by condition (i), we can
derive

𝑥 (𝑡) = 0, 𝑡 ∈ [𝜌 − 𝜏, 𝜌) . (25)

Recalling the fact 𝑓(0, 0, 𝑖) ≡ 0, 𝑔(0, 0, 𝑖) ≡ 0 and using the
uniqueness of the equation, we then have 𝑥(𝑡) = 0, a.e. 𝑡 > 0.
Therefore we have

lim sup
𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) = 0, 𝑡 > 0. (26)

Then 𝑈(𝜌) = 0, which is a contradiction. Hence we see that
lim

𝜀→0
E𝑉(𝑥𝜀(𝜌), 𝑟𝜀(𝜌)) ̸= 0. For 𝑡 ∈ [𝜌 − 𝜏, 𝜌), there exists a

𝑞 > 1 such that

lim sup
𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

≤ 𝑞lim sup
𝜀→0

E𝑉 (𝑥
𝜀

(𝜌) , 𝑟
𝜀

(𝜌)) , ] <
log 𝑞

𝜏

.

(27)

Consequently, there exists a sufficiently small 𝜀
0
> 0, such

that, for any 𝜀 ∈ (0, 𝜀
0
),

E [min
𝑖∈S

𝑉 (𝑥
𝜀

(𝜌 + 𝜃) , 𝑖)]

≤ 𝑞E [max
𝑖∈S

𝑉 (𝑥
𝜀

(𝜌) , 𝑖)] , 𝜃 ∈ [−𝜏, 0] .

(28)

By condition (ii),

E [max
𝑖∈S

L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑖)] ≤−𝜆E [max
𝑖∈S

𝑉 (𝑥
𝜀

(𝑡) , 𝑖)] ;

(29)

then,

E [L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] ≤ −𝜆E [𝑉 (𝑥
𝜀

(𝑡) , 𝑟 (𝑡))] .

(30)

Noting that ] < ] ≤ 𝜆, we have

E [L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] ≤ −]E [𝑉 (𝑥
𝜀

(𝑡) , 𝑟 (𝑡))] .

(31)

We now consider

𝑈(𝜌 + 𝛿) − 𝑈 (𝜌)

= lim sup
𝜀→0

[𝑒
](𝜌+𝛿)

E [𝑉 (𝑥
𝜀

(𝜌 + 𝛿) , 𝑟
𝜀

(𝜌 + 𝛿))]

−𝑒
]𝜌
E [𝑉 (𝑥

𝜀

(𝜌) , 𝑟
𝜀

(𝜌))]]

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) ] 𝑑𝑡.

(32)

By the definition of operatorL, we have

L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

= 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+

1

2

trace [𝑉
𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))
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× 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))]

+

𝑁

∑

𝜅=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅)

= 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+

1

2

trace [𝑉
𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)) ]

+

𝑁

∑

𝜅=1

𝛾
𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅)

= 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+

1

2

trace [𝑉
𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))]

+

𝑙

∑

𝑗=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗)

+ 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑟
𝜀

(𝑡))]

+

1

2

trace [𝑉
𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× (𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

− 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)))]

+

𝑁

∑

𝜅=1

𝛾
𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅)

−

𝑙

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗)

= L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+ 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏 (𝑡)) ,

𝑟
𝜀

(𝑡))−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏 (𝑡)) , 𝑟
𝜀

(𝑡))]

+

1

2

trace [𝑉
𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× (𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

− 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)))]

+

𝑁

∑

𝜅=1

𝛾
𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅)

−

𝑙

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗) .

(33)

So

𝑈(𝜌 + 𝛿) − 𝑈 (𝜌)

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) ,

𝑟
𝜀

(𝑡)) + ]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

+ lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

+

1

2

lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡 trace

× [𝑉
𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× (𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑟
𝜀

(𝑡))

− 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏 (𝑡)) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

+ lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
(

𝑁

∑

𝜅=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅)

−

𝑙

∑

𝑗=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗))𝑑𝑡

=: 𝐼
1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
.

(34)
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By the definition of 𝑓,

𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)) − 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

=

𝑙

∑

𝑖=1

𝑁𝑖

∑

𝑗=1

𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑠
𝑖𝑗
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠𝑖𝑗}

− 𝜇
𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

] .

(35)

This, together with assumption (H2), implies

lim
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

≤ lim
𝜀→0

[E












∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] 𝑑𝑡












2

]

]

1/2

= lim
𝜀→0

[

[

E












∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

×

𝑙

∑

𝑖=1

𝑁𝑖

∑

𝑗=1

𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑠
𝑖𝑗
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠𝑖𝑗}

− 𝜇
𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

] 𝑑𝑡













2

]

]

1/2

≤ lim
𝜀→0

[

[

E













∫

𝜌+𝛿

𝜌

𝑙

∑

𝑖=1

𝑁𝑖

∑

𝑗=1

𝑒
]𝑡
ℎ (1 +





𝑥
𝜀

(𝑡)





𝑝

+




𝑥
𝜀

(𝑡 − 𝜏)





𝑝

)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠𝑖𝑗}

−𝜇
𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

] 𝑑𝑡













2

]

]

1/2

.

(36)

By the argument of Lemma 7.14 in [9], the right side of above
inequality is equivalent to to 0; that is, 𝐼

2
= 0. Similarly, we

can show

𝐼
3
=

1

2

lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡

trace × [𝑉
𝑥𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× (𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

− 𝑔 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

× 𝑔
𝑇

(𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑟
𝜀

(𝑡)))] 𝑑𝑡=0.

(37)

By the definition of Γ̂ and Γ, we have

𝑁

∑

𝜅=1

𝛾
𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅) = Γ̂𝑉 (𝑥
𝜀

(𝑡) , ⋅) (𝑟
𝜀

(𝑡)) ,

𝑙

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗) = Γ𝑉 (𝑥
𝜀

(𝑡) , ⋅) (𝑟
𝜀

(𝑡)) ,

(38)

hence

𝐼
4
= lim sup

𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
(

𝑁

∑

𝜅=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝜅

𝑉 (𝑥
𝜀

(𝑡) , 𝜅)

−

𝑙

∑

𝑗=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗))𝑑𝑡

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
(Γ̂𝑉 (𝑥

𝜀

(𝑡) , ⋅) (𝑟
𝜀

(𝑡))

−Γ𝑉 (𝑥
𝜀

(𝑡) , ⋅) (𝑟
𝜀

(𝑡))) 𝑑𝑡

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡

𝑙

∑

𝑖=1

𝑁𝑖

∑

𝑗=1

Γ̂𝑉 (𝑥
𝜀

(𝑡) , ⋅) (𝑠
𝑖𝑗
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠𝑖𝑗}

−𝜇
𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

] 𝑑𝑡

≤ lim sup
𝜀→0

[

[

E













∫

𝜌+𝛿

𝜌

𝑒
]𝑡

𝑙

∑

𝑖=1

𝑁𝑖

∑

𝑗=1

Γ̂𝑉 (𝑥
𝜀

(𝑡) , ⋅) (𝑠
𝑖𝑗
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠𝑖𝑗}

−𝜇
𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

]













2

]

]

1/2

.

(39)

By assumption (H4) and the argument of Lemma 7.14 in [9],
we have the right side of above inequality is equivalent to
0, that is, 𝐼

4
= 0.

Therefore by the condition (ii)

𝑈(𝜌 + 𝛿) − 𝑈 (𝜌)

= lim
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡 ≤ 0;

(40)

this is

𝑈(𝜌 + 𝛿) ≤ 𝑈 (𝜌) . (41)
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This contradicts the definition of 𝜌. The proof is now
completed.

Example 4. Let 𝑟𝜀(⋅) be aMarkov chain generated by Γ𝜀 given
in (5) with

Γ̃ = (

−2 2 0 0 0

2 −2 0 0 0

0 0 −3 0 3

0 0 1 −1 0

0 0 1 0 −1

),

Γ̂ = (

−1 0 1 0 0

0 −1 0 1 0

0 0 −1 0 1

0 1 0 −1 0

1 0 0 0 −1

).

(42)

The generator Γ̃ consists of two irreducible blocks. The sta-
tionary distributions are 𝜇1 = (0.5, 0.5), 𝜇2 = (1/7, 2/7, 4/7),
and

Γ = (

−1 1

6

7

−

6

7

) . (43)

Consider a one-dimensional equation
𝑑𝑥

𝜀

(𝑡) = 𝑓 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑑𝑡 + 𝑔 (𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)) 𝑑𝑤 (𝑡)

(44)

with

𝑓 (𝑥, 𝑠
11
) =

𝑥

8

, 𝑓 (𝑥, 𝑠
12
) =

𝑥

8

,

𝑔 (𝑥, 𝑠
11
) =

𝑥 cos𝑥
8√2

, 𝑔 (𝑥, 𝑠
12
) =

𝑥 sin𝑥
8√2

,

𝑓 (𝑥, 𝑠
21
) = −28 (𝑥 + sin𝑥) ,

𝑓 (𝑥, 𝑠
22
) = 7𝑥 + 14 sin𝑥, 𝑓 (𝑥, 𝑠

23
) = −

7

4

𝑥,

𝑔 (𝑥, 𝑠
21
) =

√7

4

𝑥 sin𝑥,

𝑔 (𝑥, 𝑠
22
) = −

√7

4

𝑥 cos𝑥, 𝑔 (𝑥, 𝑠
23
) =

√7

8

𝑥.

(45)

Then the limit equation is
𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑟 (𝑡)) 𝑑𝑡 + 𝑔 (𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑤 (𝑡) , (46)

where 𝑟 is the Markov chain generated by Γ and

𝑓 (𝑥, 1) =

𝑥

8

, 𝑓 (𝑥, 2) = −3𝑥,

𝑔 (𝑥, 1) =

𝑥

16

, 𝑔 (𝑥, 2) =

𝑥

4

.

(47)

Let 𝑉(𝑥, 1) = 2𝑥
2

, 𝑉(𝑥, 2) = 𝑥
2; then,

L𝑉 (𝑥, 𝑦, 1) ≤ −

1

2

|𝑥|
2

+





𝑦





2

128

,

L𝑉 (𝑥, 𝑦, 2) ≤ −

36

7

|𝑥|
2

+





𝑦





2

16

,

(48)

Consequently

max
𝑖=1,2

L𝑉 (𝑥, 𝑦, 𝑖) ≤ −

1

2

|𝑥|
2

+

1

16





𝑦





2 (49)

= −

1

4

[max
𝑖=1,2

𝑉 (𝑥, 𝑖)] +

1

16

[min
𝑖=1,2

𝑉 (𝑦, 𝑖)] .

(50)

It is easy to see that we can find a 𝑞 > 1 such that (1/4) −
(𝑞/16) > 0. Therefore, for any 𝜙 ∈ 𝐿

2

F𝑡
([−𝜏, 0];R𝑛

) satisfying
E[min

𝑖∈S𝜙(𝜃)] ≤ 𝑞E[max
𝑖∈S𝜙(0)] on −𝜏 ≤ 𝜃 ≤ 0, (49) yields

E [max
𝑖∈S

L𝑉 (𝑥, 𝑦, 𝑖)] ≤ − (

1

4

−

𝑞

16

)E [max
𝑖=1,2

𝑉 (𝑥, 𝑖)] . (51)

Hence, byTheorem 1, the solution 𝑥𝜀(𝑡) is mean square stable
when 𝜀 is sufficient small.

4. Stochastic Delay System with Pure Jumps

In this section we discuss the stability of the following
stochastic delay system with pure jumps:

𝑑𝑥
𝜀

(𝑡)

= 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡)) 𝑑𝑡

+ ∫

R𝑚
𝑏 (𝑥

𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧) �̃� (𝑑𝑡, 𝑑𝑧) ,

𝑥
0
= 𝜉 ∈ 𝐶 ([−𝜏, 0] ;R

𝑛

) , 𝑟 (0) ∈ S,

(52)

where𝑥𝜀(𝑡−) = lim
𝑠↑𝑡
𝑥
𝜀

(𝑠), 𝑏 : R𝑛

×R𝑛

×S×R𝑚

→ R𝑛×𝑚.We
assume that the each column 𝑏(𝑙) of the 𝑛 ×𝑚matrix 𝑏 = [𝑏

𝑖𝑗
]

depends on 𝑧 only through the lth coordinate 𝑧
𝑙
; that is,

𝑏
(𝑘)

(𝑥, 𝑦, 𝜅, 𝑧) = 𝑏
(𝑘)

(𝑥, 𝑦, 𝜅, 𝑧
𝑘
) ;

𝑧 = (𝑧
1
, . . . , 𝑧

𝑚
) ∈ R

𝑚

, 𝜅 ∈ S.
(53)

𝑁(𝑡, 𝑧) is a𝑚-dimensional Poisson process, and the compen-
sated Poisson, process is defined by

�̃� (𝑑𝑡, 𝑑𝑧) = (�̃�
1
(𝑑𝑡, 𝑑𝑧

1
) , . . . , �̃�

𝑑
(𝑑𝑡, 𝑑𝑧

𝑚
))

= (𝑁
1
(𝑑𝑡, 𝑑𝑧

1
) − 𝜆

1
(𝑑𝑧

1
) 𝑑𝑡, . . . ,

𝑁
𝑚
(𝑑𝑡, 𝑑𝑧

𝑚
) − 𝜆

𝑚
(𝑑𝑧

𝑚
) 𝑑𝑡) ,

(54)

where {𝑁
𝑗
, 𝑗 = 1, . . . , 𝑚} are independent one-dimensional

Poisson random measures with characteristic measure {𝜆
𝑗
,

𝑗 = 1, . . . , 𝑚} coming from 𝑚 independent one-dimensional
Poisson point processes.

The averaged system of (18) is defined as follows:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ ∫

R𝑚
𝑏 (𝑥 (𝑡−) , 𝑥 ((𝑡 − 𝜏) −) , 𝑟 (𝑡) , 𝑧)

× �̃� (𝑑𝑡, 𝑑𝑧) ,

𝑥
0
= 𝜉 ∈ 𝐶 ([−𝜏, 0] ;R

𝑛

) , 𝑟 (0) ∈ S,

(55)
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where 𝑥(𝑡−) = lim
𝑠↑𝑡
𝑥(𝑠), 𝑏 : R𝑛

× R𝑛

× S × R𝑚

→ R𝑛×𝑚.
Similar to the definition of 𝑓, we define

𝑏 (𝑥, 𝑦, 𝑖, 𝑧) =

𝑁𝑖

∑

𝑗=1

𝜇
𝑖

𝑗
𝑏 (𝑥, 𝑦, 𝑠

𝑖𝑗
, 𝑧) . (56)

For each 𝑠
𝑖𝑗
∈ S𝑖 with 𝑖 ∈ {1, . . . , 𝑙} and 𝑗 ∈ {1, . . . , 𝑁

𝑖
}.

To assure the existence and uniqueness of the solution of
(52), we also give the following standard assumptions.

(H2) For any integer 𝑅, there is a constant ℎ
𝑅
> 0, such

that




𝑓 (𝑥, 𝑦, 𝑖) − 𝑓 (𝑥

1
, 𝑦

1
, 𝑖)





∨

𝑚

∑

𝑘=1

∫

R






𝑏
(𝑘)

(𝑥
2
, 𝑦

2
, 𝜅, 𝑧

𝑘
) − 𝑏

(𝑘)

(𝑥
1
, 𝑦

1
, 𝜅, 𝑧

𝑘
)






𝜆
𝑘
(𝑑𝑧

𝑘
)

≤ ℎ
𝑅
(




𝑥
2
− 𝑥

1





+




𝑦
2
− 𝑦

1





)

(57)

for all 𝑖 ∈ S and those 𝑥
1
, 𝑥

2
, 𝑦

1
, 𝑦

2
∈ R𝑛 with |𝑥

1
| ∨ |𝑥

2
| ∨

|𝑦
1
| ∨ |𝑦

2
| ≤ 𝑅.

(H3)There is an ℎ > 0, such that for any 𝑥, 𝑦 ∈ R𝑛, 𝑖 ∈ S,





𝑓 (𝑥, 𝑦, 𝑖)





∨

𝑚

∑

𝑘=1

∫

R






𝑏
(𝑘)

(𝑥, 𝑦, 𝜅, 𝑧
𝑘
)






𝜆
𝑘
(𝑑𝑧

𝑘
)

≤ ℎ (1 + |𝑥| +




𝑦




) , 𝑓 (0, 0, 𝜅) ≡ 0, 𝑏 (0, 0, 𝜅, 𝑧) ≡ 0.

(58)

Given 𝑉 ∈ 𝐶
𝑝

(R𝑛

× S;R
+
), we define the operator L𝑉 by

L𝑉 (𝑥, 𝑦, 𝑖)

= 𝑉
𝑥
(𝑥, 𝑖) 𝑓 (𝑥, 𝑦, 𝑖) +

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝑉 (𝑥, 𝑗)

+ ∫

R

𝑚

∑

𝑘=1

{𝑉 (𝑥 + 𝑏
(𝑘)

(𝑥, 𝑦, 𝜅, 𝑧
𝑘
) , 𝜅) − 𝑉 (𝑥, 𝑖)

−𝑉
𝑥
(𝑥, 𝑖) 𝑏

(𝑘)

(𝑥, 𝑦, 𝜅, 𝑧
𝑘
)} 𝜆

𝑘
(𝑑𝑧

𝑘
) ,

(59)

where

𝑉
𝑥
(𝑥, 𝑖) = (

𝜕𝑉 (𝑥, 𝑖)

𝜕𝑥
1

, . . . ,

𝜕𝑉 (𝑥, 𝑖)

𝜕𝑥
𝑚

) . (60)

We need the following lemma, for details see [16].

Lemma 5. Let (H1) and (H2), (H3) hold, as 𝜀 → 0; then,
(𝑥

𝜀

(⋅), 𝑟
𝜀

(⋅)) converges weakly to (𝑥(⋅), 𝑟(⋅)) in 𝐷([0,∞),R𝑛

×

S), where 𝐷([0,∞),R𝑛

× S) is the space of functions defined
on [0,∞) that are right continuous and have left limits taking
values in R𝑛

× S and endowed with the Skorohod topology.

We now state our main result in this section.

Theorem6. Let (H1) and (H2), (H3) hold; there is a function
𝑉(𝑥, 𝑖) ∈ 𝐶

𝑝

(R𝑛

×S;R
+
) satisfying (H4), and there are positive

constants 𝜆, 𝑐
1
, 𝑐
2
, and 𝑞 > 1 such that

(i) 𝑐
1
|𝑥|

𝑝

≤ 𝑉(𝑥, 𝑖) ≤ 𝑐
2
|𝑥|

𝑝,
(ii) E[max

𝑖∈SL𝑉(𝑥(𝑡), 𝑥(𝑡 − 𝜏), 𝑖)] ≤ −𝜆E[max
𝑖∈S𝑉(𝑥(𝑡),

𝑖)] provided E[min
𝑖∈S𝑉(𝑥(𝑡 + 𝜃), 𝑖)] < 𝑞E[max

𝑖∈S𝑉(𝑥

(𝑡), 𝑖)], −𝜏 ≤ 𝜃 ≤ 0,

Then, for all 𝜉 ∈ 𝐶([−𝜏, 0];R𝑛

),

lim sup
𝜀→0

E




𝑥
𝜀

(𝑡)





𝑝

≤ ]
4
𝑒
−]3𝑡

, (61)

where

]
3
= min{𝜆,

log 𝑞

𝜏

} , 𝑎𝑛𝑑

]
4
𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

]
4
=

𝑐
2

𝑐
1

sup
−𝜏≤𝜃≤0

𝐸




𝜉





𝑝

.

(62)

Proof. As the proof of Theorem 1, define

𝑉 (𝑥, 𝜁) =

𝑙

∑

𝑖=1

𝑉 (𝑥, 𝑖) 𝐼
{𝜁∈S𝑖} = 𝑉 (𝑥, 𝑖) if 𝜁 ∈ S

𝑖

. (63)

We extend 𝑟(𝑡) to [−𝜏, 0] by setting 𝑟(𝑡) = 𝑟(0). Then,
E𝑉(𝑥𝜀(𝑡), 𝑟𝜀(𝑡)) is right continuous on 𝑡 ≥ −𝜏.

Let ] ∈ (0, ]
3
) be arbitrary, and define

𝑈 (𝑡) := 𝑒
]𝑡 lim sup

𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

= 𝑒
]𝑡 lim sup

𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) .

(64)

If we can show that 𝑈(𝑡) ≤ 𝑐
1
]
4
, then the proof is completed.

If 𝑡 ∈ [−𝜏, 0], by condition (i), is the same as the proof of
Theorem 1, we have 𝑈(𝑡) ≤ 𝑐

1
]
4
.

In the following we shall prove that 𝑈(𝑡) ≤ 𝑐
1
]
4
if 𝑡 ≥ 0.

Otherwise, there exists the smallest 𝜌 ∈ (0,∞) such that all
𝑡 ∈ [−𝜏, 𝜌), 𝑈(𝑡) ≤ 𝑐

1
]
4
, and𝑈(𝜌) ≥ 𝑐

1
]
4
as well as𝑈(𝜌+𝛿) >

𝑈(𝜌) for all suffieciently small 𝛿.
As the same in the proof of Theorem 1 we can have that

lim
𝜀→0

E𝑉(𝑥𝜀(𝜌), 𝑟𝜀(𝜌)) ̸= 0. Hence for 𝑡 ∈ [𝜌 − 𝜏, 𝜌), there
exists a 𝑞 such that

lim sup
𝜀→0

E𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

< 𝑞 lim sup
𝜀→0

E𝑉 (𝑥
𝜀

(𝜌) , 𝑟
𝜀

(𝜌)) , ] <
log 𝑞

𝜏

.

(65)

Consequently, there exists a sufficiently small 𝜀
0
> 0, such

that for any 𝜀 ∈ (0, 𝜀
0
),

E [min
𝑖∈S

𝑉 (𝑥
𝜀

(𝜌 + 𝜃) , 𝑖)] ≤ 𝑞E [max
𝑖∈S

𝑉 (𝑥
𝜀

(𝜌) , 𝑖) ] ,

𝜃 ∈ [−𝜏, 0] .

(66)

By condition (ii),

E [max
𝑖∈S

L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡−𝜏) , 𝑖)] ≤−𝜆E [max
𝑖∈S

𝑉 (𝑥
𝜀

(𝑡) , 𝑖)] ,

(67)
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we then have for ] < ] ≤ 𝜆,

E [L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] ≤ −]E [𝑉 (𝑥
𝜀

(𝑡) , 𝑟 (𝑡))] .

(68)

We now consider

𝑈(𝜌 + 𝛿) − 𝑈 (𝜌)

= lim sup
𝜀→0

[𝑒
](𝜌+𝛿)

E [𝑉 (𝑥
𝜀

(𝜌 + 𝛿) , 𝑟
𝜀

(𝜌 + 𝛿))]

−𝑒
]𝜌
E𝑉 [(𝑥

𝜀

(𝜌) , 𝑟
𝜀

(𝜌))]]

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡.

(69)

By the definition of the operator L similar to that of the proof
of Theorem 1, we have

L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

= 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+

𝑚

∑

𝑘=1

∫

R

{𝑉 (𝑥
𝜀

(𝑡) + 𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑘
) , 𝑟

𝜀

(𝑡))

− 𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) − 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑏
(𝑘)

× (𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
)}

× 𝜆
𝑘
(𝑑𝑧

𝑘
)

+

𝑁

∑

𝑗=1

𝛾
𝜀

𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗)

= L𝑉 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+ 𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))]

+

𝑚

∑

𝑘=1

∫

R

{𝑉 (𝑥
𝜀

(𝑡) + 𝑏
(𝑘)

× (𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡−𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
) , 𝑟

𝜀

(𝑡))

− 𝑉(𝑥
𝜀

(𝑡) + b
(𝑘)

× (𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡−𝜏)−) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
) ,

𝑟
𝜀

(𝑡) )} 𝜆
𝑘
(𝑑𝑧

𝑘
)

−

𝑚

∑

𝑘=1

∫

R

{𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× (𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
))

− 𝑏

(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑘
)} 𝜆

𝑘
(𝑑𝑧

𝑘
)

+

𝑁

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗) −

𝑙

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗) .

(70)

This implies

𝑈(𝜌 + 𝛿) − 𝑈 (𝜌)

= lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

+ lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× [𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

−𝑓 (𝑥
𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))] 𝑑𝑡

+ lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡

× {

𝑚

∑

𝑘=1

∫

R

{𝑉 (𝑥
𝜀

(𝑡)

+ 𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑘
) , 𝑟

𝜀

(𝑡))

− 𝑉(𝑥
𝜀

(𝑡) + 𝑏

(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑙
) , 𝑟

𝜀

(𝑡))} 𝜆
𝑘
(𝑑𝑧

𝑘
) } 𝑑𝑡

− lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡

× {

𝑚

∑

𝑘=1

∫

R

{𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))



10 Abstract and Applied Analysis

× (𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) ,

𝑥
𝜀

((𝑡−𝜏)−) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑘
))

−𝑏

(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑘
))}

× 𝜆
𝑘
(𝑑𝑧

𝑘
) } 𝑑𝑡

+ lim sup
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
(

𝑁

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗)

−

𝑙

∑

𝑗=1

𝛾
𝑟
𝜀
(𝑡)𝑗

𝑉 (𝑥
𝜀

(𝑡) , 𝑗))𝑑𝑡

=: 𝐽
1
+ 𝐽

2
+ 𝐽

3
+ 𝐽

4
+ 𝐽

5
.

(71)

By the definition of 𝑏,

𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
)

− 𝑏

(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
)

=

𝑙

∑

𝑖=1

𝑁𝑖

∑

𝑗=1

𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑠
𝑖𝑗
, 𝑧

𝑘
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠𝑖𝑗}

− 𝜇
𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

] .

(72)

By assumption (H2), we have

𝐽
4
= lim sup

𝜀→0

𝑚

∑

𝑘=1

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× ∫

R

[𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) ,

𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
)

− 𝑏

(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −)

, 𝑟
𝜀

(𝑡) , 𝑧
𝑘
)]

× 𝜆
𝑘
(𝑑𝑧

𝑘
) 𝑑𝑡

= lim sup
𝜀→0

𝑚

∑

𝑘=1

𝑙

∑

𝑖=1

𝑁𝑖

∑

𝑗=1

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝑥

𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× ∫

R

𝑏
(𝑘)

× (𝑥
𝜀

(𝑡−) ,

𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑠
𝑖𝑗
, 𝑧

𝑘
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠𝑖𝑗}

−𝜇
𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

]

× 𝜆
𝑘
(𝑑𝑧

𝑘
) 𝑑𝑡

≤ lim sup
𝜀→0

𝑚

∑

𝑘=1

𝑙

∑

𝑖=1

𝑁𝑖

∑

𝑗=1

[E












∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥

× (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))

× ∫

R

𝑏
(𝑘)

× (𝑥
𝜀

(𝑡−) ,

𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑠
𝑖𝑗
, 𝑧

𝑘
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠𝑖𝑗}

− 𝜇
𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

]

×𝜆
𝑘
(𝑑𝑧

𝑘
) 𝑑𝑡












2

]

]

1/2

.

(73)

By the argument of Lemma 7.14 in [9], the right side of the
inequality above is equivalent to 0, that is, 𝐽

4
= 0. Similarly,

by mean-value theorem, we can show that there exists 𝜂(𝑘)(𝑡)
which is between 𝑥𝜀(𝑡)+𝑏(𝑘)(𝑥𝜀(𝑡−), 𝑥𝜀((𝑡−𝜏)−), 𝑟𝜀(𝑡), 𝑧

𝑘
) and

𝑥
𝜀

(𝑡) + 𝑏

(𝑘)

(𝑥
𝜀

(𝑡−), 𝑥
𝜀

((𝑡 − 𝜏)−), 𝑟
𝜀

(𝑡), 𝑧
𝑘
) such that

𝐽
3
= lim

𝜀→0

𝑚

∑

𝑘=1

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡

× {∫

R

{𝑉
𝑥
(𝜂 (𝑡))

× [𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡−𝜏) −) , 𝑟
𝜀

(𝑡) , 𝑧
𝑘
)

− 𝑏

(𝑘)

(𝑥
𝜀

(𝑡−) , 𝑥
𝜀

((𝑡 − 𝜏) −) ,

𝑟
𝜀

(𝑡) , 𝑧
𝑘
] } 𝜆

𝑘
(𝑑𝑧

𝑘
) } 𝑑𝑡

= lim
𝜀→0

𝑚

∑

𝑘=1

𝑙

∑

𝑖=1

𝑁𝑖

∑

𝑗=1

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡

× 𝑉
𝑥
(𝜂 (𝑡)) ∫

R

𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) ,

𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑠
𝑖𝑗
, 𝑧

𝑘
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠𝑖𝑗}

− 𝜇
𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

] 𝜆
𝑘
(𝑑𝑧

𝑘
) 𝑑𝑡

≤ lim
𝜀→0

𝑚

∑

𝑘=1

𝑙

∑

𝑖=1

𝑁𝑖

∑

𝑗=1

[E












∫

𝜌+𝛿

𝜌

𝑒
]𝑡
𝑉
𝑥
(𝜂 (𝑡))

× ∫

R

𝑏
(𝑘)

(𝑥
𝜀

(𝑡−) ,
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𝑥
𝜀

((𝑡 − 𝜏) −) , 𝑠
𝑖𝑗
, 𝑧

𝑘
)

× [𝐼
{𝑟
𝜀
(𝑡)=𝑠𝑖𝑗}

− 𝜇
𝑖

𝑗
𝐼
{𝑟
𝜀
(𝑡)=𝑖}

]

× 𝜆
𝑘
(𝑑𝑧

𝑘
) 𝑑𝑡






2

]

1/2

.

(74)

By the argument of Lemma 7.14 in [9], we have 𝐽
3
= 0. Similar

to the proof of Theorem 1, we can derive 𝐽
2
= 0, 𝐽

5
= 0.

Therefore we arrive at

𝑈(𝜌 + 𝛿) − 𝑈 (𝜌)

= lim
𝜀→0

E∫

𝜌+𝛿

𝜌

𝑒
]𝑡
[L𝑉 (𝑥

𝜀

(𝑡) , 𝑥
𝜀

(𝑡 − 𝜏) , 𝑟
𝜀

(𝑡))

+]𝑉 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡))] 𝑑𝑡 ≤ 0;

(75)

then,

𝑈(𝜌 + 𝛿) ≤ 𝑈 (𝜌) . (76)

This contradicts the definition of 𝜌. The proof is therefore
completed.

We shall give an example to illustrate our theory:

Example 7. Let 𝑟𝜀(⋅) be a Markov chain generated by

Γ
𝜀

=

1

𝜀

Γ̃ + Γ̂ =

1

𝜀

(

−1 0 1 0

1

2

−1 0

1

2

0 2 −2 0

0

1

2

1

2

−1

); (77)

here we set Γ̂ = 0. The stationary distribution is 𝜇 =

(4/19, 8/19, 3/19, 4/19). Consider a one-dimensional equa-
tion

𝑑𝑥
𝜀

(𝑡) = 𝑓 (𝑥
𝜀

(𝑡) , 𝑟
𝜀

(𝑡)) 𝑑𝑡

+ ∫

∞

0

𝜎 (𝑟
𝜀

(𝑡) , 𝑧) 𝑥
𝜀

((𝑡 − 𝜏) −) �̃� (𝑑𝑡, 𝑑𝑧)

(78)

with

𝑓 (𝑥, 1) = 2 sin𝑥, 𝑓 (𝑥, 2) = −

19

8

𝑥,

𝑓 (𝑥, 3) = −

19

6

𝑥, 𝑓 (𝑥, 4) = −2 sin𝑥.
(79)

Let

𝛽 (𝑧) =

4

19

𝜎 (1, 𝑧) +

8

19

𝜎 (2, 𝑧) +

3

19

𝜎 (3, 𝑧) +

4

19

𝜎 (4, 𝑧) ,

∫

∞

0

𝛽
2

(𝑧) 𝜆 (𝑑𝑧) < 2.

(80)

Then the limit equation is

𝑑𝑥 (𝑡) = −

3

2

𝑥 (𝑡) 𝑑𝑡 + ∫

∞

0

𝛽 (𝑧) 𝑥 ((𝑡 − 𝜏) −) �̃� (𝑑𝑡, 𝑑𝑧) .

(81)

Let 𝑉(𝑥) = 𝑥
2; then,

L𝑉 (𝑥, 𝑦) ≤ −3|𝑥|
2

+ ∫

∞

0

𝛽
2

(𝑧) 𝜆 (𝑑𝑧)




𝑦





2

. (82)

We can find a 𝑞 > 1 such that 3−2𝑞 > 0.Therefore, for any𝜙 ∈

𝐿
2

F𝑡
([−𝜏, 0];R𝑛

) satisfying E[min
𝑖∈S𝜙(𝜃)] ≤ 𝑞E[max

𝑖∈S𝜙(0)]

on −𝜏 ≤ 𝜃 ≤ 0, (49) yields

E [max
𝑖∈S

L𝑉 (𝑥, 𝑦, 𝑖)] ≤ − (3 − 2𝑞)E [max
𝑖=1,2

𝑉 (𝑥, 𝑖)] . (83)

Hence, byTheorem 6, the solution𝑥𝜀(𝑡) ismean square stable.
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This paper aims at studying the problem of the dynamics of switched Cohen-Grossberg neural networks with mixed delays by
using Lyapunov functional method, average dwell time (ADT) method, and linear matrix inequalities (LMIs) technique. Some
conditions on the uniformly ultimate boundedness, the existence of an attractors, the globally exponential stability of the switched
Cohen-Grossberg neural networks are developed. Our results extend and complement some earlier publications.

1. Introduction

In recent years, much attention has been devoted to the
study of neural networks due to the fact that they have been
fruitfully applied in classification of patterns and associative
memories, image processing, parallel computation, optimiza-
tion, and so on [1–3]. These applications rely crucially on the
analysis of the dynamical behavior [4–7]. Various neural net-
works, such as Hopfield neural networks, cellular neural net-
works, bidirectional associative neural networks, and Cohen-
Grossberg neural networks, have been successfully applied.
Among them, theCohen-Grossberg neural network (CGNN)
[8] is an important one, which can be described as follows:

̇𝑥
𝑖
(𝑡) = −�̂�

𝑖
(𝑥
𝑖
(𝑡))

[

[

̂
𝛽
𝑖
(𝑥
𝑖
(𝑡)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

]

]

+ 𝐽
𝑖
, (1)

where 𝑡 ≥ 0, 𝑛 ≥ 2; 𝑛 corresponds to the number of units in a
neural network; 𝑥

𝑖
(𝑡) denotes the potential (or voltage) of cell

𝑖 at time 𝑡; 𝑓
𝑗
(⋅) denotes a nonlinear output function; �̂�

𝑖
(⋅) >

0 represents an amplification function; ̂
𝛽
𝑖
(⋅) represents an

appropriately behaved function; the 𝑛 × 𝑛 connection matrix

𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

denotes the strengths of connectivity between
cells, and if the output from neuron 𝑗 excites (resp., inhibits)
neuron 𝑖, 𝑎

𝑖𝑗
≥ 0 (resp., 𝑎

𝑖𝑗
≤ 0); 𝐽

𝑖
denotes an external input

source.
Neural network is nonlinearity; in the real world, non-

linear problems are not exceptional, but regular phenomena.
Nonlinearity is the nature of matter and its development
[9, 10]. In many practical cases, time delays are common
phenomenon encountered in the implementation of neural
networks, and they may cause the undesirable dynamic
behaviors such as oscillation, divergence, or other poor
performances. Time delay exists due to the finite speeds of
the switching and transmission of signals in a network, which
is degenerate to the instability of networks furthermore. For
model (1), Ye et al. [11] introduced delays by considering the
following differential equation:

̇𝑥
𝑖
(𝑡) = −�̂�

𝑖
(𝑥
𝑖
(𝑡))

[

[

̂
𝛽
𝑖
(𝑥
𝑖
(𝑡)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
))
]

]

+ 𝐽
𝑖
,

𝑖 = 1, . . . , 𝑛.

(2)
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Then, the dynamics of delayed neural networks has been
widely studied; see [1, 11–18] for some recent results concern-
ingmixed delays.TheCGNNmodels with discrete delays and
distributed delays can be characterized as follows:

̇𝑥
𝑖
(𝑡) = − �̂�

𝑖
(𝑥
𝑖
(𝑡))

×
[

[

̂
𝛽
𝑖
(𝑥
𝑖
(𝑡)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
∫

𝑡

𝑡−ℎ𝑗

𝑓
𝑗
(𝑥
𝑗
(𝑠)) d𝑠 − 𝐽

𝑖

]

]

.

(3)

System (3) for convenience can be rewritten as the
following compact matrix form:

̇𝑥 (𝑡) = − �̂� (𝑥 (𝑡))

× [
̂
𝛽 (𝑥 (𝑡)) − 𝐴𝐹 (𝑥 (𝑡)) − 𝐵𝐹 (𝑥 (𝑡 − 𝜏))

−𝐶∫

𝑡

𝑡−ℎ

𝐹 (𝑥 (𝑠)) d𝑠 − 𝐽] ,

(4)

where 𝑥(𝑡) = (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

∈ 𝑅
𝑛 is the neural state

vector, �̂�(𝑥(𝑡)) = diag(�̂�
1
(𝑥
1
(𝑡)), . . . , �̂�

𝑛
(𝑥
𝑛
(𝑡))) ∈ 𝑅

𝑛×𝑛,
̂
𝛽(𝑥(𝑡)), 𝐹(𝑥(𝑡)) are appropriate dimensions functions, 𝜏 =

(𝜏
1
, . . . , 𝜏

𝑛
)
𝑇, ℎ = (ℎ

1
, . . . , ℎ

𝑛
)
𝑇, and 𝐽 = (𝐽

1
, . . . , 𝐽

𝑛
)
𝑇 is the

constant external input.
With the rapid development of intelligent control, hybrid

systems have been investigated extensively for their signifi-
cance, which is in theory and application. As one of the most
important classes of hybrid systems, switched systems have
drawn increasing attention in the last decade [19–21]. A typi-
cal switched systems are composed of a set of subsystems and
a logical switching rule whose subsystem will be activated at
each instant of time and orchestrates the switching among the
subsystems [22]. In general, the switching rule is a piecewise
constant function dependent on the state or time.The logical
rule that orchestrates switching between these subsystems
generates switching signals [23]. Recently,many results on the
stability of switched system with time delay and parametric
uncertainties have been reported [24, 25]. Switched system
in which all subsystems are stable was studied in [26], and
Hu and Michel used dwell time approach to analyse the local
asymptotic stability of non-linear switched systems in [27].
Hespanha and Morse [28] extended this concept to develop
the average dwell time approach subsequently. Furthermore,
in [29], the stability results of switched system extended to the
case when subsystems are both stable and unstable have been
reported, and therefore we derive less conservative results.
So, average dwell time (ADT) approach turns out to be an
effective tool to study the stability of switched systems [28]
and specially when not all subsystems are stable [29].

Meanwhile, neural networks as a special kind of complex
networks, the connection topology of networks may change
frequently and often lead to link failure or new link cre-
ation during the hardware implemtation. Hence, the abrupt
changes in the network structure often occur, and switchings
between some different topologies are inevitable [30]. Thus,
the switched neural networkwas proposed and has successful
applications in the field of high-speed signal processing and
artificial intelligence [31, 32], and switched neural networks
are also used to perform the gene selection in aDNAmicroar-
ray analysis in [33]. Thus, it is of great meaning to discuss the
switched neural networks. Recently, the stability of switching
neural networks has been intensively investigated [34–36].
Robust exponential stability and 𝐻

∞
control for switched

neutral-type neural networks were discussed in [34].
In [35], delay-dependent stability analysis for switched

neural networks with time-varying delay was analyzed. In
[36], by employing nonlinear measure and LMI techniques,
some new sufficient conditions were obtained to ensure
global robust asymptotical stability and global robust expo-
nential stability of the unique equilibrium for a class of
switched recurrent neural networks with time-varying delay.

By combining the theories of switched systems and
Cohen-Grossberg neural networks, the mathematical model
of the switched Cohen-Grossberg neural networks is dis-
cussed in detail, which can be written as follows:

̇𝑥 (𝑡) = − �̂� (𝑥 (𝑡))

× [
̂
𝛽 (𝑥 (𝑡)) − 𝐴

𝜎
(𝑡) 𝐹 (𝑥 (𝑡)) − 𝐵

𝜎
𝐹 (𝑡) (𝑥 (𝑡 − 𝜏))

−𝐶
𝜎
(𝑡) ∫

𝑡

𝑡−ℎ

𝐹 (𝑥 (𝑠)) d𝑠 − 𝐽] .

(5)

The function 𝜎(𝑡) : [𝑡
0
, +∞) → 𝑁 = {1, 2 . . . , 𝑁}

is a piece-wise constant function of time, called a switching
signal, which specifies that subsystem will be activated. 𝑁
denotes the number of subsystems. The switched sequence
can be described as {𝜎(𝑡) : (𝑡

0
, 𝜎(𝑡
0
)), . . . , (𝑡

𝑘
, 𝜎(𝑡
𝑘
)), . . . , |

𝜎(𝑡
𝑘
) ∈ 𝑁, 𝑘 = 0, 1 ⋅ ⋅ ⋅ }, where 𝑡

0
denotes the initial time

and 𝑡
𝑘
is the 𝑘th switching instant. Moreover, 𝜎(𝑡) = 𝑖means

that the 𝑖th subsystem is activated. For any 𝑖 ∈ 𝑁, this means
that the matrices (𝐴

𝜎
, 𝐵
𝜎
, 𝐶
𝜎
) can taken values in the finite

set {(𝐴
1
, 𝐵
1
, 𝐶
1
), . . . , (𝐴

𝑁
, 𝐵
𝑁
, 𝐶
𝑁
)}. Meanwhile, we assume

that the state of the switched CGNN does not jump at the
switching instants; that is, the trajectory 𝑥

𝑡
is everywhere

continuous.
However, these available literatures mainly consider the

stability property of switching neural networks. In fact, except
for stability property, boundedness and attractor are also
foundational concepts of dynamical neural networks, which
play an important role in investigation of the uniqueness of
equilibrium point (periodic solutions), stability and synchro-
nization and so on [13, 14]. To the best of the author’s knowl-
edge, few authors have considered the uniformly ultimate
boundedness and attractors for switchedCGNNwith discrete
delays and distributed delays.
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As is well known, compared with linear matrix inequali-
ties (LMIs) result, algebraic result is more conservative, and
criteria in terms of LMI can be easily checked by using the
powerful Matlab LMI toolbox. This motivates us to investi-
gate the problems of the uniformly ultimate boundedness and
the existence of an attractor for switchedCGNN in this paper.
The illustrative examples are given to demonstrate the validity
of the theoretical results.

The paper is organized as follows. In Section 2, prelim-
inaries and problem formulation are introduced. Section 3
gives the sufficient conditions of uniformly ultimate bound-
edness (UUB) and the existence of an attractor for switched
CGNN. It is the main result of this paper. In Section 4, an
example is given to illustrate the effectiveness of the proposed
approach. The conclusions are summarized in Section 5.

2. Problem Formulation

Throughout this paper, we use the following notations. The
superscript “𝑇” stands for matrix transposition; 𝑅𝑛 denotes
the 𝑛-dimensional Euclidean space; the notation 𝑃 > 0

means that 𝑃 is real symmetric and positive definite; 𝐼 and
𝑂 represent the identity matrix and a zero matrix; diag{⋅ ⋅ ⋅ }
stands for a block-diagonal matrix; 𝜆min(𝑃) denotes the
minimum eigenvalue of symmetric matrix 𝑃; in symmetric
block matrices or long matrix expressions, “∗” is used to
represent a term that is induced by symmetry. Matrices, if
their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

Consider the following Cohen-Grossberg neural network
model with mixed delays (discrete delays and distributed
delays):

̇𝑥 (𝑡) = − �̂� (𝑥 (𝑡))

× [
̂
𝛽 (𝑥 (𝑡)) − 𝐴𝐹 (𝑥 (𝑡)) − 𝐵𝐹 (𝑥 (𝑡 − 𝜏))

−𝐶∫

𝑡

𝑡−ℎ

𝐹 (𝑥 (𝑠)) d𝑠 − 𝐽] ≜ −�̂� (𝑥 (𝑡))𝐻 (𝑡) ,

(6)

where

𝐻(𝑡) =
̂
𝛽 (𝑥 (𝑡)) − 𝐴𝐹 (𝑥 (𝑡)) − 𝐵𝐹 (𝑥 (𝑡 − 𝜏))

− 𝐶∫

𝑡

𝑡−ℎ

𝐹 (𝑥 (𝑠)) − 𝐽.

(7)

The discrete delays and distributed delays are bounded as
follows:

0 ≤ 𝜏
𝑖
, 𝜏
∗

= max
1≤𝑖≤𝑛

{𝜏
𝑖
} ;

0 ≤ ℎ
𝑖
, ℎ
∗

= max
1≤𝑖≤𝑛

{ℎ
𝑖
} ; 𝛿 = max {𝜏∗, ℎ∗} ,

(8)

where 𝜏∗, ℎ∗, 𝛿 are scalars.
As usual, the initial conditions associated with system (6)

are given in the form

𝑥 (𝑡) = 𝜑 (𝑡) , −𝛿 ≤ 𝑡 ≤ 0, (9)

where 𝜑(𝑡) is a differentiable vector-valued function.

Throughout this paper, we make the following assump-
tions.

(H
1
) For any 𝑗 ∈ {1, 2, . . . , 𝑛}, there exist constants 𝑙

𝑗
and

𝐿
𝑗
, such that

𝑙
𝑗
≤

𝑓
𝑗
(𝑥) − 𝑓

𝑗
(𝑦)

𝑥 − 𝑦

≤ 𝐿
𝑗
, ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ̸=𝑦. (10)

Remark 1. Theconstants 𝑙
𝑗
and𝐿

𝑗
can be positive, negative, or

zero.Therefore, the activation functions𝑓(⋅) aremore general
than the forms |𝑓

𝑗
(𝑢)| ≤ 𝐾

𝑗
|𝑢|, 𝐾

𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛.

(H
2
) For continuously bounded function 𝛼

𝑗
(⋅), there exist

positive constants 𝛼
𝑗
, 𝛼
𝑗
, such that

𝛼
𝑗
≤ 𝑎
𝑗
(𝑥
𝑗
(𝑡)) ≤ 𝛼

𝑗
. (11)

(H
3
) There exist positive constants 𝑏

𝑗
, such that

𝑥
𝑗
(𝑡)

̂
𝛽
𝑗
(𝑥
𝑗
(𝑡)) ≥ 𝑏

𝑗
𝑥
2

𝑗
(𝑡) . (12)

So, to obtain main results of this paper, the following
definitions and lemmas are introduced.

Definition 2 (see [15]). System (6) is uniformly ultimately
bounded; if there is 𝐵 > 0, for any constant  > 0, there is
𝑡


= 𝑡


() > 0, such that ‖𝑥(𝑡, 𝑡
0
, 𝜑)‖ < 𝐵 for all 𝑡 ≥ 𝑡

0
+ 𝑡
,

𝑡
0
> 0, ‖𝜑‖ < , where the supremum norm ‖𝑥(𝑡, 𝑡

0
, 𝜑)‖ =

max
1≤𝑖≤𝑛

sup
−𝛿≤𝑠≤0

|𝑥
𝑖
(𝑡 + 𝑠, 𝑡

0
, 𝜑)|.

Definition 3 (see [37]). The nonempty closed set 𝐴 ⊂ 𝑅
𝑛 is

called the attractor for the solution 𝑥(𝑡; 𝜑) of system (6) if the
following formula holds:

lim
𝑡→∞

𝑑 (𝑥 (𝑡; 𝜑) ;A) = 0 a.s. (13)

in which 𝜑 ∈ 𝐶([−𝛿, 0], 𝑅
𝑛

), 𝑑(𝑥,A) = inf
𝑦∈A‖𝑥 − 𝑦‖.

Definition 4 (see [28]). For a switching signal 𝜎(𝑡) and each
𝑇 > 𝑡 ≥ 0, let 𝑁

𝜎
(𝑡, 𝑇) denote the number of discontinuities

of 𝜎(𝑡) in the interval (𝑡, 𝑇). If there exist𝑁
0
> 0 and 𝑇

𝑎
> 0

such that𝑁
𝜎
(𝑡, 𝑇) ≤ 𝑁

0
+ (𝑇 − 𝑡)/𝑇

𝑎
holds, then 𝑇

𝑎
is called

the average dwell time.𝑁
0
is the chatter bound.

Remark 5. In Definition 4, it is obvious that there exists a
positive number 𝑇

𝑎
such that a switched signal has the ADT

property, which means that the average dwell time between
any two consecutive switchings is no less than a specified
constant 𝑇

𝑎
, Hespanha and Morse have proved that if 𝑇

𝑎
is

sufficiently large, then the switched system is exponentially
stable. In addition, in [18], one can choose𝑁

0
= 0, but in our

paper, we assume that𝑁
0
> 0, this is more preferable.

Lemma 6 (see [16]). For any positive definite constant matrix
𝑊 ∈ 𝑅

𝑛×𝑛, scalar 𝑟 > 0, and vector function 𝑢(𝑡) : [𝑡 − 𝑟, 𝑡] →

𝑅
𝑛, 𝑡 ≥ 0, then

(∫

𝑟

0

𝑢 (𝑠) d𝑠)
𝑇

𝑊(∫

𝑟

0

𝑢 (𝑠) d𝑠) ≤ 𝑟∫

𝑟

0

𝑢
𝑇

(𝑠)𝑊𝑢 (𝑠) d𝑠.

(14)
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Lemma 7 (see [38]). For any given symmetric positive definite
matrix𝑋 ∈ 𝑅

𝑛×𝑛 and scalars 𝛼 > 0, 0 ≤ 𝑑
1
< 𝑑
2
, if there exists

a vector function ̇𝑥(𝑡) : [−𝑑
2
, 0] → 𝑅

𝑛 such that the following
integration is well defined, then

− ∫

−𝑑1

−𝑑2

̇𝑥
𝑇

(𝑡 + 𝜃) 𝑒
𝛼𝜃

𝑋 ̇𝑥 (𝑡 + 𝜃) d𝜃

≤

𝛼

𝑒
𝛼𝑑1 − 𝑒

𝛼𝑑2

[

𝑥 (𝑡 − 𝑑
1
)

𝑥 (𝑡 − 𝑑
2
)

]

𝑇

[

𝑋 −𝑋

−𝑋 𝑋
]

× [

𝑥 (𝑡 − 𝑑
1
)

𝑥 (𝑡 − 𝑑
2
)
] .

(15)

3. Main Results

Theorem 8. For a given constant 𝑎 > 0, if there is
positive definite matrix 𝑃 = diag(𝑝

1
, 𝑝
2
. . . , 𝑝
𝑛
), 𝐷
𝑖

=

diag(𝐷
𝑖1
, 𝐷
𝑖2
. . . , 𝐷

𝑖𝑛
), 𝑖 = 1, 2, . . . , 𝑄, 𝑆

𝑖, such that the
following condition holds:

△ =

[

[

[

[

[

[

[

[

[

[

Φ
11

Φ
12

Φ
13

𝑃𝐵 0 𝑃𝐶 0

∗ Φ
22

0 Φ
24

0 0 0

∗ ∗ Φ
33

0 0 0 0

∗ ∗ ∗ Φ
44

0 0 0

∗ ∗ ∗ ∗ Φ
55

Φ
56

0

∗ ∗ ∗ ∗ ∗ Φ
66

0

∗ ∗ ∗ ∗ ∗ ∗ Φ
77

]

]

]

]

]

]

]

]

]

]

< 0, (16)

where

𝑄 = (

𝑄
11

𝑄
12

∗ 𝑄
22

) ≥ 0, 𝐷
𝑖
≥ 0, 𝑖 = 1, 2,

Φ
11
= 𝑎Ω
1
𝑃 − 2𝑎Ω

2
𝑃 + 𝑃 −

𝛿𝑒
−𝑎𝜏
∗

𝜏
∗

𝑆
(2)

− Ω
3
𝐷
1
+

1

4𝑎
2
𝐼 + 𝑆
(1)

− 𝑒
−𝑎𝜏
∗

𝑆
(1)

+ ℎ
∗

𝑄
11
+

𝛿𝑎

1 − 𝑒
𝑎𝜏
∗ 𝑆
(2)

,

Φ
12
= −

𝛿𝑎

1 − 𝑒
𝑎𝜏
∗ 𝑆
(2)

,

Φ
13
= 𝑃𝐴 + Ω

4
𝐷
1
+ ℎ
∗

𝑄
12
,

Φ
22
= −Ω
3
𝐷
2
−

𝛿𝑒
−𝑎𝜏
∗

𝜏
∗

𝑆
(2)

− 𝑒
−𝑎𝜏
∗

𝑆
(1)

+

𝛿𝑎

1 − 𝑒
𝑎𝜏
∗ 𝑆
(2)

+

1

4𝑎
2
𝐼,

Φ
24
= Ω
4
𝐷
2
, Φ

33
= −𝐷
1
+

1

𝑎
2
𝐼 + ℎ
∗

𝑄
22
,

Φ
44
= −𝐷
2
+

1

𝑎
2
𝐼, Φ

55
= −

𝑒
−𝑎ℎ
∗

ℎ
∗

𝑄
11
,

Φ
56
= −

𝑒
−𝑎ℎ
∗

ℎ
∗

𝑄
12
, Φ

66
= −

𝑒
−𝑎ℎ
∗

ℎ
∗

𝑄
22
,

Φ
77
= 𝛿𝜏
∗

𝛼
2

𝑆
(2)

,

Ω
1
= diag{ 1

𝛼
1

,

1

𝛼
2

, . . . ,

1

𝛼
𝑛

} ,

Ω
2
= diag {𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
} ,

Ω
3
= diag {𝑙

1
𝐿
1
, 𝑙
2
𝐿
2
, . . . , 𝑙
𝑛
𝐿
𝑛
} ,

Ω
4
= diag{𝑙1 + 𝐿

1

2

,

𝑙
2
+ 𝐿
2

2

, . . . ,

𝑙
𝑛
+ 𝐿
𝑛

2

} ,

𝜌 = max
1≤𝑖≤𝑛

{






𝑙
2

𝑖






,






𝐿
2

𝑖






} + 1;

(17)

the symbol “∗” within the matrix represents the symmetric
term of the matrix, and then system (6) is uniformly ultimately
bounded.

Proof. Let us consider the following Lyapunov-Krasovskii
functional:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (18)

where

𝑉
1
(𝑡) =

𝑛

∑

𝑗=1

𝑒
𝑎𝑡

𝑝
𝑗
∫

𝑥𝑗(𝑡)

0

2𝑠

𝛼
𝑗
(𝑠)

d𝑠,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−ℎ

𝑒
𝑎𝑠

(𝑠 − (𝑡 − ℎ)) 𝜉
𝑇

(𝑠) 𝑄𝜉 (𝑠) d𝑠,

𝜉 (𝑡) = [𝑥
𝑇

(𝑡) , 𝐹
𝑇

(𝑥 (𝑡))]

𝑇

,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝜏

𝑒
𝑎𝑠

𝑥
𝑇

(𝑠) 𝑆
(1)

𝑥 (𝑠) d𝑠 d𝜃

+ 𝛿∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑒
𝑎𝑠

̇𝑥
𝑇

(𝑠) 𝑆
(2)

̇𝑥 (𝑠) d𝑠 d𝜃.

(19)

We proceed to evaluate the time derivative of 𝑉
1
(𝑡) along the

trajectory of system (6), and one can get

𝑉
1
(𝑡) =

𝑛

∑

𝑗=1

2 [𝑎𝑝
𝑗
𝑒
𝑎𝑡

∫

𝑥𝑗(𝑡)

0

𝑠

𝛼
𝑗
(𝑠)

d𝑠 − 𝑝
𝑗
𝑒
𝑎𝑡

𝑥
𝑗
(𝑡) 𝛽
𝑗
(𝑥
𝑗
(𝑡))]

+ [2𝑥
𝑇

(𝑡) 𝑃𝐴𝐹 (𝑥 (𝑡)) + 2𝑥
𝑇

(𝑡) 𝑃𝐽

+ 2𝑥
𝑇

(𝑡) 𝑃𝐵𝐹 (𝑥 (𝑡 − 𝜏))

+2𝑥
𝑇

(𝑡) 𝑃𝐶∫

𝑡

𝑡−ℎ

𝐹 (𝑥 (𝑠)) d𝑠] 𝑒𝑎𝑡.

(20)
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According to assumption (H
2
), we obtain the following

inequality:

2𝑎𝑝
𝑗
∫

𝑥𝑗(𝑡)

0

𝑠

𝛼
𝑗
(𝑠)

d𝑠 ≤ 𝑎

𝛼
𝑗

𝑝
𝑗
𝑥
2

𝑗
(𝑡) . (21)

From assumption (H
3
) and inequality (21), we obtain

𝑉
1
(𝑡) ≤ 𝑎𝑒

𝑎𝑡

[𝑥
𝑇

(𝑡) Ω
1
𝑃𝑥 (𝑡) − 2𝑥

𝑇

(𝑡) Ω
2
𝑃𝑥 (𝑡)]

+ [2𝑥
𝑇

(𝑡) 𝑃𝐴𝐹 (𝑥 (𝑡)) + 2𝑥
𝑇

(𝑡) 𝑃𝐵𝐹 (𝑥 (𝑡 − 𝜏))

+ 2𝑥
𝑇

(𝑡) 𝑃𝐶∫

𝑡

𝑡−ℎ

𝐹 (𝑥 (𝑠)) d𝑠 + 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+𝐽
𝑇

𝑃𝐽] 𝑒
𝑎𝑡

.

(22)

Similarly, taking the time derivative of 𝑉
2
(𝑡) along the

trajectory of system (6), we obtain

𝑉
2
(𝑡) = 𝑡𝑒

𝑎𝑡

𝜉
𝑇

(𝑡) 𝑄𝜉 (𝑡)

− (𝑡 − ℎ) 𝑒
𝑎(𝑡−ℎ)

𝜉
𝑇

(𝑡 − ℎ) × 𝑄𝜉 (𝑡 − ℎ)

− [∫

𝑡

𝑡−ℎ

𝑒
𝑎𝑠

𝜉
𝑇

(𝑠) 𝑄𝜉 (𝑠) d𝑠 + 𝑡𝑒
𝑎𝑡

𝜉
𝑇

(𝑡) 𝑄𝜉 (𝑡)

−𝑡𝑒
𝑎(𝑡−ℎ)

𝜉
𝑇

(𝑡 − ℎ) × 𝑄𝜉 (𝑡 − ℎ) ]

+ ℎ𝑒
𝑎𝑡

𝜉
𝑇

(𝑡) 𝑄𝜉 (𝑡) − ℎ𝑒
𝑎(𝑡−ℎ)

𝜉
𝑇

(𝑡 − ℎ)𝑄𝜉 (𝑡 − ℎ)

≤ ℎ
∗

𝑒
𝑎𝑡

× [𝑥
𝑇

(𝑡) 𝑄
11
𝑥 (𝑡) + 𝐹

𝑇

(𝑥 (𝑡)) 𝑄
𝑇

12
𝑥 (𝑡)

+𝑥
𝑇

(𝑡) 𝑄
12
𝐹 (𝑥 (𝑡)) + 𝐹

𝑇

(𝑥 (𝑡)) 𝑄
22
𝐹 (𝑥 (𝑡))]

− 𝑒
𝑎(𝑡−ℎ

∗
)

∫

𝑡

𝑡−ℎ

𝜉
𝑇

(𝑠) 𝑄𝜉 (𝑠) d𝑠.

(23)

According to Lemma 6, we can conclude that

− 𝑒
𝑎(𝑡−ℎ

∗
)

∫

𝑡

𝑡−ℎ

𝜉
𝑇

(𝑠) 𝑄𝜉 (𝑠) d𝑠

≤ −

𝑒
𝑎(𝑡−ℎ

∗
)

ℎ
∗

(∫

𝑡

𝑡−ℎ

𝜉 (𝑠) d𝑠)
𝑇

𝑄(∫

𝑡

𝑡−ℎ

𝜉 (𝑠) d𝑠)

≤ −

𝑒
−𝑎ℎ
∗

ℎ
∗

(∫

𝑡

𝑡−ℎ

𝜉 (𝑠) d𝑠)
𝑇

𝑄(∫

𝑡

𝑡−ℎ

𝜉 (𝑠) d𝑠) .

(24)

Computing the derivative of 𝑉
3
(𝑡) along the trajectory of

system (6) turns out to be

𝑉
3
(𝑡) = 𝑒

𝑎𝑡

𝑥
𝑇

(𝑡) 𝑆
(1)

𝑥 (𝑡) − 𝑒
𝑎(𝑡−𝜏)

𝑥
𝑇

(𝑡 − 𝜏) 𝑆
(1)

𝑥 (𝑡 − 𝜏)

+ 𝛿∫

0

−𝜏

[𝑒
𝑎𝑡

̇𝑥
𝑇

(𝑡) 𝑆
(2)

̇𝑥 (𝑡)

−𝑒
𝑎(𝑡+𝜃)

̇𝑥
𝑇

(𝑡 + 𝜃) 𝑆
(2)

̇𝑥 (𝑡 + 𝜃)] d𝜃

≤ 𝑒
𝑎𝑡

𝑥
𝑇

(𝑡) 𝑆
(1)

𝑥 (𝑡) − 𝑒
−𝑎𝜏
∗

𝑥
𝑇

(𝑡 − 𝜏) 𝑆
(1)

𝑥 (𝑡 − 𝜏)

+ 𝛿𝜏
∗

𝑒
𝑎𝑡

̇𝑥
𝑇

(𝑡) 𝑆
(2)

̇𝑥 (𝑡)

− 𝛿∫

0

−𝜏

𝑒
𝑎(𝑡+𝜃)

̇𝑥
𝑇

(𝑡 + 𝜃) 𝑆
(2)

̇𝑥 (𝑡 + 𝜃) d𝜃,

(25)

where 𝜏∗ = max
1≤𝑖≤𝑛

{𝜏
𝑖
}.

Denoting that 𝛼 = max{𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
}, we obtain

𝛿𝜏
∗

𝑒
𝑎𝑡

̇𝑥
𝑇

(𝑡) 𝑆
(2)

̇𝑥 (𝑡)

= 𝛿𝜏
∗

𝑒
𝑎𝑡

[�̂� (𝑥 (𝑡))𝐻 (𝑡)]
𝑇

𝑆
(2)

�̂� (𝑥 (𝑡))𝐻 (𝑡)

≤ 𝛿𝜏
∗

𝛼
2

𝑒
𝑎𝑡

𝐻
𝑇

(𝑡) 𝑆
(2)

𝐻(𝑡) .

(26)

Using Lemma 7, the following inequality is easily
obtained:

− 𝛿∫

0

−𝜏

𝑒
𝑎𝜃

̇𝑥
𝑇

(𝑡 + 𝜃) 𝑆
(2)

̇𝑥 (𝑡 + 𝜃) d𝜃

≤

𝛿𝑎

1 − 𝑒
𝑎𝜏
[

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)
]

𝑇

[

𝑆
(2)

−𝑆
(2)

−𝑆
(2)

𝑆
(2)

] × [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)
]

≤

𝛿𝑎

1 − 𝑒
𝑎𝜏
∗ [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)
]

𝑇

[

𝑆
(2)

−𝑆
(2)

−𝑆
(2)

𝑆
(2)

] × [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏)
] .

(27)

From assumption (H
1
), it follows that, for 𝑗 = 1, 2, . . . , 𝑛,

[𝐹
𝑗
(𝑥
𝑗
(𝑡)) − 𝐹

𝑗
(0) − 𝑙

𝑗
𝑥
𝑗
(𝑡)]

× [𝐹
𝑗
(𝑥
𝑗
(𝑡)) − 𝐹

𝑗
(0) − 𝐿

𝑗
𝑥
𝑗
(𝑡)] ≤ 0,

[𝐹
𝑗
(𝑥
𝑗
(𝑡 − 𝜏)) − 𝐹

𝑗
(0) − 𝑙

𝑗
𝑥
𝑗
(𝑡 − 𝜏)]

× [𝐹
𝑗
(𝑥
𝑗
(𝑡 − 𝜏)) − 𝐹

𝑗
(0) − 𝐿

𝑗
𝑥
𝑗
(𝑡 − 𝜏)] ≤ 0.

(28)

Then, let

Υ
1
= −

𝑛

∑

𝑗=1

𝐷
1𝑗
[𝐹
𝑗
(𝑥
𝑗
(𝑡)) − 𝐹

𝑗
(0) − 𝑙

𝑗
𝑥
𝑗
(𝑡)]

× [𝐹
𝑗
(𝑥
𝑗
(𝑡)) − 𝐹

𝑗
(0) − 𝐿

𝑗
𝑥
𝑗
(𝑡)] ,

Υ
2
= −

𝑛

∑

𝑗=1

𝐷
2𝑗
[𝐹
𝑗
(𝑥
𝑗
(𝑡 − 𝜏)) − 𝐹

𝑗
(0) − 𝑙

𝑗
𝑥
𝑗
(𝑡 − 𝜏)]

× [𝐹
𝑗
(𝑥
𝑗
(𝑡 − 𝜏)) − 𝐹

𝑗
(0) − 𝐿

𝑗
𝑥
𝑗
(𝑡 − 𝜏)] .

(29)
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So,

Υ
1
+ Υ
2
= −

𝑛

∑

𝑗=1

𝐷
1𝑗
[𝐹
𝑗
(𝑥
𝑗
(𝑡)) − 𝐹

𝑗
(0) − 𝑙

𝑗
𝑥
𝑗
(𝑡)]

× [𝐹
𝑗
(𝑥
𝑗
(𝑡)) − 𝐹

𝑗
(0) − 𝐿

𝑗
𝑥
𝑗
(𝑡)]

−

𝑛

∑

𝑗=1

𝐷
2𝑗
[𝐹
𝑗
(𝑥
𝑗
(𝑡 − 𝜏)) − 𝐹

𝑗
(0) − 𝑙

𝑗
𝑥
𝑗
(𝑡 − 𝜏)]

× [𝐹
𝑗
(𝑥
𝑗
(𝑡 − 𝜏)) − 𝐹

𝑗
(0) − 𝐿

𝑗
𝑥
𝑗
(𝑡 − 𝜏)]

= −

𝑛

∑

𝑗=1

𝐷
1𝑗
[𝐹
𝑗
(𝑥
𝑗
(𝑡)) − 𝑙

𝑗
𝑥
𝑗
(𝑡)]

× [𝐹
𝑗
(𝑥
𝑗
(𝑡)) − 𝐿

𝑗
𝑥
𝑗
(𝑡)]

−

𝑛

∑

𝑗=1

𝐷
2𝑗
[𝐹
𝑗
(𝑥
𝑗
(𝑡 − 𝜏)) − 𝑙

𝑗
𝑥
𝑗
(𝑡 − 𝜏)]

× [𝐹
𝑗
(𝑥
𝑗
(𝑡 − 𝜏)) − 𝐿

𝑗
𝑥
𝑗
(𝑡 − 𝜏)]

−

𝑛

∑

𝑗=1

𝐷
1𝑗
𝐹
2

𝑗
(0)

+

𝑛

∑

𝑗=1

𝐷
1𝑗
𝐹
𝑗
(0) [2𝐹

𝑗
(𝑥
𝑗
(𝑡)) − (𝐿

𝑗
+ 𝑙
𝑗
) 𝑥
𝑗
(𝑡)]

−

𝑛

∑

𝑗=1

𝐷
2𝑗
𝐹
2

𝑗
(0)

+

𝑛

∑

𝑗=1

𝐷
2𝑗
𝐹
𝑗
(0)[2𝐹

𝑗
(𝑥
𝑗
(𝑡 − 𝜏)) − (𝐿

𝑗
+ 𝑙
𝑗
)𝑥
𝑗
(𝑡 − 𝜏)]

≤ −

𝑛

∑

𝑗=1

𝐷
1𝑗
[𝐹
𝑗
(𝑥
𝑗
(𝑡)) − 𝑙

𝑗
𝑥
𝑗
(𝑡)]

× [𝐹
𝑗
(𝑥
𝑗
(𝑡)) − 𝐿

𝑗
𝑥
𝑗
(𝑡)]

−

𝑛

∑

𝑗=1

𝐷
2𝑗
[𝐹
𝑗
(𝑥
𝑗
(𝑡 − 𝜏)) − 𝑙

𝑗
𝑥
𝑗
(𝑡 − 𝜏)]

× [𝐹
𝑗
(𝑥
𝑗
(𝑡 − 𝜏)) − 𝐿

𝑗
𝑥
𝑗
(𝑡 − 𝜏)]

+

𝑛

∑

𝑗=1

[

1

𝑎
2
𝐹
2

𝑗
(𝑥
𝑗
(𝑡)) + 𝑎

2

𝐷
2

1𝑗
𝐹
2

𝑗
(0)

+

1

4𝑎
2
𝑥
2

𝑗
(𝑡) + 𝑎

2

𝐷
2

1𝑗
𝐹
2

𝑗
(0) (𝐿

𝑗
+ 𝑙
𝑗
)

2

]

+

𝑛

∑

𝑗=1

[

1

𝑎
2
𝐹
2

𝑗
(𝑥
𝑗
(𝑡 − 𝜏)) + 𝑎

2

𝐷
2

2𝑗
𝐹
2

𝑗
(0)

+

1

4𝑎
2
𝑥
2

𝑗
(𝑡 − 𝜏) + 𝑎

2

𝐷
2

2𝑗
𝐹
2

𝑗
(0) (𝐿

𝑗
+ 𝑙
𝑗
)

2

] .

(30)

Using (20)–(27) and adding (29), we can derive

𝑉 (𝑡) ≤ 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) + 𝑒

𝑎𝑡

(Υ
1
+ Υ
2
)

≤ 𝑒
𝑎𝑡

𝑀
𝑇

(𝑡) Δ
1
𝑀(𝑡) + 𝑒

𝑎𝑡

𝐽
𝑇

𝑃𝐽

+ 𝑒
𝑎𝑡

𝑛

∑

𝑗=1

[𝑎
2

𝐷
2

1𝑗
𝐹
2

𝑗
(0) + 𝑎

2

𝐷
2

1𝑗
𝐹
2

𝑗
(0) (𝐿

𝑗
+ 𝑙
𝑗
)

2

+𝑎
2

𝐷
2

2𝑗
𝐹
2

𝑗
(0) + 𝑎

2

𝐷
2

2𝑗
𝐹
2

𝑗
(0) (𝐿

𝑗
+ 𝑙
𝑗
)

2

] .

(31)

Denote that

𝑀
𝑇

(𝑡) = (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏) , 𝐹
𝑇

(𝑥 (𝑡)) , 𝐹
𝑇

(𝑥 (𝑡 − 𝜏)) ,

(∫

𝑡

𝑡−ℎ

𝑥(𝑠)d𝑠)
𝑇

, (∫

𝑡

𝑡−ℎ

𝐹(𝑥(𝑠))d𝑠)
𝑇

, 𝐻
𝑇

(𝑥(𝑡)))

𝑇

.

(32)

By integrating both sides of (31) in time interval 𝑡 ∈ [𝑡
0
, 𝑡],

then we can obtain

𝐾𝑒
𝑎𝑡

‖𝑥 (𝑡)‖
2

≤ 𝑉 (𝑥 (𝑡))

≤ 𝑉 (𝑥 (𝑡
0
)) + 𝑎

−1

𝑒
𝑎𝑡

𝐽
𝑇

𝑃𝐽

+ 𝑒
𝑎𝑡

𝑛

∑

𝑗=1

[𝑎𝐷
2

1𝑗
𝐹
2

𝑗
(0) + 𝑎𝐷

2

1𝑗
𝐹
2

𝑗
(0) (𝐿

𝑗
+ 𝑙
𝑗
)

2

+ 𝑎𝐷
2

2𝑗
𝐹
2

𝑗
(0) + 𝑎𝐷

2

2𝑗
𝐹
2

𝑗
(0) (𝐿

𝑗
+ 𝑙
𝑗
)

2

] ,

(33)

which implies that

‖𝑥 (𝑡)‖
2

≤

𝑒
−𝑎𝑡

𝑉 (𝑥 (𝑡
0
)) + 𝑎

−1

𝐽
𝑇

𝑃𝐽 + Υ

𝐾

, (34)

where𝐾 = min
1≤𝑖≤𝑛

{𝜆min(𝑃)/𝛼𝑖}, and

Υ =

𝑛

∑

𝑗=1

[𝑎𝐷
2

1𝑗
𝐹
2

𝑗
(0) + 𝑎𝐷

2

1𝑗
𝐹
2

𝑗
(0) (𝐿

𝑗
+ 𝑙
𝑗
)
2

+ 𝑎𝐷
2

2𝑗
𝐹
2

𝑗
(0) + 𝑎𝐷

2

2𝑗
𝐹
2

𝑗
(0) (𝐿

𝑗
+ 𝑙
𝑗
)

2

] .

(35)

If one chooses 𝐵 = √(1 + 𝑎
−1
𝐽
𝑇
𝑃𝐽 + Υ)/𝐾 > 0, then for

any constant  > 0 and ‖𝜑‖ < , there is 𝑡 = 𝑡


() > 0, such
that 𝑒−𝑎𝑡𝑉(𝑥(𝑡

0
))
2

< 1 for all 𝑡 ≥ 𝑡
. According toDefinition 2,

we have ‖𝑥(𝑡, 𝑥(𝑡
0
), 𝜑)‖ < 𝐵 for all 𝑡 ≥ 𝑡

. That is to say,
system (6) is uniformly ultimately bounded. This completes
the proof.

From (18), we know that there is a positive constant 𝐿
0
,

such that

𝑉 (𝑥 (𝑡
0
)) ≤ 𝐿

0





𝑥 (𝑡
0
)





2

𝑒
−𝑎𝑡0

. (36)
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Thus, considering (34) and (36), we have the following
result:

‖𝑥 (𝑡)‖
2

≤

𝑒
−𝑎𝑡

𝑉 (𝑥 (𝑡
0
)) + 𝑎

−1

𝐽
𝑇

𝑃𝐽 + Υ

𝐾

=

𝑒
−𝑎𝑡

𝑉 (𝑥 (𝑡
0
))

𝐾

+

𝑎
−1

𝐽
𝑇

𝑃𝐽 + Υ

𝐾

≤

𝐿
0





𝑥 (𝑡
0
)





2

𝑒
−𝑎(𝑡−𝑡0)

𝐾

+𝑁,

(37)

where𝑁 = (𝑎
−1

𝐽
𝑇

𝑃𝐽 + Υ)/𝐾.

Theorem 9. If all of the conditions of Theorem 8 hold, then
there exists an attractor Ã

𝐵
for the solutions of system (6),

where Ã
𝐵
= {𝑥(𝑡) : ‖𝑥(𝑡)‖ ≤ 𝐵, 𝑡 ≥ 𝑡

0
}.

Proof. If one chooses 𝐵 = √(1 + 𝑎
−1
𝐽
𝑇
𝑃𝐽 + Υ)/𝐾 > 0,

Theorem 8 shows that for any 𝜙, there is 𝑡


> 0, such
that ‖𝑥(𝑡, 𝑡

0
, 𝜙)‖ < 𝐵 for all 𝑡 ≥ 𝑡

. Let Ã
𝐵

= {𝑥(𝑡) :

‖𝑥(𝑡)‖ ≤ 𝐵, 𝑡 ≥ 𝑡
0
}. Clearly, Ã

𝐵
is closed, bounded, and

invariant. Furthermore, lim
𝑡→∞

sup inf
𝑦∈Ã
𝐵

‖𝑥(𝑡; 𝑡
0
, 𝜙)−𝑦‖ =

0. Therefore, Ã
𝐵
is an attractor for the solutions of system

(6).

Corollary 10. In addition to the fact that all of the conditions
of Theorem 8 hold, if 𝐽 = 0, and 𝐹

𝑗
(0) = 0, then system (6) has

a trivial solution 𝑥(𝑡) ≡ 0, and the trivial solution of system (6)
is globally exponentially stable.

Proof. If 𝐽 = 0, and 𝐹
𝑗
(0) = 0, then it is obvious that system

(6) has a trivial solution 𝑥(𝑡) ≡ 0. FromTheorem 8, one has




𝑥 (𝑡; 0, 𝜙)






2

≤ 𝐾
1
𝑒
−𝑎𝑡

, ∀𝜙, (38)

where𝐾
1
= 𝑉(𝑥(0))/𝐾.

Therefore, the trivial solution of system (6) is globally
exponentially stable. This completes the proof.

In this section, we will present conditions for uniformly
ultimate boundedness and the existence of an attractor of the
switching CGNN by applying the average dwell time.

Now, we can consider the switched Cohen-Grossberg
neural networks with discrete delays and distributed delays
as follows:

̇𝑥 (𝑡) = − �̂� (𝑥 (𝑡))

× [
̂
𝛽 (𝑥 (𝑡)) − 𝐴

𝜎
(𝑡) 𝐹 (𝑥 (𝑡)) − 𝐵𝐹

𝜎
(𝑡) (𝑥 (𝑡 − 𝜏))

−𝐶
𝜎
(𝑡) ∫

𝑡

𝑡−ℎ

𝐹 (𝑥 (𝑠)) d𝑠 + 𝐽] ,

(39)

𝑥 (𝑡) = 𝜑 (𝑡) , when 𝑡 ∈ [−𝛿, 0] . (40)

Theorem 11. For a given constant 𝑎 > 0, if there is positive
definite matrix 𝑃 = diag(𝑝

𝑖1
, 𝑝
𝑖2
. . . , 𝑝
𝑖𝑛
), 𝐷
𝑖
= diag(𝐷

𝑖1
,

𝐷
𝑖2
. . . , 𝐷

𝑖𝑛
), 𝑖 = 1, 2, 𝑄

𝑖
, 𝑆
(𝑖)

𝑖
, such that the following condi-

tion holds:

△ =

[

[

[

[

[

[

[

[

[

[

Φ
𝑖11

Φ
𝑖12

Φ
𝑖13

𝑃
𝑖
𝐵
𝑖

0 𝑃
𝑖
𝐶
𝑖

0

∗ Φ
𝑖22

0 Φ
𝑖24

0 0 0

∗ ∗ Φ
𝑖33

0 0 0 0

∗ ∗ ∗ Φ
𝑖44

0 0 0

∗ ∗ ∗ ∗ Φ
𝑖55

Φ
𝑖56

0

∗ ∗ ∗ ∗ ∗ Φ
𝑖66

0

∗ ∗ ∗ ∗ ∗ ∗ Φ
𝑖77

]

]

]

]

]

]

]

]

]

]

< 0, (41)

where

𝑄 = (

𝑄
𝑖11

𝑄
𝑖12

∗ 𝑄
𝑖22

) ≥ 0, 𝐷
𝑖
≥ 0, 𝑖 = 1, 2,

Φ
𝑖11

= 𝑎Ω
1
𝑃
𝑖
− 2𝑎Ω

2
𝑃
𝑖
+ 𝑃
𝑖
−

𝛿𝑒
−𝑎𝜏
∗

𝜏
∗

𝑆
(2)

𝑖

− Ω
3
𝐷
1
+

1

4𝑎
2
𝐼 + 𝑆
(1)

𝑖
− 𝑒
−𝑎𝜏
∗

𝑆
(1)

𝑖

+ ℎ
∗

𝑄
𝑖11

+

𝛿𝑎

1 − 𝑒
𝑎𝜏
∗ 𝑆
(2)

𝑖
,

Φ
𝑖12

= −

𝛿𝑎

1 − 𝑒
𝑎𝜏
∗ 𝑆
(2)

𝑖
,

Φ
𝑖13

= 𝑃
𝑖
𝐴
𝑖
+ ℎ
∗
2

𝑅
𝑖12

+ Ω
4
𝐷
1
+ ℎ
∗

𝑄
𝑖12
,

Φ
𝑖22

= −Ω
3
𝐷
2
−

𝛿𝑒
−𝑎𝜏
∗

𝜏
∗

𝑆
(2)

𝑖
− 𝑒
−𝑎𝜏
∗

𝑆
(1)

𝑖

+

𝛿𝑎

1 − 𝑒
𝑎𝑡
∗ 𝑆
(2)

𝑖
+

1

4𝑎
2
𝐼,

Φ
𝑖24

= Ω
4
𝐷
2
, Φ

𝑖33
= −𝐷
1
+

1

𝑎
2
𝐼 + ℎ
∗

𝑄
𝑖22
,

Φ
𝑖44

= −𝐷
2
+

1

𝑎
2
𝐼, Φ

𝑖55
= −

𝑒
−𝑎ℎ
∗

ℎ
∗

𝑄
𝑖11
,

Φ
𝑖56

= −

𝑒
−𝑎ℎ
∗

ℎ
∗

𝑄
𝑖12
, Φ

𝑖66
= −

𝑒
−𝑎ℎ
∗

ℎ
∗

𝑄
𝑖22
,

Φ
𝑖77

= 𝛿𝜏
∗

𝛼
2

𝑆
(2)

𝑖
.

(42)

Then, system (39) is uniformly ultimately bounded for any
switching signal with average dwell time satisfying

𝑇
𝑎
> 𝑇
∗

𝑎
=

ln𝑀max
𝑎

, (43)

where𝑀max = 𝐿max/𝐾min, 𝐿max = max
𝑘∈𝑁,1≤𝑖≤𝑛

{𝐿
𝑖𝑘
}, 𝐾min =

min
𝑖𝑘
{𝐾
𝑖𝑘
}.
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Proof. Define the Lyapunov functional candidate of the form

𝑉
𝜎
(𝑡) =

𝑛

∑

𝑗=1

2𝑝
𝜎(𝑡)

𝑒
𝑎𝑡

∫

𝑥𝑗(𝑡)

0

𝑠

𝛼
𝑗
(𝑠)

d𝑠

+ ∫

𝑡

𝑡−ℎ

𝑒
𝑎𝑠

(𝑠 − (𝑡 − ℎ)) 𝜉
𝑇

(𝑠) 𝑄
𝜎(𝑡)

𝜉 (𝑠) d𝑠

+ ∫

𝑡

𝑡−𝜏

𝑒
𝑎𝑠

̇𝑥
𝑇

(𝑠) 𝑆
(1)

𝜎(𝑡)
̇𝑥 (𝑠) d𝑠 d𝜃

+ 𝛿∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑒
𝑎𝑠

̇𝑥
𝑇

(𝑠) 𝑆
(2)

𝜎(𝑡)
̇𝑥 (𝑠) d𝑠 d𝜃.

(44)

When 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), the 𝑖
𝑘
th subsystem is activated, and from

Theorem 8 and (34), we can conclude that there is a positive
constant 𝐿

𝑖𝑘
, such that

‖𝑥 (𝑡)‖
2

≤

𝐿
𝑖𝑘





𝑥(𝑡
𝑘
)





2

𝑒
−𝑎(𝑡−𝑡𝑘)

+ 𝑎
−1

𝐽
𝑇

𝑃𝐽 + Υ

𝐾
𝑖𝑘

= 𝑀
𝑖𝑘





𝑥(𝑡
𝑘
)





2

𝑒
−𝑎(𝑡−𝑡𝑘)

+ 𝑁
𝑖𝑘
,

(45)

where

𝑀
𝑖𝑘
=

𝐿
𝑖𝑘

𝐾
𝑖𝑘

, 𝐾
𝑖𝑘
= min
𝑘∈𝑁,1≤𝑖≤𝑛

{

𝜆min (𝑃𝑖)

𝛼
𝑖

} ,

𝑁
𝑖𝑘
=

𝑎
−1

𝐽
𝑇

𝑃𝐽 + Υ

𝐾
𝑖𝑘

.

(46)

The system state is continuous. Therefore, it follows that

‖𝑥 (𝑡)‖
2

≤

𝐿
𝑖𝑘





𝑥 (𝑡
𝑘
)





2

𝑒
−𝑎(𝑡−𝑡𝑘)

+ 𝑎
−1

𝐽
𝑇

𝑃𝐽 + Υ

𝐾
𝑖𝑘

= 𝑀
𝑖𝑘





𝑥(𝑡
𝑘
)





2

𝑒
−𝑎(𝑡−𝑡𝑘)

+ 𝑁
𝑖𝑘

≤ ⋅ ⋅ ⋅ ≤ 𝑒
∑
𝑘

V=0 ln𝑀𝑖V−𝑎(𝑡−𝑡0)


𝑥(𝑡
0
)





2

+ [𝑀
𝑖𝑘
𝑒
−𝑎(𝑡−𝑡𝑘)

𝑁
𝑖𝑘
+𝑀
𝑖𝑘
𝑀
𝑖𝑘−1

𝑒
−𝑎(𝑡−𝑡𝑘−1)

𝑁
𝑖𝑘−1

+𝑀
𝑖𝑘
𝑀
𝑖𝑘−1

𝑀
𝑖𝑘−2

𝑒
−𝑎(𝑡−𝑡𝑘−2)

𝑁
𝑖𝑘−2

+ ⋅ ⋅ ⋅

+𝑀
𝑖𝑘
𝑀
𝑖𝑘−1

𝑀
𝑖𝑘−2

⋅ ⋅ ⋅𝑀
𝑖1
𝑒
−𝑎(𝑡−𝑡1)

𝑁
𝑖1
+ 𝑁
𝑖𝑘
]

≤ 𝑒
(𝑘+1) ln𝑀max−𝑎(𝑡−𝑡0)



𝑥(𝑡
0
)





2

+ [𝑀

𝑘

max𝑁max +𝑀

(𝑘−1)

max 𝑁max +𝑀

(𝑘−2)

max 𝑁max

+ ⋅ ⋅ ⋅ + 𝑀

2

max𝑁max +𝑀max𝑁max + 𝑁max]

≤ 𝑀max𝑒
𝑘 ln𝑀max−𝑎(𝑡−𝑡0)



𝑥(𝑡
0
)





2

+

𝑁max (1 −𝑀

(𝑘+1)

max )

1 −𝑀max

≤ 𝑀max𝑒
ln𝑀max𝑁𝜎(𝑡−𝑡0)−𝑎(𝑡−𝑡0)



𝑥(𝑡
0
)





2

+

𝑁max (1 −𝑀

(𝑘+1)

max )

1 −𝑀max

≤ 𝑀max𝑒
𝑁0 ln𝑀max−(𝑎−ln𝑀max/𝑇𝑎)(𝑡−𝑡0)



𝑥(𝑡
0
)





2

+

𝑁max (1 −𝑀

(𝑘+1)

max )

1 −𝑀max

≤

𝐿max𝑒
𝑁0 ln𝑀max−(𝑎−ln𝑀max/𝑇𝑎)(𝑡−𝑡0)



𝑥(𝑡
0
)





2

𝑘min

+

(𝑎
−1

𝐽
𝑇

𝑃𝐽 + Υ) (1 − 𝐿
(𝑘+1)

max /𝐾
(𝑘+1)

min )

𝐾min − 𝐿max
.

(47)

If one chooses 𝐵 =

√1/𝐾min + (𝑎
−1
𝐽
𝑇
𝑃𝐽 +Υ)(1 − 𝐿

(𝑘+1)

max /𝐾
(𝑘+1)

min )/(𝐾min − 𝐿max) >

0, then for any constant  > 0 and ‖𝜑‖ < , there is 𝑡 = 𝑡


() >

0, such that 𝐿max𝑒
𝑁0 ln𝑀max−(𝑎−ln𝑀max/𝑇𝑎)(𝑡−𝑡0)

‖𝑥(𝑡
0
)‖
2

< 1 for
all 𝑡 ≥ 𝑡

. According to Definition 2, we have ‖𝑥(𝑡, 𝑡
0
, 𝜑)‖ < 𝐵

for all 𝑡 ≥ 𝑡
. That is to say, the switched Cohen-Grossberg

neural networks system (39) is uniformly ultimately
bounded. This completes the proof.

Theorem 12. If all of the conditions of Theorem 11 hold, then
there exists an attractor A

𝐵
for the solutions of system (39),

where A
𝐵
= {𝑥(𝑡) : ‖𝑥(𝑡)‖ ≤ 𝐵, 𝑡 ≥ 𝑡

0
}.

Proof. If we choose 𝐵 =

√1/𝐾min + (𝑎
−1
𝐽
𝑇
𝑃𝐽 +Υ)(1 − 𝐿

(𝑘+1)

max /𝐾
(𝑘+1)

min )/(𝐾min − 𝐿max) >

0, Theorem 11 shows that for any 𝜙, there is 𝑡 > 0, such that
‖𝑥(𝑡, 𝑡

0
, 𝜙)‖ < 𝐵 for all 𝑡 ≥ 𝑡

. Let A
𝐵
= {𝑥(𝑡) : ‖𝑥(𝑡)‖ ≤

𝐵, 𝑡 ≥ 𝑡
0
}. Clearly, A

𝐵
is closed, bounded, and invariant.

Furthermore, lim
𝑡→∞

sup inf
𝑦∈A
𝐵
‖𝑥(𝑡; 𝑡

0
, 𝜙) − 𝑦‖ = 0.

Therefore, A
𝐵
is an attractor for the solutions of system

(39).

Corollary 13. In addition to the fact that all of the conditions
of Theorem 8 hold, if 𝐽 = 0 and 𝐹

𝑖
(0) = 0, then system (39) has

a trivial solution 𝑥(𝑡) ≡ 0, and the trivial solution of system
(39) is globally exponentially stable.

Proof. If 𝐽 = 0 and 𝐹
𝑖
(0) = 0, then it is obvious that the

switched system (39) has a trivial solution 𝑥(𝑡) ≡ 0. From
Theorem 8, one has





𝑥 (𝑡; 𝑡
0
, 𝜙)






2

≤ 𝐾
2
𝑒
−𝑎(𝑡−𝑡0)

, ∀𝜙, (48)

where𝐾
2
= 𝑀max𝑒

𝑁0 ln𝑀max−(𝑎−ln𝑀max/𝑇𝛼)(𝑡−𝑡0)
‖𝑥(𝑡
0
)‖
2.
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It means that the trivial solution of the switched Cohen-
Grossberg neural networks (39) is globally exponentially
stable. This completes the proof.

Remark 14. It is noted that common Lyapunov function
method requires all the subsystems of the switched system
to share a positive definite radially unbounded common
Lyapunov function. Generally speaking, this requirement
is difficult to achieve. So, in this paper, we select a novel
multiple Lyapunov function to study the uniformly ultimate
boundedness and the existence of an attractor for switched
Cohen-Grossberg neural networks. furthermore, this type of
Lyapunov function enables us to establish less conservative
results.

Remark 15. When 𝑁 = 1, we have 𝑃
𝑖
= 𝑃
𝑗
, 𝑄
𝑖
= 𝑄
𝑗
,

𝑆
(1)

𝑖
= 𝑆
(1)

𝑗
, 𝑆(2)
𝑖

= 𝑆
(2)

𝑗
, 𝑖, 𝑗 ∈ Σ, then the switched Cohen-

Grossberg neural networks (4) degenerates into a general
Cohen-Grossberg neural networks with time-delay [15, 17].
Obviously, our result generalizes the previous result.

Remark 16. It is easy to see that 𝜏
𝑎

= 0 is equivalent to
existence of a common function for all subsystems, which
implies that switching signals can be arbitrary. Hence, the
results reported in this paper aremore effective than arbitrary
switching signal in the previous literature [16].

Remark 17. The constants 𝑙
𝑖
, 𝐿
𝑖
in assumption (H

1
) are

allowed to be positive, negative, or zero, whereas the constant
𝑙
𝑖
is restricted to be the zero in [1, 15], and the non-linear

output function in [5, 18, 34–37] is required to satisfy 𝐹
𝑗
(0) =

0. However, in our paper, the assumption condition was
deleted. Therefore, assumption (H

1
) of this paper is weaker

than those given in [1, 5, 15, 18, 34–37].

4. Illustrative Examples

In this section, we present an example to show the effective-
ness and advantages of the proposedmethod and consider the
switched neural networks with two subsystems.

Example. Consider the following switched Cohen-Grossberg
neural network with discrete delays and distributed delays:

̇𝑥 (𝑡) = − �̂� (𝑥 (𝑡))

× [
̂
𝛽 (𝑥 (𝑡)) − 𝐴

𝜎
(𝑡) 𝐹 (𝑥 (𝑡)) − 𝐵

𝜎
𝐹 (𝑡) (𝑥 (𝑡 − 𝜏))

−𝐶
𝜎
(𝑡) ∫

𝑡

𝑡−ℎ

𝐹 (𝑥 (𝑠)) d𝑠 − 𝐽] ,

(49)

where the behaved function is described by ̂
𝛽
𝑖
(𝑥
𝑖
(𝑡)) = 𝑥

𝑖
(𝑡),

and 𝐹
𝑖
(𝑥
𝑖
(𝑡)) = 0.5 tanh(𝑥

𝑖
(𝑡)) (𝑖 = 1, 2); let

�̂� (𝑥 (𝑡)) = (

1 + sin2 (𝑥
1
(𝑡)) 0

0 1 + cos2 (𝑥
1
(𝑡))

) . (50)

Take the parameters as follows:

𝐴
1
= (

−0.1 −0.4

0.2 −0.5
) , 𝐵

1
= (

−0.1 −1

1.4 −0.4
) ,

𝐶
1
= (

−0.1 −0.2

0.2 −0.1
) , 𝐴

2
= (

−0.3 −0.5

0.2 −0.1
) ,

𝐵
2
= (

−0.25 −0.7

0.9 −0.5
) , 𝐶

2
= (

−0.15 −0.3

1.6 0.25
) .

(51)

From assumptions H
1
,H
2
, we can gain 𝑙

𝑖
= 0.5, 𝐿

𝑖
=

1, 𝛼 = 1, 𝛼 = 1.5, 𝛼 = 2, 𝑏
𝑖
= 1.2, 𝜏

∗

= 0.15, ℎ
∗

=

0.3, and 𝛿 = 0.3 and 𝑖 = 1, 2.
Therefore, for 𝑎 = 2 and 𝐹

𝑖
(0) = 0, by solving the

inequality (41), we get

𝑃
1
= (

7.2667 0

0 7.2667
) ,

𝑆
(1)

1
= (

56.5921 0.2054

0.2054 56.1324
) ,

𝑆
(2)

1
= (

12.2582 −0.1936

−0.1936 11.9901
) ,

𝑃
2
= (

7.3794 0

0 7.3794
) ,

𝑆
(1)

2
= (

55.5355 −0.0809

−0.0809 55.8300
) ,

𝑆
(2)

2
= (

11.4579 −0.5681

−0.5681 13.4627
) ,

𝑄
1
= (

17.8905 −0.1476 −3.0462 0.0962

−0.1476 18.0434 0.0962 −2.5606

−3.0462 0.0962 15.9117 0.1066

0.0962 −2.5606 0.1066 16.2315

) ,

𝑄
2
= (

17.8004 0.0091 −2.6444 0.1427

0.0091 17.5986 0.1427 −2.9014

−2.6444 0.1427 17.0233 −0.0953

0.1427 −2.9014 −0.0953 15.8802

) .

(52)

Using (41), we can get the average dwell time 𝜏
𝑎
> 𝜏
∗

𝑎
=

2.0889.

5. Conclusion

In this paper, the dynamics of switched Cohen-Grossberg
neural networks with average dwell time is investigated. A
novel multiple Lyapunov-Krasovskii functional is designed
to get new sufficient conditions guaranteeing the uniformly
ultimate boundedness, the existence of an attractor, and
the globally exponential stability. The derived conditions
are expressed in terms of LMIs, which are more relaxed
than algebraic formulation and can be easily checked by
the effective LMI toolbox in Matlab in practice. Based on
the method provided in this paper, stochastic disturbance,
impulse, and reaction diffusion for switched systems will be
considered in the future works.
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The asymptotic behavior of a class of switched stochastic cellular neural networks (CNNs) with mixed delays (discrete time-
varying delays and distributed time-varying delays) is investigated in this paper. Employing the average dwell time approach
(ADT), stochastic analysis technology, and linearmatrix inequalities technique (LMI), some novel sufficient conditions on the issue
of asymptotic behavior (the mean-square ultimate boundedness, the existence of an attractor, and the mean-square exponential
stability) are established. A numerical example is provided to illustrate the effectiveness of the proposed results.

1. Introduction

Since Chua and Yang’s seminal work on cellular neural
networks (CNNs) in 1988 [1, 2], it has witnessed the suc-
cessful applications of CNN in various areas such as signal
processing, pattern recognition, associative memory, and
optimization problems (see, e.g., [3–5]). From a practical
point of view, both in biological and man-made neural net-
works, processing of moving images and pattern recognition
problems require the introduction of delay in the signals
transmitted among the cells [6, 7]. After the widely use of
discrete delays, distributed delays arise because that neural
networks usually have a spatial extent due to the presences
of a multitude of parallel pathway with a variety of axon sizes
and lengths.Themathematical model can be described by the
following differential equations:

𝑑𝑥
𝑖
(𝑡) = − 𝑑

𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖
(𝑡)))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
∫

𝑡

𝑡−ℎ𝑖(𝑡)

𝑓
𝑗
(𝑥
𝑗
(𝑠)) d𝑠 + 𝐽

𝑖
,

𝑖 = 1, . . . , 𝑛,

(1)

where 𝑡 ≥ 0, 𝑛 ≥ 2 corresponds to the number of units in a
neural network; 𝑥

𝑖
(𝑡) denotes the potential (or voltage) of cell

𝑖 at time 𝑡; 𝑓
𝑗
(⋅) denotes a nonlinear output function; 𝑑

𝑖
> 0

denotes the rate with which the cell 𝑖 resets its potential to
the resting state when isolated from other cells and external
inputs; 𝑎

𝑖𝑗
, 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
denote the strengths of connectivity between

cell 𝑖 and 𝑗 at time 𝑡, respectively; 𝜏
𝑖
(𝑡) and ℎ

𝑖
(𝑡) correspond to

the discrete time-varying delays and distributed time-varying
delays, respectively.

Neural network is nonlinearity; in the real world, non-
linear problems are not exceptional, but regular phenomena.
Nonlinearity is the nature of matter and its development
[8, 9]. Although discrete delays combined with distributed
delays can usually provide a good approximation for prime
model, most real models are often affected by so many
external perturbations which are of great uncertainty. For
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instance, in electronic implementations, it was realized
that stochastic disturbances are mostly inevitable owing to
thermal noise. Just as Haykin [10] point out that in real
nervous systems, synaptic transmission is a noisy process
brought on by random fluctuations from the release of neu-
rotransmitters and other probabilistic causes. Consequently,
noise is unavoidable and should be taken into considera-
tion in modeling. Moreover, it has been well recognized
that a CNN could be stabilized or destabilized by certain
stochastic inputs. Therefore, it is of significant importance
to consider stochastic effects to the delayed neural networks.
One approach to the mathematical incorporation of such
effects is to use probabilistic threshold models. However, the
previous literatures all focus on the stability of stochastic
neural networks with delays [11–14]. Actually, studies on
dynamical systems involve not only a discussion of the
stability property, but also other dynamic behaviors such as
the ultimate boundedness and attractor. However, there are
very few results on the ultimate boundedness and attractor
for stochastic neural networks [15–17]. Hence, discussing the
asymptotic behavior of neural networks with mixed delays is
valuable and meaningful.

On the other hand, neural networks often exhibit a special
characteristic of network mode switching; that is, a neural
network sometimes has finite modes that switch from one to
another at different times according to a switching law gener-
ated from a switching logic. As an important class of hybrid
systems, switched systems arise in many practical processes.
In current papers, the analysis of switched systems has drawn
considerable attention since they have numerous applications
in control of mechanical systems, computer communities,
automotive industry, electric power systems and many other
fields [18–22]. Most recently, the stability analysis of switched
neural systems has been further investigated which was
mainly based on Lyapunov functions [23, 24]. It is worth
noting that the average dwell time (ADT) approach is an
effective method for the switched systems, which avoid
the common Lyapunov function and can be adopted to
obtain less conservative stability conditions. For instance,
based on the average dwell time method, the problems of
stability have been discussed for uncertain switched Cohen-
Grossberg neural networks with interval time-varying delay
and distributed time-varying delay in [25]. In [26], the
average dwell time method has been utilized to get some
sufficient conditions for the exponential stability and the
weighted 𝐿

2
gain for a class of switched systems.

However, it is worth emphasizing thatwhen the activation
functions are unbounded in some special applications, the
existence of equilibrium point cannot be guaranteed [27].
Therefore, in these circumstances, the discussing of stability
of equilibrium point for switched neural networks turns to
be unreachable, which motivated us to consider the ultimate
boundedness and attractor for the switched neural networks.
Unfortunately, as far as we know, the issue of asymptotic
behavior of switched systems with mixed time delays has
not been investigated yet, let alone studying the asymptotic
behavior of switched stochastic systems. Therefore, these
researches are challenging and interesting since they integrate
the switched hybrid system into the stochastic system and are

thus theoretically and practically significant. Notice that the
asymptotic behavior of switched stochastic neural networks
with mixed delays should be studied intensively.

Motivated by the above analysis, the main purpose of this
paper is to get sufficient conditions on the asymptotic behav-
ior (the mean-square ultimate boundedness, the existence of
an attractor, and mean-square exponential stability) for the
switched stochastic system.This paper is organized as follows.
In Section 2, the considered model of switched stochas-
tic CNN with mixed delays is presented. Some necessary
assumptions, definitions and lemmas are also given in this
section. In Section 3,mean-square ultimate boundedness and
attractor for the proposed model are studied. A numerical
example is arranged to demonstrate the effectiveness of the
theoretical results in Section 4, and we conclude this paper in
Section 5.

2. Problem Formulation

In general, a stochastic cellular neural network with mixed
delays can be described as follows:

𝑑𝑥 (𝑡) = [ − 𝐷𝑥 (𝑡) + 𝐴𝐹 (𝑥 (𝑡)) + 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐶∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠 + 𝐽] 𝑑𝑡

+ 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(2)

where 𝑥(𝑡) = (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

∈ 𝑅
𝑛, 𝐹(𝑥(𝑡)) = (𝑓

1
(𝑥
1
(𝑡)),

. . . , 𝑓
𝑛
(𝑥
𝑛
(𝑡)))
𝑇, 𝐷 = diag(𝑑

1
, . . . , 𝑑

𝑛
), 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, 𝐵 =
(𝑏
𝑖𝑗
)
𝑛×𝑛

, 𝐶 = (𝑐
𝑖𝑗
)
𝑛×𝑛

, 𝐽 = (𝐽
1
, . . . , 𝐽

𝑛
)
𝑇, 𝜏(𝑡) = (𝜏

1
(𝑡), . . .,

𝜏
𝑛
(𝑡))
𝑇, ℎ(𝑡) = (ℎ

1
(𝑡), . . . , ℎ

𝑛
(𝑡))
𝑇, 𝐺(⋅, ⋅) is a 𝑛 × 𝑛 matrix

valued function, and 𝑤(𝑡) = (𝑤
1
(𝑡), . . . , 𝑤

𝑛
(𝑡))
𝑇 is an 𝑛-dim-

ensional Brownian motion defined on a complete probability
space (Ω,F,P) with a natural filtration {F

𝑡
}
𝑡≥0

(i.e., F
𝑡
=

𝜎{𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡}).
By introducing switching signal into the system (2) and

taking a set of neural networks as the individual subsystems,
the switched system can be obtained, which is described as

𝑑𝑥 (𝑡) = [ − 𝐷
𝜎(𝑡)
𝑥 (𝑡) + 𝐴

𝜎(𝑡)
𝐹 (𝑥 (𝑡)) + 𝐵

𝜎(𝑡)
𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐶
𝜎(𝑡)
∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠 + 𝐽] 𝑑𝑡

+ 𝐺
𝜎(𝑡)
(𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(3)

where 𝜎(𝑡) : [0, +∞) → Σ = {1, 2 . . . 𝑚} is the switching
signal. At each time instant 𝑡, the index 𝜎(𝑡) ∈ Σ (i.e., 𝜎(𝑡) =
𝑖) of the active subsystem means that the 𝑖th subsystem is
activated.

For the convenience of discussion, it is necessary to
introduce some notations. 𝑅𝑛 denotes the 𝑛-dimensional
Euclidean space. 𝑋 ≤ 𝑌 (𝑋 < 𝑌) means that each pair of
corresponding elements of𝑋 and𝑌 satisfies the inequality “≤
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(<)”.𝑋 is especially called a positive (negative)matrix if𝑋 > 0

(< 0). 𝑋𝑇 denotes the transpose of any square matrix 𝑋, and
the symbol “∗” within the matrix represents the symmetric
term of the matrix. 𝜆min(𝑋)means the minimum eigenvalue
of matrix𝑋, and 𝜆max(𝑋)means the maximum eigenvalue of
matrix𝑋. 𝐼 denotes unit matrix.

Let C([−𝜏∗, 0], 𝑅𝑛) denote the Banach space of contin-
uous functions which mapping from [−𝜏

∗

, 0] to 𝑅𝑛 with
is the topology of uniform convergence. For any ‖𝜑‖ ∈

C([−𝜏∗, 0], 𝑅𝑛), we define ‖𝜑‖ = max
1≤𝑖≤𝑛

sup
𝑡−𝜏∗<𝑠≤𝑡

|𝜑
𝑖
(𝑠)|.

The initial conditions for system (3) are given in the form:

𝑥 (𝑡) = 𝜑, 𝜑 ∈ CF0
([−𝜏
∗

, 0] , 𝑅
𝑛

) , (4)

where CF0
([−𝜏
∗

, 0], 𝑅
𝑛

) is the family of all F
0
-measurable

boundedC([−𝜏∗, 0], 𝑅𝑛)-valued random variables.
Throughout this paper, we assume the following assump-

tions are always satisfied.
(𝐻
1
) The discrete time-varying delay 𝜏(𝑡) and distributed
time-varying delay ℎ(𝑡) are satisfying

0 ≤ 𝜏 (𝑡) ≤ 𝜏, 0 ≤ ℎ (𝑡) ≤ ℎ, 𝜏
∗

= max
1≤𝑖≤𝑛

{𝜏, ℎ} , (5)

where 𝜏, ℎ, 𝜏∗ are scalars.
(𝐻
2
) There exist constants 𝑙

𝑗
and 𝐿

𝑗
, 𝑖 = 1, 2, . . . , 𝑛, such

that

𝑙
𝑗
≤

𝑓
𝑗
(𝑥) − 𝑓

𝑗
(𝑦)

𝑥 − 𝑦

≤ 𝐿
𝑗
, ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ̸=𝑦. (6)

Moreover, we define

Σ
1
= diag {𝑙

1
𝐿
1
, 𝑙
2
𝐿
2
, . . . , 𝑙
𝑛
𝐿
𝑛
} ,

Σ
2
= diag {𝑙

1
+ 𝐿
1
, 𝑙
2
+ 𝐿
2
, . . . , 𝑙
𝑛
+ 𝐿
𝑛
} .

(7)

(𝐻
3
) We assume that 𝐺(𝑡, 𝑥, 𝑦) : 𝑅

+

× 𝑅
𝑛

× 𝑅
𝑛

→

𝑅
𝑛×𝑚 is locally Lipschitz continuous and satisfies the

following condition:

trace [𝐺𝑇 (𝑡, 𝑥, 𝑦) 𝐺 (𝑡, 𝑥, 𝑦)] ≤ 𝑥𝑇𝑈𝑇
1
𝑈
1
𝑥

+ 𝑦
𝑇

𝑈
𝑇

2
𝑈
2
𝑦 + 2𝑥

𝑇

𝑈
𝑇

1
𝑈
2
𝑦,

(8)

where 𝑈
1
> 0, 𝑈

2
> 0 are constant matrices with

appropriate dimensions.
Some definitions and lemmas are introduced as follows.

Definition 1 (see [15]). System (2) is called mean-square
ultimate boundedness if there exists a constant vector 𝐵 > 0,
such that, for any initial value 𝜑 ∈ CF0

, there is a 𝑡 = 𝑡(𝜑) >
0, for all 𝑡 ≥ 𝑡, the solution 𝑥(𝑡, 𝜑) of system (2) satisfies

𝐸




𝑥 (𝑡, 𝜑)






2

≤ 𝐵. (9)

In this case, the set A = {𝜑 ∈ CF0
| 𝐸‖𝜑(𝑠)‖

2

≤ 𝐵} is said
to be an attractor of system (2) in mean square sense.

Clearly, proposition above equals to
lim
𝑡→∞

sup𝐸‖𝑥(𝑡)‖2 ≤ 𝐵.

Definition 2 (see [28]). For any switching signal 𝜎(𝑡), corre-
sponding a switching sequence {(𝜎(𝑡

0
), 𝑡
0
), . . . (𝜎(𝑡

𝑘
), 𝑡
𝑘
), . . . , |

𝑘 = 0, 1, . . .}, where (𝜎(𝑡
𝑘
), 𝑡
𝑘
) means the 𝜎(𝑡

𝑘
)th subsystem,

is activated during 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘−1
), and 𝑘 denotes the switching

ordinal number. Given any finite constants 𝑇
1
, 𝑇
2
satisfying

𝑇
2
> 𝑇
1
≥ 0 denotes the number of discontinuity of

a switching signal 𝜎(𝑡) over the time interval (𝑇
1
, 𝑇
2
) by

𝑁
𝜎
(𝑇
1
, 𝑇
2
). If𝑁

𝜎
(𝑇
1
, 𝑇
2
) ≤ 𝑁

0
+(𝑇
2
−𝑇
1
)/𝑇
𝛼
holds for𝑇

𝛼
> 0,

𝑁
0
> 0, then 𝑇

𝛼
> 0 is called the average dwell time.𝑁

0
is the

chatter bound.

Lemma 3. Let 𝑋 and 𝑌 be any 𝑛-dimensional real vectors, 𝑃
be a positive semidefinite matrix and a scalar 𝜀 > 0. Then the
following inequality holds:

2𝑋
𝑇

𝑃𝑌 ≤ 𝜀𝑋
𝑇

𝑃𝑋 + 𝜀
−1

𝑌
𝑇

𝑃𝑌. (10)

Lemma 4 (see [29]). For any positive definite constant matrix
𝑀 ∈ R𝑛×𝑛, and a scalar 𝑟, if there exists a vector function
𝜂 : [0, 𝑟] → R𝑛 such that the integrals ∫𝑟

0

𝜂
𝑇

(𝑠)𝑀𝜂(𝑠)d𝑠 and
∫

𝑟

0

𝜂(𝑠)d𝑠 are well defined, then

∫

𝑟

0

𝜂
𝑇

(𝑠)𝑀𝜂 (𝑠) d𝑠 ≥ 1
𝑟

∫

𝑟

0

𝜂
𝑇

(𝑠) d𝑠𝑀∫

𝑟

0

𝜂 (𝑠) d𝑠. (11)

3. Main Results

LetC2,1 : (𝑅𝑛 × 𝑅+; 𝑅+) denote the family of all nonnegative
functions 𝑉(𝑡, 𝑥) on 𝑅𝑛 × 𝑅+ which are continuously twice
differentiable in 𝑥 and once differentiable in 𝑡. If 𝑉 ∈

C2,1 : (𝑅𝑛 × 𝑅+; 𝑅+), define an operatorL𝑉 associated with
general stochastic system 𝑑𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑡)𝑑𝑡 + 𝐺(𝑥(𝑡), 𝑥(𝑡 −

𝜏(𝑡)))𝑑𝑤(𝑡) as

L𝑉 (𝑡, 𝑥) = 𝑉
𝑡
(𝑡, 𝑥) + 𝑉

𝑥
(𝑡, 𝑥) 𝑓 (𝑥 (𝑡) , 𝑡)

+

1

2

trace {𝐺𝑇 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑉
𝑥𝑥
(𝑡, 𝑥)

×𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) } ,

(12)

where

𝑉
𝑡
(𝑡, 𝑥)=

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡

, 𝑉
𝑥
(𝑡, 𝑥)=(

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
1

, . . . ,

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑛

)

𝑇

,

𝑉
𝑥𝑥
(𝑡, 𝑥) = (

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑖
𝜕𝑥
𝑗

)

𝑛×𝑛

.

(13)

Theorem 5. If there are constants 𝜇, ] such that ̇𝜏(𝑡) ≤ 𝜇,
̇
ℎ(𝑡) ≤ ], we denote 𝑔(𝜇), 𝑘(]) as:

𝑔 (𝜇) = {

(1 − 𝜇) 𝑒
−𝛼𝜏

, 𝜇 ≤ 1;

1 − 𝜇, 𝜇 ≥ 1,

𝑘 (]) = {
(1 − ]) 𝑒−𝛼ℎ, ] ≤ 1;

1 − ], ] ≥ 1.

(14)
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For a given constant 𝛼 > 0, if there exist positive definite
matrixes 𝑃 = diag(𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
), 𝑄, 𝑅, 𝑆, 𝑍, 𝑈

1
, 𝑈
2
, 𝑌
𝑖
=

diag(𝑌
𝑖1
, 𝑌
𝑖2
, . . . , 𝑌

𝑖𝑛
), 𝑖 = 1, 2, such that the following condition

holds:

Δ
1
=

[

[

[

[

[

[

Φ
11
Φ
12
Φ
13
Φ
14

0 Φ
16

∗ Φ
22

0 Φ
24

0 0

∗ ∗ Φ
33

0 0 0

∗ ∗ ∗ Φ
44
Φ
55

0

∗ ∗ ∗ ∗ 0 Φ
66

]

]

]

]

]

]

< 0,

Φ
11
= 2𝛼𝑃 − 2𝐷𝑃 + 𝑄 + 𝜏

2

𝑆 − 2Σ
1
𝑌
1
+ 𝛼𝐼 + 𝑈

𝑇

1
𝑃𝑈
1
,

Φ
12
= 𝑈
𝑇

1
𝑃𝑈
2
, Φ

13
= 𝑃𝐴 + Σ

2
𝑌
1
,

Φ
14
= 𝑃𝐵, Φ

16
= 𝑃𝐶,

Φ
22
= −𝑔 (𝜇)𝑄 − 2Σ

1
𝑌
2
+ 𝛼𝐼 + 𝑈

𝑇

2
𝑃𝑈
2
,

Φ
24
= Σ
2
𝑌
2
, Φ

33
= 𝑅 + ℎ

2

𝑍 − 2𝑌
1
+ 𝛼𝐼,

Φ
44
= −𝑘 (]) 𝑅 − 2𝑌

2
+ 𝛼𝐼,

Φ
55
= −𝑔 (𝜇) 𝑆, Φ

66
= −𝑘 (]) 𝑍,

(15)

then system (2) is mean-square ultimate boundedness.

Proof. Consider the positive definite Lyapunov functional as
follows:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) + 𝑉

5
(𝑡) , (16)

where

𝑉
1
(𝑡) = 𝑒

𝛼𝑡

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑄𝑒
𝛼𝑠

𝑥 (𝑠) d𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−ℎ(𝑡)

𝐹
𝑇

(𝑥 (𝑠)) 𝑅𝑒
𝛼𝑠

𝐹 (𝑥 (𝑠)) d𝑠,

𝑉
4
(𝑡) = 𝜏∫

0

−𝜏(𝑡)

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑆𝑒
𝛼𝑠

𝑥 (𝑠) d𝑠d𝜃,

𝑉
5
(𝑡) = ℎ∫

0

−ℎ(𝑡)

∫

𝑡

𝑡+𝜃

𝐹
𝑇

(𝑥 (𝑠)) 𝑍𝑒
𝛼𝑠

𝐹 (𝑥 (𝑠)) d𝑠d𝜃.

(17)

Then, by Ito’s formula, the stochastic derivative of 𝑉(𝑥, 𝑡) is

𝑑𝑉 (𝑥, 𝑡) = L𝑉 (𝑥, 𝑡) 𝑑𝑡

+ 𝑉
𝑥
(𝑥, 𝑡) 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(18)

the operator L𝑉 along the trajectory of system (2) can be
obtained

L𝑉
1
(𝑡) =

𝜕𝑉
1
(𝑥 (𝑡) , 𝑡)

𝜕𝑡

+

𝜕𝑉
1
(𝑥 (𝑡) , 𝑡)

𝜕𝑥

× [ − 𝐷𝑥 (𝑡) + 𝐴𝐹 (𝑥 (𝑡)) + 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐶∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠 + 𝐽]

+

1

2

trace[𝐺𝑇 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))
𝜕
2

𝑉
1
(𝑥 (𝑡) , 𝑡)

𝜕𝑥
2

×𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) ]

= 𝛼𝑒
𝛼𝑡

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + 2𝑒
𝛼𝑡

𝑥
𝑇

(𝑡) 𝑃

× [ − 𝐷𝑥 (𝑡) + 𝐴𝐹 (𝑥 (𝑡)) + 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐶∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠 + 𝐽]

+ 𝑒
𝛼𝑡trace [𝐺𝑇 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑃

×𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) ] .

(19)

From Assumption (𝐻
3
), Lemma 3, and (19), we can get

L𝑉
1
(𝑡) ≤ 2𝛼𝑒

𝛼𝑡

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + 2𝑒
𝛼𝑡

𝑥
𝑇

(𝑡) 𝑃

× [ − 𝐷𝑥 (𝑡) + 𝐴𝐹 (𝑥 (𝑡)) + 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐶∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠] + 𝑒𝛼𝑡𝛼−1𝐽𝑇𝑃𝐽

+ 𝑒
𝛼𝑡

𝑥
𝑇

(𝑡) 𝑈
𝑇

1
𝑃𝑈
1
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑈
𝑇

2
𝑃𝑈
2
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑈
𝑇

1
𝑃𝑈
2
𝑥 (𝑡 − 𝜏 (𝑡)) .

(20)

Similarly, calculating the operator L𝑉
𝑖
(𝑖 = 2, 3, 4, 5),

along the trajectory of system (2), one can get

L𝑉
2
= 𝑒
𝛼𝑡

𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡)

− (1 − ̇𝜏 (𝑡)) 𝑒
𝛼(𝑡−𝜏(𝑡))

𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡))
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≤ 𝑒
𝛼𝑡

𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡)

− (1 − 𝜇) 𝑒
𝛼(𝑡−𝜏)

𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡))

≤ 𝑒
𝛼𝑡

𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡)

− 𝑔 (𝜇) 𝑒
𝛼𝑡

𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡)) ,

L𝑉
3
≤ 𝑒
𝛼𝑡

𝐹
𝑇

(𝑥 (𝑡)) 𝑅𝐹 (𝑥 (𝑡))

− 𝑘 (]) 𝑒
𝛼𝑡

𝐹
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑅𝐹 (𝑥 (𝑡 − 𝜏 (𝑡))) ,

L𝑉
4
= 𝜏 [𝜏 (𝑡) 𝑒

𝛼𝑡

𝑥
𝑇

(𝑡) 𝑆𝑥 (𝑡)

− (1 − ̇𝜏 (𝑡)) 𝑒
𝛼(𝑡−𝜏(𝑡))

∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑆𝑥 (𝑠) d𝑠]

≤ 𝜏
2

𝑒
𝛼𝑡

𝑥
𝑇

(𝑡) 𝑆𝑥 (𝑡)

− 𝜏𝑔 (𝜇) 𝑒
𝛼𝑡

∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑆𝑥 (𝑠) d𝑠,

L𝑉
5
≤ ℎ
2

𝑒
𝛼𝑡

𝐹
𝑇

(𝑥 (𝑡)) 𝑍𝐹 (𝑥 (𝑡))

− ℎ𝑘 (]) 𝑒
𝛼𝑡

∫

𝑡

𝑡−ℎ(𝑡)

𝐹
𝑇

(𝑥 (𝑠)) 𝑍𝐹 (𝑥 (𝑠)) d𝑠.

(21)

According to Lemma 4, the following inequalities can be
obtained:

∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑆𝑥 (𝑠) d𝑠

≥

1

𝜏

∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) d𝑠𝑆 ∫
𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) d𝑠,

∫

𝑡

𝑡−ℎ(𝑡)

𝐹
𝑇

(𝑥 (𝑠)) 𝑍𝐹 (𝑥 (𝑠)) d𝑠

≥

1

ℎ

∫

𝑡

𝑡−ℎ(𝑡)

𝐹
𝑇

(𝑥 (𝑠)) d𝑠𝑍∫
𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠.

(22)

Then, we can get

L𝑉
4
≤ 𝜏
2

𝑒
𝛼𝑡

𝑥
𝑇

(𝑡) 𝑆𝑥 (𝑡)

− 𝑔 (𝜇) 𝑒
𝛼𝑡

∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) d𝑠𝑆 ∫
𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) d𝑠,

L𝑉
5
≤ ℎ
2

𝑒
𝛼𝑡

𝐹
𝑇

(𝑥 (𝑡)) 𝑍𝐹 (𝑥 (𝑡))

− 𝑘 (]) 𝑒
𝛼𝑡

∫

𝑡

𝑡−ℎ(𝑡)

𝐹
𝑇

(𝑥 (𝑠)) d𝑠𝑍∫
𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠.

(23)

On the other hand, it follows from Assumption (𝐻
2
) that

we can easily obtain

[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝐿

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

𝑖
𝑥
𝑖
(𝑡)] ≤ 0,

[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0) − 𝐿

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0) − 𝑙

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))] ≤ 0,

𝑖 = 1, 2, . . . , 𝑛.

(24)

Then we obtain

0 ≤ 𝛿
1
= − 2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝐿

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

𝑖
𝑥
𝑖
(𝑡)] ,

0 ≤ 𝛿
2
= − 2

𝑛

∑

𝑖=1

𝑦
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0)

−𝐿
𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))−𝑓

𝑖
(0)−𝑙
𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))] ,

𝛿
1
= − 2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝐿

𝑖
𝑥
𝑖
(𝑡)] [𝑓

𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

𝑖
𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑦
1𝑖
𝑓
2

𝑖
(0)

+ 2

𝑛

∑

𝑖=1

𝑦
1𝑖
𝑓
𝑖
(0) [2𝑓

𝑖
(𝑥
𝑖
(𝑡)) − (𝐿

𝑖
+ 𝑙
𝑖
) 𝑥
𝑖
(𝑡)]

≤ − 2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝐿

𝑖
𝑥
𝑖
(𝑡)] [𝑓

𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

𝑖
𝑥
𝑖
(𝑡)]

+

𝑛

∑

𝑖=1

[𝛼𝑓
2

𝑖
(𝑥
𝑖
(𝑡)) + 4𝛼

−1

𝑓
2

𝑖
(0) 𝑦
2

1𝑖
+ 𝛼𝑥
2

𝑖
(𝑡)

+𝛼
−1

𝑓
2

𝑖
(0) 𝑦
2

1𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2

] .

(25)

Similarly, one can get

𝛿
2
≤ − 2

𝑛

∑

𝑖=1

𝑦
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝐿

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

+ [𝛼𝑓
2

𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) + 4𝛼

−1

𝑓
2

𝑖
(0) 𝑦
2

2𝑖

+𝛼𝑥
2

𝑖
(𝑡 − 𝜏 (𝑡)) + 𝛼

−1

𝑓
2

𝑖
(0) 𝑦
2

2𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2

] .

(26)
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Denote

𝜁 (𝑡) = [𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) , 𝐹
𝑇

(𝑥 (𝑡)) ,

𝐹
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) , (∫

𝑡

𝑡−𝜏(𝑡)

𝑥 (𝑠) d𝑠)
𝑇

,

(∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠)
𝑇

]

𝑇

,

(27)

and combing with (16)–(26), we can get

𝑑𝑉 = L𝑉
1
𝑑𝑡 +L𝑉

2
𝑑𝑡 +L𝑉

3
𝑑𝑡 +L𝑉

4
𝑑𝑡 +L𝑉

5
𝑑𝑡

+ 2𝑃𝑒
𝛼𝑡

𝑥
𝑇

(𝑡) 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡)

≤ 𝑒
𝛼𝑡

𝜁
𝑇

(𝑡) Δ
1
𝜁 (𝑡) 𝑑𝑡 + 𝑒

𝛼𝑡

N
1
𝑑𝑡

+ 2𝑃𝑒
𝛼𝑡

𝑥 (𝑡) 𝐺 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑤 (𝑡) ,

(28)

where

N
1
= 𝛼
−1

𝐽
𝑇

𝑃𝐽

+

𝑛

∑

𝑖=1

[4𝛼
−1

𝑓
2

𝑖
(0) 𝑦
2

2𝑖
+ 𝛼
−1

𝑓
2

𝑖
(0) 𝑦
2

1𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2

+4𝛼
−1

𝑓
2

𝑖
(0) 𝑦
2

2𝑖
+ 𝛼
−1

𝑓
2

𝑖
(0) 𝑦
2

2𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2

] .

(29)

By integrating both sides of (28) in time interval 𝑡 ∈ [𝑡
0
, 𝑡]

and then taking expectation results in

𝐾𝑒
𝛼𝑡

‖𝑥 (𝑡)‖
2

≤ 𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥 (𝑡
0
)) + 𝛼

−1

𝑒
𝛼𝑡

N
1

+ ∫

𝑡

𝑡0

2𝑃𝑒
𝛼𝑡

𝑥 (𝑠) 𝐺 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠))) d𝑤 (𝑠) ,

(30)

where𝐾 = 𝜆min(𝑃).
Therefore, one obtains

𝐸 {𝑉 (𝑥 (𝑡))} ≤ 𝐸 {𝑉 (𝑥 (𝑡
0
))} + 𝐸 {𝛼

−1

𝑒
𝛼𝑡

N
1
} , (31)

which implies

𝐸‖𝑥 (𝑡)‖
2

≤

𝑒
−𝛼𝑡

𝐸 {𝑉 (𝑥 (𝑡
0
))} + 𝛼

−1N
1

𝐾

. (32)

If one chooses 𝐵 = (1 + 𝛼
−1N
1
)/𝐾 > 0, then, for initial

value 𝜑 ∈ CF0
, there is 𝑡 = 𝑡



(𝜑) > 0, such that
𝑒
−𝛼𝑡

𝐸{𝑉(𝑥(𝑡
0
))} ≤ 1 for all 𝑡 ≥ 𝑡. According to Definition 1,

we have 𝐸‖𝑥(𝑡, 𝜑)‖2 ≤ 𝐵 for all 𝑡 ≥ 𝑡. That is to say, system
(2) is mean-square ultimate boundedness.This completes the
proof.

Theorem 6. If all of the conditions of Theorem 5 hold, then
there exists an attractor A

𝐵
= {𝜑 ∈ CF0

| 𝐸‖𝜑(𝑠)‖
2

≤ 𝐵}

for the solutions of system (2).

Proof. If one chooses 𝐵 = (1 + 𝛼
−1N
1
)/𝐾 > 0, Theorem 5

shows that, for any 𝜑, there is 𝑡 > 0, such that 𝐸‖𝑥(𝑡, 𝜑)‖2 ≤
𝐵 for all 𝑡 ≥ 𝑡

. Let A
𝐵

denote by A
𝐵

= {𝜑 ∈

CF0
| 𝐸‖𝜑(𝑠)‖

2

≤ 𝐵}. Clearly, A
𝐵
is closed, bounded, and

invariant. Furthermore, lim
𝑡→∞

sup inf
𝑦∈A
𝐵
‖𝑥(𝑡, 𝜑)−𝑦‖ = 0.

Therefore, A
𝐵
is an attractor for the solutions of system (2).

This completes the proof.

Corollary 7. In addition to that all of the conditions of
Theorem 5 hold, if 𝐽 = 0, 𝐺(𝑡, 0, 0) = 0, and 𝑓

𝑖
(0) = 0

for all 𝑖 = 1, 2, . . . , 𝑛, then system (2) has a trivial solution
𝑥(𝑡) ≡ 0, and the trivial solution of system (2) is mean-square
exponentially stable.

Proof. If 𝐽 = 0 and 𝑓
𝑖
(0) = 0 (𝑖 = 1, 2, . . . , 𝑛), then N

1
= 0,

and it is obvious that system (2) has a trivial solution 𝑥(𝑡) ≡ 0.
FromTheorem 5, one has

𝐸




𝑥 (𝑡, 𝜑)






2

≤ 𝐾
∗

𝑒
−𝛼𝑡

, ∀𝜑, (33)

where 𝐾∗ = 𝐸{𝑉(𝑥(𝑡
0
))}/𝐾. Therefore, the trivial solution of

system (2) is mean-square exponentially stable. This com-
pletes the proof.

According to Theorem 5–Corollary 7, we will present
conditions of mean-square ultimate boundedness for the
switched systems (3) by applying the average dwell time
method in the follow-up studies.

Theorem 8. If there are constants 𝜇, ] such that ̇𝜏(𝑡) ≤ 𝜇,
̇
ℎ(𝑡) ≤ ], we denote 𝑔(𝜇), 𝑘(]) as

𝑔 (𝜇) = {

(1 − 𝜇) 𝑒
−𝛼𝜏

, 𝜇 ≤ 1;

1 − 𝜇, 𝜇 ≥ 1,

𝑘 (]) = {
(1 − ]) 𝑒−𝛼ℎ, ] ≤ 1;

1 − ], ] ≥ 1.

(34)

For a given constant 𝛼 > 0, if there exist positive definite
matrixs 𝑄

𝑖
,𝑅
𝑖
, 𝑆
𝑖
, 𝑍
𝑖
, 𝑈
1𝑖
, 𝑈
2𝑖
, 𝑃
𝑖
= diag (𝑝

𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝑛
),

𝑌
𝑖
= diag (𝑌

𝑖1
, 𝑌
𝑖2
, . . . , 𝑌

𝑖𝑛
), 𝑖 = 1, 2, such that the following

condition holds

Δ
𝑖1
=

[

[

[

[

[

[

Φ
𝑖11

Φ
𝑖12

Φ
𝑖13

Φ
𝑖14

0 Φ
𝑖16

∗ Φ
𝑖22

0 Φ
𝑖24

0 0

∗ ∗ Φ
𝑖33

0 0 0

∗ ∗ ∗ Φ
𝑖44

Φ
𝑖55

0

∗ ∗ ∗ ∗ 0 Φ
𝑖66

]

]

]

]

]

]

< 0, (35)
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where

Φ
𝑖11
= 2𝛼𝑃

𝑖
− 2𝐷𝑃

𝑖
+ 𝑄
𝑖
+ 𝜏
2

𝑆
𝑖
− 2Σ
1
𝑌
1
+ 𝛼𝐼 + 𝑈

𝑇

1𝑖

𝑃𝑈
1𝑖
,

Φ
𝑖12
= 𝑈
𝑇

1𝑖

𝑃𝑈
2𝑖
, Φ

𝑖13
= 𝑃
𝑖
𝐴
𝑖
+ Σ
2
𝑌
1
,

Φ
𝑖14
= 𝑃
𝑖
𝐵
𝑖
, Φ

16
= 𝑃
𝑖
𝐶
𝑖
,

Φ
𝑖22
= −𝑔 (𝜇)𝑄

𝑖
− 2Σ
1
𝑌
2
+ 𝛼𝐼 + 𝑈

𝑇

2𝑖

𝑃𝑈
2𝑖
,

Φ
𝑖24
= Σ
2
𝑌
2
, Φ

𝑖33
= 𝑅
𝑖
+ ℎ
2

𝑍
𝑖
− 2𝑌
1
+ 𝛼𝐼,

Φ
𝑖44
= −𝑘 (]) 𝑅

𝑖
− 2𝑌
2
+ 𝛼𝐼, Φ

𝑖55
= −𝑔 (𝜇) 𝑆

𝑖
,

Φ
𝑖66
= −𝑘 (]) 𝑍

𝑖
.

(36)

Then system (3) is mean-square ultimate boundedness for any
switching signal with average dwell time satisfying

𝑇
𝛼
> 𝑇
∗

𝛼
=

lnRmax
𝛼

, (37)

whereRmax = max
𝑘∈Σ,1≤𝑖≤𝑛

{R
𝑖𝑘
}.

Proof. Define the Lyapunov functional candidate

𝑉
𝜎(𝑡)

= 𝑒
𝛼𝑡

𝑥
𝑇

(𝑡) 𝑃
𝜎(𝑡)
𝑥 (𝑡)

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑥
𝑇

(𝑠) 𝑄
𝜎(𝑡)
𝑒
𝛼𝑠

𝑥 (𝑠) d𝑠

+ ∫

𝑡

𝑡−ℎ(𝑡)

𝐹
𝑇

(𝑥 (𝑠)) 𝑅
𝜎(𝑡)
𝑒
𝛼𝑠

𝐹 (𝑥 (𝑠)) d𝑠

+ 𝜏∫

0

−𝜏(𝑡)

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝑆
𝜎(𝑡)
𝑒
𝛼𝑠

𝑥 (𝑠) d𝑠 d𝜃

+ ℎ∫

0

−ℎ(𝑡)

∫

𝑡

𝑡+𝜃

𝐹
𝑇

(𝑥 (𝑠)) 𝑍
𝜎(𝑡)
𝑒
𝛼𝑠

𝐹 (𝑥 (𝑠)) d𝑠 d𝜃.

(38)

From (16) and (32), we have the following result:

𝐸‖𝑥 (𝑡)‖
2

≤

R
0
𝐸




𝑥 (𝑡
0
)





2

𝑒
−𝛼(𝑡−𝑡0)

𝐾

+

Λ

𝐾

,
(39)

where Λ = 𝛼−1N
1
,R
0
is a positive constant.

When 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
], the 𝑖

𝑘
th subsystem is activated; from

(39) andTheorem 5,we can get

𝐸‖𝑥 (𝑡)‖
2

≤

R
𝑖𝑘
𝐸




𝑥 (𝑡
𝑘
)





2

𝑒
−𝛼(𝑡−𝑡𝑘)

𝐾
𝑖𝑘

+

Λ

𝐾
𝑖𝑘

= 𝐻
𝑖𝑘
𝐸




𝑥 (𝑡
𝑘
)





2

𝑒
−𝛼(𝑡−𝑡𝑘)

+ 𝐽
𝑖𝑘
,

(40)

where R
𝑖𝑘
is a positive constant, 𝐾

𝑖𝑘
= 𝜆min(𝑃𝑖), 𝐻𝑖𝑘 =

R
𝑖𝑘
/𝐾
𝑖𝑘
, 𝐽
𝑖𝑘
= Λ/𝐾

𝑖𝑘
.

