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-e power converters are widely used in several industrial applications where it is necessary to obtain from a fixed voltage another
one higher or lower than the original. In this paper, we focus on the DC-DC (direct current) boost converters, where to guarantee
the desired voltage, an internal current tracking loop is usually used. However, this tracking cannot be assured in the presence of
unknown load changes and external perturbations when traditional controller strategies are implemented. In this paper, an
advanced control strategy is proposed to ensure the current tracking using a saturated super-twisting controller on the power
converter. -e finite-time current tracking of a DC-DC boost converter is assured in the presence of bounded Lipschitz per-
turbations composed by unknown load changes and exogenous signals. -e proposed approach generates a continuous bounded
control signal applied to the converter by using a sigma-delta modulator (ΣΔM). -e controller gains are tuned to obtain finite-
time stabilization of the tracking error, while the control signal remains bounded. To illustrate the effectiveness of the proposed
results, the controller is applied to a physical boost converter using the hardware implemented (ΣΔM) and an STM32 Discovery
development card. Besides, the controller is compared with a first-order sliding mode controller showing that for small sample
times, the energy of the error signal is reduced.

1. Introduction

-e DC-DC power converters are used in contemporary
applications and have been widely investigated in the last
three decades. -ey are the ideal candidates in several ap-
plications such as electric and hybrid vehicles, fuel cells,
microgrids, and photovoltaic and renewable energy storage
systems [1–7]. -e natural operation of power converters
requires that the control variable takes values from a discrete
set. Several efforts to control power converters involving
discrete components, integrated circuits, and/or pulse width

modulation (PWM) have been reported in the literature
[8–16], where schemes based on PI, passivity, adaptive
backstepping, fuzzy logic, deadbeat, H-infinity, or model
predictive control are used.

In general, the main control objective of power con-
verters is the voltage regulation. According to [17–20], this
control problem can be solved by using a cascaded control
structure with two loops: an inner current loop and an outer
voltage loop. Traditionally, a simple PI compensator is
applied to regulate the voltage and generate the current
reference signal. Moreover, several applications require that
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the current follows a specific current profile [21–24]. It is
worth to mention that the rate of the current is faster than
the one of the output voltage, making necessary the design of
fast strategies that guarantee the exact tracking of the current
profile. Moreover, in practice, the load may vary depending
on external factors affecting the tracking of the desired
current [17, 25–27].

-e effects of the unknown load changes can be seen as
perturbations. -e sliding mode controllers are well known
by its ability to compensate theoretically exactly the matched
uncertainties/perturbations [18, 28]. -e accuracy and
structure of these controllers depend on the uncertainties/
disturbances considered and the relative degree of the sliding
variable.

In the sliding mode framework, the first-order sliding
mode (FOSM) control is widely used in the current control
loop implementation [17, 29]. -is controller works in the
on-off mode and allows compensating in finite-time
bounded matched uncertainties/perturbations. However, if
the commuting frequency is not high enough, it generates
high-level chattering or ripple [20, 29]. An alternative to this
controller type is a super-twisting algorithm (STA) based
controller [30, 31]. -is controller compensates Lipschitz
uncertainties/perturbations by using continuous control
signals, and the generated chattering is diminished in
comparison with a FOSM [32, 33]. However, it cannot
guarantee that the generated control signal remains boun-
ded, preventing its use in power converters. Recently, a
saturated STA (SSTA) has been proposed in [34, 35], and it
generates a bounded control signal, while it compensates in
finite-time bounded Lipschitz uncertainties/perturbations.

Among the power converters, the boost converter is a
nonminimum phase highly nonlinear system. -is difficult
the control design for the regulation or tracking of a ref-
erence voltage. -e voltage tracking problem can be
reformulated in terms of the current one, which makes the
design of the inner current control loop crucial. In the
literature, several strategies based on the FOSM have been
designed for the boost converter. For example, [36] uses an
adaptive controller guaranteeing asymptotic stability of the
closed-loop system, while [27] proposes an adaptive back-
stepping control strategy considering the presence of a
constant power load (CPL) and bounded external pertur-
bations and parameter uncertainties. -e closed-loop sys-
tem’s sensitivity function amplitude is reduced in [37] by
using an optimized feedback control scheme. In [20], a
control design procedure is given for DC-DC power con-
verters with different control objectives, and the chattering is
attenuated by using a harmonic cancellation method
approach.

-e aim of this paper is the design of the inner current
control loop for boost converters. A tracking control strategy
based on the SSTA is proposed to guarantee in finite-time a
desired inductor current profile in the presence of Lipschitz
and bounded uncertainties/perturbations conformed by
unknown changes in the load, model uncertainties, and
external perturbations. To illustrate the benefits of the
proposed approach, the SSTA controller is compared with a
FOSM controller using a chattering analysis via simulation.

-is comparison shows that the use of a continuous sliding
mode control strategy attenuates the energy of the error
signal. An efficiency analysis is also performed in simulation,
and the SSTA controller is compared in terms of power
efficiency with a conventional LQ controller and a FOSM
one. -is analysis reveals that the use of a variable structure
controller improves considerably the efficiency of the boost
converter. In addition, the obtained results are implemented
in a boost converter prototype to illustrate the applicability
of the proposed methodology.

-is paper is organized as follows. Some preliminaries
results, the test setup, and the problem formulation are
described in Section 2. -e controller design that stabilize in
finite-time the tracking inductor current error is given in
Section 3. Section 4 gives the simulation results and the
performed analysis. -e implementation is detailed in
Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries and Problem Formulation

2.1. Ideal Boost Converter. -e boost power converter [38]
was selected as the test setup. -is converter is a voltage
elevator capable to increase the capacitor voltage v over the
input voltage E of the converter. In Figure 1, a schematic of
this converter is shown, assuming ideal elements.

Due to the transistor Q, the converter commutes be-
tween two states u(t) � 1 and u(t) � 0, that denotes the on-
off state of the transistor.-e two subsystems are depicted in
Figures 2 and 3.

Let i be the inductor current and v the capacitor voltage,
and the mathematical model of the converter [38] is given
below.

(i) If u(t) � 1

L _i(t) � E,

C _v(t) � −
v(t)

R
.

(1)

(ii) If u(t) � 0

L _i(t) � − v(t) + E,

C _v(t) � i(t) −
v(t)

R
.

(2)

Observe that this switched system can be expressed in
the bilinear form as

_i(t) � − (1 − u(t))
v(t)

L
+

E

L
,

_v(t) � (1 − u(t))
i(t)

C
−

v(t)

CR
,

(3)

where the control input u(t) ∈ 0, 1{ }. To implement a
continuous control signal in this converter, a ΣΔM circuit
[17, 38] is used.
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2.2. Boost Converter with Perturbations. When nonideal
elements and unknown changes in the nominal load R are
considered, the boost converter model (3) can be seen as a
perturbed system of the form

_i(t) � − (1 − u(t))
v(t)

L
+

E

L
+ ϕ1(t),

_v(t) � (1 − u(t))
i(t)

C
−

v(t)

CR
+ ϕ2(t),

(4)

where ϕ1: R⟶ R and ϕ2: R⟶ R denote unknown
matched uncertainties/perturbations, composed by un-
known load changes, differences in the nominal input
voltage E, uncertainties in the system parameters, and ex-
ogenous signals.

2.3. ΣΔ Modulator. To convert a continuous signal to a
digital one, a ΣΔM [17, 39, 40] may be utilized, allowing the
switched synthesis of any feedback controller designed
following an average viewpoint. -is modulator can be used
to translate a continuous average design into a discontin-
uous one with the property that the equivalent output signal
of the modulator matches the input signal generated by the
continuous average feedback controller. In this paper, the
following ΣΔM is used (for more details about the modeling
of this modulator see [17]).

_z(t) � ζ(t),

_x(t) � u(t) �
1
2

(1 + sign(σ(t))),

σ(t) � z(t) − x(t);

(5)

where ζ(t) is the analogue input signal, and u(t) ∈ 0, 1{ } is
the output of the modulator. -is modulator is only capable
to modulate the input if ζ(t) ∈ [0, 1]. -e block diagram of
the ΣΔM is shown in Figure 4.

2.4. Super-Twisting Algorithm. Consider a relative degree
one scalar system:

_s(t) � u(t) + ψ(t), (6)

where ψ(t) is a Lipschitz uncertainty/perturbation. -e STA
[28] is a second-order sliding mode control that drives the
sliding variable s and its derivatives to zero in finite-time. It
generates a continuous control and attenuate the chattering
effect by hiding the switching term under an integral. In
general, the STA controller is given as

u(t) � − k1⌊s(t)⌉
(1/2)

+ w(t),

_w(t) � − k2⌊s(t)⌉
0
,

(7)

where ⌊·⌉p � | · |psign(·), and k1 and k2 are designed to
guarantee the finite-time convergence of s and _s to the origin
in finite-time. -is controller compensates in finite-time
Lipschitz uncertainties/perturbations. However, the gener-
ated continuous control signal is unbounded.

To produce a bounded continuous control signal with
the characteristics of the STA, in [35], a SSTA is proposed.
-is controller assures finite-time convergence to the origin
of the sliding variable s and its time derivatives while
compensating bounded Lipschitz uncertainties/perturba-
tions. -e design conditions of such a controller are given in
the following theorem.

Theorem 1. [35] Let the scalar system (6) with ψ(t), a
bounded Lipschitz perturbation, i.e., _ψ(t)≤ψ1, and
ψ ≤ψ0 ≤M. Consider the SSTA controller:

u(t) � satU − k1⌊s(t)⌉
(1/2)

+ w(t)􏼐 􏼑,

_w(t) � − k2⌊s(t)⌉
0
,

w(0) � 0,

(8)

where ⌊·⌉p � | · |psign(·), and

satU(y) �
y, if |y|≤M,

M⌊y⌉0, if |y|>M,
􏼨 (9)

with SSTA gains, such that

k1 >
������

k2 + ψ1

􏽱

,

k2 >ψ1.
(10)

E

L

i (t)

u (t) v (t)
+

–
+
–

C R

D

Q

Figure 1: Electronic circuit of a boost power converter.

E

L u (t) = 1

+
– C R

Figure 2: On mode.

E

L

+
–

u (t) = 0

C R

D

Figure 3: Off mode.
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Cen, the control law (8) globally stabilizes the plant (6) in
finite-time with a control input u that is continuous with
respect to time and satisfies |u(t)|≤M, for all t≥ 0.

Note that in comparison with the conventional FOSM,
the SSTA generates a bounded continuous control signal and
reduces the chattering effect in the system.

2.5. Problem Formulation. Consider the perturbed boost
system (4) and define the inductor current error:

ei(t) � i(t) − i
∗
(t), (11)

where i∗: R⟶ R is the desired inductor current bounded
C2 function. -e current error dynamics takes the form

_ei(t) � − (1 − u(t))
v(t)

L
+

E

L
+ ϕ1(t) − _i

∗
(t). (12)

It can be seen that the current error dynamics are not
directly affected by ϕ2(t). Also, along this paper, the fol-
lowing assumptions are necessary.

Assumption 1. -e uncertainties/perturbations ϕ1(t) are
bounded and Lipschitz, i.e.,

ϕ0 ≤ ϕ1(t)≤ϕ1,
_ϕ1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ϕ2,

(13)

where ϕ0, ϕ1 ∈ R, and ϕ2 ∈ R+.

Assumption 2. -e uncertainties/perturbations ϕ2(t) are
continuous and bounded, such that

ϕ3(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ϕ3, ϕ3 ∈ R+. (14)

Under Assumptions 1 and 2, the task is to ensure that the
inductor current i tracks the desired inductor current i∗

exactly by using a SSTA controller after a finite transient, i.e.,
the problem resides on to stabilize in finite-time the current
error (12), i(t)⟶ i∗(t) for all t≥ tr, where tr is the reaching
time, by using a continuous control law u(t).

Note that as it is mentioned in [17, 29], to track a desired
voltage, two control loops are needed. An inner current
control loop and an outer voltage control loop.-e objective
of this paper is the design of a controller that guarantees the
finite-time tracking of a desired current in the presence of
bounded Lipschitz uncertainties/perturbations.

3. Control Design

Consider the perturbed boost converter (4) and define ei(t)

as the sliding variable. To guarantee i(t)⟶ i∗(t) in

finite-time, it is necessary to select a suitable controller
capable to achieve such a task. Observe that ei has relative
degree one, and it is assumed that ϕ1 is a bounded Lipschitz
perturbation. Hence, it is possible to use an SSTA controller
[34, 35]. -e next theorem gives sufficient condition to the
design of the SSTA controller for the internal current control
loop of the boost converter.

Theorem 2. Consider the error dynamics of the inductor
current in the boost converter (12), with a bounded Lipschitz
perturbation ϕ1(t), such that

ϕ0 < −
E

L
+ _i
∗
(t)≤ ϕ1(t)≤

v(t)

L
−

E

L
+ _i
∗
(t)< ϕ1, (15)

and | _ϕ1(t)|≤ ϕ2. By using the controller,

u(t) �
1
2

+ satU
L

v(t)
uneq(t) + u(t)􏼐 􏼑􏼠 􏼡,

uneq(t) �
v(t)

2L
−

E

L
+ _i
∗
(t),

u(t) � − k1⌊ei(t)⌉(1/2)
+ w(t),

_w(t) � − k2⌊ei(t)⌉0,

(16)

where ⌊·⌉p � | · |psign(·), and

satU(y) �

y, if |y|≤
1
2
,

1
2
⌊y⌉

0
, if |y|>

1
2
;

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

with the SSTA gain designed, such that

k1 >
������

k2 + ϕ2
􏽱

,

k2 > ϕ2.
(18)

Cen, the tracking error converges to the origin after a
finite transient, i.e., ei(t) � _ei(t) � €ei(t) � 0 for all t> tr,
where tr is the reaching time, and the control effort remains in
the inherent bounds, i.e., u(t) ∈ [0, 1] for all t≥ 0.

Proof. To analyze the dynamics of the tracking error in the
sliding mode, let

u(t) �
1
2

+
L

v(t)
uneq(t) + u(t)􏼐 􏼑. (19)

By substituting this controller in the tracking error
dynamics (12), it can be seen that

_ei(t) � u(t) + ϕ1(t). (20)

Assume that for t> tr, the sliding mode is achieved, i.e.,
ei(t) � _ei(t) � €ei(t) � 0; then,

u(t) � − ϕ1(t). (21)

Hence, if the sliding mode is achieved, the proposed
controller is capable to compensate exactly the matched
uncertainties/perturbations ϕ1. Note that if ϕ1 satisfies the

ζ (t) +

–

σ (t)σ· (t) 1

0∫
u (t)

Figure 4: ΣΔM block diagram.
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inequality (15), the control signal satisfies the inequality
0≤ u(t)≤ 1 for all t> tr.

Now, observe that the tracking error dynamics (20)
resemble the system of -eorem 1, and the conditions of
such theorem are satisfied. Hence, the finite-time conver-
gence of the tracking error dynamics is guaranteed.

Note that the proposed controller has a symmetric
structure, but it contains an offset that keeps the control
signal in the interval [0, 1]. □

Remark 1. Once the sliding variable ei(t) has converged to
the origin, the controller u(t) � − ϕ1(t) for t> tr. Hence, the
control signal u(t) reconstructs the negative of the per-
turbation and compensates the perturbation in finite-time.
In comparison with a FOSM, the continuity of the SSTA
allows to know exactly the value of the perturbation without
filtering [28].

Observe also that uneq in (9) is the nominal equivalent
control signal that eliminates the known dynamic of the
sliding variable. However, it is possible to consider uneq(t) �

0 and let the SSTA to reconstruct all the tracking error
dynamics. -e next lemma states this result.

Lemma 1. Under the conditions of Ceorem 1 and As-
sumption 2, by using the controller,

u(t) �
1
2

+ satU
L

v(t)
u(t)􏼠 􏼡,

u(t) � − k1⌊ei(t)⌉(1/2)
+ w(t),

_w(t) � − k2⌊ei(t)⌉0,

(22)

where ⌊·⌉p � | · |psign(·), and

satU(y) �

y, if |y|≤
1
2,

1
2
⌊y⌉

0
, if |y|>

1
2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

If SSTA gains are designed such that

k1 >
��������

k2 + ψ(t)

􏽱

,

k2 >ψ(t),
(24)

with

ψ(t)≥
v(t)

2LCR
− €i
∗
(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
ϕ3
2L

+ ϕ2. (25)

Cen, the tracking error converges to the origin after a
finite transient, i.e., ei(t) � _ei(t) � €ei(t) � 0 for all t> tr,
where tr is the reaching time, and the control effort remains in
the inherent bounds, i.e., u(t) ∈ [0, 1] for all t≥ 0.

Proof. -e proof is obtained following a similar procedure
as in -eorem 2 and a straightforward computation of the
bound ψ(t).

If the controller is designed satisfying the above results,
the bound of the control signal is guaranteed, and it can be
fed to ΣΔM to generate a suitable control signal for the boost
converter assuring the tracking in finite-time of the desired
current in the presence of the uncertainties/perturbations.

4. Simulation Results

To validate the above results, some MATLAB simulations
are presented. Consider a boost converter with L � 10mH,
C � 2.2 µF, and E � 12V. -e desired current is

i
∗
(t) � 0.8 sin(t) + 1. (26)

-e considered unknown perturbation is

ϕ1(t) � 3 sin(16 cos(πt)) + 500, (27)

and ϕ2(t) is constructed by changes in the nominal load
R � 500Ω, such that the real load R has the form

R(t) �

560Ω, if 0≤ t≤ 10∨ t≥ 30,

200 sin(10πt) + 300, if 10< t ≤ 20,

150Ω, if 20< t ≤ 30.

⎧⎪⎪⎨

⎪⎪⎩

(28)

Note that the proposed load is a continuous function that
is bounded. In the simulation, it is considered ϕ2 � 15000 as
the bound of the perturbation ϕ1, and the controller is
designed as given in -eorem 2.

-e results obtained by applying the designed SSTA to
the boost converter in a time window T � 40 s with a sample
step of Δt � 1 × 10− 6 s are shown in Figure 5. It can be seen
that the current converges to the desired trajectory in finite-
time despite the presence of the perturbation.

It is worth tomention the effect of the perturbation in the
voltage of the load, and this state is not controlled, so this
behavior is expected. To guarantee that the voltage is not
affected by the perturbation, an external control loop that
modified the desired current needs to be designed. However,
observe that the tracking error (Figure 6) converge to the
origin in finite-time, showing that i(t)⟶ i∗(t) in the same
manner. -e designed control signal is retrieved in Figure 7.
Observe that the control signal is continuous and remains in
the interval [0, 1] in the time interval.

4.1. Chattering Analysis. According to Levant [32], in the
sliding mode control, the chattering is caused by the high,
theoretically infinite, frequency of control switching and
reveals itself as high-frequency dangerous vibrations of the
whole system. In power systems, this phenomenon is known
as ripple.

Definition 1. [32] Consider an absolutely continuous scalar
signal ξ(t) ∈ R and t ∈ [0, T]. Also, let ξ(t) ∈ R be an ab-
solutely continuous nominal signal, such that ξ(t) is con-
sidered as its disturbance. Let Δξ(t) � ξ(t) − ξ(t). Define the
L2 chattering of the signal as

Complexity 5



chatL2
� 􏽚

T

0
Δ _ξ

2
(t)dt􏼠 􏼡

(1/2)

. (29)

In power systems, to evaluate the performance of the
power converter, the ripple is normally measured by
computing the energy contained in the error signal [29].

For comparison purposes, a FOSM controller [20, 29] is
applied to the boost converter considering the load change in
the same manner as in the SSTA case. -e considered
controller is

u(t) �
1
2

1 − sign ei(t)( 􏼁( 􏼁. (30)

-e inductor current behavior is shown in Figure 8 and
its respective error in Figure 6. Observe that the tracking task

is also achieved, i.e., i(t)⟶ i∗(t) in finite-time despite the
perturbation. -e controller is not continuous, but it can be
applied to the boost converter without needing ΣΔM.

In the performed simulations, it can be seen that the
difference in the performance of the two controllers is ba-
sically in the size of the chattering, depicted in Figure 6.
However, by only seeing the picture, it is very hard to decide
if any of the two controllers gives any advantage.

To visualize in a better way the differences between the
two control strategies, an energy and chattering analysis has
been performed. First, the energy of the tracking error signal
[41] is obtained as

Energy � 􏽚
T

tr

e
2
i (t)dt. (31)

Afterwards, a chattering analysis [32, 42] is performed by
computing the level of chattering in the L2 space of the
tracking error signal:

chatL2
� 􏽚

T

tr

_e
2
i (t)dt􏼠 􏼡

(1/2)

. (32)

-e analyses are performed for different sample times
assuming that the error signal has passed the reaching phase,
i.e., the analysis is performed for t ∈ [tr, T], with tr � 0.2 s.
-e result is summarized in Tables 1 and 2.

By analyzing the energy signal of both controllers, it is
evident that the use of a SSTA diminishes the energy of the
error signal. However, the chattering measurement remains
more or less the same. It was proved in [32, 33] that the
chattering of a continuous sliding mode controller is in-
finitesimal while one of a FOSM controller is bounded. It
seems that the use of ΣΔM changes the chattering type of the
SSTA to a bounded one. Hence, the only advantage that can
be seen by the performed analysis is the decrement in the
energy of the error signal by the use of the SSTA.

4.2. Power Efficiency. In several applications as hybrid
electric vehicles or fuel cell vehicles, energy storage is
employed to reduce the cost and to improve the perfor-
mance of the system [1]. In these applications, the voltage
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level is normally lower than the required, and power con-
verters are widely used. -ese systems require good effi-
ciency in the energy consumption, since they are working
constantly over transient states. -is makes it necessary to
analyze how the efficiency of the boost converter is affected
by the controller. -e power efficiency is defined by the ratio
of the output power Po to the input power Pi.

η �
Po

Pi

�
v
2
RMS/R􏼐 􏼑

EiRMS
, (33)

where vRMS and iRMS denote the root mean square value of
the load voltage and the inductor current, respectively, over
the time interval [0, tf]. Assume that the boost converter is
performing a current regulation task over the range
0.03A–3A and that there are not any uncertainties/per-
turbations that affect the behavior of the system, i.e.,
ϕ1(t) � ϕ2(t) � 0. -ree controllers are considered for
comparison purposes: (1) a saturated linear quadratic (LQ)
controller designed for the linearized system around the
equilibrium point defined by the desired current i∗, (2) a
FOSM controller defined in the previous section, and (3) the
proposed SSTA. In Figure 9, the power efficiency of the boost
converter with the considered controllers, obtained by
simulation with a sample step Δt � 1 × 10− 6, is depicted.
Note that the use of a sliding mode control technique im-
proves considerably the efficiency in comparison with the
LQ controller. Observe also that the performed analysis is
very simple, and more complex analysis can be performed
for the proposed controller as the one given in [43].

4.3.Discussion. -epresented result is focused on the design
of the inner current control loop of the boost converter. As
mentioned previously, the objective of the power converters
is to deliver a desired voltage that can be constant or time
varying depending on the application. -ere are several
control methodologies that can be used to design the outer
loop. In [17], a frequency-based approach is used, in [29], the
desired current is designed by using a SMC approach, while
in [26], an MPC approach is used. -e chosen approach will
depend on the conditions of the converter and the control
objective.

In this paper, the considered load does not have a specific
form, and it is seen as a perturbation. -e form of the load
depends on the specific application, and the only restriction
is that it must be bounded and Lipschitz. In the microgrid
applications [25, 26], the load can be modeled as the con-
nection of several CPLs. -is type of load has the charac-
teristic that its model is a first-order vectorial dynamic
equation and can be considered as a Lipschitz-bounded
perturbation.

To show the applicability of the proposed approach, a
voltage regulation scenario is presented with a CPL. For
simulation purposes, the parameters of the considered CPL
were taken from [26]. -e desired voltage v∗ is assumed as
constant, and the error ev(t) � v(t) − v∗ is taken as the
sliding variable. -e desired current that guarantees the
voltage regulation is constructed by an asymptotic sliding
mode (ASM) controller [28]. -is controller provides as-
ymptotic regulation of the desired voltage by using a dif-
ferentiable desired current i∗. Once more, three controllers
are compared: (1) the saturated LQ, (2) the FOSM, and (3)
the SSTA. -e simulation was performed with a sample step
Δt � 1 × 10− 6 s, v∗ � 100V, and a nominal load resistor
R � 500Ω. -e used perturbation ϕ1(t) is defined in (24),
and ϕ2(t) is composed by a parallel arrangement of a resistor
load of 60Ω and the CPL. -e obtained results are shown in
Figure 10. -e LQ controller is uncapable to deal with the
perturbations as it is shown in Figure 10(c). In general, the
used controller in the outer loop shapes the convergence to
the desired voltage. In the considered case, the ASM
guarantees asymptotic convergence of ev(t) to the origin
once i(t) � i∗(t) (Figures 10(a) and 10(b)). -e proposed
inner current control loop guarantees the tracking in finite-
time. Note that the desired current i∗(t) generated by the
ASM controller is time varying for both the FOSM and the
SSTA, and it guarantees the compensation of the pertur-
bations. -e error tracking for the voltage and the current
are shown in Figures 11 and 12, respectively.

5. Implementation

-e boost converter prototype is designed to work with a
12V input source and a maximum of 3A.-e PCB layout of
the converter is shown in Figure 13. Table 3 indicates the
technical specifications of the converter, obtained with a
duty cycle of 70% that gives the highest efficiency of the
converter (Figure 14).

-e inductor current i is measured by an ACS723 sensor
and the capacitor voltage v by a potential divider. -e data
acquisition is made through a STM32 Discovery develop-
ment card. -e SSTA is embedded in the STM32 Discovery
development card. -e control signal generated by the
controller is feed to ΣΔM. In Figure 15, the constructed
prototype is shown. -e voltage is given by a commuted
source, and an oscilloscope was used to verify the signals in
the prototype. To eliminate external magnetic perturbations,
the current sensor is in a Faraday cage. -e measurements
are processed by the STM32 Discovery development card
that is connected to a personal computer that displays the

Table 1: Energy and chattering analysis for the SSTA controller.

Sample step Energy Chattering
1 × 10− 3 3678 43611.1
1 × 10− 4 3.01 21857.51
1 × 10− 5 0.02 19892.86
1 × 10− 6 2.16 × 10− 4 19710.9
1 × 10− 7 2.15 × 10− 6 19692.87

Table 2: Energy and chattering analysis for the FOSM controller.

Sample step Energy Chattering
1 × 10− 3 974.8 24175.92
1 × 10− 4 5.17 21275.37
1 × 10− 5 0.05 19743.29
1 × 10− 6 4.72 × 10− 4 19687.46
1 × 10− 7 4.711 × 10− 6 19681.85
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Figure 10: Voltage tracking (reference, red line and boost converter behavior, blue line). (a) SSTA controller. (b) FOSM controller. (c) LQ
controller.
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necessary graphs for the experiments. -e scheme of the
proposed approach is illustrated in Figure 16.

Two experiments are developed in the prototype using
the proposed SSTA approach. First, a regulation test is
performed, assuming i∗ � 0.5A. An unknown change in
the load is considered. In the experiment, a 47Ω resistor
is connected in parallel to the nominal one around t � 7 s
(Figure 17). -e results obtained with the oscilloscope are

shown in Figures 18 and 19. Observe that the current
converges to the desired value in finite-time, and as in the
simulation, the voltage is affected by the perturbation.
Note that the SSTA reconverge after the load change. -is
is an expected behavior in the experiment, since the
Lipschitz condition is not fulfilled, and the controller
loses its convergence. However, after perturbation is
applied, the tracking error reconverges to the origin
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Figure 11: Voltage error tracking. (a) Voltage tracking error ‖v∗ − v‖[V]. (b) Zoom.
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(Figure 17(b)). -e applied control signal is continuous
and remains in the set [0, 3.3]V that is equivalent to the
logic set [0, 1].

Now, for comparison purposes, a FOSM controller is
also implemented. -e controller is constructed in a PCB
following the scheme proposed in [17]. -e scheme of the
FOSM strategy is shown in Figure 20. -is strategy was
implemented completely in hardware, and the development
card was used only for data acquisition. -e results obtained
for this controller are shown in Figures 21–23. Observe that
this controller is capable to guarantee in finite-time the
control objective, and it is not affected by the use of non-
Lipschitz perturbations. But it generates more chattering
than the SSTA.

Finally, a tracking experiment was performed. -e de-
sired current has a sinusoidal profile, a SSTA controller is

implemented, and the same source of perturbation is ap-
plied. -e results obtained with the oscilloscope are shown
in Figures 24 and 25. Observe that the current follows the
desired sinusoidal signal in finite-time, and the control
signal is bounded. But, as in the regulation experiment, the
SSTA loses convergence around t � 7 s due to non-Lipschitz
perturbations (Figure 26).

Figure 27 shows the efficiency of the implemented
controllers. -e experiments were carried out with an initial
condition of 0.3A, and the desired current was modified in a
range from 0.3 to 0.9A. -e efficiency is computed con-
sidering the transient and steady state behavior of the boost
converter. However, it is well known that the efficiency is
affected by the frequency characteristic of the control input
and the elements used in the implementation of the
controller.
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Figure 13: Boost converter PCB.

Table 3: Boost converter specifications.

Specification Value Units
Load resistance, R 560 Ω
Inductor, L 10 mH
Capacitor, C 2200 µF
Output power, Po 1.8 W
Input power, Pi 3.09 W
Frequency 5 kHz
Input supply voltage, E 12 V
Ripple 0.02 %
Output voltage, vo 31.65 V
Duty cycle, D 70 %
Efficiency, η 58.16 %
Load resistor current, io 56.51 mA
Inductor current, i 252 mA
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Figure 17: Boost converter response to disturbances, SSTA controller. (a) Desired current and measured current. (b) Error. (c) Control
action. (d) Output voltage.

Figure 18: Desired current (blue) and measured current (magenta)
for the SSTA controller.

Figure 19: Output voltage (green), SSTA controller signal (blue),
and ΣΔM output (red).
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Figure 20: Boost converter prototype scheme for the FOSM
controller.

Figure 21: Desired current (magenta) and measured current (blue)
for the FOSM controller.
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Figure 23: Boost converter response to disturbances, FOSM controller. (a) Desired current and measured current. (b) Error. (c) Control
action. (d) Output voltage.

Figure 22: Output voltage (red) and FOSM controller signal (blue).

Figure 24: Desired current path (blue) and measured current
(magenta).

Figure 25: Output voltage (green), SSTA controller signal (blue),
and ΣΔM output (red) for trajectory tracking.
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6. Conclusion

An SSTA controller is designed for a boost converter. -is
methodology can be applied to other power converters. -e
controller is capable to track in finite-time a desired current
profile, while it compensates, in the same manner, bounded
Lipschitz uncertainties/perturbations by generating a bounded
continuous control signal. -e continuous control signal is
applied to the boost converter by using ΣΔM. -e application
of a continuous sliding mode controller in a power converter
diminishes the energy of the error signal in comparison with
the one presented with a FOSM controller. -e proposed
controller is embedded in a development card and applied to a
real boost converter, showing the applicability of the proposed
approach.
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Human gait phase detection is a significance technology for robotics exoskeletons control and exercise rehabilitation therapy.
Inertial Measurement Units (IMUs) with accelerometer and gyroscope are convenient and inexpensive to collect gait data, which
are often used to analyze gait dynamics for personal daily applications. However, current deep-learning methods that extract
spatial and the isolated temporal features can easily ignore the correlation that may exist in the high-dimensional space, which
limits the recognition effect of a single model. In this study, an effective hybrid deep-learning framework based on Gaussian
probability fusion of multiple spatiotemporal networks (GFM-Net) is proposed to detect different gait phases from multisource
IMU signals. Furthermore, it first employs the gait information acquisition system to collect IMU data fixed on lower limb. With
the data preprocessing, the framework constructs a spatial feature extractor with AutoEncoder and CNN modules and a
multistream temporal feature extractor with three collateral modules combining RNN, LSTM, and GRU modules. Finally, the
novel Gaussian probability fusion module optimized by the Expectation-Maximum (EM) algorithm is developed to integrate the
different feature maps output by the three submodels and continues to realize gait recognition. /e framework proposed in this
paper implements the inner loop that also contains the EM algorithm in the outer loop and optimizes the reverse gradient in the
entire network. Experiments show that this method has better performance in gait classification with accuracy reaching more
than 96.7%.

1. Introduction

Robotics exoskeletons has become a burgeoning technology
in continuous development in the field of medical, archi-
tectural, and military applications. Focusing on the medical
domain, lower limb exoskeletons are mainly designed to
enhance the patient’s mobility in the rehabilitation therapy
and strengthen physical performance after undergoing
treatment with great expectations of improving his/her
living quality as much as possible. /is robot should own an
intelligent gait phase recognition method to provide cogent
means to deal with large amounts of momentary or se-
quential data and identify different walking styles, one of the

most important features displaying posture and phase of
each particular patient [1]. /erefore, accurate classification
of changing walking style of human lower limbs’ status is
urgently required to achieve consistency and coordination of
human-machine interaction [2]. An effective analysis of
walking style is performed well in athletic performance
improvement or disease diagnosis and rehabilitation re-
search, which have been applied in clinical treatment plan
with multiple sclerosis, Parkinson, brain trauma, and other
diseases [3, 4]. Note that traditional walking analysis is
represented by detecting the different gait phase based on
motion information (e.g., angles, speed, or acceleration) of
the knees, ankles, and hips when walking or running. For
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example, Buckley et al. [3] used gait phase detection to
diagnose stroke patients, and Achanta et al. [5] used a novel
hidden-Markov-based adaptive dynamic time warping to
analysis gait for identifying physically challenged persons
and providing them with appropriate alerts by monitoring
walking. In order to make exoskeleton robots have better
human-machine coordination, some researchers have begun
to try program human robots, generate gait trajectories of
wearers through gait phase recognition technology, and
control the movement of wearable auxiliary devices, such as
robotic prostheses and orthotics [6, 7]. Berger et al. [8]
reported that robot-assisted gait training has proven to be a
promising treatment for restoring and improving walking
ability. Similarly, Luo et al. [9] also mentioned that the high-
quality gait-subphase recognition plays an important role in
the synergetic control of lower limb powered exoskeletons.

In recent years, walking gait phase detection has been
one of themost important research problems. Many scholars
have studied the relevant sensor technologies and methods
to distinguish attributes for gait phase recognition. Jin et al.
[10] realized the recognition of the frontal gait phase by
using deep-learning models to obtain information from
multiple cameras. Although the optical gait analysis tech-
nology has obtained the accurate enough performance, the
full cost of multicamera system is very high for simple
walking gait identification. Moreover, the operation process
captures spatial trajectory of marking points related to body
positions in the indoor infrastructure, which make the
identification accuracy easily affected by the instable light
intensity and limit the generic application of gait phase
detection. To better adapt to environmental factors, the
measuring technology of biological signals such as elec-
tromyography (EMG) is introduced to evaluate the con-
tinuous movement status of the human body. With EMG
sensors fixed on the skin surface, the action potential
changes are observed after being amplified to reflect muscle
activity information when the central nervous system
controls lower limb motion. Since the muscle contraction
process has a time effect of electromechanical delay, those
EMG signals are generated about 40ms to 100ms faster than
lower limb motion, which is conducive for understanding
motion pattern and recognizing gait phases in advance, also
making it possible for the real-time control system of
exoskeletons. Fei et al. [11] took the multisource EMG
signals on the hip joint angle and the skin surface of thigh
muscles to realize prediction of the human lower limb
motion. To further improve the prediction effect of the
model on the gait phase, some studies have also added the
plantar pressure signal to the input of the neural network
model. Si et al. [12] propose a support vector machine model
optimized by fractal analysis algorithm to cope with syn-
chronized information of EMG and foot pressure sensors for
gait phase recognition. However, such an acquisition ap-
proach of EMG data asks participants wearing a special
cumbersome cloth with expensive cost, which is subject to
observers’ intra- and external variability including weight,
muscle content, or load, making it difficult to design pro-
gressive therapeutic strategies to improve automatic control
performance of lower limb exoskeletons.

At present, many researchers have paid attention to
more flexible wearable sensors, typically as IMUs, to handle
with the relative issues of gait phase detection. /ese sensors
are relatively lightweight, cheap, easy to use, and unobtrusive
compared with aforementioned motion capture systems
consisting of RGB-D cameras, EMG, or force plates sensors.
With some simple constrained equipment fixed on waist,
thigh, calf, or foot, IMUs sensors can provide continuous
and high-resolution inertial data, which can well quantify
gait phase recognition performance, which is basically un-
affected by various human body factors. It is not surprising
that there exist the developing trends of human motion
analysis using IMUs, for instance, gait phase detection by
statistical analysis or machine learning and exoskeleton
decision-making control by postural stability metrics. For
instance, Kang et al. [13] used inertial information obtained
from the IMU on the calf to study whether cognitive im-
pairment increases the fall risk of patients. Gohar et al. [14]
used inertia information on the chest to realize ID identi-
fication of personnel. However, the local information pro-
vided by a single IMU sensor is limited to descript the
complexity exercise process of human body. More and more
scholars have begun to explore the combined use of inertial
and acceleration information from multiple body parts to
enhance the reliability and accuracy of gait event detection.
For example, Zhou et al. [15] used the inertial information
obtained by the IMU on the legs and feet to achieve gait
assistance. Yeo and Park [16] used the inertial information of
the shin and leg surface through the IMU to provide gait
measurements and enable accurate analysis. In another
example, Yan et al. [1] used the inertial information on the
feet, thighs, and calves to accurately identify the gait phase.
/e above researches have exhibited that only using a small
number of IMU sensors located on the lower limb can
provide extremely cost-effective and efficient signals to
characterize the periodic cycle of the gait phase and to
discriminate different levels of walking ability. Importantly,
this sensor application is harmless, comfort, and convenient
to the personal activities and daily work, which will help
clinicians make more accurate judgments about the early
intervention of lower extremity diseases, the treatment plan,
and the assessment of the rehabilitation progress of patients.

Although researchers have always been interested in
IMU technology, there is still a lack of realistic research that
implements multiple wearable sensors validators to monitor
walking status and gait stability in actual clinical practice. In
the context of multi-IMU-based approaches, the intelligent
enough pattern recognition model of diversity gait phases
with multisensor data preprocessing analysis and infor-
mation fusion technology is the most critical issue that needs
to be solved for lower limb gait phase detection of various
wearable exercise systems or rehabilitation exoskeletons. To
achieve this, some statistical learning or machine learning
methods are carried to calculate spatial-temporal and bio-
mechanical parameters of the walking gait patterns,
achieving a complete assessment of lower limb motion, and
providing the potential for rehabilitation training of ab-
normal body activities. Many researchers have studied the
integrated strategy of traditional intelligent algorithms from
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different perspectives. /e mainstream solution is con-
structing various shallow-structure models including arti-
ficial neural networks (ANN), hidden-Markov model
(HMM), AdaBoosting, and support vector machines
(SVMs), which carefully select the threshold parameters
based on physical and statistical analysis of raw or processed
data to divide the gait phases. /ese methods build feature
engineering to adaptively learn model parameters and ob-
tain hidden relationships between historical data and then
perform operations based on preset rules and algorithms to
identify the subsequent patterns of gait phases. However, the
gait phase detecting is still a challenging problem because the
high-sampling frequency data collected from sensors always
contain complex nonlinear relationships with multiple
components, which makes it impossible to apply the tra-
ditional models to analyze sensory data and distinguish
walking information in real time.

Different from the aforementioned algorithms, the deep-
learning neural networks (DNNs) had shown the out-
standing ability of handling with the complex temporal
relation of gait phase detection./anks to the breakthroughs
in the design and training of model architecture with
complex structures consisting of multiple processing layers
or nonlinear transformations, the improved network
structure has penetrated into many smart devices including
large scale visual classification, natural language processing,
and time series predicting. Such fast-pacing progresses in
research have also drawn attention of the related researchers
and corporations to build software and hardware to rec-
ognize walking gait phases snapshotted in real life. Partic-
ularly, the convolutional neural network (CNN) and the
recurrent neural network (RNN) have been used for
extracting the motion features of sequential temporal data
obtained by accelerometers and gyroscopes in IMU. For
example, Chao et al. [17] Yan use a multitask framework to
extract features and perform gait, perspective, and scene
recognition. /ey use the output of gait energy image de-
scriptors as input data for a CNN to detect gait phases in the
complete walking cycles. Similarly, Omid et al. [18] use time-
frequency expansion in order to capture joint two-dimen-
sional spectral and temporal patterns of gait cycles, which
are inserted to train an ensemble CNNs-based classifier, a
typical multilayer perceptron consisting of convolutional
and full-connection based on multisensor fusion. In addi-
tion, the authors in [19] propose a different voting-weighted
integrated neural network for training a model for gait
recognition, obtaining state-of-the-art results.

