VLSI Design

International Conference on

Electronics, Circuits, and Systems

Guest Editors: Jean-Baptiste Begueret and T. Taris

International Conference on
Electronics, Circuits and Systems

International Conference on
Electronics, Circuits and Systems

Guest Editors: Jean-Baptiste Begueret and T. Taris

Copyright © 2008 Hindawi Publishing Corporation. All rights reserved.

This is a special issue published in volume 2008 of “VLSI Design.” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Editor-in-Chief

Bernard Courtois, TIMA Labs, France

Associate Editors

Jacob A. Abraham, USA
Bashir M. Al-Hashimi, UK
Mohab H. Anis, Canada
Magdy Bayoumi, USA
Soo-Ik Chae, Korea

Joan Figueras, Spain
Pascal Fouillat, France
Soha Hassoun, USA
Xian-Long Hong, China
Masaharu Imai, Japan
Mohammed Ismail, USA
Sung-Mo Steve Kang, USA
Paata J. Kervalishvili, Georgia
Yong-Bin Kim, USA

Israel Koren, USA
Wolfgang Kunz, Germany
Wieslaw Kuzmicz, Poland
Marcelo Lubaszewski, Brazil
Pol Marchal, Belgium

Radu Marculescu, USA
Mohamed Masmoudi, Tunisia
Saeid Nooshabadi, Australia
Maurizio Palesi, Italy

Rubin A. Parekhji, India
Zebo Peng, Sweden

Adam Postula, Australia
Anand Raghunathan, USA
Michel Renovell, France

Matteo Sonza Reorda, Italy
Adoracion Rueda, Spain
Tsutomu Sasao, Japan
Yvon Savaria, Canada
Peter Schwarz, Germany
Jose Silva-Martinez, USA
Luis Miguel Silveira, Portugal
Leon Stok, USA

Sheldon Tan, USA

Rached Tourki, Tunisia
Spyros Tragoudas, USA
Chua-Chin Wang, Taiwan
Avi Ziv, Israel

Contents

International Conference on Electronics, Circuits, and Systems, Jean-Baptiste Begueret and
Thierry Taris
Volume 2008, Article ID 629076, 1 page

A Programmable Hardware Cellular Automaton: Example of Data Flow Transformation,
Samuel Charbouillot, Annie Pérez, and Daniele Fronte
Volume 2008, Article ID 160728, 7 pages

Enabling VLSI Processing Blocks for MIMO-OFDM Communications, Barbara Cerato,
Guido Masera, and Emanuele Viterbo
Volume 2008, Article ID 351962, 10 pages

Design and Implementation of a Hardware Module for MIMO Decoding in a 4G Wireless
Receiver, Alberto Jiménez-Pacheco, Angel Ferndndez-Herrero, and Javier Casajtis-Quirds
Volume 2008, Article ID 312614, 8 pages

A Time-Consistent Video Segmentation Algorithm Designed for Real-Time Implementation,
M. El Hassani, S. Jehan-Besson, L. Brun, M. Revenu, M. Duranton, D. Tschumperlé,

and D. Rivasseau

Volume 2008, Article ID 892370, 12 pages

An FFT Core for DVB-T/DVB-H Receivers, A. Cortés, I. Vélez, I. Zalbide, A. Irizar,
and J. E. Sevillano
Volume 2008, Article ID 610420, 9 pages

Delay Efficient 32-Bit Carry-Skip Adder, Yu Shen Lin and Damu Radhakrishnan
Volume 2008, Article ID 218565, 8 pages

High-Performance Timing-Driven Rank Filter, Péter Szant6, Gabor Szedd, and Béla Fehér
Volume 2008, Article ID 753043, 6 pages

Wave Pipelining Using Self Reset Logic, Miguel E. Litvin and Samiha Mourad
Volume 2008, Article ID 738983, 6 pages

Power Considerations in Banked CAMs: A Leakage Reduction Approach, Pedro Echeverria,
José L. Ayala, and Marisa Lopez-Vallejo
Volume 2008, Article ID 674259, 7 pages

Hindawi Publishing Corporation

VLSI Design

Volume 2008, Article ID 629076, 1 page
doi:10.1155/2008/629076

Editorial

International Conference on Electronics, Circuits, and Systems

Jean-Baptiste Begueret and Thierry Taris

IMS Laboratory, University of Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France

Correspondence should be addressed to Jean-Baptiste Begueret, jb.begueret@ims-bordeaux.fr

Received 25 February 2008; Accepted 25 February 2008

Copyright © 2008 J.-B. Begueret and T. Taris. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

This special issue of VLSI Design is devoted to topics from
the 2006 IEEE International Conference on Electronics, Cir-
cuits, and Systems (ICECS2006) that was held in Nice,
France, 10th—13th December 2006. As in the last year, the
selected papers reflect continuing trends toward higher lev-
els of analog and digital circuit techniques covering a wide
variety of subjects within the analog and RF integrated cir-
cuits and signal processing fields, ranging from basic analog
building blocks to system applications.

The major areas of electronics, circuits, and systems cov-
ered by ICECS2006 drew 553 submissions from 52 countries
spanning the globe; 345 contributions were selected by more
than 200 reviewers for presentations. Among the published
contributions in the ICECS2006 proceedings, a preselection
of 20 papers has been completed and corresponding authors
were invited for contributions to this special issue. We re-
ceived 10 full manuscripts and after the assessment of re-
viewers, 9 of them have been accepted for publication in this
special issue.

The presented contributions in this special issue deal
with digital circuits and algorithms dedicated for numerous
building blocks of telecommunication applications.

Selecting only 9 papers out of 345 contributions of the
conference presentations is a difficult and critical task. We are
aware that we probably missed many excellent contributions,
but we do know that we did our best to put together a special
issue as complete as possible.

The Technical Program of ICECS2006 is the result of a
truly international cooperation of experts. We feel very much
indebted to Technical Program Committee for its valuable
help to keep the level of ICECS at the high standard that our
scientific community has grown accustomed to expect from
it. We wish to thank our coresearchers from all around the
world for choosing to submit their contributions to ICECS

for review. Due to their many and important contributions,
we managed to create a technical program of high scientific
quality. In fact, it has been gratifying to learn more about
the advances first described at ICECS2006. We would like
to thank the numerous volunteers who helped to review the
submitted papers. We also wish to express our deepest grat-
itude for the efforts of Hindawi personnel. This special issue
is only possible with their expert help.

Jean-Baptiste Begueret
Thierry Taris

Hindawi Publishing Corporation

VLSI Design

Volume 2008, Article ID 160728, 7 pages
doi:10.1155/2008/160728

Research Article

A Programmable Hardware Cellular Automaton:
Example of Data Flow Transformation

Samuel Charbouillot, Annie Pérez, and Daniele Fronte

Laboratoire Matériaux et Microélectronique de Provence (L2MP-POLYTECH), UMR CNRS 6137,
IMT-Technopéle de Chateau Gombert, 13451 Marseille Cedex 20, France

Correspondence should be addressed to Annie Pérez, perez@polytech.univ-mrs.fr

Received 13 April 2007; Accepted 9 December 2007

Recommended by Jean-Baptiste Begueret

We present an IP-core called PHCA which stands for programmable hardware cellular automaton. PHCA is a hardware imple-
mentation of a general purpose cellular automaton (CA) entirely programmable. The heart of this structure is a PE array with
reconfigurable side links allowing the implementation of a 2D CA or a 1D CA. As an illustration of a PHCA program, we present
the implementation of a symmetric cryptography algorithm called ISEA for Ising spin encryption algorithm. Indeed ISEA is based
on a 2D Ising spin lattice presenting random series of disordered spin configurations. The main idea of ISEA is to use this disorder
to encrypt data. Efficiency of ISEA and PHCA implementation results are given.

Copyright © 2008 Samuel Charbouillot et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Cellular automata (CA) were originally introduced by von
Neumann for studying self-reproduction in biological sys-
tems [1]. Then they have been used for language recogni-
tion and modelling of physical systems [2]. The mathemati-
cal properties of cellular automata were also studied. Nowa-
days, CA automata are also used for high-quality random
numbers generation [3] and implementations of reconfig-
urable hardware CA are proposed [4].

This paper proposes an intellectual property (IP) core
for a programmable hardware cellular automaton (PHCA).
PHCA is a powerful tool for the design and test of
1D or 2D cellular automata rule applications. An acyclic
one-dimensional cellular automaton and a cyclic two-
dimensional cellular automaton can be implemented on the
PHCA. The architecture of the PHCA is a fine grained fully
parallel structure inspired by a classic single instruction mul-
tiple data (SIMD) structure made of 1-bit processing ele-
ments (PEs) [5].

An example of PHCA program concerns a cryptography
application. The cryptography field is still increasing nowa-
days. Electronic transactions become very important and re-
quire security since most of them are concerned with ei-

ther payments or confidential data. Public key and secret key
cryptographic algorithms provide a solution to this security
problem. These algorithms are able to ensure data authen-
ticity, integrity, and confidentiality [6]. Secret key algorithms
are more suitable for hardware implementation.

In the context of the secret key algorithms, we propose a
symmetric algorithm based on cellular automata rules. This
algorithm is called Ising spin encryption algorithm (ISEA)
because it uses a system of Ising spins. In this paper, we
focus on a 2D Ising spin lattice [7, 8]. The time evolution
of the spin configuration in this lattice is managed by lo-
cal rules leading to disordered configurations in accordance
with certain conditions. The configuration space is explored
by a random walk imposed by a microcanonical Monte Carlo
method [9]. ISEA uses the disordered spin configurations to
encrypt data by combining the spin lattice and an array of
data to be encrypted. This encryption process is rather fast.
Moreover, the permanent exchanges between neighbor sites
introduce a constant noise useful against the attacks based on
power analysis.

The PHCA may be programmed according to 1D or
2D cellular automata (CA) rules. This work focuses on the
PHCA with the 2D configuration and is programmed ac-
cording to ISEA rules. Each site of the spin lattice system is

updated by a PE. All the PEs apply the same rule concur-
rently. An example of resulting encrypted data array is given
below. A first version of a PHCA provided with a 32 x 32 PE
array has been implemented on an Xilinx FPGA xc3s5000.
The throughput of the encrypted data stream is 16 Mbps.
This paper is divided into six sections. Section 2 shows
how the PHCA architecture maps a CA. Section 3 introduces
the microcanonical Monte Carlo methods and describes the
local rules of the algorithm ISEA. Section 4 shows in detail
the encryption process. In Section 5, we present and discuss
the ISEA en-/decryption results and the PHCA implementa-
tion performances. Finally, Section 6 gives our conclusion.

2. PHCA ARCHITECTURE

The aim is to realize a programmable hardware tool suitable
for CA rules implementation. The architecture of this tool is
inspired by a classic SIMD structure [5].

2.1. Mapping a cellular automaton

A cellular automaton consists of several identical cells gov-
erned by simple rules. The cellular automaton is globally syn-
chronized; that is, at each time step each cell updates its state
according to some set of local rules.

More precisely, the next state of each cell depends on the
present state of the neighbor cells [10]. The cell itself may be
included in its own neighborhood. A cellular automaton can
be of any dimension and can be either cyclic or acyclic. More-
over, CAs are suitable for hardware implementation since
they are simple, regular, locally interconnected, and modu-
lar.

This work focuses essentially on 2D CA with a north,
east, west, and south (NEWS) array of cells that are syn-
chronous, governed by local rules, uniform (i.e., all the cells
obey the same rule), and with a von Neumann neighbor-
hood. In this case, the next state x; ;(t + 1) of the cell (i; j)
depends on its own present state and on the present state of
its four nearest neighbors:

x;j(t+1) = flxi;(0), xi—l,j(t)>xi+1,j(t)>xi,j—l(t)>xi,j+l(t)g-l)

In order to design an IP-core mapping this definition, we
chose to describe a multiprocessor fine-grained structure op-
erating in fully parallel mode. For the instruction stream or-
ganization, we chose an SIMD scheme in order to avoid syn-
chronization as well as connection problems.

The heart of this SIMD structure is an array of process-
ing elements (PEs) controlled by the same instruction. The
memory is distributed. At each clock cycle, all the PEs exe-
cute concurrently the same instruction on the data stored in
their internal memory elements. We wanted to map one cell
of the CA to one PE. We chose a one-bit architecture for each
PE in order to integrate more PEs (more cells) in the array
than in the case of more coarse-grained structures. Of course
the consequence is that the computation performances slow
down when multibit operands must be treated.

VLSI Design
CMN_1'N
13 Pin name Function
Control Control |Control bus
Clk Clock
Clk PHCA Add RAM address bus

5 W/R RAM write(1) read(0)
Add = CMS Data input bus
W/R CMN |Data output bus

N

FiGure 1: PHCA logic symbol and associated pin functions.

2.2. PHCA symbol and interconnections

The PHCA logic symbol for an M X N PE array is given in
Figure 1. The external data enter through the N-bit south-
data bus CMS and exit through the N-bit north-data bus
CMN. The thirteen control lines bring the same instruction
word to each PE. As we shall see below, each PE has a private
32 x 1 bit RAM controlled by the W/R input and addressed
by the 5-bit Add input bus. All the registers of the PHCA are
synchronized by the same clock Clk.

An example of a 4 X 4 PE array is shown in Figure 2.
This regular processor square grid has fixed communication
links between the nearest neighbors. Moreover, when all the
switches of the west array side are in position 1, the PE array
is wrapped around in a toric mode to implement a cyclic two-
dimensional cellular automaton. Otherwise, when all the
switches are in position 2, the PHCA becomes a chain of PEs
to implement an acyclic one-dimensional cellular automa-
ton. This last configuration is not explored in the present
work.

2.3. PHCA processing element

The PHCA contains M X N single-bit processor elements.
The structure of a PE is detailed in Figure 3. A PE is equipped
with a 32 X 1-bit RAM, five multiplexers, one single-bit arith-
metic and logic unit (ALU), four 1-bit registers (NS, EW, C,
CM), and input/output ports on all four sides. The ALU is
a full adder/subtractor. The result of an addition is given on
the ALU outputs CY and SM, and the result of a subtrac-
tion on the ALU outputs BW and SM. These ALU outputs
CY, SM, and BW correspond also to logic operations in ac-
cordance with certain conditions. The registers and RAM ac-
cept data from up to eight possible sources through the five
multiplexers. The concatenation of these multiplexer’s con-
trol bits gives the 13-bit instruction word. The instruction
set of PHCA is given in Table 1. Up to five commands can be
executed simultaneously during each instruction cycle.

N/S and E/W links connect a processor cell to its four
neighbors. CMS/CMN links provide the PE array with a sec-
ond vertical link system which is particularly useful because
it does not communicate with the ALU. So these CMS/CMN
links allow a south—north shift of the data stream through
the whole array concurrently with other PE operations.

Samuel Charbouillot et al.

N N ¥ N
—{ PE PE PE PE [
Liq
e
2o
=1 PE PE PE PE &
Lle
e
2o
| PE PE PE PE [
e
e
e
| PE PE PE PE [
L1g T 7T 0 T
~ea

FiGUre 2: Fixed communication links between the nearest neigh-
bors. Configurable links on the west side of the array.

C(1;0)
— CM
—1 RAM
= o] CMN
I 0
C-2) —{ v >
——1 NS
— RAM
s N s 1 3
f— NS NS >
— C
I 0
[eMS™>((75)
— EW
—| ram SM_>
— W EW ALU cY
—1 NS
— % BW
— 0
>
— C
—u {Ew >
— NS
1 &w
— CY _)E DC
— | BW
—_1 0
1
C(12,11)
— CM
—] ¢ RAM (R
SM 32 % 1bits [RAM >
Address ——>|
W/R —|

FiGURE 3: PE architecture.

The dark-grey outputs are reinjected as multiplexers inputs
into the PE itself.

3. MICROCANONICAL MONTE CARLO METHOD
3.1. Mainidea

Many processes in the nature include the randomness in
themselves. This randomness can be used in order to gen-
erate long unpredictable key sequences needed by stream

cipher schemes. Mathematical models which describe such
physical phenomena are probability models.

Since a 2D Ising spin lattice presents a random series of
disordered spin configurations, the main idea in the ISEA al-
gorithm is to use this series of configurations to encrypt data.
The associated probability model is implemented on a CA
with determinist reversible rules.

Numerical simulations are powerful tools to simulate
phase transitions on statistical systems. Monte Carlo and
molecular dynamics represent two complementary schemes
for such simulations. A microcanonical Monte Carlo (MMC)
[9] method represents a simulation algorithm interpolat-
ing between the Monte Carlo and molecular dynamics tech-
niques. The MMC method consists of taking a random walk
on a surface of constant energy. This random walk will gen-
erate successive configurations of the statistical system.

In order to ensure a fast and secure encryption of sensi-
tive data through the PHCA, we propose to use these con-
figurations. The PHCA has to perform the three following
actions:

(1) storing the successive rows of data to be encrypted
coming from the south-input bus CMS and shifting
these data through the PE array up to the north-output
bus CMN;

(2) ensuring a permanent random walk by executing the
microcanonical Monte Carlo local rules;

(3) combining the data flow and the lattice statistical sys-
tem configurations in order to encrypt the data.

3.2. Microcanonical Monte Carlo method

The statistical system to simulate is the 2D Ising model. Let
us consider a square lattice of M X N sites with one spin S
at each site. The spins may be up or down. With the MMC
method, each site i is also provided with a reservoir contain-
ing an energy E;;.

Two kinds of energies are involved in this model. The first
one is a magnetic interaction energy; for a link (4, j), between

two neighbor sites 7 and j, the magnetic energy is expressed
by

m,-j = Si Xor S] (2)

So m;; = 0 if the two considered spins point towards the
same direction, otherwise m;; = 1. The second kind of en-
ergy is called “reservoir” energy; it is the sum of all the private
site reservoir energies E,;.

At each time step, all the spins try to flip. Nevertheless,
the flip has a cost in terms of magnetic energy. Indeed, if the
spin S; of site i flips, the magnetic energy varies by

AM,’ = —2[21 (S, Xor S]) - 2], (3)
where j refers to the four neighbors of the site i. An illustra-
tion is given in Figure 4. The local rule is that if AM; is smaller
than or equal to E,;, the spin S; flips. Otherwise, S; does not
change. In other words, if the site has enough reservoir en-
ergy to pay the flip, then the spin can flip effectively.

4 VLSI Design
TaBLE 1: Instruction set.
Description . Description Code
Ci12--- Co0 Cl12--- C0
NOP XXXXXXXXXXX00 EW< NS XXXXX100XXXXX
CM~— RAM XXXXXXXXXXX01 EW- C XXXXX101XXXXX
CM~— CMS XXXXXXXXXXX10 EW-0 XXXXXT10XXXXX
CM~0 XXXXXXXXXXX11 NOP XX000XXXXXXXX
NOP XXXXXXXX000XX C— RAM XX001XXXXXXXX
NS— RAM XXXXXXXX001XX C— NS XX010XXXXXXXX
NS— N XXXXXXXX010XX C—EW XX0T1IXXXXXXXX
NS-— S XXXXXXXX011XX C—CY XX100XXXXXXXX
NS— EW XXXXXXXX100XX C— BW XX101XXXXXXXX
NS—C XXXXXXXX101XX C-0 XX110XXXXXXXX
NS0 XXXXXXXX110XX C—1 XX1TIXXXXXXXX
NOP XXXXX000XXXXX RAM— RAM 0O XXXXXXXXXXX
EW— RAM XXXXX001XXXXX RAM— CM 01 XXXXXXXXXXX
EW— E XXXXX010XXXXX RAM- C TOXXXXXXXXXXX
EW—W XXXXX011XXXXX RAM— SM TTXXXXXXXXXXX

T T T l !
1 S A A A A A A
T T T T !

AM; =4 AM; =2 AM; =0 AM; = -2 AM;= -4

FIGURE 4: Magnetic energy costs AM; for the central site i spin flip.

4. ENCRYPTION PROCESS WITH ISEA

The three actions enumerated in Section 3.1 are quite suit-
able for cellular automata. Each PE of the PHCA updates one
site. A spin-up is coded 0; a spin-down is coded 1. The reser-
voir energy is 4-bit coded. So two arrays of 1-bit values coex-
ist simultaneously in the PHCA: the array of spins is updated
at each time-step and the array of data shifts to the north. In
order to encrypt the data, each PE xors the bit of data and the
bit of spin.

During the initialization phase, the programmer has to
choose the initial spin configuration and to distribute the
reservoir energy. Then he has to choose the number of iter-
ations of the MMC rules to compute before xoring the spin
bit and the data bit. These choices constitute the key S of the
encryption process. This cryptography algorithm is symmet-
ric and the key is secret. Let us detail how to store the initial
values in the PE array and how to manage iterations of the
MMC method on the spin array.

(i) During the loading phase, the spin and the reservoir
energy values are presented to the southern side of the PE
array through the CMS data bus (see Figure 1). Then these
data are shifted to the north. When all the PEs receive the
first bit to store through their CMS input (see Figure 3), they
store it in their CM register and then transfer it from CM to

the RAM. This process is iterated, in bit-serial mode, till all
the initial values are stored in the array.

(ii) During the computation phase, according to the
MMC method, the operations to be performed are rather
simple: xor, shift, addition, subtraction.

5. RESULTS AND DISCUSSION

The efficiency of the ISEA algorithm and the results of our
first FPGA implementation of PHCA are presented there-
after.

5.1. Application to image en-/decryption

An application example of our hardware CA programmed
with the ISEA algorithm is the color image encryption/dec-
ryption system shown in Figure 5. The clear original 640 X
853 picture is given in Figure 6(a). Each pixel is coded with
3 bytes (red, green, and blue) so each line of this image can
be divided into 120 128-bit words to fit with the PE array
horizontal size.

In order to ensure a secure data exchange, both the sender
and the receiver need a PHCA with, for instance, 128 x 128
PEs. The operations required to encrypt and decrypt are de-
tailed thereafter.

(1) The sender imposes the initial spin values S and dis-
tributes the total reservoir energy R. Then he programs the
PHCA in order to perform U initial spin lattice configura-
tion updates. In the example leading to Figure 6(b) results,
the initial configuration of the Ising lattice was all the spins
pointing towards down. For the distribution of the reser-
voir energy R, an energy of 2 was distributed to each cell
except for 3 cells (called “hot cells”) which received an en-
ergy of 4. Hot cell coordinates constitute the information R’.
Moreover, 2000 initial spin lattice configuration updates were
carried on. The concatenation of S, R, and U constitutes

Samuel Charbouillot et al.

Unsecure channel

]]
2 2
& %
g2 e 2
[Sa =] 9 =
5 g g g
=3 =23
& &
Z Z.
mxn Secret key Sy mxn
PHCA PHCA
encryption Secure decryption

T \ channel []

Sender
Receiver

M XN
decrypted
picture

M x N
original
picture

FIGURE 5: Complete PHCA-based encryption/decryption system.

(b)

FIGURE 6: (a) Original picture. (b) Encrypted picture.

the secret key Sk which must be transmitted to the receiver
through a secure channel.

(2) The sender introduces the clear image through the
south side of its PHCA, one word at a time. These data shift
to the north and after each shift step, they are xored with the
spin lattice configuration. The resulting encrypted image is
shown in Figure 6(b). One can notice that the initial picture
is completely scrambled at this step.

(3) The receiver gets the secret key S through a secure
channel. Then he initializes its PHCA with S and R and pro-
grams it to perform U spin lattice configuration updates.

(4) The receiver introduces the encrypted message into
the south side of its PHCA. These operations allow to exactly
recover the initial data picture at the north side of the receiver
PHCA.

Dl(l) = R1 XOrKo(l)

[
|
|
[
mDo(l) = Ry xor Ky(0) xor K; (1)

FiGure 7: Random key sequence generation at time ¢ = 1.

5.2. Test of randomness

The pixels in Figure 6(b) seem to be randomly distributed.
In order to test the quality of the two-dimensional CA ran-
dom number generator (RNG) produced by the ISEA algo-
rithm, the Diehard tests [11] were used. The input file for the
Diehard test program is a binary file resulting from the con-
catenation of the random keys C; generated by the Ising spin
configuration.

How can we generate the long unpredictable key sequen-
ces C; necessary for the cipher? Let K; be the concatenation of
all the spin values of a whole lattice row. At time t = 0, at the
beginning of the encryption process illustrated in Figure 7,
the first row Ry of clear data is introduced through the south
of the PE array and xored with K;(0). Then at time ¢ = 1, the
result Dy(0) is shifted to the north and xored with K; (1), and
SO on.

At time t = t,,, the first encrypted data row Dy(t,,) avail-
able at the north of the PE array is given as follows:

DO(tm) = Ry xor C(tm)’ (4)

where C(t,,) = Ky(0) xor K;(1) xor,...,xor K,,(t,,) is the
first encryption key of the random sequence.

The battery of the 17 Diehard tests was applied on a se-
quence of 70 M keys, C(t,,), C(tp +1),...,C(ty +a). Figure 8
gives the proportion of passed Diehard tests versus the to-
tal reservoir energy R. On one side, for low R, the spins are
“frozen” because the sites have no sufficient E, to flip their
spin. On the other side, for high R, all the spins flip simulta-
neously. These results show that R must be chosen between
1000 and 3000 to obtain high-quality randomness.

Other energy-band values are found depending on the S
and U parameter values, on the way of distributing the initial
reservoir energy, and on the lattice size. A deeper investiga-
tion on the ISEA algorithm efficiency and a comparison with
other RNGs are actually in progress.

One can notice other advantages of PHCA and ISEA.
First, concerning PHCA, the permanent exchanges between
neighbor sites introduce a constant noise useful against the
attacks based on power analysis. Then, concerning the ISEA
algorithm, the fact that the MMC method conserves the total

6 VLSI Design
TABLE 2: Encryption cores resource and performance.

Core Std Helion PHCA ISM
Application AES ISEA 32 X 32 sites ISEA 32 X 32 sites
Technology Spartan 3-5 Spartan xc3s5000 Spartan xc3s5000
Logic resource 251 slices 3 block rams 32589 slices 14148 slices

Max clock frequency 151 MHz 161 MHz 132 MHz

Max data rate 402 Mbps 16 Mbps 2110 Mbps

Programmable No (dedicated to AES) Yes (with 1D or 2D AC rules) No (dedicated to ISEA)
1.2 6. CONCLUSION

2 o ° The IP-core PHCA proposed in this work has a fine

S 08 o ° grained SIMD architecture very suitable to implement cel-

2 0 lular automata-based algorithms. The heart of the structure

%“ ’ is a PE array with reconfigurable-side links allowing to get a

S 04 cyclic 2D CA or an acyclic 1D CA.

£ An application of the 2D CA configuration of PHCA to

5 0.2 data flow encryption/decryption using the proposed ISEA al-

S) ee—e gorithm has been presented here and leads to two kinds of
1000 2000 3000 4000 5000 conclusions concerning the hardware and the algorithm, re-

-0.2

Total reservoir energy R

F1GURE 8: Diehard test results.

energy of the spin system can be used as a test to reveal some
hardware anomaly.

5.3. PHCA implementation performances

Since the PHCA is programmable and has configurable in-
terconnect switches, it is suitable for 1D or 2D CA rules. So
it can constitute a powerful tool to elaborate and test cellular
automata rules. It can also be used as a multialgorithm CA.

We implemented an Xilinx FPGA xc3s5000, a first ver-
sion of the PHCA containing a 32 X 32 PE array. PHCA im-
plementation results are reported in Table 2. The clock fre-
quency of the PHCA is 161 MHz. The 309 PE instructions are
necessary to update a spin array configuration. The through-
put of the en-/decrypted data stream is 16.7 Mbps. The 1-
bit architecture of the ALU and of the registers constitutes a
throughput limitation. For instance, 25 clock cycles are nec-
essary to perform an addition of two bytes.

In order to perform a faster en-/decryption process, we
designed a machine called Ising spin machine (ISM). It is
dedicated to the implementation of the ISEA algorithm with
32 x 32 sites. ISM performs one update every 2 clock-cycles.
Targeting also a Spartan-3 device, the throughput is 2 Gbps
(see Table 2). ISM goes 125 times faster than PHCA and uses
twice less resources; in return it is not a multialgorithm CA.

Table 2 presents also the implementation result of the
core Helion [12], a commercial implementation of the well-
known secret-key AES algorithm [13]. Helion data rate per-
formance is 5 times slower than ISM and 25 times faster than
PHCA. However, Helion is only dedicated to the AES algo-
rithm.

spectively.

Concerning the hardware, the implementation of ISEA
on PHCA leads to a data rate of 16 Mbps which is 125 times
lower than the performance obtained from a core that we de-
signed to be dedicated to ISEA. Nevertheless, PHCA has the
important advantage to be programmable. So it can be used
as an experimentation platform to test the algorithms effi-
ciency and their implementation on a 2D cell array architec-
ture. If the test is successful, in a second step, macros dedi-
cated to the chosen algorithms can be designed to improve
the performances and get smaller area.

Concerning the ISEA algorithm, we saw that ISEA allows
to code a data stream using a random walk on a surface of
constant energy generated by the MMC method. The high
quality of the random number generated by ISEA has been
tested by the battery of the 17 Diehard tests.

The random numbers generated by ISEA are used as the
long and unpredictable keys needed by the data stream en-
cryption/decryption as presented in this work. Moreover, the
elaboration of an experimentation platform for stream ci-
phers comparison is actually in progress. It uses two Virtex-
IT FPGA boards (one for encryption and one for decryp-
tion). Postimplementation Xilinx ISE simulation results al-
ready show that the encryption method using ISEA runs
faster than the ciphers using the algorithms presented in
3,4, 14].

Otherwise, the security of the whole encryption/decryp-
tion system compared to secret key security standards is also
under investigation.

REFERENCES

[1] P.Sarkar, “A brief history of cellular automata,” ACM Comput-
ing Surveys, vol. 32, no. 1, pp. 80-107, 2000.

[2] E Bagnoli and A. Francescato, “A cellular automata ma-
chine,” in Cellular Automata and Modeling of Complex Physical

Samuel Charbouillot et al.

Systems, P. Manneville, N. Boccara, G. Y. Vichniac, and R.
Bidaux, Eds., p. 312, Springer, Berlin, Germany, 1990.

[3] M. Tomassini, M. Sipper, and M. Perrenoud, “On the gener-
ation of high-quality random numbers by two-dimensional
cellular automata,” IEEE Transactions on Computers, vol. 49,
no. 10, pp. 11461151, 2000.

[4] R.-J. Chen, Y.-T. Lai, and J.-L. Lai, “Architecture design and
VLSI hardware implementation of image encryption/dec-
ryption system using re-configurable 2-D Von Neumann cel-
lular automata,” in Proceedings of IEEE International Sympo-
sium on Circuits and Systems (ISCAS *06), pp. 153-156, Island
of Kos, Greece, May 2006.

[5] NCR GAPP Application Notes, NCR Corporation, Dayton,
USA, 1985.

[6] A.J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Hand-

book of Applied Cryptography, CRC Press, Boca Raton, Fla,

USA, 1997.

C. F. Baillie, Lattice Spin Models and New Algorithms: A Review

of Monte Carlo Computer Simulations, World Scientific, River

Edge, NJ, USA, 1990.

[8] M. Creutz, “Microcanonical Monte Carlo simulation,” Physi-
cal Review Letters, vol. 50, no. 19, pp. 1411-1414, 1983.
[9] M. Creutz, “Deterministic Ising dynamics,” Annals of Physics,
vol. 167, no. 1, pp. 62-72, 1986.
[10] T. Toffoli and N. Margulus, “Programmable matter: concepts
and realization,” Physica D, vol. 47, no. 1-2, pp. 263-272, 1991.

[11] G. Marsaglia, “Diehard,” 1998, http://www.stat.fsu.edu/pub/

diehard/.

[12] http://www.heliontech.com/aes.htm.

g

[13] J. Daemen and V. Rijmen, “AES Proposal: Rijndael,” Septem-
ber 1999, http://www.esat.kuleuven.ac.be/.

[14] M. D. Galanis, P. Kitsos, G. Kostopoulos, N. Sklavos, O.
Koufopavlou, and C. E. Goutis, “Comparison of the hardware
architectures and FPGA implementations of stream ciphers,”
in Proceedings of the 11th IEEE International Conference on
Electronics, Circuits and Systems (ICECS 04), pp. 571-574, Tel-
Aviv, Israel, December 2004.

Hindawi Publishing Corporation

VLSI Design

Volume 2008, Article ID 351962, 10 pages
doi:10.1155/2008/351962

Research Article

Enabling VLSI Processing Blocks for

MIMO-OFDM Communications

INTRODUCTION

Barbara Cerato,’ Guido Masera,? and Emanuele Viterbo'

I Dipartimento di Elettronica, Informatica e Sistemistica (DEIS), Universita degli Studi della Calabria,
via P. Bucci, 87036 Rende (CS), Italy
2 Dipartimento di Elettronica, Politecnico di Torino, C.so degli Abruzzi 24, 10129 Torino, Italy

Correspondence should be addressed to Barbara Cerato, bcerato@deis.unical.it
Received 30 April 2007; Revised 3 December 2007; Accepted 17 January 2008
Recommended by Jean-Baptiste Begueret

Multi-input multi-output (MIMO) systems combined with orthogonal frequency-division multiplexing (OFDM) gained a wide
popularity in wireless applications due to the potential of providing increased channel capacity and robustness against multipath
fading channels. However these advantages come at the cost of a very high processing complexity and the efficient implementa-
tion of MIMO-OFDM receivers is today a major research topic. In this paper, efficient architectures are proposed for the hardware
implementation of the main building blocks of a MIMO-OFDM receiver. A sphere decoder architecture flexible to different modu-
lation without any loss in BER performance is presented while the proposed matrix factorization implementation allows to achieve
the highest throughput specified in the IEEE 802.11n standard. Finally a novel Eg sphere decoder approach is presented, which
allows for the realization of new golden space time trellis coded modulation (GST-TCM) scheme. Implementation cost and offered
throughput are provided for the proposed architectures synthesized on a 0.13 ym CMOS standard cell technology or on advanced
FPGA devices.

Copyright © 2008 Barbara Cerato et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

MIMO-OFDM (Multi-input multi-output—orthogonal fre-
quency-division multiplexing) is a very promising com-
munication technique that enables to establish very high
throughput and reliable wireless links. In order to achieve
this goal, space-time (ST) codes are used, since they can con-
jugate both transmission rate and reliability enhancement of
the communication system. ST codes have been considered
for some recently proposed standards such as IEEE 802.11n
WLAN and 802.16e WMAN.

However, the computational complexity of MIMO-
OFDM receivers is much higher than in the single-input
single-output (SISO) OFDM approach; as a consequence the
potentials offered by MIMO-OFDM are still far from being
fully exploited in actual implementations.

Figure 1 depicts the structure of a 2 X 2 transmit-receive
antenna MIMO-OFDM communication scheme. At the re-
ceiving side, after the RF/Analog front-end, multiple OFDM
demodulation stages, implemented as FFT processors (one
per antenna) are allocated, followed by the MIMO signal

detector. The adoption of a full-rate and full-diversity ST
code demands specific demapping and decoding capabilities,
which are covered in Figure 1 by the “ST-code decoder and
demapper” block. Finally, a trellis coded modulation (TCM)
channel decoder implements forward error correction.

The MIMO channel is modeled by its impulse response
between each transmit-receive antenna pair. Assuming h;;
represents the time-varying channel fading coefficient be-
tween the jth transmit antenna and the ith receive antenna,
the MIMO channel with M; transmit and M, receive an-
tennas is described through a M, X M; matrix #€, where
hij~~N.(0, 1). Transmitted space-time codewords X are M; XL
matrices, where L is the number of channel uses required by
the ST code. Assuming the “block fading” channel model,
each transmitted X will be affected by an independently vary-
ing channel matrix #€. Then, the M, X L received matrix is

Y = #HX+Z, (1)

where Z is the additive white Gaussian noise matrix with en-
tries ~N:(0, Np).