Since the system state is continuous, it follows from (40)
that

𝐸‖𝑥 (𝑡)‖
2

≤

R
𝑖𝑘





𝑥 (𝑡
𝑘
)





2

𝑒
−𝛼(𝑡−𝑡𝑘)

𝐾
𝑖𝑘

+

Λ

𝐾
𝑖𝑘

= 𝐻
𝑖𝑘
𝐸




𝑥 (𝑡
𝑘
)





2

𝑒
−𝛼(𝑡−𝑡𝑘)

+ 𝐽
𝑖𝑘
≤ ⋅ ⋅ ⋅

≤ 𝑒
∑
𝑘

V=0 ln𝐻𝑖V−𝛼(𝑡−𝑡0)𝐸




𝑥 (𝑡
0
)





2

+ [𝐻
𝑖𝑘
𝑒
−𝛼(𝑡−𝑡𝑘)

𝐽
𝑖𝑘
+ 𝐻
𝑖𝑘
𝐻
𝑖𝑘−1
𝑒
−𝛼(𝑡−𝑡𝑘−1)

𝐽
𝑖𝑘−1

+ 𝐻
𝑖𝑘
𝐻
𝑖𝑘−1
𝐻
𝑖𝑘−2
𝑒
−𝛼(𝑡−𝑡𝑘−2)

𝐽
𝑖𝑘−2
+ ⋅ ⋅ ⋅

+𝐻
𝑖𝑘
𝐻
𝑖𝑘−1
𝐻
𝑖𝑘−2
⋅ ⋅ ⋅ 𝐻
𝑖1
𝑒
−𝛼(𝑡−𝑡1)

𝐽
𝑖1
+ 𝐽
𝑖𝑘
]

≤ 𝑒
(𝑘+1) ln𝐻max−𝛼(𝑡−𝑡0)

𝐸




𝑥 (𝑡
0
)





2

+ [𝐻

𝑘

max𝐽max + 𝐻
𝑘−1

max𝐽max + 𝐻
𝑘−2

max𝐽max

+ ⋅ ⋅ ⋅ + 𝐻

2

max𝐽max + 𝐻max𝐽max + 𝐽max]

≤ 𝐻max𝑒
𝑘 ln𝐻max−𝛼(𝑡−𝑡0)

𝐸




𝑥 (𝑡
0
)





2

+

𝐽max

𝐻max − 1
[𝐻

𝑘+1

max − 1]

≤ 𝐻max𝑒
ln𝐻max𝑁𝜎(𝑡0 ,𝑡)−𝛼(𝑡−𝑡0)

𝐸




𝑥 (𝑡
0
)





2

+

𝐽max

𝐻max − 1
[𝐻

𝑘+1

max − 1]

≤

Rmax𝑒
𝑁0 lnRmax−(𝛼−(lnRmax/𝑇𝛼))(𝑡−𝑡0)

𝐾
𝑘+1

min
𝐸




𝑥 (𝑡
0
)





2

+

Λ [(R𝑛+1max/𝐾
𝑛+1

min) − 1]

Rmax − 𝐾min
,

(41)

where𝐾min = min
𝑖𝑘
{𝐾
𝑖𝑘
},𝐻max = max

𝑖𝑘
{𝐻
𝑖𝑘
}.

If one chooses 𝐵 = (1/𝐾min) + Λ[(R
𝑛+1

max/𝐾
𝑛+1

min) −
1]/(Rmax − 𝐾min) > 0, then, for initial value
𝜑 ∈ CF0

, there is 𝑡


= 𝑡


(𝜑) > 0, such that
Rmax𝑒

𝑁0 lnRmax−(𝛼−(lnRmax/𝑇𝛼))(𝑡−𝑡0)
𝐸‖𝑥(𝑡

0
)‖
2

≤ 1 for all 𝑡 ≥ 𝑡.
According to Definition 1, we have 𝐸‖𝑥(𝑡, 𝜑)‖2 ≤ 𝐵 for all
𝑡 ≥ 𝑡

. That is to say, system (3) is mean-square ultimate
boundedness, and the proof is completed.

Remark 9. In this paper, we construct two piecewise func-
tions 𝑔(𝜇), 𝑘(]) to remove the restrictive condition 𝜇 < 1 and
] < 1 in the results, which have reduced the conservatism of
the obtained results and also avoid the computational com-
plexity.

Remark 10. Thecondition (35) is given as in the formof linear
matrix inequalities, which are more relaxing than the alge-
braic formulation. Furthermore, by using the MATLAB LMI



8 Abstract and Applied Analysis

toolbox, we can check the feasibility of (35) straightforward
without tuning any parameters.

Theorem 11. If all of the conditions of Theorem 8 hold, then
there exists an attractor A

𝐵
for the solutions of system (3),

where A
𝐵
= {𝜑 ∈ CF0

| 𝐸‖𝜑(𝑠)‖
2

≤ 𝐵}.

Proof. If one chooses 𝐵 = (1/𝐾min) + Λ[(R
𝑛+1

max/𝐾
𝑛+1

min) −
1]/(Rmax −𝐾min) > 0, Theorem 8 shows that, for any 𝜑, there
is 𝑡 > 0, such that 𝐸‖𝑥(𝑡, 𝜑)‖2 ≤ 𝐵 for all 𝑡 ≥ 𝑡

.
Let A

𝐵
denote by A

𝐵
= {𝜑 ∈ CF0

| 𝐸‖𝜑(𝑠)‖
2

≤ 𝐵}.
Clearly, A

𝐵
is closed, bounded, and invariant. Furthermore,

lim
𝑡→∞

sup inf
𝑦∈A
𝐵

‖𝑥(𝑡, 𝜑) − 𝑦‖ = 0. Therefore, A
𝐵
is an

attractor for the solutions of system (3). This completes the
proof.

Corollary 12. In addition to all that of the conditions of
Theorem 8 hold, if 𝐽 = 0, 𝐺(𝑡, 0, 0) = 0 and 𝑓

𝑖
(0) = 0

for all 𝑖 = 1, 2, . . . , 𝑛, then system (3) has a trivial solution
𝑥(𝑡) ≡ 0, and the trivial solution of system (3) is mean-square
exponentially stable.

Proof. If 𝐽 = 0 and 𝑓
𝑖
(0) = 0 for all 𝑖 = 1, 2, . . . , 𝑛, then it is

obvious that system (3) has a trivial solution 𝑥(𝑡) ≡ 0. From
Theorem 8, one has

𝐸




𝑥 (𝑡, 𝜑)






2

≤ �̃�
∗

𝑒
−𝛼𝑡

, ∀𝜑, (42)

where �̃�∗ = (Rmax𝑒
𝑁0 lnRmax−(𝛼−(lnRmax/𝑇𝛼))(𝑡−𝑡0)

𝐸‖𝑥(𝑡
0
)‖
2

/

𝐾
𝑘+1

min. Therefore, the trivial solution of system (3) is mean-
square exponentially stable. This completes the proof.

Remark 13. Assumption (𝐻
3
) is less conservative than that in

[17] since the constants 𝑙
𝑗
and 𝐿

𝑗
are allowed to be positive,

negative, or zero. Hence, the resulting activation functions
𝑓(⋅) could be nonmonotonic and are more general than the
usual forms |𝑓

𝑗
(𝑢)| ≤ 𝐾

𝑗
|𝑢|,𝐾
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛. Moreover,

unlike the bounded case, there will be no equilibrium point
for the switched system (3) under the assumption (𝐻

3
).

For this reason, to investigate the asymptotic behavior (the
ultimate boundedness and the existence of attractor) of
switched system that contains mixed delays is more complex
and challenge.

Remark 14. In this paper, the chatter bound 𝑁
0
is a positive

integer, which is more practical in significance and can
include the model𝑁

0
= 0 in [16, 25, 26] as a special case.

Remark 15. If Σ = 0, which implies that the switched delay
system (3) reduces to the usual stochastic CNN with delays.
In this case, attractor and ultimate boundedness are discussed
in [17]. And when𝑈

1
= 𝑈
2
= 0, the model in our paper turns

out to be a switchedCNNwithmixed delays; to the best of our
knowledge, there are no published results in this aspect yet.
Thus, themain results of this paper are novel.Moreover, when
uncertainties appear in the switched stochastic CNN system
(3), we can obtain the corresponding results, by applying the
similar method as in [25].

4. Illustrative Examples

In this section, we shall give a numerical example to demon-
strate the validity and effectiveness of our results. Consider
the switched cellular neural networks with two subsystems.

Consider the switched stochastic cellular neural network
system (3) with 𝑓

𝑖
(𝑥
𝑖
(𝑡)) = 0.5 tanh(𝑥

𝑖
(𝑡)),𝑓
𝑖
(0) = 0 (𝑖 = 1, 2),

𝜏(𝑡) = 0.25sin2(𝑡), ℎ(𝑡) = 0.3sin2(𝑡), and the connection
weight matrices as follows:

𝐴
1
= (

0.3 0.1

0.2 0.2
) , 𝐵

1
= (

0.2 0

0.3 0.5
) ,

𝐶
1
= (

0.2 −0.1

0.3 0.1
) , 𝑈

11
= (

0.1 0

−0.1 0.2
) ,

𝑈
21
= (

0.2 0.1

0 0.1
) , 𝐴

2
= (

0.2 0.4

0.1 0.3
) ,

𝐵
2
= (

0.1 0

−0.1 0.2
) , 𝐶

2
= (

0.3 0.2

0.1 0.2
) ,

𝑈
12
= (

0.2 0.1

0 0.3
) , 𝑈
22
= (

0.1 0

0.2 0.1
) .

(43)

From assumptions (𝐻
1
)–(𝐻
3
), we can gain 𝑑

𝑖
= 1, 𝑙
𝑖
=

0, 𝐿
𝑖
= 0.5, (𝑖 = 1, 2), 𝜏 = 0.25, ℎ = 0.3, and 𝜇 = 0.5, ] = 0.6.

Therefore, for 𝛼 = 0.5, by solving LMIs (35), we get

𝑃
1
= (

1.4968 0

0 1.4851
) , 𝑄

1
= (

1.6073 −0.0528

−0.0528 1.4567
) ,

𝑅
1
= (

1.8642 0.4698

0.4698 1.5241
) , 𝑆

1
= (

2.7467 0.0225

0.0225 1.9941
) ,

𝑍
1
= (

5.4373 0.0644

0.0644 4.5969
) , 𝑃

2
= (

1.4316 0

0 1.4528
) ,

𝑄
2
= (

1.6541 0.0229

0.0229 1.8391
) , 𝑅

2
= (

1.0837 0.4540

0.4540 1.2710
) ,

𝑆
2
= (

1.6888 0.4356

0.4356 1.6165
) , 𝑍

2
= (

4.5736 0.5698

0.5698 4.4524
) .

(44)

Using (37), we can get the average dwell time𝑇∗
𝑎
= 1.3445.

5. Conclusions

In this paper, we studied the switched stochastic cellular
neural networks with discrete time-varying delays and dis-
tributed time-varying delays. With the help of the average
dwell time approach, the novel multiple Lyapunov-Krasovkii
functionals methods, and some inequality techniques, we
obtain the new sufficient conditions guaranteeing the mean-
square ultimate boundedness, the existence of an attractor,
and the mean-square exponential stability. A numerical
example is also given to demonstrate our results. Further-
more, our derived conditions are presented in the forms of
LMIs, which aremore relaxing than the algebraic formulation
and can be easily checked in practice by the effective LMI
toolbox in MATLAB.
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This paper is concerned with a delay Lotka-Volterra model under regime switching diffusion in random environment. By using
generalized Itô formula, Gronwall inequality and Young’s inequality, some sufficient conditions for existence of global positive
solutions and stochastically ultimate boundedness are obtained, respectively. Finally, an example is given to illustrate the main
results.

1. Introduction

The delay differential equation

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑥 (𝑡) (𝑎 − 𝑏𝑥 (𝑡) + 𝑐𝑥 (𝑡 − 𝜏)) (1)

has been used to model the population growth of certain
species and is known as the delay Lotka-Volterramodel or the
delay logistic equation. The delay Lotka-Volterra model for 𝑛
interacting species is described by the 𝑛-dimensional delay
differential equation

𝑑𝑥 (𝑡)

𝑑𝑡

= diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡)) (𝑏 + 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏)) ,

(2)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛, 𝑏 = (𝑏

1
, . . . , 𝑏

𝑛
)
𝑇

∈ 𝑅
𝑛

+
,

𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛, and 𝐵 = (𝑏

𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛. There is an

extensive literature concernedwith the dynamics of this delay
model and have had lots of nice results.We here onlymention
Ahmad and Rao [1], Bereketoglu and Győri [2], Freedman
and Ruan [3], and in particular, the books by Gopalsamy [4],
Kolmanovskĭı and Myshkis [5], and Kuang [6], among many
others.

In the equations above, the state 𝑥(𝑡) denotes the popula-
tion sizes of the species. Naturally, we focus on the positive
solutions and also require the solutions not to explode at
a finite time. To guarantee the positive solutions without

explosion (i.e., the global positive solutions), some conditions
are in general needed to impose on the system parameters.
For example, it is generally assumed that 𝑎 > 0, 𝑏 > 0, and
𝑐 < 𝑏 for (1) while much more complicated conditions are
required on matrices 𝐴 and 𝐵 for (2) [7] (and the references
cited therein).

On the other hand, population systems are often sub-
ject to environmental noise, and the system will change
significantly, which may change the dynamics of solutions
significantly [8, 9]. It is therefore necessary to reveal how
the noise affects the dynamics of solutions for the delay
population systems. In fact, many authors have discussed
population systems subject to white noise [7–18]. Recall that
the parameter 𝑏

𝑖
in (2) represents the intrinsic growth rate

of species 𝑖. In practice we usually estimate it by an average
value plus an error term.According to thewell-known central
limit theorem, the error term follows a normal distribution.
In term ofmathematics, we can therefore replace the rate 𝑏

𝑖
by

𝑏
𝑖
+𝜎
𝑖
�̇�(𝑡), where �̇�(𝑡) is a white noise (i.e.,𝑤(𝑡) is a Brownian

motion) and 𝜎
𝑖
≥ 0 represents the intensity of noise. As a

result, (2) becomes a stochastic differential equation (SDE, in
short)

𝑑𝑥 (𝑡) = diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 + 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎𝑑𝑤 (𝑡)] ,

(3)

where 𝜎 = (𝜎
1
, . . . , 𝜎

𝑛
)
𝑇. We refer to [7] for more details.
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To our knowledge, much of the attention paid to envi-
ronmental noise is focused on white noise. But another type
of environmental noise, namely, color noise, say telegraph
noise, has been studied by many authors ([19–25] and the
references cited therein). In this context, telegraph noise can
be described as a random switching between two or more
environmental regimes, which differ in terms of factors such
as nutrition or rain falls [23, 24]. Usually, the switching
between different environments is memoryless and the wait-
ing time for the next switch has an exponential distribution.
This indicates that we may model the random environments
and other random factors in the system by a continuous-
time Markov chain 𝑟(𝑡), 𝑡 ≥ 0 with a finite state space
𝑆 = {1, 2, . . . , 𝑁}. Therefore stochastic delay population
system (3) in random environments can be described by the
following stochastic model with regime switching:

𝑑𝑥 (𝑡) = diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) ] .

(4)

The mechanism of ecosystem described by (4) can be
explained as follows. Assume that initially, the Markov chain
𝑟(0) = 𝜄 ∈ 𝑆. Then the ecosystem (4) obeys the SDE

𝑑𝑥 (𝑡)

= diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 (𝜄) + 𝐴 (𝜄) 𝑥 (𝑡) + 𝐵 (𝜄) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎 (𝜄) 𝑑𝑤 (𝑡)] ,

(5)

until the Markov chain 𝑟(𝑡) jumps to another state, say, 𝜍.
Therefore, the ecosystem (4) satisfies the SDE

𝑑𝑥 (𝑡)

= diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 (𝜍) + 𝐴 (𝜍) 𝑥 (𝑡) + 𝐵 (𝜍) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎 (𝜍) 𝑑𝑤 (𝑡)] ,

(6)

for a random amount of time until the Markov chain 𝑟(𝑡)
jumps to a new state again.

It should be pointed out that the stochastic popula-
tion systems under regime switching have received much
attention lately. For instance, the stochastic permanence and
extinction of a logistic model under regime switching were
considered in [20, 24], asymptotic results of a competitive
Lotka-Volterra model in random environment are obtain in
[25], a new single-species model disturbed by both white
noise and colored noise in a polluted environment was
developed and analyzed in [26], and a general stochastic
logistic systemunder regime switchingwas proposed andwas
treated in [27].

Equation (4) describes the dynamics of populations. This
paper is concernedwith the positive global solutions, ultimate
boundedness and extinction.The stochastic permanence and

asymptotic estimations of solutions will be investigated in the
next note [28].

This paper is organized as follows. In the next section,
some sufficient conditions for global positive solutions for
any initial positive value are given by using generalized Itô
formula, Gronwall inequality, and 𝑉-function techniques.
In Section 3, the stochastically ultimate boundedness of
solutions is obtained by virtue of Young’s inequality. Section 4
is devoted to the extinction of solutions. Finally, an example
and its numerical simulation are given to illustrate our main
results.

2. Global Positive Solution

Throughout this paper, unless otherwise specified, let (Ω,F,
{F
𝑡
}
𝑡≥0
, 𝑃) be a complete probability space with a filtration

{F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is right contin-
uous and F

0
contains all 𝑃-null sets). Let 𝑤(𝑡), 𝑡 ≥ 0, be a

scalar standard Brownian motion defined on this probability
space. We also denote by 𝑅𝑛

+
the positive cone in 𝑅𝑛, that is

𝑅
𝑛

+
= {𝑥 ∈ 𝑅

𝑛

: 𝑥
𝑖
> 0 for all 1 ≤ 𝑖 ≤ 𝑛}, and denote by

𝑅

𝑛

+
the nonnegative cone in 𝑅𝑛, that is 𝑅𝑛

+
= {𝑥 ∈ 𝑅

𝑛

: 𝑥
𝑖
≥

0 for all 1 ≤ 𝑖 ≤ 𝑛}. If 𝐴 is a vector or matrix, its transpose
is denoted by 𝐴𝑇. If 𝐴 is a matrix, its trace norm is denoted
by |𝐴| = √trace(𝐴𝑇𝐴), and its operator norm is denoted by
‖ 𝐴 ‖= sup{|𝐴𝑥| : |𝑥| = 1}. Moreover, let 𝜏 > 0 and denote by
𝐶([−𝜏, 0]; 𝑅

𝑛

+
) the family of continuous functions from [−𝜏, 0]

to 𝑅𝑛
+
.

In this paper we will use a lot of quadratic functions
of the form 𝑥

𝑇

𝐴𝑥 for the state 𝑥 ∈ 𝑅
𝑛

+
only. Therefore,

for a symmetric 𝑛 × 𝑛 matrix 𝐴, we naturally introduce the
following definition

𝜆
+

max (𝐴) = sup
𝑥∈𝑅
𝑛
+
,|𝑥|=1

𝑥
𝑇

𝐴𝑥. (7)

For more properties of 𝜆+max(𝐴), refer to the appendix in [7].
Let 𝑟(𝑡) be a right-continuous Markov chain on the

probability space, taking values in a finite state space 𝑆 =

{1, 2, . . . , 𝑁}, with the generator Γ = (𝛾
𝑢V) given by

𝑃 {𝑟 (𝑡 + 𝛿) = V | 𝑟 (𝑡) = 𝑢} = {
𝛾
𝑢V𝛿 + 𝑜 (𝛿) , if 𝑢 ̸= V,

1 + 𝛾
𝑢V𝛿 + 𝑜 (𝛿) , if 𝑢 = V,

(8)

where 𝛿 > 0, 𝛾
𝑢V is the transition rate from 𝑢 to V, and 𝛾

𝑢V ≥ 0

if 𝑢 ̸= V, while 𝛾
𝑢𝑢
= −∑V ̸= 𝑢 𝛾𝑢V. We assume that the Markov

chain 𝑟(⋅) is independent of the Brownian motion 𝑤(⋅). It is
well known that almost every sample path of 𝑟(⋅) is a right-
continuous step functionwith a finite number of jumps in any
finite subinterval of 𝑅

+
. As a standing hypothesis we assume

in this paper that the Markov chain 𝑟(𝑡) is irreducible. This is
a very reasonable assumption as it means that the system can
switch fromany regime to any other regime.This is equivalent
to the condition that for any 𝑢, V ∈ 𝑆, one can find finite
numbers 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
∈ 𝑆 such that 𝛾

𝑢𝑖1
𝛾
𝑖1𝑖2
⋅ ⋅ ⋅ 𝛾
𝑖𝑘V
> 0. Under

this condition, the Markov chain has a unique stationary
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(probability) distribution 𝜋 = (𝜋
1
, 𝜋
2
, . . . , 𝜋

𝑁
) ∈ 𝑅
1×𝑁 which

can be determined by solving the following linear equation:

𝜋Γ = 0 (9)

subject to

𝑁

∑

𝑖=1

𝜋
𝑖
= 1, 𝜋

𝑖
> 0, ∀𝑖 ∈ 𝑆. (10)

We refer to [12, 29] for the fundamental theory of stochastic
differential equations.

For convenience and simplicity in the following discus-
sion, for any constant sequence 𝑓

𝑖
(𝑘), (1 ≤ 𝑖 ≤ 𝑛, 𝑘 ∈ 𝑆) let

̌
𝑓 = max
1≤𝑖≤𝑛,𝑘∈𝑆

𝑓
𝑖
(𝑘) ,

̌
𝑓 (𝑘) = max

1≤𝑖≤𝑛

𝑓
𝑖
(𝑘) ,

̂
𝑓 = min
1≤𝑖≤𝑛,𝑘∈𝑆

𝑓
𝑖
(𝑘) ,

̂
𝑓 (𝑘) = min

1≤𝑖≤𝑛

𝑓
𝑖
(𝑘) .

(11)

As 𝑥(𝑡) in system (4) denotes populations size at time 𝑡, it
should be nonnegative. Thus for further study, we must give
some condition under which (4) has a unique global positive
solution.

Theorem 1. Assume that there are positive numbers 𝑐
1
, . . . , 𝑐

𝑛

and 𝜃 such that

max
𝑘∈𝑆

{𝜆
+

max [
1

2

𝐶 (𝐴 (𝑘) + 𝐴
𝑇

(𝑘)) 𝐶

+

1

4𝜃

𝐶𝐵 (𝑘) 𝐵
𝑇

(𝑘) 𝐶 + 𝜃𝐼]} ≤ 0,

(12)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
). Then for any given initial data

{𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅
𝑛

+
), there is a unique solution

𝑥(𝑡) to (4) on 𝑡 ≥ −𝜏 and the solution will remain in 𝑅𝑛
+
with

probability 1, namely, 𝑥(𝑡) ∈ 𝑅𝑛
+
for all 𝑡 ≥ −𝜏 a.s.

Proof. Since the coefficients of the equation are locally
Lipschitz continuous, for any given initial data {𝑥(𝑡) : −𝜏 ≤
𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

𝑛

+
), there is a unique maximal local

solution𝑥(𝑡) on 𝑡 ∈ [−𝜏, 𝜏
𝑒
), where 𝜏

𝑒
is the explosion time. To

show that the solution is global, we need to show that 𝜏
𝑒
= ∞

a.s.
Let 𝑘
0
> 0 be sufficiently lager such that

1

𝑘
0

≤ min
−𝜏≤𝑡≤0

|𝑥 (𝑡)| ≤ max
−𝜏≤𝑡≤0

|𝑥 (𝑡)| ≤ 𝑘
0
. (13)

For each integer 𝑘 ≥ 𝑘
0
, define the stopping time

𝜏
𝑘
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : 𝑥
𝑖
(𝑡) ∉ (

1

𝑘

, 𝑘)

for some 𝑖 = 1, 2, . . . , 𝑛} ,
(14)

where throughout this paper we set inf 0 = ∞ (as usual 0
denotes the empty set). Clearly, 𝜏

𝑘
is increasing as 𝑘 → ∞.

Set 𝜏
∞
= lim
𝑘→∞

𝜏
𝑘
, where 𝜏

∞
≤ 𝜏
𝑒
a.s. If 𝜏

∞
= ∞ a.s., then

𝜏
𝑒
= ∞ a.s. and 𝑥(𝑡) ∈ 𝑅𝑛

+
a.s. for all 𝑡 ≥ 0. In other words, to

complete the proof, one should show that 𝜏
∞
= ∞ a.s. Define

𝑉 : 𝑅
𝑛

+
→ 𝑅
+
by

𝑉 (𝑥) =

𝑛

∑

𝑖=1

𝑐
𝑖
(𝑥
𝑖
− 1 − log𝑥

𝑖
) . (15)

The nonnegativity of this function can be seen from 𝑢 − 1 −

log 𝑢 ≥ 0 on 𝑢 > 0. Let 𝑘 ≥ 𝑘
0
and 𝑇 > 0 be arbitrary. For

0 ≤ 𝑡 ≤ 𝜏
𝑘
∧ 𝑇, it is easy to see by the generalized Itô formula

that
𝐸𝑉 (𝑥 (𝜏

𝑘
∧ 𝑡)) = 𝑉 (𝑥 (0))

+ 𝐸∫

𝜏𝑘∧𝑡

0

𝐿𝑉 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏) , 𝑟 (𝑠)) 𝑑𝑠,

(16)

where 𝐿𝑉 : 𝑅𝑛
+
× 𝑅
𝑛

+
× 𝑆 → 𝑅 is defined by

𝐿𝑉 (𝑥, 𝑦, 𝑘) = 𝑥
𝑇

𝐶𝑏 (𝑘) + 𝑥
𝑇

𝐶𝐴 (𝑘) 𝑥 + 𝑥
𝑇

𝐶𝐵 (𝑘) 𝑦

− 𝑐
𝑇

(𝑏 (𝑘) + 𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦)

+

1

2

𝜎
𝑇

(𝑘) 𝐶𝜎 (𝑘) ,

(17)

and 𝑐 = (𝑐
1
, . . . , 𝑐

𝑛
)
𝑇. Using condition (12) we compute

𝑥
𝑇

𝐶𝐴 (𝑘) 𝑥 + 𝑥
𝑇

𝐶𝐵 (𝑘) 𝑦

≤

1

2

𝑥
𝑇

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶) 𝑥

+

1

4𝜃

𝑥
𝑇

𝐶𝐵 (𝑘) 𝐵
𝑇

(𝑘) 𝐶𝑥 + 𝜃




𝑦





2

= 𝑥
𝑇

[

1

2

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)

+

1

4𝜃

𝐶𝐵 (𝑘) 𝐵
𝑇

(𝑘) 𝐶 + 𝜃𝐼] 𝑥 − 𝜃|𝑥|
2

+ 𝜃




𝑦





2

≤ −𝜃|𝑥|
2

+ 𝜃




𝑦





2

.

(18)

Moreover, there is a constant𝐾
1
> 0 such that

max
𝑘∈𝑆

(𝑥
𝑇

𝐶𝑏 (𝑘) + 𝑐
𝑇

𝐴 (𝑘) 𝑥 + 𝑐
𝑇

𝐵 (𝑘) 𝑦 − 𝑐
𝑇

𝑏 (𝑘)

+

1

2

𝜎
𝑇

(𝑘) 𝐶𝜎 (𝑘))

≤ 𝐾
1
(1 + |𝑥| +





𝑦




) .

(19)

Substituting these inequalities into (17) yields

𝐿𝑉 (𝑥, 𝑦, 𝑖) ≤ 𝐾
1
(1 + |𝑥| +





𝑦




) − 𝜃|𝑥|

2

+ 𝜃




𝑦





2

. (20)
Noticing that 𝑢 ≤ 2(𝑢 − 1 − log 𝑢) + 2 on 𝑢 > 0, we compute

|𝑥| ≤

𝑛

∑

𝑖=1

𝑥
𝑖
≤

𝑛

∑

𝑖=1

[2 (𝑥
𝑖
− 1 − log𝑥

𝑖
) + 2]

≤ 2𝑛 +

2

𝑐

𝑛

∑

𝑖=1

𝑐
𝑖
(𝑥
𝑖
− 1 − log𝑥

𝑖
)

= 2𝑛 +

2

𝑐

𝑉 (𝑥) .

(21)



4 Abstract and Applied Analysis

It follows from (20) and (21) that

𝐿𝑉 (𝑥, 𝑦, 𝑘) ≤ 𝐾
2
(1 + 𝑉 (𝑥) + 𝑉 (𝑦)) − 𝜃|𝑥|

2

+ 𝜃




𝑦





2

, (22)

where 𝐾
2
is a positive constant. Substituting this inequality

into (16) yields

𝐸𝑉 (𝑥 (𝜏
𝑘
∧ 𝑡))

≤ 𝑉 (𝑥 (0)) + 𝐾
2
𝐸∫

𝜏𝑘∧𝑡

0

[1 + 𝑉 (𝑥 (𝑠)) + 𝑉 (𝑥 (𝑠 − 𝜏))] 𝑑𝑠

+ 𝐸∫

𝜏𝑘∧𝑡

0

[−𝜃𝑥
2

(𝑠) + 𝜃𝑥
2

(𝑠 − 𝜏)] 𝑑𝑠.

(23)

Compute

𝐸∫

𝜏𝑘∧𝑡

0

𝑉 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠

= 𝐸∫

𝜏𝑘∧(𝑡−𝜏)

−𝜏

𝑉 (𝑥 (𝑠)) 𝑑𝑠

≤ ∫

0

−𝜏

𝑉 (𝑥 (𝑠)) 𝑑𝑠 + 𝐸∫

𝜏𝑘∧𝑡

0

𝑉 (𝑥 (𝑠)) 𝑑𝑠

(24)

and, similarly

𝐸∫

𝜏𝑘∧𝑡

0

|𝑥 (𝑠 − 𝜏)|
2

𝑑𝑠 ≤ ∫

0

−𝜏

|𝑥(𝑠)|
2

𝑑𝑠 + 𝐸∫

𝜏𝑘∧𝑡

0

|𝑥(𝑠)|
2

𝑑𝑠.

(25)

Substituting these inequalities into (23) gives

𝐸𝑉 (𝑥 (𝜏
𝑘
∧ 𝑡)) ≤ 𝐾

3
+ 2𝐾
2
𝐸∫

𝜏𝑘∧𝑡

0

𝑉 (𝑥 (𝑠)) 𝑑𝑠

≤ 𝐾
3
+ 2𝐾
2
𝐸∫

𝑡

0

𝑉 (𝑥 (𝜏
𝑘
∧ 𝑠)) 𝑑𝑠

≤ 𝐾
3
+ 2𝐾
2
∫

𝑡

0

𝐸𝑉 (𝑥 (𝜏
𝑘
∧ 𝑠)) 𝑑𝑠,

(26)

where 𝐾
3

= 𝑉(𝑥(0)) + 𝐾
2
𝑇 + 𝐾

2
∫

0

−𝜏

𝑉(𝑥(𝑠))𝑑𝑠 +

𝜃 ∫

0

−𝜏

|𝑥(𝑠)|
2

𝑑𝑠.
By the Gronwall inequality, we obtain that

𝐸𝑉 (𝑥 (𝜏
𝑘
∧ 𝑇)) ≤ 𝐾

3
𝑒
2𝑇𝐾2

. (27)

Noting that for every 𝜔 ∈ {𝜏
𝑘
≤ 𝑇},

𝑉 (𝑥 (𝜏
𝑘
, 𝜔)) ≥ 𝑐 [(𝑘 − 1 − log 𝑘) ∧ (1/𝑘 − 1 + log 𝑘)] , (28)

one has by (27) that

𝐾
3
𝑒
2𝑇𝐾2

≥ 𝐸𝑉 (𝑥 (𝜏
𝑘
∧ 𝑇))

≥ 𝐸 [1
{𝜏𝑘≤𝑇}

(𝜔)𝑉 (𝑥 (𝜏
𝑘
∧ 𝑇, 𝜔))]

= 𝐸 [1
{𝜏𝑘≤𝑇}

(𝜔)𝑉 (𝑥 (𝜏
𝑘
, 𝜔))]

≥ 𝑐𝑃 {𝜏
𝑘
≤ 𝑇}

× [(𝑘 − 1 − log 𝑘) ∧ (1/𝑘 − 1 + log 𝑘)] ,

(29)

where 1
{𝜏𝑘≤𝑇}

is the indicator function of {𝜏
𝑘
≤ 𝑇}. Letting

𝑘 → ∞ gives lim
𝑘→∞

𝑃{𝜏
𝑘
≤ 𝑇} = 0 and hence𝑃{𝜏

∞
≤ 𝑇} =

0. Since 𝑇 > 0 is arbitrary, we must have 𝑃{𝜏
∞
< ∞} = 0, so

𝑃{𝜏
∞
= ∞} = 1 as required.

Assumption 2. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝐶)]} +max
𝑘∈𝑆






𝐶𝐵 (𝑘)






≤ 0,

(30)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
).

The following theorem is easy to verify in applications,
which will be used in the sections below.

Theorem 3. Under Assumption 2, for any given initial data
{𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

𝑛

+
), there is a unique solution

𝑥(𝑡) to (4) on 𝑡 ≥ −𝜏 and the solution will remain in 𝑅𝑛
+
with

probability 1, namely, 𝑥(𝑡) ∈ 𝑅𝑛
+
for all 𝑡 ≥ −𝜏 a.s.

Proof. Define𝑉 : 𝑅𝑛
+
→ 𝑅
+
by𝑉(𝑥) = ∑𝑛

𝑖=1
𝑐
𝑖
(𝑥
𝑖
−1− log𝑥

𝑖
).

The non-negativity of this function can be seen from 𝑢 − 1 −

log 𝑢 ≥ 0 on 𝑢 > 0, and then we have (16) and (17).
If 𝐵(𝑘) ̸= 0, 𝑘 ∈ 𝑆, then ‖𝐶𝐵(𝑘)‖ ̸= 0. Consequently

𝑥
𝑇

𝐶𝐴 (𝑘) 𝑥 + 𝑥
𝑇

𝐶𝐵 (𝑘) 𝑦

≤

1

2

𝑥
𝑇

(𝐶𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝐶) 𝑥

+

1

2






𝐶𝐵 (𝑘)







𝑥
𝑇

𝐶𝐵 (𝑘) 𝐵
𝑇

(𝑘) 𝐶𝑥

+

1

2






𝐶𝐵 (𝑘)











𝑦





2

=

1

2

𝑥
𝑇

(𝐶𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝐶) 𝑥

+

1

2






𝐶𝐵 (𝑘)






|𝑥|
2

+

1

2






𝐶𝐵 (𝑘)











𝑦





2

.

(31)

Otherwise ‖ 𝐶𝐵(𝑘) ‖= 0 for 𝐵(𝑘) = 0, 𝑘 ∈ 𝑆. In this case, we
also have that

𝑥
𝑇

𝐶𝐴 (𝑘) 𝑥 + 𝑥
𝑇

𝐶𝐵 (𝑘) 𝑦

≤

1

2

𝑥
𝑇

(𝐶𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝐶) 𝑥 +

1

2






𝐶𝐵 (𝑘)






|𝑥|
2

+

1

2






𝐶𝐵 (𝑘)











𝑦





2

.

(32)

Thus,

𝑥
𝑇

𝐶𝐴 (𝑘) 𝑥 + 𝑥
𝑇

𝐶𝐵 (𝑘) 𝑦

≤

1

2

𝑥
𝑇

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶) 𝑥 +

1

2






𝐶𝐵 (𝑘)






|𝑥|
2

+

1

2






𝐶𝐵 (𝑘)











𝑦





2

.

(33)



Abstract and Applied Analysis 5

Denote 𝜂 = max
𝑘∈𝑆
‖𝐶𝐵(𝑘)‖. By (33) and Assumption 2, one

has

𝑥
𝑇

𝐶𝐴 (𝑘) 𝑥 + 𝑥
𝑇

𝐶𝐵 (𝑘) 𝑦

≤

1

2

𝑥
𝑇

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶) 𝑥 +

1

2

𝜂|𝑥|
2

+

1

2

𝜂




𝑦





2

≤ max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝐶)]} |𝑥|
2

+

1

2

𝜂|𝑥|
2

+

1

2

𝜂




𝑦





2

≤ −

1

2

𝜂|𝑥|
2

+

1

2

𝜂




𝑦





2

.

(34)

The rest of the proof is similar to that of Theorem 1 and
omitted.

3. Ultimate Boundness

Theorem 3 shows that solutions of the SDE (4) will remain
in the positive cone 𝑅𝑛

+
. This nice property provides us

with a great opportunity to discuss how solutions vary in
𝑅
𝑛

+
in detail. In this section, we give the definitions of

stochastically ultimate boundedness of the SDE (4) and some
sufficient conditions under which solutions of SDE (4) are
stochastically ultimate bounded.

Definition 4. The solutions of (4) are called stochastically
ultimately bounded, if for any 𝜀 ∈ (0, 1), there exists a positive
constant 𝐻 = 𝐻(𝜀), such that the solutions of (4) with any
positive initial value have the property that

lim sup
𝑡→+∞

𝑃 {|𝑥 (𝑡)| > 𝐻} < 𝜀. (35)

Assumption 5. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

−𝜆 = max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝐶)]}

+max
𝑘∈𝑆






𝐶𝐵 (𝑘)






< 0,

(36)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
).

Theorem 6. Under Assumption 5, for any given initial data
{𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

𝑛

+
) and any given positive

constant 𝑝, there are two positive constants 𝐾
1
(𝑝) and 𝐾

2
(𝑝),

such that the solution 𝑥(𝑡) of (4) has the properties that

lim sup
𝑡→∞

𝐸|𝑥 (𝑡)|
𝑝

≤ 𝐾
1
(𝑝) , (37)

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

𝐸|𝑥 (𝑠)|
𝑝+1

𝑑𝑠 ≤ 𝐾
2
(𝑝) . (38)

Proof. By Theorem 3, the solution 𝑥(𝑡) will remain in 𝑅𝑛
+
for

all 𝑡 ≥ −𝜏 with probability 1. If max
𝑘∈𝑆
‖𝐶𝐵(𝑘)‖ > 0, we let

𝜂 = (𝑝 + 1)
−1max

𝑘∈𝑆
‖𝐶𝐵(𝑘)‖ and 𝛾 = 𝜏−1 log((𝜆 + 2𝜂)/2𝜂) >

0. Define 𝑉(𝑥, 𝑡) = 𝑒𝛾𝑡(∑𝑛
𝑖=1
𝑐
𝑖
𝑥
𝑖
)
𝑝

= 𝑒
𝛾𝑡

(𝑐
𝑇

𝑥)
𝑝. It has by the

generalized Itô formula that

𝑑𝑉 (𝑥 (𝑡) , 𝑡) = 𝐿𝑉 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡, 𝑟 (𝑡)) 𝑑𝑡

+ 𝑝𝑒
𝛾𝑡

(𝑐
𝑇

𝑥 (𝑡))

𝑝−1

𝑥
𝑇

(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

(39)

where 𝐿𝑉 : 𝑅𝑛
+
× 𝑅
𝑛

+
× 𝑅
+
× 𝑆 → 𝑅 is defined by

𝐿𝑉 (𝑥, 𝑦, 𝑡, 𝑘)

= 𝑒
𝛾𝑡

{𝛾(𝑐
𝑇

𝑥)

𝑝

+ 𝑝(𝑐
𝑇

𝑥)

𝑝−1

𝑥
𝑇

𝐶 (𝑏 (𝑘) + 𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦)

+

1

2

𝑝 (𝑝 − 1) (𝑐
𝑇

𝑥)

𝑝−2

(𝑥
𝑇

𝐶𝜎 (𝑘))

2

} .

(40)

Meanwhile, by Assumption 5 and Young’s inequality, one gets

𝐿𝑉 (𝑥, 𝑦, 𝑡, 𝑘)

≤ 𝑒
𝛾𝑡

[𝛾|𝑐|
𝑝

|𝑥|
𝑝

+ 𝑝|𝑐|
𝑝

|𝑏 (𝑘)| |𝑥|
𝑝

+

1

2

𝑝 (𝑝 − 1) |𝑐|
𝑝

|𝜎 (𝑘)|
2

|𝑥|
𝑝

+𝑝(𝑐
𝑇

𝑥)

𝑝−1

𝑥
𝑇

𝐶 (𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦)]

≤ 𝑒
𝛾𝑡

{𝐾 (𝑝) |𝑥|
𝑝

+

1

2

𝑝(𝑐
𝑇

𝑥)

𝑝−1

𝑥

× (𝐶𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝐶) 𝑥
𝑇

+𝑝(𝑐
𝑇

𝑥)

𝑝−1 




𝐶𝐵 (𝑘)






|𝑥|




𝑦




}

≤ 𝑒
𝛾𝑡

𝐾(𝑝) |𝑥|
𝑝

+ 𝑒
𝛾𝑡

𝑝|𝑐|
𝑝−1

×max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝐶)]} |𝑥|
𝑝+1

+ 𝑒
𝛾𝑡

𝑝|𝑐|
𝑝−1






𝐶𝐵 (𝑘)






|𝑥|
𝑝 



𝑦





≤ 𝑒
𝛾𝑡

𝐾(𝑝) |𝑥|
𝑝

+ 𝑒
𝛾𝑡

𝑝|𝑐|
𝑝−1

×max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝐶)]} |𝑥|
𝑝+1

+ 𝑒
𝛾𝑡

𝑝|𝑐|
𝑝−1






𝐶𝐵 (𝑘)






(

𝑝

𝑝 + 1

|𝑥|
𝑝+1

+

1

𝑝 + 1





𝑦





𝑝+1

)

≤ 𝑒
𝛾𝑡

{𝐾 (𝑝) |𝑥|
𝑝

+ 𝑝|𝑐|
𝑝−1

[− (𝜆 + 𝜂) |𝑥|
𝑝+1

+ 𝜂




𝑦





𝑝+1

]}

≤ 𝑒
𝛾𝑡

{𝐾 (𝑝) |𝑥|
𝑝

−

1

2

𝑝𝜆|𝑐|
𝑝−1

|𝑥|
𝑝+1

+ 𝑝|𝑐|
𝑝−1

× [−(

1

2

𝜆 + 𝜂) |𝑥|
𝑝+1

+ 𝜂




𝑦





𝑝+1

]}

≤ 𝐻 (𝑝) 𝑒
𝛾𝑡

+ 𝑝𝜂|𝑐|
𝑝−1

𝑒
𝛾𝑡

(−𝑒
𝛾𝜏

|𝑥|
𝑝+1

+




𝑦





𝑝+1

) ,

(41)
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where

𝐾(𝑝) = max
𝑘∈𝑆

[𝛾|𝑐|
𝑝

+ 𝑝|𝑐|
𝑝

|𝑏 (𝑘)| +

1

2

𝑝 (𝑝 − 1) |𝑐|
𝑝

|𝜎 (𝑘)|
2

] ,

𝐻 (𝑝) = sup
𝑥∈𝑅+

(𝐾 (𝑝) |𝑥|
𝑝

−

1

2

𝑝𝜆|𝑐|
𝑝−1

|𝑥|
𝑝+1

) ∨ 1.

(42)

On the other hand,

∫

𝑡

0

𝑒
𝛾𝑠

|𝑥 (𝑠 − 𝜏)|
𝑝+1

𝑑𝑠

= 𝑒
𝛾𝜏

∫

𝑡

0

𝑒
𝛾(𝑠−𝜏)

|𝑥 (𝑠 − 𝜏)|
𝑝+1

𝑑𝑠

= 𝑒
𝛾𝜏

∫

𝑡−𝜏

−𝜏

𝑒
𝛾𝑠

|𝑥 (𝑠)|
𝑝+1

𝑑𝑠

≤ 𝑒
𝛾𝜏

∫

0

−𝜏

|𝑥 (𝑠)|
𝑝+1

𝑑𝑠 + 𝑒
𝛾𝜏

∫

𝑡

0

𝑒
𝛾𝑠

|𝑥 (𝑠)|
𝑝+1

𝑑𝑠,

(43)

by (41) and (43), we obtain that

𝑒
𝛾𝑡

𝐸 [𝑉 (𝑥 (𝑡))]

≤ 𝑉 (𝑥 (0)) + ∫

𝑡

0

𝐻(𝑝) 𝑒
𝛾𝑠

𝑑𝑠 + 𝑝|𝑐|
𝑝−1

𝜂

× ∫

𝑡

0

𝑒
𝛾𝑠

(−𝑒
𝛾𝜏

|𝑥 (𝑠)|
𝑝+1

+ |𝑥 (𝑠 − 𝜏)|
𝑝+1

) 𝑑𝑠

≤ 𝑉 (𝑥 (0)) +

𝐻 (𝑝)

𝛾

(𝑒
𝛾𝑡

− 1) + 𝑝|𝑐|
𝑝−1

𝜂𝑒
𝛾𝜏

∫

0

−𝜏

|𝑥 (𝑠)|
𝑝+1

𝑑𝑠,

(44)

which yields

lim sup
𝑡→∞

𝐸𝑉 (𝑥 (𝑡)) ≤

𝐻 (𝑝)

𝛾

. (45)

Since |𝑥(𝑡)| ≤ ∑
𝑛

𝑖=1
𝑥
𝑖
(𝑡) ≤ 𝑉(𝑥(𝑡))/𝑐, it has lim sup

𝑡→∞

𝐸|𝑥(𝑡)|
𝑝

≤ 𝐻(𝑝)/𝑐𝛾 and the desired assertion (37) follows
by setting 𝐾

1
(𝑝) = 𝐻(𝑝)/𝑐𝛾. It is easy to verify this result, if

max
𝑘∈𝑆
‖𝐶𝐵(𝑘)‖ = 0. We omit its proof here.

Define 𝑉(𝑥) = (𝑐𝑇𝑥)𝑝. By the generalized Itô formula, it
follows

𝑑𝑉 (𝑥 (𝑡)) = 𝐿𝑉 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑟 (𝑡)) 𝑑𝑡

+ 𝑝(𝑐
𝑇

𝑥 (𝑡))

𝑝−1

𝑥
𝑇

(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) ,

(46)

where 𝐿𝑉 : 𝑅𝑛
+
× 𝑅
𝑛

+
× 𝑆 → 𝑅 is defined by

𝐿𝑉 (𝑥, 𝑦, 𝑘) = 𝑝(𝑐
𝑇

𝑥)

𝑝−1

𝑥
𝑇

𝐶 [𝑏 (𝑘) + 𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦]

+

1

2

𝑝 (𝑝 − 1) (𝑐
𝑇

𝑥)

𝑝−2

(𝑥
𝑇

𝐶𝜎 (𝑘))

2

.

(47)

By Assumption 5 and Young’s inequality again,

𝐿𝑉 (𝑥, 𝑦, 𝑘)

≤ 𝑝|𝑐|
𝑝

|𝑏 (𝑘)| |𝑥|
𝑝

+

1

2

𝑝 (𝑝 − 1) |𝑐|
𝑝

|𝜎 (𝑘)|
2

|𝑥|
𝑝

+ 𝑝(𝑐
𝑇

𝑥)

𝑝−1

𝑥
𝑇

𝐶 (𝐴 (𝑘) 𝑥 + 𝐵 (𝑘)) 𝑦

≤ 𝑝|𝑐|
𝑝

|𝑏 (𝑘)| |𝑥|
𝑝

+

1

2

𝑝 (𝑝 − 1) |𝑐|
𝑝

|𝜎 (𝑘)|
2

|𝑥|
𝑝

+ 𝑝|𝑐|
𝑝−1

[− (𝜆 + 𝜂) |𝑥|
𝑝+1

+ 𝜂




𝑦





𝑝+1

] .

(48)

It is easy to compute

0 ≤ 𝐸𝑉 (𝑥 (0))

+ 𝐸∫

𝑡

0

[𝑝
̌
𝑏|𝑐|
𝑝

|𝑥 (𝑠)|
𝑝

+

1

2

𝑝




𝑝 − 1





|𝑐|
𝑝

�̌�
2

|𝑥 (𝑠)|
𝑝

− 𝑝|𝑐|
𝑝−1

(𝜆 + 𝜂) |𝑥 (𝑠)|
𝑝+1

+𝑝|𝑐|
𝑝−1

𝜂|𝑥 (𝑠 − 𝜏)|
𝑝+1

] 𝑑𝑠.

(49)

Moreover,

∫

𝑡

0

|𝑥 (𝑠 − 𝜏)|
𝑝+1

𝑑𝑠 ≤ ∫

0

−𝜏

|𝑥 (𝑠)|
𝑝+1

𝑑𝑠 + ∫

𝑡

0

|𝑥 (𝑠)|
𝑝+1

𝑑𝑠, (50)

hence, we get

1

2

𝜆𝑝|𝑐|
𝑝−1

𝐸∫

𝑡

0

|𝑥 (𝑠)|
𝑝+1

𝑑𝑠

≤ 𝐸𝑉 (𝑥 (0))

+ 𝐸∫

𝑡

0

[𝑝|𝑐|
𝑝 ̌
𝑏|𝑥 (𝑠)|

𝑝

+

1

2

𝑝




𝑝 − 1





|𝑐|
𝑝

�̌�
2

|𝑥 (𝑠)|
𝑝

− 𝑝(

𝜆

2

+ 𝜂) |𝑐|
𝑝−1

|𝑥 (𝑠)|
𝑝+1

+𝑝𝜂|𝑐|
𝑝−1

|𝑥 (𝑠 − 𝜏)|
𝑝+1

] 𝑑𝑠

≤ 𝐸𝑉 (𝑥 (0)) + 𝑝𝜂|𝑐|
𝑝−1

∫

0

−𝜏

|𝑥 (𝑠)|
𝑝+1

𝑑𝑠

+ 𝐸∫

𝑡

0

(𝑝|𝑐|
𝑝 ̌
𝑏|𝑥 (𝑠)|

𝑝

+

1

2

𝑝




𝑝 − 1





|𝑐|
𝑝

�̌�
2

|𝑥 (𝑠)|
𝑝

−

1

2

𝑝𝜆|𝑐|
𝑝−1

|𝑥 (𝑠)|
𝑝+1

)𝑑𝑠

≤ 𝐸𝑉 (𝑥 (0)) + 𝑝𝜂|𝑐|
𝑝−1

× ∫

0

−𝜏

|𝑥 (𝑠)|
𝑝+1

𝑑𝑠 + 𝐻 (𝑝) 𝑡,

(51)
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where 𝐻(𝑝) = sup
𝑥∈𝑅+

(𝑝|𝑐|
𝑝 ̌
𝑏|𝑥|
𝑝

+ (1/2)𝑝|𝑝 − 1||𝑐|
𝑝

�̌�
2

|𝑥(𝑠)|
𝑝

− (1/2)𝜆𝑝|𝑐|
𝑝−1

|𝑥|
𝑝+1

). This implies immediately that

lim sup
𝑡→∞

1

𝑡

𝐸∫

𝑡

0

|𝑥 (𝑠)|
𝑝+1

𝑑𝑠 ≤

2𝐻 (𝑝)

𝑝𝜆|𝑐|
𝑝−1

(52)

and the desired assertion (38) follows by setting 𝐾
2
(𝑝) =

2𝐻(𝑝)/𝑝𝜆|𝑐|
𝑝−1.

Remark 7. From (37) ofTheorem 6, there is a 𝑇 > 0 such that

𝐸|𝑥 (𝑡)|
𝑝

≤ 2𝐾
1
(𝑝) , ∀𝑡 ≥ 𝑇. (53)

Since 𝐸|𝑥(𝑡)|𝑝 is continuous, there is a𝐾
1
(𝑝, 𝑥
0
) such that

𝐸|𝑥 (𝑡)|
𝑝

≤ 𝐾
1
(𝑝, 𝑥
0
) for 𝑡 ∈ [0, 𝑇] . (54)

Let 𝐿(𝑝, 𝑥
0
) = max(2𝐾

1
(𝑝), 𝐾

1
(𝑝, 𝑥
0
)), we have

𝐸|𝑥 (𝑡)|
𝑝

≤ 𝐿 (𝑝, 𝑥
0
) , ∀𝑡 ∈ [0,∞) , (55)

which implies that the 𝑝th moment of any positive solution
of (4) is bounded.

Remark 8. Conclusion (38) of Theorem 6 shows that the
average in time of the 𝑝th (𝑝 > 1) moment of solutions of
(4) will be bounded.

Theorem 9. Solutions of (4) are stochastically ultimately
bounded under Assumption 5.

Proof. This can be easily verified by Chebyshev’s inequality
andTheorem 6.

4. Extinction

Assumption 10. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

|𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]}

+ 𝑐
−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)






≤ 0,

(56)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
) and 𝑐 = min

1≤𝑖≤𝑛
𝑐
𝑖
.

Theorem 11. Under Assumption 10, for any given initial data
{𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

𝑛

+
), the solution 𝑥(𝑡) of (4)

has the properties that

lim sup
𝑡→∞

1

𝑡

log |𝑥 (𝑡)| ≤
𝑛

∑

𝑖=1

𝜋
𝑘
𝛽 (𝑘) a.s., (57)

where𝛽(𝑘) = ̌
𝑏(𝑘)−(1/2)�̂�

2

(𝑘). Particularly, if ∑𝑁
𝑘=1

𝜋
𝑘
𝛽(𝑘) <

0, then

lim sup
𝑡→∞

1

𝑡

log |𝑥 (𝑡)| < 0 a.s. (58)

That is, the population will become extinct exponentially with
probability 1.

Proof. ByTheorem 3, the solution 𝑥(𝑡) will remain in 𝑅𝑛
+
for

all 𝑡 ≥ −𝜏 with probability 1. Define

𝑉 (𝑥) = 𝑐
𝑇

𝑥 =

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥
𝑖

on 𝑥 ∈ 𝑅𝑛
+
, (59)

where 𝑐 = (𝑐
1
, . . . , 𝑐

𝑛
)
𝑇. Then

𝑑𝑉 (𝑥 (𝑡)) = 𝑥
𝑇

(𝑡) 𝐶 [(𝑏 (𝑟 (𝑡) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏))) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] .

(60)

By the generalized Itô formula,

𝑑 log𝑉 (𝑥 (𝑡))

=

1

𝑉 (𝑥 (𝑡))

𝑑𝑉 (𝑥 (𝑡)) −

1

2𝑉
2
(𝑥 (𝑡))

(𝑑𝑉 (𝑥 (𝑡)))
2

=

1

𝑉 (𝑥 (𝑡))

𝑥
𝑇

(𝑡) 𝐶

× [(𝑏 (𝑟 (𝑡) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏))) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)]

−

1

2𝑉
2
(𝑥 (𝑡))






𝑥
𝑇

(𝑡) 𝐶𝜎 (𝑟 (𝑡))







2

𝑑𝑡.

(61)

It is computed

𝑥
𝑇

(𝑡) 𝐶𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

𝑉 (𝑥 (𝑡))

+

𝑥
𝑇

(𝑡) 𝐶𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)

𝑉 (𝑥 (𝑡))

≤

𝑥
𝑇

(𝑡) (𝐶𝐴 (𝑟 (𝑡)) + 𝐴
𝑇

(𝑟 (𝑡)) 𝐶) 𝑥 (𝑡)

2𝑉 (𝑥 (𝑡))

+






𝐶𝐵 (𝑟 (𝑡))






|𝑥 (𝑡 − 𝜏)|

𝑐

≤ (|𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]}

+𝑐
−1max
𝑘∈𝑆

(






𝐶𝐵 (𝑘)






)) |𝑥 (𝑡)|

+ 𝑐
−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)






(− |𝑥 (𝑡)| + |𝑥 (𝑡 − 𝜏)|) ,

(62)

𝑥
𝑇

(𝑡) 𝐶𝑏 (𝑟 (𝑡))

𝑉 (𝑥 (𝑡))

−






𝑥
𝑇

(𝑡) 𝐶𝜎 (𝑟 (𝑡))







2

2𝑉
2
(𝑡)

≤
̌
𝑏 (𝑟 (𝑡)) −

1

2

�̂�
2

(𝑟 (𝑡)) = 𝛽 (𝑟 (𝑡)) .

(63)
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Substituting these two inequalities into (61) yields

log𝑉 (𝑥 (𝑡))

≤ log𝑉 (𝑥 (0)) + ∫
𝑡

0

𝛽 (𝑟 (𝑠)) 𝑑𝑠 + 𝑐
−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)







× ∫

𝑡

0

[− |𝑥 (𝑠)| + |𝑥 (𝑠 − 𝜏)|] 𝑑𝑠 +𝑀 (𝑡)

≤ log𝑉 (𝑥 (0)) + 𝑐−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)






∫

0

−𝜏

𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝛽 (𝑟 (𝑠)) 𝑑𝑠 + 𝑀 (𝑡) ,

(64)

where𝑀(𝑡) is a martingale defined by

𝑀(𝑡) = ∫

𝑡

0

𝑥
𝑇

(𝑠) 𝐶𝜎 (𝑟 (𝑠))

𝑉 (𝑥 (𝑠))

𝑑𝑤 (𝑡) . (65)

The quadratic variation of this martingale is

⟨𝑀,𝑀⟩
𝑡
= ∫

𝑡

0






𝑥
𝑇

(𝑠) 𝐶𝜎 (𝑟 (𝑠))







2

𝑉
2
(𝑥 (𝑠))

𝑑𝑠 ≤ �̌�
2

𝑡,
(66)

hence

lim sup
𝑡→∞

⟨𝑀,𝑀⟩
𝑡

𝑡

≤ �̌�
2 a.s. (67)

Applying the strong law of large numbers for martingales
[29], we therefore have

lim
𝑡→∞

𝑀(𝑡)

𝑡

= 0 a.s. (68)

It finally follows from (64) by dividing 𝑡 on the both sides and
then letting 𝑡 → ∞ that

lim sup
𝑡→∞

log𝑉 (𝑥 (𝑡))
𝑡

≤ lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

𝛽 (𝑟 (𝑠)) 𝑑𝑠

=

𝑁

∑

𝑘=1

𝜋
𝑘
𝛽 (𝑘) a.s.,

(69)

which is the required assertion (57).

Similarly, we can prove the following conclusions.

Theorem 12. Assume that Assumption 10 holds. Assume
moreover that the noise intensities 𝜎(𝑖) are sufficiently large in
the sense that

𝜎
𝑖
(𝑘) 𝜎
𝑗
(𝑘) − 𝑏

𝑖
(𝑘) − 𝑏

𝑗
(𝑘) > 0,

1 ≤ 𝑖, 𝑗 ≤ 𝑛, for each 𝑘 ∈ 𝑆,
(70)

then for any given initial data {𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈

𝐶([−𝜏, 0]; 𝑅
𝑛

+
), the solution 𝑥(𝑡) of (4) has the properties that

lim sup
𝑡→∞

1

𝑡

log |𝑥 (𝑡)| ≤ −1
2

𝑁

∑

𝑘=1

𝜋
𝑘
𝜑 (𝑘) a.s., (71)

where

𝜑 (𝑘) = min
1≤𝑖,𝑗≤𝑛

(𝜎
𝑖
(𝑘) 𝜎
𝑗
(𝑘) − 𝑏

𝑖
(𝑘) − 𝑏

𝑗
(𝑘)) > 0. (72)

That is, the population will become extinct exponentially with
probability 1.

Proof. Let 𝑉 : 𝑅
𝑛

+
→ 𝑅

+
be the same as defined in the

proof of Theorem 11, so we have (60), (61), and (62). It is also
computed

𝑥
𝑇

(𝑡) 𝐶𝑏 (𝑟 (𝑡))

𝑉 (𝑥 (𝑡))

−






𝑥
𝑇

(𝑥 (𝑡)) 𝐶𝜎 (𝑟 (𝑡))







2

2𝑉
2
(𝑥 (𝑡))

=

2𝑥
𝑇

(𝑡) 𝐶𝑏 (𝑟 (𝑡)) 𝑐
𝑇

𝑥 (𝑡)

2𝑉
2
(𝑥 (𝑡))

−

𝑥
𝑇

(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝜎
𝑇

(𝑟 (𝑡)) 𝐶𝑥 (𝑡)

2𝑉
2
(𝑥 (𝑡))

=

2𝑥
𝑇

(𝑡) 𝐶𝑏 (𝑟 (𝑡)) 1⃗𝐶𝑥 (𝑡)

2𝑉
2
(𝑥 (𝑡))

−

𝑥
𝑇

(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝜎
𝑇

(𝑟 (𝑡)) 𝐶𝑥 (𝑡)

2𝑉
2
(𝑥 (𝑡))

=

𝑥
𝑇

(𝑡) 𝐶𝑏 (𝑟 (𝑡)) 1⃗ + 1⃗
𝑇

𝑏
𝑇

(𝑟 (𝑡)) 𝐶𝑥 (𝑡)

2𝑉
2
(𝑥 (𝑡))

−

𝑥
𝑇

(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝜎
𝑇

(𝑟 (𝑡)) 𝐶𝑥 (𝑡)

2𝑉
2
(𝑥 (𝑡))

= −

𝑥
𝑇

(𝑡) 𝐶𝑄 (𝑟 (𝑡)) 𝐶𝑥 (𝑡)

2𝑉
2
(𝑥 (𝑡))

,

(73)

where 1⃗ = (1, . . . , 1) and 𝑄(𝑘) = 𝜎(𝑘)𝜎
𝑇

(𝑘) − (𝑏(𝑘)1⃗ +

1⃗
𝑇

𝑏
𝑇

(𝑘)). Substituting (62) and (73) into (61) yields

log𝑉 (𝑥 (𝑡))

≤ log𝑉 (𝑥 (0)) − ∫
𝑡

0

𝑥
𝑇

(𝑠) 𝐶𝑄 (𝑟 (𝑠)) 𝐶𝑥 (𝑠)

2𝑉
2
(𝑥 (𝑠))

𝑑𝑠

+ 𝑐
−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)






∫

𝑡

0

[− |𝑥 (𝑠)| + |𝑥 (𝑠 − 𝜏)|] 𝑑𝑠 + 𝑀 (𝑡) .

(74)

Note that 𝜎
𝑖
(𝑘)𝜎
𝑗
(𝑘) − 𝑏

𝑖
(𝑘) − 𝑏

𝑗
(𝑘), the 𝑖𝑗th element of the

matrix 𝑄(𝑘) is positive by (70). It is therefore easy to verify

𝑥
𝑇

(𝑡) 𝐶𝑄 (𝑘) 𝐶𝑥 (𝑡) ≥ 𝜑 (𝑘)𝑉
2

(𝑥 (𝑡)) , (75)

where 𝜑(⋅) has been defined in the statement of the theorem.
Substituting this inequality into (74) yields

log𝑉 (𝑥 (𝑡))

≤ log𝑉 (𝑥 (0)) − ∫
𝑡

0

1

2

𝜑 (𝑘) 𝑑𝑠 + 𝑐
−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)







× ∫

𝑡

0

(− |𝑥 (𝑠)| + |𝑥 (𝑠 − 𝜏)|) 𝑑𝑠 + 𝑀 (𝑡) .

(76)
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The rest of the proof is similar to that of Theorem 11 and
omitted.

5. Examples

In this section, an example and corresponding numerical
simulations are given to illustrate our main results.

Example 13. Consider the two-species Lotka-Volterra system
with regime switching described by

𝑑𝑥 (𝑡) = diag (𝑥
1
(𝑡) , 𝑥
2
(𝑡))

× [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] ,

(77)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇, 𝑏(𝑟(𝑡)) = (𝑏

1
(𝑟(𝑡)), 𝑏

2
(𝑟(𝑡)))

𝑇,
𝜎(𝑟(𝑡)) = (𝜎

1
(𝑟(𝑡)), 𝜎

2
(𝑟(𝑡)))

𝑇,

𝐴 (𝑟 (𝑡)) = (

𝑎
11
(𝑟 (𝑡)) 𝑎

12
(𝑟 (𝑡))

𝑎
21
(𝑟 (𝑡)) 𝑎

22
(𝑟 (𝑡))

) ,

𝐵 (𝑟 (𝑡)) = (

𝑏
11
(𝑟 (𝑡)) 𝑏

12
(𝑟 (𝑡))

𝑏
21
(𝑟 (𝑡)) 𝑏

22
(𝑟 (𝑡))

)

(78)

and 𝑟(𝑡) is a right-contiuous Markov chain taking values in
𝑆 = {1, 2}, and 𝑟(𝑡) and 𝑤(𝑡) are independent. Here

𝑏
1
(1) = 5, 𝑎

11
(1) = −5, 𝑎

12
(1) = 3,

𝑏
11
(1) = 0, 𝑏

12
(1) =

1

2

, 𝜎
1
(1) = √2,

𝑏
2
(1) = 8, 𝑎

21
(1) = 3, 𝑎

22
(1) = −5,

𝑏
21
(1) = 1, 𝑏

22
(1) = 0, 𝜎

2
(1) = 2,

𝑏
1
(2) = 4, 𝑎

11
(2) = −3, 𝑎

12
(2) = 1,

𝑏
11
(2) = 0, 𝑏

12
(2) = 1, 𝜎

1
(2) = √14,

𝑏
2
(2) = 5, 𝑎

21
(2) = 1, 𝑎

22
(2) = −3,

𝑏
21
(2) =

1

2

, 𝑏
22
(2) = 0, 𝜎

2
(2) = 4.

(79)

Let 𝐶 = 𝐼 ∈ 𝑅2×2, the identity matrix. It is easy to compute

|𝑐| = √2, 𝑐 = 1, 𝛽 (1) = 7, 𝛽 (2) = −2,

max
𝑘∈𝑆

𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝐶)] ≤ −2,

max
𝑘∈𝑆






𝐶𝐵 (𝑘)






≤

√5

2

.

(80)

Then

|𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2

(𝐶𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝐶)]}

+ 𝑐
−1max
𝑘∈𝑆






𝐶𝐵 (𝑘)






< 0.

(81)
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1
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)

(a)

500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

𝑡

𝑥
2
(
𝑡
)

0

(b)

Figure 1

By Theorems 3 and 9, the solutions of (77) will remain in
𝑅
2

+
for all 𝑡 ≥ −𝜏 with probability 1 and are stochastically

ultimately bounded.
Let the generator of the Markov chain 𝑟(𝑡) be

Γ = (

−4 4

1 −1
) . (82)

By solving the linear equation 𝜋Γ = 0, we obtain the
unique stationary (probability) distribution 𝜋 = (𝜋

1
, 𝜋
2
) =

(1/5, 4/5). Then ∑2
𝑘=1

𝜋
𝑘
𝛽(𝑘) = −1/5 < 0. Therefore, by

Theorems 11, (77) is extinctive, shown in Figure 1.

In Figure 1, for numerical solutions of (77), step size Δ𝑡 =
0.001, delay 𝜏 = 1. Initial datum of (𝑥

1
(𝑡), 𝑥
2
(𝑡)) are random

numbers in [1, 200] × [1, 600]. Initial datum are not shown in
Figure 1.

6. Conclusion

This work is concerned with delay Lotka-Volterra model
under regime switching diffusion in random environment.
It should be pointed out that (77) is more difficult to handle
than (3) in [23]. Fortunately, the difficulties caused by delay
term are overcome by using Young’s inequality. The model in
[7] is similar to (4), while the coefficients in (4) are variedwith
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regime switching. Similar results are technically obtained by
making use of comparison principle.
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The present paper considers a diffusive Nicholson’s blowflies model with multiple delays under a Neumann boundary condition.
Delay independent conditions are derived for the global attractivity of the trivial equilibrium and the positive equilibrium,
respectively. Two open problems concerning the stability of positive equilibrium and the occurrence of Hopf bifurcation are
proposed.

1. Introduction

Since blowflies are important parasites of the sheep industry
in some countries such as Australia, based on the experimen-
tal data of Nicholson [1, 2], Gurney et al. [3] first proposed
Nicholson’s blowflies equation

𝑁(𝑡) = −𝛿𝑁 (𝑡) + 𝑝𝑁 (𝑡 − 𝜏) 𝑒
−𝑎𝑁(𝑡−𝜏)

, 𝑡 > 0, (1)
where𝑁(𝑡) is the size of the adult blowflies population at time
𝑡; 𝑝 is the maximum per capita daily egg production rate; 1/𝑎
is the size at which the blowflies population reproduces at its
maximum rate; 𝛿 is the per capita daily adult death rate; 𝜏
is the generation time. For this equation, global attractivity
and oscillation of solutions have been investigated by several
authors (see [4–9]).

It is impossible that the size of the adult blowflies popula-
tion is independent of a spatial variable; therefore, Yang and
So [10] investigated both temporal and spatial variations of
the diffusive Nicholson’s blowflies equation

𝜕𝑁 (𝑡, 𝑥)

𝜕𝑡

= Δ𝑁 (𝑡, 𝑥) − 𝛿𝑁 (𝑡, 𝑥)

+ 𝑝𝑁 (𝑡 − 𝜏, 𝑥) 𝑒
−𝑎𝑁(𝑡−𝜏,𝑥)

,

in 𝐷 ≜ (0,∞) × Ω

(2)

under Neumann boundary condition and gave the similar
sufficient conditions for oscillation of all positive solutions

about the positive steady state. Whereafter, many authors
studied the various dynamical behaviors for this equation; we
refer to Lin and Mei [11], Saker [12], Wang and Li [13], and Yi
and Zou [14].

Meanwhile, one can consider a nonlinear equation with
several delays because of variability of the generation time; for
this purpose, Györi and Ladas [15] and Kulenović and Ladas
[6] proposed the following generalized Nicholson’s blowflies
model:

𝑁


(𝑡) = −𝛿𝑁 (𝑡) +

𝑛

∑

𝑖=1

𝑝
𝑖
𝑁(𝑡 − 𝜏

𝑖
) 𝑒
−𝑎𝑖𝑁(𝑡−𝜏𝑖)

, 𝑡 > 0. (3)

Luo and Liu [16] studied the global attractivity of the nonneg-
ative equilibria of (3).

It is of interest to investigate both several temporal and
spatial variations of the blowflies population using mathe-
matical models. Hereby, in this paper, we consider the follow-
ing system:

𝜕𝑁 (𝑡, 𝑥)

𝜕𝑡

= Δ𝑁 (𝑡, 𝑥) − 𝛿𝑁 (𝑡, 𝑥)

+

𝑛

∑

𝑖=1

𝑝
𝑖
𝑁(𝑡 − 𝜏

𝑖
, 𝑥) 𝑒
−𝑎𝑖𝑁(𝑡−𝜏𝑖 ,𝑥)

, in 𝐷

(4)
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with Neumann boundary condition

𝜕𝑁 (𝑡, 𝑥)

𝜕]
= 0, on Γ ≜ (0,∞) × 𝜕Ω, (5)

and initial condition

𝑁(𝜃, 𝑥) = 𝜓 (𝜃, 𝑥) ≥ 0, in 𝐷
𝜏
≜ [−𝜏, 0] × Ω, (6)

where 𝜏
𝑖
≥ 0, 𝜏 = max

1≤𝑖≤𝑛
{𝜏
𝑖
}, 𝑝
𝑖
and 𝑎
𝑖
= 𝑎, 𝑖 = 1, 2, . . . , 𝑛,

are all positive constants,Ω ⊂ R𝑚 is a bounded domain with
a smooth boundary 𝜕Ω, Δ𝑁(𝑡, 𝑥) = ∑

𝑚

𝑖=1
((𝜕
2

𝑖
𝑁(𝑡, 𝑥))/(𝜕𝑥

2

𝑖
)),

(𝜕/𝜕]) denotes the exterior normal derivative on 𝜕Ω, and
𝜓(𝜃, 𝑥) is Hölder continuous in𝐷

𝜏
with 𝜓(0, 𝑥) ∈ 𝐶

1

(Ω).
Though the global attractivity of the nonnegative equilib-

ria of (2) has been studied by Yang and So [10] andWang and
Li [13, 17], they just gave some sufficient conditions. Further-
more, as far as we know, the stability for partial functional
differential equations with several delays was investigated by
few papers. Motivated by the above excellent works, in this
paper, we consider the global attractivity of the nonnegative
equilibria of the systems (4)–(6) and present some conditions
which depend on coefficients of the systems (4)–(6). When
𝑛 = 1, our results complement those in Yang and So [10] and
Wang and Li [13].

It is not difficult to see that if ∑𝑛
𝑖=1

𝑝
𝑖
≤ 𝛿, then (4)

has a unique nonnegative equilibrium 𝑁
0

≡ 0 and if
∑
𝑛

𝑖=1
𝑝
𝑖
> 𝛿, then (4) has a unique positive equilibrium𝑁

∗

=

(1/𝑎) ln((∑𝑛
𝑖=1

𝑝
𝑖
)/𝛿).

The rest of the paper is organized as follows.We give some
lemmas and definitions in Section 2 and state and prove our
main results in Section 3. In Section 4, several simulations are
obtained to testify our results, and some unsolved problems
are discussed.

2. Preliminaries

In this section,wewill give some lemmaswhich can be proved
by using the similar methods as those in Yang and So [10].

Lemma 1. (i) The solution 𝑁(𝑡, 𝑥) of (4)–(6) satisfies
𝑁(𝑡, 𝑥) ≥ 0 for (𝑡, 𝑥) ∈ (0,∞) × Ω.

(ii) If𝜓(𝜃, 𝑥) ̸≡ 0 on𝐷
𝜏
, then the solution𝑁(𝑡, 𝑥) of (4)–

(6) satisfies𝑁(𝑡, 𝑥) > 0 for (𝑡, 𝑥) ∈ (𝜏,∞) × Ω.

Next, we will introduce the concept of lower-upper
solution due to Redlinger [18] as adapted to (4)–(6).

Definition 2. A lower-upper solution pair for (4)–(6) is a pair
of suitably smooth function V and 𝑤 such that

(i) V ≤ 𝑤 in𝐷,
(ii) V and 𝑤 satisfy

𝜕𝑤

𝜕𝑡

≥Δ𝑤 (𝑡, 𝑥)− 𝛿𝑤+

𝑛

∑

𝑖=1

𝑝
𝑖
𝜑 (𝑡 − 𝜏

𝑖
, 𝑥)𝑒
−𝑎𝜑(𝑡−𝜏𝑖 ,𝑥)

, (𝑡, 𝑥)∈𝐷,

𝜕𝑤

𝜕]
≥ 0, (𝑡, 𝑥) ∈ Γ,

𝜕V

𝜕𝑡

≤ΔV (𝑡, 𝑥)− 𝛿V +
𝑛

∑

𝑖=1

𝑝
𝑖
𝜑 (𝑡 − 𝜏

𝑖
, 𝑥) 𝑒
−𝑎𝜑(𝑡−𝜏𝑖 ,𝑥)

, (𝑡, 𝑥)∈𝐷,

𝜕V

𝜕]
≤ 0, (𝑡, 𝑥) ∈ Γ

(7)

for all 𝜑 ∈ 𝐶(𝐷
𝜏
∪𝐷)with V ≤ 𝜑 ≤ 𝑤, (𝑡, 𝑥) ∈ 𝐷

𝜏
∪𝐷,

and
(iii) V(𝜃, 𝑥) ≤ 𝜑(𝜃, 𝑥) ≤ 𝑤(𝜃, 𝑥), (𝜃, 𝑥) ∈ 𝐷

𝜏
.

The following lemma is a special case of Redlinger [19].

Lemma 3. Let (V, 𝑤) be a lower-upper solution pair for the
initial boundary value problem (4)–(6). Then, there exists a
unique regular solution𝑁(𝑡, 𝑥) of (4)–(6) such that V ≤ 𝑁 ≤ 𝑤

on𝐷
𝜏
∪ 𝐷.

The following lemma gives us boundedness of the solu-
tion𝑁(𝑡, 𝑥).

Lemma 4. (i) The solution𝑁(𝑡, 𝑥) of (4)-(6) satisfies

lim sup
𝑡→∞

𝑁(𝑡, 𝑥) ≤

𝑛

∑

𝑖=1

𝑝
𝑖

𝑎𝑒𝛿

, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑥. (8)

(ii) There exists a constant 𝐾 = 𝐾(𝜓) ≥ 0 such that
𝑁(𝑡, 𝑥) ≤ 𝐾 on𝐷

𝜏
∪ 𝐷.

Proof. Let 𝑤(𝑡) be the solution of the following Cauchy
problem:

𝑑𝑤

𝑑𝑡

= −𝛿𝑤 +

𝑛

∑

𝑖=1

𝑝
𝑖

𝑎𝑒

, 𝑡 > 0,

𝑤 (0) = max
(𝜃,𝑥)∈𝐷𝜏

𝜓 (𝜃, 𝑥) .

(9)

Solving the equation, we have

𝑤 (𝑡) =

𝑛

∑

𝑖=1

𝑝
𝑖

𝑎𝑒𝛿

+ 𝑒
−𝛿𝑡

(𝑤 (0) −

𝑛

∑

𝑖=1

𝑝i
𝑎𝑒𝛿

) , 𝑡 ≥ 0. (10)

Taking

𝑤 (𝑡) =

{

{

{

𝑤 (0) , 𝑡 ∈ [−𝜏, 0] ,

𝑤 (𝑡) , 𝑡 > 0,

(11)

then (𝑤(𝑡), 0) is a lower-upper solution pair for (4)–(6). In
fact, for any 𝜑 ∈ 𝐶(𝐷

𝜏
∪𝐷)with 0 ≤ 𝜑 ≤ 𝑤(𝑡), (𝑡, 𝑥) ∈ 𝐷

𝜏
∪𝐷,

one can get

𝜕𝑤 (𝑡)

𝜕𝑡

− Δ𝑤 (𝑡) + 𝛿𝑤 (𝑡) −

𝑛

∑

𝑖=1

𝑝
𝑖
𝜑 (𝑡 − 𝜏

𝑖
, 𝑥) 𝑒
−𝑎𝜑(𝑡−𝜏𝑖 ,𝑥)

≥

𝜕𝑤 (𝑡)

𝜕𝑡

+ 𝛿𝑤 (𝑡) −

𝑛

∑

𝑖=1

𝑝
𝑖

𝑎𝑒

=

𝑑𝑤

𝑑𝑡

+ 𝛿𝑤 −

𝑛

∑

𝑖=1

𝑝
𝑖

𝑎𝑒

= 0.

(12)
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By Lemma 3, there is a unique regular solution 𝑁(𝑡, 𝑥) such
that

0 ≤ 𝑁 (𝑡, 𝑥) ≤ 𝑤 (𝑡) , (𝑡, 𝑥) ∈ 𝐷
𝜏
∪ 𝐷. (13)

Note that

lim
𝑡→+∞

𝑤 (𝑡) = lim
𝑡→+∞

𝑤 (𝑡) =

𝑛

∑

𝑖=1

𝑝
𝑖

𝑎𝑒𝛿

. (14)

Therefore, the formula (8) is correct, and there exists one
𝐾(𝜓) > 0 such that 𝑤(𝑡) ≤ 𝐾(𝜓) for any 𝑡 ∈ (−𝜏,∞) and

0 ≤ 𝑁 (𝑡, 𝑥) ≤ 𝐾 (𝜓) , (𝑡, 𝑥) ∈ 𝐷
𝜏
∪ 𝐷. (15)

So we complete Lemma 4.

3. Main Results and Proofs

Theorem 5. Assume that ∑𝑛
𝑖=1

𝑝
𝑖
≤ 𝛿, then every solution

𝑁(𝑡, 𝑥) of (4)–(6) tends to 𝑁
0
= 0 (uniformly in 𝑥) as 𝑡 →

+∞.

Proof. By Lemma 4, without loss of generality, let 0 <

𝑁(𝑡, 𝑥) ≤ ∑
𝑛

𝑖=1
(𝑝
𝑖
/𝑎𝑒𝛿) for (𝑡, 𝑥) ∈ 𝐷

𝜏
∪ 𝐷. Under the

condition∑
𝑛

𝑖=1
𝑝
𝑖
≤ 𝛿, we can get

0 < 𝑁 (𝑡, 𝑥) ≤

1

𝑎𝑒

<

1

𝑎

for (𝑡, 𝑥) ∈ 𝐷
𝜏
∪ 𝐷. (16)

Define𝑚(𝑡) and 𝑦(𝑡) to be the solutions of the following two
delay equations, respectively:

𝑚


(𝑡) = − 𝛿𝑚 (𝑡) +

𝑛

∑

𝑖=1

𝑝
𝑖
𝑚(𝑡 − 𝜏

𝑖
) 𝑒
−𝑎𝑚(𝑡−𝜏𝑖)

, 𝑡 > 0,

𝑚 (𝜃) = min
𝑥∈Ω

𝜓 (𝜃, 𝑥) , 𝜃 ∈ [−𝜏, 0] ,

𝑦


(𝑡) = − 𝛿𝑦 (𝑡) +

𝑛

∑

𝑖=1

𝑝
𝑖
𝑦 (𝑡 − 𝜏

𝑖
) 𝑒
−𝑎𝑦(𝑡−𝜏𝑖)

, 𝑡 > 0,

𝑦 (𝜃) = max
𝑥∈Ω

𝜓 (𝜃, 𝑥) , 𝜃 ∈ [−𝜏, 0] .

(17)

By using the similar methods to prove Lemma 4, we can get
that

lim sup
𝑡→∞

𝑚(𝑡) ≤

𝑛

∑

𝑖=1

𝑝
𝑖

𝑎𝑒𝛿

<

1

𝑎

, lim sup
𝑡→∞

𝑦 (𝑡) ≤

𝑛

∑

𝑖=1

𝑝
𝑖

𝑎𝑒𝛿

<

1

𝑎

(18)

under the condition ∑
𝑛

𝑖=1
𝑝
𝑖
≤ 𝛿, and here 𝑚(𝑡) and 𝑦(𝑡) are

the solutions of (17).

Because of𝑁(𝑡, 𝑥) < 1/𝑎, for any 𝜑 ∈ 𝐶(𝐷
𝜏
∪ 𝐷),𝑚(𝑡) ≤

𝜑 ≤ 𝑦(𝑡) < 1/𝑎, one can get

𝜕𝑚 (𝑡)

𝜕𝑡

− Δ𝑚 (𝑡) + 𝛿𝑚 (𝑡) −

𝑛

∑

𝑖=1

𝑝
𝑖
𝜑 (𝑡 − 𝜏

𝑖
, 𝑥) 𝑒
−𝑎𝜑(𝑡−𝜏𝑖 ,𝑥)

≤

𝜕𝑚 (𝑡)

𝜕𝑡

+ 𝛿𝑚 (𝑡) −

𝑛

∑

𝑖=1

𝑝
𝑖
𝑚(𝑡 − 𝜏

𝑖
) 𝑒
−𝑎𝑚(𝑡−𝜏𝑖)

= 0,

𝜕𝑦 (𝑡)

𝜕𝑡

− Δ𝑦 (𝑡) + 𝛿𝑦 (𝑡) −

𝑛

∑

𝑖=1

𝑝
𝑖
𝜑 (𝑡 − 𝜏

𝑖
, 𝑥) 𝑒
−𝑎𝜑(𝑡−𝜏𝑖 ,𝑥)

≥

𝜕𝑦 (𝑡)

𝜕𝑡

+ 𝛿𝑦 (𝑡) −

𝑛

∑

𝑖=1

𝑝
𝑖
𝑦 (𝑡 − 𝜏

𝑖
) 𝑒
−𝑎𝑦(𝑡−𝜏𝑖)

= 0.

(19)

Therefore, from Definition 2, (𝑚(𝑡), 𝑦(𝑡)) is a lower-upper
pair of (4)-(5) with initial condition 𝑚(𝜃) ≤ 𝜓(𝜃, 𝑥) ≤ 𝑦(𝜃)

on𝐷
𝜏
. Consequently, by Lemma 3, we have

𝑚(𝑡) ≤ 𝑁 (𝑡, 𝑥) ≤ 𝑦 (𝑡) on [−𝜏, +∞) × Ω. (20)

ByTheorem 1 of Luo and Liu [16], it follows from∑
𝑛

𝑖=1
𝑝
𝑖
≤ 𝛿

that the solutions𝑚(𝑡) and 𝑦(𝑡) of (17) both satisfy

lim
𝑡→∞

𝑚(𝑡) = 0, lim
𝑡→∞

𝑦 (𝑡) = 0. (21)

Hence, we complete the proof of Theorem 5.

Theorem 6. If 1 < ∑
𝑛

𝑖=1
(𝑝
𝑖
/𝛿) ≤ 𝑒, then every nontrivial solu-

tion𝑁(𝑡, 𝑥) of (4)–(6) satisfies

lim
𝑡→∞

𝑁(𝑡, 𝑥) = 𝑁
∗

, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑥. (22)

Proof. Let 𝑓(𝑥) = 𝑥𝑒
−𝑎𝑥, then the function 𝑓(𝑥) is increasing

on (0, (1/𝑎)) and decreasing on ((1/𝑎), +∞), 𝑓(1/𝑎) =

max
𝑥∈[0,∞)

𝑓(𝑥), 𝑁∗ = (1/𝑎) ln(∑𝑛
𝑖=1

(𝑝
𝑖
/𝛿)) ≤ 1/𝑎 for 1 <

∑
𝑛

𝑖=1
(𝑝
𝑖
/𝛿) ≤ 𝑒. Let 𝑔(𝑦) = ∑

𝑛

𝑖=1
𝑝
𝑖
𝑓(𝑦), then it is not

difficult to verify that the function 𝑔(𝑦) satisfies the following
conditions:

(𝑔
1
) the function 𝑔(𝑦) is increasing on (0, (1/𝑎)) and
decreasing on ((1/𝑎), +∞), max

𝑥∈[0,∞)
𝑔(𝑥) =

𝑔(1/𝑎) = ∑
𝑛

𝑖=1
(𝑝
𝑖
/𝑎𝑒),

(𝑔
2
) 𝑔(𝑦) > 𝛿𝑦 for 𝑦 ∈ (0,𝑁

∗

) and 𝑔(𝑦) < 𝛿𝑦 for 𝑦 ∈

(𝑁
∗

, +∞).

There are now two possible cases to consider.

Case 1 (𝑁∗ < 1/𝑎). In view of Lemma 4, we may also assume
without loss of generality that every solution 𝑁(𝑡, 𝑥) of (4)–
(6) satisfies

0 ≤ 𝑁 (𝑡, 𝑥) ≤

𝑔 (1/𝑎)

𝛿

=

𝑛

∑

𝑖=1

𝑝
𝑖

𝑎𝑒𝛿

<

1

𝑎

, on 𝐷
𝜏
∪ 𝐷.

(23)
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Let 𝑁(𝑡) = min
𝑥∈Ω

𝑁(𝑡, 𝑥), 𝑁(𝑡) = max
𝑥∈Ω

𝑁(𝑡, 𝑥), 𝑁 =

lim inf
𝑡→∞

𝑁(𝑡) and𝑁 = lim sup
𝑡→∞

𝑁(𝑡). By (23), we have

0 ≤ 𝑁 ≤ 𝑁 ≤

𝑔 (1/𝑎)

𝛿

=

𝑛

∑

𝑖=1

𝑝
𝑖

𝑎𝑒𝛿

<

1

𝑎

. (24)

From Lemma 1(ii), let

𝑧
0
= min{ min

(𝑡,𝑥)∈[2𝜏,∞)×Ω

𝑁(𝑡, 𝑥) ,𝑁
∗

} > 0,

𝑦
0
=

1

𝑎

.

(25)

Let 𝐼
∞

= {1, 2, . . .}. Now, we define two sequences {𝑧
𝑘
} and

{𝑦
𝑘
} to satisfy, respectively,

𝑧
𝑘
=

𝑔 (𝑧
𝑘−1

)

𝛿

, 𝑘 ∈ 𝐼
∞
,

𝑦
𝑘
=

𝑔 (𝑦
𝑘−1

)

𝛿

, 𝑘 ∈ 𝐼
∞
.

(26)

Weprove that {𝑧
𝑘
} and {𝑦

𝑘
} aremonotonic and bounded. First

of all, we prove that {𝑧
𝑘
} is monotonically increasing, and𝑁∗

is the least upper bounded. Note (𝑔
1
) and (𝑔

2
), we have

𝑧
1
=

𝑔 (𝑧
0
)

𝛿

> 𝑧
0
, 𝑧

1
=

𝑔 (𝑧
0
)

𝛿

<

𝑔 (𝑁
∗

)

𝛿

= 𝑁
∗

.

(27)

By induction and direct computation, we have

0 < 𝑧
0
< 𝑧
1
< ⋅ ⋅ ⋅ < lim

𝑘→∞

𝑧
𝑘
= 𝑁
∗

. (28)

Similarly, we have

0 > 𝑦
0
> 𝑦
1
> ⋅ ⋅ ⋅ > lim

𝑘→∞

𝑦
𝑘
= 𝑁
∗

. (29)

Define V
1
(𝑡) and 𝑤

1
(𝑡) to be the solutions of the following

differential equations, respectively:

V


1
(𝑡) = − 𝛿 [V

1
(𝑡) − 𝑧

1
] , 𝑡 ≥ 3𝜏,

V
1
(𝜃) = 𝑧

0
< 𝑁
∗

, 𝜃 ∈ [2𝜏, 3𝜏] ,

𝑤


1
(𝑡) = − 𝛿 [𝑤

1
(𝑡) − 𝑦

1
] , 𝑡 ≥ 3𝜏,

𝑤
1
(𝜃) = 𝑦

0
> 𝑁
∗

, 𝜃 ∈ [2𝜏, 3𝜏] .

(30)

It follows from (24) and (25) that 𝑧
0
≤ 𝑁(𝑡, 𝑥) ≤ 𝑦

0
for any

(𝑡, 𝑥) ∈ [2𝜏,∞) ×Ω. Consider (30), for any (𝑡, 𝑥) ∈ [2𝜏,∞] ×

Ω, we have

𝜕V
1
(𝑡)

𝜕𝑡

= ΔV
1
(𝑡) − 𝛿V

1
(𝑡) + 𝑔 (𝑧

0
)

≤ ΔV
1
(𝑡) − 𝛿V

1
(𝑡) + 𝑔 (𝑁 (𝑡 − 𝜏, 𝑥)) ,

𝜕𝑤
1
(𝑡)

𝜕𝑡

= Δ𝑤
1
(𝑡) − 𝛿𝑤

1
(𝑡) + 𝑔 (𝑦

0
)

≥ Δ𝑤
1
(𝑡) − 𝛿𝑤

1
(𝑡) + 𝑔 (𝑁 (𝑡 − 𝜏, 𝑥)) .

(31)

Therefore, from Definition 2, (V
1
(𝑡), 𝑤
1
(𝑡)) is a lower-upper

pair of (4)-(5) with initial condition 𝑧
0
≤ 𝑁(𝑡, 𝑥) ≤ 𝑦

0
on

[2𝜏, 3𝜏] × Ω. Consequently, by Lemma 3, we have

V
1
(𝑡) ≤ 𝑁 (𝑡, 𝑥) ≤ 𝜔

1
(𝑡) on [2𝜏,∞] × Ω. (32)

Note that 𝑤
1
(𝑡) is monotonically decreasing for 𝑡 ≥

3𝜏 and lim
𝑡→∞

𝑤
1
(𝑡) = 𝑦

1
, while V

1
(𝑡) is monotonically

increasing for 𝑡 ≥ 3𝜏 and lim
𝑡→∞

V
1
(𝑡) = 𝑧

1
. Hence,

𝑧
1
= lim
𝑡→∞

V
1
(𝑡) ≤ 𝑁 ≤ 𝑁 ≤ lim

𝑡→∞

𝑤
1
(𝑡) = 𝑦

1
. (33)

Define V
𝑛
(𝑡) and 𝑤

𝑛
(𝑡) to be the solutions of the following

differential equations, respectively:

V


𝑛
(𝑡) = − 𝛿 [V

𝑛
(𝑡) − 𝑧

𝑛
] , 𝑡 ≥ 3𝜏,

V
𝑛
(𝜃) = 𝑧

𝑛−1
< 𝑁
∗

, 𝜃 ∈ [2𝜏, 3𝜏] ,

𝑤


𝑛
(𝑡) = − 𝛿 [𝑤

𝑛
(𝑡) − 𝑦

𝑛
] , 𝑡 ≥ 3𝜏,

𝑤
𝑛
(𝜃) = 𝑤

𝑛−1
< 𝑁
∗

, 𝜃 ∈ [2𝜏, 3𝜏] .

(34)

Repeating the above procedure, we have the following rela-
tion:

𝑧
1
< 𝑧
2
< ⋅ ⋅ ⋅ < 𝑧

𝑛
≤ 𝑁 ≤ 𝑁 ≤ 𝑦

𝑛
< ⋅ ⋅ ⋅ < 𝑦

2
< 𝑦
1
. (35)

By (28) and (29), and taking limits on both sides of (35), we
have

𝑁
∗

= lim
𝑛→∞

𝑧
𝑛
≤ 𝑁 ≤ 𝑁 ≤ lim

𝑛→∞

𝑦
𝑛
= 𝑁
∗

, (36)

which implies

lim
𝑡→∞

𝑁(𝑡, 𝑥) = 𝑁
∗

, uniformly in 𝑥. (37)

Case 2 (𝑁∗ = 𝑦
0
). Similarly, let 𝑦

𝑘
= 𝑁
∗ and 𝑧

𝑘
be the same

as in the proof of Case 1; we can also get (35). Hence, the proof
of Theorem 6 is complete.

Remark 7. Our main results are also valid when 𝑁 does not
depend on a spatial variable 𝑥 ∈ Ω in (4).

4. Numerical Simulations and Discussion

In this section, we will give some numerical simulations to
verify our main results in Section 3 and present several
interesting phenomena by simulations that we cannot give a
theoretical proof. We just consider the case 𝑛 = 2 in (4).

4.1. Numerical Simulations. Different parameters will be used
for simulations, and some data come from [20]. Figure 1
corresponds to the case with 𝛿 = 0.4, 𝑝

1
= 0.1, 𝑝

2
= 0.15,

𝑎 = 0.1, 𝜏
1
= 12, and 𝜏

2
= 15, and under the above conditions,

we have 0 < (𝑝
1
+ 𝑝
2
)/𝛿 = 0.625 < 1. We choose the initial

condition 𝜓(𝜃, 𝑥) = 1, (𝜃, 𝑥) ∈ [−15, 0] × [0, 1], and the
solution𝑁(𝑡, 𝑥) is decreasing and almost zero at time 160.

Figure 2 corresponds to the case with 𝛿 = 0.1, 𝑝
1
= 0.1,

𝑝
2
= 0.15, 𝑎 = 0.2, 𝜏

1
= 12, and 𝜏

2
= 15, and under the above
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Figure 1: Parameters: 𝛿 = 0.4, 𝑝
1
= 0.1, 𝑝

2
= 0.15, 𝑎 = 0.1, 𝜏

1
= 12,

and 𝜏
2
= 15. Initial condition is𝜓(𝜃, 𝑥) = 1, (𝜃, 𝑥) ∈ [−15, 0]×[0, 1].

conditions, we have 1 < (𝑝
1
+ 𝑝
2
)/𝛿 = 2.5 < 𝑒 and 𝑁

∗

=

4.58145. Choose the initial condition 𝜓(𝜃, 𝑥) = 4 + sin 𝜃,
(𝜃, 𝑥) ∈ [−15, 0] × [0, 1]. From Figure 2, we can observe that
the solution𝑁(𝑡, 𝑥) oscillates around 13 and 14 days; however,
𝑁(𝑡, 𝑥) tends to 𝑁

∗ as time 𝑡 tends to 100 days. Therefore,
Figures 1 and 2 support our main results (Theorems 5 and 6).

4.2. Discussion. In Section 3, we obtain two main results
under the conditions∑𝑛

𝑖=1
(𝑝
𝑖
/𝛿) ≤ 1 and 1 < ∑

𝑛

𝑖=1
(𝑝
𝑖
/𝛿) ≤ 𝑒,

which are independent of the delays 𝜏
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. A

natural problem is what will happen when ∑
𝑛

𝑖=1
(𝑝
𝑖
/𝛿) > 𝑒

and the delays 𝜏
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 are changed.

It is similar to Theorem 3 in Luo and Liu [16]; we present
the following open problems.

Open Problem 1. If∑𝑛
𝑖=1

(𝑝
𝑖
/𝛿) > 𝑒 and 𝑎𝑁∗(𝑒𝛿𝜏−1) ≤ 1, then

every nontrivial solution𝑁(𝑡, 𝑥) of (4)–(6) satisfies

lim
𝑡→∞

𝑁(𝑡, 𝑥) = 𝑁
∗

, uniformly in 𝑥. (38)

Figure 3 corresponds to the case with 𝛿 = 0.01, 𝑝
1
= 0.5,

𝑝
2
= 0.5, 𝑎 = 0.2, 𝜏

1
= 12, 𝜏

2
= 15, and 𝑁

∗

= 23.0259, and
initial condition is 𝜓(𝜃, 𝑥) = 10 + sin 𝜃, (𝜃, 𝑥) ∈ [−15, 0] ×

[0, 1]. Under the above conditions, we have (𝑝
1
+ 𝑝
2
)/𝛿 =

100 > 𝑒 and 𝑎𝑁
∗

(𝑒
𝛿𝜏

− 1) = 0.745274 < 1. Sufficient
conditions are dependent on coefficients and delay for the
global attractivity of equilibria 𝑁∗, and Figure 3 shows that
the Open Problem 1 is right, but we cannot prove that.

From Figure 4, we have ((𝑝
1
+ 𝑝
2
)/𝛿) = 5 > 𝑒 and

𝑎𝑁
∗

(𝑒
𝛿𝜏

− 1) = 30.717 > 1. The condition is not satisfied, but
𝑁
∗ is still globally attractive.
From Figure 5, we have ((𝑝

1
+ 𝑝
2
)/𝛿) = 50 > 𝑒 and

𝑎𝑁
∗

(𝑒
𝛿𝜏

− 1) = 13.6204 > 1. The condition is not
satisfied, but the global attractivity𝑁∗ is not true. Moreover,
Figure 5 shows that there is a periodic solution, which is very
interesting. We guess that the reason is that the system brings
Hopf bifurcation as the parameters change. Therefore, we
state the following open problem.
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𝑥
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Figure 2: Parameters: 𝛿 = 0.1, 𝑝
1
= 0.1, 𝑝

2
= 0.15, 𝑎 = 0.2, 𝜏

1
= 12,

𝜏
2
= 15, and 𝑁

∗

= 4.58145. Initial condition is 𝜓(𝜃, 𝑥) = 4 + sin 𝜃,
(𝜃, 𝑥) ∈ [−15, 0] × [0, 1].
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Figure 3: Parameters: 𝛿 = 0.01, 𝑝
1
= 0.5, 𝑝

2
= 0.5, 𝑎 = 0.2, 𝜏

1
= 12,

𝜏
2
= 15, and𝑁

∗

= 23.0259. Initial condition is 𝜓(𝜃, 𝑥) = 10 + sin 𝜃,
(𝜃, 𝑥) ∈ [−15, 0] × [0, 1].
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Figure 4: Parameters: 𝛿 = 0.2, 𝑝
1
= 0.5, 𝑝

2
= 0.5, 𝑎 = 0.2, 𝜏

1
= 12,

𝜏
2
= 15, and 𝑁

∗

= 8.04719. Initial condition is 𝜓(𝜃, 𝑥) = 9 + sin 𝜃,
(𝜃, 𝑥) ∈ [−15, 0] × [0, 1].
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Figure 5: Parameters: 𝛿 = 0.1, 𝑝
1
= 3, 𝑝

2
= 2, 𝑎 = 0.2, 𝜏

1
= 12,

𝜏
2
= 15, and𝑁

∗

= 19.5601. Initial condition is 𝜓(𝜃, 𝑥) = 10 + sin 𝜃,
(𝜃, 𝑥) ∈ [−15, 0] × [0, 1].

Open Problem 2. Under suitable conditions, the systems (4)–
(6) will lead to Hopf bifurcation.

Remark 8. Now, we have not intensively studied these two
problems. Because the nonmonotonicity of the nonlinear
term in (4) makes it very difficult for us to solve Open
Problem 1, and we cannot prove Open Problem 2 because of
multiple delays.
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This paper concerns the square-mean almost automorphic solutions to a class of abstract semilinear nonautonomous functional
integrodifferential stochastic evolution equations in real separable Hilbert spaces. Using the so-called “Acquistapace-Terreni”
conditions and Banach contraction principle, the existence, uniqueness, and asymptotical stability results of square-mean almost
automorphic mild solutions to such stochastic equations are established. As an application, square-mean almost automorphic
solution to a concrete nonautonomous integro-differential stochastic evolution equation is analyzed to illustrate our abstract results.

1. Introduction

Stochastic differential equations in both finite and infinite
dimensions, which are important from the viewpoint of
applications since they incorporate natural randomness into
the mathematical description of the phenomena and hence
provide a more accurate description of it, have received
considerable attention. Based on this viewpoint, there has
been an increasing interest in extending certain classical
deterministic results to stochastic differential equations in
recent years. As a good case in point, the existence of almost
periodic or pseudo-almost periodic solutions to stochastic
evolution equations has been extensively considered in many
publications; see [1–8] and the references therein.

Integrodifferential equations are used to describe lots of
phenomena arising naturally from many fields such as fluid
dynamics, number reactor dynamics, population dynamics,
electromagnetic theory, and biologicalmodels,most of which
cannot be described by classical differential equations, and
hence they have attracted more and more attention in recent
years; see [1, 9–12] for more details.

Recently, Keck and McKibben [9, 10] proposed a
general abstract model for semilinear functional stochas-
tic integrodifferential equations and studied the existence
and uniqueness of mild solutions to these equations.
Based on their works, the existence and uniqueness of
square-mean almost periodic solutions to some functional

integrodifferential stochastic evolution equations was care-
fully investigated in [1] for the autonomous case and in our
forthcoming paper for the nonautonomous case. In a very
recent paper, as a natural generalization of the notion of
square-mean almost periodicity, a new concept of square-
mean almost automorphic stochastic process was introduced
by Fu and Liu [13], and the existence results of square-
mean almost automorphic mild solutions to some linear
and semilinear autonomous stochastic differential equations
were formulated, while paper [14] investigated the same
issue for nonautonomous stochastic differential equations.
Under some suitable assumptions, the authors established in
a forthcoming paper the existence and uniqueness of square-
mean almost automorphic solutions to a class of autonomous
functional integrodifferential stochastic evolution equations.

In this paper, we are concerned with a class of semilin-
ear nonautonomous functional stochastic integrodifferential
equations in a real separable Hilbert space in the abstract
form:

𝑋


(𝑡) = 𝐴 (𝑡)𝑋 (𝑡) + ∫

𝑡

−∞

𝐶 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠)

+ ∫

𝑡

−∞

𝐵 (𝑡 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠

+ 𝐹
1
(𝑡, 𝑋 (𝑡)) , 𝑡 ∈ R,

(1)
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where 𝐴(𝑡) : 𝐷(𝐴(𝑡)) ⊂ L2(P;H) → L2(P;H) is a
family of densely defined closed (possibly unbounded) lin-
ear operator satisfying the so-called “Acquistapace-Terreni”
conditions introduced in [15], 𝐵 and 𝐶 are convolution-type
kernels in L1(0,∞) and L2(0,∞), respectively, satisfying
Assumption 3.2 in [16], 𝑊(𝑡) is a two-sided standard one-
dimensional Brownian motion defined on the filtered proba-
bility space (Ω,F,P,F

𝑡
), whereF

𝑡
= 𝜎{𝑊(𝑢)−𝑊(V); 𝑢, V ≤

𝑡}. Here 𝐹
1
, 𝐹
2
, 𝐺 : R × L2(P;H) → L2(P;H) are jointly

continuous functions satisfying some additional conditions
to be specified later in Section 3.

Motivated by the aforementioned works [1, 13, 14],
we investigate in this paper the existence and uniqueness
of square-mean almost automorphic solutions to nonau-
tonomous equation (1). The main tools employed here are
Banach contraction principle and an estimate on the Ito
integral. The obtained results can be seen as a contribution
to this emerging field.

The paper is organized as follows. In Section 2, we review
some basic definitions and preliminary facts on square-mean
almost automorphic processes whichwill be used throughout
this paper. Section 3 is devoted to establish the existence,
uniqueness, and the asymptotical stability of square-mean
almost automorphic mild solution to (1). As an illustration
of our abstract result, square-mean almost automorphic
solution to a concrete nonautonomous integrodifferential
stochastic evolution equation is investigated in Section 4.

2. Preliminaries

To begin this paper, we recall some primary definitions,
notations, lemmas, and technical results which will be used
in the sequel. For more details on almost automorphy and
stochastic differential equations, the readers are referred to
[13, 17–23] and the references therein.

Throughout this paper, we assume that (H, ‖⋅‖) is a real
separable Hilbert space, (Ω,F,P) is a probability space,
and L2(P;H) stands for the space of all H-valued random
variables𝑋 such that

E‖𝑋‖2 = ∫

Ω

‖𝑋‖
2

𝑑P < ∞. (2)

For𝑋 ∈ L2(P;H), let

‖𝑋‖
2
:= (∫

Ω

‖𝑋‖
2

𝑑P)
1/2

. (3)

It is routine to check that L2(P;H) is a Banach space
equipped with the norm ‖⋅‖

2
.

It is well-known that Brownian motion plays a key role
in the construction of stochastic integrals. Throughout this
paper, 𝑊(𝑡) denotes a two-sided standard one-dimensional
Brownian motion defined on the filtered probability space
(Ω,F,P,F

𝑡
), whereF

𝑡
= 𝜎{𝑊(𝑢) −𝑊(V); 𝑢, V ≤ 𝑡}.

Definition 1. A standard one-dimensional Brownian motion
is a continuous, adapted real-valued stochastic process
(𝑊(𝑡), 𝑡 ≥ 0) such that

(i) 𝑊(0) = 0 a.s.;
(ii) 𝑊(𝑡) − 𝑊(𝑠) is independent ofF

𝑠
for all 0 ≤ 𝑠 < 𝑡;

(iii) 𝑊(𝑡) −𝑊(𝑠) is𝑁(0, 𝑡 − 𝑠) distributed for all 0 ≤ 𝑠 ≤ 𝑡.

The following definitions and lemmas concerning square-
mean almost automorphic functions can be found in [13, 14].

Definition 2. A stochastic process𝑋 : R → L2(P;H) is said
to be stochastically continuous if

lim
𝑡→ 𝑠

E‖𝑋 (𝑡) − 𝑋 (𝑠)‖
2

= 0. (4)

Definition 3. A stochastically continuous stochastic process
𝑋 : R → L2(P;H) is said to be square-mean almost
automorphic if for every sequence of real numbers {𝑠

𝑛
} there

exists a subsequence {𝑠
𝑛
} and a stochastic process 𝑌 : R →

L2(P;H) such that

lim
𝑛→∞

E

𝑋 (𝑡 + 𝑠

𝑛
) − 𝑌 (𝑡)






2

= 0,

lim
𝑛→∞

E

𝑋 (𝑡 + 𝑠

𝑛
) − 𝑌 (𝑡)






2

= 0

(5)

hold for each 𝑡 ∈ R. The collection of all square-mean
almost automorphic stochastic processes is denoted by
𝐴𝐴(R;L2(P;H)).

Lemma 4. If 𝑋, 𝑋
1
, and 𝑋

2
are all square-mean almost

automorphic stochastic processes, then the following statements
hold true:

(i) 𝑋
1
+ 𝑋
2
is square-mean almost automorphic;

(ii) 𝜆𝑋 is square-mean almost automorphic for every scalar
𝜆;

(iii) There exists a constant𝑀 > 0 such that sup
𝑡∈R‖𝑋 (𝑡)‖

2

≤ 𝑀. That is,𝑋 is bounded inL2(P;H).

Lemma 5. 𝐴𝐴(R;L2(P;H)) is a Banach space when it is
equipped with the norm

‖𝑋‖
∞
:= sup
𝑡∈R

‖𝑋 (𝑡)‖
2
= sup
𝑡∈R

(E‖𝑋 (𝑡)‖
2

)

1/2

(6)

for𝑋 ∈ 𝐴𝐴(R;L2(P;H)).

Definition 6. A jointly continuous function 𝐹 : R ×

L2(P;H) → L2(P;H), (𝑡, 𝑋) → 𝐹(𝑡, 𝑋) is said to be
square-mean almost automorphic in 𝑡 ∈ R for each 𝑋 ∈

L2(P;H) if for every sequence of real numbers {𝑠
𝑛
} there

exists a subsequence {𝑠
𝑛
} and a stochastic process 𝐺 : R ×

L2(P;H) → L2(P;H) such that

lim
𝑛→∞

E

𝐹 (𝑡 + 𝑠

𝑛
, 𝑋) − 𝐺 (𝑡, 𝑋)






2

= 0,

lim
𝑛→∞

E

𝐺 (𝑡 − 𝑠

𝑛
, 𝑋) − 𝐹 (𝑡, 𝑋)






2

= 0

(7)

hold for each 𝑡 ∈ R and each𝑋 ∈ L2(P;H).
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Lemma 7. Let 𝑓 : R × L2(P;H) → L2(P;H), (𝑡, 𝑋) →

𝑓(𝑡, 𝑋) be square-mean almost automorphic in 𝑡 ∈ R for
each 𝑋 ∈ L2(P;H), and assume that 𝑓 satisfies a Lipschitz
condition in the following sense:

E

𝑓 (𝑡, 𝜑) − 𝑓 (𝑡, 𝜓)






2

≤ 𝐿E

𝜑 − 𝜓






2 (8)

for all 𝜑, 𝜓 ∈ L2(P;H) and each 𝑡 ∈ R, where 𝐿 > 0 is inde-
pendent of 𝑡. Then for any square-mean almost automorphic
stochastic process 𝑋 : R → L2(P;H), the stochastic process
𝐹 : R → L2(P;H) given by𝐹(𝑡) := 𝑓(𝑡, 𝑋(𝑡)) is square-mean
almost automorphic.

The Acquistapace-Terreni conditions (ATCs, for short)
play an important role in the study of nonautonomous
stochastic differential equations. We state it below for the
readers’ convenience.

ATCs. There exist constants 𝜆
0
≥ 0, 𝜃 ∈ (𝜋/2, 𝜋), 𝐿, 𝐾 ≥ 0,

and 𝛼, 𝛽 ∈ (0, 1] with 𝛼 + 𝛽 > 1 such that

Σ
𝜃
∪ {0} ⊂ 𝜌 (𝐴 (𝑡) − 𝜆

0
) ,





𝑅 (𝜆, 𝐴 (𝑡) − 𝜆

0
)




≤

𝐾

1 + |𝜆|

,





(𝐴 (𝑡) − 𝜆

0
) 𝑅 (𝜆, 𝐴 (𝑡) − 𝜆

0
)

× [𝑅 (𝜆
0
, 𝐴 (𝑡)) − 𝑅 (𝜆

0
, 𝐴 (𝑠))]





≤ 𝐿|𝑡 − 𝑠|

𝛼

|𝜆|
𝛽

(9)

for 𝑡, 𝑠 ∈ R, 𝜆 ∈ Σ
𝜃
:= {𝜆 ∈ C − {0} : |arg 𝜆| ≤ 𝜃}.

The following lemma can be found in [15, 24, 25].

Lemma 8. Suppose that the ATCs are satisfied, and then
there exists a unique evolution family {𝑈(𝑡, 𝑠)}

−∞<𝑠≤𝑡<∞
on

L2(P;H), which governs the linear part of (1).

3. Main Results

In this section, we investigate the existence and uniqueness
of square-mean almost automorphic solution to the nonau-
tonomous stochastic integrodifferential evolution equation
(1). The following assumptions are imposed on (1) which will
be assumed throughout the manuscript.

(H1) The operator 𝐴(𝑡) : 𝐷(𝐴(𝑡)) ⊂ L2(P;H) →

L2(P;H) is a family of densely defined closed linear
operators satisfying the ATCs, and the generated
evolution family 𝑈(𝑡, 𝑠) is uniformly exponentially
stable; that is, there exist constants𝑀 ≥ 1 and 𝛿 > 0

such that

‖𝑈 (𝑡, 𝑠)‖ ≤ 𝑀𝑒
−𝛿(𝑡−𝑠)

, ∀𝑡 ≥ 𝑠. (10)

(H2) The evolution family {𝑈(𝑡, 𝑠), 𝑡 ≥ 𝑠} generated by𝐴(𝑡)
satisfies the following condition: from every sequence
of real numbers {𝑠

𝑛
}
𝑛∈N, we can extract a subsequence

{𝑠
𝑛
}
𝑛∈N such that, for any 𝜀 > 0, there exists an𝑁 ∈ N

such that 𝑛 > 𝑁 implies that





𝑈 (𝑡 + 𝑠

𝑛
, 𝑠 + 𝑠
𝑛
) − 𝑈 (𝑡, 𝑠)





≤ 𝜀𝑒
−𝛿(𝑡−𝑠)

,





𝑈 (𝑡 − 𝑠

𝑛
, 𝑠 − 𝑠
𝑛
) − 𝑈 (𝑡, 𝑠)





≤ 𝜀𝑒
−𝛿(𝑡−𝑠)

(11)

for all 𝑡 ≥ 𝑠, where 𝛿 > 0 is the constant required in
(H1).

(H3) The functions 𝐹
𝑖

: R × L2(P;H) →

L2(P;H), (𝑡, 𝑋) → 𝐹
𝑖
(𝑡, 𝑋) (𝑖 = 1, 2), and

𝐺 : R ×L2(P;H) → L2(P;H), (𝑡, 𝑋) → 𝐺(𝑡, 𝑋) are
square-mean almost automorphic in 𝑡 ∈ R for each
𝑋 ∈ L2(P;H). Moreover, 𝐹

1
, 𝐹
2
, and 𝐺 are Lipschitz

in 𝑋 uniformly for 𝑡 in the following sense: there
exist constants𝐾

𝑖
> 0 (𝑖 = 1, 2, 3) such that

E

𝐹
𝑖
(𝑡, 𝑋) − 𝐹

𝑖
(𝑡, 𝑌)






2

≤ 𝐾
𝑖
E‖𝑋 − 𝑌‖

2

, 𝑖 = 1, 2,

E‖𝐺 (𝑡, 𝑋) − 𝐺 (𝑡, 𝑌)‖
2

≤ 𝐾
3
E‖𝑋 − 𝑌‖

2

(12)

for all stochastic processes 𝑋,𝑌 ∈ L2(P;H) and 𝑡 ∈
R.

Definition 9. An F
𝑡

progressively measurable process
(𝑋(𝑡))

𝑡∈R is called a mild solution of (1) if it satisfies the
corresponding stochastic integral equation:

𝑋 (𝑡) = 𝑈 (𝑡, 𝑎)𝑋 (𝑎)

+ ∫

𝑡

𝑎

𝑈 (𝑡, 𝜎) ∫

𝜎

𝑎

𝐶 (𝜎 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) 𝑑𝜎

+ ∫

𝑡

𝑎

𝑈 (𝑡, 𝜎) ∫

𝜎

𝑎

𝐵 (𝜎 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠 𝑑𝜎

+ ∫

𝑡

𝑎

𝑈 (𝑡, 𝑠) 𝐹
1
(𝑠, 𝑋 (𝑠)) 𝑑𝑠

(13)

for all 𝑡 ≥ 𝑎 and each 𝑎 ∈ R.

Now we are in a position to show the existence and
uniqueness of square-mean almost automorphic solution to
(1).

Theorem 10. Assume that conditions (H1)–(H3) are satisfied,
then (1) has a unique square-mean almost automorphic mild
solution 𝑋(⋅) ∈ 𝐴𝐴(R;L2(P;H)) which can be explicitly
expressed as

𝑋(𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) 𝑑𝜎

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠 𝑑𝜎

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝐹
1
(𝑠, 𝑋 (𝑠)) 𝑑𝑠

(14)
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provided that

Θ := 3

𝑀
2

𝛿
2
[𝐾
1
+ 𝐾
2
⋅ ‖𝐵‖
2

L1(0,∞) + 𝐾3 ⋅ ‖𝐶‖
2

L2(0,∞)] < 1.

(15)
Proof. First of all, it is not difficult to verify that the stochastic
process

𝑋(𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) 𝑑𝜎

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠 𝑑𝜎

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝐹
1
(𝑠, 𝑋 (𝑠)) 𝑑𝑠

(16)
is well defined and satisfies

𝑋 (𝑡) = 𝑈 (𝑡, 𝑎)𝑋 (𝑎)

+ ∫

𝑡

𝑎

𝑈 (𝑡, 𝜎) ∫

𝜎

𝑎

𝐶 (𝜎 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) 𝑑𝜎

+ ∫

𝑡

𝑎

𝑈 (𝑡, 𝜎) ∫

𝜎

𝑎

𝐵 (𝜎 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠 𝑑𝜎

+ ∫

𝑡

𝑎

𝑈 (𝑡, 𝑠) 𝐹
1
(𝑠, 𝑋 (𝑠)) 𝑑𝑠

(17)
for all 𝑡 ≥ 𝑎 and each 𝑎 ∈ R, and hence it is a mild solution of
the original (1).

To seek the square-mean almost automorphic mild solu-
tion to (1), let us consider the nonlinear operatorS acting on
the Banach space 𝐴𝐴(R;L2(P;H)) given by

(S𝑋) (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) 𝑑𝜎

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠 𝑑𝜎

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝐹
1
(𝑠, 𝑋 (𝑠)) 𝑑𝑠.

(18)

If we can show that the operator S maps 𝐴𝐴(R;L2(P;H))
into itself and it is a contraction mapping, then, by Banach
contraction principle, we can conclude that there is a unique
square-mean almost automorphic mild solution to (1).

Now define three nonlinear operators acting on the
Banach space 𝐴𝐴(R;L2(P;H)) as follows:

(S
1
𝑋) (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝐹
1
(𝑠, 𝑋 (𝑠)) 𝑑𝑠,

(S
2
𝑋) (𝑡) :=∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎−𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠 𝑑𝜎,

(S
3
𝑋) (𝑡) :=∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎−𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) 𝑑𝜎.

(19)

We show first that S
1
𝑋 is square-mean almost automorphic

whenever 𝑋 is. Indeed, assuming that 𝑋 is square-mean
almost automorphic, then Lemma 7 implies that 𝑓

1
(⋅) :=

𝐹
1
(⋅, 𝑋(⋅)) is also square-mean almost automorphic. Hence,

for any sequence of real numbers {𝑠
𝑛
}, there exists a sub-

sequence {𝑠
𝑛
} of {𝑠

𝑛
} and a stochastic process ̃𝑓

1
: R →

L2(P;H) such that

lim
𝑛→∞

E

𝑓
1
(𝑡 + 𝑠
𝑛
) −

̃
𝑓
1
(𝑡)







2

= 0,

lim
𝑛→∞

E


̃
𝑓
1
(𝑡 − 𝑠
𝑛
) − 𝑓
1
(𝑡)







2

= 0

(20)

hold for each 𝑡 ∈ R. By assumption (H2), for any 𝜀 > 0, there
exists𝑁

1
= 𝑁
1
(𝜀) ∈ N such that 𝑛 > 𝑁

1
implies that





𝑈 (𝑡 + 𝑠

𝑛
, 𝑠 + 𝑠
𝑛
) − 𝑈 (𝑡, 𝑠)





≤ 𝜀𝑒
−𝛿(𝑡−𝑠)

∀𝑡 ≥ 𝑠,

E

𝑓
1
(𝑡 + 𝑠
𝑛
) −

̃
𝑓
1
(𝑡)







2

< 𝜀,

E


̃
𝑓
1
(𝑡 − 𝑠
𝑛
) − 𝑓
1
(𝑡)







2

< 𝜀 ∀𝑡 ∈ R.

(21)

Now, define functions on R as follows:

𝑢 (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝑓
1
(𝑠) 𝑑𝑠

�̃� (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝑠)
̃
𝑓
1
(𝑠) 𝑑𝑠,

(22)

and then the above observation together with (3.1) and
Cauchy-Schwarz inequality implies that for any 𝜀 > 0 and
for the aforementioned 𝑁

1
= 𝑁
1
(𝜀) ∈ N if 𝑛 > 𝑁

1
it yields

that

E

𝑢 (𝑡 + 𝑠

𝑛
) − �̃� (𝑡)






2

= E









∫

𝑡+𝑠𝑛

−∞

𝑈 (𝑡 + 𝑠
𝑛
, 𝑠) 𝑓
1
(𝑠) 𝑑𝑠 − ∫

𝑡

−∞

𝑈 (𝑡, 𝑠)
̃
𝑓
1
(𝑠) 𝑑𝑠










2

= E









∫

𝑡

−∞

𝑈(𝑡 + 𝑠
𝑛
, 𝑠 + 𝑠
𝑛
) 𝑓
1
(𝑠 + 𝑠
𝑛
) 𝑑𝑠

−∫

𝑡

−∞

𝑈 (𝑡, 𝑠)
̃
𝑓
1
(𝑠) 𝑑𝑠










2

≤ 2E









∫

𝑡

−∞

[𝑈 (𝑡 + 𝑠
𝑛
, 𝑠 + 𝑠
𝑛
) − 𝑈 (𝑡, 𝑠)] 𝑓

1
(𝑠 + 𝑠
𝑛
) 𝑑𝑠










2

+ 2E









∫

𝑡

−∞

𝑈 (𝑡, 𝑠) [𝑓
1
(𝑠 + 𝑠
𝑛
) −

̃
𝑓
1
(𝑠)] 𝑑𝑠










2
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≤ 2𝜀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠) 




𝑓
1
(𝑠 + 𝑠
𝑛
)




𝑑𝑠)

2

+ 2𝑀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)






𝑓
1
(𝑠 + 𝑠
𝑛
) −

̃
𝑓
1
(𝑠)






𝑑𝑠)

2

≤ 2𝜀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)E


𝑓
1
(𝑠 + 𝑠
𝑛
)





2

𝑑𝑠)

+ 2𝑀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)E


𝑓
1
(𝑠 + 𝑠
𝑛
) −

̃
𝑓
1
(𝑠)







2

𝑑𝑠)

≤ 2𝜀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

2

sup
𝑡∈R

E

𝑓
1
(𝑡 + 𝑠
𝑛
)





2

+ 2𝑀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

2

sup
𝑡∈R

E

𝑓
1
(𝑡 + 𝑠
𝑛
) −

̃
𝑓
1
(𝑡)







2

≤

2𝑀
1

𝛿
2

⋅ 𝜀
2

+

2𝑀
2

𝛿
2

⋅ 𝜀,

(23)

where𝑀
1
:= sup

𝑡∈RE ‖ 𝑓
1
(𝑡)‖
2

< +∞. Hence,

lim
𝑛→∞

E

𝑢 (𝑡 + 𝑠

𝑛
) − �̃� (𝑡)






2

= 0 (24)

for each 𝑡 ∈ R. And we can show in a similar way that

lim
𝑛→∞

E

�̃� (𝑡 − 𝑠

𝑛
) − 𝑢 (𝑡)






2

= 0 (25)

for each 𝑡 ∈ R. Thus, we conclude that 𝑢 = S
1
𝑋 ∈

𝐴𝐴(R;L2(P;H)).
In an analogous way, assuming that 𝑋 is square-mean

almost automorphic and using Lemma 7, one can easily see
that 𝑓

2
(⋅) := 𝐹

2
(⋅, 𝑋(⋅)) is also square-mean almost automor-

phic. Let {𝑠
𝑛
} be an arbitrary sequence of real numbers, and

then there exists a subsequence {𝑠
𝑛
} of {𝑠

𝑛
} and a stochastic

process ̃𝑓
2
: R → L2(P;H) such that

lim
𝑛→∞

E

𝑓
2
(𝑡 + 𝑠
𝑛
) −

̃
𝑓
2
(𝑡)







2

= 0,

lim
𝑛→∞

E


̃
𝑓
2
(𝑡 − 𝑠
𝑛
) − 𝑓
2
(𝑡)







2

= 0

(26)

hold for each 𝑡 ∈ R. Now define functions on R as follows:

V (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠) 𝑑𝑠 𝑑𝜎

Ṽ (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠)
̃
𝑓
2
(𝑠) 𝑑𝑠 𝑑𝜎,

(27)

and then, by making change of variables 𝜏 = 𝜎 − 𝑠
𝑛
and 𝑟 =

𝑠 − 𝑠
𝑛
, we obtain that

E

V (𝑡 + 𝑠

𝑛
) − Ṽ (𝑡)






2

= E









∫

𝑡+𝑠𝑛

−∞

𝑈(𝑡 + 𝑠
𝑛
, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠) 𝑑𝑠 𝑑𝜎

−∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠)
̃
𝑓
2
(𝑠) 𝑑𝑠 𝑑𝜎










2

= E









∫

𝑡

−∞

𝑈(𝑡 + 𝑠
𝑛
, 𝜎 + 𝑠

𝑛
)

× ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠 + 𝑠
𝑛
) 𝑑𝑠 𝑑𝜎

−∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠)
̃
𝑓
2
(𝑠) 𝑑𝑠 𝑑𝜎










2

≤ 2E









∫

𝑡

−∞

[𝑈 (𝑡 + 𝑠
𝑛
, 𝜎 + 𝑠

𝑛
) − 𝑈 (𝑡, 𝜎)]

× ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠 + 𝑠
𝑛
) 𝑑𝑠 𝑑𝜎










2

+ 2E









∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠)

× [𝑓
2
(𝑠 + 𝑠
𝑛
) −

̃
𝑓
2
(𝑠)] 𝑑𝑠 𝑑𝜎










2

≤ 2𝜀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×










∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠 + 𝑠
𝑛
) 𝑑𝑠










𝑑𝜎)

2

+2𝑀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×










∫

𝜎

−∞

𝐵 (𝜎−𝑠)

×[𝑓
2
(𝑠+𝑠
𝑛
)−

̃
𝑓
2
(𝑠)]𝑑𝑠










𝑑𝜎)

2

.

(28)

Let us evaluate the first term of the right-handed side by using
Cauchy-Schwarz inequality:

E(∫
𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)










∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠 + 𝑠
𝑛
) 𝑑𝑠










𝑑𝜎)

2

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× ∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)E










∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠 + 𝑠
𝑛
) 𝑑𝑠










2

𝑑𝜎
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≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

{∫

𝜎

−∞

‖𝐵 (𝜎 − 𝑠)‖ 𝑑𝑠}

×{∫

𝜎

−∞

‖𝐵 (𝜎 − 𝑠)‖E

𝑓
2
(𝑠 + 𝑠
𝑛
)





2

𝑑𝑠} 𝑑𝜎)

≤ {∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎}

2

⋅ {∫

+∞

0

‖𝐵 (𝑢)‖ 𝑑𝑢}

2

⋅ sup
𝑠∈R

E

𝑓
2
(𝑠 + 𝑠
𝑛
)





2

≤

‖𝐵‖
2

L1(0,∞)

𝛿
2

⋅ sup
𝑡∈R

E

𝑓
2
(𝑡)





2

.

(29)

As to the second term, in a similar manner as above, we have
the following observation:

E(∫
𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)










∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) [𝑓
2
(𝑠 + 𝑠
𝑛
) −

̃
𝑓
2
(𝑠)] 𝑑𝑠










𝑑𝜎)

2

≤E [(∫
𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

×(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×










∫

𝜎

−∞

𝐵 (𝜎−𝑠)

× [𝑓
2
(𝑠+𝑠
𝑛
)−

̃
𝑓
2
(𝑠)]𝑑𝑠










2

𝑑𝜎)]

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× E









∫

𝜎

−∞

𝐵 (𝜎 − 𝑠)

×[𝑓
2
(𝑠 + 𝑠
𝑛
) −

̃
𝑓
2
(𝑠)] 𝑑𝑠










2

𝑑𝜎)

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

{∫

𝜎

−∞

‖𝐵 (𝜎−𝑠)‖ 𝑑𝑠}

× {∫

𝜎

−∞

‖𝐵 (𝜎−𝑠)‖

×E 




𝑓
2
(𝑠+𝑠
𝑛
)−

̃
𝑓
2
(𝑠)







2

𝑑𝑠} 𝑑𝜎)

≤ {∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎}

2

⋅ {∫

+∞

0

‖𝐵 (𝑢)‖ 𝑑𝑢}

2

⋅ sup
𝑡∈R

E

𝑓
2
(𝑡 + 𝑠
𝑛
) −

̃
𝑓
2
(𝑡)







2

≤

1

𝛿
2
⋅ ‖𝐵‖
2

L1(0,∞) ⋅ sup
𝑡∈R

E

𝑓
2
(𝑡 + 𝑠
𝑛
) −

̃
𝑓
2
(𝑡)







2

≤

‖𝐵‖
2

L1(0,∞)

𝛿
2

⋅ 𝜀.

(30)
Based on the above argument, for arbitrary 𝜀 > 0, thanks to
the boundedness and square-mean almost automorphy of 𝑓

2
,

there exists certain𝑁
2
= 𝑁
2
(𝜀) ∈ N such that 𝑛 > 𝑁

2
implies

that
E

V (𝑡 + 𝑠

𝑛
) − Ṽ (𝑡)






2

≤ 2𝜀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×










∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠 + 𝑠
𝑛
) 𝑑𝑠










𝑑𝜎)

2

+2𝑀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×










∫

𝜎

−∞

𝐵 (𝜎−𝑠)

×[𝑓
2
(𝑠+𝑠
𝑛
)−

̃
𝑓
2
(𝑠)]𝑑𝑠










𝑑𝜎)

2

≤

2‖𝐵‖
2

L1(0,∞) ⋅ sup𝑡∈RE




𝑓
2
(𝑡)





2

𝛿
2

⋅ 𝜀
2

+

2𝑀
2

⋅ ‖𝐵‖
2

L1(0,∞)

𝛿
2

⋅ 𝜀,

(31)

where we use the fact that, for arbitrary 𝜀 > 0, there exists
𝑁
2
= 𝑁
2
(𝜀) ∈ N such that, for all 𝑛 > 𝑁

2
,

E

𝑓
2
(𝑡 + 𝑠
𝑛
) −

̃
𝑓
2
(𝑡)







2

< 𝜀 (32)

holds for all 𝑡 ∈ R. This indicates that
lim
𝑛→∞

E

V (𝑡 + 𝑠

𝑛
) − Ṽ (𝑡)






2

= 0 (33)

for each 𝑡 ∈ R. In an analogous way, we can show that

lim
𝑛→∞

E

Ṽ (𝑡 − 𝑠

𝑛
) − V (𝑡)






2

= 0 (34)

for each 𝑡 ∈ R. Combining (33) with (34), we obtain that V =
S
2
𝑋 is square-mean almost automorphic.
Assuming that 𝑋 ∈ 𝐴𝐴(R;L2(P;H)), then similar

argument as above ensures that 𝑔(⋅) := 𝐺(⋅, 𝑋(⋅)) ∈

𝐴𝐴(R;L2(P;H)). As a consequence, for every sequence of
real numbers {𝑠

𝑛
} there exist a subsequence {𝑠

𝑛
} ⊂ {𝑠



𝑛
} and a

stochastic process 𝑔 such that

lim
𝑛→∞

E

𝑔 (𝑡 + 𝑠

𝑛
) − 𝑔 (𝑡)






2

= 0,

lim
𝑛→∞

E

𝑔 (𝑡 − 𝑠

𝑛
) − 𝑔 (𝑡)






2

= 0

(35)
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hold for each 𝑡 ∈ R. Hence, for arbitrary 𝜀 > 0, there exists
certain𝑁

3
= 𝑁
3
(𝜀) ∈ N such that, for all 𝑛 > 𝑁

3
, there holds

E

𝑔 (𝑡 + 𝑠

𝑛
) − 𝑔 (𝑡)






2

< 𝜀 (36)

for all 𝑡 ∈ R.
The next step aims to prove the square-mean almost

automorphy of S
3
𝑋. This is more complicated because

the involvement of the Brownian motion 𝑊. Consider the
Brownian motion �̃� defined by

�̃� (𝑠) = 𝑊 (𝑠 + 𝑠
𝑛
) − 𝑊(𝑠

𝑛
) (37)

for each 𝑠 ∈ R, which has the same distribution as𝑊. Define
two functions on R as below:

𝜔 (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠) 𝑑𝜎,

�̃� (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠) 𝑑𝜎.

(38)

By making change of variables 𝜏 = 𝜎 − 𝑠
𝑛
and 𝑟 = 𝑠 − 𝑠

𝑛
, and

then using Cauchy-Schwarz inequality, we obtain that

E

𝜔 (𝑡 + 𝑠

𝑛
) − �̃� (𝑡)






2

= E









∫

𝑡+𝑠𝑛

−∞

𝑈(𝑡 + 𝑠
𝑛
, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠) 𝑑𝜎

−∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠) 𝑑𝜎










2

=E









∫

𝑡

−∞

𝑈 (𝑡+𝑠
𝑛
, 𝜎+𝑠
𝑛
)

×∫

𝜎

−∞

𝐶 (𝜎−𝑠) 𝑔 (𝑠+𝑠
𝑛
) 𝑑𝑊 (𝑠+𝑠

𝑛
) 𝑑𝜎

−∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎−𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠) 𝑑𝜎










2

=E









∫

𝑡

−∞

𝑈 (𝑡+𝑠
𝑛
, 𝜎+𝑠
𝑛
)

×∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠+𝑠
𝑛
) 𝑑�̃� (𝑠) 𝑑𝜎

−∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎−𝑠) 𝑔 (𝑠) 𝑑�̃� (𝑠) 𝑑𝜎










2

≤ 2E









∫

𝑡

−∞

[𝑈 (𝑡 + 𝑠
𝑛
, 𝜎 + 𝑠

𝑛
) − 𝑈 (𝑡, 𝜎)]

×∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠 + 𝑠
𝑛
) 𝑑�̃� (𝑠) 𝑑𝜎










2

+ 2E









∫

𝑡

−∞

𝑈 (𝑡, 𝜎)

× ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠)

× [𝑔 (𝑠 + 𝑠
𝑛
) − 𝑔 (𝑠)] 𝑑�̃� (𝑠) 𝑑𝜎










2

≤ 2𝜀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×










∫

𝜎

−∞

𝐶 (𝜎−𝑠) 𝑔 (𝑠+𝑠
𝑛
) 𝑑�̃� (𝑠)










𝑑𝜎)

2

+ 2𝑀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×










∫

𝜎

−∞

𝐶 (𝜎 − 𝑠)

× [𝑔 (𝑠 + 𝑠
𝑛
)

−𝑔 (𝑠)] 𝑑�̃� (𝑠)










𝑑𝜎)

2

≤ 2𝜀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× E









∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠+𝑠
𝑛
) 𝑑�̃� (𝑠)










2

𝑑𝜎)

+ 2𝑀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× E









∫

𝜎

−∞

𝐶 (𝜎 − 𝑠)

× [𝑔 (𝑠 + 𝑠
𝑛
)−𝑔 (𝑠)] 𝑑�̃� (𝑠)










2

𝑑𝜎) .

