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Psoriasis is defined as chronic, immune-mediated disease. Regardless of the development of new therapeutic approaches, the
precise etiology of psoriasis remains unknown and speculative. The aim of this review was to systematize the results of
previous research on the role of oxidative stress and aberrant immune response in the pathogenesis of psoriasis, as well as the
impact of certain therapeutic modalities on the oxidative status in patients with psoriasis. Complex immune pathways of both
the innate and adaptive immune systems appear to be major pathomechanisms in the development of psoriasis. Oxidative
stress represents another important contributor to the pathophysiology of disease, and the redox imbalance in psoriasis has
been reported in skin cells and, systemically, in plasma and blood cells, and more recently, also in saliva. Current immune
model of psoriasis begins with activation of immune system in susceptible person by some environmental factor and loss of
immune tolerance to psoriasis autoantigens. Increased production of IL-17 appears to be the most prominent role in psoriasis
pathogenesis, while IL-23 is recognized as master regulator in psoriasis having a specific role in cross bridging the production
of IL-17 by innate and acquired immunity. Other proinflammatory cytokines, including IFN-γ, TNF-α, IL-1β, IL-6, IL-22, IL-
26, IL-29, or IL-36, have also been reported to play important roles in the development of psoriasis. Oxidative stress can
promote inflammation through several signaling pathways. The most noticeable and most powerful antioxidative effects exert
various biologics compared to more convenient therapeutic modalities, such as methotrexate or phototherapy. The complex
interaction of redox, immune, and inflammatory signaling pathways should be focused on further researches tackling the
pathophysiology of psoriasis, while antioxidative supplementation could be the solution in some refractory cases of the disease.

1. Introduction

Psoriasis was firstly described in detail by Robert Willan,
founder of dermatology as a medical specialty [1]. The prev-
alence of psoriasis varies from 0.51% to 11.43% in adults,

making psoriasis one of the most important global health
problems [2]. According to the World Health Organization,
psoriasis is classified as one of the most serious noninfec-
tious diseases, due to complications that develop during
the course of the disease and affection of multiple organ
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systems [3, 4]. Psoriasis is defined as chronic, inflammatory,
recurrent, incurable, and noncontagious disease, character-
ized by sharply demarcated erythematous skin lesions with
overlying silver hyperkeratotic plaques, accompanied by sys-
temic manifestations [3].

1.1. Clinical Presentation of Psoriasis. The most distinctive
characteristic of psoriasis are well-defined, symmetric, raised
skin lesions most commonly located on the knees, elbows,
scalp, and trunk [5]. Such clinical presentation is a charac-
teristic for plaque psoriasis or psoriasis vulgaris, the most
common form of psoriasis, but psoriasis also may appear
as guttate, pustular (von Zumbusch psoriasis) or erythroder-
mic psoriasis (Figure 1). Skin changes are usually accompa-
nied by pruritus, itching, pain, cracking, bleeding, and
flaking of the skin. Furthermore, psoriasis is recognized as
a risk factor for many pathological conditions, including car-
diovascular diseases, gastrointestinal disorders, malignant
tumors, infections, and mood disorders [6]. The most com-
mon comorbidity of psoriasis is psoriatic arthritis, usually
defined as heterogeneous inflammatory arthritis which
affects joints and entheseal tissues [7]. Such interconnection
of psoriasis and the variety of comorbidities probably arises
from, on the one hand, complex etiological and pathophysi-
ological basis of the disease, and on the other hand, the fact
that psoriasis remains unrecognized and untreated for a long
period [8, 9].

Psoriasis vulgaris is generally equally present among the
sexes, but it develops somewhat earlier in women than in
men [3]. The severity of psoriasis is usually classified using
Psoriasis Area and Severity Index (PASI) and Body Surface
Area (BSA) [10]. Due to the common association of psoria-
sis and psoriatic arthritis, several screening questionnaires
are performed for early recognition of psoriatic arthritis,
such as Psoriasis and Arthritis Screening Questionnaire
(PASQ), Psoriasis Epidemiology Screening Tool (PEST),
and Toronto Psoriatic Arthritis Screen (ToPAS) [11].

1.2. Main Pathophysiological Features of Psoriasis. Psoriasis
is defined as chronic, immune-mediated disease. Regardless
of the development of new therapeutic approaches, the pre-
cise etiology of psoriasis remains unknown and speculative.
Complex immune pathways of both the innate and adaptive
immune systems appear to be pathophysiological basis in
the development of psoriasis [12, 13]. Furthermore, epide-
miological investigations indicated the importance of genetic
component in the development of psoriasis [14]. Firstly, it
was noticed that psoriasis concordance is higher in monozy-
gotic twins [15]. Recent genetic studies identified almost 60
psoriasis susceptibility loci which could interfere with the
development of psoriasis [14]. Various environmental fac-
tors, such as stress, mechanical trauma, and streptococcal
infections are considered to trigger and not cause the dis-
ease. In predisposed persons, various factors may provoke
the onset of disease or exacerbation of existing symptoms.

Due to the complex pathophysiological mechanisms that
affect various tissues and organs, psoriasis may be defined as
a systemic disorder with the predominant skin representa-
tion. Cutaneous psoriatic manifestations occur as a result

of disruption of skin homeostasis due to immune-mediated
aberrant differentiation of keratinocytes [12]. Interleukin-
(IL-) 23 and IL-17 are recognized as key immune mediators
that mediate not only the development of skin lesions but
also the occurrence of psoriasis-associated comorbidities
[3]. Skin lesions, followed by extracutaneous comorbidities
and chronic course of the disease, significantly affect the
quality of life of the psoriasis-suffering patients resulting in
the development of anxiety and depression [16].

Psoriasis is a chronic, incurable disease, so treatment of
psoriasis can reduce skin lesions, but not provide a complete
cure. The psoriatic therapy varies depending on the surface
of affected skin—PASI [17]. The most effective therapeutics
in psoriasis treatment are biologic therapies, recently devel-
oped drugs that target some immune pathway. Drugs from
this group act in different ways and target diverse cytokines:
tumor necrosis factor α (TNF-α) (adalimumab, certolizu-
mab pegol, etanercept, and infliximab), IL-12/IL-23p40
(ustekinumab), IL-17A (ixekizumab, secukinumab), IL-17
receptor (brodalumab), and IL-23p19 (guselkumab, risanki-
zumab, and tildrakizumab) [18] (Table 1). Biologics are usu-
ally used in severe cases of psoriasis. Mild disease is treated
with topical preparations combined with phototherapy,
and moderate psoriasis is treated with immunomodulatory
therapy.

Reactive oxygen species (ROS) represent important reg-
ulators of immune response [19]. The imbalance in produc-
tion and elimination of ROS results in oxidative stress and,
consequently, oxidative damage of various cellular struc-
tures. Proinflammatory processes involved in the develop-
ment of autoimmune disorders are combined with
increased production of ROS and oxidative stress. Redox
imbalance in psoriasis exists both in skin cells and, systemi-
cally, in plasma and blood cells [20]. Thus, ROS and oxida-
tive stress appear to be an important step in the psoriasis
pathophysiological cascade. The aim of this review is to
show the relationship between redox balance and applied
therapy in patients suffering from psoriasis.

1.3. Autoimmune Nature of Psoriasis. The main feature of
autoimmune disorders is destruction of healthy tissues by
the host immune system upon misidentification and recog-
nition of its own tissue structures as foreign. The results of
the immunological studies in the recent decades showed
involvement of both innate and acquired immunity and
importance of T cells in pathogenesis of psoriasis [21–23].
T helper (Th) cells are classified as Th1 cells, which predom-
inantly secrete TNF-α, interferon- (IFN-) γ, and IL-2, and
Th2 cells, which secrete IL-4, IL-5, IL-10, and IL-13 [24].
Determination of naïve T cells toward Th1 or Th2 subpopu-
lation depends on the stimulation by IL-12, which mediates
Th1 differentiation, or IL-2, which mediates Th2 differentia-
tion [25]. Due to increased levels of TNF-α and IL-12 in pso-
riatic lesions, psoriasis is defined as Th1-mediated disease
[26]. IL-23 is another important cytokine in the develop-
ment of psoriasis because it shifts the differentiation of naïve
T cells toward proinflammatory Th17 cells [27]. These find-
ings are the backbone of the development of new therapeutic
approaches such as biologic therapies. Apart from T cells, as

2 Oxidative Medicine and Cellular Longevity



(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 1: Continued.
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representatives of acquired immunity, neutrophils, dendritic
antigen presenting cells (APCs), and Natural Killer T (NKT)
cells in pathogenesis of psoriasis play an important role [28].
One of the first described histopathological hallmarks of
psoriasis was Munro’s microabscesses containing neutro-
phils [29]. Increased neutrophil activity in psoriatic plaques
results in increased ROS production [30] (Figure 2,
Table 2). ROS act as stimulators of dendritic APCs to pres-
ent antigens to T cells, which further stimulate proliferation
of keratinocytes [29]. ROS also have a role of second mes-
sengers in inflammatory signaling cascades involving activa-
tion of mitogen-activated protein kinase (MAPK), nuclear
factor-kappa B (NF-κB). NKT cells encompass heterologous
cells which share some features of the natural killer (NK)
and T cells. In psoriatic patients, NKT cells interact with
other components of immune system, thereby supporting
the creation of proinflammatory environment. Subset of
NKT cells, NKT17 cells, can produce IL-17, and they are
found in many tissues, among others in the skin, but their

(k) (l)

(m) (n)

(o) (p)

Figure 1: Clinical manifestations of psoriasis. Psoriasis vulgaris manifested through typical erythematous plaques with silvery scales of various
sizes from guttate lesions through nummular to giant lumbar plaque (a). Psoriasis vulgaris and guttate psoriasis (b, d). Generalized psoriasis
(c, h, i). Inverse psoriasis (g). Psoriatic lesions on the feet and hands (e, f, j, k), including psoriatic nail dystrophy (f, k) and psoriatic arthritis
(l). Erythrodermic psoriasis, erythema, and squamous cover 90% of the skin (m, n, o, p). Pictures presented are part of the private collection
of Vesna M. Milicic and Ana B. Ravic Nikolic.

Table 1: Biologics in psoriasis treatment.

Name of the drug Biological target

Ustekinumab IL-12 and IL-23—p40 subunit

Guselkumab

IL-23—p19 subunitTildrakizumab

Risankizumab

Secukinumab

IL-17Ixekizumab

Bimekizumab

Brodalumab IL-17 receptor

Etanercept

TNF-α

Infliximab

Adalimumab

Certolizumab pegol

Golimumab
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Figure 2: Immune response in psoriasis. Complex interaction of various parts of innate (dendritic cells, NKT cells, and neutrophils) and
acquired immunity (T cells) in pathophysiology of psoriasis. IFN: interferon; IL: interleukin; NKT: natural killer T; Th: T-helper cell;
TGF: transforming growth factor; TNF: tumour necrosis factor.

Table 2: Main articles included in the summary of signaling cascades shown in Figure 2.

Article Main findings

Marble et al. J Dermatol Sci. 2007; 48(2):87-
101. [26]

CD11c + dendritic cells, CD68+ macrophages and TNF-α+ cells are increased in psoriatic
lesions

Ten Bergen et al. Scand J Immunol. 2020;
92(4):e12946. [27]

TNF-α/IL-23/IL-17 axis appears to has central role in the pathophysiology of psoriasis

Bos et al. Br J Dermatol. 2005; 152(6):1098-
107. [28]

Activation of innate immunity, represented by the activity of NKT cells, dendritic cells,
neutrophils, and keratinocytes, is crucial in pathogenesis of psoriasis.

Chiang et al. Front Immunol. 2019; 10 : 2376.
[29]

The abundant presence of neutrophils in the psoriatic skin lesions and formation of Munro’s
microabscesses serves as a typical histopathologic hallmark of psoriasis.

Kim and Krueger. Dermatol Clin. 2015;
33(1):13-23. [13]

Keratinocytes appear to be important regulators of immune responses, involved in increased
production of TNF-α or IFN-γ in psoriasis.

Hawkes et al. J Immunol. 2018; 201(6):1605-
1613. [34]

Psoriasis is characterized by the presence of multiple T lymphocyte subsets (Th1, Th17, and
Th22).

Stephen-Victor et al. PLoS Pathog. 2016;
12(6):e1005624 [37]
Wang et al. J Cell Mol Med. 2019;
23(12):7926-7932. [38]

Th17 cells, besides IL-17, produce TNF-α, IL-26, and IL-29, which further stimulate release
of proinflammatory mediators.

Levin and Gottlieb. J Am Acad Dermatol.
2014; 70(3):555-61. [46]
Langrish et al. Immunol Rev. 2004; 202 : 96-
105. [47]

IL-23 is recognized as a key regulator in psoriasis due to specific role in cross bridging the
production of IL-17 by innate and acquired immunity.
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role in the pathogenesis of psoriasis is not fully understood
[31, 32].

Keratinocytes play an important role in physiological
orchestration of innate and acquired immune responses in
the skin due to various pathological stimuli. Injured kerati-
nocytes may produce TNF-α and IFN-γ [13]. TNF-α
induces increased neutrophil accumulation in injured skin,
and IFN-γ increases recruitment of Th1 cells. Psoriatic pla-
ques contain increased number of T lymphocytes which pro-
duce IFN-γ, IL-17, and IL-22, labeled as Th1, Th17, and
Th22 cells, respectively [13].

Dendritic APCs may have a crucial role in pathogenesis
of psoriasis due to the activation of T cells and production of
various proinflammatory cytokines. Population of skin den-
dritic cells include epidermal dendritic cells (Langerhans
cells) and dermal dendritic cells (myeloid and plasmacytoid
dendritic cells). CD11c is recognized as the correct marker of
myeloid dendritic cells, while blood dendritic cell antigen
(BDCA) is used for identification of different human subsets
of dendritic cells [33]. Myeloid CD11c+BDCA-1– dermal
dendritic cells are recognized as proinflammatory dendritic
cells which induce activation and clonal expansion of
CD4+ and CD8+ T cells and their stimulation in the produc-
tion of IFN-γ, IL-17, and IL-22 [34]. Furthermore, it was
shown that content of CD11c+BDCA-1– dermal dendritic
cells is increased in psoriatic lesion, but their number is sig-
nificantly reduced upon effective therapeutic approach [35].

The current immune model of psoriasis begins with the
activation of immune system in susceptible persons by some
environmental factor and a loss of immune tolerance to pso-
riasis autoantigens [34]. TNF-α and IFN-γ, secreted by den-
dritic cells, induce polarization and expansion of IL-17 and
IL-22 secreting T cells (Th17 and Th22 cells), resulting in
significant increase of the IL-17 and IL-22 production
(Figure 2, Table 2). IL-17 is recognized as the key cytokine
in the development of psoriasis. There are six isoforms of
IL-17 (IL-17A–IL-17F), whereby IL-17A has the most prom-
inent role in psoriasis pathogenesis [36]. Th17 cells, besides
IL-17, produce TNF-α, IL-26, and IL-29. IL-17A, alone or
synergistically with TNF-α, induces the release of proinflam-
matory molecules from keratinocytes and enhances aberrant
proliferation of keratinocytes leading to epidermal hyperpla-
sia. Increased production of IL-26 and IL-29 by Th17 stim-
ulate further release of proinflammatory mediators which
recruit Th1 cells into psoriatic skin lesions [37, 38].
Increased production of IL-17 results in increased secretion
of IL-19, IL-22, and IL-36 which also contribute to the devel-
opment of epidermal hyperplasia [39, 40]. IL-22 in psoriatic
lesions is secreted not only by CD4+ and CD8+ T cells
known as Th22 and Tc22 cells but also by Th17, mast cells,
and others [41]. IL-22 enhances migration of keratinocytes,
increases epidermal thickness, decreases keratinocyte differ-
entiation, and stimulates secretion of various molecules
which act as chemokines, neutrophil chemoattractants
[41]. IL-22 proinflammatory action is weaker than IL-17,
but IL-22 mainly acts synergistically with IL-17 and TNF-
α. Dendritic cells also secrete IL-23 which acts via the IL-
23 receptor located on naïve T cells and promotes their dif-
ferentiation into Th17 [42]. IL-23 belongs to the IL-12 cyto-

kine family. It is a composite cytokine containing two
subunits IL-23p19 and IL-12p40 [43]. Acting together with
TNF-α, IL-1β, and IL-6, IL-23 stimulates the differentiation
of Th17 and Tc17 cells and the conversion of regulatory T
cells (Treg) into Th17 cells [44]. After the differentiation of
naïve T cells to Th17 cells due to various stimuli such as
transforming growth factor (TGF)-β and IL-6, the presence
of IL-23 is necessary to maintain the Th17 phenotype [25,
45]. Binding of IL-23 to its receptor on Th17 cells initiates
signaling pathway, which results in the facilitation of IL-17
expression and increased levels of IL-17A in plasma [46].
Besides the action of IL-23 on T cells and induction of them
to produce IL-17, thus provoking the inflammatory autoim-
mune response (acquired immunity), it can also stimulate
the production of IL-17 by NK cells and neutrophils (innate
immunity) [47, 48]. Thus, IL-23 is recognized as a master
regulator in psoriasis having a specific role in cross bridging
the production of IL-17 by innate and acquired immunity.
The administration of IL-23 in mice induced epidermal
hyperplasia and increased expression of both IL-17A and
IL-22 [49]. Psoriasis is defined as Th17-mediated disease,
but results of a growing number of studies indicate the cen-
tral role of IL-23 in the development of psoriasis due to its
effects on sustention of cytotoxic Th17 cells and production
of IL-17 and IL-22 (Figure 2, Table 2). Altogether, various
parts of acquired and innate immune system create complex
signaling pathways in the development of psoriasis.

1.4. Oxidative Stress in Pathogenesis of Psoriasis. Oxidative
stress is usually defined as an imbalance between the pro-
duction of ROS or reactive nitrogen species (RNS) and anti-
oxidative capacity. Decreased antioxidative ability may be
the consequence of decreased activity of antioxidative
enzymes (such as superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GPx)) or/and decreased
concentration of scavenging antioxidants, both endogenous
(reduced glutathione (GSH)) and exogenous (vitamin C,
vitamin E, carotenoids, and others). At low, physiological
concentrations, ROS/RNS have important roles as signaling
molecules in regulatory cascades of different biological pro-
cesses, but excess ROS/RNS and consequent oxidative stress
induce oxidation of various cellular structures (DNA, lipids,
and proteins) leading to cell death [50, 51].

The skin and thus keratinocytes are continuously
exposed to various external stressful stimuli, including ultra-
violet (UV) radiation of the sun, and oxygen from the air. It
is assumed that more than 50% of skin damage induced by
UV radiation is mediated by ROS/RNS [52]. Furthermore,
different toxic substances, as well as their metabolites,
directly or indirectly initiate the production of various pro-
oxidative molecules in keratinocytes [53]. Oxidative stress
can promote inflammation through several signaling path-
ways including NF-κB, mitogen-activated protein kinases
(MAPKs), and STAT3 (Signal Transducer and Activator of
Transcription 3) [54]. MAPKs represent a family of serine-
threonine protein kinases encompassing several members:
extracellular signal-regulated kinases (ERKs), c-Jun N-
terminal kinases (JNKs), and the p38 MAPKs [55].
Increased presence of ROS and impaired antioxidative
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potential directly induce increased activation of NF-κB [56].
Immunohistochemical analysis of psoriatic skin lesions
showed increased levels of phosphorylated ERK1/2 and
p38 MAPK [57, 58]. It was shown that propranolol induced
psoriasis-like skin inflammation through increase of oxida-
tive stress as well as NF-κB and MAPK p38 activation and
subsequent secretion of IL-23 [59]. Results of this research
confirmed the crucial role of oxidative stress in IL-23/IL-17
axis of Th17-related psoriasis-like skin inflammation
(Figure 3, Table 3). ROS produced in the skin also act as che-
moattractant for neutrophils and, furthermore, increased
number of neutrophils combined with high levels of ROS
may result in the activation of neutrophils and further
increase of ROS production [60, 61]. Augmented inflamma-
tory response further facilitates production of ROS and
decreases already weakened antioxidative capacity which
makes psoriasis a chronic inflammatory disease [62].

The nuclear factor erythroid 2-related factor 2 (Nrf2) is
redox-sensitive transcription factor involved in the regula-
tion of keratinocyte proliferation and expression of keratin
[63]. There are ambiguous data regarding the role of Nrf2
in pathogenesis of psoriasis. Lee et al. pointed out increased
oxidative damage in psoriatic skin lesions combined with
decreased expression of Nrf2, while dimethyl fumarate, as
an Nrf2 activator, upregulated Nrf2 levels in HaCaT kerati-
nocyte cell line and promoted growth inhibition and apopto-
sis [64]. The authors assumed that the increased production
of ROS and oxidative stress interfere with dysregulation of
the Nrf2 signaling cascade. Another study also showed a
decrease of ROS and increase of nuclear accumulation of
Nrf2 after the application of antioxidant, followed by the
reduction of vascular endothelial growth factor (VEGF)
and the reduction of keratinocyte proliferation in a similar
experimental model [65]. On the other hand, Yang et al. pre-
sented increased nuclear-localized Nrf2 in psoriatic epider-
mis compared to normal skin [63]. Increased expression of
Nrf2 was linked with higher expression of psoriasis-related
keratins K6, K16, and K17. Furthermore, it was shown that
IL-17 and IL-22 enhance the proliferation of psoriasis-
related keratins via Nrf2 signaling. It appears that redox sig-
naling and Nrf2 poses divergent functions in the develop-
ment of psoriasis, probably due to the cellular localization
of Nrf2; however, many questions are to be answered
further.

Several studies indicated an increased risk for the psori-
asis occurrence in persons with polymorphisms of specific
genes that are related to the regulation of redox balance
(Figure 3, Table 3). Asefi et al. indicated an increased risk
for the development of psoriasis in persons bearing 55M
allele for paraoxonase 1 (PON1) [66]. PON1 is hydrolytic
enzyme bound to high-density lipoprotein (HDL), able to
break down lipid peroxides. It is assumed that enzymatic
activity of PON1 is crucial for protective effect of HDL.
The PON1 55M allele in psoriatic patients was found to be
associated with higher malondialdehyde (MDA) levels, apo-
lipoprotein B, and lipoprotein (a), suggesting interference of
oxidative stress and disturbances in lipid metabolism in the
pathogenesis of psoriasis [66]. Another study also revealed
lower PON1 activity in psoriasis-suffering patients due to

PON1 polymorphism related to decreased antioxidative
activity and different lipid levels [67]. Glutathione S-
transferases (GSTs) are a group of enzymes involved in cat-
alytic regulation of the conjugation of GSH to various sub-
strates, thus providing protection against various
detrimental factors including oxidative stress and inflamma-
tion. Some polymorphisms of GST genes were significantly
more common in patients with psoriasis compared to the
healthy population [68]. Furthermore, null polymorphisms
for GSTs were related to increased sensitivity psoralen-
ultraviolet A (PUVA) photochemotherapy [69]. The activity
of SOD also appears to be an important factor in the devel-
opment of psoriasis. Knock out (KO) of extracellular SOD in
mice induced more intense IL-23-mediated skin inflamma-
tion characterized with elevated accumulation of CD4+ T
cells, CD11b+ macrophages, and CD11c+ dendritic cells
accompanied by increased expression of proinflammatory
cytokines [70]. Naïve CD4+ T cells were more differentiated
into the Th17 cell in extracellular SOD KO mice compared
to the wild type (WT) controls. The previous study showed
decreased activity of SOD and CAT in erythrocytes of psori-
atic patients [71]. Levels of MDA were higher in these
patients, combined with decreased activity of antioxidative
enzymes. An interplay between various components of the
immune system, ROS/RNS, and antioxidative system creates
intertwined signaling pathways.

Analyzing the differences in various pro- and antioxi-
dants in stimulated and unstimulated saliva of psoriatic
patients and healthy individuals, it was shown that several
prooxidative markers were increased in patients with plaque
psoriasis [72]. Contrary to the previous study [71], antioxi-
dative enzymes were significantly higher not only in saliva
but also in erythrocytes, of psoriatic patients compared to
healthy control [72]. The same authors also showed signifi-
cantly higher levels of TNF-α, IFN-γ, and IL-2, nitric oxide
(NO), and nitrotyrosine in saliva of psoriatic patients com-
pared to healthy individuals [73]. Furthermore, it was shown
that various inflammation-related proteins and microbiota
were changed in saliva of psoriatic patients [74, 75]. Thus,
oxidative stress biomarkers, such as total oxidative status
or oxidative stress index, as well as inflammatory markers
could be considered as diagnostic tool in psoriasis.

1.5. Therapeutic Approaches in Psoriasis. Various treatments
have been used for psoriasis patients, from topical medica-
tions that contain corticosteroids, retinoid derivatives, syn-
thetic vitamin D3 analogues, tar, or anthralin to systemic
drugs with a different mechanism of action. However, all
therapeutic modalities have transient curative effects, and it
is also difficult to predict the occurrence of exacerbations
and determine which drug delays their occurrence most
effectively. Most of the therapeutics used in psoriasis cura-
tion are not suitable for a long-term use due to serious side
effects and high costs [54]. Until recently, drugs such as
methotrexate, acitretin, cyclosporine, dexamethasone, and
salicylic acid were most commonly used in psoriasis treat-
ment. Many of these drugs have limited clinical efficacy
due to different shortcomings including low absorption
capacity, inconsistent drug release, low target tissue
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selectivity, and retention of drug molecules in the target tis-
sue, as well as various adverse reactions [76].

Groundbreaking shifts in psoriasis therapy were
achieved with the introduction of drugs that target key
immune cascades in the pathogenesis of psoriasis. Biologic
therapies or biologics represent progress in the treatment
of psoriatic patients in the last decade, due to improved effi-
cacy and tolerability of the drugs and consequently
improved quality of life of the patients [77]. Novel biological

drugs, which target TNF-α, the p40 subunit of IL-12 and IL-
23, or IL-17 receptors, are effective in treating psoriasis and
reducing the PASI score [78] (Table 1). Interestingly, inhibi-
tion of IL-1, IL-6, or IFN-γ failed to achieve a significant
clinical effect in psoriasis [79]. TNF-α inhibitors include eta-
nercept, infliximab, adalimumab, certolizumab pegol, and
golimumab [80]. Inhibitors of IL-17 include secukinumab,
ixekizumab, and bimekizumab, while brodalumab is inhibi-
tor of IL-17 receptor [80]. Inhibition of 12p40 subunit,
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Figure 3: Mechanisms involved in increasing oxidative stress in psoriasis and interactions between oxidative stress and inflammation. IFN:
interferon; IL: interleukin; MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor kappa B; ROS: reactive oxygen species; Th: T-
helper cell; TNF: tumour necrosis factor.

Table 3: Papers included in the summary of signaling cascades shown in Figure 3.

Article Main findings

Lai et al. Redox Rep. 2018; 23(1):130-135. [54] ROS induces proliferation and differentiation of Th17/Th1/Th22 cells.

Johansen et al. Br J Dermatol. 2005; 152(1):37-42.
[57]

Activity of the MAPKs and ERK1/2 is increased in psoriatic skin.

Müller et al. Autophagy. 2020; 16(8):1380-1395.
[59]

ROS are important mediators in IL23A secretion via NF-κB and MAPK pathways.

Zhou et al. Free Radic Biol Med. 2009; 47(7):891-
905. [62]

Increased inflammation facilitates production of ROS and decreases already weakened
antioxidative capacity

Srivastava et al. Indian J Dermatol Venereol
Leprol. 2018; 84(1):39-44. [68]

Polymorphisms in the GST genes may result in increased production of ROS that
could influence the pathogenesis of psoriasis.

Lee et al. J Invest Dermatol. 2013; 133(3):732-741.
[70]

SOD deficiency resulted in more severe IL-23-mediated psoriasis-like skin
inflammation.

Drewa et al. Med Sci Monit. 2002; 8(8):BR338-43.
[71]

SOD and CAT activities were significantly lower in psoriatic patients.
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which is common for IL-12 and IL-23, represents the mech-
anism of action of ustekinumab and briakinumab, while
guselkumab, tildrakizumab, and risankizumab are specific
human antibodies targeting the p19 subunit of IL-23, thus
blocking the biologic activity of IL-23 [80, 81].

Due to considerable prevalence of psoriasis in general
population, as well as comorbidities related to psoriasis,
new therapeutic modalities are constantly being investigated.
In patients with severe cases of psoriasis in which established
therapeutic procedures did not give desired results, the
application of cell therapy is being examined, which includes
the hematopoietic stem cell transplantation (HSCT) and
mesenchymal stromal cell (MSC) [82, 83]. In addition to
the fact that mesenchymal cell therapy brings the possibility
of a complete recovery of patients with psoriasis, there are
also a number of possible adverse effects that reduce the
aspiration for their use. The possible adverse effects of cell
therapy include neoplastic proliferation, graft versus host
reaction, localized skin reactions, and a lack of efficacy
[82]. Botulinum toxin has also been shown to be an effective
drug in treatment of plaque-type psoriasis [84]. Hydrogen
sulfide (H2S) is recognized as important mediator of various
physiological processes and a crucial antioxidative molecule.
Due to the disturbed redox balance in psoriasis, therapeutic
value of H2S should be investigated [85]. Antioxidative sup-
port to applied antipsoriatic drugs could be an important
factor in the reduction of keratinocyte proliferation and
remission of the disease [65, 86, 87].

1.6. Effects of Biologic Therapeutics on Oxidative Stress

1.6.1. Effects of IL-12 and IL-23 Inhibitors on Oxidative
Stress. Ustekinumab and briakinumab bind to the p40 sub-
unit which is common to IL-12 and IL-23 preventing the
interaction of these cytokines with their receptors. Both
drugs are fully human monoclonal antibodies. Ustekinumab
was approved by the US Food and Drug Administration
(FDA) and the European Medicines Agency (EMA) in
2009 for treatment of mild to severe cases of psoriasis, while
all clinical trials for briakinumab were discontinued due to
the increased risk for myocardial infarction, cerebrovascular
accident, and cardiac death [88, 89].

There are very limited data regarding the effects of uste-
kinumab on redox balance in patients with psoriasis. In a
randomized clinical trial, the effects of ustekinumab (IL-
12/IL-23 inhibitor), etanercept (TNF-α inhibitor), or cyclo-
sporine were compared regarding the heart function and
oxidative stress in patients with psoriasis [90]. After the
four-month treatment, the MDA level in patients treated
with ustekinumab was significantly decreased compared to
TNF-α inhibition, where it was unchanged, or cyclosporine,
where it was even increased. Another antioxidative effect of
anti-IL-23 antibody was shown in experimental cerebral
ischemia [91]. The application of anti-IL-23 antibody
decreased the production of ROS and MDA levels in the
serum and brain. The antioxidative mechanism achieved
by blocking of IL-23 in this experimental model involved
targeting the immune specific Janus kinase 2- (JAK2-)
STAT3 pathway. Clinical efficacy of IL-12 and IL-23 block-
ade (ustekinumab) is presented in Figure 4.

1.6.2. Effects of IL-17A Inhibitors on Oxidative Stress. Anti-
oxidative effect of IL-17 inhibition was first reported in a
42-year-old Caucasian woman suffering from plaque psoria-
sis [92]. One month after secukinumab therapy, plasma
levels of lipid measured as thiobarbituric acid reactive sub-
stances (TBARS) were significantly decreased, while total
antioxidant capacity was significantly improved. It was also
noticed that neutrophils, monocytes, and lymphocytes
decreased the production of ROS. In three murine experi-
mental models of psoriasis-like skin disease, levels of IL-
17A correlated with the severity of the disease and vascular
dysfunction [93]. Treatment with anti-IL-17A antibody effi-
ciently eradicated cutaneous lesions and decreased periph-
eral oxidative stress in two (CD11c-IL-17Aind/ind mice and
mice with imiquimod induced psoriasis) assessed the models
of psoriasis. Interestingly, in the experimental model of
severe psoriasis using K14-IL-17Aind/+ mice, neither skin
lesions nor peripheral oxidative stress was improved [93].
Another study compared the effects of secukinumab (IL-
17A inhibitor), cyclosporine, or methotrexate (MTX) treat-
ment on the left ventricular function and oxidative stress
in patients with psoriasis [94]. Secukinumab exerted most
beneficial effects on the improvement of the left ventricular
function and the decrease of MDA and protein carbonyl as
markers of oxidative stress. On the other hand, MTX did
not change the measured parameters for oxidative stress,
while cyclosporine even caused them to increase [90]. The
results of the Eding et al. showed that MutT Homolog 1
(MTH1) levels were increased in skin lesions of
imiquimod-induced psoriatic mice [95]. Inhibition of
MTH1 resulted in both decrease of ROS and oxidative stress
and IL-17-mediated inflammation. Assessing the effect of
IL-17A overexpression in CD4-IL-17Aind/+ mice, it was
shown that IL-17A overexpression was accompanied by
increased peripheral ROS/RNS levels, as well as increased
ROS/RNS production by spleen CD11b+ cells [97]. Increased
production of IL-17A, followed by an increase in oxidative
stress, resulted in endothelial dysfunction and vascular dam-
age. Clinical efficiency of IL-17 inhibition (secukinumab) is
shown in Figure 5.

1.6.3. Effects of TNFα Blockers on Oxidative Stress. TNF-α
alone does not elicit a significant response to keratinocytes.
However, in combination with IL-17A and other cytokines,
TNF-α is a significant element of the cytokine milieu in pso-
riasis. Powerful synergism between TNF-α and IL-17A
enhances the effects of IL-17A. In addition, it leads to
increased expression of IL-17R by keratinocytes [97]. TNF-
α inhibitors (etanercept, adalimumab, and infliximab) are
human fusion proteins used in treatment psoriasis. Aiming
to investigate the effects of infliximab, as TNF-α blocker,
on redox balance of psoriatic patients, Barygina and
coworkers have measured various oxidative stress biomark-
ers in plasma and white blood cells [98]. After six-month
infliximab treatment, plasma levels of MDA and protein car-
bonyl content were decreased, while the activity of NADPH
oxidase was decreased compared to untreated patients. The
most significant limitation of this study is the very small
number of patients, given that only 29 patients in total were
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included. In another study dealing with the role of etaner-
cept, another TNF-α inhibitor, the authors measured
plasma, total antioxidative capacity, and PON1 activity
[99]. Etanercept application for 24 weeks significantly
improved total antioxidative capacity and PON1 activity
combined with reduction of inflammatory markers (C-reac-
tive protein). Oxidative stress was also reduced by etanercept
in experimental peritonitis [100]. Inhibition of TNF-α by
adalimumab, human monoclonal antibody against TNF-α,
showed significant reduction of oxidative stress in experi-
mental model of vascular dementia [100]. Comparing the
effects of ustekinumab, etanercept, or cyclosporine on oxida-
tive stress in psoriasis-suffering patients, ustekinumab
exerted most powerful antioxidative effect [92].

Overall, it can be concluded that all biologics exert anti-
oxidative capacity but novel study comparing the antioxida-

tive effects of biologics of different mechanism of action
should offer new insights into interfering networks of oxida-
tive stress, immune response, and inflammation.

1.7. Effects of Immunomodulatory Therapy on Oxidative
Stress. Methotrexate (MTX) is a well-established drug for
systemic treatment of psoriasis due to its antiproliferative,
immunosuppressive, and anti-inflammatory properties. Its
exact underlining mechanisms are not fully elucidated
[102]. The antiproliferative effects of MTX are based on
inhibitory effect on folate-dependent enzymes, such as dihy-
drofolate reductase, resulting in decreased synthesis of DNA
and reduced cell proliferation [103]. Immunosuppressive
and anti-inflammatory ability of MTX are a consequence
of increased adenosine release, decreased release of proin-
flammatory cytokines (TNF-α and IL-1), favored apoptosis

(a) (b)

(c) (d)

(e) (f)

Figure 4: Clinical efficacy of IL-12 and IL-23 blockade (ustekinumab). Patient before starting therapy (a, b), after 8 weeks from the
introduction of the IL-12/IL-23 blocker (c, d), and after 16 weeks after the introduction of the IL-12/IL-23 blocker (e, f). Pictures
presented are part of the private collection of Vesna M. Milicic and Ana B. Ravic Nikolic.
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of activated T cells, and decreased chemotaxis of neutro-
phils [103].

A twelve-week MTX treatment in psoriatic patients
induced augmentation of oxidative stress, reflected through
increased levels of MDA and reduction of nitrate/nitrite,
SOD, and CAT activity and TAS in the plasma [104]. The
authors proposed that increased ROS and decreased NO
production, combined with increased caspase-3 expression,
represent the mechanism of MTX-mediated induction of
apoptosis. Experimental study in an isolated hepatocytes
rat confirmed prooxidative effects of MTX [105]. Antioxi-
dants decreased ROS availability and reduced MTX-
induced cytotoxicity. MTX also induced mitochondria swell-
ing, decrease of ATP and GSH amount, and release of cyto-
chrome c. The assessment of expression of isoenzymes of
GST and cytochrome (CYP) families showed that expression

was increased in patients with psoriasis compared to healthy
controls [106]. After 12-week MTX treatment, the expres-
sion of these enzymes, important in regulation of redox bal-
ance, did not change significantly, although there was
marked clinical improvement. Prooxidative effects of MTX
were shown in other tissues and organs. In the MTX treated
rats, the levels of GSH, SOD, and CAT testicular were signif-
icantly decreased, combined with increased DNA and tissue
damage [107]. MTX also showed prooxidative features in
liver and neural tissues due to decreased activity of SOD,
CAT, or GPx [108, 109].

Conversely, the results of several studies implicated anti-
oxidative effects of MTX. Zimmerman et al. showed that
MTX inhibits the generation of MAA-protein adducts,
formed by MDA and acetaldehyde interaction [110].
MAA-protein adducts have high immunogenic and

(a) (b)

(c) (d)

(e) (f)

Figure 5: Clinical efficacy of IL-17A blockade (secukinumab). Patient before starting therapy (a, b), after 8 weeks from the introduction of
the IL-17A blocker (c, d), and after 16 weeks after the introduction of the IL-17A blocker (e, f). Pictures presented are part of the private
collection of Vesna M. Milicic and Ana B. Ravic Nikolic.
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prooxidative potential, so they are not only markers of oxi-
dative stress, but also play an active role in the development
of immune disorders. MTX significantly reduced the pro-
duction of MAA-protein adducts as well as the level of free
radicals in vitro. The reduction of free radicals and antioxi-
dative action of MTX was achieved by the ability of MTX
to directly scavenge O2

-. Another study on the effects of 24
weeks of MTX therapy on oxidative stress showed antioxida-
tive properties of MTX in psoriatic patients [111]. The levels
of MDA significantly decreased, while TAS markedly
increased after MTX therapy in psoriatic patients. Compar-
ing to healthy controls the oxidative stress was higher in pso-
riatic patients both at the beginning and at the end of the
MTX therapy protocol.

Analyzing results of different studies, it can be concluded
that MTX has somewhat contradictory impact on redox bal-

ance. This could be the consequence of its prooxidative and
proapoptotic effects, and on the other hand, of decreased
production of ROS through inhibition of inflammation-
mediated pathways [112]. Clinical efficacy MTX is shown
in Figure 6.

1.8. Effects of UVB and PUVA Therapy on Oxidative Stress.
Phototherapy is often used in the treatment of skin diseases.
It is a type of light therapy that mimics the effects of expo-
sure to sunlight. Established phototherapies in psoriatic
patients include PUVA radiation (psoralen in combination
with UVA radiation) and narrow-band UVB (NB-UVB)
[113]. The phototherapeutic procedures are usually effective
in psoriasis treatment, but due to potential side-effects,
including carcinogenesis, it can be used only for short-term
treatment of the disease [113]. Increased ROS production

(a) (b)

(c) (d)

(e) (f)

Figure 6: Clinical efficacy of methotrexate (MTX). Patient before starting therapy (a, b), after 8 weeks from the introduction of the MTX
(15mg per week) (c, d), and after 16 weeks after the introduction of the MTX (15mg per week) (e, f). Pictures presented are part of the
private collection of Vesna M. Milicic and Ana B. Ravic Nikolic.
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during PUVA therapy, due to psoralen sensitization and
UVA exposure, increases already increased levels of super-
oxide anion radical (O2

-) and forms the basis of photocarci-
nogenesis [114].