VLSI Design

Source F

TCM
channel
encoder

Non-orth,|
QAM ST-code
mapping encoder

1 TCM

, R FFT B Non-orth. ST-code chacr:mel

, analog 'l decoder and demapper | j..oder
i
I

L | "I factoriz.

analog [i ZE
1| solution

/ RE/

Matrix

Branch
metric
unit

Tree
search

Column
reorderin,

FIGURE 1: ST-Code MIMO System.

When data symbols belong to a Q>-QAM modulation,
it is convenient to represent the codewords X in vectorized
form,where real and imaginary components of the Q*-QAM
are separated in two Q-PAM modulations, resulting in real
component codewords x. Consequently, the channel matrix
J€ is rearranged in a real-valued matrix H and Y is replaced
with the real-valued y. For a linear ST block code, x can be
obtained as x = Bs, where B is the ST-block code genera-
tor matrix and s is the vectorized data vector with entries
in Q-PAM. Note that (Q-PAM)Y with N = 2M, x Lisa
hypercubic-shaped constellation carved from a multidimen-
sional integer grid ZV.

Provided that H is perfectly known at the receiver, the
optimal detector, able to minimize the codeword error rate in
a MIMO channel, is the maximum likelihood (ML) detector,
which solves the problem

¥y - Ms||’, (2)

s=arg min
N
s€(Q-PAM)

where M = HB and N = 2 X M, X L. The cardinality of
the search space, QV, depends on the number of receive an-
tennas, the chosen modulation scheme, and the number of
channel uses, while the factor 2 comes from the decomposi-
tion in real and imaginary components.

Hereinafter, in order to consider a currently practical sit-
uation, we will consider a two transmit and two receive an-
tennas system, with a two-channel use ST block code (M; =
M, = L = 2). An example of such a code is the golden code
proposed in [1-3] and adopted by the IEEE 802.16e WMAN
standard. We then have N = 8,y, x, and s are 8 X 1 real vec-
tors and H is a 8 X 8 real-valued matrix. Thus, when using
16-QAM symbols, the direct computation of (2) results in
the evaluation of 4% = 65, 536 possible solutions.

Due to the high complexity of the exhaustive search,
more efficient methods were proposed. Most of these ap-
proaches rely on the rearrangement of (2). In particular, a
linear transformation such as QR or Cholesky decomposi-
tion allows to rewrite M as the product of two matrices, one
of which is upper triangular [4]. Imposing M = QR, (2) can
be rewritten as

: . 2
arg min [ly- QRs|* =arg min lQ"y —Rs||
s€(Q-PAM) s€(Q-PAM)
=arg min |[§-Rs|,
se(Q-PAM)Y

(3)

where we have exploited the orthogonality of Q and y =
QTy.

One of the most interesting consequences of this inter-
pretation is that the exploration of the constellation lattice
can be thought as a tree traversal. This search tree has N lev-
els and each node in a level has exactly Q sons, representing
the points in one dimension of the Q-PAM’s. This traversal
can be done with polynomial complexity adopting the so-
called sphere decoder (SD), [5].

Recently proposed concatenated ST coding schemes [6]
offer a further reliability enhancement by adopting a com-
bined forward error correction approach based on a high
rate bandwidth-efficient trellis coded modulation (TCM)
scheme. This Golden ST TCM (GST-TCM) scheme for 2 x 2
MIMO provides a reasonable ML decoding complexity so-
lution by using Viterbi algorithm and a branch metric com-
puter based on several parallel sphere decoders. A modified
sphere decoder is required to support this kind of concate-
nated scheme, which is an unexplored subject of investiga-
tion, from the implementation point of view.

This paper deals with the implementation issues of main
processing tasks that enable the development of MIMO re-
ceivers. A MIMO detector is organized in two key process-
ing tasks, matrix factorization and sphere decoding (or tree
traversal): we then propose efficient architectures for these
two key functions. The latter function is the core func-
tion of a high performance MIMO detector and its hard-
ware implementation tends to be critical in terms of both
throughput and complexity, especially in high data rate sys-
tems.

The matrix factorization task operates on the lattice gen-
erator matrix M. Since the code generator matrix is constant,
the processing must be performed at the channel estimation
update frequency, which can change significantly according
to the scenario and is generally one or two orders of mag-
nitude lower than the signaling rate. However, in a MIMO-
OFDM scheme space, time decoding has to be carried out
independently on each subcarrier, determining a dramatic
growth of the throughput demand even for matrix factor-
ization.

In Section 2, the sphere decoding algorithm is briefly
overviewed, while Section 3 deals with the hardware design
of three key building blocks: a sphere decoder, a matrix fac-
torization architecture, and an enhanced sphere decoder for
GST-TCM. Finally, Section 4 points out the implementation
results achieved for the proposed architectures.

Barbara Cerato et al.

2. THE SPHERE DECODING ALGORITHM

Sphere decoding algorithms are a family of algorithms origi-
nally proposed to search the closest point to a given one in a
lattice. Their use in wireless communications was suggested
for the first time in [5], where the lattice structure of multidi-
mensional constellation is exploited to find the closest point
to the received vector.

When solving the minimization problem (2), sphere de-
coding algorithms achieve a polynomial average complexity
by exploring only a subset of the solution space [4].

In particular, a hypersphere is constructed around the re-
ceived vector y and only points inside it are taken into ac-
count. This constraint can be expressed as

lly - Ms||* < Co, (4)

where Cy is the square radius of the hypersphere [5, 7, 8].

The upper triangular structure of the matrix R in (3) en-
ables every component to be separately considered for the
computation of the distance between the two points. The dis-
tance d*(s) = ||y — RsII2 can also be computed recursively as
follows. We consider the partial metrics

(0 ifl=N+1
; 2
Trq (S(ZH)) +)A//[- ZR]]'S]‘
=l
2
Ty(s) = | L
(s = T (s"V) + | %1 = > Rijsj — Rusi
j=1+1
2
= Tpa (sD) + ‘lllm - Rllsl’
ifl=1,...,N,
(5)
where s = [s,s11,. .., s8], Wi = Y1 — Z?]:leij with [=

1,...,N. Since the term Z?LMlesj = 0 for [= N, then we
have w41 = 1. After N steps, the distance d?(s) is obtained
as d?(s) = Ti(s).

As an example, a three-level tree for a 4-PAM modula-
tion is depicted in Figure 2. T; is the distance metric at level
defined in (5). At every level, the radius constraint (4) must
be verified and satisfied, otherwise the branch is pruned. In
general, the radius is progressively reduced every time a leaf
is reached at a distance that is smaller than current radius.

Several algorithms have been studied in order to make
the tree traversal efficient. First algorithm, proposed by
Fincke and Pohst in [7], needs to chose explicitly an initial
radius.A more efficient solution was proposed by Schnorr
and Euchner(SE) [9]. In this case, the initial radius is se-
lected as the distance from the (ZF-DFE) solution and a
“depth and best first” traversal of the tree is performed. Orig-
inally thought for infinite lattices, the SE algorithm was then
adapted to finite lattices [4, 10].

The SE algorithm has intrinsically variable throughput
and this makes it not very suitable for hardware implementa-
tion. The key to make this algorithm efficient or, at least, with
a predictable throughput, is to make an effective pruning.
Many theoretical studies in recent literature aim at reaching

this goal [11]. A very interesting approach consists in an ef-
fective column reordering, which uses heuristic methods to
reduce the search complexity with limited performance loss
[12]. This technique results in very efficient tree search cir-
cuits but additional area is necessary for the preprocessing
phase.

On the contrary, the approach proposed in this paper is
based on the computational complexity reduction of the tree
search algorithm with no column reordering. This solution is
suitable for a flexible implementation that can adapt to dif-
ferent modulation sizes.

3. VLSIARCHITECTURES

Implementation architectures for two key building blocks in
MIMO detectors are presented in this section (tree search
processing and matrix factorization). An enhanced sphere
decoder is then described to be applied in the concatenated
GST-TCM scheme.

3.1. Treesearch processing block

Given the choice of adopting a fully ML detection algorithm
for (2), several implementation options have been proposed
in the literature.

A first classification can be done with respect to the
choice of real- or complex-valued tree construction. In the
real case, the tree is twice deeper than the complex one. In
complex trees, on the contrary, every node has the square of
the number of sons with respect to the real tree. As an exam-
ple, with M; = M, = 4 and 16-QAM modulation, a complex-
valued tree construction would lead to a 4-level tree, where
each node has 16 sons, while 8 levels and 4 sons per node
appear in the corresponding real-valued tree. Although [13]
demonstrates that a complex-valued tree results in a lower
number of visited nodes, the construction of a real-valued
tree allows for a more flexible solution, adaptable to different
modulation schemes.

Another classification criterion is with respect to the im-
plementation parallelism:

(i) parallelism at the level of tree exploration;

(ii) parallelism at the level of the metric computation for
all sons of a given node and in the selection of the most
probable son.

The first technique can be adopted only with suboptimal al-
gorithms, while the second approach is not feasible with large
cardinality QAM modulation schemes, as it implies a large
number of concurrent multiplications. Hence, parallelism is
not viable for the implementation of flexible architectures. A
serial architecture, designed for high throughput, can achieve
both flexibility and low area cost.

Detailed descriptions of the proposed architecture can
be found in [14, 15]. The proposed architecture adopts
a real-valued tree construction and a serial organization.
This key advantage offered by this choice is the possibil-
ity of a run-time selection of the modulation scheme. The
system is furthermore adaptable to different transmitting
schemes including the golden code through the use of some

VLSI Design

s3= 8o
b(s®) =[5 — Rszs31?

T5(s?) = Ty(s™) + b(s"))

=584
b(s?) = |y3 — Rypsy |2

s3 =54
b(s®) = |53 — Rs3s3]2

FIGURE 2: Tree organization for the sphere decoder. S represent the vector of symbol value in 4-PAM, [-3, —1, 1, 3].

Ry Am
Vi1 l Vm+1 l
N N ¥
U_psi unit ’ U _psi_step unit

Rysi Vi
17} Rinmsm

N = cu.

17 JTi(s) :
Psi
memory Metri Metric
etric_compute memory
I— I 2
Ti-1(s)

FIGURE 3: Sphere decoder block scheme (case of a node expanded in
the depth-first mode, with no pruning).

instantiation parameters, which allow to choose the datapath
width and the number of levels of the search tree.

The SE algorithm adopts the “depth and best first” traver-
sal of the tree and the minimization of |y, —Rys;| is required
according to the problem formulation given in (5). The com-
putation of the |y, — Rys;| values for all possible s; tends
to become infeasible when the order of the modulation in-
creases due to the large number of required operations. Core
of the proposed approach is the selection of the s; that mini-
mizes | Y1 — Rys;| by means of the division y.1/Rj;.

In particular, the iterative evaluation of (5) is rearranged
in two steps. At the first step, the value y;,; is received as
an input from the previous iteration and the desired s; for
the analyzed node is directly obtained through the division
Y1+1/Ry; moreover, the output y; is calculated for the selected
sfas Yy = yg — Z;\I:,R(l_l)jsj. The second processing step
receives y; and T}, to actually compute T;_;, according to (5).
The two operations are performed by units U_psi_Unit and
Metric_Compute in Figure 3, where memories required to
store y; amounts and T; metrics are also shown.

It is worth noting that the result of the division yi.1/Ry
is rounded to the closest Q-PAM constellation points
+1,+3,.... As a consequence, a general purpose hardware

divisor is not necessary and the required operation can be ex-
ecuted by means of the first log,Q steps of a successive sub-
traction divider [16]. This divider has a very simple archi-
tecture that employs only shifts and subtractions; although
it tends to be very slow for a complete division, this solution
can be effectively used when only a few shift and add elemen-
tary operations are required.

In a high throughput sphere decoder, a new T metric
must be evaluated at each clock cycle. In order to achieve
this target, the two steps exploit a pipelined architecture. Ad-
ditionally, an alternative metric must always be ready, also
when a pruning of the tree occurs; therefore, in the proposed
architecture, two “candidate” nodes are selected in parallel
when processing a given father node. The first one is a direct
son of the current node, selected by the U_psi unit of Figure 3
by descending along the tree. The “alternative” node, selected
by U_psi_Step Unit, is placed at a higher level in the tree and
it is chosen when the branch has to be pruned, that is when
the current metric exceeds the best current metric evaluated
in the tree traversal. The procedure adopted to select the al-
ternative node is described below.

In the U_psi Unit, the evaluation of the direct son of the
current node makes use of the division y;1/Ry and the result
is approximated either by defect or by excess to the nearest
PAM constellation point: the best choice for s; is given by (see
Figure 4)

Vi

Sl Ry + 4, (6)

where A; is the correction term. The sign of A; is exploited to
select the second (and following) nearest point in the PAM
constellation, according to the following rule:

Sty = Sty — (—1)"sign(A) (k — 1) A, (7)

where A is the distance between two consecutive points.
Thus, U_psi_Step Unit simply computes (7) to find the
second most probable value of s;. Figure 4 shows the se-
quence of alternative nodes selected at a given tree level, after
the occurrence of pruning.
Summarily, we have the following.

(i) The division approach achieves low complexity and
flexibility in terms of supported modulation schemes.

Barbara Cerato et al.

FIGURE 4: Method used to select alternative nodes in U_psi_step unit.

(ii) The concurrent evaluation of two “candidate” nodes
provides a significant speed-up to the inherently serial
SE sphere decoding algorithm and has a limited impact
on complexity.

3.2. Matrix factorization

Understanding of throughput requirements is fundamental
in the architectural study of this processing block. The IEEE
802.11n WLAN standard, which adopts space-time coding,
implies that a new channel estimation is performed when-
ever a packet arrives; this means that the number of matrix
factorizations ranges from a minimum of 64 in a time period
of 36 microseconds, to a maximum of 128 in 28 microsec-
onds.

In the design of the matrix factorization block, a first
choice between householder transformations and Givens-
rotations-based algorithms [17] has to be made. The lat-
ter approach results in a sequence of rotation operations
that cancel elements under the main diagonal of the matrix.
Givens rotations require a larger number of floating-point
operations compared to householder transformations; nev-
ertheless they may be implemented using parallel systolic ar-
rays and for this reason they are usually preferred for hard-
ware implementation.

Every single processing element (PE) of the systolic array
must perform the angle calculation and the rotation to cancel
the matrix elements. Several alternatives exist to accomplish
these two tasks, and the most common ones are

(1) computation of sine and cosine of the angle by means
of operations including square roots and divisions;

(2) direct angle calculation and rotation using CORDIC
processors [18].

The main advantage of the sine and cosine approach is
that primitives can be optimized resulting in an efficient,
although expensive, implementation. The second technique
is less expensive, but outputs are generated with longer la-
tencies and data dependency between operations. The very
high throughput required by this application can hardly be
achieved by iterative CORDIC-based algorithms. Other al-
ternatives have to be explored to reduce the latency of ev-
ery single processor. Among the square root-free algorithms,
the squared Givens rotations (SGR) proposed by Dolher
[19] constitute a good compromise between complexity and
speed [20, 21].

Let us indicate witha = (0,...,0, ax,...,a,) therowofan
n X n matrix, where a 0 must be introduced in the kth posi-
tion and withr = (0,...,0,7,...,,) another row having the

same number of leading zeros; the standard Givensrotations
(StdGR) algorithm employs this set of updating equations to
cancel the element ay:

a=q '(—akr + rea), T = q '(rir + aza),

8
q=ival ®)

The SGR algorithm takes advantage of the observation
that 7y = ¢q introduces the matrix U = diag(R) - R and ex-
ploits the relations u = r,r and W = 7¥. Then, to simplify
the notation, the new vectors v = a/,/w and Vv = a//w are
introduced for some w,w > 0. After some algebra, we can
express (8) with a new set of updating equations:

u=u-+ wwv, vV=v-——u,

U 9)

When compared to StdGR, SGR algorithm shows half
the number of multiplications and no square-root operation.
The updating sequence can be arranged in a systolic array of
PEs performing the aforementioned computations.

The PE array can be arranged according to different
structures, namely the triangular (TA), square, and linear
(LA) shapes: each of them shows a different percentage of PE
reuse and a different throughput. Slightly different functions
are then associated in the array organization to boundary and
internal PEs.

Figure 5 pictures a generic systolic array layout, able to
perform QR decomposition of a 4 X 4 matrix. The identity
matrix must enter the systolic array immediately after the
matrix to be processed, in order to produce the Q matrix.
During the processing of the input matrix M, the coefficients
of Q are already computed and stored in the internal regis-
ters.

Depending on (9), boundary and internal processing el-
ements must behave differently when a diagonal element of
the matrix enters a node. In Table 1, the computations per-
formed by the nodes in the different operating modes are
listed. In the table, Reg and Reg2 are two registers needed to
store the parameters between different steps. The subscript
in indicate that a parameter takes origin from the preced-
ing PE in accordance with the connections in Figure 5, while
subscript out indicates that a parameter takes origin in the
current PE. It must be also noted that the parameter wqy, is
updated only in diagonal mode, while in the other modes it
maintains the registered value.

The internal processing element (IPE) appears to be the
most computationally intensive block of the entire system.
Figure 6 depicts the architecture of the IPEs derived from

6 VLSI Design
0 0 0 -
0 0 0 - k
I
0 // : YinJ/ Yin | Win :
0 0 1 0 S |
4 I
/ ! Xout Xout |
0 0 0 0 // i .
0 1 0 ass J/ | |
’ 1 \
0 0 az azn ! !
,/ ! Yout | Wout |
1 as az a1/ ! !
/ 1
ao3 an az ,a30 '\ II
/25 ettt =
an2 ar axy ,/ 0 -
/ -
aopl ao 0 /// 0 /,,”
, -
aoo 0 g 0 -7 -
_0-"74q03 o2 o1 qoo rps To2 Tor Too
Q13 q12 9 qo riz rp o o 0
Q2 q21 920 13 12 1 120 0 0
Qﬁ q33 g3 g3 g0 133 1 r3 or 0 0 0
F1GURE 5: Systolic array for QR decomposition of a 4 X 4 matrix.
TaBLE 1: Operations performed by the PE’s. Yin
D D
Win o0 N
Boundary PE g 20
Mode Operation A
Diagonal Reg < Yin; Xour < Y2, - win —
Nondiagonal Reg < Reg; Xout < Yin - Reg - win l
Internal PE ;7 S
Mode Operation " Xoul
Yin Xi
Reg < Yin; Reg2 & —— 5 Wour < Win * o o5 Xin A
. X; Xin + Y3 3 0
Diagonal ") meom 2
Xout = Xin + Yin * Win g
Yin
You € Yin — =2 + X;
oul m }(1 1]
Reg < Reg; Reg2 < Reg2, Wour < Wout &
Nondiagonal Xouwt € Xin + Yin - Reg * Win P Wour 5 Your 5

Yout < Yin - Reg2 ° Xin

Table 1. Although the divisor has a latency of two clock cy-
cles and two divisions are needed in the diagonal mode, a
proper overlapping with the nondiagonal mode guarantees a
total latency of three clock cycles.

The method proposed in [22] is adopted to realize the
division operation. Using the a Taylor series, the divisor (Y)
expressed on 2m bits is decomposed into two m-bit groups,
higher (Yy) and lower bits (Y;). Since (YH)2 > (YL)Z, we
can write

X X X(Yp-Y) X(Yg-—-Yi)

Y Yu+Y, Yi-YZ Y}

(10)

with maximum fractional error < 27*". This divisor takes
two clock cycles to complete the division on 16 bit fixed-

FIGURE 6: Block diagram of internal PE.

point data [23]; it requires a multiplier, an adder/subtracter,
and a 256 8-bit entries LUT to store the inverse of Y#. The
overall complexity of the internal PE is therefore given by two
16 bit multipliers, two adders/subtracters and a LUT.

In this paper, we considered 8 X 8 real matrices as re-
quired by the 2 X 2 MIMO system with two channel uses per
codeword. With a plain triangular architecture, which allows
to obtain the highest throughput, a new matrix can enter the
array after 16 steps (8 for computing R matrix and 8 for Q),
that is every 48 clock cycles. In order to factorize 64 matri-
ces in 28 microseconds we need to maintain the clock period
shorter than 9 nanoseconds, while a period of 4.5 nanosec-
onds is required to factorize 128 matrices.

Barbara Cerato et al.

3.3. Enhanced sphere decoder for E; lattices

In this section, we address concatenated bandwidth efficient
coding schemes for MIMO channels, where a space-time
code with nonvanishing determinant is used as inner code
and an outer trellis code is concatenated to further increase
the reliability of the communication [6].

This TCM exploits the basic idea of partitioning the inner
constellation; at each channel use, a signal is selected from
one of the partitions. In standard TCM for AWGN channels,
the Euclidean distance between points in the same subset is
made as large as possible [24]. Full rank ST code design is
based on the maximization of the minimum determinant

Amin = mindet [(X - X)(X - X)'], (11)
X#X

where X, X are distinct codeword matrices. This pseudo-
distance replaces the role of the Euclidean distance. In [6]
Amin is optimized using set-partitioning that increases the
minimum determinant with the partitions. The Z8 lattice
structure of the inner golden code is used, so that sublat-
tices and their cosets are used as partitions. The outer con-
volutional encoder guarantees that signals are selected prop-
erly from different cosets. Among the possible 8-dimensional
sublattices considered in GST-TCM, we choose the Gosset
lattice Eg (the densest packing in 8 dimensions [25]).

Any received point has to be decoded to one of the 16
possible cosets of Eg compounding Z8. The decoder needs
to compute the branch metrics of the inner code to perform
Viterbi ML decoding of the concatenated codeword. This is
obtained by ML lattice decoding of the received vector in
each coset of the Eg sublattice.

In order to decode the Eg lattice, we consider that Eg C
7% and adapt the classical sphere decoder (as that in [14])
operating on 78,

Consequently, this decoding problem can be solved by
thinking of Es as a punctured Z® lattice and setting proper
constraints to discriminate the relevant points Eg within 78,
This means that at a given tree level, the integer signal vec-
tor cannot assume all values; actually it is constrained by the
selections that have already been made at upper levels.

These constraints can be derived directly from the con-
struction A of Es based on the (8,4,4) extended Hamming
code [6]. Let ¢ = [cp,...,c7] denote one of the 16 binary
codewords that are used as coset leaders of 278 to obtain Eg.

Taking into account that the tree must be traversed start-
ing from the last dimension, we have

c; = free,
ce = free,
cs = free,
C4 = C7 © 6 & Cs5,
C = (12)
c3 = free,

o =(®c)-cs
1= (ca®c3) - co,
o= (ca®c3)- ¢

Level = 3

»

FIGURE 7: Cross-section at levels 4 and 3, assuming ¢; = “1,” ¢ =
“0, cs = “1” and ¢4 = “1” we obtain ¢, = ¢; ® ¢ ® ¢5 = “0” while
¢y = C4 ® ¢y = “1” where ¢ is the output of the convolutional encoder
and represents a coset leader of 27® in Eg and € is a coset leader of
Eg in ZS.

TaBLE 2: Synthesis results at 0.13 ym technology for SD and matrix
factorization blocks.

SD Matrix factor
[CC(;); Area 61k 198k
?ﬁﬁz] Clock 213 223
glf\};;’i%}apc‘ﬁ; at 148.6 Mbps 16-QAM 4.63 Mmat/s

If, at level , ¢; is free, then the signal can assume any value
in the original QAM constellation, otherwise its value is con-
strained.

In order to perform the ML detection, we have to derive
the proper evolution of the received signal among the differ-
ent sublattices. In particular, we can define c as the output
of the convolutional encoder, which is related to the current
state of the encoder, and € as one of the 16 coset leaders of Eg
in 78. Combining ¢ with the coset leader ¢, we obtain a bi-
nary vector ¢’ = € @ c that gives the 256 distinct coset leaders
of 278 in 78. Thus, all ¢’ vectors identify the actual allowed
points inside Z8. From the practical point of view, € is fixed
for the considered Eg decoder, while the allowed and inter-
dicted values of the signal s; depend on the value of ¢’. If ¢;
= “0,” then s; can take the values [...,-7,-3,1,5,...], other-
wise it can take the values [...,—5,—1,3,7,...]; the bounds
of this sets depend on the constellation used for the trans-
mission. It is worth noting that, when ¢; is free, ¢; can assume
both the values 0 and 1, leading s; to assume any value in the
original PAM constellation.

Figure 7 shows levels 3 and 4 of a tree for the sphere de-
coding of 4-PAM systems: solid lines are practicable edges,
while dashed lines correspond the interdicted ones. For this
cross-section, we assume ¢; = “1,” ¢g = “0,” and ¢5 = “1,” re-
sulting in ¢4 = “0,” ¢4 = “1,” and ¢ = “1.” Therefore, values
[—1, 3] are allowed in this example. At level 3, instead, c; is
free, and as a consequence ¢; can assume both values “0” and
“1” and the four branches are all admissible.

8 VLSI Design
TABLE 3: Comparison results for SD building block.
SD Our [26] [27]
Antennas 2 % 2 per two channel uses 4x4 4x4
Modulation 4,16,64-QAM 16-QAM 16-QAM 16-QAM
Detector Depth-first sphere Depth-first sphere K-best sphere
BER perf. ML ML Quasi-ML
Tech. ym 0.13 0.25 0.25 0.35
Core area GE 61k +preproc. 56 k +preproc. 117k +preproc. 91k +preproc.
Max. clock 213 MHz 109 MHz 51 MHz 100 MHz
Throughput @ SNR =20dB 148.6 Mbps 16-QAM 83 Mbps 73 Mbps 52 Mbps
TABLE 4: FPGA synthesis results for matrix factorization building block.
Tech. ym xc4vIx200 xc2v1000 xc4vIx200
Handled matrices 8 x 8 Real 4 x 4 Complex 4 x 4 Complex
Array TA LA SE
no. of PEs 32 4 2
fax MHz 89 101 115
Area 8321(9%) 1666 Slices (32%) 9117 Slices (10%) +
92 DSP48 4 BRAM (10%) 22 DSP48 (23%) + 9 BRAM (3%)
Throughput 1.85 Mmat/s 0.45 Mmat/s 0.15 Mmat/s
1 - - 4. IMPLEMENTATION RESULTS
Sphere decoder performance in the 2 X 2 golden code sce-
0.1 1 nario described in Section 1 is reported in Figure 8 in terms
of bit error rate (BER) versus SNR, for 4-, 16-, and 64-
QAM modulations. Fixed-point results are also plotted for
% 0.01+] the case of a 16-bit data representation (7 bits for integer and
9 for fractional parts): in accordance with [23], these results
prove that, for this particular application, 16-bit representa-
0.001 F | tion is sufficient to achieve the floating-point performances
and thus it has been adopted for all the processing blocks here
described.
le — 04 The proposed architectures have been synthesized on a
0 30 0.13pum commercial CMOS standard cell technology with
Ey/No synopsys design compiler. The synthesis results are presented
. “BerQAMd-floating” - “BerQAMA4.71.9F" in Table 2: the sphere decoder synthesis results here listed are

-x- “BerQAM16-floating”
-%- “BerQAMO64-floating”

--m- “BerQAMI16_71_9F”
--0- “BerQAM64_71_9F”

FIGURE 8: Proposed system performance with different modula-
tions.

The proposed scheme allows to realize with a unique cir-
cuit the branch metric computer unit required in the Viterbi
algorithm necessary for the decoding of the Z3/Es TCM
transmission scheme in [6]. Note that, at each stage of the
trellis, 16 different Eg decoders are required.

The adopted architecture is very similar to the architec-
ture described in Section 3.1 and in [14]. The only difference
is the additional functional block, the “constraint maker,”
able to realize (12).

obtained with a flexible architecture able to decode 4 to 64
QAM modulations, while the matrix factorization block has
been realized with a triangular array architecture (Mmat/s
indicates millions of matrices processed in a second). It must
be noticed that synthesis results differ from those in [14], al-
though referred to the same implementation, due to the use
of different synthesis libraries.

For comparison purposes, the tree search block has been
also synthesized on 0.25um CMOS Standard cell technol-
ogy (Table 3): we then compare our architecture to the ML
implementation described in [26] and the quasi-ML imple-
mentation in [27]. It must be noted that two different imple-
mentations are presented in [26], one is ML, while the other
has close to ML BER performance: as the latter implementa-
tion adopts a completely different approach and maps a sub-
optimal algorithm, only the first implementation figures are
included in Table 3 for comparison purposes.

Barbara Cerato et al.

Analyzing data in Table 3, it can be observed that our
rearranged approach for the sphere decoder with a single
metric computation per cycle allows a significant complex-
ity reduction (approx. 50% for 16 QAM modulation) with
respect to parallel structures. At the same time, thanks to the
pipelined architecture, we can achieve a remarkable average
decoding throughput without any highly specialized struc-
ture. Moreover, our flexible decoder is not limited to a single
modulation scheme, but it can adapt to different modula-
tions (4-, 16-, and 64-QAM).

Fair comparisons to other implementations cannot be
done for the matrix factorization block, as published solu-
tions adopts completely different architectures. For the sake
of completeness, we report here two FPGA developments,
[21, 28], which implement the SGR algorithm. The main
features of these architectures are summarized in Table 4,
together with the synthesis results of our solution mapped
onto a Xilinx Virtex4 (xc4vlx200) FPGA device. Both [21, 28]
carry out the computation of 4 X 4 complex matrices, while
we process 8 X 8 real-valued ones. This means that, while the
single PE complexity will be greater in the complex scenario,
the number of PE the data flow pass through is twice and
with the basic TA topology, while for a 4 X 4 matrix there will
be 8 PEs, and 32 PEs are required for 8 X 8 a matrix.

Another difference among these implementations is re-
lated to the processing topology; while our solution adopts
a TA processing topology with 32 PEs, [28] makes use of a
linear array (LA) organization with 4 PEs and two single PEs
are used in [21], one for boundary processing and the second
one for internal processing.

A further difference with respect to [28] is that in our
implementation weight w is updated according to (9) while
in [28] it is fixed to a constant value.

In conclusion, the standard cell version fully reaches both
the 64 matrices in 36 microseconds and the 128 matrices in
28 microseconds goals and the throughput of the proposed
approach compares favourably to that of the other imple-
mentations showing high performances at a limited addi-
tional cost. On the contrary, the FPGA implementation en-
ables only to reach the 64 matrices in 36 microseconds.

The Eg decoder, instead, adopting the same architecture
as the Zg sphere decoder presents a comparable complexity.
A little increase in area is due to the addition of the func-
tional block “constraint maker,” leading the overall complex-
ity to 62 kGates, and the maximum achievable frequency to
196 MHz.

5. CONCLUSIONS

The hardware implementation of key building blocks in a
MIMO-OFDM receiver has been presented. The analysis of
the blocks shows their high level of complexity, which justi-
fies the ASIC design approach. The sphere decoder architec-
ture enables to manage different modulations without any
loss in BER performance while the proposed matrix factor-
ization algorithm and arrangement allow to achieve the high-
est throughput specified in the 802.11n standard. Finally, the
design of an enhanced sphere decoder, capable of supporting

Es decoding in a ST-TCM concatenated schemes, has been
proposed.

REFERENCES

[1] J.-C. Belfiore, G. Rekaya, and E. Viterbo, “The golden code:
a 2 x 2 full-rate space-time code with nonvanishing determi-
nants,” IEEE Transactions on Information Theory, vol. 51, no. 4,
pp. 1432-1436, 2005.

[2] H. Yao and G. Wornell, “Achieving the full MIMO diversity-
multiplexing frontier with rotation-based space-time codes,”
in Proceedings of the 41st Annual Allerton Conference on Com-
munication, Control, and Computing, Monticello, Ill, USA, Oc-
tober 2003.

[3] P. Dayal and M. K. Varanasi, “An optimal two transmit an-
tenna space-time code and its stacked extensions,” in Pro-
ceedings of the 37th Asilomar Conference on Signals, Systems
and Computers, vol. 1, pp. 987-991, Pacific Grove, Calif, USA,
November 2003.

[4] M. O. Damen, H. El Gamal, and G. Caire, “On maximum-
likelihood detection and the search for the closest lattice
point,” IEEE Transactions on Information Theory, vol. 49,
no. 10, pp. 2389-2402, 2003.

[5] E.Viterbo and E. Biglieri, “A universal decoding algorithm for
lattice codes,” in Proceedings of the 14th GRETSI Symposium
on Signal and Image Processing, pp. 611-614, Juan-les-Pins,
France, September 1993.

[6] Y. Hong, E. Viterbo, and J.-C. Belfiore, “Golden space-time
trellis coded modulation,” IEEE Transactions on Information
Theory, vol. 53, no. 5, pp. 1689-1705, 2007.

[7] U. Fincke and M. Pohst, “Improved methods for calculating
vectors of short length in a lattice, including a complexity anal-
ysis,” Mathematics of Computation, vol. 44, no. 170, pp. 463—
471, 1985.

[8] E. Viterbo and J. Boutros, “A universal lattice code decoder
for fading channels,” IEEE Transactions on Information Theory,
vol. 45, no. 5, pp. 1639-1642, 1999.

[9] C. P. Schnorr and M. Euchner, “Lattice basis reduction: im-
proved practical algorithms and solving subset sum prob-
lems,” Mathematical Programming, vol. 66, no. 2, pp. 181-199,
1994.

[10] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point
search in lattices,” IEEE Transactions on Information Theory,
vol. 48, no. 8, pp. 2201-2214, 2002.

[11] K.-W. Wong, C.-Y. Tsui, R. S.-K. Cheng, and W.-H. Mow,
“A VLSI architecture of a K-best lattice decoding algorithm
for MIMO channels,” in Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS 02), vol. 3, pp.
273-276, Phoenix, Ariz, USA, May 2002.

[12] C. Hess, M. Wenk, A. Burg, et al, “Reduced-complexity
MIMO detector with close-to ML error rate performance,”
in Proceedings of the 17th Great Lakes Symposium on VLSI
(GLSVLSI °07), pp. 200-203, Stresa, Lago Maggiore, Italy,
March 2007.

[13] A.Burg, M. Borgmann, C. Simon, M. Wenk, M. Zellweger, and
W. Fichtner, “Performance tradeoof in the VLSI implementa-
tion of the sphere decoding algorithm,” in Proceedings of the
5th IEE International Conference on 3G Mobile Communication
Technologies, pp. 9397, London, UK, October 2004.

[14] B. Cerato, G. Masera, and E. Viterbo, “A VLSI decoder for
the golden code,” in Proceedings of the 13th IEEE International
Conference on Electronics, Circuits and Systems (ICECS 06), pp.
549-552, Nice, France, December 2006.

10

VLSI Design

(15]
(16]
(17]

(18]

(19]

[20]

(21]

(23]

(24]

(25]

(26]

(27]

(28]

B. Cerato, G. Masera, and E. Viterbo, “Decoding the Golden
Code: a VLSI design,” http://arxiv.org/abs/0711.2383v1.

B. Parhami, Computer Arithmetic. Algorithms and Hardware
Designs, Oxford University Press, Oxford, UK, 2000.

G. H. Golub and C. E. Van Loan, Matrix Computations, The
John Hopkins University Press, Baltimore, Md, USA, 1996.

B. Haller, J. Gétze, and J. R. Cavallaro, “Efficient implemen-
tation of rotation operations for high performance QRD-RLS
filtering,” in Proceedings of the IEEE International Conference
on Application-Specific Systems, Architectures and Processors
(ASAP ’97), pp. 162—174, Zurich, Switzerland, July 1997.

R. Délher, “Squared givens rotation,” IMA Journal of Numeri-
cal Analysis, vol. 11, no. 1, pp. 1-5, 1991.

R. W. G. Lightbody and R. Woods, “Design of parametriz-
able silicon intellectual property core for qr-based rls filtering,”
IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 11, no. 4, pp. 659-678, 2003.

M. Karkooti, J. R. Cavallaro, and C. Dick, “FPGA implemen-
tation of matrix inversion using QRD-RLS algorithm,” in Pro-
ceedings of the 39th Asilomar Conference on Signals, Systems
and Computers, pp. 1625-1629, Pacific Grove, Calif, USA,
October-November 2005.