Due to the talent in handling two-dimensional signals
such as the images, the most CNNs have to translate the time
series inertial data as energy image or visual segmentation
data. /is does help to exploit the characteristics of spatial
relationships in gait phase recognition, yet obviously ig-
noring temporal rule and periodic change when processing
sequential time series data captured by IMU sensors, which
is often hard to measure continuous motion trajectory and
extract quality features of lower limb in unconstrained
scenarios. /erefore, RNN and its improved models in-
cluding long short-termmemory (LSTM) network and gated
recurrent unit (GRU) network pass time recording order

and parameters of previous hidden layer thought the current
output layer to capture the high nonlinearity and sequential
relationship of time-serial IMU data, which have attracted
extensive attention from researchers [20]. Neverova et al.
[21] build a temporal RNN network for active biometric
authentication and walking motion analysis with multi-
source data provided by accelerometers and gyroscope
sensors in smartphone. As an improved version of the RNN,
the LSTM is gradually replacing it as a new popular time
series data analysis technology for gait phase recognition.
For example, Hu et al. [22] trained a deep-learning network
with LSTM units to process IMU data segmented by sliding
windows and implement gait phase detection. Similar, Zhen
et al. [23] proposed an LSTM-based recognition algorithm to
perform real-time gait phase detection using absolute
heading and angular velocity of IMU sensor mounted on the
shank and foot. Although related researches have increased
significantly in recent years, it is still difficult to accurately
predict the current phase with LSTM alone through long-
term sensor data. To this end, there have only been a small
number of studies attempting to combine LSTM and CNN
to assist patients with severe gait abnormalities and related
ethical issues. Jin et al. [24] proposed a deep-learning al-
gorithm based on a LSTM and CNN fusion framework for
diagnosis and classification of abnormal gait patterns using
Euler angle information of IMU sensor on the patient’s legs.
In this way, CNN is usually used as a spatial feature extractor
and then LSTM is used to further mine the temporal features
for ultima gait phases detection. In addition, the GRU unit
inherits the advantages of LSTM and can automatically learn
features and is an effective model [25], and the AutoEncoder
unit also exhibits a significant increase in computational
speed andmodel size compared to the existing deep-learning
models [26]. Both of them are introduced as alternative
patterns parts of various hybrid models based on deep-
learning in many application scenarios, which have been
proven effective at improving prediction performance of gait
phase recognition for nonlinear time series IMU data.

In the previous studies mentioned above, it can be found
that, with the development of wearable IMU biotechnology,
the human motion status can be estimated by a compre-
hensive combination of signal processing approaches and
intelligent pattern recognition algorithms to extract quan-
titative features of walking gait and distinguish the categories
of different gait phases. For a realistic implementation of
exercise rehabilitation therapy in the clinical setting, various
machine learning algorithms have been developed to handle
with a mass of time series data offered by multisource IMU
sensors on the lower limb for quantifying gait phase and
balance. Particularly, because of the excellent ability in high-
dimensional feature representation of spatial and temporal
characteristics, many sorts of deep-learning neural network
are selected for their relevance to the sensor data types and
used together in a parallel or serial structure adaptive to data
structures, which have been proven effective at improving
the performance for walking gait phase detection. However,
the combination framework of these networks still needs to
be developed to obtain better prediction effect and recog-
nition for the nonlinear time series IMU data in order to
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meet the requirement of effective rehabilitation therapy and
real-time exoskeleton control.

Researchers agree that one of the reasons for the decline
in recognition performance is that the data from different
IMU sensors always contain multiple component signals,
which is complex nonlinearity to a single deep-learning
model or simple combination of different networks [27]. On
the one hand, each single network is likely to focus on the
constant feature of specific domain, such as spatial feature
related to CNN and temporal feature associated with RNN,
which lacks the capability of distinguishing small variances
between similar gait phases in a global perspective. On the
other hand, the simple combination solution of multiple
networks lacks the guidance of effective fusion strategy and
fails in leverage information complementation and com-
prehensive decision-making, which will reduce the overall
classification accuracy especially when low-quality inter-
ference noise occurs. To augment algorithm performance
currently used in the IMU-based gait phase recognition, we
propose an effective hybrid deep-learning framework based
on Gaussian probability fusion of multiple spatiotemporal
networks (named as GFM-Net) for recognizing discrimi-
native parts of various walking gait phases. In detail, the
framework consisted of three components: a spatial feature
extractor with AutoEncoder and CNN modules and tem-
poral feature extractor with three collateral modules com-
bining RNN, LSTM, and GRUmodules. In addition, a novel
classifier equipped with Gaussian probability fusion module
optimized by Expectation-Maximum (EM) algorithm is
developed to integrate different feature maps of components
model for the ultimate gait phase recognition [28]. Different
from the previous studies, the end-to-end network adap-
tively selects spatiotemporal feature vectors from different
IMU sensors and absorbs the vast quantities of hybrid
complementary knowledge available in the training corpora,
which show the better promotion effect in terms of gait
phase recognition accuracy in sequential walking cycle. Such
an approach would likely help exoskeletons make informed
control decisions about patients’ treatment efficacy and
recovery progress.

/e remainder of this study is organized as follows.
Section 2 introduces the data source and preprocess tech-
nology and then describes each part of the hybrid frame-
work. Section 3 presents experimental results of the
proposed model evaluated with correlation comparison
methods. Section 4 discusses the advantages and disad-
vantages of our work, and finally Section 5 presents our
conclusion.

2. Materials and Methods

2.1. Data Collection. In terms of experimental data, 16
volunteers with body weight ranging from 46 kg to 70 kg and
height ranging from 158 cm to 177 cm were selected to
collect IMU data. /e height and weight distribution of the
subjects is shown in Figure 1. /e subjects are all healthy
participants and have no physical or nerve injury to their legs
or feet, which may affect walking gait phase detection. In

addition, it should be noted that the participants are between
20 and 26 years old.

With the advancement of sensor processing technology
and algorithms, this study used three IMU modules to
collect the corresponding inertial information. Input data in
this work only include lower leg calf acceleration signals. To
collect lower limb calf acceleration signals, the JY901 nine-
axis angle sensor (Uxin Electronics Co., Ltd., Gansu, China)
with Kalman filtering algorithm is used in this paper.We can
choose two modes of serial communication and I2C com-
munication. In order to cooperate with the microprocessor,
we chose the serial communication mode when the system
was built. Connect the TX, RX, VCC, and GND pins on the
JY901 sensor to the corresponding pins on the micro-
controller. /e microcontroller selected is STM32C8T6,
which is a 32-bit microcontroller based on the ARM Cortex-
M core STM32 series, the program memory capacity is
64KB, the required voltage is 2V∼3.6V, the operating
temperature is −40°C∼85°C, and the operating frequency is
72MHz.

/e inertial sensor module is placed outside the lower
leg. /e arrangement of acceleration sensors for calf
monitoring lower limb movement is shown in Figure 2 that
shows the system flow of the entire experimental data
collection, processing, and application. /e acceleration
resolution of the nine-axis inertial sensor module
(MPU9250) used in the experiment is 0.0005 g, the stability
of the attitude measurement is 0.05°, and the transmission
baud rate in the experiment is set to 115200 bps.

During the experiment, all participants were required to
walk normally on the same treadmill at a speed of 0.78m/s,
1.0m/s, and 1.25m/s for at least 120 s. All participants were
asked to walk normally 3 times at each speed. All partici-
pants have the same sports environment in the same state. In
order to prevent participants from affecting the later
movement gait due to continuous exercise, the experiment
requires all participants to rest for 2 minutes after com-
pleting the designated walking test each time to alleviate the
possible impact of exercise fatigue on walking gait. In ad-
dition, when collecting data, it should be noted that we only
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Figure 1: Weight and height information about volunteers
participating.
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start saving data after the running speed of the treadmill
reaches the set speed. When the treadmill starts to slow
down, we stop collecting data and complete the data col-
lection process. /e information acquisition process of
human gait is shown in Figure 3.

2.2. Data Preprocessing. Each data sample contains multiple
features from three sensors and each data includes accel-
eration and angular velocity data in X, Y, and Z directions.
Let two sequences of gait data be the input of the network,
which is expressed as

x
→

� ax, ay, az, gx, gy, gz􏼐 􏼑, (1)

where ax , ay, and aZ represent the acceleration signals in the
X, Y , and Z directions, respectively, and gx, gy, and gz

represent the angular velocity in the three-dimensional
space, respectively. Based on the above operation, we can get
the combined curve of the acceleration and angular velocity
in the X, Y, and Z directions obtained by three IMU sensors
as shown in Figure 2.

/en, the second preprocess step is to extract the pe-
riodic feature by splitting the data. /e data collected by the
inertial sensors is a data stream distributed over time.
Features cannot be directly extracted and classified, so the
data needs to be segmented. At present, the data segmen-
tation method is a multidimensional sliding window seg-
mentation method. /e acceleration signal is cut into
periodic signals by using a sliding window segmentation
method [29]. However, this signal extraction method

requires a lot of tentative experiments to try different sizes of
sliding windows on the extraction of gait signals, which is
difficult for us to guarantee the quality of the extracted
signals. In order to improve the adaptivity and efficiency of
sliding window, this paper uses Pearson’s correlation co-
efficient and significance level P [30] value to extract gait
periodic signals. Since the significance level is the P value,
the sliding window is associated with significance without
being affected by the high correlation coefficients. However,
relevance may be caused by accident. So, how much is
significant; generally P value is less than 0.05 which is
significant; if it is less than 0.01, it is more significant. In
addition, according to Pearson’s correspondence, the rela-
tionship between the correlation coefficient value and the
degree of correlation is defined as follows: the correlation
coefficient range of 0.0–0.2 means “very weakly correlated or
uncorrelated” in degree of relevance, the range of 0.2–0.4
means “weak correlation,” the range of 0.4–0.6 means
“moderately relevant,” the range of 0.6–0.8 means “strong
correlation,” and the range of 0.8–1.0 means “very strong
correlation.” In this work, Pearson’s correlation coefficient is
chosen as 0.87 and P value is set as 0.01 according to actual
condition and repeated tests. Based on the selected pa-
rameters, a partial signal extraction diagram is shown in
Figure 4.

Next, we need to perform phase division. /e human
walking process is a rhythmic movement, and a complete
gait cycle definition is from one-sided heel landing to the
same-sided heel landing again. Two phasemodel recognition
systems are sufficient to control active knee orthosis [31].

Wearable
sensors

�igh Calf Foot

IMU signals Center control system

Exoskeleton control

Intelligent gait
recognition algorithm

Feature extraction

Phase division

Figure 2: Human gait information acquisition system.
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However, the most widespread method currently relies on
four-phase identification technology [32], which is repre-
sented as heel strike (HS), load response phase or flat foot

(FF), heel lift or heel disengagement (HO), and initial swing
phase (SW). /is four-phase gait partition model has been
used to drive multiple robotic ankle-foot orthosis robots
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Figure 3: Acceleration and angular velocity data collected under three body parts covering foot (left), calf (center), and thigh (right). In the
figures, Ax, Ay, Az, Wx, Wy, andWz represent the curves of acceleration and angular velocity in the X, Y, and Z directions over time during
the acquisition process, respectively.
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Figure 4: Example of periodic signal extraction results. Periodic signals Tn + 1, Tn + 2, Tn + 3, Tn+ 4, and Tn+ 5 are extracted from the pink
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[33]. Referring to previous studies, this study also divides the
gait cycle into HS, FF, HO, and SW phases. During normal
walking, the acceleration signals and angle signals on the
feet, thighs, and lower legs are strongly periodic. Studies
have shown that the swing phase accounts for 40% of the
entire gait cycle, while the standing phase accounts for 60%
of the entire gait cycle [34]. According to the previous
analysis, the schematic diagram of the gait cycle division is
shown in Figure 5.

2.3. GFM-Net Gait Phase Detection. As the analysis of the
ability differences of individual models for different cate-
gories and the fusion advantage of multiple models, we find
that the reasonable integration way will fuse the different
feature extraction capabilities of various models for better
gait phase recognition. /erefore, we design a hybrid deep-
learning framework to converge the spatiotemporal feature
vectors of the multistream networks through the Gaussian
probability layer output, so that the submodels complement
each other and improve the whole accuracy./e architecture
of the hybrid framework is shown in Figure 6.

2.3.1. AutoEncoder-CNN Spatial Feature Extractor. /e
spatial feature extractor is composed of an automatic en-
coder and CNN. In order to enhance the adaptive ability of
the model, we adjusted the parameters such as the stride of
the convolution layer or the size of the convolution kernel.
/is adjustment usually hardly increases the complexity of
the network model, but the prediction accuracy of the
model is improved. First, we briefly introduce the
AutoEncoder architecture as a coarse feature extractor to
study model adjustment, which covers an encoding layer,
an intermediate layer, and a decoding layer with the Leaky-
ReLU activation function. /e input channel of this article
is 60 and the output channel is 72. /en, the feature vector f
extracted by AutoEncoder is input to the “sub-CNN”
structure, which consists of four convolutional layers. In
this paper, we select the 3∗3 kernels convolution layer with
the stride 1 and padding 0 to build the first conv1 pipeline.
/en, a 2× 2 max pooling layer with a stride of 2 is followed
as the conv2 stage, where the input stem begins with a
downsampling block. And the conv3 and conv4 layers are,
respectively, selected as a 2 × 2 convolution kernel and 1 × 1
convolution kernel with the same stride 1. /e activation
function of each convolution layer is set as the ReLU
function in this network. To reduce the risk of the gradient
disappearing, we introduce the batch-normalization
module right after conv3 and conv4 layers. /e period
operation process is shown as follows:

f � Hauto x
→

, W1, B1, δleaky−relu􏽮 􏽯􏼐 􏼑,

F � Hcnn f, y
→

, W2, B2, δrelu􏼈 􏼉( 􏼁,
(2)

where the function Hauto can represent the encoding and
decoding layers of the AutoEncoder architecture with the
inputs x

→ denoted to the raw IMU data. W1 denotes the
weight matrix of the network convolution kernel. B1 is the
bias of the network convolution kernel. And δleaky−relu

denotes the nonlinear activation functions. /en, the
feature map f and the related gait phase division result y

→

are combined as the input of Hcnn function, which indi-
cated the multiple convolutional layers with the weight
matrix W2 and the bias vector B2 under the inspiration of
the ReLU activation function δrelu. We randomly initialize
the weights and start training all networks with a mo-
mentum of 0.9. With the learning rate 0.05, the spatial
feature vector F with 300 channels is obtained to extract the
further temporal features.

2.3.2. Multisteams Temporal Feature Extractor.
xt ∈ F(f1, f2, . . . , fn) is the input of the three subnetworks;
Pt, St, and Qt (t� 1, 2, . . ., n) are the relevant outputs of sub-
GRU, sub-LSTM, and sub-RNN models, respectively. /e
GRU uses an update gate to control the degree to which the
previous state affects the current state. /e reset gate is
equivalent to the forget gate in LSTM for controlling the
degree of the previous moment. /e forward propagation of
each submodel is as follows:

P � Rgru 􏽘

n

t�1
xt, ht, zt, rt, w1, b1, δtanh( 􏼁􏼂 􏼃

⎧⎨

⎩

⎫⎬

⎭,

S � Rlstm 􏽘

n

t�1
xt, ht
′, gt, w2, b2, δtanh( 􏼁􏼂 􏼃

⎧⎨

⎩

⎫⎬

⎭,

P � Rrnn 􏽘

n

t�1
xt, at, w3, b3, δtanh( 􏼁􏼂 􏼃

⎧⎨

⎩

⎫⎬

⎭,

(3)

where xt is the input vector to each submodel. ht, zt, and rt

stand for the active state, update gate, and reset gate of the
current hidden node in GRU cells at time t; w1 and b1 are,
respectively, the weight matrices and bias vectors to be
learned during model training; and δtanh are the tanh ac-
tivation functions. Similarly, ht

′ and gt represent the active
state and the forget gate in LSTM cells at time t with the
weight matrices w2 and the related bias vectors b2. In ad-
dition, at, w3, and b3 indicate the network parameters of the
RNN models. Finally, the model is trained by gradient
descent algorithm and the parameters such as weight and
bias are constantly updated.

2.3.3. Gaussian Probability Fusion Module. Next, we further
propose a probabilistic fusion module that uses the multi-
stream spatiotemporal feature maps generated by the sub-
modules for the final fusion decision of the model. In the
fusion module, the output is the fused classification prob-
ability, and the input is the various features of sub-RNN,
sub-GRU, and sub-LSTM models. In order to further im-
prove the disappearance of the gradient, this paper adds a
convolutional layer and a batch-normalization layer to
follow the results of three submodel outputs. /is operation
is to unify the output vector of different models into the
same dimensional space layer, which facilitates subsequent
fusion operations. /e entire operation process is described
as follows:
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F′ � 􏽘
3

i�1
H

i
BN ∗ δrelu W

i
full[P, S, Q] + b

i
full􏼐 􏼑. (4)

/e function Hi
BN can represent i-th batch-normalization

layer, and the vectors P, S, Q denote the output feature maps
of three submodels. Wi

full denotes i-th square weight matrix
asymptotically approximating complicated combination of
the full-connection layer. bi

full can perform i-th biases of the
convolution kernel parameters. And δrelu denotes the non-
linear activation functions, which was selected as Leak-ReLU.
With initializing a weight decay of 0.0001 and amomentum of
0.9, we obtain the prediction score vector F′ representing the
probability that the input of i-th extractor belongs to the
corresponding category. After normal distribution analysis,
we choose the Gaussian distribution functions to fit multi-
modal distributions Eij of each submodel. /e Gaussian
distribution of i-th component model is defined as follows:

Eij 􏽥y | θi( 􏼁 �
1

���
2π

√
σi

exp −
F′ − μi( 􏼁

2

2σ2i
⎛⎝ ⎞⎠, (5)

where θi � (μi, σ2i ) is the estimated parameter, which consists
of the mean vector μi and covariance matrix σ2i , respectively.
F′ � Fgru, Flstm, Frnn􏽮 􏽯 is the output label vector corre-
sponding to each submodel, which reflects the essential
characteristics of the original IMU data. /en, the Gaussian
mixture method is used to construct a connection layer based
on probabilistic fusion. Its purpose is to cluster similar fea-
tures adaptively at different submodel clustering centers and
further combine the probability sizes of the three submodels
to determine the final recognition estimate. S denotes the final
output probability, which is calculated as follows:

S F′
􏼌􏼌􏼌􏼌 θ􏼐 􏼑 � 􏽘

3

i�1
Si � 􏽙

N

j�1
􏽙

3

i�1
Eij F′

􏼌􏼌􏼌􏼌 θi􏼐 􏼑, (6)

where θ � (θ1, θ2, θ3) represents the Gaussian mixture pa-
rameters of the fusion layer. cji represent implicit variables.
By integrating the joint probabilities between F′ and cij, the
fusion score S in (6) is redefined to solve the log-likelihood
expression as follows:

log S F′, c | θ( 􏼁 � 􏽘
3

i�1
􏽘

N

j�1
cji log

1
���
2π

√􏼠 􏼡 − log σi −
1
2σ2i

Fj
′ − μi􏼐 􏼑

2
􏼢 􏼣.

(7)

/en, we choose the EM algorithm to estimate the
hyperparameters of the fusion layer. Each iteration of the
EM algorithm is divided into two steps: the expected step (E-
step) and the maximum step (M-step). /e E-step calculates
the expectation of implicit variables cji defined as 􏽢cji �

E(cji | 􏽥y, θ), which denotes the responsivity of i-th com-
ponent model to the label yj. Subsequently, step M updates
the corresponding parameters by maximizing the expected
value of the given log-likelihood function in (7). After
several iterations of the EM algorithm, the parameters
gradually converge. /e detailed process is shown as the
following (Algorithm 1).

Note that the internal EM algorithm iteration loop is used
for corresponding parameter estimation and the EM algo-
rithm iteration loop is performed inside the external network
loop. Specifically, when the network is in training, each ex-
ternal loop will be accompanied by a lot of internal EM al-
gorithm iteration loops. /rough the above network
structure, our proposed GFM-Net obtains a better prediction
effect from the perspective of decision fusion. Finally, we add
a softmax layer after the fusion layer to normalize the output
result into a probability classification result and output the
final classification result through the argmax function.

We use the cross entropy (CE) loss function to evaluate
the degree of inconsistency between the predicted proba-
bility obtained by softmax and the true label. /en, the
gradient descent method is used to update the model pa-
rameters so that the two probability distributions are similar
to each other. /e loss expression is shown as

softmax(q)i �
e

qi
′

􏽐
n
i�1e

qi
′,

l � − 􏽘
4

i�1
yilog (q)i( 􏼁,

o � max(q),

(8)

where yi denotes the indicative variable (0 or 1); if the
category is the same as the sample category, it is 1; otherwise
it is 0; qi denotes the predicted probability that the obser-
vation sample belongs to category i. For each input sample x,
the predicted output of the network is q � (q0, q1, q2, q3).
/en, the value of qi is between 0 and 1, and the larger the
value, the greater the probability that x belongs to the real
label. Based on the output qi, we can get the class label as
O. /en, we can construct the training loss with cross en-
tropy, as formulated by (8); the cross entropy is a positive
number. When the probability value of the true label qi in
the vector q is smaller, larger difference between qi and yi

will result in a larger cross entropy value. /is property will
help the convergence of the network in the training. In order
to avoid overfitting, we chose 70% of the sample set for
training and 30% of the samples for testing. After using the
same training set to train different models 10,000 times, use
the same test set to test the trained model and record the
classification accuracy and macro-F value of each classifier
after testing the classification model with the test machine.
/en, evaluate the performance of all models based on these
three indicators.

3. Results and Discussion

3.1. Evaluation Methods. In this paper, we propose the
GFM-Net network. In order to prove its performance in
classification, we need to draw the corresponding conclusion
through corresponding indicators. As we all know, accuracy
is a good comprehensive indicator, which is widely used in
evaluation indicators. However, in the classification, it is
difficult to characterize the performance of a certain model
simply by relying on accuracy, and we have to choose other
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indicators to comprehensively characterize the classification
performance of a certain model. In classification problems,
commonly used classification performance indicators also
include precision (P), recall (R), and F1. Among them, P and
R are widely used to evaluate the quality of the model results.
P is used to measure the accuracy of the retrieval system. R is
used to measure the recall of the retrieval system. Of course,
we hope that P and R results are as high as possible.
Generally speaking, if both P and R are high, we can con-
clude that this model performs well in this classification task.
Hence, the F1 indicator is chosen since it can represent the
performance of themodel by combining the results of both P
and R. When F1 performs well, it means that both P and R
will perform well. However, this paper studies a multi-
classification task and cannot directly use F1./emost direct
method is to calculate macro-F1 [35]. Accuracy reflects the
ratio of correctly classified samples to total samples. /e
definition equation of the above evaluation factors can be
seen in [1]; we can easily calculate the accuracy, macro-P,
macro-R, and macro-F1 evaluation factors.

In multiclassification tasks, we also often use the area
AUC under the ROC curve to measure the classification
effect. /e ROC curve was first publicly proposed to verify
machine learning inmodel evaluation [36]. In recent years, it
has been widely used in the fields of machine learning and
deep-learning. /e larger the AUC, the more reliable the
model’s recognition of the target.

3.2. Results. /e confusion matrix (Figures 7–9) provides
the performance of visual gait-subphase recognition. /e

vertical axis of the matrix represents the actual classification
category of the test, and the horizontal axis represents the
corresponding predicted classification category. In addition,
in the confusion matrix diagram, “0.0” represents the “HS”
stage, “1.0” represents the “FF” stage, “2.0” represents the
“HO” stage, and “3.0” represents the “SW” stage. /ese nine
matrices are the average recognition results of all subjects
under different walking steps./e value in themain diagonal
is the proportion of correctly classified samples. As shown in
Figure 7, except for the HS stage, all confusion matrices
performwell./eHS stage is mostly erroneously classified as
FF and SW stages. In order to verify the effectiveness of the
proposed recognition model, we compared two other in-
tegrated algorithms to identify gait phases, namely, Ada-
Boosting and Bagging. /e corresponding confusion matrix
is shown in Figures 8 and 9. As can be seen from Figures 8
and 9, the Bagging model cannot identify the HS phase, and
most HS phases are erroneously directly classified as adja-
cent FF phases. /e AdaBoosting algorithm can identify
most of the HS phase. /e AdaBoosting and Bagging models
have achieved good recognition results in other stages.

From the confusionmatrix, we can get Table 1. As shown
in Table 1, the F1 of the four groups (HS, FF, HO, and SW) of
the GFM-Net model differ greatly. When the walking speed
is 0.78m/s, F1 is 65.9%, 96.4%, 97.6%, and 98.8%, respec-
tively; when the walking speed is 1.0m/s, F1 is 70.8%, 97.0%,
98.1%, and 98.9%, respectively; when the walking speed is
1.25m/s, F1 is 53.6%, 96.8%, 97.4%, and 98.1%. As can be
seen from the above data, FF, HO, and SW have the best
effect and obtain better recognition effect (over 96%). /e

Initialize cji � 1 and set estimation parameter θ
For T iterations do
Procedure M-step:
Calculate the expectations of (7):

M(θ, θ(t)) � E[log S(F′, c | θ) | yj, θ
(t)] � 􏽐

3
i�1 􏽐

N
j�1 􏽢cji[log(1/

���
2π

√
) − log σi − 1/2σ2i (yj − μi)

2],

Calculate partial derivatives of θ(μi, σ2i ):

(zM(θ, θ(t)
)/zμi)⟶ 􏽢μi � 􏽘

N

j�1
􏽢cjiyj/􏽘

N

j�1
􏽢cji,

(zM(θ, θ(t)
)/zσ2i )⟶ 􏽢σ2i � 􏽘

N

j�1
􏽢cji(yj − μi)

2/􏽘
N

j�1
􏽢cji,

Return 􏽢μi, 􏽢σ2i
Procedure E-step:
Calculate i-th submodel responsivity:

􏽢cji � S(cji � 1, 􏽥yj | θ)/􏽐
3
i�1 S(cji � 1, 􏽥yj | θ) � Eij(yj | θi)/􏽐

3
i�1 Eij(yj | θi),

Return 􏽢cji

Update the estimation parameter:
θ(t)

(􏽢μi, 􏽢σ2i ),

θ(t+1)
� argmaxθM(θ, θ(t)

),

End For till the parameter threshold:
θ(t+1) > θth or T>Tth
End Procedure M-step and E-step

Return θ(t+1) and the fusion score S

ALGORITHM 1: Training process of the Gaussian fusion layer based on EM-Algorithm.
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performance of HS phase recognition is the worst. As for the
recognition accuracy of each substage, the swing stage (SW)
performed best, with a maximum value of 1.0m/s (98.9%).

/e recognition effect of FF phase and HO phase is also very
good. Obviously, the performance of the HS phase recog-
nition effect is the worst, the F1 value has not reached 71%,
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Figure 7: Confusion matrix of three gait patterns derived from Bagging classification under three paces. Settings: 0.78m/s (a), 1.0m/s (b),
and 1.25m/s (c).
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Figure 8: Confusion matrix of three gait patterns derived from AdaBoosting classification under three paces. Settings: 0.78m/s (a), 1.0m/s
(b), and 1.25m/s (c).
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Figure 9: Confusion matrix of three gait patterns derived from GFM-Net classification under three paces. Settings: 0.78m/s (a), 1.0m/s (b),
and 1.25m/s (c).
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and the F1 with the lowest HS phase recognition is only
53.6%. For the Bagging and AdaBoosting models, at three
paces, the average value of F1 in the HS stage is 0 and 49.3%,
respectively, indicating that the recognition effect of the HS
stage is relatively poor; for SW phase recognition, the
minimum value of F1 is 94.2% and 95.1%, showing strong
recognition performance for SW phase.

In order to verify the effectiveness of the proposed
GFM-Net, this paper also compares the existing deep-
learning algorithm model and obtains Table 2. According
to Table 2, the recognition accuracy of the GFM-
Net algorithm is as high as 96% or higher, while the rec-
ognition accuracy of the other two integrated algorithm
models is lower. In particular, the accuracy of Bagging’s
phase recognition in three steps is lower than 92%. In
addition, we can also see that the GFM-Net algorithm is
also better than the existing CNN+ LSTM model. /e
CNN+GRUmodel and CNN+RNNmodel are superior in
recognition accuracy and macro-F1, although the gap
between them is not counted. In addition, we can easily
conclude that the GFM-Net model has the highest AUC at
asynchronous speed, which is higher than the other two
models. It can be clearly seen from Figures 10 and 11 that,
at any step, the accuracy and macro-F1 of the GFM-
Net algorithm are higher than those of the other five al-
gorithms. Finally, in order to show that the proposed
method not only has better performance, but also has
significant differences compared with other methods, we
tested the significance of the results of each model and the
GFM-Net results and got the results shown in Table 3. As
shown, P value of the GFM-Net result and any other model
result is less than 0.01, which is “very significant.”

4. Discussion

/is study proves that the proposed system can effectively
detect the corresponding gait phase based on a single IMU
sensor. In order to support this hypothesis, this paper pro-
poses using the GFM-Net algorithm to detect the gait phase
and comparing it with other timing algorithms to verify the
effectiveness of the algorithm. /e core technology of gait
phase recognition system is the design of recognition algo-
rithm model. /e predecessors generally used machine
learning or deep-learning methods to detect HS, FF, HO, and

SW from IMU signals. /is paper proposes the GFM-Net
model and uses it to identify HS, FF, HO, and SW phases by
the collected acceleration and angle data./e data obtained by
the JY901 sensor shows that when pedestrians walk normally
on flat ground, the acceleration signals and angle signals on
the thighs, calves, and feet have low variability and stability.
Moreover, this study can obtain a better recognition effect,
and this study also proposes a more complex neural network
model to achieve this effect, so the possible result is that it
takes longer training time. Some portable gait event detection
devices require accurate gait biofeedback information and
dynamic gait monitoring devices, but there are currently no
wearable sensors to meet these requirements.

/e GFM-Net algorithm is an integrated algorithm, and
its result depends on the fusion of three subneural networks.
/e three subneural networks in this paper are RNN, GRU,
and LSTM. However, whether the three subnetworks are the
best choice needs further research. /e recognition per-
formance of the three subnetworks should not be too dif-
ferent to avoid the fact that the final classification result of
the model only depends on the classification result of one of
the subnetworks. In terms of fusion, this paper uses fully
connected layers to connect the obtained results with the
model input values and then performs Gaussian fusion. In
order to avoid the problem that the gradient of the model
becomes smaller because the network is too deep, this paper
uses the BN network. In terms of feature extraction,
AutoEncoder is first used to implement the GFM-
Net algorithm with denoising and functional improvements.
/en, we use CNN network to extract spatial scale features.
It can be seen from Table 1 that neither Bagging nor
AdaBoosting algorithms can identify the HS phase, but the
GFM-Net algorithm can identify most HS phases./e GFM-
Net algorithm has an HS phase recognition rate of 63.4% at
three paces. Although the GFM-Net algorithm has greatly
improved compared with the other two algorithms, the
algorithm still needs further optimization and improvement.
But the three models showed better recognition perfor-
mance for the other three phases. As can be seen from
Figures 12 to 14 the macro-AUC of the GFM-Net algorithm
is also the best performing of the three algorithms. /e
GFM-Net algorithm based on the voting fusion mechanism
can effectively detect the HS, FF, HO, and SW phases,
has high recognition accuracy, and is also macro-F1 and

Table 1: Summary of classification performance of different models at unsynchronized speed.

Model Speed 0.78m/s 1.0m/s 1.25m/s
Phase HS FF HO SW HS FF HO SW HS FF HO SW

Bagging
Precision (%) 0 84.7 85.9 98.1 0 86.5 87.5 97.2 0 84.3 80.4 97.3
Recall (%) 0 96.2 85.1 94.6 0 97.5 88.4 93.4 0 97.6 81.0 91.3
F1 (%) 0 90.1 85.5 96.3 0 91.7 88.0 95.3 0 90.5 80.7 94.2

AdaBoosting
Precision (%) 48.8 91.8 92.2 96.9 42.1 90.8 94.2 97.2 40.7 90.4 96.0 96.3
Recall (%) 52.6 90.4 93.4 97.0 53.7 91.7 91.9 94.7 54.5 92.1 93.8 94.0
F1 (%) 50.7 91.1 92.8 97.0 50.7 91.3 93.0 95.9 46.6 91.3 94.9 95.1

GFM-Net
Precision (%) 79.1 94.5 98.2 99.2 80.6 95.8 99.0 98.9 80.9 95.0 97.9 97.9
Recall (%) 56.4 98.3 97.0 98.4 63.1 98.4 97.1 98.9 40.1 98.6 96.8 98.4
F1 (%) 65.9 96.4 97.6 98.8 70.8 97.0 98.1 98.9 53.6 96.8 97.3 98.1
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macro-AUC compared to the existing Bagging and Ada-
Boosting, being the best performer. We can get from Table 2
that the GFM-Net algorithm has the best recognition ac-
curacy, followed by AdaBoosting, and Bagging is the worst.
And we can clearly find that the GFM-Net algorithm im-
proves the recognition accuracy by almost 5 percentage
points compared with AdaBoosting. In order to propose an
acceleration data acquisition system suitable for the general
public, we tested the recognition effect of the FGFM-
Net algorithm proposed in this paper on unlearned accel-
eration signals and angular velocity data. /is study found
that the proposed system can successfully predict the gait

events of unlearned data, and the phase recognition accuracy
of HS, FF, HO, and SW is as high as 97.1%, so the result is
relatively reliable but still needs to be optimized.

At the same time, in order to verify the effectiveness of
the model proposed in this paper, this paper still compares
our model with CNN+LSTM, CNN+GRU, and
CNN+RNN. According to Table 2, we can still see that the
GFM-Net model has the best performance in terms of ac-
curacy, macro-F1, and macro-AUC. /rough Figure 14, we
can see the recognition accuracy of the FMS-Net algorithm.
Macro-F1 and AUC basically remain stable as the pace
increases. But we can also find that the macro-F1 has been

Table 2: Summary of classification performance for different training functions.

Speed (m/s) Training function
Classification result

Accuracy (%) Macro-F1 (%) Macro-AUC

0.78

Bagging 90.5 67.7 0.97
AdaBoosting 93.1 82.9 0.92
CNN+LSTM 95.2 87.8 0.98
CNN+GRU 94.7 87.3 0.97
CNN+RNN 93.6 86.6 0.95
GFM-Net 97.0 89.7 0.99

1.0

Bagging 91.4 68.7 0.95
AdaBoosting 92.4 82.7 0.91
CNN+LSTM 97.2 90.6 0.99
CNN+GRU 96.6 89.3 0.98
CNN+RNN 95.6 88.5 0.97
GFM-Net 97.5 91.2 0.99

1.25

Bagging 89.2 66.3 0.95
AdaBoosting 92.3 82.0 0.92
CNN+LSTM 95.7 85.2 0.99
CNN+GRU 95.3 84.6 0.99
CNN+RNN 94.2 83.2 0.98
GFM-Net 96.7 86.5 1.0
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Figure 10: More tag set classifier accuracy distribution at three paces.
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declining as the pace increases, which needs our attention. In
addition, we need to add more pace control experimental
groups for further exploration and draw more reliable
conclusions. Even though GFM-Net has shown its

usefulness in classifying acceleration and angular velocity
signals detected by gait events, other machine learning
methods are needed for further evaluation. Future work
should improve classification accuracy by improving feature
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Figure 11: More tag data set classifier macro-F1 distribution under sync speed.

Table 3: /e difference between GFM-Net results and other model results is significant P value.

Model P value
(GFM-Net, Bagging) 1.37e− 6
(GFM-Net, AdaBoosting) 1.61e− 11
(GFM-Net, CNN+LSTM) 7.40e− 15
(GFM-Net, CNN+GRU) 4.67e− 15
(GFM-Net, CNN+RNN) 7.59e− 15
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Figure 12: ROC curve performance in three models: Bagging (a), AdaBoosting (b), and GFM-Net. (c)/e treadmill speed is set to 0.78m/s.
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extraction and gait phase recognition algorithms. In this
study, the three inertial sensors are transmitted to the host
computer wirelessly, so we think that the three wearable
inertial sensor modules are acceptable wearable sensors and
will not have obvious impact on the subject’s walking gait
influences. However, in practice, the wearing of sensors may
have a potential impact on the gait of people who have not
yet been investigated. In the future, we will explore the use of
fewer inertial units to identify gait phases and minimize the
impact on the human body.

5. Conclusion

/is paper studies the method of gait recognition using three
inertial sensors on the treadmill. A hybrid deep fusion
learning method is proposed, which seamlessly combines
GRU, LSTM, and RNN to achieve a robust representation of

spatiotemporal features of inertial gait. In order to accurately
identify walking gait, this paper proposes an effective hybrid
deep-learning framework GFM-Net based on Gaussian
probability fusion of multiple spatiotemporal networks to
analyze multidimensional acceleration signals and detect
out-of-sync events including HS, FF, HO, and SW. It
consists of three main parts: data preprocessing, multistream
integrated neural network, and fusion model. Data pre-
processing uses automatic encoders to select key features,
while CNN extracts more spatial information. In addition,
we use three parallel modules RNN, LSTM, and GRU as
multistream time feature extractor. /e network uses mixed
particle information to form high-dimensional time-scale
features. Finally, a Gaussian fusion module was developed to
fuse different submodels. It uses the EM algorithm to op-
timize Gaussian probability fusion of different submodels
and proves that it is a practical method to increase model
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Figure 13: ROC curve performance in three models: Bagging (a), AdaBoosting (b), and GFM-Net (c) /e treadmill speed is set to 1.0m/s.
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Figure 14: ROC curve performance in three models: Bagging (a), AdaBoosting (b), and GFM-Net (c). /e treadmill speed is set to 1.25m/s.
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capacity on a large scale. Experiments and discussions prove
that GFM-Net has higher accuracy up to 96.7% and the
effectiveness of macro-F1 is up to 86.5%, which is superior to
that of other integrated algorithm models.

/ere are a lot of variables and hyperparameters in the
network structure proposed in this paper, which will un-
doubtedly cause a lot of time for the model to be trained.
/erefore, this paper strongly recommends training the
model on the GPU, which will improve the model training
efficiency. Our future work is to try to design a lightweight
network to recognize human gait phases and achieve online
gait phase recognition with high efficiency, which is of great
significance for medical rehabilitation training robots and
gait disease diagnosis.
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In this paper, we present a new approach which is based on using numerical solutions and swarm algorithms (SAs) to solve the
interval quadratic programming problem (IQPP). We use numerical solutions for SA to improve its performance. Our approach
replaced all intervals in IQPP by additional variables. (is new form is called the modified quadratic programming problem
(MQPP). (e Karush–Kuhn–Tucker (KKT) conditions for MQPP are obtained and solved by the numerical method to get
solutions. (ese solutions are functions in the additional variables. Also, they provide the boundaries of the basic variables which
are used as a start point for SAs. Chaotic particle swarm optimization (CPSO) and chaotic firefly algorithm (CFA) are presented.
In addition, we use the solution of dualMQPP to improve the behavior and as a stopping criterion for SAs. Finally, the comparison
and relations between numerical solutions and SAs are shown in some well-known examples.

1. Introduction

Nonlinear programming has been appeared in solving many
real-world problems. Solving interval programming prob-
lems is a hot issue in the research area. Interval program-
ming problems are divided into interval linear programming
and interval nonlinear programming [1–12].

Interval nonlinear programming problems are used in
modeling and solving many real applications such as planning
of waste management activities [13]. (e mathematical model
and the proofs of interval analysis can be found easily in [14].
Many researchers and authors solve the interval nonlinear
programming problems by different methods [15–18], but all
these methods try to get the optimal solution under some
specific conditions. For example, in [8, 9], Hlad́ık divided the
problem into subclasses which can be reduced to easy prob-
lems. He put a condition for solving these problems that they
must be convex quadratic programming. Jiang et al. [11]
suggested a method to solve the nonlinear interval number
programming problem with uncertain coefficients both in

nonlinear objective function and nonlinear constraints. Liu and
Wang [17] presented a numerical method to interval quadratic
programming. Li and Tian [18] generalized Liu and Wang’s
method [17] to solve interval quadratic programming. (eir
proposed method requires less computing compared with Liu
and Wang’s method.

As mentioned above, there are many approaches for
solving IQPP, but the most common one is dividing the
interval problem into two problems. In the first problem, the
optimal solution of the lower objective function on the
largest feasible region is found, while in the second one, the
optimal solution of the upper objective function on the
lowest feasible region is obtained. So, the solution value of
the interval problem is between values of the lower objective
function and the upper objective function. As is known, this
process is very difficult in many applications which lead to
the difficultly in reaching the lowest value of the objective
function of the problem.

