
Wireless Communications and Mobile Computing

Edge Caching and Computing for
Wireless Networks

Lead Guest Editor: Lisheng Fan
Guest Editors: Zhao Junhui, George K. Karagiannidis, and Rose Qingyang Hu

 



Edge Caching and Computing for Wireless
Networks



Wireless Communications and Mobile Computing

Edge Caching and Computing for
Wireless Networks

Lead Guest Editor: Lisheng Fan
Guest Editors: Zhao Junhui, George K.
Karagiannidis, and Rose Qingyang Hu



Copyright © 2022 Hindawi Limited. All rights reserved.

is is a special issue published in “Wireless Communications and Mobile Computing.” All articles are open access articles distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.



Chief Editor
Zhipeng Cai, USA

Editorial Board

Muhammad Inam Abbasi, Malaysia
Javier Aguiar, Spain
Iikhar Ahmad, Pakistan
Ghufran Ahmed, Pakistan
Wessam Ajib, Canada
Muhammad Alam, China
Ihsan Ali, Malaysia
Jalal F. Al-Muhtadi, Saudi Arabia
Marica Amadeo, Italy
Sandhya Aneja, Brunei Darussalam
Eva Antonino-Daviu, Spain
Shlomi Arnon, Israel
Mehmet Emin Aydin, United Kingdom
Leyre Azpilicueta, Mexico
Gianmarco Baldini, Italy
Paolo Barsocchi, Italy
Dr. Abdul Basit, Pakistan
Zdenek Becvar, Czech Republic
Nabil Benamar, Morocco
Francesco Benedetto, Italy
Olivier Berder, France
Ana M. Bernardos, Spain
Petros S. Bithas, Greece
Dario Bruneo, Italy
Xuesong Cai, Denmark
Jun Cai, Canada
Claudia Campolo, Italy
Gerardo Canfora, Italy
Rolando Carrasco, United Kingdom
Vicente Casares-Giner, Spain
Luis Castedo, Spain
Ioannis Chatzigiannakis, Italy
Xianfu Chen, Finland
Yu Chen, USA
Lin Chen, France
Chi-Hua Chen, China
Chin-Ling Chen, Taiwan
Ting Chen, China
Hui Cheng, United Kingdom
Ernestina Cianca, Italy
Marta Cimitile, Italy
Riccardo Colella, Italy
Mario Collotta, Italy
Massimo Condoluci, Sweden

Daniel G. Costa, Brazil
Bernard Cousin, France
Telmo Reis Cunha, Portugal
Laurie Cuthbert, Macau
Pham Tien Dat, Japan
Antonio De Domenico, France
Antonio de la Oliva, Spain
Margot Deruyck, Belgium
Liang Dong, USA
Zhuojun Duan, USA
Mohammed El-Hajjar, United Kingdom
Oscar Esparza, Spain
Maria Fazio, Italy
Mauro Femminella, Italy
Manuel Fernandez-Veiga, Spain
Gianluigi Ferrari, Italy
Jesus Fontecha, Spain
Luca Foschini, Italy
Alexandros G. Fragkiadakis, Greece
Sabrina Gaito, Italy
Ivan Ganchev, Bulgaria
Óscar García, Spain
Manuel García Sánchez, Spain
L. J. García Villalba, Spain
José A. García-Naya, Spain
Miguel Garcia-Pineda, Spain
Piedad Garrido, Spain
Vincent Gauthier, France
Carlo Giannelli, Italy
Michele Girolami, Italy
Edoardo Giusto, Italy
Mariusz Glabowski, Poland
Carles Gomez, Spain
Juan A. Gómez-Pulido, Spain
Ke Guan, China
Antonio Guerrieri, Italy
Barbara Guidi, Italy
Tao Han, USA
Mahmoud Hassaballah, Egypt
Daojing He, China
Yejun He, China
Paul Honeine, France
Danfeng Hong, Germany
Andrej Hrovat, Slovenia



Chunqiang Hu, China
Xuexian Hu, China
Yan Huang, USA
Sergio Ilarri, Spain
Yanxiang Jiang, China
Xiaohong Jiang, Japan
Vicente Julian, Spain
Omprakash Kaiwartya, United Kingdom
Dimitrios Katsaros, Greece
Suleman Khan, Malaysia
Rahim Khan, Pakistan
Hasan Ali Khattak, Pakistan
Minseok Kim, Japan
Mario Kolberg, United Kingdom
Nikos Komninos, United Kingdom
Xiangjie Kong, China
Jose M. Lanza-Gutierrez, Spain
Pavlos I. Lazaridis, United Kingdom
Tuan Anh Le, United Kingdom
Xianfu Lei, China
Xingwang Li, China
Wenjuan Li, Hong Kong
Jianfeng Li, China
Peng Li, China
Xiangxue Li, China
Yaguang Lin, China
Zhi Liu, Japan
Mingqian Liu, China
Xin Liu, China
Liu Liu, China
Jaime Lloret, Spain
Miguel López-Benítez, United Kingdom
Martín López-Nores, Spain
Changqing Luo, USA
Tony T. Luo, USA
Basem M. ElHalawany, Egypt
Ru Hui Ma, China
Maode Ma, Singapore
Imadeldin Mahgoub, USA
Pietro Manzoni, Spain
Andrea Marin, Italy
Francisco J. Martinez, Spain
Davide Mattera, Italy
Michael McGuire, Canada
Weizhi Meng, Denmark
Weizhi Meng, Denmark
Nathalie Mitton, France

Klaus Moessner, United Kingdom
Antonella Molinaro, Italy
Simone Morosi, Italy
Shahid Mumtaz, Portugal
Kumudu S. Munasinghe, Australia
Giovanni Nardini, Italy
Keivan Navaie, United Kingdom
Tuan M. Nguyen, Vietnam
Petros Nicopolitidis, Greece
Rajendran Parthiban, Malaysia
Giovanni Pau, Italy
Rafael Pérez-Jiménez, Spain
Matteo Petracca, Italy
Nada Y. Philip, United Kingdom
Marco Picone, Italy
Daniele Pinchera, Italy
Giuseppe Piro, Italy
Sara Pizzi, Italy
Javier Prieto, Spain
Rüdiger C. Pryss, Germany
Cong Pu, USA
Sujan Rajbhandari, United Kingdom
Dr. Dharmendra Singh Rajput, India
Rajib Rana, Australia
Luca Reggiani, Italy
Daniel G. Reina, Spain
Bo Rong, Canada
Jose Santa, Spain
Stefano Savazzi, Italy
Hans Schotten, Germany
Patrick Seeling, USA
Muhammad Shafiq, China
Alireza Shahrabi, United Kingdom
Zaffar Ahmed Shaikh, Pakistan
Muhammad Z. Shakir, United Kingdom
Vishal Sharma, United Kingdom
Mohammad Shojafar, Italy
Chakchai So-In, ailand
Stevan Stankovski, Serbia
Enrique Stevens-Navarro, Mexico
Zhou Su, Japan
Yi Sun, China
Tien-Wen sung, Taiwan
Ville Syrjälä, Finland
Hwee Pink Tan, Singapore
Pan Tang, China
Pierre-Martin Tardif, Canada



Mauro Tortonesi, Italy
Federico Tramarin, Italy
Tran Trung Duy, Vietnam
Reza Monir Vaghefi, USA
Juan F. Valenzuela-Valdés, Spain
Lorenzo Vangelista, Italy
S Velliangiri, India
Quoc-Tuan Vien, United Kingdom
Enrico M. Vitucci, Italy
Yingjie Wang, China
Pengfei Wang, China
Huaqun Wang, China
Honggang Wang, USA
Ding Wang, China
Lifei Wei, China
Miaowen Wen, China
Dapeng Wu, China
Huaming Wu, China
liang wu, China
Ding Xu, China
Jie Yang, USA
Long Yang, China
YAN YAO, China
Qiang Ye, Canada
Ya-Ju Yu, Taiwan
Marat V. Yuldashev, P.O. Box 35 (Agora),
FIN-40014, Finland, Finland
Sherali Zeadally, USA
Jie Zhang, United Kingdom
Yin Zhang, China
Hong-Hai Zhang, USA
Jiliang Zhang, United Kingdom
Yushu Zhang, China
Lei Zhang, Spain
Wence Zhang, China
Xu Zheng, USA
Fuhui Zhou, USA
Meiling Zhu, United Kingdom
Zhengyu Zhu, China



Contents

Edge Caching and Computing for Wireless Networks
Lisheng Fan  , Junhui Zhao, George K. Karagiannidis  , and Rose Qingyang Hu
Editorial (2 pages), Article ID 9756304, Volume 2022 (2022)

An Accurate Sparse Recovery Algorithm for Range-Angle Localization of Targets via Double-Pulse
FDA-MIMO Radar
Qi Liu  , Xianpeng Wang  , Liangtian Wan  , Mengxing Huang  , and Lu Sun 

Research Article (12 pages), Article ID 6698446, Volume 2020 (2020)

Deep Reinforcement Learning-Based Collaborative Video Caching and Transcoding in Clustered and
Intelligent Edge B5G Networks
Zheng Wan   and Yan Li 

Research Article (16 pages), Article ID 6684293, Volume 2020 (2020)

A Smart Cache Content Update Policy Based on Deep Reinforcement Learning
Lincan Li, Chiew Foong Kwong  , Qianyu Liu, and Jing Wang
Research Article (11 pages), Article ID 8836592, Volume 2020 (2020)

Research on Multinode Collaborative Computing Offloading Algorithm Based on Minimization of
Energy Consumption
Dongsheng Han, Yu Liu  , and Junhong Ni
Research Article (11 pages), Article ID 8858298, Volume 2020 (2020)

AN-Aided Secure Beamforming in SWIPT-Aware Mobile Edge Computing Systems with Cognitive
Radio
Zhe Wang, Taoshen Li, Jin Ye  , Xi Yang  , and Ke Xiong
Research Article (10 pages), Article ID 8899314, Volume 2020 (2020)

Impact of Hardware Impairments with Imperfect Channel Estimation for Cache-Enabled UAV
Relaying Networks
Dan Deng, Yanyi Rao  , and Fusheng Zhu 

Research Article (12 pages), Article ID 8891793, Volume 2020 (2020)

https://orcid.org/0000-0002-9783-1366
https://orcid.org/0000-0001-8810-0345
https://orcid.org/0000-0003-0893-8733
https://orcid.org/0000-0002-6681-6489
https://orcid.org/0000-0003-0574-8360
https://orcid.org/0000-0002-5709-703X
https://orcid.org/0000-0001-7779-4484
https://orcid.org/0000-0001-5003-4741
https://orcid.org/0000-0002-4929-4439
https://orcid.org/0000-0001-7857-511X
https://orcid.org/0000-0001-6078-7093
https://orcid.org/0000-0001-8087-6333
https://orcid.org/0000-0003-3568-8071
https://orcid.org/0000-0001-9466-7145
https://orcid.org/0000-0001-6474-4605


Editorial
Edge Caching and Computing for Wireless Networks

Lisheng Fan ,1 Junhui Zhao,2,3 George K. Karagiannidis ,4 and Rose Qingyang Hu5

1School of Computer Science, Guangzhou University, Guangzhou, China
2School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
3School of Information Engineering, East China Jiaotong University, Nanchang 330013, China
4Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
5Department of Electrical and Computer Engineering, Utah State University, Logan, UT 84321, USA

Correspondence should be addressed to Lisheng Fan; lsfan@gzhu.edu.cn

Received 8 March 2022; Accepted 8 March 2022; Published 21 April 2022

Copyright © 2022 Lisheng Fan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the next-generation wireless networks, there have been
explosively increasing wireless data services, such as video
streaming, push media, mobile application download/
updates, and mobile TV. These new services involve both
intensive communication and computation, and to meet
these requirements, edge caching and computing have been
recently proposed.

Caching brings content closer to users by prefetching the
content during off-peak times and hence can greatly reduce
network congestion and improve the user-perceived experi-
ence. Moreover, edge computing can help alleviate the
computation load on the central node, by offloading the
computation tasks into edge nodes through wireless trans-
mission links. In this special issue, we have invited a few
papers to give insights on wireless caching and computing
for wireless networks.

One paper of this special issue in Ref. [1] investigated
range-angle localization of targets via double-pulse FDA-
MIMO radar, where an accurate sparse recovery algorithm
was proposed to enhance the performance of localization.
In particular, the localization error was reduced signifi-
cantly, and the system accuracy was enhanced obviously.
Moreover, another paper of this special issue in Ref. [2]
studied multinode collaborative computing offloading algo-
rithm based on minimization of energy consumption,
where the system performance in terms of energy
consumption was minimized, which can help prolong the
service time of the nodes in the wireless networks. In
further, another paper of this issue in Ref. [3] studied the

impact of imperfect channel estimation for cache-enabled
UAV relaying networks, where the system diversity order
caused by caching and multiple UAVs vanished due to
the presence of channel estimation error.

In addition to the above works, there are some rest
papers in this special issue on the application of artificial
intelligence on the wireless caching and computing
networks, as shown in Refs. [4–6]. In particular, deep rein-
forcement learning was proposed in these works, in order
to provide an intelligent solution to the system resource allo-
cation, such as caching allocation and offloading allocation,
bandwidth allocation, and power allocation. Some other
recent works on the intelligent algorithms, such as deep rein-
forcement learning [11, 13], deep learning [9, 12], federated
learning [7, 8], and cache-enabled learning [10], can be
viewed as an important extension to these works, which
could help enhance the system performance of caching and
computing networks furthermore.
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In this paper, a sparse recovery algorithm based on a double-pulse FDA-MIMO radar is proposed to jointly extract the angle and
range estimates of targets. Firstly, the angle estimates of targets are calculated by transmitting a pulse with a zero frequency
increment and employing the improved l1-SVD method. Subsequently, the range estimates of targets are achieved by utilizing a
pulse with a nonzero frequency increment. Specifically, after obtaining the angle estimates of targets, we perform dimensionality
reduction processing on the overcomplete dictionary to achieve the automatically paired range and angle in range estimation.
Grid partition will bring a heavy computational burden. Therefore, we adopt an iterative grid refinement method to alleviate the
above limitation on parameter estimation and propose a new iteration criterion to improve the error between real parameters
and their estimates to get a trade-off between the high-precision grid and the atomic correlation. Finally, the proposed algorithm
is evaluated by providing the results of the Cramér-Rao lower bound (CRLB) and numerical root mean square error (RMSE).

1. Introduction

Target localization has been acting as a pivotal part in the
field of array signal processing, which expects various appli-
cations in radar, navigation, and communication [1–4]. In
recent years, multiple-input multiple-output (MIMO) radar
[5, 6] has attracted widespread consideration in target local-
ization due to many potential merits [7], where multiple
antennas are utilized to transmit different waveforms at the
same time and simultaneously receive reflected signals.
Compared with the phased array radar, MIMO radar can
obtain enhanced spatial resolution, improved estimation per-
formance, and increased degrees of freedom (DOF) [8–10]
by effectively utilizing space diversity. However, MIMO radar
cannot obtain the essential range estimates of targets. FDA-
MIMO [11–14] radar, as a combination of frequency diverse
array (FDA) radar [15–17] and MIMO radar, has a small fre-

quency increment in adjacent transmitting array antennas to
achieve the joint estimation of the angle and range [18].

Nowadays, the traditional DOA estimation algorithms
have been applied for the joint angle-range estimation of
FDA-MIMO radar, such as the estimation of signal parameters
via rotational invariance techniques (ESPRIT) [19], unitary
ESPRIT (U-ESPRIT) [20], and two-dimensional multiple sig-
nal classification (2D-MUSIC) [21]. However, the aforemen-
tioned algorithms based on subspace decomposition usually
require a large number of snapshots and encounter perfor-
mance degradation in the case of highly correlated targets.

The compressed sensing technique has attracted exten-
sive attention in sparse signal reconstruction to deal with
the above limitation of the subspace-based algorithms. The
sparse signal recovery (SSR) algorithms [22–24] mainly esti-
mate target parameters by constructing a sparse signal model
and reconstructing the spatial spectrum. In an environment
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with a low signal-to-noise ratio (SNR) or a small number of
snapshots, the SSR algorithm outperforms the subspace-
based method in parameter estimation performance [25, 26].
In the past several years, some SSR algorithms have been pre-
sented, such as the sparse Bayesian learning (SBL) algorithm
[27, 28], l1-norm singular value decomposition (SVD) algo-
rithm [29], and l1-norm sparse representation of array covari-
ance vector (SRACV) algorithm [30]. Nevertheless, they suffer
from a complex two-dimensional overcomplete dictionary,
which will bring a heavy computational burden.

In this paper, a sparse recovery algorithm is proposed based
on a double-pulse FDA-MIMO radar. We extend the double-
pulse concept of FDA radar in [31] to FDA-MIMO radar to
solve the high-complexity problem of sparse recovery algo-
rithms and simultaneously improve the parameter estimation
performance of FDA-MIMO radar. Firstly, the angle estimates
of targets are calculated by utilizing a pulse with a zero fre-
quency increment and employing the improved l1-SVD
method. Subsequently, the range estimates of targets are
achieved by transmitting a pulse with a nonzero frequency
increment. Specifically, after obtaining the angle estimates of
targets, we deleted the unnecessary elements in the overcom-
plete dictionary to reduce its dimensionality during the range
estimation. Therefore, this algorithm not only decouples the
angle and range of FDA-MIMO radar but also reduces the
dimension of the overcomplete dictionary. Grid partition will
bring the problem of the heavy computational burden. As a
result, we utilize an iterative grid refinement method to over-
come the adverse effects caused by the grid partition on param-
eter estimation. Furthermore, we propose a new iteration
criterion to improve the error between real parameters and
their estimates to get a trade-off between the high-precision
grid and the atomic correlation, so the proposed algorithm
can achieve better target localization performance with FDA-
MIMO radar as compared with the subspace-based algorithm.
Finally, we derive the CRLB for the target parameter of the
double-pulse FDA-MIMO radar. Numerical simulation verifies
the superior performance of the proposed algorithm.

Notation. Capital bold letters and lowercase bold letters
represent matrices and vectors, respectively. ð·Þ∗, ð·Þ−1, and
ð·ÞT stand for conjugate, inverse, and transpose operations,
respectively. ⊙ represents the Hadamard product, and ⊗
denotes the Kronecker product. k∙k1 and k∙k2 denote
l1-norm and l2-norm, respectively. ℂP×Q denotes a P ×Q
complex matrix set.

2. Signal Model

As shown in Figure 1, a monostatic double-pulse FDA-
MIMO radar that consists of uniform linear arrays (ULAs)
with interelement spacing d = λ/2 is considered, where the
transmitter hasM antennas and the receiver has N antennas.
The first antenna in the transmitter is treated as the refer-
ence point. Considering the linearly increasing frequency
increments, the carrier frequency at the m-th transmitter
antenna is

f m = f1 + m − 1ð ÞΔf , m = 1, 2,⋯,M, ð1Þ

where Δf denotes the frequency increment and f1 stands
for the carrier frequency of the first antenna in the trans-
mitter, where Δf ≪ f1.

Suppose the narrowband signal emitted by the m-th
antenna is

sm tð Þ = ϕm tð Þej2πf mt , m = 1, 2,⋯,M, 0 ≤ t ≤ T , ð2Þ

where T is the duration of the radar pulse and ϕmðtÞ is the
m-th baseband waveform which follows that

ðT
0
ϕm tð Þϕ∗n t − τð Þej2π m−nð ÞΔf tdt =

1, m = n, τ = 0,
0, m ≠ n,∀τ,

(
ð3Þ

where τ represents the time delay.
Assume that there are K far-field targets in the far-field

whose ranges are much larger than the aperture of FDA-
MIMO radar. Subsequently, the signal received by the n-th
antenna in the receiver and transmitted by the m-th antenna
in the transmitter can be represented by

xm,n tð Þ = 〠
K

k=1
ϕm t − τ m, n, θk, rkð Þð Þej2πf m t−τ m,n,θk ,rkð Þð Þ, ð4Þ

where τðm, n, θk, rkÞ represents the delay between the m-th
antenna in the transmitter and the n-th antenna in the
receiver, which is expressed as

τ m, n, θk, rkð Þ = 2rk
c

−
m − 1ð Þdt sin θkð Þ

c
−

n − 1ð Þdr sin θkð Þ
c

,

ð5Þ

where rk and θk are the range and angle of the k-th target. dt
and dr are the interval between transmitter antennas and
receiver antennas, respectively. c is the speed of light.

The outputs of the received data after the matched filter
(MF) can be expressed as [14]

x lð Þ =As lð Þ + n lð Þ, ð6Þ

where sðlÞ = ½s1ðlÞ, s2ðlÞ,⋯, sKðlÞ�T ∈ℂK×1 is a signal vector.
nðlÞ represents the noise vector. A = ½�aðθ1, r1Þ, �aðθ2, r2Þ,⋯,
�aðθK , rKÞ� ∈ℂMN×K is a joint steering vector matrix, and
�aðθk, rkÞ = arðθkÞ ⊗ atðθk, rkÞ with k = 1, 2,⋯, K. The steering
vectors of the receiver and transmitter can be defined by [13]

ar θkð Þ = 1, ej2π d/λð Þ sin θk ,⋯, ej2π d/λð Þ N−1ð Þ sin θk
h iT

,

at θk, rkð Þ = 1, e−j4π Δf /cð Þrk ,⋯, e−j4π Δf /cð Þ M−1ð Þrk
h iT

⊙

� 1, ej2π d/λð Þ sin θkð Þ,⋯, ej2π d/λð Þ M−1ð Þ sin θk
h iT

,

ð7Þ

where arðθkÞ ∈ℂN×1 and atðθk, rkÞ ∈ℂM×1.
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The output of the MF by collecting L snapshots can be
described as

X =AS +N, ð8Þ

where X = ½xð1Þ, xð2Þ,⋯, xðLÞ� ∈ℂMN×L, S = ½sð1Þ, sð2Þ,⋯,
sðLÞ� ∈ℂK×L, and N = ½nð1Þ, nð2Þ,⋯, nðLÞ� ∈ℂMN×L.

3. Range and Angle Estimation for Monostatic
Double-Pulse FDA-MIMO Radar

In this section, we propose a target localization algorithm
with a double-pulse FDA-MIMO radar based on iterative
grid refinement to alleviate the problem that grid partition
brings about, a heavy computational burden and correlation.
Firstly, we decouple the range and angle parameters of the
FDA-MIMO radar with two pulses. Then, the improved
l1-SVD method is utilized to estimate the angle and range
of the target.

3.1. Angle Estimation for FDA-MIMO Radar. The angle esti-
mates of targets are calculated by transmitting a pulse with a
zero frequency increment and avoiding the range parameter.
According to (8), the output of the FDA-MIMO radar after
MF can be reconstructed by [32]

Xa =AaSa +Na, ð9Þ

where Xa = ½xað1Þ, xað2Þ,⋯, xaðLÞ� ∈ℂMN×L. Sa = ½sað1Þ,
sað2Þ,⋯, saðLÞ� ∈ℂK×L is a transmit signal matrix. Na = ½na
ð1Þ, nað2Þ,⋯, naðLÞ� ∈ℂMN×L stands for the noise matrix.
Aa = ½aaðθ1Þ, aaðθ2Þ,⋯, aaðθKÞ� is a MN × K steering vector
matrix, and aaðθkÞ = aarðθkÞ ⊗ aatðθkÞ with k = 1, 2,⋯, K.
Then, the steering vectors of the receiver and transmitter of
the k-th target can be defined by

aat θkð Þ = 1, ej2π d/λð Þ sin θk ,⋯, ej2π d/λð Þ M−1ð Þ sin θk
h iT

,

aar θkð Þ = 1, ej2π d/λð Þ sin θk ,⋯, ej2π d/λð Þ N−1ð Þ sin θk
h iT

:

ð10Þ

We can utilize the sparse recoverymethod to achieve angle
estimates. An overcomplete set of angles θ = ½θ1, θ2,⋯, θP� is
established by sampling the spatial domain range ½−π/2, π/2�
uniformly, where P≫ K is the number of grid points. Then,

we need to reformulate the signal model (9) into the sparse sig-
nal model as

Xa = �Aa
�Sa +Na, ð11Þ

where �Sa = ½�sað1Þ,�sað2Þ,⋯,�saðLÞ� ∈ℂP×L is a sparse matrix.
�Aa = ½�aaðθ1Þ, �aaðθ2Þ,⋯, �aaðθPÞ� ∈ℂMN×P is an overcomplete
dictionary, and �aaðθpÞ = �aarðθpÞ ⊗ �aatðθpÞ with p = 1, 2,⋯, P.
�aatðθpÞ and �aarðθpÞ can be denoted as

�aat θp
� �

= 1, ej2π d/λð Þ sin θp ,⋯, ej2π d/λð Þ M−1ð Þ sin θp
h iT

,

�aar θp
� �

= 1, ej2π d/λð Þ sin θp ,⋯, ej2π d/λð Þ N−1ð Þ sin θp
h iT

:

ð12Þ

Then, we utilize the l1-SVD method to estimate the angle.
The SVD result of the matrix Xa can be represented by [29]

Xa =UaQaVa
T , ð13Þ

where Ua ∈ℂMN×MN and Va ∈ℂL×L are orthogonal matrices
and Qa ∈ℂMN×L is a block matrix. We get a MN × K matrix
XaSV , which contains nearly all the signal power, XaSV =Ua

QaDK =XaVaDK . DK = ½IK , 0� ∈ℂL×K where IK ∈ℂK×K is
an identity matrix, and 0 ∈ℂðT−KÞ×K is a zero matrix. More-
over, suppose �SaSV = �SaVaDK and NaSV =NVaDK ; we can
derive XaSV as

XaSV = �Aa
�SaSV +NaSV : ð14Þ

~sðl2Þai =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑K

k=1ðsaSVai ðkÞÞ2
q

, where i = 1, 2,⋯, P. The sparsity
vector ~sðl2Þa corresponds to the space spectrum, which can be
calculated by the following constraint optimization problem:

min ~s l2ð Þ
a

��� ���
1
, subject to XaSV − �Aa

�SaSV
�� ��2

2 ≤ η2a, ð15Þ

where ηa denotes the regularization parameter [29] to balance
the mismatch degree of the model and the sparsity. According
to the chi-squared distribution, the upper bound of NaSV can
be calculated by the regularization parameter ηa [33] with a
high probability of 99.9%. Finally, we utilize the second-

k𝜃 k𝜃 k𝜃

dt dr

1 2 M

k𝜃 k𝜃 k𝜃

1 2 N

1f 2f Mf

MF MF MF

Transmitting array Receiving array

Targets

Figure 1: Simplified diagram of a monostatic double-pulse FDA-MIMO radar.
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order cone (SOC) programming package, such as CVX, to
solve the optimization problem in (15). Based on ~sðl2Þa , the
one-dimensional spectral peak search can be established
where the angle estimates correspond to K maximum peaks.