P. Hung, H. Fahmy, O. Mencer, and M. Flynn, “Fast division
algorithm with a small lookup table,” in Proceedings of the 33th
Asilomar Conference on Signals, Systems, and Computers, vol. 2,
pp. 1465-1468, Pacific Grove, Calif, USA, October 1999.

L. M. Davis, “Scaled and decoupled Cholesky and QR decom-
positions with application to spherical MIMO detection,” in
Proceedings of the IEEE Wireless Communications and Network-
ing (WCNC ’03), vol. 1, pp. 326331, New orleans, La, USA,
March 2003.

S. Benedetto and E. Biglieri, Principles of Digital Transmission
With Wireless Applications, Kluwer Academic/Plenum Publish-
ers, New York, NY, USA, 1999.

J. Conway and N. Sloane, Sphere Packings, Lattices and Groups,
Springer, New York, NY, USA, 1992.

A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner,
and H. Bolcskei, “VLSI implementation of MIMO detection
using the sphere decoding algorithm,” IEEE Journal of Solid-
State Circuits, vol. 40, no. 7, pp. 1566—1576, 2005.

7. Guo and P. Nilsson, “A VLSI architecture of the Schnorr-
Euchner decoder for MIMO systems,” in Proceedings of the 6th
IEEE Circuits and Systems Symposium on Emerging Technolo-
gies: Frontiers of Mobile and Wireless Communication, vol. 1,
pp. 65-68, Shanghai, China, May-June 2004.

E Edman, “Digital hardware aspects of multiantenna algo-
rithms,” Ph.D. dissertation, Department of Electroscience,
Lund University, Lund, Sweden, February 2006.

Hindawi Publishing Corporation

VLSI Design

Volume 2008, Article ID 312614, 8 pages
doi:10.1155/2008/312614

Research Article

Design and Implementation of a Hardware Module for
MIMO Decoding in a 4G Wireless Receiver

Alberto Jiménez-Pacheco,! Angel Fernandez-Herrero,? and Javier Casajts-Quirés’

! Departamento de Sefiales, Sistemas y Radiocomunicaciones, Escuela Técnica Superior de Ingenieros de Telecomunicacion,
Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain

2 Departamento de Ingenieria Electrénica, Escuela Técnica Superior de Ingenieros de Telecomunicacion,
Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain

Correspondence should be addressed to Angel Fernandez-Herrero, angelfh@die.upm.es

Received 18 May 2007; Accepted 26 October 2007

Recommended by Jean-Baptiste Begueret

Future 4th Generation (4G) wireless multiuser communication systems will have to provide advanced multimedia services to an
increasing number of users, making good use of the scarce spectrum resources. Thus, 4G system design should pursue both higher-
transmission bit rates and higher spectral efficiencies. To achieve this goal, multiple antenna systems are called to play a crucial role.
In this contribution we address the implementation in FPGAs of a multiple-input multiple-output (MIMO) decoder embedded
in a prototype of a 4G mobile receiver. This MIMO decoder is part of a multicarrier code-division multiple-access (MC-CDMA)
radio system, equipped with multiple antennas at both ends of the link, that is able to handle up to 32 users and provides raw
transmission bit-rates up to 125 Mbps. The task of the MIMO decoder is to appropriately combine the signals simultaneously
received on all antennas to construct an improved signal, free of interference, from which to estimate the transmitted symbols. A
comprehensive explanation of the complete design process is provided, including architectural decisions, floating-point to fixed-
point translation, and description of the validation procedure. We also report implementation results using FPGA devices of the
Xilinx Virtex-4 family.

Copyright © 2008 Alberto Jiménez-Pacheco et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

1. INTRODUCTION

The aim of the 4MORE Project (4G MC-CDMA Multiple
Antenna System-on-Chip for Radio Enhancements) is to
complement worldwide research efforts on MIMO systems,
MC-CDMA, and other advanced signal processing tech-
niques that will provide the high data rates and spectral ef-
ficiencies expected from 4G wireless multiuser communica-
tion systems. In order to investigate the real performance and
feasibility of implementation of these technologies, a com-
plete hardware demonstrator of a broadband mobile termi-
nal (MT) has been designed and is being constructed within
the 4AMORE project [1]. The demonstrator will focus on an
MT with two antennas, but a base station (BS) emulator with
four antennas will also be built, since it is required for vali-
dation of the MT.

Multi-carrier CDMA, based on the serial combination of
direct sequence CDMA and OFDM, has been considered for

the physical layer in the downlink because it derives bene-
fits from both technologies: OFDM, with appropriate carrier
spacing and guard interval, provides robustness against mul-
tipath, avoiding intersymbol interference; whereas the use of
CDMA with orthogonal spreading codes provides frequency
diversity and multiple-user flexibility [2].

The use of multiple antennas is another enabling tech-
nology for 4G systems, which helps to exploit spatial diver-
sity, to increase capacity and to mitigate the effects of fad-
ing. In our system the space-time block code for two trans-
mit antennas designed by Alamouti [3] is employed. This op-
tion has been favoured over other MIMO technologies, such
as beam-forming or layered space-time coding (BLAST) be-
cause it provides the maximum attainable diversity order for
the number of antennas employed using a simple decoding
algorithm.

To achieve good bit error rate (BER) performance, state-
of-the-art channel coding techniques, including duo-binary

VLSI Design

2
BS MAC layer
1 2
Tane -+ v [e
N N2
Symb_ol e (N - Symb_ol
mapping mapping
|
| Spreading |
)
| MIMO encoding |
J i)
| Framing |
J J
| OFDM modulation |

| |

BS RF front-ends
Antenna IA

A Antenna 2

FiGure 1: Simplified diagram of the BS transmitter.

turbo codes [4] for the uplink, and convolutional and low
density parity check codes [5] for the downlink, are em-
ployed in the 4MORE demonstrator.

The joint use of all these sophisticated technologies
greatly increases the complexity of the transceiver. To deal
with the constraints of VLSI design, the demonstrator
includes ASICs as well as FPGAs. From the onset of the
project it was clear that the demonstrator would make use of
some well-established algorithms that could be implemented
on ASICs, but the flexibility provided by FPGAs was required
to accommodate to the more innovative algorithms to be in-
vestigated, bearing in mind that design and implementation
tasks would partially overlap in time.

The rest of the paper describes the design and imple-
mentation in FPGAs of the hardware module that performs
MIMO decoding in the MT, and is organized as follows. In
Section 2 a brief overview of the complete downlink system
is given, where focus is on the receiver. The basis of the Alam-
outi MIMO decoding scheme is reviewed in Section 3. Sec-
tions 4 and 5, respectively, describe the architecture of the
MIMO decoder and detail its fixed-point translation. We dis-
cuss implementation details and results in Section 6, before
we finally draw our conclusions.

2. OVERVIEW OF THE DOWNLINK SYSTEM
2.1. Transmitting base station

A simplified diagram of the transmitting BS is shown in
Figure 1. Data bits to be transmitted to each active user
are independently channel encoded and mapped onto sym-
bols of the appropriate constellation (QPSK, 16-QAM or 64-
QAM).

Each modulated symbol is multiplied by the spreading
code of the corresponding user, and the spread symbols
of the N, active users are added together to be simultane-

Y Y

Mobile RF front-ends

)

. AGCREF,
1mp. correction

| ——

OFDM Time/frequency
demodulation synchronisation
De-framing MIMO channel
estimation
MIMO decoding

Confidence values
ot e

De-spreading

Soft de-mapping

Soft channel
decoding

Mobile MAC layer

FiGURre 2: Simplified diagram of the MT receiver.

ously transmitted over the same set of Sy = 32 subcarriers,
which constitutes an MC-CDMA symbol. In our system, the
spreading factor in frequency is Sy = 32, and the number of
users must be in the range of 1 < N,, < §y.

An OFDM symbol consists of N; = 21 contiguous MC-
CDMA symbols, so that information is simultaneously trans-
mitted over Ng = Ny X Sy = 672 subcarriers.

Data is prepared for multiantenna transmission by the
MIMO encoding module. According to the Alamouti scheme
[3], a pair of OFDM symbols {x(n), x(n+ 1)}, also known as
a space-time block, is transmitted employing two antennas
over two consecutive symbol periods. During the first sym-
bol period, x(n) is transmitted from the first antenna, and
simultaneously x(n + 1) is transmitted from the second one.
During the next symbol interval, the first antenna outputs
—x*(# + 1), while the second one transmits x* (), with (-)*
standing for complex conjugate and # for the symbol epoch.
Small bold letters denote vectors with N; elements, corre-
sponding to the number of data subcarriers in an OFDM
symbol.

Before OFDM modulation, the framing module inter-
leaves pilot symbols in the data stream, in order to aid chan-
nel estimation at the receiver. One IFFT operation per trans-
mit antenna is required for OFDM modulation, to convert
data to the time domain. The IFFT size is 1024, and the sam-
pling rate is 61.44 MHz.

Each stream of complex OFDM symbols is finally 1Q-
modulated, power amplified by independent RF front-ends,
and radiated in the 5-GHz band.

Alberto Jiménez-Pacheco et al.

2.2. Receiving mobile terminal

A simplified diagram of the MT receiver is depicted in
Figure 2. Analog signals received by the two antennas of
the MT are downconverted to baseband by twin zero-IF
RF front-ends, and then sampled at 61.44 MHz. After auto-
matic gain control (AGC) and correction of RF impairments
caused by the zero-IF architecture of the front-ends, time and
frequency synchronization must be performed in order to
minimize misalignments with the transmitting BS.

One FFT operation per antenna branch is required to re-
cover the symbols in the frequency domain (OFDM demod-
ulation).

Next, pilots are split from information symbols by the de-
framing module. By interpolation of pilot symbols in time
and frequency, the MIMO channel estimator provides the
MIMO decoder with channel state information (CSI), which
is combined with two contiguously received OFDM sym-
bols to build the improved signal from which to estimate the
modulated symbols.

However, the output stream of the MIMO decoder fur-
ther requires module equalization [6] and despreading (sep-
aration of users by correlation with their spreading codes)
before detection of the desired user can take place. The out-
put of the soft demapper is finally sent to the channel decoder
to make decisions about the transmitted information bits.

3. MIMO DECODING PRINCIPLE

The fact that during each symbol period both antennas si-
multaneously transmit different information implies that a
linear combination of symbols, affected by the channel fre-
quency response of the different paths, will be received at
each antenna of the MT. Due to the intelligent way in which
spatial diversity is introduced, a simple linear processing of
the signals received by the two antennas during a space-time
block eliminates the co-antenna interference (CAI) artifi-
cially created by MIMO transmission.

For each space-time block, the MIMO decoder must per-
form the following linear combination:

2
X(n, 1) = > [hf(n,Dyj(n,D) + hyj(n+ L,D)yf (n+ 1,1)],
j=1

2
R+ 1,0)=> [h3;(nDy;(n, D)~ hyj(n+1,DyF(n+1,0)],
j=1

(1)

where h;;(n,1) is the estimated frequency response of the
channel between transmit antenna i and receive antenna j at
the Ith subcarrier (1 < | < Ny) during the nth OFDM symbol
period, y; is the signal obtained after OFDM demodulation
at antenna branch j, and X is the combined output signal.
Assuming ideal channel estimation, and a constant channel
response during one space-time block, it can be shown that
this combining scheme provides full diversity order and can-
cels CAI [3], leading to this simple model for the combined
signal:

X(n,1) = H(n,Dx(n,1) + N (n,1), (2)

where x(n,1) is the Ith element of vector x(n), and N (n,1) is
a Gaussian noise term. Equation (2) is valid for all n, but the
equivalent channel #(#,[) has slightly different expressions
for even and odd n:

2
H(n, 1) = > [1hj(n,D* + |hyj(n+ 1,12,
j=

; (3)
H(n+ 1,0 => [lhyj(n+ 1LDI1>+|hyj(n, D]
j=1

According to (2), information x(n,I) could be now re-
covered from X(n,1) by zero-forcing equalization (dividing
by the real factor #(n,1)) or by MMSE equalization [6].

4. ARCHITECTURE OF THE MIMO DECODER

The MIMO decoder must implement (1) to obtain the
MIMO-combined signal ¥, and (3) to obtain the equivalent
channel #, required by the equalizer.

The memory of the Alamouti scheme is one OFDM sym-
bol. Throughout the paper we have used the pair (n,1) to re-
fer to the OFDM symbol and subcarrier indices. After OFDM
demodulation, information received on all subcarriers is
converted from parallel to serial, so we recover a single (com-
plex) stream per antenna branch, that is, the (n,) pair of in-
dices is equivalent to a single-time index (n — 1)N;+1. Hence,
a straightforward implementation of the decoder would re-
quire the storage of a whole OFDM symbol for every input
and output signal (real and imaginary parts of the received
signal on each antenna, those of the estimates for the 2 x 2
MIMO channel, those of the combined output signal, and
the equivalent channel), making a total of 15 X N; samples.
However, if all complex signals in (1) are split in their real and
imaginary parts (superscripts ()" and (-)"), after some alge-
bra and intelligent grouping of terms, we arrive to expres-
sions that suggest a much more efficient implementation. For
example, for the real part of X we get:

X'(n,0) = s:(n, 1) +s1(n+ 1,10),

o (4)
X'(n+ 1,1 =s1(n,]) —s,(n+1,1),
where we have defined:
2
si(n, 1) = > sij(n,),
j=1
(5)

sui(m, 1) = 5 (n, D) y;(n, 1) + by j(n, 1) yi(n,),
s2,i(m, 1) = By ;(n, D)y} (n, 1) + by j(n, 1)y (m,).

Equation (5) is valid for all #, and corresponds to memo-
ryless arithmetic operators that will run continuously, while
all memory effects have been included in (4). The archi-
tecture inferred from these equations is shown in Figure 3,
where all signals are real. All arithmetic resources are dis-
posed so as to make a 100% utilization of them, including
the programmable adder/substractor A3 at the output of the
module. The whole structure works as a pipeline running at

4 VLSI Design
PIC T i
i - i T Ty i
2,j ilObltS (“16,16) 1] (=2 | Even/odd
. O A
e 1(-8,8) 14 bits : s12
J '11bits ~ !(~16,16) 51 (-32,32)
! A1<+ : - + -
P i 13bits 511\-/ 13 bits
hZ,j 1 M1 I A2
| | ERRARIE
I I
i) 1 2 X Ny
i G=1 i (-32,32)
CoT T T T i 12 bits
Wy M1 i
I I
i §i>_ i
s L A2 Ne
a m(D—2 2 T
i ! <
hlvi ! Ml [22
I I
i E L G=2)]
5 I

FIGURE 3: Architecture for the MIMO decoder (real part). Signal ranges and wordlengths displayed are for the fixed-point implementation

option Q2 (see Section 5 and Table 2).

TaBLE 1: Parameters of the modes implemented in the demonstra-
tor.

Modulation Channel coding rate (R..) Number of users (N,)
QPSK (b = 2) 1/2 1to 32
16-QAM (b = 4) 2/3 1to 32
64-QAM (b = 6) 3/4 1to 32

clock speed and, although not explicitly shown in Figure 3,
adders and multipliers have registered outputs. The even/odd
signal indicates whether the current OFDM symbol is even or
odd, and is used to control the multiplexer and to change be-
tween addition and substraction in the programmable adder
A3. Slotted rectangles are used to represent multibit shift-
registers, which do not need to be resettable. We observe
that memory requirements for evaluation of X" are 3 X Ny
samples, and that the total latency is equal to Ny + 4 clock
periods.

We do not show the full details of the architectures used
to evaluate X' and # because they are very similar to that
shown in Figure 3, just placing the appropriate signals at the
inputs. For evaluation of X', the major difference is that first-
level adders A1 are replaced by subtractors, while for #, the
programmable adder/substractor A3 is replaced by a simple
unsigned adder, the rest of the adders being unsigned as well.
Thus, the MIMO decoder comprises three submodules very
much like the one shown in Figure 3, and we therefore reduce
the total memory requirements of the complete module to
9 X Ny samples.

This architecture can be easily and efficiently adapted to
a different number of antennas at the receiver. To this end,
the arithmetic blocks surrounded by dotted lines in Figure 3
should be replicated, both in the upper and lower branches
of the architecture, and the two-input adders A2 should be

replaced by cascaded adders to handle more than two inputs.
While deploying more than two antennas at the MT is un-
practical, this architecture could also be used for MIMO de-
coding in the uplink, where a BS with four or more receive
antennas is feasible.

5. FIXED-POINT TRANSLATION

The fixed-point translation of the architectural design de-
scribed in the previous section was accomplished following
three steps.

(a) Determine the range of each input, output, and inter-
mediate signal involved in the MIMO decoder.

(b) Obtain the number of bits (precision) required for
each signal.

(c) Test the robustness of the design by performing BER
simulations.

Following this process, similar to that described in [7], we
seek to obtain a low-cost, performance-effective implemen-
tation for the hardware module.

5.1. Estimation of signal ranges

This task was accomplished with the help of the SystemC-
based floating-point software simulator that has been devel-
oped within the 4MORE Project, which accurately models
the behaviour of all the modules in the demonstrator and in-
cludes a realistic MIMO channel model. It is possible with
this simulator to obtain traces of the signals at any point in
the communication link.

We show in Table 1 the most important parameters of
the different working modes that have been implemented
in the demonstrator. While the range for the channel es-
timates h;; is independent of the mode, the range for the

Alberto Jiménez-Pacheco et al. 5
TaBLE 2: Fixed-point quantization rules.
Signal Ql) Q2 . Q3)
Range Bits Range Bits Range Bits
Inputs Y ¥j (—8.0,8.0) 12 (—8.0,8.0) 11 (—8.0,8.0) 10
b, b (—8.0,8.0) 12 (—4.0,4.0) 10 (—4.0,4.0) 9
M1 (—16.0,16.0) 14 (—16.0,16.0) 14 (-16.0,16.0) 13
Output of ... (combined signal path) Al (-16.0,16.0) 15 (-16.0,16.0) 13 (-16.0,16.0) 12
A2 (—32.0,32.0) 16 (—32.0,32.0) 13 (—32.0,32.0) 12
M1 (0.0,16.0) 14 (0.0, 16.0) 12 (0.0,16.0) 11
Output of ... (equivalent channel path) Al (0.0,16.0) 15 (0.0,16.0) 11 (0.0,16.0) 10
A2 (0.0,32.0) 16 (0.0,16.0) 10 (0.0,16.0) 9
I _ — —
Global outputs % (—32.0,32.0) 14 (—32.0,32.0) 12 (—32.0,32.0) 11
H (0.0,32.0) 14 (0.0,32.0) 10 (0.0,32.0) 9

received signals y; depends on the modulation type and on
the number of users. The widest signal range will be attained
when 64-QAM modulation is combined with the maximum
number of users. By careful examination of histograms of
large records of data obtained running the SystemC simu-
lator with these parameters, we found that the range for the
real and imaginary parts of the received signals y; lied with
high probability in the interval (—4.0, 4.0) while for the chan-
nel estimates h; ; the range was found to be (-3.0,3.0). The
histograms observed for all signals were almost Gaussian in
shape. To be on the safe side we decided to include an ex-
tra margin, and considered the ranges for y; and h;; to be
(—4.0,4.0) for the design. By doing so we try to take out-
liers into account, and some of the variability of the chan-
nel which might have not been captured in our data records.
Bear in mind that the channel variability greatly affects the
amplitude of the received signals, and that the MIMO chan-
nel model is quite complex, its behaviour being influenced
by many physical and statistical parameters.

Once the ranges for input signals were known, those of
intermediate and output signals could be obtained taking
into account the theoretical margins that result when operat-
ing with inputs whose range is already known. Nevertheless,
this would lead to an overdimensioned module, due to the
existence of hidden correlations between the inputs. After all,
each of the received signals y; is a linear combination of the
data x multiplied by the channel paths h; ;. Therefore, we re-
sorted to histogram observation to determine those ranges.
The results are all shown in parentheses in Figure 3 and also
in Table 2.

5.2. Word-length optimization

To ease this task we developed a simple software model of
the MIMO decoder, identical to the module included in the
floating-point SystemC simulator of the whole chain, but
much faster and practical, since all unnecessary burdens were
removed. This new software model can be quickly modified
to include fixed-point conversion effects in any of its parts.
As performance metric we used the signal-to-quan-
tization noise ratio (SQNR) at the outputs of the MIMO

decoder, measured by comparison of the outputs of the
floating-point version of the module with that obtained af-
ter including quantization effects in some signal, or in all of
them. By doing so we seek to keep the power of quantiza-
tion noise much lower than that of additive white Gaussian
(AWGN) noise, hence guaranteeing a negligible effect of the
first one on performance.

Fixed-point conversion effects were introduced one sig-
nal at a time, and simulations were run in parallel with both
versions of the MIMO decoder. The number of bits assigned
to the fractional part of the signal under study was then ad-
justed and simulations repeated until a target value for the
SQNR was reached.

Next, fixed-point effects were removed from that point,
and we proceeded to optimize the word-length of another
signal in the module.

Nevertheless, for those signals that share the same statis-
tics, quantization effects were simultaneously analysed. For
instance, optimization of the number of bits at the output
of all multipliers M1 in Figure 3 was done simultaneously,
running simulations with all multipliers substituted by their
fixed-point counterparts, all of them with the same number
of bits. For the same reason, all first-level adders A1 were
simultaneously optimized, as well as all second-level adders
A2.

Following this procedure we obtained, three sets of quan-
tization rules, to which we will refer as Q1, Q2, and Q3 from
now on, each of them established aiming at a different goal.
The final parameters for these quantization rules are shown
in Table 2 (and for Q2, they are also embedded in Figure 3).
The number of bits displayed for all signals includes integer
plus fractional part.

Quantization rule Q1 was conceived overdimensioned to
ensure that it would work with every mode of the demonstra-
tor. Quantization rule Q2, slightly less resource-consuming
than Q1, was tried for 64-QAM, but final results were not
good enough. As it will be shown in next section, the 64-
QAM constellation is very sensitive to even small noise in-
crements. Finally, Q3 was designed to work only with QPSK
modulation, using the minimum number of resources.

VLSI Design

Signal traces to run the tests were obtained from the com-
plete SystemC simulator, always setting N,, = 1, since in this
case the range of the inputs is the smallest and therefore the
required precision is the highest. We used 64-QAM signals
for Q1 and Q2, and QPSK for Q3. The target value for SQNR
was set to be greater than 55dB when designing Q1, 45dB
with Q2, and 35 dB with Q3.

As will be shown later (see Figure 4), the demonstrator
may require values of the signal-to-noise ratio (SNR) per in-
formation bit (E,/Ny) at the input of the receiver as high as
13 dB to obtain a low BER, the limiting case being that of
64-QAM modulation with 32 users. This is tantamount to a
value of the per-carrier signal-to-noise ratio (SNR.) of ap-
proximately 20 dB, since E,/Ny and SNR, are related by [6]
by the following equation:

SNR.(dB) = Ey/Np + 10 log 10<b-RCC-%>. (©)
s

Measurements with signal traces obtained running the simu-
lator in this limiting case resulted in the higher value SNR, =
22.1dB at the ouput of the MIMO decoder, the increase be-
ing due to the combining process.

At the end of the word-length optimization process we
ran a final simulation to compare the floating-point ver-
sion with the optimized fixed-point one, including all quan-
tization effects simultaneously. The measured SQNR value
was about 48 dB for QI, safely bigger than 20 dB, and out-
put SNR, fell only from 22.11dB to 22.10 dB when includ-
ing quantization effects. For Q2, the final SQNR was about
40 dB, while SNR, fell to 22.05dB. For Q3, losses in SNR,
were negligible.

5.3. Validation in terms of BER performance

As final step, the SystemC simulator was used to validate in
terms of BER performance the final decisions concerning sig-
nal ranges and word-length optimization. For this purpose a
complete fixed-point software model of the MIMO decoder
was developed, which is bit-accurate with the VHDL source
code to be implemented in the FPGAs. By substitution of the
original floating-point MIMO decoding module by its fixed-
point counterpart in the complete SystemC simulation chain,
and including appropriate floating/fixed-point interfaces to
the neighbouring modules, we verified the degradation in
BER performance introduced by the fixed-point MIMO de-
coder. This can be checked in Figures 4-6, where the BER
versus Ep/Ny performance has been evaluated for different
modes of the demonstrator.

As it can be seen in Figure 4, quantization QI is suit-
able for every mode, with a maximum loss of about 0.14 dB
at BER = 107 for 64-QAM (negligible with 16-QAM and
QPSK). From Figure 5, quantization Q2 can be considered
for 16-QAM with a loss up to 0.14 dB, but not for 64-QAM,
where losses reach 1 dB. Finally, according to Figure 6, Q3 is
suitable for QPSK with negligible losses, while it worsens by
0.3dB for 16-QAM, a loss double than that obtained using
Q2.

Average BER

0 2 4 6 8 10 12 14
Ey/Np (dB)

—6— Floating-point simulation chain
-~ Fixed-point implementation Q1 of MIMO decoder

F1GURE 4: BER degradation comparing the floating-point version of

« »

the MIMO decoder (solid lines with marker “0”) and its fixed-point

«_»

counterpart implementation Q1 (dashed lines with marker “x”).

10°

S

R sd-aM

Average BER

14

Ey/Ny (dB)

—6— Floating-point simulation chain
-~ Fixed-point implementation Q2 of MIMO decoder

FiGure 5: BER degradation comparing the floating-point version of

« »

the MIMO decoder (solid lines with marker “0”) and its fixed-point

«_»

counterpart implementation Q2 (dashed lines with marker “x”).

6. IMPLEMENTATION AND RESULTS

The following tools were used during the design: Xilinx ISE
7.1 and the XST engine were used for VHDL synthesis and
place-and-route, while Mentor ModelSim SE 6.0d was used
to run functional and post place-and-route simulations. The
target FPGAs considered for the implementation are Xilinx
Virtex-4, since they are most suitable for implementation
of wireless systems [8]. Specifically, model XC4VLX100-12
units are included in the demonstrator.

Alberto Jiménez-Pacheco et al.

TaBLE 3: Synthesis results for the MIMO decoding module.

DSP48 Flip-flops Slices LUTs Logic Route-through Shift registers DSP slices Min. clock cycle (ns)
Q1 Auto 599 3245 6337 704 5 5628 24 7.965
Q1 Yes 651 3405 6321 105 0 6216 49 9.554
Q2 Yes 419 2435 4544 92 0 4452 49 9.985
Q2 Auto 423 2495 4946 489 5 4452 24 6.577
Q2 No 759 3963 7628 3163 13 4452 0 5.524
Q3 Auto 390 2308 4515 436 5 4074 24 6.956
100 The column “LUTs” can be obtained by adding the

Average BER
=
b

\ 32 users

1073 ¢

1074

Ey/Ny (dB)

—6— Floating-point simulation chain
-8 Fixed-point implementation Q2 of MIMO decoder
-~ Fixed-point implementation Q3 of MIMO decoder

FIGURE 6: BER degradation comparing the floating-point version of
the MIMO decoder (solid lines with marker “0”) and its fixed-point
counterpart implementation Q3 (dashed lines with marker “x”). In
the zoomed area, results for the fixed-point implementation Q2 are

also shown for comparison (dotted lines with marker “[:]”).

Table 3 shows the synthesis results for the MIMO decoder
using the three different fixed-point implementations dis-
cussed in Section 5 and summarized in Table 2.

The second column, labelled “DSP48,” refers to an option
of the synthesis tool which can take three different values:
“no” means that no DSP blocks are allowed; “yes” tells the
synthesis tool to use as many of them as required; and “auto”
triggers a free use of the DSP blocks, depending on the best
trade-off found by the tool.

The value of that option has a very significant effect on
the column “DSP slices” since the architecture of MIMO
decoder needs 24 multipliers. When using “auto” for the
“DSP48” option, these are made available as DSP blocks by
the synthesis tool, whereas when the “yes” option is selected,
the tool also maps the 21 adders (including 15 adders, 4
substractors, and 2 programmable adders/substractors) and
other elements in DSP blocks, finally getting 49 DSP slices
used, and consequently reducing the number of LUTs in the
column “Logic” (from 3163 to 92 for Q2, while shift registers
keep the same size).

following three: “Logic,” LUTs used for logic functions
and arithmetic; “Route-through” for routing paths between
slices; and “Shift registers.” The data in this last column are
very relevant for our design, since shift registers are large
components in the architecture and consume the greatest
part of the resources (except in the case of value “no” for
“DSP48”). They affect the slice count, since the width of the
registers is reduced when changing to more severe quantiza-
tions (from QI to Q3).

Considering the total number of slices, there is a reduc-
tion of 23% from quantization Q1 to Q2 (“auto”), while it is
only 7.5% from Q2 to Q3.

The column “Flip-flops” includes the registers needed in
the control unit and also those used for the pipeline. This ex-
cludes the registers that follow the arithmetic units mapped
to DSP blocks, since they are directly taken from the blocks,
and not from the slices.

The last column is the minimum clock cycle inferred
by the synthesis tool with a timing constraint of 100 MHz,
which is the clock frequency available in the demonstrator.
It can be emphasized that the use of DSP blocks results in a
slower design, due to the additional routing needed to reach
the (fixed) positions of those components in the FPGA. In
this regard, the fastest implementation (and also the largest
in area) is the one using quantization rules Q2 selecting “no”
for the “DSP48” option.

Quantized outputs of the deframing and channel estima-
tion modules (see Figure 2) obtained from the floating-point
SystemC simulator were used as realistic input test patterns
to perform the functional validation of the hardware imple-
mentation. The outputs of the VHDL simulations driven by
these patterns were compared for equality with those ob-
tained by the bit-accurate fixed-point software model of the
MIMO decoder, when driven by those same input patterns.

7. CONCLUSIONS

We have presented the design methodology used in the im-
plementation of a MIMO decoder within a 4G radio system.
The architecture of the system has been optimized to com-
ply with the throughput requirements while reducing imple-
mentation area.

Given the random nature of the inputs, the design of
wireless systems demands a simulation-based fixed-point
translation approach for word-length optimization. A robust
simulation framework, able to deal both with floating-point

VLSI Design

and fixed-point descriptions, has proven to be essential in the
design.

Several quantization versions have been developed, syn-
thesized with different options, in order to check the trade-
offs between accuracy and use of resources in different con-
ditions.

Our implementation results using Xilinx Virtex-4 devices
show that the MIMO decoder requires a limited number of
FPGA resources, while achieving high performance.

ACKNOWLEDGMENTS

This work has been supported by European FP6 IST 2002
507039 Project 4MORE and by the Spanish Ministry of Sci-
ence and Technology under Project TEC2006-13067-C03-03.

REFERENCES

[1] 4MORE IST project website, http://ist-4more.org.

[2] S.Haraand R. Prasad, “Overview of multicarrier CDMA,” IEEE
Communications Magazine, vol. 35, no. 12, pp. 126-133, 1997.

[3] S.M. Alamouti, “A simple transmit diversity technique for wire-
less communications,” IEEE Journal on Selected Areas in Com-
munications, vol. 16, no. 8, pp. 1451-1458, 1998.

[4] C. Berrou and A. Glavieux, “Near optimum error correcting
coding and decoding: turbo-codes,” IEEE Transactions on Com-
munications, vol. 44, no. 10, pp. 1261-1271, 1996.

[5] D.J. C. MacKay, “Good error-correcting codes based on very
sparse matrices,” IEEE Transactions on Information Theory,
vol. 45, no. 2, pp. 399431, 1999.

[6] A. Fernindez-Herrero, A. Jiménez-Pacheco, G. Caffarena, and
J. Casajis-Quirds, “Design and implementation of a hardware
module for equalisation in a 4G MIMO receiver,” in Proceedings
of International Conference on Field Programmable Logic and Ap-
plications (FPL °06), pp. 1-4, Madrid, Spain, August 2006.

[7] W. Sung and K.-I. Kum, “Simulation-based word-length opti-

mization method for fixed-point digital signal processing sys-

tems,” IEEE Transactions on Signal Processing, vol. 43, no. 12,

pp. 3087-3090, 1995.

“Virtex-4 user guide,” March 2006, http://www.xilinx.com/sup-

port/documentation/user_guides/ug070.pdf.

=

Hindawi Publishing Corporation

VLSI Design

Volume 2008, Article ID 892370, 12 pages
doi:10.1155/2008/892370

Research Article

A Time-Consistent Video Segmentation Algorithm Designed

for Real-Time Implementation

M. El Hassani,! S. Jehan-Besson,? L. Brun,2 M. Revenu,? M. Duranton,? D. Tschumperlé,? and D. Rivasseau’

INXP Semiconductors, 2 Rue de la Girafe, B.P. 5120, 14079 Caen, Cedex 5, France
2 Laboratoire GREYC, 6 Boulevard du Maréchal Juin, 14050 Caen, France
3 NXP Semiconductors, High Tech Campus 60, 5656 AE Eindhoven, The Netherlands

Correspondence should be addressed to S. Jehan-Besson, jehan@greyc.ensicaen.fr

Received 30 April 2007; Revised 13 November 2007; Accepted 17 January 2008

Recommended by Jean-Baptiste Begueret

INTRODUCTION

We propose a time-consistent video segmentation algorithm designed for real-time implementation. Our algorithm is based on a
region merging process that combines both spatial and motion information. The spatial segmentation takes benefit of an adaptive
decision rule and a specific order of merging. Our method has proven to be efficient for the segmentation of natural images with
few parameters to be set. Temporal consistency of the segmentation is ensured by incorporating motion information through the
use of an improved change-detection mask. This mask is designed using both illumination differences between frames and region
segmentation of the previous frame. By considering both pixel and region levels, we obtain a particularly efficient algorithm at a
low computational cost, allowing its implementation in real-time on the TriMedia processor for CIF image sequences.

Copyright © 2008 M. El Hassani et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

grown using a merging process. In such approaches, similar

The segmentation of each frame of a video into homo-
geneous regions is an important issue for many video
applications such as region-based motion estimation, image
enhancement (since different processing may be applied on
different regions), 2D to 3D conversion. These applications
require two main features from segmentation: accuracy of
regions boundaries in the spatial segmentation and temporal
stability of the segmentation from frame to frame.

As far as spatial segmentation is concerned, it can be
classified into two main categories, namely, contour-based
and region-based methods. In the first category, edges are
computed and connected components are extracted [1]. One
of the drawbacks of such an approach is that the computation
of the gradient is prone to large errors especially on noisy
images. Moreover, the closure of the edges in order to
create connected regions is a difficult task and an efficient
resolution of such a problem may induce cumbersome
computations. Finally, such an approach cannot take benefit
of statistical properties of the considered image regions. The
region-based segmentation methods avoid these drawbacks
by considering regions as basic elements. Among region-
based segmentation methods [2—6], we are interested here
in a bottom-up segmentation approach where regions are

neighbouring regions are merged according to a decision
rule [7, 8]. The initial regions can be the pixels or an
over-segmentation of the image which can be obtained
by a watershed algorithm [9, 10]. As mentioned by [11],
bottom-up algorithms rely on three notions: a model for the
description of a region, a merging predicate, and a merging
order. This gives rise to numerous heuristics according to the
different choices performed on these three steps [4, 7, 12—
14]. Compared to other classical approaches, for example,
[7, 12, 13], the authors of [4] have proposed recently an
adaptive threshold justified by statistical inequalities. They
obtain good results with few parameters to tune. However,
in the context of a real-time implementation, their merging
predicate still requires too many computations. Moreover,
their algorithm is dedicated to the segmentation of still
images and so, it does not take into account the temporal
dimension of video sequences.

When dealing with video segmentation, various algo-
rithms have been tested in the literature. The first class
of approaches proposes to perform a 3D segmentation
by considering the spatiotemporal data as a volume. We
can cite the work of [15] that takes benefit of the 3D
structures tensor for segmentation. Some other recent works
propose 3D approaches using a mean-shift-based analysis

VLSI Design

[16, 17]. Let us note that if each shot is segmented as a 3D
volume, the number of frames to store for each segmentation
may be unbounded. On the other hand, if the number of
stored frames is artificially limited by the available memory,
some 3D regions may be artificially split on long shots.
Therefore, 3D approaches require the storage of several
frames in memory and necessitate a high bandwidth which
is a drawback for the design of electronic devices.