Production of ROS due to PUVA therapy may cause
oxidative damage to various macromolecules. The analysis
of the PUVA effects on oxidative damage of DNA showed
that suberythemal dose induced increased urinary extrac-
tion of 8-Oxo-2′-deoxyguanosine (8-oxo-dG) as a marker
of DNA oxidation [115]. 8-oxo-dG in urine reached the
peak 4 days after PUVA irradiation. In vitro study on
HaCaT keratinocyte cell line also showed increased 8-oxo-
dG production after exposure to therapeutic doses of PUVA
and NB-UVB [116].

In the 12-week follow-up study, oxidative stress biomarkers,
TBARS, and total antioxidant status (TAS) were significantly
improved due to NB-UVB and PUVA therapy [117]. PUVA
treatment appears to be more effective in the reduction of oxi-
dative stress comparing to NB-UVB. The reduction of oxidative
stress markers was connected with the reduction of inflamma-
tion. A study of similar design also showed the reduction of oxi-
dative stress biomarkers, TBARS and TAS, after 12-week long
PUVA and NB-UVB therapy [118]. Short-term increase of
ROS production upon PUVA treatment, combined with the
reduction of inflammation, could improve antioxidative poten-
tial and thus prolonged PUVA treatment results in the reduc-
tion of oxidative stress.

2. Conclusion

Oxidative stress and the aberrant immune response remain
two crucial pathophysiological mechanisms in psoriasis.
Their interdependence and interconnectedness represent
the key to understanding etiopathogenesis of psoriasis. A
large number of factors that can influence the development
of psoriasis, from genetic predisposition to lifestyle, make
the tangle of causes and consequences still insufficiently
understood. Novel therapeutic options, primarily biological
therapy, have significantly improved the quality of life of
patients with psoriasis. However, the success of the applied
therapy seems to depend on the reduction of both the proin-
flammatory and prooxidative components of the disease.
The most noticeable and most powerful antioxidative effects
exert various biologics compared to more convenient thera-
peutic modalities, such as methotrexate or phototherapy.
Intersections of redox, immune, and inflammatory signaling
pathways should be the focus of further researches dealing
with pathophysiology of psoriasis, while antioxidative sup-
plementation could be the solution in some refractory cases
of the disease.
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Due to existing evidence regarding antioxidant and anti-inflammatory effects ofMelissa officinalis extracts (MOEs), this study was
aimed at investigating the potential of ethanolic MOE to prevent the development of myocarditis and its ability to ameliorate the
severity of experimental autoimmune myocarditis (EAM) by investigating MOE effects on in vivo cardiac function, structure,
morphology, and oxidative stress parameters. A total of 50 7-week-old male Dark Agouti rats were enrolled in the study and
randomly allocated into the following groups: CTRL, nontreated healthy rats; EAM, nontreated rats with EAM; MOE50,
MOE100, and MOE200, rats with EAM treated with either 50, 100, or 200mg/kg of MOE for 3 weeks per os. Myocarditis was
induced by immunization of the rats with porcine myocardial myosin (0.5mg) emulsion on day 0. Cardiac function and
dimensions of the left ventricle (LV) were assessed via echocardiography. Additionally, the blood pressure and heart rate were
measured. On day 21, rats were sacrificed and the hearts were isolated for further histopathological analyses (H/E and
Picrosirius red staining). The blood samples were collected to determine oxidative stress parameters. The EAM group
characteristically showed greater LV wall thickness and lower ejection fraction (50:33 ± 7:94% vs. 84:81 ± 7:74%) and fractional
shortening compared to CTRL (p < 0:05). MOE significantly improved echocardiographic parameters (EF in MOE200 81:44 ±
5:51%) and also reduced inflammatory infiltrate (by 88.46%; p < 0:001) and collagen content (by 76.39%; p < 0:001) in the
heart tissues, especially in the MOE200 group compared to the EAM group. In addition, MOEs induced a significant decrease
of prooxidants production (O2

-, H2O2, and TBARS) and improved antioxidant defense system via increase in GSH, SOD, and
CAT compared to EAM, with medium and high dose being more effective than low dose (p < 0:05). The present study suggests
that ethanolic MOEs, especially in a 200mg/kg dose, improve cardiac function and myocardial architecture, possibly via
oxidative stress mitigation, thus preventing heart remodeling, development of dilated cardiomyopathy, and subsequent heart
failure connected with EAM. MOEs might be considered as a potentially helpful adjuvant therapy in patients with
autoimmune myocarditis.
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1. Introduction

Myocarditis is an inflammatory heart disease characterized
by nonischemic inflammatory infiltrates in the heart tissue
associated with necrosis and/or degeneration of cardiomyo-
cytes. Several entities have been identified as the causes of
myocarditis, such as viral or bacterial infections, drugs or
toxin usage, and autoimmune processes. Acute myocardial
inflammation may progress to subacute and chronic phases
and ultimately lead to tissue remodeling, fibrosis, myocar-
dium architecture damage, and depressed contractile func-
tion [1]. Autoimmune myocarditis, also known as giant cell
myocarditis, is associated with poor prognosis since it often
leads to dilated cardiomyopathy (DCM) in chronic stages. It
is also estimated that one-third of autoimmune myocarditis
cases develop heart failure, and almost 40% of all heart fail-
ures in the population under 40 is actually associated with
autoimmune myocarditis. In addition, autoimmune myocar-
ditis tends to be unrecognized in patients with DCM, until
post mortem histopathological analyses, as its clinical presen-
tation varies widely [2].

Taking into account that current therapeutic options for
myocarditis are limited to symptomatic treatment for
arrhythmias and heart failure and that no effective therapeu-
tic strategy has been developed yet [2], the search for novel
efficient therapeutic options is necessary. The most com-
monly used animal model of giant cell autoimmune myocar-
ditis is EAM on rodents, which allows investigation of the
mechanisms involved in this pathology, as well as testing
of novel treatments [2–4]. The usage of natural products in
the treatment of cardiovascular disease is gaining popularity
owing to their safety, fewer side effects, and lower costs. In
recent years, preclinical and clinical research has been
focused on identifying innovative phytomedicines, including
plant extracts with high anti-inflammatory and antioxidant
potential, and especially on identifying active components
responsible for cardioprotection [5, 6].

Melissa officinalis L. (Lamiaceae), also known as lemon
balm, is a perennial herb belonging to lemon scent, mint
family of plants. It has been widely used in traditional med-
icine for centuries, mainly because of its beneficial effects on
the nervous system, including anxiety symptoms and palpi-
tation relieving, mild sedative, and hypnotic effects. In addi-
tion, a plethora of pharmacological activities of lemon balm
have been described: hypoglycemic, hepatoprotective, anti-
bacterial, anti-inflammatory, antioxidant, antiviral, antispas-
modic, neuroprotective, and cytotoxic effects. Literature data
also suggests its beneficial effects on the cardiovascular sys-
tem such as antiarrhythmic and vasorelaxant properties
and protective effects in myocardial ischemia-reperfusion
injury [7–9]. These cardiovascular effects of MOEs are con-
nected to their antioxidant potential and free radical scav-
enging properties. Polyphenolic compounds particularly
rosmarinic acid, as the major component, but also cinnamic,
protocatechuic, caffeic, ferulic, and ellagic acids; flavonoids
(quercetin, luteolin, apigenin, catechin, epicatechin, and
rutin); and triterpenoids ursolic and oleanolic acids are high-
lighted as the active compounds responsible for MOE anti-
oxidant potential. Additionally, anti-inflammatory potential

of MOEs has been proven in the carrageenan-induced paw
edema model, which may be very useful in EAM [10, 11].
It is suggested that modulation of immune response by
MOEs is achieved by strong anti-inflammatory potential of
rosmarinic acid and triterpenoids.

Up until now, the beneficial effects of bioactive plant
compounds such as curcumin, quercetin, apigenin, berber-
ine, resveratrol, oleanolic acid, catechin, and epigallocate-
chin have been confirmed in EAM model [12–14]. Several
mechanisms mediate these beneficial effects, including mod-
ulation of oxidative stress, suppression of apoptosis and
fibrosis, and modulation of the immune response and cyto-
kine concentration [5, 6, 15–17]. Nonetheless, the effects of
MOEs in this pathology are entirely unexplored.

Considering proven antioxidant and anti-inflammatory
effects of MOEs, we aimed to investigate the potential of
ethanolic MOE to prevent the development of myocarditis
and its ability to ameliorate the severity of EAM by investi-
gating MOEs effects on in vivo cardiac function, structure,
morphology, and oxidative stress parameters.

2. Materials and Methods

2.1. Ethical Standards. All experimental procedures involv-
ing laboratory animals used in this research were approved
by Ethics Committee for experimental animal well-being of
the Faculty of Medical Sciences, University of Kragujevac
(Kragujevac, Serbia) No. 01-10171. Furthermore, all the
experimental procedures were performed according to Euro-
pean Directive 2010/63/EU for the welfare of laboratory ani-
mals, number and principles of Good Laboratory Practice
(GLP) (86/609/EEC). Additionally, experiments were carried
out following the European Union Directive 86/609/EES for
the Protection of the Vertebrate Animals used for Experi-
mental and other Scientific Purposes and the principles of
ethics.

2.2. Plant Material and Plant Extraction. For the purposes of
this research, dried leaves of Melissa officinalis L. (Lamia-
ceae) purchased from Bilje Borca, LLC (Belgrade, Serbia)
were used. The dried plant material was pulverized with a
mill (IKA A11, Germany) and stored in well-sealed paper
bags at room temperature until the extract was made. The
ethanolic MOE was obtained under the reflux of the solvent.
This method involves extraction at the boiling point of the
solvent (70% ethanol). The extraction was performed for
2.5 hours, after which the mixture was filtered through gauze
and left at room temperature to spontaneously precipitate
ballast substances. Finally, the obtained liquid extract was fil-
tered (Whatman, No. 1), while we used a rotary vacuum
evaporator (RV05 basic IKA, Germany) at 40°C, 90 rpm,
and 250mbar vacuum to obtain dry extract, which was
stored in dark glass vials at +4°C until administration [18].

2.3. Animals. The study involved a total of 50 seven-week-
old male Dark Agouti (DA) rats, weighing 150 ± 20 g at the
beginning of the experiment, purchased from the Military
Medical Academy Animal House, Belgrade. Firstly, animals
were acclimatized for two weeks and kept in polyethylene
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cages (4 per cage) under standardized controlled environ-
mental conditions (22 ± 2°C and a 12h light/dark cycle).
Free access to standard food (9% fat, 20% protein, and
53% starch) and water (ad libitum) was provided for all
animals.

2.4. Induction of Experimental Autoimmune Myocarditis.
Calcium-activated myosin from the porcine heart (Sigma-
Aldrich, Munich, Germany) was dissolved in 0.01M
phosphate-buffered saline (PBS) in one tube and emulsified
with an equal volume of complete Freund’s adjuvant
(FCA) supplemented with Mycobacterium tuberculosis
(strain H37 RA; Difco Laboratories, Detroit,MI) at a concen-
tration of 10mg/ml mixed in a separate tube. The suspen-
sions from both tubes were then mixed, vortexed, and
transferred to a syringe. The suspension was then homoge-
nized by moving the content back and forth between the
two syringes for 60min. The final volume of the suspension
was drawn into a 1ml sterile syringe with Luer-Lock tip and
connected to a 26G needle. The suspension was prepared ex
tempore on the day of immunization. On day 0, the rats were
injected subcutaneously into both rear hind footpads with
0.1ml of final emulsion (0.05ml per footpad), yielding an
immunizing dose of 0.25mg/body of cardiac myosin per
rat. The CFA emulsified with PBS was applied to the control
group [19].

2.5. Study Design. The rats (n = 50) were randomly allocated
into five different groups: CTRL, healthy nontreated rats;
EAM, nontreated rats with myocarditis; and MOE50,
MOE100, and MOE200, rats with myocarditis treated with
three different doses (50mg/kg, 100mg/kg, and 200mg/kg)
of ethanolic MOEs. Treatment involved daily per os applica-
tion (every day at the same time) of MOE dissolved in dis-
tilled water, ex tempore (volume of 300μl approximately).
All animals were weighed during the protocol to adjust the
MOE dose according to the rats’ body weight.

2.6. Hw/Bw and Sw/Bw Ratios. The rat’s body weight was
measured directly before in vivo functional analysis. After-
ward, the rats were sacrificed and the hearts and spleens
were isolated and measured in order to calculate relative
heart weight (Hw) and spleen weight (Sw) to body weight
(Hw/Bw and Sw/Bw) ratios.

2.7. Blood Pressure and Heart Rate Measurement. The systolic
and diastolic blood pressures (SBP and DBP) and heart rate
(HR) were measured by a tail-cuff noninvasive method BP
system (Rat Tail Cuff Method Blood Pressure Systems
(MRBP-R), IITC Life Science Inc., Los Angeles, CA,USA) twice,
first at the beginning of the experimental protocol (day 0) in
order to check the homogeneity of the animals, when no dif-
ference was found, and then after accomplishing the 3-week
protocol before sacrificing the animals (day 21) [20].

2.8. Echocardiographic Analyses. Transthoracic echocardiog-
raphy was performed to assess the effects of MOE on in vivo
cardiac function and the development of autoimmune myo-
carditis. The procedure was repeated twice, first at the begin-
ning (day 0) to check the homogeneity of the animals and

their health, when no difference was found, and then at the
end of the experimental protocol (day 21) before sacrificing
the animals. The animals were anesthetized with mixture of
ketamine (75mg/kg) and xylazine (5mg/kg) intraperitone-
ally. Echocardiograms were performed using a Hewlett-
Packard Sonos 5500 (Andover, MA, USA) sector scanner
equipped with a 15.0MHz phased-array transducer as in
our previous research [20]. From the parasternal long-axis
view in 2-dimensional mode, and M-mode cursor was posi-
tioned perpendicularly to the interventricular septum and
posterior wall of the left ventricle (LV) at the papillary mus-
cle level and M-mode images were obtained. The following
parameters were measured: interventricular septal wall
thickness at end-diastole (IVSd), LV internal dimension at
end-diastole (LVIDd), LV posterior wall thickness at end-
diastole (LVPWd), interventricular septal wall thickness at
end-systole (IVSs), LV internal diameter at end-systole
(LVIDs), and LV posterior wall thickness at end-systole
(LVPWs) were recorded with M-mode. Fractional shorten-
ing percentage (FS%) was calculated from the M-mode LV
diameters using the equation ½ðLVIDd − LVIDsÞ/LVIDd� ×
100%, where LVIDd is left ventricular end diastolic diameter
and LVIDs is left ventricular end-systolic diameter. Ejection
fraction (EF%) was calculated according to the Teichholz
formula [21], where LVEDV represents LV end-diastolic
volume, while LVESV represents LV end-systolic volume.

EF = 100 × LVEDV − LVESVð Þ
LVEDV

LVESV

= 7 × LVIDsð Þ
2:4 × LVIDsð Þ LVEDV = 7 × LVIDdð Þ

2:4 × LVIDdð Þ
ð1Þ

2.9. Biochemical Analyses-Oxidative Stress Parameters. After
completing the 3-week protocol, all animals were anesthe-
tized by short ketamine and xylazine narcosis and sacrificed
by decapitation. The blood samples were collected to deter-
mine oxidative stress parameters spectrophotometrically
(Shimadzu UV 1800 spectrophotometer, Kyoto, Japan). The
blood samples were centrifuged in order to separate the
plasma and obtain red blood cell (RBC) lysate suspension
by washing isolated separated RBCs 3 times with ice cold
saline. The following prooxidant parameters were deter-
mined from plasma samples: superoxide anion radical
(O2

-), hydrogen peroxide (H2O2), nitrites (NO2
-), and index

of lipid peroxidation measured as thiobarbituric acid reac-
tive substances (TBARS). Antioxidant protection parameters
were determined from erythrocyte lysate samples: the activ-
ity of catalase (CAT) and superoxide-dismutase (SOD) and
the level of reduced glutathione (GSH).

2.9.1. Determination of Prooxidants (O2
-, H2O2, NO2

-, and
TBARS). The quantification of superoxide anion radical
was based on the reaction of O2

− with nitro blue tetrazolium
(NBT). The protocol included mixing of 50μl of plasma
samples and 950μl of assay mixture, followed by measuring
on 550 nm in triplicate every 60 s [22].

The hydrogen peroxide (H2O2) determination method
was based on the oxidation of phenol red with horseradish
peroxidase enzyme. 200μl of plasma sample was mixed with
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800μl of PRS (phenol red solution) and 10μl POD (horse-
radish peroxidase (1 : 20)). Measuring was performed at
610nm [22].

Nitric oxide (NO) level was assessed indirectly by mea-
suring nitrite concentration, since NO decomposes rapidly
forming an equal amount of nitrite products. First, 100μl
of PCA (perchloride acid), 400μl of 20mM ethylenedi-
aminetetraacetic acid (EDTA), and 200μl of the plasma
sample were mixed, put on the ice for 15min, and centri-
fuged for 15min at 6000 rpm. After separating the superna-
tant, 220μl K2CO3 was added. Measuring was performed at
550nm [22].

Index of lipid peroxidation in the plasma samples was
estimated indirectly by measuring TBARS. First, TBA
extract was made by mixing 800μl sample and 400μl tri-
chloroacetic acid (TCA), which was then put on ice for
10min and centrifuged for 15min at 6000 rpm. Next, 1%
TBA (thiobarbituric acid) in 0.05 NaOH was incubated with
the obtained sample at 100°C for 15min and after 10min
measured at wavelength of 530nm [22].

2.9.2. Determination of Antioxidants (SOD, CAT, and GSH).
Obtained lysates containing about 50 g Hb/l were used to
determine antioxidant enzyme activity. CAT buffer, sample,
and 10mM H2O2 were used for CAT determination. Detec-
tion was performed at 360 nm [22]. SOD activity was evalu-
ated by the epinephrine method. Lysate sample was first
mixed with carbonate buffer, and then epinephrine was
added. Detection was performed at 470nm. The amount of
SOD and CAT was expressed as U/g Hb ×103 [23, 24].
The reduced glutathione (GSH) level was determined by
GSH oxidation with 5,5-dithiobis-6,2-nitrobenzoic acid.
GSH extract was made by mixing 100μl 0.1% EDTA,
400μl lysate, and 750μl precipitation solution (1.67 g meta-
phosphoric acid, 0.2 g EDTA, 30 g NaCl, and filled with dis-
tilled water to 100ml). This was followed by mixing in the
vortex machine and extraction on cold ice (15min) and cen-
trifugation at 4000 rpm (10min). Distilled water was used as
a blank probe. The level of GSH was measured at 420 nm
and expressed as nanomoles per milliliter of RBCs [22].

2.10. Histological Analyses of the Heart. The isolated hearts
were measured and then cut into two halves so that the left
and right halves of the heart were available for further histo-
logical analysis. The hearts were then fixed in 4% neutral
paraformaldehyde, dehydrated in increasing alcohol concen-
trations (70%, 96%, and 100%), cleared in xylene, immersed
in paraffin, and prepared for further analysis. 5μm thick
serial sections were stained by the H/E (hematoxylin/eosin)
method for the purpose of morphometric analysis of cells
and verification of morphological changes and by the Picro-
sirius red staining for collagen detection. Images of heart tis-
sue sections were taken on an Olympus BX51 light
microscope. Morphometric analysis of cardiomyocytes (lon-
gitudinal section diameter as well as cross-sectional area)
was performed in the Axiovision image analysis program
(Zeiss, USA), where 100-120 cells per animal were analyzed
[25]. The cell infiltrate density and the collagen content were
analyzed using Image Pro-Plus programs (Media Cybernetics,

USA). The analysis of cell infiltrate density and the collagen
content was performed on 10 sections, of the total number of
serial sections of the heart, with every 20th section of heart
tissue analyzed, i.e., the distance between the analyzed plates
was 100μm. The results are presented as percentages. It is
important to emphasize that no cell infiltrate was verified
in the control group, and the value for infiltrate density
was presented as 0%.

2.11. Statistical Analyses. IBM SPSS 20.0 was used for statis-
tical data processing for Windows. The Kolmogorov-
Smirnov and Shapiro-Wilk tests, histogram, and normal
QQ plot tests were used to examine the normality of the dis-
tribution. Data are expressed as mean value ðXÞ ± standard
deviation (SD) and analyzed by one-way analysis of variance
(ANOVA), followed by the Bonferroni test. A value of p <
0:05 was considered significant.

3. Results

3.1. Effects of MOE on Hw/Bw and Sw/Bw Ratios. Immu-
nized nontreated EAM rats and rats treated with a low dose
of MOE (MOE50) were shown to have significantly increased
heart weights and Hw/Bw ratio compared to the healthy
CTRL group (p < 0:01). Additionally, medium and high doses
ofMOE (groupsMOE100 andMOE200) significantly lowered
heart weights and Hw/Bw ratio compared to both EAM and
MOE50 groups (p < 0:05). The EAM group also showed a sig-
nificantly increased Sw and Sw/Bw ratio compared to CTRL,
while MOE100 and MOE200 significantly lowered these two
parameters. The Sw/Bw ratio reduction was the most promi-
nent in the MOE200 group (Table 1).

3.2. Effects of MOE on Hemodynamic Parameters. Three
weeks post-immunization, significantly elevated HR was
observed in the EAM group compared to CTRL, while treat-
ment with extract induced a significant HR reduction in all
three dose regimens compared to EAM. Additionally,
medium and high doses of extract in combination with
EAM induced a significant HR reduction compared to
CTRL. Systolic blood pressure was shown to be lowered in
the MOE200 group compared to the CTRL, EAM, and
MOE50 groups (p < 0:05), while no significant differences
in this parameter were noticed between other groups. Also,
no significant changes in DBP were observed between
groups (Table 2).

Significantly decreased ejection fraction was observed in
immunized EAM and MOE50 rats compared to CTRL ani-
mals (50.33% and 53.89% vs. 84.82%, p < 0:01), while treat-
ment with MOE100 and MOE200 (72.47% and 81.44%)
markedly improved EF after 3-week supplementation com-
pared to both the EAM and MOE50 groups. Only the high-
est dose MOE200 succeeded in normalizing EF to levels
similar to CTRL values. A similar trend was observed in
the FS parameter, which was significantly lower in EAM rats
relative to CTRL, while all three doses of MOE led to an
increment of FS compared to the EAM group (p < 0:05).
The EAM group was also associated with LVPWd and
LVPWs thickening compared to healthy rat hearts, all three
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doses of MOE led to reduction of these parameters, while
MOE200 seemed to normalize these values to levels similar
to control ones (Figure 1 and Table 3).

3.3. Effects of MOE on Oxidative Stress Parameters. Three
weeks post-induction of EAM, significantly higher release
of all measured prooxidant markers (O2

-, H2O2, NO2
-, and

TBARS) was observed in EAM rats compared to the CTRL
group (p < 0:05). However, treatment with MOE in all three
doses succeeded in significantly decreasing the level of
TBARS and NO2

- (p < 0:05) compared to EAM, with no
effect on the level of hydrogen peroxide. The level of super-
oxide anion radical was significantly lowered only by
medium and high dose MOE100 and MOE200 compared
to EAM. In addition, the highest and medium dose of the
applied extract showed a more dominant effect on O2

-,
NO2

-, and TBARS compared to MOE50 (Figure 2). Regard-
ing antioxidants, significantly lower activity of antioxidant
enzymes CAT and SOD and the level of GSH were observed
in the EAM group (p < 0:05), while MOE treatment
improved antioxidant protection via an increase in all three
parameters compared to EAM (p < 0:05). Medium and high
doses of MOE significantly improved all three parameters
compared to EAM and MOE50. Additionally, medium and
high dose of MOE significantly improved SOD and GSH
compared to the CTRL group (p < 0:05). No differences were
observed between the MOE200 and MOE100 groups in all 3
measured parameters (p > 0:05). Low-dose MOE50
improved SOD and CAT compared to EAM to a lesser
extent than MOE100 and MOE200 (Figure 3).

3.4. Effects of MOE on Myocardium Structure

3.4.1. Hematoxylin-Eosin Staining. The preserved myocar-
dial structure was observed in the CTRL group of rats. H-/

E-stained sections of the EAM group of rats confirmed the
presence of severe myocarditis characterized by massive
inflammatory cell infiltration, destruction of myocardial
fibers, swelling of cardiomyocytes, interstitial edema, and
increased sarcoplasmic eosinophilia. However, MOE treat-
ment especially MOE200 improved cardiac structure after
3-week treatment. EAM heart tissue sections showed a sig-
nificant presence of inflammatory infiltrate compared to
CTRL healthy hearts. Inflammatory infiltrate consisted of
different leukocytes including mononuclear cells, polymor-
phonuclear neutrophils and multinucleated giant cells,
which mainly infiltrated the epicardium of the ventricular
wall. Namely, all three doses of MOE (MOE50, MOE100,
and MOE200) significantly reduced inflammatory infiltrate
density (by 44.38%, 71.37%, and 88.46%) compared to the
EAM group (Figure 4). Additionally, significant differences
between different doses of MOE were observed, and a
dose-dependent effect was noticed (p < 0:01).

3.4.2. Picrosirius Red Staining. Analysis of Picrosirius red
staining in the heart tissue section revealed higher amount
of fibrosis in the EAM group, while MOE treatment, espe-
cially MOE200, significantly decreased fibrosis compared
to EAM, MOE50, and MOE100. Experimental autoimmune
myocarditis (EAM group) induced significant almost three-
fold increase (by 261.31%) in collagen content compared to
the CTRL group of healthy rat hearts (p < 0:01), while 3-
week MOE treatment succeeded to diminish these changes.
All three doses of MOE significantly reduced the elevated
collagen content compared to EAM rats (MOE50 by
50.23%, MOE100 by 61.39%, and MOE200 by 76.39%) with
the most prominent effect noticed in the MOE200 group
which normalized the collagen content to CTRL values.

Table 1: Effects of MOEs on body weight (Bw), heart weight (Hw), heart weight/body weight ratio (Hw/Bw ratio), spleen weight (Sw), and
spleen weight/body weight ratio (Sw/Bw ratio). CTRL: control group; EAM: experimental autoimmune myocarditis group; MOE50,
MOE100, and MOE200: groups of rats treated with either 50, 100, or 200mg/kg of Melissa officinalis extract. Statistical significance at
the level of p < 0:05∗compared to CTRL, #compared to EAM, and ¶compared to MOE50. Data are expressed mean ± standard deviation.

CTRL EAM MOE50 MOE100 MOE200

Bw (g) 215:29 ± 5:71 212 ± 14:97 195:88 ± 9:34 189 ± 10:06 194:25 ± 6:14
Hw (mg) 777:14 ± 34:50 1014:47 ± 110:89∗ 937:50 ± 88:28∗ 760:23 ± 67:17#¶ 782:34 ± 29:73#¶

Sw (mg) 403:29 ± 23:61 447:57 ± 15:08∗ 398:13 ± 23:90 351:38 ± 30:89# 335:12 ± 15:57#¶

Hw/Bw ratio (mg/g) 3:61 ± 0:24 4:81 ± 0:80∗ 4:80 ± 0:60∗ 4:02 ± 0:33#¶ 4:10 ± 0:27#¶

Sw/Bw ratio (mg/g) 1:87 ± 0:08 2:12 ± 0:17∗ 2:04 ± 0:20 1:86 ± 0:14# 1:71 ± 0:07#¶

Table 2: Effects of MOEs on systolic (SBP), diastolic blood pressure (DBP), and heart rate (HR). CTRL: control group; EAM: experimental
autoimmune myocarditis group; MOE50, MOE100, and MOE200: groups of rats treated with either 50, 100, or 200mg/kg of Melissa
officinalis extract. Statistical significance at the level of p < 0:05∗compared to CTRL, #compared to EAM, and ¶compared to MOE50.
Data are expressed means ± standard deviation.

CTRL EAM MOE50 MOE100 MOE200

SBP (mmHg) 133:60 ± 7:60 133:25 ± 6:13 124:75 ± 5:85 121:00 ± 5:72 113:80 ± 4:95∗#¶

DBP (mmHg) 81:40 ± 4:93 78:75 ± 6:08 79:25 ± 8:42 80:00 ± 5:35 68:60 ± 4:95
HR (beats/min) 367:60 ± 17:62 453:75 ± 40:54∗ 373:50 ± 18:73# 333:00 ± 11:22∗#¶ 332:60 ± 25:46∗#¶
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Also, a dose-dependent effect of MOE treatment on collagen
content was noticed (p < 0:05) (Figure 5).

3.5. Effects of MOE on Heart Morphometric Parameters. Both
cross-section area and longitudinal diameters of cardiomyo-

cytes were significantly elevated in the EAM group of rats
compared to the CTRL group (p < 0:01). However, MOE
treatment significantly decreased these two parameters com-
pared to the EAM group. Medium and high dose of MOE
showed superior effects compared to a low dose of MOE

(a) (b)

(c) (d)

(e)

Figure 1: Representative M-mode echocardiograms. (a) CTRL, (b) EAM, (c) MOE50, (d) MOE100, and (e) MOE200. CTRL: control group;
EAM: rats with experimental autoimmune myocarditis; MOE50, MOE100, and MOE200: groups of rats treated with either 50, 100, or
200mg/kg of M. officinalis extract.

Table 3: Effects of MOEs on echocardiographic parameters: interventricular septal wall thickness at end-systole and end-diastole (IVSs and
IVSd), left ventricular internal diameter at end-systole and end-diastole (LVIDs and LVIDs), left ventricular posterior wall thickness at end-
systole and end-diastole (LVPWs and LVPWd), fractional shortening (FS), and ejection fraction (EF). CTRL: control group; EAM:
experimental autoimmune myocarditis group; MOE50, MOE100, and MOE200: groups of rats treated with either 50, 100, or 200mg/kg
of Melissa officinalis extract. Statistical significance at the level of p < 0:05∗compared to CTRL, #compared to EAM, ¶compared to
MOE50, and §compared to MOE100. Data are expressed means ± standard deviation.

CTRL EAM MOE50 MOE100 MOE200

IVSd (cm) 0:150 ± 0:039 0:174 ± 0:035 0:145 ± 0:032 0:148 ± 0:018 0:140 ± 0:012
LVIDd (cm) 0:452 ± 0:059 0:433 ± 0:027 0:450 ± 0:056 0:477 ± 0:046 0:516 ± 0:033
LVPWd (cm) 0:152 ± 0:027 0:193 ± 0:029∗ 0:179 ± 0:015# 0:169 ± 0:024#¶ 0:160 ± 0:007#¶

IVSs (cm) 0:175 ± 0:073 0:162 ± 0:020 0:141 ± 0:012 0:160 ± 0:033 0:154 ± 0:017
LVIDs (cm) 0:228 ± 0:041 0:338 ± 0:030 0:262 ± 0:034 0:301 ± 0:036 0:285 ± 0:046
LVPWs (cm) 0:160 ± 0:020 0:199 ± 0:047∗ 0:179 ± 0:029# 0:171 ± 0:024#¶ 0:161 ± 0:007#¶

FS (%) 49:19 ± 8:89 21:88 ± 4:55∗ 41:59 ± 6:24# 38:92 ± 4:31# 44:96 ± 5:81#¶§

EF (%) 84:81 ± 7:74 50:33 ± 7:94∗ 53:89 ± 4:85∗ 72:47 ± 8:48#¶ 81:44 ± 5:51#¶§
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Figure 2: Effects of MOE on prooxidant parameters. (a) Superoxide anion radical (O2
-), (b) hydrogen peroxide (H2O2), (c) nitrites (NO2

-),
and (d) index of lipid peroxidation measured as thiobarbituric acid reactive substances (TBARS). CTRL: control group; EAM: rats with
experimental autoimmune myocarditis; MOE50, MOE100, and MOE200: groups of rats treated with either 50, 100, or 200mg/kg of
Melissa officinalis extract. Data are presented as means ± standard deviation. Statistical significance at the level p < 0:05: A, compared to
CTRL; B, compared to EAM; C, compared to MOE50; D, compared to MOE100; and E, compared to MOE200.
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Figure 3: Effects of MOE on antioxidant parameters. (a) Superoxide dismutase (SOD), (b) catalase (CAT), and (c) reduced glutathione
(GSH). CTRL: control group; EAM: rats with experimental autoimmune myocarditis; MOE50, MOE100, and MOE200: groups of rats
treated with either 50, 100, or 200mg/kg of Melissa officinalis extract. Data are presented as means ± standard deviation. Statistical
significance at the level p < 0:05: A, compared to CTRL; B, compared to EAM; C, compared to MOE50; D, compared to MOE100; and E,
compared to MOE200.
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(MOE50 group) (p < 0:01). No differences in the measured
parameters were noticed between MOE100 and MOE200
(Figure 6).

4. Discussion

Experimental autoimmune myocarditis in rats is associated
with severe changes in the myocardial architecture including
massive inflammatory cell infiltration and impaired cardiac
function ultimately leading to heart remodeling and dilated
cardiomyopathy (DCM). The pathophysiology of this dis-
ease is very complex and not fully elucidated yet. However,
it is known that excessive ROS production and subsequent
oxidative stress induce the release of inflammatory cytokines
and chemokines included in leukocytes’ migration to the
heart tissue. Additionally, oxidative stress may cause cardio-
myocyte damage by necrosis or apoptosis [2]. DCM involves
the dilatation of the ventricles, which may impair systolic
function [1]. Irreversible fiber damage, fibrosis, and finally
heart failure may occur as the consequence of systolic dys-

function, leaving the heart transplantation as the only thera-
peutic option [26]. Even though there is evidence on natural
products being useful in EAM pathology [5, 6], to the best of
our knowledge, this is currently the first study dealing with
the effects of M. officinalis in autoimmune myocarditis.

Hemodynamic measurements implicated that the EAM
group was associated with a severe drop of ejection fraction
(EF) and fractional shortening (FS), LV wall thickening, and
increased heart rate. With morphometric changes, heart
enlargement by increased Hw/Bw ratio, and cardiomyocyte
cross section area and longitudinal diameter increment in
EAM rats, all of the above-mentioned indicates disturbed
heart function and the beginning of characteristic myocardi-
tis induced DCM. Similar findings are presented in other
studies using the EAM model [27, 28]. MOE treatment,
especially MOE200, succeeded in improving myocardial
function by normalizing EF and FS values and decreasing
LVPW and preventing development of left ventricular
remodeling and the progression to heart failure following
myocarditis. However, recent data suggest that autoimmune
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Figure 4: Representative heart tissue sections of H/E staining. Magnification 20x scale bar = 50μm. (a) CTRL: control group; (b) EAM:
experimental autoimmune myocarditis group; (c) MOE50: rats with EAM treated with M. officinalis extract in 50mg/kg; (d) MOE100:
rats with EAM treated with M. officinalis extract in 100mg/kg; and (e) MOE200: rats with EAM treated with M. officinalis extract in
200mg/kg. (f) Effects of MOE on heart inflammatory infiltrate density. Data are presented as means ± standard deviation. Statistical
significance at the level p < 0:05: A, compared to CTRL; B, compared to EAM; C, compared to MOE50; D, compared to MOE100; and E,
compared to MOE200.
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Figure 5: Representative heart tissue sections of Picrosirius red staining. Magnification 40x scale bar = 25 μm. (a) CTRL: control group; (b)
EAM: experimental autoimmune myocarditis group; (c) MOE50: rats with EAM treated with M. officinalis extract in 50mg/kg; (d)
MOE100: rats with EAM treated with M. officinalis extract in 100mg/kg; and (e) MOE200: rats with EAM treated with M. officinalis
extract in 200mg/kg. (f) Effects of MOE on collagen content in heart tissue. Data are presented as means ± standard deviation. Statistical
significance at the level p < 0:05: A, compared to CTRL; B, compared to EAM; C, compared to MOE50; D, compared to MOE100; and E,
compared to MOE200.
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Figure 6: Effects of MOE treatment on morphometric parameters. CTRL: control group; EAM: experimental autoimmune myocarditis
group; MOE50, MOE100, and MOE200: rats with EAM treated with M. officinalis extract in either 50mg/kg, 100mg/kg, or 200mg/kg.
Data are presented as means ± standard deviation. Statistical significance at the level p < 0:05: A, compared to CTRL; B, compared to
EAM; C, compared to MOE50; D, compared to MOE100; and E, compared to MOE200.
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myocarditis is not always associated with systolic dysfunc-
tion and that there are cases of myocarditis with preserved
EF [29]. Furthermore, markedly increased heart rate in
EAM was lowered by MOE treatment, which can be ascribed
to Melissa’s proven ability to act as an antiarrhythmic agent
via activation of cardiac M2 receptors, blockage of Ca

2+ and
K+ channels, and slowing ventricular conductivity [9, 30,
31]. However, we did not observe any changes in the blood
pressure of EAM rats unlike others [23]. Nevertheless,
MOE200 showed hypotensive effects which can be explained
by the previously described vasorelaxant effect of MOE
involving Ca2+ blockage, nitric oxide pathway, but also pros-
tacyclin and EDHF pathways [15, 24].

In our study, induction of EAM was confirmed histopa-
thologically by characteristic severe inflammatory infiltra-
tion and fibrosis of the heart tissues which is in line with
other studies using the EAM rat model [14, 27, 32]. Interest-
ingly 3-week treatment with MOEs markedly improved
myocardial architecture and decreased inflammatory infil-
trate density in a dose-dependent manner, with most pro-
nounced improvement in the MOE200 group. Also, MOE
treatment decreased collagen content, suggesting again that
MOE200 can prevent myocarditis-induced fibrosis and sub-
sequent heart remodeling [27]. Mentioned effects achieved
by MOE administration are most likely connected to its
strong anti-inflammatory properties proved in vivo in the
carrageenan-induced paw edema model [11], but also in
other models of cardiovascular diseases [17, 33]. Even
though MOEs have not been investigated in EAM pathology,
achieved myocarditis ameliorating properties may be associ-
ated with synergistic action of its compounds, especially ros-
marinic acid and other phenolic acids; triterpenoids
oleanolic and ursolic acids; and flavonoids quercetin, rutin,
myricetin, catechin, and epigallocatechin. Rosmarinic acid,
the most abundant compound of MOEs, is proved to be a
very potent anti-inflammatory agent per se, as demonstrated
in different models of autoimmune inflammatory disease
such as rheumatoid arthritis, colitis, and atopic dermatitis.
Possible mechanisms of this action are decreased COX-2
expression and decreased proinflammatory cytokines IL-1,
IL-6, and TNF-alpha release [34]. Also, in myocardial I/R
injury conditions, rosmarinic acid has been shown to sup-
press proinflammatory cytokine expression as well and ame-
liorate heart damage by activating PPAR-γ and
downregulating NF-κB-mediated pathways [35]. Quercetin
is also an important flavonoid component of MOE that
may have contributed to its EAM ameliorating effects in
our study, since it is shown that quercetin (20mg/kg) may
protect the heart from the damage in EAM conditions, via
suppression of proinflammatory TNF-α and IL-17 and
upregulation of anti-inflammatory cytokine IL-10 [14]. This
study also used the Dark Agouti strain of rats, making it
more comparable to our study. Other authors suggest that
even in 10mg/kg quercetin can protect the heart from
EAM-induced damage via modulation of MAPK signaling
cascade, more precisely by suppressing the myocardial
endothelin-1 and also the mitogen-activated protein kinases
(MAPK) [36]. Potent anti-inflammatory properties of quer-
cetin have also been confirmed in other autoimmune dis-

eases [37, 38]. Another flavonoid component of MOEs,
catechin ,was also shown to exert protective effects in the
EAM rat model by decreasing cardiac remodeling, inflam-
matory infiltrate, and fibrosis possibly via decreased expres-
sion of NF-κB and ICAM-1 [27].