3.2. Range Estimation for FDA-MIMO Radar. The range esti-
mates of targets are calculated by transmitting a pulse with a
nonzero frequency increment. The output of the MF by col-
lecting L snapshots can be expressed as (8).

We assume that angle estimates obtained from subsec-

tion A are θ = ½θ1, θ2,⋯, θK �
T
. To get the range estimates,

we utilize the sparse recovery method. An overcomplete set
of ranges �r = ½�r1,�r2,⋯,�rW � is established by sampling the
spatial domain range ½0, c/2Δf � uniformly, where W is the
number of grid points and c/2Δf denotes the maximum
unambiguous range [34]. We stack the range complete set
corresponding to K angles into a large row vector ~r = ½~rðθ1,1Þ,
~rðθ1,2Þ,⋯,~rðθ1,WÞ,~rðθ2,1Þ,⋯,~rðθK ,W−1Þ,~rðθK ,WÞ� to obtain auto-

matically paired range and angle estimates. Then, we need to
construct the signal model of (8) into a sparse signal model as

X = �Ar
�Sr +N, ð16Þ

where �Sr = ½�srð1Þ,�srð2Þ,⋯,�srðLÞ� ∈ℂKW×L denotes a sparse
matrix. �Ar = ½�arðθ1,�r1Þ, �arðθ1,�r2Þ,⋯, �arðθK ,�rW−1Þ, �arðθK ,
�rWÞ� ∈ℂMN×KW is a known overcomplete dictionary, and �ar
ðθk,�rwÞ = �arrðθkÞ ⊗ �artðθk,�rwÞ with k = 1, 2,⋯, K and w = 1,
2,⋯,W. �artðθk,�rwÞ and �arrðθkÞ can be defined as

�art θk,�rw
� �

= 1, e−j4π Δf /cð Þ�rw ,⋯, e−j4π M−1ð Þ Δf /cð Þ�rw
h iT

e

� 1, ej2π d/λð Þ sin θkð Þ,⋯, ej2π d/λð Þ sin θkð Þh iT
,

�arr θk
� �

= 1, ej2π d/λð Þ sin θkð Þ,⋯, ej2π d/λð Þ N−1ð Þ sin θkð Þh iT
:

ð17Þ

Then, we utilize the l1-SVD method to estimate the range.
The SVD result of the matrix X can be expressed as [29]

X =UrQrVT
r , ð18Þ

where Ur ∈ℂMN×MN and Vr ∈ℂL×L are orthogonal matrices
and Qr ∈ℂMN×L is a block matrix. We can get a MN × K
matrix XrSV , which contains nearly all the signal power,
XrSV =UrQrDK =XrVrDK . Besides, suppose �SrSV = �SrVrDK
and NrSV =NVrDK ; we can derive the expression for XrSV as

XrSV = �Ar
�SrSV +NrSV : ð19Þ

~sðl2Þri =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑K

k=1ðsrSVri ðkÞÞ2
q

, where i = 1, 2,⋯, KW. The spar-

sity of ~sðl2Þr corresponds to the sparsity of the space spectrum,

which can be calculated by the following constraint optimiza-
tion problem:

min ~s l2ð Þ
r

��� ���
1
, subject to XrSV − �Ar

�SrSV
�� ��2

2 ≤ η2r : ð20Þ

According to the chi-squared distribution, the upper
bound of the NrSV power can be calculated as the regulariza-
tion parameter ηr [33] with a high probability of 99.9%.
Finally, we utilize the SOC programming package, such as
CVX, to solve the optimization problem in (20). Based on
~sðl2Þr , the one-dimensional spectral peak search can be estab-
lished where the range estimates correspond to K maximum
peaks.

3.3. Grid Refinement. Since it is impossible that all parameter
estimates fall on the grid points, the refining operation for the
grid is required, which will bring high computational com-
plexity and produce highly correlated atoms. To tackle the
problems, we propose an improved iterative grid refinement
algorithm. For example, the algorithm steps of range estima-
tion are given as follows:

(1) Set refinement times o = 1. A simple grid rðoÞ is
constructed by discretizing the interval between 0
and c/2Δf to estimate the target parameters. The grid
spacing is Bo

(2) Use the proposed method in subsection B to get
~ro = ½r1, r2,⋯, rK � and Fr

o = jkRk2 − kRr
ok2j. Then,

set o = o + 1
(3) According to the range estimates in step 2, a new grid

rðoÞ composed of K subgrids is constructed, where K
subgrids are ~r1,~r2,⋯,~rK and ~ri is a grid established
by sampling the spatial domain range with ½ri − Bo,
ri + Bo� uniformly, and i = 1, 2,⋯, K . Set grid spacing
Bo = Bo−1/100

(4) Return to step 2 until Fr
o−1 < Fr

o, the final range esti-
mates can be obtained as ~ro−1

In the proposed algorithm, we use F to improve the error
between real parameters and their estimates to get a trade-off
between the high-precision grid and the atomic correlation.
The detailed steps of the proposed sparse recovery algorithm
based on a double-pulse FDA-MIMO radar are summarized
in Algorithm 1.

Remark 2. The main computational complexity of the pro-
posed algorithm is the singular value decomposition and
the SOC programming problem. The singular value decom-
position of X and Xa requires altogether Of2UðMNÞ2 + 2
MNUL2g flops, and it takes OfðK2WÞ3 + ðPKÞ3 + 2ðU − 1Þ
ðK2GÞ3g flops to solve the above SOC programming prob-
lem, where U denotes the number of iterations and G repre-
sents the number of refinement grid points for each target.
Compared with the U-ESPRIT algorithm [20], the proposed
algorithm requires more computation. However, this algo-
rithm has outstanding advantages, which can not only adapt
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to the scene of insufficient snapshots and high target correla-
tion but also provide higher precision and resolution.

Remark 3. We assume that angle estimates obtained from
subsection A are θ1, θ2,⋯, θK , respectively. Therefore, we
can construct a simplified overcomplete dictionary contain-
ing range and angle information via adding a sparse grid of
the range dimension. By solving the SOC programming
problem in (20), a KW × 1 sparse vector~sðl2Þr can be obtained,
where the first W elements represent the range estimates of
the target with angle θ1, theW + 1 to 2W represent the range
estimates of the target with angle θ2, and the lastW elements
represent the range estimates of the target with angle θK .
Hence, the corresponding angle can be found through the
position of the element in the sparse space spectrum ~sðl2Þr to
obtain automatically paired range and angle estimates.

Remark 4. In this paper, we utilize F to improve the error
between real parameters and their estimates. F can be written
as Fa in the angle estimates, which is defined by jkRak2 −
kRak2j, where Ra =XaXH

a and Ra = ðAaSaÞðAaSaÞH . Aa = ½
aaðθ1Þ, aaðθ2Þ,⋯, aaðθKÞ� is a new steering vector matrix

constructed by θ. θ = ½θ1, θ2,⋯, θK �
T
is the angle estimate

for each iteration. F can be written as Fr in the range esti-
mates, which is defined by jkRk2 − kRrk2j, where R =XXH

and Rr = ðArSÞðArSÞH . Ar = ½�aðbθ1, r̂1Þ, �aðbθ2, r̂2Þ,⋯, �aðbθK ,
r̂KÞ� is a new steering vector matrix constructed by bθ and r̂.bθ = ½θ∧1, θ∧2,⋯, θ∧K �T is the angle estimate in advance,
and r̂ = ½r∧1, r∧2,⋯, r∧K �T denotes the range estimate for
each iteration.

4. CRLB Analysis

In this section, we derive the CRLB results with regard to the
angle and range. According to (8) and (9), we can rewrite the
signal model as vector

xnew = anew θk, rkð Þ · s + v, ð21Þ

where the v is the normalized Gaussian noise with zero mean

and unit variance I. anewðθk,rkÞ ∈ℂ2MN×1 is the equivalent
steering vector and can be presented by

anew θk, rkð Þ = a θk, rkð ÞjΔf=0, a θk, rkð Þ
h iT

, ð22Þ

where

a θk, rkð Þ Δf=0 = aar
�� θkð Þ ⊗ aat θkð Þ,

a θk, rkð Þ = ar θkð Þ ⊗ at θk, rkð Þ:
ð23Þ

Assuming that there are K targets, the Fisher information
matrix (FIM) is [35]

J =
Jθkθk Jθkrk
Jrkθk Jrkrk

2664
3775, ð24Þ

where k = 1, 2,⋯, K .

Jθkθk =
2L
σ2

Re dε
dθk

� �H

Γ−1 dε
dθk

� �" #
,

Jθkrk =
2L
σ2 Re dε

dθk

� �H

Γ−1 dε
drk

� �" #
,

Jrkθk =
2L
σ2 Re dε

drk

� �H

Γ−1 dε
dθk

� �" #
,

Jrkrk =
2L
σ2

Re dε
drk

� �H

Γ−1 dε
drk

� �" #
,

ð25Þ

where σ2 represents the noise power, ε = anewðθk, rkÞ, and

(1) The FDA-MIMO radar transmits a pulse with a zero frequency increment to obtain the received signal Xa

(2) The sparse vector ~sðl2Þa is obtained by CVX optimization of (15). Angle estimates are realized by searching K maximum values

through a one-dimensional spectrum of ~sðl2Þa
(3) Use the method in subsection C to optimize the angle estimates in step 2. Then, the refined angle estimates can be received

as ½θ1, θ2,⋯, θK �
(4) The FDA-MIMO radar transmits a pulse with a nonzero frequency increment to obtain the received signal X
(5) The sparse vector ~sðl2Þr is obtained by CVX optimization of (20). Range estimates are realized by searching K maximum values

through a one-dimensional spectrum of ~sðl2Þr
(6) Use the method in subsection C to optimize the range estimates in step 5. Then, the range estimates can be obtained as

½r1, r2,⋯, rK �, and get automatically paired range and angle estimates ðθk, rkÞ, for k = 1, 2,⋯, K

Algorithm 1: An accurate sparse recovery algorithm for double-pulse FDA-MIMO radar.
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Γ = I. dε/dθk and dε/drk can be expressed as

dε
dθk

= ∂aar θkð Þ
∂θk

⊗ aar θkð Þ + aar θkð Þ ⊗ ∂aat θkð Þ
∂θk

,
	

∂ar θkð Þ
∂θk

⊗ at θk, rkð Þ + ar θkð Þ ⊗ ∂at θk, rkð Þ
∂θk



,

dε
drk

= 0, ar θkð Þ ⊗ ∂at θk, rkð Þ
∂rk

	 

,

∂aar θkð Þ
aθk

= j2π d
λ
cos θkð Þ

0
⋱

N − 1

2666664

3777775aar θkð Þ,

∂aat θkð Þ
aθk

= j2π d
λ
cos θkð Þ

0
⋱

M − 1

2666664

3777775aat θkð Þ,

∂ar θkð Þ
aθk

= j2π d
λ
cos θkð Þ

0
⋱

N − 1

2666664

3777775ar θkð Þ,

∂at θk, rkð Þ
aθk

= j2π d cos θkð Þ
λ

0
⋱

M − 1

2666664

3777775at θk, rkð Þ,

∂at θk, rkð Þ
ark

= −j4πΔf
c

0
⋱

M − 1

2666664

3777775at θk, rkð Þ: ð26Þ

The CRLB for the range and angle can be expressed as

CRLBθk
= J−1
� �

1,1,

CRLBrk
= J−1
� �

2,2:
ð27Þ

5. Numerical Simulation Results

In this section, we demonstrate the superiority of the pro-
posed algorithm via simulation, where M =N = 8 and d = λ
/2. The carrier frequency f0 is 10GHz, the frequency incre-
ment Δf is 0 kHz in angle estimation, and the frequency
increment Δf is 1 kHz in range estimation.

5.1. Simple Process of Target Estimation. Suppose K = 3 nar-
rowband targets with angles θ1 = −20∘ and θ2 = θ3 = 40∘ and
ranges r1 = 21000m, r2 = 34000m, and r3 = 54000m, respec-
tively. We set SNR = 10 dB, and the number of snapshots is
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Figure 2: The spatial spectrum of angle estimation.
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Figure 3: Range estimation of the target with angle θ1.
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Figure 4: Range estimation of the target with angle θ2.
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50. Figure 2 depicts the spatial spectrum of the sparse vector
~sðl2Þa for angle estimates in the proposed algorithm. Since
there are two targets from the same direction, it is necessary
to extract the range estimates of targets. Figures 3 and 4 give
the spatial spectrums of the first W elements and the last W
elements of ~sðl2Þr , respectively, where the first W elements of
~sðl2Þr represent range estimates of the target with angle θ1,
and the last W elements of ~sðl2Þr represent range estimates of
the target with angles θ2 and θ3. Figure 3 shows the range
estimates of the target with angle θ1, and Figure 4 shows
the range estimates of the target with angles θ2 and θ3.

5.2. Detection and Estimation Performance. In this subsec-
tion, we carry out a series of simulations under different con-
ditions to verify the superiority of the proposed algorithm.
The ESPRIT method [19] and the U-ESPRIT method [20]
are compared with the proposed algorithm. We assume that
the frequency increment and the carrier frequency of the
above algorithms are 1 kHz and 10GHz, respectively.
Suppose that two targets are located: ð−10:75∘, 21565mÞ
and ð25:68∘, 44505mÞ. The grids of the angle and range for
the proposed algorithm are ½−90∘ : 1∘ : 90∘� and ½0 : 1 : 150�
km, respectively. The root mean square errors (RMSEs) for
the range and angle are defined as

RMSEθ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρK

〠
ρ

i=1
〠
K

k=1
θik − θkð Þ2

vuut ,

RMSEr =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρK

〠
p

i=1
〠
K

k=1
rik − rkð Þ2

vuut ,

ð28Þ

where ρ = 100 is the number of Monte Carlo experiments. θik

and rik represent the estimates of θk and rk in the i-th Monte
Carlo experiment.

The angle-range estimation results are exhibited in
Figure 5 for FDA-MIMO radar using the proposed algorithm
in which Monte Carlo trials are implemented 100 times.
Moreover, the results of U-ESPRIT and the proposed algo-
rithm are provided for comparison with the proposed
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algorithm in Figures 6 and 7, where SNR = 0 dB and L = 50.
According to the results in Figure 5, we can conclude that
the proposed algorithm can achieve precise matching of the
range and angle. The angles and ranges of the two targets can
be accurately estimated with a small number of snapshots. As
can be seen from Figures 6 and 7, the parameter estimates of

the proposed algorithm can considerably approach the real
ones.

Figures 8 and 9 give the probability of successful detec-
tion (PSD) versus SNR for angle and range estimation in dif-
ferent algorithms, respectively, where L = 50. With regard to
angle estimation, we define the successful detection if the
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Figure 11: RMSE results of range estimation versus SNR.
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estimation result θik satisfies jθik − θkj ≤ 0:1∘. The detection is
successful if the estimation result rik satisfies jrik − rkj ≤ 200
m with regard to range estimation. As can be seen from
Figures 8 and 9, the PSD of the proposed algorithm is supe-
rior to those of other algorithms under the same condition.

Besides, with the increase of SNR, the proposed algorithm
can achieve the PSD of 100% when SNR = 10 dB.

Figures 10 and 11 give the RMSE results of the angle and
range estimates versus SNR with L = 50, respectively. It is
obvious that the RMSE results gradually decrease with the
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Figure 12: RMSE results of angle estimation versus snapshots.
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Figure 13: RMSE results of range estimation versus snapshots.
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increase of SNR, and in particular, the algorithm outper-
forms the other methods in range and angle estimation.

Figures 12 and 13 depict the RMSE results of the angle
and range estimates versus snapshots, respectively, where
SNR = 0 dB. As can be seen from Figures 12 and 13, the
RMSE results of all algorithms improve with the increase of
snapshots. Besides, the proposed method can obtain more
accurate range and angle estimates than the other methods
with the same number of snapshots.

6. Conclusion

In this paper, an accurate sparse recovery algorithm based on a
double-pulse FDA-MIMO radar is proposed. In the proposed
algorithm, we decouple the range and angle parameters of the
FDA-MIMO radar with two pulses. Grid partition will bring
high computational complexity. Therefore, we adopt an itera-
tive grid refinement method to alleviate the above limitation
on parameter estimation and propose a new iteration criterion
to improve the error between real parameters and their esti-
mates to get a trade-off between the high-precision grid and
the atomic correlation. Compared with the subspace-based
algorithms, the proposed algorithm performs better in simula-
tion. Massive simulation results have certified that the pro-
posed algorithm is prominent for parameter estimation of
FDA-MIMO radar.
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In the next-generation wireless communications system of Beyond 5G networks, video streaming services have held a surprising
proportion of the whole network traffic. Furthermore, the user preference and demand towards a specific video might be
different because of the heterogeneity of users’ processing capabilities and the variation of network condition. Thus, it is a
complicated decision problem with high-dimensional state spaces to choose appropriate quality videos according to users’ actual
network condition. To address this issue, in this paper, a Content Distribution Network and Cluster-based Mobile Edge
Computing framework has been proposed to enhance the ability of caching and computing and promote the collaboration
among edge severs. Then, we develop a novel deep reinforcement learning-based framework to automatically obtain the
intracluster collaborative caching and transcoding decisions, which are executed based on video popularity, user requirement
prediction, and abilities of edge servers. Simulation results demonstrate that the quality of video streaming service can be
significantly improved by using the designed deep reinforcement learning-based algorithm with less backhaul consumption and
processing costs.

1. Introduction

Beyond fifth-generation (B5G) networks is the next-
generation wireless communications systems. They are
desired to provide rather reliable services with super high
transmission rate, ultralow latency, very little energy loss,
excellent quality of experience (QoE), and much enhanced
security [1]. Due to providing mobile edge computing and
edge caching capabilities together with machine learning,
edge intelligence is emerging as a new concept and has
extremely high potential in addressing the new challenges
in B5G networks [2, 3]. In wireless communication net-
works, video streaming services have hold a surprising pro-
portion of the whole network traffic. In particular, because
of the impact of the epidemic at 2019-nCoV in this year,
it has greater dependence and demand on online video
streaming services, such as online meeting, online teaching,
and online shopping.

In recent years, the number of smart devices has been
explosively grown, which led to unprecedented increase in
the demand on video streaming service. In video streaming
service, it generally requires higher data rates and bigger sys-
tem capacity. The overall mobile data traffic has experienced
17-fold growth from 2012-2017 as summarized in Cisco
Visual Networking Index [4]. Mobile videos account for
more than half of this data traffic and are predicted to further
grow by 2022, accounting for 79% of the total data traffic.
Due to the immense demands of mobile videos, mobile net-
work operators can not be enough to satisfy the users’
demands on high-quality video streaming services.

To address this issue, firstly, edge video caching has been
recognized as a promising solution to reduce the data traffic,
because edge video caching can bring videos closer to the
users, which will reduce data traffic going through the back-
haul links and the time required for video delivery [5]. Moti-
vated by serving the users better, different edge caching
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strategies have been studied recently. Secondly, a good
video QoE is very important to users. In a full range of user
mobile devices, the source video streams are needed to be
transcoded into multiple representations. But the video
transcoding is also an extremely computation intensive
and time-consuming work [6].

Recently, mobile edge computing (MEC) has been intro-
duced as an emerging paradigm in the edge of the cellular
Radio Access Network (C-RAN) [7–12]. The MEC servers
are implemented particularly at the BSs in the mobile edge
computing platforms, enabling video streaming services in
close-proximity to the mobile users. Due to this position,
MEC presents a unique opportunity to not only perform
edge caching but also implement edge processing.

Due to the heterogeneity of users’ processing capabilities
and the variation of network condition, the user preference
and demand towards a specific video might be different.
For example, users with better network condition usually
prefer high-resolution videos while users with poor network
condition may desire for appropriate quality videos accord-
ing to their actual network condition. Based on this phenom-
enon, adaptive bitrate (ABR) streaming [13, 16] has been
widely used to improve the quality of delivered video. In
ABR streaming, the bitrate of the streaming video will be
chosen according to the users’ specific request and actual net-
work condition. A video content is encoded into multiple
layers with different bitrates, satisfying different users’
requirement. Then, each video layer will be further seg-
mented into many small video chunks, which contains
several seconds of the video content. Thus, users can dynam-
ically adjust video layer for different video chunks, depending
on their actual network conditions. So, it is a complicated
decision problem with high-dimensional state spaces to
choose appropriate quality videos according to users’ actual
network condition. There are obvious advantages in deploy-
ing ABR streaming locally at multi-MEC servers in RAN,
such as avoiding the long latency and reducing the prestorage
pressure at RAN [14–18]. Then, the required video layer of
mobile users can be transcoded in an on-demand fashion,
which can improve ABR streaming performance over mobile
edge computing networks when it is directly served from a
local MEC server.

Deep learning has a strong perception ability. It is mainly
used to solve classification and regression problems by cap-
turing and analyzing data features [19–22], but it does not
have the ability to make decisions. Reinforcement learning
[23] has the ability to make decisions, but it is helpless to per-
ceive problems and cannot handle high-dimensional data.
Reinforcement learning is actually an agent that learns the
best decision sequence during the interaction with the envi-
ronment. In order to deal with the complicated control and
decision problems with high-dimensional state spaces, a
promising solution has been given in recent development of
deep reinforcement learning (DRL) [24]. DRL consists of
two modules: deep learning and reinforcement learning. It
uses deep learning to extract features from complex high-
dimensional data and transform it into a low-dimensional
feature space. Then the low-dimensional feature state space
inputs into reinforcement learning to make decisions for

seeking more rewards. The goal of DRL is to enable an agent
to take the best action in the current state to maximize long-
term gains in the environment [25, 26]. And the interaction
between the agent’s action and state is learned by leveraging
the deep neural network (DNN). Due to these characteristics,
DRL becomes a powerful tool in robotics, wireless communi-
cation, etc. [27–29]. Since the advent of deep Q network
(DQN) [30–32] in 2013, a large number of algorithms and
papers to solve practical application problems have appeared
in the field of deep reinforcement learning. The basic idea
behind many reinforcement learning algorithms is to esti-
mate the Q value function by using the Bellman equation as
an iterative update. Such value iteration algorithms converge
to the optimal Q value function.

This paper intends to propose a video transmission
model combining MEC and Content Distribution Network
(CDN) technology, which interconnects the CDN network
with the MEC network through the CDN tips. Also, we focus
on exploiting MEC storage and processing capabilities to
improve the performance of high-quality streaming services.
We aim to solve the collaborative caching and transcoding
for multi-MEC servers by using the DRL algorithm in mobile
edge computing system. Specifically, the main contributions
of this paper are as follows:

(i) A CDN and Cluster-based Mobile Edge Computing
(2C-MEC) system model has been proposed, which
promotes cooperation among MEC servers and
reduces unnecessary backhaul consumption and
processing costs. We design aMEC-enabled collabo-
rative caching and transcoding for multi-MEC
servers in the 2C-MEC system by leveraging video
caching and transcoding in the vicinity of RAN at
multi-MEC servers

(ii) The optimization problem of collaborative caching
and transcoding for multi-MEC servers can be for-
mulated as a stochastic Markov decision process to
maximize the time-averaged Deep Q-Network
(DQN) reward. The reward is defined as the
weighted sum of the cache hit rate, user perceived
QoE, the cost of performing transcoding, and trans-
mission at multi-MEC servers. Then, we develop a
DRL-based algorithm to automatically obtain the
intracluster collaborative caching and transcoding
decisions, which are executed based on video popu-
larity, user requirement prediction, and abilities of
MEC servers

(iii) Simulation results demonstrate that video streaming
service can be significantly improved by using the
proposed DRL-based algorithm compared with the
scheme that video transcoding is not implemented
at the MEC servers, with less backhaul consumption
and processing costs

The remainder of this paper is organized as follows.
Section 2 presents a related work. Section 3 describes the
framework design of system and Section 4 formulates the opti-
mization problem. The DRL-based algorithm is presented in
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Section 5. Section 6 presents the simulation results and analy-
sis, followed by conclusions in Section 7.