The second class of methods concerns frame-by-frame
algorithms. In these approaches, the spatial segmentation of
the second frame is deduced from the spatial segmentation of
the first frame using motion estimation [13, 18-20]. Regions
from adjacent frames are then merged according to motion
similarity, colour similarity, or localisation similarity. In such
approaches, a matching is performed between regions of the
different frames. All the regions are then linked and video
objects tracking algorithms [20] may then take benefit of
such a correspondence between regions.

On the other hand, some applications, such as image
enhancement or video compression, may need a coherent
segmentation between frames without requiring an exact
tracking of each region from frame to frame. In this paper,
we propose a segmentation algorithm devoted to such
applications. The first aim of our algorithm is thus not to
match the regions of two consecutive frames but only to take
benefit of the spatial segmentation of the first frame in order
to construct a coherent spatial segmentation of the second
one.

Our contributions may be divided in three points.

(i) Spatial segmentation: our spatial segmentation takes
benefit of both an adaptive decision rule and an
original order of merging. As in [4], the adaptive
threshold is computed using a statistical modelisation
of the region combined with the statistical inequality
of McDiarmid [21]. However, in our approach, each
pixel is modelled as a single random variable (in [4],
the authors model each pixel as a sum of M random
variables). This method gives a simpler predicate that
is more adapted to real-time implementation. Good
results are obtained for spatial segmentation with few
parameters to be set.

(ii) Temporal consistency: another contribution is the
design of a region segmentation that does not
encounter strong variations over time. We propose
to simply take benefit of scene-change detection, that
is widely used in video segmentation [22-24], rather
than motion estimation that remains a real bottleneck
for real-time implementation. We construct a coherent
segmentation from frame to frame by combining both
pixel and region information through the use of an
improved change detection mask (CDM) that takes
benefit of the region segmentation of the previous
frame. Experimental results conducted on real video
sequences demonstrate a good temporal consistency.

(iii) Hardware implementation: as far as the implementa-
tion is concerned, we exploit the data level parallelism
(DLP) by processing some basic treatments in parallel.
Moreover, the classical union-find data structure [25]

is improved by using local registers to reduce the access
time of find operations. We obtain an efficient algo-
rithm for video segmentation at a low computational
cost. Our method runs in real time on the TriMedia
processor for CIF image sequences.

The paper is organised as follows. The spatial segmen-
tation method is detailed in Section 2. The temporal consis-
tency improvement is explained in Section 3. In Section 4, we
discuss the implementation of the algorithm. Experimental
results and measures are given in Section 5.

2. SPATIAL SEGMENTATION

Let us consider an image I, the notation |-| represents the
cardinal and I(p, n) the pixel intensity at position p = (x, y)"
in the frame n.

A region-based segmentation problem aims at finding
a relevant partition of the image domain in m regions
151,82, .., Sm}. We focus here on region-merging algorithms
where a decision criterion determines whether two regions
must be merged or not. In this paper, we first introduce a
statistical model for the regions. We then detail how these
statistical tools are used for the computation of the merging
predicate. We finally explain the whole merging algorithm
and especially the order of merging.

2.1. Statistical model

Images are corrupted by noise which gives random values
(r.v.) to pixel intensities. Due to this random part in image
acquisition systems, an image I is classically considered to
be an observation of a perfect statistical image I*. The
intensity I(p) of a pixel p = (x, y)" is then modelled as the
observation of a random vector X; whose values belong to
the interval [0,¢] (e.g., g = 255 for 8 bits images). An ideal
region S* is then represented by a vector of independent r.v.
(X1,X2,...,Xn), where n = [S*]. Let us denote by S the real
region associated to S*, that is, composed of the same set of
pixels as $*. The intensity of the ith pixel of S within I is
then considered as an observation of the r.v. X;. Following
[4], we define a partition of I* into homogeneous regions
{SF,..., Sk} by the following requirements:

(1) all the pixels of any statistical region should have the
same expectation

Vie{l,...,m}, V(pq) € (S

E(I*(p)) = E(I"(9));

(2) two adjacent pixels belonging to different statistical
regions should have different expectations

(1)

V(i,j) € € {1,...,m}*, V(p,q) € Sf xSF,
(2)

E(I*(p))#E(I*(q))

Such a definition may be easily extended to multichannel
images [4] by requiring that the pixel expectations are equal
on each channel within one region and that the expectation

M. El Hassani et al.

of at least one channel differs between pixels belonging to
different regions.

Note that according to our definition, all the pixels
of one region should have the same expectation. The
regions extracted by a segmentation algorithm based on
this definition should thus be composed of pixels with a
nearly constant intensity (we thus assume an underlying flat
facet model). This criterion may be justified by the reflective
properties of surfaces. Indeed, the reflection of light under
a surface is determined by a Lambertian and a specular
component [26]. The specular component produces specular
spikes often characterised by regions with a nearly maximal
intensity. The specular component decreases abruptly and
may be neglected, within a segmentation scheme, outside
the specular spikes. The intensity of a Lambertian surface
varies slowly according to its normals. A region of the image
with a nearly constant value correspond thus either to a
specular spike or to a Lambertian surface with an almost
constant normal. Such a segmentation scheme provides thus
a partition which resumes the main physical and geometrical
properties of a 3D scene. Higher-level processes such as the
segmentation of the image into objects or the segmentation
of textured objects [27] would require to input within the
algorithm a priori knowledge about what are the expected
objects of the scene or what a textured area is.

In order to be selfcontent, let us now introduce the very
useful statistical inequality proposed by [21] and introduced
within the region segmentation framework by [4]. We take
benefit of this inequality for the computation of the merging
predicate.

Theorem 1 (McDiarmid’s inequality). If {X;} are N indepen-
dent random variables whose observations x; take their values
in a measurable space A, and f : AN +— R is a function that
satisfies the following constraint for 1 <1 < N:

sup | f(x1,...x8) = f(X150 5 X2, %], X115 XN) | < a1y

(3)

where x; and x| are two different possibilities for the Ith
component of an observation vector (x1,...,xy) € AN, Then
for every € >0,

P(|f(X1,....,XN) — E(f(X1,...,XN)) | >€)
< Zexp< 2) @
Zﬁlclz

2.2. Merging predicate

In order to compute a merging predicate, we consider two
regions) and S, of a current partition. The associated vec-
tors of r.v. in the ideal image I* are respectively denoted by
Y; and Y». The r.v. p; (Y1) and p2(Y2) denote respectively the
means of Y; and Y,. We suppose that Y; and Y, belong to the
same homogeneous region of I*. Our default decision rule
consists thus to merge the two regions S; and S,, respectively
associated to Y; and Y,. However, under the hypothesis that
Y, and Y; are included in the same homogeneous region of

I*, the probability that |y;(Y,) — u2(Y2)[is greater than a
given value is bounded by Theorem 1. If this probability falls
under a given threshold, we refuse the hypothesis and thus
do not merge the two regions S; and S,.

More precisely, let us consider the vector

Y= (YI)YZ) = (\I*(pl)a---al*(P\Sl\)} (kl*(pi)))l*(p\,sﬂ))

Y. Y,
(5)
and the mean functions
1 k=18l
W) = gy 2 I (p), =12 (6)
il k=1

Our merging decision rule is based on the following theorem.

Theorem 2. Let one consider two vectors of r.v. Y and Y,
encoding the intensities of two connected regions of an ideal
image I*. Under the hypothesis that Y, and Y, are included
into the same homogeneous region and using the previously
defined notations, one has

—2€*Y:|Ya|))

P(lu1 (Y1) — w2 (Y2)| > €) < 26XP(m

where (|Y; I)J.E{1 2 denotes the size of vector Y (i.e. the cardinal
of the associated region S;).

Proof. Let us consider the vectory = (x1,...,xy) in [O,g]N.
This vector may be considered as an outcome of the r.v. Y.
In order to apply the McDiarmid theorem we define the
following function:

fy) = fle...,xn) = (1 (y1) = p2(y2))s (8)

where N = Y| + Y2, i = (x1,...
(-x|Y1\+l)- ..)xN)-

Let us compute the variation of the function. If we make
a variation on the intensity of one x; with I < [S;]. We have

,Xly,)) and y» =

. &
7x}’l)| — |S]| (9)

sup | f(xi,..%0) = f(X15.05%)5. ..

This gives us the value of the bounding coefficients ¢; =
g/IY1| for the |Y,]| first variables. Similarly, if we make a
variation on the intensity of x;,I € {[Yi| + 1,...,N}, we
obtain ¢; = g/1Y,|. We then compute the sum over all the
variables:

N
Sae(La 1) w0
vt Y1l [Ya

Moreover, according to our hypothesis, if Y; and Y,
belong to the same homogeneous region of I*, all the pixels
of Y; and Y, have the same expectation. We have thus,
E(f(Y)) = E(ui(Y:) — u2(Y2)) = 0 and we obtain the
expected result using conjointly Theorem 1 and (10). O

VLSI Design

Note that the bounds on the probability provided by
Theorem 2 may be equivalently represented by

P(lp1 (Y1) —wa(Y2)| > F71(8) <6

—2€2|Y,||Y,|) (11)

ithd = F =2 (7
wi (©)=2exp{ 50,1+ 1Ya))

After some basic calculus we find that, under the assumption
that Y; and Y, are included into the same homogeneous
region of I'*, we have with a probability at most §

[Y:]+1Y;|
|1 (Y1) — pa(Y2) | >gQ"W (12)

with Q = /(1/2)In(2/9).

Below the probability §, which is supposed to be low, we
consider that the event |u1(Y;) — ua(Y2)l > F71(8) is not
probable. In this case, we refuse the initial hypothesis stating
that Y, and Y, belong to the same homogeneous region of
I* and thus do not merge the two regions. Our merging
predicate may thus be stated as follows:

. IS+ 155
true if — < L L
p(s,,sy) = 1Tl el = Qe g e

false otherwise,

(13)

where y; and y, denote respectively the values of 4 (Y;) and

u2(Y,) for the observation I. These two terms represent the

mean value of the two regions S; and S,. The term g denotes

the maximum level of I (g = 255 for gray-scale images).
Note that our merge criterion is equivalent to

1811152

2< 2
St 15, W —#) =(Qg)" (14)

The left member of this last equation corresponds to the
difference between the squared error of S; U S, and the sum
of the squared errors of S; and S, [28]. Our merge criterion
may thus be also interpreted as a bound on the increase of
the squared errors of the regions.

Our criterion may be adapted to multichannel images as

follows:
[Si] + Sz]
= e 1o 1
RIS

(15)

. lcr — &l
true if max
cefa,b,c} 4

false otherwise,

P(§1,8,) =

where ¢; represents the mean value of the region §; for the
channel ¢ taken in the set of channels {a, b, c} and g. denotes
the maximum value on channel ¢. We take the maximum of
the values obtained for each channel as a criterion. Indeed, if
the predicate is true, it will be true for all the channels and
so the merge hypothesis is accepted. In this paper, we have
chosen the YUV space which is the native colour space of
video sequences.

Both our method and the one of Nock [4] are based on
the McDiarmid inequality. However, Nock models each pixel

of the ideal image I'* as a sum of M random variables whereas
our method only uses one r.v. per pixel. The approach
proposed by Nock consists to fix the probability § and to
use M in order to vary the merge threshold. To our point
of view, the probability & below which we refuse the merge
hypothesis has a more straightforward interpretation than
the variable M. The resulting criteria are slightly different,
our criterion differs by a factor 1/v/M from the one first
proposed by Nock. Our criterion is also significantly different
from the second Nock criterion which uses an estimate of
the number of final regions whose cardinal is equal to a
given value. However, both our criterion and the final Nock
criterion may be related, our one being more strict than the
one of Nock [4] for a given probability .

Let us note finally that the way we derived our criterion
provides an alternative explanation to the eventual over-
merging produced both by our algorithm and the one of
Nock. Indeed, our basic hypothesis consists to suppose that
Y, and Y, belong to the same homogeneous region of I*.
As in a contrario approaches first introduced by [29], we
refuse this hypothesis only when we observe an event which
has a low probability (according to §) to occur under this
hypothesis. We may thus merge regions corresponding to
different homogeneous regions of I* if our observation does
not contradict our hypothesis.

2.3. Merging order

An edge e denotes a couple of adjacent pixels (p, p’) in a 4-
connectivity scheme. The set of edges of an image is denoted
by A, and the number of edges by N,. The order of merging is
built on the edges weights as in [4, 12]. The idea behind this
order of merging is to merge first similar regions rather than
different ones. The similarity between pixels is measured by
computing the distance between two pixel colours as follows:

w(p,p'sn) = |I(p,n) —I(p',n)|. (16)

For colour images, the edge weight becomes

> U(pn) = I(p), (17)

Ie{a,b,c}

w(p,p',n) =

where a, b, ¢ denote the three channels of a particular colour
space.

Note that alternative weight may be designed. For
example, one may balance the distance along each axis
of a color space by some weight (or equivalently scale
each axis according to its weight). Numerous colour space
with different properties may be chosen in (17). For our
algorithm, we consider the YUV colour space which is the
native colour space of CIF sequences. The colour space
(L*a*b*) provides partitions with a little greater subjective
quality but with a higher computational cost.

The edges are sorted in an increasing order of their
weights and corresponding couples of pixels are processed
in this order for merging. This sorting step only requires two
traversals of the image: the first traversal allows to compute
the histogram of edge weights. The second traversal stores

M. El Hassani et al.

fori:=1to N,do
Read the ith edge: (p1, p2)
S; = FIND(p,)
S, = FIND(p,)
if P(S,S,) = True then
UNION(S,, S,)
end if
end for

ALGORITHM 1: Merging regions algorithm.

each edge in an array associated to its weight. The amount
of memory required for each array is deduced from the
histogram of edge weights. This sorting step is similar to the
one usually used within the watershed algorithm [9].

2.4. Merging algorithm

Our spatial segmentation could be divided in three steps.
In the first one, we compute the weights of edges and their
histogram. In the second step, we sort edges increasingly
according to their weights. In the last step, we merge pixels or
regions connected by edges following their order. Algorithm
1 describes more particularly the merging loop.

The term N, represents the number of edges within the
image I in the 4-connectivity. In the merging process, we
use the union-find data structure [25]. The union function
merges two disjoint regions into one region, and the find
function identifies the region to which a certain pixel
belongs. Implementation details are given in Section 4.

3. TIME CONSISTENCY IMPROVEMENT

In video segmentation, the quality of the spatial segmen-
tation is not the only requirement, time consistency is
also a very important one. If, in two successive frames,
one region is segmented very differently because of noise,
occlusion or deocclusion, results of segmentation would
be very difficult to exploit for any application like image
enhancement, depth estimation, and motion estimation.
Many works, see for example [19], use motion estimation to
improve time consistency in video segmentation. However,
motion estimation [30] is a real bottleneck for real-time
implementation and is even sometimes unreliable. In this
paper, we combine an improved change detection mask
(CDM) with spatial segmentation in order to improve the
temporal consistency of our segmentation.

3.1. Change detection mask

The CDM is designed using both illumination differences
between frames and region segmentation of the previous
frame.

We first detect changing pixels using the frame difference.
Then, we take benefit of the region segmentation of the
previous frame in order to classify the pixels not only at a
pixel level but also at a region level.

Given the current frame I(:,n) and the previous one
I(:,n — 1), the frame difference FD is given by

FD(n, p) = [I(p,n) — I(p,n — 1)I. (18)

Classically, FD is thresholded in order to distinguish chang-
ing pixels from noise. The pixel label is given by

0 if FD(n, p) < try,
L(n, p) = (19)

1 otherwise,

where tr; is a positive constant chosen according to the noise
level of the image. This threshold may be set experimentally
(Section 5) or estimated according to any measure of the
image noise. A pixel p, with L(n, p) = 1, is considered as
a changing pixel. We then use the previous segmentation in
order to convert the CDM from the pixel level to a region
level which is more reliable [23]. For each region S; in the
previous segmentation, we compute Nj changing:

Ni,changing = |{P € Si: L(”>P) = 1}| (20)

which denotes the number of changing pixels of the current
image whose (x, y) coordinates belong to S; in the previous
segmentation. We then compute 7(S;) = Nichanging/|Si
which represents the ratio of changing pixels between the
previous and the current image in the region S;. Pixels are
then classified using three categories:

0 if(z(S;) < try),
if (7(S;) > try), (L(n, p) = 0), (21)
2 if(7(Si) > trz), (L(n, p) = 1),

CDM(n, p) =11

where tr; is a positive constant. In the experiments, we take
tr, = 0.01 (i.e. a region is a changing region when it contains
at least 1% of changing pixels). The value of the threshold is
chosen so that we do not miss any changing region.

Every pixel of regions qualified as static is labelled using
CDM(n,p) = 0. The two other labels concern pixels
within changing regions. Depending on the value of the
frame difference, the pixel is qualified as a changing one
(CDM(n, p) = 2) or as a one (CDM(n,p) = 1). Such a
classification is then used to segment the current frame. An
example of classification is given in Figure 1 for the video
sequence “Table”.

3.2. Merging process

The merging process is now divided in three main steps.
Firstly, static regions are kept as they were segmented in the
previous frame. Secondly, we apply a connected component
labelling (CCL) algorithm [31] to extract connected com-
ponents of pixels with CDM(n, p) = 1. This second step
builds seeds from the segmentation of the previous frame.
These seeds link the current segmentation to the previous
one in a time-consistent way. Thirdly, we apply the spatial
segmentation only on edges (p, p’) connecting a changing
pixel within a changing region (CDM(#n, p) = 2) to a pixel

VLSI Design

Last image (n — 1)

[]

Current image (1)

Il Static pixel within a static region (CDM = 0)
[Static pixel within a changing region (CDM = 1)
[[] Changing pixel within a changing region (CDM = 2)

FiGgure 1: Computation of the CDM using the difference between the current image and the previous one and the region segmentation of

the previous frame.

belonging to a changing region. This last pixel may be either
changing or static (CDM(n, p) € {1,2}). Note that static
pixels within changing regions have been connected in the
second step by a CCL algorithm.

The whole process can be formalised as follows. Con-
sidering an edge (p;, p;) between two pixels, we define the
following function:

0 if CDM(#n, p;)CDM(n, p;) = 0,
o(n, (pi»pi)) =11 if CDM(n, p;))CDM(n, p;) = 1,

2 if CDM(#n, p;)CDM(n, p;) = 2.
(22)

The ¢ function allows us to classify the edges in the
following three categories (a brief summary is provided by
Figure 2).

(i) The first category (¢(n,a) = 0) (Figure2(a)) cor-
responds to the edges which have at least one pixel
belonging to a static region. These edges are not
considered for the segmentation of the current image
n. Static regions are then segmented in the same way
between two successive images n — 1 and n.

(ii) The second category (¢(n,a) = 1) (Figure 2(b))
corresponds to the edges that connect two non chang-
ing pixels in changing regions. For these edges, we
simply apply a connected component labelling (CCL)
algorithm [31].

(iii) The third category (¢(n,a) = 2) (Figure 2(c)) corre-
sponds to the edges which have at least one pixel that
is considered as a changing one (i.e. CDM(#, p;) = 2).
These edges are processed using the merging order and
the merging predicate defined in Section 2.2. Edges
belonging to this category are denoted by A,

Figure 3 describes the three steps corresponding to the
process of the three categories of edges.

In Section 5, we propose the computation of an objective
measure for temporal consistency. The measures obtained
on real video sequences demonstrate a real improvement

E =T

(@) ¢(n,a) =0

| (o

(c) p(n,a) =2

() p(n,a) =1

Figure 2: The figure gives the different combinations of pixels
available for each category. The pixels are designed as follows : black
pixel (CDM(n, p) = 0), gray pixel (CDM(n, p) = 1), white pixel
(CDM(n, p) = 2).

(b) Segmentation of static regions
(p(n,a) = o)

(a) The different values of CDM

(c) CCL(¢p(n,a) =
regions

1) and static (d) Segmentation of changing

pixels

F1GURE 3: Description of the three steps of the segmentation process
for the video “Table”. (a) Gives the different values of the CDM. (b),
(¢), and (d) describe the evolution of the process of the edges a with
respectively ¢(n,a) = 0,¢9(n,a) = 1, and ¢(n,a) = 2. In these three
last figures, black pixels are pixels that have not yet been classified,
whereas white pixels correspond to region boundaries found at each
step.

M. El Hassani et al.

Previous frame
LRl N

Current frame
—

FIGURE 4: The general diagram of video segmentation.

of temporal consistency. Moreover, the way we exploit the
CDM decreases also the computational cost of the algorithm
since the edges in static area are not reconsidered, and those
linking the “no changing pixels” in changing area are simply
processed by a CCL algorithm.

When successive images are not correlated (in the case of
a scene cut, e.g.), the set A, contains most of the edges of the
image which leads to a new spatial segmentation as shown in
the example of a shot cut given in Figure 11. Our algorithm
handles, thus, naturally the shot cuts and does not need to be
combined with a shot cuts detection algorithm.

4. IMPLEMENTATION CONSIDERATIONS

In this section, we propose to describe optimisations that
have been made to allow a real-time treatment. The whole
algorithm of video segmentation is summarised in Figure 4.

Apart from the merging loop, all other functions access
pixels data in a predictable way (e.g., from top to bottom left
to right). The cache memory benefits from this regularity,
since it exploits spatial and temporal locality of data,
and consequently causes less cache misses. In the merging
loop, the union-find data structure is unpredictable, and
consequently causes an important data cache stalls. To reduce
the data cache stalls cycles, we investigate some optimisations
that are detailed in the following sections and we take
benefit of the TriMedia processor to exploit the data level
parallelism (DLP) and instruction level parallelism (ILP) of
our algorithm.

4.1. Organisation of data

Our organisation of data should allow an efficient compu-
tation of both our merge criterion (13) and our union and
find operations. Let us recall that when using an union-find
merging scheme each region of the image is encoded by a
spanning tree whose vertices are the pixels of the region.
These tree data structures are usually encoded by storing for
each pixel the index of its parent within the spanning tree.
The information about the region are associated to the root
of the trees and both the roots and the region information
are updated during an union operation.

Since our merge criterion only uses the mean color
(y,1,v) and the cardinal |S| of the regions, one simple
organisation of our data would consist in associating each

pixel p with the fields (,%,7, S|, father), where father
denotes the father of p within the tree.

However, grouping the region data and the father
index would require to manipulate the whole vector
(¥,u,v,|S|, father) within find operations. Since only the
father field is required by the find operation such an
organisation of the data would induce the storage of useless
data within the cache memory.

We thus decided to store into two separate arrays the
data required for the merge operations (namely the vector
(¥,u,7,1S])) and the encoding of the trees. More precisely,
our organization of data is as follows:

(1) one array Data which stores for each created region its
(7,4, v,18]) fields;

(2) one array Father which encodes our sequence of union
operations;

(3) one array Label of size |I| initialised to a special flag
indicating that each pixel is initially its own father.

If a region is reduced to a single pixel p, Label (p) is set
to a special flag and the data of the region retrieved from the
image I. We thus decide to create a new entry within the array
Data only if the associated region is composed of at least 2
pixels. More precisely, if a merge of two pixels p; and p; is
decided by our merge criterion,

(1) a new entry [is created within the array Data and
initialised according to I(p;) and I(p,);

(2) label (p;) and Label (p,) are set to I;

(3) father (I) is set to a special flag indicating that I has yet
no father.

Our data structure is further updated in the two follow-
ing cases.

(1) One pixel p is aggregated to an already created region
labelled by I. In this case, Label (p) is set to / and
Data (I) is updated according to I(p). The array Father
remains unchanged.

(2) Two already created regions with respective labels [,
and [, are merged. In this case, one of the labels (say
I,) survives, Data (1) is updated according to Data (I,)
and Father (l,) is set to ;.

Figure 5(b) illustrates the state of our different data
structures after the segmentation of Figure 5(a). Two pixels
in Figure 5(a) are merged if they have the same label. In this

VLSI Design

8

Label Data
of e]
ala]e 01010 e
N 2| e |
b | ¢ | ¢ 3L |

3 2 2

b c C
(a) I (b) Data structures

Ficure 5: The data structures used to compute union-find opera-
tions and our merge criterion.

example, we first considered horizontal edges between pixels
and then vertical ones. Both horizontal and vertical edges
have been considered using a scan line order. Note that the
array Data is completely filled by the four regions created
during the union operations. We only get three final regions
as encoded by the array Father where all labels, except label
2, are their own father.

Since all regions encoded by the array Data are composed
of at least 2 pixels, the maximal number of entries within
this array is equal to |I|/2. Moreover, the vertices of the trees
encoded by the array Father correspond to regions composed
of at least 2 pixels. The maximal size of the array Father is
thus also equal to |I]/2. Note that this upper bound may be
reached if we first decompose the image into regions made of
2 adjacent pixels and then order the merges in such a way that
the tree encoding the union of all these elementary regions is
linear.

Note that when using such an organisation of data, all
the required memory is allocated before union and find
operations. We thus avoid the risk of a memory overflow.

4.2. TriMedia processor

We experimented this data organisation on the TriMedia
processor [32]. The cache memory of this particular TriMe-
dia is 128 KByte, 4 way associative, with block of 128 Byte.
The replacement algorithm used is LRU.

In order to increase the computational efficiency, we
propose to take benefit of the data level parallelism (DLP)
provided by our algorithm (computation of edge’s weight,
frame difference, classification of pixels in CDM). This allows
to increase the throughput (i.e., amount of pixels processed
per unit time) by processing data in parallel when it is
possible. The core of TriMedia is a VLIW architecture with
5 issues slots. Each slot has some functional unit, and each
functional unit could process 4 bytes in parallel (SIMD
mode). The instruction level parallelism (ILP) is extracted
by the compiler, while the DLP could be exploited through
the use of custom operations, loop unrolling, and grafting.
So we use these optimisations to exploit the DLP available in
our algorithm.

5. EXPERIMENTAL RESULTS

In this section, we present experimental results of our
algorithm run on TriMedia with many very known CIF video
sequences.

() & = 0.0067

FIGURE 6: Segmentation of one frame of the video sequences
“Akiyo”, “Table”, “Mobile” with § = 0.0067, § = 0.27, § = 0.74.

5.1. Spatial results

The probability & tunes the coarseness of the segmentation.
In Figure 6, we show the influence of this parameter on
the level of details obtained. This parameter is highly
correlated to the number of segmented regions. A value
of this parameter around 0.74 provides a sufficient level of
details for most of the video sequences we have considered.
However, the chosen value and the associated level of details
are highly dependent on the application. We can remark
that this algorithm is able to segment very precisely small
regions of interest such as the mouth or the eyes of “Akiyo”.
It can also segment the different numbers of the calendar in
the sequence “Mobile”. However, we can observe an over-
segmentation of some textured regions such as the wall in
the sequence “Table”. This is mainly due to the fact that
assumption (1) is more adapted to the segmentation of flat
regions. Our ongoing research is directed towards the design
of a new merging criterion for the segmentation of textured
regions.

As a comparison, we propose here some results obtained
with two other well-known algorithms: algorithm EGBIS
[12] and the statistical region merging (SRM) algorithm of
Nock and Nielsen [4]. These two algorithms are based on
region merging schemes with the same merging order than
our method. The main difference between the three methods
lies in the merging predicate. The results are displayed in
Figure 7. For each algorithm, we have tuned the parameters
in order to reach a segmentation that allows a good subjective
representation of the elements of the image (numbers of
the calendar, eyes of the woman, etc.). We can see on these
examples that our real-time algorithm gives comparable

M. El Hassani et al. 9

(a) Segmentation of frame 1 (b) Segmentation of frame 9
without time consistency

(c) Segmentation of frame 9 with
-':‘:&1;1'9 time consistency

<0 j j o
3 =) ‘ Figure 8: Comparison of the segmentation results obtained with
and without time consistency on the video sequence “Table”.

(e) Our algorithm (f) Our algorithm

FiGUrRe 7: Comparison of our segmentation results with those
obtained using the algorithms EGBIS [12] and SRM [4].

results than the two other algorithms. This last point has
been confirmed by other experiments that are not reported
here. Our real-time implementation is thus achieved without
detriment to the subjective quality of the results.

5.2. Spatiotemporal results

In the experiments, we take tr; = 6 and tr, = 0.01 (i.e., a
region is a changing region when it contains at least 1% of
changing pixels). The values of these thresholds are the same
for all the video sequences.

In order to see the influence of our temporal process,
we show here an example of segmentation results with and
without time consistency in Figures 8(c) and 8(b). We can
see that the segmentation of the wall is the same for the two
frames 1 and 9 of the video sequence “Table” when we use
the time-consistency improvement.

We then propose to display the segmentation results
along the video sequence “Akiyo” in Figure 9 and the video
sequence “Paris” in Figure 10. We can observe that the
method gives satisfying and stable results for these sequences.

We have also tested the robustness of our method in the
case of a shot cut. The video sequence “Football” is followed FIGURE 9: Results for the spatiotemporal segmentation of two video
by the video “BBC Disc”. Experimental results are given in sequences “Akiyo” (8 = 0.81).

VLSI Design

(d) n=15

FIGURE 10: Results for the spatio-temporal segmentation of two
video sequences “Paris” (§ = 0.81).

Figure 11: Experimental results in the presence of a video scene
cut. (a) Segmentation of the last frame of the video “Football”.
(b) Segmentation of the first frame of the first image of the
video“BBCDisc”.

Figure 11. We can observe that the spatial segmentation of
the first frame of the video “BBCDisc” is not influenced by
the spatial segmentation of the previous frame that belongs
to the video “Football”. Indeed, in this case, most of edges
belong to the third category of edges (¢(n,a) = 2) where the
predicate is recomputed.

5.3. Evaluation of time consistency

We use a classical measure to evaluate time consistency.
Given the segmentation of the previous frame SEG(n — 1)
and the segmentation of the current one SEG(n), we find a
correspondence between regions in SEG(n — 1) and SEG(n).
For each region S;,—1 € SEG(n — 1), we choose the region
Sjn € SEG(n) that produces the most overlapping area

Overlap(i,n — 1) = max|Si,-1 N Sj | (23)
j

TaBLE 1: Experimental measures of time consistency.

Akiyo Table

Paris Mobile

Sequence

=

Time consistency
(SRM)
Time consistency

(our approach 0.88 0.73 0.89 0.84
without CDM)
Time consistency

(our approach 0.98 0.92 0.97 0.92
with CDM)

0.95 0.8 0.86 0.79

140 T T T T T T T T

120 ¢

100

80 |

60

Mcycles/frame

40

20 ¢

45
Image size x10*

—%— Without optimizations
-B- With optimizations

FiGure 12: Evaluation of the computational cost regarding the
image size (with one image of the video Akiyo, § = 0.74).

We then sum the overlap measures for all the regions in
SEG(n—1). The consistency measure is the percentage of this
number to the size of the image. The results for this measure
are given in Table 1 for the video sequences “Akiyo”, “Table
Tennis”, “Paris”, and “Mobile”. When enforcing consistency
through the CDM, time consistency is higher, and visually,
segmentation is more stable from frame to frame and still
fit very well regions boundaries as shown in Figures 9 and
10. We can also see that the time consistency of the spatial
segmentation algorithm SRM [4] is roughly equivalent
to the time consistency of our spatial algorithm without
computation of the CDM.

5.4. Evaluation of the computational cost

In this section, we propose to give the number of Mcycles
the algorithm takes on TriMedia for different resolutions and
different versions of our algorithm. We propose to compare
the spatial computational cost with the one obtained using
the Nock algorithm [4].

The computational cost has been evaluated as a function
of the image size in Figure 12. In this figure, the computa-
tional cost (in Mcycles/frame) has been computed for one
image of the video “Akiyo” at different resolutions (QCIF,

M. El Hassani et al.

11

TasLE 2: Compuational cost.

Akiyo Table Paris

. 2
m f

m

YAy — e

Mcycles/frame (SRM) 34.57 66.53 38.03 25.41

Mobile
Sequence i

Mcycles/frame
(without CDM, 26.33 32.21 28.18 24.73
without optimizations)

Mcycles/frame
(without CDM, 15.68 15.84 16.59 16.2
with optimizations)

Mcycles/frame

(with CDM) 9.87 11.37 11.02 10.06

CIF, SD, and two other resolutions). This computation
has been performed with and without the optimisations
described in Section 4.2. First, the results given in Figure 12
show that the complexity is approximatively linear regarding
the image size. Indeed, the spatial computational cost is
principally induced by the union-find algorithm and the
edges sorting. As explained in Section 2.3, the sorting step
is performed in a linear time O(|I|). As far as the union-
find algorithm is concerned, the complexity is given by
0(a(ny, nf)ny) where n, is the number of union operations
and ny is the number of find operations (n, < ny). The
function « is a very slowly growing function [25]. Since
the number of find operations can be upper-bounded by
clI| where ¢ is a constant, the complexity at worst can
be approximated by 0(a(n,,ns)|I|) which gives an almost
linear complexity. This assessment is confirmed by the
experimental results given in Figure 12.

We then propose to compare the computational cost
of our algorithm to the SRM algorithm [4]. The main
difference between the two spatial algorithms lies in the
computation of the predicate. The predicate of SRM leads
to higher computational cost as demonstrated in Table 2.
Our algorithm gives a lower computational cost even without
optimisations. When including these improvements, the
computational cost decreases. In Table 2, we also give the
number of Mcycles the algorithm takes on TriMedia when
enforcing the temporal consistency. The exploitation of
the CDM reduces the computational cost. This reduction
depends on the correlation between two successive frames.

With a 450 MHz TriMedia, we are able to process more
than 25 frames per second. We can then conclude that our
algorithm is avalaible in real time for QCIF or CIF sequences.

6. DISCUSSION

Designing usable algorithms for video processing requires
low-computational methods. Directed by this constraint, we
propose here an efficient time-consistent algorithm for video
segmentation. Let us discuss the strengths and limitations of
our algorithm regarding the three main points of this work.

(i) Spatial segmentation: we propose here an alternative
statistical modelisation to the work of Nock and
Nielsen [4]. This leads to a simpler predicate for merg-

ing that is more adapted to a real-time implementation
and gives good results for the spatial segmentation.
However, as in [4], such a statistical model is dedicated
to the segmentation of flat regions and may produce an
over-segmentation on textured area of an image.

(ii) Temporal consistency: the proposed algorithm allows
to obtain both stable segmentation results and a
reduction of the computational cost. This method is
based on the use of a CDM and of region informa-
tion deduced from the first frame. Regions are not
linked from one frame to another leading to a video
segmentation algorithm that is robust to scene cut and
occlusion. However, if never this algorithm has to be
exploited for video object tracking, region matching
will be useful. It can be obtained by comparing regions
of two consecutive frames using statistical inequalities.

(iii) Hardware implementation : our algorithm runs in
real time for CIF sequences. For standard definition
(SD) or high definition (HD) sequences some further
efforts are needed. In order to obtain a real-time
implementation, we have directed our attention to the
parallelisation by blocks of the spatial segmentation.
However, we still investigate this part and notably
the merging of the different spatial segmentations
obtained for the different blocks. This last step remains
delicate.

We finally want to outline that such a real-time video
segmentation algorithm would help many video algorithms
by leading to a better comprehension of the image content.
Among applications, we can think of time conversion,
peaking (also named unsharp masking), video compression,
or deinterlacing. The region segmentation algorithm can be
exploited directly using regions boundaries and region color
properties or as a source of information on the image content
(level of noise, complexity of the scene, main colors) which
can be exploited to better design existing algorithms [33].
Our on-going research is also directed to the design of such
region-based algorithms for electronic devices (e.g., : set-top
box).

ACKNOWLEDGMENTS

The authors would like to thank Patrick Meuwissen, O.
P. Gangwal, and Zbigniew Chamski for their constructive
suggestions. We also would like to thank the reviewers for
their very useful comments and suggestions.