An important aspect in the pathophysiology of autoim-
mune myocarditis is the link between inflammation and
excessive ROS production, otherwise oxidative stress, which
we also evaluated in this study. Three weeks post-immuniza-
tion, the EAM group was associated with a significant release
of prooxidants O2

-, H2O2, NO2
-, and TBARS and impaired

antioxidant defense system (decreased SOD, CAT, and
GSH). This is consistent with earlier studies that reported
various oxidative stress marker elevations in this disease,
such as superoxide anion [36], lipid peroxidation products
MDA and 4-hydroxynonenal, and TBARS [39, 40]. MOE
treatment showed dose-dependent drop in the release of
prooxidants O2

-, TBARS, and NO2
-, with strong antioxidant

effect and free scavenging properties of this plant and its
phenolic compounds being the most responsible for this
effect. Various studies showed MOEs’ ability to decrease oxi-
dative stress in different cardiovascular models, even when
using shorter time of exposition (7 or 14 days) than in this
study [7, 33, 39]. We found that MOE treatment improves
the systemic antioxidant status of EAM rats. The results of
other studies support this finding, since there is evidence
that MOEs can improve antioxidant capacity, mostly via
SOD increment in models of LAD in vivo regional I/R injury
and doxorubicin-induced cardiotoxicity. Additionally,
in vitro investigations on MOEs confirmed its strong free
radical scavenging properties on DPPH, ABTS, O2

-, and
NO2

- radicals, but also iron (II) chelating activity of that
potentiates its antioxidant properties [41, 42]. Besides men-
tioned antioxidant effects of MOEs, it is important to
emphasize that rosmarinic acid, dominant phenolic compo-
nent of this plant, per se possesses strong effect in mitigating
oxidative stress in different disorders [43]. The antioxidant
power of rosmarinic acid is mainly based on its ability to sta-
bilize membranes and stop free radical movement, thus pre-
venting oxidation of the membranes [44].

Thus, oxidative stress ameliorating effect of the applied
MOE treatment may also be one of the main mechanisms
of autoimmune myocarditis improvement achieved by
MOEs.

5. Conclusion

In the light of these findings, the present study suggests that
ethanolic MOEs improve cardiac function and myocardial
architecture and mitigate oxidative stress, thus preventing
heart remodeling, DCM, and subsequent heart failure con-
nected with human giant cell myocarditis and EAM. How-
ever, the most prominent reduction of cardiac
inflammatory infiltration, fibrosis, and oxidative stress with
preservation of ejection fraction has been observed with
the highest dose of MOE, 200mg/kg. This study is the first
to provide evidence on M. officinalis effects in cardiac auto-
immunity. However, additional experiments and future
investigations are necessary and should help in revealing
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the exact mechanism of action of MOEs in EAM pathology.
MOEs should be considered as a potentially helpful adjuvant
therapy in patients with autoimmune myocarditis.
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Racemic salbutamol ((RS)-sal), which consist of the same amount of (R)-sal and (S)-sal, has been used for asthma and COPD due
to its bronchodilation effect. However, the effect of (R)-sal on repeated dextran sulfate sodium (DSS)-induced chronic colitis has
not yet been investigated. In this study evaluated the potential effect of (R)-, (S)-, and (RS)-sal in mice with repeated DSS-induced
chronic colitis and investigated the underlying mechanisms. Here, we verified that chronic colitis was significantly attenuated by
(R)-sal, which was evidenced by notably mitigated body weight loss, disease activity index (DAI), splenomegaly, colonic lengths
shortening, and histopathological scores. (R)-sal treatment noticeably diminished the levels of inflammatory cytokines (such as
TNF-α, IL-6, IL-1β, and IFN-γ). Notably, the efficacy of (R)-sal was better than that of (RS)-sal. Further research revealed that
(R)-sal mitigated colonic CD4 leukocyte infiltration, decreased NF-κB signaling pathway activation, improved the Nrf-2/HO-1
signaling pathway, and increased the expression of ZO-1 and occludin. In addition, (R)-sal suppressed the levels of TGF-β1, α-
SMA, and collagen in mice with chronic colitis. Furthermore, the 16S rDNA sequences analyzed of the intestinal microbiome
revealed that (R)-sal could mitigate the intestinal microbiome structure and made it more similar to the control group, which
mainly by relieving the relative abundance of pathogens (such as Bacteroides) and increasing the relative abundance of
probiotics (such as Akkermansia). Therefore, (R)-sal ameliorates repeated DSS-induced chronic colitis in mice by improving
inflammation, suppressing oxidative stress, mitigating intestinal barrier function, relieving intestinal fibrosis, and regulating the
intestinal microbiome community. These results indicate that (R)-sal maybe a novel treatment alternative for chronic colitis.

1. Introduction

Ulcerative colitis (UC) is one of the inflammatory bowel dis-
eases (IBD) that is chronic and recurrent. The clinical charac-
teristics of UC mainly include abdominal pain, weight loss,
and bloody diarrhea [1–3], which seriously decrease the qual-
ity of life for patients [4]. The histopathological and inflam-
matory changes in UC are generally observed in the colon
and rectum. UC is mainly prevalent in western countries in
the past; however, in recent years, the incidences of UC have

rapidly increased in Asia, such as China, India, and South
Korea [5–8]. Although the exact pathogenesis of UC remains
poorly understood, the accumulating data have suggested
that UC is closely related to inflammation and oxidative
stress imbalance, impairment of the intestinal barrier, and
abnormalities in the intestinal microbiota [9–12].

Nuclear factor-kappa B (NF-κB) is an important tran-
scriptional regulation factor in the process of inflammation,
usually in an inactive state due to its combination with its
inhibitor kappa B (IKB) [13]. NF-κB can be activated by
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stimulating factors, then induce the expression of a variety of
genes, produce multiple cytokines to participate in the
inflammatory response, and play an important role in main-
taining normal physiological functions. However, when NF-
κB is overactivated, it will induce autoimmune diseases such
as UC [13].

Nuclear factor erythroid 2-related factor 2 (Nrf-2) is an
important transcription factor for antioxidative stress.
Under normal conditions, Nrf-2 is linked to Kelch-Like
ECH-Associated Protein 1 (Keap1) through E3 ubiquitin
ligase and is degraded through ubiquitination. However,
under oxidative stress, which can activate Nrf-2, then made
it dissociates from Keap1, enters the nucleus, and upregu-
lates the transcription of downstream antioxidant enzymes
[14]. Thus, Nrf-2 can play a core role in antioxidative stress.
It has been demonstrated that the expression of Nrf-2 was
decreased in the DSS-induced UC model [15], which sug-
gests that drugs can activate Nrf-2 which was expected to
be applied in the treatment of UC.

The treatment medicines for UC depend on mesalamine,
glucocorticoids, and immunomodulatory agents. However,
the long-term use of these drugs is limited due to potential
side effects, safety, and costs. Therefore, the development
of alternative drugs for the treatment of UC is urgently
needed.

Racemic salbutamol ((RS)-sal) is a short-acting β2-
adrenergic receptor agonist consisting of an equal mixture
of (R)-sal and (S)-sal. (RS)-sal can effectively inhibit the
release of allergenic substances such as histamine and pre-
vent bronchospasm, which commonly can be used for the
treatment of bronchial asthma and asthmatic bronchitis
[16]. Besides, there are some evidences demonstrating that
β2-adrenergic receptor agonists exhibit anti-inflammatory
effects by regulating the immune system [17, 18], which
may contribute to the therapeutic effects in some inflam-
matory diseases, such as UC. A previous study in our group
demonstrated that (RS)-sal exerted anti-inflammatory
activity properties. However, the effect of sal in dextran sul-
fate sodium (DSS)-induced chronic colitis has not been
investigated.

In view of this, the aim of our research was to evaluate
the potential amelioration effect of (R)-sal in mice with
repeated DSS-induced chronic ulcerative colitis and to eluci-
date the mechanisms underlying its therapeutic effect. In
addition, we explored the differences in the mitigated effects
of (R)-, (S)-, and (RS)-sal on chronic ulcerative colitis.

2. Materials and Methods

2.1. Materials. (R)-sal, (S)-sal, and (RS)-sal were supplied by
Dongguan Key-Pharma Biomedical Company (Guangdong,
China). DSS (MW 36-50 kDa) was obtained from MP Bio-
medicals Co., Ltd. (California, USA). The positive drug 5-
ASA was obtained from Shanghai Yuanye Bio-Technology
Co., Ltd. (Shanghai, China). The reagent for detecting fecal
occult blood was supplied by Baso Diagnostics, Inc. (Zhuhai,
China). The enzyme-linked immunosorbent assay (ELISA)
kits for detecting the inflammatory cytokines interferon-γ
(IFN-γ), interleukin- (IL-) 1β, IL-6, and tumor necrosis fac-

tor-α (TNF-α) were offered by Neobioscience Technology
Company (Shenzhen, China). The antibodies of β-actin
(ab227387), occludin (ab216327), and CD4 (ab183685) were
obtained from Abcam Inc. (Burlingame, USA). The anti-
bodies of zonula occludens-1 (ZO-1) (bs-1329R) and Nrf-
2 (bs-1074R) were obtained from Bioss (Beijing, China).
The antibodies of NF-κB p65 (10745-1-AP) and heme
oxygenase-1 (HO-1) (10701-1-AP) were purchased from
Proteintech (Rosemont, USA). The antibody of phospho-
NF-κB p65 (p-NF-κB p65) was purchased from Cell Signaling
Technology (Danvers, USA). The antibodies of transforming
growth factor-β1 (TGF-β1) (BA0290) and alpha smoothmus-
cle actin (α-SMA) (BM0002) were offered by Boster Biological
Technology Co., Ltd. (Wuhan, China). All chemical reagents
employed were of analytical grade.

2.2. Animals. Male C57BL/6 mice (18-20 g, 6 weeks) were
procured from the Medical Experimental Animal Centre of
Southern Medical University (Guangzhou, China) and then
housed under a pathogen-free experimental facility. These
mice were acclimatized for seven days before being ran-
domly divided into different experimental groups. All ani-
mal experimental protocols and care in this study were
performed in compliance with the guidelines of the Institu-
tional Animal Care and Use Committee and were approved
by the Animal Experimentation Committee of Southern
Medical University (L2017010).

2.3. Repeated DSS-Induced Chronic Colitis in Mice and
Treated with (R)-, (S)-, and (RS)-sal. The mice were adapted
to their environment for seven days, then randomly divided
into 5 groups: the control group, DSS group, DSS+(S)-sal
group (1.0mg/kg), DSS+(RS)-sal group (2.0mg/kg), and DSS
+(R)-sal group (1.0mg/kg) (n = 8). Experimental chronic coli-
tis was induced by giving three cycles of 2.5% DSS according
to the previous description [19, 20] with a slight modification.
The first day of the experiment was defined as day 0. The time-
lines of this animal experiment are described in Figure 1(a). In
brief, the control group only received water during the exper-
iment. The other groups were induced by drinking 2.5% DSS
treatment (three cycles for 7 days) and recovery by drinking
water without DSS (two cycles for 7 days). The DSS+(S)-sal
group, DSS+(RS)-sal group, and DSS+(R)-sal group were
orally administered the corresponding drugs from day 14.
The control group and DSS group were treated with the same
dose of water. The body weight change in each group was
detected once a day, and the disease activity index (DAI)
was assessed at a specific time during the treatment period.
DAI scores were blindly evaluated as described previously
[21]. At day 35, mice were euthanized, and their blood sam-
ples were collected from the orbit. The colon samples were
quickly removed, and their lengths were recorded. Subse-
quently, the colons were analyzed by histology examination.
Spleen samples were quickly removed, and their weight was
recorded.

2.4. Pharmaceutical Effect of (R)-sal on Repeated DSS-
Stimulated Chronic Colitis. The mice were adapted for seven
days and then randomly divided into 5 groups: the control
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group, DSS group, DSS+5-ASA group (50mg/kg), DSS+(R)-
sal-L group (0.5mg/kg), and DSS+(R)-sal-H group (1.0mg/
kg) (n = 8). The experimental chronic colitis was induced
by giving three cycles of 2.5% DSS according to the previous
description [19, 20] with slight modification. The first day of
the experiment was defined as day 0. The timelines of this
animal experiment are described in Figure 2(a). In brief,
the control group only received water during the experi-
ment. The other groups were induced by drinking 2.5%
DSS treatment (three cycles for 7 days), and recovery was
induced by drinking water without DSS (two cycles for 7
days). The DSS+5-ASA group, DSS+(R)-sal-L group, and
DSS+(R)-sal-H group were orally administered the corre-

sponding drugs from day 14. The control group and DSS
group were treated with the same dose of water. The body
weight change of each group was detected once a day, and
the DAI was assessed at a specific time during the treatment
period. DAI scores were blindly evaluated as described pre-
viously [21]. At day 35, the mice were euthanized, and their
blood samples were collected from the orbit. The colon
samples were quickly removed, and their lengths were
recorded. Subsequently, the colons were divided into two
sections: one section was analyzed via histology examina-
tion and the other was analyzed in biochemical assays.
Spleen samples were quickly removed, and their weight
was recorded.
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Figure 1: Effects of (R)-, (S)-, and (RS)-sal on repeated DSS-induced chronic colitis. (a) Schematic diagram of DSS-induced chronic colitis
experiments. (b) Body weight change was recorded during the experiment (treatment from day 14 to day 35). (c) DAI scores were recorded
at certain time points (treatment from day 14 to day 35). (d) Spleen weight in different groups. (e) Representative colons from different
groups. (f) Colon length in different groups. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001 versus the DSS group.
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2.5. Histopathological Examinations. After the mice were
euthanized, distal colon samples were detached and immedi-
ately fixed in 10% formalin for 48 h. Next, the distal colon
samples were embedded in paraffin, cut into 4mm sections,
then stained with hematoxylin and eosin (HE), periodic
acid-Schiff (PAS), and picrosirius red staining. The images
of samples were acquired by microscope. The colon histopa-
thological scores were determined according to previously
described methods [21] with slight modification, which
was performed in a blind fashion and evaluated as follows:
inflammation (scores varied from 0 to 4) and epithelium
(scores varied from 0 to 4).

2.6. Detection of Inflammatory Cytokines by ELISA. The
serum was obtained from whole blood samples by centrifu-
gation (3000 rpm, 15 minutes). The concentrations of IFN-
γ, IL-1β, TNF-α, and IL-6 in the serum were measured by
respective ELISA kits based on the manufacturer’s protocol.

2.7. Quantitative Real-Time PCR. Total RNA was isolated
from colon samples using RNAprep pure Tissue Kit
(TIANGE, Beijing, China) in RNase-free environment
according to the manufacturer’s protocol. RNA was reverse
transcribed into cDNA by RevertAid First Strand cDNA
Synthesis Kit (Thermo, MA, USA). The relative concentra-
tion of IFN-γ, IL-1β, TNF-α, and IL-6 was detected by

FastStart Universal SYBR Green Master (Rox) (Roche, Basel,
Switzerland). The primer sequences to detect IFN-γ, IL-1β,
TNF-α, and IL-6 are revealed in Table 1. The expression of
these mRNA was normalized with the reference gene
GAPDH. Data were analyzed by 2-ΔΔCT method to evaluate
the relative expression.

2.8. Western Blotting. The colon tissue protein was extracted
by homogenization in radio immunoprecipitation assay
(Biosharp, Anhui, China) and protease inhibitors (Biosharp,
Anhui, China). The protein sample concentrations were
measured by bicinchoninic acid assay kit (DINGGUO,
Beijing, China) according to the manufacturer’s instructions.
After denaturation, the 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis was used to separate
proteins. Then, the proteins were transferred onto polyviny-
lidene difluoride (PVDF) membranes. Each membrane was
blocked by 5% skim milk for 1 h at room temperature.
The membranes were exposed to the following primary
antibodies overnight at 4°C with shaking: anti-β-actin
(1 : 6000), anti-ZO-1 (1 : 1000), antioccludin (1 : 1000),
anti-NF-κB p65 (1 : 1000), anti-p-NF-κB p65 (1 : 1000),
anti-Nrf-2 (1 : 1000), and anti-HO-1 (1 : 3000). After that,
each membrane was incubated with secondary antibody
at 37°C for 1 h. Finally, the enhanced chemiluminescence
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Figure 2: The mitigating effect of (R)-, (S)-, and (RS)-sal in the histological evaluation and the secretion of inflammatory cytokines. (a)
Representative image of HE staining in different groups. (b) Histological scores of different groups. (c) TNF-α, (d) IL-1β, (e) IL-6, and (f)
IFN-γ levels were measured by ELISA kits. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001 compared with the DSS group.
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reagent (BOSTER, Wuhan, China) was used to visualize
each protein band. The protein bands were evaluated by
ImageJ software, and β-actin was used to normalize the
protein relate expression.

2.9. Immunofluorescence Measurement. Immunofluores-
cence was performed as described previously [22]. In brief,
the paraffin-embedded colon tissues were sectioned,
dewaxed, and rehydrated. Then, the slices blocked endoge-
nous peroxidase activity with 3% H2O2, and antigens were
repaired by citrate buffer solution. The slices were incubated
with 3% bovine serum albumin to diminish nonspecific
staining. The slices were incubated with the following pri-
mary antibodies at 4°C overnight: anti-CD4 (1 : 1000), anti-
ZO-1 (1 : 500), antioccludin (1 : 200), anti-TGF-β1 (1 : 200),
anti-α-SMA (1 : 200), and anti-Nrf-2 (1 : 400). After that,
each slice was incubated with the respective secondary anti-
body for 30min. Slices were counterstained with 4,6-diami-
dino-2-phenylindole (DAPI). The representative images
were obtained under microscope, and the positive area of
immunoreactivity was analyzed with Image-Pro Plus 6.0.

2.10. Gut Microbiota 16S rDNA Analysis. Gut contents
(n = 8) were collected from the mice and stored at -80°C.
DNA from the microbial community was extracted from
the gut contents using the HiPure Soil DNA Kit. The quality
and concentration of extracted DNA samples were evaluated
by NanoDrop spectrophotometry (Thermo Scientific, Wil-
mington, USA). The V3-V4 variable region of the 16S rDNA
gene was amplified by PCR. Subsequently, the PCR ampli-
cons were purified by AMPure XP Beads (Beckman Agen-
court, USA). Amplicons were extracted from 2% agarose
gels and purified with AMPure XP Beads (Beckman Agen-
court, USA), followed by quantification on the ABI StepO-
nePlus Real-Time PCR System (Life Technologies, Foster
City, USA). The purified samples were sequenced and ana-
lyzed based on the Illumina platform. Sequencing service
was provided by Genedenovo Inc. (Guangzhou, China).

2.11. Statistical Analysis. All data in these experiments were
presented as the arithmeticmean ± standard deviation (SD).
Statistical differences were analyzed by GraphPad Prism

8.0 (La Jolla, CA, USA). These results were analyzed by
one-way or two-way ANOVA multiple comparison tests.
P < 0:05, P < 0:01, and P < 0:001 were set as statistically
significant.

3. Results

3.1. Differential Effects of (R)-, (S)-, and (RS)-sal on DSS-
Induced Chronic Colitis. The colitis caused by DSS is similar
to the pathological features of human colitis [20]. In order to
assess the mitigation capacity of (R)-, (S)-, and (RS)-sal in
chronic colitis, a chronic colitis mouse model was induced
by DSS. The chronic colitis was induced by adding 2.5%
DSS treatment in the drinking water (three cycles for 7
days), and recovery was by drinking water without DSS
(two cycles for 7 days). (R)-, (S)-, and (RS)-sal were orally
administered to mice from day 14 (Figure 1(a)). As exhibited
in Figures 1(b) and 1(c), body weight loss and DAI scores
were noticeably increased in repeated DSS-induced chronic
colitis mice compared with the control group. (R)-sal and
(RS)-sal dramatically relieved these changes compared with
the DSS group. However, treatment with (S)-sal could not
diminish the body weight loss or DAI scores. The colon
length reduced, and splenomegaly was used to represent
the severity of DSS-induced chronic colitis. As shown in
Figure 1(d), oral administration of (R)-sal, instead of (S)-
sal or (RS)-sal, notably suppressed spleen swelling compared
with the DSS group. Furthermore, treatment with (R)-sal
and (RS)-sal dramatically improved the colon length shorten-
ing compared with the DSS group (Figures 1(e) and 1(f)).
However, (S)-sal treatment could not suppress this change in
DSS-induced chronic colitis mice.

Besides, the HE staining of colonic tissue was used to
evaluate the histological effects of (R)-, (S)-, and (RS)-sal in
repeated DSS-induced chronic colitis mice. As shown in
Figures 3(a) and 3(b), compared with the control, the mice
in repeated DSS-induced chronic colitis exhibited the intes-
tinal barrier damage, reduced crypts, exacerbated inflamma-
tory infiltration in the colon, and increased the histological
score, whereas (R)-, (S)-, and (RS)-sal showed different
effects on chronic colitis. (R)-sal and (RS)-sal dramatically
suppressed inflammatory cell infiltration, intestinal barrier
damage, and crypt destruction. Conversely, treatment with
(S)-sal could improve nothing on chronic colitis.

It is well known that inflammatory cytokines play an
important role in the pathogenesis of colitis. Therefore, in
order to probe the anti-inflammatory effects of (R)-, (S)-,
and (RS)-sal, the expressions of IFN-γ, IL-1β, TNF-α, and
IL-6 were measured by ELISA. As shown in Figures 3(c)–
3(f), these proinflammatory cytokines notably increased in
repeated DSS-induced chronic colitis compared with the
control group. Treatment with (R)-sal or (RS)-sal dimin-
ished the expression of these proinflammatory cytokines.
Nevertheless, in comparison with the DSS group, administra-
tion of (S)-sal could not attenuate the production of
proinflammatory cytokines. Collectively, these results demon-
strated that (R)-sal should be further investigated for its atten-
uated effects on repeated DSS-induced chronic colitis.

Table 1: The primers used in qPCR assay.

Gene Primers Sequences (5′-3′)

TNF-α
Forward AAGTTCCCAAATGGCCTCCC

Reverse CCACTTGGTGGTTTGTGAGTG

IL-1β
Forward GCAGTGGTTCGAGGCCTAAT

Reverse GCTGCTTCAGACACTTGCAC

IL-6
Forward GACAAAGCCAGAGTCCTTCAGA

Reverse TGTGACTCCAGCTTATCTCTTGG

IFN-γ
Forward AGACAATCAGGCCATCAGCAA

Reverse GTGGGTTGTTGACCTCAAACT

GAPDH
Forward CCTCGTCCCGTAGACAAAATG

Reverse TGAGGTCAATGAAGGGGTCGT
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3.2. (R)-sal Ameliorated the Symptoms on DSS-Induced
Chronic Colitis. To evaluate the effect of (R)-sal on repeated
DSS-induced chronic colitis, the mice with chronic colitis
were treated with different doses of (R)-sal. 5-ASA was cho-
sen as a positive control drug. This experiment scheme is
illustrated in Figure 2(a). The body weight changes, DAI,
spleen weight, and colon length, which are representative
symptoms in chronic colitis, were recorded in this research.
As exhibited in Figures 2(b)–2(f), (R)-sal notably mitigated
these symptoms in a dose-dependent manner compared
with the DSS group. Interestingly, the (R)-sal-H group even

showed more improvement than the 5-ASA group in the
aforementioned indices.

The histopathological examination of colon implied that
DSS induced colon structure damage, the loss of crypt and
goblet cells, and considerable inflammatory cell infiltration
in the colon. As shown in Figures 4(a) and 4(b), the histolog-
ical score of the DSS group was remarkably elevated compared
with that of the control group, whereas the mice with repeated
DSS-induced chronic colitis treated with different doses of
(R)-sal had notably diminished damage. Compared with the
DSS group, different doses of (R)-sal oral administration
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Figure 3: (R)-sal improved the symptoms on repeated DSS-induced chronic colitis. (a) Schematic diagram of repeated DSS-induced chronic
colitis experiments. (b) Body weight change was measured daily during the experiment (treatment from day 14 to day 35). (c) DAI scores
were recorded at certain time points (treatment from day 14 to day 35). (d) Spleen weight in different groups. (e) Representative colons from
different groups. (f) Colon length in different groups. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001 versus the DSS group.
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Figure 4: Continued.
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noticeably relieved the histological score in colon tissue. The
result demonstrated that (R)-sal could outstandingly mitigate
the colon injury in DSS-induced chronic colitis.

Moreover, inflammatory cytokines in the serum were
investigated by ELISA. The results are shown in
Figures 4(c)–4(f). The inflammatory cytokines, such as
IFN-γ, IL-1β, TNF-α, and IL-6, were remarkably exacerbated
in the DSS group compared with the control group, which
indicated that inflammatory reactions were exacerbated in
the DSS group. However, different doses of (R)-sal sup-
pressed the expression of these inflammatory cytokines than
the DSS group. Besides, the mRNA expression of these
inflammatory cytokines in colon tissue was measured by
qRT-PCR. As shown in Figures 4(g)–4(j), the mRNA expres-
sion of these inflammatory cytokines was noticeably
exacerbated in the DSS group compared with the control
group. In contrast, treatment with different doses of (R)-sal
ameliorated the mRNA expression of inflammatory cyto-
kines. These data indicate that (R)-sal exhibited an anti-
inflammatory effect, which could inhibit the secretion of
inflammatory cytokines on DSS-induced chronic colitis.

Sustained and chronic inflammation is one of the symp-
toms of chronic colitis and is closely related to its pathogene-
sis. CD4 leukocytes can induce inflammatory response from
the immune system by diverse microbial pathogen activation.
Therefore, to further analyze the improvement effects of (R)-
sal in inflammation, we measured the expression of immune
cell CD4 leukocytes in chronic colitis colon tissue by immuno-
fluorescence. As shown in Figures 4(g) and 4(h), compared
with the control group, CD4 leukocytes that infiltrated in
colon structures were dramatically exacerbated, which means
that the inflammatory response was activated in mice with
chronic colitis. After (R)-sal oral treatment, the positive signal
of CD4 was notably suppressed than the DSS group, which
means that the inflammation was remarkably relieved.

3.3. (R)-sal Suppressed NF-κB Signaling Pathway Activation
in Mice with Chronic Colitis. The NF-κB signaling pathway
induces the production of inflammatory factors in the path-
ological process of chronic colitis and plays core role in the
inflammatory response. Consequently, the NF-κB signaling
pathway correlative proteins NF-κB p65 and p-NF-κB p65
were evaluated by western blot. As illustrated in Figure 5,
the level of p-NF-κB p65 in the DSS group was significantly
increased than that in the control group, which means the
NF-κB signaling pathway was activated by induced DSS.
Nevertheless, different doses of (R)-sal dramatically dimin-
ished the p-NF-κB p65 expression in colon tissue compared
with the DSS group. These results verified that (R)-sal sup-
pressed NF-κB pathway activation. Interestingly, different
doses of (R)-sal exhibited little effect on NF-κB p65 when
compared with the DSS group.

3.4. (R)-sal Activated Nrf-2/HO-1 Expression in Mice with
Chronic Colitis. The Nrf-2 signaling pathway exhibits anti-
oxidative regulatory features. It has been reported that there
was negative correlation between the Nrf-2 and the NF-κB
signaling pathway [23]. The oxidative environment leads to
enlarging the level of ROS, which causes tissue damage and
triggers inflammatory response [24, 25]. In order to evaluate
the antioxidative role, the expression of Nrf-2 in the colon
was detected by immunofluorescence. Compared with the
control group, the dramatically attenuated Nrf-2 was
detected in mice with chronic colitis, and this phenomenon
was reversed by oral administration of (R)-sal in a dose-
dependent manner (Figures 6(a) and 6(b)). Surprisingly,
there was no noticeable variation in the (R)-sal-H group
compared with the 5-ASA group.

To further assess the mechanism of (R)-sal, Nrf-2 and its
downstream protein HO-1 were evaluated by western blot.
As shown in Figures 6(c)–6(e), the expression of Nrf-2 and

Control DSS DSS+5-ASA DSS+(R)-sal-L DSS+(R)-sal-H

CD4

DAPI

Merge

(k)

Contro
l

DSS

DSS+
5-A

SA

DSS+
(R

)-s
al-

L

DSS+
(R

)-s
al-

H

6000

4000

2000

0M
ea

n 
op

tic
al

 d
en

sit
y 

of
 C

D
4

⁎⁎⁎

⁎⁎⁎⁎⁎⁎
⁎⁎

(l)

Figure 4: (R)-sal relieved the histological evaluation and inflammation on DSS-induced chronic colitis. (a) Representative image of HE in
different groups. (b) Histological scores in different groups. (c) TNF-α, (d) IL-1β, (e) IL-6, and (f) IFN-γ levels were examined by ELISA kits.
(g) TNF-α, (h) IL-1β, (i) IL-6, and (j) IFN-γ levels were examined by qPCR. (k) Representative image of CD4 staining in different groups. (l)
The mean optical density of CD4 in different groups. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 compared with the DSS group.
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HO-1 were remarkably diminished in mice with chronic
colitis, while treatment with different doses of (R)-sal dra-
matically elevated the levels of Nrf-2 and HO-1. Interest-
ingly, the (R)-sal-H group exhibited upregulating the
expression of Nrf-2 and HO-1 compared with the 5-ASA
group. This is consistent with the above antioxidant results
assessed by immunofluorescence, demonstrating that (R)-
sal could notably activate the Nrf-2 signaling pathway.

3.5. (R)-sal Improved the Intestinal Barrier in Mice with
Chronic Colitis. The intestinal barrier is a protection mecha-
nism against damage from intestinal pernicious bacteria,
which could prevent the exacerbation of colitis [26]. Glyco-
gen protein, ZO-1, and occludin are crucial components of
the intestinal barrier. Therefore, to observe the ameliorated
effects of (R)-sal on intestinal barrier integrity, PAS staining
and the expression of ZO-1 and occludin were analyzed by
western blotting and immunofluorescence in the colon tis-
sue samples.

As shown in Figures 7(a) and 7(b), compared with the
control group, goblet cells were dramatically damage in the
DSS group. Oral administration of different doses of (R)-
sal could notably elevate the number of goblet cells in the
colon. Besides, in contrast to the control group, the expres-
sions of ZO-1 and occludin were dramatically diminished
in mice with chronic colitis, whereas (R)-sal reversed these
changes in a dose-dependent fashion (Figures 7(c)–7(e)).

Interestingly, the expressions of ZO-1 and occludin in the
DSS+(R)-sal-H group were more elevated than those in the
DSS+5-ASA group. Additionally, the expressions of ZO-1
and occludin were also investigated by immunofluorescence
(Figure 8), and the results verified that (R)-sal could also
upregulate the expression of ZO-1 and occludin in colon tis-
sue, which was consistent with the western blot results.
These results revealed that (R)-sal could improve the intesti-
nal barrier in mice with chronic colitis.

3.6. (R)-sal Attenuated Intestinal Fibrosis in Mice with
Chronic Colitis. During the progression of chronic colitis,
irregular myofibroblast activation results in extracellular
matrix accumulation, eventually causing intestinal fibrosis
[27]. TGF-β1 and α-SMA are the key biomarkers for
intestinal fibrosis formation. Therefore, the effect of (R)-
sal on intestinal fibrosis was assessed by TGF-β1 and α-
SMA immunofluorescence. As shown in Figure 9, the
results verified that there were lots of positive signals for
TGF-β1 and α-SMA in colon tissue in the DSS group
compared with the control group. These results demon-
strated that intestinal fibrosis was detected in DSS-
induced chronic colitis mice. Interestingly, compared with
the DSS group, treatment with different doses of (R)-sal
exhibited noticeable attenuation of the expression of
TGF-β1 and α-SMA.
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Figure 5: The effect of (R)-sal on NF-κB pathway. (a) Western blot analysis of the expression of NF-κB p65 and p-NF-κB p65 in colon
tissue. (b–d) The relative expression of p-NF-κB p65, NF-κB p65, and p-NF-κB p65/NF-κB p65, respectively. ∗P < 0:05, ∗∗P < 0:01, and
∗∗∗P < 0:001 versus the DSS group.
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Besides, the fibrosis-related collagen depositions in colon
tissue were examined by picrosirius red stain. As shown in
Figure 10, there were lots of collagen depositions on repeated

DSS-induced chronic colitis mice compared with those on
the control group. Importantly, oral administration with
(R)-sal could appear to have improvement effects against
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Figure 6: The effect of (R)-sal on Nrf-2/HO-1 pathway. (a) Representative image of Nrf-2 staining in different groups. (b) The mean optical
density of Nrf-2 in different groups. (c) Western blot analysis of the expression of Nrf-2 and HO-1 in colon tissue. The relative expression of
(d) Nrf-2 and (e) HO-1. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 versus the DSS group.
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collagen depositions, which contributed to suppressed intes-
tinal fibrosis on DSS-induced chronic colitis mice. Clearly,
the efficacy of the (R)-sal-H group was better than that of
the 5-ASA group.

3.7. (R)-sal Regulated the Intestinal Microbiome in Mice with
Chronic Colitis. Many researches have confirmed that the
intestinal microbiome plays core role in UC pathogenesis
[28, 29]. The modulation of the intestinal microbiome serves
as a potential therapeutic strategy for chronic colitis. To fur-
ther evaluate the effects of (R)-sal on the chronic colitis
intestinal microbiome, the 16S rDNA sequencing of intesti-
nal contents was performed.

Principal coordinate analysis (PCoA) based on the
weight UniFrac distance matrices was used to observe the
effect of (R)-sal on intestinal microbiome structural alter-
ations. As shown in Figure 11(a), the intestinal microbiome
was changed in the DSS group, which was notably different
with the control group. However, oral treatment with (R)-
sal changed the abnormal intestinal microbiome structure
compared with the DSS group, making it more similar to
the control group.

Besides, the heat map of OTU levels in the intestinal
microbiome was used to further investigate the intestinal
microbiome structure change in each group. The heat
map exhibited the top 20 relative abundance OTU levels
in each group. As shown by the heat map
(Figure 11(b)), the intestinal microbiome structures among
the control and DSS+(R)-sal-H groups were different than
those among the DSS group, and the intestinal micro-
biome structure in the control group was similar to that

in the DSS+(R)-sal-H group. The results of this analysis
revealed that treatment with (R)-sal could diminish
chronic colitis-induced changes in the intestinal micro-
biome structure at the OTU level.

In order to evaluate the effect of (R)-sal on adjusting the
intestinal microbiome structure, the intestinal microbiome
distribution at the phylum and genus levels was further
investigated among these groups. As shown in
Figure 11(c), the histograms exhibited species changes in
the three groups at the phylum level and their relative abun-
dance. Bacteroidetes, Firmicutes, and Proteobacteria were
the preponderant species among these groups. The indicator
value analysis (IndVal) was used to find the species with sta-
tistical significance. Verrucomicrobia and Proteobacteria
were notably different species in each group (Figures 11(e)
and 11(f)). Compared with the control group, the relative
abundance of Verrucomicrobia was suppressed, and the rel-
ative abundance of Proteobacteria was elevated in the DSS
group. Conversely, treatment with (R)-sal could change this
trend.

Figure 11(d) illustrates alterations in the relative abun-
dance of each group at the genus level. Compared with the
control group, the relative abundances of Bacteroides,
Parasutterella, Ruminococcaceae_UCG-005, and Rombout-
sia were raised to different degrees, and the relative abun-
dance of Akkermansia was attenuated by DSS induction
(Figures 11(g)–11(k)). However, these changes in bacteria
could be ameliorated by the oral administration of (R)-
sal. These results demonstrate that oral administration of
(R)-sal could improve intestinal microbiome structure
changes in mice with chronic colitis.
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Figure 7: The effect of (R)-sal on intestinal barrier function. (a) Representative image of PAS staining from different groups. (b) The PAS
positive cell number in different groups. (c) Western blot analysis of the expression of ZO-1 and occludin in colon tissue. The relative
expression of (d) occludin and (e) ZO-1, respectively. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001 versus the DSS group.
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Figure 8: (R)-sal improved intestinal integrity by regulating the levels of ZO-1 and occludin. (a) Representative image of ZO-1 staining in
different groups. (b) Representative image of occludin staining in different groups. (c) The mean optical density of ZO-1 in different groups.
(d) The mean optical density of occludin in different groups. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 versus the DSS group.
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Figure 9: The effect of (R)-sal on intestinal tissue fibrosis. (a) Representative image of TGF-β1 staining in different groups. (b)
Representative image of α-SMA staining in different groups. (c) The mean optical density of TGF-β1 in different groups. (d) The mean
optical density of α-SMA in different groups. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 versus the DSS group.
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3.8. Safety Evaluation of (R)-sal. The safety of (R)-sal after
long-term treatment in mice with chronic colitis was further
investigated. There were no effects on the survival status of
mice treated with (R)-sal during the study. The heart, liver,
spleen, lung, and kidney tissues from the DSS+(R)-sal-H
group were subjected to histopathological examination
(Figure 12). The result verified that there was little notable
damage in these tissues by oral administration of (R)-sal.

4. Discussion

UC is an inflammatory disorder that is characterized by
recurrence and complicated etiology. Several factors play a
core role in the pathogenesis of UC, including the environ-
ment, genetics, immune system, intestinal barrier, and intes-
tinal microbiome [30, 31]. The potential adverse effects have
limited current therapeutic drug applications [32, 33].
Therefore, it is necessary to develop safer and effective med-
icine for UC. In this study, we verified that (R)-sal, instead of
(S)-sal or (RS)-sal, mitigated chronic colitis, with underlying
mechanisms including the reduction in inflammatory
reaction activation, activation of Nrf-2/HO-1 expression,
improvement in the intestinal barrier, attenuation of intesti-
nal fibrosis, and regulation of the intestinal microbiome in
mice with chronic colitis.

It has been reported that there were different effects with
regard to (R)-enantiomers and (S)-enantiomers in trials
[34]. Therefore, different enantiomers were used to investi-
gate the amelioration in chronic colitis. The results verified
that (R)-sal, instead of (S)-sal, could noticeably improve
chronic colitis in mice. In addition, although (RS)-sal con-
tains the same amount of (R)-sal, the relieving effect of
(RS)-sal on chronic colitis is less than that of single (R)-sal,
which may be due to the existence of toxicity (S)-sal in
(RS)-sal, weakening its amelioration effect. Therefore, there
was significance beneficial effect to use (R)-sal in mice with
chronic colitis.

Among the immune-regulatory factors, the inflamma-
tory reaction has been thought to be a core mechanism in
the pathophysiology of chronic colitis [35]. Proinflamma-
tory cytokines play an active role in inflammatory reactions,
which could induce macrophage migration and inflamma-
tory mediator release [36], thereby further amplifying the
inflammatory reaction. Previous studies have shown that

proinflammatory cytokines were the typical features on
repeated DSS-induced chronic colitis [37]. In this research,
oral administration of (R)-sal dramatically suppressed the
oversecretion of proinflammatory cytokines in mice with
chronic colitis, which demonstrated that (R)-sal diminished
abnormal inflammatory reactions. These results indicated
that the colon exhibited an inflammatory state on repeated
DSS-induced chronic colitis and that (R)-sal could improve
this state. In addition, use of (S)-sal leads to further deterio-
ration of this disease. Therefore, in chronic colitis, long-term
use of (RS)-sal could weaken the effect of (R)-sal. In this
model, colitis was repeatedly induced, and (R)-sal was given
after the colitis appeared in order to investigate the therapeutic
effect. In addition, this study showed significant therapeutic
effect of (R)-sal; furthermore, (R)-sal was more effective in
either active or recovery states when colitis was induced by
DSS or withdraw, in compassion of (RS)-sal and 5-ASA.