2. Related Work

The research on the application of DRL to wireless network
transmission optimization in the MEC environment is exten-
sive studied recently. It can be seen that the research in this
area mainly began in 2018, increasing quickly year by year
after 2018. Furthermore, the application of DRL in video
transmission optimization under MEC environment is less.
The current research in this area includes the following cate-
gories: DRL-based caching strategy, DRL-based real-time
transcoding scheduling decision, DRL-based wireless net-
work communication resource allocation [33–37], and
DRL-based offloading and service migration of computing
tasks [38–43]. In this paper, we mainly focus on the first
two topics, trying to satisfy the requests of quality for user’s
streaming service.

2.1. DRL-Based Caching Strategy. For edge video caching at
MEC servers, video caching policy is driven by video popu-
larity. Therefore, knowing the video popularity is key to solve
the video caching problem. To avoid such drawbacks, com-
bining DRL methods are introduced to implement video
cache strategies, which is an important research direction
[44–47]. In order to reduce the traffic load of backhaul and
transmission latency, Wei et al. [48] proposed the Q-
Learning-based collaborative cache algorithm to solve the
intelligent baseband unit pool cache problem. Yang et al.
[49] considered the task offloading decision, cache allocation,
and computation allocation problems in single MEC sever; a
DRL algorithm was proposed to solve this optimization
problem with low complexity. Zhong et al. [50, 51] presented
a DRL-based framework with Wolpertinger architecture for
content caching at the single MEC. They proposed deep
actor-critic reinforcement learning-based policies for both
centralized and decentralized content caching, aiming at
maximizing the cache hit rate in centralized edge caching
and the cache hit rate and transmission delay as performance
metrics in decentralized edge caching. Gursoy et al. [52]
designed a deep actor-critic RL-based multiagent framework
for the edge caching problem in both a multicell network and
a single-cell network with D2D communication.

Applying DRL to cache technology mainly solves the
problem of cache content location decision, cache update
strategy, and cache content delivery. It implements resource
allocation and cache scheduling by using deep learning to
analyze and learn network information. Then corresponding
video content and bitrate versions are cached to improve
cache hit radio and utilization of cache resources. However,
the lack of transcoding on the network edge will reduce the
video cache hit rate.

2.2. DRL-Based Transcoding Scheduling Strategy. The user’s
demand towards a specific video might be different because
of the heterogeneity of their actual network condition. To
address this issue, transcoding in network edge has been
widely used to improve the quality of delivered video on

the wireless networks. To achieve accurate QoE, Liu et al.
[53] and Zhang et al. [54] presented deep learning-based
QoE prediction called DeepQoE. Then in [53], the authors
designed a content-aware bitrate adaptation policy with the
objective to prefetch a higher resolution version for video
clips that is in line with viewers’ interests. Zhang et al. [54]
also developed a DeepQoE-based ABR system to verify that
their framework can be easily applied to multimedia commu-
nication service. To address the challenge of how to allocate
bitrate budgets for different parts of the video with different
users’ interest, Gao et al. [55] proposed a content-of-inter-
est-based rate adaptation scheme for ABR. They designed a
deep learning approach for recognizing the interestingness
of the video content and a DQN approach for rate adaptation
according to incorporating video interestingness informa-
tion. Considering joint computation and communication
for ABR streaming, Guo et al. [56] presented a joint video
transcoding and quality adaptation framework for ABR
streaming. Inspired by recent advances of blockchain tech-
nology, Liu et al. [57] proposed a novel DRL-based transco-
der selection framework for blockchain-enabled D2D
transcoding systems where video transcoding has been
widely adopted in live streaming services, to bridge the reso-
lution and format gap between content producers and
consumers. To accommodate personalized QoE with mini-
mized system cost, Wang et al. [58] proposed DeepCast,
which is an edge-assisted crowdcast framework. It makes
intelligent decisions at edges based on the massive amount
of real-time information from the network and viewers. In
[59], using DRL to train a neural network model for resource
provisioning, Pang et al. designed a joint resource provision-
ing and task scheduling approach for transcoding live
streams in the cloud.

The application of DRL in transcoding scheduling deci-
sions mainly focuses on making intelligent real-time trans-
coding decisions at the network edge based on a large
amount of real-time information from the network and cus-
tomers. In order to meet the high-quality video service expe-
rience of requirements of different users, DRL-based
transcoding scheduling strategy will aim at achieving person-
alized QoE with minimized system cost.

2.3. Our Vision and Motivation. Inspired by the success of
DRL in solving complicated control problems, DRL-based
methods are commonly used in caching and transcoding
strategy for MEC system. But there are still some issues
which are needed to be resolved. (i) At present, there are
many systems mainly studying single-MEC server. However,
single-MEC server does not have enough storage and com-
puting ability to satisfy the needs of different users. (ii) There
are few researches on the cooperation mode and efficiency of
multi-MEC servers. The completion of intensive tasks
requires efficient collaboration among multi-MEC servers.
(iii) In multi-MEC servers’ system, the load balance among
MEC servers and the resource utilization of the MEC
server are basically not considered. (iv) According to users’
network conditions, adaptively collaborative caching and
transcoding methods in ABR streaming are needed further
explored.
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To address these issues, in this paper, a CDN and Cluster-
based Mobile Edge Computing (2C-MEC) system model has
been presented, which promotes cooperation among MEC
servers and reduces unnecessary backhaul consumption
and processing costs. Then, aiming to exploit MEC storage
and processing capabilities to improve performance of
high-quality streaming services, we focus on solving the col-
laborative caching and transcoding for multi-MEC servers by
using the DRL algorithm in the 2C-MEC system model.

3. Framework Design of System

3.1. 2C-MEC System Model. In order to meet the transmis-
sion requirements of real video services in the internet, the
video transmission strategy based on mobile edge computing
must consider a heterogeneous wireless access network envi-
ronment and popular video transmission technology. As
shown in Figure 1, this paper intends to propose a video
transmission model combining Cluster-based MEC and
CDN technology, which is called as a CDN and Cluster-
based Mobile Edge Computing system.

The video transmission model-based mobile edge com-
puting is seamlessly connected with the current popular
video transmission CDN technology. In this model, the edge

area consists of the CDN tips (that is, the “edge node” in the
CDN, in order to distinguish it from the edge computing
node, called “CDN tip” in this paper) and many edge com-
puting nodes in the local area (may be deployed at small base
stations, macro base stations, and locations higher than the
macro base stations). Thereby, the computing, storage, and
communication capabilities of edge computing nodes are
used to assist in the deployment of sparse CDN tips to opti-
mize wireless video transmission across the entire network.

Due to the large number of edge nodes and the large
difference in capabilities among them, a hierarchical man-
agement model is proposed to cluster edge nodes. The com-
munication protocols within and among clusters can draw
on the related research of sensor networks and P2P networks.
The influencing factors of edge node clustering strategy
include edge node capabilities, geographic location distribu-
tion, number and activity of users. The 2C-MEC system
can promote mutual cooperation among MEC servers and
reduces unnecessary backhaul consumption and processing
costs.

Based on the proposed Cluster-based Mobile Edge Com-
puting framework, on the one hand, the storage and comput-
ing capabilities of the MEC servers have been improved. The
2C-MEC system enables the MEC servers’ collaboration

Edge area

Edge area

Edge area

Cluster
Internet CDN

Backhaul link
RAN link
D2D link

CDN tip

Cluster head/element

Mobile terminal

Backbone link

Figure 1: A CDN and Cluster-based Mobile Edge Computing (2C-MEC) system.
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within the cluster to have sufficient storage and computing
power to meet users’ needs. On the other hand, the collab-
oration among MEC servers is promoted. Under this
framework, it is possible to pursue the multi-MEC collab-
oration method within the cluster, which focuses on
exploring the effective ways of multi-MEC servers’ collabo-
ration of caching and transcoding. On the contrary, existed
studies focused on “cloud-edge” collaboration or “edge-
edge” collaboration.

In this paper, we plan to design the edge node clustering
algorithm based on the following ideas: (i) firstly, the cluster
division is based on the principle of proximity to geographic
location. (ii) Secondly, the overall service capabilities of the
nodes in the cluster should match their users’ needs, and
the edge service capabilities among different clusters should
be balanced to a certain extent. (iii) Thirdly, if the edge node
is located in the intersection area of two clusters, the appro-
priate cluster is selected based on the similarity of the video
access preferences of the users managed by this node and
the video access preferences of the users managed by other
nodes in one cluster. (iv) Finally, after the clustering is com-
pleted, we can comprehensively consider the computing,
storage, communication capabilities of the edge node, and
its communication delay with other nodes in the cluster to
elect this cluster’s head.

In a word, the 2C-MEC system model proposed in this
paper is compatible with popular CDN technology, resulting
in conveniently utilization of its research results in cache
replacement, content prefetching and load balancing. Fur-
thermore, the ability of MEC to utilize heterogeneous edge
nodes with different capabilities and deployments further
improves the quality of video transmission.

3.2. Rebuffer Model. In order to keep continuous playback in
video streaming service, a playback buffer is usually deployed
at the user device, in which the video chunks are downloaded
into. The rebuffer model used in this paper comes from the
reference [60]. Let BðtÞ denote the bitrate of the chunk at
time stage t for the user. And WðtÞ denotes the wireless
transmission rate (bits/second) of user experienced during
time stage t. Then, the buffer occupancy rate LðtÞ is defined
as follows:

L tð Þ = Buffer occupancy
Buffer size : ð1Þ

When BðtÞ/WðtÞ < 1, the new video chunk is put into the
buffer at rate of less than 1; then, the buffer decreases. In
another way, if more than one chunk is played before the
next chunk arrives, then, the buffer is depleted and the rebuf-
fering is happened. So, in the rebuffer model, the term of
rebuffering time and buffered video time are usually intro-
duced, which are used in Reference [56]. A video has some
chunks; each chunk also contains a fixed duration of video,
such as D seconds of video. Let TðtÞ denote the buffered
video time at playback buffer at the beginning of time stage
t. In the rebuffer model, we assume that one chunk will be
downloaded into the buffer at one time. The total download-

ing time of one chunk during time stage t, denoted by dðtÞ,
can be expressed as

d tð Þ = B tð Þ ∗D
W tð Þ : ð2Þ

Furthermore, the video rebuffering time of playback
buffer during time stage t is denoted as RðtÞ. Then, we can get

R tð Þ =max d tð Þ − T tð Þ, 0ð Þ,
T t + 1ð Þ =D +max T tð Þ − d tð Þ, 0ð Þ:

ð3Þ

3.3. Video Quality Rate Model. In video processing, Peak Sig-
nal to Noise Ratio metric (PSNR) is the de facto standard cri-
terion to provide objective quality evaluation between the
original frame and the compressed one. In the video quality
evaluation, the video quality rate qðtÞ of a video coded at rate
BðtÞ can be approximated by a logarithmic function [61] as
follows:

q tð Þ = β log B tð Þð Þ, ð4Þ

where the β value can be obtained from the video encoder
during the encoding in video source. Generally, the men-
tioned quality rate qðtÞ is a nondecreasing function, which
means a higher bitrate may be a high definition video while
a lower bitrate may be a standard definition video.

Then, let Buði, tÞ ∈ fB1, B2,⋯, Bmaxg and Bmax be the set
of all video layers after video transcoding and the highest
video level at the MEC servers, respectively. And Buði, tÞ
denotes the bitrate assigned to user i at timeslot t.

3.4. Cache Hit Rate Model. In our setting, requests by all users
are served by the MEC severs; all video have the same size,
and there are no priorities for different users, while there
are popularities for different videos. Videos popularity distri-
bution is always the key to solve the video caching problem.
Considering the changing popularities, the probability that
the requests of video v is defined as Zv, which follows the Zipf
distribution [16] as follows:

Zv =
v−α

∑V
v=1v

−α
, ð5Þ

where α > 0 is the parameter of Zipf distribution which indi-
cates the skewness degree. According to our setting, the video
streaming service quality of content caching can be evaluated
in terms of the cache hit rate. The cache hit rate CRHðtÞ in T
requests during time stage t is defined [40] as

CRH tð Þ = ∑T
i=1l Hið Þ
T

, ð6Þ

where indicator function lðHiÞ is defined as

l Hið Þ =
1, Hi ∈ CT ,
0, Hi ∉ CT ,

(
ð7Þ
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where CT represents the cache state during this period; if
there is the cache of video, the requestHi can hit in the cache.

3.5. System Cost Model. In the system cost model, most of the
operational cost consists of bandwidth cost and transcoding
cost in video streaming service. The fraction of other service
cost is negligible comparing with the above two kinds of cost.

Then, the bandwidth cost CbðtÞ [62] of all MEC servers in
the cluster can be obtained by the following formula:

Cb tð Þ = 〠
M

n=1
P n, tð Þ ⋅W n, tð Þ,

W n, tð Þ = 〠
i∈Ut

Bu i, tð Þ ⋅ It i, nð Þ, n ∈ 0,⋯,M‐1f g,
ð8Þ

where Ut and M are the user group and the numbers of
severs in the cluster at time stage t. And Itði, nÞ is an indicator
that represents whether user i is connected to MEC server n
at the time stage t. Respectively, Pðn, tÞ and Wðn, tÞ be the
unit bandwidth price and the amount of bandwidth usage
in the MEC server n.

Beside the bandwidth cost, the video streaming service
also needs to consider the transcoding cost. Based on the def-
inition and description of video transcoding in [56, 62], the
transcoding cost is closely related to the input bit-rate, target
bit-rate, the video length, and the number of CPU cores
needed for transcoding according to the video pricing model.
Then, we define the transcoding cost incurred at time stage
t as

O tð Þ = σ ∗ Lmax − lð Þ ∗ Tv ∗Ncpu, l ∈ L1, L2,⋯, Lmaxf g, ð9Þ

where σ is an adjustable parameter and symbols of l, Tv,
and Ncpu represent the level of input video, the video
length, and the number of CPU cores required for trans-
coding, respectively.

In order to simplify the problem formulation, in our sys-
tem cost model, the operational cost mainly consisted of
bandwidth cost and transcoding cost. Since bandwidth cost
and transcoding cost have different measurement units,
bandwidth cost reflects the network transmission capacity,
while transcoding cost reflects the computing power of the
MEC node; it is not easy to unify the corresponding dimen-
sional units. However, in the comparison of simulation
experiments, only the cost of comparing different environ-
ments is required. Therefore, like the design in Reference
[62], the bandwidth cost and transcoding cost can be
regarded as values without a unit of measurement, and there
is no need to consider the details of the unit of measurement.
The operational cost can be expressed as

C tð Þ = Cb tð Þ +O tð Þ: ð10Þ

4. Optimization Problem Formulation

Based on using the DRL algorithm for resource optimization
in the 2C-MEC system, we describe the three basic elements
of reinforcement learning. They are the state, action, and

reward of the collaborative video caching and transcoding
optimization problem.

4.1. State Space. The state at time stage t is jointly determined
by the four tuples, the current bandwidth cost CbðtÞ, the cur-
rent buffer occupancy rate LðtÞ, the current rebuffer time R
ðtÞ, and the current video quality qðtÞ. Then, the state space
SðtÞ at time stage t can be defined as follows:

S tð Þ = Cb tð Þ, L tð Þ, R tð Þ, q tð Þf g, ð11Þ

where the state space is denoted as S.

4.2. Action Space. The control action for the agent is to select
the video caching strategy and video transcoding strategy for
the next requested video chunk according to the current sys-
tem state. In this network, the action at each time stage t is
the joint video cache updating, cacheðMðtÞ,UðtÞÞ, and video
transcoding layer adaption decision, Buði, tÞ.

So, the action is selected from the action set AðtÞ, in
which MðtÞ, UðtÞ, and Buði, tÞ represent the number of
MEC severs selected in the cluster, the decision of video
cache updating, and the target video layer, respectively. Then,
the action space can be described as

A tð Þ = M tð Þ,U tð Þ, Bu i, tð Þf g, ð12Þ

where the action space is denoted as A.
In practice, since the numbers of MEC severs in a cluster

and the set of all video layers are not large; also, the decision
of video cache updating is only yes or no; the number of pos-
sible actions in the state space set for the collaborative video
caching and transcoding problem can be not very large.

4.3. Reward. The reward should reflect the objective of the
framework, which, in our case, is to reduce the operational
cost and desire best QoE for users by solving the collaborative
caching and transcoding for multi-MEC servers. In our
paper, we define the reward function during time stage t,
denoted by rðtÞ, as follows:

r tð Þ = ω1CRHsl tð Þ + λq tð Þ − ω2 q tð Þ − q t − 1ð Þk k − ω3R tð Þ
− ω4Cb tð Þ − ω5O tð Þ:

ð13Þ

The first term on the right-hand side of (13) is the
weighted sum of the short and long-term cache hit rate. Con-
sidering the number of requests for local video in the next
epoch, the short-term cache hit rate CRHsðtÞ can be either
0 or 1. Thus, let the total normalized number of requests
for local video within the last 20 requests as the long-term
cache hit rate CRHlðtÞ ∈ ½0, 1�. The total cache hit rate
CRHslðtÞ for each step is defined as the weighted sum of
the short and long-term cache hit rate, which is defined as

CRHsl tð Þ = CRHs tð Þ + μ ∗ CRHl tð Þ, ð14Þ

where μ is the weight to balance the short and long-term
cache hit rate.
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The second, third, and fourth terms on the right-hand
side of (13) are video quality, video quality variation, and
video rebuffering time, respectively. The fifth and sixth terms
on the right-hand side of (13) are two penalty terms for the
bandwidth cost and transcoding cost in each step. The total
cache hit rate, video quality, video quality variation, and
video playback rebuffering time are directly associated with
user perceived QoE in the video streaming service. And the
weights ω1, λ, ω2, ω3, ω4, ω5 are the weighting parameters.

4.4. Problem Formulation. In this paper, our objective is to
derive the jointly optimal video caching policy and video
transcoding policy for maximizing the rewards in video
streaming service. Future rewards and present rewards have
different importance and weights because of the uncertainly
of system dynamics. The objective of the joint video caching
policy and video transcoding policy is to maximize the
expected average reward. Then, we can formulate the
dynamic optimization problem as a Markov decision process
(MDP) as follows:

max
M tð Þ,U tð Þ,Bu i,tð Þ

 J tð Þ = E 〠
T−1

t=0
γtr tð Þ

" #

s:t:  C1 : M tð Þ ∈ 0, 1,⋯,Mf g, ∀t

C2 : U tð Þ ∈ 0, 1f g, ∀t

C3 : Bu i, tð Þ ∈ B1, B2,⋯, Bmaxf g, ∀t,
ð15Þ

where γ ∈ ð0, 1� is the discount factor.
It is impractical for the optimization problem with a large

number of states in state space. But the DRL algorithm has
been proved a useful mathematical tool for large-scale opti-
mization problem which does not need any prior knowledge
of state transition probability. Based on this, we propose a
DRL-based algorithm to solve the optimization problem in
formulation (15). Thus, the design of DRL-based intra-

cluster collaborative caching and transcoding framework is
shown in Figure 2.

5. DRL-Based Intracluster Collaborative
Caching and Transcoding Algorithm

5.1. Deep Reinforcement Learning-Based Collaborative Video
Caching and Transcoding for Multi-MEC Servers. Based on
DQN’s excellent performance when dealing with discrete
state space and action space, we adopt DQN for learning
the intracluster collaborative caching and transcoding policy.
Specifically, as illustrated in Figure 2, the inputs of the deep
neural network are the video service system states listed in
Equation (11), and the outputs of the network are theQ value
function, Qðs, a ; θÞ, for each action listed in Equation (12).

We illustrate the details of the DRL-based learning algo-
rithm for collaborative caching and transcoding for multi-
MEC servers in Algorithm 1.

6. Simulation Results and Analysis

In this section, firstly, we illustrate the experiment settings.
Then, the computer simulations are carried out to demon-
strate the performance of the proposed DRL algorithm of
collaborative caching and transcoding for multi-MEC servers
in mobile edge computing wireless networks.

6.1. Experimental Settings

6.1.1. Data Generation. In our experiments, the user data of
requests is generated randomly, while the video data of users’
requests is generated according to the Zipf distribution. We
have collected different numbers of requests in one episode
as the testing data, such as 30, 40, and 50. In order to make
the experiment more comprehensive, we generate two types
of data sets. Firstly, the video data set in users’ different-
number requests was generated with unchanged popularity
distribution with Zipf parameter set as 1.3. Then, the video
data set in users’ same-number requests was generated with
a varying Zipf parameter.

Agent

Evaluate network
Update

Target network State

Environment

MEC servers in cluster

Reward
QoE

Action
Mobile terminal

Reply memory

Caching update

Transcoding decision

MEC server selected

Action

Figure 2: The design of DRL-based intracluster collaborative caching and transcoding framework.

7Wireless Communications and Mobile Computing



6.1.2. Parameter Setting. In our experiments, we set 7 MEC
severs in one cluster, which serve 30 users in this region
and provide about 50 videos for users’ requests. Then, we
setD = 10s, β = 6:5, α = 1:3, μ = 0:6, σ = 1:2, the weights asso-
ciated with cache hit rate and QoE in the reward function are
set as ω1 = 1, λ = 0:9, ω2 = 0:9, ω3 = 0:1, and the weights asso-
ciated with cost penalty in the reward function are set as ω4
= 0:1, ω5 = 0:1.

In the experiment, there are four video layers of the video,
with Bmax = 10Mbps as the highest layer at the MEC server.
The bitrates of the three transcoded layers are B1 = 1Mbps,
B2 = 2Mbps, and B3 = 4Mbps, and the set of available CPU
cores at MEC is f2, 4, 6, 8g. Video transcoding from Bmax to
B1, B2, and B3 needs 2, 4, and 6 CPU cycles, respectively.
With the number of caching strategy being 2 (yes or no),
the number of videos’ bitrates being 4, and the number of
MEC severs in one cluster being 7, the number of actions in
action set A is 2 × 4 × 7 = 56.

6.1.3. Deep Neural Network for DQN. We use a fully con-
nected neural network with 2 hidden layers, 256 and 512 in
size. The loss function is the mean square error. The naive ε
-greedy strategy is used for exploration, and the probability
of randomly choosing an action during training is ε. As the
learning progresses, the degree of exploration continues to
shrink. The learning rate is 0.01, the size of experience replay
in DQN is 2000, the attenuation parameter used to update
the target Q network is 0.9, and the batch size in stochastic

batch gradient descent is 32. The experiments are imple-
mented using Python and TensorFlow.

6.2. Simulation Results. In this section, we compare the pro-
posed DRL algorithm (called DRL-CCT) with the latest base-
line methods, such as the method (called caching only at
network edge) in Reference [51] and the method (called
transcoding only at network edge) in Reference [56]. In our
experimental framework, we simulated the above methods
according to the setting form of the reward function in the
above literature. Also, we compare the proposed DRL
algorithm with the algorithm of DRL-CCT without trans-
coding policy. Especially due to the characteristics of deep
reinforcement learning, for our proposed algorithm, all
reported results were obtained from average of 20 algo-
rithm executions.

Figure 3 shows the convergence performance of the DRL-
CCT algorithm under the set of full weight in the different
learning rates. With continuous learning, the average reward
gradually stabilizes. Compared with the balanced method of
the algorithm in Reference [56], the average reward of the
algorithm we proposed converges faster, and the subsequent
fluctuations are slightly larger. But in contrast, the deep net-
work used in our DRL-CCT algorithm is more concise and
efficient. The convergence performance is influenced by
learning rate. The performance of the learning rate 0.01 is
better than the performance of the learning rates 0.1, 0.001,
and 0.0001. The convergence performance becomes worse

1: Initialization:
2: Initialize replay memory D to capacity N
3: Initialize Q network and target Q network with random weights
4: Initialize MEC service matrix V of requests
5: for episode =1, M do
6: Generate the user requests data
7: Observe the initial state s1 as illustrated in Eq. (11)
8: for t =1, T do
9: Give a random probability ς ∈ ½0, 1�

10: Choose action A(t) which listed in Eq. (12) as AðtÞ =
a∗ðtÞ = arg max

a
Qðs, a ; θÞ, ς > ε

aðtÞ ≠ a∗ðtÞ, randomly select aðtÞ, others

(

11: Based the action A(t), execute the transcoding policy and the caching updated
12: Observe the reward r(t), state s(t+1)
13: Store the transition (s(t), A(t), r(t), s(t+1)) in D
14: Update MEC service matrix V of requests
15: Sample random minibatch of transitions

(s(t), A(t), r(t), s(t+1)) from D

16: Set y j =
r j for terminal s′

r j + γ maxa′Qðs′, a′ ; θi−1Þjs, aÞ for non‐terminal s′

8<
:

17: Perform a gradient descent step according to equation:
LiðθiÞ = Es,a∼ρð⋅Þ½ðyi −Qðs, a ; θiÞÞ2�
yi = r + γ maxa′Qðs′, a′ ; θi−1Þjs, aÞ

.

18: Update the parameters in the Q network
19: Reset the parameters in the target Q network every G time stages
20: end for
21: end for

Algorithm 1: Deep reinforcement learning algorithm for collaborative video caching and transcoding (DRL-CCT).
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in the learning rate 0.1, owing to a large update step such that
the average reward converges to a local optimal solution. In
fact, an appropriate learning rate depends on the state of
the environment in the current optimization process.