(39)

For the above-mentioned 𝜀 > 0, by using an estimate on Ito
integral established in [26], it follows that once 𝑛 > 𝑁

3
, then

the first term of the above inequality can be evaluated as

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× E









∫

𝜎

−∞

𝐶 (𝜎−𝑠) 𝑔 (𝑠+𝑠
𝑛
) 𝑑�̃� (𝑠)










2

𝑑𝜎)
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≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× {∫

𝜎

−∞

E

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠 + 𝑠

𝑛
)





2

𝑑𝑠} 𝑑𝜎)

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× {∫

𝜎

−∞

‖𝐶 (𝜎 − 𝑠)‖
2E

𝑔 (𝑠 + 𝑠

𝑛
)





2

𝑑𝑠} 𝑑𝜎)

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

{∫

𝜎

−∞

‖𝐶 (𝜎 − 𝑠)‖
2

𝑑𝑠} 𝑑𝜎)

⋅ sup
𝑠∈R

E

𝑔 (𝑠 + 𝑠

𝑛
)





2

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

2

⋅ (∫

∞

0

‖𝐶 (𝑢)‖
2

𝑑𝑢)

⋅ sup
𝑡∈R

E

𝑔 (𝑡)






2

≤

‖𝐶‖
2

L2(0,∞)

𝛿
2

⋅ sup
𝑡∈R

E

𝑔(𝑡)






2

,

(40)

and the second term can be evaluated analogously as

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

×(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)E










∫

𝜎

−∞

𝐶 (𝜎−𝑠)

×[𝑔 (𝑠+𝑠
𝑛
)−𝑔 (𝑠)] 𝑑�̃� (𝑠)










2

𝑑𝜎)

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

×(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

{∫

𝜎

−∞

E

𝐶 (𝜎−𝑠)[𝑔 (𝑠+𝑠

𝑛
)−𝑔 (𝑠)]






2

𝑑𝑠} 𝑑𝜎)

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

{∫

𝜎

−∞

‖𝐶 (𝜎 − 𝑠)‖
2E

×




𝑔 (𝑠 + 𝑠

𝑛
) − 𝑔 (𝑠)






2

𝑑𝑠} 𝑑𝜎)

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× {∫

𝜎

−∞

‖𝐶 (𝜎−𝑠)‖
2

𝑑𝑠} 𝑑𝜎)

⋅ sup
𝑡∈R





𝑔 (𝑠 + 𝑠

𝑛
) − 𝑔 (𝑠)






2

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

2

⋅ (∫

∞

0

‖𝐶 (𝑢)‖
2

𝑑𝑢) ⋅ sup
𝑡∈R





𝑔 (𝑠 + 𝑠

𝑛
) − 𝑔 (𝑠)






2

≤

‖𝐶‖
2

L2(0,∞)

𝛿
2

⋅ 𝜀.

(41)

The above argument yields that

E

𝜔 (𝑡 + 𝑠

𝑛
) − �̃� (𝑡)






2

≤ 2𝜀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× E









∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠 + 𝑠
𝑛
) 𝑑�̃� (𝑠)










2

𝑑𝜎)

+ 2𝑀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× E









∫

𝜎

−∞

𝐶 (𝜎 − 𝑠)

×[𝑔 (𝑠 + 𝑠
𝑛
) − 𝑔 (𝑠)] 𝑑�̃� (𝑠)










2

𝑑𝜎)

≤

2‖𝐶‖
2

L2(0,∞) ⋅ sup𝑡∈RE




𝑔 (𝑡)






2

𝛿
2

⋅ 𝜀
2

+

2𝑀
2

⋅ ‖𝐶‖
2

L2(0,∞)

𝛿
2

⋅ 𝜀,

(42)

which implies that

lim
𝑛→∞

E

𝜔 (𝑡 + 𝑠

𝑛
) − �̃� (𝑡)






2

= 0 (43)

for each 𝑡 ∈ R. Analogously, we can show that

lim
𝑛→∞

E

�̃� (𝑡 − 𝑠

𝑛
) − 𝜔 (𝑡)






2

= 0 (44)

for each 𝑡 ∈ R. Combining (43) with (44), we obtain that
𝜔 = S

3
𝑋 is square-mean almost automorphic.
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In view of the above arguments, it follows from (18)
that the nonlinear operator S = S

1
+ S
2
+ S
3
maps

𝐴𝐴(R;L2(P;H)) into itself. To complete the proof, it suffices
to show thatS is a contractionmapping on𝐴𝐴(R;L2(P;H)).
Indeed, for each 𝑋,𝑌 ∈ 𝐴𝐴(R;L2(P;H)), thanks to the fact
that (𝑎 + 𝑏 + 𝑐)

2

≤ 3𝑎
2

+ 3𝑏
2

+ 3𝑐
2, we have the following

observation:

E‖(S𝑋) (𝑡) − (S𝑌) (𝑡)‖2

≤ 3E









∫

𝑡

−∞

𝑈 (𝑡, 𝑠) [𝐹
1
(𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑌 (𝑠))] 𝑑𝑠










2

+ 3E









∫

𝑡

−∞

𝑈 (𝑡, 𝜎)

× ∫

𝜎

−∞

𝐵 (𝜎−𝑠)

× [𝐹
2
(𝑠, 𝑋 (𝑠))−𝐹

2
(𝑠, 𝑌 (𝑠))]𝑑𝑠 𝑑𝜎










2

+ 3E









∫

𝑡

−∞

𝑈 (𝑡, 𝜎)

× ∫

𝜎

−∞

𝐶 (𝜎−𝑠)

×[𝐺 (𝑠, 𝑋 (𝑠))−𝐺 (𝑠, 𝑌 (𝑠))]𝑑𝑊 (𝑠)𝑑𝜎










2

≤ 3E(∫
𝑡

−∞

‖𝑈 (𝑡, 𝑠)‖




𝐹
1
(𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑌 (𝑠))





𝑑𝑠)

2

+ 3E(∫
𝑡

−∞

‖𝑈 (𝑡, 𝜎)‖

×∫

𝜎

−∞





𝐵 (𝜎−𝑠)

×[𝐹
2
(𝑠, 𝑋(𝑠))−𝐹

2
(𝑠, 𝑌(𝑠))]





𝑑𝑠 𝑑𝜎)

2

+ 3E(∫
𝑡

−∞

‖𝑈 (𝑡, 𝜎)‖

×










∫

𝜎

−∞

𝐶 (𝜎−𝑠) [𝐺 (𝑠, 𝑋 (𝑠))

−𝐺 (𝑠, 𝑌 (𝑠))]𝑑𝑊 (𝑠)










𝑑𝜎)

2

.

(45)

Now, we evaluate the first term of the right-hand side with the
help of Cauchy-Schwarz inequality as follows:

3E(∫
𝑡

−∞

‖𝑈 (𝑡, 𝑠)‖




𝐹
1
(𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑌 (𝑠))





𝑑𝑠)

2

≤3𝑀
2E(∫
𝑡

−∞

𝑒
−𝛿(𝑡−𝑠) 




𝐹
1
(𝑠, 𝑋 (𝑠))−𝐹

1
(𝑠, 𝑌 (𝑠))





𝑑𝑠)

2

≤ 3𝑀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)E


𝐹
1
(𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑌 (𝑠))






2

𝑑𝑠)

≤ 3𝑀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

2

× sup
𝑠∈R

E

𝐹
1
(𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑌 (𝑠))






2

≤ 3𝐾
1
𝑀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

2

sup
𝑡∈R

E‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

=

3𝐾
1

𝛿
2
⋅ 𝑀
2

⋅ sup
𝑡∈R

E‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

.

(46)

As to the second term, we can proceed in the same manner
as above and obtain

3E(∫
𝑡

−∞

‖𝑈 (𝑡, 𝜎)‖

×∫

𝜎

−∞





𝐵 (𝜎−𝑠) [𝐹

2
(𝑠, 𝑋 (𝑠))−𝐹

2
(𝑠, 𝑌 (𝑠))]





𝑑𝑠 𝑑𝜎)

2

≤

3𝐾
2

𝛿
2
⋅ 𝑀
2

⋅ ‖𝐵‖
2

L1(0,∞) ⋅ sup
𝑡∈R

E‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

.

(47)

As far as the last term of the right-hand side is concerned, we
use again the estimate on the Ito integral to obtain

3E(∫
𝑡

−∞

‖𝑈 (𝑡, 𝜎)‖

×










∫

𝜎

−∞

𝐶 (𝜎 − 𝑠)

× [𝐺 (𝑠, 𝑋 (𝑠)) − 𝐺 (𝑠, 𝑌 (𝑠))] 𝑑𝑊 (𝑠)










𝑑𝜎)

2

≤ 3𝑀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×










∫

𝜎

−∞

𝐶 (𝜎−𝑠)

× [𝐺 (𝑠, 𝑋 (𝑠))−𝐺 (𝑠, 𝑌 (𝑠))]𝑑𝑊










𝑑𝜎)

2
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≤ 3𝑀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

×(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×E









∫

𝜎

−∞

𝐶 (𝜎−𝑠)

×[𝐺 (𝑠, 𝑋 (𝑠))−𝐺 (𝑠, 𝑌 (𝑠))]𝑑𝑊 (𝑠)










2

𝑑𝜎)

≤ 3𝑀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× ∫

𝜎

−∞

‖𝐶 (𝜎 − 𝑠)‖
2

×E‖𝐺 (𝑠, 𝑋 (𝑠)) − 𝐺 (𝑠, 𝑌 (𝑠))‖
2

𝑑𝑠 𝑑𝜎)

≤ 3𝑀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

2

⋅ ‖𝐶‖
2

L2(0,∞)

⋅ sup
𝑠∈R

E‖𝐺 (𝑠, 𝑋 (𝑠)) − 𝐺 (𝑠, 𝑌 (𝑠))‖
2

≤ 3𝐾
3
𝑀
2

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

2

⋅ ‖𝐶‖
2

L2(0,∞)

⋅ sup
𝑡∈R

E‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

=

3𝐾
3

𝛿
2
⋅ 𝑀
2

⋅ ‖𝐶‖
2

L2(0,∞) ⋅ sup
𝑡∈R

E‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

.

(48)

Thus, by combining the three inequalities together, we obtain
that, for each 𝑡 ∈ R,

E‖(S𝑋) (𝑡) − (S𝑌) (𝑡)‖2

≤ {3

𝑀
2

𝛿
2
[𝐾
1
+ 𝐾
2
⋅ ‖𝐵‖
2

L1(0,∞) + 𝐾3 ⋅ ‖𝐶‖
2

L2(0,∞)]}

⋅ sup
𝑡∈R

E‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

.

(49)

That is,

‖(S𝑋) (𝑡) − (S𝑌) (𝑡)‖
2

2
≤ Θ sup
𝑡∈R

‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

2
, (50)

whereΘ := 3(𝑀
2

/𝛿
2

)[𝐾
1
+𝐾
2
⋅ ‖ 𝐵‖
2

L1(0,∞)+𝐾3⋅ ‖ 𝐶‖
2

L2(0,∞)].
Notice that

sup
𝑡∈R

‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

2
≤ (sup
𝑡∈R

‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2
)

2

. (51)

As a result, (50) together with (51) gives that, for each 𝑡 ∈ R,

‖(S𝑋) (𝑡) − (S𝑌) (𝑡)‖
2
≤ √Θ sup

𝑡∈R

‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

= √Θ ‖𝑋 − 𝑌‖
∞
.

(52)

It follows that
‖S𝑋 −S𝑌‖

∞

= sup
𝑡∈R

‖(S𝑋) (𝑡) − (S𝑌) (𝑡)‖
2
≤ √Θ ‖𝑋 − 𝑌‖

∞
,

(53)

which implies thatS is a contractionmapping by the assump-
tion (15) imposed onΘ.Therefore, by the Banach contraction
principle, we conclude that there exists a unique fixed point
𝑋 for S in 𝐴𝐴(R;L2(P;H)), which is the unique square-
mean almost automorphic mild solution to the functional
integrodifferential semilinear stochastic evolution equation
(1) as we have claimed. The proof is complete.

Remark 11. If the functions 𝐹
1
, 𝐹
2
, 𝐺 in (1) are square-mean

almost periodic in 𝑡, then the unique square-mean almost
automorphic solution obtained in Theorem 10 is actually
square-mean almost periodic; see paper [27].

Nowwe are in a position to show the asymptotically stable
property of the unique square-mean almost automorphic
solution to (1). Recall that the unique square-mean almost
automorphic solution 𝑋

∗

(𝑡) of (1) is said to be stable in
square-mean sense if, for arbitrary 𝜖 > 0, there exists 𝛿 > 0

such that

E

𝑋 (𝑡) − 𝑋

∗

(𝑡)





2

< 𝜖, 𝑡 ≥ 0 (54)

whenever E ‖ 𝑋(0) − 𝑋
∗

(0)‖
2

< 𝛿, where 𝑋(𝑡) stands for a
solution of (1) with initial value 𝑋(0). The solution 𝑋

∗

(𝑡) is
said to be asymptotically stable in square-mean sense if it is
stable in square-mean sense and

lim
𝑡→∞

E

𝑋 (𝑡) − 𝑋

∗

(𝑡)





2

= 0. (55)

The following Gronwall-type inequality is proved to be
useful in our asymptotic stability analysis.

Lemma 12. Let 𝑢(𝑡), 𝑏(𝑡) be nonnegative continuous functions
for 𝑡 ≥ 𝑎, and 𝛼, 𝛾 be some positive constants. If

𝑢 (𝑡) ≤ 𝛼𝑒
−𝛽(𝑡−𝑎)

+ ∫

𝑡

𝑎

𝑒
−𝛽(𝑡−𝑠)

𝑏 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ≥ 𝑎, (56)

then

𝑢 (𝑡) ≤ 𝛼 exp{−𝛽 (𝑡 − 𝑎) + ∫
𝑡

𝑎

𝑏 (𝑠) 𝑑𝑠} . (57)

Theorem 13. Let all the assumptions in Theorem 10 hold and
assume that

𝑀
2

𝛿
2
[𝐾
1
+ 𝐾
2
⋅ ‖𝐵‖
2

L1(0,∞) + 𝐾3 ⋅ ‖𝐶‖
2

L2(0,∞)] <
1

4

. (58)

Then the unique square-mean almost automorphic mild solu-
tion𝑋∗(𝑡) of (1) is asymptotically stable in square-mean sense.
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Proof. Let 𝑋(𝑡) be any mild solution of (1) with initial value
𝑋(0). Then, on account of (H1)-(H2) and the assumptions
imposed on 𝐵 and 𝐶, along the same line as in [9] we could
show that, for any 𝑡 ≥ 0,

E

𝑋 (𝑡) − 𝑋

∗

(𝑡)





2

= E









𝑈 (𝑡, 0) [𝑋 (0) − 𝑋
∗

(0)]

+ ∫

𝑡

0

𝑈 (𝑡, 𝑠)

× [𝐹
1
(𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑋
∗

(𝑠))] 𝑑𝑠

+ ∫

𝑡

0

𝑈 (𝑡, 𝜎)

× ∫

𝜎

0

𝐵 (𝜎 − 𝑠)

× [𝐹
2
(𝑠, 𝑋 (𝑠)) − 𝐹

2
(𝑠, 𝑋
∗

(𝑠))] 𝑑𝑠 𝑑𝜎

+ ∫

𝑡

0

𝑈 (𝑡, 𝜎)

×∫

𝜎

0

𝐶 (𝜎−𝑠)

× [𝐺 (𝑠, 𝑋(𝑠))−𝐺 (𝑠, 𝑋
∗

(𝑠))]𝑑𝑊(𝑠)𝑑𝜎










2

≤ 4E

𝑈 (𝑡, 0) [𝑋 (0) − 𝑋

∗

(0)]





2

+ 4E









∫

𝑡

0

𝑈 (𝑡, 𝑠) [𝐹
1
(𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑋
∗

(𝑠))]










2

+ 4E









∫

𝑡

0

𝑈 (𝑡, 𝜎)

×∫

𝜎

0

𝐵 (𝜎−𝑠)

× [𝐹
2
(𝑠, 𝑋 (𝑠))−𝐹

2
(𝑠, 𝑋
∗

(𝑠))] 𝑑𝑠 𝑑𝜎










2

+4E









∫

𝑡

0

𝑈 (𝑡, 𝜎)

×∫

𝜎

0

𝐶 (𝜎−𝑠)

×[𝐺 (𝑠, 𝑋(𝑠))−𝐺 (𝑠, 𝑋
∗

(𝑠))]𝑑𝑊(𝑠) 𝑑𝜎










2

≤ 4𝑀
2

𝑒
−𝛿𝑡E


𝑋 (0) − 𝑋

∗

(0)





2

+ 𝜅∫

𝑡

0

𝑒
−𝛿(𝑡−𝑠)E


𝑋 (𝑠) − 𝑋

∗

(𝑠)





2

𝑑𝑠,

(59)

where 𝜅 := (4𝑀
2

(𝐾
1
+𝐾
2
⋅ ‖ 𝐵‖
2

L1(0,∞) +𝐾3⋅ ‖ 𝐶‖
2

L2(0,∞)))/𝛿.

Define 𝑌(𝑡) := E ‖ 𝑋(𝑡) − 𝑋
∗

(𝑡)‖
2, and it yields that

𝑌 (𝑡) ≤ 4𝑀
2

𝑌 (0) 𝑒
−𝛿𝑡

+ 𝜅∫

𝑡

0

𝑒
−𝛿(𝑡−𝑠)

𝑌 (𝑠) 𝑑𝑠. (60)

Hence, it follows from Lemma 12 that

𝑌 (𝑡) ≤ 4𝑀
2

𝑌 (0) exp {(−𝛿 + 𝜅) 𝑡} . (61)

Straightforwardly, we obtain that 𝑌(𝑡) converges to 0 expo-
nentially fast if −𝛿 + 𝜅 < 0, which is equivalent to
our condition (58). Thus, we come to the conclusion that
the unique square-mean almost automorphic mild solution
𝑋
∗

(𝑡) of (1) is asymptotically stable in square-mean sense.
The proof is completed.

4. Applications

To illustrate the applications of our abstract results, let us
consider the following nonautonomous functional integrod-
ifferential stochastic partial differential equation:

𝜕𝑋

𝜕𝑡

=

𝜕
2

𝑋

𝜕𝑥
2
+ ∫

𝑡

−∞

𝐶 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠, 𝑥)) 𝑑𝑊 (𝑠)

+ ∫

𝑡

−∞

𝐵 (𝑡 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠, 𝑥)) 𝑑𝑠 + 𝐹

1
(𝑡, 𝑋 (𝑡, 𝑥))

(62)

for 𝑡 ∈ R and 𝑥 ∈ Ω, where Ω ⊂ R𝑛 is a bounded subset
whose boundary 𝜕Ω is both of class 𝐶2 and locally on one
side of Ω. Suppose further that (62) satisfies the following
boundary conditions:
𝑛

∑

𝑖,𝑗=1

𝑛
𝑖
(𝑥) 𝑎
𝑖𝑗
(𝑡, 𝑥)

𝑑𝑋 (𝑡, 𝑥)

𝑑𝑥
𝑖

= 0, 𝑡 ∈ R, 𝑥 ∈ 𝜕Ω, (63)

where 𝑛(𝑥) = (𝑛
1
(𝑥), 𝑛
2
(𝑥), . . . , 𝑛

𝑛
(𝑥)) is the outer unit

normal vector. A family of operators 𝐴(𝑡, 𝑥) defined by
𝜕
2

𝑋/𝜕𝑥
2

= 𝐴(𝑡, 𝑥)𝑋(𝑡, 𝑥) is formally assigned to be

𝐴 (𝑡, 𝑥)=

𝑛

∑

𝑖,𝑗=1

𝜕

𝜕𝑥
𝑖

(𝑎
𝑖𝑗
(𝑡, 𝑥)

𝜕

𝜕𝑥
𝑗

)+𝑐 (𝑡, 𝑥) , 𝑡∈R, 𝑥∈Ω,

(64)

where 𝑎
𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) and 𝑐 satisfy the following

conditions.

(H4) The coefficients 𝑎
𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) are symmetric,

that is, 𝑎
𝑖𝑗
= 𝑎
𝑗𝑖
for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛. In addition,

𝑎
𝑖𝑗
∈ 𝐶
𝜇

𝑏
(R;L

2

(P; 𝐶 (Ω)))

∩ 𝐶
𝑏
(R;L

2

(P; 𝐶1 (Ω)))

∩ 𝐴𝐴 (R;L
2

(P;L2 (Ω)))

(65)

for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛 and

𝑐 ∈ 𝐶
𝜇

𝑏
(R;L

2

(P;L2 (Ω))) ∩ 𝐶
𝑏
(R;L

2

(P; 𝐶 (Ω)))

∩ 𝐴𝐴 (R;L
2

(P;L1 (Ω)))
(66)
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for some 𝜇 ∈ (1/2, 1], where Ω means the closure of
Ω.

(H5) There exists 𝛿
0
> 0 such that

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑡, 𝑥) 𝜂

𝑖
𝜂
𝑗
≥ 𝛿
0





𝜂





2

(67)

for all (𝑡, 𝑥) ∈ R × Ω and 𝜂 ∈ R𝑛.

Now, let H = L2(Ω) and letH2(Ω) be the Sobolev space
of order 2 on Ω. For each 𝑡 ∈ R, define an operator 𝐴(𝑡) on
L2(P;H) by

𝐴 (𝑡)𝑋 = 𝐴 (𝑡, 𝑥)𝑋 ∀𝑋 ∈ D (𝐴 (𝑡)) , (68)

where

D (𝐴 (𝑡)) =

{

{

{

𝑋 ∈ L
2

(P,H2 (Ω)) :

𝑛

∑

𝑖,𝑗=1

𝑛
𝑖
(⋅) 𝑎
𝑖𝑗
(𝑡, ⋅)

𝑑𝑋 (𝑡, ⋅)

𝑑𝑥
𝑖

= 0 on 𝜕Ω

}

}

}

.

(69)

Under assumptions (H4)-(H5), the existence of an evolution
family 𝑈(𝑡, 𝑠) satisfying (H1) is guaranteed; see, for example,
[28].

And thus, as an immediate consequence ofTheorem 10, it
yields the following.

Theorem 14. Under assumptions (H2), (H3), (H4), and (H5),
the nonautonomous integrodifferential stochastic evolution
equation (62)-(63) has a unique mild solution which is square-
mean almost automorphic provided that (15) holds. If, in
addition, (58) is valid, then the unique almost automorphic
solution is asymptotically stable in square-mean sense.
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solutions to some classes of partial evolution equations,”Applied
Mathematics Letters, vol. 20, no. 4, pp. 462–466, 2007.

[20] G. M. N’Guerekata, Almost Automorphic and Almost Periodic
Functions in Abstract Spaces, Kluwer Academic, New York, NY,
USA, 2001.
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We formulate a pest management model with periodically releasing infective pests, immature and mature natural enemies, and
harvesting pests and crops at two different fixed moments. Sufficient conditions ensuring the locally and globally asymptotical
stability of the susceptible pest-eradication period solution are found by means of Floquet theory, small amplitude perturbation
techniques, and multicomparison results. Furthermore, the permanence of system is also derived. By numerical analysis, we also
show that impulsive releasing and harvesting at two different fixed moments can bring obvious effects on the dynamics of system,
which also corroborates our theoretical results.

1. Introduction
As is known to all, pest outbreaks often cause serious eco-
logical and economic problems. Therefore, how to effectively
control insects and other arthropods has become an increas-
ingly complex issue. Usually, chemical pesticides were taken
as a relatively simple way to solve the pest-related problems,
and some mathematical models on pest management with
toxin (pesticide) input were studied in [1–4]. However, the
overuse of chemical pesticides may create new ecological and
sociological harm such as pesticide pollution and pesticide-
resistant pest varieties and inflicts harmful effects on humans
and so forth. Therefore, nonchemical use instead for pest
control has become a hot topic in order to reduce pest density
to tolerable levels and minimize the damage caused. For
instance, biological control methods by periodically releasing
infective pests or their natural enemies are often taken due to
their advantage in the aspects of self-sustainable mechanism,
lower environmental impact, and cost effectiveness.

Recently, some biocontrol models on pest management
described by impulsive differential equation were proposed
and the dynamics such as stability, permanence, periodicity,
and bifurcation are deeply investigated (see also, e.g., [2–12]).
In [5], an impulsive system to model the process of periodic
releasing natural enemies and harvesting pest at different
fixed time for pest control is considered, and the sufficient
conditions on the existence and global stability of the periodic

solution are derived for the given model. Georgescu et al.
[6, 7] construct an integrated pest management model which
relies on the simultaneous periodic release of infective pest
individuals and of natural predators with age structure and
obtain some sufficient conditions on the local and global sta-
bility, permanence, and bifurcation of the systems. However,
most of the existingmodels on pestmanagement scarcely take
into account the factor on the relation between pest and its
food (e.g., crop). In fact, farmers may harvest crops several
times in process of its growth, which should cause a great
impact on the density of the pest.

Motived by the above discussion, we construct a model
of pest control by periodically releasing infective pests,
immature and mature natural enemies, and harvesting pests
and crops. To account for the discontinuity of release and
harvest at different fixed moments, our model is based on
impulsive differential equations. We analyze the dynamical
behavior of the system by using the theory of impulsive
differential equation introduced in [13–15].

The rest of this paper is organized as follows. A pest
management model with impulsive releasing and harvesting
is introduced in Section 2 and some useful preliminaries
are given in Section 3. Section 4 deals with stability and
permanence analysis of system. In this section, two sufficient
conditions are deduced including the locally and globally
asymptotical stability of the susceptible pest-eradication
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period solution, the permanence of system is also discussed.
A simple example and conclusions are given in Section 5.

2. Model Description

In the following, to establish our pest managementmodel, we
rely on the following biological assumptions.

(𝐴1) The pest population is divided into two classes, the
susceptible and infective. The infective pests neither
recover nor reproduce and infective pests cannot
damage crops. The disease is transmitted from infec-
tive pests to susceptible pests and does not propagate
to predators.

(𝐴2) In the absence of susceptible pests, the crops have
a logistic growth rate with intrinsic birth rate 𝑟 and
carrying capacity𝐾.

(𝐴3) The predators (natural enemies) have an age struc-
ture, that is, immature and mature. Only the mature
predators have the ability to feed on susceptible pests,
but do not prey on infective pests and crops.

(𝐴4) The functional response of the susceptible pest is
described by the abstract function 𝑃

1
, the functional

response of the mature predator is described by
the abstract function 𝑃

2
, and the infection rate is

described by the abstract function𝑔, where𝑃
1
,𝑃

2
, and

𝑔 satisfy certain assumptions outlined below.

On the basis of the above assumptions, we establish the
following impulsively controlled system:

𝑥


(𝑡) = 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) − 𝑃
1
(𝑥 (𝑡)) 𝑆 (𝑡) ,

𝑆


(𝑡) = 𝛽𝑃
1
(𝑥 (𝑡)) 𝑆 (𝑡) − 𝑔 (𝐼 (𝑡)) 𝑆 (𝑡)

− 𝑃
2
(𝑆 (𝑡)) 𝑦

𝑀
(𝑡) − 𝑑

𝑆
𝑆 (𝑡) ,

𝐼


(𝑡) = 𝑔 (𝐼 (𝑡)) 𝑆 (𝑡) − 𝑑
𝐼
𝐼 (𝑡) ,

𝑦


𝐽
(𝑡) = 𝜆𝑃

2
(𝑆 (𝑡)) 𝑦

𝑀
(𝑡) − 𝑑

𝐽
𝑦
𝐽
(𝑡) − 𝑚𝑦

𝐽
(𝑡) ,

𝑦


𝑀
(𝑡) = 𝑚𝑦

𝐽
(𝑡) − 𝑑

𝑀
𝑦
𝑀
(𝑡) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇,

𝑡 ̸= 𝑛𝑇,

Δ𝑥 (𝑡) = −𝛿𝑥 (𝑡) ,

Δ𝑆 (𝑡) = −𝑃
𝑆
𝑆 (𝑡) ,

Δ𝐼 (𝑡) = −𝑃
𝐼
𝐼 (𝑡) ,

Δ𝑦
𝐽
(𝑡) = −𝑃

𝐽
𝑦
𝐽
(𝑡) ,

Δ𝑦
𝑀
(𝑡) = −𝑃

𝑀
𝑦
𝑀
(𝑡) ,

𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑥 (𝑡) = 0,

Δ𝑆 (𝑡) = 0,

Δ𝐼 (𝑡) = 𝛿
𝐼
,

Δ𝑦
𝐽
(𝑡) = 𝛿

𝐽
,

Δ𝑦
𝑀
(𝑡) = 𝛿

𝑀
,

𝑡 = 𝑛𝑇, 𝑛 ∈ N,

(1)

where 𝑥(𝑡) represents the density of the crop at time 𝑡, 𝑆(𝑡)
represents the density of the susceptible pest at time 𝑡, 𝐼(𝑡)
represents the density of the infective pest at time 𝑡, 𝑦

𝐽
(𝑡)

and 𝑦
𝑀
(𝑡) represent the density of the immature and mature

predator at time 𝑡, respectively; 𝑟 is the logistic intrinsic
growth rate of the crop in the absence of the susceptible
pest, 𝐾 is its carrying capacity; 0 < 𝛽, 𝜆 ≤ 1 represent
the conversion rate at which ingested preys in excess of
what is needed for maintenance is translated into predator
population increase; 𝑚 is the rate at which the immature
predators become the mature predators. 𝑑

𝑆
, 𝑑

𝐼
, 𝑑

𝐽
, 𝑑

𝑀
> 0

are the death rates of the susceptible pest population, infective
pest population, and of the immature and mature predator
population, respectively; Δ𝑥(𝑡) = 𝑥(𝑡

+

) − 𝑥(𝑡), Δ𝑆(𝑡) =

𝑆(𝑡
+

) − 𝑆(𝑡), Δ𝐼(𝑡) = 𝐼(𝑡
+

) − 𝐼(𝑡), Δ𝑦
𝐽
(𝑡) = 𝑦

𝐽
(𝑡

+

) − 𝑦
𝐽
(𝑡),

Δ𝑦
𝑀
(𝑡) = 𝑦

𝑀
(𝑡

+

) − 𝑦
𝑀
(𝑡); 𝑇 is the period of the impulsive

effect; 𝛿 (0 ≤ 𝛿 < (1 − 𝑒
−𝑟𝑇

)/2) is the harvesting rate of
crop population; 0 ≤ 𝑃

𝑆
, 𝑃

𝐼
, 𝑃

𝐽
, 𝑃

𝑀
< 1 denote the transfer

rate of susceptible pest population, infective pest population,
immature andmature predator population at every impulsive
period (𝑛 + 𝜏 − 1)𝑇 (𝑛 ∈ N, 0 < 𝜏 < 1), respectively; 𝛿

𝐼
, 𝛿

𝐽
,

𝛿
𝑀
> 0 represents the amount of infective pests, immature

and mature predators, respectively, which are released at
every impulsive period 𝑛𝑇 (𝑛 ∈ N), respectively; Also, 𝑃

1
(⋅),

𝑃
2
(⋅), 𝑔(⋅) ∈ 𝐻, here𝐻 = {𝑓 : 𝑅 → 𝑅 | 𝑓(0) = 0, 𝑓

(𝑥) > 0

and 𝑓

(𝑥) ≤ 0 for all 𝑥 > 0}.
Some familiar examples of functions 𝑓 ∈ 𝐻 in the

biological literature include

(𝐹1) 𝑓
1
(𝑥) = 𝑎𝑥, with 𝑎 > 0;

(𝐹2) 𝑓
2
(𝑥) = 𝑎𝑥/(1 + 𝑏𝑥), with 𝑎, 𝑏 > 0;

(𝐹3) 𝑓
3
(𝑥) = 𝑎(1 − 𝑒

−𝑏𝑥

), with 𝑎, 𝑏 > 0,

where functions (𝐹1) and (𝐹2) are known as Holling type
functional responses (see, [16–26]), and (𝐹3) belongs to Ivlev
type functional responses (see, [27–30]).

3. Preliminaries

In this section, we will give some definitions and lemmas,
which will be useful for our main results. Let R

+
=

[0,∞) and R5

+
= {𝑋 = (𝑥(𝑡), 𝑆(𝑡), 𝐼(𝑡), 𝑦

𝐽
(𝑡), 𝑦

𝑀
(𝑡)) ∈

R5

| 𝑥(𝑡), 𝑆(𝑡), 𝐼(𝑡), 𝑦
𝐽
(𝑡), 𝑦

𝑀
(𝑡) ≥ 0}. Denote 𝑓 =

(𝑓
𝑥
, 𝑓

𝑆
, 𝑓

𝐼
, 𝑓

𝐽
, 𝑓

𝑀
)
𝑇 the map defined by the right hand of the

first five equations in system (1). Let 𝑉 : R
+
× R5

+
→ R

+
,

then 𝑉 ∈ 𝑉
0
if
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(1) 𝑉 is continuous in ((𝑛 − 1)𝑇, (𝑛 + 𝜏 − 1)𝑇] × R5

+
,

((𝑛 + 𝜏 − 1)𝑇, 𝑛𝑇] × R5

+
and for each 𝑥 ∈ 𝑅5

+
, 𝑛 ∈ N,

lim
(𝑡,𝑦)→ ((𝑛+𝜏−1)𝑇

+
,𝑥)
𝑉(𝑡, 𝑦) = 𝑉((𝑛 + 𝜏 − 1)𝑇

+

, 𝑥) and
lim

(𝑡,𝑦)→ (𝑛𝑇
+
,𝑥)
𝑉(𝑡, 𝑦) = 𝑉(𝑛𝑇

+

, 𝑥) exist.

(2) 𝑉 is locally Lipschitzian 𝑥.

Definition 1. Letting 𝑉 ∈ 𝑉
0
, one defines the upper right

derivative of 𝑉 with respect to the impulsive differential
system (1) at (𝑡, 𝑥) ∈ ((𝑛 − 1)𝑇, (𝑛 + 𝜏 − 1)𝑇] × R5

+
and

((𝑛 + 𝜏 − 1)𝑇, 𝑛𝑇] × R5

+
by

𝐷
+

𝑉 (𝑡, 𝑥) = lim sup
ℎ→0

+

1

ℎ

[𝑉 (𝑡 + ℎ, 𝑥 + ℎ𝑓 (𝑡, 𝑥)) − 𝑉 (𝑡, 𝑥)] .

(2)

Definition 2. The system (1) is said to be permanent if there
are positive constants 𝑚, 𝑀 > 0 and a finite time 𝑇

0
such

that all solutions of (1) with initial values 𝑥(0+), 𝑆(0+), 𝐼(0+),
𝑦
𝐽
(0

+

), 𝑦
𝑀
(0

+

),𝑚 ≤ 𝑥(𝑡), 𝑆(𝑡), 𝐼(𝑡), 𝑦
𝐽
(𝑡), 𝑦

𝑀
(𝑡) ≤ 𝑀 hold for

all 𝑡 ≥ 𝑇
0
, where 𝑚 and𝑀 are independent of initial value,

𝑇
0
may depend on initial value.

Remark 3. The global existence and uniqueness of system (1)
is guaranteed by the smoothness properties of 𝑓 (for details,
see [13, 14]).

Lemma 4 (see [15]). Let 𝑉 : R
+
× R𝑛

→ R𝑚

+
satisfy 𝑉

𝑖
∈

𝑉
0
, 𝑖 = 1, 2, . . . , 𝑚, and assume that

𝐷
+

𝑉 (𝑡, 𝑥 (𝑡)) ≤ (≥) 𝑔 (𝑡, 𝑉 (𝑡, 𝑥 (𝑡))) , 𝑡 ̸= (𝑘 + 𝜏 − 1) 𝑇, 𝑘𝑇,

𝑉 (𝑡, 𝑥 (𝑡
+

)) ≤ (≥) 𝜓
𝜏

𝑘
(𝑉 (𝑡, 𝑥 (𝑡))) , 𝑡 = (𝑘 + 𝜏 − 1) 𝑇,

𝑉 (𝑡, 𝑥 (𝑡
+

)) ≤ (≥) 𝜓
𝑘
(𝑉 (𝑡, 𝑥 (𝑡))) , 𝑡 = 𝑘𝑇, 𝑘 ∈ N,

𝑥 (0
+

) = 𝑥
0
,

(3)

where 𝑔 : R
+
× R𝑚

+
→ R𝑚

+
is continuous in ((𝑘 − 1)𝑇, (𝑘 +

𝜏 − 1)𝑇] × R𝑚 and ((𝑘 + 𝜏 − 1)𝑇, 𝑘𝑇] × R𝑚, for each 𝑝 ∈

R𝑚

, 𝑘 = 1, 2, . . ., the limit lim
(𝑡,𝑞)→ ((𝑘+𝜏−1)𝑇

+
,𝑝)
𝑔(𝑡, 𝑞) = 𝑔((𝑘+

𝜏 − 1)𝑇
+

, 𝑝) and lim
(𝑡,𝑞)→ ((𝑘−1)𝑇

+
,𝑝)
𝑔(𝑡, 𝑞) = 𝑔((𝑘 − 1)𝑇

+

, 𝑝)

exists. 𝑔(𝑡, 𝑞) is quasimonotone nondecreasing in 𝑞. 𝜓𝜏

𝑘
, 𝜓

𝑘
:

R𝑚

+
→ R𝑚

+
is nondecreasing for all 𝑘 ∈ N. Let 𝜃(𝑡) be

the maximal (𝑚𝑖𝑛𝑖𝑚𝑎𝑙) solution of the following impulsive
differential equation on [0,∞):

𝑤


(𝑡) = 𝑔 (𝑡, 𝑤 (𝑡)) , 𝑡 ̸= (𝑘 + 𝜏 − 1) 𝑇, 𝑘𝑇,

𝑤 (𝑡
+

) = 𝜓
𝜏

𝑘
(𝑤 (𝑡)) , 𝑡 = (𝑘 + 𝜏 − 1) 𝑇,

𝑤 (𝑡
+

) = 𝜓
𝑘
(𝑤 (𝑡)) , 𝑡 = 𝑘𝑇, 𝑘 ∈ N,

𝑤 (0
+

) = 𝑤
0
.

(4)

Then for any solution 𝑥(𝑡) of the system (3), 𝑉(0+,
𝑥
0
) ≤ (≥)𝑤

0
implies that 𝑉(𝑡, 𝑥(𝑡)) ≤(≥)𝜃(𝑡) for all 𝑡 ≥ 0.

Lemma 5 (see [13, 15]). Consider the following system:

V


(𝑡) ≤ (≥) 𝑝 (𝑡) V (𝑡) + 𝑞 (𝑡) , 𝑡 ̸= 𝑡
𝑘
,

V (𝑡
+

𝑘
) ≤ (≥) 𝑑

𝑘
V (𝑡

𝑘
) + 𝑏

𝑘
, 𝑡 = 𝑡

𝑘
, 𝑘 ∈ N,

V (0
+

) ≤ (≥) V
0
,

(5)

where 𝑝, 𝑞 ∈ 𝑃𝐶(R
+
,R) and 𝑑

𝑘
≥ 0, V

0
and 𝑏

𝑘
are constants.

Suppose that

(𝐴1) the sequence 𝑡
𝑘
satisfies 0 ≤ 𝑡

1
≤ 𝑡

2
< ⋅ ⋅ ⋅ , with

lim
𝑡→∞

𝑡
𝑘
= ∞;

(𝐴2) V ∈ 𝑃𝐶

(R
+
,R) and V(𝑡) is left-continuous at 𝑡

𝑘
, 𝑘 ∈

N.

Then, for 𝑡 > 0,

V (𝑡) ≤ (≥) V
0
𝑒
∫

𝑡

0
𝑝(𝑠)𝑑𝑠

∏

0<𝑡𝑘<𝑡

𝑑
𝑘

+ ∑

0<𝑡𝑘<𝑡

( ∏

𝑡𝑘<𝑡𝑗<𝑡

𝑑
𝑗
𝑒

∫

𝑡

𝑡𝑘

𝑝(𝑠)𝑑𝑠

)𝑏
𝑘

+ ∫

𝑡

0

( ∏

𝑠<𝑡𝑘<𝑡

𝑑
𝑘
)𝑒

∫

𝑡

𝑠
𝑝(𝜏)𝑑𝜏

𝑞 (𝑠) 𝑑𝑠.

(6)

Lemma 6. There exists a constant 𝑀 = max{(1/𝜆)((𝐿/𝑑) +
(𝜌𝑒

𝑑𝑇

/(𝑒
𝑑𝑇

− 1))), 𝐾} > 0, such that 𝑥(𝑡), 𝑆(𝑡), 𝐼(𝑡), 𝑦
𝐽
(𝑡),

𝑦
𝑀
(𝑡) ≤ 𝑀 for each solution of (1) with 𝑡 large enough.

Proof. Since 𝑥

(𝑡) ≤ 𝑟𝑥(1 − (𝑥(𝑡)/𝐾)), then 𝑥

(𝑡)|
𝑥(𝑡)=𝐾

≤ 0,
and 𝑥((𝑛 + 𝜏 − 1)𝑇+

) ≤ 𝑥((𝑛 + 𝜏 − 1)𝑇) (0 < 𝛿 < 1), so
𝑥(𝑡) ≤ 𝐾 for 𝑡 large enough. Let us define 𝑉(𝑡) ∈ 𝑉

0
by

𝑉(𝑡) = 𝜆𝛽𝑥(𝑡) + 𝜆𝑆(𝑡) + 𝜆𝐼(𝑡) + 𝑦
𝐽
(𝑡) + 𝑦

𝑀
(𝑡) and denote

𝑑 = min{𝑑
𝑆
, 𝑑

𝐼
, 𝑑

𝐽
, 𝑑

𝑀
}. Then, it is obvious that

𝑑𝑉 (𝑡)

𝑑𝑡

+ 𝑑𝑉 (𝑡) ≤ 𝜆𝛽 (𝑟 + 𝑑) 𝑥 (𝑡) −

𝜆𝛽𝑟𝑥
2

(𝑡)

𝐾

,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇.

(7)

Since the right-hand side (7) is bounded from above by 𝐿 =

𝐾𝜆𝛽(𝑟 + 𝑑)
2

/4𝑟, it follows that

𝑑𝑉 (𝑡)

𝑑𝑡

+ 𝑑𝑉 (𝑡) ≤ 𝐿, 𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇. (8)

When 𝑡 = (𝑛 + 𝜏 − 1)𝑇 and 𝑡 = 𝑛𝑇, it is easy to obtain that

𝑉 ((𝑛 + 𝜏 − 1) 𝑇
+

) ≤ 𝑉 ((𝑛 + 𝜏 − 1) 𝑇) ,

𝑉 (𝑛𝑇
+

) = 𝑉 (𝑛𝑇) + (𝜆𝛿
𝐼
+ 𝛿

𝐽
+ 𝛿

𝑀
) .

(9)
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Then, by Lemma 5, we can obtain that

𝑉 (𝑡) ≤ 𝑉 (0) 𝑒
−𝑑𝑡

+ ∫

𝑡

0

𝐿𝑒
−𝑑(𝑡−𝑠)

𝑑𝑠

+ ∑

0<𝑘𝑇<𝑡

𝜌𝑒
−𝑑(𝑡−𝑘𝑇)

→

𝐿

𝑑

+

𝜌𝑒
𝑑𝑇

𝑒
𝑑𝑇
− 1

, 𝑡 → ∞,

(10)

where 𝜌 = 𝜆𝛿
𝐼
+ 𝛿

𝐽
+ 𝛿

𝑀
. So it follows that 𝑉(𝑡) is uniformly

bounded on [0,∞). The proof is completed.

Lemma 7 (see [31]). Let one consider the following impulsive
control subsystem:

𝑥


(𝑡) = 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) , 𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑥 (𝑡) = −𝛿𝑥 (𝑡) , 𝑡 = (𝑛 + 𝜏 − 1) 𝑇.

(11)

Suppose 𝛿∗
0
= 1 − 𝑒

−𝑟𝑇. Then one has the following results.

(1) If 𝛿 > 𝛿
∗

0
, then the trivial periodic solution of system

(11) is locally asymptotically stable.

(2) If 𝛿 < 𝛿
∗

0
, then the system (11) has a unique positive

periodic solution 𝑥∗

(𝑡), which is globally asymptotically
stable, where

𝑥
∗

(𝑡) =

𝐾 (1 − 𝛿 − 𝑒
−𝑟𝑇

)

1 − 𝛿 − 𝑒
−𝑟𝑇

+ 𝛿𝑒
−𝑟(𝑡−(𝑛+𝜏−1)𝑇)

,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, (𝑛 + 𝜏) 𝑇] , 𝑛 ∈ N,

𝑥
∗

(0
+

) = 𝑥
∗

(𝑛𝑇
+

) =

𝐾 ((1 − 𝛿) 𝑒
𝑟𝑇

− 1)

(𝑒
𝑟𝜏𝑇

− 1) + (1 − 𝛿) (𝑒
𝑟𝑇
− 𝑒

𝑟𝜏𝑇
)

.

(12)

Remark 8. From Lemma 7, we have

(1𝑎) if 𝛿∗
0
> 2𝛿, then 𝑥∗

(𝑡) > 𝐾/2 for all 𝑡 ≥ 0;

(2𝑎) if 𝑡 ∈ ((𝑛 − 1)𝑇, 𝑛𝑇], 𝑛 ∈ N, then the periodic solution
𝑥
∗

(𝑡) can be rewritten in the form

𝑥
∗

(𝑡) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝐾(1 − 𝛿 − 𝑒
−𝑟𝑇

)

1 − 𝛿 − 𝑒
−𝑟𝑇

+ 𝛿𝑒
−𝑟(𝑇−𝜏𝑇)

𝑒
−𝑟(𝑡−(𝑛−1)𝑇)

,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝐾 (1 − 𝛿 − 𝑒
−𝑟𝑇

)

1 − 𝛿 − 𝑒
−𝑟𝑇

+ 𝛿𝑒
−𝑟(𝑡−(𝑛+𝜏−1)𝑇)

,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] , 𝑛 ∈ N.

(13)

Lemma 9. Let one consider the following impulsive control
subsystem:

𝑧


(𝑡) = 𝑎 (𝑡) − 𝑑𝑧 (𝑡) , 𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

Δ𝑧 (𝑡) = −𝑝𝑧 (𝑡) , 𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑧 (𝑡) = 𝛿, 𝑡 = 𝑛𝑇, 𝑛 ∈ N,

𝑧 (0
+

) = 𝑧
0
,

(14)

where 𝑎(𝑡) is a 𝑇-periodic 𝑃𝐶(R
+
,R) function. 𝑝, 𝑑 are the

positive real constants and𝑝 < 1.Then system (14) has a unique
T-periodic solution 𝑧∗(𝑡), and for each solution 𝑧(𝑡) of (14),
𝑧(𝑡) → 𝑧

∗

(𝑡) as 𝑡 → ∞, where

𝑧
∗

(𝑡) = 𝑒
−𝑑(𝑡−(𝑛−1)𝑇)

(𝑧
∗

(0
+

) + ∫

𝑡−(𝑛−1)𝑇

0

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝑧
∗

(𝑡) = 𝑒
−𝑑(𝑡−(𝑛−1)𝑇)

(𝑧
∗

(𝜏𝑇
+

) 𝑒
𝑑𝜏𝑇

+ ∫

𝑡−(𝑛−1)𝑇

𝜏𝑇

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

𝑧
∗

(0
+

)

=

[(1 − 𝑝) ∫

𝜏𝑇

0

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠 + ∫

𝑇

𝜏𝑇

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠] 𝑒
−𝑑𝑇

+ 𝛿

1 − (1 − 𝑝) 𝑒
−𝑑𝑇

,

𝑧
∗

(𝜏𝑇
+

)

=

(1 − 𝑝) [∫

𝜏𝑇

0

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠 + 𝑒
−𝑑𝑇

∫

𝑇

𝜏𝑇

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠 + 𝛿] 𝑒
−𝑑𝜏𝑇

1 − (1 − 𝑝) 𝑒
−𝑑𝑇

.

(15)

Proof. First, it is easy to obtain that

𝑧 (𝑡) = 𝑒
−𝑑𝑡

(𝑧 (0
+

) + ∫

𝑡

0

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠) , 𝑡 ∈ (0, 𝜏𝑇] ,

𝑧 (𝑡) = 𝑒
−𝑑(𝑡−𝜏𝑇)

𝑧 (𝜏𝑇
+

) + 𝑒
−𝑑𝑡

∫

𝑡

𝜏𝑇

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠, 𝑡 ∈ (𝜏𝑇, 𝑇] .

(16)

Since the T-periodicity requirement, we have

𝑧
∗

(𝜏𝑇
+

) = 𝑒
−𝑑𝜏𝑇

(𝑧
∗

(0
+

) + ∫

𝜏𝑇

0

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠) (1 − 𝑝) ,

𝑧
∗

(0
+

) = 𝑒
−𝑑(𝑇−𝜏𝑇)

𝑧
∗

(𝜏𝑇
+

) + 𝑒
−𝑑𝑇

∫

𝑇

𝜏𝑇

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠 + 𝛿.

(17)
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By (17), we can obtain that

𝑧
∗

(0
+

)

=

[(1 − 𝑝) ∫

𝜏𝑇

0

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠 + ∫

𝑇

𝜏𝑇

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠] 𝑒
−𝑑𝑇

+ 𝛿

1 − (1 − 𝑝) 𝑒
−𝑑𝑇

,

𝑧
∗

(𝜏𝑇
+

)

=

(1 − 𝑝) [∫

𝜏𝑇

0

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠 + 𝑒
−𝑑𝑇

∫

𝑇

𝜏𝑇

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠 + 𝛿] 𝑒
−𝑑𝜏𝑇

1 − (1 − 𝑝) 𝑒
−𝑑𝑇

.

(18)

So, we will obtain the T-periodic solution of (14):

𝑧
∗

(𝑡) = 𝑒
−𝑑(𝑡−(𝑛−1)𝑇)

(𝑧
∗

(0
+

) + ∫

𝑡−(𝑛−1)𝑇

0

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝑧
∗

(𝑡) = 𝑒
−𝑑(𝑡−(𝑛−1)𝑇)

(𝑧
∗

(𝜏𝑇
+

) 𝑒
𝑑𝜏𝑇

+ ∫

𝑡−(𝑛−1)𝑇

𝜏𝑇

𝑎 (𝑠) 𝑒
𝑑𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] .

(19)

Let 𝑍(𝑡) = 𝑧(𝑡) − 𝑧∗(𝑡). Substituting 𝑍(𝑡) into (14), we have

𝑍


(𝑡) = −𝑑𝑍 (𝑡) , 𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

Δ𝑍 (𝑡) = −𝑝𝑍 (𝑡) , 𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑍 (𝑡) = 0, 𝑡 = 𝑛𝑇, 𝑛 ∈ N,

𝑍 (0
+

) = 𝑧
0
− 𝑧

∗

(0
+

) .

(20)

Then,𝑍(𝑡) = 𝑍(0+)𝑒−𝑑𝑡∏
0<(𝑛+𝜏−1)𝑇<𝑡

(1−𝑝) → 0, as 𝑡 → ∞.
The proof is completed.

4. Main Results

4.1. Local and Global Stability. In this section, we will study
the existence and stability of the system (1) susceptible pest-
eradication periodic solution (𝑥

∗

(𝑡), 0, 𝐼
∗

(𝑡), 𝑦
∗

𝐽
(𝑡), 𝑦

∗

𝑀
(𝑡)).

To this purpose, it is seen first that when 𝑆(𝑡) = 0, system
(1) can be rewritten in the form

𝑥


(𝑡) = 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) ,

𝐼


(𝑡) = −𝑑
𝐼
𝐼 (𝑡) ,

𝑦


𝐽
(𝑡) = − (𝑑

𝐽
+ 𝑚)𝑦

𝐽
(𝑡) ,

𝑦


𝑀
(𝑡) = 𝑚𝑦

𝐽
(𝑡) − 𝑑

𝑀
𝑦
𝑀
(𝑡) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇,

𝑡 ̸= 𝑛𝑇,

Δ𝑥 (𝑡) = −𝛿𝑥 (𝑡) ,

Δ𝐼 (𝑡) = −𝑃
𝐼
𝐼 (𝑡) ,

Δ𝑦
𝐽
(𝑡) = −𝑃

𝐽
𝑦
𝐽
(𝑡) ,

Δ𝑦
𝑀
(𝑡) = −𝑃

𝑀
𝑦
𝑀
(𝑡) ,

𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑥 (𝑡) = 0,

Δ𝐼 (𝑡) = 𝛿
𝐼
,

Δ𝑦
𝐽
(𝑡) = 𝛿

𝐽
,

Δ𝑦
𝑀
(𝑡) = 𝛿

𝑀
,

𝑡 = 𝑛𝑇, (21)

which describes the dynamics of system (1) in the absence
of the susceptible pest population. So, when 𝑡 ∈ ((𝑛 −

1)𝑇, 𝑛𝑇](𝑛 ∈ N), we can calculate the T-periodic solution of
(21) by Lemmas 7 and 9. It is seen that

𝑥
∗

(𝑡) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝐾(1 − 𝛿 − 𝑒
−𝑟𝑇

)

1 − 𝛿 − 𝑒
−𝑟𝑇

+ 𝛿𝑒
−𝑟(𝑇−𝜏𝑇)

𝑒
−𝑟(𝑡−(𝑛−1)𝑇)

,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝐾 (1 − 𝛿 − 𝑒
−𝑟𝑇

)

1 − 𝛿 − 𝑒
−𝑟𝑇

+ 𝛿𝑒
−𝑟(𝑡−(𝑛+𝜏−1)𝑇)

,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

(22)

𝐼
∗

(𝑡) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝛿
𝐼
𝑒
−𝑑𝐼(𝑡−(𝑛−1)𝑇)

1 − (1 − 𝑃
𝐼
) 𝑒

−𝑑𝐼𝑇
,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝛿
𝐼
(1 − 𝑃

𝐼
) 𝑒

−𝑑𝐼(𝑡−(𝑛−1)𝑇)

1 − (1 − 𝑃
𝐼
) 𝑒

−𝑑𝐼𝑇
,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

(23)

𝑦
∗

𝐽
(𝑡) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝛿
𝐽
𝑒
−(𝑚+𝑑𝐽)(𝑡−(𝑛−1)𝑇)

1 − (1 − 𝑃
𝐽
) 𝑒

−(𝑚+𝑑𝐽)𝑇
,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝛿
𝐽
(1 − 𝑃

𝐽
) 𝑒

−(𝑚+𝑑𝐽)(𝑡−(𝑛−1)𝑇)

1 − (1 − 𝑃
𝐽
) 𝑒

−(𝑚+𝑑𝐽)𝑇
,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

(24)



6 Abstract and Applied Analysis

𝑦
∗

𝑀
(𝑡)

=

{
{
{
{

{
{
{
{

{

𝑒
−𝑑𝑀(𝑡−(𝑛−1)𝑇)

(𝑦
∗

𝑀
(0

+

) + 𝐴 (𝑡 − (𝑛 − 1) 𝑇)) ,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝑒
−𝑑𝑀(𝑡−(𝑛−1)𝑇)

(𝑦
∗

𝑀
(𝜏𝑇

+

) 𝑒
𝑑𝑀𝜏𝑇

+ 𝐵 (𝑡 − (𝑛 − 1) 𝑇)) ,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

(25)

𝑦
∗

𝑀
(0

+

) =

[(1 − 𝑃
𝑀
) 𝐴 (𝜏𝑇) + 𝐵 (𝑇)] 𝑒

−𝑑𝑀𝑇
+ 𝛿

𝑀

1 − (1 − 𝑃
𝑀
) 𝑒

−𝑑𝑀𝑇
, (26)

𝑦
∗

𝑀
(𝜏𝑇

+

) =

(1 − 𝑃
𝑀
) [𝐴 (𝜏𝑇) + 𝑒

−𝑑𝑀𝑇
𝐵 (𝑇) + 𝛿

𝑀
] 𝑒

−𝑑𝑀𝜏𝑇

1 − (1 − 𝑃
𝑀
) 𝑒

−𝑑𝑀𝑇
,

(27)

where

𝐴 (𝑡) =

𝑚𝛿
𝐽
(𝑒

(𝑑𝑀−(𝑚+𝑑𝐽))𝑡
− 1)

(1 − (1 − 𝑃
𝐽
) 𝑒

−(𝑚+𝑑𝐽)𝑇) (𝑑
𝑀
− (𝑚 + 𝑑

𝐽
))

,

𝑡 ∈ (0, 𝜏𝑇] ,

𝐵 (𝑡) =

𝑚𝛿
𝐽
(1 − 𝑃

𝐽
) (𝑒

(𝑑𝑀−(𝑚+𝑑𝐽))𝑡
− 𝑒

(𝑑𝑀−(𝑚+𝑑𝐽))𝜏𝑇
)

(1 − (1 − 𝑃
𝐽
) 𝑒

−(𝑚+𝑑𝐽)𝑇) (𝑑
𝑀
− (𝑚 + 𝑑

𝐽
))

,

𝑡 ∈ (𝜏𝑇, 𝑇] .

(28)

To discuss the locally asymptotical stability of the susceptible
pest-eradication periodic solution, we now introduce the
Floquet theory for a linear impulsive control system:

𝜔


(𝑡) = 𝐴 (𝑡) 𝜔 (𝑡) , 𝑡 ̸= 𝜏
𝑘
,

Δ𝜔 (𝑡) = 𝐵
𝑘
𝜔 (𝑡) , 𝑡 = 𝜏

𝑘
, 𝑘 ∈ N,

(29)

under the following conditions:

H1: 𝐴(⋅) ∈ PC(R,𝑀
𝑛
(R)) and 𝐴(𝑡 + 𝑇) = 𝐴(𝑡) for 𝑡 ≥ 0.

H2: 𝐵
𝑘
∈ 𝑀

𝑛
, det(𝐼

𝑛
+ 𝐵

𝑘
) ̸= 0, 𝜏

𝑘
< 𝜏

𝑘+1
for 𝑘 ∈ N, and 𝐼

𝑛

denotes the 𝑛 × 𝑛 real identity matrix.
H3: There is a 𝑞 ∈ N such that 𝐵

𝑘+𝑞
= 𝐵

𝑘
, 𝜏

𝑘+𝑞
= 𝜏

𝑘
+ 𝑇

for 𝑘 ∈ N.

Let Ψ(𝑡) be a fundamental matrix of (29), then there is a
unique reversible matrix 𝑀 ∈ 𝑀

𝑛
(R) such that Ψ(𝑡 + 𝑇) =

Ψ(𝑡)𝑀 for all 𝑡 ∈ R, which is called the monodromy matrix
of (29) corresponding toΨ. All monodromymatrices of (29)
are similar and they have the same eigenvalues 𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑛
,

which are called the Floquet multipliers of (29).

Lemma 10 (see [13] (Floquet theory)). Let the conditions H1–
H3 hold. Then system (29) have the following properties

(1) stable if and only if all Floquet multipliers 𝜆
𝑖
(1 ≤ 𝑖 ≤

𝑛) of (29) satisfy |𝜆
𝑖
| ≤ 1 and moreover, to those 𝜆

𝑖

for which |𝜆
𝑖
| = 1, there correspond simple elementary

divisors;

(2) asymptotically stable if and only if all Floquet multipli-
ers 𝜆

𝑖
(1 ≤ 𝑖 ≤ 𝑛) of (29) satisfy |𝜆

𝑖
| < 1;

(3) unstable if there is a Floquet multipliers 𝜆
𝑖
(1 ≤ 𝑖 ≤ 𝑛)

of (29) such that |𝜆
𝑖
| > 1.

In the following, we present two main results with the
locally and globally asymptotical stability of the susceptible
pest-eradication periodic solution (𝑥

∗

(𝑡), 0, 𝐼∗(𝑡), 𝑃∗

𝐽
(𝑡),

𝑃
∗

𝑀
(𝑡)).

Theorem 11. If

𝛽∫

𝑇

0

𝑃
1
(𝑥

∗

(𝑡)) 𝑑𝑡 − ∫

𝑇

0

𝑔 (𝐼
∗

(𝑡)) 𝑑𝑡

− 𝑃


2
(0) ∫

𝑇

0

𝑦
∗

𝑀
(𝑡) 𝑑𝑡 − 𝑑

𝑆
𝑇 < ln 1

1 − 𝑃
𝑆

,

(30)

then the susceptible pest-eradication periodic solution (𝑥∗

(𝑡), 0,

𝐼
∗

(𝑡), 𝑦
∗

𝐽
(𝑡), 𝑦

∗

𝑀
(𝑡)) of system (1) is locally asymptotically stable.

Proof. Let (𝑥(𝑡), 𝑆(𝑡), 𝐼(𝑡), 𝑦
𝐽
(𝑡), 𝑦

𝑀
(𝑡)) be any solution of

system (1). We define error 𝑒
1
(𝑡) = 𝑥(𝑡) − 𝑥

∗

(𝑡), 𝑒
2
(𝑡) =

𝑆(𝑡), 𝑒
3
(𝑡) = 𝐼(𝑡) − 𝐼

∗

(𝑡), 𝑒
4
(𝑡) = 𝑦

𝐽
(𝑡) − 𝑦

∗

𝐽
(𝑡), 𝑒

5
(𝑡) =

𝑦
𝑀
(𝑡) − 𝑦

∗

𝑀
(𝑡). The linearized system of (1) at (𝑥

∗

(𝑡),

0, 𝐼
∗

(𝑡), 𝑦
∗

𝐽
(𝑡), 𝑦

∗

𝑀
(𝑡)) is

𝑒


1
(𝑡) = (𝑟 − 2𝑟

𝑥
∗

(𝑡)

𝐾

) 𝑒
1
(𝑡) − 𝑃

1
(𝑥

∗

(𝑡)) 𝑒
2
(𝑡) ,

𝑒


2
(𝑡) = (𝛽𝑃

1
(𝑥

∗

(𝑡)) − 𝑔 (𝐼
∗

(𝑡)) − 𝑃


2
(0) 𝑦

∗

𝑀
(𝑡) − 𝑑

𝑆
) 𝑒

2
(𝑡) ,

𝑒


3
(𝑡) = 𝑔 (𝐼

∗

(𝑡)) 𝑒
2
(𝑡) − 𝑑

𝐼
𝑒
3
(𝑡) ,

𝑒


4
(𝑡) = 𝜆𝑃



2
(0) 𝑦

∗

𝑀
(𝑡) 𝑒

2
(𝑡) − (𝑑

𝐽
+ 𝑚) 𝑒

4
(𝑡) ,

𝑒


5
(𝑡) = 𝑚𝑒

4
(𝑡) − 𝑑

𝑀
𝑒
5
(𝑡) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇,

𝑡 ̸= 𝑛𝑇,

Δ𝑒
1
(𝑡) = −𝛿𝑒

1
(𝑡) ,

Δ𝑒
2
(𝑡) = −𝑃

𝑆
𝑒
2
(𝑡) ,

Δ𝑒
3
(𝑡) = −𝑃

𝐼
𝑒
3
(𝑡) ,

Δ𝑒
4
(𝑡) = −𝑃

𝐽
𝑒
4
(𝑡) ,

Δ𝑒
5
(𝑡) = −𝑃

𝑀
𝑒
5
(𝑡) ,

𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑒
1
(𝑡) = Δ𝑒

2
(𝑡) = Δ𝑒

3
(𝑡) = Δ𝑒

4
(𝑡) = Δ𝑒

5
(𝑡) = 0,

𝑡 = 𝑛𝑇.

(31)

LetΨ(𝑡) be the fundamental matrix of (31), thenΨ(𝑡) satisfies
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𝑑Ψ (𝑡)

𝑑𝑡

=

(

(

(

(

𝑟− 2𝑟

𝑥
∗

(𝑡)

𝐾

𝑃
1
(𝑥

∗

(𝑡)) 0 0 0

0 𝛽𝑃
1
(𝑥

∗

(𝑡)) − 𝑔 (𝐼
∗

(𝑡)) − 𝑃


2
(0) 𝑦

∗

𝑀
(𝑡) − 𝑑

𝑆
0 0 0

0 𝑔 (𝐼
∗

(𝑡)) −𝑑
𝐼

0 0

0 𝜆𝑃


2
(0) 𝑦

∗

𝑀
(𝑡) 0 − (𝑑

𝐽
+ 𝑚) 0

0 0 0 𝑚 −𝑑
𝑀

)

)

)

)

Ψ(𝑡) . (32)

Then, a fundamental matrix Ψ(𝑡) (Ψ(0) = 𝐼
4
) of (31) is

Ψ (𝑡) =

(

(

(

(

(

𝑒
∫

𝑡

0
(𝑟−2𝑟(𝑥

∗
(𝑠)/𝐾))𝑑𝑠

𝜙
12
(𝑡) 0 0 0

0 𝑒
∫

𝑡

0
(𝛽𝑃1(𝑥

∗
(𝑠))−𝑔(𝐼

∗
(𝑠))−𝑃



2
(0)𝑦
∗

𝑀
(𝑠)−𝑑𝑆)𝑑𝑠

0 0 0

0 𝜙
32
(𝑡) 𝑒

−𝑑𝐼𝑡
0 0

0 𝜙
42
(𝑡) 0 𝑒

−(𝑑𝐽+𝑚)𝑡

0

0 𝜙
52
(𝑡) 0 𝜙

54
(𝑡) 𝑒

−𝑑𝑀𝑡

)

)

)

)

)

, (33)

where

𝜙
12
(𝑡) = − 𝑒

−∫

𝑡

0
(𝑟−2𝑟(𝑥

∗
(𝑠)/𝐾))𝑑𝑠

× ∫

𝑡

0

𝑃
1
(𝑥

∗

(𝑠)) 𝑒
∫

𝑠

0
(𝛽𝑃1(𝑥

∗
(𝜉))−𝑔(𝐼

∗
(𝜉))−𝑃



2
(0)𝑦
∗

𝑀
(𝜉)−𝑑𝑆)𝑑𝜉

× 𝑒
∫

𝑠

0
(𝑟−2𝑟(𝑥

∗
(𝜉)/𝐾))𝑑𝜉

𝑑𝑠,

𝜙
32
(𝑡)

= 𝑒
−𝑑𝐼𝑡

∫

𝑡

0

𝑔 (𝐼
∗

(𝑠)) 𝑒
∫

𝑠

0
(𝛽𝑃1(𝑥

∗
(𝜉))−𝑔(𝐼

∗
(𝜉))−𝑃



2
(0)𝑦
∗

𝑀
(𝜉)−𝑑𝑆)𝑑𝜉

× 𝑒
𝑑𝐼𝑠

𝑑𝑠,

𝜙
42
(𝑡)

= 𝑒
−𝑑𝐽𝑡

∫

𝑡

0

𝜆𝑃


2
(0) 𝑦

∗

𝑀
(𝑠) 𝑒

∫

𝑠

0
(𝛽𝑃1(𝑥

∗
(𝜉))−𝑔(𝐼

∗
(𝜉))−𝑃



2
(0)𝑦
∗

𝑀
(𝜉)−𝑑𝑆)𝑑𝜉

× 𝑒
𝑑𝐽𝑠

𝑑𝑠,

𝜙
52
(𝑡) = 𝑒

−𝑑𝑀𝑡

∫

𝑡

0

𝑚𝜙
42
(𝑠) 𝑒

𝑑𝑀𝑠

𝑑𝑠,

𝜙
54
(𝑡) =

𝑚 (𝑒
−(𝑑𝐽+𝑚)𝑡

− 𝑒
−𝑑𝑀𝑡

)

𝑑
𝑀
− (𝑑

𝐽
+ 𝑚)

.

(34)

The resetting impulsive condition of (31) becomes

(

𝑒
1
((𝑛 + 𝜏 − 1) 𝑇

+

)

𝑒
2
((𝑛 + 𝜏 − 1) 𝑇

+

)

𝑒
3
((𝑛 + 𝜏 − 1) 𝑇

+

)

𝑒
4
((𝑛 + 𝜏 − 1) 𝑇

+

)

𝑒
5
((𝑛 + 𝜏 − 1) 𝑇

+

)

)

=(

1 − 𝛿 0 0 0 0

0 1 − 𝑃
𝑆

0 0 0

0 0 1 − 𝑃
𝐼

0 0

0 0 0 1 − 𝑃
𝐽

0

0 0 0 0 1 − 𝑃
𝑀

)

×(

𝑒
1
((𝑛 + 𝜏 − 1) 𝑇)

𝑒
2
((𝑛 + 𝜏 − 1) 𝑇)

𝑒
3
((𝑛 + 𝜏 − 1) 𝑇)

𝑒
4
((𝑛 + 𝜏 − 1) 𝑇)

𝑒
5
((𝑛 + 𝜏 − 1) 𝑇)

) ,

(

𝑒
1
(𝑛𝑇

+

)

𝑒
2
(𝑛𝑇

+

)

𝑒
3
(𝑛𝑇

+

)

𝑒
4
(𝑛𝑇

+

)

𝑒
5
(𝑛𝑇

+

)

) =(

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

)(

𝑒
1
(𝑛𝑇)

𝑒
2
(𝑛𝑇)

𝑒
3
(𝑛𝑇)

𝑒
4
(𝑛𝑇)

𝑒
5
(𝑛𝑇)

) .

(35)

Then, it is easy to obtain all eigenvalues of

𝑀 = (

1 − 𝛿 0 0 0 0

0 1 − 𝑃
𝑆

0 0 0

0 0 1 − 𝑃
𝐼

0 0

0 0 0 1 − 𝑃
𝐽

0

0 0 0 0 1 − 𝑃
𝑀

)
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×(

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

)Ψ(𝑇) .

(36)

We have 𝜆
1
= (1 − 𝛿)𝑒

∫

𝑇

0
(𝑟−2𝑟(𝑥

∗
(𝑠)/𝐾))𝑑𝑠, 𝜆

2
= (1 − 𝑃

𝑆
)

𝑒
∫

𝑇

0
(𝛽𝑃1(𝑥

∗
(𝑠))−𝑔(𝐼

∗
(𝑠))−𝑃



2
(0)𝑦
∗

𝑀
(𝑠)−𝑑𝑆)𝑑𝑠, 𝜆

3
= (1 − 𝑃

𝐼
)𝑒

−𝑑𝐼𝑇
< 1,

𝜆
4
= (1 −𝑃

𝐽
)𝑒

−(𝑑𝐽+𝑚)𝑇

< 1 and 𝜆
5
= (1 −𝑃

𝑀
)𝑒

−𝑑𝑀𝑇
< 1. Since

𝑥
∗

(𝑡) > (𝐾/2), so 𝜆
1
< 1. By the condition (30), we have 𝜆

2
<

1. Therefore, according to Lemma 10, the susceptible pest-
eradication periodic solution (𝑥∗

(𝑡), 0, 𝐼
∗

(𝑡), 𝑦
∗

𝐽
(𝑡), 𝑦

∗

𝑀
(𝑡)) of

system (1) is locally asymptotically stable. The proof is
completed.

Theorem 12. If

𝛽∫

𝑇

0

𝑃
1
(𝑥

∗

(𝑡)) 𝑑𝑡 − ∫

𝑇

0

𝑔 (𝐼
∗

(𝑡)) 𝑑𝑡

− min
0≤𝜛≤𝑈𝑆

𝑃


2
(𝜛) ∫

𝑇

0

𝑦
∗

𝑀
(𝑡) 𝑑𝑡 − 𝑑

𝑆
𝑇 < ln 1

1 − 𝑃
𝑆

,

(37)

where 𝑈
𝑆
is an ultimate boundedness constant for S, then

the susceptible pest-eradication periodic solution (𝑥
∗

(𝑡), 0,

𝐼
∗

(𝑡), 𝑦
∗

𝐽
(𝑡), 𝑦

∗

𝑀
(𝑡)) of system (1) is globally asymptotically

stable.

Proof. Since

𝛽∫

𝑇

0

𝑃
1
(𝑥

∗

(𝑡)) 𝑑𝑡 − ∫

𝑇

0

𝑔 (𝐼
∗

(𝑡)) 𝑑𝑡

− min
0≤𝜛≤𝑈𝑆

𝑃


2
(𝜛) ∫

𝑇

0

𝑦
∗

𝑀
(𝑡) 𝑑𝑡 − 𝑑

𝑆
𝑇 < ln 1

1 − 𝑃
𝑆

,

(38)

we can choose an 𝜀 small enough such that

𝛽∫

𝑇

0

𝑃
1
(𝑥

∗

(𝑡) + 𝜀) 𝑑𝑡 − ∫

𝑇

0

𝑔 (𝐼
∗

(𝑡) − 𝜀) 𝑑𝑡

− min
0≤𝜛≤𝑈𝑆

𝑃


2
(𝜛) ∫

𝑇

0

(𝑦
∗

𝑀
(𝑡) − 𝜀) 𝑑𝑡 − 𝑑

𝑆
𝑇

− ln 1

1 − 𝑃
𝑆

= 𝜖 < 0,

(39)

where 𝑦∗

𝑀
(𝑡) is defined in the following. According to system

(1), we have

𝑥


(𝑡) ≤ 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) ,

𝐼


(𝑡) ≥ −𝑑
𝐼
𝐼 (𝑡) ,

𝑦


𝐽
(𝑡) ≥ −𝑑

𝐽
𝑦
𝐽
(𝑡) − 𝑚𝑦

𝐽
(𝑡) ,

𝑦


𝑀
(𝑡) = 𝑚𝑦

𝐽
(𝑡) − 𝑑

𝑀
𝑦
𝑀
(𝑡) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇,

𝑡 ̸= 𝑛𝑇,

Δ𝑥 (𝑡) = −𝛿𝑥 (𝑡) ,

Δ𝐼 (𝑡) = −𝑃
𝐼
𝐼 (𝑡) ,

Δ𝑦
𝐽
(𝑡) = −𝑃

𝐽
𝑦
𝐽
(𝑡) ,

Δ𝑦
𝑀
(𝑡) = −𝑃

𝑀
𝑦
𝑀
(𝑡) ,

𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑥 (𝑡) = 0,

Δ𝐼 (𝑡) = 𝛿
𝐼
,

Δ𝑦
𝐽
(𝑡) = 𝛿

𝐽
,

Δ𝑦
𝑀
(𝑡) = 𝛿

𝑀
,

𝑡 = 𝑛𝑇, 𝑛 ∈ N.

(40)

From the first equation of system (40), we obtain the
following comparison system:

]


(𝑡) = 𝑟] (𝑡) (1 −
] (𝑡)

𝐾

) , 𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇,

Δ] (𝑡) = −𝛿] (𝑡) , 𝑡 = (𝑛 + 𝜏 − 1) 𝑇.

(41)

By Lemma 7, system (41) has a positive periodic solution
]∗(𝑡), and for any solution ](𝑡) of (41), ](𝑡) → ]∗(𝑡) as 𝑡 large
enough, where ]∗(𝑡) = 𝑥

∗

(𝑡). Then, according to Lemmas
4 and 7, there exists a positive constant 𝑛∗ such that for all
𝑡 ≥ 𝑛

∗

𝑇

𝑥 (𝑡) ≤ 𝑥
∗

(𝑡) + 𝜀. (42)

Let us define 𝑉(𝑡) = (𝑉
1
(𝑡), 𝑉

2
(𝑡))

𝑇

∈ 𝐶[R
+
× R2

,R2

+
] and

𝑉
𝑖
(𝑡) ∈ 𝑉

0
, (𝑖 = 1, 2), where 𝑉

1
(𝑡) = 𝐼(𝑡), 𝑉

2
(𝑡) = 𝑦

𝐽
(𝑡). Then,

we have

𝑉


(𝑡) ≥ (

−𝑑
𝐼
𝐼 (𝑡)

− (𝑑
𝐽
+ 𝑚)𝑦

𝐽
(𝑡)
) = (

−𝑑
𝐼

0

0 − (𝑑
𝐽
+ 𝑚)

)𝑉 (𝑡) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

(43)

𝑉 ((𝑛 + 𝜏 − 1) 𝑇
+

) = (

1 − 𝑃
𝐼

0

0 1 − 𝑃
𝐽

)𝑉 ((𝑛 + 𝜏 − 1) 𝑇) ,

𝑉 (𝑛𝑇
+

) = (

1 0

0 1
)𝑉 (𝑛𝑇) + (

𝛿
𝐼

𝛿
𝐽

) ,

𝑉 (0
+

) = (𝐼 (0
+

) , 𝑦
𝐽
(0

+

)) .

(44)
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Then, the multicomparison system of (43) is

𝑤


(𝑡) = 𝐴𝑤 (𝑡) , 𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇,

𝑤 (𝑡
+

) = 𝐵𝑤 (𝑡) , 𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

𝑤 (𝑡
+

) = 𝐼
2
𝑤 (𝑡) + 𝐶, 𝑡 = 𝑛𝑇,

𝑤 (0
+

) = 𝑉 (0
+

) ,

(45)

where 𝐴 = (
−𝑑𝐼 0

0 −(𝑑𝐽+𝑚)
) , 𝐵 = (

1−𝑃𝐼 0

0 1−𝑃𝐽
), and 𝐶 = (

𝛿𝐼

𝛿𝐽
).

By Lemma 9, it is easy to obtain a periodic solution
(𝐼

∗

(𝑡), 𝑦
∗

𝐽
(𝑡))

𝑇 of system (45). Then, according to Lemmas 4
and 9, one may find 𝑛∗

0
(𝑛

∗

0
> 𝑛

∗

) such that for all 𝑡 ≥ 𝑛∗
0
𝑇

𝐼 (𝑡) ≥ 𝐼
∗

(𝑡) − 𝜀, 𝑦
𝐽
(𝑡) ≥ 𝑦

∗

𝐽
(𝑡) − 𝜀. (46)

From the fourth equation of system (40), we have 𝑦

𝑀
(𝑡) ≥

𝑚(𝑦
∗

𝐽
(𝑡) − 𝜀) − 𝑑

𝑀
𝑦
𝑀
(𝑡), by Lemmas 4 and 9, there exists

𝑛
∗

1
(𝑛

∗

1
> 𝑛

∗

0
) such that for all 𝑡 ≥ 𝑛∗

1
𝑇

𝑦
𝑀
(𝑡) ≥ 𝑦

∗

𝑀
(𝑡) − 𝜀, (47)

where

𝑦
∗

𝑀
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑒
−𝑑𝑀(𝑡−(𝑛−1)𝑇)

× (𝑦
∗

𝑀
(0

+
)

+𝑚∫

𝑡−(𝑛−1)𝑇

0

(𝑦
∗

𝐽
(𝑡) − 𝜀) 𝑒

𝑑𝑀𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝑒
−𝑑𝑀(𝑡−(𝑛−1)𝑇)

× (𝑦
∗

𝑀
(𝜏𝑇

+
)𝑒

𝑑𝑀𝜏𝑇

+𝑚∫

𝑡−(𝑛−1)𝑇

𝜏𝑇

(𝑦
∗

𝐽
(𝑡) − 𝜀) 𝑒

𝑑𝑀𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

(48)

𝑦
∗

𝑀
(0

+
) = (𝑚[(1 − 𝑃

𝑀
) ∫

𝜏𝑇

0

(𝑦
∗

𝐽
(𝑡) − 𝜀) 𝑒

𝑑𝑀𝑠

𝑑𝑠

+ ∫

𝑇

𝜏𝑇

(𝑦
∗

𝐽
(𝑡) − 𝜀) 𝑒

𝑑𝑀𝑠

𝑑𝑠] 𝑒
−𝑑𝑀𝑇

+ 𝛿
𝑀
)

× (1 − (1 − 𝑃
𝑀
) 𝑒

−𝑑𝑀𝑇

)

−1

,

𝑦
∗

𝑀
(𝜏𝑇

+
)

= ((1 − 𝑃
𝑀
) [𝑚∫

𝜏𝑇

0

(𝑦
∗

𝐽
(𝑡) − 𝜀) 𝑒

𝑑𝑀𝑠

𝑑𝑠

+ 𝑚𝑒
−𝑑𝑀𝑇

∫

𝑇

𝜏𝑇

(𝑦
∗

𝐽
(𝑡) − 𝜀) 𝑒

𝑑𝑀𝑠

𝑑𝑠 + 𝛿
𝑀
]

× 𝑒
−𝑑𝑀𝜏𝑇

)

× (1 − (1 − 𝑃
𝑀
) 𝑒

−𝑑𝑀𝑇

)

−1

.

(49)

Therefore,

𝑆


(𝑡) ≤ [𝛽𝑃
1
(𝑥

∗

(𝑡) + 𝜀) − 𝑔 (𝐼
∗

(𝑡) − 𝜀)

− min
0≤𝜛≤𝑈𝑆

𝑃


2
(𝜛) (𝑦

∗

𝑀
(𝑡) − 𝜀) − 𝑑

𝑆
] 𝑆 (𝑡) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇,

𝑡 ̸= 𝑛𝑇,

Δ𝑆 (𝑡) = −𝑃
𝑆
𝑆 (𝑡) , 𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑆 (𝑡) = 0, 𝑡 = 𝑛𝑇,

(50)

for 𝑡 ≥ 𝑛∗
1
𝑇. Let𝑁 ∈ N and (𝑁+ 𝜏− 1) ≥ 𝑛

∗

1
. Integrating (50)

on ((𝑛 + 𝜏 − 1)𝑇, (𝑛 + 𝜏)𝑇], 𝑛 ≥ 𝑁, we have

𝑆 ((𝑛 + 𝜏) 𝑇)

≤ 𝑆 ((𝑛 + 𝜏 − 1) 𝑇) (1 − 𝑃
𝑆
)

× 𝑒

∫

(𝑛+𝜏)𝑇

(𝑛+𝜏−1)𝑇
(𝛽𝑃1(

̃
𝑥
∗
(𝑡)−𝜀)−𝑔(

̃
𝐼
∗
(𝑡)+𝜀)− min

0≤𝜛≤𝑈𝑆

𝑃


2
(𝜛)(

̃
𝑦
∗

𝑀
(𝑡)+𝜀)−𝑑𝑆)𝑑𝑡

= 𝑆 ((𝑛 + 𝜏 − 1) 𝑇) 𝑒
𝜖

.

(51)

Then 𝑆(𝑡) ≤ 𝑆((𝑛+𝜏)𝑇)𝑒𝑘𝜖 for 𝑡 ∈ ((𝑛+𝜏+𝑘)𝑇, (𝑛+𝜏+𝑘+1)𝑇].
Since 𝜖 < 0, we can easily get 𝑆(𝑡) → 0, as 𝑡 → ∞. In the
following, we prove 𝑥(𝑡) → 𝑥

∗

(𝑡), 𝐼(𝑡) → 𝐼
∗

(𝑡), 𝑦
𝐽
(𝑡) →

𝑦
∗

𝐽
(𝑡), 𝑦

𝑀
(𝑡) → 𝑦

∗

𝑀
(𝑡), as 𝑡 → ∞. Give 𝜀

0
> 0 small enough

(𝜀
0
< (𝑟/𝑃



1
(0))), there must exist 𝑛∗

2
(𝑛

∗

2
> 𝑛

∗

1
) such that

𝑆(𝑡) < 𝜀
0
, for 𝑡 ≥ 𝑛∗

2
𝑇. Then, we have

𝑥


(𝑡) ≥ (𝑟 − 𝑃


1
(0) 𝜀

0
) 𝑥 (𝑡) (1 −

𝑟𝑥 (𝑡)

𝐾 (𝑟 − 𝑃


1
(0) 𝜀

0
)

) ,

𝐼


(𝑡) ≤ − (𝑑
𝐼
− 𝑔



(0) 𝜀
0
) 𝐼 (𝑡) ,

𝑦


𝐽
(𝑡) ≤ 𝜆𝑃

2
(𝜀

0
)𝑀 − (𝑑

𝐽
+ 𝑚) 𝑦

𝐽
(𝑡) ,

𝑦


𝑀
(𝑡) = 𝑚𝑦

𝐽
(𝑡) − 𝑑

𝑀
𝑦
𝑀
(𝑡) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇,

𝑡 ̸= 𝑛𝑇,

Δ𝑥 (𝑡) = −𝛿𝑥 (𝑡) ,

Δ𝐼 (𝑡) = −𝑃
𝐼
𝐼 (𝑡) ,

Δ𝑦
𝐽
(𝑡) = −𝑃

𝐽
𝑦
𝐽
(𝑡) ,

Δ𝑦
𝑀
(𝑡) = −𝑃

𝑀
𝑦
𝑀
(𝑡) ,

𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑥 (𝑡) = 0,

Δ𝐼 (𝑡) = 𝛿
𝐼
,
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Δ𝑦
𝐽
(𝑡) = 𝛿

𝐽
,

Δ𝑦
𝑀
(𝑡) = 𝛿

𝑀
,

𝑡 = 𝑛𝑇.

(52)

Analyzing (52) with similarity as (40), there exists 𝑛∗
3
(𝑛

∗

3
>

𝑛
∗

2
) such that for all 𝑡 ≥ 𝑛∗

3
𝑇

𝑥 (𝑡) ≥
̂
𝑥
∗
(𝑡) − 𝜀, 𝐼 (𝑡) ≤

̂
𝐼
∗
(𝑡) + 𝜀,

𝑦
𝐽
(𝑡) ≤

̂
𝑦
∗

𝐽
(𝑡) + 𝜀, 𝑦

𝑀
(𝑡) ≤

̂
𝑦
∗

𝑀
(𝑡) + 𝜀,

(53)

where

̂
𝑥
∗
(𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝐾(𝑟 − 𝑃


1
(0) 𝜀

0
) (1 − 𝛿 − 𝑒

−(𝑟−𝑃


1
(0)𝜀0)𝑇

)

× (𝑟 [1 − 𝛿 − 𝑒
−(𝑟−𝑃



1
(0)𝜀0)𝑇

+𝛿𝑒
−(𝑟−𝑃



1
(0)𝜀0)(𝑇−𝜏𝑇)

𝑒
−(𝑟−𝑃



1
(0)𝜀0)(𝑡−(𝑛−1)𝑇)

])

−1

,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝐾 (𝑟 − 𝑃


1
(0) 𝜀

0
) (1 − 𝛿 − 𝑒

−(𝑟−𝑃


1
(0)𝜀0)𝑇

)

𝑟 [1 − 𝛿 − 𝑒
−(𝑟−𝑃



1
(0)𝜀0)𝑇 + 𝛿𝑒

−(𝑟−𝑃


1
(0)𝜀0)(𝑡−(𝑛+𝜏−1)𝑇)]

,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

̂
𝐼
∗
(𝑡)

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝛿
𝐼
𝑒
−(𝑑𝐼−𝑔


(0)𝜀0)(𝑡−(𝑛−1)𝑇)

1 − (1 − 𝑃
𝐼
) 𝑒

−(𝑑𝐼−𝑔

(0)𝜀0)𝑇

,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝛿
𝐼
(1 − 𝑃

𝐼
) 𝑒

−(𝑑𝐼−𝑔

(0)𝜀0)(𝑡−(𝑛−1)𝑇)

1 − (1 − 𝑃
𝐼
) 𝑒

−(𝑑𝐼−𝑔

(0)𝜀0)𝑇

,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

̂
𝑦
∗

𝐽
(𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑒
−(𝑚+𝑑𝐽)(𝑡−(𝑛−1)𝑇)

× (
̂
𝑦
∗

𝐽
(0

+
) + 𝜆𝑃

2
(𝜀

0
)𝑀∫

𝑡−(𝑛−1)𝑇

0

𝑒
(𝑚+𝑑𝐽)𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝑒
−(𝑚+𝑑𝐽)(𝑡−(𝑛−1)𝑇)

×(

̂

𝑦
∗

𝐽
(𝜏𝑇

+
)𝑒

(𝑚+𝑑𝐽)𝜏𝑇

+𝜆𝑃
2
(𝜀

0
)𝑀∫

𝑡−(𝑛−1)𝑇

𝜏𝑇

𝑒
(𝑚+𝑑𝐽)𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

̂
𝑦
∗

𝐽
(0

+
)

= (𝜆𝑃
2
(𝜀

0
)𝑀[(1 − 𝑃

𝐽
) ∫

𝜏𝑇

0

𝑒
(𝑚+𝑑𝐽)𝑠

𝑑𝑠 + ∫

𝑇

𝜏𝑇

𝑒
(𝑚+𝑑𝐽)𝑠

𝑑𝑠]

× 𝑒
−(𝑚+𝑑𝐽)𝑇

+ 𝛿
𝐽
) (1 − (1 − 𝑃

𝐽
)𝑒

−(𝑚+𝑑𝐽)𝑇

)

−1

,

̂
𝑦
∗

𝐽
(𝜏𝑇

+
)

= ((1 − 𝑃
𝐽
) [𝜆𝑃

2
(𝜀

0
)𝑀∫

𝜏𝑇

0

𝑒
(𝑚+𝑑𝐽)𝑠

𝑑𝑠

+𝑒
−(𝑚+𝑑𝐽)𝑇

𝜆𝑃
2
(𝜀

0
)𝑀∫

𝑇

𝜏𝑇

𝑒
(𝑚+𝑑𝐽)𝑠

𝑑𝑠 + 𝛿
𝐽
]

×𝑒
−(𝑚+𝑑𝐽)𝜏𝑇

) (1 − (1 − 𝑃
𝐽
)𝑒

−(𝑚+𝑑𝐽)𝑇

)

−1

,

̂
𝑦
∗

𝑀
(𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑒
−𝑑𝑀(𝑡−(𝑛−1)𝑇)

× (
̂
𝑦
∗

𝑀
(0

+
)

+𝑚∫

𝑡−(𝑛−1)𝑇

0

(
̂
𝑦
∗

𝐽
(𝑡) + 𝜀) 𝑒

𝑑𝑀𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝑒
−𝑑𝑀(𝑡−(𝑛−1)𝑇)

× (
̂

𝑦
∗

𝑀
(𝜏𝑇

+
)𝑒

𝑑𝑀𝜏𝑇

+𝑚∫

𝑡−(𝑛−1)𝑇

𝜏𝑇

(
̂
𝑦
∗

𝐽
(𝑡) + 𝜀) 𝑒

𝑑𝑀𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

̂
𝑦
∗

𝑀
(0

+
)

= (𝑚[(1 − 𝑃
𝑀
) ∫

𝜏𝑇

0

(
̂
𝑦
∗

𝐽
(𝑡) + 𝜀) 𝑒

𝑑𝑀𝑠

𝑑𝑠

+∫

𝑇

𝜏𝑇

(
̃
𝑦
∗

𝐽
(𝑡) + 𝜀) 𝑒

𝑑𝑀𝑠

𝑑𝑠] 𝑒
−𝑑𝑀𝑇

+ 𝛿
𝑀
)

× (1 − (1 − 𝑃
𝑀
)𝑒

−𝑑𝑀𝑇

)

−1

,

̂
𝑦
∗

𝑀
(𝜏𝑇

+
)

= ( (1 − 𝑃
𝑀
)

× [𝑚∫

𝜏𝑇

0

(
̂
𝑦
∗

𝐽
(𝑡) + 𝜀) 𝑒

𝑑𝑀𝑠

𝑑𝑠 + 𝑚𝑒
−𝑑𝑀𝑇

×∫

𝑇

𝜏𝑇

(
̃
𝑦
∗

𝐽
(𝑡) + 𝜀) 𝑒

𝑑𝑀𝑠

𝑑𝑠 + 𝛿
𝑀
] 𝑒

−𝑑𝑀𝜏𝑇

)

× (1 − (1 − 𝑃
𝑀
)𝑒

−𝑑𝑀𝑇

)

−1

.

(54)

Letting 𝜀, 𝜀
0
→ 0, we have 𝑦∗

𝑀
(𝑡) → 𝑦

∗

𝑀
(𝑡),

̂
𝑥
∗
(𝑡) → 𝑥

∗

(𝑡),

̂
𝐼
∗
(𝑡) → 𝐼

∗

(𝑡),
̂
𝑦
∗

𝐽
(𝑡) → 𝑦

∗

𝐽
(𝑡),

̂
𝑦
∗

𝑀
(𝑡) → 𝑦

∗

𝑀
(𝑡). Together

with (42), (46), (47), and (53), we get 𝑥(𝑡) → 𝑥
∗

(𝑡), 𝐼(𝑡) →

𝐼
∗

(𝑡), 𝑦
𝐽
(𝑡) → 𝑦

∗

𝐽
(𝑡), 𝑦

𝑀
(𝑡) → 𝑦

∗

𝑀
(𝑡) as 𝑡 → ∞.

Therefore, the susceptible pest-eradication periodic solution
(𝑥

∗

(𝑡), 0, 𝐼∗(𝑡), 𝑦∗

𝐽
(𝑡), 𝑦∗

𝑀
(𝑡)) is globally attractive. Since (37)

implies (30), it follows from Theorem 11 that (𝑥∗

(𝑡), 0, 𝐼∗(𝑡),
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𝑦
∗

𝐽
(𝑡)) is locally asymptotically stable. So, the susceptible pest-

eradication periodic solution (𝑥∗

(𝑡), 0, 𝐼
∗

(𝑡), 𝑦
∗

𝐽
(𝑡), 𝑦

∗

𝑀
(𝑡)) of

system (1) is globally asymptotically stable. The proof is
completed.

4.2. Permanence. Next, we will discuss the permanence of
system (1). In order to facilitate discussion, we give one
lemma.

Lemma 13. There exists a constant 𝑚
4
> 0, such that 𝑥(𝑡),

𝐼(𝑡), 𝑦
𝐽
(𝑡), 𝑦

𝑀
(𝑡) ≥ 𝑚

4
for each solution of (1) with 𝑡 large

enough.

Proof . First, we discuss 𝑥(𝑡). Since 𝑆(𝑡) ≤ 𝑀, by the first
equation of system (1), we have

𝑥


(𝑡) ≥ (𝑟 − 𝑃


1
(0)𝑀)𝑥 (𝑡) (1 −

𝑟𝑥 (𝑡)

𝐾 (𝑟 − 𝑃


1
(0)𝑀)

) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

Δ𝑥 (𝑡) = −𝛿𝑥 (𝑡) , 𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑥 (𝑡) = 0, 𝑡 = 𝑛𝑇.

(55)

Then, we obtain the following comparison system:

𝜒


(𝑡) = (𝑟 − 𝑃


1
(0)𝑀)𝜒 (𝑡) (1 −

𝑟𝜒 (𝑡)

𝐾 (𝑟 − 𝑃


1
(0)𝑀)

) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

Δ𝜒 (𝑡) = −𝛿𝜒 (𝑡) , 𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝜒 (𝑡) = 0, 𝑡 = 𝑛𝑇.

(56)

Letting 𝑟 > 𝑃

1
(0)𝑀 and (1 − 𝛿)𝑒(𝑟−𝑃



1
(0)𝑀)𝑇

> 1, by Lemma 7,
the system (56) has a positive periodic solution 𝜒∗

(𝑡), and for
any solution 𝜒(𝑡) of (56), 𝜒(𝑡) → 𝜒

∗

(𝑡) as 𝑡 large enough,
where

𝜒
∗

(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝐾(𝑟 − 𝑃


1
(0)𝑀) (1 − 𝛿 − 𝑒

−(𝑟−𝑃


1
(0)𝑀)𝑇

)

× (𝑟 [1 − 𝛿 − 𝑒
−(𝑟−𝑃



1
(0)𝑀)𝑇

+ 𝛿𝑒
−(𝑟−𝑃



1
(0)𝑀)(𝑇−𝜏𝑇)

× 𝑒
−(𝑟−𝑃



1
(0)𝑀)(𝑡−(𝑛−1)𝑇)

])

−1

,

𝑡 ∈ ((𝑛−1) 𝑇, (𝑛+𝜏 − 1)𝑇] ,

𝐾 (𝑟 − 𝑃


1
(0)𝑀) (1 − 𝛿 − 𝑒

−(𝑟−𝑃


1
(0)𝑀)𝑇

)

× (𝑟 [1 − 𝛿 − 𝑒
−(𝑟−𝑃



1
(0)𝑀)𝑇

+𝛿𝑒
−(𝑟−𝑃



1
(0)𝑀)(𝑡−(𝑛+𝜏−1)𝑇)

])

−1

,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] .

(57)

According to Lemmas 4 and 7, one may find 𝑛∗
4
∈ N such

that 𝑥(𝑡) ≥ 𝜒
∗

(𝑡) − 𝜀 for 𝑡 ≥ 𝑛
∗

4
𝑇. Since 𝜒∗

(𝑡) − 𝜀 ≥ (𝐾(𝑟 −

𝑃


1
(0)𝑀)(1−𝛿−𝑒

−(𝑟−𝑃


1
(0)𝑀)𝑇

)/𝑟(1−𝑒
−(𝑟−𝑃



1
(0)𝑀)𝑇

))−𝜀 = 𝑚
0
> 0,

so 𝑥(𝑡) ≥ 𝑚
0
for 𝑡 ≥ 𝑛

∗

4
𝑇. Next, we will discuss the rest of

parts.
From (46) and (47), we know that there exists 𝑛∗

5
(𝑛

∗

5
>

max{𝑛∗
1
, 𝑛

∗

4
}) such that 𝐼(𝑡) ≥ 𝐼∗(𝑡) − 𝜀, 𝑦

𝐽
(𝑡) ≥ 𝑦

∗

𝐽
(𝑡) − 𝜀, and

𝑦
𝑀
(𝑡) ≥ 𝑦

∗

𝑀
(𝑡) − 𝜀 for all 𝑡 ≥ 𝑛∗

5
𝑇. By (22), (23), and (48), we

have 𝐼(𝑡) ≥ (𝛿
𝐼
(1 −𝑃

𝐼
)𝑒

−𝑑𝐼𝑇
/(1 − (1 −𝑃

𝐼
)𝑒

−𝑑𝐼𝑇
)) − 𝜀 = 𝑚

1
> 0,

𝑦
𝐽
(𝑡) ≥ (𝛿

𝐽
(1−𝑃

𝐽
)𝑒

−(𝑚+𝑑𝐽)𝑇
/(1−(1−𝑃

𝐽
)𝑒

−(𝑚+𝑑𝐽)𝑇
))−𝜀 = 𝑚

2
>

0, and𝑦
𝑀
(𝑡) ≥ 𝑚

𝑀
−𝜀 = 𝑚

3
> 0, where𝑚

𝑀
=min

0<𝑡≤𝑇
𝑦
∗

𝑀
(𝑡).

Let 𝑚
4
= min{𝑚

0
, 𝑚

1
, 𝑚

2
, 𝑚

3
}, then 𝑥(𝑡), 𝐼(𝑡), 𝑦

𝐽
(𝑡), 𝑦

𝑀
(𝑡) ≥

𝑚
4
for 𝑡 ≥ 𝑛∗

5
𝑇. The proof is completed.

Theorem 14. If

𝛽∫

𝑇

0

𝑃
1
(𝑥

∗

(𝑡)) 𝑑𝑡 − ∫

𝑇

0

𝑔 (𝐼
∗

(𝑡)) 𝑑𝑡 − 𝑃


2
(0)

× ∫

𝑇

0

𝑦
∗

𝑀
(𝑡) 𝑑𝑡 − 𝑑

𝑆
𝑇 > ln 1

1 − 𝑃
𝑆

,

(58)

then system (1) is permanent.

Proof. By Lemmas 6 and 13, we have already known
that there exist two constants 𝑚

4
, 𝑀 > 0, such that

𝑥(𝑡), 𝐼(𝑡), 𝑦
𝐽
(𝑡), 𝑦

𝑀
(𝑡) ≥ 𝑚

4
and 𝑥(𝑡), 𝑆(𝑡), 𝐼(𝑡), 𝑦

𝐽
(𝑡), 𝑦

𝑀
(𝑡) ≤

𝑀 for 𝑡 large enough. Thus, we only need to find 𝑚∗

> 0

such that 𝑆(𝑡) ≥ 𝑚∗ for 𝑡 large enough. We will do this in the
following two steps.

Step 1. Let 𝑚
5
> 0 and 𝜀

1
> 0 small enough, so that 𝑚

5
<

min{(𝑟/𝑃

1
(0)), (𝑑

𝐼
/𝑔



(0)),𝑀} and

𝛽∫

𝑇

0

𝑃
1
(
̃
𝑥
∗
(𝑡) − 𝜀

1
) 𝑑𝑡 − ∫

𝑇

0

𝑔 (
̃
𝐼
∗
(𝑡) + 𝜀

1
) 𝑑𝑡 − 𝑃



2
(0)

× ∫

𝑇

0

(
̃
𝑦
∗

𝑀
(𝑡) + 𝜀

1
) 𝑑𝑡 − 𝑑

𝑆
𝑇 − ln 1

1 − 𝑃
𝑆

= 𝜂 > 0,

(59)

where

̃
𝑥
∗
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝐾(𝑟 − 𝑃


1
(0)𝑚

5
) (1 − 𝛿 − 𝑒

−(𝑟−𝑃


1
(0)𝑚5)𝑇

)

× (𝑟 [1 − 𝛿 − 𝑒
−(𝑟−𝑃



1(0)𝑚5)𝑇

+𝛿𝑒
−(𝑟−𝑃



1
(0)𝑚5)(𝑇−𝜏𝑇)

× 𝑒
−(𝑟−𝑃



1
(0)𝑚5)(𝑡−(𝑛−1)𝑇)

])

−1

,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝐾 (𝑟 − 𝑃


1
(0)𝑚

5
) (1 − 𝛿 − 𝑒

−(𝑟−𝑃


1
(0)𝑚5)𝑇

)

× (𝑟 [1 − 𝛿 − 𝑒
−(𝑟−𝑃



1
(0)𝑚5)𝑇

+𝛿𝑒
−(𝑟−𝑃



1
(0)𝑚5)(𝑡−(𝑛+𝜏−1)𝑇)

])

−1

,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

̃
𝐼
∗
(𝑡) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝛿
𝐼
𝑒
−(𝑑𝐼−𝑔


(0)𝑚5)(𝑡−(𝑛−1)𝑇)

1 − (1 − 𝑃
𝐼
) 𝑒

−(𝑑𝐼−𝑔

(0)𝑚5)𝑇

,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝛿
𝐼
(1 − 𝑃

𝐼
) 𝑒

−(𝑑𝐼−𝑔

(0)𝑚5)(𝑡−(𝑛−1)𝑇)

1 − (1 − 𝑃
𝐼
) 𝑒

−(𝑑𝐼−𝑔

(0)𝑚5)𝑇

,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,
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̃
𝑦
∗

𝐽
(𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑒
−(𝑚+𝑑𝐽)(𝑡−(𝑛−1)𝑇)

×(
̃
𝑦
∗

𝐽
(0

+
) + 𝜆𝑃

2
(𝑚

5
)𝑀∫

𝑡−(𝑛−1)𝑇

0

𝑒
(𝑚+𝑑𝐽)𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝑒
−(𝑚+𝑑𝐽)(𝑡−(𝑛−1)𝑇)

× (
̃
𝑦
∗

𝐽
(𝜏𝑇

+
)𝑒

(𝑚+𝑑𝐽)𝜏𝑇

+𝜆𝑃
2
(𝑚

5
)𝑀∫

𝑡−(𝑛−1)𝑇

𝜏𝑇

𝑒
(𝑚+𝑑𝐽)𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

̃
𝑦
∗

𝐽
(0

+
)

= (𝜆𝑃
2
(𝑚

5
)𝑀[(1 − 𝑃

𝐽
)∫

𝜏𝑇

0

𝑒
(𝑚+𝑑𝐽)𝑠

𝑑𝑠 +∫

𝑇

𝜏𝑇

𝑒
(𝑚+𝑑𝐽)𝑠

𝑑𝑠]

× 𝑒
−(𝑚+𝑑𝐽)𝑇

+ 𝛿
𝐽
) (1 − (1 − 𝑃

𝐽
)𝑒

−(𝑚+𝑑𝐽)𝑇

)

−1

,

̃
𝑦
∗

𝐽
(𝜏𝑇

+
)

= ( (1 − 𝑃
𝐽
)

× [𝜆𝑃
2
(𝑚

5
)𝑀∫

𝜏𝑇

0

𝑒
(𝑚+𝑑𝐽)𝑠

𝑑𝑠 + 𝑒
−(𝑚+𝑑𝐽)𝑇

×𝜆𝑃
2
(𝑚

5
)𝑀∫

𝑇

𝜏𝑇

𝑒
(𝑚+𝑑𝐽)𝑠

𝑑𝑠 + 𝛿
𝐽
]

×𝑒
−(𝑚+𝑑𝐽)𝜏𝑇

) (1 − (1 − 𝑃
𝐽
)𝑒

−(𝑚+𝑑𝐽)𝑇

)

−1

,

̃
𝑦
∗

𝑀
(𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑒
−𝑑𝑀(𝑡−(𝑛−1)𝑇)

×(
̃
𝑦
∗

𝑀
(0

+
) + 𝑚∫

𝑡−(𝑛−1)𝑇

0

× (
̃
𝑦
∗

𝐽
(𝑡) + 𝜀

1
) 𝑒

𝑑𝑀𝑠
𝑑𝑠) ,

𝑡 ∈ ((𝑛 − 1) 𝑇, (𝑛 + 𝜏 − 1) 𝑇] ,

𝑒
−𝑑𝑀(𝑡−(𝑛−1)𝑇)

× (
̃

𝑦
∗

𝑀
(𝜏𝑇

+
)𝑒

𝑑𝑀𝜏𝑇

+𝑚∫

𝑡−(𝑛−1)𝑇

𝜏𝑇

(
̃
𝑦
∗

𝐽
(𝑡) + 𝜀

1
) 𝑒

𝑑𝑀𝑠

𝑑𝑠) ,

𝑡 ∈ ((𝑛 + 𝜏 − 1) 𝑇, 𝑛𝑇] ,

̃
𝑦
∗

𝑀
(0

+
)

= (𝑚[(1 − 𝑃
𝑀
) ∫

𝜏𝑇

0

(
̃
𝑦
∗

𝐽
(𝑡) + 𝜀

1
) 𝑒

𝑑𝑀𝑠

𝑑𝑠

+∫

𝑇

𝜏𝑇

(
̃
𝑦
∗

𝐽
(𝑡) + 𝜀

1
) 𝑒

𝑑𝑀𝑠

𝑑𝑠]

×𝑒
−𝑑𝑀𝑇

+ 𝛿
𝑀
) (1 − (1 − 𝑃

𝑀
) 𝑒

−𝑑𝑀𝑇

)

−1

,

̃
𝑦
∗

𝑀
(𝜏𝑇

+
)

= ( (1 − 𝑃
𝑀
)

× [𝑚∫

𝜏𝑇

0

(
̃
𝑦
∗

𝐽
(𝑡) + 𝜀

1
) 𝑒

𝑑𝑀𝑠

𝑑𝑠

+𝑚𝑒
−𝑑𝑀𝑇

∫

𝑇

𝜏𝑇

(
̃
𝑦
∗

𝐽
(𝑡) + 𝜀

1
) 𝑒

𝑑𝑀𝑠

𝑑𝑠 + 𝛿
𝑀
]

×𝑒
−𝑑𝑀𝜏𝑇

) (1 − (1 − 𝑃
𝑀
) 𝑒

−𝑑𝑀𝑇

)

−1

.

(60)

We shall prove that one cannot have 𝑆(𝑡) < 𝑚
5
for all 𝑡 > 0,

otherwise

𝑥


(𝑡) ≥ (𝑟 − 𝑃


1
(0)𝑚

5
) 𝑥 (𝑡) (1 −

𝑟𝑥 (𝑡)

𝐾 (𝑟 − 𝑃


1
(0)𝑚

5
)

) ,

𝐼


(𝑡) ≤ − (𝑑
𝐼
− 𝑔



(0)𝑚
5
) 𝐼 (𝑡) ,

𝑦


𝐽
(𝑡) ≤ 𝜆𝑃

2
(𝑚

5
)𝑀 − (𝑑

𝐽
+ 𝑚) 𝑦

𝐽
(𝑡) ,

𝑦


𝑀
(𝑡) = 𝑚𝑦

𝐽
(𝑡) − 𝑑

𝑀
𝑦
𝑀
(𝑡) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇,

𝑡 ̸= 𝑛𝑇,

Δ𝑥 (𝑡) = −𝛿𝑥 (𝑡) ,

Δ𝐼 (𝑡) = −𝑃
𝐼
𝐼 (𝑡) ,

Δ𝑦
𝐽
(𝑡) = −𝑃

𝐽
𝑦
𝐽
(𝑡) ,

Δ𝑦
𝑀
(𝑡) = −𝑃

𝑀
𝑦
𝑀
(𝑡) ,

𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑥 (𝑡) = 0,

Δ𝐼 (𝑡) = 𝛿
𝐼
,

Δ𝑦
𝐽
(𝑡) = 𝛿

𝐽
,

Δ𝑦
𝑀
(𝑡) = 𝛿

𝑀
,

𝑡 = 𝑛𝑇.

(61)

Analyzing (61) with similarity as (40), it is easy to obtain that
there exists a positive constant 𝑛∗

6
, such that 𝑥(𝑡) ≥ ̃

𝑥
∗
(𝑡) −

𝜀
1
, 𝐼(𝑡) ≤

̃
𝐼
∗
(𝑡) + 𝜀

1
, 𝑦

𝐽
(𝑡) ≤

̃
𝑦
∗

𝐽
(𝑡) + 𝜀

1
, 𝑦

𝑀
(𝑡) ≤

̃
𝑦
∗

𝑀
(𝑡) + 𝜀

1
for

𝑡 ≥ 𝑛
∗

6
𝑇. Therefore,

𝑆


(𝑡) ≥ 𝛽𝑃
1
(
̃
𝑥
∗
(𝑡) − 𝜀

1
) 𝑆 (𝑡) − 𝑔 (

̃
𝐼
∗
(𝑡) + 𝜀

1
) 𝑆 (𝑡)

− 𝑃


2
(0) (

̃
𝑦
∗

𝑀
(𝑡) + 𝜀

1
) 𝑆 (𝑡) − 𝑑

𝑆
𝑆 (𝑡) ,
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𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

Δ𝑆 (𝑡) = −𝑃
𝑆
𝑆 (𝑡) , 𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑆 (𝑡) = 0, 𝑡 = 𝑛𝑇,

(62)

for 𝑡 ≥ 𝑛
∗

6
𝑇. Let 𝑁

0
∈ N and (𝑁

0
+ 𝜏 − 1) ≥ 𝑛

∗

6
. Integrating

(62) on ((𝑛 + 𝜏 − 1)𝑇, (𝑛 + 𝜏)𝑇], 𝑛 ≥ 𝑁
0
, we have

𝑆 ((𝑛 + 𝜏) 𝑇)

≥ 𝑆 ((𝑛 + 𝜏 − 1) 𝑇) (1 − 𝑃
𝑆
)

× 𝑒
∫

(𝑛+𝜏)𝑇

(𝑛+𝜏−1)𝑇
(𝛽𝑃1(

̃
𝑥
∗
(𝑡)−𝜀1)−𝑔(

̃
𝐼
∗
(𝑡)+𝜀1)−𝑃



2
(0)(

̃
𝑦
∗

𝑀
(𝑡)+𝜀1)−𝑑𝑆)𝑑𝑡

= 𝑆 ((𝑛 + 𝜏 − 1) 𝑇) 𝑒
𝜂

.

(63)

Then 𝑆((𝑁
0
+ 𝜏 + 𝑘)𝑇) ≥ 𝑆((𝑁

0
+ 𝜏)𝑇)𝑒

𝑘𝜂

→ ∞ as 𝑘 → ∞,
which is a contradiction. So there exists a 𝑡

1
(𝑡

1
> 𝑛

∗

6
𝑇) such

that 𝑆(𝑡
1
) ≥ 𝑚

5
.

Step 2. If 𝑆(𝑡) ≥ 𝑚
5
for all 𝑡 ≥ 𝑡

1
, then Our purpose is

obtained. If not, let 𝑡
2
= inf{𝑡 > 𝑡

1
| 𝑆(𝑡) < 𝑚

5
}. Then

𝑆(𝑡) ≥ 𝑚
5
for 𝑡 ∈ [𝑡

1
, 𝑡

2
) and 𝑆(𝑡

2
) = 𝑚

5
. In this step, we

consider two possible cases for 𝑡
2
.

Case 1. 𝑡
2
= (𝑛

1
+ 𝜏 − 1)𝑇, 𝑛

1
∈ N. Then 𝑆(𝑡

+

2
) = (1 −

𝑃
𝑆
)𝑆(𝑡

2
) < 𝑚

5
. Select 𝑛

2
, 𝑛

3
∈ N such that (𝑛

2
− 1) ≥ 𝑛

∗

6

and (1 − 𝑃
𝑆
)
𝑛2
𝑒
𝑛3𝜂+𝑛2𝜎𝑇

> (1 − 𝑃
𝑆
)
𝑛2
𝑒
𝑛3𝜂+(𝑛2+1)𝜎𝑇

> 1, where
𝜎 = 𝛽𝑃

1
(𝑚

4
) − 𝑔(𝑀) − 𝑃



2
(0)𝑀 − 𝑑

𝑆
< 0. Let ̃𝑇 = (𝑛

2
+ 𝑛

3
)𝑇,

then we have the claim: there exists 𝑡
3
∈ (𝑡

2
, 𝑡

2
+
̃
𝑇] such that

𝑆(𝑡
3
) ≥ 𝑚

5
. If the claim is false, we will get a contradiction in

the following.
According to Step 1, we have 𝑥(𝑡) ≥ ̃

𝑥
∗
(𝑡) − 𝜀

1
, 𝐼(𝑡) ≤

̃
𝐼
∗
(𝑡) + 𝜀

1
, 𝑦

𝐽
(𝑡) ≤

̃
𝑦
∗

𝐽
(𝑡) + 𝜀

1
, 𝑦

𝑀
(𝑡) ≤

̃
𝑦
∗

𝑀
(𝑡) + 𝜀

1
for 𝑡 ≥

(𝑛
1
+ 𝑛

2
− 1)𝑇. Then, we have

𝑆


(𝑡) ≥ 𝛽𝑃
1
(
̃
𝑥
∗
(𝑡) − 𝜀

1
) 𝑆 (𝑡) − 𝑔 (

̃
𝐼
∗
(𝑡) + 𝜀

1
) 𝑆 (𝑡)

− 𝑃


2
(0) (

̃
𝑦
∗

𝑀
(𝑡) + 𝜀

1
) 𝑆 (𝑡) − 𝑑

𝑆
𝑆 (𝑡) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

Δ𝑆 (𝑡) = −𝑃
𝑆
𝑆 (𝑡) , 𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑆 (𝑡) = 0, 𝑡 = 𝑛𝑇,

(64)

for 𝑡 ∈ [𝑡
2
+ 𝑛

2
𝑇, 𝑡

2
+
̃
𝑇]. As in Step 1, we have

𝑆 (𝑡
2
+
̃
𝑇) ≥ 𝑆 (𝑡

2
+ 𝑛

2
𝑇) 𝑒

𝑛3𝜂

. (65)

Since 𝑥(𝑡) ≥ 𝑚
4
, 𝐼(𝑡) ≤ 𝑀, 𝑦

𝑀
(𝑡) ≤ 𝑀 and 𝑃

2
(𝑆(𝑡)) <

𝑃


2
(0)𝑆(𝑡), we have

𝑆


(𝑡)

≥ (𝛽𝑃
1
(𝑚

4
) − 𝑔 (𝑀) − 𝑃



2
(0)𝑀 − 𝑑

𝑆
) 𝑆 (𝑡) = 𝜎𝑆 (𝑡) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇, 𝑡 ̸= 𝑛𝑇,

Δ𝑆 (𝑡) = −𝑃
𝑆
𝑆 (𝑡) , 𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑆 (𝑡) = 0, 𝑡 = 𝑛𝑇,

(66)

for 𝑡 ∈ [𝑡
2
, 𝑡

2
+𝑛

2
𝑇]. Integrating (66) on [𝑡

2
, 𝑡

2
+𝑛

2
𝑇], we have

𝑆 (𝑡
2
+ 𝑛

2
𝑇) ≥ 𝑆 (𝑡

+

2
) 𝑒

𝑛2𝜎𝑇

= (1 − 𝑃
𝑆
)𝑚

5
𝑒
𝑛2𝜎𝑇

≥ (1 − 𝑃
𝑆
)
𝑛2
𝑚

5
𝑒
𝑛2𝜎𝑇

.

(67)

Thus, by (65) and (67), we have 𝑆(𝑡
2
+

̃
𝑇) ≥ (1 −

𝑃
𝑆
)
𝑛2
𝑚

5
𝑒
𝑛3𝜂+𝑛2𝜎𝑇

> 𝑚
5
, which is a contradiction. Let 𝑡

4
=

inf{𝑡 > 𝑡
2
| 𝑆(𝑡) ≥ 𝑚

5
}, then for 𝑡 ∈ [𝑡

2
, 𝑡

4
), 𝑆(𝑡) < 𝑚

5
and

𝑆(𝑡
4
) = 𝑚

5
. So, 𝑆(𝑡) ≥ 𝑆(𝑡

+

2
)𝑒

𝜎(𝑡−𝑡2)
= (1 − 𝑃

𝑆
)𝑚

5
𝑒
𝜎(𝑡−𝑡2)

≥

(1 − 𝑃
𝑆
)
𝑛2+𝑛3

𝑚
5
𝑒
𝜎(𝑛2+𝑛3)𝑇

= 𝑚
1
for 𝑡 ∈ [𝑡

2
, 𝑡

4
).

Case 2 (𝑡
2
̸= (𝑛

1
+ 𝜏 − 1)𝑇, 𝑛

1
∈ N). Suppose that 𝑡

2
∈ ((𝑛



1
+

𝜏 − 1)𝑇, (𝑛


1
+ 𝜏)𝑇), 𝑛



1
∈ N. 𝑆(𝑡) ≥ 𝑚

5
for 𝑡 ∈ [𝑡

1
, 𝑡

2
) and

𝑆(𝑡
2
) = 𝑚

5
.There are two possible cases for 𝑡 ∈ (𝑡

2
, (𝑛



1
+𝜏)𝑇).

Case 2a. If 𝑆(𝑡) ≤ 𝑚
5
for all 𝑡 ∈ (𝑡

2
, (𝑛



1
+𝜏)𝑇), similar to Case

1, we can prove there exists a 𝑡
3
∈ ((𝑛



1
+ 𝜏)𝑇, (𝑛



1
+ 𝜏)𝑇 +

̃
𝑇]

such that 𝑆(𝑡
3
) ≥ 𝑚

5
. Let 𝑡

4
= inf{𝑡 > 𝑡

2
| 𝑆(𝑡) ≥ 𝑚

5
}, then for

𝑡 ∈ [𝑡
2
, 𝑡



4
), 𝑆(𝑡) < 𝑚

5
and 𝑆(𝑡

4
) = 𝑚

5
. So, 𝑆(𝑡) ≥ 𝑆(𝑡

2
)𝑒

𝜎(𝑡−𝑡2)
=

𝑚
5
𝑒
𝜎(𝑡−𝑡2)

≥ (1 − 𝑃
𝑆
)
𝑛2+𝑛3

𝑚
5
𝑒
𝜎(𝑛2+𝑛3+1)𝑇

= 𝑚
∗

< 𝑚
1
for all

𝑡 ∈ [𝑡
2
, 𝑡



4
).

Case 2b. If there exists a 𝑡 ∈ (𝑡
2
, (𝑛



1
+𝜏)𝑇) such that 𝑆(𝑡) ≥ 𝑚

5
.

Let 𝑡
4
= inf{𝑡 > 𝑡

2
| 𝑆(𝑡) ≥ 𝑚

5
}, then for 𝑡 ∈ [𝑡

2
, 𝑡



4
), 𝑆(𝑡) <

𝑚
5
and 𝑆(𝑡

4
) = 𝑚

5
. So, 𝑆(𝑡) ≥ 𝑆(𝑡

2
)𝑒

𝜎(𝑡−𝑡2)
= 𝑚

5
𝑒
𝜎(𝑡−𝑡2)

≥

𝑚
5
𝑒
𝜎𝑇

> 𝑚
∗ for all 𝑡 ∈ [𝑡

2
, 𝑡



4
).

Since 𝑆(𝑡) ≥ 𝑚
5
for some 𝑡 ≥ 𝑡

1
, in both cases a similar

discussion can be continued. The proof is completed.

5. Numerical Simulations and Conclusions

In this section, we will give an example and its simulations to
show the efficiency of the criteria derived in Section 4.

In system (1), let 𝑃
1
(𝑥(𝑡)) = 𝑎𝑥(𝑡), 𝑔(𝐼(𝑡)) = 𝑏𝐼(𝑡),

and 𝑃
2
(𝑆(𝑡)) = ℎ(1 − 𝑒

−𝑐𝑆(𝑡)

), 𝑎, 𝑏, 𝑐, ℎ > 0. Namely,
𝑃
1
(𝑥(𝑡)) describes an Holling type-I functional response of

the pest, 𝑃
2
(𝑆(𝑡)) describes a Ivlev-type functional response

of the pest ’s natural predator.Therefore, we consider the pest
management model with impulsive releasing and harvesting
at two different fixed moments:

𝑥


(𝑡) = 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) − 𝑎𝑥 (𝑡) 𝑆 (𝑡) ,

𝑆


(𝑡) = 𝛽𝑎𝑥 (𝑡) 𝑆 (𝑡) − 𝑏𝐼 (𝑡) 𝑆 (𝑡)

− ℎ (1 − 𝑒
−𝑐𝑆(𝑡)

) 𝑦
𝑀
(𝑡) − 𝑑

𝑆
𝑆 (𝑡) ,

𝐼


(𝑡) = 𝑏𝐼 (𝑡) 𝑆 (𝑡) − 𝑑
𝐼
𝐼 (𝑡) ,

𝑦


𝐽
(𝑡) = 𝜆ℎ (1 − 𝑒

−𝑐𝑆(𝑡)

) 𝑦
𝑀
(𝑡) − 𝑑

𝐽
𝑦
𝐽
(𝑡) − 𝑚𝑦

𝐽
(𝑡) ,

𝑦


𝑀
(𝑡) = 𝑚𝑦

𝐽
(𝑡) − 𝑑

𝑀
𝑦
𝑀
(𝑡) ,

𝑡 ̸= (𝑛 + 𝜏 − 1) 𝑇,

𝑡 ̸= 𝑛𝑇,
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Figure 1: Time series of the system (68) with 𝑟 = 8, 𝐾 = 10, 𝑎 = 0.8, 𝛽 = 0.5, 𝑏 = 0.3, ℎ = 8, 𝑐 = 0.2, 𝜆 = 0.6, 𝑚 = 2, 𝑑
𝑆
= 0.2, 𝑑

𝐼
= 0.5,

𝑑
𝐽
= 0.4, 𝑑

𝑀
= 0.2, 𝛿 = 0.4, 𝑃

𝑆
= 𝑃

𝐼
= 𝑃

𝐽
= 𝑃

𝑀
= 0.2, 𝛿

𝐼
= 0.2, 𝛿

𝐽
= 0.3, 𝛿

𝑀
= 0.5, 𝜏 = 0.3, 𝑇 = 0.5, 𝑥(0) = 20, 𝑆(0) = 2, 𝐼(0) = 2, 𝑦

𝐽
(0) = 0.5,

𝑦
𝑀
(0) = 0.5.

Δ𝑥 (𝑡) = −𝛿𝑥 (𝑡) ,

Δ𝑆 (𝑡) = −𝑃
𝑆
𝑆 (𝑡) ,

Δ𝐼 (𝑡) = −𝑃
𝐼
𝐼 (𝑡) ,

Δ𝑦
𝐽
(𝑡) = −𝑃

𝐽
𝑦
𝐽
(𝑡) ,

Δ𝑦
𝑀
(𝑡) = −𝑃

𝑀
𝑦
𝑀
(𝑡) ,

𝑡 = (𝑛 + 𝜏 − 1) 𝑇,

Δ𝑥 (𝑡) = 0,

Δ𝑆 (𝑡) = 0,

Δ𝐼 (𝑡) = 𝛿
𝐼
,

Δ𝑦
𝐽
(𝑡) = 𝛿

𝐽
,

Δ𝑦
𝑀
(𝑡) = 𝛿

𝑀
,

𝑡 = 𝑛𝑇.

(68)

So, by (22), (23), and (25), we have

𝛽∫

𝑇

0

𝑃
1
(𝑥

∗

(𝑡)) 𝑑𝑡 =

𝛽𝑎𝐾

𝑟

(𝑟𝑇 + ln (1 − 𝛿)) = 𝜃
1
,

∫

𝑇

0

𝑔 (𝐼
∗

(𝑡)) 𝑑𝑡

=

𝑏𝛿
𝐼
[1 − 𝑒

−𝑑𝐼𝜏𝑇
+ (1 − 𝑃

𝐼
) (𝑒

−𝑑𝐼𝜏𝑇
− 𝑒

−𝑑𝐼𝑇
)]

𝑑
𝐼
(1 − (1 − 𝑃

𝐼
) 𝑒

−𝑑𝐼𝑇)

= 𝜃
2
,
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Figure 2: Phase portrait of the system (68) with 𝑟 = 8, 𝐾 = 10, 𝑎 = 0.8, 𝛽 = 0.5, 𝑏 = 0.3, ℎ = 8, 𝑐 = 0.2, 𝜆 = 0.6, 𝑚 = 2, 𝑑
𝑆
= 0.2, 𝑑

𝐼
= 0.5,

𝑑
𝐽
= 0.4, 𝑑

𝑀
= 0.2, 𝛿 = 0.4, 𝑃

𝑆
= 𝑃

𝐼
= 𝑃

𝐽
= 𝑃

𝑀
= 0.2, 𝛿

𝐼
= 0.2, 𝛿

𝐽
= 0.3, 𝛿

𝑀
= 0.5, 𝜏 = 0.3, 𝑇 = 0.5, 𝑥(0) = 20, 𝑆(0) = 2, 𝐼(0) = 2, 𝑦

𝐽
(0) = 0.5,

𝑦
𝑀
(0) = 0.5.

∫

𝑇

0

𝑦
∗

𝑀
(𝑡) 𝑑𝑡

=

𝑦
∗

𝑀
(0

+

)

𝑑
𝑀

(1 − 𝑒
−𝑑𝑀𝜏𝑇

)

+

𝑚𝛿
𝐽

(1 − (1 − 𝑃
𝐽
) 𝑒

−(𝑚+𝑑𝐽)𝑇) (𝑑
𝑀
− (𝑚 + 𝑑

𝐽
))

× (

1 − 𝑒
−(𝑚+𝑑𝐽)𝜏𝑇

𝑚 + 𝑑
𝐽

−

1 − 𝑒
−𝑑𝑀𝜏𝑇

𝑑
𝑀

)

+

𝑦
∗

𝑀
(𝜏𝑇

+

) 𝑒
𝑑𝑀𝜏𝑇

𝑑
𝑀

(𝑒
−𝑑𝑀𝜏𝑇

− 𝑒
𝑑𝑀𝑇

)

+

𝑚𝛿
𝐽
(1 − 𝑃

𝐽
)

(1 − (1 − 𝑃
𝐽
) 𝑒

−(𝑚+𝑑𝐽)𝑇) (𝑑
𝑀
− (𝑚 + 𝑑

𝐽
))

× (

𝑒
−(𝑚+𝑑𝐽)𝜏𝑇

− 𝑒
−(𝑚+𝑑𝐽)𝑇

𝑚 + 𝑑
𝐽

−

𝑒
−𝑑𝑀𝜏𝑇

− 𝑒
−𝑑𝑀𝑇

𝑑
𝑀

𝑒
(𝑑𝑀−(𝑚+𝑑𝐽))𝜏𝑇

)

= 𝜃
3
,

(69)

where

𝑦
∗

𝑀
(0

+

) =

[(1 − 𝑃
𝑀
) 𝐴 (𝜏𝑇) + 𝐵 (𝑇)] 𝑒

−𝑑𝑀𝑇
+ 𝛿

𝑀

1 − (1 − 𝑃
𝑀
) 𝑒

−𝑑𝑀𝑇
,

𝑦
∗

𝑀
(𝜏𝑇

+

) =

(1 − 𝑃
𝑀
) [𝐴 (𝜏𝑇) + 𝑒

−𝑑𝑀𝑇
𝐵 (𝑇) + 𝛿

𝑀
] 𝑒

−𝑑𝑀𝜏𝑇

1 − (1 − 𝑃
𝑀
) 𝑒

−𝑑𝑀𝑇
,

𝐴 (𝜏𝑇) =

𝑚𝛿
𝐽
(𝑒

(𝑑𝑀−(𝑚+𝑑𝐽))𝜏𝑇
− 1)

(1 − (1 − 𝑃
𝐽
) 𝑒

−(𝑚+𝑑𝐽)𝑇) (𝑑
𝑀
− (𝑚 + 𝑑

𝐽
))

,

𝐵 (𝑇) =

𝑚𝛿
𝐽
(1 − 𝑃

𝐽
) (𝑒

(𝑑𝑀−(𝑚+𝑑𝐽))𝑇
− 𝑒

(𝑑𝑀−(𝑚+𝑑𝐽))𝜏𝑇
)

(1 − (1 − 𝑃
𝐽
) 𝑒

−(𝑚+𝑑𝐽)𝑇) (𝑑
𝑀
− (𝑚 + 𝑑

𝐽
))

.

Then, byTheorems 11 and 14, we have the following.
(𝑇1) If 𝜃

1
− 𝜃

2
− 𝜃

3
− 𝑑

𝑆
𝑇 < ln(1/(1 − 𝑃

𝑆
)), then the

susceptible pest-eradication periodic solution (𝑥∗

(𝑡),

0, 𝐼
∗

(𝑡), 𝑦
∗

𝐽
(𝑡), 𝑦

∗

𝑀
(𝑡)) of system (68) is locally asymp-

totically stable.
(𝑇2) If 𝜃

1
− 𝜃

2
− ℎ𝑐𝑒

−𝑐𝑀

𝜃
3
− 𝑑

𝑆
𝑇 < ln(1/(1 − 𝑃

𝑆
)),

then the susceptible pest-eradication periodic solu-
tion (𝑥

∗

(𝑡), 0, 𝐼
∗

(𝑡), 𝑦
∗

𝐽
(𝑡), 𝑦

∗

𝑀
(𝑡)) of system (68) is

globally asymptotically stable, where𝑀 is defined in
Lemma 6.

(𝑇3) If 𝜃
1
− 𝜃

2
− ℎ𝑐𝜃

3
− 𝑑

𝑆
𝑇 > ln(1/(1 − 𝑃

𝑆
), then system

(68) is permanent.
In the following, we analyze the locally asymptotical

stability of the susceptible pest-eradication periodic solution
and permanence of system (68).
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Figure 3: Time series of the system (68) with 𝑟 = 8, 𝐾 = 10, 𝑎 = 0.8, 𝛽 = 0.5, 𝑏 = 0.3, ℎ = 8, 𝑐 = 0.2, 𝜆 = 0.6, 𝑚 = 2, 𝑑
𝑆
= 0.2, 𝑑

𝐼
= 0.5,

𝑑
𝐽
= 0.4, 𝑑

𝑀
= 0.2, 𝛿 = 0.4, 𝑃

𝑆
= 𝑃

𝐼
= 𝑃

𝐽
= 𝑃

𝑀
= 0.2, 𝛿

𝐼
= 0.2, 𝛿

𝐽
= 0.3, 𝛿

𝑀
= 0.5, 𝜏 = 0.3, 𝑇 = 1, 𝑥(0) = 20, 𝑆(0) = 0.2, 𝐼(0) = 2, 𝑦

𝐽
(0) = 2,

𝑦
𝑀
(0) = 2.

Assume that 𝑥(0) = 20, 𝑆(0) = 2, 𝐼(0) = 2, 𝑦
𝐽
(0) = 0.5,

𝑦
𝑀
(0) = 0.5, 𝑟 = 8, 𝐾 = 10, 𝑎 = 0.8, 𝛽 = 0.5, 𝑏 = 0.3, ℎ = 8,

𝑐 = 0.2, 𝜆 = 0.6,𝑚 = 2, 𝑑
𝑆
= 0.2, 𝑑

𝐼
= 0.5, 𝑑

𝐽
= 0.4, 𝑑

𝑀
= 0.2,

𝛿 = 0.4, 𝑃
𝑆
= 𝑃

𝐼
= 𝑃

𝐽
= 𝑃

𝑀
= 0.2, 𝛿

𝐼
= 0.2, 𝛿

𝐽
= 0.3,

𝛿
𝑀
= 0.5, 𝜏 = 0.3, 𝑇 = 0.5. Obviously, the condition of (T1)

is satisfied, then the susceptible pest-eradication periodic
solution of system (68) is locally asymptotically stable, which
can be seen from the numerical simulation in Figures 1 and 2.

Assume that 𝑥(0) = 20, 𝑆(0) = 0.2, 𝐼(0) = 2, 𝑦
𝐽
(0) = 2,

𝑦
𝑀
(0) = 2, 𝑟 = 8, 𝐾 = 10, 𝑎 = 0.8, 𝛽 = 0.5, 𝑏 = 0.3, ℎ = 8,

𝑐 = 0.2, 𝜆 = 0.6,𝑚 = 2, 𝑑
𝑆
= 0.2, 𝑑

𝐼
= 0.5, 𝑑

𝐽
= 0.4, 𝑑

𝑀
= 0.2,

𝛿 = 0.4, 𝑃
𝑆
= 𝑃

𝐼
= 𝑃

𝐽
= 𝑃

𝑀
= 0.2, 𝛿

𝐼
= 0.2, 𝛿

𝐽
= 0.3,

𝛿
𝑀
= 0.5, 𝜏 = 0.3, 𝑇 = 1. Obviously, the condition of (T3) is

satisfied. Then, system (68) is permanent, which can also be
seen from Figures 3 and 4.

From results of the numerical simulation, we know that
there exists an impulsive harvesting(or releasing) periodic

threshold 𝑇∗, which satisfies 0.5 < 𝑇
∗

< 1. If 𝑇 < 𝑇
∗ and

the other parameters are fixed (𝑟 = 8, 𝐾 = 10, 𝑎 = 0.8,
𝛽 = 0.5, 𝑏 = 0.3, ℎ = 8, 𝑐 = 0.2, 𝜆 = 0.6, 𝑚 = 2,
𝑑
𝑆
= 0.2, 𝑑

𝐼
= 0.5, 𝑑

𝐽
= 0.4, 𝑑

𝑀
= 0.2, 𝛿 = 0.4, 𝑃

𝑆
=

𝑃
𝐼
= 𝑃

𝐽
= 𝑃

𝑀
= 0.2, 𝛿

𝐼
= 0.2, 𝛿

𝐽
= 0.3, 𝛿

𝑀
= 0.5, 𝜏 =

0.3, 𝑇 = 0.5.), then the susceptible pest-eradication periodic
solution (𝑥∗

(𝑡), 0, 𝐼
∗

(𝑡), 𝑦
∗

𝐽
(𝑡), 𝑦

∗

𝑀
(𝑡)) of system (68) is locally

asymptotically stable. If 𝑇 > 𝑇
∗ and the other parameters are

fixed (𝑟 = 8, 𝐾 = 10, 𝑎 = 0.8, 𝛽 = 0.5, 𝑏 = 0.3, ℎ = 8, 𝑐 = 0.2,
𝜆 = 0.6, 𝑚 = 2, 𝑑

𝑆
= 0.2, 𝑑

𝐼
= 0.5, 𝑑

𝐽
= 0.4, 𝑑

𝑀
= 0.2,

𝛿 = 0.4, 𝑃
𝑆
= 𝑃

𝐼
= 𝑃

𝐽
= 𝑃

𝑀
= 0.2, 𝛿

𝐼
= 0.2, 𝛿

𝐽
= 0.3,

𝛿
𝑀
= 0.5, 𝜏 = 0.3, 𝑇 = 0.5.), then system (68) is permanent.

