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In this paper, we have extended the operational matrix method for approximating the solution of the fractional-order two-
dimensional elliptic partial differential equations (FPDEs) under nonlocal boundary conditions. We use a general Legendre
polynomials basis and construct some new operational matrices of fractional order operations. (ese matrices are used to convert
a sample nonlocal heat conduction phenomenon of fractional order to a structure of easily solvable algebraic equations. (e
solution of the algebraic structure is then used to approximate a solution of the heat conduction phenomena. (e proposed
method is applied to some test problems.(e obtained results are compared with the available data in the literature and are found
in good agreement.

Dedicated to my father Mr. Sher Mumtaz, (1955-2021), who gave me the basic knowledege of mathematics.

1. Introduction

(e first approach to study a physical experiment is to derive
a mathematical expression, which formulates the dynamics
of the experiment under certain assumption. Most of the
physical phenomena are formulated in terms of ordinary
differential equations. Some problems in which the quantity
of interest also changes with respect to both space and time
result in partial differential equations. A wide range of
scientists devoted their very precise time to investigate
various important aspects of partial differential equations. In
[1], thermoelastic damping of in-plane vibration of a
functionally graded material has been studied based on the
Eringen nonlocal theory. In [2], a fractional sideways heat
flow problem is investigated, in which the interior mea-
surements at two interior points are given by continuous
data with deterministic noises.(e work in [3] deals with the
exothermic reactions model having a constant heat source in

the porous media with strong memory effects. (is article
explains the behavior of heat profile under the effect of
different definitions of the derivative. In [4], the Newtonian
liquid flow porous stretching/shrinking sheet utilizing a
Brinkman mode is investigated.

Nonlocal partial differential equations (PDEs) arise in
the mathematical modeling of various problems in physics,
engineering, ecology, and biological sciences [5–7].(e term
nonlocal problems means that the solution of PDEs on the
boundary is connected with the solution on some interior
points of the domain.(e case arises when the solution at the
boundary is not known. Such formulation is placed in a
separate class known as nonlocal boundary value problems.
Some of the numerical investigations regarding PDEs with
nonlocal boundary conditions reported in the literature can
be found in [8–15]. Among others, some of the well-known
methods that can be effectively applied to BVPs are finite
difference methods, mesh-free methods, finite element
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methods, etc. For instance, the one-dimensional heat
equation with nonlocal boundary conditions has been
studied in [12, 16–18]. Two-dimensional diffusion problems
with nonlocal boundary conditions have been discussed in
[13, 19].(e numerical solution of the Laplace equation with
integral boundary condition is explored in [8]. Similarly, the
numerical solution of multidimensional linear elliptic
equations with integral boundary conditions is explored in
[20].

To be specific, the fundamental problem of interest in
this article is to find an approximate solution of the frac-
tional-order two-dimensional Poisson equation, given as
follows:

z
σ
u

zx
σ +

z
σ
u

zy
σ � −f(x, y). (1)

(e above model is subject to two-point nonlocal
boundary conditions:

u(x, 0) � μ3(x),

u(x, 1) � μ4(x), 0≤x≤ 1,

u(0, y) � μ1(y),

u(1, y) � cu(ξ, y) + μ2(y), 0≤y≤ 1, 0≤ ξ < 1.

(2)

(e functions f(x, y), μ1(y), μ2(y), μ3(x) and μ4(x) are
given smooth functions. (e parameters ξ and c are two
positive constants. (e parameter σ (1< σ ≤ 2) represents
the order of derivative defined in Caputo sense.

Recently, many authors devoted their studies to the
approximate solution of integer order version of the above
problem. In [21], Yang et al. approximated the solution of
fractional order partial differential subjected to the simple
initial condition of the form:

u(x, 0) � g(x)u(0, t) � h(t). (3)

(e approach presented in [21], is interesting. However,
it can not be utilized directly to the approximate solution of
fractional order PDEs subject to nonlocal boundary con-
dition (2). Islam et al. [22] presented a comprehensive text
on the solution to the above problem. (ey implemented
two different methods for the solution of integer order
counterpart of (1). (eir first approach is based on Haar
wavelets. In the same paper, they also implemented a
modified form of the mesh-less method to solve the integer
order problem. Sajavicius [23] implemented the radial base
function approach to integer order problems and studied
some computational aspects of the proposed approach. (e
results presented in [22, 23] are the motivating factor of our
interest to study the approximate solution of the fractional-
order Poisson equation subject to nonlocal boundary
conditions.

Our approach is based on shifted Legendre polynomials
and their operational matrices. We derived some new op-
erational matrices to handle the problem. (e new opera-
tional matrices can handle the nonlocal boundary
conditions. (e interesting readers may find useful results
and some new strategies of this method in [24–27].

Application of orthogonal polynomials combined with Tau
and Collection method can be found in [28–31].

(e rest of the paper is organized as follows: in Section 2,
we recall some primary results from the fractional calculus
and approximation theory. In Section 3, we recall some
previously derived operational matrices and develop some
new operational matrices. In Section 4, a theoretical base is
developed for the conversion of the nonlocal FPDEs to the
matrix equation. Convergence analysis and error estimation
are also developed in the same section. In Section 5, the
proposed method is applied to some benchmark problems.
In the same section, the obtained results are demonstrated
and compared with other methods in the literature. Section 6
is devoted to the conclusions.

2. Preliminaries

In this section, we present some useful results and notations
which are of primary importance in our further
investigation.

Definition 1 (see [32–34]). Given an interval [a, b] ⊂ R, the
Riemann–Liouville fractional order integral of a function
ϕ ∈ (L1[a, b],R) of order α ∈ R+ is defined by the following:

I
α
a+ϕ(t) �

1
Γ(α)

􏽚
t

a
(t − s)

α− 1ϕ(s)ds, (4)

provided that the integral on the right-hand side exists.

Definition 2 (Caputo derivative). For a given function
ϕ(x) ∈ Cn[a, b], the Caputo fractional order derivative is
defined as follows:

D
αϕ(x) �

1
Γ(n − α)

􏽚
x

a

ϕ(n)
(t)

(x − t)
α+(1−n)

dt,

n − 1≤ α< n, n ∈ N,

(5)

where n � [α] + 1.

Hence, it follows that

D
α
x

k
�
Γ(1 + k)

Γ(1 + k − α)
x

k− α
,

I
α
x

k
�
Γ(1 + k)

Γ(1 + k + α)
x

k+α
,

D
α
C � 0, for a constantC.

(6)

2.1. 6e Shifted Legendre Polynomials. (e shifted Legendre
polynomials [35] defined on [0, 1] are given by the following
relation:

Pi(x) � 􏽘

i

k�0
Δ(i,k)x

k
, whereΔ(i,k) � (−1)

i+k (i + k)!

(i − k)!(k!)
2.

(7)
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(ese polynomials are bounded by 1, and we have the
following relation:

maxx∈[0,1] Pi(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 1. (8)

(ese polynomials are orthogonal on the domain [0, 1],
and the orthogonality condition is given as follows:

􏽚
1

0
Pi(x)Pj(x)dx �

1
2i + 1

, if i � j,

0, if i≠ j.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dy

dx
(9)

which implies that any f(x) ∈ C[0, 1] can be approxi-
mated by Legendre polynomials as follows:

f(x) ≈ 􏽘
m

a�0
CaPa(x), whereCa

� (2a + 1) 􏽚
1

0
f(x)Pa(x)dx.

(10)

In vector notation, we write the following:

f(x) ≈ K
T
M

􏽢PM(x), (11)

where M � m + 1 is the scale level of approximation. K is the
coefficient vector and 􏽢PM(x) is M terms function vector.
(ese notations can be easily extended to two-dimensional
space [35] and two-dimensional Legendre polynomials of
the order M are defined as a product function of two
Legendre polynomials

Pn(x, y) � Pa(x)Pb(y),

n � Ma + b + 1, a � 0, 1, 2, . . . , m, b � 0, 1, 2, . . . , m.

(12)

(e orthogonality condition of Pn(x, y) is as follows:

􏽚
1

0
􏽚
1

0
Pa(x)Pb(y)Pc(x)Pd(y)dxdy

�

1
(2a + 1)(2b + 1)

, if a � c, b � d;

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

Any f(x, y) ∈ C([0, 1] × [0, 1]) can be approximated by
the polynomials Pn(x, y) as follows:

f(x, y) ≈ 􏽘
m

a�0
􏽘

m

b�0
CabPa(x)Pb(y),

whereCab � (2a + 1)(2b + 1)

· 􏽚
1

0
􏽚
1

0
f(x, y)Pa(x)Pb(y)dxdy.

(14)

For simplicity, use the notation Cn � Cab where
n � Ma + b + 1 and rewrite (14) as follows:

f(x, y) ≈ 􏽘
M2

n�1
CnPn(x, y) � KM2Ψ(x, y), (15)

where KM2 is 1 × M2 coefficient row vector and is M2 × 1
column vector of functions defined by the following:Ψ(x, y)

Ψ(x, y) � ψ11(x, y), . . . ,ψ1M(x, y)ψ21(x, y), . . . ,ψ2M(x, y), . . . ,ψMM(x, y)􏼂 􏼃
T
, (16)

where ψi+1,j+1(x, y) � Pi(x)Pj(y).

3. New Operational Matrices

(e operational matrices of the fractional derivatives and
integrals play a vital role in converting the FPDEs to the
system of algebraic equations.(e operational matrices of all
derivatives are explicitly derived in our previous report [35].
We will need operational matrices in integration. (e op-
erational matrices of integration w.r.t x or y is not a difficult
task and can be easily derived using the same procedure as in
[35]. Tomake this study a self-contained material and for the
ease and interest of our readers, we have provided detailed
proof of deriving operational matrices of integration.

Lemma 1. Let Ψ(x, y) be the function vector as defined in
(16), then the fractional integral of order σ ofΨ(x, y) w.r.t y is
given by the following:

I
σ
y(Ψ(x, y))≃Gσ,y

M2×M2Ψ(x, y), (17)

where Gσ,y

M2×M2 is the operational matrix of the fractional
integration of order σ and is defined as follows:

Gσ,y

M2×M2 � Δq,r
′􏽨 􏽩, (18)

where q � Mi + j + 1, r � Ma + b + 1, for
i, j, a, b � 0, 1, 2, . . . , m and

Δq,r
′ � Ci,j,b,a,k � 􏽘

a

k�0
δi,a(2j + 1)

· 􏽘

j

l�0

(−1)
j+l+b+k

(j + l)!(b + k)!

(j − l)!(l!)
2
(k + l + σ + 1)(b − k)!k!Γ(k + σ + 1)

.

(19)

Proof. Taking the element Pn(x, y) defined by (12), then the
fractional-order integration of Pn(x, y) w.r.t y follows:
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I
σ
y Pn(x, y)( 􏼁 � Pa(x) 􏽘

b

k�0
(−1)

b+k (b + k)!

(b − k)!(k!)
2I

σ
yy

k

� 􏽘
b

k�0
(−1)

b+k (b + k)!

(b − k)!(k!)
2Pa(x)I

σ
yy

k
.

(20)

Using the definition of fractional integration, we obtain
the following:

I
σ
yPa(x)Pb(y) � 􏽘

b

k�0
(−1)

b+k (b + k)!

(b − k)!(k!)Γ(k + σ + 1)

· Pa(x)y
k+σ

, b � 0, 1, . . . , m,

(21)

Approximating Pa(x)yk+σ by M terms of Legendre
polynomials in two variables yields

Pa(x)y
k+σ ≈ 􏽘

m

i�0
􏽘

m

j�0
CijPi(x)Pj(y), (22)

where Cij � (2i + 1)(2j + 1) 􏽒
1
0 􏽒

1
0 Pa(x)yk+σPi(x)Pj(y)

dxdy, which in view of the orthogonality conditions implies
that

Cij,a � δi,a(2j + 1) 􏽘

j

l�0

(−1)
j+l

(j + l)!

(j − l)!(l!)
2
(k + l + σ + 1)

, (23)

where

δia �
1, if i � a,

0, if i≠ a,
􏼨 (24)

and hence, it follows that

I
σ
yPa(x)Pb(y) ≈ 􏽘

b

k�0
(−1)

b+k (b + k)!

(b − k)!(k!)Γ(k + σ + 1)
􏽘

m

i�0
􏽘

m

j�0
Cij,aPi(x)Pj(y)

≈ 􏽘
m

i�0
􏽘

m

j�0
􏽘

b

k�0
(−1)

b+k (b + k)!

(b − k)!(k!)Γ(k + σ + 1)
Cij,aPi(x)Pj(y)

≈ 􏽘
m

i�0
􏽘

m

j�0
Cij,a,b,kPi(x)Pj(y), b � 0, 1, . . . , M,

(25)

where

Cij,a,b,k � 􏽘
b

k�0
δi,a(2j + 1) 􏽘

j

l�0

(−1)
j+l+b+k

(j + l)!(b + k)!

(j − l)!(l!)
2
(k + l + σ + 1)(b − k)!k!Γ(k + σ + 1)

. (26)

Using the notations, q � Mi + j + 1, r � Ma + b + 1 and
Δq,r
′ � Ci,j,b,a,k for i, j, a, b � 0, 1, 2, 3, . . . , m, we get the de-

sired result. □

Lemma 2. Let Ψ(x, y) be as defined in (16), then the inte-
gration of order σ of Ψ(x, y) w.r.t x is given by the following:

I
σ
x(Ψ(x, y))≃Gσ,x

M2×M2Ψ(x, y), (27)

where Gσ,x
M2×M2 is the operational matrix of derivative of order

σ and is defined as follows:

Gσ,x
M2×M2 � Θq,r

′􏽨 􏽩, (28)

and r � Mi + j + 1, q � Ma + b + 1, Θq,r
′ � Si,j,b,a,k for

i, j, a, b � 0, 1, 2, . . . , m and

Si,j,b,a,k � 􏽘

a

k�0
δj,b(2i + 1) 􏽘

i

l�0

(−1)
i+l+a+k

(i + l)!(a + k)!

(i − l)!(l!)
2
(k + l + σ + 1)(a − k)!k!Γ(k + σ + 1)

. (29)
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Proof. (e proof of this lemma is similar to the above
lemma. □

(e operational matrices derived in the above two
lemmas are essential for our further analysis. However, these
matrices are not enough to fulfill our requirements. In our
analysis, we will face terms like cxn(1/Γ(σ))

􏽒
ξ
0 (ξ − s)σ− 1u(s, y)ds and cyn(1/Γ(σ)) 􏽒

ξ
0 (ξ − s)σ− 1

u(x, s)ds, where c and n are some positive constants and
0< ξ ≤ 1. (erefore to replace such terms with their equiv-
alent matrix form, we need to derive two more operational
matrices. (e operational matrices used to replace such term
by their equivalent matrix form are derived in the following
lemmas.

Lemma 3. Let u(x, y) � KM2Ψ(x, y), then for some con-
stants c and n, the following relation holds:

cy
n 1
Γ(σ)

􏽚
ξ

0
(ξ − s)

σ− 1
u(x, s)ds � KM2P(c,n,σ,ξ,y)

M2×M2 Ψ(x, y),

(30)

where

P(c,n,σ,ξ,y)

M2×M2 �

Δ1,1 Δ1,2 · · · Δ1,M2

Δ1,2 Δ2,2 · · · Δ2,M2

⋮ ⋮ ⋱ ⋮

ΔM2 ,1 ΔM2 ,2 · · · ΔM2 ,M2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

Δr,q � d
c,n,σ,ξ
a,b,i,j , where r � Mi + j + 1, q � Ma + b + 1 and

d
c,n,σ,ξ
a,b,i,j � δa,ic(2b + 1) 􏽘

j

k�0
􏽘

b

l�0
Δ(j,k)

·
(−1)

b+l
(b + l)!Γ(k + 1)ξσ+k

(b − l)!(l!)
2
(n + l + 1)Γ(σ + k)

.

(32)

Proof. Let

u(x, y) � KM2Ψ(x, y). (33)

For some constant c and n, we can write the following
expression:

cy
n 1
Γ(σ)

􏽚
ξ

0
(ξ − s)

σ− 1
u(x, s)ds

� KM2cy
n 1
Γ(σ)

􏽚
ξ

0
(ξ − s)

σ− 1Ψ(x, s)ds.

(34)

Now, considering the general term of Ψ(x, s), we can
write the following:

cy
n 1
Γ(σ)

􏽚
ξ

0
(ξ − s)

σ− 1
Pr(x, s)ds

� cy
n
Pi(x)

1
Γ(σ)

􏽚
ξ

0
(ξ − s)

σ− 1
Pj(s)ds,

(35)

where we use the notation r � Mi + j + 1. By using the
definition of Legendre polynomials, we can write the
following:

cy
n 1
Γ(σ)

􏽚
ξ

0
(ξ − s)

σ− 1
Pr(x, s)ds

� 􏽘

j

k�0
cΔ(j,k)

Γ(k + 1)ξσ+k

Γ(σ + k)
y

n
Pi(x).

(36)

Approximating Pi(x)yn by Legendre polynomials in two
variables yields

Pi(x)y
n ≈ 􏽘

m

a�0
􏽘

m

b�0
dabPa(x)Pb(y), (37)

where dab � (2a + 1)(2b + 1) 􏽒
1
0 􏽒

1
0 Pi(x)ynPa(x)Pb(y)

dxdy, which in view of the orthogonality conditions implies
that

dab � δa,i(2b + 1) 􏽘
b

l�0

(−1)
b+l

(b + l)!

(b − l)!(l!)
2
(n + l + 1)

, (38)

where

δa,i �
1, if i � a,

0, if i≠ a.
􏼨 (39)

Hence, it follows that

cy
n 1
Γ(σ)

􏽚
ξ

0
(ξ − s)

σ− 1
Pr(x, s)ds

≈ 􏽘

j

k�0
cΔ(j,k)

Γ(k + 1)ξσ+k

Γ(σ + k)
􏽘

m

a�0
􏽘

m

b�0
dabPa(x)Pb(y)

≈ 􏽘
m

a�0
􏽘

m

b�0
􏽘

j

k�0
cΔ(j,k)

Γ(k + 1)ξσ+k

Γ(σ + k)
dabPa(x)Pb(y)

≈ 􏽘
m

a�0
􏽘

m

b�0
d

c,n,σ,ξ
a,b,i,j,kPa(x)Pb(y),

(40)

where

d
c,n,σ,ξ
a,b,i,j � δa,ic(2b + 1) 􏽘

j

k�0
􏽘

b

l�0
Δ(j,k)

·
(−1)

b+l
(b + l)!Γ(k + 1)ξσ+k

(b − l)!(l!)
2
(n + l + 1)Γ(σ + k)

.

(41)

Using the notations, r � Mi + j + 1, q � Ma + b + 1 and
Δr,q � d

c,n,σ,ξ
a,b,i,j for i, j, a, b � 0, 1, 2, 3, . . . , m, we get the desired

result. □

Lemma 4. Let u(x, y) � KM2Ψ(x, y), then for some con-
stants c and n, the following relation holds:
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cx
n 1
Γ(σ)

􏽚
ξ

0
(ξ − s)

σ− 1
u(s, y)ds � KM2P(c,n,σ,ξ,x)

M2×M2 Ψ(x, y),

(42)

where

P(c,n,σ,ξ,x)

M2×M2 �

Δ1,1 Δ1,2 · · · Δ1,M2

Δ1,2 Δ2,2 · · · Δ2,M2

⋮ ⋮ ⋱ ⋮

ΔM2 ,1 ΔM2 ,2 · · · ΔM2 ,M2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (43)

Δr,q � d
c,n,σ,ξ
a,b,i,j , where q � Mi + j + 1, r � Ma + b + 1 and

d
c,n,σ,ξ
a,b,i,j � δb,jc(2b + 1) 􏽘

i

k�0
􏽘

a

l�0
Δ(i,k)

(−1)
a+l

(a + l)!Γ(k + 1)ξσ+k

(a − l)!(l!)
2
(n + l + 1)Γ(σ + k)

.

(44)

Proof. (is lemma can be easily proved by following similar
steps as in the previous lemma. (is is left as an exercise for
interested readers. □

4. Main Result: Application of
Operational Matrices

(e operational matrices developed in the previous section
have a wide range of applications. As an application of the
above matrices, we solve the following fractional order
Poisson equation:

z
σ
u

zx
σ +

z
σ
u

zy
σ � −f(x, y), (45)

subject to nonlocal two-point boundary conditions

u(x, 0) � μ3(x), u(x, 1) � μ4(x), 0≤x≤ 1,

u(0, y) � μ1(y), u(1, y) � cu(ξ, y) + μ2(y),

0≤y≤ 1, 0≤ ξ < 1.

(46)

Readers may see how simple steps lead us to the ap-
proximate solution of such complicated problems with high
accuracy. As usual, we seek the solution to the problem in
terms of shifted Legendre polynomials given by the
following:

z
σ
u

zy
σ � KM2Ψ(x, y). (47)

On application of the fractional integral of order σ and
making use of Lemma 2, we get the following relation:

u(x, y) � KM2Gσ,y

M2×M2Ψ(x, y) + c0 + c1y. (48)

Using the conditions at y � 0 and y � 1, we get the
following relation:

c0 � μ3(x),

c1 � μ4(x) − KM2Gσ,y

M2×M2Ψ(x, 1) + μ3(x).
(49)

Using the values of c0 and c1 in (48), we get the following:

u(x, y) � KM2Gσ,y

M2×M2Ψ(x, y) + μ3(x)(1 − y)

+ μ4(x)y − yKM2Gσ,y

M2×M2Ψ(x, 1).
(50)

which in view of Lemma 3 can be written as follows:

u(x, y) � KM2 Gσ,y

M2×M2 + P(−1,1,σ,1,y)
􏼐 􏼑Ψ(x, y) + F1M2Ψ(x, y),

(51)

where F1M2Ψ(x, y) � μ3(x)(1 − y) + μ4(x)y.
Now approximating the source term

f(x, y) � FM2Ψ(x, y), and using (47) in (45), we can write
the following:

z
σ
u

zx
σ � −KM2Ψ(x, y) − FM2Ψ(x, y). (52)

On application of fractional integral of order σ w.r.t. x,
we can write the following:

u(x, y) � −KM2Gσ,x
M2×M2Ψ(x, y) − FM2Gσ,x

M2×M2Ψ(x, y)

+ d0 + d1x.

(53)

Using the initial conditions at x � 0 we can easily
d0 � μ1(y); however, the second constant is not known. We
can use the two-point boundary conditions:

u(1, y) � −KM2Gσ,x
M2×M2Ψ(1, y) − FM2Gσ,x

M2×M2Ψ(1, y)

+ μ1(y) + d1,

u(ξ, y) � −KM2Gσ,x
M2×M2Ψ(ξ, y) − FM2Gσ,x

M2×M2Ψ(ξ, y)

+ μ1(y) + d1ξ.

(54)

Using the equality u(1, y) � cu(ξ, y) + μ2(y), we get the
following:

− KM2Gσ,x
M2×M2Ψ(1, y) − FM2Gσ,x

M2×M2Ψ(1, y) + μ1(y) + d1
� −cKM2Gσ,x

M2×M2Ψ(ξ, y)

− cFM2Gσ,x
M2×M2Ψ(ξ, y) + cμ1(y) + d1cξ + μ2(y).

(55)

From which we can calculate the value of d1 as follows:

d1 � r1KM2Gσ,x
M2×M2Ψ(1, y) − r1cKM2Gσ,x

M2×M2Ψ(ξ, y)

+ r1FM2Gσ,x
M2×M2Ψ(1, y) − r1cFM2Gσ,x

M2×M2Ψ(ξ, y)

+(c − 1)r1μ1(y) + r1μ2(y),

(56)

6 Mathematical Problems in Engineering



where r1 � (1/1 − cξ)≠ 0. Using the value of d0 and d1 in
(53), we can write the following:

u(x, y) � −KM2Gσ,x
M2×M2Ψ(x, y) − FM2Gσ,x

M2×M2Ψ(x, y)

+ μ1(y) + r1xKM2Gσ,x
M2×M2Ψ(1, y)−

r1xcKM2Gσ,x
M2×M2Ψ(ξ, y) + r1xFM2Gσ,x

M2×M2Ψ(1, y)

− r1xcFM2Gσ,x
M2×M2Ψ(ξ, y)+

(c − 1)r1μ1(y) + r1μ2(y)( 􏼁x,

(57)

which in view of Lemma 4, can be written as follows:

(x, y) � −KM2Gσ,x
M2×M2Ψ(x, y) − FM2Gσ,x

M2×M2Ψ(x, y)

+ KM2P
r1 ,1,σ,1,x( )

M2×M2 Ψ(, y)−

KM2P
r1c,1,σ,ξ,x( )

M2×M2 Ψ(x, y) + FM2P
r1 ,1,σ,1,x( )

M2×M2 Ψ(x, y)

− FM2P
r1c,1,σ,ξ,x( )

M2×M2 Ψ(x, y) + F2M2Ψ(x, y),

(58)

where F2M2Ψ(x, y) � μ1(y) + (c − 1)r1μ1(y) + r1μ2(y))x.
In simplified notation, we can write the following:

u(x, y) � KM2 P r1 ,1,σ,1,x( )
M2×M2 − Gσ,x

M2×M2 − P r1c,1,σ,ξ,x( )
M2×M2 r1c, 1, σ, ξ, x􏼒 􏼓Ψ(x, y)+

FM2 P r1 ,1,σ,1,x( )
M2×M2 − Gσ,x

M2×M2 − P r1c,1,σ,ξ,x( )
M2×M2􏼒 􏼓Ψ(x, y) + F2M2Ψ(x, y).

(59)

On comparing equation (51) and (59), we can write the
following:

KM2 Gσ,y

M2×M2 + P(−1,1,σ,1,y)

M2×M2􏼐 􏼑Ψ(x, y) � KM2 P r1 ,1,σ,1,x( )
M2×M2 − Gσ,x

M2×M2 − P r1c,1,σ,ξ,x( )
M2×M2􏼒 􏼓Ψ(x, y)+

FM2 P r1 ,1,σ,1,x( )
M2×M2 − Gσ,x

M2×M2 − P r1c,1,σ,ξ,x( )
M2×M2􏼒 􏼓Ψ(x, y) + F2M2Ψ(x, y) − F1M2Ψ(x, y).

(60)

Canceling out the common term, we can write the
following:

KM2 Gσ,y

M2×M2 + P(−1,1,σ,1,y)

M2×M2􏼐 􏼑 � KM2 P r1 ,1,σ,1,x( )
M2×M2 − Gσ,x

M2×M2 − P r1c,1,σ,ξ,x( )
M2×M2􏼒 􏼓+

FM2 P r1 ,1,σ,1,x( )
M2×M2 − G

σ,x
M2×M2 − P

r1c,1,σ,ξ,x( )
M2×M2􏼒 􏼓 + F2M2 − F1M2 .

(61)

which is a linear system of equations and can be easily solved
for the unknown vector KM2 , which can be used in (51) or
(59) to get an approximate solution to the problem.

4.1.ErrorBound. Considering a sufficiently smooth function
g(x, y) on Δ � [0, η] × [0, η], let 􏽑

M,M

(x, y) is the space span

by m term Legendre polynomials. We assume that
g(M,M)(x, y) is its best approximation in 􏽑

(M,M)

(x, y). For

this purpose, consider a polynomial 􏽢P(M,M)(x, y) is any
polynomial of degree ≤M in variable x and y, respectively.
(en, from the definition of best approximation,

g(x, y) − g(M,M)(x, y)
����

����2≤ g(x, y) − P(M,M)(x, y)
����

����2.

(62)

(e inequality in (62) also holds if P(M,M)(x, y) is in-
terpolating polynomial at point (xi, yj); then by the similar
arguments as in [36], the error of the approximation is given
by the following:

g(x, y) − P(M,M)(x, y)
����

����2≤ C1 + C2 + C3
1

M
M+1􏼠 􏼡

1
M

M+1,

(63)

where
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C1 �
1
4
max(x,y)∈[0,1]×[0,1]

z
M+1

zx
M+1 g(x, y)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

C2 �
1
4
max(x,y)∈[0,1]×[0,1]

z
M+1

zy
M+1 g(x, y)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

C3 �
1
16
max(x,y)∈[0,1]×[0,1]

z
2M+2

zx
M+1

zy
M+1 g(x, y)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(64)

We refer the reader to [37] for the proof of the above
result. From the above result, it is clear that the error of
approximation of a function decreases with the increase of
M.

5. Test Problems

We solve the fractional order generalization of some bench
mark problems from [22, 23].

Test Problem 1 (see [22, 23]). Consider (45) with the fol-
lowing functions:

f(x, y) � −2e
(x+y)

,

μ1(y) � e
y
,

μ2(y) � e
(1+y)

− ce
(ξ+y)

,

μ3(x) � e
x
,

μ4(x) � e
(x+1)

.

(65)

(e exact solution of the problem for fix σ � 2 is e(x+y).

Test Problem 2 (see [22, 23]). Consider (45) with the fol-
lowing functions:

f(x, y) � −2π2 sin(πx)sin(πy),

μ1(y) � 0,

μ2(y) � −sin(πx)sin(πy),

μ3(x) � 0,

μ4(x) � 0.

(66)

(e exact solution of the problem for the fix σ � 2 is
sin(πx)sin(πy).

Test Problem 3 (see [22, 23]). Consider (45) with the fol-
lowing functions.

f(x, y) � −
Γ(5)

Γ(5 − σ)
x

(4− σ)
y − y

(4− σ)
􏼐 􏼑􏼠

−
Γ(4)

Γ(4 − σ)
x

(3− σ)
(3y − 1) − 4y

(3− σ)
􏼐 􏼑

+3
Γ(3)

Γ(3 − σ)
x

(2−σ)
y − y

(2−σ)
􏼐 􏼑􏼡,

μ1(y) � y
3

− y(y − 1)
3
,

μ2(y) �
y

16
+
7
8
,

μ3(x) � x
3
,

μ4(x) � x(x − 1)
3

+ x
3

+ 1.

(67)

(e exact solution of the problem for 1< σ ≤ 2 is
x3 − y(y − 1)3 + y3 + xy(x − 1)3.

6. Results and Discussion

We solve the above problems with the proposed method.
(e first two problems are selected from [22, 23], while the
third problem is a constructed problem. In [22, 23], these
problems are studied and solved with two different methods,
Haar wavelets and a family of the mesh-less method based
on the radial base functions. We solved these problems with
the operational matrices and compared our results with the
results reported in these references. Tomeasure accuracy, we
calculate the following parameters:

L∞ � maxj�1,2,...,M u xj, yj􏼐 􏼑 − u xj, yj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
Δy
Δx

Lrms �

�����������������������

􏽘

M

j�0

u xj, yj􏼐 􏼑 − u xj, yj􏼐 􏼑􏼐 􏼑
2

M
.

􏽶
􏽴 (68)

If σ ≠ 2, then the exact solution of the first two problems
is not known. We use the residual error norms to measure
the accuracy of the proposed method for the fractional
values of σ. (ese residual norms are defined as follows:

R∞ � maxj�1,2,...,M r xj, yj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

Rrms �

���

􏽘

M

j�0

􏽶
􏽴

r xj, yj􏼐 􏼑

M

, (69)

where r(x, y) is defined as follows:
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r(x, y) �
z
σ
u

zx
σ +

z
σ
u

zy
σ + f(x, y). (70)

(e first problem is solved using Haar wavelets (HWCM),
mesh-less method without splitting (MCTMQ), and with
splitting (MCTSMQ). We fixed σ � 2 and obtained an ap-
proximate solution of Test Problem 1 for different values of scale
levelM.We compared our results withHWCM,MCTMQ, and
MCTSMQ.(e comparison of Lrms of Test Problem 1 obtained
with the proposed method and HWCM, MCTMQ, and
MCTSMQ are shown in Table 1. We can easily note that Lrms
obtained with HWCM at M � 16 is 8.2022 × 10− 3; note that at
this level, HWCMconverts the problem to a system of algebraic
equations of 1152 unknowns. While the proposed method
yields Lrms � 1.3381 × 10− 10, while converting the problem to a
system of algebraic equations of 81 unknowns. Lrms of this
problem obtained with MCTMQ and MCTSMQ at N � 64 is
4.1256 × 10− 4 and 3.2737 × 10− 7, respectively. (is shows the
superiority of the proposed method over HWCM andmeshless
methods.

(e parameters L∞ for Test Problem 1 obtained with the
proposed method are also compared with HWCM,
MCTMQ, and MCTSMQ. (e results are displayed in Ta-
ble 2. It is observed that L∞ for this problem obtained with
the proposed method at M � 8 is 3.8661 × 10− 10 while
HWCM yields 2.5230 × 10− 4 at M � 16, and meshless
method MCTMQ and MCTSMQ yield 1.4665 × 10− 3 and
2.4120 × 10− 6.

(e proposed method along with HWCM and the
meshless method convert the problem to the system of linear
algebraic equations. (e computational cost and stability of
the resulting algebraic equations are different for different

methods. Often some method yields a very approximate
solution, but the computational cost is much higher. We
compared the condition number κ and CPUtime of the
proposed method with MCTMQ and MCTSMQ. It is ob-
served that the proposed method is more robust than these
methods. At M � 64, MCTMQ solves the algebraic equa-
tions in 53.78 seconds, and MCTSMQ takes 51.72 seconds to
solve the system, while the proposed method solves the
system in 0.09516 seconds. (e condition number of the
proposed method is much less than MCTMQ and
MCTSMQ. It means that the proposed method converts the
problem to the system of algebraic equations, which is more
stable as compared to MCTMQ and MCTSMQ. (e com-
parison of CPU time and conditions number of the proposed
method with MCTQM and MCTSMQ at different scale
levels is shown in Table 3.

(e accuracy of the present method is analyzed at different
values of c.We chose c � −8, 2, 8 and calculate L∞ and Lrms for
scale levels. We observed that the accuracy of the proposed
method does not depend on the values of c. (e values of L∞
and Lrms obtained with the proposedmethod at different values
of c using scale level M � 10 are compared with the L∞ and
Lrms obtained with the HWCM at M � 32 in Table 4. One can
see that the accuracy obtained with the proposedmethod is very
high as compared to HWCM. (e error norms at different
values of c are also compared with MCTSMQ and the results
are displayed in Figure 1. One can note that the accuracy re-
mains the same for all values of c, also atM � 8 andM � 9, the
error norms are much less than the error norms obtained using
MCTSMQatN � 64.(eCPU time at different values of c and
M � 10 are shown in Figure 2(a). While the condition number
of the resultingmatrix equation at different values of c is shown

Table 1: Lrms of Test Problem 1 obtained with the proposed method (PM) at different values of M and its comparison with HWCM [22],
MCTMQ [22], and MCTSMQ [22].

HWCM [22] MCTMQ [22] MCTSMQ [22] Proposed method
M (n) Lrms N Lrms Lrms M (n) Lrms

1(12) 4.0860 × 10− 3 4 1.7629 × 10− 4 1.2407 × 10− 4 5(25) 1.0404 × 10− 4

2(32) 1.7549 × 10− 3 8 3.4559 × 10− 6 5.5859 × 10− 6 6(36) 5.0660 × 10− 6

4(98) 6.4795 × 10− 4 16 2.5542 × 10− 5 3.6689 × 10− 6 7(49) 1.6107 × 10− 7

8(320) 2.3142 × 10− 4 32 3.6732 × 10− 4 6.6522 × 10− 7 8(64) 4.3049 × 10− 9

16(1152) 8.2022 × 10− 3 64 4.1256 × 10− 4 3.2737 × 10− 7 9(81) 1.3381 × 10− 10

32(4325) 2.9017 × 10− 3 Not available 10(100) 3.9221 × 10− 12

Here, we fix ξ � 0.5 and c � 1.

Table 2: L∞ of Example 5.1 obtained with proposed method (PM) at different values of M and its comparison with HWCM [22], MCTMQ
[22], and MCTSMQ [22].

HWCM [22] MCTMQ [22] MCTSMQ [22] Proposed method
M(n) L∞ N L∞ L∞ M(n) L∞

1(12) 3.8454 × 10− 3 4 4.9876 × 10− 4 2.8688 × 10− 4 5(25) 2.9475 × 10− 4

2(32) 1.4767 × 10− 3 8 1.1276 × 10− 5 1.5987 × 10− 5 6(36) 1.4687 × 10− 5

4(98) 3.9916 × 10− 4 16 7.7560 × 10− 5 1.7883 × 10− 5 7(49) 9.7986 × 10− 7

8(320) 1.0055 × 10− 4 32 1.0744 × 10− 3 3.4368 × 10− 6 8(64) 9.9163 × 10− 9

16(1152) 2.5230 × 10− 4 64 1.4665 × 10− 3 2.4120×10−6 9(81) 3.8661 × 10− 10

32(4325) 6.3147 × 10− 4 Not available 10(100) 1.2467 × 10− 11

Here, we fix ξ � 0.5 and c � 1.
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in Figure 2(b), also in the same figure, we plot the condition
number obtained with MCTSMQ. We see that the condition
number forMCTSMQ is approximately equal to 1019, while the
condition number of the proposed method is approximately
equal to 1017, which guarantees the robustness and stability of

the proposed method as compared to MCTSMQ. From the
above observations, we see that the proposedmethod provides a
very accurate estimate of the solution of the problem.

HWCM, MCTMQ, and MCTSMQ can only handle
integer order Poisson equations. Besides high accuracy, one

Table 3: CPU time and condition number κ of the proposed method and its comparison with MCTMQ [22] and MCTSMQ [22].

MCTMQ [22] MCTSMQ [22] Proposed method
N κ CPU time κ CPU time M κ CPU time
4 2.8541 × 1010 0.00 3.0574 × 1012 0.00 6 1.3472 × 1017 0.00255
8 9.3912 × 1018 0.00 4.7522 × 1016 0.00 7 2.6632 × 1016 0.00257
16 2.2347 × 1019 0.04 4.3691 × 1018 0.02 8 4.4841 × 1016 0.00371
32 5.4623 × 1021 0.86 5.7284 × 1019 0.78 9 6.8584 × 1016 0.01689
64 4.4325 × 1021 53.78 3.2699 × 1020 51.72 10 1.3208 × 1017 0.09516

Table 4: L∞ and Lrms of Example 5.1 for different values of c at M � 10 and its comparison with HWCM [22] (M � 32).

c
Haar wavelets [22] Proposed method

L∞ Lrms L∞ Lrms

−8 6.1545 × 10− 6 1.5072 × 10− 5 3.5506 × 10− 11 8.5152 × 10− 12

−6 5.8644 × 10− 6 1.4942 × 10− 5 3.5660 × 10− 11 3.4538 × 10− 12

−4 5.2613 × 10− 6 1.4837 × 10− 5 3.1595 × 10− 11 6.7567 × 10− 12

−2 3.8832 × 10− 5 1.5076 × 10− 5 1.4811 × 10− 11 3.6505 × 10− 12

0 4.3925 × 10− 5 1.9345 × 10− 5 7.4749 × 10− 12 2.9916 × 10− 12

2 3.5678 × 10− 5 9.5986 × 10− 5 2.5216 × 10− 11 8.7175 × 10− 12

4 3.3974 × 10− 5 6.2947 × 10− 5 3.3240 × 10− 11 5.7501 × 10− 12

6 4.7081 × 10− 5 6.8228 × 10− 5 1.0725 × 10− 10 1.6889 × 10− 11

8 3.4825 × 10− 5 4.7649 × 10− 5 1.4925 × 10− 10 1.8421 × 10− 11
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100
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m

s

−5 0 5 10−10
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Proposed method M = 6

Proposed method M = 7
Proposed method M = 8

(b)

Figure 1: (a) L∞ of Test Problem 1 obtained with the proposed method at different values of c and its comparison with MCTSMQ (black
dots). (b) Lrms of Test Problem 1 obtained with the proposed method at different values of c and its comparison withMCTSMQ (black dots).
Here we fix ξ � 0.5 and obtain results at different scale levels.
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of the significant advantages of the proposed method is that
it can also solve the fractional order Poisson equation (the
case when 1< σ ≤ 2). Note that if σ ≠ 2 then the exact solution
of the first two problems is not known. (erefore, to check

the accuracy of the approximate solution, we use two pa-
rameters Rrms and R∞. We approximate solution for some
fractional values of σ; i.e., σ � 1.5, 0.1, 2, for each value of σ
we calculate the residual norms Rrms and R∞ at scale level

0
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Proposed method M = 7
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(b)

Figure 2: (a) CPU time of Test Problem 1 consumed by proposed method at different values of c and different scale levels. (b) Condition
number of proposed method at different scale level and different values of c, and its comparison with condition number obtained with
MCTSMQ(black dots).
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Figure 3: (a) Residual norm Rrms of Test Problem 1 at different scale levels for different values of σ . (b) Residual norm R∞ of Test Problem 1
at different scale levels for different values of σ.
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Figure 4: (a) CPU time of Test Problem 1 at different scale levels for different values of σ . (b) Condition number κ of Problem 5.1 at different
scale levels for different values of σ.

Table 5: L∞ of Test Problem 2 obtained with the proposed method and its comparison with HWCM, MCTMQ, and MCTSMQ [22].

HWCM MCTMQ MCTSMQ Proposed method
M (n) L∞ N L∞ L∞ M (n) L∞

1(12) 8.4747 × 10− 2 4 5.3642 × 10− 3 5.3050 × 10− 3 5(25) 2.7635 × 10− 3

2(32) 2.9680 × 10− 2 8 3.1607 × 10− 5 1.0564 × 10− 4 6(36) 3.2254 × 10− 3

4(98) 8.0890 × 10− 3 16 1.1891 × 10− 4 6.2451 × 10− 6 7(49) 7.6056 × 10− 5

8(320) 2.0735 × 10− 3 32 1.4152 × 10− 2 3.5764 × 10− 6 8(64) 1.1291 × 10− 4

16(1152) 5.2168 × 10− 4 64 5.8808 × 10− 3 1.1688 × 10− 6 9(81) 2.26363 × 10− 7

32(4325) 1.3062 × 10− 4 Not available 10(100) 1.9237 × 10− 7

(ese results are obtained using ξ � 0.5 and c � 1.

Table 6: Lrms of Test Problem 2 obtained with the proposed method and its comparison with HWCM, MCTMQ, and MCTSMQ [22].

HWCM MCTMQ MCTSMQ Proposed method
M (n) Lrms N Lrms Lrms M (n) Lrms

1(12) 9.5549 × 10− 2 4 2.8660 × 10− 3 2.8212 × 10− 3 5(25) 1.0591 × 10− 3

2(32) 3.7649 × 10− 2 8 1.6169 × 10− 5 5.5406 × 10− 5 6(36) 1.1128 × 10− 3

4(98) 1.3624 × 10− 2 16 6.2722 × 10− 5 3.3011 × 10− 6 7(49) 1.0155 × 10− 5

8(320) 4.8439 × 10− 3 32 3.6982 × 10− 3 1.6629 × 10− 6 8(64) 3.0552 × 10− 5

16(1152) 1.7150 × 10− 3 64 1.7118 × 10− 3 5.2915 × 10− 7 9(81) 9.0136 × 10− 8

32(4325) 6.0655 × 10− 4 Not available 10(100) 8.5282 × 10− 8

(ese results are obtained using ξ � 0.5 and c � 1.

Table 7: L∞ and Lrms of Test Problem 3 for different values of c at M � 10 and its comparison with HWCM [22] (M � 32).

HWCM [22] Proposed method
c L∞ Lrms L∞ Lrms

−8 1.5165 × 10− 4 3.5243 × 10− 4 2.6752 × 10− 6 5.5132 × 10− 7

−6 1.4002 × 10− 4 3.4396 × 10− 4 1.3673 × 10− 6 2.7300 × 10− 7

−4 1.2134 × 10− 4 3.3437 × 10− 4 8.6599 × 10− 7 2.1811 × 10− 8

−2 8.6389 × 10− 5 3.3085 × 10− 4 2.1177 × 10− 7 6.0997 × 10− 8

0 1.0031 × 10− 4 4.0150 × 10− 4 1.3658 × 10− 7 5.7502 × 10− 8

2 6.8998 × 10− 4 1.8333 × 10− 3 2.2636 × 10− 7 9.0136 × 10− 7

4 5.7799 × 10− 4 1.1488 × 10− 3 2.2760 × 10− 6 5.1555 × 10− 7

6 3.5700 × 10− 4 6.7976 × 10− 4 3.5376 × 10− 6 7.4677 × 10− 7

8 2.9952 × 10− 4 5.6825 × 10− 4 4.1572 × 10− 6 7.4056 × 10− 7
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ranges from 5 to 25. We observe that the solution is not too
accurate for low values of σ. As the value of σ increases, the
solution becomes more andmore accurate. Also, as the value
of M increases, the residual norms decreases, which guar-
antees the convergence of approximate solution for the

fractional values of σ. (e Rrms and R∞ for Test problem 1
are shown in Figure 3. From the simulation of fractional
values of σ, we observe that the CPU time and condition
number κ remain the same as for σ � 2. (ese results, for
some typical values of σ, are shown in Figure 4.
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Figure 5: (a) L∞ of Test Problem 2 obtained with the proposed method at different values of c and its comparison with MCTSMQ (black
dots). (b) Lrms of Test Problem 2 obtained with the proposed method at different values of c and its comparison with MCTSMQ (blue dots).
Here we fix ξ � 0.5 and obtain results at different scale levels.
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Figure 6: (a) CPU time of Test Problem 2 consumed by the proposed method at different values of c and different scale levels. (b) Condition
number of the proposed method at different scale level and different values of c, and its comparison with condition number obtained with
MCTSMQ (red dots).
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Figure 7: (a) L∞ of Test Problem 3 obtained with the proposedmethod at different values of σ and using different scale levels. (b) Lrms of Test
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Test Problem 2 is also analyzed, and the same conclusion
is made. We fix ξ � 0.5 and σ � 2 and solve Test Problem 2
with the proposed method using different values of M. We

observe that the proposed method yields a more accurate
solution as compared to HWCM, MCTMQ, and MCTSMQ.
(e error norm L∞ of the proposed method obtained using

×10−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L ∞

−7 −5 −3 −1 1 3 5 7 9−9
γ

σ = 1.5
σ = 1.6
σ = 1.7

σ = 1.8
σ = 1.9

(a)

×10−4

0

1

2

L r
m

s

−7 −5 −3 −1 1 3 5 7 9−9
γ

σ = 1.5
σ = 1.6
σ = 1.7

σ = 1.8
σ = 1.9

(b)

Figure 9: (a) L∞ of Test Problem 3 obtained with the proposed method at different values of c and the fractional values of σ using scale level
M � 10. (b) Lrms of Problem 5.3 obtained with the proposed method at different values of c and the fractional values of σ using scale level
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Figure 10: (a) CPU time of Test Problem 3 obtained with the proposed method at different values of c and the fractional values of σ using
scale level M � 10. (b) Condition number κ of Test Problem 3 obtained with the proposed method at different values of c and the fractional
values of σ using scale level M � 10. Here, we fix ξ � 0.5 and obtain results at different scale levels.
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M � 9 is 2.26363 × 10− 7, while L∞ for HWCM is
5.2168 × 10− 4, and for MCTMQ and MCTSMQ, the error
norm is found to be 5.8808 × 10− 3 and 1.1688 × 10− 6, re-
spectively. (e detailed results of the comparison of L∞ of
the proposed method and other methods are displayed in
Table 5. One can easily see that the proposed method yields
better results than other methods.

Similarly, the error norm Lrms is also compared with
HWCM, MCTMQ, and MCTSMQ. (e proposed method
yields Lrms � 9.0136 × 10− 8 at M � 9, while the value of Lrms
obtained with HWCM is 1.7150 × 10− 3 and that forMCTMQ
and MCTSMQ is 1.7118 × 10− 3 and 5.2915 × 10− 7, respec-
tively. It is a clear indication of the superiority of the proposed
method over these methods. (e detailed results of the
comparison of Lrms are displayed in Table 6.

We fixed σ � 2 and M � 10, and simulated the algorithm
using different choices of parameter c ranges from −8 to 8.
For every value of c, we record the value of L∞ and Lrms. It is
found that maximum values of L∞ and Lrms are 4.1572 ×

10− 6 and 7.4056 × 10− 7, which are obtained at c � 8. We
compared L∞ and Lrms, for every value of c, with HWCM,
and it is observed that for every value of c, the proposed
method yields a correct solution. A detailed comparison is
presented in Table 7. L∞ and Lrms for different values of c of
the proposed method are also compared with MCTSMQ.
(e results are displayed in Figure 5. (e CPU time and
condition number κ of the proposed method for this
problem are shown in Figure 6. In the same figure, the
condition number is compared with the condition number
obtained using MCTSMQ, and it is shown that the proposed
method is more stable for the current problem.

Test Problem 3 is analyzed using the proposed method.
We simulate the algorithm using different scale levels and
record the value of L∞ and Lrms at fractional values of σ
ranges from 1.5 to 1.9. (e results are displayed in Figure 7.
It can be easily seen that the error norm decreases with the
increase of scale level M and the rate of convergence is
approximately the same for all values of σ. It is also observed
that the error norm at low values of σ is relatively high as
compared to the high value of σ. (e CPU time and con-
dition number κ for the fractional values of σ are shown in
Figure 8. It can be easily noted that the condition number is
approximately equal to 1017. Also, an increase of CPU time
with an increase of scale level is observed.

(e error norms are also calculated at different values of
the parameter c and the fractional value of σ. We observed
that the error norm for this problem is low at a low absolute
value of c; as the absolute value of c increases, the error
norms increases. (ese results are displayed in Figure 9.
However, the CPU time and condition number do not show
any considerable change with changing values of c. (ese
results are displayed in Figure 10.

7. Conclusion and Future Work

(e main advantage of the proposed method is its appli-
cability to the fractional order Poisson equations. (e
method can easily handle fractional order problems with
two-point boundary conditions. (e method converts the

heat flow phenomena to an algebraic structure, whose
condition number is independent of the order of derivative.
(e proposed method yields a very accurate approximation
when applied to fractional order Poisson equations. (e
comparison of results of the proposed method with some
recent methods, such as, HWCM,MCTMQ, andMCTSMQ,
shows that the proposed method is more appropriate for
integer order problems. One of the significant advantages of
this method is the computational cost. (e computational
time is compared to the other mentioned methods, and it is
observed that the proposed method solves the problem in a
very short time. By measuring the condition number of the
algebraic system, the proposed method shows that the
condition number of the structure is very small compared to
the other mentioned methods. (e proposed method also
solves the fractional order partial differential equations with
two-point nonlocal boundary conditions. (e convergence
of the proposed method is shown with test problems. One of
the main targets of our plan is to study the convergence and
stability of the proposed method. (e extension of this
method to other applied problems also lies in the domain of
our future work.
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In this paper, we establish the qualitative behavior of the even-order advanced differential equation
(a(υ)(y(κ− 1)(υ))β)′ + 􏽐

j
i�1 qi(υ)g(y(ηi(υ))) � 0, υ≥ υ0. +e results obtained are based on the Riccati transformation and the

theory of comparison with first- and second-order equations. +is new theorem complements and improves a number of results
reported in the literature. Two examples are presented to demonstrate the main results.

1. Introduction

Advanced differential equations are of practical importance,
which model a phenomenon in which the rate of change of a
quantity depends on present and future values of the
quantity. Myschkis was the first, who discussed such
equations in 1955 [1] and after him Cooke and Bellman
worked further on it in 1963 [2]. +ese types of equations
have been used in modeling of various physical and engi-
neering phenomena. For example, population genetics [3],
the study of wavelets [4], population growth [5], the field of
time symmetric electrodynamics [6], neural networks [7],
optimal control problems with delay [8], economics [8],
dynamical systems, mathematics of networks, optimization,
electrical power systems, materials, energy j≥ 1, etc. [9] have
been studied using advanced differential equations and
many approaches discussed in [10–22] can be presented for
solution of such equations.

In 1980, Shah et al. [23] discussed the uniqueness and
existence of the solution to nonlinear and linear such types
equations, while the oscillation properties of the solution
were investigated by Ladas and Stavroulakis [24], and after
that, particularly in the last decade, Further refinements and
improvements in the theory of advanced differential

equations have been made by different researchers and it is
still an active of research in engineering and applied sciences.
+e present paper deals with the investigation of the
qualitative behavior of even-order advanced differential
equation:

a(υ) y
(κ− 1)

(υ)􏼐 􏼑
β

􏼒 􏼓
′

+ 􏽘

j

i�1
qi(υ)g y ηi(υ)( 􏼁( 􏼁􏼁 � 0, υ≥ υ0,

(1)

where j≥ 1 and β are a quotient of odd positive integers.
+roughout this work, we suppose that

C1: a ∈ C1([υ0,∞),R), a(υ)> 0, a′(υ)≥ 0
C2: qi, ηi ∈ C([υ0,∞),R), qi(υ)≥ 0, ηi(υ)≥ υ,
limυ→∞ηi(υ) �∞, i � 1, 2, . . . , j

C3: g ∈ C(R,R) such that g(x)/xβ ≥ k> 0, for x≠ 0
and under the condition

􏽚
∞

υ0

1
a
1/β

(s)
ds �∞. (2)
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By a solution of (1), we mean a function
y ∈ Cκ− 1[υy,∞), υy ≥ υ0, which has the property
a(υ)(y(κ−1)(υ))β ∈ C1[υy,∞), and satisfies (1) on [υy,∞).
We consider only those solutions y of (1) which satisfy
sup |y(υ)|: υ≥ υy􏽮 􏽯> 0. A solution of (1) is called oscillatory
if it has arbitrarily large zeros on [υy,∞); otherwise, it is
called nonoscillatory. Equation (1) is said to be oscillatory if
all of its solutions are oscillatory.

2. The Motivation of Studying this Paper

During this decade, several works have been accomplished
in the development of the oscillation theory of higher-order
advanced equations by using the Riccati transformation and
the theory of comparison between first- and second-order
delay equations [25–39]. Further, the oscillation theory of
fourth- and second-order equations has been studied and
developed by using integral averaging technique and the
Riccati transformation [40–45].

+e study of oscillation has been carried to fractional
equations in the setting of fractional operators with singular
and nonsigular kernels as well (see [46, 47] and the refer-
ences therein).

+e main aim of this paper is to complement and im-
prove the results of [48–49]. For this purpose we discuss
these results.

Moaaz et al. [26] considered the fourth-order differential
equation:

a(υ) y″′(υ)( 􏼁
β

􏼒 􏼓
′ + q(υ)y

α
(η(υ)) � 0, (3)

where β, α are quotients of odd positive integers.
Grace et al. [27] considered the equation

a(υ) y″(υ)( 􏼁
β

􏼒 􏼓
″ + q(υ)g(y(η(υ))) � 0, (4)

where η(υ)≤ υ, β is a quotient of odd positive integers.
In particular, by using the comparison technique, the

equation

y
(κ− 1)

(υ)􏼐 􏼑
β

􏼒 􏼓
′ + q(υ)y

β
(η(υ)) � 0, (5)

has been studied by Agarwal and Grace [48], and they
proved it oscillatory if

liminf
υ⟶∞

􏽚
η(υ)

υ
(η(s) − s)

κ− 2
􏽚
∞

s
q(υ)dυ􏼒 􏼓

1/β
ds>

(κ − 2)!

e
.

(6)

Agarwal and Grace [48] extended the Riccati transfor-
mation to obtain new oscillatory criteria for (5) as condition

limsup
υ⟶∞

υβ(κ− 1)
􏽚
∞

υ
q(s)ds>((κ − 1)!)

β
. (7)

Authors in [50] studied oscillatory behavior of (5) where
β � 1 and if there exists a function τ ∈ C1([υ0,∞), (0,∞)),
also, they proved it oscillatory by using the Riccati trans-
formation if

􏽚
∞

υ0
τ(s)q(s) −

(κ − 2)! τ′(s)( 􏼁
2

23−2κ
s
κ−2τ(s)

⎛⎝ ⎞⎠ds �∞. (8)

To prove this, we apply the previous results to the
equation

y
(4)

(υ) +
q0

υ4
y(2υ) � 0, υ≥ 1. (9)

(1) By applying condition (6) in [48], we get

q0 > 25.5. (10)

(2) By applying condition (7) in [49], we get

q0 > 18. (11)

(3) By applying condition (8) in [50], we get

q0 > 1728. (12)

From the above, we find the results in [49] improve
results [50]. Moreover, the results in [48] improve results
[49, 50].

+us, the motivation in studying this paper is comple-
ment and improve results [48–50].

We shall employ the following lemmas.

Lemma 1 (see [44]). If y(i)(υ)> 0, i � 0, 1, . . . , κ, and
y(κ+1)(υ)< 0, then

y(υ)

υκ/κ!
≥

y′(υ)

υκ−1/(κ − 1)!
. (13)

Lemma 2 (see [44]). Suppose that y ∈ Cκ([υ0,∞), (0,∞)),
y(κ) is of a fixed sign on [υ0,∞), y(κ) not identically zero and
there exists a υ1 ≥ υ0 such that

y
(κ− 1)

(υ)y
(κ)

(υ)≤ 0, (14)

for all υ≥ υ1. If we have limυ⟶∞y(υ)≠ 0, then there exists
υθ ≥ υ1 such that

y(υ)≥
θ

(κ − 1)!
υκ− 1

y
(κ− 1)

(υ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (15)

for every θ ∈ (0, 1) and υ≥ υθ.

Lemma 3 (see [34]). Let β be a ratio of two odd numbers,
V> 0 and U are constants. 5en

Ux − Vx
(β+1)/β ≤

ββ

(β + 1)
β+1

U
β+1

V
β , V> 0. (16)

Lemma 4 (see [29]). Suppose that y is an eventually positive
solution of (1). 5en, there exist two possible cases:
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(S1) y(υ)> 0, y′(υ)> 0, y″(υ)> 0, y(κ− 1)(υ)> 0,

y(κ)(υ)< 0
(S2) y(υ)> 0, y(r)(υ)> 0, y(r+1)(υ)< 0 for all odd
integer,r ∈ 1, 3, . . . , κ − 3{ }, y(κ− 1)(υ)> 0, y(κ)(υ)< 0

For υ≥ υ1, where υ1 ≥ υ0 is sufficiently large.

3. Comparison Theorems with Second/First-
Order Equations

Theorem 1. Assume that (2) holds. If the differential
equations

(κ − 2)!a1/β(υ)

θυκ−2( )
β y′(υ)( 􏼁

β
􏼠 􏼡

′
+ k 􏽘

j

i�1
qi(υ)y

β
(υ) � 0, (17)

y″(υ) + y(υ)
1

(κ − 4)!
􏽚
∞

υ
(ς − υ)

κ−4

·
1

a(ς)
􏽚
∞

ς
􏽘

j

i�1
qi(s)ds⎛⎝ ⎞⎠

1/β

dς � 0.

(18)

are oscillatory. 5en every solution of (1) is oscillatory.

Proof. Assume the contrary that y is a positive solution of
(1).+en, we can suppose that y(υ) and y(ηi(υ)) are positive

for all υ≥ υ1 sufficiently large. From Lemma 4, we have two
possible cases (S1) and (S2).

Let case (S1) holds. Using Lemma 2, we find

y′(υ)≥
θ
2
υκ− 2

y
(κ− 1)

(υ), (19)

for every θ ∈ (0, 1) and for all large υ.
Define

φ(υ) ≔ τ(υ)
a(υ) y

(κ− 1)
(υ)􏼐 􏼑

β

y
β
(υ)

⎛⎜⎝ ⎞⎟⎠, (20)

we see that φ(υ)> 0 for υ≥ υ1, where
τ ∈ C1([υ0,∞), (0,∞)) and

φ′(υ) � τ′(υ)
a(υ) y

(κ− 1)
(υ)􏼐 􏼑

β

y
β
(υ)

+ τ(υ)
a y

(κ− 1)
􏼐 􏼑

β
􏼒 􏼓

′(υ)

y
β
(υ)

− βτ(υ)
y
β− 1

(υ)y′(υ)a(υ) y
(κ− 1)

(υ)􏼐 􏼑
β

y
2β

(υ)
.

(21)

Using (19) and (20), we obtain

φ′(υ)≤
τ+
′(υ)

τ(υ)
φ(υ) + τ(υ)

a(υ) y
(κ−1)

(υ)􏼐 􏼑
β

􏼒 􏼓
′

y
β
(υ)

− βτ(υ)
θ

(κ − 2)!
υκ− 2a(υ) y

(κ−1)
(υ)􏼐 􏼑

β+1

y
β+1

(υ)

≤
τ′(υ)

τ(υ)
φ(υ) + τ(υ)

a(υ) y
(κ−1)

(υ)􏼐 􏼑
β

􏼒 􏼓
′

y
β
(υ)

−
βθυκ−2

(κ − 2)!(τ(υ)a(υ))
1/β φ(υ)

β+1/β
.

(22)

From (1) and (22), we obtain

φ′(υ)≤
τ′(υ)

τ(υ)
φ(υ) − kτ(υ)

􏽐
j
i�1 qi(υ)y

β ηi(υ)( 􏼁

y
β
(υ)

−
βθυκ−2

(κ − 2)!(τ(υ)a(υ))
1/β φ(υ)

β+1/β
.

(23)

Note that y′(υ)> 0 and ηi(υ)≥ υ; thus, we find

φ′(υ)≤
τ′(υ)

τ(υ)
φ(υ) − kτ(υ) 􏽘

j

i�1
qi(υ)

−
βθυκ−2

(κ − 2)!(τ(υ)a(υ))
1/β φ(υ)

β+1/β
.

(24)

If we setτ(υ) � k � 1 in (24), then we find

φ′(υ) +
βθυκ−2

(κ − 2)!a
1/β

(υ)
φ(υ)

β+1/β
+ 􏽘

j

i�1
qi(υ)≤ 0. (25)

From [25], we can see that equation (17) is non-
oscillatory, which is a contradiction.

Let case (S2) holds. Define

ψ(υ) ≔ ϑ(υ)
y′(υ)

y(υ)
, (26)

we see that ψ(υ)> 0 for υ≥ υ1, where
ϑ ∈ C1([υ0,∞), (0,∞)). By differentiating ψ(υ), we find

ψ′(υ) �
ϑ′(υ)

ϑ(υ)
ψ(υ) + ϑ(υ)

y″(υ)

y(υ)
−

1
ϑ(υ)

ψ(υ)
2
. (27)

Now, integrating (1) from υ to m and using y′(υ)> 0, we
find

Mathematical Problems in Engineering 3



a(m) y
(κ− 1)

(m)􏼐 􏼑
β

− a(υ) y
(κ− 1)

(υ)􏼐 􏼑
β

� − 􏽚
m

υ
􏽘

j

i�1
qi(s)g y ηi(s)( 􏼁( 􏼁ds. (28)

By virtue of y′(υ)> 0 and ηi(υ)≥ υ, we get

a(m) y
(κ− 1)

(m)􏼐 􏼑
β

− a(υ) y
(κ− 1)

(υ)􏼐 􏼑
β

≤ − ky
β
(υ) 􏽚

u

υ
􏽘

j

i�1
qi(s)ds.

(29)

Letting m⟶∞, we see that

a(υ) y
(κ− 1)

(υ)􏼐 􏼑
β
≥ ky

β
(υ) 􏽚
∞

υ
􏽘

j

i�1
qi(s)ds, (30)

and so

y
(κ− 1)

(υ)≥y(υ)
k

a(υ)
􏽚
∞

υ
􏽘

j

i�1
qi(s)ds⎛⎝ ⎞⎠

1/β

. (31)

Integrating again from υ to∞ for a total of (κ − 4) times,
we get

y″(υ) +
y(υ)

(κ − 4)!
􏽚
∞

υ
(ς − υ)

κ− 4

·
k

a(ς)
􏽚
∞

ς
􏽘

j

i�1
qi(s)ds⎛⎝ ⎞⎠

1/β

dς≤ 0.

(32)

From (27) and (32), we obtain

ψ′(υ)≤
ϑ′(υ)

ϑ(υ)
ψ(υ) −

ϑ(υ)

(κ − 4)!
􏽚
∞

υ
(ς − υ)

κ−4

·
k

a(ς)
􏽚
∞

ς
􏽘

j

i�1
qi(s)ds⎛⎝ ⎞⎠

1/β

dς −
1

ϑ(υ)
ψ(υ)

2
.

(33)

If we now set ϑ(υ) � k � 1 in (33), then we obtain

ψ′(υ) + ψ2
(υ) +

1
(κ − 4)!

􏽚
∞

υ
(ς − υ)

κ−4

·
1

a(ς)
􏽚
∞

ς
􏽘

j

i�1
qi(s)ds⎛⎝ ⎞⎠

1/β

dς≤ 0.

(34)

From [25], we see equation (18) is nonoscillatory, which
is a contradiction. +eorem 1 is proved. □

Remark 1. It is well known (see [42]) that if

􏽚
∞

υ0

1
a(υ)

dυ �∞,

liminf
υ⟶∞

􏽚
υ

υ0

1
a(s)

ds􏼠 􏼡 􏽚
∞

υ
q(s)ds>

1
4
,

(35)

then equation

a(υ) y′(υ)( 􏼁
β

􏼔 􏼕
′ + q(υ)y

β
(g(υ)) � 0, υ≥ υ0, (36)

where β � 1 is oscillatory.
Based on the above results and +eorem 1, we can easily

obtain the following Hille and Nehari type oscillation criteria
for (1) with β � 1.

Theorem 2. Let β � k � 1. Assume that (2) holds. If

􏽚
∞

υ0

θυκ−2

(κ − 2)!a(υ)
dυ �∞, (37)

liminf
υ⟶∞

􏽚
υ

υ0

θs
κ−2

(κ − 2)!a(s)
ds􏼠 􏼡 􏽚

∞

υ
􏽘

j

i�1
qi(s)ds>

1
4
, (38)

also, if

liminf
υ⟶∞

υ􏽚
υ

υ0

1
(κ − 4)!

􏽚
∞

v
(ς − υ)

κ−4

·
1

a(ς)
􏽚
∞

ς
􏽘

j

i�1
qi(s)ds⎛⎝ ⎞⎠

1/β

dςdv>
1
4
,

(39)

for some constant θ ∈ (0, 1). 5en all solution of (1) is
oscillatory.

In the theorem, we compare the oscillatory behavior of
(1) with the first-order differential equations:

Theorem 3. Assume that (2) holds. If the differential
equations

x′(υ) + k 􏽘

j

i�1
qi(υ)

θυκ− 2

(κ − 2)!a1/β(υ)
􏼠 􏼡

β

x(η(υ)) � 0, (40)

z′(υ) + z(υ)
υ

(κ − 4)!
􏽚
∞

υ
(ς − υ)

κ− 4

·
k

a(ς)
􏽚
∞

ς
􏽘

j

i�1
qi(s)ds⎛⎝ ⎞⎠

1/β

dς � 0,

(41)
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are oscillatory, then every solution of (1) is oscillatory.

Proof. Assume the contrary that y is a positive solution of
(1).+en, we can suppose that y(υ) and y(ηi(υ)) are positive
for all υ≥ υ1 sufficiently large. From Lemma 4, we have two
possible cases (S1) and (S2).

In the case where (S1) holds, from Lemma 2, we see

y(υ)≥
θυκ−2

(κ − 2)!a
1/β

(υ)
a
1/β

(υ)y
(κ−1)

(υ)􏼐 􏼑, (42)

for every θ ∈ (0, 1) and for all large υ. +us, if we set

x(υ) � a(υ) y
(κ−1)

(υ)􏼐 􏼑
β
> 0, (43)

then we see that ψ is a positive solution of the inequality.

x′(υ) + k 􏽘

j

i�1
qi(υ)

θυκ− 2

(κ − 2)!a1/β(υ)
􏼠 􏼡

β

x(η(υ))≤ 0. (44)

From [?, +eorem 1], we see that the equation (40) also
has a positive solution, which is a contradiction.

In the case where (S2) holds, from Lemma 1, we get

y(υ)≥ υy′(υ). (45)

From (32) and (45), we get

y″(υ) + y′(υ)
υ

(κ − 4)!
􏽚
∞

υ
(ς − υ)

κ−4

·
k

a(ς)
􏽚
∞

ς
􏽘

j

i�1
qi(s)ds⎛⎝ ⎞⎠

1/β

dς≤ 0.

(46)

Now, we set

z(υ) � y′(υ). (47)

+us, we find ψ is a positive solution of the inequality

z′(υ) + z(υ)
υ

(κ − 4)!
􏽚
∞

υ
(ς − υ)

κ− 4

·
k

a(ς)
􏽚
∞

ς
􏽘

j

i�1
qi(s)ds⎛⎝ ⎞⎠

1/β

dς≤ 0.

(48)

It is well known (see [?, +eorem 1]) that the equation
(41) also has a positive solution, which is a contradiction.
+e proof is complete. □

Corollary 1. Let (2) holds. If

liminf
υ⟶∞

􏽚
υ

ηi(υ)
􏽘

j

i�1
qi(s)

θυκ− 2

(κ − 2)!a1/β(υ)
􏼠 􏼡

β

ds>
((κ − 1)!)

β

e

liminf
υ⟶∞

􏽚
υ

ηi(υ)

s

(κ − 4)!
􏽚
∞

υ
(ς − υ)

κ− 4 k

a(ς)
􏽚
∞

ς
􏽘

j

i�1
qi(s)ds⎛⎝ ⎞⎠

1/β

dς ds>
1
e
,

(49)

then every solution of (1) is oscillatory.

Example 1. Let the equation

y
(4)

(υ) +
q0

υ4
y(3υ) � 0, υ≥ 1, (50)

where q0 > 0 is a constant. Note that
β � 1, κ � 4, a(υ) � 1, q(υ) � q0/υ4, andη(υ) � 3υ. If we set
k � 1, then condition (38) becomes

liminf
υ⟶∞

􏽚
υ

υ0

θs
κ− 2

(κ − 2)!a(s)
ds􏼠 􏼡 􏽚

∞

υ
􏽘

j

i�1
qi(s)ds

� liminf
υ⟶∞

υ3

3
􏼠 􏼡 􏽚

∞

υ

q0

s
4ds �

q0

9
>
1
4
,

(51)

and condition (39) becomes

liminf
υ⟶∞

υ􏽚
υ

υ0

1
(κ − 4)!

􏽚
∞

v
(ς − υ)

κ− 4

·
1

a(ς)
􏽚
∞

ς
􏽘

j

i�1
qi(s)ds⎛⎝ ⎞⎠

1/β

dς dv

� liminf
υ⟶∞

υ
q0

6υ
􏼒 􏼓 �

q0

6
>
1
4
.

(52)

+erefore, from +eorem 2, all solution equation (51) is
oscillatory if q0 > 2.25.

Remark 2. We compare our result with the known related
criteria for oscillation of this equation as follows (Table 1).

+erefore, our result improves results [48–50].

Example 2. Consider a differential equation (9) where q0 > 0
is a constant. Note that β � 1, κ � 4, a(υ) � 1, q(υ) � q0/υ4,
and η(υ) � 2υ. If we set k � 1, then condition (38) becomes
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q0

9
>
1
4
. (53)

+erefore, from +eorem 2, all solution equation (9) is
oscillatory if q0 > 2.25.

Remark 3. Our result improves results [48–50].

4. Conclusion

In this article, we study the oscillatory behavior of a class of
nonlinear even-order differential equations and establish
sufficient conditions for oscillation of an even-order dif-
ferential equation by using the theory of comparison with
first- and second-order delay equations and Riccati sub-
stitution technique.

For researchers interested in this field, and as part of our
future research, there is a nice open problemwhich is finding
new results in the following case:

􏽚
∞

υ0

1
a
1/β

(s)
ds<∞. (54)

For all this, there is some research in progress.
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%is work introduces a computational method for solving the linear two-dimensional fuzzy Fredholm integral equation of the
second form (2D-FFIE-2) based on triangular basis functions. We have used the parametric form of fuzzy functions and
transformed a 2D-FFIE-2 with three variables in crisp case to a linear Fredholm integral equation of the second kind. First,
a method based on the use of twom-sets of orthogonal functions of triangular form is implemented on the integral equation under
study to be changed to coupled algebraic equation system. In order to solve these two schemes, a finite iterative algorithm is then
applied to evaluate the coefficients that provided the approximate solution of the integral problems. %ree examples are given to
clarify the efficiency and accuracy of the method. %e obtained numerical results are compared with other direct and
exact solutions.

1. Introduction

Several methods have been developed to estimate the so-
lution of integral equation systems [1–3]. Many simple
functions are used to approximate the solution of integral
equations, such as orthogonal bases dependent on wavelets
[4]. In addition, Maleknejad and Mirzaee developed the
rationalized Haar functions [5] to approximate the solutions
of the Fredholm linear integral equation method. In addi-
tion, second-type Fredholm integral equations are solved
using direct triangular functions method as seen in [6] and
using iterative algorithm-hybrid triangular functions
method presented by Ramadan and Ali [7] where this hybrid
method treats Fredholm integral equation of one dimension.
More recently, Ramadan et al. [8] implemented such hybrid
method to tackle system of two linear Fredholm integral
equations of one dimension.

Furthermore, Maleknejad et al. [9] suggested by block
pulse functions a numerical solution of the integral second-
type equation.

It is explained using a series of orthogonal triangular
functions, derived from the series of block pulses. Never-
theless, the fuzzy integral equations (FIEs) are required to
solve and research a wide number of problems in various
applied mathematics subjects, such as connection to physics,
spatial, medical, and biology. FIEs therefore require ap-
proximate numerical solutions, as they are typically difficult
to analytically solve. %is thesis introduces a methodology
used by the triangular functions (TFs) to solve the fuzzy
linear FIE method of the second kind. In various imple-
mentation problems, certain parameters are typically rep-
resented by a fuzzy number rather than a crisp state, which
involves the creation of mathematical models and compu-
tational algorithms to handle and solve the general fuzzy
integral equations. A general method for solving the fuzzy
Fredholm second-type integral equation is proposed in [10].
Recently, numerical methods have been developed to solve
linear fuzzy Fredholm integral equation of the second kind
in one-dimensional space (1D-FFIE-2) and two-dimensional
space (2D-FFIE-2). Also, Fredholm fuzzy integral equations
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of the second kind are solved using the triangular functions
[11], and numerical solution of linear Fredholm fuzzy
equation of the second kind by block pulse functions is
considered in [12]. Barkhordary et al. and Ramadan et al.
[13, 14] presented a numerical technique for solving the
fuzzy Fredholm integral equation of second kind. Numerical
solution of two-dimensional fuzzy Fredholm integral
equations of the second kind is presented via direct method
using triangular functions [15]. Nouriani et al. [16] proposed
a quadrature iterative method for solving the two-di-
mensional fuzzy Fredholm integral equations. Ezzati and
Ziari [17], Hengamian Asl and Saberi-Nadjafi [18], and Bica
and Popescu [19] illustrated a solution of the two-di-
mensional fuzzy Fredholm integral equations. A modified
homotopy perturbation method for solving the two-di-
mensional fuzzy Fredholm integral equation is detailed in
[20]. A two-dimensional nonlinear Volterra–Fredholm
fuzzy integral equation is solved by using the Adomian
decomposition method [21] and fuzzy bivariate triangular
functions [22].

%e aim of paper is to generalize the work proposed in
[7] and [8] of these basis orthogonal triangular functions on
(0, 1) to solve two-dimensional fuzzy Fredholm integral
equations.

􏽥u(x, y) � 􏽥f(x, y) + λ􏽚
b

a
􏽚

d

c
k(x, y, s, t) 􏽥u(s, t)ds dt. (1)

Section 2 presents some definitions and properties of the
orthogonal triangular functions (TFs) (1D-TFs and 2D-TFs).
Also, it expands functions by TFs. In Section 3, the defi-
nitions and properties of fuzzy function are given while
a finite iterative algorithm is presented to solve coupled
system of matrix equations in Section 4. %e two-di-
mensional fuzzy integral equation is demonstrated and
explained in Section 5 while the suggested method and the
proposed iterative algorithm are detailed in Section 6. %e
illustrative examples and numerical results obtained are
presented and discussed in Section 8.

2. Review of Triangular Functions (TFs)

2.1. Triangular Functions (TFs) of One Dimension

Definition 1. Two m-sets of triangular functions (TFs) are
defined over the interval [0, T) [5]:

T1i(t) �

1 −
t − ih

h
, ih≤ t<(1 + i)h,

0, o.w,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

T2i(t) �

t − ih

h
, ih≤ t<(1 + i)h,

0, o.w,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where i � 0, 1, . . . , m − 1; m has a positive integer value;
h � (T/m); T1i is the ith left-handed triangular function;
and T2i is the ith right-handed triangular function.

Assuming T � 1, the TFs are defined over [0, 1) and
h � (1/m). Based on this definition, it is clear that TFs are
disjoint, orthogonal, and complete [5]. %erefore, one may
write

􏽚
1

0
T1i(t)T1j(t)dt � 􏽚

1

0
T2i(t)T2j(t)dt �

h

3
, i � j,

0, i≠ j,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

􏽚
1

0
T1i(t)T2j(t)dt � 􏽚

1

0
T2i(t)T1j(t)dt �

h

6
, i � j,

0, i≠ j.

⎧⎪⎪⎨

⎪⎪⎩

(4)

%e first m terms in the left-hand triangular functions
and in the right-hand triangular functions can be written
concisely in m-vectors format as

T1(t) � T10(t), T11(t), . . . , T1m− 1(t)􏼂 􏼃
T
,

T2(t) � T20(t), T21(t), . . . , T2m− 1(t)􏼂 􏼃
T
,

(5)

where T1(t) and T2(t) are called left-handed triangular
function (LHTF) vector and right-handed triangular func-
tion (RHTF) vector, respectively. %e product of two TF
vectors yields the following properties:

T1(t)T1T
(t) �

T10(t) 0 · · · 0

0 T11(t) · · · 0

⋮ ⋮ ⋱ ⋮

0 0 0 T1m− 1(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T2(t)T2T
(t) �

T20(t) 0 · · · 0

0 T21(t) · · · 0

⋮ ⋮ ⋱ ⋮

0 0 0 T2m− 1(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T1(t)T2T
(t) � 0,

T2(t)T1T
(t) � 0,

(6)

where 0 is the zero m × m matrix. Also,

􏽚
1

0
T1(t)T1T

(t)dt � 􏽚
1

0
T2(t)T2T

(t)dt �
h

3
I,

􏽚
1

0
T1(t)T2T

(t)dt � 􏽚
1

0
T2(t)T1T

(t)dt �
h

6
I,

(7)

in which I is an m × m identity matrix.

2.2. Two-Dimensional Triangular Functions and *eir Prop-
erties [15]. An (m1 × m2)-set of 2D-TFs on the region (Ω �

[0, 1] × [0.1]) is defined by
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T
1,1
i,j (s, t) �

1 −
s − ih1

h1
􏼠 􏼡 1 −

t − jh2

h2
􏼠 􏼡,

ih1 ≤ s≤ (i + 1)h1,

jh2 ≤ t≤ (j + 1)h2,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T
1,2
i,j (s, t) �

1 −
s − ih1

h1
􏼠 􏼡

t − jh2

h2
􏼠 􏼡,

ih1 ≤ s≤ (i + 1)h1,

jh2 ≤ t≤ (j + 1)h2,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T
2,1
i,j (s, t) �

s − ih1

h1
􏼠 􏼡 1 −

t − jh2

h2
􏼠 􏼡,

ih1 ≤ s≤ (i + 1)h1,

jh2 ≤ t≤ (j + 1)h2,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T
2,2
i,j (s, t) �

s − ih1

h1
􏼠 􏼡

t − jh2

h2
􏼠 􏼡,

ih1 ≤ s≤ (i + 1)h1,

jh2 ≤ t≤ (j + 1)h2,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

where: i � 0, 1, 2, . . . ; m1 − 1;j � 0, 1, 2, . . . , m2 − 1;
h1 � (1/m1); h2 � (1/m2); and m1 and m2 are arbitrary
positive integers. %erefore,

T
1,1
i,j (s, t) � T1i(s) · T1j(t),

T
1,2
i,j (s, t) � T1i(s) · T2j(t),

T
2,1
i,j (s, t) � T2i(s) · T1j(t),

T
2,2
i,j (s, t) � T2i(s) · T2j(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Furthermore,

T
1,1
i,j (s, t) + T

1,2
i,j (s, t) + T

2,1
i,j (s, t) + T

2,2
i,j (s, t) � ϕi,j(s, t),

(10)

where φi,j(s, t) is the im2 + j + 1􏼈 􏼉th block pulse function
defined on ih1 ≤ s≤ (i + 1)h1 and jh2 ≤ t≤ (j + 1)h2 as

φi,j(s, t) �
1,

ih1 ≤ s≤ (i + 1)h1,

jh2 ≤ t≤ (j + 1)h2,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(11)

Each of the sets T1,1
i,j (s, t), T1,2

i,j (s, t), T2,1
i,j (s, t)􏽮 􏽯 and

T2,2
i,j (s, t)􏽮 􏽯 is obviously disjoint:

T
p1 ,q1
i1j1

(s, t) · T
p2 ,q2
i2j2

(s, t) ≈
T

p1 ,q1
i1j1

(s, t),
p1 � p2, q1 � q2,

i1 � i2, j1 � j2,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩

(12)

For p, q ∈ 1, 2{ }, i1, i2 � 0, 1, 2, . . . , m1 − 1 and
j1, j2 � 0, 1, 2, . . . , m2 − 1.

Also, the 2D-TFs are orthogonal, that is,

􏽚
1

0
􏽚
1

0
T

p1 ,q1
i1j1

(s, t) · T
p2 ,q2
i2j2

(s, t)ds dt � Δp1 ,p2
δi1 ,i2

· Δq1 ,q2
δj1 ,j2

,

(13)

where δ denotes the Kronecker delta function and

Δα,β �

h

3
, α � β ∈ 1, 2{ },

h

6
, α≠ β.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

On the other hand, if

T11(s, t) � T
1,1
0,0(s, t), . . . , T

1,1
i,m2− 1(s, t), T

1,1
1,0(s, t), . . . , T

1,1
m1− 1,m2− 1(s, t)􏽨 􏽩

T
,

T12(s, t) � T
1,2
0,0(s, t), . . . , T

1,2
i,m2− 1(s, t), T

1,2
1,0(s, t), . . . , T

1,2
m1− 1,m2− 1(s, t)􏽨 􏽩

T
,

T21(s, t) � T
2,1
0,0(s, t), . . . , T

2,1
i,m2− 1(s, t), T

2,1
1,0(s, t), . . . , T

2,1
m1− 1,m2− 1(s, t)􏽨 􏽩

T
,

T22(s, t) � T
2,2
0,0(s, t), . . . , T

2,2
i,m2− 1(s, t), T

2,2
1,0(s, t), . . . , T

2,2
m1− 1,m2− 1(s, t)􏽨 􏽩

T
,

(15)

then T(s, t), the 2D-TF vector, can be defined as
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T(s, t) �

T11(s, t)

T12(s, t)

T21(s, t)

T22(s, t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4m1m2×1

,

T11 · T11T ≃

T
1,1
0,0 0 · · · 0

0 T
1,1
0,1 ⋱ ⋮

⋮ ⋮ ⋱ 0

0 0 0 T
1,1
m1− 1,m2− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� diag(T11),

T11 · T12T ≃ 0m1m2×m1m2
,

T11 · T21T ≃ 0m1m2×m1m2
,

T11 · T22T ≃ 0m1m2×m1m2
.

(16)

%ese relations are also satisfied for
T12(s, t), T21(s, t), T22(s, t), similarly. Hence,

T · T
T ≃

diag(T11) 0m1m2×m1m2
0m1m2×m1m2

0m1m2×m1m2

0m1m2×m1m2
diag(T12) 0m1m2×m1m2

0m1m2×m1m2

0m1m2×m1m2
0m1m2×m1m2

diag(T21) 0m1m2×m1m2

0m1m2×m1m2
0m1m2×m1m2

0m1m2×m1m2
diag(T22)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

orT(s, t) · T
T
(s, t)≃ diag(T(s, t)).

(17)

Finally by the orthogonality of T11, we have

􏽚
1

0
􏽚
1

0
T11(s, t)

T
T11(s, t)ds dt �

h1

3
Im1×m1
⊗

h2

3
Im2×m2

,

􏽚
1

0
􏽚
1

0
T11(s, t)

T
T12(s, t)ds dt �

h1

3
Im1×m1
⊗

h2

6
Im2×m2

,

􏽚
1

0
􏽚
1

0
T11(s, t)

T
T21(s, t)ds dt �

h1

6
Im1×m1
⊗

h2

3
Im2×m2

,

􏽚
1

0
􏽚
1

0
T11(s, t)

T
T22(s, t)ds dt �

h1

6
Im1×m1
⊗

h2

6
Im2×m2

,

(18)

where ⊗ denotes the Kronecker product defined for two
arbitrary matrices P and Q as

P⊗Q � Pi,jQ. (19)

%e same equations are implied for T12(s, t), T21(s, t),
and T22(s, t), by similar computations. Hence, we can carry
out double integration of T(s, t):

􏽚
1

0
􏽚
1

0
T(s, t)

T
T(s, t)ds dt � D, (20)

where D is 4m1m2 × 4m1m2 matrix as follows:

D �

h1

3
I1⊗

h2

3
I2

h1

3
I1⊗

h2

6
I2

h1

6
I1⊗

h2

3
I2

h1

6
I1⊗

h2

6
I2

h1

3
I1⊗

h2

6
I2

h1

3
I1⊗

h2

3
I2

h1

6
I1⊗

h2

6
I2

h1

6
I1⊗

h2

3
I2

h1

6
I1⊗

h2

3
I2

h1

6
I1⊗

h2

6
I2

h1

3
I1⊗

h2

3
I2

h1

3
I1⊗

h2

6
I2

h1

6
I1⊗

h2

6
I2

h1

6
I1⊗

h2

3
I2

h1

3
I1⊗

h2

6
I2

h1

3
I1⊗

h2

3
I2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(21)

where I1 � Im1×m1
and I2 � Im2×m2

.

2.3. Function Expansion with 1D-TFs and 2D-TFs. %e ex-
pansion of functions using triangular functions occurs in
four situations.

(1) %e expansion of function f(t) over [0, 1) with
respect to 1D-TFs is compactly written as

f(t) � 􏽘
m− 1

i�0
ciT1i(t) + 􏽘

m− 1

i�0
diT2i(t) � c

T
T1(t) + d

T
T2(t),

(22)

where we may put ci � f(ih) and di � f((i + 1)h)

for i� 0, 1, . . ., m − 1.
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(2) %e expansion of the function f(s, t) defined over Ω
([0, 1) × [0, 1)) by 2D-TFs is as follows:

f(s, t) � 􏽘

m1− 1

0
􏽘

m2− 1

0
ci,jT

1,1
i,j (s, t) + 􏽘

m1− 1

i�0
􏽘

m2− 1

j�0
di,jT

1,2
i,j (s, t) + 􏽘

m1− 1

i�0
􏽘

m2− 1

j�0
ei,jT

2,1
i,j (s, t) + 􏽘

m1− 1

i�0
􏽘

m2− 1

j�0
li,jT

2,2
i,j (s, t)

f(s, t) � C
T
T11(s, t) + D

T
T12(s, t) + E

T
T21(s, t) + L

T
T22(s, t),

(23)

where F is a 4m1m2 vector given by

F � CT DT ET LT􏼂 􏼃
T
, (24)

and T(s, t) is defined in equation (21). %e 2D-TF
coefficients in C, D, E, and L can be computed by
sampling the function f(s, t) at grid points si and tj

such that si � ih1 and tj � jh2, for various i and j. So,
we have

Ck � ci,j � f si, tj􏼐 􏼑,

Dk � di,j � f si, tj+1􏼐 􏼑,

Ek � ei,j � f si+1, tj􏼐 􏼑,

Lk � li,j � f si+1, tj+1􏼐 􏼑,

(25)

where k � im2 + j and i � 0, 1, 2, . . . , m1 − 1,
j � 0, 1, 2, . . . , m2 − 1. %e 4m1m2 vector F is called
the 2D-TF coefficient vector.