Figure 4 gives the comparison of cache hit rates in differ-
ent algorithms at the same cache ratios. Compared with the
other algorithms, the DRL-CCT algorithm has a higher cache
hit rate. Since the 2C-MEC system model has been proposed,

Average reward
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–400
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Learning rate = 0.0001

30 35 40

Figure 3: The convergence performance of DRL-CCT algorithm in the different learning rate.
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Figure 4: Cache hit rate vs. cache ratio.
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the cluster-based video cache hit rate is definitely better than
the video cache hit rate based on a single MEC server, espe-
cially when the cache ratio is relatively small. In addition,
the performance in the cache hit rate of DRL-CCT without
transcoding policy algorithm is the worst one because only
the highest version of the video is cached in the MEC. Owing
to the absence of transcoding function at network edge, the
MEC server has to return to the source server for extraction
when the user requests for other version of the video, which
results in low cache hit rate.

In Figure 5, we study the cache hit rate as a function of
the Zipf exponent. As Zipf exponent increases, cache hit rates
achieved by the caching policy increase first and then
decrease. This is due to the fact that with larger Zipf expo-
nent, the video popularity distribution is more concentrated,
and therefore, the popularity of the files is skewed. Conse-
quently, caching these more popular videos leads to an
increase first in the cache hit rates. Then, the cache hit rates
have a fall. It is because that the DRL-CCT algorithm stores
the most popular files initially when the number of popular
files gets small. However, it eventually experiences diminish-
ing returns as Zipf exponent is further increased, and the
larger the Zipf exponent, the smaller the influence of less
popular files is.

As for average QoE performance in Figure 6, DRL-CCT
is much better than “transcoding only” and the other two
algorithms. Due to the long rebuffering time, the average
QoE value of the DRL-CCT without transcoding algorithm
and “caching only” algorithm are below zero all the time.
Compared with these methods which has no joint caching
and transcoding at the edge, DRL-CCT has the highest
QoE, which means users can get much better experience in

video streaming services. It can be seen from Figure 7 that
when there is no transcoding function at the network edge,
the bandwidth cost is greater than the DRL-CCT algorithm,
because the uncached video has to be extracted from the
source server which leads to consume a lot of bandwidth cost.
The difference of bandwidth cost performance between
“transcoding only” algorithm and DRL-CCT algorithm is
slight in the latter stage.

The average bandwidth cost and QoE performance in
DRL-CCT algorithm with different experimental settings
are shown in Figures 8–11. Figures 8 and 9 are the perfor-
mance for different request numbers in an episode. It can
be seen from Figure 8 that as the number of user requests
in a time slot increases, the average bandwidth cost of each
MEC will continue to increase. This is because the number
of MEC servers is fixed. When the number of user requests
has increased, the number of user requests served by each
MEC must increase, which directly leads to an increase in
the average bandwidth cost of each MEC. The following con-
clusions can be directly obtained in Figure 9 that the change
in the number of requests from different users in a time slot
does not have a great impact on the average QoE of the users,
and the QoE value of the video streaming service is stable in a
good range.

Then, Figures 10 and 11 are the performance for different
MEC numbers within a cluster at network edge. According to
Figure 10, on the premise that the number of user requests in
a time slot is determined, when the number of MEC nodes in
the edge cluster decreases, the average bandwidth cost of each
MEC will increase at the beginning. However, as the deep
reinforcement learning process progresses, the average band-
width cost of each MEC will tend to stabilize. This is due to
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Figure 5: Cache hit rate vs. Zipf exponent.
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the adaptive decision-making function of deep reinforcement
learning, which continuously optimizes the MEC load distri-
bution in one edge cluster. In Figure 11, the same as in

Figure 9, the average QoE performance of the system has
always been relatively stable, indicating that the proposed
method has excellent robustness to environmental changes.

450

400

350

300

250

200

150

50

100

5 10 15 20

Epsiode

Bandwidth cost

25 30 35 40

DRL-CCT
Transcoding only at network edge

Caching only at network edge
DRL-CCT without transcoding policy

Figure 7: The bandwidth cost performance in different algorithms.
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7. Conclusions

In this paper, we first propose a CDN and Cluster-based
Mobile Edge Computing system that can enhance the ability
of caching and computing and promote the collaboration
among MEC severs in one cluster. In addition, we formulate
a novel deep reinforcement learning based framework to
automatically obtain the intracluster collaborative caching
and transcoding decisions, which are executed based on
video popularity, user requirement prediction, and abilities
of MEC servers. Then, numerical results are presented to val-
idate the effectiveness of the proposed method.

Under the framework of the 2C-MEC system, this paper
mainly researches on promoting the collaboration among
MEC servers in the cluster. In the future work, intercluster
collaboration needs to be considered when intracluster com-
puting and storage capabilities are insufficient. If it is assumed
that the terminal has caching and computing capabilities, it is
also possible to consider “edge-end” collaboration, “end-end”
collaboration, and other collaboration modes to implement a
multidimensional collaboration model of “cloud-edge-end”
among different agents. At the same time, load balancing
among MEC servers in the mobile edge cluster still needs
further research to explore efficient ways to solve the con-
tradiction between the balance of MEC servers and the
improvement of user QoE.
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This paper proposes a DRL-based cache content update policy in the cache-enabled network to improve the cache hit ratio and
reduce the average latency. In contrast to the existing policies, a more practical cache scenario is considered in this work, in
which the content requests vary by both time and location. Considering the constraint of the limited cache capacity, the
dynamic content update problem is modeled as a Markov decision process (MDP). Besides that, the deep Q-learning network
(DQN) algorithm is utilised to solve the MDP problem. Specifically, the neural network is optimised to approximate the Q value
where the training data are chosen from the experience replay memory. The DQN agent derives the optimal policy for the cache
decision. Compared with the existing policies, the simulation results show that our proposed policy is 56%–64% improved in
terms of the cache hit ratio and 56%–59% decreased in terms of the average latency.

1. Introduction

The recent rapid evolution of mobile communication tech-
niques and the proliferation of smart mobile devices have
caused an exponential growth in mobile network traffic [1]
[2]. According to Cisco [3], global mobile network traffic will
reach 77 exabytes each month by 2022. As such, it will lead to
data traffic congestion of the backhaul [4]. To mitigate this, a
cache-enabled technique has emerged that is regarded as an
effective method that can alleviate data traffic congestion
[5]. In a cache-enabled network, a portion of the popular
content is cached at the edge of the network at base stations
(BSs) or user terminals (UTs), where users can directly access
and download the cached content from the edge rather than
from the core network via backhaul links. Consequently, data
traffic congestion of the backhaul can be reduced and content
retrieval from the edge can be faster than from the remote
core network [6, 7].

However, because of the limited cache capacity, it is nec-
essary to update cache content to ensure that cache-enabled
networks always store the most popular content [8]. The

most two common content update policies are the least fre-
quently used (LFU) policy and the least recently used
(LRU) policy [9]. LRU frequently stores the content with
the latest access time, and LFU frequently stores content with
the largest cumulative request times. Besides, as described in
[10], a heterogeneous cache structure is proposed, in which
the most popular contents are stored at small BSs and the less
popular contents are stored at macro BSs. The combination
of small BSs and macro BSs can maximise the network capac-
ity and satisfy the content transmission demand. In [11], an
optimal cooperative cache policy that can increase the cache
hit ratio was presented. The cache hit ratio is utilised to
describe how frequently content is requested by mobile users.
In [9], an adaptive cache policy was proposed that can reduce
user access latencies. In [12], an edge cache policy was pro-
posed to reduce the average content delivery latency. How-
ever, conventional methods lack adaptive ability in dynamic
cache scenarios. The reason is that they assume that the con-
tent popularity distribution is known or can be accurately
predicted, which is difficult to achieve in dynamic caching
scenarios. In this case, due to an inaccurate distribution of
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content popularity, the conventional methods have poor
cache performances, since their performances are highly
dependent on the accurate distribution of content popularity.

Motivated by the deep reinforcement learning (DRL)
approach in solving the dynamic problem [13], DRL has
been applied into cache policies to improve the cache perfor-
mance of dynamic cache scenarios. In [14], a DRL approach
was proposed to reduce the transmission cost by jointly con-
sidering proactive cache and content recommendations. In
[15], a cache content update policy based on DRL was pro-
posed to improve energy efficiency. In [16], a DRL model
was utilised to minimise transmission latencies. For specific,
reinforcement learning (RL) is applied to obtain the optimal
cache policy. In [17], a DRL-based policy was proposed to
minimise system power consumption. In [18], a deep Q-
learning network (DQN) algorithm, one branch of DRL, is
applied to do the network slicing decision and allocates the
spectrum resources for the content delivery. In [19], a
DQN-based mobile edge computing network is proposed,
in which several computation tasks are offloaded from the
user terminals to the computational access points. Although
DQN has attracted significant attention in the cache-
enabled network, there are very little works done in applying
DQN into the cache content update phase. Moreover, most
of the previously mentioned DRL-based cache policies
assume the content requests as a time-varying variable. They
did not adopt more practical scenarios in which the content
requests are varied in both time and location, also known
as spatiotemporally varying scenarios.

Inspired by the aforementioned literature, in this paper, a
DQN-based content update policy at BSs is proposed to
increase the cache hit ratio and reduce average latency, as
well as considering spatiotemporally varying scenarios in
which content requests vary by both time and location. The
reasons to apply DQN are as follows: (1) DQN has a faster
convergence speed than the conventional DRL policies, e.g.,
advanced actor-critic (A2C) and deep deterministic policy
gradient (DDPG) [14]. (2) DQN can adapt to the varying sce-
narios, as long as the dynamic problem is correctly modeled
and the DQN agent is allowed to continuously learn experi-
ence from the environment [18]. The main contributions
are summarised as follows:

(i) The dynamic cache content update problem is for-
mulated as a Markov decision process (MDP) prob-
lem, which is solved by a DQN algorithm.
Specifically, the neural network is utilised to approx-
imate the Q value and the DQN agent is used to
decide whether or not to cache the requested content

(ii) Our proposed policy is compared with LRU, LFU
and DRL [20] policies and the simulation results
demonstrate that our proposed policy has the best
cache performance in terms of the cache hit ratios
and average latencies

The rest of this paper is organised as follows. The system
model and problem formulation are introduced in Section 2.
The detailed elements of the MDP framework and the prin-
ciples of the DQN-based cache content update policy are dis-

cussed in Section 3. The simulation results are shown in
Section 4, and the conclusion is provided in Section 5.

2. System Model and Problem Formulation

In this section, the system model and the problem of how to
maximise the cache hit ratio and minimise average latency
are introduced.

2.1. System Model. As shown in Figure 1, the cache-enabled
system includes one core network, M cache-enabled BSs,
and ℧ mobile users. Each BS can store H contents at most.
The total content library W = f1, 2,⋯, ωg contains ω kinds
of contents and each content has the same size Sizedf . The
core network is assumed that has enough capacity to store
the entire contents. Each BS covers a circular cellular
region with a fixed radius, and all of the mobile users in
its cellular region can connect with the serving BS (the
BS where users connect). Mobile users can directly retrieve
their requested content from the serving BS if the content
is cached locally (the requested content is already cached
at the serving BS); otherwise, the requested content must
be retrieved from the core network. The ith BS is regarded
as a DQN agent and receives the spatiotemporal content
requests Ri = fRi

1, Ri
2,⋯, Ri

t,⋯g, where Ri
t is the current

content request at the ith BS. From the received content
requests, the DQN agent can decide when and where
(which BS) to cache the content or not. If cached, the
DQN agent further decides which cached content is
replaced by the currently requested content; otherwise,
the cached contents remain the same. The action space
of the ith BS is defined as Ai = fAi

0, Ai
1, Ai

2,⋯, Ai
Hg and

Ai uses one hot code. Ai
0 = 1 means that the cached con-

tent remains the same, and Ai
v = 1 means that the vth

cached content is replaced by the currently requested con-
tent, where v ϵ f1, 2,⋯,Hg. In summary, at each time slot

Core network

Base station (BS)

Cache
User

Moving trajectory

BS - user connection

Backhaul link

Figure 1: The system model of the cache-enabled network.
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t, each BS receives numerous content requests including
the user preference content and location information,
and each DQN agent executes one action from the corre-
sponding action space to maximise the cache hit ratio and
minimise the average latency.

2.2. Problem Formulation. The problem in this study consists
of two subproblems: maximising the cache hit ratio and
minimising average latency.

2.2.1. Maximising the cache hit ratio. The cache hit ratio is
utilised to describe the probability of the requested content
at the local cache. The system cache hit ratio P hit_ratio is for-
mulated for N requests as follows:

P hit_ratio =
∑℧

i=1∑
N
t=1F Ri

t

� �
℧×N

, ð1Þ

where FðRi
tÞ is a function to test whether the requested con-

tent is cached locally. The definition of FðRi
tÞ is as follows:

F Ri
t

� �
=

1, if Ri
t is cached locally

0, otherwise

(
ð2Þ

Maximising the cache hit ratio is expressed as follows:

P_1 : Max P hit_ratio

s:t:〠
T

t=1
F Ri

t

� �
≤H

ð3Þ

2.2.2. Minimising the average latency. The latency is an indi-
cator that evaluates the cache content update policy’s perfor-
mance. The latency is the time when content is transmitted
from one location to another. The latency consists of the
transmission latencyT tr, propagation latency T prp, process-
ing latency T pro, and queue latency T qu. From [20], the
expression of the latency T is given as:

T =T tr +T prp +T pro +T qu: ð4Þ

Normally in the content update process, the destination
of the content packet is determinate, and the content packet
is assumed that does not need to wait for transmission.
Hence, the processing and queue latencies can be neglected
during the content update process [20, 21], and the expres-
sion of the latency can be optimised as follows:

T tr =
Sizedf
vtr

,

T prp =D∗ × d
R

,

T =T tr +T prp =
Sizedf
vtr

+D∗ × d

R
,

ð5Þ

where Sizedf is the content size, vtr is the content transmis-
sion rate, R is the maximal coverage radius of the serving

BS or core network, d is the distance between the user and
the serving BS or between the serving BS and the core net-
work, and D∗ is the maximal propagation latency between
the user and the serving BS or between the serving BS and
the core network. To meet the requirement of the fifth-
generation (5G) communication [22], the indicator D∗is
expressed as follows:

D∗ =
D∗

user−BS = 0:5 ~ 1:5ms, if it is a user − BS connection
D∗

BS−core = 10 ~ 20ms, if it is a BS − core network connection

(
,

ð6Þ

where D∗
user−BS is the maximal propagation latency between

the user and the serving BS, and D∗
BS−core is the maximal

propagation latency between the serving BS and the core
network.

In more detail, if the requested content is cached locally,
the content can be directly retrieved from the serving BS.
Thus, for a hit content request, we consider the maximal
propagation latency between the user and the serving BS
D∗

user−BS, the distance between the user and the serving BS
duser−BS, and the maximal coverage radius of the serving BS
RBS. The definition of the hit content T hit latency is as fol-
lows:

T hit =
Sizedf
vtran

+D∗
user−BS ×

duser−BS
RBS

: ð7Þ

If the requested content is missed at the serving BS, the
serving BS needs to first retrieve the requested content from
the core network and then deliver the requested content to
the corresponding user. Hence, for a missed content request,
we consider the maximal propagation latency between the
user and the serving BS D∗

user−BS, the maximal propagation
latency between the serving BS and the core network
D∗

BS−core, the distance between the user and the serving BS
duser−BS, the distance between the serving BS and the core net-
work dBS−core, the maximal coverage radius of the serving BS
RBS, and the maximal coverage radius of the core network
Rcore. The definition of the latency of missed content T miss
is as follows:

T miss =
Sizedf
vtran

+D∗
user−BS ×

duser−BS
RBS

+D∗
BS−core ×

dBS−core
Rcore

:

ð8Þ

The system latency T sy is the sum of the latency of all of
the hit content requests and all of the missed content
requests. The average latency T ave is the system latency
divided by the number of content requests E. The T sy and
T ave are defined as follows:

T sy = E ×P hitratio ×T hit + E × 1 −P hitratio
� �

×T miss
� �

,

T ave = P hitratio ×T hit + 1 −P hitratio
� �

×T miss
� �

:

ð9Þ
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The problem on how to minimise the average latency can
be formulated as follows:

P2 : Min T ave,
s:t:P hit_ratio ∈ 0, 1½ �:

ð10Þ

3. A Deep Q-Learning Network-Based Cache
Content Update Policy

The related elements of the deep Q-learning network will be
introduced in Section 3.1. The principle of the DQN algo-
rithm and the workflow of our proposed cache policy will
be provided in Section 3.2.

3.1. The Description of the Related Elements of the Deep
Q-Learning Network. The principle of the DQN can be
regarded as a Markov decision process (MDP) [23, 24].
To apply the DQN to the cache content update problem,
the related notations under the DQN framework are
described.

3.1.1. State Space. In time slot t, the instant state consists of
the currently cached content, the currently requested content
and its corresponding user, the user’s next location, and the
current time. In time slot t, the current instant state st is
defined as

st = cit, Ri
t, jt, L

j
t

n o
, ð11Þ

where cit is the cached content at the ith DQN agent, Ri
t is the

currently requested content, jt is the unique name of the

mobile user currently requesting the content, Lj
t is the next

location of the jth user, i ∈ f1, 2,⋯,Mg, and j ∈ f1, 2,⋯,℧g.
The state space S is the set of all of the instant states over a

time period. It is defined as

S = s0, s1, s2,⋯, st,⋯f g: ð12Þ

3.1.2. Action Space. In each time slot t, the ith DQN agent
decides whether or not to cache the currently requested con-
tent. If yes, the DQN agent decides which cached content is
replaced by the currently requested content; otherwise, the
cached content remains the same. The action space of the i
th DQN Ai is defined as

Ai = Ai
0, Ai

1, Ai
2,⋯, Ai

H

� �
, ð13Þ

where Ai uses one hot code, which means only one action can
be executed in a time slot. In this study, Ai

0 = 1 means the
cached content remains the same and Ai

v = 1 means the vth

cached content is replaced by the currently requested con-
tent, where v ϵ f1, 2,⋯,Hg and H is the maximal capacity
of the ith BS.

3.1.3. Reward and Value Functions. The reward rt is the
instant cache hit ratio in the time slot t. Specifically, reward
rt = 1 when the currently requested content is hit in the next

state st+1; otherwise, rt = 0. The policy πðsÞ =P ða ∣ stÞ is a
map that shows the probability of the execution of action
at under the current state st, and at ∈ Ai. The MDP evaluates
and optimises the policy based on the value function, which
is defined as the expected value of cumulative discounted
rewards received over the entire process following the policy
[25]. There are two definitions of value functions: one is the
state value function and the other is the state-action value
function. The state value function is the expected value of a
discounted cumulative reward in the current state st when
the agent follows the policy. The state value function is
defined as follows:

Vπ sð Þ = Eπ 〠
∞

u=0
γurt+u+1 ∣ st

" #
: ð14Þ

The state-action value function is the expected value of
the discounted cumulative reward from the current state st
and action at is based on the policy used to choose one
action. The definition of the state-action value function is

Qπ s, að Þ = Eπ 〠
∞

u=0
γurt+u+1 ∣ st, atð Þ

" #
, ð15Þ

where γ ϵ ½0, 1� is a discount factor that affects the future
reward from the current state st. The target of the MDP is
finding the optimal πðsÞ and π∗ðsÞ that can obtain the max-
imal value function.

3.2. The Cache Content Update Based on the Deep
Q-Learning Network

3.2.1. Principle of the DQN Framework. DQN is an effective
hybrid framework of neural networks and Q-learning. In this
framework, the neural network is applied to predict the Q
values rather than recording the Q values in a Q table. How-
ever, the DQN will not be efficient when considering only the
combination of Q-learning and the neural network. The fol-
lowing two characteristics improve the DQN framework’s
efficiency.

(i) The DQN has two neural networks with the same
structures operating in different parameters, the eval-
uation network and the target network. The parame-
ters of the evaluation and target networks are defined
as θ and θ−, respectively. The evaluation network
uses the latest parameter θ to predict the current
state-action Q values Qðst ,at ,θÞ, where θ is updated in
each iteration. The target network uses the parameter
θ− to predict the next state-action Q value
Qðst+1,at+1,θ−Þ, where θ

− is updated over a period time.
The target network can solve the correlation of the
Q value with the Q target value, which makes the
DQN easier to converge

(ii) DQN has an experience replay memory with a lim-
ited capacity. The current state st , action at , reward
rt, and next state st+1 are stored in format (st, at,
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rt, and st+1) into the memory as experiences. Once
the capacity is full, new received experiences will
replace earlier experiences. During the training stage,
the training data are randomly selected from the
experience replay memory. The random selection
disorganises the experience correlation, which solves
the neural network’s overfitting issue

The neural network enables Qðst ,at ,θÞ ≈Qðst ,atÞ [26].
According to [5], the evaluation of Qðst ,atÞ is derived from
Q-learning as:

Q st ,atð Þ =Q st ,atð Þ + b rt + γ ∗max Q st+1,at+1ð Þ −Q st ,atð Þ
h i

,

ð16Þ

where b is the learning rate ϵ ð0, 1Þ, and γ is the discount fac-
tor ϵ ½0, 1�.

The neural network can be trained via the minimisation
of the loss function. The loss function Loss ðθÞ is defined as:

Loss θð Þ = E Q st+1,at+1,θ−ð Þ −Q st ,at ,θð Þ
� 	2


 �

= E rt + γ ∗max Q st+1,at+1,θ−ð Þ −Q st ,at ,θð Þ
� 	2


 �
,

ð17Þ

where rt + γ ∗max Qðst+1,at+1,θ−Þ is the target network’s Q
value and Qðst ,at ,θÞ is the evaluation’s Q value.

The detailed optimisation of the evaluation network and
target network is shown in Figure 2. In each training step, the
evaluation network receives a backpropagated loss function
based on a batch of experiences randomly selected from the
experience replay memory. The parameter of the evaluation
network θ is then updated by the minimisation of the loss
function via the stochastic gradient descent (SGD) function.

After several steps, the parameter of the target network θ−

is updated by assigning the latest parameter θ to θ−. After a
training period, the two neural works are stably trained.

3.2.2. The Workflow of the Cache Content Update Policy
Based on DQN. In each decision epoch, the ith DQN agent
receives a content request. If the content is cached locally,
the serving BS delivers the requested content to the corre-
sponding user. If the content is missed at the serving BS,
the serving BS retrieves the requested content from the core
network and then delivers the content to the corresponding
user. Subsequently, the requested content is cached at the
serving BS when the cache capacity is not full. If the cache
capacity is full, the optimised evaluation network outputs
the Q value of all of the actions, and the DQN agent selects
an action ak with the maximal Q value. After the execution
of the action ak, the new instant reward is calculated into
the target network’s Q value and a new loss function is
obtained based on Eq. (17). The parameters θ and θ− are then
updated based on the minimisation of the new loss function.
After a training period, the best policy π∗ðsÞ that can maxi-
mise the cache hit ratio and minimise the average latency is
derived. The DQN-based cache content update policy is
shown in Algorithm 1.

4. Results and Discussion

In this study, we consider a cache-enabled network with 4
BSs and 10 mobile users and ensure that each user is covered
by a BS. For simplicity, the users are distributed along with
the edge of the serving BS, and each BS has the maximal com-
munication distance with the core network, and hence, the
rate d/R is 1. Besides, there is no overlap between any two
BSs to avoid the handover between any two BSs. Further-
more, each content has the same size (2,000 bits), and the
content transmission rate is 35Mbit/s. The neural network
has three layers, the input layer, hidden layer, and output
layer. The hidden layer has 512 neurons, and the number of

Backpropagation
feedback

Loss function

Latest parameter is
assigned to target
network every

several iterations

Experience replay memory

Evaluation network Target network

Environment
S

argmaxQ(s,a,𝜃)

(st, at) st+1
(s1, a1, r1, s2)
(s2, a2, r2, s3)

(st, at, rt, st+1)

Q(st,at,𝜃) Q(st+1,at+1,𝜃–)

Figure 2: Flow chart of the deep Q-learning network.
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neurons at the input and output layers is ðH + 3Þ and ðH
+ 1Þ, respectively. The maximal cache capacity H is
described in each experiment. The learning rate b is 0.9, the
greedy parameter ε is 0.9, and the discount factor γ is 0.1.
The content requests of the ith user are generated following
the Zipf distribution law as

p δ,K , Bð Þ = δ−K

∑B
b=1b

−K , ð18Þ

where δ is the content rank,K is the Zipf parameter, and B is
the total number of content requests. In each experiment, we
assume that the total number of content requests is 7,200.

Figure 3 investigates the cache hit ratios of the LFU pol-
icy, LRU policy, DRL policy in [20], and our proposed policy.
The Zipf parameters vary from 1.1 to 1.8, the users’ locations
are fixed, and the cache can store 288 types of contents at
most. As the Zipf parameter K increases, the four policies’
cache hit ratios increase. This occurs because as the Zipf
parameter increases, there is less content with larger proba-
bilities of content requests. In other words, the popular con-
tent becomes more popular, the unpopular content becomes
less popular, and the type of content decreases. Considering
the same cache capacity, the cached content is more popular,
and therefore, the cache hit ratio increases. Our proposed
policy has the highest cache hit ratio regardless of the Zipf

parameter. The simulation demonstrates that the effect of
the popular content in the cache hit ratio increases as the Zipf
parameter increases. Thus, our proposed policy is superior to
the three other policies.