To further investigate the anti-inflammatory mechanism
of (R)-sal, the NF-κ Brelated proteins NF-κB p65 and p-NF-
κB p65 were detected in colon tissue. NF-κB plays a core role
in regulating the process of inflammation [38]. It has been
reported that activation of NF-κB could elevate proinflam-
matory cytokine expression [39]. These cytokines trigger
positive feedback regulation in inflammation activation,
which ultimately damages colon tissue [40, 41]. The results
of this study revealed that the levels of p-NF-κB p65 were
dramatically increased in the DSS group compared with
the control group, which illustrated that the NF-κB signaling
pathway was activated in mice with chronic colitis. Treatment
with (R)-sal dramatically suppressed p-NF-κB p65 expression,
which was consistent with previous proinflammatory cytokine
expression changes. These results demonstrated that (R)-sal
could relieve inflammation by mitigating the activation of
the NF-κB pathway.

The Nrf-2 signaling pathway is a significant pathway
which involved in regulating the level of antioxidant medium
[42, 43]. The Nrf-2 downstream antioxidant protein HO-1
could increase expression after Nrf-2 pathway activation
[44]. HO-1 is an antioxidant protein that constitutes a defense
network against oxidative stress damage and prevents colon
tissue oxidative damage [45, 46]. Besides, there is an interac-
tion between Nrf-2 and NF-κB pathway [47]. Suppression of
the expression of Nrf-2 would exacerbate oxidative stress gen-
eration, which further induces NF-κB activation.
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Figure 10: The effect of (R)-sal on the depositions of collagen. (a) Representative image of picrosirius red staining in different groups. (b)
The mean optical density of collagen in different groups. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 versus the DSS group.
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Figure 11: Continued.
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Furthermore, CREB binding protein (CBP) is a transcription
factor between Nrf-2 and NF-κB, which means that there is
competition betweenNrf-2 and NF-κB, namely, negative feed-
back regulation [48]. Saber et al. [49] found that olmesartan
could notably improve colitis due to olmesartan being able
to suppress NF-κB and activate Nrf-2. In this research, the
expression of Nrf-2 and HO-1 in colon tissue was remarkably
relieved in mice with chronic colitis compared with control
mice, and this abnormality could be noticeably reversed by
oral administration of (R)-sal. These results demonstrated that
(R)-sal could relieve chronic colitis by activating the Nrf-2
pathway.

The intestinal barrier protects against the invasion of
pathogenic microorganisms and diminishes colon tissue
damage [50, 51]. Tight junction proteins (such as the cyto-
plasmic scaffolding protein ZO-1 and the transmembrane
barrier protein occludin) and glycogen proteins are core ele-
ments in the intestinal barrier, which play crucial roles in

maintaining the integrity of the intestine [52]. Damage to
the intestinal barrier is considered one of the core factors
for colitis formation [53]. Therefore, the protective effects
of (R)-sal in PAS, ZO-1, and occludin were further investi-
gated in mice with chronic colitis. Similar to previous
researches, the expressions of ZO-1, occludin, and glycogen
proteins were noticeably suppressed compared with the con-
trol group, which reflected that the intestinal barrier was
damaged in mice with chronic colitis. Surprisingly, treat-
ment with (R)-sal remarkably elevated the levels of ZO-1,
occludin, and glycogen proteins, which improved the integ-
rity in colon tissue. These results demonstrated the
improved effect of (R)-sal on intestinal barrier integrity,
which may offer potential therapy for chronic colitis.

Intestinal fibrosis is considered a crucial element in the
evolution of chronic colitis [54]. Chronic inflammation con-
tinuously stimulates related cell proliferation and persistent
depositions of collagen, which caused extracellular matrix
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Figure 11: The effect of (R)-sal on the intestinal microbiome. (a) PCoA plot based on the weighted UniFrac index at the OTU level. (b) Heat
map revealing the top 20 abundance microbial at the OTU level. (c) The intestinal microbiome structure at the phylum level. (d) The
intestinal microbiome structure at the genus level. (R)-sal regulated (e) Verrucomicrobia and (f) Proteobacteria at the phylum level. (R)-
sal modulated (g) Akkermansia, (h) Bacteroides, (i) Parasutterella, (j) Ruminococcaceae_UCG-005, and (k) Romboutsia at the genus
level. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 versus the DSS group.
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Figure 12: No toxicity was observed with the treatment of (R)-sal in mice with chronic colitis. Representative image of HE staining in the
heart, liver, spleen, lung, and kidney tissue.
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(ECM) abnormally exacerbates and sedimentary, eventually
leading to intestinal fibrosis [55]. Mesenchymal cells, epithe-
lial cells, endothelial cells, stellate cells, and fibrocytes con-
tribute to ECM accumulation [56, 57]. Previous research
has demonstrated that lots of ECM accumulated in the colon
tissue, which leads to the formation of colon fibrosis in IBD
patients [58]. TGF-β1 is a key profibrotic cytokines which
secreted by a variety of cells such as intestinal fibroblasts
and intestinal epithelial cells in colon tissue [56]. During
chronic colitis, the secretion of TGF-β1 is exacerbated,
which acts on intestinal interstitial cells to elevate ECM
secretion [59, 60]. Therefore, the expression of TGF-β1
could reflect the degree of intestinal fibrosis. These results
demonstrated that the expression of TGF-β1 was dramati-
cally elevated in the colon of mice with chronic colitis, and
this abnormal performance was attenuated by oral adminis-
tration of (R)-sal. In addition, the biomarker of fibrosis α-
SMA and the deposits of collagen were further assessed in
colon tissue. The upregulated level of α-SMA and collagen
was proven in mice with chronic colitis, and treatment with
(R)-sal reversed this status. Use of 5-ASA has less role in
fibrosis development, while by surprise, (R)-sal showed a
remarked protective effect in antifibrosis.

Recently, intestinal microbiome dysbiosis was thought to
play the crucial role in activating the immune defense system
[61–63]. Many researches have reported that intestinal
microbiome dysbiosis was closely related to the progression
of UC [40, 64]. Besides, according to many researches, treat-
ment with DSS in mice could remarkably alter the intestinal
microbiome composition [65, 66]. To further assess the
effect of (R)-sal on the intestinal microbiome structure on
DSS-induced chronic colitis mice, 16S rDNA gene sequencing
was executed in different groups. The PCoA parameters were
used to evaluate similarities in these groups. As expected, some
changes in the microbiome structure were found in the DSS
and (R)-sal-H groups. In this research, based on PCoA param-
eter analysis, the microbiome structure was more similar
between the control and (R)-sal-H groups at the OTU level
than the DSS group. Moreover, the heat map of microbial
composition at the OTU level also further confirmed this phe-
nomenon. These findings demonstrated that treatment with
(R)-sal could ameliorate the intestinal microbiome structure,
which was different from the DSS group.

To further investigate the improvement in microbial
composition by (R)-sal, the gut microbiota structure compo-
sition at the taxonomic hierarchy level was examined. At the
phylum level, Bacteroidetes, Firmicutes, and Proteobacteria
were found to compose the main part of the microbiota
structure, which is similar to previous research [67, 68].
The intestinal microbiome in mice with chronic colitis
showed that the ratio of Proteobacteria was dramatically
exacerbated, which was consistent with a previous study
[40]. Oral administration of (R)-sal reversed the ratio of Pro-
teobacteria in mice with chronic colitis. It has been reported
that Proteobacteria was thought to be harmful [66]. Verru-
comicrobia was thought to be closely related to regulation
of the mucosal inflammation [69]. Emerging studies have
shown the ratio of Verrucomicrobia was suppressed in UC
patients [70]. Treatment with (R)-sal notably elevated the

ratio of Verrucomicrobia, which helped to improve the
mucosal inflammation in chronic colitis.

At the genus level, (R)-sal could also reverse some special
microbial ratio changes in mice with chronic colitis. Treat-
ment with DSS dramatically elevated the relative abundances
of Bacteroides, Parasutterella, Romboutsia, and Ruminococ-
caceae_UCG-005; nevertheless, treatment with (R)-sal could
regulate these changes in varying degrees. Bacteroides has
been found to be noticeably elevated in UC patients, which
could stimulate and aggravate colon inflammation [71, 72].
Parasutterella could induce enteritis and septicemia, and it
has been reported that the relative abundances were posi-
tively correlated with intestinal chronic inflammation and
irritable bowel syndrome severity [73–75]. Therefore, sup-
pression of the level of proinflammatory microbiota could
help to regulate inflammation, thus mitigating chronic
colitis.

Akkermansia is a probiotic that can maintain intestinal
barrier function and regulate the immune response by pro-
ducing various metabolites [76]. It has been reported that
the relative abundance of Akkermansia was notably attenu-
ated in UC patients [77]. Surprisingly, (R)-sal remarkably
elevated the relative abundance of Akkermansia compared
with the mice with chronic colitis, which could contribute
to improve the intestinal barrier function and regulate the
immune response. In this research, treatment with (R)-sal
was found to regulate the relative abundances of some spe-
cial intestinal microbiomes, which helped to promote the
amelioration of chronic colitis.

5. Conclusion

In conclusion, the results of our study demonstrate (R)-sal
significantly effective in treatment chronic colitis. Further-
more, that (R)-sal, instead of (S)-sal or (RS)-sal, markedly
attenuate chronic colitis in mice through several mecha-
nisms, including suppressing gut inflammation, regulating
oxidative stress, ameliorating intestinal barrier integrity,
suppressing colon fibrosis, and diminishing intestinal micro-
biome dysbiosis. These results reveal a therapeutical poten-
tial of long-term usage of (R)-sal in chronic colitis with
reduced side effect in comparison of other traditional thera-
peutical options.

Data Availability

The data underlying this article are available in the article.

Conflicts of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Authors’ Contributions

Liangjun Deng, Shanping Wang, and Wen Tan designed
research. Wen Tan supervised the research. Liangjun Deng,
Haihua Guo, and Yue Lin performed the experiments.

17Oxidative Medicine and Cellular Longevity



Liangjun Deng, Haihua Guo, Xiaoming Liu, and Rui Zhang
analyzed the data. Liangjun Deng and Shanping Wang wrote
the manuscript.

Acknowledgments

This work was supported by the National Science and Tech-
nology Major Project (grant number 2019ZX09301120) and
Guangdong Basic and Applied Basic Research Foundation
(grant number 2021A1515110714).

References

[1] A. J. Walsh, R. V. Bryant, and S. P. L. Travis, “Current best
practice for disease activity assessment in IBD,” Nature
Reviews Gastroenterology & Hepatology, vol. 13, no. 10,
pp. 567–579, 2016.

[2] S. Vermeire, G. Van Assche, and P. Rutgeerts, “Classification
of inflammatory bowel disease,” Current Opinion in Gastroen-
terology, vol. 28, no. 4, pp. 321–326, 2012.

[3] J. E. Lennard-Jones, “Classification of inflammatory bowel dis-
ease,” Scandinavian Journal of Gastroenterology. Supplement,
vol. 170, pp. 2–6, 1989, discussion 16-9.

[4] M. Duijvestein, R. Battat, N. Vande Casteele et al., “Novel ther-
apies and treatment strategies for patients with inflammatory
bowel disease,” Current Treatment Options in Gastroenterol-
ogy, vol. 16, no. 1, pp. 129–146, 2018.

[5] S. C. Ng, H. Y. Shi, N. Hamidi et al., “Worldwide incidence and
prevalence of inflammatory bowel disease in the 21st century:
a systematic review of population-based studies,” Lancet,
vol. 390, no. 10114, pp. 2769–2778, 2017.

[6] S. Bopanna, A. N. Ananthakrishnan, S. Kedia, V. Yajnik, and
V. Ahuja, “Risk of colorectal cancer in Asian patients with
ulcerative colitis: a systematic review and meta-analysis,” The
Lancet Gastroenterology & Hepatology, vol. 2, no. 4, pp. 269–
276, 2017.

[7] B. D. Ye, H. Choi, M. Hong et al., “Identification of ten addi-
tional susceptibility loci for ulcerative colitis through Immu-
nochip analysis in Koreans,” Inflammatory Bowel Diseases,
vol. 22, no. 1, pp. 13–19, 2016.

[8] H. J. Kim, H. J. Hann, S. N. Hong et al., “Incidence and natural
course of inflammatory bowel disease in Korea, 2006-2012: a
nationwide population-based study,” Inflammatory Bowel Dis-
eases, vol. 21, no. 3, pp. 623–630, 2015.

[9] T. Oshima and H. Miwa, “Gastrointestinal mucosal barrier
function and diseases,” Journal of Gastroenterology, vol. 51,
no. 8, pp. 768–778, 2016.

[10] S. van der Post, K. S. Jabbar, G. Birchenough et al., “Structural
weakening of the colonic mucus barrier is an early event in
ulcerative colitis pathogenesis,” Gut, vol. 68, no. 12,
pp. 2142–2151, 2019.

[11] E. A. Franzosa, A. Sirota-Madi, J. Avila-Pacheco et al., “Gut
microbiome structure and metabolic activity in inflammatory
bowel disease,” Nature Microbiology, vol. 4, no. 2, pp. 293–
305, 2019.

[12] X. Bai, X. Gou, P. Cai et al., “Sesamin enhances Nrf 2-mediated
protective defense against oxidative stress and inflammation in
colitis via AKT and ERK activation,” Oxidative Medicine and
Cellular Longevity, vol. 2019, Article ID 2432416, 20 pages,
2019.

[13] T. Karrasch and C. Jobin, “NF-κB and the intestine: friend or
foe?,” Inflammatory Bowel Diseases, vol. 14, no. 1, pp. 114–
124, 2008.

[14] K. Taguchi, H. Motohashi, and M. Yamamoto, “Molecular
mechanisms of the Keap 1-Nrf2 pathway in stress response
and cancer evolution,” Genes to Cells, vol. 16, no. 2, pp. 123–
140, 2011.

[15] Y. Tan and C. Zheng, “Effects of Alpinetin on intestinal barrier
function, inflammation and oxidative stress in dextran sulfate
sodium-induced ulcerative colitis mice,” American Journal of
the Medical Sciences, vol. 355, no. 4, pp. 377–386, 2018.

[16] B. N. Chorley, Y. H. Li, S. J. Fang, J. A. Park, and K. B. Adler,
“(R)-albuterol elicits antiinflammatory effects in human air-
way epithelial cells via iNOS,” American Journal of Respiratory
Cell and Molecular Biology, vol. 34, no. 1, pp. 119–127, 2006.

[17] S. Wang, F. Liu, K. S. Tan et al., “Effect of (R)-salbutamol on
the switch of phenotype and metabolic pattern in LPS-
induced macrophage cells,” Journal of Cellular and Molecular
Medicine, vol. 24, no. 1, pp. 722–736, 2020.

[18] F. Liu, S. Wang, B. Liu, Y. Wang, andW. Tan, “(R)-salbutamol
improves imiquimod-induced psoriasis-like skin dermatitis by
regulating the Th17/Tregs balance and glycerophospholipid
metabolism,” Cell, vol. 9, no. 2, 2020.

[19] S. Wirtz, V. Popp, M. Kindermann et al., “Chemically induced
mouse models of acute and chronic intestinal inflammation,”
Nature Protocols, vol. 12, no. 7, pp. 1295–1309, 2017.

[20] B. Chassaing, J. D. Aitken, M. Malleshappa, and M. Vijay-
Kumar, “Dextran sulfate sodium (DSS)-induced colitis in
mice,” Current Protocols in Immunology, vol. 104, no. 1,
2014.

[21] H. S. Cooper, S. N. Murthy, R. S. Shah, and D. J. Sedergran,
“Clinicopathologic study of dextran sulfate sodium experi-
mental murine colitis,” Laboratory Investigation, vol. 69,
no. 2, pp. 238–249, 1993.

[22] H. Li, C. Fan, H. Lu et al., “Protective role of berberine on
ulcerative colitis through modulating enteric glial cells-
intestinal epithelial cells-immune cells interactions,” Acta
Pharmaceutica Sinica B, vol. 10, no. 3, pp. 447–461, 2020.

[23] S. Saber, M. Basuony, and A. S. Eldin, “Telmisartan amelio-
rates dextran sodium sulfate-induced colitis in rats by modu-
lating NF-κB signalling in the context of PPARγ agonistic
activity,” Archives of Biochemistry and Biophysics, vol. 671,
pp. 185–195, 2019.

[24] A. Bhattacharyya, R. Chattopadhyay, S. Mitra, and S. E. Crowe,
“Oxidative stress: an essential factor in the pathogenesis of gas-
trointestinal mucosal diseases,” Physiological Reviews, vol. 94,
no. 2, pp. 329–354, 2014.

[25] X. Li, J. Zhan, Y. Hou et al., “Coenzyme Q10 regulation of apo-
ptosis and oxidative stress in H2O2 induced BMSC death by
modulating the Nrf-2/NQO-1 signaling pathway and its appli-
cation in a model of spinal cord injury,” Oxidative Medicine
and Cellular Longevity, vol. 2019, Article ID 6493081, 2019.

[26] Y. Lee, K. Sugihara, M. G. Gillilland III, S. Jon, N. Kamada, and
J. J. Moon, “Hyaluronic acid-bilirubin nanomedicine for tar-
geted modulation of dysregulated intestinal barrier, micro-
biome and immune responses in colitis,” Nature Materials,
vol. 19, no. 1, pp. 118–126, 2020.

[27] K. Suzuki, X. Sun, M. Nagata et al., “Analysis of intestinal
fibrosis in chronic colitis in mice induced by dextran sulfate
sodium,” Pathology International, vol. 61, no. 4, pp. 228–238,
2011.

18 Oxidative Medicine and Cellular Longevity



[28] A. Larabi, N. Barnich, and H. T. T. Nguyen, “New insights into
the interplay between autophagy, gut microbiota and inflam-
matory responses in IBD,” Autophagy, vol. 16, no. 1, pp. 38–
51, 2020.

[29] D. Parada Venegas, M. K. de la Fuente, G. Landskron et al.,
“Corrigendum: Short chain fatty acids (SCFAs)-mediated gut
epithelial and immune regulation and its relevance for inflam-
matory bowel diseases,” Frontiers in Immunology, vol. 10,
2019.

[30] D. H. Kim and J. H. Cheon, “Pathogenesis of inflammatory
bowel disease and recent advances in biologic therapies,”
Immune Network, vol. 17, no. 1, pp. 25–40, 2017.

[31] K. L. Glassner, B. P. Abraham, and E. M. M. Quigley, “The
microbiome and inflammatory bowel disease,” Journal of
Allergy and Clinical Immunology, vol. 145, no. 1, pp. 16–27,
2020.

[32] A. Stallmach, S. Hagel, and T. Bruns, “Adverse effects of bio-
logics used for treating IBD,” Best Practice & Research Clinical
Gastroenterology, vol. 24, no. 2, pp. 167–182, 2010.

[33] Y. Wang, C. E. Parker, T. Bhanji, B. G. Feagan, J. K. MacDon-
ald, and Cochrane IBD Group, “Oral 5-aminosalicylic acid for
induction of remission in ulcerative colitis,” Cochrane Data-
base of Systematic Reviews, vol. 4, 2016.

[34] D. Handley, “The asthma-like pharmacology and toxicology of
(S)-isomers of beta agonists,” Journal of Allergy and Clinical
Immunology, vol. 104, no. 2, pp. S69–S76, 1999.

[35] K. Wang, X. Jin, Q. Li et al., “Propolis from different geo-
graphic origins decreases intestinal inflammation andBacter-
oidesspp. populations in a model of DSS-induced colitis,”
Molecular Nutrition and Food Research, vol. 62, no. 17,
2018.

[36] Z. Zhang, S. Li, H. Cao et al., “The protective role of phloretin
against dextran sulfate sodium-induced ulcerative colitis in
mice,” Food & Function, vol. 10, no. 1, pp. 422–431, 2019.

[37] S. Kanwal, T. P. Joseph, S. Aliya et al., “Attenuation of DSS
induced colitis by _Dictyophora indusiata_ polysaccharide
(DIP) via modulation of gut microbiota and inflammatory
related signaling pathways,” Journal of Functional Foods,
vol. 64, 2020.

[38] I. Papaconstantinou, C. Zeglinas, M. Gazouli et al., “The impact
of peri-operative anti-TNF treatment on anastomosis-related
complications in Crohn's disease Patients. A Critical Review.
A Critical Review,” Journal of Gastrointestinal Surgery, vol. 18,
no. 6, pp. 1216–1224, 2014.

[39] T. Lawrence, “The nuclear factor NF-kappaB pathway in
inflammation,” Cold Spring Harbor Perspectives in Biology,
vol. 1, no. 6, p. a001651, 2009.

[40] L. Peng, X. Gao, L. Nie et al., “Astragalin attenuates dextran
sulfate sodium (DSS)-induced acute experimental colitis by
alleviating gut microbiota dysbiosis and inhibiting NF-κB acti-
vation in mice,” Frontiers in Immunology, vol. 11, 2020.

[41] I. Siddique and I. Khan, “Mechanism of regulation of Na-H
exchanger in inflammatory bowel disease: role of TLR-4 sig-
naling mechanism,” Digestive Diseases and Sciences, vol. 56,
no. 6, pp. 1656–1662, 2011.

[42] K. J. Maloy and F. Powrie, “Intestinal homeostasis and its
breakdown in inflammatory bowel disease,” Nature, vol. 474,
no. 7351, pp. 298–306, 2011.

[43] A. K. Jaiswal, “Nrf2 signaling in coordinated activation of anti-
oxidant gene expression,” Free Radical Biology & Medicine,
vol. 36, no. 10, pp. 1199–1207, 2004.

[44] B. Xu, Y. Qin, D. Li et al., “Inhibition of PDE4 protects neurons
against oxygen-glucose deprivation-induced endoplasmic
reticulum stress through activation of the Nrf-2/HO-1 path-
way,” Redox Biology, vol. 28, 2020.

[45] Y. Mei, Z. Wang, Y. Zhang et al., “FA-97, a new synthetic caf-
feic acid phenethyl ester derivative, ameliorates DSS-induced
colitis against oxidative stress by activating Nrf2/HO-1 path-
way,” Frontiers in Immunology, vol. 10, 2020.

[46] M. Zhang, C. Xu, D. Liu, M. K. Han, L. Wang, and
D. Merlin, “Oral delivery of nanoparticles loaded with gin-
ger active compound, 6-shogaol, attenuates ulcerative colitis
and promotes wound healing in a murine model of ulcera-
tive colitis,” Journal of Crohn's and Colitis, vol. 12, no. 2,
pp. 217–229, 2018.

[47] R. K. Thimmulappa, H. Lee, T. Rangasamy et al., “Nrf2 is a
critical regulator of the innate immune response and survival
during experimental sepsis,” Journal of Clinical Investigation,
vol. 116, no. 4, pp. 984–995, 2006.

[48] G.-H. Liu, J. Qu, and X. Shen, “NF-κB/p65 antagonizes Nrf2-
ARE pathway by depriving CBP from Nrf2 and facilitating
recruitment of HDAC3 to MafK,” Biochimica et Biophysica
Acta-Molecular Cell Research, vol. 1783, no. 5, pp. 713–727,
2008.

[49] S. Saber, R. M. Khalil, W. S. Abdo, D. Nassif, and E. El-
Ahwany, “Olmesartan ameliorates chemically-induced ulcera-
tive colitis in rats via modulating NFκB and Nrf-2/HO-1 sig-
naling crosstalk,” Toxicology and Applied Pharmacology,
vol. 364, pp. 120–132, 2019.

[50] E. C. Martens, M. Neumann, and M. S. Desai, “Interactions of
commensal and pathogenic microorganisms with the intesti-
nal mucosal barrier,” Nature Reviews Microbiology, vol. 16,
no. 8, pp. 457–470, 2018.

[51] J. Yi, K. Bergstrom, J. Fu et al., “Dclk1 in tuft cells promotes
inflammation-driven epithelial restitution and mitigates
chronic colitis,” Cell Death and Differentiation, vol. 26, no. 9,
pp. 1656–1669, 2019.

[52] C. Chelakkot, J. Ghim, and S. H. Ryu, “Mechanisms regulat-
ing intestinal barrier integrity and its pathological implica-
tions,” Experimental and Molecular Medicine, vol. 50,
pp. 1–9, 2018.

[53] T. Eom, Y. S. Kim, C. H. Choi, M. J. Sadowsky, and T. Unno,
“Current understanding of microbiota- and dietary-therapies
for treating inflammatory bowel disease,” Journal of Microbiol-
ogy, vol. 56, no. 3, pp. 189–198, 2018.

[54] K. Scheibe, C. Kersten, A. Schmied et al., “Inhibiting interleu-
kin 36 receptor signaling reduces fibrosis in mice with chronic
intestinal inflammation,” Gastroenterology, vol. 156, no. 4,
pp. 1082–1097.e11, 2019.

[55] M. V. Lenti and A. Di Sabatino, “Intestinal fibrosis,”Molecular
Aspects of Medicine, vol. 65, pp. 100–109, 2019.

[56] S. Speca, I. Giusti, F. Rieder, and G. Latella, “Cellular and
molecular mechanisms of intestinal fibrosis,” World Journal
of Gastroenterology, vol. 18, no. 28, pp. 3635–3661, 2012.

[57] F. Rieder, T. Karrasch, S. Ben-Horin et al., “Results of the 2nd
scientific workshop of the ECCO (III): basic mechanisms of
intestinal healing,” Journal of Crohns & Colitis, vol. 6, no. 3,
pp. 373–385, 2012.

[58] D. Q. Shih and S. R. Targan, “Insights into IBD pathogenesis,”
Current Gastroenterology Reports, vol. 11, no. 6, pp. 473–480,
2009.

19Oxidative Medicine and Cellular Longevity



[59] H. W. Koon, D. Shih, I. Karagiannides et al., “Substance P
modulates colitis-associated fibrosis,” American Journal of
Pathology, vol. 177, no. 5, pp. 2300–2309, 2010.

[60] S. N. Flier, H. Tanjore, E. G. Kokkotou, H. Sugimoto,
M. Zeisberg, and R. Kalluri, “Identification of epithelial to
mesenchymal transition as a novel source of fibroblasts in
intestinal fibrosis,” Journal of Biological Chemistry, vol. 285,
no. 26, pp. 20202–20212, 2010.

[61] X. Gao, Q. Cao, Y. Cheng et al., “Chronic stress promotes coli-
tis by disturbing the gut microbiota and triggering immune
system response,” Proceedings of the National Academy of Sci-
ences of the United States of America, vol. 115, no. 13,
pp. E2960–E2969, 2018.

[62] N. E. Ilott, J. Bollrath, C. Danne et al., “Defining the microbial
transcriptional response to colitis through integrated host and
microbiome profiling,” ISME Journal, vol. 10, no. 10,
pp. 2389–2404, 2016.

[63] J. D. Forbes, G. Van Domselaar, and C. N. Bernstein, “The gut
microbiota in immune-mediated inflammatory diseases,”
Frontiers in Microbiology, vol. 7, p. 1081, 2016.

[64] X. Ma, Y. Hu, X. Li et al., “Periplaneta americana ameliorates
dextran sulfate sodium-induced ulcerative colitis in rats by
Keap1/Nrf-2 activation, intestinal barrier function, and gut
microbiota regulation,” Frontiers in Pharmacology, vol. 9,
no. 944, 2018.

[65] J. J. Limon, J. Tang, D. Li et al., “_Malassezia_ Is Associated
with Crohn 's Disease and Exacerbates Colitis in Mouse
Models,” Cell Host & Microbe, vol. 25, no. 3, pp. 377–388.e6,
2019.

[66] T. Ohkusa and S. Koido, “Intestinal microbiota and ulcerative
colitis,” Journal of Infection and Chemotherapy, vol. 21, no. 11,
pp. 761–768, 2015.

[67] G. P. Donaldson, S. M. Lee, and S. K. Mazmanian, “Gut bioge-
ography of the bacterial microbiota,” Nature Reviews Microbi-
ology, vol. 14, no. 1, pp. 20–32, 2016.

[68] M. Rajilic-Stojanovic, H. Smidt, and W. M. de Vos, “Diversity
of the human gastrointestinal tract microbiota revisited,” Envi-
ronmental Microbiology, vol. 9, no. 9, pp. 2125–2136, 2007.

[69] X. Bian, W. Wu, L. Yang et al., “Administration of Akkerman-
sia muciniphila ameliorates dextran sulfate sodium-induced
ulcerative colitis in mice,” Frontiers in Microbiology, vol. 10,
p. 2259, 2019.

[70] M. Derrien, C. Belzer, andW. M. de Vos, “Akkermansia muci-
niphila and its role in regulating host functions,” Microbial
Pathogenesis, vol. 106, pp. 171–181, 2017.

[71] S. Rabizadeh, K.-J. Rhee, S. Wu et al., “Enterotoxigenic Bacter-
oides fragilis: a potential instigator of colitis,” Inflammatory
Bowel Diseases, vol. 13, no. 12, pp. 1475–1483, 2007.

[72] K. Lucke, S. Miehlke, E. Jacobs, and M. Schuppler, “Preva-
lence of Bacteroides and Prevotella spp. in ulcerative coli-
tis,” Journal of Medical Microbiology, vol. 55, no. 5,
pp. 617–624, 2006.

[73] Y.-J. Chen, H. Wu, S.-D. Wu et al., “Parasutterella, in associa-
tion with irritable bowel syndrome and intestinal chronic
inflammation,” Journal of Gastroenterology and Hepatology,
vol. 33, no. 11, pp. 1844–1852, 2018.

[74] O. Franzen, J. Hu, X. Bao, S. H. Itzkowitz, I. Peter, and
A. Bashir, “Improved OTU-picking using long-read 16S rRNA
gene amplicon sequencing and generic hierarchical cluster-
ing,” Microbiome, vol. 3, p. 43, 2015.

[75] R. J. Chiodini, S. E. Dowd, W. M. Chamberlin, S. Galandiuk,
B. Davis, and A. Glassing, “Microbial population differentials
between mucosal and submucosal intestinal tissues in
advanced Crohn's disease of the ileum,” PLoS One, vol. 10,
no. 7, article e0134382, 2015.

[76] R. Zhai, X. Xue, L. Zhang, X. Yang, L. Zhao, and C. Zhang,
“Strain-specific anti-inflammatory properties of two Akker-
mansia muciniphila strains on chronic colitis in mice,” Fron-
tiers in Cellular and Infection Microbiology, vol. 9, p. 239, 2019.

[77] H. Earley, G. Lennon, A. Balfe, J. C. Coffey, D. C. Winter, and
P. R. O’Connell, “The abundance of _Akkermansia mucini-
phila_ and its relationship with sulphated colonic mucins in
health and ulcerative colitis,” Scientific Reports, vol. 9, no. 1,
2019.

20 Oxidative Medicine and Cellular Longevity



Research Article
GPX4-Regulated Ferroptosis Mediates S100-Induced
Experimental Autoimmune Hepatitis Associated with the Nrf2/
HO-1 Signaling Pathway

Lujian Zhu,1 Dazhi Chen,2 Yin Zhu,1 Tongtong Pan,1 Dingchao Xia,1 Tingchen Cai,1

Hongwei Lin,1 Jing Lin,1 Xiaozhi Jin,1 Faling Wu,1 Sijie Yu,1 Kailu Zhu,1 Lanman Xu ,1,3

and Yongping Chen 1

1Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key
Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology,
Hepatology Institute of Wenzhou Medical University, Wenzhou, China
2Department of Gastroenterology, Peking University First Hospital, Beijing, China
3Department of Infectious Diseases and Liver Diseases, Ningbo Medical Centre Lihuili Hospital, Affiliated Lihuili Hospital of
Ningbo University, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China

Correspondence should be addressed to Lanman Xu; 13587646315@163.com and Yongping Chen; cyp@wmu.edu.cn

Lujian Zhu and Dazhi Chen contributed equally to this work.

Received 25 July 2021; Revised 5 October 2021; Accepted 3 November 2021; Published 20 December 2021

Academic Editor: Miodrag Lukic

Copyright © 2021 Lujian Zhu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Autoimmune hepatitis (AIH) is an inflammatory autoimmune disease of the liver. Oxidative stress triggered by reactive oxygen
radicals is a common pathophysiological basis for the pathogenesis of many liver diseases, and ferroptosis is associated with
the toxic accumulation of reactive oxygen species. The signaling transduction pathways responsible for iron processing and
lipid-peroxidation mechanisms are believed to drive ferroptosis. However, the specific mechanisms regulating ferroptosis
remain unclear. The aims of this investigation were to identify the possible effector functions of ferroptosis, based on
glutathione peroxidase 4 (GPX4) regulation in an S100-induced autoimmune hepatitis mouse model and hepatocyte injury
models. The S100 liver antigen-induced AIH mouse model was used to detect ferroptotic biomarkers using western blotting.
Upregulated levels of cyclooxygenase2 (COX2) and Acyl-Coenzyme A synthase long-chain family member 4 (ACSL4) were
observed in the S100-induced AIH model group, while levels of GPX4 and ferritin heavy chain 1 (FTH1) were downregulated
(P < 0:05). The expression profiles of COX2, ACSL4, GPX4, and FTH1 were restored following the administration of
ferrostatin-1. In addition, Nrf2 and HO-1 levels in the S100-induced AIH model mice after treatment with ferrostatin-1 were
downregulated compared to the nonferrostatin-1-treated S100-induced AIH model mice (P < 0:05). Moreover, COX2 and
ACSL4 levels were significantly upregulated, with significant FTH1 downregulation, in the AIH model mice when liver-specific
GPX4 was silenced using AAV8 constructs. These data indicate that inhibition of ferroptosis significantly ameliorated the
influence of AIH on the Nuclear factor E2-related factor 2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling pathway, and that
ferroptosis may act as an initiator or intermediate mediator leading to AIH.

1. Introduction

Autoimmune hepatitis (AIH) is characterized by inflamma-
tion, the presence of autoantibodies, hypergammaglobuline-
mia, and interface hepatitis [1]. It is more common in

women and appears to be increasing in increasing prevalence.
Chronic liver disease is a serious threat to health and thus has
economic consequences [2]. Although the pathogenetic mech-
anism of AIH is not clear, the mouse AIH model induced by
the liver-specific antigen S100 is widely used to study AIH [3].
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Typically, mice which are injected intraperitoneally with
equal amounts of liver S100 antigen emulsified and mixed
with complete Freund’s adjuvant on day-0 and day-7 show
significant liver inflammation and elevated autoimmune
IgG. Although previous studies have implicated genetic sus-
ceptibility, molecular mimicry, as well as external factors in
AIH pathogenesis [4], the precise pathogenetic mechanism
remains unclear. Therefore, an in-depth study of the under-
lying mechanisms responsible for AIH can assist the devel-
opment of novel therapies for AIH.

Ferroptosis is defined as iron-dependent cell death medi-
ated by phospholipid peroxidation. Ferroptosis results from
dysregulated iron metabolism involving the iron-storage
protein ferritin, composed of a ferritin light chain (FTL)
and a ferritin heavy chain 1 (FTH1) [5]. Since FTH possesses
iron oxidase activity, it converts ferrous iron (Fe2+) to the
oxidized ferric (Fe3+) form, allowing iron binding to the fer-
ritin outer layer and thus lowering the concentration of free
iron in the cell [6]. High levels of free iron are associated
with lipid peroxidation. There are several mechanisms
involved in the prevention of lipid peroxidation including
the action of glutathione peroxidase 4 (GPX4) that scavenges
phospholipid peroxides as a protective measure against
ferroptosis [7]. Abnormal iron metabolism and lipid perox-
idation are believed to play pivotal parts in ferroptosis. In
addition, lipid peroxidation is influenced by a spectrum of
different lipids and enzymes [8]. Even though lipid peroxi-
dation acts as a key process driving ferroptosis, the regula-
tors of lipid metabolism in ferroptosis remain unclear [9].
Acyl-Coenzyme A synthetase long-chain family member 4
(ACSL4) is essential for apoptosis in iron chain cancer cells.
ACSL4 expression has been shown to be significantly
reduced in ferroptosis-resistant cells [10]. Thus, ACSL4
participates in the catalysis of polyunsaturated fatty acid oxi-
dation. The enzyme lysophosphatidylcholine acyltransferase
3 (LPCA T3) mediates lipotoxicity in ferroptosis [10–12].
Furthermore, several intracellular signaling pathways play
pivotal parts in ferroptosis. For example, investigations have
implicated ferroptosis in pathological conditions in a variety
of organs, including the brain, kidney, liver, and heart [13].
Ferroptosis is seen in the accumulation of iron and reactive
oxygen species (ROS) and inhibits the activities of the XC-
and GPX4 systems by reducing cysteine uptake and consum-
ing glutathione [14]. The harmful actions of lipid peroxida-
tion during the actual ferroptotic process can be inhibited
through lipophilic-free radical traps (such as vitamin E,
ferrostatin-1, and liproxstatin-1). However, the influence of
ferroptosis on AIH remains unclear. Nuclear factor
erythroid-related factor 2 (Nrf2) is a transcription factor that
maintains stability and homeostasis in stressed intracellular
environments, and, although it appears to be involved, its
underlying mechanism of action is unknown [15]. Increas-
ing evidence has implicated Nrf2 in ferroptosis pathogenesis
[16]. In our present study, heme oxygenase-1 expression was
found to be significantly increased in the livers of S100-
induced AIH mice, while other studies have suggested that
excessive Nrf2/HO-1 stimulation can lead to ferroptosis by
disrupting the balance of ferric ions [17, 18]. Here, we
hypothesized that ferroptosis plays a pivotal role in Nrf2/

HO-1 signaling in S100-induced AIH. Therefore, in the
current investigation, ferroptosis and its mechanism were
evaluated in the AIH mouse model to determine its possible
pathogenic role in AIH and to generate novel therapies for
patients with AIH.

2. Materials and Methods

2.1. Animal Models. Male C57BL/6 WT mice weighing 23-
25 g were purchased from Hangzhou Ziyuan Experimental
Animal Technology Co, Ltd. (China). The study and animal
handling were approved by the Animal Policy and Welfare
Committee of Wenzhou Medical University (approval docu-
ment no. wydw2020-0861). The care of the mice was in
accordance with NIH guidelines (Guide for the Care and
Use of Laboratory Animals). The mice were housed in a
pathogen-free environment with a 12 : 12 h light-dark cycled
and fed on standard rodent chow. All mice were allowed to
acclimatize to their new environment for a minimum of 14
days prior to the commencement of the AIH modeling.
Ten experimental mice were randomly selected to be given
an intraperitoneal injection of S100 injection, thus, compris-
ing the mouse AIH model group.

2.2. Preparation of Mouse Liver Tissue. To prepare the liver-
specific antigen S100, three mice were randomly selected and
sacrificed under pentobarbital sodium anesthesia. The livers
were perfused with phosphate-buffered saline (PBS) and
removed as previously described and used to prepare fresh
S100 antigen [3]. In brief, the liver was homogenized in pre-
cooled PBS, followed by a 60-minute centrifugation at 150 g.
The supernatant was further centrifuged for 60 minutes in
an ultracentrifuge (100 000 g) [3]. The S100-containing
supernatant was concentrated to 5mL through an Amicon®
Ultra-15 ultrafiltration system (Millipore, USA), followed by
separation on an AKTA Pure (GE Healthcare, USA) 90 cm
CL-6B Sepharose® column (Pharmacia, USA). Three protein
peaks were eluted from the column, with peak 2 being the
harmful component and peaks 1 and 3 the required and
nontoxic components, respectively, of the hepatic antigen.
The protein fraction from the first peak was used at a con-
centration of 0.5-2.0 g/L. For the establishment of the AIH
model, the hepatic S100 antigen was emulsified with an
equal volume of Freund’s complete adjuvant (Solarbio,
China) and was used to immunize 10 mice from the same
batch intraperitoneally on day-0 and day-7 (Figure 1(a)).
During the modeling, two of the mice in the AIH model
group died. Four weeks after the injection, the mice were
sacrificed under pentobarbital sodium anesthesia. Blood
samples were collected and centrifuged at 3000 rpm at 4°C
for 15min to obtain the serum. Liver samples were either
fixed in 4% paraformaldehyde for immunohistochemical
and histological examination or frozen at -80°C.