REFERENCES

[1] G. Iannizzotto and L. Vita, “Fast and accurate edge-based
segmentation with no contour smoothing in 2-D real images,”’
IEEE Transactions on Image Processing, vol. 9, no. 7, pp. 1232—
1237, 2000.

[2] Y. Haxhimusa, A. Ion, W. G. Kropatsch, and T. Illetschko,
“Evaluating minimum spanning tree based segmentation
algorithms,” in Proceedings of the 11th International Conference
on Computer Analysis of Images and Patterns (CAIP ’05), A.
Gagalowicz and W. Philips, Eds., vol. 3691 of Lecture Notes in

12

VLSI Design

=

[9

(10]

(11

[12]

(13]

(14]

[15]

(17]

(18]

Computer Science, pp. 579-586, Versailles, France, September
2005.

L. Brun, M. Mokhtari, and F. Meyer, “Hierarchical watersheds
within the combinatorial pyramid framework,” in Proceedings
of the 12th International Conference on Discrete Geometry for
Computer Imagery (DGCI "05), vol. 3429 of Lecture Notes in
Computer Science, pp. 34—44, Poitiers, France, April 2005.

R. Nock and E Nielsen, “Statistical region merging,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 11, pp. 14521458, 2004.

S. Lallich, F. Muhlenbach, and J.-M. Jolion, “A test to control
a region growing process within a hierarchical graph,” Pattern
Recognition, vol. 36, no. 10, pp. 2201-2211, 2003.

S. Pateux, “Spatial segmentation of color images according
to the MDL formalism,” in Proceedings of the International
Conference on Color in Graphics and Image Processing (CGIP
00), vol. 2, pp. 89-93, Saint Etienne, France, October 2000.

J. Shi and J. Malik, “Normalized cuts and image segmen-
tation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 888-905, 2000.

E. Sharon, A. Brandt, and R. Basri, “Fast multiscale image
segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR ’00), vol. 1,
pp- 70-77, Hilton Head Island, SC, USA, June 2000.

L. Vincent and P. Soille, “Watersheds in digital spaces: an
efficient algorithm based on immersion simulations,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 13, no. 6, pp. 583-598, 1991.

M. Couprie, L. Najman, and G. Bertrand, “Quasi-linear algo-
rithms for the topological watershed,” Journal of Mathematical
Imaging and Vision, vol. 22, no. 2-3, pp. 231-249, 2005.

P. Salembier and L. Garrido, “Binary partition tree as an effi-
cient representation for image processing, segmentation, and
information retrieval,” IEEE Transactions on Image Processing,
vol. 9, no. 4, pp. 561-576, 2000.

P. . Felzenszwalb and D. P. Huttenlocher, “Efficient graph-
based image segmentation,” International Journal of Computer
Vision, vol. 59, no. 2, pp. 167-181, 2004.

Y. Deng and B. Manjunath, “Unsupervised segmentation of
colour-texture regions in images and video,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 23, no. 8, pp.
800-810, 2001.

C. Fiorio and R. Nock, “Sorted region merging to maximize
test reliability,” in Proceedings of the International Conference
on Image Processing (ICIP ’00), vol. 1, pp. 808-811, Vancouver,
BC, Canada, September 2000.

H.-Y. Wang and K.-K. Ma, “Automatic video object segmenta-
tion via 3D structure tensor,” in Proceedings of the International
Conference on Image Processing (ICIP ’03), vol. 1, pp. 153-156,
Barcelona, Spain, September 2003.

D. DeMenthon, “Spatio-temporal segmentation of video
by hierarchical mean shift analysis,” in Proceedings of the
Statistical Methods in Video Processing Workshop, Copenhagen,
Denmark, June 2002.

L.-Y. Duan, M. Xu, Q. Tian, and C.-S. Xu, “Mean shift
based video segment representation and applications to replay
detection,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP °04), vol. 5,
pp- 709-712, Montreal, Quebec, Canada, May 2004.

E. Moscheni, S. Bhattacharjee, and M. Kunt, “Spatio-temporal
segmentation based on region merging,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 20, no. 9, pp.
897-915, 1998.

(19]

[24]

(32

(33]

D. Wang, “Unsupervised video segmentation based on water-
sheds and temporal tracking,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 8, no. 5, pp. 539-546,
1998.

I. Patras, E. A. Hendriks, and R. L. Lagendijk, “Video
segmentation by MAP labeling of watershed segments,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 23, no. 3, pp. 326-332, 2001.

C. McDiarmid, “Concentration,” in Probabilistic Methods for
Algorithmic Discrete Mathematics, pp. 195-248, Springer, New
York, NY, USA, 1998.

A. M. Tekalp, “Video segmentation,” in Handbook of Image and
Video Processing, Elsiever, Oxford, UK, 2005.

A. A. Alatan, L. Onural, M. Wollborn, R. Mech, E. Tuncel, and
T. Sikora, “Image sequence analysis for emerging interactive
multimedia services-the European COST 211 framework,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 8, no. 7, pp. 802-813, 1998.

A. Caplier, L. Bonnaud, and J. Chassery, “Robust fast
extraction of video objects combining frame differences and
adaptative reference image,” in Proceedings of the International
Conference on Image Processing, vol. 2, pp. 785-788, Thessa-
loniki, Greece, October 2001.

C. Fiorio and J. Gustedt, “Two linear time Union-Find
strategies for image processing,” Theoretical Computer Science,
vol. 154, no. 2, pp. 165-181, 1996.

G.J. Klinker, S. A. Shafer, and T. Kanade, “A physical approach
to color image understanding,” in Color, G. E. Healey, S. A.
Shafer, and L. B. Wolff, Eds., pp. 134-165, Jones And Bartlett,
Sudbury, Mass, USA, 1992.

L. Wolf, X. Huang, I. Martin, and D. Metaxas, “Patch-
based texture edges and segmentation,” in Proceedings of the
9th European Conference on Computer Vision (ECCV ’06),
vol. 3952 of Lecture Notes in Computer Science, pp. 481-493,
Graz, Austria, May 2006.

L. Brun and M. Mokhtari, “Two high speed color quantization
algorithms,” in Proceedings of Computer Graphics, and Image
Processing (CGIP °00), pp. 116-121, Cépadues, Saint Etienne,
France, October 2000.

A. Desolneux, L. Moisan, and J. Morel, “Meaningful align-
ments,” International Journal of Computer Vision, vol. 40, no. 1,
pp. 7-23, 2000.

A. Mitiche and P. Bouthemy, “Computation and analysis of
image motion: a synopsis of current problems and methods,”
International Journal of Computer Vision, vol. 19, no. 1, pp. 29—
55, 1996.

K. Wu, E. Otoo, and A. Shoshani, “Optimizing connected
component labeling algorithms,” in Medical Imaging 2005:
Image Processing, vol. 5747 of Proceedings of SPIE, pp. 1965—
1976, San Diego, Calif, USA, April 2005.

“pnx1500 databook,” http://www.tcshelp.com/public_files
html.

M. El Hassani, M. Duranton, and S. Jehan-Besson, “Dynamic
peaking,” 2007, submitted patent NXP.

Hindawi Publishing Corporation

VLSI Design

Volume 2008, Article ID 610420, 9 pages
doi:10.1155/2008/610420

Research Article

An FFT Core for DVB-T/DVB-H Receivers

A. Cortés, I. Vélez, I. Zalbide, A. Irizar, and J. F. Sevillano

Department of Electronic and Communication, CEIT and Tecnun, Univerisity of Navarra, 20018 Donostia-San Sebastian, Spain

Correspondence should be addressed to A. Cortés, acortes@ceit.es

Received 27 April 2007; Revised 15 November 2007; Accepted 23 January 2008

Recommended by Jean-Baptiste Begueret

This paper presents the design and implementation of a 2K/4K/8K multiple mode FFT core for DVB-T/DVB-H receivers. The
proposed core is based on a pipeline radix-2? SDF architecture. The necessary changes in the radix-2? SDF architecture to achieve
an efficient FFT implementation are detailed. Quantization effects and timing design parameters are analyzed for DVB-T/DVB-H.

Area and power results are provided for the proposed core.

Copyright © 2008 A. Cortés et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

DVB-H adapts the successful DVB-T standard for digital
terrestrial television to the specific requirements of mobile,
handheld, and battery-powered receivers [1-3]. Both stan-
dards rely on an orthogonal frequency division multiplexing
(OFDM) modulation scheme to achieve high-data rates in
multipath environments. OFDM uses an inverse fast Fourier
transform (IFFT) to modulate the signal and a fast Fourier
transform (FFT) to demodulate it. One of the main differ-
ences between both standards is the number of points of the
FFT: DVB-H that proposes an additional mode (4K) to the
two DVB-T modes (2K and 8K). This new mode is a tradeoff
between reception quality in movement and network size.

As DVB-H is an extension to DVB-T, it is possible to in-
troduce DVB-H services in the bandwidth of DVB-T. One
operator can offer two DVB-T services and one DVB-H ser-
vice to its subscribers. Therefore, digital terrestrial television
receivers should be able to receive both DVB-T and DVB-
H signals. In these receivers, the FFT processor must be able
to work in 2K/4K/8K multiple mode. Moreover, this mod-
ule must have a high throughput in order to achieve the
high-data rates required by both standards. Some 2K/4K/8K
pipelined FFT architectures have been proposed in the liter-
ature [4].

The algorithm and architecture for the FFT core should
be chosen trading off its processing speed, area, and power.
Monoprocessor architectures such as [5] have to be dis-
carded, as they are not able to fulfill the timing specifica-
tions. The throughput can be increased by using either par-

allel [6, 7] or pipeline architectures [8—14]. Pipeline architec-
tures present smaller latency and lower-power consumption
[8, 9], which makes them suitable for mobile devices such as
DVB-T/DVB-H receivers.

Basically, two types of pipeline architectures can be dis-
tinguished: single-path delay feedback (SDF) architectures
[10-12] and multipath delay commutator (MDC) architec-
tures [9]. SDF architectures use registers more efficiently,
since the outputs of the butterflies can be stored in shift regis-
ters. In MDC architectures, the input sequence is divided into
several parallel lines that feed the butterfly applying the ap-
propriate delays to the data. SDF architectures use less mem-
ory than MDC. On the other hand, MDC architectures ob-
tain a slightly higher throughput than SDF architectures. The
optimal choice depends on the application [9]. In the case of
DVB-T/DVB-H receivers, the SDF architecture can achieve
the required throughput and needs less area than the MDC
architecture.

In addition to the pipeline structure, the radix of the
algorithm also influences the complexity of the implemen-
tation. A radix-2 algorithm needs more products and gets
a lower throughput than a radix-4 algorithm. However, a
radix-4 algorithm can only process FFTs with a number of
points that is a power of 4, and the butterfly is more com-
plex.

In order to maintain the simplicity of the radix-2 butter-
fly, radix-22 (r22) algorithms have been proposed [11, 14].
The r2? algorithm is well-suited for DVB-T/DVB-H applica-
tions since it can work both with a number of points that is a
power of 4 and with a number of points that is a power of 2.

2 VLSI Design

! Stage 0 ! Stage 1 ! Stage 2 !

1 1 1 1
0@ o >0 o o0 © 0
14 b o Ol b ’m m D 16
2 @ 0 o Ot D ’0’ o) s o8
3¢ 0 Q D—> o\ O O O—> i~ © 24
4 0) AW / > 0%’0“ o0 o 4
5 o) e p— 0) o —O W » 20
S\ e i o i
7 @ 0 ‘Q‘Q‘c (0) o 7 0 0} =0 0, © 28
8 & .’ 0} ’0 ‘:‘Q@-»e‘a\ 0! O b—) d 2
9 a\W//////o o> ’- o‘m D 18

10 ¢ ‘020:0:0‘ O ‘0"\;-%.0’ XA O ¢ 10
11 @ m.w. 0 O—> u"”’ 0 o) Db O o 26
12 ﬂ\ .W‘w‘ o G ‘.‘u A SO 4 ® 6
13 0\"0‘0‘0‘0’0‘0‘0’0‘0) ¥ N ' ¢ 22
14 M‘O’MWW oS S o ‘-m@ ' ® 14
15 J)‘Q‘QOM'Q’M.Q”‘OW O & w7t 0 W o) b 30
16 “."‘"""““.”“‘0'0’0’0' -0 g O b0 ¢ © 1
17 i Ol M‘m b 17
18 @ ‘owo‘cwm o} D> 0 D O O g ® 9
i %
19 @/ O H—> . ‘." O O B—> O ® 25
20 o/‘ o b W’.‘H o9 g o5
21 ¢ o () O— o) o O m » 21
22 &) o .0‘ :‘ﬁm, O—p—O0 13
23 o ’Q‘Q’n O > 7 o O ® 29
24 ¢ O— " ‘Q’Q 0! (0 A 0! s ® (0) & b3
25 @ D—> ’0‘0’0 O—> 0} M © (0) o} ® 19
26 & oo B\ E .l»-.’ w & 11
27 @ ot o o—n o”.”» o Db 0 D 27
28 4 |o—— O— 2 & ’.’u b0 4 Q7
29 q o—o—1 d o) O —0 m 23
30 g ol o O M8 g St 5 w ®» 15
31 > o) > > O > 31
i BTL | BT2 | M i BTl | BT2 | M i BT1 i

FiGuRre 1: Flow graph of the r22 SDF 32-point FFT algorithm.

However, the implementation of the r22 FFT in [11] should
be modified to achieve a multiple mode operation.

This paper presents a new 2K/4K/8K FFT core for DVB-
T/DVB-H receivers. The r22-SDF pipeline architecture in
[11] is adapted to achieve a multiple mode 2K/4K/8K FFT.
The effect of the quantization errors of the FFT processor is
studied, and design parameters are analyzed according to the
DVB-T/DVB-H requirements.

This paper is organized as follows. Section 2 explains
the modifications done to the r2? SDF algorithm so that
it can operate in multiple mode. Section 3 describes the
pipeline r22-SDF architecture proposed for a DVB-T/DVB-
H receiver. Section 4 gives signal-to-noise-ratio (SNR), area,
timing, and power results of the proposed FFT core. Finally,
Section 5 summarizes the conclusions of this work.

2. r2?-SDF ALGORITHM

In this section, the r22-SDF algorithm presented in [11] will
be modified by us to enable it to work in a multiple mode
operation.

Figures 1 to 3 show the flow graph of the radix-2? algo-
rithm when the length of the FFT is 32, 16, and 8, respec-
tively. In these flow graphs, the index of the input and out-
put data is shown. The black circles represent butterflies, and
the arrows are the twiddle factor multiplications, where the
number in brackets next to each arrow is the index m of the
twiddle factor, WI(\fm) = e/2N of an FFT of length N.

Three different operations can be distinguished in each
stage: BT1, which is the butterfly of type 1 defined in [11];
BT2, which is the butterfly of type 2 defined in [11]; and
CM, which performs complex multiplications. We can ob-
serve that, for BT2, some input data of the butterflies are
multiplied by j. The multiplication by j can be implemented
by exchanging the real and imaginary parts.

The twiddle factors of the CM at the kth stage, with
k =0,1,...,ceil(log,N) — 2, are given by the vector Ay =
{ai}, i =1,2,...,N/2%, where a; = ¢ 72"PN_ The index p is
defined as

0, 0<i<m,
2.2k (i-m), m<i<2m, N
P= 2%k . (i — 2m), 2m <i<3m,

3.2%.(i-3m), 3m<i<d4m,
where m is equal to N/2>*%.

The r2? algorithms reduce considerably the number of
arithmetical operations performed by the FFT. The only re-
striction to process the r22-FFT algorithm is that the length
of the FFT is a power of 2. Thus, the last stage of the al-
gorithm is different according to the size of the FFT. If the
number of points of the FFT is a power of 4, the last stage
is composed of BT1 and BT?2, as it can be seen in Figure 2.
However, if the number of points of the FFT is only a power
of 2, the last stage will be formed by BT1, as can be observed
in Figures 1 and 3.

A. Cortés et al.

! Stage 0 ! Stage 1 !
I I I
0 Q o Q (O) © ¢ O © 0
1Q 0} Q O—p D M o 8
2\ e— - a3t
3a p '0’:’0‘:-@:' T D 7
LN /"-' P\ e G e £
5 & o S > H 1
6 *“"‘*H W‘» o
7 @ ‘Q:Q:‘:Q‘Q’Q o o O—>p & O—0p O D 14
8 ¢ Q’z‘:&:‘:&o Q 0! E?; o) o o) é
9 @O\ o H—>) D ” O
14 m\‘- R e e
IR e & e e I
12 @ R 0.0 & o o3
13 ¢ > >
14 o ol \W-M'Q-‘- 7
15 & O—t—7—0 Ol O—>——0 & 15
|] I
|] I

T
' BT1

BT2

O
<
o=)
=
lo~]
=
[3%)

FiGure 2: Flow graph of the 122 SDF 16-point FFT algorithm.

Ficure 3: Flow graph of the r2 SDF 8-point FFT algorithm.

2.1. Multiple mode operation

In this section, the 22(@=1=1/22(a=1)/22a=1 myltiple mode of
the r22-SDF algorithm will be derived where a represents the
number of stages of an FFT of Nya = 22%! points. The re-
sources needed to process the FFT of the largest number of
points, Niax, will be implemented.

An FFT of 2%¢=D=1 points can be easily obtained from a
224=1 points FFT. The first stage of the Npy,x points FFT does
not need to be processed in order to calculate the 22(¢~D-1
points FFT. Additionally, in the following stages of the Npax
points FFT, the twiddle factors are the same as the ones
needed for the 22¢~D=1 points FFT, as Wﬁ;:ix = W,(\;'iax /4~ This
multiple mode implementation can be deduced by analyz-
ing the flow graphs of a 32-points FFT and an 8-points FFT
in Figures 1 and 2, respectively, where we have considered
a=73.

Using the resources of an FFT of length Ny, a 221
points FFT can be obtained. In the latter FFT, a — 1 stages
are needed. The first a — 1 stages of the Ny, points FFT can
be reused to process the 22(¢~1 points FFT, if only the op-
erations in the even positions are carried out. Thus, half the
operations are done in each BT1, BT2, and CM. Moreover,
the twiddle factors of the CM in stage a — 1 of the 22(~1
points FFT are always one. Thus, the operations of the last
CM can be omitted, and the final stage of the 22*~)) FFT will
only contain a BT1 and a BT2. This multiple mode imple-

mentation can be easily concluded by inspection of Figures 1
and 2, taking into account that W = W .

3. PIPELINE r2? -SDF ARCHITECTURE IN
MULTIPLE MODE

The proposed FFT core receives the input data DATA_IN in
natural order, and it generates the output DATA_OUT in bit-
reversed order. This is not a problem as the reordering can
be performed by subsequent modules of the DVB-T/DVB-
H receiver (e.g., deinterleaver) with no additional cost. Input
data arrives at clock rate. All the data needed to compute each
FFT arrives as a block. In order to ease the integration of the
FFT core within a DVB-T/DVB-H receiver, a validation sig-
nal, DATA_IN_VALID, will be set high during the arrival of
valid data at the input of the FFT core. Similarly, when valid
output data are ready at the output of the FFT core, a valida-
tion signal DATA_OUT_VALID is set high.

The FFT processor employs fixed-point arithmetic. Input
and output data are represented using dbw bits. The twid-
dle factors have been quantized with tbw bits. The core scales
data appropriately during internal operations to avoid over-
flow.

In the following, the basic building blocks of the r22-SDF
architecture [11] are described and their implementation de-
tailed. Then, the required modifications to achieve a multi-
ple mode 2K/4K/8K FFT are explained. The section finishes
with a summary of the main features of the proposed multi-
ple mode FFT core.

3.1. Basic building blocks

The FFT processor is a distributed system where every mod-
ule generates the control signals for the next module in the
pipe, as shown in Figure 4. Shadowed lines represent data,
and white lines control signals. The FFT core has ceil (log,N)
stages, where N is the number of FFT points. A typical stage
of the architecture consists of three processing elements: B1,
B2, and CM; and three memory elements: ROM, FIFO1, and
FIFO2. B1 and B2 carry out the processing of the two types
of butterflies of the r2? algorithm (BT1 and BT2). FIFO1
and FIFO2 are used to achieve the required data shuffling
for proper operation of the butterflies. In stage k, the depth
of FIFO1 is N/25*!, and the depth of FIFO2 is N/2K2 M
computes the complex multiplications between the outputs
of B2 and the twiddle factors stored in the corresponding
ROM memory. The last stage of the FFT processor does not
need the complex twiddle factor multiplication.

As explained before, the r22-SDF architecture can work
with a number of points that is a power of 4 and with a num-
ber of points that is only a power of 2. When N is just a power
of 2, in the last stage, data are only processed by B1.

3.1.1. ModuleB1

Figure 5 shows the structure of B1. The DATA_IN input port
comes from the previous component in the pipe, normally
a CM module. The DATA_OUT output port is connected to
the next component in the pipe, usually a B2 module. The

DATA_OUT_VALID

4 VLSI Design
Stage 0 i i Stage ceil(log, N)-2 ! Stage ceil(log, N)—1
1 I 1
FIFO FIEO t ' _[FIFO EFIFO : FIFO FIFO
1 ! ! 1 2 ! 1 2
1 I 1
DATA_IN P :
AN g 2 R S R L DATA_OUT
— B! R B2 oM | !y B B2 Jom ——3 BI B2
DATA_IN_VALID :
I
1

I

il
Rom] |

FiGure 4: Typical pipeline r22-SDF architecture.

fifo_in fifo_out

BF1

data_in data_out

MUX_CTRL

=

Input counter|

data_in_valid

data_out_valid
| Output counter |:>

FiGURE 5: B1 module structure.

FIFO_IN and FIFO_OUT ports connect Bl with FIFO1. The
size of the two counters of Bl is 2(log,N — k), where k is the
stage. The implementation of BF1, the butterfly of type 1, is
detailed in Figure 6.

Initially, the multiplexers MUX are in position 0, and
FIFOL1 is empty. During the arrival of the first N/2K*! data,
FIFOL1 is filled. Then, the multiplexers change to position 1,
and the butterfly operations can be performed using the in-
put data at port DATA_IN and the data stored in FIFO1. One
of the butterfly outputs, X1, is output, whereas the other one,
X2, is stored in FIFO1. After other N/2%*! cycles, multiplexers
switch back to position 0. Data for the next computation is
stored in FIFO1, and the results X2 of the previous butterfly
operations are sent out.

The selection signal of the multiplexers, MUX_CTRL,
is generated by the input counter. This counter increments
its value when DATA_IN_VALID is high. When the input
counter arrives to half of its count, DATA_OUT_VALID is set
high, and the output counter is started. The output counter
will count until FIFO1 is emptied of valid output data. When
the output counter finishes its count, DATA_OUT_VALID is
set to zero.

3.1.2. Module B2

Figure 7 shows an internal diagram of component B2, which
is formed by a butterfly of type 2, BF2, and some control
logic. The DATA_IN input port of B2 comes from the pre-
vious component in the pipe, a Bl module. The DATA_OUT
output port is connected to the next component in the pipe,

— >
fifo_in fifo_out
data_in data_out

FIGURE 6: Arithmetic operations in the butterfly of type 1 (BF1).

fifo_in fifo_out

BF2

data_in data_out

MUX_CTRL _

MINUS_J_.CTRL

data_in_valid
:4 Input counter

data_out_valid
| Output counter |:$

F1GURE 7: B2 module structure.

usually a CM module. The FIFO_IN and FIFO_OUT ports
are connected to FIFO2.

Figure 8 details the implementation of BF2. Its structure
is similar to BF1. FIFO2 is filled with the first N/2**? data.
Then, the multiplexers MUX change to position 1, and the
input data at port DATA_IN and the data stored in FIFO2 are
used to perform the required butterfly operations. The but-
terfly output X1 is sent out, and X2 is stored in FIFO2. After
N/2k2 cycles, the multiplexers MUX switch back to position

A. Cortés et al. 5
data_in data_out
— e
fifo_in fifo_out
data_in_valid | FLIP data_out_vali(Ai)
11 " FLOP Y
Addr
counter
data_in data_out W_addj w_data_in
FiGure 9: CM module structure.
FIGURE 8: Arithmetic operations in the butterfly of type 2 (BF2).
TaBLE 1: Memory requirements.
0. Data for the next computation is stored in FIFO2, and the FIFO ROM
results X2 of the previous butterfly operations are output. cellogs M) 2
The multiplexers MUX] are used to handle efficiently 2dbw - (Nyas — 1) 2dbw - S Ninax
the multiplications by —j needed in a butterfly of type o 2k

2. Whenever a multiplication by —j must be carried out,
the multiplexers MUX] are set to position 1. The signal
MINUS_J_CTRL controls the behavior of the multiplexers
MUX]J.

The input counter generates the signals that control the
multiplexers MUX and MUX J. This counter increments its
value when DATA IN_VALID is high. Its size is 2(log, N — k).
The second most significant bit of this counter’s value is used
to generate MUX_CTRL. When the input counter is making
the last quarter of its count, MINUS_]_CTRL is set to high.

When the input counter arrives to a quarter of its count,
DATA_OUT_VALID is set to high, and the output counter
starts to count. The output counter will count until FIFO2
is emptied of valid output data. When the output counter
finishes its count, DATA_OUT_VALID is set to zero. The size
of the output counter is 2(log,N — k) — 1.

3.1.3. Module CM

The internal structure of CM is shown in Figure 9. This
component carries out the twiddle factor multiplications.
A one clock cycle complex multiplier has been imple-
mented to perform the complex multiplications between
the input data and the twiddle factors. The twiddle fac-
tors are read from a synchronous ROM. A counter of size
2(log,N — k), addr counter, is used to generate the ROM ad-
dresses appropriately. A flip-flop is used to synchronize the
DATA_OUT_VALID signal with DATA_OUT.

3.2. Multiple mode operation

In order to accommodate the 2K/4K/8K multiple mode,
some extra elements are needed in the r22 SDF architecture.
The proposed architecture is depicted in Figure 10. As can be
seen, the resources needed to process the FFT of the largest
number of points, Nyax = 8192, have been implemented.

Thus, there are a = 7 stages, and the twiddle factors have
been calculated for Nyay.

When an 8K point FFT is to be calculated, the multiplex-
ers shown in Figure 10 are configured so that the core works
as described above. Multiplexers M4K and M2K are in posi-
tion 0. When multiplexers are in position 0, they select the
signal connected to the upper port.

In order to calculate a 2K point FFT, the first stage of the
8K FFT, stage 0 in Figure 10, does not have to be processed.
Thus, multiplexers M2K are set to position 1 to bypass stage
0. Multiplexers M4K remain in position 0.

For the 4K points FFT, six complete stages (with both
types of butterflies) are needed. In order to reuse the exist-
ing hardware, B1 of stage k uses FIFO2 of stage k, and B2 of
stage k uses FIFO1 of stage k + 1. Additionally, CM of stages 5
and 6 is bypassed. The former is achieved by setting M4K to
position 1 and M2K to position 0. In each stage, CM needs
half the twiddle factors of the 8K points FFT: those with an
even address in the ROM memory. A control signal config-
ures CM for proper operation according to the number of
points of the FFT to be calculated.

3.3. Features of the proposed FFT core

Table 1 summarizes the memory requirements of the core.
The table shows the total number of memory bits used in the
FIFOs and in the twiddle factor ROMs. In order to achieve
more compact memories, the real and imaginary parts of
each complex number are stored in the higher and lower part
of the same memory position. Table 2 is a summary of the
arithmetic operators needed in the core. It can be noted that
the memory and arithmetic modules needed in the proposed
multiple mode architecture are the same as those needed in a
single mode 8K FFT.

VLSI Design

Stage 6

FIFO
1

MK/
NG
NM4K/
NG
:M4K/
N
M4K

DATA_OUT
i —l i e e i — i [
DATA_IN_VALID i Y v i I v v . | DATA_OUT_VALID
] ; ;
roM i ROM |
ﬁ N
=]
FIGURE 10: Architecture of the proposed 2K/4K/8K FFT.
TaBLE 2: Arithmetic operators.
Input bitwidth Output bitwidth Quantity per module Quantity in the core
Adders (B1) dbw dbw 2 2 - ceil (log, Nimax)
Subtractors (B1) dbw dbw 2 2 - ceil (log, Niax)
Adders (B2) dbw dbw 2 2 - floor (log, Ninax)
Subtractors (B2) dbw dbw 2 2 - floor (log, Ninax)
Multipliers (CM) dbw and tbw dbw+tbw 4 4 - ceil (log,Npax — 1)
Adders (CM) dbw+tbw dbw 1 ceil (log, Nmax) — 1
Subtractors (CM) dbw+tbw dbw 1 ceil (log,Nmax) — 1
SNR of the FFT

Once the clock frequency fx has been selected, the pro-
cessing time fproc of the FFT module can be determined using

1

H . (% +3 - ceil(log,N) — 2). (2)

tproc =

4. RESULTS

4.1. Analysis of the signal-to-noise ratio of the FFT

For an appropriate operation of the receiver, the degradation
introduced in the signal due to the fixed-point computation
of the FFT must be controlled. Monte Carlo simulations have
been carried out comparing a fixed-point model of the pro-
posed architecture with a floating-point FFT. The signal-to-
noise-ratio (SNR) has been used to measure the degradation.

Figure 11 shows the SNR for the 2K/4K/8K FFT when the
data are quantized, and the twiddle factors are left at float-
ing point. It can be observed that both the data bitwidth and
the number of points of the FFT influence the SNR. As N
increases, the number of arithmetical operations grows and,
thus, the SNR decreases. The SNR increases in 6 dB per bit of
dbw.

The effect of the quantization of the twiddle factors
in the SNR has been studied for 2K (Figure 12(a)), 4K
(Figure 12(b)), and 8K (Figure 12(c)) FFTs. These figures
show the SNR for different values of dbw and tbw. It can be
seen that for a given value of dbw and of N, increasing tbw
above a certain value does not improve the performance.

70

SNR (dB)

10 11 12 13 14 15 16 17 18

Bitwidth of the data
—— N = 2048
—&— N = 4096
—— N =8192

FiGure 11: SNR for different data bitwidths (dbw) and number of
points of the FFT (N). The twiddle factors are not quantized.

Figures 11 and 12 can help the designer in the selection
of dbw and tbw. In a multiple mode FFT processor, dbw and
tbw must be selected for the maximum number of points of
the FFT (8K in a DVB-T/DVB-H receiver). A SNR of at least

A. Cortés et al.

TasLE 3: DVB-T/DVB-H timing specifications and processing time of the FFT core.

6 MHz (f, = 48/7 MHZ)

7MHz (f, = 8MHZ) 8 MHz (f, = 64/7 MHZ)

2K 4K 8K 2K 4K 8K 2K 4K 8K
forpM-sympoL (4s) 308 616 1232 264 528 1056 231 462 924
toroc ({S) 151.6 301 600.1 148.6 294.8 587.8 113.7 225.7 450
50 50 50
45 45 45 e
40 : 40 40 /—"* N
359 - 354 : 35 ek
= o ~ —) ’ﬁ o
< 30 : : < 30 : < 30
= [< = [o —
g a5t g o5l E oosfo
%) 7 (%)
20 20 ‘ ‘ 20
15 15 —— 8 15
10 10 o 10
5 5 5
§ 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14 15 16 § 9 10 11 12 13 14 15 16
Bitwidth of the twiddle factors Bitwidth of the twiddle factors Bitwidth of the twiddle factors
—e— dbw = 11bits —=— dbw = 11bits —&— dbw = 11 bits
—— dbw = 12bits —— dbw = 12bits —v— dbw = 12bits
—— dbw = 13 bits —— dbw = 13 bits —— dbw = 13bits
—o— dbw = 14bits —— dbw = 14 bits —— dbw = 14bits
—— dbw = 15Dits —+— dbw = 15bits —*— dbw = 15bits
—— dbw = 16Dbits —— dbw = 16 bits —— dbw = 16Dbits

(a) SNR of the 2K FFT

FiGURrE 12: SNR for different values of data bitwidth (dbw) and twiddle factor bitwidth (tbw) for (a) N

40 dB is sufficient for terrestrial TV broadcasting [15]. In or-
der to guarantee a SNR of 40 dB for the 8K FFT, dbw = 16
and tbw = 11 are needed.

4.2. Analysis of the timing of the FFT for DVB-T/DVB-H

For low-power applications, such as a DVB-T/DVB-H re-
ceiver, a slow-clock frequency is preferable: for example,
equal to the sample rate of the FFT. For DVB-T/DVB-H,
the minimum sample rate at the FFT (f;) can be 48/7 MHz
for a 6 MHz channel, 8 MHz for a 7 MHz channel, and
64/7 MHz for an 8 MHz channel [2]. However, the FFT pro-
cessor shall be able to compute the FFT within the duration
of an OFDM symbol plus the duration of the guard interval
(torDM-sYMBOL)-

Table 3 presents the maximum allowed time to compute
the FFT in DVB-T/DVB-H and the processing time of the
proposed FFT core. Results are given for the different band-
width channels (6 MHz, 7 MHz, and 8 MHz) and for the
three lengths of the FFT (2K, 4K, and 8K). The value of
torDM-SYMBOL requirement given in the table considers the
worse case scenario: a guard interval with duration of 1/32
of the OFDM symbol period. The processing time of the FFT
core, tproc, has been calculated for a clock frequency equal to

(b) SNR of the 4K FFT

(c) SNR of the 8K FFT

2K, (b) N = 4K, and (c) N = 8K.

the corresponding sampling frequency f;. It can be observed
that the proposed FFT core is able to meet the timing require-
ments in all cases.

4.3. Area and timing comparison

Table 4 compares the proposed core with reported FFTs that
could be used within DVB-T/DVB-H applications. The FFTs
presented in [6, 10] have been designed for DVB-T, and they
do not implement the 4K mode. The work in [7] only pro-
vides results for 8K.

In [4], a 2K/4K/8K FFT architecture is proposed. The
twiddle factor multiplication is carried out using a CORDIC,
and no ROM is needed for the twiddle factors. The CORDIC
carries out 17 iterations to guarantee good performance. For
comparison, we will relate the number of iterations to the
precision of the twiddle factors. Following [16], we can es-
timate the precision in the rotated angle as 8 ~ 2~ Ni=1),
where N; represents the number of iterations. A quantization
error in the twiddle factors can be seen as an error in rotating
an angle. It can be shown that max (8g) ~ 270"/(1 — 271%),
Thus, we can perform the following approximation:

tbw ~log, (1 +2~N=D)2-WmDy = N; — 1. (3)

8 VLSI Design
TaBLE 4: Comparison with other FFTs in the literature.

dbw thw fax (MHz) Area (mm?) toroc (US) AT (ps -mm?) N
(4] 16 16 30 66 273 18018 2/4/8K
[6] 8 8 64 28.39 897 25465 2/8K
[7] 11 11 20 18.29 717.35 13120.33 8K
[10] 8 8 16 33.75 — — 2/8K
Ours 16 11 9.143 18.7 450 8415 2/4/8K

(*)This value is an approximation.

TaBLE 5: Hardware complexity of FFT cores for DVB-T/H.

Architecture Radix Multipliers Adds/Subs
Parallel [6] 2 64 96
Pipeline-SDF 2 48 76
(Ours) 2? 24 64

The area and timing results shown in Table 4 for the pro-
posed multiple mode FFT core are given for the selected dbw
and tbw. They have been obtained using the 0.35 ym XFAB
4-ML technology. The area value given for the proposed FFT
processor is an estimation of the core area after layout, mak-
ing the assumption that the layout area is twice the cell area.
For a fairer comparison, the area of [6, 7] has been normal-
ized to 0.35 ym using the same approach as [7]. In [4], the
number of equivalent gates is provided. The value given in
Table 4 has been estimated for a 0.35 ym technology using
that number.

Table 4 shows the parameter AT as well. AT is the product
between the area and the processing time #proc. This parame-
ter can be used to assess the efficiency of different cores. The
table shows that the proposed core is the most efficient.