KKTconditions are first-order necessary conditions for
solving quadratic programming problems. KKTconditions
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are optimality conditions for the optimization problems
with interval-valued objective functions and real-valued
constraint functions investigated and discussed in [19–22].
Wolfe’s duality theorems, strong duality theorems, and
duality gap in interval-valued optimization problems are
discussed in a good mathematical view in [12]. Chalco-
Cano et al. [19] introduced a new concept of a stationary
point for an interval-valued function based on the gH
derivative.

SAs are an important concept in computer science
[23, 24]. SAs can be described as a population of agents or
individuals interacting with each other and with their en-
vironment and working under very few rules. (e inspi-
ration often comes from nature, especially biological
systems. (ey are successfully applied in real-life applica-
tions. Examples of SAs are ant colony optimization [24, 25],
particle swarm optimization (PSO) [26, 27], firefly algorithm
(FA) [28], glowworm algorithm [29], krill herd algorithm
[30], monkey algorithm [31], and grasshopper optimization
algorithm [32].

On the other hand, most of the researchers proposed
hybrid algorithms to improve the solution quality, to benefit
from their advantages, and to overcome any deficiencies. For
example, a gaining sharing knowledge-based algorithm for
solving optimization problems over the continuous space
was proposed in [33]. Yulian Cao et al. presented a com-
prehensive learning particle swarm optimizer (CLPSO)
embedded with local search (LS) which has the strong global
search capability of CLPSO and fast convergence ability of
LS [34]. In [35], the authors presented an adaptive particle
swarm optimization with supervised learning and control
(APSO-SLC) for the parameter settings and diversity
maintenance of particle swarm optimization (PSO) to
adaptively choose parameters, while improving its explo-
ration competence. A new hybrid PSO algorithm that in-
troduces opposition-based learning (OBL) into PSO variants
for improving the latter’s performance is proposed in [36].
In [37], a surrogate-assisted PSO with Pareto active learning
was proposed to solve the multiobjective optimization
problem with high computational cost. Finally, the historical
memory-based PSO (HMPSO) is proposed in [38] which
used an estimation of distribution algorithm to estimate and
preserve the distribution information of particles’ historical
promising p bests.

In this paper, a new approach is suggested to solve the
interval quadratic programming problem (IQPP). IQPP is
converted into the modified quadratic programming
problem (MQPP) by replacing all intervals by additional
variables. KKT conditions of MQPP are derived and solved
by a numerical method. (e numerical method provides the
boundaries of the basic variables which are used as starting
points in SAs. (e solutions of KKTconditions are obtained
by using theMathematica program. CPSO and CFA are used
to solve these problems to give the decision maker (DM) a
fast view about the position of the optimal solution in the
intervals. (e dual of MQPP is discussed. (e solutions of
this problem are used to improve the behavior of the
proposed approach and as a stopping criterion for this
approach.

2. Interval Quadratic Programming
Problem (IQPP)

(e interval quadratic programming problem (IQPP) is an
interval nonlinear programming problem [9–11]. (e ob-
jective function is the quadratic function, and the constraints
are linear functions. IQPP can be defined as

min 􏽘
k

i�1
y

f

i fi(x)

subject to: 􏽘
l

i�1
y

c
ijgij(x)≤y

R
j , j � 1, 2, . . . , m,

(1)

where 􏽐
k
i�1 y

f
i fi(x) is an interval-valued function,

y
f
i � [y

fL
i , y

fU
i ]∀i, fi(x) is a quadratic function, gij(x), i �

1, . . . , l, j � 1, . . . , m are the linear functions,
yc

ij � [ycL
ij , ycU

ij ], and yR
j � [yRL

j , yRU
j ]. (e feasible region is

supposed to be nonempty and fixed.
(e optimal solution of the interval programming problem

cannot be defined exactly because at each value belonging to
interval coefficients in the objective function and/or the con-
straints, there may be a new optimal solution. So, no one can
define the exact optimal solution. Many researchers descried
the optimal solution of IQPP by the objective function values.
In [4, 15], the authors defined the optimal solution for the
interval linear programming problem. For example, Garajová
and Hlad́ık [4] defined the optimal set of the interval linear
programming problem and examined sufficient conditions for
its closedness, boundedness, connectedness, and convexity. So,
we defined the optimal solution as the union of all optimal
solutions of IQPP. We explored the whole feasible region to
get all possible optimal solutions of IQPP. In our approach, by
numerical methods, we tried to get all optimal solutions in the
feasible region, while by SAs, we found the best objective value
in the whole interval.

3. The Solution of IQPP

(e idea of our new vision to solve IQPP starts by replacing all
intervals by additional variables and converting IQPP to the
modified interval nonlinear problem (MQPP). KKTconditions
of MQPP are obtained and solved by a numerical method.(e
solutions of the numerical method are functions in the ad-
ditional variables.(ese solutions are providing the boundaries
of the basic variables which are used as start points for SA.(e
dual of MQPP is presented and solved. CPSO and CFA are
used to solve MQPP and its dual form. Furthermore, the
solution of dual MQPP is used as a stopping criterion for our
approach and to improve its performance. (e proposed ap-
proach leads to explore the whole feasible region to get the
optimal solution anywhere in the intervals.

3.1. Numerical Methodology. KKTconditions are a system of
equations solved by twomethods, with additional variables and
with interval coefficients. Mathematica is used to solve this
systemprogram. In the firstmethod, the equations are solved as
algebraic equations where the solutions can be expressed as a
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function of the additional variables. (ese solutions are very
helpful for DM if the optimal solution at certain values of
interval coefficients is required. We use the Newton method in
the second method if we want to know the boundary of the
variables. (e solution of this method is used as an initial stage
of CPSO, andCFA improved their ability to find the solution in
short time than using the whole space of the variables.

(e following theorems are used for solving the system of
nonlinear equations with interval coefficients. Let MQPP have
a continuous function G: A0 ⊆ IRn⟶ IRn which has a zero
y∗ in a given subset A of A0, i.e., a vector y∗ ∈ A⊆A0 exists
such that G(y∗) � 0, where IRn is the set of real intervals’ n

vectors. Let Rn be the set of real n vectors, Rn×n be the set of
n × n matrices, 􏽥y be an element of an interval vector y, BH be a
hull inverse of the n × n interval matrixB, int(A) be an interior
of the m × n interval matrix A, IA be the set y ∈ IRn | y⊆A􏼈 􏼉,
int(y) ≡ ]y, y[ be the interior of an intervaly, and vol(y) be a
volume-reducing property of the Newton iteration.

Theorem 1 (see [38]). Let G: A0 ⊆Rn⟶ Rn be Lipschitz
continuous on A⊆A0 and let B be a regular Lipschitz set onA,
then

(i) For every a∗ ∈ Rn, the equation G(y∗) � a∗ has at
most one solution y∗ ∈ A

(ii) 3e inverse function G− 1: G∗(A)⟶ Rn defined on
the range G∗(A) ≔ G(􏽥y) | 􏽥y⊆A􏼈 􏼉 by
G− 1(􏽥a) � 􏽥y:⟺G(􏽥y) � 􏽥a is Lipschitz continuous,
and B− 1 is a Lipschitz matrix for G− 1 on G∗(A)

(iii) If a∗ ∈ G∗(A), then for every 􏽥y0 ∈ A,
G− 1(a∗) ∈ y0 + BH(a∗ − G(􏽥y0))

(iv) If A is compact and there is a point 􏽥y0 ∈ int(A) such
that G(􏽥y)≠ λG(􏽥y0) + (1 − λ)a∗ for all 􏽥y ∈ zA

λ ∈ (0, 1], then a∗ ∈ G∗(A), i.e., the equation
G(y∗) � a∗ has a unique solution y∗ ∈ A

Theorem 2 (see [38]). Under the assumption of 3eorem 1
above, if 􏽥y ∈ y ∈ IA, then every y′ ∈ IRn satisfying
N(y, 􏽥y) ≔ 􏽥y − BHG(􏽥y)⊆y′ has the following three
properties:

(i) Every zero y∗ ∈ y of G satisfies y∗ ∈ y′

(ii) If y′ ∩y � 0, then G contains no zero in y

(iii) If y∗ ∈ int(y) and y′ ⊆y, then G contains a unique
zero in y (and hence in y′)

Since 􏽥y, y∗ ∈ y implies y∗ ∈ N(y, 􏽥y), it is natural to
consider the general Newton iteration [38]:

y
0 ≔ y, y

l+1 ≔ NI y
l
, 􏽥y

l
􏼐 􏼑∩y

l
, for l � 0, 1, 2, . . . . (2)

With the general Newton operator:

NI(y, 􏽥y) ≔ 􏽥y − (CB)
I
(CG(􏽥y)). (3)

Theorem 3 (see [38]). Let B be a strongly regular Lipschitz
matrix on y ∈ IA0 for G: A0 ⊆Rn⟶ Rn. Let C ∈ Rn×n be

such that CB is regular and let (CB)I be an inverse of CB. If
(CB)I is regular, then the Newton iteration (6) is strongly
convergent for every choice of 􏽥yl ∈ yl. Moreover, for all l≥ 0,
we have either

􏽥y
l ∉ y

l+1ory
l+1

� 􏽥y
l andG y

l
􏼐 􏼑 � 0. (4)

Corollary 1 (see [38]). If, for some C ∈ Rn×n, CB is an
M-matrix or I − CB< (1/2), then the optimal Newton iter-
ation (6) is strongly convergent for every choice of 􏽥yl ∈ yl and
the relations (8) and vol(yl+1)≤ (1/2)vol(yl) hold.

vol(y) is defined as

vol(y) ≔ y1 − y1􏼐 􏼑 y2 − y2􏼐 􏼑 · · · yn − y
n

􏼐 􏼑, y ∈ IRn
.

(5)

3.2. Swarm Algorithm (SA). Chaos theory (CT) is used to
improve the performance of many SAs [39], where the
high randomness of the chaotic sequence improves the
convergence and diversity of the solutions. CT is con-
sidered as irregular behavior in nonlinear systems due to
using the chaotic maps. (ese maps are worked as
particles which move in a small range of nonlinear dy-
namic systems without knowing the traveling path of
these particles. Many researchers proposed combinations
between CT and meta-heuristic algorithms to improve
the solution quality such as hybrid chaos-PSO [40],
chaotic genetic algorithm [41], combined evolutionary
algorithm with chaos [42], chaotic whale optimization
algorithm [43], and chaotic artificial neural networks
[44].

3.2.1. Chaotic Firefly Algorithm (CFA). FA is an evolu-
tionary computation technique [28].(emain advantages of
FA are exploitation and exploration. (e improved FA with
CT which is called the chaotic firefly algorithm (CFA) is
applied to solve IQPP. (e details of the main steps of CFA
are described as follows:

Step 1. Initialization. A population of randomN fireflies
(solutions) is initialized t � 0, where T is the total
number of iterations. (e position of the i-th firefly in
an n− dimensional space is denoted as xi and repre-
sented as xt

i � (xi1, xi2, . . . , xin).
Step 2. Evaluation. Evaluating the fitness value (the light
intensity I(XK

i )∀i � 1, 2, . . . , N of each firefly in the
population or simply I(xt

i) � f(xt
i)∀i � 1, 2, . . . , N.

Step 3. Determination of Best Solution. For minimiza-
tion problems, the firefly that has minimum light in-
tensity is the best solution xb.
Step 4. Updating Positions of Fireflies. For every firefly
i � 1, 2, . . . , N and for every firefly j � 1, 2, . . . , N do
the following: if I(xt

j)< I(xt
i), the i-th firefly is attracted

to the firefly j, and its position XK
i is updated according

to the following equation:
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x
t+1
i � x

t
i + β0e

− cr2
ij x

t
j − x

t
i􏼐 􏼑 + αεG, (6)

rij� x
t
i − x

t
j
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t
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2

􏽶
􏽴

, (7)

where β0 the attractiveness at rij is 0, c is the light
absorption coefficient, rij is the Cartesian distance
between the two fireflies i and j, α is a step size factor
controlling the step size, and εG is a vector drawn from a
Gaussian or other distribution. If I(xt+1

j )< I(xt
i), then

xt+1
i � xt+1

i otherwise xt+1
i � xt

i .

Step 4-1. Chaotic repairing of the new position xt+1
i .

Step 4-2. Updating the best solution xb: if the new
position of the i-th firefly xt+1

i is better than the best
solution xb, i.e., I(xt+1

j )< I(xb), then xb � xK+1
i .

Step 5. Stopping Condition. If a prespecified stopping
criterion is satisfied, stop the run; otherwise, go to
Step 4.

3.2.2. Chaotic Particle Swarm Optimization Algorithm
(CPSO). PSO can solve many difficult optimization prob-
lems. It has a faster convergence on some problems in
comparison [45]. (e idea of PSO is that several random
particles are placed in the search domain of the optimization
problem. At its current location, each particle evaluates the
objective function. After that, each particle determines the
direction of movement in the search domain by combining
some aspects of the history of its own current and best
locations with particles located nearby in the swarm, but
with some random disturbance. (e next iteration takes
place after all particles have been moved. Eventually the
swarm, like a flock of birds collectively foraging for food, is
likely to move close to an optimum of the fitness function.
(e i-th particle is described by an n-dimensional vector as
xi � (xi1, xi2, . . . , xin), while its velocity is represented as
vi � (vi1, vi2, . . . , vin). (e best position of the particle in its
memory that it visited is denoted as
pbest

i � (pi1, pi2, . . . , pin). (e best position in the swarm is
denoted as gbest � (g1, g2, . . . , gn). (e steps of the CPSO
algorithm are described as follows:

Step 1. Initialization.

(a) Initializing randomly the positions of all particles
(b) Initializing randomly the velocities of all particles
(c) Setting t� 1, where t is the increment of time and T

is the total number of iterations

Step 2. Optimization.

(a) Evaluating the objective function value ft
i

(b) If ft
i ≤fbest

i , then fbest
i � ft

i and pbest
i � xt

i

(c) If ft
i ≤fbest

g , then fbest
g � ft

i and gbest
i � xt

i

(d) If the stopping criterion is satisfied go to Step 3
(e) All velocities (vt

i∀i the particle) are updated
according to the following equation:

v
t+1
i � wv

t
i + c1 × r1 × p

best
i − x

t
i􏼐 􏼑 + c2

× r2 × g
best
i − x

t
i􏼐 􏼑,

(8)

where w is an inertia term, c1 and c2 are the positive
constants, and r1 and r2 are the random numbers
belonging to (0, 1).

(f ) All positions (xt
i∀i the particle) are updated

according to the following equation:

x
t+1
i � x

t
i + v

t+1
i . (9)

(g) Chaotic repairing of the new position xt+1
i

(h) t� t + 1
(i) Go to Step 2(a)

Step 3. Termination. If a prespecified stopping criterion
is satisfied, stop the run; otherwise, go to Step 2.

3.2.3. Chaotic Repairing of Infeasible Solution. If the new
position xt+1

i is infeasible, it is repaired according to the
following equation:

x
t+1
i � ϕ × x

t+1
i +(1 − ϕ) × FS. (10)

If xt+1
i is still infeasible, xt+1

i is repaired according to the
following equation:

x
t+1
i � ϕ × FS +(1 − ϕ) × x

t+1
i , (11)

where FS is any feasible solution in the search space and ϕ is
a chaotic number generated by the following logistic map:

ϕm+1 � cϕm 1 − ϕm( 􏼁, (12)

where m is the age of the infeasible solution, c � 4,
ϕ0 ∈ (0, 1), and ϕ0 ∉ 0, 0.25, 0.5, 0.75, 1{ }.

3.3. 3e Proposed Approach. In this section, we discuss the
proposed approach. (e following steps describe the pro-
posed approach clearly:

Step 1. Replacing all intervals in IQPP by additional
variables which is called MQPP and obtaining the dual
form of MQPP.
Step 2. Constructing KKT for MQPP, and solving KKT
equations by the numerical algorithm.
Step 3. Using the solutions of the numerical algorithm
as a start point of CPSO and CFA.
Step 4. Solving MQPP and its dual form by CPSO and
CFA.
Step 5. (e values of the objective function which are
obtained from solving the problem by SA and its dual form
are compared. If their values are the same, the global
optimal solution of our problem is found. If there is a
difference between the outputs from the problem and its
dual, we solve the problem and its dual form again until the
difference between them is ε, where ε can be computed as
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ε �
δ

the optimal value of the problem
, (13)

where δ is the difference between the optimal value of
the problem and the optimal value of its dual problem.
(is solution is a local optimal solution. (is com-
parison is used as a new stopping criterion.
(e suggested method is suitable for convex and
nonconvex problems. (e steps of the proposed ap-
proach are illustrated in Figure 1.

4. Results and Discussion

(e proposed algorithm is tested by solving three problems
taken from the literature. Each problem was independently run
30 times. (e proposed algorithm was programmed in
MATLAB (R2016b) and implemented on the PC with P4 CPU
3.00GHz, 1GB RAM with an i5 processor, Windows 7 oper-
ating system. (e proposed algorithm, as any nontraditional
optimization algorithms, involves a number of parameters that
affect the performance of the algorithm.(eparameters adopted
in the implementation of CFA and CPSO are listed in Table 1.

4.1. Problem 1. (is problem is formulated as follows [10]:

min x
2
1 + x

2
2 +[1, 2]

subject to: [1, 6]x1 +[1, 2]x2 ≥ [1, 12], x1, x2 ≥ 0.
(14)

By replacing all intervals by additional parameters, the
problem becomes

min x
2
1 + x

2
2 + a

subject to: b1x1 + b2x2 ≥ b3, x1, x2 ≥ 0,
(15)

where a � [1, 2], b1 � [1, 6], b2 � [1, 2], and b3 � [1, 12].
(e dual form of problem (15) is

maxx
2
1 + x

2
2 + a − u1 b1x1 + b2x2 − b3( 􏼁 − u2x1 − u3x2,

u1 ≥ 0, u2 ≥ 0, u3 ≥ 0.

(16)

KKT conditions of problem (15) are

2x1 − u1b1 − u2 � 0,

2x2 − u1b2 − u3 � 0,

u1 b1x1 + b2x2 − b3( 􏼁 � 0,

u2x1 � 0,

u3x2 � 0,

b1x1 + b2x2 ≥ b3,

x1, x2 ≥ 0,

u1 ≥ 0,

u2 ≥ 0,

u3 ≥ 0.

(17)

In [8, 9], problem (14) can be divided into two problems.
(e first problem is

min x
2
1 + x

2
2 + 1

subject to: 6x1 + 2x2 ≥ 1, x1, x2 ≥ 0.
(18)

Its solution is (x1, x2) � (0.15, 0.05) and f(x) � 1.025.
(e second problem is

min x
2
1 + x

2
2 + 2

subject to: x1 + x2 ≥ 12, x1, x2 ≥ 0.
(19)

Its solution is (x1, x2) � (6, 6) and f(x) � 74. (e so-
lutions of KKT conditions in (18) can be expressed as

solutions set �
b1b3

b
2
1 + b

2
2
,

b2b3

b
2
1 + b

2
2

􏼠 􏼡􏼨 􏼩. (20)

In addition, the numerical solution provides the
boundaries of the basic variables as x1 � [0.025, 36] and
x2 � [0.025, 12]. (e comparison between different types of
SAs in solving problem (1) is shown in Table 2.

4.2. Problem 2. (is problem is formulated as follows [1]:

min [2, 3]x
2
1 + 2x

2
2 − 2x1x2 +[− 5, − 3]x1 +[1, 2]x2,

subject to: [1, 2]x1 + x2 ≤ [2, 4], [2, 3]x1 +[− 1, − 0.5]x2

≤ [3, 4], x1, x2 ≥ 0.

(21)

By replacing all intervals by additional parameters, the
problem becomes

min a1x
2
1 + 2x

2
2 − 2x1x2 + a2x1 + a3x2

subject to: b1x1 + x2 ≤ b2b3x1 + b4x2 ≤ b5, x1, x2 ≥ 0,

(22)

where a1 � [2, 3], a2 � [− 5, − 3], a3 � [1, 2], b1 � [1, 2], b2 �

[2, 4], b3 � [2, 3], b4 � [− 1, − 0.5], and b5 � [3, 4].
(e dual form of problem (22) is

max a1x
2
1 + 2x

2
2 − 2x1x2 + a2x1 + a3x2 + u1 b1x1 + x2 − b2( 􏼁

+ u2 b3x1 + b4x2 − b5( 􏼁 − u3x1 − u4x2

subject to: u1 ≥ 0, u2 ≥ 0, u3 ≥ 0, u4 ≥ 0.

(23)

(e KKT conditions of problem (22) are
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Figure 1: (e flowchart of the proposed approach.

Table 1: (e proposed algorithm parameters.

CFA parameters CPSO parameters
(e swarm size (m) 20 (e swarm size 20
Number of iteration (T) 200 Number of iteration (T) 200
Initial attractiveness (β0) 1 Acceleration coefficients c1 2.8
(e light absorption coefficient (c) 1 c2 1.3
(e step size factor (α) 0.95 (e inertia weight (w) 0.6
Chaos search repairing iteration (m) 1E02
ε 1E-6

Table 2: (e results of problem (1) by using SAs.

PSO FA CPSO CFA
(x1, x2) (0.37931, 0.21558) (0.20087, 0.12304) (0.1504, 0.0489) (0.149462, 0.0516)

f(x) 1.6209 1.5252 1.0250 1.0250

6 Complexity



2a1x1 − 2x2 + a2 + u1b1 + u2b3 − u3 � 0,

4x2 − 2x1 + a3 + u1 + u2b4 − u4 � 0,

u1 b1x1 + x2 − b2( 􏼁 � 0,

u2 b3x1 + b4x2 − b5( 􏼁 � 0,

u3x1 � 0,

u4x2 � 0,

b1x1 + x2 ≤ b2

b3x1 + b4x2 ≤ b5x1,

x2 ≥ 0,

u1 ≥ 0,

u2 ≥ 0,

u3 ≥ 0,

u4 ≥ 0.

(24)

In [8, 9], problem (21) is divided into two problems. (e
first problem is

min 2x
2
1 + 2x

2
2 − 2x1x2 − 5x1 + x2,

subject to: x1 + x2 ≤ 4, 2x1 − x2 ≤ 4, x1, x2 ≥ 0.
(25)

Its solution is (x1, x2) � (1.5, 0.5) and f(x) � − 3.5. (e
second problem is

min 3x
2
1 + 2x

2
2 − 2x1x2 − 3x1 + 2x2

subject to: 2x1 + x2 ≤ 2, 3x1 − 0.5x2 ≤ 3, x1, x2 ≥ 0.

(26)

Its solution is (x1, x2) � (0.5, 0) and f(x) � − 0.75. (e
solutions of KKT conditions in (24) can be expressed as

�

2a2 + a3

2 − 4a1
,
a2 + a1a3

2 − 4a1
􏼠 􏼡, −

a2

2a1
, 0􏼠 􏼡,

− b2b4 + b5

b3 − b1b4
,
b2b3 − b1b5

b3 − b1b4
􏼠 􏼡,

b5

b3
, 0􏼠 􏼡,

b2

b1
, 0􏼠 􏼡,

2b2 2b1 + 1( 􏼁 − a2 + a3b1

2a1 + 4b1 b1 + 1( 􏼁
,
a2b1 − a3b

2
1 + 2b2 a1 + b1( 􏼁

2a1 + 4b1 b1 + 1( 􏼁
􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (27)

In addition, the numerical solution provides the
boundaries of the basic variables as
x1 � [0.4, 4.08333] andx2 � [− 1.6, 3.6]. (e results of
problem (2) by using SAs are shown in Table 3.

4.3. Problem 3. (is problem is formulated as follows [46]:

min [2, 3]x
2
1 + 2x

2
2 − 2x1x2 +[− 5, − 3]x1 +[1, 2]x2

subject to: [1, 2]x1 + x2 ≤ [2, 4], [2, 3]x1 +[− 1, − 0.5]x2

≤ [3, 4], [4, 5]x1 +[− 8, − 7]x2 � [1, 1.5], x1, x2 ≥ 0.

(28)

By replacing all intervals by additional parameters, the
problem becomes

min a1x
2
1 + 2x

2
2 − 2x1x2 + a2x1 + a3x2

subject to: b1x1 + x2 ≤ b2, b3x1 + b4x2

≤ b5, b6x1 + b7x2 � b8, x1, x2 ≥ 0,

(29)

where a1 � [2, 3], a2 � [− 5, − 3], a3 � [1, 2], b1 � [1, 2], b2 �

[2, 4], b3 � [2, 3], b4 � [− 1, − 0.5], b5 � [3, 4], b6 � [4, 5],

b7 � [− 8, − 7], and b8 � [1, 1.5].

(e dual form of problem (29) is

max a1x
2
1 + 2x

2
2 − 2x1x2 + a2x1 + a3x2 + u1 b1x1 + x2 − b2( 􏼁

+ u2 b3x1 + b4x2 − b5( 􏼁 + λ b6x1 + b7x2 − b8( 􏼁

− u3x1 − u4x2,

u1 ≥ 0, u2 ≥ 0, u3 ≥ 0, u4 ≥ 0.

(30)

(e KKT conditions of problem (28) are

2a1x1 − 2x2 + a2 + u1 + u1b1 + u2b3 + λb6 − u3 � 0,

4x2 − 2x1 + a3 + u1 + u2b4 + λb7 − u4 � 0,

u1 b1x1 + x2 − b2( 􏼁 � 0,

u2 b3x1 + b4x2 − b5( 􏼁 � 0,

λ b6x1 + b7x2 − b8( 􏼁 � 0,

u3x1 � 0,

u4x2 � 0,

b1x1 + x2 ≤ b2,

b3x1 + b4x2 ≤ b5,

b6x1 + b7x2 � b8,

x1, x2 ≥ 0,

u1 ≥ 0,

u2 ≥ 0,

u3 ≥ 0,

u4 ≥ 0.

(31)
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In [8, 9], problem (28) is divided into two problems. (e
first problem is

min 2x
2
1 + 2x

2
2 − 2x1x2 − 5x1 + x2

subject to: x1 + x2 ≤ 4, 2x1 − x2 ≤ 4, 4x1 − 8x2 � 1.5, x1, x2 ≥ 0.

(32)

Its solution is (x1, x2) � (1.5, 0.5625) and f(x) �

− 3.4922. (e second problem is

min 3x
2
1 + 2x

2
2 − 2x1x2 − 3x1 + 2x2

subject to: 2x1 + x2 ≤ 2, 3x1 − 0.5x2 ≤ 3, 5x1 + − 7x2 � 1, x1, x2 ≥ 0.

(33)

Its solution is (x1, x2) � (0.3268, 0.0906) and f(x) �

− 0.5217.
(e solutions of KKTconditions in (31) can be expressed

as

solutions set �

2a2 + a3

2 − 4a1
,
a2 + a1a3

2 − 4a1
􏼠 􏼡, −

a2

2a1
, 0􏼠 􏼡,

b4b8 + b5b7

b4b6 − b3b7
,
b5b6 + b3b8

b4b6 − b3b7
􏼠 􏼡,

b5

b3
, 0􏼠 􏼡,

b8 + b2b7

b6 − b1b7
,
b2b6 + b1b8

b6 − b1b7
􏼠 􏼡,

b5 − b2b4
b3 − b1b4

,
b2b3 − b1b5
b3 − b1b4

􏼠 􏼡,
b5
b3

, 0􏼠 􏼡,
2b2 2b1 + 1( 􏼁 − a2 + a3b1

2a1 + 4b1 b1 + 1( 􏼁
,
a2b1 − a3b

2
1 + 2b2 a1 + b1( 􏼁

2a1 + 4b1 b1 + 1( 􏼁
􏼠 􏼡,

b2
b1

, 0􏼠 􏼡

a3b6b7 − a2b
2
7 + 2b8 2b6b7( 􏼁

4b
2
6 + 4b6b7 + 2a1b

2
7

,
− a3b

2
6 + a2b6b7 + 2b8 b6 + a1b7( 􏼁

4b
2
6 + 4b6b7 + 2a1b

2
7

􏼠 􏼡,
b2

b1
, 0􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(34)

In addition, the numerical solution provides the
boundaries of the basic variables x1 � [0.28289, 9.8] and
x2 � [− 5.4, 5.8]. In Table 4, the results of problem (2) by
using SAs are listed.

In addition, the statistical results obtained, by original
PSO, original FA, CPSO, and CFA, over the 30 runs are
summarized in terms of CPU time, mean value, standard
deviation, and worst and best values in Table 5.

Table 3: (e results of problem (2) by using SAs.

PSO FA CPSO CFA
(x1, x2) (1.217548, 0.42732) (1.23733, 0.39811) (0.1504, 0.0489) (1.4964, 0.4970)

f(x) − 3.2759 − 3.3355 − 3.3355 − 3.5

Table 4: (e results of problem (2) by using SAs.

PSO FA CPSO CFA
(x1, x2) (1.07113, 0.41978) (1.07116, 0.41973) (0.7754, 0.2002) (1.4998, 0.5624)

f(x) − 1.9297 − 3.1872 − 2.7046 − 3.4922

Table 5: (e statistical results of SAs over the 30 runs.

Algorithm CPU time(s) Mean SD Worst Best

Problem 1 Range of f(x) [1.025, 74]

PSO 5.45 1.6783 0.0419 1.7024 1.6209
FA 4.56 1.5337 0.0065 1.5379 1.5252

CPSO 3.76E− 002 1.0250 0 1.0250 1.0250
CFA 2.95E− 002 1.0250 0 1.0250 1.0250

Problem 2 Range of f(x) [− 3.5, − 0.75]

PSO 12.05 − 3.2244 0.0458 − 3.1846 − 3.2759
FA 7.96 − 3.3230 0.0066 − 3.3257 − 3.3355

CPSO 2.54E− 002 − 3.4999 0 − 3.4999 − 3.4999
CFA 1.51E− 002 − 3.5 0 − 3.5 − 3.5

Problem 3 Range of f(x) [− 3.4922, 0.5217]

PSO 22.45 − 1.8795 0.0304 − 1.8750 − 1.9297
FA 10.38 − 3.1498 0.0487 − 3.0907 − 3.1872

CPSO 9.41E− 002 2.7037 0.0013 − 2.7005 − 2.7046
CFA 8.95E− 002 − 3.4922 0 − 3.4922 − 3.4922
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Furthermore, Figures 2–4 show the convergence curve of
the best f(x) obtained so far by original PSO, original FA,
CPSO, and CFA for the 3 problems.

Results show that the proposed SAs (CFA and CPSO)
outperform the other original algorithms in terms of the
optimality. In addition, these results prove that the proposed
SAs can solve IQPP effectively with low computational cost
where the CPU time is less than the other original algorithms
as shown in Table 5. In other words, the solutions, of the test
problems, of CPSO and CFA are the same as the solutions of
previous methods, but they are very fast without any effort of
computation. On the other hand, the numerical approach
gives the solution as a general formula in the additional
variables, where we can obtain, by this formula, the solution
at any values inside the intervals. In addition, the numerical
solution provides the boundaries of the basic variables which
are used in the step of initialization in SAs. Finally, we can
say that our approach, as any SAs, is more generalized and
suitable for real applications than traditional methods.

5. Conclusion

(is paper deals with a new approach to solve IQPP. We aim
to explore the feasible region to get the optimal solution
anywhere. All intervals were replaced by additional vari-
ables.(e new formwith additional variables is MQPP. KKT
conditions for MQPP were solved numerically to get the
solutions as a function in the additional variables and
provide the boundaries of the basic variables. (e solutions
are used as start points for SAs. CPSO and CFA are used to
solve MQPP and its dual form. (e advantages of our
procedure are (1) the solution of the numerical method is
more general than previous methods, (2) giving the decision
maker a very fast view of the optimal solution inside the
intervals, (3) using the optimal solution of the dual problem
as a stopping criterion for SAs is more suitable than other
criteria, and (4) its effectiveness is verified as compared with
other studies. Also, we compare PSO, FA, CPSO, and CFA
with each other. Real applications of interval nonlinear
programming problems should be conducted in the future.
In addition, we are planning to use this vision to solve
multiobjective linear programming with interval coeffi-
cients. Also, we aim to discuss the GSK algorithm to solve
IQPP.
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Based on the local decision perspective and the global decision perspective, considering the limitation of supply capacity and
prohibiting returns, the system dynamics method is used to establish a nonlinear supply chain system model. We use the Z-
transform theory to transform the dynamic transfer equation into a block diagram, build a supply chain system simulation model,
and use it to conduct simulation experiments.2eWolf reconstruction method is used to calculate the largest Lyapunov exponent
(LLE) value of each node or combined system to judge the stability of the system. Based on different decision-making perspectives,
under different combinations of safety stock factors and demand scenarios, the adjustment coefficients’ decision-making schemes
that keep each node in a stable state are obtained. 2en, we comparatively analyze the inventory changes of each node and
combined system in a stable state under different decision-making schemes.

1. Introduction

Supply chain management has always been a concern of
enterprises. To help enterprises better implement effective
supply chains, Pittiglio, Rabin, Todd & McGrath (PRTM)
and AMR Research (AMR) led the establishment of the
Supply Chain Council (SCC) in 1996 and released supply
chain operations reference (SCOR) model, realized the
transformation from function-based management to pro-
cess-based management, and improved the performance of
the supply chain. With the emergence of cloud computing,
Internet of things (IoT), artificial intelligence (AI), and other
new information technologies (IT), supply chain manage-
ment has a new background and requirements. New tech-
nologies can change the way of communication among the
supply chain members. Before the 1960s and 1970s, due to
technical limitations, the rapid flow and sharing of

information cannot be achieved. In the early traditional SC
model, each node enterprise is responsible for its inventory
control, production, or distribution ordering activities, and
each echelon only has its immediate customer information
[1]. 2e application of new information technology makes it
possible to easily share the main information on the supply
chain (SC) nodes.

Gradually, some new supply chain models are formed
and applied in practice. Among them, the more commonly
used are the vendor-managed inventory (VMI) model and
the third-party logistics management inventory (TMI)
model [2] so that the problems faced by the traditional SC
have undergone some changes. For example, the bullwhip
effect can be improved.2e bullwhip effect is a description of
the image of demand information distorted in the SC [3].

2e development of science and technology has pro-
moted the vertical integration of the supply chain, and the
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management concept has also changed. More and more
decision makers have magnified the decision perspective,
and supply chain management presents the trend of vertical
integration. More and more decisions are made based on
local alliances and the whole supply chain. Also, there are
many different types of uncertainties in the SC, such as
changes in market demand, limited production capacity, the
delay of transportation time, and so on [4]. Even, the level of
decision makers also has a huge impact on the SC. All of the
above factors will lead to the supply chain system (SCS) in an
unstable state, which will increase the difficulty and cost of
management. So, it makes great sense to study the complex
dynamic behavior of the SC closely related to these factors
from different perspectives.

2. Literature Review

2e research on the dynamic behavior of supply chain
systems started in the early 1960s. It first appeared in the
classic work “Industrial Dynamics” by Forrester, which is the
simplest manifestation of the dynamic complexity of supply
chain systems [5] and was later named “bullwhip effect.”
Since then, the research literature on the dynamic behavior
of the supply chain keeps emerging. 2ese studies can be
divided into two parts, including the dynamic behavior
analysis of the linear system model and dynamic behavior
analysis of the nonlinear system model.

In the early days of the concept of dynamic behavior
emergence, many research studies were based on the in-
ventory and order based production control system
(IOBPCS) and analyzed as a linear system. Towill [6] ana-
lyzed a reasonable industrial dynamics model of an in-
ventory control system, which is IOBPCS, by using transfer
function techniques. A general rule for parameter settings
which can then be used for “local” tuning in a large-scale
industrial dynamics simulation is proposed. Disney et al. [7]
outlined a method of developing a fitness measure for use in
a genetic algorithm for assessing the performance of a ge-
neric production control system. Disney et al. [8] described a
genetic algorithm for optimizing system performance, via
five vectors including inventory recovery to “shock” de-
mands, inbuilt filtering capability, robustness to production
lead time variations, robustness to pipeline level information
fidelity, and systems selectivity. In a vendor-managed in-
ventory (VMI) supply chain, Disney and Towill [9] con-
sidered a well-established production and distribution
scheduling algorithm termed automatic pipeline, inventory,
and order based production control system (APIOBPCS).
Simulation and analysis demonstrate that poor design can
cause instability and the recommended parameter can avoid
it. Dejonckheere et al. [10] introduced a general decision rule
that avoids variance amplification and succeeds in gener-
ating smooth ordering patterns, even when the demand has
to be forecasted. Lin and Wang [11] analyzed the stability of
the system using the characteristic equation. It is proved that
the intuitive operation of a supply system with demand
forecasting will cause bullwhip and lead time alone would
not cause bullwhip. Nagatani and Helbing [12] studied
several feasible production strategies for stabilizing the

supply chain in the linear supply chain. Disney [13] analyzed
the quasiperiodicity, bullwhip effect, and stability of the
supply chain inventory system. In these studies of a linear
systems model, most assume that orders at all levels of the
supply chain are satisfied, regardless of inventory con-
straints, mainly used to study and analyze the dynamic
behavior of the supply chain, the bullwhip effect.

With the deepening of research, it is found that based on
various assumptions, for example, orders at all levels of the
supply chain are satisfied, regardless of inventory con-
straints, and the supply chain system is regarded as a simple
linear system model. It leads to the inconsistency between
the research results and the actual situation and fails to
reveal the nonlinear phenomena except the bullwhip effect.
2erefore, more and more research studies have been
conducted to construct nonlinear system models to study
the supply chain. Mosekilde and Laugesen [14] established a
nonlinear inventory model under the nonnegative con-
straint of order quantity and found chaos in the system.
Wang et al. [15] studied the stability of a constrained
production and inventory system with a forbidden returns
constraint. 2e results show that accurate lead time infor-
mation is the key to eliminating inventory drift and insta-
bility, and ordering strategies must be reasonably designed
according to actual lead times to avoid these fluctuations and
differences. Garcia et al. [16] designed a supply chain
switching control system to improve the stability of the
supply chain through internal mode control technology.
Wang et al. [17] assumed that the system input was a certain
step demand model and return was forbidden, obtaining the
stability, period, quasiperiod, and chaotic boundary of the
system by solving the system characteristic values. Ma and Si
[18] investigated the influence of delay and weight on the
complex dynamic characteristics of the system. Si and Ma
[19] established a triopoly output game model with multiple
delays in the competition of green products. By analyzing the
existence of equilibrium points and local asymptotic sta-
bility, the influence of parameters on system stability and
complexity is studied. Zhan et al. [20] established the model
of VMI-APIOBPCS in apparel supply chain and used the
Routh–Hurwitz stability criterion to analyze the stability. Jin
and Song [21] established a nonlinear system model to study
the effects of two strategies of the nonlinear supply chain
with and without a shortage on the dynamic behavior of the
remanufacturing supply chain system. Lin and Naim [22]
developed a hybrid ATO system dynamics model based on
the well-established inventory and order based production
control systems and analytically studied the impact of
nonlinearities on its dynamic performance. Xu and Lee [23]
presented A multiechelon supply chain system having
parametric perturbations and disturbances to demonstrate
chaotic nonlinear dynamical behaviors.

In the existing research on the complex dynamic be-
havior of the supply chain, many scholars used hypotheses to
simplify the research objects and used the linear model to
analyze the bullwhip effect in the supply chain. At the same
time, many scholars consider practical factors such as
prohibiting returns and limited supply capacity, con-
structing nonlinear dynamic models, and studying the
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impact of different demand scenarios, production models,
and decision parameters on the stability of the supply chain,
which has achieved rich results.

2e analysis found that most studies can be divided into
the category of local decision-making perspectives. How-
ever, in the existing research, no research mentions the
decision-making perspective, nor does it study and analyze
the complex behavior of the supply chain under different
decision-making perspectives. In this paper, the idea of a
decision perspective is introduced. Based on the local de-
cision perspective and the global decision perspective, the
difference equations and simulation models of the system
are established, respectively, and the simulation experiments
are carried out to compare and analyze the complex dynamic
behavior of the supply chain inventory system from different
perspectives. At the same time, the effect of safety stock
parameters on the complex dynamic behavior of the supply
chain is analyzed.