2.3. Ferrostatin-1 Treatment of Mice. Ten control mice were
fed with conventional rodent chow and water throughout
the modeling period. Experiments were conducted to further
demonstrate whether ferroptosis occurs in S100-induced
AIH and whether intervention with ferrostatin-1

2 Oxidative Medicine and Cellular Longevity
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Figure 1: Continued.
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intervention is able to ameliorate it. The mice in the experi-
mental group received intraperitoneally injected ferrostatin-
1 (1mg/kg body weight in 5% DMSO) [19].

The following experimental groups were used: (i) normal
control group, (ii) S100-induced AIHmodel group, (iii) normal
mice + Ferrostatin-1 intervention group, and (iv) S100-induced
AIH+Ferrostatin-1 treatment group. A total of 40 experimen-
tal mice were used with 10 mice in each group. The AIHmodel
was established as described above. Ferrostatin-1 was injected
intraperitoneally as shown in Figure 2(a), using the same dose
and procedure for both normal and AIH mice. After comple-
tion of the Ferrostatin-1 intervention, the four groups of mice
were sacrificed under pentobarbital anesthesia at the same time,
and blood samples and liver tissues were collected for further
experimental analysis.

2.4. AAV8-m-GPX4 Treatment of Mice. AAV8-m-GPX4 was
used to silence GPX4 gene expression to investigate whether
S100-induced ferroptosis in AIH is associated with GPX4
expression. The experimental groups were as follows: (i)
normal mice + AAV8-m-GPX4 group, (ii) AIH+AAV8-
m-GPX4 group, (iii) normal mice + AAV8-negative control
group, and (iv) AIH+AAV8-negative control group. A total
of 40 mice were used with 10 mice in each group. The timing
of the AAV injection is shown in Figure 3(a). Four weeks
after the first intraperitoneal injection of S100, the four
groups of mice were sacrificed, and blood and hepatic tissue
samples were extracted for further experimental analysis.

2.5. H&E Staining. The liver tissue was fixed with 4% para-
formaldehyde, embedded in paraffin, and 5μm sections
cut. The sections were stained with hematoxylin and eosin
(H&E). The lymphocytic infiltration level, inflammatory

necrosis, and destruction of liver structures were observed
under light microscopy (Olympus, Japan).

2.6. Enzyme-Linked Immunosorbent Assay (ELISA). The
concentrations of the inflammatory cytokines (TNF-α,
IFNγ, and IL-17), the fibrotic cytokine TGF-β, and the
anti-inflammatory cytokine IL-10 that play important roles
in AIH progression were measured in liver tissue lysates.
The following mouse ELISA kits were used, all from Multi-
sciences (Lianke) Biotech (Hangzhou, China): TNF-α
(EK282/3-48), IFNγ (EK280/3-48), IL-17 (EK217/2-48), IL-
10 (EK210/4-48), and TGF-β (EK981-48), according to the
manufacturer’s instructions. Although different kits have
different methodologies for the assay, the main experimental
steps are similar. Hereby, we use the measurement of TNF-α
concentration as an example of ELISA method. In brief,
TNF-α standard, blank control, and sample under test
(100μl/well) were added to a 96-well plate. Then, add 50μl
dilution of antibody to each well (1 : 100 dilution). Seal the
plates with a plate sealing membrane and incubate at room
temperature for 90 minutes. After washing off the unbound
biotinylated antibody, add 100μl labeled Streptavidin-HRP
to each well (1 : 100 dilution) and incubate at room temper-
ature for 30 minutes. After washing, add 100μl substrate
TMB to each well and incubate at room temperature for
15 minutes, avoiding light. The reaction was terminated by
the termination reagent and the optical density (OD) value
was measured by an enzyme marker at the wavelength of a
450 nm. The concentration of cellular inflammatory factors
was computed using the standard curve regression equation
of standard absorbance values.

2.7. Western Blot Analysis. The liver tissue was homogenized
in lysis buffer. After centrifugation, the protein
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Figure 1: Ferroptosis plays an important role in S100-induced autoimmune hepatitis. (a) Experimental protocol for the modeling of S100-
induced AIH model mice. (b)–(d) The serum ALT, AST, and IgG expression levels in the control and AIH groups. (e) Representative H&E
staining of liver tissue sections. The black arrow indicates lymphocytic infiltration (original magnification 20×). (f) TNF-α, IFNγ, IL-17, IL-
10, and TGF-β levels in liver. (g) IHC staining of COX2 and GPX4 in liver sections (original magnification 20×). (h) Semiquantitative IHC
results. (i)–(j) Western blotting showing protein expression of COX2, ACSL4, GPX4, and FTH1 in the pre-experimental control and AIH
groups. GAPDH was used as a loading control; ∗P < 0:05, compared with the control group.

4 Oxidative Medicine and Cellular Longevity



S100
i.p

S100
i.p

0 7 14 21 28 Days

Fer-1
i.p qod

Sacrificed

(a)

Se
ru

m
 le

ve
l o

f A
LT

 (U
/L

) ⁎

#

0

50

100

150

Ct
rl

A
IH

Fe
r-

1

A
IH

+F
er

-1

(b)
Se

ru
m

 le
ve

l o
f A

ST
 (U

/L
)

⁎

#

Ct
rl

A
IH

Fe
r-

1

A
IH

+F
er

-1

0

100

200

300

400

(c)

Se
ru

m
 Ig

G
 (m

g/
m

L) ⁎

#

Ct
rl

A
IH

Fe
r-

1

A
IH

+F
er

-1

0

2

4

6

8

(d)

Ctrl AIH Fer-1 AIH+Fer-1

H&E staining

100 𝜇m 100 𝜇m 100 𝜇m 100 𝜇m

(e)

Liver TNF-𝛼 (pg/mg)
Liver IFN𝛾 (pg/mg)
Liver IL-17 (pg/mg)
Liver IL-10 (pg/mg)
Liver TGF-𝛽 (pg/mg)

⁎

⁎ ⁎
⁎
⁎

Ct
rl

A
IH

Fe
r-

1

A
IH

+F
er

-1

0

100

200

300

400

#

#

#

#

#

(f)

Ctrl AIH Fer-1 AIH+Fer-1

COX2

ACSL4

GPX4

FTH1

GAPDH

(g)

COX2

ACSL4

GPX4

FTH1

Re
la

tiv
e p

ro
te

in
 le

ve
l

fo
ld

 to
 co

nt
ro

l

⁎

⁎

⁎ ⁎

# #
# #

Ct
rl

A
IH

Fe
r-

1

A
IH

+F
er

-1

0

1

2

3

4

5

(h)

Figure 2: Continued.

5Oxidative Medicine and Cellular Longevity



concentration of the lysate was measured using BCA Protein
Assay Kit (Beyotime, P0012, China), in line with the manu-
facturer’s protocols. Equivalent amounts (50μg) of protein
were separated on SDS-PAGE and transferred to PVDF
membranes (Millipore). The membranes were blocked with
5% skimmed milk in Tris-buffered saline with 0.1% Tween
20 (TBST) and incubated with antibodies against COX2
(1 : 1000, 12375-1-AP, Proteintech), ACSL4 (1 : 1000,
A16848, ABclonal), GPX4 (1 : 1000, BM5231, Boster),
FTH1 (1 : 1000, A19544, ABclonal), Nrf2 (1 : 1000, 16396-
1-AP, Proteintech), HO-1 (1 : 1000, 10701-1-AP, Protein-
tech), or GAPDH (1 : 10 000, 60004-1-AP, Proteintech)
overnight at 4°C. After washing, the membranes were
incubated with horseradish peroxidase- (HRP-) conjugated
secondary antibodies against rabbit or mouse IgG (1 : 5000,
LF101 and LF102, respectively, Epizyme) for 1 hour at room
temperature. A Bio-Rad immunoblot analysis detection
system (Bio-Rad, Hercules, CA, USA) was used for visualiza-
tion. Protein band densities were assessed by ImageJ analysis

software, and the relative densities against the loading
control (GAPDH) were calculated.

2.8. Real-Time Quantitative Polymerase Chain Reaction (RT-
qPCR). Total RNA was collected from homogenized liver
tissue with TRIzol® reagent, and 1 g total RNA was
reverse-transcribed into cDNA using the PrimeScript RT
Master Mix® (Perfect Real Time) kit (RR036A, Takara,
Japan). The quantitative polymerase chain reaction was
performed in a 10μL reaction mixture containing specific
primers and TBGreen Premix Ex Taq II. Amplification
was performed in a real-time fluorescent quantitative
PCR system (AB 7500). The primers employed consisted
of the following:

ACTB (5′-CCTCACTGTCCACCTTCC-3′, 5′-GGGT
GTAAAACGCAGCTC-3′),

Nrf2 (5′-TCTTCACTGCCCCTCATC-3′, 5′-CTCCTG
CCAAACTTGCTC-3′),
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Figure 2: Ferrostatin-1, a ferroptosis inhibitor, significantly improves S100-induced autoimmune hepatitis. (a) Experimental protocol for
Ferrostatin-1 treatment of S100-induced AIH model mice. (b)–(d) ALT, AST, and IgG levels in the control group, AIH group,
Ferrostatin-1-treated group, and AIH+ Ferrostatin-1 group are shown. (e) Representative H&E staining of liver tissue sections. The black
arrow indicates the lymphocytic infiltration (original magnification 20×). (f)TNF-α, IFNγ, IL-17, IL-10, and TGF-β levels in liver; (g)
and (h) Western blot showing protein expression of COX2, ACSL4, GPX4, and FTH1 in the control, AIH, Ferrostatin-1, and
AIH+Ferrostatin-1 groups; GAPDH was used as a loading control. (i) IHC images of COX2 and GPX4 in liver sections (original
magnification 20×). (j) Semiquantitative IHC results. (k) Detection of lipid peroxidation by measuring malondialdehyde (MDA) levels.
(l) Fe2+ levels in liver; ∗P < 0:05, compared with control group; #P < 0:05, compared with AIH group.
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HO-1 (5′-ACAGCCCCCCACCAAGTTC-3′, 5′-GGCG
GTCTTAGCCTCTTC-3′).

Datasets were assessed using the 7500 real-time PCR sys-
tem software. Actin levels were used for normalization. Three
technical replicates of each RT-qPCR analysis were performed.

2.9. Immunohistochemistry (IHC). Immunohistochemistry
was performed on paraffin-embedded mouse liver sections.
The semiquantitative IHC datasets were based on the mean
of three mice per group. Three sections from each mouse
were assessed, with imaging collected by optical microscopy
(Olympus, Japan). The staining intensity was analyzed using
ImageJ software, and three microscopy fields were chosen at
random to calculate the integrated optical density (IOD) for
the target protein.

2.10. Serum Transaminases and IgG Analyses. Serum was
collected from blood samples by centrifugation at 250 g for

10 minutes. Serumalanineaminotransferase (ALT) and aspar-
tate aminotransferase (AST) concentrations were analyzed
using a fully automated biochemical analyzer, following the
manufacturer’s protocols (Abbott Laboratories, Chicago, IL,
USA). Serum IgG levels were determined with the Mouse
ELISA Kit (EK271-48, Multisciences). All experiments were
performed in accordancewith themanufacturer’s instructions.

2.11. Lipid Peroxidation Malondialdehyde (MDA) Assay.
Histones were isolated using the Lipid Peroxidation Malon-
dialdehyde Assay Kit (Beyotime, S0131, China). The malon-
dialdehyde (MDA) concentration of each sample was
measured at 532 nm using an enzyme marker (Thermo
Multiskan MK3, Thermo Fisher, Waltham, MA, USA), and
490 nm was used as a control.

2.12. Iron Load Assay. Histones were isolated using the Iron
Assay Kit protocol (ab83366, Abcam, Cambridge, UK). Liver
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Figure 3: Exacerbation of S100-induced autoimmune hepatitis after GPX4 knockdown. (a) Experimental protocol for the transfection of
AAV8-m-GPX4 and the establishment of the mouse AIH model; (b)–(d) ALT, AST, and IgG levels in the NC+AAV8-m-GPX4,
AIH+AAV8-m-GPX4, NC+AAV8-EGFP, and AIH+AAV8-EGFP groups. (e) Representative H&E staining of liver tissue sections. The
black arrow indicates lymphocytic infiltration (original magnification 20×); (f) TNF-α, IFNγ, IL-17, IL-10, and TGF-β levels in liver; (g)
and (h) Western blot showing protein expression of COX2, ACSL4, GPX4, and FTH1 in the NC+AAV8-m-GPX4, AIH+AAV8-m-
GPX4, NC+AAV8-EGFP, and AIH+AAV8-EGFP groups; GAPDH was used as a loading control. (i) IHC images of COX2 and GPX4
in liver sections (original magnification 20×). (j) Semiquantitative IHC results. (k) Detection of lipid peroxidation by measuring
malondialdehyde (MDA) levels. (l) Fe2+ levels in liver; ∗P < 0:05, compared with the NC+AAV8-EGFP group; #P < 0:05, compared with
the AIH+AAV8-EGFP group.
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tissue (10mg) was washed with prechilled PBS and homog-
enized with 4-10 parts iron analysis buffer using a chilled
Dawes homogenizer (10-15 passes). The sample was centri-
fuged at 16 000 g for 10 minutes. The supernatant was
collected and transferred to a clean centrifuge tube. Test
wells were treated with 100μL of standard dilution and
sample. Iron-reducing agent (5μL) was added to each well.
The kit protein standards and tissue stock solution were
mixed and added to the mixtures for 30 minutes at 37°C in
a constant temperature incubator. One hundred microliters
of the iron probe were then added to all wells containing
iron standards and test samples. The samples were mixed
and incubated at 37°C for 60 minutes, away from light.
The absorbance was measured on a colorimetric enzyme
standard immediately afterward (OD 593nm).

2.13. Cell Culture. Alpha mouse liver 12 (AML12) cells were
cultured in DMEM/F-12 (1 : 1) medium containing 10% fetal
bovine serum with 40 ng/mL of dexamethasone and 1%
insulin-transferrin-selenium-ethanolamine (ITS-X) at 37°C
in a 5% CO2 humidified thermostatic incubator. When the
cells reached 70%-80% confluence, GPX4-specific knock-
down siRNA and nonspecific control siRNA, as well as a
GPX4-specific overexpression plasmid and a nonspecific
control plasmid, were transfected with Lipofectamine 2000
Reagent (Thermo Fisher) strictly according to the manufac-
turer’s instructions. After transfection, the supernatant was
discarded, and incubation was continued with OPTI medium
(Gibco, Thermo Fisher) for 6 hours followed by incubation
for 48 hours in DMEM/F12 complete medium containing
lipopolysaccharide (5 ug/ml). GPX4-specific knockdown
siRNA (5′-CUGACGUAAACUACACUCATT-3′, 5′-
UGAGUGUAGUUUACGUCAGTT-3′) and nonspecific
control siRNA (5′-UUCUCCGAACGUGUCACGUTT-3′,
5′-ACGUGACACGUUCGGAGAATT-3′), and GPX4-
specific overexpression plasmid and nonspecific control plas-
mid were purchased from GenePharma (Shanghai, China).

2.14. Immunofluorescence. AML12 cells were cultured for 48
hours in 12-well plates. After reaching approximately 80%
confluence, the cells were washed with prechilled PBS and
were fixed with 4% paraformaldehyde for 15min, followed
by permeabilization with 0.5% Triton X-100 in PBS for
20min. The cells were then blocked with 5% BSA at 37°C
for 1 h and incubated with the corresponding primary anti-
bodies at 4°C overnight. The following day, the samples were
incubated with Alexa Fluor 488-labeled goat anti-rabbit IgG
secondary antibody (1 : 1000, 33106ES60, Teasen Biotech-
nology, Shanghai, China) for 1 h at room temperature in
the dark, followed by incubation with DAPI for 5 minutes.
Three regional fields of view were randomly selected from
each fluorescent section under an ortho-fluorescent micro-
scope (Leica, Germany), with the observer blinded to the
experimental group.

2.15. Statistical Analysis. Statistical analyses employed
GraphPad® 8.6.3 software. All studies were carried out on
three separate occasions and were randomized. The t-test
for unpaired outcomes was employed for comparative anal-

ysis. Datasets were represented as mean ± SD, with P < 0:05
deemed to confer statistical significance.

3. Results

3.1. Ferroptosis Plays a Pivotal Role in S100-Induced AIH.
The experimental design for the establishment of the S100-
induced AIH model is illustrated in Figure 1(a). The levels
of ALT and AST were significantly raised in the AIH group,
together with increased levels of IgG (Figures 1(b)–1(d)).
Histopathological H&E staining showed that the S100-
induced AIH resulted in many areas of inflammatory necro-
sis, increased lymphocyte infiltration, and destruction of
liver structures (Figure 1(e)). ELISA analysis showed that
concentrations of the inflammatory cytokines TNF-α, IFNγ,
and IL-17 and the fibrotic cytokine TGF-β levels were signif-
icantly increased in the livers of AIH mice compared to the
control group, while the anti-inflammatory cytokine IL-10
levels were significantly decreased (Figure 1(f); P < 0:05).
Western blot and immunohistochemical assays were also
used to detect the occurrence of ferroptosis in autoimmune
hepatitis. The western blot results indicated upregulated
expression of COX2 and ACSL4 in the AIH experimental
group, while the expression of GPX4 and FTH1 was severely
downregulated (Figures 1(i) and 1(j); P < 0:05). The immuno-
histochemical results showed that COX2 staining was weaker
in the control mouse hepatocytes, while COX2 was signifi-
cantly increased in hepatocytes in S100-induced AIH. GPX4
staining was stronger in the control mouse hepatocytes, and
in the S100-induced autoimmune hepatitis model group,
GPX4 expression was significantly reduced (Figures 1(g) and
1(h); P < 0:05). Thus, our results suggest the occurrence of
ferroptosis in S100-induced autoimmune hepatitis.

3.2. Ferrostatin-1, a Ferroptosis Inhibitor, Significantly
Improves S100-Induced Autoimmune Hepatitis. Ferrostatin-
1, a ferroptosis inhibitor, was used to investigate whether
ferroptosis plays a part in S100-induced AIH. The experi-
mental protocol is illustrated in Figure 2(a). The levels of
ALT, AST, and IgG were significantly raised in the AIH
group compared to the blank control group (Figures 2(b)–
2(d); P < 0:05). After Ferrostatin-1 treatment, the S100-
induced autoimmune hepatitis group had significantly lower
ALT, AST, and IgG levels compared with the S100-induced
autoimmune hepatitis model group (P < 0:05). Histological
H&E staining suggested that Ferrostatin-1 effectively attenu-
ated liver damage, protected liver structures, and limited
liver inflammatory lymphocyte infiltration. Ferrostatin-1
treatment attenuated inflammation in the S100-induced
autoimmune hepatitis group compared to the S100-
induced autoimmune hepatitis model group (Figure 2(e)).
ELISA analysis showed that Ferrostatin-1 reversed the
upregulated expression of the inflammatory cytokines
TNF-α, IFNγ, IL-17, the fibrotic cytokine TGF-β, and
the anti-inflammatory cytokine IL-10 in the liver of
S100-induced AIH mice to some extent (Figure 2(f); P <
0:05). Western blotting showed that Ferrostatin-1 signifi-
cantly upregulated both GPX4 and FTH1 and significantly
downregulated COX2 and ACSL4 (Figures 2(g) and 2(h);
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P < 0:05). Meanwhile, the immunohistochemical results
demonstrated that COX2 expression was significantly
increased in hepatocytes in S100-induced AIH compared to
the controls. However, COX2 expression was significantly
inhibited in the S100-induced AIH group after Ferrostatin-
1 treatment. In addition, Ferrostatin-1 treatment signifi-
cantly increased GPX4 expression in hepatocytes
(Figures 2(i) and 2(j); P < 0:05). In the lipid peroxidation
malondialdehyde assay, Ferrostatin-1 reduced MDA levels
in the S100-induced AIH group (Figure 2(k); P < 0:05) and
also reversed to some extent the elevated levels of hepatic fer-
rous ions in mice after AIH induction (Figure 2(l); P < 0:05).
Our findings further suggest that ferroptosis is associated
with S100-induced AIH and that Ferrostatin-1 has a role in
ameliorating S100-induced autoimmune hepatitis.

3.3. Ferrostatin-1 Ameliorates S100-Induced AIH via the
Nrf2/HO-1 Signaling Pathway. Nrf2 plays a major part in
the protection of cells from oxidative stress. Western blot-
ting and RT-qPCR analysis revealed that both protein and
mRNA expression levels of Nrf2 and HO-1 in the S100-
induced AIH group were increased. However, more notably,
S100-induced AIH significantly inhibited both Nrf2 and
HO-1 protein and mRNA levels after Ferrostatin-1 treat-
ment compared to the S100-induced AIH model group
(Figures 4(a)–4(e); P < 0:05).

3.4. Aggravation of S100-Induced Autoimmune Hepatitis
after GPX4 Knockdown. Two viruses, AAV8-m-GPX4 and
AAV8-EGFP, were purchased from HANBIO [20]. The
HANBIO constructs comprised a GPX4 knockdown
sequence in an adeno-associated virus (AAV). Forty male
C57BL/6 mice were randomly divided into four groups, (i)
NC+AAV8-m-GPX4, (ii) AIH+AAV8-m-GPX4, (iii)
NC+AAV8-EGFP, and (iv) AIH+AAV8-EGFP, with 10
mice in each group. Each mouse was injected with 1 × 1012
copies of the virus. The experimental protocol for transfec-
tion of AVVs and establishment of S100-induced autoim-
mune hepatitis model in mice is shown in Figure 3(a).

AAV8-m-GPX4 was used to interfere with the expres-
sion of GPX4 in knockdown normal controls and in the
S100-induced autoimmune hepatitis model to verify the role
of the GPX4 protein in S100-induced AIH and ferroptosis
development. The expression of ALT, AST, and IgG in the
AIH+AAV8-m-GPX4 group was significantly increased in
comparison to the NC+AAV8-m-GPX4 group
(Figures 3(b)–3(d); P < 0:05). However, notably, the
NC+AAV8-m-GPX4 group showed slightly higher expres-
sion of ALT, AST, and IgG than the NC+AAV8-EGFP
group (P < 0:05). In addition, the results of the H&E patho-
logical staining suggested that liver damage, liver structural
destruction, and liver lymphocyte infiltration were more
severe in the AIH+AAV8-m-GPX4 group compared to
the AIH+AAV8-EGFP group. Compared to the
NC+AAV8-EGFP group, the NC+AAV8-m-GPX4 group
showed slight liver damage as well as hepatic lymphocyte
infiltration in H&E-stained sections (Figure 3(e)). Also,
ELISA analysis showed that the levels of the inflammatory
cytokines TNF-α, IFNγ, and IL-17, and the fibrotic cytokine

TGF-β were increased to some extent in the livers of the
AIH+AAV8-EGFP group mice compared with the
NC+AAV8-EGFP group, while the level of the anti-
inflammatory cytokine IL-10 was decreased. After GPX4
knockdown, the expression of the inflammatory cytokines
TNF-α, IFNγ, and IL-17 and the fibrotic cytokine TGF-β
were upregulated to a greater extent in the livers of the
AIH+AAV8-m-GPX4 group than those of the
AIH+AAV8-EGFP group, while the anti-inflammatory
cytokine IL-10 level was significantly downregulated
(Figure 3(f); P < 0:05). In addition, Western blotting revealed
that, in comparison to the NC+AAV8-EGFP group, the pro-
tein expression of COX2 and ACSL4 were strongly increased
in the AIH+AAV8-EGFP group, while the protein expres-
sion of GPX4 and FTH1 were downregulated. The increase
in COX2 and ACSL4 levels was greater in the
AIH+AAV8-m-GPX4 group compared with the
AIH+AAV8-EGFP group after GPX4 knockdown, while
the relative protein expression of FTH1 was also significantly
reduced (Figures 3(g) and 3(h); P < 0:05). The immunohisto-
chemical results showed that COX2 staining in hepatocytes
was significantly enhanced in the AIH+AAV8-m-GPX4
group compared to the AIH+AAV8-EGFP group, while
GPX4 staining in hepatocytes was strongly reduced in the
former in comparison to the AIH+AAV8-EGFP group. In
addition, COX2 staining in hepatocytes was slightly
enhanced in the NC+AAV8-m-GPX4 group compared to
the NC+AAV8-EGFP group, while GPX4 staining in hepa-
tocytes was reduced compared to the NC+AAV8-EGFP
group in the former (Figures 3(i) and 3(j); P < 0:05). In terms
of the lipid peroxidation malondialdehyde assays, MDA
expression was increased to some extent after GPX4 knock-
down in both AIH model groups with and without S100
induction (Figure 3(k); P < 0:05). Also, GPX4 knockdown
increased the levels of ferrous ions to some extent
(Figure 3(l); P < 0:05). This suggests that ferroptosis in
S100-induced autoimmune hepatitis may be regulated
through GPX4.

3.5. LPS-Induced Ferroptosis in AML12 Cells Occurs through
GPX4 Regulation. To further investigate the mechanism of
hepatic ferroptosis, LPS induction in AML12 hepatocyte
cells was analyzed.

The experimental groups investigated were as follows: (i)
control group, (ii) LPS-induced hepatocyte ferroptosis
model group, (iii) LPS-induced hepatocyte ferroptosis group
after GPX4-specific knockdown, (iv) LPS-induced hepato-
cyte ferroptosis group after nonspecific control siRNA trans-
fection, (v) LPS-induced hepatocyte ferroptosis group after
GPX4-specific plasmid overexpression, and (vi) LPS-
induced hepatocyte ferroptosis group after nonspecific
control plasmid transfection. Western blot analysis showed
that the protein levels of COX2 and ACSL4 in the LPS-
induced hepatocyte ferroptosis group were significantly
raised, in contrast to those of GPX4 and FTH1
(Figures 5(a) and 5(b); P < 0:05). Furthermore, it is notewor-
thy that the protein levels of COX2 and ACSL4 increased
after GPX4-specific knockdown siRNA transfection
followed by LPS-induced hepatocyte ferroptosis compared
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to the LPS-induced hepatocyte ferroptosis model group
alone, with a greater increase in comparison to the controls.
Levels of FTH1 were also downregulated to a greater extent
after GPX4 knockdown. Notably, after transfection with
GPX4-specific overexpression plasmids followed by the
same concentration of LPS to induce hepatocyte ferroptosis,
COX2 and ACSL4 expressions were downregulated in com-
parison to the LPS-induced hepatocyte ferroptosis model
group alone, and more so when compared to the control,
while the levels of FTH1 also increased with GPX4
overexpression.

Cellular immunofluorescence staining showed that
COX2 staining (green) was abundant in the LPS-induced
hepatocyte ferroptosis model group, mainly localized in the
cytoplasm. In addition, after GPX4 knockdown followed by
LPS-induced hepatocyte ferroptosis, there was more intense
COX2 staining compared to the LPS-induced hepatocyte
ferroptosis model group alone, while COX2 staining after
GPX4 overexpression followed by the same concentration
of LPS-induced hepatocyte ferroptosis was significantly
diminished compared to the LPS-induced hepatocyte fer-
roptosis model group alone (Figures 5(c) and 5(d)). These
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Figure 4: Ferrostatin-1 ameliorates S100-induced AIH via the Nrf2/HO-1 signaling pathway. (a) and (b) Western blot showing protein
expression of Nrf2 and HO-1 in the pre-experimental control and AIH groups. (c) and (d) Western blot showing protein expression of
Nrf2 and HO-1 in the control, AIH, Ferrostatin-1, and AIH+ Ferrostatin-1 groups; GAPDH was used as a loading control. (e) RT-qPCR
assay for Nrf2 and HO-1 mRNA expression in the control, AIH, Ferrostatin-1, and AIH+Ferrostatin-1 groups; ACTB was used as a
loading control; ∗P < 0:05, compared with control group; #P < 0:05, compared with AIH group.
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Figure 5: LPS-induced ferroptosis in AML12 cells occurs through the regulation of GPX4. (a) and (b) Western blot showing protein
expression of COX2, ACSL4, GPX4, and FTH1 in the control, LPS, Si + LPS, SiNC+LPS, Plasmid+LPS, and PlasmidNC+LPS groups;
GAPDH was used as a loading control; (c) and (d) COX2 and GPX4 immunofluorescence detection combined with DAPI staining for
nuclei (scale bar: 75 μm).∗P < 0:05, compared with the control group; #P < 0:05, compared with the LPS group.
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results suggest that GPX4 regulates the induction of LPS-
induced ferroptosis in AML12 cells.

4. Discussion

The liver is the main iron storage site in the body, with iron
in the form of ferritin and iron-containing hemoglobin. In
the healthy liver, ferritin forms the main form of storage,
with minimal availability of iron-containing heme. However,
in the iron-overloaded liver, there are large accumulations of
both ferritin and heme, especially in the case of hereditary or
secondary diseases [21]. The evidence suggests that ferritin’s
role is to capture “free” iron within its spacious storage core,
thus, protecting the cell against potential damage caused by
reactive oxygen radicals generated by the Fenton reaction
[22]. Several recent studies have shown that oxidative stress
induced by ROS is the underlying pathophysiological mech-
anism in several liver diseases [23]. High levels of ROS lead
to DNA damage, protein denaturation, and lipid peroxida-
tion of and cyclooxygenase (COX) and lipoxygenase
(LOX), together with affecting other enzyme functions
[24]. Ferroptosis, a newly discovered type of iron-
dependent nonapoptotic cell death, is biologically and
morphologically distinct from apoptosis, necroptosis, and
autophagy [25]. It is also characterized by free ferrous iron
overload and the accumulation of lipid peroxides. However,
lipid peroxide accumulation is mainly caused by the absence,
or insufficient activity, of the selenium peroxidase glutathi-
one peroxidase 4 (GPX4). GPX4 is a unique intracellular
antioxidant enzyme that inhibits the production of lipid per-
oxidation in the cell membrane [26]. Given that the dynamic
balance of iron is intimately linked to the maintenance of
human health, disturbances in iron homeostasis can easily
lead to a variety of medical conditions [27]. This investiga-
tion focused on the influence of ferroptosis in AIH and its
possible regulatory mechanisms in the disease.

An in vivo mouse AIH model was established using
S100, with the treated mice showing elevated serum ALT
and AST levels, suggesting hepatic impairment. Elevation
of serum IgG after 28 days indicated the presence of AIH.
Meanwhile, the levels of the inflammatory cytokines TNF-
α, IFNγ, and IL-17, and the fibrotic cytokine TGF-β, which
play important roles in the pathology and progression of
AIH, were increased, while the anti-inflammatory cytokine
IL-10 level was decreased, further suggesting the presence
of liver inflammation and fibrosis in the S100-induced AIH
experimental mice. Specific inflammatory cytokines induce
the activity of specific transcription factors that direct the
differentiation of the relevant immune cell subtypes (Th1
and Treg cells secrete IFNγ and TGF-β, respectively, while
Th17 cells secrete IL-17) [28]. There is growing evidence
that both IL-17 and Th17 cells play key roles in the develop-
ment and progression of AIH inflammation and that Th17
cells are important for the body’s defense response [29].
Whereas the cellular source of TNF-α has not been specifi-
cally elucidated, several studies have also been reported sug-
gesting that TNF-α may be released by activated monocytes,
T cells, NK cells, mast cells, B cells, and Kupffer cells in the
liver [30, 31]. In addition, histological analysis demonstrated

inflammatory infiltration in the liver after S100 intervention
that was consistent with a significant increase in COX2
expression. Genome-wide CRISPR-based genetic screening
and microarray analysis of ferroptosis-resistant cell lines
has previously asserted that ACSL4 is a key molecular player
in the ferroptotic process [12]. Furthermore, stabilized gluta-
thione levels in normal cells provide protection against
oxidative stress and ferroptosis-driven cellular damage.
Lipid peroxidation may increase as a consequence of either
a reduced GPX4 expression or a reduction in the level of
its cofactor glutathione [32]. At the onset of ferroptosis,
increased iron-dependent lipid ROS production overwhelm
GPX4’s ability to control polyunsaturated fatty acid peroxi-
dation, resulting in aberrant control of lipid peroxides and
hence peroxidation, which are hallmarks of ferroptosis and
lead to cell death [33]. It has been demonstrated in several
studies that GPX4 is a major target of ferroptosis. There is
direct genetic evidence that GPX4 knockouts lead to cell
death in a pathologically relevant form of ferroptosis [34].
Recently, it was shown that cell death by ferroptosis is trig-
gered by the knockout of GPX4 in either kidney or T cells
[35]. Coincidentally, previous studies have shown that
GPX4 overexpression and knockdown modulated the lethal-
ity of multiple ferroptosis inducers, but not of compounds
associated with other cell death mechanisms [36]. Knock-
down of FTH1 in hepatocellular carcinoma cells increased
the incidence of ferroptosis, suggesting that FTH1 may play
an important protective role in cellular ferroptosis and that
reduced homeostasis in iron stores during the onset of fer-
roptosis may lead to iron overload [37]. Thus, aberrant
expression of FTH1 may lead to issues associated with iron
storage and cell death through the disruption of antioxidant
defense systems [38]. The S100-induced AIH model group,
in this investigation, showed upregulation of both COX2
and ACSL4, together with downregulation of GPX4 and
FTH1. Ferroptosis is known to be activated through iron-
dependent lipid peroxidation [39]. Therefore, we quantified
the level of lipid peroxidation in the liver using malondialde-
hyde (MDA). The dysregulation of COX2, ACSL4, GPX4,
and FTH1 expression, as well as MDA and iron overload
levels, suggest an important role for ferroptosis in S100-
induced autoimmune hepatitis.

To verify the role of ferroptosis, we used the ferroptosis
inhibitor Ferrostatin-1 for therapeutic intervention in the
S100-inducedAIHmice. It was found that Ferrostatin-1 signif-
icantly attenuated the ALT, AST, and IgG serum levels, as well
as the level of microscopic inflammatory infiltrates in H&E-
stained sections in the S100-induced AIH mice. In addition,
the expression of ferroptosis biomarkers (including ACSL4,
GPX4, and FTH1) was significantly reduced by Ferrostatiin-1
treatment. Furthermore, iron-dependent oxidative stress and
lipid peroxidation are common features of ferroptosis and
inflammatory diseases [40]. Ferrostatin-1 reducedMDA levels
in the AIH mouse livers. Thus, our data clearly illustrate that
ferroptosis may be themain underlyingmechanism thatmedi-
ates S100-induced autoimmune hepatitis.

Nrf2, a master controller of the antioxidant response, is a
transcription factor that is often aberrantly regulated in oxi-
dative stress [41]. The stability of inactivated Kelch-like
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ECH-associated protein 1 (Keap1)/Nrf2 heterodimers is
maintained by thiol antioxidants in the cytosol under nons-
tress conditions [42]. However, during oxidative stress, Nrf2
is dissociated from the Keap1 heterodimer in the cytosol,
allowing Nrf2 to translocate to the nucleus where Nrf2 inter-
acts with antioxidant response elements (ARE) to trigger the
transcription of target genes (including HO-1) to mitigate
oxidative stress [43]. In the present study, S100 induced an
increase in hepatic Nrf2/HO-1 expression in the mouse
AIH models. Furthermore, treatment with ferrostatin-1
reversed these effects, indicating that ferrostatin-1 may
attenuate S100-induced AIH through inhibition of Nrf2/
HO-1 pathway-mediated ferroptosis. These data suggest that
the Nrf2/HO-1 pathway plays a pivotal role in thwarting
ferroptosis. This highlights the role of ferroptosis in S100-
induced AIH, with ferrostatin-1 ameliorating the AIH con-
dition, mediated by the Nrf2/HO-1 signaling pathway.

Our investigation delved deeper into possible mecha-
nisms of ferroptosis in AIH. The regulation of GPX4 in
in vitro cellular experiments and in vivo animal experiments
was assessed. AAV8-m-GPX4 was administered to S100-
induced AIH mice to suppress GPX4 expression by liver-
specific knockdown of the GPX4 gene. Tail-vein injection
of AAV8-m-GPX4 to silence GPX4 expression resulted in
increased levels of serum ALT, AST, and IgG, as well as
increased infiltration of inflammatory cells. In addition, the
expression of ferroptosis biomarkers (including COX2,
ACSL4, and FTH1) was significantly increased in mice with
S100-induced autoimmune hepatitis after specific knock-
down of GPX4. Previous studies have shown that localized
GPX4 deficiency can lead to increased levels of lipid peroxi-
dation [44]. In the current study, liver-specific GPX4 knock-
down also increased the MDA and iron-overload levels in
the livers of S100-induced AIH mice. It has recently been
shown that cell death due to ferroptosis is caused by a dele-
tion of the GPX4 gene in the kidney [35]. The data presented
in our study clearly demonstrate that GPX4 is vital for
preventing the deleterious effects of lipid peroxidation and
ferroptosis in autoimmune hepatitis. The in vitro cell exper-
iments used GPX4-specific knockdown siRNA and a GPX4-
specific overexpression plasmid to regulate LPS-induced
ferroptosis model in AML12 cells. It was found that the
expression of other ferroptosis biomarkers (including
COX2, ACSL4, and FTH1) were significantly enhanced after
GPX4 knockdown. Consequently, these results of this inves-
tigation implicate ferroptosis as an initiator or mediator of
AIH pathogenesis, and that the occurrence of ferroptosis in
AIH is regulated by GPX4.

5. Conclusions

In conclusion, our results demonstrate an essential role for
ferroptosis in S100-induced AIH pathogenesis. It was also
demonstrated that the Nrf2/HO-1 signaling pathway play a
key part in inhibiting ferroptosis. Notably, S100-induced
ferroptosis in AIH was found to be closely linked to GPX4
regulatory control. These results increase our knowledge of
the molecular interactions underlying AIH and suggest

directions for the development of novel therapeutic strate-
gies to treat the disease.
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Background. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an important treatment option for various
hematopoietic diseases and certain hereditary diseases. Chronic graft-versus-host disease (cGVHD) has become the main life-
threatening complication and cause of death in later stage postallo-HSCT. Current treatment options for cGVHD are limited.
Hydrogen gas (H2) has been demonstrated that has antioxidative, anti-inflammatory, and antifibrosis effects. The aim of this
study was to confirm whether oral administration hydrogen-rich water exerted therapeutic effects on a scleroderma cGVHD
mouse model and tried to explain the mechanism underly it. Methods. A mouse cGVHD model was established by
haploidentical bone marrow transplantation. To evaluate therapeutic effects of H2 on cGVHD, survival rate, changes in clinical
scores, and skin pathologic characteristics of cGVHD mice were observed. To evaluate its therapeutic mechanism, we detected
the expression levels of antioxidative enzymes heme oxygenase-1(HO-1) and NAD (P)H: quinone acceptor oxidoreductase
1(NQO1) in skin homogenates. We also detected the expression level of the apoptotic protein caspase-3 in skin homogenates.
Results. 1-month survival rate of cGVHD mice in the hydrogen group reached 93.3%, significantly higher than 66.7% in the
nonhydrogen group (p < 0:05). Clinical score of cGVHD mice was improved by hydrogen-rich water at 96 days
posttransplantation (2.2 versus 4.5, p < 0:05). The skin pathological condition of cGVHD mice was significantly improved by
hydrogen-rich water. At 96 days posttransplantation, average skin pathological hematoxylin and eosin (HE) staining score in
the hydrogen group was 1.05, which was significantly lower than 3.2 in the nonhydrogen group (p < 0:01). Average Masson
staining score was 0.6 point in the hydrogen group, lower than 0.9 point in the nonhydrogen group (p < 0:05). Both the
relative expression levels of HO-1 and NQO1 proteins in skin specimens of cGVHD mice in the hydrogen group were lower
than that in the nonhydrogen group (2.47 versus 6.21 and 1.83 versus 3.59, p < 0:05). The relative expression level of caspase-3
protein in skin specimens of cGVHD mice increased to 7.17 on the 96th day after transplantation, significantly higher than
4.36 in the hydrogen group. Conclusion. In this study, we found that oral hydrogen-rich water improved the survival rate and
clinical symptoms of cGVHD mice by antioxidant and antiapoptosis. This study would pave the way for further clinical study,
which may provide a new treatment option for cGVHD.