The same discussion can be applied to other parameters.
In this paper, we proposed a pestmanagementmodelwith

impulsive releasing (periodic infective pests, immature and
mature natural enemies releasing) and harvesting (periodic
crops harvesting) at two different fixed moments. By means
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Figure 4: Phase portrait of the system (68) with 𝑟 = 8, 𝐾 = 10, 𝑎 = 0.8, 𝛽 = 0.5, 𝑏 = 0.3, ℎ = 8, 𝑐 = 0.2, 𝜆 = 0.6, 𝑚 = 2, 𝑑
𝑆
= 0.2, 𝑑

𝐼
= 0.5,

𝑑
𝐽
= 0.4, 𝑑

𝑀
= 0.2, 𝛿 = 0.4, 𝑃

𝑆
= 𝑃
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𝐽
(0) = 2,

𝑦
𝑀
(0) = 2.

of Floquet theory and multicomparison results for impulsive
differential equations, two sufficient conditions ensuring the
locally and globally asymptotical stability of the susceptible
pest-eradication period solution and permanence of the
system are derived.
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The convertible bonds usually have multiple additional provisions that make their pricing problem more difficult than straight
bonds and options. This paper uses the binary tree method to model the finance market. As the underlying stock prices and the
interest rates are important to the convertible bonds, we describe their dynamic processes by different binary tree. Moreover, we
consider the influence of the credit risks on the convertible bonds that is described by the default rate and the recovery rate; then
the two-factor binary tree model involving the credit risk is established. On the basis of the theoretical analysis, we make numerical
simulation and get the pricing results when the stock prices are CRR model and the interest rates follow the constant volatility and
the time-varying volatility, respectively. This model can be extended to other financial derivative instruments.

1. Introduction

Convertible bonds with the characteristic of bonds and stock
are a complex financial derivative. They provide the right
to holders that they give up the future dividend to obtain
some stock with specified quantity.The pricing of convertible
bonds is more difficult than straight bonds and options;
the main reason is that it not only has value of bonds, but
also involves all kinds of embedded option value brought
by provisions of conversion, call, put, and so on. What is
more, the embedded options in most times are American
options. So, generally speaking, the pricing of convertible
bonds cannot get closed-form solution; in most conditions,
numerical method was adopted, for example, binary tree
method, Monte Carlo method, finite difference method, and
so on. As for Monte Carlo method, firstly it uses different
stochastic differential equations to describe the pricing factor
models in the market for simulation, then it makes pricing
based on the characteristic of convertible bonds, for example,
the boundary conditions acquired by all kinds of provisions,
to make pricing for conversion bonds (Ammann et al. [1],
Guzhva et al. [2], Kimura and Shinohara [3], Yang et al. [4],
and Siddiqi [5]). But because the supposed parameters of

stochastic differential equations are exogenous, this method
not necessarily makes a better fitting for the existing market
conditions. The binary tree method can solve the above
problems.

The binary tree method is firstly put forward by Cox et
al. [6], Cox-Ross-Rubinstein (CRR) binomial option pricing
model. After that, many researchers revised and popularized
it. Cheung and Nelken [7] firstly apply binary tree to convert-
ible bonds pricing and obtain the pricing solution of a two-
factormodel which is based on stock prices and interest rates.
Carayannopoulos and Kalimipalli [8] apply the trigeminal
tree pricingmodel to convertible bonds pricing research with
single factor. Hung andWang [9] also apply binary treemodel
to convertible bonds pricing which embodies default risk and
considers the influences of stock prices and interest rates.
Chambers and Lu [10] further considered the correlation of
stock prices and interest rates and expanded the model of
Hung and Wang. Binary tree model has been widely used
in the pricing of contingent claims such as stock options,
currency options, stock index options, and future options. Xu
[11] proposes a trinomial lattice model to price convertible
bonds and asset swaps with market risk and counterparty
risk.
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Interest rate is a very important factor in the financial
market; all security prices and yields are related to it. The
interest rates model has equilibrium model, no-arbitrage
model, and so on. In the equilibrium model, interest rates
are generally described by some stochastic process, which
is mean-reversion, to make interest rates show the trend of
convergence to a long-term average with the passing of time,
including Vasicek model, Rendleman-Bartter model, and
CIR model. The parameters of these models should be esti-
mated with history data, by selecting parameters purposely,
but generally this fitting is not accurate and even reasonable
fitting formula cannot be found. No-arbitrage models make
initial term structure as model input and construct a binary
tree such as CRR model for interest rate process, so that the
term structure can fit the reality better andmore concise.The
relatively wide application no-arbitrage models include Ho-
leemodel, Hull-Whitemodel, Black-Derman-Toymodel, and
Heath-Jarrow-Mortonmodel. Different from the interest rate
model of Hung and Wang and Chambers and Lu, this paper
uses constant volatility and time-varying volatility binary tree
model to describe short interest rateswhich aremore intuitive
and convenient.

This paper makes pricing research of convertible bonds
with the call and put provisions and uses binary tree method
for the modeling of state variables in the financial market.
As the duration of convertible bonds is relatively longer
than straight bonds, their prices are subject to the impact
of interest rates. Moreover, as one of the corporate bonds,
convertible bonds may have credit risk. So this paper uses
different binary trees to model the process of stock prices and
interest rates, and considering the impact of stock dividends
and credit risk to convertible bonds, it adopts default rate
and recovery rate to describe credit risk and get two-factor
binary tree model involving credit risk; on this basis, with
example simulation to get the convertible bonds, pricing
results under the condition of stock price obey CRR model,
constant volatility interest rate binary tree model, and time-
varying volatility interest rate binary tree model.

2. Market Model

2.1. Interest Rates Binary Tree

2.1.1. Constant Volatility Binary Tree Model. Ritchken [12]
deduces the continuous form of short-term 𝑟(𝑡) in Ho-
Lee model [13] meeting the following stochastic differential
equations:

𝑑𝑟 (𝑡) = 𝜇 (𝑡) 𝑑𝑡 + 𝜎 (𝑡) 𝑑𝑧 (𝑡) , 𝑡 > 0, (1)

where𝜇(𝑡) is the drift,𝜎(𝑡) is the instantaneous volatility, both
can be the function of time 𝑡, and 𝑧(𝑡) is Brownian motion.

Grant and Vora [14] get the discrete form of (1) as follows:

Δ𝑟 (𝑡) = 𝜇 (𝑡) Δ𝑡 + 𝜎 (𝑡) Δ𝑧 (𝑡) , 𝑡 ≥ 0. (2)

Make𝑓(𝑗) to be the forward interest rate in the interval [𝑗, 𝑗+
1]. Then get

𝜇 (0) Δ𝑡 = 𝑓 (1) − 𝑟 (0) +

Δ𝑡

2

𝜎
2

(𝑟 (1)) ,

𝜇 (1) Δ𝑡 = 𝑓 (2) − 𝑓 (1) +

Δ𝑡

2

𝜎
2

(

2

∑

𝑗=1

𝑟 (𝑗)) − Δ𝑡 ⋅ 𝜎
2

(𝑟 (1)) ,

𝜇 (𝑡 − 1) Δ𝑡 = 𝑓 (𝑡) − 𝑓 (𝑡 − 1) +

Δ𝑡

2

𝜎
2

(

𝑡

∑

𝑗=1

𝑟 (𝑗))

− Δ𝑡 ⋅ 𝜎
2

(

𝑡−1

∑

𝑗=1

𝑟 (𝑗)) +

Δ𝑡

2

𝑡−2

∑

𝑛=1

𝜎
2

(

𝑛

∑

𝑗=1

𝑟 (𝑗)) ,

∀𝑡 ≥ 3,

𝑡

∑

𝑛=0

𝜇 (𝑛) Δ𝑡 = 𝑓 (𝑡 + 1) − 𝑟 (0) +

𝑡

∑

𝑛=1

𝛿 (𝑛) , ∀𝑡 ≥ 1,

(3)

where

𝑡

∑

𝑛=0

𝛿 (𝑛) =

Δ𝑡

2

𝜎
2

(

𝑡+1

∑

𝑗=1

𝑟 (𝑗)) −

Δ𝑡

2

𝜎
2

(

𝑡

∑

𝑗=1

𝑟 (𝑗)) ,

∀𝑡 ≥ 1,

𝜎
2

(

𝑡

∑

𝑗=1

𝑟 (𝑗)) = 𝜎
2

(

𝑡

∑

𝑗=1

(𝑡 − 𝑗 + 1) 𝜎
𝑗−1

Δ𝑧
𝑗−1

)

=

𝑡

∑

𝑗=1

(𝑡 − 𝑗 + 1)
2

𝜎
2

𝑗−1
Δ𝑡.

(4)

Suppose that volatility is constant; that is, 𝜎(𝑡) = 𝜎
𝑐
, ∀𝑡 >

0, and then

𝜎
2

(

𝑡

∑

𝑗=1

𝑟 (𝑗)) = 𝜎
2

(

𝑡

∑

𝑗=1

(𝑡 − 𝑗 + 1) 𝜎
𝑐
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= 𝜎
2

𝑐

𝑡

∑

𝑗=1

(𝑡 − 𝑗 + 1)
2

Δ𝑡.

(5)

And get the constant volatility interest rates binary tree as
shown in Figure 1.

2.1.2. Time Varying Volatility Binary Tree Model. Jarrow and
Turnbull [15] supposed that the volatility of short-term is
changeable in different intervals, but is constant in the same
time interval. Let Δ𝑡 = 1, and then the discrete form of
interest rates can meet

𝑟 (𝑡) = 𝑟 (0) +

𝑡−1

∑

𝑗=0

𝜇 (𝑗) + 𝜎 (𝑡 − 1)

𝑡−1

∑

𝑗=0

Δ𝑧 (𝑗) . (6)
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Figure 1: 4-period constant volatility interest rates binary tree.

The variance formula of the sum of short-term interest rate is

𝜎
2

(

𝑡

∑

𝑗=1

𝑟
𝑗
) =

𝑡−1

∑

𝑗=0

(𝑗 + 1) 𝜎
2

𝑗
+

𝑡−2

∑

𝑗=0

𝑡−1

∑

𝑘=𝑗+1

2 (𝑗 + 1) 𝜎
𝑗
𝜎
𝑘
. (7)

And then get time-varying interest rates tree as shown in
Figure 2.

2.2. Stock Price Binary Tree. Suppose that the current
moment is 0 and the expiration date of convertible bonds is
T. According to interval Δ𝑡, we divide the period [0, 𝑇] to 𝐿
subintervals: [𝑡

𝑖
, 𝑡
𝑖+1
], 0 ≤ 𝑖 ≤ 𝐿, 𝑡

0
= 0, 𝑡

𝐿
= 𝑇, 𝑇 = 𝐿Δ𝑡.

In each interval [𝑡
𝑖
, 𝑡
𝑖+1
], there are two possible states in the

market, up or down. The change of every market state is
independent. U means the up state and D means the down
state.

The stock prices will have two states; 𝑝 means the
probability of market up, and then the probability of market
down is 1 − 𝑝. If the current stock price is 𝑆, then the stock
price of later period may have two possibilities: 𝑆

𝑢
, 𝑆
𝑑
, and

𝑆
𝑢
= 𝑆 × 𝑢, 𝑆

𝑑
= 𝑆 × 𝑑; 𝑢, 𝑑 separately mean the magnitude

of up and down. If the initial price of stock is known, then
the stock price tree can be determined by the given model
parameters 𝑝, 𝑢, and 𝑑.

Model parameters 𝑝, 𝑢, and 𝑑 will directly impact the
results of binary tree; the selection of them should follow
no-arbitrage principle. Generally speaking, there are two
selections: CRRmodel [4], equal-probability binomial model
(Roman [16], Hull [17]). This paper adopts CRR model to
describe pricing process of stock.

CRR model selects parameters as follows:

𝑢 = 𝑒
𝜎𝑠
√Δ𝑡

, 𝑑 = 𝑢
−1

= 𝑒
−𝜎𝑠
√Δ𝑡

,

𝑝 =

1

2

[1 +

𝜇
𝑠

𝜎
𝑠

√Δ𝑡] .

(8)

Especially, if the actual financial market is changed to risk
neutral market. Then the expected profit 𝜇

𝑠
of stock will

change to risk-free interest rate 𝑟, but the volatility 𝜎
𝑆
is the

same. The probability of price up in this model is 𝑝 = (𝑒
𝑟Δ𝑡

−

𝑑)/(𝑢−𝑑); among them, 𝑟 is risk-free interest rate. Under this
condition, the pricing result is no arbitrage.

2.3. Credit Risk. Consider convertible bonds with credit
risk. We adopt the method of Jarrow and Turnbull [18] to
model the credit risk of convertible bonds. Suppose that the
probability of default risk in time interval [𝑡

𝑖−1
, 𝑡
𝑖
] is𝜆
𝑖
and the

rate of recovery is 𝜉
𝑖
when default. If there are serials different

deadline risk-free zero-coupon bonds in the financial market
and the prices are {𝑃(1), 𝑃(2), 𝑃(3), . . . , 𝑃(𝑛)}, the serials of
different deadline risk company zero-coupon bonds and the
prices are {𝐷(1), 𝐷(2), 𝐷(3), . . . , 𝐷(𝑛)}. We can get the risk-
free interest term structure and risk interest term structure
from them. If the recovery rate 𝜉

𝑖
is already known, then the

rate of risk 𝜆
𝑖
, in number 𝑖 period of bonds, can be acquired.

The detail analysis process is as follows.
If the risk-free interest rate of one-year period is 𝑟

0
and

risk interest rate is 𝑟∗
1
, then

𝑒
−𝑟
∗

1
= [1 ⋅ (1 − 𝜆

1
) + 𝜉
1
⋅ 𝜆
1
] 𝑒
−𝑟0
, and get 𝜆

1
=

1 − 𝑒
𝑟0−𝑟
∗

1

1 − 𝜉
1

.

(9)

If the risk interest rate of two-year period is 𝑟∗
2
, then

𝑒
−2𝑟
∗

2
= {[1 (1 − 𝜆

2
) + 𝜉
2
𝜆
2
] 𝑒
−𝑟𝑢
𝜋 (1 − 𝜆

1
)

+ [1 (1 − 𝜆
2
) + 𝜉
2
𝜆
2
] 𝑒
−𝑟𝑑

(1 − 𝜋) (1 − 𝜆
1
)

+𝜉
1
𝜆
1
} 𝑒
−𝑟0
.

(10)

When 𝜆
1
, 𝜆
2
can be got by the above formula, with the same

method, we can get the risk interest rate {𝜆
𝑖
, 𝑖 ≥ 1} of each

period.
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𝑟0 + 𝜇0 + 𝜎0

𝑟0 + 𝜇0 − 𝜎0

𝑟0 +

1

∑

𝑗=0

𝜇𝑗 + 2𝜎1

𝑟0 +

1

∑

𝑗=0

𝜇𝑗

𝑟0 +

1

∑

𝑗=0

𝜇𝑗 − 2𝜎1

𝑟0 +

2

∑

𝑗=0

𝜇𝑗 + 3𝜎2

𝑟0 +

2

∑

𝑗=0

𝜇𝑗 + 𝜎2

𝑟0 +

2

∑

𝑗=0

𝜇𝑗 − 𝜎2

𝑟0 +

2

∑

𝑗=0

𝜇𝑗 − 3𝜎2

𝑟0

𝜋

1 − 𝜋

𝜋

1 − 𝜋

𝜋

1 − 𝜋

𝜋

1 − 𝜋

𝜋

1 − 𝜋

𝜋

1 − 𝜋

Figure 2: 4-period time-varying interest rate tree.

3. Stock and Interest Rate Binary Tree Model
with Credit Risk

For convertible bonds with credit risk, suppose that the
underlying stock price and risk-free interest rate process are
random, and the underlying stock price process is described
by CRR model, where the stock magnitude of up and down
is 𝑢 = 𝑒

𝜎𝑆
√Δ𝑡, 𝑑 = 𝑒

−𝜎𝑆
√Δ𝑡 respectively. Suppose that the stock

price is 0 when default, and then the possible price of stock is
0, 𝑆
𝑢
, 𝑆
𝑑
.

In risk-neutral world, the expected yield rate is risk-free
interest rate 𝑟, and the stock continuous dividends yield is 𝑞,
then the expected yield rate is 𝑟−𝑞; so tomeet the no-arbitrage
condition, there is

𝑆𝑒
(𝑟−𝑞)Δ𝑡

= 𝑝 (1 − 𝜆) 𝑆𝑢 + (1 − 𝑝) (1 − 𝜆) 𝑆𝑑 + 0 ⋅ 𝜆. (11)

Then get 𝑝 = (𝑒
(𝑟−𝑞)Δ𝑡

/((1 − 𝜆) − 𝑑))/(𝑢 − 𝑑). 𝑝 is the up
probability of stock with credit risk. As the risk-free interest
rate of all periods is random, suppose that the risk-free
interest rate of number 𝑖 period is 𝑟

𝑖
, the volatility of stock

is constant 𝜎
𝑆
, and dividends rate is 𝑞

𝑖
, so the parameters of

stock price in all periods can be generally presented as

𝑢
𝑖
= 𝑒
𝜎𝑆
√Δ𝑡

, 𝑑
𝑖
= 𝑒
−𝜎𝑆
√Δ𝑡

,

𝑝
𝑖
=

𝑒
(𝑟𝑖−𝑞𝑖)Δ𝑡

/ (1 − 𝜆
𝑖
) − 𝑑

𝑢 − 𝑑

.

(12)

Suppose risk-free interest rates are stochastic and described
by binary tree model, then the stock tree and interest rate
tree involving credit risk are combined as shown in Figure 3.
In this paper, we suppose that the correlation coefficient of
interest rate and stock price is 0.

After obtaining the process of stock prices and risk-free
interest rates, the value of convertible bonds can be got by
backward induction.Wedivide the value of convertible bonds
into two parts; one is the value of equity got by converting to
stock or exercise embedded options; the other is bonds value

𝜉1

𝜆1

𝑟, 𝑆

𝑟𝑢, 𝑆𝑢

𝑟𝑑, 𝑆𝑢

𝑟𝑢, 𝑆𝑑

𝑟𝑑, 𝑆𝑑

𝜋𝑝1(1 − 𝜆1)

(1 − 𝜋)𝑝1(1 − 𝜆1)

(1 − 𝜋)(1 − 𝑝1)(1 − 𝜆1)

𝜋(1 − 𝑝1)(1 − 𝜆1)

Figure 3: 4-period two-factor binary tree with credit risk added.

that is the present value of bonds when repaying capital and
interest and the present value of the residual value.

Suppose that the default probability of convertible bonds
in the interval [𝑡

𝑘−1
, 𝑡
𝑘
] is 𝜆
𝑘
, recovery value is 𝜉

𝑘
, and then

the holding value at 𝑡
𝑘
time is 𝐸𝑉

𝑘
, given by

𝐸𝑉
𝑘
= (the expected equity value at 𝑡

𝑘+1
-time

+ the expected bonds value at

𝑡
𝑘+1

-time) ⋅ 𝑒−𝑟𝑘 ⋅Δ𝑡.

(13)

So the value of convertible value at time-𝑡
𝑘
is

𝑉
𝑘
= max [min (the holding value at

𝑡
𝑘
-time, call value) ,

conversion value, put value]

= max [min (𝐸𝑉
𝑘
, 𝑉

call
𝑘

) , 𝑉
con
𝑘

, 𝑉
put
𝑘

] .

(14)
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4. Numerical Examples

We take a four-period binary tree model as an example
to expound the convertible bonds pricing process with call
provision and put provision in the abovemodels and compare
the results under the constant volatility interest rate model
and the time-varying volatility interest rate model.

4.1. Process of Interest Rate and Stock. The initial parameters
of the convertible bond are all the same to the constant
volatility interest rate model and the time-varying volatility
interest rate model. Suppose that time interval Δ𝑡 = 1, the
up probability of interest rates is 𝜋 = 1/2, and the 1–4-
year period yields of risk-free zero-coupon bonds are 6.145%,
6.366%, 6.837%, and 6.953%, respectively; the volatility of
short-term interest rates is 2.5%. So the other binary tree
parameters of constant volatility interest rate can be got as
shown in Table 1. In the same way, the other binary tree
parameters of time-varying volatility interest rate can be got
as shown in Table 2. Then we get the two interest rate binary
trees.

The process of underlying stock prices uses CRR model
to describe.The selected parameters 8 are as follows: 𝑆

0
= 25,

𝜎
𝑆
= 0.185, Δ𝑡 = 1, 𝑇 = 4, and 𝑞 = 0.04. So all the parameters

under constant volatility interest rate are

𝑢 = 1.2032, 𝑑 = 0.8311,

𝑝
𝑟0
= 0.5887, 𝑝

𝑟(1)𝑢
= 0.6841,

𝑝
𝑟(1)𝑑

= 0.5923, 𝑝
𝑟(2)𝑢𝑢

= 0.7517,

𝑝
𝑟(2)𝑢𝑑

= 0.6577, 𝑝
𝑟(2)𝑑𝑑

= 0.5667,

𝑝
𝑟(3)𝑢𝑢𝑢

= 0.9162, 𝑝
𝑟(3)𝑢𝑢𝑑

= 0.8170,

𝑝
𝑟(3)𝑢𝑑𝑑

= 0.7209, 𝑝
𝑟(3)𝑑𝑑𝑑

= 0.6279.

(15)

In the sameway, the parameters under time-varying volatility
interest rate model are

𝑢 = 1.2032, 𝑑 = 0.8311,

𝑝
𝑟0
= 0.5887, 𝑝

𝑟(1)𝑢
= 0.6826,

𝑝
𝑟(1)𝑑

= 0.5908, 𝑝
𝑟(2)𝑢𝑢

= 0.7475,

𝑝
𝑟(2)𝑢𝑑

= 0.6594, 𝑝
𝑟(2)𝑑𝑑

= 0.5739,

𝑝
𝑟(3)𝑢𝑢𝑢

= 0.8764, 𝑝
𝑟(3)𝑢𝑢𝑑

= 0.8027,

𝑝
𝑟(3)𝑢𝑑𝑑

= 0.7307, 𝑝
𝑟(3)𝑑𝑑𝑑

= 0.6604.

(16)

Then we get the four-period stock prices binary tree.

4.2. Default Rates. We take the corporate bonds as refer-
ence risk bonds; suppose that the 1–4-year period yields of
corporate zero-coupon bonds are 7.645%, 8.155%, 8.557%,
and 9.128%, respectively, and the recovery rate of convertible
bonds is constant 𝜉 = 45%, and one-year risk-free interest
rate 𝑟
0
= 6.145%.

Interest rate binary tree indicates that the branch point of
number 𝑛 period is 𝑛. If the interest rate of number 𝑖 branch
point in number 𝑛 period is 𝑟(𝑛 − 1)

𝜔
, 𝜔 is the interest rates

state from start to current, and then the derived interest rate
branch point of number 𝑛 + 1 period is 𝑟(𝑛)

𝜔𝑢
, 𝑟(𝑛)
𝜔𝑑
. As 𝜋 =

1/2 = 1 − 𝜋, to meet the no-arbitrage principle, parameters
{𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
}meet the following four equations:

𝑒
−𝑟
∗

1
+𝑟0

= (1 − 𝜆
1
) + 𝜉 ⋅ 𝜆

1
,

𝑒
−2𝑟
∗

2
+𝑟0

= 𝜋 (1 − 𝜆
1
) (1 − 𝜆

2
+ 𝜉𝜆
2
)

× (𝑒
−𝑟(1)𝑢

+ 𝑒
−𝑟(1)𝑑

) + 𝜉𝜆
1
,

𝑒
−3𝑟
∗

3
+𝑟0

= 𝜋
2

(1 − 𝜆
1
) (1 − 𝜆

2
) (1 − 𝜆

3
+ 𝜉𝜆
3
)

× [𝑒
−𝑟(1)𝑢

(𝑒
−𝑟(2)𝑢𝑢

+ 𝑒
−𝑟(2)𝑢𝑑

)

+𝑒
−𝑟(1)𝑑

⋅ (𝑒
−𝑟(2)𝑢𝑑

+ 𝑒
−𝑟(2)𝑑𝑑

)]

+ 𝜋 (1 − 𝜆
1
) 𝜉𝜆
2
(𝑒
−𝑟(1)𝑢

+ 𝑒
−𝑟(1)𝑑

) + 𝜉𝜆
1
,

𝑒
−4𝑟
∗

4
+𝑟0

= 𝜋
3

(1 − 𝜆
1
) (1 − 𝜆

2
) (1 − 𝜆

3
) (1 − 𝜆

4
+ 𝜉𝜆
4
)

× {𝑒
−𝑟(1)𝑢

[𝑒
−𝑟(2)𝑢𝑢

(𝑒
−𝑟(3)𝑢𝑢𝑢

+ 𝑒
−𝑟(3)𝑢𝑢𝑑

)

+𝑒
−𝑟(2)𝑢𝑑

(𝑒
−𝑟(3)𝑢𝑢𝑑

+ 𝑒
−𝑟(3)𝑢𝑑𝑑

)]

+ 𝑒
−𝑟(1)𝑑

[𝑒
−𝑟(2)𝑢𝑑

(𝑒
−𝑟(3)𝑢𝑢𝑑

+ 𝑒
−𝑟(3)𝑢𝑑𝑑

)

+𝑒
−𝑟(2)𝑑𝑑

(𝑒
−𝑟(3)𝑢𝑑𝑑

+ 𝑒
−𝑟(3)𝑑𝑑𝑑

)]}

+ 𝜋
2

(1 − 𝜆
1
) (1 − 𝜆

2
) 𝜉𝜆
3

× [𝑒
−𝑟(1)𝑢

(𝑒
−𝑟(2)𝑢𝑢

+ 𝑒
−𝑟(2)𝑢𝑑

)

+𝑒
−𝑟(1)𝑑

(𝑒
−𝑟(2)𝑢𝑑

+ 𝑒
−𝑟(2)𝑑𝑑

)]

+ 𝜋 (1 − 𝜆
1
) 𝜉𝜆
2
⋅ (𝑒
−𝑟(1)𝑢

+ 𝑒
−𝑟(1)𝑑

) + 𝜉𝜆
1
.

(17)

By the above equations and the constant volatility interest
rate binary tree, the default rates of bonds in every period are
shown in Table 3.

Similarly, the default rates of corporate bonds in every
period under time-varying volatility interest rate binary tree
are shown in Table 4.

4.3. Price Process of Convertible Bonds. The convertible bond
contains call and put provisions, the duration is 𝑇 = 4, the
face value got in maturity date is 100, conversion rate is 3,
callable price is 𝑉call = 106, and puttable price is 𝑉put = 80.
We suppose that the investors can exercise the puttable right
after one year.

Now we take the convertible bond under time-varying
volatility interest rate binary tree to explain its pricing
process. Take four points A, B, C, and D in pricing tree of
Figure 4 into consideration; among them, C, D are at the
end of period, 4, B are at the end of period 3, and A is at
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Table 1: Constant volatility interest rate parameters.

Deadline
year(s)
𝑡

Price of
bonds (yuan)

𝑃(𝑡)

Volatility of
short-term

interest rate (%)
𝜎(𝑡)

Annual
profit rate of
bonds (%)

𝑦(𝑡)

1-year
long-term
interest rate

(%)
𝑓(𝑡)

Variance
𝜎
2

(∑
𝑡

𝑗=1
𝑟(𝑗))

Sum of
Delta (%)
∑
𝑡−1

𝑗=1
𝛿(𝑗)

Delta
(%)
𝛿(𝑡)

Drift item
(%)
𝜇(𝑡)

Sum of drift
items (%)
∑
𝑡−1

𝑗=0
𝜇(𝑗)

Expectation
(%)

𝐸
𝑄

0
[𝑟(𝑡)]

0 1.6 6.145 0.0128 0.0128 0.4548 0.4548 6.145
1 0.9404 6.145 6.587 0.000256 0.0512 0.0384 1.2304 1.6852 6.5998
2 0.8805 6.366 7.779 0.00128 0.1152 0.064 −0.414 1.2712 7.8302
3 0.8146 6.837 7.301 0.003584 0.2048 0.0896 7.4162
4 0.7572 6.953 0.00768

Table 2: Time-varying volatility interest rate parameters.

Deadline
year(s)
𝑡

Price of
bonds (yuan)

𝑃(𝑡)

Volatility of
short-term

interest rate (%)
𝜎(𝑡)

Annual
profit rate of
bonds (%)

𝑦(𝑡)

1-year
long-term
interest rate
(%) 𝑓(𝑡)

Variance
𝜎
2

(∑
𝑡

𝑗=1
𝑟(𝑗))

Sum of
Delta (%)
∑
𝑡−1

𝑗=1
𝛿(𝑗)

Delta
(%)
𝛿(𝑡)

Drift item
(%)
𝜇(𝑡)

Sum of drift
items (%)
∑
𝑡−1

𝑗=0
𝜇(𝑗)

Expectation
(%)

𝐸
𝑄

0
[𝑟(𝑡)]

0 1.6 6.145 0.0128 0.0128 0.4548 0.4548 6.145
1 0.9404 1.5 6.145 6.587 0.000256 0.0465 0.0337 1.2257 1.6805 6.5998
2 0.8805 1.2 6.366 7.779 0.001186 0.0768 0.0303 −0.4477 1.2328 7.8255
3 0.8146 1.3 6.837 7.301 0.002722 0.1404 0.0636 7.3778
4 0.7572 6.953 0.00553

Table 3: Default rate of corporate bonds under constant volatility
interest rate model.

Time period 0-1 (𝜆
1
) 1-2 (𝜆

2
) 2-3 (𝜆

3
) 3-4 (𝜆

4
)

Default rate 0.0271 0.0394 0.0342 0.0737

Table 4: Default rate of corporate bonds under time-varying
volatility interest rate model.

Time period 0-1 (𝜆
1
) 1-2 (𝜆

2
) 2-3 (𝜆

3
) 3-4 (𝜆

4
)

Default rate 0.0271 0.0389 0.0348 0.0734

the end of period 2. At point C, as the convertible value
is 108.57 that is larger than the face value 100, the value of
convertible bond is 108.57, while the bonds value is 0, so
write it as [108.57, 0]; the first numbermeans the equity value
and the second number means the bonds value. In the same
way, we can get the convertible value of D point that can
be written as [0, 100]. And the up probability of B point is
𝑝
𝑟(3)𝑢𝑢𝑑

(1−𝜆
4
) = 0.8027× (1−0.0734) = 0.7438. At the same

way, the down probability is 0.1828.Then the equity value of B
point is 108.57 × 0.7438 × 𝑒

−0.08578

= 74.12. The bonds value
of B point is (45 × 0.0734 + 100 × 0.1828)𝑒

−0.08578

= 19.81.
Then the holding value 𝐸𝑉

𝐵
is 93.93. And the convertible

value at B point is 90.24, so the value of convertible bonds
in B point is

𝑉
𝐵
= max [min (𝐸𝑉

𝐵
, 𝑉call) , 𝑉

con
𝐵

, 𝑉put]

= max [min (93.93, 108) , 90.24, 80] = 93.93,

(18)

written as [74.12, 19.81].

In the same way, we can calculate the value of other three
branch points E, F, and G at the end of period 3 that are
[125.51, 2.96], [125.51, 3.03], and [79.00, 13.22]. So the equity
value at A point is

(125.51 × 0.3607 + 125.51 × 0.3607 + 79.00

× 0.1219 + 74.12 × 0.1219) × 𝑒
−0.10826

= 98.00.

(19)

The bonds value at A point is

(45 × 0.0348 + 2.96 × 0.3607 + 3.03 × 0.3607

+13.22 × 0.1219 + 19.81 × 0.1219) 𝑒
−0.10826

= 6.96.

(20)

Then the holding value 𝐸𝑉
𝐴
is 104.96. And the convertible

value at A point is 108.57, so the value of convertible bonds in
A point is

𝑉
𝐴
= max [min (𝐸𝑉

𝐴
, 𝑉call) , 𝑉

con
𝐴

, 𝑉put]

= max [min (104.96, 108) , 108.57, 80] = 108.57,

(21)

written as [108.57, 0]. The other branch point in the pricing
binary tree of convertible bonds can be got in the same way.

At last, under time-varying volatility interest rate binary
tree model, we can get the price of convertible bond which
contains credit risk that is 79.32 at the time of 𝑡 = 0. Similarly,
under constant volatility interest rate binary tree model, we
can get the price of convertible bond which contains credit
risk that is 78.52 at the time of 𝑡=0; this is less than the former.
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𝜉𝐹 = 45

𝜉𝐹 = 45

𝜉𝐹 = 45

𝜉𝐹 = 45

𝜉𝐹 = 45

𝜆4

𝜆4

𝜆4

𝜆4

𝜆3

𝑝𝑟(3)𝑢𝑢𝑢
(1 − 𝜆4)

𝑝𝑟(3)𝑢𝑢𝑑
(1 − 𝜆4)

𝑝𝑟(3)𝑢𝑢𝑢
(1 − 𝜆4)

𝑝𝑟(3)𝑢𝑢𝑑
(1 − 𝜆4)

𝑆(4)𝑢𝑢𝑢𝑢 = 52.39

𝑆(4)𝑢𝑢𝑢𝑢 = 52.39

𝑆(4)𝑢𝑢𝑢𝑑 = 36.19

𝑆(4)𝑢𝑢𝑢𝑑 = 36.19

𝑆(4)𝑢𝑢𝑑𝑑 = 25

𝑆(4)𝑢𝑢𝑑𝑑 = 25

𝑆(4)𝑢𝑢𝑢𝑑 = 36.19

𝑆(4)𝑢𝑢𝑢𝑑 = 36.19

A

B
C

D

E

F

G

𝑟(3)𝑢𝑢𝑢 = 0.10978

𝑆(3)𝑢𝑢𝑢 = 43.54

𝑟(3)𝑢𝑢𝑑 = 0.08578

𝑆(3)𝑢𝑢𝑢 = 43.54

𝑟(2)𝑢𝑢 = 0.10826

𝑆(2)𝑢𝑢 = 36.19

𝑟(3)𝑢𝑢𝑢 = 0.10978

𝑆(3)𝑢𝑢𝑑 = 30.08

𝑟(3)𝑢𝑢𝑑 = 0.08578

𝑆(3)𝑢𝑢𝑑 = 30.08

(1 − 𝑝𝑟(3)𝑢𝑢𝑢
)(1 − 𝜆4)

(1 − 𝑝𝑟(3)𝑢𝑢𝑑
)(1 − 𝜆4)

(1 − 𝑝𝑟(3)𝑢𝑢𝑢
)(1 − 𝜆4)

(1 − 𝑝𝑟(3)𝑢𝑢𝑑
)(1 − 𝜆4)

Figure 4: Constructing pricing tree under time-varying volatility interest rate model.

5. Conclusions

Binary tree method is a classical pricing method, by con-
structing the binary tree of state variable to describe the
possible paths of state variable in the duration of contingent
claims and then tomake pricing research. Binary treemethod
can effectively solve the path-dependent options pricing,
intuitive and easy to operate. As the embedded options
in the convertible bonds are all American options, binary
tree method becomes one of the main pricing methods of
convertible bonds. Interest rate is the main factor which
impacts the price of convertible bonds; the description of
its binary tree model is the main problem of convertible
bonds pricing.This paper adopts constant volatility and time-
varying volatility binary tree model to describe interest rates
and further consider the impact of stock dividends and credit
risk to the price of convertible bonds, adopt default rate and
recovery rate to describe the credit risk, and get the two-
factor binary treemodel with credit risk added. Based on this,
we make a numerical example and get the convertible bonds
pricing result under the stock prices obeying CRRmodel and
the constant and time-varying volatility interest rate binary
tree model. The model can be popularized to the pricing of
convertible bonds with more complex provisions and other
financial derivatives such as bond options, catastrophe bonds,
and mortgage-backed security.
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We consider the periodic discrete nonlinear Schrödinger equations with the temporal frequency belonging to a spectral gap. By
using the generalized Nehari manifold approach developed by Szulkin and Weth, we prove the existence of ground state solutions
of the equations. We obtain infinitely many geometrically distinct solutions of the equations when specially the nonlinearity is odd.
The classical Ambrosetti-Rabinowitz superlinear condition is improved.

1. Introduction

The following discrete nonlinear Schrödinger equation
(DLNS):

𝑖 ̇𝜓
𝑛

= −Δ𝜓
𝑛

+ 𝜀
𝑛
𝜓

𝑛
− 𝜎𝜒

𝑛
𝑓
𝑛

(𝜓
𝑛
) , 𝑛 ∈ Z, (1)

where 𝜎 = ±1 and

Δ𝜓
𝑛

= 𝜓
𝑛+1

+ 𝜓
𝑛−1

− 2𝜓
𝑛

(2)

is the discrete Laplacian operator, appears in many physical
problems, like polarons, energy transfer in biological materi-
als, nonlinear optics, and so forth (see [1]). The parameter 𝜎

characterizes the focusing properties of the equation: if 𝜎 = 1,
the equation is self-focusing, while 𝜎 = −1 corresponds to the
defocusing equation. The given sequences {𝜀

𝑛
} and {𝜒

𝑛
} are

assumed to be 𝑇-periodic in 𝑛, that is, 𝜀
𝑛+𝑇

= 𝜀
𝑛
and 𝜒

𝑛+𝑇
=

𝜒
𝑛
. Moreover, {𝜒

𝑛
} is a positive sequence. Here, 𝑇 is a positive

integer. We assume that 𝑓
𝑛
(0) = 0 and the nonlinearity 𝑓

𝑛
(𝑢)

is gauge invariant, that is,

𝑓
𝑛

(𝑒
𝑖𝜃

𝑢) = 𝑒
𝑖𝜃

𝑓
𝑛

(𝑢) , 𝜃 ∈ R. (3)

We are interested in the existence of solitons of (1), that
is, solutions which are spatially localized time-periodic and
decay to zero at infinity. Thus, 𝜓

𝑛
has the form

𝜓
𝑛

= 𝑢
𝑛
𝑒
−𝑖𝜔𝑡

,

lim
|𝑛|→∞

𝜓
𝑛

= 0,

(4)

where {𝑢
𝑛
} is a real-valued sequence and 𝜔 ∈ R is the

temporal frequency. Then, (1) becomes

−Δ𝑢
𝑛

+ 𝜀
𝑛
𝑢
𝑛

− 𝜔𝑢
𝑛

= 𝜎𝜒
𝑛
𝑓
𝑛

(𝑢
𝑛
) , 𝑛 ∈ Z, (5)

lim
|𝑛|→∞

𝑢
𝑛

= 0 (6)

holds. Naturally, if we look for solitons of (1), we just need to
get the solutions of (5) satisfying (6).

Actually, we consider a more general equation:

𝐿𝑢
𝑛

− 𝜔𝑢
𝑛

= 𝜎𝜒
𝑛
𝑓
𝑛

(𝑢
𝑛
) , 𝑛 ∈ Z, (7)

with the same boundary condition (6). Here, 𝐿 is a second-
order difference operator

𝐿𝑢
𝑛

= 𝑎
𝑛
𝑢
𝑛+1

+ 𝑎
𝑛−1

𝑢
𝑛−1

+ 𝑏
𝑛
𝑢
𝑛
, (8)
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where {𝑎
𝑛
} and {𝑏

𝑛
} are real-valued 𝑇-periodic sequences.

When 𝑎
𝑛

≡ −1 and 𝑏
𝑛

= 2 + 𝜀
𝑛
, we obtain (5).

We consider (7) as a nonlinear equation in the space 𝑙
2

of two-sided infinite sequences. Note that every element of 𝑙
2

automatically satisfies (6).
As it is well known, the operator 𝐿 is a bounded and self-

adjoint operator in 𝑙
2.The spectrum 𝜎(𝐿) is a union of a finite

number of closed intervals, and the complement R \ 𝜎(𝐿)

consists of a finite number of open intervals called spectral
gaps. Two of them are semi-infinite (see [2]). If 𝑇 = 1, then
finite gaps do not exist. However, in general, finite gaps exist,
and the most interesting case in (7) is when the frequency 𝜔

belongs to a finite spectral gap. Let us fix any spectral gap and
denote it by (𝛼, 𝛽).

DNLS equation is one of the most important inherently
discrete models. DNLS equation plays a crucial role in the
modeling of a great variety of phenomena, ranging from solid
state and condensed matter physics to biology (see [1, 3–6]
and references therein). In the past decade, solitons of the
periodic DNLS have become a hot topic. The existence of
solitons for the periodic DNLS equations with superlinear
nonlinearity [7–10] and with saturable nonlinearity [11–13]
has been studied, respectively. If 𝜔 is below or above the
spectrum of the difference operator −Δ + 𝜀

𝑛
, solitons were

shown by using the Nehari manifold approach and a discrete
version of the concentration compactness principle in [14].
If 𝜔 is a lower edge of a finite spectral gap, the existence
of solitons was obtained by using variant generalized weak
linking theorem in [10]. If 𝜔 lies in a finite spectral gap, the
existence of solitons was proved by using periodic approxi-
mations in combination with the linking theorem in [8] and
the generalizedNeharimanifold approach in [9], respectively.
The results were extended by Chen and Ma in [7]. In this
paper, we employ the generalized Nehari manifold approach
instead of periodic approximation technique to obtain the
existence of a kind of special solitons of (7), which called
ground state solutions, that is, nontrivial solutions with least
possible energy in 𝑙

2. We should emphasize that the results
are obtained under more general super nonlinearity than
the classical Ambrosetti-Rabinowitz superlinear condition
[8, 9, 15].

This paper is organized as follows. In Section 2, we first
establish the variational framework associated with (7) and
transfer the problem on the existence of solutions in 𝑙

2

of (7) into that on the existence of critical points of the
corresponding functional. We then present the main results
of this paper and compare them with existing ones. Section 3
is devoted to the proofs of the main results.

2. Preliminaries and Main Results

The following are the basic hypotheses to establish the main
results of this paper:

(𝑉
1
) 𝜔 ∈ (𝛼, 𝛽),

(𝑓
1
) 𝑓

𝑛
∈ 𝐶(R,R) and 𝑓

𝑛+𝑇
(𝑢) = 𝑓

𝑛
(𝑢), and there exist

𝑎 > 0 and 𝑝 ∈ (2, ∞) such that




𝑓
𝑛

(𝑢)





≤ 𝑎 (1 + |𝑢|
𝑝−1

) ∀𝑛 ∈ Z, 𝑢 ∈ R, (9)

(𝑓
2
) 𝑓

𝑛
(𝑢) = 𝑜(|𝑢|) as 𝑢 → 0,

(𝑓
3
) lim

|𝑢|→∞
𝐹
𝑛
(𝑢)/𝑢

2

= ∞, where 𝐹
𝑛
(𝑢) is the primitive

function of 𝑓
𝑛
(𝑢), that is,

𝐹
𝑛

(𝑢) = ∫

𝑢

0

𝑓
𝑛

(𝑠) 𝑑𝑠, (10)

(𝑓
4
) 𝑢 → 𝑓

𝑛
(𝑢)/|𝑢| is strictly increasing on (−∞, 0) and

(0, ∞).

To state our results, we introduce some notations. Let

𝐴 = 𝐿 − 𝜔, 𝐸 = 𝑙
2

(Z) . (11)

Consider the functional 𝐽 defined on 𝐸 by

𝐽 (𝑢) =

1

2

(𝐴𝑢, 𝑢)
𝐸

− 𝜎∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛
) , (12)

where (⋅, ⋅)
𝐸
is the inner product in 𝐸 and ‖ ⋅ ‖

𝐸
is the

corresponding norm in𝐸.Thehypotheses on𝑓
𝑛
(𝑢) imply that

the functional 𝐽 ∈ 𝐶
1

(𝐸,R) and (7) is easily recognized as the
corresponding Euler-Lagrange equation for 𝐽. Thus, to find
nontrivial solutions of (7), we need only to look for nonzero
critical points of 𝐽 in 𝐸.

For the derivative of 𝐽, we have the following formula:

(𝐽


(𝑢) , V) = (𝐴𝑢, V)
𝐸

− 𝜎 ∑

𝑛∈Z

𝜒
𝑛
𝑓
𝑛

(𝑢
𝑛
) V

𝑛
, ∀V ∈ 𝐸. (13)

By (𝑉
1
), we have 𝜎(𝐴) ⊂ R\(𝛼−𝜔, 𝛽−𝜔). So,𝐸 = 𝐸

+

⊕𝐸
−

corresponds to the spectral decomposition of 𝐴 with respect
to the positive and negative parts of the spectrum, and

(𝐴𝑢, 𝑢)
𝐸

≥ (𝛽 − 𝜔) ‖𝑢‖
2

𝐸
, 𝑢 ∈ 𝐸

+

,

(𝐴𝑢, 𝑢)
𝐸

≤ (𝛼 − 𝜔) ‖𝑢‖
2

𝐸
, 𝑢 ∈ 𝐸

−

.

(14)

For any 𝑢, V ∈ 𝐸, letting 𝑢 = 𝑢
+

+ 𝑢
− with 𝑢

±

∈ 𝐸
± and

V = V+ + V− with V± ∈ 𝐸
±, we can define an equivalent inner

product (⋅, ⋅) and the corresponding norm ‖ ⋅ ‖ on 𝐸 by

(𝑢, V) = (𝐴𝑢
+

, V
+

)
𝐸

− (𝐴𝑢
−

, V
−

)
𝐸
, ‖𝑢‖ = (𝑢, 𝑢)

1/2

, (15)

respectively. So, 𝐽 can be rewritten as

𝐽 (𝑢) =

1

2





𝑢
+




2

−

1

2





𝑢
−




2

− 𝜎∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛
) . (16)

We define for 𝑢 ∈ 𝐸 \ 𝐸
−, the subspace

𝐸 (𝑢) := R𝑢 + 𝐸
−

= R𝑢
+

⊕ 𝐸
−

, (17)

and the convex subset

𝐸 (𝑢) := R
+

𝑢 + 𝐸
−

= R
+

𝑢
+

⊕ 𝐸
−

, (18)

of 𝐸, where, as usual, R+

= [0, ∞). Let

M = {𝑢 ∈ 𝐸 \ 𝐸
−

: 𝐽


(𝑢) 𝑢 = 0, 𝐽


(𝑢) V = 0 ∀V ∈ 𝐸
−

} ,

(19)

𝑐 = inf
𝑢∈M

𝐽 (𝑢) . (20)
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In this paper, we also consider themultiplicity of solutions
of (7).

For each ℓ ∈ Z, let

ℓ ∗ 𝑢 = (𝑢
𝑛+ℓ𝑇

)
𝑛∈Z

, ∀𝑢 = (𝑢
𝑛
)
𝑛∈Z

, (21)

which defines a Z-action on 𝐸. By the periodicity of the
coefficients, we know that both 𝐽 and 𝐽

 are Z-invariants.
Therefore, if𝑢 ∈ 𝐸 is a critical point of 𝐽, so is ℓ∗𝑢. Two critical
points 𝑢

1
, 𝑢

2
∈ 𝐸 of 𝐽 are said to be geometrically distinct if

𝑢
1

̸= ℓ ∗ 𝑢
2
for all ℓ ∈ Z.

Now, we are ready to state the main results.

Theorem 1. Suppose that conditions (𝑉
1
), (𝑓

1
)–(𝑓

4
) are satis-

fied. Then, one has the following conclusions.
(1) If either 𝜎 = 1 and 𝛽 ̸= ∞ or 𝜎 = −1 and 𝛼 ̸= −∞, then

(7) has at least a nontrivial ground state solution.
(2) If either 𝜎 = 1 and 𝛽 = ∞ or 𝜎 = −1 and 𝛼 = −∞,

then (7) has no nontrivial solution.

Theorem 2. Suppose that conditions (𝑉
1
), (𝑓

1
)–(𝑓

4
) are satis-

fied and 𝑓
𝑛
is odd in 𝑢. If either 𝜎 = 1 and 𝛽 ̸= ∞ or 𝜎 = −1

and𝛼 ̸= −∞, then (7) has infinitelymany pairs of geometrically
distinct solutions.

In what follows, we always assume that 𝜎 = 1. The other
case can be reduced to 𝜎 = 1 by switching 𝐿 to −𝐿 and 𝜔 to
−𝜔.

Remark 3. In [8], the author considered (7) with 𝑓
𝑛
defined

by

𝑓
𝑛

(𝑢) = |𝑢|
2

𝑢, (22)

which obviously satisfies (𝑓
1
)–(𝑓

4
); the author also discussed

the case where 𝑓 satisfies the Ambrosetti-Rabinowitz condi-
tion; that is, there exists 𝜇 > 2 such that

0 < 𝜇𝐹
𝑛

(𝑢) ≤ 𝑓
𝑛

(𝑢) 𝑢, 𝑢 ̸= 0. (23)

Clearly, (23) implies that 𝐹
𝑛
(𝑢) ≥ 𝑐|𝑢|

𝜇

> 0 for |𝑢| ≥ 1. So, it
is a stronger condition than (𝑓

3
).

Remark 4. In [9], the author assumed that 𝑓
𝑛
satisfies the

following condition: there exists 𝜃 ∈ (0, 1) such that

0 < 𝑢
−1

𝑓
𝑛

(𝑢) ≤ 𝜃𝑓


𝑛
(𝑢) , 𝑢 ̸= 0. (24)

Obviously, (24) implies (23) with 𝜇 = 1 + (1/𝜃), so it is
a stronger condition than the Ambrosetti-Rabinowitz con-
dition. In our paper, the nonlinearities satisfy more general
superlinear assumptions instead of (24) which also implies
(𝑓

4
). However, we do not assume that 𝑓

𝑛
is differentiable and

satisfies (24),M is not a𝐶
1 manifold of𝐸, and theminimizers

onMmaynot be critical points of 𝐽. Hence, themethod of [9]
does not apply anymore. Nevertheless,M is still a topological
manifold, naturally homeomorphic to the unit sphere in 𝐸

+

(see in detail in Section 3). We use the generalized Nehari
manifold approach developed by Szulkin and Weth which is
based on reducing the strongly indefinite variational problem
to a definite one and prove that the minimizers of 𝐽 onM are
indeed critical points of 𝐽.

Remark 5. In [7], it is shown that (7) has at least a nontrivial
solution 𝑢 ∈ 𝑙

2 if 𝑓 satisfies (𝑉
1
), (𝑓

2
), (𝑓

3
), and the following

conditions:

(𝐵
1
) 𝐹

𝑛
(𝑢) ≥ 0 for any 𝑢 ∈ R and 𝐻

𝑛
(𝑢) := (1/2)𝑓

𝑛
(𝑢)𝑢 −

𝐹
𝑛
(𝑢) > 0 if 𝑢 ̸= 0,

(𝐵
2
) 𝐻

𝑛
(𝑢) → ∞ as |𝑢| → ∞, and there exist 𝑟

0
> 0 and

𝛾 > 1 such that |𝑓
𝑛
(𝑢)|

𝛾

/|𝑢|
𝛾

≤ 𝑐
0
𝐻

𝑛
(𝑢) if |𝑢| ≥ 𝑟

0
,

where 𝑐
0
is a positive constant,

In our paper, we use (9) and (𝑓
4
) instead of (𝐵

1
) and (𝐵

2
).

3. Proofs of Main Results

We assume that (𝑉
1
) and (𝑓

1
)–(𝑓

4
) are satisfied from now on.

Lemma 6. 𝐹
𝑛
(𝑢) > 0 and (1/2)𝑓

𝑛
(𝑢)𝑢 > 𝐹

𝑛
(𝑢) for all 𝑢 ̸= 0.

Proof. By (𝑓
2
) and (𝑓

4
), it is easy to get that

𝐹
𝑛

(𝑢) > 0 ∀𝑢 ̸= 0. (25)

Set 𝐻
𝑛
(𝑢) = (1/2)𝑓

𝑛
(𝑢)𝑢 − 𝐹

𝑛
(𝑢). It follows from (𝑓

4
) that

𝐻
𝑛

(𝑢) =

𝑢

2

𝑓
𝑛

(𝑢) − ∫

𝑢

0

𝑓
𝑛

(𝑠) 𝑑𝑠

>

𝑢

2

𝑓
𝑛

(𝑢) −

𝑓
𝑛

(𝑢)

𝑢

∫

𝑢

0

𝑠𝑑𝑠 = 0.

(26)

So, (1/2)𝑓
𝑛
(𝑢)𝑢 > 𝐹

𝑛
(𝑢) for all 𝑢 ̸= 0.

To continue the discussion, we need the following propo-
sition.

Proposition 7 (see [16, 17]). Let 𝑢, 𝑠, V ∈ R be numbers with
𝑠 ≥ −1 and 𝑤 := 𝑠𝑢 + V ̸= 0. Then,

𝑓
𝑛

(𝑢) [𝑠 (

𝑠

2

+ 1) 𝑢 + (1 + 𝑠) V] + 𝐹
𝑛

(𝑢) − 𝐹
𝑛

(𝑢 + 𝑤) < 0.

(27)

Lemma 8. If 𝑢 ∈ M, then

𝐽 (𝑢 + 𝑤) < 𝐽 (𝑢) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑤 ∈ 𝑈

:= {𝑠𝑢 + V : 𝑠 ≥ −1, V ∈ 𝐸
−

} , 𝑤 ̸= 0.

(28)

Hence, 𝑢 is the unique global maximum of 𝐽|
𝐸(𝑢)

.

Proof. We rewrite 𝐽 by

𝐽 (𝑢) =

1

2

(𝐴𝑢
+

, 𝑢
+

)
𝐸

+

1

2

(𝐴𝑢
−

, 𝑢
−

)
𝐸

− 𝜎 ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛
) .

(29)
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Since 𝑢 ∈ M, we have

0 = (𝐽


(𝑢) ,

2𝑠 + 𝑠
2

2

𝑢 + (1 + 𝑠) V)

=

2𝑠 + 𝑠
2

2

(𝐴𝑢
+

, 𝑢
+

)
𝐸

+

2𝑠 + 𝑠
2

2

(𝐴𝑢
−

, 𝑢
−

)
𝐸

+ (1 + 𝑠) (𝐴𝑢
−

, V)
𝐸

− ∑

𝑛∈Z

𝜒
𝑛
𝑓
𝑛

(𝑢
𝑛
) (

2𝑠 + 𝑠
2

2

𝑢
𝑛

+ (1 + 𝑠) V
𝑛
) .

(30)

Together with Proposition 7, we know that

𝐽 (𝑢 + 𝑤) − 𝐽 (𝑢)

=

1

2

{(𝐴 (1 + 𝑠) 𝑢
+

, (1 + 𝑠) 𝑢
+

)
𝐸

− (𝐴𝑢
+

, 𝑢
+

)
𝐸
}

+

1

2

{(𝐴 ((1 + 𝑠) 𝑢
−

+ V) , (1 + 𝑠) 𝑢
−

+ V)
𝐸

− (𝐴𝑢
−

, 𝑢
−

)
𝐸
}

+ ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛
) − ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛

+ 𝑤
𝑛
)

=

2𝑠 + 𝑠
2

2

(𝐴𝑢
+

, 𝑢
+

)
𝐸

+

2𝑠 + 𝑠
2

2

(𝐴𝑢
−

, 𝑢
−

)
𝐸

+

1

2

(𝐴V, V)
𝐸

+ (1 + 𝑠) (𝐴𝑢
−

, V)
𝐸

+ ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛
) − ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛

+ 𝑤
𝑛
)

=

1

2

(𝐴V, V)
𝐸

+ ∑

𝑛∈Z

𝜒
𝑛

{𝑓
𝑛

(𝑢
𝑛
) [𝑠 (

𝑠

2

+ 1) 𝑢
𝑛

+ (1 + 𝑠) V
𝑛
]

+ 𝐹
𝑛

(𝑢
𝑛
) − 𝐹

𝑛
(𝑢

𝑛
+ 𝑤

𝑛
) } < 0.

(31)

The proof is complete.

Lemma 9. (a) There exists 𝛼 > 0 such that 𝑐 := infM𝐽(𝑢) ≥

inf
𝑆𝛼

𝐽(𝑢) > 0, where 𝑆
𝛼

:= {𝑢 ∈ 𝐸
+

: ‖𝑢‖ = 𝛼}.
(b) ‖𝑢

+

‖ ≥ max{‖𝑢
−

‖, √2𝑐} for every 𝑢 ∈ M.

Proof. (a) By (𝑓
1
) and (𝑓

2
), it is easy to show that for any 𝜀 >

0, there exists 𝑐
𝜀

> 0 such that





𝑓
𝑛

(𝑢)





≤ 𝜀 |𝑢| + 𝑐
𝜀
|𝑢|

𝑝−1

,




𝐹
𝑛

(𝑢)





≤ 𝜀|𝑢|
2

+ 𝑐
𝜀
|𝑢|

𝑝

.

(32)

‖⋅‖ is equivalent to the𝐸normon𝐸
+ and𝐸 ⊂ 𝑙

𝑞 for 2 ≤ 𝑞 ≤ ∞

with ‖𝑢‖
𝑙
𝑞 ≤ ‖𝑢‖

𝐸
. Hence, for any 𝜀 ∈ (0, 1/2) and 𝑢 ∈ 𝐸

+, we
have

𝐽 (𝑢) ≥

1

2

‖𝑢‖
2

− 𝜀‖𝑢‖
2

− 𝑐
𝜀
𝜒‖𝑢‖

𝑝

, (33)

which implies inf
𝑆𝛼

𝐽(𝑢) > 0 for some 𝛼 > 0 (small enough),
where 𝜒 = max{𝜒

𝑛
}.

The first inequality is a consequence of Lemma 8 since for
every 𝑢 ∈ M, there is 𝑠 > 0 such that 𝑠𝑢

+

∈ 𝐸(𝑢) ∩ 𝑆
𝛼
.

(b) For 𝑢 ∈ M, by (25), we have

𝑐 ≤

1

2





𝑢
+




2

−

1

2





𝑢
−




2

− ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛
)

≤

1

2

(




𝑢
+




2

−




𝑢
−




2

) .

(34)

Hence, ‖𝑢
+

‖ ≥ max{‖𝑢
−

‖, √2𝑐}.

Lemma 10. LetW ⊂ 𝐸
+

\ {0} be a compact subset.Then, there
exists 𝑅 > 0 such that 𝐽 ≤ 0 on 𝐸(𝑢) \ 𝐵

𝑅
(0) for every 𝑢 ∈ W,

where 𝐵
𝑅
(0) denotes the open ball with radius 𝑅 and center 0.

Proof. Suppose by contradiction that there exist 𝑢
(𝑘)

∈ W

and 𝑤
(𝑘)

∈ 𝐸(𝑢
(𝑘)

), 𝑘 ∈ N, such that 𝐽(𝑤
(𝑘)

) > 0 for all 𝑘

and ‖𝑤
(𝑘)

‖ → ∞ as 𝑘 → ∞. Without loss of generality,
we may assume that ‖𝑢

(𝑘)

‖ = 1 for 𝑘 ∈ Z. Then, there exists
a subsequence, still denoted by the same notation, such that
𝑢
(𝑘)

→ 𝑢 ∈ 𝐸
+. Set V(𝑘) = 𝑤

(𝑘)

/‖𝑤
(𝑘)

‖ = 𝑠
(𝑘)

𝑢
(𝑘)

+ V(𝑘)−.
Then,

0 <

𝐽 (𝑤
(𝑘)

)





𝑤

(𝑘)





2
=

1

2

((𝑠
(𝑘)

)

2

−






V
(𝑘)−







2

)

− ∑

𝑛∈Z

𝜒
𝑛

𝐹
𝑛

(𝑤
(𝑘)

𝑛
)

(𝑤
(𝑘)

𝑛
)

2
(V

(𝑘)

𝑛
)

2

.

(35)

By (25), we have






V
(𝑘)−







2

≤ (𝑠
(𝑘)

)

2

= 1 −






V
(𝑘)−







2

. (36)

Consequently, we know that ‖V(𝑘)−‖ ≤ 1/√2 and 1/√2 ≤

𝑠
(𝑘)

≤ 1. Passing to a subsequence if necessary, we assume
that 𝑠

(𝑘)

→ 𝑠 ∈ [1/√2, 1], V(𝑘) ⇀ V, V(𝑘)− ⇀ V−
∗

∈ 𝐸
−, and

V(𝑘)
𝑛

→ V
𝑛
for every 𝑛. Hence, V = 𝑠𝑢 + V−

∗
̸= 0 and V−

∗
= V−. It

follows that for 𝑛
0

∈ Z with V
𝑛0

̸= 0, |𝑤
(𝑘)

𝑛0

| = ‖𝑤
(𝑘)

‖ ⋅ |V(𝑘)
𝑛0

| →

∞, as 𝑘 → ∞. Then, by (𝑓
3
), we have

∑

𝑛∈Z

𝜒
𝑛

𝐹
𝑛

(𝑤
(𝑘)

𝑛
)

(𝑤
(𝑘)

𝑛
)

2
(V

(𝑘)

𝑛
)

2

→ ∞, (37)

which contradicts with (35).

Lemma 11. For each 𝑢 ∈ 𝐸
+

\ {0}, the set M ∩ 𝐸(𝑢) consists
of precisely one point which is the unique global maximum of
𝐽|

𝐸(𝑢)
.

Proof. By Lemma 8, it suffices to show that M ∩ 𝐸(𝑢) ̸= 0.
Since 𝐸(𝑢) = 𝐸(𝑢

+

/‖𝑢
+

‖), we may assume that 𝑢 ∈ 𝑆
+. By

Lemma 10, there exists 𝑅 > 0 such that 𝐽 ≤ 0 on 𝐸(𝑢) \ 𝐵
𝑅
(0)

provided that 𝑅 is large enough. By Lemma 9 (a), 𝐽(𝑡𝑢) > 0

for small 𝑡 > 0. Moreover, 𝐽 ≤ 0 on 𝐸(𝑢) \ 𝐵
𝑅
(0). Hence,

0 < sup
𝐸(𝑢)

𝐽 < ∞.
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Let V(𝑘) ⇀ V in 𝐸(𝑢). Then, V(𝑘)
𝑛

→ V
𝑛
as 𝑘 → ∞ for all 𝑛

after passing to a subsequence if necessary.Hence,𝐹
𝑛
(V(𝑘)

𝑛
) →

𝐹
𝑛
(V

𝑛
). Let 𝜑(V) = ∑

𝑛∈Z 𝜒
𝑛
𝐹
𝑛
(V

𝑛
). Then,

𝜑 (V) = ∑

𝑛∈Z

lim
𝑘→∞

𝜒
𝑛
𝐹
𝑛

(V
(𝑘)

𝑛
)

≤ lim inf
𝑘→∞

∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(V
(𝑘)

𝑛
)

= lim inf
𝑘→∞

𝜑 (V
(𝑘)

) ;

(38)

that is, 𝜑 is a weakly lower semicontinuous. From the weak
lower semi-continuity of the norm, it is easy to see that 𝐽 is
weakly upper semicontinuous on 𝐸(𝑢). Therefore, 𝐽(𝑢

0
) =

sup
𝐸(𝑢)

𝐽 for some 𝑢
0

∈ 𝐸(𝑢) \ {0}. By the proof of Lemma 10,
𝑢
0
is a critical point of 𝐽|

𝐸(𝑢)
. It follows that (𝐽



(𝑢
0
), 𝑢

0
) =

(𝐽


(𝑢
0
), 𝑧) = 0 for all 𝑧 ∈ 𝐸 and hence 𝑢

0
∈ M. To summarize,

𝑢
0

∈ M ∩ 𝐸(𝑢).

According to Lemma 11, for each 𝑢 ∈ 𝐸
+

\ {0}, we may
define the mapping �̂� : 𝐸

+

\ {0} → M, 𝑢 → �̂�(𝑢), where
�̂�(𝑢) is the unique point ofM ∩ 𝐸(𝑢).

Lemma 12. 𝐽 is coercive onM; that is, 𝐽(𝑢) → ∞ as ‖𝑢‖ →

∞, 𝑢 ∈ M.

Proof. Suppose, by contradiction, that there exists a sequence
{𝑢

(𝑘)

} ⊂ M such that ‖𝑢
(𝑘)

‖ → ∞ and 𝐽(𝑢
(𝑘)

) ≤ 𝑑 for
some 𝑑 ∈ [𝑐, ∞). Let V(𝑘) = 𝑢

(𝑘)

/‖𝑢
(𝑘)

‖. Then, there exists
a subsequence, still denoted by the same notation, such that
V(𝑘) ⇀ V and V(𝑘)

𝑛
→ V

𝑛
for every 𝑛 as 𝑘 → ∞.

First, we know that there exist 𝛿 > 0 and 𝑛
𝑘

∈ Z such that





V
(𝑘)+

𝑛𝑘







≥ 𝛿. (39)

Indeed, if not, then V(𝑘)+ → 0 in 𝑙
∞ as 𝑘 → ∞. By

Lemma 9(b), 1/2 ≤ ‖V(𝑘)+‖

2

≤ 1, which means that ‖V(𝑘)+‖
𝑙
2

is bounded. For 𝑞 > 2,






V
(𝑘)+







𝑞

𝑙
𝑞

≤






V
(𝑘)+







𝑞−2

𝑙
∞






V
(𝑘)+







2

𝑙
2
. (40)

Then, V(𝑘)+ → 0 in all 𝑙
𝑞

, 𝑞 > 2. By (32), for any 𝑠 ∈ R,

∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑠V
(𝑘)+

𝑛
) ≤ 𝜀𝑠

2

𝜒






V
(𝑘)+







2

𝑙
2

+ 𝑐
𝜀
𝑠
𝑝

𝜒






V
(𝑘)+







𝑞

𝑙
𝑝
, (41)

which implies that ∑
𝑛∈Z 𝜒

𝑛
𝐹
𝑛
(𝑠V(𝑘)+

𝑛
) → 0 as 𝑘 → ∞.

Since 𝑠V(𝑘)+ ∈ 𝐸(𝑢
(𝑘)

) for 𝑠 ≥ 0, Lemma 8 implies that

𝑑 ≥ 𝐽 (𝑢
(𝑘)

) ≥ 𝐽 (𝑠V
(𝑘)+

)

=

𝑠
2

2






V
(𝑘)+







2

− ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑠V
(𝑘)+

𝑛
)

≥

𝑠
2

4

− ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑠V
(𝑘)+

𝑛
) →

𝑠
2

4

,

(42)

as 𝑘 → ∞. This is a contradiction if 𝑠 > √4𝑑.

Due to the periodicity of coefficients, both 𝐽 and M are
invariant under 𝑇-translation. Making such shifts, we can
assume that 1 ≤ 𝑛

𝑘
≤ 𝑇 − 1 in (39). Moreover, passing

to a subsequence if needed, we can assume that 𝑛
𝑘

= 𝑛
0
is

independent of 𝑘. Next, we may extract a subsequence, still
denoted by {V(𝑘)}, such that V(𝑘)+

𝑛
→ V+

𝑛
for all 𝑛 ∈ Z. In

particular, for 𝑛 = 𝑛
0
, inequality (39) shows that |V+

𝑛0

| ≥ 𝛿 and
hence V+ ̸= 0.

Since |𝑢
(𝑘)

𝑛
| → ∞ as 𝑘 → ∞, it follows again from (𝑓

3
)

and Fatou’s lemma that

0 ≤

𝐽 (𝑢
(𝑘)

)





𝑢
(𝑘)






2
=

1

2

(






V
(𝑘)+







2

−






V
(𝑘)−







2

)

− ∑

𝑛∈Z

𝜒
𝑛

𝐹
𝑛

(𝑢
(𝑘)

𝑛
)

(𝑢
(𝑘)

𝑛
)

2

× (V
(𝑘)

𝑛
)

𝑉

→ −∞ as 𝑘 → ∞,

(43)

a contradiction again. The proof is finished.

Lemma 13. (a)Themapping �̂� : 𝐸
+

\{0} → M is continuous.
(b) The mapping 𝑚 = �̂�|

𝑆
+ : 𝑆

+

→ M is a
homeomorphism between 𝑆

+ and M, and the inverse of 𝑚 is
given by 𝑚

−1

(𝑢) = 𝑢
+

/‖𝑢
+

‖, where 𝑆
+

:= {𝑢 ∈ 𝐸
+

: ‖𝑢‖ = 1}.
(c) The mapping 𝑚

−1

: M → 𝑆
+ is the Lipschitz

continuous.

Proof. (a) Let (𝑢
(𝑘)

) ⊂ 𝐸
+

\ {0} be a sequence with 𝑢
(𝑘)

→

𝑢. Since �̂�(𝑤) = �̂�(𝑤
+

/‖𝑤
+

‖), without loss of generality,
we may assume that ‖𝑢

(𝑘)

‖ = 1 for all 𝑘. Then, �̂�(𝑢
(𝑘)

) =

‖�̂�(𝑢
(𝑘)

)
+

‖𝑢
(𝑘)

+ �̂�(𝑢
(𝑘)

)
−. By Lemma 10, there exists 𝑅 > 0

such that

𝐽 (�̂� (𝑢
(𝑘)

)) = sup
𝐸(𝑢
(𝑘)

)

𝐽 ≤ sup
𝐵𝑅(0)

𝐽

≤ sup
𝑢∈𝐵𝑅(0)





𝑢
+




2

= 𝑅
2 for every 𝑘.

(44)

It follows from Lemma 12 that �̂�(𝑢
(𝑘)

) is bounded. Passing to
a subsequence if needed, we may assume that

𝑡
(𝑘)

:=








�̂�(𝑢
(𝑘)

)

+






→ 𝑡,

�̂�(𝑢
(𝑘)

)

−

⇀ 𝑢
−

∗
in𝐸 as 𝑘 → ∞,

(45)

where 𝑡 ≥ √2𝑐 > 0 by Lemma 9(b). Moreover, by Lemma 11,

𝐽 (�̂� (𝑢
(𝑘)

)) ≥ 𝐽 (𝑡
(𝑘)

𝑢
(𝑘)

+ �̂�(𝑢)
−

) → 𝐽 (𝑡𝑢 + �̂�(𝑢)
−

)

= 𝐽 (�̂� (𝑢)) .

(46)
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Therefore, using the weak lower semicontinuity of the norm
and 𝜑 (defined in Lemma 11), we get

𝐽 (�̂� (𝑢)) ≤ lim
𝑘→∞

𝐽 (�̂� (𝑢
(𝑘)

))

= lim
𝑘→∞

(

1

2

(𝑡
(𝑘)

)

2

−

1

2








�̂�(𝑢
(𝑘)

)

−






2

− ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(�̂� (𝑢
(𝑘)

𝑛
)))

≤

1

2

𝑡
2

−

1

2





𝑢
−

∗






2

− ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑡𝑢
𝑛

+ 𝑢
−

∗,𝑛
)

= 𝐽 (𝑡𝑢 + 𝑢
−

∗
) ≤ 𝐽 (�̂� (𝑢)) ,

(47)

which implies that all inequalities above must be equalities
and �̂�(𝑢

(𝑘)

)
−

→ 𝑢
−

∗
. By Lemma 11, 𝑢

−

∗
= �̂�(𝑢)

− and hence
�̂�(𝑢

(𝑘)

) → �̂�(𝑢).
(b) This is an immediate consequence of (a).
(c) For 𝑢, V ∈ M, by (b), we have






𝑚

−1

(𝑢) − 𝑚
−1

(V)






=










𝑢
+

‖𝑢
+
‖

−

V+

‖V+‖










=











𝑢
+

− V+

‖𝑢
+
‖

+

(




V+






−




𝑢
+



) V+

‖𝑢
+
‖ ‖V+‖











≤

2

‖𝑢
+
‖





(𝑢 − V)

+




≤ √
2

𝑐

‖𝑢 − V‖ .

(48)

We will consider the functional Ψ̂ : 𝐸
+

\ {0} → R and
Ψ : 𝑆

+

→ R defined by

Ψ̂ := 𝐽 (�̂� (𝑤)) , Ψ := Ψ̂|
𝑆
+ . (49)

Lemma 14. (a) Ψ̂ ∈ 𝐶
1

(𝐸
+

\ {0},R) and

Ψ̂


(𝑤) 𝑧 =





�̂�(𝑤)

+




‖𝑤‖

𝐽


(�̂� (𝑤)) 𝑧 ∀𝑤, 𝑧 ∈ 𝐸
+

, 𝑤 ̸= 0. (50)

(b) Ψ ∈ 𝐶
1

(𝑆
+

,R) and

Ψ


(𝑤) 𝑧 =




�̂�(𝑤)

+




𝐽


(𝑚 (𝑤)) 𝑧 ∀𝑧 ∈ 𝑇
𝑤

𝑆
+

= {V ∈ 𝐸
+

: (𝑤, V) = 0} .

(51)

(c) {𝑤
𝑛
} is a Palais-Smale sequence for Ψ if and only if

{𝑚(𝑤
𝑛
)} is a Palais-Smale sequence for 𝐽.

(d) 𝑤 ∈ 𝑆
+ is a critical point of Ψ if and only if 𝑚(𝑤) ∈ M

is a nontrivial critical point of 𝐽. Moreover, the corresponding
values of Ψ and 𝐽 coincide and inf

𝑆
+Ψ = infM𝐽 = 𝑐.

Proof. (a) We put 𝑢 = �̂�(𝑤) ∈ M, so we have 𝑢 =

(‖𝑢
+

‖/‖𝑤‖)𝑤 + 𝑢
−. Let 𝑧 ∈ 𝐸

+. Choose 𝛿 > 0 such that 𝑤
𝑡

:=

𝑤+𝑡𝑧 ∈ 𝐸
+

\ {0} for |𝑡| < 𝛿 and put 𝑢
𝑡

= �̂�(𝑤
𝑡
) ∈ M. Wemay

write 𝑢
𝑡

= 𝑠
𝑡
𝑤

𝑡
+𝑢

−

𝑡
with 𝑠

𝑡
> 0. From the proof of Lemma 13,

the function 𝑡 → 𝑠
𝑡
is continuous. Then, 𝑠

0
= ‖𝑢

+

‖/‖𝑤‖. By
Lemma 11 and the mean value theorem, we have

Ψ̂ (𝑤
𝑡
) − Ψ̂ (𝑤) = 𝐽 (𝑢

𝑡
) − 𝐽 (𝑢)

= 𝐽 (𝑠
𝑡
𝑤

𝑡
+ 𝑢

−

𝑡
) − 𝐽 (𝑠

0
𝑤 + 𝑢

−

)

≤ 𝐽 (𝑠
𝑡
𝑤

𝑡
+ 𝑢

−

𝑡
) − 𝐽 (𝑠

𝑡
𝑤 + 𝑢

−

𝑡
)

= 𝐽


(𝑠
𝑡
[𝑤 + 𝜂

𝑡
(𝑤

𝑡
− 𝑤)] + 𝑢

−

𝑡
) 𝑠

𝑡
𝑡𝑧

(52)

with some 𝜂
𝑡

∈ (0, 1). Similarly,

Ψ̂ (𝑤
𝑡
) − Ψ̂ (𝑤) = 𝐽 (𝑠

𝑡
𝑤

𝑡
+ 𝑢

−

𝑡
) − 𝐽 (𝑠

0
𝑤 + 𝑢

−

)

≥ 𝐽 (𝑠
0
𝑤

𝑡
+ 𝑢

−

) − 𝐽 (𝑠
0
𝑤 + 𝑢

−

)

= 𝐽


(𝑠
0

[𝑤 + 𝜏
𝑡
(𝑤

𝑡
− 𝑤)] + 𝑢

−

) 𝑠
0
𝑡𝑧,

(53)

with some 𝜏
𝑡

∈ (0, 1). Combining these inequalities and the
continuity of function 𝑡 → 𝑠

𝑡
, we have

lim
𝑡→0

Ψ̂ (𝑤
𝑡
) − Ψ̂ (𝑤)

𝑡

= 𝑠
0
𝐽


(𝑢) 𝑧 =





�̂�(𝑤)

+




‖𝑤‖

𝐽


(�̂� (𝑤)) 𝑧.

(54)

Hence, the Gâteaux derivative of Ψ̂ is bounded linear in 𝑧 and
continuous in 𝑤. It follows that Ψ̂ is of class 𝐶

1 (see [15]).
(b) It follows from (a) by noting that 𝑚(𝑤) = �̂�(𝑤) since

𝑤 ∈ 𝑆
+.

(c) Let {𝑤
𝑛
} be a Palais-Smale sequence forΨ, and let 𝑢

𝑛
=

𝑚(𝑤
𝑛
) ∈ M. Since for every 𝑛 ∈ Z, we have an orthogonal

splitting 𝐸 = 𝑇
𝑤𝑛

𝑆
+

⊕ 𝐸(𝑤
𝑛
); using (b), we have






Ψ



(𝑤
𝑛
)







= sup
𝑧∈𝑇𝑤𝑛

𝑆
+

‖𝑧‖=1

Ψ


(𝑤
𝑛
) 𝑧

=






𝑚(𝑤

𝑛
)
+





sup
𝑧∈𝑇𝑤𝑛

𝑆
+

‖𝑧‖=1

𝐽


(𝑚 (𝑤
𝑛
)) 𝑧

=




𝑢
+

𝑛






sup
𝑧∈𝑇𝑤𝑛

𝑆
+

‖𝑧‖=1

𝐽


(𝑢
𝑛
) 𝑧,

(55)

because 𝐽


(𝑢
𝑛
)V = 0 for all V ∈ 𝐸(𝑤

𝑛
) and 𝐸(𝑤

𝑛
) is orthogonal

to 𝑇
𝑤𝑛

𝑆
+. Using (b) again, we have






Ψ



(𝑤
𝑛
)







≤




𝑢
+

𝑛











𝐽


(𝑢
𝑛
)







=




𝑢
+

𝑛






sup
𝑧∈𝑇𝑤𝑛

𝑆
+
,V∈𝐸(𝑤𝑛)

𝑧+V ̸=0

𝐽


(𝑢
𝑛
) (𝑧 + V)

‖𝑧 + V‖

≤




𝑢
+

𝑛






sup
𝑧∈𝑇𝑤𝑛

𝑆
+
\{0}

𝐽


(𝑢
𝑛
) (𝑧)

‖𝑧‖

=






Ψ



(𝑤
𝑛
)







.

(56)

Therefore,





Ψ



(𝑤
𝑛
)







=




𝑢
+

𝑛











𝐽


(𝑢
𝑛
)







. (57)
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According to Lemma 9(b) and Lemma 12, √2𝑐 ≤ ‖𝑢
+

𝑛
‖ ≤

sup
𝑛
‖𝑢

+

𝑛
‖ < ∞. Hence, {𝑤

𝑛
} is a Palais-Smale sequence for

Ψ if and only if {𝑢
𝑛
} is a Palais-Smale sequence for 𝐽.

(d) By (57), Ψ


(𝑤) = 0 if and only if 𝐽


(𝑚(𝑤)) = 0. The
other part is clear.

Proof of Theorem 1. (1)We know that 𝑐 > 0 by Lemma 9(a). If
𝑢
0

∈ M satisfies 𝐽(𝑢
0
) = 𝑐, then 𝑚

−1

(𝑢
0
) ∈ 𝑆

+ is a minimizer
ofΨ and therefore a critical point ofΨ and also a critical point
of 𝐽 by Lemma 14.We shall show that there exists aminimizer
𝑢 ∈ M of 𝐽|M. Let {𝑤

(𝑘)

} ⊂ 𝑆
+ be a minimizing sequence

for Ψ. By Ekeland’s variational principle, we may assume that
Ψ(𝑤

(𝑘)

) → 𝑐 andΨ


(𝑤
(𝑘)

) → 0 as 𝑘 → ∞.Then, 𝐽(𝑢
(𝑘)

) →

𝑐 and 𝐽


(𝑢
(𝑘)

) → 0 as 𝑘 → ∞ by Lemma 14(c), where 𝑢
(𝑘)

:=

𝑚(𝑤
(𝑘)

) ∈ M. By Lemma 12, {𝑢
(𝑘)

} is bounded, and hence
{𝑢

(𝑘)

} has a weakly convergent subsequence.
First, we show that there exist 𝛿 > 0 and 𝑛

𝑘
∈ Z such that






𝑢
(𝑘)

𝑛𝑘







≥ 𝛿. (58)

Indeed, if not, then 𝑢
(𝑘)

→ 0 in 𝑙
∞ as 𝑘 → ∞. From the

simple fact that for 𝑞 > 2,






𝑢
(𝑘)







𝑞

𝑙
𝑞

≤






𝑢
(𝑘)







𝑞−2

𝑙
∞






𝑢
(𝑘)







2

𝑙
2
, (59)

we have 𝑢
(𝑘)

→ 0 in all 𝑙
𝑞

, 𝑞 > 2. By (32), we know that

∑

𝑛∈Z

𝜒
𝑛
𝑓
𝑛

(𝑢
(𝑘)

𝑛
) 𝑢

(𝑘)+

𝑛
≤ 𝜀𝜒 ∑

𝑛∈Z






𝑢
(𝑘)

𝑛






⋅






𝑢
(𝑘)+

𝑛







+ 𝑐
𝜀
𝜒 ∑

𝑛∈Z






𝑢
(𝑘)

𝑛







𝑝−1

⋅






𝑢
(𝑘)+

𝑛







≤ 𝜀𝜒






𝑢
(𝑘)





𝑙
2

⋅






𝑢
(𝑘)+





𝑙
2

+ 𝑐
𝜀
𝜒






𝑢
(𝑘)







𝑝−1

𝑙
𝑝

⋅






𝑢
(𝑘)+





𝑙
𝑝

≤ 𝜀𝜒






𝑢
(𝑘)





𝑙
2

⋅






𝑢
(𝑘)+







+ 𝑐
𝜀
𝜒






𝑢
(𝑘)







𝑝−1

𝑙
𝑝

⋅






𝑢
(𝑘)+







,

(60)

which implies that∑
𝑛∈Z 𝜒

𝑛
𝑓
𝑛
(𝑢

(𝑘)

𝑛
)𝑢

(𝑘)+

𝑛
= 𝑜(‖ 𝑢

(𝑘)+

‖) as 𝑘 →

∞. Therefore,

𝑜 (






𝑢
(𝑘)+






) = (𝐽



(𝑢
(𝑘)

) , 𝑢
(𝑘)+

)

=






𝑢
(𝑘)+







2

− ∑

𝑛∈Z

𝜒
𝑛
𝑓
𝑛

(𝑢
(𝑘)

𝑛
) 𝑢

(𝑘)+

𝑛

=






𝑢
(𝑘)+







2

− 𝑜 (






𝑢
(𝑘)+






) .

(61)

Then, ‖ 𝑢
(𝑘)+

‖
2

→ 0 as 𝑘 → ∞, contrary to Lemma 9(b).
From the periodicity of the coefficients, we know that 𝐽

and 𝐽
 are both invariant under 𝑇-translation. Making such

shifts, we can assume that 1 ≤ 𝑛
𝑘

≤ 𝑇 − 1 in (58). Moreover,
passing to a subsequence, we can assume that 𝑛

𝑘
= 𝑛

0
is

independent of 𝑘.

Next, we may extract a subsequence, still denoted by
{𝑢

(𝑘)

}, such that 𝑢
(𝑘)

⇀ 𝑢 and 𝑢
(𝑘)

𝑛
→ 𝑢

𝑛
for all 𝑛 ∈ Z.

Particularly, for 𝑛 = 𝑛
0
, inequality (58) shows that |𝑢

𝑛0
| ≥ 𝛿,

so 𝑢 ̸= 0. Moreover, we have

(𝐽


(𝑢) , V) = lim
𝑘→∞

(𝐽


(𝑢
(𝑘)

) , V) = 0, ∀V ∈ 𝐸; (62)

that is, 𝑢 is a nontrivial critical point of 𝐽.
Finally, we show that 𝐽(𝑢) = 𝑐. By Lemma 6 and Fatou’s

lemma, we have

𝑐 = lim
𝑘→∞

(𝐽 (𝑢
(𝑘)

) −

1

2

𝐽


(𝑢
(𝑘)

) 𝑢
(𝑘)

)

= lim
𝑘→∞

∑

𝑛∈Z

𝜒
𝑛

(

1

2

𝑓
𝑛

(𝑢
(𝑘)

𝑛
) 𝑢

(𝑘)

𝑛
− 𝐹

𝑛
(𝑢

(𝑘)

𝑛
))

≥ ∑

𝑛∈Z

𝜒
𝑛

(

1

2

𝑓
𝑛

(𝑢
𝑛
) 𝑢

𝑛
− 𝐹

𝑛
(𝑢

𝑛
))

= 𝐽 (𝑢) −

1

2

𝐽


(𝑢) 𝑢 = 𝐽 (𝑢) ≥ 𝑐.

(63)

Hence, 𝐽(𝑢) = 𝑐.That is, 𝑢 is a nontrivial ground state solution
of (7).

(2) If 𝛽 = ∞, by way of contradiction, we assume that (7)
has a nontrivial solution 𝑢 ∈ 𝐸. Then, 𝑢 is a nonzero critical
point of 𝐽 in 𝐸. Thus, 𝐽



(𝑢) = 0. But by Lemma 6,

(𝐽


(𝑢) , 𝑢) = ((𝐿 − 𝜔) 𝑢, 𝑢) − ∑

𝑛∈Z

𝜒
𝑛
𝑓
𝑛

(𝑢
𝑛
) 𝑢

𝑛
< 0. (64)

This is a contradiction, so the conclusion holds.
This completes the proof of Theorem 1.

Now, we are ready to proveTheorem 2. From now on, we
always assume that 𝑓

𝑛
is odd in 𝑢. We need some notations.

For 𝑎 ≥ 𝑏 ≥ 𝑐, denote

𝐽
𝑎

= {𝑢 ∈ M : 𝐽 (𝑢) ≤ 𝑎} ,

𝐽
𝑏

:= {𝑢 ∈ M : 𝐽 (𝑢) ≥ 𝑏} ,

𝐽
𝑎

𝑏
= 𝐽

𝑎

∩ 𝐽
𝑏
,

Ψ
𝑎

= {𝑤 ∈ 𝑆
+

: Ψ (𝑤) ≤ 𝑎} ,

Ψ
𝑏

:= {𝑤 ∈ 𝑆
+

: Ψ (𝑤) ≥ 𝑏} ,

Ψ
𝑎

𝑏
= Ψ

𝑎

∩ Ψ
𝑏
,

𝐾 = {𝑤 ∈ 𝑆
+

: Ψ


(𝑤) = 0} ,

𝐾
𝑎

= {𝑤 ∈ 𝐾 : Ψ (𝑤) = 𝑎} ,

] (𝑎) = sup {‖𝑢‖ : 𝑢 ∈ 𝐽
𝑎

} .

(65)

It is easy to see that ](𝑎) < ∞ for every 𝑎 by Lemma 12.

Proof of Theorem 2. It is easy to see that mappings 𝑚, 𝑚
−1 are

equivariant with respect to theZ-action by Lemma 13; hence,
the orbits O(𝑢) ⊂ M consisting of critical points of 𝐽 are in
1-1 correspondence with the orbits O(𝑤) ⊂ 𝑆

+ consisting of
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critical points of Ψ by Lemma 14(d). Next, we may choose a
subsetF ⊂ 𝐾 such thatF = −F andF consists of a unique
representative of Z-orbits. So, we only need to prove that the
setF is infinite. By contradiction, we assume that

F is a finite set. (66)

Let

Γ
𝑗

= {𝐴 ⊂ 𝑆
+

: 𝐴 = −𝐴, 𝐴 is closed and 𝛾 (𝐴) ≥ 𝑗} , (67)

where 𝛾 denotes genus and 𝑗 ∈ N. We consider the sequence
of the Lusternik-Schnirelmann values of Ψ defined by

𝑐
𝑘

= inf {𝑑 ∈ R : 𝛾 (Ψ
𝑑

) ≥ 𝑘, 𝑘 ∈ N} . (68)

Now, we claim that

𝐾
𝑐𝑘

̸= 0, 𝑐
𝑘

< 𝑐
𝑘+1

. (69)

Firstly, we show that

𝜅 = inf {‖V − 𝑤‖ : V, 𝑤 ∈ 𝐾, V ̸= 𝑤} > 0. (70)

In fact, there exist V(𝑘), 𝑤
(𝑘)

∈ F, and 𝑔
𝑘
, 𝑙

𝑘
∈ Z such that

V(𝑘) ∗ 𝑔
𝑘

̸= 𝑤
(𝑘)

∗ 𝑙
𝑘
for all 𝑘 and






V
(𝑘)

∗ 𝑔
𝑘

− 𝑤
(𝑘)

∗ 𝑙
𝑘







→ 𝜅 as 𝑘 → ∞. (71)

Let 𝑚
𝑘

= 𝑔
𝑘

− 𝑙
𝑘
. Passing to a subsequence, V(𝑘) = V ∈ F,

𝑤
(𝑘)

= 𝑤 ∈ F, and either𝑚
𝑘

= 𝑚 ∈ Z for all 𝑘 or |𝑚
𝑘
| → ∞.

In the first case, 0 < ‖V(𝑘) ∗ 𝑔
𝑘

− 𝑤
(𝑘)

∗ 𝑙
𝑘
‖ = ‖V − 𝑤 ∗ 𝑚‖ = 𝜅

for all 𝑘. In the second case, 𝑤 ∗ 𝑚
𝑘

⇀ 0 and therefore 𝜅 =

lim
𝑘→∞

‖V − 𝑤 ∗ 𝑚
𝑘
‖ ≥ ‖V‖ = 1. By (70), 𝛾(𝐾

𝑐𝑘
) = 0 or 1.

Next, we consider a pseudogradient vector field ofΨ [18];
that is, there exists a Lipschitz continuous map 𝑉: 𝑆

+

\ 𝐾 →

𝑇
𝑤

𝑆
+ and for all 𝑤 ∈ 𝑆

+

\ 𝐾,

‖𝑉 (𝑤)‖ < 2






Ψ



(𝑤)







,

⟨𝑉 (𝑤) , Ψ


(𝑤)⟩ >

1

2






Ψ



(𝑤)







2

.

(72)

Let 𝜂 : D → 𝑆
+

\ 𝐾 be the corresponding Ψ-decreasing flow
defined by

𝑑

𝑑𝑡

𝜂 (𝑡, 𝑤) = −𝑉 (𝜂 (𝑡, 𝑤)) ,

𝜂 (0, 𝑤) = 𝑤,

(73)

whereD = {(𝑡, 𝑤) : 𝑤 ∈ 𝑆
+

\ 𝐾, 𝑇
−

(𝑤) < 𝑡 < 𝑇
+

(𝑤)} ⊂ R ×

(𝑆
+

\𝐾), and𝑇
−

(𝑤) < 0,𝑇+

(𝑤) > 0 are themaximal existence
times of the trajectory 𝑡 → 𝜂(𝑡, 𝑤) in negative and positive
direction. By the continuity property of the genus, there exists
𝛿 > 0 such that 𝛾(𝑈) = 𝛾(𝐾

𝑐𝑘
), where 𝑈 = 𝑁

𝛿
(𝐾

𝑐𝑘
) := {𝑤 ∈

𝑆
+

: dist(𝑤, 𝐾
𝑐𝑘

) < 𝛿} and 𝛿 < 𝜅/2. Following the deformation
argument (Lemma A.3), we choose 𝜀 = 𝜀(𝛿) > 0 such that

lim
𝑡→𝑇

+
(𝑤)

Ψ (𝜂 (𝑡, 𝑤)) < 𝑐
𝑘

− 𝜀 for 𝑤 ∈ Ψ
𝑐𝑘+𝜀

\ 𝑈. (74)

Then, for every 𝑤 ∈ Ψ
𝑐𝑘+𝜀

\ 𝑈, there exists 𝑡 ∈ [0, 𝑇
+

(𝑤)) such
that Ψ(𝜂(𝑡, 𝑤)) < 𝑐

𝑘
− 𝜀. Hence, we may define the entrance

time map

𝑟 : 𝑤 ∈ Ψ
𝑐𝑘+𝜀

\ 𝑈 → [0, ∞) ,

𝑟 (𝑤) = inf {𝑡 ∈ [0, 𝑇
+

(𝑤)) : Ψ (𝜂 (𝑡, 𝑤)) ≤ 𝑐
𝑘

− 𝜀} ,

(75)

which satisfies 𝑟(𝑤) < 𝑇
+

(𝑤) for every 𝑤 ∈ Ψ
𝑐𝑘+𝜀

\ 𝑈. Since
𝑐
𝑘

− 𝜀 is not a critical value of Ψ by (74), it is easy to see that 𝑟

is a continuous and even map. It follows that the map

𝑔 : Ψ
𝑐𝑘+𝜀

\ 𝑈 → Ψ
𝑐𝑘−𝜀

, 𝑔 (𝑤) = 𝜂 (𝑟 (𝑤) , 𝑤) (76)

is odd and continuous.Then, 𝛾(Ψ
𝑐𝑘+𝜀

\ 𝑈) ≤ 𝛾(Ψ
𝑐𝑘−𝜀

) ≤ 𝑘 − 1,
and consequently,

𝛾 (Ψ
𝑐𝑘+𝜀

) ≤ 𝛾 (𝑈) + 𝑘 − 1 = 𝛾 (𝐾
𝑐𝑘

) + 𝑘 − 1. (77)

So, 𝛾(𝐾
𝑐𝑘

) ≥ 1. Therefore, 𝐾
𝑐𝑘

̸= 0. Moreover, the definition
of 𝑐

𝑘
and of 𝑐

𝑘+1
implies that 𝛾(𝐾

𝑐𝑘
) ≥ 1 if 𝑐

𝑘
< 𝑐

𝑘+1
and

𝛾(𝐾
𝑐𝑘

) > 1 if 𝑐
𝑘

= 𝑐
𝑘+1

. Since 𝛾(F) = 𝛾(𝐾
𝑐𝑘

) ≤ 1, 𝑐
𝑘

<

𝑐
𝑘+1

. Therefore, there is an infinite sequence {±𝑤
𝑘
} of pairs

of geometrically distinct critical points of Ψ with Ψ(𝑤
𝑘
) = 𝑐

𝑘
,

which contradicts with (66). Therefore, the setF is infinite.
This completes the proof of Theorem 2.

Appendix

Here, we give a proof of (74). We state the discrete property
of the Palais-Smale sequences. It yields nice properties of the
corresponding pseudogradient flow.

Lemma A.1. Let 𝑑 ≥ 𝑐. If {𝑤
(𝑘)

1
}, {𝑤

(𝑘)

2
} ⊂ Ψ

𝑑 are two Palais-
Smale sequences for Ψ, then either ‖𝑤

(𝑘)

1
− 𝑤

(𝑘)

2
‖ → 0 as

𝑘 → ∞ or lim sup
𝑘→∞

‖𝑤
(𝑘)

1
− 𝑤

(𝑘)

2
‖ ≥ (𝑑) > 0, where (𝑑)

depends on 𝑑 but not on the particular choice of the Palais-
Smale sequences.

Proof. Set 𝑢
(𝑘)

1
= 𝑚(𝑤

(𝑘)

1
) and 𝑢

(𝑘)

2
= 𝑚(𝑤

(𝑘)

2
). Then, {𝑢

(𝑘)

1
},

{𝑢
(𝑘)

2
} ⊂ 𝐽

𝑑 are the bounded Palais-Smale sequences for 𝐽. We
fix 𝑝 in (𝑓

2
) and consider the following two cases.

(i) ‖ 𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
‖
𝑙
𝑝 → 0 as 𝑘 → ∞.

By a straightforward calculation and (32), for any 𝜀 > 0,
there exist 𝐶

1
, 𝐶

2
> 0, and 𝑘

0
such that for all 𝑘 ≥ 𝑘

0
,








(𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
)

+






2

= 𝐽


(𝑢
(𝑘)

1
) (𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)

+

− 𝐽


(𝑢
(𝑘)

2
) (𝑢

(𝑘)

2
− 𝑢

(𝑘)

2
)

+

+ ∑

𝑛∈Z

𝜒
𝑛

[𝑓
𝑛

(𝑢
(𝑘)

1𝑛
) − 𝑓

𝑛
(𝑢

(𝑘)

2𝑛
)] (𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)

+

≤ 𝜀








(𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
)

+






2
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+ 𝜒 ∑

𝑛∈Z

[𝜀 (






𝑢
(𝑘)

1𝑛






+






𝑢
(𝑘)

2𝑛






)

+ 𝑐
𝜀
(






𝑢
(𝑘)

1𝑛







𝑝−1

+






𝑢
(𝑘)

2𝑛







𝑝−1

)]

×








(𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
)

+






≤ 𝜀








(𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
)

+






+ 𝜒𝜀 (






𝑢
(𝑘)

1







+






𝑢
(𝑘)

2






)








(𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
)

+






+ 𝜒𝑐
𝜀
(






𝑢
(𝑘)

1







𝑝−1

𝑙
𝑝

+






𝑢
(𝑘)

2







𝑝−1

𝑙
𝑝

)








(𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
)

+




𝑙
𝑝

≤ 𝜀








(𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
)

+






+ 𝜒𝜀𝐶
1








(𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
)

+






+ 𝜒𝑐
𝜀
𝐶

2






𝑢
(𝑘)

1
− 𝑢

(𝑘)

2





𝑙
𝑝
.

(A.1)

This implies lim sup
𝑘→∞

‖(𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
)

+

‖

2

≤ lim sup
𝑘→∞

(1 +

𝜒𝐶
1
)𝜀‖(𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)

+

‖. Hence, ‖(𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
)

+

‖ → 0. Similarly,
‖(𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)

−

‖ → 0. Therefore, ‖𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
‖ → 0 as 𝑘 →

∞. By Lemma 13(c), we have ‖𝑤
(𝑘)

1
− 𝑤

(𝑘)

2
‖ = ‖𝑚

−1

(𝑢
(𝑘)

1
) −

𝑚
−1

(𝑢
(𝑘)

2
)‖ → 0 as 𝑘 → ∞.

(ii) ‖𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
‖
𝑙
𝑝  0 as 𝑘 → ∞.

There exist 𝛿 > 0 and 𝑛
𝑘

∈ Z such that





𝑢
(𝑘)

1𝑛𝑘
− 𝑢

(𝑘)

2𝑛𝑘







≥ 𝛿. (A.2)

For bounded sequences {𝑢
(𝑘)

1
}, {𝑢

(𝑘)

2
}, we may pass to subse-

quences so that

𝑢
(𝑘)

1
⇀ 𝑢

1
∈ 𝐸, 𝑢

(𝑘)

2
⇀ 𝑢

2
∈ 𝐸, (A.3)

where 𝑢
1

̸= 𝑢
2
by (A.2) and 𝐽



(𝑢
1
) = 𝐽



(𝑢
2
) = 0, and








(𝑢
(𝑘)

1
)

+






→ 𝛼
1
,








(𝑢
(𝑘)

1
)

+






→ 𝛼
2
, (A.4)

where √2𝑐 ≤ 𝛼
𝑖
≤ ](𝑑), 𝑖 = 1, 2 by Lemma 9(b).

If 𝑢
1

̸= 0 and 𝑢
2

̸= 0.Then, 𝑢
1
, 𝑢

2
∈ M and𝑤

1
= 𝑚

−1

(𝑢
1
) ∈

𝐾, 𝑤
2

= 𝑚
−1

(𝑢
2
) ∈ 𝐾, 𝑤

1
̸= 𝑤

2
. Therefore,

lim inf
𝑘→∞






𝑤

(𝑘)

1
− 𝑤

(𝑘)

2







= lim inf
𝑘→∞















(𝑢
(𝑘)

1
)

+








(𝑢
(𝑘)

1
)

+






−

(𝑢
(𝑘)

2
)

+








(𝑢
(𝑘)

2
)

+




















≥











𝑢
+

1

𝛼
1

−

𝑢
+

2

𝛼
2











=




𝛽
1
𝑤

1
− 𝛽

2
𝑤

2






,

(A.5)

where 𝛽
1

= ‖𝑢
+

1
‖/𝛼

1
≥ √2𝑐/](𝑑) and 𝛽

2
= ‖𝑢

+

2
‖/𝛼

2
≥

√2𝑐/](𝑑). Since ‖𝑤
1
‖ = ‖𝑤

2
‖ = 1, we have

lim inf
𝑘→∞






𝑤

(𝑘)

1
− 𝑤

(𝑘)

2







≥




𝛽
1
𝑤

1
− 𝛽

2
𝑤

2






≥ min {𝛽
1
, 𝛽

2
}





𝑤

1
− 𝑤

2






≥

√2𝑐𝜅

] (𝑑)

.

(A.6)

If 𝑢
1

= 0, then 𝑢
2

̸= 0 and

lim inf
𝑘→∞






𝑤

(𝑘)

1
− 𝑤

(𝑘)

2







= lim inf
𝑘→∞















(𝑢
(𝑘)

1
)

+








(𝑢
(𝑘)

1
)

+






−

(𝑢
(𝑘)

2
)

+








(𝑢
(𝑘)

2
)

+




















≥





𝑢
+

2






𝛼
2

≥

√2𝑐

] (𝑑)

.

(A.7)

Similarly, if 𝑢
2

= 0, then 𝑢
1

̸= 0 and lim inf
𝑘→∞

‖𝑤
(𝑘)

1
−𝑤

(𝑘)

2
‖ ≥

√2𝑐/](𝑑).
The proof is complete.

Lemma A.2. For every 𝑤 ∈ 𝑆
+, the limit lim

𝑡→𝑇
+
(𝑤)

𝜂(𝑡, 𝑤)

exists and is a critical point of Ψ.

Proof. Fix𝑤 ∈ 𝑆
+ and set 𝑑 = Ψ(𝑤).We distinguish two cases

to finish the proof.

Case 1 (𝑇
+

(𝑤) < ∞). For 0 ≤ 𝑠 < 𝑡 < 𝑇
+

(𝑤), by (72) and (73),
we have





𝜂 (𝑡, 𝑤) − 𝜂 (𝑠, 𝑤)






≤ ∫

𝑡

𝑠





𝑉 (𝜂 (𝜏, 𝑤))






𝑑𝜏

≤ 2√2 ∫

𝑡

𝑠

√⟨Ψ

( 𝜂 (𝜏, 𝑤)) , 𝑉 (𝜂 (𝜏, 𝑤))⟩𝑑𝜏

≤ 2√2 (𝑡 − 𝑠)(∫

𝑡

𝑠

⟨Ψ


(𝜂 (𝜏, 𝑤)) , 𝑉 (𝜂 (𝜏, 𝑤))⟩ 𝑑𝜏)

1/2

= 2√2 (𝑡 − 𝑠)[Ψ (𝜂 (𝑠, 𝑤)) − Ψ (𝜂 (𝑡, 𝑤))]
1/2

≤ 2√2 (𝑡 − 𝑠)[Ψ (𝑤) − 𝑐]
1/2

.

(A.8)

Since 𝑇
+

(𝑤) < ∞, this implies that lim
𝑡→𝑇

+
(𝑤)

𝜂(𝑡, 𝑤) exists
and is a critical point of Ψ, otherwise the trajectory 𝑡 →

𝜂(𝑡, 𝑤) could be continued beyond 𝑇
+

(𝑤).

Case 2 (𝑇
+

(𝑤) = ∞). To prove that lim
𝑡→𝑇

+
(𝑤)

𝜂(𝑡, 𝑤) exists,
we claim that for every 𝜀 > 0, there exists 𝑡

𝜀
> 0 such that

‖𝜂(𝑡
𝜀
, 𝑤) − 𝜂(𝑡, 𝑤)‖ < 𝜀 for 𝑡 ≥ 𝑡

𝜀
. If not, then there exist

0 < 𝜀
0

< (1/2)(𝑑) ((𝑑) is the same number in Lemma A.1)
and a sequence {𝑡

𝑛
} ⊂ [0, ∞) with 𝑡

𝑛
→ ∞ such that

‖𝜂(𝑡
𝑛
, 𝑤) − 𝜂(𝑡

𝑛+1
, 𝑤)‖ = 𝜀

0
for every 𝑛. Choose the smallest

𝑡
1

𝑛
∈ (𝑡

𝑛
, 𝑡

𝑛+1
) such that ‖𝜂(𝑡

𝑛
, 𝑤) − 𝜂(𝑡

1

𝑛
, 𝑤)‖ = 𝜀

0
/3. Let

𝜄
𝑛

= min
𝑠∈[𝑡𝑛,𝑡

1
𝑛
]
‖Ψ



(𝜂(𝑠, 𝑤))‖. By (72) and (73), we have

𝜀
0

3

=






𝜂 (𝑡

1

𝑛
, 𝑤) − 𝜂 (𝑡

𝑛
, 𝑤)







≤ ∫

𝑡
1

𝑛

𝑡𝑛





𝑉 (𝜂 (𝜏, 𝑤))






𝑑𝜏

≤ 2 ∫

𝑡
1

𝑛

𝑡𝑛






Ψ



(𝜂 (𝜏, 𝑤))







𝑑𝜏
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≤

2

𝜄
𝑛

∫

𝑡
1

𝑛

𝑡𝑛






Ψ



(𝜂 (𝜏, 𝑤))







2

𝑑𝜏

≤

4

𝜄
𝑛

∫

𝑡
1

𝑛

𝑡𝑛

⟨Ψ


(𝜂 (𝜏, 𝑤)) , 𝑉 (𝜂 (𝜏, 𝑤))⟩ 𝑑𝜏

=

4

𝜄
𝑛

(Ψ (𝜂 (𝑡
𝑛
, 𝑤)) − Ψ (𝜂 (𝑡

1

𝑛
, 𝑤))) .

(A.9)

Since Ψ(𝜂(𝑡
𝑛
, 𝑤)) − Ψ(𝜂(𝑡

1

𝑛
, 𝑤)) → 0 as 𝑛 → ∞, 𝜄

𝑛
→ 0

and there exist �̃�
1

𝑛
∈ [𝑡

𝑛
, 𝑡

1

𝑛
] such that Ψ



(𝑤
1

𝑛
) → 0, where

𝑤
1

𝑛
= 𝜂(�̃�

1

𝑛
, 𝑤). Similarly, we choose the largest 𝑡

2

𝑛
∈ (𝑡

1

𝑛
, 𝑡

𝑛+1
)

such that ‖𝜂(𝑡
𝑛+1

, 𝑤) − 𝜂(𝑡
2

𝑛
, 𝑤)‖ = 𝜀

0
/3. Then, there exist �̃�

2

𝑛
∈

[𝑡
2

𝑛
, 𝑡

𝑛+1
] such that Ψ



(𝑤
2

𝑛
) → 0, where 𝑤

2

𝑛
= 𝜂(�̃�

2

𝑛
, 𝑤). Since

‖𝑤
1

𝑛
−𝜂(𝑡

𝑛
, 𝑤)‖ ≤ 𝜀

0
/3 and ‖𝑤

2

𝑛
−𝜂(𝑡

𝑛+1
, 𝑤)‖ ≤ 𝜀

0
/3, {𝑤1

𝑛
}, {𝑤

2

𝑛
}

are two the Palais-Smale sequences such that

𝜀
0

3

≤






𝑤

1

𝑛
− 𝑤

2

𝑛







≤






𝑤

1

𝑛
− 𝜂 (𝑡

𝑛
, 𝑤)







+




𝜂 (𝑡

𝑛
, 𝑤) − 𝜂 (𝑡

𝑛+1
, 𝑤)






+






𝑤

2

𝑛
− 𝜂 (𝑡

𝑛+1
, 𝑤)







≤ 2𝜀
0

<  (𝑑) ,

(A.10)

which contradicts with Lemma A.1. This proves the claim.
Therefore, lim

𝑡→𝑇
+
(𝑤)

𝜂(𝑡, 𝑤) exists, and, obviously, it must be
a critical point of Ψ. This completes the proof.

Lemma A.3. Let 𝑑 ≥ 𝑐. Then, for every 𝛿 > 0, there exists
𝜀 = 𝜀(𝛿) > 0 such that

(a) Ψ
𝑑+𝜀

𝑑−𝜀
∩ 𝐾 = 𝐾

𝑑
,

(b) lim
𝑡→𝑇

+
(𝑤)

Ψ(𝜂(𝑡, 𝑤)) < 𝑑 − 𝜀 for 𝑤 ∈ Ψ
𝑑+𝜀

\ 𝑁
𝛿
(𝐾

𝑑
).

Proof. (a) According to (66), for 𝜀 > 0 small enough, it is easy
to see that (a) is satisfied.

(b) Without loss of generality, we may assume that
𝑁

𝛿
(𝐾

𝑑
) ⊂ Ψ

𝑑+1 and 𝛿 < (𝑑 + 1). Set

𝜏 = inf {






Ψ



(𝑤)







: 𝑤 ∈ 𝑁
𝛿

(𝐾
𝑑
) \ 𝑁

𝛿/2
(𝐾

𝑑
)} . (A.11)

We claim that 𝜏 > 0. Indeed, if not, then there exists a
sequence {𝑤

(𝑘)

1
} ⊂ 𝑁

𝛿
(𝐾

𝑑
) \ 𝑁

𝛿/2
(𝐾

𝑑
) such that Ψ



(𝑤
(𝑘)

1
) →

0. By the Z-invariance of Ψ and assumption (66), we may
assume 𝑤

(𝑘)

1
∈ 𝑁

𝛿
(𝑤

0
) \ 𝑁

𝛿/2
(𝑤

0
) for some 𝑤

0
∈ 𝐾

𝑑
after

passing to a subsequence. Let 𝑤
(𝑘)

2
→ 𝑤

0
. Then, Ψ

(𝑤
(𝑘)

2
) →

0 and

𝛿

2

≤ lim sup
𝑛→∞






𝑤

(𝑘)

1
− 𝑤

(𝑘)

2







≤ 𝛿 <  (𝑑 + 1) , (A.12)

which contradicts with Lemma A.1. This proves the claim.
Let

𝑀 = sup {






Ψ



(𝑤)







: 𝑤 ∈ 𝑁
𝛿

(𝐾
𝑑
) \ 𝑁

𝛿/2
(𝐾

𝑑
)} . (A.13)

Choose 𝜀 < 𝛿𝜏
2

/8𝑀 such that (a) holds. By Lemma A.1 and
(a), the only way that (b) can fail is that 𝜂(𝑡, 𝑤) → 𝑤 ∈ 𝐾

𝑑
as

𝑡 → 𝑇
+

(𝑤) for some 𝑤 ∈ Ψ
𝑑+𝜀

\ 𝑁
𝛿
(𝐾

𝑑
). In this case, we let

𝑡
1

= sup {𝑡 ∈ [0, 𝑇
+

(𝑤)) : 𝜂 (𝑡, 𝑤) ∉ 𝑁
𝛿

(𝑤)} ,

𝑡
2

= inf {𝑡 ∈ (𝑡
1
, 𝑇

+

(𝑤)) : 𝜂 (𝑡, 𝑤) ∈ 𝑁
𝛿/2

(𝑤)} .

(A.14)

Then,

𝛿

2

=




𝜂 (𝑡

1
, 𝑤) − 𝜂 (𝑡

2
, 𝑤)






≤ ∫

𝑡2

𝑡1





𝑉 (𝜂 (𝜏, 𝑤))






𝑑𝜏

≤ 2 ∫

𝑡2

𝑡1






Ψ



(𝜂 (𝜏, 𝑤))







𝑑𝜏

≤ 2𝑀 (𝑡
2

− 𝑡
1
) ,

Ψ (𝜂 (𝑡
2
, 𝑤)) − Ψ (𝜂 (𝑡

1
, 𝑤))

= − ∫

𝑡2

𝑡1

⟨Ψ


(𝜂 (𝜏, 𝑤)) , 𝑉 (𝜂 (𝜏, 𝑤))⟩ 𝑑𝑠

≤ −

1

2

∫

𝑡2

𝑡1






Ψ



(𝜂 (𝑠, 𝑤))







2

𝑑𝑠

≤ −

1

2

𝜏
2

(𝑡
2

− 𝑡
1
) ≤ −

𝛿𝜏
2

8𝑀

.

(A.15)

It follows that Ψ(𝜂(𝑡
2
, 𝑤)) ≤ 𝑑 + 𝜀 − (𝛿𝜏

2

/8𝑀) < 𝑑 and
therefore 𝜂(𝑡

2
, 𝑤)  𝑤, a contradiction again.This completes

the proof.
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This paper investigates dynamical behaviors of stochastic Hopfield neural networks with both time-varying and continuously
distributed delays. By employing the Lyapunov functional theory and linear matrix inequality, some novel criteria on asymptotic
stability, ultimate boundedness, and weak attractor are derived. Finally, an example is given to illustrate the correctness and
effectiveness of our theoretical results.

1. Introduction

Hopfield neural networks [1] have been extensively studied
in the past years and found many applications in differ-
ent areas such as pattern recognition, associative memory,
and combinatorial optimization. Such applications heavily
depend on the dynamical behaviors such as stability, uniform
boundedness, ultimate boundedness, attractor, bifurcation,
and chaos. As it is well known, time delays are unavoidably
encountered in the implementation of neural networks. Since
time delays as a source of instability and bad performance
always appear in many neural networks owing to the finite
speed of information processing, the stability analysis for the
delayed neural networks has received considerable attention.
However, in these recent publications, most research on
delayed neural networks has been restricted to simple cases
of discrete delays. Since a neural network usually has a
spatial nature due to the presence of an amount of parallel
pathways of a variety of axon sizes and lengths, it is desired
to model them by introducing distributed delays. Therefore,
both discrete and distributed delays should be taken into
account when modeling realistic neural networks [2, 3].

On the other hand, it has now been well recognized
that stochastic disturbances are also ubiquitous owing to
thermal noise in electronic implementations. Therefore, it

is important to understand how these disturbances affect
the networks. Many results on stochastic neural networks
have been reported in [4–24]. Some sufficient criteria on the
stability of uncertain stochastic neural networks were derived
in [4–7]. Almost sure exponential stability of stochastic neu-
ral networks was studied in [8–10]. In [11–16], mean square
exponential stability and 𝑝th moment exponential stability
of stochastic neural networks were discussed. The stability
of stochastic impulsive neural networks was discussed in
[17–19]. The stability of stochastic neural networks with the
Markovian jumping parameters was investigated in [20–22].
The passivity analysis for stochastic neural networks was
discussed in [23, 24]. These references mainly considered the
stability of equilibrium point of stochastic delayed neural
networks. What do we study to understand the asymptotic
behaviors when the equilibrium point does not exist?

Except for the stability property, boundedness and attrac-
tor are also foundational concepts of dynamical systems.They
play an important role in investigating the uniqueness of
equilibrium, global asymptotic stability, global exponential
stability, and the existence of periodic solution, its control,
and synchronization [25]. Recently, ultimate boundedness
and attractor of several classes of neural networks with
time delays have been reported in [26–33]. Some sufficient
criteria were derived in [26, 27], but these results hold only
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under constant delays. Following, in [28], the globally robust
ultimate boundedness of integrodifferential neural networks
with uncertainties and varying delayswere studied.After that,
some sufficient criteria on the ultimate boundedness of neural
networks with both varying and unbounded delays were
derived in [29], but the concerned systems are deterministic
ones. In [30, 31], a series of criteria on the boundedness,
global exponential stability, and the existence of periodic
solution for nonautonomous recurrent neural networks were
established. In [32, 33], the ultimate boundedness and weak
attractor of stochastic neural networks with time-varying
delays were discussed. To the best of our knowledge, for
stochastic neural networks with mixed time delays, there are
few published results on the ultimate boundedness and weak
attractor. Therefore, the arising questions about the ultimate
boundedness, weak attractor, and asymptotic stability of the
stochastic Hopfield neural networks with mixed time delays
are important and meaningful.

The left paper is organized as follows. Some preliminaries
are in Section 2, main results are presented in Section 3, a
numerical example is given in Section 4, and conclusions are
drawn in Section 5.

2. Preliminaries

Consider the following stochastic Hopfield neural networks
with both time-varying and continuously distributed delays:

𝑑𝑥 (𝑡) = [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽] 𝑑𝑡

+ [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡) ,

(1)

in which 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇 is a state vector associated

with the neurons; 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
), 𝑐
𝑖

> 0 represents
the rate with which the 𝑖th unit will reset its potential to
the resting state in isolation when being disconnected from
the network and the external stochastic perturbation; 𝐴 =

(𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

, and 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

represent the
connection weight matrix, the delayed connection weight
matrix, and the distributively delayed connection weight
matrix, respectively; 𝐽 = (𝐽

1
, . . . , 𝐽

𝑛
)
𝑇, 𝐽
𝑖
denotes the external

bias on the ith unit; 𝑓(𝑥(𝑡)) = (𝑓
1
(𝑥
1
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡)))
𝑇,

𝑔(𝑥(𝑡)) = (𝑔
1
(𝑥
1
(𝑡)), . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑡)))
𝑇, 𝑓
𝑗
and 𝑔

𝑗
denote

activation functions, 𝐾(𝑡) = diag(𝑘
1
(𝑡), . . . , 𝑘

𝑛
(𝑡)), and the

delay kernel 𝑘
𝑗
(𝑡) is a real-valued nonnegative continuous

function defined on [0,∞); 𝜎
1
and 𝜎
2
are diffusion coefficient

matrices; 𝑤(𝑡) is a one-dimensional Brownian motion or
Winner process, which is defined on a complete probability
space (Ω,F, 𝑃) with a natural filtration {F

𝑡
}
𝑡≥0

generated
by {𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡}; 𝜏(𝑡) is the transmission delay,
and the initial conditions associated with system (1) are of
the following forms: 𝑥(𝑡) = 𝜉(𝑡), −∞ < 𝑡 ≤ 0, where
𝜉(⋅) is aF

0
-measurable, bounded, and continuous 𝑅𝑛-valued

random variable defined on (−∞, 0].
Throughout this paper, one always supposes that the

following condition holds.

(A1) For 𝑓(𝑥(𝑡)) and 𝑔(𝑥(𝑡)) in (1), there are always con-
stants 𝑙−

𝑖
, 𝑙+
𝑖
,𝑚−
𝑖
, and𝑚

+

𝑖
such that

𝑙
−

𝑖
≤

𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑦)

𝑥 − 𝑦

≤ 𝑙
+

𝑖
,

𝑚
−

𝑖
≤

𝑔
𝑖
(𝑥) − 𝑔

𝑖
(𝑦)

𝑥 − 𝑦

≤ 𝑚
+

𝑖
, ∀𝑥, 𝑦 ∈ 𝑅.

(2)

Moreover, there exist constant ] > 0 and matrix
𝐾(]) = diag(𝑘

1
(]), . . . , 𝑘

𝑛
(])) > 0 such that

∫

∞

0

𝑘
𝑗
(𝜃) 𝑑𝜃 = 1, ∫

∞

0

𝑘
𝑗
(𝜃) 𝑒

]𝜃
𝑑𝜃 = 𝑘

𝑗
(]) < ∞. (3)

Following, 𝐴 > 0 (resp., 𝐴 ≥ 0) means that matrix 𝐴 is
a symmetric positive definite (resp., positive semi-definite).
𝐴
𝑇 and𝐴

−1 denote the transpose and inverse of thematrix𝐴.
𝜆max(𝐴) and 𝜆min(𝐴) represent the maximum and minimum
eigenvalues of matrix 𝐴, respectively.

Definition 1. System (1) is said to be stochastically ultimately
bounded if, for any 𝜀 ∈ (0, 1), there is a positive constant 𝐶 =

𝐶(𝜀) such that the solution 𝑥(𝑡) of system (1) satisfies

lim sup
𝑡→∞

𝑃 {‖𝑥 (𝑡)‖ ≤ 𝐶} ≥ 1 − 𝜀. (4)

Lemma 2 (see [34]). Let 𝑄(𝑥) = 𝑄
𝑇

(𝑥), 𝑅(𝑥) = 𝑅
𝑇

(𝑥) and
𝑆(𝑥) depends affinely on 𝑥. Then, linear matrix inequality

(

𝑄 (𝑥) 𝑆 (𝑥)

𝑆
𝑇

(𝑥) 𝑅 (𝑥)

) > 0 (5)

is equivalent to

(1) 𝑅(𝑥) > 0, 𝑄(𝑥) − 𝑆(𝑥)𝑅
−1

(𝑥)𝑆
𝑇

(𝑥) > 0,

(2) 𝑄(𝑥) > 0, 𝑅(𝑥) − 𝑆
𝑇

(𝑥)𝑄
−1

(𝑥)𝑆(𝑥) > 0.

3. Main Results

Theorem 3. System (1) is stochastically ultimately bounded
provided that 𝜏(𝑡) satisfies 0 ≤ 𝜏(𝑡) ≤ 𝜏, ̇𝜏(𝑡) ≤ 𝜇 ≤ 1, and there
exist some matrices 𝑃 > 0, 𝑄

𝑖
≥ 0, 𝑈

𝑖
= diag(𝑢

𝑖1
, . . . , 𝑢

𝑖𝑛
) ≥ 0

(𝑖 = 1, 2, 3, 4) such that the following linear matrix inequality
holds:

Σ =

(

(

(

(

(

Σ
11

0 𝑃𝐴 + 𝐿
2
𝑈
1

𝑃𝐵 𝑀
2
𝑈
4

𝑃𝐷 𝜎
𝑇

1
𝑃

∗ Σ
22

0 𝐿
2
𝑈
2

0 0 𝜎
𝑇

2
𝑃

∗ ∗ Σ
33

0 0 0 0

∗ ∗ ∗ Σ
44

0 0 0

∗ ∗ ∗ ∗ Σ
55

0 0

∗ ∗ ∗ ∗ ∗ −𝑈
3

0

∗ ∗ ∗ ∗ ∗ −𝑃

)

)

)

)

)

< 0,

(6)
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where ∗ denotes the corresponding symmetric terms,
Σ
11

= 𝑄
1
+ 𝜏𝑄
2
− 𝑃𝐶 − 𝐶𝑃 − 2𝐿

1
𝑈
1
− 2𝑀
1
𝑈
4
,

Σ
22

= − (1 − 𝜇)𝑄
1
− 2𝐿
1
𝑈
2
, Σ
33

= 𝑄
3
+ 𝜏𝑄
4
− 2𝑈
1
,

Σ
44

= − (1 − 𝜇)𝑄
3
− 2𝑈
2
, Σ
55

= 𝑈
3
𝐾 (]) − 2𝑈

4
,

𝐿
1
= diag (𝑙−

1
𝑙
+

1
, . . . , 𝑙

−

𝑛
𝑙
+

𝑛
) ,

𝐿
2
= diag (𝑙−

1
+ 𝑙
+

1
, . . . , 𝑙

−

𝑛
+ 𝑙
+

𝑛
) ,

𝑀
1
= diag (𝑚−

1
𝑚
+

1
, . . . , 𝑚

−

𝑛
𝑚
+

𝑛
) ,

𝑀
2
= diag (𝑚−

1
+ 𝑚
+

1
, . . . , 𝑚

−

𝑛
+ 𝑚
+

𝑛
) .

(7)

Proof. The key of the proof is to prove that there exists a
positive constant𝐶

∗
, which is independent of the initial data,

such that

lim sup
𝑡→∞

𝐸‖𝑥(𝑡)‖
2

≤ 𝐶
∗
. (8)

If (8) holds, then it follows from Chebyshev’s inequality that
for any 𝜀 > 0 and 𝐶 = √𝐶

∗
/𝜀,

lim sup
𝑡→∞

𝑃 {‖𝑥 (𝑡)‖ > 𝐶} ≤

lim sup
𝑡→∞

𝐸‖𝑥 (𝑡)‖
2

𝐶
2

= 𝜀, (9)

which implies that (4) holds. Now, we begin to prove that (8)
holds.

From Σ < 0 and Lemma 2, one may obtain

(

(

Σ
11

0 𝑃𝐴 + 𝐿
2
𝑈
1

𝑃𝐵 𝑀
2
𝑈
4

𝑃𝐷

∗ Σ
22

0 𝐿
2
𝑈
2

0 0

∗ ∗ Σ
33

0 0 0

∗ ∗ ∗ Σ
44

0 0

∗ ∗ ∗ ∗ Σ
55

0

∗ ∗ ∗ ∗ ∗ −𝑈
3

)

)

+
(

(

𝜎
𝑇

1
𝑃

𝜎
𝑇

2
𝑃

0

0

0

0

)

)

𝑃
−1
(

(

𝜎
𝑇

1
𝑃

𝜎
𝑇

2
𝑃

0

0

0

0

)

)

𝑇

< 0.

(10)

Hence, there exists a sufficiently small 𝜆 ∈ (0, ]) such that

Γ =
(

(

Γ
11

0 𝑃𝐴 + 𝐿
2
𝑈
1

𝑃𝐵 𝑀
2
𝑈
4

𝑃𝐷

∗ Γ
22

0 𝐿
2
𝑈
2

0 0

∗ ∗ Γ
33

0 0 0

∗ ∗ ∗ Γ
44

0 0

∗ ∗ ∗ ∗ Γ
55

0

∗ ∗ ∗ ∗ ∗ −𝑈
3

)

)

+
(

(

(

𝜎
𝑇

1
𝑃

𝜎
𝑇

2
𝑃

0

0

0

0

)

)

)

𝑃
−1(

(

(

𝜎
𝑇

1
𝑃

𝜎
𝑇

2
𝑃

0

0

0

0

)

)

)

𝑇

< 0,

(11)

where 𝐼 is identity matrix,

Γ
11

= 𝑒
𝜆𝜏

𝑄
1
+ 𝜏𝑄
2
− 𝑃𝐶 − 𝐶𝑃 − 2𝐿

1
𝑈
1

− 2𝑀
1
𝑈
4
+ 2𝜆𝑃 + 2𝜆𝐼,

Γ
22

= Σ
22

+ 𝜆𝐼, Γ
33

= 𝜆𝐼 + 𝑒
𝜆𝜏

𝑄
3
+ 𝜏𝑄
4
− 2𝑈
1
,

Γ
44

= Σ
44

+ 𝜆𝐼, Γ
55

= Σ
55

+ 𝜆𝐼.

(12)

Consider the Lyapunov-Krasovskii function as follows:

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑉
1
(𝑥 (𝑡) , 𝑡) + 𝑉

2
(𝑥 (𝑡) , 𝑡)

+ 𝑉
3
(𝑥 (𝑡) , 𝑡) + 𝑉

4
(𝑥 (𝑡) , 𝑡) ,

(13)

where

𝑉
1
(𝑥 (𝑡) , 𝑡) = 𝑒

𝜆𝑡

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑥 (𝑡) , 𝑡) =

𝑛

∑

𝑗=1

𝑢
3𝑗
∫

∞

0

𝑘
𝑗
(𝜃) ∫

𝑡

𝑡−𝜃

𝑒
𝜆(𝑠+𝜃)

𝑔
2

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠 𝑑𝜃,

𝑉
3
(𝑥 (𝑡) , 𝑡)

= ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝜆(𝑠+𝜏)

[𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) + 𝑓

𝑇

(𝑥 (𝑠)) 𝑄
3
𝑓 (𝑥 (𝑠))] 𝑑𝑠,

𝑉
4
(𝑥 (𝑡) , 𝑡)

= ∫

𝑡

𝑡−𝜏(𝑡)

∫

𝑡

𝑠

𝑒
𝜆𝜃

[𝑥
𝑇

(𝜃) 𝑄
2
𝑥 (𝜃)

+𝑓
𝑇

(𝑥 (𝜃)) 𝑄
4
𝑓 (𝑥 (𝜃))] 𝑑𝜃 𝑑𝑠.

(14)

Then, it can be obtained by Ito’s formula in [35] that

𝑑𝑉 (𝑥 (𝑡) , 𝑡)

= 𝑒
𝜆𝑡

2𝑥
𝑇

(𝑡) 𝑃 [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡)

+ {L𝑉
1
(𝑥 (𝑡) , 𝑡)

+

𝜕 [𝑉
2
(𝑥 (𝑡) , 𝑡) + 𝑉

3
(𝑥 (𝑡) , 𝑡) + 𝑉

4
(𝑥 (𝑡) , 𝑡)]

𝜕𝑡

} 𝑑𝑡,

(15)

where

𝜕𝑉
2
(𝑥 (𝑡) , 𝑡)

𝜕𝑡

=

𝑛

∑

𝑗=1

𝑢
3𝑗
∫

∞

0

𝑘
𝑗
(𝜃) [𝑒
𝜆(𝑡+𝜃)

𝑔
2

𝑗
(𝑥
𝑗
(𝑡)) − 𝑒

𝜆𝑡

𝑔
2

𝑗
(𝑥
𝑗
(𝑡 − 𝜃))] 𝑑𝜃

≤ 𝑒
𝜆𝑡

𝑛

∑

𝑗=1

𝑢
3𝑗
𝑘
𝑗
(]) 𝑔
2

𝑗
(𝑥
𝑗
(𝑡))
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− 𝑒
𝜆𝑡

𝑛

∑

𝑗=1

𝑢
3𝑗
[∫

∞

0

𝑘
𝑗
(𝜃) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜃)) 𝑑𝜃]

2

= 𝑒
𝜆𝑡

𝑔
𝑇

(𝑥 (𝑡)) 𝑈
3
𝐾 (]) 𝑔 (𝑥 (𝑡))

− 𝑒
𝜆𝑡

(∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

× 𝑈
3
(∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠) ,

𝜕𝑉
3
(𝑥 (𝑡) , 𝑡)

𝜕𝑡

= 𝑒
𝜆(𝑡+𝜏)

[𝑥
𝑇

(𝑡) 𝑄
1
𝑥 (𝑡) + 𝑓

𝑇

(𝑥 (𝑡)) 𝑄
3
𝑓 (𝑥 (𝑡))]

− (1 − ̇𝜏 (𝑡)) 𝑒
𝜆(𝑡−𝜏(𝑡)+𝜏)

× [𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
1
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄
3
𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))]

≤ 𝑒
𝜆(𝑡+𝜏)

[𝑥
𝑇

(𝑡) 𝑄
1
𝑥 (𝑡) + 𝑓

𝑇

(𝑥 (𝑡)) 𝑄
3
𝑓 (𝑥 (𝑡))]

− (1 − 𝜇) 𝑒
𝜆𝑡

× [𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
1
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄
3
𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))] ,

𝜕𝑉
4
(𝑥 (𝑡) , 𝑡)

𝜕𝑡

= 𝑒
𝜆𝑡

𝜏 (𝑡) [𝑥
𝑇

(𝑡) 𝑄
2
𝑥 (𝑡) + 𝑓

𝑇

(𝑥 (𝑡)) 𝑄
4
𝑓 (𝑥 (𝑡))]

− (1 − ̇𝜏 (𝑡))

× ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝜆𝑠

[𝑥
𝑇

(𝑠) 𝑄
2
𝑥 (𝑠)+𝑓

𝑇

(𝑥 (𝑠)) 𝑄
4
𝑓 (𝑥 (𝑠))] 𝑑𝑠

≤ 𝑒
𝜆𝑡

𝜏 [𝑥
𝑇

(𝑡) 𝑄
2
𝑥 (𝑡) + 𝑓

𝑇

(𝑥 (𝑡)) 𝑄
4
𝑓 (𝑥 (𝑡))] ,

(16)
L𝑉
1
(𝑥 (𝑡) , 𝑡)

=

𝜕𝑉
1
(𝑥 (𝑡) , 𝑡)

𝜕𝑡

+

𝜕𝑉
1
(𝑥 (𝑡) , 𝑡)

𝜕𝑥

× [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽]

+ trace([𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇 𝜕
2

𝑉
1
(𝑥 (𝑡) , 𝑡)

𝜕𝑥
2

× [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] )

= 𝜆𝑒
𝜆𝑡

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+ 𝑒
𝜆𝑡

2𝑥
𝑇

(𝑡) 𝑃 [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡))

+ 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠+𝐽]

+ 𝑒
𝜆𝑡

[𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇

× 𝑃 [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))]

≤ 𝜆𝑒
𝜆𝑡

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+ 𝑒
𝜆𝑡

2𝑥
𝑇

(𝑡) 𝑃 [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡))

+ 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠]

+ 𝑒
𝜆𝑡

[𝜆𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝜆
−1

𝐽
𝑇

𝑃𝐽]

+ 𝑒
𝜆𝑡

[𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇

× 𝑃 [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] ,

(17)

in which the following inequality is used:

2𝑥
𝑇

𝑃𝐽 ≤ 𝜆𝑥
𝑇

𝑃𝑥 + 𝜆
−1

𝐽
𝑇

𝑃
𝑇

𝑃
−1

𝑃𝐽

= 𝜆𝑥
𝑇

𝑃𝑥 + 𝜆
−1

𝐽
𝑇

𝑃𝐽, for 𝑃 > 0, 𝜆 > 0.

(18)

On the other hand, it follows from (A1) that for 𝑖 =

1, . . . , 𝑛,

[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)] ≤ 0,

[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))] ≤ 0,

(19)

0 ≤ 𝑒
𝜆𝑡

{−2

𝑛

∑

𝑖=1

𝑢
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑢
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

−𝑓
𝑖
(0) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]
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× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0)

−𝑙
−

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))] }

= 𝑒
𝜆𝑡

{−2

𝑛

∑

𝑖=1

𝑢
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑢
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

− 2

𝑛

∑

𝑖=1

𝑢
1𝑖
𝑓
2

𝑖
(0)

+ 2

𝑛

∑

𝑖=1

𝑢
1𝑖
𝑓
𝑖
(0) [2𝑓

𝑖
(𝑥
𝑖
(𝑡)) − (𝑙

+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑢
2𝑖
𝑓
2

𝑖
(0)

+ 2

𝑛

∑

𝑖=1

𝑢
2𝑖
𝑓
𝑖
(0) [2𝑓

𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

− (𝑙
+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡 − 𝜏 (𝑡))] }

≤ 𝑒
𝜆𝑡

{−2

𝑛

∑

𝑖=1

𝑢
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑢
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

+

𝑛

∑

𝑖=1

[




4𝑢
1𝑖
𝑓
𝑖
(0) 𝑓
𝑖
(𝑥
𝑖
(𝑡))






+




2𝑢
1𝑖
𝑓
𝑖
(0) (𝑙
+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡)





]

+

𝑛

∑

𝑖=1

[




4𝑢
2𝑖
𝑓
𝑖
(0) 𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))






+




2𝑢
2𝑖
𝑓
𝑖
(0) (𝑙
+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡 − 𝜏 (𝑡))





] }

≤ 𝑒
𝜆𝑡

{−2

𝑛

∑

𝑖=1

𝑢
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑢
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

+

𝑛

∑

𝑖=1

[𝜆𝑓
2

𝑖
(𝑥
𝑖
(𝑡)) + 4𝜆

−1

𝑓
2

𝑖
(0) 𝑢
2

1𝑖

+𝜆𝑥
2

𝑖
(𝑡) + 𝜆

−1

𝑓
2

𝑖
(0) 𝑢
2

1𝑖
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)

2

]

+

𝑛

∑

𝑖=1

[𝜆𝑓
2

𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) + 4𝜆

−1

𝑓
2

𝑖
(0) 𝑢
2

2𝑖

+ 𝜆𝑥
2

𝑖
(𝑡 − 𝜏 (𝑡))

+𝜆
−1

𝑓
2

𝑖
(0) 𝑢
2

2𝑖
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)

2

]} .