(3) %e expansion of the function f(s, t, r) of three
variables on (Ω × [0, 1]) with respect to 2D-TFs and
1D-TFs is as follows:

f(s, t, r) � T
T
(s, t) · F · T(r), (26)

where T(s, t) and T(r) are 2D-TF vector and 1D-TF
vector of dimension 4m1m2 and 2m3, respectively,
and F is a (4m1m2 × 2m3) 2D-TF coefficient matrix.
%is matrix can be represented as

F �

F11 F12

F21 F22

F31 F32

F41 F42

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (27)

where each block of F is an (m1m2 × m3)-matrix that
can be computed by sampling the function f(s, t, r)

at grid points (si, tj, rk) such that

si � ih1, i � 0, 1, . . . , m1 − 1, h1 �
1

m1
,

tj � jh2, j � 0, 1, . . . , m2 − 1, h2 �
1

m2
,

rk � kh3, k � 0, 1, . . . , m3 − 1, h3 �
1

m3
.

(28)

Let l � im2 + j; then,

F11l,k � f si, tj, rk􏼐 􏼑,

F12l,k � f si, tj, rk+1􏼐 􏼑,

F21l,k � f si, tj+1, rk􏼐 􏼑,

F22l,k � f si, tj+1, rk+1􏼐 􏼑,

F21l,k � f si, tj+1, rk􏼐 􏼑,

F22l,k � f si, tj+1, rk+1􏼐 􏼑,

F31l,k � f si+1, tj, rk􏼐 􏼑,

F32l,k � f si+1, tj, rk+1􏼐 􏼑,

F31l,k � f si+1, tj, rk􏼐 􏼑,

F32l,k � f si+1, tj, rk+1􏼐 􏼑,

F41l,k � f si+1, tj+1, rk􏼐 􏼑,

F42l,k � f si+1, tj+1, rk+1􏼐 􏼑.

(29)

(4) %e expansion of the function k(s, t, x, y) of four
variables on (Ω ×Ω) with respect to 2D-TFs is as
follows:

k(s, t, x, y) � T
T
(s, t) · K · T(x, y), (30)

where T(S, T) and T(x, y) are 2D-TF vectors of
dimension 4m1m2 and 4m3m4, respectively, and K is
a (4m1m2 × 4m3m4) 2D-TF coefficient matrix. %is
matrix can be represented as
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K �

K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (31)

where each block of K is an (m1m2 × m3m4) matrix
that can be computed by sampling the function
k(s, t, x, y) at grid points (si1

, tj1
, xi2

, yj2
) such that

si1
� i1h1, i1 � 0, 1, . . . , m1 − 1, h1 �

1
m1

,

tj1
� j1h2, j1 � 0, 1, . . . , m2 − 1, h2 �

1
m2

,

xi2
� i2h3, i2 � 0, 1, . . . , m3 − 1, h3 �

1
m3

,

yj2
� j2h3, j2 � 0, 1, . . . , m4 − 1, h4 �

1
m4

.

(32)

Let p � i1m2 + j1 and q � i2m4 + j2; then,

K11p,q � k si1
, tj1

, xi2
, yj2

􏼐 􏼑,

K12p,q � k si1
, tj1

, xi2
, yj2+1􏼐 􏼑,

K13p,q � k si1
, tj1

, xi2+1, yj2
􏼐 􏼑,

K14p,q � k si1
, tj1

, xi2+1, yj2+1􏼐 􏼑,

K21p,q � k si1
, tj1+1, xi2

, yj2
􏼐 􏼑,

K22p,q � k si1
, tj1+1, xi2

, yj2+1􏼐 􏼑,

K23p,q � k si1
, tj1+1, xi2+1, yj2

􏼐 􏼑,

K24p,q � k si1
, tj1+1, xi2+1, yj2+1􏼐 􏼑,

K31p,q � k si1+1, tj1
, xi2

, yj2
􏼐 􏼑,

K32p,q � k si1+1, tj1
, xi2

, yj2+1􏼐 􏼑,

K33p,q � k si1+1, tj1
, xi2+1, yj2

􏼐 􏼑,

K34p,q � k si1+1, tj1
, xi2+1, yj2+1􏼐 􏼑,

K41p,q � k si1+1, tj1+1, xi2
, yj2

􏼐 􏼑,

K42p,q � k si1+1, tj1+1, xi2
, yj2+1􏼐 􏼑,

K43p,q � k si1+1, tj1+1, xi2+1, yj2
􏼐 􏼑,

K44p,q � k si1+1, tj1+1, xi2+1, yj2+1􏼐 􏼑.

(33)

In this paper, we suppose that m1 � m2 � m3 � m4 � M

for convergence.

3. Fuzzy Functions

We now remember through the paper some definitions that
are required.

Definition 2. A fuzzy number is a fuzzy set u: R1⟶ [0, 1]
that conforms to the following condition [23]:

(a) u is upper semicontinuous
(b) u(x) � 0 outside some interval [c, d]
(c) %ere are real numbers a and b, c≤ a≤ b≤ d, for

which

(i) u(x) is increasing in monotonic manner on [c,
a]

(ii) u(x) is decreasing in monotonic manner on [b,
d]

(iii) u(x) � 1 for a≤ x≤ b

Definition 3. A fuzzy number u is a pair (u(r), u(r)) of
functions u(r) and u(r), 0≤ r≤ 1, satisfying the following
requirement [5]:

(a) u(r) is bounded monotonic increasing left contin-
uous function

(b) u(r) is bounded monotonic decreasing left contin-
uous function

(c) u(r)≤ u(r), 0≤ r≤ 1

For arbitrary u � (u(r), u(r)), v � (v(r), v(r)), and
k> 0, we define addition (u + v) and multiplication by k as

u + v( 􏼁(r) � u(r) + v(r)

(u + v)(r) � u(r) + v(r),

ku( 􏼁(r) � k u(r),

(ku)(r) � ku(r).

(34)

4. Solving Coupled System of Matrix Equations
Using Finite Iterative Algorithm [5]

Matrix equations can be solved using various forms of the
finite iterative algorithms example [1–3, 5]. We consider
iterative solutions to coupled system similar to the forms of
Sylvester matrix equations [5].

AV + BW � C, (35)

and second algorithm to solve coupled system of Sylvester
matrix equations:

A1V + B1W � C1,

A2V + B2W � C2.
(36)

Algorithm 1 (see [5]). A finite iterative algorithm is de-
veloped to solve equation (35) as follows:

(1) Input A, B, C.
(2) Pick arbitrary matrices V ∈ Rn×p and W1 ∈ R

r×p.
(3) Set
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R1 � C − AV1 − BW1,

P1 � A
T
R1,

Q1 � B
T

R1,

K � 1.

(37)

(4) If RK � 0, then stop and VK and WK are the final
solutions; else, let K � K + 1 and go to step 5.

(5) Calculate

VK+1 � VK +
RK

����
����
2

PK

����
����
2

+ QK

����
����
2PK,

WK+1 � WK +
RK

����
����
2

PK

����
����
2

+ QK

����
����
2QK,

RK+1 � C − AVK+1 − BWK+1

� RK −
RK

����
����
2

PK

����
����
2

+ QK

����
����
2 APK + BQK

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

PK+1 � A
T
RK+1 +

RK+1
����

����
2

RK

����
����
2 PK,

QK+1 � B
T
RK+1 +

RK+1
����

����
2

RK

����
����
2 QK.

(38)

Algorithm 2 (see [5]). %e following finite iterative algo-
rithm is proposed to solve coupled system of Sylvester
matrix equation (36):

(1) Input matrices: A1; B1; A2; B2; C1; C2.

(2) Pick arbitrary matrices Y11 ∈ Cn×p and Y21 ∈ Cr×p.
(3) Set

R1 � diag C1 − f Y11, Y21􏼐 􏼑, C2 − g Y11, Y21􏼐 􏼑􏼐 􏼑,

S1 � A
T
1 C1 − f Y11, Y21􏼐 􏼑􏼐 􏼑 + A

T
2 C2 − g Y11, Y21􏼐 􏼑􏼐 􏼑,

T1 � B
T
1 C1 − f Y11, Y21􏼐 􏼑􏼐 􏼑 + B

T
2 C2 − g Y11, Y21􏼐 􏼑􏼐 􏼑.

(39)

(4) IfRK � 0, then stop andY1K
andY2K

are the solutions;
else set K � K + 1 and then go to step 5.

(5) Calculate

Y1K+1
� Y1K

+
RK

����
����
2

SK

����
����
2

+ TK

����
����
2SK,

Y2K+1
� Y2K

+
RK

����
����
2

SK

����
����
2

+ TK

����
����
2TK,

RK+1 � diag C1 − f Y1K+1
, Y2K+1

􏼐 􏼑, C2 − g Y1K+1
, Y2K+1

􏼐 􏼑􏼐 􏼑

� RK −
RK

����
����
2

SK

����
����
2

+ TK

����
����
2 diag f SK, TK( 􏼁, g SK, TK( 􏼁( 􏼁

SK+1 � A
T
1 C1 − f Y1K+1

, Y2K+1
􏼐 􏼑􏼐 􏼑 + A

T
2 C2 − g Y1K+1

, Y2K+1
􏼐 􏼑􏼐 􏼑 +

RK+1
����

����
2

RK

����
����
2 SK,

TK+1 � B
T
1 C1 − f Y1K+1

, Y2K+1
􏼐 􏼑􏼐 􏼑 + B

T
2 C2 − g Y1K+1

, Y2K+1
􏼐 􏼑􏼐 􏼑 +

RK+1
����

����
2

RK

����
����
2 TK.

(40)

5. Two-Dimensional Fuzzy Fredholm
Integral Equation

Two-dimensional FIE of the second kind is defined as fol-
lows [24]:

u(x, y) � f(x, y) + λ􏽚
b

a
􏽚

d

c
k(x, y, s, t) u(s, t)ds dt. (41)

%e linear (2D-FFIE-2) is defined as

􏽥u(x, y) � 􏽥f(x, y) + λ􏽚
b

a
􏽚

d

c
(x, y, s, t)􏽥u(s, t)ds dt, (42)

where 􏽥u(x, y) and 􏽥f(x, y) are fuzzy real functions on
S � [a, b] × [c, d], k(x, y, s, t) is an arbitrary kernel function
over V � [a, b] × [c, d] × [a, b] × [c, d], and 􏽥u(x, y) is un-
known on S.
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%roughout this paper, we consider 2D-FFIE-2 with
a � c � 0, b � d � 1, and λ � 1.

Now, introduce parametric form of a 2D-FFIE-2 with
respect to Definition 3. Let (f(x, y, r), f(x, y, r)) and

(u(x, y, r), u(x, y, r)), 0≤ r≤ 1, (x, y) ∈ S, be parametric
form of 􏽥f(x, y) and 􏽥u(x, y), respectively. %en parametric
form of 2D-FFIE-2 is as follows:

u(x, y, r) � f(x, y, r) + 􏽚 􏽚
1

0
v1 x, y, s, t, u(x, y, r), u(x, y, r)( 􏼁ds dt, (43)

u(x, y, r) � f(x, y, r) + 􏽚 􏽚
1

0
v2 x, y, s, t, u(x, y, r), u(x, y, r)( 􏼁ds dt, (44)

v1 x, y, s, t, u(x, y, r), u(x, y, r)( 􏼁 �
k(x, y, s, t) u(s, t, r), k(x, y, s, t)≥ 0,

k(x, y, s, t)u(s, t, r), k(x, y, s, t)< 0,
􏼨

v1 x, y, s, t, u(x, y, r), u(x, y, r)( 􏼁 �
k(x, y, s, t)u u(s, t, r), k(x, y, s, t)≥ 0,

k(x, y, s, t) u(s, t, r), k(x, y, s, t)< 0,
􏼨

(45)

for each 0≤ x, y≤ 1 and 0≤ r≤ 1. We can see that equations
(43) and (44) are system of Fredholm integral equation of the
second kind with three variables in crisp case.

6. Proposed Hybrid Iterative Technique

6.1. Converting Linear Two-Dimensional FIEs of Second Kind
to Two Crisp Coupled Systems. %is section presents an ef-
ficient method for soling a 2D-FFIE-2 by using 2D-TFs.

First, consider the following equation:

􏽥u(x, y) � 􏽥f(x, y) + λ􏽚
b

a
􏽚

d

c
k(x, y, s, t)􏽥u(s, t)ds dt. (46)

Now, the problem is to find the TF coefficients of 􏽥u(x, y)

from the known functions 􏽥f(x, y) and kernel k(x, y, s, t).
2D-TFs are applied for equations

u(x, y, r) � f(x, y, r) + 􏽚 􏽚
1

0
k(x, y, s, t) u(s, t, r)ds dt,

(47)

u(x, y, r) � f(x, y, r) + 􏽚 􏽚
1

0
k(x, y, s, t) u(s, t, r)ds dt.

(48)

To describe the approach of equation (47), first expand
u(x, y, r),f(x, y, r), and k(x, y, s, t) by 2D-TFs as follows:

u(x, y, r)≃T
T
(x, y)UT(r), (49)

u(x, y, r)≃T11T
(x, y)U11T1(r) + T12T

(x, y)U21T1(r) + T21T
(x, y)U31T1(r)

+ T22T
(x, y)U41T1(r) + T11T

(x, y)U12T2(r) + T12T
(x, y)U22T2(r)

+ T21T
(x, y)U32T2(r) + T22T

(x, y)U42T2(r),

(50)

f(x, y, r)≃T
T
(x, y)FT(r), (51)

f(x, y, r)≃T11T
(x, y)F11T1(r) + T12T

(x, y)F21T1(r)

+ T21T
(x, y)F31T1(r) + T22T

(x, y)F41T1(r) + T11T
(x, y)F12T2(r)

+ T12T
(x, y)F22T2(r) + T21T

(x, y)F32T2(r) + T22T
(x, y)F42T2(r),

(52)

k(x, y, s, t)≃T
T
(x, y)KT(s, t), (53)

where T(x, y) and T(r) are defined in equations (3) and
(21), respectively, U and F are (4M2 × 2M) matrix of 2D-TF

coefficients of u(x, y, r) and f(x, y, r), respectively, and K is
(4M2 × 4M2)-matrix 2D-TF coefficients of (x, y, s, t).
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To obtain the solution of equation (47) from equations
(49), (51), and (53), we have

T
T
(x, y)UT(r) � T

T
(x, y)FT(r) + 􏽚 􏽚

1

0
T

T
(x, y)KT(s, t)T

T
(x, y)UT(r)ds dt,

T
T
(x, y)UT(r) � T

T
(x, y)FT(r) + T

T
(x, y)K 􏽚 􏽚

1

0
T

T
(x, y)KT(s, t)T

T
(x, y)ds dt􏼠 􏼡UT(r).

(54)

Using equation (22), we have

T
T
(x, y)UT(r) � T

T
(x, y)FT(r) + T

T
(x, y)KDUT(r),

(55)

and then

U � F + KDU, (56)

where U and F are 4M2 × 2M-matrix and KD is
4M2 × 4M2- matrix, so KDU is 4M2 × 2M-matrix, where U

is unknown.
%en, we have

(I − KD)U � F, (57)

with

U �

U11 U12

U21 U22

U31 U32

U41 U42

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F �

F11 F12

F21 F22

F31 F32

F41 F42

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K �

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D �

h1

3
I1⊗

h2

3
I2

h1

3
I1⊗

h2

6
I2

h1

6
I1⊗

h2

3
I2

h1

6
I1⊗

h2

6
I2

h1
3

I1⊗
h2
6

I2
h1
3

I1⊗
h2
3

I2
h1
6

I1⊗
h2
6

I2
h1
6

I1⊗
h2
3

I2

h1

6
I1⊗

h2

3
I2

h1

6
I1⊗

h2

6
I2

h1

3
I1⊗

h2

3
I2

h1

3
I1⊗

h2

6
I2

h1

6
I1⊗

h2

6
I2

h1

6
I1⊗

h2

3
I2

h1

3
I1⊗

h2

6
I2

h1

3
I1⊗

h2

3
I2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

I4M2×4M2 �

IM2 0 0 0

0 IM2 0 0

0 0 IM2 0

0 0 0 IM2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

KD �

K11D11 + K12D21 + K13D31 + K14D41 K11D12 + K12D22 + K13D32 + K14D42 K11D13 + K12D23 + K13D33 + K14D43 K11D14 + K12D24 + K13D34 + K14D44

K21D11 + K22D21 + K23D31 + K24D41 K21D12 + K22D22 + K23D32 + K24D42 K21D13 + K22D23 + K23D33 + K24D43 K21D14 + K22D24 + K23D34 + K24D44

K31D11 + K32D21 + K33D31 + K34D41 K31D12 + K32D22 + K33D32 + K34D42 K31D13 + K32D23 + K33D33 + K34D43 K31D14 + K32D24 + K33D34 + K34D44

K41D11 + K42D21 + K43D31 + K44D41 K41D12 + K42D22 + K43D32 + K44D42 K41D13 + K42D23 + K43D33 + K44D43 K41D14 + K42D24 + K43D34 + K44D44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(I − KD) �

IM2 − (K11D11 + K12D21 + K13D31 + K14D41) − (K11D12 + K12D22 + K13D32 + K14D42) − (K11D13 + K12D23 + K13D33 + K14D43) − (K11D14 + K12D24 + K13D34 + K14D44)

− (K21D11 + K22D21 + K23D31 + K24D41) IM2 − (K21D12 + K22D22 + K23D32 + K24D42) − (K21D13 + K22D23 + K23D33 + K24D43) − (K21D14 + K22D24 + K23D34 + K24D44)

− (K31D11 + K32D21 + K33D31 + K34D41) − (K31D12 + K32D22 + K33D32 + K34D42) IM2 − (K31D13 + K32D23 + K33D33 + K34D43) − (K31D14 + K32D24 + K33D34 + K34D44)

− (K41D11 + K42D21 + K43D31 + K44D41) − (K41D12 + K42D22 + K43D32 + K44D42) − (K41D13 + K42D23 + K43D33 + K44D43) IM2 − (K41D14 + K42D24 + K43D34 + K44D44)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(I − KD)U � F

IM2 − (K11D11 + K12D21 + K13D31 + K14D41)( 􏼁U11 − (K11D12 + K12D22 + K13D32 + K14D42)U21 − (K11D13 + K12D23 + K13D33 + K14D43)U31 − (K11D14 + K12D24 + K13D34 + K14D44)U41 � F11,

− (K21D11 + K22D21 + K23D31 + K24D41)U11 + IM2 − (K21D12 + K22D22 + K23D32 + K24D42)U21 − (K21D13 + K22D23 + K23D33 + K24D43)U31 − (K21D14 + K22D24 + K23D34 + K24D44)U41 � F21,

− (K31D11 + K32D21 + K33D31 + K34D41)U11 − (K31D12 + K32D22 + K33D32 + K34D42)U21 + IM2 − (K31D13 + K32D23 + K33D33 + K34D43)( 􏼁U31 − (K31D14 + K32D24 + K33D34 + K34D44)U41 � F31,

− (K41D11 + K42D21 + K43D31 + K44D41)U11 − (K41D12 + K42D22 + K43D32 + K44D42)U21 − (K41D13 + K42D23 + K43D33 + K44D43)U31 + IM2 − (K41D14 + K42D24 + K43D34 + K44D44)( 􏼁U41 � F41.

(58)
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Set

A1 � IM2 − (K11D11 + K12D21 + K13D31 + K14D41),

A2 � − (K11D12 + K12D22 + K13D32 + K14D42),

A3 � − (K11D13 + K12D23 + K13D33 + K14D43),

A4 � − (K11D14 + K12D24 + K13D34 + K14D44),

B1 � − (K21D11 + K22D21 + K23D31 + K24D41),

B2 � IM2 − (K21D12 + K22D22 + K23D32 + K24D42 ),

B3 � − (K21D13 + K22D23 + K23D33 + K24D43),

B4 � − (K21D14 + K22D24 + K23D34 + K24D44),

C1 � − (K31D11 + K32D21 + K33D31 + K34D41),

C2 � − (K31D12 + K32D22 + K33D32 + K34D42),

D1 � − (K41D11 + K42D21 + K43D31 + K44D41),

D2 � − (K41D12 + K42D22 + K43D32 + K44D42),

D3 � − (K41D13 + K42D23 + K43D33 + K44D43),

D4 � IM2 − (K41D14 + K42D24 + K43D34 + K44D44),

(59)

which lead to the following two crisp linear systems:

A1U11 + A2U21 + A3U31 + A4U41 � F11, (60)

B1U11 + B2U21 + B3U31 + B4U41 � F21, (61)

C1U11 + C2U21 + C3U31 + C4U41 � F31, (62)

D1U11 + D2U21 + D3U31 + D4U41 � F41, (63)

and

A1U12 + A2U22 + A3U32 + A4U42 � F12, (64)

B1U12 + B2U22 + B3U32 + B4U42 � F22, (65)

C1U12 + C2U22 + C3U32 + C4U42 � F32, (66)

D1U12 + D2U22 + D3U32 + D4U42 � F42. (67)

Similarly, we expand u(x, y, r) and f(x, y, r) by 2D-TFs,
and by substituting them into equation (42), two coupled
crisp linear systems, similar to (61) and (65), are obtained. It
is clear that all matrices in the two coupled crisp linear
systems (61) and (65) are square matrices of dimensions
M × M. %us, we need to obtain the coefficient matrices
U11, U12, U21, U22, U31, U32, U41, and U42 in order to get
the approximate numerical solution of the form:

u(x, y, r) � T
T
(x, y)UT(r). (68)

6.2. Proposed Iterative Algorithm for Solving Coupled Systems
(61) and (65). An iterative algorithm is proposed here to
solve the two coupled systems (61) and (65) as a general-
ization of Algorithm 2.

Algorithm 3. Algorithm 2 is modified and generalized to
work out for systems (61) and (65) as follows.

First, for coupled system (61):

(1) Input A1; A2; A3; A4; B1; B2; B3; B4; C1; C2; C3; C4;

D1; D2; D3; D4; F11; F21; F31; F41.
(2) Choose arbitrary matrices U11, U21, U31, U41.
(3) For k � 1, set

Rk � diag(F11 − f1(U11, U21, U31, U41), F21 − f2(U11, U21, U31, U41), F31 − f3(U11, U21, U31, U41), F41

− f4(U11, U21, U31, U41))

S1k � A
T
1 (F11 − f1(U11, U21, U31, U41)) + B1

T
(F21 − f2(U11, U21, U31, U41)) + C1

T
(F31 − f3(U11, U21, U31, U41))

+ D1
T
(F41 − f4(U11, U21, U31, U41)),

S2k � A
T
2 (F11 − f1(U11, U21, U31, U41)) + B2

T
(F21 − f2(U11, U21, U31, U41)) + C2

T
(F31 − f3(U11, U21, U31, U41))

+ D2
T
(F41 − f4(U11, U21, U31, U41)),

S3k � A
T
3 (F11 − f1(U11, U21, U31, U41)) + B3

T
(F21 − f2(U11, U21, U31, U41)) + C3

T
(F31 − f3(U11, U21, U31, U41))

+ D3
T
(F41 − f4(U11, U21, U31, U41)),

S4k � A
T
4 (F11 − f1(U11, U21, U31, U41)) + B4

T
(F21 − f2(U11, U21, U31, U41)) + C4

T
(F31 − f3(U11, U21, U31, U41))

+ D4
T
(F41 − f4(U11, U21, U31, U41)).

(69)
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(4) If RK � 0, then stop and U11, U21, U31, U41 are the
solutions; else, let K � K + 1 and go to step 5.

(5) Compute

U11 � U11 +
RK

����
����
2

S1k

����
����
2

+ S2k

����
����
2

+ S3k

����
����
2

+ S4k

����
����
2 S1k,

U21 � U21 +
RK

����
����
2

S1k

����
����
2

+ S2k

����
����
2

+ S3k

����
����
2

+ S4k

����
����
2 S2k,

U31 � U31 +
RK

����
����
2

S1k

����
����
2

+ S2k

����
����
2

+ S3k

����
����
2

+ S4k

����
����
2 S3k,

U41 � U41 +
RK

����
����
2

S1k

����
����
2

+ S2k

����
����
2

+ S3k

����
����
2

+ S4k

����
����
2 S4k,

Rk+1 � diag(F11 − f1(U11, U21, U31, U41), F21 − f2(U11, U21, U31, U41), F31 − f3(U11, U21, U31, U41),

· F41 − f4(U11, U21, U31, U41)),

S1k+1 � A
T
1 (F11 − f1(U11, U21, U31, U41)) + B

T
1 (F21 − f2(U11, U21, U31, U41)) + C

T
1 (F31 − f3(U11, U21, U31, U41))

+ D
T
1 (F41 − f4(U11, U21, U31, U41)) +

RK+1
����

����
2

RK

����
����
2 S1K,

S2k+1 � A
T
2 (F11 − f1(U11, U21, U31, U41)) + B

T
2 (F21 − f2(U11, U21, U31, U41)) + C

T
2 (F31 − f3(U11, U21, U31, U41))

+ D
T
2 (F41 − f4(U11, U21, U31, U41)) +

RK+1
����

����
2

RK

����
����
2 S2K,

S3k+1 � A
T
3 (F11 − f1(U11, U21, U31, U41)) + B

T
3 (F21 − f2(U11, U21, U31, U41)) + C

T
3 (F31 − f3(U11, U21, U31, U41))

+ D
T
3 (F41 − f4(U11, U21, U31, U41)) +

RK+1
����

����
2

RK

����
����
2 S3K,

S4k+1 � A
T
4 (F11 − f1(U11, U21, U31, U41)) + B

T
4 (F21 − f2(U11, U21, U31, U41)) + C

T
4 (F31 − f3(U11, U21, U31, U41))

+ D
T
4 (F41 − f4(U11, U21, U31, U41)) +

RK+1
����

����
2

RK

����
����
2 S4K.

(70)

For coupled system (65), the algorithm is repeated with
replacing U11, U21, U31, U41 by U12, U22, U32, U42 and
F11, F21, F31, F41 by F12, F22, F32, F42 where the 2M ×

2M block U matrix is computed.

%e approximate crisp numerical solution for equation (51)
of the form u (x, r)approx. � TT(x)UT(r) is then obtained.

In a similar manner, the crisp numerical solution for
equation (53) of the form u(x, r)approx. � TT(x)UT(r) can
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be obtained by carrying out the above-proposed algorithm
for the other coupled crisp systems similar to (61) and (65).

Finally, the solution for linear 2D-FFIE-2 by 2D-TFs is then
given as

u(x, y) � uapprox(x, y, r), uapprox(x, y, r)􏼐 􏼑, 0≤ r≤ 1, x, y ∈ [0, 1). (71)

7. Convergence Analysis of the
Proposed Method

In this section, we obtain error estimate for the numerical
method proposed in previous section.

Theorem 1. *e solution of the two-dimensional Fredholm
fuzzy integral equations given by equation (1) by using 2D-
TFs converges to exact solution if

S � max
0≤x,y,s,t≤1

|k(x, y, s, t)|< 1. (72)

Proof. Assume 􏽥uexact(x, y) and 􏽥uapprox(x, y) represent the
exact and approximate solutions of equation (1), re-
spectively. %erefore,

􏽥uapprox(x, y) � 􏽘

m1 − 1

i�0
􏽘

m2− 1

j�0
ci,jT

1,1
i,j (s, t) + 􏽘

m1− 1

i�0
􏽘

m2− 1

j�0
di,jT

1,2
i,j (s, t)

+ 􏽘

m1− 1

i�0
􏽘

m2− 1

j�0
ei,jT

2,1
i,j (s, t) + 􏽘

m1− 1

i�0
􏽘

m2 − 1

j�0
li,jT

2,2
i,j (s, t).

(73)

By using equation (1), we can write

e(x, y) � 􏽥uexact(x, y) − 􏽥uapprox(x, y)
�����

����� � max
(x,y)∈[0,1]

􏽥uexact(x, y) − 􏽥uapprox(x, y)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� max
(x,y)∈[0,1]

􏽚
1

0
􏽚
1

0
k(x, y, s, t)􏽥uexact(s, t)ds dt − 􏽚

1

0
􏽚
1

0
k(x, y, s, t) 􏽘

m1− 1

i�0
􏽘

m2− 1

j�0
ci,jT

1,1
i,j (s, t) + 􏽘

m1− 1

i�0
􏽘

m2− 1

j�0
di,jT

1,2
i,j (s, t)⎛⎝⎛⎝

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽘

m1− 1

i�0
􏽘

m2− 1

j�0
ei,jT

2,1
i,j (s, t) + 􏽘

m1− 1

i�0
􏽘

m2− 1

j�0
li,jT

2,2
i,j (s, t)⎞⎠ds dt⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ S 􏽚
1

0
􏽚
1

0
max

(x,y)∈[0,1]
􏽥uexact(s, t) − 􏽥uapprox(s, t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds dt􏼠 􏼡 � S 􏽚
1

0
􏽚
1

0
􏽥uexact(s, t) − 􏽥uapprox(s, t)

�����

�����ds dt􏼠 􏼡,

(74)

where

S � max
0≤x,y,s,t≤1

|k(x, y, s, t)|<∞. (75)

Also, we have limM⟶∞􏽥uapprox(x, y) � 􏽥uexact(x, y), so
‖􏽥uexact(x, y) − 􏽥uapprox(x, y)‖⟶ 0 as M⟶∞ and since S

is bounded.
%us,

lim
M⟶∞

􏽥uexact(x, y) − 􏽥uapprox(x, y)
�����

�����⟶ 0, (76)

so the proof of the theorem is completed.

Remark 1. In our theoretical investigation for the proposed
method, we take m1 � m2 � M.

8. Numerical Results and Discussion

%is section demonstrates the effectiveness and the accuracy
of our proposed hybrid method, 2D-TFs and an iterative
algorithm, on some examples. %e solution of each example
is obtained for different values of x, y, r, and M and is
compared with the exact solution, the direct method, and the

presented method when the tolerance criteria residual is
>e− 4 and >e− 8.

Example 1. %e 2D-FFIE-2 given in Mirzaee et al. [15] is
considered as

f(x, y, r) � r xy +
1
676

x
2

+ y
2

− 2􏼐 􏼑􏼒 􏼓,

f(x, y, r) � (2 − r) xy +
1
676

x
2

+ y
2

− 1􏼐 􏼑􏼒 􏼓,

k(x, y, s, t) �
1
169

x
2

+ y
2

− 2􏼐 􏼑 s
2

+ t
2

− 2􏼐 􏼑, 0≤x, t≤ 1 and λ � 1.

(77)

In this case, the exact solution is given by

􏽥u(x, y, r) � u(x, y, r), u(x, y, r)( 􏼁 � (rxy, (2 − r)xy).

(78)

%e number of iterations for solving the two coupled
matrix equations to obtain the coefficient matrices taken by
our proposed iterative algorithm is k � 3 when the tolerance
criteria residual is >e− 4 which indicates that the hybrid
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proposed method is quite efficient and has good accuracy as
seen from Tables 1 and 2.

Remark 2. %e numerical results for the approximate so-
lution using the direct method in Tables 1 and 2 are taken
from Table 3 in [15], while the numerical results using the
direct and the proposed iterative methods in Tables 3 and 4
are obtained using our own program written using MAT-
LAB R2018b. Also, the number of iterations for solving the
two coupled matrix equations to obtain the coefficient
matrices taken by our proposed iterative algorithm is k � 3
when the tolerance criteria residual is >e− 4 which indicates
that the hybrid proposed method is quite efficient and has
good accuracy as seen from Tables 3 and 4.

Example 2. Consider the following made up linear two-
dimensional fuzzy Fredholm integral equations (2D-FFIE-
2):

f(x, y, r) �
5
12

r(x + y),

f(x, y, r) �
5
12

(2 − r)(x + y),

k(x, y, s, t) � xs + yt, 0≤ x, t≤ 1 and λ � 1.

(79)

In this case, the exact solution is given by

􏽥u(x, y, r) � u(x, y, r), u(x, y, r)( 􏼁 � (r(x + y), (2 − r)(x + y)).

(80)

Remark 3. %e number of iterations for solving the two
coupled matrix equations to obtain the coefficient matrices
taken by our proposed iterative algorithm is k � 3 when the
tolerance criteria residual is >e− 4 which indicates that the
hybrid proposed method is quite efficient and has good
accuracy as seen from Tables 5 and 6.

Example 3. Consider the following 2D-FFIE-2:

f(x, y, r) �
11
36

rx
2
y
2
,

f(x, r) �
11
36

(2 − r)x
2
y
2
,

k(x, y, s, t) � x
2
y
2
(1 + 2t)(1 + 2s), 0≤ x, t≤ 1 and λ � 1.

(81)

In this case, the exact solution is given by

u(x, y, r) � rx
2
y
2
,

u(x, r) � (2 − r)x
2
y
2
.

(82)

Table 1: Numerical results with TF system for Example 1 for x � 0.1, y � 0.4, and M � 4.

r Exact solution u(x, y, r) Direct method [15] Absolute error Presented method Absolute error
0 0.00000000 0.00000000 8.4015e − 006 0.00000002 1.89187044e − 008
0.1 0.00400000 0.00398678 1.3220e − 005 0.00399416 5.83560842e − 006
0.2 0.00800000 0.00797356 2.6440e − 005 0.00798831 1.16901355e − 005
0.3 0.01200000 0.01196034 3.9660e − 005 0.01198246 1.75446627e − 005
0.4 0.01600000 0.01594712 5.2880e − 005 0.01597660 2.33991898e − 005
0.5 0.02000000 0.01993390 6.6100e − 005 0.01997075 2.92537169e − 005
0.6 0.02400000 0.02392068 7.9320e − 005 0.02396489 3.51082441e − 005
0.7 0.02800000 0.02700746 9.9254e − 004 0.02796099 4.09627712e − 005
0.8 0.03200000 0.03189424 1.0576e − 004 0.03195318 4.68172983e − 005
0.9 0.03600000 0.03588102 1.1898e − 004 0.03594733 5.26718254e − 005

Table 2: Numerical results with TF system for Example 1 for x � 0.1, y � 0.4, and M� 4.

r Exact solution u(x, y, r) Direct method [15] Absolute error Presented method Absolute error
0 0.08000000 0.07973560 2.6440e − 004 0.07988291 1.17085832e − 004
0.1 0.07600000 0.07574882 2.5118e − 004 0.07588878 1.11222414e − 004
0.2 0.07200000 0.07176204 2.3796e − 004 0.07189464 1.05358995e − 004
0.3 0.06800000 0.06777526 2.2474e − 004 0.06790050 9.94955768e − 005
0.4 0.06400000 0.06378849 2.1151e − 004 0.06390637 9.36321584e − 005
0.5 0.06000000 0.05980170 1.9830e − 004 0.05991223 8.77687400e − 005
0.6 0.05600000 0.05581492 1.8508e − 004 0.05592806 8.19053216e − 005
0.7 0.05200000 0.05182814 1.7186e − 004 0.05192396 7.60419032e − 005
0.8 0.04800000 0.04784136 1.5864e − 004 0.04792982 7.01784848e − 005
0.9 0.04400000 0.04385458 1.4542e − 004 0.04393568 6.43150664e − 005
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Table 6: Numerical results with TF system for Example 2 for x � 0.1, y � 0.1, and M � 6.

r Exact solution u(x, y, r) Presented method Absolute error Exact solution u(x, y, r) Presented method Absolute error
0 0.00000000 0.00000000 0.000000000e+ 00 0.40000000 0.40000000 0.000000000e+ 00
0.1 0.02000000 0.02000000 0.000000000e+ 00 0.38000000 0.38000000 0.000000000e+ 00
0.2 0.04000000 0.04000000 0.000000000e+ 00 0.36000000 0.36000000 0.000000000e+ 00
0.3 0.06000000 0.06000000 0.000000000e+ 00 0.34000000 0.34000000 0.000000000e+ 00
0.4 0.08000000 0.08000000 0.000000000e+ 00 0.32000000 0.32000000 0.000000000e+ 00
0.5 0.10000000 0.10000000 0.000000000e+ 00 0.30000000 0.30000000 0.000000000e+ 00
0.6 0.12000000 0.12000000 0.000000000e+ 00 0.28000000 0.28000000 0.000000000e+ 00
0.7 0.14000000 0.14000000 0.000000000e+ 00 0.26000000 0.26000000 0.000000000e+ 00
0.8 0.16000000 0.16000000 0.000000000e+ 00 0.24000000 0.24000000 0.000000000e+ 00
0.9 0.18000000 0.18000000 0.000000000e+ 00 0.22000000 0.22000000 0.000000000e+ 00

Table 4: Numerical results with TF system for Example 1 for x � 0.1, y � 0.4, and M � 6.

r Exact solution u(x, y, r) Direct method Absolute error Presented method Absolute error
0 0.08000000 0.07994709 5.29077333e − 005 0.07994927 5.07341947e − 005
0.1 0.07600000 0.07594863 5.13736533e − 005 0.07595198 4.80210603e − 005
0.2 0.07200000 0.07195016 4.98395733e − 005 0.07195469 4.53079259e − 005
0.3 0.06800000 0.06795169 4.83054933e − 005 0.06795741 4.25947915e − 005
0.4 0.06400000 0.06395323 4.67714133e − 005 0.06396012 3.98816571e − 005
0.5 0.06000000 0.05995476 4.52373333e − 005 0.05996283 3.71685227e − 005
0.6 0.05600000 0.05595630 4.37032533e − 005 0.05596554 3.44553883e − 005
0.7 0.05200000 0.05195783 4.21691733e − 005 0.05196826 3.17422539e − 005
0.8 0.04800000 0.04795936 4.06350933e − 005 0.04797097 2.90291195e − 005
0.9 0.04400000 0.04396090 3.91010133e − 005 0.04397368 2.63159851e − 005

Table 3: Numerical results with TF system for Example 1 for x � 0.1, y � 0.4, and M � 6.

r Exact solution u(x, y, r) Direct method Absolute error Presented method Absolute error
0 0.00000000 0.00000239 2.39402667e − 006 0.00000010 9.77129847e − 008
0.1 0.00400000 0.00399511 4.89026667e − 006 0.00399758 2.42072449e − 006
0.2 0.00800000 0.00799261 7.38650667e − 006 0.00799506 4.93916197e − 006
0.3 0.01200000 0.01199012 9.88274667e − 006 0.01199254 7.45759945e − 006
0.4 0.01600000 0.01598762 1.23789867e − 005 0.01599002 9.97603693e − 006
0.5 0.02000000 0.01998512 1.48752267e − 005 0.01998751 1.24944744e − 005
0.6 0.02400000 0.02398263 1.73714667e − 005 0.02398499 1.50129119e − 005
0.7 0.02800000 0.02798013 1.98677067e − 005 0.02798247 1.75313494e − 005
0.8 0.03200000 0.03197764 2.23639467e − 005 0.03197995 2.00497868e − 005
0.9 0.03600000 0.03597514 2.48601867e − 005 0.03597743 2.25682243e − 005

Table 5: Numerical results with TF system for Example 2 for x � 0.1, y � 0.1, and M � 4.

r Exact solution u(x, y, r) Presented method Absolute error Exact solution u(x, y, r) Presented method Absolute error
0 0.00000000 0.00000000 1.734723476e − 17 0.40000000 0.40000000 0.000000000e+ 00
0.1 0.02000000 0.02000000 1.387778781e − 17 0.38000000 0.38000000 0.000000000e+ 00
0.2 0.04000000 0.04000000 1.387778781e − 17 0.36000000 0.36000000 5.551115123e − 17
0.3 0.06000000 0.06000000 0.000000000e+ 00 0.34000000 0.34000000 0.000000000e+ 00
0.4 0.08000000 0.08000000 0.000000000e+ 00 0.32000000 0.32000000 0.000000000e+ 00
0.5 0.10000000 0.10000000 0.000000000e+ 00 0.30000000 0.30000000 0.000000000e+ 00
0.6 0.12000000 0.12000000 2.775557562e − 17 0.28000000 0.28000000 5.551115123e − 17
0.7 0.14000000 0.14000000 2.775557562e − 17 0.26000000 0.26000000 5.551115123e − 17
0.8 0.16000000 0.16000000 0.000000000e+ 00 0.24000000 0.24000000 2.775557562e − 17
0.9 0.18000000 0.18000000 1.734723476e − 17 0.22000000 0.22000000 5.551115123e − 17
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Remark 4. In Table 7, the number of iterations for this
example by our proposed iterative algorithm is k � 3 when
the tolerance criteria residual is >e− 4 which indicates that the
hybrid proposed method is quite efficient. Moreover, we can
see that our method has good accuracy which can be further
improved by increasing the residual.

9. Conclusion

Fuzzy control applications and a large proportion of applied
mathematical topics require the solution of the fuzzy integral
equations. %e paper introduced the 2D-TFs method for
approximating the solution of linear 2D-FFIE-2, which is
a hybrid of triangular functions and an iterative algorithm.%e
method is simple, efficient, and accurate and is based on
converting the original equation into two crisp systems (2D-
FFIE-2).%e efficiency and simplicity of the proposed method
are demonstrated via numerical examples with known exact
solutions, and the results are given. Furthermore, the excep-
tional value of the proposedmethod is low cost of the equation
setting with no need for any projection method or integration.
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In this study, the design of a novel model based on nonlinear third-order Emden–Fowler delay differential (EF-DD) equations is
presented along with two types using the sense of delay differential and standard form of the second-order EF equation. )e
singularity at ξ � 0 at single or multiple points of each type of the designed EF-DDmodel are discussed.)e detail of shape factors
and delayed points is provided for both types of the designed third-order EF-DDmodel. For the verification and validation of the
model, two numerical examples are presented of each case and numerical results have been performed using the artificial neural
network along with the hybrid of global and local capabilities. )e comparison of the obtained numerical results with the exact
solutions shows the perfection and correctness of the designed third-order EF-DD model.

1. Introduction

)e delay differential (DD) equation is known as one of the
historical and important equations. Recently, DD equation
has attained much attention of the researcher’s community
due to its vast applications inmany biological models, as well
as scientific phenomena such as communication system
model, dynamical population model, economical systems,
engineering system, and transport and propagation model
[1–5]. It is always interested to find the solution of DD
equations and many researchers have applied different
numerical/analytical techniques. Brunner et al. [6] solved
DD equation by applying a discontinuous Galerkin nu-
merical scheme. Hsiao and Wu [7] applied Haar wavelet to
solve DD equations, while Wang [8] presented the solution
of DD equations using Legendre wavelet. Adomian and
Rach [9] solved DD equation using the Adomian decom-
position scheme. Shakeri and Dehghan [10] found the so-
lutions of DD initial value problems using the homotopy

perturbation scheme. Erdogan et al. [11] implemented finite
difference approach on layer-adapted mesh using the sin-
gularly perturbed DD equations.)e general form of the DD
model is written as [12, 13]

d3u
dξ3

� h ξ, u(ξ − τ),
du(ξ − τ)

dξ
,
d2u(ξ − τ)

dξ2
􏼠 􏼡,

u(0) � A,
du(0)

dξ
� B,

d2u(0)

dξ2
� C,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where h shows the linear/nonlinear function and τ is the
delayed term, whereas A, B, and C are the constants.

)e singular study has become very significant in the
modern era due to the variety of applications in technology,
engineering, and biological and physical sciences. )e sin-
gular nature models are always difficult, grim, and chal-
lengeable to solve for the research community. One of the
important, famous, historical, and singular models is
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Emden–Fowler (EF) model that shows the singularity at the
origin. Since its invention, this model has been solved by
various analytical and numerical schemes, and it has a
number of applications in the study of relativistic mechanics,
fluid dynamics, population growth model, pattern creation,
and the study of chemical reactor models. )e literature
form of the EF model is written as [14–16]

d2u
dξ2

+
κ
ξ
du

dξ
+ g(ξ)h(u) � 0,

u(0) � A1,
du(0)

dξ
� A2,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where κ≥ 1 is the shape vector. )e EF model (1) becomes
the Lane–Emden model by taking h(u) � 1 and is written as
follows:

d2u
dξ2

+
κ
ξ
du

dξ
+ h(u) � 0,

u(0) � A1,
du(0)

dξ
� A2.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

)e above singular models have been achieved from the
work of Homer Lane and Robert Emden. )ese models
designate inner construction of polytropic stars, gas cloud
model, cluster galaxies, and radiative cooling. Due to the
worth of these models, no one can deny the value and
importance of such models, which has vast applications in
the physical science field [17], isotropic continuous media
[18], density of gaseous star [19], morphogenesis [20], dusty
fluid models [21], stellar structure models [22], reactions
based on catalytic diffusion [23], oscillating magnetic sys-
tems [24], isothermal gas sphere models [25], mathematical
physics [26], catalytic diffusion reactions [23], classical/
quantum mechanics [27], and electromagnetic theory [28].

Due to the fame of these models, the researcher’s
community is interested to solve these models and only a few
methods are available in the literature that has been in-
vestigated. One of the well-known methods used to solve
these models is the Adomian decomposition method, which
is proposed by Shawagfeh and Wazwaz [29, 30]. Parand and
Razzaghi [31] implemented a famous numerical scheme to
solve singular equations. Liao [32] applied an analytic
technique to avoid the difficulty of singular points. Bender
et al. [33] proposed a perturbative scheme to solve the
singular models. Nouh [34] presented two techniques’
power series and Pade approximation to solve the singular
models.

)e aim of this study is to design a novel third-order
Emden–Fowler delay differential (EF-DD) model along with
two types. Two examples of the designed third-order EF-DD
model have been presented for both of the types. For the
correctness of the model, the numerical investigations have
been performed by using an artificial neural network along
with its global/local competences. )e singular ordinary
differential equations are much important and have many
applications in engineering as well as scientific applications,

e.g., optimization and control theory, reactant application in
the area of chemical reactor, theory of boundary layer, and
biological sciences.

)e structure of remaining paper is summarized as
follows. Section 2 defines the construction of the third-order
EF-DD model along with two types. Methodology and the
detail of the results for solving the third-order EF-DD
equations are provided in the Section 3. )e conclusions
along with future research directions are drawn in the
Section 4.

2. Construction of Third-Order EF-DD Model

In this section, two different types are presented based on the
third-order EF-DD model. )e construction of the third-
order EF-DD model along with the singular points, delayed
points, and shape factors for both of the types is discussed.
)e initial conditions of the designed third-order EF-DD
model are achieved using the standard form of the Lane-
–Emden. To derive the third-order EF-DD model system of
Emden–Fowler equations, the mathematical form is used as
follows:

ξ− k d
p

dξp ξk d
q

dξq􏼠 􏼡u(ξ − τ) + g(ξ)h(u) � 0, (4)

where k is real positive number. To determine the third-
order DD-EF model, the values of p and q should be des-
ignated as follows:

p + q � 3, p, q≥ 1. (5)

)e following two possibilities satisfy equation (5) as
follows:

p � 2,

q � 1,
(6)

p � 1,

q � 2.
(7)

2.1. Type 1. Using equations (6), the updated form of
equation (4) is

ξ− k d
2

dξ2
ξk d
dξ

􏼠 􏼡y(ξ − τ) + g(ξ)h(u) � 0. (8)

)e derivative part of the above equation is obtained as
follows:

d2

dξ2
ξk d
dξ

􏼠 􏼡u(ξ − τ) � ξk d
3

dξ3
u(ξ − τ) + 2kξk−1

d2

dξ2
u(ξ − τ) + k(k − 1)u(ξ − τ)ξk−2 d

dξ
u(ξ − τ).

(9)

Using the above expression in equation (8), the third-
order EF-DD equation becomes
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d3

dξ3
u(ξ − τ) +

2k

ξ
d2

dξ2
u(ξ − τ) +

k(k − 1)

ξ2
d
dξ

u(ξ − τ) + g(ξ)h(u) � 0,

u(0) � α,
du(0)

dξ
� 0,

d2u(0)

dξ2
� 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where the singular point at ξ � 0 appears two times as
ξ � 0 and ξ2 � 0. )e shape factors expressed in equation
(10) are 2k and k(k − 1), respectively. )e multiple delays
have been noticed in the first, second, and third term of
equation (10). Moreover, the third expression vanishes for
k� 1 and the shape factor reduces to 2.

2.2. Type 2. Equation (4) by putting p � 1 and q � 2 takes
the form as follows:

ξ− k d
dξ

ξk d
2

dξ2
􏼠 􏼡u(ξ − τ) + g(ξ)h(u) � 0. (11)

)e derivative part of the above equation is obtained as
follows:

d
dξ

ξk d
2

dξ2
􏼠 􏼡u(ξ − τ) � ξk d

3

dξ3
u(ξ − τ) + kξk−1 d

2

dξ2
u(ξ − τ).

(12)

Using the above value in equation (11), the third-order
EF-DD model becomes as follows:

d3

dξ3
u(ξ − τ) +

k

ξ
d2

dξ2
u(ξ − τ) + g(ξ)h(u) � 0,

u(0) � α,
du(0)

dξ
� β,

d2u(0)

dξ2
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

)e single singularity at ξ � 0 has been noticed in the
above equation (13). )e shape factor is k and delayed ex-
pression appears twice in the above equation.

Some prime features of the designedmodel are presented
as follows:

)e design of third-order Emden–Fowler delay dif-
ferential model is presented by using the sense of
standard Emden–Fowler equation and delay-differen-
tial equation
Two types of the designed model are presented and two
numerical nonlinear examples of each type are
designed based on the designed model
)e shape factors, delay expressions, and singularities
are discussed in both of the types
)e artificial neural network is used to check the
perfection and correctness of the designed third-order
Emden–Fowler model

3. Methodology and Numerical Examples

Two numerical examples based on the EF-DD novel model
are presented in this section.)e numerical investigations of
the examples are performed using the artificial neural
network.)e error function is provided by using the sense of
the differential equations and initial conditions. )e opti-
mization of the error function is performed using the hybrid
of global and local search captaincies, which are genetic
algorithm (GA) and active-set method (ASM). )e artificial
neural network is famous and widely applied in many well-
known recent applications, see [35–41]. To approximate the
results, feedforward ANN system along with its respective
derivatives is used as follows:

􏽢u � 􏽘
m

i�1
liP αiξ + bi( 􏼁, (14)

􏽢u
(n)

� 􏽘
m

i�1
liP

(n) αiξ + bi( 􏼁, (15)

where li, mi, and ni are the ith components of l, α, and b

vectors, while n is the order of derivative. An activation log-
sigmoid function, i.e., P(ξ) � (1 + &ExponentialE;− ξ)−1

along with its third derivative is used as follows:

􏽢u � 􏽘

m

i�1
li 1 + e

− αiξ+bi( )􏼒 􏼓
−1

, (16)

􏽢u
(n)

� 􏽘
n

i�1
li
dn

dξn 1 + e
− αiξ+bi( )􏼒 􏼓

−1
􏼠 􏼡. (17)

)e third-order derivative is provided as follows:

􏽢u
‴

(ξ) � 􏽘
m

i�1
liξ

3
i

6e
− 3 αiξ+bi( )

1 + e
− αiξ+bi( )􏼒 􏼓

4 −
6e

− 2 αiξ+bi( )

1 + e
− αiξ+bi( )􏼒 􏼓

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+
e

− αiξ+bi( )

1 + e
− αiξ+bi( )􏼒 􏼓

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(18)

)e fitness function is given as follows:

E � E1 + E2, (19)

where E1 and E2 are the respective error functions related to
differential equation and initial conditions.
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3.1. EF-DD Equation of Type 1. In this type, two different
third-order EF-DD-based equations will be discussed. )e
updated form of equation (10) using k� 2 is given as follows.

Example 1. Consider the nonlinear third-order EF-DD
equation having multiple singularities is shown as follows:

d3

dξ3
u(ξ − 1) +

4
ξ

d2

dξ2
u(ξ − 1) +

2
ξ2

d
dξ

u(ξ − 1) + ξu
2

� ξ7 + 2ξ4 + ξ + 30 −
36
ξ

+
6
ξ2

,

u(0) � 1,
du(0)

dξ
� 0,

d2u(0)

dξ2
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(20)
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Figure 1: Optimization variables, learning curves, and comparison of results of the GA-AS scheme for nonlinear EF-DD equations (1) and
(2) of type 1. (a) Set of best weights and current function values for 10 neurons based on third-order nonlinear EF-DD equation (1). (b) Set of
best weights and current function values for 10 neurons based on third-order nonlinear EF-DD equation (2). (c) Comparison of the
numerical and exact solutions of third-order nonlinear EF-DD equation (1). (d) Comparison of the numerical and exact solutions of third-
order nonlinear EF-DD equation (2).
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)e exact solution of equation (20) is 1 + ξ3.

Example 2. Consider the nonlinear third-order EF-DD
equation having multiple singularities and trigonometric
functions is written as follows:

d3

dξ3
u(ξ − 1) +

4
ξ

d2

dξ2
u(ξ − 1) +

2
ξ2

d
dξ

u(ξ − 1) + ξu
2

�
ξ5

4
−
2
ξ2

+
6
ξ
+

ξ2 − 2
ξ2

sin(ξ − 1) −
4
ξ
cos(ξ − 1) + ξ3 cos ξ + ξcos2ξ,

u(0) � 1,
du(0)

dξ
� 0,

d2u(0)

dξ2
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

)e exact solution of equation (21) is cos ξ + (1/2)ξ2.

3.2. EF-DD Equation of Type 2. In this type, two different
third-order EF-DD-based equations will be discussed. )e
updated form of equation (13) using k� 1 is given in the
form of two examples.

Example 3. Consider the nonlinear third-order EF-DD
equation having exponential function is given as follows:

d3

dξ3
u(ξ − 1) +

1
ξ

d2

dξ2
u(ξ − 1) + ξe

u
� 12 −

6
ξ

+ ξe
1+ξ+ξ3

,

u(0) � 1,
du(0)

dξ
� 1,

d2u(0)

dξ2
� 0.
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Figure 2: Optimization variables, learning curves, and comparison of results of the GA-AS scheme for nonlinear EF-DD equations (1) and
(2) of type 2. (a) Set of best weights and current function values for 10 neurons based on third-order nonlinear EF-DD equation (1) of type 2.
(b) Set of best weights and current function values for 10 neurons based on third-order nonlinear EF-DD equation (2) of type 2.
(c) Comparison of the numerical and exact solutions of third-order nonlinear EF-DD equation (1) of type 2. (d) Comparison of the
numerical and exact solutions of third-order nonlinear EF-DD equation (2) of type 2.
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)e exact solution of equation (22) is 1 + ξ + ξ3. Example 4. Consider the nonlinear third-order EF-DD
equation having multi trigonometric function is given as
follows:

d3

dξ3
u(ξ − 1) +

1
ξ

d2

dξ2
u(ξ − 1) + ξu

2
� ξsin2ξ + 2ξ sin ξ + ξ − cos(ξ − 1) −

1
ξ
sin(ξ − 1),

u(0) � 1,
du(0)

dξ
� 1,

d2u(0)

dξ2
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

)e exact solution of equation (23) is 1 + sin ξ.
Figures 1 and 2 represent the current point and function

values using 10 neurons based on the hybrid combination of
GA-AS scheme for both of the examples of types 1 and 2.)e
current function values (CFVs) are 10−09 and 10−08 for both
of the examples of type 1 and 10−07 and 10−09 for both of the
examples of 2 using 10 numbers of neurons.)e comparison
of results is presented in the rest of the figures for both
examples of types 1 and 2. )e overlapping of the exact and
obtained results shows the correctness and the perfection of
the novel third-order nonlinear EF-DD model.

)e plots of the absolute error (AE) for both types of
examples 1 and 2 based on the third-order nonlinear EF-DD
model are provided in Figure 3. It is clear that most of the
values lie around 10−04 to 10−05 for both types of examples 1
and 2, which indicates the exactness of the designed model.
)ese witnesses prove the correctness of the designed third-
order nonlinear EF-DD model. Comparison of the obtained
results from GA-ASM for solving the nonlinear EF-DD
model based on both problems of both types is tabulated in

Tables 1 and 2. )e exact solution, proposed results from
GA-ASM, and the AE are provided in these tables. One can
conclude on the behalf of AE the exactness and accurateness
of the proposed model, as well as designed scheme.

4. Conclusion

In the present study, a novel design of third-order
Emden–Fowler delay differential model is presented. )e
designed model is obtained by using the sense of funda-
mental Emden–Fowler model. )e details of singular points,
delay expressions, and the shape factors are also provided of
the modeled equations of each type. )e singularity at ξ � 0
appears twice in the first type, while single singularity is
noticed in the second type. Similarly, the shape factor is
unique in the standard form of the Emden–Fowler model,
while the occurrence of shape factor is noticed twice in the
type 1; however, single shape factor is noticed in type 2. For
the perfection of the designed model, two nonlinear ex-
amples are presented of each type and numerical
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Figure 3: Absolute error based on the nonlinear EF-DD equations (1) and (2) of types 1 and 2. (a) AE for examples 1 and 2 of type 1. (b) AE
for examples 1 and 2 of type 2.
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investigations have been performed using the powerful
artificial neural networks. )e comparison of the results is
also plotted and overlapping of the proposed and exact
solution enhanced more satisfaction of the model. )e
graphs of absolute error show that most of the values are
found in good ranges for all examples of both types, which
shows the exactness, worth, and the precision of the

designed third-order Emden–Fowler delay differential
model.

In the future, the proposed scheme ANN-GA-ASM can
be applied as an accurate and efficient stochastic numerical
solver for nonlinear singular models [42–44], computational
models of fluid dynamics [45–48], fractional models
[49–52], and biological models [53–57].

Table 2: Comparison of the obtained results from GA-ASM for solving the nonlinear EF-DD model based on both problems of type 2.

ξ
Problem I Problem 2

Exact GA-ASM AE Exact GA-ASM AE
0 1.00000000 1.00022916 2.291613E− 04 1.00000000 0.99963919 3.60806E− 04
0.05 1.05012500 1.05035972 2.347211E− 04 1.04997917 1.04960463 3.74535E− 04
0.1 1.10100000 1.10123006 2.300602E− 04 1.09983342 1.09944214 3.91281E− 04
0.15 1.15337500 1.15357541 2.004064E− 04 1.14943813 1.14902494 4.13190E− 04
0.2 1.20800000 1.20812735 1.273485E− 4 1.19866933 1.19822683 4.42503E− 04
0.25 1.26562500 1.26561619 8.813729E− 06 1.24740396 1.24692273 4.81224E− 04
0.3 1.32700000 1.32677477 2.252260E− 04 1.29552021 1.29498952 5.30689E− 04
0.35 1.39287500 1.39234339 5.316061E− 04 1.34289781 1.34230679 5.91015E− 04
0.4 1.46400000 1.46307475 9.252507E− 04 1.38941834 1.38875787 6.60468E− 04
0.45 1.54112500 1.53973795 1.387048E− 03 1.43496553 1.43423077 7.34760E− 04
0.5 1.62500000 1.62312048 1.879521E− 03 1.47942554 1.47861923 8.06304E− 04
0.55 1.71637500 1.71402744 2.347561E− 03 1.52268723 1.52182376 8.63464E− 04
0.6 1.81600000 1.81327792 2.722078E− 03 1.56464247 1.56375263 8.89845E− 04
0.65 1.92462500 1.92169852 2.926483E− 03 1.60518641 1.60432276 8.63645E− 04
0.7 2.04300000 2.04011427 2.885735E− 03 1.64421769 1.64346056 7.57124E− 04
0.75 2.17187500 2.16933723 2.537774E− 03 1.68163876 1.68110255 5.36205E− 04
0.8 2.31200000 2.31015280 1.847204E− 03 1.71735609 1.71719584 1.60246E− 04
0.85 2.46412500 2.46330377 8.212322E− 04 1.75128041 1.75169842 4.18013E− 04
0.9 2.62900000 2.62947213 4.721265E− 04 1.78332691 1.78457923 1.25232E− 03
0.95 2.80737500 2.80925864 1.883638E− 03 1.81341550 1.81581807 2.40257E− 03
1 3.00000000 3.00316042 3.160417E− 03 1.84147098 1.84540533 3.93434E− 03

Table 1: Comparison of the obtained results from GA-ASM for solving the nonlinear EF-DD model based on both problems of type 1.

ξ
Problem I Problem 2

Exact GA-ASM AE Exact GA-ASM AE
0 1.00000000 0.99998788 1.212101E− 05 1.00000000 0.99999570 4.2979068E− 06
0.05 1.00012500 1.00010387 2.112830E− 05 1.00000026 0.99999586 4.4025337E− 06
0.1 1.00100000 1.00097307 2.693406E− 05 1.00000417 0.99999959 4.5773499E− 06
0.15 1.00337500 1.00335045 2.454778E− 05 1.00002108 1.00001622 4.8547562E− 06
0.2 1.00800000 1.00799333 6.670848E− 06 1.00006658 1.00006131 5.2678390E− 06
0.25 1.01562500 1.01566134 3.633505E− 05 1.00016242 1.00015658 5.8417298E− 06
0.3 1.02700000 1.02711600 1.160012E− 04 1.00033649 1.00032991 6.5812201E− 06
0.35 1.04287500 1.04311966 2.446627E− 04 1.00062271 1.00061526 7.4548770E− 06
0.4 1.06400000 1.06443360 4.336027E− 04 1.00106099 1.00105262 8.3764421E− 06
0.45 1.09112500 1.09181538 6.903829E− 04 1.00169710 1.00168792 9.1849453E− 06
0.5 1.12500000 1.12601542 1.015419E− 03 1.00258256 1.00257294 9.6257224E− 06
0.55 1.16637500 1.16777299 1.397990E− 03 1.00377452 1.00376519 9.3353752E− 06
0.6 1.21600000 1.21781202 1.812016E− 03 1.00533561 1.00532778 7.8346627E− 06
0.65 1.27462500 1.27683704 2.212044E− 03 1.00733380 1.00732926 4.5343334E− 06
0.7 1.34300000 1.34552994 2.529940E− 03 1.00984219 1.00984343 1.2400050E− 06
0.75 1.42187500 1.42454775 2.672747E− 03 1.01293887 1.01294907 1.0196762E− 05
0.8 1.51200000 1.51452198 2.521980E− 03 1.01670671 1.01672970 2.2992646E− 05
0.85 1.61412500 1.61605929 1.934293E− 03 1.02123315 1.02127325 4.0102911E− 05
0.9 1.72900000 1.72974297 7.429666E− 04 1.02660997 1.02667161 6.1637149E− 05
0.95 1.85737500 1.85613407 1.240925E− 03 1.03293309 1.03302018 8.7089331E− 05
1 2.00000000 1.99577063 4.229373E− 03 1.04030231 1.04041732 1.1501021E− 04
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Generating relations involving the special functions have already proved their important role in mathematics and other fields of
sciences. In this paper, we aim to provide some presumably new generating relations in connection with the generalized multi-
index Bessel–Maitland function J

(λj)m,c

(]j)m,q(.). &emain results presented here, being very general, can yield a number of particular or
equivalent identities, some of which are explicitly demonstrated.

1. Introduction and Preliminaries

Here and elsewhere, let C, R, R+, N, and Z−
0 be the sets of

complex numbers, real numbers, positive real numbers,
positive integers, and nonpositive integers, respectively.

&e Bessel–Maitland function Jλ](z) is defined as (see
Marichev [1])

J
λ
](z) � 􏽘

∞

r�0

(− z)
r

Γ(λr + ] + 1)r!
, λ ∈ R+

, z ∈ C. (1)

Pathak [2] gave the following more generalized form of
generalized Bessel–Maitland function (1):

J
λ,c
],q(z) � 􏽘

∞

r�0

(c)qr

Γ(λr + ] + 1)

(− z)
r

r!
, (2)

(λ, ], c ∈ C,R(λ)≥ 0,R(])≥ − 1,R(c)≥ 0, q ∈ (0, 1)∪N).

(3)

Remark 1. Even though Pathak excluded q � 0 in (2), the
case q � 0 yields (1).

If q � 1, c � 1, ] is replaced by ] − 1, and z is replaced by
− z in (2), then generalized Bessel–Maitland function reduces
to the Mittag–Leffler function which was studied by Wiman
[3] as follows:

J
λ,1
]− 1,1(− z) � Eλ,](z), R(λ)> 0, R(])> 0. (4)

If ] is replaced by ] − 1 and z is replaced by − z in (2),
then the generalized Bessel–Maitland function reduces to
the well-known generalized Mittag–Leffler function E

c,q

λ,](z)

which was introduced by Shukla and Prajapati [4] as follows:

J
λ,c
]− 1,q(− z) � E

c,q

λ,](z), (5)

(R(λ)> 0,R(])> 0,R(c)> 0; q ∈ (0, 1)∪N). (6)

Jain and Agarwal [5] generalized Bessel–Maitland
function Jλ](z) (1) as follows:

J
λ
],μ(z) � 􏽘

∞

r�0

(− 1)
r
(z/2)

]+2μ+2r

Γ(λr + ] + μ + 1)Γ(μ + r + 1)
, (7)

λ ∈ R+
, ], μ ∈ C, z ∈ C\(− ∞, 0]( 􏼁. (8)
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Choi and Agarwal [6] investigated the following gen-
eralized multi-index Bessel function:

J
λj( 􏼁

m,c

]j( 􏼁
m,q

(z) � 􏽘
∞

r�0

(c)qr

􏽙
m

j�1Γ λjr + ]j + 1􏼐 􏼑

(− z)
r

r!
, (9)

where m ∈ N and λj, ]j, c, q, and z ∈ C (j � 1, . . . , m) such
that

􏽘

m

j�1
R λj􏼐 􏼑>max 0,R(q) − 1􏼈 􏼉, R ]j􏼐 􏼑> − 1, R(c)> 0, q ∈ (0, 1)∪N. (10)

Remark 2. It is easily found that generalized multi-index
Bessel–Maitland function (9) is equivalent to the generalized
multi-index Mittag–Leffler function defined and studied by
Saxena and Nishimoto [7] (see also [8]).

Pohlen [9] introduced the Hadamard product (or the
convolution) f∗g of two analytic functions f and g as
follows:

(f∗g)(z) ≔ 􏽘

∞

n�0
anbnz

n
� (g∗f)(z), (|z|<R), (11)

where R≥Rf · Rg. Here, f(z) and g(z) are analytic at z � 0
whose Maclaurin series with their respective radii of con-
vergence Rf and Rg are

f(z) � 􏽘
∞

n�0
anz

n
, |z|<Rf􏼐 􏼑,

g(z) � 􏽘
∞

n�0
bnz

n
, |z|<Rg􏼐 􏼑.

(12)

&e concept of the Hadamard product has turned out to
be useful, particularly, in factorizing a newborn function,
which is usually expressed as a Maclaurin series, into two
known functions (see, e.g., [10–13]).

&e k-th derivative of the function
f(p) � p− λ− nξ (λ, ξ ∈ C, n ∈ N) is easily found to be given in
terms of gamma function as follows:

f
(k)

(p) � (− 1)
k
p

− λ− nξ− kΓ(λ + nξ + k)

Γ(λ + nξ)
, k ∈ N0( 􏼁. (13)

Generating functions have been widely used in ex-
ploring certain properties and formulas involving se-
quences and polynomials in a wide range of research
subjects. Many researchers have developed a remarkably
large number of generating functions associated with a
variety of special functions. For some works on this
subject, one may refer, for example, to an extensive
monograph [14–25] and the literature cited therein. In this
search, we aim to provide some presumably new gener-
ating relations in connection with generalized multi-index
Bessel–Maitland function (9). &e main results developed
here, being very general, can be reduced to produce a large

number of presumably new and potentially useful gen-
erating relations for other known functions, some of which
are demonstrated.

2. Generating Relations

We give two generating relations involving generalized
multi-index Bessel–Maitland function (9) asserted by the
following theorems.

Theorem 1. Let m ∈ N and λj, ]j, c, q, and z ∈ C (j �

1, . . . , m) such that

􏽘

m

j�1
R λj􏼐 􏼑>max 0,R(q) − 1􏼈 􏼉, R ]j􏼐 􏼑> − 1, R(c)> 0, q ∈ (0, 1)∪N.

(14)

Also, let |t|< 1. 6en,

(1 + t)
− σ

J
λj( 􏼁

m
,c

]j( 􏼁
m

,q

z

1 + t
􏼒 􏼓

� 􏽘
∞

k�0
(− 1)

k
(σ)kJ

λj( 􏼁
m

,c

]j( 􏼁
m

,q
(z)∗ 1F1(σ + k; σ; − z)

t
k

k!
.

(15)

Proof. We replace 1 + t by s in the left-hand side of (15) and
denote the resulting expression by g(s). &en, using form
(9), on expanding the function in series, gives

g(s) � s
− σ

J
λj( 􏼁

m,c

]j( 􏼁
m,q

z

s
􏼒 􏼓 � 􏽘

∞

r�0

(c)qr

􏽙
m

j�1Γ λjr + ]j + 1􏼐 􏼑

(− z)
r

r!
s

− σ− r
.

(16)

Differentiating k times both sides of (16) with respect to s

with the aid of (13) (term-by-term differentiation can be
verified under the given conditions), we find

g
(k)

(s) � (− 1)
k
s

− σ− k
􏽘

∞

r�0

(c)qr

􏽙
m

j�1Γ λjr + ]j + 1􏼐 􏼑

Γ(σ + r + k)

Γ(σ + r)

− z

s
􏼒 􏼓

r 1
r!

,

(17)
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which is simplified to yield

g
(k)

(s) � (− 1)
k
s

− σ− k
(σ)k 􏽘

∞

r�0

(c)qr

􏽙
m

j�1Γ λjr + ]j + 1􏼐 􏼑

(σ + k)r

(σ)r

− z

s
􏼒 􏼓

r 1
r!

.

(18)

Decomposing series (18) into Hadamard product (11),
we obtain

g
(k)

(s) � (− 1)
k
s

− σ− k
(σ)kJ

λj( 􏼁
m

,c

]j( 􏼁
m

,q

z

s
􏼒 􏼓∗ 1F1 σ + k; σ; −

z

s
􏼒 􏼓.

(19)

Expanding g(s + t) as the Taylor series gives

g(s + t) � 􏽘
∞

k�0

t
k

k!
g

(k)
(s). (20)

Combining (16), (19), and (20), we obtain

(s + t)
− σ

J
λj( 􏼁

m
,c

]j( 􏼁
m

,q

z

s + t
􏼒 􏼓 � 􏽘

∞

k�0

(− t)
k
s

− σ− k

k!
(σ)kJ

λj( 􏼁
m

,c

]j( 􏼁
m

,q

z

s
􏼒 􏼓

∗ 1F1 σ + k; σ; −
z

s
􏼒 􏼓.

(21)

Finally, setting s � 1 yields desired result (15). □

Theorem 2. Let m ∈ N and λj, ]j, c, q, and z ∈ C (j �

1, . . . , m) such that

􏽘

m

j�1
R λj􏼐 􏼑>max 0,R(q) − 1􏼈 􏼉, R ]j􏼐 􏼑> − 1, R(c)> 0, q ∈ (0, 1)∪N.

(22)

Also, let |t|< 1. 6en,

􏽘

∞

k�0

c + k − 1

k

⎛⎝ ⎞⎠J
λj( 􏼁

m
,c+k

]j( 􏼁
m

,q
(z)t

k
� (1 − t)

− c
J

λj( 􏼁
m

,c

]j( 􏼁
m

,q

z

(1 − t)
q􏼠 􏼡.

(23)

Proof. Let J be the left-hand side of (23). Using (9), on
expanding the function in series, gives

J � 􏽘
∞

k�0

c + k − 1

k

⎛⎝ ⎞⎠ 􏽘

∞

r�0

(c + k)qr

􏽙
m

j�1Γ λjr + ]j + 1􏼐 􏼑

(− z)
r

r!

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
t
k
.

(24)

Interchanging the order of summations in (24) and using
the known identity (see, e.g., [26, p. 5])

c

k

⎛⎝ ⎞⎠ �
Γ(c + 1)

k!Γ(c − k + 1)
, k ∈ N0, c ∈ C, (25)

we have

J � 􏽘
∞

r�0

(c)qr

􏽙
m

j�1Γ λjr + ]j + 1􏼐 􏼑
􏽘

∞

k�0

c + qr + k − 1

k

⎛⎝ ⎞⎠t
k

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(− z)
r

r!
. (26)

Using the generalized binomial expansion, we find that
the inner sum in (26) gives

􏽘

∞

k�0

c + qr + k − 1

k
􏼠 􏼡t

k
� (1 − t)

− (c+qr)
, |t|< 1. (27)

Finally, interpreting (26) with the help of (27) yields
desired result (23). □

3. Further Remarks

Here, we choose to give some equivalent identities and
particular cases of the results in &eorems 1 and 2. As noted
in Remark 2, setting ]j by ]j − 1 and z by − z in (15) and (23)
gives two corresponding generating relations involving the
generalized multi-index Mittag–Leffler function E

c,q

(λj,]j)m
(z),

which are asserted, respectively, in Corollaries 1 and 2.

Corollary 1. Let m ∈N and λj, ]j, c, q, and z ∈C(j � 1, . . . ,

m) such that

􏽘
m

j�1
R λj􏼐 􏼑>max 0,R(q) − 1􏼈 􏼉, R ]j􏼐 􏼑> 0, R(c)> 0, q ∈ (0, 1)∪N.

(28)

Also, let |t|< 1. 6en,

(1 + t)
− σ

E
c,q

λj,]j( 􏼁
m

z

1 + t
􏼒 􏼓

� 􏽘
∞

k�0
(− 1)

k
(σ)kE

c,q

λj,]j( 􏼁
m

(z)∗ 1F1(σ + k; σ; − z)
t
k

k!
.

(29)

Corollary 2. Let m ∈ N and λj, ]j, c, q, and z ∈ C (j �

1, . . . , m) such that

􏽘
m

j�1
R λj􏼐 􏼑>max 0,R(q) − 1􏼈 􏼉, R ]j􏼐 􏼑> 0, R(c)> 0, q ∈ (0, 1)∪N.

(30)

Also, let |t|< 1. 6en,

􏽘
∞

k�0

c + k − 1

k

⎛⎝ ⎞⎠E
c+k,q

λj,]j( 􏼁
m

(z)t
k

� (1 − t)
− c

E
c,q

λj,]j( 􏼁
m

z

(1 − t)
q􏼠 􏼡.

(31)

&e particular cases of (15), (23), (29), and (31) when
m � 1 give the following generating relations, stated, re-
spectively, in Corollaries 3–6.

Corollary 3. Let σ, λ, ], c, and z ∈ C such that R(λ)> 0,
R(])≥ − 1, R(c)> 0, and q ∈ (0, 1)∪N. Also, let |t|< 1.
6en,
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(1 + t)
− σ

J
λ,c
],q

z

1 + t
􏼒 􏼓

� 􏽘
∞

k�0
(− 1)

k
(σ)kJ

λ,c
],q(z)∗ 1F1(σ + k; σ; − z)

t
k

k!
.

(32)

Corollary 4. Let σ, λ, ], c, and z ∈ C such that R(λ)> 0,
R(])≥ − 1, R(c)> 0, and q ∈ (0, 1)∪N. Also, let |t|< 1.
6en,

􏽘

∞

k�0

c + k − 1

k

⎛⎝ ⎞⎠J
λ,c+k
],q (z)t

k
� (1 − t)

− c
J
λ,c
],q

z

(1 − t)
q􏼠 􏼡.

(33)

Corollary 5. Let σ, λ, ], c, and z ∈ C such that R(λ)> 0,
R(])≥ 0,R(c)> 0, and q ∈ (0, 1)∪N. Also, let |t|< 1. 6en,

(1 + t)
− σ

E
c,q

λ,]
z

1 + t
􏼒 􏼓

� 􏽘
∞

k�0
(− 1)

k
(σ)kE

c,q

λ,](z)∗ 1F1(σ + k; σ; − z)
t
k

k!
.

(34)

Corollary 6. Let σ, λ, ], c, and z ∈ C such that R(λ)> 0,
R(])≥ 0,R(c)> 0, and q ∈ (0, 1)∪N. Also, let |t|< 1. 6en,

􏽘

∞

k�0

c + k − 1

k

⎛⎝ ⎞⎠E
c+k,q

λ,] (z)t
k

� (1 − t)
− c

E
c,q

λ,]
z

(1 − t)
q􏼠 􏼡.

(35)
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Aiming at the requirement that the guidance law should meet the minimum miss distance and the desired terminal angle at the
same time, a sliding mode variable structure control method is introduced. In order to improve the fuzzy variable structure
guidance law for maneuvering target attack effect, a neural network to the optimization design is carried out on the guidance law.
,e neural network is trained by the samples, which is under the condition of different error coefficient of angle, the coefficient of
reaching law, and the coefficient of on-off item about target. Fuzzy neural sliding mode guidance law with terminal angle
constraint can increase the performance of the large maneuvering target. In addition, on the basis of the traditional PC platform
visual simulation system, a new guidance law simulation platform based on embedded system and virtual reality technology is
formed. ,e platform can verify the validity of the guidance law.

1. Introduction

An air-to-surface missile or guided bombs are precision
weapons to attack ground targets launched from the aircraft,
where the precision strike is concerned with many other
factors, for example, the guidance system of the terminal
guidance law design is critical, and it directly affects the final
precision strike weapon capacity.

,e performance of the guidance system directly affects
the missile’s precise guidance capability.,e entire guidance
process of the missile will be divided into 3 stages: the first
stage guidance, the middle stage guidance, and the last stage
guidance, and the performance of the last stage guidance will
directly determine whether the missile can effectively strike
the target, so the study of the final guidance law is to improve
the overall missile. ,e guidance ability of the system is of
great help, and it is in this context that the research work on
the terminal guidance law of the missile is carried out. ,e
guidance law is to control the missile to intercept the target
according to a certain trajectory according to the relative
motion information of the missile and the target. ,erefore,

the problem solved by the guidance law is the flight tra-
jectory of the missile intercepting the target [1− 4].

For precision-guided weapons, the main task of the
guidance system is to output appropriate commands, which
ultimately makes the missile’s end miss distance as small as
possible. However, under certain special circumstances,
while requiring the missile to accurately hit the target, it also
requires the missile to have an optimal attitude when hitting
the target. It is necessary to study the guidance law with the
angle-of-restriction in depth and design a guidance law that
can meet the requirements of miss distance and angle-of-fall
constraint at the same time.

,e current guidance laws in engineering practice are
mostly the classic guidance laws formed in the 1960s to the
1970s, or improved versions based on these classic guidance
laws. ,e typical guidance law representative is proportional
guidance because it has the most improved versions. Pro-
portional guidance was initially designed only for the target
to be stationary, that is, the target is not maneuvering, and
under the condition that the control energy is not con-
strained, then proportional guidance is the optimal guidance
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law for zero miss. However, when targeting a maneuverable
target, the proportional guidance law has a relatively large
off-target volume, which simply cannot meet the accuracy
index required by the missile. ,erefore, it is necessary to
expand the proportional guidance method for development
requirements. ,e modern guidance law has been developed
with the progress of modern control theory and gradually
applied to engineering. Typical representatives include op-
timal guidance law, variable structure guidance law, neural
network guidance law, and fuzzy logic guidance law.

Our main contribution in the present paper is that we
simulate and analyze the guidance law through MATLAB
software. ,en BP neural network fuzzy guidance law has
been optimized. ,erefore, a new type of fuzzy neural
network variable structure terminal guidance law is ob-
tained. Meanwhile, in this paper, a new guidance law
simulation platform based on embedded platform and PC
platforms using virtual reality technology is achieved,
compared with the traditional MATLAB software simu-
lation platform, the new platform is close to the underlying
algorithm engineering practice, and the effect is closer to
the actual battlefield display, making it easier to verify the
excellent characteristics of guidance law.

,e rest of this paper is organized as follows. In Section
1, the missile-target mathematical model is established. In
Section 2, the terminal angle constraint in terminal guid-
ance is analyzed. And in Section 3, variable structure
terminal guidance law with terminal angular constraint is
derived. We formalize fuzzy variable structure terminal
guidance law with terminal angle constraint in Section 4,
and we discuss some numerical results in Sections 5 and 6.
In Section 7, we design a guidance law simulation platform
based on virtual reality technology. In Section 8, the
conclusion is given.

2. Establishment of Missile-Target
Mathematical Model

Both missiles and targets can be seen as two different
particles in space, missile and target coordinate systems are
simplified into the same coordinate system, and the coor-
dinate system is established with the distance between the
missile and the target as the X-axis and the space height
between the missile and the target as the Y-axis [5].

,e relative motion relationship between the missile and
the target is shown in Figure 1.,e horizontal line parallel to
the X-axis in the figure is used as the reference line, and r is
the relative distance between the missile and the target. q is
the angle of sight from missile to target, VM is the velocity of
the missile, VT is the velocity of the target, σM is the ballistic
inclination of the missile, and σT is the movement incli-
nation of the target.

Equation of relative motion for both missile and target is
as follows:

_r � VT cos q − σT( 􏼁 − VM cos q − σM( 􏼁, (1)

r _q � − VT sin q − σT( 􏼁 + VM sin q − σM( 􏼁. (2)

where q is the angle of sight between the missile and the
target; ris the relative distance between missile and target;
VM is the missile speed; σM is the ballistic inclination of the
missile; VT is the target speed; and σT is the angle of in-
clination of the target as it moves.

Derivation of time on both sides of equation (1( can be
obtained as follows:

€r � _VT cos q − σT( 􏼁 + VT sin q − σT( 􏼁 _σT􏽨 􏽩

− _VM cos q − σM( 􏼁 + VM sin q − σM( 􏼁 _σM􏽨 􏽩

− VT sin q − σT( 􏼁 _q + VM sin q − σM( 􏼁 _q􏼂 􏼃.

(3)

For equation (3), make ωR � _VM cos(q − σM) +

VM sin(q − σM) _σM, where ωR represents the component of
the target acceleration in the line of sight. Make
uR � _VM cos(q − σM) + VM sin(q − σM) _σM, where uR rep-
resents the component of the missile acceleration in the line
of sight.

Putting equation (1) into equation (3), we get

€r �
(r _q)

2

r
+ ωR + uR. (4)

Derivation of time on both sides of equation (2) can be
obtained as follows:

_r _q + r€q � − VT cos q − σT( 􏼁 + VM cos q − σM( 􏼁􏼂 􏼃 _q

+ VT cos q − σT( 􏼁 _σT − _VT sin q − σT( 􏼁􏽨 􏽩

− VM cos q − σM( 􏼁 _σM − _VM sin q − σM( 􏼁􏽨 􏽩.

(5)

In equation (5), in order to facilitate analysis and cal-
culation, simplify the complex formula to the following:

Let ωQ � _VT cos(q − σT) _σT − _VT sin(q − σT), where ωQ

represents the component of the target acceleration in the
normal line of sight. Make uR � _VM cos(q − σM)
_σM + _VM sin(q − σM), where uQ represents the component
of the missile acceleration in the normal line of sight.

Substituting equation (2) into equation (5), we get
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Figure 1: ,e relative two-dimensional relation of the terminal
missile.
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_r _q + r€q � −
_rr _q

r
+ ωQ − uQ. (6)

From equations (1) to (6), the following equations are
derived simultaneously:

€r � (r _q)
2/r􏼐 􏼑 + ωR + uR,

_r _q + rq � − (_rr _q/r) + ωQ − uQ.

⎧⎪⎨

⎪⎩
(7)

,e equation is integrated and simplified according to
formula (7) as follows:

€q � −
2 _r

r
_q +

1
r
ωQ −

1
r
uQ. (8)

Equation (8) contains multiple parameters. From these
parameters, it can be seen that the rate of line-of-sight
(LOS) angle q and uQ show a nonlinear relationship.
Among them, there is a certain proportional relationship
with ωQ and the distance r between the missile-target.
,erefore, the key to designing the terminal guidance law is
how to control the change in the line-of-sight angular rate _q

between the missile and the target through uQ and make _q

gradually approach 0, so that the missile can approach the
target in parallel and achieve the goal of maximizing
destruction.

3. Terminal Angle Constraint in
Terminal Guidance

In the usual missile terminal guidance, the designers hope
that the guided weapon can strike ground targets at high
impact angle or even vertical angles, it is necessary to ensure
that the miss distance is the smallest, and the large terminal
angle control of the hit target is required, and this puts
forward higher requirements for the missile’s terminal
guidance. ,erefore, in the design of the guidance law, it is
necessary to consider the issue of miss distance and the
control of the missile’s terminal angle [6− 8].

According to the terminal angle requirement in the
terminal guidance, the related relational expression in
equation (8) cannot describe the issue of missile terminal
angle control; therefore, by introducing a terminal angle
parameter, the designers hope that the terminal angle
control can be realized in the guidance law. In this way, two
control variables appear in the guidance law. Both the
missile’s precise target hit at the end and the terminal angle
control when it hits the target must be met; therefore, a state-
space design method is introduced here for the sake of
design convenience.

Let the expected terminal angle of the end of the missile
be qd, and let there be two state variables x1 and x2 in the
guidance of the missile end, the state variable x1 indicates a
state where the end has a terminal angle control, and the
state variable x2 indicates the state of the missile hitting the
target:

x1 � q − qd,

x2 � _q.
􏼨 (9)

It can be seen from equation (9) that if the state variable
x1 approaches zero, then the missile can approach the target
at the expected desired attack angle and then the target can
be destroyed; if the state variable x2 approaches zero, the
guidance law can meet the requirements for the missile to
successfully hit the target. ,is article is to design such a
guidance law that can meet these two requirements at the
same time, that is, the state variables x1 and x2 are both reach
zero.

Derivation of time for each variable in equation (9) can
be obtained as follows:

_x1 � _q,

_x2 � €q.
􏼨 (10)

Substitute equation (8) into equation (10) and simplify it
to get

_x1 � x2,

_x2 � −
2 _r

r
_q +

1
r
ωQ −

1
r
uQ.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

,e joint expressions (10) and (11) can further simplify
expression (11) to a spatial state expression including the
state variable x1 and the state variable x2:

_x1

_x2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

0 1

0 −
2 _r

r
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1

x2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

0

1
r

􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ωQ −

0

1
r

􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
uQ. (12)

In the equation of state of equation (12), uQ is regarded as
the control variable and ωQ is regarded as the interference
value.

4. Variable Structure Terminal Guidance
Law with Terminal Angular Constraint

Equation (12) is a typical system of nonlinear equations, so
solving this system of equations is a typical nonlinear
problem. ,ere are many methods for solving nonlinear
equations, but in order to satisfy these two states at the same
time, the idea of sliding mode variable structure control is
used here to introduce a suitable sliding surface. ,rough
continuous switching of this sliding surface, make two state
variables meet at the same time [9− 12].

4.1.DesignSlidingModeReachingLaw. For the problemwith
the terminal angular constraint, the purpose of the guidance
law design is to obtain zero miss distance and the expected
terminal angle at the same time, that is, the outputs x1 and x2
in (12) approach 0 in a limited time. _q � 0 represents the
ideal state, and the missile can finally hit the target; if the
requirement of the end attack angle constraint is to be
achieved, q − qd � 0 should be set; therefore, the sliding
surface of the design should have at least two state variables;
they are x1 � q − qd and x2 � _q.
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,e switching function of the sliding surface is as
follows:

S � λ
_r

r
x1 + x2, (13)

where λ is the normal number, which represents the angular
error coefficient.

,e physical meaning of this formula is as follows: when
the relative distance r between the missile and the target is
large, the second term _q of the switching surface plays a
major role, which is to guide the missile fly to the target;
when the relative distance r is very small and almost ap-
proaches 0, the first term of the sliding surface plays themain
role, that is, the guidance law is expected to hit the target at
the desired attack angle, so that the original design re-
quirements can be met.

Substitute equation (9) into equation (13), and then,
equation (13) can be further simplified as follows:

S � λ
_r

r
q − qd( 􏼁 + _q. (14)

In order to ensure that the state of the system can reach
the sliding mode and have excellent dynamic characteristics
in the process of reaching the sliding mode, the reaching law
can be used to derive the controller.

,e general exponential reaching law and constant ve-
locity reaching law can only be applied to linear time-in-
variant systems, and the system state equation (14) is a linear
time-varying system, so it is necessary to construct a sliding
mode approximation with an adaptive time-varying pa-
rameter law to ensure that the sliding mode meets the
conditions and good dynamic characteristics [13− 15].