3. Supply Chain System Dynamic Model

3.1. SystemDescription. 2e supply chain is based on a third-
party logistics management inventory model (TMI) and
includes a supplier, a retailer, and a third-party logistics
service provider (3PLP). 2e operation process of the supply
chain is shown in Figure 1. 2e inventory system of the
supply chain includes three nodes: the production ware-
house, the distribution center, and the retailer. 2e supplier
purchases or produces its own raw materials and produces
the raw materials as finished products. 2e retailer buys
finished products from the supplier and sells them to end
consumers. 2e supplier performs production according to
the replenishment order issued by the warehouse to the
production system. 2e warehouse is adjacent to the pro-
duction workshop, and the finished products can be quickly
delivered to the warehouse. Suppose the transportation cycle
is 0. In order to immediately respond to the retailer’s or-
dering needs, build a distribution center near the retailer,
assuming that the transportation cycle from the distribution
center to the retailer is 0. 2e inventory information of each
node is transmitted to the decision system in real-time. 2e
decision-making system will provide decision-making ser-
vices for each node. When the inventory is lower than the
safety stock, it will send a replenishment notification to the
node, and then each node will send an order notification to
the superior node. For the decision-making system, it can
make decisions based on two decision-making perspectives.
One is based on the perspective of local decision making,
taking the production system and the warehouse-distribu-
tion system as a whole. 2e other is based on the perspective
of global decision making, taking the entire supply chain as a
whole. 2e local decision-making perspective does not in-
clude the retailer, regardless of the difference in the status of
the node inventory goods and the goods in transit.

3.2. Model Parameters and Variables. To facilitate model
description, the following relevant notations of model
variables and parameters are introduced (Table 1).

3.3. Systematic Difference Equations

3.3.1. Demand Forecast. For the superior node of the supply
chain, the demand forecast is based on the actual demand of
terminal consumers. 2is forecasting method can reduce the
amplification effect of orders in the supply chain, which is
more reasonable than the demand forecasting based on the
orders of subordinate nodes. 2e simple exponential
smoothing method is often used in demand forecasting and
has achieved good results. 2erefore, this paper uses this
method to forecast the demand.2e prediction expression is
shown in equation (1). In this study, two kinds of customer
demand are considered, including random demand obeying
normal distribution and random demand obeying uniform
distribution. Assume that the mean of two kinds of customer
demand is μ.

F(t) � θF(t − 1) +(1 − θ)D(t), (1)

where θ is the exponential smoothing constant. Existing
studies have shown that 0≤ θ< 2 is required for stability of
the forecasting system. In the paper, let θ � 0.5.

3.3.2. Production Strategy. 2e study uses automated
pipeline, inventory, and order based production control
system (APIOBPCS), a commonly used method of pro-
duction control. 2e specific meaning of APIOBPCS is
that the order quantity (or production plan) is equal to the
sum of the predicted demand quantity, the adjustment
quantity to the actual inventory level, and the adjustment
quantity to the inventory in transit (or work-in-process
(WIP) inventory). Most of the existing literature on the
complex behavior of the supply chain has adopted this
strategy [9, 24].

Based on the local decision perspective of the supply
chain, the actual inventory of the warehouse-distribution
system is considered as the supplier’s finished product in-
ventory. 2e production strategy is expressed as follows:

O1(t) � max 0, F(t) + αS I
0
1 − I1(t)􏼐 􏼑 + αSL Y

0
− Y(t)􏼐 􏼑􏼐 􏼑.

(2)

Based on the global decision perspective of the supply
chain, the actual inventory of the entire supply chain is
considered as the supplier’s finished product inventory. 2e
production strategy is expressed as follows:

O2(t) � max 0, F(t) + αS I
0
2 − I2(t)􏼐 􏼑 + αSL Y

0
− Y(t)􏼐 􏼑􏼐 􏼑.

(3)

3.3.3. Inventory Strategy. 2e supplier, the retailer, and the
distribution center adopt periodic inventory strategy. 2e
strategy is to replenish at regular intervals, each time to the
target inventory level.

From the local decision perspective, the initial inventory
B1(t) and the end-of-cycle inventory I1(t) of the warehouse-
distribution system are expressed as follows:
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Figure 1: 2e TMI-SC operation flowchart.

Table 1: Model variables and parameters.

Notation Description

Variables

D(t) 2e actual demand of consumers in period t
F(t) 2e forecast demand in period t
Ir(t) Retailer’s initial inventory in period t
Br(t) Retailer’s end-of-cycle inventory in period t
Rr(t) Retailer’s arrivals in period t
Sr(t) Retailer’s sales in period t
Or(t) Retailer’s order quantity in period t
Sd(t) Distribution center’s shipments in period t
Id(t) Distribution center’s initial inventory in period t
Bd(t) Distribution center’s end-of-cycle inventory in period t
Rd(t) Distribution center arrivals in period t
Wd(t) 2e in-transit inventory of the distribution center in period t
Od(t) 2e replenishment volume of the distribution center in period t
Sw(t) Warehouse shipments in period t
Iw(t) Warehouse’s initial inventory in period t
Bw(t) Warehouse’s end-of-cycle inventory in period t
Rw(t) Warehouse arrivals in period t

Ii(t)
2e initial inventory of system from the perspective of decision making in period t. When i � 1, it is local decision

perspective. When i � 2, it is global decision perspective.
B(t) 2e end-of-cycle inventory of system in period t

Oi(t)
2e replenishment of the system of system from the perspective of decision making in period t. When i � 1, it is local

decision perspective. When i � 2, it is global decision perspective.
Y(t) Supplier’s WIP inventory in period t

Parameters

Y0 2e expected WIP inventory level of the supplier
αS 2e adjustment coefficient of inventory
αSL 2e adjustment coefficient of WIP inventory
TP Transport lead time
TC Production lead time
Gr Safety inventory coefficient of the retailer
Gd Safety inventory coefficient of the distribution center

Gi

Safety inventory coefficient of the system from the perspective of decision making. When i � 1, it is local decision
perspective. When i � 2, it is global decision perspective.

I0r Retailer’s expected inventory level
I0d Distribution center’s expected inventory level

Ii
0 2e expected inventory level of system from the perspective of decision making. When i � 1, it is local decision

perspective. When i � 2, it is global decision perspective.
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B1(t) � B1(t − 1) − Sd(t − 1) + Rw(t),

I1(t) � I1(t − 1) + Rw(t) − Sd(t),

I1(t) � B1(t) − Sd(t),

I
0
1 � μG1.

(4)

From the global decision perspective, the inventory of
the entire supply chain system is expressed as follows:

B2(t) � B2(t − 1) − Sr(t − 1) + Rw(t),

I2(t) � I2(t − 1) + Rw(t) − Sr(t),

I2(t) � B2(t) − Sr(t),

I
0
2 � μG2.

(5)

Due to the production delay, the following formula can
be obtained:

Rw(t) � O t − TC − 1( 􏼁. (6)

2e expression of the supplier’s WIP inventory is given
by

Y(t) � Y(t − 1) + O(t − 1) − Rw(t). (7)

2e expression of the replenishment quantity of the
distribution center is shown in the following equation:

Od(t) � max 0, F(t) + αS I
0
d − Id(t)􏼐 􏼑 + αSL W

0
− Wd(t)􏼐 􏼑􏼐 􏼑.

(8)

2e expression of the distribution center’s inventory is
given by equations (9)–(11). Moreover, the distribution
center’s expected inventory level is obtained by equation
(12).

Bd(t) � Bd(t − 1) − Sd(t − 1) + Rd(t), (9)

Id(t) � Id(t − 1) + Rd(t) − Sd(t), (10)

Id(t) � Bd(t) − Sd(t), (11)

I
0
d � μGd. (12)

Among them, the distribution center’s shipments in
period t are given by

Sd(t) �
Id(t − 1) + Rd(t), Id(t − 1) + Rd(t)≤ Or(t − 1),

Or(t − 1), Id(t − 1) + Rd(t)> Or(t − 1).
􏼨

(13)

Due to transportation delay, the following formula can
be obtained:

Rd(t) � Od t − TP − 1( 􏼁. (14)

2e retailer is prohibited from returning goods, so the
retailer’s order quantity is expressed as follows:

Or(t) � max 0, I
0
r − Ir(t)􏼐 􏼑. (15)

2e expression of the retailer’s inventory is given by

Br(t) � Br(t − 1) − Sr(t − 1) + Rr(t),

Ir(t) � Ir(t − 1) + Rr(t) − Sr(t),

Ir(t) � Br(t) − Sr(t),

I
0
r(t) � μGr.

(16)

2e replenishment of the retailer can be quickly obtained
from the distribution center. 2at is, the replenishment
notice is issued at the end of the period, and the replen-
ishment can be received at the beginning of the next period.
So, the following expression can be obtained:

Rr(t) � min Or(t − 1), Id(t − 1) + Rd(t)( 􏼁. (17)

At the same time, the retailer’s sales and consumer
demand satisfied the following formula:

Sr(t) �
Ir(t − 1) + Rr(t), Ir(t − 1) + Rr(t)≤ D(t),

D(t), Id(t − 1) + Rd(t)> D(t).
􏼨

(18)

4. The Block Diagram from
Different Perspectives

Using the discrete system Z-transform theory, according to
the difference equation in the previous chapter, the block
diagram of each supply chain node can be drawn.

4.1. 2e Block Diagram of the Supply Chain

4.1.1. 2e Block Diagram of Supply Chain Nodes from the
Local Decision Perspective. For retailers, the information
input of the inventory system is customer demand, and the
information output is order quantity. For the distribution
center, the information input of the inventory system is
customer demand, retailer’s order quantity, and inventory in
transit, and the output information is the replenishment
quantity. 2e block diagrams of the retailer and the dis-
tribution center are shown in Figures 2 and 3, respectively.

Based on the perspective of local decisionmaking, for the
production-warehouse system, the production-warehouse
system and the distribution center are regarded as a com-
bined system, and retailer inventory is not taken into ac-
count. 2e block diagram of the production-warehouse
system is shown in Figure 4.

4.1.2. 2e Block Diagram of Supply Chain Nodes from the
Global Decision Perspective. Based on the perspective of
global decision-making, for retailers and distribution centers,
the operation process, information input, and output of the
inventory system are unchanged, so the block diagram is the
same as that based on the local decision-making perspective.
For the production-inventory system, the inventory of the
entire supply chain including the retailer’s inventory is used as
the basis for decision making, and the input information is
customer demand, distribution center replenishment volume,
distribution center inventory, and retailer inventory. 2e block
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diagram of production and warehouse systems from the global
decision perspective is shown in Figure 5.

4.2. 2e Block Diagram of the Whole Supply Chain.
According to themodels established above based on the local
perspective and the global perspective, combined with the
unitary transformation theory, the block diagrams of the
system under the two models are shown in Figures 6 and 7.

5. System Simulation and Data Analysis

2e largest Lyapunov exponent (LLE) is a standard to
measure the stability of the system. Many studies use it to
judge the stability of the system. When LLE is less than or

equal to 0, it indicates that the system is in a stable, periodic,
or quasiperiodic state. It is an ideal state for ordering de-
cisions.When LLE is greater than 0, the system is in a chaotic
or quasichaotic state. In the paper, the Wolf reconstruction
method is used to calculate the largest Lyapunov exponent
(LLE) value of each node or combined system to judge the
stability of the system. 2e calculation principle of this
method is as follows.

Suppose the time series is X1, X2, . . . , Xn. Reconstruct
the phase space and get
Y(ti) � (X(ti), X(ti+T), . . . , X(ti+(m−1)T)) (i � 1, 2, . . . , N),
where m is the embedding dimension and T is the time delay.
Take the initial pointY(t0), and let its distance from the nearest
neighboring point Y0(t0) be L0. 2e time evolution of the two
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points is traced until ti, two points Y(t1) and Y0(t1) are
obtained, and the distance L1

0 between them exceeds a specified
value ε. Keep Y(t1) and find a point Y1(t1) near it. 2e

distance L1 between the two points should be less than ε, and
the angle formed should be as small as possible. 2e evolution
process is continued until Y(t) reaches the end N of the time
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Figure 5: 2e block diagram of production and warehouse systems from the global decision perspective.
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Figure 6: 2e block diagrams of the system under the global decision perspective.
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series. 2e total number of iterations is M. 2e formula for
calculating the LLE is as follows:

λ �
1

tM − t0
􏽘

M

i�0
ln

L
1
i

Li

. (19)

5.1. Decision Parameters. Based on the constructed model
and block diagrams, we plan to further study the impact of
different ordering strategies and inventory management
strategies on the nonlinear supply chain system with re-
strictions on the prohibition of returns and limited inven-
tory from different perspectives. Previous studies have
shown that relevant order decision parameters such as in-
ventory adjustment parameters have an important impact
on the dynamic characteristics of the system.

We designed a simulation experiment under various order
parameter combinations in the decision space [αS, αSL], and
[Gd, Gi]. 2en, using the simulation data, the LLE is calculated
to analyze the impact of the different demand types, inventory
adjustment coefficients, and safety inventory coefficients on
system stability from different perspectives.

In general, the decision makers pay more attention to
inventory adjustment, and the adjustment parameters are

less than 1; this article assumes the value range of these two
inventory adjustment coefficients is 0< αSL ≤ αS to
0.02≤ αS ≤ 1. Both αS and αSL have changed by 0.02 steps
[2, 25]. And three combinations of safety stock factors
[Gd, Gi] are selected, including [1, 4], [2, 5], and [3, 6].

5.2. Simulation Analysis. According to the selection of the
aforementioned decision parameter range, use Matlab to
carry on the simulation experiment. Suppose that in this
research supply chain, the production delay is 1, the
transportation delay is 2, and the safety inventory coefficient
of the retailer is 2.2at is, TP � 2, TC � 1, and Gr � 2. At the
same time, in order to ensure the effectiveness of the sim-
ulation experiment, the setting of the simulation period
should not be too short. In this paper, the simulation period
is set to 1000. If the period is calculated in days, then it is the
amount of data for nearly 3 years. In the actual problem, to
analyze the company’s inventory system, the three-year
operation data are completely sufficient.

2is article combines practical issues and considers two
demand scenarios including the random demand that meets
the normal distribution and the random demand that meets
the uniform distribution. Both of these demand scenarios
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Figure 7: 2e block diagrams of the system under the local decision perspective.
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are more commonly used in real-world problems. 2e latter
are more stringent and have higher requirements for supply
chain response.

Firstly, based on a global perspective, under the scenario
of random demand obeying normal distribution, we use the
model shown in Figure 6 for simulation, calculate the index
of each node of the supply chain according to the obtained
data, and obtain the contour map under different combi-
nations of safety stock factors, as shown in Figures 8–10.

By comparing and analyzing Figures 8–10, we can find
that, based on the global decision perspective, with the
increase of the safety stock factor, the decision area in the
stable state for each node of the supply chain and the system
under the perspective gradually increases. As can be seen
from Figure 8, based on the global perspective for decision
making, when Gd � 1 and G1 � 4, under the scenario of
random demand obeying normal distribution, the stability
of the supply chain nodes under different inventory ad-
justment parameters is very different. Figure 8(a) shows that
the LLE value of the retailer’s inventory system is less than 0
in the entire decision area of adjustment coefficients.
However, Figure 8(b) shows that the value of the LLE is
greater than zero in most decision areas. Figure 8(c) shows
that in most areas, the LLE value of the whole supply chain
inventory is less than zero. 2at is to say, based on the
perspective of global decision making, when Gd � 1 and
G1 � 4, under the scenario of random demand obeying
normal distribution, the retailer inventory system can be in a
stable state regardless of any value of adjustment parameters.
Under the same conditions, the distribution center inven-
tory system is in an unstable state in most decision-making
areas. For the entire supply chain from the perspective of
decision making, if the state of the item is not considered,
only the quantity is considered, and the system is stable in
most decision-making areas. 2e research on the system
from the perspective of decision making is based on the total
quantity of goods in the system, and the nodes where the
goods are located in the system may be different, and the
state may be different. So, there will be a phenomenon where
the system is in a stable state and the nodes in it are in an
unstable state. As can be seen from Figures 9 and 10, re-
gardless of whether Gd � 2 and G1 � 5 or Gd � 3 and G1 � 6,
for retailers, the values of LLE are all less than zero in the
entire decision area.

In addition, based on the global decision perspective,
under the setting of different demand scenarios and the
combination of safety stock parameters, the LLE of each
node and combination system under 1275 adjustment pa-
rameter combinations was calculated separately. It is found
that, based on the perspective of global decision making,
there are 374 adjustment parameter combinations that can
keep each node and combination system of the supply chain
in a stable state in the case of positive distribution demand
and Gd � 1 and G1 � 4. For the other two settings of safety
stock parameters, there are 746 and 1109 different adjust-
ment parameter decision schemes that can make the supply
chain local and overall stable. At the same time, based on the
calculation of the LLE for the entire decision area, we can
find the adjustment coefficients that can keep the inventory

system of each node of the supply chain and the entire
supply chain inventory system in a stable state and the
average value is the smallest. When Gd � 1 and G1 � 4, αS �

0.38 and αSL � 0.3. When Gd � 2 and G1 � 5, αS � 0.24 and
αSL � 0.14. When Gd � 3 and G1 � 6, αS � 0.16 and
αSL � 0.14. Under different combinations of safety stock
parameters, the number and optimal combination of ad-
justment parameter combinations that can keep the supply
chain nodes and the combined system in a stable state are
shown in Table 2.

2en, we change the demand scenario and perform
simulation under the scenario of random demand obeying
uniform distribution to obtain the contour map of each node
under different combinations of safety stock coefficients, as
shown in Figures 11–13.

As can be seen from Figures 11–13, under the scenario of
random demand obeying uniform distribution, as the safety
stock factor increases, the area where the LLE value of the
entire supply chain inventory system and the inventory
system of each node of the supply chain is less than zero
gradually increases. 2e order of the area with the LLE value
less than zero is the retailer, the whole supply chain, and the
distribution center under certain safety stock factors. And it
can be seen that for the distribution center and the entire
supply chain, the area where the LLE value is less than zero
exhibits a band distribution, which is immediately below
αSL � αS. For retailer, in almost all regions, the LLE value is
less than zero. However, the part with the smallest LLE value
exhibits a dot-like and linear distribution, as shown in the
dark parts of Figures 11(a), 12(a), and 13(a).

In addition, among the 1,275 kinds of adjustment parameter
combinations, for different safety stock parameters, the number
of parameter combinations that can keep each node of the
supply chain and the combined system in a stable state is 146,
334, and 532 in order. Among these parameters, when Gd � 1
and G1 � 4, if αS � 0.18 and αSL � 0.06, the LLE value of the
inventory system of each node of the supply chain and the entire
supply chain inventory system are less than zero and the average
value is the smallest. Similarly, when Gd � 2 and G1 � 5, αS �

0.32 and αSL � 0.26. When Gd � 3 and G1 � 6, αS � 0.24 and
αSL � 0.22. Under different combinations of safety stock pa-
rameters, the number and optimal combination of adjustment
parameter combinations that can keep the supply chain nodes
and the combined system in a stable state are shown in Table 3.

Based on the local perspective, under the scenario of
random demand obeying normal distribution, using the model
shown in Figure 7 for simulation, we can get the contour map
of each supply chain node under different combinations of
safety stock factors, as shown in Figures 14–16.

It can be seen from Figures 14–16 that based on a local
perspective, under the scenario of random demand obeying
normal distribution, as the safety stock factors increases, the
area where the LLE value of the inventory system of the
production-warehouse-distribution system and some node
of the supply chain is less than zero gradually increases.
Under certain safety stock factors, the regional distribution
of the LLE value does not show obvious characteristics.
Especially when Gd � 2 and G2 � 5 and Gd � 3 and G2 � 6,
the distribution of the LLE value in the decision area shows
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Figure 9: LLE diagram of supply chain nodes under the scenario of random demand obeying normal distribution from the global
perspective when Gd � 2 and G2 � 5. (a) 2e retailer’s LLE chart. (b) 2e LLE chart of the distribution center. (c) 2e LLE chart of the
combined system from the decision perspective.
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Figure 10: LLE diagram of supply chain nodes under the scenario of random demand obeying normal distribution from the global
perspective when Gd � 3 and G2 � 6. (a) 2e retailer’s LLE chart. (b) 2e LLE chart of the distribution center. (c) 2e LLE chart of the
combined system from the decision perspective.

Table 2: 2e number and optimal combination of reasonable adjustment parameter combinations under the scenario of random demand
obeying normal distribution from the global decision perspective.

Combination of safety
stock parameters [Gd, Gi]

Number of reasonable adjustment
parameter combinations Optimal combination [αS, αSL]

[1, 4] 374 [0.38, 0.3]
[2, 5] 746 [0.24, 0.14]
[3, 6] 1109 [0.16, 0.14]
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Figure 8: LLE diagram of supply chain nodes under the scenario of random demand obeying normal distribution from the global decision
perspective when Gd � 1 and G2 � 4. (a) 2e retailer’s LLE chart. (b) 2e LLE chart of the distribution center. (c) 2e LLE chart of the
combined system from the decision perspective.
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an irregular state. From Figure 14, it can be seen that from
the local perspective, when Gd � 1 and G2 � 4, for the re-
tailer and the production-warehouse systems, the distri-
bution of the larger part of the LLE value is relatively similar.
2e LLE value of distribution center is greater than zero in
most decision-making areas. However, as can be seen from
Figure 15, when Gd � 2 and G2 � 5, there are decision
parameters that can keep the retailer’s inventory system in
an unstable state.

In addition, based on the local decision perspective,
under the scenario of random demand obeying normal
distribution, for different safety stock parameters, there are
different numbers of reasonable decision-making schemes in
the entire decision-making area. When Gd � 1 and G2 � 4,
there are 380 reasonable adjustment parameter combina-
tions. When Gd � 2 and G2 � 5, there are 775 reasonable
adjustment parameter combinations. When Gd � 3 and
G2 � 6, there are 1156 reasonable adjustment parameter
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Figure 11: LLE diagram of supply chain nodes under the scenario of random demand obeying uniform distribution from the global
perspective when Gd � 1 and G2 � 4. (a) 2e retailer’s LLE chart. (b) 2e LLE chart of the distribution center. (c) 2e LLE chart of the
combined system from the decision perspective.

–12
–11
–10
–9
–8
–7
–6
–5
–4
–3
–2

0.6 0.8 10.40.2
αS

0.2

0.4

0.6

0.8

1

α SL

(a)

0.2

0.4

0.6

0.8

1

α SL

0.60.40.2 10.8
αS

–0.02

–0.015

–0.01

–0.005

0

0.005

0.01

0.015

0.02

0.025

(b)

0.2

0.4

0.6

0.8

1

α SL

–0.02

–0.01

0

0.01

0.2 0.6 0.8 10.4
αS

(c)

Figure 12: LLE diagram of supply chain nodes under the scenario of random demand obeying uniform distribution from the global
perspective when Gd � 2 and G2 � 5. (a) 2e retailer’s LLE chart. (b) 2e LLE chart of the distribution center. (c) 2e LLE chart of the
combined system from the decision perspective.
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Figure 13: LLE diagram of supply chain nodes under the scenario of random demand obeying uniform distribution from the global
perspective when Gd � 3 and G2 � 6. (a) 2e retailer’s LLE chart. (b) 2e LLE chart of the distribution center. (c) 2e LLE chart of the
combined system from the decision perspective.
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Table 3: 2e number and optimal combination of reasonable adjustment parameter combinations under the scenario of random demand
obeying uniform distribution from the global perspective.

Combination of safety
stock parameters [Gd, Gi]

Number of reasonable adjustment
parameter combinations Optimal combination [αS, αSL]

[1, 4] 146 [0.18, 0.06]
[2, 5] 334 [0.32, 0.26]
[3, 6] 532 [0.24, 0.22]
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Figure 14: LLE diagram of supply chain nodes under the scenario of random demand obeying normal distribution from local perspective
when Gd � 1 and G1 � 4. (a)2e retailer’s LLE chart. (b)2e LLE chart of the distribution center. (c)2e LLE chart of the combined system
from the decision perspective.
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Figure 16: LLE diagram of supply chain nodes under the scenario of random demand obeying normal distribution from local perspective
when Gd � 3 and G1 � 6. (a)2e retailer’s LLE chart. (b)2e LLE chart of the distribution center. (c)2e LLE chart of the combined system
from the decision perspective.
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Figure 15: LLE diagram of supply chain nodes under the scenario of random demand obeying normal distribution from local perspective
when Gd � 2 and G1 � 5. (a)2e retailer’s LLE chart. (b)2e LLE chart of the distribution center. (c)2e LLE chart of the combined system
from the decision perspective.
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combinations. Among these parameter combinations that
can stabilize the system, when Gd � 1 and G2 � 4, if αS �

0.38 and αSL � 0.3, the LLE value of the inventory system of
the production-warehouse-distribution system and each
node of the supply chain are less than zero and the average
value is the smallest. Similarly, whenGd � 2 andG2 � 5, αS �

0.18 and αSL � 0.06. When Gd � 3 and G2 � 6, αS � 0.16 and
αSL � 0.14. Under different combinations of safety stock
parameters, the number and optimal combination of ad-
justment parameter combinations that can keep the supply
chain nodes and the combined system in a stable state are
shown in Table 4.

2en, based on the local perspective, we change the
demand scenario and perform simulation under the scenario
of random demand obeying uniform distribution to obtain
the contour map of each node under different combinations
of safety stock coefficients, as shown in Figures 17–19.

As can be seen from Figures 17–19, under the scenario of
random demand obeying uniform distribution, as the safety
stock factor increases, the area where the LLE value of the
inventory system of the production-warehouse-distribution
system and each node of the supply chain is less than zero
gradually increases. From Figure 17, it can be seen that for
retailers, when Gd � 1 and G2 � 4, the smallest part of the LLE
value presents a point-line distribution. In the same decision
area, no other nodes present this feature. It can be seen from
Figures 18 and 19 that as the safety stock parameter increases,
for retailers, the area distribution of the smaller part of the LLE
value shifts to the lower left in the entire decision area.

In addition, for the three combinations of safety stock
parameters considered, there are 174, 361, and 542 rea-
sonable adjustment parameter combinations that can keep
the supply chain nodes and combination system in a stable
state. In these reasonable decisions, whenGd � 1 andG2 � 4,
if αS � 0.2 and αSL � 0.12, the LLE value of the inventory
system of the production-warehouse-distribution system
and each node of the supply chain are less than zero and the
average value is the smallest. Similarly, when Gd � 2 and
G1 � 5, αS � 0.16 and αSL � 0.14. When Gd � 3 and G1 � 6,
αS � 0.24 and αSL � 0.22. Under different combinations of
safety stock parameters, the number and optimal combi-
nation of adjustment parameter combinations that can keep
the supply chain nodes and the combined system in a stable
state are shown in Table 5.

According to the above analysis, it can be found that, on
the whole, regardless of the local decision perspective or the
global decision perspective, as the safety stock factors in-
crease, the stability of each node of the supply chain
gradually increases, and the requirements for adjustment
parameters gradually decrease, that is, more adjusting pa-
rameters can keep the supply chain inventory system in a
stable state. Regardless of the safety stock factors and the
decision perspective, in the entire supply chain, the distri-
bution center has the highest requirements for adjustment
parameters, that is, the decision area of adjustment pa-
rameter where the distribution center is unstable is the
largest. At the same time, based on the perspective of global
decision making, a lower overall inventory of the supply
chain can also keep the nodes in the supply chain and the

system under the perspective of a stable state. At the same
time, an interesting phenomenon can be found. When only
considering the quantity of goods, when the system com-
posed of multiple nodes is in a stable state, the nodes in it
may be in an unstable state.2is is also amanifestation of the
complexity of the system’s dynamic behavior.

In order to more intuitively analyze the changes in in-
ventory and the impact of demand types, adjustment pa-
rameters, and safety stock factors on the ability of each node
of the supply chain and the system from different decision
perspectives, a reasonable combination of adjustment pa-
rameters is selected for simulation experiments under dif-
ferent demand types and safety stock factors. 2is
adjustment parameter combination can make the supply
chain node and system in a stable state, and its average value
is minimum.

In order to analyze the influence of different decision-
making perspectives on the complex behavior of the supply
chain, the inventory change chart of the nodes in the supply
chain and the system under the perspective from the local
perspective and the global perspective is drawn, as shown in
Figures 20–25.

It can be seen from Figure 20 that under the scenario of
random demand obeying normal distribution, when the
retailer’s inventory changes in a stable state, the perfor-
mance of the retailer’ inventory is basically the same under
different decision-making perspectives. Inventory quickly
increased from zero to safety stock level and then remained
stable at 160. 2is is a very good change feature, which
verifies the effectiveness of the simulation model. At the
same time, for different safety stock parameters, the re-
tailer’s stock changes are basically the same when they are
in a stable state. As shown in Figure 21, under the scenario
of random demand obeying uniform distribution, when it
is stable, the retailer’s inventory changes are basically the
same as in the scenario of random demand obeying normal
distribution. It shows that reasonable parameter settings
can keep the supply chain in a stable state when the demand
fluctuates greatly.

It can be seen from Figures 22 and 23 that under the
scenario of random demand obeying normal distribution,
when it is in a stable state, for the same safety stock factor,
whether it is based on a local decision perspective or a global
decision perspective, the distribution center inventory
changes are basically the same. When Gd � 1 and G2 � 4,
the distribution center inventory increases from zero to
about 160 and then fluctuates around 160.When Gd � 2 and
G2 � 5, the inventory of the distribution center increases

Table 4: 2e number and optimal combination of reasonable
adjustment parameter combinations under the scenario of random
demand obeying normal distribution from local perspective.

Combination of
safety stock
parameters [Gd, Gi]

Number of reasonable
adjustment parameter

combinations

Optimal
combination

[αS, αSL]

[1, 4] 380 [0.38, 0.3]
[2, 5] 775 [0.18, 0.06]
[3, 6] 1156 [0.16, 0.14]
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from zero to about 240 and then fluctuates around 240.
When Gd � 3 and G2 � 6, the distribution center inventory
increases from zero to about 320 and then fluctuates around
320. 2e fluctuation ranges under the three safety stock
factor combinations are basically the same. As shown in
Figure 23, under the scenario of random demand obeying
uniform distribution, when in a stable state, the fluctuation
range of the distribution center inventory change becomes
significantly larger. It is verified that demand changes can
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Figure 17: LLE diagram of supply chain nodes under the scenario of random demand obeying uniform distribution from local perspective
when Gd � 1 and G1 � 4. (a)2e retailer’s LLE chart. (b)2e LLE chart of the distribution center. (c)2e LLE chart of the combined system
from the decision perspective.
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Figure 19: LLE diagram of supply chain nodes under the scenario of random demand obeying uniform distribution from local perspective
when Gd � 3 and G1 � 6. (a)2e retailer’s LLE chart. (b)2e LLE chart of the distribution center. (c)2e LLE chart of the combined system
from the decision perspective.

Table 5: 2e number and optimal combination of reasonable
adjustment parameter combinations under the scenario of random
demand obeying uniform distribution from local perspective.

Combination of
safety stock
parameters [Gd, Gi]

Number of reasonable
adjustment parameter

combinations

Optimal
combination

[αS, αSL]

[1, 4] 174 [0.2, 0.12]
[2, 5] 361 [0.16, 0.14]
[3, 6] 542 [0.24, 0.22]
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Figure 18: LLE diagram of supply chain nodes under the scenario of random demand obeying uniform distribution from local perspective
when Gd � 2 and G1 � 5. (a)2e retailer’s LLE chart. (b)2e LLE chart of the distribution center. (c)2e LLE chart of the combined system
from the decision perspective.
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Figure 20: 2e initial inventory changes of the retailer in a stable state under the scenario of random demand obeying normal distribution
from different perspectives.
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Figure 21: 2e initial inventory changes of the retailer in a stable state under the scenario of random demand obeying uniform distribution
from different perspectives.
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Figure 23: 2e initial inventory changes of the distribution center in a stable state under the scenario of random demand obeying uniform
distribution from different perspectives.
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Figure 22: 2e initial inventory changes of the distribution center in a stable state under the scenario of random demand obeying normal
distribution from different perspectives.
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Figure 25: 2e initial inventory changes of the system from the perspective of decision under the scenario of random demand obeying
uniform distribution from different perspectives.
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Figure 24: 2e initial inventory changes of the system from the perspective of decision under the scenario of random demand obeying
normal distribution from different perspectives.
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Figure 27: 2e production fluctuation under the scenario of random demand obeying uniform distribution from different perspectives.
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Figure 26: 2e production fluctuation under the scenario of random demand obeying normal distribution from different perspectives.
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have an impact on the dynamic behavior of supply chain
systems. However, the inventory levels are basically equal in
the two demand scenarios.

For the combined system under the decision perspective,
regardless of the state of the goods, as can be seen from
Figures 24 and 25, under specific demand scenarios and
safety stock parameters, the combined system under dif-
ferent decision perspectives has a very similar inventory
change at steady state. At the same time, it was found that for
the distribution center and the combined system, when it is
in a stable state, the inventory level in the scenario of random
demand obeying normal distribution is lower than the in-
ventory level in the scenario of random demand obeying
uniform distribution. As can be seen from Figure 24, under
the scenario of random demand obeying normal distribu-
tion, when the safety stock parameter combination is [1, 4],
based on the global decision perspective, when the supply
chain system is in a stable state, the overall stock level is
about 460. Under the same demand scenario and safety stock
parameter combination, based on the perspective of local
decisionmaking, the combined system inventory level under
the perspective is 460. In other words, the entire supply
chain system does not include the retailer, and the inventory
of other parts has reached 460. Similarly, when the safety
stock parameter combination is [2, 5], the overall stock level
is about 520 based on the global decision perspective. Based
on the local decision perspective, the combined system
inventory level under the perspective is about 505. When the
safety stock parameter combination is [3, 6], the overall
stock level is about 627 based on the global decision per-
spective. Based on the local decision perspective, the com-
bined system inventory level under the perspective is about
567.

Under the scenario of random demand obeying uniform
distribution, when the supply chain system is in a stable
state, Figure 25 shows the inventory level and fluctuation
status under different safety stock parameter combinations
and decision perspectives. When the safety stock parameter
combination is [1, 4], the overall stock level is about 425
based on the global decision perspective. Based on the local
decision-making perspective, the combined system inven-
tory level under the perspective is 446. When the safety stock
parameter combination is [2, 5], the overall stock level is
about 547 based on the global decision perspective. Based on
the local decision perspective, the combined system in-
ventory level under the perspective is about 505. When the
safety stock parameter combination is [3, 6], based on the
global decision perspective, the overall stock level is about
632. Based on the local decision perspective, the inventory
level of the combined system under the perspective is about
631. 2erefore, for any combination of safety inventory
parameters and any demand scenarios, based on a global
decision perspective, choosing a reasonable adjustment
parameter scheme can reduce the overall inventory level of
the supply chain. 2e overall inventory volatility has in-
creased slightly, but it does not affect the stability of the
overall inventory.

In the supply chain, the stability of production has a
great influence on the cost, and the production system

produces according to the order quantity of the warehouse.
In order to analyze the fluctuation of production in a stable
state more intuitively, we draw the production fluctuation
chart, as shown in Figures 26 and 27.

As can be seen from Figures 26 and 27, under steady
conditions, the volatility of production appears to be stable
at the desired level of demand, with slight fluctuations.
Compared with demand, it is found that the volatility of
production is basically the same as the fluctuation of de-
mand, and the fluctuation of production is smaller than that
of demand. It shows that the system can smoothen the
change of demand very well.

6. Conclusion

Based on the needs of practical problems, this paper in-
troduces the global decision-making thoughts in order to
adapt to the trend of supply chain integration and puts
forward different decision-making perspectives of supply
chain inventory systemmanagement. Based on the proposed
local decision perspective and global decision perspective,
the complex dynamic behavior of the supply chain inventory
system is studied. At the same time, the influence of the
safety inventory setting on the dynamic behavior of the
supply chain inventory system is studied.

2e study found that, based on the perspective of global
decision making, choosing a reasonable adjustment pa-
rameter scheme can reduce the overall inventory level of the
supply chain. 2e overall inventory volatility has increased
slightly, but it does not affect the stability of the overall
inventory. When the safety stock parameter combination is
[1, 4], based on the global decision perspective, the overall
stock level is about 425. Based on the local decision-making
perspective, the combined system inventory level under the
perspective is 446. Based on a global decision perspective, the
overall inventory can be reduced by about 180. When the
safety stock parameter combination is [2, 5], the overall
stock can be reduced by about 118. When the safety stock
parameter combination is [3, 6], the overall stock can be
reduced by about 159. At the same time, based on different
decision-making perspectives, the status distribution maps
of each node or combination system under different demand
scenarios and the most reasonable parameter settings are
obtained.

On the whole, regardless of the local decision perspective
or the global decision perspective, as the safety stock pa-
rameters increase, the stability of each node of the supply
chain gradually increases, and the requirements for ad-
justment parameters gradually decrease. 2e analysis also
found that each node has a different sensitivity to the ad-
justment parameters. Changes in adjustment parameters
have little effect on the retailer. Under different scenarios
and decision parameters, the retailer is in a stable state in
almost the entire decision area. However, changes in ad-
justment parameters have a significant impact on the dis-
tribution center. In addition, the study also found that,
whether based on a local decision perspective or a global
decision perspective, the overall inventory level is in a stable
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state and maybe in an unstable state for internal nodes. 2is
has important guiding significance for actual operation.

Although this paper selects three safety stock parameter
combinations for research and obtains some effective con-
clusions, it does not study the entire safety stock parameter
decision area. In the follow-up, we hope that interested
scholars will conduct further research on the impact
mechanism of safety stock parameters on the complex dy-
namic behavior of the supply chain.
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Although the control of multistability has already been reported, the one with preselection of the desired attractor is still
uncovered in systems with more than two coexisting attractors. ,is work reports the control of coexisting attractors with
preselection of the survived attractors in paradigmatic Chua’s system with smooth cubic nonlinearity. Techniques of linear
augmentation combined to system invariant parameters like equilibrium points are used to choose the desired surviving attractors
among the coexisting ones. Nonlinear dynamical tools including bifurcation diagrams, standard Lyapunov exponents, phase
portraits, and cross section of initial conditions are exploited to reveal the selection scenarios of the survived attractor in the
multistability control process of Chua’s system. ,e main crisis towards annihilation of multistability in Chua’s system when
varying the coupling strength is interior crisis and border collision. ,eoretical and numerical results obtained are further
validated with PSpice analysis.

1. Introduction

In the study of nonlinear dynamic systems, the simultaneous
existence of attractors (finite or infinite), also known as
multistability [1–13], extreme multistability [14–16], or
megastability [17], is now in the forefront. Recall that the
famous Chua’s circuit is among the widely studied electronic
circuits capable to display chaos [18]. When Professor Leon
Chua introduced that circuit, it was intentionally built in
such a way that three equilibria of the model were unstable.
Based on the local stability of each point, the circuit was able
to exhibit a double-scroll chaotic attractor [18]. During the

investigation of this oscillator, the main challenge was to
design the nonlinear part called Chua’s diode. Using op-
amps [19], diodes [20], transistors [21], current feedback op-
amps [22], and inductor free CNN (cellular neural network)
cells [23], many experimental results were reported on the
realization of Chua’s diode. Finally, by exploiting two-stage
op-amp-based negative impedance converters (NICs) in
parallel, a usual implementation of Chua’s diode was pro-
posed and accepted as a standard [19]. Also in [24], Bao and
collaborators, during their investigation, found that, with an
unstable zero saddle point and two symmetric stable non-
zero node-foci, improved Chua’s circuit can also generate a
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self-excited chaotic attractor. Very recently, exponential
sampled-data control for T-S fuzzy systems with application
to Chua’s circuit has been explored [25]. Of particular in-
terest, Chua had also presented the ability to display the
coexistence of multiple attractors for the same set of system
parameters but using different initial conditions [24]. ,is
coexistence of attractors is sometimes undesirable and needs
to be avoided; hence, the investigation was carried out in this
work.

Remark that these coexisting solutions in a given non-
linear dynamics system can be self-excited or hidden. Recall
that an attractor is called a self-excited attractor if its basin of
attraction intersects with any open neighborhood of an
unstable fixed point. Otherwise, it is called a hidden attractor
[26]. On the contrary, hidden solutions have attraction basin
which does not overlap with the neighborhood of an
equilibrium point, and thus may be difficult to find nu-
merically [11, 27–34]. However, the localization of the latter
was made possible using an algorithm proposed by Leonov
et al. [35]. Such system types (with hidden attractors) can be
potentially dangerous and very unpredictable (unrelated to
butterfly effect). ,e multistability of the nonlinear system
means that the system is able to exhibit different types of
coexisting stable states and different forms of attraction
basin for an identical set of system parameters but using
different initial conditions [2–4, 8, 14, 36, 37]. Since the
coexistence of attractors has been commonly used in image
processing [16, 38], it becomes very urgent to control this
phenomenon when, sometimes, periodic and chaotic orbits
exist simultaneously. Up to date, the prominent methods
reported in the relevant literature which enable to turn a
multistable system to a monostable system are the noise
selection [39], pseudo-forcing [12], short pulses [40], har-
monic perturbation [41], intermittent feedback [42], tem-
poral feedback [43], and linear augmentation [2, 3, 44–50].
Except for the temporal feedback and linear augmentation
methods, in almost all other existing methods, the control is
applied to one parameter of the system to remove on the
attractors for all initial points. ,us, external control such as
the temporal feedback or linear augmentation method
would be preferred. Recall that, in many bistable dynamical
systems, only one of the stable states is desired to track
certain system performance. In this regard, Sharma et al.
[47] presented control of some bistable systems with an-
nihilation and selection of attractors using the linear aug-
mentation scheme.,is work has been carried out using two
well-known paradigmatic systems that are the autonomous
Chua oscillator and a neuronal system. Furthermore, the
linear augmentation method has been successfully used in
[46] to control the bistability property exhibited by the
Lorenz–Rössler system. In 2015, the same research team [45]
exploited the linear control scheme to stabilize a system to a
fixed-point state even when the original system did not have
any fixed point. Recently, in [43], the authors proposed the
method of temporal feedback in autonomous as well as
nonautonomous systems to target the coexisting attractor.
,e experimental realization of the introduced method was
also addressed. However, all these results were based only on
bistable systems.