(20)

Similarly, one may obtain

0 ≤ 𝑒
𝜆𝑡

{−2

𝑛

∑

𝑖=1

𝑢
4𝑖
[𝑔
𝑖
(𝑥
𝑖
(𝑡)) − 𝑔

𝑖
(0) − 𝑚

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑔
𝑖
(𝑥
𝑖
(𝑡)) − 𝑔

𝑖
(0) − 𝑚

−

𝑖
𝑥
𝑖
(𝑡)] }

≤ 𝑒
𝜆𝑡

{−2

𝑛

∑

𝑖=1

𝑢
4𝑖
[𝑔
𝑖
(𝑥
𝑖
(𝑡)) − 𝑚

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑔
𝑖
(𝑥
𝑖
(𝑡)) − 𝑚

−

𝑖
𝑥
𝑖
(𝑡)]

+

𝑛

∑

𝑖=1

[𝜆𝑔
2

𝑖
(𝑥
𝑖
(𝑡)) + 4𝜆

−1

𝑔
2

𝑖
(0) 𝑢
2

4𝑖

+𝜆𝑥
2

𝑖
(𝑡) + 𝜆

−1

𝑔
2

𝑖
(0) 𝑢
2

4𝑖
(𝑚
+

𝑖
+ 𝑚
−

𝑖
)

2

]} .

(21)

Therefore, from (15)–(21), it follows that

𝑑𝑉 (𝑥 (𝑡) , 𝑡) ≤ 𝑒
𝜆𝑡

2𝑥
𝑇

(𝑡) 𝑃 [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡)

+ 𝑒
𝜆𝑡

𝜂
𝑇

(𝑡) Γ𝜂 (𝑡) 𝑑𝑡 + 𝑒
𝜆𝑡

𝐶
1
𝑑𝑡

≤ 𝑒
𝜆𝑡

2𝑥
𝑇

(𝑡) 𝑃 [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡)

+ 𝑒
𝜆𝑡

𝐶
1
𝑑𝑡,

(22)
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where

𝜂 (𝑡) = (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) , 𝑓
𝑇

(𝑥 (𝑡)) , 𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) ,

𝑔
𝑇

(𝑥 (𝑡)) , (∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

)

𝑇

,

(23)

𝐶
1
= 𝜆
−1

𝐽
𝑇

𝑃𝐽

+

𝑛

∑

𝑖=1

[4𝜆
−1

𝑓
2

𝑖
(0) 𝑢
2

1𝑖
+ 𝜆
−1

𝑓
2

𝑖
(0) 𝑢
2

1𝑖
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)

2

+ 4𝜆
−1

𝑓
2

𝑖
(0) 𝑢
2

2𝑖

+ 𝜆
−1

𝑓
2

𝑖
(0) 𝑢
2

2𝑖
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)

2

+ 4𝜆
−1

𝑔
2

𝑖
(0) 𝑢
2

4𝑖

+𝜆
−1

𝑔
2

𝑖
(0) 𝑢
2

4𝑖
(𝑚
+

𝑖
+ 𝑚
−

𝑖
)

2

] .

(24)

Thus, one may obtain that

𝑉 (𝑥 (𝑡) , 𝑡) ≤ 𝑉 (𝑥 (0) , 0) + 𝑒
𝜆𝑡

𝜆
−1

𝐶
1

+ ∫

𝑡

0

2𝑥
𝑇

(𝑠) 𝑃 [𝜎
1
𝑥 (𝑠) + 𝜎

2
𝑥 (𝑠 − 𝜏 (𝑠))] 𝑑𝑤 (𝑠) ,

(25)

𝐸‖𝑥(𝑡)‖
2

≤

𝑒
−𝜆𝑡

𝐸𝑉 (𝑥 (0) , 0) + 𝜆
−1

𝐶
1

𝜆min (𝑃)

=

𝑒
−𝜆𝑡

𝐸𝑉 (𝑥 (0) , 0)

𝜆min (𝑃)
+ 𝐶
∗
,

(26)

where 𝐶
∗

= 𝜆
−1

𝐶
1
/𝜆min(𝑃). Equation (26) implies that (8)

holds. The proof is completed.

Theorem 3 shows that there exists 𝑡
0
> 0 such that for any

𝑡 ≥ 𝑡
0
, 𝑃{‖ 𝑥(𝑡) ‖≤ 𝐶} ≥ 1 − 𝛿. Let 𝐵

𝐶
be denoted by

𝐵
𝐶
= {𝑥 ∈ 𝑅

𝑛

| ‖𝑥 (𝑡)‖ ≤ 𝐶, 𝑡 ≥ 𝑡
0
} . (27)

Clearly, 𝐵
𝐶
is closed, bounded, and invariant. Moreover,

lim sup
𝑡→∞

inf
𝑦∈𝐵𝐶





𝑥 (𝑡) − 𝑦






= 0 (28)

with no less than probability 1 − 𝛿, which means that 𝐵
𝐶

attracts the solutions infinitely many times with no less than
probability 1−𝛿; so wemay say that 𝐵

𝐶
is a weak attractor for

the solutions.

Theorem 4. Suppose that all conditions of Theorem 3 hold,
then there exists a weak attractor 𝐵

𝐶
for the solutions of system

(1).

Theorem5. Suppose that all conditions ofTheorem 3 hold and
𝑓(0) = 𝑔(0) = 𝐽 = 0; then, zero solution of system (1) is
mean square exponential stability and almost sure exponential
stability.

Proof. If 𝑓(0) = 𝑔(0) = 𝐽 = 0, then 𝐶
1
= 𝐶
∗

= 0. By (25)
and the semimartingale convergence theorem used in [35],
zero solution of system (1) is almost sure exponential stability.
It follows from (26) that zero solution of system (1) is mean
square exponential stability.

Remark 6. If one takes 𝑄
2
= 𝑄
4
= 0 in Theorem 3, then it

is not required that 𝜇 ≤ 1. Furthermore, If one takes 𝑄
1
=

𝑄
2
= 𝑄
3
= 𝑄
4
= 0, then 𝜏(𝑡)may be nondifferentiable or the

boundedness of ̇𝜏(𝑡) is unknown.

Remark 7. Assumption (A1) is less conservative than that in
[32] since the constants 𝑙−

𝑖
, 𝑙
+

𝑖
, 𝑚
−

𝑖
, and 𝑚

+

𝑖
are allowed to be

positive, negative, or zero. System (1) includes mixed time-
delays, which is more complex than that in [33]. The systems
concerned in [26–31] are deterministic, so the stochastic
system studied in this paper is more complex and realistic.

When 𝜎
1

= 𝜎
2

= 0, system (1) becomes the following
determined system:

𝑑𝑥 (𝑡)

𝑑𝑡

= −𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽.

(29)

Definition 8. System (29) is said to be uniformly bounded,
if, for each 𝐻 > 0, there exists a constant 𝑀 = 𝑀(𝐻) > 0

such that [𝑡
0
∈ 𝑅, 𝜙 ∈ 𝐶(−∞, 0], ‖ 𝜙 ‖≤ 𝐻, 𝑡 > 𝑡

0
] imply

‖ 𝑥(𝑡, 𝑡
0
, 𝜙) ‖≤ 𝑀, where ‖ 𝜙 ‖= sup

𝑡≤0
‖ 𝜙(𝑡) ‖.

Theorem 9. System (29) is uniformly bounded provided that
𝜏(𝑡) satisfies 0 ≤ 𝜏(𝑡) ≤ 𝜏, ̇𝜏(𝑡) ≤ 𝜇 ≤ 1, and there exist some
matrices 𝑃 > 0, 𝑄

𝑖
≥ 0, and 𝑈

𝑖
= diag(𝑢

𝑖1
, . . . , 𝑢

𝑖𝑛
) ≥

0(𝑖 = 1, 2, 3, 4) such that the following linear matrix inequality
holds:

Σ =
(

(

Σ
11

0 𝑃𝐴 + 𝐿
2
𝑈
1

𝑃𝐵 𝑀
2
𝑈
4

𝑃𝐷

∗ Σ
22

0 𝐿
2
𝑈
2

0 0

∗ ∗ Σ
33

0 0 0

∗ ∗ ∗ Σ
44

0 0

∗ ∗ ∗ ∗ Σ
55

0

∗ ∗ ∗ ∗ ∗ −𝑈
3

)

)

< 0,

(30)

where ∗ denotes the corresponding symmetric terms, Σ
𝑖𝑖
(𝑖 =

1, 2, 3, 4, 5), 𝐿
1
, 𝐿
2
,𝑀
1
,𝑀
2
are the same as in Theorem 3.
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Proof. From Σ < 0, there exists a sufficiently small 𝜆 ∈ (0, ])
such that

Γ =
(

(

Γ
11

0 𝑃𝐴 + 𝐿
2
𝑈
1

𝑃𝐵 𝑀
2
𝑈
4

𝑃𝐷

∗ Γ
22

0 𝐿
2
𝑈
2

0 0

∗ ∗ Γ
33

0 0 0

∗ ∗ ∗ Γ
44

0 0

∗ ∗ ∗ ∗ Γ
55

0

∗ ∗ ∗ ∗ ∗ −𝑈
3

)

)

< 0,

(31)

where 𝐼 is identity matrix, Γ
11

= 𝑒
𝜆𝜏

𝑄
1
+ 𝜏𝑄
2
− 𝑃𝐶 − 𝐶𝑃 −

2𝐿
1
𝑈
1
− 2𝑀

1
𝑈
4
+ 2𝜆𝑃 + 2𝜆𝐼, Γ

22
= Σ
22

+ 𝜆𝐼, Γ
33

= 𝜆𝐼 +

𝑒
𝜆𝜏

𝑄
3
+ 𝜏𝑄
4
− 2𝑈
1
, Γ
44

= Σ
44

+ 𝜆𝐼, and Γ
55

= Σ
55

+ 𝜆𝐼.
We still consider the Lyapunov-Krasovskii functional

𝑉(𝑥(𝑡)) in (13). From (16)–(21), one may obtain

‖𝑥(𝑡)‖
2

≤ 𝜆
−1

min (𝑃) (𝑒
−𝜆𝑡

𝑉 (𝑥 (0) , 0) + 𝜆
−1

𝐶
1
)

≤ 𝜆
−1

min (𝑃) (𝑉 (𝑥 (0) , 0) + 𝜆
−1

𝐶
1
)

≤ 𝜆
−1

min (𝑃)
[

[

𝜆max (𝑃)




𝜉





2

+

𝑛

∑

𝑗=1

𝑢
3𝑗
∫

∞

0

𝑘
𝑗
(𝜃)

× ∫

0

−𝜃

𝑒
𝜆(𝑠+𝜃)

𝑔
2

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠 𝑑𝜃

+ ∫

0

−𝜏

𝑒
𝜆(𝑠+𝜏)

× [𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠)

+𝑓
𝑇

(𝑥 (𝑠)) 𝑄
3
𝑓 (𝑥 (𝑠))] 𝑑𝑠

+ ∫

0

−𝜏

∫

0

𝑠

𝑒
𝜆𝜃

× [𝑥
𝑇

(𝜃) 𝑄
2
𝑥 (𝜃)

+𝑓
𝑇

(𝑥 (𝜃)) 𝑄
4
𝑓 (𝑥 (𝜃))] 𝑑𝜃 𝑑𝑠

+𝜆
−1

𝐶
1

]

]

,

(32)

where ‖𝜉‖
2

= sup
𝑡≤0

‖𝑥(𝑡)‖
2, 𝐶
1
is the same as in (24). Note

that
𝑛

∑

𝑗=1

𝑢
3𝑗
∫

∞

0

𝑘
𝑗
(𝜃) ∫

0

−𝜃

𝑒
𝜆(𝑠+𝜃)

𝑔
2

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠 𝑑𝜃

≤

𝑛

∑

𝑗=1

2𝑢
3𝑗
∫

∞

0

𝑘
𝑗
(𝜃) ∫

0

−𝜃

𝑒
𝜆(𝑠+𝜃)

[max
1≤𝑗≤𝑛

{(𝑚
−

𝑗
)

2

, (𝑚
+

𝑗
)

2

} 𝑥
2

𝑗
(𝑠)

+𝑔
2

𝑗
(0) ] 𝑑𝑠𝑑𝜃

≤

𝑛

∑

𝑗=1

2𝑢
3𝑗
∫

∞

0

𝑘
𝑗
(𝜃) ∫

0

−𝜃

𝑒
𝜆(𝑠+𝜃)

[max
1≤𝑗≤𝑛

{(𝑚
−

𝑗
)

2

, (𝑚
+

𝑗
)

2

}

×‖𝑥 (𝑠)‖
2

+




𝑔 (0)






2

] 𝑑𝑠 𝑑𝜃

≤ (

𝑛

∑

𝑗=1

2𝑢
3𝑗
𝜆
−1

𝑘
𝑗
(]))

× [max
1≤𝑗≤𝑛

{(𝑚
−

𝑗
)

2

, (𝑚
+

𝑗
)

2

}




𝜉





2

+




𝑔 (0)






2

] ,

∫

0

−𝜏

𝑒
𝜆(𝑠+𝜏)

[𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) + 𝑓

𝑇

(𝑥 (𝑠)) 𝑄
3
𝑓 (𝑥 (𝑠))] 𝑑𝑠

≤ ∫

0

−𝜏

𝑒
𝜆(𝑠+𝜏)

[𝜆max (𝑄1) ‖𝑥(𝑠)‖
2

+𝜆max (𝑄3)




𝑓(𝑥(𝑠))






2

] 𝑑𝑠

≤ ∫

0

−𝜏

𝑒
𝜆(𝑠+𝜏)

[𝜆max (𝑄1)




𝜉





2

+ 2𝜆max (𝑄3)

× (




𝑓 (0)






2

+max
1≤𝑖≤𝑛

{(𝑙
−

𝑖
)

2

, (𝑙
+

𝑖
)

2

}




𝜉





2

)] 𝑑𝑠

≤ 𝜆
−1

[𝜆max (𝑄1)




𝜉





2

+ 2𝜆max (𝑄3)

× (




𝑓 (0)






2

+max
1≤𝑖≤𝑛

{(𝑙
−

𝑖
)

2

, (𝑙
+

𝑖
)

2

}




𝜉





2

)] 𝑑𝑠,

∫

0

−𝜏

∫

0

𝑠

𝑒
𝜆𝜃

[𝑥
𝑇

(𝜃) 𝑄
2
𝑥 (𝜃) + 𝑓

𝑇

(𝑥 (𝜃)) 𝑄
4
𝑓 (𝑥 (𝜃))] 𝑑𝜃 𝑑𝑠

≤ ∫

0

−𝜏

∫

0

𝑠

𝑒
𝜆𝜃

[𝜆max (𝑄2)




𝜉





2

+ 2𝜆max (𝑄4)

× (




𝑓 (0)






2

+max
1≤𝑖≤𝑛

{(𝑙
−

𝑖
)

2

, (𝑙
+

𝑖
)

2

}




𝜉





2

)] 𝑑𝜃 𝑑𝑠

≤ 𝜏𝜆
−1

[𝜆max (𝑄2)




𝜉





2

+ 2𝜆max (𝑄4)

× (




𝑓 (0)






2

+max
1≤𝑖≤𝑛

{(𝑙
−

𝑖
)

2

, (𝑙
+

𝑖
)

2

}




𝜉





2

)] .

(33)

So, system (29) is uniformly bounded.



8 Abstract and Applied Analysis
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Figure 1: Time trajectories (a) as well as the phase portrait (b) for the system in Example 1.

4. One Example

Example 1. Consider system (1) with 𝐽 = (0, 1)
𝑇, 𝐾(𝑡) = diag

(𝑒
−𝑡

, 2𝑒
−2𝑡

), ] = 0.5, and

𝐴 = (

−0.1 0.4

0.2 −0.5
) , 𝐵 = (

0.1 −1

−1.4 0.4
) ,

𝐶 = (

1.4 0

0 1.65
) ,

𝐷 = (

−0.6 0.7

1 1.15
) , 𝜎

1
= (

0.23 0.1

0.3 0.2
) ,

𝜎
2
= (

0.1 −0.2

0.2 0.3
) .

(34)

The activation functions 𝑓
𝑖
(𝑥
𝑖
) = 𝑥

𝑖
+ sin(𝑥

𝑖
), 𝑔
𝑖
(𝑥
𝑖
) =

tanh(𝑥
𝑖
)(𝑖 = 1, 2) satisfy, 𝑙−

𝑖
= 𝑚
−

𝑖
= 0, 𝑙+
𝑖
= 𝑚
+

𝑖
= 1.Then, one

computes 𝐿
1
= 𝑀
1
= 0, 𝐿

2
= 𝑀
2
= diag(1, 1), and 𝐾(0.5) =

diag(2, 4/3). By using MATLAB’s LMI Control Toolbox [34],
for 𝜇 = 0.0035 and 𝜏 = 1, based on Theorem 3, such system
is stochastically ultimately bounded when 𝑃, 𝑈

𝑖
, and 𝑄

𝑖
(𝑖 =

1, 2, 3, 4) satisfy

𝑃 = (

1.7748 0.2342

0.2342 1.9398
) , 𝑈

1
= (

1.3091 0

0 2.1602
) ,

𝑈
2
= (

218.3215 0

0 274.1607
) , 𝑈

3
= (

1.0825 0

0 1.4021
) ,

𝑈
4
= (

2.1620 0

0 1.8493
) , 𝑄

1
= (

275.3435 104.0781

104.0781 397.1452
) ,

𝑄
2
= (

31.3129 31.4377

31.4377 74.4756
) , 𝑄

3
= (

1.0857 −1.2164

−1.2164 2.9090
) ,

𝑄
4
= (

189.3661 16.3951

16.3951 92.8987
) .

(35)

From Figure 1, it is easy to see that 𝑥(𝑡) is stochastically
ultimately bounded.

5. Conclusions

A proper Lyapunov functional and linear matrix inequalities
are employed to investigate the ultimate boundedness, stabil-
ity, and weak attractor of stochastic Hopfield neural networks
with both time-varying and continuously distributed delays.
New results and sufficient criteria are derived after extensive
deductions. From the proposed sufficient conditions, one can
easily prove that zero solution of such network ismean square
exponentially stable and almost surely exponentially stable by
applying the semimartingale convergence theorem.
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This paper is concerned with asymptotical behavior for a class of impulsive delay differential equations. The new criteria for
determining attracting sets and attracting basin of the impulsive system are obtained by developing the properties of quasi-invariant
sets. Examples and numerical simulations are given to illustrate the effectiveness of our results. In addition, we show that the
impulsive effects may play a key role to these asymptotical properties even though the solutions of corresponding nonimpulsive
systems are unbounded.

1. Introduction

Impulsive delay differential equations have attracted increas-
ing interests since time delays and impulsive effects com-
monly exist in many fields such as population dynamics,
automatic control, drug administration, and communication
networks [1–4]. In past two decades, its asymptotical behav-
iors such as stability and attractivity of the equilibrium point
or periodical solutions have been deeply studied for impulsive
functional differential equations (see, [5–18]).

However, under impulsive perturbation, the solutions
may not be attracted to an equilibrium point or periodical
trajectory but to some bounded region. In this case, it is
interesting to investigate the attracting set and attracting
basin, that is, the region attracting the solutions and the range
in which initial values vary when remaining the attractivity
for impulsive delay differential equations. In [19], Xu and
Yang first give the method to estimate global attracting set
and invariant set for impulsive delayed systems by developing
delayed differential inequalities. The techniques are further
developed to study global attractivity for some complex
impulsive systems such as impulsive neutral differential equa-
tions [20, 21] and impulsive stochastic systems [22]. But the
techniques andmethods given in the existing publications are
invalid for determining locally attracting set and attracting
basin for impulsive delay differential equations.

In this paper, our objective is tomainly discuss the asymp-
totical behavior on (locally) attracting set and its attracting
basin for a class of impulsive delay differential equations.
Based on the quasi-invariant properties, we estimate the
existence range of attracting set and attracting basin of the
impulsive delay systems by solving algebraic equations and
employing differential inequality technique. Examples are
given to illustrate the effectiveness of our method and show
that the asymptotic behavior of the impulsive systemsmay be
different from one of the corresponding continuous systems.

2. Preliminaries

Let 𝑁 be the set of all positive integers, 𝑅𝑛 the space of 𝑛-
dimensional real column vectors, and 𝑅

𝑚×𝑛 the set of 𝑚 × 𝑛

real matrices. For 𝐴, 𝐵 ∈ 𝑅
𝑚×𝑛 or 𝐴, 𝐵 ∈ 𝑅

𝑛, 𝐴 ≥ 𝐵(𝐴 ≤

𝐵, 𝐴 > 𝐵, 𝐴 < 𝐵) means that each pair of corresponding
elements of 𝐴 and 𝐵 satisfies the inequality “≥(≤, >, <).” 𝑅

𝑛

+
=

{𝑥 ∈ 𝑅
𝑛

| 𝑥 ≥ 0}, 𝐸 = (1, 1, . . . , 1)
𝑇

∈ 𝑅
𝑛, and 𝐼 denotes an

𝑛 × 𝑛 unit matrix.
Let 𝜏 > 0 and 𝑡

0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ be the fixed points with

lim
𝑘→∞

𝑡
𝑘
= ∞ (called impulsive moments).

𝐶[𝑋, 𝑌] denotes the space of continuous mappings from
the topological space 𝑋 to the topological space 𝑌. Let 𝐶

Δ

=

𝐶[[−𝜏, 0], 𝑅
𝑛

] especially.
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Morever, PC Δ= {𝜙 : [−𝜏, 0] → 𝑅
𝑛

| 𝜙(𝑡
+

) = 𝜙(𝑡) for
𝑡 ∈ [−𝜏, 0), 𝜙(𝑡

−

) exists for 𝑡 ∈ (−𝜏, 0], 𝜙(𝑡
−

) = 𝜙(𝑡) for all but
at most a finite number of points 𝑡 ∈ (−𝜏, 0]}. PC is a space of
piecewise right-hand continuous functions which is a nature
extension of the phrase space 𝐶.

We define PC[[𝑡
0
,∞), 𝑅

𝑛

]

Δ

= {𝜓 : [𝑡
0
,∞) → 𝑅

𝑛

| 𝜓(𝑡) is
continuous at 𝑡 ̸= 𝑡

𝑘
, 𝜓(𝑡
+

𝑘
) and 𝜓(𝑡

−

𝑘
) exist, 𝜓(𝑡

𝑘
) = 𝜓(𝑡

+

𝑘
), for

𝑘 ∈ 𝑁}.
For 𝑥 ∈ 𝑅

𝑛, 𝐴 ∈ 𝑅
𝑛×𝑛, 𝜙 ∈ 𝐶 or 𝜙 ∈ PC, we define

[𝑥]
+

= (




𝑥
1





,




𝑥
2





, . . . ,





𝑥
𝑛





)
𝑇

,

[𝐴]
+

= (






𝑎
𝑖𝑗






)
𝑛×𝑛

,

[𝜙]
+

𝜏
= (





𝜙
1




𝜏

,




𝜙
2




𝜏

, . . . ,




𝜙
𝑛




𝜏

) ,

(1)

where ‖ 𝜙
𝑖
‖
𝜏
= sup

𝑠∈[−𝜏,0]
‖ 𝜙
𝑖
(𝑠) ‖ and ‖ ⋅ ‖ is an norm in 𝑅

𝑛.
In this paper, we will consider a impulsive delay differen-

tial equations:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥
𝑡
) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ≥ 𝑡

0
,

Δ𝑥 = 𝐵𝑥 (𝑡
−

𝑘
) + 𝐼
𝑘
(𝑡
−

𝑘
, 𝑥 (𝑡
−

𝑘
)) , 𝑘 ∈ 𝑁,

(2)

where ̇𝑥(𝑡) denotes the right-hand derivative of 𝑥(𝑡), Δ𝑥 =

𝑥(𝑡
+

𝑘
) − 𝑥(𝑡

−

𝑘
), 𝑥(𝑡

𝑘
) = 𝑥(𝑡

+

𝑘
), 𝐴= diag{𝑎

1
,𝑎
2
, . . . , 𝑎

𝑛
}, 𝐵 =

diag{𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
}, 𝑓 ∈ 𝐶[[𝑡

𝑘−1
, 𝑡
𝑘
) × PC, 𝑅

𝑛

], and the limit
lim
(𝑡,𝜙)→ (𝑡

−

𝑘
,𝜑)

𝑓(𝑡, 𝜙) = 𝑓(𝑡
−

𝑘
, 𝜑) exists, 𝐼

𝑘
∈ 𝐶[[𝑡

0
,∞) ×

𝑅
𝑛

, 𝑅
𝑛

], and 𝑥
𝑡
∈ PC is defined by 𝑥

𝑡
(𝑠) = 𝑥(𝑡 + 𝑠), 𝑠 ∈ [−𝜏, 0].

A function 𝑥(𝑡) : [𝑡
0
− 𝜏,∞) → 𝑅

𝑛 is called to be a
solution of (2) through (𝑡

0
, 𝜙), if 𝑥(𝑡) ∈ PC[[𝑡

0
,∞), 𝑅

𝑛

] as
𝑡 ≥ 𝑡
0
, and satisfies (2) with the initial condition

𝑥 (𝑡
0
+ 𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜏, 0] , 𝜙 ∈ PC. (3)

Throughout the paper, we always assume that for any 𝜙 ∈ PC,
system (2) has at least one solution through (𝑡

0
, 𝜙), denoted

by 𝑥(𝑡, 𝑡
0
, 𝜙) or 𝑥

𝑡
(𝑡
0
, 𝜙) (simply 𝑥(𝑡) and 𝑥

𝑡
if no confusion

should occur), where 𝑥
𝑡
(𝑡
0
, 𝜙) = 𝑥(𝑡 + 𝑠, 𝑡

0
, 𝜙) ∈ PC, 𝑠 ∈

[−𝜏, 0].
In this paper, we need the following definitions involving

attracting set, attracting basin, the quasi-invariant set of
impulsive systems, and monotonous vector functions.

Definition 1. The set 𝑆 ⊂ PC is called to be an attracting set
of (2), and 𝐷 ⊂ PC is called an attraction basin of 𝑆, if for
any initial value 𝜙 ∈ 𝐷, the solution 𝑥

𝑡
(𝑡
0
, 𝜙) converges to 𝑆

as 𝑡 → +∞. That is,

dist (𝑥
𝑡
(𝑡
0
, 𝜙) , 𝑆) → 0, a𝑠 𝑡 → +∞, (4)

where dist(𝜑, 𝑆) = inf
𝜓∈𝑆

dist(𝜑, 𝜓), dist(𝜑, 𝜓) = sup
𝑠∈[−𝜏,0]

‖𝜑(𝑠) − 𝜓(𝑠)‖, for 𝜑 ∈ PC.

Definition 2. The set 𝐷 ⊂ PC is called to be a positive quasi-
invariant set of (2), if there is a positive diagonal matrix
𝐿= diag{𝑙

𝑖
} such that for any initial value 𝜙 ∈ 𝐷, the solutions

𝑥
𝑡
(𝑡
0
, 𝜙) satisfy 𝐿𝑥

𝑡
(𝑡
0
, 𝜙) ∈ 𝐷, for 𝑡 ≥ 𝑡

0
. When 𝐿 =

𝐼(identity matrix) especially, the set 𝐷 is called positively
invariant.

Definition 3. Let Ω ⊂ 𝑅
𝑛. The vector function 𝐹(𝑥) : Ω →

𝑅
𝑛 is called to be monotonically nondecreasing in Ω, if for

any 𝑥


, 𝑥


∈ Ω, 𝑥 ≤ 𝑥
 implies 𝐹(𝑥



) ≤ 𝐹(𝑥


).

3. Main Results

In this paper, we always make the following assumptions.
(𝐻
1
) There exist nonnegative constants 𝜃,  such that 0 <

𝜃 ≤ 𝑡
𝑘
− 𝑡
𝑘−1

≤ , for 𝑘 ∈ 𝑁.
(𝐻
2
) [𝑓(𝑡, 𝜑)]

+

≤ 𝑝([𝜑]
+

𝜏
) for 𝑡 ≥ 𝑡

0
and 𝜑 ∈ PC, where the

vector function 𝑝(⋅) : 𝑅
𝑛

+
→ 𝑅
𝑛

+
is continuous and

monotonically nondecreasing in 𝑅
𝑛

+
.

(𝐻
3
) [𝐼
𝑘
(𝑡, 𝑥)]

+

≤ 𝑞([𝑥]
+

), for 𝑡 ≥ 𝑡
0
, 𝑘 ∈ 𝑁 and 𝑥 ∈

𝑅
𝑛, where the vector function 𝑞(⋅) : 𝑅

𝑛

+
→ 𝑅

𝑛

+
is

continuous and monotonically nondecreasing in 𝑅
𝑛

+
.

To obtain attractivity, we first give the quasi-invariant prop-
erties of (2).

Theorem 4. Assume that in addition to (𝐻
1
)–(𝐻
3
), there is a

vector 𝑧
∗

≥ 0 such that

𝑝 (𝑀𝑧
∗

) + 𝑊[𝐼 − 𝑒
−𝑊𝜃

]

−1

𝑞 (𝑀𝑧
∗

) − 𝑊𝑧
∗

< 0, (5)

where 𝑊= diag{𝑤
1
, . . . , 𝑤

𝑛
}, 𝑀= diag{𝑚

1
, . . . , 𝑚

𝑛
}, 𝑤
𝑖

>

0,𝑚
𝑖
≥ 1, 𝑖 = 1, 2, . . . , 𝑛, are defined by

𝑤
𝑖
=

{
{
{
{

{
{
{
{

{

−𝑎
𝑖
−

ln 



1 + 𝑏
𝑖








, if 0 <




1 + 𝑏
𝑖





< 1,

−𝑎
𝑖
−

ln 



1 + 𝑏
𝑖






𝜃

, if 



1 + 𝑏
𝑖





≥ 1,

𝑚
𝑖
=

{

{

{

1





1 + 𝑏
𝑖






, if 0 <




1 + 𝑏
𝑖





< 1,

1, if 



1 + 𝑏
𝑖





≥ 1.

(6)

Then, the set 𝐷 = {𝜙 ∈ PC | [𝜙]
+

𝜏
≤ 𝑧
∗

} is a positive quasi-
invariant set of (2). When 𝑀 = 𝐼 especially, 𝐷 is a positive
invariant set of (2).

Proof. Let 𝑥(𝑡) = 𝑥(𝑡, 𝑡
0
, 𝜙) be a solution of (2) through

(𝑡
0
, 𝜙). It is easily verified that the following formula for the

variation of parameters is valid:

𝑥 (𝑡) = 𝐾 (𝑡, 𝑡
0
) 𝜙 (0) + ∫

𝑡

𝑡0

𝐾 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡0<𝑡𝑘≤𝑡

𝐾(𝑡, 𝑡
𝑘
) 𝐼
𝑘
(𝑡
−

𝑘
, 𝑥 (𝑡
−

𝑘
)) , 𝑡 ≥ 𝑡

0
,

(7)

where𝐾(𝑡, 𝑠) is the Cauchy matrix of linear impulsive system

{
{

{
{

{

̇𝑦 (𝑡) = 𝐴𝑦 (𝑡) , 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
+

𝑘
) = 𝐵𝑦 (𝑡

−

𝑘
) , 𝑘 ∈ 𝑁.

(8)

According to the representation of the Cauchy matrix (see
page 74 [2]),

𝐾 (𝑡, 𝑠) = 𝑒
𝐴(𝑡−𝑠)

∏

𝑠<𝑡𝑘≤𝑡

(𝐼 + 𝐵) , 𝑡 ≥ 𝑠 ≥ 𝑡
0
. (9)
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Since 0 < 𝜃 ≤ 𝑡
𝑘
−𝑡
𝑘−1

≤ , for 𝑘 ∈ 𝑁, we obtain the following
estimate:

∏

𝑠<𝑡𝑘≤𝑡





1 + 𝑏
𝑖






≤

{
{
{

{
{
{

{





1 + 𝑏
𝑖






((𝑡−𝑠)/)−1

=

1





1 + 𝑏
𝑖






𝑒
(ln|1+𝑏𝑖 |/)(𝑡−𝑠)

, if 0 <




1 + 𝑏
𝑖





< 1,





1 + 𝑏
𝑖






(𝑡−𝑠)/𝜃

= 𝑒
(ln|1+𝑏𝑖 |/𝜃)(𝑡−𝑠)

, if 



1 + 𝑏
𝑖





≥ 1.

(10)

In terms of the definition of 𝑀 and 𝑊,

[𝐾 (𝑡, 𝑠)]
+

≤ 𝑀𝑒
−𝑊(𝑡−𝑠)

, 𝑡 ≥ 𝑠 ≥ 𝑡
0
. (11)

By (7) and (11) and the assumptions (𝐻
2
) and (𝐻

3
), then

[𝑥 (𝑡)]
+

≤ 𝑀𝑒
−𝑊(𝑡−𝑡0)

[𝜙]
+

𝜏
+ 𝑀∫

𝑡

𝑡0

𝑒
−𝑊(𝑡−𝑠)

𝑝 ([𝑥
𝑠
]
+

𝜏
) 𝑑𝑠

+ 𝑀 ∑

𝑡0<𝑡𝑘≤𝑡

𝑒
−𝑊(𝑡−𝑡𝑘)

𝑞 ([𝑥 (𝑡
−

𝑘
)]

+

) , 𝑡 ≥ 𝑡
0
.

(12)

Since 𝑡
𝑘
−𝑡
𝑘−1

≥ 𝜃 > 0 and𝑊= diag{𝑤
1
, . . . , 𝑤

𝑛
} > 0, we have

∑

𝑡0<𝑡𝑘≤𝑡

𝑒
−𝑊(𝑡−𝑡𝑘)

= ∑

𝑡0<𝑡𝑘≤𝑡

𝑒
−𝑊(𝑡−𝑡𝑘)

[𝐼 − 𝑒
−𝑊𝜃

] [𝐼 − 𝑒
−𝑊𝜃

]

−1

≤ ∑

𝑡0<𝑡𝑘≤𝑡

𝑒
−𝑊(𝑡−𝑡𝑘)

[𝐼 − 𝑒
−𝑊(𝑡𝑘−𝑡𝑘−1)

] [𝐼 − 𝑒
−𝑊𝜃

]

−1

= ∑

𝑡0<𝑡𝑘≤𝑡

[𝑒
−𝑊(𝑡−𝑡𝑘)

− 𝑒
−𝑊(𝑡−𝑡𝑘−1)

] [𝐼 − 𝑒
−𝑊𝜃

]

−1

≤ [𝐼 − 𝑒
−𝑊(𝑡−𝑡0)

] [𝐼 − 𝑒
−𝑊𝜃

]

−1

.

(13)

From the strict inequality (5), there is an enough small
number 𝜀 > 0 such that

𝑝 (𝑀𝑧) + 𝑊[𝐼 − 𝑒
−𝑊𝜃

]

−1

𝑞 (𝑀𝑧) − 𝑊𝑧 < 0,

𝑧

Δ

= 𝑧
∗

+ 𝜀𝐸 > 0.

(14)

In the following, we will prove that [𝜙]
+

𝜏
< 𝑧 implies

[𝑥 (𝑡)]
+

= [𝑥 (𝑡, 𝑡
0
, 𝜙)]
+

< 𝑀𝑧, 𝑡 ≥ 𝑡
0
. (15)

Otherwise, from the piecewise continuity of 𝑥(𝑡), there must
be an integer 𝑖 and 𝑡

∗

> 𝑡
0
such that





𝑥
𝑖
(𝑡
∗

)




≥ 𝑚
𝑖
𝑧
𝑖
, (16)

[𝑥 (𝑡)]
+

≤ 𝑀𝑧, 𝑡
0
≤ 𝑡 < 𝑡

∗

. (17)

By using (12), (13), (14), (17), 𝑊 > 0, and the monotonicity of
𝑝(⋅), 𝑞(⋅), we can get

[𝑥 (𝑡
∗

)]
+

≤ 𝑒
−𝑊(𝑡

∗
−𝑡0)

𝑀[𝜙]
+

𝜏
+ 𝑀∫

𝑡
∗

𝑡0

𝑒
−𝑊(𝑡

∗
−𝑠)

𝑝 (𝑀𝑧) 𝑑𝑠

+ 𝑀 ∑

𝑡0<𝑡𝑘≤𝑡
∗

𝑒
−𝑊(𝑡

∗
−𝑡𝑘)

𝑞 (𝑀𝑧)

< 𝑒
−𝑊(𝑡

∗
−𝑡0)

𝑀𝑧 + 𝑀(𝐼 − 𝑒
−𝑊(𝑡

∗
−𝑡0)

)𝑊
−1

𝑝 (𝑀𝑧)

+ 𝑀(𝐼 − 𝑒
−𝑊(𝑡

∗
−𝑡0)

) [𝐼 − 𝑒
−𝑊𝜃

]

−1

𝑞 (𝑀𝑧)

= 𝑒
−𝑊(𝑡

∗
−𝑡0)

𝑀𝑊
−1

× [𝑊𝑧 − 𝑝 (𝑀𝑧) − 𝑊[𝐼 − 𝑒
−𝑊𝜃

]

−1

𝑞 (𝑀𝑧)]

+ 𝑊
−1

𝑀𝑝(𝑀𝑧) + 𝑀[𝐼 − 𝑒
−𝑊𝜃

]

−1

𝑞 (𝑀𝑧)

< 𝑀𝑊
−1

[𝑊𝑧 − 𝑝 (𝑀𝑧) − 𝑊[𝐼 − 𝑒
−𝑊𝜃

]

−1

𝑞 (𝑀𝑧)]

+ 𝑊
−1

𝑀𝑝(𝑀𝑧) + 𝑀[𝐼 − 𝑒
−𝑊𝜃

]

−1

𝑞 (𝑀𝑧)

= 𝑀𝑧.

(18)

This contradicts (16), and so (15) holds. Letting 𝜀 → 0, from
(15), we have for any 𝜙 ∈ 𝐷 (i.e., [𝜙]

+

𝜏
≤ 𝑧
∗),

[𝑥 (𝑡, 𝑡
0
, 𝜙)]
+

≤ 𝑀𝑧
∗

, that is, [𝑀−1𝑥 (𝑡, 𝑡
0
, 𝜙)]

+

≤ 𝑧
∗

,

𝑡 ≥ 𝑡
0
.

(19)

Therefore, the set 𝐷 = {𝜙 ∈ PC | [𝜙]
+

𝜏
≤ 𝑧
∗

} is a positive
quasi-invariant set of (2). When 𝑀 = 𝐼 especially, 𝐷 is a
positive invariant set of (2). The proof is complete.

Based on the obtained quasi-invariant set, we have the
following

Theorem 5. Let

Δ (𝑧) = 𝑝 (𝑧) + 𝑊[𝐼 − 𝑒
−𝑊𝜃

]

−1

𝑞 (𝑧) − 𝑀
−1

𝑊𝑧, 𝑧 ∈ 𝑅
𝑛

+
.

(20)

Assume that all conditions in Theorem 4 hold. Define

Ω
1
= {𝑧 ∈ 𝑅

𝑛

+
| Δ (𝑀𝑧) < 0} ,

Ω
2
= {𝑧 ∈ 𝑅

𝑛

+
| Δ (𝑧) < 0} ,

Ω
3
= {𝑧 ∈ 𝑅

𝑛

+
| Δ (𝑧) ≥ 0} ,

Ω
∗

1
= ⋃

𝑧
∗
∈Ω1

{𝑧 ∈ 𝑅
𝑛

+
| 𝑧 ≤ 𝑧

∗

} ,

Ω
∗

2
= ⋃

𝑧
∗
∈Ω2

{𝑧 ∈ 𝑅
𝑛

+
| 𝑧 ≤ 𝑧

∗

} .

(21)
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Then, 𝑆 = {𝜙 ∈ PC | [𝜙]
+

𝜏
∈ Ω
∗

2
∩ Ω
3
} is an attracting set of

(2) and 𝐷 = {𝜙 ∈ PC | [𝜙]
+

𝜏
∈ Ω
∗

1
} is the attracting basin of 𝑆.

Proof. From (5) and the definitions of the above sets, then
𝑧
∗

∈ Ω
1
, 𝑀𝑧
∗

∈ Ω
2
, 0 ∈ Ω

∗

1
, 0 ∈ Ω

∗

2
, 0 ∈ Ω

3
. Obviously,

Ω
1
, Ω
2
, Ω
∗

1
, Ω
∗

2
, Ω
3
and Ω

∗

2
∩ Ω
3
are nonempty, and so the

definitions of the sets of 𝑆 and 𝐷 are valid. For any 𝜙 ∈ 𝐷,
there is a 𝑧

∗

∈ Ω
1
satisfying [𝜙]

+

𝜏
≤ 𝑧
∗. According to

Theorem 4, we obtain

[𝑥 (𝑡)]
+

= [𝑥 (𝑡, 𝑡
0
, 𝜙)]
+

≤ 𝑀𝑧
∗

∈ Ω
2
, ∀𝑡 ≥ 𝑡

0
. (22)

That is,

𝜎

Δ

= lim sup
𝑡→∞

[𝑥 (𝑡)]
+

∈ Ω
∗

2
. (23)

Then, for any given 𝜀 > 0, there is a 𝑇
1
> 𝑡
0
such that

[𝑥 (𝑡)]
+

≤ 𝜀𝐸 + 𝜎, 𝑡 ≥ 𝑇
1
. (24)

In light of 𝑊= diag{𝑤
𝑖
} > 0, for the above 𝜀 > 0 and 𝑇

1
, we

can find an enough large 𝑇
2
> 0 such that

∫

∞

𝑇2

𝑒
−𝑊𝑠

𝑑𝑠 ≤ 𝜀𝐼,

∑

𝑡0<𝑡𝑘≤𝑇1

𝑒
−𝑊(𝑡−𝑡𝑘)

≤ 𝜀𝐼, 𝑡 > 𝑇
2
.

(25)

Using (12), (13), (22), (24), and (25), we have for 𝑡 ≥ 𝜏+𝑇
1
+𝑇
2
,

[𝑥 (𝑡)]
+

≤ 𝑒
−𝑊(𝑡−𝑡0)

𝑀[𝜙]
+

𝜏
+ ∫

𝑡

𝑡0

𝑒
−𝑊(𝑡−𝑠)

𝑀𝑝([𝑥
𝑠
]
+

𝜏
) 𝑑𝑠

+ ∑

𝑡0<𝑡𝑘≤𝑡

𝑀𝑒
−𝑊(𝑡−𝑡𝑘)

𝑞 ([𝑥 (𝑡
−

𝑘
)]

+

)

≤ 𝑒
−𝑊(𝑡−𝑡0)

𝑀[𝜙]
+

𝜏

+ {∫

𝑡−𝑇2

𝑡0

+∫

𝑡

𝑡−𝑇2

} 𝑒
−𝑊(𝑡−𝑠)

𝑀𝑝([𝑥
𝑠
]
+

𝜏
) 𝑑𝑠

+

{

{

{

∑

𝑡0<𝑡𝑘≤𝑇1

+ ∑

𝑇1<𝑡𝑘≤𝑡

}

}

}

𝑀𝑒
−𝑊(𝑡−𝑡𝑘)

𝑞 ([𝑥 (𝑡
−

𝑘
)]

+

)

≤ 𝑒
−𝑊(𝑡−𝑡0)

𝑀𝑧
∗

+ ∫

∞

𝑇2

𝑒
−𝑊𝑠

𝑀𝑝(𝑀𝑧
∗

) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑇2

𝑒
−𝑊(𝑡−𝑠)

𝑀𝑝(𝜀𝐸 + 𝜎) 𝑑𝑠

+ 𝑀 ∑

𝑡0<𝑡𝑘≤𝑇1

𝑒
−𝑊(𝑡−𝑡𝑘)

𝑞 (𝑀𝑧
∗

)

+ 𝑀 ∑

𝑇1<𝑡𝑘≤𝑡

𝑒
−𝑊(𝑡−𝑡𝑘)

𝑞 (𝜀𝐸 + 𝜎)

≤ 𝑒
−𝑊(𝑡−𝑡0)

𝑀𝑧
∗

+ 𝜀𝑀𝑝 (𝑀𝑧
∗

)

+ (𝐼 − 𝑒
−𝑊𝑇2

)𝑊
−1

𝑀𝑝(𝜀𝐸 + 𝜎) + 𝜀𝑀𝑞 (𝑀𝑧
∗

)

+ 𝑀(𝐼 − 𝑒
−𝑊(𝑡−𝑇1)

) [𝐼 − 𝑒
−𝑊𝜃

]

−1

𝑞 (𝜀𝐸 + 𝜎)

≤ 𝑒
−𝑊(𝑡−𝑡0)

𝑀𝑧
∗

+ 𝜀𝑀[𝑝 (𝑀𝑧
∗

) + 𝑞 (𝑀𝑧
∗

)]

+ 𝑊
−1

𝑀𝑝(𝜀𝐸 + 𝜎) + 𝑀[𝐼 − 𝑒
−𝑊𝜃

]

−1

𝑞 (𝜀𝐸 + 𝜎) .

(26)

This implies that

𝜎 = lim sup
𝑡→+∞

[𝑥 (𝑡)]
+

≤ 𝜀𝑀[𝑝 (𝑀𝑧
∗

) + 𝑞 (𝑀𝑧
∗

)]

+ 𝑊
−1

𝑀𝑝(𝜀𝐸 + 𝜎) + 𝑀[𝐼 − 𝑒
−𝑊𝜃

]

−1

𝑞 (𝜀𝐸 + 𝜎) .

(27)

Letting 𝜖 → 0
+, then

𝜎 ≤ 𝑊
−1

𝑀𝑝(𝜎) + 𝑀[𝐼 − 𝑒
−𝑊𝜃

]

−1

𝑞 (𝜎) . (28)

That is, Δ(𝜎) ≥ 0 and 𝜎 ∈ Ω
3
. Thus,

𝜎 ∈ Ω
∗

2
∩ Ω
3
. (29)

From the definition of 𝜎 and 𝑆, dist (𝑥
𝑡
(𝑡
0
, 𝜙), 𝑆) → 0 as 𝑡 →

+∞. The proof is complete.

From the above theorems, we can obtain sufficient condi-
tions ensuring global attractivity and stability in the following
corollaries.

Corollary 6. Assume that (𝐻
1
)–(𝐻
3
) hold with

𝑝 ([𝜑]
+

𝜏
) = 𝑃[𝜑]

+

𝜏
+ 𝜇,

𝑃 = (𝑝
𝑖𝑗
)
𝑛×𝑛

≥ 0, 𝜇 = (𝜇
1
, . . . , 𝜇

𝑛
)
𝑇

≥ 0,

𝑞 ([𝑥]
+

) = 𝑄[𝑥]
+

+ ],

𝑄 = (𝑞
𝑖𝑗
)
𝑛×𝑛

≥ 0, ] = (]
1
, . . . , ]

𝑛
)
𝑇

≥ 0.

(30)

If the spectral radius

𝜌 (Λ) < 1, whereΛ = 𝑊
−1

𝑀𝑃 + 𝑀[𝐼 − 𝑒
−𝜃𝑊

]

−1

𝑄, (31)

then 𝐷 = {𝜙 ∈ PC | [𝜙]
+

𝜏
≤ 𝑍

Δ

= (𝐼 − Λ)
−1

𝑊
−1

(𝜇 + 𝑊[𝐼 −

𝑒
−𝜃𝑊

]
−1])} is a positive quasi-invariant set of (2), and 𝑆 = {𝜙 ∈

PC | [𝜙]
+

𝜏
≤ (𝐼 −Λ)

−1

𝑊
−1

𝑀(𝜇+𝑊[𝐼 − 𝑒
−𝜃𝑊

]
−1])} is a global

attracting set of (2).
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Proof. Since 𝑝(𝑧) = 𝑃𝑧 + 𝜇 and 𝑞(𝑧) = 𝑄𝑧 + ], we directly
calculate

Δ (𝑧) = 𝑀
−1

𝑊(Λ − 𝐼) 𝑧 + 𝜇 + 𝑊[𝐼 − 𝑒
−𝜃𝑊

]

−1

],

Δ (𝑀𝑧) = 𝑊 (Λ − 𝐼) 𝑧 + 𝜇 + 𝑊[𝐼 − 𝑒
−𝜃𝑊

]

−1

].

(32)

Without loss of generality, we assume that 𝜇, ] > 0. Since
𝜌(Λ) < 1, (𝐼 − Λ)

−1 exists and (𝐼 − Λ)
−1

≥ 0 (see [23]), and so
𝑍 > 0. For any 𝜅 > 0, we take 𝑧

∗

= (1+𝜅)𝑍 > 0 inTheorem 4
and verify the condition (5):

Δ (𝑀𝑧
∗

) = −𝜅 (𝜇 + 𝑊[𝐼 − 𝑒
−𝜃𝑊

]

−1

]) < 0. (33)

According to Theorem 4, when 𝜅 → 0, we deduce that 𝐷 is
a positive quasi-invariant set of (2). Furthermore, by (33),

(1 + 𝜅)𝑍 ∈ Ω
1
, (1 + 𝜅)𝑀𝑍 ∈ Ω

2
. (34)

From the arbitrariness of 𝜅, we obtain Ω
∗

1
= Ω
∗

2
= 𝑅
𝑛

+
.

Moreover,

Ω
3
= {𝑧 ∈ 𝑅

𝑛

+
| Δ (𝑧) ≥ 0}

= {𝑧 ∈ 𝑅
𝑛

+
| 𝑀
−1

𝑊(Λ − 𝐼) 𝑧 + 𝜇 + 𝑊[𝐼 − 𝑒
−𝜃𝑊

]

−1

] ≥ 0}

= {𝑧 ∈ 𝑅
𝑛

+
| (𝐼 − Λ) 𝑧 ≤ 𝑊

−1

𝑀(𝜇 + 𝑊[𝐼 − 𝑒
−𝜃𝑊

]

−1

])}

⊂ {𝑧 ∈ 𝑅
𝑛

+
| 𝑧 ≤ (𝐼 − Λ)

−1

𝑊
−1

𝑀

× (𝜇 + 𝑊[𝐼 − 𝑒
−𝜃𝑊

]

−1

])} .

(35)

It follows fromTheorem 5 that 𝑆 = {𝜙 ∈ PC | [𝜙]
+

𝜏
∈ Ω
3
} is a

global attracting set of (2) and 𝑆 is also a global attracting set
due to 𝑆



⊂ 𝑆. The proof is complete.

Corollary 7. Assume that all conditions in Corollary 6 hold
with 𝜇 = ] = 0. Then, the zero solution 𝑥(𝑡) = 0 of (2) is
globally asymptotically stable.

4. Illustrative Examples

The following illustrative examples will demonstrate the
effectiveness of our results and also show the different
asymptotical behaviors between the impulsive system and the
corresponding continuous system.

Example 8. Consider a scalar nonlinear impulsive delay
system

̇𝑥 (𝑡) = 0.2𝑥 (𝑡) + 0.2𝑥
2

(𝑡 − 1) + 0.1,

𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑁, 𝑡 ≥ 𝑡

0
= 0,

Δ𝑥 = −0.6𝑥 (𝑡
−

𝑘
) + 0.1𝑥

2

(𝑡
−

𝑘
) + 0.1 sin (𝑒

𝑡𝑘
) ,

𝑡
𝑘
= 𝑡
𝑘−1

+ 0.15.

(36)

According to Theorems 4 and 5, we have 𝜃 =  = 0.15, 𝐴 =

0.2, 𝐵 = −0.6, 𝑀 = 2.5, 𝑊 ≐ 5.9086, 𝑝(𝑧) = 0.2𝑧
2

+ 0.1,
𝑞(𝑧) = 0.1𝑧

2

+ 0.1, Δ(𝑧) ≐ 1.2052𝑧
2

− 2.3634𝑧 + 1.1052, and
so

Ω
1
= {𝑧 ∈ 𝑅

+
| Δ (𝑀𝑧) < 0} = (0.3079, 0.4765) ,

Ω
∗

1
= [0, 0.4765] ,

Ω
2
= {𝑧 ∈ 𝑅

+
| Δ (𝑧) < 0} = (0.7698, 1.1913) ,

Ω
∗

2
= [0, 1.1913] ,

Ω
3
= {𝑧 ∈ 𝑅

+
| Δ (𝑧) ≥ 0} = [0, 0.7698] ∪ [1.1913, +∞) ,

Ω
∗

2
∩ Ω
3
= [0, 0.7698] .

(37)

Thus, 𝑆 = {𝜙 ∈ PC | [𝜙]
+

𝜏
≤ 0.7698} is an attracting set of (36),

and 𝐷 = {𝜙 ∈ PC | [𝜙]
+

𝜏
≤ 0.4765} is an attracting basin of 𝑆.

However, solutions of the corresponding continuous system
(i.e., Δ𝑥 = 0 in (36)) may be unbounded. Taking the initial
condition 𝜙(𝑠) = 0.2, 𝑠 ∈ [−1, 0], Figure 1 shows the different
asymptotic behavior between the solution of (36) with no
impulse and one with impulses.

Example 9. Consider a 2-dimensional impulsive delay system

̇𝑥
1
(𝑡) = 𝑥

1
(𝑡) + 0.5 sin (𝑥

1
(𝑡 − 1)) − 0.4𝑥

2
(𝑡 − 1) − 0.5,

𝑡 ≥ 0,

̇𝑥
2
(𝑡) = −4𝑥

2
(𝑡) − 0.5𝑥

1
(𝑡 − 1) + 0.4 cos (𝑥

2
(𝑡 − 1)) + 0.5,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑥
1
= −0.5𝑥

1
(𝑡
−

𝑘
) + 0.1 cos (𝑥

1
(𝑡
−

𝑘
)) + 0.5 sin (𝑒

𝑡𝑘
) ,

𝑡
𝑘
= 0.1𝑘,

Δ𝑥
2
= 0.1𝑥

2
(𝑡
−

𝑘
) + 0.2 sin (𝑥

2
(𝑡
−

𝑘
)) − 0.5 cos (𝑒𝑡𝑘) ,

𝑘 ∈ 𝑁.

(38)

According to Corollary 6, we have 𝜃 =  = 0.1,
𝐴= diag{1, −4}, 𝐵= diag{−0.5, 0.1}, 𝑀= diag{2, 1},
𝑊= diag{5.9315, 3.0469}, 𝑝(𝑧) = 𝑃𝑧 + 𝜇, 𝑞(𝑧) = 𝑄𝑧 + ],
Λ = 𝑊

−1

𝑀𝑃 + 𝑀[𝐼 − 𝑒
−𝜃𝑊

]
−1

𝑄, where

𝑃 = (

0.5 0.4

0.5 0.4
) , 𝑄 = (

0.1 0

0 0.2
) ,

𝜇 = ] = (

0.5

0.5
) , Λ = (

0.6156 0.1349

0.1641 0.8928
) ,

(39)

and so 𝜌(Λ) = 0.9575 < 1. Therefore, 𝐷 = {𝜙 ∈ PC |

[𝜙]
+

𝜏
≤ (1.7105, 2.5228)

𝑇

} is a positive quasi-invariant set of
(38), and 𝑆 = {𝜙 ∈ PC | [𝜙]

+

𝜏
≤ (1.8637, 2.8720)

𝑇

} is a
global attracting set of (38). Figure 2 shows the asymptotic
properties of solutions of (38) under the different initial
conditions.
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Figure 1: The trajectory of (36) with: (a) no impulse (i.e., Δ𝑥 = 0) and (b) impulses.
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This paper is concerned with impulsive cellular neural networks with time-varying delays in leakage terms. Without assuming
bounded andmonotone conditions on activation functions, we establish sufficient conditions on existence and exponential stability
of periodic solutions by using Lyapunov functional method and differential inequality techniques. Our results are complement to
some recent ones.

1. Introduction

It is well known that impulsive differential equations are
mathematical apparatus for simulation of process and phe-
nomena observed in control theory, physics, chemistry,
population dynamics, biotechnologies, industrial robotics,
economics, and so forth [1–3]. Thus, many neural networks
with impulses have been studied extensively, and a great deal
of literature is focused on the existence and stability of an
equilibrium point [4–7]. In [8–10], the authors discussed the
existence and global exponential stability of periodic solution
of a class of cellular neural networks (CNNs) with impulse.
Recently,Wang et al. [11] considered the followingCNNswith
impulses and leakage delays:

𝑥


𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖
(𝑡 − 𝜏
𝑖
) +

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜎

𝑖𝑗
)) + 𝐼

𝑖
(𝑡) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) = 𝑑
𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
) ,

(1)

where Δ𝑥
𝑖
(𝑡
𝑘
) are the impulses at moments 𝑡

𝑘
and 𝑡
1
< 𝑡
2
<

⋅ ⋅ ⋅ is a strictly increasing sequence such that lim
𝑘→∞

𝑡
𝑘
=

+∞; 𝑎
𝑖
> 0 and 𝜏

𝑖
> 0 are constants, and𝛼

𝑖𝑗
(𝑡), 𝐼
𝑖
(𝑡), and𝛽

𝑖𝑗
(𝑡)

are continuous periodic functions with period 𝑇. Suppose
that the following conditions are satisfied.

(𝐴
1
) There exist constants 𝐿𝑓

𝑗
, 𝑗 = 1, 2, . . . 𝑛, such that, for

any 𝛼, 𝛽 ∈ 𝑅,

0 <

𝑓
𝑗
(𝛼) − 𝑓

𝑗
(𝛽)

𝛼 − 𝛽

< 𝐿
𝑓

𝑗
, 𝛼 ̸= 𝛽, 𝑗 = 1, 2, . . . 𝑛. (2)

(𝐴
2
) 𝑓
𝑖
(0) = 0 and for 𝑖 = 1, 2, . . . , 𝑛, there exists a constant

0 < 𝑀
𝑖
< +∞, such that





𝑓
𝑖
(𝛼)





≤ 𝑀
𝑖
, 𝛼 ∈ 𝑅. (3)

By using the continuation theorem of coincidence degree
theory and a suitable degenerate Lyapunov-Krasovskii func-
tional together with model transformation technique, some
results were obtained in [11] to guarantee that all solutions
of system (1) converge exponentially to a periodic function.
However, to the best of our knowledge, few authors have
considered the existence and stability of periodic solutions
of system (1) without the assumptions (𝐴

1
) and (𝐴

2
). Thus,

it is worthwhile to continue to investigate the convergence
behavior of system (1) in this case. In view of the fact that
the coefficients and delays in neural networks are usually time
varying in the real world, motivated by the above discussions,
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in this paper, we will consider the problem on periodic
solution of the following impulsive CNNs with time-varying
delays in the leakage terms:

𝑥


𝑖
(𝑡) = −𝑐

𝑖
(𝑡) 𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡)) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))) + 𝐼

𝑖
(𝑡) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) = 𝑑
𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
) ,

(4)

in which 𝑛 corresponds to the number of units in a neural
network, 𝑥

𝑖
(𝑡) corresponds to the state vector of the 𝑖th unit

at the time 𝑡, and 𝑐
𝑖
(𝑡) represents the rate with which the 𝑖th

unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs at
the time 𝑡. 𝑎

𝑖𝑗
(𝑡) and 𝑏

𝑖𝑗
(𝑡) are the connection weights at the

time 𝑡, 𝜂
𝑖
(𝑡) and 𝜏

𝑖𝑗
(𝑡) denote the transmission delays, 𝐼

𝑖
(𝑡)

denotes the external bias on the 𝑖th unit at the time 𝑡, 𝑓
𝑗
and

𝑔
𝑗
are activation functions of signal transmission, Δ𝑥

𝑖
(𝑡
𝑘
) are

the impulses at moments 𝑡
𝑘
, and 0 ≤ 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ is a strictly

increasing sequence such that lim
𝑘→∞

𝑡
𝑘
= +∞, and 𝑖, 𝑗 =

1, 2, . . . , 𝑛. It is obvious that when𝑓 = 𝑔 and 𝜂
𝑖
(𝑡) is a constant

function, (1) is a special case of (4).
The main purpose of this paper is to give the condi-

tions for the existence and exponential stability of the peri-
odic solutions for system (4). By applying Lyapunov func-
tional method and differential inequality techniques, without
assuming (𝐴

1
) and (𝐴

2
), we derive some new sufficient con-

ditions ensuring the existence, uniqueness, and exponential
stability of the periodic solution for system (4), which are
new and complement previously known results.Moreover, an
example is also provided to illustrate the effectiveness of our
results.

Throughout this paper, we assume that the following
conditions hold.

(𝐻
1
) For 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝐼

𝑖
, 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
: 𝑅 → 𝑅 and 𝑐

𝑖
, 𝜂
𝑖
,

𝜏
𝑖𝑗
: 𝑅 → 𝑅

+ are continuous periodic functions with period
𝑇 > 0, and 𝑡 − 𝜂

𝑖
(𝑡) ≥ 0 for all 𝑡 ≥ 0. In addition, there exist

constants 𝑐+
𝑖
, 𝜂+
𝑖
, 𝐼+
𝑖
, 𝜏
𝑖
, 𝑎+
𝑖𝑗
, 𝑏+
𝑖𝑗
, and 𝜏+

𝑖𝑗
such that

𝑐
+

𝑖
= sup
𝑡∈𝑅

𝑐
𝑖
(𝑡) , 𝜂

+

𝑖
= sup
𝑡∈𝑅

𝜂
𝑖
(𝑡) ,

𝐼
+

𝑖
= sup
𝑡∈𝑅





𝐼
𝑖
(𝑡)




, 𝑎

+

𝑖𝑗
= sup
𝑡∈𝑅






𝑎
𝑖𝑗
(𝑡)






,

𝑏
+

𝑖𝑗
= sup
𝑡∈𝑅






𝑏
𝑖𝑗
(𝑡)






, 𝜏

+

𝑖𝑗
= sup
𝑡∈𝑅

𝜏
𝑖𝑗
(𝑡) ,

𝜏
𝑖
= max{𝜂+

𝑖
, max
𝑗=1,2,...,𝑛

𝜏
+

𝑗𝑖
} .

(5)

(𝐻
2
)The sequence of times 𝑡

𝑘
(𝑘 ∈ 𝑁) satisfies 𝑡

𝑘
< 𝑡
𝑘+1

and lim
𝑘→+∞

𝑡
𝑘
= +∞, and 𝑑

𝑖𝑘
satisfies −2 ≤ 𝑑

𝑖𝑘
≤ 0 for

𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑘 ∈ 𝑍
+, where 𝑍+ denotes the set of all

positive integers.

(𝐻
3
)There exists a 𝑞 ∈ 𝑍+ such that

𝑑
𝑖(𝑘+𝑞)

= 𝑑
𝑖𝑘
, 𝑡
𝑘+𝑞

= 𝑡
𝑘
+ 𝑇, (𝑘 ∈ 𝑍

+

) . (6)

(𝐻
4
) For each 𝑗 ∈ {1, 2, . . . , 𝑛}, there exist nonnegative

constants 𝐿𝑓
𝑗
and 𝐿𝑔

𝑗
such that, for all 𝑢, V ∈ 𝑅,

𝑔
𝑗
(0) = 𝑓

𝑗
(0) = 0,






𝑔
𝑗
(𝑢) − 𝑔

𝑗
(V)





≤ 𝐿
𝑔

𝑗
|𝑢 − V| ,






𝑓
𝑗
(𝑢) − 𝑓

𝑗
(V)





≤ 𝐿
𝑓

𝑗
|𝑢 − V| .

(7)

(𝐻
5
) For all 𝑡 > 0 and 𝑖 ∈ {1, 2, . . . , 𝑛}, there exist con-

stants 𝜉
𝑖
> 0 and 𝜂 > 0 such that

−𝜂 > − [𝑐
𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝜂
𝑖
(𝑡) 𝑐
+

𝑖
] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗
(𝑡)






+ 𝑐
𝑖
(𝑡) 𝜂
𝑖
(𝑡) 𝑎
+

𝑖𝑗
) 𝐿
𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(






𝑏
𝑖𝑗
(𝑡)






+ 𝑐
𝑖
(𝑡) 𝜂
𝑖
(𝑡) 𝑏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗
.

(8)

For convenience, let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛, in

which “𝑇” denotes the transposition. We define |𝑥| =

(|𝑥
1
|, |𝑥
2
|, . . . , |𝑥

𝑛
|)
𝑇 and ‖𝑥‖ = max

1≤𝑖≤𝑛
{|𝑥
𝑖
|}. As usual in

the theory of impulsive differential equations, at the points of
discontinuity 𝑡

𝑘
of the solution 𝑡 → (𝑥

1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇,

we assume that (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

≡ (𝑥
1
(𝑡 − 0), 𝑥

2
(𝑡 −

0), . . . , 𝑥
𝑛
(𝑡 − 0))

𝑇. It is clearly that, in general, the derivative
𝑥


𝑖
(𝑡
𝑘
) does not exist. On the other hand, according to system

(4), there exists the limit 𝑥
𝑖
(𝑡
𝑘
∓ 0). In view of the above

convention, we assume that 𝑥
𝑖
(𝑡
𝑘
) ≡ 𝑥


𝑖
(𝑡
𝑘
− 0).

The initial conditions associated with (4) are assumed to
be of the form

𝑥
𝑖
(𝑠) = 𝜙

𝑖
(𝑠) , 𝑠 ∈ [−𝜏

𝑖
, 0] , 𝑖 = 1, 2, . . . , 𝑛, (9)

where𝜙
𝑖
(⋅)denotes a real-valued continuous function defined

on [−𝜏
𝑖
, 0].

2. Preliminary Results

The following lemmas will be used to prove our main results
in Section 3.

Lemma 1. Let (H
1
)–(H
5
) hold. Suppose that 𝑥(𝑡) = (𝑥

1
(𝑡),

𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 is a solution of system (1) with the initial

conditions

𝑥
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) ,





𝜑
𝑖
(𝑠)




< 𝜉
𝑖

𝛾

𝜂

, 𝑠 ∈ [−𝜏
𝑖
, 0] , (10)

where 𝛾 = 1 +max
𝑖=1,2,...,𝑛

{[𝑐
+

𝑖
𝜂
+

𝑖
+ 1]𝐼
+

𝑖
}, 𝑖 = 1, 2, . . . , 𝑛. Then





𝑥
𝑖
(𝑡)




< 𝜉
𝑖

𝛾

𝜂

, ∀𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛. (11)

Proof. Assume that (11) does not hold. From (𝐻
2
), we have





𝑥
𝑖
(𝑡
+

𝑘
)




=




(1 + 𝑑

𝑖𝑘
)









𝑥
𝑖
(𝑡
𝑘
)




≤




𝑥
𝑖
(𝑡
𝑘
)




. (12)
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So, if |𝑥
𝑖
(𝑡
+

𝑘
)| > 𝛾, then |𝑥

𝑖
(𝑡
𝑘
)| > 𝛾.Thus, wemay assume that

there exist 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡
∗
∈ (𝑡
𝑘
, 𝑡
𝑘+1

) such that





𝑥
𝑖
(𝑡
∗
)




= 𝜉
𝑖

𝛾

𝜂

,






𝑥
𝑗
(𝑡)






< 𝜉
𝑗

𝛾

𝜂

∀𝑡 ∈ [−𝜏
𝑖
, 𝑡
∗
) , 𝑗 = 1, 2, . . . , 𝑛.

(13)

According to (4), we get

𝑥


𝑖
(𝑡) = −𝑐

𝑖
(𝑡) 𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡)) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))) + 𝐼

𝑖
(𝑡)

= −𝑐
𝑖
(𝑡) 𝑥
𝑖
(𝑡) + 𝑐

𝑖
(𝑡) [𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡 − 𝜂
𝑖
(𝑡))]

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))) + 𝐼

𝑖
(𝑡)

= −𝑐
𝑖
(𝑡) 𝑥
𝑖
(𝑡) + 𝑐

𝑖
(𝑡) ∫

𝑡

𝑡−𝜂𝑖(𝑡)

𝑥


𝑖
(𝑠) 𝑑𝑠

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))) + 𝐼

𝑖
(𝑡) ,

𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛.

(14)

Calculating the upper left derivative of |𝑥
𝑖
(𝑡)|, together

with (13), (14), (𝐻
5
), and

𝛾 > [𝑐
+

𝑖
𝜂
+

𝑖
+ 1] 𝐼

+

𝑖
, (15)

we obtain

0 ≤ 𝐷
− 



𝑥
𝑖
(𝑡
∗
)





≤ −𝑐
𝑖
(𝑡
∗
)




𝑥
𝑖
(𝑡
∗
)




+ 𝑐
𝑖
(𝑡
∗
) ∫

𝑡∗

𝑡∗−𝜂𝑖(𝑡∗)






𝑥


𝑖
(𝑠)






𝑑𝑠

+

𝑛

∑

𝑗=1






𝑎
𝑖𝑗
(𝑡
∗
) 𝑓
𝑗
(𝑥
𝑗
(𝑡
∗
))







+

𝑛

∑

𝑗=1






𝑏
𝑖𝑗
(𝑡
∗
)












𝑔
𝑗
(𝑥
𝑗
(𝑡
∗
− 𝜏
𝑖𝑗
(𝑡
∗
)))






+




𝐼
𝑖
(𝑡
∗
)





= −𝑐
𝑖
(𝑡
∗
)




𝑥
𝑖
(𝑡
∗
)




+ 𝑐
𝑖
(𝑡
∗
)

× ∫

𝑡∗

𝑡∗−𝜂𝑖(𝑡∗)













− 𝑐
𝑖
(𝑠) 𝑥
𝑖
(𝑠 − 𝜂

𝑖
(𝑠))

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑠) 𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) 𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

+𝐼
𝑖
(𝑠)













𝑑𝑠

+

𝑛

∑

𝑗=1






𝑎
𝑖𝑗
(𝑡
∗
) 𝑓
𝑗
(𝑥
𝑗
(𝑡
∗
))







+

𝑛

∑

𝑗=1






𝑏
𝑖𝑗
(𝑡
∗
)












𝑔
𝑗
(𝑥
𝑗
(𝑡
∗
− 𝜏
𝑖𝑗
(𝑡
∗
)))






+




𝐼
𝑖
(𝑡
∗
)





≤ − [𝑐
𝑖
(𝑡
∗
) − 𝑐
𝑖
(𝑡
∗
) 𝜂
𝑖
(𝑡
∗
) 𝑐
+

𝑖
]




𝑥
𝑖
(𝑡
∗
)





+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗
(𝑡
∗
)






+ 𝑐
𝑖
(𝑡
∗
) 𝜂
𝑖
(𝑡
∗
) 𝑎
+

𝑖𝑗
) 𝐿
𝑓

𝑗
𝜉
𝑗

𝛾

𝜂

+

𝑛

∑

𝑗=1

(






𝑏
𝑖𝑗
(𝑡
∗
)






+ 𝑐
𝑖
(𝑡
∗
) 𝜂
𝑖
(𝑡
∗
) 𝑏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗

𝛾

𝜂

+ [𝑐
+

𝑖
𝜂
+

𝑖
+ 1] 𝐼

+

𝑖

=

{

{

{

− [𝑐
𝑖
(𝑡
∗
) − 𝑐
𝑖
(𝑡
∗
) 𝜂
𝑖
(𝑡
∗
) 𝑐
+

𝑖
] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗
(𝑡
∗
)






+ 𝑐
𝑖
(𝑡
∗
) 𝜂
𝑖
(𝑡
∗
) 𝑎
+

𝑖𝑗
) 𝐿
𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(






𝑏
𝑖𝑗
(𝑡
∗
)






+ 𝑐
𝑖
(𝑡
∗
) 𝜂
𝑖
(𝑡
∗
) 𝑏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗

}

}

}

𝛾

𝜂

+ [𝑐
+

𝑖
𝜂
+

𝑖
+ 1] 𝐼

+

𝑖

< −𝜂

𝛾

𝜂

+ [𝑐
+

𝑖
𝜂
+

𝑖
+ 1] 𝐼

+

𝑖

< 0.

(16)

It is a contradiction and shows that (11) holds. The proof is
now completed.

Remark 2. After the conditions (𝐻
1
)–(𝐻
5
), the solution of

system (4) always exists (see [1, 2]). In view of the bounded-
ness of this solution, from the theory of impulsive differential
equations in [1], it follows that the solution of system (4) with
initial conditions (10) can be defined on [0, +∞).

Lemma 3. Suppose that (H
1
)–(H
5
) are true. Let 𝑥∗(𝑡) =

(𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡))
𝑇 be the solution of system (4) with
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initial value 𝜑∗ = (𝜑
∗

1
(𝑡), 𝜑
∗

2
(𝑡), . . . , 𝜑

∗

𝑛
(𝑡))
𝑇, and let 𝑥(𝑡) =

(𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 be the solution of system (4) with

initial value 𝜑 = (𝜑
1
(𝑡), 𝜑
2
(𝑡), . . . , 𝜑

𝑛
(𝑡))
𝑇. Then, there exists

a positive constant 𝜆 such that

𝑥
𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡) = 𝑂 (𝑒

−𝜆𝑡

) , 𝑖 = 1, 2, . . . , 𝑛. (17)

Proof. Let 𝑦(𝑡) = 𝑥(𝑡) − 𝑥
∗

(𝑡). Then, for 𝑖 ∈ {1, 2, . . . , 𝑛}, it is
followed by

𝑦


𝑖
(𝑡) = −𝑐

𝑖
(𝑡) (𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡)) − 𝑥

∗

𝑖
(𝑡 − 𝜂
𝑖
(𝑡)))

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) [𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑡))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) [𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))] ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

𝑦
𝑖
(𝑡
+

𝑘
) = (1 + 𝑑

𝑖𝑘
) 𝑦
𝑖
(𝑡
𝑘
) , 𝑘 = 1, 2, . . . .

(18)

Define continuous functions Γ
𝑖
(𝜔) by setting

Γ
𝑖
(𝜔) = − [𝑐

𝑖
(𝑡) 𝑒
𝜔𝜂𝑖(𝑡)

− 𝜔

−𝑐
𝑖
(𝑡) 𝑒
𝜔𝜂𝑖(𝑡)

𝜂
𝑖
(𝑡) (𝜔 + 𝑐

+

𝑖
𝑒
𝜔𝜂
+

𝑖
)] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗
(𝑡)






+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝑡) 𝑒
𝜔𝜂𝑖(𝑡)

𝜂
𝑖
(𝑡)) 𝐿
𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(






𝑏
𝑖𝑗
(𝑡)






𝑒
𝜔𝜏𝑖𝑗(𝑡)

+𝑏
+

𝑖𝑗
𝑐
𝑖
(𝑡) 𝑒
𝜔𝜂𝑖(𝑡)

𝜂
𝑖
(𝑡) 𝑒
𝜔𝜏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗
,

𝜔 ≥ 0, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(19)

Then

Γ
𝑖
(0) = − [𝑐

𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝜂
𝑖
(𝑡) 𝑐
+

𝑖
] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗
(𝑡)






+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝑡) 𝜂
𝑖
(𝑡)) 𝐿
𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(






𝑏
𝑖𝑗
(𝑡)






+ 𝑏
+

𝑖𝑗
𝑐
𝑖
(𝑡) 𝜂
𝑖
(𝑡)) 𝐿
𝑔

𝑗
𝜉
𝑗

< −𝜂, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

(20)

which, together with the continuity of Γ
𝑖
(𝜔), implies that we

can choose two positive constants 𝜆 and 𝜂 such that

−𝜂 > Γ
𝑖
(𝜆)

= − [𝑐
𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

− 𝜆

−𝑐
𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

𝜂
𝑖
(𝑡) (𝜆 + 𝑐

+

𝑖
𝑒
𝜆𝜂
+

𝑖
)] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗
(𝑡)






+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

𝜂
𝑖
(𝑡)) 𝐿
𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(






𝑏
𝑖𝑗
(𝑡)






𝑒
𝜆𝜏𝑖𝑗(𝑡)

+ 𝑏
+

𝑖𝑗
𝑐
𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

× 𝜂
𝑖
(𝑡) 𝑒
𝜆𝜏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗
, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(21)

Let

𝑌
𝑖
(𝑡) = 𝑦

𝑖
(𝑡) 𝑒
𝜆𝑡

, 𝑖 = 1, 2, . . . , 𝑛. (22)

Then

𝑌


𝑖
(𝑡) = 𝜆𝑌

𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝑒
𝜆𝑡

𝑦
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))

+ 𝑒
𝜆𝑡
{

{

{

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) [𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑡))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) [𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))]

}

}

}

= 𝜆𝑌
𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

𝑌
𝑖
(𝑡)

+ 𝑐
𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

[𝑌
𝑖
(𝑡) − 𝑌

𝑖
(𝑡 − 𝜂
𝑖
(𝑡))]

+ 𝑒
𝜆𝑡
{

{

{

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) [𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑡))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) [𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))]

}

}

}
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= 𝜆𝑌
𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

𝑌
𝑖
(𝑡)

+ 𝑐
𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

∫

𝑡

𝑡−𝜂𝑖(𝑡)

𝑌


𝑖
(𝑠) 𝑑𝑠

+ 𝑒
𝜆𝑡
{

{

{

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) [𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑡))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) [𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))]

}

}

}

= 𝜆𝑌
𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

𝑌
𝑖
(𝑡) + 𝑐

𝑖
(𝑡) 𝑒
𝜆𝜂𝑖(𝑡)

× ∫

𝑡

𝑡−𝜂𝑖(𝑡)

{

{

{

𝜆𝑌
𝑖
(𝑠) − 𝑐

𝑖
(𝑠) 𝑒
𝜆𝑠

𝑦
𝑖
(𝑠 − 𝜂

𝑖
(𝑠))

+ 𝑒
𝜆𝑠

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑠) [𝑓
𝑗
(𝑥
𝑗
(𝑠)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑠))]

+ 𝑒
𝜆𝑠

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) [𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))]

}

}

}

𝑑𝑠

+ 𝑒
𝜆𝑡
{

{

{

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) [𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑡))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) [𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))]

}

}

}

,

𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

(23)




𝑌
𝑖
(𝑡
+

𝑘
)




=




1 + 𝑑
𝑖𝑘










𝑌
𝑖
(𝑡
𝑘
)




, 𝑖 = 1, 2, . . . , 𝑛. (24)

We define a positive constant𝑀 as follows:

𝑀 = max
1≤𝑖≤𝑛

{

{

{

sup
𝑠∈[−𝜏𝑖 , 0]





𝑌
𝑖
(𝑠)





}

}

}

. (25)

Let 𝐾 be a positive number such that





𝑌
𝑖
(𝑡)




≤ 𝑀 < 𝐾𝜉

𝑖
∀𝑡 ∈ [−𝜏

𝑖
, 0] , 𝑖 = 1, 2, . . . , 𝑛. (26)

We claim that





𝑌
𝑖
(𝑡)




< 𝐾𝜉
𝑖
, ∀𝑡 > 0, 𝑖 = 1, 2, . . . , 𝑛. (27)

Obviously, (27) holds for 𝑡 = 0. We first prove that (27) is
true for 0 < 𝑡 ≤ 𝑡

1
. Otherwise, there exist 𝑖 ∈ {1, 2, . . . , 𝑛}

and 𝜌 ∈ (0, 𝑡
1
] such that one of the following two cases must

occur;

(1) 𝑌
𝑖
(𝜌) = 𝐾𝜉

𝑖
,






𝑌
𝑗
(𝑡)






< 𝐾𝜉
𝑗

∀𝑡 ∈ [0, 𝜌) , 𝑗 = 1, 2, . . . , 𝑛,

(28)

(2) 𝑌
𝑖
(𝜌) = −𝐾𝜉

𝑖
,






𝑌
𝑗
(𝑡)






< 𝐾𝜉
𝑗

∀𝑡 ∈ [0, 𝜌) , 𝑗 = 1, 2, . . . , 𝑛.

(29)

Now, we distinguish two cases to finish the proof.

Case (i). If (28) holds. Then, from (21), (23), and (𝐻
1
)–

(𝐻
5
), we have

0 ≤ 𝑌


𝑖
(𝜌)

= 𝜆𝑌
𝑖
(𝜌) − 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝑌
𝑖
(𝜌) + 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× ∫

𝜌

𝜌−𝜂𝑖(𝜌)

{

{

{

𝜆𝑌
𝑖
(𝑠) − 𝑐

𝑖
(𝑠) 𝑒
𝜆𝑠

𝑦
𝑖
(𝑠 − 𝜂

𝑖
(𝑠))

+ 𝑒
𝜆𝑠

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑠) [𝑓
𝑗
(𝑥
𝑗
(𝑠)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑠))]

+ 𝑒
𝜆𝑠

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) [𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))]

}

}

}

𝑑𝑠
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+ 𝑒
𝜆𝜌
{

{

{

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝜌) [𝑓

𝑗
(𝑥
𝑗
(𝜌)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝜌))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝜌) [𝑔

𝑗
(𝑥
𝑗
(𝜌 − 𝜏

𝑖𝑗
(𝜌)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝜌 − 𝜏

𝑖𝑗
(𝜌)))]

}

}

}

≤ 𝜆𝑌
𝑖
(𝜌) − 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝑌
𝑖
(𝜌) + 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× ∫

𝜌

𝜌−𝜂𝑖(𝜌)

{

{

{

𝜆𝑌
𝑖
(𝑠) + 𝑐

+

𝑖
𝑒
𝜆𝜂𝑖(𝑠)





𝑌
𝑖
(𝑠 − 𝜂

𝑖
(𝑠))






+

𝑛

∑

𝑗=1

𝑎
+

𝑖𝑗
𝐿
𝑓

𝑗






𝑌
𝑗
(𝑠)







+

𝑛

∑

𝑗=1

𝑏
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑒
𝜆𝜏𝑖𝑗(𝑠)






𝑌
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))







}

}

}

𝑑𝑠

+

𝑛

∑

𝑗=1






𝑎
𝑖𝑗
(𝜌)






𝐿
𝑓

𝑗






𝑌
𝑗
(𝜌)







+

𝑛

∑

𝑗=1






𝑏
𝑖𝑗
(𝜌)






𝐿
𝑔

𝑗
𝑒
𝜆𝜏𝑖𝑗(𝜌)






𝑌
𝑗
(𝜌 − 𝜏

𝑖𝑗
(𝜌))







≤ − [𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

− 𝜆 − 𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)

× (𝜆 + 𝑐
+

𝑖
𝑒
𝜆𝜂
+

𝑖
)]𝐾𝜉

𝑖

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗
(𝜌)






+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)) 𝐿

𝑓

𝑗
𝐾𝜉
𝑗

+

𝑛

∑

𝑗=1

(






𝑏
𝑖𝑗
(𝜌)






𝑒
𝜆𝜏𝑖𝑗(𝜌)

+ 𝑏
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× 𝜂
𝑖
(𝜌) 𝑒
𝜆𝜏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝐾𝜉
𝑗

=

{

{

{

− [𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

− 𝜆 − 𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)

× (𝜆 + 𝑐
+

𝑖
𝑒
𝜆𝜂
+

𝑖
)] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗
(𝜌)






+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)) 𝐿

𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(






𝑏
𝑖𝑗
(𝜌)






𝑒
𝜆𝜏𝑖𝑗(𝜌)

+ 𝑏
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× 𝜂
𝑖
(𝜌) 𝑒
𝜆𝜏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗

}

}

}

𝐾

< −𝜂𝐾 < 0.

(30)

Case (ii). If (29) holds. Then, from (21), (23), and (𝐻
1
)–

(𝐻
5
), we get

0 ≥ 𝑌


𝑖
(𝜌)

= 𝜆𝑌
𝑖
(𝜌) − 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝑌
𝑖
(𝜌) + 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× ∫

𝜌

𝜌−𝜂𝑖(𝜌)

{

{

{

𝜆𝑌
𝑖
(𝑠) − 𝑐

𝑖
(𝑠) 𝑒
𝜆𝑠

𝑦
𝑖
(𝑠 − 𝜂

𝑖
(𝑠))

+ 𝑒
𝜆𝑠

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑠) [𝑓
𝑗
(𝑥
𝑗
(𝑠)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝑠))]

+ 𝑒
𝜆𝑠

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) [𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))]

}

}

}

𝑑𝑠

+ 𝑒
𝜆𝜌
{

{

{

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝜌) [𝑓

𝑗
(𝑥
𝑗
(𝜌)) − 𝑓

𝑗
(𝑥
∗

𝑗
(𝜌))]

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝜌) [𝑔

𝑗
(𝑥
𝑗
(𝜌 − 𝜏

𝑖𝑗
(𝜌)))

−𝑔
𝑗
(𝑥
∗

𝑗
(𝜌 − 𝜏

𝑖𝑗
(𝜌)))]

}

}

}

≥ 𝜆𝑌
𝑖
(𝜌) − 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝑌
𝑖
(𝜌) + 𝑐

𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× ∫

𝜌

𝜌−𝜂𝑖(𝜌)

{

{

{

𝜆𝑌
𝑖
(𝑠) − 𝑐

+

𝑖
𝑒
𝜆𝜂𝑖(𝑠)





𝑌
𝑖
(𝑠 − 𝜂

𝑖
(𝑠))






−

𝑛

∑

𝑗=1

𝑎
+

𝑖𝑗
𝐿
𝑓

𝑗






𝑌
𝑗
(𝑠)







−

𝑛

∑

𝑗=1

𝑏
+

𝑖𝑗
𝐿
𝑔

𝑗
𝑒
𝜆𝜏𝑖𝑗(𝑠)






𝑌
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))







}

}

}

𝑑𝑠

−

𝑛

∑

𝑗=1






𝑎
𝑖𝑗
(𝜌)






𝐿
𝑓

𝑗






𝑌
𝑗
(𝜌)







−

𝑛

∑

𝑗=1






𝑏
𝑖𝑗
(𝜌)






𝐿
𝑔

𝑗
𝑒
𝜆𝜏𝑖𝑗(𝜌)






𝑌
𝑗
(𝜌 − 𝜏

𝑖𝑗
(𝜌))







≥ − [𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

− 𝜆 − 𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)

× (𝜆 + 𝑐
+

𝑖
𝑒
𝜆𝜂
+

𝑖
)] (−𝐾𝜉

𝑖
)

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗
(𝜌)






+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)) 𝐿

𝑓

𝑗
(−𝐾𝜉
𝑗
)

+

𝑛

∑

𝑗=1

(






𝑏
𝑖𝑗
(𝜌)






𝑒
𝜆𝜏𝑖𝑗(𝜌)

+ 𝑏
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× 𝜂
𝑖
(𝜌) 𝑒
𝜆𝜏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
(−𝐾𝜉
𝑗
)
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=

{

{

{

− [𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

− 𝜆 − 𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× 𝜂
𝑖
(𝜌) (𝜆 + 𝑐

+

𝑖
𝑒
𝜆𝜂
+

𝑖
) ] 𝜉
𝑖

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗
(𝜌)






+ 𝑎
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

𝜂
𝑖
(𝜌)) 𝐿

𝑓

𝑗
𝜉
𝑗

+

𝑛

∑

𝑗=1

(






𝑏
𝑖𝑗
(𝜌)






𝑒
𝜆𝜏𝑖𝑗(𝜌)

+ 𝑏
+

𝑖𝑗
𝑐
𝑖
(𝜌) 𝑒
𝜆𝜂𝑖(𝜌)

× 𝜂
𝑖
(𝜌) 𝑒
𝜆𝜏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗

}

}

}

(−𝐾)

> 𝜂𝐾 > 0.

(31)

Therefore, (27) holds for 𝑡 ∈ [0, 𝑡
1
]. From (24) and (27), we

know that





𝑌
𝑖
(𝑡
1
)




=




𝑦
𝑖
(𝑡
1
)




𝑒
𝜆𝑡1

< 𝐾𝜉
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,





𝑌
𝑖
(𝑡
+

1
)




=




1 + 𝑑
𝑖1










𝑌
𝑖
(𝑡
1
)




≤




𝑌
𝑖
(𝑡
1
)




< 𝐾𝜉
𝑖
,

𝑖 = 1, 2, . . . , 𝑛.

(32)

Thus, for 𝑡 ∈ [𝑡
1
, 𝑡
2
], we may repeat the above procedure and

obtain





𝑌
𝑖
(𝑡)




=




𝑦
𝑖
(𝑡)




𝑒
𝜆𝑡

< 𝐾𝜉
𝑖
, ∀𝑡 ∈ [𝑡

1
, 𝑡
2
] , 𝑖 = 1, 2, . . . , 𝑛.

(33)

Further, we have





𝑌
𝑖
(𝑡)




=




𝑦
𝑖
(𝑡)




𝑒
𝜆𝑡

< 𝐾𝜉
𝑖
, ∀𝑡 > 0, 𝑖 = 1, 2, . . . , 𝑛. (34)

That is,





𝑥
𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡)




≤ 𝐾𝜉
𝑖
𝑒
−𝜆𝑡

, ∀𝑡 > 0, 𝑖 = 1, 2, . . . , 𝑛. (35)

Remark 4. If 𝑥∗(𝑡) = (𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡))
𝑇 is the 𝑇-pe-

riodic solution of system (4), it follows from Lemma 3 that
𝑥
∗

(𝑡) is globally exponentially stable.

3. Main Results

In this section, we will study existence and exponential sta-
bility for periodic solutions of system (4).

Theorem 5. Suppose that all conditions in Lemma 3 are
satisfied. Then system (4) has exactly one 𝑇-periodic solution
𝑥
∗

(𝑡). Moreover, 𝑥∗(𝑡) is globally exponentially stable.

Proof. Let 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 be a solution

of system (4) with initial conditions (10). By Remark 2, the

solution 𝑥(𝑡) can be defined for all 𝑡 ∈ [0, +∞). By hypothesis
(𝐻
1
), we have, for any natural number ℎ,

[𝑥
𝑖
(𝑡 + (ℎ + 1) 𝑇)]



= −𝑐
𝑖
(𝑡) 𝑥
𝑖
(𝑡 + (ℎ + 1) 𝑇 − 𝜂

𝑖
(𝑡))

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡 + (ℎ + 1) 𝑇))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 + (ℎ + 1) 𝑇 − 𝜏

𝑖𝑗
(𝑡)))

+ 𝐼
𝑖
(𝑡) , 𝑡 ̸= 𝑡

𝑘
, 𝑖 = 1, 2, . . . , 𝑛.

(36)

Further, by hypothesis of (𝐻
3
), we obtain

𝑥
𝑖
((𝑡
𝑘
+ (ℎ + 1) 𝑇)

+

)

= 𝑥
𝑖
(𝑡
+

𝑘+(ℎ+1)𝑞
)

= (1 + 𝑑
𝑖(𝑘+(ℎ+1)𝑞)

) 𝑥
𝑖
(𝑡
𝑘+(ℎ+1)𝑞

)

= (1 + 𝑑
𝑖𝑘
) 𝑥
𝑖
(𝑡
𝑘
+ (ℎ + 1) 𝑇) , 𝑘 = 1, 2, . . . .

(37)

Thus, for any natural number ℎ, we obtain that 𝑥(𝑡+ (ℎ+1)𝑇)
is a solution of system (4) for all 𝑡 + (ℎ + 1)𝑇 ≥ 0. Hence,
𝑥(𝑡 + 𝑇) is also a solution of (4) with initial values

𝑥
𝑖
(𝑠 + 𝑇) , 𝑠 ∈ [−𝜏

𝑖
, 0] , 𝑖 = 1, 2, . . . , 𝑛. (38)

Then, by the proof of Lemma 3, there exists a constant𝐾 > 0

such that for any natural number ℎ,





𝑥
𝑖
(𝑡 + (ℎ + 1) 𝑇) − 𝑥

𝑖
(𝑡 + ℎ𝑇)






=




𝑥
𝑖
(𝑡 + ℎ𝑇 + 𝑇) − 𝑥

𝑖
(𝑡 + ℎ𝑇)






≤ 𝐾𝜉
𝑖
𝑒
−𝜆(𝑡+ℎ𝑇)

= 𝐾𝜉
𝑖
𝑒
−𝜆𝑡

(

1

𝑒
𝜆𝑇

)

ℎ

, 𝑡 + ℎ𝑇 ≥ 0,

𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛,






𝑥
𝑖
((𝑡
𝑘
+ (ℎ + 1) 𝑇)

+

) − 𝑥
𝑖
((𝑡
𝑘
+ ℎ𝑇)

+

)







= (1 + 𝑑
𝑖𝑘
)




𝑥
𝑖
(𝑡
𝑘
+ (ℎ + 1) 𝑇) − 𝑥

𝑖
(𝑡
𝑘
+ ℎ𝑇)






≤ 𝐾𝜉
𝑖
𝑒
−𝜆(𝑡𝑘+ℎ𝑇)

= 𝐾𝜉
𝑖
𝑒
−𝜆𝑡𝑘

(

1

𝑒
𝜆𝑇

)

ℎ

, ∀𝑘 ∈ 𝑍
+

, 𝑖 = 1, 2, . . . , 𝑛.

(39)
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Moreover, for any natural number𝑚, we can obtain

𝑥
𝑖
(𝑡 + (𝑚 + 1) 𝑇)

= 𝑥
𝑖
(𝑡) +

𝑚

∑

ℎ=0

[𝑥
𝑖
(𝑡 + (ℎ + 1) 𝑇) − 𝑥

𝑖
(𝑡 + ℎ𝑇)] ,

𝑡 + ℎ𝑇 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

(𝑥
𝑖
((𝑡
𝑘
+ (𝑚 + 1) 𝑇)

+

))

= 𝑥
𝑖
(𝑡) +

𝑚

∑

ℎ=0

[𝑥
𝑖
((𝑡
𝑘
+ (ℎ + 1) 𝑇)

+

)

− (𝑥
𝑖
((𝑡
𝑘
+ ℎ𝑇)

+

))] ,

∀𝑘 ∈ 𝑍
+

, 𝑖 = 1, 2, . . . , 𝑛.

(40)

Combining (39) with (40), we know that 𝑥(𝑡 + 𝑚𝑇)

will converge uniformly to a piecewise continuous function
𝑥
∗

(𝑡) = (𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡))
𝑇 on any compact set of 𝑅.

Now we are in the position of proving that 𝑥∗(𝑡) is a
𝑇-periodic solution of system (4). It is easily known that 𝑥∗(𝑡)
is 𝑇-periodic since

𝑥
∗

𝑖
(𝑡 + 𝑇) = lim

𝑚→+∞

𝑥
𝑖
(𝑡 + 𝑇 + 𝑚𝑇)

= lim
𝑚+1→+∞

𝑥
𝑖
(𝑡 + (𝑚 + 1) 𝑇)

= 𝑥
∗

𝑖
(𝑡) , 𝑡 ̸= 𝑡

𝑘
,

𝑥
∗

𝑖
((𝑡
𝑘
+ 𝑇)
+

) = lim
𝑚→+∞

𝑥
𝑖
((𝑡
𝑘
+ 𝑇 + 𝑚𝑇)

+

)

= 𝑥
∗

𝑖
(𝑡
+

𝑘
) , 𝑘 = 1, 2, . . . ,

(41)

where 𝑖 = 1, 2, . . . , 𝑛. Noting that the right side of (4) is
piecewise continuous, together with (36) and (37), we know
that {𝑥

𝑖
(𝑡 + (𝑚 + 1)𝑇)} converges uniformly to a piecewise

continuous function on any compact set of 𝑅 \ {𝑡
1
, 𝑡
2
, . . .}.

Therefore, letting 𝑚 → +∞ on both sides of (36) and (37),
we get

𝑥
∗

𝑖



(𝑡) = −𝑐
𝑖
(𝑡) 𝑥
∗

𝑖
(𝑡 − 𝜂
𝑖
(𝑡))

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
∗

𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
∗

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

+ 𝐼
𝑖
(𝑡) , 𝑡 ̸= 𝑡

𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

𝑥
∗

𝑖
(𝑡
+

𝑘
) = (1 + 𝑑

𝑖𝑘
) 𝑥
∗

𝑖
(𝑡
𝑘
) ,

𝑘 = 1, 2, . . . , 𝑖 = 1, 2, . . . , 𝑛.

(42)

Thus, 𝑥∗(𝑡) = (𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡))
𝑇 is a 𝑇-periodic

solution of system (4).
Finally, by Lemma 3, we can prove that 𝑥∗(𝑡) is globally

exponentially stable. This completes the proof.

4. An Example

In this section, we give an example to demonstrate the results
obtained in the previous sections.

Example 6. Consider the following impulsive cellar neural
network consisting of two neurons with time-varying delays
in the leakage terms, which is described by

𝑥


1
(𝑡) = −3 (|sin𝜋𝑡| + 1) 𝑥

1
(𝑡 −

sin2𝜋𝑡
1000

)

+

1

16

cos2𝜋𝑡𝑓
1
(𝑥
1
(𝑡))

+

1

16

sin2𝜋𝑡𝑓
2
(𝑥
2
(𝑡))

+

1

16

sin2𝜋𝑡𝑔
1
(𝑥
1
(𝑡 − cos2𝜋𝑡))

+

1

16

sin2𝜋𝑡𝑔
2
(𝑥
2
(𝑡 − 2sin2𝜋𝑡))

+ 100 cos𝜋𝑡 𝑡 ̸= 2𝑘 − 1,

𝑥


2
(𝑡) = −3 (|cos𝜋𝑡| + 1) 𝑥

1
(𝑡 −

sin4𝜋𝑡
1000

)

+

1

16

cos3𝜋𝑡𝑓
1
(𝑥
1
(𝑡))

+

1

16

sin3𝜋𝑡𝑓
2
(𝑥
2
(𝑡))

+

1

16

sin3𝜋𝑡𝑔
1
(𝑥
1
(𝑡 − cos2𝜋𝑡))

+

1

16

sin3𝜋𝑡𝑔
2
(𝑥
2
(𝑡 − 2sin2𝜋𝑡))

+ 100 sin𝜋𝑡 𝑡 ̸= 2𝑘 − 1,

𝑥
𝑖
(𝑡
+

𝑘
) = (1 + 𝑑

𝑖𝑘
) 𝑥
𝑖
(𝑡
𝑘
) ,

𝑑
𝑖(2𝑠)

= −2, 𝑑
𝑖(2𝑠−1)

= −1,

𝑡
𝑘
= 𝑘, 𝑖 = 1, 2, 𝑘, 𝑠 = 1, 2, . . . .

(43)

Here, it is assumed that the activation functions are

𝑔
1
(𝑥) = 𝑔

2
(𝑥) = 𝑥 + 2 sin𝑥,

𝑓
1
(𝑥) = 𝑓

2
(𝑥) = 𝑥 + 3 sin𝑥.

(44)

Noting that

𝜂
1
(𝑡) =

sin2𝜋𝑡
1000

, 𝜂
2
(𝑡) =

sin4𝜋𝑡
1000

,

𝑐
1
(𝑡) = 3 (|sin𝜋𝑡| + 1) , 𝑐

2
(𝑡) = 3 (|cos𝜋𝑡| + 1) ,
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𝑎
11
(𝑡) =

1

16

cos2𝜋𝑡, 𝑎
12
(𝑡) =

1

16

sin2𝜋𝑡,

𝑏
11
(𝑡) =

1

16

sin2𝜋𝑡, 𝑏
12
(𝑡) =

1

16

sin2𝜋𝑡,

𝑎
21
(𝑡) =

1

16

cos3𝜋𝑡, 𝑎
22
(𝑡) =

1

16

sin3𝜋𝑡,

𝑏
21
(𝑡) =

1

16

sin3𝜋𝑡, 𝑏
22
(𝑡) =

1

16

sin3𝜋𝑡,

𝜏
11
(𝑡) = 𝜏

21
(𝑡) = cos2𝜋𝑡,

𝜏
12
(𝑡) = 𝜏

22
(𝑡) = 2sin2𝜋𝑡,

(45)

then we obtain

− [𝑐
𝑖
(𝑡) − 𝑐

𝑖
(𝑡) 𝜂
𝑖
(𝑡) 𝑐
+

𝑖
] 𝜉
𝑖

+

2

∑

𝑗=1

(






𝑎
𝑖𝑗
(𝑡)






+ 𝑐
𝑖
(𝑡) 𝜂
𝑖
(𝑡) 𝑎
+

𝑖𝑗
) 𝐿
𝑓

𝑗
𝜉
𝑗

+

2

∑

𝑗=1

(






𝑏
𝑖𝑗
(𝑡)






+ 𝑐
𝑖
(𝑡) 𝜂
𝑖
(𝑡) 𝑏
+

𝑖𝑗
) 𝐿
𝑔

𝑗
𝜉
𝑗

< −(3 − 6 ×

1

1000

× 6)

+ 2 (

1

16

+ 6 ×

1

1000

×

1

16

) × 3

+ 2 (

1

16

+ 6 ×

1

1000

×

1

16

) × 4

< −1, 𝜉
𝑖
= 1, 𝑖 = 1, 2.

(46)

This yields that system (43) satisfies (𝐻
1
)–(𝐻
5
). Hence, from

Theorem 5, system (43) has exactly one 2-periodic solution.
Moreover, the 2-periodic solution is globally exponentially
stable.

Remark 7. Since 𝑔
1
(𝑥) = 𝑔

2
(𝑥) = 𝑥 + 2 sin𝑥, 𝑓

1
(𝑥) =

𝑓
2
(𝑥) = 𝑥 + 3 sin𝑥 and CNNs (43) is a very simple form

of CNNs with time-varying delays in the leakage terms, it
is clear that the conditions (𝐴

1
) and (𝐴

2
) are not satisfied.

Therefore, all the results in [11–19] and the references therein
cannot be applicable to system (43) to obtain the existence
and exponential stability of the 2-periodic solutions.
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This investigation aims at studying some special properties (convergence, polynomial preservation order, and orthogonal
symmetry) of a class of r-dimension iterative equations, whose state variables are described by the following nonlinear iterative
equation: 𝜙𝑛(𝑥) = 𝑇(𝜙𝑛−1(𝑥)) := ∑𝑚

𝑗=0
𝐻
𝑗
𝜙
𝑛−1

(2𝑥 − 𝑘). The obtained results in this paper are complementary to some published
results. As an application, we construct orthogonal symmetric multiwavelet with additional vanishing moments. Two examples are
also arranged to demonstrate the correctness and effectiveness of the main results.

1. Introduction

Giving any compact supported vector-valued function
𝜙
0

(𝑥) := (𝜙
0

1
, . . . , 𝜙

0

𝑟
)
⊤

∈ (𝐿
2

(𝑅))
𝑟, we define 𝑟-dimension

iterative equation as follows:

𝜙
𝑛

(𝑥) = 𝑇 (𝜙
𝑛−1

(𝑥)) :=

𝜇

∑

𝑗=0

𝐻
𝑗
𝜙
𝑛−1

(2𝑥 − 𝑗) , (1)

where 𝐻
𝑗
is 𝑟-order real matrix, 𝑗 = 0, 1, . . . , 𝜇, 𝜇 ∈ 𝑍+, and

𝑛 ∈ 𝑍
+. Let 𝐻 := {𝐻

𝑗
, 𝑗 = 0, 1, . . . , 𝜇} denote the masks of

the iterative equation, then the Fourier transform of 𝜙(𝑥) =
(𝜙
1
, . . . , 𝜙

𝑟
)
⊤, if it exists, can be defined by

̂
𝜙 (𝜔) = (∫

𝑅

𝜙
1
(𝑥) 𝑒
−𝑖𝜔𝑥

𝑑𝑥, . . . , ∫

𝑅

𝜙
𝑟
(𝑥) 𝑒
−𝑖𝜔𝑥

𝑑𝑥)

⊤

, (2)

and the discrete-time Fourier transform (DTFT) of𝐻 = {𝐻
𝑗
}

can be defined by

�̂� (𝜔) =

1

2

𝜇

∑

𝑗=0

𝐻
𝑗
𝑒
−𝑖𝑗𝜔

, (3)

where 𝑖 = √−1. Therefore, iterative equation (1) takes the
following frequency domain form:

̂
𝜙
𝑛

(𝜔) = �̂� (

𝜔

2

)
̂
𝜙
𝑛−1

(

𝜔

2

) . (4)

We claim that iterative equation (1) converges to a fixed
function, and if lim

𝑛→∞
𝜙
𝑛

(𝑥) exists, we denote it by the 𝑟-
dimension vector function 𝜙(𝑥) := lim

𝑛→∞
𝜙
𝑛

(𝑥), whose
frequency domain form is defined as an infinite product as
follows:

̂
𝜙 (𝜔) = [

∞

∏

𝑘=1

[�̂� (

𝜔

2
𝑘

)]]
̂
𝜙 (0) . (5)

Obviously, (5) is equivalent to 𝜙(𝑥) satisfying 𝑟-dimension
refinement equation

𝜙 (𝑥) =

𝜇

∑

𝑗=0

𝐻
𝑗
𝜙 (2𝑥 − 𝑗) . (6)

Iterative equation (1) is nonlinearity; in the real world,
nonlinear problems are not exceptional, but regular phenom-
ena. Nonlinearity is the nature of matter and its development
[1, 2]. Recently, iterative equation (1) has attracted increasing
interest due to the potential applications in the field of wavelet
analysis. In fact, the limit of iterative equation (1) satisfies
refinement equation (6) which is fundamental to the theory
of the scaling functions, and then we can construct special
properties masks𝐻 of iterative equation (1) to obtain scaling
vector function with special properties. For example, in order
to construct the wavelet frames with high order vanishing
moments, in [3], Han and Mo investigate the method to
factorize a matrix mask of (1). In order to construct multi-
wavelets with vanishing moments of arbitrarily high order,
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in [4], with the help of dimension extension and iterative
scheme for revising masks of (1), Chui and Lian investigate
the compactly supported orthogonal scaling function with
additional polynomial preservation order (p.p.o.).

As we all know, the orthogonal symmetric scaling vector
function with high p.p.o. is very important to construct
symmetric multiwavelets with high vanishing moments by
multiresolution analysis, and yet its construction is very
difficult, especially in high dimension. The main objective
of this paper is to develop an iterative equation to generate
orthogonal symmetric scaling vector function as the limit
of (1) and to analysis its convergence. Furthermore, we will
introduce an iterative scheme by extending the dimension
of iterative equation to obtain orthogonal symmetric scaling
function with p.p.o increasing. As an application, we will
construct compactly supported orthogonal symmetric mul-
tiwavelets to achieve any order vanishing moments.

2. Preliminaries

Just as shown in [5, 6], iterative equation (1) converges to a
fixed point 𝜙(𝑥) or that the refinement equation (6) exists
solution 𝜙(𝑥) if and only if matrix �̂�(0) satisfies Condition
E (for a matrix 𝐴, one says that 𝐴 satisfies Condition E
if the spectral radius of 𝐴 is equal to 1, where 1 is the
unique eigenvalue of 𝐴 on the unit circle, and it is a simple
eigenvalue). The limit 𝜙 of (1) is called 𝑟-scaling vector
function if 𝜙 is 𝐿2-stable, meaning that {𝜙

𝑙
(𝑥 − 𝑘) : 1 ≤ 𝑙 ≤

𝑟; 𝑘 ∈ 𝑍} is a Riesz basis of 𝑉
0
, where, for 𝑗 ∈ 𝑍,

𝑉
𝑗
:= Clos

𝐿
2 Span {2𝑗/2𝜙

𝑙
(2
𝑗

𝑥 − 𝑘) : 1 ≤ 𝑙 ≤ 𝑟; 𝑘 ∈ 𝑍} ,

(7)

which is also called multiresolution analysis (MRA) of 𝐿2,
provided that 𝐿2 = Clos

𝐿
2 ⋃
𝑗∈𝑍
𝑉
𝑗
.

According to [6, 7], iterative equation (1) converges to an
𝑟-dimension scaling vector function 𝜙(𝑥) if and only if the
matrix �̂�(0) and the matrix 𝑇

𝐻
satisfy Condition E, where,

𝑇
𝐻
:= (𝐴
2𝑖−𝑗
)
1−𝜇≤𝑖, 𝑗≤𝜇−1

,𝐴
𝑗
is the 𝑟2×𝑟2matrix given by𝐴

𝑗
:=

∑
𝜇

𝑘=0
𝐻
𝑘−𝑗
⊗𝐻
𝑘
, and “⊗” denotes the Kronecker product, that

is, for two matrices 𝐵 = (𝑏
𝑖𝑗
) and 𝐶 = (𝑐

𝑖𝑗
), 𝐵 ⊗ 𝐶 := (𝑏

𝑖𝑗
𝐶).

Definition 1 (see [4]). Let 𝜙(𝑥) = (𝜙
1
(𝑥), . . . , 𝜙

𝑟
(𝑥))
⊤ be 𝑟-

dimension scaling function, and if polynomial 𝑥𝑙 ∈ 𝑉
0
, 𝑙 =

0, 1, . . . , 𝑚 − 1, where 𝑉
0
:= Clos

𝐿
2 Span{𝜙

𝑙
(𝑥 − 𝑘) : 1 ≤ 𝑙 ≤

𝑟; 𝑘 ∈ 𝑍}, then we get that 𝜙(𝑥) has polynomial preservation
order (p.p.o.)𝑚.

Polynomial preservation order is a desired feature to a
scaling function in application, for example, to construct
multiwavelet with high-order vanishing moments. In [8],
Plonka studied the polynomial preservation order properties
of refinable function vectors in detail. Lian, in [9], established
certain necessary and sufficient conditions for a multiscaling
function 𝜙(𝑥) with p.p.o. 𝑚 in terms of the eigenvalues and
their corresponding eigenvectors of masks of (1). Iterative
equation (1) generates 𝑟-dimension scaling function 𝜙(𝑥)
with p.p.o. 𝑚, if and only if the matrix masks of (1)

satisfy 𝑚 order sum rules; that is, there exists real vector
𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑚−1
∈ 𝑅
𝑟 with 𝑦

0
̸= 0, for any 0 ≤ 𝑙 ≤ 𝑚 − 1 such

that
𝑙

∑

𝑘=0

(−1)
𝑘
1

2
𝑘

(

𝑙

𝑘
)𝑦
𝑙−𝑘
∑

𝑗∈𝑍

(2𝑗)
𝑘

𝐻
2𝑗
=

1

2
𝑙

𝑦
𝑙
,

𝑙

∑

𝑘=0

(−1)
𝑘
1

2
𝑘

(

𝑙

𝑘
)𝑦
𝑙−𝑘
∑

𝑗∈𝑍

(2𝑗 + 1)
𝑘

𝐻
2𝑗+1
=

1

2
𝑙

𝑦
𝑙
,

(8)

where ( 𝑙
𝑘
) = 𝑙!/𝑘!(𝑙 − 𝑘)!.

A function vector 𝜂 = (𝜂
1
, . . . , 𝜂

𝑟
)
⊤ is said to be

orthogonal if it satisfies ⟨𝜂
𝑙
(⋅ − 𝑘), 𝜂 ́

𝑙
(⋅ −
́
𝑘)⟩ = 𝛿

𝑙,
́
𝑙
𝛿
𝑘,
́
𝑘
, 𝑙, ́𝑙 =

1, . . . , 𝑟; 𝑘, ́𝑘 ∈ 𝑍. If 𝜙(𝑥) satisfying refinement equation is
orthogonal scaling function vector, then the masks of (1)
must satisfy condition

�̂� (𝜔) �̂�
⊤

(−𝜔) + �̂� (𝜔 + 𝜋) �̂�
⊤

(−𝜔 − 𝜋) = 𝐼
𝑟
. (9)

A scaling function vector 𝜙(𝑥) has symmetry property if
all of its components are either symmetric or antisymmetric.
The symmetry of 𝜙 is decided by the masks of (1). From [4],
let 𝜙 be symmetric scaling vector function generated by (1)
with two-scale symbol 𝐻(𝑧) := (1/2)∑𝜇

𝑗=0
𝐻
𝑘
𝑧
𝑗, 𝑧 = 𝑒−𝑖𝜔 if

and only if (see [4])

𝑆
0
𝐻(𝑧) 𝑆

0
= 𝐷
0
(𝑧
2

)𝐻 (𝑧
−1

)𝐷
0
(𝑧
−1

) , (10)

where 𝑆
0
= diag((−1)𝑖1 , . . . , (−1)𝑖𝑟), 𝐷

0
(𝑧) := diag(𝑧𝑎1+𝑏1 ,

. . . , 𝑧
𝑎𝑟+𝑏𝑟
) with supp𝜙

𝑙
= [𝑎
𝑙
, 𝑏
𝑙
], 𝑙 = 1, . . . , 𝑟; 𝑖

1
, . . . , 𝑖

𝑟
being

either 0 or 1, depending on symmetry or antisymmetry of the
corresponding components of 𝜙, respectively.

Let 𝜙 be 𝑟-dimension orthogonal symmetric scaling
function which satisfies (6) with two-scale symbol 𝐻(𝑧)
satisfying

𝑧
2𝛾−1

𝑆
0
𝐻(𝑧
−1

) 𝑆
0
= 𝐻 (𝑧) , (11)

where 𝑆
0
= diag(𝐼

𝑠
, −𝐼
𝑟−𝑠
), for a nonnegative integer 0 <

𝑠 < 𝑟, 𝛾 ∈ 𝑍+. In this case, if 𝐻(𝑧) satisfies (11) and (1)
generates orthogonal symmetric scaling function vectors 𝜙 =
(𝜙
1
, . . . , 𝜙

𝑟
)
⊤, then 𝜙

1
, . . . , 𝜙

𝑠
are symmetric about 𝛾 − (1/2)

and 𝜙
𝑠+1
, . . . , 𝜙

𝑟
are antisymmetric about 𝛾 − (1/2).

As shown in [10], the masks of (1) or two-scale symbol
𝐻(𝑧) of (6) satisfy (9) and (11) if and only if the following
formulae hold:

𝐻(𝑧) =

√2

2

[

𝑎
0
0

0 𝑏
0

]𝑉
1
(𝑧
2

) ⋅ ⋅ ⋅ 𝑉
𝛾−1
(𝑧
2

)𝑈
0
[

𝐼
𝑟

𝐼
𝑟
𝑧
] , (12)

where 𝑉
𝑗
(𝑧) is defined by

𝑉
𝑖
(𝑧) :=

1

2

[

[

𝐼
𝑟
−V
𝑖

−V⊤
𝑖
𝐼
𝑟

]

]

+

1

2

[

[

𝐼
𝑟

V
𝑖

V⊤
𝑖
𝐼
𝑟

]

]

𝑧, V
𝑗
∈ 𝑂 (𝑟) ,

𝑗 = 1, . . . , 𝛾 − 1,

(13)
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where 𝑎
0
and 𝑏
0
are 𝑠 × 𝑟 and (𝑟 − 𝑠) × 𝑟matrices, respectively,

𝑈
0
= (√2/2) [

𝐼𝑟 𝑆0

−𝐼𝑟 𝑆0

].
If there exist matrices 𝑎

1
, 𝑏
1
, such that [𝑎⊤

0
, 𝑎
⊤

1
], [𝑏
⊤

0
, 𝑏
⊤

1
]

being 𝑟×𝑟 orthogonal matrix, one can define𝐺(𝑧) as follows:

𝐺 (𝑧) :=

1

2

2𝛾−1

∑

𝑘=0

𝐺
𝑘
𝑧
𝑘

=

√2

2

[

0 𝑏
1

𝑎
1
0
]𝑉
1
(𝑧
2

) ⋅ ⋅ ⋅ 𝑉
𝛾−1
(𝑧
2

)

× 𝑈
0
[

𝐼
𝑟

𝐼
𝑟
𝑧
] ,

(14)

and then we have

−𝑧
2𝛾−1

𝑆
0
𝐺(𝑧
−1

) 𝑆
0
= 𝐺 (𝑧) ;

𝐻 (𝑧) 𝐺
⊤

(𝑧
−1

) + 𝐻 (−𝑧)𝐺
⊤

(−𝑧
−1

) = 0, 𝑧 = 𝑒
−𝑖𝜔

.

(15)

Let 𝜙(𝑥) be r-dimension orthogonal symmetric scaling func-
tion satisfying refinement equation (6) with two-scale symbol
𝐻(𝑧) satisfying (11). If 𝐺(𝑧) is defined by (14), define 𝜓(𝑥) :=
(𝜓
1
, . . . , 𝜓

𝑟
)
⊤ by

𝜓 (𝑥) :=

2𝛾−1

∑

𝑘=0

𝐺
𝑘
(2𝑥 − 𝑘) , (16)

and then 𝜓(𝑥) is 𝑟-dimension orthogonal symmetric multi-
wavelet function; that is, {2𝑗/2𝜓

𝑙
(2
𝑗

𝑥 − 𝑘); 𝑗, 𝑘 ∈ 𝑍, 𝑙 =

1, 2, . . . , 𝑟} is the orthogonal basis of 𝐿2(𝑅). When scaling
function 𝜙(𝑥) has p.p.o. = 𝑚, one obtains that multi-wavelet
function 𝜓(𝑥) has𝑚 order vanishing moments; that is,

∫

𝑅

𝑥
𝑘

𝜓
𝑙
(𝑥) 𝑑𝑥 = 0, 𝑘 = 0, 1, . . . , 𝑚 − 1; 𝑙 = 1, 2, . . . , 𝑟.

(17)

3. Main Results

At first, we give the following convergent lemma.

Lemma 2. Iterative equation (1) with any given compact
supported vector-valued function 𝜙0(𝑥) converges to a unique
vector function 𝜙, if and only if the spectral radius of �̂�(0) is
equal to 1, 1 is the unique eigenvalue of �̂�(0) on the unit circle,
and 1 is simple.

Proof. Using Fourier transform, from (1), (4), and (5), we
obtain that the iterative equation (1) converges to vector
function 𝜙(𝑥) if and only if the infinite product (5) converges.
From [11], it is equivalent to the spectral radius of �̂�(0)which
is equal to 1, 1 is the unique eigenvalue of �̂�(0) on the unit
circle, and 1 is simple. This completes the proof.

When iterative equations (1) with masks 𝐻 = {𝐻
𝑗
, 𝑗 =

0, 1, . . . , 2𝛾 − 1} generate 𝑟-dimension orthogonal symmetric
scaling function 𝜙(𝑥) with p.p.o. = 𝑚, we can establish
the following theorem to increase scaling function p.p.o. by
extending the dimension of iterative equation (1).

Theorem 3. Let 𝜙 be 𝑟-dimension orthogonal symmetric
scaling functionwith p.p.o. = 𝑚 generated by iterative equation
(1) with mask 𝐻 = {𝐻

𝑗
, 𝑗 = 0, 1, . . . , 2𝛾 − 1}, where

𝐻(𝑧) satisfying (11), and Construct 𝑟 + 2-dimension iterative
equations mask𝐻 = {𝐻

𝑗
, 𝑗 = 0, 1, . . . , 2𝛾 − 1} as follows:

𝐻(𝑧) :=

1

2

2𝛾−1

∑

𝑗=0

𝐻
𝑗
𝑧
𝑗

= (

𝐻(𝑧) 0
𝑟×2

𝐵𝐺 (𝑧)

1 + 𝑧
2𝛾−1

2
𝑚+1
𝐼
2

), (18)

where 𝐺(𝑧) defined by (14). Then there exists 2 × 𝑟 matrix
𝐵 such that iterative equation (1) with mask 𝐻 generates
(𝑟 + 2)-dimension orthogonal symmetric scaling function 𝜙 =
(𝜙
⊤

, 𝜙
𝑟+1
, 𝜙
𝑟+2
)
⊤ which has p.p.o. ≥ 𝑚 + 1.

Proof. First, if matrix 𝐻(1) satisfies the conditions of
Lemma 2, then obviously, matrix 𝐻(1) constructed by (18)
satisfies all conditions of Lemma 2.That is to say that the 𝑟+2-
dimension iterative equation (1) with mask𝐻 constructed by
(18) converges to 𝜙.

By applying the p.p.o. = 𝑚 of 𝜙 and sum rules of (8),
there exist 𝑦⊤

𝑙
∈ 𝑅
𝑟, 𝑙 = 0, 1, . . . , 𝑚 − 1 with 𝑦

0
̸= 0
1×𝑟

, for
0 ≤ 𝑙 ≤ 𝑚 − 1 satisfying

𝑦
𝑙
(∑

𝑗∈𝑍

𝐻
2𝑗
−

1

2
𝑙

) = −

𝑙−1

∑

𝑘=0

(−1)
𝑙−𝑘
1

2
𝑙−𝑘

(

𝑙

𝑘
)𝑦
𝑘
∑

𝑗∈𝑍

(2𝑗)
𝑙−𝑘

𝐻
2𝑗
,

𝑦
𝑙
(∑

𝑗∈𝑍

𝐻
2𝑗+1
−

1

2
𝑙

) = −

𝑙−1

∑

𝑘=0

(−1)
𝑙−𝑘
1

2
𝑙−𝑘

(

𝑙

𝑘
)𝑦
𝑘

× ∑

𝑗∈𝑍

(2𝑗 + 1)
𝑙−𝑘

𝐻
2𝑗+1
.

(19)

When 𝑙 = 𝑚, there is no 𝑟-dimension row vector 𝑦
𝑚
which

satisfies (19). Nowwe will show that𝐻(𝑧) satisfies𝑚+1 order
sum rules by choosing matrix 𝐵.

Let 𝑦
𝑘
= (𝑦
𝑘
, 0, 0), 𝑘 = 0, . . . , 𝑚 − 1, 𝑦

𝑚
= (𝑦
𝑚
, 𝑐
1

𝑚
, 𝑐
2

𝑚
),

𝑐
1

𝑚
, 𝑐
2

𝑚
∈ 𝑅, 𝑦

𝑚
being some 𝑟-dimension vector, then it is easy

to obtain that𝐻(𝑧) satisfies𝑚 order sum rules; that is for 0 ≤
𝑙 ≤ 𝑚 − 1, we have

𝑦
𝑙
(∑

𝑗∈𝑍

𝐻
2𝑗
−

1

2
𝑚
𝐼
𝑟
) = −

𝑙−1

∑

𝑘=0

(−1)
𝑙−𝑘
1

2
𝑙−𝑘

(

𝑙

𝑘
)𝑦
𝑘

× ∑

𝑗∈𝑍

(2𝑗)
𝑙−𝑘

𝐻
2𝑗
,

𝑦
𝑙
(∑

𝑗∈𝑍

𝐻
2𝑗+1
−

1

2
𝑚
) = −

𝑙−1

∑

𝑘=0

(−1)
𝑙−𝑘
1

2
𝑙−𝑘

(

𝑙

𝑘
)𝑦
𝑘

× ∑

𝑗∈𝑍

(2𝑗 + 1)
𝑙−𝑘

𝐻
2𝑗+1
.

(20)
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When 𝑙 = 𝑚, (20) is equivalent to

𝑦
𝑚
(∑

𝑗∈𝑍

𝐻
2𝑗
−

1

2
𝑚
𝐼
𝑟
) + (𝑐

1

𝑚
, 𝑐
2

𝑚
) 𝐵∑

𝑗∈𝑍

𝐺
2𝑗

= −

𝑚−1

∑

𝑘=0

(−1)
𝑙−𝑘
1

2
𝑙−𝑘

(

𝑙

𝑘
)𝑦
𝑘
∑

𝑗∈𝑍

(2𝑗)
𝑙−𝑘

𝐻
2𝑗
,

𝑦
𝑚
(∑

𝑗∈𝑍

𝐻
2𝑗+1
−

1

2
𝑚
) + (𝑐

1

𝑚
, 𝑐
2

𝑚
) 𝐵∑

𝑗∈𝑍

𝐺
2𝑗+1

= −

𝑚−1

∑

𝑘=0

(−1)
𝑙−𝑘
1

2
𝑙−𝑘

(

𝑙

𝑘
)𝑦
𝑘
∑

𝑗∈𝑍

(2𝑗 + 1)
𝑙−𝑘

𝐻
2𝑗+1
.

(21)

When (𝑐1
𝑚
, 𝑐
2

𝑚
) = (0, 0), for 𝜙 with p.p.o. = 𝑚, there does

not exist 𝑦
𝑚
satisfying (21), but we will show that by choosing

2×𝑟matrix 𝐵 and (𝑐1
𝑚
, 𝑐
2

𝑚
), there exists 𝑦

𝑚
satisfying (21), thus

𝐻(𝑧) satisfies𝑚 + 1 order sum rules. Let

𝑝
0
=: −

𝑚−1

∑

𝑘=0

(−1)
𝑙−𝑘
1

2
𝑙−𝑘

(

𝑙

𝑘
)𝑦
𝑘
∑

𝑗∈𝑍

(2𝑗)
𝑙−𝑘

𝐻
2𝑗
,

𝑝
1
=: −

𝑚−1

∑

𝑘=0

(−1)
𝑙−𝑘
1

2
𝑙−𝑘

(

𝑙

𝑘
)𝑦
𝑘
∑

𝑗∈𝑍

(2𝑗 + 1)
𝑙−𝑘

𝐻
2𝑗+1
.

(22)

For 𝜙 with p.p.o. = 𝑚, (19) is equivalent to the following
equation (23) having no solutions:

(

∑

𝑗∈𝑍

𝐻
⊤

2𝑗
−

1

2
𝑚
𝐼
𝑟

∑

𝑗∈𝑍

𝐻
⊤

2𝑗+1
−

1

2
𝑚
𝐼
𝑟

)(

𝑥
1

...
𝑥
𝑟

) = (

𝑝
⊤

0

𝑝
⊤

1

) . (23)

Because𝐻(𝑧), 𝐺(𝑧) are symmetric which satisfy (11) and (14),
the following matrix is nonsingular:

(

∑

𝑗∈𝑍

𝐻
2𝑗
−

1

2
𝑚
𝐼
𝑟
∑

𝑗∈𝑍

𝐻
2𝑗+1
−

1

2
𝑚
𝐼
𝑟

∑

𝑗∈𝑍

𝐺
2𝑗

∑

𝑗∈𝑍

𝐺
2𝑗+1

). (24)

We claim that the following system of linear equations
(25) has solutions (𝑥

1
, 𝑥
2
, . . . , 𝑥

2𝑟
)
⊤:

(

∑

𝑗∈𝑍

𝐻
⊤

2𝑗
−

1

2
𝑚
𝐼
𝑟
∑

𝑗∈𝑍

𝐺
⊤

2𝑗+1

∑

𝑗∈𝑍

𝐻
⊤

2𝑗+1
−

1

2
𝑚
𝐼
𝑟
∑

𝑗∈𝑍

𝐺
⊤

2𝑗+1

)(

𝑥
1

...
𝑥
2𝑟

) = (

𝑝
⊤

0

𝑝
⊤

1

) . (25)

Let

𝑦
𝑚
=: (𝑥
1
, . . . , 𝑥

𝑟
) , 𝐵 = (𝛼

⊤

1
, 𝛼
⊤

2
)

⊤

, (26)
where

𝛼
1
= √

1 − 1/4
𝑚

𝑥
2

𝑟+1
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑟+𝑠

(𝑥
𝑟+1
, . . . , 𝑥

𝑟+𝑠
, 0
1×𝑟−𝑠
) ,

𝛼
2
= √

1 − 1/4
𝑚

𝑥
2

𝑟+𝑠+1 + ⋅ ⋅ ⋅ + 𝑥
2

2𝑟

(0
1×𝑠
, 𝑥
𝑟+𝑠+1
, . . . , 𝑥

2𝑟
) .

(27)

Define

𝑐
1

𝑚
= √
𝑥
2

𝑟+1
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑟+𝑠

1 − 1/4
𝑚
, 𝑐

2

𝑚
= √
𝑥
2

𝑟+𝑠+1
+ ⋅ ⋅ ⋅ + 𝑥

2

2𝑟

1 − 1/4
𝑚
.

(28)

For (25), (26), and (27), we have that the row vectors 𝑦
𝑙
, 𝑙 =

0, 1, . . . , 𝑚, (𝑐1
𝑚
, 𝑐
2

𝑚
) andmatrix𝐵 satisfy (21), that is to say that

the scale symbol𝐻(𝑧) satisfies sum rules order ≥ 𝑚 + 1.
In the following, we will show that 𝐻(𝑧) is orthogonal

symmetric two-scale symbol. For 𝐻(𝑧), 𝐺(𝑧) satisfying (11),
(14), and the defined matrix 𝐵, it is easy to obtain

𝑧
2𝑁−1 diag (𝑠

0
, −1, 1)𝐻 (𝑧

−1

) diag (𝑠
0
, −1, 1) = 𝐻 (𝑧) ,

𝐻 (𝑧)𝐻

⊤

(𝑧
−1

)+𝐻 (−𝑧)𝐻

⊤

(−𝑧
−1

) = (

𝐼
𝑟

0
𝑟×2

0
2×𝑟
𝐵𝐵
⊤

+

1

4
𝑚
𝐼
2

)

= 𝐼
𝑟+2
.

(29)

By (21) and (26)–(29), we have showed that 𝐻(𝑧) is orthog-
onal symmetric two-scale symbol and satisfies at least 𝑚 + 1
order sum rules, that is to say that iterative function system
(1) with mask 𝐻 generates 𝑟 + 2-dimension orthogonal
symmetric scaling function vector with p.p.o. ≥ 𝑚 + 1. This
completes the proof of Theorem 3.

By applyingTheorem 3 to a pair of orthogonal symmetric
scaling and wavelet vector functions, not only do we obtain a
new scaling vector function with higher p.p.o., but also some
corresponding orthogonal symmetric multi-wavelet vector
function can be easily constructed. Precisely, we have the
following.

Theorem 4. Let 𝜙, 𝜓 be 𝑟-dimension orthogonal symmetric
scaling and wavelet function vectors with two-scale symbols
𝐻(𝑧), 𝐺(𝑧) satisfying (11) and (14), respectively, where 𝜙 has
p.p.o. = 𝑚, and then we can construct 𝐻(𝑧) according
to Theorem 3, and 𝑟 + 2-dimension corresponding two-scale
symbol 𝐺(𝑧) by

𝐺 (𝑧) = (

𝐴𝐺 (𝑧) −2
𝑚−1

(1 + 𝑧
2𝛾−1

)𝐴𝐵
⊤

0
2×𝑟

−1 + 𝑧
2𝛾−1

2

𝐼
2

) , (30)

where 𝐴 = diag(𝐴
1
, 𝐴
2
), 𝐴
1
, 𝐴
2
being 𝑠 and 𝑟 − 𝑠 order

matrices, respectively, satisfies condition

𝐴𝐴
⊤

+ 4
𝑚

𝐴𝐵
⊤

𝐵𝐴
⊤

= 𝐼
𝑟
. (31)

Defining𝜙 = (𝜙⊤, 𝜙
𝑟+1
, 𝜙
𝑟+2
)
⊤,𝜓 = (𝜓

1
, . . . , 𝜓

𝑟+2
)
⊤ generated

by𝐻(𝑧),𝐺(𝑧), then 𝜙,𝜓 are orthogonal symmetric, and𝜓 has
at least𝑚 + 1 vanishing moments.

Proof. First, we show that𝐺(𝑧) satisfies symmetry conditions.
In Theorem 3, we have proved that 𝐻(𝑧) satisfies symmetric
condition

𝑧
2𝛾−1 diag (𝑠

0
, −1, 1)𝐻 (𝑧

−1

) diag (𝑠
0
, −1, 1) = 𝐻 (𝑧) .

(32)
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For matrix 𝐵 given by (26) and (27), 𝐴 = diag(𝐴
1
, 𝐴
2
) with

𝐴
1
, 𝐴
2
being 𝑠 and 𝑟 − 𝑠 order matrices, respectively, and

𝐺(𝑧) satisfying (14), we have that 𝐺(𝑧) satisfies symmetric
condition

𝑧
2𝛾−1 diag (−𝑠

0
, 1, −1) 𝐺 (𝑧

−1

) diag (𝑠
0
, −1, 1) = 𝐺 (𝑧) . (33)

𝐻(𝑧), 𝐺(𝑧) are orthogonal two-scale symbols, then it is easy
to get

𝐺 (𝑧) 𝐺

⊤

(𝑧
−1

) + 𝐺 (−𝑧)𝐺

⊤

(−𝑧
−1

)

= (

𝐴𝐴
⊤

+ 4
𝑚

𝐴𝐵
⊤

𝐵𝐴
⊤

0
𝑟×2

0
2×𝑟

𝐼
2

) ,

𝐻 (𝑧) 𝐺

⊤

(𝑧
−1

) + 𝐻 (−𝑧)𝐺

⊤

(−𝑧
−1

)

= (

0
𝑟×𝑟

0
𝑟×2

𝐵𝐴
⊤

− 𝐵𝐴
⊤

0
2×2

) = 0
𝑟+2
.

(34)

From (34), when condition (31) is satisfied, 𝐻(𝑧) and 𝐺(𝑧)
constructed by Theorem 3 and Theorem 4 are orthogonal
symmetric two-scale symbols and wavelet functions with at
least 𝑚 + 1 order vanishing moments. This completes the
proof of Theorem 4.

One of the important features of the construction proce-
dure described in Theorem 3 andTheorem 4 is that it can be
applied repeatedly without increasing the support (or filter
length). In Theorem 3, 2 × 𝑟 matrix 𝐵 is decided by two-
scale symbol 𝐻(𝑧). In Theorem 4, matrix 𝐴 = diag(𝐴

1
, 𝐴
2
)

is constructed by matrix 𝐵 with condition (31). How can we
obtain matrix 𝐴 = diag(𝐴

1
, 𝐴
2
) satisfying (31)? Considering

matrix 𝐵 given by (26) and (27), we have the following
theorem.

Theorem 5. Let 2 × 𝑟matrix 𝐵 = ( 𝑏1 01×𝑟−𝑠
01×𝑠 𝑏2

) be given by (26)
and (27), and let matrix 𝐴 = diag(𝐴

1
, 𝐴
2
) satisfy (31) with

𝐴
1
, 𝐴
2
being 𝑠 and 𝑟 − 𝑠 order matrices, respectively, and then

𝐴
1
, 𝐴
2
can be obtained by

𝐴
1
= diag ( 1

2
𝑚
, 𝐼
𝑠−1
) (𝑏
0⊤

1
, V
1
, . . . , V

𝑠−1
)

⊤

,

𝐴
2
= diag ( 1

2
𝑚
, 𝐼
𝑟−𝑠−1
) (𝑏
0⊤

2
, V
1
, . . . , V

𝑟−𝑠−1
)

⊤

,

(35)

where 𝑏0
1
= (1/|𝑏

1
|)𝑏 = (2

𝑚

/√4
𝑚
− 1)𝑏
1
, V
1
, . . . , V

𝑠−1
are unit

orthogonal complement vectors of 𝑏0⊤
1
, and 𝑏0

2
= (1/|𝑏

2
|)𝑏
2
=

(2
𝑚

/√4
𝑚
− 1)𝑏
2
, V
1
, . . . , V

𝑟−𝑠−1
are unit orthogonal comple-

ment vectors of 𝑏0
⊤

2
.

Proof. Condition (31) is equivalent to

𝐼
𝑟
+ 4
𝑚

𝐵
⊤

𝐵 = 𝐴
−1

(𝐴
−1

)

⊤

. (36)

For the 𝐴 = diag(𝐴
1
, 𝐴
2
) and 𝐵 = ( 𝑏1 01×𝑟−𝑠

01×𝑠 𝑏2

), we have

𝐼
𝑠
+4
𝑚

𝑏
⊤

1
𝑏
1
= 𝐴
−1

1
(𝐴
−1

1
)⊤, 𝐼

𝑟−𝑠
+4
𝑚

𝑏
⊤

2
𝑏
2
= 𝐴
−1

2
(𝐴
−1

2
)

⊤

.