,e general expression of the sliding mode reaching law
for a linear time-invariant system is given by

_S � F(S) − ε sgn S,

F(0) � 0,

SF(s)> 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

where F(s) is a function about S.
,e general expression of the adaptive sliding mode

reaching law is as follows:

_S � F(S, p) − ε(p)sgn S,

F(0, p) � 0,

SF(S, p)> 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

_S � K
_r

r
S −

ε
r
sgn S. (17)

In equation (17), K represents the reaching law coeffi-
cient and ε represents the gain coefficient of the switching
term.

,e physical meaning of equation (17) is as follows: when
the relative distance r between the missile and the target is
relatively large, the sliding mode approach rate can be ad-
justed slowly; as r approaches 0, the sliding mode’s

approaching rate will increase rapidly.,is will ensure that _q

does not divergence, so that the accuracy of the missile will
be very high. ,e adaptive adjustment approach law can
reduce the sliding mode jitter.

Differentiating (14) gives the following equation:

_S � _x2 −
λ€rx1 − λ _r _x1

r
2 , (18)

_S � _x2 −
λ€r

r
2 x1 + λ

_r

r
2 _x1. (19)

Substituting (17) into (19), we get

K
_r

r
S −

ε
r
sgn S � _x2 −

λ€r

r
2 x1 + λ

_r

r
2 _x1. (20)

Bringing (13) into (20) gives

k
_r

r
− λ

_r

r
x1 + x2􏼠 􏼡 −

ε
r
sgn S � −

2 _r

r
x2 +

1
r
ωQ +

1
r
uQ −

λ€r

r
2x1

+ λ
_r

r
2x2.

(21)

Equation (21) can be simplified as follows:

uQ � K _r + 2 _r − λ
_r

r
􏼠 􏼡x2 − λ

( _r)
2

r
+
λ€r

r
􏼠 􏼡x1 − ωQ − ε sgn S.

(22)

,e adaptive sliding mode guidance law has relatively
strong robustness to changes in system parameters, and the
speed change during the missile’s terminal guidance process
is not very large, so it can be made equivalent processing,
which is _r ≈ VM and €r ≈ 0.

So the law of guidance is obtained as follows:

uQ � K + 2 − λ
1
r

􏼒 􏼓VMx2 − Kλ
1
r

VM( 􏼁
2
x1 − ωQ − ε sgn S.

(23)

Bring equation (9) into equation (23) to get the math-
ematical relationship between the final command acceler-
ation and the terminal angle:

uQ � K + 2 − λ
1
r

􏼒 􏼓VM _q − Kλ
1
r

VM( 􏼁
2

q − qd( 􏼁 − ωQ − ε sgn S,

(24)

where uQ is the final output command acceleration; ωQ is the
component of the target acceleration in the line of sight; S is
the sliding surface switching function; r is the missile-target
relative distance; q is the missile-target line of sight; _q is the
missile-target line-of-sight angular rate; VM is the missile
speed; qd is the end restraint angle; K is the reaching law
coefficient; λ is the angular error coefficient; and ε is the
switch gain coefficient.

In formula (22), uQ represents the component of the
missile acceleration in the normal line of sight, which is the
guidance law of the final output.ωQ is the component of the
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target acceleration in the normal line of sight. ,e sliding
mode switching function S contains three important pa-
rameters: the reaching law coefficient K, the angular error
coefficient λ, and the gain coefficient ε.

5. Fuzzy Variable Structure Terminal Guidance
Law with Terminal Angle Constraint

,e reasoning process of the fuzzy system is as follows: first,
compare the differences between the input variables and
membership functions to obtain the membership of each
language; then the inference engine finds the corresponding
rules in the knowledge base through inference operations;
finally, all the results are superimposed for fuzzy output.

To perform fuzzy processing on ε sgn S, first construct a
two-dimensional fuzzy controller. ,e command switching
function S is used as an input to the fuzzy controller, and
the change rate _S of the switching function is used as the
other input of the fuzzy controller. Nonlinear control
quantity u is used as output. ,en, the output of u is the
fuzzy output of ε sgn S, which is u ≈ ε sgn S. ,e final
guidance law is written as follows:

uQ � K + 2 − λ
1
r

􏼒 􏼓VM _q − Kλ
1
r

VM( 􏼁
2

q − qd( 􏼁 − ωQ − u.

(25)

When the system is running, S and _S are calculated, and
then, the quantization factors Ks and K _S are calculated
according to the universe. ,e two input variables are
quantized into fuzzy language variables S and SC, and then
the fuzzy variable U is obtained according to fuzzy control
rules and fuzzy logic reasoning. Finally, the fuzzy variable U

is multiplied by the output scale factor Ku to obtain the
precise control amount u.

Define the fuzzy language words set of input variables
and output variables as follows: {negative large, negative
middle, negative small, zero, positive small, positive middle,
positive large}, which is expressed as characters: {NB，
NM， NS， O， PS， PM， PB}.

,e fuzzy universes of the input variables S and _S are as
follows: [− 6, +6], which is expressed as {− 6, − 5, − 4, − 3, − 2, − 1,
0, +1, +2, +3, +4, +5, +6}; Figure 2 shows the membership
function of input variable S, and Figure 3 shows the mem-
bership function of input variable SC.

,e fuzzy set universe of output variable U is [− 7, +7],
which is expressed as {− 7, − 6, − 5, − 4, − 3, − 2, − 1, 0, +1, +2,
+3, +4, +5, +6, +7}. Figure 4 shows the membership function
of the output variable.

In order to ensure that each fuzzy language variable can
cover the entire universe better, here each fuzzy language
word set uses 7 variables, and each fuzzy set universe
contains 15 quantization levels, so that the universe elements
is twice the number of elements in the fuzzy language words
set, to achieve full coverage of the universes.

,e fuzzy control rules are shown in Table 1. Fuzzy
reasoning uses the maximum-minimummethod to generate
the most likely solution. ,is reasoning method is very
simple and efficient and suitable for real-time control

applications. Figure 5 shows a simulation diagram of the
output fuzzy surface.

6. Simulation and Analysis

Simulation was done in MATLAB software. Simulation
conditions are as follows: an air-to-ground missile attacks an
object on the ground, let the initial position of the missile be
(0, 2000), missile speed VM � 300m/s, the initial missile
ballistic inclination σM � 0∘, the location of the target is
(1000, 0), and the simulation step size is 0.01 s.

6.1. Terminal Angular Constraint and Target Speed Change

(1) When the terminal angular constraint is − 90∘, the
speeds of the targets are VT � 15m/s, 10m/s, 5m/s,
and 0m/s. For several situations, the constant pa-
rameter takes k � 1 and λ � 1, the trajectory obtained
by simulation is shown in Figure 6, and the data
analysis is shown in Table 2.
It can be seen from Figure 6 that when the target is
stationary, the missile’s trajectory is the smoothest.
As the target speed increases, the ballistic curve of the
missile will fluctuate, and the amplitude of the
fluctuation will increase as the speed increases. It can
be seen from Table 2 that the stationary target is the
easiest to attack, the miss distance and terminal angle
deviation are also very small, and the flight time is
the least, which is also completely in line with the
actual missile attack target situation.

(2) When the target speed is VT � 15m/s, the missile’s
terminal angle constraint is divided into − 90∘, − 80∘,
− 70∘, and − 60∘. For several situations, the constant
value selection takes k � 1 and λ � 1. ,e ballistic
trajectory obtained by simulation is shown in Fig-
ure 7, and the data analysis is shown in Table 3.
It can be seen from Figure 7 that when the terminal
angle is constrained to 90 degrees, that is, when the
target is hit vertically, the ballistic trajectory will have
a large reverse turn to adjust the vertical strike angle.
As the angle decreases, the trajectory is relatively
smooth.

From Table 3, it can be seen that the maximum miss
distance when hitting the target is at 90 degrees, and at 80
degrees, the deviation between the miss distance and the
terminal angle is very small. ,is also shows that the ef-
fectiveness of the warhead can be fully exerted when striking
the target vertically, and at the same time, the accuracy of the
missile is also affected; therefore, a balance must be made
between the terminal angle of restraint and the effectiveness
of the warhead.

6.2. Reaching Law Coefficient. Parameter values are as fol-
lows: target speed� 15m/s, terminal angle constraint� − 80∘,
and λ � 1.

Figures 8–10 show the ballistic trajectory, trajectory
inclination angle, and normal acceleration at different k
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values. Table 4 shows the guidance effect data under different
k values.

It can be seen from the simulation diagram that when
k � 0.1, the missile is fully capable of a 90° angle dive attack

target, but in order to achieve the initial terminal angle
constraint, it can be seen that the missile has a turning
curve that intentionally maintains the landing angle. As the
value of k increases, the ballistic trajectory gradually be-
comes flat; the inclination of the missile has a zigzag wave in
the middle stage when k � 0.1, but as the value of k in-
creases, the ballistic inclination is gradually smooth. ,e
normal acceleration of the missile does not change much
with the value of k; considering the miss distance and the
falling angle deviation, the smaller the reaching law coef-
ficient, the better the effect. In summary, it is better to
choose k value between 1 and 10.

6.2.1. Angular Error Coefficients. Parameter values are as
follows: target speed� 15m/s, terminal angle
constraint� − 80∘, and k � 1.

Figures 11–13 show the ballistic trajectory ballistic in-
clination, and normal acceleration under different angular
error coefficients. It can be seen from the figure that when
the error coefficient λ � 0.1, the missile did not hit the target
at 1000 meters, and when λ � 0.5, the missile successfully hit
the target. ,is means that the value of λ cannot be too small
to hit the target; when λ � 0.1, the ballistic inclination ob-
viously fluctuates too much, and the normal acceleration is
also obviously not normal, so this also verifies that λ cannot
be smaller.

As can be seen from Table 5, λ � 0.5 is a more appro-
priate value. ,e miss distance and the falling angle devi-
ation are also very small.
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Table 1: Fuzzy logic control rule table.
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By setting different reaching law coefficients and angular
error coefficients, different ballistic trajectories, trajectory
inclination, and missile normal accelerations are obtained.
,rough the analysis of miss distance data and falling angle
error data, it can be seen that the two problems of end-
guided miss distance and terminal angle constraint are

solved simultaneously. ,rough these characteristic curves,
comparing the parameters such as miss distance and time of
flight, different parameter value ranges are obtained under
the conditions of terminal angle constraints and precise
guidance.

7. Optimization of Fuzzy Variable Structure
Terminal Guidance Law Based on
Neural Network

,e missile uses fuzzy variable structure terminal guidance
law at the end, which can better hit low-speed ground
targets, such as tanks and armored vehicles with a speed of
15m/s.

But for high-speed targets, the effect is not ideal. ,e
main reason is to achieve the constraint of the terminal
angle, and the missile needs to track the target trajectory in
time by increasing the overload. But in the process of ter-
minal guidance, the time is very short, and it is very difficult

Table 3: Guidance effect under different angles.

Terminal angle constraint Miss distance (m) Falling angle deviation (°) Time of flight (s)
− 90 3.3107 47.8968 8.3200
− 80 1.2544 5.7171 8.1500
− 70 1.6046 15.840 8.0300
− 60 2.2710 26.0932 7.9600
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Figure 8: Ballistic trajectory at different values of k.

Table 2: Guidance effect under different velocities.

Speed (m/s) Miss distance (m) Falling angle deviation (°) Time of flight (s)
15 3.3107 47.8968 8.3200
10 15.6580 10.1036 8.2500
5 2.0579 33.4270 8.2700
0 0.9258 0.0012 8.2300
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Figure 7: Trajectories of different terminal angles.
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for the missile to provide a large overload in a short time. So
for missiles, the guidance law is always expected to provide a
straight or smooth trajectory [16− 18].

Different reaching law coefficients and angular error
coefficients in variable structures have an impact on the final
guidance law; when tracking a large maneuvering target,
these two coefficients have an optimal range, so when the
target is a large maneuver, they can automatically learn and
adjust these two coefficients. ,e neural network system
formed by this training should be able to track well big
maneuvering target.

In the network structure design, a single hidden layer BP
neural network is used.,e theory proves that a feedforward
network with a single hidden layer can map all continuous
functions, and only two hidden layers are needed when
learning discontinuous functions. ,erefore, a single hidden
layer can be used to map the fuzzy guidance law. ,e input
layer has three input variables, which are the input line-of-
sight angular rate _q, relative speed _r, and line-of-sight angle
q; the output layer has only one variable, which is the
command acceleration Am.

Figure 14 shows a neural network guidance circuit. ,e
command acceleration Am is generated under the excitation
of the input line-of-sight angular rate _q, relative speed _r, and
line-of-sight angle q. It can be expressed as follows:

Am � ξ( _q, _r, q). (26)

In the above formula, ξ represents a nonlinear function,
which is used to realize the nonlinear mapping of (3-21).
Finally, the commanded acceleration Am generated is sent to
the autopilot, and the missile guidance can be completed.

Considering the number of neurons in the input and
output layers and the number of training samples, the
number of hidden neurons was finally determined to be 20
after several simulations.

,e transfer function of the hidden neuron is a nonlinear
transfer function Oi � 1/(1 + exp(− xi)), where Oi is the

Table 4: Guidance effect under different values of reaching law coefficient k.

Reaching law coefficient k Miss distance (m) Falling angle deviation (°) Time of flight (s)
0.1 0.3023 2.0896 8.4000
2 2.2023 5.2486 8.1200
10 0.3531 6.6584 7.8100
30 2.3912 173.0585 7.6900
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Figure 11: Ballistic trajectory at different angular error coefficients.
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Table 5: Guidance effect at different values of angular error co-
efficient λ.

Reaching law coefficient Miss
distance (m)

Falling angle
deviation (°)

Time of
flight (s)

0.1 592.8644 149.5891 7.1100
0.5 0.8330 0.1252 8.3600
2 1.4469 6.4344 8.0900
5 2.6349 7.7193 7.9300

Input U
U
U Output

Autopilot

Target parameter
Dynamic correlation

Am

Figure 14: Neural network guidance loop.
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output of the i-th hidden layer neuron and xi � 􏽐
2
j�1 WijIj is

the input of the i-th hidden layer neuron, in which Ij is the
j-th input of the input layer and Wij is the connection
weight between Ij and xi; the transfer function of the output
layer neuron is a linear transfer function f � x, where f is
the output of the output layer neuron and x � 􏽐

20
i�1W2iOi is

the input, in which W2i is the connection weight of the a
hidden layer neuron and the output neuron and Qi is the
output of the i-th hidden layer neuron. When determining
the training samples of the BP neural network, in order to
track large maneuvering targets, step maneuvers are selected
as the typical maneuvering modes of the target, and the best
reaching law coefficient and angular error coefficient are
selected at the same time. For both cases, the line-of-sight
angular rate, relative angular velocity, and line-of-sight angle
obtained by the angularly constrained fuzzy variable
structure guidance law are used as the input set of the
training sample space, and the corresponding command
acceleration is used as the output set.

Based on the fuzzy logic controller, this group of samples
is obtained by adjusting the sizes of k and λ under different
conditions and the normal overload of the target maneuver.

Select several typical situations are as follows:

(1) k � 0.5, λ � 1, q � 0∘, σM � 30∘, at � 200m/s2, and
r � 2000m

(2) k � 1, λ � 2, q � 0∘, σM � 30∘, at � 200m/s2, and
r � 2000m

(3) k � 0.5, λ � 1, q � 30∘, σM � 30∘, at � 100m/s2,and
r � 2000m

(4) k � 1, λ � 2, q � 30∘, σM � 30∘, at � 100m/s2, and
r � 2000m

(5) k � 2, λ � 5, q � 60∘, σM � 30∘, at � 50m/s2, and
r � 2000m

(6) k � 2, λ � 5, q � 60∘, σM � 30∘, at � 50m/s2, and
r � 2000m

In a neural network, to determine the weight matrix
from the hidden layer to the output layer, it represents 49
regular outputs. Use the rule table in Table 6 to assign values
to it. ,e process of neural network training is to contin-
uously adjust and refresh this weight matrix. ,rough
continuous training of samples, an optimized fuzzy rule
table can be obtained, as shown in Table 6. ,e results after
training are shown in Figure 15.

An air-to-surface missile attacks an object on the
ground, let the initial position of the missile be (0, 2000), the
speed of the missile is VM � 300m/s, the initial missile
ballistic inclination is σM � 0∘, the location of the target is

Table 6: Fuzzy rule table.

NB NM NS O PS PM PB
NB PB PM PM PM PS O O
NM PS PB PM PS PS O O
NS PM PM PM PS O NS NS
O PB PM PS O NS NM NS
PS PS PS O NS NS NB NM
PM PB O NS NM NM NM NB
PB O O NM PS NM NB NB
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Figure 15: Fuzzy neural network training results.
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(1000, 0), the target speed is VT � 300m/s, let the simulation
step be 0.01 s, and terminal angle constraint is 80 degrees,
and the comparison of the curves when k � 1, λ � 1, and ε �

1 is shown in Figures 16 and 17.
From the ballistic trajectory in Figure 16, it can be seen

that when the target is maneuvering, the fuzzy variable
structure guidance law can still successfully hit the target, but
the ballistic curve is too curved. In the actual missile
guidance process, the missile cannot produce such a large
amount of maneuver. ,e ballistic trajectory produced by
the neural fuzzy guidance law optimized by the neural
network has improved significantly, is smoother, and has
less jitter.

Figure 17 shows a comparison of the normal acceleration
of the missile. It can be seen from the figure that the missile
using fuzzy guidance law has a large normal acceleration
before hitting the target, and the normal acceleration of the
neural fuzzy guidance law has been relatively stable.
,erefore, it can be seen that the fuzzy guidance law opti-
mized by the neural network has greatly improved its
performance.

Table 7 shows the comparison of various parameters of
the guidance effect. It can be seen that compared with the
fuzzy guidance law, the neural fuzzy guidance law has
significantly improved the guidance accuracy and other
aspects.

8. Design of Guidance Law Simulation Platform
Based on Virtual Reality Technology

Virtual reality simulation first solves the mathematical
model of the simulation system by a numerical analysis
method and then displayed on the screen by the display
technology of the computer system. ,is will give people an
intuitive and realistic experience. ,e actual missile guid-
ance law is solved by a missile-borne computer, which is a
typical embedded system, which is quite different from a PC
platform. If the designed guidance law can be calculated in
an embedded system, the performance of the guidance law
will be better verified. ,e above-mentioned fuzzy variable
structure terminal guidance law with terminal angle con-
straint is combined with two technologies of embedded
system and virtual reality to design a new guidance law
simulation platform to intuitively show the research results
of guidance law [19− 22].

Figure 18 shows a schematic diagram of the framework
structure of the entire simulation platform. On the left is the
embedded platform. ,e hardware uses the MPC8247
processor and runs the VxWorks operating system.,is part
is mainly responsible for the calculation of the guidance law
algorithm and finally outputs the command acceleration to
the PC platform through the serial port. ,e PC platform

Embedded platform

Embedded hardware

Embedded so�ware

Calculation guidance law

Data
transmission

Data cache

Missile model

Target model

PC platform

Serial
communication

Driving

Attack

Figure 18: New style simulation platform framework.

Figure 19: Virtual helicopter launching missile graph.

Figure 20: Virtual missile flying graph in the air.

Table 7: Guidance effect comparison.

Miss distance (m) Falling angle deviation (°) Time of flight (s)
Fuzzy guidance law 0.8238 7.2829 8.1100
Neural fuzzy guidance law 0.4029 1.3893 8.1500

Figure 21: Virtual missile accurate hit target graph.
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uses creator and Vega Prime to develop and design a three-
dimensional visual environment, and this part mainly
completes the three-dimensional display of the battlefield
environment and finishes receiving the guidance law cal-
culated under the embedded platform, transmitting the
guidance law parameters to the missile model, and then
driving the missile model to approach the target along a
certain trajectory, and then destroys the target.

Simulation parameters are as follows: the armed heli-
copter found a ground armored target and was ready to
launch an air-to-ground missile to destroy it. Let the initial
position of the missile be 2000m above the ground, the
speed of the missile is VM � 300m/s, the target speed is
VT � 300m/s, the target fixed position is 5000m from the
helicopter horizontal distance of 5000m, and the terminal
angular constraint is 70 degrees.

In Figure 19, the helicopter found a ground target and
launched an air-to-ground missile. ,e missile’s ballistic
trajectory can be seen in the upper subwindow. In Figure 20,
the missile flies in the air according to a predetermined
trajectory, and the trajectory can be clearly seen. In Fig-
ure 21, the missile accurately hits the target, and it can be
clearly seen in the lower subwindow that, from the per-
spective of the entire trajectory, the terminal angular con-
straint is basically satisfied. It can be seen that the new
guidance law simulation platform combining embedded
systems and virtual reality technology has well demonstrated
the entire process of accurate terminal guidance of air-to-
ground missiles.

Figure 22 shows the real graph of the simulation plat-
form. ,e left side is the embedded system platform
MPC8247 development board, the red light on the devel-
opment board indicates that the development board is in
normal working state. ,e two platforms communicate
through a serial port protocol; use USB to serial port to
complete data transmission.

9. Conclusion

,e missile’s terminal guidance not only needs to meet the
miss distance but also requires that the terminal angle of the
attack be restricted. In order to meet this requirement, this
paper proposes a terminal guidance law based on sliding

mode variable structure, and blurs the jitter problem in the
guidance law by the fuzzy logic method. By setting different
approach law coefficients and angular error coefficients,
different ballistic trajectories, trajectory inclination, and
missile normal accelerations are obtained. ,rough the
analysis of miss distance data and terminal angular error
data, it can be seen that the two problems of terminal
guidance miss distance and terminal angular constraint are
solved simultaneously. At the same time, these characteristic
curves, by comparing graphics, missed targets, flight time,
etc., summarized the different parameter value ranges that
meet both the terminal angle constraint and the precise
guidance conditions.

,e BP neural network is used to optimize the fuzzy
variable structure terminal guidance law with terminal angle
constraint, which effectively solves the problem of fuzzy
variable structure terminal guidance law for large maneu-
vering targets. By the neural network self-learning and
adaptive capabilities using large maneuvering targets as
sample inputs, use the best reaching law coefficient and angle
error coefficient. ,e simulation results show that the fuzzy
variable structure terminal guidance law optimized by the
neural network has improved the guidance accuracy and
other aspects significantly.

Based on this, a new guidance law simulation platform
based on the combination of embedded system and virtual
reality technology is designed. Simulation experiments
verify the correctness of the guidance law and the display
effect is better.
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&e aim of the paper is to consider the existence and uniqueness of solution of the fractional differential equation with a positive
constant coefficient under Hilfer fractional derivative by using the fixed-point theorem. We also prove the bounded and
continuous dependence on the initial conditions of solution. Besides, Hyers–Ulam stability and Hyers–Ulam–Rassias stability are
discussed. Finally, we provide an example to demonstrate our main results.

1. Introduction

In recent years, the study of the fractional differential and
integral equation (FDE and IDE for short) has become the
topic of the applied mathematics. FDE and IDE have been
used as a tool mathematical to the modeling of many
phenomena in various fields for example, in theory of signal
processing, physics, economics, and chaotic dynamics. &e
reader can refer to the books (see Varsha [1], Kilbas et al. [2],
Miller et al. [3], Abbas et al. [4], and Zhou et al. [5]) or the
papers (see Zin et al. [6], Ma et al. [7], P. Agarwal et al. [8, 9],
Rameshet al. [10], Vivek et al. [11], O’Regan et al. [12], and
Duc et al. [13]).

Tate and Dinde [14] proved the existence of solution of
the problem:

c
D

α
0+ξ(t) � λξ(t) + ζ(t, ξ(t)), ξ(0) � x0 ∈ R, λ> 0,

(1)

where the symbol CD
α
0+ is Caputo fractional derivative and

ζ ∈ C([0, a],R). Besides, the authors also considered the
properties of solutions of this problem such as the
boundedness of solution and the continuous dependence of

solutions on the initial conditions. In [15], Tate et al. also
performed the same study as [14] for the class of fractional
integro-differential equations with positive constant
coefficient.

In 2018, Sousa and Oliveira [16] have introduced a new
fractional derivative with respect to another function the so-
called ψ-Hilfer fractional derivative, and the properties of
this concept were also presented. Besides, the authors
considered the relationship between the ψ− Hilfer fractional
derivative and the other fractional derivative such as Rie-
mann–Liouville fractional derivative, Caputo fractional
derivative, Hadamard fractional derivative, Katugampola
fractional derivative, and Chen fractional derivative. By
using the ψ− Hilfer fractional derivative, Sousa and Oliveira
[17] studied the existence and uniqueness of solution of the
initial valued problem for FDEs. &e continuous depen-
dence of solution on the initial condition was also consid-
ered. &e stability theory for FDIs and IDEs via ψ− Hilfer
fractional derivative have also been discussed (see [18–22]).
In [23], by using Gronwall inequality and Picard operator
theory, Kharade and Kucche proved the existence and
uniqueness of solutions for impulsive implicit delay
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ψ− Hilfer fractional differential equations. &e
Ulam–Hyers–Mittag–Leffler stability was also considered.

Motivated by Tate el al. [14, 15], Sousa et al. [16], and
Kharade et al. [23], in this paper, we investigate the existence
and uniqueness of solutions and some properties of solu-
tions of the following fractional differential equation with
the constant coefficient λ> 0:

H
0+D

h,υ;g
ξ(t) � λξ(t) + ζ(t, ξ(t)), (2)

with the initial condition

I
1− c,g
0+ ξ(0) � A, (3)

where the symbol H
0+D

h,υ;gξ(t) is the g− Hilfer fractional
derivative of ξ with 0< h< 1, 0≤ υ≤ 1 and ξ: [0, a]⟶ R

is a continuous function, ζ is a continuous function with
respect to t and ξ on [0, a] × R, I1− c,g

0+ (·) is g–Riemann–
Liouville fractional integral with 0≤ c � h + υ(1 − h)< 1,
and A is a given constant.

2. Preliminaries

In this section, we introduce some notations and some
concepts which are used throughout this paper. &is result
can be found in the books [3, 8] and the papers [16, 17].

Let C([0, a],R) be the space of all continuous functions
ζ: [0, a]⟶ R and Cn([0, a],R) be the space of all n− times
continuously differentiable functions on [0, a]. We will
introduce the weighted spaces of all continuous functions
Cc,g([0, a]) ≔ ζ: (0, a]⟶ R: (g(t) − g(0))

cζ(t) ∈ C([0, a])􏼈 􏼉,

(4)

with the norm

‖ζ‖Cc,g([0,a]) � (g(t) − g(0))
cζ(t)

����
����C([0,a])

� maxt∈[0,a] (g(t) − g(0))
cζ(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

C1− c,g([0, a]) ≔ 􏼨ζ: (0, a]⟶ R: (g(t) − g(0))
1− cζ(t)

∈ C([0, a])􏼩,

(5)

with the norm

‖ζ‖C1− c,g([0,a]) � (g(t) − g(0))
1− cζ(t)

����
����C([0,a])

� maxt∈[0,a] (g(t) − g(0))
1− cζ(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(6)

Let function f be integrable on [0, a] and function
g: [0, a]⟶ R+ be increasing on [0, a] with g′(t)≠ 0 for all
t ∈ [0, a]. &en, the g− Riemann–Liouville fractional integral
of f with respect to g is defined by

I
h;g
0+ ξ(t) �

1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ξ(s)ds, h> 0, (7)

where Qh
g(t, s) � g′(s)(g(t) − g(s))h− 1 for all t, s ∈ [0, a].

Let n − 1< h< n, n ∈ N, and f ∈ Cn([0, a],R). &en, the
Hilfer fractional derivative HD

h,υ;g

0+ ξ(·) of the function ξ of
order h and υ ∈ [0, 1] is given by

H
D

h,υ;g

0+ ξ(t) � I
(n− h)υ;g
0+

1
g′(t)

d
dt

⎛⎝ ⎞⎠

n

I
(n− h)(1− υ);g
0+ ξ(t), (8)

where n � [h] + 1.

Theorem 1 (see [16, 17]). If ζ ∈ C1([0, a],R), h> 0, and
υ ∈ [0, 1], then

(i) HD
h,υ;g

0+ I
h;g
0+ ξ(t) � ξ(t) and ∀t ∈ [0, a]

(ii) Ih;gH
0+ D

h,υ;g
0+ ξ(t) � ξ(t) − 􏽐

n
k�0 (g(t) − g(0))c− k/

Γ(c − k + 1)I
(1− h)(1− υ);g
0+ ξ(0) and c � h + υ(1 − h)

Lemma 1 (see [17]). Let a(t) and b(t) be integrable functions
and c ∈ C([0, a],R). Let g ∈ C1([0, a],R) such that
g′(t)> 0 for any t ∈ [0, a]. Assume that a(t) and b(t) are
nonnegative and g is nonnegative and nondecreasing. If

a(t)≤ b(t) + c(t) 􏽚
t

0
Q

h
g(t, s)a(s)ds, (9)

then

a(t)≤ b(t)Eh c(t)Γ(h)(g(t) − g(0))
h

􏼐 􏼑, ∀t ∈ [0, a],

(10)

where Eh(ξ) is Mittag–Leffler function is defined by

Eh(ξ) � 􏽘
∞

k�0

ξk

Γ(1 + kh)
, h> 0, k ∈ N. (11)

Definition 1 (see [21, 23]). Problem (2) is called
Hyers–Ulam stable if there exists a positive constant Cζ such
that, for any ε> 0 and for each ξ ∈ C1− c,g([0, a]) satisfying
the inequality,

H
0+D

h,υ;g
ξ(t) − λξ(t) − ζ(t, ξ(t))

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤ ε, ∀t ∈ [0, a], (12)

there exists a solution 􏽢ξ∈ C1− c,g([0, a]) of problem (2)
satisfying

|ξ(t) − 􏽢ξ(t)|≤Cζε, ∀t ∈ [0, a]. (13)

Definition 2 (see [21, 23]). Problem (2) is called
Hyers–Ulam–Rassias stable, with respect to
ϕ ∈ C([0, a],R), if there exists a positive constant Cζ,ϕ such
that, for any ε> 0 and for each ξ ∈ C1− c,g([0, a]) satisfying
the inequality,

H
0+D

h,υ;g
ξ(t) − λξ(t) − ζ(t, ξ(t))

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤ϵϕ(t), ∀t ∈ [0, a],

(14)

there exists a solution 􏽢ξ∈ C1− c,g([0, a]) of problem (2)
satisfying

|ξ(t) − 􏽢ξ(t)|≤Cζ ,ϕϵϕ(t), ∀t ∈ [0, a]. (15)
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3. Main Results

Firstly, we note that applying the fractional integral operator
I

h;g
0+ (·) to both sides of equation (2), we obtain

I
h;g
0+

H
0+D

h,υ;g
ξ(t) � λIh;g

0+ ξ(t) + I
h;g
0+ ζ(t, ξ(t)), ∀t ∈ [0, a].

(16)

Using &eorem 1 and the initial condition (3), we have
the following integral equation:

ξ(t) �
(g(t) − g(0))c− 1

Γ(c)
I

h;g
0+ ξ(0) + λIh;g

0+ ξ(t)

+ I
(1− h)(1− υ);g
0+ ζ(t, ξ(t))

�
(g(t) − g(0))c− 1

Γ(c)
A +

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)ξ(s)ds

+
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, ξ(s))ds,

(17)

for any t ∈ [0, a].
On the contrary, if ξ satisfies equation (17), then ξ

satisfies equations (2 and 3. Moreover, operating the frac-
tional derivative operator H

0+D
h,υ;g

(·) on both sides of
equation (17), we obtain

H
0+D

h,υ;g
ξ(t) �

H
0+D

h,υ;g (g(t) − g(0))c− 1

Γ(c)
I

h;g
0+ ξ(0)􏼠 􏼡

+
H
0+D

h,υ;g
λIh;g

0+ ξ(t)􏼐 􏼑 +
H
0+D

h,υ;g

· I
(1− h)(1− υ);g
0+ ζ(t, ξ(t))􏼐 􏼑, ∀t ∈ [0, a].

(18)

By &eorem 1, we have

H
0+D

h,υ;g (g(t) − g(0))h− 1

Γ(c)
I

h;g
0+ ξ(0)􏼠 􏼡 � 0, 0< h< 1.

(19)

Combining (18) and (19), we imply
H
0+D

h,υ;g
ξ(t) � λξ(t) + ζ(t, ξ(t)), ∀t ∈ [0, a]. (20)

Next, we verify that the initial condition 3 holds. Indeed,
applying the Riemann–Liouville fractional integral I1− υ

0+ (·)

on both sides of equation (17), we have

I
1− υ
0+ ξ(t) � I

1− υ
0+

(g(t) − g(0))c− 1

Γ(c)
I

h;g
0+ ξ(0)􏼠 􏼡

+ I
1− υ
0+ λIh;g

0+ ξ(t)􏼐 􏼑 + I
1− υ
0+ I

(1− h)(1− υ);g
0+ ζ(t, ξ(t))􏼐 􏼑, t ∈ [0, a].

(21)

Taking t⟶ 0 in equation (21), we have

I
1− υ
0+ ξ(t) � A. (22)

In summary, we can conclude that ξ satisfies equations
(2 and 3 if and only if ξ satisfies the following integral
equation:

ξ(t) �
(g(t) − g(0))c− 1

Γ(c)
A +

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)ξ(s)ds

+
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s,ξ(s))ds,

(23)

for any t ∈ [0, a].

3.1.ExistenceandUniquenessSolution forProblem(2). In this
section, we will prove the existence and uniqueness solution
of equation (2) with the initial condition (3). Firstly, we
assume that the function ζ satisfies the following assump-
tion: there exists a constant L> 0 such that

(H1) ζ t, ξ1( 􏼁 − ζ t, ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L ξ1 − ξ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, t ∈ [0, a]. (24)

Theorem 2. Assume that assumption (H1) is satisfied. �en,
problems (2) and (3) have at least one solution

Proof. We set 􏽥ζ ≔ ζ(t, 0) for any t ∈ [0, a]. Let us define the
set

Ur ≔ ξ ∈ C1− c;g([0, a]): ‖ξ‖C1− c;g
≤ r􏼚 􏼛, (25)

with

r ≔
|A|

Γ(c)
+

B(h, c)(g(a) − g(0))h

Γ(h)
(λ + L)‖ξ‖C1− c;g

+
B(h, c)(g(a) − g(0))h

Γ(h)
‖􏽥ζ‖C1− c;g

, ∀t ∈ [0, a].

(26)

It is easy to see that Ur is a nonempty, closed, bounded,
and convex subset of Banach space C1− c,g([0, a]).

Consider the operator K: Ur⟶ Ur given by

(Kξ)(t) �
(g(t) − g(0))c− 1

Γ(h)
A +

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)ξ(s)ds

+
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, ξ(s))ds,

(27)

for any t ∈ [0, a].
Firstly, we prove that the fixed point of the operator K is

a solution of equations (2) and (3). For any ξ ∈ C1− c;g([0, a])

and for each t ∈ [0, a], we have the following estimate:
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(Kξ)(t)(g(t) − g(0))
1− c

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

A

Γ(c)
+
λ(g(t) − g(0))1− c

Γ(h)
􏽚

t

0
Q

h
g(t, s)ξ(s)ds +

(g(t) − g(0))1− c

Γ(h)
􏽚

t

0
Q

h
g(t, s)ζ(s, ξ(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
|A|

Γ(c)
+
λ(g(t) − g(0))1− c

Γ(h)
􏽚

t

0
Q

h
g(t, s)|ξ(s)|ds +

(g(t) − g(0))1− c

Γ(h)
􏽚

t

0
Q

h
g(t, s)|ζ(s, ξ(s))|ds

≤
|A|

Γ(c)
+
λ(g(t) − g(0))1− c

Γ(h)
􏽚

t

0
Q

h
g(t, s)|ξ(s)|ds +

(g(t) − g(0))1− c

Γ(h)
􏽚

t

0
Q

h
g(t, s)|ζ(s, ξ(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− ζ(s, 0) + ζ(s, 0)

􏼌􏼌􏼌􏼌􏼌􏼌ds

≤
|A|

Γ(c)
+
λ(g(t) − g(0))1− c

Γ(h)
B(h, c)(g(t) − g(0))

h+c− 1
‖ξ‖C1− c;g

+
(g(t) − g(0))1− c

Γ(h)
B(h, c)(g(t) − g(0))

h+c− 1
L‖ξ‖C1− c;g

+
(g(t) − g(0))1− c

Γ(h)
B(h, c)(g(t) − g(0))

h+c− 1
‖􏽥ζ‖C1− c;g

,

(28)

for any t ∈ [0, a].
Combining the estimation above with the definition of

Ur, we infer that

(Kξ)(t)(g(t) − g(0))
1− c

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

|A|

Γ(c)
+

B(h, c)(g(a) − g(0))h

Γ(h)

· (λ + L)‖ξ‖C1− c;g
+

B(h, c)(g(a) − g(0))h

Γ(h)
‖􏽥ξ‖C1− c;g

� r.

(29)

Hence, we conclude the operator K maps into itself.
Secondly, K(Ur) is uniformly bounded since

K(Ur) ⊂ Ur.
&irdly, we will prove that the operator K is continuous.

Let the sequence ξn􏼈 􏼉 ∈ Ur and ξ ∈ Ur such that

ξn − ξ
����

����C1− c;g
⟶ 0, as n⟶∞. (30)

For any t ∈ [0, a], we have the following estimate:

Kξn( 􏼁(t) − (Kξ)(t)( 􏼁(g(t) − g(0))
1− c

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

λ(g(t) − g(0))1− c

Γ(h)
􏽚

t

0
Q

h
g(t, s) ξn(s) − ξ(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

+
(g(t) − g(0))1− c

Γ(h)
􏽚

t

0
Q

h
g(t, s) ζ s, ξn(s)( 􏼁 − ζ(s, ξ(s))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

≤
B(h, c)

Γ(h)
(g(t) − g(0))

hλ ξn(·) − ξ(·)
����

����C1− c;g

+
B(h, c)

Γ(h)
(g(t) − g(0))

h ζ ·, ξn(·)( 􏼁 − ζ(·, ξ(·))
����

����C1− c;g
, ∀t ∈ [0, a].

(31)

Hence, for any t ∈ [0, a], we have

Kξn − Kξ
����

����C1− c;g
≤

B(h, c)

Γ(h)
(g(a) − g(0))

hλ ξn(·) − ξ(·)
����

����C1− c;g

+
B(h, c)

Γ(h)
(g(a) − g(0))

h

· ζ ·, ξn(·)( 􏼁 − ζ(·, ξ(·))
����

����C1− c;g
.

(32)

Based on the continuity of function ζ, we obtain

ζ ·, ξn(·)( 􏼁 − ζ(·, ξ(·))
����

����C1− c;g
⟶ 0, as n⟶∞. (33)

So, for any t ∈ [0, a], we obtain

Kξn − Kξ
����

����C1− c;g
⟶ 0, as n⟶∞, (34)

which leads to operator K which is continuous.
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Next, we will show that K(Ur) is equicontinuous. Let
t1, t2 ∈ [0, a] such that 0< t1 < t2 < a and ξ ∈ Ur, and we have

(Kξ) t2( 􏼁 g t2( 􏼁 − g(0)( 􏼁
1− c

− (Kξ) t1( 􏼁 g t1( 􏼁 − g(0)( 􏼁
1− c

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

�
λ g t2( 􏼁 − g(0)( 􏼁

1− c

Γ(h)
􏽚

t2

0
Q

h
g t2, s( 􏼁ξ(s)ds +

g t2( 􏼁 − g(0)( 􏼁
1− c

Γ(h)
􏽚

t2

0
Q

h
g t2, s( 􏼁ζ(s, ξ(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
λ g t1( 􏼁 − g(0)( 􏼁

1− c

Γ(h)
􏽚

t1

0
Q

h
g t1, s( 􏼁ξ(s)ds −

g t1( 􏼁 − g(0)( 􏼁
1− c

Γ(h)
􏽚

t1

0
Q

h
g t1, s( 􏼁ζ(s, ξ(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1
Γ(h)

B(h, c) λ‖ξ‖C1− c;g
+‖ζ‖C1− c;g

􏼒 􏼓 g t2( 􏼁 − g(0)( 􏼁
h

− g t1( 􏼁 − g(0)( 􏼁
h

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(35)

As t2⟶ t1, we imply the right-hand side of the esti-
mation above tend to 0, that is, K(Ur) is equicontinuous.

Finally, we see that all conditions of Schauder fixed point
theorem are satisfied. So, we can conclude that problem (2) and
(3) has at least one solution. &e proof is complete. □

Theorem 3. Let 􏽥a∈ (0, a). Assume that assumption (H1) is
satisfied. If

B(h, c)(g(􏽥a) − g(0))h(λ + L)

Γ(h)
< 1, (36)

then problems (2) and (3) have a unique solution on [0, 􏽥a].

Proof. To prove this theorem, divide the proof into two
steps. Now, we define the following set:

Uρ ≔ ξ ∈ C1− c,g([0, 􏽥a]): ‖ξ‖C1− c,g([0,􏽥a])≤ ρ􏼚 􏼛, (37)

where

ρ ≔
AΓ(h)

Γ(c) Γ(h) − (1 + λ + L)(g(􏽥a) − g(0))h
􏽨 􏽩

. (38)

Let us define the operator B: C1− c,g([0, 􏽥a])⟶
C1− c,g([0, 􏽥a]) as follows:

(Bξ)(t) �
(g(t) − g(0))c− 1

Γ(c)
A +

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)ξ(s)ds

+
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, ξ(s))ds, ∀t ∈ [0, 􏽥a].

(39)

Step 1: similarl to the proof of &eorem 2, we can infer
that the functions of BUρ are uniformly bounded in
C1− c,g([0, 􏽥a]).
Step 2: we will show that B is a contraction on
C1− c,g([0, 􏽥a]). For any t ∈ [0, 􏽥a] and
ξ1, ξ2 ∈ C1− c,g([0, 􏽥a]), we have

Kξ1( 􏼁(t) − Kξ2( 􏼁(t)( 􏼁(g(t) − g(0))
1− c

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

λ(g(t) − g(0))1− c

Γ(h)
􏽚

t

0
Q

h
g(t, s) ξ1(s) − ξ2(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

+
(g(t) − g(0))1− c

Γ(h)
􏽚

t

0
Q

h
g(t, s) ζ s, ξ1(s)( 􏼁 − ζ s, ξ2(s)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

≤
B(h, c)

Γ(h)
(g(t) − g(0))

h
(λ + L) ξ1 − ξ2

����
����C1− c,g([0,􏽥a])

.

(40)

Combining the estimation above with assumption (36),
we obtain

Kξ1 − Kξ2
����

����C1− c,g([0,􏽥a])
≤ ξ1 − ξ2

����
����C1− c,g([0,􏽥a])

, (41)

that is, B is a contraction on C1− c,g([0, 􏽥a]).
Here, we see that all conditions in the Banach fixed

point theorem are satisfied. &erefore, there exists a
unique solution of problems (2) and (3). &is proof is
completed. □

3.2. Continuous Dependence and Boundedness of Solution of
Problem (2). In this section, we will study the continuous
dependence of solutions on initial conditions and the
boundedness of solution of equations (2) and (3). Now, we
consider the following problems:

H
0+D

h,υ;g
ξ(t) � λξ(t) + ζ(t, ξ(t)), I

1− c
0+ ξ(0) � A,

H
0+D

h,υ;g
ξ∗(t) � λξ∗(t) + ζ t, ξ∗(t)( 􏼁, I

1− c
0+ ξ∗(0) � A

∗
,

(42)
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where the functions ζ(·, ξ(·)), ζ(·, ξ∗(·)) ∈ C1− c,g([0, a])

satisfy assumption (H1), for any ξ, ξ∗ ∈ C1− c,g([0, a]).

Theorem 4. Assume that functions ζ and ζ∗ satisfy as-
sumption (H1). Let ξ(t) and ξ∗(t) be the solutions of problems
(42), respectively. �en, we have the following estimate:

ξ(t) − ξ∗(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
A − A∗| |(g(t) − g(0))1− c

Γ(c)
Eh (λ + L)[g(t) − g(0)]

h
􏼐 􏼑,

(43)

for any t ∈ [0, a].

Proof. Since ξ(t) and ξ∗(t) are the solutions of problems
(42), respectively. For any t ∈ [0, a], we have

ξ(t) �
(g(t) − g(0))c− 1

Γ(h)
A +

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)ξ(s)ds

+
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, ξ(s)) ds,

ξ∗(t) �
(g(t) − g(0))c− 1

Γ(h)
A
∗

+
λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)ξ∗(s)ds

+
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ s, ξ∗(s)( 􏼁 ds.

(44)

Using assumption (H1) and for any t ∈ [0, a], we have
the following estimate:

ξ(t) − ξ∗(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
A − A∗| |(g(t) − g(0))1− c

Γ(c)
+

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s) ξ(s) − ξ∗(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ds

+
1
Γ(h)

􏽚
t

0
Q

h
g(t, s) ζ(s, ξ(s)) − ζ s, ξ∗(s)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ds

≤
A − A∗| |(g(t) − g(0))1− c

Γ(c)
+

(λ + L)

Γ(h)
􏽚

t

0
Q

h
g(t, s) ξ(s) − ξ∗(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ds.

(45)

If we put
􏽥v(t) ≔ ξ(t) − ξ∗(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

􏽥u(t) ≔
A − A∗| |(g(t) − g(0))1− c

Γ(c)
,

􏽥g(t) ≔
(λ + L)

Γ(h)
,

(46)

for any t ∈ [0, a], then inequality (45) becomes

􏽥v(t)≤ 􏽥u(t) + 􏽥g(t) 􏽚
t

0
Q

h
g(t, s)􏽥v(s)ds. (47)

Applying Gronwall Lemma 1 to (47), we obtain

􏽥v(t) ≤ 􏽥u(t)Eh (λ + L)[g(t) − g(0)]
h

􏼐 􏼑. (48)

&is gives inequality (43). □

Theorem 5. Assume that assumption (H1) is satisfied. If ξ is
any solution of problems (2) and (3), then

|ξ(t)|≤
|A|(g(t) − g(0))1− c

Γ(c)
+

􏽢ζ(g(t) − g(0))h

Γ(1 + h)
􏼠 􏼡

× Eh (λ + L)[g(t) − g(0)]
h

􏼐 􏼑, ∀t ∈ [0, a],

(49)

where 􏽢ζ � maxs∈[0,a]ζ(s, 0).

Proof. Let ξ be any solution of problems (2) and (3). &en,
we have

ξ(t) �
(g(t) − g(0))c− 1

Γ(c)
A +

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)ξ(s)ds

+
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, ξ(s))ds, ∀t ∈ [0, a].

(50)

Using assumption (H1) and for any t ∈ [0, a], we have

6 Mathematical Problems in Engineering



|ξ(t)|≤
|A|(g(t) − g(0))1− c

Γ(c)
+

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)|ξ(s)|ds

+
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)|ζ(s, ξ(s))|ds≤

|A|(g(t) − g(0))1− c

Γ(c)
+

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)|ξ(s)|ds

+
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)|ζ(s, ξ(s)) − ζ(s, 0) + ζ(s, 0)|ds

≤
|A|(g(t) − g(0))1− c

Γ(c)
+

(λ + L)

Γ(h)
􏽚

t

0
Q

h
g(t, s)|ξ(s)|ds +

1
Γ(h)

􏽚
t

0
Q

h
g(t, s)|ζ(s, 0)|ds

≤
|A|(g(t) − g(0))1− c

Γ(c)
+

􏽢ζ(g(t) − g(0))h

Γ(1 + h)
+

(λ + L)

Γ(h)
􏽚

t

0
Q

h
g(t, s)|ξ(s)|ds.

(51)

We put

v(t) ≔
|A|(g(t) − g(0))1− c

Γ(c)
+

􏽢ζ(g(t) − g(0))h

Γ(1 + h)
,

u(t) ≔
(λ + L)

Γ(h)
,

(52)

for any t ∈ [0, a], which leads to the following estimate:

|ξ(t)|≤ v(t) + u(t) 􏽚
t

0
Q

h
g(t, s)|ξ(s)|ds, ∀t ∈ [0, a].

(53)

Applying Gronwall Lemma 1, we obtain

|ξ(t)|≤ v(t)Eh u(t)Γ(h)[g(t) − g(0)]
h

􏼐 􏼑, ∀t ∈ [0, a].

(54)

&e proof is completed. □

3.3. Hyers–Ulam Stability and Hyers–Ulam–Rassias Stability
for Problem (2)

Theorem 6. Assume that assumption (H1) and (36) are
satisfied. �en, problem (2) is Hyers–Ulam stable.

Proof. Let ξ(t) ∈ C1− c,g([0, a]) be a solution of (12) and let
􏽢ξ(t) ∈ C1− c,g([0, a]) be a unique solution of (2). &en, for
any, we have

􏽢ξ(t) �
(g(t) − g(0))c− 1

Γ(c)
A +

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)􏽢ξ(s)ds

+
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, 􏽢ξ(s))ds, ∀t ∈ [0, a].

(55)

For any t ∈ [0, a], we have

|ξ(t) − 􏽢ξ(t)|

� ξ(t) −
(g(t) − g(0))c− 1

Γ(c)
A −

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)􏽢ξ(s)ds −

1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, 􏽢ξ(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ(t) −
(g(t) − g(0))c− 1

Γ(c)
A −

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)􏽢ξ(s)ds −

1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, 􏽢ξ(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)􏽢ξ(s)ds +

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, ξ(s))ds −

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)􏽢ξ(s)ds −

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, ξ(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ(t) −
(g(t) − g(0))c− 1

Γ(c)
A −

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)􏽢ξ(s)ds −

1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, 􏽢ξ(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)|ξ(s) − 􏽢ξ(t)|ds +

1
Γ(h)

􏽚
t

0
Q

h
g(t, s)|ζ(s, ξ(s)) − ζ(s, 􏽢ξ(s))|ds

� ξ(t) −
(g(t) − g(0))c− 1

Γ(c)
A −

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)􏽢ξ(s)ds −

1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, 􏽢ξ(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
(λ + L)

Γ(h)
􏽚

t

0
Q

h
g(t, s)|ξ(s) − 􏽢ξ(t)|ds.

(56)
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Moreover, due to the function ξ(t) which satisfies in-
equality (12), there exists a function h: [0, a]⟶ R such
that |h(t)|≤ ε, for any t ∈ [0, a] and

H
0+D

h,υ;g
ξ(t) − λξ(t) − ζ(t, ξ(t)) � h(t), ∀t ∈ [0, a].

(57)

Applying the fractional integral Ih;g
0+ (·) to both sides of

equation (57) and by using &eorem 1, we obtain

I
h;g
0+

H
0+D

h,υ;g
ξ(t) − λξ(t) − ζ(t, ξ(t))􏼒 􏼓 � I

h;g
0+ h(t), ∀t ∈ [0, a].

(58)

&us, we have

ξ(t) −
(g(t) − g(0))c− 1

Γ(c)
A −

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)ξ(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, ξ(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤Ih;g

0+ |h(t)|

≤Ih;g
0+ ϵ �

(g(t) − g(0))h

Γ(h)
ϵ, ∀t ∈ [0, a].

(59)

Combining inequality (57) with inequality (59), we
obtain

|ξ(t) − 􏽢ξ(t)|≤
(g(t) − g(0))h

Γ(h)
ϵ +

(λ + L)

Γ(h)
􏽚

t

0
Q

h
g(t, s)|ξ(s)

− 􏽢ξ(t)|ds, ∀t ∈ [0, a].

(60)

Applying Gronwall Lemma 1 to (60), we obtain

|ξ(t) − 􏽢ξ(t)|≤
(g(t) − g(0))h

Γ(h)
Eh (λ + L)[g(t) − g(0)]

h
􏼐 􏼑ϵ

≤
(g(a) − g(0))h

Γ(h)
Eh (λ + L)[g(t) − g(0)]

h
􏼐 􏼑ϵ

≤Cζϵ, ∀t ∈ [0, a],

(61)

where Cζ ≔ (g(a) − g(0))h/Γ(h)Eh((λ + L)[g(t) − g(0)]h).

Based on the inequality above and Definition 2, we infer
that problem (2) is Hyers–Ulam stable. &e proof is
completed. □

Theorem 7. Assume that assumption (H1) and (36) are
satisfied. If there exists function ϕ ∈ C([0, a],R) and the
positive constant Cϕ such that

1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ϕ(s)ds ≤Cϕϕ(t), ∀t ∈ [0, a], (62)

then problem (2) is Hyers–Ulam–Rassias stable.

Proof. Let ξ(t) ∈ C1− c,g([0, a]) be a solution of (12) and let
􏽢ξ(t) ∈ C1− c,g([0, a]) be a unique solution of (2). Performing

the same calculations as in &eorem 3, we have the esti-
mation as follows:

|ξ(t) − 􏽢ξ(t)|≤ ξ(t) −
(g(t) − g(0))c− 1

Γ(c)
A −

λ
Γ(h)

· 􏽚
t

0
Q

h
g(t, s)ξ(s)ds

−
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, ξ(s))ds

+
(λ + L)

Γ(h)
􏽚

t

0
Q

h
g(t, s)|ξ(s) − 􏽢ξ(t)|ds.

(63)

On the contrary, applying the fractional integral Ih;g
0+ (·)

to both sides of inequality (14) and by &eorem 1 and as-
sumptions (61), we obtain

ξ(t) −
(g(t) − g(0))c− 1

Γ(c)
A −

λ
Γ(h)

􏽚
t

0
Q

h
g(t, s)ξ(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ζ(s, ξ(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ϵIh;g
0+ ϕ(t)≤Cϕϕ(t)ϵ, ∀t ∈ [0, a].

(64)

From estimations (63) and (64), we imply

|ξ(t) − 􏽢ξ(t)|≤Cϕϕ(t)ϵ +
(λ + L)

Γ(h)
􏽚

t

0
Q

h
g(t, s)|ξ(s) − 􏽢ξ(t) | ds,

∀t ∈ [0, a].

(65)

Using Gronwall Lemma 1 and (64), we obtain

|ξ(t) − 􏽢ξ(t)|≤CϕEh (λ + L)[g(t) − g(0)]
h

􏼐 􏼑ϕ(t)ϵ

≤Cζ,ϕϵ, ∀t ∈ [0, a],
(66)

where Cζ,ϕ ≔ CϕEh((λ + L)[g(t) − g(0)]h).
Similarly, based on the inequality above andDefinition 2,

we infer that problem (2) is Hyers–Ulam–Rassias stable. &e
proof is completed. □

3.4. Example. Let us consider the following problem:

H
0+D

h,υ;g
ξ(t) �

1
3
ξ(t) +

1 + ξ(t)

9 + et
, ∀t ∈ [0, 1/3], (67)

with the initial condition I
1− c,g
0+ ξ(0) � 0.

For this example, we only consider the two situation as
below. &e other one is considered similarly.

Situation 1. Let g(t) � t, taking the limit υ⟶ 1 on both
sides of (8). &en, by Sousa et al. [16], we have

H
0+D

h,υ;g
ξ(t)�

C
0+D

hξ(t), ∀t ∈ [0, 1]. (68)
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Combining (67) with (68), we infer that
C
0+D

h
ξ(t) �

1
3
ξ(t) +

1 + ξ(t)

9 + et
, ∀t ∈ [0, 1/3], (69)

with the initial condition ξ(0) � 0.
We consider h � 1/2, λ � 1/3, and

ζ(t, ξ(t)) ≔
1 + ξ(t)

9 + et
, ∀t ∈ [0, 1/3]. (70)

It is easy to see that ζ is a continuous function and it
satisfies assumption (H1) with Lipschitz constant L � 1/10.
Indeed, for any ξ1, ξ ∈ C([0, a],R), we have the following
estimate:

ζ t, ξ1(t)( 􏼁 − ζ t, ξ2(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1 + ξ1(t)

9 + et
−
1 + ξ2(t)

9 + et

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1

9 + et
ξ1(t) − ξ2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤
1
10

ξ1(t) − ξ2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ∀t ∈ [0, 1/3].

(71)
Moreover, we have

B(h, c)(g(􏽥a) − g(0))h(λ + L)

Γ(h)

�
B(1/2, 1/2)(1/3 − 0)1/2(1/3 + 1/10)

Γ(1/2)
≈ 0.45< 1.

(72)

We see that all the assumptions of&eorem 2 is satisfied.
So, we infer that problem (69) has a unique solution on
[0, 1/3].

Situation 2. Let h � 2/3, υ � 1/2, and g(t) � tρ, ρ> 0, for any
t ∈ [0, 1/3]. &en, by Sousa et al. [16], we have

ρ
0+D

(2/3),(1/2)ξ(t) �
1
3
ξ(t) +

1 + ξ(t)

9 + et
, ∀t ∈ [0, 1/3], (73)

with the initial condition ρI5/6
0+ ξ(0) � 0.

Performing the same calculations as in Case 1, then it is
also easy to check that problem (73) has a unique solution on
[0, 1/3].

We put ϕ(t) � t3ρ/2− 1 for any t ∈ [0, 1/3]. Now, we will
prove that problem (73) is Hyers–Ulam–Rassias stable. For
any t ∈ [0, 1/3], we have

1
Γ(h)

􏽚
t

0
Q

h
g(t, s)ϕ(s)ds �

ρ1/3

Γ(2/3)
􏽚

t

0
s

− ρ/2
t
ρ

− s
ρ

( 􏼁
− 1/3ϕ(s)ds

�
ρ1/3

Γ(2/3)
􏽚

t

0
s

− ρ/2
t
ρ

− s
ρ

( 􏼁
− 1/3

s
3ρ/2− 1ds

�
ρ1/3

Γ(2/3)
􏽚

t

0
t
ρ

− s
ρ

( 􏼁
− 1/3

s
ρ− 1ds

≤
3ρ− 2/3

2Γ(2/3)

1
3

􏼒 􏼓
1− 5ρ/6

ϕ(t), ∀t ∈ [0, 1/3].

(74)

Hence, assumption (73) of &eorem 3 is satisfied by
Cϕ ≔ 3ρ− 2/3/2Γ(2/3)(1/3)1− 5ρ/6 > 0 with ρ> 0. All the as-
sumptions of &eorem 3 are satisfied. So, we imply problem
(73) is Hyers–Ulam–Rassias stable.
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In this study, a novel second-order prediction differential model is designed, and numerical solutions of this novel model are
presented using the integrated strength of the Adams and explicit Runge–Kutta schemes. *e idea of the present study comes to
the mind to see the importance of delay differential equations. For verification of the novel designed model, four different
examples of the designedmodel are numerically solved by applying the Adams and explicit Runge–Kutta schemes.*ese obtained
numerical results have been compared with the exact solutions of each example that indicate the performance and exactness of the
designed model. Moreover, the results of the designed model have been presented numerically and graphically.

1. Introduction

*e historical delay differential equations (DDEs) are ap-
plied in the pioneer work of Newton and Leibnitz in the last
years of the 16th century. To understand the worth and
importance of the DDEs, one can see their extensive and
wide-ranging applications in the field of scientific wonders.
Few mentioned applications are population dynamics,
economical systems, engineering systems, transports, and
communication models [1–4]. Many researchers worked to
solve DDEs in different years, e.g., Kondorse studied DDEs
in the seventh decade of the 17th century, but properly used
the applications of DDEs in the 19th century. Kuang [2] and
Hale and LaSalle [5] presented the detailed theory, solution
schemes, and applications of DDEs. Perko [6] studied linear/
nonlinear differential models for the dynamical system and
configuration. Beretta and Kuang [7] worked on the

geometric constancy of DDEs with the constraints of delay
values. Frazier [8] explained the DDEs of the second kind by
applying the wavelet Galerkin scheme. Rangkuti and
Noorani [9] established the exact solution of DDEs by ap-
plying the iterative method named as a coupled variation
scheme with the support of the Taylor series method. Chapra
[10] discussed the scheme of Runge–Kutta for solving both
types of differential delay and nondelay models. Adel and
Sabir [11] presented the numerical solutions of a nonlinear
second-order Lane–Emden pantograph delay differential
model via the Bernoulli collocation method. Sabir et al.
[12, 13] solved the nonlinear functional differential models
of second and third order. Erdogan et al. [14] applied the
finite difference method on a layer-adapted mesh for sin-
gularly perturbed DDEs. Some more details of DDEs are
provided in references [15–20]. *e literature form of the
second-order DDE is given as follows [21]:
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d2y
dx2 � g x, y(x), y x − τ1( 􏼁( 􏼁, τ1 > 0, a≤x≤ b,

y(x) � θ(x), ρ≤ x≤ a, 0≤ τ1 ≤ |a − ρ|,

dy(a)

dx
� ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where θ(x) is used for the initial condition and τ1 is the
delayed term in the abovementioned equation. It is clear in
understanding that the appearance of this term y(x − τ)in
any differential equation shows the DDE that means to
subtract some values from time. *e question arises here
when we add some values in time then what happens, i.e.,
y(x + τ). *is clearly indicates the prediction and aim of the
present work is related to design a new model based on the
prediction differential equation.*e general form of the new
second-order prediction differential model along with initial
conditions is presented as

d2y
dx2 � g(x, y(x), y(x + τ)), τ > 0, a≤x≤ b,

y(x) � θ(x), ρ≤x≤ a, 0≤ τ ≤ |ρ − a|,

dy(a)

dx
� ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where τ is used as a prediction term in equation (2). *is
prediction differential model can be used to forecast the
weather, transport, engineering, stock markets, technology,
biological models, astrophysics, andmanymore.Moreover, the
obtained numerical results from both of the schemes have been
compared with the exact solution to verify the correctness and
exactness of the designed model presented in equation (2).

Some salient features of the designed model are given as
follows:

(i) *e novel prediction model is successfully designed
by considering the worth of the delay differential
model

(ii) For verification of the designed model, the obtained
numerical results have been compared with the
exact solutions

(iii) Easily comprehensible procedures with effortless
implementation, conserved accuracy in close lo-
cality of the input interval, broader, and extendi-
bility applicability are other considerable
advantages.

*e remaining parts of the paper are organized as follows.
Section 2 shows the designed methodology. Section 3 repre-
sents the detailed results. *e conclusions and future research
directions of the present study are provided in the last section.

2. Methodology

In the present study, the strength of predictor-corrector
Adams technique [22, 23] and explicit Runge–Kutta

numerical technique [24, 25] is exploited to solve the sec-
ond-order prediction differential model.

2.1. Predictor-Corrector Adams Numerical Scheme. To find
the numerical solutions of the novel designed prediction
differential model, the predictor-corrector numerical tech-
nique is applied, which takes further two steps to complete.

Step 1: the approximate measures of prediction are
accomplished
Step 2: to find if the numerical solutions of correction
are capable with the similar contributions of prediction.

dy

dx
� h(x, y),

u x0( 􏼁 � y0.

(3)

*e generalized Adams–Bashforth two-step numerical
scheme using the predictor-corrector techniques is given as

Dn+1 � yn +
3
2

gh xn, yn( 􏼁 −
1
2

gh xn−1, yn−1( 􏼁. (4)

*e Adams-Moulton two-step corrector scheme is
shown as follows:

yn+1 � yn +
1
2

gh xn+1, Dn+1( 􏼁 + h xn, yn( 􏼁( 􏼁. (5)

*e 4-step predictor-corrector scheme is provided as
follows:

Dn+1 � yn +
1
24

g 55h xn, yn( 􏼁 − 59g xn−1, yn−1( 􏼁(

+ 37g xn−2, yn−2( 􏼁 − 9g xn−3, yn−3( 􏼁􏼁.

(6)

*e Adams–Bashforth–Moulton 4-step scheme is
written as follows:

yn+1 � yn +
1
24

g 9h xn+1, Dn+1( 􏼁 + 19g xn, yn( 􏼁(

− 5g xn−1, yn−1( 􏼁 + f xn−2, yn−2( 􏼁􏼁.

(7)

2.2. Explicit Runge–Kutta Numerical Scheme. *e explicit
Runge–Kutta scheme is applied to solve the novel designed
second-order prediction model. *e general form of the
explicit Runge–Kutta scheme is considered as

yn+1 � yn + g 􏽘
s

j�1
bjIj,

I1 � h xn, yn( 􏼁,

I2 � h xn + c2g, yn + g a21I1( 􏼁( 􏼁,

I3 � h xn + c3g, un + g a31I1 + a32I2( 􏼁( 􏼁,

⋮

Is � h xn + csg, yn + g as1
I1 + as2

I2 + as3
I3 + . . . + ass−1Is−1􏼐 􏼑􏼐 􏼑.

(8)
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*e first step is to consider the obtained initial results,
and slopes for all variables are predictable. *ese attained
numerical conclusions for slopes (theI1s) at the middle
point of the interval domain are taken to make the de-
pendent variable designs, while in the second phase, the
slopes of the central point (theI2s) are obtained by using
these accomplished values based on the middle points. *e
calculated numerical values for slopes are twisted back
using the first point of the other set of central point values
that are instigated for the new slope of predictions at the
central point (theI3s).*ese numerical calculated values are
complementary functional to make the predictions to
develop the slopes at the ending point of the interval
domain (theIss). Similarly, all the numerical values for Is

are accomplished to make an additional set of growth
functions and, finally, take the initial point to make the last
prediction.

3. Simulations and Results

In this section of the study, the prediction differential model
presented in equation (2) is solved by using the four nu-
merical examples based on the predictor-corrector Adams
technique and explicit Runge–Kutta method. Furthermore,
the obtained numerical results using both the schemes have
been compared with the exact solutions of each example.

Example 1. Consider the second-order prediction differ-
ential equation along with the initial conditions given as
follows:

2
d2y
dx2 + y(x) − y(x + π) � 0,

y(0) � 1,

dy(0)

dx
� 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

*e exact solution of equation (9) is 1 + sinx.

Example 2. Consider the second-order prediction differ-
ential equation along with boundary conditions given as
follows:

d2y
dx2 − y(x) + y(x + 1) − 2x � 0,

y(0) � 2,

dy(3)

dx
� 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

*e exact solution of equation (10) is x2 − 3x + 2.

Example 3. Consider the second-order prediction differ-
ential equation involving trigonometric functions along with
initial conditions given as follows:

d2y
dx2 −

dy

dx
(x + 1) + y(x + 1) + y(x) + cos(x + 1) − sin(x + 1) � 0,

y(0) � 0,

dy(0)

dx
� 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

*e exact solution of equation (11) is sinx.

Example 4. Consider the second-order prediction differ-
ential equation along with initial conditions given as follows:

d2y
dx2 −

dy(x + 1)

dx
+ y(x + 1) − y(x) � 0,

y(0) � 1,

dy(0)

dx
� 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

*e exact solution of equation (12) is ex.
It is clearly seen that the prediction term is involved in

the form of y(x + π), y(x + 1) in Examples 1 and 2,
respectively. *e prediction terms are involved four times in
Example 3, i.e., (dy/dx)(x + 1), y(x + 1), cos(x + 1), and
sin(x + 1). Moreover, the prediction terms appeared twice
in Example 4, i.e., (dy/dx)(x + 1) and y(x + 1).

*e graphic illustration based on the numerical results
for all four examples is provided in Figure 1. *e explicit
Runge–Kutta scheme is used to find the graphical values for
all the examples. *e plots of Figures 1(a) to 1(d) are based
on Examples 1 to 4. Figure 1(a) is plotted in the domain of
[0, 30], and the results are found to be positive in all in-
tervals. *e plots of Figure 1(b) are plotted in the domain of
[0, 3]. *e results represent positive values in most of the
intervals. However, negative values have been noticed in
the subinterval [1, 2]. Figures 1(c) and 1(d) are plotted in
the domain of [0, π] and [0, 1], respectively. It is noticed in
the table that positive results have seen in both Examples 3
and 4. For comparison of the results, the plots of exact and
numerical solutions have been drawn in Figure 2. *e
overlapping of the results shows the exactness and accu-
rateness of the designed model. For more clear results of all
the examples, the numerical results of exact solutions and
the predictor-corrector Adams numerical scheme are
tabulated in Tables 1 and 2. *e comparison of the Adams
numerical results and exact solutions are same up to a
higher level.
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Figure 1: Graphical illustration of the numerical results for Examples 1, 2, 3, and 4. (a) Plot results of Example 1. (b) Plot results of Example
2. (c) Plot results of Example 3. (d) Plot results of Example 4.
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Figure 2: Comparison of the exact results and numerical solutions for Examples 1, 2, 3, and 4. (a) Comparison plots of Example 1. (b)
Comparison plots of Example 2. (c) Comparison plots of Example 3. (d) Comparison plots of Example 4.

Table 1: Numerical values of the Adams and explicit Runge–Kutta scheme for Examples 1 and 2.

x
Example 1 Example 2

Exact Adams Exact Adams
0.00 1.000000 1.000000 2.000000 2.000000
0.04 1.040000 1.039989 1.881600 1.881600
0.08 1.079900 1.079915 1.766400 1.766400
0.12 1.119700 1.119712 1.654400 1.654400
0.16 1.159300 1.159318 1.545600 1.545600
0.20 1.198700 1.198669 1.440000 1.440000
0.24 1.237700 1.237703 1.337600 1.337600
0.28 1.276400 1.276356 1.238400 1.238400
0.32 1.314600 1.314567 1.142400 1.142400
0.36 1.352300 1.352274 1.049600 1.049600
0.40 1.389400 1.389418 0.960000 0.960000
0.44 1.425900 1.425939 0.873600 0.873600
0.48 1.461800 1.461779 0.790400 0.790400
0.52 1.496900 1.496880 0.710400 0.710400
0.56 1.531200 1.531186 0.633600 0.633600
0.60 1.564600 1.564642 0.560000 0.560000
0.64 1.597200 1.597195 0.489600 0.489600
0.68 1.628800 1.628793 0.422400 0.422400
0.72 1.659400 1.659385 0.358400 0.358400
0.76 1.688900 1.688921 0.297600 0.297600
0.80 1.717400 1.717356 0.240000 0.240000
0.84 1.744600 1.744643 0.185600 0.185600
0.88 1.770700 1.770739 0.134400 0.134400
0.92 1.795600 1.795602 0.086400 0.086400
0.96 1.819200 1.819192 0.041600 0.041600
1.00 1.841500 1.841471 0.000000 0.000000
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4. Conclusions

*e present study is carried out to design a novel second-
order prediction differential model by manipulating the
strength of the Adams numerical scheme and explicit
Runge–Kutta scheme. *e designed novel prediction dif-
ferential model will be very useful and can be applied in
many applications. Four different variants of the designed
model have been solved by using the Adams and Run-
ge–Kutta schemes and compared the obtained numerical
results with the exact solutions. *e overlapping of the exact
and numerical reference solutions show the worth and
accuracy of the novel designed prediction differential model.
It is clear in understanding that the proposed methods are
valuable and suitable for solving the second-order prediction
differential model due to accurate results for all the examples
of the second-order prediction differential model. For
solving all four examples, the proposed Adams and explicit
Runge–Kutta schemes are found to be very good in terms of
accuracy and convergence. Software used for solving the
prediction differential model is MATLAB R 2017(a) package
and Mathematica 10.4.

In future, the nonlinear prediction Lane–Emden model
and nonlinear prey-predator singular prediction model can be
designed and solved via an artificial neural network [26–33].
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'e purpose of this paper is to introduce a new four-step iteration scheme for approximation of fixed point of the nonexpansive
mappings named as S∗-iteration scheme which is faster than Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, 'akur, and Ullah
iteration schemes. We show the stability of our proposed scheme. We present a numerical example to show that our iteration
scheme is faster than the aforementioned schemes. Moreover, we present some weak and strong convergence theorems for
Suzuki’s generalized nonexpansive mappings in the framework of uniformly convex Banach spaces. Our results extend, improve,
and unify many existing results in the literature.

1. Introduction

Most of the nonlinear equations can be transformed into a
fixed point problem as follows:

Fu � u, (1)

whereF is a self-map on a certain distance spaceX and the
solution of the aforementioned equation is considered as a
fixed point of the mapping F. Banach [1] proved that if a
self-map F on a complete metric space is such that

d(Fu,Fv)≤ q d(u, v), (2)

for 0≤ q< 1, then it possesses a unique fixed point u∗.
Moreover, the iterative process

Fun � un+1, (3)

called the Picard iteration process, converges to u∗. It is
worth mentioning that Picard iteration process is useful for

the approximation of the fixed point of the contraction
mappings but the case when ones dealing with nonexpansive
mappings it may fail to converge to the fixed point even ifF
has a unique fixed point. Krasnosel’skii [2] showed that
Mann [3] iteration process can approximate the fixed points
of a nonexpansive mapping. In this iteration scheme, the
sequence (un) is generated by an arbitrary u0 ∈ C as

un+1 � 1 − αn( 􏼁un + αnFun, ∀ n≥ 0, (4)

where (αn) is in (0, 1).
In 1974, Ishikawa [4] developed an iterative scheme to

approximate the fixed point of nonexpansive mappings,
where (un) is defined iteratively starting from u0 ∈ C by

un+1 � 1 − αn( 􏼁un + αnFvn

vn � 1 − βn( 􏼁un + βnFun

􏼩, (5)

for all n≥ 0, where (αn) and (βn) are in (0, 1).

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 3863819, 9 pages
https://doi.org/10.1155/2020/3863819

mailto:azharhussain@tdtu.edu.vn
https://orcid.org/0000-0001-9320-9433
https://orcid.org/0000-0001-7556-8942
https://orcid.org/0000-0003-4501-9269
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3863819


For the approximation of the fixed point of non-
expansive mappings, Mann and Ishikawa iterative methods
have been studied by several authors (see e.g., [5–9]).

Another iteration scheme was proposed by Noor [10] in
2000, for u0 ∈ C, the sequence (un) is defined by

un+1 � 1 − αn( 􏼁un + αnFvn

vn � 1 − βn( 􏼁un + βnFwn

wn � 1 − cn( 􏼁un + cnFun

⎫⎪⎪⎬

⎪⎪⎭
, (6)

for all n≥ 0, where (αn), (βn), and (cn) are in (0, 1).
Agarwal et al. [11], in 2007, proposed the following it-

erative scheme: for arbitrary u0 ∈ C, a sequence un􏼈 􏼉 is
generated by

un+1 � 1 − αn( 􏼁Fun + αnFvn

vn � 1 − βn( 􏼁un + βnFun

􏼩, (7)

for all n≥ 0, where (αn) and (βn) are in (0, 1). 'ey proved
that this procedure converges faster than Mann iteration for
contraction mappings.

In 2014, Abbas and Nazir [12] developed an iterative
schemewhich is faster thanAgarwal et al.’s [11] scheme,where a
sequence (un) is formulated from arbitrary u0 ∈ C by

un+1 � 1 − αn( 􏼁Fvn + αnFwn

vn � 1 − βn( 􏼁Fun + βnFwn

wn � 1 − cn( 􏼁un + cnFun

⎫⎪⎪⎬

⎪⎪⎭
, (8)

for all n≥ 0, where (αn), (βn), and (cn) are in (0, 1).
Later in 2016, 'akur et al. [13] developed the following

iterative procedure, where a sequence (un) is generated it-
eratively by arbitrary u0 ∈ C and

un+1 � 1 − αn( 􏼁Fwn + αnFvn

vn � 1 − βn( 􏼁wn + βnFwn

wn � 1 − cn( 􏼁un + cnFun

⎫⎪⎪⎬

⎪⎪⎭
, (9)

for all n≥ 0, where (αn), (βn), and (cn) are in (0, 1).
Recently, in 2018, Ullah and Arshad developed a new

iteration process which converges faster than all the
aforementioned process, where the sequence is constructed
by taking arbitrary u0 ∈ C and

un+1 � Fvn

vn � F 1 − αn( 􏼁wn + αnFwn( 􏼁

wn � 1 − βn( 􏼁un + βnFun

⎫⎪⎪⎬

⎪⎪⎭
, (10)

for all n≥ 0, where (αn), (βn), and (cn) are in (0, 1).
Our aim is to introduce a new faster iteration process

than those mentioned above and to prove the convergence
results for Suzuki’s generalized nonexpansive mappings in
the context of uniformly convex Banach spaces. We also
show that our process is stable analytically. Numerically, we
compare the rate of convergence of our iteration process
with the existing iteration processes.

2. Preliminaries

'roughout this paper, E is a nonempty closed convex
subset of a uniformly convex Banach spaceX, N denotes the
set of all positive integers and F(F) denotes the set of all
fixed points of F, that is,

F(F) ≔ y: Fy � y􏼈 􏼉. (11)

Definition 1 (see [14]). A Banach space X is said to be
uniformly convex if for each ϵ ∈ (0, 2], there exists a δ > 0
such that for all u, v ∈ X,

‖u‖≤ 1

‖v‖≤ 1

‖u − v‖> ϵ

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

implies
u + v

2

������

������≤ δ. (12)

Definition 2 (see [15]). A Banach space X is said to satisfy
Opial property if for each sequence (un) in X, converging
weakly to u ∈ X, we have

lim sup
n⟶∞

un − u
����

����< lim sup
n⟶∞

un − v
����

����, (13)

for all v ∈ X such that u≠ v.

Definition 3. AmappingF: E⟶ E is called a contraction
if there exists α ∈ (0, 1), such that

‖Fu − Fv‖≤ α‖u − v‖, for all u, v ∈ E. (14)

Definition 4. A mapping F: E⟶ E quasi-nonexpansive
if for all u ∈ E and p ∈ F(F) and α ∈ (0, 1), we have

‖Fu − p‖≤ α|‖u − p‖. (15)

Definition 5 (see [16]). A mapping F: E⟶ E is called
Suzuki’s generalized nonexpansive mapping if for all
u, v ∈ E, we have
1
2

‖u − Fu‖≤ α‖u − v‖ implies ‖Fu − Fv‖≤ ‖u − v‖.

(16)

Suzuki [16] proved that the generalized nonexpansive
mapping is weaker than nonexpansive mapping and
stronger than quasi-nonexpansive mapping and obtained
some fixed points and convergence theorems for Suzuki’s
generalized nonexpansive mappings. Recently, many au-
thors have studied fixed-point theorems for Suzuki’s gen-
eralized nonexpansive mapping (see, e.g., [17]).

Senter and Dotson [7] introduced a class of mappings
satisfying condition (I).

Definition 6. A mapping F: E⟶ E is said to satisfy
condition (I), if there exists a nondecreasing function
f: [0,∞)⟶ [0,∞) with f(0) � 0 and f(δ)> 0 for all
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δ > 0 such that ‖u − Fu‖≥f(d(u, F(F))), for all u ∈ E,
where d(u, F(F)) � inf

p∈F(F)
‖u − p‖.

Proposition 1 (see [16]). Let F: E⟶ E be any mapping.
9en,

(i) If F is nonexpansive, then F is a Suzuki’s gener-
alized nonexpansive mapping.

(ii) IfF is a Suzuki’s generalized nonexpansive mapping
and has a fixed point, then F is a quasi-non-
expansive mapping.

(iii) If F is a Suzuki generalized nonexpansive mapping,
then

‖u − Fv‖≤ 3‖Fu − u‖ +‖u − v‖, ∀u, v ∈ E. (17)

Lemma 1 (see [16]). Suppose F: E⟶ E is Suzuki’s gen-
eralized nonexpansive mapping satisfying Opial property. If
(un) converges weakly to u and limn⟶∞‖Fun − un‖ � 0,
then Fu � u.

Lemma 2 (see [16]). Let X be a uniformly convex Banach
space andE be a weakly convex compact subset ofX. Assume
that F: E⟶ E is Suzuki’s generalized nonexpansive
mapping. 9en, F has a fixed point.

Lemma 3 (see [18]). Let X be a uniformly convex Banach
space and (tn) be any real sequence such that
0<p≤ un ≤ q< 1 for all n≥ 1. Suppose that (un) and (vn) be
any two sequences of X such that lim supn⟶∞‖un‖≤ r,
lim supn⟶∞‖vn‖≤ r, and lim supn⟶∞‖tnun + (1 − tn)vn‖ �

r hold for some r≥ 0. 9en, lim supn⟶∞‖un − vn‖ � 0.

Definition 7. (see [19]). LetX be a Banach space and E be a
nonempty closed convex subset of X. Assume that (un) is a
bounded sequence in X. For u ∈ X, we set
r(u, (un)) � lim supn⟶∞‖un − u‖. 'e asymptotic radius of
(un) relative to E is the set
r(E, (un)) � inf r(u, (un)): u ∈ E􏼈 􏼉 and the asymptotic
center of (un) relative to E is given by the following set:

A E, un( 􏼁( 􏼁 � u ∈ E: r u, un( 􏼁( 􏼁 � r E, un( 􏼁( 􏼁􏼈 􏼉. (18)

It is known that, in a uniformly convex Banach space,
A(E, (un)) consists of exactly one point.

Definition 8. (see [20]). Let X be a Banach space and
F: X⟶ X. Suppose that u0 ∈ X and un+1 � f(F, un)

define an iteration procedure which gives a sequence of
points (un) in X. Assume that (xn) converges to the fixed
point p. Suppose (vn) be a sequence in X and (ϵn) be a
sequence in R+ � [0,∞) given by ϵn � ‖vn+1 − f(F, vn)‖.
'en, the iteration procedure defined by un+1 � f(F, un) is
said to be F-stable or stable with respect to F if

lim
n⟶∞
ϵn � 0 iff lim

n⟶∞
vn � p. (19)

Definition 9 (see [21]). Let X be a Banach space and
F: X⟶ X. 'en,F is called a contractive mapping onX
if there exist L≥ 0, a ∈ [0, 1) such that for each u, v ∈ X,

‖Fu − Fv‖≤L‖u − Fu‖ + a‖u − v‖. (20)

By using (7), Osilike [21] established several stability
results most of which are generalizations of the results of
Rhoades [22] and Harder and Hicks [23].

Definition 10 (see [24]). Let X be a Banach space and
F: X⟶ X. 'en,F is called a contractive mapping onX
if there exist b ∈ [0, 1) and a monotone increasing function
φ: R+⟶ R+ with φ(0) � 0, such that for each u, v ∈ X,

‖Fu − Fv‖≤φ(‖u − Fu‖) + b‖u − v‖. (21)

Lemma 4 (see [25]). If λ is a real number such that 0≤ λ< 1,
and (ϵn) is the sequence of positive numbers such that

lim
n⟶∞
ϵn � 0, (22)

then for any sequence of positive numbers vn satisfying

vn+1 ≤ λvn + ϵn, for n � 1, 2, . . . , (23)

we have

lim
n⟶∞

vn � 0. (24)

3. S∗-Iteration Process

'roughout this section, C be a nonempty set of a Banach
space X, and for all n≥ 0, (αn), (βn), (cn) and (ζn) are real
sequences in the interval (0, 1).

We generate the sequence (un) iteratively, taking arbi-
trary u0 ∈ C, by

un+1 � F 1 − αn( 􏼁vn + αnFvn( 􏼁

vn � F 1 − βn( 􏼁wn + βnFwn( 􏼁

wn � F 1 − cn( 􏼁xn + cnFxn( 􏼁

xn � F 1 − ζn( 􏼁un + ζnFun( 􏼁

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (25)

First, we show that S∗-iteration scheme (25) converges
faster than all aforementioned iteration schemes for con-
tractive mappings due to Berinde [26] and is stable.

4. Convergence and Stability Results of
S∗-Iteration Process

First, we establish convergence results for S∗-iteration
process:

Mathematical Problems in Engineering 3



Theorem 1. Let X be a Banach space and E be a nonempty
closed convex subset of X. Let F be a nonexpansive self
mapping on E, (un) be a sequence defined by (25), and
F(F)≠ϕ. 9en, limn⟶∞‖un − p‖ exists for all p ∈ F(F).

Proof. Let p ∈ F(F) for all n ∈ N. From (16), we have

xn − p
����

���� � F 1 − ζn( 􏼁un + ζnFun( 􏼁 − p
����

����

≤ 1 − ζn( 􏼁un + ζnFun − p
����

����

≤ 1 − ζn( 􏼁 un − p
����

���� + ζn Fun − p
����

����

≤ 1 − ζn( 􏼁 un − p
����

���� + ζn un − p
����

����

� un − p
����

����,

(26)

wn − p
����

���� � F 1 − cn( 􏼁xn + cnFxn( 􏼁 − p
����

����

≤ 1 − cn( 􏼁xn + cnFxn − p
����

����

≤ 1 − cn( 􏼁 xn − p
����

���� + cn Fxn − p
����

����

≤ 1 − cn( 􏼁 xn − p
����

���� + cn xn − p
����

����

� xn − p
����

����

≤ un − p
����

����,

(27)

vn − p
����

���� � F 1 − βn( 􏼁wn + βnFwn( 􏼁 − p
����

����

≤ 1 − βn( 􏼁wn + βnFwn − p
����

����

≤ 1 − βn( 􏼁 wn − p
����

���� + βn Fwn − p
����

����

≤ 1 − βn( 􏼁 wn − p
����

���� + βn wn − p
����

����

� wn − p
����

����

≤ un − p
����

����.

(28)

'us,

un+1 − p
����

���� � F 1 − αn( 􏼁vn + αnFvn( 􏼁 − p
����

����

≤ 1 − αn( 􏼁vn + αnFvn − p
����

����

≤ 1 − αn( 􏼁 vn − p
����

���� + αn Fvn − p
����

����

≤ 1 − αn( 􏼁 un − p
����

���� + αn vn − p
����

����

≤ 1 − αn( 􏼁 un − p
����

���� + αn un − p
����

����

� un − p
����

����.

(29)

Hence, limn⟶∞‖un − p‖ exists for all p ∈ F(F). □

Theorem 2. Let X a uniformly convex Banach space and E

be a nonempty closed convex subset ofX. LetF: E⟶ E be
a nonexpansive mapping. Suppose that (un) is defined by the
iteration process (25) and F(F)≠ ϕ. 9en, the sequence un􏼈 􏼉

converges to a point of F(F) if and only if
lim infn⟶∞d(un, F(F)) � 0 where
d(u, F(F)) � inf ‖u − p‖: p ∈ F(F)􏼈 􏼉.

Proof. Necessity is obvious. Suppose that
lim infn⟶∞d(un, F(F)) � 0. As proved in 'eorem 1,

limn⟶∞‖un − u‖ exists for all u ∈ F(F), so
limn⟶∞d(un, F(F)) exists and lim infn⟶∞d(un, F(F)) �

0 by assumption. Now, we will prove that (un) is a Cauchy
sequence in E. For given ϵ> 0, there exists N ∈ N such that
for all n≥N,

d un, F(F)( 􏼁<
ϵ
2
. (30)

In particular, inf ‖uN − p‖: p ∈ F(F)􏼈 􏼉< (ϵ/2). Hence,
there exists p∗ ∈ F(F) such that ‖uN − p∗‖< ϵ/2. Now for
all m, n≥N,

um+n − un

����
����≤ um+n − p

∗����
���� + un − p

∗����
����≤ 2 uN − p

∗����
����< ϵ,

(31)

which shows that (un) is a Cauchy sequence in E. But E is a
closed subset of X, so there exists p ∈ E such that
limn⟶∞un � p. Now, limn⟶∞d(un, F(F)) � 0 gives
d(p, F(F)) which implies p ∈ F(F).

Next, we prove that our iteration process is F-stable or
stable with respect to F. □

Theorem 3. LetX be a Banach space andF: X⟶ X be a
mapping satisfying (21). Suppose F has a fixed point p. Let
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(un) be a sequence in X satisfying (9). 9en, S∗-iteration
process (9) is F-stable.