1. Introduction

Allogeneic hematopoietic stem cell transplantation (allo-
HSCT) is an important treatment option for various hema-
topoietic diseases and certain hereditary diseases. Chronic
graft-versus-host disease (cGVHD) has become the main
life-threatening complication and cause of death in later
stage postallo-HSCT [1, 2]. With the decrease in early mor-
tality posttransplantation, the increasing upper age limit of
recipients, and the widespread application of unrelated

donors and peripheral blood hematopoietic stem cells, the
incidence of cGVHD has gradually increased [3, 4]. 2-year
cumulative incidence of cGVHD posttransplantation that
needs treatment was 30%-40% [2]. Glucocorticoids with or
without calcineurin inhibitors (CNI) were always used as
the initial treatment of cGVHD in the past few decades
[2]. However, glucocorticoids may cause serious adverse
effects after long-term application, including severe infec-
tions, peptic ulcers, femoral head necrosis, osteoporosis, dia-
betes, and hypertension [5]. Besides, during the tapering of
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glucocorticoids, cGVHD symptoms often relapse or even
aggravate [5]. If the disease relapses or progresses, second-
line treatment is often required. 50%-60% cGVHD patients
need second-line therapy [6, 7]. However, there is currently
no standard preferred second-line treatment [8]. Although
some new drugs such as ruxolitinib have brought unprece-
dented curative effects in this field in recent years [9–11],
clinical trials are still encouraged, and a better therapy
method is in urgent need for cGVHD [12].

In 2007, Ohsawa et al. systematically confirmed the free
radicals scavenging ability of hydrogen [13]. They found that
H2 had similar therapeutic effects in a cerebral ischemia-
reperfusion injury rat model by scavenging hydroxyl radicals
(·OH) comparing with tacrolimus. Besides to its free radical
scavenging ability, researchers also found that hydrogen has
anti-inflammatory effects in autoimmune hepatitis [14], sys-
temic inflammatory response syndrome [15], inflammatory
bowel disease [16], allergic dermatitis [17], lipopolysaccha-
ride- (LPS-) induced paw edema [18], and other animal
inflammatory disease models, which is also similar to tacro-
limus. Moreover, H2 has antifibrosis effects. It was found
that breathing 4% H2 significantly delayed the progression
of pulmonary fibrosis in a radiation induced pulmonary
fibrosis model [19]. They confirmed that H2 significantly
reduced the fibrotic lesions in the lungs of mice. The main
pathophysiological process of cGVHD is immunoinflamma-
tory responses, and the characteristic pathological change is
fibrosis [12, 20, 21]. Oxidative stress, inflammation imbal-
ance, and fibrosis play important roles in the progression
of cGVHD [12, 20, 21]. Therefore, we speculated that H2
may exert potential therapeutic effects on cGVHD after
allo-HSCT. In this study, an attempt was made to confirm
whether oral administration hydrogen-rich water exerted
therapeutic effects on a scleroderma cGVHD mouse model
and tried to explain the mechanism underly it.

2. Materials and Methods

2.1. Hydrogen-Rich Water Production. Hydrogen-rich water
was produced by dissolving hydrogen in sterile drinking
water for 6 hours under high pressure (0.4MPa) to a
supersaturated level as we previously reported [22–24].
Hydrogen-rich water was freshly prepared every 12 hours,
which ensured that a concentration of more than
0.6mmol/L was maintained. Gas chromatography (Biogas
Analyzer Systems-1000, Mitleben, Japan) was used to con-
firm the content of hydrogen in saline by the method
described by Ohsawa et al. [13].

2.2. Mice. All the protocols were approved by the Chinese
PLA General Hospital in accordance with the Guide for Care
and Use of Laboratory Animals published by the US NIH
(publication No. 96-01). Female C57BL/6N mice and male
B6D2F1 mice were obtained from Beijing Vital River Labo-
ratory Animal, Inc. (Beijing, China, http://www.vitalriver
.com.cn). All mice were studied at between 10 and 12 weeks
of age. Mice were housed in autoclaved cages with sterile
food and water.

2.3. Chronic Graft-versus-Host Disease (cGVHD) Model. A
cGVHD model was established as previously described
[25]. B6D2F1 mice received total body irradiation (TBI) on
day 1 (5.5Gy, two doses on the same day, with an interval
of 3-4 hours). On day 0, the control group was injected with
5 × 106 T cell–depleted bone marrow cells (TCD-BM) of
C57BL/6 mice through the tail vein. In the cGVHD model
group, 5 × 106 TCD-BM plus purified 1 × 106 splenic T cells
of C57BL/6 mice were injected to irradiated B6D2F1 mice.
In the hydrogen group, mice were given hydrogen-rich
water from the 8th day posttransplantation when the mice
have cGVHD symptoms until they were sacrificed. In the
control group and nonhydrogen group, mice were routinely
fed with sterile water.

2.4. Survival Assays. After transplantation, the mice were
returned to individually ventilated cages and routinely cared.
Their survival status was observed daily, and the survival
was checked and recorded for 30 days.

2.5. Evaluation of cGVHD. Chronic GVHD symptoms of
mice are clinically scored every five days after transplanta-
tion, mainly from the following 5 aspects [26]: weight loss
(scored 0: <10%; scored 1: 10%-25%; scored 2: >25%), activ-
ity (scored 0: normal; scored 1: mild to moderately
decreased; scored 2: stationary unless stimulated), posture
(scored 0: normal; scored 1: hunching only at rest; scored
2: severe hunching impairs movement), fur texture (scored
0: normal; scored 1: mild to moderate ruffling; scored 2:
severe ruffling/poor grooming), and skin integrity (scored
0: normal; scored 1: incomplete paw/tail scales; scored 2:
obvious areas of denuded skin). The scores of these five
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Figure 1: The survival rate of chronic GVHDmice in the hydrogen
group was significantly higher than that in the nonhydrogen group
(p < 0:05).
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aspects were added together to evaluate the severity of
cGVHD.

2.6. Tissue Histopathology. About 2 cm2 shaved skin from
interscapular region was selected. The hematoxylin and
eosin (HE) staining was performed as we previously
described [27]. A dermatologist, blinded to the groups of
animals, scored from five aspects: epidermal structural
changes, inflammatory cell infiltration, reduction or loss of
hair follicles, dermal fibrosis, and reduction or loss of fat.
Each index is rated as 0-2 points according to the severity
of the lesion. The total score is between 0 and 10 points
[28]. Masson staining was also performed according to the
previous literature [23], and scores were given according to
the thickness and looseness of collagen fibers: 0 (normal),
0.5 (minor), 1 (mild), 2 (moderate), and 3 (severity). The
skin of each group was scored for pathology 96 days after
transplantation.

2.7. Western Blot. The specimens of skin tissue were col-
lected and lysed as previously described [29]. The skin sam-
ples were collected and frozen in dry ice and stored at -70°C
until assayed by WB analysis. We homogenized the skin
specimens on ice by sonication and dissolved in lysis buffer,
which contains phosphate-buffered saline (PBS, pH7.4), 1%
Tergitol NP-40 (Sigma-Aldrich, St. Louis, MO), 0.5%
sodium deoxycholate (Sigma), 1% sodium dodecyl sulfate
(SDS) (Sigma), 1mM EDTA (Sigma), 1mM EGTA (Sigma),
1% protease inhibitor cocktail (Sigma), and 0.6mM phenyl-
methanesulfonyl fluoride (PMSF). Then, the homogenate
was centrifuged at 14,000 rpm for 30 minutes at 4°C [30].
Protein concentrations were detected by NanoDrop 1000
spectrophotometer (Thermo Fisher Scientific) [31]. The
expression levels of HO-1, NQO1, and caspase-3 proteins

in the skin tissues of different groups were detected by west-
ern blot analysis as previously described [32]. In the western
blot analysis, we obtained the following antibodies from Cell
Signaling Technology: anti-HO-1, anti-NQO1, anti-caspase-
3, and anti-β-actin.

3. Results

3.1. Therapeutic Effects of Hydrogen on cGVHD Mice

3.1.1. Hydrogen Increased the Survival Rate of cGVHD Mice.
Oral giving more than 2 weeks of hydrogen-rich water
improved the survival rate of cGVHD mice (Figure 1). The
30-day survival rate of cGVHD mice in the hydrogen water
group was 93.3%, significantly higher than that in the non-
hydrogen cGVHD group (66.7%, p < 0:05).

3.1.2. Hydrogesgen Improved cGVHD Mice Clinical
Symptoms. Compared with the nonhydrogen group, the
clinical symptoms of the mice in the hydrogen group began
to improve after drinking hydrogen-rich water for one week
(Figure 2(a)). With the time of drinking hydrogen-rich water
increased, the improvement of clinical symptoms becomes
more obvious. At 96 days posttransplantation, average clin-
ical score of the cGVHD mice in the hydrogen group was
2.0 points, which was less than that in the nonhydrogen
water group (5.3 points, p < 0:05). The average body weight
of cGVHD mice in the hydrogen group was higher compared
with that of the nonhydrogen water group without statistical
difference (30.50g vs. 27.92 g, p > 0:05, Figure 2(b)).

3.1.3. Hydrogen Improved cGVHD Mice Skin Pathology. The
skin pathological condition of cGVHD mice has been signif-
icantly improved after given hydrogen-rich water. At 96
days posttransplantation, the average skin pathological HE
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Figure 2: With the time of drinking H2-rich water increased, the clinical improvement of chronic GVHD mice becomes more obvious. At
96 days after transplantation, the clinical score of chronic GVHD mice in the hydrogen group was significantly lower than that in the
nonhydrogen group (Figure 2(a), p < 0:05). The weight of chronic GVHD mice in the hydrogen group was not statistically different from
that in the nonhydrogen group (Figure 2(b), p > 0:05).
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staining score in the hydrogen group was 1.05, significantly
lower than 3.2 in the nonhydrogen group (p < 0:01,
Figure 3). The average Masson staining score was 0.6 point
in the hydrogen group, also lower than 0.9 point in the non-
hydrogen group (p < 0:05, Figure 4).

3.2. The Mechanism of Hydrogen on cGVHD Mice

3.2.1. Hydrogen Reduced the Expression Level of HO-1 and
NQO1. The relative expression level of HO-1 protein (/β-
actin) in the skin tissue of cGVHD mice in the hydrogen
group was 2.47, which was significantly lower than 6.21 in
the skin tissue of the nonhydrogen group cGVHD mice
(Figure 5(a)). We found that the relative expression of
NQO1 protein(/β-actin) in the skin tissue of cGVHD mice
in the hydrogen group was 1.83, which was significantly
lower than 3.59 in the nonhydrogen group (Figure 5(b)).

3.2.2. Hydrogen Reduced the Expression Level of Caspase-3.
The relative expression of caspase-3 protein (/β-actin) in
the skin tissue of cGVHD mice significantly increased to
7.17 on the 96th day after transplantation, which was much
higher than 4.36 in the hydrogen group, suggesting that

molecular hydrogen significantly reduced the relative
expression of apoptotic protein, which indicated that hydro-
gen has antiapoptotic ability by reducing the expression of
caspase-3 protein (Figure 6).

4. Discussion

To our knowledge, this is the first study that proved oral sat-
urated hydrogen-rich water has therapeutic effects on
cGVHD in mice with scleroderma. It was confirmed that it
exerted therapeutic effects by antioxidation and antiapopto-
sis. We demonstrated that hydrogen reduced the expression
levels of HO-1 and NQO1 proteins in the cGVHD mice. We
consider that hydrogen may neutralize oxygen free radicals
and reduce the increased levels of HO-1 and NQO1 proteins
caused by reactive oxygen species.

In our study, oral saturated hydrogen-rich water
increased the 30-day survival rate of cGVHD mice by nearly
30%. The increase in the survival rate illustrated that
hydrogen-rich water has therapeutic effects on mouse
cGVHD as a whole. In addition, in this cGVHD animal
model, we observed that oral hydrogen-rich water signifi-
cantly improved the clinical symptoms of cGVHD in mice
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Figure 3: The skin pathological HE staining score of chronic GVHD mice in the hydrogen group was significantly lower than that in the
nonhydrogen group (p < 0:01).
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and improved the skin pathology of mice. Fibrosis has been
proven playing an important role in the development of
cGVHD disease [19]. Fibrosis leads to organ failure in
patients with cGVHD, including scleroderma, bronchitis

obliterans, and liver cirrhosis. Our research found that
hydrogen-rich water mitigated the degree of skin fibrosis in
cGVHD mice and improved the clincial symptoms of sclero-
derma in cGVHD mice. Formation of fibrosis often requires
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Figure 4: The skin pathological Masson staining fibrosis score of chronic GVHD mice in the hydrogen group was significantly lower than
that in the nonhydrogen group (p < 0:05).
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Figure 5: The relative expression level of HO-1 protein in the skin tissue of chronic GVHD mice in the hydrogen group was significantly
lower than that in the nonhydrogen group (Figure 5(a), p < 0:05). The relative expression level of NQO1 protein in the skin tissue of chronic
GVHD mice in the hydrogen group was significantly lower than that in the nonhydrogen group (Figure 5(b), p < 0:05).
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a relatively long-term process. Long-term oral hydrogen-
rich water has no obvious toxic and side effects, making it
can be used in a long-term. This feature is adapted to the
long-term, repeated, and prolonged disease characteristics
of cGVHD, which makes hydrogen-rich water very suitable
for cGVHD. Previously, we have demonstrated that the sur-
vival rate of another cGVHD mice model was increased by
intraperitoneally injecting hydrogen-rich saline, and the
pathological changes in skin was also improved [27]. In this
study, we used oral hydrogen-rich water, which is more con-
venient than hydrogen-rich saline for injection and inhala-
tion of hydrogen gas.

HO-1 and NQO1 are two important antioxidant
enzymes. HO-1 mainly catalyzes and decomposes heme into
ferrous iron, carbon monoxide, and biliverdin and prevents
the prooxidation effect of heme. Its byproduct bilirubin
and reduced bilirubin exert effective antioxidative ability by
scavenging free radicals [33, 34]. The expression level of
HO-1 is significantly positively correlated with the levels of
ROS. When the ROS levels in the body increased by various
pathological conditions like hypoxia and acidosis, HO-1
would rise rapidly, playing a cytoprotective role in the body
[34], which promoted heme catabolism and prevents induc-
tion of programmed cell death [35]. NQO1 is a cell-
protecting antioxidant enzyme that exerts antioxidant effects
from many aspects. NQO1 catalyzed quinone to hydroqui-
none, promoting the excretion of quinone. It also reduced
quinones, quinoneimines, nitroaromatics, and azo dyes,
thereby reducing the redox cycle to produce ROS, prevent-
ing oxidative damage [36]. Wefers et al. first confirmed that
NQO1 has a direct antioxidant effect [37]. It was confirmed

that NQO1 relies on the two-electron reduction mechanism,
preventing quinone from participating in the oxidation cycle
and generating active oxygen. As oxidative stress events
occur in the body, NQO1 will also increase and play a pro-
tective role. Previously, we have confirmed that hydrogen
regulated the levels of antioxidant enzymes superoxide dis-
mutase (SOD), glutathione (GSH), and lipid oxidation prod-
uct malondialdehyde (MDA) in the peripheral blood of mice
injured by irradiation [22], exerting its radioprotective
effects. In the current study, we found that in the skin tissues
of mice, the expression levels of HO-1 and NQO1 proteins
in the hydrogen group were significantly lower than those
in the nonhydrogen cGVHD group. Many studies have con-
firmed that molecular hydrogen can directly react with oxy-
gen free radicals such as hydroxyl radicals, thereby reducing
oxidative damage [13, 19]. We believed that molecular
hydrogen may reduce the oxidative stress level in cGVHD
mice, thereby reducing the expression levels of HO-1 and
NQO1 proteins in cGVHD mice.

Caspase-3 is one of the executioner caspases in apopto-
sis. It plays a vital role in cell apoptosis. It is responsible
for cleaving most of the currently known apoptosis-
related substrates. At the terminal of apoptosis, it is
responsible for decomposing structural and regulatory pro-
teins that shut down cell functions [38]. Chronic GVHD
leads to apoptosis of tissue cells, resulting in a series of
clinical manifestations. Our research found that the level
of apoptosis protein caspase-3 in the molecular hydrogen
group was significantly reduced. At present, we still con-
sider molecular hydrogen exerting its antiapoptotic effect
through antioxidation.
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Figure 6: The relative expression level of caspase-3 protein in the skin tissue of chronic GVHDmice in the hydrogen group was significantly
lower than that in the nonhydrogen group (p < 0:05).
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This research supplied novel ideas that were for treating
cGVHD and has potential clinical application prospects,
mainly due to the following points: first, H2 is nontoxic side
effects and no residue in the body [39], which is adapted for
the long-term, repeated, and prolonged disease characteris-
tics of cGVHD. Second, hydrogen molecules have great pen-
etrating ability because they are very small. They can quickly
penetrate biological membranes and reach high concentra-
tion in cells to exert therapeutic effects [13]. Third, the price
of H2 is low and easy to get. Although the current study con-
firmed that oral hydrogen-rich water has therapeutic effects
on cGVHD and attempted to explain its mechanism, this
research was limited confirming its therapeutic effect in a
scleroderma cGVHD model. Chronic GVHD often involves
multiple organs, including lungs, eyes, joints, gastrointesti-
nal tract, and liver. As for whether hydrogen has therapeutic
effects on cGVHD with other organs, it still needs to be fur-
ther explored. Current studies on H2 have so far been mostly
limited to animal or clinical observational researches. Cur-
rent clear mechanism is its ability of scavenging free radicals.
Its antiapoptotic and antifibrosis effects still mainly
depended on its ability of scavenging free radicals. As for
whether hydrogen gas is a signal molecule, the regulation
of HO-1, NQO1, and caspase-3 protein expression levels
through signal pathways still needs further research to
confirm.

With the increasing incidence of cGVHD, it has become
one of the most difficult complications of allo-HSCT [2]. In
view of the major drawbacks of current treatments, a better
therapy method is in urgent need for cGVHD. This study
demonstrated therapeutic effects of oral administration of
hydrogen-rich water on a scleroderma cGVHD mouse
model. As to whether H2 has therapeutic effects on cGVHD
through other mechanisms, further research is still needed.
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Objective. To explore the efficacy of antioxidative stress therapy on oxidative stress levels in rheumatoid arthritis (RA) by a
systematic review and meta-analysis of randomized controlled trials. Methods. Chinese and English databases such as PubMed,
Embase, China National Knowledge Infrastructure (CNKI), and China Biomedical Literature were searched, mainly searching
for clinical randomized controlled trials of antioxidant therapy for rheumatoid arthritis. The search time is from the
establishment of the database to July 2021. Two researchers independently carried out literature search, screening, and data
extraction. The bias risk tool provided by the Cochrane Collaboration was used to evaluate the bias risk of all the included
literature, and the RevMan 5.3 software was used for meta-analysis. Results. A total of 24 RCTs (28 records) and 1277
participants were included. The time span of randomized controlled trials (RCTs) is from 1986 to 2020. These RCTs involve
14 types of antioxidants or antioxidant therapies, and these therapies have varying degrees of improvement on oxidative stress
in RA patients. The summary results showed that the MDA in the experiment group is lower (SMD -0.82, 95% CI -1.35 to
-0.28, P = 0:003). The difference of TAC, SOD, NO, GPx, CAT, and GSH between two groups was of no statistical significance
(TAC (SMD 0.27, 95% CI -0.21 to 0.75, P = 0:27), SOD (SMD 0.12, 95% CI -0.16 to 0.40, P = 0:41), NO (SMD -2.03, 95% CI
-4.22 to 0.16, P = 0:07), GPx (SMD 0.24, 95% CI -0.07 to 0.54, P = 0:13), CAT (SMD 2.95, 95% CI -2.6 to 8.51, P = 0:30), and
GSH (SMD 2.46, 95% CI -0.06 to 4.98, P = 0:06)). For adverse events, the summary results showed that the difference was of
no statistical significance (RR 1.16, 95% CI 0.79 to 1.71, P = 0:45). In addition, antioxidant therapy has also shown
improvement in clinical efficacy indexes (number of tender joints, number of swollen joints, DAS28, VAS, and HAQ) and
inflammation indexes (ESR, CRP, TNF-α, and IL6) for RA patients. Conclusion. The existing evidence shows potential benefits,
mainly in reducing MDA and increasing TAC and GSH in some subgroups. However, more large samples and higher quality
RCTs are needed to provide high-quality evidence, so as to provide more clinical reference information for the antioxidant
treatment of RA.

1. Introduction

Rheumatoid arthritis (RA) is a chronic systemic autoimmune
disease of unknown etiology [1]. In the United States, RA
affects more than 1.3 million adults, accounting for 0.6%–
1% of the population [1, 2]. Epidemiological research shows

that the prevalence of rheumatoid arthritis in China is
0.2%~0.36%, which has increased from 5.8 million cases in
2015 to 5.9 million cases in 2019, and the 3-year disability
rate has reached 70%; it has become a serious public health
problem [3, 4]. The clinical manifestation of RA is mainly a
chronic inflammatory (nonsuppurative inflammation)
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disease of peripheral multiple joints. It may be accompanied
by extra-articular systemic damage (causing subcutaneous
nodules, pericarditis, myocarditis, pulmonary fibrosis, pleu-
risy, splenomegaly, renal amyloidosis, peripheral neuritis,
arteritis, etc.) [5]. The pathological features of RA are mainly
manifested as synovitis of the joints (which can later spread
to articular cartilage, bone tissue, joint ligaments, and ten-
dons), followed by extensive inflammation of connective tis-
sues such as serosa, heart, lung, and eyes [5, 6]. When the
disease involves cartilage and bone, joint deformities may
occur, that is, synovial inflammation, exudation, cell prolifer-
ation, granuloma formation, cartilage and bone tissue
destruction, and finally joint stiffness and dysfunction [6].
The cartilage destruction of joints is related to the abnormal
expression of cytokines, and the imbalance between protec-
tive cytokines and destructive cytokines is the basis of RA
pathology [7]. In addition, inflammatory chemokines and
immune-inflammatory cells jointly promote the exacerba-
tion of the pathological process of RA [8].

Current research shows that in addition to inflammation
[9], oxidative stress products also play an important role in
the pathogenesis and pathological progress of RA [10]. Oxi-
dative stress can produce too many free radicals, which will
cause the oxidation of many molecules in the body. Exces-
sive free radicals in the body of RA patients increase the level
of the oxidation marker malondialdehyde (MDA), and the
antioxidant enzyme superoxide dismutase (SOD) system is
disturbed, which leads to the weakening of the body’s anti-
oxidant capacity and aggravating bone destruction [11–14].
In addition, oxidative stress is closely related to the energy
metabolism of synovial tissue in RA patients [15]. Therefore,
research on oxidative stress, SOD antioxidation, and regula-
tion relationship in patients with RA can reveal the patho-
logical mechanism of RA and find new anti-RA drugs. At
present, many randomized controlled trials (RCTs) of anti-
oxidants [16–20] in the treatment of RA patients have been
published. However, the results and interventions of these
RCTs are diverse, and the quality of the evidence provided
varies, which cannot provide clinical doctors with evidence
to formulate treatment measures against oxidative stress.
Therefore, it is urgent to conduct a comprehensive and in-
depth systematic review and meta-analysis of these RCTs
for the treatment of RA against oxidative stress. Therefore,
this study will conduct a comprehensive systematic review
and meta-analysis of RCTs for the treatment of RA against
oxidative stress for the first time, in order to provide clini-
cians with high-quality evidence and promote the clinical
practice of antioxidant treatment of RA in the future and
to further improve the adjuvant therapy for RA patients.

2. Why Is This Systematic Review Important?

Oxidative stress plays a central role in the pathogenesis of
RA. At present, evidence of clinical randomized controlled
trials surrounding oxidative stress interventions has been
reported one after another. However, the results and inter-
ventions of these RCTs are diverse, and the quality of the
evidence provided is not uniform, and the levels are not uni-
form, which cannot provide clinical doctors and patients

with evidence and treatment measures for the pathological
mechanism of oxidative stress. Therefore, it is urgent to con-
duct a comprehensive and in-depth systematic review and
meta-analysis of these RCTs for antioxidative stress treat-
ment, in order to provide clinicians with high-quality evi-
dence in the future, promote the clinical practice of RA
treatment, and further improve the adjuvant treatment mea-
sures of RA.

3. Materials and Methods

3.1. Protocol. This systematic review and meta-analysis was
conducted strictly in accordance with the protocol registered
in PROSPERO (CRD42021256587) and PRISMA guidelines
(see Supplementary Materials (available here)) [21].

3.2. Literature Search Strategy. English databases and Chi-
nese databases were searched with the retrieval time up to
July 2021. English databases include PubMed, Embase,
MEDLINE Complete, Web of Science, and Cochrane
Library. Chinese databases include Wanfang Database on
Academic Institutions in China, China National Knowledge
Infrastructure (CNKI), VIP Database for Chinese Technical
Periodicals, and China Biology Medicine (CBM). This study
also searched the Cochrane Library and ClinicalTrials.gov.
The search strategy of PubMed and Embase is shown in
Table S1 as an example.

3.3. Inclusion and Exclusion Criteria

3.3.1. Participants. Participants are RA patients. The diagno-
sis of RA conforms to the RA diagnostic criteria in the 2010
Rheumatoid Arthritis Diagnostic and Treatment Guidelines
of the Chinese Medical Association Rheumatology Branch
or the standard RA diagnostic criteria proposed by the
American Academy of Rheumatology in 1987/European
Rheumatism League in 2017 or other recognized diagnostic
criteria for RA.

3.3.2. Intervention. The treatment of the experimental group
is antioxidative stress therapy with no limitations to forms,
preparations, and so on; the therapy could be combined with
conventional therapy or the therapy in the control group.
The treatment of the control group was conventional ther-
apy or placebo or other nonantioxidative stress therapies.

3.3.3. Outcomes. The outcomes were clinical efficacy indexes,
inflammation indexes, adverse events, and oxidative stress-
related indicators. Clinical efficacy indexes include the num-
ber of tender joints, number of swollen joints, 28-joint dis-
ease activity score (DAS28), Health Assessment
Questionnaire (HAQ), and Visual Analog Scale (VAS);
inflammation indexes include erythrocyte sedimentation
rate (ESR), C-reactive protein (CRP), tumor necrosis factor-
(TNF-) α, and Interleukin- (IL-) 6; oxidative stress-related
indicators include malondialdehyde (MDA), glutathione
(GSH), Catalase (CAT), glutathione peroxidase (GPx), nitric
oxide (NO), superoxide dismutase (SOD), and total antioxi-
dant capacity (TAC).
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3.3.4. Study Design. The study design includes randomized
controlled trials (RCTs), with no limitations to publication
time, language, quality, and publication status.

3.3.5. Exclusion Criteria. Exclusion criteria include non-
RCT, review, cohort study, and patients with other rheuma-
tism (such as systemic lupus erythematosus and Sjogren’s
syndrome).

3.4. Literature Screening and Risk of Bias Assessment. The
two researchers jointly formulate a literature search strategy,
independently collect literature, read literature titles and
abstracts, and conduct preliminary screening. Then, the
two researchers read the full text of the selected literature
and finally determined the literature that met the inclusion
criteria. The Cochrane Risk Bias Assessment Form is used
to systematically evaluate the quality of the included litera-
ture. If opinions are inconsistent, they are resolved through
discussion. The content of the risk assessment of bias
includes [22] (1) random allocation method, (2) allocation
plan hiding, (3) blind method, (4) completeness of result
data, (5) selective reporting of research results, and (6) other
sources of bias.

3.5. Data Extraction. The two researchers independently
extracted data from the included literature, filled in the data
extraction form, and cross-checked. The extracted content
includes general information of the literature (such as
author, sample size, patient’s age, intervention time, and fre-
quency) and related efficacy evaluation indicators [23].

3.6. Statistical Analysis. The Review Manager 5.3 software
was used for statistical analysis. Subgroup analysis was car-
ried out according to the intervention measures of RCTs.
A heterogeneity test was performed on the included litera-
ture. If I2 > 50% and P < 0:1, it is considered that there is a
large heterogeneity, and the source of the heterogeneity is
analyzed. If I2 < 50% and P > 0:1, the heterogeneity is con-
sidered low (i.e., RCTs are homogeneous). The random
effect model was used for analysis. For continuous variables,
if the indicator units or measurement methods were differ-
ent, or the value differs by more than 10 times, standardized
mean difference (SMD) and 95% confidence interval (CI)
would be used as the effect size indicator; for indicators with
the same unit, weighted mean difference (WMD) and 95%
confidence interval (CI) were used as the effect size indica-
tor. For dichotomous variables, the risk ratio (RR) and
95% CI were used as the effect size indicator [23]. The pub-
lication bias was detected by STATA 15 with the Egger
method (continuous variable) for outcomes with more than
5 RCTs. P > 0:1 is considered to have no publication bias.

4. Results

4.1. Results of the Search. The total records identified
through database searching and other sources were 1984.
According to the search strategy, a total of 29 articles were
obtained through preliminary search. By eliminating dupli-
cate documents and carefully reading the title and abstract,
a total of 1955 articles were excluded. After carefully reading

the full text and comparing the selection criteria, 28 records
were screened out and finally included (Figure 1).

4.2. Description of Included Trials. Among the 28 records, 2
records [19, 20] belong to Abdollahzad et al. 2015, 2 records
[24, 25] belong to Javadi et al. 2017 [24, 25], 2 records [26,
27] belong to Moosavian et al. 2020, and 2 records [28, 29]
belong to Mirtaheri et al. 2015; therefore, a total of 24 RCTs
and 1277 participants (most of them are female) were
included. The time span of RCTs is from 1986 to 2020.
Among those RCTs, 3 RCTs utilized N-acetylcysteine
[16–18]; 2 RCTs utilized CoQ10 [19, 20, 30, 31]; 2 RCTs uti-
lized probiotic [31, 32]; Ghavipour et al. 2016 utilized pome-
granate extract [33]; 2 RCTs utilized quercetin [24, 25, 34];
Khojah et al. 2018 utilized resveratrol [35]; Moosavian
et al. 2020 utilized garlic tablets [26, 27]; Aryaeian et al.
2009 [36] utilized conjugated linoleic acids, conjugated lino-
leic acids plus vitamin E, and vitamin E; 3 RCTs utilized
vitamin E [36–38]; 4 RCTs utilized selenium [39–42]; Kara-
gülle et al. 2017 utilized spa therapy [43]; Jaswal et al. 2003
utilized vitamins A, E, and C combination [44]; León Fer-
nández et al. 2016 utilized ozone [45]; Ishibashi et al. 2014
utilized H2-saline [46]; and 2 RCTs utilized alpha-lipoic acid
[28, 29, 34]. Among those RCTs, 7 RCTs were registered
clinical trials. Two RCTs were from Belgium; 2 RCTs were
from China; 2 RCTs were from Germany; 8 RCTs were from
Iran; Bae et al. 2009 was from Korea; Khojah et al. 2018 was
from Egypt; Edmonds et al. 1997 was from the UK; Tarp
et al. 1986 was from Denmark; Karagülle et al. 2017 was
from Turkey; Jaswal et al. 2003 was from India; León Fer-
nández et al. 2016 was from Cuba; and Ishibashi et al.
2014 was from Japan. Bae et al. 2009 [34] contains two inter-
vention methods, so they were divided into Bae et al. 2009a
and Bae et al. 2009b. Aryaeian et al. 2009 [36] has 3 inter-
vention methods, so they were divided into Aryaeian et al.
2009a, Aryaeian et al. 2009b, and Aryaeian et al. 2009c.
The details of study characteristics are presented in Table 1.

4.3. Risk of Bias Assessment. The RCTs were assessed by “risk
of bias” assessment tools. The summary and graph of risk of
bias are shown in Figures 2 and 3.

4.3.1. Random Sequence Generation and Allocation
Concealment. Thirteen (13) RCTs describe random sequence
generation methods [16, 17, 19, 20, 24–33, 36, 43, 45] and
were rated as low risk of bias. The other RCTs do not
describe random sequence generation methods and were
rated as unclear risk of bias. Fourteen RCTs [18–20, 34–42,
44–46] did not describe allocation concealment methods
and were assessed as unclear risk of bias.

4.3.2. Blinding, Incomplete Outcome Data, and Selective
Reporting. Only 6 RCTs [16, 17, 26, 27, 31–33] describe
the implementation process of the blind method and were
rated as low risk of bias. Four RCTs [18, 24, 25, 44, 46] did
not describe the implementation process of blinding, and
the indicators of this study are biochemical indicators (such
as MDA); they are assessed as low risk of bias. Twelve (12)
RCTs [20, 28, 29, 34, 36–43, 45] claimed to use blinding
but did not describe the implementation process of blinding
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and included subjective indicators (such as DAS28 and
VAS), so they were assessed as unclear risk of bias. Two
RCTs [30, 35] did not utilize blinding, and the indicators
of this study are subjective indicators (such as VAS and
DAS28); they are assessed as high risk of bias. Six RCTs
[16, 17, 28, 29, 31, 33, 34] have missing data, and the number
of missing is unbalanced, but no appropriate statistical treat-
ment method is specified, and the risk of bias is estimated to
be unclear.

4.4. Other Potential Bias. Other sources of bias were not
observed in 24 RCTs; therefore, the risks of other bias of
the RCTs were low.

4.5. Outcomes

(1) Oxidative Stress Index and Adverse Events. A total of
11 RCTs reported MDA; the summary results
showed that the MDA in the experiment group is
lower (SMD -0.82, 95% CI -1.35 to -0.27, P = 0:003;
random effect model) (Figure 4). Eight RCTs
reported TAC; the summary results showed that

the difference was of no statistical significance
(SMD 0.27, 95% CI -0.21 to 0.75, P = 0:27; random
effect model) (Figure 5). Four RCTs reported SOD;
the summary results showed that the difference was
of no statistical significance (SMD 0.12, 95% CI
-0.16 to 0.40, P = 0:41; random effect model)
(Figure 6). Three RCTs reported NO; the summary
results showed that the difference was of no statisti-
cal significance (SMD -2.03, 95% CI -4.22 to 0.16,
P = 0:07; random effect model) (Figure 7). Three
RCTs reported GPx; the summary results showed
that the difference was of no statistical significance
(SMD 0.24, 95% CI -0.07 to 0.54, P = 0:13; random
effect model) (Figure 8). Two RCTs reported CAT;
the summary results showed that the difference was
of no statistical significance (SMD 2.95, 95% CI
-2.6 to 8.51, P = 0:30; random effect model)
(Figure 9). Three RCTs reported GSH; the summary
results showed that the difference was of no statisti-
cal significance (SMD 2.46, 95% CI -0.06 to 4.98, P
= 0:06; random effect model) (Figure 10). Five RCTs
reported adverse events; Abdollahzad et al. 2015

databases searching
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language databases searching
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Records after duplicates removed
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Full-text articles assessed
for eligibility
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Studies included in
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qualitaive synthesis

(meta-analysis)
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Figure 1: Flow diagram.
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showed that no obvious adverse events were seen in
the two groups. The summary results showed that
the difference was of no statistical significance (RR
1.16, 95% CI 0.79 to 1.71, P = 0:45; random effect
model).

(2) Clinical Efficacy Indexes. Nine RCTs reported the
number of swollen joints; the summary results
showed that the number of swollen joints in the exper-
iment group is lower (WMD -1.15, 95% CI -1.82 to
-0.47, P = 0:0008; random effect model) (Figure 12).
Seven RCTs reported the number of tender joints;
the summary results showed that the number of ten-
der joints in the experiments group is lower (WMD
-2.50, 95% CI -3.12 to -1.89, P < 0:00001; random
effect model) (Figure 13). Eleven RCTs reported the
DAS28; the summary results showed that the DAS28
in the experiment group is lower (WMD -1.02, 95%
CI -1.37 to -0.68, P < 0:00001; random effect model)
(Figure 14). Nine RCTs reported the VAS; the sum-
mary results showed that the VAS in the experiment
group is lower (SMD -0.66, 95% CI -1.02 to -0.31, P
= 0:0003; random effect model) (Figure 15). Nine
RCTs reported theHAQ; the summary results showed
that the HAQ in the experiment group is lower (SMD
-0.74, 95% CI -0.97 to -0.50, P < 0:00001; random
effect model) (Figure 16).

(3) Inflammation Indexes. Thirteen RCTs reported the
ESR; the summary results showed that the ESR in
the experiment group is lower (WMD -7.89, 95%
CI -12.21 to -3.58, P = 0:0003; random effect model)
(Figure 17). Eleven RCTs reported the CRP; the
summary results showed that the CRP in the exper-
iments group is lower (WMD -1.06, 95% CI -1.83 to
-0.29, P = 0:007; random effect model) (Figure 18).
Six RCTs reported the TNF-α; the summary results
showed that the TNF-α in the experiment group is
lower (SMD -0.49, 95% CI -0.89 to -0.09, P = 0:02;
random effect model) (Figure 19). Four RCTs
reported IL6; the summary results showed that the
difference was of no statistical significance (SMD
-0.32, 95% CI -1.28 to 0.63, P = 0:51; random effect
model) (Figure 20).

4.5.1. N-acetylcysteine. Three RCTs utilized to N-
acetylcysteine treat RA. Hashemi et al. 2019 assessed the
CRP, ESR, TNF-α, IL6, MDA, TAC, and NO. Batooei et al.
2018 assessed the DAS28, ESR, number of tender joints,
number of swollen joints, HAQ, VAS, and adverse events.
Yin et al. 2017 did not report any outcomes related to oxida-
tive stress. The summary results of ESR showed that there
was no statistically significant difference between the two
groups after N-acetylcysteine intervention (WMD -0.87,
95% CI -2.85 to 1.12, P = 0:39) (Figure 17).

Hashemi et al. 2019 showed that the MDA and NO in
the experiment group were lower (MDA (SMD -0.75, 95%
CI -1.38 to -0.12, P = 0:02); NO (SMD -0.65, 95% CI -1.27
to -0.02, P = 0:04)) (Figures 4 and 7), while the IL6 in the
experimental group was higher (SMD -0.05, 95% CI -0.66
to 0.56, P = 0:01) (Figure 20). The TAC, CRP, and TNF-α
in Hashemi et al. 2019 between two groups were of no statis-
tical significance (TAC (SMD -0.05, 95% CI -0.66 to 0.56,
P = 0:87), CRP (WMD -0.20, 95% CI -0.91 to 0.51, P =
0:58), and TNF-α (SMD -0.28, 95% CI -0.89 to 0.33, P =
0:37)) (Figures 5, 18, and 19).

Batooei et al. showed that the adverse events, number of
tender joints, number of swollen joints, and DAS28
between two groups were of no statistical significance
(adverse events (RR 1.33, 95% CI 0.24 to 7.32, P = 0:74),
number of swollen joints (WMD -0.80, 95% CI -3.67 to
2.07, P = 0:59), number of tender joints (WMD -0.70,
95% CI -4.35 to 2.95, P = 0:71), and DAS28 (WMD -0.35,
95% CI -1.10 to 0.40, P = 0:36)) (Figures 11–16). The
HAQ and VAS in Batooei et al. were lower (VAS (SMD
-1.15, 95% CI -1.75 to -0.55, P = 0:0002); HAQ (SMD -0.85,
95% CI -1.42 to -0.27, P = 0:004)) (Figures 18 and 19).