(37)

Matrix 𝐼
𝑠
+ 4
𝑚

𝑏
⊤

1
𝑏
1
has eigenvalue 1 + 4𝑚|𝑏

1
|
2 and 1. For

(26) and (27), we have 1 + 4𝑚|𝑏
1
|
2

= 4
𝑚. Characteristic unit

vectors 𝑏0⊤
1
= (1/|𝑏|)𝑏

⊤ correspond to eigenvalue 4𝑚 and
V
1
, . . . , V

𝑠−1
which are orthogonal complement vectors of 𝑏0⊤

1

and characteristic unit vectors correspond to eigenvalue 1 of
matrix 𝐼

𝑠
+ 4
𝑚

𝑏
⊤b, and then we can get

(𝐼
𝑠
+ 4
𝑚

𝑏
⊤

1
𝑏
1
) (𝑏
0⊤

1
, V
1
, . . . , V

𝑠−1
)

= (𝑏
0
⊤

1
, V
1
, . . . , V

𝑠−1
) diag (4𝑚, 𝐼

𝑠−1
) ,

𝐼
𝑠
+ 4
𝑚

𝑏
⊤

1
𝑏
1

= (𝑏
0⊤

1
, V
1
, . . . , V

𝑠−1
) diag (4𝑚, 𝐼

𝑠−1
) (𝑏
0
⊤

1
, V
1
, . . . , V

𝑠−1
)

⊤

.

(38)

From (37) and (38), we obtain

𝐴
1
= diag ( 1

2
𝑚
, 𝐼
𝑠−1
) (𝑏
0⊤

1
, V
1
, . . . , V

𝑠−1
)

⊤

. (39)

In the same way, we have

𝐴
2
= diag ( 1

2
𝑚
, 𝐼
𝑟−𝑠−1
) (𝑏
0⊤

2
, V
1
, . . . , V

𝑟−𝑠−1
)

⊤

. (40)

This completes the proof of Theorem 5.

4. Example

Applying Theorems 3, 4, and 5, it is easy to extend the 𝑟-
dimension orthogonal symmetric multi-wavelet to 𝑟 + 2-
dimension orthogonal symmetric multi-wavelet with van-
ishing moments increasing. In Theorem 3, if matrix 𝐵 is
constructed by (27) with 𝛼

1
= 0
1×𝑟

or 𝛼
2
= 0
1×𝑟

, we can
extend the 𝑟-dimension orthogonal symmetric multi-wavelet
to 𝑟 + 1-dimension orthogonal symmetric multi-wavelet
with vanishing moments increasing without increasing the
support of wavelet functions, and then we will give two
examples to show it.

Example 6. Let

𝐻(𝑧) =

1

2

(

1 + 𝑧 0

1

2

−

1

2

𝑧 −

√3

2

−

√3

2

𝑧

) ,

𝐺 (𝑧) =

1

2

(

√3

2

−

√3

2

𝑧

1

2

+

1

2

𝑧

0 1 − 𝑧

)

(41)

be two-scale symbols and satisfy

𝑧 diag (1, −1)𝐻 (𝑧−1) diag (1, −1) = 𝐻 (𝑧) ,

𝑧 diag (−1, 1) 𝐺 (𝑧−1) diag (1, −1) ,
(42)

and then (1) generates orthogonal symmetric 2D scaling
function 𝜙 with p.p.o. = 1, and 𝑦

0
= (1, 0). FromTheorem 3,
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let 𝛼
1
= (√3/2, 0), 𝛼

2
= (0, 0), and define 𝐵 = 𝛼

1
, 𝐴 =

diag(1/2, 1), and then we obtain𝐻(𝑧), 𝐺(𝑧) as follows:

𝐻(𝑧) =

1

2

(

1 + 𝑧 0 0

1

2

−

1

2

𝑧 −

√3

2

−

√3

2

𝑧 0

√3

2

(√3 − √3) 𝑧

√3

2

(1 + 𝑧)

1 + 𝑧

4

) ,

𝐺 (𝑧) =

1

2

(

−

√3

4

+

√3

4

𝑧 −

1

4

−

1

4

𝑧

√15

4

(1 + 𝑧)

0 1 − 𝑧 0

0 0 −1 + 𝑧

) .

(43)

Two-scale symbols 𝐻(𝑧), 𝐺(𝑧) generate 3D scaling and
wavelet function vectors 𝜙 = (𝜙

1
, 𝜙
2
, 𝜙
3
)
⊤ with p.p.o. = 2,

𝜓 = (𝜓
1
, 𝜓
2
, 𝜓
3
)
⊤ with vanishing moment with order 2,

and 𝜙
1
, 𝜓
2
, 𝜓
3
symmetric, 𝜙

2
, 𝜙
3
, 𝜓
1
antisymmetric. 𝐻(𝑧)

satisfies sum rules with order 2 with 𝑦
0
= (1, 0, 0), 𝑦

1
=

(1/2, −(1/2(√3 + 2)), −((√3 + 1)/3(√3 + 2))).

Example 7. Let 𝜙 with p.p.o. = 3, 𝜓 be 2D orthogonal sym-
metric scaling and wavelet function, respectively, generated
by two-scale symbols [4]

𝐻(𝑧) = (

𝐻
11
(𝑧) 𝐻

12
(𝑧)

𝐻
21
(𝑧) 𝐻

22
(𝑧)
) , (44)

𝐺 (𝑧) = (

𝐺
11
(𝑧) 𝐺

12
(𝑧)

𝐺
21
(𝑧) 𝐺

22
(𝑧)
) , (45)

where

𝐻
11
(𝑧) =

10 − 3√10

80

(1 + 𝑧) (1 + (38 + 12√10) 𝑧 + 𝑧
2

) ,

𝐻
21
(𝑧) =

5√6 − 3√15

80

(1 − 𝑧) (1 − 10 (3 + √10) 𝑧 + 𝑧
2

) ,

𝐻
12
(z) = 5

√6 − 2√15

80

(1 − 𝑧) (1 + 𝑧)
2

,

𝐻
22
(𝑧) =

5 − 3√10

1040

(1 + 𝑧) (13 − (10 + 6√10) 𝑧 + 13𝑧
2

) ,

𝐺
11
(𝑧) =

5√6 − 2√15

80

(1 − 𝑧)
2

(1 + 𝑧) ,

𝐺
21
(𝑧) = −

5 − 3√10

1040

(1 − 𝑧) (13 + (10 + 6√10) 𝑧 + 13𝑧
2

) ,

𝐺
12
(𝑧) = −

10 − 3√10

80

(1 − 𝑧) (1 − (38 + 12√10) 𝑧 + 𝑧
2

) ,

𝐺
22
(𝑧) =

5√6 − 3√15

80

(1 + 𝑧) (1 + 10 (3 + √10) 𝑧 + 𝑧
2

) ,

(46)

which satisfy

𝑧
3 diag (1, −1)𝐻 (𝑧−1) diag (1, −1) = 𝐻 (𝑧) ,

𝑧
3 diag (−1, 1) 𝐺 (𝑧−1) diag (1, −1) .

(47)

By applying Theorems 3–5, we obtain a new pair of orthog-
onal scaling function 𝜙 with p.p.o. = 4 and multi-wavelet
𝜓 that can be obtained from two-scale symbols 𝐻(𝑧), 𝐺(𝑧)
given by

𝐻(𝑧) = (

𝐻 (𝑧) 0
2×1

𝐵𝐺 (𝑧)

1 + 𝑧
3

16

) ,

𝐺 (𝑧) = (

𝐴𝐺 (𝑧)

1 + 𝑧
3

2

𝜉

0
1×2

1 − 𝑧
3

2

) ,

(48)

where

𝐵 = (0,

3√7

8

) , 𝐴 = diag (1
8

, 1) ,

𝜉 = (−

3√7

8

, 0)

⊤

.

(49)

In addition, 𝐻(𝑧) satisfies sum rules with order 4 with the
four vectors given by

𝑦
0
= [1, 0, 0] , 𝑦

1
= [

3

2

,

√15 − √6

6

, 0] ,

𝑦
2
= [

17 − √10

6

,

√15 − √6

2

, 0] ,

𝑦
3
= [

3 (8−√10)

4

,

√3 (1280√5−1373)

996

,

√7 (9√10−35)

581

] .

(50)
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This investigation aims at developing a methodology to establish stability and bifurcation dynamics generated by a class of
delayed economic model, whose state variable is described by the scalar delay differential equation of the form d2𝑝(𝑡)/d𝑡2 =
−𝜇𝛿(𝑝(𝑡))(d𝑝(𝑡)/d𝑡) −𝜇𝑏𝑝(𝑡 − 𝜏

1
) −𝜇(𝑎

0
𝑝(𝑡 − 𝜏

2
)/(𝑎
1
+𝑝(𝑡 − 𝜏

2
))) +𝜇(𝑑

0
−𝑔
0
). At appropriate parameter values, linear stability and

Hopf bifurcation including its direction and stability of the economic model are obtained. The main tools to obtain our results
are the normal form method and the center manifold theory introduced by Hassard. Simulations show that the theoretically
predicted values are in excellent agreement with the numerically observed behavior. Our results extend and complement some
earlier publications.

1. Introduction

Trade cycles, business cycles, and fluctuations in the price and
supply of various commodities have attracted the attention
of economists for well over one hundred years and possible
more than thousands of years [1]. In the case of the most
models discussed earlier in the literature, it is assumed that
each economic agent has instantaneous information about
its own as well as its rivals’ behavior. Many authors often
attributed these fluctuations to instantaneous information
factors. This assumption is mathematically convenient but
does not fully describe real economic situations in which
there are always time delays between the times when infor-
mation is obtained and the times when the decisions are
implemented. In recent years it has been recognized in
continuous-time economic dynamics that a delay differential
equation is useful to describe the periodic and aperiodic
behavior of economic variables [2–7]. Time delays usually
cause themodels to generate not only periodic cycles but also
chaotic behavior for certain values of the shape parameter
of the production function. With the infinite dimensional-
ity created by a fixed-time delay, even a single first-order
equation is transformed into an equation with a sufficient
number of degrees of freedom to permit the occurrence
of complex dynamics involving chaotic phenomena. This

finding indicates that fixed-time delay models of a dynamic
economy may explain various complex dynamic behaviors
of the economic variables. For decades, a lot of effort has
been devoted to deepen the understanding of economic
complexity including chaotic behavior, stability, and basins of
attractions. In [2], Matsumoto and Szidarovszky and in [3],
Akio and Ferenc investigate a continuous-time neoclassical
growth model with time delay and study the dynamics
of the delayed model. In [4], Bélair and Mackey develop
a model of price adjustment with production delays. In
[5], Zhang et al. consider a differential-algebraic biological
economic system with time delay and harvesting where the
dynamics is logistic with carrying capacity proportional to
prey population. Howroyd and Russel detect the stability
conditions of delay output adjustment processes in a general
N-firm oligopoly with fixed time delays [6]. Matsumoto
and Szidarovszky introduce a fixed delay in production and
a mound-shaped production function into the neoclassical
one-sector growth model and show the birth of complex
dynamics [2]. Considering about a delay in the production
process, Li establish the single commodity price-inventory
control model [7].

It is well known that persistent oscillations are one of
the most ubiquitous forms by which economic phenomena
may be observed [8]. Limit cycles are the simplest nonlinear
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phenomena, for example, they are the simplest example of
how the interaction between economic forces may compel
a system to abandon its steady state and start to steadily
oscillate. Just as reported byManfredi andFanti [9], the detec-
tion of stable oscillations, for example, stable limit cycles,
in continuous-time systems, is intimately related with the
notion of Hopf bifurcation. Hopf bifurcation is important in
economics. There are at least three reasons. First, it is always
the outcome of a fully endogenous interaction between
(nonlinear) economic forces. Second, it is a local bifurcation,
thus much in spirit with the common belief of our science
by which economic systems are generally close to their
equilibrium state. Third, because it implieslocal oscillations,
which are the normal route through which disequilibrium
manifests itself when the equilibrating forces operating in
the economy are relaxed (e.g., the adjustment process of a
Walrasian market). For instance, when oscillations persist
in a market normally in equilibrium (in the absence of
stochastic and seasonal perturbations), it is very likely that
these oscillations are the outcome of a Hopf bifurcation. So
it is necessary for us to research the Hopf bifurcation in the
economic system.

In the case of themostmodels discussed in thementioned
literature, only one delay appears in the models. Considering
that the consumer memory plays an important role in the
process of economic activities, just as pointed out by Li [7],
bringing another delay might be better candidates for some
purposes and would be of great interest. In this paper, we
will generalize an economic model with the help of bringing
two delays. In specifying how consumer behavior affects
commodity demand, we will assume that the behavior is
influenced not only by the instantaneous price, but also
by the information regarding past prices. As the fact that
the quantity supplied may not increase infinitely during the
price increasing, similar to [7], we also assume the supply
function to be fractional linear function. This investigation
aims at developing a methodology to establish stability and
bifurcation dynamics generated by the newdelayed economic
model.

The organization of the rest of this paper is as follows. In
Section 2, we establish an economic model with two delays
combing with the model considered in [7]. In Section 3, we
take the delays as the parameters and use the distribution
theory of the transcendental equation root [10] and the theory
ofHopf bifurcation about functional differential equation [11]
to discuss the stability of the equilibrium point for economic
system and the existence of Hopf bifurcation. In Section 4,
we apply the normal form theory and center manifold theory
to investigate the bifurcation direction and the stability of
periodic solution. In Section 5, an example with numerical
simulations is arranged to illustrate the obtained results.

2. Characterization of a Generalized Delayed
Economic Model

Considering a single commodity market, the quantity of
supplied and demanded can be regarded as the function of
time, namely, 𝐺(𝑡) and 𝐷(𝑡). The inventory and the level of
inventory are recorded, respectively, as 𝑆(𝑡) and 𝑆.

Let 𝑝(𝑡) denote the price at time 𝑡, so that the rate of price
increase is in proportion to the difference between 𝑆(𝑡) and 𝑆,
namely,

d𝑝 (𝑡)
d𝑡

= −𝜇 (𝑆 − 𝑆 (𝑡)) , 𝜇 > 0, (1)

where 𝜇 is a positive real number depending on the speed of
price adjustment, recording 𝑆(𝑡) as

𝑆 (𝑡) = 𝑆
0
+ ∫

𝑡

0

(𝐺 (𝜀) − 𝐷 (𝜀)) 𝑑𝜀. (2)

In the traditional cobweb model, demand function is a
function of price. If we consider price as the only factor
that influences the quantity demanded, there will be certain
limitations to reflect the regularity of price change.We should
consider other factors influencing the demand such as the
rate of the price increase. In [7], Li assume the demand
function as

𝐷(𝑡) = 𝑑
0
− 𝑏𝑝 (𝑡) − 𝛿 (𝑝 (𝑡))

d𝑝 (𝑡)
d𝑡

, (3)

where 𝑑
0
> 0, 𝑏 > 0, 𝑏 represents the sensitive degree

of consumers to the increase of commodity price. 𝛿(𝑝(𝑡)) is
the level of price relying on the rate of increase. In terms of
consumer behavior, we consider a class of consumers who
base buying decisions on the past prices and recent price.
Therefore, in this paper, we introduce a delay in demand
function𝐷(𝑡) and set up the demand function as shown later

𝐷 (𝑡) = 𝑑
0
− 𝑏𝑝 (𝑡 − 𝜏

1
) − 𝛿 (𝑝 (𝑡))

d𝑝 (𝑡)
d𝑡

. (4)

In generally, supply function is monotone increasing
about price, but consider that as price goes up, the supply
could not unlimitedly increase, one can assume supply
function as a fractional linear function as the following:

𝐺 (𝑡) = 𝑔
0
+

𝑎
0
𝑝 (𝑡)

𝑎
1
+ 𝑝 (𝑡)

, (5)

where 𝑎
0
> 0, 𝑎

1
> 0, 𝑔

0
≥ 0.

Noticing the delay in the production process, supply
function should be a function of past price, therefore, we can
introduce another delay in supply function and record it as
follows:

𝐺 (𝑡) = 𝑔
0
+

𝑎
0
𝑝 (𝑡 − 𝜏

2
)

𝑎
1
+ 𝑝 (𝑡 − 𝜏

2
)

, (6)

where 𝑎
0
, 𝑎
1
,𝑔
0
, 𝜏
1
, 𝜏
2
are constants and 𝑎

0
> 0, 𝑎
1
> 0,𝑔

0
≥ 0,

𝜏
2
≥ 𝜏
1
≥ 0.

Substituting (2) to (1), calculating the derivation of both
sides about time in (1), one can get

𝑑
2

𝑝 (𝑡)

d𝑡2
= −𝜇 (𝐺 (𝑡) − 𝐷 (𝑡)) . (7)
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Substituting (4) and (6) to (7), we can establish a single
commodity price inventory control model with two delays
take the following form:

𝑑
2

𝑝 (𝑡)

d𝑡2
= − 𝜇𝛿 (𝑝 (𝑡))

d𝑝 (𝑡)
d𝑡

− 𝜇𝑏𝑝 (𝑡 − 𝜏
1
)

− 𝜇

𝑎
0
𝑝 (𝑡 − 𝜏

2
)

𝑎
1
+ 𝑝 (𝑡 − 𝜏

2
)

+ 𝜇 (𝑑
0
− 𝑔
0
) .

(8)

Let 𝐶
1

= 𝐶
1

([−𝜏
2
, 0], 𝑅

+

) denote the Banach space
of continuous and differentiable mapping from [−𝜏

2
, 0]

into 𝑅
+ equipped with the Supremum Norm ‖𝜙‖ =

sup
𝑠∈[−𝜏2 ,0]

{|𝜙(𝑠)|, |𝜙


(𝑠)|} for 𝜙 ∈ 𝐶1. The initial condition of
(8) is

𝑝 (𝜃) = 𝜓 (𝜃) > 0, 𝜃 ∈ [−𝜏
2
, 0] , 𝜓 ∈ 𝐶

1

. (9)

We will consider the following basic assumptions to further
investigate the stability and bifurcation dynamics of model
(8).

(H
1
) The inequality hold: 𝑑

0
> 𝑔
0
.

(H
2
) The inequality hold: 𝛿(𝑝∗) > 0, where 𝑝∗ is a positive
equilibrium point.

(H
3
) The inequality hold: 𝑏 < 𝑎

0
𝑎
1
/(𝑎
1
+ 𝑝
∗

)
2, where 𝑝∗ is

a positive equilibrium point.

3. Stability Analysis and the Existence of
Hopf Bifurcation

At first, we will show that system (8) has only one positive
equilibrium point under some assumption. We state the
following theorem.

Theorem 1. If the inequality (H
1
) holds: 𝑑

0
> 𝑔
0
, then system

(8) has only one positive equilibrium point.

Proof. Without loss of generality, we may assume that

d𝑝 (𝑡)
d𝑡

= 𝑞 (𝑡) , (10)

then model (8) can be rewritten as the following:

d𝑝 (𝑡)
d𝑡

= 𝑞 (𝑡) ,

d𝑞 (𝑡)
d𝑡

= −𝜇𝛿 (𝑝 (𝑡)) 𝑞 (𝑡) − 𝜇𝑏𝑝 (𝑡 − 𝜏
1
)

− 𝜇

𝑎
0
𝑝 (𝑡 − 𝜏

2
)

𝑎
1
+ 𝑝 (𝑡 − 𝜏

2
)

+ 𝜇 (𝑑
0
− 𝑔
0
) .

(11)

Assume 𝑝∗ to be the equilibrium point of system (8), one
can show that (𝑝∗, 0) is the equilibrium point of system (11).
Therefore, one can obtain

𝑏(𝑝
∗

)
2

+ [𝑎
1
𝑏 + 𝑎
0
− (𝑑
0
− 𝑔
0
)] 𝑝
∗

− 𝑎
1
(𝑑
0
− 𝑔
0
) = 0.

(12)

Obviously, if 𝑑
0
> 𝑔
0
, we have

Δ = [𝑎
1
𝑏 + 𝑎
0
− (𝑑
0
− 𝑔
0
)]
2

+ 4𝑎
1
𝑏 (𝑑
0
− 𝑔
0
) > 0,

−

𝑎
1
(𝑑
0
− 𝑔
0
)

𝑏

< 0.

(13)

Then (8) has only one positive equilibrium point. This
completes the proof.

In real life, 𝑝∗ is the equilibrium price. With the help of
coordinate translation

𝑥 (𝑡) = 𝑝 (𝑡) − 𝑝
∗

,

𝑦 (𝑡) = 𝑞 (𝑡) ,

(14)

system (11) can be further rewritten as the following form:

d𝑥 (𝑡)
d𝑡

= 𝑦 (𝑡) ,

d𝑦 (𝑡)
d𝑡

= −𝜇𝛿 (𝑥 (𝑡) + 𝑝
∗

) 𝑦 (𝑡) − 𝜇𝑏 (𝑥 (𝑡 − 𝜏
1
) + 𝑝
∗

)

− 𝜇

𝑎
0
(𝑥 (𝑡 − 𝜏

2
) + 𝑝
∗

)

𝑎
1
+ 𝑥 (𝑡 − 𝜏

2
) + 𝑝
∗

+ 𝜇 (𝑑
0
− 𝑔
0
) .

(15)

Then the linearized system at (0,0) is

d𝑥 (𝑡)
d𝑡

= 𝑦 (𝑡) ,

d𝑦 (𝑡)
d𝑡

= −𝜇𝛿 (𝑝
∗

) 𝑦 (𝑡) − 𝜇𝑏𝑥 (𝑡 − 𝜏
1
)

−

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
𝑥 (𝑡 − 𝜏

2
) .

(16)

The characteristic equation of the linearized system (16) at
(0,0) takes the following form:

𝜆
2

+ 𝜇𝛿 (𝑝
∗

) 𝜆 + 𝜇𝑏𝑒
−𝜆𝜏1

+

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
𝑒
−𝜆𝜏2

= 0. (17)

It is well known that the equilibrium (0,0) is asymptoti-
cally stable if all roots of the characteristic equation (17) have
negative real parts. Now we reach the position to study the
distribution of the roots of (17). We will consider three cases
as follows: (Case 1): 𝜏

1
= 0, 𝜏

2
= 0; (Case 2): 𝜏

1
= 0, 𝜏

2
> 0;

and (Case 3): 𝜏
2
> 𝜏
1
> 0.

Case 1. 𝜏
1
= 0, 𝜏
2
= 0.

Proposition 2. If 𝜏
1
= 0, 𝜏
2
= 0 and the inequality (H

2
) hold:

𝛿(𝑝
∗

) > 0, then the equilibrium point (0,0) of system (15) is
asymptotically stable.

Proof. As the inequality (H
2
) holds, then the characteristic

equation (17) turns to be

𝜆
2

+ 𝜇𝛿 (𝑝
∗

) 𝜆 + 𝜇𝑏 +

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
= 0. (18)
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It is obvious that 𝜇𝑎
0
𝑎
1
/(𝑎
1
+ 𝑝
∗

)
2

> 0; from Hurwitz
criterion, all roots of this equation have negative real parts;
therefore, the equilibrium point (0,0) of system (15) is
asymptotically stable.

Case 2 (𝜏
1
= 0, 𝜏

2
> 0). If 𝜏

1
= 0, 𝜏

2
> 0, then the

characteristic equation (17) takes the following form:

𝜆
2

+ 𝜇𝛿 (𝑝
∗

) 𝜆 + 𝜇𝑏 +

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
𝑒
−𝜆𝜏2

= 0. (19)

Let 𝐸(𝜆) = 𝜆2 + 𝜇𝛿(𝑝∗)𝜆 + 𝜇𝑏 + (𝜇𝑎
0
𝑎
1
/(𝑎
1
+𝑝
∗

)
2

)𝑒
−𝜆𝜏2 ; then

we obtain the following results.

Lemma 3. If the inequality (H
3
) holds: 𝑏 < 𝑎

0
𝑎
1
/(𝑎
1
+ 𝑝
∗

)
2,

and 𝜏
2
= 𝜏
2𝑛
, then 𝐸(𝜆) = 0 has the only pair of purely

imaginary roots 𝜆 = ±𝑖𝜔, where

𝜏
2
= 𝜏
2𝑛

=

1

𝜔

[

[

arccos
(−𝜔
2

+ 𝜇𝑏) (𝑎
1
+ 𝑝
∗

)
2

𝜇𝑎
0
𝑎
1

+ 2𝑛𝜋
]

]

𝑛 = 0, 1, 2 . . . ,

𝜔

=

{
{

{
{

{

((2𝜇𝑏 − 𝜇
2

𝛿
2

(𝑝
∗

))

+√(2𝜇𝑏−𝜇
2
𝛿
2
(𝑝
∗
))
2

−4(𝜇
2
𝑏
2
−

(𝜇𝑎
0
𝑎
1
)
2

(𝑎
1
+𝑝
∗
)
4
))

× (2)
−1
}

}

}

1/2

.

(20)

Proof. If 𝜆 = 𝑖𝜔(𝜏
2
) (𝜔(𝜏

2
) > 0) is a root of (19), then

− 𝜔
2

+ 𝑖𝜇𝛿 (𝑝
∗

) 𝜔 + 𝜇𝑏 +

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)

× (cos𝜔𝜏
2
− 𝑖 sin𝜔𝜏

2
) + 𝐶 = 0.

(21)

Separating the real and imaginary parts, we have

− 𝜔
2

+ 𝜇𝑏 +

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
cos𝜔𝜏

2
= 0,

𝜇𝛿 (𝑝
∗

) 𝜔 −

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
sin𝜔𝜏

2
= 0.

⇓

cos𝜔𝜏
2
=

𝜔
2

− 𝜇𝑏

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗

)
2

,

sin𝜔𝜏
2
=

𝛿 (𝑝
∗

) 𝜔

𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗

)
2

.

(22)

Then we can obtain

𝜔
4

+ (𝜇
2

𝛿
2

(𝑝
∗

) − 2𝜇𝑏) 𝜔
2

+ 𝜇
2

𝑏
2

−

(𝜇𝑎
0
𝑎
1
)
2

(𝑎
1
+ 𝑝
∗
)
4
= 0. (23)

The root of (23) can be expressed as follows:

𝜔

=

{
{

{
{

{

((2𝜇𝑏 − 𝜇
2

𝛿
2

(𝑝
∗

))

+√(2𝜇𝑏 − 𝜇
2
𝛿
2
(𝑝
∗
))
2

− 4(𝜇
2
𝑏
2
−

(𝜇𝑎
0
𝑎
1
)
2

(𝑎
1
+ 𝑝
∗
)
4
))

× (2)
−1
}

}

}

1/2

.

(24)

Then we obtain

𝜏
2
= 𝜏
2𝑛

=

1

𝜔

[

[

arccos
(−𝜔
2

+ 𝜇𝑏) (𝑎
1
+ 𝑝
∗

)
2

𝜇𝑎
0
𝑎
1

+ 2𝑛𝜋
]

]

,

𝑛 = 0, 1, 2 . . . .

(25)

Let 𝐸(𝜆) = 0; if 𝜆 = ±𝑖𝜔 is not the only pair of purely
imaginary roots, then we have

𝜕𝐸

𝜕𝜆









𝜏=𝜏2𝑛

𝜆=𝑖𝜔

= 0. (26)

From (17), one can get

2𝑖𝜔 + 𝜇𝛿 (𝑝
∗

) − 𝜏
2𝑛

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
𝑒
−𝑖𝜔𝜏2𝑛

= 0,

−𝜔
2

+ 𝑖𝜇𝛿 (𝑝
∗

) 𝜔 +

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
𝑒
−𝑖𝜔𝜏2𝑛

+ 𝜇𝑏 = 0.

(27)

That is to say, (𝜔2 − 𝜇𝑏)𝜏
2𝑛
= 𝜇𝛿(𝑝

∗

), which contradicts (25).
This completes the proof.

Denote 𝜆(𝜏
2
) = 𝛼(𝜏

2
) + 𝑖𝜔(𝜏

2
); then the root of (19)

satisfies: 𝛼(𝜏
2𝑛
) = 0, 𝜔(𝜏

2𝑛
) = 𝜔.

Lemma 4. If one chooses

𝜏
2
= 𝜏
2𝑛

=

1

𝜔

[

[

arccos
(−𝜔
2

+ 𝜇𝑏) (𝑎
1
+ 𝑝
∗

)
2

𝜇𝑎
0
𝑎
1

+2𝑛𝜋
]

]

,

𝑛 = 0, 1, 2 . . .

(28)
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and 𝐸(𝜆) = 0 has the only pair of purely imaginary roots 𝜆 =
±𝑖𝜔, then one has

dRe (𝜆 (𝜏
2
))

d𝜏
2









𝜏2=𝜏2𝑛

> 0. (29)

Proof. Taking the derivative of 𝐸(𝜆) = 0 with respect to 𝜏
2
,

we get

2𝜆

d𝜆
d𝜏
2

+ 𝜇𝛿 (𝑝
∗

)

d𝜆
d𝜏
2

+

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
𝑒
−𝜆𝜏2

(−𝜆 − 𝜏
2

d𝜆
d𝜏
2

) = 0,

Re( d𝜆
d𝜏
2

)

−1






𝜏2=𝜏2𝑛

= [(2𝜇𝑏 − 𝜇
2

𝛿
2

(𝑝
∗

))

2

− 4(𝜇
2

𝑏
2

−

(𝜇𝑎
0
𝑎
1
)
2

(𝑎
1
+ 𝑝
∗
)
4
)]

1/2

> 0.

(30)

Therefore

sgn
{

{

{

Re(
d𝜆 (𝜏
2
)

d𝜏
2

)

−1







𝜏2=𝜏2𝑛

}

}

}

= sgn{
dRe (𝜆 (𝜏

2
))

d𝜏
2









𝜏2=𝜏2𝑛

} > 0.

(31)

This completes the proof.

Based on the lemmas presented previous and the classical
Hopf-Bifurcation-Theorem (see, [11, pages 245–249]), we
have the following result.

Theorem 5. Assume that the inequalities (H
1
)–(H
3
) hold,

then one has the following result.

(1) If 𝜏
2
∈ [0, 𝜏

20
), all roots of (19) have negative real parts.

Namely, the equilibrium (0,0) of system (15) is locally
asymptotically stable.

(2) If 𝜏
2
= 𝜏
20
, (19) have a pair of purely imaginary roots

±𝑖𝜔, all the other roots have negative real parts. That
is to say, system (15) undergoes a Hopf bifurcation at
𝜏
2
= 𝜏
20
.

(3) If 𝜏
2
> 𝜏
20
, (19) has roots of positive real parts. Namely

the equilibrium (0,0) of system (15) is unstable.

Case 3 (𝜏
2
> 𝜏
1
> 0). We now discuss the stability of

equilibrium (0,0) when 𝜏
1
> 0, 𝜏
2
= 𝜏 ∈ [0, 𝜏

20
).

Let 𝜆 = 𝑖𝜔(𝜏
1
)(𝜔(𝜏
1
) > 0) be the root of (17) and

substitute it into (17), we have

− 𝜔
2

+ 𝑖𝜇𝛿 (𝑝
∗

) 𝜔 + 𝜇𝑏 (cos𝜔𝜏
1
− 𝑖 sin𝜔𝜏

1
)

+

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
(cos𝜔𝜏 + 𝑖 sin𝜔𝜏) = 0.

(32)

Separating the real and imaginary parts, we have

𝜇𝑏 cos𝜔𝜏
1
= 𝜔
2

−

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
cos𝜔𝜏,

𝜇𝑏 sin𝜔𝜏
1
= 𝜇𝛿 (𝑝

∗

) 𝜔 +

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
sin𝜔𝜏.

(33)

Then we have

𝜔
4

+ 𝜇
2

𝛿
2

(𝑝
∗

) 𝜔
2

+ (

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
)

2

− 𝜇
2

𝑏
2

− 2

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
𝜔
2 cos𝜔𝜏 − 2𝛿 (𝑝∗)

𝜇
2

𝑎
0
𝑎
1
𝜔

(𝑎
1
+ 𝑝
∗
)
2
sin𝜔𝜏 = 0.

(34)

If (34) has no root or negative root, all the roots of (17)
have negative real part. If it has positive roots, we know that
the number of positive roots is finite. Denote them to be
𝜔
𝑖
(𝑖 = 1, 2, 3 . . . , 𝑁). From (33), we can get

𝜏
(𝑗)

1𝑖

=

1

𝜔
𝑖

(arccos
𝜔
2

𝑖
− (𝜇𝑎

0
𝑎
1
/(𝑎
1
+ 𝑝
∗

)
2

) cos𝜔
𝑖
𝜏

𝜇𝑏

+ 2𝑗𝜋)

(𝑗 = 0, 1, 2, . . .) .

(35)

Let 𝜏0
1
= 𝜏
(0)

1𝑖0

= min{𝜏0
1𝑖
}, let 𝑖 ∈ {0, 1, 2, . . . , 𝑁}, and let

𝜔
0
= 𝜔
𝑖0
; if 𝜏
2
= 𝜏 ∈ [0, 𝜏

20
), (16) has a pair of purely

imaginary roots ±𝑖𝜔
0
at 𝜏
1
= 𝜏
0

1
, we can also prove that the

purely imaginary roots ±𝑖𝜔
0
are simple. Taking the derivative

with respect to 𝜏
1
, we can get

2𝜆

d (𝜆 (𝜏
1
))

d𝜏
1

+ 𝜇𝛿 (𝑝
∗

)

d𝜆 (𝜏
1
)

d𝜏
1

+ 𝜇𝑏𝑒
−𝜆𝜏1

(−𝜆 − 𝜏
1

d (𝜆 (𝜏
1
))

d𝜏
1

)

−

𝜇𝑎
0
𝑎
1
𝜏

(𝑎
1
+ 𝑝
∗
)
2
𝑒
−𝜆𝜏

d (𝜆 (𝜏
1
))

d𝜏
1

= 0.

(36)

Then, we have

Re( d𝜆
d𝜏
1

)

−1







𝜏=𝜏
0

1

𝜆=𝑖𝜔0

=

2 cos𝜔
0
𝜏
0

1

𝜇𝑏

+

𝛿 (𝑝
∗

) sin𝜔
0
𝜏
0

1

𝑏𝜔
0

−

(𝑎
0
𝑎
1
𝜏/(𝑎
1
+ 𝑝
∗

)
2

) sin𝜔
0
(𝜏
0

1
− 𝜏)

𝑏𝜔
0

.

(37)

Therefore, we have the following theorem.
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Theorem6. Assume that the inequalities (H
1
)–(H
3
) hold, then

one has the following result.

(1) If 𝜏
1
∈ [0, 𝜏

0

1
), then all the roots of (17) have negative

real parts. One can get that the equilibrium (0,0) of
system (15) is locally asymptotically stable.

(2) If 𝜏
1
= 𝜏
0

1
, 𝜏
2
= 𝜏 ∈ [0, 𝜏

20
) and 2 cos𝜔

0
𝜏
0

1
/𝜇𝑏 −

𝛿(𝑝
∗

) sin𝜔
0
𝜏
0

1
/𝑏𝜔
0
+ ((𝑎
0
𝑎
1
𝜏/(𝑎
1
+ 𝑝
∗

)
2

) sin𝜔
0
(𝜏
0

1
−

𝜏))/𝑏𝜔
0
̸= 0, then system (15) undergoes Hopf bifurca-

tions at (0,0).

4. Direction and Stability of the Bifurcation

In this section, formula for determining the direction of
Hopf bifurcation and the stability of bifurcation periodic
solution of system (11) at 𝜏

1
= 𝜏
0

1
, 𝜏
2
= 𝜏 ∈ [0, 𝜏

20
) will

be presented by employing the normal form method and
center manifold theorem introduced by Hassard et al. in [12].
More precisely, we will compute the reduced system on the
center manifold with the pair of conjugate complex, purely
imaginary solution of the characteristic equation (17). By this
reduction, we can determine the Hopf bifurcation direction,
that is, to answer the question of whether the bifurcation
branch of periodic solution exists locally for supercritical
bifurcation or subcritical bifurcation.

Let 𝜏
1
= 𝜏
0

1
+ 𝑘, and let 𝑘 ∈ 𝑅; then 𝑘 = 0 is a critical

value of Hopf bifurcation of system (11). With the translation
𝑡 → 𝑡/𝜏

1
, let 𝜇
1
(𝑡) = 𝑥(𝜏

1
𝑡),𝜇
2
(𝑡) = 𝑦(𝜏

1
𝑡), we rewrite system

(15) as follows:

d𝜇
1
(𝑡)

d𝑡
= (𝜏
0

1
+ 𝑘) 𝑦 (𝑡) ,

d𝜇
2
(𝑡)

d𝑡
= (𝜏
0

1
+ 𝑘)

× [ − 𝜇𝛿 (𝜇
1
(𝑡) + 𝑝

∗

) 𝜇
2
(𝑡)

− 𝜇𝑏 (𝜇
1
(𝑡 − 1) + 𝑝

∗

)

−𝜇

𝑎
0
(𝜇
1
(𝑡 − 𝜏

∗

) + 𝑝
∗

)

𝑎
1
+ 𝜇
1
(𝑡 − 𝜏
∗
) + 𝑝
∗
+ 𝜇 (𝑑

0
− 𝑔
0
)] ,

(38)

where 𝜏∗ = 𝜏
2
/𝜏
1
. Furthermore, we can obtain the linear

system of (38) as mentioned later

d𝜇
1
(𝑡)

d𝑡
= (𝜏
0

1
+ 𝑘) 𝜇

2
(𝑡)

d𝜇
2
(𝑡)

d𝑡
= (𝜏
0

1
+ 𝑘) [ − 𝜇𝑏𝜇

1
(𝑡 − 1) − 𝜇𝛿 (𝑝

∗

) 𝜇
2
(𝑡)

−

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
𝜇
1
(𝑡 − 𝜏

∗

)] ,

(39)

while the nonlinear term is

𝑓 = (𝜏
0

1
+ 𝑘)

×(

0

−𝜇𝛿


(𝑝
∗

) 𝜇
1
(𝑡) 𝜇
2
(𝑡) −

𝜇𝛿


(𝑝
∗

)

2!

𝜇
2

1
(𝑡) 𝜇
2
(𝑡)

+

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
3
𝜇
2

1
(𝑡 − 𝜏
∗

) −

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
4
𝜇
3

1
(𝑡 − 𝜏
∗

) + ⋅ ⋅ ⋅

).

(40)

Let 𝜇(𝑡) = (𝜇
1
(𝑡), 𝜇
2
(𝑡))
𝑇, let 𝜇

𝑡
(𝜃) = 𝜇(𝑡 + 𝜃), let 𝜃 ∈

[−𝜏
∗

, 0], let Φ = (Φ
1
, Φ
1
)
𝑇

∈ 𝐶[−𝜏
∗

, 0], and let 𝐿
𝑘
Φ =

𝐴
1
(𝑘)Φ(0)+𝐴

2
(𝑘)Φ(−1)+𝐴

3
(𝑘)Φ(−𝜏

∗

), where 𝐿
𝑘
is a linear

operator,

𝐴
1
(𝑘) = (𝜏

0

1
+ 𝑘)(

0 1

0 −𝜇𝛿 (𝑃
∗

)
) ,

𝐴
2
(𝑘) = (𝜏

0

1
+ 𝑘)(

0 0

−𝜇𝑏 0
) ,

𝐴
3
(𝑘) = (𝜏

0

1
+ 𝑘)(

0 0

−

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
0
) .

(41)

As 𝐿
𝑘
is a one-parameter family of bounded linear

operator in 𝐶[−𝜏∗, 0], by the Rise Representation Theorem,
there exists a matrix whose components are bounded vari-
ation functions 𝜂(𝜃, 𝑘), 𝜃 ∈ [−𝜏

∗

, 0] such that 𝐿
𝑘
Φ =

∫

0

−𝜏
∗
Φ(𝜃)d𝜂(𝜃, 𝑘), Φ ∈ 𝐶[−𝜏

∗

, 0]. Actually, we can take
𝜂(𝜃, 𝑘) = 𝐴

1
(𝑘)𝛿(𝜃) + 𝐴

2
(𝑘)𝛿(𝜃 + 1) + 𝐴

3
(𝑘)𝛿(𝜃 + 𝜏

∗

), where
𝛿 is Dirac delta function.

Next, we define

𝐴 (𝑘)Φ =

{

{

{

dΦ (𝜃)
d𝜃

, 𝜃 ∈ [−𝜏
∗

, 0)

∫

0

−𝜏
∗
d𝜂 (𝜉, 𝑘)Φ (𝜉) = 𝐿

𝑘
Φ, 𝜃 = 0,

(42)

𝑅 (𝑘)Φ = {

0, 𝜃 ∈ [−𝜏
∗

, 0)

𝑓 (𝑘, Φ) , 𝜃 = 0,

(43)

where Φ ∈ 𝐶([−𝜏
∗

, 0], 𝑅
2

). We can rewrite (38) as
𝜇


𝑡
= 𝐴 (𝑘) 𝜇

𝑡
+ 𝑅 (𝑘) 𝜇

𝑡
, (44)

where 𝜇
𝑡
= 𝜇
𝑡
(𝜃).

Denote 𝐴(0) = 𝐴, 𝑅(0) = 𝑅, 𝐴
𝑖
(0) = 𝐴

𝑖
(𝑖 = 1, 2, 3),

𝜂(𝜃, 0) = 𝜂(𝜃).
For Ψ ∈ 𝐶

1

([0, 𝜏
∗

], 𝑅
2

), the adjoint operator 𝐴∗ of 𝐴 is
defined as

𝐴
∗

Ψ (𝑠) =

{

{

{

−

dΨ (𝑠)
d𝑠

, 𝑠 ∈ (0, 𝜏
∗

] ,

∫

0

−𝜏
∗
d𝜂𝑇 (𝑡) Ψ (−𝑡) , 𝑠 = 0,

(45)

where 𝜂𝑇 is the transpose of 𝜂.
We define the bilinear form

⟨Φ (𝑠) , Ψ (𝜃)⟩ = Ψ (0)

𝑇

Φ (0)

− ∫

0

−𝜏
∗

∫

𝜃

0

Ψ (𝜉 − 𝜃)

𝑇

d𝜂 (𝜃)Φ (𝜉) d𝜉,
(46)

where Φ ∈ 𝐶([−𝜏
∗

, 0], 𝐶
2

) and Ψ ∈ 𝐶([−𝜏
∗

, 0], (𝐶
2

)
∗

).



Abstract and Applied Analysis 7

We easily obtain that ±𝑖𝜏
0
𝜔
0
are eigenvalues of (17) by the

translation 𝑡 → 𝑡/𝜏
1
. Then we have the following lemma.

Lemma 7. 𝑞(𝜃) = (1, 𝛼)𝑇𝑒𝑖𝜏
0

1
𝜔0𝜃 is the eigenvector correspond-

ing to 𝑖𝜏
0
𝜔
0
and 𝑞∗(𝑠) = 𝐷(1, 𝛽)𝑇𝑒𝑖𝜏

0

1
𝜔0𝑠 is the eigenvector of𝐴∗

corresponding to −𝑖𝜏
0
𝜔
0
. ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞∗(𝑠), 𝑞∗(𝜃)⟩ = 0,

where

𝛼 =

𝜇𝑏𝑒
−𝑖𝜔0𝜏

0

1
+ (𝜇𝑎

0
𝑎
1
/(𝑎
1
+ 𝑝
∗

)
2

) 𝑒
−𝑖𝜔0𝜏

0

1
𝜏
∗

𝜇𝛿 (𝑝
∗
) + 𝑖𝜔

0

,

𝛽 = −

1

𝜇𝛿 (𝑝
∗
) − 𝑖𝜔

0

,

𝐷 =

1

𝛽 + 𝛼 − 𝜇𝑏𝜏
0

1
𝑒
−𝑖𝜔0𝜏

0

1 − 𝜏
0

1
𝜏
∗
(𝜇𝑎
0
𝑎
1
/(𝑎
1
+ 𝑝
∗
)
2

) 𝑒
−𝑖𝜔0𝜏

0

1
𝜏
∗
.

(47)

Proof. Letting 𝑞(𝜃) be the eigenvector of corresponding to
𝑖𝜏
0
𝜔
0
, we have

𝐴𝑞 (𝜃) =

d𝑞 (𝜃)
d𝜃

= 𝑖𝜏
0

1
𝜔
0
𝑞 (𝜃) , 𝜃 ∈ [−𝜏

∗

, 0) . (48)

Calculating (48), we obtain

𝑞 (𝜃) = (1, 𝛼)
𝑇

𝑒
𝑖𝜏
0

1
𝜔0𝜃

, 𝜃 ∈ [−𝜏
∗

, 0) , (49)

where 𝛼 is constant.
From (43), we can obtain

𝐴𝑞 (0) = 𝑖𝜏
0

1
𝜔
0
𝑞 (0) = ∫

0

−𝜏
∗

d𝜂 (𝜉) (1, 𝛼)𝑇𝑒𝑖𝜏
0

1
𝜔0𝜉

, 𝜃 = 0.

(50)

Therefore, one can show that

𝛼 = −

𝜇𝑏𝑒
−𝑖𝜔0𝜏

0

1
+ (𝜇𝑎

0
𝑎
1
/(𝑎
1
+ 𝑝
∗

)
2

) 𝑒
−𝑖𝜔0𝜏

0

1
𝜏
∗

𝜇𝛿 (𝑝
∗
) + 𝑖𝜔

0

. (51)

Letting 𝑞∗(𝑠) = 𝐷(1, 𝛽)
𝑇

𝑒
𝑖𝜏0𝜔0𝑠 be the eigenvector of 𝐴∗

corresponding to −𝑖𝜏
0
𝜔
0
, based on (48), (50), we have

𝐴
∗

𝑞
∗

(0) = −𝑖𝜏
0

1
𝜔
0
𝑞
∗

(0) = ∫

0

−𝜏
∗

d𝜂𝑇 (𝑡) 𝑞 (−𝑡) , 𝜃 = 0.

(52)

It is easy to obtain that 𝛽 = −1/(𝜇𝛿(𝑝
∗

) − 𝑖𝜔
0
) and 𝑞∗(0) =

𝐷(1, −1/(𝜇𝛿(𝑝
∗

) − 𝑖𝜔
0
)).

Now we compute ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ as the following:

⟨𝑞
∗

(𝑠) , 𝑞 (𝜃)⟩

= 𝑞
∗
(0)𝑞 (0) − ∫

0

−𝜏
∗

∫

𝜃

0

𝑞
∗
(𝜉 − 𝜃)d𝜂 (𝜃) 𝑞 (𝜉) d𝜉

= 𝐷 (1, 𝛽) (

1

𝛼
) − ∫

0

−𝜏
∗

𝐷(1, 𝛽) 𝑒
𝑖𝜏
0

1
𝜔0(𝜃 − 𝜉)d𝜂 (𝜃)

× (1, 𝛼)
𝑇

𝑒
𝑖𝜏
0

1
𝜔0𝜉d𝜉

= 𝐷 (1, 𝛽) (

1

𝛼
) − ∫

0

−𝜏
∗

𝐷(1, 𝛽) d𝜂 (𝜃) (1, 𝛼)𝑇𝜃𝑒𝑖𝜏
0

1
𝜔0𝜃

= 𝐷(1, 𝛽) (

1

𝛼
) −[𝐷 (1, 𝛽) (−𝜏

∗

) 𝑒
−𝑖𝜏
0

1
𝜔0𝜏
∗

𝜏
0

1

× (

0 0

−

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
2
0
)(

1

𝛼
) + 𝐷(1, 𝛽) (−1) 𝑒

−𝑖𝜏
0

1
𝜔0
𝜏
0

1

× (

0 0

−𝜇𝑏 0
)(

1

𝛼
)

= 0.

(53)

Then we have

𝐷

=

1

𝛽 + 𝛼 − 𝜇𝑏𝜏
0

1
𝑒
−𝑖𝜔0𝜏

0

1 − 𝜏
0

1
𝜏
∗
(𝜇𝑎
0
𝑎
1
/(𝑎
1
+ 𝑝
∗
)
2

) 𝑒
−𝑖𝜔0𝜏

0

1
𝜏
∗
.

(54)

On the other hand,

− 𝑖𝜏
0

1
𝜔
0
⟨𝑞
∗

(𝑠) , 𝑞 (𝜃)⟩

= ⟨𝑞
∗

(𝑠) , 𝐴𝑞 (𝜃)⟩ = ⟨𝐴
∗

𝑞
∗

(𝑠) , 𝑞 (𝜃)⟩

= ⟨−𝑖𝜏
0

1
𝜔
0
𝑞
∗

(𝑠) , 𝑞 (𝜃)⟩ = 𝑖𝜏
0

1
𝜔
0
⟨𝑞
∗

(𝑠) , 𝑞 (𝜃)⟩ ,

(55)

therefore, we have ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.This completes the proof.

In the remainder of this section, we use the same notation
as in [12]. We first compute the center manifold 𝐶

0
at 𝑘 = 0.

Let 𝜇
𝑡
be the solution of (44) when 𝑘 = 0, and define

𝑊(𝑧, 𝑧, 𝜃) = 𝜇
𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} , (56)

𝑧 (𝑡) = ⟨𝑞
∗

, 𝜇
𝑡
⟩ . (57)

We have

𝑧


(𝑡) = 𝑖𝜏
0

1
𝜔
0
𝑧 + 𝑞
∗
(0)

𝑇

𝑓
0
(𝑧, 𝑧) , (58)

where

𝑓
0
(𝑧, 𝑧) = 𝑓 (0,𝑊 (𝑧, 𝑧, 𝜃) + 2Re {𝑧𝑞 (𝜃)}) . (59)
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On the center manifold, we have
𝑊(𝑡, 𝜃) = 𝑊 (𝑧, 𝑧, 𝜃)

= 𝑊
20
(𝜃)

𝑧
2

2

+𝑊
11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧
2

2

⋅ ⋅ ⋅ .

(60)

In fact, 𝑧, 𝑧 are local coordinates for center manifold 𝐶
0
in

the direction of 𝑞∗, 𝑞∗. Noting that𝑊 is real if 𝜇
𝑡
is real, we

consider only real solutions in this paper. We rewrite (58) as
follows:

𝑧


(𝑡) = 𝑖𝜏
0

1
𝜔
0
𝑧 + 𝑔 (𝑧, 𝑧) , (61)

where

𝑔 (𝑧, 𝑧) = 𝑔
20

𝑧
2

2

+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2

+ 𝑔
21

𝑧
2

𝑧

2

+ ⋅ ⋅ ⋅ . (62)

From (56), we have
𝜇
𝑡
(𝜃) = 𝑊 (𝑧, 𝑧, 𝜃) + 2Re {𝑧 (𝑡) 𝑞 (𝜃)}

= 𝑊 (𝑧, 𝑧, 𝜃) + 𝑧 (𝑡) 𝑞 (𝜃) + 𝑧 (𝑡) 𝑞 (𝜃).

(63)

Then we have

(

𝜇
1𝑡
(𝜃)

𝜇
2𝑡
(𝜃)
)

= (

1

𝛼
) 𝑒
𝑖𝜏
0

1
𝜔0𝜃

𝑧 (𝑡) + (

1

𝛼
) 𝑒
−𝑖𝜏
0

1
𝜔0𝜃

𝑧 (𝑡)

+ (

𝑊
(1)

20
(𝜃)

𝑊
(2)

20
(𝜃)

)

𝑧
2

2

+ (

𝑊
(1)

11
(𝜃)

𝑊
(2)

11
(𝜃)

)𝑧𝑧

+ (

𝑊
(1)

02
(𝜃)

𝑊
(2)

02
(𝜃)

)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(64)

It is easy to obtain

𝜇
1
(𝑡) = 𝑧 (𝑡) + 𝑧 (𝑡) + 𝑊

(1)

20
(0)

𝑧
2

2

+𝑊
(1)

11
(0) 𝑧𝑧 +𝑊

(1)

02
(0)

𝑧
2

2

+ ⋅ ⋅ ⋅ ,

𝜇
1
(𝑡 − 1) = 𝑧 (𝑡) 𝑒

−𝑖𝜏
0

1
𝜔0
+ 𝑧 (𝑡)𝑒

𝑖𝜏
0

1
𝜔0
+𝑊
(1)

20
(−1)

𝑧
2

2

+𝑊
(1)

11
(−1) 𝑧𝑧 +𝑊

(1)

02
(−1)

𝑧
2

2

+ ⋅ ⋅ ⋅ ,

𝜇
1
(𝑡 − 𝜏

∗

) = 𝑧 (𝑡) 𝑒
−𝑖𝜏
0

1
𝜔0𝜏
∗

+ 𝑧 (𝑡)𝑒
𝑖𝜏
0

1
𝜔0𝜏
∗

+𝑊
(1)

20
(−𝜏
∗

)

𝑧
2

2

+𝑊
(1)

11
(−𝜏
∗

) 𝑧𝑧 +𝑊
(1)

02
(−𝜏
∗

)

𝑧
2

2

+ ⋅ ⋅ ⋅ ,

𝜇
2
(𝑡) = 𝛼𝑧 + 𝛼𝑧 +𝑊

(2)

20
(0)

𝑧
2

2

+𝑊
(2)

11
(0) 𝑧𝑧 +𝑊

(2)

02
(0)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(65)

We can also obtain

𝑞
∗
(0)

𝑇

𝑓
0
(𝑧, 𝑧)

= 𝐷 (1, 𝛽) 𝜏
0

1

×(

0

−𝜇𝛿


(𝑝
∗

) 𝜇
1
(𝑡) 𝜇
2
(𝑡)−

𝜇𝛿


(𝑝
∗

)

2!

𝜇
2

1
(𝑡) 𝜇
2
(𝑡)

+

𝜇𝑎
0
𝑎
1

3!(𝑎
1
+ 𝑝
∗
)
3
𝜇
2

1
(𝑡−𝜏
∗

)

) .

(66)

Expanding (66) and comparing the coefficients, we obtain

𝑔
20
= 2𝐷𝜏

0
(−𝜇𝛿



(𝑝
∗

) 𝛼 +

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
3
𝑒
−2𝑖𝜏
0

1
𝜔0𝜏
∗

) ,

𝑔
11
= 𝐷𝜏
0

1
(−𝜇𝛿



(𝑝
∗

) (𝛼 + 𝛼) +

2𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
3
) ,

𝑔
02
= 2𝐷𝜏

0

1
(−𝜇𝛿



(𝑝
∗

) 𝛼 +

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
3
𝑒
2𝑖𝜏
0

1
𝜔0𝜏
∗

) ,

𝑔
21
= 2𝐷𝜏

0

1
{−𝜇𝛿



(𝑝
∗

) [

1

2

𝑊
(1)

20
(0) 𝛼 +𝑊

(1)

11
(0) 𝛼

+𝑊
(2)

11
(0) +

𝑊
(2)

20
(0)

2

]

−

𝜇𝛿


(𝑝
∗

)

2!

(2𝛼 + 𝛼) +

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑃
∗
)
3

×[𝑊
(1)

20
(−𝜏
∗

) 𝑒
𝑖𝜏
0

1
𝜏
∗
𝜔0
+2𝑊
(1)

11
(−𝜏
∗

) 𝑒
−𝑖𝜏
0

1
𝜏
∗
𝜔0
]

−

3𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
4
𝑒
−𝜏
0

1
𝜏
∗
𝜔0
} .

(67)

We still need to compute 𝑊
20
(𝜃) and 𝑊

11
(𝜃). Noticing

that

𝑊


= 𝜇


𝑡
− 𝑧


𝑞 (𝜃) − 𝑧𝑞 (𝜃)

= 𝐴𝜇
𝑡
+ 𝑅𝜇
𝑡
− (𝑖𝜏
0

1
𝜔
0
𝑧 + 𝑞
∗
(0)𝑓
0
(𝑧, 𝑧)) 𝑞 (𝜃)

− (−𝑖𝜏
0

1
𝜔
0
𝑧 + 𝑞
∗

(0) 𝑓
0
(𝑧, 𝑧)) 𝑞 (𝜃)

= 𝐴𝜇
𝑡
+ 𝑅𝜇
𝑡
− 𝑖𝜏
0

1
𝜔
0
𝑧𝑞 (𝜃) − 𝑞

∗
(0)𝑓
0
(𝑧, 𝑧) 𝑞 (𝜃)

+ 𝑖𝜏
0

1
𝜔
0
𝑧𝑞 (𝜃) − 𝑞

∗

(0) 𝑓
0
(𝑧, 𝑧)𝑞 (𝜃)

=

{
{
{

{
{
{

{

𝐴𝑊 − 2Re {𝑞∗ (0)𝑓
0
(𝑧, 𝑧) 𝑞 (𝜃)} ,

𝜃 ∈ [−𝜏
∗

, 0)

𝐴𝑊−2Re{𝑞∗ (0)𝑓
0
(𝑧, 𝑧) 𝑞 (𝜃)+𝑓

0
(𝑧, 𝑧),

𝜃 = 0,

(68)
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we rewrite𝑊 as the following:

𝑊


= 𝐴𝑊 +𝐻(𝑧, 𝑧, 𝜃) , (69)

where𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20
(𝜃)(𝑧
2

/2)+𝐻
11
(𝜃)𝑧𝑧+𝐻

02
(𝜃)(𝑧
2

/2)+

𝐻
30
(𝜃)(𝑧
3

/6) + ⋅ ⋅ ⋅

As𝑊 = 𝑊
𝑧
𝑧


+𝑊
𝑧
𝑧
, we can get

𝑊


= 𝑊
20
(𝜃) 𝑧 (𝑖𝜏

0

1
𝜔
0
𝑧 + 𝑔 (𝑧, 𝑧)) + 𝑊

11
(𝜃) 𝑧

× (−𝑖𝜏
0

1
𝜔
0
𝑧 + 𝑔 (𝑧, 𝑧)) + 𝑊

11
(𝜃) 𝑧 (𝑖𝜏

0

1
𝜔
0
𝑧 + 𝑔 (𝑧, 𝑧))

+ 𝑊
02
(𝜃) 𝑧 (−𝑖𝜏

0

1
𝜔
0
𝑧 + 𝑔 (𝑧, 𝑧) ) + ⋅ ⋅ ⋅

= 𝑖𝜏
0

1
𝑊
20
(𝜃) 𝜔
0
𝑧
2

+𝑊
20
(𝜃) 𝑧

× (𝑔
20

𝑧
2

2

+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2

+ 𝑔
21

𝑧
2

𝑧

2

⋅ ⋅ ⋅ )

− 𝑖𝜏
0

1
𝑊
11
(𝜃) 𝜔
0
𝑧𝑧 +𝑊

11
(𝜃) 𝑧

× (𝑔
20

𝑧
2

2

+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2

+ 𝑔
21

𝑧
2

𝑧

2

⋅ ⋅ ⋅ )

+ 𝑖𝜏
0

1
𝑊
11
(𝜃) 𝜔
0
𝑧𝑧 +𝑊

11
(𝜃) 𝑧

× (𝑔
20

𝑧
2

2

+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2

+ 𝑔
21

𝑧
2

𝑧

2

⋅ ⋅ ⋅ )

− 𝑖𝜏
0

1
𝑊
02
(𝜃) 𝑧
2

𝜔
0
+𝑊
02
(𝜃) 𝑧

× (𝑔
20

𝑧
2

2

+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2

+ 𝑔
21

𝑧
2

𝑧

2

⋅ ⋅ ⋅ ) .

(70)
Comparing the coefficients with (69), we can get

(𝐴 − 2𝑖𝜏
0

1
𝜔
0
)𝑊
20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴𝑊
11
(𝜃) = −𝐻

11
(𝜃) .

(71)

From (69),𝐻(𝑧, 𝑧, 𝜃) = −𝑔(𝑧, 𝑧)𝑞(𝜃) − 𝑔(𝑧, 𝑧)𝑞(𝜃), where 𝜃 ∈
[−𝜏
∗

, 0). Then we have

𝐻
20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃),

𝐻
11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃).

(72)

From (43) and (71), we have

𝑊


20
(𝜃) = 2𝑖𝜏

0
𝜔
0
𝑊
20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃),

𝑊


11
(𝜃) = 𝑔

11
𝑞 (𝜃) + 𝑔

11
𝑞 (𝜃),

(73)

where 𝜃 ∈ [−𝜏∗, 0). Computing (73), we have

𝑊
20
(𝜃) =

𝑖𝑔
20
𝑞 (0)

𝜏
0
𝜔
0

𝑒
𝑖𝜏0𝜔0𝜃

+

𝑖𝑔
02
𝑞 (0)

3𝜏
0
𝜔
0

𝑒
−𝑖𝜏0𝜔0𝜃

+𝐸
1
𝑒
2𝑖𝜏0𝜔0𝜃

,

(74)

𝑊
11
(𝜃) = −

𝑖𝑔
11
𝑞 (0)

𝜏
0
𝜔
0

𝑒
𝑖𝜏0𝜔0𝜃

+

𝑖𝑔
11
𝑞 (0)

𝜏
0
𝜔
0

𝑒
−𝑖𝜏0𝜔0𝜃

+ 𝐸
2
, (75)

where 𝐸
1
= (
𝐸
(1)

1

𝐸
(2)

1

), 𝐸
2
= (
𝐸
(1)

2

𝐸
(2)

2

).

𝐸
1
,𝐸
2
can be determined by setting 𝜃 = 0 in𝐻(𝑧, 𝑧, 𝜃). As

𝑊
20
(𝜃) and𝑊

11
(𝜃) are continuous on [−𝜏∗, 0], then we have

𝑊
20
(0) =

𝑖𝑔
20
𝑞 (0)

𝜏
0
𝜔
0

+

𝑖𝑔
02
𝑞 (0)

3𝜏
0
𝜔
0

+ 𝐸
1
, (76)

𝑊
11
(0) = −

𝑖𝑔
11
𝑞 (0)

𝜏
0
𝜔
0

+

𝑖𝑔
11
𝑞 (0)

𝜏
0
𝜔
0

+ 𝐸
2
. (77)

From (43), we obtain

𝐴𝑊
20
(0) = ∫

0

−𝜏
∗

d𝜂 (𝜉)𝑊
20
(𝜃) ,

𝐴𝑊
11
(0) = ∫

0

−𝜏
∗

d𝜂 (𝜉)𝑊
11
(𝜃) .

(78)

Substitute (74)–(77) to (78), we can obtain

[2𝑖𝜔
0
𝜏
0

1
𝐼 − 𝜏
0

1
(𝐴
1
+ 𝐴
2
𝑒
−2𝑖𝜏
0

1
𝜔0
+ 𝐴
3
𝑒
−2𝑖𝜏
0

1
𝜔0𝜏
∗

)] 𝐸
1

= (

0

−𝜇𝛿


(𝑝
∗

) 𝛼 +

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
3
𝑒
−2𝑖𝜏
0

1
𝜔0𝜏
∗

),

𝜏
0

1
(𝐴
1
+ 𝐴
2
+ 𝐴
3
) 𝐸
2

= (

0

−𝜇𝛿


(𝑝
∗

) (𝛼 + 𝛼) +

2𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
3

).

(79)

Therefore, we obtain

𝐸
1
= [2𝑖𝜔

0
𝜏
0

1
𝐼 − 𝜏
0

1
(𝐴
1
+ 𝐴
2
𝑒
−2𝑖𝜏
0

1
𝜔0
+ 𝐴
3
𝑒
−2𝑖𝜏
0

1
𝜔0𝜏
∗

)]

−1

×(

0

−𝜇𝛿


(𝑝
∗

) 𝛼 +

𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
3
𝑒
−2𝑖𝜏
0

1
𝜔0𝜏
∗

),

𝐸
2
= 𝜏
0

1
(𝐴
1
+ 𝐴
2
+ 𝐴
3
)
−1

×(

0

−𝜇𝛿


(𝑝
∗

) (𝛼 + 𝛼) +

2𝜇𝑎
0
𝑎
1

(𝑎
1
+ 𝑝
∗
)
3

) .

(80)
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Based on the previous analysis,we can see that each 𝑔
𝑖𝑗
in (67)

is determined by the parameters in system (11). Thus we can
compute the following values:

𝐶
1
(0) =

𝑖

2𝜏
0

1
𝜔
0

[𝑔
11
𝑔
20
− 2





𝑔
11






2

−





𝑔
02






2

3

] +

𝑔
21

2

,

𝜇
2
= −

Re (𝐶
1
(0))

Re (𝜆 (𝜏0
1
))

,

𝛽
2
= 2Re (𝐶

1
(0)) ,

𝑇
2
= −

Im (𝐶
1
(0)) + 𝜇

2
Im (𝜆



(𝜏
0
))

𝜏
0

1
𝜔
0

,

(81)

which determine the quantities of bifurcating periodic solu-
tions in the center manifold at the critical value 𝑘 = 0; that is,
we thus have the following theorem.

Theorem 8. Using (81), one can compute the values of 𝐶
1
(0),

𝜇
2
, 𝛽
2
,𝑇
2
.Therefore, we can answer the question of whether the

bifurcation branch of periodic solution exists locally for super-
critical bifurcation or subcritical bifurcation as the following.

(i) 𝜇
2
determines the directions of the Hopf bifurcation:

if 𝜇
2
> 0 (𝜇

2
< 0), then the Hopf bifurcation is

supercritical (subcritical) and the bifurcating periodic
solutions exists for 𝑘 = 0.

(ii) 𝛽
2
determines the stability of the bifurcating periodic

solutions: the bifurcating periodic solutions are stable
(unstable) if 𝛽

2
< 0 (𝛽

2
> 0).

(iii) 𝑇
2
determines the period of the bifurcating periodic

solutions: the period increases (decreases), if 𝑇
2
> 0

(𝑇
2
< 0).

5. Numerical Simulation Example.

Example 9. Consider a single commodity market model as
follows:

d𝑥 (𝑡)
d𝑡

= 𝑦 (𝑡) ,

d𝑦 (𝑡)
d𝑡

= −𝜇 (2𝑥 (𝑡) + 1) 𝑦 (𝑡) − 𝜇𝑏𝑥 (𝑡 − 𝜏
1
)

− 𝜇

𝑎
0
𝑥 (𝑡 − 𝜏

2
)

𝑎
1
+ 𝑥 (𝑡 − 𝜏

2
)

+ 𝜇 (𝑑
0
− 𝑔
0
) ,

(82)

where 𝑥(𝑡) denotes the price at time 𝑡, and we choose 𝑑
0
=

125, 𝑏 = 2, 𝜇 = 0.08, 𝑔
0
= 85, 𝑎

0
= 180, 𝑎

1
= 12. Using

Theorem 1, a quick computation revealed that 𝑝∗ = 𝑥
∗

=

2.8292.
If one choose 𝜏

1
= 0, 𝜏

2
> 0, from Lemma 3, we can

calculate that 𝜔 = 0.8875, 𝜏
20
= 0.7237, and 𝜏

20
is the the

critical value for Hopf bifurcation. It follows fromTheorem 5
that if 𝜏

2
∈ (0, 0.7237), (𝑝∗, 0) is asymptotically stable.

System (82) undergoes a Hopf bifurcation at 𝜏
2
= 0.7237.

These conclusions are verified by the numerical simulation
in Figures 1, 2, 3, and 4.
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= 0.68, (𝑝∗, 0) is asymptotically stable.

2

1.5

1

0.5

0

−0.5

−1

−1.5

1 1.5 2 2.5 3 3.5 4 4.5 5
𝑥(𝑡)

𝑦
(
𝑡
)

Figure 2: 𝜏
1
= 0, 𝜏

2
= 0.68, (𝑝∗, 0) is asymptotically stable.

0

5

4.5

4

3.5

3

2.5

2

1.5

1
50 100 150 200 250 300 350 400

𝑡

𝑥
(
𝑡
)

Figure 3: 𝜏
1
= 0, 𝜏

2
= 0.7273, periodic solution bifurcates from

(𝑝
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Figure 4: 𝜏
1
= 0, 𝜏

2
= 0.7237, (𝑝∗, 0), periodic solution bifurcates

from (𝑝
∗

, 0).

When 𝜏
2
> 𝜏
1
> 0, we can choose 𝜏

2
= 𝜏 = 0.68; from (34)

and (35), we can calculate that𝜔
0
= 0.9203, 𝜏0

1
= 0.2046; from

(37), we have 𝛼(𝜏0
1
) = 0.0618. It follows fromTheorem 6 that

(𝑝
∗

, 0) is asymptotically stable as far as 𝜏0
1
∈ [0, 0.2046) and

system (82) undergoes a Hopf bifurcation when 𝜏0
1
= 0.2046.

Furthermore, using Lemma 7, after simple computation, we
have

𝛼 = 0.0249 + 0.8772𝑖, 𝛽 = 0.4512 − 0.7308𝑖,

𝐷 = 0.0029 + 0.5189𝑖.

(83)

Then we can obtain

𝑔
20
= −0.0256 − 0.0033𝑖, 𝑔

11
= 0.0001 − 0.0108𝑖,

𝑔
02
= 0.0256 − 0.0030𝑖, 𝑔

21
= 0.0005 + 0.0020𝑖.

(84)

It is easy to obtain

𝐶
1
(0) = −0.00061286 − 0.00029893𝑖, 𝜇

2
= 0.0099 > 0,

𝛽
2
= −0.0012 < 0.

(85)

Therefore, theHopf bifurcation of system (82) is supercritical,
and the bifurcation periodic solutions are stable.This conclu-
sions can be verified by the numerical simulation in Figures
5, 6, 7, and 8.

6. Conclusion

The delay in production process has been considered in
many economic models. However, few of them considered
the delay of consumer consumption. In this paper, we first
establish a class of economic models with two delays; the
delay in production process and consumer consumption are
both considered, and then the dynamics of this system have
been investigated. Specifically, stability of equilibrium point
and the existence of Hopf bifurcation, in great detail, are
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Figure 5: 𝜏
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studied.We have derived some sufficient conditions to ensure
that all the characteristic roots have negative real parts. We
also show that a Hopf Bifurcation will occur once some
parameters pass through critical values; that is, a family of
periodic orbits bifurcates from the positive equilibriumpoint.
At last, the direction of Hopf bifurcation and the stability
of the bifurcating periodic orbits are discussed by applying
the normal form theory and the center manifold theorem.
Simulations show that the theoretically predicted values
are in excellent agreement with the numerically observed
behavior. Our results extend and complement some earlier
publications.
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We demonstrate the existence of standing wave solutions of the discrete coupled nonlinear Schrödinger equations with unbounded
potentials by using the Nehari manifold approach and the compact embedding theorem. Sufficient conditions are established to
show that the standing wave solutions have both of the components not identically zero.

1. Introduction

Consider the coupled discrete Schrödinger system

𝑖

𝑑𝑢
𝑛

𝑑𝑡

= −(A𝑢)
𝑛
+ 𝑏
1𝑛
𝑢
𝑛
− 𝑎
1





𝑢
𝑛






2

𝑢
𝑛
− 𝑎
3





V
𝑛






2

𝑢
𝑛
,

𝑖

𝑑V
𝑛

𝑑𝑡

= −(AV)
𝑛
+ 𝑏
2𝑛
V
𝑛
− 𝑎
2





V
𝑛






2

V
𝑛
− 𝑎
3





𝑢
𝑛






2

V
𝑛
,

(1)

where 𝑎
𝑖
> 0, {𝑏

𝑗𝑛
} are real valued sequences, 𝑖 =

1, 2, 3, and 𝑗 = 1, 2. A is the discrete Laplacian operator
defined as (A𝑢)

𝑛
= 𝑢
𝑛+1
+ 𝑢
𝑛−1
− 2𝑢
𝑛
.

The system (1) could be viewed as the discretization of the
two-component system of time-dependent nonlinear Gross-
Pitaevskii system (see [1] for detail)

𝑖ℎ𝜕
𝑡
𝑢 = −

ℎ
2

2𝑚

Δ𝑢 + 𝑏
1
(𝑥) 𝑢 − 𝑎

1
|𝑢|
2

𝑢 − 𝑎
3
|V|
2

𝑢,

𝑖ℎ𝜕
𝑡
V = −

ℎ
2

2𝑚

ΔV + 𝑏
2
(𝑥) V − 𝑎

2
|V|
2

V − 𝑎
3
|𝑢|
2

V.

(2)

In this paper, we will study the standing wave solutions of
(1), that is, solutions of the form

𝑢
𝑛
= exp (−𝑖𝜔

1
𝑡) 𝜙
𝑛
, V
𝑛
= exp (−𝑖𝜔

2
𝑡) 𝜓
𝑛
, 𝑛 ∈ Z, (3)

where the amplitude 𝜙
𝑛
and 𝜓

𝑛
are supposed to be real.

Inserting the ansatz of the standing wave solutions (3) into
(1), we obtain the following equivalent algebraic equations:

−(A𝜙)
𝑛
− 𝜔
1
𝜙
𝑛
+ 𝑏
1𝑛
𝜙
𝑛
− 𝑎
1





𝜙
𝑛






2

𝜙
𝑛
− 𝑎
3





𝜓
𝑛






2

𝜙
𝑛
= 0,

−(A𝜓)
𝑛
− 𝜔
2
𝜓
𝑛
+ 𝑏
2𝑛
𝜓
𝑛
− 𝑎
2





𝜓
𝑛






2

𝜓
𝑛
− 𝑎
3





𝜙
𝑛






2

𝜓
𝑛
= 0.

(4)

Since Bose-Einstein condensation for a mixture of dif-
ferent interaction atomic species with the same mass was
realized in 1997 (see [2]), this stimulated various analytical
and numerical results on the standing wave solutions of the
system (2). The discrete nonlinear Schrödinger equations
(DNLS) have a crucial role in the modeling of a great variety
of phenomena, ranging from solid-state and condensed-
matter physics to biology. During the last years, there has
been a growing interest in approaches to the existence
problem for standing waves. We refer to the continuation
methods in [3, 4], which have been proved powerful for
both theoretical considerations and numerical computations
(see [5]), to [6], which exploits spatial dynamics and centre
manifold reduction, and to the variational methods in [7–11],
which rely on critical point techniques (linking theorems and
Nehari manifold).

We noticed that most works on the existence of
standing waves solutions are for single discrete nonlinear
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Schrödinger equation, and less is known for discrete nonlin-
ear Schrödinger system. In the recent paper [12], the authors
considered the standing wave solutions of the following
system:

𝑖

𝑑𝑢
𝑛

𝑑𝑡

= −(A𝑢)
𝑛
+ 𝑏
1𝑛
𝑢
𝑛
− 𝑐
1𝑛
V
𝑛
− 𝑎
1





𝑢
𝑛






2

𝑢
𝑛
− 𝑎
3





V
𝑛






2

𝑢
𝑛
,

𝑖

𝑑V
𝑛

𝑑𝑡

= −(AV)
𝑛
+ 𝑏
2𝑛
V
𝑛
− 𝑐
2𝑛
𝑢
𝑛
− 𝑎
2





V
𝑛






2

V
𝑛
− 𝑎
3





𝑢
𝑛






2

V
𝑛
,

(5)

which is more general than the system (1). However, they
make a mistake to obtain the equivalent algebraic equations
because 𝜔

1
may be different from 𝜔

2
. Hence, there are two

ways to correct this mistake. The first method is to study the
special standingwave solutions (3) of the system (5)with𝜔

1
=

𝜔
2
.The secondmethod is to study the standingwave solutions

(3) of the system (5) with 𝑐
1𝑛
≡ 0 and 𝑐

2𝑛
≡ 0, 𝑛 ∈ Z. In this

paper, we consider the second method. By the way, the proof
of the main results in [12] is also not fully corrected.

The paper is organized as follows. In Section 2, we
introduce some preliminaries and a discrete version of com-
pact embedding theorem. Some key lemmas on the Nehari
manifold are proved in Section 3. In Section 4, the main
results are stated and proved.

2. Preliminaries

In this section we describe the functional setting needed for
the treatment of the infinite nonlinear system (4). We first
introduce a compact embedding theorem.

Consider the real sequence spaces

𝑙
𝑝

=

{

{

{

𝜙 = {𝜙
𝑛
}
𝑛∈Z
:




𝜙



𝑙
𝑝 = (∑

𝑛∈Z





𝜙
𝑛






𝑝

)

1/𝑝

< ∞,

𝜙
𝑛
∈ R, ∀𝑛 ∈ Z

}

}

}

.

(6)

Between 𝑙𝑝 spaces the following elementary embedding
relation holds:

𝑙
𝑞

⊂ 𝑙
𝑝

,




𝜙



𝑙
𝑝 ≤




𝜙



𝑙
𝑞 , 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞. (7)

For the case 𝑝 = 2, we need the usual Hilbert space of 𝑙2,
endowed with the real scalar product

(𝜙, 𝜓) = ∑

𝑛∈Z

𝜙
𝑛
𝜓
𝑛
, 𝜙, 𝜓 ∈ 𝑙

2

. (8)

Let us point out that the spectrum of −A in 𝑙2 coincides with
the interval [0, 4]. Obviously, we have

0 ≤ (−A𝜙, 𝜙) ≤ 4




𝜙





2

𝑙
2 , ∀𝜙 ∈ 𝑙

2

. (9)

Assume that the potential 𝑉
𝑖
= {𝑏
𝑖𝑛
}
𝑛∈Z, 𝑖 = 1, 2, satisfies

lim
|𝑛|→∞

𝑏
𝑖𝑛
= ∞, 𝑖 = 1, 2. (10)

Without loss of generality we assume that 𝑉
𝑖
≥ 1, 𝑖 = 1, 2;

that is 𝑏
𝑖𝑛
≥ 1 for 𝑛 ∈ Z, 𝑖 = 1, 2. Let

𝐿
𝑖
= −A + 𝑉

𝑖
, 𝑖 = 1, 2, (11)

which are self-adjoint operators defined on 𝑙2, and

𝐸
𝑖
= {𝜙 ∈ 𝑙

2

: 𝐿
1/2

𝑖
𝜙 ∈ 𝑙
2

} ,




𝜙



𝐸𝑖
=






𝐿
1/2

𝑖
𝜙





𝑙
2
,

𝑖 = 1, 2.

(12)

The following lemma can be found in [9].

Lemma 1. If 𝑉
𝑖
, 𝑖 = 1, 2, satisfy the condition (10), then for

any 2 ≤ 𝑝 ≤ ∞,𝐸
1
and𝐸

2
are compactly embedded into 𝑙𝑝 and

denote the best embedding constant 𝛼
𝑝
= max

‖𝜙‖
𝑙
𝑝=1
1/‖𝜙‖

𝐸1

and 𝛽
𝑝
= max

‖𝜙‖
𝑙
𝑝=1
1/‖𝜙‖

𝐸2

, respectively. Furthermore, the
spectra 𝜎(𝐿

1
) and 𝜎(𝐿

2
) are discrete, respectively.

By (11), (4) becomes

𝐿
1
𝜙
𝑛
− 𝜔
1
𝜙
𝑛
− 𝑎
1





𝜙
𝑛






2

𝜙
𝑛
− 𝑎
3





𝜓
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2

𝜙
𝑛
= 0,

𝐿
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𝜓
𝑛
− 𝜔
2
𝜓
𝑛
− 𝑎
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𝜓
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2

𝜓
𝑛
− 𝑎
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𝜙
𝑛






2

𝜓
𝑛
= 0.

(13)

Now we can define the action functional

𝐽 (𝜙, 𝜓) =

1

2

((𝐿
1
− 𝜔
1
) 𝜙, 𝜙) +

1

2

((𝐿
2
− 𝜔
2
) 𝜓, 𝜓)

−

1

4

∑

𝑛∈Z

(𝑎
1
𝜙
4

𝑛
+ 𝑎
2
𝜓
4

𝑛
+ 2𝑎
3
𝜙
2

𝑛
𝜓
2

𝑛
) .

(14)

By Lemma 1, it follows that the action functional 𝐽(𝜙, 𝜓) ∈
𝐶
1

(𝐸
1
× 𝐸
2
,R) and (13) corresponds to 𝐽(𝜙, 𝜓) = 0. So we

define

𝐼 (𝜙, 𝜓) = (𝐽


(𝜙, 𝜓) , (𝜙, 𝜓))

= ((𝐿
1
− 𝜔
1
) 𝜙, 𝜙) + ((𝐿

2
− 𝜔
2
) 𝜓, 𝜓)

− ∑

𝑛∈Z

(𝑎
1
𝜙
4

𝑛
+ 𝑎
2
𝜓
4

𝑛
+ 2𝑎
3
𝜙
2

𝑛
𝜓
2

𝑛
) ,

(15)

and the Nehari manifold

𝑁 = {(𝜙, 𝜓) ∈ 𝐸
1
× 𝐸
2
: 𝐼 (𝜙, 𝜓) = 0, (𝜙, 𝜓) ̸= 0} . (16)

3. Some Lemmas on the Nehari Manifold

Let

𝜆
𝑖
= inf {𝜎 (𝐿

𝑖
)} , 𝑖 = 1, 2. (17)

To prove the main results, we need some lemmas on the
Nehari manifold.

Lemma 2. Assume that 𝜔
1
< 𝜆
1
, 𝜔
2
< 𝜆
2
, and (10) holds.

Then the Nehari manifold𝑁 is nonempty in 𝐸
1
× 𝐸
2
. Further-

more, for (𝜙, 𝜓) ∈ 𝑁, 𝐽(𝑡𝜙, 𝑡𝜓) attains a unique maximum
point at 𝑡 = 1.
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Proof. First we show that𝑁 ̸=0.
From (15) and (16), we rewrite

𝐽 (𝜙, 𝜓) =

1

2

(




𝜙





2

𝐸1

− 𝜔
1





𝜙





2

𝑙
2)

+

1

2

(




𝜓





2

𝐸2

− 𝜔
2





𝜓





2

𝑙
2)

−

1

4

∑

𝑛∈Z

(𝑎
1
𝜙
4

𝑛
+ 𝑎
2
𝜓
4

𝑛
+ 2𝑎
3
𝜙
2

𝑛
𝜓
2

𝑛
) ,

(18)

𝐼 (𝜙, 𝜓) =




𝜙





2

𝐸1

− 𝜔
1





𝜙





2

𝑙
2 +




𝜓





2

𝐸2

− 𝜔
2





𝜓





2

𝑙
2

− ∑

𝑛∈Z

(𝑎
1
𝜙
4

𝑛
+ 𝑎
2
𝜓
4

𝑛
+ 2𝑎
3
𝜙
2

𝑛
𝜓
2

𝑛
) .

(19)

Let (𝜙, 𝜓) ∈ (𝐸
1
− {0}) × (𝐸

2
− {0}); then by (19)

𝐼 (𝑡𝜙, 𝑡𝜓) = 𝑡
2

(




𝜙





2

𝐸1

− 𝜔
1





𝜙





2

𝑙
2)

+ 𝑡
2

(




𝜓





2

𝐸2

− 𝜔
2





𝜓





2

𝑙
2)

− 𝑡
4

∑

𝑛∈Z

(𝑎
1
𝜙
4

𝑛
+ 𝑎
2
𝜓
4

𝑛
+ 2𝑎
3
𝜙
2

𝑛
𝜓
2

𝑛
)

= 𝑡
2

(




𝜙





2

𝐸1

− 𝜔
1





𝜙





2

𝑙
2 +




𝜓





2

𝐸2

− 𝜔
2





𝜓





2

𝑙
2

−𝑡
2

∑

𝑛∈Z

(𝑎
1
𝜙
4

𝑛
+ 𝑎
2
𝜓
4

𝑛
+ 2𝑎
3
𝜙
2

𝑛
𝜓
2

𝑛
)) .

(20)

Notice that ‖𝜙‖2
𝐸1

− 𝜔
1
‖𝜙‖
2

𝑙
2 ≥ (𝜆

1
− 𝜔
1
)‖𝜙‖
2

𝑙
2 > 0 and

‖𝜓‖
2

𝐸2

− 𝜔
2
‖𝜓‖
2

𝑙
2 ≥ (𝜆

2
− 𝜔
2
)‖𝜓‖
2

𝑙
2 > 0; by (20), we see that

𝐼(𝑡𝜙, 𝑡𝜓) > 0 for 𝑡 > 0 small enough and 𝐼(𝑡𝜙, 𝑡𝜓) < 0 for
𝑡 > 0 large enough. As a consequence, there exists 𝑡

0
> 0 such

that 𝐼(𝑡
0
𝜙, 𝑡
0
𝜓) = 0; that is, (𝑡

0
𝜙, 𝑡
0
𝜓) ∈ 𝑁.

Let 𝐹(𝑡) = 𝐽(𝑡𝜙, 𝑡𝜓), (𝜙, 𝜓) ∈ 𝑁. Computing the
derivative of 𝐹, we have

𝐹


(𝑡) = 𝑡 (1 − 𝑡
2

) ∑

𝑛∈Z

(𝑎
1
𝜙
4

𝑛
+ 𝑎
2
𝜓
4

𝑛
+ 2𝑎
3
𝜙
2

𝑛
𝜓
2

𝑛
) . (21)

This shows that 𝑡 = 1 is a unique maximum point. The proof
is completed.

Lemma 3. Assume that 𝜔
1
< 𝜆
1
, 𝜔
2
< 𝜆
2
, and (10) holds.

Then there exists 𝜂 > 0 such that 𝐽(𝜙, 𝜓) ≥ 𝜂, for all (𝜙, 𝜓) ∈ 𝑁.

Proof. Since 𝜆
1
is the smallest eigenvalue of 𝐸

1
and 𝜆

2
is the

smallest eigenvalue of 𝐸
2
, from the definition of the constant

𝛼
𝑝
and 𝛽

𝑝
, we get 𝜆

1
= 1/𝛼

2

2
and 𝜆

2
= 1/𝛽

2

2
. For any (𝜙, 𝜓) ∈

𝑁, we have




𝜙





2

𝐸1

− 𝜔
1





𝜙





2

𝑙
2 +




𝜓





2

𝐸2

− 𝜔
2





𝜓





2

𝑙
2

= ∑

𝑛∈Z

(𝑎
1
𝜙
4

𝑛
+ 𝑎
2
𝜓
4

𝑛
+ 2𝑎
3
𝜙
2

𝑛
𝜓
2

𝑛
)

≤ 𝑎
∗

(




𝜙





2

𝑙
4 +




𝜓





2

𝑙
4)

2

≤ 𝑎
∗

(𝛼
2

4





𝜙





2

𝐸1

+ 𝛽
2

4





𝜓





2

𝐸2

)

2

≤ 𝑎
∗

𝛾
2

2
(




𝜙





2

𝐸1

+




𝜓





2

𝐸2

)

2

,

(22)

where 𝑎∗ = max {𝑎
1
, 𝑎
2
, 𝑎
3
} and 𝛾

2
= max{𝛼2

4
, 𝛽
2

4
}.

Let

𝛾
1
= min{1, 1 − 𝜔1

𝜆
1

, 1 −

𝜔
2

𝜆
2

} . (23)

By (22), it is easy to see that

𝛾
1
(




𝜙





2

𝐸1

+




𝜓





2

𝐸2

) ≤ 𝑎
∗

𝛾
2

2
(




𝜙





2

𝐸1

+




𝜓





2

𝐸2

)

2

, (24)

and this implies that





𝜙





2

𝐸1

+




𝜓





2

𝐸2

≥

𝛾
1

𝑎
∗
𝛾
2

2

. (25)

Moreover, we have

𝐽 (𝜙, 𝜓) = 𝐽 (𝜙, 𝜓) −

1

4

𝐼 (𝜙, 𝜓)

=

1

4

(




𝜙





2

𝐸1

− 𝜔
1





𝜙





2

𝑙
2 +




𝜓





2

𝐸2

− 𝜔
2





𝜓





2

𝑙
2)

≥

𝛾
1

4

(




𝜙





2

𝐸1

+




𝜓





2

𝐸2

) ≥

𝛾
2

1

4𝑎
∗
𝛾
2

2

.

(26)

Let 𝜂 = 𝛾2
1
/(4𝑎
∗

𝛾
2

2
); thenwe get 𝐽(𝜙, 𝜓) ≥ 𝜂, for all (𝜙, 𝜓) ∈ 𝑁.

The proof is completed.

4. Main Results

Now we state our main results in this paper as follows.

Theorem 4. Assume that 𝜔
1
< 𝜆
1
, 𝜔
2
< 𝜆
2
, and (10) holds.

Then system (13) has a nontrivial solution in 𝐸
1
× 𝐸
2
; that is,

system (1) has a nontrivial standing wave solution.

In order to prove Theorem 4, we consider the following
constrained minimization problem:

𝑑 ≡ inf
(𝜙,𝜓)∈𝑁

𝐽 (𝜙, 𝜓) . (27)

From the standard variational method, the proof of
Theorem 4 is changed into finding a solution to the
minimization problem (27). Now we are ready to prove
Theorem 4.
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Proof. Let 𝑑 be given by (27). By Lemma 2, 𝑁 is nonempty
and there exists a sequence {(𝜙(𝑘), 𝜓(𝑘))} ⊂ 𝑁 such that

𝑑 = lim
𝑘→∞

𝐽 (𝜙
(𝑘)

, 𝜓
(𝑘)

) . (28)

By Lemma 3, 𝑑 > 0 and 𝑑 ≤ 𝐷 = max
𝑘
{𝐽(𝜙
(𝑘)

, 𝜓
(𝑘)

)} <

∞. By virtue of (26), we have






𝜙
(𝑘)






2

𝐸1

+






𝜓
(𝑘)






2

𝐸2

≤

4

𝛾
1

𝐽 (𝜙
(𝑘)

, 𝜓
(𝑘)

) ≤

4𝐷

𝛾
1

< ∞. (29)

Thus, sequences {𝜙(𝑘)} and {𝜓(𝑘)} are bounded in Hilbert
spaces 𝐸

1
and 𝐸

2
, respectively. Therefore, there exist subse-

quences of {𝜙(𝑘)} and {𝜓(𝑘)} (denoted by itself) that weakly
converge to some 𝜙∗ ∈ 𝐸

1
and 𝜓∗ ∈ 𝐸

2
, respectively. By

Lemma 1, we get, for any 2 ≤ 𝑝 ≤ ∞,

lim
𝑘→∞

𝜙
(𝑘)

= 𝜙
∗

, lim
𝑘→∞

𝜓
(𝑘)

= 𝜓
∗

, in 𝑙𝑝. (30)

By virtue of (15) and (16), we have

𝐽 (𝜙
(𝑘)

, 𝜓
(𝑘)

)

=

1

2

(






𝜙
(𝑘)






2

𝐸1

− 𝜔
1






𝜙
(𝑘)






2

𝑙
2
) +

1

2

(






𝜓
(𝑘)






2

𝐸2

− 𝜔
2






𝜓
(𝑘)






2

𝑙
2
)

−

1

4

∑

𝑛∈Z

(𝑎
1
(𝜙
(𝑘)

𝑛
)

4

+ 𝑎
2
(𝜓
(𝑘)

𝑛
)

4

+ 2𝑎
3
(𝜙
(𝑘)

𝑛
)

2

(𝜓
(𝑘)

𝑛
)

2

)

=

1

4

∑

𝑛∈Z

(𝑎
1
(𝜙
(𝑘)

𝑛
)

4

+ 𝑎
2
(𝜓
(𝑘)

𝑛
)

4

+ 2𝑎
3
(𝜙
(𝑘)

𝑛
)

2

(𝜓
(𝑘)

𝑛
)

2

) .

(31)

First, we claim that

lim
𝑘→∞

∑

𝑛∈Z

(𝑎
1
(𝜙
(𝑘)

𝑛
)

4

+ 𝑎
2
(𝜓
(𝑘)

𝑛
)

4

+ 2𝑎
3
(𝜙
(𝑘)

𝑛
)

2

(𝜓
(𝑘)

𝑛
)

2

)

= ∑

𝑛∈Z

(𝑎
1
(𝜙
∗

𝑛
)
4

+ 𝑎
2
(𝜓
∗

𝑛
)
4

+ 2𝑎
3
(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

) .

(32)

According to (30), it suffices to show that

lim
𝑘→∞

∑

𝑛∈Z

(𝜙
(𝑘)

𝑛
)

2

(𝜓
(𝑘)

𝑛
)

2

= ∑

𝑛∈Z

(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

. (33)

In fact,











∑

𝑛∈Z

(𝜙
(𝑘)

𝑛
)

2

(𝜓
(𝑘)

𝑛
)

2

− ∑

𝑛∈Z

(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2












≤ ∑

𝑛∈Z






𝜙
(𝑘)

𝑛
− 𝜙
∗

𝑛












𝜙
(𝑘)

𝑛
+ 𝜙
∗

𝑛






(𝜓
(𝑘)

𝑛
)

2

+ ∑

𝑛∈Z






𝜓
(𝑘)

𝑛
− 𝜓
∗

𝑛












𝜓
(𝑘)

𝑛
+ 𝜓
∗

𝑛






(𝜙
∗

𝑛
)
2

.

(34)

Thus Hölder inequality and (30) imply the (33) holds.

Next, we show that (𝜙∗, 𝜓∗) ∈ 𝑁 and 𝐽(𝜙∗, 𝜓∗) = 𝑑.
Since 𝐸

1
and 𝐸

2
are Hilbert spaces, by (32) we have





𝜙
∗




2

𝐸1

+




𝜓
∗




2

𝐸2

=









weak − lim
𝑘→∞

𝜙
(𝑘)









2

𝐸1

+









weak − lim
𝑘→∞

𝜓
(𝑘)









2

𝐸2

≤ lim inf
𝑘→∞






𝜙
(𝑘)






2

𝐸1

+ lim inf
𝑘→∞






𝜓
(𝑘)






2

𝐸2

≤ lim inf
𝑘→∞

(






𝜙
(𝑘)






2

𝐸1

+






𝜓
(𝑘)






2

𝐸2

)

= lim inf
𝑘→∞

(∑

𝑛∈Z

(𝑎
1
(𝜙
(𝑘)

𝑛
)

4

+ 𝑎
2
(𝜓
(𝑘)

𝑛
)

4

+2𝑎
3
(𝜙
(𝑘)

𝑛
)

2

(𝜓
(𝑘)

𝑛
)

2

)

+𝜔
1






𝜙
(𝑘)






2

𝑙2

+ 𝜔
2






𝜓
(𝑘)






2

𝑙2

)

= ∑

𝑛∈Z

(𝑎
1
(𝜙
∗

𝑛
)
4

+ 𝑎
2
(𝜓
∗

𝑛
)
4

+ 2𝑎
3
(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

)

+ 𝜔
1





𝜙
∗




2

𝑙2

+ 𝜔
2





𝜓
∗




2

𝑙2

,

(35)

which implies 𝐼(𝜙∗, 𝜓∗) = ‖𝜙∗‖2
𝐸1

− 𝜔
1
‖𝜙
∗

‖
2

𝑙2

+ ‖𝜓
∗

‖
2

𝐸2

−

𝜔
2
‖𝜓
∗

‖
2

𝑙2

− ∑
𝑛∈Z(𝑎1(𝜙

∗

𝑛
)
4

+ 𝑎
2
(𝜓
∗

𝑛
)
4

+ 2𝑎
3
(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

) ≤ 0.
Through a similar argument to the proof of Lemma 2, we
know that 𝐼(𝑡𝜙∗, 𝑡𝜓∗) is positive as 𝑡 is small enough. There-
fore there exists 𝑡∗ ∈ (0, 1] such that 𝐼(𝑡∗𝜙∗, 𝑡∗𝜓∗) = 0 which
implies (𝑡∗𝜙∗, 𝑡∗𝜓∗) ∈ 𝑁. Thus we have 𝐽(𝑡∗𝜙∗, 𝑡∗𝜓∗) =
(1/4)𝑊(𝑡

∗

) and by (32),𝑊(1) = 4𝑑, where

𝑊(𝑡) = 𝑡
4

∑

𝑛∈Z

(𝑎
1
(𝜙
∗

𝑛
)
4

+ 𝑎
2
(𝜓
∗

𝑛
)
4

+ 2𝑎
3
(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

) . (36)

Clearly,𝑊(𝑡) is strictly increasing on 0 < 𝑡 < ∞. Therefore
by (27),

𝑑 ≤ 𝐽 (𝑡
∗

𝜙
∗

, 𝑡
∗

𝜓
∗

) =

1

4

𝑊 (𝑡
∗

) ≤

1

4

𝑊 (1) = 𝑑. (37)

This implies that 𝑡∗ = 1 and 𝐽(𝜙∗, 𝜓∗) = 𝑑.
Finally, we will prove (𝜙∗, 𝜓∗) is a nontrivial solution to

system (13).
Since (𝜙∗, 𝜓∗) is an energyminimizer onNeharimanifold

𝑁, there exists a Lagrange multiplier Λ such that

(𝐽


(𝜙
∗

, 𝜓
∗

) + Λ𝐼


(𝜙
∗

, 𝜓
∗

) , (𝜙, 𝜓)) = 0, (38)

for any (𝜙, 𝜓) ∈ 𝐸
1
× 𝐸
2
. Let (𝜙, 𝜓) = (𝜙∗, 𝜓∗) in (38).

(𝐽


(𝜙
∗

, 𝜓
∗

), (𝜙
∗

, 𝜓
∗

)) = 𝐼(𝜙
∗

, 𝜓
∗

) = 0 implies that

Λ(𝐼


(𝜙
∗

, 𝜓
∗

) , (𝜙
∗

, 𝜓
∗

)) = 0, (39)
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but

(𝐼


(𝜙
∗

, 𝜓
∗

) , (𝜙
∗

, 𝜓
∗

))

= 2 ((𝐿
1
− 𝜔
1
) 𝜙
∗

, 𝜙
∗

) + 2 ((𝐿
2
− 𝜔
2
) 𝜓
∗

, 𝜓
∗

)

− 4∑

𝑛∈Z

(𝑎
1
(𝜙
∗

𝑛
)
4

+ 𝑎
2
(𝜓
∗

𝑛
)
4

+ 2𝑎
3
(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

)

= −2∑

𝑛∈Z

(𝑎
1
(𝜙
∗

𝑛
)
4

+ 𝑎
2
(𝜓
∗

𝑛
)
4

+ 2𝑎
3
(𝜙
∗

𝑛
)
2

(𝜓
∗

𝑛
)
2

) < 0.

(40)

Thus, Λ = 0 and

(𝐽


(𝜙
∗

, 𝜓
∗

) , (𝜙, 𝜓)) = 0, (41)

for any (𝜙, 𝜓) ∈ 𝐸
1
× 𝐸
2
. Take (𝜙, 𝜓) = (𝑒(𝑘), 0) and (𝜙, 𝜓) =

(0, 𝑒
(𝑘)

) in (41) for 𝑘 ∈ Z, where

𝑒
(𝑘)

𝑛
= {

1, 𝑛 = 𝑘,

0, 𝑛 ̸= 𝑘.

(42)

We see that 𝐽(𝜙∗, 𝜓∗) = 0. Thus, (𝜙∗, 𝜓∗) is a nontrivial
solution to system (13). The proof is completed.

By Theorem 4, the system (1) has a nontrivial solution.
However, it is uncertain if two components of this solution are
nonzero. Therefore, we want to find solutions of the system
(1) which have both of the components not identically zero.
In order to achieve this goal, we consider the system (1) with
𝑏
1𝑛
= 𝑏
2𝑛
, 𝑛 ∈ Z; that is,

𝑖

𝑑𝑢
𝑛

𝑑𝑡

= −(A𝑢)
𝑛
+ 𝑏
1𝑛
𝑢
𝑛
− 𝑎
1





𝑢
𝑛






2

𝑢
𝑛
− 𝑎
3





V
𝑛






2

𝑢
𝑛
,

𝑖

𝑑V
𝑛

𝑑𝑡

= −(AV)
𝑛
+ 𝑏
1𝑛
V
𝑛
− 𝑎
2





V
𝑛






2

V
𝑛
− 𝑎
3





𝑢
𝑛






2

V
𝑛
.

(43)

In system (43), we know that 𝐿
1
= 𝐿
2
, where 𝐿

𝑖
, 𝑖 = 1, 2,

is given by (11). By the definition of 𝐸
𝑖
, 𝑖 = 1, 2, in Section 2

of this paper, we obtain that 𝐸
1
= 𝐸
2
. Hence, 𝜆

1
= 𝜆
2
. For

the sake of simplicity, we let 𝐿
1
= 𝐿
2
= 𝐿, 𝐸

1
= 𝐸
2
= 𝐸,

and 𝜆
1
= 𝜆
2
= 𝜆. The notations in Section 2, such as

𝐽(𝜙, 𝜓), 𝐼(𝜙, 𝜓), and 𝑁 are the same.
Now, we give the second result of this paper as follows.

Theorem 5. Assume that 𝜔
1
< 𝜆, 𝜔

2
< 𝜆, 𝑎

3
>

max {𝑎
1
, 𝑎
2
, ((𝜆 − 𝜔

2
)/(𝜆 − 𝜔

1
))𝑎
1
, ((𝜆 − 𝜔

1
)/(𝜆 − 𝜔

2
))𝑎
2
}, and

(10) holds. Then system (43) has a nontrivial standing wave
solution (̃𝜙, �̃�) in 𝐸 × 𝐸 with ̃𝜙 ̸= 0 and �̃� ̸= 0.

Proof. By Theorem 4, we know that system (43) has a non-
trivial standing wave solution (̃𝜙, �̃�) in 𝐸 × 𝐸.

Now we will prove that ̃𝜙 ̸= 0 and �̃� ̸= 0.
Since (̃𝜙, �̃�) ∈ 𝑁, we know that (̃𝜙, �̃�) ̸= (0, 0). If one of

the components (̃𝜙, �̃�), say �̃� = 0, then ̃𝜙 ̸= 0. For 𝜖 small
enough, we consider (̃𝜙, 𝜖̃𝜙) ∈ (𝐸−{0})×(𝐸−{0}); by a similar
argument to the proof of Lemma 2, we know that there exists
𝑡
∗ such that 𝐼(𝑡∗̃𝜙, 𝑡∗𝜖̃𝜙) = 0; that is, (𝑡∗̃𝜙, 𝑡∗𝜖̃𝜙) ∈ 𝑁.

By (20) and 𝐼(𝑡∗̃𝜙, 𝑡∗𝜖̃𝜙) = 0, we have (𝑡∗)2 =

(𝐻
1
(
̃
𝜙, 𝜖
̃
𝜙))/(𝐻

2
(
̃
𝜙, 𝜖
̃
𝜙)), where

𝐻
1
(𝜙, 𝜓) =





𝜙





2

𝐸
− 𝜔
1





𝜙





2

𝑙
2 +




𝜓





2

𝐸
− 𝜔
2





𝜓





2

𝑙
2 ,

𝐻
2
(𝜙, 𝜓) = ∑

𝑛∈Z

(𝑎
1
𝜙
4

𝑛
+ 𝑎
2
𝜓
4

𝑛
+ 2𝑎
3
𝜙
2

𝑛
𝜓
2

𝑛
) ,

(44)

and 𝐽(𝑡∗̃𝜙, 𝑡∗𝜖̃𝜙) = (𝐻2
1
(
̃
𝜙, 𝜖
̃
𝜙))/(4𝐻

2
(
̃
𝜙, 𝜖
̃
𝜙)).

We noticed that 𝐽(̃𝜙, 0) = (𝑎
1
/4)∑
𝑛∈Z
̃
𝜙

4

=

inf
(𝜙,𝜓)∈𝑁

𝐽(𝜙, 𝜓) and

𝐻
2
(
̃
𝜙, 0) = 𝐻

1
(
̃
𝜙, 0) =







̃
𝜙







2

𝐸

− 𝜔
1







̃
𝜙







2

𝑙
2

≥ (𝜆 − 𝜔
1
)







̃
𝜙







2

𝑙
2
.

(45)

For the sake of simplicity, we let

𝐵 = ∑

𝑛∈Z

̃
𝜙

4

𝑛
, 𝐷 =







̃
𝜙







2

𝐸

− 𝜔
2







̃
𝜙







2

𝑙
2
. (46)

If 𝜔
1
≤ 𝜔
2
< 𝜆, then

𝐷 =







̃
𝜙







2

𝐸

− 𝜔
2







̃
𝜙







2

𝑙
2

=







̃
𝜙







2

𝐸

− 𝜔
1







̃
𝜙







2

𝑙
2
+ (𝜔
1
− 𝜔
2
)







̃
𝜙







2

𝑙
2

= 𝑎
1
𝐵 + (𝜔

1
− 𝜔
2
)







̃
𝜙







2

𝑙
2
≤ 𝑎
1
𝐵.

(47)

Thus, 𝑎
3
> 𝑎
1
and (47) yields 𝑎

1
𝐵𝐷 < 𝑎

1
𝑎
3
𝐵
2.

If 𝜔
2
< 𝜔
1
< 𝜆, then by (45),

𝐷 =







̃
𝜙







2

𝐸

− 𝜔
2







̃
𝜙







2

𝑙
2

=







̃
𝜙







2

𝐸

− 𝜔
1







̃
𝜙







2

𝑙
2
+ (𝜔
1
− 𝜔
2
)







̃
𝜙







2

𝑙
2

= 𝑎
1
𝐵 + (𝜔

1
− 𝜔
2
)







̃
𝜙







2

𝑙
2

≤ 𝑎
1
𝐵 +

𝜔
1
− 𝜔
2

𝜆 − 𝜔
1

𝑎
1
𝐵 =

𝜆 − 𝜔
2

𝜆 − 𝜔
1

𝑎
1
𝐵.

(48)

Thus, 𝑎
3
> ((𝜆 − 𝜔

2
)/(𝜆 − 𝜔

1
))𝑎
1
and (48) yields 𝑎

1
𝐵𝐷 <

𝑎
1
𝑎
3
𝐵
2.

From the above arguments, if 𝑎
3
> max {𝑎

1
, ((𝜆−𝜔

2
)/(𝜆−

𝜔
1
))𝑎
1
}, then 𝑎

1
𝐵𝐷 < 𝑎

1
𝑎
3
𝐵
2.

For 𝜖 small enough, we have

𝐻
2

1
(
̃
𝜙, 𝜖
̃
𝜙)

= (







̃
𝜙







2

𝐸

− 𝜔
1







̃
𝜙







2

𝑙
2
+






𝜖
̃
𝜙







2

𝐸

− 𝜔
2






𝜖
̃
𝜙







2

𝑙
2
)

2

= (𝑎
1
𝐵 + 𝜖
2

𝐷)

2

= 𝑎
2

1
𝐵
2

+ 2𝑎
1
𝐵𝐷𝜖
2

+ 𝐷
2

𝜖
4

< 𝑎
2

1
𝐵
2

+ 2𝑎
1
𝑎
3
𝐵
2

𝜖
2

+ 𝑎
1
𝑎
2
𝐵
2

𝜖
4

= 𝑎
1
𝐵 (𝑎
1
𝐵 + 𝑎
2
𝐵𝜖
4

+ 2𝑎
3
𝐵𝜖
2

)

= 𝐻
2
(
̃
𝜙, 0)𝐻

2
(
̃
𝜙, 𝜖
̃
𝜙) .

(49)
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Hence, by (49), we have

𝐽 (𝑡
∗
̃
𝜙, 𝑡
∗

𝜖
̃
𝜙) =

𝐻
2

1
(
̃
𝜙, 𝜖
̃
𝜙)

4𝐻
2
(
̃
𝜙, 𝜖
̃
𝜙)

<

1

4

𝐻
2
(
̃
𝜙, 0)

= 𝐽 (
̃
𝜙, 0) = inf

(𝜙,𝜓)∈𝑁

𝐽 (𝜙, 𝜓) .

(50)

This is a contradiction. So, �̃� ̸= 0.
Similarly, if �̃� ̸= 0 and 𝑎

3
> max {𝑎

2
, ((𝜆−𝜔

1
)/(𝜆−𝜔

2
))𝑎
2
},

then ̃𝜙 ̸= 0. The proof is completed.
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This paper deals with the existence and stability of periodic solutions for the following nonlinear neutral functional differential
equation (𝑑/𝑑𝑡)𝐷𝑢

𝑡
= 𝑝(𝑡) − 𝑎𝑢(𝑡) − 𝑎𝑞𝑢(𝑡 − 𝑟) − ℎ(𝑢(𝑡), 𝑢(𝑡 − 𝑟)). By using Schauder-fixed-point theorem and Krasnoselskii-fixed-

point theorem, some sufficient conditions are obtained for the existence of asymptotic periodic solutions. Main results in this paper
extend the related results due to Ding (2010) and Lopes (1976).

1. Introduction

In recent years, the existence and stability of periodic solu-
tions for differential equation has been extensively studied.
Many researchers used the Lyapunov functional method,
Hopf bifurcation techniques, and Mawhin continuation the-
orems to obtain the existence and stability of periodic
solutions for neutral functional differential equation (NFDE);
see papers [1–14] and their references therein. However,
researches on the existence and stability of periodic solutions
for NFDE by using fixed-point theorem are relatively rare
[15, 16]. The reason lies in the fact that it is difficult to
construct an appropriate completely continuous operator and
an appropriate bounded closed convex set.

In this paper, wewill investigate the existence and stability
of periodic solutions for the following nonlinear NFDE

𝑑

𝑑𝑡

𝐷𝑢
𝑡
= 𝑝 (𝑡) − 𝑎𝑢 (𝑡) − 𝑎𝑞𝑢 (𝑡 − 𝑟) − ℎ (𝑢 (𝑡) , 𝑢 (𝑡 − 𝑟)) ,

(1)

where 𝐷𝑢
𝑡
= 𝑢(𝑡) − 𝑞𝑢(𝑡 − 𝑟), |𝑞|⟨1, 𝑎⟩ 0, ℎ ∈ 𝐶(R × R,R),

and 𝑝 ∈ 𝐶(R,R). Such a kind of NFDE has been used for
the study of distributed networks containing a transmission
line [17, 18]. For example, suppose a system consists of a long

electrical cable of length 𝑙, and one end of which isconnected
to a power source 𝐸(𝑡)with resistance𝑅

0
, while the other end

is connected to an oscillating circuit formed of a condenser
𝐶
0
and a nonlinear element, the volt-ampere characteristic

of which is 𝑖 = 𝑓(𝑢). Let 𝐿, 𝐶, 𝑅, and 𝐺 be the parameters
of the transmission line, respectively, 𝑍

0
the characteristic

impedance of the line, V = 1/√𝐿𝐶 the propagation velocity
and assume the losses can not be disregarded. The process of
the final end volt 𝑢(𝑡) in such a system can be described by
the following NFDES:

𝑢


(𝑡) − 𝑞𝑢


(𝑡 − 𝑟) = 𝑝 (𝑡) − 𝑎𝑢 (𝑡) − 𝑎𝑞𝑢 (𝑡 − 𝑟)

− 𝑏𝑓 (𝑢 (𝑡)) + 𝑏𝑞𝑓 (𝑢 (𝑡 − 𝑟))

(2)

or

𝐶
0
(𝑢


(𝑡) − 𝑘𝑢


(𝑡 − 𝑟)) = 𝑝 (𝑡) − 𝑍𝑢 (𝑡) − 𝑍𝑘𝑢 (𝑡 − 𝑟)

− 𝑓 (𝑢 (𝑡) − 𝑘𝑢 (𝑡 − 𝑟)) ,

(3)

where 𝑎 = 1/𝑍
0
𝐶
0
, 𝑏 = 1/𝐶

0
, 𝑞 = (𝑍

0
− 𝑅
0
)/𝐴
2

(𝑍
0
+ 𝑅
0
),

𝑘 = (1 − 𝑍𝑅
0
)/(1 + 𝑍𝑅

0
), 𝑝(𝑡) = 2𝐸(𝑡 − (𝑟/2))/𝐴(𝑍

0
+ 𝑅
0
)𝐶
0
,

𝑟 = 2𝑙/V,𝐴 = 𝑒𝑅𝑙/𝑍0 ,𝑍 = √𝐶/𝐿, and𝑓(𝑢) is a given nonlinear
function. If 𝑅

0
> 0, then |𝑞| < 1, |𝑘| < 1. Obviously, we see

that (2) (or (3)) is a special case of (1). The aim of this paper
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is to establish some criteria to guarantee the existence and
stability of periodic solution for (1) by using Schauder’s fixed-
point theorem and Krasnoselskii’s fixed-point theorem. The
interesting is that main results obtained in this paper extend
the related existing results. Furthermore, our results can also
be applied to solve the problem of the existence and stability
of periodic solutions for (2) and (3).

2. Main Results and Proofs

In this section, let 𝐶1(R𝑁) (𝐶(R𝑁)) denote the set of all con-
tinuously differentiable functions (all continuous functions)
𝜙 : R𝑁 → R, where 𝑁 = 1, 2. 𝐶

𝜔
= {𝜙 | 𝜙 ∈ 𝐶(R), 𝜙(𝑡 +

𝜔) = 𝜙(𝑡)} is a Banach space with the supremum norm ‖ ⋅ ‖
0
,

𝐶
1

𝜔
= 𝐶
1

(R) ∩ 𝐶
𝜔
with the norm ‖𝜙‖

1
= ‖𝜙‖

0
+ ‖𝜙


‖
0
in a

period interval, and 𝜔 is a positive constant. The next lemma
will be used in the sequel.

Lemma 1. If 𝑎 ̸= 0, 𝑓 ∈ 𝐶
𝜔
, then the scalar equation 𝑥(𝑡) =

𝑎𝑥(𝑡) + 𝑓(𝑡) has a unique 𝜔-periodic solution:

𝑥 (𝑡) = (1 − 𝑒
𝑎𝜔

)
−1

∫

𝑡+𝜔

𝑡

𝑒
𝑎(𝑡+𝜔−𝑠)

𝑓 (𝑠) 𝑑𝑠. (4)

Proof. It is easy to prove. We can find it in many ODE
textbooks (e.g., see Example 2 on page 35 of [19]).

Theorem 2. Suppose that ℎ ∈ 𝐶(R2) and 𝑝 ∈ 𝐶
𝑇
. If there

exists a constant𝐻 > 0 such that




𝑝



0
< (1 − 3





𝑞




) 𝑎𝐻 − sup

|𝑥|,|𝑦|≤𝐻





ℎ (𝑥, 𝑦)





, (5)

then (1) has a 𝑇-periodic solution.

Proof. According to the condition (5), we can find a suffi-
ciently small 𝐿 > 0 such that

(2𝐿 +

1

𝑎

)
[

[





𝑝



0
+2𝑎




𝑞




𝐻+ sup
|𝑥|,|𝑦|≤𝐻





ℎ (𝑥, 𝑦)





]

]

+




𝑞




𝐻 ≤ 𝐻.

(6)

Let V(𝑡) = 𝑢(𝐿𝑡), 𝜏 = 𝑟/𝐿, 𝑝
1
(𝑡) = 𝑝(𝐿𝑡), and 𝜔 = 𝑇/𝐿; then

(1) can be rewritten as

V


(𝑡) − 𝑞V


(𝑡 − 𝜏) = 𝐿𝑝
1
(𝑡) − 𝑎𝐿V (𝑡) − 𝑎𝑞𝐿V (𝑡 − 𝜏)

− 𝐿ℎ (V (𝑡) , V (𝑡 − 𝜏)) ,
(7)

where 𝑝
1
(𝑡) ∈ 𝐶

𝜔
with ‖𝑝‖

0
= ‖𝑝
1
‖
0
. It suffices to prove that

(7) has a 𝜔-periodic solution. Let

𝑀 = {𝜙 | 𝜙 ∈ 𝐶
1

𝜔
,




𝜙



1
≤ 𝐻} . (8)

Then𝑀 is a bounded closed convex set of the Banach space
𝐶
1

(R). For any given 𝜙 ∈ 𝑀, consider the nonhomogeneous
equation:

V


(𝑡) = −𝑎𝐿V (𝑡) + 𝐿𝑝
1
(𝑡) − 𝑎𝑞𝐿𝜙 (𝑡 − 𝜏)

− 𝐿ℎ (𝜙 (𝑡) , 𝜙 (𝑡 − 𝜏)) + 𝑞𝜙


(𝑡 − 𝜏) .

(9)

According to Lemma 1, (9) has a unique 𝜔-periodic
solution:

V (𝑡) = (1 − 𝑒
−𝑎𝐿𝜔

)

−1

× ∫

𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 𝑎𝑞𝐿𝜙 (𝑠 − 𝜏)

−𝐿ℎ (𝜙 (𝑠) , 𝜙 (𝑠 − 𝜏)) + 𝑞𝜙


(𝑠 − 𝜏)] 𝑑𝑠.

(10)

Define an operator 𝐴 by

(𝐴𝜙) (𝑡)

= (1 − 𝑒
−𝑎𝐿𝜔

)

−1

× ∫

𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 𝑎𝑞𝐿𝜙 (𝑠 − 𝜏)

−𝐿ℎ (𝜙 (𝑠) , 𝜙 (𝑠 − 𝜏)) + 𝑞𝜙


(𝑠 − 𝜏)] 𝑑𝑠

= (1 − 𝑒
−𝑎𝐿𝜔

)

−1

× ∫

𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝜙 (𝑠 − 𝜏)

−𝐿ℎ (𝜙 (𝑠) , 𝜙 (𝑠 − 𝜏))] 𝑑𝑠 + 𝑞𝜙 (𝑡 − 𝜏) .

(11)

In order to prove that (7) has a periodic solution, we shall
make sure that 𝐴 satisfies the conditions of Schauder’s fixed-
point theorem (see Lemma 2.2.4 on page 40 of [20]).

Note that for any 𝑥 ∈ 𝑀, we have 𝑥(𝑡 + 𝜔) = 𝑥(𝑡) and
‖𝑥‖
1
≤ 𝐻

(𝐴𝑥) (𝑡 + 𝜔)

= (1 − 𝑒
−𝑎𝐿𝜔

)

−1

× ∫

𝑡+2𝜔

𝑡+𝜔

𝑒
−𝑎𝐿(𝑡+2𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝑥 (𝑠 − 𝜏)

−𝐿ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)) ] 𝑑𝑠 + 𝑞𝑥 (𝑡 + 𝜔 − 𝜏)

= (1 − 𝑒
−𝑎𝐿𝜔

)

−1

× ∫

𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝑥 (𝑠 − 𝜏)

−𝐿ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)) ] 𝑑𝑠 + 𝑞𝑥 (𝑡 − 𝜏)

= (𝐴𝑥) (𝑡) ;

(12)
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Therefore, (𝐴𝑥)(𝑡 + 𝜔) = (𝐴𝑥)(𝑡). Meanwhile, we get

(𝐴𝑥)


(𝑡)

= (1 − 𝑒
−𝑎𝐿𝜔

)

−1

× {∫

𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

(−𝑎𝐿)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝑥 (𝑠 − 𝜏)

−𝐿ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)) ] 𝑑𝑠

+ (1 − 𝑒
−𝑎𝐿𝜔

) [𝐿𝑝
1
(𝑡) − 2𝑎𝑞𝐿𝑥 (𝑡 − 𝜏)

−𝐿ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ] }

+ 𝑞𝑥


(𝑡 − 𝜏)

= (1 − 𝑒
−𝑎𝐿𝜔

)

−1

(−𝑎𝐿)

× ∫

𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝑥 (𝑠 − 𝜏)

−𝐿ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)) ] 𝑑𝑠

+ [𝐿𝑝
1
(𝑡) − 2𝑎𝑞𝐿𝑥 (𝑡 − 𝜏) − 𝐿ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))]

+ 𝑞𝑥


(𝑡 − 𝜏) .

(13)

By (6), we have

‖𝐴𝑥‖
1

= ‖𝐴𝑥‖
0
+






(𝐴𝑥)





0

≤ sup
𝑡∈R








(1 − 𝑒
−𝑎𝐿𝜔

)

−1

× ∫

𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝑥 (𝑠 − 𝜏)

−𝐿ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)) ] 𝑑𝑠









+ sup
𝑡∈R









(1 − 𝑒
−𝑎𝐿𝜔

)

−1

(−𝑎𝐿)

× ∫

𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝑥 (𝑠 − 𝜏)

− 𝐿ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏))] 𝑑𝑠

+ [𝐿𝑝
1
(𝑡) − 2𝑎𝑞𝐿𝑥 (𝑡 − 𝜏) − 𝐿ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))]










+




𝑞




‖𝑥‖
1
≤ (2 +

1

𝑎𝐿

)

×
[

[

𝐿




𝑝
1




0
+ 2𝑎





𝑞




𝐿𝐻 + 𝐿 sup

|𝑥|,|𝑦|≤𝐻





ℎ (𝑥, 𝑦)





]

]

+




𝑞




𝐻 = (2𝐿 +

1

𝑎

)

×
[

[





𝑝
1




0
+2𝑎




𝑞




𝐻+ sup
|𝑥|,|𝑦|≤𝐻





ℎ (𝑥, 𝑦)





]

]

+




𝑞




𝐻 ≤ 𝐻.

(14)

Thus, 𝐴𝑥 ∈ 𝑀.
For any 𝑥 ∈ 𝑀, ‖𝐴𝑥‖

0
≤ 𝐻, ‖(𝐴𝑥)‖

0
≤ 𝐻. According

to Arzela-Ascoli Theorem (see Theorem 4.9.6 on page 84 of
[21]), the subset 𝐴𝑀 of 𝐶

𝜔
is a precompact set; therefore, 𝐴 :

𝑀 ⊂ 𝐶
1

(R) → 𝐶
𝜔
is a compact operator.

Suppose that {𝑥
𝑛
} ∈ 𝑀, 𝑥

𝑛
→ 𝑥, then ‖𝑥

𝑛
− 𝑥‖
0
→ 0

and ‖𝑥
𝑛
− 𝑥


‖
0
→ 0 as 𝑛 → ∞. Also, we have





𝐴𝑥
𝑛
− 𝐴𝑥




0

= sup
𝑡∈R








(1 − 𝑒
−𝑎𝐿𝜔

)

−1

× ∫

𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [ − 2𝑎𝑞𝐿 (𝑥
𝑛
(𝑠 − 𝜏) − 𝑥 (𝑠 − 𝜏))

− 𝐿 (ℎ (𝑥
𝑛
(𝑠) , 𝑥
𝑛
(𝑠 − 𝜏))

−ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)))] 𝑑𝑠

+𝑞 (𝑥
𝑛
(𝑡 − 𝜏) − 𝑥 (𝑡 − 𝜏))










≤

1

𝑎𝐿

[2𝑎




𝑞




𝐿




𝑥
𝑛
− 𝑥



0

+ 𝐿 sup
𝑡∈[0,𝜔]





ℎ (𝑥
𝑛
(𝑡) , 𝑥
𝑛
(𝑡 − 𝜏))

− ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) )




]

+




𝑞









𝑥
𝑛
− 𝑥



0

= 3




𝑞









𝑥
𝑛
− 𝑥



0
+

1

𝑎

sup
𝑡∈[0,𝜔]

×




ℎ (𝑥
𝑛
(𝑡) , 𝑥
𝑛
(𝑡 − 𝜏)) − ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))





,






(𝐴𝑥
𝑛
)


− (𝐴𝑥)





0

= sup
𝑡∈R








(1 − 𝑒
−𝑎𝐿𝜔

)

−1

(−𝑎𝐿)
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× ∫

𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [ − 2𝑎𝑞𝐿

× (𝑥
𝑛
(𝑠 − 𝜏) − 𝑥 (𝑠 − 𝜏))

− 𝐿 (ℎ (𝑥
𝑛
(𝑠) , 𝑥
𝑛
(𝑠 − 𝜏))

−ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)))] 𝑑𝑠

− 2𝑎𝑞𝐿 (𝑥
𝑛
(𝑡 − 𝜏) − 𝑥 (𝑡 − 𝜏)) − 𝐿 (ℎ (𝑥

𝑛
(𝑡) , 𝑥
𝑛
(𝑡 − 𝜏))

−ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ) + 𝑞 (𝑥


𝑛
(𝑡 − 𝜏) − 𝑥



(𝑡 − 𝜏))










≤ 2𝐿 [2𝑎




𝑞









𝑥
𝑛
− 𝑥



0

+ sup
𝑡∈[0,𝜔]





ℎ (𝑥
𝑛
(𝑡) , 𝑥
𝑛
(𝑡 − 𝜏))

−ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))




] +




𝑞










𝑥


𝑛
− 𝑥





0
.

(15)

When ‖𝑥
𝑛
− 𝑥‖
1
→ 0 as 𝑛 → ∞, |𝑥

𝑛
(𝑡) − 𝑥(𝑡)| → 0

for 𝑡 ∈ [0, 𝜔] uniformly. And since ℎ is continuous, ‖𝐴𝑥
𝑛
−

𝐴𝑥‖
0
→ 0, ‖(𝐴𝑥

𝑛
)


− (𝐴𝑥)


‖
0
→ 0. Consequently, 𝐴 is

continuous.
Thus, by Schauder-fixed-point theorem (see Lemma 2.2.4

on page 40 of [20]), there is a 𝜙 ∈ 𝑀 such that 𝜙 = 𝐴𝜙.
Therefore, (7) has at least one 𝜔-periodic solution. Since
V(𝑡) = 𝑢(𝐿𝑡) and 𝑝(𝐿𝑡) = 𝑝

1
(𝑡), (1) has at least one 𝑇-periodic

solution. The proof is completed.

Next, we explore the stability of this 𝑇-periodic solution
𝑢
∗

(𝑡) for (1). We assume that theconditions of Theorem 2 are
satisfied. Therefore, (1) has at least one 𝑇-periodic solution
𝑢
∗

(𝑡). Let V(𝑡) = 𝑢(𝑡) − 𝑢∗(𝑡) then (1) is transformed as

𝑑

𝑑𝑡

𝐷V
𝑡
= −𝑎V (𝑡) − 𝑎𝑞V (𝑡 − 𝑟) − 𝑔 (V (𝑡) , V (𝑡 − 𝑟)) , (16)

where𝐷V
𝑡
= V(𝑡) − 𝑞V(𝑡 − 𝑟) and 𝑔(V(𝑡), V(𝑡 − 𝑟)) = ℎ(𝑢∗(𝑡) +

V(𝑡), 𝑢∗(𝑡 − 𝑟) + V(𝑡 − 𝑟)) − ℎ(𝑢∗(𝑡), 𝑢∗(𝑡 − 𝑟)). Clearly, (16) has
trivial solution V(𝑡) ≡ 0. Now we use Krasnoselskiis-fixed-
point theorem (see [22] or [15, Lemma 2.2]) to prove that
trivial solution V(𝑡) ≡ 0 to (16) is asymptotically stable.

Set 𝑆 as the Banach space of bounded continuous function
𝜙 : [−𝑟,∞) → 𝑅 with the supremum norm ‖ ⋅ ‖. Also,
Given the initial function 𝜓, denote the norm of 𝜓 by ‖𝜓‖ =
sup
𝑡∈[−𝑟,0]

|𝜓(𝑡)|, which should not cause confusion with the
same symbol for the norm in 𝑆.

Theorem 3. Let 𝐻 be as in Theorem 2. Assume that all
conditions of Theorem 2 are satisfied. Suppose that ℎ satisfies
the Lipschitz condition and

sup
|𝑥|,|𝑦|≤𝐻





ℎ (𝑥, 𝑦)





≤ 𝑎𝐻 (1 +





𝑞




) . (17)

If there exists 𝑄 > 0 such that





𝜓




≤

𝑄 − 3




𝑞




𝑄

1 +




𝑞





− 𝐻 −

1

𝑎 (1 +




𝑞




)

sup
|𝑥|,|𝑦|≤𝐻+𝑄





ℎ (𝑥, 𝑦)





,

(18)

then the solution V(𝜓)(𝑡) to (16) through 𝜓 satisfies
lim
𝑡→∞

V(𝜓)(𝑡) = 0.

Proof. By (18), we have

(1 +




𝑞




)




𝜓




+ 3




𝑞




𝑄 +

1

𝑎

sup
|𝑥|,|𝑦|≤𝐻+𝑄





ℎ (𝑥, 𝑦)






+ 𝐻 (1 +




𝑞




) ≤ 𝑄.

(19)

Given the initial function 𝜓, by [20, Theorem 12.2.3],
there exists a unique solution V(𝜓)(𝑡) for (16). Let

𝑀
𝜓

= {𝜙 | 𝜙 ∈ 𝑆,




𝜙




≤ 𝑄, 𝜙

0
= 𝜓, 𝜙 (𝑡) → 0 as 𝑡 → ∞} ;

(20)

then𝑀
𝜓
is a bounded convex closed set of 𝑆. We write (16) as

[V (𝑡) − 𝑞V (𝑡 − 𝑟)]


= − 𝑎 [V (𝑡) − 𝑞V (𝑡 − 𝑟)] − 2𝑎𝑞V (𝑡 − 𝑟)

− 𝑔 (V (𝑡) , V (𝑡 − 𝑟)) ;

(21)

then we have

V (𝑡) = [𝜓 (0) − 𝑞𝜓 (−𝑟)] 𝑒
−𝑎𝑡

+ 𝑞V (𝑡 − 𝑟)

+ ∫

𝑡

0

[−2𝑎𝑞V (𝑠 − 𝑟) − 𝑔 (V (𝑠) , V (𝑠 − 𝑟))] 𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠.

(22)

For all 𝜙 ∈ 𝑀
𝜓
, define the operators 𝐴 and 𝐵 by

(𝐴𝜙) (𝑡)

=

{
{
{

{
{
{

{

0, 𝑡 ∈ [−𝑟, 0] ,

∫

𝑡

0

[−2𝑎𝑞𝜙 (𝑠 − 𝑟) − 𝑔 (𝜙 (𝑠) , 𝜙 (𝑠 − 𝑟))] 𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠,

𝑡 ≥ 0,

(𝐵𝜙) (𝑡)

= {

𝜓 (𝑡) , 𝑡 ∈ [−𝑟, 0] ,

(𝜓 (0) − 𝑞𝜓 (−𝑟)) 𝑒
−𝑎𝑡

+ 𝑞𝜙 (𝑡 − 𝑟) , 𝑡 ≥ 0.

(23)
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For any 𝑥, 𝑦 ∈ 𝑀
𝜓
, 𝑥(𝑡) → 0, 𝑦(𝑡) → 0 as 𝑡 → ∞, and

‖𝑥‖ ≤ 𝑄, ‖𝑦‖ ≤ 𝑄. Therefore, we have

lim
𝑡→∞

(𝐴𝑥) (𝑡)

= lim
𝑡→∞

∫

𝑡

0

[−2𝑎𝑞𝑥 (𝑠 − 𝑟) − 𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟))] 𝑒
𝑎𝑠

𝑑𝑠

𝑒
𝑎𝑡

= lim
𝑡→∞

1

𝑎

[−2𝑎𝑞𝑥 (𝑡 − 𝑟) − 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟))] = 0,

lim
𝑡→∞

(𝐵𝑦) (𝑡)= lim
𝑡→∞

[(𝜓 (0)−𝑞𝜓 (−𝑟)) 𝑒
−𝑎𝑡

+ 𝑞𝑦 (𝑡 − 𝑟)]= 0.

(24)

Thus, lim
𝑡→∞

(𝐴𝑥 + 𝐵𝑦)(𝑡) = 0. Again by (17) and (19), we
have





𝐴𝑥 + 𝐵𝑦






≤ ‖𝐴𝑥‖ +




𝐵𝑦





= sup
𝑡≥0










∫

𝑡

0

[−2𝑎𝑞𝑥 (𝑠 − 𝑟) − 𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟))] 𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠










+ sup
𝑡≥−𝑟





(𝐵𝑦) (𝑡)






≤ [2𝑎




𝑞




𝑄 + sup
|𝑥|,|𝑦|≤𝐻+𝑄





ℎ (𝑥, 𝑦)





+ sup
|𝑥|,|𝑦|≤𝐻





ℎ (𝑥, 𝑦)





]

× sup
𝑡≥0










∫

𝑡

0

𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠










+max{

𝜓




, sup
𝑡≥0






(𝜓 (0) − 𝑞𝜓 (−𝑟)) 𝑒

−𝑎𝑡

+ 𝑞𝑦 (𝑡 − 𝑟)






}

≤ (1 +




𝑞




)




𝜓




+ 3




𝑞




𝑄 +

1

𝑎

sup
|𝑥|,|𝑦|≤𝐻+𝑄





ℎ (𝑥, 𝑦)






+

1

𝑎

sup
|𝑥|,|𝑦|≤𝐻





ℎ (𝑥, 𝑦)






≤ (1 +




𝑞




)




𝜓




+ 3




𝑞




𝑄 +

1

𝑎

sup
|𝑥|,|𝑦|≤𝐻+𝑄





ℎ (𝑥, 𝑦)






+ 𝐻 (1 +




𝑞




) ≤ 𝑄.

(25)

Thus, 𝐴𝑥 + 𝐵𝑦 ∈ 𝑀
𝜓
.

Since |(𝐴𝑥)(𝑡)| = 0, 𝑡 ∈ [−𝑟, 0], and






(𝐴𝑥)


(𝑡)







=










−𝑎∫

𝑡

0

[−2𝑎𝑞𝑥 (𝑠 − 𝑟) − 𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟))] 𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠

−2𝑎𝑞𝑥 (𝑡 − 𝑟) − 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟))










≤ 𝑎 [2𝑎




𝑞




𝑄 + sup
|𝑥|,|𝑦|≤𝐻+𝑄





ℎ (𝑥, 𝑦)





+ sup
|𝑥|,|𝑦|≤𝐻





ℎ (𝑥, 𝑦)





]

× sup
𝑡≥0










∫

𝑡

0

𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠










+ 2𝑎




𝑞




𝑄 + sup
|𝑥|,|𝑦|≤𝐻+𝑄





ℎ (𝑥, 𝑦)





+ sup
|𝑥|,|𝑦|≤𝐻





ℎ (𝑥, 𝑦)






= 2 [2𝑎




𝑞




𝑄 + sup
|𝑥|,|𝑦|≤𝐻+𝑄





ℎ (𝑥, 𝑦)





+ sup
|𝑥|,|𝑦|≤𝐻





ℎ (𝑥, 𝑦)





] ,

𝑡 ≥ 0;

(26)

here, the derivative of (𝐴𝑥)(𝑡) at zero means the left-hand
side derivative when 𝑡 ≤ 0 and the right-hand side derivative
when 𝑡 ≥ 0, one can see (𝐴𝑥)(𝑡) is bounded for all 𝑥 ∈ 𝑀

𝜓
.

Therefore,𝐴𝑀
𝜓
is a precompact set of 𝑆. Thus,𝐴 is compact.