Very recently, Fonzin Fozin et al. [2] investigated the
annihilation of the coexistence of multiple stable states in a
self-excited memristive hyperchaotic oscillator based on the
linear augmentation method. Exploiting nonlinear analysis
tools such as bifurcation diagrams, Lyapunov exponent
spectrum, phase portraits, basins of attraction, and relative
basin sizes, the authors show that when increasing the
control parameter, the bifurcation routes followed by each of
the three coexisting attractors were progressively merged in
order to give a unique diagram. ,e results of the authors
show that, for higher values of the control parameter, the
multistable system with up to three coexisting attractors
becomes a monostable one with only one surviving attractor.
,e same result was found when the same research team was
addressing the control of multistability (involving three
disconnected attractors) in simplified canonical Chua’s
oscillator with smooth hyperbolic sine nonlinearity using the
linear augmentation scheme [3, 44]. Much recently, Tabe-
koueng Njitacke et al. [50] investigated the coexistence of
firing patterns and their control in two neurons coupled
through an asymmetric electrical synapse. ,eir numerical
results show the effectiveness of the control strategy through
annihilation of the periodic coexisting firing pattern. ,ey
found that, for higher values of the coupling strength, only a
chaotic firing pattern survives. From these results, it can be
seen that intensive works have been done on the multi-
stability control of the nonlinear oscillators based on the
linear augmentation method. Remark that all these suc-
cessful results on the control of multistability were per-
formed so far only on systems with unique equilibrium point
[2, 3, 44, 50]. ,is unique equilibrium point excludes the
possibility to target/select a desired attractor during the
multistability control process. Henceforth, we propose in
this work the following:

(a) To exploit the linear augmentation method to track
and select one attractor among the four coexisting
attractors using each of the three equilibrium points
of the model

(b) To design an analog electronic circuit of controlled
Chua’s oscillator to further support the numerical
investigation

,e layout of the paper is as follows: in Section 2, we
recall some basic properties of Chua’s oscillator with a
smooth nonlinearity. In Section 3, numerical tracking of the
coexisting attractors using usual nonlinear dynamics tools is
addressed. In Section 4, the linear augmentation scheme is
exploited to track each of the three coexisting attractors
which survive around each of the three equilibriums points.
,e circuit realization of the investigated model is provided
in Section 5. In Section 6, some conclusions are summarized.

2. Description of Chua’s Oscillator with
Smooth Nonlinearity

Chua’s oscillator with smooth cubic nonlinearity in which
multistability is controlled in this work is given by di-
mensionless equation (1) as follows [5, 51]:
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dx

dt
� kα(y − x − f(x)),

dy

dt
� k(x − y + z),

dz

dt
� k(− βy − cz),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where the nonlinear function f(·) is defined as

f(x) � ax
3

+ bx. (2)

,e parameter values used in this work are the ones of
the model studied in [5] and are set as c � − 0.75087096,
a � − 0.0375582129, b � − 0.8415410391, and k � − 1 with β
and α being tunable. As it can be seen in equation (1), the
model remains identical under the substitution
(x, y, z)⇔(− x, − y, − z). ,e stable state generated by the
model will appear in symmetric pairs in (x, y, z) to re-es-
tablish the real symmetry of the model. If not, the stable
states produced will remain symmetric if the real symmetry
of the attractors has already been re-established. ,is ap-
proach has been widely exploited recently to find coexisting
attractors in symmetrical systems such as jerk [6, 8, 52–56],
hyperchaotic and chaotic Chua’s oscillators [3, 44, 57–59],
Hopfield neural networks [10, 36, 60, 61], and Duffing os-
cillator [9], just to name a few. In addition, it is easy to show
that the model processes three equilibrium points given by
the following expression: S0 � 0 0 0( 􏼁, and S1,2 �

( ± x1, ( ± xc/c + β), ((∓xβ)/(c + β))), in which x is given
by x �

��������������������
(1/a)((c/β + c) − 1 − b)

􏽰
.

3. Selection of Coexisting Attractors:
A Numerical Approach

3.1. Computational Method. In this section, we will use
traditional nonlinear analysis tools such as bifurcation di-
agrams, graph of maximum Lyapunov exponent, phase
portraits, two-parameter diagrams, standard Lyapunov
stability diagrams, and attraction basins to hunt down
windows in which controlled Chua’s oscillator with a
smooth nonlinearity exhibits either hysteretic dynamics of
parallel bifurcation branches. ,ese various tools are
computed using the Runge–Kutta formula in Turbo Pascal
software with variables and constants chosen in the extended
precision mode. In this contribution, we use a constant time
grid of Δt � 0.002, and investigations are carried out for a
very long time. In this way, the transient behavior is sup-
pressed. Some bifurcation diagrams in this work are com-
puted either by increasing the control parameter stating
from different initial conditions or using an upward and
backward continuation technique. ,ese methods are the
best for finding windows in which the model displays the
coexistence of bifurcations. Graph of Lyapunov exponent is
calculated using the algorithm proposed by Wolf et al. [62].
Two-parameter diagrams and standard Lyapunov stability
diagrams are computed by varying simultaneously two
system parameters with making up of suitable colorful

diagrams. ,ese previous diagrams, as well as the basins of
attraction, are obtained by numerically computing the
maximum Lyapunov exponent on a grid of 350× 350 values
of the chosen space parameters.

3.2. Parallel Bifurcation Branches and Coexistence of Multiple
Attractors. In the study of nonlinear dynamical systems, the
coexistence of attractors for the same set of system pa-
rameters but using different initial conditions is known as
multistability. Two curious and striking manifestations of
such behavior are extreme or hidden extreme multistability
[63, 64] and megastability phenomenon [17]. ,is phe-
nomenon of multistability has already been found in several
nonlinear systems including the memristor-based oscillator
[8, 16, 57], jerk/hyperjerk systems [55, 56, 65], and hyper-
chaotic Chua’s oscillator [3, 4], just to name a few.

Figure 1 represents a bifurcation obtained when varying
the control parameter in the range 51≤ β≤ 54.5. Two sets of
data with their corresponding graph of maximum Lyapunov
exponent are superimposed. A large window of coexisting
bifurcations which are related with parallel bifurcation
branches is presented. As a result, this superposition of the
bifurcations is the coexistence of multiple attractors for the
same sets of system parameters. For example, when β � 53.6,
Chua’s circuit displays the coexistence of a symmetric pair of
period-4 limit cycles (black and blue) and a symmetric pair
of chaotic attractors (green and red), using different initial
conditions, as depicted on the three-dimensional (3D)
projection of the attractors in Figure 2(a). ,e set of initial
conditions which enable to obtain each of the previous
attractors is provided in Figure 2(b).

For this same value of the control parameter, the
equilibrium points of the oscillator and their stability are
checked as follows: S0 � 0 0 0( 􏼁 with eigenvalues given by
λ1 � 31.0920 and λ2,3 � − 0.1366 ± 7.2349i and
S1,2 � (±2.1441,∓0.0305,∓2.1746) with eigenvalues given
by λ1 � 22.6638 and λ2,3 � − 0.2219 + 7.1926i. Since the ei-
genvalues of the investigated model around the fixed points
are unstable for the set of the parameter used for the study
and its basin of attraction intersects with any open neigh-
borhood of an unstable fixed point, we conclude that the
coexisting attractors found are self-excited [26]. When
β � 53.8, Chua’s circuit displays the coexistence of a sym-
metric pair of period-2 limit cycles (black and blue) and a
symmetric pair of chaotic attractors (green and red), using
different initial conditions, as depicted on the three-di-
mensional (3D) projection of the attractors in Figure 3(a).
,e basin of attraction associated to each coexisting attractor
is provided in Figure 3(b). ,e equilibrium points of the
model as well as the eigenvalues for that discrete value of the
control parameter are given as S0 � 0 0 0( 􏼁 with eigen-
values given by λ1 � 31.0919 and λ2,3 � − 0.1366 ± 7.2485i

and S1,2 � (±2.1438,∓0.0303,∓2.1741) with eigenvalues
given by λ1 � 22.6662 and λ2,3 � − 0.2218 + 7.2061i, which
further supported the unstable nature of the equilibria. From
this attraction basin of Figures 2(b) and 3(b), it can be
observed that each attractor has its set of initial conditions
which intercepts with the one of its direct neighbor. For each
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basin of attraction, zones of unbounded motion are marked
with yellow color, whereas the pair of coexisting attractors is
painted in red and green, while the pair of periodic attractors
is painted in blue and black.

4. Control of Coexisting Attractors Using the
Linear Augmentation Method

4.1. Description of the Control Method. From the already
published works [45–49], the theory of the linear aug-
mentation control method consists of coupling the

nonlinear system displaying multistable behavior with a
linear system (V) as depicted by equation (3). Remark that
the choice of scalar control was guided by recent results of
control and synchronization on chaotic systems [66, 67].
Indeed, it has been demonstrated that control and syn-
chronization of the chaotic system using scalars offer great
flexibility than vectors. In fact, the drawback of using vector
than scalar for control or synchronization is that the full
states of the systems are involved in the process. When these
full states of the systems are used, the energy and resource
consumption are high.
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Figure 1: Bifurcation diagram (a) showing local maxima of coordinate x versus β and the corresponding graph (b) of the largest Lyapunov
exponent (λmax) plotted in the range 51≤ β≤ 54.5. Two sets of data are superimposed. ,e diagram in black is obtained when the control
parameter is decreased from 54.5 to 51 starting with initial conditions (1.2; 0; 0), while the one in magenta is obtained when decreasing the
control parameter starting from the initial conditions (1.52; 0; 0) with α � 16.6.
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Figure 2: ,ree-dimensional projections of the coexisting attractors in the (x(0), x, y) plane. (a) Coexistence of four different attractors (a
pair of chaotic attractors and a pair of period-4 limit cycles) for β � 53.6. (b) Cross sections of the basin of attraction for z(0) � 0,
corresponding to the asymmetric pair of period-4 cycles (black and blue) and the pair of chaotic attractors (red and green). Yellow regions
correspond to unbounded motion.
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_X � F(X) + δV,

_V � − ηV − δ(X − E).

⎧⎨

⎩ (3)

In this equation, _X � F(X) represents a standard form
of a nonlinear dynamical system, X is an m-dimensional
vector of the system variable, and F(X) is the vector field
on which it is associated. Parameter δ represents the
connection weight which enables to link the nonlinear
system and the linear one. Vector V stands for the dy-
namics of the linear system _V � − ηV, where η represents
its decay parameter. When the controller is off, i.e., δ � 0,
the linear system tends to zero with an exponential fol-
lowing a decay rate δ.

E represents another key parameter of controlled
Chua’s oscillator which will be used to track the wished
stable state. It is generally selected at the neighborhood of
the equilibria of the uncontrolled system [47]. ,ese stable
states, which can originate from unstable equilibria, are
checked by certain sets of invariants, i.e., coexisting
attractors and existing fixed points. ,e fixed points are
found either in the center of the coexisting attractors or
lying on the boundary separating the basins of attraction
of the stable state. ,en, by considering vector E identical
with one of the unstable fixed points, one can obtain the
death of some of the coexisting stable states through
merging crises when increasing coupling/connection
weight between the coupled oscillators. For superior
values of the connection weight, only one surviving
attractor is obtained which enables the system for chosen
parameter sets to turn from multistable to a monostable
one. ,e controlled scheme presented above is now used
for Chua’s oscillator. Coupling is applied along the x

variable with the coupling strength δ as depicted in the
following equation:

dx

dt
� kα y − x − ax

3
− bx􏼐 􏼑 + δv,

dy

dt
� k(x − y + z),

dz

dt
� k(− βy − cz),

dv

dt
� − ηv − δ(x − ε).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

,e equilibrium points of controlled Chua’s oscillator
are obtained by solving the following equation:

kα y − x − ax
3

− bx􏼐 􏼑 + δv � 0,

k(x − y + z) � 0,

k(− βy − cz) � 0,

− ηv − δ(x − ε) � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

After some algebraic manipulations, we obtain the ex-
pression of the equilibrium points as follows:

E1,2,3 � x,
xc

c + β
,

− xβ
c + β

, −
δ
η

(x − ε)􏼠 􏼡, (6)

where x is obtained by solving the following equation:

x
3

+
x

a
1 + b +

δ2

kαn
−

c

c + β
􏼠 􏼡 −

δ2ε
akαn

� 0. (7)

Considering p � (1/a)(1 + b + (δ2/kαn) − (c/c + β))

and q � − (δ2ε/akαn), equation (7) becomes

x
3

+ xp + q � 0. (8)

0.8

0.5

0

–0.5

–0.8
2

1
0

–1
–2

y

x

–1.6
–0.8

0.8
1.6

x (0)

(a)

y (
0)

1

0.5

0

–0.5

–1
–5 0 5

x (0)

(b)

Figure 3: ,ree-dimensional projections of the coexisting attractors in the (x(0), x, y) plane. (a) Coexistence of four different attractors (a
pair of chaotic attractors and a pair of period-2 limit cycles) for β � 53.8. (b) Cross sections of the basin of attraction for z(0) � 0,
corresponding to the asymmetric pair of period-2 cycles (black and blue) and the pair of chaotic attractors (red and green). Yellow regions
correspond to unbounded motion.
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,e roots of (8) can be derived using the Carda-
no–Tartaglia method. According to the Cardano discrimi-
nant [68, 69], if Δ> 0, there is a real root and two complex
roots. Since the fixed point cannot be a complex number,
one equilibrium point exists.

x0 �
− 1 + i

�
3

√

2
×

��������

−
q

2
+

��
Δ

√
3

􏽲

+
− 1 − i

�
3

√

2
×

��������

−
q

2
−

��
Δ

√
3

􏽲

,

(9)

x1 �

��������

−
q

2
+

��
Δ

√
3

􏽲

+

��������

−
q

2
−

��
Δ

√
3

􏽲

, (10)

x2 �
− 1 − i

�
3

√

2
×

��������

−
q

2
+

��
Δ

√
3

􏽲

+
− 1 + i

�
3

√

2
×

��������

−
q

2
−

��
Δ

√
3

􏽲

,

(11)

where Δ � (q/2)2 + (p/3)3.
If Δ � 0, equation (8) would have two real roots. Finally,

if Δ< 0, there are three real roots in equation (8), which
manifests that controlled Chua’s oscillator has three
equilibrium points and can be obtained from equations
(9)–(11). ,e rest of the circuit parameters are the same as
those used in Figure 3. ,e stability of controlled Chua’s
oscillator is provided in Table 1. As it can be seen from
Table 1, for some discrete values of the controller coeffi-
cient, controlled Chua’s oscillator, under the consideration,
conserves its stability, hence its ability to generate self-
excited attractors because of the unstable nature of its
equilibria. It is found that when the coupling strength is
null, there are three values of x, among which the origin S0
and a symmetric pair S1,2. When the coupling strength is
increased, S1 remains uniform, while S0 and S2 are attracted
by decreasing (resp. increasing) the value of the equilib-
rium points S0 and S2.

4.2. Control of Multistability in Chua’s Oscillator. An illus-
trative example of the linear control method is shown in
Figure 4 using the two-parameter diagram and corre-
sponding standard Lyapunov stability diagram in the pa-
rameter space (δ, β). ,e integration method adopted here is
identical with the one used in the previous section. Cyan
color is tied to periodic oscillations, while magenta color is
tied with chaotic motions. Good accordance is observed
between two-parameter diagrams (left) and corresponding
standard Lyapunov stability diagrams (right).,e diagrams
are obtained by sweeping upward (Figure 4(a)) and
downward (Figure 4(b)) both control parameters. From a
general point of view, it can be seen that, on both diagrams,
four regions, namely, (R1), (R2), (R3), and (R4), can be
observed. Regions (R1), (R2), and (R3) correspond to the
set of parameters for which the model displays hysteretic
dynamics which gives birth to the phenomenon of coex-
istence of multiple stable states, whereas (R4) represents
the set of parameters in which the model displays
monostable dynamics, in other words, absence of multi-
stability. ,ese diagrams are very important since they
enable the engineer to have a general overview on the

dynamics of the multistable oscillator when the bifurcation
parameter and the controller coupling strength are both
varying.

Since coupling is introduced along the “x” variable, we
fix ε � 2.1438 which is one among the two nontrivial
equilibrium points. When increasing the control param-
eter δ in the range [0⟶ 0.5] as it can be seen in
Figure 5(a), four sets of data are superimposed in the
bifurcation diagram. Each set of data (marked by red,
black, blue, and green colors) corresponds to the route
followed by each attractor during the control mechanism.
As depicted in Figure 5(a), three crises enable all the
plotted routes to merge along the one in black for higher
values of the coupling strength. In region (D1) of Figure 6
and for very small values of δ (i.e., δ ≈ 0.05), four attractors
coexist including two chaotic attractors (red color and
green color) with two periodic attractors (black color and
blue color).

At the upper boundary of (D1), the diagram in red
(chaotic one) undergoes a merging crisis (first crisis) and
blends with the diagram in blue. In region (D2), because of
the previous merging crisis, there are only three distinct
diagrams that follow their bifurcation sequences (see region
(D2)). For a discrete value δ � 0.15, we have the coexistence
of three disconnected attractors, involving a period-2, pe-
riod-3, and period-4 limit cycle as presented in Figure 6(a).
,e demarcation region of each coexisting attractor in re-
gion (D2) is provided in Figure 6(b). As it can be observed
from Figure 6(b), the basin in blue has already absorbed the
one in red, while the basin in black has started to absorb the
one in green. At the upper boundary of (D2), a crisis (second
crisis) enables the diagram in green displaying period-3 limit
cycle to merge with the diagram in black. In region (D3), we
observe the superposition of two diagrams including a pe-
riodic and chaotic one.

In this region for a discrete value δ � 0.3, Chua’s os-
cillator displays coexistence of a period-2 limit cycle with an
asymmetric chaotic attractor (see Figure 7(a)). ,e basin of
attraction associated with each coexisting attractor is
computed and plotted in Figure 7(b). From this basin of
attraction, it can be observed that the basin in black has
already absorbed the one in green. At the upper boundary of
(D3), a crisis (third crisis) enables the diagram in blue
displaying chaotic behavior to merge with the diagram in
black. In region (D4), when the critical value δ ≈ 0.34, all the
diagrams have already merged with the black one, and the
control goal is achieved as depicted in region (D4) when “ε”
is fixed as ε � 2.1438. We can say that the route followed by
the black diagram (see Figure 7(b)) is a magnetized route
that attracts towards it all the other routes as the control
parameter is increased.

As it can be observed in Figure 5(b), only two crises
enable the control of the multistability around the origin
(ε � 0). At the upper boundary of (D1), the first crisis
enables the diagram in green to merge with the diagram in
black. At the same time, the diagram in red merges with the
one in blue. As presented in (D2), only a symmetrical pair of
attractors coexists. At the upper boundary of (D2), the two
coexisting diagrams undergo a symmetric restoring crisis
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Figure 4: Two-parameter diagram (left) and the corresponding standard Lyapunov stability diagram (right) in the (δ, β) plane when
increasing (a) and decreasing (b) both control parameters. Both diagrams show the effectiveness of the controller in the coexisting region for
ε � 2.1438. Other parameters are those of Figure 1.

Table 1: Equilibrium points of controlled Chua’s oscillator, the corresponding eigenvalues, and their stability for some discrete values of the
control parameter.

Control parameter Equilibria Eigenvalues and stability

δ � 0
S0 � (0, 0, 0, 0) 31.0919, − 0.1366 ± 7.2485i, and − 1.0 (unstable saddle focus (USF))

S1 � (2.1438, − 0.0303, − 2.1741, 0) 22.6662, − 0.2218 ± 7.2061i, and − 1.0 (unstable saddle focus (USF))
S2 � (− 2.1438, +0.0303, +2.1741, 0) 22.6662, − 0.2218 ± 7.2061i, and − 1.0 (unstable saddle focus (USF))

δ � 0.2
S1 � (2.1438, − 0.0303, − 2.1741, 0) 22.6645, − 0.2218 ± 7.2062i, and − 0.9983 (unstable saddle focus (USF))

S0 � (− 0.0304, 4.3e − 04, 0.0308, 0.4348) 31.089, − 0.1366 ± 7.2485i, and − 0.9987 (unstable saddle focus (USF))
S2 � (− 2.1134, 0.0299, 2.1433, 0.8514) 22.9005, − 0.2188 ± 7.2081i, and − 0.9983 (unstable saddle focus (USF))

δ � 0.4
S1 � (2.1438, − 0.0303, − 2.1741, 0) 22.6596, − 0.2220 ± 7.2064i, and − 0.9930 (unstable saddle focus (USF))

S0 � (− 0.1273 , 0.0018, 0.1291, 0.9084) 31.0571, − 0.1369 ± 7.2485i, and − 0.9949 (unstable saddle focus (USF))
S2 � (− 2.0165, 0.0285, 2.0450, 1.6641) 23.6260, − 0.2098 ± 7.2136i, and − 0.9933(unstable saddle focus (USF))
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Figure 5: Bifurcation diagrams showing local maxima of the state variable x versus the control strength δ in the range 0 0.5􏼂 􏼃 of the
controlled system (see equation (4)) showing multistability control with selection of attractors for different values of ε. Four separated
diagrams are superimposed when increasing the coupling strength δ for four different initial conditions. Red is obtained with
(− 0.56; 0; 0; 0), the one in black is obtained for (1.6; 0; 0; 0), blue is obtained with (− 1.6; 0; 0; 0), and the one in green is obtained for
(0.56; 0; 0; 0). (a) For ε � 2.1438, (b) for ε � 0, and (c) for ε � − 2.1438. For these diagrams, η � 1 and β � 53.8. Other parameters are those of
Figure 1.
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Figure 6: (a) Coexistence of three asymmetric periodic attractors showing multistability phenomenon with the basin of attraction (b) in the
plane (x(0), y(0)) when δ � 0.15.
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and give birth to a unique diagram as depicted in region
(D3).

Now, when tacking the other nontrivial equilibrium
point (ε � − 2.1438), the surviving attractor, when moni-
toring the control parameter, is obtained after three crises.
,ese crises enable all the diagrams to finally merge with the
diagram in blue. ,e details of this control process through
merging of the diagrams are not provided for the sake of
brevity. However, in Figure 8, we have provided some basins
of attraction to illustrate merging of the basins of attraction.
In Figure 8(a), the black diagram of Figure 5(c) has already
merged with the green one. For that same value, the diagram
in blue starts to absorb the one in red. In Figure 8(b), the

diagram in blue has already completely merged with the red
one, and only two coexisting attractors remain.

For δ � 0.5, we have provided the unique attractors
which have survived through the control scheme exhibited
by Figures 5(a)–5(c) in Figure 9(a) and their corresponding
basin of attraction in Figure 9(b). It is found that when the
control, the techniques described in Figure 5(a), is exploited,
the attractor in black is selected. When the control, the
techniques described in Figure 5(c), is used, the attractor in
blue is selected, and the control method displays by Figure
5(b) is used, the attractor in magenta is selected. ,ese
results clearly demonstrate that it is possible to target
attractors based on steady points of the uncoupled system.

0.8

0.5

0

–0.5

–0.8

y

2
1

0
–1

–2

x 1.44
0

–1.44 x (0)

(a)

1

0.5

0

–0.5

–1

y (
0)

–5 0 5
x (0)

(b)

Figure 7: (a) Coexistence of an asymmetric chaotic attractor with a asymmetric periodic-2 limit cycle showing multistability phenomenon
with the basin of attraction (b) in the plane (x(0), y(0)) when δ � 0.3.
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Figure 8: Basin of attractions in the plane (x(0), y(0)) for δ � 0.15 (resp. δ � 0.3) showingmagnetization toward a unique stable state when
the coupling strength is increased according to Figure 5(c).
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Also, it is worth to emphasize here that the result of the
multistability control of up to four coexisting attractors in
Chua’s system addressed in this work has never been pre-
sented before and thus merit to be shared.

5. The Circuit Implementation

In this part of our work, the aim is to be able to set up an
analog circuit that will allow us to make a comparison
between the theoretical/numerical results obtained previ-
ously and the experimental results [8, 10, 27, 61, 70, 71]. ,e
circuit diagram that allows us to perform various simula-
tions in PSpice software is presented in Figure 10.,e circuit
of controlled Chua’s oscillator is designed using four ca-
pacitors C1, C2, C3, and C4, several resistors, eight op-amp
TL082CD, a constant DC source, and two multipliers, which
can be implemented practically using AD633JN versions of
the AD633 four-quadrant voltage multiplier chips used to
implement the nonlinear terms of our model.,e signal (W)
at the output is related to those at inputs X1(+), X2(− ),
Y1(+), Y2(− ), and Z(W � ((X1 − X2)(Y1 − Y2)/10) + Z).
,e circuit equation using Kirchhoff’s electrical circuit laws
can be obtained as

C1
dX

dt
�

1
Rα

− Y +
1

Ra

X
3

+
1

Rb+1
X􏼠 􏼡 +

1
Rδ

V,

C2
dY

dt
�
1
R

(− X + Y − Z),

C3
dZ

dt
�

1
Rβ

Y +
1

Rc

Z􏼠 􏼡,

C4
dV

dt
� −

1
Rη

V −
1

Rδ
X − Vε( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Setting C1 � C2 � C3 � C4 � C � 5 nF, R � Ri � 100KΩ
except Rα, Rb+1, Rc, Rβ, Ra, and Rδ and adopting the rescale
of time t � τRC and variables, X � 1V × x, Y � 1V × y,
Z � 1V × z, and V � 1V × v, system (12) is the same with the
one given in equation (4) with the following expression of
parameters:

Rα �
R

α
� 6.024KΩ,

Rc �
R

c
� 133.178KΩ,

Rβ �
R

β
� 1.85KΩ,

Ra �
R

a
� 2662.533KΩ,

Rb+1 �
R

− b + 1
� 631.078KΩ,

Rη �
R

η
� 100KΩ,

Vε � 1V × ε,

Rδ �
R

δ
.

(13)

When the controller is OFF (Rδ⟶∞ or δ � 0), the
circuit implementation of controlled Chua’s oscillator dis-
plays the phenomenon of the coexistence of up to four
disconnected attractors as depicted in Figure 11. ,us, this
result enables to support the fact that the previous obtained
results on the coexistence of attractors in Chua’s oscillator
were not artifacts. When the controller is ON for
Rδ � 180KΩ, selection of the attractor in controlled Chua’s
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Figure 9: (a),ree-dimensional projections of the surviving stable states in the plane (ε, x, y) for the typical value of the coupling δ � 0.5 for three
distinct values of the equilibriumpoints, namely, S0 and S1,2. (b) Cross sections of the basin of attraction for z(0) � 0, corresponding to the domain
of initial conditions which enable to obtain each attractor of Figure 9(a) in magenta color. Yellow regions correspond to unbounded motion.
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Figure 10: Schematic of Chua’s oscillator coupled with the linear dynamical system.
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Figure 11: Continued.
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Figure 11: Phase portraits showing the coexistence of four different attractors using PSpice simulation (a pair of periodic and a pair of
chaotic) for Rc � 133.178KΩ; initial conditions are (±4.3V, ±0.11V, 0V) for the chaotic pair and (±4.3V, ±0V, ±0V) for periodic
attractors.
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oscillator occurs. For example, when Rδ � 180KΩ and
Vε � 2.1438V, the attractor in Figure 12(a) is selected.When
Rδ � 180KΩ and Vε � − 2.1438V, the attractor in
Figure 12(b) is selected. Finally, when Rδ � 180KΩ and
Vε � 0V, the pair of the symmetric attractors of
Figures 12(a) and 12(b) merges and gives the double-band
chaotic attractor of Figure 12(c). Besides each selected
attractor, its corresponding frequency spectrum is provided
to further support the nature of the attractor.

6. Conclusion

,is paper focused on selection of the coexisting attractor in
multistable Chua’s oscillator with a smooth nonlinearity.
,e choice of paradigmatic Chua’s oscillator system within

this work is based on the fact that it possesses three equi-
librium points and thus opens the possibility to target or
select a specific coexisting attractor located around unstable
equilibria. Remark that the previous studies which focused
on the multistability control were done on the system having
three, four, and five coexisting attractors and only one
equilibrium point [2, 3, 44, 50]. Based on linear augmen-
tation, the unique equilibrium point excludes the possibility
to target a coexisting attractor. ,is is why based on usual
nonlinear techniques exploiting bifurcation diagrams,
standard Lyapunov exponents, phase portraits, and cross-
section basin of initial conditions, we show the possibility to
control multistable Chua’s oscillator (with three equilibria)
towards three monostable states depending on the choice of
the equilibrium point used during the linear augmentation.
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Figure 12: Phase portraits showing the unique surviving asymmetric and symmetric attractors for different values of the equilibrium points
of the uncontrolled oscillator using PSpice simulation: (a) for Vε � 2.1438V, (b) for Vε � − 2.1438V, and (c) for Vε � 0V. Parameter
Rδ � 180KΩ, with initial conditions (4.3V0V, 0V, 0V).
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,ese results clearly demonstrate that it is possible to select a
coexisting attractor based on steady points of the uncoupled
system such as predicted by Sharma et al. [47], where only
bistable systems were investigated.
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,is paper presents a brief review on the current applications and perspectives on the stability of complex dynamical systems, with
an emphasis on three main classes of systems such as delay-free systems, time-delay systems, and systems with uncertainties in its
parameters, which lead to some criteria with necessary and/or sufficient conditions to determine stability and/or stabilization in
the domains of frequency and time. Besides, criteria on robust stability and stability of nonlinear time-delay systems are presented,
including some numerical approaches.

1. Introduction

,e importance of complex dynamical systems has been
increasing dramatically since many real world applications
have adopted this behavior. Some of them have become
special areas of study such as smart grids [1–5], autonomous
vehicles [6–10], biological systems [11–17], distribution
networks [18–23], social interaction [24–27], communica-
tion systems [28–30], and animal monitoring [31–34],
among others.

Among the structural properties in complex systems,
controllability and observability are still discussion topics for
a wide variety of dynamical systems, from classic linear time-
invariant systems to other more complex families such as
infinite-dimensional systems, stochastic systems, and hybrid
systems, among others. ,is problem increases when they
are subject to a large amount of connections, in which a
classic handling is very difficult such as in complex networks
[35], where the connection properties, such as symmetry
[36, 37], and some computational tools have been developed
to determine these properties [38].

In the case of stability of complex systems, two important
aspects to consider are the time-delay between nodes (or the
possible presence of time delay in the internal dynamics) and
the robustness of the system (connection and internal) due
to parametric variations. On the one hand, the time-delay
induces infinite-dimensional dynamics whose equilibrium
stability is still an active topic of research for, both, stability
analysis itself and the use of the delay as a stabilizing element
[39]. On the other hand, the parameter variations in a system
demands a special stability treatment which has motivated
some significant results such as Kharitonov’s theorem [40]
or H∞ loop shaping in control design [41].

In this article, a stability review for a class of systems
subject to parameter variations and time delays is addressed.
,e review includes a definition of the dynamics of a family
of nonlinear time-delay systems, a brief historical outlook of
the stability study development, and then it gives some
approaches in time and frequency domain, as well as a
numerical analysis to provide the stability operating regions.
,en, the robustness aspect of stabilizing controls is dis-
cussed on the realm of Hurwitz polynomials families.
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Finally, some perspectives of applications demanding these
approaches are briefly provided.

2. Stability and Stabilization of Linear Systems

Characteristic root locations of linear systems or linear delay-
free systems are completely related to system stability. ,e
same criterion holds for linear time-delay system. Further-
more, many of the concepts and criteria for determining
stability on time-delay system (TDS) are extensions or ad-
aptations of the results initially proposed for linear delay-free
systems. Accordingly, it is considered relevant to briefly
address some classic stability criteria for this type of system.

In this section, some concepts and criteria regarding the
stability of linear systems are analyzed.,e section is divided
as follows. In Section 2.1, the concept of stability in linear
systems is addressed, Section 2.2 presents what can be the
objectives in the stabilization of linear systems, and, finally,
in Section 2.3, Kharitonov’s theorem is analyzed and some
families of polynomials to illustrate the importance of
studying the stability in systems with uncertainties in the
parameters are given.

2.1. Stability of Linear Systems. Lyapunov’s doctoral thesis
was perhaps the first systematic work on the subject of
stability [42], although the study of stability theories was
started byMaxwell, around 1868, in his work “on governors”
[43]. Lyapunov presented a general definition of stability
which referred to the stability of a solution of a differential
equation, not necessarily at the equilibrium point.

Before Lyapunov, there were works that tried to explain
the stability phenomenon in applications; it is worth
mentioning the works of Lagrange and Dirichlet [44–48].
After Lyapunov’s work, new concepts appeared such as
uniform, global, exponential, and quasi asymptotic stability,
among other types of them. In the following, some of the
best known criteria for determining the stability of linear
systems will be briefly mentioned.

A way to determine the asymptotic stability of contin-
uous time-invariant systems is characterized by its eigen-
values. If all eigenvalues lie into open left half plane C− , then
the system is stable. A polynomial p(s) that satisfies that all
its roots are in C− is called a Hurwitz polynomial or stable
polynomial. Routh and Hurwitz showed, in independent
works, that the stability of a matrix system could be de-
termined by means of the coefficients of its characteristic
polynomial. ,eir results are currently presented under the
so-called Routh–Hurwitz criterion (see [49, 50]) and can be
considered as a numerical criterion. In view of that, it is
reduced to the calculation of determinants. Another useful
approach used to test the stability is the Hermite–Biehler
criterion [51, 52], which can be considered as an algebraic
criterion, which expresses the stability in terms of even and
odds parts of the characteristic polynomial. A pair of
polynomials u and v are said to be a couple positive if the
principal coefficients of u and v have the same sign and the
roots μi of u and ]i of v alternate orderly on the real axis, i.e.,
are real, distinct, and negative and satisfy the interlacing

property. So, the Hermite–Biehler theorem states that a
polynomial p(x) that can be written in the form p(x) �

f(x2) + xg(x2) is stable if and only if f and g are a couple
positive (see [49, 50], for details). ,ere are others non-
common stability criteria; it is worth mentioning some of
them. ,e Lienard–Chipart conditions [53] reduce the
positivity evaluation of the main minors of the
Routh–Hurwitz criterion to half.

,e Leohnard–Mihailov criterion [54], which expresses
the stability in geometric terms, analyzes the argument of the
complex polynomial p(iw) associated with the characteristic
polynomial p of the system. Routh’s scheme gives rise to a
recursive algorithm for testing the stability called Hurwitz
stability test. Other approaches consider the Bezoutiant or
the Cauchy indexes to verify stability of polynomials; for
details, see [49, 50, 55].

Not less important are those systems, where uncertainty
is considered and incorporated through parameters. ,e
robust stability of parameter uncertainty systems and the
families of polynomials are associated with them, and it is
addressed in the subsequent sections.

2.2. StabilizingControls. In this section, the relation between
stabilizing feedback and some families of Hurwitz polyno-
mials is explained. Consider the controllable system:

_x(t) � Ax(t) + bu(t), (1)

x, b ∈ Rn and the controllable pair (A, b) is given in the
canonical form:

A �

0 1 0 · · · 0

0 0 1 · · · 0

⋮ ⋮ ⋮ · · · ⋮

0 0 0 · · · 1

− an − an− 1 − an− 2 · · · − a1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

b �

0

0

⋮

0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2)

Note that the open-loop polynomial is given by
p0(s) � sn + a1s

n− 1 + · · · + an.
Now, let us define the feedback control u as follows:

u(t) � − kc
T
x(t), (3)

where c ∈ Rn and k> 0. ,en, the closed-loop polynomial is
given by

pc(s) � s
n

+ a1s
n− 1

+ a2s
n− 2

+ · · · + an + k

· c1s
n− 1

+ c2s
n− 2

+ · · · + cn􏼐 􏼑.
(4)

Let us denote p∗c (s) � c1s
n− 1 + · · · + c2s

n− 2 + · · · + cn.
,en, pc(s) � p0(s) + kp∗c (s). Now, let us suppose that the
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pc
∗ (s) is a Hurwitz polynomial. When k⟶∞ a closed-

loop eigenvalue, say λ1 satisfies (λ1/k)⟶ − c1, the other
eigenvalues converge to the zeroes of p∗(s), that is, when
k≫ 1, feedback (3) is a stabilizing control (see [56, 57]).

Also note that when k≫ 1, then high control gains kcT

are induced in the feedback (3); hence, feedback (3) is a high-
gain feedback. ,ere are several studies to analyze the
properties of high-gain controls (see [56–64]).

Returning to the analysis of the closed-loop polynomial
pc(s) � p0(s) + kpc

∗ (s), it can be seen that pc(s) is not
necessarily Hurwitz for all k> 0, even when p0(s) is Hurwitz
and c ∈ Rn is chosen such that pc

∗ (s) is a Hurwitz polynomial
(see [65–67]).

,e last observation is illustrated with the following
example, which was presented in [67].

Consider the system:

_x(t) �

0 1 0

0 0 1

− 5 − 11 − 7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠x(t) +

0

0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +(− 65k, − 3k, − k)x(t).

(5)

Here, p0(s) � s3 + 7s2 + 11s + 5 � (s + 1)2(s + 5) and
p∗c (s) � s2 + 3s + 65, p0(s) and p∗c (s) are Hurwitz poly-
nomials. However, p0(s) + kp∗c (s) is not a Hurwitz poly-
nomial for k ∈ [3, 8]; hence, the importance of have methods
for choosing vectors c such that u(t) � − kcTx(t) is a sta-
bilizing control. Consequently, it is necessary to study the
Hurwitz stability of the ray of polynomials p0(s) + kp∗c (s)

with k> 0.
In the next section, a technique in terms of rays and

segments of polynomials is presented.

2.2.1. Relation between Stabilizing Controls and Rays and
Segments of Hurwitz Polynomials. As can be observed
above, the control u(t) � − kcTx(t) is a stabilizing feedback
if and only if the ray of polynomials p0(s) + kp∗c (s) is a ray
of Hurwitz polynomials. On the contrary, there is an obvious
relation between Hurwitz rays and Hurwitz segments of
polynomials: if p0(s) + kp∗c (s) is a Hurwitz polynomial,
then (1/1 + k)p0(s) + (k/1 + k)p ∗c (s) is a Hurwitz poly-
nomial, which implies that the Hurwitz stability of the ray
p0(s) + kp∗c (s) is equivalent to the Hurwitz stability of the
segment of polynomials [p0(s), p∗c (s)].

,e problem to establish conditions on the Hurwitz
polynomials f0(s) and f1(s) such that the segment of
polynomials determined by f(s, λ) � λf0(s) + (1 − λ)f1(s)

is Hurwitz stable for all λ ∈ [0, 1] has been studied with
different approaches (see [65–73]). ,e first reported work
about this subject is Bialas’s paper [68]. Bialas’s theorem says
that if f0(s) is a Hurwitz polynomial and
deg(f0)> deg(f1), then f(s, λ) is Hurwitz for all λ ∈ [0, 1]

if and only if the matrix H− 1(f0)H(f1) has no eigenvalues
in (− ∞, 0), where H(p) is the Hurwitz matrix of the
polynomial p (see [68, 74, 75]).

Other method which is known as the segment Lemma
was obtained by Chapellat and Bhattacharyya (see [76, 77]).
,e segment lemma is an approach that presents conditions

in the frequency domain. Based on the segment lemma, a
computational algorithm was developed in [71] for testing
the Hurwitz stability of segments of polynomials. On the
contrary, Bose developed a technique to check the stability of
segments of complex polynomials [78].