In addition, Table 5 presents a comparison of the com-
putational complexity of [6], a pipeline-SDF r2 FFT design,
and our proposal. As can be observed, our design requires
less multipliers and adders. Thus, our FFT core presents a
more efficient implementation.

4.4. Area and timing results for FPGA implementation

The FFT core has been prototyped in an FPGA virtex
2V6000FF1517. Table 6 presents a comparison of our core
with other FFT cores for DVB-T in the literature. Only those
proposals that give data about an FPGA implementation
have been considered in the comparison. The table shows
the working clock frequency, the total number of occupied
slices, the necessary block RAMs, and the number of multi-
pliers. One can observe that our FFT core presents the most
efficient implementation for an FPGA.

4.5. Area, timing, and power results for ASIC
implementation

The layout of the FFT core, with dbw = 16 and tbw = 11, has
been carried out for the 0.35 ym AMS 3-ML technology. The
FIFOs of stages 0 to 3 have been implemented using single

F1Gure 13: Layout of the 2K/4K/8K complex-point FFT core fabri-
cated in a 0.35 ym technology, 4-ML CMOS process. The core size
is 18.7 mm?.

port RAMs and some additional control logic, whereas the
FIFOS of stages 4 to 6 have been implemented using standard
cells. A detailed summary of the features of the proposed
FFT core is presented in Table 7. The power consumption of
the proposed FFT processor has been calculated at synthesis
level. The switching activity has been extracted from simula-
tions operating in the 8K mode. A chip photo of the layout
of the FFT core for 0.35 ym AMS 3-ML technology is shown
in Figure 13.

To sum up, our core simplifies the twiddle factors and,
thus, reduces the number of multiplications. Therefore, our
FFT proposal for a DVB-T/DVB-H system results in a more
efficient ASIC and FPGA implementation than the proposals
found in the literature.

5. CONCLUSION

An FFT core for DVB-T/DVB-H receivers has been designed
and implemented. The core implements a pipeline r2? SDF
architecture. This architecture can be adapted to achieve an
efficient 2K/4K/8K multiple mode FFT processor. The extra
hardware needed for multiple mode operation is minimal. In
order to guarantee a SNR of 40 dB in all modes of operation,
16 bits and 11 bits are needed for the data bitwidth and the
twiddle factor bitwidth, respectively. The architecture of the
proposed FFT processor makes it possible to achieve the FFT
processing time requirements of DVB-T/DVB-H working at
the lowest-possible clock frequency. The proposed core is an

A. Cortés et al. 9
TABLE 6: Area and timing results in an FPGA virtex 2V6000FF1517.
dbw thw fax (MHz) Occupied slices BRAMs Multipliers
(6] 16 11 64 17305 (51%) 96 (66%) 16 (11%)
Ours 16 11 9.143 6066 (17%) 19 (13%) 24 (16%)
TasLE 7: Chip summary of our FFT processor.
Items Specification
FFT size 2K/4K/8K
Clock frequency 64/7 MHz
Data bitwidth (dbw) 16 bits
Twiddle factor bitwidth (tbw) 11 bits
Signal-to-quantization-noise ratio (SQNR) for Ny, = 8K 40.6dB
Process technology 0.35 um XFAB 4-ML
Supply voltage 3.3V
Execution time (clock cycles) for N = 2K 1040 clock cycles
Execution time (clock cycles) for N = 4K 2064 clock cycles
Execution time (clock cycles) for Ny = 8K 4115 clock cycles
Core power consumption for Ny, = 8K 114.65 mW
Core size 18.7 mm?

efficient implementation well suited for DVB-T/DVB-H re-
ceivers.

ACKNOWLEDGMENTS

This research is supported in part by the Ministerio de In-
dustria, Turismo y Comercio Grant no. FIT330100-2006-43
and by the Basque Government. A. Cortés holds the Torres
Quevedo Grant no. PTQ05-02-02455, which was awarded by
the Spanish Ministry of Education and Science, by the Euro-
pean Regional Development Fund and by the European So-
cial Fund.

REFERENCES

[1] G. Faria, J. A. Henriksson, E. Stare, and P. Talmola, “DVB-H:
digital broadcast services to handheld devices,” Proceedings of
the IEEE, vol. 94, no. 1, pp. 194-209, 2006.

[2] ETSI EN 300744, “Digital video broadcasting (DVB); framing
structure, channel coding and modulation for digital terres-
trial television,” 2004.

[3] U. H. Reimers, “DVB-The family of international standards

for digital video broadcasting,” Proceedings of the IEEE, vol. 94,

no. 1, pp. 173-182, 2006.

S. Y. Park, N. I. Cho, S. U. Lee, K. Kim, and J. Oh, “Design of

2K/4K/8K-point FFT processor based on cordic algorithm in

OFDM receiver,” in Proceedings of the IEEE Pacific Rim Con-

ference on Communications, Computers and Signal Processing

(PACRIM °01), vol. 2, pp. 457—460, Victoria, BC, Canada, Au-

gust 2001.

J. E Sevillano, A. Mtz de Gerefiu, M. Leyh, P. Nagel, and A.

Irizar, “An FFT parametrizable core,” in Proceedings of the 15th

Conference on Design of Circuits and Integrated Systems (DCIS

’00), pp- 230-234, Montpellier, France, November 2000.

[6] A. Cortés, I. Vélez, J. E. Sevillano, and A. Irizar, “An approach
to simplify the design of IFFT/FFT cores for OFDM systems,”

(4

o

IEEE Transactions on Consumer Electronics, vol. 52, no. 1, pp.
26-32, 2006.

[7] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A dynamic scaling FFT
processor for DVB-T applications,” IEEE Journal of Solid-State
Circuits, vol. 39, no. 11, pp. 2005-2013, 2004.

[8] T.Sansaloni, A. Pérez-Pascual, V. Torres, and J. Valls, “Efficient
pipeline FFT processors for WLAN MIMO-OFDM systems,”
Electronics Letters, vol. 41, no. 19, pp. 1043-1044, 2005.

[9] Y. Jung, H. Yoon, and J. Kim, “New efficient FFT algorithm

and pipeline implementation results for OFDM/DMT appli-

cations,” IEEE Transactions on Consumer Electronics, vol. 49,

no. 1, pp. 14-20, 2003.

C.-C. Wang, J.-M. Huang, and H.-C. Cheng, “A 2K/8K mode

small-area FFT processor for OFDM demodulation of DVB-T

receivers,” IEEE Transactions on Consumer Electronics, vol. 51,

no. 1, pp. 28-32, 2005.

S. He and M. Torkelson, “A new approach to pipeline FFT pro-

cessors,” in Proceedings of the 10th International Parallel Pro-

cessing Symposium (IPPS °96), pp. 766—770, Honolulu, Hawaii,

USA, April 1996.

J.-Y. Oh and M.-S. Lim, “New radix-2 to the 4th power

pipeline FFT processor,” IEICE Transactions on Electronics,

vol. E88-C, no. 8, pp. 1740-1746, 2005.

T.J. Ding, J. V. McCanny, and Y. Hu, “Rapid design of applica-

tion specific FFT cores,” IEEE Transactions on Signal Processing,

vol. 47, no. 5, pp. 1371-1381, 1999.

C.-P. Hung, S.-G. Chen, and K.-L. Chen, “Design of an ef-

ficient variable-length FFT processor,” in Proceedings of IEEE

International Symposium on Circuits and Systems (ISCAS 04),

vol. 2, pp. 833-836, Vancouver, BC, Canada, May 2004.

E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, “A fast single-

chip implementation of 8192 complex point FFT,” IEEE Jour-

nal of Solid-State Circuits, vol. 30, no. 3, pp. 300-305, 1995.

Y. H. Hu, “The quantization effects of the CORDIC algo-

rithm,” IEEE Transactions on Signal Processing, vol. 40, no. 4,

pp. 834-844, 1992.

[11]

Hindawi Publishing Corporation

VLSI Design

Volume 2008, Article ID 218565, 8 pages
doi:10.1155/2008/218565

Research Article

Delay Efficient 32-Bit Carry-Skip Adder

Yu Shen Lin and Damu Radhakrishnan

Department of Electrical and Computer Engineering, State University of New York, 1 Hawk Dr, New Paltz, NY 12561-2443, USA

Correspondence should be addressed to Damu Radhakrishnan, damu@engr.newpaltz.edu

Received 27 April 2007; Accepted 9 December 2007

Recommended by Jean-Baptiste Begueret

The design of a 32-bit carry-skip adder to achieve minimum delay is presented in this paper. A fast carry look-ahead logic using
group generate and group propagate functions is used to speed up the performance of multiple stages of ripple carry adders. The
group generate and group propagate functions are generated in parallel with the carry generation for each block. The optimum
block sizes are decided by considering the critical path into account. The new architecture delivers the sum and carry outputs in
lesser unit delays than existing carry-skip adders. The adder is implemented in 0.25 ym CMOS technology at 3.3 V. The critical
delay for the proposed adder is 3.4 nanoseconds. The simulation results show that the proposed adder is 18% faster than the

current fastest carry-skip adder.

Copyright © 2008 Y. S. Lin and D. Radhakrishnan. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

1. INTRODUCTION

The ever-increasing demand for mobile electronic devices
requires the use of power-efficient VLSI circuits. Computa-
tions in these devices need to be performed using low-power,
area-efficient circuits operating at greater speed. Addition
is the most basic arithmetic operation; and adder is the
most fundamental arithmetic component of the processor.
Depending on the area, delay and power consumption
requirements, several adder implementations, such as ripple
carry, carry-skip, carry look-ahead, and carry select, are
available in the literature [1, 2]. The ripple-carry adder
(RCA) is the simplest adder, but it has the longest delay
because every sum output needs to wait for the carry-in from
the previous full-adder cell. It uses O(n) area and a delay
of O(n) for an n-bit adder. The carry look-ahead adder has
O(logn) delay and uses O(nlogn) area. On the other hand,
the carry-skip adder and carry-select adders have O(\/n)
delay and use O(n) area [3].

In this paper, we present the design of a low-power
adder with less delay while using minimum hardware. The
standard carry generate-propagate logic is used to reduce the
critical delay of the adder while blocks of RCAs are used
for lesser power consumption. In our design, the generate-
propagate logic balances the delay and the number of inputs

to the skip logic limits the critical path delay. By applying
our design procedure, we speed up the adder by 18% when
compared to the current fastest 32-bit adder [4]. In Section 2,
we will discuss the previous work done in the area of high-
performance adders. In Section 3, we present the design
of our adder. Section 4 presents the design of a few basic
CMOS cells used in the adder. In Section 5, we present the
simulation results for our adder and compare it to other fast
adders.

2. THEORETICAL BACKGROUND AND
PREVIOUS WORK

The design of a carry-skip adder is based on the classical

definition of generate and propagate signals as follows [1, 2]:
pi=X;®Y,
(1)
&=Xi"Y,

where p; is the propagate signal and g; is the generate signal,
and X; and Y; are the input operands to the ith adder cell.
The carry out from the ith adder cell is expressed as

Ci1 = gi + piGi, (2)

where C; is the carry input to the ith cell.

VLSI Design

Two signals, group generate and group propagate, are
also defined in [1, 2] and are given by

Gji =g+ pjgi-1+ pjpj-18j—2
t--tpipi-1pj-2- " Pi+18i (3)
Pj.i = pjpj-1pj-2 - Pi>

where Gj; and P}, are group generate and group propagate
signals from ith cell to jth cell, respectively. Then, the
expression for carry out from the whole group is given by

Cjn = Gji + PjiCi. (4)

Different adder implementations have been developed to
optimize various design parameters. Most adder implemen-
tations tend to trade off performance and area. One of the
earliest adder implementations of this kind was a regular
parallel adder layout also known as the Brent-Kung adder
’82 [5]. It is a variation of the basic carry look-ahead adder
. They emphasized the need for regularity in VLSI circuits
to reduce design and implementation costs. They use two
types of processor cells: white processor and black processor.
The black processor performs the associative concatenation
defined in [5] and the white processor simply transmits the
data. The adder delay was calculated in terms of the number
of exclusive-or (XOR) operations performed while treating
each XOR delay as one unit time. For an n-bit adder, the
Brent-Kung adder has a delay of O(log) and uses O(nlogn)
area.

Wei-Thompson’85 [6] proposed an area-time optimal
adder design using three types of adder cells: black cells,
white cells, and driver cells. The black and white cells are
quite similar to the ones used in Brent-Kung adder. They
divided the n-bit adder into ascending and descending halves
so as to limit the number of bits in the final stage. The
concentration of the maximum number of bits was in the
middle of the adder and was defined as the height of the
adder. The algorithm ends up in an unbalanced binary tree
with a delay of O(logn) consuming an area O(nlogn).

The ELM-adder design presented in [7] computes the
sum bits in parallel; thereby reducing the number of
interconnects. It implements an n-bit adder as a tree of
processors to directly compute the sums in O(logn) time.
The area used is O(nlogn). The adder design was expressed
in terms of standard cells, which do not compute carry for
each stage. Instead, partial sums were computed for each
stage.

Kantabutra’93 [8] presents the design of a one-levelcarry-
skip adder using an approach that is very similar to that of
Wei-Thompson. In contrary to Wei-Thompson’s approach,
this design ends up in a symmetrical binary tree of adders.
The fan-in to the carry-skip logic increases linearly towards
the middle of the adder. A two-level carry-skip adder is
presented in [9], where the whole adder stage is divided into
a number of sections, each consisting of a number of RCA
blocks of linearly increasing length. These adders reduce the
delay at the cost of an increase in area and less regular layout.

Nagendra’96 [3] did a survey of various adder designs
and concluded that the ELM adder was superior in terms

Y3128 X312 Yaz10 ?\lfzmo 19:4)f;zt Ia:o T:O
Cs Cas Cio Cy Co
(CS{I CSl?_S CS§ CS{I P
4-bit 18-bit 6-bit 4-bit
S31:28 $27:10 S9:4 S3:0

FiGURE 1: The 32-bit adder divided into 4 blocks [4].

of area, power, delay, and power-delay product. RCA was
concluded to have utilized the least power, but has the highest
delay due to its carry chain. A variable-width carry-skip
adder was shown to be superior to constant-width carry-skip
adder, the advantage being greater at higher precisions.

A fully static carry-skip adder designed by Chirca’04 [4]
achieved lower-power dissipation and higher performance.
To reduce delay and power consumption, the adder is divided
into variable-sized blocks that balance the inputs to the carry
chain. The main principle behind this design was to utilize
the lower blocks and make them work in parallel with higher
blocks. This paper is a deviation from the tree approach
presented in the ELM adder. A 32-bit adder implementation
with a delay of 7 logic levels using carry-skip adders and
ripple-carry adders was presented in [4]. This is shown
in Figure 1. The logic-level delay defined in the paper is
equivalent to the delay of a complex CMOS gate. Efficient
and-or-invert (AOI) and or-and-invert (OAI) CMOS gates
were used to reduce delay and power.

The 32-bit adder is divided into 4 adder blocks as shown
in Figure 1. Carry-select adders were used in the final CS4
block, which significantly increases the hardware. The paper
claims that the output will be ready with a delay of 7 logic
levels, with the assumption that the critical delay path is the
carry propagation path of Cs, bit. But a closer examination of
the previous block CS18 reveals that the 27th bit of the sum
output will be available only after a delay of 9 logic levels.

3. NEW DESIGN FOR THE 32-BIT CARRY-SKIP ADDER

The 32-bit carry-skip adder design presented in this paper
uses a combination of RCAs together with carry-skip logic
(SKIP), carry-generate logic (CG), and group generate-
propagate logic (PG). The complete adder is divided into a
number of variable-width blocks. Both the carry generation
and skip logic use AOI and OAI circuits. The width of each
block is limited by the target delay T.

Each block is further divided into subblocks. A subblock
may contain additional levels of subblocks in a recursive
manner. The lowest-level subblock is formed by a number
of variable width RCAs. The adder structure is described as
follows:

Block — (Block) * (Block) | {(subblock) | (RCA),

(subblock) — (subblock) * (subblock) | (RCA). (%)

The 32-bit adder is divided into four blocks. A block
diagram of the first three blocks (Ao, A;, and A,) is shown in
Figure 2. The first block Ay (LSB) is a full adder by itself.

Y. S. Lin and D. Radhakrishnan

Ciq

(3)

FiGure 2: Block schematics for first three blocks of 32-bit adder.

The carry from the first block C1 is fed into the second
block A; and is also fed into the skip logic. The generate
and propagate functions (p,g) are generated separately for
each full adder in one unit time, where one unit time
is defined as the delay of a complex CMOS gate with
at most three transistors connected in series from the
output node to any supply rail. In Figure 2, the numbers
shown in parenthesis represent the number of unit delays
of the signal arrival times at the appropriate signal leads.
Since the delay of a complex CMOS gate is quadratic
on its stack height, in our design, the stack height is
limited to 3. This implies that the maximum number
of transistors (NMOS or PMOS) in any series connected
path is 3. This also restricts the maximum number of
inputs to the carry-skip logic to 7. On the other hand,
when the generate-propagate outputs are used for group
generation and group propagation (3) outputs, a stack
height of 3 in the CMOS implementation will allow a 4-bit
RCA.

The carry-generation delay from the skip logic is min-
imized by alternately complementing the carry outputs.

Hence, the carry signals generated are C;,Cy, Ci4, and so
forth. For the very first 1-bit block (Ay), the carry-generation
logic is more important than the sum-generation logic since
the overall delay of the adder is dependent on the carry from
this block. Hence, this block is designed by minimizing the
carry out delay as much as possible. The simplest expression
of carry out from the LSB full adder is given by

a = XoYo + XoCo + Yo Co, (6)

where X, and Y are the operand bits and Cy is the input
carry. An AOI gate implements this.

The block A, in Figure2 is implemented as a k-bit
RCA. For any k-bit RCA, the total number of propagate
and generate (p,g) outputs would be 2 k. These 2 k outputs
together with the carry from the previous block are fed into
carry-skip logic to generate the new carry signal. The fan-
in restriction of 7 to the carry-skip logic therefore limits the
number of bits in the RCA to 3. The carry out C4 from skip
logic for block A, is given by

Cy =g+ psg+ p3pagi + p3p2piCi. (7)

Since g’s and p’s can be best implemented in complementary
form, we can rewrite Cy as

C4=§3(§3+§2)(?3+§2+§1)(§3+fz+f1+61)- (8)

By inspection, Cy; can be implemented by an or-and-invert
(OAI) gate and is available in 2 time units. The final Sum
output S; from this 3-bit RCA will be available in 4 time
units. The sum outputs for this RCA are generated either as

Ss=pieCiors = ;i ® C; depending on the carry signal
value (C; or C;). The carry out C, and Cs are implemented

asC, = g1 - (p1 +Cy) and G5 = & + p2C,, respectively.

Now consider block A, in Figure 2. The delay of carry
signal arriving at the input of the skip logic is 2 time units.
This implies that the group generate-propagate (P, G) logic
outputs feeding the skip logic must also be available in 2 time
units. Hence, the inputs to the (P, G) logic must be available
in 1 time unit. This implies that the inputs to the (P, G) logic
must be the propagate and generate signals of the full adders.
Block A, is divided into three subblocks A, A, and A,
(in this case, each subblock is an RCA). The maximum width
of each RCA is limited to 4 bits due to the fan-in restrictions
imposed on the (P, G) block. The width of each RCA is also
limited by the target delay T of the 32-bit adder. The width
W of the first RCA is given as

W=T-D, (9)

where D is the arrival delay of the carry output from the
previous block. The width of all remaining higher order
RCAs in the same block will be 1 bit less because of the
delayed arrival times of their carry input by an additional
time unit. The carry inputs Cg and Cj; to RCAs A, and A,
are generated using AOI logic as follows:

Cs = Gy + PyuCy, (10)

C11 = Gios + P1osGra + Pio:sP74Ca. (11)

For a target delay of 6 time units, the width of the first
RCA in A;(A,p) is 4 bits and the widths of the remaining

4 VLSI Design
Yizin Xisn Yio:s Xi0:8 Y7.4 X7:4
AN RN N (RN VR
_ _ Ys. X
_ 11 (3) _ Cs(3) . o o
3-bit adder 3-bit adder 4-bit adder [3 3
P31, Gizai| (2) lSIS:II P10, Gros| (2) lslozs P7.4,G7.4 | (2) [S74 3-bit adder |<—
(6) (6) (6)
2 2 2
AOI
Nl D383[P2>&2|P1>8)|
AOI [<—1
N Yo Xo
2 2 2 l l
Cuq Cyq C Co
S TEEEE— AOI OAI FA [<—
(3) (2) (1)
lso(l)
F1GURE 3: Detailed view of the first three blocks of 32-bit adder.
I' ___ 1
| Sub-block 0 i
1 1
! 1
Sub-block 2| [Sub-block 1|1 | 4505 [E2@] ases 9@ ay0 [E7H] Ay |3
Az Az i !
1
1 pg (1) :
B 3 3 [C] s |
1 1
o 7 e B[G |
1
1
! 2 J(z 2 2 i
1 1
s I | [i
- ¥
P,G P,G P,G
+2 2 +2
11l B3 _
C [skip | Cis
(4) L | (3)

FIGURE 4: Block-3 of 32-bit adder with an expanded view of sub-block 0.

RCAs (A, and A,) are each 3 bits. The number of RCAs in
A, is limited to 3 due to the fan-in restriction of 7 on the skip
logic. Each RCA in block A; also represents a subblock of A,.
The carry out Cy4 from the skip logic is implemented using
AOI logic as

C14=G13:11t P13:11 Gio:s +Pi3a1-Pios *G7.4tP13:11° Pross - P74 Cy.
(12)

A detailed block diagram of the first three blocks of the
32-bit adder (an expanded view of Figure 2) is shown in
Figure 3. The three blocks together form a 14-bit adder.

Next let us consider the final block A; of the 32-bit
adder. Block Aj is divided into a number of subblocks. The
maximum number of subblocks is again limited to 3 due to
the fan-in restrictions on the skip logic. A block diagram of
As with an expanded view of subblock 0(Asy) is shown in
Figure 4. The subblock 0 is further divided into RCAs. The
number of inputs to the CG logic increases, successively, by
2 for each RCA and is limited to a maximum of 7 in any

subblock. Hence, the number of RCAs in any subblock is
limited either by the number of inputs to the CG block or by
the number of inputs to the (P, G) block. Therefore, subblock
0 can accommodate 4 RCAs. The carry input to the skip
logic, as well as, to the first RCA (Aspp) arrives in 3 time
units. The propagate and generate signals (p and g) from
each RCA will be available with a delay of 1 time unit. This
implies that we can have two levels of (P, G) logic inside the
block while satisfying the time delay constraints. Using (9),
the width of the first RCA (Aj3,,0) is 3 bits, and the widths of
the remaining RCAs are 2 bits each. Hence, the total width of
subblock 0(A3) is 9 bits.

Figure 5 shows block As; with an expanded view of
subblock 1(As;). The number of RCAs in Aj is limited to
3 due to the condition stated earlier. The carry input Cy3 to
the first RCA (As,1,0) of this subblock is given by

Cos = Gaa(Pras +C714)~ (13)

Y. S. Lin and D. Radhakrishnan

I I
X Sub-block 1 X
I I
1
sub-block 2 | €2 1 | Ay, L& gy, KB | asy [1] Sub-blocko [(3)
A2 J@| (4) (4) @ 1 A
i pg| M) |
: 3 | CG | 3 | CG | 3 CG :
] I
i |P,G| 17|p,c| ¥s |P,G| i
' 12 2 12 i
e \t _____ \l: ___________ J
P,G P,G P,G
12 2 +2
11e _
Cx @; 14
(4) L | (3)

FIGURE 5: Block-3 of 32-bit adder with an expanded view of sub-block 1.

With an AOI logic implementation, C,3 will be available
in 4 time units, thereby limiting the length of the first RCA to
2 bits. The carry inputs Cy5 and C,; to the remaining RCAs in
subblock 1(Aj3,) are also available in 4 time units. Thus, the
maximum width of subblock Az is 6 bits. The carry input
Cy to the final subblock 2(A3,) is given by

Cr9 = Gag23(P2s23 + Gaaa) (Pass + Papiya + C714) (14)

The maximum width of subblock A3, can be calculated
as 4 bits. This subblock can accommodate only 2 RCAs due
to the fan-in limits of the CG blocks. Hence, the total width
of block A3 is 19 bits. By combining the 4 blocks Ag, A;, As,
and A; a 33-bit adder can be implemented. The width of
subblock A, can be shortened to 3-bits for a 32-bit adder.
The carry out Cs, from the skip logic is given by

Cs2 = Ga1:0(a) () (), (15)

where, (a) = (Ps1:29 + Gas23), (B) = (Ps129 + Pagas + Gazia),
(y) = (Ps120 + Pagas + Proaa + Cua).

An OAI logic implementation generates Cs; in 4 time
units. A detailed block diagram of block Az is shown in
Figure 6. The final breakdown of the 32-bit adder into 4
blocks is shown in Figure 7. A reduction in hardware can be
achieved by moving subblock A3, from block A3 and placing
it as another block A4. This will eliminate 1 carry generate
logic (OAI) and 1(P, G) logic.

Although our adder has already achieved the 32-bit
requirement, we still have room to extend the width further,
while keeping the target delay the same. The schemes for
the 5th and 6th blocks are shown in Figure 8. The fifth
block A4 is divided into three subblocks. The subblocks
(Ag0,As1,and Ayp) have the same structure as block Aj.
Since the carry fed into the 5th block has 4 unit delays,
the maximum width of the first RCA will be 2 bits. The
remaining RCAs will be 1 bit each. Thus, the maximum
width for the fifth block will be 20 bits. The first subblock
Ay (11 bits) is divided into subblocks of 5, 3, 2, and 1 bit.
The subblock A4 (6 bits) is divided into 3 subblocks of

3, 2, and 1 bit. Similarly, the final subblock A4, (3 bits) is
divided into subblocks of 2 and 1 bit. The first 5-bit subblock
(A40,0) consists of a 2-bit RCA and 3 individual full adders.
Individual full adder cells form all other subblocks. The 6th
block As is a single bit full adder. Thus, the total width of the
adder becomes 54.

Based on the adder design procedure, we can derive a
formula for calculating the maximum number of full adders
in every block. The following notations are used in the
derivation. T Target delay of the n-bit adder in time units,
N(i) The number of RCAs in block i, W(i, j) The width of
RCA “5” in block i.

For any block i (i = 2), the number of RCAs is defined by
a recursive function N (i). The recursive function is not valid
for the blocks Ag and A1, and the values for N(0) and N(1)
when used in the recursive function are assumed to be zero

N(@)=D>i+N(Gi—-1), N(0)=N(1)=0. (16)

1
The width of an RCA is defined in terms of the target delay.
The width W (4, j) of the RCA®” in any block“i” is defined as

o min (4, T — i),
Wi, j) =))
min (4, T —i-1),

for j =0,

for1<j<N(@)-1,
(17)

where min (a, b) is the minimum value among a and b.

The carry input to the first RCA of the block can be
obtained directly from the previous carry-skip stage. Hence,
the calculation of width for the first block is done differently
from the others.

The maximum number of full adders FA(7) in block i is
given by

N(i)-1
FA(D) = >, W(ij)
. (18)

N(i)-1
= > WG, j)+ W(,0).
j=1

6 VLSI Design
Y Xs1 Y3029 X30:29 Y823 Xasos Y1 X221 Yoo X209 Yisaz Xisaz Yiens Xiens
6
L ¢ 4 |
S31| Full S30:29| 2-bit . S2221| 2-bit | S20:19| 2-bit | Sisaz| 2-bit S16:14] 3-bit
< adder < adder N 6-bit adder N < adder [€] €< adder < adder [] € adder N
(6) (6) (6) (6) (6) (6)
P31,Gs1 ((2) P, G30:29((2) 2 2 2 P,Gn21[(2) | P,Gau9|(2) | P,Gisuz|(2) P, G614 |(2)
AOI b
O<—
OAI AOI
O
P, Gasa7 P, Gaan3 AOIL
O
l N
P,G P,G P,G
P31:29,G31229 [(3) (3) | P28:23,G28:23 P2:14,Ga214 | (3)
2
OAI
OAI
L ~
C C
32 OAL 14
(4) (3)
FiGURE 6: Detailed scheme for block A;.
Y3104 X314 Y1z Xiza Yaa Xsu Yo Xo where A, B, and C are the inputs for the gate. The 3-input
l l J, OALl is expressed as
Cs Cis Cy C Co
<— 18-bit 10-bit 3-bit 1-bit [— e a—
OAI3: OQut=A - (B+C). (20)
g’m . :ng » Sla:l io The expressions for 5-input AOI and OAI are given as
F1GURE 7: The proposed 32-bit adder. AOI5: Out= A+ B - (C+D - E),
(21)
OAI5: Out=A-(B+C-(D+E)),
TaBLE 1: Maximum size of adders.
Target delay (T)-time units 4 p B . s where A, B, C, D, and E are the inputs to the cells. When the
arget ceay L 1)-time umts 7-input AOI and OAI cells are implemented in the above
Adder size (n)-bits 9 22 54 119 237

Table 1 lists the maximum adder size for a given target
delay using our design procedure.

4. DESIGN OF BASIC CMOS CELLS

A few basic CMOS cells are used for the design of the adder
stage. They are: AOI, OAI, and FA cells. Three different cells
are used for AOI and OAI (3-input, 5-input, and 7-input).
These cells are labeled as AOIn and OAlIn, where n refers to
the number of inputs to the cell. The 3-input and 5-input
cells are implemented in a straightforward manner, and are
given by the following Boolean expressions:

AOI3: Out=A+B-C, (19)

manner, the delay is prohibitive and hence we decided to
implement them as a cascade connection of a number of
smaller modules. Their corresponding Boolean expressions
are given by

AOI7: Out=A+B-C+B-D+(E+F-G),

OAI7: Out=A- (B+C)-[(B+D)- (E- (F+G)],
(22)

where A, B, C, D, E, F and G are the inputs to the cells.
Since we reduce the stack height of the transistors connected
in series from 4 to 3, the 7-input AOI and OAI cells will
be speeded up and the propagation delay will be almost the
same as the 5-input AOI and OAL The full adder cell used in
our design is the low-energy CMOS adder cell presented in
[10].

Y. S. Lin and D. Radhakrishnan

i b |
booAs A4 !
i Y53Xs53, i Ysas0 Xs2:50 Yious Xagua Yz Xuzzz |
DRI D S TR
1A EA T Aup Cso Ay Caa Asp A !
1 (6) S5 i 1| 3-bit sub-block 5) 6-bit sub-block (5) 11-bit sub-block !
1 1 — —— p—
| (6) 1 : P,Gsz:solssz:so P,G49:44l549:44 P,Gy333 l543:33 i
““““ @ Ve @ Ve @ Ve |
i OAI :
I O
| OAI , i
1
e B L
Cs3

Css |
5) OAI

FiGure 8: The schemes for the fifth and sixth blocks.

TasBLE 2: Cell Characteristics.

Delay (ns) Average power (mw)
AOI3 0.267 0.128
OAI3 0.264 0.127
AOI5 0.527 0.15
OAI5 0.541 0.16
AOI7 0.578 0.33
OAI7 0.579 0.30
FA 0.604 0.34

TaBLE 3: Adder comparison for delay, power, and power-delay
product.

Delay (ns) Power (mw) PDP (p])
32-bit adder (Chirca) 4.15 4.68 19.4
32-bit adder (Gayles) 4.39 3.26 14.3
Our adder (32-bit) 34 4.2 14.28
Our adder (54-bit) 4.3 8.6 36.98

5. SIMULATION

The adder was implemented using Tanner tools pro 11.03.
L-edit was used to generate the layout and T-spice was
used for performing the simulation. The generic 0.25uym
CMOS technology was used with 3.3 volts supply voltage.
The different CMOS cells (AOI, OAI, and FA) were simulated
for worst-case delays and the delays are tabulated in Table 2.
From Table 2, it may be noted that the 5 and 7-input cell
delays are comparable to that of the FA, while the 3-input
cells have a much less delay. The average power was measured
by feeding 10,000 random vectors at a frequency of 500 MHz
and is also shown in Table 2.

For comparison purposes, we selected two other types
of adders. They are (i) 32-bit carry skip-adder proposed in
[4] and (ii) 32-bit multilevel carry-skip adder proposed in
[11]. The first one is referred here as Chirca adder and the
second one is referred as Gayles adder. These adders were
compared with our 32-bit adder by measuring the critical

path delays. To get a more realistic estimation of the delays
involved, we laid out the complete 32-bit adder stages and
performed TSPICE simulation. The simulation was carried
out at a frequency of 100 MHz. The simulation results are
shown in Table 3. These results show that our 32-bit adder
has the minimum delay of 3.4 nanoseconds while Gayles
adder exhibited a maximum delay of 4.39 nanoseconds. The
Chirca adder had a delay of 4.15 nanoseconds. Thus, our
design has a speedup of 18% and 22% compared to those of
Chirca and Gayles adders, respectively. Our 32-bit adder was
then extended to a 54-bit adder with marginal delay increase,
and these simulation results are also included in Table 3. Even
this 54-bit adder is found to be faster than the 32-bit Gayles
adder.

The power consumption showed a marginal increase
of power for our adder compared to Gayles adder while
outperforming Chirca adder. Overall, our 32-bit adder
achieved the lowest power-delay product.

6. CONCLUSIONS

In this paper, we presented a new 32-bit adder using carry-
skip logic. The adder was implemented by dividing the adder
into several blocks. The size of each block is limited by the
delay of the carry-in signal and the final target delay. An
algorithm is used to calculate the maximum size of the adder
satisfying the target delay. The delay of a full adder is used as
the unit of measurement in our analysis. The adder has been
implemented by generating the layout with Generic 0.25 ym
CMOS technology. The TSPICE simulations carried out at a
frequency of 100 MHz and supply voltage of 3.3V showed
a critical path delay of 3.4 nanoseconds. The comparison
results show that our adder is faster than Chirca and Gayles
carry-skip adders. Overall our proposed adder is 18% and
22% faster compared to the Chirca and Gayles adders,
respectively. Furthermore, a 54-bit adder implemented using
our approach can operate almost at the same speed as a 32-
bit Chirca adder or Gayles adder. Even though our adder
has a marginal increase in power consumption compared to
the Gayles adder, overall, we achieved the lowest power-delay
product.

VLSI Design

REFERENCES

(1]
(2]

9

[10]

(11]

1. Koren, Computer Arithmetic Algorithms, A. K. Peters, Natick,
Mass, USA, 2nd edition, 2002.

B. Parhami, Computer Arithmetic Algorithms and Hardware
Designs, Oxford University Press, Oxford, UK, 2000.

C. Nagendra, M. J. Irwin, and R. M. Owens, “Area-time-power
tradeoffs in parallel adders,” IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, vol. 43, no. 10,
pp. 689-702, 1996.

K. Chirca, M. Schulte, J. Glossner, et al., “A static low-power,
high-performance 32-bit carry skip adder,” in Proceedings
of the EUROMICRO Symposium on Digital System Design
(DSD ’04), pp. 615-619, Rennes, France, August-September
2004.

R. P. Brent and H. T. Kung, “A regular layout for parallel
adders,” IEEE Transactions on Computers, vol. 31, no. 3, pp.
260-264, 1982.

B. W. Y. Wei, C. D. Thompson, and Y. F. Chen, “Time optimal
design of a CMOS adder,” in Proceedings of the 19th Annual
Asilomar Conference on Circuits, Systems, and Computers, pp.
186—191, Pacific Grove, CA, USA, November 1985.

T. P. Kelliher, R. M. Owens, M. J. Irwin, and T.-T. Hwang,
“ELM-A fast addition algorithm discovered by a program,”
IEEE Transactions on Computers, vol. 41, no. 9, pp. 1181-1184,
1992.

V. Kantabutra, “Designing optimum one-level carry-skip
adders,” IEEE Transactions on Computers, vol. 42, no. 6, pp.
759-764, 1993.