Proof. Let (tn) be an arbitrary sequence in X and the se-
quence generated by (25) is un+1 � f(F, un) converging to a

unique fixed point p and ϵn � ‖tn+1 − f(F, tn)‖. We will
prove that limn⟶∞ϵn � 0⟺ limn⟶∞tn � p. Assume that
limn⟶∞ϵn � 0 and

tn+1 − p
����

���� � tn+1 − f F, tn( 􏼁 + f F, tn( 􏼁 − p
����

����

≤ tn+1 − f F, tn( 􏼁
����

���� + f F, tn( 􏼁 − p
����

����

≤ tn+1 − F 1 − αn( 􏼁sn + αnFsn( 􏼁
����

���� + F 1 − αn( 􏼁sn + αnFsn( 􏼁 − p
����

����

≤ ϵn + b 1 − αn(1 − b)􏼂 􏼃 sn − p
����

����

� ϵn + b 1 − αn(1 − b)􏼂 􏼃 F 1 − βn( 􏼁rn + βnFrn( 􏼁 − p
����

����

≤ ϵn + b
2 1 − αn(1 − b)􏼂 􏼃 1 − βn(1 − b)(􏼂 􏼃 rn − p

����
����

� ϵn + b
2 1 − αn(1 − b)􏼂 􏼃 1 − βn(1 − b)(􏼂 􏼃 F 1 − cn( 􏼁vn + cnFvn( 􏼁 − p

����
����

≤ ϵn + b
3 1 − αn(1 − b)􏼂 􏼃 1 − βn(1 − b)(􏼂 􏼃 1 − cn(1 − b)􏼂 􏼃 vn − p

����
����

� ϵn + b
3 1 − αn(1 − b)􏼂 􏼃 1 − βn(1 − b)(􏼂 􏼃 1 − cn(1 − b)􏼂 􏼃 F 1 − ζn( 􏼁tn + ζnFtn( 􏼁 − p

����
����

≤ ϵn + b
4 1 − αn(1 − b)􏼂 􏼃 1 − βn(1 − b)(􏼂 􏼃 1 − cn(1 − b)􏼂 􏼃 1 − ζn(1 − b) tn − p

����
����.􏽨

(32)

Since b ∈ [0, 1) and (αn), (βn), (cn), and (ζn) are in
[0, 1],

b
4 1 − αn(1 − b)􏼂 􏼃 1 − βn(1 − b)(􏼂 􏼃 1 − cn(1 − b)􏼂 􏼃

· 1 − ζn(1 − b)􏼂 􏼃
����< 1.

(33)

Hence by Lemma 4, we have limn⟶∞‖tn − p‖ � 0, which
gives limn⟶∞tn � p. On the other hand, suppose that
limn⟶∞tn � p. 'en,

ϵn � tn+1 − f F, tn( 􏼁
����

����

� tn+1 − p + p − f F, tn( 􏼁
����

����

≤ tn+1 − p
����

���� + b 1 − αn( 􏼁 + bαn􏼂 􏼃 sn − p
����

����

� tn+1 − p
����

���� + b 1 − αn( 􏼁 + bαn􏼂 􏼃 F 1 − βn( 􏼁rn + βnFrn( 􏼁 − p
����

����

≤ tn+1 − p
����

���� + b
2 1 − αn( 􏼁 + bαn􏼂 􏼃 1 − βn(1 − b)(􏼂 􏼃 rn − p

����
����

� tn+1 − p
����

���� + b
2 1 − αn( 􏼁 + bαn􏼂 􏼃 1 − βn( 􏼁 F 1 − cn( 􏼁vn + cnFvn( 􏼁 − p

����
����

≤ tn+1 − p
����

���� + b
3 1 − αn(1 − b)􏼂 􏼃 1 − βn(1 − b)(􏼂 􏼃 1 − cn(1 − b)􏼂 􏼃 vn − p

����
����

� tn+1 − p
����

���� + b
3 1 − αn(1 − b)􏼂 􏼃 1 − βn(1 − b)(􏼂 􏼃 1 − cn(1 − b)􏼂 􏼃 F 1 − ζn( 􏼁tn + ζnFtn( 􏼁 − p

����
����

≤ tn+1 − p
����

���� + b
4 1 − αn(1 − b)􏼂 􏼃 1 − βn(1 − b)(􏼂 􏼃 1 − cn(1 − b)􏼂 􏼃 1 − ζn(1 − b)􏼂 􏼃 tn − p

����
����.

(34)

Taking limit as n⟶∞ in (34), we get limn⟶∞ϵn � 0.
Now, we present an example to compare the rate of

convergence of our iteration scheme with others. □

Example 1. LetX � R and C � [1, 50]. LetF: C⟶ C be a
mapping defined by Fu �

����������
u2 − 9u + 54

√
for all u ∈ C. For

u1 � 30 and αn � βn � cn � 3/4, n � 1, 2, 3, . . ..From Table 1,
we can see that all the iteration procedures are converging to
p∗ � 6. Clearly, our iteration process requires the least
number of iteration as compared to other iteration schemes.

In Figure 1, black curve represents our iteration process.
'e graphical view shows that our iteration process requires

less number of iterations as compared to the other iteration
processes. 'e number of iterations in which these processes
attain the fixed point is given in Table 2:

5. Some Convergence Results for Suzuki’s
Generalized Nonexpansive Mappings

'is section contains some weak and strong convergence
results for a sequence generated by S∗-iteration process for
Suzuki generalized nonexpansive mappings in the setting of
uniformly convex Banach spaces.
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Lemma 5. Suppose that E be a nonempty closed convex
subset of a Banach space X. Let F: E⟶ E be a Suzuki
generalized nonexpansive mapping with F(F)≠ϕ. For
u0 ∈ E, the sequence (un) generated by S∗-iteration process,
limn⟶∞‖un − p‖ exists for all p ∈ F(F).

Proof. Result follows from Proposition 1(i) and 'eorem
1. □

Lemma 6. Suppose that E be a nonempty closed convex
subset of a uniformly Banach space X. Let F: E⟶ E be a
Suzuki’s generalized nonexpansive mapping with F(F)≠ϕ.
For arbitrarily chosen u0 ∈ E, the sequence (un) is generated
by S∗-iteration process. 9en, F(F)≠ ϕ if and only if (un) is
bounded and limn⟶∞‖Fun − un‖ � 0.

Table 1: Comparison of the rate of convergence with various iteration schemes.

Step Picard Ishikawa Noor Agarwal Abbas 'akur K. Ullah S∗-iter.
1 30.00000000 30.00000000 30.00000000 30.00000000 30.00000000 30.00000000 30.00000000 30.00000000
2 26.15339366 25.01198240 23.48910332 24.05033082 22.61079008 21.30667585 17.14034293 7.939900241
3 22.41917610 20.25475590 17.46681907 18.43727194 15.82815627 13.58899597 7.920241534 6.000499545
4 18.83737965 15.85090878 12.32658573 13.39382036 10.25820641 8.112973955 6.038818684 6.000000071
5 15.46966242 12.01330515 8.727576617 9.372555587 7.001837925 6.225674626 6.000469229 6.000000000
6 12.41303724 9.068862033 6.958571160 6.993935718 6.119154210 6.015130221 6.000005614 6.000000000
7 9.816626625 7.282040026 6.310214626 6.186206786 6.011213258 6.000960494 6.000000067 6.000000000
8 7.875056741 6.466803146 6.097925567 6.028369366 6.001024303 6.000060749 6.000000001 6.000000000
9 6.718705828 6.160065238 6.030680843 6.004133882 6.000093304 6.000003841 6.000000000 6.000000000
10 6.218734240 6.053725040 6.009590308 6.000598188 6.000008497 6.000000242 6.000000000 6.000000000
11 6.058386534 6.017902837 6.002995608 6.000086472 6.000000774 6.000000016 6.000000000 6.000000000
12 6.014862308 6.005951431 6.000935492 6.000012498 6.000000071 6.000000001 6.000000000 6.000000000
13 6.003732823 6.001976848 6.000292122 6.000001806 6.000000005 6.000000000 6.000000000 6.000000000
14 6.00093429 6.000656462 6.000091217 6.000000261 6.000000001 6.000000000 6.000000000 6.000000000
15 6.000233641 6.000217976 6.000028483 6.000000037 6.000000000 6.000000000 6.000000000 6.000000000
16 6.000058415 6.000072376 6.000008894 6.000000005 6.000000000 6.000000000 6.000000000 6.000000000
17 6.000014603 6.000024032 6.000002778 6.000000001 6.000000000 6.000000000 6.000000000 6.000000000
18 6.000003651 6.000007979 6.000000866 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
19 6.000000912 6.000002649 6.000000270 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
20 6.000000227 6.000000880 6.000000084 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
21 6.000000057 6.000000293 6.000000026 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
22 6.000000014 6.000000097 6.000000008 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
23 6.000000003 6.000000032 6.000000003 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
24 6.000000001 6.000000010 6.000000001 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
25 6.000000000 6.000000003 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
26 6.000000000 6.000000001 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
27 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
28 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
29 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
30 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000 6.000000000
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Figure 1: Graphical representation of convergence of iterative
schemes.

Table 2: Number of iterations in which fixed point attains.

Iterative method Number of iterations
Picard 25
Ishikawa 27
Noor 25
Agarwal 18
Abbas 15
'akur 13
K. Ullah 9
S∗-iter. 5
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Proof. Suppose that F(F)≠ϕ and let p ∈ E. 'en, by
Lemma 5, limn⟶∞‖un − p‖ exists and (un) is bounded. Let

lim
n⟶∞

un − p
����

���� � r. (35)

From (26) and (37), we have

lim sup
n⟶∞

un − p
����

����≤ lim sup
n⟶∞

un − p
����

���� � r. (36)

By the Proposition 1(iii), we have

lim sup
n⟶∞

Fxn − p
����

����≤ lim sup
n⟶∞

un − p
����

���� � r, (37)

un+1 − p
����

���� � F 1 − αn( 􏼁vn + αnFvn( 􏼁 − p
����

����

≤ 1 − αn( 􏼁vn + αnFvn − p
����

����

≤ vn − p
����

����

� F 1 − βn( 􏼁wn + βnFwn( 􏼁 − p
����

����

≤ wn − p
����

����

� F 1 − cn( 􏼁xn + cnFxn( 􏼁 − p
����

����

≤ 1 − cn( 􏼁 un − p
����

���� + cn xn − p
����

����

� un − p
����

���� − cn un − p
����

���� + cn xn − p
����

����.

(38)

'is implies that

un+1 − p
����

���� − un − p
����

����

cn

≤ xn − p
����

���� − un − p
����

����􏽨 􏽩,

un+1 − p
����

���� − un − p
����

����≤
un+1 − p

����
���� − un − p

����
����

cn

≤ xn − p
����

���� − un − p
����

����􏽨 􏽩,

un+1 − p
����

����≤ xn − p
����

����,

(39)

r≤ lim inf
n⟶∞

xn − p
����

����, (40)

lim
n⟶∞

xn − p
����

���� � r,

lim
n⟶∞

1 − ζn( 􏼁un + ζnF un( 􏼁 − p
����

���� � r,

lim
n⟶∞

‖ 1 − ζn( 􏼁 un − p( 􏼁 + ζn F un( 􏼁 − p( 􏼁‖ � r.

(41)

From equations (26) and (37) and Lemma 3, we have

limn⟶∞ Fun − un

����
���� � 0. (42)

Conversely, assume that (un) is bounded and
limn⟶∞‖Fun − un‖ � 0. Suppose that p ∈ A(E, (un)).
Using Proposition 1(iii), we get

r Fp, un( 􏼁( 􏼁 � lim sup
n⟶∞

un − Fp
����

����

≤ lim sup
n⟶∞

3 Fun − un

����
���� + un − p

����
����􏽨 􏽩

≤ lim sup
n⟶∞

un − p
����

����

� r p, un( 􏼁( 􏼁.

(43)

'is shows that Fp ∈ A(E, (un). Since X is uniformly
convex,A(E, (un) is singleton. 'us, we haveFp � p, that
is, F(F)≠ ϕ. □

Theorem 4 (weak convergence theorem). Suppose thatE be
a nonempty closed convex subset of a uniformly Banach space
X with the Opial property. Let F: E⟶ E be Suzuki’s
generalized nonexpansive mapping. For arbitrarily chosen
u0 ∈ E, let the sequence (un) be generated by S∗-iteration
process with F(F)≠ ϕ.9en, (un) converges weakly to a fixed
point of F.

Proof. Since F(F)≠ ϕ, by Lemma 6, the sequence (un) is
bounded and limn⟶∞‖Fun − un‖ � 0. Also, as X is uni-
formly convex so X is reflexive, thus by Eberlin’s theorem,
there exists a subsequence of (un) say (uni

) which converges
weakly to some q1 ∈ X. Now, since E is closed and convex
so by Mazur’s theorem q1 ∈ E. Hence, by Lemma 1,
q1 ∈ F(F). We show that (un) converges weakly to q1. On
contrary, suppose that it is not true. 'en, there must exist a
subsequence of (un), say (unj

), such that (unj
) converges

weakly to q2 ∈ E with q1 ≠ q2. Using Lemma 1, we have
q2 ∈ F(F). Now, since limn⟶∞‖un − p‖ exists for all
p ∈ F(F). Using Lemma 6 and Opial property, we have

lim
n⟶∞

un − q1
����

���� � lim
i⟶∞

uni
− q1

�����

�����

< lim
i⟶∞

uni
− q2

�����

�����

� lim
n⟶∞

un − q2
����

����

� lim
j⟶∞

unj
− q2

�����

�����

< lim
j⟶∞

unj
− q1

�����

�����

� lim
n⟶∞

un − q1
����

����,

(44)

which is a contradiction; hence, q1 � q2.'is shows that (un)

converges weakly to a fixed point of F. □

Theorem 5 (strong convergence theorem). Suppose that E
be a nonempty closed convex subset of a uniformly Banach
space X. Let F: E⟶ E be a Suzuki’s generalized non-
expansive mapping. For arbitrarily chosen u0 ∈ E, let the
sequence (un) be generated by S∗-iteration process with
F(F)≠ϕ.9en, (un) converges strongly to a fixed point ofF.

Proof. Using Lemma 2, we get F(F)≠ ϕ and hence by
Lemma 6, we have limn⟶∞‖Fun − un‖ � 0. By the com-
pactness of E, there exists a subsequence of (un), say (uni

),
converging strongly to p for some p ∈ E. Now by using
Proposition 1(iii), we get

uni
− Fp

�����

�����≤ 3 Funi
− uni

�����

����� + uni
− p

�����

�����. (45)

Taking limit i⟶∞, we getFp � p, that is, p ∈ F(F).
By using Lemma 5, lim n⟶∞‖un − p‖ exists for all
p ∈ F(T); hence, un􏼈 􏼉 converges strongly to p. □
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Theorem 6. Suppose that E be a nonempty closed convex
subset of a uniformly Banach space X. Let F: E⟶ E be a
Suzuki’s generalized nonexpansive mapping. For arbitrarily
chosen u0 ∈ E, the sequence (un) be generated by S∗-iteration
process with F(F)≠ϕ. IfF satisfies condition (I), then (un)

converges strongly to a fixed point of F.

Proof. By Lemma 5, limn⟶∞‖un − p‖ exists for all
p ∈ F(F); hence, limn⟶∞d(un, F(F)) exists. Let
limn⟶∞‖un − p‖ � δ for some δ ≥ 0. Now if δ � 0, then
there is nothing to prove. Suppose δ > 0; from condition (I)

and the hypothesis, we have

f d un, F(F)( 􏼁( 􏼁≤ Fun − un

����
����. (46)

As F(F)≠ϕ, by Lemma 5, we have
limn⟶∞‖Fun − un‖ � 0. Hence, (46) implies that

lim
n⟶∞

f d un, F(F)( 􏼁( 􏼁 � 0. (47)

Since f is a nondecreasing function, by equation (47), we
get limn⟶∞(d(un, F(F)) � 0.'us, we have a subsequence
(uni

) of (un) and a sequence (yi) in F(F) such that

uni
− yi

�����

�����<
1
2i

, for all i ∈ N. (48)

From equation (48),

uni+1
− yi

�����

�����≤ uni
− yi

�����

�����<
1
2i

,

yi+1 − yi

����
����≤ yi+1 − ui+1

����
���� + ui+1 − yi

����
����

≤
1
2i+1 +

1
2i

<
1

2i− 1.

(49)

Letting i⟶∞, we get 1/2i−1⟶ 0. Hence, yi􏼈 􏼉 is a
Cauchy sequence in F(F), so it converges to p. As F(F) is
closed, p ∈ F(F) and then (uni

) converges strongly to p.
Since limn⟶∞‖un − p‖ exists, we have un⟶ p ∈ F(F).
'is completes the proof. □
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cicola matematică-Informatică, vol. XVIII, no. Nr. 1, pp. 7–14,
2002.

[26] V. Berinde, “Picard iteration converges faster than Mann
iteration for a class of quasicontractive operators,” Fixed Point
9eory and Appl.vol. 2004, p. 1, 2004.

Mathematical Problems in Engineering 9



Research Article
Simpson’s Integral Inequalities for Twice Differentiable
Convex Functions

Miguel Vivas-Cortez ,1 Thabet Abdeljawad ,2,3,4 Pshtiwan Othman Mohammed,5

and Yenny Rangel-Oliveros1

1Facultad de Ciencias Exactas y Naturales, Escuela de Ciencias Fisicas y Matematica,
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Integral inequality is an interesting mathematical model due to its wide and significant applications in mathematical analysis and
fractional calculus. In the present research article, we obtain new inequalities of Simpson’s integral type based on the φ-convex and
φ-quasiconvex functions in the second derivative sense. In the last sections, some applications on special functions are provided
and shown via two figures to demonstrate the explanation of the readers.

1. Introduction

Integral inequality is a modern model of approximation
theory that describes the growth rate of competing math-
ematical analysis. �is model is also used in various fields
such as ordinary differential equations [1–5] and fractional
calculus [6–17].

Among the several known inequalities, the most simple
is Simpson’s type, which has been successfully applied in
several models of ordinary differential equations [18–29]
and fractional differential equations [30–32]. Simpson’s
integral inequality is as follows: for any four times contin-
uously differentiable function F: [ξ1, ξ2]⟶ R on (ξ1, ξ2),
Simpson’s integral inequality is defined as follows:

1
3

F ξ1( 􏼁 + F ξ1( 􏼁

2
+ 2F

ξ1 + ξ2
2

􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

−
1

ξ2 − ξ1
􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

1
2880

F
(4)

�����

�����∞
ξ2 − ξ1( 􏼁

4
,

(1)

where ‖F
(4)

‖∞ � supx∈(ξ1 ,ξ2)|F
(4)

(x)|<∞.
If the function F is neither four times differentiable nor is

the fourth derivative F
(4) bounded on (ξ1, ξ2), then we

cannot apply the classical Simpson quadrature formula.
�e following literature results obtained by Alomari et al.

[18] and Sarikaya et al. [23] become a special case in our
findings in Sections 2 and 3.

Lemma 1 (see [18]). Let F: J⟶ R be twice differentiable
function on J with F″ ∈ L1[ξ1, ξ2], then we have

F ξ1( 􏼁 + F ξ2( 􏼁

2
−

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

�
ξ2 − ξ1( 􏼁

2

2
􏽚
1

0
t(1 − t)F″ tξ1 +(1 − t)ξ2( 􏼁dt.

(2)

Lemma 2 (see [23]). Let F: J⟶ R be twice differentiable
function on J such that F″ ∈ L1[ξ1, ξ2], where ξ1, ξ2 ∈ J
with ξ1 < ξ2, then we have
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1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

� ξ2 − ξ1( 􏼁
2

􏽚
1

0
Z(t)F″ tξ2 +(1 − t)ξ1( 􏼁dt,

(3)

where

Z(t) �

t

2
1
3

− t􏼒 􏼓; if t ∈ 0,
1
2

􏼔 􏼓,

(1 − t)
t

2
−
1
3

􏼒 􏼓; if t ∈
1
2
, 1􏼔 􏼕.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Through this paper, R represents the set of real numbers
andJ be an interval inR and φ: R × R⟶ R be a bifunction
apart from some special cases.

This paper deals with the notations of φ-convex and
φ-quasiconvex functions which were introduced by Gordji
et al. [33] as follows.

Definition 1. A function F: J⟶ R is called convex with
respect to φ (or briefly φ-convex), if

F tξ1 +(1 − t)ξ2( 􏼁≤F ξ2( 􏼁 + tφ F ξ1( 􏼁, F ξ2( 􏼁( 􏼁, (5)

for all ξ1, ξ2 ∈ J and t ∈ [0, 1]. Furthermore, F is called
φ-quasiconvex, if

F tξ1 +(1 − t)ξ2( 􏼁≤max F ξ2( 􏼁, F ξ2( 􏼁 + φ F ξ1( 􏼁, F ξ2( 􏼁( 􏼁􏼈 􏼉,

(6)

for all ξ1, ξ2 ∈ J and t ∈ [0, 1].

Remark 1. (i) It is easy to see the definition that every
φ-convex function is φ-quasiconvex

(ii) If we take φ(ξ1, ξ2) � ξ1 − ξ2 in Definition 1, then the
definitions of φ-convex and φ-quasiconvex are re-
duced to the definition of convex function and
quasiconvex function, respectively

Next, we will give examples for the above definitions.

Example 1. Let F(x) � x2, then F is convex and φ-convex
with φ(c1, c2) � 2c1 + c2; indeed,

F tξ1 +(1 − t)ξ2( 􏼁 � tξ1 +(1 − t)ξ2( 􏼁
2

≤ ξ22 + tξ21 + 2t(1 − t)ξ1ξ2

≤ ξ22 + tξ21 + t(1 − t) ξ21 + ξ22􏼐 􏼑

≤ ξ22 + t ξ21 + ξ21 + ξ22􏼐 􏼑

� F ξ2( 􏼁 + tφ F ξ1( 􏼁, F ξ2( 􏼁( 􏼁.

(7)

Example 2. Let F(x) � x3, then F is not convex but is
φ-convex with φ(c1, c2) � 3c2

2(c1 − c2) + 3c2(c1 − c2)
2+

(c1 − c2)
3; indeed,

F tξ1 +(1 − t)ξ2( 􏼁 � tξ1 +(1 − t)ξ2( 􏼁
3

� ξ2 + t ξ1 − ξ2( 􏼁( 􏼁
3

� ξ32 + 3ξ22t ξ1 − ξ2( 􏼁 + 3ξ2t
2 ξ1 − ξ2( 􏼁

2
+ t

3 ξ1 − ξ2( 􏼁
3

� F ξ2( 􏼁 + t 3ξ22 ξ1 − ξ2( 􏼁 + 3ξ2t ξ1 − ξ2( 􏼁
2

+ t
2 ξ1 − ξ2( 􏼁

3
􏽨 􏽩

≤F ξ2( 􏼁 + t 3ξ22 ξ1 − ξ2( 􏼁 + 3ξ2 ξ1 − ξ2( 􏼁
2

+ ξ1 − ξ2( 􏼁
3

􏽨 􏽩

� F ξ2( 􏼁 + tφ F ξ1( 􏼁, F ξ2( 􏼁( 􏼁.

(8)

Example 3. Let F: [ξ1, ξ2]⟶ R, 0< ξ1 < ξ2, with
F(x) � 1/x2. We observe that F is convex on [ξ1, ξ2] and
therefore φ-quasiconvex with φ(c1, c2) � c1 − c2.

Example 4. Let F: [ξ1, ξ2]⟶ R, 0< ξ1 < ξ2, with
F(x) � 2/x3. We observe that F is convex on [ξ1, ξ2] and
therefore φ-quasiconvex with φ(c1, c2) � c1 − c2.

Example 5. Let F: [ξ1, ξ2]⟶ R, 0< ξ1 < ξ2, with F(x) � 2.
We obviously see that F is φ-quasiconvex with
φ(c1, c2) � c1 − c2.

�e essential object of this study is to establish new
Simpson’s integral inequalities for the φ-convex and
φ-quasiconvex functions in the second derivative sense at
certain powers.

2. Simpson’s Inequality for φ-Convex

In this section, we give a new refinement of Simpson integral
inequality for twice differentiable functions.

Theorem 1. Let F: J⟶ R be a twice differentiable func-
tion on J such that F″ ∈ L1[ξ1, ξ2], where ξ1, ξ2 ∈ J with
ξ1 < ξ2. If |F″| is φ-convex on [ξ1, ξ2], then we have

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
ξ2 − ξ1( 􏼁

2

81
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
2
φ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼔 􏼕.

(9)
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Proof. Bymaking the use of Lemma 2 and the φ-convexity of
|F″|, we find that

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ2 − ξ1( 􏼁
2

􏽚
1

0
|k(t)| F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt

≤ ξ2 − ξ1( 􏼁
2

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + tφ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑dt

+ ξ2 − ξ1( 􏼁
2

􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + tφ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑dt

≔ q ξ2 − ξ1( 􏼁
2 ⊤1 + ⊤2( 􏼁,

(10)

where

⊤1 ≔ 􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + tφ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑dt

� 􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt + 􏽚

1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
tφ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑dt

� F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚

1
2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt + φ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 􏽚

1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
tdt

� F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
1/3

0

t

2
1
3

− t􏼒 􏼓dt − F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
1/2

1
3

t

2
1
3

− t􏼒 􏼓dt

+ φ F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 􏽚
1/3

0

t

2
1
3

− t􏼒 􏼓tdt − φ F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 􏽚
1/2

1/3

t

2
1
3

− t􏼒 􏼓tdt

�
1
162

F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
59

31104
φ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑,

⊤2 ≔ 􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + tφ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑dt

� 􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt + 􏽚

1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
tφ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑dt

� F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt + φ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 􏽚

1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
tdt

�
1
162

F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
133
31104

φ F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑.

(11)

A simple rearrangement gives us the proof. □
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Corollary 1. <eorem 1 with F(ξ1) � F((ξ1+ ξ2)/2) � F(ξ2)
gives the following new inequality:

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx − F

ξ1 + ξ2
2

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
ξ2 − ξ1( 􏼁

2

81
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
2
φ F″ ξ1( 􏼁|, |F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼔 􏼕.

(12)

Remark 2. Inequality (9) with φ(|F″(ξ1)|, |F″(ξ2)|) �

|F″(ξ2)| − |F″(ξ1)| becomes

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
ξ2 − ξ1( 􏼁

2

162
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩.

(13)

Moreover, inequality (12) with φ(|F″(ξ1)|, |F″(ξ2)|) �

|F″(ξ2)| − |F″(ξ1)| becomes

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx − F

ξ1 + ξ2
2

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
ξ2 − ξ1( 􏼁

2

162
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩.

(14)

�ese are both obtained by Sarikaya et al. [23] in �e-
orem 2.2 and Corollary 2.3, respectively.

Theorem 2. Let F: J⟶ R be a twice differentiable func-
tion on J such that F″ ∈ L1[ξ1, ξ2], where ξ1, ξ2 ∈ J with
ξ1 < ξ2. If |F″|q is φ-convex on [ξ1, ξ2] and q≥ 1, then we have

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ2 − ξ1( 􏼁
2 1
162

􏼒 􏼓
1− (1/q) 1

162
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏼒􏼚

+
59

31104
φ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏼓
1/q

+
1
162

F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
133
31104

φ F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏼒 􏼓

1
q

􏼩,

(15)

where 1/p + 1/q � 1.

Proof. Let q≥ 1, then by using Lemma 2, we have

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ2 − ξ1( 􏼁
2

􏽚
1

0
|k(t)| F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt

� ξ2 − ξ1( 􏼁
2

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt

+ ξ2 − ξ1( 􏼁
2

􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt.

(16)

By making the use of the Hölder’s inequality for the
above integrals, we have

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ2 − ξ1( 􏼁
2

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt􏼠 􏼡

1− 1/q

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdt􏼠 􏼡

1/q

+ ξ2 − ξ1( 􏼁
2

􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt􏼠 􏼡

1− 1/q

􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdt􏼠 􏼡

1/q

.

(17)

By φ-convexity of |F″|q for the last two integrals, we have
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􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdt

≤ 􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ tφ F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽨 􏽩dt

� F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt + φ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
tdt

�
1
162

F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
59

31104
φ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑,

(18)

􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdt

≤ 􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+ tφ F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽨 􏽩dt

� F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏽚
1

1
2

(1 − t)
t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt + φ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑 􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
tdt

�
1
162

F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
133
31104

φ F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑.

(19)

By substituting (18) and (19) into (17), we have

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ2 − ξ1( 􏼁
2

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt􏼠 􏼡

1− 1/q 1
162

F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
59

31104
φ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏼒 􏼓
1/q

+ ξ2 − ξ1( 􏼁
2

􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt􏼠 􏼡

1− 1/q 1
162

F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
133
31104

φ F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏼒 􏼓
1/q

� ξ2 − ξ1( 􏼁
2 1
162

􏼒 􏼓
1− 1/q 1

162
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+
59

31104
φ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏼒 􏼓
1/q

􏼢

+
1
162

F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
133
31104

φ F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏼒 􏼓
1/q

􏼣,

(20)

where we used the identity

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt � 􏽚

1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt �

1
162

. (21)

�us, we are done. □

Corollary 2. <eorem 2 with F(ξ1) � F((ξ1 + ξ2)/2) � F(ξ2)
gives the following new inequality:
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1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx − F

ξ1 + ξ2
2

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ2 − ξ1( 􏼁
2 1
162

􏼒 􏼓
1− 1/q 1

162
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏼒􏼔

+
59

31104
φ F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏼓
1/q

+
1
162

F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
133
31104

φ F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏼒 􏼓
1/q

􏼣.

(22)

Remark 3. Inequality (15) with φ(|F″(ξ1)|
q, |F″(ξ2)|

q) �

|F″(ξ2)|
q − |F″(ξ1)|

q becomes

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ2 − ξ1( 􏼁
2 1
162

􏼒 􏼓
1− 1/q 133

31104
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+
59

31104
F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏼒 􏼓
1/q

􏼨

+
59

31104
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+
133
31104

F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼒 􏼓
1/q

􏼩.

(23)

Moreover, inequality (22) with φ(|F″(ξ1)|
q, |F″(ξ2)|

q) �

|F″(ξ2)|
q − |F″(ξ1)|

q becomes

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx − F

ξ1 + ξ2
2

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ2 − ξ1( 􏼁
2 1
162

􏼒 􏼓
1− 1/q 133

31104
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+
59

31104
F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

􏼒 􏼓
1/q

􏼨

+
59

31104
F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q

+
133
31104

F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼒 􏼓
1/q

􏼩.

(24)

�ese are both obtained by Sarikaya et al. [23] in �e-
orem 2.5 and Corollary 2.6, respectively.

Remark 4. �eorem 2 and Corollary 2 with q � 1 become
�eorem 1 and Corollary 1, respectively.

3. Simpson’s Inequality for φ-Quasiconvex

Theorem 3. Let F: J⟶ R be a twice differentiable func-
tion on J provided F″ ∈ L1[ξ1, ξ2], where ξ1, ξ2 ∈ J with
ξ1 < ξ2. If |F″| is φ-quasiconvex on [ξ1, ξ2], then we have
1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
ξ2 − ξ1( 􏼁

2

81
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + φ F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯.

(25)

Proof. By making use of φ-quasiconvexity of |F″| and
Lemma 2, we get

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ2 − ξ1( 􏼁
2

􏽚
1

0
|k(t)| F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt

≤ ξ2 − ξ1( 􏼁
2

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + φ F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯dt

+ ξ2 − ξ1( 􏼁
2

􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + φ F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯dt

� ξ2 − ξ1( 􏼁
2 ⊤1 + ⊤2( 􏼁,

(26)
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where

⊤1 � 􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + φ F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯dt

� max F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯 􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt

� max F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯 􏽚
1/3

0

t

2
1
3

− t􏼒 􏼓dt − 􏽚
1/2

1/3

t

2
1
3

− t􏼒 􏼓dt􏼢 􏼣

�
1
162

max F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯,

⊤2 � 􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + φ F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯dt

� max F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯 􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt

�
1
162

max F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯.

(27)

A simple rearrangement completes the proof. □ Corollary 3. <eorem 3 with F(ξ1) � F((ξ1 + ξ2)/2) � F(ξ2)
becomes

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx − F

ξ1 + ξ2
2

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

ξ2 − ξ1( 􏼁
2

81
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + φ F″ ξ2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯. (28)

Theorem 4. Let F: J⟶ R be a twice differentiable func-
tion on J provided F″ ∈ L1[ξ1, ξ2], where ξ1, ξ2 ∈ J with

ξ1 < ξ2. If |F″|q is φ-quasiconvex on [ξ1, ξ2] and q≥ 1, then we
have

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
ξ2 − ξ1( 􏼁

2

81
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯􏼐 􏼑
1/q

,

(29)

where 1/p + 1/q � 1. Proof. Let q≥ 1, then by using Lemma 2, we have

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ2 − ξ1( 􏼁
2

􏽚
1

0
|k(t)| F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt

� ξ2 − ξ1( 􏼁
2

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt

+ ξ2 − ξ1( 􏼁
2

􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt.

(30)
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By making the use of the Hölder’s inequality for the
above integrals, we have

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ2 − ξ1( 􏼁
2

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt􏼠 􏼡

1− (1/q)

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdt􏼠 􏼡

1/q

+ ξ2 − ξ1( 􏼁
2

􏽚
1

1
2

(1 − t)
t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt􏼠 􏼡

1− (1/q)

􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdt􏼠 􏼡

1/q

.

(31)

By φ-quasiconvexity of |F″|q for the last two integrals, we
have

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdt

≤ 􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯dt

� max F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯 􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt

�
1
162

max F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯

(32)

􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
F″ tξ2 +(1 − t)ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdt

≤ 􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯dt

� max F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯 􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt

�
1
162

max F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯.

(33)

By substituting (32) and (33) into (31), we have

1
6

F ξ1( 􏼁 + 4F
ξ1 + ξ2

2
􏼠 􏼡 + F ξ2( 􏼁􏼢 􏼣 −

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ξ2 − ξ1( 􏼁
2

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt􏼠 􏼡

1− (1/q) 1
162

max F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯􏼒 􏼓
1/q

+ ξ2 − ξ1( 􏼁
2

􏽚
1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt􏼠 􏼡

1− (1/q) 1
162

max F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯􏼒 􏼓
1/q

� 2 ξ2 − ξ1( 􏼁
2 1
162

􏼒 􏼓
1− (1/q) 1

162
􏼒 􏼓

1/q
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯􏼐 􏼑
1/q

�
ξ2 − ξ1( 􏼁

2

81
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯􏼐 􏼑
1/q

.

(34)

8 Mathematical Problems in Engineering



where we used the following identity

􏽚
1/2

0

t

2
1
3

− t􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt � 􏽚

1

1/2
(1 − t)

t

2
−
1
3

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dt �

1
162

. (35)

�us we are done. □

Corollary 4. <eorem 4 with F(ξ1) � F((ξ1 + ξ2)/2) � F(ξ2)
becomes

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx − F

ξ1 + ξ2
2

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
ξ2 − ξ1( 􏼁

2

81
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯􏼐 􏼑
1/q

.

(36)

Remark 5. �eorem 4 and Corollary 4 with q � 1 become
�eorem 3 and Corollary 3, respectively.

Corollary 5. <eorem 4 with F(ξ1) � F((ξ1 + ξ2)/2) � F(ξ2)
becomes

1
ξ2 − ξ1

􏽚
ξ2

ξ1
F(x)dx − F

ξ1 + ξ2
2

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
ξ2 − ξ1( 􏼁

2

81
max F″ ξ1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ φ F″ ξ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
, F″ ξ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑􏽮 􏽯􏼐 􏼑
1/2

.

(37)

4. Applications

Some applications for our findings are presented.

4.1. Applications to Special Means. �e special means are
itemized as follows:

(i) �e arithmetic mean:

A � A ξ1, ξ2( 􏼁 �
ξ1 + ξ2

2
, ξ1, ξ2 ≥ 0. (38)

(ii) �e harmonic mean:

H � H ξ1, ξ2( 􏼁 �
2ξ1ξ2
ξ1 + ξ2

, ξ1, ξ2 > 0. (39)

(iii) �e logarithmic mean:

L � L ξ1, ξ2( 􏼁 �

ξ2 − ξ1
ln ξ2 − ln ξ1

; if ξ1 ≠ ξ2,

ξ1; if ξ1 � ξ2,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(40)

for ξ1, ξ2 > 0.
(iv) �e p-logarithmic mean:

Lp � Lp ξ1, ξ2( 􏼁 �

ξp+1
2 − ξp+1

1
(p+1) ξ2− ξ1( )

􏼔 􏼕
1/p

; if ξ1 ≠ ξ2,

ξ1; if ξ1 � ξ2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(41)

for p ∈ R∖ − 1, 0{ }; ξ1, ξ2 > 0.

We know that Lp is a monotonic nondecreasing
function over p ∈ R withL− 1 � L. In particular, we can say
that H≤L≤A.

Now, using our findings in Section 2, we conclude the
following new inequalities.

Proposition 1. Let ξ1, ξ2 ∈ R with 0< ξ1 < ξ2. <en, we have

1
3
A ξ41, ξ

4
2􏼐 􏼑 +

2
3
A

4 ξ1, ξ2( 􏼁 − L
5
5 ξ1, ξ2( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

ξ2 − ξ1( 􏼁
2

27
8ξ21 + ξ22􏽨 􏽩.

(42)

Proof. �e assertion follows from �eorem 1 with F(x) �

x4/12, x ∈ [ξ1, ξ2] and a simple computation, where |F″| is
φ-convex function with φ(x, y) � 2x + y (see Example
1). □

Proposition 2. Let ξ1, ξ2 ∈ R, 0< ξ1 < ξ2. <en, we have

1
3
A ξ51, ξ

5
2􏼐 􏼑 +

2
3
A

5 ξ1, ξ2( 􏼁 − L
6
6 ξ1, ξ2( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
10 ξ2 − ξ1( 􏼁

2

81
2ξ31 + ξ91 − ξ92􏽨 􏽩.

(43)

Proof. �e assertion follows from �eorem 1 and a simple
computation applied to F(x) � x5/20, x ∈ [ξ1, ξ2], where
|F″| is φ-convex function with φ(x, y) � 3y2(x − y)+

3y(x − y)2 + (x − y)3 (see Example 2).
�e following proposition is a particular case of Cor-

ollary 11 in [34] when λ � 1/3 (see Remark 12 in [34]). □
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Proposition 3. Let ξ1, ξ2 ∈ R, 0< ξ1 < ξ2. <en, we have

1
3
A ξ21, ξ

2
2􏼐 􏼑 +

2
3
A

2 ξ1, ξ2( 􏼁 − L
3
3 ξ1, ξ2( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2 ξ2 − ξ1( 􏼁

2

81
.

(44)

Proof. �e assertion follows from �eorem 3 and a simple
computation applied to F(x) � x2, x ∈ [ξ1, ξ2], where
|F″(x)| � 2 is φ-quasiconvex function with φ(x, y) � x − y

(see Example 5). □

Proposition 4. Let ξ1, ξ2 ∈ R, 0< ξ1 < ξ2. <en, for all q> 1,
we have

1
3
H

− 1 ξ1, ξ2( 􏼁 +
2
3
A

− 1 ξ1, ξ2( 􏼁 − L
− 1 ξ1, ξ2( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
ξ2 − ξ1( 􏼁

2

81
max

2q

ξ3q
1

,
2q

ξ3q
2

⎧⎨

⎩

⎫⎬

⎭.

(45)

Proof. �e assertion follows from �eorem 4 and a simple
computation applied to F(x) � 1/x, x ∈ [ξ1, ξ2], where
|F″(x)| � |2/x3| is φ-quasiconvex function with φ(x, y) �

x − y (see Example 4). □

4.2. Applications to Simpson’s Formula. Let P be a partition
of the interval [ξ1, ξ2]; that is P: ξ1 � s0 < s1 < · · · < sn− 1
< sn � ξ2; hi � (si+1 − si)/2 and consider Simpson’s formula:

S(F,P) � 􏽘

n− 1

i�1

F si( 􏼁 + 4F si + hi( 􏼁 + F si+1( 􏼁

6
si+1 − si( 􏼁.

(46)

We know that if F: [ξ1, ξ2]⟶ R is differentiable such
that F

(q)
(x) exists on (ξ1, ξ2) and K � maxx∈[ξ1 ,ξ2]|F

(q)
(x)|

<∞. �en, we have

I � 􏽚
ξ2

ξ1
F(s)ds � S(F,P) + Es(F,P), (47)

where the approximation error Es(F, L) satisfies

Es(F, L)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
K

90
􏽘

n− 1

i�0
si+1 − si( 􏼁

5
. (48)

It is clear that if the function F is not four times dif-
ferentiable or F

(4) is not bounded on (ξ1, ξ2), then (47)
cannot be applied.

Theorem 5. Let F: J⊆ [0,∞)⟶ R be a twice differen-
tiable function on J such that F″ ∈ L1[ξ1, ξ2], where
ξ1, ξ2 ∈ J with ξ1 < ξ2. If |F″| is φ-convex on [ξ1, ξ2], then for
every division P of [ξ1, ξ2] we have

Es(F,P)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
81

􏽘

n− 1

i�0
si+1 − si( 􏼁

3
F″ si( 􏼁 +

1
2
φ F″ si( 􏼁, F″ si+1( 􏼁( 􏼁􏼔 􏼕.

(49)

Proof. By applying �eorem 1 on the subintervals
[si, si+1], (i � 0, 1, 2, . . . , n − 1) of the division P to get

si+1 − si( 􏼁

6
F si( 􏼁 + 4F

si+1 − si

2
􏼒 􏼓 + F si+1( 􏼁􏼔 􏼕 − 􏽚

si+1

si

F(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
si+1 − si( 􏼁

3

6
F″ si( 􏼁 +

1
2
φ F″ si( 􏼁, F″ si+1( 􏼁( 􏼁􏼚 􏼛.

(50)

By summing over i from 0 to n − 1 and taking into
account that |F″| is φ-convex to get

S(F,P) − 􏽚
ξ2

ξ1
F(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽘
n− 1

i�0

si+1 − si( 􏼁
3

81
F″ si( 􏼁 +

1
2
φ F″ si( 􏼁, F″ si+1( 􏼁( 􏼁􏼔 􏼕,

(51)

which completes our proof. □

Corollary 6. <eorem 5 with φ(x, y) � y − x becomes

Es(F,P)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
162

􏽘

n− 1

i�0
si+1 − si( 􏼁

3
F″ si( 􏼁 + F″ si+1( 􏼁􏼂 􏼃. (52)

Theorem 6. Let F: J⊆ [0,∞)⟶ R be a twice differen-
tiable function on J such that F″ ∈ L1[ξ1, ξ2], where
ξ1, ξ2 ∈ J with ξ1 < ξ2. If |F″| is φ-quasiconvex on [ξ1, ξ2],
then for every division P of [ξ1, ξ2] we have

S(F,P) − 􏽚
ξ2

ξ1
F(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
1
81

􏽘

n− 1

i�0
si+1 − si( 􏼁

3 max F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + φ F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ si+1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯. (53)

Proof. By applying�eorem 3 and by the same method used
for proof of the previous theorem, we can produce the
desired result. □

Proposition 5. Let F: J⊆ [0,∞)⟶ R be a twice differ-
entiable function on J such that F″ ∈ L1[ξ1, ξ2], where

ξ1, ξ2 ∈ J with ξ1 < ξ2. If |F″|qq≥ 1 is φ-convex on [ξ1, ξ2],
then we have

Es(F,P)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
162

􏼒 􏼓
1− (1/q)

􏽘

n− 1

i�0
si+1 − si( 􏼁

3
K

q
φ F″ si( 􏼁, F″ si+1( 􏼁( 􏼁􏽨 􏽩,

(54)
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where

K
q
φ F″ si( 􏼁, F″ si+1( 􏼁( 􏼁 �

1
162

F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
59

31104
φ F″ si( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ si+1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏼒 􏼓
1/q

+
1
162

F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
133
31104

φ F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ si+1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏼒 􏼓
1/q

.

(55)

Proof. �e proof follows from �eorem 2 directly. □

Proposition 6. Let F: J⊆ [0,∞)⟶ R be a twice differ-
entiable function on J such that F″ ∈ L1[ξ1, ξ2], where

ξ1, ξ2 ∈ J with ξ1 < ξ2. If |F″|qq≥ 1 is φ-quasiconvex on
[ξ1, ξ2], then we have

Es(F,P)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
81

􏽘

n− 1

i�0
si+1 − si( 􏼁

3 max F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+ φ F″ si+1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏽮 􏽯. (56)

Proof. �e proof follows from �eorem 4 directly. □

4.3. Applications to the Midpoint Formula. Let P be a
partition as before. Here we consider the midpoint formula:

M(F,P) � 􏽘
n− 1

i�0
si+1 − si( 􏼁F

si + si+1

2
􏼒 􏼓. (57)

Suppose that the function F: [ξ1, ξ2]⟶ R is differen-
tiable with F″(x) existing on (ξ1, ξ2) and
K � supx∈(ξ1 ,ξ2)|F″(x)|<∞, and then, we have

I � 􏽚
ξ2

ξ1
F(s)ds � M(F,P) + EM(F,P), (58)

where the approximation error EM(F,P) satisfies

EM(F,P)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
K

24
􏽘

n− 1

i�0
si+1 − si( 􏼁

3
. (59)

Proposition 7. Let F: J⟶ R be a twice differentiable
function on J, ξ1, ξ2 ∈ J with ξ1 < ξ2. If |F″| is φ-convex on
[ξ1, ξ2], then for any division P of [ξ1, ξ2], we have

EM(F,P)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
1
81

􏽘

n− 1

i�0
si+1 − si( 􏼁

3
F″ si( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
2
φ F″ si( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ si+1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼔 􏼕.

(60)

Proof. By applying Corollary 1 on the subintervals
[si, si+1], (i � 0, 1, . . . , n − 1) of the division P, to get

si+1 − si( 􏼁F
si+1 + si

2
􏼒 􏼓 − 􏽚

si+1

si

F(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
si+1 − si( 􏼁

3

81
F″ si( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
2
φ F″ si( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ si+1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼔 􏼕.

(61)

By summing over i from 0 to n − 1 to get

EM(F,P)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
1
81

􏽘

n− 1

i�0
si+1 − si( 􏼁

3
F″ si( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
2
φ F″ si( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F″ si+1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼔 􏼕,

(62)

which completes our proof. □

Proposition 8. Let F: J⟶ R be a twice differentiable
function on J, ξ1, ξ2 ∈ J with ξ1 < ξ2. If |F″|q is φ-convex on
[ξ1, ξ2] and q≥ 1, then for any divisionP of [ξ1, ξ2], we have

EM(F,P)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
1
162

􏼒 􏼓
1− (1/q)

􏽘

n− 1

i�0
si+1 − si( 􏼁

3
K

q
φ F″ si( 􏼁, F″ si+1( 􏼁( 􏼁􏽨 􏽩,

(63)

where

K
q
φ F″ si( 􏼁, F″ si+1( 􏼁( 􏼁

�
1
162

F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
59

31104
φ F″ si( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q
, F″ si+1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏼒 􏼓
1/q

+
1
162

F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

+
133
31104

φ F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q
, F″ si+1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q

􏼐 􏼑􏼒 􏼓
1/q

.

(64)
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Proof. By applying Corollary 2 on the subintervals
[si, si+1], (i � 0, 1, . . . , n − 1) of the division P to get

si+1 − si( 􏼁F
si+1 + si

2
􏼒 􏼓 − 􏽚

si+1

si

F(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1
162

􏼒 􏼓
1− (1/q)

si+1 − si( 􏼁
3

K
q
φ F″ si( 􏼁, F″ si+1( 􏼁( 􏼁􏽨 􏽩,

(65)

where

K
q
φ F″ si( 􏼁, F″ si+1( 􏼁( 􏼁
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By summing over i from 0 to n − 1 to get
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which completes our proof. □

Proposition 9. Let F: J⟶ R be a twice differentiable
function onJ, ξ1, ξ2 ∈ Jwith ξ1 < ξ2. If |F″| is φ-quasiconvex
on [ξ1, ξ2], then for any division P of [ξ1, ξ2], we have

EM(F,P)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
81

􏽘

n− 1

i�0
si+1 − si( 􏼁

3 max F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + φ F″ si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F″ si+1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯. (68)

Proof. By applying Corollary 3 on the subintervals
[si, si+1], (i � 0, 1, . . . , n − 1) of the division P to get
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By summing over i from 0 to n − 1 to get
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which completes our proof. □

Proposition 10. Let F: J⟶ R be a twice differentiable
function on J, ξ1, ξ2 ∈ J with ξ1 < ξ2. If |F″|q is

φ-quasiconvex on [ξ1, ξ2] and q≥ 1, then in (30), for every
division P of [ξ1, ξ2], we have
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Proof. By applying Corollary 4 on the subintervals
[si, si+1], (i � 0, 1, . . . , n − 1) of the division P, we get
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By summing over i from 0 to n − 1 to get
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which rearranges to the proof. □

5. Illustrative Plots

Finally, we present two three-dimensional plots to dem-
onstrate the validity of the inequalities (42) and (44) in the
case of φ-convex and φ-quasiconvex functions, respectively.

From inequality (42), we can define
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A x
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, y
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5
5(x, y)

V(x, y) ≔ q
(y − x)2
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2
+ y

2
􏽨 􏽩.

(74)

�us, Figure 1 represents the plot of inequality (42) and
V(x, y) − v(x, y).

From inequality (44), we can define

w(x, y) �
1
3
A x

2
, y

2
􏼐 􏼑 +

2
3
A

2
(x, y) − L

3
3(x, y)
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2(y − x)2

81
.

(75)

�us, Figure 2 represents the plot of inequality (44) and
W(x, y) − w(x, y).

6. Conclusion

In this study, we have considered Simpson’s type integral
inequalities for the φ-convex and φ-quasiconvex functions
in the second derivative sense. Some special cases of our
findings are investigated to show the powerfulness of our
results. Also, the proposed inequalities can be applied to
other mathematical and statistical models, as we have shown
in Section 4.
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Figure 1: Plot illustrations for inequality (42). (a) For v (x; y) and V (x; y). (b) For V (x; y) − v (x; y).

10
0

–10
–20
–30
–40
–50

2

1.5
y

1 1
1.2 1.4

x
1.6 1.8 2

w (x, y)
w (x, y)

(a)

50
40
30
20
10

0
2

1.5
y

1 1 1.2 1.4 1.6 1.8 2

x

(b)

Figure 2: Plot illustrations for inequality (44). (a) For w (x; y) and W (x; y). (b) For W(x, y) − w(x, y).
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[24] M. J. Vivas, “Fèjer type inequalities for (s, m)-convex func-
tions in second sense,” Applied Mathematics & Information
Sciences, vol. 10, no. 5, pp. 1689–1696, 2016.
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*e purpose of this study was to explore the influencing factors of users using Nike +Run Club App by*eory of Reasoned Action
(TRA) as the theoretical basis and add the perceived playfulness into the research framework. *is study took the users of the
Nike +Run Club App as the research subject and distributed 360 questionnaires by snowballing sampling, a total of 351 valid
questionnaires. All data were analyzed by descriptive statistics, confirmatory factor analysis, and structural equation models.
Overall, the results reveal that extending TRA could be a well-explained users’ behavior in the mobile application.*e study found
that the less the efforts spent in learning, the more positive the influence on attitude, thus affecting users’ behavior. *erefore, this
study proposed the following suggestions: People are pursuing a clearer and simple interactive function, a simplistic design; or
adding instructions next to the new features will make the Nike +Run Club Appmore perfect. Emphasize the user’s entertainment
needs, develop interesting tasks, or games to make users feel interesting, and then be willing to continue to use the Nike +Run
Club App.

1. Introduction

People in Taiwan use a mobile phone rather than a desktop
or tablet. From the above information, we can know that,
in Taiwan, the popularity of mobile devices is high, and it
can be even said that they are a necessity of life. People
have become accustomed to using mobile devices to do
online work. *e percentage of Taiwanese people using
smartphones is increasing year by year; about 80% of users
will carry their mobile phones with them. It can be seen
that smartphones have become more and more relevant to
people’s lives. Smartphones have a rich user interface,
functions, and complex operating platforms, and a variety
of apps are available to users. With the popularity of
smartphones and the maturity of mobile networks, peo-
ple’s lives are gradually changing, becoming more
convenient.

Nowadays, people’s awareness of health is improving. For
example, running is the innate instinct of people, which is a
leisure sport that is easy to engage where people are less
burdened [1]. Chu and Cho pointed out that jogging is an
economical and efficient sport that is not limited by time, space,
and age [2]. Chen also believes that jogging has health benefits
for people of all ages, and regular exercise promotes the quality
of life and health of people [3]. In addition, the National Sports
Awareness Survey found that the most popular sports in
Taiwan were “jogging, brisk walking, and walking,” accounting
for 51.7% [4]. Obviously, jogging has gradually become the
mainstream of sports and leisure, and it is not limited by time
and space, making it the first choice for sports and leisure.

Along with the emergence of smartphones, many health
managements related to mobile applications have been
developed through mobile smart devices to download
mobile applications. Sports help athletes track or record
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their individual sports status and promote the spirit of
national sports for health or fitness purposes. App software
companies also offer much different software for sports-
loving users. *e sports app is simple and easy to carry, and
most of the sports apps have a wide range of functions and
popular among sports and fitness enthusiasts.*e sports app
not only connects people and people, but also incorporates
the concepts of smart health, medical care, and sports. It is
tailor-made and records themost appropriate exercise habits
and links the community to motivate each other and
transform the movement into action community activities.
According to foreign media reports, in recent years, the
number of sports and fitness apps is growing at a rate of
150% per year.*is showed that the population usingmobile
apps is growing and that sports apps are becoming more
popular.

Since the mobile app is a medium for users to com-
municate with smartphone devices, it also drives the de-
velopment of various types of apps, which not only creates a
huge market for apps, but also enriches the additional
functions of mobile devices. Many companies have also
joined the ranks of creating exclusive brand apps, trying to
open up more possibilities for the overall operation of the
company through marketing. Based on this, Nike has cre-
ated more links with consumers in the app market and has
developed several apps related to its brand, which is designed
for road runners. For example, Nike +Run Club App pro-
vides runners with calorie calculations, mileage, time,
community links, music, GPS positioning, and more. *e
number of apps in the app stores exceeded 1.5 million in
2015 [5].

Sports economics has been rising rapidly globally; en-
terprises integrate technology to make playing sports
smarter as sports applications became popular in lifestyle.
Sports applications are built for people to stay exercising, but
nowadays with the multiple functions of the applications, Tu
et al. found that making apps fun and interesting could help
consumers sustain their effort in physical activity [6].
However, there are a lot of apps on the market, and how to
be popular among users is an important issue. Although
there are several apps in themobile app store, the Nike +Run
Club, which is the most popular among runners, is quite in
line with the needs of runners, including friends cheering,
self-selected songs, and sports star voice response. Being
designated, fun, and easy to use made Nike +Run Club
become the preferred app for many runners. It can be seen
that Nike + Run Club has a large number of users; with the
accelerated of sport application, it has become the trend for
global, and it can be seen that it is necessary to understand
the adoption for sport application. *erefore, this study uses
the Nike + Run Club App as the research topic to explore the
influencing factors affecting users’ use of the Nike +Run
Club App and further analyze users’ willingness to continue
using the app.

How to effectively predict or explain whether users
accept information technology is a topic of concern for
enterprises and organizations. It is also one of the most
mature areas of information management development
today [7]. *eory of Reasoned Action (TRA) is a widely

used model in the field of social psychology. *e advantage
is that the factors affecting action need to be determined by
affecting behavioral attitudes, subjective norms, or both.
TRA has been proven to be effective in predicting and
interpreting practical actions in many fields, and it has been
supported by many preliminary evaluation studies.
*erefore, this study uses TRA as the theoretical basis to
explore the behavioral intentions of Nike + Run Club App
users.

With the advancement of science and technology,
people’s lives have begun to be closely related to these
technological products. *e demand for these technology
products has gradually increased, and products that satisfy
the user’s senses and pleasures will attract consumers [8]. Lin
et al. mentioned that consumers are willing to pay more
attention to the function of technology products and expect
products to bring out excellent experience and good quality
[9]. *e Nike +Run Club App is an interesting application.
In the Nike + Run Club App, you can record your running
time and mileage, and the data can know the pace of each
minute. Besides that, you can check out friends and relatives’
records to stimulate the user’s active mentality and have fun
in the process. In recent years, the rapid development of
technology has made the “fun” element gradually attract the
attention of the design field. Lin pointed out that pleasure
will enhance the user’s intention of IT products [10]. It can
be seen that the making the app interesting has also become
a new direction in mobile application design. *erefore, this
study incorporates perceived playfulness into the factors of
attitude influence to understand the behavior intentions of
Nike +Run Club App users.

To explore the behavior intention of the Nike +Run Club
App, the purpose of this study is summarized as follows: 1.
Exploring the influence of perceived usefulness, perceived
ease of use, and perceived playfulness on attitude. 2. Ex-
ploring the influence of Internet word-of-mouth and in-
terpersonal influence on subjective norms. 3. Exploring the
influence of attitude and subjective norms on behavioral
intentions. Finally, the results of the research can be pro-
vided as a reference for the relevant mobile application
developers and mobile applications and can also be used as a
reference for future research.

TRA was proposed by Flanders et al. in 1975. TRA
believes that the individual’s behavioral intentions will be
influenced by the attitude of the individual and subjective
normative, and the behavior intention further influences the
specific behavior being manifested. In other words, TRA
assumes that “behavior occurs based on the control of the
individual’s will” [11]. If a person thinks that this behavior
should occur, this behavior will occur, mainly used to un-
derstand and predict personal behavior. Faith represents a
person’s will to control their behavior. *e behavior is
generated by a person’s belief in logical thinking, after
choosing the right or not, or other decisions to take. TRA
assumption is not affected by the external environment; that
is, the idea of support can represent a person’s behavior.

Taylor and Todd pointed out that users’ attitudes toward
using information technology (IT) will also be affected by
perceived usefulness and perceived ease of use [12]. When
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the user perceives that the system is useful, the attitude
toward the system will be more positive. In other words,
when users feel that the function of using this innovative
technology will improve the efficiency of learning or work
and they need to spend less effort in learning, it will produce
positive reviews. Flanders et al. argue that attitude is the
result of an individual’s past learning experience, producing
a preference or aversion to the consistency of an object. *e
attitude is also an individual’s overall evaluation of a par-
ticular person, thing, or idea [11]. Davis defines the attitude
of use as an individual’s positive or negative perception of
the technology. *is study divides the factors affecting at-
titude belief into perceived usefulness, perceived ease of use,
and perceived playfulness [13].

Perceived usefulness and perceived ease of use are the
two main beliefs in technology acceptance model (TAM). In
1986, Davis developed the TAM behavioral model based on
TRA. It is designed for users to accept new information
systems. TAM’s purpose is to find an effective behavioral
model to explain the behavior of users in computer tech-
nology to accept new information systems and to analyze the
factors that affect user acceptance. TAM provides a theo-
retical basis for understanding the impact of external factors
on users’ beliefs, attitudes, and intentions, thus affecting the
use of technology, and can be widely used to explain or
predict the influencing factors of IT use.

*e TAM uses perceived usefulness and perceived ease
of use as independent variables, and attitudes, behavioral
intentions, and usage behaviors are dependent variables.
Advocating usefulness and ease of use can affect the attitude
of using technology, which in turn affects specific behavioral
performance. It also advocates that people’s use of infor-
mation technology is affected by their behavioral intentions.

Davis et al. pointed out that when the user perception
system is easy to use, it will encourage users to domore work
and improve job performance. Potential users subjectively
believe that using a particular information system will in-
crease their job performance or the likelihood of learning
performance [14]. Davis pointed out the extent to which
potential users subjectively believe that the operation of a
particular information system technology is easy to use [13].
While the mind of the user causes a burden, it will produce
negative emotions and then exclude the use. *at is, when
the user perceives the operation of the information system
function of the innovative smartphone, the less the effort
needed to be spent in learning, the more positive the attitude
of using the system, and the perceived ease of use will also
positively affect the perceived usefulness.

Perceived playfulness is defined as the degree to which a
person feels euphoric when participating in an activity or
adopting a system [15]. Moon and Kim applied the TAM to
the World Wide Web study, citing research by Lieberman
and Barnett to develop the third variable “perceived play-
fulness” [16–18].

Playfulness was first proposed by Lieberman, and then
Barnett studied human behavior and made some observa-
tions about the meaning of playfulness: 1. He focused on the
interesting features (trait of playfulness), which regards
interest as a feature of motivation, mainly referred to the

characteristics of individuals that are more stable and do not
change with the situation. 2. He considered playfulness to be
caused by the interaction between the individual and the
situation. It is mainly that the individual is affected by things
in the scriptures and will be affected by time, by context
factors, and by interaction [15, 18].

According to Csikszentmihalyi, if a person feels pleasant
when interacting with the environment, this feeling will
generate perceived playfulness, and therefore people will
have a positive attitude toward the environment [19]. Lu and
Ma also pointed out that the main reason why the product
found that it can trigger the user’s “pleasure” feeling is that
the product can trigger the user’s “emotional” experience,
and the area is no longer limited to the “function” of the
product itself [8]. Lin et al. pointed out that, by enhancing
the happy atmosphere, users can get a positive evaluation
and thus improve their behavioral intentions [20].

According to Flanders et al., TRA refers to the social
pressure exerted by others or groups (such as parents,
spouses, friends, and colleagues) on an individual’s specific
behavior and is based on normative beliefs andmotivation to
comply [11]. *e normative belief refers to the opinion of
other people or groups on an individual’s engagement in a
particular behavior; motivation to comply refers to the
degree of compliance of individuals with other people’s
opinions. Ajzen believes that individuals’ behavior will be
influenced by the degree of identity of others and the sur-
rounding environment [21]. Subjective norms are individ-
uals who are subject to the pressure of important others,
groups, and society. *e above individuals are obedient to
the decision or behavior, and the individual will change the
self-determination behavior because of external factors.

When potential adopters try to adapt, to reduce un-
certainty, the experience of the previous adopter (inter-
personal influence) or the experts of the mass media in the
field (external influence) will be consulted in advance. *e
potential adopter is to form his perspective on innovation
from two sources (interpersonal influence and external
influence). Many studies have confirmed that reference
groups have an impact on behavioral intentions [22–24].
According to Bhattacherjee, interpersonal influence is
influenced by the dictation of friends, superiors, classmates,
and other innovators [24].

Research on the influence of word-of-mouth has been
flourished in recent years. In past research, scholars have a
lot of discussions and definitions of word-of-mouth com-
munication. Warrington defines word-of-mouth commu-
nication as to how consumers shape their attitudes and
behaviors [25]. “Word-of-mouth” has always played a very
important role in the communication of products and
services between consumers through nonvendor marketing
channels [26]. Word-of-mouth communication is often one
of the main considerations when consumers are faced with
purchasing decisions about goods or services [27]. *ere-
fore, word-of-mouth is a noncommercial, two-way com-
munication, experience-oriented, interactive, and
immediate [25].

Behavior intention refers to the tendency and degree of
action of an individual who wants to engage in a particular
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behavior, that is, the psychological strength of the indi-
vidual’s action in the decision-making process; in mea-
surement, it can be transformed into whether the individual
is willing to try or is willing to pay, by which variables can
explain and predict the actual performance of the individual.

In summary, TRA holds that attitude and subjective
norm determine the individual’s behavior intention; be-
havior intention determines the individual behavior, and the
behavior intention is determined by the attitude and sub-
jective norms. *erefore, if an individual is a more positive
attitude on a particular behavior and subjective norms
support the behavior, the individual’s intention to engage in
the behavior will also increase.

2. Materials and Methods

2.1. Research Subject. *is study took the Nike + Run Club
App users in Taiwan as the research subject and used the
Google form to distribute the survey by purposive and
snowball sampling. In addition to posting questionnaires on
the various jogging-related community website, the study
also distributed questionnaires to users who use Nike +Run
Club and requested them to send to each other. *e
questionnaires were distributed online from December 26th,
2016, to January 26th, 2017; a total of 360 questionnaires
were collected, with 351 valid questionnaires; the effective
recovery rate was 97.5%.

2.2. Research Tools. *e scale of this study could be divided
into three parts. *e first part was the TAM, which was
mainly referred to by Davis, Su, and Liao [13, 28, 29].
*rough the Confirmatory Factor Analysis (CFA), the factor
loading of attitude was between 0.85 and 0.89, Composite
Reliability (CR) is 0.93, and Average Variance Extracted
(AVE) is 0.76; the factor loading of perceived usefulness was
between 0.88 and 0.93, CR is 0.94, and AVE is 0.80; the factor
loading of perceived ease of use was between 0.84 and 0.90,
CR is 0.93, and AVE is 0.75.

*e second part would be the TRA, which was mainly
referred to by Flanders et al., Bhattacherjee and Chen et al.
[11, 24, 30], *rough the CFA, the factor loading of inter-
personal influence was between 0.84 and 0.90, CR is 0.90,
and AVE is 0.76; the factor loading of Internet W-O-M was
between 0.80 and 0.92, CR is 0.93, and AVE is 0.77; the factor
loading of the subjective norm was between 0.70 and 0.91,
CR is 0.88, and AVE is 0.71; the factor loading of behavior
intention was between 0.64 and 0.92, CR is 0.89, and AVE is
0.68.

Finally, perceived playfulness was mainly referred to by
Moon and Kim, and Cheng et al. [16, 30]. *rough the CFA,
the factor loading of perceived playfulness was between 0.87
and 0.90, CR is 0.93, and AVE is 0.78.

2.3. Discriminant Validity. *is study used the confidence
interval method to test the discriminant validity of the
overall behavior model. According to Torkzadeh et al., in
confidence interval method, if the confidence interval does
not contain 1 representative, there is no correlation at all,

indicating that the variables have discriminant validity [31].
In this study, the bootstrap method was used to estimate
(2,000 times), the confidence level was below 95%, and
percentile confidence intervals and bias-corrected confi-
dence intervals were used to measure. In this study, the
upper bounds of the confidence interval method are be-
tween 0.50 and 92, respectively, and the lower bounds are
between 0.34 and 0.81; the confidence interval does not
contain 1, indicating that each variable has discriminant
validity.

2.4. Data Analysis. In this study, we used SPSS version 21.0
and AMOS version 21.0 to analyze the data and used de-
scriptive statistics, confirmatory factor analysis, and struc-
tural equation modeling to understand the issues and
purpose discussed in this study.

3. Results and Discussion

3.1. Subject DataAnalysis. *e subject majority in this study
were females (62.7%), aged around 21–30 (55.8%); education
level of the majority was university degree (79.8%); occu-
pation of the majority was student (60.1%); average monthly
income was below NTD 20,000 (60.7%).

3.2. Confirmatory Factor Analysis of the Apple Watch User
Behavior Model. Data of this study were qualified with the
normality test but the CR of multivariate kurtosis was
107.20, the assumption of multivariate normality distribu-
tion was not supported; therefore, this study used bootstrap
proposed by Bollen and Stine to modify the overall model
[32]. In the overall model fit analysis, all values have reached
the standard, GFI = 0.95, RMSEA= 0.04, NFI = 0.95,
RFI = 0.94, IFI = 0.98, TFI = 0.98, CFI = 0.98, PGFI = 0.87,
PNFI = 0.87, CN= 0.231.88 and χ2/df= 1.516, indicating that
the overall model fits well, and then continue the discussion.

For behavior intention, the attitude has a higher influ-
ence (0.73), which means that using Nike +Run Club App is
meaningful and helpful to the sport, and the higher the user’s
attitude is, the higher the behavior intention will be
(Figure 1).

For attitude, the influence of perceived ease of use is the
highest (0.56), which means that, on behalf of users, the
Nike +Run Club App is easy to operate and easy to use.
According to Cheong and Park, the less the effort for users to
learn the new information technology, the more positive the
attitude on IT [33]. Followed by perceived playfulness (0.51),
when using the Nike +Run Club App, on behalf of the user,
it is fun to enjoy while running through the Nike +Run Club
App (Figure 1). According to Csikszentmihalyi, if the user
feels happy when interacting with technology, perceived
playfulness will generate, and therefore the user will have a
positive attitude and thus willingness to continue using
Nike +Run Club App in the future [19].

For subjective norm, interpersonal influence has the
higher influence (0.56), which means that users believe that
the opinion and suggestion from friends and family are
important for them to use the Nike +Run Club App; users
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also hope that they can build a connection with people
through the Nike +Run Club App (Figure 1). *erefore,
when the interpersonal influence is more positive, the
subjective norm will be higher. *e results are similar to
Lin’s study results [34].

According to the results of this study, perceived ease of
use has the greatest influence on attitudes; hence the des-
ignation of the Nike +Run Club App should be based on
simple operations. *e updated Nike +Run Club App is too
complicated due to the new features. Although new inter-
active features have been added, there is no clear instruction
of the operation, which leads users to update the Nike +Run
Club App but cannot experience more diverse functions
after the update. *erefore, this study suggests that, in a
technologically advanced society, people are pursuing a
clearer and simpler interactive function, so they can design
in the direction of making the interactive function more
simplistic or add instructions to the next function to make
Nike +Run Club App More perfect.

According to the results of this study, the influence of
perceived playfulness has a very high influence on attitude.
When the questionnaire was further examined, it was found
that users could enjoy the operation when using the
Nike +Run Club App, but they could not satisfy their en-
tertainment. *e possible reason is that when jogging
through the Nike +Run Club App, the user is interested

because of the freshness, but if the user interacts for a long
time, it lacks the incentive for the user to continue to feel the
entertainment, leading to the lower entertainment demand.
*erefore, this research suggests that, in addition to the user’s
refreshing features, it is also possible to develop interesting
tasks or games into the Nike +Run Club App, emphasizing
the user’s entertainment needs and improving the Nike +Run
Club App into a fun and enjoyable experience.

According to the results of this study, interpersonal
influence has the greatest influence on the subjective norm,
and the subjective norm will also influence behavior in-
tention. It can be seen that family and friends will influence
users to continue to use the Nike +Run Club App.*erefore,
it is recommended that the Nike +Run Club App R&D
Department can be more closely connected to the com-
munity and users so that future users can continue to use the
Nike +Run Club App trend.

*is study used Nike Run+App as the major study
research, but there are still a lot of applications on the
market. Especially in a wearable device, Rause pointed out
that wearable technology will be improving the exercise
habits of adults [35]. *erefore, it is suggested that future
research could study the application adoption of the
wearable device.

*is study distributes the survey on the jogging-related
community website, yet we have found that the age of the
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Figure 1: Path analysis of Nike Run+ behavioral model. PU: perceived usefulness. PEU: perceived ease of use. PP: perceived playfulness.
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majority of subjects was around 21–30. *erefore, it is
suggested that future research should distribute the survey
through various paths to expand the sample to other age
groups.

*is study uses TRA as the theoretical basis to explore
the behavioral intentions of Nike +Run Club App users.
However, Lin et al. found that the adoption of application
will be affected by the perceptual barrier, which has a sig-
nificant negative impact on perceptual usefulness and per-
ceived ease of use [36]. *erefore, it is suggested that future
research should explore the adoption of application from the
innovation resistance theory perspective.

4. Conclusions

Perceived usefulness, perceived ease of use, and perceived
playfulness have positive and significant influence on atti-
tude. Among them, perceived ease of use has the highest
influence on attitude, indicating that users think that the
operation of the Nike +Run Club App is the main factor
affecting their attitude.

Interpersonal influence and Internet W-O-M had pos-
itive and significant influence on the subjective norm.
Among them, interpersonal influence has the highest in-
fluence on the subjective norm, indicating that users believe
that the recognition and suggestions of family and friends
for the Nike +Run Club App are the main factors affecting
subjective norm.

Attitude and subjective norm had positive and sig-
nificant influence on behavior intention. Among them, the
influence of attitude on behavior intention is the highest,
indicating that the practicality of the Nike + Run Club App
is an important factor affecting the continuous use of
users.

Data Availability

*eNike Run + behavioral model data used to support the
findings of this study are restricted by the Sports Research
Center of Department of Leisure Services Management to
protect the subject’s privacy. Data are available from Dr.
Chih-Wei Lin (e-mail: cwlin@cyut.edu.tw) for re-
searchers who meet the criteria for access to confidential
data.

Conflicts of Interest

*e authors have no affiliations with or involvement in any
organization or entity with any financial interest or nonfi-
nancial interest in the subject matter or materials discussed
in this manuscript.

Acknowledgments

*e authors are thankful to the volunteers for their en-
thusiastic participation.

References

[1] C. Chen, “A study on flow experience and leisure benefits of
road running participants,” Journal of Physical Education Fu
Jen Catholic University, vol. 10, pp. 230–244, 2011.

[2] S. L. Chu and S. Y. Cho, “Healthy exercise: start from jogging,”
Sport Research Review, vol. 72, pp. 192–199, 2004.

[3] K. Chen, “Jogging can increase survival and reduce disability
for elder men,” Health World, vol. 273, no. 9, 2008.

[4] Sport Administration, “Investigation and Research on the
Consciousness of Taiwan People’s Movement,” 2013, https://
www.sa.gov.tw/Resource/Other/f1451381749304.pdfv.

[5] Kknews, “App service subscription is the future app store can
no longer be confused,” 2016, https://kknews.cc/zh-tw/tech/
le6lgzz.html.

[6] R. Tu, P. Hsieh, and W. Feng, “Walking for fun or for “likes”?
the impacts of different gamification orientations of fitness
apps on consumers’ physical activities,” Sport Management
Review, vol. 22, no. 5, pp. 682–693, 2019.

[7] P. J. Hu, P. Y. K. Chau, O. R. L. Sheng, and K. Y. Tam,
“Examining the technology acceptance model using physician
acceptance of telemedicine technology,” Journal of Manage-
ment Information Systems, vol. 16, no. 2, pp. 91–112, 1999.

[8] C.-C. Lu and M.-Y. Ma, Research on the Attractive Factors of
Pleasurable Products and Pleasure Durability, National Cheng
Kung University, Tainan, Taiwan, 2010.

[9] C.-W. Lin, C.-C. Yang, W. Y. Sia, and K.-Y. Tang, “Examining
the success factors of smart watch: a behavioral perspective on
consumers,” Polish Journal of Management Studies, vol. 20,
no. 2, pp. 368–378, 2019.

[10] C.-W. Lin, T.-Y. Mao, W. Y. Sia, and W. P. Tan, “Extending
the TAM to explore the behavior of user in using the in-
novative game console,” in Basic & Clinical Pharmacology &
Toxicology, Wiley, Hoboken, NJ USA, 2019.

[11] N. A. Flanders, M. Fishbein, and I. Ajzen, Belief, Attitude,
Intention and Behaviour: An Introduction to 7eory and
Research, Addison-Wesley, Boston, MA, USA, 1975.

[12] S. Taylor and P. A. Todd, “Understanding information
technology usage: a test of competing models,” Information
Systems Research, vol. 6, no. 2, pp. 144–176, 1995.

[13] F. D. Davis, “Perceived usefulness, perceived ease of use, and
user acceptance of information technology,” MIS Quarterly,
vol. 13, no. 3, pp. 319–340, 1989.

[14] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “User ac-
ceptance of computer technology: a comparison of two
theoretical models,” Management Science, vol. 35, no. 8,
pp. 982–1003, 1989.

[15] P. Barnett, “Definition, design, and measurement,” Play and
Culture, vol. 3, pp. 319–336, 1990.

[16] J.-W. Moon and Y.-G. Kim, “Extending the TAM for a world-
wide-web context,” Information &Management, vol. 38, no. 4,
pp. 217–230, 2001.

[17] L. A. Barnett, “*e playful child: measurement of a disposition
to play,” Play and Culture, vol. 4, no. 1, pp. 51–74, 1991.

[18] J. N. Lieberman, Playfulness: Its Relationship to Imagination
and Creativity, Academic Press, Cambridge, MA, USA, 2014.

[19] M. Csikszentmihalyi, Beyond Boredom and Anxiety, Jossey-
Bass, San Francisco, CA, US, 1975.

[20] Y.-S. Lin, Y.-C. Tseng, Y.-X. Kang, W. Y. Sia, and C.-W. Lin,
“Wii sport’s involvement in physical experience of national
junior high students’ physical education curriculum,” in

6 Mathematical Problems in Engineering

mailto:cwlin@cyut.edu.tw
https://www.sa.gov.tw/Resource/Other/f1451381749304.pdfv
https://www.sa.gov.tw/Resource/Other/f1451381749304.pdfv
https://kknews.cc/zh-tw/tech/le6lgzz.html
https://kknews.cc/zh-tw/tech/le6lgzz.html


Proceedings of the 2nd International Conference on Education
and E-Learning, Bali, Indonesia, November 2018.

[21] I. Ajzen, “*e theory of planned behavior,” Organizational
Behavior and Human Decision Processes, vol. 50, no. 2,
pp. 179–211, 1991.

[22] R. Agarwal and J. Prasad, “*e role of innovation charac-
teristics and perceived voluntariness in the acceptance of
information technologies,” Decision Sciences, vol. 28, no. 3,
pp. 557–582, 1997.

[23] E. Rogers, Diffusion of Innovations, ACM, New York, NY,
USA, 4th edition, 1995.

[24] A. Bhattacherjee, “Acceptance of e-commerce services: the
case of electronic brokerages,” IEEE Transactions on Systems,
Man, and Cybernetics—Part A: Systems and Humans, vol. 30,
no. 4, pp. 411–420, 2000.

[25] T. Warrington, “*e secrets of word-of-mouth marketing:
how to trigger exponential sales through runaway word of
mouth,” Journal of Consumer Marketing, vol. 19, no. 4,
pp. 364–366, 2002.

[26] E. W. Anderson, “Customer satisfaction and word of mouth,”
Journal of Service Research, vol. 1, no. 1, pp. 5–17, 1998.

[27] P. M. Herr, F. R. Kardes, and J. Kim, “Effects of word-of-
mouth and product-attribute information on persuasion: an
accessibility-diagnosticity perspective,” Journal of Consumer
Research, vol. 17, no. 4, pp. 454–462, 1991.

[28] F. T. Su, Investigating Consumers Acceptance Behavior on
Tablet PC by an Integrated Model of TAM and TTF, p. 67,
National Taipei University of Technology, Taipei City, Taiwan,
2013.

[29] J. I. E. Liao, “A study of the technology acceptance model on
sports lottery customers online betting behavior,” Degree
thesis, p. 141, Chaoyang University of Technology, Taipei City,
Taiwan, 2016.

[30] M.-J. Cheng, H.-H. Tsai, S.-W. Hung, and P.-W. Chen,
“Exploring the adoption intention through decomposed
theory of planned behavior: an empirical study on mobile
applications,” in Proceedings of the Portland International
Conference on Management of Engineering and Technology
(PICMET), August 2015.

[31] G. Torkzadeh, X. Koufteros, and K. Pflughoeft, “Confirmatory
analysis of computer self-efficacy,” Structural Equation
Modeling: A Multidisciplinary Journal, vol. 10, no. 2,
pp. 263–275, 2003.

[32] K. A. Bollen and R. A. Stine, “Bootstrapping goodness-of-fit
measures in structural equationmodels,” Sociological Methods
& Research, vol. 21, no. 2, pp. 205–229, 1992.

[33] J. H. Cheong and M. C. Park, “Mobile internet acceptance in
korea,” Internet Research, vol. 15, no. 2, 2005.

[34] C. H. Lin, Using Extended 7eory of Planned Behavior to
Investigate Consumers’ Intention of Self-Service Travel Sites,
p. 89, Tatung University, Taipei, Taiwan, 2015.

[35] S. A. Rause, “Wearable technology: improving exercise habits
and experiences in adults,” *ese and Dissertations, Indiana
University of Pennsylvania, Indiana, PA, USA, 2016.

[36] C.-W. Lin, S.-S. Lee, K.-Y. Tang, Y.-X. Kang, C.-C. Lin, and
Y.-S. Lin, “Exploring the users behavior intention on mobile
payment by using TAM and IRT,” in Proceedings of the 3rd
International Conference on E-Society, E-Education and
E-Technology, Taipei City, Taiwan, August 2019.

Mathematical Problems in Engineering 7



Research Article
Pathway Fractional Integral Formulas Involving S-Function in
the Kernel

Hafte Amsalu , Biniyam Shimelis , and D. L. Suthar

Department of Mathematics, Wollo University, P.O. Box. 1145, Dessie, Ethiopia

Correspondence should be addressed to D. L. Suthar; dlsuthar@gmail.com

Received 24 April 2020; Revised 8 May 2020; Accepted 15 May 2020; Published 20 June 2020

Guest Editor: Praveen Agarwal

Copyright © 2020 Hafte Amsalu et al.,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we present several composition formulae of pathway fractional integral operators connected withS-function. Here,
we point out important links to known outcomes for some specific cases with our key results.

1. Introduction and Preliminaries

In recent years, fractional calculus has become a significant
instrument for the modeling analysis and plays a significant
role in different fields, for example, material science, science,
mechanics, power, economy, and control theory. In addition, a
number of researchers have investigated a variety of fractional
calculus operators in the depth level of properties, imple-
mentation methods, and complex modifications. Other anal-
ogous topics are also very active and extensive around the
world. One may refer to the research monographs in [1, 2].

S-function. Recently, Saxena and Daiya [3] defined and
studied a special function called as S-function (also see [4])
and its relation with other special functions, which include
generalized K-function, M-series, k-Mittag–Leffler func-
tion, Mittag–Leffler type functions, and other many special
functions. ,ese special functions have recently found es-
sential applications in solving problems in applied sciences,
biology, physics, and engineering.

,e S-function is defined for σ, η, ε, τ ∈ C, R(σ)> 0,
k ∈ R, R(σ)> kR(τ), li(i � 1, 2, 3, . . . , p),
mj(j � 1, 2, 3, . . . , q), and p< q + 1 as

S
σ,η,ε,τ,k

(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; x􏽨 􏽩 � 􏽘
∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
(ε)nτ,k

m1( 􏼁n . . . mq􏼐 􏼑
n
Γk(nσ + η)

xn

n!
, (1)

Here, k-Pochhammer symbol is as follows:

(ε)n,k �

Γk(ε + nk)

Γk(ε)
, (k ∈ R, ε ∈ C/ 0{ }),

ε(ε + k) . . . (ε +(n − 1)k), (n ∈ N, ε ∈ C).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

Also, the k-gamma function is

Γk(ε) � k
(ε/k)− 1Γ

ε
k

􏼒 􏼓, (3)

where ε ∈ C, k ∈ R, and n ∈ N, introduced by Dı́az and
Pariguan [5] (see also Romero and Cerutti [6]).

Several major special cases of the S-function are de-
scribed as follows:

(i) For p � q � 0, the generalized k-Mittag–Leffler
function from Saxena et al. [7] (see [8, 9]) is
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E
ε,τ
k,σ,η(x) � S

σ,η,ε,τ,k

(0,0) [− ; − ; x] � 􏽘
∞

n�0

(ε)nτ,k

Γk(nσ + η)

xn

n!
,R

σ
k

− τ􏼒 􏼓>p − q.

(4)

(ii) For k � τ � 1, the S-function is the generalized
K-function, introduced by Sharma [10] (see also [11]):

K
σ,η,ε
(p,q) l1, . . . , lp; m1, . . . , mq; x􏽨 􏽩 � S

σ,η,ε,1,1
(p,q) l1, . . . , lp; m1, . . . , mq; x􏽨 􏽩

� 􏽘
∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
(ε)n

m1( 􏼁n . . . mq􏼐 􏼑
n
Γ(nσ + η)

xn

n!
, R(σ)>p − q.

(5)

(iii) For τ � k � ε � 1, the S-function reduced to gen-
eralized M-series introduced by Sharma and Jain
[12](detail [13]) is

M
σ,η
(p,q) l1, . . . , lp; m1, . . . , mq; x􏽨 􏽩 � S

σ,η,1,1,1
(p,q) l1, . . . , lp; m1, . . . , mq; x􏽨 􏽩

� 􏽘
∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
xn

m1( 􏼁n . . . mq􏼐 􏼑
n
Γ(nσ + η)

, R(σ)>p − q − 1.

(6)

Recently, an expending pathway fractional integral (PFI)
operator introduced by Nair [14], which was earlier defined
by Mathai [15] and Mathai and Haubold [16, 17], is defined
as follows:

P
λ,ς
0+f􏼐 􏼑(x) � x

λ
􏽚

[x/(a(1− ς))]

0
1 −

a(1 − ς)ξ
x

􏼠 􏼡

λ/(1− ς)

f(ξ)dξ,

(7)

where Lebesgue measurable function f ∈L(a, b) for real or
complex term valued function, λ ∈ C, R(λ)> 0, a> 0, and
ς< 1 (ς is a pathway parameter).

,e pathway model for a real scalar ς and scalar random
variables is represented by the probability density function
(p.d.f.) in the following manner:

f(x) �
c

|x|1− v
1 − a(1 − ς)|x|

ρ
􏼂 􏼃

λ/(1− ς)
, (8)

where x ∈ (− ∞,∞);λ>0;ρ>0;[1 − a(1 − ς)|x|ρ]λ/(1− ς)>0;

v>0 and ς and c denote the pathway parameter and nor-
malizing constant, respectively.

Additionally, for ς ∈ R, the normalizing constants are
expressed in the following way:

c �

1
2
ρ[a(1 − ς)]v/ρΓ(v/ρ + λ/(1 − ς) + 1)

Γ(v/ρ)Γ(λ/(1 − ς) + 1)
, (ς< 1),

1
2
ρ[a(1 − ς)]v/ρΓ(λ/(ς − 1))

Γ(v/ρ)Γ(λ/(ς − 1) − v/ρ)
,

1
ς − 1

−
v

ρ
> 0, ς> 1􏼠 􏼡,

1
2

[aλ]v/ρ

Γ(v/ρ)
, (ς⟶ 1).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

It is noted that if ς< 1, finite range density with
[1 − a(1 − ς)|x|ρ]λ/(1− ς) > 0 and (8) can be considered
a member of the extended generalized type-1 beta
family. Also, the triangular density, the uniform density,
the extended type-1 beta density and various

other probability density functions are precise special
cases of the pathway density function defined in (8) for
ς< 1.

For example, if ς> 1 and by setting (1 − ς) � − (ς − 1) in
(7), then we have
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P
λ,ς
0+f􏼐 􏼑(x) � x

λ
􏽚

[x/− a(ς− 1)]

0
1 +

a(ς − 1)ξ
x

􏼠 􏼡

λ/− (ς− 1)

f(ξ)dξ,

(10)

f(x) �
c

|x|1− v
1 + a(ς − 1)|x|

ρ
􏼂 􏼃

λ/− (ς− 1)
, (11)

provided that x ∈ (− ∞,∞); ρ> 0; λ> 0; and ς> 1 charac-
terize the extended generalized type-2 beta model for real x.
,e specific cases of density function (11) include the type-2
beta density function, the p density function, and the Stu-
dent’s t density function. For ς⟶ 1, (7) diminishes to the
Laplace integral transform.

In a similar way, if ς � 0, a � 1, and λ takes the place of
λ − 1, then (7) diminishes to the familiar Riemann–Liouville
(R-L) fractional integral operator Iλ

0+f (e.g., [7]):

P
λ− 1,0
0+ f􏼐 􏼑(x) � Γ(λ) I

λ
0+f􏼐 􏼑(x), (R(λ)> 1). (12)

PFI operator (7) leads to numerous interesting il-
lustrations such as fractional calculus associated with
probability density functions and their significant in
statistical theory. Nowadays, many researchers study PFI
formulae associated with various special functions (see
[18–27]). Motivated by these researchers, we study the
S-function, which is connected with PFI operator (7), to
present their integral formulae. Suitable connections of
some particular cases are also pointed out.

2. Pathway Fractional Integral Operator of S-
Function

In this section, we establish the PFI formula involving the
S-function which is stated in ,eorems 1 and 2.

Theorem 1. Suppose w, k ∈ R, σ, η, ε, τ ∈ C,R(σ)> 0,R(λ)

> 0,R(σ)> kR(τ), and p< q + 1,R(λ/(1 − ς))> − 1; ς< 1.
-en, the following formula holds true:

P
λ,ς
0+ ζ(η/k)− 1

S
σ,η,ε,τ,k

(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; wζ(σ/k)
􏽨 􏽩􏼔 􏼕(x)

�
xλ+(η/k)k(1+(λ/1− ς))Γ(λ/(1 − ς) + 1)

(a(1 − ς))(η/k)
× S

σ,η+(1+λ/(1− ς))k,ε,τ,k

(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq;
wx(σ/k)

(a(1 − ς))(σ/k)
􏼢 􏼣.