Abdollahzad et al. 2015 reported the effect of N-
acetylcysteine combined with pulmonary rehabilitation
exercise treatment on lung function in patients with RA-
related interstitial lung disease; they found that N-
acetylcysteine combined with pulmonary rehabilitation
exercise therapy has a significant effect.

4.5.2. Coenzyme Q10. Three RCTs utilized coenzyme Q10 to
treat RA. Abdollahzad et al. 2015 assessed the MDA, TAC,
DAS28, number of tender joints, number of swollen joints,
ESR, TNF-α, IL6, VAS, and adverse events. Zhu et al. 2020

Random sequence generation (selection bias)
Allocation concealment (selection bias)

Blinding of participants and personnel (performance bias)
Blinding of outcome assessment (detection bias)

Incomplete outcome data (attrition bias)
Selective reporting (reporting bias)

Other biases

0% 25% 50% 75% 100%

Yes (low risk)
Unclear
No (high risk)

Figure 2: Risk of bias graph.
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assessed the MDA, TAC, CRP, ESR, TNF-α, and IL6. The
summary results in the CoQ10 subgroup showed that the
MDA and ESR in CoQ10 groups were lower (MDA (SMD
-0.71, 95% CI -1.06 to -0.36, P < 0:0001); ESR (WMD
-14.27, 95% CI -19.41 to -9.13, P < 0:00001)) (Figures 4

and 17), while the difference of TAC between two groups
was of no statistical significance (SMD -0.19, 95% CI -0.53
to 0.15, P = 0:43) (Figure 5). For TNF-α and IL6, the data
representation of Abdollahzad et al. 2015 is median (inter-
quartile range); hence, it cannot be merged with Zhu et al.
2020. However, both groups showed that after CoQ10
intervention, compared with the control group, the TNF-
α in the experimental group decreased (P < 0:05). Mean-
while, Zhu et al. 2020 showed that compared with the
control group, the IL6 in the experimental group
decreased (P < 0:01) (Figure 20), while Abdollahzad et al.
2015 showed that there was no statistical difference
between the two groups (P > 0:05).

Abdollahzad et al. 2015 showed that the DAS28 and
VAS in experiments group were lower (DAS28 (WMD
-1.70, 95% CI -2.34 to -1.06, P < 0:00001); VAS (SMD
-2.29, 95% CI -3.06 to -1.51, P < 0:00001)) (Figures 14 and
15). It also showed that no obvious adverse events were seen
in the two groups. Zhu et al. 2020 showed that the CRP in
the experiment group was lower (WMD -3.92, 95% CI
-6.51 to 1.33, P = 0:003). The data representation of the
number of swollen joints and number of tender joints in
Abdollahzad et al. 2015 is median (interquartile range),
and the results showed that compared with the control
group, the number of swollen joints and number of tender
joints in the experimental group decreased.

4.5.3. Probiotics. Two RCTs utilized probiotics to treat RA.
Vaghef-Mehrabany et al. 2016 assessed the MDA, SOD,
GPx, CAT, and TAC. Zamani et al. 2017 assessed the
TAC, GSH, MDA, CRP, DAS28, and VAS. The summary
results in the probiotic subgroup showed that the MDA in
the probiotic groups was lower (SMD -0.71, 95% CI -1.06
to -0.36, P < 0:001) (Figure 4), while the difference of TAC
between two groups was of no statistical significance (SMD
-0.19, 95% CI -0.53 to 0.15, P = 0:27) (Figure 5).

Vaghef-Mehrabany et al. 2016 showed that the differ-
ence of SOD, GPx, and CAT between two groups was of
no statistical significance (SOD (SMD -0.10, 95% CI -0.68
to 0.48, P = 0:73), GPx (SMD -0.00, 95% CI -0.58 to 0.57,
P = 0:99), and CAT (SMD -0.14, 95% CI -0.43 to 0.72, P =
0:62)) (Figures 6, 8, and 9).

Zamani et al. 2017 showed that the difference of GSH
and VAS between two groups was of no statistical signifi-
cance (GSH (SMD 0.29, 95% CI -0.20 to 0.78, P = 0:25);
VAS (SMD -0.40, 95% CI –0.94 to 0.14, P = 0:15))
(Figures 10 and 15). It also showed that after probiotic inter-
vention, compared with the control group, the DAS28 and
CRP in the experimental group decreased (DAS28 (WMD
-0.60, 95% CI -1.09 to -0.11, P = 0:02); CRP (WMD -3.86,
95% CI -6.63 to -1.09, P = 0:006)) (Figures 14 and 18).

4.5.4. Pomegranate Extract. Only one RCT utilized pome-
granate extract to treat RA. Ghavipour et al. 2016 assessed
the DAS28, HAQ, ESR, CRP, number of tender joints, num-
ber of swollen joints, MDA, and GPx. The summary results
in the pomegranate extract subgroup showed that the MDA
in the pomegranate extract groups was higher (SMD 0.56,
95% CI 0.02 to 1.10, P = 0:04) (Figure 4), while the difference
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Figure 3: Risk of bias summary.
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of GPx, HAQ, and CRP between two groups was of no sta-
tistical significance (GPx (SMD 0.54, 95% CI 0.00 to 1.08,
P = 0:05), HAQ (SMD -0.52, 95% CI -1.06 to 0.02, P = 0:06
), and CRP (WMD 0.20, 95% CI -2.19 to 2.59, P = 0:87))
(Figures 8, 16, and 18). It also showed that the number of
swollen joints, number of tender joints, DAS28, and ESR
were lower (number of swollen joints (WMD -1.38, 95%
CI -3.67 to –0.01, P = 0:05), number of tender joints
(WMD -4.20, 95% CI -6.82 to -1.58, P = 0:002), DAS28
(WMD -0.80, 95% CI -1.41 to -0.19, P = 0:010), and ESR
(WMD -9.40, 95% CI -17.73 to -1.07, P = 0:003))
(Figures 12–14 and 17).

4.5.5. Quercetin. Two RCTs utilized quercetin to treat RA.
Javadi et al. 2017 assessed the DAS28, HAQ, ESR, CRP,
TNF-α, number of tender joints, number of swollen joints,
VAS, MDA, and TAC. Bae et al. 2009 reported CRP, TNF-
α, and IL6.

Javadi et al. 2017 showed that MDA, VAS, and HAQ in
the quercetin groups were lower (MDA (SMD -0.89, 95% CI
-1.54 to -0.24, P = 0:008), VAS (SMD -0.83, 95% CI -1.48 to
-0.18, P = 0:01), and HAQ (SMD -0. 92, 95% CI -1.58 to
-0.27, P = 0:006)) (Figures 4, 15, and 16), while the difference
of TAC, DAS28, ESR, and CRP between two groups was of
no statistical significance (TAC (SMD -0.25, 95% CI -0.87

67
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to 0.38, P = 0:44), DAS28 (WMD -0.46, 95% CI -1.17 to
0.25, P = 0:20), ESR (WMD -5.10, 95% CI –13.86 to 3.66,
P = 0:25), and CRP (WMD -0.51, 95% CI -1.98 to 0.96, P
= 0:50)) (Figures 5, 14, 17, and 18). The data representation
of the TNF-α, number of tender joints, and number of swol-
len joints in Javadi et al. 2017 is median (interquartile
range), and the results showed that compared with the con-
trol group, the TNF-α in the experimental group decreased
(P < 0:05); meanwhile, the difference of the number of ten-
der joints and number of swollen joints between the experi-
mental group and the placebo group was of no statistical
significance (P > 0:05).

Bae et al. 2009 showed that the difference of TNF-α and
IL6 between two groups was of no statistical significance
(TNF-α (SMD -0.07, 95% CI -1.26 to 1.12, P = 0:91); IL6
(SMD -0.09, 95% CI -1.27 to 1.10, P = 0:89)) (Figures 19
and 20). The data representation of the CRP is median
(interquartile range), and the results showed that the differ-
ence of CRP between the experimental group and the pla-
cebo group was of no statistical significance (P > 0:05).

4.5.6. Resveratrol. Only one RCT utilized resveratrol to treat
RA, and it reported number of tender joints, number of

swollen joints, DAS28, CRP, ESR, TNF-α, and IL6. The
RCT evaluated 100 patients with RA. The control group
used traditional RA therapy, while the test group was treated
with 1 g resveratrol on the basis of traditional therapy. The
treatment lasted 3 months. The study showed that the
number of swollen and tender joints and the DAS28 in the
resveratrol group were significantly reduced (P < 0:05)
(Figures 12–14), and CRP, ESR, TNF-α, and IL6 were also
reduced (P < 0:05) (Figures 17–20).

4.5.7. Garlic Tablets. Only one RCT utilized garlic tablets to
treat RA. Moosavian et al. 2020 assessed the HAQ, VAS,
CRP, ESR, TNF-α, number of tender joints, number of swol-
len joints, MDA, and TAC. The summary results showed
that the MDA in the experiment groups was lower (SMD
-0.62, 95% CI -1.13 to -0.11, P = 0:008) (Figure 4), while
the TAC in the experiment groups was higher (SMD 2.01,
95% CI 1.39 to 2.63, P < 0:00001) (Figure 5). It also showed
that the difference of number of tender and swollen joints,
ESR, and CRP between two groups was of no statistical
significance (P > 0:05) (Figures 12, 13, 17, and 18), while
the HAQ, VAS, and TNF-α in the experimental group were
lower (P < 0:05) (Figures 15, 16, and 19).
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4.5.8. Vitamin E and Conjugated Linoleic Acids. Three RCTs
utilized vitamin E to treat RA. Edmonds et al. 1997 reported
adverse events; Wittenborg et al. 1998 reported VAS and
adverse events; Aryaeian et al. 2009 reported VAS, ESR,
CRP, DAS28, number of tender joints, and number of swol-
len joints. The summary results showed that the difference of
adverse events and VAS between two groups was of no sta-
tistical significance (adverse events (RR 1.10, 95% CI 0.74 to

1.65, P = 0:64); VAS (SMD -0.02, 95% CI -0.04 to 0.36, P
= 0:93)) (Figures 11 and 15).

Aryaeian et al. 2009 uses vitamin E alone and in combi-
nation with conjugated linoleic acids to intervene in RA
patients. It showed that when conjugated linoleic acids were
used alone, number of tender joints, number of swollen
joints, and DAS28 were improved (P < 0:05) (Figures 12–
14), but VAS, ESR, and CRP were not significantly improved
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(P > 0:05) (Figures 15, 17, and 18). When conjugated linoleic
acids were combined with vitamin E, number of swollen joints,
VAS, and DAS28 were improved (P < 0:05) (Figures 13–15),
but number of tender joints, ESR, and CRP were not signifi-
cantly improved (P > 0:05) (Figures 13, 17, and 18).

4.5.9. Selenium. Four RCTs utilized selenium to treat RA.
Tarp et al. 1986 reported the number of swollen joints and
ESR; Peretz et al. 1992 reported VAS and ESR; Peretz et al.
2001 reported number of swollen joints, CRP, ESR, and
VAS; Heinle et al. 1997 reported number of tender joints,
number of swollen joints, and CRP. The summary results
showed that the difference of number of swollen joints,

ESR, and CRP between the two groups was of no statistical
significance (number of swollen joints (WMD 0.04, 95% CI
-1.43 to 1.51, P = 0:96), ESR (WMD -6.69, 95% CI -14.50
to 1.11, P = 0:09), and CRP (WMD -8.84, 95% CI -17.84 to
0.16, P = 0:05)) (Figures 12, 17, and 18). The data represen-
tation of the VAS in Peretz et al. 1992 is median (interquar-
tile range), and the results showed that compared with the
control group, the VAS in the experimental group decreased
(P < 0:05). However, the difference of VAS in Peretz et al.
2001 between two groups was of no statistical significance
(P > 0:05) (Figure 15). Heinle et al. 1997 also showed that
the difference of number of tender joints between two groups
was of no statistical significance (P > 0:05) (Figure 13).
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4.5.10. Spa Therapy. Only one RCT utilized spa therapy to
treat RA. Karagülle et al. 2017 assessed the VAS, HAQ,
DAS28, number of tender joints, number of swollen joints,
MDA, SOD, and adverse events. The summary results

showed that the difference of MDA, SOD, and adverse
events between two groups was of no statistical significance
(MDA (SMD 0.44, 95% CI -0.22 to 1.11, P = 0:19), SOD
(SMD 0.28, 95% CI -0.08 to 0.95, P = 0:10), and adverse
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Figure 11: Adverse events.
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events (RR 1.16, 95% CI 0.79 to 1.71, P = 0:45)) (Figures 4, 5,
and 11). It also showed the number of swollen joints
(P < 0:05) (Figure 12), while the difference of number of ten-
der joints, DAS28, VAS, and HAQ between two groups was
of no statistical significance (P > 0:05) (Figures 13–16).

4.5.11. Vitamins A, E, and C Combination. Only one RCT
utilized vitamins A, E, and C combination to treat RA. Jas-
wal et al. 2003 assessed the MDA and GSH. The summary

results showed that the MDA in the experiment group was
lower (SMD -3.67, 95% CI -4.71 to -2.62, P < 0:00001)
(Figure 4), while the GSH in the experiment group was
higher (SMD 2.72, 95% CI 1.84 to 3.60, P < 0:00001)
(Figure 10).

4.5.12. Ozone. Only one RCT utilized ozone to treat RA.
León Fernández et al. 2016 assessed the DAS28, HAQ,
CRP, ESR, MDA, NO, GSH, SOD, and CAT. The summary
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Figure 12: Number of swollen joints.
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results showed that the MDA, NO, DAS28, HAQ, and ESR
in the experiment group were lower (SOD (SMD -2.47,
95% CI -4.71 to -2.62, P < 0:00001), NO (SMD -5.03, 95%
CI -6.09 to -3.97, P < 0:00001), DAS28 (WMD -2.00, 95%
CI -2.83 to -1.17, P < 0:00001), HAQ (SMD -1.01, 95% CI
-1.55 to -0.47, P = 0:0002), and ESR (WMD -20.00, 95% CI
-34.13 to -5.87, P = 0:006)) (Figures 4, 7, 14, 16, and 17), while
the GSH and CAT in the experiment group were higher (GSH
(SMD 4.44, 95% CI 3.48 to 5.41, P < 0:00001); CAT (SMD

5.81, 95% CI 4.62 to 7.00, P < 0:00001)) (Figures 9 and 10).
The difference of SOD and CRP was of no statistical signifi-
cance (SOD (SMD 0.44, 95% CI -0.08 to 0.95, P = 0:10);
CRP (WMD -8.00, 95% CI -16.08 to 0.08, P = 0:05))
(Figures 6 and 18).

4.5.13. H2-Saline. Only one RCT utilized H2-saline to treat
RA. Ishibashi et al. 2014 reported DAS28, CRP, TNF-α,
and IL6. Their study found that H2-saline may improve
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Figure 13: Number of tender joints.
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the clinical symptoms of RA patients (decreased DAS28)
(P < 0:05) (Figure 14), while it has no obvious improvement
effect on CRP (P > 0:05) (Figure 18). The indicators of TNF-
α and IL6 could not be extracted, but the author reported
that there was no significant change between the two com-
pared with the placebo group ðP > 0:05).

4.5.14. Alpha-Lipoic Acid. Two RCTs utilized alpha-lipoic
acid to treat RA. Mirtaheri et al. 2015 reported SOD, TAC,
GPx, TNF-α, IL6, and CRP; Bae et al. 2009 reported CRP,
TNF-α, and IL6. The summary results showed that the dif-
ference of TNF-α between two groups was of no statistical
significance (SMD 0.09, 95% CI -0.36 to 0.55, P = 0:69).

Experimental Mean Difference Mean Difference Risk of Bias
Study or subgroup

Mean SD Total Mean
Control

SD Total
Weight

IV, Random, 95% CI IV, Random, 95% CI A B C D E F G

–4 –2 0 2 4
Favours (experimental) Favours (control)

+ + + + + + +

P

+++++ ++

+ ++ + +++

++ + +???

++ + + + +?

+ +++++ ?

+ ++?? ––

++++ ? ? ?

++++ ? ? ?

++++ ? ? ?

+ + + ++ +?

+ + +++? ?

++++ +? ?

2.3.1 N-acetylcysteine
Batooei et al. 2018
Subtotal (95% CI)

Subtotal (95% CI)

Subtotal (95% CI)

Subtotal (95% CI)

Subtotal (95% CI)

Subtotal (95% CI)

Subtotal (95% CI)

Subtotal (95% CI)

Subtotal (95% CI)

Subtotal (95% CI)

Subtotal (95% CI)

Subtotal (95% CI)

Subtotal (95% CI)

Heterogeneity: Not applicable

Heterogeneity: Not applicable

Heterogeneity: Not applicable

Heterogeneity: Not applicable

Heterogeneity: Not applicable

Heterogeneity: Not applicable

Heterogeneity: Not applicable

Heterogeneity: Not applicable

Heterogeneity: Not applicable

Heterogeneity: Not applicable

Heterogeneity: Not applicable

Heterogeneity: Not applicable

Heterogeneity: Not applicable

Test for overall effect: Z = 0.91 (P = 0.36)

Test for overall effect: Z = 5.24 (P < 0.00001)

Test for overall effect: Z = 2.59 (P = 0.010)

Test for overall effect: Z = 9.93 (P < 0.00001)

Test for overall effect: Z = 3.06 (P = 0.002)

Test for overall effect: Z = 3.52 (P = 0.0004)

Test for overall effect: Z = 1.09 (P = 0.27)

Test for overall effect: Z = 0.20 (P = 0.84)

Test for overall effect: Z = 2.84 (P = 0.005)

Test for overall effect: Z = 4.72 (P < 0.00001)

Test for overall effect: Z = 3.64 (P = 0.0003)

Test for overall effect: Z = 1.27 (P = 0.20)

Test for overall effect: Z = 2.39 (P = 0.02)

2.3.2 CoQ10
Abdollahzad et al. 2015

2.3.3 Probiotic
Zamani et al. 2017

2.3.4 Pomegranate extract
Ghavipour et al. 2016

2.3.5 Quercetin
Javadi et al. 2017

2.3.6 Resveratrol
Khojah et al. 2018

2.3.7 Garlic tablets
Moosavian et al. 2020

2.3.8 Conjugated linoleic acids
Aryaein et al. 2009a

Aryaein et al. 2009a

Aryaein et al. 2009a

2.3.9 Conjugated linoleic acids+Vit E

2.3.10 Vitamin E

2.3.12 Spa therapy
Karagulle et al. 2017

2.3.14 Ozone
Leon fernandez et al. 2016

2.3.15 H2-saline
Ishibashi et al. 2014

Total (95% CI)
Heterogeneity: Tau2 = 0.27; Chi2 = 44.22, df = 12 (p < 0.0001); I2 = 73%
Test for overall effect: Z = 5.86 (P < 0.00001)
Test for subgroup differences: Chi2 = 44.22, df = 12 (p <  0.0001); I2 = 72.9%
Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(c) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)

(G) Other biases

4.35

2.34

1.2

0.68

27
27 4.7

22
22 4.04

1.5

1.36

24
24

22
22

7.4%
7.4%

8.2%
8.2%

–0.35 [–1.10, 0.40]
–0.35 [–1.10, 0.40]

–1.70 [–2.34, –1.06]
–1.70 [–2.34, –1.06]

–0.60 [–1.09, –0.11]

–0.80 [–1.41, –0.19]
–0.80 [–1.41, –0.19]

–0.65 [–1.07, –0.23]
–0.65 [–1.07, –0.23]

–0.60 [–1.09, –0.11]2.6 0.7 27
27

3.2 1.1 27
27

9.2%
9.2%

4 0.8 30
30

4.8 1.36 25
25

8.4%
8.4%

327 283 100.0% –1.02 [–1.37, –0.68]

3.74 1.22 10
10 10

10

5.2

5.1 0.9

1.64
30 30
30 30 6.8%

6.8%

6.1%
6.1%

–1.36 [–2.30, –0.42]

–2.00 [–2.83, –1.17]
–2.00 [–2.83, –1.17]

–0.10 [–1.09, –0.89]

–0.46 [–1.28, –0.36]

–0.46 [–1.17, –0.25]
–0.46 [–1.17, –0.25]

–1.49 [–2.29, –0.69]

–1.62 [–2.52, –0.72]

–1.66 [–1.99, –1.33]
–1.66 [–1.99, –1.33]

–1.62 [–2.52, –0.72]

–1.49 [–2.29, –0.69]

–0.46 [–1.28, –0.36]

–0.10 [–1.09, –0.89]

–1.36 [–2.30, –0.42]

3.2 1.64

5.24 1.32 15
15

5.34 1.75 22
22

5.8%
5.8%

7

7
7

7

6.4%
6.4%

21
21

–0.77 0.91 –0.31

–0.31

–0.31

0.98

0.98

0.98

22

22
22

22
–1.8 1.02 8

8

–1.93 1.28

6.9%
6.9%

7.0%
7.0%

3.8 0.81

0.8

31
31

4.45 0.86 31
31

9.8%
9.8%

3.12 50
50

4.78 0.87 50
50 10.3%

10.3%

2.65 0.98 20
20

3.11 1.29 20
20

7.7%
7.7%

Figure 14: DAS28.
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The data representation of the CRP in Mirtaheri et al. 2015
and Bae et al. 2009 is median (interquartile range), and both
two RCTs showed that the results showed that the difference
of CRP between the experimental group and the control
group was of no statistical significance (P > 0:05). The data
representation of the IL6 in Mirtaheri et al. 2015 is also

median (interquartile range), but both two RCTs reported
that the difference of IL6 between the experimental group
and the control group was of no statistical significance
(P > 0:05) (Figure 20). Mirtaheri et al. 2015 also showed that
the difference of SOD, TAC, and GPx between two groups
was of no statistical significance (TAC (SMD 0.44, 95% CI
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18 Oxidative Medicine and Cellular Longevity



-0.06 to 0.93, P = 0:08), SOD (SMD -0.11, 95% CI -0.59 to
0.38, P = 0:66), and GPx (SMD 0.16, 95% CI -0.33 to 0.65,
P = 0:52)) (Figures 5, 6, and 8).

4.6. Publication Bias of Outcomes. Finally, there are 10 out-
comes with more than 5 RCTs: MDA, TAC, number of ten-
der joints, number of swollen joints, DAS28, VAS, HAQ,
ESR, CRP, and TNF-α. (1) For the oxidative stress index,
the publication bias detection showed that the RCTs
included in MDA may have publication bias (P = 0:094)
(Figure 21(a)), while the that in TAC may not have publica-
tion bias (P = 0:329) (Figure 21(b)). (2) For clinical efficacy
indexes, the publication bias detection showed that the RCTs
may have publication bias (number of tender joints: P =
0:793, number of swollen joints: P = 0:791, DAS28: P =
0:476, HAQ: P = 0:66, and VAS: P = 0:126) (Figure 22). (3)
For inflammation indexes, the publication bias detection
showed that the RCTs included in ESR and CRP may have
publication bias (ESR: P = 0:064; CRP: P = 0:014)
(Figures 23(a) and 23(b)), while that in TNF-αmay not have
publication bias (P = 0:351) (Figure 23(b)).

5. Discussion

5.1. Summary of Main Outcomes. A total of 24 RCTs (28
records) and 1277 participants were included. The time span
of RCTs is from 1986 to 2020. These RCTs involve 16 types
of antioxidants or antioxidant therapies, and these therapies
have varying degrees of improvement on oxidative stress in
RA patients. (1) N-acetylcysteine: it may reduce the MDA
and NO levels in RA patients, and the addition of N-
acetylcysteine to conventional therapy will not increase the
occurrence of adverse events. Meanwhile, it may relieve pain
and improve the quality of life of patients (reduce VAS and
HAQ). (2) Coenzyme Q10: it may reduce the MDA, ESR,
and TNF-α in RA patients, and the addition of coenzyme
Q10 to conventional therapy will not increase the occur-
rence of adverse events. Meanwhile, it may relieve pain
and improve the patient’s condition (reduce VAS and
DAS28). Whether it can reduce IL6 is still inconclusive. (3)
Probiotics: it may reduce the MDA and CRP levels and
improve the patient’s condition (reduce DAS28). It has not
been observed to improve TAC, SOD, GPx, and CAT. (4)
Pomegranate extract: interestingly, the MDA in
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pomegranate extract was higher, which is different from the
results of other supplements. It has not been observed to
improve GPx. Meanwhile, it may also reduce inflammation
and relieve the condition (reduce number of swollen joints,
number of tender joints, DAS28, and ESR). (5) Quercetin:

it may reduce the MDA level in RA patients. Meanwhile, it
may relieve pain and improve the quality of life of patients
(reduce VAS and HAQ). (6) Resveratrol: the results showed
that it may alleviate the patient’s condition (reduce number
of swollen and tender joints and the DAS28) and improve
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inflammation (reduce CRP, ESR, TNF-α, and IL6). (7) Gar-
lic tablets: it may reduce the MDA level in RA patients and
increase the TAC of RA patients. It may also relieve pain
and improve the quality of life of patients (reduce VAS
and HAQ) and reduce inflammation (reduce TNF-α). (8)

Vitamin E and conjugated linoleic acids: whether conjugated
linoleic acids were used alone (reduce the number of tender
joints, number of swollen joints, and DAS28) or in combina-
tion with vitamin E (reduce number of swollen joints, VAS,
and DAS28), it may improve the patient’s condition.
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Meanwhile, the addition of vitamin E to conventional ther-
apy will not increase the occurrence of adverse events. (9)
Selenium: current research has not shown that selenium
has a therapeutic effect on RA. What is interesting is that
for VAS, RCT showed different results. Because the data is
expressed in different ways, it cannot be combined, so it is
impossible to draw a certain conclusion. (10) Spa therapy:
it has no significant improvement on MDA and SOD, and
it may reduce number of swollen joints. Meanwhile, spa
therapy may not increase adverse events. (11) Vitamins A,
E, and C combination: this combination may decrease
MDA and increase GSH. (12) Ozone: it may reduce MDA
and NO levels and increase CAT and GSH levels in RA
patients. Meanwhile, it may also reduce inflammation and
relieve the condition (reduce DAS28, HAQ, and ESR). (13)
H2-saline: The H2-saline may improve the clinical symptoms
of RA patients (decreased DAS28). (14) Alpha-lipoic acid:
current research has not shown that alpha-lipoic acid has a
therapeutic effect on RA.

In short, most antioxidants or antioxidant therapies can
reduce MDA levels in RA patients, and a small number of
therapies can increase GSH or TAC levels. And several anti-

oxidants or antioxidant therapies may relieve pain and
improve the quality of life of patients and the patient’s con-
dition. However, pomegranate extract may cause an increase
in MDA. However, since there is only one RCT in most sub-
groups, the interpretation of the results still requires caution.

5.2. Possible Mechanism of Antioxidant Treatment of RA. In
1986, Koster et al. found that compared with healthy con-
trols, the serum sulfhydryl concentration of RA patients
was lower [47]. Considering that the sulfhydryl group may
act as a scavenger of peroxides, this discovery had already
indicated that the oxidative stress in RA patients was exces-
sive. Subsequently, the characteristics of oxidative stress in
the pathogenesis of RA have been reported successively
[14, 48–51]. Oxidative stress is a state where the body’s oxi-
dation and antioxidant effects are out of balance and tend to
be oxidized. Oxidative stress can cause inflammatory infil-
tration of neutrophils and promote the massive production
of reactive oxygen species (ROS) and reactive nitrogen
species (RNS) free radicals [13, 52]. ROS mainly includes
superoxide anion (O2-) [53], hydrogen peroxide (H2O2)
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[54, 55], hypochlorous acid (HClO) [56], and hydroxyl
radical (⋅OH) [57]. RNS mainly includes nitrogen monoxide
(NO) [58–61] and peroxynitroso (ONOO-) [62, 63]. In
addition, a variety of highly active molecules including
oxidative stress will be produced under pathological condi-
tions [56, 63, 64]. In addition to increasing the number of
ROS/RNS under oxidative stress, antioxidants will also
remove ROS/RNS substances or compounds, thereby inhi-
biting the oxidative stress process in cells [65]. Current
research shows that there are mainly two different types of
antioxidants, namely, enzymatic system and nonenzymatic
system. The first type is mainly composed of SOD [65–67],
CAT [68], GPx [69], glutathione reductase (GR) [70], and
thioredoxin reductase [71]. ⋅O2- and H2O2 are the most
ROS produced during oxidative stress [52, 69]. The former
is cleared by SOD [65], and the latter is cleared by CAT
[68], GPx [69], and perredoxin (PRX) [72]. The nonenzy-
matic antioxidant system is mainly composed of vitamins
(A, C, and E), beta carotene, antioxidants, and minerals such
as copper, ferritin, zinc, manganese, and selenium [52, 73].

Current basic research shows that oxidative stress plays a
key role in the initiation and maintenance of systemic
inflammation in RA [32, 45, 74, 75]. Under the pathological
conditions of RA, ROS and RNS are produced by neutro-
phils, monocytes, and macrophages in joint tissues [76].
They can damage different types of cell structures in joints,

including DNA, carbohydrates, proteins, and lipids [14, 17,
43, 74], leading to an imbalance of oxidative stress in joint
tissues. Among them, the most common oxidation promot-
ing factor (ROS/RNS) in RA joints is composed of ⋅O2-,
H2O2,

⋅OH, NO⋅, ONOO-, HOCl, and LOO⋅ [32, 45, 74,
75]. In addition, in the occurrence and progression of RA
joint damage, the oxidative stress imbalance and the inflam-
matory biological network are interconnected in multiple
directions, which eventually leads to RA (synovitis) and
forms a vicious circle. For example, ROS increases in RA
patients [10] (mainly H2O2), which in turn activates the
NF-κB pathway [77]. NF-κB signal transduction immunity
promotes more IL-1 and TNF-α. Activated macrophages
and T cells in the synovium may induce the production of
ROS through the release of TNF and IL-1. This way further
amplifies the inflammation of synovitis, forming a positive
feedback, and worsening the process of RA synovitis [78,
79]. It is specifically manifested in the disease progression
of RA patients. Compared with inactive RA patients, RA
patients with active disease show higher ROS levels, more
severe inflammatory factor levels, and lower antioxidant
potential. Moreover, compared with healthy controls, these
active RA patients have worse antioxidant capacity [74]. It
is manifested by a higher degree of lipid peroxidation found
in the synovial fluid and blood samples of these patients with
possible RA [80, 81].
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In addition, the increase in intra-articular pressure
caused by chronic long-term inflammation in the joints of
RA patients may lead to chronic hypoxia, which in turn
increases the production of ROS in the joints of RA individ-
uals [82]. The oxidation of type II collagen in the joints of
patients with RA [10] and the increased production of
matrix metalloproteinases [33] will cause oxidative damage
to the matrix (extracellular environment) of the joints [10].
These oxidative stress factors can also induce stromal cells
and joint cells (chondrocytes) to undergo programmed cell
death caused by endoplasmic reticulum oxidative stress,
which in turn leads to early joint damage in RA [10]. Further
studies have also shown that oxidative stress can also cause
other complications in RA patients. For example, high levels
of inflammation and oxidative stress in RA patients can
cause endothelial dysfunction and cause vascular damage
to the circulatory system [83, 84]. Controlling the oxidative
stress imbalance and inflammation in the preclinical and
chronic stages of RA can avoid complications in the circula-
tory system of RA patients [84]. Aiming at the mechanism of
oxidative stress in the clinical diagnosis and treatment of RA
patients, oxidative stress biomarkers have been used as rele-
vant markers and protocols to assess the disease activity and
prognosis of RA patients [50, 82]. For example, Quiñonez-
Flores et al. [50] found that lipid peroxidation (through
MDA level) can be used to detect disease activity in RA
patients (disease activity score DAS28), which expands the
potential applicability of oxidative biomarkers in the diagno-
sis and prognosis of RA patients.

5.3. Characteristic Analysis of Included Studies. A total of 24
RCTs were included in this study, with a time span from
1986 to 2020. These 24 RCTs used a total of 14 different
therapies; they were N-acetylcysteine, CoQ10, probiotic,
pomegranate extract, quercetin, resveratrol, garlic tablets,
vitamin E and conjugated linoleic acids, selenium, spa ther-
apy, vitamins A, E, and C, ozone, H2-saline, and alpha-lipoic
acid. Hashemi et al. 2019 [16], Batooei et al. 2018 [17],

Abdollahzad et al. 2015 [19, 20], Zhu et al. 2020 [30],
Vaghef-Mehrabany et al. 2016 [31], Zamani et al. 2017
[32], Ghavipour et al. 2016 [33], Javadi et al. 2017 [24, 25],
Moosavian et al. 2020 [26, 27], Aryaeian et al. 2009 [36],
Karagülle et al. 2017 [43], and León Fernández et al. 2016
[45] described the random sequence generation methods.
Hashemi et al. 2019 [16], Batooei et al. 2018 [17], Zhu
et al. 2020 [30], Vaghef-Mehrabany et al. 2016 [31], Zamani
et al. 2017 [32], Ghavipour et al. 2016 [33], Javadi et al. 2017
[24, 25], Moosavian et al. 2020 [26, 27], and Karagülle et al.
2017 [43] described allocation concealment methods. The
other RCTs failed to described the random sequence gener-
ation methods and/or allocation concealment methods.
Since the main outcome of this meta-analysis is an objective
indicator, it is less affected by whether or not blinding is
used. Hence, although only Hashemi et al. 2019 [16], Batooei
et al. 2018 [17], Zamani et al. 2017 [32], and Moosavian et al.
2020 [26, 27] uses blinding, all RCTs are assessed as low risk
of bias regarding blinding. However, the implementation of
blinding methods is still very important. Hashemi et al.
2019 [16], Batooei et al. 2018 [17], Vaghef-Mehrabany
et al. 2016 [31], Ghavipour et al. 2016 [33], and Bae et al.
2009 [34] have incomplete outcome data. In addition, 2
RCTs were from Belgium; 2 RCTs were from China; 2 RCTs
were from Germany; 8 RCTs were from Iran; Bae et al. 2009
was from Korea; Khojah et al. 2018 was from Egypt;
Edmonds et al. 1997 was from the UK; Tarp et al. 1986
was from Denmark; Karagülle et al. 2017 was from Turkey;
Jaswal et al. 2003 was from India; León Fernández et al.
2016 was from Cuba; and Ishibashi et al. 2014 was from
Japan. The included RCTs in this study showed that the
included patients were mainly women. This is consistent
with the facts: the incidence of RA is higher in women than
in men, and women are 2 to 3 times that of men, and it
occurs more frequently in 30-50 years of age [85–87]. There-
fore, the results of this study mainly show the effect of anti-
oxidant therapy in women with RA. Although it also shows
potential effects for men, more samples are needed to further
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Figure 21: Publication bias of oxidative stress index: (a) MDA; (b) TAC.
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give better evidence. Most RCTs reported disease duration,
baseline CRP, baseline ESR, and baseline DAS28, while a
small number of RCTs did not report these baseline data.
Baseline data suggest that the disease duration of most
patients is more than 5 years, and most RCTs select moder-
ate to severe patients in the active phase for the study.

In general, the quality of RCTs is medium to high. How-
ever, since most RCTs are not blinded, and a small number

of studies have not conducted allocation concealment and
description of random sequence generation methods, the
interpretation of the results still needs to be cautious.

5.4. Strengths and Limitations of This Research and
Inspiration for Future Research. The strengths of this
research is that it is the first meta-analysis involving the
improvement of oxidative stress in RA patients with
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antioxidants and antioxidant therapies. The RCTs collected
in this study span 34 years (1986-2020) involving 1277 par-
ticipants, and a comprehensive systematic review and meta-
analysis of previous related studies have been extensively
conducted. The quality of RCT is generally high. In addition,
the RCTs included this time involve multiple countries and
ethnic groups, including Belgium, China, Cuba, Denmark,
Egypt, the UK, Germany, India, Iran, Japan, Korea, and Tur-
key, which makes the results more applicable.

The limitations of this research is that most subgroups
have only one RCT (such as the N-acetylcysteine, pome-
granate extract, quercetin, garlic tablets, spa therapy, vita-
mins A, E, and C combination, and ozone subgroup in
MDA; all subgroups of SOD, NO, GPx, CAT, and GSH).
This affects the credibility of the results, because only one
RCT cannot represent all the population. Meanwhile, there
are many RCTs that do not involve indicators of oxidative
stress, such as Yin et al. 2017 [18], Bae et al. 2009 [34], Kho-
jah et al. 2018 [35], Aryaeian et al. 2009 [36], Tarp et al. 1986
[39], Peretz et al. 1992 [40], Peretz et al. 2001 [41], Heinle
et al. 1997 [42], and Ishibashi et al. 2014 [46]. Therefore,
more research on the effects of these therapies on oxidative
stress indicators in RA patients is needed. Meanwhile, the
intervention duration of these RCTs is different, which

may affect the effect of drug intervention in RA. In addition,
although most RCTs are considered to be of high quality,
blinding methods (such as Yin et al. 2017 [18], Abdollahzad
et al. 2015 [19, 20], Zhu et al. 2020 [30], Vaghef-
Mehrabany et al. 2016 [31], Ghavipour et al. 2016 [33],
Javadi et al. 2017 [24, 25], Bae et al. 2009 [34], Khojah
et al. 2018 [35], Aryaeian et al. 2009 [36], Edmonds
et al. 1997 [37], Wittenborg et al. 1998 [38], Tarp et al.
1986 [39], Peretz et al. 1992 [40], Peretz et al. 2001 [41],
Heinle et al. 1997 [42], Karagülle et al. 2017 [43], Jaswal
et al. 2003 [44], León Fernández et al. 2016 [45], and
Ishibashi et al. 2014 [46]) are not used. The main reason
they were rated as low risk of bias was that the main out-
come indicators were objective indicators (serum MDA,
etc.). However, we still need to be vigilant, because the
failure to implement blinding may affect other outcome
indicators that are not focused on in this study. Therefore,
in the future, more well-designed, randomized controlled
double-blind clinical trials are needed to verify or modify
the outcome indicators.

In MDA outcomes, there was a result contrary to most
results: the MDA in the pomegranate extract group was
higher than that of the control group. This is a very interest-
ing result, because it suggests that pomegranate extract may
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have a reverse effect. However, since there is only one RCT,
the result is unstable. Therefore, we look forward to more
pomegranate extract-related RCTs in the future. In addition,
although current RCTs show that antioxidants or antioxi-
dant therapies do not increase the incidence of adverse
events, most RCTs do not report safety outcomes. Therefore,
it is expected that future RCTs will report more on the inci-
dence of corresponding adverse events to determine the
safety of those therapy.

6. Conclusion

Oxidative stress plays an important role in the pathophysiol-
ogy of RA. This study showed through systematic reviews
and meta-analysis that although there are currently fewer
RCTs for antioxidant therapy, the existing evidence shows
potential benefits, mainly in reducing MDA and increasing
TAC and GSH. Meanwhile, it was also found that the com-
bination of antioxidant therapy and conventional therapy is
the main choice for reducing RA disease and preventing car-
diovascular complications in the future. However, consider-
ing the small number of patients recruited, the study design
varies greatly between different RCT studies, and the charac-
teristics of RA participants included in different RCT studies
are not the same; it is difficult to immediately extrapolate
these results to general RA patients. In the future, more large
samples and higher quality RCTs are needed to provide
high-quality evidence, so as to provide more clinical refer-
ence information for the antioxidant treatment of RA.
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Hepatic ischemia-reperfusion injury (IRI) is the most common cause of liver damage leading to surgical failures in hepatectomy
and liver transplantation. Extensive inflammatory reactions and oxidative responses are reported to be the major processes
exacerbating IRI. The involvement of Yes-associated protein (YAP) in either process has been suggested, but the role and
mechanism of YAP in IRI remain unclear. In this study, we constructed hepatocyte-specific YAP knockout (YAP-HKO) mice
and induced a hepatic IRI model. Surprisingly, the amount of serum EVs decreased in YAP-HKO compared to WT mice during
hepatic IRI. Then, we found that the activation of YAP increased EV secretion through F-actin by increasing membrane
formation, while inhibiting the fusion of multivesicular body (MVB) and lysosomes in hepatocytes. Further, to explore the
essential elements of YAP-induced EVs, we applied mass spectrometry and noticed CD47 was among the top targets highly
expressed on hepatocyte-derived EVs. Thus, we enriched CD47+ EVs by microbeads and applied the isolated CD47+ EVs on IRI
mice. We found ameliorated IRI symptoms after CD47+ EV treatment in these mice, and CD47+ EVs bound to CD172α on the
surface of dendritic cells (DCs), which inhibited DC activation and the cascade of inflammatory responses. Our data showed
that CD47-enriched EVs were released in a YAP-dependent manner by hepatocytes, which could inhibit DC activation and
contribute to the amelioration of hepatic IRI. CD47+ EVs could be a potential strategy for treating hepatic IRI.