Suppose that {𝑥
𝑛
} ⊂ 𝑀

𝜓
, 𝑥 ∈ 𝑆, 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞; then

|𝑥
𝑛
(𝑡) − 𝑥(𝑡)| → 0 uniformly for 𝑡 ≥ −𝑟 as 𝑛 → ∞. Since





𝐴𝑥
𝑛
− 𝐴𝑥






= sup
𝑡≥0










∫

𝑡

0

{−2𝑎𝑞 [𝑥
𝑛
(𝑠 − 𝑟) − 𝑥 (𝑠 − 𝑟)]

− 𝑔 (𝑥
𝑛
(𝑠) , 𝑥
𝑛
(𝑠 − 𝑟))

+𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟)) } 𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠










≤ [2𝑎




𝑞









𝑥
𝑛
− 𝑥





+ sup
𝑡≥0





ℎ (𝑢
∗

(𝑡) + 𝑥
𝑛
(𝑡) , 𝑢
∗

(𝑡 − 𝑟) + 𝑥
𝑛
(𝑡 − 𝑟))

− ℎ (𝑢
∗

(𝑡) + 𝑥 (𝑡) , 𝑢
∗

(𝑡 − 𝑟) + 𝑥 (𝑡 − 𝑟))




]

× sup
𝑡≥0










∫

𝑡

0

𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠










= 2




𝑞









𝑥
𝑛
− 𝑥





+

1

𝑎

sup
𝑡≥0





ℎ (𝑢
∗

(𝑡) + 𝑥
𝑛
(𝑡) , 𝑢
∗

(𝑡 − 𝑟) + 𝑥
𝑛
(𝑡 − 𝑟))

− ℎ (𝑢
∗

(𝑡) + 𝑥 (𝑡) , 𝑢
∗

(𝑡 − 𝑟) + 𝑥 (𝑡 − 𝑟))




,

(27)
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and ℎ is continuous, we have ‖𝐴𝑥
𝑛
− 𝐴𝑥‖ → 0 as 𝑛 → ∞.

Thus, 𝐴 is continuous. Due to the fact that




𝐵𝑥 − 𝐵𝑦





= sup
𝑡≥0





𝑞𝑥 (𝑡 − 𝑟) − 𝑞𝑦 (𝑡 − 𝑟)





≤




𝑞









𝑥 − 𝑦





,

∀𝑥, 𝑦 ∈ 𝑀
𝜓
,

(28)

and |𝑞| < 1, we know that 𝐵 is a contractive operator.
According to Krasnoselskii’s fixed-point theorem (see

[22] or [15, Lemma 2.2]), there is a 𝜙 ∈ 𝑀
𝜓
such that (𝐴 +

𝐵)𝜙 = 𝜙. Therefore, 𝜙(𝑡) is a solution for (16). Because the
solution through 𝜓 for the equation is unique, the solution
V(𝜓)(𝑡) = 𝜙(𝑡) → 0 as 𝑡 → ∞.

When ℎ satisfies the Lipschitz condition, then there is a
constant 𝐿 > 0 such that




ℎ (𝑢 (𝑡)+𝑢

∗

(𝑡) , 𝑢 (𝑡 − 𝑟)+𝑢
∗

(𝑡 − 𝑟))−ℎ (𝑢
∗

(𝑡) , 𝑢
∗

(𝑡−𝑟))





≤ 𝐿√|𝑢 (𝑡)|
2

+ |𝑢 (𝑡 − 𝑟)|
2

, ∀𝑢 ∈ 𝑆.

(29)

Since 𝜙 satisfies

𝜙 (𝑡) = [𝜓 (0) − 𝑞𝜓 (−𝑟)] 𝑒
−𝑎𝑡

+ 𝑞𝜙 (𝑡 − 𝑟)

+ ∫

𝑡

0

[−2𝑎𝑞𝜙 (𝑠 − 𝑟) − 𝑔 (𝜙 (𝑠) , 𝜙 (𝑠 − 𝑟))] 𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠,

(30)

then





𝜙




≤ (1 +





𝑞




)




𝜓




+ 3




𝑞









𝜙




+

√2𝐿

𝑎





𝜙




, (31)

that is

(1 − 3




𝑞




−

√2𝐿

𝑎

)




𝜙




≤ (1 +





𝑞




)




𝜓




. (32)

Therefore, if 1 − 3|𝑞| − (√2𝐿/𝑎) > 0, then there clearly exists
a 𝛿 > 0 for any 𝜀 > 0 such that |𝜙(𝑡)| < 𝜀 for all 𝑡 ≥ −𝑟 if
‖𝜓‖ < 𝛿. Thus, we have the following.

Theorem 4. If the Lipschitz constant 𝐿 for ℎ corresponding to
R2 satisfies

1 − 3




𝑞




−

√2𝐿

𝑎

> 0, (33)

then the zero solution for (16) is stable.

When 𝑝 is constant and the equation 𝑝 − 𝑎(1 + 𝑞)𝑢 =
ℎ(𝑢, 𝑢) has only one solution 𝑢∗, then 𝑢∗ is an equilibrium of
(1) and (1) can be transformed to the following equation:

𝑑

𝑑𝑡

𝐷𝑢
𝑡
= −𝑎𝑢 (𝑡) − 𝑎𝑞𝑢 (𝑡 − 𝑟) − 𝑔 (𝑢 (𝑡) , 𝑢 (𝑡 − 𝑟)) , (34)

where 𝐷𝑢
𝑡
= 𝑢(𝑡) − 𝑞𝑢(𝑡 − 𝑟) and 𝑔(𝑢(𝑡), 𝑢(𝑡 − 𝑟)) = ℎ(𝑢∗ +

𝑢(𝑡), 𝑢
∗

+ 𝑢(𝑡 − 𝑟)) − ℎ(𝑢
∗

, 𝑢
∗

). Now, we consider the stability
of the zero solution for (34).

Theorem 5. Suppose that is ℎ ∈ 𝐶1(R2) and (ℎ
𝑥
(𝑢
∗

, 𝑢
∗

),

ℎ
𝑦
(𝑢
∗

, 𝑢
∗

)) = (0, 0); then the zero solution of (34) is expo-
nentially asymptotically stable.

Proof. For all 𝜙 in 𝐶 = 𝐶([−𝑟, 0],R), let

𝐷𝜙 = 𝜙 (0) − 𝑞𝜙 (−𝑟) ,

𝐿𝜙 = −𝑎𝜙 (0) − 𝑎𝑞𝜙 (−𝑟) ,

𝐹𝜙 = −𝑔 (𝜙 (0) , 𝜙 (−𝑟)) .

(35)

Then 𝐷 is stable, and 𝐷 and 𝐿 are linear and continuous.
Consider the equation (𝑑/𝑑𝑡)𝐷𝑢

𝑡
= 𝐿𝑢
𝑡
. Let

𝑉 (𝜙) = (𝐷𝜙)
2

+ 2𝑎𝑞
2

∫

0

−𝑟

𝜙
2

(𝜃) 𝑑𝜃. (36)

Then
𝑉 (𝜙)

= 2 (𝐷𝜙) (−𝑎𝜙 (0) − 𝑎𝑞𝜙 (−𝑟)) + 2𝑎𝑞
2

(𝜙
2

(0) − 𝜙
2

(−𝑟))

= −2𝑎 (1 − 𝑞
2

) 𝜙
2

(0) .

(37)

Thus, according to the last conclusion of Theorem 12.7.1 in
[20, Page 297], the zero solution of 𝑢(𝑡) − 𝑞𝑢(𝑡 − 𝑟) =
−𝑎𝑢(𝑡)−𝑎𝑞𝑢(𝑡− 𝑟) is uniformly asymptotically stable. On the
other hand, one can see that

𝐹
𝜙
𝑢 = (−𝑔

𝑥
(𝑢 (0) , 𝑢 (−𝑟)) , −𝑔

𝑦
(𝑢 (0) , 𝑢 (−𝑟))) . (38)

Thus, 𝐹(0) = 𝐹
𝜙
(0) = 0. According to [20, Theorem 12.9.1],

the zero solution of (34) is exponentially asymptotically
stable.

3. Examples

In this section, we present two examples to illustrate the
applicability of our main results.

Example 6 (Lopes et al. [8, 9, 13, 15, 23]). Consider the NFDE
(2) which arises from a transmission line model, where 𝑎 >
0, 𝑏 > 0, 𝑟 > 0, |𝑞| < 1, 𝑝 ∈ 𝐶(R), and𝑓 is a given nonlinear
function. Now, let ℎ(𝑢(𝑡), 𝑢(𝑡−𝑟)) = 𝑏𝑓(𝑢(𝑡))−𝑏𝑞𝑓(𝑢(𝑡−𝑟)). It
is not difficult to see that (2) is a special case of (1).Therefore,
by Theorems 2–5, we have the following.

Theorem7. Suppose that𝑓 ∈ 𝐶(R) and𝑝 ∈ 𝐶
𝑇
. If there exists

a constant𝐻 > 0 such that




𝑝



0
< (1 − 3





𝑞




) 𝑎𝐻 − 𝑏 (1 +





𝑞




) sup
|𝑥|≤𝐻





𝑓 (𝑥)





, (39)

then (2) has a 𝑇-periodic solution.

Remark 8. Theorem 7 implies that the conditions in [15]

𝑙 < 1,




𝑞




<

1 − 𝑙

3 + 𝑙

, (40)

where 𝑙 = (𝑏/𝑎𝐻)sup
|𝑥|≤𝐻
|𝑓(𝑥)|, are unnecessary for the

existence of periodic solutions for (2).
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Theorem 9. Let 𝐻 be as in Theorem 7. Assume that all
conditions ofTheorem 7 are satisfied. If 𝑓 satisfies the Lipschitz
condition, (𝑏/𝑎𝐻)sup

|𝑥|≤𝐻
|𝑓(𝑥)| ≤ 1 and there exists 𝑄 > 0

such that





𝜓−𝑢
∗



≤

𝑄 − 3




𝑞




𝑄

1 +




𝑞





− 𝐻 −

𝑏

𝑎

sup
|𝑥|≤𝐻+𝑄





𝑓(𝑥)




, (41)

then the solution 𝑢(𝜓)(𝑡) through𝜓 to (2) satisfying 𝑢(𝜓)(𝑡) →
𝑢
∗

(𝑡) as 𝑡 → ∞, where 𝑢∗(𝑡) is a 𝑇-periodic solution of (2).

Remark 10. The sufficient conditions for the existence of
periodic solutions in [15] are very complicated. For example,
they need extra condition 𝑄 > 𝐻,𝑚 < 𝑄 −𝐻 and





𝑞




<

𝑄 − 𝐻 − 𝑚

3𝑄 + 𝐻 + 𝑚

,





𝜓 − 𝑢
∗



≤

𝑄 − 3




𝑞




𝑄

1 +




𝑞





− 𝐻 −

𝑚

1 +




𝑞





,

(42)

where𝑚 = (𝑏/𝑎)sup
|𝑥|≤𝐻+𝑄

|𝑓(𝑥)|.

Theorem 11. If all conditions of Theorem 7 are satisfied, and
the Lipschitz constant 𝐿 for 𝑓 corresponding to (−∞, +∞)
satisfies 1 − 3|𝑞| − (𝑏/𝑎)(1 + |𝑞|)𝐿 > 0, then the 𝑇-periodic
solution 𝑢∗(𝑡) of (2) is stable.

Theorem 12. Suppose that𝑝 is constant, the equation𝑝−𝑎(1+
𝑞)𝑢 = 𝑏(1 − 𝑞)𝑓(𝑢) has only one solution 𝑢∗, 𝑓 ∈ 𝐶1(R), and
𝑓


(𝑢
∗

) = 0; then the equilibrium 𝑢∗ of (2) is exponentially
asymptotically stable.

Example 13 (Lopes [9]). Consider the NFDE (3) which arises
from a transmission line model, where 𝐶

0
> 0, 𝑍 > 0, 𝑟 >

0, |𝑘| < 1, 𝑝 ∈ 𝐶(R) and 𝑓 is a given nonlinear function. Let
�̃�(𝑡) = (1/𝐶

0
)𝑝(𝑡), �̃� = 𝑍/𝐶

0
, and ̃𝑓(𝑢) = (1/𝐶

0
)𝑓(𝑢); then

(3) can be rewritten as

𝑢


(𝑡) − 𝑘𝑢


(𝑡 − 𝑟) = �̃� (𝑡) − �̃�𝑢 (𝑡) − �̃�𝑘𝑢 (𝑡 − 𝑟)

−
̃
𝑓 (𝑢 (𝑡) − 𝑘𝑢 (𝑡 − 𝑟)) .

(43)

Now, let ℎ(𝑢(𝑡), 𝑢(𝑡−𝑟)) = ̃𝑓(𝑢(𝑡)−𝑘𝑢(𝑡−𝑟)). It is not difficult
to see that (43) is a special case of (1).Therefore, byTheorems
2–5, we have the following.

Theorem 14. Suppose that 𝑓 ∈ 𝐶(R) and 𝑝 ∈ 𝐶
𝑇
. If there

exists a constant𝐻 > 0 such that





𝑝



0
< (1 − 3 |𝑘|) 𝑍𝐻 − sup

|𝑥|≤(1+|𝑘|)𝐻





𝑓 (𝑥)





, (44)

then (3) has a 𝑇-periodic solution.

Theorem 15. Let 𝐻 be as in Theorem 14. Assume that all
conditions ofTheorem 14 are satisfied. If𝑓 satisfies the Lipschitz

condition, sup
|𝑥|≤(1+|𝑘|)𝐻

|𝑓(𝑥)| ≤ 𝑍𝐻(1 + |𝑘|), and there exists
𝑄 > 0 such that




𝜓 − 𝑢
∗




≤

𝑄 − 3 |𝑘| 𝑄

1 + |𝑘|

− 𝐻 −

1

𝑍 (1 + |𝑘|)

sup
|𝑥|≤(1+|𝑘|)(𝐻+𝑄)





𝑓 (𝑥)





,

(45)

then the solution through 𝜓 of (3) 𝑢(𝜓)(𝑡) → 𝑢
∗

(𝑡) as 𝑡 →
∞, where 𝑢∗(𝑡) is a 𝑇-periodic solution of (3).

Theorem 16. If all conditions of Theorem 14 are satisfied, and
the Lipschitz constant 𝐿 for 𝑓 corresponding to (−∞, +∞)
satisfies 1 − 3|𝑘| − (𝐿/𝑍)(1 + |𝑘|) > 0, then 𝑇-periodic solution
𝑢
∗

(𝑡) of (3) is stable.

Theorem 17. Suppose that𝑝 is constant, the equation𝑝−𝑍(1+
𝑘)𝑢 = 𝑓(𝑢 − 𝑘𝑢) has only one solution 𝑢∗, 𝑓 ∈ 𝐶1(R),
and 𝑓(𝑢∗ − 𝑘𝑢∗) = 0, then the equilibrium 𝑢∗ of (3) is
exponentially asymptotically stable.
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A voltage stability bifurcation analysis approach for modeling AC/DC systems with VSC-HVDC is presented. The steady power
model and control modes of VSC-HVDC are briefly presented firstly. Based on the steady model of VSC-HVDC, a new improved
sequential iterative power flow algorithm is proposed. Then, by use of continuation power flow algorithm with the new sequential
method, the voltage stability bifurcation of the system is discussed. The trace of the P-V curves and the computation of the
saddle node bifurcation point of the system can be obtained. At last, the modified IEEE test systems are adopted to illustrate the
effectiveness of the proposed method.

1. Introduction

As one of the key technologies of large scale access of
distributed energy resources, theHVDC transmission system
has great potential for further development [1, 2]. Therefore,
in the past decades, the problem associated with HVDC
converters connected to weak AC networks has become an
important research field. The one of particular interest, and
highest in consequences, is the AC voltage stability at the
HVDC terminals of the AC/DC systems [3, 4].

Voltage source converter-based HVDC (VSC-HVDC) is
a new generation technology of HVDC, which overcomes
some of the disadvantages of the traditional thyristor-based
HVDC system, with a very broad application prospect. Com-
pared to the conventional HVDC systems, the prominent
features of the VSC-HVDC system are its potential to be
connected to weak AC systems, independent control of active
and reactive power exchange, and so on [4–6]. Due to
those characteristics, many researches have been done for
the exploitation of VSC-HVDC to enhance system stability
of AC/DC systems, that is, the improvement of transient
stability [7, 8], the power oscillations damping [9, 10], the
improvement of stability and power quality for wind farm

based on VSC-HVDC grid-connected [11, 12], the stability
analysis of multi-infeed DC systems with VSC-HVDC [13],
and the keeping voltage stable [3, 14–17].

In [14, 15], the voltage stability analyses of AC/DC systems
with VSC-HVDCwere mainly based on simulation software,
and the analysis based on power flow calculation was slightly
inadequate. The power flow calculation of AC/DC systems is
the premise and foundation of static security analysis, tran-
sient stability, voltage stability, small signal stability analysis,
and so on [18–21]. At present, there are two main types of
power flow algorithms for AC/DC systems, sequential itera-
tive method [21, 22] and integrated iterative method [23, 24].
The computational practice indicates that the convergence of
integratedmethod is good, but the inheritance of the program
is relatively poor, and the writing of program code needs huge
work. The sequential iterative method has better program
inheritance for pure AC program, but its convergence is not
good. In view of these shortcomings, a modified sequential
iterative power flow algorithm is proposed in this paper.

In [16], the continuation power flow (CPF) algorithm
was presented to solve available transfer capability problem,
but the saddle node bifurcation point was not discussed. In
[17], the PV and QV curves were used to investigate voltage
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𝑈c𝑖∠𝜃c𝑖

Figure 1: Simplified circuit diagram of single-phase VSC-HVDC.

stability of a weak two area AC network.Thoughmanymeth-
ods for voltage stability analysis of AC/DC systemswithVSC-
HVDC have been proposed in different ways, few papers
carefully consider the influence induced by different control
modes ofVSC-HVDC,which actually plays an important role
on the voltage stability of the AC/DC systems. Motivated by
the previous discussions, our main aim in this paper is to
investigate the problem of power flow and voltage stability
bifurcation for AC/DC systems with VSC-HVDC.

The rest of the paper is organized as follows. In Section 2,
the steady model and control modes of AC/DC systems
with VSC-HVDC are presented. In Section 3, the improved
sequential iterative algorithm, the parameterization power
flow and converter equations of VSC-HVDC, and the CPF
strategy are presented. In Section 4, the model and method
are applied to the modified IEEE 14- and IEEE 118-bus test
systems with VSC-HVDC. Finally, in Section 5, the paper is
completed with a conclusion.

2. Steady Model of VSC-HVDC

2.1. Power Flow Equations of VSC-HVDC. Figure 1 shows
the single-line representation of two-terminal VSC-HVDC
system. In Figure 1, 𝑖 is the number of VSC converters. I

𝑖
is

the current flowing through transformer. Us𝑖 = 𝑈s𝑖∠𝜃s𝑖 is the
AC side voltage vector of VSC converter. Uc𝑖 = 𝑈c𝑖∠𝜃c𝑖 is the
output voltage vector of VSC converter. 𝑅

𝑖
is the equivalent

resistance of internal loss and converter transformer loss of
VSC. 𝑗𝑋

𝑙𝑖
is the impedance of converter transformer. 𝑃s𝑖

and 𝑄s𝑖 are the power of AC system injected into converter
transformer. 𝑗𝑋

𝑓
is the impedance of AC filter. Id andUd are

the DC current vector andDC voltage vector, respectively.𝑃c𝑖
and𝑄c𝑖 are the power flowing through converter bridge.𝑃d𝑖 is
the DC power. From Figure 1, I

𝑖
can be expressed as follows:

I
𝑖
=

Us𝑖 − Uc𝑖
𝑅
𝑖
+ 𝑗𝑋
𝑙𝑖

. (1)

The complex power 𝑆s𝑖 of AC system is given by

𝑆s𝑖 = 𝑃s𝑖 + 𝑗𝑄s𝑖 = Us𝑖I
∗

𝑖
. (2)

To facilitate discussion, assume that 𝛿
𝑖
= 𝜃s𝑖 − 𝜃c𝑖, |𝑌𝑖| =

1/√𝑅
2

𝑖
+ 𝑋
2

𝑙𝑖
, 𝛼
𝑖
= arccot(𝑋

𝑙𝑖
/𝑅
𝑖
), and substituting (1) into (2)

yields

𝑃
𝑠𝑖
= −





𝑌
𝑖





𝑈s𝑖𝑈c𝑖 cos (𝛿𝑖 + 𝛼𝑖) +





𝑌
𝑖





𝑈
2

s𝑖 cos𝛼𝑖,

𝑄
𝑠𝑖
= −





𝑌
𝑖





𝑈s𝑖𝑈c𝑖 sin (𝛿𝑖 + 𝛼𝑖) +





𝑌
𝑖





𝑈
2

s𝑖 sin𝛼𝑖 +
𝑈
2

s𝑖
𝑋f𝑖
.

(3)

Similarly, one has

𝑃c𝑖 =




𝑌
𝑖





𝑈s𝑖𝑈c𝑖 cos (𝛿𝑖 − 𝛼𝑖) −





𝑌
𝑖





𝑈
2

c𝑖 cos𝛼𝑖,

𝑄c𝑖 = −




𝑌
𝑖





𝑈s𝑖𝑈c𝑖 sin (𝛿𝑖 − 𝛼𝑖) −





𝑌
𝑖





𝑈
2

c𝑖 sin𝛼𝑖.
(4)

Since the loss of converter bridge-arm is equivalent by 𝑅
𝑖
, 𝑃d𝑖

is qual to 𝑃c𝑖, and thus

𝑃d𝑖 = 𝑈d𝑖𝐼d𝑖 =




𝑌
𝑖





𝑈s𝑖𝑈c𝑖 cos (𝛿𝑖 − 𝛼𝑖) −





𝑌
𝑖





𝑈
2

c𝑖 cos𝛼𝑖. (5)

And 𝑈c𝑖 can be described as

𝑈c𝑖 =
√6𝑀
𝑖
𝑈d𝑖

4

, (6)

where 𝑀 (0 < 𝑀 < 1) is defined as the PWM’s amplitude
modulation index.

The steadymodel of VSC-HVDC is given by (1)–(6) in the
per-unit system (p.u.).

2.2. Steady-State Control Modes of VSC-HVDC. Several reg-
ular control modes for each VSC converter are chiefly as
follows:

(1) constant DC voltage control, constant AC reactive
power control;

(2) constant DC voltage control, constant AC voltage
control;

(3) constant AC active power control, constant AC reac-
tive power control;

(4) constant AC active power control, constant AC volt-
age control.
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3. Voltage Stability Model for AC/DC Systems
with VSC-HVDC

3.1. The Modified Power Flow Algorithm Based on Sequential
Iteration Method. For the previous model of AC/DC system
with VSC-HVDC, the simplified power flow equations are
given by

fac = 0,

fac-dc = 0,

fdc = 0,

(7)

where fac = [Δ𝑃a1, Δ𝑄a1, . . . , Δ𝑃a𝑛AC , Δ𝑄a𝑛AC]
T, fac-dc = [Δ𝑃t1,

Δ𝑄t1, . . . , Δ𝑃t𝑛VSC , Δ𝑄t𝑛VSC ]
T, fdc = [Δ𝑑

11
, Δ𝑑
12
, Δ𝑑
13
, Δ𝑑
14
,

. . . , Δ𝑑
𝑛VSC1

, Δ𝑑
𝑛VSC2

, Δ𝑑
𝑛VSC3

, Δ𝑑
𝑛VSC4

]
T.

To expand the Taylor series of (7), the second-order
item and higher-order terms are omitted, and the modified
equation based on Newton-Raphson is given by

fN = − JNΔxN, (8)

where fN = [fTac, f
T
ac-dc, f

T
dc]

T, ΔxN = [Δ𝑥
T
ac1, Δ𝑥

T
ac2,

Δ𝑥
T
ac-dc, Δ𝑥

T
dc]

T, Δxac1 = [Δ𝑈a1, Δ𝜃a1, . . . , Δ𝑈a𝑛AC , Δ𝜃a𝑛AC]
T,

Δxac2 = [Δ𝑈t1, Δ𝜃t1, . . . , Δ𝑈t𝑛VSC , Δ𝜃t𝑛VSC ]
T
, Δxac-dc = [Δ𝑃t1,

Δ𝑄t1, . . . , Δ𝑃t𝑛VSC , Δ𝑄t𝑛VSC ]
T, Δxdc = [Δ𝑈d1, Δ𝐼d1, Δ𝛿1, Δ𝑀1,

. . . , Δ𝑈d𝑛VSC , Δ𝐼d𝑛VSC , Δ𝛿𝑛VSC , Δ𝑀𝑛VSC ]
T.

And JN is given by

JN (xac1, xac2, xac-dc, xdc)

=

[

[

[

[

[

[

[

[

[

𝜕fac
𝜕xac1

𝜕fac
𝜕xac2

𝜕fac
𝜕xac-dc

𝜕fac
𝜕xdc

𝜕fac-dc
𝜕xac1

𝜕fac-dc
𝜕xac2

𝜕fac-dc
𝜕xac-dc

𝜕fac-dc
𝜕xdc

𝜕fdc
𝜕xac1

𝜕fdc
𝜕xac2

𝜕fdc
𝜕xac-dc

𝜕fdc
𝜕xdc

]

]

]

]

]

]

]

]

]

=
[

[

Ja-a1 Ja-a2 0 0
Jad-a1 Jad-a2 Jad-ad 0
Jd-a1 Jd-a2 Jd-ad Jd-d

]

]

.

(9)

The power flow equation of VSC-HVDC is given as follows:

[

f
1

f
2

] = − [

J
11

J
12

J
21

J
22

] [

Δx
1

Δx
2

] , (10)

where f
1
= fac, f2 = [fTac-dc, f

T
dc]

T, Δx
1
= Δxac1, Δx2 =

[ΔxTac2, Δx
T
ac-dc, Δx

T
dc]

T, J
11

= Ja-a1, J21 = [
Jad-a1
Jd-a1 ], J12 =

[Ja-a2, 0, 0], J22 = [
Jad-a2 Jad-ad 0
Jd-a2 Jd-ad Jd-d ].

The number of the power flow equations for (10) is 2(𝑛 −
1) + 4𝑛VSC, and the variables number is 2(𝑛 − 1) + 6𝑛VSC.
The 2𝑛VSC variables can be eliminated by control modes of
VSC-HVDC. So, (10) has solutions. The dimensions of f

1
are

2(𝑛AC − 1). The dimensions of Δx
1
are 2(𝑛AC − 1). And the

inverse matrix of J
11
is exists.The dimensions of f

2
are 6𝑛VSC.

The dimensions of Δx
2
are 8𝑛VSC, and the 2𝑛VSC dimensions

of Δx
2
can be eliminated by control modes of VSC-HVDC,

and so the inverse matrix of J
22
exists.

To expand (10),

− (J
11
Δx
1
+ J
12
Δx
2
) = f
1
,

− (J
21
Δx
1
+ J
22
Δx
2
) = f
2
.

(11)

Then the new modified sequential iterative form is given
by

Δx
1
= −[J
11
− J
12
(J
22
)
−1J
21
]

−1

[f
1
− J
12
(J
22
)
−1f
2
] ,

Δx
2
= −[J
22
− J
21
(J
11
)
−1J
12
]

−1

[f
2
− J
21
(J
11
)
−1f
1
] .

(12)

It can be seen from the previous derivation process that
the modified algorithm does not make any hypothesis. The
mutual influence between the AC system and DC system is
fully considered in the iteration solution procedure. Bymeans
of the previousmethod, the problemofAC variables coupling
DC variables is solved strictly in the mathematics expression.
Thematrix J

11
and J
12
can be obtained by the program of pure

AC system.

3.2. Parameter-Dependent Power Flow and Converter Equa-
tions of VSC-HVDC. According to connected or not con-
nected with a converter transformer, the buses of AC/DC
systems with VSC-HVDC are divided into two kinds, DC bus
and pure AC bus [23]. The bus connected to primary side of
a converter transformer is considered as a DC bus. The bus
not connected to a converter transformer is considered as a
pure AC bus. 𝑛 is the total bus number of the system. 𝑛VSC is
the number of VSC converters and also is the number of DC
buses. So, the number of pure AC buses is 𝑛AC = 𝑛 − 𝑛VSC.

Considering the load changes in several areas or a
particular area (at a bus and/or at a group of buses) of the
AC/DC systems with VSC-HVDC, the power flow equations
for a pure AC bus are given by

Δ𝑃a𝑖 = 𝑃a𝑖 − 𝑈a𝑖∑
𝑗∈𝑖

𝑈
𝑗
(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗
+ 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗
)

+ (𝑃G𝑖 − 𝑃L𝑖) 𝜆 = 0,

Δ𝑄a𝑖 = 𝑄a𝑖 − 𝑈a𝑖∑
𝑗∈𝑖

𝑈
𝑗
(𝐺
𝑖𝑗
sin 𝜃
𝑖𝑗
− 𝐵
𝑖𝑗
cos 𝜃
𝑖𝑗
)

+ (𝑄G𝑖 − 𝑄L𝑖) 𝜆 = 0,

(13)

where the subscript “a” identifies that the bus is a pure AC
bus, a = 1, 2, . . . , 𝑛AC. The subscript “𝑖” is the number of
the buses, 𝑖 = 1, 2, . . . , 𝑛. The subscript “𝑗” identifies that all
the buses connected to the bus “𝑖” (expressed in the terms
of 𝑗 ∈ 𝑖). 𝑈 and 𝜃 are the bus voltage amplitude and phase
angle, respectively. 𝐺 and 𝐵 are the real part and imaginary
part of nodal admittancematrix, respectively. 𝑃G𝑖 and𝑄G𝑖 are
the power of generator. 𝑃L𝑖 and 𝑄L𝑖 are the loads at the bus 𝑖.
𝜆 ∈ 𝑅 are the parameters such real/reactive power demand at
the buses and transmission line parameters.
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For a DC bus, the power flow equations are given by

Δ𝑃t𝑖 = 𝑃t𝑖 − 𝑈t𝑖∑
𝑗∈𝑖

𝑈
𝑗
(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗
+ 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗
) ± 𝑃t𝑖

+ (𝑃G𝑖 − 𝑃L𝑖) 𝜆 = 0,

Δ𝑄t𝑖 = 𝑄t𝑖 − 𝑈t𝑖∑
𝑗∈𝑖

𝑈
𝑗
(𝐺
𝑖𝑗
sin 𝜃
𝑖𝑗
− 𝐵
𝑖𝑗
cos 𝜃
𝑖𝑗
) ± 𝑄t𝑖

+ (𝑄G𝑖 − 𝑄L𝑖) 𝜆 = 0,

(14)

where the subscript “t” identifies the bus as a DC bus. “±”
signs correspond to the rectifiers and inverters of VSC-
HVDC, respectively.

The basic power flow equations for VSC-HVDC convert-
ers are given as follows:

Δ𝑑
𝑘1
= 𝑃t𝑘 +

√6

4

𝑀
𝑘
𝑈t𝑘𝑈d𝑘 |𝑌| cos (𝛿𝑘 + 𝛼𝑘)

− 𝑈
2

t𝑘 |𝑌| cos𝛼𝑘 = 0,

Δ𝑑
𝑘2
= 𝑄t𝑘 +

√6

4

𝑀
𝑘
𝑈t𝑘𝑈d𝑘 |𝑌| sin (𝛿𝑘 + 𝛼𝑘) − 𝑈

2

t𝑘 |𝑌| sin𝛼𝑘

−

𝑈
2

t𝑘
𝑋f𝑘

= 0,

Δ𝑑
𝑘3
= 𝑈t𝑘𝐼d𝑘 −

√6

4

𝑀
𝑘
𝑈t𝑘𝑈d𝑘 |𝑌| cos (𝛿𝑘 − 𝛼𝑘)

+

3

8

(𝑀
𝑘
𝑈d𝑘)
2

|𝑌| cos𝛼
𝑘
= 0,

(15)

where the subscript “d” identifies that the variable as the DC
side of VSC. “𝑘” is the 𝑘th of VSC connected to DC network,
𝑘 = 1, 2, . . . , 𝑛VSC.

For the 𝑖th VSC converter, there are four unknown
variables in (15); that is, xd𝑖 = [𝑈d𝑖, 𝐼d𝑖, 𝛿𝑖,𝑀𝑖]

T, and onemore
equation is needed to solve (15); that is,

Id = GdUd, (16)

where Gd is the nodal admittance matrix of DC network.
Moreover, the DC network equation is given by

Δ𝑑
𝑘4
= ± 𝐼d𝑘 −

𝑛AC

∑

𝑠=1

𝑔d𝑘𝑠𝑈d𝑠 = 0, (17)

where 𝑔d𝑘 is the matrix element of nodal admittance matrix
of DC network, 𝑠 = 1, 2, . . . , 𝑛AC.

In this paper, the concerned parameters are the real and
reactive loads changes at the buses that can vary according to
the following equations:

𝑃
𝑖
= 𝑃
𝑖0
(1 + 𝜆) ,

𝑄
𝑖
= 𝑄
𝑖0
(1 + 𝜆) ,

(18)

where 𝑃
𝑖0
and 𝑄

𝑖0
are the initial active and reactive loads,

respectively. 𝑃
𝑖
and 𝑄

𝑖
are the active and reactive loads at bus

𝑖, respectively.

For the previously AC/DC systems with VSC-HVDC, the
simplified power flow equation with parameter 𝜆-dependent
is given by

f (x, 𝜆) = 0, (19)

where f ∈ 𝑅2(𝑛−1)+4𝑛VSC+1, x ∈ 𝑅2(𝑛−1)+4𝑛VSC+1. f is the balance
equation of power flow. x is the system state variable such bus
voltage magnitude and phase angles, DC system variables. 𝑛

1

and 𝑛
2
are the number of PQ and PV AC buses. The number

of power flow equations for (19) is 2(𝑛 − 1) + 4𝑛VSC + 1 =
2𝑛
1
+ 𝑛
2
+ 4𝑛VSC + 1.

3.3. Continuation Power Flow Algorithm Based on Sequential
Iteration Method. CPF is a powerful tool to numerically
generate P-V curve to trace power system stationary behavior
due to a set of power injection variations [25, 26]. It uses
predictor-corrector scheme to find a solution path of a set of
power flow equations that have been reformulated to include
a load parameter. (𝑥

𝑙
, 𝜆
𝑙
)
T is the initial state of the power

flow solution curve, where the subscript “𝑙” is the iteration
number of predictor-corrector scheme based on Newton-
Raphson algorithm in CPF.

3.3.1. The Predictor Step. The predictor step is a stage in first-
order differential form. Once a base solution has been found
(𝜆 = 0), a prediction of the next solution can be made by
taking an appropriately sized step in a direction tangent to
the solution path. Taking the derivatives of (19) will result in
the following total differential form equation:

[𝑓


𝑥
𝑓


𝜆
] [

𝑑
𝑥

𝑑
𝜆

] = 0, (20)

where 𝑓
𝑥
= 𝜕𝑓/𝜕𝑥 is the Jacobian matrix of power flow

equation with 𝑥. 𝑓
𝜆
= 𝜕𝑓/𝜕𝜆 is the partial derivative of power

flow equation with 𝜆. [𝑑
𝑥
𝑑
𝜆
]
T is the tangent vector, which is

the computation target of the predictor step.
Since the insertion of 𝜆 in the power flow equation added

an unknown variable, one more equation is needed to solve
the previously equation. This is satisfied by setting one of the
components of the tangent vector to +1 or−1.This component
is referred to as the continuation parameter. Equation (20)
now becomes [23]

[
𝑓


𝑥
𝑓


𝜆

𝑒
𝐾

] [

𝑑
𝑥

𝑑
𝜆

] = [

0

±1
] , (21)

where 𝑒
𝐾

is a row vector with all elements equal to zero
except for the 𝐾th element being equal 1. The dimensions
of 𝑒
𝐾

are 1 × [2(𝑛 − 1) + 6𝑛VSC + 1]. The introduction
of the additional equation makes the Jacobian matrix non-
singular at the critical operation point.Themodified equation
of Newton-Raphson algorithm for (21) is

Δf = −JΔx, (22)

where Δf = [fTac, f
T
ac-dc, f

T
dc, f

T
𝜆
]
T, f
𝜆
= ±1, Δx = [Δ𝑥Tac1, Δ𝑥

T
ac2,

Δ𝑥
T
ac−dc, Δ𝑥

T
dc, Δ𝑥

T
𝜆
]
T, J is referred to as the Jocobian matrix
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Table 1: System parameters of operation and control modes of VSC-HVDC.

Operation modes Control parameters of VSC converters (p.u.)
VSC
1

VSC
2

1 Constant DC voltage 𝑈ref
d1 = 2.0000 Constant AC active power 𝑃ref

s2 = −0.8993

Constant AC reactive power 𝑄ref
s1 = 0.1220 Constant AC reactive power 𝑄ref

s2 = 0.1734

2 Constant DC voltage 𝑈ref
d1 = 2.0000 Constant AC active power 𝑃ref

s2 = −0.8993

Constant AC reactive power 𝑄ref
s1 = 0.1220 Constant AC voltage 𝑈ref

s2 = 1.0186

3 Constant DC voltage 𝑈ref
d2 = 1.9863 Constant AC active power 𝑃ref

s1 = 0.9194

Constant AC voltage 𝑈ref
s2 = 1.0186 Constant AC reactive power 𝑄ref

s1 = 0.1220

4 Constant DC voltage 𝑈ref
d2 = 1.9863 Constant AC active power 𝑃ref

s1 = 0.9194

Constant AC voltage 𝑈ref
s2 = 1.0186 Constant AC voltage 𝑈ref

s1 = 1.0203

Table 2: Initial DC variable parameters (p.u.) of VSC-HVDC system.

𝑁bus 𝑅 𝑋l 𝑃L 𝑄L 𝑅d 𝑈s 𝜃s 𝑃s 𝑄s 𝑈d

13 0.0060 0.1500 0.1350 0.0580 0.0300 1.0000 0.0000 0.9190 0.1220 2.0000
14 0.0060 0.1500 0.1490 0.0500 0.0300 1.0000 0.0000 −0.8990 0.1730 2.0000

of (22), and the dimensions of J are [2(𝑛 − 1) + 4𝑛VSC + 1] ×
[2(𝑛 − 1) + 6𝑛VSC + 1].

The initial values of the variables of VSC-HVDC system
for power flow program iteration are given by

𝑈
(0)

d𝑘 = 𝑈
ref
d𝑘 , (𝑘 ∈ 𝐶𝑉) ,

𝑈
(0)

d𝑘 = 𝑈
N
d𝑘, (𝑘 ∉ 𝐶𝑉) ,

𝐼
(0)

d𝑘 =
𝑃t𝑘

𝑈
(0)

d𝑘

,

𝛿
(0)

𝑘
= arctan(

𝑃t𝑘
(𝑈
2

t𝑘/𝑋L𝑘) + (𝑈
2

t𝑘/𝑋f𝑘) − 𝑄t𝑘
) ,

𝑀
(0)

𝑘
=

2√6

3

𝑃t𝑘𝑋L𝑘

𝑈t𝑘𝑈
(0)

d𝑘 sin 𝛿
(0)

𝑘

,

(23)

where 𝑘 ∈ 𝐶𝑉 identifies that the 𝑘th VSC is constant
DC voltage control mode. 𝑘 ∉ 𝐶𝑉 identifies that the 𝑘th
is not constant DC voltage control mode. Superscript “0”
identifies the initial value of the 0th iteration. Superscript
“ref ” identifies that the variable value is reference value.
Superscript “N” identifies rated value.

The 𝑃t𝑘 is given in estimation by

𝑃t𝑘 = −

𝑛VSC

∑

𝑠=1,𝑠∉𝐶𝑉

𝑃
ref
t𝑠 . (24)

Based on the previous analysis, the tangent vector
[𝑑
𝑥
𝑑
𝜆
]
T is obtained.Theprediction value of the next solution

is given by

[

[

𝑥


𝑙+1

𝜆


𝑙+1

]

]

= [

𝑥
𝑙

𝜆
𝑙

] + ℎ [

𝑑
𝑥

𝑑
𝜆

] , (25)

where [𝑥
𝑙+1
𝜆


𝑙+1
]
T is prediction value, which is an approxi-

mate solution. ℎ is the step size of the prediction.

3.3.2.The Corrector Step. In the corrector step, the prediction
value of [𝑥

𝑙+1
𝜆


𝑙+1
]
T is substituted into (19), and its iteration

form is reformulated as

[
𝑓


𝑥
𝑓


𝜆

0 1

] [

Δ𝑥

Δ𝜆
] = − [

𝑓 (𝑥, 𝜆)

0
] . (26)

The iteration form is now reformulated as

[
𝑓


𝑥
𝑓


𝜆

𝑒
𝐾

0

] [

Δ𝑥

Δ𝜆
] = −[

𝑓(𝑥, 𝜆)

0
] . (27)

4. Case Studies and Validations

Two cases are considered and compared: (1) the system with
existing AC transmission line and (2) the system with a new
dc transmission line based on VSC-HVDC.

The systemparameters of the four different controlmodes
and the VSC converters adopted in the case studies are
prespecified as listed in Table 1. The initial DC variable
parameters of VSC-HVDC system are shown in Table 2. In
Table 2, the 𝑁bus identifies bus number of VSC-HVDC link
connected to AC systems. The 𝑃L and 𝑄L are the load power
of the bus VSC connected to. The 𝑅d is the resistance of DC
network. 𝑅, 𝑋

𝑙
, 𝑃L, and 𝑄L are given parameters. 𝑃s and 𝑄s

are calculated by power flow calculation of the original AC
system, which is equal to the branch power of the original
AC system.

4.1. Modified IEEE 14-Bus Text System. First, the proposed
method has been applied to the modified IEEE 14-bus system
shown in Figure 2. The AC line parameters of the system are
the same as the IEEE 14-bus system. The difference is that a
two-terminal VSC-HVDC transmission line is placed at bus
13 and bus 14 to replace the AC transmission line 13-14; that
is, the VSC

1
and VSC

2
are connected to AC line of bus 13 and

bus 14, respectively.
This paper chooses the commutation bus of the buses 9,

12, 13, and 14 as the research objects. According to the different
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Figure 2: The modified IEEE 14-bus system with VSC-HVDC.
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Figure 3: PV curves for IEEE-14 bus system.

control modes of VSC-HVDC showed in Table 1, the detailed
analysis of the voltage stability bifurcation for the system can
be divided into three cases.

4.1.1. The Operation Mode of “1”. Figure 3 shows the P-V
curves and load margins of partial buses (buses 9, 12, 13,
and 14) of the original pure IEEE-14 system (“AC” for short).
Figure 4 shows the P-V curves and load margins of partial
buses (buses 9, 12, 13, and 14) of the modified IEEE-14 system
(“AC/DC” for short), in which the AC/DC system operates
under the control mode “1” in Table 1 as the load increases.
And Table 3 shows the power flow data of the VSC-HVDC
operating in mode “1” at initial state and the maximum load
state of the AC/DC system. Here, the maximum load state
is corresponding to the saddle node bifurcation point of the
system.

In Figure 3, when 𝜆AC = 5.2120 p.u., the saddle node
bifurcation point is acquired, and the system is in maximum
loading state. In Table 3, the “AC bus” of the lower half part

Table 3: Power flow data at initial and maximum load states for
mode “1.”

Variable 𝑈d 𝐼d 𝛿 𝑀 𝑃d 𝑄d

VSC
1

parameters
2.0000 0.4551 0.1370 0.8108 0.9153 0.1220
2.0000 0.4584 0.1947 0.6840 0.9240 0.1220

VSC
2

parameters
1.9863 −0.4551 −0.1292 0.9387 −0.8993 0.1734
1.9862 −0.4584 −0.3065 0.5505 −0.8993 0.1734

Variable 𝑄s1 𝑄s2 𝑄s3 𝑄s6 𝑄s8 —
AC bus
parameters

−0.6999 0.1404 0.2347 0.0010 0.1045 —
−0.0438 7.6425 1.5550 0.0014 0.5365 —
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Figure 4: PV curves for modified IEEE-14 bus system in operating
mode “1.”

includes the four PV buses (bus 2, bus 3, bus 6, and bus 8)
and a slack bus (bus 1) of the modified IEEE-14 test system.
The upper row of the twin-row is the initial state data, and
the lower row of the twin-row is the maximum load state
(corresponding with the 𝜆AC /DC = 5.6358 p.u. in Figure 4)
data of power flow.

It can be seen in Figure 4 and Table 3, in operation mode
“1,” that the voltagemagnitude decreases as the load increases,
and the bus 14 (AC/DC) has the weakest voltage profile; so,
it is the critical voltage bus needing reactive power support.
When the load margin at 𝜆AC /DC = 5.6358 p.u., the modified
AC/DC systems present a collapse or saddle node bifurcation
point, where the system Jacobian matrix becomes singular.
And now the voltage drop of bus 14 (AC/DC) is the most
obvious: 𝑈

14
= 0.6451 < 𝑈

13
= 0.8381 < 𝑈

12
= 0.8816 <

𝑈
9
= 0.9083 (the parameters are all the AC/DC systems).

4.1.2. The Operation Modes of “2” and “3”. Figures 5 and 6
show the P-V curves and load margins of partial buses (buses
9, 12, 13, and 14) of theAC/DC systemunder the controlmode
of “2” and “3”.

As shown in Figures 5 and 6, in operating mode “2” and
mode “3,” the voltage magnitudes of bus 14 (AC/DC) and bus
13 (AC/DC) remain almost constant as the load increases,
respectively. This is because the VSC

2
in mode “2” and VSC

1

in mode “3” both are in constant AC voltage control mode.
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Figure 5: PV curves for modified IEEE-14 bus system in operating
mode “2.”

Besides, the load margins obtained in mode “2” (𝜆AC /DC =

6.9192 p.u.) and mode “3” (𝜆AC /DC = 5.8980 p.u.) are bigger
than those in mode “1,” which demonstrated that the VSC-
HVDC system supplies voltage support to theACbus voltage,
thanks to the benefits of the fast and independent reactive
power output of VSC-HVDC.

4.1.3. The Operation Mode of “4”. Figure 7 shows the P-V
curves and load margins of partial buses (buses 9, 12, 13, and
14) of the AC/DC system under the control mode of “4” in
Table 1 with the load varies.

As shown in Figure 7, the voltage magnitude of bus 13
(AC/DC) and bus 14 (AC/DC) remains almost constant as
the load increases.This because to the control modes of VSC

1

and VSC
2
are constant AC voltage. The load margin for this

operation mode is 𝜆AC /DC = 7.7192 p.u., which is bigger
than those in other modes.Therefore, in the case of the VSC-
HVDC operation in mode “4,” the AC/DC system has better
voltage stabilization. But as has been pointed out in [27],
when theAC/DC system is disturbed (such as kinds of faults),
in order to maintain AC bus voltage, the VSC converter in
mode “4” has to provide large amount of reactive power to the
AC/DC system. Consequently, the overload degree of VSC
converter is more severe under this operation mode than
overload degree ofVSC converter under other controlmodes.

By contrasting the four control modes of VSC converters,
the results show that the requirements of essential reactive
power for AC system can be supplied by VSC-HVDC system,
and the certain voltage support capability to AC bus by VSC-
HVDC link is validated. But it should be pointed out that the
appropriate control pattern is the basis to exploit the reactive
power compensation property of the VSC-HVDC system.

4.2. Modified IEEE 118-Bus Text System. The modified IEEE
118-bus system is analyzed in this section [28]. The relevant
part of the network is shown in Figure 8, which shows the
locations of the VSC-HVDC link. The VSC-HVDC replaced
an existing AC transmission line (75–118), as shown in
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Figure 6: PV curves for modified IEEE-14 bus system in operating
mode “3.”
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Figure 7: PV curves for modified IEEE-14 bus system in operating
mode “4.”

Table 4: Performance comparison of the modified IEEE-118 test
system for four different operating modes.

The two cases Operation
modes

Load margin
𝜆 (p.u.)

Iteration
numbers

CPU time
in seconds

AC/DC system 1 4.6188 15 29.7642
AC/DC system 2 4.8750 15 32.0300
AC/DC system 3 4.8625 15 31.2754
AC/DC system 4 6.2750 15 76.4324

Figure 8, and the VSC
1
and VSC

2
are connected to AC line

of bus 75 and bus 118, respectively.
The performance comparison of the modified IEEE-118

test system for four different operating modes is shown in
Table 4. In Table 4, the CPU time for operation mode of “4”
is longer than other operation modes. The reason is that
the operation mode of “4” is in constant AC voltage control
mode. As the load increases, the VSC-HVDC system supplies
voltage support to the AC bus voltage, and as a result, the
load margin of the AC/DC system in mode “4” is bigger



8 Abstract and Applied Analysis

107

VSC1 VSC2

74

75

76

77

78

79

81

82

83
84

85

86

87

88 89

90
91

92

93

9495

96

97

98

99
80

100

101102

103

104 105

106

108

109

110

111

112

118

G

G G G

G

G G G G

G

G

G

G

G G

G G

G

G

Figure 8: Relevant part of the modified IEEE 118-bus system withVSC-HVDC.

than other operation modes, and the calculation program
for the load margin of the mode “4” needs more iteration;
so, the CPU time is longer. Table 4 shows that the model
and algorithm presented in this paper have certain flexibility
with the increase of the network scale. However, it is to be
remarked that the CPU time is long. The reason is that with
the embedded VSC-HVDC transmission line, the types and
the number of the system variables have greatly increased,
that is, 𝑃c𝑖, 𝑄c𝑖, 𝑈d𝑖, 𝐼d𝑖, 𝛿𝑖,𝑀𝑖, 𝑈c𝑖, 𝜃c𝑖, and so forth, and the
dimensions of the system equations and the Jacobian matrix
of the AC/DC system have a higher order than pure AC
systems.

5. Conclusions

In this paper, a new method has been developed to analyze
voltage stability for AC/DC systems with VSC-HVDC. The
impacts of load variations and different VSC-HVDC control
patterns on P-V curves and saddle node bifurcation point
of the system were numerically analyzed. The simulation
results indicate that the constant AC voltage control of VSC
converter is superior to other control modes in voltage sta-
bility and also show that VSC-HVDC significantly improved
the stability of the system compared to a pure AC line.
At last, the importance of suitable control mode for the
operating of VSC-HVDCwas discussed, and some numerical
examples have been included to demonstrate the validity of
the obtained results.
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Basing on the Heterogeneous Autoregressive with Continuous volatility and Jumps model (HAR-CJ), converting the realized
Volatility (RV) into the adjusted realized volatility (ARV), and making use of the influence of momentum effect on the volatility,
a new model called HAR-CJ-M is developed in this paper. At the same time, we also address, in great detail, another two models
(HAR-ARV, HAR-CJ). The applications of these models to Chinese stock market show that each of the continuous sample path
variation, momentum effect, and ARV has a good forecasting performance on the future ARV, while the discontinuous jump
variation has a poor forecasting performance. Moreover, the HAR-CJ-M model shows obviously better forecasting performance
than the other two models in forecasting the future volatility in Chinese stock market.

1. Introduction

Persistent volatility in financial markets is one of the most
ubiquitous forms by which economic phenomena may be
observed.Thus, it does not come as a surprise that a principal
aim of the scholars in the fields of financial practices, ranging
from the financial risk measuring to asset pricing, and to
financial derivatives pricing, is the search for mechanisms to
measure and forecast the volatility.

To measuring and forecasting the volatility, Engle [1],
Bollerslev [2], and Taylor [3] proposed the ARCH model,
GARCH model, and SV model, respectively. Hereafter, these
models have been extended continuously and formed into the
GARCH-type and SV-type models. Although the GARCH-
type and SV-type models have made certain progress in mea-
suring and forecasting the volatility of financial markets, they
cannot describe the whole-day volatility information well
enough as they are set up in low-frequency time sequences.
Therefore, there exist some flaws in these models. With the
great development in computer technology in recent years,
the cost of recording and saving financial high-frequency

data has been greatly reduced; thus, the financial high-
frequency data has increasingly made an important means
of studying the volatility of financial markets. Andersen and
Bollerslev [4] first used the high-frequency data to propose
a new method of measuring volatility, that is, the realized
volatility (RV). Compared with the historical GARCH and
SV model, RV carries superiority with it that it has no
model, provides convenience for calculation, and is more
accurate in measuring the volatility of financial markets.
Thus, its appearance has greatly promoted the development
of volatility models. Meanwhile, it can be widely applied to
the fields of financial theory study and investment.

Since Andersen and Bollerslev [4] proposed RV, volatility
models that take the high-frequency data as sample have
developed rapidly and made great success in measuring and
forecasting the volatility in financial markets. Andersen et al.
[5] gave the theoretical explanation to RV and found that RV
had obvious a long memory character by studying American
exchange or stock markets. Koopman et al. [6] added RV
to the SV and ARFIMA model to set up the SV-RV and
ARFIMA-RVmodel, respectively, and found that newmodels
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with RV added had obviously better volatility forecasting
performance than the old ones. Wei and Yu [7] and Wei [8]
assessed many volatility models of their forecasting accuracy
in future volatility on Shanghai composite index and Hushen
300 index in China, finding that the ARFIMA-lnRV and SV-
RV model had better forecasting performance which were
obviously better than volatility models like the GARCH
model, whose conclusion was similar to that of Koopman et
al. [6].

Furthermore, Corsi [9] proposed a Heterogeneous
Autoregressive with Realized Volatility (HAR-RV) model
in accordance with the Heterogeneous Market Hypothesis
proposed by Müller et al. [10] and the long memory
character of RV. The result showed that the HAR-RV model
had good forecasting performance on future volatility
which was obviously better than models like the GARCH
and ARFIMA-RV model. In China, Zhang et al. [11] also
found the HAR-RV model showed much better out-of-
sample forecasting performance than the ARFIMA model.
Andersen et al. [12] and Wang et al. [13] decomposed RV
into the continuous sample path variation and discontinuous
jump variation on the basis of the HAR-RVmodel, and set up
a Heterogeneous Auto-Regressive with Continuous volatility
and Jumps (HAR-CJ) model, which greatly improved the
accuracy of forecasting future volatility. Andersen et al.
[14] found that the overnight return variance played an
important role in the daily asset volatility, so they added the
overnight return variance to the HAR-CJ model and set up
an HAR-CJN model. With comparative analysis on model’s
forecasting performance, they found that the HAR-CJN
model performed better than the GARCH and HAR-RV
model in forecasting the future volatility at 1 day, 1 week, and
1 month.

From the above-mentioned studies, we can find that
the RV-type models (especially the HAR-RV and HAR-CJ
model) always have better forecasting performance on the
future volatility than the GARCH and SV model, and the
HAR-CJ model has the best forecasting performance in these
models. Although the HAR-CJ model has good forecasting
performance for the forecasting of future volatility, higher
accuracy is more favorable to the analysis of practical finan-
cial problems such as financial risk measuring, asset pricing,
and financial derivatives pricing. Therefore, it is necessary to
further improve the forecasting performance of model. So
as to improve the forecasting accuracy of models, scholars
used to add some variables to existed models according to
financial theories and market operational mechanism, such
as the SV-RV model based on SV model set up by Koopman
et al. [6] and Wei [8], the HAR-RV-J model based on HAR-
RV model set up by Zhang et al. [11], the HAR-L-M model
based on HAR-RV model set up by Zhang and Tian [15]
and so on, which all have better forecasting accuracies than
their base models. Grounded on this, we attempt to add
the irrational factors of investors to the HAR-CJ model for
improving its forecasting performance on the volatility of
Chinese stock market. Many researches show that investors’
irrational behaviors produce great influences on the volatility
of financial markets. Jegadeesh and Titman [16] brought
forward the momentum effect, and they pointed out that the

return of stock had a trend of lasting the previous direction
of moving. Researches of Grinblatt and Han [17] and Frazzini
[18] also showed that the momentum effect made it a positive
correlation between the previous gains and losses of financial
asset and the current ones, respectively. It can be concluded
that the momentum effect can help with the rise and fall
of the market, increasing the volatility of market. Thus, we
propose in the perspective of Behavioral FinanceTheory, add
themomentum effect factor (the capital gain overhang) to the
HAR-CJ model, consider the overnight return variance at the
same time, convert RV into adjusted realized volatility (ARV),
and set up the HAR-CJ-M model. Afterwards, we proceed to
use the HAR-CJ-M, HAR-ARV, and HAR-CJ model to study
the volatility in Chinese stock market. On one hand, we are
to test the influence of momentum effect in Chinese stock
market volatility; on the other hand, with the comparison
of this new model with the HAR-ARV and HAR-CJ model
on their volatility forecasting performance in Chinese stock
market, it can help us find better models to measuring and
forecasting volatility in Chinese stock market.

The remainder of this paper is organized as follows.
In Section 2, the theories about the HAR-CJ-M model are
introduced. In Section 3, the HAR-ARV, HAR-CJ and HAR-
CJ-M model are established. In Section 4, the comparative
analyses of the model’s volatility measuring and forecasting
performance in Chinese stock market are given. We also
conclude this paper in Section 5.

2. Preliminaries and Theories

2.1. Adjusted Realized Volatility. According to the calculation
method of RV by Andersen and Bollerslev [4], we suppose a
trading day 𝑡, divide the total day trading into 𝑁 parts, and
𝑃
𝑡,𝑖
is the 𝑖th (𝑖 = 1, . . . , 𝑁) closing price of the trading day

𝑡. What is more, we suppose 𝑟
𝑡,𝑖
is the return of the 𝑖th on

trading day 𝑡, namely, 𝑟
𝑡,𝑖
= 100(ln𝑃

𝑡,𝑖
− ln𝑃

𝑡,𝑖−1
). Therefore

the RV on trading day 𝑡 (RV
𝑡
) can be written as

RV
𝑡
=

𝑁

∑

𝑖=1

𝑟
2

𝑡,𝑖
. (1)

Hansen and Lunde [19] pointed out that Andersen and
Bollerslev [4] researched RV on exchange market. But trade
was not made continuously in 24 hours on stock market like
that on exchangemarket, so RV calculatedwith expression (1)
could only reflect themarket volatility for trading periods but
not for the market volatility information in periods which no
trading was made (namely, the market volatility aroused by
overnight information—the overnight return variance from
the closing of the previous day to the opening of that day).
In addition, Hansen and Lunde found that only when the
overnight return variance and RV were combined could they
become more approximate to the consistency estimation of
integrated volatility. Research of Andersen et al. [14] also
showed that the overnight return variance 𝑟

2

𝑡,𝑛
in SP and

US markets made up 16.0% and 16.5% of the total return
volatility, respectively, namely, 𝑟2

𝑡,𝑛
/(RV
𝑡
+ 𝑟
2

𝑡,𝑛
) equaled 0.160

and 0.165, respectively. Consequently, the overnight return
variance played a quite important part in calculating the total
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daily return volatility, while most literatures on RV at present
(such as Wang et al. [13] and Corsi [9]) have not taken it
into consideration. According to researches of Martens [20]
and Koopman et al. [6], considering the overnight return
variance, we adjust RV as

ARV
𝑡
= RV
𝑡
+ 𝑟
2

𝑡,𝑛
=

𝑀

∑

𝑗=1

𝑟
2

𝑡,𝑗
, (2)

where 𝑟
𝑡,1

and 𝑟
𝑡,𝑛

stand for the overnight return, 𝑟
𝑡,1

=

𝑟
𝑡,𝑛

= 100(ln𝑃
𝑡,𝑜

− ln𝑃
𝑡−1,𝑐

), 𝑃
𝑡,𝑜

represents the opening
price of phase 𝑡, and 𝑃

𝑡−1,𝑐
denotes the closing price of phase

𝑡 − 1; 𝑟
𝑡,2

is the 1st return after the opening of phase 𝑡,
𝑟
𝑡,2

= 100(ln𝑃
𝑡,1

− ln𝑃
𝑡,𝑜
), 𝑃
𝑡,1

is the first closing price after
the opening of phase 𝑡; 𝑟

𝑡,3
shows the second return after

the opening of phase 𝑡, 𝑟
𝑡,3

= 100(ln𝑃
𝑡,2
− ln𝑃

𝑡,1
); . . .; 𝑟

𝑡,𝑀

means the (𝑀− 1)th return after the opening of phase 𝑡, and
𝑟
𝑡,𝑀

= 100(ln𝑃
𝑡,𝑀−1

− ln𝑃
𝑡,𝑀−2

).

2.2. Decomposition of ARV. In the practical financial mar-
kets, the price volatility of financial asset is not continuous
but containing jumps because of the influence aroused by
information shock on the market and the investors’ irrational
behavior. To separate the discontinuous jump variation out,
Barndorff-Nielsen and Shephard [21, 22] proposed the real-
ized bipower variation (RBV), that is,

RBV
𝑡
= 𝑧
−2

1
(

𝑀

𝑀 − 2

)

𝑀

∑

𝑗=3






𝑟
𝑡,𝑗−2












𝑟
𝑡,𝑗






, (3)

where 𝑧
1

= 𝐸(𝑍
𝑡
) = √𝜋/2, 𝑍

𝑡
is a random variable

which is in standardized normal distribution, and 𝑀/(𝑀 −

2) is the amendment to sample capacity. According to the
research of Barndorff-Nielsen and Shephard, the difference
value between ARV

𝑡
and RBV

𝑡
is just the consistent estimate

of the discontinuous jump variation when𝑀 → ∞, that is,

ARV
𝑡
− RBV

𝑡

𝑀→∞

→ 𝐽
𝑡
. (4)

In limited sample capacity, the discontinuous jump vari-
ation calculated with the above expression cannot be all
nonnegative numbers. Hence, to guarantee the nonnegative
character of the discontinuous jump variation, we define the
discontinuous jump variation 𝐽

𝑡
as

𝐽
𝑡
= max [ARV

𝑡
− RBV

𝑡
, 0] . (5)

In the process of calculating the discontinuous jump
variation, if the daily frequency of extracting sample data
is different, it may lead to different calculation errors. To
improve the accuracy of calculating the discontinuous jump
variation, it is necessary for us to introduce some statistics
to test the significance on the discontinuous jump variation.

We adopt the statistics 𝑍
𝑡
which is extracted by Barndorff-

Nielsen and Shephard [21, 22] on the basis of bipower varia-
tion theory to distinguish the discontinuous jump variation.
The expression of statistics 𝑍

𝑡
is defined by

𝑍
𝑡
=

(ARV
𝑡
− RBV

𝑡
)ARV−1

𝑡

√((𝜋/2)
2

+ 𝜋 − 5) (1/𝑀)max (1,RTQ
𝑡
/RBV2

𝑡
)

→ 𝑁(0, 1) ,

(6)

where RTQ
𝑡

= 𝑀𝜇
−3

4/3
(𝑀/(𝑀 −

4))∑
𝑀

𝑗=4
|𝑟
𝑡,𝑗−4

|
4/3

|𝑟
𝑡,𝑗−2

|
4/3

|𝑟
𝑡,𝑗
|
4/3

(𝜇
4/3

=

𝐸(|𝑍
𝑇
|
4/3

) = 2
2/3

Γ(7/6)Γ(1/2)
−1

).
The calculation of traditional RBV is greatly correlated

with the sampling frequency. Therefore, with the increase
of sampling frequency, the estimate value of RBV cannot
converge to integrated volatility because of the influence of
factors like microstructure of the market. Thus, adopting
RBV as the robust estimator to test the discontinuous jump
variation contains errors in itself. We thus adopt a brand-new
estimator MedRV

𝑡
which is proposed by Andersen et al. [23]

instead of RBV
𝑡
. MedRV

𝑡
is defined by

MedRV
𝑡
=

𝜋

6 − 4√3 + 𝜋

(

𝑀

𝑀 − 2

)

×

𝑀−1

∑

𝑗=2

Med(

𝑟
𝑡,𝑗−1












𝑟
𝑡,𝑗












𝑟
𝑡,𝑗+1






)

2

.

(7)

Accordingly, RTQ
1,𝑡

of statistics 𝑍
𝑡
in expression (6) is

also replaced by MedRTQ
𝑡
, which is proposed by Andersen

et al. [23] and can be defined by

MedRTQ
𝑡
=

3𝜋𝑀

9𝜋 + 72 + −52√3

(

𝑀

𝑀 − 2

)

×

𝑀−1

∑

𝑗=2

Med(

𝑟
𝑡,𝑗−1






,






𝑟
𝑡,𝑗






,






𝑟
𝑡,𝑗+1






)

4

.

(8)

By calculating the statistics 𝑍
𝑡
after replacing RBV

𝑡
with

MedRV
𝑡
, and RTQ

𝑡
with MedRTQ

𝑡
in expression (6), when

the significance level is 1 − 𝛼, we get the estimate value of
discontinuous jump variation as

𝐽
𝑡
= 𝐼 (𝑍

𝑡
> 𝜙
𝛼
) (ARV

𝑡
−MedRV

𝑡
) . (9)

The estimator of continuous sample path variation is

𝐶
𝑡
= 𝐼 (𝑍

𝑡
≤ 𝜙
𝛼
)ARV

𝑡
+ 𝐼 (𝑍

𝑡
> 𝜙
𝛼
)MedRV

𝑡
. (10)

We need to choose appropriate confidence level 𝛼 in the
calculating process. In this paper, we choose the confidence
level 𝛼 at 0.99 according to previous studies. In addition, with
the above test of the statistics𝑍

𝑡
and bipower variation theory,

we can get the estimator of both the continuous sample path
variation𝐶

𝑡
and discontinuous jump variation 𝐽

𝑡
of the return

volatility in financial markets. Based on this, we can establish
models to make empirical researches on both𝐶

𝑡
and 𝐽
𝑡
in the

return volatility to forecast the future volatility in financial
markets.
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2.3. Momentum Effect. Jegadeesh and Titman [16] first pro-
posed the momentum effect, and then many scholars made
studies on it fromdifferent perspectives, inwhich the research
of Grinblatt and Han [17] is a representative. Grinblatt and
Han proposed the capital gain overhang when studying the
momentum effect, which can be used to study the influence of
gains or losses in previous phases on the return and volatility
in current phase or future market. Grinblatt and Han defined
the capital gain overhang 𝑔

𝑡
as: 𝑔
𝑡
= (𝑃
𝑡−1

−RP
𝑡
)/𝑃
𝑡−1

(where
𝑃
𝑡−1

is the closing price in phase 𝑡 − 1; RP
𝑡
is investor’s

reference price in phase 𝑡). However, most of literature (like
Frazzini [18]) afterwards usually defined 𝑔

𝑡
as 𝑔
𝑡
= (𝑃
𝑡
−

RP
𝑡
)/𝑃
𝑡
; thus this paper also defines 𝑔

𝑡
as 𝑔
𝑡
= (𝑃
𝑡
− RP
𝑡
)/𝑃
𝑡
.

The choice of reference price RP
𝑡
is very crucial when

using the capital gain overhang to study the momentum
effect. When Grinblatt and Han [17] proposed the capital
gain overhang, they used the weighting average value of
the stock in the past 260 weeks as reference price. In this
paper, as the influence of three kinds (short term, medium
term, long term) of investors on the volatility of Chinese
stock market is to be considered, and each kind of investors
chooses different reference prices. Therefore, that we choose
the weighting average value of the stock in the past 260
weeks as a reference price does not fit our study. In stock
market, there are different investors buy and sell stocks in
every phase, and there is a great deal of information arriving
at the market which will certainly affect investors’ behaviors
and decisions in every phase, so the reference price for each
kind of investors should be changeable in every phase, that
is, a dynamic price. Besides, the choice of reference price
should consider not only the theoretical rationality, but also
sufficient practical operations of investors in their investing
processes. Therefore, we propose a series of new reference
prices according to the expression of 5-day, 5-week (25 days),
and 5-month (110 days) moving average, this is,

RP
𝑡
=

𝑃
𝑡
+ 𝑃
𝑡−1

+ ⋅ ⋅ ⋅ + 𝑃
𝑡−𝑛+1

𝑛

. (11)

The expression is a 5-day moving average when 𝑛 = 5, which
shows the reference price for short-term investors. When 𝑛 =
25, it is a 5-week (25 days) moving average, representing the
reference price for medium-term investors; when 𝑛 = 110,
it is a 5-month (110 days) moving average which shows the
reference price for long-term investors. The moving average
is an important trend indicator in security technical analysis.
In stock investing, investors willmake analyses on these trend
curves and decide whether to buy or sell their stocks. In
trend analysis, investors usually focus on the corresponding
reference prices of moving average, among which those of
the 5-day, 5-week (25 days), and 5-month (110 days) moving
average are relatively more concerned. These three reference
prices are closely related with investors’ investment and are
updated every phase; thus using them as reference prices for
the short-term, medium-term, and long-term investors on
the whole stock market is reasonable.

3. Characterization of the Models

3.1. Introduction to the HAR-ARV and HAR-CJ Models

3.1.1. The HAR-ARVModel. According to the Heterogeneous
Market Hypothesis proposed by Müller et al. [10], Corsi [9]
pointed out that the different participants are likely to settle
for different prices and decide to execute their transactions
in different market situations; hence they create volatility.
He categorized the market volatility into the short-term,
medium-term, and long-term ones, in which the short-
term volatility referred to volatility brought about by the
short-term investors’ daily or more frequent trading; the
medium-term volatility referred to volatility aroused by
the medium-term investors’ weekly trading; the long-term
volatility referred to volatility brought about by the long-term
investors’ monthly trading or trading every several months.
Based on this, Corsi [9] set up a volatility forecasting model
according to the long memory character of market volatility,
that is, the HAR-RV model. It was defined as

RV𝑑
𝑡+𝐻

= 𝛼
0
+ 𝛼
𝑑
RV𝑑
𝑡
+ 𝛼
𝑤
RV𝑤
𝑡
+ 𝛼
𝑚
RV𝑚
𝑡
+ 𝜀
𝑡+𝐻

. (12)

We substitute ARV for RV and get the HAR-ARV model:

ARV𝑑
𝑡+𝐻

= 𝛼
0
+ 𝛼
𝑑
ARV𝑑
𝑡
+ 𝛼
𝑤
ARV𝑤
𝑡
+ 𝛼
𝑚
ARV𝑚
𝑡
+ 𝜀
𝑡+𝐻

,

(13)

where 𝐻 = 1, 2, . . ., ARV𝑑
𝑡+𝐻

= (ARV𝑑
𝑡+1

+ ARV𝑑
𝑡+2

+ ⋅ ⋅ ⋅ +

ARV𝑑
𝑡+𝐻

)/𝐻, it represents ARV in the future 𝐻 days; ARV𝑑
𝑡

is the daily ARV in phase 𝑡; ARV𝑤
𝑡
= (ARV𝑑

𝑡
+ ARV𝑑

𝑡−1
+

⋅ ⋅ ⋅ + ARV𝑑
𝑡−4
)/5 means the weekly ARV in phase 𝑡; ARV𝑚

𝑡
=

(ARV𝑑
𝑡
+ARV𝑑

𝑡−1
+⋅ ⋅ ⋅+ARV𝑑

𝑡−21
)/22 shows themonthly ARV

in phase 𝑡.Themodelmainly reflects that themarket volatility
is a complexly mixed volatility mingled by different volatility,
which is the combined result of short-term, medium-term
and long-term, investors’ trading behaviors.

Corsi [9] found that the logarithm of ARV sequence is
more approximate to normal distribution than the original
ARV sequence. Thus, we start from the robustness and
volatility forecasting accuracy of themodel and changemodel
(13) into logarithm form, that is,

ln (ARV𝑑
𝑡+𝐻

) = 𝛼
0
+ 𝛼
𝑑
ln (ARV𝑑

𝑡
) + 𝛼
𝑤
ln (ARV𝑤

𝑡
)

+ 𝛼
𝑚
ln (ARV𝑚

𝑡
) + 𝜀
𝑡+𝐻

.

(14)

3.1.2.TheHAR-CJModel. Andersen et al. [12] separated ARV
into the continuous sample path variation (𝐶) and discon-
tinuous jump variation (𝐽) and set up the HAR-CJ model on
the basis of HAR-RV model to test the different functions of
the different components of volatility in forecasting the future
ARV. We still use ARV instead of RV and decompose ARV
into 𝐶 and 𝐽 with the method mentioned in Section 2.2, and
we get the HAR-CJ model, that is,

ARV𝑑
𝑡+𝐻

= 𝛽
0
+ 𝛽
𝑐𝑑
𝐶
𝑑

𝑡
+ 𝛽
𝑐𝑤
𝐶
𝑤

𝑡
+ 𝛽
𝑐𝑚
𝐶
𝑚

𝑡

+ 𝛽
𝑗𝑑
𝐽
𝑑

𝑡
+ 𝛽
𝑗𝑤
𝐽
𝑤

𝑡
+ 𝛽
𝑗𝑚
𝐽
𝑚

𝑡
+ 𝜀
𝑡+𝐻

,

(15)
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where 𝐶𝑑
𝑡
is the daily continuous sample path variation in

phase 𝑡; 𝐶𝑤
𝑡
= (𝐶
𝑑

𝑡
+ 𝐶
𝑑

𝑡−1
+ ⋅ ⋅ ⋅ + 𝐶

𝑑

𝑡−4
)/5 means the weekly

continuous sample path variation in phase 𝑡; 𝐶𝑚
𝑡

= (𝐶
𝑑

𝑡
+

𝐶
𝑑

𝑡−1
+ ⋅ ⋅ ⋅ + 𝐶

𝑑

𝑡−21
)/22means the monthly continuous sample

path variation in phase 𝑡. 𝐽𝑑
𝑡
is the daily discontinuous jump

variation in phase 𝑡; 𝐽𝑤
𝑡

= (𝐽
𝑑

𝑡
+ 𝐽
𝑑

𝑡−1
+ ⋅ ⋅ ⋅ + 𝐽

𝑑

𝑡−4
)/5 shows

the weekly discontinuous jump variation in phase 𝑡; 𝐽𝑚
𝑡

=

(𝐽
𝑑

𝑡
+𝐽
𝑑

𝑡−1
+⋅ ⋅ ⋅+𝐽

𝑑

𝑡−21
)/22 represents themonthly discontinuous

jump variation in phase 𝑡.
According to the research of Andersen et al. [12], we

transfer model (15) to logarithm form, that is,

ln (ARV𝑑
𝑡+𝐻

) = 𝛽
0
+ 𝛽
𝑐𝑑
ln (𝐶𝑑
𝑡
) + 𝛽
𝑐𝑤

ln (𝐶𝑤
𝑡
)

+ 𝛽
𝑐𝑚

ln (𝐶𝑚
𝑡
) + 𝛽
𝑗𝑑
ln (𝐽𝑑
𝑡
+ 1)

+ 𝛽
𝑗𝑤

ln (𝐽𝑤
𝑡
+ 1) + 𝛽

𝑗𝑚
ln (𝐽𝑚
𝑡
+ 1) + 𝜀

𝑡+𝐻
.

(16)

3.2. Construction of the HAR-CJ-M Model. The basis of
constructing HAR-ARV model is the Heterogeneous Market
Hypothesis. The Heterogeneous Market Hypothesis is also
a key hypothesis in Behavioral Finance Theory. According
to Behavioral Finance Theory, we can know that financial
markets are not always effective, and the investors’ irrational
behaviors produce certain influence on the volatility of
financial markets. Therefore, when studying the volatility of
financial markets, it is necessary to consider the influence of
investors’ irrational behaviors on volatility. Grinblatt andHan
[17] and Frazzini [18] found that the disposition effect made
stock price inadequate in reflecting information, and the
momentum effect emerged. Accordingly, the previous gains
and losses became positively correlatedwith the current gains
and losses, respectively. Therefore, the momentum effect
plays a part in the rise and fall of the market, thus increasing
the volatility of stock markets. In accordance with Grinblatt
and Han’s research, we adopt the capital gain overhang 𝑔

𝑡

to measure the return and loss in, previous market in this
paper. Meanwhile, considering the difference in previous
gains and losses for the short-term, medium-term, and long-
term investors, we divide 𝑔

𝑡
into three kinds (daily, weekly,

and monthly) in accordance with the constructing thought
of HAR-ARV model. Moreover, as the ARV sequence is a
positive sequence, and there are positive and negative values
for the 𝑔

𝑡
sequence, to consider different influence of the

previous gains and losses on the current or future volatility,
we divide the 𝑔

𝑡
sequence into a nonnegative sequence and a

negative sequence.
According to the way of deducing the HAR-RV model

by Corsi [9], we suppose short-term investors are influenced
by the long-term volatility while long-term investors are
not influenced by the short-term volatility. We define a
partial volatility �̃�⋅

𝑡
, where �̃�𝑑

𝑡
means the short-term (1-day)

volatility component, �̃�𝑤
𝑡

represents the medium-term (1-
week) volatility component, and �̃�

𝑚

𝑡
is the long-term (1-

month) volatility component. �̃�𝑑
𝑡
, �̃�𝑤
𝑡
, and �̃�𝑚

𝑡
can be written,

respectively, as

�̃�
𝑚

𝑡+1𝑚
= 𝑐
𝑚
+ 𝜙
𝑚
RV𝑚
𝑡
+ �̃�
𝑚

𝑡+1𝑚
, (17a)

�̃�
𝑤

𝑡+1𝑤
= 𝑐
𝑤
+ 𝜙
𝑤
RV𝑤
𝑡
+ 𝛾
𝑤
𝐸 (�̃�
𝑚

𝑡+1𝑚
) + �̃�
𝑤

𝑡+1𝑤
, (17b)

�̃�
𝑑

𝑡+1𝑑
= 𝑐
𝑑
+ 𝜙
𝑑
RV𝑑
𝑡
+ 𝛾
𝑑
𝐸 (�̃�
𝑤

𝑡+1𝑤
) + �̃�
𝑑

𝑡+1𝑑
. (17c)

Here, we still substitute ARV for RV and divide ARV into
𝐶 and 𝐽, then introduce the three𝑔

𝑡
to the above threemodels,

then we get three new models, that is,

�̃�
𝑚

𝑡+1𝑚
= 𝑐
𝑚
+ 𝜙
𝑐𝑚
𝐶
𝑚

𝑡
+ 𝜙
𝑗𝑚
𝐽
𝑚

𝑡
+ 𝜙
𝑔𝑝𝑚

𝑔
𝑚

𝑡
𝑑𝑝
𝑚

𝑡

+ 𝜙
𝑔𝑛𝑚

𝑔
𝑚

𝑡
𝑑𝑛
𝑚

𝑡
+ �̃�
𝑚

𝑡+1𝑚
,

(18a)

�̃�
𝑤

𝑡+1𝑤
= 𝑐
𝑤
+ 𝜙
𝑐𝑤
𝐶
𝑤

𝑡
+ 𝜙
𝑗𝑤
𝐽
𝑤

𝑡
+ 𝜙
𝑔𝑝𝑤

𝑔
𝑤

𝑡
𝑑𝑝
𝑤

𝑡

+ 𝜙
𝑔𝑛𝑤

𝑔
𝑤

𝑡
𝑑𝑛
𝑤

𝑡
+ 𝛾
𝑤
𝐸 (�̃�
𝑚

𝑡+1𝑚
) + �̃�
𝑤

𝑡+1𝑤
,

(18b)

�̃�
𝑑

𝑡+1𝑑
= 𝑐
𝑑
+ 𝜙
𝑐𝑑
𝐶
𝑑

𝑡
+ 𝜙
𝑗𝑑
𝐽
𝑑

𝑡
+ 𝜙
𝑔𝑝𝑑

𝑔
𝑑

𝑡
𝑑𝑝
𝑑

𝑡

+ 𝜙
𝑔𝑛𝑑

𝑔
𝑑

𝑡
𝑑𝑛
𝑑

𝑡
+ 𝛾
𝑑
𝐸 (�̃�
𝑤

𝑡+1𝑤
) + �̃�
𝑑

𝑡+1𝑑
,

(18c)

where 𝑔𝑚
𝑡

= (𝑃
𝑡
− RP𝑚
𝑡
)/𝑃
𝑡
(where RP𝑚

𝑡
= (𝑃
𝑡
+ 𝑃
𝑡−1

⋅ ⋅ ⋅ +

𝑃
𝑡−109

)/110), 𝑔𝑚
𝑡
denotes the monthly capital gain overhang

in phase 𝑡, which can affect the trading decisions of long-
term investors and can produce certain momentum effect,
thus affecting the long-term market volatility; 𝑔𝑤

𝑡
= (𝑃
𝑡
−

RP𝑤
𝑡
)/𝑃
𝑡
(where RP𝑤

𝑡
= (𝑃

𝑡
+ 𝑃
𝑡−1

⋅ ⋅ ⋅ + 𝑃
𝑡−21

)/25), 𝑔𝑤
𝑡

represents the weekly capital gain overhang in phase 𝑡, which
can affect the trading decisions of medium-term investors
and can similarly produce certain momentum effect, thus
affecting the medium-term market volatility; 𝑔𝑑

𝑡
= (𝑃
𝑡
−

RP𝑑
𝑡
)/𝑃
𝑡
(where RP𝑑

𝑡
= (𝑃

𝑡
+ 𝑃
𝑡−1

⋅ ⋅ ⋅ + 𝑃
𝑡−4
)/5), 𝑔𝑑

𝑡
is

the daily capital gain overhang in phase 𝑡, which can affect
the trading decisions of short-term investors and can also
produce certain momentum effect, thus affecting the short-
term market volatility. Therefore, the above three kinds of
capital gain overhang𝑔

𝑡
can all produce themomentum effect

and affect the volatility of the whole market. 𝑑𝑝𝑚
𝑡
, 𝑑𝑛𝑚
𝑡
, 𝑑𝑝𝑤
𝑡
,

𝑑𝑛
𝑤

𝑡
, 𝑑𝑝𝑑
𝑡
, and 𝑑𝑛𝑑

𝑡
are defined by

𝑑𝑝
𝑚

𝑡
= {

1, 𝑔
𝑚

𝑡
≥ 0,

0, 𝑔
𝑚

𝑡
< 0,

𝑑𝑛
𝑚

𝑡
= 1 − 𝑑𝑝

𝑚

𝑡
;

𝑑𝑝
𝑤

𝑡
= {

1, 𝑔
𝑤

𝑡
≥ 0,

0, 𝑔
𝑤

𝑡
< 0,

𝑑𝑛
𝑤

𝑡
= 1 − 𝑑𝑝

𝑤

𝑡
;

𝑑𝑝
𝑑

𝑡
= {

1, 𝑔
𝑑

𝑡
≥ 0,

0, 𝑔
𝑑

𝑡
< 0,

𝑑𝑛
𝑑

𝑡
= 1 − 𝑑𝑝

𝑑

𝑡
.

(19)

The volatility innovations �̃�
𝑚

𝑡+1𝑚
, �̃�𝑤
𝑡+1𝑤

, and �̃�
𝑑

𝑡+1𝑑
are all

contemporaneously and serially independent zero-mean nui-
sance variables.
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According to Corsi’s research [9], the composite model
(18a), (18b), and (18c), �̃�𝑑

𝑡+1𝑑
can be defined by

�̃�
𝑑

𝑡+1𝑑
= 𝛾
0
+ 𝛾
𝑐𝑑
𝐶
𝑑

𝑡
+ 𝛾
𝑐𝑤
𝐶
𝑤

𝑡
+ 𝛾
𝑐𝑚
𝐶
𝑚

𝑡
+ 𝛾
𝑗𝑑
𝐽
𝑑

𝑡
+ 𝛾
𝑗𝑤
𝐽
𝑤

𝑡

+ 𝛾
𝑗𝑚
𝐽
𝑚

𝑡
+ 𝛾
𝑔𝑝𝑑

𝑔
𝑑

𝑡
𝑑𝑝
𝑑

𝑡
+ 𝛾
𝑔𝑛𝑑

𝑔
𝑑

𝑡
𝑑𝑛
𝑑

𝑡
+ 𝛾
𝑔𝑝𝑤

𝑔
𝑤

𝑡
𝑑𝑝
𝑤

𝑡

+ 𝛾
𝑔𝑛𝑤

𝑔
𝑤

𝑡
𝑑𝑛
𝑤

𝑡
+ 𝛾
𝑔𝑝𝑚

𝑔
𝑚

𝑡
𝑑𝑝
𝑚

𝑡
+ 𝛾
𝑔𝑛𝑚

𝑔
𝑚

𝑡
𝑑𝑛
𝑚

𝑡
+ �̃�
𝑑

𝑡+1𝑑
.

(20)

As �̃�𝑑
𝑡+1𝑑

can also be written as �̃�𝑑
𝑡+1𝑑

= ARV𝑑
𝑡+1𝑑

+

𝜀
𝑑

𝑡+1𝑑
, we can get an ARV forecasting model, namely, the

Heterogeneous Autoregressive with Continuous volatility,
Jumps andMomentum (HAR-CJ-M)model.TheHAR-CJ-M
model can be written as

ARV𝑑
𝑡+1𝑑

= 𝛾
0
+ 𝛾
𝑐𝑑
𝐶
𝑑

𝑡
+ 𝛾
𝑐𝑤
𝐶
𝑤

𝑡
+ 𝛾
𝑐𝑚
𝐶
𝑚

𝑡
+ 𝛾
𝑗𝑑
𝐽
𝑑

𝑡

+ 𝛾
𝑗𝑤
𝐽
𝑤

𝑡
+ 𝛾
𝑗𝑚
𝐽
𝑚

𝑡
+ 𝛾
𝑔𝑝𝑑

𝑔
𝑑

𝑡
𝑑𝑝
𝑑

𝑡
+ 𝛾
𝑔𝑛𝑑

𝑔
𝑑

𝑡
𝑑𝑛
𝑑

𝑡

+ 𝛾
𝑔𝑝𝑤

𝑔
𝑤

𝑡
𝑑𝑝
𝑤

𝑡
+ 𝛾
𝑔𝑛𝑤

𝑔
𝑤

𝑡
𝑑𝑛
𝑤

𝑡
+ 𝛾
𝑔𝑝𝑚

𝑔
𝑚

𝑡
𝑑𝑝
𝑚

𝑡

+ 𝛾
𝑔𝑛𝑚

𝑔
𝑚

𝑡
𝑑𝑛
𝑚

𝑡
+ 𝜀
𝑡+1𝑑

(21)

with 𝜀
𝑡+1𝑑

= �̃�
𝑑

𝑡+1𝑑
− 𝜀
𝑑

𝑡+1𝑑
.

According to Andersen et al. [12], we adopt similar
method of their disposal in changing 𝐽

𝑡
into logarithm form

for those independent variables with 𝑔
𝑡
in model (21), that

is, to change the nonnegative parts into logarithm form
ln(𝑔
𝑡
𝑑𝑝
𝑡
+ 1) and the negative parts into logarithm form

ln(−𝑔
𝑡
𝑑n
𝑡
+1). Consequently, with model (21) being changed

into logarithm form and forecast period being extended to𝐻
phase, we can get the logarithm form of HAR-CJ-M model,
that is,

ln (ARV𝑑
𝑡+𝐻

) = 𝛾
0
+ 𝛾
𝑐𝑑
ln (𝐶𝑑
𝑡
) + 𝛾
𝑐𝑤

ln (𝐶𝑤
𝑡
) + 𝛾
𝑐𝑚

ln (𝐶𝑚
𝑡
)

+ 𝛾
𝑗𝑑
ln (𝐽𝑑
𝑡
+ 1) + 𝛾

𝑗𝑤
ln (𝐽𝑤
𝑡
+ 1)

+ 𝛾
𝑗𝑚

ln (𝐽𝑚
𝑡
+ 1) + 𝛾

𝑔𝑝𝑑
ln (𝑔𝑑
𝑡
𝑑𝑝
𝑑

𝑡
+ 1)

+ 𝛾
𝑔𝑛𝑑

ln (−𝑔𝑑
𝑡
𝑑𝑛
𝑑

𝑡
+ 1)

+ 𝛾
𝑔𝑝𝑤

ln (𝑔𝑤
𝑡
𝑑𝑝
𝑤

𝑡
+ 1)

+ 𝛾
𝑔𝑛𝑤

ln (−𝑔𝑤
𝑡
𝑑𝑛
𝑤

𝑡
+ 1)

+ 𝛾
𝑔𝑝𝑚

ln (𝑔𝑚
𝑡
𝑑𝑝
𝑚

𝑡
+ 1)

+ 𝛾
𝑔𝑛𝑚

ln (−𝑔𝑚
𝑡
𝑑𝑛
𝑚

𝑡
+ 1)

+ 𝜀
𝑡+𝐻

.

(22)

4. Empirical Evidence

4.1. Data and Summary Statistics. CSI 300 is the component
stock index which is made from 300 samples that are well
chosen from Shanghai and Shenzhen stock markets. It covers
about 60% stock values of Shanghai and Shenzhen stock
markets, and its daily correlation coefficient to Shanghai and
Shenzhen stock indexes reaches 98.4% and 97.6%, respec-
tively. So it can well represent the operation state of Chinese
stock market. In addition, the daily sample data extracting
frequency also greatly affects the result of the study. On
one hand, low frequency of extracting cannot reflect well
the volatility information of that day. On the other hand,
high frequency may lead to micronoise and affect the result.
As a result, we take both the influences into consideration,
refer to previous studies of different scholars, and use CSI
300 with 5-minute high-frequency data as samples to study
the volatility in Chinese stock market, the data comes from
the WIND financial database. The sample period begins on
April 20, 2007, and ends on April 20, 2012. There are 1199
trading days and 58751 effective data altogether.The variables
needed in this paper like ARV

𝑡
and 𝐶

𝑡
are all disposed by

Matlab 7.0 or Excel 2003. By dealing with and calculating
the above-mentioned 58751 data, we find that the overnight
return variance 𝑟2

𝑡,𝑛
in Chinese stock market makes up 26.4%

of the whole market volatility, namely, 𝑟2
𝑡,𝑛
/(RV
𝑡
+ 𝑟
2

𝑡,𝑛
) equals

0.264. Upon that, the overnight return variance should be
considered in calculating RV of Chinese stock market. So the
adjustment of RV in the paper is necessary.

Table 1 is the descriptive statistical results of the daily
adjusted realized volatility ARV

𝑡
, the daily continuous sample

path variation 𝐶
𝑡
, the daily discontinuous jump variation 𝐽

𝑡
,

the nonnegative part of daily capital gain overhang 𝑔𝑑
𝑡
𝑑𝑝
𝑑

𝑡
,

the negative part of daily capital gain overhang 𝑔𝑑
𝑡
𝑑𝑛
𝑑

𝑡
, the

nonnegative part of weekly capital gain overhang 𝑔𝑤
𝑡
𝑑𝑝
𝑤

𝑡
, the

negative part of weekly capital gain overhang 𝑔
𝑤

𝑡
𝑑𝑛
𝑤

𝑡
, the

nonnegative part of monthly capital gain overhang 𝑔𝑚
𝑡
𝑑𝑝
𝑚

𝑡
,

and the negative part of monthly capital gain overhang
𝑔
𝑚

𝑡
𝑑𝑛
𝑚

𝑡
in Chinese stock market. We can see from Table 1

that the ARV
𝑡
sequence shows an obvious sharp peak and

fat tail which is not normally distributed, which shows the
extent of volatility in Chinese stock market is great. Besides,
the ADF test shows that every sequence refuses obviously the
hypothesis of existence the unit root at confidence intervals
of 90%, so it can be concluded that every sequence is steady.
Thus further modeling analysis can be made.

In Figure 1, ARV, 𝐶, 𝐽, gdp, gdn, gwp, gwn, gmp, and gmn,
respectively, represents ARV

𝑡
, 𝐶
𝑡
, 𝐽
𝑡
, 𝑔𝑑
𝑡
𝑑𝑝
𝑑

𝑡
, 𝑔𝑑
𝑡
𝑑𝑛
𝑑

𝑡
, 𝑔𝑤
𝑡
𝑑𝑝
𝑤

𝑡
,

𝑔
𝑤

𝑡
𝑑𝑛
𝑤

𝑡
,𝑔𝑚
𝑡
𝑑𝑝
𝑚

𝑡
, and𝑔𝑚

𝑡
𝑑𝑛
𝑚

𝑡
in Chinese stockmarket. Figure 1

shows, for the CSI 300 series studied in this paper, the lagged
correlation function between the estimated daily integrated
variance ARV

𝑡+ℎ
with 𝑋

𝑡
as a function of ℎ, with 𝑋

𝑡
being

ARV
𝑡
itself, 𝐶

𝑡
, 𝐽
𝑡
, 𝑔𝑑
𝑡
𝑑𝑝
𝑑

𝑡
, 𝑔𝑑
𝑡
𝑑𝑛
𝑑

𝑡
, 𝑔𝑤
𝑡
𝑑𝑝
𝑤

𝑡
, 𝑔𝑤
𝑡
𝑑𝑛
𝑤

𝑡
, 𝑔𝑚
𝑡
𝑑𝑝
𝑚

𝑡
,

and 𝑔
𝑚

𝑡
𝑑𝑛
𝑚

𝑡
. Seeing from the correlation function between

ARV
𝑡
and ARV

𝑡+ℎ
(namely, the autocorrelation function of

ARV
𝑡
), we can find that ARV

𝑡
in Chinese stock market has

obvious long memory character. Thus, the past ARV
𝑡
has

certain forecast effect on futureARV
𝑡
, which is in linewith the
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Table 1: Descriptive statistics for CSI 300.

Mean Std. dev. Skewness Kurtosis Jarque-Bera ADF-𝑡 statistic
ARV
𝑡

4.3471 6.8081 5.9174 49.075 113054∗∗∗ −10.710∗∗∗

𝐶
𝑡

3.3412 4.3445 5.9456 65.248 200640∗∗∗ −7.7154∗∗∗

𝐽
𝑡

1.0058 4.8285 9.5878 109.80 588176∗∗∗ −16.145∗∗∗

𝑔
𝑑

𝑡
𝑑𝑝
𝑑

𝑡
0.8629 1.2545 1.8612 7.5625 1726.4∗∗∗ −16.555∗∗∗

𝑔
𝑑

𝑡
𝑑𝑛
𝑑

𝑡
−0.9552 1.5382 −2.1191 7.9438 2111.3∗∗∗ −17.202∗∗∗

𝑔
𝑤

𝑡
𝑑𝑝
𝑤

𝑡
2.3478 3.3012 1.4196 4.1784 472.08∗∗∗ −6.4500∗∗∗

𝑔
𝑤

𝑡
𝑑𝑛
𝑤

𝑡
−2.8430 4.3645 −1.9078 6.5785 1367.1∗∗∗ −7.0652∗∗∗

𝑔
𝑚

𝑡
𝑑𝑝
𝑚

𝑡
5.7086 8.7686 1.4304 3.7846 439.66∗∗∗ −3.0898∗∗

𝑔
𝑚

𝑡
𝑑𝑛
𝑚

𝑡
−7.9652 12.647 −1.8924 5.9452 1149.0∗∗∗ −2.8197∗

∗∗∗, ∗∗, and ∗ in the table mean obvious at significance level of 1%, 5%, and 10%, respectively, same for the following table.
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Figure 1: Lagged correlation function between ARV
𝑡+ℎ

and𝑋
𝑡
.

conclusions of previous studies. In addition, from correlation
functions between ARV

𝑡+ℎ
and other 8 variables, we can

find that all function values in future 25 phases are greater
than 0, so all the past values of these variables contain some
forecast information towards the future ARV

𝑡
in Chinese

stock market. However, the correlation function value of 𝐽
𝑡

and 𝑔𝑑
𝑡
𝑑𝑝
𝑑

𝑡
to ARV

𝑡+ℎ
is very small, which shows that these

two variables have relatively weaker forecasting performance
on the future ARV

𝑡
in Chinese stock market. Based on the

above analyses, it can be seen that the capital gain overhang
𝑔
𝑡
in Chinese stock market carries with it provides more

information of forecasting the futureARV
𝑡
.Therefore, we can

roughly judge that introducing the momentum effect (capital
gain overhang) in the HAR-ARV-CJ model can improve
the model’s forecasting performance of the future ARV

𝑡
in

Chinese stock market.

4.2. Parameter Estimation. To show the superiority of mea-
suring volatility in Chinese stock market of the new model
(HAR-CJ-M model) in this paper, we first estimate the
parameters in the HAR-CJ-M model, and also to that of
HAR-ARV and HAR-CJ model for comparisons (the HAR-
ARV-CJ-M, HAR-ARV, and HAR-CJ models mentioned here
and that followed are all logarithm forms, that is, model
(22), model (14), and model (16).) As the HAR-type models

mainly focus on different market participations of different
frequency in daily, weekly, and monthly markets when
considering the heterogeneous character of the market, this
paper chooses three values for 𝐻 (1, 5 and 22), namely,
ARV𝑑
𝑡+1

, ARV𝑑
𝑡+5

, and ARV𝑑
𝑡+22

represent, respectively, the
ARV of future 1-day, 1-week, and 1-month in Chinese stock
market. Standard OLS regression is consistent and normally
distributed, but when multistep ahead forecast is considered,
the presence of regressors, which overlap, makes the usual
inference no longer appropriate.Therefore, we estimate above
models by OLS with Newey-West covariance correction.

The estimation results of the HAR-CJ-M model are
shown in Table 2. When forecasting future 1-day, 1-week,
and 1-month ARV in Chinese stock market, coefficients of
the daily continuous sample path variation ln(𝐶𝑑

𝑡
), weekly

continuous sample path variation ln(𝐶𝑤
𝑡
), and monthly con-

tinuous sample path variation ln(𝐶𝑤
𝑡
) in phase 𝑡 are all

obviously positive at significance level of 1%. It shows that
the past continuous sample path variation in Chinese stock
market contains forecasting information on the future ARV.
However, the coefficient of the daily discontinuous jump
variation ln(𝐽𝑑

𝑡
) in phase 𝑡 is only significant when forecasting

the future 1-day ARV, while neither the coefficient of the
weekly discontinuous jump variation ln(𝐽𝑤

𝑡
) nor that of the

monthly discontinuous jump variation ln(𝐽𝑚
𝑡
) is significant.

Therefore, the discontinuous jump variation in Chinese stock
market is weak in forecasting the future ARV. For the newly
added the momentum effect factor (capital gain overhang
𝑔
𝑡
) in the HAR-CJ model, except that the coefficient of the

nonnegative part of daily capital gain overhang 𝑔𝑑
𝑡
𝑑𝑝
𝑑

𝑡
is not

significant when forecasting the future 1-week and 1-month
ARV, the rest of coefficients of 𝑔

𝑡
are all obviously positive

at significance level of 10%. This shows that the information
contained in the capital gain overhang 𝑔

𝑡
in Chinese stock

market has good forecasting performance on the future ARV.
In this paper, we consider CSI 300 as a stock portfolio, and
then we can use the momentum effect to explain part of the
estimation results of the HAR-CJ-M model. We know from
Grinblatt and Han’s research that the momentum effect leads
to the positive correlation between the previous gains and
losses (which is expressed by the capital gain overhang 𝑔

𝑡
)

of CSI 300 and current gains and losses, respectively; hence
the momentum effect helps in the rise and fall of CSI 300
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Table 2: Results of parameter estimation for HAR-CJ-M model.

𝐻 = 1 (1 day) 𝐻 = 5 (1 week) 𝐻 = 22 (1 month)
Coefficient Std. error Coefficient Std. error Coefficient Std. error

𝛾
0

−0.2543∗∗∗ 0.0556 −0.1941∗∗∗ 0.0751 −0.0818 0.1006
𝛾
𝑐𝑑

0.1749∗∗∗ 0.0408 0.1458∗∗∗ 0.0325 0.0861∗∗∗ 0.0293
𝛾
𝑐𝑤

0.3592∗∗∗ 0.0627 0.2585∗∗∗ 0.0712 0.0931 0.0735
𝛾
𝑐𝑚

0.1773∗∗∗ 0.0543 0.2125∗∗∗ 0.0764 0.2995∗∗∗ 0.0852
𝛾
𝑗𝑑

0.0649∗ 0.0385 0.0125 0.0268 0.0098 0.0182
𝛾
𝑗𝑤

−0.0160 0.0418 0.0122 0.0504 0.0741 0.0459
𝛾
𝑗𝑚

0.0676 0.0534 0.0704 0.0750 −0.0065 0.0814
𝛾
𝑔𝑝𝑑

0.0812∗ 0.0448 0.0291 0.0443 0.0557 0.0399
𝛾
𝑔𝑛𝑑

0.3335∗∗∗ 0.0472 0.1836∗∗∗ 0.0467 0.0820∗ 0.0447
𝛾
𝑔𝑝𝑤

0.0878∗∗∗ 0.0306 0.1053∗∗∗ 0.0392 0.1512∗∗∗ 0.0512
𝛾
𝑔𝑛𝑤

0.0512∗ 0.0312 0.0774∗ 0.0398 0.1350∗∗∗ 0.0447
𝛾
𝑔𝑝𝑚

0.1128∗∗∗ 0.0248 0.2023∗∗∗ 0.0355 0.2062∗∗∗ 0.0473
𝛾
𝑔𝑛𝑚

0.1108∗∗∗ 0.0227 0.1868∗∗∗ 0.0344 0.2070∗∗∗ 0.0455
Adj-𝑅2 0.6224 0.6807 0.6270

and adds to its volatility. Therefore, the nonnegative part of
past capital gain overhang in Chinese stockmarket is positive
correlationwith the futureARV, andnegative correlationwith
the negative part, and can help with the forecasting on the
future ARV to some extent. We make further analysis on the
capital gain overhang of different phases (daily, weekly, and
monthly), the daily capital gain overhang 𝑔𝑑

𝑡
can represent

the behaving characters of short-term investors in phase 𝑡
in Chinese stock market, and the reference price of short-
term investors is the 5-day moving average RP𝑑

𝑡
. When the

price in phase 𝑡 is higher than 𝑅𝑃
𝑑

𝑡
(namely, 𝑔𝑑

𝑡
> 0), the

disposition effect suppresses further rise of the stock price;
when the price in phase 𝑡 is lower than RP𝑑

𝑡
(namely, 𝑔𝑑

𝑡
< 0),

the disposition effect suppresses further fall of the stock price,
thereupon the stock price reflects insufficient information of
phase t; thus themomentum effect emerges. After phase t, the
market gradually begins to reflect the previous information,
so themomentumeffect helps in the rise and fall of themarket
and increases the market volatility. Hence, the nonnegative
part of the daily capital gain overhang 𝑔

𝑑

𝑡
𝑑𝑝
𝑑

𝑡
is positive

correlation with the future ARV, and the negative part of
capital gain overhang 𝑔𝑑

𝑡
𝑑𝑛
𝑑

𝑡
is negative correlation with the

future ARV. We can see from Table 2 that the value of 𝛾
𝑔𝑛𝑑

is
obviously greater than that of 𝛾

𝑔𝑝𝑑
, and 𝛾

𝑔𝑝𝑑
is not significant

when forecasting the future 1-week and 1-month volatility.
It means that short-term investors in Chinese stock market
hold different attitudes towards the same amount of gains and
losses in previous phases. The influence of previous losses on
short-term investors is obviously greater than that of gains,
which may be caused by the loss aversion of short-term
investors. Similarly, the momentum effect can be adopted to
explain the forecasting performance of theweekly capital gain
overhang 𝑔𝑤

𝑡
and monthly capital gain overhang 𝑔𝑚

𝑡
on the

future ARV in Chinese stockmarket. Different from the daily
capital gain overhang 𝑔𝑑

𝑡
, coefficients of the nonnegative part

and negative part of both the weekly capital gain overhang

𝑔
𝑤

𝑡
andmonthly capital gain overhang 𝑔𝑚

𝑡
are, approximately,

showing that the medium-term and long-term investors in
Chinese stock market are basically the same in their attitudes
towards the same amount of gains and losses in previous
phases, and their loss aversion is not obvious.This also reflects
that medium-term and long-term investors are more rational
than short-term ones.

The estimation results of the HAR-ARV and HAR-CJ
models are shown in Tables 3 and 4, respectively. With
analysis of the estimation results in Table 3, we find that
coefficients of the daily ARV (ln(ARV𝑑

𝑡
)), the weekly ARV

(ln(ARV𝑤
𝑡
)), and monthly ARV (ln(ARV𝑚

𝑡
)) in phase 𝑡 are all

positive at significance level of 1% when the model forecast
the future 1-day, 1-week or 1-month ARV in Chinese stock
market. This shows that ARV in Chinese stock market has
strong longmemory character, and the past volatility contains
forecasting information of future volatility.Meanwhile, it also
shows that the volatility in Chinese stockmarket is affected by
the past different volatility components. Different volatility
components are produced by investor behaviors with dif-
ferent holding terms (short-term, medium-term, and long-
term). This result also proves the existence of heterogeneous
investors in Chinese stock market, which is in line with
the Heterogeneous Market Hypothesis. With analysis of the
estimation results in Table 4, when forecasting the future 1-
day, 1-week, and 1-monthARV inChinese stockmarket, it can
be seen from the significance level of coefficients of ln(𝐶𝑑

𝑡
),

ln(𝐶𝑤
𝑡
), ln(𝐶𝑚

𝑡
), ln(𝐽𝑑

𝑡
), ln(𝐽𝑤

𝑡
) and ln(𝐽𝑚

𝑡
) that the continuous

sample path variation has good forecasting performance
on the future ARV, while the discontinuous jump variation
component has weak forecasting performance on the future
ARV. It is in line with the analysis conclusion from the HAR-
CJ-M model.

Comparing the adjusted coefficient of determination
𝐴dj-𝑅2 of the HAR-CJ-M, HAR-ARV, and HAR-CJ models,
we find that 𝐴dj-𝑅2 of the HAR-CJ-M model is obviously
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Table 3: Estimation results of the HAR-ARV model.

𝐻 = 1 (1 day) 𝐻 = 5 (1 week) 𝐻 = 22 (1 month)
Coefficient Std. error Coefficient Std. error Coefficient Std. error

𝛼
0

0.0021 0.0317 0.1475∗∗∗ 0.0532 0.3474∗∗∗ 0.0708
𝛼
𝑑

0.3658∗∗∗ 0.0436 0.2469∗∗∗ 0.0423 0.1420∗∗∗ 0.0267
𝛼
𝑤

0.2082∗∗∗ 0.0626 0.2151∗∗∗ 0.0734 0.1813∗∗∗ 0.0618
𝛼
𝑚

0.3196∗∗∗ 0.0522 0.3830∗∗∗ 0.0693 0.3889∗∗∗ 0.0773
Adj-𝑅2 0.5642 0.6088 0.5445

Table 4: Estimation results of the HAR-CJ model.

𝐻 = 1 (1day) 𝐻 = 5 (1week) 𝐻 = 22 (1month)
Coefficient Std. error Coefficient Std. error Coefficient Std. error

𝛽
0

0.1540∗∗∗ 0.0303 0.2986∗∗∗ 0.0490 0.4776∗∗∗ 0.0624
𝛽
𝑐𝑑

0.3172∗∗∗ 0.0381 0.2438∗∗∗ 0.0345 0.1393∗∗∗ 0.0298
𝛽
𝑐𝑤

0.3975∗∗∗ 0.0617 0.3352∗∗∗ 0.0683 0.2096∗∗∗ 0.0778
𝛽
𝑐𝑚

0.1405∗∗ 0.0558 0.2079∗∗∗ 0.0784 0.3037∗∗∗ 0.0903
𝛽
𝑗𝑑

0.1115∗∗∗ 0.0411 0.0416 0.0305 0.0256 0.0211
𝛽
𝑗𝑤

−0.0446 0.0390 −0.0097 0.0570 0.0725 0.0545
𝛽
𝑗𝑚

0.1402∗∗∗ 0.0529 0.1767∗∗ 0.0762 0.0994 0.0813
Adj-𝑅2 0.5868 0.6297 0.5495

greater than that of the HAR-CJ and HAR-ARV models.
When the three models measure ARV at future 1-day, 1-week,
and 1-month, 𝐴dj-𝑅2 of the HAR-CJ-M model is 0.0356,
0.0510, and 0.0775 higher than that of the HAR-CJ model,
respectively, and 0.0582, 0.0719, and 0.0825 higher than that
of HAR-ARV model respectively. This shows that the past
capital gain overhang in Chinese stockmarket containsmuch
information of forecasting the future ARV.

4.3. Robustness to Models. This paper adopts the method of
Grinblatt and Han [17] to give explanation to the momentum
effect, in this way, the choice of reference price in the capital
gain overhang can make great influence on the study of the
momentumeffect. So the choice of reference price is crucial in
this paper. In the empirical evidence above, we take the 5-day,
5-week (25 days), and 5-month (110 days) moving average as
the reference price for those short-term, medium-term, and
long-term investors in Chinese stock market, respectively.
Here we will adopt the 10-day, 10-week (50 days), and 10-
month (220 days)moving average of CSI 300 inChinese stock
market as the reference price to do the robustness tests to
the result in Section 4.2. The evaluation result of the HAR-
CJ-M model is shown in Table 5, most of the coefficients of
the capital gain overhang 𝑔𝑑

𝑡
are significant, showing that the

past capital gain overhang in Chinese stock market is helpful
in forecasting the future ARV to some extent. Moreover,
𝐴dj-𝑅2of the HAR-CJ-M model which takes the 10-day, 10-
week (50 days), and 10-month (220 days) moving average
of CSI 300 in Chinese stock market as the reference price
is obviously greater than that of the HAR-CJ and HAR-
ARV models, which accords with the result in Section 4.2.

However, its 𝐴dj-𝑅2 is smaller than that of the HAR-CJ-
M model which takes the 5-day, 5-week (25 days), and 5-
month (110 days) moving average as the reference price. This
shows that the 5-day, 5-week (25 days), and 5-month (110
days) moving average affects more of the decision-making
behaviors of those short-term, medium-term, and long-term
investors in Chinese stock market.Therefore, adopting the 5-
day, 5-week (25 days), and 5-month (110 days)moving average
as the reference price to forecast the future ARV in Chinese
stock market is more suitable.

4.4. Forecasts

4.4.1. In-Sample Forecasts. Figures 2(a), 2(b), and 2(c) contain
three in-sample forecast volatility sequences that are obtained
by the HAR-CJ-M, HAR-ARV, and HAR-CJ models and
a real volatility sequence. We adopt the loss functions to
evaluate the volatility forecasting performance in Chinese
stock market of the HAR-CJ-M, HAR-ARV, and HAR-CJ
model. We mainly choose four loss functions to evaluation.
They are the mean absolute error (MAE), mean absolute per-
centage error (MAPE), root mean squared error (RMSE), the
heteroskedastic adjusted root mean squared error (HRMSE),
and Theil coefficient. The smaller the values of these four
loss functions are, the better the forecasting performance of
the volatility models in future Chinese stock market is. The
MAE, MAPE, RMSE, HRMSE and Theil coefficient for the
in-sample forecasts from each of the three different models
based on the data over the full sample period are reported in
Table 6. Consider

MAE =

1

𝑛

𝑡=𝑇+𝑛

∑

𝑡=𝑇+1

[ln (ARV
𝑡+𝐻

) − ln (̂ARV
𝑡+𝐻

)] ,
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Table 5: Estimation results of the HAR-CJ-M model.

𝐻 = 1 (1 day) 𝐻 = 5 (1 week) 𝐻 = 22 (1 month)
Coefficient Std. error Coefficient Std. error Coefficient Std. error

𝛾
0

−0.2092∗∗∗ 0.0618 −0.2042∗∗ 0.0869 −0.0809 0.1243
𝛾
𝑐𝑑

0.2373∗∗∗ 0.0398 0.1743∗∗∗ 0.0333 0.0776∗∗∗ 0.0279
𝛾
𝑐𝑤

0.3039∗∗∗ 0.0643 0.2500∗∗∗ 0.0727 0.1334∗ 0.0755
𝛾
𝑐𝑚

0.2154∗∗∗ 0.0625 0.2263∗∗∗ 0.0854 0.3056∗∗∗ 0.0971
𝛾
𝑗𝑑

0.0891∗∗ 0.0394 0.0243 0.0277 0.0131 0.0178
𝛾
𝑗𝑤

−0.0404 0.0416 −0.0148 0.0501 0.0593 0.0486
𝛾
𝑗𝑚

0.0914∗ 0.0534 0.1217 0.0753 0.0248 0.0862
𝛾
𝑔𝑝𝑑

0.0407 0.0369 0.0626 0.0453 0.0997∗∗ 0.0465
𝛾
𝑔𝑛𝑑

0.1798∗∗∗ 0.0386 0.1338∗∗∗ 0.0428 0.1100∗∗ 0.0450
𝛾
𝑔𝑝𝑤

0.1304∗∗∗ 0.0338 0.1676∗∗∗ 0.0454 0.1895∗∗∗ 0.0446
𝛾
𝑔𝑛𝑤

0.0975∗ 0.0323 0.1421∗∗∗ 0.0433 0.1554∗∗∗ 0.0447
𝛾
𝑔𝑝𝑚

0.0317 0.0258 0.0794∗∗ 0.0360 0.0778 0.0502
𝛾
𝑔𝑛𝑚

0.0520∗∗ 0.0225 0.0929∗∗∗ 0.0309 0.1141∗∗ 0.0514
Adj-𝑅2 0.6083 0.6677 0.6136

Table 6: In-sample forecast statistics.

MAE MAPE RMSE HRMSE Theil coefficient

𝐻 = 1

HAR-CJ-M 0.4352 1.6175 0.5641 0.6006 0.2228
HAR-ARV 0.4674 1.9335 0.6083 0.6856 0.2425
HAR-CJ 0.4530 1.5980 0.5913 0.6731 0.2346

𝐻 = 5

HAR-CJ-M 0.4437 4.3431 0.4037 0.4984 0.1469
HAR-ARV 0.6015 5.3230 0.4518 0.9004 0.1660
HAR-CJ 0.5514 4.4688 0.4368 0.7801 0.1609

𝐻 = 22

HAR-CJ-M 0.5700 4.7136 0.7002 0.5000 0.2579
HAR-ARV 0.6514 6.5020 0.7896 0.5266 0.2897
HAR-CJ 0.6174 5.9764 0.7466 0.5152 0.2742

MAPE =

1

𝑛

𝑡=𝑇+𝑛

∑

𝑡=𝑇+1

ln (ARV
𝑡+𝐻

) − ln (̂ARV
𝑡+𝐻

)

ln (ARV
𝑡+𝐻

)

,

RMSE = √
1

𝑛

𝑡=𝑇+𝑛

∑

𝑡=𝑇+1

[ln (ARV
𝑡+𝐻

) − ln (̂ARV
𝑡+𝐻

)]

2

,

HRMSE =
√
1

𝑛

𝑡=𝑇+𝑛

∑

𝑡=𝑇+1

[

ln (ARV
𝑡+𝐻

) − ln (̂ARV
𝑡+𝐻

)

ln (ARV
𝑡+𝐻

)

]

2

,

Theil cofficient

= √
1

𝑛

𝑡=𝑇+𝑛

∑

𝑡=𝑇+1

[ln (ARV
𝑡+𝐻

) − ln (̂ARV
𝑡+𝐻

)]

2

× (√
1

𝑛

𝑡=𝑇+𝑛

∑

𝑡=𝑇+1

[ln (̂ARV
𝑡+𝐻

)]

2

+√
1

𝑛

𝑡=𝑇+𝑛

∑

𝑡=𝑇+1

[ln (ARV
𝑡+𝐻

)]
2

)

−1

,

(23)

where 𝑛 is the number of samples predicted, ln(ARV
𝑡+𝐻

)

represents the true volatility, and ln(̂ARV
𝑡+𝐻

) represents the
forecast volatility.

In Table 6, we can find except that the MAPE of the
HAR-CJ-M model is greater than that of HAR-CJ model
when the model forecasts the 1-day ARV, the other MAE,
MAPE, RMSE, HRMSE, and Theil coefficient of the HAR-
CJ-Mmodel are all smaller than those of the HAR-CJ model,
and the MAE, MAPE, RMSE, HRMSE, and Theil coefficient
of HAR-CJ model are all smaller than those of the HAR-ARV
model. Therefore, the in-sample forecasting performance of
the HAR-CJ-M model on future volatility in Chinese stock
market is better than that of the HAR-CJ model, and the
HAR-ARV-CJ model is better than that of the HAR-ARV
model.

4.4.2. Out-of-Sample Forecasts. Compared with the in-
sample forecasting performance, we aremore concernedwith
the out-of-sample forecasting performance of the model,
for the out-of-sample forecasting performance is more sig-
nificant to the study of volatility in Chinese stock market.
In order to make effective evaluation to the out-of-sample
forecasting performance of the model, we divide the whole
sample interval (from April 20, 2007 to April 20, 2012) into
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Table 7: Out-of-sample Forecast Statistics.

MAE MAPE RMSE HRMSE Theil coefficient

𝐻 = 1

HAR-CJ-M 0.4623 2.9898 0.6273 0.4201 0.5489
HAR-ARV 0.5129 4.9047 0.6826 0.4501 0.9499
HAR-CJ 0.4793 3.3916 0.6600 0.4338 0.5869

𝐻 = 5

HAR-CJ-M 0.4886 6.5385 0.6361 0.2202 0.5135
HAR-ARV 0.5446 4.3915 0.7162 0.2932 0.6501
HAR-CJ 0.4966 4.4688 0.6615 0.2484 0.5522

𝐻 = 22

HAR-CJ-M 0.5713 12.093 0.7168 0.4258 0.5137
HAR-ARV 0.6524 12.249 0.8089 0.4852 0.6075
HAR-CJ 0.6380 12.133 0.7652 0.4432 0.5245
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Figure 2: (a) Comparison of the in-sample forecasting performance of the HAR-ARV, HAR-CJ, and HAR-CJ-M models (1 day). ARV
represents the true volatility; HAR-ARV, HAR-CJ, and HAR-CJ-M represent the forecast volatility of the HAR-ARV, HAR-CJ, and HAR-
CJ-M models, respectively. (b) Comparison of the in-sample forecasting performance of the HAR-ARV, HAR-CJ and HAR-CJ-M model (1
week). ARV represents the true volatility; HAR-ARV, HAR-CJ, and HAR-CJ-M represent the forecast volatility of the HAR-ARV, HAR-CJ,
and HAR-CJ-M models, respectively. (c) Comparison of the in-sample forecasting performance of the HAR-ARV, HAR-CJ, and HAR-CJ-M
model (1 month). In the figure, ARV represents the true volatility; HAR-ARV, HAR-CJ, and HAR-CJ-M represent the forecast volatility of the
HAR-ARV, HAR-CJ, and HAR-CJ-M models, respectively.

two parts the former part (from April 20, 2007 to May 31,
2011) has 1000 samples in all as the estimation intervals of
the model; the latter part (from June 1, 2011 to April 20,
2012) has 199 samples in all as the forecasting intervals of
the model. Figures 3(a), 3(b), and 3(c) contain three out-
of-sample forecast volatility sequences that are obtained by
the HAR-CJ-M, HAR-ARV, and HAR-ARV-CJ models and a
real volatility sequence. In addition, the method of analyzing
is the same with that of the Section 4.4.1, that is, using

the loss functions to evaluate the out-of-sample forecasting
performance of the model. The results are shown in Table 7.

In Table 7, it can be found that except that the MAPE
of HAR-CJ-M model is greater than that of HAR-ARV-
CJ model, and that of HAR-ARV-CJ model greater than
HAR-ARV model when forecasting the 1-week ARV, the rest
values of MAE, MAPE, RMSE, HRMSE, andTheil coefficient
of HAR-CJ-M model are all smaller than those of HAR-
ARV-CJ model, and the MAE, MAPE, RMSE, HRMSE and
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Figure 3: (a) Comparison of the out-of-sample forecasting performance of the HAR-ARV, HAR-CJ, and HAR-CJ-M model (1 day). ARV
represents the true volatility; HAR-ARV, HAR-CJ and HAR-CJ-M represent the forecast volatility of the HAR-ARV, HAR-CJ, and HAR-CJ-
M models, respectively. (b) Comparison of the out-of-sample forecasting performance of the HAR-ARV, HAR-CJ, and HAR-CJ-M model (1
week). ARV represents the true volatility; HAR-ARV, HAR-CJ, andHAR-CJ-M represent the forecast volatility of the HAR-ARV, HAR-CJ, and
HAR-CJ-M models, respectively. (c) Comparison of the out-of-sample forecasting performance of the HAR-ARV, HAR-CJ, and HAR-CJ-M
model (1 month). ARV represents the true volatility; HAR-ARV, HAR-CJ, and HAR-CJ-M represent the forecast volatility of the HAR-ARV,
HAR-CJ, and HAR-CJ-M models, respectively.

Theil coefficient of HAR-ARV-CJ model are smaller than
those of HAR-ARV model. Therefore, the HAR-CJ-M model
has better out-of-sample forecasting performance on future
performance in Chinese stock market than the HAR-ARV-CJ
model, and the HAR-CJ model is better than the HAR-ARV
model.

Combining the analyses in Sections 4.4.1 and 4.4.2, we
can conclude that the forecasting performance of the above
three volatility models of future volatility in Chinese stock
market from the best to the weakest is in the following order:
HAR-CJ-M model, HAR-ARV-CJ model, and then HAR-
ARV model.

5. Conclusion

Considering the crucial role of the overnight return variance
in volatility of the whole Chinese stock market, we convert
RV into ARV and set up a HAR-CJ-M model on the basis of
the HAR-CJ model andmomentum effect. After that, we take
the 5-minute high-frequency data of CSI 300 as samples for
empirical evidence and estimate parameters on the HAR-CJ-
M, HAR-ARV, and HAR-CJ models. Then we compare these

three models of their forecasting performance of the future
ARV in Chinese stock market by using the loss functions.

In the HAR-CJ-M model, most coefficients of the
momentum effect (capital gain overhang) of different term
limits (daily, weekly, and monthly) are significant, showing
that the irrational behaviors of different kinds of investors in
Chinese stock market help in forecasting the future volatility
to some extent. In addition, from the estimate results of this
model and the HAR-CJ model, we can see that the past
continuous sample path variation in Chinese stock market
can help with the forecast of future volatility, while the
past discontinuous jump variation has very poor forecasting
performance, which is in line with the conclusion of Wang et
al. [13].The estimate results of theHAR-ARVmodel show that
the volatility of Chinese stockmarket can be influenced by the
past different volatility components, and different volatility
components are produced by behaviors of investors with
different holding term limits (short-term, medium-term,
and long-term). Thus, this result also proves the existence
of the heterogeneous character of Chinese stock investors,
which accords with the Heterogeneous Market Hypothesis.
Besides, the comparative analysis of the above three models’
forecasting performance shows that the HAR-CJ-M model
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which has added the momentum effect forecasts much better
than the other two models on the future volatility of Chinese
stock market. Therefore, it shows that the irrational factors
of investors do affect the volatility of Chinese stock market.
Based on this, the volatility model which has taken the
irrational factors of investors into consideration can forecast
better on the volatility of Chinese stock market, and the
HAR-CJ-M model is more favorable to the study of practical
problems such as financial risk measuring, asset pricing, and
financial derivatives pricing. Although theHAR-CJ-Mmodel
has good forecasting performance on future volatility in
Chinese stock market, its 𝐴dj-𝑅2 is all smaller than 0.7 when
it forecasts the future 1-day, 1-week, and 1-month volatility in
Chinese stock market. So it is necessary to further improve
the accuracy of the model’s forecasting volatility of Chinese
stock market. Our work will be paid more consideration into
irrational factors of investors on the basis of this paper so that
further improve the forecasting accuracy of the model for the
volatility in Chinese stock market.
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The issue of synchronization for a class of hybrid coupled complex networks with mixed delays (discrete delays and distributed
delays) and unknown nonstochastic external perturbations is studied. The perturbations do not disappear even after all the
dynamical nodes have reached synchronization. To overcome the bad effects of such perturbations, a simple but all-powerful robust
adaptive controller is designed to synchronize the complex networks evenwithout knowing a priori the functions and bounds of the
perturbations. Based on Lyapunov stability theory, integral inequality Barbalat lemma, and Schur Complement lemma, rigorous
proofs are given for synchronization of the complex networks. Numerical simulations verify the effectiveness of the new robust
adaptive controller.

1. Introduction

Over the past decade, complex networks have attractedmuch
attention from authors of many disciplines since the pioneer
works of Watts and Strogatz [1, 2]. In fact, many phenomena
in nature and our daily life can be explained by using complex
networks, such as the Internet, World Wide Web, social
networks, and neural networks. A complex network can be
considered as a graph which consists of a set of nodes and
edges connecting these nodes [3].

In recent years, chaos synchronization [3–7] has been
intensively studied due to its important applications in many
different areas, such as secure communication, biological
systems, and information science [8–11]. Particularly, the
synchronization of all the dynamical nodes in complex
networks has become a hot research topic [3], and several
results have been appeared in the literature. The authors of
[12] studied the synchronization in complex networks with
switching topology. In [13], Wu and Jiao investigated the
synchronization in complex dynamical networks with non-
symmetric coupling. They showed that the synchronizability
of a dynamical network with nonsymmetric coupling is not
always characterized by its second-largest eigenvalue, even

though all the eigenvalues of the nonsymmetric coupling
matrix are real. Liu and Chen [14] gave some criteria for
the global synchronization of complex networks in virtual
of the left eigenvector corresponding to the zero eigenvalue
of the coupling matrix. For a given network with identical
node dynamics, the authors of [15] showed that two key
factors influencing the network synchronizability are the
network inner linking matrix and the eigenvalues of the
network topological matrix. Some synchronization criteria
were given in [16–19] for coupled neural networks with or
without delayed couplings. In [20], the robust impulsive
synchronization of coupled delayed neural networks with
uncertainties is considered; several new criteria are obtained
to guarantee the robust synchronization via impulses.

Complex networks have the properties of robustness and
fragility. A complex network can synchronize itself when
parameter mismatch is within some limit. If parameter mis-
match exceeds this limit, networks cannot realize synchro-
nization themselves. Thus the controlled synchronization of
coupled networks is believed to be a rather significant topic
in both theoretical research and practical applications [21–
29]. Some effective control scheme has been proposed, for
instance, state feedback control with constant control gains,
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impulsive control, intermittent control, and adaptive control.
Adaptive control method receives particular attention of
researchers in recently rears. In [3], the authors studied
synchronization in complex networks by using distributed
adaptive control scheme. By designing a simple adaptive
controller, authors of [23] investigated the locally and globally
adaptive synchronization of an uncertain complex dynamical
network. Authors in [24] investigated synchronization of
neural networks with time-varying delays and distributed
delays via adaptive control method. By using the adaptive
feedback control scheme, Chen and Zhou [25] studied
synchronization of complex nondelayed networks and Cao
et al. [26] investigated the complete synchronization in an
array of linearly stochastically coupled identical networks
with delays. By using adaptive pinning control method, Zhou
et al. [27] studied local and global synchronization of complex
networks without delays, authors of [28, 29] considered
the global synchronization of the complex networks with
nondelayed and delayed couplings and the authors of [30]
investigated lag synchronization of complex networks via
state feedback pinning strategy. Outer synchronization of
complex delayed networks with uncertain parameters was
considered by using adaptive coupling in [31]. However,
models in the previous references are special; that is, each
of them does not consider general complex networks in
which every dynamical node has mixed delays (discrete
delay and distributed delay), and the complex networks
have nondelayed, discrete-delayed, and distributed-delayed
couplings.

Complex networks are always affected by some unknown
external perturbations due to environmental causes and
human causes. White noises brought by some random fluc-
tuations in the course of transmission and other probabilities
causes have received extensive attention in the literatures
[21, 24, 32–35]. However, not all the external perturbations
are white noise, and some of them may be nonlinear and
nonstochastic perturbations. When complex networks are
disturbed by nonlinear and nonstochastic perturbations, the
states of the nodes will be changed dramatically, which
will affect the stability and synchronization of the complex
networks. Due to the fragility of complex networks, if some
important nodes are perturbed by such external perturba-
tions, whole states of the network will be affected or even
the network cannot operate normally. Hence, how to realize
synchronization of all nodes for complex networks with
uncertain nonlinear nonstochastic external perturbations is
an urgent practical problem to be solved. Obviously, the
controllers for stability and synchronization of stochastic
perturbations are not applicable to the case of nonlinear
nonstochastic perturbations, especially when the functions
and bounds of the perturbations are unknown. Therefore,
to enhance antiperturbations capability and to realize syn-
chronization of complex networks, more effective controller
should be designed.

Motivated by the previous analysis, in this paper, a class
of more general complex networks is proposed. The new
model has nondelayed, discrete-delayed, and distributed-
delayed couplings, and every dynamical node has mixed
delays. Unknown nonstochastic external perturbations to the

complex networks are also considered. Then we study the
global complete synchronization of the proposed model. A
new simple but robust adaptive controller is designed to
overcome the effects of such perturbations and synchronize
the complex networks even without knowing the exact
functions and bounds of the perturbations. Moreover, the
adaptive controller can also synchronize coupled systems
with stochastic perturbations since it includes existing adap-
tive controller as special case. Two cases are considered:
all nodes or partial nodes are perturbed. All nodes should
be controlled for the former case. Pinning control scheme
can also be used for the latter case. Based on Lyapunov
stability theory, integral inequality, Barbalat lemma, and
Schur Complement lemma, rigorous proofs are given for
synchronization of the complex networks with unknown
perturbations of the previous two cases. It should be noted
that our new adaptive controllers can also prevent external
perturbations. Therefore, the new adaptive controllers are
better than those in [23–29].Numerical simulations verify the
effectiveness of our theoretical results.

Notations. In the sequel, if not explicitly stated, matrices
are assumed to have compatible dimensions. 𝐼

𝑁
denotes the

identity matrix of 𝑁 dimension. The Euclidean norm in R𝑛

is denoted as ‖ ⋅ ‖; accordingly, for vector 𝑥 ∈ R𝑛, ‖𝑥‖ =

√𝑥
𝑇
𝑥, where 𝑇 denotes transposition. 𝐴 = (𝑎

𝑖𝑗
)
𝑚×𝑚

denotes

a matrix of 𝑚 dimension, ‖𝐴‖ = √𝜆max(𝐴
𝑇
𝐴), and 𝐴

𝑠

=

(1/2)(𝐴 + 𝐴
𝑇

). 𝐴 > 0 or 𝐴 < 0 denotes that the matrix 𝐴 is
symmetric and positive or negative definite matrix. 𝜆min(𝐴

𝑠

)

is the minimum eigenvalues of the symmetric matrices 𝐴𝑠,
and 𝐴

𝑙
denotes the matrix of the first 𝑙 row-column pairs of

𝐴. 𝐴𝑐
𝑙
denotes the minor matrix of matrix 𝐴 by removing all

the first 𝑙 row-column elements of 𝐴.
The rest of this paper is organized as follows. In Section 2,

a class of general complex networks with mixed delays
and external perturbations is proposed. Some necessary
assumptions and lemmas are also given in this section. In
Section 3, synchronization of the complex networks with
all nodes perturbed is studied. Synchronization with only
partial nodes perturbed is considered in Section 4. Then,
in Section 5, numerical simulations are given to show the
effectiveness of our results. Finally, in Section 6, conclusions
are given.

2. Preliminaries

The general complex networks consisting of 𝑁 identical
nodeswith external perturbations andmixed-delay couplings
are described as

̇𝑥
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑥
𝑖
(𝑠)) 𝑑𝑠 + 𝐼 (𝑡) + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡)

+ 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗
(𝑠) 𝑑𝑠
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+ 𝜎
𝑖
(𝑡, 𝑥
𝑖
(𝑡) , 𝑥
𝑖
(𝑡 − 𝜏 (𝑡)) , ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑖
(𝑠) 𝑑𝑠)

+ 𝑅
𝑖
, 𝑖 = 0, 1, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) = [𝑥

𝑖1
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡)]
𝑇

∈ R𝑛 represents the state
vector of the 𝑖th node of the network at time 𝑡, and 𝐶,𝐴, 𝐵,𝐷
are matrices with proper dimension. 𝑓(⋅) is a continuous
vector function. 𝐼(𝑡) is the external input vector. 𝑅

𝑖
∈ R𝑛 is

the control input. 𝜏(𝑡) > 0, 𝜃(𝑡) > 0 are time-varying discrete
delay and distributed delay, respectively. Constants 𝛼 > 0,
𝛽 > 0, 𝛾 > 0 are coupling strengths of the whole network
corresponding to nondelay, discrete delay, and distributed
delay, respectively.Φ,Υ, Λ ∈ R𝑛×𝑛 are inner couplingmatrices
of the networks, which describe the individual coupling
between two subsystems. Matrices 𝑈 = (𝑢

𝑖𝑗
)
𝑁×𝑁

, 𝑉 =

(V
𝑖𝑗
)
𝑁×𝑁

, 𝑊 = (𝑤
𝑖𝑗
)
𝑁×𝑁

are outer couplings of the whole
networks satisfying the following diffusive conditions:

𝑢
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , 𝑢

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗
,

V
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , V

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗
,

𝑤
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , 𝑤

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑤
𝑖𝑗
,

(2)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑁. Vector 𝜎
𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡)),

∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑖
(𝑠)𝑑𝑠) ∈ R𝑛 describes the unknown perturbation to

𝑖th node of the complex networks. In this paper, we always
assume that ̇𝜏 ≤ ℎ

𝜏
< 1 and ̇

𝜃 ≤ ℎ
𝜃
< 1. 𝜃(𝑡) is bounded

and we denote 𝜃min > 0 the minimum of 𝜃(𝑡) and 𝜃max the
maximum of 𝜃(𝑡).

We assume that (1) has a unique continuous solution for
any initial condition in the following form:

𝑥
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) , − ≤ 𝑠 ≤ 0, 𝑖 = 0, 1, 2, . . . , 𝑁, (3)

where  = max {𝜏max, 𝜎max} and 𝜏max is the maximum of 𝜏(𝑡).
For convenience of writing, in the sequel, we denote

𝜎
𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡)), ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗
(𝑠)𝑑𝑠) with 𝜎

𝑖
(𝑡).

The system of an isolate node without external perturba-
tion is described as

̇𝑧 (𝑡) = 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑧 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) ,

(4)

and 𝑧(𝑡) can be any desired state: equilibrium point, a
nontrivial periodic orbit, or even a chaotic orbit.

Remark 1. The nonstochastic perturbations 𝜎
𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 −

𝜏(𝑡)), ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑖
(𝑠)𝑑𝑠) are different from stochastic ones in

the literature [21, 24, 32–35]. The distinct feature of the

such stochastic perturbations is that the stochastic pertur-
bations disappear when the synchronization goal is realized.
However, perturbations of this paper still exist even when
complete synchronization has been achieved. Therefore, the
controllers in most of existing papers including those in
[21, 24, 32–35] are invalid for perturbations of this paper.

When system (4) is perturbed, then (4) turns to the
following system:

̇
𝑧 (𝑡) = 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑧 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡)

+ 𝜎
𝑖
(𝑡, 𝑧 (𝑡) , 𝑧 (𝑡 − 𝜏 (𝑡)) , ∫

𝑡

𝑡−𝜃(𝑡)

𝑧 (𝑠) 𝑑𝑠) .

(5)

Generally, the state of a system will be changed when the
system is perturbed. We assume that the state of system (5)
remains to be any one of the previous three states but not
necessarily the original one.

The following assumptions are needed in this paper:

(H
1
) 𝑓(0) ≡ 0, and there exists positive constant ℎ such
that





𝑓 (𝑢) − 𝑓 (V)





≤ ℎ ‖𝑢 − V‖ , for any 𝑢, V ∈ R

𝑛

, (6)

(H
2
) 𝜎
𝑖𝑘
(𝑡, 0, 0, 0) ≡ 0, and there exist positive constants

𝑀
𝑖𝑘
such that |𝜎

𝑖𝑘
(𝑡, 𝑢, V, 𝑤)| ≤ 𝑀

𝑖𝑘
for any bounded

𝑢, V, 𝑤 ∈ R𝑛, 𝑖 = 1, 2, . . . , 𝑁, 𝑘 = 1, 2, . . . , 𝑛.