Figure 4 investigates the effect of the cache capacity on
the cache hit ratio. Here, the Zipf parameter is 1.4, and the
mobile users’ locations are fixed. The varied cache capacity
is 36, 72, 108, 144, 180, 216, 252, and 288. As demonstrated,
our proposed policy is superior to the three other policies
since our proposed policy has the highest cache hit ratio. In
addition, as the cache capacity increases, the cache hit ratios
of the four policies continuously increase. When the capacity
is 288, the cache hit ratios of the four policies are remarkably
close. This occurs because the popular content dominates the
cache hit ratio, and the cache capacity is high enough to store
all of the popular contents.

The cache hit ratio under spatiotemporally varying sce-
narios is shown in Figure 5. In the experiment, the cache
can store 216 types of contents at most, the Zipf parameters
are randomly generated from 1.2 to 1.6 every 20,000 time
slots, and the users are initially fixed and randomly change
their locations among the four BSs after the 20,000 time slot.
When the users’ locations and the Zipf parameters are fixed,
the gaps between our proposed policy and the three other
policies are gradually stable. This occurs because all of the
policies are optimally trained. After time slot 20,000, the four
policies immediately decrease. This occurs because the

The DQN-based cache content update algorithm.
Input: The feature of the state st
Initialise the parameter θ and θ− and instant reward rt =0
for step =1, Y do
fort = 1, Τdo

Receive a content request
if the content request is cached locally, then
BS directly delivers the requested content to the user end epoch
elif
The cache capacity is not full, then
BS retrieves the requested content from the core network and delivers the requested content to the user
The requested content is cached locally end epoch
elif
The cache capacity is full, then
observe the current state st
randomly generate a value ρ
ifρ < ε, then
randomly select an action at from the action spaces
else
at = argmaxQðst ,at ,θÞ
end if
execute at, receive the reward rt , next state st+1
store (st, at, rt, st+1) into the experience replay memory
randomly selects a mini-batch of the experiences
update the parameter of the evaluation θ via the minimisation of the backpropagated loss
update the parameter of the evaluation θ− in several time slots
end if

end for
end for

Algorithm 1:
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content popularity changes with the random movement of
the users and random generation of the Zipf parameters.
Later, our proposed policy’s curve slowly increases, while
the three other policies’ curves continuously decrease. The
gaps between our proposed policy’s curve and the other pol-
icies’ curves continuously increase. Our proposed policy
eventually improves by at least 56% compared with the three
other policies. The growth ratio ℊ is derived based on ℊ =
Cour − Cexisting/Cexisting, in which Cour and Cexisting is the cache
hit ratio of our proposed policy and any one of the other
three policies, respectively. This significant improvement
occurs because our proposed policy considers the effect of

the users’ random distribution and the random generation
of Zipf parameters. Therefore, our proposed policy quickly
adapts to spatiotemporally varying content requests. Conse-
quently, we conclude that our proposed policy is superior
for managing spatiotemporally varying problems.

Figure 6 demonstrates the four policies’ average latencies
under different Zipf parameters. Here, the Zipf parameters
vary from 1.1 to 1.8, the mobile users’ locations are fixed,
and the cache can store 288 types of contents at most. As
demonstrated, our proposed policy always has the lowest
cache hit ratio compared with the other three policies. Thus,
our proposed policy has the best cache hit ratio. The higher

0.55

Zipf parameter

Ca
ch

e h
it 

ra
tio

1.21.1 1.3 1.4 1.5 1.6

LFU
LRU

Our proposed policy
DRL

1.7 1.8

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Figure 3: The cache hit ratio vs. the varying Zipf parameters. We assume that the Zipf parameters = 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, and 1:8.

0.2

Cache capacity

Ca
ch

e h
it 

ra
tio

50 100 150 200

LFU
LRU

Our proposed policy
DRL

250 300

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4: The cache hit ratio vs. the cache capacity. The varied cache capacity is 36, 72, 108, 144, 180, 216, 252, and 288.

7Wireless Communications and Mobile Computing



the cache hit ratio is, the more contents can be retrieved
locally. The local latency from the BS is much smaller than
the remote latency from the core network. Therefore, our
proposed policy performs better than the other three policies
in terms of the average latency.

As shown in Figure 7, we investigate the effect of the
cache capacity on the average latency. In this simulation,
the Zipf parameter is 1.4, and the mobile users’ locations
are fixed. The cache capacity is 36, 72, 108, 144, 180, 216,
252, and 288. The higher the cache capacity, the lower the
average latency of each policy. This occurs because more con-
tents can be cached locally as the cache capacity increases. In

addition, the slope of each policy gradually decreases. This
occurs because all of the policies aim to cache the most pop-
ular contents via their limited cache capacity. As the cache
capacity further increases, more contents are cached, while
the recently cached contents are less popular than the initially
cached contents. Consequently, the average latency increases
less when caching less popular contents. Furthermore, our
proposed policy has the minimal average latency regardless
of the cache capacity.

Figure 8 shows the average latency under spatiotempo-
rally varying scenarios. In the experiment, the cache is
assumed that can store 216 types of contents at most, the Zipf
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parameter is randomly generated from 1.2 to 1.6 every 20,000
time slots, and the users are initially fixed and randomly
change their locations among the four BSs after the 20,000
time slot. In the first 20,000 time slots, each policy finally
has a stable cache performance after a training period. Once
the users randomly move among the four BSs, the LRU, LFU,
and DRL policies’ curves immediately increase, and our pro-
posed policy’s curve first slightly increases and then gradually
decreases. More specifically, our proposed policy achieves a
56%-59% decrease compared to the three other policies.
The reduction rate y is derived based on y = Lexisting − Lour/
Lexisting, in which Lour and Lexisting is the latency of our pro-

posed policy and any one of the other three policies, respec-
tively. The decrease occurs because our proposed policy
considers the effect of the dynamic changes in the user distri-
bution and Zipf parameters on the latency, while the other
three policies do not. The simulation demonstrates that our
proposed policy can perform stably under spatiotemporally
varying scenarios.

5. Conclusions

In this study, a DRL-based cache content update policy is
proposed with the objective to maximise the cache hit ratio
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and minimise the average latency. Compared to the existing
policies, a more practical cache scenario is considered, in
which the content requests vary spatiotemporally. The
dynamic content update problem is formulated as an MDP
problem, and DQN is applied to solve this MDP problem.
Specifically, the neural network is trained to approximate
the Q value, in which the training data are chosen from the
experience replay memory. The DQN agent derives the opti-
mal policy from the neural network for the cache decision.
Compared with the existing policies, e.g., the LFU, LRU,
and DRL [20] policies, the simulation results show that our
proposed DRL-based cache content update policy has the
best cache performance in the considered spatiotemporally
varying scenario and is 56%–64% improved in terms of the
cache hit ratio and 56%–59% decreased in terms of the aver-
age latency.

Data Availability

Content requests were described in the simulation section.
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Mobile edge computing (MEC) nodes are deployed at positions close to users to address excessive latency and converging flows.
Nevertheless, the distributed deployment of MEC nodes and offload of computational tasks among several nodes consume
additional energy. Accordingly, how to reduce the energy consumption of edge computing networks while satisfying latency and
quality of service (QoS) demands has become an important challenge that hinders the application of MEC. This paper built a
local-edge-cloud edge computing network and proposes a multinode collaborative computing offloading algorithm. It can be
applied to smart homes, realize the development of green channels, and support local users of Internet of Things (IoT) to
decompose computational tasks and offload them to multiple MEC or cloud nodes. The simulation analysis reveals that the new
local-edge-cloud edge computing offload method not only reduces network energy consumption more effectively compared with
traditional computing offload methods but also ensures the implementation of more data samples.

1. Introduction

With the continuous development of the Internet of Things
(IoT) technology in recent years, IoT network equipment
has developed perception and communication abilities, and
the user end of the network can extend to information
exchange and communication between any goods in daily life
[1]. IoT technology has also been used in various aspects of
industrial production and daily life. In transportation and
network performance optimization [2], IoT has been used
in smart homes, smart industries, and smart cities, among
others. Previous studies have largely focused on the applica-
tion scene of smart homes. The local user ends of IoT in
smart homes can take the form of any good. Therefore, IoT
contains diversified user data, whereas intelligent electrical
apparatus requires a rapid and effective processing of task
data [3]. In this case, a fast, efficient, and safe task processing
mode needs to be devised to meet the demands of users with
a large data size or high sensitivity to latency. Given that the
traditional single-cloud model cannot meet such demands,
the concept of mobile edge computing (MEC) has been pro-
posed based on cloud computing [4]. MEC is a new comput-
ing model, and MEC nodes are widely distributed in the

vicinity of the client to provide intelligent services for local
users. Edge nodes can be installed on the edge server (e.g.,
vehicles and UAV) to meet the linkage demands of different
users [5]. Combined with MEC, a multinode cooperation of
data tasks is realized by transmitting data between the local
users of IoT and MEC nodes wherein the local user data of
IoT are offloaded to nearby MEC servers, thereby addressing
the limited computing capability of these users and reducing
their computing task pressures. However, MEC nodes have a
limited computing capacity, thereby requiring a cooperation
among multiple MEC nodes to handle computing tasks with
a large data size.

To solve the network energy consumption problem
under a large data size at the user ends of IoT, this study ini-
tially analyzes and selects MEC nodes in a local-edge-cloud
edge computing network model while considering the dis-
tances between the MEC nodes and user ends, the channel
characteristics, and the CPU energy consumption.

The main contributions can be summarized as follows:

(1) The local-edge-cloud edge computing network
model proposed in this paper supports the local user
ends of IoT in their parallel offloading of a computing
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task to multiple MEC nodes or a cloud. This study
takes both network computation and transmission
into account, considered from the three layers of
local, edge, and cloud

(2) Latency cannot be directly accumulated due to the
parallel data transmission. Instead, the time for
receiving and processing data at different nodes is
analyzed to determine the network latency. An inte-
gral linear programming problem that targets the
optimization of network energy consumption is for-
mulated, and single-user task offloading is analyzed
by using the branch-and-bound (BB) algorithm to
minimize the overall network energy consumption

(3) The simulation results show that the demands for
MEC nodes increase along with the size of offload
data at the local user ends of IoT. Moreover, the mul-
tinode collaborative model is significantly superior
over the traditional computing offloading algorithm
in terms of energy consumption and latency, espe-
cially under large offload data sizes

The rest of this study is organized as follows. In Section 2,
related work is introduced. Section 3 introduces the proposed
model. Section 4 discusses in detail the construction of an
objective function for the multinode computing offload
model and the BB algorithm used in the optimization. Sec-
tion 5 analyzes the simulation results. Section 6 concludes
the paper.

2. Related Work

The local user ends of IoT can offload computing tasks to
MEC nodes via global and partial offloading. In global off-
loading, the entire computing task is offloaded to an MEC
node. Liu et al. [6] used the 1D searching algorithm to reduce
implementation latency to the maximum extent and gave
comprehensive considerations to the queuing state in the
application buffer zone and the available processing capacity.
However, edge nodes have inadequate computing capacities
and experience long transmission latency. To address this
problem, this paper proposes a partial offload method that
implements parts of the computing task at the local position
and offloads the other parts to the MEC for implementation.
Further details on partial offloading can be found in [7]. In a
partial offload program, the distribution positions of data
tasks need to be determined; tasks are successively trans-
ferred to each node to execute tasks after the user is parti-
tioned. In [8], Yang et al. proposed the concept of task
zoning, which determines offload modules and implementa-
tion methods, that is, whether the tasks are implemented at
local positions or offloaded to MEC and cloud nodes. Mean-
while, Zhao et al. [9] transformed the partial offloading prob-
lem into a nonlinear constraint problem and adopted a linear
programming approach to solve this problem and realize the
goal of optimal processing. Given their diversity, network
data of different sizes are generated. Accordingly, resource
limits have become key problems in the offload process that
have been discussed in [9–11]. For instance, Zhao [10] ana-

lyzed resource limits from the perspectives of network capac-
ity and data allocation, chose an appropriate position for data
processing, and guaranteed the smooth implementation of
additional data tasks. In [11], a data task was segmented by
employing a partial offload method, and this task was trans-
mitted successively to MEC and cloud nodes for implemen-
tation, thereby overcoming resource limits. To address the
limitations in node quantity and processing ability, You
and Huang [12] proposed an optimal resource allocation
strategy for a time division multiple access system to process
the queuing of tasks and ensure resource processing effi-
ciency. Aiming at the complex resource allocation problem,
Ref. [13] proposed an intelligent resource allocation frame-
work to solve the complex resource allocation problem of
collaborative mobile edge computing network. The resource
allocation scheme was determined according to the edge
computing server’s computing capacity, channel quality,
resource utilization, and latency constraints.

When users have a large number of computing tasks, a
single MEC node cannot meet the demand of processing off-
load tasks from the user end even if the partial offload
method is applied. As a result, several nodes must be selected
in the collaborative processing of offload tasks. Fan et al. [14]
adopted a multinode collaboration method that allows
nearby MEC nodes to share the computing pressure of the
target node when the computing task at the user ends is too
large for a single MEC node. They also designed an algorithm
for solving the optimization problem by using an interior
point method and a logarithmic potential barrier function
to optimize the energy consumption problem of the multi-
node collaboration system. This multinode collaboration
method is mainly used to address the inadequate computing
capacity of single nodes. Based on a dynamic and self-
configuring multiequipment mobile cloud system, Habak
et al. [15] implemented relevant computing tasks and
expanded the range of the cloud system by using the sur-
rounding vacant mobile equipment as MEC servers with an
aim to solve the problem where the network load exceeds
the computing capacity of nodes. In a multinode collabora-
tion method, the computing task should be allocated to mul-
tiple nodes, but this action involves the allocation and
deployment of nodes. Reference [16] considers link selection
in collaborative networks. Based on the characteristics of two
branches in the system, the buffer-assisted relay combination
technology is used to provide accurate expression of inter-
rupt probability for the common channel interference net-
work to evaluate the transmission performance of the
network. In [17], the authors selected the deployment posi-
tions of MEC nodes, such as LTE micro sites and gathering
stations of multiwireless access technology communities.
With the continuous popularization of MEC technology,
multinode collaborative technology has been increasingly
used in practice.

In the above studies, users offload the computing tasks
completely or partially to one or several MEC nodes, opti-
mize the network structure, increase the task processing
capability of the network, and explore resource optimization
in a multinode collaborative network structure. Nevertheless,
MEC nodes are extensively distributed in ranges of local user
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nodes, and several MEC nodes in a wireless network are
selected to participate in computing. Involving more nodes
in a network will increase its overall energy consumption.
After the introduction of the green MEC philosophy, net-
work energy consumption has become a key concern among
researchers.

In the multinode task allocation model, MEC nodes that
implement the computing tasks are chosen reasonably to
reduce network energy consumption. Zhang et al. [18]
applied a single-user mobile edge computing offload
(MECO) approach to the MEC network model, where net-
work energy consumption is treated as the optimization goal,
and the appropriate offload strategy is determined by com-
prehensively changing the number of CPU periods and net-
work transmission rate. However, this study only considers
the single-user MECO model. Meanwhile, the authors in
[19] fully considered energy consumption and latency of
end users in the multiuser MECO distributed computing off-
load model and realized an optimal allocation of resources in
the computing offload process by using game theory. Refer-
ence [20] constructs an intelligent edge computing network
based on pricing. When the user is offloading data, latency
and price are taken as performance indicators, stochastic
game method is used to determine the user signal processing
scheme, and offloading strategy is designed to reduce latency
and price. In [21], to cope with energy shortage in a hetero-
geneous network, a shared link was established among mul-
tiple base stations (BS) and was extended to the macro and
micro domains for analysis. At the same time, in the hetero-
geneous network, due to the complex distribution of base sta-
tions and users, multilayer switching and power distribution
need to be considered. In Ref. [22], there is the switching and
power distribution problem in the two-layer heterogeneous
network composed of macro station and millimeter wave. A
multiagent augmented learning algorithm based on the prox-
imal policy optimization is developed to realize the interac-
tion between multiuser devices. Ng et al. [23] proposed an
offload priority function by considering quantitative equality,
transmission channel, and local computing situations. By
analyzing this offload priority function, the optimal network
resource allocation was realized, and the overall network
energy consumption was used as the measurement index.

In sum, many studies have examined multinode collabo-
ration and data offloading. Users transmit data to multiple
nodes in a step-by-step manner before their implementation.
When the data size at the user ends is relatively large, then the
step-by-step transmission leads to significant latency, thereby
destroying the latency constraints of users and consuming a
considerable amount of network energy. On this basis, the
superiority of the model created in this paper is more
prominent.

3. System Model

Figure 1 illustrates a local-edge-cloud edge computing net-
work that has K local user ends of IoT served by N wireless
eNodeBs. Each eNodeB is equipped with one MEC server
or N MEC nodes. The computing task from the local user
ends of IoT can be implemented in site, partially offloaded

to theMEC nodes, or partially transmitted to the cloud server
through the routers at eNodeB. Before offloading tasks, the
local user ends of the IoT segment these tasks while following
certain rules, and the segments choose the appropriate MEC
nodes or cloud servers for task offloading based on the
latency, energy consumption, computing capacity of MEC
nodes, and other parameters. In Ref. [6], the sequential trans-
mission of segmented task blocks will cause a certain latency
waste. Based on the above, this paper makes improvements
by transferring the segmented task block to the appropriate
node to perform tasks synchronously, determining the opti-
mal assignment location of the task at the user end, transmit-
ting and processing the task at the same time, and processing
more data under the same latency constraint. Without loss of
generality, this study hypothesizes that the computing task of
local user UE1 at a moment can be segmented into N task
blocks. Task block 1 can be implemented at the local user
ends of IoT. Offloading to and implementing at nodes
MEC1, MEC2, and MEC3 are optional for task block 2, task
blocks 3, 4, and 5, and task blocks 6 and 7, respectively. Given
that the computing capacity of MEC nodes cannot meet the
demands of residual task blocks, these blocks are transmitted
to the cloud for implementation. A parallel offloading of
multiple task blocks is applied to reduce the network latency
and overall network energy consumption.

3.1. Network Energy Consumption. In studying the local-
edge-cloud edge computing network model, the computing
and transmission capacity of the network should be consid-
ered to minimize the network energy consumption because
the data from the local user ends of IoT are offloaded simul-
taneously and implemented at multiple nodes. Therefore,
“network energy consumption” in this paper includes the
energy consumed for the parallel transmission of computing
tasks from the local user ends to the MEC and cloud nodes
and the energy consumed for transmitting a computing task
from the local user ends to different nodes. The computing
model of the local-edge-cloud edge computing network is
defined as Ak (Rk, sk), where Rk is the task value of user k
(k = f1, 2,⋯, Kg) and sk is the time spent by user k in execut-
ing the task. The computing energy consumption of user k
can be expressed as

Ek
com = RkCkmk, ð1Þ

where Ck is number of CPU turns needed to execute a com-
puting task per bit of data andmk is the energy consumed for
each CPU turn.

When the computing task cannot be executed completely
at the local user ends of IoT, this task must be offloaded to the
appropriate nodes, which will consume a certain amount of
transmission energy. Transmission energy consumption is
related to both the transmission time and transmission
power of the task. The transmission energy can be formu-
lated as

Ek
trans = tkpk, ð2Þ

where tk is the transmission time of the computing task of
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user k and pk is the transmission power between user k and
the offload nodes. The overall energy consumed by user k
to execute a task is computed as the sum of transmission
energy consumption and computing energy consumption:

Ek
total = Ek

com + Ek
trans: ð3Þ

3.2. Computing Capacity. The number of CPU turns needed
for user k to implement 1 bit of task at local users, MEC
nodes, and cloud nodes is denoted by CL

k , CE
k , CC

k , respec-
tively. Meanwhile, the energy consumed for each CPU turn
in implementing the computing task of user k at local users,
MEC nodes, and cloud nodes is denoted by mL

k ,mE
k ,mC

k .
Under the multinode collaboration mode, the data are seg-
mented at the local user ends of IoT, and the segmented data
are transmitted to the MEC or MCC nodes for computing.
To easily observe the offload condition of segmented tasks,
one data unit ϕ (kbit) is set, and the data at the local user ends
of IoT are expressed as data units. The data of user k are
divided intoMk data units as Rk =Mkϕ. For all nodes, param-
eter ρ is set, where ρk→0 denotes the number of data units in
the local computing of user k. The network has nMEC nodes,
where n = f1, 2,⋯,Ng. ρk→n and ρk→N+1 refer to the number
of data units that local user k offloads toMECn and the cloud
nodes for task execution, respectively. With respect to the
selection problem between the local user ends of IoT and
MEC nodes, parameter βk,m,n indicates that the computing
task block m of local user k is offloaded and implemented
at node n. In this model, the local user ends of IoT segment
the computing task into several blocks and offload them to

multiple MEC and cloud nodes. A data unit can only be off-
loaded to a single node (∑N

n=1βk,m,n = 1), while oneMEC node

can receive several data units (∑M
m=1βk;m;n= ρk→n). When n

= 0, the computing task is implemented at the local user ends
of IoT, but when n =N + 1, the computing task is imple-
mented at cloud nodes.

Given that the data are segmented at the local user ends of
IoT and transmitted to several nodes simultaneously, the data
allocated to different nodes should meet the computing capac-
ities of different nodes. The data of user k are analyzed as

Cn
kR

n
k ≤ F: ð4Þ

Let F0, Fn, FN+1 be the computing capacities of the local
user ends, MEC nodes, and cloud nodes, that is, the number
of CPU turns needed to implement the computing task. In
equation (4), Rn

k = ρk→nϕ, where n = 0 denotes the size of the
task implemented at the local user ends of IoT, n = f1, 2,⋯,
Ng refers to the size of the task implemented at the MEC
nodes, and n =N + 1 refers to the size of the task implemented
at the cloud nodes.

3.3. Computing Latency. Computing latency is determined by
computing the number of nodes, number of CPU turns, and
node computing capacity. When the computing task is exe-
cuted at the local user ends of IoT, the data computing
latency of user k can be expressed as

sLk =
CL
kR

0
k

F0
: ð5Þ
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Figure 1: Local-edge-cloud edge computing network model.
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Given that the data are segmented at the local user ends of
IoT and are transmitted to several MEC nodes simultaneously
for implementation, the computing latency is computed as the
maximum computing latency of different nodes. The comput-
ing latency of one node can be formulated as

sEk,n =
Rn
kC

E
k,n

Fn
: ð6Þ

When the computing task cannot be implemented at the
local user ends of IoT and MEC nodes, this task should be
transmitted to cloud servers. The computing latency at the
cloud nodes can be formulated as

sCk =
RN+1
k CC

k

FN+1
: ð7Þ

3.4. Transmission. The transmission links in a network refer
to the wireless communication links between the MEC
server and UE, the transmission VLAN among MEC
servers, and the transmission links between the MEC and
cloud servers. In the network transmission process, the rela-
tionship between network computing capacity and trans-
mission capacity should be considered. If the computing
capacity is too high, then the channel resources in the net-
work cannot be allocated to the local user ends of IoT,
thereby congesting the channels and increasing network
latency. Let Rk (bit) be the data size that local user k of
IoT needs to process. Specifically, R0

k refers to the size of
the computing task implemented at the local user ends of
IoT, Rn

k is the size of the computing task implemented at
the MEC nodes, and RN+1

k is the size of the computing task
implemented at the cloud nodes. When the computing task
can be implemented at the local user ends of IoT and does
not need to be transmitted, no transmission energy is con-
sumed. Transmission energy is only consumed when the
computing task is offloaded to the MEC and cloud nodes.

Let tk denote the transmission time for one data unit ϕ
(kbit), where tk > 0. Therefore,

tk =
Rk

rk
, ð8Þ

where rk refers to the data transmission rate from user k
to the chosen nodes. The total transmission time in the
computing offload process is calculated by the number of
bit units that the user offloads to nodes ρk→n. Suppose that
n MEC servers receive data from the user end. These data
are segmented at the local user ends of IoT, and data
transmission is performed simultaneously. However, ρk→n
computing tasks will experience ρk→ntk transmission time
in the task transmission process of each part. Given that
each node has unique basic parameters, the size of the off-
loaded data also varies. The transmission time from the
local user ends of IoT to the nodes shall be taken as the

transmission time from the local user ends to the node
with the largest offloaded task. This node should meet

〠
N+1

n=1
ρk→ntk ≤ T , ð9Þ

where T represents the latency in meeting the QoS
demands of users.

3.5. Transmission Power. In the transmission from local user
k to the chosen nodes, the transmission rate can be expressed
as

rk =W log2 1 + pk,nPLk,n
σ2

� �
, ð10Þ

where W is the channel bandwidth, pk,n is the transmission
power between local user k and node n, and hk is the channel
characteristics between local user k and node n. The differ-
ences in the channel characteristics can be ascribed to the
variances in the distances of each node from the local user
k. The value of PLk meets the large-scaled attenuation charac-
teristic and is related to transmission distance. PLk is
expressed as PL = PLFSðd0Þ + 10n lg ðd/d0Þ + Xσ, where d is
the transmission distance, d0 is the reference distance, n is
the route loss index, and Xσ is a Gaussian random variable
with a 0 mean and σ2 standard deviation. Meanwhile, WE,
WC represent the bandwidths between the local users of
IoT and edge nodes and those between the users and cloud
nodes. When n = f1, 2,⋯,Ng, pk,n and PLk,n represent the
transmission power and loss between user k and MECn.
When n =N + 1, these parameters represent the transmis-
sion power and loss between local user k and the cloud nodes.