1. Introduction

Hepatic IRI occurs when blood flow is restored after a period
of hepatic ischemia [1, 2]. Since the donated grafts are often
highly susceptible to IRI, while the available organs are in
severe shortage, IRI has become one of the main obstacles
in liver transplantation [3]. There is an urgent need for devel-

oping protective strategies against IRI to promote the sur-
vival of patients after liver transplantation.

The mechanisms governing IRI are highly complex and
have been the focus of investigation for decades with numer-
ous factors been identified with specific function. Among the
principle factors in hepatic IRI, Yes-associated protein
(YAP), the key effector of the Hippo pathway, has been

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2021, Article ID 6617345, 15 pages
https://doi.org/10.1155/2021/6617345

https://orcid.org/0000-0002-3875-2473
https://orcid.org/0000-0001-9776-8515
https://orcid.org/0000-0002-0318-8892
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6617345


reported to be a hinge joint in inflammation and oxidative
stress, but its role and mechanism remain unclear. Some
reports suggested that YAP played a protective role in the
hepatic IRI model [4], while others found that YAP-
expressing hepatocytes activated inflammation and aggre-
gated liver fibrosis through the YAP/TAZ/CYR61 axis [5].
These conflicting findings suggested that the mechanisms
in YAP’s function have not been fully unveiled, since
YAP has been found to regulate the binding of actin
and angiomotin (AMOT) family members [6], which play
an irreplaceable role in endosomal transport and the
secretion of extracellular vesicles (EVs) [7]. Here, we
investigated the paracrine effect of YAP through the
secretion of EVs.

EVs are phospholipid bilayer vesicles widely distributed
in body fluids as a form of intercellular communication and
modulation of cellular activities in recipient cells. Multiple
immunomodulatory effects of EVs have been reported [8,
9], but the mechanism linking hepatic injury to associated
immune responses through EVs has not been found. Initi-
ated by hypoxic stress, IRI displayed extensive inflammatory
responses that are driven by innate immunity and supported
by adaptive immunity [4, 10]. Hepatic DCs act as one of the
major mediators in local immune responses [11]. Activated
DCs could [12] trigger both innate and adaptive immunity
and aggregate local injury. However, reports also showed that
hepatic DCs could limit certain inflammation and promote
immune tolerance [13]. The immune-modulatory activity
of DCs is regulated by the expression level of CD47, the
well-known “don’t eat me” signal [14]. By binding to the
counter-receptor signal-regulated protein alpha (SIRP
alpha/CD172α), which is mainly expressed on the surface
of myeloid cells, CD47 could initiate the inhibitory signaling
to restrain inflammation [15, 16].

In this study, we found CD47 on hepatic EVs targeted
CD172+ DCs and potently inhibited their activation, there-
fore alleviated hepatic IRI, whereas YAP expression is
required for EV secretion of hepatocytes. Mechanistically,
YAP induced EV secretion through F-actin by increasing
membrane formation, with the inhibition of MVB and lyso-
some fusion. Our results revealed a novel mechanism for
maintaining immune balance in hepatic IRI, via the regula-
tion of YAP-EV-CD47 axis in hepatocyte-DC crosstalk,
which suggested a novel therapeutic strategy utilizing
CD47+ EVs in treating hepatic IRI.

2. Methods

2.1. Human Subjects. The selected samples were from 69
patients who underwent liver transplantation from donors
after cardiac death (DCD) since April 2010 to April 2015 at
the liver transplantation center of the third affiliated hospital,
Sun Yat-sen University. Cases of 64 males and 5 females were
included, with an average age of 47.43 years (21-72 years),
and were all treated by modified piggyback orthotopic liver
transplantation surgery. The details of the patient demo-
graphics are listed in Supplementary Table 1. The selection
criteria were as published [17].

2.2. Animals. Six to eight weeks of C57BL/6J, BALB/c male
mice were obtained from Guangzhou University of Chinese
Medicine, China. YAP-HKO mice were constructed by
crossing Albumin-Cre (Alb-Cre) mice and Yapflox/flox mice
from the Model Animal Research Center of Nanjing Univer-
sity (Nanjing, China). CD11c-DTR mice were purchased
from Jackson Laboratory (Farmington, CT, USA). All the
animal experiments conducted in this study were approved
by the animal ethics committee of the third affiliated hospital
of Sun Yat-sen University.

2.3. Mouse Hepatic IRI Model. The 70% liver ischemia-
reperfusion (I/R) injury model was constructed after 0.6%
pentobarbital sodium (100μL/10 g) was injected intraperito-
neally [17]. In brief, the artery/portal vessel was clamped to
the cephalad lobes for 90 minutes during ischemia, and
reperfusion was performed by loosening the atraumatic vas-
cular clamp. The sham operation group underwent the same
operation except that blood vessels were not clamped. Ani-
mals received injections of EVs (100μg/kg b.w. in PBS) or
PBS immediately before reperfusion.

2.4. Cells and Reagents. Human hepatic L02 cells from the
Cell Bank of the Chinese Academy of Sciences in Shanghai
were used in the in vitro experiments [18]. Antibodies against
YAP1 (ab56701, Abcam), Alix (ab186429, Abcam), CD81
(D5O2Q, CST), TSG101 (ab125011, Abcam), β-actin
(8H10D10, CST), calnexin (ab22595, Abcam), and CD47
(ab175388, Abcam) were used for western blot. When
CD47 was blocked, two doses of 100μg (BE0270, BioXcell)
were given intraperitoneally two days before IRI and the
same day at IRI. The control group used the same dose of
rat immunoglobulin G2a (IgG2a) isotype (BioXcell) [19].

2.5. EV Isolation and Analysis. EVs in mouse serum were iso-
lated with an EV isolation kit (SmartSEC Mini EV Isolation
System) and detected with an ELISA kit detecting CD81 exo-
some (EXOEL-CD81A-1) from System Biosciences.

L02 and primary hepatocytes (PMH) were cultured 48
hours at 37°C in serum-free DMEM. The supernatant was
collected and centrifuged at 2,000 g for 10min at 4°C to
remove the cell debris [20]. Then, after filtering through
0.22μm filters, the filtrate was ultracentrifuged at 100,000 g
for 120 minutes in a Beckman SW28Ti rotor. After the resus-
pension by PBS, the pellets were ultracentrifuged again at
100,000 g for 120min. The final EV pellets were dissolved
in PBS for further experiments [20].

To isolate CD47+ EVs, a total of 200μg PMH-EVs were
mixed with nonblocking anti-CD47 antibody (REA170)-
FITC for 30min at 4°C. Then, incubated with anti-FITC
magnetic beads (Miltenyi Biotec; 1μL/μg EVs) overnight at
4°C. CD47- EVs and CD47+ EVs were separated by magnetic
beads, and both supernatants were washed with PBS and pel-
leted by ultracentrifugation.

EVs were further analyzed by aMicro BCA Protein Assay
Kit to determine protein concentrations (Thermo, #23235).
Particle diameters and amounts were observed by the Nano-
Sight system (NS300, Malvern, Ranch Cucamonga, CA,
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USA). Further details of methods were described in supple-
mentary materials (available here).

2.6. Real Time-PCR Analysis. Real-time PCR was performed
using the following primer sequences [21]: YAP-forward:
CCCAGACTACCTTGAAGCCA and YAP-reverse: CTTC
CTGCAGACTTGGCATC; CYR61-forward: CTGCAGCAA
AACTCAGCCCT and CACAGGGTCTGCCTTCTFAC
and CYR61-reverse: CTTCCTGCAGACTTGGCATC;
TRX1-forward: ATGGTGAAGCTGATCGAGAGC and
TRX1-reverse: GGCATATTCAGTAATAGAGGC; HO-1-
forward: GCAGAGAATGCTGAGTTCATG and HO-1-
reverse: CACATCTATGTGGCCCTGGAGGAGG;
GAPDH-forward: GCGGGAAATCGTGCGTGAC and
GAPDH-reverse: CGTCATACTCCTGCTTGCTG.

2.7. Histopathology and Immunostaining. Tissues were fixed
by 4% paraformaldehyde and embedded in paraffin, followed
by slicing with a microtome and staining with hematoxylin-
eosin. For the graft biopsy, the immunohistochemical stain-
ing results were assigned the mean score considering the
product of the intensity of the stain and the percentage of
positive cells. 0 is negative, 1 to 4 are mildly positive, 5 to 8
are moderately positive, and 9 to 12 are strong positive [22,
23]. Negatives are included in the low group, while weakly
positive, moderately positive, and strong positives are
included in the high group. Each section was independently
assessed by two pathologists. Frozen liver tissue sections or
cells were fixed, blocked according to standard procedures
[19]. For immunofluorescence analysis, we used antibody
YAP (2F12, Novus), RAB7 (ab137029, Abcam), EEA1
(610456, BD Biosciences) [24], LysoTracker™ Red DND-99
(ThermoFisher), Rhodamine Phalloidin (PHDR1, Cytoskele-
ton), Cy2-conjugated goat anti-rabbit IgG (111-225-144,
Jackson ImmunoResearch), and Cy3-conjugated anti-
mouse IgG (AP124C, EMD Millipore).

2.8. Plasmid Construction and Transfection. By short hairpin
RNA inference, the silenced sh-YAP expression plasmids
were purchased from Sigma, with the control group using
the nontargeting shRNA expression plasmid (MISSION
Plko.1-puro Empty Vector Control Plasmid DNA). The cells
were transfected according to standard procedures [25].

2.9. Primary Hepatocyte Isolation. The liver was perfused
with an immunoenzyme (10 units) to digest connective tissue
[19]. Then, use Percoll gradient to purify primary
hepatocytes.

2.10. Hepatic Lymphocyte Isolation. After the liver tissue was
gently crushed, the lymphocytes were obtained using percoll
gradient purification [19]. Then, the cell suspension was
stained for viability analysis, and markers including CD45,
CD47, CD172a, CD11c, I-A/I-E, TNF-α, and IL-12 p40
(eBioscience, San Diego, CA).

2.11. T Cell Isolation. CD4+ and CD8+ T cells were isolated
from the spleen of experiment mice by CD4+ and CD8+ T cell
isolation kit II (Miltenyi Biotec, Bergisch Gladbach, Ger-

many) and followed by labeling with CFSE (Invitrogen)
according to the manufacturer’s instructions [26].

2.12. DC Function Assay. Bone marrow monocytes were
obtained from the cell suspension of mouse tibia and femur
[27]. To generate bone marrow-derived DC (BMDCs), 10
ng/mL recombinant mouse granulocyte-macrophage
colony-stimulating factor (rmGM-CSF) and 1ng/mL IL-4
(R&D) were added in the medium (Figure S2C). BMDCs
were collected after verifying purity (more than 95% CD11c
positive) and 1 × 106/mL cells were incubated under 1
mg/mL LPS stimulation, and the experiment group was
supplemented with 30mg/mL EVs for 24 h, with PBS
supplemented as control. To evaluate the antigen-
presenting ability of DCs, LPS-stimulated BMDCs were
collected and cocultured with CFSE-labeled CD4+ and
CD8+ T cells from BALB/c mouse at a ratio of 1 : 10 for 96
hours.

2.13. Cytokine ELISA. Both murine serum and culture super-
natants from BMDCs were harvested for further cytokine
analysis [28]. ELISA kits to measure IL-12 p40, TNF-α, and
IL-6 levels individually were purchased and used under the
manufacturers’ instructions (eBioscience, San Diego, CA).

2.14. Immunogold Electron Microscopy. For immune electron
microscopy, we used anti-CD47 antibody (Novus-NBP2-
44408) for primary staining and incubated overnight at 4°C.
Then, we applied 18 nm colloidal gold-conjugated goat
anti-mouse IgG (115-215-166, Jackson ImmunoResearch)
as the secondary antibodies. The following steps were per-
formed according to previous reports [24].

2.15. Statistical Analyses. Student’s t-test was used to analyze
statistical comparisons between groups. The resulting p value
< 0.05 is considered significant statistically.

3. Results

3.1. YAP Silencing during I/R Aggravates Liver DamageWhile
Decreases Serum EV (sEV) Concentration.We first confirmed
YAP expression level to be negatively correlated with hepato-
cellular damage in I/R-stressed human orthotopic liver trans-
plantation (OLT) samples (Supplementary Fig. 1A-C,
Supplementary Table 1) [4]. And during hepatic IRI in
mice, hepatic YAP protein and YAP mRNA gradually
increased over time (Figures 1(a) and 1(b)). Then,
hepatocyte-specific YAP knockout (YAP-HKO) mice were
constructed to study whether YAP knockout could
aggregate hepatic dysfunction in hepatic IRI mice
(Supplementary Fig. 1D-E), since the pan-tissue YAP
knockout mice are lethal in a fetus. By these YAP-HKO
mice with I/R at 24 h, we observed severe hepatic damage
by pathological analysis (Figure 1(c)) and measured their
serum ALT levels (Figure 1(d)), while there were no
obvious differences between YAP-HKO and wild-type
(WT) mice under sham operation. Likewise, Suzuki’s score
indicated significantly increased hepatocellular damage by
YAP silencing (Figure 1(e)). These data suggested that YAP
silencing can exacerbate hepatic IRI.
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Next, we isolated sEVs from WT mice and YAP-HKO
mice after hepatic IRI with a serum EV isolation kit [29].
By CD81 exosome ELISA kit for quantification, we found
that sEVs’ concentration gradually increased after IRI and
reached the peak in 24 hours (Figure 1(f)). This trend was
in consistency with the YAP protein expression levels as
shown in Figures 1(a) and 1(b). Silencing YAP in vivo
decreased sEVs’ concentration after IRI (Figure 1(f)). sEVs

were verified by transmission electron microscopy (TEM)
(Supplementary Fig. 2A). EV markers including CD81,
ALIX, and TSG101 were expressed in sEV lysates, but the
endoplasmic reticulum marker calnexin was not found in
sEVs [30] (Supplementary Fig. 2B). Our in vivo observations
indicate that sEVs’ concentration is affected by YAP expres-
sion, and it is necessary to explore the mechanism and effect
of YAP regulation on EV secretion.
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Figure 1: Silencing of YAP exacerbates liver injury and decreases sEVs’ concentration during IRI. (a) Western blot analysis of hepatic YAP
protein levels of IRI mice at different time points; (b) the mRNA levels of hepatic YAP from IRI mouse liver were detected by qPCR at
different time points. (c) H&E staining of ischemic livers in WT and YAP-HKO mice showed that the injury increased with reperfusion
time and reached the peak at 24 h after reperfusion. Scale bar, 1mm. (d) Serum ALT levels of YAP-HKO mice were significantly higher
than WT mice with I/R at 24 h (2059 ± 214:2U/L vs. 872:8 ± 76:15U/L, ∗∗p < 0:01). (e) Suzuki’s histological score of YAP-HKO mice was
higher than WT mice with I/R at 24 h (score: 2:25 ± 0:17 vs. score: 3:2 ± 0:25, ∗p < 0:05). (f) The concentrations of sEVs from WT and
YAP-HKO groups at different time points after IRI, as measured by CD81 exosome ELISA kit. n = 6 per group. ∗∗p < 0:01, ns: p > 0:05, t-test.
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3.2. YAP Silencing Decreases the Formation of EVs in an F-
Actin-Dependent Manner. To explore the effect of YAP on
EV secretion from hepatocytes, we first found that lower
YAP expression is correlated with smaller amount of secreted
EVs from nanoparticle tracking analysis (NTA) and western
blot analysis, by comparing EVs from WT and YAP knock-
down (YAP-KD) L02 cells (the normal human hepatocyte
line) during hypoxia/reoxygenation (Figure 2(a), Supple-
mentary Fig. 2C, and Figure 2(b)). To elucidate the underly-
ing mechanism of EV secretion in hepatocytes, we explored
the role of the dynamic actin and branched actin networks
in EV secretion under YAP regulation in vitro, which are
on the surface of early endosome (EE). These networks are
very important for membrane remodeling, which are critical
for selective cargo sorting and EE shape control [7]. We
found that most of theWT EE (marked by EEA1) were inten-
sively covered by branched actin networks. In YAP-KD L02
cells, the amount of branched actin on EE decreased signifi-
cantly (Figure 2(c)). Further analysis of YAP-KD L02 cells
revealed that the recycling endosome (RE), which was
formed by buddings from EE tubules, also decreased signifi-
cantly as branched actin formation reduced, indicated by the
decreased coposition of EE and F-actin on the plasma mem-
brane (yellow). The RE is the main source of endosomal
membrane formation. To study the role of F-actin in EV
secretion under the regulation by YAP, we used cytochalasin
D (CytoD) to induce F-actin depolymerization for 30
minutes. The depolymerized F-actin restored the inhibition
of RE under YAP-KD condition, presenting as an increased
level of copositioning of EE and F-actin on the plasma
membrane (Figures 2(c) and 2(d)). At the same time,
CytoD treatment also reversed the inhibitory effect of
YAP-KD on EV secretion (Figure 2(e)). These results sug-
gested that YAP might regulate the formation of EVs via
F-actin in hepatocytes.

3.3. YAP Expression Is Essential for Inhibiting the Fusion of
MVB and Lysosomes. Next, we evaluated whether YAP could
induce EV secretion by inhibiting MVB and lysosome degra-
dation. The dense reticulum of F-actin might form organelle
traps in cells and slow down lysosome transport through an
active F-actin anchoring mechanism [31]. We used late
endosomes (LE, labeled with RAB7) to indicate MVE. With
increased formation of F-actin patches in YAP-KD
(Figure 2(c)), the fusion of lysosome (labeled by LysoTracker
Red) with LE significantly increased (Figures 3(a) and 3(b)).
When F-actin depolymerization was induced by CytoD,
there was no significant difference in the colocalization of
LE and lysosomal fluorescence between YAP-KD and WT
L02 cells (Figure 3(b)). These results suggested that YAP
induced EV secretion through F-actin by increasing mem-
brane formation, as well as inhibiting the fusion of MVB
and lysosomes.

3.4. CD47-Enriched EV Inhibits CD172+ DC Activation in a
YAP-Dependent Manner. To determine the potential effect
of YAP-induced EVs on hepatic IRI, we used quantitative
mass spectrometry to detect EVs originated from WT L02
and YAP-KD L02 cells. 2883 trusted proteins were retrieved

from the original data of mass spectrometry by Protein Pilot
software (Supplementary Table 2, Figures 4(a) and 4(b)).
Based on this result, we noticed CD47 was one of the target
that highly expressed on hepatocyte-derived EVs in a YAP-
dependent manner and then verified its expression on
primary mouse hepatocytes (PMH) by western blotting
(Supplementary Fig. 2D) and immunogold electron
microscopy (Supplementary Fig. 2E). CD47 has been
reported to exert its inhibitory effect by binding specifically
to the surface receptor CD172α of myeloid cells [32]. We
examined whether CD47-enriched EVs target on the
proinflammatory cells during hepatic IRI. By evaluating the
inflammatory cytokines IL-12 p40 and TNF-α of CD172+

cells in hepatic tissue with I/R at 24h, we found that
CD172a+ rather than CD172a- cells are the main sources of
IL-12 p40 and TNF-α (Figure 4(c)). Compared with the
sham operation group, the ratio of CD172a+ IL-12 p40+ or
TNF-α+ cells in the IRI group significantly increased
(Figure 4(d)). Furthermore, we found that CD11c
expression in hepatic tissues with I/R was limited to the
CD172a+ cell subset (Figure 4(e)). We next confirmed
that among CD172+ cells, CD172+ CD11c+ IA/IE+ (MHC
II+) cells or CD172+ DCs represented as the main
producers of IL-12 p40 and TNF-α in hepatic IRI. These
data suggested that the inflammatory cytokine production
is restricted to CD172a+ DCs in hepatic IRI. As CD47 is
located on the surface of EVs, we used CD47
neutralizing antibodies to neutralize EVs and found that
neutralizing of CD47 from PMH-EVs significantly
antagonized the ability of these EVs to inhibit the
secretion of inflammatory cytokines by bone-marrow-
derived dendritic cells (BMDCs) (Figure 4(f)). These
results suggested that CD47-enriched EVs could suppress
inflammatory responses of CD172+ DCs.

To evaluate the antigen-presenting function of DCs,
we detected the proliferation of CD4+ and CD8+ T cells
in vitro. In comparison to the YAP-HKO PMH treat-
ment group, we found the proliferation rates were inhib-
ited in BMDCs pretreated by a conditioned medium of
WT PMH (Figures 5(a) and 5(b)). Meanwhile, by detect-
ing IL-12 p40, we found LPS-induced-BMDC activation
was significantly restrained by a PMH conditioned
medium in a YAP-dependent manner (Figure 5(c)).
These results implied that, in the absence of YAP, hepa-
tocytes lose their ability to suppress BMDC activation
in vitro.

To elucidate that YAP-dependent-DC function was regu-
lated by hepatocyte-released EVs, we isolated EVs by ultra-
centrifugation from the supernatant of PMH. We found
EVs isolated from WT were more potent in inhibiting
BMDCs than EVs from YAP-HKO PMH, as evaluated by
IL-12 p40 secretion (Figure 5(c)). To distinguish between
EVs and other nonmembrane extracellular particles [20],
EVs were treated with detergent (Triton X-100) which can
destroy the membrane structure and halt the functions of
EVs. The particles after detergent treatment failed to inacti-
vate BMDCs (Figure 5(c)). These results indicated that DC
activation was inhibited by hepatocyte-released EVs in a
YAP-dependent manner.

5Oxidative Medicine and Cellular Longevity



3.5. CD47+ EVs Could Alleviate Hepatic IRI as a Therapeutic
Strategy. To investigate whether CD47+ EVs have the poten-
tial to treat hepatic IRI, we first isolated CD47+ EVs and
CD47- EVs using nonblocking anti-CD47 Ab (REA170)-
FITC and anti-FITC magnetic beads. We then verified the
purified CD47+ EVs contain CD47 and EVs’ label proteins

TSG101 and Alix (Figures 6(a) and 6(b)). Next, we injected
CD47+ EVs into WT mice to determine whether CD47+

EVs have any adverse effect, and we found there was no dam-
age to normal mice without IRI. While in the IRI model, less
hepatic damage was observed in the group treated by CD47+

EVs (Figures 6(c) and 6(d)). We found the expression of

WT
0

2

4

6

×
10

8 
pa

rt
ic

le
s/

10
7  ce

lls

8

YAP KO

Total EVs

⁎⁎⁎

(a)

WT
0

2

4

6

𝜇
g/

10
6  ce

lls

8

YAP KO

Total EV protein
⁎

(b)

RAB7

YA
P 

KD
W

T
pb

s

Phalloidin EEA1 Merge

YA
P 

KD
W

T

Cy
to

ch
al

as
in

 D

(c)

ns

0

20

40

60

80

100

(%
)

WT YAP KO
pbs

WT YAP KO
CytoD

F-Actin-EEA1 colocalization

⁎⁎⁎

(d)

0

2

4

6

8

10

×
10

8 
pa

rt
ic

le
s/

10
7  ce

lls

WT YAP KO
pbs

WT

nsTotal EVs

YAP KO
CytoD

⁎⁎

(e)

Figure 2: Hepatic YAP silence decreases EV formation. (a) EVs extracted from culture medium ofWT or YAP-KD L02 cells were subjected to
nanoparticle tracking analysis (NanoSight) for quantitative [20]. n = 3, ∗∗∗p < 0:001, t-test. (b) A BCA Protein Assay Kit was used to detect the
protein concentration of EVs. n = 3. ∗p < 0:05, t-test. (c) Rhodamine-labeled phalloidin staining (labeling membrane-associated F-actin, red),
EEA1 staining (labeling early endosomes, green), and RAB7 staining (labeling late endosomes) for YAP-KD and WT L02 cells under either
PBS or cytochalasin stimulation. Scale bar, 10 μm. (d) Statistical analysis of amounts of EEA1 that colocalized (orange) with F-actin, shown as
percentages of the total EEA1, n = 10, ∗∗∗p < 0:001, ns: p > 0:05, t-test. (e) EVs extracted from a culture medium of equal amount of WT or
YAP-KD L02 cells with or without CytoD treatment were subjected to NanoSight for quantification. n = 3. ∗∗p < 0:01, ns: p > 0:05, t-test.
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antioxidative genes increased including thioredoxin-1 (Trx1)
and heme oxygenase-1 (HO-1) after CD47+ EV treatment.
Further, we examined the expression of Cyr61, which has
been recognized as a key chemokine controlling liver injury
[5]. The mRNA levels of hepatic Cyr61 were reduced after
CD47+ EV treatment (Supplementary Fig. 2F). As CD47mAb
could reverse the protective effects of CD47+ EVs, the protec-
tion of these EVs on hepatic IRI is possibly mediated by
CD47 (Figures 6(c) and 6(d)). In addition, there was no sig-
nificant amelioration in hepatic damage after I/R in CD11c-
DTR mice injected with DT after CD47+ EV treatment
(Figures 6(c) and 6(d)), suggesting that CD47+ EVs alleviate
hepatic IRI at least partially depending on DCs. Similarly,
CD47+ EV injection reduced the serum levels of IL-6 and
TNF-α, while this effect was reversed by CD47mAb
(Figure 6(e)). These results showed that CD47+ EVs may be
a potential therapeutic strategy for the treatment of hepatic
IRI.

Taken together, our data showed that YAP regulates the
secretion of hepatocyte-derived EVs, which can inhibit DC
activation through its surface CD47 and contribute to liver
protection during hepatic IRI.

4. Discussion

In this study, we identified a novel mechanism that YAP acti-
vation affects the release of hepatic EVs, which regulates DC
activation through CD47/CD172a axis. CD47-enriched EVs

could be a novel therapeutic strategy for treating hepatic
IRI by targeting on CD172a+ DCs.

The participation of YAP in IRI has been reported in dif-
ferent studies with controversial effects [4, 5]. In our study,
hepatic YAP protein and mRNA were induced in a time-
dependent manner in hepatic IRI, demonstrating the requi-
site role of YAP. This notion was strongly supported by
human OLT samples. Further, we reported that conditional
knockout YAP in hepatocytes led to severe hepatic damage
with IRI, by crossing Albumin-Cre (Alb-Cre) mice and Yap-
flox/flox mice [34]. These mice displayed increased serum ALT
levels and pathological hepatic changes, indicating YAP
silencing played a pivotal role in aggregating hepatic IRI.
Then, via serum EV isolation kit, we found in the serum of
YAP-HKO mice, the amount of sEVs decreased after IRI.
Thus, we further investigated how YAP knockout affects
sEV secretion and exacerbates hepatic injuries.

Actually, it has been found that IRI can induce the secre-
tion of EVs [29], but how YAP knockout in IRI decreased EV
secretion remains unclear. EVs are formed through direct
germination of plasma membrane or germination of endo-
membrane structure after fusing with late endosomes (LE)
or multivesicular body (MVB) and are secreted based on
the process that fuses with plasma membrane [35]. During
this process, the branched actin network is known to play a
key role in endosomal trafficking and EV secretion [36].
YAP can regulate the actin-binding activity of AMOT family
members by competing with F-actin for binding to
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Figure 3: YAP expression is required for the fusion of MVB and lysosomes. (a) Representative image of the fusion of lysosome (labeled by
LysoTracker staining, red) with late endosomes (labeled by RAB7 staining, green) significantly increased in YAP-KD compared to WT L02
cells with or without CytoD treatment. Scale bar, 10 μm. (b) Statistical analysis of the amounts of RAB7+ granules colocalize (orange) with
lysosome, n = 10, ∗∗∗p < 0:001, ns: p > 0:05, t-test.
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Figure 4: CD47-enriched EVs inhibit CD172a+ DC activation. (a) Volcano map presenting the 62 downregulated and 277 upregulated
proteins in EVs originated from WT L02 and YAP-KD L02 cells by mass spectrometry, in which CD47 were among the upregulated
proteins. (b) Bar chart showing the top 10 upregulated and downregulated proteins with CD47 ranked top four. Protein expression (Ex)
was converted to log2 (Ex), and the scale represented relative expression [20]. (c) Representative flow cytometry images of CD45+ cells
stained by CD172a combined with IL-12 p40 or TNF-α in sham or IRI mouse models. (d) The proportion of CD172a+ IL-12 p40+ or
CD172a+ TNF-α+ cells was shown. Bars represent the subset amounts of CD172a+ IL-12 p40+ or CD172a+ TNF-α+ cells (mean ± s:d:, n =
4 mice). (e) CD47 and CD172α expressions were analyzed on hepatic immune cell populations. CD172α+ cells were further subdivided
according to CD11c and IA/IE expressions. Intracellular expression of cytokines (IL-12 p40 and TNF-α) was examined on CD172α+

CD11c+ (solid red lines) and CD172α+ CD11c- (dotted blue lines) gated cells. (f) PMH-derived EVs were treated by CD47 neutralizing
antibody or control IgG. qPCR analysis showed a significant increase in inflammatory cytokines including IL-12 p40, TNF-α, and IL-6
after CD47 neutralization. n = 6, ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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Figure 5: EVs released from hepatocytes inhibit DC activation in a YAP-dependent manner. (a) Primary BMDCs were treated by a
conditioned medium from WT or YAP-HKO PMH and were stimulated with LPS. BMDCs were then cocultured with CD4+ and CD8+ T
cells isolated from BALB/c mice at the ratio of 1 : 10. The proliferation of CD4+ and CD8+ T cells was measured by CFSE-MLR. (b) The
extent of T cell proliferation in (a) was analyzed. (c) BMDCs were treated with a conditioned medium or EVs from WT or YAP-HKO
PMH culture supernatants, and then, the IL-12 p40 level in the culture medium was determined by ELISA. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p <
0:001. n = 4.
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AMOT130 [6]. It is possible that YAPmay regulate EV secre-
tion by regulating F-actin. In our study, we investigated the
mechanism involved in endosomal trafficking, which
involves the Rab family of small GTPases, lysosomes, and
remodeled actin [37]. We found that YAP knockdown by
lentivirus shRNA significantly reduced EV release, suggest-
ing that YAP participated in EV secretion. By comparing
WT and YAP-KD hepatocytes, we found that YAP-KD
decreased the formation of branching actin. By limiting the
fusion of intraluminal vesicles and cell membranes, it is con-
ducive to the development of RE and further decreases the
occurrence of EV membrane [24, 38]. RE is closely related
to the generation of EVs [39]. Both dynamic and branched
actin could reduce the fusion of LE and lysosome, thereby
increasing the secretory MVE as EVs. Therefore, we are the

first to report that YAP from hepatocytes regulate EV secre-
tion through F-actin in hepatic IRI. But our works focused on
the role of EVs released from hepatocytes; further studies are
needed to explore the effect of EVs from other nonparenchy-
mal cells, such as Kupffer cells, liver sinusoidal endothelial
cells, and immune cells. Besides, autophagy has been
reported to promote the fusion of MVB and autophagy
[40], and YAP is well known to regulate autophagy flux by
promoting autolysosome degradation [41]. Whether YAP
regulated EV secretion through autophagy requires further
study.

Then, to investigate the potential effect and mechanism
of EVs in hepatic IRI, we applied mass spectrometry to
explore the essential elements. Among the top factors, we
found that CD47 exists on the surface of EV membrane.
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Figure 6: CD47+ EVs alleviate hepatic IRI in mouse models. (a) CD47+ EVs and CD47- EVs were isolated by nonblocking anti-CD47 Ab
(REA170)-FITC and anti-FITC magnetic beads. Alix, TSG101, and CD47 in CD47+, CD47-, and total PMH-EVs were checked by western
blot. (b) Immunogold electron microscopy images showed the immunoreactivity for CD47 on CD47+ and CD47- EVs. (c) CD11c-DTR
were treated with DT (4mg/kg b.w.) and/or plus with CD47+ EVs (100 μg/kg b.w.) on 2 and 0 days before IRI model construction. The
severity of hepatic IRI was evaluated by Suzuki’s grading [33]. (d) Hepatocellular function was assessed by serum ALT level (U/L). (e)
ELISA analysis showed decreased concentrations of IL-6 and TNF-α after CD47+ EVs supply without CD47mAb treatment during IRI. n
= 6, ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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CD47 is considered to be the self-recognition marker that
specially binds CD172α, which profoundly inhibits the secre-
tion of inflammatory cytokines. The latest tumor research
uses CD47 to modify nanoparticles, which reduces the clear-
ance rate of nanoparticles by macrophages [42]. Studies have
shown that CD47 not only takes part in autoimmune diseases
and tumors but also plays a key role in IRI-related diseases in
kidneys and hearts [43, 44]. And CD172α+ DCs, as target
cells of CD47, are the main cells secreting proinflammatory
cytokines in hepatic IRI [15]. CD47mAb blockade confirmed
that EV-associated CD47 take the immunosuppressive effect
on DCs and reduced hepatic IRI. Under normal conditions,
DCs remain in an inactivated state. Under inflammation
stress, DCs are exposed to foreign antigens, microorganisms,
and inflammatory cytokines resulting in activation and then
subsequently initiating immune response [28]. Our results
highlighted the regulatory role of YAP in the regulation of
DC function during hepatic IRI. In this study, we observed
that hepatocyte culture medium obviously inhibited LPS-
induced IL-12 p40 production and antigen-presenting ability
of BMDCs in a YAP-dependent manner. We suspected that
under stress, YAP induced EV secretion from hepatocytes,
which have the immunosuppressive effect on DCs. Interest-
ingly, we treated EVs with detergent, which destructed the
membrane structures of EVs, reversing the inhibitory effect
of EVs on DCs. This suggested that YAP induced the secre-
tion of EVs to exert an immunosuppressive effect on DCs.
In addition, we found that CD47+ EVs can inhibit DC activa-
tion and inflammatory responses, which can explain their
protective effects on IRI. Together, these data suggest that

CD47-enriched-EVs can inhibit DC activation and decrease
subsequent hepatic damage.

Innate immunity is the dominant ingredient of liver IRI,
among which dendritic cells, macrophage, and neutrophils
are pivotal participants [45]. In comparison with neutrophils
and macrophages, DCs are the dominant local immune cells
surveilling and maintaining immune homeostasis with less
complex phenotype switches [46]. Moreover, DC has been
determined as the main contributors in hepatic IRI, affecting
the development of adaptive immunity by regulating the ini-
tial response and amplifying the innate immune response
[11]. The role of other immune cells such as macrophages
or neutrophils in hepatic IRI needs further investigation.

EVs have been proved to be ideal cargos for drug delivery,
which showed better stability, easier preservation, and more
precise targeting in comparison to traditional cell therapy
or RNA drugs [47]. The advantages of EVs make them
attractive as the potential candidates for treating many dis-
eases. The specific structure of phospholipid bilayer enables
EVs to protect their contents from in vivo degradation and
the disturbances from inflammatory microenvironment
[48]. Besides, EVs could be modified and produced in a stan-
dard process. Therefore, CD47-enriched EVs could be engi-
neered by integrating EVs with CD47 loading, which could
be manufactured at a large scale independent of the cell ori-
gin, which could be the future direction of precise drug
development.

In summary, our study reported a novel regulatory mech-
anism between EVs and DCs depending on YAP activation
in hepatic IRI (Figure 7). Specifically, YAP knockout
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Figure 7: Mechanism diagram for the immunosuppression effect of YAP/F-actin/EV-CD47 axis on DCs in hepatic IRI. IR stress stimulated
YAP expression in normal hepatocytes and promoted the remodeling of F-actin to form an endosomal trafficking network, which is critical
for EV formation. These EVs were rich in CD47, which could bind to CD172a receptor on DCs. In normal conditions, most of the MVB
would form into EVs with a little few into lysosome. When YAP expression was knocked down, however, F-actin failed to gather around
and form a network report; thus, the amount of EVs decreased with more vesicles engulfed by lysosome. The amount of CD47 was scarce,
and CD172+ DCs were activated and led to more severe damage. Therefore, EVs lack of CD47+ due to YAP knockout in hepatocytes,
activated DCs, and aggregated hepatic IRI, while YAP activation induced by hepatic IRI promoted the secretion of CD47-enriched EVs by
remodeling of cytoskeleton F-actin, and CD47+ EVs induced the immunosuppressive DCs and protected the liver from IRI. CD47+ EV
supplement could be a novel therapeutic strategy for hepatic IRI treatment.
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decreased the release of EVs in hepatocytes by affecting F-
actin, which reduced membrane formation and promoted
MVB to fuse into lysosomes. The YAP-deficient EVs are lack
of CD47, which failed to inactivate CD172α+ DCs and lead to
sustained IRI injury. CD47-enriched EV treatment blocked
CD172α+ DCs and protected IRI mice from hepatic injury.
Our findings suggested that the secretion of CD47+ EVs
depending on YAP activation played a protective role during
hepatic IRI, and CD47-enriched EVs could be a novel thera-
peutic strategy for hepatic IRI treatment.
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Supplementary Materials

Supplementary Figure 1: (A) representative images of YAP
expression in liver graft by immunohistochemistry (left
panel), 37 patients were in the YAP high-expression group
and 32 patients were in the YAP low-expression group; rep-
resentative histology of liver by H&E staining (right panel)
from indicated groups. Magnification ×200. (B) Suzuki’s his-
tological grading of the YAP high-expression group was sig-
nificantly lower than the low-expression group (score:
1:60 ± 0:08 vs. score: 2:37 ± 0:13, ∗∗∗p < 0:001). (C) The peak
serum ALT within 7 days after transplantation of the high-
expression group were significantly lower than the low-
expression group (448:4 ± 22:78U/L vs. 653:9 ± 36:44U/L,
∗∗∗p < 0:001). (D) The schematic diagram of design strategy
of YAP-HKO mice, and the plasmid map of the targeting
vector used in YAP-HKO mice. YAP-HKO mice were con-
structed by crossing Albumin-Cre (Alb-Cre) mice and Yap-
flox/flox mice. (E) YAP protein levels of the liver from two
independentWT and two independent YAP-HKOmice were
measured by western blot. Supplementary Figure 2: (A) EVs
isolated frommouse serum were visually confirmed by trans-
mission electron microscopy, and (B) subjected to western
blot analysis with antibodies to the indicated proteins. (C)
WT L02 cells secrete more EVs. EVs isolated from culture
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supernatants of WT or YAP knockout (KO) L02 cells were
subjected to nanoparticle tracking analysis (NanoSight) to
quantify the number and size distribution. (D) A total of
35μg of EVs isolated from culture supernatants of WT or
YAP-HKO PMH were analyzed by western blot using the
indicated antibodies. Data are representative of three inde-
pendent experiments. (E) Immunogold electron microscopy
analysis depicts the presence of CD47 on the surface of
PMH-derived EVs. (F) Quantitative RT-PCR-assisted detec-
tion of Trx1, HO-1, and Cyr61 after CD47+ EV treatment
during IRI. Supplementary Table 1: demographics, perioper-
ative situation, and laboratory results of liver transplantation
surgery patients. Supplementary Table 2: the 62 downregu-
lated and 277 upregulated proteins in EVs originated from
WT L02 and YAP-KD L02 cells by mass spectrometry.
(Supplementary Materials)
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