(13)

Proof. We indicate the RHS of equation (13) by I1, and
invoking equations (1) and (7), we have

I1 � x
λ

􏽚
[x/a(1− ς)]

0
1 −

a(1 − ς)ζ
x

􏼠 􏼡

λ/(1− ς)

ζ(η/k)− 1

× 􏽘
∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
(ε)nτ,k

m1( 􏼁n . . . mq􏼐 􏼑
n
Γk(nσ + η)

wζ(σ/k)
􏼐 􏼑

n

n!
dζ.

(14)

Now changing the order of integration and summation,
we obtain

I1 � x
λ

􏽘

∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
(ε)nτ,kwn

m1( 􏼁n . . . mq􏼐 􏼑
n
Γk(nσ + η)n!

× 􏽚
[x/a(1− ς)]

0
1 −

a(1 − ς)ζ
x

􏼠 􏼡

λ/(1− ς)

ζ((η+σn)/k)− 1dζ.

(15)

Using the substitution u � a(1 − ς)ζ/x, we can change
the limit of integration into the following:

I1 � x
λ

􏽘

∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
(ε)nτ,kwn

m1( 􏼁n . . . mq􏼐 􏼑
n
Γk(nσ + η)n!

x

a(1 − ς)
􏼠 􏼡

(η+σn)/k

× 􏽚
1

0
(1 − u)

λ/(1− ς)
u

((η+σn)/k)− 1du.

(16)

Now, by calculating the inner integral and using the beta
function formula, we obtain the following:

I1 � x
λ

􏽘

∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
(ε)nτ,kwn

m1( 􏼁n . . . mq􏼐 􏼑
n
Γk(nσ + η)n!

x

a(1 − ς)
􏼠 􏼡

(η+σn)/k

×
Γ(η/k + nσ/k)Γ(λ/(1 − ς) + 1)

Γ(η/k +(nσ/k) + λ/(1 − ς) + 1)
.

(17)

Using (3), we obtain
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I1 � x
λ+η/k

􏽘

∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
(ε)nτ,k

m1( 􏼁n . . . mq􏼐 􏼑
n
Γ(nσ/k + η/k)k(nσ/k)+(η/k)− 1n!

×
Γ(η/k + nσ/k)Γ(λ/(1 − ς) + 1)

(a(1 − ς))η/kΓ(η/k +(nσ/k) + λ/(1 − ς) + 1)

· w
x

a(1 − ς)
􏼠 􏼡

(σ)/k
⎛⎝ ⎞⎠

n

.

(18)

Once again, using (3), we obtain

I1 �
xλ+(η/k)k(1+λ/(1− ς))Γ(λ/(1 − ς) + 1)

(a(1 − ς))(η/k)

S
σ,η+(1+λ/(1− ς))k,ε,τ,k

(p,q) 􏼢l1, l2, . . . , lp; m1, m2, . . . ,

mq;
wx(σ/k)

(a(1 − ς))(σ/k)
􏼣,

(19)

which gives the required proof of ,eorem 1. □

Corollary 1. If we put p � q � 0, then (13) leads to the
subsequent result of generalized k-Mittag–Leffler function:

P
λ,ς
0+ ζ(η/k)− 1

E
ε,τ
k,σ,η wζ(σ/k)

􏼐 􏼑􏽨 􏽩(x)

�
xλ+(η/k)k(1+λ/(1− ς))Γ(λ/(1 − ς) + 1)

(a(1 − ς))(η/k)
E

ε,τ
k,σ,η+(1+λ/(1− ς))k(x)

·
wx(σ/k)

(a(1 − ς))(σ/k)
􏼢 􏼣.

(20)

Proof. We consider (4) and p � q � 0 in ,eorem 1, and we
obtain the desired result in (13). □

Corollary 2. If we put k � τ � 1, then (13) leads to the
subsequent result in terms of generalized K-function:

P
λ,ς
0+ ζη− 1

K
σ,η,ε
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; wζσ􏽨 􏽩􏼔 􏼕(x)

�
xλ+ηΓ(λ/(1 − ς) + 1)

(a(1 − ς))η
K

σ,η+(1+λ/(1− ς)),ε
(p,q)

· l1, l2, . . . , lp; m1, m2, . . . , mq;
wxσ

(a(1 − ς))σ
􏼢 􏼣.

(21)

Proof. If we set k � τ � 1 in ,eorem 1 and using (5), we
obtain the required result (21). □

Corollary 3. If we put k � τ � 1, then (13) holds the formula
in terms of generalized M-series:

P
λ,ς
0+ ζη− 1

M
σ,η
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; wζσ􏽨 􏽩􏼔 􏼕(x)

�
xλ+ηΓ(λ/(1 − ς) + 1)

(a(1 − ς))η
M

σ,η+(1+λ/(1− ς))
(p,q)

· l1, l2, . . . , lp; m1, m2, . . . , mq;
wxσ

(a(1 − ς))σ
􏼢 􏼣.

(22)

Proof. If we put τ � k � ε � 1 in ,eorem 1 and using (6),
we obtain the result (22). □

Now, we use equation (10) to define the following
theorem, by the case ς> 1.

Theorem 2. Suppose w, k ∈ R; σ, η, ε, τ ∈ C,R(σ)> 0,
R(λ)> 0, R(σ)> kR(τ) and p< q + 1, and
R(1 − (λ/ς − 1))> 0; ς> 1. -en, the following formula holds
true:

P
λ,ς
0+ ζ(η/k)− 1

S
σ,η,ε,τ,k

(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; wζ(σ/k)
􏽨 􏽩􏼔 􏼕

(x) �
xλ+(η/k)k(1− λ/(ς− 1))Γ(1 − (λ/(ς − 1)))

(− a(ς − 1))(η/k)

× S
σ,η+(1− λ/(ς− 1))k,ε,τ,k

(p,q) 􏼢l1, l2, . . . , lp; m1, m2, . . . , mq;

wx(σ/k)

(− a(ς − 1))(σ/k)
􏼣.

(23)

Proof. We denote, for convenience, the RHS of equation
(23) by I2, and invoking equations (1) and (10), we have

I2 � x
λ

􏽚
[x/− a(ς− 1)]

0
1 +

a(ς − 1)ζ
x

􏼠 􏼡

λ/− (ς− 1)

ζ(η/k)− 1

× 􏽘
∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
(ε)nτ,k

m1( 􏼁n . . . mq􏼐 􏼑
n
Γk(nσ + η)

wζ(σ/k)
􏼐 􏼑

n

n!
dζ.

(24)

Now, changing the order of integration and summation,
we obtain
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I2 � x
λ

􏽘

∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
(ε)nτ,kwn

m2( 􏼁n . . . mq􏼐 􏼑
n
Γk(nσ + η)n!

× 􏽚
[x/− a(ς− 1)]

0
1 +

a(ς − 1)ζ
x

􏼠 􏼡

λ/− (ς− 1)

ζ((η+σn)/k)− 1dζ.

(25)

By setting v � − a(ς − 1)ζ/x, we can change the limit of
integration into the following:

I2 � x
λ

􏽘

∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
(ε)nτ,kwn

m1( 􏼁n . . . mq􏼐 􏼑
n
Γk(nσ + η)n!

x

− a(ς − 1)
􏼠 􏼡

(η+σn)/k

× 􏽚
1

0
(1 − v)

λ/− (ς− 1)
v

((η+σn)/k)− 1dv

× 􏽚
1

0
(1 − v)

λ/− (ς− 1)
v

((η+σn)/k)− 1dv.

(26)

By analyzing the internal integral and using the beta
function rule, we obtain

I2 � x
λ

􏽘

∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
(ε)nτ,kwn

m1( 􏼁n . . . mq􏼐 􏼑
n
Γk(nσ + η)n!

x

− a(ς − 1)
􏼠 􏼡

(η+σn)/k

×
Γ(η/k + nσ/k)Γ(1 − λ/(ς − 1))

Γ(η/k +(nσ/k) + 1 − λ/(ς − 1))
.

(27)

Using (3), we obtain

I2 � x
λ+η/k

􏽘

∞

n�0

l1( 􏼁n . . . lp􏼐 􏼑
n
(ε)nτ,k

m1( 􏼁n . . . mq􏼐 􏼑
n
Γ(nσ/k + η/k)k(nσ/k)+(η/k)− 1n!

×
Γ(η/k + nσ/k)Γ(1 − λ/(ς − 1))

(− a(ς − 1))η/kΓ(η/k +(nσ/k) + 1 − λ/(ς − 1))

· w
x

− a(ς − 1)
􏼠 􏼡

(σ)/k
⎛⎝ ⎞⎠

n

.

(28)

Once again, we arrive at the target outcome by applying
(3):

I2 �
xλ+(η/k)k(1− λ/ς− 1)Γ(1 − λ/ς − 1)

(− a(ς − 1))(η/k)
S

σ,η+(1− λ/ς− 1)k,ε,τ,k

(p,q)

· l1, l2, . . . , lp; m1, m2, . . . , mq;
wx(σ/k)

(− a(ς − 1))(σ/k)
􏼢 􏼣.

(29)
□

Corollary 4. If we put p � q � 0, then (23) provides the result
as follows:

P
λ,ς
0+ ζ(η/k)− 1

E
ε,τ
k,σ,η wζ(σ/k)

􏼐 􏼑􏽨 􏽩(x)

�
xλ+(η/k)k(1− (λ/ς− 1))Γ(1 − (λ/ς − 1))

(− a(ς − 1))(η/k)
E

ε,τ
k,σ,η+(1− (λ/ς− 1))k(x)

·
wx(σ/k)

(− a(ς − 1))(σ/k)
􏼢 􏼣.

(30)

Proof. We consider (4) and p � q � 0 in ,eorem 2 and we
obtain the desired result (30). □

Corollary 5. If k � τ � 1, then (23) holds the following
formula:

P
λ,ς
0+ ζη− 1

K
σ,η,ε
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; wζσ􏽨 􏽩􏼔 􏼕(x)

�
xλ+ηΓ(1 − (λ/ς − 1))

(− a(ς − 1))η
K

σ,η+(1− (λ/ς− 1)),ε
(p,q)

· l1, l2, . . . , lp; m1, m2, . . . , mq;
wxσ

(− a(ς − 1))σ
􏼢 􏼣.

(31)

Proof. If we set k � τ � 1 in ,eorem 2 and using (5), we
obtain the required result (31). □

Corollary 6. If we put k � τ � ε � 1, then resulting formula
(23) holds true:

P
λ,ς
0+ ζη− 1

M
σ,η
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; wζσ􏽨 􏽩􏼔 􏼕(x)

�
xλ+ηΓ(1 − (λ/ς − 1))

(− a(ς − 1))η
M

σ,η+(1− (λ/ς− 1))

(p,q)

· l1, l2, . . . , lp; m1, m2, . . . , mq;
wxσ

(− a(ς − 1))σ
􏼢 􏼣.

(32)

Proof. If we put τ � k � ε � 1 in ,eorem 2 and using (6),
we obtain the result (32). □

3. Concluding Remarks

In the present paper, we have established two pathway
fractional integral formulae associated with the more gen-
eralized special function called as S-function. ,e results
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obtained here involve special functions such as k-Mit-
tag–Leffler function,K-function, andM-series, due to their
general nature and usefulness in the theory of integral
operators and relevant part of computational mathematics.
Also, the special functions involved here can be reduced to
simpler functions, which have a number of applications in
various fields of science and technology and can be found as
special cases that we have not specifically stated here.
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If we study the theory of fractional differential equations then we notice the Mittag–Leffler function is very helpful in this theory.
On the contrary, Ostrowski inequality is also very useful in numerical computations and error analysis of numerical quadrature
rules. In this paper, Ostrowski inequalities with the help of generalized Mittag–Leffler function are established. In addition,
bounds of fractional Hadamard inequalities are given as straightforward consequences of these inequalities.

1. Introduction

Exponential function plays a vital role in the theory of
integer order differential equations. )e symbol Eα(z) is
well known as the Mittag–Leffler function and it is a
generalization of exponential function. It occurs in the
solutions of fractional differential equations such as ex-
ponential function which exists in the solutions of dif-
ferential equations. Due to its importance, Mittag–Leffler
function is generalized by many mathematicians: For
example, Wiman [1], Prabhakar [2], Shukla and Prajapati
[3], Salim [4], Salim and Faraj [5], and Rahman et al. [6].
Mittag–Leffler function is also used in the formation of
fractional integral operators. )ese fractional integral
operators provide generalizations of fractional differential
equations and modeling of dynamic systems. Fractional
integral operators also play a vital role in the advancement
of classical mathematical inequalities. For example,
Hadamard inequality, Ostrowski inequality, Gruss in-
equality, and many others have been presented for frac-
tional integral and derivative operators, see [7–16]. )e
aim of this paper is to study well-known Ostrowski in-
equality for an integral operator which is directly asso-
ciated with many fractional integral operators defined in
near past.

Recently, in [7], Andrić et al. defined the extended
generalized Mittag–Leffler function E

c,δ,k,c

μ,σ,l (.; p) as follows.

Definition 1. Let μ, α, l, c, c ∈ C, R(μ),R(α),R(l)> 0, and
R(c)>R(c)> 0 with p≥ 0, δ > 0, and 0< k≤ δ + R(μ).
)en, the extended generalized Mittag–Leffler function
E

c,δ,k,c

μ,α,l (t; p) is defined as

E
c,δ,k,c

μ,α,l (t; p) � 􏽘
∞

n�0

βp(c + nk, c − c)

β(c, c − c)

(c)nk

Γ(μn + α)

tn

(l)nδ
, (1)

where βp is the generalized beta function defined as
βp(x, y) � 􏽒

1
0 tx− 1(1 − t)y− 1e− (p/t(1− t))dt and (c)nk is the

Pochhammer symbol given by (c)nk � (Γ(c + nk))/Γ(c).
)e corresponding left- and right-sided generalized

fractional integrals ϵc,δ,k,c

μ,α,l,ω,a+ and ϵc,δ,k,c

μ,α,l,ω,b− are defined as
follows.

Definition 2 (see [7]). Let ω, μ, α, l, c, c ∈ C, R(μ),R(α),

R(l)> 0, R(c)>R(c)> 0 with p≥ 0, δ > 0, and
0< k≤ δ + R(μ). Let ψ1 ∈ L1[a, b] and x ∈ [a, b]. )en, the
generalized fractional integrals ϵc,δ,k,c

μ,α,l,ω,a+ψ1 and ϵc,δ,k,c

μ,α,l,ω,b− ψ1
are defined as
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ϵc,δ,k,c

μ,α,l,ω,a+ψ1􏼒 􏼓(x; p) � 􏽚
x

a
(x − t)

α− 1
E

c,δ,k,c

μ,α,l ω(x − t)
μ
; p( 􏼁ψ1(t)dt,

(2)

ϵc,δ,k,c

μ,α,l,ω,b− ψ1􏼒 􏼓(x; p) � 􏽚
b

x
(t − x)

α− 1
E

c,δ,k,c

μ,α,l ω(t − x)
μ
; p( 􏼁ψ1(t)dt.

(3)

Recently, Farid defined a unified integral operator in [17]
(also see [18]). )is unifies several kinds of fractional and
conformable integrals in a compact formula and is given as
follows.

Definition 3. Let ψ1,ψ2: [a, b]⟶ R, 0< a< b, be the
functions such that ψ1 be positive and ψ1 ∈ L1[a, b], and ψ2
be differentiable and strictly increasing. Also, let ϕ/x be an
increasing function on [a,∞) and α, l, c, c ∈ C,
R(α),R(l)> 0, R(c)>R(c)> 0, p, μ, δ ≥ 0, and
0< k≤ δ + μ. )en, for x ∈ [a, b] the left and right integral
operators are defined by

gF
ϕ,c,δ,k,c

μ,α,l,a+ ψ1􏼓(x,ω; p) � 􏽚
x

a
K

y
x E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓ψ1(y)d ψ2(y)( 􏼁,􏼒

(4)

gF
ϕ,c,δ,k,c

μ,α,l,b− ψ1􏼓(x,ω; p) � 􏽚
b

x
K

x
y E

c,δ,k,c

μ,α,l , g; ϕ􏼒 􏼓ψ1(y)d ψ2(y)( 􏼁,􏼠

(5)

where K
y
x(E

c,δ,k,c

μ,α,l , g; ϕ) � ((ϕ(ψ2(x) − ψ2(y)))/(ψ2(x) −

ψ2(y)))E
c,δ,k,c

μ,α,l (ω(ψ2(x) − ψ2(y))μ; p).
)e following definition can be deduced from Definition

3 (see [16]).

Definition 4. Let ψ1,ψ2: [a, b]⟶ R, 0< a< b, be the
functions such that ψ1 be positive and ψ1 ∈ L1[a, b], and ψ2
be differentiable and strictly increasing and
α, l, c, c ∈ R+, c> c, p, μ, δ ≥ 0 and 0< k≤ δ + μ. )en, for
x ∈ [a, b] the left and right integral operators are defined by

ψ2Υ
c,δ,k,c

μ,α,l,ω,a+ψ1􏼓(x; p) � 􏽚
x

a
ψ2(x) − ψ2(t)( 􏼁

α− 1
E

c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(t)( 􏼁
μ
; p( 􏼁 × ψ1(t)ψ2′(t)dt,􏼒 (6)

ψ2Υ
c,δ,k,c

μ,α,l,ω,b− ψ1􏼓(x; p) � 􏽚
b

x
ψ2(t) − ψ2(x)( 􏼁

α− 1
E

c,δ,k,c

μ,α,l ω ψ2(t) − ψ2(x)( 􏼁
μ
; p( 􏼁 × ψ1(t)ψ2′(t)dt.􏼠 (7)

It can be noted that

ψ2Υ
c,δ,k,c

μ,α,l,ω,a+1􏼓(x; p) � ψ2(x) − ψ2(t)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(t)( 􏼁
μ
; p( 􏼁,􏼒 (8)

ψ2Υ
c,δ,k,c

μ,α,l,ω,b− 1􏼓(x; p) � ψ2(t) − ψ2(x)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(t) − ψ2(x)( 􏼁
μ
; p( 􏼁.􏼒 (9)

In the following, we state the Ostrowski inequality which
is proved by Ostrowski [19] in 1938.

Theorem 1. Let ψ1: I⟶ R, where I is an interval in R, be
a mapping differentiable in Io, the interior of I and a, b ∈ Io,
a< b. If |ψ1′(t)|≤M for all t ∈ [a, b], then for x ∈ [a, b] we
have

ψ1(x) −
1

b − a
􏽚

b

a
ψ1(t)dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

1
4

+
(x − ((a + b)/2))2

(b − a)2
􏼢 􏼣(b − a)M.

(10)

)e Ostrowski inequality has been studied by many
researchers to obtain its refinements, generalizations, and
extensions. Also, their applications are analyzed for estab-
lishing the bounds of relations among special means and for

estimations of numerical quadrature rules. For recent de-
velopments of Ostrowski inequality, we refer the reader to
[8, 9, 11, 20–26] and references therein.

In Section 2, fractional version of Ostrowski inequalities
with the help of Mittag–Leffler function has been estab-
lished. )e presented results may be useful in the study of
fractional integral operators and their applications. Also, the
error bounds of fractional Hadamard inequalities are pre-
sented in Section 3.

2. Main Results

First, we establish the following lemma for extended gen-
eralized Mittag–Leffler function.

Lemma 1. If ω, μ, α, l, c, c ∈ C, R(μ), R(α), R(l)> 0,

R(c)>R(c)> 0 with p≥ 0, δ > 0 and 0< k< δ + R(μ), then
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d

dt
􏼠 􏼡 ψ2(t)( 􏼁

α− 1
E

c,δ,k,c

μ,α,l ωψ2(t)
μ
; p( 􏼁􏼔 􏼕

� ψ′2(t)ψ2(t)
α− 2

E
c,δ,k,c

μ,α− 1,l ωψ2(t)
μ
; p( 􏼁.

(11)

Proof. We have

d
dt

􏼠 􏼡 ψ2(t)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ωψ2(t)
μ
; p( 􏼁􏼔 􏼕 � 􏽘

∞

n�0

βp(c + nk, c − c)

β(c, c − c)

(c)nk

Γ(μn + α)

ωn(μn + α − 1) ψ2(t)( 􏼁
μn+α− 2ψ2′(t)

(l)nδ

� 􏽘
∞

n�0

βp(c + nk, c − c)

β(c, c − c)

(c)nk

Γ(μn + α − 1)

ωn ψ2(t)( 􏼁
μn+α− 2ψ2′(t)

(l)nδ
.

(12)

After simple computation, one can obtain (11).
Next, we give the generalized fractional Ostrowski type

inequality containing extended generalized Mittag–Leffler
function. □

Theorem 2. Let ψ1: I⟶ R, where I is an interval in R, be
a mapping differentiable in Io, the interior of I and a, b ∈ Io,

a< b. If ψ1 is an integrable function, |ψ1′(ψ2(t))|≤M for all
t ∈ [a, b] and ψ2: [a, b]⟶ R be an increasing and positive
function on (a, b], having continuous derivative ψ2′ on (a, b),
then for α, β≥ 1, the following inequality for fractional in-
tegrals (6) and (7) holds:

ψ1 ψ2(x)( 􏼁 ψ2(b) − ψ2(x)(( 􏼁
β− 1

E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 + ψ2(x) − ψ2(a)( 􏼁

α− 1
􏼌􏼌􏼌􏼌􏼌

× E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2

Υc,δ,k,c

μ,α− 1,l,ω,a+ψ1 ∘ψ2􏼒 􏼓(x; p) + ψ2
Υc,δ,k,c

μ,β− 1,l,ω,b− ψ1 ∘ψ2􏼒 􏼓(x; p)􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤M ψ2(x) − ψ2(a)( 􏼁
α

( × E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 + ψ2(b) − ψ2(x)( 􏼁

β
E

c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁

− ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,a+1􏼒 􏼓(x; p) + ψ2
Υc,δ,k,c

μ,β− 1,l,ω,b− 1􏼒 􏼓(x; p)􏼒 􏼓.

(13)

Proof. Let x ∈ [a, b], t ∈ [a, x], and α≥ 1. )en, the fol-
lowing inequality holds for the monotonically increasing
function ψ2 and the Mittag–Leffler function (1):

ψ2(x) − ψ2(t)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(t)( 􏼁
μ
; p( 􏼁ψ2′(t)≤ ψ2(x) − ψ2(a)( 􏼁

α− 1
E

c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁ψ2′(t). (14)

From (14) and given condition of boundedness of ψ1′,
one can have the following integral inequalities:

􏽚
x

a
M − ψ′1 ψ2(t)( 􏼁􏼐 􏼑 ψ2(x) − ψ2(t)( 􏼁

α− 1
E

c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(t)( 􏼁
μ
; p( 􏼁ψ′2(t)dt

≤ ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 􏽚

x

a
M − ψ1′ ψ2(t)( 􏼁( 􏼁ψ′2(t)dt,

(15)

􏽚
x

a
M + ψ1′ ψ2(t)( 􏼁( 􏼁 ψ2(x) − ψ2(t)( 􏼁

α− 1
E

c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(t)( 􏼁
μ
; p( 􏼁ψ2′(t)dt

≤ ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l 0 ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 􏽚

x

a
M + ψ1′ ψ2(t)( 􏼁( 􏼁ψ2′(t)dt.

(16)
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First, we consider inequality (15) as follows:

M 􏽚
x

a
ψ2(x) − ψ2(t)( 􏼁

α− 1
E

c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(t)( 􏼁
μ
; p( 􏼁ψ2′(t)dt − 􏽚

x

a
ψ2(x) − ψ2(t)( 􏼁

α− 1
E

c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(t)( 􏼁
μ
; p( 􏼁

· ψ1′ ψ2(t)( 􏼁ψ2′(t)dt

≤ ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 􏽚

x

a
M − ψ1′ ψ2(t)( 􏼁( 􏼁ψ2′(t)dt.

(17)

)erefore, (17) takes the following form after integrating
by parts and using derivative property (11) and a simple
computation:

ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁ψ1 ψ2(x)( 􏼁

− ψ2
Υc,δ,k,c

μ,α− 1,l,ω,a+
ψ1 ∘ψ2􏼒 􏼓(x; p)≤M ψ2(x) − ψ2(a)( 􏼁

α
(

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2

Υc,δ,k,c

μ,α− 1,l,ω,a+
1􏼒 􏼓(x; p)􏼓.

(18)

Similarly, adopting the same pattern from (16), one can
obtain

ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁ψ1 ψ2(x)( 􏼁

− ψ2
Υc,δ,k,c

μ,α− 1,l,ω,a+
ψ1 ∘ψ2􏼒 􏼓(x; p)≥ − M ψ2(x) − ψ2(a)( 􏼁

α

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2

Υc,δ,k,c

μ,α− 1,l,ω,a+
1􏼒 􏼓(x; p)􏼓.

(19)

From (18) and (19), the following inequality is obtained:

ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁ψ1 ψ2(x)( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,a+ψ1 ∘ψ2􏼒 􏼓(x; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤M ψ2(x) − ψ2(a)( 􏼁
α

( E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,a+1􏼒 􏼓(x; p)􏼓.

(20)

Now, on the contrary, we let x ∈ [a, b], t ∈ [x, b], and
β≥ 1. )en, the following inequality holds for Mittag–Leffler
function:

ψ2(t) − ψ2(x)( 􏼁
β− 1

E
c,δ,k,c

μ,β,l
ω ψ2(t) − ψ2(x)( 􏼁

μ
; p( 􏼁ψ2′(t)≤ ψ2(b) − ψ2(x)( 􏼁

β− 1
E

c,δ,k,c

μ,β,l
ω ψ2(b) − ψ2(x)( 􏼁

μ
; p( 􏼁ψ2′(t). (21)

From (21) and the condition of boundedness of ψ1′, one
can have the following integral inequalities:

􏽚
b

x
M − ψ1′ ψ2(t)( 􏼁( 􏼁 ψ2(t) − ψ2(x)( 􏼁

β− 1
E

c,δ,k,c

μ,β,l ω ψ2(t) − ψ2(x)( 􏼁
μ
; p( 􏼁ψ2′(t)dt

≤ ψ2(b) − ψ2(x)( 􏼁
β− 1

E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 􏽚

b

x
M − ψ1′ ψ2(t)( 􏼁( 􏼁ψ2′(t)dt,

(22)

􏽚
b

x
M + ψ1′ ψ2(t)( 􏼁( 􏼁 ψ2(t) − ψ2(x)( 􏼁

β− 1
E

c,δ,k,c

μ,β,l ω ψ2(t) − ψ2(x)( 􏼁
μ
; p( 􏼁ψ2′(t)dt

≤ ψ2(b) − ψ2(x)( 􏼁
β− 1

E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 􏽚

b

x
M + ψ1′ ψ2(t)( 􏼁( 􏼁ψ2′(t)dt.

(23)
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Following the same procedure as we did for (15) and (16),
one can obtain from (22) and (23) the following modulus
inequality:

ψ2(b) − ψ2(x)( 􏼁
β− 1

E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁ψ1 ψ2(x)( 􏼁 − ψ2Υ

c,δ,k,c

μ,β− 1,l,ω,b− ψ1 ∘ψ2􏼒 􏼓(x; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤M ψ2(b) − ψ2(x)( 􏼁
β
E

c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,β− 1,l,ω,b− 1􏼒 􏼓(x; p)􏼒 􏼓.

(24)

Inequalities (20) and (24) give (13) which is the required
inequality.

In the following, we give direct consequences of above
theorem. □

Corollary 1. If we put α � β in (13), then we get the following
fractional integral inequality:

ψ1 ψ2(x)( 􏼁 ψ2(b) − ψ2(x)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 + ψ2(x) − ψ2(a)( 􏼁

α− 1
× E

c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁

􏼌􏼌􏼌􏼌􏼌

− ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,a+ψ1 ∘ψ2􏼒 􏼓(x; p) + ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,b− ψ1 ∘ψ2􏼒 􏼓(x; p)􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤M ψ2(x) − ψ2(a)( 􏼁
α

× E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 + ψ2(b) − ψ2(x)( 􏼁

α
E

c,δ,k,c

μ,α,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁􏼒

− ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,a+1􏼒 􏼓(x; p) + ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,b− 1􏼒 􏼓(x; p)􏼒 􏼓􏼓.

(25)

Remark 1

(i) If we put ψ2(x) � x in (13), then we obtain)eorem
5 in [9]

(ii) If we put ω � p � 0 and ψ2(x) � x in (13), then we
obtain )eorem 1 in [6]

(iii) If we put α � β � 1, ψ2(x) � x, and ω � p � 0 in
(13), then we obtain Ostrowski inequality (10)

(iv) If we put ψ2(x) � x in (25), then we obtain Cor-
ollary 1 in [9]

)e next result is a general form of fractional Ostrowski
inequality containing generalized Mittag–Leffler function.

Theorem 3. Let ψ1: I⟶ R, where I is an interval in R, be
a mapping differentiable in Io, the interior of I and a, b ∈ Io,
a< b. If ψ1 is integrable function and m<ψ1′(ψ2(t))≤M for
all t ∈ [a, b] and ψ2: [a, b]⟶ R be an increasing and
positive function on (a, b], having continuous derivative ψ2′
on (a, b), then, for α, β≥ 1, the following inequalities for
fractional integrals (6) and (7) hold:

ψ1 ψ2(x)( 􏼁 ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2(b) − ψ2(x)( 􏼁

β− 1

× E
c,δ,k,c

μ,β,l
ω ψ2(b) − ψ2(x)( 􏼁

μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,a+ψ1 ∘ψ2􏼒 􏼓(x; p)

− ψ2Υ
c,δ,k,c

μ,β− 1,l,ω,b− ψ1 ∘ψ2􏼒 􏼓(x; p)􏼓≤M ψ2(x) − ψ2(a)( 􏼁
α

× E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,a+1􏼒 􏼓(x; p)) − m ψ2(b) − ψ2(x)( 􏼁
β

􏼐

× E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,β− 1,l,ω,b− 1􏼒 􏼓(x; p),

(26)

ψ1 ψ2(x)( 􏼁 ψ2(b) − ψ2(x)( 􏼁
β− 1

E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 − ψ2(x) − ψ2(a)( 􏼁

α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,a+ψ1 ∘ψ2􏼒 􏼓(x; p) − ψ2Υ
c,δ,k,c

μ,β− 1,l,ω,b− ψ1 ∘ψ2􏼒 􏼓(x; p)􏼒 􏼓

≤M ψ2(b) − ψ2(x)( 􏼁
β

× E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,β− 1,l,ω,b− 1􏼒 􏼓(x; p)􏼒 􏼓

− m ψ2(x) − ψ2(a)( 􏼁
α
E

c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,a+1􏼒 􏼓(x; p)􏼒 􏼓.

(27)
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Proof. )e proof is similar to the proof of )eorem 2, just
after comparing conditions on derivative of ψ1, so we left it
for the reader.

Some comments on the abovementioned result are given
as follows. □

Remark 2

(i) If we put ω � p � 0 and ψ2(x) � x in (26) and (27),
then we obtain )eorem 1 in [6]

(ii) If we put m � − M in )eorem 3, then with some
rearrangements we obtain )eorem 2

(iii) If we put ψ2(x) � x in (26) and (27), then we obtain
)eorem 6 in [9]

In the following, we have established a result related to
fractional Ostrowski inequality containing generalized
Mittag–Leffler function.

Theorem 4. Let ψ1: I⟶ R, where I is an interval in R, be
a mapping differentiable in Io, the interior of I and a, b ∈ Io,
a< b. If ψ1 is integrable function, |ψ1′(ψ2(t))|≤M for all
t ∈ [a, b]and and ψ2: [a, b]⟶ R be an increasing and
positive function on (a, b], then, for α, β≥ 1, the following
inequality for fractional integrals (6) and (7) holds:

ψ1 ψ2(b)( 􏼁 ψ2(b) − ψ2(x)( 􏼁
β− 1

E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 +ψ1 ψ2(a)( 􏼁

􏼌􏼌􏼌􏼌􏼌

· ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,β− 1,l,ω,x+ψ1°ψ2􏼒 􏼓(b; p) − ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,x− ψ1°ψ2􏼒 􏼓(a;p)􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤M ψ2(a) − ψ2(x)( 􏼁
α

× E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 + ψ2(b) − ψ2(x)( 􏼁

β
E

c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
;p( 􏼁􏼒

− ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,x− 1􏼒 􏼓(a; p) + ψ2Υ
c,δ,k,c

μ,β− 1,l,ω,x+1􏼒 􏼓(b; p)􏼒 􏼓􏼓.

(28)

Proof. Let x ∈ [a, b], t ∈ [a, x], and α≥ 1. )en, the fol-
lowing inequality holds true for Mittag–Leffler function:

ψ2(t) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(t) − ψ2(a)( 􏼁
μ
; p( 􏼁ψ2′(t)

≤ ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁ψ2′(t).

(29)

From (29) and given condition of boundedness on ψ1′,
one can have the following integral inequalities:

􏽚
x

a
M − ψ1′ ψ2(t)( 􏼁( 􏼁 ψ2(t) − ψ2(a)( 􏼁

α− 1
E

c,δ,k,c

μ,α,l ω ψ2(t) − ψ2(a)( 􏼁
μ
; p( 􏼁ψ2′(t)dt

≤ ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 􏽚

x

a
M − ψ1′ ψ2(t)( 􏼁( 􏼁ψ2′(t)dt,

(30)

􏽚
x

a
M + ψ1′ ψ2(t)( 􏼁( 􏼁 ψ2(t) − ψ2(a)( 􏼁

α− 1
E

c,δ,k,c

μ,α,l ω ψ2(t) − ψ2(t)( 􏼁
μ
; p( 􏼁ψ2′(t)dt

≤ ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 􏽚

x

a
M + ψ1′ ψ2(t)( 􏼁( 􏼁ψ2′(t)dt.

(31)

First, we consider inequality (30) as follows:

M 􏽚
x

a
ψ2(t) − ψ2(a)( 􏼁

α− 1
E

c,δ,k,c

μ,α,l ω ψ2(t) − ψ2(a)( 􏼁
μ
; p( 􏼁ψ2′(t)dt

− 􏽚
x

a
ψ2(t) − ψ2(a)( 􏼁

α− 1
E

c,δ,k,c

μ,α,l ω ψ2(t) − ψ2(a)( 􏼁
μ
; p( 􏼁ψ2′(t)ψ1′ ψ2(t)( 􏼁dt

≤ ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 􏽚

x

a
M − ψ1′ ψ2(t)( 􏼁( 􏼁ψ2′(t)dt.

(32)
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)erefore, (32) takes the following form after integrating
by parts and using derivative property (11) and a simple
computation

ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁ψ1 ψ2(a)( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,x− ψ1 ∘ψ2􏼒 􏼓(a; p)

≤M ψ2(x) − ψ2(a)( 􏼁
α

× E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,x− 1􏼒 􏼓(a; p)􏼒 􏼓.

(33)

Similarly, adopting the same pattern from (31), one can
obtain

ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁ψ1 ψ2(a)( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,x− ψ1 ∘ψ2􏼒 􏼓(a; p)

≥ − M ψ2(x) − ψ2(a)( 􏼁
α

× E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,x− 1􏼒 􏼓(a; p)􏼒 􏼓.

(34)

From (33) and (34), the following inequality is obtained:

ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁ψ1 ψ2(a)( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,x− ψ1 ∘ψ2􏼒 􏼓(a; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤M ψ2(x) − ψ2(a)( 􏼁
α

× E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
α

( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,x− 1􏼒 􏼓(a; p)􏼒 􏼓.

(35)

Now, on the contrary, we let x ∈ [a, b], t ∈ [x, b], and
β≥ 1. )en, the following inequality holds for Mittag–Leffler
function:

ψ2(b) − ψ2(t)( 􏼁
β− 1

E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(t)( 􏼁
μ
; p( 􏼁ψ2′(t)≤ ψ2(b) − ψ2(x)( 􏼁

β− 1

× E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁ψ2′(t).

(36)

From (36) and given condition of boundedness of ψ1′,
one can have the following integral inequalities:

􏽚
b

x
M − ψ1′ ψ2(t)( 􏼁( 􏼁 ψ2(b) − ψ2(t)( 􏼁

β− 1
E

c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(t)( 􏼁
μ
; p( 􏼁ψ2′(t)dt

≤ ψ2(b) − ψ2(x)( 􏼁
β− 1

E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 􏽚

b

x
M − ψ1′ ψ2(t)( 􏼁( 􏼁ψ2′(t)dt,

(37)

􏽚
b

x
M + ψ1′ ψ2(t)( 􏼁( 􏼁 ψ2(b) − ψ2(t)( 􏼁

β− 1
E

c,δ,k,c

μ,β,l
ω ψ2(b) − ψ2(t)( 􏼁

μ
; p( 􏼁ψ2′(t)dt

≤ ψ2(b) − ψ2(x)( 􏼁
β− 1

E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 􏽚

b

x
M + ψ1′ ψ2(t)( 􏼁( 􏼁ψ2′(t)dt.

(38)
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Following the same procedure as we did for (30) and
(31), one can obtain from (37) and (38) the following
modulus inequality:

ψ2(b) − ψ2(x)( 􏼁
β− 1

E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁ψ1 ψ2(b)( 􏼁 − ψ2Υ

c,δ,k,c

μ,β− 1,l,ω,x+ψ1 ∘ψ2􏼒 􏼓(b; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤M ψ2(b) − ψ2(x)( 􏼁
β

× E
c,δ,k,c

μ,β,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,β− 1,l,ω,x+1􏼒 􏼓(b; p)􏼒 􏼓.

(39)

Inequalities (35) and (39) give (28) which is required
inequality.

Some direct consequences of the above theorem are
given below. □

Corollary 2. If we put α � β in (28), then we get the following
fractional integral inequality:

ψ1 ψ2(b)( 􏼁 ψ2(b) − ψ2(x)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁 + ψ1 ψ2(a)( 􏼁

􏼌􏼌􏼌􏼌􏼌

· ψ2(x) − ψ2(a)( 􏼁
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,x+ψ1 ∘ψ2􏼒 􏼓(b; p) + ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,x− ψ1 ∘ψ2􏼒 􏼓(a; p)􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤M ψ2(x) − ψ2(a)( 􏼁
α

× E
c,δ,k,c

μ,α,l ω ψ2(x) − ψ2(a)( 􏼁
μ
; p( 􏼁 + ψ2(b) − ψ2(x)( 􏼁

α
E

c,δ,k,c

μ,α,l ω ψ2(b) − ψ2(x)( 􏼁
μ
; p( 􏼁􏼒

− ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,x− 1􏼒 􏼓(a; p) + ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,x+1􏼒 􏼓(b; p)􏼒 􏼓􏼓.

(40)

Remark 3

(i) If we put ψ2(x) � x in (28), then we obtain)eorem
5 in [9]

(ii) If we put ω � p � 0 and ψ2(x) � x in (28), then we
obtain )eorem 1 in [6]

(iii) If we put ψ2(x) � x in (40), then we obtain Cor-
ollary 2 in [9]

3. Applications

In this section, we just describe some applications of )e-
orem 4 and leave such applications of other results for the
reader. By applying )eorem 4 at end points of the interval
[a, b] and adding the resulting inequalities, one obtains the
error bounds of compact form of the fractional Hadamard
inequality.

Theorem 5. Under the assumptions of =eorem 4, the fol-
lowing estimation of Hadamard inequality can be obtained:

ψ1 ψ2(b)( 􏼁 + ψ1 ψ2(b)( 􏼁( 􏼁

2
ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,a+1􏼒 􏼓(b; p) −
1
2

ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,b− ψ1 ∘ψ2􏼒 􏼓􏼒 􏼒a; p) + ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,a+ψ1 ∘ψ2􏼒 􏼓(b; p)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
M

2
ψ2(b) − ψ2(a)

α
( 􏼁E

c,δ,k,c

μ,α,l ω ψ2(b) − ψ2(a)( 􏼁
μ
; p( 􏼁 −

M

2
ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,b− 1􏼒 􏼓􏼒 ( a; p)

+ ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,a+1􏼒 􏼓(b; p)􏼓􏼓.

(41)

Proof. By putting x � a, α � β, and x � b in (40) then
adding the resulting inequalities, we obtain

ψ1 ψ2(b)( 􏼁 + ψ1 ψ2(b)( 􏼁( 􏼁 ψ2(b) − ψ2(a)( 􏼁(a)
α− 1

E
c,δ,k,c

μ,α,l ω ψ2(b) − ψ2(a)( 􏼁
μ
; p( 􏼁

􏼌􏼌􏼌􏼌􏼌

− ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,b− ψ1 ∘ψ2􏼒 􏼓(a; p) + ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,a+ψ1 ∘ψ2􏼒 􏼓(b; p)􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤M ψ2(b) − ψ2(a)( 􏼁
α
E

c,δ,k,c

μ,α,l ω ψ2(b) − ψ2(a)( 􏼁
μ
; p( 􏼁 − ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,b− 1􏼒 􏼓(a; p) + ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,a+1􏼒 􏼓(b; p)􏼒 􏼓􏼓.

(42)
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Multiplying both sides of the above inequality by 1/2 and
using (8) and (9), inequality (41) can be obtained. □

Remark 4. If in (41) α is replaced by α + 1 and ω by
ω′ � ω/((g(b) − g(a))μ), then we get an error bound of the
Hadamard inequality given in )eorem 1 in [20].

Theorem 6. Under the assumptions of =eorem 4, the fol-
lowing inequality can be obtained:

ψ1 ψ2(b)( 􏼁 ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,b− 1􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

a + b

2
; p􏼠 􏼡 + ψ1 ψ2(a)( 􏼁 ψ2Υ

c,δ,k,c

μ,α− 1,l,ω,a+1􏼒 􏼓
a + b

2
; p􏼠 􏼡

− ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,(a+b/2)+ψ1 ∘ψ2􏼒 􏼓􏼒 􏼒b; p) + ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,(a+b/2)− ψ1 ∘ψ2􏼒 􏼓(a; p)􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤M ψ2
a + b

2
􏼠 􏼡 − ψ2(a)􏼠 􏼡

α

E
c,δ,k,c

μ,α,l ω ψ2
a + b

2
􏼠 􏼡 − ψ2(a)􏼠 􏼡

μ

; p􏼠 􏼡􏼠

+ ψ2(b) − ψ2
a + b

2
􏼠 􏼡􏼠 􏼡

α

E
c,δ,k,c

μ,α,l ω ψ2(b) − ψ2
a + b

2
􏼠 􏼡􏼠 􏼡

μ

; p􏼠 􏼡

− ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,(a+b/2)− 1􏼒 􏼓(a; p) + ψ2Υ
c,δ,k,c

μ,α− 1,l,ω,(a+b/2)+1􏼒 􏼓(b; p)􏼓􏼒 􏼓.

(43)

Proof. By putting x � (a + b)/2 for α � β in (40), (43) can be
obtained. □

4. Concluding Remarks

We have established generalized fractional integral in-
equalities of Ostrowski type. By applying boundedness of a
differentiable function and using properties of an extended
generalized Mittag–Leffler function different generalized
versions of Ostrowski type inequalities are analyzed. Also,
some deductions from results of this paper are connected
with already published results. Furthermore, all the results
can be calculated for fractional integral operators defined in
[2, 3, 5, 6, 27], and we left it for the reader.
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Olver–Rosenau equations presented by Olver and Rosenau can be rewritten to the dynamic system by the wave transformation.
+e system is a Hamiltonian systemwith the first integral, and its phase-space and equilibrium point analysis are given in different
parameter spaces in detail. On this basis, we can derive various solutions of the original equation relating these orbits in different
phase-space planes, and the theoretical basis of the numerical solution is provided for engineering application and
production practice.

1. Introduction

In recent years, nonlinear partial differential equations
(NLPDEs) are more and more extensively used to engi-
neering application and production practice. Because of the
difficulty of solving these equations, so many methods have
been presented in the last decades. +e Camassa–Holm
(CH) equation including the cubic term, that is, the
Fokas–Olver–Rosenau–Qiao (FORQ) equation,

σt +
1
2

v
2 ± vx( 􏼁

2
􏼐 􏼑σ􏽨 􏽩

x
� 0, σ � v ± vxx( 􏼁, (1)

has been studied for a long time and achieved so many
results, such as the solution of Cauchy initial value problem
[1], Holder continuous [2], the algebro-geometric solutions
[3], the Cauchy problem of the generalized equation [4], and
the nonuniqueness for the equation [5]. A lot of solving
methods for the nonlinear partial differential equation are
discussed to be applied in engineering and practice areas,
such as the sine-Gordon expansion method [6] and the
travelling wave method and its conservation laws [7], and so
many examples are in this regard. In this paper, the
Olver–Rosenau equation

σt � bvx +
1
2

v
2 ± vx( 􏼁

2
􏼐 􏼑σ􏽨 􏽩

x
, σ � v ± vxx( 􏼁, (2)

was discussed by Olver and Rosenau through a reshuffling
procedure of the Hamiltonian operators in 1996, and they
found that the equation was changed into the Hamiltonian
system by the bitransformation structure of the mKdV
equation [8]. Rosenau believed the nonanalytic solitary
waves of the equation in 1997 [9]. Later, the equation was
derived in 2013 [10]. +e resulting Hamiltonian equations
are considered by the dynamical system theory and a phase-
space analysis of their singular points. +ose results of the
study proved that the equations can support double com-
pacton solutions. +ey found that the new Olver–Rosenau
compactons are different from the well-known Rose-
nau–Hyman compacton and Cooper–Shepard–Sodano
compacton.

It was recently introduced by Li in [11], but Li did not
give the solution because of the complexity of the integral.
We will give more detailed discussion in this paper. In the
second section, we discuss bifurcations and phase por-
traits of the system in all parameters. In the third section,
smooth (or bright) solitary wave solutions of the system
and their parametric representations are obtained in
detail.

Let v � ϕ(x − ct) � ϕ(ζ); equation (2) follows from

− c ϕζ ± ϕζζζ􏼐 􏼑 � bϕζ +
1
2

ϕ2 ± ϕ2ζ􏼐 􏼑 ϕ ± ϕζζ􏼐 􏼑􏽨 􏽩ζ.
(3)
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Integrating once with respect to ζ and letting dϕ/dζ � ω,
equation (3) can be rewritten as

dω
dζ

� −
ϕ ϕ2 ± ω2 + 2(b + c)( 􏼁 + k

ω2 ± ϕ2 ± 2c
, (4)

which has the first integral

h(ϕ,ω) �
1
4
ϕ2 ± ω2

􏼐 􏼑
2

+(b + c)ϕ2 ± cω2
+ kϕ, (5)

where k is an integral constant.
Without loss of generality, we consider the case + instead

of “± .” Equation (5) is simplified as the dynamic system
dϕ
dζ

� ω,

dω
dζ

� −
ϕ ϕ2 + ω2 + 2(b + c)( 􏼁 + k

ω2 + ϕ2 + 2c
,

(6)

with the Hamiltonian

h(ϕ,ω) �
1
4
ϕ2 + ω2

􏼐 􏼑
2

+(b + c)ϕ2 + cω2
+ kϕ. (7)

Obviously, system (6) is a planar dynamical system with
three parameters depended on the parameter group (b, c,
and k). All possible phase portraits of (6) in the (ϕ,ω) phase
are discussed under the conditions of the different parameter
group (b, c, and k).

We notice that the right-hand side of the second
equation in (6) is not continuous, while ω2 + ϕ2 + 2c � 0. On
the circle line, ω2 + ϕ2 � − 2c, in the phase plane (ϕ,ω), ϕζζ is
not well defined. +is implies that differential system (6)
could have traveling wave solutions with nonsmoothness.

2. Phase Portraits of the System

Imposing the transformation dζ � (ω2 + ϕ2 + 2c)dτ, when
ω2 + ϕ2 + 2c≠ 0, equation (6) leads to associated regular
system

dϕ
dτ

� ω ω2
+ ϕ2 + 2c􏼐 􏼑,

dω
dτ

� − ϕ ϕ2 + ω2
+ 2(b + c)􏼐 􏼑 − k.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

+is system has the same first integral as equation (6).
Apparently, the singular curve ω2 + ϕ2 + 2c � 0 is related to
the singular solution of equation (8). Near the circumfer-
ence, the variable τ is a fast variable, while the variable ζ is a
slow variable in the sense of the geometric singular per-
turbation theory.

In order to find the equilibrium points of system (8), let
f(ϕ) � ϕ(ϕ2 + 2c + 2b) + k and f′(ϕ) � 0; we obtain ϕ1 �

−
�����������
(− 2/3)(b + c)

􏽰
and ϕ2 � −

�����������
(− 2/3)(b + c)

􏽰
if (b + c)< 0.

+e zero points of f(ϕ) are estimated by themonotonicity of
the function ϕ based on zero points of the derivative
function f′(ϕ). Let A � − 6(b + c), B � − 9k, and
C � (2c + 2b)2; then, the discriminant S � B2 − 4AC of the

cubic polynomialf(ϕ) � 0 is just that S � 81g2 + 96(b + c)3.
It is easy to see that, for given b and c when
k2 < k2

1 � (− 32/27)(b + c)3, we have S< 0. It follows that
there exist three simple real roots ϕ31, ϕ32, and ϕ33 of f(ϕ)

satisfying ϕ31 <ϕ1 <ϕ32 < ϕ2 <ϕ33.

If k2 � k2
1, there exist two simple real roots ϕ21 and ϕ22

of f(ϕ) satisfying ϕ21 � ϕ1 < ϕ2 < ϕ22
If k2 > k2

1, there exists one simple real root ϕ11
If A � B, there exists one simple real root ϕ � 0

On the singular circle line, there exist two equilibrium
points S∓ � (− k/(2b),∓Ys) of system (8) with
Ys �

������������
− k2/(4b2) − 2c

􏽰
if k2/(4b2) + 2c< 0.

Let M(ϕj, yj) be the Jacobi matrix of system (8) at an
equilibrium point Ej(ϕj, yj); we have

J ϕj,0􏼐 􏼑 � detM ϕj,0􏼐 􏼑 � 3ϕ4 +2(4c + b)ϕ2 +4bc +4c
2
,

J −
k

(2b)
,∓Ys􏼠 􏼡 � detM −

k

(2b)
,∓Ys􏼠 􏼡 � −

2k2

b2
+4b􏼠 􏼡Y

2
s .

(9)

By the theory of planar dynamical systems, for an
equilibrium point of a planar integrable system, if J< 0,
then the equilibrium point is a saddle point; if J> 0 and
(traceM)2 − 4J< 0(> 0), then it is a center point (a node
point); and if J � 0 and the Poincare index of the equi-
librium point is 0, then this equilibrium point is cusped (see
[12]).

Let hi � H(ϕi, 0) and hs � H(− k/(2b),∓Ys), where H

comes from equation (5).

(1) If S � 0, there exist two simple real roots, and then
k2 � k2

1 � (− 32/27)(b + c)3,ϕ21 � (3k)/(2(b + c)),ϕ22
� − (3k)/(4(b + c)).

(i) When b> 0 and − 4b< c< − b, (ϕ21, 0) is a saddle
point. (ϕ22, 0) is the high-order singular point,
see Figure 1.

(ii) When c< − 4b< 0 or b< 0, c< − b, (ϕ21, 0) is a
center point. (ϕ22, 0) is the high-order singular
point, see Figures 2 and 3.

(2) If A � B, there exists only one simple real root ϕ � 0,
and then k � (2/3)(b + c).

(i) When b> 0, − b< c< 0 or b< 0, and 0< c< − b,
(0, 0) is a saddle point from the high-order
singular point, see Figures 4 and 5.

(ii) When b> 0, c> 0 (Figure 6) or b> 0, c< − b

(Figure 7) or b< 0, c> − b (Figure 8) or b< 0,
c< 0 (Figure 9), (0, 0) is a center point from the
high-order singular point.

(3) If S< 0, there exist three simple real roots, and then
k2 < k2

1 � (− 32/27)(b + c)3, ϕ31 � (− 2/3)
��������
− 6(b + c)

􏽰

cos(θ/3), ϕ32 � (1/3)
��������
− 6(b + c)

􏽰
(cos(θ/3) +

�
3

√
sin

(θ/3)), and ϕ33 � (1/3)
��������
− 6(b + c)

􏽰
(cos(θ/3) −

�
3

√

sin(θ/3)), where θ � arccosT, T � (27k)/(2(− 6
(b + c))3/2).
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Figure 5: (0, 0) is a saddle point from the high-order singular point
(b< 0, 0< c< − b).

Figure 6: (0, 0) is a center point from the high-order singular point
(b> 0, c> 0).

Figure 1: One is a saddle point, and another is a high-order
singular point (b> 0 and − 4b< c< − b).

Figure 2: One is a center point, and another is a high-order
singular point (c< − 4b< 0).

Figure 3: One is a center point, and another is a high-order
singular point (b< 0, c< − b).

Figure 4: (0, 0) is a saddle point from the high-order singular point
(b> 0, − b< c< 0).
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(i) When b + c< 0, b> 2c, (ϕ31, 0), (ϕ32, 0), and
(ϕ33, 0) are centers. (− k/(2b),∓Ys) are saddle
points, see Figure 10.

(ii) When b + c< 0, b< 2c, (ϕ31, 0), (ϕ32, 0), and
(ϕ33, 0) are centers. (− k/(2b),∓Ys) are saddle
points, see Figure 11.

(4) If S> 0, there exists one simple real root, and then
k2 > k2

1 � (− 32/27)(b + c)3 and ϕ11 � (− 1/3)(Y1/3
1

+ Y1/3
2 ), where Y1 � (3/2)(9k +

��������������

81k2 + 96(b + c)3
􏽱

)

and Y2 � 3/2(9k −

��������������

81k2 + 96(b + c)3
􏽱

).

(i) When b< 0, c< 0, (ϕ11, 0) is a center, see
Figure 12.

(ii) When b> 0, c> 0, (ϕ11, 0) is also a center, see
Figure 13.

We obtain four class figures totally including 13 phase
portraits under the conditions of different parameters. An
orbit in a figure is related to Hamiltonian h of equation (7).
An orbit derives a class solution of system (6), and at the
same time, it is appropriative to the original partial differ-
ential equation. In the next section, we mainly consider how
to solve system (6).

3. Smooth (Bright) SolitaryWave Solutions and
Their Parametric Representations

As we know, system (6) for a fixed integral constant h has an
explicit solution. However, the scope of value h is calculated
by different orbits corresponding to different parameter
conditions in the phase portraits from Figures 1 to 13.

ω2
� 2

��������������

h + c2 − bϕ2 − kϕ
􏽱

− ϕ2 + 2c􏼐 􏼑,

dϕ
dζ

� ω �

��������������������������

2
��������������

h + c2 − bϕ2 − kϕ
􏽱

− ϕ2 + 2c( 􏼁

􏽲

.

(10)

To write this equation as integral form,

􏽚
dϕ

��������������������������

2
��������������

h + c2 − bϕ2 − kϕ
􏽱

− ϕ2 + 2c( 􏼁

􏽲 � 􏽚 dζ .
(11)

As it is very difficult to solve the left integral directly, we
believe that square root F � h + c2 − bϕ2 − kϕ plays a critical
role in our discussion. If F is a perfect square of the function
ϕ, we can obtain analytical solution because of the simplicity
of the integral. If F is a complete square, then the algebraic
expression in the first root in the above formula becomes
rational, and the integration is relatively easy solution.

3.1. Analytical Solution. Supporting that

F � h + c
2

− bϕ2 − kϕ � − b ϕ +
k

2b
􏼠 􏼡

2

, (12)

If we want to remove the second root sign of equation (11), we
must make F to be complete square, and the necessary and
sufficient condition for F to be completely square is also given:

Figure 8: (0, 0) is a center point from the high-order singular point
(b< 0, − b< c).

Figure 9: (0, 0) is a center point from the high-order singular point
(b< 0, 0> c).

Figure 7: (0, 0) is a center point from the high-order singular point
(b> 0, c< − b).
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􏽚
dϕ

��������������

D − (ϕ −
���
− b

√
)2

􏽱 � 􏽚 dζ , (13)

where D � b2 + 2c ± 2
�����
h + c2

√
≥ 0 and − D +

���
− b

√
< ϕ<D

+
���
− b

√
, b< 0. After integrating, we obtain (C is an integral

constant)

ϕ −
���
− b

√

��������������

D − (ϕ −
���
− b

√
)2

􏽱 � tan(x − c∗ t + C). (14)

3.2. Approximate Solution. If F �

��������������

h + c2 − bϕ2 − kϕ
􏽱

is not
a rational function, the integral of equation (11) is
very difficult to be calculated directly. If F cannot be
expressed as a complete square, we can only carry out Taylor
expansion of F; otherwise, equation (13) cannot calculate the
integral, and the solution of the original equation cannot be
obtained.While we need to approximate nonlinear function,
our right choice is the Taylor display:

(1 + x)
α

� 1 + αx +
α(α − 1)

2!
x
2

+ · · ·

+
α(α − 1 · · · (α − n + 1))

n!
+ Rn(x),

(15)

where the remainder

Rn(x) �
α(α − 1) · · · (α − n)

(n + 1)!
(1 + θx)

α− n+1
(0< θ< 1),

F �

��������������

h + c2 − bϕ2 − kϕ
􏽱

� h +
k2

4b
− b ϕ +

k

2b
􏼠 􏼡

2
⎛⎝ ⎞⎠

1/2

�
4b h + c2( 􏼁 + k2

4b
− b ϕ +

k

2b
􏼠 􏼡

2
⎛⎝ ⎞⎠

1/2

�
1
2

�������������

4b h + c2( 􏼁 + k2

b

􏽳

1 −
4b2

4bh + 4bc2 + k2
ϕ +

k

2b
􏼠 􏼡

2
⎛⎝ ⎞⎠

1/2

.

(16)

Figure 10: +ree singular points are centers, and another is saddle
(b + c< 0, b> 2c).

Figure 11: +ree singular points are centers, and another is saddle
(b + c< 0, b< 2c).

Figure 12: b< 0, c< 0, and (ϕ11, 0) is a center.

Figure 13: b> 0, c> 0, and (ϕ11, 0) is also a center.
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Let 4b2/(4b(h + c2) + k2) � A; Taylor expansion is
��������������

h + c2 − bϕ2 − kϕ
􏽱

�

��
b

A

􏽲

1 − A ϕ +
k

2b
􏼠 􏼡

2
⎛⎝ ⎞⎠

1/2

�

��
b

A

􏽲

1 −
1
2

A ϕ +
k

2b
􏼠 􏼡

2

+ R2(x)⎡⎣ ⎤⎦,

(17)

generally satisfying |A(ϕ + (k/2b))2|< 1,

R2(x) �
1/2(1/2 − t1)

2
1 + θA ϕ +

k

2b
􏼠 􏼡

2
⎛⎝ ⎞⎠

1/2

·

��������������

h + c2 − bϕ2 − kϕ
􏽱

≈
��
b

A

􏽲

1 −
1
2

A ϕ +
k

2b
􏼠 􏼡

2
⎡⎣ ⎤⎦.

(18)

Error |d|≤ (1/8)(1 + Aθ(ϕ + (k/2b)))1/2.

dϕ
dζ

�

����������������������������

2
��
b

A

􏽲

−
���
bA

√
ϕ +

k

2b
􏼠 􏼡

2

− ϕ2 + 2c( 􏼁

􏽶
􏽴

, (19)

that is,

􏽚
dϕ

�������������������������������������������������������

−
���
bA

√
k2/4b2) + 1( )ϕ2 −

���������������������������������
(A/b)kϕ − k2/4b2) + 2

�����
(b/A)

􏽰
+ 2c � dζ.􏼐

􏽱

􏼒

􏽲
(20)

Let A1 � − (
���
bA

√
(k2/4b2) + 1), B1 � −

�����
(A/k)

􏽰
k, and

C1 � − (k2/4b2) + 2
���
b/A

√
+ 2c; then the above equation of

the integral becomes

􏽚
dϕ

��������������

A1ϕ
2 + B1ϕ + C1

􏽱 � dζ. (21)

Approximation solution of system (6) is

ln
1
2
B1 + A1ϕ􏼒 􏼓 +

��������������

A1ϕ
2 + B1ϕ + C1

􏽱

�
���
A1

􏽰
∗ (x − c∗ t).

(22)

v � ϕ(x − c∗ t) is the approximation solution of the
original equation.

If the order of Taylor expansion of F is higher, the ac-
curacy of the solution will be higher.

4. Conclusion

We obtain some exact solutions and some approximation
solutions of the Olver–Rosenau equation by the dynamic
systemmethod.+e original equation considered by the first
integral method and its phase-space analysis and equilib-
rium points are calculated under different parameter con-
ditions. We can derive various solutions of the original
equation relating these orbits in different phase-space
planes. Nevertheless, as there are some troubles in the course
of the calculation of these solutions because of the integral
complexity, we need to find some numerical methods for the

equation. +e precision differs from the variable order of
Taylor expansion.
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In recent years, much attention has been paid to the role of degenerate versions of special functions and polynomials in
mathematical physics and engineering. In the present paper, we introduce a degenerate Euler zeta function, a degenerate digamma
function, and a degenerate polygamma function. We present several properties, recurrence relations, infinite series, and integral
representations for these functions. Furthermore, we establish identities involving hypergeometric functions in terms of de-
generate digamma function.

1. Introduction

(e gamma, digamma, and polygamma functions have an
increasing and recognized role in fractional differential
equations, mathematical physics, the theory of special
functions, statistics, probability theory, and the theory of
infinite series. (e reader may refer, for example, to [1–9].
(ese functions are directly connected with a variety of
special functions such as zeta function, Clausen’s function,
and hypergeometric functions. (e evaluations of series
involving Riemann zeta function ζ(s) and related functions
have a long history that can be traced back to Christian
Goldbach (1690–1764) and Leonhard Euler (1707–1783)
(see, for details, [10]). (e Euler zeta function and its
generalizations and extensions have been widely studied
[11–15].

Later on, these functions arise in the study of matrix-
valued special functions and in the theory of matrix-valued
orthogonal polynomials, see e.g., [16–23] and the references
therein.

Motivated by this great importance of these functions,
their investigations and generalizations to the degenerate

framework have been widely considered in the literature, for
instance, [24–27].

In this section, we present some basic properties and
well-known results on a degenerate gamma function which
we need in this work. In Section 2, we introduce a degenerate
Euler zeta function and discuss its region of convergence,
integral representation, and infinite series representation. In
Section 3, we define a degenerate digamma function along
with its region of convergence and integral representation.
We also give certain recurrence relations and formulae
satisfied by the degenerate digamma function. In Section 4,
we define a degenerate polygamma function and describe its
convergence conditions. Some recurrence relations satisfied
by the degenerate polygamma function are also given here.
Finally, in Section 5, the hypergeometric functions are
expressed in terms of the degenerate digamma function.

In [26], a degenerate gamma function, denoted Γ∗λ , has
been defined by

Γ∗λ(z) � 􏽚
∞

0
(1 + λ)

− t/λ
t
z− 1dt, λ ∈ (0, 1),Re(z)> 0.

(1)
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(e basic results of this function, given in [26], can be
summarized in the following lemma.

Lemma 1. Let λ ∈ (0, 1). 1en, for z ∈ C with
Re(z)> 0, Γ∗λ(z) satisfies

Γ∗λ(z + 1) �
λz

log(1 + λ)
Γ∗λ(z),

Γ∗λ(1) �
λ

log(1 + λ)
,

(2)

Γ∗λ(z + 1) �
λk+1z(z − 1) · · · (z − k)

(log(1 + λ))k+1 Γ
∗
λ(z − k), k≥ 0,

(3)

Γ∗λ(k + 1) �
λk+1k!

(log(1 + λ))k+1, k ∈ N. (4)

Also, we can easily show that

Corollary 1. Let λ ∈ (0, 1). 1en, Γ∗λ(z) satisfies

Γ∗λ(z) �
λ

log(1 + λ)
􏼢 􏼣

z

Γ(z), z ∈ C,Re(z)> 0, (5)

where Γ(z) is the gamma function. Moreover, for m, n ∈N,
we have

Γ∗λ(m)Γ∗λ(n) � B(m, n)Γ∗λ(m + n), (6)

where B(., .) is the beta function.

2. Degenerate Euler Zeta Function

(e Euler zeta function in two complex variables s, z such
that Re(s)> 0 and Re(z)> 0 is defined by (see [12, 24])

ζE(s, z) � 2 􏽘
∞

n�0

(− 1)n

(n + z)s. (7)

An integral representation of ζE(s, z) is given as

ζE(s, z) � Γ− 1
(s) 􏽚
∞

0
F(− t, z)t

s− 1dt, (8)

where

F(t, z) �
2ezt

1 + et
� 􏽘

∞

n�0
En(z)

tn

n!
, (9)

where En(z) is the Euler polynomial of degree n. When
z � 0, En � En(0) are Euler numbers (see, [12, 14]). Kim in
[14] obtained that ζn(− n, z) � En(z), n≥ 0.

In this section, we consider a degenerate analogue of the
Euler zeta function which is given as

ζEλ
(s, z) � Γ− 1(s) 􏽚

∞

0
Fλ(− t, z)t

s− 1dt, (10)

where λ ∈ (0, 1), s, z ∈ C with Re(s)> 0,Re(z)> 0, and

Fλ(t, z) �
2

1 +(1 + λ)t/λ(1 + λ)
zt/λ

� 􏽘

∞

n�0
E

λ
n(z)

tn

n!
. (11)

By (9) and (11), it follows that

E
λ
n(z) �

λ
ln(1 + λ)

􏼠 􏼡

n

En(z), (12)

which is the degenerate Euler polynomial of degree n.
From (10) and (11), we obtain that

Γ− 1
(s) 􏽚
∞

0
Fλ(− t, z)t

s− 1dt � Γ− 1
(s) 􏽚
∞

0
2 􏽘
∞

m�0
(− 1)

m
(1 + λ)

− (m+z)t/λ
t
s− 1dt

� 2Γ− 1
(s) 􏽘

∞

m�0
(− 1)

m
􏽚
∞

0
(1 + λ)

− τ/λ τs− 1

(m + z)s dτ

� 2
Γ∗λ(s)

Γ(s)
􏽘

∞

m�0
(− 1)

m 1
(m + z)s.

(13)

(us, using (10) and (13), we conclude the following
result.

Theorem 1. For s, z ∈ C with Re(s)> 0,Re(z)> 0, and
λ ∈ (0, 1), the degenerate Euler zeta function ζEλ

(s, z) defined
in (10) has the following infinite series representation:

ζEλ
(s, z) � 2

Γ∗λ(s)

Γ(s)
􏽘

∞

m�0
(− 1)

m 1
(m + z)s. (14)

Moreover, in view of (5), we have

ζEλ
(s, z) � ζE(s, z) λ

ln(1+λ)
􏼐 􏼑

s
, (15)

where ζE(s, z) is the Euler zeta function defined by (7).

Furthermore, from (11), it follows

Γ− 1
(s) 􏽚
∞

0
Fλ(− t, z)t

s− 1dt � Γ− 1
(s) 􏽘

∞

m�0
E

λ
n(z)

(− 1)m

m!
􏽚
∞

0
t
s+m− 1dt.

(16)

Hence, we obtain the following results.
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Theorem 2. For s, z ∈ C with Re(s)> 0,Re(z)> 0, and
λ ∈ (0, 1), the degenerate Euler zeta function ζEλ

(s, z), de-
fined in (10), satisfies

ζEλ
(s, z) � Γ− 1(s) 􏽘

∞

m�0
E

λ
n(z)

(− 1)m

m!
􏽚
∞

0
t
s+m− 1dt. (17)

And for n ∈ N∪ 0{ },

ζEλ
(− n, z) �

2πi(− 1)n

n!Γ(− n)
E

λ
n � E

λ
n(z). (18)

Remark 1. Note that ζEλ
(s, z) is an entire function in the

complex s− plane.

Remark 2.
lim
λ⟶0

ζEλ
(− n, z) � En(z) � ζE(− n, z). (19)

3. Degenerate Digamma Function

(e digamma function, denoted by ψ(z), is the logarithmic
derivative of the gamma function given by [6, 16, 28]:

ψ(z) �
d
dz

log Γ(z) �
Γ′(z)

Γ(z)
. (20)

In this section, we define a degenerate digamma function
as follows:

ψ∗λ(z) �
d
dz

log Γ∗λ(z) �
Γ∗′λ(z)

Γ∗λ(z)
, (21)

where Γ∗λ(z) is the degenerate gamma function defined by
(1). Now, we are going to obtain certain functional equations
involving the degenerate digamma function ψ∗λ(z). Using
(2) and (21), it follows that

ψ∗λ(z + 1) �
Γ∗′λ (z + 1)

Γ∗λ(z + 1)
�

zΓ∗λ(z)( 􏼁′
zΓ∗λ(z)

�
Γ∗′λ (z)

Γ∗λ(z)
+
1
z

� ψ∗λ(z) +
1
z

,

Re(z)> 0.

(22)

Generally, we have the following.

Theorem 3. For n ∈ N, z ∈ C, andRe(z)> 0, we have

ψ∗λ(z + n) � ψ∗λ(z) + 􏽐
n− 1

m�0

1
z + m

. (23)

Furthermore, using relation (5), we find that

ψ∗λ(z) � ψ(z) + log
λ

log(1 + λ)
􏼠 􏼡, (24)

where ψ is the digamma function defined by (20). According
to Batir [28], we have

ψ(z) � − c + 􏽐
∞

n�0

z − 1
(n + 1)(n + z)

, (25)

where

c � limn⟶∞ 􏽘

n

k�1

1
k

− log n⎛⎝ ⎞⎠ � − 0.577215 (26)

is the Euler–Mascheroni constant. Hence, substituting (25)
into (24), one gets the following.

Theorem 4. For z ∈ C, Re(z)> 0, and λ ∈ (0, 1),

ψ∗λ(z) � log
λ

log(1 + λ)
􏼠 􏼡 − limn⟶∞ log n − 􏽐

n

j�0

1
z + j

⎡⎣ ⎤⎦,

(27)

ψ∗λ(z) � log
λ

log(1 + λ)
􏼠 􏼡 − c +(z − 1) 􏽐

∞

n�0

1
(n + 1)(n + z)

,

(28)

ψ∗λ(z + 1) � log
λ

log(1 + λ)
􏼠 􏼡 − c + z 􏽐

∞

n�1

1
n(n + z)

. (29)

Next, the degenerate digamma function ψ∗λ(z) defined
by (21) can be expressed as a series expression in terms of
Riemann’s zeta function. Using

(n + z)
− 1

� n
− 1

􏽘

∞

m�0

− z

n
􏼒 􏼓

m

, (30)

equation (29) can be rewritten as

ψ∗λ(z + 1) � log
λ

log(1 + λ)
􏼠 􏼡 − c − 􏽘

∞

n�1
􏽘

∞

m�1
n

− (m+1)
(− z)

m
.

(31)
(us, one gets the following.

Theorem 5. For z ∈ C,Re(z)> 0, and λ ∈ (0, 1),

ψ∗λ(z + 1) � log
λ

log(1 + λ)
􏼠 􏼡 − c − 􏽘

∞

m�1
ζ(m + 1)(− z)

m
.

(32)

Note that these series converge absolutely for |z|< 1.
Using the Legendre duplication formula [29]

Γ
1
2

􏼒 􏼓Γ(2z) � 22z− 1Γ(z)Γ z +
1
2

􏼒 􏼓 (33)

and (5), one can simply find

Γ∗λ
1
2

􏼒 􏼓Γ∗λ(2z) � 22z− 1Γ∗λ(z)Γ∗λ z +
1
2

􏼒 􏼓 , (34)

ψ∗λ(2z) � log 2 +
1
2
ψ∗λ(z) +

1
2
ψ∗λ z +

1
2

􏼒 􏼓, Re(z)> 0.

(35)

Equation (35) can be extended to an arbitrary integral
multiplication of z as follows.
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Theorem 6. For z ∈ C,Re(z)> 0, and λ ∈ (0, 1),

ψ∗λ(mz) � logm +
1
m

􏽘

m

j�1
ψ∗λ z +

j − 1
m

􏼒 􏼓, Re(z)> 0.

(36)

Figures 1–3 illustrate the degenerate digamma function
ψ∗λ(z) in (24) at different values for λ ∈ (0, 1).

Remark 3. Its worth to mention here that all plotted
functions in the below figures were multiplied by sinx, since
Fourier space, for the sake of clarify the results to the reader.

Now, we are going to find the integral representations for
the degenerate digamma function ψ∗λ(z), defined by (21), as
follows. Note that

􏽚
1

0
1 − t

z− 1
􏼐 􏼑(1 − t)

− 1dt � 􏽘
∞

n�0
􏽚
1

0
1 − t

z− 1
􏼐 􏼑t

ndt

� (z − 1) 􏽘
∞

n�0

1
(n + 1)(n + z)

.

(37)

Hence, using (28) and (37), it can be shown that

ψ∗λ(z) � − c + log
λ

log(1 + λ)
􏼠 􏼡 + 􏽚

1

0
1 − t

z− 1
􏼐 􏼑(1 − t)

− 1dt.

(38)

Now, substituting t � (1 + λ)− s/λ in (37) gives

ψ∗λ(z) � − c + log
λ

log(1 + λ)
􏼠 􏼡 +

log(1 + λ)

λ

× 􏽚
∞

0
(1 + λ)

− t/λ
− (1 + λ)

− zt/λ
􏽨 􏽩 1 − (1 + λ)

− t/λ
􏽨 􏽩

− 1
dt.

(39)

Since

z− 1 �
log(1 + λ)

λ
􏽚
∞

0
(1 + λ)

− zt/λdt (40)

and by integrating from 1 to n, it follows that

log n � 􏽚
∞

0
􏽚

n

1
(1 + λ)

− zt/λ
· log (1 + λ)

1/λdzdt

� 􏽚
∞

0
􏽚

n

1

1
t
dz(1 + λ)

− zt/λdt

� 􏽚
∞

0

1
t

(1 + λ)
− t/λ

− (1 + λ)
− nt/λ

􏽨 􏽩dt.

(41)

Inserting (41) and

(z + j)− 1 �
log(1 + λ)

λ
􏽚
∞

0
(1 + λ)

− (z+j)t/λdt (42)

in (27), we get

ψ∗λ(z) � log
λ

log(1 + λ)
􏼠 􏼡 + lim

n⟶∞
􏽚
∞

0
(1 + λ)

− t/λ
− (1 + λ)

− nt/λ
􏼐 􏼑

1
t

− 􏽘

n

j�0

log(1 + λ)

λ
(1 + λ)

− (z+j)t/λ⎡⎢⎢⎣ ⎤⎥⎥⎦dt

� log
λ

log(1 + λ)
􏼠 􏼡 + lim

n⟶∞
􏽚
∞

0
(1 + λ)

− t
λt

− 1
−
log(1 + λ)

λ
(1 + λ)

− zt
λ 1 − (1 + λ)

− t
λ􏼔 􏼕

− 1
􏼨 􏼩dt

− lim
n⟶∞

􏽚
∞

0
(1 + λ)

− nt
λ t

− 1
−
log(1 + λ)

λ
(1 + λ)

− zt
λ 1 − (1 + λ)

− t
λ􏼔 􏼕

− 1
􏼨 􏼩dt.

(43)

Since the last limit equals to zero, it follows

ψ∗λ(z) � log
λ

log(1 + λ)
􏼠 􏼡 + 􏽚

∞

0

1
t
(1 + λ)

− t/λ
􏼔

−
log(1 + λ)

λ
1 − (1 + λ)

− t/λ
􏼐 􏼑

− 1
(1 + λ)

− zt/λ
􏼣dt.

(44)

(e following theorem summarizes the above results.

Theorem 7. For z ∈ C, Re(z)> 0, and λ ∈ (0, 1), the de-
generate digamma function ψ∗λ(z), defined by (10), can be
expressed as (38), (39) as well as (44).

4. Degenerate Polygamma Function

(e polygamma function of order m is obtained by taking
the (m + 1)th derivative of the logarithm of gamma function
(cf. [28]). (us,

ψ(m)(z) �
dm

dzm
ψ(z) �

dm+1

dzm+1 log Γ(z), Re(z)> 0.

(45)

In this section, we define the degenerate polygamma
function of order m as

ψ∗ (m)
λ (z) �

dm

dzm
ψ∗λ(z) �

dm+1

dzm+1 log Γ
∗
λ(z), Re(z)> 0,

(46)
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Figure 1: Absolute plots of the degenerate digamma function. (a) λ� 0.1. (b) λ� 0.5. (c) λ� 1.0.
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where Γ∗λ(z) is the degenerate gamma function defined by
(1) and ψ∗λ(z) is the degenerate digamma function defined
by (21).

By (24), it follows that

ψ∗ (m)
λ (z) � ψ(m)(z), Re(z)> 0. (47)

Using (44), an integral representation for ψ∗ (m)
λ (z),

given in the next theorem, can be obtained.

Theorem 8. Let λ ∈ (0, 1) and m ∈ N. 1en, for z ∈ C with
Re(z)> 0, the degenerate polygamma function ψ∗ (m)

λ (z),
defined by (46), can be expressed as
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Figure 2: Real-part plots of the degenerate digamma function. (a) λ� 0.1. (b) λ� 0.5. (c) λ� 1.0.
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Figure 3: Imagery-part plots of the degenerate digamma function. (a) λ� 0.1. (b) λ� 0.5. (c) λ� 1.0.
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ψ∗ (m)
λ (z) � (− 1)

m log(1 + λ)

λ
􏼠 􏼡

m+1

× 􏽚
∞

0
t
m 1 − (1 + λ)

− t/λ
􏽨 􏽩

− 1
(1 + λ)

− zt/λdt.

(48)

1e following recurrence relations for the degenerate
polygamma function ψ∗ (m)

λ (z) defined by (47) can be ob-
tained from (22)–(24), (35), and (36) as the following.

Theorem 9. For z ∈ C, Re(z)> 0, λ ∈ (0, 1), and m ∈ N,
the recurrence relations hold true:

ψ∗ (m)
λ (z + 1) � ψ∗ (m)

λ (z) +
(− 1)mΓ(m + 1)

zm+1 ,

ψ∗ (m)
λ (1 − z) � (− 1)mψ∗ (m)

λ (z) +(− 1)mπ d
dz

􏼐 􏼑
m
cot(πz),

ψ∗ (m)
λ (z + n) � ψ∗ (m)

λ (z) + 􏽐
n− 1

k�0

(− 1)mΓ(m + 1)

(z + k)m+1 ,

ψ∗ (m)
λ (2z) �

1
4
ψ∗ (m)
λ (z) +

1
4
ψ∗ (m)
λ z +

1
2

􏼒 􏼓,

ψ∗ (m)
λ (nz) �

1
nm+1 􏽘

n

k�1
ψ∗ (m)
λ z +

k − 1
n

􏼠 􏼡, Re(z)> 0.

(49)

From (25), a series representation of the degenerate
polygamma function ψ∗ (m)

λ (z) is given in the following result.

Theorem 10. For z ∈ C,Re(z)> 0, λ ∈ (0, 1), and m ∈ N,
we have

ψ∗ (m)
λ (z) � (− 1)m+1Γ(m + 1) 􏽐

∞

n�0

1
(z + n)m+1. (50)

Remark 4. (e degenerate polygamma function
ψ∗ (m)
λ (z) can be expressed in terms of the generalized zeta

function

ζ(m, z) � 􏽐
∞

n�0
(z + n)− m

(51)

as

ψ∗ (m)
λ (z) � (− 1)mΓ(m + 1)ζ(m + 1, z). (52)

Finally, using (32), a series representation in terms of the
Riemann zeta function can be obtained, see the following
result.

Theorem 11. For z ∈ C,Re(z)> 0, λ ∈ (0, 1), and m ∈ N,
we have

ψ∗ (m)
λ (z + 1) � 􏽘

∞

n�0
(− 1)

m+n+1Γ(m + n + 1)ζ(m + n + 1)
zn

n!
,

m, n ∈ N.

(53)

5. Applications

Let z ∈ C with Re(z)> 0 and n ∈ N. (en, it can be verified
that

3F2

(− n + 2), z + 1, 1

z +(n + 1), 2
; 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

z + n

z(− n + 1)
× 2F1

(− n + 1), z

z + 1
; 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ − 1⎛⎝ ⎞⎠.

(54)

Now, we can directly use the integral transform of Gauss
hypergeometric function (see [29]) and the formulae:

Γ
1
2

􏼒 􏼓Γ(2z) � 22z− 1Γ(z)Γ z +
1
2

􏼒 􏼓, Re(z)> 0, (55)

2F1
(− n + 2), z

z + 1
; 1􏼢 􏼣 � 2− z Γ(z + n)Γ(n − (1/2))

Γ((z/2) + n)Γ((z/2) +(n − (1/2)))
,

Re(z)> 0.

(56)

Using (54) in (56) and L’Hôpital rule for complex
numbers with applying equation (24) yields the following
identity in terms of the degenerate digamma function:

3F2

(− n + 2), z + 1, 1

z +(n + 1), 2
; 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

z + 1
z

× ψ∗λ
1
2

􏼒 􏼓 + ψ∗λ(z + 1) − ψ∗λ
1
2

(z + 1)􏼒 􏼓 − ψ∗λ
1
2

z + 1􏼒 􏼓􏼔 􏼕, Re(z)> 0. (57)
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Similarly, we can present another identity involving
hypergeometric function in terms of our degenerate
digamma function in the following form:

4F3

1, 1, 1, − n

2, 2, z + 1
; 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × ψ∗λ(n + 2) − log

λ
log(1 + λ)

􏼠 􏼡􏼠 􏼡 ψ∗λ(z + n + 1) − ψ∗λ(z)( 􏼁􏼢

− 􏽘
n

s�1

ψ∗λ(s + 1) − log(λ/log(1 + λ))

z + 1
⎤⎦, Re(z)> 0.

(58)
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,is research endeavors the rheological features of Oldroyd-B fluid configured by infinite stretching disks in presence of velocity
and thermal slip features. Additionally, the effects of homogeneous and heterogeneous chemical features are also considered. ,e
transmuted flow equations are analytically solved with help of the homotopy analysis method (HAM). It is observed that the
homogeneous chemical reaction parameter enhances the concentration distribution, while the heterogeneous reaction reduces the
concentration profile.With implementations of temperature jump conditions, the heat transfer from the surfaces of both disks can
be effectively controlled. ,e impacts of various dimensionless parameters are elaborated through graphs and tables.

1. Introduction

,e fluid flow between stretching disks is the main moti-
vation of investigators in recent years due to its leading
applications in turbine engines, compression, mechanical
components transient loading, semiconductor
manufacturing, rotating wafers, injection modeling, power
transmission, viscometer, lubrications, radial diffusers,
geophysics, biomechanics, geothermal, oceanography,
thrust bearings, etc. ,e usage of microdevices has many
practical applications in different scientific areas such as
surgery, biotechnology, electronic cooling, microchannels,
heat pipes, and pumps. ,e heat and fluid flow character-
istics are different for both microdevices and macroscale
counterparts. ,is difference is constituted by velocity slip
and temperature jump. ,e velocity slip is an important

feature to analyze the behavior of microflows because no-slip
boundary conditions are not applicable to the fluid flow in
microelectro-mechanical-systems (MEMS). Also, no-slip
boundary conditions show the impractical behavior for the
cases such as corner flow, spreading of liquid on a solid
substrate, and extrusion of polymer melts from a capillary
tube. ,erefore, no-slip boundary condition is replaced by
slip boundary condition. Further, in the slip flow regime,
temperature jump is significantly used to determine the heat
transfer. Because of such applications of slip flow, many
interesting contributions have been made by investigators in
recent years. For instance, Zheng et al. [1] investigated the
stretched flow of viscous fluid in presence of velocity as well
as thermal slip features. ,e peristaltic transport of Carreau
fluid through a channel with various flow features with
application of velocity slip, temperature, and concentration
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jump has been inspected by Vajravelu et al. [2]. Khan et al.
[3] discussed the double diffusion slip flow of viscous fluid
over a vertical plate. Xiao et al. [4] presented a mathematical
model for fully developed slip flow in a microtube gas
problem. ,is interesting continuation contains the velocity
slip of order two and the assumptions of temperature jump
constraints. ,ey claimed an effective change up to 15% in
the local Nusselt number at room temperature. Similar slip
effects have been performed by Rooholghdos and Roohi [5]
for a nanoscale flat plate and a microscale cylinder. Another
useful contribution regarding the gas flow associated with
thermal slip conditions was examined by Le and Roohi [6].
,e peristaltic transport of viscous fluid in an asymmetric
channel in presence of velocity and temperature boundary
conditions has been discussed by Sinha et al. [7]. El-Aziz and
Afify [8] examined the heat transfer characteristics for slip
flow of Casson fluid subjected to the induced magnetic field.
Khan et al. [9] determined the analytical solution based on
the Galerkin technique for an upper convected flow of
Maxwell fluid in presence of slip features. Muhammad et al.
[10] examined the entropy generation aspects in the flow of
nanofluid under the action of the second-order slip. ,e
investigation for fractional Maxwell fluid in presence of slip
effects and porous medium was performed by Aman et al.
[11].

,e fluid flow encountered the heat transportation
process conveying a diverse engineering and industrial
significance in the metal cooling, petroleum engineering,
chemical processing, food industries, thermophysical sys-
tems, fiber spinning, manufacturing of metallic sheets, and
various nuclear processes. Besides this, the thermal per-
formance of disc-shaped bodies had engaged many scholars
because of its practical applications in the era of aeronautical
sciences. Many engineering and mechanical processes like
thermal power generation and heat transfer to automatic
control systems encountered the applications of these
phenomena. Due to such recurrent applications, several
researchers investigate the flow over or flow between two
disks. ,e initial contribution on this topic was led by
Kármán and Uber [12] by considering viscous fluid flow
between two infinite disks. ,is study was further extended
by many researchers with different flow features. Hayat et al.
[13] studied the heat transfer characteristics based on the
Fourier law of conduction in third-grade liquid configured
by two porous disks. Turkyilmazoglu [14] simulated the
numerical solution of hydromagnetic fluid flow near the
stagnation point subject to disk rotation. Heat transfer
analysis in the hydromagnetic fluid flow caused by a rotating
shrinking disk was also performed numerically by Tur-
kyilmazoglu [15]. Soid et al. [16] applied the numerical
technique to observe heat transfer phenomenon in viscous
fluid for a radially stretching disk. Yin et al. [17] examined
the flow thermal characteristics of nanofluid flow due to a
rotating disk. Turkyilmazoglu [18] numerically examined
the flow of Newtonian fluid through a vertically moving disk.
Hashmi et al. [19] analytically explored the mixed convec-
tion flow of Oldroyd-B fluid placed between isothermal
stretching disks. ,e idea of flow over stretching surfaces is
extremely useful and involved a large number of practical

applications in manufacturing processes [20–23]. ,e
spontaneous idea of flow due to a moving surface was
originally advised by Sakiadis [24, 25] which encouraged the
investigators to pay attention in this direction. ,e exact
solution for a stretching flow problem was successfully
provided by Wang [26]. Another investigation in this di-
rection has been suggested by Fang [27] which conferred the
viscous fluid flow induced due to a stretched disk. In another
attempt, Fang and Zhang [28] derived an exact solution
based on the mathematical formulation of Navier Stokes
equations modeled in cylindrical coordinates. In fact, such
type of flow between two infinite stretching disks arises due
to accelerated stretching velocity. Gorder et al. [29] dis-
cussed the axisymmetric flow between two infinite stretching
disks. Mohyud-Din and Khan [30] implemented effects of
nonlinear thermal radiation in flow of Casson fluid concedes
between two stretching disks. Slip flow in presence of
thermo-diffusion effects in flow of viscous fluid between
stretching disks was suggested by Rashidi and his coworkers
[31]. Analytical solution based on the homotopy analysis
method for flow of viscous fluid through a stretchable disk
has been depicted by Khan et al. [32]. In another investi-
gation, Khan et al. [33] examined the viscous dissipation and
joule heating effects on the axisymmetric flow of viscous
fluid between stretching disks. Khan et al. [34] studied the
entropy generation effects on flow of carbon nanotubes
between two rotating and stretching disks. ,e heat transfer
analysis based on Cattaneo–Christov heat flux expressions
for the flow of micropolar fluid induced by a nonlinear
stretching disk was focused by Doh et al. [35]. Renuka et al.
[36] computed an analysis solution for the flow of nanofluid,
additionally featuring entropy generation features induced
by a stretchable spinning disk.