Based on Bose’s test, in [69], a test for checking the
stability of segment of complex polynomials was obtained.
Another computational method is presented in [79]. Suf-
ficient conditions to guarantee the Hurwitz stability of
segments were obtained by Rantzer (see [72, 80]). On the
contrary, an approach, where sufficient conditions in terms
of matrix inequalities for checking the Hurwitz stability of
segments of polynomials, has been presented in [65–67, 73].
,e explanation of the aforementioned approach is the
following: let f0(s) � sn + a1s

n− 1 + · · · + an be a Hurwitz
polynomial.

Consider the matrix E(n,n− 1) ∈Mn×n defined by

E(n,n− 1) �

a1 − 1 0 0 · · · 0 0

− a3 a2 − a1 1 · · · 0 0

a5 − a4 a3 − a2 · · · 0 0

⋮ ⋮ ⋮ ⋮ · · · ⋮ ⋮

0 0 0 0 · · · an− 1 − an− 2

0 0 0 0 · · · 0 an

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

and consider the matrix D(n,n− 1) ∈Mn×n defined by

D(n,n− 1) �

1 0 0 0 · · · 0 0

− a2 a1 − 1 0 · · · 0 0

a4 − a3 a2 − a1 · · · 0 0

⋮ ⋮ ⋮ ⋮ · · · ⋮ ⋮

0 0 0 0 · · · an− 2 − an− 3

0 0 0 0 · · · − an an− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Now, let f1(s) � c1s
n− 1 + c2s

n− 2 + · · · + cn be an arbi-
trary polynomial of degree n − 1 with positive coefficients. If
the vector (c1, c2, . . . , cn)T satisfies the system of linear in-
equalities E(n,n− 1)c≩ 0 or D(n,n− 1)c≩ 0, then λf0(s) + (1 −

λ)f1(s) is Hurwitz for every λ ∈ [0, 1] (here the symbol ≻ 0
(≺ 0) means that the components of a vector are nonnegative
(nonpositive) and the symbol ≩ means that all of the
components of a vector are nonnegative, but there is at least
one positive component).

Other interesting references about segments of Hurwitz
polynomials are the works [74, 76, 81–86]. Besides, in re-
lation with Hurwitz polynomials, it is worth to consulting
paper [87].

2.3. Robust Stability. ,e presence of several uncertain
parameters in description of a LTI system manifests itself as
variations in the coefficients of the characteristic polynomial.
,e determination of stability and stability margins under
parametric uncertainty, structure uncertainty itself included,
is the main purpose of the robust stability.
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Perhaps, the most famous result about the Hurwitz
polynomial families is the Kharitonov theorem, which is
related to the interval-type polynomials. ,is section pres-
ents this theorem and addresses some related results.

2.3.1. 5e Kharitonov 5eorem. ,e problem of stability
under large parameter uncertainty was strongly promoted
with the advent of a remarkable theorem due to the Russian
control theorist V. L. Kharitonov.

Consider the interval family of polynomial defined by

P(s) � α0 + α1s + α2s
2

+ · · · + αns
n
, (8)

where

α0 ∈ a0, b0􏼂 􏼃, α1 ∈ a1, b1􏼂 􏼃, . . . , αn ∈ an, bn􏼂 􏼃. (9)

Consider the following four elements of the family,
named the Kharitonov polynomials:

k
1
(s) � a0 + a1s + b2s

2
+ b3s

3
+ a4s

4
+ a5s

5
+ . . .􏼐 􏼑,

k
2
(s) � a0 + b1s + b2s

2
+ a3s

3
+ a4s

4
+ b5s

5
+ . . .􏼐 􏼑,

k
3
(s) � b0 + a1s + a2s

2
+ b3s

3
+ b4s

4
+ a5s

5
+ . . .􏼐 􏼑,

k
4
(s) � b0 + b1s + a2s

2
+ a3s

3
+ b4s

4
+ b5s

5
+ . . .􏼐 􏼑.

(10)

Kharitonov’s theorem establishes that every polynomial
in families (8) and (9) is Hurwitz if and only if the four
Kharitonov polynomials 10(10) are Hurwitz. ,is result has
been the motivation of different extensions, alternate proofs,
and applications to some classes of families of polynomials,
for instance,

(i) ,e problem to find conditions for family (8) to be
Hurwitz was planted by Faedo [88]

(ii) ,e original proof was given by Kharitonov in [89],
but different authors have presented other proofs
(see [70, 77, 90–93])

(iii) Kharitonov extended his result to the complex case
in 1979 [94]

(iv) Generalizations of Kharitonov’s theorem are pre-
sented in [56, 95, 96]

(v) Applications of Kharitonov’s theorem can be con-
sulted in [97]

(vi) Recent information about Interval Families and
Kharitonov’s theorem was published in papers
[65, 98, 99]

,e appearance of Kharitonov’s theorem led to a re-
surgence of interest in the study of robust stability under real
parametric uncertainty. In Section 2.2, some results related
to stability of certain families of polynomials such as the
segments and the rays of polynomials werementioned. Some
other families worth mentioning are the ball of stable
polynomials and polytope of polynomials. ,e ball of stable
polynomials is a way of characterizing the largest region
where the stability of a family of polynomials is preserved.
Soh et al. [100] in 1985 adopted a point of view opposite to
Kharitonov. Starting with an already stable polynomial p(s),

they gave a way to compute the radius of the largest stability
ball in the space of polynomial coefficients around p. ,e
estimation for the l2-norm stability ball in the space of
coefficients was calculated by Soh et al. For lp-norm, the
calculation was realized by Tsypkin and Polyak [101].

Otherwise, the main robust stability result related with
polytope of polynomials is the celebrated Edge theorem of
Bartlett et al. [102], which considers more general stability
regions, and it is not restricted to Hurwitz stability. ,ey
considered a family of polynomials whose coefficients vary
in an arbitrary polytope: p(s) � a1Q1(s) + a2Q2(s) + · · · +

amQm(s) on Rn+1, with its edges not necessarily parallel to
the coordinate axes as in Kharitonov’s problem.,ey proved
that the root space of the entire family is bounded by the root
loci of the exposed edges. In particular, the entire family is
stable in and only if all the edges are proved to be stable. ,e
key idea behind this result is that we can reduce a multi-
dimensional uncertainty problem into a finite number of
one-parameter problems whose solution requires less effort.

One of the most used tools in the analysis of robust
stability in families of polynomials, where the coefficients
depend continuously on a set of parameters, is the Boundary
Crossing theorem and its computational version the Zero
Exclusion principle. Consider a family of polynomials F(s, p)

of degree n, where the real parameter p ranges over a
connected setΩ. If it is known that onemember of the family
is stable, a useful technique of verifying robust stability of the
family is to ascertain that F(jω, p)≠ 0 for all p ∈ Ω,ω ∈ R.
,is can also be written as the zero exclusion condition
0 ∉ F(jω,Ω), for allω ∈ R.,is zero exclusion condition has
been exploited to derive various types of robust stability and
performance margins.

3. Stability and Stabilization of
Time-Delay Systems

,is section begins with a brief classification of nonlinear
TDS, followed by a recurring classification in which the
nonlinear TDS has a nominal part (linear part). ,e above
allows to show basic and pillar results existing in the lit-
erature for the stability and stabilization analysis of linear
TDS in two domains, frequency and temporal. Although it is
typically believed that an analysis in the frequency domain is
only limited to linear systems, recent results have shown that
a study on polytope of quasi-polynomials (generalized
characteristic quasi-polynomial) can determine stability
conditions for a class of nonlinear TDS. Furthermore, in the
time domain, the use of complete type Lyapunov–Krasovskii
functionals can provide necessary and sufficient stability
conditions for a class of linear TDS, while reduced type
functionals only give sufficient conditions.

,e understanding, analysis, and prediction of the dy-
namics of a system are topics that generate considerable
interest in the scientific community. When this system
presents nonlinearities and delays in its structure, the useful
information is even richer, since it is more consistent to the
dynamics observed in the systems/processes/prototypes of
the physical world. ,ese types of systems are known as
nonlinear time-delay systems or nonlinear systems with
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delays. Sometimes, nonlinear dynamics are phenomena that
often introduce unpredictable chaotic behaviors into a
system, whereas the delays are due to the fact that the rate of
variation in the system dynamics depends on past states,
which implies an analysis in an infinite-dimensional space,
and this is in mathematical terms. ,us, the dynamics
observed in communication networks [103–105], tele-
operation [106, 107], chemical processes [108], population
dynamics [109], biological phenomena [110], game theory
and economic applications [111, 112], unmanned aerial
vehicles [113], haptic interfaces [114], and robotic systems
[115, 116], among others, can be mathematically modeled
using nonlinear time-delay systems.

,e nonlinear TDS are usually represented by functional
differential equations (FDEs) also known as delay differ-
ential equations. Among functional differential equations,
one may distinguish some particular classes as retarded
functional differential equations (RFDEs) (or functional
differential equations of retarded type), neutral functional
differential equations (NFDEs) (or functional differential
equations of neutral type), distributed functional differential
equations (DFDEs) (or functional differential equations of
distributed type), and differential-difference equations
(DDEs). For illustrative purposes and to characterize the
research space of the FDEs, the form of RFDE with one delay
is presented below:

_x(t) � f t, xt( 􏼁,

x(θ) � ϕ(θ), θ ∈ [− τ, 0],
(11)

where f: R+ × C⟶ Rn is continuous and satisfies a local
Lipschitz condition regarding the second element of the
argument. For t≥ 0, denote by x(t, ϕ) ∈ Rn the system so-
lution with initial function (condition) ϕ ∈ C, and by
C ≔ C([− τ, 0], Rn) the Banach space with norm
‖ϕ‖τ ≔ maxθ∈[− τ,0]‖ϕ(θ)‖. Here, ‖ · ‖ denotes the Euclidean
norm. As a natural extension of the initial function, a so-
lution segment of x(t, ϕ) in a time interval [t − τ, t] is
denoted by

xt � x(t + θ) ∈ C, θ ∈ [− τ, 0], (12)

and called state of system (11). In turn, the above RFDE can
be classified as follows:

(i) Time-invariant RFDE if the first term of the argu-
ment is omitted:

_x(t) � f xt( 􏼁,

or _x(t) � f(x(t), x(t − τ)).
(13)

(ii) RFDE with multiple delay if 0 � τ0 < τ1 < · · · < τm �,
that is,

_x(t) � f t, x(t), x t − τ1( 􏼁, x t − τ2( 􏼁, . . . , x t − τm( 􏼁( 􏼁.

(14)

(iii) State-dependent delay RFDE if τ depends on state, xτ :

_x(t) � f(t, x(t), x(t − τ(x(t)))). (15)

(iv) Time-varying delay RFDE if the delay τ depends on t:

_x(t) � f(t, x(t), x(t − τ(t))). (16)

(v) RFDE with distributive delay, also known as DFDE,
if the delay is represented as a continuously distri-
bution and it is not instantaneous:

_x(t) � f t, x(t), 􏽚
∞

0
x(t − ϑ)dϑ􏼒 􏼓. (17)

(vi) RFDE with neutral delay or NFDE if the system also
depends on the time derivative of the state:

_x(t) � f t, xt, _xt( 􏼁,

or
d
dt

􏼠 􏼡 x(t) − g t, xt( 􏼁􏼂 􏼃 � f t, xt( 􏼁.

(18)

(vii) RFDE with discrete delay or DDE if τ is the interval
between the successive sample instants tk− 1 and tk,
τ � tk+1 − tk ≔ Δt, k � 1, 2, . . . , N and t � (N − 1).
Here, τ is called the sample period, and xk � x(t −

(N − k)τ) � x(t − (N − k)Δt) is an N-dimensional
discrete mapping, and using any integral scheme we
obtain

x(t + Δt) � x(t) + f x, xτ( 􏼁Δt, xτ � x(t − τ) or,

x1(k + 1) � xN(k) + f xN(k), x1(k)( 􏼁Δt,

x2(k + 1) � x1(k + 1) + f x1(k + 1), x2(k)( 􏼁Δt,

⋮

xN(k + 1) � xN− 1(k + 1) + f xN− 1(k + 1), xN(k)( 􏼁Δt.
(19)

,e above, as well as the possible combinations between
these, are just some types of TDS. Currently, there is a
broader classification of systems that are outside this basic
classification. In addition, each type of TDS needs more
appropriate concepts and descriptions for the research space
and existence and uniqueness of the solution, among others.
For further information, the reader is referred to the fol-
lowing authoritative references [52, 117–127]. Although
these themes are very interesting, the focus of this review is
on stability and stabilization. ,erefore, it will be the next
topic to discuss.

3.1. Stability ofTime-DelaySystems. Undoubtedly, one of the
most important research topics for the TDS research
community is the analysis of stability. In this context,
obtaining sufficient and/or necessary conditions to deter-
mine when the studied system remains stable or when it
gains and/or loses stability is an important topic for the
community. Furthermore, the knowledge of these condi-
tions allows to solve other problems associated with this
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topic such as analysis of robustness/adaptability/uncer-
tainty/perturbation, design of observers, synthesis and
tuning of controllers, determination of attraction regions
estimates, and study of chaotic/hyperchaotic behaviors, to
name just a few, [128–137].

Typically, the stability of the TDS is studied on two main
frameworks: frequency domain and time domain. ,e
fundamental results were proposed by Pontryagin
[138, 139], Wright [140, 141], Bellman [142, 143], and Cooke
[144] in the 1940s and 1950s. ,ese results are in the fre-
quency domain, which is based on a study of its corre-
sponding characteristic equation (exponential polynomial,
quasi-polynomial, and analytic function with transcendental
terms) to determine the location of its roots in the complex
plane or from the nontrivial solutions of a delayed Lyapunov
matrix function. Later, Razumikhin [145] and Krasovskii
[146] proposed to extend Lyapunov’s results to analyze
stability of TDS in the time domain.

,e stability of nonlinear TDS has been studied for
almost 80 years and most of the results proposed by the
research community are about nonlinear systems with a
specific structure. Among which, it is possible to apply
techniques that benefit/facilitate the analysis of the stability
of complex systems around an operating (equilibrium) point
or even in a sector of it. Since, these allow to rewrite exactly
or approximately a complex system in a more accessible
system to study. Techniques such as sector nonlinearity
[147], tangent linearization [148], feedback linearization
approach (Lie derivative) [149, 150], passification [151–154],
backstepping [155–158], immersion and invariance
[159–162], and differential flatness [163–165], among others.
On the contrary, in some cases, a linearization is proposed
around an operating point. While in other cases, the non-
linear systems is represented with a dominant part (domi-
nant linear part) plus nonlinear part is proposed. In this way,
in the nonlinear part, disturbances, nonmodel dynamics,
and parametric variations, among others, are usually in-
troduced. Below, it is a classification of the aforementioned
systems.

Let a nonlinear TDS be given in (11); in some cases, this
system can be represented as

_x(t) � L t, xτ( 􏼁 + g t, xt( 􏼁, (20)

where L: R+ × C⟶ Rn is a linear operator and g: R+ ×

C⟶ Rn is a nonlinear operator, both properly defined.
Typically, if g satisfies certain conditions (bounded, Lip-
schitz, and quasi-Lipschitz, among others), then g is con-
sidered as an uncertainty or/and perturbation of the
nonlinear TDS, so the stability analysis of (20) focuses on the
nominal system _x(t) � L(t, xτ). A classification of the
nominal part L(t, xτ) proposed here is as follows:

(i) L(t, xτ) � A0(t)x(t) + A1(t)x(t − τ) is a linear
time-variant (LTV) delay system of retarded type

(ii) L(t, xτ) � A0(θ(t))x(t) + A1(θ(t))x(t − τ) is a
linear parameter varying (LPV) system with time
delay, where θ are uncertain time-variant real pa-
rameters which satisfy θ ≤ θ(t) ≤ θ

(iii) L(t, xτ) � A0x(t) + A1x(t − τ(t)) is a linear system
with time-varying delay, where 0≤ τ(t)≤ τ and
_τ(t)≤ μ≤ , for all t≥ 0

(iv) L(t, xτ) � A0x(t) + A1x(t − τ) is a linear time-in-
variant (LTI) TDS of retarded type

(v) L(t,xτ) � A0x(t) + A1x(t − τ) + D0 _x(t) + D1 _x(t − τ)

is a linear NFDE (linear neutral time-delay systems
or linear time-delay system of type neutral), where
|Di|<1, for any matrix norm | · |

(vi) L(t, xτ) � A0x(t) + A1x(t − τ) + 􏽒
0
τ D(ϑ)x(t + ϑ)d

is a linear DFDE or linear distributed time-delay
system; here, D(t) is a continuous matrix on [− τ, 0]

of appropriate dimensions
(vii) L(t, xτ) � 􏽐

m
i�0 Aix(t − τi) is a LTI-TDS with

multiple delays of retarded type,
0 � τ0 < τ1 < · · · < τm � τ

To learn more about the systems described above, the
reader can consult the following references [52, 166–169].
Although the nonlinear part g(t, xτ) is also important and
its structure depends on the type of studied nonlinear
system, it is more important to know the studies regarding
the stability of the nominal part. Since the stability of the
nominal part can contribute the obtaining of robust stability
conditions in the presence of the nonlinear part. ,erefore,
some research studies on stability analysis of linear TDS in
the frequency domain and time domain are presented below.

3.2. Stability in the Frequency Domain. It is well known that
the analysis of stability and stabilization of a TDS in the
frequency domain is based on a study of its corresponding
characteristic equation to determine the location of its roots
in the complex plane. ,is concept is inherited from the
stability analysis of delay-free systems, mainly from Hur-
witz’s concept [170, 171]. However, when the delays are
considered in a system, it involves the inclusion of tran-
scendental terms in the characteristic equation, changing the
analysis of a polynomial (free-delay systems) to a quasi-
polynomial (TDS). ,is complicates the analysis of a finite
number to an infinite number of roots [172], also this
analysis is usually limited to LTI-TDS. However, in contrast
with the time domain, this analysis allows obtaining nec-
essary and sufficient stability conditions; recent results have
shown that an analysis in the frequency domain can be
applied to a class of nonlinear TDS, see [173, 174].

Given a LTI-TDS with multiple delays of retarded type,

_x(t) � 􏽘
m

i�0
Aix t − τi( 􏼁, (21)

then its quasi-polynomial is of the form

Q(s) � det sIn − 􏽘
m

k�0
Ake

− sτk
⎧⎨

⎩

⎫⎬

⎭

� 􏽘
m

k�0
pk(s)e

− sτk � 0,

(22)
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where In is the identity matrix of n-dimension, 0 � τ0 <
τ1 < · · · < τm � τ, pk(s) � 􏽐

rk

j�0 akj
sj, k � 0, 1, . . . , m, are

polynomials with real coefficients and deg(p0)≤ deg(pk), i.e.,
r0 ≤ rk, k � 1, . . . , m. Although Q(s) given in 3.2 has an
infinite number of roots, it is enough to know the location of
the dominant roots as shown below.

Definition 1 (see [166]). ,e LTI-TDS with multiple delays
of retarded type (21) is said to be σ-stable (exponentially
stable) if the system response x(t, ϕ) satisfies the following
inequality:

‖x(t, ϕ)‖≤Le
− σt

‖ϕ‖τ , t≥ 0, (23)

where L> 0, σ ≥ 0, and ϕ: [− τ, 0]⟶ C([− τ, 0], Rn) is the
initial condition.

Under consideration, for LTI-TDS of retarded type, the
exponential stability and asymptotic stability are equivalent.

Definition 2 (see [166]). Consider the quasi-polynomial 3.2,
σ ∈ R a positive constant and

s0 � max
j�1,...,∞

Re sj􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌 Q sj􏼐 􏼑 � 0, sj ∈ C􏼚 􏼛, (24)

where Re sj􏽮 􏽯 denotes the real part of sj. ,en, the LTI-TDS
withmultiple delays of retarded type (22) is σ-stable if s0 ≤ − σ
(relative stability, [175]).

As can be seen in the above definitions, the stability of an
LTI-TDS withmultiple delays depends on the dominant roots
of 3.2, which determine the abscissa − σ (spectral abscissa) or
vertical line on − σ in the complex plane. Furthermore, the
roots have continuous variations with respect to parametric
variations of the system.,is is known as continuity property.

Theorem 1 (see [176]). If the matrices Ak or the delays τk,
k � 1, 2, . . . , m, are varied, then a loss or acquisition of ex-
ponential stability of the solution x(t, ϕ) of LTI-TDS with
multiple delays (21) is associated with the dominant roots of
the quasi-polynomial (22).

,is allows to obtain conditions of robustness when
there are parametric variations and also the design and
tuning of control laws for s-stabilize TDS are as shown in
Section 3.4.

However, in the framework of TDS stability in the
frequency domain, there are many results/criteria; among
the first and most important are the following:

(i) ,e Pontryagin criterion [177] is considered as one
of the most general analytical criteria, and it gives
necessary and sufficient conditions for the stability of
(22). However, it has strong limitations and may
become very complicated for systems with more
than one delay.

(ii) ,e Yesipovich–Svirskii criterion [178] is for systems
with one discrete delay. ,e necessary and sufficient
condition of the stability of (22) is given by means of
the expression:

􏽘
k

sgn
1

Re F uk( 􏼁􏼈 􏼉
􏼠 􏼡

dIm F uk( 􏼁􏼈 􏼉

d uk( 􏼁
􏼠 􏼡􏼠 􏼡, (25)

where

F(z) �
1

tan(1/2z)
+ ϕ(z), (26)

is a further transformation s � iz, i2 � − 1, z ∈ C, of
Q(s) � 0, ϕ(z) is a function that does not contain
transcendental terms, and uk are the real roots of
Imϕ(z) � 0.

(iii) ,e τ-decomposition method [179] requires the
transformation of the quasi-polynomial into the form

e
τs

� D0(τ), (27)

where D0(s) is a ration of two polynomials. ,is
method is for systems with one discrete delay, and it
is based on the analysis of the contour D0(iu),
u ∈ R+ around the unit circle in the complex plane.

(iv) ,e principle of argument [121] is used to determine
the number N of roots of Q(s) inside of an closed
curve C ⊂ C, where

N �
1
2π

􏼒 􏼓ΔCarg Q(s){ }. (28)

Here, ΔCarg Q(s){ } denotes the changes of the
argument of Q along C.

(v) ,e Chebotarev criterion is the direct generaliza-
tion of the Routh–Hurwitz.,e analytical criterion
needs to calculate an infinite number of Hurwitz
determinants and the stability of the system with
long delay is determined by determinants of high
dimension, whereby it is not effective practically.

(vi) ,e D-partition (D-subdivision) method [180] is a
geometric method to construct stability charts
(regions) in the parameter space of the quasi-
polynomial. It is very effective to determine sta-
bility based on system parameters. However, the
number of parameters used is reduced.

(vii) ,eNyquist [181]method is also a geometricmethod
and the stability of the systems is determined by the
relative position of the point − 1 + 0i and the contour
D(iu) ⊂ C, i2 � − 1, u ∈ R+, where − 1 � D(s) is a
transformation of the quasi-polynomial.

(viii) ,e Bode and Nichols criteria and some others are
transformations of the Nyquist criterion as Satche
mentions in [182].

(ix) ,eMikhailov criterion [183] is a consequence of the
Cauchy Residue theorem in complex analysis. It can
be applied to RFDE if there exists a scalar ]> 0 such
that the quasi-polynomial is bounded and analytical
in any closed domain in s: Re s{ }≻ ]{ }; this is also
known as Satche’s diagram [184].
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(x) ,e Hermite–Biehler criterion [51, 52] mentioned
in the previous section can be applied for TDS using
the imaginary and real parts of the quasi-polyno-
mial, Q(s � iω) � Re Q(iω){ } + Im Q(iω){ }, i �

Qr(ω) + Qi(ω)i; the stability of the system is de-
termined by a continuous alternation between
transformations of the real functions Qr(ω) and
Qi(ω), when increasing phase condition ω>ω∗, for
any ω∗ ∈ (− ∞,∞). See its extensions in [185, 186].

(xi) ,e Edge theorem [187], zero exclusion principle,
and concept of convex direction [188] are graphical
methods to determine stability of a set of quasi-
polynomial family or convex polytope family.

,e above criteria are the most recurrent on stability
analysis of quasi-polynomials, see [176, 189–194], but there
are quasi-polynomial classes of larger complexity that re-
quire special attention. Among this class, the quasi-poly-
nomial of NFDE [195], polynomial family which is described
by convex polytope in the coefficient space [196], and sta-
bility analysis of LPV-TDS through a generalized charac-
teristic quasi-polynomial [173] can be found.

Consider a LTI-NFDE with multiple delays of the form:

􏽘
m

k�0
Dk _x t − τk( 􏼁 � 􏽘

m

k�0
Akx t − τk( 􏼁, (29)

where Ak, Dk ∈ Rn×n, k � 0, 1, . . . , m and 0 � τ0 < τ1 < · · ·

< τm � τ. ,e corresponding quasi-polynomial is given by

Q(s) � det sIn − 􏽘
m

k�0
Dk

⎧⎨

⎩

⎫⎬

⎭ − 􏽘
m

k�0
Ak

⎧⎨

⎩

⎫⎬

⎭ � 0. (30)

A TDS has an infinite number of characteristic roots, but
Q(s) is an entire function, which implies that there can only
be a finite number of characteristic roots within any bounded
domain. ,ese characteristic roots form root chains that are
rather easy to describe.,e quasi-polynomial has two types of
root chains. ,e first type is retarded chains; here, the roots
fall in the region |Re s + μlogs􏼈 􏼉|< c, for some μ> 0 and c> 0.
In other words, there may only be a finite number of roots on
the right of the abscissa α � Re s{ } in the complex plane for
any given α [195]. ,e second type is neutral chains; here, the
roots are bounded by two abscissas c1 ≤Re s{ }≤ c2. ,e po-
sitions of such abscissas are determined by

det In − 􏽘
m

k�0
Dk

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭ � 0. (31)

Additionally, if s∗ is a solution of (31); then, there is a
series of roots sl, l � 1, 2 . . . of quasi-polynomial (30) such
that |sl|⟶∞ and Re sl􏼈 􏼉⟶ Re s∗{ }. Due to all the above,
the stability of (30) is associated with the stability of fd38(31).
Furthermore, (31) can be sensitive to infinitesimal delay
perturbations, which strongly affect the continuity property
of the roots of (30). Moreover, in contrast with the retarded
case, this property cannot be ensured with respect to
parametric variations of the system. For more details on this
type of systems, see [176, 195].

Another interesting study in the TDS research community
is the stability analysis of convex sum of quasi-polynomials,
known as polynomial family or convex polytope or polytope of
quasi-polynomials.,ese are quasi-polynomials that are entire
functions which include both degree of the independent
variable and exponential functions and they appear when
several subsystems with delays are interconnected. Consider a
convex hull of quasi-polynomials of the form:

Q � Q(s) � 􏽘
M

r�1
μrQr(s): 􏽘

M

r�1
μr � 1, μr ≥ 0, r � 1, 2, . . . , M

⎧⎨

⎩

⎫⎬

⎭,

(32)

where the vertex quasi-polynomial Qr(s) is of form (22).,e
stability of this class of the quasi-polynomials of family Q is
studied using the zero exclusion principle, the concepts of
convex direction, and the Edge theorem [196–199]. Here, a
coefficient vector a � (a00, . . . , a0m, a10, . . . , a1m, . . . , ark0,

. . . , arkm) is associated with every element Q(s) ∈ Q; then,
family (32) can be described by the convex polytope:

MQ � a � 􏽘
M

r�1
μrar: 􏽘

M

r�1
μr � 1, μr ≥ 0, r � 1, 2, . . . , M

⎧⎨

⎩

⎫⎬

⎭,

(33)

where the vector ar corresponds to the vertex quasi-poly-
nomial Qr(s). ,us, E(MQ) is the set of edges and V(MQ) is
the set of vertexes of the polytope MQ. Every edge corre-
sponds to the one-parameter family of quasi-polynomial of
the form μQp(s) + (1 − μ)Qq(s), μ ∈ [0, 1], i.e., the stability
analysis for the families Q is reduced to a finite number of
simpler problem stability to convex couples.

Theorem 2 (see [197]). 5e family Q is stable if and only if
all members of one-parameter family corresponding to the
edges E(MQ) are stable.

On stability analysis of LPV-TDS, it seems that this topic
is one of the most relevant topics and the best opportunity
field to direct the current research. An aircraft is one classic
physical system where the mathematical model can be
represented by a LPV system [200], while a system of dis-
tributed type can be seen in [201] and a LPV-TDS in [173].

Consider a LPV-TDS of the form:

_x(t) �
0 1

θ(t) − 2 0.1
􏼠 􏼡x(t) +

0 0

− θ(t) + 1 0
􏼠 􏼡x(t − τ),

(34)

where θ(t) ∈ [− 1, 1]. Now, consider the LTV-TDS of the
form:

_x(t) �
0 1

sin(t) − 2 0.1
􏼠 􏼡x(t)

+
0 0

− cos(t) + 1 0
􏼠 􏼡x(t − τ),

(35)

and the nonlinear TDS as follows:
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_x(t) �
0 1

sin x1( 􏼁 − 2 0.1
􏼠 􏼡x(t) +

0 0

− cos x2( 􏼁 + 1 0
􏼠 􏼡x(t − τ).

(36)

In terms of stability, the previous three systems (34)–(36)
can have the same properties. In other words, the convex
representation of the uncertainty of θ(t) and the nonlinear
functions (sin(t), cos(t)) and (sin(x1), cos(x2)) are
equivalent in a stability analysis if only the manipulation
range of the previous variables is considered. ,is un-
doubtedly provides the opportunity to obtain stable condi-
tions for a wide variety of types of systems. Furthermore, these
conditions can be obtained using LMIs and by studying a
generalized characteristic quasi-polynomial of the form

Q(s) � e
sτmdet sIn − A1(θ) − A1(θ)e

− sτ
􏼈 􏼉 � 􏽘

n

k�0
􏽘

m

l�0
akl(θ)s

k
e

sτl ,

(37)

where 0< τ0 < τ1 < · · · < τm and akl(θ) are the coefficients of
a polynomial with a finite set of bounded uncertainties,
which depend on the uncertainties θ. ,e quasi-polynomial
(37) is exactly rewritten as a polytope whose interpolating
functions exhibit mutual dependency. ,erefore, the sta-
bility analysis of this type of polytopes implies the stability
analysis of a class of nonlinear TDS, see [173, 174].

On the contrary and to finish this section, it is worth
mentioning that some members of the scientific community
have preferred to employ transformations, approximation
methods or pseudo-delays to avoid the transcendental terms in
the stability analysis of a TDS instead of using the direct
methods presented above. Although, inmany occasions, a direct
approach to analyze the stability of a TDS ismore efficient [202].
Among these, they can be found the Smith predictors [203],
Rekasius transformation [204], and Padé approximation [205].
,e Smith predictors allow to use a controller structure which
takes the delay out of the control loop, which reduce the stability
analysis to the one of a free-delay system. ,e employment of
the Rekasius transformation implies an infinity-to-one holo-
graphic mapping (the mapping is asymmetric), and it is also
impossible to track all of the infinitely many roots, especially,
since the dominant root cannot be declared, as mentioned in
[206]. ,e Padé approximation has been used to approximate
the exponential function e− sτ , s ∈ C, through rational ap-
proximation of the form (Pmn(sτ)/Pnm(sτ)), where

Pmn(sτ) � 􏽘
m

j�0

(m + n − j)!m!

j!(m − j)!
(− sτ)

j
,

Pnm(sτ) � 􏽘
n

j�0

(m + n − j)!n!

j!(n − j)!
(sτ)

j
,

(38)

see [207].

3.3. Stability in the Time Domain. In this section, a brief
description of the most well-known criteria for the stability
analysis of TDS in the time domain will be given. Emphasize
the results using two types of Lyapunov–Krasovskii

functionals: reduced type and complete type. While the first
type of functional is usually the favorite of the scientific
community, perhaps due to the relative flexibility to propose
the functional candidate and to accomplish the requirements
of the system studied, it seems that this type of functional
only can provide sufficient conditions of stability and sta-
bilization. ,e second type of functional is used by a nar-
rowed community, perhaps due to the relative complexity
compared to the first, but this has been shown to be closer to
obtaining the necessary and sufficient conditions of stability
and stabilization, see [208].

,is approach is based primarily on two methods: the use
of Lyapunov–Krasovskii (L-K) functional [146] or Lyapu-
nov–Razumikhin (L-R) functions [145]. Both methods are an
extension of the Lyapunov direct method [42] for free-delay
systems. ,ese stability criteria usually provide sufficient
stability conditions in terms of linear matrix inequalities
(LMIs), [209], which can be effectively solved by means of
convex optimization techniques [210]. Although these two
methods have received a great deal of attention, the results
only offer conservative and sufficient stability conditions. ,e
Razumikhin results allow one to obtain stability results based
on adapted Lyapunov functions to analyze the stability of the
TDS, while the Krasovskii results employ Lyapunov func-
tionals as a natural extension to TDS. Despite the two
methods provide interesting results for stability studies, the
last method is the predominant one in research.

,e main idea of Krasovskii consists in proposing an
appropriate functional which can satisfy extensions of
concepts and criteria of Lyapunov for TDS. One of these
stability concepts is the definition, while the most used
criterion is given below.

Theorem 3 (see [122]). Consider the TDS given in (11) and
that there are u, v, w: R+⟶ R+ continuous nondecreasing
functions, where u(α) and v(α) are positive for α> 0 and
u(0) � v(0) � 0.

(i) If there exists a continuous differentiable functional
V: R+ × C⟶ R+ such that

u(|ϕ(0)|)≤V(t,ϕ)≤ v |ϕ|τ( 􏼁,

_V(t, ϕ)≤ − w(|ϕ(0)|),
(39)

then the trivial solution of (11) is uniformly stable.
(ii) If the trivial solution of (11) is uniformly stable, and

w(α)> 0 for α> 0, then the trivial solution of (11) is
uniformly asymptotically stable.

(iii) If the trivial solution of (11) is uniformly asymp-
totically stable and if limα⟶∞u(α) �, then the
trivial solution of (11) is globally uniformly as-
ymptotically stable.

Consider the LTI-TDS of the form:

_x(t) � A0x(t) + A1x(t − τ), (40)
where A0 andA1 are matrices of appropriate dimensions.
,e functional ones proposed to satisfy the above conditions
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are known as L-K functional candidates and their basic form
is as follows:

V xt( 􏼁 � x
T
(t)Px(t) + 􏽚

t

t− τ
x

T
(α)Qx(α)dα, (41)

where P � PT > 0 and Q � QT > 0 are positive definite ma-
trices (symmetric matrices where every eigenvalue is posi-
tive). ,is functional satisfies the conditions of ,eorem 3 if
there are P> 0 and Q> 0 which satisfy
AT
0 P + PA0 + PA1Q

− 1AT
1 P + Q< 0 or

A
T
0 P + PA0 + Q PA1

∗ − Q

⎛⎝ ⎞⎠< 0. (42)

If this is true, then the functional is called L-K functional.
However, this type of L-K functional only provides delay-
independent sufficient stability conditions for LTI-TDS with
one delay, namely, sufficient conditions that can only be
applied to LTI-TDS that are stable for all τ > 0. When the
primary objective is to propose L-K functional candidates
that provide delay-dependent stability conditions and that
these conditions may be necessary and sufficient conditions
to determine stability in a TDS, as well as for linear free-
delay systems. Unfortunately, the above is still an open
problem of the TDS. ,erefore, most of the research studies
carried out focus not only on the type of L-K functional, but
also on mathematical properties that reduce the conserva-
tism of the stability conditions (LMI-based stability con-
ditions) and/or these can relax the conditions. Some of these
properties follow immediately.

Lemma 1 (Schur complement). Consider a given symmetric

matrix S �
S11 S12
∗ S22

􏼠 􏼡, where S11 ∈ Rr×r; then, the following

conditions are equivalent:

S< 0,

S22 < 0,

S11 − S
T
12S

− 1
22S12 < 0,

S11 < 0,

S22 − S
T
12S

− 1
11S12 < 0.

(43)

Lemma 2. Let Q � QT, H and E given matrices with ap-
propriate dimensions. 5en, Q + HF(t)E + ETFT(t)HT < 0
holds for all F(t) such that FT(t)F(t) ≤ I if and only if there
exists ϵ> 0 such that Q + ϵ− 1HHT + ϵETE< 0.

Lemma 3 (Jensen inequality, see [166]). For any constant
matrix M ∈ Rm×m, M � MT > 0, scalar c> 0, vector function
ω: [0, c]⟶ Rm such that the integrations concerned are
well defined, then

c 􏽚
c

0
ωT

(β)Mω(β)dβ≥ 􏽚
c

0
ω(β)dβ􏼒 􏼓

T

M 􏽚
c

0
ω(β)dβ􏼒 􏼓.

(44)

Lemma 4 (see [122]). Let A, D, E, F, and P be real matrices
with appropriate dimensions, and let FTF≤ I and P> 0.5en,
the following propositions are true:

(i) For any x, y ∈ Rn, 2xTy≤ xTP− 1x + yTPy

(ii) For any x, y ∈ Rn and any ϵ> 0,
2xTDFEy ≤ ε − 1xTDDTx + εyTETEy

(iii) For any ϵ> 0 satisfying P − ϵDDT > 0,
(A + DFE)TP− 1(A + DFE)≤ ε− 1ETE +

AT(P − εDDT)− 1A

For decades the TDS research community has proposed
different types of L-K functional candidates and/or also
different mathematical properties in order to satisfy the
postulated in (iii) of ,eorem 3.3. One of the most observed
trends is to add quadratic or cross terms to the functional
candidate as follows.

Consider the following L-K functional candidate:

V xt( 􏼁 � x
T
(t)Px(t) + 􏽘

r

j�1
Vj xt( 􏼁, (45)

where each term Vj(xt), j � 1, 2, . . . , r can be of the form:

cross terms xT(t) 􏽒
0
− τ Qx(t + α)dα, quadratic terms 􏽒

0
− τ 􏽒

t

t+α
xT(α)Rx(α)dαdt, quadratic terms for exponential terms
􏽒
0
− τ xT(t + α)e2σαQx(t + α)dα, cross terms xT(t) 􏽒

0
− τ Q(α)x

(t + α)dα, and quadratic terms 􏽒
0
− τ 􏽒

0
− τ xT(t + α)R(α, β)x

(α + β)dαdβ.

Typically, these terms (quadratic or crossed) are introduce
depending on the type of system analyzed (RFDE, DFDE, and
NFDE, among others) or the type of conditions required to
obtain (robustness and exponential estimates, among others)
as an effort to obtain the functional one that grants less re-
strictive conditions andmore types of systems can be analyzed.
Also, comparisons between various criteria of delay-depen-
dent stability can be observed in the literature, to demonstrate
the efficiency and loss of conservatism with the proposed
conditions, see [211]. In this context, there are miles of
contributions giving necessary conditions of stability, among
which the following can be mentioned [39, 212–238]. In most
of these contributions a type of functional known as reduced
type functional is used. However, until now it is unknown
what type of reduced-type functional is suitable for the type of
TDS analyzed, [214, 239–241]. ,erefore, some criteria for the
construction of full size (complete) type L-K functionals have
been developed with the intention of solving these problems.

,e construction of the complete-type functional re-
quires a prior proposal of the quadratic derivative of the
functional and the construction of the so-called delay
Lyapunov matrix. ,e first results were proposed in [242],
followed by some interesting results such as those given in
[243, 244] for RFDE with one delay, while in [245] some of
the results have been extended to a general case of LTI-TDS.
In the latter, it is also shown that the constructed functional
requires additional information to admit a lower quadratic
bound. In [213], an interesting numerical scheme for the
construction of complete type L-K functionals has been

10 Complexity



proposed using the LMI approach. In [246, 247], properties
are clarified and completed for the construction of a
functional with upper and lower quadratic bounds. ,is
technique can be summarized in the following result.