According to equations (1) and (3), data transmission
rate (rk) can be expressed in two ways. The transmission
power from the local user k to node n can be expressed as

Pk,n =
2rk,n/W − 1
� �

σ2

PLk,n
: ð11Þ

In sum, to analyze the transmission in the local-edge-
cloud edge computing network and computing situations,
network energy consumption can be computed as total
energy consumption = computing energy consumption +
transmission energy consumption. Computing energy con-
sumption includes the computing energy consumed by the
local user ends of IoT and by the collaboration between
MEC nodes and cloud servers. Meanwhile, transmission
energy consumption includes the wireless transmission
energy consumption between the local user ends of IoT and
MEC nodes and that between the local user ends and cloud
servers. Network latency, which includes computing latency
and transmission latency, is considered in computing net-
work energy consumption given that the network energy
consumption should be minimized under the premise of
meeting network latency requirements.
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4. Multinode Collaborative Computing
Offloading Algorithm

In the local-edge-cloud edge computing network model, one
part of the computing task is implemented at the local user
ends of IoT, whereas the other parts are offloaded to the
appropriate nodes. The data of the user are segmented fol-
lowing certain rules and are offloaded simultaneously to sev-
eral nodes. Given that MEC nodes are close to the local user
ends of IoT, a short data transmission time is achieved. How-
ever, the offload positions should be chosen reasonably based
on the user demand given the limited computing capacity of
MEC nodes.

4.1. Establishment of an Objective Function. According to
equation (3), the overall network energy consumption
includes computing and transmission energy consumption.
In the local-edge-cloud edge computing network model, cer-
tain tasks are distributed to all levels. In other words, network
energy consumption includes the computing and transmis-
sion energy consumption of the local user ends of IoT,
MEC nodes, and cloud nodes.

Implementing the computing task at the local user ends
of IoT only consumes computing energy. The energy
consumed can be formulated as

EL = 〠
K

k=1
ρk→0ϕC

L
km

L
k : ð12Þ

When the computing task is offloaded to edge nodes, sev-
eral MEC nodes surround the local user ends of IoT. There-
fore, the appropriate MEC nodes should be selected. Let the
selection parameter be ρk→n, n = f1, 2,⋯,Ng, which reflects
the selection of MEC nodes. The overall energy consumption
of the MEC node includes both computing and transmission
energy consumption and can be expressed as

EE = 〠
K

k=1
〠
N

n=1
ρk→nϕC

E
k,nm

E
k,n + ρk→ntk,n

σ2 21/2tk,nWE − 1
� �

PLEk,n

0
@

1
A:

ð13Þ

When the computing task is partially offloaded to the
cloud servers, the overall energy consumption of cloud nodes
can be expressed as

EC = 〠
K

k=1
ρk→N+1ϕC

C
km

C
k + ρk→N+1tk,N+1

σ2

PLCk,N+1
21/tk,N+1WC − 1
� �

:

ð14Þ

The overall network energy consumption is then com-
puted as the total energy consumed by the local user ends
of IoT, MEC nodes, and cloud nodes:

Etotal = EL + EE + EC: ð15Þ

Given that the network model considers the computing

and transmission of data from the local user ends of IoT, net-
work latency includes both computing and transmission
latencies. The computing latency of the local user ends of
IoT, MEC nodes, and cloud nodes should be considered
when applying a local-edge-cloud edge computing network
model. The computing latency of local user k can be
expressed as

sLk =
CL
kρk→0ϕ

F0
: ð16Þ

Unlike in the mutual transmission computing offload
model, the computing task is segmented at the local user ends
of IoT and are transmitted simultaneously to multiple nodes
for processing. Therefore, the computing latency is taken as
the maximum computing latency of MEC and cloud nodes:

sk′ =max ρk→nC
n
kϕ

Fn
, n = 0, 1,⋯,N ,N + 1

� 	
: ð17Þ

The overall computing latency of the network is then
formulated as

sk = sLk + sk′: ð18Þ

Meanwhile, transmission latency mainly involves the
wireless transmission links from the local user ends of IoT
to the MEC nodes and the VLAN transmission network from
the local user ends of IoT to the cloud nodes. Given that the
data are segmented at the local user ends of IoT, the
appropriate nodes should be selected for the simultaneous
transmission of segmented data. When parallel data trans-
mission is applied, the overall transmission latency of the
network can be expressed as

tk =max ρk→ntk,n, n = 0, 1,⋯,N ,N + 1

 �

: ð19Þ

The network latency is then computed as the sum of
computing latency and transmission latency:

Dk = sk + tk: ð20Þ

The goal of this multinode collaborative computing off-
load model is to minimize the overall network energy
consumption while meeting the time constraints. The opti-
mization system of the multinode collaborative computing
offload network is

min  Etotal ð21Þ

s:t: Dk ≤ T , ð22Þ

tk,n > 0, ð23Þ

〠
N

n=1
βk,m,n = 1, ð24Þ
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〠
M

m=1
βk,m,n = ρk→n, ð25Þ

ρk→nϕC
E
k,n ≤ Fn, n = 1, 2,⋯,Nf g, ð26Þ

CL
kρk→0ϕ ≤ F0, ð27Þ

CC
k ρk→Nϕ ≤ FN+1, ð28Þ

where (22) and (23) are the limiting conditions of transmis-
sion time (with (22) indicating that the network latency is
smaller than the latency limit of user ends), (24) and (25)
denote the data allocation after the segmentation at the local
user ends (with (24) indicating that only one data unit can be
offloaded to one MEC node and (25) indicating the number
of unit tasks that can be processed by a single MEC node),
and (26) to (28) denote the computing capacity limitations
of MEC nodes, local user ends of IoT, MEC nodes, and cloud
nodes.

To address the above conditions, the size of the comput-
ing task blocks offloaded to different nodes in equation (21) is
denoted by ρk→n. The task allocation of nodes under optimal
energy consumption is evaluated by analyzing the value of
ρk→n. Given that ρk→n determines the number of data units,
its value can only be expressed as an integer. Therefore, the
optimization problem becomes an integer programming
problem.

4.2. Optimization Based on the BB Algorithm. The resource
allocation scheme for MEC nodes is determined by using
the BB algorithm, which searches all feasible solution spaces
for the optimization problem with constraints. During the
implementation of this algorithm, all feasible solution spaces
are continuously divided into smaller subsets, and a lower or
upper bound is calculated as a solution for each subset. With
respect to the integer programming problem, the BB algo-
rithm solves the ordinary linear programming problem
through simplex and divides the nonintegral decision vari-
ables into two proximate integers. The conditions are then
listed and added into the original problem. Meanwhile, the
constraint vector after updating is solved, from which the
upper or lower bound of the numerical value is identified.

In using the BB algorithm to solve the energy consump-
tion optimization problem, equation (21) is taken as the
objective function with ρk→0, ρk→1,⋯, ρk→N , ρk→N+1 as the
independent variable. This objective function can be viewed
as a linear programming problem that is expressed by its
independent variable. The independent variable ρ meets

ρk→0 + ρk→1+⋯+ρk→N + ρk→N+1 =Mk: ð29Þ

Equation (21) can then be expressed as

Etotal = v0ρk→0 + v1ρk→1+⋯+vNρk→N + vN+1ρk→N+1, ð30Þ

where v0, v1,⋯, vN , vN+1 is the coefficient before ρ, and the
coefficient vector of independent variables in the objective

function can be expressed by f = ½v0 v1 ⋯ vN vN+1�T . The
constraint condition (1) for latency in equation (21) is then
transformed as

Dk =D0
kρk→0 +D1

kρk→1+⋯+DN
k ρk→N +DN+1

k ρk→N+1 ≤ T ,
ð31Þ

where D0
k,D1

k,⋯,DN
k ,DN+1

k is the coefficient before ρ in the
constraint condition equation (22). Constraints (5) to (7) in
equation (21) can then be transformed into

a10ρk→0 + a11ρk→1+⋯+a1Nρk→N + a1N+1ρk→N+1 ≤ Fn,
a20ρk→0 + a21ρk→1+⋯+a2Nρk→N + a2N+1ρk→N+1 ≤ F0,

a30ρk→0 + a31ρk→1+⋯+a3Nρk→N + a3N+1ρk→N+1 ≤ FN+1:

ð32Þ

These equations transform the constraints in equation
(21) into a standard form of the independent variable ρ. Let

A =

D0
k D1

k ⋯ DN
k DN+1

k

a10 a11 ⋯ a1N a1N+1

a20 a21 ⋯ a2N a2N+1

a30 a31 ⋯ a3N a3N+1

1 1 ⋯ 1 1

2
666666664

3
777777775
, ð33Þ

where A refers to the constraint matrix formed by this con-
straint equation set. Letb = T Fn F0 FN+1 Mk½ �T ,
where b refers to the right vector of this constraint equation
set. The value ranges of independent variable ρ can be
expressed by constraints (6) to (8) of the objective function,
which are denoted by lb and ub.

The basic process of the BB algorithm is shown in
Table 1.

Since the BB algorithm searches the solution space in a
breadth-first way, the original problem is divided into multi-
ple branches to search for the optimal solution at the same
time, eliminating a large number of nodes that have no
chance to become the best value.

A local-edge-cloud edge computing network has K UE
and N MEC nodes, the data of each UE is divided intoM task
blocks, and it is necessary to determine the allocation strategy
of the UE task blocks and the offloading node of the parti-
tioned data. The time complexity of the UE task block alloca-
tion process is determined to be OðK2MÞ. Since multitask
blocks are transmitted at the same time, there is no need for
sorting by the new allocation strategy, and the optimal solu-
tion can be directly searched for the data offloading node.
The computational complexity of this process is OðKðN + 2Þ
3M−1Þ, and the sum of the two is the overall computational
complexity of the BB algorithm OðKð2M + ðN + 2Þ3M−1ÞÞ.
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5. Simulation Results

The multinode computing offloading algorithm proposed in
Section 3 is compared with the traditional single cloud
offload and multinode mutual transmission computing off-
loading algorithms. These algorithms are compared under
different data sizes with overall network energy consumption
as the measurement standard. For the multinode collabora-
tive offload model, three MEC nodes are set, and ρ0, ρ1, ρ2,
ρ3, ρ4 represent the number of user data units at the local
user ends of IoT, the three MEC nodes, and the cloud nodes,
respectively. The three MEC nodes correspond to different
CPU parameters, and their distances from the local user ends
of IoT are denoted by d1, d2, d3, respectively, assuming that
the network transmission bandwidth meets user demand.
The data processing situation at one local user end of IoT is
initially analyzed to compare the network energy consump-
tion of the models.

The assumption is that the network bandwidth is large
enough to meet user needs; regardless of the limitation of
transmission bandwidth, the effect of data transmission rate
on network energy consumption is considered. Following
tk,i = LE,i/rE,i, the data transmission rates in the three cases
are shown in Table 2.

The basic parameters used in the simulation are listed in
Table 3.

5.1. Energy Consumption. The computing data size is set to
Mk ~ ð1000, 2500Þ to analyze the network energy consump-

tion of the three computing offload models. Figure 2 presents
the results.

Figure 2 shows that the network energy consumption of
the multinode collaborative computing offload model is
lower than that of the other two models. Specifically, when
the offload data size at the local user ends of IoT is smaller
than 1500 kbit, the network energy consumption of the mul-
tinode collaborative computing offload model, which
involves parallel data transmission, is equal to that of the
multinode mutual transmission computing offload model.
Otherwise, the network energy consumption of the multi-
node collaborative computing offload model is lower than
that of the multinode mutual transmission computing off-
load model. The network optimization effect of the proposed
model is similar to that of the multinode mutual transmis-
sion computing offload model when the offload data size is
small. However, the proposed model shows some advantages
in network latency that can be attributed to its parallel trans-
mission of computing tasks. Meanwhile, when the offload
data size of the network is large, the proposed model signifi-
cantly outperforms the other two models in terms of network
energy consumption and network latency.

The allocations of offload data size among nodes within
the range of 1000 kbit to 5000 kbit are shown in Figure 3.
The number of nodes for resource allocation gradually
increases along with the computing offload data size. When
the data size at the local user ends of IoT is not too large,
the data can be processed between the local end users and
MEC servers and do not need to be offloaded to cloud nodes
for execution. A higher number of tasks for processing corre-
spond to higher node number requirements. The proposed
algorithm outperforms the other two models when the task
data size at the local user ends of IoT is larger and is thereby
conducive to optimizing the network.

When the network bandwidth is changed, the effects of
information transmission rate on network energy consump-
tion should be considered.

Figure 4 shows that the lowest network energy consump-
tion is achieved under case 3, whereas the lowest and highest
transmission rates are observed under cases 1 and 3, respec-
tively. The overall network energy consumption is negatively
correlated with network transmission rate. Given that all com-
puting tasks are transmitted simultaneously in the proposed
multinode collaborative computing offload model, a higher
transmission rate leads to a larger data size for simultaneous
transmission and a higher offload quantity at the local user
ends of IoT. The simulation results reveal that the total data
sizes under cases 1 to 3 are 5000, 7500, and 17500kbit, respec-
tively. In sum, the overall data size that the network can pro-
cess increases along with the network transmission rate. At
the same computing data size, the network energy consump-
tion decreases along with an increasing transmission rate.

When the data size for processing at the local user ends of
IoT is very large, the overall data transmission rate in the net-
work should be increased. Specifically, when the task data
size in the computing network ranges from 10000 kbit to
50000 kbit, the data transmission rate should be increased
to 2Gbit/s. The task allocation among nodes is shown in
Figure 5.

Table 1: Basic process of the BB algorithm.

BB algorithm

Input: coefficient vector f of the objective function, inequality
constraint matrix A, right vector of inequality constraint b, upper
and lower bounds of independent variables lb and ub

Output: minimize network energy consumption (Etotal) and task
allocation to different nodes (ρk→0, ρk→1,⋯, ρk→N , ρk→N+1)

(1) Set the optimal solution ρ =Φ, and the optimal upper bound of
the function is F = +∞.

(2) Calculate Etotal for the initial task allocation strategy. Whether
the test coefficient under this allocation strategy is nonpositive is
determined by simplex.

(3) If the test coefficient is nonpositive, then the independent
variable is the optimal value (ρ∗); otherwise, no optimal value is
obtained, and Etotal = +∞.

(4) The value of the independent variableρ is adjusted by simplex
to make all test coefficients nonpositive and meet E∗

total < F. All
components of ρ∗ are integers. Therefore, E∗

total and ρ∗ are the
outputs of the objective function.

(5) Let E∗
total < F. Some components of ρ∗ are not integers, and the

noninteger components of option ρ∗ are denoted by ρ∗k . A
dichotomous approach is applied to divide the original lower
constraint into two incompatible constraints.

(6) The optimal solutions to the newly formed constraints are
solved by simplex. The above steps are repeated until the output x
value is an integer.
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The data transmission rate in the network increases when
the data size at the local user ends of IoT is very large.
Figure 5 shows that the size of data offloaded to node ρ3 sig-
nificantly increases along with the size of data at the local
user ends given the low CPU energy consumption recorded
at ρ3. When the computing task is very large, the CPU energy
consumption becomes a main influencing factor for network
energy consumption. The total data size offloaded to the
cloud nodes continuously increases along with offload data
size, thereby highlighting the superiority of the edge-cloud
cooperation mechanism under a large data size.

6. Conclusions

To realize green communication in smart homes, a multi-
node collaborative computing offload model is proposed in

this paper. In this model, the local user ends of IoT seg-
ment the computing task following certain rules. After-
ward, the segmented data are reasonably distributed and
simultaneously transmitted to multiple nodes for imple-
mentation. The traditional single-cloud computing offload
model and multinode mutual transmission computing off-
load model are analyzed on this basis. By treating the
overall network energy consumption as the optimization
goal and latency as the optimization condition, the alloca-
tion of resources among MEC nodes is determined by
using a BB algorithm. The proposed model is also com-
pared with the two aforementioned traditional models.
Under a large offload task size, the proposed multinode
collaborative computing offload model achieves the lowest
network energy consumption and the best latency charac-
teristics among all models. The CPU parameters of the

Table 2: Transmission rates under the three conditions.

Transmission rate of MEC1rE,1
(Mbit/s)

Transmission rate of MEC2rE,2
(Mbit/s)

Transmission rate of MEC3rE,3
(Mbit/s)

Transmission rate of MCC rc
(Mbit/s)

Case
1

40 80 20 10

Case
2

80 200 40 20

Case
3

200 400 100 40

Table 3: Simulation parameter settings.

Parameter Symbols Value

Data volume of user K Rk 500 kbit+ϕMk

Data unloading unit ϕ 1 kbit

Computing capacities of local user ends F0 1.26GHz

Computing capacities of MEC nodes Fn 16GHz

Computing capacities of cloud nodes FN+1 64GHz

Number of CPU turns required by the local user to calculate 1 bit of data CL
k 500 turn/bit

Number of CPU turns required by theMEC1 node to calculate 1 bit of data CE
k,1 200 turn/bit

Number of CPU turns required by theMEC2 node to calculate 1 bit of data CE
k,2 300 turn/bit

Number of CPU turns required by theMEC3 node to calculate 1 bit of data CE
k,3 100 turn/bit

Number of CPU turns required by the cloud node to calculate 1 bit of data CC
k 50 turn/bit

CPU energy consumption of the local user per turn mL
k 10W

CPU energy consumption of the MEC1 node per turn mE
k,1 80W

CPU energy consumption of the MEC2 node per turn mE
k,2 150W

CPU consumption of the MEC3 node per turn mE
k,3 200W

CPU consumption of the cloud node per turn mC
k 1000W

Latency constraint of the local user T 100ms

Distance between the local user and MEC1 node d1 120m

Distance between the local user and MEC2 node d2 100m

Distance between the local user and MEC3 node d3 150m
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MEC nodes greatly influence the network energy con-
sumption. Under a large data size, the multi-MEC node
and edge-cloud collaborative model show improved net-
work characteristics. Meanwhile, both network bandwidth
and information transmission rate can influence the data
offload performance of the network to some extent. In a
multinode collaborative computing offload model, a paral-
lel transmission of segmented data tasks is applied to pro-
cess large computing tasks at a low overall network energy
consumption and high data transmission rate.
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Simultaneous wireless information and power transfer (SWIPT) becomes more and more popular in cognitive radio (CR)
networks, as it can increase the resource reuse rate of the system and extend the user’s lifetime. Due to the deployment of
energy harvesting nodes, traditional secure beamforming designs are not suitable for SWIPT-enabled CR networks as the power
control and energy allocation should be considered. To address this problem, a dedicated green edge power grid is built to
realize energy sharing between the primary base stations (PBSs) and cognitive base stations (CBSs) in SWIPT-enabled mobile
edge computing (MEC) systems with CR. The energy and computing resource optimal allocation problem is formulated under
the constraints of security, energy harvesting, power transfer, and tolerable interference. As the problem is nonconvex with
probabilistic constraints, approximations based on generalized Bernstein-type inequalities are adopted to transform the problem
into solvable forms. Then, a robust and secure artificial noise- (AN-) aided beamforming algorithm is presented to minimize the
total transmit power of the CBS. Simulation results demonstrate that the algorithm achieves a close-to-optimal performance. In
addition, the robust and secure AN-aided CR based on SWIPT with green energy sharing is shown to require a lower transmit
power compared with traditional systems.

1. Introduction

In future mobile edge computing (MEC) networks, a great
number of energy-limited internet of things (IoT) devices
will be deployed to collect the data of system status and envi-
ronment [1, 2]. Providing wireless power transfer capability
is of great importance to relieve energy unbalance and pro-
long the system lifetime. In practice, radio frequency (RF)
signals surrounding the communication systems are more
controllable and stable to realize the simultaneous wireless
information and power transfer (SWIPT) [3–5] in networks
[6], which is a significant way to power the energy-limited

edge nodes by transferring wireless energy and information
simultaneously with the same waveform.

Cognitive radio (CR) is another meaningful way to utilize
a spectrum efficiently for resource reusing in MEC networks.
With the spectrum sharing in CR, secondary users (SUs) can
coexist with the primary base station (PBS) and primary
users (PUs) under the condition that the interference caused
by the cognitive base station (CBS) is tolerable to PUs.
Recently, many researches are considering about applying
SWIPT into the CR network with energy-constrained devices
to improve network efficiency and stabilization [7–11]. In
[7], a SWIPT-enabled CR network was designed, in which
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the CBS provided SWIPT services to the secondary users, and
the worst-case of SU for energy harvesting and tolerable
interference power for PU were balanced based on the binary
search method. This research can alleviate the double near-
far problem in the energy harvesting network to a certain
extent.

In light of the relay needs for network, [9] proposed an
SWIPT-enabled CR framework in which the CBSs were
integrated with relay capabilities to provide relay services
opportunistically for the primary users. The novel framework
in [9] was proposed to integrate the SWIPT-enabled CR tech-
nology into new scenarios and applications. [10] and [11],
respectively, studied the wideband sensing problem under
worst-case and max–min fairness case with a SWIPT-based
CR framework, in order to achieve higher spectrum and
energy utilization in wireless sensor networks.

Inspired by the SWIPT-enabled CR framework, we pro-
pose a novel mobile edge computing with SWIPT-enabled
CR to realize the optimal allocation of energy and computing
resources in this paper. CBSs and PBSs are selected with
abundant energy to join the edge network, and a dedicated
green edge power grid is built to achieve the energy flow
and balance between those edge nodes. At the same time,
we should also consider the security issues [12, 13] in the
SWIPT-based network.

The characteristics of the wireless channel determine that
the security rate of its physical layer is limited by channel
state information (CSI) [14]. In CR networks, the transmis-
sion power of CBS in the secondary network is limited to
prevent the primary users from interfering, which further
affects the security rate [15]. At the same time, the formula-
tion of a network operation strategy should take the limited
energy of energy harvesting nodes (EHNs) into account. In
fact, there is no cooperation among SUs, PUs, and EHNs in
the CR network, so there are errors in channel estimation
and quantification on SWIPT-enabled CR links that cannot
be ignored. These errors seriously affect the efficiency of
beamforming. Therefore, it is necessary to design a robust
secure beamforming scheme for SWIPT-enabled CR MEC.

Aiming at the physical layer security of SWIPT, [16–18],
respectively, studied the total transmission power minimiza-
tion, safety rate maximization, and maximum minimum
fairness optimization problem. On the other hand, in the
SWIPT-based CR network, since the physical location of
EHNs is closer to the transmitter to meet the demand of wire-
less power density for energy harvesting, it is possible for
EHNs act as malicious eavesdroppers disturbing the reception
of information receivers. Therefore, in the SWIPT design, a
secure rate becomes an essential factor. In [16], a secure
beamforming design in MISO SWIPT was proposed where
there are multiple information receivers, energy receivers,
and eavesdroppers coexisting. Similar to [16, 19], investigated
a worst-case optimal problem under constraints of transmit
power and harvested power in MISO SWIPT. Specifically,
the secure and robust transmission strategy in the worst-case
energy allocation problem for the MISO channel and multiple
input and multiple output (MIMO) channel was also studied
in [20, 21]. [22, 23] extended the strategy for multiple eaves-
droppers with multiple antennas. For instance, an artificial

noise- (AN-) aided transmit beamforming was designed in
[24], which is an efficient way to improve the system secrecy
rate efficiently. In [24–26], AN-aided transmission strategies
for secret SWIPT were proposed in MISO, single input and
single output (SISO), and MIMO channels. In [24], both
perfect and imperfect CSI were considered for AN-aided
SWIPT design. And with the channel uncertainties, [27]
investigates the problem based on the bounded CSI and prob-
abilistic CSI error model, respectively. However, the proposed
schemes in [24–27] are difficult to be applied into the SWIPT
CR network, because the energy harvesting requirement and
the interference of a secondary network have not been taken
into account.

This paper designs a SWIPT-enabled CR framework for
MEC. By considering the energy allocation, power control,
and interference constraints, an efficient and robust AN-aided
secure beamforming strategy is designed to achieve better sys-
tem gains. The main contributions of this paper are as follows.

First, a robust secure beamforming strategy for a CR
network powered with SWIPT is proposed. The interference
caused by the secondary network and the energy harvesting
requirement for EHNs are both considered in our
framework. By formulating as an inequality constraint in
the system models, the security of the SWIPT-enabled CR
network is also taken into account to minimize the transmit
power.

Second, since the PBSs in the primary network and the
CBSs in the secondary network are powered by green energy,
we build a dedicated edge power grid made up of those PBSs
and CBSs to share their redundant resources with the others.
Therefore, energy balancing and computing offloading can
be operated efficiently during these edge base stations in the
MEC.

Third, a probabilistic CSI model is designed to character-
ize the CSI error, which is more suitable for delay-sensitive
applications than the bounded CSI model. Subsequently,
the optimal beamforming solution is solved by software
CVX [28], and a 1-D algorithm is designed to approximate
the optimal solution of the system with reasonable computa-
tional complexity.