In the recent decade, the study of combined heat and
mass transportation has inspired the scientists to examine
various aspects of the simultaneous phenomenon due to its
arising applications in the real-world problems like reacting
systems, cooling towers, marine engineering, distillation
columns, hydrometallurgical industry, crop damage via
freezing, and copse of trees. ,e collaboration amongst
homogeneous and heterogeneous responses happening on
some catalytic surfaces is correlated with the production and
employment of chemical species at diverse rates within the
fluid and on the catalytic surfaces. Merkin [37] developed a
very useful mathematical model to explore the relationship
between a surface-based reaction and homogeneous and
heterogeneous reactions. Another useful contribution is
from Kameswaran et al. [38] where flow of nanoparticles is
immersed in a porous medium with additional features of
binary chemical reactions. Rashidi et al. [31] address the
effects of homogeneous/heterogeneous on a peristaltic
transport in a channel. Hayat et al. [39] implemented the
effects of second-order velocity slip to examine the flow of
chemical reactive viscous nanofluid induced by a permeable
stretching surface.

In this present analysis, our focus is to evaluate the
driven transport of Oldroyd-B fluid considered within two
infinite stretching disks in presence of homogeneous and
heterogeneous reactions. Unlike typical studies, here the
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idea of second-order velocity slip and temperature jump
boundary conditions has been implemented. According to
the literature survey, no attempt has been made by re-
searchers for such analysis and is presented for the first time.
,e present flow problem is utilized in presence of applied
magnetic field effects which are useful in the industry of
metal-working, chemical reactors, plasmamaterials, modern
metallurgical, oil exploration, and extraction of geothermal
energy. ,e analytical solutions of such transmuted flow
equations are determined by employing the homotopy
analysis method [40–45]. ,e accuracy of this method is
successfully obtained and expressed in a tabular form. Fi-
nally, the important feature effective parameters are
graphically underlined and discussed for some velocity,
temperature, and concentration profiles with technical
relevance.

2. Mathematical Modeling

We consider a two-dimensional flow of Oldroyd-B due to
infinite stretching disks. Let flow be axisymmetric and
considered fluid be incompressible. ,e velocity slip and
temperature jump are also considered at the walls of

stretchable disks. A magnetic field with strength B0 is im-
posed in z-direction. ,e effects of electric and induced
magnetic fields are neglected. It is assumed that both lower
and upper disks are maintained at temperature T1 and T2,
respectively. Following Merkin and Chaudhary [46], the
mathematical expressions repressing the homogeneous-
heterogeneous reactions are expressed as

A + 2B⟶ 3B, rate � kcαβ
2
. (1)

,e isothermal, first-order reaction associated with a
catalyst surface is represented as

A⟶ B, rate � ksα, (2)

where α and β stand for concentrations of chemical species
and A, B, kc, and ks denote the rate constants. In the present
analysis, both reactions are treated as processes which are
isothermal. ,e analysis is performed by opting a cylindrical
coordinate (r, θ, z). All the involved expressions are inde-
pendent of θ due to axisymmetry. ,e constitutive partial
differential equations for Oldroyd-B fluid in presence of
chemical reactions are expressed as
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where u and w are the radial and axial components of
velocities, respectively, p is the pressure, ρ is the fluid
density, μ stands for dynamic viscosity of fluid, ] � (μ/ρ)

represents the kinematic viscosity, a and c are the
stretching constants, λ1′ is the constant of relaxation, λ2′ is
the retardation time, T is the temperature, K is the thermal
diffusivity, and DA, DB are the diffusion species coefficient
of A and B.

2.1. Slip Boundary Conditions. As it has been mentioned
earlier that the present flow problem is assisted with slip

boundary conditions. For the velocity profile, the derivation
of second-order velocity slip is based on the expansion of
Taylor series from the first-order Maxwell conditions which
are generally expressed as

u � uw +
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For the present analysis, we propose the following
second-order boundary conditions:
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(10)

where a and b represent the stretching rates, σu is the
tangential momentum accommodation coefficient, and τ1
denotes the molecular mean-free path. It is a well-estab-
lished fact that the molecular mean-free path is assumed
positive, i.e., ϵ1 > 0 and. ϵ2 < 0.

2.2. Temperature Jump Boundary Conditions. By using
Taylor series second-order expansion for Kn from the first

order, Smoluchowski jump condition second-order jump
conditions are proposed in [6] as follows:
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,e second-order temperature jump boundary condi-
tions associated with the governing equations are
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where σT is the thermal accommodation coefficient and ξ is
the specific heat ratio.,e other boundary conditions for the
flow problem are prescribed by

α � α0 at z � 0, DA

zα
zz

� ksα at z � d,

β � 0 at z � 0, DB

zβ
zz

� − ksα at z � d.

(13)

Introducing the similarity variables,

u � −
ar

2
H′(η),

w � a dH(η),

p � aμ P(η) +
β1r2

4d2􏼠 􏼡,

η �
z

d
,

T � T1 + T2 − T1( 􏼁θ(η),

α � α0φ(η),

β � α0g(η),

T � T1 + T2 − T1( 􏼁θ(η),

α � α0φ(η),

β � α0g(η).

(14)
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In view of the above similarity variables, equations
(4)–(10) yield

R

2
H′2 − 2HH″􏼐 􏼑 � − β1 + H

‴
+ λ1′aR HH′H″ − H

2
H
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+ λ2′a HH
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− H″2􏼐 􏼑􏽩 + RM H′ + λ1′aHH″( 􏼁,

(15)

θ″ − RPrHθ′ � 0, (16)

φ″ − RSc K1φg
2

+ Hφ′􏼐 􏼑 � 0, (17)

δg″ + RSc K1φg
2

+ Hg′􏼐 􏼑 � 0, (18)

P′ �
3H″
2

− RHH′ − λ1RH
2
H″, (19)

H(0) � 0,

H(1) � 0,
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(0)􏼒 􏼓,

(20)

H′(1) � − 2c − ϵ1H″(0) + ϵ2H
‴

(0)􏼒 􏼓, P(0) � 0, (21)

θ(0) � ϵ3θ′(0) + ϵ4θ″(0),

θ(1) � 1 − ϵ3θ′(1) + ϵ4θ″(1)( 􏼁,
(22)

φ(0) � 1,

φ′(1) � K2φ(1),

g(0) � 0,

δg′(1) � − K2g(1),

(23)

where c is the wall stretching parameter, R stands for the
Reynolds number, Pr is the Prandtl number, ϵ1 is the
first-order velocity slip parameter, M is the Hartmann
number, ϵ2 is the second-order velocity slip parameter, ϵ3
is the first-order temperature jump parameter, ϵ4 stands
for temperature jump parameter of the second order, Sc
represents the Schmidt number, δ is the ratio of the
diffusion coefficient, Kn denotes the Knudsen number,
K1 is the strength of the homogeneous reaction, and K2 is
the strength of the heterogeneous reaction and is
defined as
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(24)

,e constant β1 has been eliminated from equation (15)
as the following procedure:

H
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� RHH
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− λ1R − HH′H‴ − H
2
H

(iv)
+ HH″2 + H′2H″􏼒 􏼓

− MR H″ + λ1 H′H″ + HH
‴

􏼒 􏼓􏼔 􏼕

− λ2 − 2H″H‴ + H′H(iv)
+ HH

(v)
􏼒 􏼓,

(25)

in which λ1 � λ1′a is the Deborah number for relaxation time
and λ2 � λ2′a for the retardation time. It is pointed out here
that the diffusion coefficients of chemical species A and B are
not equal in general. So, we remarked that constants A and B

are of comparable size as a special case and subsequently DA

and DB are equal, i.e., δ � 1. Equations (16) and (17) lead to
the following relation:

φ + g � 1,

φ″ − RSc K1φ(1 − φ)
2

+ Hφ′􏼐 􏼑 � 0,

φ(0) � 1,

φ′(1) � K2φ(1).

(26)

Following mathematical expressions are suggested for
the wall skin friction coefficient, local Nusselt number, and
local Sherwood number at both surfaces of disks:
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(27)

3. Solution Methodology

To start our simulations, first we introduce the following
initial guesses for velocity, temperature, and concentration
profiles:

H0(η) �
1

8ϵ1 + 12ϵ21
− 2η(1 + η) − 1 + η(1 + c)((

+ 2ϵ1(− 2 + η + c(1 + η)) − 6ϵ2(1 + η)􏼁􏼁,

θ0(η) �
η + ϵ3
1 + 2ϵ3

,

φ0(η) �
− 1 + K2(1 − η)

− 1 + K2
,

(28)

with auxiliary linear operators:

LH �
d4

dη4
,

Lθ �
d2

dη2
,

Lφ �
d2

dη2
.

(29)

,e mathematical expressions associated with the ze-
roth-order deformation problem are defined as

(1 − q)LH H(η; q) − H0(η)􏼂 􏼃 � qZHNH[H(η; q)],

(1 − q)Lθ θ(η; q) − θ0(η)􏼂 􏼃 � qZθNθ[θ(η; q)],

(1 − q)Lφ φ(η; q) − φ0(η)􏼂 􏼃 � qZφNφ[φ(η; q)],

(30)

where ZH, Zθ, and Zφ denote the auxiliary parameters and
q ϵ [0, 1] represents the embedding parameter. And,
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,e equations for the m-th deformations of the problem
are

LH Hm(η) − χmHm− 1(η)􏼂 􏼃 � ZHR1m(η),

Lθ θm(η) − χmθm− 1(η)􏼂 􏼃 � ZθR2m(η),

Lφ φm(η) − χmφm− 1(η)􏼂 􏼃 � ZφR3m(η),

Hm(0) � Hm(1) � 0,

Hm
′ (0) � ϵ1Hm

″(0) + ϵ2H
′′′
m(0)􏼒 􏼓, Hm

′ (1) � − ϵ1Hm
″(1) + ϵ2H

′′′
m(1)􏼒 􏼓,

θm(0) � ϵ3θm
′ (0) + ϵ4θm

″ (0)( 􏼁,

θ(1) � − ϵ3θm
′ (1) + ϵ4θm

″ (1)( 􏼁,

φm(0) � 0,

φm
′ (1) � K2φm(1),

χm �
0, m≤ 1,

1, m> 0.
􏼨

(32)

,e series solution is computed iteratively for
m � 1, 2, 3, . . . using MATHEMATICA software.

4. Convergence of Solution

In order to obtain the comfortable accuracy of the homo-
topic solution, the significance of auxiliary parameters
cannot be denied.,is task has been completed by preparing
three h-curves, organized for velocity, temperature, and
concentration profiles for some dignified values of emerging
parameters. ,e admissible values of such parameter
guaranteed the convergence of the solution. ,e conver-
gence of the derived series solution is controlled by auxiliary
parameters ZH, Zθ, and Zφ. ,erefore, we have sketched the
Z-curves in Figure 1 to determine the admissible values of
ZH, Zθ, and Zφ. ,ese figures reveal that the convergence
region lies within the domain
− 0.8≤ ZH ≤ − 0.2, − 1.5≤ Zθ ≤ − 0.4, and − 1.4≤ Zφ ≤ − 0.7.

In Table 1, the computations have been performed to
illustrate the convergence of the obtained solution for
H″(0), θ′(0), and φ′(0) at various approximations. Close
observations to the table suggest that accuracy of the so-
lution has been obtained at the 15th order of approximations.

5. Physical Interpretations of Results

In this section, the effects of various arising parameters on
radial and vertical velocity components, pressure, temper-
ature, and concentration fields are discussed with relevant
physical significances.

5.1. Dimensionless Velocity and Pressure Profiles.
Figure 2(a) shows the impact of the Hartmann numberM on
the velocity vertical component by keeping other parameters
fixed. ,e interface of stronger magnetic force is more
valuable to decay the motion of fluid particles. A small
increment in velocity was observed first which decreases up
to a certain height. Physically, as M increases, the Lorentz

force boosts up which resists the flow of liquid due to which
velocity decay occurs. ,erefore, the presence of magnetic
field combats the transport phenomena and subsequently
diminishes the vertical velocity. ,e effects of wall stretching
parameter c on the velocity profile are shown in Figure 2(b).
,e vertical velocity component rises up with a variation of
c. However, a change in the radial component is not similar
to vertical components. Here, velocity increases at a specific
range and then gradually decreases. Figure 2(c) delineates
the significance of the Deborah number in terms of relax-
ation time λ1 on vertical and radial component of velocities.
A rise in the vertical component of velocity is observed for
larger values of the Deborah number; however, the radial
component of velocity decreases smoothly after a small
increment. ,e variation of material parameter λ2 on both
vertical and radial velocity components is illustrated in
Figure 2(d). ,e reverse trend is observed as compared to λ1
for both components. We observe from Figures 2(e) and 2(f )
that when we increase of first- and second-order velocity slip
constants (ϵ1, ϵ2), the vertical velocity component also in-
creases. Physically, with increase of velocity slip parameters,
the stretching velocity affects the movement of fluid so
velocity profiles get maximum values. Moreover, the am-
plitude of radial velocity increases up to a specific range due
to the difference of the stretching rate. Figures 2(g) and 2(h)
show that the skin friction coefficient increases with increase
of both slip parameters. It is scrutinized from Figure 2(i) that
pressure decreases in the whole domain by increasing values
of the Hartmann number M. It is found from Figure 2(j) that
decay in pressure is observed by increasing the velocity slip
parameter.

5.2. Dimensionless Temperature Profile. In Figures 3(a) and
3(b), the dimensionless temperature θ(η) is plotted to study
the impact of the velocity slip parameter. ,e temperature
decreases by increasing both velocity slip parameters. It is
elucidated from Figures 3(c) and 3(d) that the distribution of
temperature θ boosts up due to alteration of the first- and
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second-order temperature jump parameters. Physically, due
to slip effect, more flow penetrates through the thermal
boundary with an increase in temperature jump parameters.
Figure 3(e) accomplishes the significance of the Prandtl
number Pr on the temperature profile. ,e impression Pr
declined the temperature of the fluid effectively. ,e di-
mensionless number Pr depends upon thermal diffusivity
which decreases by increasing Pr. ,erefore, a decline in the
temperature field is observed. ,us, higher values of Pr
correspond to lower thermal diffusivity and subsequently
declining temperature distribution. Figure 3(f) exhibits the
dominant effect of the Hartmann number M on the tem-
perature profile. As expected, the temperature of fluid in-
creases by increasing M. Physically, the applied magnetic
field produces the Lorentz force, which creates a drag force
which has a tendency to enhance the temperature of the fluid
between both disks.

5.3. Dimensionless Concentration Profile. Taking into ac-
count of the concentration profile φ, the effects for various
parameters are encountered. First, we consider the variation
of the homogeneous reaction K1 on φ. An increase in K1
results in diminishing of the concentration profile
(Figure 4(a)). Figure 4(b) shows the consequence of het-
erogeneous reaction parameter K2 on the concentration
profile. ,e rate of mass transfer is enhanced by increasing
K2. Figure 4(c) shows that the rate of mass transfer solely
decreases by varying Schmidt number Sc. Sc has an inverse
relation with molecular diffusivity which decreases by in-
creasing Sc. ,e variation of different values of the strengths
of the homogeneous parameter K1 and heterogeneous re-
action parameter K2 on wall concentration on both disks is
shown in Figures 5 and 6, respectively. ,ese figures indicate
that values of φ′(0) and φ′(1) increase by increasing K1
while contradictory behavior is noted for K2.
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Figure 1: Z-curves for (a) ZH, (b) Zθ, and (c) Zφ with R � 2, c � 0.5, M � 0.3, K2 � 0.2,Pr � 0.5, λ1 � λ2 � 0.2, K1 � 0.5, Sc � 0.2, ϵ1 �

0.2, ϵ2 � 0.3, ϵ3 � 0.3, and ϵ4 � 0.5..

Table 1: ,e HAM convergence at different order of approximations.

Approximation H″(0) θ′(0) φ′(0)

07 6.89132 0.499908 0.214794
10 6.89123 0.499907 0.215223
13 6.89122 0.499906 0.215228
14 6.89121 0.499905 0.215215
15 6.89120 0.499905 0.215215
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Figure 2: (a)–(f) Graphs of vertical and radial components of velocity, (g)-(h) graphs of for skin friction, and (i)-(j) graphs of pressure for
different values of c � 0.5, ZH � − 0.5, Zθ � − 1.2, Zφ � − 1.0, M � 0.3, R � 5, ϵ1 � 0.5, ϵ2 � 0.2, λ1 � 0.2, and λ2 � 0.5. (a) Effects of the
Hartmann number, (b) effects of the stretching parameter, (c) effects of the Deborah number of relaxation, (d) effects of the Deborah
number of retardation, (e) effects of the first-order velocity slip parameter, (f ) effects of the second-order velocity slip parameter, (g)
influence of the first-order velocity slip parameter on the skin friction coefficient, (h) influence of the second-order velocity slip parameter
on the skin friction coefficient, (i) Influence of Hartmann number on pressure (j) Influence of first-order velocity slip parameter on pressure.
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Figure 3: Temperature profile with c � 0.5, ZH � − 0.5, Zθ � − 1.2, Zφ � − 1.0, M � 0.3, R � 5, ϵ1 � ϵ2 � 0.2, ϵ3 � 0.3, ϵ4 � 0.5, λ1 �

0.2, and λ2 � 0.5. (a) Influence of the first-order velocity slip parameter, (b) influence of the second-order velocity slip parameter, (c)
variation of the first-order temperature jump parameter, (d) variation of the second-order temperature jump parameter, (e) variation of the
Hartmann number, and (f) variation of the Prandtl number.
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Figure 4: Continued.
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5.4. Local Nusselt Number. Table 2 aims to elaborate the
iterative numerical variation in the local Nusselt number
against involved fluid parameters. We found that with the
increase in the velocity slip parameter, the temperature
profile at the lower disk increases. ,e heat transfer rate
decreases by increasing the Hartmann number M at the
lower disk. However, opposite values forM are observed for
the upper disk. Such observations are made as both disks are
stretched with different velocities.

6. Conclusions

In this work, a chemically reactive flow of Oldroyd-B fluid
subject to stretchable disks is considered in presence of
homogeneous and heterogeneous chemical reactions. ,e
homogeneous-heterogeneous reactions are considered in
the concentration equation. ,e physical features are vi-
sualized for various involved parameters graphically. ,e
important observations are summarized as follows:
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Figure 5: Influence of strength of the homogeneous reaction.
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Figure 4: Concentration distribution for c � 0.5, ZH � − 0.5, Zθ � − 1.2, Zφ � − 1.0, M � 0.3, R � 2, ϵ1 � ϵ2 � 0.2, ϵ3 � 0.3, ϵ4 � 0.5, λ1 � 0.2,

and λ2 � 0.2. (a) Influence of strength of the homogeneous reaction, (b) influence of strength of the heterogeneous reaction, and (c)
influence of strength of the Schmidt number.
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Figure 6: Influence of strength of the heterogeneous reaction.
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(i) ,e velocity distribution increases with variation of
slip parameters while it decreases with the Deborah
number for retardation time.

(ii) ,e concentration distribution declines with in-
crement of the Schmidt number and the homoge-
neous reaction while effects of the heterogeneous
reaction parameter are quite reverse.

(iii) ,e temperature distribution increases by increas-
ing the Hartmann number while lower temperature
distribution is observed for larger values of the
Prandtl number.

(iv) ,e presence of first- and second-order velocity slip
results in an increment in the wall shear stress.

Data Availability

No data were used to support this study.

Conflicts of Interest

,e authors declare no conflicts of interest.

References

[1] L. Zheng, C. Zhang, X. Zhang, and J. Zhang, “Flow and ra-
diation heat transfer of a nanofluid over a stretching sheet
with velocity slip and temperature jump in porous medium,”
Journal of the Franklin Institute, vol. 350, no. 5, pp. 990–1007,
2013.

[2] K. Vajravelu, S. Sreenadh, and R. Saravana, “Combined in-
fluence of velocity slip, temperature and concentration jump
conditions on MHD peristaltic transport of a Carreau fluid in
a non-uniform channel,” Applied Mathematics and Compu-
tation, vol. 225, pp. 656–676, 2013.

[3] W. A. Khan, J. Uddin, and A. L. Ismail, “Hydrodynamic and
thermal slip effect on double-diffusive free convective
boundary layer flow of a nanofluid past a flat vertical plate in

the moving free stream,” PLoS One, vol. 8, no. 3, Article ID
e54024, 2013.

[4] N. Xiao, J. Elsnab, and T. Ameel, “Microtube gas flows with
second-order slip flow and temperature jump boundary
conditions,” International Journal of �ermal Sciences, vol. 48,
no. 2, pp. 243–251, 2009.

[5] S. A. Rooholghdos and E. Roohi, “Extension of a second order
velocity slip/temperature jump boundary condition to sim-
ulate high speed micro/nanoflows,” Computers & Mathe-
matics with Applications, vol. 67, no. 11, pp. 2029–2040, 2014.

[6] N. T. P. Le and E. Roohi, “A new form of the second-order
temperature jump boundary condition for the low-speed
nanoscale and hypersonic rarefied gas flow simulations,”
International Journal of �ermal Sciences, vol. 98, pp. 51–59,
2015.

[7] A. Sinha, G. C. Shit, and N. K. Ranjit, “Peristaltic transport of
MHD flow and heat transfer in an asymmetric channel: effects
of variable viscosity, velocity-slip and temperature jump,”
Alexandria Engineering Journal, vol. 54, no. 3, pp. 691–704,
2015.

[8] M. A. El-Aziz and A. A. Afify, “Influences of slip velocity and
induced magnetic field on MHD stagnation-point flow and
heat transfer of Casson fluid over a stretching sheet,”
Mathematical Problems in Engineering, vol. 2018, Article ID
9402836, 11 pages, 2018.

[9] Z. Khan, H. U. Rasheed, S. Noor et al., “Analytical solution of
UCM viscoelastic liquid with slip condition and heat flux over
stretching sheet: the Galerkin approach,” Mathematical
Problems in Engineering, vol. 2020, Article ID 7563693,
7 pages, 2020.

[10] R. Muhammad, M. I. Khan, N. B. Khan, and M. Jameel,
“Magnetohydrodynamics (MHD) radiated nanomaterial
viscous material flow by a curved surface with second order
slip and entropy generation,” Computer Methods and Pro-
grams in Biomedicine, vol. 189, Article ID 105294, 2020.

[11] S. Aman, Q. Al-Mdallal, and I. Khan, “Heat transfer and
second order slip effect on MHD flow of fractional Maxwell
fluid in a porous medium,” Journal of King Saud University-
Science, vol. 32, no. 1, pp. 450–458, 2020.
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Recently, Laĺın, Rodrigue, and Rogers have studied the secant zeta function and its convergence. 1ey found many interesting
values of the secant zeta function at some particular quadratic irrational numbers. 1ey also gave modular transformation
properties of the secant zeta function. In this paper, we generalized secant zeta function as a Lambert series and proved a result for
the Lambert series, from which the main result of Laĺın et al. follows as a corollary, using the theory of generalized Dedekind eta-
function, developed by Lewittes, Berndt, and Arakawa.

1. Introduction

1e Dedekind eta-function and its limiting values have been
considered by several authors starting from Riemann’s
posthumous fragment [1] and Wintner [2] and later by
Reyna [3] and Wang [4]. 1ere are many generalizations of
the Dedekind eta-function as a Lambert series including
those of Lewittes [5], Berndt [6], and Arakawa [7, 8]. In
particular cases, they reduce to the cotangent or the cosecant
zeta function. Lerch [9] in 1904 introduced the cotangent
zeta function for an algebraic irrational number z and an odd
positive integer s as

ξ(z, s) :� 􏽘
∞

n�1

cot(nπz)

ns
. (1)

He stated the following functional equation for the
cotangent zeta function, but without proof.

Theorem 1 (see [9]). For any algebraic irrational number z
and sufficiently large positive integer k � k(z), we have

ξ(z, 2k + 1) + z
2kξ

1
z

, 2k + 1􏼒 􏼓 � (2π)
2k+1ϕ(z, 2k + 1),

(2)

where

ϕ(z, n) :� 􏽘
n+1

i�0

BiBn+1− j

j!(n + 1 − j)!
z

j− 1
, (3)

where Bi is the i-th Bernoulli number.

Berndt [10], in 1973, focused on the cotangent zeta function
for general s ∈ C and proved Lerch’s functional equation for
cotangent zeta function. He found many interesting explicit
formulae for ξ(z, s) when z is a quadratic irrational and s≥ 3 is
an odd integer. One such pleasing formula is

ξ
1 +

�
5

√

2
, 3􏼠 􏼡 � −

π3

45
�
5

√ . (4)

In fact, Berndt’s work implies that
�
j

􏽰
ξ(

�
j

􏽰
, s)π− s ∈ Q,

where j is any positive integer and s≥ 3 is an odd integer.

2. Secant Zeta Function

Recently, Laĺın et al. [11] considered the secant zeta function

ψ(z, s) :� 􏽘
∞

n�1

sec(nπz)

ns
(5)

and found its special values at some particular quadratic
irrational arguments. 1ey proved the following results.
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Theorem 2 (see [11], 1eorem 1). :e series (5) is absolutely
convergent in the following cases:

(1) When z � p/q is a rational number with q odd and
s> 1.

(2) When z is an algebraic irrational number and s≥ 2.

To prove this theorem, they have used the celebrated
1ue–Siegel–Roth theorem.

Theorem 3 (see [11], 1eorem 3). Let Em denote the Euler
numbers and let Bm denote the Bernoulli numbers. Suppose that
l is an even positive integer. :en, for appropriate values of α,

(α + 1)
l− 1ψ

α
α + 1

, l􏼒 􏼓 − (− α + 1)
l− 1ψ

α
− α + 1

, l􏼒 􏼓

�
(πi)l

l!
􏽘

l

n�0
2n− 1

− 1􏼐 􏼑BnEl− n

l

n

⎛⎝ ⎞⎠ (1 + α)
n− 1

− (1 − α)
n− 1

􏽨 􏽩.

(6)

1ey found the values of the secant zeta function at some
quadratic irrational numbers. For j ∈ Z,

ψ􏼒

���������

2j(2j + 1)

􏽱

, 2􏼓 � (3j + 1)
π2

6
,

ψ(

���������

8j(2j + 1)

􏽱

, 2) �
π2

6
,

ψ(

���������

2j(2j + 1)

􏽱

, 4) �
75j2 + 46j + 6

8j + 3
π4

180
.

(7)

After observing these values, they conjectured the
following.

Conjecture 1 (see [11], Conjecture 1). If j is any positive
integer and s is an even positive integer, then

ψ(
�
j

􏽰
, s)π− s ∈ Q. (8)

By a clever use of residue theorem, Berndt and Straub
[12] proved the above functional equation (6), and from it
they derived

ψ(
�
r

√
, s)π− s ∈ Q, r ∈ Q+

, s ∈ 2N. (9)

Furthermore, they connected the secant Dirichlet series
with Eichler integrals of Eisenstein series and checked
unimodularity of period polynomials. On the contrary,
Charollais and Greenberg [13] related the secant Dirichlet
series ψ(α, s) to the generalized eta-function which was
studied by Arakawa [7]. 1ey proved that for s ∈ 2N,

ψ(α, s)π− s ∈ Q(α), (10)

for all real quadratic irrationals α. 1ey used Arakawa’s
result to give an explicit formula for ψ(α, s) for real qua-
dratic irrational numbers α.

We will introduce a generalization of the secant zeta
function as a Lambert series. Using the theory of generalized
Dedekind eta-function due to Lewittes [5], Berndt [6], and
Arakawa [7], we shall give a generalization of 1eorem 3.

We begin by briefly describing the theory of generalized
Dedekind eta-function, developed by Lewittes [5], Berndt
[6], and Arakawa [7], which is a main tool in our study.

3. Work of Lewittes and Berndt

Lewittes and Berndt treat the case of the upper half-plane H
while Arakawa treats the case of upper half plane limiting to
an algebraic irrational number. Hereafter, we use the fol-
lowing notations:

e[w] :� exp(2πiw), w ∈ C,

〈x〉 ∈ R, 0<〈x〉≦ 1, x − 〈x〉 ∈ Z,

x{ } ∈ R, 0≦ x{ }< 1, x − x{ } ∈ Z.

(11)

Lewittes [5] defined the generalization of the Dedekind
eta-function as a Lambert series. For a pair (r1, r2) of real
numbers, z ∈ H and arbitrary s ∈ C, he considered the series

A z, s, r1, r2( 􏼁 :� 􏽘
m>− r1

􏽘

∞

k�1
k

s− 1
e kr2 + k m + r1( 􏼁z􏼂 􏼃, (12)

where the first summation is over all integers m with
m> − r1. He also introduced its associate as

H z, s, r1, r2( 􏼁 :� A z, s, r1, r2( 􏼁 + e
s

2
􏼔 􏼕A z, s, − r1, − r2( 􏼁.

(13)

Let s � r1 � r2 � 0. Put A(z, 0, 0, 0) � A(z), then
H(z, 0, 0, 0) � 2A(z). Using the product definition of
Dedekind eta-function η(z), it is easy to show that

log(η(z)) �
πi

12
− A(z). (14)

Let us see a couple of examples.

Example 1. For special choices of parameters r1 and r2, the
A- and H-functions reduce to the cosecant and cotangent
zeta functions:

1
(1 + e[s/2])

H z, s,
1
2
, 0􏼒 􏼓􏼒 􏼓 � A z, s,

1
2
, 0􏼒 􏼓

� 􏽘
m> − (1/2)

􏽘

∞

k�1
k

s− 1
e k m +

1
2

􏼒 􏼓z􏼔 􏼕

� 􏽘
∞

k�1
k

s− 1e[(1/2)kz]

1 − e[kz]

�
i

2
􏽘

∞

k�1

cosec(πkz)

k1− s
.

(15)
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Also,
1

(1 + e[s/2])
H(z, s, (1, 0)) � A(z, s, 1, 0)

� 􏽘
m> − 1

􏽘

∞

k�1
k

s− 1
e[k(m + 1)z]

� 􏽘
∞

k�1
k

s− 1 e[kz]

1 − e[kz]

�
1
2

􏽘

∞

k�1
k

s− 1 1 + e[kz]

1 − e[kz]
− 1􏼨 􏼩

�
i

2
􏽘

∞

k�1

cot(πkz)

k1− s
−
1
2
ζ(1 − s).

(16)

Some more definitions will be required.

Definition 1 (Hurwitz zeta function). For a positive number
a, the Hurwitz zeta function

ζ(s, a) :� 􏽘
∞

n�0
(n + a)

− s
,

R(s)> 1.

(17)

Definition 2. Let Ω denote the characteristic function of
integers, i.e.,

Ω(a) :�
1, a ∈ Z,

0, a ∉ Z.
􏼨 (18)

For any positive number λ, let I(λ,∞) denote the in-
tegration path consisting of the oriented line segment
(+∞, λ), the positively oriented circle of radius λwith center
at the origin, and the oriented line segment (λ, +∞).

Let

G2 z, ω1,ω2( 􏼁; t( 􏼁 :�
exp(− zt)

1 − exp − ω1t( 􏼁( 􏼁 1 − exp − ω2t( 􏼁( 􏼁
,

(19)

for any pair (ω1,ω2) of positive numbers and for z, t ∈ C.
Berndt [6] proved the following transformation formula.

Theorem 4 (see [6], 1eorem 2). Let V �
a b

c d
􏼠 􏼡 ∈

SL(2,Z) with c> 0. For any pair (r1, r2) of real numbers, set
R1 � r1a + r2c, R2 � r1b + r2d, ρ � R2􏼈 􏼉c − R1􏼈 􏼉d. For z ∈ H
with cR(z) + d> 0, let β � cz + d. :en, for arbitrary s ∈ C,
we have

β− s
H Vz, s, r1, r2( 􏼁 − H z, s, R1, R2( 􏼁

� − Ω r1( 􏼁(2π)
− s

e
s

4
􏼔 􏼕β− sΓ(s) ζ s, 〈r2〉( 􏼁 + e

s

2
􏼔 􏼕ζ s, 〈− r2〉( 􏼁􏼒 􏼓

+Ω R1( 􏼁(2π)
− s

e −
s

4
􏼔 􏼕Γ(s) ζ s, 〈− R2〉( 􏼁 + e

s

2
􏼔 􏼕ζ s, 〈R2〉( 􏼁􏼒 􏼓

+(2π)
− s

e −
s

4
􏼔 􏼕L z, s, R1, R2, c, d( 􏼁,

(20)

where

L z, s, R1, R2, c, d( 􏼁

� − 􏽘
c

j�1
􏽚

I(λ,∞)
t
s− 1exp − 1 − (jd + ϱ)/c􏼈 􏼉 + (cz + d) j − R1􏼈 􏼉( 􏼁( 􏼁/c( 􏼁t( 􏼁

(1 − exp(− t))(1 − exp(− (cz + d)t))
dt, 0< λ< 2π,

2π
|β|

.
(21)

Here, logt is understood to be real-valued on the upper
segment (+∞, λ) of I(λ,∞).

4. Work of Arakawa

Arakawa studied certain Lambert series associated to a
complex variable s and an irrational real algebraic number α.
1ose Lambert series are defined as limiting (boundary)
values of the generalized Dedekind eta-functions studied by
Berndt [6]. Arakawa obtained transformation formulae
under the action of SL(2,Z) on those α.

For an irrational real algebraic number α and a pair
(p, q) of real numbers, Arakawa [7] introduced a generalized
eta-function defined as

η(α, s, p, q) :� 􏽘
∞

n�1
n

s− 1e[n(pα + q)]

1 − e[nα]
, s ∈ C, (22)

and its associate by

H(α, s, (p, q)) :� η(α, s, 〈p〉, q) + e
s

2
􏼔 􏼕η(α, s, 〈− p〉, − q).

(23)

Example 2. Again, if we consider (p, q) � (1/2, 0) and
(p, q) � (1, 0), then also we will get the cosecant and co-
tangent zeta function:
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1
(1 + e[s/2])

H α, s,
1
2
, 0􏼒 􏼓􏼒 􏼓 � η α, s,

1
2
, 0􏼒 􏼓

� 􏽘
∞

k�1
k

s− 1e[(1/2)kα]

1 − e[kα]

�
i

2
􏽘

∞

k�1

cosec(πkα)

k1− s
,

(24)

1
(1 + e[s/2])

H(α, s, (1, 0)) � η(α, s, 1, 0)

� 􏽘
∞

k�1
k

s− 1 e[kz]

1 − e[kz]

�
i

2
􏽘

∞

k�1

cot(πkα)

k1− s
−
1
2
ζ(1 − s),

(25)

where s ∈ C with R(s)< 0.

Theorem 5 (see [7], Lemma 1 and 1eorem 2). Suppose
α ∈ R∩Q and α ∉ Q. :en, the infinite series η(α, s, p, q) is
absolutely convergent if R(s)< 0. If, in addition,
[Q(α): Q] � 2 and (p, q) ∈ Q2, then H(α, s, p, q) has ana-
lytic continuation to C − 0{ }, and the singularity at s � 0 is at
worst a simple pole.

Arakawa proved the absolute convergence of η(α, s, p, q)

for R(s)< 0, by using the 1ue–Siegel–Roth theorem.
Consider the generalized eta-function

η(z, s, p, q) � 􏽘
∞

n�1
n

s− 1e[n(pz + q)]

1 − e[nz]
, s ∈ C (26)

corresponding to (22), for z ∈ H and a pair (p, q) ∈ R2 with
p> 0. 1en, one can see that this series is absolutely con-
vergent for arbitrary s ∈ C. It can be easily checked that there
is a link between the infinite series A(z, s, r1, r2) and
η(z, s, r1, r2).

Lemma 1. For any pair (r1, r2) ∈ R2 and z ∈ H, we have
A z, s, r1, r2( 􏼁 � η z, s, 〈r1〉, r2( 􏼁, s ∈ C. (27)

Now, from the definition of H-function (13), we have

H z, s, r1, r2( 􏼁 � A z, s, r1, r2( 􏼁 + e
s

2
􏼔 􏼕A z, s, − r1, − r2( 􏼁.

(28)

Hence, using Lemma 1, we get

H z, s, r1, r2( 􏼁 � η z, s, 〈r1〉, r2( 􏼁 + e
s

2
􏼔 􏼕η z, s, 〈 − r1〉, − r2( 􏼁.

(29)

Similarly, we have

Lemma 2. For any algebraic irrational number α and a pair
(p, q) ∈ R2,

A(α, s, p, q) � η(α, s, 〈p〉, q), R(s)< 0. (30)

Again by the definition of H-function (23)(due to
Arakawa), we have

H(α, s, p, q) � η(α, s, 〈p〉, q) + e
s

2
􏼔 􏼕η(α, s, 〈− p〉, q).

(31)

1erefore, by Lemma 2, we get

H(α, s, p, q) � A(α, s, p, q) + e
s

2
􏼔 􏼕A(α, s, − p, q). (32)

Proposition 1 (see [7], Proposition 1). Let

V �
a b

c d
􏼠 􏼡 ∈ SL(2,Z), α be an irrational real algebraic

number, and (p, q) ∈ R2 with p> 0. Let z � α + iy with
y> 0. Set z∗ � Vz and β � Vα � (aα + b)(cα + d)− 1. If
R(s)< − 3, then

lim
y⟶0+

η z
∗
, s, p, q( 􏼁 � η(β, s, p, q). (33)

Arakawa obtained the following transformation for-
mulae for H(α, s, (p, q)), by virtue of 1eorem 4 of Berndt
and Proposition 1.

Theorem 6 (see [7], 1eorem 1). Let α be any real algebraic

irrational, and let V �
a b

c d
􏼠 􏼡 ∈ SL(2,Z) with c> 0 such

that β: � cα + d> 0. For any pair (p, q) of real numbers, set
p′ � pa + qc, q′ � pb + qd, and ρ � q′􏼈 􏼉c − p′􏼈 􏼉d. :en, for
R(s)< 0,

D1(V, α, s, (p, q)) :� β− s
H(Vα, s, (p, q)) − H(α, s, (p, q)V)

� β− s
H(Vα, s, (p, q)) − H α, s, p′, q′( 􏼁( 􏼁

� − Ω(p)(2π)
− s

e
s

4
􏼔 􏼕β− sΓ(s)

· ζ(s, 〈q〉) + e
s

2
􏼔 􏼕ζ(s, 〈− q〉)􏼒 􏼓

+Ω p′( 􏼁(2π)
− s

e −
s

4
􏼔 􏼕Γ(s)

· ζ s, 〈− q′〉( 􏼁 + e
s

2
􏼔 􏼕ζ s, 〈q′〉( 􏼁􏼒 􏼓

+(2π)
− s

e −
s

4
􏼔 􏼕L α, s, p′, q′( 􏼁, c, d( 􏼁,

(34)
where

4 Mathematical Problems in Engineering



L α, s, p′, q′, c, d( 􏼁 � − 􏽘
c

j�1
􏽚

I(λ,∞)
t
s− 1

G2 1 −
(jd + ρ)

c
􏼨 􏼩 +

j − p′􏼈 􏼉( 􏼁β
c

, (1, β); t􏼠 􏼡dt, 0< λ< 2π,
2π
β

. (35)

Berndt [6] (p. 499) found the special values of L(α, s,

(p′, q′), c, d) at nonnegative integral arguments s � − m:

L α, − m, p′, q′( 􏼁, c, d( 􏼁 �
2πi

(m + 2)!
􏽘

c

j�1
􏽘

m+2

k�0

m + 2

k

⎛⎝ ⎞⎠

· Bk

j − p′􏼈 􏼉

c
􏼠 􏼡Bm+2− k

jd + ρ
c

􏼠 􏼡

· (− β)
k− 1

,

(36)

where Bn(x) denotes the nth Bernoulli polynomial and
Bn(x) � Bn( x{ }).

Lemma 3 (see [7], Lemma 4). Let α be an irrational number
in a real quadratic field Q(Δ) and let (p, q) be a pair of
rational numbers. :en, there exist a totally positive unit β of

Q(Δ) and an element V �
a b

c d
􏼠 􏼡 of SL(2,Z)which satisfy

the conditions:

(i) c> 0
(ii) (p, q)V ≡ (p, q)mod1

(iii) β α
1􏼠 􏼡 � V

α
1􏼠 􏼡

We choose such β ∈ Q(Δ) and V ∈ SL(2,Z), i.e., which
satisfy the conditions of Lemma 3. :en, using condition (ii),
we have

H(α, s, (p, q)) � H(α, s, (p, q)V). (37)

Since Vα � α and c> 0, we can see easily from:eorem 6
that

H(α, s, (p, q)) � − Ω(p)(2π)
− s

e
s

4
􏼔 􏼕Γ(s)ζ(s, 〈q〉)

+Ω(p)(2π)
− s

e −
s

4
􏼔 􏼕Γ(s)ζ(s, 〈q〉)

·
1 − e[s]β− s

β− s − 1
+

(2π)− se[− (s/4)]

β− s − 1

· L(α, s, (p, q), c, d).

(38)

Example 3. Let α, β, and V as in Lemma 3 and with (p, q) �

(1, 0) and (p, q) � (1/2, 0). 1en,

H(α, s, (1, 0)) � (2π)
− s

− e
s

4
􏼔 􏼕 + e −

s

4
􏼔 􏼕

1 − e[s]β− s

β− s − 1
􏼠 􏼡Γ(s)ζ(s)

+
(2π)− se[− (s/4)]

β− s − 1
L(α, s, (1, 0), c, d),

H α, s,
1
2
, 0􏼒 􏼓􏼒 􏼓 �

(2π)− se[− (s/4)]

β− s − 1
L α, s,

1
2
, 0􏼒 􏼓, c, d􏼒 􏼓.

(39)

Values at some particular matrices. Let

V0 �
0 − 1
1 0

􏼠 􏼡,

V1 �
1 0
1 1

􏼠 􏼡,

V2 � V
2
0V

− 1
1 �

− 1 0
1 − 1

􏼠 􏼡.

(40)

Example 4. 1eorem 6 gives the following:

D1 V0,α, s,(p,q)( 􏼁 � α− s
H

− 1
α

, s,(p,q)􏼒 􏼓 − H(α, s,(q, − p))

� − Ω(p)(2π)
− s

e
s

4
􏼔 􏼕α− sΓ(s)

· ζ(s,〈q〉) + e
s

2
􏼔 􏼕ζ(s,〈− q〉)􏼒 􏼓

+Ω(q)(2π)
− s

e −
s

4
􏼔 􏼕Γ(s)

· ζ(s,〈p〉) + e
s

2
􏼔 􏼕ζ(s,〈− p〉)􏼒 􏼓

+(2π)
− s

e −
s

4
􏼔 􏼕L(α, s,(q, − p),1,0),

(41)

D1 V1,α, s,(p,q)( 􏼁 �(α+1)
− s

H
α

α+1
, s,(p,q)􏼒 􏼓

− H(α, s,(p + q, q))

� − Ω(p)(2π)
− s

e
s

4
􏼔 􏼕(α+1)

− sΓ(s)

· ζ(s,〈q〉) + e
s

2
􏼔 􏼕ζ(s,〈− q〉)􏼒 􏼓

+Ω(p + q)(2π)
− s

e −
s

4
􏼔 􏼕Γ(s)

· ζ(s,〈− q〉) + e
s

2
􏼔 􏼕ζ(s,〈q〉)􏼒 􏼓

+(2π)
− s

e −
s

4
􏼔 􏼕L(α, s,(p + q,q),1,1),

(42)

D1 V2,α, s,(p,q)( 􏼁 �(α − 1)
− s

H
− α
α − 1

, s,(p,q)􏼒 􏼓

− H(α, s,(− p + q, − q))

� − Ω(p)(2π)
− s

e
s

4
􏼔 􏼕(α − 1)

− sΓ(s)

· ζ(s,〈q〉) + e
s

2
􏼔 􏼕ζ(s,〈− q〉)􏼒 􏼓

+Ω(− p + q)(2π)
− s

e −
s

4
􏼔 􏼕Γ(s)

· ζ(s,〈q〉) + e
s

2
􏼔 􏼕ζ(s,〈− q〉)􏼒 􏼓

+(2π)
− s

e −
s

4
􏼔 􏼕L(α, s,(− p + q, − q),1, − 1).

(43)
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In particular, when (p, q) � (1, 0), we have

D1 V0, α, s, (1, 0)( 􏼁 � (2π)
− s

e
s

4
􏼔 􏼕 e −

s

2
􏼔 􏼕 − α− s

􏼚 􏼛Γ(s) 1 + e
s

2
􏼔 􏼕􏼒 􏼓ζ(s) +(2π)

− s
e −

s

4
􏼔 􏼕L(α, s, (0, − 1), 1, 0),

D1 V1, α, s, (1, 0)( 􏼁 � (2π)
− s

e
s

4
􏼔 􏼕 e −

s

2
􏼔 􏼕 − (α + 1)

− s
􏼚 􏼛Γ(s) 1 + e

s

2
􏼔 􏼕􏼒 􏼓ζ(s) +(2π)

− s
e −

s

4
􏼔 􏼕L(α, s, (1, 0), 1, 1),

D1 V2, α, s, (1, 0)( 􏼁 � (2π)
− s

e
s

4
􏼔 􏼕 e −

s

2
􏼔 􏼕 − (α − 1)

− s
􏼚 􏼛Γ(s) 1 + e

s

2
􏼔 􏼕􏼒 􏼓ζ(s) +(2π)

− s
e −

s

4
􏼔 􏼕L(α, s, (− 1, 0), 1, − 1).

(44)

If we choose (p, q) � (1/2, 0), we get

D1 V0, α, s,
1
2
, 0􏼒 􏼓􏼒 􏼓 � α− s

H
− 1
α

, s,
1
2
, 0􏼒 􏼓􏼒 􏼓 − H α, s, 0. −

1
2

􏼒 􏼓􏼒 􏼓

� (2π)
− s

e
s

4
􏼔 􏼕 + e −

s

4
􏼔 􏼕􏼒 􏼓Γ(s)ζ s,

1
2

􏼒 􏼓 +(2π)
− s

e −
s

4
􏼔 􏼕L α, s, 0, −

1
2

􏼒 􏼓, 1, 0􏼒 􏼓,

D1 V1, α, s,
1
2
, 0􏼒 􏼓􏼒 􏼓 � (α + 1)

− s
H

α
α + 1

, s,
1
2
, 0􏼒 􏼓􏼒 􏼓 − H α, s,

1
2
, 0􏼒 􏼓􏼒 􏼓

� (2π)
− s

e −
s

4
􏼔 􏼕L α, s,

1
2
, 0􏼒 􏼓, 1, 1􏼒 􏼓,

D1 V2, α, s,
1
2
, 0􏼒 􏼓􏼒 􏼓 � (α − 1)

− s
H

− α
α − 1

, s,
1
2
, 0􏼒 􏼓􏼒 􏼓 − H α, s, −

1
2
, 0􏼒 􏼓􏼒 􏼓

� (2π)
− s

e −
s

4
􏼔 􏼕L α, s, −

1
2
, 0􏼒 􏼓, 1, − 1􏼒 􏼓.

(45)

Note that for nonnegative integers m, we have the fol-
lowing explicit formulae for Vj, where j � 0, 1, 2:

L α, − m, (1, 0)Vj, c, d􏼐 􏼑 �
2πi

(m + 2)!
􏽘

m+2

k�0

m + 2
k

􏼠 􏼡

· Bk(1)Bm+2− k(1)(− β)
k− 1

,

L α, − m,
1
2
, 0􏼒 􏼓Vj, c, d􏼒 􏼓 �

2πi

(m + 2)!
􏽘

m+2

k�0

m + 2
k

􏼠 􏼡

· Bk

1
2

􏼒 􏼓Bm+2− k

1
2

􏼒 􏼓(− β)
k− 1

.

(46)

5. Generalization of the Secant Zeta Function

We introduce two Lambert series corresponding to (22) and
(12). 1ese include the generalizations of secant and tangent
zeta functions as shown in Example 5. Let α be any algebraic
irrational number and (p, q) a pair of real numbers. 1en,
we define the series η∗ by

η∗(α, s, p, q) :� 􏽘
∞

n�1
n

s− 1e[n(pα + q)]

1 + e[nα]
, R(s)< 0 (47)

and another infinite series A∗ by

A
∗

z, s, r1, r2( 􏼁 :� 􏽘
m> − r1

(− 1)
m

􏽘

∞

k�1
k

s− 1
e kr2 + k m + r1( 􏼁z􏼂 􏼃,

(48)

for a pair (r1, r2) ∈ R2, z ∈ H, and s ∈ C.

Example 5. If we take (r1, r2) � (1, 0), and (1/2, 0), then
(48) becomes

A
∗
(α, s, 1, 0) � η∗(α, s, 1, 0)

� 􏽘
∞

k�1
k

s− 1 e[kα]

1 + e[kα]

�
1
2

􏽘

∞

k�1
k

s− 1 e[kα] − 1
1 + e[kα]

+ 1􏼠 􏼡

�
i

2
􏽘

∞

k�1
k

s− 1 tan(πkα) +
1
2
ζ(1 − s),

(49)
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A
∗ α, s,

1
2
, 0􏼒 􏼓 � η α, s,

1
2
, 0􏼒 􏼓

�
1
2

􏽘

∞

k�1
k

s− 1 1
cos(πkα)

�
1
2
ψ(α, 1 − s),

(50)

respectively.
By virtue of the results of Lewittes, Berndt, and Arakawa,

we have the following results.

Lemma 4. Let α be an algebraic irrational number and (p, q)

be a pair of real numbers. :e series η∗(α, s, p, q) is absolutely
convergent, if s ∈ C with R(s)< 0.

Proof. One can prove this result applying the
1ue–Siegel–Roth theorem, in a similar manner to Araka-
wa’s procedure for proving the absolute convergence of the
series η(α, s, p, q). □

Lemma 5. If z ∈ H and a pair (p, q) ∈ R2 with p> 0, then
the series η∗(z, s, p, q) is absolutely convergent for any s ∈ C.

Proof. Since z ∈ H, assume z � x + iy with y> 0. We have

η∗(z, s, p, q)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 􏽘
∞

n�1
n

s− 1e[n(pz + q)]

1 + e[nz]

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≦ 􏽘
∞

n�1
n
σ− 1 exp(− 2πnpy)

1 − exp(− 2πny)
,

(51)

forR(s) � σ. 1 − exp(− 2πny)≧ 1 − exp(− 2πy). And we can
choose a large enough positive integer K such that for n>K

n
σ− 1 exp(− 2πnpy) � exp((σ − 1)logn − 2πnpy)≦ exp(− πnpy).

(52)

1us,

η∗(z,s,p,q)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤􏽘

∞

n�1
n
σ− 1 exp(− 2πnpy)

1 − exp(− 2πny)

≤􏽘

K

n�1
n
σ− 1 exp(− 2πnpy)

1 − exp(− 2πny)
+ 􏽘

∞

n�K+1
n
σ− 1 exp(− 2πnpy)

1 − exp(− 2πy)

≤􏽘

K

n�1
n
σ− 1 exp(− 2πnpy)

1 − exp(− 2πny)
+ 􏽘

∞

n�K+1

exp(− πnpy)

1 − exp(− 2πy)

≤􏽘

K

n�1
n
σ− 1 exp(− 2πnpy)

1 − exp(− 2πny)

+
exp(− π(K +1)py)

1 − exp(− 2πpy)

1
1 − exp(− 2πy)

<∞.

(53)

□

Lemma 6. Let z ∈ H and α be an irrational algebraic
number. :en, for any pair of real numbers (r1, r2), we have

A
∗

z, s, r1, r2( 􏼁 � (− 1)
− r1+〈r1〉η∗ z, s, 〈r1〉, r2( 􏼁, s ∈ C,

A
∗ α, s, r1, r2( 􏼁 � (− 1)

− r1+〈r1〉η∗ α, s, 〈r1〉, r2( 􏼁, R(s)< 0.

(54)

Proof. If r1 ∈ Z, then m> − r1 implies m � − r1 + r for
r � 1, 2, 3, . . . ,. By the definition of A∗(z, s, r1, r2), we know

A
∗

z, s,r1, r2( 􏼁 � 􏽘
m> − r1

(− 1)
m

􏽘

∞

k�1
k

s− 1
e kr2 + k m + r1( 􏼁z􏼂 􏼃

� 􏽘
∞

k�1
k

s− 1
􏽘

∞

r�1
(− 1)

− r1+r
e kr2 + krz􏼂 􏼃

�(− 1)
− r1+1

􏽘

∞

k�1
k

s− 1
e kr2 + kz􏼂 􏼃 􏽘

∞

r�0
(− 1)

r
e[krz]

�(− 1)
− r1+1

􏽘

∞

k�1
k

s− 1e kr2 + kz􏼂 􏼃

1+ e[kz]

�(− 1)
− r1+〈r1〉η∗ z, s,〈r1〉, r2( 􏼁,

since 〈r1〉 � 1.

(55)

Again, if r1 ∉ Z, m> − r1 implies m � − 􏼄r1􏼅 + r for
r � 0, 1, 2, . . . ,. So, we will have

A
∗

z,s,r1,r2( 􏼁 � 􏽘
m> − r1

(− 1)
m

􏽘

∞

k�1
k

s− 1
e kr2 + k m + r1( 􏼁z􏼂 􏼃

� 􏽘
∞

k�1
k

s− 1
􏽘

∞

r�0
(− 1)

− ⌊r1⌋+r
e kr2 + k 〈r1〉+ r( 􏼁z􏼂 􏼃

�(− 1)
− ⌊r1⌋􏽘
∞

k�1
k

s− 1
e kr2 + k〈r1〉z􏼂 􏼃􏽘

∞

r�0
(− 1)

r
e[krz]

�(− 1)
− ⌊r1⌋􏽘
∞

k�1
k

s− 1e kr2 + k〈r1〉z􏼂 􏼃

1+ e[kz]

�(− 1)
− r1+〈r1〉η∗ z,s,〈r1〉, r2( 􏼁.

(56)

Similarly, we can see that

A
∗ α, s, r1, r2( 􏼁 �(− 1)

− r1+〈r1〉η∗ α, s,〈r1〉, r2( 􏼁, for R(s)<0.

(57)

□

Lemma 7. If z ∈ H, A∗(z, s, r1, r2) is absolutely convergent
for any s ∈ C.

Proof. Using Lemmas 5 and 6, we can show that
A∗(z, s, r1, r2) is absolutely convergent for s ∈ C. □
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6. Main Results

Consider the difference

D
∗
(V) :� D

∗
V, α, s,

1
2
, 0􏼒 􏼓 :� β− s

A
∗

Vα, s,
1
2
, 0􏼒 􏼓

− A
∗ α, s,

1
2
, 0􏼒 􏼓,

(58)

for each V from (40). Now, the second term in the above
expression is the secant zeta function in view of (50). 1is
difference is quite natural in the sense that it expresses the
surplus after the modular transformation is applied.

We interpret the main result of Laĺın et al. 1eorem 3 in
this setting as a special case of

(α + 1)
− s

A
∗

V1α, s,
1
2
, 0􏼒 􏼓 +(α − 1)

− s
A
∗

V2α, s,
1
2
, 0􏼒 􏼓,

(59)

for R(s)< 0, and locate it in a natural way as we will see in
Corollary 1. Our main theorem is the following.

Theorem 7. For a real algebraic irrational α and a complex
variable s with R(s)< 0, we have

D
∗

V0( 􏼁 � α− s
A
∗ − 1

α
, s,

1
2
, 0􏼒 􏼓 − A

∗ α, s,
1
2
, 0􏼒 􏼓

� 21− 2sπ− s
e −

s

4
􏼔 􏼕 Φ0 + Γ(s)Ω0( 􏼁 + 21− sΨ0

� −
(2π)− se[− s/4]

1 − e[s/2]
􏽚

I(λ,∞)
t
s− 1 exp(− (1/2 + α)t)

(1 + exp(− t))(1 − exp(− αt))
dt + 2− 2sπ− s

e −
s

4
􏼔 􏼕Γ(s) ζ s,

1
4

􏼒 􏼓 − ζ s,
3
4

􏼒 􏼓􏼒 􏼓

− 21− s
􏽘

∞

n�1
n

s− 1e[n(α/2 + 1/4)](e[nα/2] + 1)

1 − e[nα]
+ 22− s

􏽘

∞

n�1
(2n)

s− 1 e[3πα/2]

1 − e[2nα]
,

(60)

D
∗

V1( 􏼁 � (α + 1)
− s

A
∗ α

α + 1
, s,

1
2
, 0􏼒 􏼓 − A

∗ α, s,
1
2
, 0􏼒 􏼓

� 21− 2sπ− s
e −

s

4
􏼔 􏼕Φ1 + 21− sΨ1

� −
(2π)− se[− s/4]

1 − e[s/2]
􏽚

I(λ,∞)
t
s− 1 exp(− t/2)

(1 + exp(− t))

exp(− (α + 1)t/2)

(1 − exp(− (α + 1)t))
dt + 2− s

􏽘

∞

n�1
n

s− 1 (− 1)n− 1

cos(πnα/2)
.

(61)

Also,

D
∗

V2( 􏼁 � (α − 1)
− s

A
∗ − α

α − 1
, s,

1
2
, 0􏼒 􏼓 − A

∗ α, s,
1
2
, 0􏼒 􏼓

� 21− 2sπ− s
e −

s

4
􏼔 􏼕Φ2 + 21− sΨ2

� −
(2π)− se[− s/4]

1 − e[s/2]
􏽚

I(λ,∞)
t
s− 1 exp(− t/2)

(1 + exp(− t))

exp(− (α − 1)t/2)

(1 − exp(− (α − 1)t))
dt − 2− s

􏽘

∞

n�1
n

s− 1 1
cos(πnα/2)

,

(62)

where Φk and Ψk and (k � 0, 1, 2) are defined later. :ey in-
dicate the block of L-integrals and the block of H-functions,
corresponding to thematrixVk, respectively. Also, Ω0 is defined in
(90).

We recover the main result of Laĺın et al. ([11], :eorem
3), i.e., :eorem 3 by adding the equations (61) and (62). We
note it as a corollary.
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Corollary 1.

(α + 1)
− s

A
∗ α

α + 1
, s,

1
2
, 0􏼒 􏼓 +(α − 1)

− s
A
∗ − α

α − 1
, s,

1
2
, 0􏼒 􏼓

� −
(2π)− se[− s/4]

1 − e[s/2]
􏽚

I(λ,∞)
t
s− 1

􏽘

∞

m�0
2− m− 1

Em

tm

m!
􏽘

∞

n�0
21− n

− 1􏼐 􏼑Bn

×
(α + 1)n− 1 +(α − 1)n− 1

􏽮 􏽯tn− 1

n!
dt.

(63)

1e genesis of the transformation formula of Laĺın et al.
([11], 1eorem 3) for the secant zeta function is given by the

sum of D∗(V1) and D∗(V2), which we have seen in Cor-
ollary 1. We will see in the proof of Corollary 1 that the term
2A∗(α, s, 1/2, 0) on the left side and the secant zeta function
on the right hand side naturally cancel each other. As this
occurs only in such a pairing, this elucidates the hidden
structure of the paired transformation formula from a more
general standpoint.

Deduction of the Main :eorem of Laĺın et al. Firstly, we
deduce 1eorem 3 from Corollary 1. To do that, let l � 2k

be an even positive integer and s � 1 − l. 1en, (63)
amounts to

(α + 1)
2k− 1

A
∗ α

α + 1
, − 2k + 1,

1
2
, 0􏼒 􏼓 +(α − 1)

2k− 1
A
∗ − α

α − 1
, − 2k + 1,

1
2
, 0􏼒 􏼓

� −
(2π)2k− 1e[− ((− 2k + 1)/4)]

1 − e[(− 2k + 1)/2]
􏽚

I(λ,∞)
t
− 2k

􏽘

∞

m�0
2− m− 1

Em

tm

m!
􏽘

∞

n�0
21− n

− 1􏼐 􏼑Bn

(α + 1)n− 1 +(α − 1)n− 1
􏽮 􏽯tn− 1

n!
dt

� −
22k− 1π2k(− 1)k

2πi
􏽚

I(λ,∞)
t
− 2k

􏽘

∞

m�0
􏽘

∞

n�0
2− m− 1 21− n

− 1􏼐 􏼑EmBn (α + 1)
n− 1

+(α − 1)
n− 1

􏽮 􏽯
tm+n− 1

m!n!
dt

� − 22k− 1π2k
(− 1)

k
􏽘

2k

n�0

1
(2k − n)!n!

2− 2k+n− 1 21− n
− 1􏼐 􏼑E2k− nBn (α + 1)

n− 1
+(α − 1)

n− 1
􏽮 􏽯

�
1
2
π2k

(− 1)
k

􏽘

2k

n�0

1
(2k − n)!n!

2n− 1
− 1􏼐 􏼑E2k− nBn (α + 1)

n− 1
+(α − 1)

n− 1
􏽮 􏽯.

(64)

1is proves 1eorem 3.
1e following conjecture seems to be plausible.

Conjecture 2. Let W1 �
a1 b1
c1 d1

􏼠 􏼡 and W2 �
a2 b2
c2 d2

􏼠 􏼡 be

two matrices in PSL2(Z) which are inverses to each other.
:en, for a pair (p, q) ∈ R2,

c1α + d1( 􏼁
− s

A
∗

W1α, s, p, q( 􏼁 + c2α + d2( 􏼁
− s

A
∗

W2α, s, p, q( 􏼁

(65)

can be expressible in terms of special values of the zeta and L-
functions as we have seen for the sum of two explicit ex-
pressions for

c1α + d1( 􏼁
− s

A
∗

Vjα, s,
1
2
, 0􏼒 􏼓􏼒 􏼓 − A

∗ α, s,
1
2
, 0􏼒 􏼓􏼒 􏼓, j � 1, 2.

(66)

7. A∗ in Terms of A- and H-Functions

Before proving our main theorem we need to express A∗ in
terms of A and H. We know that given a sum S � 􏽐nan with
its even and odd parts Se and So, where the even part is over
all even integer values and odd part over odd integer values,
the sum 2Se − S is the alternating sum 􏽐n(− 1)nan. Using this
observation, we have the following result.

Lemma 8. A∗(z,s,r1,r2) � 2A(2z,s,r1/2, r2) − A(z,s,r1, r2).

Proof. By the definition of A∗(z, s, r1, r2), we have

A
∗

z, s, r1, r2( 􏼁 � 􏽘
m>− r1

(− 1)
m

􏽘

∞

k�1
k

s− 1
e kr2 + k m + r1( 􏼁z􏼂 􏼃

� 2 􏽘
m>− r1
m:even

􏽘

∞

k�1
k

s− 1
e kr2 + k m + r1( 􏼁z􏼂 􏼃

− 􏽘
m>− r1

􏽘

∞

k�1
k

s− 1
e kr2 + k m + r1( 􏼁z􏼂 􏼃

� 2 􏽘
2m>− r1

􏽘

∞

k�1
k

s− 1
e kr2 + k 2m + r1( 􏼁z􏼂 􏼃

− 􏽘
m>− r1

􏽘

∞

k�1
k

s− 1
e kr2 + k m + r1( 􏼁z􏼂 􏼃

� 2A 2z, s,
r1

2
, r2􏼒 􏼓 − A z, s, r1, r2( 􏼁.

(67)

□
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1ere is a duplication formula for A(z, s, r1, r2) which is
as follows:

Lemma 9. A(z, s, r1, r2) + A(z, s, r1, r2 + 1/2) �

2sA(2z, s, r1, 2r2).

Proof. From Definition 1 of A(z, s, r1, r2), we have

A z, s, r1, r2( 􏼁 + A z, s, r1, r2 +
1
2

􏼒 􏼓

� 􏽘
m> − r1

􏽘

∞

k�1
k

s− 1
e kr2 + k m + r1( 􏼁z􏼂 􏼃

+ 􏽘
m> − r1

􏽘

∞

k�1
k

s− 1
e k r2 +

1
2

􏼒 􏼓 + k m + r1( 􏼁z􏼔 􏼕

� 􏽘
m> − r1

􏽘

∞

k�1
k

s− 1
e kr2 + k m + r1( 􏼁z􏼂 􏼃 1 + e

1
2

k􏼔 􏼕􏼒 􏼓

� 2 􏽘
m> − r1

􏽘

∞

k�1
(2k)

s− 1
e 2kr2 + 2k m + r1( 􏼁z􏼂 􏼃

� 2s
􏽘

m> − r1

􏽘

∞

k�1
k

s− 1
e k 2r2( 􏼁 + k m + r1( 􏼁(2z)􏼂 􏼃

� 2s
A 2z, s, r1, 2r2( 􏼁.

(68)

□
Using the duplication formula, i.e., Lemma 9 in Lemma

8, we get

Lemma 10.

A
∗

z, s, r1, r2( 􏼁 � 21− s
A z, s,

r1

2
,
r2

2
􏼒 􏼓 + 21− s

A z, s,
r1

2
,
r2

2
+
1
2

􏼒 􏼓

− A z, s, r1, r2( 􏼁.

(69)

On the other hand,

H z, s, r1, r2( 􏼁 � A z, s, r1, r2( 􏼁 + e
s

2
􏼔 􏼕A z, s, − r1, − r2( 􏼁,

H z, s, − r1, − r2( 􏼁 � A z, s, − r1, − r2( 􏼁 + e
s

2
􏼔 􏼕A z, s, r1, r2( 􏼁,

H z, s, − r1, − r2( 􏼁 � A z, s, − r1, − r2( 􏼁 + e
s

2
􏼔 􏼕A z, s, r1, r2( 􏼁.

(70)

1erefore,

A z, s, r1, r2( 􏼁 �
1

1 − e[s]
H z, s, r1, r2( 􏼁􏼈

− e
s

2
􏼔 􏼕H z, s, − r1, − r2( 􏼁􏼛.

(71)

Substituting (71) in Lemma 10, we deduce the following
proposition.

Proposition 2. For a real algebraic irrational α, a pair (p, q)

of real numbers with p> 0, and a complex variable s with
R(s)< 0, we have

(1 − e[s])A
∗
(α, s, p, q) � 21− s

H α, s,
p

2
,
q

2
􏼒 􏼓􏼒 􏼓􏼚

− e
s

2
􏼔 􏼕H α, s, −

p

2
, −

q

2
􏼒 􏼓􏼒 􏼓􏼛

+ 21− s
H α, s,

p

2
,
q

2
+
1
2

􏼒 􏼓􏼒 􏼓􏼚

− e
s

2
􏼔 􏼕H α, s, −

p

2
, −

q

2
−
1
2

􏼒 􏼓􏼒 􏼓􏼛

− (1 − e[s])A(α, s, p, q),

(72)

where

(1 − e[s])A(α, s, p, q) � H(α, s, (p, q))􏼚

− e
s

2
􏼔 􏼕H(α, s, (− p, − q))􏼛,

(73)

as in equation (71).

Example 6. If we consider (p, q) � (1, 0) and (1/2, 0), then
we get

A
∗
(α, s, 1, 0) �

1
1 + e[s/2]

21− s
H α, s,

1
2
, 0􏼒 􏼓􏼒 􏼓􏼚

+ 21− s
H α, s,

1
2
,
1
2

􏼒 􏼓􏼒 􏼓 − H(α, s, (1, 0))􏼛,

A
∗ α, s,

1
2
, 0􏼒 􏼓 �

21− s

1 − e[s]
H α, s,

1
4
, 0􏼒 􏼓􏼒 􏼓

−
21− se[s/2]

1 − e[s]
H α, s, −

1
4
, 0􏼒 􏼓􏼒 􏼓

+
21− s

1 − e[s]
H α, s,

1
4
,
1
2

􏼒 􏼓􏼒 􏼓

−
21− se[s/2]

1 − e[s]
H α, s, −

1
4
, −
1
2

􏼒 􏼓􏼒 􏼓

−
1 − e[s/2]

1 − e[s]
H α, s,

1
2
, 0􏼒 􏼓􏼒 􏼓.

(74)

For the last term, with s an even integer, we use either

H α, s,
1
2
, 0􏼒 􏼓􏼒 􏼓 �

(2π)− se[− s/4]

β− s − 1
L α, s,

1
2
, 0􏼒 􏼓, c, d􏼒 􏼓

(75)

or

1
1 + e[s/2]

H α, s,
1
2
, 0􏼒 􏼓􏼒 􏼓 �

i

2
􏽘

∞

k�1

1
k1− s

1
sin(πkα)

, (76)

which follows from Examples 1 and 3, respectively.
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8. General Procedure

1e general procedure is to transform
D
∗
(V) :� D

∗
(V, α, s, p, q) :� β− s

A
∗
(Vα, s, p, q) − A

∗
(α, s, p, q).

(77)

We recall the following notations

D1(V, α, s, (p, q)) � β− s
H(Vα, s, (p, q)) − H(α, s, (p, q)V),

(78)

D
∗
0(V, α, s, p, q) � β− s

A(Vα, s, p, q) − A(α, s, p, q), (79)

A z, s, r1, r2( 􏼁 �
1

1 − e[s]
H z, s, r1, r2( 􏼁 − e

s

2
􏼔 􏼕H z, s, − r1, − r2( 􏼁􏼚 􏼛.

(80)

Now using Proposition 2, we can write

D
∗
(V, α, s, p, q) + D

∗
0(V, α, s, p, q) �

21− s

1 − e[s]
β− s

H Vα, s,
p

2
,
q

2
􏼒 􏼓􏼒 􏼓 − H α, s,

p

2
,
q

2
􏼒 􏼓􏼒 􏼓􏼒 􏼓

−
21− se[s/2]

1 − e[s]
β− s

H Vα, s, −
p

2
, −

q

2
􏼒 􏼓􏼒 􏼓 − H α, s, −

p

2
, −

q

2
􏼒 􏼓􏼒 􏼓􏼒 􏼓

+
21− s

1 − e[s]
β− s

H Vα, s,
p

2
,
q

2
+
1
2

􏼒 􏼓􏼒 􏼓 − H α, s,
p

2
,
q

2
+
1
2

􏼒 􏼓􏼒 􏼓􏼒 􏼓

−
21− se[s/2]

1 − e[s]
β− s

H Vα, s, −
p

2
, −

q

2
−
1
2

􏼒 􏼓􏼒 􏼓 − H α, s, −
p

2
, −

q

2
−
1
2

􏼒 􏼓􏼒 􏼓􏼒 􏼓.

(81)

For (p, q) � (1/2, 0), we have

D
∗
0 V, α, s,

1
2
, 0􏼒 􏼓 �

1
1 + e[s/2]

β− s
H Vα, s,

1
2
, 0􏼒 􏼓􏼒 􏼓􏼒

− H α, s,
1
2
, 0􏼒 􏼓􏼒 􏼓􏼓.

(82)

We now transform (81) by using (78):

D
∗
(V, α, s, p, q) + D

∗
0(V, α, s, p, q) �

21− s

1 − e[s]
D1 V, α, s,

p

2
,
q

2
􏼒 􏼓􏼒 􏼓 + H α, s,

p

2
,
q

2
􏼒 􏼓V􏼒 􏼓 − H α, s,

p

2
,
q

2
􏼒 􏼓􏼒 􏼓􏼒 􏼓

−
21− se[s/2]

1 − e[s]
D1 V, α, s, −

p

2
, −

q

2
􏼒 􏼓􏼒 􏼓􏼒 + H α, s, −

p

2
, −

q

2
􏼒 􏼓V􏼒 􏼓 − H α, s, −

p

2
, −

q

2
􏼒 􏼓􏼒 􏼓􏼓

+
21− s

1 − e[s]
D1 V, α, s,

p

2
,
q

2
+
1
2

􏼒 􏼓􏼒 􏼓􏼒 + H α, s,
p

2
,
q

2
+
1
2

􏼒 􏼓V􏼒 􏼓 − H α, s,
p

2
,
q

2
+
1
2

􏼒 􏼓􏼒 􏼓􏼓

−
21− se[s/2]

1 − e[s]
D1 V, α, s, −

p

2
, −

q

2
−
1
2

􏼒 􏼓􏼒 􏼓􏼒 + H α, s, −
p

2
, −

q

2
−
1
2

􏼒 􏼓V􏼒 􏼓 − H α, s, −
p

2
, −

q

2
−
1
2

􏼒 􏼓􏼒 􏼓􏼓,

(83)

where

D
∗
0(V, α, s, p, q) �

1
1 − e[s]

D1(V, α, s, (p, q))(

+ H(α, s, (p, q)V) − H(α, s, (p, q))􏼁

−
e[s/2]

1 − e[s]
D1(V, α, s, (− p, − q))(

+ H(α, s, (− p, − q)V) − H(α, s, (− p, − q))􏼁,

(84)

in the case of (79), while

D
∗
0 V, α, s,

1
2
, 0􏼒 􏼓 �

1
1 + e[s/2]

D1 V, α, s,
1
2
, 0􏼒 􏼓􏼒 􏼓􏼒

+ H α, s,
1
2
, 0􏼒 􏼓V􏼒 􏼓 − H α, s,

1
2
, 0􏼒 􏼓􏼒 􏼓􏼓,

(85)

in the case of (82). Hence,
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D
∗
(V, α, s, p, q) + D

∗
0(V, α, s, p, q) �

21− s

1 − e[s]
D1 V, α, s,

p

2
,
q

2
􏼒 􏼓􏼒 􏼓 −

21− se[s/2]

1 − e[s]
D1 V, α, s, −

p

2
, −

q

2
􏼒 􏼓􏼒 􏼓

+
21− s

1 − e[s]
D1 V, α, s,

p

2
,
q

2
+
1
2

􏼒 􏼓􏼒 􏼓 −
21− se[s/2]

1 − e[s]
D1 V, α, s, −

p

2
, −

q

2
−
1
2

􏼒 􏼓􏼒 􏼓

+
21− s

1 − e[s]
H α, s,

p

2
,
q

2
􏼒 􏼓V􏼒 􏼓 − H α, s,

p

2
,
q

2
􏼒 􏼓􏼒 􏼓􏼒 􏼓

−
21− se[s/2]

1 − e[s]
H α, s, −

p

2
, −

q

2
􏼒 􏼓V􏼒 􏼓 − H α, s, −

p

2
, −

q

2
􏼒 􏼓􏼒 􏼓􏼒 􏼓 +

21− s

1 − e[s]
H α, s,

p

2
,
q

2
+
1
2

􏼒 􏼓V􏼒 􏼓􏼒

− H α, s,
p

2
,
q

2
+
1
2

􏼒 􏼓􏼒 􏼓􏼓

−
21− se[s/2]

1 − e[s]
H α, s, −

p

2
, −

q

2
−
1
2

􏼒 􏼓V􏼒 􏼓 − H α, s, −
p

2
, −

q

2
−
1
2

􏼒 􏼓􏼒 􏼓􏼒 􏼓,

(86)

where the last term is either (79) or (85). 9. Proof of Theorem 7 (60)

1e three identities in1eorem 7 are proved on similar lines.
We begin by using (83) and (85).

D
∗

V0( 􏼁 � D
∗

V0, α, s,
1
2
, 0􏼒 􏼓 � α− s

A
∗ − 1

α
, s,

1
2
, 0􏼒 􏼓 − A

∗ α, s,
1
2
, 0􏼒 􏼓

�
21− s

1 − e[s]
D1 V0, α, s,

1
4
, 0􏼒 􏼓􏼒 􏼓 +

21− se[s/2]

1 − e[s]
D1 V0, α, s, −

1
4
, 0􏼒 􏼓􏼒 􏼓

+
21− s

1 − e[s]
D1 V0, α, s,

1
4
,
1
2

􏼒 􏼓􏼒 􏼓 −
21− se[s/2]

1 − e[s]
D1 V0, α, s, −

1
4
, −
1
2

􏼒 􏼓􏼒 􏼓

−
1 − e[s/2]

1 − e[s]
D1 V0, α, s,

1
2
, 0􏼒 􏼓􏼒 􏼓 +

21− s

1 − e[s]
H α, s,

1
4
, 0􏼒 􏼓V0􏼒 􏼓 − H α, s,

1
4
, 0􏼒 􏼓􏼒 􏼓􏼒 􏼓

−
21− s

1 − e[s]
H α, s,

1
4
, 0􏼒 􏼓V0􏼒 􏼓 − H α, s, −

1
4
, 0􏼒 􏼓􏼒 􏼓􏼚 􏼛

+
21− s

1 − e[s]
H α, s,

1
4
,
1
2

􏼒 􏼓V0􏼒 􏼓 − H α, s,
1
4
,
1
2

􏼒 􏼓􏼒 􏼓􏼚 􏼛

−
21− se[s/2]

1 − e[s]
H α, s, −

1
4
, −
1
2

􏼒 􏼓V0􏼒 􏼓 − H α, s, −
1
4
, −
1
2

􏼒 􏼓􏼒 􏼓􏼚 􏼛

−
1 − e[s/2]

1 − e[s]
H α, s,

1
2
, 0􏼒 􏼓V0􏼒 􏼓 − H α, s,

1
2
, 0􏼒 􏼓􏼒 􏼓

⎧⎨

⎩

⎫⎬

⎭.

(87)
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1en, applying (41), we deduce that

D
∗

V0( 􏼁 �
21− s

1 − e[s]
(2π)

− s
e −

s

4
􏼔 􏼕L α, s, 0, −

1
4

􏼒 􏼓, 1, 0􏼒 􏼓 − e
s

4
􏼔 􏼕L α, s, 0,

1
4

􏼒 􏼓, 1, 0􏼒 􏼓􏼚 􏼛

+
21− s

1 − e[s]
(2π)

− s
e −

s

4
􏼔 􏼕L α, s,

1
2
, −
1
4

􏼒 􏼓, 1, 0􏼒 􏼓 − e
s

4
􏼔 􏼕L α, s, −

1
2
,
1
4

􏼒 􏼓, 1, 0􏼒 􏼓􏼚 􏼛

−
1 − e[s/2]

1 − e[s]
(2π)

− s
e −

s

4
􏼔 􏼕L α, s, 0, −

1
2

􏼒 􏼓, 1, 0􏼒 􏼓 −
21− se[s/2]

1 − e[s]
(2π)

− s
e −

s

4
􏼔 􏼕Γ(s) ζ s,

3
4

􏼒 􏼓 + e
s

2
􏼔 􏼕ζ s,

1
4

􏼒 􏼓􏼒 􏼓

+
21− s

1 − e[s]
(2π)

− s
e −

s

4
􏼔 􏼕Γ(s) ζ s,

1
4

􏼒 􏼓 + e
s

2
􏼔 􏼕ζ s,

3
4

􏼒 􏼓􏼒 􏼓 −
1 − e[s/2]

1 − e[s]
(2π)

− s
e −

s

4
􏼔 􏼕Γ(s) ζ s,

1
2

􏼒 􏼓 + e
s

2
􏼔 􏼕ζ s,

1
2

􏼒 􏼓􏼒 􏼓

−
1 − e[s/2]

1 − e[s]
H α, s, 0, −

1
2

􏼒 􏼓􏼒 􏼓 − H α, s,
1
2
, 0􏼒 􏼓􏼒 􏼓􏼚 􏼛 +

21− s

1 − e[s]
H α, s, 0, −

1
4

􏼒 􏼓􏼒 􏼓 − H α, s,
1
4
, 0􏼒 􏼓􏼒 􏼓􏼚 􏼛

−
21− s[s/2]

1 − e[s]
H α, s, 0,

1
4

􏼒 􏼓􏼒 􏼓 − H α, s, −
1
4
, 0􏼒 􏼓􏼒 􏼓􏼚 􏼛 +

21− s

1 − e[s]
H α, s,

1
2
, −
1
4

􏼒 􏼓􏼒 􏼓 − H α, s,
1
4
,
1
2

􏼒 􏼓􏼒 􏼓􏼚 􏼛

−
21− se[s/2]

1 − e[s]
H α, s, −

1
2
,
1
4

􏼒 􏼓􏼒 􏼓 − H α, s, −
1
4
, −
1
2

􏼒 􏼓􏼒 􏼓􏼚 􏼛.

(88)

Let

(1 − e[s])Φ0 � L α, s, 0, −
1
4

􏼒 􏼓, 1, 0􏼒 􏼓 + L α, s,
1
2
, −
1
4

􏼒 􏼓, 1, 0􏼒 􏼓 − e
s

2
􏼔 􏼕L α, s, 0,

1
4

􏼒 􏼓, 1, 0􏼒 􏼓 − e
s

2
􏼔 􏼕L α, s, −

1
2
,
1
4

􏼒 􏼓, 1, 0􏼒 􏼓

− 1 − e
s

2
􏼔 􏼕􏼒 􏼓2s− 1

L α, s, 0, −
1
2

􏼒 􏼓, 1, 0􏼒 􏼓,

(89)

(1 − e[s])Ω0 � ζ s,
1
4

􏼒 􏼓 − e[s]ζ s,
1
4

􏼒 􏼓 − 2s− 1 1 − e
s

2
􏼔 􏼕􏼒 􏼓 ζ s,

1
2

􏼒 􏼓 + e
s

2
􏼔 􏼕ζ s,

1
2

􏼒 􏼓􏼒 􏼓, (90)

(1 − e[s])Ψ0 � H α, s, 0, −
1
4

􏼒 􏼓􏼒 􏼓 − H α, s,
1
4
, 0􏼒 􏼓􏼒 􏼓 − e

s

2
􏼔 􏼕H α, s, 0,

1
4

􏼒 􏼓􏼒 􏼓

+ e
s

2
􏼔 􏼕H α, s, −

1
4
, 0􏼒 􏼓􏼒 􏼓 + H α, s,

1
2
, −
1
4

􏼒 􏼓􏼒 􏼓 − H α, s,
1
4
,
1
2

􏼒 􏼓􏼒 􏼓

− e
s

2
􏼔 􏼕H α, s, −

1
2
,
1
4

􏼒 􏼓􏼒 􏼓 + e
s

2
􏼔 􏼕H α, s, −

1
4
, −
1
2

􏼒 􏼓􏼒 􏼓

− 2s− 1 1 − e
s

2
􏼔 􏼕􏼒 􏼓 H α, s, 0, −

1
2

􏼒 􏼓􏼒 􏼓 − H α, s,
1
2
, 0􏼒 􏼓􏼒 􏼓􏼚 􏼛.

(91)

Now, we can express the difference D∗(V0) as

D
∗

V0( 􏼁 � 21− 2sπ− s
e −

s

4
􏼔 􏼕 Φ0 + Γ(s)Ω0( 􏼁 + 21− sΨ0. (92)

Using the integral representation (35) of
L(α, s, (p′, q′), c, d), we calculate Φ0. 1erefore,

(1 − e[s])Φ0 � − 􏽚
I(λ,∞)

t
s− 1exp(− (1/4 + α)t) + exp(− (1/4 + α/2)t)

(1 − exp(− t))(1 − exp(− αt))
dt

+ e
s

2
􏼔 􏼕􏽚

I(λ,∞)
t
s− 1exp(− (3/4 + α)t) + exp(− (3/4 + α/2)t)

(1 − exp(− t))(1 − exp(− αt))
dt

+ 2s− 1 1 − e
s

2
􏼔 􏼕􏼒 􏼓􏽚

I(λ,∞)
t
s− 1 exp(− (1/2 + α)t)

(1 − exp(− t))(1 − exp(− αt))
dt.

(93)

Mathematical Problems in Engineering 13



Combining the first two integrals, we have

(1 − e[s])Φ0 � I0 + 2s− 1 1 − e
s

2
􏼔 􏼕􏼒 􏼓􏽚

I(λ,∞)
t
s− 1

exp(− (1/2 + α)t)

(1 − exp(− t))(1 − exp(− αt))
dt,

(94)

where

I0 � 􏽚
I(λ,∞)

t
s− 1− exp(− t/4)(1 − exp(πis − t/2))(exp(− αt) + exp(− αt/2))

(1 − exp(− t))(1 − exp(− αt))
dt. (95)

Now, making the change of variable t⟷2t, we get

I0 � 2s
􏽚

I(λ,∞)
t
s− 1 − exp(− t/2)(1 − exp(πis − t))(exp(− 2αt) + exp(− αt))

(1 + exp(− t))(1 − exp(− t))(1 + exp(− αt))(1 − exp(− αt))
dt. (96)

Hence, after eliminating the common factor, we arrive at

(1 − e[s])Φ0 � 2s
􏽚

I(λ,∞)
t
s− 1 exp(− t/2)(− 1 + exp(πis − t))exp(− αt)

(1 + exp(− t))(1 − exp(− t))(1 − exp(− αt))
dt

+ 2s− 1 1 − e
s

2
􏼔 􏼕􏼒 􏼓􏽚

I(λ,∞)
t
s− 1 exp(− (1/2 + α)t)

(1 − exp(− t))(1 − exp(− αt))
dt.

(97)

1erefore,

Φ0 � −
2s− 1

1 − e[s/2]
􏽚

I(λ,∞)
t
s− 1 exp(− (1/2 + α)t)

(1 + exp(− t))(1 − exp(− αt))
dt.

(98)

Our next target is to calculate Ψ0. Using (23), we have

Ψ0 � η α, s, 1, −
1
4

􏼒 􏼓 − η α, s,
1
4
, 0􏼒 􏼓 + η α, s,

1
2
, −
1
4

􏼒 􏼓

− η α, s,
1
4
,
1
2

􏼒 􏼓 − 2s η α, s, 1,
1
2

􏼒 􏼓 − η α, s,
1
2
, 0􏼒 􏼓􏼚 􏼛.

(99)

Now, using the definition of the η-function, we get

Ψ0 � 􏽘
∞

n�1
n

s− 1e[n(α − 1/4)]

1 − e[nα]
+ 􏽘
∞

n�1
n

s− 1e[n(α/2 − 1/4)]

1 − e[nα]
− 􏽘
∞

n�1
n

s− 1 e[nα/4]

1 − e[nα]
− 􏽘
∞

n�1
n

s− 1e[n(α/4 + 1/2)]

1 − e[nα]

− 2s
􏽘

∞

n�1
n

s− 1e[n(α + 1/2)]

1 − e[nα]
+ 2s

􏽘

∞

n�1
n

s− 1 e[nα/2]

1 − e[nα]

� 􏽘
∞

n�1
n

s− 1e[n(α/2 − 1/4)](e[nα/2] + 1)

1 − e[nα]
− 2 􏽘
∞

n�1
(2n)

s− 1e[2n(α/2 − 1/4)](1 + e[nα])

1 − e[2nα]

− 􏽘
∞

n�1
n

s− 1e[nα/4] 1 +(− 1)n
( )

1 − e[nα]
+ 2 􏽘
∞

n�1
(2n)

s− 1e[2nα/4](1 + e[nα])

1 − e[2nα]

� − 􏽘
∞

n�1
n

s− 1e[n(α/2 + 1/4)](e[nα/2] + 1)

1 − e[nα]
+ 2 􏽘
∞

n�1
(2n)

s− 1 e[3nα/2]

1 − e[2nα]
.

(100)
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To calculate Ω0, we use 2sζ(s, (1/2)) � ζ(s, (1/4)) +

ζ(s, (3/4)), and we get

Ω0 � ζ s,
1
4

􏼒 􏼓 − 2s− 1ζ s,
1
2

􏼒 􏼓􏼒 􏼓 � 2− 1 ζ s,
1
4

􏼒 􏼓 − ζ s,
3
4

􏼒 􏼓􏼒 􏼓.

(101)

Finally, combining the expressions forΦ0,Ψ0, andΩ0 we
deduce 1eorem 7 (60).