Theorem 4 (see [123]). Consider a prescribed quadratic
functional of the form:

ω xt( 􏼁 � ω1 x(t), W1( 􏼁 + ω2 xt, W2( 􏼁 + ω3 x(t − τ), W3( 􏼁,

(46)

where ω1(x(t), W1) � xT(t)W1x(t),

ω1 xt, W2( 􏼁 � 􏽚
0

τ
x

T
(t + α)W2x(t + α)dα,

ω2 x(t − τ), W3( 􏼁 � x
T
(t − τ)W3x(t − τ),

(47)

and W1, W2, andW3 are positive definite matrices of ap-
propriate dimensions. If the LTI-TDS (40) is stable, then there
is only one functional v(xt) such that

_v xt( 􏼁 � − ω xt( 􏼁. (48)

,is functional is known as complete type L-K func-
tional and it is given by

v xt( 􏼁 � x
T
(t)U(0)x(t) + 2x

T
(t) 􏽚

0

− τ
U(− τ − α)A1x(t + α)dα + 􏽚

0

− τ
􏽚
0

− τ
x

T
t + α1( 􏼁A

T
1 U α1 − α2( 􏼁A1x t + α2( 􏼁􏽨 􏽩dα1dα2

+ 􏽚
0

− τ
x

T
(t + α) W1 +(τ + α)W2􏼂 􏼃x(t + α)dα,

(49)

where

U(ς) � 􏽚
∞

0
K

T
(t)WK(t + ς)dt, ς ∈ R, (50)

is a counterpart of the classical Lyapunov matrix equation in
the context of Lyapunov quadratic forms for the linear delay-
free systems; therefore, it is called Lyapunov matrix for TDS
(delay Lyapunov matrix). Here, 0<W � W0 + W1+

τW2 ∈ Rn×n and K(t): R⟶ Rn×n is the fundamental ma-
trix of LTI-TDS (40) and the solution of the matrix equation:

_K(t) � A0K(t) + A1K(t − τ), t≥ 0, (51)

with initial condition K(t) � 0 for t< 0 y K(0) � In. In
addition, the delay Lyapunov matrix satisfies the following
conditions:

U′(ς) � U(ς)A0 + U(ς − τ)A1, ς≥ 0, (52)

U(ς) � U
T
(− ς), ς≥ 0, (53)

− W � U(0)A0 + A
T
0 U(0) + U

T
(τ)A1 + A

T
1 U(τ). (54)

Equations (52)–(54) are known as dynamic property,
symmetry property, and algebraic property, respectively.

One of the key points to use this type of functional are
the existence, uniqueness, and numerical calculation of the
delay Lyapunov matrix (50), for which several manuscripts
have been dedicated to this sense, see [248–254]. Some of the
functionals prescribed w(xt) to construct complete type L-K
functionals v(xt) are as follows.

(i) For LTI-RFDE [255],

ω xt( 􏼁 � x
T

(t)W1x(t) + 2x
T
(t)ZA 1x(t − τ) + x

T
(t − τ)W2x(t − τ) + 􏽚

0

τ
x

T
(t + α)W3x(t + α)dα. (55)

(ii) For LTI-DFDE [256],

ω xt( 􏼁 � x
T
(t)W1x(t) + x

T
(t − τ)W2x(t − τ) + 􏽚

0

τ
x

T
(t + α)W3x(t + α)dα + 2x

T
(t)W4x(t − τ)

+ 2x
T
(t) 􏽚

0

τ
W5x(t + α)dα + 2x

T
(t − τ) 􏽚

0

τ
W6x(t + α)dα.

(56)

Complexity 11



(iii) For RFDE with time-varying delay [257],

ω xt( 􏼁 � x
T
(t)W1x(t) + _x

T
(t)W2 _x(t). (57)

(iv) For RFDE with uncertain coefficients
HΔA0 andHΔA1 and an uncertain time-varying
delay τ(t) � h1 + η1(t), with h1 ∈ R+ and
|η(t)|≤ μ1 ∈ R+ [258],

ω xt( 􏼁 � x
T
(t)W1x(t) − 2 x

T
(t)U

T
(0) + 􏽚

0

− h1

x
T
(t + α)A

T
1 U h1 + α( 􏼁dα􏼢 􏼣 × 􏼢HΔA0x(t) + HΔA1x t − h1( 􏼁 − HΔA1

· 􏽚
t− h1

t− h1− η1
_x(α)dα − A1 􏽚

t− h1

t− h1− η1
_x(α)dα􏼣.

(58)

,is type of functional and the delay Lyapunov matrix are
giving good results for the design of control laws such as linear
quadratic suboptimal controllers [259]; recently, these have
also been used to designing dynamic stabilizing controllers
(predictor-based controls) for preserving the exponential
stability of the closed-loop system after the replacement of the
integrals by finite sums [260–263], robotic systems with
constant input time delay through the active disturbance
rejection paradigm and generalized proportional integral
observers [264], design of delayed output-feedback control-
lers that optimize a quadratic cost function [265], necessary
and sufficient exponential stability condition for systems with
multiple delays [266], and partial differential equations [267].
Furthermore, these types of functionals can provide necessary
and sufficient stability conditions for linear systems with
pointwise and distributed delays [208]. Here, a stability cri-
terion is presented for the exponential stability of systems
with multiple point and distributed delays. ,ese conditions
are in terms of the delay Lyapunov matrix (50) using the
evaluation of a complete type L-K functionals at a pertinent
initial function that depends on the system fundamental
matrix. Undoubtedly, this topic is solving important open
problems in the area of TDS, whereby it is highly recom-
mended to direct current and future research.

3.4. Numerical Methods (Applications). One of the most
important aspects in the stability analysis of time-delay
linear systems is the calculation of characteristic roots of the
linear/linearized dynamics, being the root with the maxi-
mum real part a very important one [268]. ,e characteristic
equation is a quasi-polynomial equation whose roots are
computed through a numerical method for nonlinear
equations.

In the contribution of Engelborghs [269], it is proposed a
Matlab package for numerical bifurcation analysis of TDS,
and the computation of the rightmost characteristic roots is
carried out by using a linear multistep method (LMS
method) [270].

,e monograph of Breda et al. [271] presents a com-
prehensive set of pseudospectral techniques (Pseudospectral
Differentiation Method and Piecewise Pseudospectral Dif-
ferentiation Method) to analyze the stability of the solution
of linear TDS with numerical implementations in Matlab.

In [272], Louisell establishes a method for determining
the stability exponent and eigenvalue abscissas of a linear
delay system based on examining the endpoint values of the
solution to a functional equation occurring in the Lyapunov
theory of delay equations. Other interesting related works
are [273, 274]. In [275, 276], it is presented a methodology
for calculating the Lyapunov matrix with a distributed delay,
whose algorithm consist in solving a two points boundary
value problem for a delay-free system.

Olgac and Sipahi provide an alternative procedure based
on the cluster treatment of characteristic roots to analyze the
stability of multiple time-delayed LTI dynamics. ,is
methodology detects all the stable regions precisely, in the
space of the time delays, by means of a set of curves (kernel
and offspring) which count the possible imaginary root
crossings for the system (see [206, 277–282] and references
therein for a comprehensive treatment).

Concerning the eigenvalue problem, Michiels has come
up with different procedures. In [283], it is provided a
characterization of the solutions to an arbitrary nonlinear
eigenvalue problem as the reciprocal eigenvalues of an
infinite-dimensional operator, and the resulting algorithm is
completely equivalent to the standard Arnoldi method,
including many of its properties. An extension of last
contribution [284] is used to compute the partial Schur
factorization of a nonlinear eigenvalue problem. In [285], it
is presented a procedure to compute solutions to a type of
nonlinear eigenvalue problem with low-rank structure. ,e
algorithm turns out to be equivalent to the Arnoldi method
(even in the numerical behavior). In [286], first, the formula
for the sensitivity of a simple eigenvalue with respect to a
variation of a parameter is extended to the case of multiple
non-semisimple eigenvalues. Also, it is provided a dual
treatment of the delay eigenvalue problem, in one hand, at
the level of the finite-dimensional nonlinear eigenvalue
problem and, on the other hand, at the level of a standard
operator eigenvalue problem. A numerical procedure to
compute the pseudospectral abscissa is given in [287], whose
main feature is that the approach is a pioneering applicable
procedure for nonlinear problems.

,e most complex systems have nonlinearities and de-
lays, which can be easy to notice or sometimes not so much.
A delay in a system is a phenomenon that can be seen as the
dead time between transmitting and executing an action. In
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this context, delays are due to the fact that system dynamics
are associated with past events. In general, delays are un-
desirable phenomena in a system because they can insta-
bilize or produce a poor performance in their response.
However, in recent years, it has been shown that delays can
also favor stabilizing and improving the performance of the
system [288, 289].

,e deliberate application of delays to stabilize systems is
a latent topic in the literature, one of the most important
contributions in this aspect is found in [290] that drove a
whole stream of research in what is known as time-delayed
feedback control (TDFC). ,e technique is to deliberately
introduce delays into the control scheme to σ-stabilize a
system with or without inherent delays [291–308]. ,is is
due to the advantages that they have in applications on
experimental platforms, such as noise attenuation, non-
implementation of estimators, observers and speed sensors,
avoiding filters, as well as its easy implementation. In ad-
dition, the σ-stability analysis or σ-stability regions allows a
fragility analysis of the controllers gains, which can give a
measure of the robustness of the closed-loop system under
variations of the controller gains, see [303, 309–311].

4. Advances in Stability and Stabilization of
Nonlinear Time-Delay Systems

In recent years, different concepts have emerged that are less
restrictive to classical concepts to determine stability in
nonlinear time-delay systems. Next, some of them are
mentioned.

4.1. Complex Delay Complex Networks. One topic which has
attracted attention from the scientific community is the
analysis and control of complex networks [312, 313], which
describe a wide variety of physical and social systems [314],
from population interactions, brain activity, and language
patterns to Internet traffic behavior among other interesting
phenomena. One control problem derived from the complex
systems control is the synchronization of delay coupled
networks [315, 316]. In this sense, a formal stability analysis
for the synchronization of complex networks, in particular
for a set of oscillators, is usually given for linearized systems
in a vicinity of the equilibrium point [317] by computing the
stability regions in the delay parameters or using the circle
criterion [318]. Some reported contributions can be found in
[169, 238, 319–328].

4.2. Robotic Teleoperation and Predictor-Based Control.
Robotic teleoperation and haptic teleoperation has been a
highly active topic in last years, specially now with the active
development of virtual reality and haptic interfaces
[329–334].,e time delay in these applications arises mainly
to the latency aspects of the virtual reality system [335–338],
and the network traffic in a teleoperation system [339–342].

,e stability analysis for teleoperation has the following
general approaches:

(i) ,e use of predictors working on the stability of the
system in the feedforward dynamics with nominal
or robust criteria, see [203, 343–360]

(ii) Passivity-based approaches whose stability tests can
be given in the Lyapunov–Krasovskii sense (see
[106, 342, 361–374])

(iii) Robust and predictor-based schemes whose stability
is given for time-delay dynamics tested by means of
time- or frequency-based approaches
[264, 375–378]

(iv) Other schemes which assume the delay as a dis-
turbance to be compensated by robust or adaptive
techniques [379–384]

4.3. Nonlinear and Fractional Order Systems. Lyapunov
methods have shown very useful for the study of stability and
the design of nonlinear control laws [130, 385, 386]. Here,
discontinuous [387] and fractional order systems [388]
represent an important challenge. Particularly, sliding mode
control techniques is an active field of research where
Lyapunov methods have been a key factor [389–393]. ,e
main advantages of sliding mode control, including ro-
bustness and finite time convergence, are supported by no
conventional Lyapunov methods.

On the contrary, fundamental research has shown that a
large variety of physical signals can be described by means of
functions with more varied topological properties
[394–397], which can be continuous but not necessarily
differentiable in any integer-order sense [398]. ,is has
motivated the design of fractional order sliding mode-based
controllers which have been proved to be robust against
Hölder disturbances [399].

Fractional calculus has become an emerging approach
for modeling complex systems, which has attracted the
attention of several areas of study, including control systems.
,e use of fractional versions of PID controllers [400–406]
has increased the interest and development of fractional
control designs. As a natural consequence, this approach has
been extended to a wider class of systems, especially time
delay ones which has come up with stability studies and
analyses.

Since classic methods for stability testing integer systems
such as Routh–Hurwitz are not universally valid, the stability
analysis for even linear fractional systems is more chal-
lenging. In particular, among the approaches of stability
study for fractional time-delay systems, some pioneering
contributions are given by Hwang and Cheng. In one hand,
the Lambert W function is proposed for the stability analysis
[407] and, on the other hand, in [408], the characteristic
equation of the system is numerically analyzed for a BIBO
stability test by means of Cauchy’s integral theorem. In
[409], a numerical procedure to obtain the delay values
where there is a root crossing (from the left half plane to the
right half and vice versa), for a further procedure of finding
the stability zones in terms of the delay value. Other fun-
damental contributions are given in [410–415]. In [416], a
Matlab toolbox for the H∞-stability analysis of fractional
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systems with commensurate delays is provided. L-K stability
approaches for fractional systems are given in [417–419]. In
[325, 420–424], some L-K stability approaches are given in
the realm of neural network framework.

Concerning using Smith predictor-based stabilizing
controllers, several applications are reported, see [425–432].

5. Conclusions

,is paper has presented a set of criteria concerning robust
stability of dynamical systems with or without delay, which
is important for the analysis of complex systems which may
not provide complete information, involving parameter
uncertainties. On the one hand, the ideas of robust stability
through families of polynomials were addressed and the
main criteria discussed. On the other hand, an emerging
topic in the area of complex systems such as time-delay
systems stability was analyzed, including the motivation,
basic results for its understanding, the difficulties involved
with respect to systems without delay, the time and fre-
quency approaches, applications involving complex oscil-
lators, current trends in this field of research, and some
interesting open problems. ,is review explored the stability
as a fundamental structural property which is crucial in the
analysis and development of studies and applications of
complex dynamical systems, in which the couplings and
dynamical behavior may come up with new developments in
a wide variety of research areas.
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[46] G. L. Dirichlet, “Über die stabilität des gleichgewichts,”
Journal für die reine und angewandte Mathematik, vol. 32,
pp. 85–88, 1846.

[47] B. Brogliato, “Absolute stability and the Lagrange-Dirichlet
theorem with monotone multivalued mappings,” Systems &
Control Letters, vol. 51, no. 5, pp. 343–353, 2004.

[48] R. I. Leine, “,e historical development of classical stability
concepts: Lagrange, Poisson and Lyapunov stability,” Non-
linear Dynamics, vol. 59, no. 1-2, p. 173, 2010.

[49] S. P. Bhattacharyya and L. H. Keel, “Robust control: the
parametric approach,” in Advances in Control Education,
Elsevier, Amsterdam, Netherlands, 1995.

[50] D. Hinrichsen and A. J. Pritchard, Mathematical Systems
5eory I: Modelling, State Space Analysis, Stability and Ro-
bustness, Springer, Berlin, Germany, 2005.
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Sociedad Matemática Mexicana, vol. 12, no. 3, pp. 261–275,
2006.

[67] B. Aguirre Hernández, J. Solis-Daun, and R. Suárez, “Sta-
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Villalobos, R. Villafuerte-Segura, and E. Campos-Cantón,
“Open problems related to the Hurwitz stability of poly-
nomials segments,” Mathematical Problems in Engineering,
vol. 2018, Article ID 2075903, 2018.

[83] N. K. Bose, “Argument conditions for Hurwitz and Schur
polynomials from network theory,” IEEE Transactions on
Automatic Control, vol. 39, no. 2, pp. 345-346, 1994.
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[112] B. A. Itzá-Ortiz, R. Villafuerte-Segura, and E. Alvarado-
Santos, “Delay-dependent and delay-independent stability of
Cournot duopoly model with tax evasion and time-delay,”
Communications in Nonlinear Science and Numerical Sim-
ulation, 2020.

[113] A. Ramirez, E. S. Espinoza, L. R. G. Carrillo, S. Mondié,
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[259] O. Santos, S. Mondié, and V. L. Kharitonov, “Linear qua-
dratic suboptimal control for time delays systems,” IFAC
Proceedings Volumes, vol. 39, no. 10, pp. 96–101, 2006.

[260] V. L. Kharitonov, “Predictor based stabilization of neutral
type systems with input delay,” Automatica, vol. 52,
pp. 125–134, 2015.

[261] V. L. Kharitonov, “Prediction-based control for systems with
state and several input delays,” Automatica, vol. 79,
pp. 11–16, 2017.

[262] A. N. Aliseyko and V. L. Kharitonov, “Lyapunov-Krasovskii
functionals for linear systems with input delay,” IFAC-
PapersOnLine, vol. 52, no. 18, pp. 19–24, 2019.
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velocity control of DC servomotors,” IFAC Proceedings
Volumes, vol. 46, no. 3, pp. 558–563, 2013.

[305] A. Ramı́rez, R. Sipahi, S. Mondié, and R. Garrido, “Design of
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[404] D. Valério and J. S. da Costa, “Tuning-rules for fractional
PID controllers,” in Proceedings of the Second IFAC Sym-
posium on Fractional Differentiation and its Applications
(FDA06), Porto, Portugal, July 2006.

[405] B. M. Vinagre, C. A. Monje, A. J. Calderón, and J. I. Suárez,
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Assignment problem (AP) is an entrenched tool for solving engineering and management problems. &e Hungarian method is
always used to fathom the AP in crisp cases. &is paper presents an algorithm of finding the optimum solution of the fuzzy AP by
using the modified Hungarian method. &is method is utilized to get a minimum assignment cost in the fuzzy environment for a
fuzzy AP. Firstly, we use the fuzzy numbers without any transformation. Secondly, the fuzzy AP is transformed into an interval AP
based on the α-cut methodology. &en, the interval arithmetic operations and the order relations are applied to get the optimal
solution by utilizing the modified Hungarian method. &e proposed algorithm requires less efforts and time to reach optimality,
compared to the existing methods. Numerical examples are given to ensure the efficiency and the validity of the proposed
algorithm. A study on the reuse of many valuable buildings is presented after using different government and service buildings in a
manner that does not fit with its original function and heritage value. We offer a solution based on the scientific and realistic basis
for requalification according to the variables and requirements of the social, cultural, and economic environments in the en-
vironment surrounding the valuable buildings.

1. Introduction

&e assignment problem (AP) is a very much evolved ad-
vancement issue in engineering and management sciences
and has been broadly applied in both assembling and ad-
ministration frameworks [1, 2]. In an AP, n jobs are to be
performed by n people contingent upon their proficiency to
carry out the job. &e AP is used to determine the issue of
appointing several origins to the equal number of destina-
tions at the very least expense or most extreme benefit in the
most ideal manner. It can appoint people to employments,
classes to rooms, administrators to machines, drivers to
trucks, trucks to conveyance courses, or issues to investigate
groups, and so forth.

To deal with the AP, the decision parameters of the
model must be fixed at deterministic values. In any case, to
show real issues and to perform estimations, we ought to
manage vulnerability and vagary. &ese vulnerability and

vagary are a result of estimation botch, unraveling of
physical models, assortments of the boundaries of the sys-
tem, computational bungles, etc. Along these lines, we
cannot viably use traditional old-style task issues, and from
this time forward, the usage of fuzzy undertaking issues is
progressively legitimate [3–8].

Several algorithms have been exhibited to solve APs,
such as linear programming [1, 9, 10], Hungarian algorithm
[11, 12], and particle swarm optimization [9]. Kar et al.
resolved an AP with fuzzy cost by Yager’s ranking index
which transforms the fuzzy AP into a crisp one [7]. Different
membership functions and the Yager ranking index for
solving fuzzy APs and fuzzy travelling salesman problems
were introduced by Kumar and Gupta [13]. Tapkan et al.
considered a multiobjective generalized AP directly via bee’s
algorithm and fuzzy ranking [10]. Emrouznejad set up an
algorithm using the data envelopment analysis method to
solve the APs with fuzzy costs or fuzzy profits [3]. A new
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method for solving fuzzy assignment problems was given by
Pandian and Kavitha [14].&orani and Shankar explained in
detail the application in the fuzzy AP [15]. Mary and Selvi
proposed a model to solve the fuzzy AP using the centroid
ranking method [16]. In [17], Traneva and Tranev presented
the interval-valued intuitionistic fuzzy AP, in which the costs
of assigning jobs to candidates are interval-valued intui-
tionistic fuzzy, depending on the experience, the education,
and the professionalism of the applicants.

A basis in modeling uncertain systems is that an
entangled model is not generally important to manage in-
complete information and inaccurate data [18]. Interval
numbers are a structure which helps to stay away from such
an unnecessary complexity. Moore originally introduced
interval numbers [19]. An interval number is a number
whose exact value is unknown, but a range within which the
value lies is known [20]. An interval number permits an
expert to make his/her approximations about boundaries on
a span as opposed to a crisp number. &is adaptability
caused interval numbers to have extraordinary applications
in optimization issues. &e literature studies on the appli-
cations of interval number in decision-making problems are
so wide [21–23].

In most of the real-world problems, the parameters such
as cost, time, and profit may not be precisely known in
advance due to several uncontrollable factors such as human
judgements and market fluctuations. In such situations,
considering the values of uncertain parameters as fuzzy
numbers or interval numbers is better than to approximate
them as crisp values [21–25]. &is led us to introduce the
fuzzy AP that we transform into an interval AP.

&e urban design and the architectural character
represent an expressive characteristic of the prevailing
culture in the society for the civilized value; the civilized
value in architecture and urbanism reaches its highest
levels when it is related to cultural connotations and
concepts, so the negligence or neglect of civilizational
heritage that enriches architecture and urbanism is only a
lack of national awareness of civilized values wasting
national wealth and retreating to the cultural dimension
of the society [26–31]. As a result of accelerated urban
development which is not indifferent to civilizational and
heritage values during the second half of the twentieth
century in Egypt, many distinguished buildings began to
disappear to be replaced by other buildings that do not rise
to the same architectural value, for example, the use of
many valuable buildings as various government and
service buildings in a manner that is not commensurate
with their original function and heritage value, which led
to deformation and visual pollution that has become a
phenomenon in many Egyptian cities. We use some
valuable buildings in the Arab Republic of Egypt as a
comparative study. &eir value is defined as being one of
the philosophical concepts that can be described as “the
criterion governing the degree to which a person accepts
what is around him according to his desires and needs.”
&is is because the value is a relative influence that de-
pends on the nature of the recipient and the constituent

conditions of his personality and on the temporal and
spatial conditions. Also, most forms of the value are not
acquired by the building during its design but rather over
time [26–31]. &e goal of reuse is to preserve historical
buildings that are considered national wealth and part of
the national economy, creating positive change in the
population through contact with visitors, learning about
new habits and lifestyles, and cultural exchange; however,
the presence of some tourist establishments in areas of a
somewhat conservative social nature does not contradict
customs and traditions. It is preferable to reuse valuable
buildings with an activity similar to the original activity
for which the building was established as possible or by
studying the needs of the surrounding environment and
adapting the new activity according to the requirements of
the surrounding environment.

In this article, the modified Hungarian method is in-
troduced to solve the fuzzy AP. In our proposed model, due
to several uncontrollable factors such as human judgements
and market fluctuations, the cost is considered as a fuzzy
number. &e primary objective of this study is to propose a
newmethod for solving the AP under an uncertain situation.
Firstly, the fuzzy numbers are used without any transfor-
mation. Secondly, the fuzzy AP is transformed into an in-
terval AP based on the α-cut methodology.&en, the interval
arithmetic operations are applied to obtain the optimal
solution by utilizing the modified Hungarian method. Also,
the reuse and employment of the valuable buildings in Egypt
are studied. It is used to clarify the impact on neighboring
urban entities, which may help to find an economic basis on
which to maintain those buildings to enter within the or-
ganic entity of the old city.

&e composition of the article is organized as follows:
preliminaries and notions of the fuzzy and interval numbers
are reviewed in Section 2. Section 3 presents the mathe-
matical formulation of the fuzzy AP. Section 4 provides the
procedures for the modified Hungarian method. Also, nu-
merical examples are presented in Section 4. In Section 5, we
study the reuse and employment of the valuable buildings in
Egypt. Finally, the conclusion is given in Section 6.

2. Preliminaries and Notions

In this section, some essential ideas and preparatory out-
comes utilized as a part of this paper are quickly presented.

Definition 1 (fuzzy numbers). Let R1 be the set of all real
numbers. &en, a real fuzzy number 􏽥a is defined by its
membership function μ􏽥a(x) that satisfies [4, 32, 33]

(1) A continuous mapping fromR1 to the closed internal
[0, 1]

(2) μ􏽥a(x) � 0 for all x ∈ (−∞, a]

(3) Strictly increasing and continuous on [a, b]

(4) μ􏽥a(x) � 1 for all x ∈ [b, c]

(5) Strictly decreasing and continuous on [c, d]

(6) μ􏽥a(x) � 0 for all x ∈ [d, +∞) [8]
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Definition 2 (triangular fuzzy number). 􏽥a � (a0, b, c) is a
triangular fuzzy number, where a0 is the smallest value, b is
the main value, and c is the highest value. &e membership
function μ􏽥a(a; ϑ), ϑ ∈ [0, 1](0≤ μ􏽥a(a; ϑ)≤ δ), where ϑ is the
maximum value and a � b. &en [4, 32, 33],

μ􏽥a(a; ϑ) �

0, if a< a0, or a> c,

a − a0( 􏼁ϑ
b − a0

, if a0 ≤ a≤ b,

(c − a)ϑ
c − b

, if b≤ a≤ c.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Definition 3 (the level set). &e α-level set of the fuzzy
number 􏽥a is defined as an ordinary set Lα(􏽥a) for which the
degree of its membership function exceeds the level set
α ∈ [0, 1], where [6, 32, 33]

Lα(􏽥a) � a ∈ R
m

􏼌􏼌􏼌􏼌 μ􏽥a(x)≥ α􏽮 􏽯 � a ∈ 􏽥a
L
α, a

U
α􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌 μ􏽥a(x)≥ α,􏼚 􏼛,

(2)

where 􏽥aL
α � (1 − α)a0 + αb, 􏽥aU

α � (1 − α)c + αb, and 􏽥aL
α and

􏽥aU
α represent the lower and upper cuts, respectively, as

shown in Figure 1.

Definition 4 (interval numbers). An interval number is a
number whose exact value is unknown, but a range within
which the value lies is known [20]. Interval number is a
number with both lower and upper bounds, A � [aL, aR],
where aL ≤ aR. &e interval is also denoted by its center and
width as

A � aC, aW � a: aC − aW ≤ a≤ aC + aW, a ∈ R􏼈 􏼉, (3)

where aC � (aL + aR)/2 and aW � (aR − aL)/2 are, respec-
tively, the center and half width of A [20, 21, 23].

&e main arithmetic operations can be defined on in-
terval numbers. Let A � [aL, aR] � a: aL ≤ a≤ aR, a ∈ R􏼈 􏼉

and B � [bL, bR] � b: bL ≤ b≤ bR, b ∈ R􏼈 􏼉.

A + B � aL, aR􏼂 􏼃 + bL, bR􏼂 􏼃 � aL + bL, aR + bR􏼂 􏼃,

A − B � aL, aR􏼂 􏼃 − bL, bR􏼂 􏼃 � aL − bR, aR − bL􏼂 􏼃,

A × B � min aLbL, aLbR, aRbL, aRbR( 􏼁,􏼂

max aLbL, aLbR, aRbL, aRbR( 􏼁( 􏼁􏼃,

A÷B � aL, aR􏼂 􏼃 ×
1
bR

,
1
bL

􏼢 􏼣,

kA � k aL, aR􏼂 􏼃 �
kaL, kaR􏼂 􏼃 if k≥ 0,

kaR, kaL􏼂 􏼃 if k< 0.

⎧⎪⎨

⎪⎩

(4)

Definition 5. &e order relation ≤LR between A � [aL, aR]

and B � [bL, bR] is defined as [21, 23]

A≤LR B iff aL ≤ bL and aR ≤ bR,

A<LR B iff A≤LR B andA≠B.
(5)

&is order relation ≤LR represents the decision maker’s
preference for the alternative with lower minimum cost and
maximum cost, that is, if A≤LRB, then A is preferred to B.

Definition 6. &e order relation ≤CW between A � aC, aW

and B � bC, bW is defined as [20, 21]

A≤CW B iff aC ≤ bC and aW ≤ bW,

A<CW B iff A≤CW B andA≠B.
(6)

&is order relation ≤CW represents the decision maker’s
preference for the alternative with lower minimum cost and
maximum cost, that is, if A≤CW B, then A is preferred to B.

We use the sum of all elements of the interval/fuzzy
number as a scale to compare between intervals/fuzzy
numbers. Zero interval/zero fuzzy number is the sum of all
elements of the interval/fuzzy number which is equal to zero.

3. Fuzzy Assignment Problem

In a general AP, “n” works are to be performed by “n” people
depending on their efficiency to do the job in one-one basis
such that the assignment cost is minimum or maximum
[24, 34]. If the objective of an AP is to minimize fuzzy cost
􏽥cij, then we provide the AP of n × n matrix each cell having a
fuzzy number in Table 1.

Firstly, we transform the fuzzy cost 􏽥cij into the interval
cost (􏽥cij)α � [(􏽥cij)

L

α, (􏽥cij)
U

α ] by utilizing the α-cut method-
ology. &us, the fuzzy AP can be transformed into an in-
terval AP with interval cost as shown in Table 2.

&e above formulation of the problem is used in finding
the optimal assignment when the values of parameters such
as cost, time, and profit are precisely known in advance.
However, in most of the realistic situations, the parameters
such as cost, time, and profit may not be precisely known in
advance due to several uncontrollable factors such as human
judgements and market fluctuations. In such situations,
considering the values of uncertain parameters as fuzzy
numbers or interval numbers is better than to approximate

μÃi (x)

1

α

a a~Uαa~Lα b c x

Figure 1: α-Cut of the triangular fuzzy number.
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them as crisp values. Mathematically, the fuzzy AP can be
stated as [5, 7, 35]

min 􏽥Z � 􏽘
n

i�1
􏽘

n

j�1
􏽥cijxij

subject to

􏽘

n

i�1
xij � 1, j � 1, 2, . . . , n

􏽘

n

j�1
xij � 1, i � 1, 2, . . . , n,

xij � 0 or 1,

for all xij �
1, if i

th person is assigned to j
th work,

0, otherwise,

⎧⎨

⎩

(7)

where 􏽥Z denotes the fuzzy cost function, 􏽐
n
i�1 xij � 1 (one

work is done by the ith person, i � 1, 2 . . . , n), and
􏽐

n
j�1 xij � 1 (only one person must be assigned to jth work,

j � 1, 2 . . . , n), where xij denotes that jth work is to be
assigned to the ith person. After applying the α-cut meth-
odology to the fuzzy AP, the following interval AP is
obtained:

min Z � 􏽘
n

i�1
􏽘

n

j�1
􏽥cij􏼐 􏼑

L

α, 􏽥cij􏼐 􏼑
U

α􏼔 􏼕xij

subject to

􏽘

n

i�1
xij � 1, j � 1, 2, . . . , n

􏽘

n

j�1
xij � 1, i � 1, 2, . . . , n,

xij � 0 or 1,

for allxij �
1, if i

th person is assigned to j
th work,

0, otherwise,

⎧⎨

⎩

(8)

where (􏽥cij)
L

α and (􏽥cij)
U

α are the lower and upper cuts of the
fuzzy cost. In this study, we solve both fuzzy APs by con-
verting them into the interval AP by using the modified
Hungarian method. Making best use of the interval arith-
metic operations and order relations, the modified Hun-
garian method solves the interval AP.

4. The Proposed Algorithm

&e Hungarian method solves the minimization APs with n

workers and n jobs. It has been presented in [11, 12, 25]. So,
in this section, we explain how the modified Hungarian
method deals with the fuzzy AP by using the fuzzy number
without transforming or converting it into interval APs. We
apply the α-cut method to obtain the interval AP and use the
interval arithmetic operations and the order relations to
solve it. &e modified Hungarian algorithm consists of the
following four steps. &e first two steps are executed once,
while Steps 3 and 4 are repeated until an optimal assignment
is found.&e input of the algorithm is an n × n square matrix
with only nonnegative elements. If the number of lines
equals the number of rows (and columns), the test for the
optimality is satisfied [17].

Step 1. Subtract row minima:
For each row, find the lowest interval and subtract it

from each interval in that row based on interval arithmetic
operations.

Step 2. Subtract column minima:
Similarly, for each column, find the lowest interval and

subtract it from each interval in that column using interval
arithmetic operations.

Step 3. Cover all zeros with a minimum number of lines:
Cover all zero or negative intervals in the resulting

matrix using the minimum number of horizontal and
vertical lines. If n lines are required, an optimal assignment
exists among the zeros or negative interval. &e algorithm

Table 1: Fuzzy assignment problem.

Works
1 . . . j . . . n

People

1 􏽥c11 . . . . . . . . . 􏽥c1n

. . . . . . . . . . . . . . . . . .

i . . . . . . 􏽥cij . . . . . .

. . . . . . . . . . . . . . . . . .

n 􏽥cn1 . . . . . . . . . 􏽥cnn

Table 2: Interval assignment problem.

Works
1 . . . j . . . n

People

1 [(􏽥c11)
L
α, (􏽥c11)

U
α ] . . . . . . . . . [(􏽥c1n)L

α, (􏽥c1n)U
α ]

. . . . . . . . . . . . . . . . . .

i . . . . . . [(􏽥cij)
L

α, (􏽥cij)
U

α ] . . . . . .

. . . . . . . . . . . . . . . . . .

n [(􏽥cn1)
L
α, (􏽥cn1)

U
α ] . . . . . . . . . [(􏽥cnn)L

α, (􏽥cnn)U
α ]
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stops (an assignment can be made). If less than n lines are
required, continue with Step 4.

Step 4. Create additional zeros:
Determine the minimum uncovered interval (call it H):

Subtract H from uncovered intervals.
(a) Add H to intervals covered by two lines
(b) Intervals covered by one line remain the same
(c) &en, go to Step 3

5. Numerical Examples

Example 1. Let us consider an AP with rows representing 4
people, A, B, C, andD, and columns representing 4 jobs,
job I, job II, job III, and job IV. &e cost matrix [cij] is given
whose elements are interval numbers. &e problem is to find
the optimal assignment so that the total cost of the job
assignment becomes minimum, see Table 3.

&e minimum interval is [1, 5] in column 1, [3, 7] in
column 2, [1, 5] in column 3, and [0, 4] in column 4. By using
interval arithmetic operations, we get Table 4.

&e minimum interval is [−4, 4] in row 1, [−4, 4] in row
2, [−4, 4] in row 3, and [−2, 6] in row 4. By using interval
arithmetic operations, we get Table 5.

&e optimal assignment is A⟶ II, B⟶ IV,

C⟶ III, andD⟶ I. Cost� [3, 7] + [3, 7] + [1, 5]+

[0, 5] � [7, 24].

Example 2 (see [25]). Let us consider a fuzzy AP with rows
representing 4 people, A, B, C, andD, and columns rep-
resenting 4 jobs, job I, job II, job III, and job IV. &e fuzzy
cost matrix [􏽥cij] is given whose elements are triangular fuzzy
numbers. &e problem is to find the optimal assignment so
that the total cost of the job assignment becomes minimum,
shown in Table 6. &is example is solved by the method
found in [25], in which the fuzzy assignment problem has
been transformed into a crisp assignment problem using
Robust’s ranking indices [5].

Firstly, we apply the modified Hungarian method to the
fuzzy cost matrix utilizing the arithmetic operations of fuzzy
numbers to get the optimal assignment, see Table 7.

&e optimal assignment is A⟶ I, B⟶ III,
C⟶ IV, andD⟶ II. &e fuzzy optimal total cost� (5,
10, 15) + (5, 10, 15) + (5, 10, 15) + (5, 10, 15)� (20, 40, 60).

Secondly, we apply the α-cut methodology to obtain the
interval cost matrix. &en, the modified Hungarian method
is utilized with the help of the arithmetic operations of
interval numbers to get the optimal assignment. We can
transform the above problem elements into intervals at
α � 0.5, shown in Table 8.

We apply the proposed method on Table 8 to get Table 9
by using the arithmetic operations of the interval to get the
optimal assignment.

&e optimal assignment is A⟶ I, B⟶ III,
C⟶ IV, andD⟶ II. We see the solution of the AP by
our two methods is the same as the solution found in [25].

Example 3 (see [4]). Let us consider a fuzzy AP with rows
representing 4 people, A, B, C, andD, and columns rep-
resenting 4 jobs, job I, job II, job III, and job IV. &e fuzzy
cost matrix [􏽥cij] is given whose elements are trapezoidal
fuzzy numbers. &e problem is to find the optimal assign-
ment so that the total fuzzy cost of the job assignment
becomes minimum, shown in Table 10. &is example is

Table 6: Example 2.
I II III IV

A (5, 10, 15) (5, 10, 20) (5, 15, 20) (5, 10, 15)
B (5, 10, 20) (5, 15, 20) (5, 10, 15) (10, 15, 20)
C (5, 10, 20) (10, 15, 20) (10, 15, 20) (5, 10, 15)
D (10, 15, 25) (5, 10, 15) (10, 20, 30) (10, 15, 25)

Table 7: Subtraction of the minimum interval in each column.
I II III IV

A (−10, 0, 10) (−10, 0, 15) (−10, 5, 5) (−10, 0, 10)
B (−10, 0, 15) (−10, 5, 15) (−10, 0, 10) (−5, 5, 15)
C (−10, 0, 15) (−5, 5, 15) (−5, 5, 15) (−10, 0, 10)
D (−5, 5, 20) (−10, 0, 10) (−5, 10, 25) (−5, 5, 20)

Table 8: Transformation of Table 6 at α � 0.5.
I II III IV

A [7.5, 12.5] [7.5, 15] [10, 17.5] [7.5, 12.5]
B [7.5, 15] [10, 17.5] [7.5, 12.5] [12.5, 17.5]
C [7.5, 15] [12.5, 17.5] [12.5, 17.5] [7.5, 12.5]
D [12.5, 20] [7.5, 12.5] [15, 20] [12.5, 20]

Table 9: Subtraction of the minimum interval in each column.
I II III IV

A [−5, 5] [−5, 7.5] [−2.5, 10] [−5, 5]
B [−5, 7.5] [−2.5, 10] [−5, 5] [0, 10]
C [−5, 7.5] [0, 10] [0, 10] [−5, 5]
D [0, 12.5] [−5, 5] [2.5, 17.5] [0, 12.5]

Table 3: Example 1.
I II III IV

A [8, 12] [3, 7] [11, 15] [13, 17]
B [1, 5] [7, 11] [16, 20] [0, 5]
C [8, 12] [5, 9] [1, 5] [0, 4]
D [3, 7] [9, 13] [7, 11] [5, 9]

Table 4: Subtraction of the minimum interval in each column.
I II III IV

A [3, 11] [−4, 4] [6, 14] [9, 17]
B [−4, 4] [0, 8] [11, 19] [−4, 4]
C [3, 11] [−2, 6] [−4, 4] [−4, 4]
D [−2, 6] [2, 10] [2, 10] [1, 5]

Table 5: Subtraction of the minimum interval in each row.
I II III IV

A [−1, 15] [−8, 8] [2, 18] [5, 21]
B [−8, 8] [−4, 12] [7, 23] [−8, 8]
C [−1, 15] [−6, 10] [−8, 8] [−8, 8]
D [−8, 8] [−4, 12] [−4, 12] [−5, 7]
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solved by the method found in [4]. In [4], the fuzzy AP was
transformed into a crisp AP in the LPP form.

Firstly, we apply the modified Hungarian method to the
fuzzy cost matrix utilizing the arithmetic operations of fuzzy
numbers to get the optimal assignment, see Tables 11–13.

&e optimal assignment is A⟶ III, B⟶ II,
C⟶ I, andD⟶ IV. &e fuzzy optimal total cost is
calculated as (2, 4, 5, 7) + (9, 10, 11, 15) + (2, 4, 5, 6 )+

(2, 4, 5, 7) � (16, 23, 27, 35).
Secondly, we apply the α-cut methodology to obtain the

interval cost matrix. &en, the modified Hungarian method
is utilized with the help of the arithmetic operations of
interval numbers to get the optimal assignment. If the fuzzy
number in the above problem transformed into interval at
α � 0.5, shown in Table 14.

We apply the proposed method on Table 14 to get Ta-
ble 15 by using the arithmetic operations of the interval.
Also, we get Tables 16 and 17.

&e optimal assignment is
A⟶ III, B⟶ II, C⟶ I, andD⟶ IV. We see the
solution of the AP by our two methods is the same as the
solution found in [25].

In the above examples, the fuzzy optimal total cost
obtained by our two methods remains the same as that
obtained by other methods.