V. Kantabutra, “Accelerated two-level carry-skip adders-a type
of very fast adders,” IEEE Transactions on Computers, vol. 42,
no. 11, pp. 1389-1393, 1993.

S. Goel, S. Gollamudi, A. Kumar, and M. Bayoumi, “On the
design of low-energy hybrid CMOS 1-bit full adder cells,” in
Proceedings of the 47th IEEE International Midwest Symposium
on Circuits and Systems (MWSCAS ’04), vol. 2, pp. 209-212,
Hiroshima, Japan, July 2004.

E. Gayles, R. M. Owens, and M. J. Irwin, “Low power circuit
techniques for fast carry-skip adders,” in Proceedings of the
39th IEEE Midwest Symposium on Circuits and Systems, vol. 1,
pp- 87-90, Ames, lowa, USA, August 1996.

Hindawi Publishing Corporation

VLSI Design

Volume 2008, Article ID 753043, 6 pages
doi:10.1155/2008/753043

Research Article

High-Performance Timing-Driven Rank Filter

Péter Szantoé,' Gabor Szedd,? and Béla Fehér!

I Department of Measurement and Information Systems, Budapest University of Technology and Economics,

Magyar tudésok krt. 2, 1117 Budapest, Hungary
2 Xilinx Inc., 2100 Logic Drive, San Jose, CA 95124, USA

Correspondence should be addressed to Péter Szant6, szanto@mit.bme.hu

Received 27 April 2007; Accepted 2 November 2007

Recommended by Jean-Baptiste Begueret

This paper presents an FPGA implementation of a high-performance rank filter for video and image processing. The architecture
exploits the features of current FPGAs and offers tradeoffs between complexity and performance. By maximizing the operating
frequency, the complexity of the filter structure can be considerably reduced compared to previous 2D architectures.

Copyright © 2008 Péter Szanto et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Rank-order filtering is a nonlinear filtering technique, which
selects an element from an ordered list of TAP number of
samples. In the two-dimensional (2D) case, filtering takes
place on the contents of a rectangular window (or more gen-
erally, an arbitrary shape), which slides across the image. Ev-
ery time the window is moved by one pixel column, a set
of obsolete elements is discarded and a set of new elements
is inserted. The samples within the window are sorted and
the element with the specified rank replaces the output el-
ement of the window. Most typical ranks are median, min-
imum, and maximum, but the selection can be easily tai-
lored to the needs of any application. Compared to other
filters, such as FIR, Laplacian, or blur filters, rank filters
can effectively remove impulses like noises while preserv-
ing the edges of the original image. This can be very use-
ful for various applications, for instance, removing certain
types of transmission noises or preprocessing for edge de-
tection. This paper presents a hardware architecture that is
tailored for high-performance color video processing, but it
can be used in various applications such as IP block by taking
advantage of design time parameterization. The paper con-
centrates on the timing-driven architecture selection which
exploits the high operating frequency of recent FPGA and
ASIC technologies, thus reducing hardware resource require-
ments.

2. PREVIOUS WORK

The successful adaptation of rank filters in different appli-
cations catalyzed research activities for new algorithms and
implementations.

Bit-serial approaches [1, 2] provide the lowest complex-
ity, but they do not lend themselves well to high sample rate
implementations as filtering performance is proportional to
the precision of the input data. However, the processing rate
typically does not depend on the number of samples which
changes between processing cycles.

Insert/delete or sorting network-based architectures [3,
4] explicitly order incoming samples. In every cycle, the least
recent sample is discarded and the most recent input is in-
serted into the magnitude sorting structure at the appro-
priate location. While these solutions require relatively few
comparators, the feedback nature of the algorithm hinders
pipelining.

Another set of applications stores the samples in the or-
der of arrival and selects the appropriate output sample by
calculating the location of the output sample dynamically.
These architectures are easier to pipeline and they still require
few comparators.

3. PROPOSED ARCHITECTURE

On filtering images or videos, the filter window is sliding hor-
izontally across the input image, as illustrated in Figure 1. In

VLSI Design

] e e

WV new
samples

LS iy i A e |
T

FIGURE 1: 2D image filtering.

Input . Color value
—| Line buffer
CNTRL
input
CNTRL FVG
Filter .
value Delay line
5| Filter core [A2PR
CNTRL Filter
output output

FiGUrE 2: Global filter architecture.

case of a simple rectangular window, to generate a valid out-
put, WV (vertical size of the filter window) new input sam-
ples should be processed. Word-serial architectures can pro-
cess one input sample per clock cycle. When comparing dif-
ferent solutions, an important classification criterion is the
level of input parallelization. In the 2D filtering case, the fil-
ter should operate at WV times of the input pixel frequency
and generate a valid input sample every WV'th clock cycle.

Fully parallel filters can generate a valid output sample
every clock cycle, irrespective of the number of input sam-
ples required to achieve this process. Consequently, such fil-
ters process WV new samples in a single clock cycle, and the
required operating frequency is equal to the input pixel fre-
quency. At the same time, hardware resource requirements
are greatly increased. Previous papers typically considered
fully parallel architectures such as 2D filters; however, as this
paper proves, using recent FPGA technologies, this solution
is suboptimal due to the inefficient resource utilization.

Multiword architectures are hybrid solutions; in one cy-
cle, they can handle more than one input sample, but less
than the fully parallel implementation. This solution allows
finding an optimal balance between operating frequency and
hardware complexity. Using given filter window and input
pixel frequency, with NI defining the number of new input
samples in a single cycle, the required operating frequency
can be computed as

AR (1)

FOmaX NI

On processing color images, using the full per-pixel in-
formation (e.g., full RGB or YCbCr values) is not an efficient
solution. Filtering these components independently not only
increases computational requirements but may also intro-
duce blur effects, as it may generate new color values which
did not exist on the input image. A better solution is to use
a magnitude-like value, such as luminosity. If the input for-
mat does not contain such a component, it can be generated
within the filter.

3.1. Global filter architecture

The proposed architecture consists of five main components
(as illustrated in Figure 2): the line buffer (LB), the optional
filter value generator (FVG), the delay line (DL), the filter
core (FC), and the control unit (CNTRL).

The LB stores WV-1I lines of the original input frame in
the internal memory. The FVG is only required if the input
format does not contain a magnitude-like component. For
YCbCr or YUV input representations, this module can be
omitted as the Y component lends itself well to magnitude
ordering. For RGB input (luminance), a typical magnitude
value can be calculated. The DL is an addressable FIFO which
stores the full per-pixel information of the pixels residing in-
side the FC. The FC itself uses the values computed by the
FVG and generates the appropriate address for the DL. CN-
TRL generates properly delayed synchronization signals and
output valid signals. As the rest of the architecture is inde-
pendent of the FC solution, further discussion will focus on
the FC and its extensions.

3.2. Word-serial filter core

The operation of the FC is based on observations introduced
in [5]. As a first assumption, the filter contains TAP number
of different samples. For each sample, an index value is gen-
erated, which is equal to the number of samples which are
smaller than the given sample.

This results in TAP distinct values for the TAP samples
which range from 0 (the smallest sample) to TAP-1 (the
largest sample). The ranked sample is the one which has the
index value equal to the required rank. The block diagram in
Figure 3 illustrates the hardware implementation of the algo-
rithm for TAP = 5. The D[3:0] data registers store older filter
values, while the new data value is saved into the ND regis-
ter. In every cycle, these registers shift their data to the left.
Older values are compared with the new value (the result is
“1” if the new value is smaller than the older ones, and “0”
otherwise), and the comparison result is saved into the LSB
position of TAP-1, TAP wide registers (CR[3:0]). The MSB
positions of these CR registers are updated with the value of
the previous CR register. So, the full content of the CR[] reg-
isters is

CR[k] = {CR[k — 1](TAP - 2:0),C[k]}, (2)

where (:) denotes bit selection, {} denotes concatenation,
and C[k] denotes the kth comparison result. The compari-
son result of a given value is shifted to the left together with

Péter Szanto et al.

Filter value

D[3] |<— D[2] [D[1] [<— D[0] |<—| ND

|<||<||<||;|

g—> INV
7 7 7 ¢)
CR[3] CR[2] CR[2] CR[0] CN

| | | |

| —1 — = 1
1CNT 1CNT 1CNT 1CNT 1CNT
W 1 e [[[0]

Rank

5-to-1 encoder

N

Pixel address

FiGUre 3: Filter core.

TasLE 1: Filtering example.

4 3 2 1 0
D[], ND 0 25 37 12 12
CR[],CN 00000 10011 11011 10000 10010
1CNT]] 0 3 4 1 2

the filter value. Therefore, at any given time, CR[k] stores the
comparison results of D[k] with all the other values within
the filter. The TAP wide register for the new value (CN) is
computed differently; it is generated using the negated re-
sult of the comparators; namely, the kth bit is updated with
the (k+1)th comparison result. The Oth bit (self-comparison)
is set to “0” Counting the “1”s in the CR[] and CN reg-
isters gives a number of values which are smaller than the
given value. These bit summing operations are carried out
by the 1CNT modules. The straightforward way is to use an
adder tree with TAP one-bit inputs. For the CN register, this
is the only solution, as its content can change arbitrarily from
clock to clock. Generation of CR[k] can be optimized taking
into consideration the fact that only two bits change from
CR[k—1]: the MSB (comparison result with the discarded
sample) and the LSB (comparison result with the new value).
Therefore, bit summing can be implemented using an incre-
menter/decrementer. The results of the bit summing blocks
are compared with the required rank, generating a TAP bit
wide vector of results containing exactly one “1” at the po-
sition of the cell which contains the required output. An en-
coder passes this position to the DL as an address. Table 1
shows an example with the data registers (D[], ND), CR[],
CN and the output of the 1CNT blocks.

3
WH
«—
0 5 | 10| 15| 20 25
NI o
1 6 | 11| 16 | 21 | 26 S |z
d
s
2 7 | 12|17 | 22| 27 =
NI
3 8 | 13| 18 | 23| 28

4 9 14 19 24 29

F1GURE 4: Virtual filter kernel.

3.3. Multiword filter core

The architecture presented in the previous section can be eas-
ily extended to process more than one new filter value per
clock cycle. Instead of one, the data registers (D[]) and the
comparator result shift registers (CR[]) should shift by NI
data positions. The yet single CN and CR registers become
register arrays with NI elements. The number of compara-
tors is increased, as all old samples should be compared with
all new samples and new samples should be compared with
each other. The required number of comparators for a TAP
sized filter with NI new samples is

NI*(NI-1)

C = (TAP —NI)*NI + 5

(3)

If WV is not an integer multiply of NI, the bandwidth of
the filter core input supersedes that of the input stream. So in
some clock cycles, the number of valid new data is going to
be less than NI. The simplest solution to make the filter capa-
ble of processing different number of new samples is to insert
multiplexers into the appropriate data paths, in front of D[],
NDI], CR[], and CN{] registers. Two-to-one multiplexers al-
ways suffice as the number of valid new inputs is either NI or
WV mod NI (see Figure 4). Still, for large apertures, numer-
ous multiplexers may be required.

Another solution is to insert padding samples as neces-
sary such that in every clock cycle NI new samples can be en-
tered, thus creating a virtual filter kernel (VK). Figure 4 illus-
trates such kernel for WV =3 and NI = 2 case. Valid samples
in the window are marked with light grey; padding samples
are marked with dark grey (the actual value of the padding
samples are irrelevant). Obviously, this method makes the
size of the VK larger than that of the real filter window, hence
requiring more hardware resources as parts of the FC scale
with the size of the VK.

Figure 5 presents the contents of the data registers clock
by clock, using the example in Figure 4, as new inputs are
inserted and the filter window is moved horizontally. Back-
ground shading of valid and invalid (padding) samples cor-
responds to Figure 4. Samples on the right are the input sam-
ples. As any given register may contain valid or invalid sam-
ples during operation, comparisons are done using all data

VLSI Design

4
CLK(T)
|0|1|2.5|6|7.10|11|12.
CLK(T +1) |
[2]8]5]6]7 .10|11|12.15|16|a
CIK(T+2)

[5]6]7 l10|11|12.:15|16|17.
I

WYV _virt WYV _virt WV _virt

FIGURE 5: Masked data register.

registers, irrespective of the validity. Therefore, the number
of comparators required scales with the size of the VK.

Padding samples are masked after the comparator result
registers (CR[], CN[]), but before the ICNT blocks. For each
older sample, masking is done for 2*NI bits. NI bits mask
the comparison results with the NI new samples, and other
NI bits mask the comparison results of the oldest NI sam-
ples. The output ranking part is the same as in the single-
word case. The number of required equality comparators is
proportional to the size of the real filter window as it is suf-
ficient to select the appropriate output when all samples in a
new column have been inserted into the filter. In these cycles,
the locations of the valid samples are well defined.

3.4. Multiword filter with multiple outputs

In case valid samples are used for padding, the virtual filter
kernel can be viewed as NP + I filter windows processed to-
gether, where NP is the number of padding lines added to the
filter window to form the VK. For example, the 3x4 virtual
kernel in Figure 4 can be viewed as two 33 partially overlap-
ping filter windows. The FC presented in the previous section
already computes all the required comparison results to gen-
erate valid outputs for both of the 33 filter windows. How-
ever, to come up with 2 separate outputs, the mask generator,
the one-counters, and the output address generator should
be replicated. The advantage is that the relation between the
operating frequency and the number of new inputs processed
in a single cycle becomes even better, significantly improving

efficiency:
wv
NI

FO = *FS. (4)

wvV
*NI = WV +1
b

The drawback is that the LB should store WV lines of
the input image instead of WV—1. In case of real-time video
filtering, an output buffer may also be required.

3.5. Nonrectangular filter window

The mask-based filtering architecture allows for the easy im-
plementation of nonrectangular (convex and nonconvex) fil-
ter windows. The most significant difference compared to the
multiworld implementation described above is that the valid

WH

«— e
o | 5 |10 15| 2] 2
NI .
1 6 | 11 | 16 | 21| 26 S |z
d
>
2 7 |12 | 17| 22| 27 =
NI
3 | 8 | 13| 18| 25| 28

4 9 14 19 24 29

FIGURE 6: Nonrectangular mask.

or invalid status of a given filter value may change as the fil-
ter window slides across the input image. For example, in
Figure 6, pixel 10 is invalid in the first computation cycle it
is used, but as the window slides one pixel to the right, it be-
comes valid.

Consequently, bit summing becomes more complex as
the number of possible transitions between the masked CR[]
and CN[] registers is increased. Nonrectangular windows
typically increase the number of invalid samples within the
VK. Therefore, using the bit summing block for the valid
samples only may reduce resource requirements. Practically,
in the latter implementation, only the number of ND[] and
D[] registers scales with the virtual filter window; all other
processing units are implemented only for the valid data.

3.6. Weighted rank filtering

Some applications require the use of weighted filter win-
dows, rendering some input samples more significant than
others when determining the output of the filter. The pro-
posed method allows for the application of integer weights.
The comparison result bits (CR[] and CNT[] registers’ out-
puts) are replicated as many times as determined by the cor-
responding weight factor. However, the bit summing blocks
become increasingly complex as their inputs become wider
due to bit replication. Also, the TAP bit summing opera-
tion results in TAP different values, which are in the range
of 0- - - W—1, where W is the summation of all the weights.
As TAP is smaller than W, not all integer values will be pre-
sented at the outputs of the bit summing units. Therefore,
a simple equality comparator is no longer adequate to de-
termine the ranked sample. Instead, the filter has to find the
sample which has the closest bit summing value to the re-
quired rank (which is in the range of 0- - - W—1).

To facilitate the correct selection, the proposed archi-
tecture (see Figure 7) employs several difference computing
units and a selection tree. The difference computing units
process the required rank and the outputs of the bit sum-
ming units. The two input minimum calculators select the
smaller of their inputs together with a binary flag which
shows whether the left or the right input was selected. At
the root of the tree, the concatenated tag bits determine the

Péter Szanto et al.

CR[2] CR[1] CR[0] CN
w(0) W(0)
w(3) w(1) W(3) w(1)
1ICNT 1ICNT 1ICNT 1ICNT
(3] (2] (1] [0]
Rank
DIFF DIFF DIFF DIFF
i Lo i Lo
MIN MIN

=, 5

MIN

2

Pixel address

FiGure 7: Filter core for weighted rank filtering.

TaBLE 2: Word-serial operating frquency.

Number of taps (TAP)

Family

9 25 49
XC5V-3 460 MHz 420 MHz 400 MHz
XC4V-10 400 MHz 375MHz 355MHz
XC35-4 245MHz 195 MHz 175 MHz

location of the sample which has the closest bit summing
value to the required rank. This value can be used to address
the DL.

4. IMPLEMENTATION RESULTS

The following implementation results were obtained using
24-bit RGB input, with an FVG that sums the three color
components and outputs a 10-bit result. Table 2 summarizes
the operating frequencies obtained for the word-serial archi-
tecture for different Xilinx FPGA families and different TAP
numbers. These values can be used as a reference to help de-
termine the required parallelization level of the FC, depend-
ing on the input pixel frequency and the filter window size.
Table 2 offers different solutions even for one of the most
demanding commercial video format, HDTV1080p, which
has a pixel frequency of 75 MHz. For example, a Virtex-4 de-
vice can perform real-time filtering on HDTV source using
a 49-tap filter by employing a multiword FC configuration
with 2 input samples per clock cycle. Figure 8 summarizes
the resource requirements of a 49-tap rank filter using dif-
ferent FC configurations (configuration WVxWH/NI). LUT
and FF denote the number of lookup tables and flip flops in
Virtex-4 and Virtex-5 devices, respectively. Figure 6 demon-
strates that some multiword configurations (such as 7x7/5,
7x%716) may require more resources than the full parallel ar-
chitecture (7x7/7). The reason for this is that the VK be-

5
12000
10000]
. 8000
=
S 6000
=
4000 -
2000 -
017 %71 7 x 7737 x 77417 x 7/5
lavars | 2068 | 2879 | 3712 | 4156 | 5721 | 7193 | 5283
mvaiut] 1792 | 3164 | 4666 | 5398 | 7852 | 10654] 7012
mvser | 1736 | 2521 | 3399 | 3581 | 6009 | 7259 | 5262
ovs ot 1446 | 2657 | 3448 | 4028 | 6119 | 8030 | 4953

Configuration

FIGURE 8: Resource requirements.

TaBLE 3: Operating frequency and resource requirements using
Spartan-3 (9 and 25 taps).

Configuration 3x3/1 5x5/1 5x5/2 5x5/3
FFs 567 1234 1832 2044
LUTs 395 937 1420 1913
BRAMs 6 12 12 12
Ferk max 245 195 180 165

TaBLE 4: Operating frequency and resource requirements using
Spartan-3 (49 taps).

Configuration 7x7/1 7X7/2 7x7/3 7X7/4
FFs 2121 3030 3849 4242
LUTs 1862 3302 4866 5627
BRAMs 18 18 18 18
Ferk max 175 160 150 150

comes much larger than the valid filter window due to the
enormous number of padding samples.

These configurations are inferior to the full parallel ar-
chitecture in terms of throughput and silicon real estate.
The presented architecture can take advantage of the 6-input
LUTs of the Virtex-5 FPGA family, resulting in 20-30% re-
duction in the design size.

Tables 3, 4, 5, and 6 summarize the achievable operating
frequencies and resource requirements of several filter con-
figurations using Spartan-3, Virtex-4, and Virtex-5 devices,
respectively. For every filter size and FPGA family, the config-
urations marked with light grey background can be used to
filter HDTV (19201080 30 p—75 MHz pixel clock) input.
The lower-performance configurations are still adequate for
lower-resolution video inputs, like SDTV.

Although the longest register-to-register path does not
depend on the filter configuration, as the complexity of the
filter increases, the achievable operating frequency still de-
creases. This is common when using FPGAs and should be
taken into consideration when selecting the filter configura-
tion for given input format and filter size.

6 VLSI Design

TaBLE 5: Operating frequency and resource requirements using

Virtex-4.

Configuration 3x3/1 5%5/1 7x7/1 7X7/2
FFs 594 1088 2068 2879
LUTs 406 950 1792 3164
BRAMs 6 12 18 18
Ferk max 400 375 355 300

TaBLE 6: Operating frequency and resource requirements using

Virtex-5.

Configuration 3x3/1 5%5/1 7x7/1 7X7/2
FFs 580 1050 1736 2521
LUTs 290 750 1446 2657
BRAMs 3 6 9 9
Ferk max 460 420 400 340

5. CONCLUSION

An efficient architecture for high-performance two-dimen-
sional rank filters was presented. Rank-order filters, espe-
cially median filters, are used extensively for removing non-
Gaussian (salt and pepper) noise from images and video
streams. Targeting FPGA implementations for video appli-
cations, a parameterizable structure was proposed which de-
livers an efficient solution custom tailored to different pixel
clock rates, available resources, and operating speeds. Com-
pared to previous 2D architectures, the size and complexity
of the filter structure were considerably reduced by balancing
the number of new input samples entered into the core and
the available operating frequency of the filter. The proposed
solution is independent of input data type, as it offers great
flexibility to generate magnitude information corresponding
to RGB data, or it can take advantage of preexisting magni-
tude information if such data are already available. The solu-
tion presented can handle nonrectangular filter windows or
weighted samples as well, which widens the domain of possi-
ble applications even further.

REFERENCES

[1] R. Roncella, R. Saletti, and P. Terreni, “70-MHz 2-ym CMOS
bit-level systolic array median filter,” IEEE Journal of Solid State
Circuits, vol. 28, no. 5, pp. 530-536, 1993.

[2] B. K. Kar and D. K. Pradhan, “New algorithm for order statis-
tic and sorting,” IEEE Transactions on Signal Processing, vol. 41,
no. 8, pp. 2688-2694, 1993.

[3] C. Chakrabarti and L.-Y. Wang, “Novel sorting network-based
architectures for rank order filters,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 2, no. 4, pp. 502—
507, 1994.

[4] P. Szant6, G. Szedd, and B. Fehér, “Implementing 2D me-
dian filter in FPGAs,” in Proceedings of the 7th International
Carpathian Control Conference (ICCC ’06), Roznov, Czech Re-
public, May 2006.

[5] C. Chakrabarti, “High sample rate array architectures for me-
dian filters,” IEEE Transactions on Signal Processing, vol. 42,
no. 3, pp. 707-712, 1994.

Hindawi Publishing Corporation

VLSI Design

Volume 2008, Article ID 738983, 6 pages
doi:10.1155/2008/738983

Research Article

Wave Pipelining Using Self Reset Logic

Miguel E. Litvin and Samiha Mourad

Department of Electrical Engineering, School of Engineering, Santa Clara University, 500 El Camino Real,

Santa Clara, CA 95053, USA

Correspondence should be addressed to Miguel Litvin, melitvin@gmail.com

Received 1 May 2007; Accepted 9 December 2007

Recommended by Jean-Baptiste Begueret

This study presents a novel design approach combining wave pipelining and self reset logic, which provides an elegant solution at
high-speed data throughput with significant savings in power and area as compared with other dynamic CMOS logic implemen-
tations. To overcome some limitations in SRL art, we employ a new SRL family, namely, dual-rail self reset logic with input disable
(DRSRL-ID). These gates depict fairly constant timing parameters, specially the width of the output pulse, for varying fan-out
and logic depth, helping accommodate process, supply voltage, and temperature variations (PVT). These properties simplify the
implementation of wave pipelined circuits. General timing analysis is provided and compared with previous implementations.
Results of circuit implementation are presented together with conclusions and future work.

Copyright © 2008 M. E. Litvin and S. Mourad. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Wave pipelining (WP) is a suitable solution for fast arith-
metic circuit implementation since it renders high through-
put, while reducing the area and power overhead in a pipeline
by removing intermediate registers. Such registers result in a
latency penalty due to their setup and clock-to-output times
and introduce delays for each stage. The area savings are re-
alized due to (a) area devoted to the registers themselves, and
(b) area needed for the clock distribution and buffering to
control such registers.

In WP designs, each stage holds its output just enough
time to guarantee that the next stage will be able to cap-
ture the data and start the computation of its own outputs
to the following element in the pipe. So ideally, data have
to progress simultaneously through the stages to achieve the
maximum data throughput. Specific timing constraints ap-
ply to guarantee no data corruption. These designs are essen-
tially asynchronous, but can be synchronized by the use of in-
put and output registers (implemented with latches, or flip-
flops) as long as timing conditions are met so that outputs are
captured at an appropriate time. This circuit arrangement is
shown in Figure 1.

Self reset logic (SRL) provides circuit implementations
where “everything is quiet” when no new data are received.

For single-rail implementations, power consumption is “data
dependent.” In a dual-rail implementation, there will be
pulses propagating along the wave path (either at the di-
rect or inverse outputs of each stage); every time new data
is presented at primary inputs. We introduce a new fam-
ily of dual-rail SRL with input disable (DRSRL-ID). A typ-
ical cell is shown in Figure 2. In Section 2, we discuss its op-
eration. Section 3 describes the timing constraints that ap-
ply when designing wave-pipelining circuits with DRSRL-
ID. Section 4 presents an application circuit, and Section 5
presents conclusions and future work.

2. SELFRESET LOGIC

A DRSRL-ID buffer-inverter cell is shown in Figure 2. The
gate will generate an output pulse at the direct output (buf)
or the inverse output (inv) only if the inputs validate the logic
function F or its inverse; otherwise, both outputs will remain
at zero. Once inputs evaluation starts, the gate disconnects
the inputs for the duration of the cycle time 7 defined as fol-
lows:

T = td_f +Wp + Lrecs (1)

VLSI Design

Input
data

Input
FFs or

. |latches
n bits

% 9
Output| Output
Data | Data | Data | Data FF dat
wave | wave | wave | wave sor| data
N+2|N+1| N |[N-1 latches|
n bits m bits | m bits
- > > N
A AN

Random logic (self-reset gates)

A

I/

FIGURE 1: Basic wave pipelined circuit.

PM }>~

SUM,,

Fﬁ e
:

PM, b+

SUM |

Ll
u

FNb
|—C|an

FIGURE 2: A DRSRL-ID buffer-inverter gate.

where the following definitions hold:

tas : denotes data delay forward (the time from the leading
edge of the input data transition that validates F or FN
to the leading edge of the pulse at the output);
wp 1 denotes width of the output pulse;
denotes recovery time (the time elapsed from the trail-
ing edge of the output pulse to the trailing edge of the
reset pulse).

trec .

For inputs to be evaluated, they have to be active for a mini-
mum overlapping time, foyimin, that must be longer than the
capture time f,.

t. denotes capture time, the time from the leading edge of
the input data transition that validates F or FN to the falling
edge of the pulse at the internal summing node (SUM or
SUM,).

We prefer to refer to the output pulse (at either output)
so the condition is written as

(2)

The width of the output pulse w, depends strongly on the
characteristics of the output stage of the gate, but is indepen-
dent of the loading while fan-out is equal to or less than 8
(for the gate families we have worked with). When a set of
inputs validates the logic function F (or Fn), the correspond-
ing output pulse starts only after the delay ¢4, but its width
w), depends on the delay through the feedback loop, which
postcharges the summing nodes. Also, since we disable in-
puts, once an output pulse starts, w,, is also independent of
the width of input pulses, while they satisfy condition (2). Re-
covery time tr.. and delay forward #4; can also be made equal
for a family of gates. Then, the cycle time 7 will be a con-
stant for the circuit implemented with these gates. It defines
the minimum clock period at which new data can be pushed
into the combinational circuit when received from an input
register.

Figure 4 shows these timing parameters depicted for ide-
alized waveforms corresponding to the behavior of a typ-
ical gate of this type. The outputs Y and Y, correspond
to outputs buf and inv of the buffer-inverter cell shown in
Figure 2. For a complete description and characterization of
these gates, we refer the reader to [1, 2].

An XOR/XNOR gate is shown in Figure 3. In this case,
the use of shared elements between the FN and FNDb blocks
minimizes the number of devices needed. This approach is
especially useful when implementing more complex gates.
Additionally, in this case, we show the implementation of the
self reset without using the extra inverters in the feedback
loop. In the present case, as we actually use the internal reset
pulse_rst signal to disable input readout as well as to control
the postcharge of the summing nodes, we can safely play with
the width of the resetting pulse, without being affected by the
switching activity at the gate inputs.

fovimin = tdf .

3. WAVE PIPELINING WITH DRSRL-ID

The wave-pipelining circuit is an asynchronous structure,
which can be made to work in a synchronous structure by
adding an input and an output register, controlled by clock,
as shown in Figure 1. This requires careful selection of the

M. E. Litvin and S. Mourad

PM; b~

SUM,

« »
Xor

i
I

il
r

bno— ,_4

RSN

aDI[L_ -
NME -

FIGURE 3: Dual-rail SRL XOR/XNOR gate with input disable.

timing parameters. In the rest of this section, we explain the
relationship between these different timing parameters using
the following symbols:

k: number of data waves in the pipeline;

ck: global clock;

Te: period of the global clock;

ckiy: clock at input register;

ckou: clock at output register;

Tp: total latency (time elapsed from launching a data
wave from the input register until the corresp-
onding result arrives at the output register);

Tp: maximum delay through the combinational
logic;

ATp: maximum path delay difference through the
combinational logic;

Ao: phase shift between ck and ckoy;

Ai: phase shift between ck and ck;,;

A: Tt mod Te: Ao — Ai: constructive skew (phase
shift between the clocks that control the
launching and receiving registers);

ty: register clock-to-Q delay;

ts register setup time;

th register hold time;

tg: uncontrollable clock skew.

The width of the output pulse of the input register wrr must
satisfy the following:

taf < WpIr < Tek. (3)
The timing conditions are

wp > ATy + taf + boks (4)

e
Dy ! i i!
T -
v o
s —>—
SUM i ! T
1

— Y trec - 1 trec "1
Pulse_rst ! 71 ! i :: ! I

Y(buf)} 4

! . 1
L = Wp—!
Y"(IIIV): ;

t,;f

|
i
i
1
i
i
FIGURE 4: Timing parameters.

where AT); is the worst timing difference expected at any
given stage. Then,

Tek = Wp + trecs (5)
considering also the delay forward t,y,
Tk = wp + trec + taf, (6)
that is,
Tk =1 (7)
As can be observed in Figure 5, the total latency is
Ty = kTex + Ao. (8)

Analyzing the situation corresponding to a “late arriving”
pulse versus an “early arriving” one, as shown in Figure 6,
one can demonstrate that for wave pipelining with DRSRL-
ID,

ta+T)+ts+tg — A
e 9)

Wwp > AT + b+ 1y + 21, (10)

Comparing with regular WP CMOS implementation, as
shown by [3-5], in that case the conditions for safe pipelin-
ing include the following (11) and (12):

Tek > ATy + ts + ty + 2t (11)

Condition (12) is a two-sided constraint on k, T., and A,
showing the behavior as we sweep frequencies:

Ty+tg+ts+ig—A

TP—ATP-i-td—th—tSk—A
K .

k-1

<Tux <
(12)

Condition (12) applies to the regular WP circuits and defines
a set of “valid intervals” of frequencies at which the circuit

4 VLSI Design
[T ; . | , , N-bit multiplier block diagram
= | il = | I— Input register
1 Wp < Wp 7 o g N dynamic FFs (or latches)
: Tekmin i g Inputs: sda{(n — 1) : 0), sdb((n — 1) : 0)
Figure 5: Timing diagram for successive pulses. & Outputs: da{(n — 1) : 0), dan{(n — 1) : 0)
db((n—1):0),dbn{(n—1):0)
A
1
PPG: partial product generator
ck 3
| g Outputs: po{(n — 1) : 0), pon{(n—1) : 0)
y = p1{(n—=1):0), pin{(n—1):0)
ckir f bkt 5 S
2% p(n=1){(n=1):0), p(n - Dn{(n-1):0)
Ckout g | |
Tex + Ao &« Lk
Ay . = ©
Ta+Tp+A Late | SRS Compressor tree
_ »
ta+ Tpmin + A
| Early o,
| » [sfaNeR=Ruls] K levels of CSA blocks
Outputs: two N-bit numbers
FiGURE 6: Pulses of the same data wave, with phase shift between P "
input and output register clocks. srldr Mi{(n—-1):0) My{(n—1):0)
csgcg
T T
. . T . Co_ Coy Sn §
will behave in a wave-pipelining mode. The higher the fre- R
quency, the narrower the valid clocking interval [4, 5]. So
it becomes extremely important to control delays carefully, oA a
and there is a strong dependency on the process, voltage, and sy pmp.agate adder
temperature (PVT) conditions. OmPut:lN 'bltISUM
In contrast, in DRSRL-ID there is a maximum frequency (mult. result)
at which the circuit can operate in WP mode, as stated by
conditions (6) and (7): As long as the clock periqd Tk is]
greater than the cycle time 7 of the gates, early arrival data
from data wave (N + 1) will not' interfere with lat.e arrivals N . Output register
from the previous data wave. Try1ng to operate at higher fr.e- . Output: N-bit SUM
quencies will generate a situation where, at a given stage, bits (mult. result)
would arrive “too early” and will be ignored by that stage, P

since these gates will still have their inputs disabled. For
DRSRL-ID, at frequencies below what condition (7) states,
the combinational logic will still function properly (with dif-
ferent k values). The only difficulty resides in capturing the
computation result at the output register. Such behavior can
be obtained by adding a latch at the end of the combinational
logic, which will update when and if new data arrives, that is,
converting the last stage into a static one. These characteris-
tics render the technique presented in this paper very desir-
able.

The conditions on w, in DRSRL-ID are similar to the
conditions on T for CMOS WP, rendering a theoretic lower
data rate. In other words, we could design for a suboptimal
frequency, but building headroom for process, voltage, and
temperature (PVT), that is, we accept a maximum operating
frequency, and design with a built-in margin.

Observe that condition (4) implies that we need to min-
imize the timing difference among signals arriving at any
given stage AT);, since this directly impacts the maximum
achievable operating frequency. One still needs to do “rough
tuning” to equalize timing paths at each stage: add gates to
shorter paths, and maintain a solid layout engineering that

FIGURE 7: Multiplier block diagram.

looks into equalizing wire loads. The “fine-tuning” proposed
in other implementations [4] may not add much in this
case because of the “built-in” headroom by the gates. (Fine-
tuning refers to the careful resizing of gates at transistor level,
according to the needs of each signal path.)

The method described in this paper renders a stable cir-
cuit that may meet all specifications on the first approach,
at the price of having added this extra margin in the gates
themselves.

4. AN ILLUSTRATIVE EXAMPLE
4.1. Wave-pipelining parallel multiplier

Amultiplier was used to illustrate the concepts. It was im-
plemented in a 1.2 V-0.18 yum CMOS process using a library
of DRSRL-ID cells. The multiplier consists of three ma-
jor blocks: the partial product generator (PPG), the partial

M. E. Litvin and S. Mourad

THP (dap dbp) and Oulputs ORL

[memrT |
— = 1.2 4
: - riin o e
g /
900m
800m A
700m 4
£ 600m -
o E
&
§ 500m i
400m 4
300m
200m
RS L _
om | L AN -
" Y ' v v v v N
—100m A T T T T T T T ¥ T T T T
0 400p 800p 1.2n 1.6n 2n 2.4n 2.8n 3.2n 3.6n 4n
P—— Time (lin) (time)

FIGURE 8: Advancing waves: clk, output: grl(15 : 0), and inputs dap and dbp.

product reducer (PPR), and an adder (carry propagate
adder). Figure 7 shows a block diagram.

In the first stage, the partial products (PPs) are generated.
Each PP is the product of each bit of the multiplier by every
bit of the multiplicand. Thus, for an n X n multiplication, n
PPs (n-bit wide) are generated. These PPs have to be added
to obtain the final result.