10. Proof of Theorem 7(61)

By using Proposition 2 and from (42), we have

D
∗

V1( 􏼁 � D
∗

V1, α, s,
1
2
, 0􏼒 􏼓

� (α + 1)
− s

A
∗ α

α + 1
, s,

1
2
, 0􏼒 􏼓 − A

∗ α, s,
1
2
, 0􏼒 􏼓

�
21− s

1 − e[s]
(2π)

− s
e −

s

4
􏼔 􏼕L α, s,

1
4
, 0􏼒 􏼓, 1, 1􏼒 􏼓 − e

s

4
􏼔 􏼕L α, s, −

1
4
, 0􏼒 􏼓, 1, 1􏼒 􏼓􏼚 􏼛

+
21− s

1 − e[s]
(2π)

− s
e −

s

4
􏼔 􏼕L α, s,

3
4
,
1
2

􏼒 􏼓, 1, 1􏼒 􏼓 − e
s

4
􏼔 􏼕L α, s, −

3
4
, −
1
2

􏼒 􏼓, 1, 1􏼒 􏼓􏼚 􏼛

+
21− s

1 − e[s]
H α, s,

3
4
,
1
2

􏼒 􏼓􏼒 􏼓 − H α, s,
1
4
,
1
2

􏼒 􏼓􏼒 􏼓􏼚 􏼛

−
21− se[s/2]

1 − e[s]
H α, s, −

3
4
, −
1
2

􏼒 􏼓􏼒 􏼓 − H α, s, −
1
4
, −
1
2

􏼒 􏼓􏼒 􏼓􏼚 􏼛

−
1 − e[s/2]

1 − e[s]
(2π)

− s
e −

s

4
􏼔 􏼕L α, s,

1
2
, 0􏼒 􏼓, 1, 1􏼒 􏼓.

(102)

Let

(1 − e[s])Φ1 � L α, s,
1
4
, 0􏼒 􏼓, 1, 1􏼒 􏼓 + L α, s,

3
4
,
1
2

􏼒 􏼓, 1, 1􏼒 􏼓

− e
s

2
􏼔 􏼕L α, s, −

1
4
, 0􏼒 􏼓, 1, 1􏼒 􏼓

− e
s

2
􏼔 􏼕L α, s, −

3
4
, −
1
2

􏼒 􏼓, 1, 1􏼒 􏼓

− 1 − e
s

2
􏼔 􏼕􏼒 􏼓2s− 1

L α, s,
1
2
, 0􏼒 􏼓, 1, 1􏼒 􏼓.

(103)

(1 − e[s])Ψ1 � H α, s,
3
4
,
1
2

􏼒 􏼓􏼒 􏼓 − H α, s,
1
4
,
1
2

􏼒 􏼓􏼒 􏼓

− e
s

2
􏼔 􏼕H α, s, −

3
4
, −
1
2

􏼒 􏼓􏼒 􏼓

+ e
s

2
􏼔 􏼕H α, s, −

1
4
, −
1
2

􏼒 􏼓􏼒 􏼓.

(104)

We now express (102) as

D
∗

V1( 􏼁 � 21− 2sπ− s
e −

s

4
􏼔 􏼕Φ1 + 21− sΨ1. (105)

Now, utilizing the integral representation (35) of
L(α, s, (p′, q′), c, d), we have
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(1 − e[s])Φ1

� − 􏽚
I(λ,∞)

t
s− 1exp(− (1/4 + 3(α + 1)/4)t) + exp(− (1/4 +(α + 1)/4)t)

(1 − exp(− t))(1 − exp(− (α + 1)t))
dt

+ e
s

2
􏼔 􏼕􏽚

I(λ,∞)
t
s− 1exp(− (3/4 +(α + 1)/4)t) + exp(− (3/4 + 3(α + 1)/4)t)

(1 − exp(− t))(1 − exp(− (α + 1)t))
dt

+ 2s− 1 1 − e
s

2
􏼔 􏼕􏼒 􏼓􏽚

I(λ,∞)
t
s− 1 exp(− (1/2 +(α + 1)/2)t)

(1 − exp(− t))(1 − exp(− (α + 1)t))
dt.

(106)

Again, we write the left hand side of the above equation
as

(1 − e[s])Φ1 � I1

+ 2s− 1 1 − e
s

2
􏼔 􏼕􏼒 􏼓􏽚

I(λ,∞)
t
s− 1 exp(− (1/2 +(α + 1)/2)t)

(1 − exp(− t))(1 − exp(− (α + 1)t))
dt,

(107)

where

I1 � 􏽚
I(λ,∞)

t
s− 1(− exp(− t/4) + exp(πis − (− 3t/4)))(exp(− (α + 1)t/4) + exp(− 3(α + 1)t/4))

(1 − exp(− t))(1 − exp(− (α + 1)t))
dt. (108)

Now, by change of variable t⟷2t followed by the
elimination of the common factor 1 + exp(− (α + 1)t), we
get

I1 � 2s
􏽚

I(λ,∞)
t
s− 1 exp(− t/2)(− 1 + exp(πis − t))exp(− (α + 1)t/2)

(1 + exp(− t))(1 − exp(− t))(1 − exp(− (α + 1)t))
dt. (109)

1us, substituting I1 in (107), we see that

Φ1 � −
2s− 1

1 − e[s/2]
􏽚

I(λ,∞)
t
s− 1 exp(− (1/2 +(α + 1)/2)t)

(1 + exp(− t))(1 − exp(− (α + 1)t))
dt. (110)

Using the definition of H-function, from (104), we have

Ψ1 � η α, s,
3
4
,
1
2

􏼒 􏼓 − η α, s,
1
4
,
1
2

􏼒 􏼓

� 􏽘
∞

n�1
n

s− 1e[3nα/4 + 1/2]

1 − e[nα]

− 􏽘
∞

n�1
n

s− 1e[nα/4 + 1/2]

1 − e[nα]
.

(111)

1e nth summand is

n
s− 1e[nα/4 + 1/2](e[nα/2] − 1)

1 − e[nα]
, (112)

from which we may eliminate the common factor
e[(1/2)nα] − 1. 1erefore,

Ψ1 � 􏽘
∞

n�1
n

s− 1(− 1)n− 1e[nα/4]

e[nα/2] + 1
�
1
2

􏽘

∞

n�1
n

s− 1 (− 1)n− 1

cos(πnα/2)
.

(113)

Now, we substitute (110) and (113) in (102) and finally
get
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(α + 1)
− s

A
∗ α

α + 1
, s,

1
2
, 0􏼒 􏼓 − A

∗ α, s,
1
2
, 0􏼒 􏼓

� −
(2π)− se[− s/4]

(1 − e[s/2])
􏽚

I(λ,∞)
t
s− 1 exp(− t/2)

(1 + exp(− t))

exp(− (α + 1)t/2)

(1 − exp(− (α + 1)t))
dt

+ 2− s
􏽘

∞

n�1
n

s− 1 (− 1)n− 1

cos(παn/2)
.

(114)

1is completes the proof of 1eorem 7 (61). 11. Proof of Theorem 7 (62)

We follow the same route: first, we use Proposition 2 and
then using (43), we obtain

D
∗

V2( 􏼁 � D
∗

V2, α, s,
1
2
, 0􏼒 􏼓

� (α − 1)
− s

A
∗ − α

α − 1
, s,

1
2
, 0􏼒 􏼓 − A

∗ α, s,
1
2
, 0􏼒 􏼓

�
21− s

1 − e[s]
(2π)

− s
e −

s

4
􏼔 􏼕L α, s, −

1
4
, 0􏼒 􏼓, 1, − 1􏼒 􏼓 − e

s

4
􏼔 􏼕L α, s,

1
4
, 0􏼒 􏼓, 1, − 1􏼒 􏼓􏼚 􏼛

+
21− s

1 − e[s]
(2π)

− s
e −

s

4
􏼔 􏼕L α, s,

1
4
, −
1
2

􏼒 􏼓, 1, − 1􏼒 􏼓 − e
s

4
􏼔 􏼕L α, s, −

1
4
,
1
2

􏼒 􏼓, 1, − 1􏼒 􏼓􏼚 􏼛

−
1 − e[s/2]

1 − e[s]
(2π)

− s
e −

s

4
􏼔 􏼕L α, s, −

1
2
, 0􏼒 􏼓, 1, − 1􏼒 􏼓

+
21− s

1 − e[s]
H α, s, −

1
4
, 0􏼒 􏼓􏼒 􏼓 − H α, s,

1
4
, 0􏼒 􏼓􏼒 􏼓􏼚 􏼛

−
21− se[s/2]

1 − e[s]
H α, s,

1
4
, 0􏼒 􏼓􏼒 􏼓 − H α, s, −

1
4
, 0􏼒 􏼓􏼒 􏼓􏼚 􏼛

� 21− 2sπ− s
e −

s

4
􏼔 􏼕Φ2 + 21− sΨ2,

(115)

where

(1 − e[s])Φ2 � L α, s, −
1
4
, 0􏼒 􏼓, 1, − 1􏼒 􏼓 − e

s

2
􏼔 􏼕L α, s,

1
4
, 0􏼒 􏼓, 1, − 1􏼒 􏼓

+ L α, s,
1
4
, −
1
2

􏼒 􏼓, 1, − 1􏼒 􏼓 − e
s

2
􏼔 􏼕L α, s, −

1
4
,
1
2

􏼒 􏼓, 1, − 1􏼒 􏼓

− 1 − e
s

2
􏼔 􏼕􏼒 􏼓2s− 1

L α, s, −
1
2
, 0􏼒 􏼓, 1, − 1􏼒 􏼓,

(116)

(1 − e[s])Ψ2 � H α, s, −
1
4
, 0􏼒 􏼓􏼒 􏼓 − H α, s,

1
4
, 0􏼒 􏼓􏼒 􏼓

− e
s

2
􏼔 􏼕H α, s,

1
4
, 0􏼒 􏼓􏼒 􏼓 + e

s

2
􏼔 􏼕H α, s, −

1
4
, 0􏼒 􏼓􏼒 􏼓

� 1 + e
s

2
􏼔 􏼕􏼒 􏼓 H α, s, −

1
4
, 0􏼒 􏼓􏼒 􏼓 − H α, s,

1
4
, 0􏼒 􏼓􏼒 􏼓􏼒 􏼓.

(117)
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To simplify Φ2, we make use of the integral represen-
tation (35) of L(α, s, (p′, q′), c, d). So, we have

(1 − e[s])Φ2 � I2

+ 2s− 1 1 − e
s

2
􏼔 􏼕􏼒 􏼓􏽚

I(λ,∞)
t
s− 1 exp(− (1/2 +(α − 1)/2)t)

(1 − exp(− t))(1 − exp(− (α − 1)t))
dt,

(118)

where

I2 � 􏽚
I(λ,∞)

t
s− 1(− exp(− t/4) + exp(πis − 3t/4))(exp − (α − 1)t/4 + exp(− 3(α − 1)t/4))

(1 − exp(− t))(1 − exp(− (α − 1)t))
dt. (119)

As before, by eliminating the common factor
1 − exp(− t), we obtain

I2 � 2s
􏽚

I(λ,∞)
t
s− 1 exp(− t/2)exp(− (α − 1)t/2)(− 1 + exp(πis − t))

(1 + exp(− t))(1 − exp(− t))(1 − exp(− (α − 1)t))
dt. (120)

Whence, it follows that

Φ2 � −
2s− 1

1 − e[s/2]
􏽚

I(λ,∞)
t
s− 1 exp(− (1/2 +(α − 1)/2)t)

(1 + exp(− t))(1 − exp(− (α − 1)t))
dt. (121)

While handling (117), we decompose it as

Ψ2 � η α, s,
3
4
, 0􏼒 􏼓 − η α, s,

1
4
, 0􏼒 􏼓. (122)

In the series expression of Ψ2, we factor out e[nα/4] as
before and eliminate the common factor (e[nα/2] − 1) to
obtain

Ψ2 � − 􏽘
∞

n�1
n

s− 1 e[nα/4]

e[nα/2] + 1
� −

1
2

􏽘

∞

n�1
n

s− 1 1
cos(πnα/2)

.

(123)

Finally, substituting the expressions for Φ2 and Ψ2, we
have

(α − 1)
− s

A
∗ − α

α − 1
, s,

1
2
, 0􏼒 􏼓 − A

∗ α, s,
1
2
, 0􏼒 􏼓

� −
(2π)− se[− s/4]

1 − e[(s/2)]
􏽚

I(λ,∞)
t
s− 1 exp(− t/2)

(1 + exp(− t))

exp(− (α − 1)t/2)

(1 − exp(− (α − 1))t)
dt

− 2− s
􏽘

∞

n�1
n

s− 1 1
cos(πnα/2)

.

(124)
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1is finishes the proof of 1eorem 7 (62). 12. Proof of Corollary 1

We conclude this chapter by finally proving Corollary 1. We
add (114) and (124) and derive that

(α + 1)
− s

A
∗ α

α + 1
, s,

1
2
, 0􏼒 􏼓 +(α − 1)

− s
A
∗ − α

α − 1
, s,

1
2
, 0􏼒 􏼓 − 2A

∗ α, s,
1
2
, 0􏼒 􏼓

� −
(2π)− se[− s/4]

1 − e[s/2]
􏽚

I(λ,∞)
t
s− 1 exp(− t/2)

(1 + exp(− t))

exp(− (α + 1)t/2)

(1 − exp(− (α + 1)t))
dt

−
(2π)− se[− s/4]

1 − e[− s/2]
􏽚

I(λ,∞)
t
s− 1 exp(− t/2)

(1 + exp(− t))

exp(− (α − 1)t/2)

(1 − exp(− (α − 1)t))
dt

+ 2− s
􏽘

∞

n�1
n

s− 1 (− 1)n− 1

cos(πnα/2)
− 2− s

􏽘

∞

n�1
n

s− 1 1
cos(πnα/2)

� −
(2π)− se[− s/4]

1 − e[− s/2]
􏽚

I(λ,∞)
t
s− 1 exp(− t/2)

1 + exp(− t)

exp(− (α + 1)t/2)

1 − exp(− (α + 1)t)
+

exp(− (α + 1)t/2)

1 − exp(− (α − 1)t)
􏼨 􏼩dt

− 2 · 2− s
􏽘

∞

n�1
(2n)

s− 1 1
cos(2πnα/2)

.

(125)

Now, in the above expression, 2A∗(α, s, 1/2, 0) on the left
hand side and secant zeta function on the right hand side will
cancel each other, as they are the same (from (50)).
1erefore, we have

(α + 1)
− s

A
∗ α

α + 1
, s,

1
2
, 0􏼒 􏼓 +(α − 1)

− s
A
∗ − α

α − 1
, s,

1
2
, 0􏼒 􏼓

� −
(2π)− se[− (s/4)]

1 − e[s/2]
􏽚

I(λ,∞)
t
s− 1exp(− (1/2)t)

1 + exp(− t)

·
exp(− (1/2)(α + 1)t)

1 − exp(− (α + 1)t)
+
exp(− (1/2)(α − 1)t)

1 − exp(− (α − 1)t)
􏼨 􏼩dt

� −
(2π)− se[− (s/4)]

1 − e[s/2]
􏽚

I(λ,∞)
t
s− 1

􏽘

∞

m�0
Em

1
2

􏼒 􏼓
tm

2m!
,

(126)

and thus Corollary 1 follows.

13. Future Work

By the virtue of the work of Lewittes, Berndt, and Arakawa, it
would be interesting to find the general modular transfor-
mation formula for A∗(α, s, p, q) for all (p, q) ∈ R2 and
from which one would like to see the truth of our Conjecture
2.
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[11] M. Laĺın, F. Rodrigue, and M. Rogers, “Secant zeta functions,”
Journal of Mathematical Analysis and Applications, vol. 409,
no. 1, pp. 197–204, 2014.

[12] B. C. Berndt and A. Straub, “On a secant Dirichlet series and
Eichler integrals of Eisenstein series,” Mathematische Zeits-
chrift, vol. 284, no. 3-4, pp. 827–852, 2016.

[13] P. Charollais and M. Greenberg, “Rationality of secant zeta
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,e main objective of this article is to establish some new fractional refinements of Hermite–Hadamard-type inequalities es-
sentially using new ψk-Riemann–Liouville fractional integrals, where k> 0. Using this new fractional integral, we also derive two
new fractional integral identities. Applications of the obtained results are also discussed.

1. Introduction and Preliminaries

Let f: I � [a, b] ⊂ R⟶ R be a convex function; then,

f
a + b

2
􏼠 􏼡≤

1
b − a

􏽚
b

a
f(x)dx≤

f(a) + f(b)

2
. (1)

,e above inequality is known as Hermite–Hadamard’s
inequality [1–5]. ,is inequality provides us a necessary and
sufficient condition for a function to be convex. It can be
considered as one of the most extensively studied results
pertaining to convexity. Since the appearance of this result in
the literature, it gained popularity, and many new gener-
alizations for this classical result have been obtained. ,is
can be attributed to its applications in various other fields
such as in numerical analysis and in mathematical statistics.
For more details on generalizations of convexity, Hermi-
te–Hadamard-like inequalities, and its applications, see
[6–14].

Fractional calculus is a calculus in which we study about
the integrals and derivatives of any arbitrary real or complex
order.,e history of fractional calculus is not very much old,

but in the short span of time, it experienced a rapid de-
velopment. Recently, the generalizations [15–25], extensions
[26–32], and applications [33–46] for fractional calculus
have been made by many researchers. ,e Rie-
mann–Liouville fractional integrals are defined as follows.

Definition 1 (see [47]). Let f ∈ L1[a, b]. ,en, Rie-
mann–Liouville integrals Jαa+ f and Jαb− f of order α> 0 with
a≥ 0 are defined by

J
α
a+ f(x) �

1
Γ(α)

􏽚
x

a
(x − t)

α− 1
f(t)dt, x> a, (2)

J
α
b− f(x) �

1
Γ(α)

􏽚
b

x
(t − x)

α− 1
f(t)dt, x< b, (3)

where

Γ(α) � 􏽚
∞

0
e

− x
x
α− 1dx, (4)

is the well-known gamma function.
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Sarikaya et al. [10] elegantly utilized this concept in
establishing fractional analogue of Hermite–Hadamard’s
inequality. ,is idea motivated other researchers, and
consequently, many new generalizations of Hermi-
te–Hadamard’s inequality have been obtained using the
concept of Riemann–Liouville fractional integrals.

Sarikaya and Karaca [12] introduced k-analogue of
Riemann–Liouville fractional integrals and discussed some
of its basic properties. ,ey defined this concept in the
following way: to be more precise, let f be piecewise con-
tinuous on I∗ � (0,∞) and integrable on any finite sub-
interval of I � [0,∞]. ,en, for t> 0, we consider
k-Riemann–Liouville fractional integral of f of order α as

kJ
α
af(x) �

1
kΓk(α)

􏽚
x

a
(x − t)

(α/k)− 1
f(t)dt, x> a, k> 0.

(5)

If k⟶ 1, then k-Riemann–Liouville fractional integrals
reduce to classical the Riemann–Liouville fractional integral.
It is worth to mention here that the concept of the k-Rie-
mann–Liouville fractional integral is a significant general-
ization of Riemann–Liouville fractional integrals; as for
k≠ 1, the properties of k-Riemann–Liouville fractional in-
tegrals are quite different from the classical Rie-
mann–Liouville fractional integrals.

Another important generalization of Riemann–Liouville
fractional integrals is ψk-Riemann–Liouville fractional
integrals.

Definition 2 (see [6]). Let (a, b) be a finite interval of the real
lineR and α> 0. Also, let ψ(x) be an increasing and positive
monotone function on (a, b], having a continuous derivative
ψ′(x) on (a, b). ,en, the left- and right-sided ψ-Rie-
mann–Liouville fractional integrals of a function f with
respect to another function ψ on [a, b] are defined as

I
α;ψ
a+ f(x) �

1
Γ(α)

􏽚
x

a
ψ′(t)(ψ(x) − ψ(t))

α− 1
f(t)dt,

I
α;ψ
b− f(x) �

1
Γ(α)

􏽚
b

x
ψ′(t)(ψ(t) − ψ(x))

α− 1
f(t)dt,

(6)

respectively; Γ(·) is the gamma function.
For some recent research works, see [48].
Recently, Liu et al. [14] obtained some interesting results

pertaining to Hermite–Hadamard’s inequality involving
ψk-Riemann–Liouville fractional integrals. Motivated by the
research work of Liu et al. [14], we obtain some new re-
finements of fractional Hermite–Hadamard’s inequality
essentially using ψk-Riemann–Liouville fractional integrals.
We also discuss applications of the obtained results to
means. We show that our results represent significant
generalization of some previous results.

2. Hermite–Hadamard’s Inequality

In this section, we derive a new refinement of Hermi-
te–Hadamard’s inequality via the ψk-Riemann–Liouville
fractional integral.

Definition 3. Let k> 0, (a, b) be a finite interval of the real
lineR, and α> 0. Also, let ψ(x) be an increasing and positive
monotone function on (a, b], having a continuous derivative
ψ′(x) on (a, b). ,en, the left- and right-sided ψk-Rie-
mann–Liouville fractional integrals of a function f with
respect to another function ψ on [a, b] are defined as

kI
α;ψ
a+ f(x) �

1
kΓk(α)

􏽚
x

a
ψ′(t)(ψ(x) − ψ(t))

(α/k)− 1
f(t)dt,

kI
α;ψ
b− f(x) �

1
kΓk(α)

􏽚
b

x
ψ′(t)(ψ(t) − ψ(x))

(α/k)− 1
f(t)dt,

(7)

respectively;

Γk(x) � 􏽚
∞

0
t
x− 1

e
− tk/k( )dt, R(x)> 0, (8)

is the k-analogue of gamma function.
,e k-analogues of beta function and incomplete beta

function are, respectively, defined as

Bk(x, y) �
1
k

􏽚
1

0
t
(x/k)− 1

(1 − t)
(x/k)− 1dt, (9)

Bk(z; x, y) �
1
k

􏽚

z

0

t
(x/k)− 1

(1 − t)
(b/y)− 1dt. (10)

We now derive the main result of this section.

Theorem 1. Let 0≤ e<f and g: [e, f]⟶ R be a positive
function and g ∈ L1[e, f]. Also, suppose that g is a convex
function on [e, f], ψ(x) is an increasing and positive
monotone function on (e, f], having a continuous derivative
ψ′(x) on (e, f), and α ∈ (0, 1). 0en, for k> 0, the following
k-fractional integral inequalities hold:

g
e + f

2
􏼠 􏼡≤

Γk(α + k)

2(f − e)(α/k) kI
α;ψ
ψ− 1(e)+ (g ∘ψ) ψ− 1

(f)􏼐 􏼑􏼔

+ kI
α;ψ
ψ− 1(f)− (g ∘ψ) ψ− 1

(e)􏼐 􏼑􏼕≤
g(e) + g(f)

2
.

(11)

Proof. Using the convexity of g, we have

2g
e + f

2
􏼠 􏼡≤g(tc +(1 − t)f) + g((1 − t)e + td). (12)

Multiplying both sides by t(α/k)− 1 and then integrating
with respect to t on [0, 1], we have

2k

α
g

e + f

2
􏼠 􏼡≤ 􏽚

1

0
t
(α/k)− 1

g(tc +(1 − t)f)dt

+ 􏽚
1

0
t
(α/k)− 1

g((1 − t)e + td)dt.

(13)

Now, making the substitution t � (ψ(v) − f/e − f),

s � (ψ(v) − e/f − e), we have
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Γk(α + k)

2(f − e)(α/k) kI
α;ψ
ψ− 1(e)+ (g ∘ψ) ψ− 1

(f)􏼐 􏼑 + kI
α;ψ
ψ− 1(f)− (g ∘ψ) ψ− 1

(e)􏼐 􏼑􏼔 􏼕

�
Γk(α + k)

2(f − e)(α/k)

1
kΓk(α)

􏽚
ψ− 1(f)

ψ− 1(e)
(f − ψ(v))

(α/k)
(g ∘ψ)(v)ψ′(v)dv􏼢

+ 􏽚
ψ− 1(f)

ψ− 1(e)
(ψ(v) − e)

(α/k)
(g ∘ψ)(v)ψ′(v)dv􏼣

�
α
2k

􏽚
1

0
t
(α/k)− 1

g(tc +(1 − t)f)dt + 􏽚
1

0
t
(α/k)− 1

g((1 − t)e + td)dt􏼢 􏼣

≥g
e + f

2
􏼠 􏼡.

(14)

Also, using the convexity property of g, we have

g(tc +(1 − t)f) + g((1 − t)e + td)≤g(e) + g(f). (15)

Multiplying both sides by t(α/k)− 1 and then integrating it
with respect to t on [0, 1], we obtain

􏽚
1

0
t
(α/k)− 1

g(tc +(1 − t)f)dt + 􏽚
1

0
t
(α/k)− 1

g((1 − t)e + td)dt

≤
k

α
[g(e) + g(f)].

(16)

,is implies
Γk(α + k)

2(f − e)(α/k) kI
α;ψ
ψ− 1(e)+ (g ∘ψ) ψ− 1

(f)􏼐 􏼑􏼔

+ kI
α;ψ
ψ− 1(f)− (g ∘ψ) ψ− 1

(e)􏼐 􏼑􏼕≤
g(e) + g(f)

2
.

(17)

,e proof is completed. □

3. Some More Fractional Inequalities of
Hermite–Hadamard Type

We now derive two new fractional integral identities in-
volving ψk-Riemann–Liouville fractional integrals. ,ese

results will serve as auxiliary results for obtaining our next
results.

Lemma 1. Let e<f and g: [e, f]⟶ R be a differentiable
mapping on (e, f). Also, suppose that g′ ∈ L[e, f], ψ(x) is an
increasing and positive monotone function on (e, f], having a
continuous derivative ψ′(x) on (e, f), and α ∈ (0, 1). 0en,
for k> 0, the following identity holds:

g(e) + g(f)

2
−
Γk(α + k)

2(f − e)(α/k) kI
α;ψ
ψ− 1(e)+ (g ∘ψ) ψ− 1

(f)􏼐 􏼑􏼔

+kI
α;ψ
ψ− 1(f)− (g ∘ψ) ψ− 1

(e)􏼐 􏼑􏼕

�
1

2(f − e)(α/k)
􏽚
ψ− 1(f)

ψ− 1(e)
(ψ(v) − e)

(α/k)
􏽨

− (f − ψ(v))
(α/k)

􏽩 g′ ∘ψ( 􏼁(v)ψ′(v)dv.

(18)

Proof. Consider J1 � (Γk(α + k)/2(f − e)(α/k))kI
α;ψ
ψ− 1(e)+

(g ∘ψ)(ψ− 1(f)) and J2 � (Γk(α + k)/2(f − e)(α/k))kI
α;ψ
ψ− 1(f)−

(g ∘ψ)(ψ− 1(e)).
Now,

J1 �
α

2k(f − e)(α/k)
􏽚
ψ− 1(f)

ψ− 1(e)
(f − ψ(v))

(α/k)− 1
(g ∘ψ)(v)ψ′(v)dv

� −
1

2k(f − e)(α/k)
􏽚
ψ− 1(f)

ψ− 1(e)
(g ∘ψ)(v)d(f − ψ(v))

(α/k)

�
g(e)

2
+

1
2(f − e)(α/k)

􏽚
ψ− 1(f)

ψ− 1(e)
(f − ψ(v))

(α/k)
g′ ∘ψ( 􏼁(v)ψ′(v)dv.

(19)

Similarly,
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J2 �
α

2k(f − e)(α/k)
􏽚
ψ− 1(f)

ψ− 1(e)
(ψ(v) − e)

(α/k)− 1

· (g ∘ψ)(v)ψ′(v)dv

�
1

2k(f − e)(α/k)
􏽚
ψ− 1(f)

ψ− 1(e)
(g ∘ψ)(v)d

· (ψ(v) − e)
(α/k)

�
g(f)

2
−

1
2(f − e)(α/k)

􏽚
ψ− 1(f)

ψ− 1(e)

· (ψ(v) − e)
(α/k)

g′ ∘ψ( 􏼁(v)ψ′(v)dv.

(20)

It follows that

g(e) + g(f)

2
− J1 + J2( 􏼁 �

1
2(f − e)(α/k)

􏽚
ψ− 1(f)

ψ− 1(e)

· (ψ(v) − e)
(α/k)

− (f − ψ(v))
(α/k)

􏽨 􏽩

· g′ ∘ψ( 􏼁(v)ψ′(v)dv.

(21)

□

Example 1. Let c � 2, d � 3, α � (1/2), k � 2, g(x) �

x2,ψ(x) � x. ,en, all the assumptions in Lemma 1 are
satisfied. Observe that (g(c) + g(d)/2) � (13/2).
Γk(α + k)

2(d − c)(α/k) kI
α;ψ
ψ− 1(c)+ (g ∘ψ) ψ− 1

(d)􏼐 􏼑􏼔

+ kI
α;ψ
ψ− 1(d)− (g ∘ψ) ψ− 1

(c)􏼐 􏼑􏼕

�
Γ(2)(1/2)

2
1
Γ(2)(1/2)

􏽚
3

2
v
2
(3 − v)

− (3/4)dv􏼢

+
1
Γ(2)(1/2)

􏽚
3

2
v
2
(v − 2)

− (3/4)dv􏼣 �
577
90

.

(22)

,is implies
g(c) + g(d)

2
−
Γk(α + k)

2(d − c)(α/k) kI
α;ψ
ψ− 1(c)+ (g ∘ψ) ψ− 1

(d)􏼐 􏼑􏼔

+ kI
α;ψ
ψ− 1(d)− (g ∘ψ) ψ− 1

(c)􏼐 􏼑􏼕 �
4
45

.

(23)

Also,

1
2(d − c)(α/k)

􏽚
ψ− 1(d)

ψ− 1(c)
(ψ(v) − c)

(α/k)
− (d − ψ(v))

(α/k)
􏽨 􏽩

· g′ ∘ψ( 􏼁(v)ψ′(v)dv

� 􏽚
3

2
v(v − 2)

(1/4)dv − 􏽚
3

2
v(3 − v)

(1/4)dv �
4
45

.

(24)

Example 2. Let c � 2, d � 3, α � (1/2), k � (1/2), g(x) �

x2,ψ(x) � x. ,en, all the assumptions in Lemma 1 are
satisfied. Observe that (g(c) + g(d)/2) � (13/2).

Γk(α + k)

2(d − c)(α/k) kI
α;ψ
ψ− 1(c)+ (g ∘ψ) ψ− 1

(d)􏼐 􏼑 + kI
α;ψ
ψ− 1(d)− (g ∘ψ) ψ− 1

(c)􏼐 􏼑􏼔 􏼕

�
Γ(1/2)(1/2)

2
1

Γ(1/2)(1/2)
􏽚
3

2
v
2dv +

1
Γ(1/2)(1/2)

􏽚
3

2
v
2dv􏼢 􏼣 �

19
3

.

(25)

,is implies

g(c) + g(d)

2
−
Γk(α + k)

2(d − c)(α/k) kI
α;ψ
ψ− 1(c)+ (g ∘ψ) ψ− 1

(d)􏼐 􏼑􏼔

+ kI
α;ψ
ψ− 1(d)− (g ∘ψ) ψ− 1

(c)􏼐 􏼑􏼕 �
1
6
.

(26)

Also,

1
2(d − c)(α/k)

􏽚
ψ− 1(d)

ψ− 1(c)
(ψ(v) − c)

(α/k)
− (d − ψ(v))

(α/k)
􏽨 􏽩

· g′ ∘ψ( 􏼁(v)ψ′(v)dv

� 􏽚
3

2
v(v − 2)dv − 􏽚

3

2
v(3 − v)dv �

1
6
.

(27)

Lemma 2. Let e<f and g: [e, f]⟶ R be a differentiable
mapping on (e, f). Also, suppose that g′ ∈ L[e, f], ψ(x) is an
increasing and positive monotone function on (e, f], having a
continuous derivative ψ′(x) on (e, f), and α ∈ (0, 1). 0en,
for k> 0, the following identity holds:
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Γk(α + k)

2(f − e)(α/k) kI
α;ψ
ψ− 1(e)+ (g ∘ψ) ψ− 1

(f)􏼐 􏼑􏼔

+ kI
α;ψ
ψ− 1(f)− (g ∘ψ) ψ− 1

(e)􏼐 􏼑􏼕 − g
e + f

2
􏼠 􏼡

� 􏽚
ψ− 1(f)

ψ− 1(e)
h g′ ∘ψ( 􏼁(v)ψ′(v)dv

+
1

2(f − e)(α/k)
􏽚
ψ− 1(f)

ψ− 1(e)
(ψ(v) − e)

(α/k)
􏽨

− (f − ψ(v))
(α/k)

􏽩 g′ ∘ψ( 􏼁(v)ψ′(v)dv,

(28)

where

h �

1
2
, forψ− 1 e + f

2
􏼠 􏼡≤ v≤ψ− 1(f),

−
1
2
, forψ− 1(e)≤ v≤ψ− 1 e + f

2
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Proof. Suppose

I1 � −
1
2

􏽚
ψ− 1(e+f/2)

ψ− 1(e)
g′ ∘ψ( 􏼁(v)ψ′(v)dv � −

1
2

g
e + f

2
􏼠 􏼡 +

g(e)

2
,

I2 �
1
2

􏽚
ψ− 1(f)

ψ− 1(e+f/2)
g′ ∘ψ( 􏼁(v)ψ′(v)dv � −

1
2

g
e + f

2
􏼠 􏼡 +

g(f)

2
,

I3 �
1

2(f − e)(α/k)
􏽚
ψ− 1(f)

ψ− 1(e)
(f − ψ(v))

(α/k)
g′ ∘ψ( 􏼁(v)ψ′(v)dv

� −
g(e)

2
+

α
2k(f − e)(α/k)

􏽚
ψ− 1(f)

ψ− 1(e)
(f − ψ(v))

(α/k)− 1
(g ∘ψ)(v)ψ′(v)dv

� −
g(e)

2
+
Γk(α + k)

2(f − e)(α/k)kI
α;ψ
ψ− 1(e)+ (g ∘ψ) ψ− 1

(f)􏼐 􏼑,

(30)

I4 � −
1

2(f − e)(α/k)
􏽚
ψ− 1(f)

ψ− 1(e)
(ψ(v) − e)

(α/k)
g′ ∘ψ( 􏼁(v)ψ′(v)dv

� −
g(f)

2
+

α
2k(f − e)(α/k)

􏽚
ψ− 1(f)

ψ− 1(e)
(ψ(v) − e)

(α/k)− 1
(g ∘ψ)(v)ψ′(v)dv

� −
g(f)

2
+
Γk(α + k)

2(f − e)(α/k) kI
α;ψ
ψ− 1(f)− (g ∘ψ) ψ− 1

(e)􏼐 􏼑.

(31)

Summing I1, I2, I3, and I4, we get the required
result. □

Example 3. Let c � 2, d � 3, α � (1/2), k � 2, g(x) �

x2,ψ(x) � x. ,en, all the assumptions in Lemma 2 are
satisfied. Note that g(c + d/2) � (25/4).

Γk(α + k)

2(d − c)(α/k) kI
α;ψ
ψ− 1(c)+ (g ∘ψ) ψ− 1

(d)􏼐 􏼑 + kI
α;ψ
ψ− 1(d)− (g ∘ψ) ψ− 1

(c)􏼐 􏼑􏼔 􏼕

�
Γ(1/2)(1/2)

8
1

Γ(1/2)(1/2)
􏽚
3

2
v
2
(3 − v)

− (3/4)dv􏼢

+
1

Γ(1/2)(1/2)
􏽚
3

2
v
2
(v − 2)

− (3/4)dv􏼣 �
577
90

.

(32)
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,is implies
Γk(α + k)

2(d − c)(α/k) kI
α;ψ
ψ− 1(c)+ (g ∘ψ) ψ− 1

(d)􏼐 􏼑􏼔

+ kI
α;ψ
ψ− 1(d)− (g ∘ψ) ψ− 1

(c)􏼐 􏼑􏼕 − g
c + d

2
􏼠 􏼡 �

29
180

.

(33)

Also,

􏽚
ψ− 1(d)

ψ− 1(c)
h g′ ∘ψ( 􏼁(v)ψ′(v)dv �

1
4
, (34)

where h is defined in Lemma 2.

1
2(d − c)(α/k)

􏽚
ψ− 1(d)

ψ− 1(c)
(d − ψ(v))

(α/k)
− (ψ(v) − c)

(α/k)
􏽨 􏽩

· g′ ∘ψ( 􏼁(v)ψ′(v)dv

� 􏽚
3

2
v(v − 2)

(1/4)dv − 􏽚
3

2
v(3 − v)

(1/4)dv � −
4
45

.

(35)

,is implies

􏽚
ψ− 1(d)

ψ− 1(c)
h g′ ∘ψ( 􏼁(v)ψ′(v)dv +

1
2(d − c)(α/k)

· 􏽚
ψ− 1(d)

ψ− 1(c)
(d − ψ(v))

(α/k)
􏽨

− (ψ(v) − c)
(α/k)

􏽩 g′ ∘ψ( 􏼁(v)ψ′(v)dv �
29
180

.

(36)

Example 4. Let c � 2, d � 3, α � (1/2), k � (1/2), g(x) �

x2,ψ(x) � x. ,en, all the assumptions in Lemma 2 are
satisfied. Note that g(c + d/2) � (25/4).
Γk(α + k)

2(d − c)(α/k) kI
α;ψ
ψ− 1(c)+ (g ∘ψ) ψ− 1

(d)􏼐 􏼑 + kI
α;ψ
ψ− 1(d)− (g ∘ψ) ψ− 1

(c)􏼐 􏼑􏼔 􏼕

�
Γ(1/2)(1/2)

2
1

Γ(1/2)(1/2)
􏽚
3

2
v
2dv +

1
Γ(2)(1/2)

􏽚
3

2
v
2dv􏼢 􏼣 �

19
3

.

(37)

,is implies

Γk(α + k)

2(d − c)(α/k) kI
α;ψ
ψ− 1(c)+ (g ∘ψ) ψ− 1

(d)􏼐 􏼑􏼔

+ kI
α;ψ
ψ− 1(d)− (g ∘ψ) ψ− 1

(c)􏼐 􏼑􏼕 − g
c + d

2
􏼠 􏼡 �

1
12

.

(38)

Also,

􏽚
ψ− 1(d)

ψ− 1(c)
h g′ ∘ψ( 􏼁(v)ψ′(v)dv �

1
4
, (39)

where h is defined in Lemma 2.

1
2(d − c)(α/k)

􏽚
ψ− 1(d)

ψ− 1(c)
(d − ψ(v))

(α/k)
􏽨

− (ψ(v) − c)
(α/k)

􏽩 g′ ∘ψ( 􏼁(v)ψ′(v)dv

� 􏽚
3

2
v(v − 2)dv − 􏽚

3

2
v(3 − v)dv � −

1
6
.

(40)

,is implies

􏽚
ψ− 1(d)

ψ− 1(c)
h(g′ ∘ψ)(v)ψ′(v)dv +

1
2(d − c)(α/k)

􏽚
ψ− 1(d)

ψ− 1(c)

· (d − ψ(v))
(α/k)

− (ψ(v) − c)
(α/k)

􏽨 􏽩

· (g′ ∘ψ)(v)ψ′(v)dv �
1
12

.

(41)

Before proceeding to next results, let us recall the def-
inition of s-convex function of Breckner type.

Definition 4 (see [49]). A function g: [0,∞)⟶ [0,∞) is
said to be s-convex function of Breckner type if

g((1 − t)x + ty)≤ (1 − t)
s
g(x) + t

s
g(y),

∀x, y ∈ [0,∞), t ∈ [0, 1], s ∈ (0, 1].
(42)

Theorem 2. Let e<f and g: [e, f]⟶ R be a differentiable
mapping on (e, f). Also, suppose that |g′| is Breckner type of
s-convex on [e, f], ψ(x) is an increasing and positive
monotone function on (e, f], having a continuous derivative
ψ′(x) on (e, f), and α ∈ (0, 1). 0en, for k> 0, the following
inequality holds:

g(e) + g(f)

2
−
Γk(α + k)

2(f − e)(α/k) kI
α;ψ
ψ− 1(e)+ (g ∘ψ) ψ− 1

(f)􏼐 􏼑􏼔

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ kI
α;ψ
ψ− 1(f)− (g ∘ψ) ψ− 1

(e)􏼐 􏼑􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
f − e

2
L1 g′(e)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + L2 g′(f)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩,

(43)

where

L1 ≔ 2kBk

1
2
; 1 + s,

k + α
k

􏼠 􏼡 +
k 1 − 2− (ks+α/k)( 􏼁

k + ks + α
− Bk 1 + s,

k + α
k

􏼠 􏼡,

(44)

L2 ≔
k 1 − 2− (ks+α/k)( 􏼁

k + ks + α
− 2kBk

1
2
;
k + α

k
, 1 + s􏼠 􏼡 − Bk

k + α
k

, 1 + s􏼠 􏼡,

(45)

respectively.

Proof. Using Lemma 1 and the fact that |g′| is Breckner type
of s-convex function, we have
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g(e) + g(f)

2
−
Γk(α + k)

2(f − e)(α/k) kI
α;ψ
ψ− 1(e)+ (g°ψ) ψ− 1

(f)􏼐 􏼑 + kI
α;ψ
ψ− 1(f)− (g°ψ) ψ− 1

(e)􏼐 􏼑􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
1

2(f − e)(α/k)
􏽚
ψ− 1(f)

ψ− 1(e)
(ψ(v) − e)

(α/k)
− (f − ψ(v))

(α/k)
‖(g′ ∘ψ)(v)‖ψ′(v)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dv

�
f − e

2
􏽚
1

0
(1 − t)

(α/k)
− t

(α/k)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 g′(tc +(1 − t)f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dt

≤
f − e

2
􏽚
1

0
(1 − t)

(α/k)
− t

(α/k)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 t
s

g′(e)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +(1 − t)
s

g′(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩dt

�
f − e

2
g′(e)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

(1/2)

0
t
s

(1 − t)
(α/k)

− t
(α/k)

􏽨 􏽩dt + g′(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
(1/2)

0
(1 − t)

s
(1 − t)

(α/k)
− t

(α/k)
􏽨 􏽩dt􏼢

+ g′(e)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
1

(1/2)
t
s

t
(α/k)

− (1 − t)
(α/k)

􏽨 􏽩dt + g′(f)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
1

(1/2)
(1 − t)

s
t
(α/k)

− (1 − t)
(α/k)

􏽨 􏽩dt􏼣

�
f − e

2
L1 g′(e)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + L2 g′(f)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩,

(46)

where

L1 ≔ H1 + H3 � 􏽚
(1/2)

0
t
s

(1 − t)
(α/k)

− t
(α/k)

􏽨 􏽩dt + 􏽚
1

(1/2)
t
s

t
(α/k)

− (1 − t)
(α/k)

􏽨 􏽩dt

� 2kBk

1
2
; 1 + s,

k + α
k

􏼠 􏼡 +
k 1 − 2− (ks+α/k)( 􏼁

k + ks + α
− Bk 1 + s,

k + α
k

􏼠 􏼡,

(47)

L2 ≔ H2 + H4 � 􏽚
(1/2)

0
(1 − t)

s
(1 − t)

(α/k)
− t

(α/k)
􏽨 􏽩dt + 􏽚

1

(1/2)
(1 − t)

s
t
(α/k)

− (1 − t)
(α/k)

􏽨 􏽩dt

�
k 1 − 2− (ks+α/k)( 􏼁

k + ks + α
− 2kBk

1
2
;
k + α

k
, 1 + s􏼠 􏼡 − Bk

k + α
k

, 1 + s􏼠 􏼡.

(48)

,is completes the proof. □

Theorem 3. Let g: [e, f]⟶ R be a differentiable function
on (e, f) with e<f. Also, suppose that |g′| is Breckner type of
s-convex function. If ψ(x) is an increasing and positive
monotone function on (e, f], having a continuous derivative
ψ′(x) on (e, f) and α ∈ (0, 1), then for k> 0, the following
inequality holds:

Γk(α + k)

2(f − e)(α/k) kI
α;ψ
ψ− 1(e)+ (g ∘ψ) ψ− 1

(f)􏼐 􏼑􏼔

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ kI
α;ψ
ψ− 1(f)− (g ∘ψ) ψ− 1

(e)􏼐 􏼑􏼕 − g
e + f

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
|g(f) − g(e)|

2
+

f − e

2
L1 g′(e)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + L2 g′(f)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩,

(49)

where L1 and L2 are given by (44) and (45), respectively.

Proof. Using Lemma 2, the property of modulus, and the
given hypothesis of the theorem, we have

Γk(α + k)

2(f − e)(α/k) kI
α;ψ
ψ− 1(e)+ (g°ψ) ψ− 1

(f)􏼐 􏼑􏼔

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ kI
α;ψ
ψ− 1(f)− (g°ψ)(π)􏼕 − g

e + f

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽚
ψ− 1(f)

ψ− 1(e)
h g′ ∘ψ( 􏼁(v)ψ′(v)dv

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
1

2(f − e)(α/k)
􏽚
ψ− 1(f)

ψ− 1(e)
(f − ψ(v))

(α/k)
􏽨

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− (ψ(v) − e)
(α/k)

􏽩(g′ ∘ψ)(v)ψ′(v)dv
􏼌􏼌􏼌􏼌􏼌

� I1 + I2.

(50)
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Using substitution t � (ψ(v) − e/f − e) and the fact that
|g′| is Breckner type of s-convex function, we have

I1 ≤
f − e

2
L1 g′(e)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + L2 g′(f)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩, (51)

where L1 and L2 are given by (44) and (45), respectively. And

I2 �
|g(f) − g(e)|

2
. (52)

,is completes the proof. □

4. Applications

In this section, we discuss some applications of,eorem 2 to
means by considering a particular example of s-convexity.
First of all, we recall some previously known concepts related
to means [50].

For arbitrary real numbers α, β, α≠ β, we define the
following:

(1) Arithmetic mean:

A(α, β) �
α + β
2

, α, β ∈ R; (53)

(2) Logarithmic mean:

L(α, β) �
β − α

ln|β| − ln|α|
, α, β ∈ R\ 0{ }; (54)

(3) Generalized log-mean:

Ln(α, β) �
βn+1 − αn+1

(n + 1)(β − α)
􏼢 􏼣

(1/n)

, n ∈ N, n≥ 1, α, β ∈ R, α< β.

(55)

We now give the main results of this section.

Proposition 1. Let e, f ∈ R+ with e<f; then,

A e
s
, f

s
( 􏼁 − L

s
s(e, f)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

s(f − e)

2
W1|e|

s− 1
+ W2|f|

s− 1
􏽨 􏽩,

(56)

where

W1 ≔ 2B
1
2
; 1 + s, 2􏼒 􏼓 +

1 − 2− 1− s

2 + s
− B(1 + s, 2), (57)

W2 ≔
1 − 2− 1− s

2 + s
− 2B

1
2
; 2, 1 + s􏼒 􏼓 − B(2, 1 + s), (58)

respectively.

Proof. Applying ,eorem 2 for g(x) � xs, ψ(x) � x, and
α � 1 � k, we obtain the required result. □

Proposition 2. Let e, f ∈ R+ with e<f; then,

A e
s
, f

s
( 􏼁 − L

s
s(e, f)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

fs − gs
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2
+

s(f − e)

2
W1|e|

s− 1
􏽨

+ W2|f|
s− 1

􏽩,

(59)

where W1 and W2 are given by (57) and (58), respectively.

Proof. Applying ,eorem 3 for g(x) � xs, ψ(x) � x, and
α � 1 � k, we obtain the required result. □

5. Conclusion

In this article, we obtain some new fractional estimates of
Hermite–Hadamard’s inequality essentially using a new
k-analogue of ψk-fractional integrals. We derive two new
fractional integral identities in the setting of k-fractional
calculus. In order to check the validity of these identities, we
discuss some particular examples. In the final section, we
have discussed applications of ,eorems 2 and 3 to means.

Data Availability

No data were used to support this study.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed equally to the writing of this paper.
All authors read and approved the final manuscript.

Acknowledgments

,is work was supported by the Natural Science Foundation
of China (Grant nos. 61673169, 11701176, 11626101, and
11601485).

References
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[37] S. Araci, E. Şen, M. Acikgoz, and K. Oruçog̈lu, “Identities
involving some new special polynomials arising from the
applications of fractional calculus,” Applied Mathematics &
Information Sciences, vol. 9, no. 5, pp. 2657–2662, 2015.

Mathematical Problems in Engineering 9

https://rgmia.org/monographs/hermite_hadamard.html
https://rgmia.org/monographs/hermite_hadamard.html


[38] A. A. El-Sayed and P. Agarwal, “Numerical solution of
multiterm variable-order fractional differential equations via
shifted Legendre polynomials,” Mathematical Methods in the
Applied Sciences, vol. 42, no. 11, pp. 3978–3991, 2019.

[39] V. F. Morales-Delgado, J. F. Gómez-Aguilar, K. M. Saad,
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Boundary behavior of important functions has been an object of intensive research since the time of Riemann. Kurokawa,
Kurokawa-Koyama, and Chapman studied the boundary behavior of generalized Eisenstein series which falls into this category.
)e underlying principle is the use of the Lipschitz summation formula. Our purpose is to show that it is a form of the functional
equation for the Lipschitz–Lerch transcendent (and in the long run, it is equivalent to that for the Riemann zeta-function) and that
this being indeed a boundary function of the Hurwitz–Lerch zeta-function, one can extract essential information. We also
elucidate the relation between Ramanujan’s formula and automorphy of Eisenstein series.

1. Introduction

Boundary behavior of core functions has always been the
object of intensive research since it exhibits a peculiar
phenomenon that cannot be predicted by the behavior inside
the domain. )ere are many instances of such unexpected
behavior cf. [1–3]. Kurokawa [4] and Koyama and Kur-
okawa [5] studied the following limiting values by the
Lipschitz summation formula:

lim
τ⟶x

Ek −
1
τ

􏼒 􏼓 − τk
Ek(τ)􏼒 􏼓, ∀x ∈ R, (1)

where Ek(τ) is the generalized Eisenstein series defined by
(25).

It has been elucidated and generalized by Chapman [6]
who also used the Lipschitz summation formula for which
he appealed to [7]. Knopp and Robbins in their Remarks 1
and 2 state their own views on the Lipschitz summation
formula and Stark’s method [8] to the effect that they are not
directly related to the functional equation (just as, for the
Riemann zeta-function, the partial fraction expansion does
not seem to be related). In [9], Murty and Sinha [10] result
has been elucidated as a manifestation of one of the
equivalent conditions to the functional equation, the
Fourier–Bessel expansion, or the perturbed Dirichlet series
([11], Chapter 4), thereby explaining the genesis of Stark’s

method. )e Lipschitz summation formula for quadratic
fields is also deduced there. We shall turn to this toward the
end of Section 4.

We cite the passage from [12] “)e relation between
modular forms and Dirichlet series with functional equa-
tions was discovered by Hecke, whose epoch-making work
during the years 1930–1940, based on that discovery and that
of the ‘Hecke operators’, brought out completely new aspects
of a theory which many mathematicians would have
regarded as a closed chapter long before.”

We refer to this as part of the Riemann–Hecke–Bochner
correspondence (RHB correspondence) ([11], p. 4 and 22)
which is coined by Knopp [13].

Our main aim in this paper is to prove the general
modular relation, )eorem 4, for the Lipschitz–Lerch
transcendent (57) and deduce the general Lipschitz sum-
mation formula, Corollary 4. From this, we show that, in this
case again, generalized RHB correspondence or the modular
relation is the key for everything.

But prior to this, in Section 2, we state the modular
relation for the Lambert series generated by the product of
two Riemann zeta-functions with variables different by an
odd integer and prove the automorphy of the Eisenstein
series by the RHB correspondence, which of course settles
the even weight case of (1). For another relation, cf. Bruinier
and Funke [14].
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)e even difference case turns out to be a reminiscent of
the Wigert–Bellman divisor problem [15] as alluded to in
[9]. In Section 3, we state the results in another form based
on the shifted Mellin inversion.

Here, we use a method similar to the one in [16] (pp.
73–75) of using the Ewald expansion ([11], Chapter 5) as
opposed to the Fourier–Bessel expansion alluded to above.
Since it is equivalent to the Lerch functional equation ([17],
)eorem 5.3, p. 130) which in turn is equivalent to an
asymmetric form (3) of the functional equation for the
Riemann zeta-function, we thereby show that, in the long
run, the genesis is in the functional equation for the Rie-
mann zeta-function.

As a necessary step, we show that the reciprocal Hurwitz
formula amounts to a ramified functional equation, Lemma
1. )ere are many cases of such ramified functional equa-
tions (cf. [18] and references therein). We state one of the
earliest occurrences.

In what follows, we always use the notation s � σ + it as
the complex variable.

2. An Example of the
Riemann–Hecke–Bochner Correspondence

)roughout in what follows, we appeal to the Riemann zeta-
function defined in the first instance for σ � Res> 1 by

ζ(s) � 􏽙
p

1 −
1
ps

􏼠 􏼡

− 1

� 􏽘
∞

n�1

1
ns

. (2)

)is satisfies the asymmetric form of the functional
equation:

ζ(1 − s) � 2(2π)
− s cos

π
2

s􏼒 􏼓Γ(s)ζ(s), (3)

which is a prototype of the Hurwitz formula (cf. (64) for its
reciprocal).

We fix the integer α throughout.
We consider the product of two zeta-functions:

φ(s) � φ(s, α) � ζ(s)ζ(s + α) � 􏽘
∞

n�1

σ − α(n)

ns
, (4)

where the series is absolutely convergent for
σ > σφ ≔ max 1, 1 − α{ }, and

σ− α(n) � 􏽘
d|n

d
− α

, (5)

is the sum-of-divisors function. We note that φ(s − a) in-
cludes the case of ζ(s)ζ(s − α) as
φ(s − a) � 􏽐

∞
n�1((σα(n))/ns). )is will be pursued in Section

3.
)e zeta-function φ(s) satisfies the asymmetric func-

tional equation:

φ(1 − s) � 4(2π)
− 2s+α cos

π
2

s cos
π
2

(s − α)Γ(s)Γ(s − α)φ(s − α).

(6)

Noting that

cos
π
2

(s − α) �

sin
π
2

s sin
π
2
α, α � 2ϰ + 1,

cos
π
2

s cos
π
2
α, α � 2ϰ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

the product of cosines amounts to

1
2
(− 1)
ϰ sin πs, α � 2ϰ + 1,

1
2
(− 1)
ϰ
(1 + cos πs), α � 2ϰ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

(i) First we treat the case of α � 2ϰ + 1 an odd integer.
)en by the reciprocal relation for the gamma
function, we see that the functional equation (6)
amounts to

φ(1 − s) � 2(− 1)
ϰ
(2π)

− 2s+α π
Γ(1 − s)

Γ(s − α)φ(s − α).

(9)

Now by the well-known procedure—Hecke gamma
transform (e.g., [16]), we have for c> σφ and Rex> 0

􏽘

∞

n�1
σ− α(n)e

− nx
�

1
2πi

􏽚
(c)
Γ(s)φ(s)x

− sds, (10)

where (c) indicates the Bromwich contour
σ � c, − ∞< t<∞.
By a standard procedure of moving the line to the left
up to (d), where d< − α< 0 (d � − α − (1/2), say),
whereby noting that the horizontal integrals vanish in
the limit as |t|⟶∞, we obtain

1
2πi

􏽚
(c)
Γ(s)φ(s)x

− sds �
1
2πi

􏽚
(d)
Γ(s)φ(s)x

− sds + P(x),

(11)

where P(x) � Pα(x) is the residual function consisting
of the sum of residues of the integrand at
− a, . . . , − 1, 0, 1, a + 1. Writing 1 − s for s in (11), we see
that the right-hand side of (11) becomes
(1/2πi)􏽒

(1− d)
Γ(1 − s)φ(1 − s)xs− 1ds + P(x), whence

substituting (9), we conclude that

􏽘

∞

n�1
σ− α(n)e

− nx
� (− 1)

ϰ
(2π)

α+11
x

1
2πi

· 􏽚
(1− d)
Γ(s − α)φ(s − α)

4π2

x
􏼠 􏼡

− s

ds + P(x).

(12)
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Substituting the absolutely convergent series in (4) and
factoring out (x/4π2)a, we deduce that

􏽘

∞

n�1
σ− α(n)e

− nx
� (− 1)

ϰ
(2π)

α+11
x

x

4π2􏼒 􏼓
α

􏽘

∞

n�1
σ − α(n)

×
1
2πi

􏽚
(1− d)
Γ(s − α)

4π2n
x

􏼠 􏼡

− (s+α)

ds + P(x).

(13)

Hence, by the Mellin inversion again, we obtain

􏽘

∞

n�1
σ − α(n)e

− nx
� (− 1)

(α− 1)/2 x

2π
􏼒 􏼓

α− 1
􏽘

∞

n�1
σ − α(n)e

− 4π2n( )/x + P(x),

(14)

for Rex> 0, i.e., the Bochner modular relation [19].
Here only in the case α � 1> 0, s � 1 is a double pole,
others being simple poles. In the case α � − 1< 0, there
is one more term − (1/2)x− 1.
To compute the residual function, we use Table 1,
taking into account the trivial zeros of the Riemann
zeta-function at negative even integers.
For 1≠ α> 0, the residual function is

Pα(x) � 􏽘
α

k�1

(− 1)k

k!
ζ(− k)ζ(− k + α)x

k
+ ζ(1 + α)x

− 1
−
1
2
ζ(α)

� − 􏽘

[α/2]+1

j�1

1
(2j − 1)!

ζ(1 − 2j)ζ(α − 2j + 1)x
2j− 1

+ ζ(1 + α)x
− 1

−
1
2
ζ(α),

(15)

on writing k � 2j − 1. In literature, this is expressed in
another form based on the explicit formula for zeta-
values cf., e.g., ([20], p. 71 and 91):

ζ(1 − 2k) � −
B2k

2k
(k≥ 1), ζ(2k) �

22k− 1

(2k)!
B2kπ

2k
,

(16)

where the Bernoulli numbers B2k are b-notation ([20],
p. 90).
In particular, for α � 2ϰ + 1≥ 1, (14) with x replaced by
2πx amounts to the celebrated Ramanujan formula, cf.,
e.g., [21] for a general account:

􏽘

∞

n�1
σ− 2ϰ− 1(n)e

− 2πnx
+(− 1)

ϰ+1
x
2ϰ

􏽘

∞

n�1
σ− 2ϰ− 1(n)e

− ((2πn)/x)
� P(x),

(17)

where P(x) � P2ϰ+1(x) is given by (15) whose concrete
form is given in (49). Indeed, P2ϰ+1(x) is a residual
function given as the sum of the residues:

P(x) � 􏽘
ξ∈R

Res
s�ξ

(2π)
− sΓ(s)ζ(s)ζ(s + 2ϰ + 1)x

− s
,

(18)

where R � − 2ϰ − 1, − 2ϰ, − 2ϰ + 1, − 2ϰ + 3, . . . , − 3, −{

1, 0, 1}, and s � 0 is a double pole only when ϰ � 0
(others are simple poles). Hence,

P2ϰ+1(x) � 􏽘
ϰ+1

j�1

(− 1)k

(2j + 1)!
ζ(1 − 2j)ζ(2ϰ − 2j + 2)x

2j− 1

+ ζ(2ϰ + 2)x
− 1

−
1
2
ζ(2ϰ + 1).

(19)

cf. (49) below for another expression for the residual
function.
If we write − x � 2πiτ, then τ ∈H and the Lambert
series in Liouville’s form amounts to the Eisenstein
series Ek(τ) in Definition 1, where k � a + 1 is even and
(14) gives

􏽘

∞

n�1
σ − α(n)e

2πinτ
� τα− 1

􏽘

∞

n�1
σ − α(n)e

− ((2πin)/τ)
+ P(x). (20)

In case α � − 2ϰ − 1, ϰ≥ 1, (20) reads

􏽘

∞

n�1
σ2ϰ+1(n)e

2πinτ
� τα− 1

􏽘

∞

n�1
σ2ϰ+1(n)e

− ((2πin)/τ)
+ P(x),

P(τ) � P− 2ϰ− 1(τ) � (2ϰ + 1)!ζ(2ϰ + 2)

· (− 2πiτ)
− 2ϰ− 2

−
1
2
ζ(− 2ϰ − 1),

(21)

cf. (51) and (52).
In slightly different notation from [20] (p. 83),

G2k(τ) ≔ 􏽘
m,n ∈ Z
(m,n)≠(0,0)

1
(nτ + m)2k

.
(22)
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By Proposition 4 in [20] (p. 83), G2k(τ) is a modular
form of weight 2k. )e Laurent expansion (or q-ex-
pansion) reads ([20], p. 92)

G2k(τ) � 2ζ(2k) +
2(2πi)2k

(2k − 1)!
􏽘

∞

n�1
σ2k− 1(n)e

2πinτ
, τ ∈H.

(23)

Appealing to (16), we have similarly to [20] (Corollary,
p. 92)

1
2ζ(2k)

G2k(τ) �
2

ζ(1 − 2k)
E2k(τ) � −

2k

B2k

E2k(τ), (24)

where (2/(ζ(1 − 2k)))E2k(τ) is the Eisenstein series
([20], (34), p. 92) and E2k(τ) is the even suffix case of
the following.

Definition 1. For any k ∈ N, Kurokawa introduces the
general Eisenstein series:

Ek(τ) �
ζ(1 − k)

2
+ 􏽘
∞

n�1
σk− 1(n)e

2πinτ
, τ ∈H, (25)

which is not necessarily modular for k odd.
Stating (21) in explicit form

􏽘

∞

k�1
σ2ϰ+1(k)e

− 2πkx
−

B2ϰ+2
4ϰ + 4

� (− 1)
ϰ+1

x
− 2ϰ− 2

􏽘

∞

k�1
σ2ϰ+1(k)e

− ((2πk)/x)
−

B2ϰ+2
4ϰ + 4

⎧⎨

⎩

⎫⎬

⎭,

(26)

we see that it is nothing but

E2ϰ+2 −
1
τ

􏼒 􏼓 � τ2ϰ+2E2ϰ+2(τ), (27)

i.e., the automorphy of E2ϰ+2(z), cf. (25).
)us, we have established.

Theorem 1. 5eBochner modular relation (14) entails at one
end of the spectrum α � − (2ϰ + 1) Ramanujan’s formula (17)
and at the other end α � 2ϰ + 1 the automorphy of the
Eisenstein series (27), thus abridging analytic number theory
and the theory of modular forms.

(ii) Now we turn to the case of a � 2ϰ. We digress from
(12) which should be replaced by

􏽘
∞

n�1
σa(n)e

− nx
� 2(− 1)

ϰ
(2π)

− 2s+aπ
x

1
2πi

􏽚
(1− d)

π
sin πs
Γ

· (s − a)φ(s)
4π2n

x
􏼠 􏼡

− s

ds

+ 2(− 1)
ϰ
(2π)

− 2s+aπ
x

1
2πi

􏽚
(1− d)

π cot πsΓ

· (s − a)φ(s)
4π2n

x
􏼠 􏼡

− s

ds + P(x).

(28)

In the same way as we have deduced (13), we obtain

􏽘

∞

n�1
σa(n)e

− nx
� 2(− 1)

ϰ
(2π)

− 2s+aπ
x

1
2πi

􏽚
(1− d)

π
sin πs
Γ

· (s − a)φ(s)
4π2n

x
􏼠 􏼡

− s

ds

+ 2(− 1)
ϰ
(2π)

− 2s+aπ
x

1
2πi

􏽚
(1− d)

π cot πsΓ

· (s − a)φ(s)
4π2n

x
􏼠 􏼡

− s

ds + P(x).

(29)

We shall stop here since it would be difficult to express
the resulting integrals and Bellman’s method [15] yields
an asymptotic formula rather than an equality. Partial
theory of modular relations for the product of zeta-
functions is given in ([11], Chapter 9, pp. 241–265),
which is still in progress.

Remark 1. )at the odd integer difference case (i) reduces to
the one-gamma factor case to the RHB correspondence is not
coincidental and is expounded in [11] (pp. 81–86), where one
can also find a plausible discovery of Ramanujan of the
transformation formula for the Dedekind eta-function η. Weil’s
paper [22] is the most well-known paper that contains the proof
of the latter, but prior to this, Chowla gave a proof [23] for the
discriminant function, which is the 24th power of η. Ram-
anujan’s formula is stated as I, Entry 15 of Chapter 16 [24], Entry
21 (i), Chapter 14 of Ramanujan’s Notebook II [25] (which is
and also as IV, Entry 20 of [26]). )e most extensive account of
information surrounding Ramanujan’s formula is [27], while
[28] is themost informative account of special values of the zeta-
functions. )e intersection of references in these two excellent
survey papers (which have a lot in common) is a null set. In
literature, Ramanujan’s formula is stated for α � πx> 0, β �

(π/x)> 0 satisfying the following relation:

4 Mathematical Problems in Engineering



αβ � π2
, (30)

and in terms of Lambert series.
)e Lambert series L(z) is defined for |z|< 1 by

L(z) � 􏽘
∞

n�1
an

zn

1 − zn
, (31)

which is transformed into the Fourier series:

L(z) � 􏽘
∞

m�1
􏽘

∞

n�1
an z

m
( 􏼁

n
� 􏽘
∞

ℓ�1
bℓz

ℓ
, (32)

the Liouville formula, where bℓ � 􏽐d|ℓad. )e sum-of-divi-
sors function is the case an � nα. Original Ramanujan’s
formula looks like having little to do with modular forms.
Equation (17) being a rephrased Lambert series in Liouville’s
form has amenity to the q-expansion, and so to automorphy.

3. The Ramanujan–Guinand Formula and
Its Consequences

In Section 2, we established that at both ends of the spec-
trum, the Bochner modular relation amounts to Ram-
anujan’s formula and the automorphy of Eisenstein series,
respectively. In this section, we partially follow [29],
reproduced in [11] (pp. 86–92), and elucidate the mecha-
nism hidden in the correspondence φ(s)⟷φ(s − a) by
differentiation of the Ramanujan–Guinand formula.

In [14], they mention duality between the space of weak
Maass forms of (negative) weight k ∈ (1/2)Z and the space
of holomorphic cusp form of (positive) weight 2 − k.

To this end, we introduce the Mellin inversion with
shifted argumentIa(x). Let a≥ 0 be a fixed integer to be taken
as the number of times of differentiation throughout. Let
φ(s) be the zeta-function defined by (4) with α � 2ϰ + 1 and
ϰ a nonnegative integer:

φ(s) � ζ(s)ζ(s + 2ϰ + 1), (33)

the other case being included in )eorem 2 below. )e
argument of its proof goes in the lines of Section 2. For
Rex> 0 let

Ia(x) � Ia,ϰ(x) �
1
2πi

􏽚
(c)

(2π)
− sΓ(s)φ(s − a)x

− sds,

(34)

where c> 1 + a. )e Hecke gamma transform reads

Ia(x) � 􏽘

∞

k�1
σ− 2ϰ− 1(k)k

a
e

− 2πkx
. (35)

)e special case,

I(x) � I0(x) �
1
2πi

􏽚
(κ)

(2π)
− sΓ(s)φ(s)x

− sds � 􏽘
∞

k�1
σ− 2ϰ− 1(k)e

− 2πkx
,

(36)

is the Lambert series appearing in Ramanujan’s formula (17).
Differentiating I(x) a-times with respect to x, whereby we

perform differentiation under integral sign, we have the
additional factor

􏽙

a− 1

j�0
(− s − j), (37)

which is (− 1)a(Γ(s + a)/Γ(s)), whence we deduce the re-
markable formula:

da

dxa
I(x) � (− 2π)

a
Ia(x), (38)

i.e., a-times differentiation of the Lambert series (36) is
effected by shifting the argument of φ(s) by a in (36) and
multiplying by (− 2π)a. In view of (38), the a-times differ-
entiated form of Ramanujan’s formula (17) amounts to a
counterpart of the modular relation for Ia(x).

Theorem 2 (Ramanujan–Guinand formula). For the Mellin
transform Ia(x) with shifted argument as defined by (34), we
have the modular relation for ϰ≥ 0 and 0≤ a≤ 2ϰ + 1,

Ia(x) � (− 1)
ϰ+a

(2π)
− a

x
− a+2ϰ

􏽘

a

k�0

a

k

⎛⎝ ⎞⎠
(2ϰ − k)!

(2ϰ − a)!

·
2π
x

􏼒 􏼓
k

Ik

1
x

􏼒 􏼓 + Pa(x),

(39)

where Pa(x) is the residual function.

Proof. Proof depends on the following equation:

φ(s − a) � (− 1)
n
(2π)

2ϰ+2s− 2aΓ(a − 2ϰ − s)

Γ(s − a)
φ(a − 2ϰ − s),

(40)

which is a variant of the functional equation (6) in the
following form:

(2π)
− sΓ(s)φ(s) � (− 1)

n
(2π)

2ϰ+sΓ(− 2ϰ − s)φ(− 2ϰ − s).

(41)

Moving the line of integration to
σ � − c1(c1 > 2ϰ + 1 − a), we have

Ia(x) � Ja(x) + Pa(x),

Ja(x) �
1
2πi

􏽚
− c1( )
Γ(s)φ(s − a)(2πx)

− sds,
(42)

where P(x) � Pa(x) denotes the sum of residues of the
integrand at its poles at
s � a − 2ϰ − 1, a − 2ϰ, a − 2ϰ + 1, a − 2ϰ + 3, . . . , 0, a + 1.

Substitute (40) and change the variable s⟷ a − 2ϰ − s

in the integral Ja(x).
)en

Ja(x) �
(− 1)ϰ

2πi
􏽚

a− 2ϰ+c1( )

Γ(a − 2ϰ − s)Γ(s)

Γ(− 2ϰ − s)
φ(s)(2π)

− s− a
x

s− a+2ϰds.

(43)

Substituting
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%

Γ(a − 2ϰ − s)

Γ(− 2ϰ − s)
�
Γ(1 + s + 2ϰ)
Γ(1 + s + 2ϰ − a)

sin πs

sin π(s − a)

� (− 1)
a Γ(a + 2ϰ + 1)

Γ(s + 2ϰ + 1 − a)
,

(44)

we find that

Ja(x) �
(− 1)ϰ+a

2πi
􏽚

a− 2ϰ+c1( )

Γ(s + 2nϰ + 1)Γ(s)

Γ(s + 2ϰ + 1 − a)
φ(s)(2π)

− s− a
x

s− a+2ϰds.

(45)

Since the gamma factor can be computed as follows for
0≤ a≤ 2ϰ + 1,

Γ(s)Γ(s + 2ϰ + 1)

Γ(s + 2ϰ + 1 − a)
� 􏽘

a

k�0

a

k

⎛⎝ ⎞⎠
(2ϰ − k)!

(2ϰ − a)!
Γ(s + k), (46)

where for a � 2ϰ + 1, the right-hand side is to mean
Γ(s + 2ϰ + 1), we conclude from (42) and (45) that

Ia(x) � (− 1)
ϰ+a

(2π)
− a

x
− a+2ϰ

􏽘

a

k�0

a

k

⎛⎝ ⎞⎠
(2ϰ − k)!

(2ϰ − a)!

×
1
2πi

􏽚
a− 2ϰ+c1( )
Γ(s + k)φ(s)

2π
x

􏼒 􏼓
− s

ds + Pa(x),

(47)

where the sum reduces to 1 for a − 2ϰ + 1. Finally, we note
that the integral on the right-hand side of (47) becomes by
the change of variable s⟷ s + k

2π
x

􏼒 􏼓
k

Ik

1
x

􏼒 􏼓. (48)

Hence, (47) leads to (39), completing the proof. □

Corollary 1

(i) 5e case a � 0 is Ramanujan’s formula (17) with the
residual function

P(x) �
(2π)2ϰ+1

2x
􏽘

ϰ+1

j�0
(− 1)

j
B2j

(2j)!

B2ϰ+2− 2j

(2ϰ + 2 − 2j)!
x
2ϰ+2− 2j

+

−
1
2
ζ(2ϰ + 1) 1 +(− 1)

ϰ+1
x
2ϰ

􏽮 􏽯 if ϰ≥ 1,

1
2
logx if ϰ � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(49)

valid for Rex> 0.

(ii) 5e case a � 2ϰ is Guinand’s formula, cf. ([29],
5eorem 3) with

P2ϰ(x) � (2ϰ)!ζ(2ϰ + 2)(2πx)
− 2ϰ− 1

+
1
2
ζ(− 2ϰ − 1)(2πx)

+
(− 1)ϰ

2
(2π)

− 2ϰ
(2ϰ)!ζ(2ϰ + 1), ϰ≥ 1.

(50)

(iii) 5e case a � 2ϰ + 1 reads

I2ϰ+1(x) � (− 1)
ϰ+1

(2π)
− 2ϰ− 1

x
− 2ϰ− 2

I2ϰ+1
1
x

􏼒 􏼓 + P2ϰ+1(x),

(51)

where

P2ϰ+1(x) � (2ϰ + 1)!ζ(2ϰ + 2)(2πx)
− 2ϰ− 2

−
1
2
ζ(− 2ϰ − 1)(ϰ ≥ 1).

(52)

5ese lead to (21), thence to the automorphy (27).
(iv) 5e special case of (50) with ϰ � 1, i.e., once differ-

entiated form of Ramanujan’s formula, yields Terras’
formula [30, 31]:

ζ(3) �
2
45
π3

− 4 􏽘
∞

k�1
e

− 2πkσ− 3(k) 2π2k2
+ πk +

1
2

􏼒 􏼓. (53)

Remark 2. )e Mellin inversion with shifted argument (34)
is an additive version of the “pseudomodular relation
principle,” which is a processed modular relation with the
processing gamma factor Γ(s + a) ([11], p. 50). In this special
case, the Main Formula (38) is the manifestation of the
statement of Razar that the differentiation of Lambert series
essentially corresponds to the shift of the argument of the
associated Dirichlet series.

Remark 3. It is shown ([11], pp. 82–84) that the special case
ϰ � 0, a � 0 of )eorem 2, the Ramanujan–Guinand for-
mula, is nothing other than the automorphic property of the
Dedekind eta-function, cf. Remark 1 above. )is can be
regarded as once differentiated form of Guinand’s formula.
We note that, in the case of ϰ � 0, the twice differentiated
Guinand’s formula, with a suitable modification, coincides
with the automorphic property of the Eisenstein series E2:

Table 1: Poles and the sum of residues in the relevant domain.

Case σφ d Poles Pα(x)

α> 0 1 d � α − (1/2) − α, . . . , − 1, 0, 1 (2.12)
α< 0 1 − α d � − (1/2) 0, 1, 1 − α Γ(1 − α)ζ(1 − α)xα− 1 − (1/2)ζ(α)
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E2(τ) +
3
πy

� 1 − 24 􏽘
∞

k�1

kqk

1 − qk
�
12
πi

(log η(τ))′. (54)

Equation (51), once differentiated form of Guinand’s
formula (�(2n + 1) times differentiated form of Ram-
anujan’s formula�the negative case thereof) leads to (27),
automorphy of G2ϰ+2.

4. Lipschitz Summation Formula

Knopp–Robbins [7] in their Remark 1 state their view on the
Lipschitz summation formula to the effect that it is con-
ceptually simpler than Riemann’s original method of using
the theta series. However, at least the special case of the
Lipschitz summation formula ()eorem 3) which is applied
by Chapman to establish the limit relation has already been
used extensively and can be readily deduced from the partial
fraction expansion for the cotangent function. Since it is
known that the partial fraction expansion is equivalent to the
functional equation for the Riemann zeta-function, we may
say that Chapman’s result is a consequence of the functional
equation. By Corollary 4 below, we shall show that the
Lipschitz summation formula itself is equivalent to the
functional equation, thereby enhancing the above statement.
Pasles and Pribitkin [32] extend the Lipschitz summation
formula to the two-variable case to which we hope to return
elsewhere.

Theorem 3 (Lipschitz summation formula). For the com-
plex variables z � x + iy, x> 0, s � σ + it, σ > 1 and the real
parameter 0< α≤ 1, we have the Lipschitz summation
formula:

(2π)s

Γ(s)
􏽘

∞

m�0
(m + α)

s− 1
e

− 2πz(m+α)
� 􏽘
∞

n�− ∞

e2πinα

(z + in)s. (55)

Under the condition 0< α< 1, this formula holds in the
wider half-plane σ > 0.

In what follows, we shall generalize)eorem 3 in a wider
framework, deducing Corollary 4 to )eorem 4 as a general
modular relation.

Let

Φ(w, s, z) � 􏽘
∞

n�0

wn

(n + z)s, (56)

be the Hurwitz–Lerch zeta-function, and let

ϕ(x, s, z) � Φ e
2πinx

, s, x􏼐 􏼑 � 􏽘
∞

n�0

e2πinx

(n + z)s, (57)

denote the boundary function—the Lipschitz–Lerch tran-
scendent (([9], pp. 59–62), ([2], pp. 128–131), [33]).)is is in
close correspondence with the case of Ls(z) and ℓs(x)

considered in [34]. As a consequence of the main formula in
Appendix Section, we may deduce, from the reciprocal
Hurwitz formula (64), a generalized Lipschitz summation
formula (78) which is indeed a form of the functional
equation.

Lemma 1. 5e Dirichlet series

φ(s) �
1
πs/2 ℓs(x) � 􏽘

∞

n�1

e2πixn

(
��
π

√
n)s, (58)

ψ1(s) �
1

2π(s/2)
ζ(s, x) +

1
2π(s/2)

ζ(s, 1 − x)

� 􏽘
∞

n�1

(1/2)

(
��
π

√
(n + x − 1))s +

(1/2)

(
��
π

√
(n − x))s􏼠 􏼡,

(59)

ψ2(s) � −
i

2π(s/2)
ζ(s, x) +

i

2π(s/2)
ζ(s, 1 − x)

� 􏽘

∞

n�1

− (i/2)

(
��
π

√
(n + x − 1))s +

(i/2)

(
��
π

√
(n − x))s􏼠 􏼡,

(60)

satisfy the ramified functional equation, a special case of (A.2)
with r � 1

Γ
s

2
􏼒 􏼓Γ

1
2

+
s

2
􏼒 􏼓φ(s)

� Γ
1
2

−
s

2
􏼒 􏼓Γ

1
2

+
s

2
􏼒 􏼓ψ1(1 − s) + Γ −

s

2
􏼒 􏼓Γ 1 +

s

2
􏼒 􏼓ψ2(1 − s),

(61)

or

χ(s)

�

Γ s − 0,
1
2

􏼒 􏼓,
1
2
,
1
2

􏼒 􏼓; ; − −

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓φ(s),

Γ 1 − s 0,
1
2

􏼒 􏼓 0,
1
2

􏼒 􏼓; ; − −

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓ψ1(1 − s) + Γ 1 − s −
1
2
,
1
2

􏼒 􏼓 −
1
2
,
1
2

􏼒 􏼓; ; − −

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓ψ2(1 − s).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(62)
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Proof. From Euler’s formula, we have

e(s/2)i(1− s) � sin
s

2
s + i cos

s

2
s,

e− (s/2)i(1− s) � sin
s

2
s − i cos

s

2
s.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(63)

We transform the reciprocal Hurwitz formula
(0<x< 1):

ℓs(x) �
Γ(1 − s)

(2π)1− s
e
1− s
2 πiζ(1 − s, x) + e

− ((1− s)/2)πiζ(1 − s, 1 − x)􏼒 􏼓

� f1(s)f2(s),

(64)

say, where f1(s) � (Γ(1 − s)/(2π)1− s) is the first factor of
the right-hand side member and f2(s) is the second.
Substituting (63), the second factor becomes

f2(s) � sin
π
2

s(ζ(1 − s, x) + ζ(1 − s, 1 − x))

+ cos
π
2

s(ζ(1 − s, x) − ζ(1 − s, 1 − x)).

(65)

In view of this, we transform the first factor accordingly

f1(s) �
πs− (3/2)

2
Γ((1 − s)/2)

Γ(s/2)

π
sin(π/2)s

or �
πs− (3/2)

2
Γ(1 − (s/2))

Γ((1 + s)/2)

π
cos(π/2)s

.

(66)

Substituting (65) and (66), we transform (64) into

ℓs(x) �
πs− (1/2)Γ((1/2) − (s/2))

2Γ((s/2))
(ζ(1 − s, x) − ζ(1 − s, 1 − x))

+ i
πs− (1/2)Γ(1 − (s/2))

2Γ((s/2) + (1/2))
(ζ(1 − s, x) − ζ(1 − s, 1 − x))

�
π− (s/2)Γ((1/2) − (s/2))

2Γ(s/2)
ψ1(s) −

π− (s/2)Γ(1 − (s/2))

2Γ((s/2) + (1/2))
ψ2(s),

(67)

where ψi’s are defined in (59) and (60). Clearing the de-
nominators in (67),

φ(s) � Γ
s

2
􏼒 􏼓Γ

1
2

+
s

2
􏼒 􏼓

1
πs/2ls(x)

� Γ
1
2

−
s

2
􏼒 􏼓Γ

1
2

+
s

2
􏼒 􏼓ψ1(s) − Γ

s

2
􏼒 􏼓Γ 1 −

s

2
􏼒 􏼓ψ2(s).

(68)

It remains to note that the factor − Γ(s/2)Γ(1 − (s/2)) of
the second summand may be transformed into
Γ(− (s/2))Γ(1 + (s/2)), which is indeed the case in view of
the reciprocity formula.

By Lemma 1, we have the ramified functional equation.
)e only pole of χ(s) which is neither a pole of Γ((1/2) +

(s/2)) nor of Γ(1 + (s/2)) is s1 � 0. )us, by main formula
(A.13), we have the following modular relation. For the
notation and formulas, we refer to ([11], pp. 49–59). □

Theorem 4

1
π(s/2)

􏽘

∞

n�1

e2πinx

ns
H z

��
π

√
n |Δ⊕

− ; −

((s/2), (1/2)), ((1/2) +(s/2), (1/2)); −

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

�
1

2π(1− s/2)
􏽘

∞

n�1

1
(n + x − 1)1− s

H

��
π

√
(n + x − 1)

z
Δ∗

􏼌􏼌􏼌􏼌 ⊕
((1 − s/2), (1/2)); −

((1 − s/2), (1/2)); −

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

+
1

(n − x)1− s
H

��
π

√
(n − x)

z
Δ∗

􏼌􏼌􏼌􏼌 ⊕
((1 − s/2), (1/2)); −

((1 − s/2), (1/2)); −

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
⎫⎪⎬

⎪⎭

+
1

2π(1− s)/2 􏽘

∞

k�1

− i

(n + x − 1)1− s
H

��
π

√
(n + x − 1)

z
Δ∗

􏼌􏼌􏼌􏼌 ⊕
(− (s/2), (1/2)); −

(− (s/2), (1/2)); −

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

+
i

(n − x)1− s
H

��
π

√
(n − x)

z
Δ∗

􏼌􏼌􏼌􏼌 ⊕
(− (s/2), (1/2)); −

(− (s/2), (1/2)); −

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
⎫⎪⎬

⎪⎭
+ Res Γ(w − s |Δ)χ(w)z

s− w
, w � 0( 􏼁

�
1

2π(1− s)/2 􏽘

∞

n�1

1
(n + x − 1)1− s

H

��
π

√
(n + x − 1)

z
Δ∗

􏼌􏼌􏼌􏼌 ⊕
((1 − s/2), (1/2)); −

((1 − s/2), (1/2)); −

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎧⎪⎨

⎪⎩
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− i H

��
π

√
(k + a − 1)

z
Δ∗

􏼌􏼌􏼌􏼌 ⊕
(− (s/2), (1/2)); −

(− (s/2), (1/2)); −
􏼠 􏼡􏼠 􏼡􏼩

+
1

(n − x)1− s
H

��
π

√
(n − x)

z
Δ∗

􏼌􏼌􏼌􏼌 ⊕
((1 − s/2), (1/2)); −

((1 − s/2), (1/2)); −
􏼠 􏼡􏼠 􏼡􏼨 +i H

��
π

√
(n − x)

z
Δ∗

􏼌􏼌􏼌􏼌 ⊕
(− (s/2), (1/2)); −

(− (s/2), (1/2)); −
􏼠 􏼡􏼠 􏼡􏼩􏼩

+ Res Γ(w − s |Δ)χ(w)z
s− w

, w � 0( 􏼁.

(69)

Corollary 2. If Δ �
(1, 1)

−

;

;

−

−
􏼠 􏼡, we have

Δ∗ �
−

(0, 1)

;

;

−

−
􏼠 􏼡, and so 5eorem 4 amounts to

1
π(s/2)

􏽘

∞

n�1

e2πina

ns
H

1,2
2,1 z

��
π

√
n

(1, 1)

s

2
,
1
2

􏼒 􏼓,
1
2

+
s

2
,
1
2

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
1

2π(1− s/2)
􏽘

∞

n�1

1
(n + a − 1)1− s

H
2,1
1,2

��
π

√
(n + a − 1)

z

1 − s

2
,
1
2

􏼒 􏼓

(0, 1),
1 − s

2
,
1
2

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− i H
2,1
1,2

��
π

√
(n + a − 1)

z

−
s

2
,
1
2

􏼒 􏼓

(0, 1), −
s

2
,
1
2

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+
1

(n − a)1− s
H

2,1
1,2

��
π

√
(n − a)

z

1 − s

2
,
1
2

􏼒 􏼓

(0, 1),
1 − s

2
,
1
2

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

+i H
2,1
1,2

��
π

√
(n − a)

z

−
s

2
,
1
2

􏼒 􏼓

(0, 1), −
s

2
,
1
2

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+ Res Γ(s − w)χ(w)z
s− w

, w � 0( 􏼁.

(70)

Corollary 3 (Ewald expansion).

ϕ(x, s, z) � 􏽘
∞

n�1

e2πinx

(n + z)s +
1
zs

� 􏽘
∞

n�1

e− 2π(n+x− 1)zi

2π(n + x − 1)e− (πi/2)( 􏼁
1− s
Γ(1 − s, − 2π(n + x − 1)zi) +

e2π(n− x)zi

2π(n − x)eπi/2( )
1− s
Γ(1 − s, 2π(n − x)zi)⎛⎝ ⎞⎠

+
1
2zs

,

(71)
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where Γ(s, c) is the incomplete gamma function defined as
follows:

Γ(s, c) � Γ(s) − c
s
􏽚
1

0
e

− cu
u

s− 1du. (72)

Proof. We transform H-functions in Corollary 2 in a
concrete form. )e procedure is the same for the three
H-functions, i.e., duplication formula, H⟶ G formula,
and the explicit formula for the G-function, and we use
the known results on them freely, cf. [11, 35], etc. We
have

H
1,2
2,1 z

(1, 1)

s

2
,
1
2

􏼒 􏼓,
1
2

+(s/2),
1
2

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 21− s ��

π
√

G
1,1
1,1 2z

1

s

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

� 21− s ��
π

√
Γ(s)

(2z)s

(1 + 2z)s,

(73)

H
2,1
1,2 z

1
2

−
s

2
,
1
2

􏼒 􏼓

(0, 1),
1
2

−
s

2
,
1
2

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
1

2
��
π

√ H
3,1
1,3

z

2

1
2

−
s

2
,
1
2

􏼒 􏼓

0,
1
2

􏼒 􏼓,
1
2
,
1
2

􏼒 􏼓,
1
2

−
s

2
,
1
2

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
1
��
π

√ G
3,1
1,3

z2

4

1 − s

2

0,
1
2
,
1 − s

2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� Γ(s) e
((1− s)/2)πi− ziΓ(1 − s, − zi) + e

− ((1− s)/2)πi+ziΓ(1 − s, zi)􏼐 􏼑,

(74)

and similarly to (74)

H
2,1
1,2 z

−
s

2
,
1
2

􏼒 􏼓

(0, 1), −
s

2
,
1
2

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� Γ(s + 1) e
− (s/2)πi− ziΓ(− s, − zi) + e

(s/2)πi+ziΓ(− s, zi)􏼐 􏼑

� Γ(s) ie
(1− s/2)πi− ziΓ(1 − s, − zi) − ie

− (1− s/2)πi+ziΓ(1 − s, zi) +
2
zs

􏼒 􏼓.

(75)

Hence, (71) amounts to

1
(2

��
π

√
)s− 1 􏽘

∞

n�1

e2πinx

(n + ξ)s

�
1

π((1− s)/2)
􏽘

∞

n�1

e((1− s)/2)πie− 2π(n+x− 1)ξi

(n + x − 1)1− s
Γ􏼨

· 1 − s, − 2π(n + x − 1)ξi)(

+
e− ((1− s)/2)πie2π(n− x)ξi

(n − x)1− s
Γ(1 − s, 2π(n − x)ξi)

−
i

(2πξ)s(n + x − 1)
+

i

(2πξ)s(n − x)
􏼩

+
1

(2
��
π

√
)s− 1ξsℓ0(x),

(76)

where ξ � (1/2
��
π

√
z). Since

ℓ0(x) � −
1
2

+
i

2π
1
x

+ 􏽘
∞

n�1

1
x + n

+
1

x − n
􏼒 􏼓⎛⎝ ⎞⎠, (77)

equation (76) leads to the incomplete gamma series (71) for
(57).