Notations. For a square matrix A, AH , TrðAÞ, and RankðAÞ
denote its Hermitian (conjugate) transpose, trace, and rank,
respectively. ℂN×M , ℝN×M , and ℍN denote the set of all the
N ×M complex matrices, N ×M real matrices, and N ×N
Hermitian matrices. A ≻ 0 (A≻0) indicates that matrix A is
positive definite or semidefinite. In particular, the distribu-
tion of complex Gaussian random vectors with mean μ and
variance σ2 is denoted by ðμ, σ2Þ.

2. System Model

The SWIPT-enabled CR MEC network is shown in Figure 1,
in which the PBS and CBS act as MEC servers for users as
well as the CBS providing SWIPT services for the cognitive
network. There are K SUs, I PUs, and M ERs coexisting in
the network. The CBS is equipped with Nt ðNt > 1Þ antennas
as the PBS has only one. The SUs and ERs are also equipped
with single antenna nodes to harvest RF energy from the
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ambient environment. In practice, the idle users in the
cognitive radio network may act as energy receivers (ERs)
harvesting energy for further use, which makes the informa-
tion receivers to may be eavesdrop or intercept during the
communication durations. Thus, there are two problems in
this system that need to be solved, which are energy sharing
during edge nodes and power control for the cognitive
network. We first assume that all the I PUs are friendly nodes
[29–31] and all the channels are characterized by quasistatic
fading models. Then, system models are performed in the
next sections.

2.1. Channel Model. The signals received by SUk, k ∈ f1, 2,
⋯, Kg, and ERm, m ∈ f1, 2,⋯,Mg, denoted by ySUk and yERm
, respectively, can be given as

ySUk = hHk x + nSUk , ð1Þ

yERm = gHmx + nERm , ð2Þ

where hHk ∈ℂNt×1 and gHm ∈ℂNt×1 are the channel vectors
between the CBS and the kth SU and themth ER, respectively.
In (1), x ∈ℂNt×1 is the signal vector transmitted by the CBS to
SUs and ERs. nSUk and nERm are the complex Gaussian noise at
SUs and ERs with zero mean and variances σ2SUk

and σ2ERm
,

which include terminal noise, signal processing noise, interfer-
ence from PBS, and joint effects of received multicell
interference.

In addition, the PUi, i ∈ f1, 2,⋯, Ig, receiver is interfered
by CBS, and the interference signal is

yPUi = pHi x, ð3Þ

where pHi ∈ℂNt×1 is channel vector of the CBS to the ith PU
receiver. The interference from the PBS to the secondary
network is negligible as other researches [30–32].

2.2. CSI. Based on channel reciprocities [7, 33, and 34], it is
assumed that hHk , ∀k ∈ f1, 2,⋯, Kg, is accusable for both
CBS and SUs. However, channel vectors gHm and pHi may
not be known accurately, as the PUs, CBS, and ERs have no
cooperation existing. As a result, we introduce probabilistic

CSI models [21, 33, and 35] to characterize the outdated
channel vector errors. The channel vectors follow stochastic
distributions, which are

gm = ĝm + Δgm,
Δgm ∼CN 0,Gmð Þ,
 m ∈ 1, 2,⋯,Mf g ;

qi = q̂i + Δqi,
Δqi ∼CN 0,Qið Þ,
 i ∈ 1, 2,⋯, If g,

ð4Þ

where gm and qi are the channel estimated CSI available at
the CBS and Δgm and Δqi denote the channel error vectors,
respectively, with zero mean and covariance matrices Gm
and Qi, correspondingly. In addition, Δgm is independent
of others for different m, and Δqi is independent of others
for different i.

2.3. Signal and Secure Rate Models. Actually, the ERs in the
cognitive network may be illegal eavesdroppers as they have
shorter transmit distance from the CBS. Thus, the secrecy
of secondary users should be considered. In this paper, we
propose a robust AN-aided communication strategy for
CBS to efficiently transmit wireless information to end users.
The transmitted signal vector x ∈ℂNt×1 is added with an
artificial noise vector, which is

x = 〠
K

k=1
wkdk + v, ð5Þ

where wk ∈ℂNt×1 is the dedicated beamforming vector allo-
cated to SUk and dk ∈ℂ denotes the data symbol for SUk.
Without loss of generality, we assumed that εfjdkj2g = 1, ∀k
∈ f1, 2,⋯, Kg. v ∈ℂNt×1 is the AN vector transmitted by
the CBS with v ∼CN ð0,VÞ, in which V is the covariance
matrix of AN and V ∈HNt , V≻0. Thus, the achievable data
rate (ADR) of the transmission link between the CBS and S
Uk is
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Figure 1: System model.
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CSUk
= log2 1 + SINRSUk

� �
, ð6Þ

and the signal to interference plus noise ratio (SINR)
SINRSUk

can be denoted as

SINRSUk
=

hHk wk

�� ��2
Tr VhkhHk
� �

+ σ2SUk

: ð7Þ

On the other hand, the ADR CERm
between the CBS and

ERi and SINR of ERm are given by

CERm
= log2 1 + SINRERm

� �
,

SINRERm
=

gHmwk

�� ��2
Tr VgmgHmð Þ + σ2ERm

:
ð8Þ

Since the ERs are potential eavesdroppers, the secrecy
rate of SUk is Rk = min

m∈f1,2,⋯,Mg
½CSUk

− CERm
�+.

2.4. System Power Supply Model. As previously described, a
dedicated edge power grid is built to solve the energy sharing
problem. CBSs and PBSs are selected to form aMEC network
with energy sharing abilities. As shown in Figure 2, wind tur-
bines and photovoltaic panels are appropriately prepared for
MEC nodes as green energy harvesting devices. Furthermore,
redundant energy of those MEC nodes can be shared with
each other through the power grid. Theoretically, the
SWIPT-enabled CR MEC framework with energy sharing
can be easily expended for unlimited scale and infinite com-
puting abilities. Here, we denote that the energy shared by the
PBS and CBS is SPBS and SCBS, respectively. Then, the power
loss of the grid caused by lines is given by

PL = esBesT , es = S1PBSS
1
CBS ⋯ SkPBSS

k
CBS

h i
, ð9Þ

where B ∈ℝ2×2, B ≻ 0, is a B-coefficient matrix [34] which
represents the energy consumption characters during its
conversion process. It is noted that, for a fixed power grid
topology with fixed numbers of sources and loads, the B
-coefficient matrix is constant.

3. Problem Formulation

The energy balance can be realized by the sharing abilities of
the MEC node based on the CR framework. In particular, the
secure AN-aided SWIPT beamforming strategy is designed
in each single CR network to minimize the MEC node trans-
mit power under constraints of secrecy rate outage probabil-
ity, energy harvesting, interferences, etc.:

P1 : min
V ,es ,wk

〠
K

k=1
wkk k22 + Tr Vð Þ

s:t: C1 : Pr CSUk
− CERm

� �+ ≥ Rmin
� �

≥ 1 − θ,

C2 : Pr μ Tr Vgmg
H
m

� �
+ 〠

K

k=1
gH
mwk

�� ��2 + σ2
ER

 !
≥ΩERm

( )
≥ 1 − θERm

,

C3 : Pr 〠
K

k=1
qHi wkw

H
k

� �
qi ≤ Pmax

( )
≥ 1 − θP,

C4 : PPBS + PCBS + ρ 〠
K

k=1
wkk k22 + Tr Vð Þ

 !
≤ es1 − esBes

T ,

C5 : Tr Vð Þ + 〠
K

k=1
wkk k22 ≤ Pmax

CBS ,

C6 : 0 ≤ es ≤ emax
s ,

C7 : V≻0,

ð10Þ

where Rmin denotes the CBS minimum secrecy requirement;
θ ∈ ð0, 1�, θERm

∈ ð0, 1�, and θP ∈ ð0, 1� are the maximum out-
age probabilities of secrecy rate, the maximum tolerable
interference power at PUs, and the minimum energy harvest-
ing requirement of kth ER, respectively; ΩERm

denotes the
minimum required power transfer to ERm; and μ ∈ ð0, 1�
represents the RF-to-DC conversion efficiency of the ERs.
Pmax
CBS in constraint C4 indicates the allowance max-power

for transmission at the CBS. In C5, PPBS and PCBS represent
the localized power expenditure of the PBS and the CBS;
the term ∑K

k=1kwkk2 + TrðVÞ is the output power of CBS,
and ρ ∈ ð0, 1� denotes the power efficiency of the power
amplifier. The maximum power transmitting to the power
grid from energy sources is constrained by C6.

4. Robust Secure SWIPT Beamforming Design

P1 is an optimization problem with nonconvex forms and
probabilistic constraints, which make P1 difficult to solve.
Approximations based on Bernstein-type inequalities are
first facilitated to transfer the outage probabilistic constraints
C1, C2, and C3 into clear and closed forms separately and
safely. Then, a 1-D algorithm is proposed for computers to
calculate the optimal solutions.

Lemma 1 (Bernstein-type inequalities [34, 35]). Let f ðzÞ =
zHAz + 2 Re fzHbg + c, where A ∈HNt , b ∈ CNt×1, and c ∈ℝ
. For any ϖ ∈ ð0, 1�, the approximate and convex forms trans-
ferred by Prf f ðzÞ ≥ 0g ≥ 1 − ϖ and Prf f ðzÞ ≤ 0g ≥ 1 − ϖ can
be separately written by
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Tr Að Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ln ϖð Þ

p
υ1 + ln ϖð Þυ2 + c ≥ 0,

vec Að Þffiffiffi
2

p
b

" #










 ≤ υ1,

υ2I +A≻0,
υ2 ≥ 0 ;

Tr Að Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ln ϖð Þ

p
υ1 − ln ϖð Þυ2 + c ≤ 0,

vec Að Þffiffiffi
2

p
b

" #










 ≤ υ1,

υ2I −A≻0,
υ2 ≥ 0,

ð11Þ

where υ1 and υ2 are slack variables.

Let Wk =wkwH
k ,

Ψ =
1

1 + hHk wk

�� ��2/Tr VhkhHk
� �

+ σ2
SUk

� � =
hHk Vhk + σ2SUk

hHk V +Wð Þhk + σ2
SUk

,

ð12Þ

Δgm =G1/2
m ~gm, ~gm ∼CN ð0, IÞ. By applying Lemma 1, C1 can

be transferred to

Tr G1/2
m V − 2RminΨ V +Wkð Þ� �

G1/2
m

� �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ln θ

p
υs1 + ln θυs2

+ ĝHm V − 2RminΨ V +Wkð Þ� �
ĝm + σ2ERm

1 − 2RminΨ
� �

≥ 0,

ð13Þ

vec G1/2
m V − 2RminΨ V +Wkð Þ� �

G1/2
m

� �
ffiffiffi
2

p
G1/2

m V − 2RminΨ V +Wkð Þ� �
ĝm

2
4

3
5














 ≤ υs1, ð14Þ

υs2I +G1/2
m V − 2RminΨ V +Wkð Þ� �

G1/2
m ≻0, ð15Þ

υs2 ≥ 0, ð16Þ

where υs1 and υs2 are slack variables.

Note. In the equation f ðzÞ = zHAz + 2 Re fzHbg + c, the
conversion process from C1 to (13) is realized by

z equivalents to ~gm,
A equivalents toG1/2

m V − 2RminΨ V +Wkð Þ� �
G1/2

m ,

b equivalents toG1/2
m V − 2RminΨ V +Wkð Þ� �

ĝm,

c equivalents to ĝHm V − 2RminΨ V +Wkð Þ� �
ĝm + σ2

ERm
1 − 2RminΨ
� �

:

ð17Þ

Proof. (see the appendix).

Similar to the constraint C1, based on Lemma 1, C2 can
be approximated as

Tr G1/2
m V +Wkð ÞG1/2

m

� �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ln θERm

q
υe1 + ln θERm

υe2

+ ĝHm V +Wkð Þĝm + σ2ERm
−
ΩERm

μ
≥ 0,

ð18Þ

vec G1/2
m V +Wkð ÞG1/2

m

� �
ffiffiffi
2

p
G1/2

m V +Wkð Þĝm

" #










 ≤ υe1, ð19Þ

υe2I +G1/2
m V +Wkð ÞG1/2

m ≻0, ð20Þ
where υe1 and υe2 are slack variables. Let Δqi =Q1/2

i ~qi, ~qi ∼
CN ð0, IÞ, using Lemma 1, constraint C3 is approximated by

Tr Q1/2
i V +Wkð ÞQ1/2

i

� �
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ln θP

p
υp1 − ln θPυp2

+ q̂Hi V +Wkð Þq̂i − Pmax ≥ 0,
ð21Þ

vec Q1/2
i V +Wkð ÞQ1/2

i

� �
ffiffiffi
2

p
Q1/2

i V +Wkð Þq̂i

" #










 ≤ υp1, ð22Þ

υp2I −Q1/2
i V +Wkð ÞQ1/2

i ≻0, ð23Þ
where υp1 and υp2 are slack variables.

Although the approximated forms of (13), (18), and (21)
are deterministic forms, the problem P1 is still difficult to
solve due to the nonconvex caused by fractional and coupling
constraints. In particular, we take advantage of the character-
istics of fractional parameter Ψ, which can be seen that 0 <
Ψ ≤ 1. Thus, for a given Ψ, suboptimal computed solutions
can be obtained by a proposed 1-D search method. The
relaxation of P1 is

P2 : min
V,es ,Wk , υs1f g, υs2f g, υe1f g, υe2f g, υp1f g, υp2f g

〠
K

k=1
Tr Wkð Þ + Tr Vð Þ

s:t: hHk Ψ − 1ð ÞV +ΨWkð Þhk + Ψ − 1ð Þσ2
SUk

= 0

1ð Þ, 2ð Þ, 3ð Þ, C4 – C7
C8 : R Wkð Þ ≤ 1, Wk≻0, Wk ∈ℍNt ,

ð24Þ

in which C8 guarantees thatWk =wkwH
k . As C8 is a rank-one,

a safe relaxation is introduced to make P2 convex by remov-
ing C8 from P2’s constraints. Then, the optimal solutions are
obtained by convex programming software CVX [28].

Algorithm 1 is the detail of the 1-D algorithm. In this
case, parameters θ, θERm

, and θP have to be initialized and
the search interval of the uniform search variable Ψ is (0,1].
It is noted that the problem P2 cannot make the matrices
Wk rank-one. If the solutions Wk are rank-one for all SUs,
the optimal secure beamforming vector can be obtained
through eigenvalue decomposing of Wk. If the solutions Wk
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1: Initialization:Rmin, θ, μ,ΩERm
, θERm

, Pmax, θP , Pmax
CBS , PPBS, PCBS, ρ.

2: Input:hHk , k = 1, 2,⋯, K , ĝm,m = 1, 2,⋯,M, q̂i, i = 1, 2,⋯, I.
3: Set: The iteration index n=1, the step length factor of the
1-D search τ.
4: Optimization:
5: forΨ=τ:τ:1
6: solve the P3,

P3 : min
V,es ,wk ,fυs1g,fυs2g,fυe1g,fυe2g,fυp1g,fυp2g

∑K
k=1TrðWkÞ + TrðVÞ

s:t: hHk ððΨ − 1ÞV +ΨWkÞhk + ðΨ − 1Þσ2
SUk

= 0

ð1Þ, ð2Þ, ð3Þ, C4‐C7
obtain fW1,W2,⋯,WKgn,Vn, esn, ð∑K

k=1TrðWkÞ + TrðVÞÞn;
set n=n+1.

7: end

8: Comparison: Find the optimal fW1,W2,⋯,WKgopt ,Vopt , esopt , ð∑K
k=1TrðWkÞ + TrðVÞÞopt from the n fW1,W2,⋯,WKgn,Vn, esn,

ð∑K
k=1TrðWkÞ + TrðVÞÞn

Algorithm 1: The 1-D search algorithm.

Table 1: Parameters for simulation.

Parameters Values

Minimum secrecy rate requirement Rmin = 1:5bits/s/Hz

Energy conversion efficiency μ = 0:9

Minimum required power of ERm ΩERm
= 5W

Maximum tolerable interference at PU Pmax = 5W

Outage probabilities θ = 0:05, θERm
= 0:05, θP = 0:05

Maximum transmit power allowance at the CBS Pmax
CBS = 10W

Fixed power expenditure PPBS = 50W, PCBS = 50W

Channel power gains hk ~CN 0, Ið Þ, ĝm ~ CN 0, Ið Þ, q̂i ~ CN 0, Ið Þ
Variances of noise σ2SUk

= σ2ERm
= 0:05
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Figure 3: System power supply model.
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are not rank-one, Gaussian randomization procedure can be
used to find the suboptimal solutions. Meanwhile, the corre-
sponding optimal objective value provides the lower bound
of (24) [35].

5. Simulation Results

Based on the proposed 1-D algorithm, this section illustrates
the system gains by simulations. The SWIPT-enabled CR
MEC network is considered with 2 SUs, 3 ERs, and 4 PUs.
The antennas of the CBS are Nt = 5. Table 1 details the
parameters for simulations. We discuss the system gains real-
ized by the secure beamforming compared with ideal cases.

The real energy harvesting data are descripted in Figure 3,
which are collected by Guangxi Power Grid Co., Ltd with the
intervals of fifteen minutes. In practice, the information
transmission coherence times are small enough, which can be
ignored compared with the power transfer intervals. Thus,
emax
s is supposed to be a known constant; that is to say, the
PBS and CBS can use energy harvested in current intervals

based on the knowledge of harvesting status. Those approaches
contribute to the constraint C5 in problem formulations; the
energy cooperation is realized between PBS and CSB until the
problem is solved and the average minimum energy sequences
are obtained.

Figure 4 is 500 calculations for the CDF of the CBS
optimized transmit power under the probabilistic CSI with
minimum secrecy rate (SR) constraint, the probabilistic CSI
without minimum SR constraint, the perfect CSI with mini-
mum SR constraint, and the perfect CSI without minimum
SR constraint, separately. It can be seen that the minimum
power transmitted by the CBS under the probabilistic CSI
error models is bigger than the other scenes as the channel
uncertainty takes more energy consumptions to meet the
expected secrecy rate. Figure 5 indicates the CDF of the
secrecy rate of the 500 calculations, from which we can see
that with the minimum secrecy rate constraint, the system
can achieve higher security rates and the imperfect CSI
significantly reduce the system preference. It is worth noting
that the cumulative probabilities under probabilistic CSI and
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perfect CSI scenes are started from the position of the lowest
safety rate, and the minimum secrecy rate is 1.5 bit/s/Hz. The
vertical parts of the CDF curves are caused by the introduc-
tion of secrecy rate constraints.

The minimum power transmitted by CBS is shown in
Figure 6 under different secrecy rate requirements and differ-
ent numbers of ERs. Nt is set as Nt = 5, Nt = 10, or Nt = 15.
Figure 6(a) concluded that a higher secure rate results in
greater energy consumption. Furthermore, the transmit
power of CBS decreases with Nt increases; this is because
more antennas degrees the source allocation with higher
degrees of freedom. Figure 6(b) describes the relationship
between ERs and CBS optimal transmit power.

6. Conclusions

This paper proposes a SWIPT-enabled CR framework for
MEC networks. A dedicated edge power grid is built for
sharing energy among MEC nodes to balance the energy
distribution. In particular, robust AN-aided secure beam-
forming is designed for CR networks to realize secure com-
munications and optimal power control. Bernstein-type
inequalities are introduced to transfer the problem into
closed and safely relaxed forms. The solutions are obtained
with the designed 1-D algorithm. Simulation results proved
the effectiveness and performance of the proposed scheme.
System gains are also achieved with the cost of implemen-
tation complexities.

Appendix

The Proof of Lemma 1

Let Wk =wkwH
k and Ψ = ðhHk Vhk + σ2SUk

Þ/ðhHk ðV +WkÞhk +
σ2SUk

Þ, we can rewrite the inequality ½CSUk
− CERm

�+ ≥ Rmin
as the following form:

gHmVgm + σ2ERm

Ψ gHm V +Wkð Þgm + σ2ERm

� � − 2Rmin ≥ 0: ðA:1Þ

Due to the nonnegative of the denominator in the above
inequality, we have

gHmVgm + σ2
ERm

− 2Rmin Ψ gHm V +Wkð Þgm + σ2
ERm

� �� �
≥ 0:

ðA:2Þ

After the equation gm = ĝm + Δgm, Δgm ∼CN ð0,GmÞ,
m ∈ f1, 2,⋯,Mg, is substituted and performed some
algebraic manipulations; (A.2) can be rewritten as

ΔgHm V − 2RminΨ V +Wkð Þ� �
Δgm + ΔgHm V − 2RminΨ V +Wkð Þ� �

ĝm
+ ĝHm V − 2RminΨ V +Wkð Þ� �

Δgm + ĝHm V − 2RminΨ V +Wkð Þ� �
ĝm

+ σ2ERm
1 − 2RminΨ
� �

≥ 0:

ðA:3Þ

Let Δgm =G1/2
m ~gm, ~gm ∼CN ð0, IÞ, then the first term of

the polynomial of the left side in the inequality (A.3) is
rewritten as

ΔgHm V − 2RminΨ V +Wkð Þ� �
Δgm

= ~gmHG1/2
m

H V − 2RminΨ V +Wkð Þ� �
G1/2

m ~gm:
ðA:4Þ

Based on the expression f ðzÞ = zHAz + 2 Re fzHbg + c in
Lemma 1, A is equivalent to G1/2

m
H ½V − 2RminΨðV +WkÞ�G1/2

m
and z is equivalent to ~gm. Then, the rest of polynomial is
converted as

ΔgHm V − 2RminΨ V +Wkð Þ� �
ĝm + ĝHm V − 2RminΨ V +Wkð Þ� �

Δgm
= ~gmHG1/2

m
H V − 2RminΨ V +Wkð Þ� �

ĝm + ĝHm V − 2RminΨ
�

V +Wkð Þ�G1/2
m ~gm = ~gmHG1/2

m V − 2RminΨ V +Wkð Þ� �
ĝm

+ ĝHm V − 2RminΨ V +Wkð Þ� �
G1/2

m ~gm
= 2 Re ~gmH ⋅G1/2

m V − 2RminΨ V +Wkð Þ� �
ĝm

� �
:

ðA:5Þ

Therefore, b in the expression f ðzÞ = zHAz + 2 Re fzHbg
+ c is equivalent to G1/2

m ½V − 2RminΨðV +WkÞ�ĝm, and c is
equivalent to ĝH

m½V − 2RminΨðV +WkÞ�ĝm + σ2ERm
ð1 − 2RminΨÞ .

Finally, the constraint C1 can be equivalently expressed as
(A.6), where υe1 and υe2 are slack variables:

Ψ =
hHk Vhk + σ2SUk

hHk V +Wkð Þhk + σ2SUk

Tr G1/2
m V − 2RminΨ V +Wkð Þ� �

G1/2
m

� �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ln θ

p
υs1 + ln θυs2 + ĝHm V − 2RminΨ V +Wkð Þ� �

ĝm
+ σ2

ERm
1 − 2RminΨ
� �

≥ 0,

ðA:6Þ

vec G1/2
m V − 2RminΨ V +Wkð Þ� �

G1/2
m

� �
ffiffiffi
2

p
G1/2

m V − 2RminΨ V +Wkð Þ� �
ĝm

2
4

3
5














 ≤ υs1, ðA:7Þ

υs2I −G1/2
m V − 2RminΨ V +Wkð Þ� �

G1/2
m ≻0, ðA:8Þ

υs2 ≥ 0: ðA:9Þ

This completes the proof.
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The effects of hardware impairments with imperfect channel estimation for cache-enabled UAV networks are studied in this paper.
The effects of the setup parameters, such as the number of cached or relaying nodes, the hardware impairment factor, the channel
estimation error, and the transmission SNR, on the outage probability are present by deriving the exact closed-form expressions on
outage probability. Also, the asymptotic results are present when the transmission SNR is large enough. From the asymptotic
analysis, we can see that there is an error floor introduced by the hardware impairments and imperfect channel estimation.
Specifically, the error floor is dependent on the channel estimation error factor, the hardware impairment distortion factor, and
the QoS requirements. And the diversity order of the error floor for the cached/relaying links is equal to the number of
cached/relaying UAV nodes.

1. Introduction

In recent years, wireless throughput is growing up exponen-
tially [1–3] and wireless communication network is facing
more and more challenges introduced by wireless big data
[4–7]. Cache technology, which can both improve the quality
of service (QoS) of wireless link and relieve the pressure of
wireless throughput, has demonstrated as a remarkable
enabling solution for wireless networks [8–10]. By exploiting
interference neutralization, the authors in [11] proposed an
optimal content placement method to improve the system
capacity. Furthermore, the maximum distance separable cod-
ing is adopted in wireless cache networks in [12], which can
improve the system performance in terms of successful
retrieval probability.

On the other hand, hardware impairments, which are
introduced by phase noise of the RF components, show great
effects on the system performance. Hardware impairments
have been extensively studied and modeled as additive dis-
tortion noise [13] or nonlinear polynomial multiplicative fac-

tor [14, 15]. Considering amplify-and-forward (AF) relaying
networks, the authors in [16] investigated the effects of hard-
ware impairments on channel capacity by exact closed-form
expression as well as the tight bounds, while Ref. [17] proved
that larger hardware impairments can be used in massive
MIMO due to the huge degrees of space freedom. By using
iterative optimization algorithm, Ding et al. [18] proposed a
solution to maximize the detection probability.