The next stage is the partial product reducer (PPR), which
reduces the n PPs of an n-bit multiplier to two, hence the
name of reducer. This is the main block of the multiplier,
which we have implemented as a Wallace tree using carry-
save adders (CSA).Timing of the CSA cell has been adjusted
so that the delay forward of both outputs (S, Co) is approxi-
mately the same. The two final elements are added by means
of an adder to generate the final result. We have used the carry
look-ahead structure proposed in [5], with a slight modifica-
tion to control the fan-out and the loading at critical points
[2].

This block by itself is essentially asynchronous. We have
added input and output registers for timing analysis when
the multiplier is inserted in a synchronized pipeline. Thereg-
isters were implemented by a set of edge-triggered flip-flops.
The output register must sample the final stage of the adder
while the result pulses are available. For this wave-pipelining
application, all paths have been equalized using “rough
padding,” that is, adding buffers to the shorter paths to get
the same number of stages in all cases.

To make the delays through the longest and shortest
paths through the logic as close as possible, we tried to tightly
control the difference in arrival times of all signals connected
to a certain stage. This implies not only the delay equaliza-
tion of the different elements of logic at a given stage, but
also the delay equalization of the interconnects between suc-
cessive stages and controlling the total loading of a given in-

termediate driver. A careful layout plan is important, but in
the present design there is a certain tolerance level for differ-
ences in arrival times. This is true as long as one can guaran-
tee that all valid input pulses at a given stage will overlap long
enough to generate the output pulse within the time frame of
valid inputs for the next stage.

4.2. Simulation results and analysis

Results of spice simulation of 8-bit multiplier, implemented
ina0.18 yum CMOS process, running at 2.5 GHz data rate, are
shown in Figure 8. It can be observed that as the pulse waves
advance through the stages of the multiplier, the timing dif-
ference among signals at a given stage is minimal, so they
conform to a coherent data wave. Here, the following signals
are depicted: the global ideal clock clk, the output gri(15 : 0),
together with inputs dap(7 : 0) and dbp(7 : 0). Since the in-
puts shown leave a clock cycle in between, where all input bits
are made zero, for clarity, it is easy to observe two nonzero
input patterns, before the first output is shown. The pattern
shown corresponds to decimal products: (255 % 255), (3% 3),
(15 x 15), (3 x 3), and (63 X 63), alternated with (0 x 0) for
power analysis.

In Figure 8, the global clock signal is shown as reference;
it is the almost perfect rectangular wave. At the end of its
first pulse, we see the overlapping input signals, entering the
multiplier. As mentioned above, in this case, inputs remain
at zero, during the next clock cycle, and so we do not ob-
serve any other activity. At the next clock cycle, the 2nd set
of nonzero inputs is applied, but only within the following
pulse of the clock we see the first set of outputs (very close
together, and almost completely enclosed within that clock
pulse).

VLSI Design

A new set of nonzero inputs will enter the pipelined cir-
cuit, before the multiplier outputs the result corresponding
to the second nonzero set of inputs. Actually, the multiplier
is able to calculate a new result at each clock tick; we have just
interleaved a set of zero-valued inputs in between for clarity.

The maximum timing difference among output bits oc-
curs in this design between bits 7I{0) (early arrival) and r/{9)
(late arrival) and is approximately 74 picoseconds = ATp. The
maximum delay through the combinational logic Tp is 978
picoseconds. The delay through the FF (timing difference be-
tween dap(0) and ckira is 52 picoseconds = ;.

Here, T = 400 picoseconds, that is, Fx = 2.5 GHz. Setup
time £, = 20 picoseconds, and hold time #; = 50 picoseconds.

Looking at signals between different stages in the com-
pressor, we have measured the following:

(i) wp =210 picoseconds, tr.. = 89 picoseconds,
(i) t4r; = 101 picoseconds, at the slowest path, and
(iii) T = Wy + trec + tgr:= (210 + 89 + 101) picoseconds =
400 picoseconds.

Since the input register is always sending pulses, by
means of the direct outputs Q or the inverse ones Qn, then
the power consumption is average no matter what pattern
is presented at the inputs. Whenever single rail implementa-
tions are possible, there will be power savings, since pulses
will be generated at gate outputs only if input signals validate
the gate logic function, but gate outputs will remain at zero
otherwise.

It is worth noting that as the width of the multiplier
grows, the total latency increases, but the data throughput
remains unchanged, as far as we can control the wire load-
ing, since the maximum operating frequency depends on the
cycle time of the gates.

5. CONCLUSIONS AND PROPOSED FUTURE WORK

Wave pipelining is especially suitable for designs that show
a high degree of parallelism and regularity. If that were not
the case, the circuit has to be first transformed to achieve
such parallelism.The design shown provides a practical proof
of the feasibility of using the proposed technique in many
applications, where pipelining is suitable. Wave pipelining
provides savings in area and timing, since all intermediate
storage elements are removed from the circuit, saving also
from the point of view of timing overhead. The use of self
reset logic provides savings in power and area with respect to
a comparable CMOS dynamic implementation, since clock
distribution for dynamic gates is avoided, as shown in [2],
where a comparison was made between two implementa-
tions of an adder: domino logic versus DRSRL-ID. The use
of dual-rail self reset logic with input disable functionality
(DRSRL-ID) has additional advantages, providing a fairly
constant pulse width, and in so doing avoiding “pulse-width
adjusting structures” [6]. It provides an additional tolerance
in the design for differences in arrival times of signals at any
stage. While such tolerance is built-in in the structure of the
gate family, it comes at the price of adding to the total cy-
cle time and affects the minimum clock period T, used to
pump in new data into the circuit. The reduction in area and

power savings, plus the simplified equalization mechanism
due to the built-in tolerance, makes this approach suitable
for many fast processing designs.

Additionally, if we use as the last stage an SR-latch, which
will only be updated each time new data has arrived, then,
we are making the last stage “static,” and in so doing, we can
reduce the operating frequency as we need to interface with
the next stage (moving the design from a k-wave mode to a
single wave, if so needed). At the same time, we must main-
tain constraint (3) on the width of the input pulse to the first
stage implemented with DRSRL-ID. The recommended ap-
proach would be to use a pulse generator, which will generate
one pulse at the valid input clock transition.

The basic DRSRL-ID is suitable for structures with feed-
back, and this is an area we will investigate further.There is
also special interest in asynchronous circuit applications. The
DRSRL-ID application shown here uses the simplest proto-
col: “just sending data” and sacrifices elasticity for higher
throughput. Many variations are possible according to cir-
cuit needs.

ACKNOWLEDGMENT

M. E. Litvin is an [EEE regular member and S. Mourad is an
IEEE Fellow. They thank Dr. Fabian Klass for his invaluable
comments and advise during the research period.

REFERENCES

[1] M. E. Litvin, “Wave pipelining with self reset logic,” Doctoral
dissertation, Santa Clara University, Santa Clara, Calif, USA,
2005.

[2] M. E. Litvin and S. Mourad, “Self-reset logic for fast arithmetic
applications,” IEEE Transactions on Very Large Scale Integration
Systems, vol. 13, no. 4, pp. 462-475, 2005.

[3] M. E. Litvin and S. Mourad, “Wave pipelining with self reset
logic,” in Proceedings of IEEE International Conference on Elec-
tronic Circuits & Systems (ICECS ’06), Nice, France, December
2006.

[4] E. E Klass, “Wave pipelining theoretical & practical issues in
CMOS,” Doctoral dissertation, Stanford Univrsity, Stanford,
Calif, USA, 1994.

[5] W. K. C. Lam, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Valid clocking in wavepipelined circuits,” in Proceedings of
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD °92), pp. 518-525, Santa Clara, Calif, USA, November
1992.

[6] L. Wentai, C. T. Gray, D. Fan, W. J. Farlow, T. A. Hughes, and
R. K. Cavin, “250-MHz wave pipelined adder in 2-ym CMOS,”
IEEE Journal of Solid-State Circuits, vol. 29, no. 9, pp. 1117—
1128, 1994.

Hindawi Publishing Corporation

VLSI Design

Volume 2008, Article ID 674259, 7 pages
doi:10.1155/2008/674259

Research Article

Power Considerations in Banked CAMs:

A Leakage Reduction Approach

Pedro Echeverria, José L. Ayala, and Marisa L6pez-Vallejo

Departamento de Ingenieria Electrénica, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Correspondence should be addressed to Pedro Echeverria, petxebe@die.upm.es

Received 26 April 2007; Accepted 9 December 2007

Recommended by Jean-Baptiste Begueret

The content-based access of CAMs makes them of great interest in lookup-based operations. However, the large amounts of par-
allel comparisons required cause an expensive cost in power dissipation. In this work, we present a novel banked precomputation-
based architecture for low-power and storage-demanding applications where the reduction of both dynamic and leakage power
consumption is addressed. Experimental results show that the proposed banked architecture reduces up to an 89% of dynamic
power consumption during the search process while the leakage power consumption is also minimized up to a 91%.

Copyright © 2008 Pedro Echeverria et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

A broad range of modern applications demand large stor-
age devices with fast search capabilities. Content-addressable
memories (CAMs) have emerged as one of the favorite de-
vices for such applications [1-3]. In CAMs data are ac-
cessed based on their content, rather than their physical ad-
dress. This functionality has shown to be specially efficient
in lookup-based applications like TLBs [1], associative com-
puting and data compression [2]. High-speed networks such
as gigabit Ethernet and ATM switches [3] also benefit from
this particular structure [4].

However, CAMs pay a high hardware cost for this
content-based access because the memory cell must include
comparison circuitry, negatively impacting the size/speed
tradeoff and complexity of the implementation. Usually, a
9-transistor cell is required instead of the 6-transistor cell
used in SRAM. Moreover, the large amounts of parallel com-
parisons performed in conventional CAMs make the device
consume too much power, preventing the implementation of
large-scale CAMs in a single chip as the leading-edge appli-
cations demand.

In this paper, we present the implementation and char-
acterization of a CAM with low-power constraints. The
proposed architecture is highly scalable and provides high-
performance functioning at large sizes. Moreover, it achieves
great savings for both dynamic (89%) and leakage (91%)

power consumption. Therefore, this architecture overcomes
previous limitations of the CAM implementation and makes
it suitable to all the applications where a high-performance
low-power data search functioning is needed.

Previous work on CAM design has focused only on re-
ducing the dynamic power consumption of the match line
[5] and enhancing the search speed [6]. Although many ap-
proaches addressing dynamic power dissipation have been
reported [7-9], the resulting circuit techniques have either
substantial area overhead, deficiencies in noise immunity, or
cannot be easily scaled without a negative impact on perfor-
mance.

Our work overcomes these limitations by a novel and ef-
fective design of the CAM architecture and also addresses
leakage energy reduction in an efficient way. The architecture
presented here improves the energy savings obtained by Lin
et al. in [10], and recently extended by Noda et al. [11] and
Choi et al. [9]. These recent works provide a low power im-
plementation of the CAM based on the precomputation of an
index parameter. Nevertheless, they are constrained to spe-
cific small sizes, lack of scalability and present an increased
search delay.

Moreover, the leakage energy consumption (which is one
of the main issues regarding current electronic design) has
not been addressed by previous approaches. Static power dis-
sipation is becoming as important as dynamic dissipation
as transistor gate sizes are being reduced [12]. Our work

VLSI Design

improves the dynamic power savings of the referred ap-
proaches and also reduces the leakage energy consumption
of the memory to a minimum.

As stated before, this work is based on a parame-
ter precomputation-based architecture [10] (PB-CAM from
now on); however, we are able to reduce the parameter word’s
size with respect to [10], decreasing in this way the logic com-
plexity, area, and power consumption related to this parame-
ter. Moreover, the energy savings obtained with the proposed
banked architecture (up to 89% of the dynamic power con-
sumption and a 91% of the leakage power consumption) im-
prove the previous implementations of similar technologies
and also improve the scalability capabilities of architectures
like [9, 11].

Our research work on this field has already shown good
results in terms of area and dynamic power consumption
[13, 14]. This paper expands [14] where an improved archi-
tecture was presented (with a novel hardware mechanism to
reduce the static power consumption and increase the dy-
namic energy savings) with new experimental results and a
deeper analysis of the consequences of applying leakage re-
duction techniques over CAM memories.

The paper is composed as follows. Section 2 presents the
first designed approach where the minimization of the dy-
namic power consumption is addressed, while the leakage
power reduction technique is shown in Section 3. The ex-
perimental results are introduced in Section 4. Finally, some
conclusions are drawn.

2. DEVISED ARCHITECTURE: BANKED APPROACH

The first architecture presented in this section describes a
banked implementation of the mentioned PB-CAM [10] in
order to reduce the dynamic power consumption during the
search operation. The main idea of the PB-CAM is to store a
parameter word (obtained by a formula, e.g., a one’s count)
to perform the comparison process in a reduced number
of memory positions, saving dynamic power consumption.
However, the total power consumption of the logic can still
be too high for low-power applications. Additionally, the PB-
CAM architecture is also based on a novel seven-transistor
data memory cell (that can only be used on conventional ar-
chitectures) instead of the common one of nine or ten tran-
sistors, that can only be used on conventional architectures.

Our architecture employs the precomputed parameter to
perform a power-aware ordering of the data. The extracted
parameter allows us the classification of the memory con-
tents based on the one’s count. This classification can be used
to store the memory contents in such an efficient way that the
search operation is restricted to a smaller memory size.

The order of the memory data attending to the one’s
count parameter makes possible to split the memory archi-
tecture into independent banks where every data in the bank
has the same value for one subset of the parameter (e.g., N-
least significant bits). Moreover, the logic needed for this or-
dering is very simple and does not present a serious overhead
in terms of delay and energy consumption [13].

In Figure 1 our architecture is depicted (RAM area corre-
sponds to the memory where the output address associated

to each tag will be found to complete a CAM-search engine).
It can be observed that each memory word is composed of a
validation bit, the data word and part of its parameter. The
parameter extractor computes the parameter of the input tag
and a bank decoder selects the proper bank with a subset of
the bits of the calculated parameter. Then, the rest of the pa-
rameter bits and the input data are searched in the decoded
bank.

Due to the banked implementation of the memory, the
operation of the architecture is restricted to just one bank
every cycle. One of the advantages of this banked structure
is the reduction of the dynamic power consumption as the
charge in the bit lines is limited to one bank (the driven line
is simplified to the bit line of the accessed bank of the mem-
ory). This behavior is also shown by the parameter lines and
also has a positive influence in the memory speed. The com-
plexity of the logic shared for the banks (buffers, priority en-
coders, and address decoders) is reduced when the bank ap-
proach is applied. This simplification saves area, power con-
sumption and improves the delay of these devices.

3. DEVISED ARCHITECTURE: DROWSY APPROACH

The banked PB-CAM presented in Section 2 has been im-
proved to reduce the static power consumption of the archi-
tecture. In this case, the unused memory banks are put into
a low-power state and a pipeline carefully manages the op-
erations to avoid any performance penalty. This approach
is based on the design of a low-power cell and a further
pipelined subbanked implementation.

3.1. Low-power cells (data and parameter)

As has been previously described, the memory area has been
split into several banks, which can be independently ac-
cessed. Then, a dynamic voltage scaling (DVS) technique is
applied to turn the unused banks into a low-power state and
thus save as much energy as possible in the system. How-
ever, when the objective is a memory device, the cost of re-
covering the lost information could hide any power saving
or, at least, represent a very significant time penalty. More-
over, something has to be done in the powered-down banks
to prevent the information from being lost.

An efficient approach to achieve the low-power (drowsy)
state is proposed by [15], where a DVS technique is exploited
to reduce static power consumption. As is well known, both
dynamic and static power consumption are proportional to
the supply voltage. DVS technique benefits of this fact by
turning down the power supply to reduce power consump-
tion. However, reducing the supply voltage also has a neg-
ative impact in other parameters such as speed, hence DVS
techniques look for combining different voltages while not
affecting other parameters.

The method proposed by Flautner et al. implements DVS
to reduce the leakage power of cache cells by scaling the volt-
age of the cell to a lower voltage that ensures the preservation
of the state of the memory cells. This voltage can be con-
servatively approximated to 1.5 times V'th [15], but further

Pedro Echeverria et al.

Memory word
| V. bit | Data | Parameter | i
I
I
i
: Y
N - I =1 »
RN gy
2. Memory é: g:é
o CAM &g Memory Memory Memory
2 Bank0 gIELE CAM . RAM RAM
5 = 512words g} : s Bank 2 g 5 Bank 0 Bank 2
< | S Data32bits ~1213 5| =
g7 L EIE 2| ¢
R e 5|8
2 s | Z
< Memory Memory 3O & Memory Memory
CAM CAM RAM RAM
Bank 1 Bank 3 Bank 1 Bank 3
Read — Bank P t
Write — arameter o1 R . N
Searrlzi] Ctrl decoder extractor Bit lines circuits Bit lines circuits
|1 .
Reset Clk M i Data RAM
I
Data CAM input !
CAM memory ! RAM memory
I

FIGURE 1: Banked architecture (4-bank implementation).

reductions of the scaled voltage would increase static power
savings [16].

Figures 2 and 3 show the modified memory cells (data
and parameter) used to support the drowsy state with a dual
power supply (not part of the cell, it is shared by all the cells
in a same bank). As can be observed, the dual power supply
is switched to low Vpp when the cell is in drowsy state. It is
necessary to use high-V'th devices as pass transistors because
the voltage on bit lines could destroy the cell contents. Be-
fore a memory position can be accessed, the power supply
has to be switched to high Vpp (wake up) to restore the con-
tents and allow the access. The careful management of these
operations along the pipeline presented in the next section
takes care of this extra clock cycle to avoid any performance
penalty.

As mentioned before, each bank of the CAM architec-
ture counts with the additional logic required to implement
the DVS mechanism. Since the low-power consumption state
is selected for the whole bank instead of a specific memory
position, the overhead of the control logic is greatly mini-
mized.

3.2. Pipeline

A clear way to improve the access time of a CAM is the use
of a pipeline structure, which additionally provides greater
scalability in the performance and density of the applications
that make use of CAMs. The aforementioned DVS technique
can take advantage of this pipeline to awake the drowsy cells
one clock cycle before the access. Only one of the banks needs
to be on while the rest can remain in the drowsy state saving
leakage energy.

Vpp 1.5Vth

lBrowsy

D
. rowilo|

WL _j Matchline
| = I High-V'th
High-V'th

FIGURE 2: 7-transistor CAM cell with drowsy support.

In our approach, the devised pipeline configuration in-
cludes the three operations needed in a CAM-search engine:
READ, OVERWRITE, and WRITE. READ is the read oper-
ation in the associated RAM memory after the tag is found
in the CAM. In OVERWRITE, after the tag is found in the
CAM, a write operation is done in the RAM memory, and
WRITE is the operation to write a tag and its data in both
CAM and RAM memories.

The pipeline stages defined within those operations are
EXT (parameter extraction of the input tag and selection
of the working bank), SEARCH (tag comparison in the
CAM), DEC (decodification of internal address, common for

VLSI Design

both RAM and CAM), READ (only in RAM memory), and
WRITE (in both memories or only in RAM):

(i) READ operation: EXT-SEARCH-READ_R,
(i) OVERWRITE operation: EXT-SEARCH-WRITE_R,
(iii) WRITE operation: EXT-DEC-WRITE_CR.

However, this three-stage pipeline shows a structural and
data hazard, as shown in Figure 4(a). The stages and the re-
sources used in each stage (parameter extractor, address de-
coder, CAM, and RAM memories) are shown in the plot.
This hazard is produced in the CAM structure between the
READ (or OVERWRITE) operation and the WRITE oper-
ation because the CAM area is simultaneously accessed by
the second and third stages, respectively. This problem can
be solved by including a fourth pipeline stage splitting the
WRITE operation into WRITE_C and WRITE_R and intro-
ducing a “no operation” stage, NOP (see Figure 4(b)). All the
CAM accesses are in the third stage and the RAM accesses in
the fourth:

(i) READ: EXT-NOP-SEARCH-READ_R,
(i) OVERWRITE: EXT-NOP-SEARCH-WRITE R,
(iii) WRITE: EXT-DEC-WRITE_C-WRITE_R.

The second stage would mean a cycle delay in the READ
and OVERWRITE operations, but we take advantage of this
cycle to wake up the memory cells of the CAM memory from
the drowsy state. Therefore, the pipeline is not stalled and the
performance is not compromised.

The throughput of the pipeline is set by the slowest stage,
the third one in a READ or OVERWRITE operation with the
SEARCH stage, where the parallel access to all the words in a
bank of the CAM memory is carried out.

3.3. Banks subdivision

Once the leakage current control mechanism has been ex-
posed, the natural goal consists in increasing the expected
energy savings. The simplest idea is to divide the memory
in as many banks as possible, using more parameter bits to
decode the active bank. This technique presents the same ad-
vantages as those mentioned in Section 2.

However, dividing the memory in so many banks has two
very important drawbacks. Firstly, the unbalanced use of the
banks which means an increase in the failed search rate of the
memory (number of times that a searched data is not in the
memory and has to be written in the memory before a new
search). The 4-bank implementation in Section 2 presents a
homogeneous use of the banks (each bank with an almost
exact 25% distribution of the input tags) but if a third bit is
introduced to split the CAM into 8 banks, the distribution
of inputs varies from 14.48% to 10.52% for the one’s count
parameter (that is a difference of 27.4% between the most
and the least used bank). The second drawback is the com-
plex layout that will require the memory, due to the common
elements of the banks.

Therefore, another technique has been devised to pre-
serve the homogeneous use of the banks and a realistic lay-
out: the subdivision of each bank into a set of subbanks. The
main idea is to combine the parameter decoding with a new

Vop 1.5Vth

Drowsy Drowsy
2 -
PL
Tl
==
High-Vth
= =
High-Vth High-Vth
S I R R I
NAND’s gate

FIGURE 3: Parameter CAM cell with drowsy support.

ordering of the input tags, using in this case the value of some
bits of the input tags. In this way, the tags found in the same
bank are ordered in local subbanks attending to some bits
(the tags belonging to the same subbank share the same value
of some bits). This mechanism obtains a very homogeneous
use of the subbanks without impacting the layout.

For example, in the previous 4-bank implementation, us-
ing any two bits of the tag to enable the bank subdivision,
there will be 4 subbanks per bank (those banks correspond
to the values 00, 01, 10, and 11 of any two tag bits), as de-
picted in Figure 5. Unlike the 8-bank implementation, this 4-
bank configuration with subbanking presents a very homo-
geneous use of the subbanks, with only 0.013% of maximal
difference between subbanks. Moreover, the obtained layout
remains without appreciable changes when the subbanking
approach is applied.

One of the key advantages of this subbanking technique is
that any memory operation will be done only in the proper
subbank of the decoded bank, while the other subbanks of
that bank as well as the other banks will remain at the drowsy
mode. Moreover, there are also dynamic power and area ad-
vantages of this technique very similar to the ones presented
for the bank implementation. For example, the tag bits used
for the subbanking do not need to be stored. Also, the com-
plexity of the common logic (address decoder and priority
encoders) can be simplified by designing a single element
for the subbank and sharing this design for every subbank in
the architecture. And finally, the power consumption of the
comparison operation is restricted to the working subbank,
which increases the savings in this factor.

4. EXPERIMENTAL RESULTS

Our experiments have been carried out with Spice simu-
lations in the Cadence environment. The technology used

Pedro Echeverria et al.

Instruction 1 2 3 4 5 6
EXT SEARCH READ_R
Read
Pmt. Extr. C. Mem R. Mem
. EXT DEC WRITE_CR
Write
Pmt. Extr. | Addr. Dec [C. Mem R. Mem|
. EXT SEARCH WRITE_R
Overwrite
Pmt. Extr. C. Mem R. Mem
(a) 3-stage pipeline
Instruction 1 2 3 4 5 6
Read EXT NOP SEARCH READ_R
Pmt. Extr. C. Mem R. Mem
Write EXT DEC WRITE_C WRITE_R
Pmt. Extr. | Addr. Dec C. Mem R. Mem
Overwrite EXT NOP SEARCH | WRITE_R
Pmt. Extr. C. Mem R. Mem
(b) 4-stage pipeline
FIGURE 4: Structure of the proposed pipeline.
Bank 0 Bank 1 The simqlated memory is the architecture des:c.ribed in
Figure 1, implemented as a memory of 2048 positions and
32 bits per word, and split into 4 independent banks. Our
Input tag h d he d . . b
o1 approach decreases the dynamic power consumption by a
Subbank 78% (18.86 f]/bit in the banked architecture with respect to
decoder T 86 f]/bitin [10]).
Parameter () — I e L The area improvement achieyed with the proposed archi-
extractor o T tecture has also been evaluated in terms of number of tran-
Bank . S e sistors. When the memory size is fixed and the number of
decoder L - bits per word is varied, there is a reduced area improvement
. >L 11 oo of the banked implementation with respect to the original
nputitag parameter Subbank 2 PB-CAM due to the savings in the parameter word length
and comparison logic. Compared to a traditional implemen-
Subbank 3 tation, area savings are quite representative for architectures

FIGURE 5: Subbanking scheme.

TABLE 1: Drowsy PB-CAM with two different scaled voltages.

Voltage 1.5 Vth 1.25Vth
Drowsy state; leakage reduction 92% 98%
Leakage savings 86% 91%
Dynamic wake-up penalty 2.77 f]/bit 3.06 fJ/bit

to implement the designed architecture has been 0.35um
from Austria MicroSystems (as the base architecture is also
a 0.35um design), while the estimation of the leakage en-
ergy savings has been carried out using the 70 nm BPTM [17]
models, as the leakage power cannot be studied with the tech-
nology selected for the implementation.

4.1. Banked implementation

The banked architecture has been firstly evaluated in terms of
the energy savings obtained after reducing dynamic power.

with more than 16 bits (up to 17.5% in the range considered:
8 to 128 bits per word and a 2048 words memory size) due
to the use of 7-transistor memory data cells instead of the
9-transistor one of a traditional architecture.

For the implemented architecture, the area savings ob-
tained are 13.5% with respect to a traditional architecture
and 10.7% respect to the base PB-CAM.

Finally, the performance of the design has been analyzed
to assure the required fast response. The results show a 7.5 ns
delay for the search operation, which also includes the data
write into a RAM memory. The comparison of these perfor-
mance results with the ones described by Lin in [10] shows
how the operation time in the banked architecture is a 25%
faster than in the original PB-CAM (10 nanoseconds).

4.2. Drowsy implementation

Regarding the energy savings obtained, this approach pres-
ents further improvements both in dynamic and leakage en-
ergy due to the subbanking and drowsy techniques. The
simulated architecture is a CAM with 8192 positions (no-
tice the larger implementation with respect to the baseline

6 VLSI Design
TaBLE 2: Comparison of the three approaches (simple, banked, and drowsy PB-CAM [10]).
PB-CAM [10] B. PB-CAM D. PB-CAM

Technology 0.35 ym 0.35um 0.35um
CAM configuration 128 x 30 2048 x 32 8192 x 32
Dynamic power 86 f]/bit 18.86 f]/bit 9.06 f]/bit
Operation delay 10 ns 7.5 ns 12 ns
Throughput 100 MIPS 133 MIPS 333 MIPS
Static power reduction — — 86%—-91%
architecture) and 32 bits per word, implemented with 4 in- 30 374%
dependent banks, 4 subbanks per bank, and the described 25 Wl
4-stage pipeline. g 5

With this design, the dynamic consumption is reduced to g
9.06 f]/bit (a decrease of an 89% and 52% with respect to the % 15
baseline architecture and our first approach, resp.) when the £ 10
subbanking technique is used without the drowsy technique. = 5

To apply the drowsy technique for leakage reduction, we 0% 0.006 "/M
have considered two scaled voltages, the one referred as the 0 5 4 3
conservative approach [15] (scaled voltage 1.5 V'th) and a Number of banks
smaller one [16] (1.25 Vth). The BPTM simulations estimate
a 92% of leakage energy savings for the memory cells at a low FIGURE 6: Unbalance between banks (no subbanking).
power state for the conservative voltage, that is increased up
to a 98% for the second voltage. Given that the working sub- 0.12
bank has to remain at full voltage, the total power consump-
tion, for the simulated architecture, is reduced an 86% and a = 01 /‘
91%, respectively. % 0.08

However when the drowsy technique is applied, the wak- = 0.06
ing up of the accessed subbank is a new source of dynamic g /-—/
power consumption. The total value of this dynamic con- & 004 7
sumption depends on the scaled voltage used for the low- 0.02
power state, but in the opposite way for the leakage con- 0

sumption. When the scaled voltage is reduced, the leakage
power consumption is decreased while the waking up dy-
namic power consumption is increased (the swing voltage
between low-power state and working state is increased).

If we extrapolate BPTM simulations to the 0.35 ym simu-
lated architecture and the two proposed voltages, the waking
up of a subbank means an additional dynamic power con-
sumption of 2.77 f]/bit for the 1.5 Vth and 3.06 f]/bit for the
1.25 Vth. In Table 1 the experimental results for the two volt-
ages are summarized.

These energy savings can be easily increased if an archi-
tecture with more banks or more subbanks per bank is se-
lected. As stated before, and as can be seen in Figure 6, using
an 8-banks implementation unbalances the usage of banks
and increases the failed search rate, due to the different prob-
abilities of each parameter. While for parameter zero or 32
there is only one possible input data, there are 601 hundred
million different input data for parameter 16.

However, using more subbanks per bank has a very weak
impact in that factor because all the input data bits have the
same probability (and so the ones used to select the sub-
bank), as can be seen in Figure 7. For a 4-bank implemen-
tation, the percentage of use between the most and the least
used bank is 0.006%. When subbanks are introduced, it can
be observed how that percentage duplicates when we qua-

1 2 4 8 16 32 64 128 256
Number of subbanks

—=— 4 banks
—— 2 banks

Figure 7: Unbalance between subbanks.

druplicate the number of subbanks, and has a very small
value for a very wide range of subbanks.

In this way, using more subbanks only increases slightly
the unbalance between banks. However, the energy saved
while using more subbanks is considerable, as the active part
of the memory is smaller: for dynamic power consumption
there is less comparison power consumed during a search
and less wake up power consumption, and for leakage power
more parts of the memory can stay at a low-power state.

The drowsy implementation with subbanking also pres-
ents area improvements because two less memory cells per
data are stored, while the overhead of the DVS control has a
very small impact given that it is shared by all the cells on the
same subbank. In Figure 8 it can be observed the area sav-
ings when the word length is fixed (32b) and the memory
size is ranged. For our simulated architecture we obtained
an improvement of 16.1% with respect to the traditional

Pedro Echeverria et al.

x10°
» 30
3
Z 5
§ 20
S 15
& 10
g 5
j=]
Z o e T ,
512 1024 2048 8192
Memory capacity
[Traditional O B.PB-CAM
[l PB-CAM O D.PB-CAM

Ficure 8: Number of transistors for a fixed word length.

implementation, 13.4% respect the base PB-CAM and a 5%
compared with our banked implementation.

The throughput of the system is also improved (70%
when compared with the baseline architecture, 60% when
compared with the banked PB-CAM) due to the pipeline. A
comparison of the two approaches presented in this paper, as
well as the baseline architecture, can be found in Table 2.

5. CONCLUSIONS

Nowadays, the limiting factor in applications where the
CAMs play a critical role is the power consumption of these
devices. The integration levels achieved by current technol-
ogy processes have turned the area and performance factors
into secondary actors. Search-based applications with high-
performance constrains demand efficient implementations
of content-addressable memories to cover the astringent con-
straints. The work presented in this paper has shown effi-
cient mechanisms to reduce the dynamic and static power
consumption by means of hardware modifications. These ap-
proaches do not compromise the performance and area im-
provements achieved with the architecture.

ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of Science
and Education under Contract TEC2006-00739.

REFERENCES

[1] S. Swaminathan, S. B. Patel, J. Dieffenderfer, and J. Silber-
man, “Reducing power consumption during TLB lookups in
a PowerPC/spl trade/ embedded processor,” in Proceedings of
the 6th International Symposium on Quality of Electronic De-
sign (ISQED ’05), pp. 54-58, San Jose, Calif, USA, March 2005.
[2] K.-J.Lin and C.-W. Wu, “A low-power CAM design for LZ data
compression,” IEEE Transactions on Computers, vol. 49, no. 10,
pp. 1139-1145, 2000.
Y. Tang, Y. Jiang, and Y. Wang, “CAM-based label search en-
gine for MPLS over ATM networks,” in Proceedings of IEEE
Global Telecommunications Conference (GLOBECOM 01),
vol. 1, pp. 45-49, San Antonio, Tex, USA, November 2001.

(3

[4] H. Liu, “Reducing routing table size using ternary-CAM,” in
Proceedings of the 9th Symposium on High Performance Inter-
connects (HOTI ’01), pp. 69-73, Stanford, Calif, USA, August
2001.

[5] I. Arsovski and A. Sheikholeslami, “A current-saving match-
line sensing scheme for content-addressable memories,” in
Proceedings of IEEE International Solid-State Circuits Confer-
ence (ISSCC °03), vol. 1, pp. 304-494, San Francisco, Calif,
USA, February 2003.

[6] H.Miyatake, M. Tanaka, and Y. Mori, “A design for high-speed
lowpower CMOS fully parallel content-addressable memory
macros,” IEEE Journal of Solid-State Circuits, vol. 36, no. 6, pp.
956-968, 2001.

[7] 1. Arsovski and A. Sheikholeslami, “A mismatch-dependent
power allocation technique for match-line sensing in content-
addressable memories,” IEEE Journal of Solid-State Circuits,
vol. 38, no. 11, pp. 1958-1966, 2003.

[8] K. Pagiamtzis and A. Sheikholeslami, “Pipelined match-
lines and hierarchical search-lines for low-power content-
addressable memories,” in Proceedings of the IEEE Custom In-
tegrated Circuits Conference (CICC °03), pp. 383-386, San Jose,
Calif, USA, September 2003.

[9] S. Choi, K. Sohn, and H.-J. Yoo, “A 0.7-f]/bit/search 2.2-ns
search time hybrid-type TCAM architecture,” IEEE Journal of
Solid-State Circuits, vol. 40, no. 1, pp. 254-260, 2005.

[10] C.-S. Lin, J.-C. Chang, and B.-D. Liu, “A low-power precom-
putation-based fully paralel content-addressable memory,”
IEEE Journal of Solid-State Circuits, vol. 38, no. 4, pp. 654-662,
2003.

[11] H. Noda, K. Inoue, M. Kuroiwa, et al., “A cost-efficient
high-performance dynamic TCAM with pipelined hierarchi-
cal searching and shift redundancy architecture,” IEEE Journal
of Solid-State Circuits, vol. 40, no. 1, pp. 245-253, 2005.

[12] N. S. Kim, T. Austin, D. Blaauw, et al., “Leakage current:
Moore’s law meets static power,” Computer, vol. 36, no. 12, pp.
68-75, 2003.

[13] P. Echeverria, J. L. Ayala, and M. Lopez-Vallejo, “A
banked precomputation-based CAM architecture for low-
power storage-demanding Applications,” in Proceedings of the
13th IEEE Mediterranean Electrotechnical Conference (MELE-
CON ’06), pp. 57-60, Malaga, Spain, May 2006.

[14] P. Echeverria, J. L. Ayala, and M. Lopez-Vallejo, “Leakage en-
ergy reduction in banked content addressable memories,” in
Proceedings of the 13th IEEE International Conference on Elec-
tronics, Circuits and Systems (ICECS *06), pp. 1196-1199, Nice,
France, December 2006.

[15] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. N.
Mudge, “Drowsy caches: simple techniques for reducing leak-
age power,” in Proceedings of the 29th Annual International
Symposium on Computer Architecture (ISCA °02), pp. 148-157,
Anchorage, Alaska, USA, May 2002.

[16] N.S. Kim, K. Flautner, D. Blaauw, and T. N. Mudge, “Single-
VDD and single-VT super-drowsy techniques for low-leakage
high-performance instruction caches,” in Proceedings of the In-
ternational Symposium on Low Power Electronics and Design
(ISLPED ’04), pp. 54-57, Newport, Calif, USA, August 2004.

[17] http://www.eas.asu.edu/ptm/.