We are now in a position to transform (71) into the
functional equation. □

Corollary 4 (General Lipschitz summation formula)

ϕ(x, s, z)

�
Γ(1 − s)

(2π)1− s
e

(1− s/2)πi− 2πxziϕ(− z, 1 − s, x)􏼐

+e
− (1− s/2)πi+2π(1− x)ziϕ(z, 1 − s, 1 − x)􏼑,

(78)

where 0< z, x< 1, and t � − z(u − 1).

Proof. By (72), we have the left-hand side of (71) is equal to

� Γ(1 − s) 􏽘

∞

k�1

e− 2π(n+x− 1)zi

2π(n + x − 1)e − (πi/2)( 􏼁
1− s

+
e2π(n− x)zi

2π(n − x)e(πi/2)( 􏼁
1− s

⎛⎝ ⎞⎠

−
1

zs− 1 􏽘

∞

k�1
􏽚
1

0
e
2π(n+x− 1)zi(u− 1)

+ e
− 2π(n− x)zi(u− 1)

􏼐 􏼑u
− sdu +

1
2zs

�
Γ(1 − s)

(2π)1− s
e

(1− s)/2πi− 2πxziϕ(− z, 1 − s, x)􏼐

+ e
− (1− s/2)πi+2π(1− z)ziϕ(z, 1 − s, 1 − x)􏼑

−
1
zs

􏽘
k∈Z

􏽚
z

0
e
2π(n− x)ti 1 −

t

z
􏼒 􏼓

− s

dt +
1
2zs

.

(79)
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Equation (78) is sometimes referred to as the Lipschitz
summation formula ([36–38] etc.).

)e character analogue of the Lipschitz summation
formula is known ([2], pp. 128–131), and so we may nat-
urally treat a more general case which will be conducted
elsewhere.

We briefly state the Lipschitz summation formula for
quadratic fields which is contained in ([11], Chapter 4). )is
is an elucidation of Koshlyakov’s results [39–42]. Let Ω be a
quadratic field whose degree ϰ � r1 + r2 � 2 with its dis-
criminant Δ. Let

A �
2r2πϰ/2

���
|Δ|

√ , (80)

and let r � r1 + r2 − 1 denote the rank of the unit group. Let
ζΩ(s) be the Dedekind zeta-function of Ω with the coeffi-
cients αk � βk � α(k), with α(k) indicating the number of
ideals of norm k, where λk � Ak, μk � Ak, r � 1, and

ρ �
2r+1πr2Rh

w
���
|Δ|

√ � −
2r+1πr2ζ(r)

Ω (s)
���
|Δ|

√ . (81)

)e functional equation reads

Γr1
1
2

s􏼒 􏼓Γr2(s)φ(s) � Γr1
1
2

−
1
2

s􏼒 􏼓Γr2(1 − s)φ(1 − s),

(82)

where

φ(s) � A
− sζΩ(s) � 􏽘

∞

n�1

α(n)

(An)s. (83)

In conformity with Koshlyakov ([40], p. 241) (cf. (83)),
we introduce the perturbed Dedekind zeta-function:

ζΩ(s, z) � −
2ζΩ(0)

w
+ 􏽘
∞

n�1

α(n)

(n + z)s. (84)

)en the Fourier–Bessel expansion gives the Lipschitz
summation formula for an imaginary quadratic field ([11],
(4.42)):

􏽘

∞′

n�− ∞

α(n)

(z + in)s � e
(πi/2)sζΩ(s, iz) + e

− (πi/2s)ζΩ(s, − iz)

� A
sz

(1/2)(1− s)

Γ(s)
􏽘

∞

n�1

α(n)

n(1/2)(1− s)
εs+1

K1− s(2Aε
��
nz

√
)􏼐

+ εs+1
K1− s(2Aε

��
nz

√
)􏼑

−
ζΩ(0)

zs
,

(85)

which is the corrected form of (23.15) in [40] , where ε �

e(π/4)i and the prime on the summation sign means that the
term with n � 0 is excluded. □

Theorem 5 (Theorem 4.6 in [11]). 5e generating Dirichlet
series for the Wigert–Bellman divisor problem, cf. (29) above,

ζΩ(s, z) �
z− s

Γ(s)
􏽘

∞

n�1

α(n)

n

1
2πi

· 􏽚
(c)
tan

π
2

wΓ(1 − w)Γ(s − w)
1

nz
􏼒 􏼓

− w

dw,

(86)

amounts to the Lipschitz summation formula

1
2

􏽘

∞

n�− ∞

α(n)

(z + in)s �
1
2
e

(πi/2)sζΩ(s, iz) +
1
2
e

− (πi/2)sζΩ(s, − iz)

� A
sz

(1/2)(1− s)

Γ(s)
􏽘

∞

n�1

α(n)

n(1/2)(1− s)

εs+1

i
K1− s(2Aε

��
nz

√
)􏼠

−
εs+1

i
K1− s(2Aε

��
nz

√
)􏼡.

(87)

)is is the corrected form of (23.16) in [40].

5. Ramified Functional Equations

)ere are some instances of the ramified functional equa-
tions in literature.

In [43–45], they are stated in the case of zeta-functions
with periodic coefficients which satisfy the ramified func-
tional equations as a result of representations in bases
consisting of the Hurwirz and Lerch zeta-functions [18]:
suppose f(n) be a periodic function with period M,

L(s, f) � 􏽘
∞

n�1

f(n)

ns
, (88)

be the associated Dirichlet series absolutely convergent σ �

Res> 1 and that

fodd �
1
2

(f(nmodM) − f(− nmodM)),

feven �
1
2

(f(nmodM) + f(− nmodM)),

(89)

be odd, resp. even part of f: f � feven + fodd. )en

L(1 − s, f) �
π
M

􏼒 􏼓
(1/2)− s Γ(s/2)

Γ(1 − s/2)
L s, 􏽢feven􏼐 􏼑􏼠

+
Γ((1 + s)/2)

Γ(1 − (s/2))
L s, 􏽢fodd􏼐 􏼑􏼡,

(90)

which amounts to (61) on clearing the denominators and
multiplying by (π/M)(s− 1)/2. Wang and Banerjee [46] treat
the product of Hurwitz zeta-functions which satisfy a
ramified functional equation as a result of the Hurwitz
formula:

ζ(1 − s, x) �
Γ(s)

(2π)s e
− (πis/2)ℓs(x) + e

(πis/2)ℓs(1 − x)􏼐 􏼑,

(91)
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whose reciprocal (64) has been used and proved to be a
ramified functional equation in the proof of Lemma 1 above.
More general case is that of the Hurwitz–Lerch zeta-function
described in [35] (pp. 27–31) and [33] (pp. 121–126,
339–341). Another class of zeta-functions that satisfy a
ramified functional equations is that of Barnes multiple zeta-
functions cf. [33] (pp. 77–88) and [47]. For their rich ap-
plications [48] and references therein. Hardy and Littlewood
[49, 50] use the Barnes double zeta-function.

In another context, Estermann [51] and others and in
Prehomogeneous Vector Space (PHV) theory [52].

Appendix

The Main Formula

In this section, we state a special case (H � 1) of the Main
Formula in [11] (Section 4.4, pp. 115–122) first proved in
[53] which was used in the proof of)eorem 4.We have two
sets of Dirichlet series ϕ(s)􏼈 􏼉 and ψi(s)􏼈 􏼉, 1≤ i≤ I that satisfy

the generalized functional equation (A.2) in the following
sense.

With increasing sequences λk􏼈 􏼉
∞
k�1, μ(i)

k􏽮 􏽯
∞
k�1(1≤ i≤ I)

and complex sequences αk􏼈 􏼉
∞
k�1, β(i)

k􏽮 􏽯
∞
k�1(1≤ i≤ I), we form

the Dirichlet series:

φ(s) � 􏽘
∞

k�1

αk

λs
k

,

ψi(s) � 􏽘
∞

k�1

β(i)
k

μ(i)s
k

,

1≤ i≤ I,

(A.1)

which we suppose have finite abscissa of absolute conver-
gence σφ, σψi

(1≤ i≤ I), respectively.
We assume the existence of the meromorphic function χ,

which satisfies, for a real number r, the functional equation:

χ(s)

�

􏽑
M
j�1 Γ dj + Djs􏼐 􏼑 􏽑

N
j�1 Γ cj − Cjs􏼐 􏼑

􏽑
P
j�N+1 Γ cj + Cjs􏼐 􏼑 􏽑

Q
j�M+1 Γ dj − Djs􏼐 􏼑

φh(s), Re(s)> σφ,

􏽐
I

i�1
􏽙

􏽥N
(i)

j�1
Γ e

(i)
j + E

(i)
j (r − s)􏼐 􏼑

􏽑
􏽥M

(i)

j�1 Γ f
(i)
j − F

(i)
j (r − s)􏼐 􏼑

􏽑
􏽥Q

(i)

j� 􏽥M
(i)

+1
Γ − b ±

�������
b2 − 4ac

√
/2af

(i)
j + F

(i)
j (r − s)􏼐 􏼑 􏽑

􏽥P
(i)

j�􏽥N
(i)

+1
Γ e

(i)
j − E

(i)
j (r − s)􏼐 􏼑ψi(r − s), Re(s)< min

1≤i≤I
r − σψi

􏼐 􏼑, Cj, Dj, E
(i)
j , F

(i)
j > 0􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.2)

We assume further that only finitely many of the poles
sk(1≤ k≤L) of χ(s) are neither a pole of

􏽑
N
j�1 Γ cj − Cjs􏼐 􏼑

􏽑
P
j�N+1 Γ cj + Cjs􏼐 􏼑 􏽑

Q
j�M+1 Γ dj − Djs􏼐 􏼑

, (A.3)

nor a pole of

􏽑
􏽥M

(i)

j�1 Γ f
(i)
j − F

(i)
j r + F

(i)
j s􏼐 􏼑

􏽑
􏽥P

(i)

j�􏽥N
(i)

+1
Γ e

(i)
j − E

(i)
j r + E

(i)
j s􏼐 􏼑 􏽑

􏽥Q
(i)

j� 􏽥M
(i)

+1
Γ f

(i)
j + F

(i)
j r − F

(i)
j s􏼐 􏼑

.

(A.4)

We introduce the processing gamma factor:

Γ(w |Δ) �
􏽑

m
j�1 Γ bj + Bjw􏼐 􏼑 􏽑

n
j�1 Γ aj − Ajw􏼐 􏼑

􏽑
p
j�n+1 Γ aj + Ajw􏼐 􏼑 􏽑

q
j�m+1 Γ bj − Bjw􏼐 􏼑

, Aj, Bj > 0􏼐 􏼑, (A.5)

and suppose that for any real numbers u1, u2 (u1 < u2),

lim
|v|⟶∞
Γ(u + iv − s |Δ)χ(u + iv) � 0, (A.6)

uniformly in u1 ≤ u≤ u2.
We choose L1(s) so that the poles of

􏽑
n
j�1 Γ aj + Ajs − Ajw􏼐 􏼑 􏽑

N
j�1 Γ cj − Cjw􏼐 􏼑

􏽑
p
j�n+1 Γ aj − Ajs + Ajw􏼐 􏼑 􏽑

P
j�N+1 Γ cj + Cjw􏼐 􏼑

×
1

􏽑
q
j�m+1 Γ bj + Bjs − Bjw􏼐 􏼑 􏽑

Q
j�M+1 Γ dj − Djw􏼐 􏼑

, (A.7)
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lie on the right of L1(s), and those of

􏽑
m
j�1 Γ bj − Bjs + Bjw􏼐 􏼑 􏽑

M
j�1 Γ dj + Djw􏼐 􏼑

􏽑
q
j�m+1 Γ bj + Bjs − Bjw􏼐 􏼑 􏽑

Q
j�M+1 Γ dj − Djw􏼐 􏼑

×
1

􏽑
p
j�n+1 Γ aj − Ajs + Ajw􏼐 􏼑 􏽑

P
j�N+1 Γ cj + Cjw􏼐 􏼑

, (A.8)

lie on the left of L1(s), and choose L2(s) so that the poles of

􏽑
m
j�1 Γ bj − Bjs + Bjw􏼐 􏼑 􏽑

􏽥M
(i)

j�1 Γ f
(i)
j − F

(i)
j r + F

(i)
j w􏼐 􏼑

􏽑
q
j�m+1 Γ bj + Bjs − Bjw􏼐 􏼑 􏽑

􏽥Q
(i)

j� 􏽥M
(i)

+1
Γ f

(i)
j + F

(i)
j r − F

(i)
j w􏼐 􏼑

×
1

􏽑
p
j�n+1 Γ aj − Ajs + Ajw􏼐 􏼑 􏽑

􏽥P
(i)

j�􏽥N
(i)

+1
Γ e

(i)
j − E

(i)
j r + E

(i)
j w􏼐 􏼑

,

(A.9)

lie on the left of L2(s), and those of

􏽑
n
j�1 Γ aj + Ajs − Ajw􏼐 􏼑 􏽑

􏽥N(i)
j�1 Γ e

(i)
j + E

(i)
j r − E

(i)
j w􏼐 􏼑

􏽑
p
j�n+1 Γ aj − Ajs + Ajw􏼐 􏼑 􏽑

􏽥P
(i)

j�􏽥N
(i)

+1
Γ e

(i)
j − E

(i)
j r + E

(i)
j w􏼐 􏼑

×
1

􏽑
q
j�m+1 Γ bj + Bjs − Bjw􏼐 􏼑 􏽑

􏽥Q
(i)

j� 􏽥M
(i)

+1
Γ f

(i)
j + F

(i)
j r − F

(i)
j w􏼐 􏼑

,

(A.10)

lie on the right of L2(s). Further, they squeeze a compact set
S such that sk ∈ S(1≤ k≤L). Under these conditions, we
define the χ-function, key-function, X(z, s |Δ) by

X(z, s |Δ) �
1
2πi

􏽚
L1(s)
Γ(w − s |Δ)χ(w)z

− wdw, (A.11)

where Γ(s |Δ) is the processing gamma factor (A.5).
)en, we have the followingmodular relation, equivalent

to the functional equation (A.2):
)e Main Formula H:

X(z, s |Δ) �

􏽐
∞

k�1
αkHm+M,n+N

p+P,q+Q zλk

1 − aj − Ajs, Aj􏼐 􏼑􏽮 􏽯
n

j�1, 1 − cj, Cj􏼐 􏼑􏽮 􏽯
N

j�1,

bj − Bjs, Bj􏼐 􏼑􏽮 􏽯
m

j�1, dj, Dj􏼐 􏼑􏽮 􏽯
M

j�1,

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aj − Ajs, Aj􏼐 􏼑􏽮 􏽯
p

j�n+1, cj, Cj􏼐 􏼑􏽮 􏽯
P

j�N+1

1 − bj − Bjs, Bj􏼐 􏼑􏽮 􏽯
q

j�m+1, 1 − dj, Dj􏼐 􏼑􏽮 􏽯
Q

j�M+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

if L1(s) can be taken to the right of σφ

z− r 􏽐
I

i�1
􏽐
∞

k�1
β(i)

k Hn+􏽥N
(i)

,m+ 􏽥M
(i)

q+􏽥Q
(i)

,p+􏽥P
(i)

μ(i)
k

z

1 − bj − Bj(r − s), Bj􏼐 􏼑􏽮 􏽯
m

j�1, 1 − f
(i)
j , F

(i)
j􏼐 􏼑􏽮 􏽯

􏽥M
(i)

j�1 ,

aj − Aj(r − s), Aj􏼐 􏼑􏽮 􏽯
n

j�1, e
(i)
j , E

(i)
j􏼐 􏼑􏽮 􏽯

􏽥N
(i)

j�1 ,

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bj − Bj(r − s), Bj􏼐 􏼑􏽮 􏽯
q

j�m+1, f
(i)
j , F

(i)
j􏼐 􏼑􏽮 􏽯

􏽥Q
(i)

j� 􏽥M
(i)

+1

1 − aj − Aj(r − s), Aj􏼐 􏼑􏽮 􏽯
p

j�n+1, 1 − e
(i)
j , E

(i)
j􏼐 􏼑􏽮 􏽯

􏽥P
(i)

j�􏽥N
(i)

+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 􏽐
L

k�1
Res Γ(w − s |Δ)χ(w)z− w, w � sk( 􏼁

if L2(s)can be taken to the left of min
1≤i≤I

r − σψi
􏼐 􏼑,

1 − aj − Aj(r − s), Aj􏼐 􏼑􏽮 􏽯
p

j�n+1, 1 − e
(i)
j , E

(i)
j􏼐 􏼑􏽮 􏽯

􏽥P
(i)

j�􏽥N
(i)

+1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.12)
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z
sX(z, s |Δ) �

􏽐
∞

k�1

αk

λs
k

H
m+M,n+N
p+P,q+Q zλk

1 − aj, Aj􏼐 􏼑􏽮 􏽯
n

j�1, 1 − cj + Cjs, Cj􏼐 􏼑􏽮 􏽯
N

j�1,

bj, Bj􏼐 􏼑􏽮 􏽯
m

j�1, dj + Djs, Dj􏼐 􏼑􏽮 􏽯
M

j�1,

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aj, Aj􏼐 􏼑􏽮 􏽯
p

j�n+1, cj + Cjs, Cj􏼐 􏼑􏽮 􏽯􏼑 }P
j�N+1

1 − bj, Bj􏼐 􏼑􏽮 􏽯
q

j�m+1, 1 − dj + Djs, Dj􏼐 􏼑􏽮 􏽯
Q

j�M+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

if L1(s) can be taken to the right of σφ

􏽐
I

i�1
􏽐
∞

k�1

β(i)
k

μ(i)r− s
k

H
n+􏽥N

(i)

,m+ 􏽥M
(i)

q+􏽥Q
(i)

,p+􏽥P
(i)

μ(i)
k

z

1 − bj, Bj􏼐 􏼑􏽮 􏽯
m

j�1, 1 − f
(i)
j + F

(i)
j (r − s), F

(i)
j􏼐 􏼑􏽮 􏽯

􏽥M
(i)

j�1 ,

aj, Aj􏼐 􏼑􏽮 􏽯
n

j�1, e
(i)
j + E

(i)
j (r − s), E

(i)
j􏼐 􏼑􏽮 􏽯

􏽥N
(i)

j�1 ,

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bj, Bj􏼐 􏼑􏽮 􏽯
q

j�m+1, f
(i)
j + F

(i)
j (r − s), F

(i)
j􏼐 􏼑􏽮 􏽯

􏽥Q
(i)

j� 􏽥M
(i)

+1

1 − aj, Aj􏼐 􏼑􏽮 􏽯
p

j�n+1, 1 − e
(i)
j + E

(i)
j (r − s), E

(i)
j􏼐 􏼑􏽮 􏽯

􏽥P
(i)

j�􏽥N
(i)

+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 􏽐
L

k�1
Res Γ(w − s |Δ)χ(w)zs− w, w � sk( 􏼁

if L2(s) can be taken to the left of min
1≤i≤I

r − σψi
􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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By using the sub- and supersolutions concept (Schmitt, 2007), we prove in this paper the existence of positive solutions of quasi-
linear Kirchhoff elliptic systems in bounded smooth domains. )is work is an extension of the recent work of Boulaaras
et al., 2020.

1. Introduction

)e scope of nonlinear partial differential equations is quite
wide. One of the main advances in the development of
nonlinear PDEs has been the study of wave propagation,
then comes the equations related to chemical and biological
phenomena, and later, the equations related to solid me-
chanics, fluid dynamics, acoustics, nonlinear optics, plasma
physics, quantum field theory, and engineering.

Studying these equations is a daunting task because there
are no general methods for solving them. Each problem
requires an appropriate approach depending on the type of
linearity ([1–10]).

)e p-Laplacian operator is a model of quasi-linear
elliptic operators which makes it possible to model physical
phenomena such as the flow of non-Newtonian aids, re-
action flow systems, nonlinear elasticity, the extraction of
petroleum, astronomy, through porous media, and glaci-
ology. Several authors in this field obtained many results of
existence (see, for example, [1, 3, 5, 11, 12]).

In this work, we consider the following quasi-linear
elliptic system:

−A 􏽚
Ω

|∇u|2dx􏼒 􏼓Δu � λuαvc, inΩ,

−B 􏽚
Ω

|∇v|2dx􏼒 􏼓Δv � λuδvβ, inΩ,

v � u � 0, on zΩ ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where Ω ⊂ RN(N≥ 3) is a bounded domain and its
boundary zΩ. Also, A and B are two continuous functions
onR+, and the parameters α, β, δ, and c satisfy the following
conditions:

0≤ α< 1,

0≤ β< 1,

δ, c> 0,

θ � (1 − α)(1 − β) − cδ > 0 for each λ> 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

Within previous studies [13–15], some nonlocal elliptical
problems of the Kirchhoff type of the following model were
extensively studied:

M 􏽚
Ω

|∇u|2dx􏼒 􏼓△u � h(x, u), inΩ,

u � 0, in zΩ ,

⎧⎪⎨

⎪⎩
(3)
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where Ω is a bounded open domain of Rn with a smooth
boundary zΩ and h(x, u) the right hand side is defined for
some exceptional functions similar to those in [13–16]. In
addition,M is a defined and continuous function onR+ with
values in R∗+. In recent years, various Kirchhoff or
p(x)-Kirchhoff-type problems have been widely studied by
many authors due to their theoretical and practical im-
portance. Such problems are often referred to as nonlocal
due to the presence of a full term on Ω or in Rn. It is well
known that this problem is analogous to the stationary
problem of a model introduced by Kirchhoff [17].

ρ
z2u

zt2
−

P0

h
+

E

2L
􏽚

L

0

zu

zx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
dx􏼠 􏼡

z2u

zx2 � 0. (4)

More specifically, Kirchhoff proposed this model as an
extension of the wave equation of the Alembert classic by
considering the effects of variations in the length of the
strings during vibration. )e parameters of the above
equation have the followingmeanings:E is Young’s modulus
of the material, ρ is the mass density, L is the length of the
chain, h is the section area, and P0 is the initial tension.

In recent work in [18], we have discussed the existence of
the weak positive solution for the following Kirchhoff elliptic
systems:

−A ‖∇u‖L2(Ω)􏼐 􏼑△u � λ1uα + μ1′vβ, inΩ,

−B ‖∇u‖L2(Ω)􏼐 􏼑△v � λ2′uc + μ2′vd, inΩ,

u � v � 0, on zΩ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where λ1, μ1′, λ2′, and μ2′ are positive parameters, α + c< 1,
and β + d< 1.

Motivated by the recent work in [13, 14, 18, 19] and by
using the sub- and supersolution method which is defined in
[20], existence of positive solutions of quasi-linear Kirchhoff
elliptic systems is shown in bounded smooth domains.

)e paper outline is as follows: some assumptions and
definitions related to problem (1) are given in Section 2.
Finally, our main result is given in Section 3.

2. Preliminaries and Assumptions

We assume the following hypothesis:

(H1): we assume that M: R+⟶ R+ is a nonin-
creasing and continuous function which satisfies

lim
t⟶0+

M(t) � m0, (6)

where m0 > 0, and there exists ai, bi > 0, i � 1, 2 such
that

a1 ≤A(t)≤ a2, b1 ≤B(t)≤ b2 for all t ∈ R+
. (7)

(H2): and
α, β ∈ C(Ω),

α(x)≥ α0 > 0, β(x)≥ β0 > 0
(8)

for all x ∈ Ω.

(H3): f, g, h, and τ are C1 on (0, +∞) and increasing
functions, where

limt⟶+∞f(t) � +∞, limt⟶+∞g(t) � +∞,

limt⟶+∞h(t) � +∞ � limt⟶+∞τ(t) � +∞.
􏼨 (9)

(H4): ∃c> 0 such that

lim
t⟶+∞

h(t)f k g(t)c
􏼂 􏼃( 􏼁

t
� 0, for all k> 0,

lim
t⟶+∞

τ ktc( )

tc−1 � 0, for all k> 0.

(10)

Lemma 1 (see [14]). Under assumption (H1),we suppose
further that function H(t) : � tM(t2) is increasing on R.

We assume that u and v are couple nonnegative functions,
where

−M 􏽚
Ω

|∇u|2dx􏼒 􏼓Δu≥ − M 􏽚
Ω

|∇v|2dx􏼒 􏼓Δv, inΩ,

u � v � 0, on zΩ ,

⎧⎪⎨

⎪⎩

(11)

and then u≥ v a.e. in Ω.

Lemma 2 (see [1]). If M verifies the conditions of Lemma 1,
then for each f ∈ L2(Ω), there exists a unique solution
u ∈ H1

0(Ω) to the M-linear problem:

−M 􏽚
Ω

|∇u|
2dx􏼒 􏼓Δu � f(x) inΩ and u � 0 in zΩ . (12)

Lemma 3 (see [1]). Let w solve Δw � g inΩ. If g ∈ C(Ω),
then w ∈ C1,α(Ω) for any α ∈ (0, 1), so particularly, w is
continuous in Ω.

Definition 1. Let (u, v) ∈ (H1
0(Ω)∩L∞(Ω) × H1

0(Ω)∩ L∞

(Ω)), and (u, v) is said a weak solution of (1) if it satisfies

A 􏽚
Ω

|∇u|2dx􏼒 􏼓􏽚
Ω
∇u∇ϕdx � λ􏽚

Ω
uαvcϕdx, inΩ,

B 􏽚
Ω

|∇v|2dx􏼒 􏼓􏽚
Ω
∇v∇ψdx � λ􏽚

Ω
uδvβ ψdx, inΩ,

(13)

for all (ϕ,ψ) ∈ (H1
0(Ω) × H1

0(Ω)).

Definition 2. We call the following nonnegative functions
(u, v), respectively; (u, v) in (H1

0(Ω)∩ L∞(Ω)× H1
0(Ω)∩

L∞(Ω)) are a weak subsolution (respectively, upersolution)
of (1) if they verify (u, v) and (u, v) � (0, 0) in zΩ:
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A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ u∇ϕdx≤ λ􏽚

Ω
u
α

v
cϕdx inΩ,

B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ v∇ψdx≤ λ􏽚

Ω
u
δ

v
β ψdx inΩ,

A 􏽚
Ω

|∇u|
2dx􏼒 􏼓􏽚

Ω
∇u∇ϕdx≥ λ􏽚

Ω
u
α
v

cϕdx inΩ,

B 􏽚
Ω

|∇v|
2dx􏼒 􏼓􏽚

Ω
∇v∇ψdx≥ λ􏽚

Ω
u
δ
v
β ψdx inΩ,

(14)

for all (ϕ,ψ) ∈ (H1
0(Ω) × H1

0(Ω)).
Before proving our main result, we need to prove the

existence of weak supersolution and subsolution in the
following section.

3. Weak Existence Results

3.1. Existence of Weak Supersolution. )e existence of a
positive weak supersolution for system (1) is established such
that each component belongs to C0,ρ(Ω), for ρ ∈ (0, 1).

Lemma 4. Suppose that (H1) holds, 0≤ α, β< 1, δ, c> 0, and
θ � (1 − α)(1 − β) − cδ > 0. Fen, system (1) possesses a
positive weak supersolution

(u, v) ∈ L
2 0, T, C

0,ρ1(Ω)􏼐 􏼑 × L
2 0, T, C

0,ρ2(Ω)􏼐 􏼑, (15)

for ρi ∈ [0, 1], i � 1, 2 and λ> 0.

Proof. Let ei ∈ C0,ρi (Ω), for i � 1, 2, ρi > 0, be the solution of
the following problem:

−△ei � 1, inΩ,

ei � 0, on zΩ .
􏼨 (16)

)en, by the strong maximum principle, we get ei > 0 in
Ω, i � 1, 2.

We define

(u, v) � C1e1, C2e2( 􏼁, (17)

where C1 and C2 are positive constants which we will fix
them later.

Let (ϕ,ψ) ⊂ (H1
0(Ω) × H1

0(Ω)), with (ϕ,ψ)≥ 0.
)en, we obtain

A 􏽚
Ω

|∇u|
2dx􏼒 􏼓􏽚

Ω
∇u∇ϕdx � A 􏽚

Ω
|∇u|

2dx􏼒 􏼓C1􏽚
Ω
∇e1∇ϕdx

� A 􏽚
Ω

|∇u|
2dx􏼒 􏼓C1􏽚

Ω
ϕdx

≥ a1C1􏽚
Ω
ϕdx,

(18)

and similarly,

B 􏽚
Ω

|∇v|
2dx􏼒 􏼓􏽚

Ω
∇v∇ψdx � B 􏽚

Ω
|∇v|

2dx􏼒 􏼓C2􏽚
Ω
ψdx

≥ b1C2􏽚
Ω
ψdx.

(19)

If

l � e1
����

����∞, L � e2
����

����∞,

0≤ α< 1, 0≤ β< 1,

λ> 0, θ> 0,

(20)

and (H1) holds, it is easy to prove that there exist positive
constants C1 and C2 such that

a1C
1−α
1 � λC

c
2l
α
L

c
,

b1C
1−β
2 � λC

c
1l
δ
L
β
.

(21)

)us, from (21), we obtain for all x ∈ Ω
λuαvc ≤ λCα

1C
c
2l
αLc ≤ a1C1,

λuδvβ ≤ λCδ
1C

β
2lδLβ ≤ b1C2.

(22)

)erefore, by using (18), (19), and (22), we conclude that

A 􏽚
Ω

|∇u|
2dx􏼒 􏼓􏽚

Ω
∇u∇ϕdx≥ λ􏽚

Ω
u
α
v

cϕdx, inΩ,

B 􏽚
Ω

|∇v|
2dx􏼒 􏼓􏽚

Ω
∇v∇ψdx≥ λ􏽚

Ω
u
δ
v
βψdx, inΩ.

(23)

Hence, (u, v) ∈ C0,ρ1(Ω) × C0,ρ2(Ω) is a positive weak
supersolution of system (1). □

3.2. Existence of Weak Subsolution. Existence of a positive
weak subsolution for system (1) is proved such that each
component belongs to C0(Ω).

Lemma 5. We assume that (H1) holds:

0≤ α, β< 1, δ, c> 0,

θ � (1 − α)(1 − β) − cδ > 0.
(24)

)erefore, system (1) possesses a positive weak sub-
solution (u, v) ∈ C0(Ω) × C0(Ω), for all λ> 0.

Proof. We assume that λ1 is the first eigenvalue of −Δ with
Dirichlet condition with ϕ1 which is its corresponding
eigenfunction and ϕ1belongs to C0,ρ1(Ω) × C0,μ1(Ω), ϕ1 > 0
inΩ and |∇ϕ1|≥ σ1 on zΩ, for some positive constants σ1, μ1,
and ρ1.

We define

u, v( 􏼁 � cϕ21, c
kϕ21􏼐 􏼑 (25)

which belongs to (C0(Ω)∩C1(Ω)) × (C0(Ω)∩C1(Ω)),
with c> 0 to be fixed later, and
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δ
1 − β
< k<

1 − α
c

(26)

because θ > 0, 1 − α> 0, and 1 − β> 0. )en, for all
(ϕ,ψ) ∈ (H1

0(Ω) × H1
0(Ω)), with ϕ, ψ ≥ 0, we have

A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ u∇ϕdx � 2cA 􏽚

Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
ϕ1∇ϕ1∇ϕ,

� 2cA 􏽚
Ω
∇u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
λ1ϕ

2
1 − ∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩ϕdx.

(27)

Similarly,

B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ v∇ψdx � 2c

k
B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω

· λ1ϕ
2
1 − ∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩ψdx.

(28)

Since ϕ1 � 0 and |∇ϕ1|≥ σ1 on zΩ, there exists η> 0 such
that, for every x ∈ Ωη � x ∈ Ω: d(x, zΩ)≤ η􏼈 􏼉, we have

λ1ϕ
2
1 − ∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩≤ 0,

λ1ψ
2
1 − ∇ψ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩≤ 0.

(29)

)en, for each λ> 0, we get

A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ωη
∇ u∇ϕdx≤ 0≤ λ􏽚

Ωη
u
α

u
cϕdx, (30)

for all ϕ ∈ H1
0(Ω), ϕ≥ 0, and

B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ωη
∇ v∇ψdx≤ 0≤ λ􏽚

Ωη
u
δ

u
βψdx, (31)

for all ψ ∈ H1
0(Ω) and ψ ≥ 0.

Now, as ϕ1 > 0 in Ω and ϕ1 is continuous, then there
exists μ> 0 such that ϕ1(x)≥ μ> 0 for all x ∈ Ω\Ωη.
)erefore, from (26), we obtain a0 > 0 such that the fol-
lowing inequalities hold:

2b2λ1c
k(1− β)− δϕ2−2β

1 (x)≤ λμ2δ ≤ λϕ2δ1 (x), ∀x ∈
Ω
Ωη

,

(32)

2a2λ1c
1− α− kcϕ2−2α

1 (x)≤ λμ2c ≤ λϕ2c
1 (x), ∀x ∈

Ω
Ωη

, (33)

for each c ∈ (0, a0).
)en,

2cA 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓 λ1ϕ

2
1 − ∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩ϕ

≤ 2a2cλ1ϕ
2
1

� 2a2λ1c
1− α− kcϕ2−2α

1 c
kc

c
αϕ2α1􏽨 􏽩.

(34)

By (33), we have

2cA 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓 λ1ϕ

2
1 − ∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩≤ λϕ2c
1 c

kc
c
αϕ2α1

� λ u
α

v
c
.

(35)

And similarly, from (32), we have

2c
k
B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓 λ1ϕ

2
1 − ∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩

≤ λ u
δ

v
β

(36)

in Ω/Ωη and each c ∈ (0, a0).
)erefore,

A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω/Ωη
∇ u∇ϕdx≤ λ􏽚

Ω/Ωη
u
α

v
cϕdx, (37)

B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω/Ωη
∇ v∇ψdx≤ λ􏽚

Ω/Ωη
u
δ
v
β
ψdx. (38)

Hence, from (30), (31), (37), and (38), it follows that

A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓 􏽚

Ωη
∇ u∇ϕdx + 􏽚

Ω/Ωη
∇ u∇ϕdx􏼢 􏼣

� A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ u∇ϕdx≤􏽚

Ω
uαvcϕdx,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(39)

B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓 􏽚

Ωη
∇ v∇ψdx + 􏽚

Ω/Ωη
∇ v∇ψdx􏼢 􏼣

� B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ v∇ψdx≤ λ􏽚

Ω
uδ uβψdx.

(40)

)en, by (39) and (40), (u, v) is a positive weak sub-
solution of system (1), for each c ∈ (0, a0). □

4. Main Result

In this section, we give the result of the existence of the
positive weak solution to quasi-linear elliptic system (1) by
using the sub- and supersolution method which has been
already used for some classical elliptic equations by known
authors (see [1, 4, 11, 19, 21]).

Theorem 1. Suppose that (H1) holds, 0≤ α, β< 1, δ, c> 0,
and θ � (1 − α)(1 − β) − cδ > 0 as well as under the results of
Lemma 4 and 5. Fen, system (1) possesses a weak solution
(u, v) ∈ (H1

0(Ω) × H1
0(Ω)), where each component is positive

and belongs to C0,ρ(Ω)∩C1,μ(Ω) for some ρ ∈ [0, 1], μ> 0,
and each λ> 0.

Proof 3. In order to obtain a weak solution of problem (1),
we shall use the arguments by Azzouz and Bensedik [13]. For
this purpose, we define a sequence (un, vn)􏼈 􏼉 ⊂ (H1

0(Ω) ×

H1
0(Ω)) as follows: u0 :� u, v0 � v, and (un, vn) is the unique

solution of the system
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−A 􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓△un � λuα

n−1v
c
n−1, inΩ,

−B 􏽚
Ω
∇vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓△vn � λuδ

n−1v
β
n−1, inΩ,

un � vn � 0, on zΩ .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(41)

Problem (41) is (A, B)−linear in the sense that if

un−1, vn−1( 􏼁 ∈ H
1
0(Ω) × H

1
0(Ω)􏼐 􏼑 (42)

is given, the right-hand sides of (41) are independent of
un, vn.

Set

A(t) � tA t
2

􏼐 􏼑,

B(t) � tB t
2

􏼐 􏼑.
(43)

)en, since

A(R) � R, B(R) � R,

f un−1, vn−1( 􏼁 � u
α
n−1v

c
n−1 ∈ L

2
(Ω),

g un−1, vn−1( 􏼁 � u
δ
n−1v

β
n−1 ∈ L

2
(Ω).

(44)

According to the result in [1], we can deduce that system
(41) admits a unique solution

un, vn( 􏼁 ∈ H
1
0(Ω) × H

1
0(Ω)􏼐 􏼑. (45)

By using (41) and the fact that (u0, v0) is a supersolution
of (1), we have

−A 􏽚
Ω
∇u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓△u0 ≥ λu

α
0v

c
0 � −A 􏽚

Ω
∇u1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓△u1,

−B 􏽚
Ω
∇v0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓△v0 ≥ λu

δ
0v

β
0 � −B 􏽚

Ω
∇v1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓△v1.

(46)

Also, by using Lemma 1, u0 ≥ u1 and v0 ≥ v1 , and since
u0 ≥ u, v0 ≥ v, and the monotonicity of f(u, v) � uαvc and
g(u, v) � uδvβ, one has

−A 􏽚
Ω
∇u1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu1 � λu

α
0v

c
0 ≥ λu

α
v
c

≥ − A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓Δ u,

−B 􏽚
Ω
∇v1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δv1 � λu

δ
0v

β
0 ≥ λu

δ
v
β
≥ − B 􏽚

Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓Δ v,

(47)

from which, according to Lemma 1, u1 ≥ u and v1 ≥ v. For
u2, v2, we write

−A 􏽚
Ω
∇u1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu1 � λu

α
0v

c
0 ≥ λu

α
1v

c
1 � −A 􏽚

Ω
∇u2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu2,

−B 􏽚
Ω
∇v1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx􏼒 􏼓Δv1 � λu

δ
0v

β
0 ≥ λu

δ
1v

β
1 � −B 􏽚

Ω
∇v2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δv2,

(48)

and then u1 ≥ u2 and v1 ≥ v2. Similarly, u2 ≥ u and v2 ≥ v

because

−A 􏽚
Ω
∇u2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu2 � λu

α
1v

c
1 ≥ λu

α
1v

c
1 ≥ − A 􏽚

Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓Δ u,

−B 􏽚
Ω
∇v2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δv2 � λu

δ
1v

β
1 ≥ λu

δ
1v

β
1 ≥ − B 􏽚

Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓Δ v .

(49)

Repeating this argument, we get a bounded monotone
sequence (un, vn)􏼈 􏼉 ⊂ (H1

0(Ω) × H1
0(Ω)) satisfying

u � u0 ≥ u1 ≥ u2 ≥ . . . ≥ un ≥ . . . ≥ u > 0, (50)

v � v0 ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ . . . ≥ v > 0. (51)

Using the continuity of the functions f and g and the
definition of the sequence un􏼈 􏼉, vn􏼈 􏼉, there exist constants
Ci > 0, i � 1, . . . 4, independent of n such that

f un−1, vn−1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C1,

g un−1, vn−1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C2, for all n.
(52)

From (52), we multiply the first equation of (41) by un; in
addition, by using the Holder inequality combined with
Sobolev embedding, we have

a1􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx≤A 􏽚

Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓􏽚

Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx

� λ􏽚
Ω

f un−1, vn−1( 􏼁undx

≤ λ􏽚
Ω

f un−1, vn−1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx

≤C1λ 􏽚
Ω

un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼒 􏼓
(1/2)

dx

≤C3 un

����
����H1

0(Ω)

or un

����
����H1

0(Ω)
≤C3,∀n,

(53)

where C3 > 0 is a constant independent of n. Similarly, there
exists C2 > 0 independent of n such that

vn

����
����H1

0(Ω)
≤C4,∀n. (54)

From (53) and (54), we deduce that the couple (un, vn)􏼈 􏼉

converges weakly in H1
0(Ω,R2) to the couple

(u, v)withu≥ u > 0 and v≥ v> 0.
By using a standard regularity argument, (un, vn)􏼈 􏼉

converges to (u, v). )us, when n⟶ +∞ in (41), we can
see that (u, v) is a positive solution of system (1).

)e proof is completed. □

5. Conclusion

As a conclusion of this contribution, we have proved the
existence of positive solutions of quasi-linear Kirchhoff elliptic
systems in bounded smooth domains by using the sub- and
super-solutionmethod [20], which is an extension of our recent
works of Boulaaras et al. in [18]. In the next work, some other
methods such as variational and Galerkin methods (see, for
example, [15]) will be used for this problem, and some nu-
merical examples will also be given [9, 22].
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In this article, we introduce some of the mathematical properties of the second Appell hypergeometric matrix function F2(A, B1,
B2, C1, C2; z, w) including integral representations, transformation formulas, and series formulas.

1. Introduction

Appell defined and studied in [1–3] four kinds of double
series of two variables z, w as generalizations of the
hypergeometric series:

F(α, β, c; z) � 􏽐
∞

n�0

(α)n(β)n

(c)n(1)n

z
n
, (1)

where z is a main variable in the unit disk
z ∈ C: |z|< 1{ }, α, β, c are complex parameters with c ≠ 0,

− 1, − 2, − 3, . . ., and (α)n � α(α+1)(α+2) . . .(α+ n − 1)

(n ∈N) and (α)0 = 1. Here and throughout, let C and N

denote the sets of complex numbers and positive integers,
respectively, and let N0 �N ∪ 0{ }.

Appell hypergeometric functions Fs, s = {1, 2, 3, 4} play
an important role in mathematical physics in which broad
practical applications can be found (see, e.g. [1, 3–7]). In
particular, the Appell hypergeometric series F2 arises fre-
quently in various physical and chemical applications
([8–11]). (e exact solutions of number of problems in
quantum mechanics have been given [6, 7, 9, 12] in terms of
Appell’s function F2. For readers, they can find some results
of the classical second Appell hypergeometric function F2 in
[13–17].

On the other hand, many authors [18–25] generalized
the hypergeometric series F(α, β, c; z) by extending pa-
rameters α, β, and c to square matrices A, B, and C in the

complex space Cd×d. Recently, the extension of the classical
Appell hypergeometric functions Fs, s � {1, 2, 3, 4}, to the
Appell hypergeometric matrix functions has been a subject
of intensive studies [26–30].(e purpose of the present work
is to study the second Appell hypergeometric matrix
function F2(A, B1, B2, C1, C2; z, w) on the domain
(z, w) ∈ C2: |z| + |w|< 1􏼈 􏼉, with square matrix valued pa-
rameters A, B1, B2, C1, and C2 in Cd×d. We investigate some
of the mathematical properties of this matrix function and
introduce new integral representations, transformation
formulas, and summation formulas.

2. Some Known Definitions and Results

We begin with a brief review of some definitions and no-
tations. A matrix E is a positive stable matrix inCd×d if Re(λ)
> 0 for all λ ∈ σ(E), where σ(E) is the set of all eigenvalues of
E. I and 0 stand for the identity matrix and the null matrix in
Cd×d, respectively.

If Φ(z) and Ψ(z) are holomorphic functions of the
complex variable z, which are defined in an open setΩ of the
complex plane and E is a matrix in Cd×d such that σ(E) ⊂ Ω;
then, from the properties of the matrix functional calculus
[28], it follows that

Φ(E)Ψ(E) � Ψ(E)Φ(E). (2)

Hence, if F in Cd×d is a matrix for which σ(F) ⊂ Ω and
also if EF � FE, then
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Φ(E)Ψ(F) � Ψ(F)Φ(E). (3)

By application of the matrix functional calculus, for E in
Cd×d, then from [23, 31], the Pochhammer symbol or shifted
factorial defined by

(E)n �
E(E + I) . . . (E +(n − 1)I) � Γ− 1(E)Γ(E + nI), n ∈ N,

I, n � 0,

⎧⎨

⎩

(4)

with the condition
E + nI is invertible for all integers n ∈ N0 . (5)

From (5), it is easy to find that

(E)n− k � (− 1)k(E)n (I − E − nI)k􏼂 􏼃
− 1

; 0≤ k≤ n, (6)

(E)m+n � (E)n(E + nI)m or (E)m+n � (E)m(E + mI)n. (7)

From [28], one obtains

(− 1)k

(n − k)!
I �

(− n)k

n!
I �

(− nI)k

n!
; 0≤ k≤ n. (8)

Definition 1 (see [31]). If E is a matrix in Cd×d, such that
Re(z) > 0 for all eigenvalues z of E, then Γ(E) is well defined
as

Γ(E) � 􏽚
∞

0
τE− I

e
− τdτ,

τE− I
� exp((E − I)lnτ).

(9)

Definition 2 (see [31]). If E and F are positive stable matrices
in Cd×d and EF � FE, then the Beta matrix function is well
defined by

B(E, F) � 􏽚
1

0
τE− I

(1 − τ)
F− Idτ � Γ− 1

(E + F)Γ(E)Γ(F).

(10)

Definition 3 (see[23]). Suppose that N1, N2, and N3 are
matrices in Cd×d, such that N3 satisfies condition (5). (en,

the hypergeometric matrix function 2F1(N1, N2; N3; z) is
given by

2F1 N1, N2; N3; z( 􏼁 � 􏽘
n≥0

N1( 􏼁n N2( 􏼁n N3( 􏼁n􏼂 􏼃
− 1

n!
z

n
. (11)

Definition 4. If E is the positive stable matrix in Cd×d, then
the Laguerre-type matrix polynomial is defined by [28]

L
E
n (z) � 􏽘

n

k�0

(− 1)k(z)k

k!(n − k)!
(E + I)n(E + I)

− 1
k

�
(E + I)n

n! 1F1(− nI; E + I; z), n ∈ N0,

(12)

where 1F1 is the confluent hypergeometric matrix function
(cf. [25]).

Definition 5 (see[28, 32, 33]). Let E and F be positive stable
matrices in Cd×d, then the Jacobi matrix polynomial
P(E,F)

n (z) is defined by

P
(E,F)
n (z) � 􏽘

n

k�0

n

k

⎛⎜⎜⎝ ⎞⎟⎟⎠Γ− 1
(E + F +(n + 1)I)Γ− 1

(F +(k + 1)I)

Γ(F +(n + 1)I)Γ(E + F +(n + k + 1)I)
(− 1)n+k(1 + z)k

2kn!
,

�
(E + I)n

n! 2F1 − nI, E + F +(n + 1)I; E + I;
1 − z

2
􏼒 􏼓.

(13)

Using (6) and (11), we can write the second kind of two
complex variables Appell hypergeometric matrix function in
the following definition (see [26, 28]).

Definition 6. Let A, B1, B2, C1, and C2 be commutative
matrices inCd×d with C1 + kI and C2 + kI being invertible for
all integers k ∈ N0. (en, the second Appell hypergeometric
matrix function F2(A, B1, B2, C1, C2; z, w) is defined in the
following form:

F2 A, B1, B2, C1, C2; z, w( 􏼁 � 􏽘
∞

s1 ,s2�0
(A)s1+s2

B1( 􏼁s1
B2( 􏼁s2

C1( 􏼁s1
􏽨 􏽩

− 1
C2( 􏼁s2

􏽨 􏽩
− 1 zs1ws2

s1!s2!

� 􏽘
∞

s1�0
(A)s1

B1( 􏼁s1
C1( 􏼁s1

􏽨 􏽩
− 1

2F1 A + s1I, B2; C2; w( 􏼁
zs1

s1!
, (|z| +|w|< 1).

(14)

3. Main Results

In this section, we investigate some of the main properties of
the second Appell hypergeometric matrix function F2(A, B1,
B2, C1, C2; z, w) such as integral representations, transfor-
mation formulas, and summation formulas

3.1. Integral Representations

Theorem 1. Let A, C1, and C2 be positive stable matrices in
Cd×d. 6en, for |z| + |w| < 1, then the function F2(A, B1, B2, C1,
C2; z, w) defined in (14) can be represented in the following
integer forms:
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F2 A, B1, B2, C1, C2; z, w( 􏼁 � Γ− 1
(A)

× 􏽚
∞

0
u

A− I
e

− u
1F1 B1; C1; zu( 􏼁1F1 B2; C2; wu( 􏼁du,

(15)

F2 A, − mI, − nI, C1 + I, C2 + I; z, w( 􏼁

� m!n! C1 + I( 􏼁m􏼂 􏼃
− 1

C2 + I( 􏼁n􏼂 􏼃
− 1Γ− 1

(A)

× 􏽚
∞

0
u

A− I
e

− u
L

C1
m (zu)L

C2
n (wu)du.

(16)

Proof. Replacing the Pochhammer symbol (A)m+n in defi-
nition (14) by its integral representation which is obtained
from (5) and (9), we get the desired result (15).

Using integral formula (15) and the relation given in (12),
we have

F2 A, − mI, − nI, C1 + I, C2 + I; z, w( 􏼁 � Γ− 1
(A) 􏽚

∞

0
u

A− I
e

− u
1F1 − mI; C1 + I; zu( 􏼁1F1 − nI; C2 + I; wu( 􏼁du

� m!n! C1 + I( 􏼁m􏼂 􏼃
− 1

C2 + I( 􏼁n􏼂 􏼃
− 1Γ− 1

(A) × 􏽚
∞

0
u

A− I
e

− u
L

C1
m (zu)L

C2
n (wu)du,

(17)

which completes proof relation (16). □

3.2. Transformation Formulas

Theorem 2. For the matrix function F2(A, B1, B2, C1, C2; z,
w), we have the following transformations:

F2 A, B1, B2, C1, C2; z, w( 􏼁 � (1 − z)
− A

F2 A, C1 − B1, B2, C1, C2;
− z

1 − z
,

w

1 − w
􏼒 􏼓, (18)

F2 A, B1, B2, C1, C2; z, w( 􏼁 � (1 − w)
− A

F2 A, B1, C2 − B2, C1, C2;
z

1 − w
,

w

w − 1
􏼒 􏼓, (19)

F2 A, B1, B2, C1, C2; z, w( 􏼁 � (1 − z − w)
− A

F2 A, C1 − B1, C2 − B2, C1, C2;
− z

1 − z − w
,

− w

1 − z − w
􏼒 􏼓, (20)

where A, B1, B2, C1, and C2 are commutative matrices inCd×d

with C1 + kI and C2 + kI being invertible for all integer k ∈ N0,
and B1, B2, C1, C2, C1 − B1, and C2 − B2 are positively stable.

Proof. We will prove only (18) since the others can be
proved similarly. Using matrix Kummer’s first formula (cf.
[8]),

1F1(B; C; z) � ez
1F1(C − B; C; − z) , (21)

in (15), we have

F2 A, B1, B2, C1, C2; z, w( 􏼁 � Γ− 1
(A)

× 􏽚
∞

0
u

A− I
e

− (1− z)u
1F1 C1 − B1; C1; zu( 􏼁1F1 B2; C2; wu( 􏼁du.

(22)

Substituting t � (1 − z)u into (22), we obtain formula
(18).

Now, connections with the Gauss hypergeometric ma-
trix function is considered by the following theorem: □

Theorem 3. Let F2(A, B, B′, C1, C2; z, w) be given in (14). 6e
following formulas hold true:

F2 A, B1, B2, C1, C2; 0, w( 􏼁 � 2F1 A, B2; C2; w( 􏼁, (23)

F2 A, B1, B2, C1, C2; z, 0( 􏼁 � 2F1 A, B1; C1; z( 􏼁, (24)

F2 A, 0, B2, C1, C2; z, w( 􏼁 � 2F1 A, B2; C2; z( 􏼁, (25)

F2 A, B1, 0, C1, C2; z, w( 􏼁 � 2F1 A, B1; C1; z( 􏼁, (26)

F2 A, 0, B2, C1, C2; z, 0( 􏼁 � (1 − z)− A
2F1 A, B2; C2;

z

1 − z
􏼒 􏼓,

(27)

F2 A, B1, 0, C1, C2; 0, w( 􏼁 � (1 − w)− A
2F1 A, B1; C1;

w

1 − w
􏼒 􏼓,

(28)

where 2F1 is the Gauss hypergeometric matrix function de-
fined in (11).
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Proof. (e proof of (23)–(26) is a direct consequence of
definition (27). (e relation (27) is obtained setting C1 � B1
in (18) and then using (25). Similarly, the relation (28) is
derived setting C2 � B2 in (19) and then using (26). □

3.3. Some Summation Formulas. We now present the
summation formulas behavior of the second Appell
hypergeometric matrix function F2(A, B1, B2, C1, C2; z, w)

by the following results.

Theorem 4. 6e following finite summation formula holds
true:

􏽘

μ

n�0

(C + I)n

n!
F2(A, − nI, − nI,C + I,C + I; z, w)

�
(A − I)− 1(C + I)μ+1

(z − w)μ!
F2(A − I, − μI, − (μ + 1)I,C􏼈

+ I,C + I; z, w) + z ⇌ w},

(29)

where A and C are positively stable in Cd×d and z ⇌ w
indicates the presence of a second term that originates from
the first by interchanging z and w.

Proof. Using (16), we find that

􏽘

μ

n�0

(C + I)n

n!
F2(A, − nI, − nI,C + I,C + I; z, w)

� Γ− 1
(A) 􏽘

μ

n�0
n! (C + I)n􏼂 􏼃

− 1
􏽚
∞

0
u
A− I

e
− u

L
C
μ (zu)L

C
n (wu)du.

(30)

By interchanging the order of summation and integra-
tion and applying the following formula [28]:

􏽘

μ

n�0
n! (C + I)n􏼂 􏼃

− 1
L
C
n (z)L

C
n (w)

� (μ + 1)! (C + I)μ􏽨 􏽩
− 1

(z − w)
− 1

L
C
μ (z)L

C
μ+1(w)􏽮

− L
C
μ+1(z)L

C
μ (w)􏽯,

(31)

and then taking into consideration (16), we obtain formula
(29).

To extend this theorem, we propose to obtain somemore
formulas centering around the Appell’s matrix function F2; it
follows that □

Theorem 5. Suppose that A and B are positively stable in
Cd×d such that B satisfies spectral condition (5), with
|t|< 1, |zt/((1 − w)(1 − t))|< 1 and |w/((1 − w)(1 − t))|< 1.
6e following generating matrix function holds true:

􏽘

∞

n�0

(B + I)μ+n

n!
F2(A, − nI, − (n + μ)I;B + I,B + I; z, w)t

n

� (B + I)μ(1 − w)
− A

(1 − t)
− (B+(1+μ)I)

× F4 A,B +(1 + μ)I;B + I,B + I;
− zt

(1 − w)(1 − t)
;􏼠

− w

(1 − w)(1 − t)
􏼡.

(32)

where F4 is the four Appell’s matrix function defined in
[27–29].

Proof. To prove (32), we require formula (19) and the re-
lations (12); thus, we have

􏽘

∞

n�0

(B + I)μ+n

n!
F2(A, − nI, − (n + μ)I;B + I,B + I; z, w)t

n

� (1 − w)
− A

× 􏽘
∞

n�0

(B + I)μ+n

n!
F2􏼠A, − nI;B +(μ + n + 1)I;

B + I,B + I;
z

(1 − w)
;

w

(w − 1)
􏼡

� (1 − w)
− A

􏽘

∞

s,n�0
􏽘

n

r�0
(A)s+r (B + I)r􏼂 􏼃

− 1
(B + I)s􏼂 􏼃

− 1

· (B + I)μ+n+r ×
tn

(n − r)!s!r!

− z

(1 − w)
􏼠 􏼡

r
− w

(1 − w)
􏼠 􏼡

s

� (1 − w)
− A

􏽘

∞

s,r�0

1
s!r!

(A)s+r (B + I)r􏼂 􏼃
− 1

(B + I)s􏼂 􏼃
− 1

· (B + I)μ+s+r

×
− zt

(1 − w)
􏼠 􏼡

r
− w

(1 − w)
􏼠 􏼡

s

􏽘

∞

n�0

(B +(1 + μ + s + r)I)n

n!

� (B + I)μ(1 − w)
− A

(1 − t)
− (B+(1+μ)I)

× F4 A,B +(1 + μ)I;B + I,B + I;
− zt

(1 − w)(1 − t)
;􏼠

·
− w

(1 − w)(1 − t)
􏼡.

(33)

(is completes the proof of (eorem 5.
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Putting μ � 0 and then using the following formula,

F4(A,B;B,B; z, w) � (1 − z − w)− A
2F1

A
2

,
1
2

(A + I);B;
4zw

(1 − z − w)2
􏼠 􏼡. (34)

(us, (32) reduces to

􏽘

∞

n�0

(B + I)μ+n

n!
F2(A, − nI, − (n + μ)I;B + I,B + I; z, w)t

n
� (1 − w)

− A

× 􏽘
∞

n�0

(B + I)μ+n

n!
F2 A, − nI;B +(μ + n + 1)I;B + I,B + I;

z

(1 − w)
;

w

(w − 1)
􏼠 􏼡

� (1 − t)
A− (B+I)

[1 − (1 − z − w)t]
− A

2F1
A
2

,
1
2

(A + I);B + I;
4zwt

[1 − (1 − z − w)t]2
􏼠 􏼡.

(35)

Now, we shall see that (32) and (35) enable us to obtain
some new formulas. By (29), we have

􏽘

∞

n�0
A− 1(B + I)n+1

(z − w)n!
F2(A − I, − nI, − (n + 1)I;B + I,B + I; z, w)􏼂

+ z ⇌ w]t
n

� 􏽘
∞

n�0
􏽘

n

r�0

(B + I)k

k!
F2(A, − kI; − kI;B + I,B + I; z, w)t

n
.

(36)

Using (35), we arrive at

􏽘

∞

n�0

(B + I)n+1

n!
F2(A − I, − nI, − (n + 1)I;B + I,B + I; z, w)􏼂

+ z⇌w]t
n

� F2(A, − kI; − kI;B + I,B + I; z, w)t
n

� A(z − w)(1 − t)
A− (B+2I)

[1 − (1 − z − w)t]
− A

× 2F1
A
2

,
1
2

(A + I);B + I;
4zwt

[1 − (1 − z − w)t]2
􏼠 􏼡.

(37)

With the help of a generating function for Jacobi matrix
polynomials (see [28, 32, 33]),

􏽘

∞

n�0
(B + C + I)n (B + I)n􏼂 􏼃

− 1
P

(B,C)
n (z)t

n

� (1 − t)
− (B+C+I)

2F1
1
2

(B + C + I),
1
2

(B + C + 2I);B􏼒

+ I;
2t(z − 1)

(1 − t)2
􏼡.

(38)

We rewrite (35) as

􏽘

∞

n�0

(B + I)n+1

n!
F2(B + C, − nI, − (n + 1)I;B + I,B + I; z, w)􏼂

+ z ⇌ w]t
n

� (B + C + I)(z − w)(1 − t)
C− I

􏽘

∞

r�0
(B + C + I)r (B + I)r􏼂 􏼃

− 1

× P
(B,C)
r

(1 − w)(1 − z) + zw

(1 − z − w)
􏼠 􏼡(1 − z − w)

r
t
r
,

(39)

which yields

P
(B,C)
n

(1 − w)(1 − z) + zw

(1 − z − w)
􏼠 􏼡 � (B + I)n(B + C + I)

· (B + C + I)n􏼂 􏼃
− 1

× (z − w)
− 1

(1 − z − w)
− n

􏽘

n

r�0

(C − I)r

(n − r)!

(B + I)r+1

r!

× F2(B + C, − rI, − (r + 1)I;B + I,B + I; z, w) + z⇌w􏼂 􏼃.

(40)□
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In this study, a novel mathematical model based on third-order nonlinear multisingular functional differential equations (MS-
FDEs) is presented. ,e designed model is solved by using a well-known differential transformation (DT) scheme that is a very
credible tool for solving the nonlinear third-order nonlinear MS-FDEs. In order to check the exactness, efficacy, and convergence
of the scheme, some numerical examples are presented based on nonlinear third-order MS-FDEs and numerically solved by using
DTscheme. ,e scheme of differential transformation allows us to find a complete solution and a closed approximate solution of
the differential equation. ,e distinctive advantage of the computational technique is to deal with the complex and monotonous
physical problems that are obtained in various branches of engineering and natural sciences. Moreover, a comparison of the
obtained numerical outcomes from the exact solutions shows the correctness, accurateness, and exactness of the designed model
as well as the presented scheme.

1. Introduction

,e singular study along with functional differential equa-
tions (FDEs) is considered very significant for the re-
searcher’s community, and the implementations of the FDEs
have been noticed in the sixth decade of the nineteen
century. ,e FDEs have a huge variety of applications in
many fields; to mention few of them are, models of pop-
ulation growth [1], electrodynamics [2], infection models of
HIV-1 [3], models of tumor growth [4], models based on
chemical kinetics [5], B-virus infection hepatitis models [6],
models of the gene regulations [7], and models of viral
infections [8], and many more [9–14]. ,e singular study
based on the differential models is very interesting, com-
plicated, experimental, and challenging for the researchers
due to the singularity appearance at origin. ,ere are many
singular models in the literature; one of the famousmodels is
Lane–Emden that represents singularity at x� 0 always. ,e
model of the Lane–Emden is famous as its historic point of

view and has been applied broadly due to its huge important
and significant applications in the fields of science and
technology. Some of the important applications of the
Lane–Emden model are that it is used in various phenomena
of mathematical physics structure and in the study of as-
trophysics, such as models of the stellar structure [15], study
of thermal explosions model [16], study of the model of
isothermal gas spheres [17], oscillating magnetic fields [18],
and thermionic currents [19].

In recent decades, the research community is interested
to solve the singular nonlinear FDEs numerically due to the
singularity and functionality in differential equations. For
example, to present the solutions of these nonlinear FDEs,
Kadalbajoo and Sharma [20, 21] applied a numerical scheme.
In order to solve differential-difference based model, Mir-
zaee and Hoseini [22] implemented a numerical collocation
scheme. Xu and Jin [23] explained the singularly functional
perturbed differential model by applying the fractional steps
and boundary functions. Geng et al [24] applied a numerical
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approach for the delay differential equations on the basis of
singularly perturbed model.

,e purpose of the recent study is to present the model
based on the nonlinear multisingular (MS) functional

differential equations, i.e., MS-FDEs of order three. ,e
modeled form of the third-order nonlinear MS-FDE along
with its initial conditions (ICs) is written as

y‴ x + τ1( 􏼁 +
α
x

y″ x + τ2( 􏼁 +
β
x2y
′ x + τ3( 􏼁 + xy x + τ4( 􏼁 � f(x), y(0) � a, y′(0) � b, y″(0) � c.􏼨 (1)

,e parameters τi (i � 1, 2, 3, 4) and α, β, a, b, and c are
the real constant values.

,e idea of the above model is achieved by extending the
work of Sabir et al. [25] that is used to explain the nonlinear
singular FDEs of second order. For the verification and
correctness of the designed MS-FDEs model, three different
examples have been modeled and numerically solved by
using the well-known differential transformation (DT)
scheme, and the obtained numerical outcomes of DTscheme
are compared with the exact solutions. ,e DT scheme has
been applied to solve many stiff, nonstiff, singular, non-
singular, linear, and nonlinear types of problems. Zhou [26],
for the first time, presented the idea of the DTscheme at the
end of the 19th century to solve the linear/nonlinear initial
value problems based on the analysis of electrical circuit.,e
DT scheme is basically a numerical approach, which works
on the basis of the expansion of TS, which constitutes a
polynomial form of the analytic results. ,e quality of the
numerical DT scheme is to require less work and does not
require linearization as well as assumptions. ,is numerical
scheme is designed on the basis of an analytical solution by
using the polynomial expressions, such as the Taylor series
(TS) expansion. But its procedure is more easier than the
conventional higher-order TS scheme, which achieves
symbolic computation of the necessary derivatives using the
data-based functions. ,ree explanatory and illustrative
examples based on model (1) are provided to show the
efficacy of the obtained results from the DT scheme. ,ese
numerical outcomes are compared with the exact solutions
that indicate the proficiency of the designed model as well as
the proposed scheme.

Some major key factors of the present study are sum-
marized as follows:

,e mathematical modeled form of the third-order
nonlinear MS-FDEs is presented successfully by
extending the work of Sabir et al. [25]
,e designed nonlinear MS-FDEs based on the
designed model are addressed numerically by using
the famous DT scheme.
Manipulation of the present scheme is to apply the
brilliance-obtained outcomes for nonlinear MS-
FDEs with better precision and outstanding
consistency.
,e reliability and correctness of the designed model
are authentic through the comparison of the nu-
merical results obtained by the DT scheme and the
exact results. ,e overlapping of these results

indicates perfection, excellence, and faultlessness for
the model.
,e third-order functional differential model given
in equation (1) is not easy to solve because of non-
linearity, multisingularity, functionality, and harder
in nature. DT scheme is the best choice and good
selection to handle these types of complicated and
complex models.

,e rest of the paper is described as follows: the designed
detailed methodology on the basis of DTscheme is provided
in Section 2. Results and discussion are provided in Section
3. Conclusion along with future research direction is pro-
vided in the last section.

2. Methodology (Differential
Transform Scheme)

,e mathematical definition of DT scheme using y(ζ) is
given as

Y(k) �
1
k!

dky(ζ)

dζk
􏼢 􏼣

x�0
. (2)

,e original function in the above equation (2) is y(ζ),
whereas the transformed function (TF) is denoted by Y(k),
which is also called the T-function. ,e inverse of DT
scheme of Y(k) is provided as

y(ζ) � 􏽘
∞

k�0
Y(k) ζ − ζ0( 􏼁

k ≡ D
− 1

Y(k). (3)

Using the results of equations (2) and (3), the obtained
function becomes

y(ζ) � 􏽘
∞

k�0

ζk

k!

dky(ζ)

dζk
􏼢 􏼣

x�0
. (4)

Equation (4) provides the concepts of DT scheme that
are derived from the TS expansion, and this scheme has not
been applied for symbolical assessment of the derivatives.
Moreover, comparative derivative values are achieved by
using the iterative procedure, which is defined by the
transformed original function. In this study, the lowercase
and uppercase letters are used to show the original function
and the TF, respectively. Using the nature of the above two
equations, one can easily prove the TFs have the basic
mathematical values provided in Table 1.

In real applications, y(ζ) is obtained by a finite series and
equation (3) can be described as
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y(ζ) � 􏽘
m

k�0
ζk

Y(k). (5)

Equation (5) shows the term 􏽐
∞
k�m+1 ζ

k
Y(k), which is

very small and can be neglected, while m shows the con-
vergence of natural frequency.

For better explanation of the DT scheme, some im-
portant theorems are presented as follows:

Theorem 1. Iff(ζ) � m(ζ)o(ζ), thenF(K) �M(k)⊗O(k) �

􏽐
k
l�0 M(l)O(k − l) (here, ⊗ denotes the convolution):

f(ζ) � 􏽘
∞

k�0
M(k) ζ − ζ0( 􏼁

k
× 􏽘
∞

k�0
O(k) ζ − ζ0( 􏼁

k

� M(0) + M(1) ζ − ζ0( 􏼁 + M(2) ζ − ζ0( 􏼁
2

+ · · ·􏼐 􏼑

� M(0)O(0) + M(U(0)O(1) + M(1)O(0)) ζ − ζ0( 􏼁

× O(0) + O(1) ζ − ζ0( 􏼁 + O(2) ζ − ζ0( 􏼁
2

+ · · ·􏼐 􏼑

+(M(0)O(2) + M(1)O(1) + M(2)O(0)) ζ − ζ0( 􏼁
2

+ · · ·

� 􏽘
∞

k�0
􏽘

k

l�0
M(l)O(k − l) ζ − ζ0( 􏼁

k
.

(6)

By using equation (3), we get

F(K) � 􏽘
k

l�0
M(l)O(k − l). (7)

Theorem 2. If f(ζ) � ζϕ, then

F(h) � δ(h − ϕ) �
1, h � ϕ,

0, h≠ ϕ.
􏼨 (8)

Proof. By using equation (2), we have

F(h) �
1
h!

z ζϕ􏼐 􏼑

zζh

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0

�

1
h!

zh ζh
􏼐 􏼑

zζh
�

h!

h!
� 1, h � ϕ,

1
h!

zh ζϕ􏼐 􏼑

zζh
� 0, h≠ϕ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

□

Theorem 3. By taking f(ζ) � eζ+c, we have F(k) � ec/k!.

Proof. Using equation (2), we get

F(k) �
1
k!

z eζ+c􏼐 􏼑

zζk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0

� e
c zek

zζk
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
�

ec

k!
. (10)

□

Theorem 4. If f(ζ) � q(ζ + m), then [27]

F(k) � 􏽘
N

i�k

(m)
i− k

i

k
􏼠 􏼡 Q(i) forN⟶∞. (11)

Proof. By using differential inverse transform of Y(k), we
have

f(ζ) � 􏽘
∞

l�2
Q(k) ζ − ζ0 + m( 􏼁

k
� Q(0) + Q(1) ζ − ζ0( 􏼁 + m( 􏼁

+ Q(2) ζ − ζ0( 􏼁 + m( 􏼁
2

+ Q(3) ζ − ζ0( 􏼁 + m( 􏼁
3

+ · · ·

� Q(0) + Q(1) ζ − ζ0( 􏼁 + Q(1)m + Q(2) ζ − ζ0( 􏼁
2

+ Q(2)m
2

+ 2Q(2) ζ − ζ0( 􏼁m + Q(3)m
3

+ 3Q(3) ζ − ζ0( 􏼁m
2

+ 3Q(3) ζ − ζ0( 􏼁
2
m + Q(3) ζ − ζ0( 􏼁

3
+ · · ·

Table 1: ,e essential operations of DT scheme.

Unique function TF
y(ζ) � u(ζ) ± v(ζ) Y(k) � U(k) ± V(k)

y(ζ) � cu(ζ) Y(k) � cU(k)

y(ζ) � dmu(ζ)/dζm
Y(k) � (k + 1) + (k + 2) · · · (k + m)U(k + m)

y(ζ) � u(cζ) Y(k) � ckU(k)

y(ζ) � u(ζ/c) Y(k) � U(k)/ck

y(ζ) � dm/dζm
u(cζ) Y(k) � (k + 1) + (k + 2) · · · (k + m)ck+mU(k + m)
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� Q(0) + Q(1)m + Q(2)m
2

+ Q(3)m
3

+ · · ·􏼐 􏼑

+ ζ − ζ0( 􏼁 Q(1) + 2Q(2)m + 3Q(3)m
2

+ · · ·􏼐 􏼑

+ x − x0( 􏼁
2
(Q(2) + 3Q(3)m + · · ·) + ζ − ζ0( 􏼁

3
(Q(3) + · · ·) + · · ·

� 􏽘
∞

l�0

l!

0!(l − 0)!
m

l− 0
Q(l) + 􏽘

∞

l�0

l!

1!(l − 1)!
m

l− 1
Q(l) ζ − ζ0( 􏼁

+ 􏽘
∞

l�2

l!

2!(l − 2)!
m

l− 2
Q(l) ζ − ζ0( 􏼁

2
+ 􏽘
∞

l�0

l!

3!(l − 3)!
m

l− 3
Q(l) ζ − ζ0( 􏼁

3

+ · · · + 􏽘
∞

l�0

l!

k!(l − k)!
m

l− k
Q(l) ζ − ζ0( 􏼁

k

� 􏽘
∞

k�0
􏽘

∞

l�k

l!

k!(l − k)!
m

l− k
Q(l) ζ − ζ0( 􏼁

k
� 􏽘
∞

k�0
􏽘

∞

l�k

l

k
􏼠 􏼡m

l− k
Q(l) ζ − ζ0( 􏼁

k
.

(12)

□

By comparing equations (3) and (12), Y(k) becomes

F(k) � 􏽘
N

l�k

l

k
􏼠 􏼡m

l− k
Q(l) forN⟶∞. (13)

Theorem 5. If y(ζ) � dbu(ζ + m)/dζb, then

Y(h) �
(h + b)!

h!
􏽘

N

l�h+b

(m)
l− h− b

l

h + b

⎛⎝ ⎞⎠ U(l) forN⟶∞.

(14)

Proof. Suppose y(ζ) � u(ζ + m), in equation (2), we have

Y(h) �
1
h!

zh

zζh

dby(ζ)

dζb
􏼠 􏼡 �

(h + b)!

h!
Y(h + b). (15)

Using the Y(k) values from equation (13), it becomes

(h + b)!

h!
Y(h + b) �

(h + b)!

h!

dh+b 􏽐
N
l�h

l

h

⎛⎝ ⎞⎠ml− kU(l)⎛⎝ ⎞⎠

dζb

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
(h + b)!

h!
􏽘

N

l�h+b

l

h + b

⎛⎝ ⎞⎠m
l− ( h+b)

U(l),

Y(h) �
1
h!

zh

zζh

dby(ζ)

dζb
􏼠 􏼡 �

1
h!

zh

zζh

dbu(ζ + m)

dζb
􏼠 􏼡

�
(h + b)!

h!
􏽘

N

l�h+b

l

h + b

⎛⎝ ⎞⎠m
l− h− b

U(l),

N⟶∞.

(16)

□

3. Results and Discussion

To present the numerical solutions based on the designed
third-order nonlinearMS-FDEmodel, the nonlinear study is
very important and many investigations have been provided
in references [28–33]. ,ree different examples have been
presented, and the solutions of the examples are performed
by using the DT scheme.

Example 1. Consider the nonlinear third-order MS-FDE
given as

y″(ψ − 1) +
1
ψ

y″(ψ + 1) +
2
ψ2y
′(ψ + 2) + ψy(ψ) � e

ψ− 1

+
1
ψ

e
ψ+1

+
2
ψ2e

ψ+2
+ ψe

ψ
,

y(0) � 1,

y′(0) � 1,

y″(0) � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Multiplied by ψ2, the achieved form is given as

ψ2
y
‴

(ψ − 1) + ψy″(ψ + 1) + 2y′(ψ + 2) + ψ3
y(ψ)

� ψ2
e
ψ− 1

+ ψe
ψ+1

+ 2e
ψ+2

+ ψ3
e
ψ
,

(18)

,e DT scheme is applied to solve the model given in
equation (17). By using the definitions of one-dimensional
DT and the corresponding transformation of equation (17),
the obtained system becomes
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δ(k − 2)⊗(k + 3)(k + 2)(k + 1) 􏽘
N

σ�k+3
(− 1)

σ− k− 3
σ

k + 3
⎛⎝ ⎞⎠Y(σ)

+ δ(k − 1)⊗(k + 2)(k + 1) 􏽘
N

σ�k+2
(1)

σ− k− 2
σ

k + 2
⎛⎝ ⎞⎠Y(σ)

+ 2(k + 1) 􏽘

N

σ�k+1
(2)

σ− k− 1
σ

k + 1
⎛⎝ ⎞⎠Y(σ) + δ(k − 3)⊗Y(k)

� δ(k − 2) ⊗
1
k!

e
− 1

+ δ(k − 1)⊗
1
k!

e + 2
1
k!

e
2

+ δ(k − 3) ⊗
1
k!

.

(19)

,eorem 1 is used in equation (19), we get

􏽘

k

η�0
􏽘

N

i�η+3
δ(k − η − 2)(η + 3)(η + 2)(η + 1)(− 1)

i− η− 3
σ

η + 3
⎛⎝ ⎞⎠Y(σ)

+ 􏽘

k

η�0
􏽘

N

σ�v+2
δ(k − η − 1)(η + 2)(η + 1)

σ

η + 2
⎛⎝ ⎞⎠Y(σ)

+ 2(k + 1) 􏽘
N

i�k+1
(2)

σ− k− 1
σ

k + 1
⎛⎝ ⎞⎠Y(σ)

+ 􏽘

k

η�0
δ(η − 3)Y(k − η)

� 􏽘
k

η�0
δ(k − η − 2)

1
η!

e
− 1

+ 􏽘
k

η�0
δ(k − η − 1)

1
η!

e + 2
1
k!

e
2

+ 􏽘

k

η�0
δ(k − η − 3)

1
η!

.

(20)

Using the ICs given in equation (17), we have

Y(0) � 1,

Y(1) � 1,

Y(2) �
1
2
.

(21)

Taking N � 4 and k � 0 and 1, by using equations (20)
and (21), the obtained linear algebraic equation system is
written as

12Y(3) + 32Y(4) + 3 � e2,

30Y(3) + 108Y(4) + 3 � e + 2e2.
􏼨 (22)

By solving the above coupled equations given in (22), we
have

y(3) �
− 57 − 8e + 11e2( 􏼁

84
,

y(4) �
9 + 2e − e2( 􏼁

56
.

(23)

By using the values of Y(k) for k � 0​ and 1 in y(ψ), i.e.,
the inverse-reduced DT, the results are written as

y(ψ) � 􏽘
∞

k�0
Y(k)ψk

� 1 + ψ +
1
2
ψ2

+
− 57 − 8e + 11e2( 􏼁

84
ψ3

+
9 + 2e − e2( 􏼁

56
ψ4

+ O ψ5
􏼐 􏼑.

(24)

Repeat the process by using the equations (20) and (25)
for N � 6 and k � 0, 1, and 2. ,e solution of the obtained
linear algebraic equations system is given as

y(3) �
− 57 − 8e + 11e2( 􏼁

84
,

y(4) �
9 + 2e − e2( 􏼁

56
,

y(5) �
128e2 − 128e − 495

17120
,

y(6) �
− 8e2 + 8e + 51

5136
.

(25)

By using the inverse-reduced DT y (k), the solutions will
be as follows:

y(ψ) � 􏽘
∞

k�0
Y(k)ψk

� 1 + ψ +
1
2
ψ2

+
− 57 − 8e + 11e2( 􏼁

84
ψ3

+
9 + 2e − e2( 􏼁

56
ψ4

+
128e2 − 128e − 495

17120
ψ5

+
− 8e2 + 8e + 51

5136
ψ6

+ O ψ7
􏼐 􏼑.

(26)

Table 2 shows the comparison of the present numerical
results for N � 4 and N � 6 with the exact solutions. ,e
y(ψ) results are slightly varied by changing the N parameter
values. It is clear in Table 2 that the proposed and exact
solutions overlapped each other.

Example 2. Consider the third-order MS-FDEs with its ICs:

y‴(ψ − 1) +
1
ψ

y″(ψ + 1) +
2
ψ2y
′(ψ + 2) + ψy(ψ) � ψ5

+ 45ψ + 48 +
108
ψ

+
64
ψ2,

y(0) � 1,

y′(0) � 0,

y″(0) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

Equation (27) becomes
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ψ2
y‴(ψ − 1) + ψy″(ψ + 1) + 2y′(ψ + 2) + ψ3

y(ψ)

� ψ7
+ 45ψ3

+ 48ψ2
+ 108ψ + 64.

(28)

,e definition of one-dimensional DT scheme is applied
and taking the consistent transform of equation (27), the
system is given as

δ(k − 2)⊗(k + 3)(k + 2)(k + 1) 􏽘
N

σ�k+3
(− 1)

σ− k− 3 σ
k + 3

􏼠 􏼡Y(σ)

+ δ(k − 1)⊗(k + 2)(k + 1) 􏽘
N

σ�k+2
(1)

σ− k− 2 σ
k + 2

􏼠 􏼡Y(σ)

+ 2(k + 1) 􏽘
N

σ�k+1
(2)

σ− k− 1 σ
k + 1

􏼠 􏼡Y(σ) + δ(k − 3)⊗Y(k)

� δ(k − 7) + 45δ(k − 3) + 48δ(k − 2) + 108δ(k − 1) + 64δ(k).

(29)
Appling ,eorem 1, we have

􏽘

k

η�0
􏽘

N

σ�η+3
δ(k − η − 2)(η + 3)(η + 2)(η + 1)(− 1)

σ− η− 3 σ
η + 3

􏼠 􏼡Y(σ)

+ 􏽘

k

η�0
􏽘

N

σ�η+2
δ(k − η − 1)(η + 2)(η + 1)

σ
l + 2

􏼠 􏼡Y(σ)

+ 2(k + 1) 􏽘

N

σ�k+1
(2)

σ− k− 1 σ
k + 1

􏼠 􏼡Y(σ) + 􏽘

k

η�0
δ(η − 3)Y(k − η)

� δ(k − 7) + 45δ(k − 3) + 48δ(k − 2) + 108δ(k − 1) + 64δ(k).

(30)
Using the ICs given in equation (27), we have

Y(0) � 1,

Y(1) � 0,

Y(2) � 0.

(31)

Taking the values of N � 4 and k � 0 and 1 in equations
(30) and (31), the obtained linear algebraic equations system
is given as

12Y(3) + 32Y(4) � 32,

30Y(3) + 108Y(4) � 108.
􏼨 (32)

Solving the coupled equations given in system (32), we
have

y(3) � 0,

y(4) � 1.
(33)

Using the Y(k) values for k � 0 and 1 in the inverse-
reduced DT y(ψ), the obtained results are given as

y(ψ) � 􏽘
∞

k�0
Y(k)ψk

� 1 + ψ4
. (34)

Repeat the same procedure using equations (30) and
(31), for N � 5 and k � 0, 1, and 2. ,e following linear
algebraic system becomes

30Y(3) + 108Y(4) + 340Y(5) � 108,

12Y(3) + 32Y(4) + 80Y(5) � 32,

3Y(3) + 8Y(4) + 60Y(5) � 8.

⎧⎪⎪⎨

⎪⎪⎩
(35)

By solving the equation system, we have

y(3) � 0,

y(4) � 1,

y(5) � 0.

(36)

By using the inverse-reduced DT y (k), the solutions will
be as follows:

y(ψ) � 􏽘
∞

k�0
Y(k)ψk

� 1 + ψ4
. (37)

,is is the exact solution of the Example 2.

Example 3. Consider the third-order MS-FDEs

y‴(ψ − 1) +
1
ψ

y″(ψ + 1) +
2
x2y
′(ψ + 2) + ψy(ψ) � ψ4

+ ψ + 18 +
30
ψ

+
24
ψ2,

y(0) � 1,

y′(0) � 0,

y″(0) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

Multiplying by ψ2, equation (38) takes the form as

ψ2
y‴(ψ − 1) + ψy″(ψ + 1) )2y′(ψ + 2) + ψ3

y(ψ)

� ψ6
+ ψ3

+ 18ψ2
+ 30ψ + 24.

(39)

Using the definitions of the one-dimensional DTscheme,
we get

Table 2: Comparison of the obtained results and exact solutions for
N� 4 and N� 6.

ψ DT (N � 4) DT (N � 6) Exact solution
0.01 1.01005 1.01005 1.01005
0.02 1.02020 1.02020 1.02020
0.03 1.03045 1.03045 1.03045
0.04 1.04080 1.04080 1.04081
0.05 1.05125 1.05125 1.05127
0.06 1.06180 1.06180 1.06183
0.07 1.07246 1.07246 1.07250
0.08 1.08322 1.09408 1.08328
0.09 1.09408 1.09408 1.09417
0.1 1.10504 1.10504 1.10517
0.2 1.22044 1.22044 1.22140
0.3 1.34683 1.34685 1.34985
0.4 1.48515 1.48522 1.49182
0.5 1.63663 1.63686 1.64872
0.6 1.80282 1.80341 1.82211
0.7 1.98556 1.98688 2.01375
0.8 2.18698 2.18965 2.22554
0.9 2.40955 2.41451 2.45960
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δ(k − 2)⊗(k + 3)(k + 2)(k + 1) 􏽘
N

σ�k+3
(− 1)

σ− k− 3 σ

k + 3
􏼠 􏼡Y(σ)

+ δ(k − 1)⊗(k + 2)(k + 1) 􏽘
N

σ�k+2
(1)

σ− k− 2 σ

k + 2
􏼠 􏼡Y(σ)

+ 2(k + 1) 􏽘

N

σ�k+1
(2)

σ− k− 1 σ

k + 1
􏼠 􏼡Y(σ) + δ(k − 3)⊗Y(k)

� δ(k − 6) + δ(k − 3) + 18δ(k − 2) + 30δ(k − 1) + 24δ(k).

(40)

By using ,eorem 1, we get

􏽘

k

η�0
􏽘

N

σ�η+3
δ(k − η − 2)(η + 3)(η + 2)(η + 1)(− 1)

σ− l− 3 σ

η + 3
􏼠 􏼡Y(σ)

+ 􏽘
k

η�0
􏽘

N

σ�η+2
δ(k − η − 1)(η + 2)(η + 1)

σ

η + 2
􏼠 􏼡Y(σ)

+ 2(k + 1) 􏽘
N

σ�k+1
(2)

σ− k− 1 σ

k + 1
􏼠 􏼡Y(σ) + 􏽘

k

η�0
δ(η − 3)Y(k − η)

� δ(k − 6) + δ(k − 3) + 18δ(k − 2) + 30δ(k − 1) + 24δ(k).

(41)

Using the ICs of equation (38), we have

Y(0) � 1,

Y(1) � 0,

Y(2) � 0.

(42)

Taking N � 4 and k � 0 and 1 in equations (41) and (42),
the linear algebraic equations system is achieved as

12Y(3) + 32Y(4) � 12,

30Y(3) + 108Y(4) � 30.
􏼨 (43)

Solving the above system, we get

y(3) � 1,

y(4) � 0.
(44)

Using the values of Y(k) for k � 0 and 1 into the in-
verse-reduced DT of y(ψ), the solution will be as follows:

y(ψ) � 􏽘
∞

k�0
Y(k)ψk

� 1 + ψ3
. (45)

Repeat the same process for N � 5 and k � 0, 1, and 2 by
using the above equations. ,e obtained linear algebraic
equation system is given as
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Figure 1: Plots of y(ψ) for Examples 1–3 in the range of 0.01<ψ < 0.9. Comparison of numerical results of y(ψ) for (a) Example 1, (b)
Example 2, and (c) Example 3.

Mathematical Problems in Engineering 7



30Y(3) + 108Y(4) + 340Y(5) � 30,

12Y(3) + 32Y(4) + 80Y(5) � 12,

3Y(3) + 8Y(4) + 60Y(5) � 3.

⎧⎪⎪⎨

⎪⎪⎩
(46)

,e solution of the obtained system of equations is

y(3) � 1,

y(4) � 0,

y(5) � 0.

(47)

By using the inverse-reduced DT of y (k), the solutions
becomes

y(ψ) � 􏽘
∞

k�0
Y(k)ψk

� 1 + ψ3
. (48)

which is the exact solution. y(ψ) is calculated for different
values of N and shown in Figure 1(c).

For more clear understanding, Figure 1 is plotted that
has been drawn between 0.01 and 0.9. ,e values of N are
taken as 4 and 6. One can see that the exact and present
solutions for N � 4 and N � 6 are overlapped to each other
in the range of 0.01 to 0.09. However, by increasing a slight
value in the step size, the results are slightly different but
accurate. So it can be concluded that small step size gives
more accurate values as compared to large step size.

4. Conclusion

,e task to model the third-order MS-FDEs is very difficult
to handle as well as construct the differential equations of the
designed model. ,e numerical differential transformation
scheme is applied successfully to check the correctness and
the accurateness of the designed model. ,e traditional/
conventional techniques fail to solve such multisingular,
nonlinear, functionality, and harder nature models. ,e
numerical differential transformation scheme is a good
choice to solve such types of complicated, nonlinear, and
multisingular models. Consequently, the adopted scheme is
effective as well as suitable too. ,e present study shows that
the DTM is an effective and suitable technique to solve such
types of equations that we have investigated here. ,e
comparison of the exact and solutions obtained from the
differential transformation scheme has also been presented
in tabular form as well as graphically. ,e overlapping of the
results shows the perfection of the designed model and
establishes the worth of the designed scheme. However, it is
observed that when the step size is small, the results are more
accurate, but making a slight increase in the step size, the
results are overlapped and the error is reduced.

In future, a system of third-order and fourth-order
multisingular functional models will be modeled and it will
be verified by using the differential transformation scheme
as well as famous artificial neural networks [34–39].
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