Meanwhile, due to the high mobility, there exists imper-
fect channel estimation since the linear estimation methods
are applied on pilot signals [19]. Considering correlated
Rayleigh fading with imperfect channel status information,
Al-Hussaibi and Ali [20] derived expressions on the ergodic
capacity with antenna selection. The authors in [21] analyzed
the impact of imperfect CSI estimation for Alamouti-OSTBC
Wireless Cooperative Networks in terms of symbol error
probability.

However, the impacts of hardware impairments with
imperfect channel estimation on relaying networks are still
open questions. Considering unmanned aerial vehicle (UAV)
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networks, the UAV nodes work as a cache enable access
point or an AF relaying node. To improve the QoS of the
wireless channels, the best cached UAV nodes or AF relay-
ing nodes are selected to help the message transmission
from the macro BS to the user. The effects of the system
parameters, such as the number of cached/relaying nodes,
the hardware impairment factor, the channel estimation
error, and the transmission SNR, on the outage probability
are present by deriving the exact closed-form expressions
on outage probability. Also, the asymptotic results are pres-
ent when the transmission SNR is large enough. From the
asymptotic analysis, we can see that there is an error floor
introduced by the hardware impairments and imperfect
channel estimation. Specifically, the error floor is dependent
on the channel estimation error factor, the hardware
impairment distortion factor, and the QoS requirements.
And the diversity order of the error floor for the cached/
relaying links is equal to the number of cached/relaying
UAV nodes.

The main contributions of this paper are as follows:

(i) Cache-enabled UAV relaying protocol is adopted to
improve the QoS of the wireless links, where the
UAV nodes work as a cache enable access point or
an AF relaying node

(ii) We provide the deep insight on the effects of the
system parameters, such as the number of cached/re-
laying nodes, the hardware impairment factor, the
channel estimation error, and the transmission
SNR, on the outage probability by deriving the exact
closed-form expressions on outage probability

The organization of this paper is as follows. Section 2 pre-
sents the system model of cache-enabled amplify-and-
forward UAV networks, while the UAV selection algorithm
and its performance analysis are given in Section 3. Further-
more, the asymptotical analysis is present in Section 4 with
large transmission power. In Section 5, simulation results
are present to validate the theoretical analysis. Finally, con-
clusion is given in Section 6.

2. System Model

The system model of cache-enabled amplify-and-forward
unmanned aerial vehicle (UAV) networks is present in
Figure 1, where there is one destination user, one macro
base station (BS) and N cache-enabled UAV relaying
nodes. We assumed that all nodes are equipped with only
one antenna. Furthermore, because of the shadow fading,
there is no direct link from the macro BS to the destina-
tion user. In order to improve the QoS of the links, one
of the UAV nodes is selected to assist the message trans-
mission. Since the UAV nodes hold limited cache mem-
ory, the backhaul load from the macro BS to the UAV
nodes can be relieved if the requested files from the user
are hit in the UAV nodes. In this case, one of the UAV
nodes is selected and directly transmits message to the
user. On the other hand, if the requested file is not cached,

the selected UAV node will work as an amplify-and-
forward relaying node to help the data transmission. It is
assumed that all links are block Rayleigh fading channel
and independent with each other.

3. Selection Algorithm and
Performance Analysis

3.1. Cached Links. If the requested file is cached by the UAV
nodes, the power normalized transmission signal from the
UAV node can be modeled as [13]

si =
ffiffiffiffiffiffiffiffiffiffiffiffi
1

1 + κη

s
ŝi +

ffiffiffiffiffi
κη

p
ηi

� �
, ð1Þ

where ŝi is the information bearing signal with unit power,
ηi ∈CN ð0, 1Þ is the distortion noise introduced by hardware
impairments [22–25], and κη is the hardware impairment
distortion factor.

Since the classical MMSE channel estimation algorithm is
adopted, there exists some estimation error between the real
channel fading coefficient and the estimated version [26–29].
It is assumed that the estimation error is independent with
the imperfect CSI [30–35]. Thus, the relationship between
the imperfect channel status information and the ideal ver-
sion is given as

hu,i =
ffiffiffiffiffiffiffiffiffiffiffi
1

1 + κe

s
ĥu,i +

ffiffiffiffiffiffiffi
κeei

p� �
, ð2Þ

where hu,i ∈CN ð0, 1Þ is the CSI from the ith UAV node to

the user, while ĥu,i ∈CN ð0, 1Þ denotes the imperfect estima-

tion of hi, ei ∈CN ð0, 1Þ is the difference between ĥu,i and
hu,i, and κe is the channel estimation error factor. Specifi-
cally, κe = 0 means the perfect channel estimation.

Figure 1: System model of cache-enabled amplify-and-forward
UAV networks.
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Given that the ith UAV relaying node is selected, the
requested file is cached by the selected node. Then, the
received signal of the user can be given as

yi =
ffiffiffiffiffi
PR

p
hu,isi + ni

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PR

1 + κeð Þ 1 + κη
� �s

ĥu,i +
ffiffiffiffi
κe

p
ei

� �
ŝi +

ffiffiffiffiffi
κη

p
ηi

� �
+ ni,

ð3Þ

where PR is the transmission power of the UAV node, and
ni ∈CN ð0, σ2Þ is the received white Gauss noise.

Then, the signal to interference plus noise ratio (SINR)
can be given as

γc,i =
ρu,i

ρu,iκη + d1
, ð4Þ

where

ρu,i = ĥu,i
��� ���2,

λR =
PR

σ2
,

d1 = κe 1 + κη
� �

+ 1 + κeð Þ 1 + κη
� �

λR
:

8>>>>>>><
>>>>>>>:

ð5Þ

Obviously, γc,i is a monotone increasing function of ρu,i.
In this case, the optimal UAV node can be given as follows:

n∗1 = arg max
i∈ΩC

ρu,i
� �

: ð6Þ

Due to the independence between different ρu,i’s, accord-
ing to the ordered statistics, we have

Fρu,n∗1
xð Þ = Fρu,i

xð Þ
h iNR = 1 − e−x½ �NR , ð7Þ

where NR is the number of relaying nodes.
Then, the outage probability of the cached links can be

given as

PO,C = Pr CC < C0½ � = Pr γr,n∗1
< γ0

h i
= Pr ρu,n∗1

< d1γ0
1 − κηγ0

" #
,

ð8Þ

where γ0 = 2C0 − 1 and C0 are the required capacity.
Substituting (7) into (8), we obtain

PO,C = Pr ρu,n∗1
< d1γ0
1 − κηγ0

" #

= 1 − exp d1γ0
1 − κηγ0

 !" #NR

, γ0 <
1
κη

:

ð9Þ

3.2. Relaying Links. On the other hand, if the requested file is
not cached in the selected UAV node, the original message
will be transmitted from the macro BS to the user with the
help of the UAV node by using amplify-and-forward relaying
protocol.

In this case, the received signal at the ith UAV node can
be given as

ri = hr,i

ffiffiffiffiffiffiffiffiffiffiffiffi
PS

1 + κη

s
ŝi +

ffiffiffiffiffi
κη

p
ηi

� �
+ nr,i, ð10Þ

where PS is the transmission power of the macro BS, hr,i ∈
CN ð0, 1Þ denotes the channel fading coefficient from the
macro BS to the ith UAV node, and nr,i ∈CN ð0, σ2Þ is the
received Gauss noise at the UAV node.

Then, the UAV node will amplify the received signal with
power PR and retransmit to the user. Thus, the received sig-
nal at the user through AF protocol can be given as

yi = hu,iζiri + ni, ð11Þ

where ζi is the power amplify factor as follows

ζi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PR

ρr,iPS + σ2

s
, ð12Þ

and ρr,i = jhr,ij2 is the channel fading power of the first hop.
By substituting (2) and (12) into (11), we can obtain the

SINR at the user through AF protocol

γr,i =
ρr,iρu,i

ρr,iρu,iκη + ρr,iCr + ρu,iCu + Cn
, ð13Þ

where

ρr,i = ĥr,i
��� ���2,

λS =
PS

σ2
,

λR =
PR

σ2
,

cr = κe 1 + κη
� �

,

cu =
1 + κeð Þ 1 + κη

� �
λR + σ2 ,

cn = κeσ
2 +

1 + κeð Þ 1 + κη
� �

λS/λR
:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð14Þ

In order to obtain the best SINR, an UAV selection algo-
rithm can be employed. Note that if the transmission power
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is large enough, i.e., λS → 0, λR → 0, the high order items can
be ignored. Then, γr,i in (13) can be simplified as

γr,i ≃ κη +
cr
ρu,i

+ cu
ρr,i

� 	−1
: ð15Þ

To simply the complexity of theoretical analysis, we
use the following approximation. Recall the following fact
that [36]

1
min x, yð Þ ≤

1
x
+ 1
y
≤

2
min x, yð Þ , ∀x, y > 0: ð16Þ

To obtain the best SINR through AF protocol, the
selection criterion can be given as

n∗2 = arg max
i∈ΩR

min ρu,i, ξρr,i
� �

, ð17Þ

where ξ = cr/cu.

Theorem 1. The cumulative distribution functions of ρu,n∗2
and ρr,n∗2

are given as

Fρu,n∗
2

xð Þ =NR 〠
NR−1

k=1
bk

1
ξ2

−
e−x

ξ3
+ e−ξ2x

ξ3ξ2ð Þ

" #
,

Fρr,n∗
2

xð Þ =NR 〠
NR−1

k=1
bk

1
ξ2

−
e−x

ξ4
+ e−ξ2ξx

ξξ2ξ4ð Þ

" #
,

8>>>>><
>>>>>:

ð18Þ

for NR ≥ 2.

Fρu,n∗
2

xð Þ = Fρr,n∗
2

xð Þ = 1 − e−x, ð19Þ

for NR = 1, where

ξ1 = 1 + 1
ξ
,

ξ2 = k + 1ð Þξ1,

ξ3 = kξ1 +
1
ξ
= ξ2 − 1,

ξ4 = kξ1 + 1 = ξ2 −
1
ξ
,

bk = Ck
NR−1

−1ð Þk−1kξ1:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð20Þ

Taking the derivative of equations in Theorem 1, we can
obtain the following corollary.

Corollary 2. The probability distribution functions of ρu,n∗2
and ρr,n∗2

are given as

f ρu,n∗
2

xð Þ =NR 〠
NR−1

k=1

bk
ξ3 e−x − e−ξ2x
� � ,

f ρr,n∗
2

xð Þ =NR 〠
NR−1

k=1

bk
ξ4 e−x − e−ξ2ξx
� � ,

8>>>>><
>>>>>:

ð21Þ

for NR ≥ 2, and

f ρu,n∗
2

xð Þ = f ρr,n∗
2

xð Þ = e−x , ð22Þ

for NR = 1.

Proof. See Appendix VI-A.
Considering the SINR expression in (13), the outage

occurs when γr,n∗2 falls below the quality-of-service require-

ment, i.e.,

PO,R = Pr CR < C0½ � = Pr γr,n∗2 < γ0

h i
, ð23Þ

where γ0 = 2C0 − 1.
Substituting (13) into (24), we have

PO,R = Pr ρr,iρu,i
ρr,iρu,iκη + ρr,iCr + ρu,iCu + Cn

< γ0

" #

= Pr ρr,iρu,i 1 − γ0κη
� �

< ρr,iCrγ0 + ρu,iCuγ0 + γ0Cn

� �
 �
= Pr ρr,i ρu,i 1 − γ0κη

� �
− Crγ0


 �
< ρu,iCuγ0 + γ0Cn

� �
 �
:

ð24Þ

Applying conditional probability formula, we have

PO,R = Pr ρr,i ρu,i 1 − γ0κη
� �

− crγ0

 �

< ρu,icuγ0 + γ0cn
� �
 �

= Pr ρu,i < c1

 �

+ Pr ρr,i < c2
ρu,i + cn/cu
ρu,i − c1

, ρu,i ≥ c1

� 	
= Pr ρu,i < c1


 �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
P1

+ Pr ρr,i ≤ c2, ρu,i ≥ c1

 �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P2

+ Pr c2 < ρr,i < c2
ρu,i + cn/cu
ρu,i − c1

, ρu,i ≥ c1

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P3

,

ð25Þ
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where

c1 =
crγ0

1 − γ0κη
� � ,

c2 =
cuγ0

1 − γ0κη
� � ,

c3 =
cn
c1cuð Þ :

8>>>>>>><
>>>>>>>:

ð26Þ

Applying (18) on (25), we can obtain

P1 = Fρu,n∗2
c1ð Þ, ð27Þ

P2 = Fρr,n∗2
c2ð Þ 1 − Fρu,n∗2

c1ð Þ
h i

: ð28Þ

To derive the exact expression of P3, firstly we give the
following definition

FZ zð Þ = Pr ρu,i + cn/cu
ρu,i − c1

< z, ρu,i ≥ c1

� 	
,  z > 1

= Pr ρu,i > c1
z + cn/ c1cuð Þ

z − 1 , ρu,i ≥ c1

� 	
,  z > 1

= Pr ρu,i > c1
z + cn/ c1cuð Þ

z − 1

� 	
,  z > 1

= Pr ρu,i > c1
z + c3
z − 1

h i
,  z > 1:

ð29Þ

Applying (18) on (29), we can obtain

FZ zð Þ = Pr ρu,i > c1
z + c3
z − 1

h i
,  z > 1 = Fρu,n∗2

c1
z + c3
z − 1

� �
: ð30Þ

Thus, the item P3 in equation (25) can be given as

P3 = Pr c2 < ρr,i < c2
ρu,i + cn/cu
ρu,i − c1

, ρu,i ≥ c1

� 	

=
ð+∞
x>c2

f ρr,n∗2
xð Þ 1 − FZ

x
c2

 �� 	
dx

=
ð+∞
x>c2

f ρr,n∗2
xð Þ 1 − Fρu,n∗2

c1
x + c3c2
x − c2

 �� 	
dx:

ð31Þ

By using necessary mathematical derivation and applying
equation (3.324-1) in [37], i.e.,

ð+∞
0

exp β

4x − γx
 �

dx =
ffiffiffi
β

γ

s
K1

ffiffiffiffiffiffi
βγ

p� �
, ð32Þ

the closed-form expression of P3 can be obtained.
By substituting (27), (28), and (31) into (25), we can

obtain the exact closed-form expression of PO,R.

4. Asymptotical Analysis

To get a deep insight on the impact of hardware impairments
with imperfect channel estimation, we will conduct the
asymptotical analysis of outage probability. Note that if the
transmission power is large enough, i.e., 1/λS → 0, 1/λR → 0,
and κe → 0, κη → 0.

Thus, we have

cr ≃ κe 1 + κη
� �

,

cu ≃ σ2,
cn ≃ κeσ

2

d1 ≃ κe 1 + κη
� �

,

ξ ≃
κe 1 + κη
� �
σ2

,

8>>>>>>>>>><
>>>>>>>>>>:

c1 ≃
κe 1 + κη
� �

γ0
1 − γ0κη
� � ,

c2 ≃
σ2γ0

1 − γ0κη
� � ,

c3 ≃
1 − γ0κη
� �
1 + κη
� �

γ0
:

8>>>>>>>>>><
>>>>>>>>>>:

ð33Þ

Applying the approximation that 1 − e−x ≃ x, if x→ 0 on
(9), we have

PO,C ≃
d1γ0

1 − κηγ0

 !NC

≃ γ0
κe 1 + κη
� �
1 − κηγ0

" #NC

: ð34Þ

According to the asymptotical expression on outage
probability for cached links, we can conclude the following
remarks:

Remark 3. There is an error floor for the cached links when
the transmission power is large enough. Meanwhile, the
diversity order with respect to the transmission power is zero.

Remark 4. The error floor for the cached links is dependent on
the channel estimation error factor κe, the hardware impair-
ment distortion factor κη, and the QoS requirements γ0.

Remark 5. The diversity order of error floor for the cached
links is equal to the number of cached UAV nodes.

Considering the SINR expression in (15), we have

PO,R ≃ Pr max
i∈ΩR

min ρu,i, ξρr,i
� �

< γ0
ξcu

1 − γ0κη
� �" #

= Pr min ρu,i, ξρr,i
� �

< c4

 �� �NR :

ð35Þ
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By using the result in (A.3), we have

PO,R ≃ 1 − e−ξ1c4
� �NR

≃ ξ1c4ð ÞNR ≃ γ0
1 + ξð Þσ2
1 − γ0κη
� �" #NR

≃ γ0
σ2 + κe 1 + κη

� �
1 − γ0κη
� �" #NR

,
ð36Þ

where

c4 = γ0
ξcu

1 − γ0κη
� � ≃ γ0

ξσ2

1 − γ0κη
� � : ð37Þ

Remark 6. There also exists an error floor for the relaying
links when the transmission power is large enough.

Remark 7. The diversity order of error floor for the relaying
links is equal to the number of relaying UAV nodes.

5. Simulation Results

In this section, simulation results are provided to verify the
accuracy of the theoretical analysis. For the sake of simplicity,
we set κe = κη = σ2. The impacts of the system parameters,
such as the number of UAV nodes N , the transmission
SNR of the cached links and the relaying links λS, λR, and
the capacity threshold C0, are investigated.

Figure 2 shows the impacts of transmission SNR λS on
outage performance for cached links. In this simulation, we

have the following system parameters: NC = 2, κe = κη = 0:01,
C0 = 1 bps/Hz, and the transmission SNR λS changes from
12dB to 39dB. The simulation results and the theoretical
analysis as well as the asymptotic analysis are compared in
this figure. As shown in this figure, in all SNR regions, the
simulation results match well with the theoretical analysis.
Furthermore, an error floor appears when the transmission
SNR grows large, which coincides with the asymptotic per-
formance analysis. The reason is that when SNR is large
enough, the bottleneck of the system performance is the
hardware impairments and the channel estimation error.
The detailed relationship between the error floor and κη
and κe is given as in equations (34) and (36). When the
requested file is not hit by the UAV nodes, amplify-and-
forward protocol is adopted and the simulation results are
present in Figure 3, where similar conclusion can be obtained
for relaying links with NR = 2.

Figures 4 and 5 show the effects of the capacity threshold
C0 on outage probability for cached links and relaying links,
respectively. The system parameters are set as follows:
NC =NR = 2, κe = κη = 0:01, and the capacity threshold C0
changed from 1bps/Hz to 3 bps/Hz. From the two figures,
we can observe that C0 shows significant impact on outage
probability for all of the SNR regions. Specifically, the
diversity order of outage probability is zero with respect
to the transmission SNR λS or λR.

Figures 6 and 7 show the effects of the hardware impair-
ment factor κη on outage probability for cached links and
relaying links, respectively. The system parameters are set
as follows: NC =NR = 2, κe = κη = 0:01, C0 = 1 bps/Hz, and
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Figure 2: Outage probability for cached link with NC = 2.
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the hardware impairment factor κη changed from 0.01 to
0.03. From these figures, we can observe that C0 shows con-
siderable impact on outage probability especially in high

SNR regions. Specifically, the larger κη will introduce higher
error floor. The reason is that, in the considered scenario,
the bottleneck of the system performance is the hardware
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Figure 3: Outage probability for AF relaying links with NR = 2.
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Figure 4: Outage probability versus capacity threshold for cached links with NC = 2.
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impairments. When the hardware impairment factor κη
grows larger, the noise power will be higher, which will dete-
riorate the system performance.

The effect of the number of cached UAV nodes is present
in Figure 8, where the system parameters are set as follows:
κe = κη = 0:01, C0 = 1 bps/Hz, and the number of cached

N
R

 = 2, 𝜅
e
 = 𝜅

n
 = 0.01

10–5

10–4

10–3

10–2

10–1

100

Sy
ste

m
 o

ut
ag

e p
ro

ba
bi

lit
y

15 20 25 30 35

SNR (dB)

C0 = 1 bps/Hz
C0 = 2 bps/Hz
C0 = 3 bps/Hz

Figure 5: Outage probability versus capacity threshold for relaying links with NR = 2.

N
C

 = 2, C0 = 1 bps/Hz
10–5

10–4

10–3

10–2

10–1

Sy
ste

m
 o

ut
ag

e p
ro

ba
bi

lit
y

𝜅
n
 = 0.01

𝜅
n
 = 0.02

𝜅
n
 = 0.03

15 20 25 30 35

SNR (dB)

Figure 6: Outage probability versus κη for cached links with NC = 2.

8 Wireless Communications and Mobile Computing



UAV nodes NC changed from 2 to 3. We can see from
this figure that NC shows great impact on system perfor-
mance. As mentioned by the remarks of asymptotic anal-

ysis, the diversity order of error floor for the cached/
relaying links is equal to the number of cached/relaying
UAV nodes.
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6. Conclusions

The impacts of hardware impairments with imperfect chan-
nel estimation for cache-enabled UAV relaying networks
are investigated in this paper. To improve the QoS of the
wireless channels, the best cached UAV nodes or AF relaying
nodes are selected to help the message transmission from the
macro BS to the user. The impacts of the setup parameters,
such as the number of cached/relaying nodes, the hardware
impairment factor, the channel estimation error, and the
transmission SNR, on the outage probability are present by
deriving the exact closed-form expressions on outage proba-
bility. Also, the asymptotic results are present when the
transmission SNR is large enough. From the asymptotic anal-
ysis, we can see that there is an error floor introduced by the
hardware impairments and imperfect channel estimation.
Specifically, the error floor is dependent on the channel esti-
mation error factor, the hardware impairment distortion fac-
tor, and the QoS requirements. In future works, we will
introduce deep learning-based [38–40] or Q-learning-based
algorithms [41, 42] to further improve the system perfor-
mance. Moreover, we will apply the considered wireless tech-
niques into some practical IoT systems [43, 44] to achieve the
green energy applications.

Appendix

Proof of Theorem 1

For the case NR = 1, the theorem obviously holds.
We will focus on the case that NR ≥ 2. Firstly, we give the

following definition

zi =min ρu,i, ξρr,i
� �

: ðA:1Þ

Then, the PDF of zi can be derived as

Fzi xð Þ = Pr min ρu,i, ξρr,i
� �

< z
� �

= 1 − Pr min ρu,i, ξρr,i
� �

≥ z
� �

= 1 − Pr ρu,i ≥ z, ρr,i ≥
z
ξ

� �
:

ðA:2Þ

Due to the independence between ρu,i and ρr,i, we obtain

Fzi xð Þ = 1 − Pr ρu,i ≥ z
� �

Pr ρr,i ≥
z
ξ

� �
= 1 − e−ze−z

ξ = 1 − e− 1+1/ξð Þz :

ðA:3Þ

Taking the derivative of Fzi
ðxÞ, we can get the PDF of

zi as

f zi xð Þ = ξ1e
−ξ1x, ðA:4Þ

where

ξ1 = 1 + 1
ξ
: ðA:5Þ

Secondly, we give another definition as

θm = max
i∈ΩR/m

zi: ðA:6Þ

Since zi’s are independent identical distribution, we
can have

Fθm
xð Þ = Fzi

xð Þ
 �NR−1: ðA:7Þ

By substituting (A.3) into (A.7) and applying the bino-
mial theorem, we have

Fθm
xð Þ = 1 − e−ξ1z

� �NR−1

= 〠
NR−1

k=0
Ck
NR−1 −1ð Þke−kξ1z

= 1 − 〠
NR−1

k=1
Ck
NR−1 −1ð Þk−1e−kξ1z , NR ≥ 2:

ðA:8Þ

As such, the PDF of θm can be obtained as

f θm xð Þ = 〠
NR−1

k=1
bke

−kξ1x , ðA:9Þ

where bk = Ck
NR−1ð−1Þ

k−1kξ1.
According to the definition in (17), we can derive the

CDF of ρu,n∗2 ,

Fρu,n∗2
xð Þ = 〠

NR

m=1
Pr ρu,m < x, zm > θm

 �

=NRPr ρu,1 < x, z1 > θ1

 �

=NRPr ρu,1 < x, ρu,1 > θ1, ξρr,1 > θ1

 �

=NRPr θ1 < ρu,1 < x, ρr,1 >
θ1
ξ
, θ1 < x

� 	
:

ðA:10Þ

By using the result in (A.9), we have

Fρu,n∗2
xð Þ =NRPr θ1 < ρu,1 < x, ρr,1 >

θ1
ξ
, θ1 < x

� 	
=NR

ðx
0
f θ1 θð Þ e−θ − e−x

� �
e−θ/ξdθ

=NR 〠
NR−1

k=1
bk

1
ξ2

−
e−x

ξ3
+ e−ξ2x

ξ3ξ2

" #
,

ðA:11Þ
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where

ξ2 = k + 1ð Þξ1,

ξ3 = kξ1 +
1
ξ
= ξ2 − 1,

ξ4 = kξ1 + 1 = ξ2 −
1
ξ
:

8>>>>><
>>>>>:

ðA:12Þ

Similarly, we can obtain the CDF of ρr,n∗2 as follows:

Fρr,n∗2
xð Þ =NR 〠

NR−1

k=1
bk

1
ξ2

−
e−x

ξ4
+ e−ξ2ξx

ξξ2ξ4

" #
: ðA:13Þ

Thus, Theorem 1 is proved.
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