Remark 2. Note that (4) unifies many well-known chaotic
systems with or without delays, such as Chua system, Lorenz
system, Rössler system, Chen system, and chaotic neural
networks with mixed delays [12–29]. Hence, results of this
paper are general.

Remark 3. Condition (H
2
) is very mild. We do not impose

the usual conditions such as Lipschitz condition, differen-
tiability on the external perturbation functions. It can be
discontinuous or even impulsive functions. If the state of
(5) is a equilibrium point or a nontrivial periodic orbit, the
condition (H

2
) can be easily satisfied. If the state of (5) is a

chaotic orbit, the condition (H
2
) can also be satisfied. Since

chaotic system has strange attractors, there exists a bounded
region containing all attractors of it such that every orbit of
the system never leaves them. Anyway, condition (H

2
) can

be satisfied for equilibrium point, a nontrivial periodic orbit,
and a chaotic orbit.Moreover, wewill subsequently prove that
the complex networks (1) can be synchronized even without
knowing the exact values of ℎ and 𝑀

𝑖𝑘
, 𝑖 = 1, 2, . . . , 𝑁, 𝑘 =

1, 2, . . . , 𝑛.

The aim of this paper is to synchronize all the states of
complex networks (1) to the following manifold:

𝑥
1
(𝑡) = 𝑥

2
(𝑡) = ⋅ ⋅ ⋅ = 𝑥

𝑁
(𝑡) = 𝑧 (𝑡) , (7)

where 𝑧(𝑡) is immune to external perturbations.
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Lemma 4 ((Schur Complement) see [36]). The linear matrix
inequality (LMI)

𝑆 =
[

[

𝑆
11

𝑆
12

𝑆
𝑇

12
𝑆
22

]

]

< 0 (8)

is equivalent to any one of the following two conditions:

(L
1
) 𝑆
11
< 0, 𝑆

22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12
< 0,

(L
2
) 𝑆
22
< 0, 𝑆

11
− 𝑆
12
𝑆
−1

22
S𝑇
12
< 0,

where 𝑆
11
= 𝑆
𝑇

11
, 𝑆
22
= 𝑆
𝑇

22
.

Lemma 5 (see [37]). For any constant matrix𝐷 ∈ R𝑛×𝑛,𝐷𝑇 =
𝐷 > 0, scalar 𝜎 > 0, and vector function 𝜔: [0, 𝜎] → R𝑛, one
has

𝜎∫

𝜎

0

𝜔
𝑇

(𝑠)𝐷𝜔 (𝑠) d𝑠 ≥ (∫
𝜎

0

𝜔 (𝑠) d𝑠)
𝑇

𝐷∫

𝜎

0

𝜔 (𝑠) d𝑠 (9)

provided that the integrals are all well defined.

Lemma 6 ((Barbalat lemma) see [38]). If 𝑓(𝑡) : R → R+ is
a uniformly continuous function for 𝑡 ≥ 0 and if the limit of the
integral

lim
𝑡→∞

∫

𝑡

0

𝑓 (𝑠) d𝑠 (10)

exists and is finite, then lim
𝑡→∞

𝑓(𝑡) = 0.

3. Synchronization with All
the Nodes Perturbed

In this section, we consider the case when all the nodes are
perturbed. To realize synchronization goal (7), we have to
introduce an isolate node (4).

Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡)−𝑧(𝑡). Subtracting (4) from (1), we get the

following error dynamical system:

̇𝑒
𝑖
(𝑡) = 𝐶𝑒

𝑖
(𝑡) + 𝐴𝑔 (𝑒

𝑖
(𝑡)) + 𝐵𝑔 (𝑒

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑔 (𝑒
𝑖
(𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑒
𝑗
(𝑡)

+ 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑒
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝜎

𝑖
(𝑡) + 𝑅

𝑖

+ 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑒
𝑗
(𝑠) 𝑑𝑠,

(11)

where 𝑔(𝑒
𝑖
) = 𝑓(𝑥

𝑖
(𝑡)) − 𝑓(𝑧(𝑡)), 𝑖 = 1, 2, . . . , 𝑁.

From (H
1
) and (H

2
) we know that (11) admits a trivial

solution 𝑒
𝑖
(0) ≡ 0, 𝑖 = 1, 2, . . . , 𝑁. Obviously, to reach

the goal (7), we have only to prove that system (11) is
asymptotically stable at the origin.

Theorem 7. Under the assumption conditions (H
1
) and (H

2
),

the networks (1) are synchronized with the following adaptive
controllers:

𝑅
𝑖
= −𝛼𝜀

𝑖
𝑒
𝑖
(𝑡) − 𝜔𝛽

𝑖
sign (𝑒

𝑖
(𝑡)) ,

̇𝜀
𝑖
= 𝑝
𝑖
𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡) ,

̇
𝛽
𝑖
= 𝜉
𝑖

𝑛

∑

𝑘=1





𝑒
𝑖𝑘
(𝑡)




,

(12)

where 𝜔 > 1, 𝑝
𝑖
> 0, and 𝜉

𝑖
> 0 are arbitrary constants,

respectively, 𝑖 = 1, 2, . . . , 𝑁.

Proof. Define the Lyapunov function as

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (13)

where

𝑉
1
(𝑡) =

1

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒
𝑖
(𝑡)

+

1

2

𝑁

∑

𝑖=1

𝛼(𝜀
𝑖
− 𝑘
𝑖
)
2

𝑝
𝑖

+

1

2

𝑁

∑

𝑖=1

(𝑀
𝑖
− 𝛽
𝑖
)
2

𝜉
𝑖

,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

𝜂
𝑇

(𝑠) 𝑄𝜂 (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝜃(𝑡)

∫

𝑡

𝜇

𝜂
𝑇

(𝑠) 𝐺𝜂 (𝑠) 𝑑𝑠 𝑑𝜇,

(14)

𝜂(𝑡) = (‖𝑒
1
(𝑡)‖, ‖𝑒

2
(𝑡)‖, . . . , ‖𝑒

𝑁
(𝑡)‖)
𝑇, 𝑀
𝑖
= max

1≤𝑘≤𝑛
{𝑀
𝑖𝑘
},

𝑘
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, are constants, 𝑄 and 𝐺 are symmetric

positive definite matrices, and 𝑘
𝑖
, 𝑄, and 𝐺 are to be

determined.
Differentiating 𝑉

1
(𝑡) along the solution of (11) and from

(H
1
) and (H

2
), we obtain

𝑉
1
(𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) ̇𝑒
𝑖
(𝑡) + 𝛼

𝑁

∑

𝑖=1

(𝜀
𝑖
− 𝑘
𝑖
) 𝑒
𝑇

𝑖
(𝑡) 𝑒
𝑖
(𝑡)

−

𝑁

∑

𝑖=1

(𝑀
𝑖
− 𝛽
𝑖
)

𝑛

∑

𝑘=1





𝑒
𝑖𝑘
(𝑡)





≤

𝑁

∑

𝑖=1

[

[

(‖𝐶‖ + ‖𝐴‖ ℎ − 𝛼𝑘
𝑖
)




𝑒
𝑖
(𝑡)





2

+ ‖𝐵‖ ℎ




𝑒
𝑖
(𝑡)









𝑒
𝑖
(𝑡 − 𝜏 (𝑡))






+ ‖𝐷‖ ℎ




𝑒
𝑖
(𝑡)




∫

𝑡

𝑡−𝜃(𝑡)





𝑒
𝑖
(𝑠)




𝑑𝑠

+ 𝛼

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗
‖Φ‖





𝑒
𝑖
(𝑡)










𝑒
𝑗
(𝑡)







+ 𝛼𝜆min (Φ
𝑠

) 𝑢
𝑖𝑖





𝑒
𝑖
(𝑡)





2
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+ 𝛽

𝑁

∑

𝑗=1






V
𝑖𝑗






‖Υ‖





𝑒
𝑖
(𝑡)










𝑒
𝑗
(𝑡 − 𝜏 (𝑡))







+𝛾

𝑁

∑

𝑗=1






𝑤
𝑖𝑗






‖Λ‖





𝑒
𝑖
(𝑡)




∫

𝑡

𝑡−𝜃(𝑡)






𝑒
𝑗
(𝑠)






𝑑𝑠
]

]

= 𝜂
𝑇

(𝑡) ((‖𝐶‖ + ‖𝐴‖ ℎ) 𝐼
𝑁
+ 𝛼 (‖Φ‖ �̂�

𝑠

− 𝐾)) 𝜂 (𝑡)

+ 𝜂
𝑇

(𝑡) (‖𝐵‖ ℎ𝐼
𝑁
+ 𝛽 ‖Υ‖ |𝑉|) 𝜂 (𝑡 − 𝜏 (𝑡))

+ 𝜂
𝑇

(𝑡) (‖𝐷‖ ℎ𝐼
𝑁
+ 𝛾 ‖Λ‖ |𝑊|) ∫

𝑡

𝑡−𝜃(𝑡)

𝜂 (𝑠) 𝑑𝑠

≤ 𝜂
𝑇

(𝑡) ( (‖𝐶‖ + ‖𝐴‖ ℎ + 1) 𝐼
𝑁

+𝛼 (‖Φ‖ �̂�

𝑠

− 𝐾)) 𝜂 (𝑡)

+ 𝜂
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐵

𝑇

𝐵𝜂 (𝑡 − 𝜏 (𝑡))

+ (∫

𝑡

𝑡−𝜃(𝑡)

𝜂 (𝑠) 𝑑𝑠)

𝑇

𝐷

𝑇

𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝜂 (𝑠) 𝑑𝑠,

(15)

where 𝐾 = diag (𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑁
), �̂� = (�̂�

𝑖𝑗
)
𝑁×𝑁

, �̂�
𝑖𝑗
= 𝑢
𝑖𝑗
,

𝑖 ̸= 𝑗, �̂�
𝑖𝑖
= (𝜆min(Φ

𝑠

)/‖Φ‖)𝑢
𝑖𝑖
, 𝐵 = ‖𝐵‖ℎ𝐼

𝑁
+ 𝛽‖Υ‖|𝑉|, 𝐷 =

‖𝐷‖ℎ𝐼
𝑁
+ 𝛾‖Λ‖|𝑊|, |𝑉| = (|V

𝑖𝑗
|)
𝑁×𝑁

, |𝑊| = (|𝑤
𝑖𝑗
|)
𝑁×𝑁

, and
we have used the following deduction:

𝑁

∑

𝑖=1

[𝑒
𝑇

𝑖
(𝑡) 𝜎
𝑖
(𝑡) − 𝜔

𝑛

∑

𝑘=1

𝛽
𝑖





𝑒
𝑖𝑘
(𝑡)




−

𝑛

∑

𝑘=1

(𝑀
𝑖
− 𝛽
𝑖
)




𝑒
𝑖𝑘
(𝑡)




]

≤

𝑁

∑

𝑖=1

𝑛

∑

𝑘=1

[




𝑒
𝑖𝑘
(𝑡)




𝑀
𝑖𝑘
−𝑀
𝑖





𝑒
𝑖𝑘





− (𝜔 − 1) 𝛽

𝑖





𝑒
𝑖𝑘





]

≤ −

𝑁

∑

𝑖=1

𝑛

∑

𝑘=1

(𝜔 − 1) 𝛽
𝑖





𝑒
𝑖𝑘





≤ 0.

(16)

Differentiating 𝑉
2
(𝑡), we get

𝑉
2
(𝑡) = 𝜂

𝑇

(𝑡) 𝑄𝜂 (𝑡) − (1 − ̇𝜏 (𝑡)) 𝜂
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝜂 (𝑡 − 𝜏 (𝑡))

≤ 𝜂
𝑇

(𝑡) 𝑄𝜂 (𝑡) − (1 − ℎ
𝜏
) 𝜂
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝜂 (𝑡 − 𝜏 (𝑡)) .

(17)

Differentiating 𝑉
3
(𝑡) from Lemma 5 we have

𝑉
3
(𝑡) = 𝜃 (𝑡) 𝜂

𝑇

(𝑡) 𝐺𝜂 (𝑡) − (1 −
̇
𝜃 (𝑡)) ∫

𝑡

𝑡−𝜃(𝑡)

𝜂
𝑇

(𝑠) 𝐺𝜂 (𝑠) 𝑑𝑠

≤ 𝜃max𝜂
𝑇

(𝑡) 𝐺𝜂 (𝑡)

−

1 − ℎ
𝜃

𝜃min
(∫

𝑡

𝑡−𝜃(𝑡)

𝜂 (𝑠) 𝑑𝑠)

𝑇

𝐺∫

𝑡

𝑡−𝜃(𝑡)

𝜂 (𝑠) 𝑑𝑠.

(18)

Take𝑄 = (1/(1−ℎ
𝜏
))𝐵

𝑇

𝐵,𝐺 = (𝜃min/(1−ℎ𝜃))𝐷
𝑇

𝐷. From
the definition of 𝑉(𝑡) we reach the following inequality:

𝑉 (𝑡) ≤ 𝛼𝜂
𝑇

(𝑡) [

1

𝛼

(‖𝐶‖ + ‖𝐴‖ ℎ + 1) 𝐼
𝑁

+ ‖Φ‖ �̂�

𝑠

+

1

𝛼 (1 − ℎ
𝜏
)

𝐵

𝑇

𝐵

+

𝜃min𝜃max
𝛼 (1 − ℎ

𝜃
)

𝐷

𝑇

𝐷 − 𝐾]𝜂 (𝑡) .

(19)

Let 𝑘
𝑖
= 𝜆max((1/𝛼)(‖𝐶‖ + ‖𝐴‖ℎ + 1)𝐼

𝑁
+ ‖Φ‖�̂�

𝑠

+

(1/𝛼(1 − ℎ
𝜏
))𝐵

𝑇

𝐵 + (𝜃min𝜃max/(𝛼(1 − ℎ𝜃)))𝐷
𝑇

𝐷) + 1, where
𝜆max((1/𝛼)(‖𝐶‖ + ‖𝐴‖ℎ+ 1)𝐼𝑁 + ‖Φ‖�̂�

𝑠

+ (1/𝛼(1 − ℎ
𝜏
))𝐵

𝑇

𝐵 +

(𝜃min𝜃max/𝛼(1 − ℎ𝜃))𝐷
𝑇

𝐷) denotes the maximum eigenvalue
of (1/𝛼)(‖𝐶‖ + ‖𝐴‖ℎ + 1)𝐼

𝑁
+ ‖Φ‖�̂�

𝑠

+ (1/𝛼(1 − ℎ
𝜏
))𝐵

𝑇

𝐵 +

(𝜃min𝜃max/𝛼(1−ℎ𝜃))𝐷
𝑇

𝐷.Then, from the previous inequality,
we get

𝑉 (𝑡) ≤ −𝛼𝜂
𝑇

(𝑡) 𝜂 (𝑡) . (20)

Integrating both sides of the previous equation from 0 to
𝑡 yields

𝑉 (0) ≥ 𝑉 (𝑡) + 𝛼

𝑁

∑

𝑖=1

∫

𝑡

0





𝑒
𝑖
(𝑠)





2

𝑑𝑠 ≥ 𝛼

𝑁

∑

𝑖=1

∫

𝑡

0





𝑒
𝑖
(𝑠)





2

𝑑𝑠. (21)

Therefore,

𝛼 lim
𝑡→∞

𝑁

∑

𝑖=1

∫

𝑡

0





𝑒
𝑖
(𝑠)





2

𝑑𝑠 ≤ 𝑉 (0) . (22)

In view of Lemma 6 and the previous inequality, one can
easily get

lim
𝑡→∞

𝑁

∑

𝑖=1





𝑒
𝑖
(𝑡)





2

= 0, (23)

which in turn means

lim
𝑡→∞





𝑒
𝑖
(𝑡)




= 0, 𝑖 = 1, 2, . . . , 𝑁. (24)

This completes the proof.

4. Synchronization with Partial
Nodes Perturbed

Usually, only partial nodes of complex networks are per-
turbed. If some important nodes are perturbed, then the
entire network will not work correctly. Theoretically speak-
ing, nodes with larger degree (undirected networks) or
larger outdegree (directed networks) are more vulnerable
to perturbation [39], since the states of these nodes have
more effect on networks than those with smaller degree
(undirected networks) or outdegree (directed networks). On
the other hand, the real-world complex networks normally
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have a large number of nodes; it is usually impractical and
impossible to control a complex networks by adding the
controllers to all nodes. Therefore, from both practical point
of view and the view of reducing control cost, we can use the
scheme of pinning control [27–29, 40–42] to prevent external
perturbations and synchronize complex networks.

In this section, we assume that matrix 𝑈 is irreducible in
the sense that there is no isolate cluster in the network and
there are 𝑙

1
nodes affected by external perturbations.

Without loss of generality, rearrange the order of the
nodes in the network, and take the first 𝑙 (𝑙 ≥ 𝑙

1
) nodes to

be controlled. Thus, the pinning controlled network can be
described as

̇𝑥
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑥
𝑖
(𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡)

+ 𝐼 (𝑡) + 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+ 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗
(𝑠) 𝑑𝑠 + 𝜎

𝑖
(𝑡)

+ 𝑅
𝑖
, 𝑖 = 1, 2, . . . , 𝑙

1
,

̇𝑥
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑥
𝑖
(𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡)

+ 𝐼 (𝑡) + 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+ 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗
(𝑠) 𝑑𝑠 + 𝑅

𝑖
,

𝑖 = 𝑙
1
+ 1, 𝑙
1
+ 2, . . . , 𝑙,

̇𝑥
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑥
𝑖
(𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡)

+ 𝐼 (𝑡) + 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+ 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗
(𝑠) 𝑑𝑠,

𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁,

(25)

where 𝑅
𝑖
, 𝑖 = 1, 2, . . . , 𝑙, are control inputs.
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Figure 1: Chaotic trajectory of (44).

Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑧(𝑡). Subtracting (4) from (25) we

obtain the following error dynamical system:

̇𝑒
𝑖
(𝑡) = 𝐶𝑒

𝑖
(𝑡) + 𝐴𝑔 (𝑒

𝑖
(𝑡)) + 𝐵𝑔 (𝑒

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑔 (𝑒
𝑖
(𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑒
𝑗
(𝑡)

+ 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑒
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑒
𝑗
(𝑠) 𝑑𝑠

+ 𝜎
𝑖
(𝑡) + 𝑅

𝑖
, 𝑖 = 1, 2, . . . , 𝑙

1
,

̇𝑒
𝑖
(𝑡) = 𝐶𝑒

𝑖
(𝑡) + 𝐴𝑔 (𝑒

𝑖
(𝑡)) + 𝐵𝑔 (𝑒

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑔 (𝑒
𝑖
(𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑒
𝑗
(𝑡)

+ 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑒
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑒
𝑗
(𝑠) 𝑑𝑠

+ 𝑅
𝑖
, 𝑖 = 𝑙

1
+ 1, 𝑙
1
+ 2, . . . , 𝑙,

̇𝑒
𝑖
(𝑡) = 𝐶𝑒

𝑖
(𝑡) + 𝐴𝑔 (𝑒

𝑖
(𝑡)) + 𝐵𝑔 (𝑒

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑔 (𝑒
𝑖
(𝑠)) 𝑑𝑠 + 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑒
𝑗
(𝑡)

+ 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑒
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑒
𝑗
(𝑠) 𝑑𝑠,

𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁.

(26)

Similar to Theorem 7, to reach the goal (7), we have only to
prove that system (26) is asymptotically stable at the origin.
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Figure 2: Chaotic trajectories of (46) with 𝜎
1
(𝑡) (a), 𝜎

2
(𝑡) (b), 𝜎

3
(𝑡) (c).

Theorem 8. Suppose that matrix 𝑈 is irreducible and the
assumptions (H

1
) and (H

2
) hold. If

2𝛼 ‖Φ‖ (�̂�

𝑠

)

𝑐

𝑙

+ Σ𝐼
𝑁−𝑙

< 0, (27)

then the complex networks (25) are synchronized with the
adaptive pinning controllers

𝑅
𝑖
= −𝛼𝜀

𝑖
𝑒
𝑖
(𝑡) − 𝜔𝛽

𝑖
sign (𝑒

𝑖
(𝑡)) ,

̇𝜀
𝑖
= 𝑝
𝑖
𝑒
𝑖
(𝑡)
𝑇

𝑒
𝑖
(𝑡) ,

̇
𝛽
𝑖
= 𝜉
𝑖

𝑛

∑

𝑘=1





𝑒
𝑖𝑘
(𝑡)




,

(28)

where 𝑖 = 1, 2, . . . , 𝑙, Σ = 2(‖𝐶‖ + ‖𝐴‖ℎ) + ((𝜃max𝜃min +

1 − ℎ
𝜃
)/(1 − ℎ

𝜃
))‖‖𝐷‖ℎ𝐼

𝑁
+ 𝛾‖Λ‖|𝑊|‖ + ((2 − ℎ

𝜏
)/(1 −

ℎ
𝜏
))‖‖𝐵‖ℎ𝐼

𝑁
+ 𝛽‖Υ‖|𝑉|‖, and the other parameters are the

same as those of Theorem 7.

Proof. We define another Lyapunov function as

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (29)

where

𝑉
1
(𝑡) =

1

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒
𝑖
(𝑡)

+

1

2

𝑙

∑

𝑖=1

𝛼(𝜀
𝑖
− 𝑘
𝑖
)
2

𝑝
𝑖

+

1

2

𝑙1

∑

𝑖=1

(𝑀
𝑖
− 𝛽
𝑖
)
2

𝜉
𝑖

,

(30)

𝑘
𝑖
, 𝑖 = 1, 2, . . . , 𝑙, are constants to be determined, and 𝑉

2
(𝑡)

and 𝑉
3
(𝑡) are defined as those in the proof of Theorem 7.

In view of (H
1
) and (H

2
), differentiating 𝑉

1
(𝑡) along the

solution of (26) yields

̇
𝑉
1
(𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) ̇𝑒
𝑖
(𝑡) + 𝛼

𝑙

∑

𝑖=1

(𝜀
𝑖
− 𝑘
𝑖
) 𝑒
𝑇

𝑖
(𝑡) 𝑒
𝑖
(𝑡)

−

𝑙1

∑

𝑖=1

(𝑀
𝑖
− 𝛽
𝑖
)

𝑛

∑

𝑘=1





𝑒
𝑖𝑘
(𝑡)





≤

𝑁

∑

𝑖=1

[ (‖𝐶‖ + ‖𝐴‖ ℎ)




𝑒
𝑖
(𝑡)





2

+ ‖𝐵‖ ℎ




𝑒
𝑖
(𝑡)









𝑒
𝑖
(𝑡 − 𝜏 (𝑡))






+ ‖𝐷‖ ℎ




𝑒
𝑖
(𝑡)




∫

𝑡

𝑡−𝜃(𝑡)





𝑒
𝑖
(𝑠)




𝑑𝑠]

− 𝛼

𝑙

∑

𝑖=1

𝑘
𝑖





𝑒
𝑖
(𝑡)





2

+ 𝛼

𝑁

∑

𝑖=1

𝜆
Φ
𝑠

min𝑢𝑖𝑖




𝑒
𝑖
(𝑡)





2

+ 𝛼

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗
‖Φ‖





𝑒
𝑖
(𝑡)










𝑒
𝑗
(𝑡)







+ 𝛽

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1






V
𝑖𝑗






‖Υ‖





𝑒
𝑖
(𝑡)










𝑒
𝑗
(𝑡 − 𝜏 (𝑡))
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Figure 3: Synchronization errors of (47): (a) 𝑒
𝑖1
(𝑡), (b) 𝑒

𝑖2
(𝑡), (c) 𝑒

𝑖3
(𝑡), 𝑖 = 1, 2, 3.
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𝜀 𝑖
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), 
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𝑖
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𝑡
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Figure 4: The adaptive control gains of (47): (a) the adaptive gains 𝜀
𝑖
, 1 ≤ 𝑖 ≤ 3, (b) the adaptive gains 𝛽

𝑖
, 1 ≤ 𝑖 ≤ 3.
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+ 𝛾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1






𝑤
𝑖𝑗






‖Λ‖





𝑒
𝑖
(𝑡)




∫

𝑡

𝑡−𝜃(𝑡)






𝑒
𝑗
(𝑠)






𝑑𝑠

= 𝜂
𝑇

(𝑡) ((‖𝐶‖ + ‖𝐴‖ ℎ) 𝐼
𝑁
+ 𝛼 (‖Φ‖ �̂�

𝑠

− 𝐾)) 𝜂 (𝑡)

+ 𝜂
𝑇

(𝑡) (‖𝐵‖ ℎ𝐼
𝑁
+ 𝛽 ‖Υ‖ |𝑉|) 𝜂 (𝑡 − 𝜏 (𝑡))

+ 𝜂
𝑇

(𝑡) (‖𝐷‖ ℎ𝐼
𝑁
+ 𝛾 ‖Λ‖ |𝑊|) ∫

𝑡

𝑡−𝜃(𝑡)

𝜂 (𝑠) 𝑑𝑠,

(31)

where𝐾 = diag(𝑘
1
, . . . , 𝑘

𝑙
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁−𝑙

), and the following deduc-

tion is used:
𝑙1

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝜎
𝑖
(𝑡) − 𝜔

𝑙1

∑

𝑖=1

𝑛

∑

𝑘=1

𝛽
𝑖





𝑒
𝑖𝑘
(𝑡)





−

𝑙1

∑

𝑖=1

𝑛

∑

𝑘=1

(𝑀
𝑖
− 𝛽
𝑖
)




𝑒
𝑖𝑘
(𝑡)




− 𝜔

𝑙

∑

𝑖=𝑙1+1

𝑛

∑

𝑘=1

𝛽
𝑖





𝑒
𝑖𝑘
(𝑡)





≤

𝑙1

∑

𝑖=1

𝑛

∑

𝑘=1

[




𝑒
𝑖𝑘
(𝑡)




𝑀
𝑖𝑘
−𝑀
𝑖





𝑒
𝑖𝑘





− (𝜔 − 1) 𝛽

𝑖





𝑒
𝑖𝑘





]

− 𝜔

𝑙

∑

𝑖=𝑙1+1

𝑛

∑

𝑘=1

𝛽
𝑖





𝑒
𝑖𝑘
(𝑡)





≤ −

𝑙1

∑

𝑖=1

𝑛

∑

𝑘=1

(𝜔−1) 𝛽
𝑖





𝑒
𝑖𝑘





− 𝜔

𝑙

∑

𝑖=𝑙1+1

𝑛

∑

𝑘=1

𝛽
𝑖





𝑒
𝑖𝑘
(𝑡)




≤ 0.

(32)

Combining (31) with (17) and (25), we have

̇
𝑉 (𝑡) ≤

1

2

𝜁
𝑇

(𝑡)Π𝜁 (𝑡) , (33)

where 𝜁(𝑡) = (𝜂𝑇(𝑡), 𝜂𝑇(𝑡 − 𝜏(𝑡)), (∫𝑡
𝑡−𝜃(𝑡)

𝜂(𝑠)𝑑𝑠)
𝑇

)
𝑇 and

Π =

[

[

[

[

[

[

Π
11

Π
12

Π
13

Π
𝑇

12
−2 (1 − ℎ

𝜏
) 𝑄 0

Π
𝑇

13
0 −

2 (1 − ℎ
𝜃
)

𝜃min
𝐺

]

]

]

]

]

]

(34)

withΠ
11
= 2((‖𝐶‖+ ‖𝐴‖ℎ)𝐼

𝑁
+𝛼(‖Φ‖�̂�

𝑠

−𝐾) + 𝑄 + 𝜃max𝐺),
Π
12
= ‖𝐵‖ℎ𝐼

𝑁
+ 𝛽‖Υ‖|𝑉|, Π

13
= ‖𝐷‖ℎ𝐼

𝑁
+ 𝛾‖Λ‖|𝑊|.

According to Lemma 4,Π < 0 is equivalent to

Δ = 2 ((‖𝐶‖ + ‖𝐴‖ ℎ) 𝐼
𝑁
+ 𝛼 (‖Φ‖ �̂�

𝑠

− 𝐾) + 𝑄 + 𝜃max𝐺)

+

1

2 (1 − ℎ
𝜏
)

(‖𝐵‖ ℎ𝐼
𝑁
+ 𝛽 ‖Υ‖ |𝑉|)𝑄

−1

× (‖𝐵‖ ℎ𝐼
𝑁
+ 𝛽 ‖Υ‖ |𝑉|

𝑇

)

+

𝜃min
2 (1 − ℎ

𝜃
)

(‖𝐷‖ ℎ𝐼
𝑁
+ 𝛾 ‖Λ‖ |𝑊|) 𝐺

−1

× (‖𝐷‖ ℎ𝐼
𝑁
+ 𝛾 ‖Λ‖ |𝑊|

𝑇

) < 0.

(35)
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Figure 5: Chaotic trajectory of (49).
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Figure 6: Chaotic trajectory of (51).

Let𝑄 = (1/2(1−ℎ
𝜏
))‖‖𝐵‖ℎ𝐼

𝑁
+𝛽‖Υ‖|𝑉|‖𝐼

𝑁
,𝐺 = (𝜃min/2(1−

ℎ
𝜃
))‖‖𝐷‖ℎ𝐼

𝑁
+ 𝛾‖Λ‖|𝑊|‖𝐼

𝑁
. We have

Δ ≤ 2 (‖𝐶‖ + ‖𝐴‖ ℎ) 𝐼
𝑁
+ 2𝛼 (‖Φ‖ �̂�

𝑠

− 𝐾)

+

𝜃max𝜃min + 1 − ℎ𝜃
1 − ℎ
𝜃





‖𝐷‖ ℎ𝐼

𝑁
+ 𝛾 ‖Λ‖ |𝑊|





𝐼
𝑁

+

2 − ℎ
𝜏

1 − ℎ
𝜏





‖𝐵‖ ℎ𝐼

𝑁
+ 𝛽 ‖Υ‖ |𝑉|





𝐼
𝑁−1

= [

Δ
11

2𝛼 ‖Φ‖ (�̂�

𝑠

)
∗

2𝛼 ‖Φ‖ (�̂�

𝑠

)

𝑇

∗

2𝛼 ‖Φ‖ (�̂�

𝑠

)

𝑐

𝑙

+ Σ𝐼
𝑁−𝑙

] ,

(36)

where Δ
11
= 2𝛼‖Φ‖(�̂�

𝑠

)
𝑙
− 2𝛼𝐾

𝑙
+ Σ𝐼
𝑙
, 2𝛼‖Φ‖(�̂�𝑠)

∗
is matrix

with appropriate dimension.
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(a) (b)

Figure 7: WS Small-Worlds with 10 nodes. In (a) each node connects 4 nodes, and the rewire probability is 0.2; in (b) each node connects 2
nodes, and the rewire probability is 0.4.
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Figure 8: Synchronization errors of (52): (a) 𝑒
𝑖1
, (b) 𝑒

𝑖2
, 1 ≤ 𝑖 ≤ 10.

Since 2𝛼‖Φ‖(�̂�𝑠)𝑐
𝑙
+ Σ𝐼
𝑁−𝑙

< 0 and there exist positive
constants 𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑙
such that

2𝛼 ‖Φ‖ (�̂�

𝑠

)
𝑙

− 2𝛼𝐾
𝑙
+ Σ𝐼
𝑙
− (2𝛼 ‖Φ‖)

2

(�̂�

𝑠

)
∗

× (2𝛼 ‖Φ‖ (�̂�

𝑠

)

𝑐

𝑙

+ Σ𝐼
𝑁−𝑙

)

−1

(�̂�

𝑠

)

𝑇

∗

< 0,

(37)

again, from Lemma 4 we obtainΔ < 0. Hence,Π < 0. Denote
𝜆min to be the minimum eigenvalue of −Π; then

̇
𝑉 (𝑡) ≤ −𝜆min

𝑁

∑

𝑖=1





𝑒
𝑖
(𝑡)





2

≤ 0. (38)

Integrating both sides of the previous equation from 0 to 𝑡
yields

𝑉 (0) ≥ 𝑉 (𝑡) + 𝜆min

𝑁

∑

𝑖=1

∫

𝑡

0





𝑒
𝑖
(𝑠)





2

𝑑𝑠

≥ 𝜆min

𝑁

∑

𝑖=1

∫

𝑡

0





𝑒
𝑖
(𝑠)





2

𝑑𝑠.

(39)

Therefore,

lim
𝑡→∞

𝜆min

𝑁

∑

𝑖=1

∫

𝑡

0





𝑒
𝑖
(𝑠)





2

𝑑𝑠 ≤ 𝑉 (0) . (40)

By Lemma 6 we obtain

lim
𝑡→∞

𝜆min

𝑁

∑

𝑖=1





𝑒
𝑖
(𝑡)





2

= 0, (41)
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Figure 9:The adaptive pinning control gains of (52): (a) the adaptive pinning control gains 𝜀
𝑖
, 𝑖 = 1, 2. (b)The adaptive pinning control gains

𝛽
𝑖
, 𝑖 = 1, 2.

which in turn means

lim
𝑡→∞





𝑒
𝑖
(𝑡)




= 0, 𝑖 = 1, 2, . . . , 𝑁. (42)

This completes the proof.

When there is no external perturbation, that is, 𝜎
𝑖
(𝑡) =

0, 𝑖 = 1, 2, . . . , 𝑁, one can easily get the following corollaries
from Theorems 7 and 8, respectively. We omit their proofs
here.

Corollary 9. Suppose that 𝜎
𝑖
(𝑡) = 0, 𝑖 = 1, 2, . . . , 𝑁, and the

assumption condition (H
1
) holds. Then complex networks (1)

are synchronized with the adaptive controllers (12). Moreover,
the scalar 𝜔 can be relaxed to any positive constant.

Corollary 10. Suppose that matrix 𝑈 is irreducible and
the assumption (H

1
) holds. The complex networks (25) are

synchronized with the adaptive pinning controllers (28), if (27)
holds. Moreover, the scalar 𝜔 can be relaxed to any positive
constant.

Remark 11. From the inequalities (16) and (32) one can see
that the designed adaptive controllers (12) and (28) are very
useful. They can overcome the bad effects of the uncertain
nonlinear perturbations without knowing the exact functions
and bounds of the perturbations as long as the perturbed
systems are chaotic. Especially, when there are only partial
nodes perturbed (the first 𝑙

1
nodes in the system (25)), the

designed controllers still are effective to stabilize the error
system by adding them to nodes with and without such
perturbations, (see the inequality (32)). Obviously, in the case
of no perturbation, the parameter 𝜔 can also be taken as 0.
When 𝜔 = 0, the controllers (12) and (28) turn out to be
the usual adaptive controller, which is extensively utilized
to synchronize coupled systems with or without stochastic
perturbations [8, 23–34, 40–42]. However, the controllers
in [8, 23–34, 40–42] cannot synchronize coupled systems

with nonstochastic perturbations. Therefore, the designed
controllers can deal with both stochastic and nonstochastic
perturbations to the systems, and hence they have better
robustness than usual adaptive controllers.

Remark 12. Model (1) can be extended to the following more
general complex networks:

̇𝑥
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓

𝜏
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓
𝜃
(𝑥
𝑖
(𝑠)) 𝑑𝑠 + 𝐼 (𝑡)

+ 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡) + 𝛽

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+ 𝛾

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗
(𝑠) 𝑑𝑠 + 𝜎

𝑖
(𝑡) + 𝑅

𝑖
,

𝑖 = 0, 1, . . . , 𝑁.

(43)

Moreover, we can also consider stochastic perturbations [21]
and Markovian jump [43, 44] in (43) to get more general
results. For simplicity, we omit the corresponding results and
only consider model (1).

5. Numerical Examples

In this section, we provide two examples to illustrate the gen-
eral model and the advantage of the new adaptive controller.

Example 13. The Lorenz system is described as

̇𝑧 (𝑡) = 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) , (44)
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where

𝐶 =
[

[

−10 10 0

28 −1 0

0 0 8/3

]

]

, 𝐴 =
[

[

0 0 0

0 1 0

0 0 1

]

]

, (45)

𝑓(𝑧(𝑡)) = (0, −𝑧
1
(𝑡)𝑧
3
(𝑡), 𝑧
1
(𝑡)𝑧
2
(𝑡))
𝑇. When initial values are

taken as 𝑧
1
(0) = 0.8, 𝑧

2
(0) = 2, 𝑧

3
(0) = 2.5, chaotic trajectory

of (44) can be seen in Figure 1.
The following three perturbedLorenz systems are chaotic:

̇
𝑧 (𝑡) = 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝜎

𝑖
(𝑡) , 𝑖 = 1, 2, 3, (46)

where 𝜎
1
(𝑡) = (0.1𝑧

2

1
(𝑡), 0.2𝑧

2
(𝑡), 0.2𝑧

3
(𝑡))
𝑇, 𝜎
2
(𝑡) =

(0.1𝑧
1
(𝑡), 0.05𝑧

2

2
(𝑡), sin 𝑧

3
(𝑡))
𝑇, 𝜎
3
(𝑡) = (0.1𝑧

1
(𝑡), cos 𝑧

2
(𝑡),

sin 𝑧
3
(𝑡))
𝑇. Chaotic trajectories of the three perturbed Lorenz

systems are showed in Figure 2 with the same initial values
𝑧
1
(0) = 0.8, 𝑧

2
(0) = 2, 𝑧

3
(0) = 2.5.

Now consider the following complex networks with each
node as the previous perturbed Lorenz system:

̇𝑥
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡))

+ 𝛼

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡) + 𝜎

𝑖
(𝑡) + 𝑅

𝑖
, 𝑖 = 0, 1, 3,

(47)

where 𝛼 = 0.5, Φ = 𝐼
3
and

𝑈 =
[

[

−1 1 0

1 −1 0

1 1 −2

]

]

. (48)

Obviously, conditions (H
1
) and (H

2
) are satisfied. According

to Theorem 7, the complex networks (47) can be synchro-
nized with adaptive controllers (12).

The initial conditions of the numerical simulations are
as follows: 𝜔 = 4, step = 0.0005, 𝑥

1
(0) = (−2, −1, 0)

𝑇,
𝑥
2
(0) = (1, 2, 3)

𝑇, 𝑥
3
(0) = (4, 5, 6)

𝑇, 𝜀
𝑖
(0) = 1, 𝛽

𝑖
(0) = 2, 𝑝

𝑖
=

𝜉
𝑖
= 0.5, 𝑖 = 1, 2, 3. Figure 3 describes the synchronization

errors 𝑒
𝑖𝑗
(𝑡) = 𝑥

𝑖𝑗
(𝑡) − 𝑧

𝑗
(𝑡), 𝑖, 𝑗 = 1, 2, 3. Figure 4 shows

the adaptive feedback gains. Numerical simulations verify the
effectiveness of Theorem 7.

Example 14. Consider the following chaotic neural networks
with mixed delays:

̇𝑧 (𝑡) = 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜎(𝑡)

𝑓 (𝑧 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) ,

(49)

where 𝑧(𝑡) = (𝑧
1
(𝑡), 𝑧
2
(𝑡))
𝑇

, 𝜏(𝑡) = 1, 𝜎(𝑡) = 0.3, 𝑓(𝑧(𝑡)) =

(tanh(𝑧
1
(𝑡), tanh(𝑧

2
(𝑡))
𝑇,

𝐶 = [

−1.2 0

0 −1
] , 𝐴 = [

3 −0.3

8 5
] ,

𝐼 = [

0

2
] , 𝐵 = [

−1.4 0.1

0.3 −8
] , 𝐷 = [

−1.2 0.1

−2.8 −1
] .

(50)

In the case that the initial condition is chosen as 𝑧
1
(𝑡) = 0.4,

𝑧
2
(𝑡) = 0.6, for all 𝑡 ∈ [−1, 0], the chaotic attractor can be

seen in Figure 5.
The perturbed system of (49) is

̇
𝑧 (𝑡) = 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜎(𝑡)

𝑓 (𝑧 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) + 𝜎 (𝑡) ,

(51)

where 𝜎(𝑡) = (0.2𝑧
1
(𝑡 − 1), 0.2 ∫

𝑡

𝑡−0.3

𝑧
2
(𝑠)𝑑𝑠)

𝑇. The chaotic
attractor of (51) can be seen in Figure 6 with 𝑧

1
(𝑡) = 0.4,

𝑧
2
(𝑡) = 0.6, for all 𝑡 ∈ [−1, 0].
Now consider the following complex networks with each

node as the previous neural networks withmixed delays (49),
while the second node is disturbed with the previous 𝜎(𝑡).

̇𝑥
𝑖
(𝑡) = 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝑓 (𝑥
𝑖
(𝑠)) 𝑑𝑠 + 𝐼 (𝑡) + 𝛼

10

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡)

+ 𝛽

10

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) + 𝛾

10

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝑥
𝑗
(𝑠) 𝑑𝑠

+ 𝜎
𝑖
(𝑡) + 𝑅

𝑖
, 𝑖 = 0, 1, . . . , 10,

(52)

where 𝛼 = 3, 𝛽 = 𝛾 = 1, 𝜎
2
(𝑡) = 𝜎(𝑡), else 𝜎

𝑖
(𝑡) = 0.

Figure 7 depicts the WS Small-World networks [2] cor-
responding to nondelay (a), discrete delay, and distributed
delay (b). The corresponding Laplacian matrices are shown
as following:

𝑈 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−4 1 1 0 0 0 0 0 1 1

1 −5 1 1 0 0 0 0 1 1

1 1 −4 1 1 0 0 0 0 0

0 1 1 −4 1 1 0 0 0 0

0 0 1 1 −4 1 1 0 0 0

0 0 0 1 1 −4 1 1 0 0

0 0 0 0 1 1 −4 1 1 0

0 0 0 0 0 1 1 −4 1 1

1 1 0 0 0 0 1 1 −4 0

1 1 0 0 0 0 0 1 0 −3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (53)

𝑉 = 𝑊 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−2 1 0 0 0 1 0 0 0 0

1 −2 1 0 0 0 0 0 0 0

0 1 −2 0 0 0 0 0 1 0

0 0 0 −1 1 0 0 0 0 0

0 0 0 1 −3 0 1 0 0 1

1 0 0 0 0 −1 0 0 0 0

0 0 0 0 1 0 −2 1 0 0

0 0 0 0 0 0 1 −2 1 0

0 0 1 0 0 0 0 1 −3 1

0 0 0 0 1 0 0 0 1 −2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(54)

Take the first two nodes (corresponding to matrix 𝑈) to
be controlled. According Theorem 8, the complex networks
(52) can be synchronized with adaptive controllers (27).
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The initial conditions of the numerical simulations are as
follows: 𝜔 = 2, step = 0.0005, 𝑥

𝑖
(0) = (−11 + 2𝑖, −10 +

2𝑖)
𝑇

, 𝑖 = 1, 2, . . . , 10. 𝜀
𝑖
(0) = 𝛽

𝑖
(0) = 𝑝

𝑖
= 𝜉
𝑖
= 1, 𝑖 =

1, 2. Figure 8 describes the synchronization errors 𝑒
𝑖𝑗
(𝑡) =

𝑥
𝑖𝑗
(𝑡) − 𝑧

𝑗
(𝑡), 𝑖 = 1, 2, . . . , 10, 𝑗 = 1, 2. Figure 9 depicts the

adaptive feedback gains. Numerical simulations verify the
effectiveness of Theorem 8.

6. Conclusions

External perturbations to networks are unavoidable in prac-
tice. On the other hand, many chaotic models have discrete
delay and distributed delay.Therefore, in this paper, we intro-
duced a class of hybrid coupled complex networkswithmixed
delays and unknown nonstochastic external perturbations. A
simple robust adaptive controller is designed to synchronize
the complex networks even without knowing a priori the
bounds and the exact functions of the perturbations. It should
be emphasized that we do not assume that the coupling
matrix is symmetric or diagonal. The controller can enhance
robustness and reduce fragility of complex networks; hence,
it has great practical significance. Moreover, we also verify
the effectiveness of the theoretical results by numerical
simulations.
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[23] J. Zhou, J. Lu, and J. Lü, “Adaptive synchronization of an
uncertain complex dynamical network,” Institute of Electrical
and Electronics Engineers, vol. 51, no. 4, pp. 652–656, 2006.

[24] Q. Zhu and J. Cao, “Adaptive synchronization under almost
every initial data for stochastic neural networks with time-
varying delays and distributed delays,” Communications in
Nonlinear Science and Numerical Simulation, vol. 16, no. 4, pp.
2139–2159, 2011.



14 Abstract and Applied Analysis

[25] M. Chen and D. Zhou, “Synchronization in uncertain complex
networks,” Chaos, vol. 16, no. 1, Article ID 013101, 8 pages, 2006.

[26] J. Cao, Z. Wang, and Y. Sun, “Synchronization in an array
of linearly stochastically coupled networks with time delays,”
Physica A, vol. 385, no. 2, pp. 718–728, 2007.
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A class of polynomial differential systemswith high-order nilpotent critical points are investigated in this paper.Those systems could
be changed into systems with an element critical point. The center conditions and bifurcation of limit cycles could be obtained by
classical methods. Finally, an example was given; with the help of computer algebra systemMATHEMATICA, the first 5 Lyapunov
constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there
exist 5 small amplitude limit cycles created from the high-order nilpotent critical point is also proved.

1. Introduction

In the qualitative theory of ordinary differential equations,
bifurcation of limit cycles for planar polynomial differential
systems which belong to second part of the Hilbert 16th
problem is hot but intractable issue. Of course, this problem
is far from being solved now; there are many famous works
about this problem. Let 𝐻(𝑛) be the maximum possible
number of limit cycles bifurcating from infinity for analytic
vector fields of degree 𝑛. It was found that 𝑁(3) ≥ 7 [1, 2],
𝑁(5) ≥ 11 [3],𝑁(7) ≥ 13 [4].

When the critical point is a nilpotent critical point,
let 𝑁(𝑛) be the maximum possible number of limit cycles
bifurcating from nilpotent critical points for analytic vector
fields of degree 𝑛. It was found that 𝑁(3) ≥ 2, 𝑁(5) ≥ 5,
𝑁(7) ≥ 9 in [5],𝑁(3) ≥ 3,𝑁(5) ≥ 5 in [6], and for a family of
Kukles systems with 6 parameters𝑁(3) ≥ 3 in [7]. Recently,
li and liu other found that 𝑁(3) ≥ 8, 𝑁(5) ≥ 12, 𝑁(7) ≥ 13
[8, 9] employing the inverse integral factor method.

But when the order of nilpotent critical point is higher
than three, it is very difficult to study the limit cycle because
the inverse integral factor method could not be used to
compute the singular values. There are few results about the
bifurcations of limit cycles at a nilpotent critical point with
high order.

In this paper, we will study the bifurcation of limit cycles
and conditions of centers for a class of special system

𝑑𝑥

𝑑𝑡

= 𝑦 +

∞

∑

𝑘=2

𝑓
𝑘
(𝑥
𝑛

, 𝑦) ,

𝑑𝑦

𝑑𝑡

= −𝑥
2𝑛−1

+ 𝑥
𝑛−1

∞

∑

𝑘=2

𝑔
𝑘
(𝑥
𝑛

, 𝑦) .

(1)

Obviously, when 𝑛 = 1, the system is

𝑑𝑥

𝑑𝑡

= 𝑦 +

∞

∑

𝑘=2

𝑓
𝑘
(𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡

= −𝑥 +

∞

∑

𝑘=2

𝑔
𝑘
(𝑥, 𝑦) .

(2)

Theorigin is an element critical point, but it is a high order
nilpotent critical point when 𝑛 > 1.

This paper will be organized as follows. In Section 2, we
state some preliminary knowledge given in [10] which is
useful throughout the paper. In Section 3, we make some
transformations to change system (2) into a system with
an element singular. As an example, a special system is
investigated. Using the linear recursive formulae in [10] to do
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direct computation, we obtain the first 5 Lyapunov constants
and the sufficient and necessary conditions of center and the
result that there exist 5 limit cycles in the neighborhood of the
high-order nilpotent critical point are proved.

2. Preliminary Knowledge

The ideas of this section come from [10], where the center
focus problem of critical points in the planar dynamical
systems are studied. We first recall the related notions and
results. For more details, please refer to [10].

In [10], the authors defined complex center and complex
isochronous center for the following complex system:

𝑑𝑧

𝑑𝑇

= 𝑧 +

∞

∑

𝑘=2

∑

𝛼+𝛽=𝑘

𝑎
𝛼𝛽
𝑧
𝛼

𝑤
𝛽

= 𝑍 (𝑧, 𝑤) ,

𝑑𝑤

𝑑𝑇

= −𝑤 −

∞

∑

𝑘=2

∑

𝛼+𝛽=𝑘

𝑏
𝛼𝛽
𝑤
𝛼

𝑧
𝛽

= −𝑊(𝑧, 𝑤) ,

(3)

and gave two recursive algorithms to determine necessary
conditions for a center and an isochronous center. We now
restate the definitions and algorithms.

Lemma 1. For system (3), we can derive uniquely the following
formal series:

𝜉 = 𝑧 +

∞

∑

𝑘+𝑗=2

𝑐
𝑘𝑗
𝑧
𝑘

𝑤
𝑗

,

𝜂 = 𝑤 +

∞

∑

𝑘+𝑗=2

𝑑
𝑘𝑗
𝑤
𝑘

𝑧
𝑗

,

(4)

where 𝑐
𝑘+1,𝑘

= 𝑑
𝑘+1,𝑘

= 0, 𝑘 = 1, 2, . . ., such that

𝑑𝜉

𝑑𝑇

= 𝜉 +

∞

∑

𝑗=1

𝑝
𝑗
𝜉
𝑗+1

𝜂
𝑗

,

𝑑𝜂

𝑑𝑇

= −𝜂 −

∞

∑

𝑗=1

𝑞
𝑗
𝜂
𝑗+1

𝜉
𝑗

.

(5)

Definition 2. Let𝜇
0
= 0,𝜇

𝑘
= 𝑝
𝑘
−𝑞
𝑘
, 𝜏
𝑘
= 𝑝
𝑘
+𝑞
𝑘
, 𝑘 = 1, 2, . . ..

𝜇
𝑘
is called the 𝑘th singular point quantity of the origin of

system (3) and 𝜏
𝑘
is called the 𝑘th period constant of the origin

of system (3).

Theorem3. For system (3), the origin is a complex center if and
only if 𝜇

𝑘
= 0, 𝑘 = 1, 2, . . .. The origin is a complex isochronous

center if and only if 𝜇
𝑘
= 𝜏
𝑘
= 0, 𝑘 = 1, 2, . . ..

Theorem 4. For system (3), we can derive successively the
terms of the following formal series:

𝑀(𝑧,𝑤) =

∞

∑

𝛼+𝛽=0

𝑐
𝛼𝛽
𝑧
𝛼

𝑤
𝛽

, (6)

such that
𝜕 (MZ)
𝜕𝑧

−

𝜕 (MW)
𝜕𝑤

=

∞

∑

𝑚=1

(𝑚 + 1) 𝜇
𝑚
(𝑧𝑤)
𝑚

, (7)

where 𝑐
00
= 1, for all 𝑐

𝑘𝑘
∈ 𝑅, 𝑘 = 1, 2, . . ., and for any integer

𝑚, 𝜇
𝑚
is determined by the following recursive formulae:

𝑐
𝛼𝛽
=

1

𝛽 − 𝛼

𝛼+𝛽+2

∑

𝑘+𝑗=3

[(𝛼 + 1) 𝑎
𝑘,𝑗−1

− (𝛽 + 1) 𝑏
𝑗,𝑘−1

] 𝑐
𝛼−𝑘+1,𝛽−𝑗+1

,

𝜇
𝑚
=

2𝑚+2

∑

𝑘+𝑗=3

(𝑎
𝑘,𝑗−1

− 𝑏
𝑗,𝑘−1

) 𝑐
𝑚−𝑘+1,𝑚−𝑗+1

.

(8)

Theorem 5 (the constructive theorem of singular point
quantities in [10]). A 𝑘-order singular point quantity of system
(3) at the origin can be represented as a linear combination of 𝑘-
order monomial Lie invariants and their antisymmetry forms,
that is,

𝜇
𝑘
=

𝑁

∑

𝑗=1

𝛾
𝑘𝑗
(𝑔
𝑘𝑗
− 𝑔
∗

𝑘𝑗
) , 𝑘 = 1, 2, . . . , (9)

where𝑁 is a positive integer and 𝛾
𝑘𝑗
is a rational number, 𝑔

𝑘𝑗

and 𝑔∗
𝑘𝑗
are 𝑘-order monomial Lie invariants of system (3).

Theorem 6 (the extended symmetric principle in [10]). Let
𝑔 denote an elementary Lie invariant of system (3). If for all 𝑔
the symmetric condition 𝑔 = 𝑔∗ is satisfied, then the origin
of system (3) is a complex center. Namely, all singular point
quantities of the origin are zero.

3. Simplification of System

In fact, system (1) is symmetric with axis when 𝑛 is even, so
the origin is a center. Now we will consider system (1) when
𝑛 = 2𝑘 + 1 is odd.

By transformations

𝑢 = 𝑥
2𝑘+1

, V = 𝑦, 𝑑𝜏 = 𝑢
2𝑘/(2𝑘+1)

𝑑𝑡 (10)

system (1) is changed into

𝑑𝑢

𝑑𝜏

= (2𝑘 + 1) V + (2𝑘 + 1)
∞

∑

𝑘=2

𝑓
𝑘
(𝑢, V) ,

𝑑V

𝑑𝜏

= −𝑢 +

∞

∑

𝑘=2

𝑔
𝑘
(𝑢, V) .

(11)

then by transformations

𝑥 = 𝑢, 𝑦 = √2𝑘 + 1V, 𝑑𝜏 = √2𝑘 + 1𝑑𝑡, (12)

system (11) could be changed into

𝑑𝑥

𝑑𝜏

= −𝑦 − √2𝑘 + 1

∞

∑

𝑘=2

𝑓
𝑘
(𝑥,

1

√2𝑘 + 1

𝑦) ,

𝑑V

𝑑𝜏

= 𝑥 −

∞

∑

𝑘=2

𝑔
𝑘
(𝑥,

1

√2𝑘 + 1

𝑦) .

(13)
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Thus, the origin of system (13) is an element critical point.
It could be investigated using the classical integral factor
method.

Now, we consider the following system:

𝑑𝑥

𝑑𝑡

= 𝑦 + 𝐴
30
𝑥
3𝑛

+ 𝐴
21
𝑥
2𝑛

𝑦 + 𝐴
12
𝑥
𝑛

𝑦
2

+ 𝐴
03
𝑦
3

,

𝑑𝑦

𝑑𝑡

= −𝑥
2𝑛−1

+ 𝑥
𝑛−1

(𝐵
30
𝑥
3𝑛

+ 𝐵
21
𝑥
2𝑛

𝑦 + 𝐵
12
𝑥
𝑛

𝑦
2

+ 𝐵
03
𝑦
3

) .

(14)

When 𝑛 = 2𝑘 + 1, by those transformations, system (14)
is changed into

𝑑𝑥

𝑑𝑡

= −𝑦 − √2𝑘 + 1(𝐴
30
𝑥
3

+

𝐴
21

√2𝑘 + 1

𝑥
2

𝑦

+

𝐴
12

2𝑘 + 1

𝑥𝑦
2

+

𝐴
03

(2𝑘 + 1)
3/2

) ,

𝑑𝑦

𝑑𝑡

= 𝑥 − (𝐵
30
𝑥
3

+

𝐵
21

√2𝑘 + 1

𝑥
2

𝑦 +

𝐵
12

2𝑘 + 1

𝑥𝑦
2

+

𝐵
03

(2𝑘 + 1)
3/2

𝑦
3

) ,

(15)

where

𝐴
30
=

−2𝐴
2
− 2𝐴
3
− 3𝐴
4
+ 2𝐴
2
𝑘 + 𝐴

4
𝑘

16(1 + 2𝑘)
3

,

𝐴
21
=

−9𝐵
1
+ 𝐵
2
+ 𝐵
3
+ 3𝐵
1
𝑘

8(1 + 2𝑘)
5/2

,

𝐴
12
=

−2𝐴
2
− 2𝐴
3
+ 9𝐴
4
+ 2𝐴
2
𝑘 − 3𝐴

4
𝑘

16(1 + 2𝑘)
2

,

𝐴
03
=

3𝐵
1
+ 𝐵
2
+ 𝐵
3
− 𝐵
1
𝑘

8(1 + 2𝑘)
3/2

,

𝐵
30
=

3𝐵
1
− 𝐵
2
+ 𝐵
3
− 𝐵
1
𝑘

8(1 + 2𝑘)
5/2

,

𝐵
21
=

−2𝐴
2
+ 2𝐴
3
− 45𝐴

4
+ 2𝐴
2
𝑘 + 15𝐴

4
𝑘

16(1 + 2𝑘)
2

,

𝐵
12
=

−9𝐵
1
− 𝐵
2
+ 𝐵
3
+ 3𝐵
1
𝑘

8(1 + 2𝑘)
3/2

,

𝐵
03
=

−2𝐴
2
+ 2𝐴
3
+ 15𝐴

4
+ 2𝐴
2
𝑘 − 5𝐴

4
𝑘

16 (1 + 2𝑘)

.

(16)

By transformation

𝑧 = 𝑥 + 𝑖𝑦, 𝑤 = 𝑥 − 𝑖𝑦, 𝑇 = 𝑖𝑡, (17)

system (15) is changed into

𝑑𝑧

𝑑𝑇

= 𝑧 + 𝑎
30
𝑧
3

+ 𝑎
21
𝑧
2

𝑤 + 𝑎
12
𝑧𝑤
2

+ 𝑎
03
𝑤
3

,

𝑑𝑤

𝑑𝑇

= −𝑤 − 𝑏
30
𝑤
3

− 𝑏
21
𝑤
2

𝑧 − 𝑏
12
𝑤𝑧
2

− 𝑏
03
𝑧
3

,

(18)

where

𝑎
30
=

(3𝑖𝐴
4
+ 2𝐵
1
) (𝑘 − 3)

16(1 + 2𝑘)
5/2

,

𝑎
21
=

−𝑖𝐴
2
+ 𝐵
2
+ 𝑖𝐴
2
𝑘

8(1 + 2𝑘)
5/2

,

𝑎
12
= −

𝑖 (𝐴
3
− 𝑖𝐵
3
)

8(1 + 2𝑘)
5/2

,

𝑎
03
= −

𝑖𝐴
4
(𝑘 − 3)

8(1 + 2𝑘)
5/2

, 𝑏
𝑖𝑗
= 𝑎
𝑖𝑗
.

(19)

After careful computation by using formula in (4), we
have the following.

Theorem 7. For system (18), the first 5 Lyapunov constants at
the origin are given by

𝜆
1
=

𝑖𝐴
2
(𝑘 − 1)

4(1 + 2𝑘)
5/2

,

𝜆
2
=

𝑖 (2𝐴
3
𝐵
1
+ 3𝐴
4
𝐵
3
) (𝑘 − 3)

64(1 + 2𝑘)
5

.

(20)

When 𝐴
4
𝐵
1
/= 0

𝜆3 =

𝑖𝐴4 (3𝐴4 − 2𝐵1) (3𝐴4 + 2𝐵1) (𝑘 − 3) (−9 + 3𝑘 − 2𝑝) (−3 + 𝑘 + 6𝑝)

8192(1 + 2𝑘)
15/2

,

𝜆4 =

𝑖𝐴4𝐵2 (3𝐴4 − 2𝐵1) (3𝐴4 + 2𝐵1) (𝑘 − 3)
2
(−9 + 3𝑘 − 2𝑝)

49152(1 + 2𝑘)
10

,

𝜆5 =

𝑖𝐴4𝐵
2

1
(3𝐴4 − 2𝐵1) (3𝐴4 + 2𝐵1) (𝑘 − 3)

4
(−9 + 3𝑘 − 2𝑝)

2654208(1 + 2𝑘)
25/2

.

(21)

When 𝐴
4
= 0, 𝐵

1
/= 0

𝜆
2
=

𝑖𝐴
3
𝐵
1
(𝑘 − 3)

32(1 + 2𝑘)
5
. (22)

When 𝐴
4
/= 0, 𝐵

1
= 0

𝜆
2
=

3𝑖𝐴
4
𝐵
3
(𝑘 − 3)

64(1 + 2𝑘)
5
,

𝜆
3
=

3𝑖𝐴
4
(2𝐴
3
− 3𝐴
4
+ 𝐴
4
𝑘) (−2𝐴

3
− 27𝐴

4
+ 9𝐴
4
𝑘) (𝑘 − 3)

8192(1 + 2𝑘)
15/2

,

𝜆
4
= −

𝑖𝐴
4
𝐵
2
(−2𝐴

3
− 27𝐴

4
+ 9𝐴
4
𝑘) (𝑘 − 3)

2

49152(1 + 2𝑘)
10

.

(23)

When 𝐴
4
= 𝐵
1
= 0

𝜆
2
= 𝜆
3
= 𝜆
4
= ⋅ ⋅ ⋅ = 0. (24)

In the above expression of 𝜆
𝑘
, one has already let 𝜆

1
= 𝜆
2
=

𝜆
3
= 𝜆
4
= 0.
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FromTheorem 7, we obtain the following assertion.

Proposition 8. The first 5 Lyapunov constants at the origin of
system (18) are zero if and only if one of the following conditions
is satisfied:

𝑘 = 3, 𝐴
2
= 0, (25)

𝐴
2
= 0, 𝐴

3
=

3 (3𝑘 − 9)

2

𝐴
4
, 𝐵

3
= −2 (3𝑘 − 9) 𝐵

1
,

(26)

𝐴
2
= 0, 2𝐴

3
𝐵
1
= −3𝐴

4
𝐵
3
, 𝐵

1
= −

3

2

𝐴
4
, (27)

𝐴
2
= 0, 2𝐴

3
𝐵
1
= −3𝐴

4
𝐵
3
, 𝐵

1
=

3

2

𝐴
4
, (28)

𝐴
2
= 𝐴
3
= 𝐴
4
= 0, (29)

𝐴
2
= 𝐵
1
= 𝐵
2
= 𝐵
3
= 0, 𝐴

3
= −

𝑘 − 3

2

𝐴
4
, (30)

𝑘 = 1, 𝐴
3
= −9𝐴

4
, 𝐵

3
= 6𝐵
1
, (31)

𝑘 = 1, 2𝐴
3
𝐵
1
= −3𝐴

4
𝐵
3
, 𝐵

1
= −

3

2

𝐴
4
, (32)

𝑘 = 1, 2𝐴
3
𝐵
1
= −3𝐴

4
𝐵
3
, 𝐵

1
=

3

2

𝐴
4
, (33)

𝑘 = 1, 𝐴
3
= 𝐴
4
= 0, (34)

𝑘 = 1, 𝐵
1
= 𝐵
2
= 𝐵
3
= 0, 𝐴

3
= 𝐴
4
. (35)

Furthermore, we have the following.

Theorem 9. The origin of system (18) is a center if and only
if the first 5 Lyapunov constants are zero; that is, one of the
conditions in Proposition 8 is satisfied.

Proof. When one of conditions (25), (27), (28), (29), (30),
(32), (33), and (34) holds, according to Theorems 6, we get
all 𝜇
𝑘
= 0, 𝑘 = 1, 2 . . ..

When condition (26) holds, system (18) could be written
as

𝑑𝑥

𝑑𝑡

= −𝑦 +

(𝑘 − 3)𝐴
4

2(1 + 2𝑘)
5/2

𝑥
3

−

𝐵
2

8(1 + 2𝑘)
5/2

𝑥
2

𝑦

+

3 (𝑘 − 3)𝐴
4

4(1 + 2𝑘)
5/2

𝑥𝑦
2

+

4𝐵
1
𝑘 − 𝐵
2
− 12𝐵

1

8(1 + 2𝑘)
5/2

𝑦
3

,

𝑑𝑦

𝑑𝑡

= 𝑥 +

4𝐵
1
𝑘 + 𝐵
2
− 12𝐵

1

8(1 + 2𝑘)
5/2

𝑥
3

−

3 (𝑘 − 3)𝐴
4

2(1 + 2𝑘)
5/2

𝑥
2

𝑦

+

𝐵
2

8(1 + 2𝑘)
5/2

𝑥𝑦
2

−

(𝑛 − 3)𝐴
4

4(1 + 2𝑘)
5/2

𝑦
3

.

(36)

System (36) has an analytic first integral

𝐻(𝑥, 𝑦) =

1

2

𝑥
2

+

1

2

𝑦
2

+

4𝐵
1
𝑛 + 𝐵
2
− 12𝐵

1

32(1 + 2𝑘)
5/2

𝑥
4

−

(𝑘 − 3)𝐴
4

2(1 + 2𝑘)
5/2

𝑥
3

𝑦 +

𝐵
2

16(1 + 2𝑘)
5/2

𝑥
2

𝑦
2

−

𝑘 − 3

4(1 + 2𝑘)
5/2

𝐴
4
𝑥𝑦
3

−

4𝐵
1
𝑛 − 𝐵
2
− 12𝐵

1

32(1 + 2𝑘)
5/2

𝑦
4

.

(37)

When condition (31) holds, system (18) could be written
as

𝑑𝑥

𝑑𝑡

= −𝑦 + √3(

𝐴
4

27

𝑥
3

−

𝐵
2

216

𝑥
2

𝑦

+

𝐴
4

18

𝑥𝑦
2

−

−8𝐵
1
+ 𝐵
2

216

𝑦
3

) ,

𝑑𝑦

𝑑𝑡

= 𝑥 +

−8𝐵
1
+ 𝐵
2

72√3

𝑥
3

+

𝐴
4

3√3

𝑥
2

𝑦

+

𝐵
2

72√3

𝑥𝑦
2

+

𝐴
4

18√3

𝑦
3

.

(38)

System (38) has an analytic first integral

𝐻(𝑥, 𝑦) =

1

2

𝑥
2

+

1

2

𝑦
2

−

−8𝐵
1
− 𝐵
2

864

𝑦
4

+

√3 (−8𝐵
1
+ 𝐵
2
)

864

𝑥
4

+

√3

432

𝐵
2
𝑥
2

𝑦
2

+

√3𝐴
4

9

𝑥
3

𝑦.

(39)

When condition (35) holds, system (18) could be written
as

𝑑𝑥

𝑑𝑡

= −𝑦 +

√3𝐴
4

108

𝑥
3

−

√3𝐴
4

108

𝑥𝑦
2

,

𝑑𝑦

𝑑𝑡

= 𝑥 +

7√3𝐴
4

108

𝑥
2

𝑦 −

√3𝐴
4

36

𝑦
3

.

(40)

System (40) has an analytic first integral

𝐻(𝑥, 𝑦) =

1

2

𝑥
2

+

1

2

𝑦
2

−

√3𝐴
4

108

𝑥
3

𝑦 −

√3𝐴
4

36

𝑥𝑦
3

. (41)

Next, wewill prove that when the critical point𝑂(0, 0) is a
5-order weak focus, the perturbed system of (15) can generate
5 limit cycles enclosing the origin of perturbation system (15).

Using the fact

𝜆
1
= 𝜆
2
= 𝜆
3
= 𝜆
4
= 0, 𝜆

5
/= 0, (42)

we obtain the following.
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Theorem 10. The origin of system (18) is a 5-order weak focus
if and only if one of the following conditions is satisfied:

𝐴
2
=0, 𝐴

3
=

3 − 𝑘

2

𝐴
4
, 𝐵

3
=−

3 − 𝑘

3

𝐵
1
, 𝐵

2
=0,

𝐴
4
𝐵
2

1
(3𝐴
4
− 2𝐵
1
) (3𝐴
4
+ 2𝐵
1
) (𝑘 − 3) /= 0,

(43)

𝑘 = 1, 𝐴
3
= 𝐴
4
, 𝐵

3
= −

2

3

𝐵
1
, 𝐵

2
= 0,

𝐴
4
𝐵
1
(3𝐴
4
− 2𝐵
1
) (3𝐴
4
+ 2𝐵
1
) /= 0.

(44)

We next study the perturbed system of (15) as follows:

𝑑𝑥

𝑑𝑡

= 𝛿𝑥 − 𝑦 − √2𝑘 + 1(𝐴
30
𝑥
3

+

𝐴
21

√2𝑘 + 1

𝑥
2

𝑦

+

𝐴
12

2𝑘 + 1

𝑥𝑦
2

+

𝐴
03

(2𝑘 + 1)
3/2

) ,

𝑑𝑦

𝑑𝑡

= 𝛿𝑦 + 𝑥 − (𝐵
30
𝑥
3

+

𝐵
21

√2𝑘 + 1

𝑥
2

𝑦

+

𝐵
12

2𝑘 + 1

𝑥𝑦
2

+

𝐵
03

(2𝑘 + 1)
3/2

) .

(45)

Theorem 11. If the origin of system (15) is a 5-order weak focus,
for 0 < 𝛿 ≪ 1, making a small perturbation to the coefficients
of system (15), then, for system (45), in a small neighborhood
of the origin, there exist exactly 5 small amplitude limit cycles
enclosing the origin 𝑂(0, 0).

Proof. It is easy to check that when condition (43) or (44)
holds,

𝜕 (𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
)

𝜕 (𝐴
2
, 𝐴
3
, 𝐵
3
, 𝐵
2
)

/= 0. (46)

From the statement mentioned above, according to the
classical theory of Bautin, there exist 5 limit cycles in a small
enough neighborhood of the origin.
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This paper is devoted to the investigation of random dynamics of the stochastic Boussinesq equations driven by Lévy noise. Some
fundamental properties of a subordinator Lévy process and the stochastic integral with respect to a Lévy process are discussed, and
then the existence, uniqueness, regularity, and the random dynamical system generated by the stochastic Boussinesq equations are
established. Finally, some discussions on the global weak solution of the stochastic Boussinesq equations driven by general Lévy
noise are also presented.

1. Introduction

Dynamical systems driven by non-Gaussian processes, such
as Lévy processes, have attracted a lot of attention recently.
Ordinary differential equations driven by Lévy processes
have been summarized in [1]. Peszat and Zabczyk [2] have
presented a basic framework for partial differential equations
driven by Lévy processes.

The Navier–Stokes fluid equations are often coupled with
other equations, especially, with the scalar transport equa-
tions for fluid density, salinity, or temperature.These coupled
equations model a variety of phenomena arising in environ-
mental, geophysical, and climate systems.The related Boussi-
nesq fluid equations [3–5] under Gaussian fluctuations have
been recently studied, for example, existence and uniqueness
of solutions [6], stochastic flow, dynamical impact under
random dynamical boundary conditions [7, 8], and large
deviation principles [9, 10], among others.

Motivated by a recent work on a simple stochastic
partial differential equation with Lévy noise [11], we study
the stochastic Boussinesq equations driven by some special
Lévy noises, and we consider the random dynamics of
this stochastic system. Specifically, for a given bounded 𝐶

1-
smooth domain 𝐷 ⊂ R2 with sufficient smooth boundary,

we consider the following stochastic Boussinesq equations
driven by subordinator Lévy noise:

𝑑𝑢

𝑑𝑡

= (

1

Re
Δ𝑢 − ∇𝑝 − 𝑢 ⋅ ∇𝑢 −

1

Fr2
𝜃𝑒
2
) + 𝑑𝑌

1
(𝑡) ,

on 𝐷 ×R
+
,

𝑑𝜃

𝑑𝑡

= (

1

RePr
Δ𝜃 − 𝑢 ⋅ ∇𝜃) + 𝑑𝑌

2
(𝑡) , on 𝐷 ×R

+
,

div 𝑢 = 0, on 𝐷 ×R
+
,

𝑢 (0) = 𝑢
0
, 𝜃 (0) = 𝜃

0
,

(1)

where 𝑢 = 𝑢(𝑥, 𝑡) = (𝑢
1

, 𝑢
2

) ∈ R2 is the velocity vector,
𝜃 = 𝜃(𝑡, 𝑥) ∈ R is salinity, 𝑝(𝑡, 𝑥) ∈ R is the pressure term,
𝑥 = (𝜉, 𝜂) ∈ 𝐷 ⊂ R2, Δ denotes the Laplacian operator,
and ∇ denotes the gradient operator. Moreover, Fr is the
Froude number, Re is the Reynolds number, Pr is the Prandtl
number, and 𝑒

2
∈ R2 is a unit vector in the upward vertical

direction. The initial data 𝑢
0
, 𝜃
0
are given. Both 𝑌

1
(𝑡) and

𝑌
2
(𝑡) are subordinator Lévy processes on Hilbert spaces 𝐻

1

and 𝐻
2
, which will be specified later. The present paper is



2 Abstract and Applied Analysis

devoted to the existence, uniqueness, regularity, and the cocy-
cle property of solution for stochastic Boussinesq equations
(1).

This paper is organized as follows. In Section 2, we
first present some properties of the subordinator Lévy
process 𝑌(𝑡), then review some fundamental properties of
the stochastic integral with respect to Lévy process 𝑌(𝑡).
Section 3 is devoted to the existence, uniqueness, regularity,
and the cocycle property of the stochastic Boussinesq equa-
tions. Finally, some discussions on the global weak solution of
stochastic Boussinesq equations driven by general Lévy noise
are also presented in Section 4.

2. Preliminaries

In this section, we introduce some operators and fraction
spaces and then present some properties of the subordinator
Lévy process 𝑌(𝑡) and the stochastic integral with respect to
Lévy process 𝑌(𝑡).

In order to reformulate the stochastic Boussinesq equa-
tions (1) as an abstract stochastic evolution, we introduce the
following function spaces.

Denote 𝐿2(𝐷) to be the space of functions defined on 𝐷,
which are 𝐿2-integrable with respect to the Lebesguemeasure
𝑑𝑥 = 𝑑𝑥

1
𝑑𝑥
2
, endowed with the usual scalar product and

norm, that is, for 𝑢, 𝑣 ∈ 𝐿
2

(𝐷),

(𝑢, 𝑣) = ∫

𝐷

𝑢 (𝑥) 𝑣 (𝑥) 𝑑𝑥, |𝑢| = {(𝑢, 𝑢)}
1/2

. (2)

For𝑚 ∈ Z+ ∪ {0} and 𝑞 ∈ (1,∞), define

𝐻
𝑚,𝑞

(𝐷)

= {𝑢 ∈ 𝐿
𝑞

(𝐷) : 𝐷
𝛼

𝑢 ∈ 𝐿
𝑞

(𝐷) , 𝛼 ∈ N
2

, 0 ≤ |𝛼| ≤ 𝑚}

(3)

as the usual Soblev space with scalar product

(𝑢, 𝑣)
𝑚

= ∑

0≤|𝛼|≤𝑚

(𝐷
𝛼

𝑢,𝐷
𝛼

𝑣)
𝐿
𝑞
(𝐷) (4)

and the induced norm

|𝑢|
𝑚

= ‖𝑢‖
𝐻
𝑚
(𝐷)

= ( ∑

0≤|𝛼|≤𝑚





𝐷
𝛼

𝑢





𝑞

𝐿
𝑞
(𝐷)

)

1/2

, (5)

where𝐷𝛼𝑢 is the 𝛼th order weak derivative of 𝑢.
For 𝑠 ∈ R, let 𝐻𝑠,𝑞(𝐷) be defined by the complex inter-

polation method [12] as follows.

𝐻
𝛽,𝑞

(𝐷) = [𝐻
𝑘,𝑞

(𝐷) ,𝐻
𝑚,𝑞

(𝐷)]
𝜃

, (6)

where 𝑘,𝑚 ∈ N, 𝜃 ∈ (0, 1), and 𝑘 < 𝑚 are chosen to satisfy

𝛽 = (1 − 𝜃) 𝑘 + 𝜃𝑚. (7)

The closure of 𝐶∞
0
(𝐷) in the Banach space 𝐻

𝑠,𝑞

(𝐷), 𝑠 ≥ 0,
𝑞 ∈ (1,∞), will be denoted by𝐻

𝑠,𝑞

0
(𝐷).

The following product spaces are needed:

V = {𝑢 = (𝑢
1

, 𝑢
2

) ∈ (𝐶
∞

(𝐷))
2

× 𝐶
∞

(𝐷) , ∇ ⋅ 𝑢 = 0} ,

L
𝑞

(𝐷) = (𝐿
𝑞

(𝐷))
2

× 𝐿
𝑞

(𝐷) ,

H
𝑠,𝑞

(𝐷) = (𝐻
𝑠,𝑞

(𝐷))
2

× 𝐻
𝑠,𝑞

(𝐷)

= {𝑢 = (𝑢
1

, 𝑢
2

) ∈ (𝐻
𝑠,𝑞

(𝐷))
2

× 𝐻
𝑠,𝑞

(𝐷) ,

∇ ⋅ 𝑢 = 0} ,

V
𝑠,𝑞

(𝐷) = {𝑢 = (𝑢
1

, 𝑢
2

) ∈ H
𝑠,𝑞

0
(𝐷) , ∇ ⋅ 𝑢 = 0} .

(8)

Let H𝑠,𝑞(𝐷) denote the closure of V with respect to the
H𝑠,𝑞-norm, 𝑉𝑠,𝑞(𝐷) denote the closure of V with respect to
the V 𝑠,𝑞-norm, and 𝑉

 be the dual space of 𝑉𝑠,𝑞(𝐷). In par-
ticular, we denote byH1,2 and 𝑉

1,2

𝐻 and 𝑉, respectively.
Denote

𝐴
1
𝑢 = Δ𝑢 (𝑡) , 𝐴

2
𝜃 = Δ𝜃 (𝑡) ,

𝐵
1
(𝑢
1
, 𝑢
2
) = (𝑢

1
⋅ ∇) 𝑢

2
, 𝐵

2
(𝑢
1
, 𝜃
2
) = (𝑢

1
⋅ ∇) 𝜃

2
,

𝑈
0
= (

𝑢
0

𝜃
0

) ∈ 𝐻, 𝑈 (𝑡) = (

𝑢 (𝑡)

𝜃 (𝑡)

) ∈ 𝑉,

𝑅 (𝑈) = (

−

1

Fr2
𝜃𝑒
2
,

0

) ,

𝑌 (𝑡) = (

𝑌
1
(𝑡)

𝑌
2
(𝑡)

) ∈ 𝐻 = 𝐻
1
× 𝐻

2
,

(9)

where 𝜈 = 1/Re and 𝑘 = 1/Re Pr.
Now, we define the following two operators:

𝐴 : 𝑉 → 𝑉


: 𝑉 ∋ 𝑈 = (𝑢, 𝜃) → 𝐴𝑈 = (

𝜈𝐴
1
𝑢

𝑘𝐴
2
𝜃

) ,

𝐵 : 𝑉 × 𝑉 → 𝑉


: 𝑉 × 𝑉 ∋ (𝑈
1
, 𝑈
2
)

→ 𝐵 (𝑈
1
, 𝑈
2
) = (

𝐵
1
(𝑢
1
, 𝑢
2
)

𝐵
2
(𝑢
1
, 𝜃
2
)

) .

(10)

Then, the stochastic Boussinesq system (1) can be rewrit-
ten as the following abstract stochastic evolution equation:

𝑑𝑈 (𝑡) + [𝐴𝑈 (𝑡) + 𝐵 (𝑈 (𝑡) , 𝑈 (𝑡)) + 𝑅 (𝑈 (𝑡))] 𝑑𝑡 = 𝑑𝑌 (𝑡) ,

𝑈 (0) = 𝑈
0
.

(11)

In order to apply the technique of the reproducing Kernel
Hilbert space, it is better to introduce the definition 𝛾-
radonifying.

Definition 1 (see [13]). Let 𝐾 and 𝑋 be Banach spaces, a
bounded linear operator 𝐿 : 𝐾 → 𝑋 is called 𝛾-radonifying
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if and only if 𝐿(𝛾
𝐾
) is 𝜎-additive, where 𝛾

𝐾
is the canonical

cylindrical finitely additive set-valued function (also called a
Gaussian distribution) on 𝐾.

The following is our standing assumption:

Assumption 1. Space 𝐸 ⊂ 𝐻 ∩ L4 is a Hilbert space such that
for some 𝛿 ∈ (0, 1/2),

𝐴
−𝛿

: 𝐸 → 𝐻 ∩ L
4 is 𝛾-radonifying. (12)

Remark 2. Under the above assumption, we have the facts
that 𝐸 ⊂ 𝐻 and the Banach space 𝑈 is taken as 𝐻 ∩ L4 (see
[11, 14, 15] for more details and related results). In fact, space
𝐸 is the reproducing kernel Hilbert space of noise 𝑊(𝑡) on
𝐻 ∩ L4.

It is well known that subordinators form the subclass
of increasing Lévy processes, which can be thought of as a
random model of time evolution (see [16]). We will present
some properties of the subordinator Lévy process 𝑌(𝑡), 𝑡 ≥ 0,
then review briefly the stochastic integral with respect to Lévy
process 𝑌(𝑡).

Definition 3 (see [1, 2, 11]). Let 𝐸 be a Banach space, and let
𝑌 = (𝑌(𝑡), 𝑡 ≥ 0) be an 𝐸-valued stochastic process defined
on a probability space (Ω,F,P). Stochastic process𝑌 is called
a Lévy process if

(L1) 𝑌(0) = 0, a.s.;

(L2) process𝑌has independent and stationary increments;
and

(L3) process 𝑌 is stochastically continuous, that is, for all
𝛿 > 0 and for all 𝑠 ≥ 0,

lim
𝑡→ 𝑠

P (|𝑌 (𝑡) − 𝑌 (𝑠)| > 𝛿) = 0. (13)

A subordinator Lévy process is an increasing one-
dimensional Lévy process.

For 𝑝 > 0, Sub(𝑝) denotes the set of all subordinator Lévy
processes𝑍, whose intensitymeasure 𝜌 satisfies the condition
∫

1

0

𝜂
𝑝/2

𝜌(𝑑𝜂) < ∞.

In the most interesting cases, the space 𝐸 is a subspace of
𝐻, that is, 𝐸 ⊂ 𝐻, and

𝑌 (𝑡) = 𝑊 (𝑍 (𝑡)) , 𝑡 ≥ 0, (14)

where 𝑍 = (𝑍(𝑡))
𝑡≥0

is an independent subordinator process
belonging to class Sub(𝑝), 𝑝 ∈ (1, 2],𝑊 = (𝑊(𝑡))

𝑡≥0
is an𝐻-

valued cylindrical Wiener process defined on some Banach
space 𝑈.

We decompose the 𝐻-valued Lévy process 𝑌(𝑡) into two
parts𝑁

1
(𝑡) and𝑁

2
(𝑡), the first one with small jumps and the

second one with (relatively) large jumps, that is,

𝑌 (𝑡) = 𝑁
1
(𝑡) + 𝑁

2
(𝑡) , 𝑡 ≥ 0, (15)

with 𝜈 being the intensity measure of Lévy process 𝑌, 𝑁
1

being the Lévy process with the intensity measure:

𝜈
1
(Γ) = 𝜈 (Γ ∩ 𝐵

𝑈
(0, 1)) , Γ ∈ B (𝑈) ,

𝐵
𝑈
(0, 1) denotes the unit ball in 𝑈,

(16)

and 𝑁
2
be the Lévy process with the intensity measure 𝜈

2
=

𝜈−𝜈
1
.Then𝑁

2
can be defined as a compoundPoisson process

with the intensity measure 𝜈
2
, and 𝑁

1
, 𝑁

2
can be defined by

the Poisson random measure 𝜋 which is defined as follows:

𝜋 ([0, 1] × Γ) = Σ
𝑠≤𝑡

1
Γ
Δ𝑌 (𝑠) , Γ ∈ B (𝑈) , (17)

where Δ𝑌(𝑠) = 𝑌(𝑠
+

) − 𝑌(𝑠
−

), 𝑠 ≥ 0. Here, the symbol Δ
denotes the increment of 𝑌.

We assume that the process 𝑌 is right-continuous with
left-hand side limits. Thus

Δ𝑌 (𝑠) = 𝑌 (𝑠) − 𝑌 (𝑠
−

) , 𝑠 ≥ 0. (18)

Notice that as 𝜋 is a time homogenous Poisson random
measure, 𝑌 can be expressed as

𝑌 (𝑡) = Σ
𝑠≤𝑡

Δ𝑌 (𝑠) = ∫

𝑡

0

∫

𝑈

𝑢𝜋 (𝑑𝑦, 𝑑𝑠) , 𝑡 ≥ 0. (19)

Hence,

𝑁
1
(𝑡) = Σ

𝑠≤𝑡
1
|Δ𝑌(𝑠)|<1

Δ𝑌 (𝑠) = ∫

𝑡

0

∫

|𝑢|<1

𝑢𝜋 (𝑑𝑦, 𝑑𝑠) ,

𝑁
2
(𝑡) = Σ

𝑠≤𝑡
1
|Δ𝑌(𝑠)|≥1

Δ𝑌 (𝑠) = ∫

𝑡

0

∫

|𝑢|≥1

𝑢𝜋 (𝑑𝑦, 𝑑𝑠) .

(20)

Assume that the operator Ψ(𝑡), 𝑡 ∈ [0, 𝑇], is a strongly
measurable function taking values in the space of all bounded
linear operator from𝑈 to 𝐸. Let 0 < 𝜏

1
< 𝜏

2
< 𝜏

3
< ⋅ ⋅ ⋅ → ∞

be the jump times for 𝑁
2
and Δ𝑁

2
(𝜏
𝑘
) = Δ𝑌(𝜏

𝑘
) = 𝑌(𝜏

𝑘
) −

𝑌(𝜏
𝑘
−), 𝑘 = 1, 2, . . .. Then, the stochastic integral ofΨ(𝑡)with

respect to jump process𝑁
2
(𝑡), 𝑡 ≥ 0, can be defined as

∫

𝑡

0

Ψ (𝑠) 𝑑𝑁
2
(𝑠) = Σ

𝜏𝑘≤𝑡
Ψ (𝜏

𝑘
) Δ𝑁

2
(𝜏
𝑘
) . (21)

Since the operatorΨ is taking values in 𝐸, it follows from
the decomposition of 𝑌 that the sum of sequences is finite.
Hence the stochastic integral of the operator Ψ with respect
to 𝑁

2
is taking values in 𝐸. Moreover, the stochastic integral

of the operator Ψ(𝑡), 𝑡 ∈ [0, 𝑇], with respect to Lévy process
𝑌 can be defined by

∫

𝑡

0

Ψ (𝑠) 𝑑𝑌 (𝑠) = ∫

𝑡

0

Ψ (𝑠) 𝑑𝑁
1
(𝑠) + ∫

𝑡

0

Ψ (𝑠) 𝑑𝑁
2
(𝑠) (22)

and takes values in 𝐸 as well (see [11] for more details).
Next, we recall some basic definitions and properties for

general randomdynamical systems, which are taken from [7].
Let (𝐻, 𝑑) be a complete separablemetric space and (Ω,F,P)

be a probability space.
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Definition 4. (Ω,F,P, (𝜃)
𝑡∈R) is called a metric dynamical

system if the mapping 𝜃 : R × Ω → Ω is (B(R) × F,F)

measurable, 𝜃
0
= 𝐼, 𝜃

𝑠+𝑡
= 𝜃

𝑠
∘ 𝜃
𝑡
for all 𝑡, 𝑠 ∈ 𝑅, and 𝜃

𝑡
P = P

for all 𝑡 ∈ R.

Definition 5. A random dynamical system (RDS) with time
𝑇 on (𝐻, 𝑑) over {𝜃

𝑡
} on (Ω,F,P, (𝜃

𝑡
)
𝑡∈𝑅

) is a (B(𝑅
+

) ×F ×

B(𝐻), 𝐵(𝐻))-measurable map:

Π : 𝑇 × 𝐻 × Ω → 𝐻 × Ω, Π (𝑡, 𝑠, 𝜔) = (𝑆 (𝑡, 𝜔) 𝑥, 𝜃
𝑡
𝜔)

(23)

such that
(i) 𝑆(0, 𝜔) = 𝐼𝑑 (identity on𝐻) for any 𝜔 ∈ Ω,
(ii) (Cocycle property) 𝑆(𝑡 + 𝑠, 𝜔) = 𝑆(𝑡, 𝜃

𝑠
𝜔) ∘ 𝑆(𝑠, 𝜔) for

all 𝑠, 𝑡 ∈ 𝑇 and 𝜔 ∈ Ω.

An RDS is said to be continuous or differentiable if for all
𝑡 ∈ 𝑇, and an arbitrary outside outside P-nullset 𝐵 ⊂ Ω, 𝑤 ∈

𝐵 the map 𝑆(𝑡, 𝜔) : 𝐻 → 𝐻 is continuous or differentiable,
respectively.

Assume that the bounded linear operator 𝐴 generates a
𝐶
0
-semigroup 𝑆 = (𝑒

𝑡𝐴

)
𝑡≥0

on aHilbert space𝐸 and𝑌 defined
on a filtered probability space (Ω,F, (F)

𝑡≥0
,P) is a subordi-

nator Lévy process taking values in a Hilbert space 𝑈.
Consider the following stochastic Langevin equation:

𝑑𝑋 (𝑡) = 𝐴𝑋 (𝑡) 𝑑𝑡 + 𝑑𝑌 (𝑡) , 𝑡 ≥ 𝑡
0
,

𝑋 (𝑡
0
) = 𝑥 ∈ 𝐸.

(24)

Definition 6. Let 𝑥 ∈ 𝐸 be a square integrable F
𝑡0
-measur-

able random variable in 𝐸. A predicable process𝑋 : [𝑡
0
,∞)×

Ω → 𝐸 is called a mild solution of the Langevin equation
(24) with initial data (𝑡

0
, 𝑥) if it is an adapted 𝐸-valued

stochastic process and satisfies

𝑋(𝑡) = 𝑆 (𝑡 − 𝑡
0
) 𝑥 + ∫

𝑡

𝑡0

𝑆 (𝑡 − 𝑠) 𝑑𝑌 (𝑠) , 𝑡 ≥ 𝑡
0
. (25)

It is well known that the Ornstein-Uhlenbeck process
𝑋(𝑡), 𝑡 ≥ 0, has some important integrability. Here we need
the Banach space to be of type 𝑝, for 𝑝 ∈ (1, 2]. First we recall
the definition briefly (see [14] for more details).

Definition 7 (see [14]). For 𝑝 ∈ (1, 2], the Banach space 𝐸 is
called as type𝑝, if and only if there exists a constant𝐾

𝑝
(𝐸) > 0

such that for any finite sequence of symmetric independent
identically distribution random variables 𝜀

1
, . . . , 𝜀

𝑛
: Ω →

[−1, 1], 𝑛 ∈ N, and any finite sequence 𝑥
1
, . . . , 𝑥

𝑛
from 𝐸,

satisfying

E












𝑛

∑

𝑖=1

𝜀
𝑖
𝑥
𝑖












𝑝

≤ 𝐾
𝑝
(𝐸)

𝑛

∑

𝑖=1





𝑥
𝑖






𝑝

. (26)

Moreover, if there exists a constant 𝐿
𝑝
(𝐸) > 0 such that

for every 𝐸-valued martingale {𝑀
𝑛
}
𝑁

𝑛=0
,𝑁 ∈ N, satisfying

sup
𝑛

E




𝑀
𝑛






𝑝

≤ 𝐿
𝑝
(𝐸)

𝑁

∑

𝑛=0

E




𝑀
𝑛
− 𝑀

𝑛−1






𝑝

, 𝑀
−1

= 0,

(27)

the separable Banach space 𝐸 is called a separable martingale
type 𝑝-Banach space.

Lemma 8 (see [11, Corollary 8.1, Proposition 8.4]). Assume
that 𝑝 ∈ (1, 2], 𝑍 is a subordinator Lévy process from the class
Sub(𝑝),𝐸 is a separable type𝑝-Banach,𝑈 is a separableHilbert
space 𝑈, 𝐸 ⊂ 𝑈, and 𝑊 = (𝑊(𝑡))

𝑡≥0
is a 𝑈-valued Wiener

process.
Define the 𝑈-valued Lévy process as

𝑌 (𝑡) = 𝑊 (𝑍 (𝑡)) , 𝑡 ≥ 0, (28)

and define the process as

𝑋 (𝑡) = ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑑𝑌 (𝑠) . (29)

Then, with probability 1, for all 𝑇 > 0,

∫

𝑇

0

|𝑋 (𝑡)|
𝑝

𝐸
𝑑𝑡 < ∞,

∫

𝑇

0

|𝑋 (𝑡)|
4

𝐿
4𝑑𝑡 < ∞.

(30)

We have the following existence and regularity results,
which have been studied in [2, 11].

Theorem 9. Assume that 𝐸 = 𝑈, 𝑆 = 𝑆(𝑡), 𝑡 ≥ 0 is the 𝐶
0

semigroup generated by the bounded linear operator 𝐴 in the
space 𝐸. Then, if one of the following conditions is satisfied:

(i) 𝑝 ∈ (0, 1] or
(ii) 𝑝 ∈ (1, 2] and the Banach space 𝐸 is of separable

martingale type 𝑝-Banach space,

the Langevin equation (24) admits one mild solution𝑋(𝑡) ∈ 𝐸,
𝑡 > 0. Moreover, if 𝑝 ∈ (1, 2], 𝑆 = 𝑆(𝑡), 𝑡 ≥ 0, is a 𝐶

0
-group

in the separable martingale type 𝑝-Banach space 𝐸, then the
mild solution 𝑋 of the Langevin equation is a cádlág (right-
continuous with left-hand side limits) process.

Proof. As 𝑆 = 𝑆(𝑡), 𝑡 ≥ 0, is a 𝐶
0
-group in the separable

martingale type 𝑝-Banach space 𝐸, the Hilbert space𝐻 is the
reproducing kernel Hilbert space of 𝑊(1), and the embed-
ding operator 𝑖 : 𝐻 → 𝐸 satisfies the 𝛾-radonifying property.
The proof of Theorem 9 is just a simple application of
Theorems 4.1 and 4.4 in [11].

3. Cocycle Property of the Stochastic
Boussinesq Equations

In this section, we will show the existence, uniqueness, regu-
larity, and the cocycle property of the stochastic Boussinesq
equations (11).

It is well known that both𝐴
1
and𝐴

2
are positive definite,

self-adjoint operators, and denote𝐷(𝐴
1
) and𝐷(𝐴

2
) to be the

domains of𝐴
1
and𝐴

2
, respectively. Hence, the domain of the

operator 𝐴 can be represented as 𝐷(𝐴) = 𝐷(𝐴
1
) × 𝐷(𝐴

2
).
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It follows from Lemma 2.2 in [7] that there exists positive
numbers 𝜇

1
, 𝜇
2
, such that

(𝐴
1
𝑢, 𝑢) ≥ 𝜇

1
‖𝑢‖

2

(𝐿
2
)
2 ,

(𝐴
2
(𝑢, 𝜃) , (𝑢, 𝜃)) ≥ 𝜇

2
‖(𝑢, 𝜃)‖

2

.

(31)

Let 𝜆 = min(𝜇
1
, 𝜇
2
). Then

(𝐴𝑈,𝑈) ≥ 𝜆‖𝑈‖
2

. (32)

For any arbitrary𝑈,𝑉,𝑊 ∈ V , we can define the following
trilinear form 𝑏 : 𝑈 × 𝑉 × 𝑊 → R by

𝑏 (𝑢, 𝑣, 𝑤) = ⟨𝐵 (𝑢, 𝑣) , 𝑤⟩ ,

𝑏 (𝑈, 𝑉,𝑊) = 𝑏
1
(𝑢, 𝑣, 𝑤) + 𝑏

2
(𝑢, 𝑣, 𝑤) ,

𝑏
1
(𝑢, 𝑣, 𝑤) = ∫

𝐷

𝜎
2

𝑖,𝑗
𝑢
𝑖

𝜕𝑣
𝑗

𝜕𝑥
𝑖

𝑤
𝑗
𝑑𝑥,

𝑏
2
(𝑢, 𝑣, 𝑤) = ∫

𝐷

𝜎
2

𝑖
𝑢
𝑖

𝜕𝑣
𝑗

𝜕𝑥
𝑖

𝑤
𝑗
𝑑𝑥.

(33)

We have the following results.

Lemma 10 (see [7, Lemma 2.3]). If 𝑈,𝑉,𝑊 ∈ V , then

𝑏 (𝑈, 𝑉,𝑊) = −𝑏 (𝑈,𝑊,𝑉) ,

(𝐵 (𝑉,𝑈) , 𝑈) = 𝑏 (𝑉,𝑈,𝑈) = 0.

(34)

Lemma 11 (see [7, Lemma 2.4]). There exists a constant 𝑐
𝐵
>

0 such that if 𝑢 ∈ 𝑉
1
, 𝜃, 𝜂 ∈ 𝑉

2
, 𝜙 = (𝑢, 𝜃), then

(1) |𝑏
1
(𝑢, 𝑣, 𝑤)| ≤ 𝑐

𝐵
‖𝑢‖

𝐻
1‖𝑣‖

𝐻
2‖𝑤‖, 𝑢 ∈ 𝑉, 𝑣 ∈ 𝐷(𝐴),

𝑤 ∈ 𝐻,
(2) |𝑏

1
(𝑢, 𝑣, 𝑤)| ≤ 𝑐

𝐵
‖𝑢‖

1/2

𝐿
2 ‖𝑢‖

1/2

𝐻
1 ‖𝑣‖𝐻

2‖𝑤‖
1/2

‖𝑤‖
1/2

𝐻
1 , 𝑢 ∈

𝑉, 𝑣 ∈ 𝐷(𝐴), 𝑤 ∈ 𝑉,
(3) |𝑏

1
(𝑢, 𝑣, 𝑢)| ≤ 𝑐

𝐵
‖𝑢‖

𝐻
1‖𝑣‖

𝐻
1‖𝑣‖, 𝑢 ∈ 𝑉, 𝑣 ∈ 𝑉,

(4) |𝑏
2
(𝑢, 𝜃, 𝑤)| ≤ 𝑐

𝐵
‖𝑢‖

1/2

‖𝑢‖
1/2

𝐻
1 ‖𝜃‖𝐻

1‖𝑤‖
1/2

‖𝑤‖
1/2

𝐻
1 , 𝑢 ∈

𝑉, 𝜃 ∈ 𝑉, 𝑤 ∈ 𝑉,
(5) |𝑏

2
(𝑢, 𝜃, 𝑤)| ≤ 𝑐

𝐵
‖𝑢‖‖𝜃‖

𝐻
2‖𝑤‖

𝐻
1 , 𝑢 ∈ 𝐻, 𝜃 ∈ 𝐷(𝐴),

𝑤 ∈ 𝑉.

Definition 12. An 𝐻-valued (F
𝑡
)
𝑡≥0

adapted and H4,2(𝐷)-
valued cádlág process 𝑢(𝑡) (𝑡 ≥ 0) is considered as a solution
to (11), if for each 𝑇 > 0,

sup
0≤𝑡≤𝑇

|𝑈 (𝑡)|
2

𝐻
+ ∫

𝑇

0

|𝑈 (𝑡)|
4

L4(𝐷)𝑑𝑡 < ∞, a.s., (35)

and for any 𝜓 ∈ 𝑉 ∩H2,2(𝐷), and for any 𝑡 > 0, P-a.s.,

(𝑈 (𝑡) , 𝜓) − (𝑈
0
, 𝜓) − ∫

𝑡

0

(𝑈 (𝑠) , Δ𝜓) 𝑑𝑠

+ ∫

𝑡

0

(𝐵 (𝑈,𝑈) , 𝜓 (𝑠)) 𝑑𝑠 + ∫

𝑡

0

(𝑅 (𝑈) , 𝜓) 𝑑𝑠 = (𝜓, 𝑌 (𝑡)) .

(36)

Denote

H
1,2

(0, 𝑇) = {the space of all functions 𝑣 ∈ 𝐿
2

(0, 𝑇; 𝑉)

∩H
2,2

(𝐷) satisfying 𝑣


∈ 𝐿
2

(0, 𝑇; 𝑉


)} .

(37)

Lemma 13. Assume that 𝑧 ∈ 𝐿
4

(0, 𝑇;L4(𝐷)),𝑔 ∈ 𝐿
2

(0, 𝑇, 𝑉


),
and 𝑣

0
∈ 𝐻.Then there exists a unique 𝑣 ∈ H1,2

(0, 𝑇) such that

𝑑𝑣

𝑑𝑡

+ 𝐴𝑣 + 𝐵 (𝑣, 𝑧) + 𝐵 (𝑧, 𝑣) + 𝐵 (𝑣, 𝑣) = 𝑔, 𝑡 ≥ 0,

𝑣 (0) = 𝑣
0
.

(38)

Moreover,

sup
𝑡∈[0,𝑇]

|𝑣 (𝑡)|
2

≤ 𝐾
2

𝐿
2

, ∫

𝑇

0

|∇𝑣 (𝑡)|
2

𝑑𝑡 ≤ 𝑀
2

,

∫

𝑇

0






𝑣


(𝑡)







2

𝑉

𝑑𝑡 ≤ 𝑁

2

, ∫

𝑇

0

|𝑣 (𝑡)|
4

L4(𝐷)𝑑𝑡 ≤ 2𝑇
1/2

𝐾
3

𝐿
3

𝑀,

(39)

where

𝐾
2

= 𝑒
2 ∫

𝑇

0
|𝑧(𝑠)|
4

L4𝑑𝑠, 𝐿
2

=




𝑣
0






2

+ 2∫

𝑇

0





𝑔 (𝑠)






2

𝑉
𝑑𝑠,

𝑀
2

=




𝑣
0






2

+ 9𝐾𝐿∫

𝑇

0

|𝑧 (𝑡)|
2

𝐿
4
(0,𝑇,L4(𝐷)) +

𝑇
1/4

√2

𝐾
3/2

𝐿
1/2

,

(40)

and the mapping 𝐿2(0, 𝑇, 𝑉) ×𝐻 ∋ (𝑔
0
, 𝑣
0
) → 𝑣 ∈ H1,2

(0, 𝑇)

is analytic.

Proof. It can be shown by the same approach as the one in
Proposition 8.7 in [11].

Lemma 14 (see [2, Proposition 10.1]). Let 𝑢 : [0, 𝑇] → 𝐵 be
a continuous function whose left derivative

𝑑
−

𝑢

𝑑𝑡

(𝑡
0
) = lim

𝜖→0,𝜖<0

𝑢 (𝑡
0
+ 𝜖) − 𝑢 (𝑡

0
)

𝜖

(41)

exists at 𝑡
0
∈ [0, 𝑇].Then the function 𝛾(𝑡) = |𝑢(𝑡)|

𝐵
, 𝑡 ∈ [0, 𝑇],

is left differentiable at 𝑡
0
and

𝑑
−

𝛾

𝑑𝑡

(𝑡
0
) = min{⟨𝑥

∗

,

𝑑
−

𝑢

𝑑𝑡

(𝑡
0
)⟩ : 𝑥

∗

∈ 𝜕




𝑢 (𝑡

0
)



𝐵
} .

(42)

In order to apply the Yosida approximation for the
solution of (11), we need to introduce some definitions of
dissipative mapping (operator) (see [17] for details).

Definition 15. Let (𝐵, | ⋅ |
𝐵
) be a separable Banach space, 𝐵∗ be

the dual space of 𝐵. The subdifferential 𝜕|𝑥|
𝐵
of norm | ⋅ |

𝐵
at

𝑥 ∈ 𝐵 is defined by the formula

𝜕|𝑥|
𝐵
:= {𝑥

∗

∈ 𝐵
∗

:




𝑥 + 𝑦




𝐵

− |𝑥|
𝐵
≥ (𝑥

∗

, 𝑦) , ∀𝑦 ∈ 𝐵} .

(43)
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A mapping 𝐹 : 𝐷(𝐹) ⊂ 𝐵 → 𝐵 is said to be dissipative, if
for any 𝑥, 𝑦 ∈ 𝐷(𝐹), there exists 𝑧∗ ∈ 𝜕|𝑥 − 𝑦|

𝐵
such that

⟨𝑧
∗

, 𝐹 (𝑥) − 𝐹 (𝑦)⟩ ≤ 0. (44)

A dissipative mapping 𝐹 : 𝐷(𝐹) ⊂ 𝐵 → 𝐵 is called an
𝑚-dissipative mapping or maximal dissipative if the image of
𝐼 −𝜆𝐹 is equal to the whole space 𝐵 for some 𝜆 > 0 (and then
for any 𝜆 > 0), that is,

range (𝐼 − 𝜆𝐴) = 𝐵, for some 𝜆 > 0. (45)

Assume that 𝐹 is an 𝑚-dissipative mapping. Then its
resolvent 𝐽

𝛼
and respectively the Yosida approximations 𝐹

𝛼
,

𝛼 > 0, are defined by

𝐽
𝛼
𝑥 = (𝐼 − 𝛼𝐹)

−1

𝑥 ∈ dom𝐹,

𝐹
𝛼
𝑥 =

1

𝛼

(𝐽
𝛼
𝑥 − 𝑥) , ∀𝑥 ∈ dom 𝐽

𝛼
= range (𝐼 − 𝛼𝐹) .

(46)

Lemma 16 (see [2, Proposition 10.2]). Let 𝐹 : 𝐷(𝐹) → 𝐵 be
an𝑚-dissipative mapping on 𝐵. Then

(1) for all 𝛼 > 0 and 𝑥, 𝑦 ∈ 𝐵, |𝐽
𝛼
(𝑥) − 𝐽

𝛼
(𝑦)|

𝐵
≤ |𝑥 − 𝑦|

𝐵
;

(2) the mapping 𝐹
𝛼
, 𝛼 > 0, are dissipative and Lipschitz

continuous:




𝐹
𝛼
(𝑥) − 𝐹

𝛼
(𝑦)




𝐵

≤

2

𝛼





𝑥 − 𝑦




𝐵
, ∀𝑥, 𝑦 ∈ 𝐵. (47)

Moreover, |𝐹
𝛼
(𝑥)|

𝐵
≤ |𝐹(𝑥)|

𝐵
, for all 𝑥 ∈ 𝐷(𝐹); and

(3) lim
𝛼→0

𝐹
𝛼
(𝑥) = 𝑥, for all 𝑥 ∈ 𝐷(𝐹).

The following theorem is one of the main results of this
paper, which will be proved by applying the well-known
Yosida approach.

Theorem 17. For every 𝑢
0

∈ 𝐻, under Assumption 1, the
stochastic Boussinesq system (11) admits a unique cádlág mild
solution 𝑢(𝑡).

Proof. Denote 𝑍
𝐴
(𝜔) to be the stationary solution of

Langevin equation (24). Let 𝑉 = 𝑈 − 𝑍
𝐴
. Then (11) is con-

verted into the following evolution equation with random
coefficients:
𝑑𝑉 = [𝐴𝑉 + 𝐵 (𝑉 + 𝑍

𝐴
, 𝑉 + 𝑍

𝐴
) + 𝑅 (𝑉 + 𝑍

𝐴
)] 𝑑𝑡, 𝑡 ≥ 0,

𝑉 (0) = 𝑈
0
,

(48)

where (𝐴,𝐷(𝐴)) generates an analytic 𝐶
0
-semigroup 𝑆 (see

Section 2.2 in [2]). It follows from the proof of Theorem 10.1
in [2] that, for 𝛼 > 0, 𝛽 > 0, and sufficiently small 𝜂, the
mappings𝐴+𝜂 and 𝐵(⋅, ⋅) +𝑅(⋅)+𝜂 are𝑚-dissipative. Hence,
the Yosida approximations of the𝑚-dissipativemappings𝐴+

𝜂 and 𝐵(⋅, ⋅) + 𝑅(⋅) + 𝜂 can be respectively denoted by

(𝐴 + 𝜂)
𝛽
=

1

𝛽

((𝐼 − 𝛽 (𝐴 + 𝜂))
−1

− 𝐼) ,

((𝐵 + 𝑅) + 𝜂)
𝛼
=

1

𝛼

((𝐼 − 𝛼 ((𝐵 + 𝑅) + 𝜂))
−1

− 𝐼) .

(49)

Now consider the following random approximate equa-
tion:

𝑑
−

𝑑𝑡

𝑌
𝛼,𝛽

(𝑡) = (𝐴 + 𝜂)
𝛽
𝑌
𝛼,𝛽

+ (𝐵 + 𝑅 + 𝜂)
𝛼
(𝑌
𝛼,𝛽

+ 𝑍
𝐴
(𝑡−))

− 2𝜂𝑌
𝛼,𝛽

− 𝜂𝑍
𝐴
(𝑡−) ,

𝑌
𝛼,𝛽

(0) = 𝑈
0
.

(50)

It is easy to verify that ((𝐴+𝜂)
𝛽
, 𝐷((𝐴+𝜂)

𝛽
)) generates an ana-

lytic 𝐶
0
-semigroup 𝑆

𝛽
. Notice that the Yosida approximate

operators are Lipschitz. Therefore the random approximation
equation (50) has a unique continuous solution 𝑌

𝛼,𝛽
.

Next we will show that

lim
𝛼→0

[ lim
𝛽→0

𝑌
𝛼,𝛽

(𝑡)] = 𝑌 (𝑡) , 𝑡 ≥ 0, (51)

in𝐻, and this limit is actually the mild solution of stochastic
Boussinesq equation (48).

For the sake of simplification, we just present the esti-
mations when 𝜂 = 0, and the remaining estimates can be
obtained by the similar arguments for 𝜂 ̸=0.

Let 𝑌
𝛼
be the solution of the integral equation:

𝑌
𝛼
(𝑡) = 𝑆 (𝑡) 𝑈

0
+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠)

×(𝐵 (𝑌
𝛼
(𝑠)+𝑍

𝐴
(𝑠−) , 𝑌

𝛼
(𝑠)+𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠−)))

𝛼
𝑑𝑠.

(52)

Notice that the operator (𝐵(⋅, ⋅)+𝑅(⋅))
𝛼
is Lipschitz continuous

and 𝑍
𝐴
is cádlág. Hence, there exists a solution of random

approximate equation (50), which is continuous in𝐻.
For 𝛼 > 0 and 𝛽 > 0, direct computation implies

𝑌
𝛼
− 𝑌

𝛼,𝛽
= 𝑆 (𝑡) 𝑈

0
− 𝑆

𝛽
(𝑡)

+ ∫

𝑡

0

[𝑆 (𝑡 − 𝑠) − 𝑆
𝛽
(𝑡 − 𝑠)]

× [𝐵 (𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠−) , 𝑌

𝛼
(𝑠) + 𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠−))]

𝛼
𝑑𝑠

+ ∫

𝑡

0

[𝑆
𝛽
(𝑡 − 𝑠)]

× [ [𝐵 (𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠−) , 𝑌

𝛼
(𝑠) + 𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠−))]

𝛼

− [𝐵 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−) ,

𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−) )

+𝑅 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−))]

𝛼

] 𝑑𝑠.

(53)
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Since both 𝐴 and 𝐵 + 𝑅 are 𝑚-dissipative. Therefore, there
exists constant𝑀,𝜔, and𝐶

𝛼
such that for all 𝑡 ≥ 0,𝑉,𝑊 ∈ 𝐻,






𝑆
𝛽
(𝑡)





𝐿(𝐻,𝐻)

≤ 𝑀𝑒
𝜔𝑡

,





[𝐵 (𝑉) + 𝑅 (𝑉)]

𝛼
− [𝐵 (𝑈) + 𝑅 (𝑈)]

𝛼





≤ 𝐶

𝛼
|𝑉 − 𝑈|

𝐻
.

(54)

Then






𝑌
𝛼
(𝑡) − 𝑌

𝛼,𝛽
(𝑡)







≤






𝑆 (𝑡) 𝑈

0
−𝑆
𝛽
(𝑡) 𝑈

0






+ 𝑀𝐶

𝛼
∫

𝑡

0

𝑒
𝜔(𝑡−𝑠)






𝑌
𝛼
(𝑠)−𝑌

𝛼,𝛽
(𝑠)






𝑑𝑠

+ ∫

𝑡

0






[𝑆
𝛽
(𝑡 − 𝑠) − 𝑆 (𝑡 − 𝑠)]

× [𝐵 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−) , 𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−))]

𝛼






𝑑𝑠.

(55)

By the Hille-Yosida theorem, it follows that

𝑆
𝛽
(𝑡) 𝑈

0
→ 𝑆 (𝑡) 𝑈

0
, as 𝛽 → 0 (56)

uniformly in 𝑡 on compact subsets 𝑈
0
of𝐻.

Hence, it follows that






𝑌
𝛼
(𝑡) − 𝑌

𝛼,𝛽
(𝑡)






≤ 𝑀𝐶

𝛼
∫

𝑡

0






𝑌
𝛼
(𝑠) − 𝑌

𝛼,𝛽
(𝑠)






𝑑𝑠 (57)

uniformly on bounded intervals as 𝛽 → 0.
By Gronwall inequality, we have

lim
𝛽→0

sup
𝑡≤𝑇






𝑌
𝛼
(𝑡) − 𝑌

𝛼,𝛽
(𝑡)






= 0, ∀𝑇 < ∞. (58)

By Lemma 14,

𝑑
−

𝑑𝑡






𝑌
𝛼,𝛽

(𝑡)







= min{⟨𝑥
∗

,

𝑑
−

𝑑𝑡

𝑌
𝛼,𝛽

(𝑡)⟩ : 𝑥
∗

∈ 𝜕






𝑌
𝛼,𝛽

(𝑡)






}

= min {⟨𝑥
∗

, 𝐴
𝛽
𝑌
𝛼,𝛽

(𝑡)

+ [𝐵 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−) , 𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−))]

𝛼

⟩ :

𝑥
∗

∈ 𝜕






𝑌
𝛼,𝛽

(𝑡)






} .

(59)

Recalling that both 𝐴
𝛽
and [𝐵(⋅, ⋅) + 𝑅(⋅)] are 𝑚-dissipative

and 𝐴
𝛽
is linear, we obtain

𝑑
−

𝑑𝑡






𝑌
𝛼,𝛽

(𝑡)






≤






[𝐵 (𝑌

𝛼,𝛽
(𝑡) + 𝑍

𝐴
(𝑡−) , 𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑡−))

+𝑅 (𝑌
𝛼,𝛽

(𝑡) + 𝑍
𝐴
(𝑡−))]

𝛼







≤






𝐵 (𝑌

𝛼,𝛽
(𝑡) + 𝑍

𝐴
(𝑡−) , 𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑡−))

+𝑅 (𝑌
𝛼,𝛽

(𝑡) + 𝑍
𝐴
(𝑡−))






,

(60)

that is,





𝑌
𝛼,𝛽

(𝑡)






≤





𝑈
0





+∫

𝑡

0






𝐵 (𝑌

𝛼,𝛽
(𝑠)+𝑍

𝐴
(𝑠−) , 𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−))






𝑑𝑠, 𝑡 ≥ 0.

(61)

It follows from the estimate (58) that, for any 𝛼 > 0, and 𝑡 ∈

[0, 𝑇],





𝑌
𝛼
(𝑡)





≤




𝑈
0





+∫

𝑡

0






[𝐵 (𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑠−) , 𝑌

𝛼,𝛽
(𝑠) + 𝑍

𝐴
(𝑠−))

+𝑅 (𝑌
𝛼,𝛽

(𝑠) + 𝑍
𝐴
(𝑠−))






𝑑𝑠.

(62)

Similarly, by Lemma 16, for 𝑡 ∈ [0, 𝑇],

1

2

𝑑
−

𝑑𝑡






𝑌
𝛼,𝛽

(𝑡) − 𝑌
𝛾,𝛽

(𝑡)







2

= ⟨

𝑑
−

𝑑𝑡

(𝑌
𝛼,𝛽

(𝑡) − 𝑌
𝛾,𝛽

(𝑡)) , 𝑌
𝛼,𝛽

(𝑡) − 𝑌
𝛾,𝛽

(𝑡)⟩

= ⟨(𝐴
𝛽
𝑌
𝛼,𝛽

(𝑡) − 𝐴
𝛽
𝑌
𝛾,𝛽

(𝑡)) + [(𝐵 + 𝑅)
𝛼
]

× (𝑌
𝛼,𝛽

(𝑡) + 𝑍
𝐴
(𝜔) (𝑡−)) − [(𝐵 + 𝑅)

𝛾
]

× (𝑌
𝛾,𝛽

(𝑡) + 𝑍
𝐴
(𝜔) (𝑡−)) , 𝑌

𝛼,𝛽
(𝑡) − 𝑌

𝛾,𝛽
(𝑡)⟩

≤ ⟨[(𝐵 + 𝑅)
𝛼
] (𝑌

𝛼,𝛽
(𝑡) + 𝑍

𝐴
(𝜔) (𝑡−)) − [(𝐵 + 𝑅)

𝛾
]

× (𝑌
𝛾,𝛽

(𝑡) + 𝑍
𝐴
(𝜔) (𝑡−)) , 𝑌

𝛼,𝛽
(𝑡) − 𝑌

𝛾,𝛽
(𝑡)⟩

≤ (𝛾 + 𝛼) [






(𝐵 + 𝑅)

𝛼
(𝑌
𝛼,𝛽

(𝑡) + 𝑍
𝐴
(𝜔) (𝑡−))







+






(𝐵 + 𝑅)

𝛾
(𝑌
𝛾,𝛽

(𝑡) + 𝑍
𝐴
(𝜔) (𝑡−))






]

2

≤ (𝛾 + 𝛼) [






(𝐵 + 𝑅) (𝑌

𝛼,𝛽
(𝑡) + 𝑍

𝐴
(𝜔) (𝑡−))







+






(𝐵 + 𝑅) (𝑌

𝛾,𝛽
(𝑡) + 𝑍

𝐴
(𝜔) (𝑡−))






]

2

.

(63)

By the dissipation of the operators 𝐴, 𝐵, and 𝑅 and estimates
(63), there exists a constant 𝐶 > 0 such that

1

2

𝑑
−

𝑑𝑡






𝑌
𝛼,𝛽

(𝑡) − 𝑌
𝛾,𝛽

(𝑡)







2

≤ 𝐶 (𝛼 + 𝛾) , 𝑡 ∈ [0, 𝑇] .

(64)
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Therefore






𝑌
𝛼,𝛽

(𝑡) − 𝑌
𝛾,𝛽

(𝑡)







2

≤ 2𝐶 (𝛼 + 𝛾) 𝑇, 𝑡 ∈ [0, 𝑇] . (65)

By the estimate (58),






𝑌
𝛼
(𝑡) − 𝑌

𝛾
(𝑡)







2

≤ 2𝐶 (𝛼 + 𝛾) 𝑇, 𝑡 ∈ [0, 𝑇] . (66)

Thus, 𝑌
𝛼
(𝑡) → 𝑌(𝑡) in𝐻 uniformly on [0, 𝑇] as 𝛼 → 0.

Next, we are going to show that the solution 𝑌
𝛼
of the

Yosida approximations equation is a mild solution:

𝑌
𝛼
(𝑡) = 𝑆 (𝑡) 𝑈

0
+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝐵 + 𝑅)
𝛼
(𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 𝑇] .

(67)

By the reflexivity of 𝐻
1 and the estimate ‖𝑌

𝛼
(𝑡)‖

𝐻
1 ≤

𝐶
2
‖𝑈
0
‖
𝐻
1 , 𝑡 ∈ [0, 𝑇], 𝛼 > 0, there exists a subsequence {𝑌

𝛼,𝑛
},

which converges weakly in 𝐻
1 and weakly converges to the

function 𝑌(𝑡) in 𝐻
1. Since {𝑌

𝛼,𝑛
(𝑡)} is strong convergent in

𝐿
2, and

‖𝑌(𝑡)‖
𝐻
1 ≤ 𝐶

2





𝑈
0




𝐻
1 , 𝑡 ∈ [0, 𝑇] . (68)

Let ℎ ∈ 𝐿
2, then

⟨𝑌
𝛼
(𝑡), ℎ⟩

𝐿
2

= ⟨𝑆(𝑡)𝑈
0
, ℎ⟩

𝐿
2

+ ∫

𝑡

0

⟨(𝐵 + 𝑅) 𝐽
𝛼
(𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠)) , 𝑆

∗

(𝑡 − 𝑠) ℎ⟩
𝐿
2𝑑𝑠.

(69)

Moreover

𝐽
𝛼
(𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠)) → 𝑌 (𝑠) + 𝑍

𝐴
(𝑠) , as 𝛼 → 0. (70)

Notice that (𝐵+𝑅)(𝐽
𝛼
(𝑌
𝛼
(𝑠)+𝑍

𝐴
(𝑠)) → (𝐵+𝑅)(𝑌

𝛼
(𝑠)+𝑍

𝐴
(𝑠))

weakly converges in 𝐿
2. So, letting 𝛼 → 0, we obtain

⟨𝑌(𝑡), ℎ⟩
𝐿
2 = ⟨𝑆(𝑡)𝑈

0
, ℎ⟩

𝐿
2

+ ∫

𝑡

0

⟨(𝑆(𝑡 − 𝑠)(𝐵 + 𝑅)(𝑌(𝑠) + 𝑍
𝐴
(𝑠)), ℎ⟩

𝐿
2𝑑𝑠.

(71)

It follows from the arbitrariness of ℎ that

𝑌 (𝑡) = 𝑆 (𝑡) 𝑈
0
+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝐵 + 𝑅) (𝑌
𝛼
(𝑠) + 𝑍

𝐴
(𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 𝑇] .

(72)

Thus, 𝑌(𝑡) is a mild solution of random Boussinesq equation
(50).

Theorem 18. For any 𝑈
0
∈ 𝐻, the map 𝜑 : T × Ω × 𝐻 → 𝐻

defined by the solution of stochastic Boussinesq equation (11)
as 𝑈(𝑡) = Φ(𝑡, 𝜗

𝑡
(𝜔))𝑈

0
has the cocycle property; that is,

the solution of stochastic Boussinesq equation (11) generates a
random dynamical system (Ω,F,P, (𝜗

𝑡
)
𝑡≥0

, Φ).

Proof. FromTheorem 17, stochastic Boussinesq equation (11)
admits a unique solution 𝑉(𝑡, 𝑍(𝜔)(𝑡), 𝑥). Define the map

Φ : R
+

× Ω × 𝐻 → 𝐻,

Φ (𝑡, 𝜔) 𝑥 = 𝑉 (𝑡 ⋅ 𝑍 (𝜔) (𝑡)) (𝑥 − 𝑍 (𝜔) (0)) + 𝑍 (𝜔) (𝑡 + 𝑠) .

(73)

(i) By the similar argument ofTheorem 17, every solution
𝑌
𝛼
(𝑡) of the Yosida approximation equation (50) is

measurable. Notice that 𝑌
𝛼
(𝑡) → 𝑌(𝑡) uniformly as

𝛼 → 0. Hence, the limit function 𝑌(𝑡) is also mea-
surable. Thus, the mappingΦ is measurable.

(ii) Obviously, Φ(0, 𝜔) = 𝐼.
(iii) It suffices to verify that the cocycle property holds for

the mappingΦ, that is,

Φ (𝑡 + 𝑠, 𝜔) 𝑥 = 𝑉 (𝑡 + 𝑠, 𝑍
𝐴
(𝜔) (𝑡 + 𝑠)) (𝑥 − 𝑍

𝐴
(𝜔) (0))

+ 𝑍
𝐴
(𝜔) (𝑡 + 𝑠) .

(74)

In fact, recalling that 𝑍
𝐴
(𝜔)(𝑠) = 𝑍

𝐴
(𝜃
𝑠
𝜔)(0), it follows

that

Φ(𝑡, 𝜃
𝑠
𝜔) [Φ (𝑠, 𝜔) 𝑥]

= 𝑉 (𝑡, 𝑍
𝐴
(𝜃
𝑠
𝜔) (𝑡)) (Φ (𝑠, 𝜔) 𝑥 − 𝑍

𝐴
(𝜃
𝑠
𝜔) (0))

+ 𝑍
𝐴
(𝜃
𝑠
𝜔) (𝑡)

= 𝑉 (𝑡, 𝑍
𝐴
(𝜃
𝑠
𝜔) (𝑡))

× [𝑉 (𝑠, 𝑍
𝐴
(𝜔) (𝑠)) (𝑥 − 𝑍

𝐴
(𝜔) (0)) + 𝑍 (𝜔) (𝑠)

−𝑍 (𝜃
𝑠
𝜔) (0)] + 𝑍 (𝜃

𝑠
𝜔) (𝑡)

= 𝑉 (𝑡, 𝑍
𝐴
(𝜃
𝑠
𝜔) (𝑡)) 𝑉 (𝑠, 𝑍

𝐴
(𝜔) (𝑠))

× (𝑥 − 𝑍
𝐴
(𝜔) (0)) + 𝑍

𝐴
(𝜃
𝑠
𝜔) (𝑡)

= 𝑉
1
(𝑡) .

(75)

Moreover,

𝑉 (𝑡 + 𝑠, 𝑍
𝐴
(𝜔) (𝑡 + 𝑠)) (𝑥 − 𝑍

𝐴
(𝜔) (0))

= 𝑉 (𝑡, 𝑍
𝐴
(𝜃
𝑠
𝜔) (𝑡)) 𝑉 (𝑠, 𝑍

𝐴
(𝜔) (𝑠)) (𝑥 − 𝑍

𝐴
(𝜔) (0))

= 𝑉
2
(𝑡) .

(76)

Since

𝑉 (0, 𝑍
𝐴
(𝜃
𝑠
𝜔) (0)) (𝑥 − 𝑍

𝐴
(𝜃
𝑠
𝜔) (0)) = 𝑥 − 𝑍

𝐴
(𝜃
𝑠
𝜔) (0) .

(77)
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Thus,

𝑉
1
(0) = 𝑉 (𝑠, 𝑍

𝐴
(𝜔) (𝑠)) (𝑥 − 𝑍

𝐴
(𝜔) (0))

= 𝑉 (0, 𝑍
𝐴
(𝜃
𝑠
𝜔) (0)) 𝑉 (𝑠, 𝑍

𝐴
(𝜔) (𝑠))

× (𝑥 − 𝑍
𝐴
(𝜔) (0)) = 𝑉

2
(0) ,

𝑑𝑉
1
(𝑡)

𝑑𝑡

=

𝑑𝑉 ((𝑡 + 𝑠) , 𝑍
𝐴
(𝜔))

𝑑𝑡

(𝑡 + 𝑠) .

(78)

Therefore, we obtain

𝑑𝑉
1
(𝑡)

𝑑𝑡

+ 𝐴𝑉
1
(𝑡)

+ 𝐵 (𝑉
1
(𝑡) + 𝑍

𝐴
(𝜔) (𝑡 + 𝑠) , 𝑉

1
(𝑡) + 𝑍

𝐴
(𝜔) (𝑡 + 𝑠))

= −𝑅 (𝑉
1
(𝑡) + 𝑍

𝐴
(𝜃
𝑡+𝑠

𝜔)) ,

𝑑𝑉
2
(𝑡)

𝑑𝑡

+ 𝐴𝑉
2
(𝑡)

+ 𝐵 (𝑉
2
(𝑡) + 𝑍

𝐴
(𝜃
𝑠
𝜔) (𝑡) , 𝑉

2
(𝑡) + 𝑍

𝐴
(𝜃
𝑠
𝜔) (𝑡))

= −𝑅 (𝑉
2
(𝑡) + 𝑍

𝐴
(𝜃
𝑠
𝜔) (𝑡)) .

(79)

The uniqueness of the solution implies that almost surely
𝑉
1
(𝑡) = 𝑉

2
(𝑡) holds, that is,

Φ(𝑡, 𝜃
𝑠
𝜔) [Φ (𝑠, 𝜔) 𝑥] = Φ (𝑡 + 𝑠, 𝜃

𝑡+𝑠
(𝜔)) 𝑥. (80)

Thus, the cocycle property for the mappingΦ holds.
By the definition of random dynamical systems [18], the

solution mapping of the stochastic Boussinesq equation (11)
generates a random dynamical system Φ. Thus, the proof of
Theorem 18 is complete.

4. Discussion

In Section 3, we have studied the long-time behavior of
stochastic Boussinesq equations (1) driven by subordinator
Lévy noise and have shown the cocycle property of ran-
dom dynamical systems generated by the mild solution of
stochastic Boussinesq equation (1). To prove the existence of
random attractor, it suffices to show the existence of random
absorbing set and the compactness of random dynamical
system Φ, we refer the similar argument to [13].

Here, we are also interested in the stochastic Boussinesq
equations driven by Poisson noise and Wiener noise, and
we are trying to show the existence of random dynamical

systems. To the end, we consider the following stochastic
Boussinesq equations driven by Lévy noises followed as

𝜕𝑢

𝜕𝑡

+ (𝑢 ⋅ ∇) 𝑢 − 𝜈Δ𝑢 + ∇𝑝

= 𝜃𝑒
2
+ 𝑏
1
𝑑𝑡 + 𝑑𝑊

1

(𝑡) + ∫

𝑋

𝑓 (𝑥) �̃�
1

(𝑑𝑡, 𝑑𝑥) ,

𝜕𝜃

𝜕𝑡

+ (𝑢 ⋅ ∇) 𝜃 − 𝑘Δ𝜃

= 𝑢
2
+ 𝑏
2
𝑑𝑡 + 𝑑𝑊

2

(𝑡) + ∫

𝑋

𝑔 (𝑥) �̃�
2
(𝑑𝑡, 𝑑𝑥) ,

∇ ⋅ 𝑢 = 0,

𝑢|
𝜕𝐷

= 0, 𝑢 (0) = 𝑢
0
, 𝜃 (0) = 𝜃

0
,

(81)

where 𝑊
1

(⋅) and 𝑊
2

(⋅) are 𝐻-valued Brownian motion, 𝑏
1

and 𝑏
2
are constants vector in 𝐻, 𝑓 and 𝑔 are measurable

mappings from some measurable space 𝑋 to 𝐻, and �̃�
1
and

�̃�
2
are compensated Poisson measure on [0,∞) × 𝑋 with

intensity measure 𝑛𝜈
1
and 𝑛𝜈

2
, respectively, where 𝜈

1
and 𝜈

2

are 𝜎-finite measure onB(𝑋), 𝑓(𝑥), and 𝑔(𝑥) satisfying

∫

𝑈





𝑓 (𝑥)






2

𝑒
𝛼|𝑓(𝑥)|

𝜈 (𝑑𝑥) < ∞,

∫

𝑈





𝑔 (𝑥)






2

𝑒
𝛽|𝑔(𝑥)|

𝜈 (𝑑𝑥) < ∞, ∀𝛼 > 0, ∀𝛽 > 0.

(82)

Let 𝐷([0, 𝑇],𝐻) be the space of all cádlág paths from
[0, 𝑇] to𝐻 endowed with the uniform convergence topology.
Since there are finite jumps when the character measure
𝜆(𝑍) < ∞, we can rearrange the jump time of 𝑁(𝑑𝑡, 𝑑𝑥) as
𝜎
1
(𝜔) < 𝜎

2
(𝜔) < ⋅ ⋅ ⋅. Since there is no jump on the interval

[0, 𝜎
1
(𝜔)), just as the approach in [19], we can apply Banach

fixed point theorem to prove that there exists a unique
solution 𝜙(𝑡) in 𝐿

2

([0, 𝜎
1
(𝜔)); 𝑉) ∩ 𝐷([0, 𝜎

1
(𝜔));𝐻). Define

𝜙
(1)

(𝑡) =

{

{

{

𝜙 (𝑡) , 0 ≤ 𝑡 < 𝜎
1
(𝜔) ,

𝜙 (𝜎
1
−) + 𝑓 (𝜙 (𝜎

1
−) , 𝑃

𝜎1
) , 𝑡 = 𝜎

1
(𝜔) .

(83)

On [𝜎
1
(𝜔), 𝜎

2
(𝜔)), define

̃
𝜙
0
= 𝜙

(1)

(𝜎
1
) 1
(𝜎1<∞)

,

�̃�
2
= (𝜎

2
− 𝜎

1
) 1
(𝜎1<∞)

+ ∞1
(𝜎1=∞)

,

̃F
𝑡
= F

𝜎1+𝑡
, �̃�

𝑡
= (𝜃

𝜎1
𝑃)
𝑡

1
(𝜎1<∞)

.

(84)

Similar to the argument in [11], since 𝑃
𝑡
is stationary Poisson

point process on 𝑅
+

× 𝑍 with intensity measure 𝜆(𝑑𝑥)𝑑𝑡,
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then �̃�
𝑡
is also a stable Poisson point process on 𝑅

+

× 𝑍 with
intensity measure 𝜆(𝑑𝑥)𝑑𝑡. Define

𝜙
(2)

(𝑡)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝜙
(1)

(𝑡) , 0 ≤ 𝑡 < 𝜎
1
(𝜔) ,

̃
𝜙
(2)

(𝑡 − 𝜎
1
) , 𝜎

1
(𝜔) < 𝑡 < 𝜎

2
(𝜔) ,

̃
𝜙
(2)

((𝜎
2
− 𝜎

1
) −)

+𝑓 (
̃
𝜙
(2)

((𝜎
2
− 𝜎

1
) −) , 𝑃

𝜎2
) , 𝑡 = 𝜎

2
(𝜔) ,

𝜙
(𝑛)

(𝑡)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝜙
(𝑛−1)

(𝑡) , 𝑡 < 𝜎
𝑛−1

(𝜔) ,

̃
𝜙
(𝑛)

(𝑡 − 𝜎
𝑛−1

) , 𝜎
𝑛−1

(𝜔)<𝑡<𝜎
𝑛
(𝜔) ,

̃
𝜙
(𝑛)

((𝜎
𝑛
− 𝜎

𝑛−1
) −)

+𝑓 (
̃
𝜙
(𝑛)

((𝜎
𝑛
− 𝜎

𝑛−1
) −) , 𝑃

𝜎𝑛
) , 𝑡 = 𝜎

𝑛
.

(85)

Hence, 𝜙(𝑛)(𝑡) is cádlág on [0, 𝑇] such that 𝐵(𝜙(𝑛), 𝜙(𝑛)) ∈ 𝐻

and 𝐴
𝑝
(𝜙
(𝑛)

∈ 𝐻, 𝑃 a.s. for all 𝑡 ≥ 0, and

𝑃(∫

𝑡

0

[




𝜙 (𝑠)





+




𝐵 (𝜙 (𝑠) + 𝑧

𝐴
(𝑠) , 𝜙 (𝑠) + 𝑧

𝐴
(𝑠))






+2𝜇
0





𝑅 (𝜙 (𝑠) + 𝑧

𝐴
(𝑠))





] 𝑑𝑠 < ∞) = 1, ∀𝑡 > 0.

(86)

Therefore, 𝜙(𝑛)(𝑡) is a unique global weak solution of (81).
We can verify the existence of random dynamical systems
generated by the global weak solution of (81).
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[1] D. Applebaum, Lévy Processes and Stochastic Calculus, vol. 116
of Cambridge Studies in Advanced Mathematics, Cambridge
University Press, Cambridge, UK, 2nd edition, 2009.

[2] S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations
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