6. Practical Application

In this section, we get acquainted with some basic definitions
for the application study. First, a building of value (with a
distinct architectural style) is defined as a building or facility
that is distinguished by the historical, symbolic, architec-
tural, artistic, urban, or social value. Also, it has been agreed
that buildings and heritage installations of distinct archi-
tectural style should be characterized by accepting and
positively interacting with the community, being expressive
of material, moral, or intellectual phenomena in a specific
period (social or cultural phenomenon). Its condition allows
to be present and able to deal with it, and this is known as
persistence and continuity. Heritage buildings are classified
according to their condition into several levels, some of
which are good, partially degraded, and totally degraded.
&e aim of this classification is to set priorities for dealing
with heritage buildings as most important buildings are
placed on top of the priorities of conservation plans [26–31].
A strategy for re-employment of valuable buildings is the
creation of a job for the building other than the one for
which it was established, and this employment may be ac-
companied by making some fundamental changes to the
building to fit with the newly created job and an optional re-
employment of buildings in the case of valuable buildings

whose original function still exists until now. It is mandatory
for buildings with the value of original extinct function such
as ancient Egyptian temples and cemeteries. &e methods of

Table 10: Example 3.
I II III IV

A (3, 5, 6, 7) (5, 8, 11, 12) (9, 10, 11, 15) (5, 8, 10, 11)
B (7, 8, 10, 11) (3, 5, 6, 7) (6, 8, 10, 12) (5, 8, 9, 10)
C (2, 4, 5, 6) (5, 7, 10, 11) (8, 11, 13, 15) (4, 6, 7, 10)
D (6, 8, 10, 12) (2, 5, 6, 7) (5, 7, 10, 11) (2, 4, 5, 7)

Table 11: Subtraction of the minimum interval in each column.
I II III IV

A (−4, −1, 1, 4) (−2, 2, 6, 9) (2, 4, 6, 12) (−2, 2, 5, 8)
B (0, 2, 5, 8) (−4, −1, 1, 4) (−1, 2, 5, 9) (−2, 2, 4, 7)
C (−4, −1, 1, 4) (−1, 2, 6, 9) (2, 6, 9, 13) (−2, 1, 3, 8)
D (−1, 3, 6, 10) (−5, 0, 2, 5) (−2, 2, 6, 9) (−5, −1, 1, 5)

Table 17: Subtract [−3.5, 8.5] from uncovered intervals.
I II III IV

A [−5, 5] [−11, 13.5] [−13, 12.5] [−11.5, 13]
B [−5, 17.5] [−5, 5] [−7, 7] [−3, 8.5]
C [−5, 5] [−10.5, 13.5] [−12, 14.5] [−12, 12]
D [−5, 19] [−5, 6] [−7.5, 7.5] [−6, 6]

Table 12: Subtraction of the minimum interval in each row.
I II III IV

A (−8, −2, 2, 8) (−6, 1, 7, 13) (−7, −2, 4, 14) (−7, 1, 6, 13)
B (−4, 1, 6, 12) (−8, −2, 2, 8) (−10, −4, 3, 11) (−7, 1, 5, 12)
C (−8, −2, 2, 8) (−5, 1, 7, 13) (−7, 0, 7, 15) (−7, 0, 4, 13)
D (−5, 2, 7, 14) (−9, −1, 3, 9) (−11, −4, 4, 11) (−10, −2, 2, 10)

Table 13: Subtract (−7, −2, 4, 14) from uncovered intervals.
I II III IV

A (−8, −2, 2, 8) (−20, −3, 9, 20) (−21, −6, 6, 21) (−21, −3, 8, 20)
B (−4, 1, 6, 12) (−8, −2, 2, 8) (−10, −4, 3, 11) (−7, 1, 5, 12)
C (−8, −2, 2, 8) (−19, −3, 9, 20) (−21, −4, 9, 22) (−21, −4, 6, 20)
D (−5, 2, 7, 14) (−9, −1, 3, 9) (−11, −4, 4, 11) (−10, −2, 2, 10)

Table 14: Transformation of Table 10 at α � 0.5.
I II III IV

A [4, 6.5] [6.5, 11.5] [9.5, 13] [6.5, 10.5]
B [7.5, 10.5] [4, 6.5] [7, 11] [6.5, 9.5]
C [3, 5.5] [6, 10.5] [9.5, 14] [5, 8.5]
D [7, 11] [3.5, 6.5] [6, 10.5] [3, 6]

Table 15: Subtraction of the minimum interval in each column.
I II III IV

A [−2.5, 2.5] [0, 7.5] [3, 9] [0, 6.5]
B [1, 6.5] [−2.5, 2.5] [0.5, 7] [0, 5.5]
C [−2.5, 2.5] [0.5, 7.5] [4, 11] [−0.5, 5.5]
D [1, 8] [−2.5, 3.5] [0, 7.5] [−3, 3]

Table 16: Subtraction of the minimum interval in each row.
I II III IV

A [−5, 5] [−2.5, 10] [−4.5, 9] [−3, 9.5]
B [−1.5, 9] [−5, 5] [−7, 7] [−3, 8.5]
C [−5, 5] [−2, 10] [−3.5, 11] [−3.5, 8.5]
D [−1.5, 10.5] [−5, 6] [−7.5, 7.5] [−6, 6]
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rehabilitating the building are multiple such as modification
in the formation of internal voids by deleting part of the
building or by creating architectural elements and shapes to
which each of these methods is added. &e aim is to reach to
provide the maximum possible space required for the new
activity while giving freedom and flexibility to exploit
existing surfaces, resizing the interior space of the building,
taking into account the proportions between the elements,
height, and scale, ensuring that the essence of the artistic
content is not compromised.

&e desired objectives of reuse and employment of
valuable buildings are numerous, whether they relate to
the archaeological building itself by preserving its heritage
and architectural values or related to its surroundings and
its urban environment or related to the social aspect. We
will address in the research study the means of optimal
reuse of the building in terms of social and the built
environment. &erefore, there are several social and urban
goals for reuse that are clear as follows.

Opening the building of value to the public makes it
relevant to the surrounding environment and enables us to link
the past to the present. &e social goals are given as follows:

Developing the national awareness to preserve the
monumental buildings as a cultural heritage that must
be preserved
Achieving the national social affiliation through fo-
cusing on the symbolic value
Upgrading the general taste of individuals, especially
children
Preserving the historical character of the city and
reinforcing the sense of pride of the citizens
Finding interconnectedness and communication be-
tween the building and its users through the job the
building performs for the surrounding community

Preserving historic buildings aims to protect them as
artistic works and historical evidence. &erefore, it must be
developed and transformed to perform new jobs that meet
the renewable needs of the society and achieve urban and
environmental goals through

Development of the community surrounding the ar-
chaeological building, which helps to preserve the
distinctive urban character of the historic district
Reuse of historical buildings and areas within the
framework of the reality of land use determined by the
city’s planning studies
Forming a merger and cohesion between the old and
new urban fabric of the historical areas of the existing
cities
Achieving the sustainability goals by providing the raw
materials as one of the environmental goals for reuse, as
the reuse of an existing building achieves

&ere is a problem in achieving a balance between
preserving valuable buildings and society benefiting from
them, especially according to previous experiences. So, we
suggest that “in case the cultural job is preserved, it should be

reformulated as part of a development plan that benefits the
residents of the region.” One of the global models for re-
employing valuable buildings, including distinguished
models such as converting the historic Presidio Hospital in
San Francisco, USA, into a residential building that includes
154 apartments, is now a distinctive sign in the region;
dining tables have been placed between pumps, and some
equipment have been added without affecting the original
design of the building.

6.1. Case Study. We present the practical application study
of several valuable buildings of Egypt. We study many places
from the community and the surrounding environment’s
viewpoint, and an economic view, such as the Khedive
Abbas I Palace in the city of Benha, Arab Republic of Egypt.
It was established in the nineteenth century AD and reused
as a school; then, the activity was changed from an edu-
cational to an administrator and reused as an administrative
building for Benha University, see Figure 2.

&e Saffron Palace in Cairo was reused as an adminis-
trative building for Ain Shams University, see Figure 3.

Al-Jazzar Palace, Shibin El-Kom, was reused as an ad-
ministrative building for Menoufia University, see Figure 4.

Al-Jazeera Palace was established by Khedive Ismail to
receive guests at the opening of the Suez Canal in 1869 AD,
and in 1879, the palace was sold to Egyptian Hotels Com-
pany to pay part of the debt of Khedive Ismail and was
transferred to Al-Jazeera Palace Hotel. After the collapse of
the tourist movement in Egypt during the First World War,
the palace was sold in 1919 to one of the Lebanese princes,
Prince Habib Lotfallah, who turned it into a private resi-
dence. In 1962, the palace was nationalized and converted
again to a hotel in the name of Omar Khayyam Hotel. &en,
in the early seventies, Marriott International took over the
management of the hotel (Figure 5).

&e questionnaire was distributed to the users of each
building and the surrounding environment and a group of
specialists to determine the extent of the reality of the new
use of the building and its suitability for the surrounding
community environment and its suitability for its artistic,
symbolic, and architectural value. &e questionnaire was
carried out in two phases: the first stage at the level of
specialists and the suitability of the building for the new
activity in design, urban, and planning and the second phase
of the questionnaire at the level of the surrounding envi-
ronment and the users of the building after changing the
activity. &e questionnaire was divided into four phases of
evaluation for each building activity (inappropriate, ac-
ceptable, appropriate, and very appropriate) which are
shown in Table 18.&e activity that received less than 50% of
the votes is considered inappropriate, the activity that ob-
tained between 50 and 60% of the votes is considered ac-
ceptable, the activity with a percentage ranging from 60 to
80% of the votes is considered appropriate, and the activity
with more than 80% of the votes is a very appropriate ac-
tivity, see Table 19. &e graph indicates the extent of ap-
proval of the new activity of the building according to the
view of the surrounding environment and users which is
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shown in Figure 6. &e flowchart indicates the extent of
approval of the new activity of the building according to the
viewpoint of the specialists which is shown in Figure 7.

&e proposed method was used to solve the application
with the same steps explained before and applied in the il-
lustrative examples. &e results were continuously advising the

Figure 2: Khedive Abbas I Palace.

Figure 3: Saffron Palace.

Figure 4: Al-Jazzar Palace.

Figure 5: Al-Jazeera Palace.
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use of the Khedive Abbas I Palace as an administrative building
for Benha University and searching for a new use of the Saffron
Palace and the use of Al-Jazzar Palace as a cultural building for
Menoufia Governorate and the continuation of the Al-Jazeera
Palace to be used as a hotel building. &is is according to the
view of the surrounding environment, dealers, and specialists.

&e research study resulted in the success of some cases of
reuse of valuable buildings through thinking out of the ordinary
and finding unconventional solutions and the failure of some
attempts through the deterioration of the construction status of
the building and the general condition of the building. &e
principle of community participation must be adopted in de-
veloping plans for reuse operations so that local communities are
involved in all stages of these operations and even make local
communities’ part of them. Also, valuable buildings should be
reused with an activity similar to the original activity for which
the building was established or by studying the needs of the
surrounding environment and adapting the new activity
according to the requirements of the surrounding environment.

7. Conclusions

In this paper, we introduce the modified Hungarian method
for solving the interval and fuzzy AP. It is a novel and simple
algorithm for solving the fuzzy and interval AP. We dis-
cussed finding a solution of an assignment problem in which
cost coefficients are fuzzy numbers or intervals. &e total
optimal cost obtained by our method remains the same as
that obtained by other researchers that convert the fuzzy cost
into a crisp one by applying the ranking method. Also, we
apply the modified Hungarian method in reuse of the
valuable buildings in Egypt by making comparison between
four valuable buildings that are reused in several activities
for reaching the best benefit of building reuse, which should
be matching with the basic purpose of the building and
preserve on the value of the building. &is method may be
used in solving other types of optimization problems such as
project schedules, transportation problems, and network
flow problems.

Table 18: Evaluation for each building activity.
Administrative

building A hotel A cultural building In another activity

I II I II I II I II
Khedive Abbas I Palace Unsuitable Acceptable Suitable Suitable Acceptable Unsuitable Unsuitable Suitable
Saffron Palace Unsuitable Unsuitable Unsuitable Unsuitable Acceptable Suitable Acceptable Suitable
Al-Jazzar Palace Unsuitable Unsuitable Unsuitable Acceptable Suitable Suitable Acceptable Acceptable
Al-Jazeera Palace Unsuitable Suitable Very convenient Very convenient Unsuitable Suitable Acceptable Suitable

Table 19: Comparison of the four palaces.
Administrative A hotel A cultural Another activity

Khedive Abbas I Palace [3, 5.2] 6.5 [4, 5.5] [2, 6.2]
Saffron Palace [1, 2] [1, 4] [5.8, 6.2] [5.4, 6.8]
Al-Jazzar Palace [1, 2.5] [1.8, 5.5] 6.3 5.3
Al-Jazeera Palace [4, 6] 8.2 [4.3, 6.2] [5, 6]

Khedive Abbas
I Palace

Administrative building

9

8

7

6

5

4

3

2

1

0

A hotel

Saffron Palace Al-Jazzar Palace Al-Jazeera
Palace

A cultural building
In another activity

Figure 6: Graph indicating the extent of approval of the new
activity of the building according to the view of the surrounding
environment and users.
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Al-Jazeera
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Figure 7: Flowchart indicating the extent of approval of the new
activity of the building according to the viewpoint of the specialists.
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,is paper presents an attitude control scheme combined with adaptive dynamic programming (ADP) for reentry vehicles with
high nonlinearity and disturbances. Firstly, the nonlinear attitude dynamics is divided into inner and outer loops according to the
time scale separation and the cascade control principle, and a general sliding mode control method is employed to construct the
main controllers for the double loops. Considering the shortage of main controllers in handling nonlinearity and sudden
disturbances, an ADP structure is introduced into the outer attitude loop as an auxiliary. And the ADP structure utilizes neural
network estimators tominimize the cost function and generate optimal signals through online learning, so as to compensate defect
of the main controllers’ adaptability speed and accuracy. ,en, the stability is analyzed by the Lyapunov method, and the
parameter selection strategy of the ADP structure is derived to guide implementation. In addition, this paper puts forward skills to
speed up ADP training. Finally, simulation results show that the control strategy with ADP possesses stronger adaptability and
faster response than that without ADP for the nonlinear vehicle system.

1. Introduction

Attitude control for reentry vehicles has been a hotspot in
the field of aerospace.,e complex operating conditions and
the high nonlinearity of vehicles themselves bring great
challenges to attitude control. Fortunately, around these
focuses, researchers continue to explore and ameliorate
control schemes, developing a series of available control
technologies.

For the control of space vehicles, some schemes have
been investigated one after another. Some linear control
methods, such as linear parameter varying (LPV) [1] and
linear quadratic regulator (LQR), focus on linearizing the
aircraft model. However, due to the highly nonlinear and
coupling dynamic characteristics, to be honest, the capa-
bilities of these linear control methods on actual nonlinear
coupling vehicles are limited. Besides, some nonlinear
control methods are widely employed, such as nonlinear
dynamic inversion [2], sliding mode control, and back-
stepping method [3, 4]. Although these nonlinear control

techniques can also effectively deal with the nonlinear nature
of vehicles, they will still be slightly embarrassed and lack
adaptability in the face of complex and changeable distur-
bances if without other auxiliary means. ,erefore, in the
recent development of vehicle control, more and more
adaptive technologies have been favoured by researchers [5].

For the purpose of ameliorating the robustness of the
controller by designing adaptive mechanism, observer-based
adaptive control technology and other intelligent methods
(as adaptive fuzzy control and iterative learning) have
emerged one after another [6–8]. Especially, in recent years,
thanks to the vigorous development of new artificial intel-
ligence, reinforcement learning (RL) has attracted more and
more attention, which has shown strong performance in
solving adaptive and optimal control problems [9–11]. In the
control domain, reinforcement learning is transformed into
approximate or adaptive dynamic programming (ADP),
which learns by interacting with the environment to de-
termine what optimal actions to take to minimize a cost
function over a period of time [12]. One of the core
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approaches is the critic-action (CA) design, which ap-
proximates the cost function and obtains the optimal actions
by solving the Hamilton–Jacobi–Bellman equation with
function estimators [13]. ADP contains a variety of struc-
tural classifications, including heuristic [14], dual heuristic
[15], and action-dependent dynamic programming
(ADHDP), etc., which have been made preliminary explo-
rations and achievements in the field of vehicle control [16].
Specifically, Luo et al. developed a direct heuristic dynamic
programming (dHDP) for longitudinal control of hyper-
sonic vehicles and introduced fuzzy neural networks to
enhance the learning ability and robustness of dHDP [17].
,ere is also an application of ADDHP to study the optimal
control of attitude maneuver for three-axis spacecraft [18].
Some creative researchers improve ADP by redefining the
two optimization objectives and apply ADP to the in-orbit
reconfiguration of the vehicle attitude system under mul-
titask constraints through dual optimization indexes [19].
Moreover, ADP can be associated with traditional methods,
such as nonlinear filter [20] and sliding mode control [21], to
implement a data-driven ADHDP auxiliary control scheme
for the speed and altitude system of an air-breathing hy-
personic vehicle [21]. In [22], a switching adaptive active
anti-interference control technique based on reduced-order
observer technique and ADP is proposed, considering the
parameter uncertainty and external disturbance of variable
structure near-space vehicles. Furthermore, aiming at the
guidance and control problem of the vertical take-off and
landing (VTOL) system with multivariable disturbances, an
online kernel DHP robust control strategy based on the
sparse kernel theory is designed for VTOL vehicles [23].
Most of the above control strategies with ADP utilize neural
network estimators to approximate the cost function and
optimal control law online, while Zhou et al. creatively put
forward an incremental ADP (iADP) combining the ad-
vantages of the incremental control method and ADP [24].
,is iADP is based on Markov decision-making process and
Bellman optimal principle to directly derive the explicit
expression of optimal control law, greatly simplifying the
design process of ADP, and successfully exploited to satellite
[25] and aircraft [26]. Similarly, Sun and van Kampen also
come up with an incremental model-based DHP technology

for vehicle control, replacing the model network in tradi-
tional DHP with an incremental model [27, 28].

In a word, the development of ADP in the field of vehicle
control is rapidly deepening and expanding [16], but as far as
the current literature is concerned, ADP is still rarely applied
to the control of all three channels’ attitude angles of the
vehicle. Moreover, most of the literature rarely mentions the
internal weight convergence, parameter selection, training
speed, and other issues of ADP based on critic-action
networks, but these are problems to be concerned about.
,erefore, this paper contributes to employ the ADP
framework to the control of all three-channel attitude angles
of a reentry vehicle. Inspired by the ADP as an auxiliary
controller [21], this paper presents a framework combining
conventional controller and ADP, and ADP is as the aux-
iliary means to enhance the rapidity and adaptivity of the
whole attitude system. In addition, the internal convergence
of the ADP structure and its parameter selection rules are
discussed in depth. Aiming at the implementation problem,
this paper considers the improvement measures to speed up
ADP training, which will be provided to interested re-
searchers for future discussion.

,e rest of this paper is organized as follows. Firstly, the
nonlinear dynamics of the three-channel attitude control
system of the reentry vehicle is established in Section 2.
,en, in Section 3, the control strategy based on the dual-
loop main controller plus ADP is elaborated in detail. In
Section 4, some issues about implementation are taken into
consideration. Finally, the simulations and conclusions are
presented in Sections 5 and 6, respectively.

2. Nonlinear Model

To describe the attitude change of the reentry phase, we give
the rotation equations of the vehicle around the center of
mass, including rotation dynamics and attitude kinematics.
,ey determine the attitude angles of the vehicle around the
center of mass and the angular rate of the three channels
during the flight. Considering the influence of Earth rotation
on attitude control, a three degree of freedom nonlinear
attitude model in the body coordinate system can be ob-
tained [29]:

_α � − p cos α tan β + q − r sin α tan β

+
sin μ
cos β

􏼠 􏼡 − _ϕ sin χ sin ϑ + _χ cos ϑ + _θ +ΩE􏼐 􏼑(cos ϕ cos χ sin ϑ − sinϕ cos ϑ)􏼐 􏼑

−
cos μ
cos β

􏼠 􏼡 _ϑ − _ϕ cos χ − _θ +ΩE􏼐 􏼑cos ϕ sin χ􏼐 􏼑,

_β � p sin α − r cos α + sin μ _ϑ − _ϕ cos χ + _θ +ΩE􏼐 􏼑cos ϕ sin χ􏼐 􏼑
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+ cos μ − _θ +ΩE􏼐 􏼑(cosϕ cos χ sin ϑ − sinϕ cos ϑ) + _χ cos ϑ − _ϕ sin χ sin ϑ􏼐 􏼑,

_μ � − p cos α cos β − q sin β − r sin α cos β + _α sin β

− _χ sin ϑ − _ϕ sin χ cos ϑ + _θ +ΩE􏼐 􏼑(sin ϕ sin ϑ + cos ϕ cos χ cos ϑ),

_p �
I�Mx

IxxIzz − I
2
xz

􏼠 􏼡 +
IxzMz

IxxIzz − I
2
xz

􏼠 􏼡 +
Ixx − Iyy + Izz􏼐 􏼑Ixz

IxxIz − I
2
xz

⎛⎝ ⎞⎠pq +
Iyy − Izz􏼐 􏼑Izz − I

2
xz

IxxIzz − I
2
xz

⎛⎝ ⎞⎠qr,

_q �
My

Iyy

􏼠 􏼡 +
Ixz

Iyy

􏼠 􏼡 r
2

− p
2

􏼐 􏼑 +
Izz − Ixx

Iyy

􏼠 􏼡pr,

_r �
IxzMx

IxxIzz − I
2
xz

􏼠 􏼡 +
IxxMz

IxxIzz

􏼠 􏼡 +
Ixx − Iyy􏼐 􏼑Ixx − I

2
xz

IxxIzz − I
2
xz

⎛⎝ ⎞⎠pq +
Iyy − Ixx − Izz􏼐 􏼑Ixz

IxxIzz − I
2
xz

⎛⎝ ⎞⎠qr,

(1)

where α, β, and μ represent the angle of attack, sideslip,
and bank angle, respectively; p, q, and r are the roll, pitch,
and yaw rate, respectively. And Mx, My, andMz denote
the roll, pitch, and yaw control torques, respectively;
Iij(i � x, y, z; j � x, y, z) is rotational inertia. ϕ, θ, χ, and ϑ
are longitude, latitude, heading angle, and flight path
angle, respectively; ΩE is the Earth rotation angular
velocity.

In actual control, vehicles can be regarded as an ideal
rigid body. Considering that the rotation rate of the Earth is
far less than that of vehicles, the rotation of the Earth is
ignored. Besides, orbital motion is much slower than atti-
tude motion, so the orbital motion terms of vehicles are
described as _ϕ � _θ � _ϑ � _χ � 0. Finally, simplified dynamics
can be obtained:

_α � − p cos α tan β + q − r sin α tan β,

_β � p sin α − r cos α,

_μ � − p cos α cos β − q sin β − r sin α cos β.

(2)

Above attitude kinematics equation (2) is abbreviated as

_c � Γ(·)ω, (3)

where c � [α, β, μ]T ∈ R3 and ω � [p, q, r]T ∈ R3. Γ ∈ R3×3

are defined as

Γ �

− cos α tan β 1 − sin α tan β

sin α 0 − cos α

− cos α cos β − sin β − sin α cos β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

Similarly, rotational dynamics can be simplified as

_ω � − I
− 1ΩIω + I

− 1
Mc, (5)

where I ∈ R3×3 denotes inertial matrix; Mc � [Mx, My,

Mz]T ∈ R3 is a vector of control torques. Ω ∈ R3×3 and
I ∈ R3×3 are defined as

I �

Ixx − Ixy − Ixz

− Ixy Iyy − Iyz

− Ixz − Iyz Izz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ω �

0 − r q

r 0 − p

− q p 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(6)

If there exist external disturbances, d1 and d2 are in-
troduced into the vehicle system as follows:

_c � Γ(·)ω + d1,

_ω � − I
− 1ΩIω + I

− 1
Mc + d2,

􏼨 (7)

where d1 ∈ R3 and d2 ∈ R3 represent external disturbances.
Obviously, the attitude tracking control problem of the

reentry vehicles can be described as

lim
t⟶∞

α − αd

����
���� � 0,

lim
t⟶∞

β − βd

����
���� � 0,

lim
t⟶∞

μ − μd

����
���� � 0.

(8)

3. Controller Design

In the previous section, the nominal attitude model of the
reentry vehicle has been established by equations (3) and (5),
which can be reorganized as equations (9a) and (9b). ,is
section will devise a controller with an auxiliary according to
this vehicle model:

_c � Γ(·)ω, (9a)

_ω � − I
− 1ΩIω + I

− 1
Mc. (9b)

It is well known that the attitude angles change more
slowly than the angular rate. ,erefore, according to the
principle of time scale separation and cascade control,
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equations (9a) and (9b) can be divided into attitude angle
slow loop equation (9a) and angle rate fast loop equation
(9b), also known as outer loop and inner loop, respec-
tively. In this section, the ADP-based controller will be
presented, and the overall control strategy is shown in
Figure 1.

As shown in Figure 1, there are two control loops. ,e
outer loop is an attitude control loop with two controllers.
,e controller 1 generates the main angular rate instruction
ωs according to the guidance instruction cd, and the ADP
controller outputs the control instruction uADP according to
the attitude angle error; both of which together yield the
angular rate ωc. ,en, ωc is a reference instruction for the
inner angular rate loop so that the controller 2 of the inner
loop generates the control torque Mc, which acts on the
vehicle to output the actual attitude angles and complete the
control task.

In this paper, the inner controller 1 and outer loop
controller 2 are implemented based on conventional sliding
mode control and serve as the main controllers. To increase
the performance of the main controller of the outer loop, the
ADP controller acts as an auxiliary and adopts an action-
dependent structure such as ADHDP. Note that ADHDP
belongs to the category of ADP, so it is called ADP in this
paper. ,e output of the ADP serves as a supplementary
reference signal for the inner loop. ,e focus of this paper is
to discuss the auxiliary role of ADP structure. Of course, the
main controllers can also choose other methods to design,
but how to select the main controllers is not the focus of this
paper. It should be pointed out that only the ADP auxiliary
controller is introduced into the outer loop, mainly because
the outer loop variable is the attitude angle and the inner
loop variable is the angular rate, and the attitude angle
changes slowly than the angular rate. ,erefore, in each
iteration, the iterative speed of the ADP is more easily
matched with the update speed of the main controller 1.
Perhaps we can similarly introduce the ADP auxiliary
controller with the same structure into the inner loop, and its
rationality and effectiveness will be researched and verified
in future work.

In the following subsections: according to cascade control
strategy, the outer loop controllers are first designed, including
the main controller 1 and the ADP-based auxiliary controller.
After the reference command signalωc is obtained by the outer
loop controllers, the inner loop controller 2 is presented.

3.1. Outer Loop Controllers

3.1.1. Main Controller 1. ,e control objective of the outer
loop is to operate the actual attitude angle c to track cd

within the desired accuracy. First, take the tracking error
ec � cd − c ∈ R3.,e sliding switching surface Sc ∈ R3 of the
outer loop can be selected as

Sc � Sc1, Sc2, Sc3􏽨 􏽩
T

� ec + ρc 􏽚
t

0
ecdτ, (10)

where ρc � diag ρc1, ρc2, ρc3􏽮 􏽯 ∈ R3×3 and ρci > 0, i � 1, 2, 3
are the parameters to be designed [30]. Obviously, on the
sliding surface Sc � 0, the tracking error ec can be guar-
anteed to converge uniformly, that is,

Sc � ec + ρc 􏽚
t

0
ecdτ � 0. (11)

In order to ensure the asymptotic convergence of the
outer loop tracking error to the sliding surface, the virtual
control law must be designed. First, take the derivative of
Sc as

_Sc � _ec + ρcec

� _cd − _c + ρcec

� _cd − Γω + ρcec.

(12)

Take the following Lyapunov function:

L1 �
1
2

􏼒 􏼓S
T
c Sc > 0, (13)

and the derivative of L1 is as

_L1 � S
T
c

_Sc. (14)

By Lyapunov stability, _L1 < 0 has to be guaranteed.
,erefore, the sliding mode approach law can be chosen as

_Sc � − τcsign Sc􏼐 􏼑, (15)

where designed parameter τc > 0 and sign(Sc) �

[sign(Sc1), sign(Sc2), sign(Sc3)]
T denotes a sign function.

According to equations (12) and (15), there exists

_cd − Γω + ρcec � − τcsign Sc􏼐 􏼑. (16)

So, the virtual control law of the outer loop can be
obtained as follows:

ωs � Γ− 1
_cd + ρcec + τcsign Sc􏼐 􏼑􏼐 􏼑. (17)

In order to avoid or reduce the sliding mode chattering
caused by the sign function in equation (17), a smooth
continuous function can be adopted instead of the sign
function. Because the saturation function is one of the most
simple and effective ways, the virtual control law is rede-
signed as follows:

ωs � Γ− 1
_cd + ρcec + τcsat

Sc

ξc

􏼠 􏼡􏼠 􏼡, (18)

where sat(Sc/ξc) � [sat(Sc1/ξc), sat(Sc2/ξc), sat(Sc3/ξc)]T

denotes a saturation function with width ξc > 0 as
follows:
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sat
Sci

ξc

􏼠 􏼡

(i�1,2,3)

�

1, Sci > ξc􏼐 􏼑,

Sci

ξc

􏼠 􏼡, Sci

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ξc􏼒 􏼓,

− 1, Sci < − ξc􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

,erefore, according to control law equation (18), the
attitude angles can track the commands, and the error ec

uniformly converges. Next, ωs will be provided as the main
reference signal to the inner loop.

3.1.2. ADP Auxiliary Controller. ,e idea of ADP is to take
advantage of the function estimators to approximate the per-
formance index functions and control strategies that meet the
principle of optimality. By designing a critic-action structure, the
critic network approximates the performance index J (the cost
function) and J is defined as the forward accumulation of the
utility function U with the discount factor λ [20, 21]:

J(k) � 􏽘
∞

i�k

λi− k
U(i), (20)

where U is usually defined as a quadratic. It can be seen that
the cost function is also a quadratic convex function, with
only a local minimum and at the same time a global min-
imum. ,e action network obtains the optimal control law
u∗ by minimizing J:

u
∗
(k) � argmin

u(k)
U(k) + λJ(k + 1){ }. (21)

In this paper, only the auxiliary ADP controller is added
to the outer loop to compensate for the attitude angle error
generated by the main controller 1. ADP outputs uADP (uADP
has the same dimension as ωs), and the sum of uADP and ωs

inputs as a reference instruction to the inner loop. Obvi-
ously, the ADP controller is sensitive to the attitude angle
error. It can be imagined that ADP will start to work when a
certain error occurs; when the error meets the threshold
requirements, the ADP does not need to work, which will
balance the loss in accuracy and calculation speed. However,
this does not seem to be the focus of this paper. It may be
discussed in future research, such as the selection and op-
timization of the threshold.

In Figure 2, ADP adopts a network structure based on
ADHDP, which includes an action network, a critic network,
and attitude model (9a). ,e input of ADP is the attitude
error, and the action network generates the control signal
uADP. At the same time, the critic network approximates J.
,e specific design of each network is given below.

(1) Critic Network. In Figure 3, the critic network uses a
single hidden-layer BP neural network with six input nodes,
M hidden nodes, and one output node. ,e input contains
the attitude angle error Δc and uADP generated by the action
network.,e output is the estimated 􏽢J of the cost function J.
Wc1 ∈ RM×6 is the weight matrix of the input layer to the
hidden layer and Wc1ji(i � 1, . . . , 6; j � 1, . . . , M) repre-
sents the weight of the i-th input node to the j-th hidden
node. Wc2 ∈ R1×M is the weight matrix from the hidden-to-
output layer, and Wc2j, j � 1, . . . , M represents the con-
nection weight of the j-th hidden node to the output.
Ch1 ∈ RM×1 and Ch2 ∈ RM×1 are the input and output
vectors of hidden nodes, respectively. ,e active functions of
the hidden layer and the output layer are a bipolar sigmoid
function and linear function, respectively. ,e attitude error
is as follows:

Δc � [Δα,Δβ,Δμ]
T

� αd − α, βd − β, μd − μ􏼂 􏼃
T
. (22)

,e input of the critic network is INc ∈ R6×1 as

INc � Δc;ΔuADP􏼂 􏼃

� Δα,Δβ,Δμ, uADP(1), uADP(2), uADP(3)􏼂 􏼃
T
.

(23)

,e training of the critic network consists of two parts,
one is the forward calculation, and the other is the error
backpropagation of updating network weights. ,e forward
process of step k is

Ch1j(k) � 􏽘
6

i�1
INci(k) · Wc1ji(k), j � 1, 2, . . . , M,

Ch2j(k) �
1 − e

− Ch1j(k)

1 + e
− Ch1j(k)

, j � 1, 2, . . . , M,

􏽢J(k) � 􏽘
M

j�1
Ch2j(k) · Wc2j(k), j � 1, 2, . . . , M.

(24)

γ
+

Fast loop
controller 2 Vehicle

Mc
Slow loop

controller 1
∑

ADP
controller

–

ω

γd ωc

uADP

ωs

Outer loop Inner loop

Figure 1: Dual-loop control structure based on ADP.
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Equation (24) can be rewritten in matrix form as

Ch1(k) � Wc1 · INc,

Ch2(k) �
(1 − e)

− Ch1(k)

(1 + e)
− Ch1(k)

,

􏽢J(k) � Wc2(k) · Ch2(k).

(25)

Based on the Bellman optimality principle, the critic
network approximates the cost function of the system. ,e
actual J(k) is defined as the cumulative return from the
current state to the future:

J(k) � 􏽘
∞

i�k

λi− k
U(i), (26)

where λ ∈ (0, 1) is a discount factor or forgetting factor,
indicating the influence of the future state on the current
strategy. U is the utility function at each step, which is
defined as a quadratic:

U(k) � ΔcT
(k)ΛΔc(k),

Λ � diag σ, σ, σ{ }, σ > 0.

⎧⎨

⎩ (27)

,e following error Ec can be defined, and the critic
network can approximate J by minimizing Ec:

Ec �
1
2

􏼒 􏼓e
2
c ,

ec � 􏽢J(k) − U(k + 1) − λ􏽢J(k + 1).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(28)

,erefore, network weights can be updated through
backpropagation of Ec.

(2) Updating the Weights Wc2. Using the gradient descent
method, let ΔWc2 be the gradient, so

Wc2(k + 1) � Wc2(k) + ΔWc2(k), (29)

where each component of ΔWc2 is represented as

ΔWc2j(k) � ζc(k) · −
zEc(k)

zWc2j(k)
􏼠 􏼡, j � 1, . . . , M

� − ζc(k)
zEc(k)

z􏽢J(k)

z􏽢J(k)

zWc2j(k)
, j � 1, . . . , M

� − ζc(k) · ec(k) · Ch2j(k), j � 1, . . . , M,

(30)

where ζc(k) ∈ (0, 1) is the learning rate. Equation (30) is
combined and rewritten into a matrix form as

ΔWc2(k) � − ζc(k) · ec(k) · Ch2T(k). (31)

(3) Updating the Weights Wc1. Similarly, let ΔWc1 be the
gradient, so

Action
network

Subsystem
equation (9a) Critic

network

–

+

∆γ (k)
uADP (k)

∆γ (k + 1)

uADP (k + 1)

μ
U (k + 1)Ĵ  (k + 1)

Ĵ  (k)Critic
network

Figure 2: Structure of the ADP controller.

...uADP (1)

uADP (3)

...
...

Wc1

Wc2

Ch1 Ch2

∆α

∆μ
Ĵ

Figure 3: Structure of the critic network.
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Wc1(k + 1) � Wc1(k) + ΔWc1(k),

ΔWc1ji(k) � ζc(k) · −
zEc(k)

zWc1ji(k)
􏼠 􏼡,

i � 1, . . . , 6

j � 1, . . . , M

� − ζc(k)
zEc(k)

z􏽢J(k)

z􏽢J(k)

zCh2j(k)

zCh2j(k)

zCh1j(k)

zCh1j(k)

zWc1ji(k)

� − ζc(k) · ec(k) · Wc2j(k) ·
1
2

􏼒 􏼓 1 − Ch22j(k)􏽨 􏽩 · INci(k).

(32)

Combine the above formula into a simplified matrix
form as follows:

ΔWc1(k) � −
1
2

􏼒 􏼓 · ζc(k) · ec(k)

· Wc2T(k) ×[1 − Ch2(k) × Ch2(k)]􏽮 􏽯 · INcT(k),

(33)

where the symbol “×” represents the Hadamard product of
two matrices, that is, bitwise multiplication; “·” represents
the ordinary multiplication of matrices. ,ese symbols
appearing in the later parts of this paper possess the same
meaning.

(4) Action Network. As shown in Figure 4, the action net-
work adopts a single hidden-layer BP neural network with
three input nodes, N hidden nodes, and three output nodes.
,e network’s input is INa � Δc ∈ R3×1, and output is
uADP ∈ R3×1. Other parameters are defined similarly to the
critic network.,e active functions of the hidden and output
layer are a bipolar sigmoid function and linear function,
respectively.

,e training of the action network also includes forward
calculation and error backpropagation. Firstly, the forward
process is briefly presented as

Ah1(k) � Wa1 · INa,

Ah2(k) �
(1 − e)

− Ah1(k)

(1 + e)
− Ah1(k)

,

uADP(k) � Wa2(k) · Ah2(k).

(34)

,e action network generates an optimal control strategy
by minimizing the system cost function J. ,is goal can be
achieved by minimizing the defined error Ea:

Ea(k) �
1
2

􏼒 􏼓e
2
a(k),

ea(k) � 􏽢J(k).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(35)

(5) Updating the Weights Wa2. With the gradient descent
method, the update process of Wa2 is

Wa2(k + 1) � Wa2(k) + ΔWa2(k),

ΔWa2(k) � ζa(k) · −
zEa(k)

zWa2(k)
􏼠 􏼡,

(36)

where ζa(k) represents the learning rate. ,e connection
weight from the j-th hidden node to the ith output node is
denoted as Wa2ij(i � 1, 2, 3; j � 1, . . . , N), so

Wa2ij(k + 1) � Wa2ij(k) + ΔWa2ij(k),
i � 1, 2, 3

j � 1, . . . , N
,

(37)

ΔWa2ij(k) � ζa(k) · −
zEa(k)

zea(k)

zea(k)

z􏽢J(k)

z􏽢J(k)

zWa2ij(k)
􏼠 􏼡

� ζa(k) · − ea(k)
z􏽢J(k)

zuADPi(k)

zuADPi(k)

zWa2ij(k)
􏼠 􏼡

� − ζa(k) · ea(k) ·
z􏽢J(k)

zuADPi(k)
· Ah2j(k).

(38)

,e middle term (z􏽢J(k)/zuADPi(k)) in equation (38)
indicates that the path of the backpropagated signal passes
through the critic network when training the action network
[31]. Furthermore, by the output and input of the critic
network, (z􏽢J(k)/zuADPi(k)) can be obtained:

z􏽢J(k)

zuADP(k)
�

z􏽢J(k)

zCh2(k)

zCh2(k)

zCh1(k)

zCh1(k)

zuADP(k)
. (39)
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So,

z􏽢J(k)

zuADPi(k)
� 􏽘

M

j�1

z􏽢J(k)

zCh2j(k)

zCh2j(k)

zCh1j(k)

zCh1j(k)

zuADPi(k)
􏼠 􏼡, i � 1, 2, 3

� 􏽘
M

j�1
Wc2j(k) ·

1
2

􏼒 􏼓 1 − Ch22j(k)􏼐 􏼑 · Wc1(j,i+3)(k)􏼒 􏼓

�
1
2

􏼒 􏼓 · Wc1(:,i+3)
T
(k) · Wc2T(k) ×(1 − Ch2(k) × Ch2(k))􏼐 􏼑,

(40)

where Wc1(: ,i+3) represents the (i+ 3)-th column of Wc1.
Equation (40) can be rewritten in matrix form:

z􏽢J(k)

zuADP(k)
�

1
2

􏼒 􏼓 · Wc1uADP

T
(k)

· Wc2T(k) ×(1 − Ch2(k) × Ch2(k))􏼐 􏼑,

(41)

where Wc1uADP
� Wc1(: , 4: 6) represents columns 4 to 6 of

Wc1, that is, the connection weights of the three input nodes
corresponding to uADP and all hidden nodes in the critic
network. From equations (37)–(41), ΔWa2 can be deduced
as

ΔWa2(k) � ζa(k) · −
zEa(k)

zea(k)

zea(k)

z􏽢J(k)

z􏽢J(k)

zWa2(k)
􏼠 􏼡

� − ζa(k) · ea(k) ·
z􏽢J(k)

zuADP(k)
· Ah2T(k)

� −
1
2

􏼒 􏼓 · ζa(k) · ea(k) · Wc1uADP

T
(k) · Wc2T(k) ×(1 − Ch2(k) × Ch2(k))􏼐 􏼑􏽮 􏽯 · Ah2T(k).

(42)

(6) Updating the Weights Wa1. Similar to the Wa2, the
update of Wa1 is

uADP (1)
∆α

∆β

∆μ

uADP (2)

uADP (3)

Wa1 Wa2

Ah1 Ah2

Figure 4: Structure of the action network.
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Wa1(k + 1) � Wa1(k) + ΔWa1(k), (43)

ΔWa1(k) � ζa(k) · −
zEa(k)

zWa1(k)
􏼠 􏼡

� ζa(k) · −
zEa(k)

zea(k)

zea(k)

z􏽢J(k)

z􏽢J(k)

zuADP(k)

zuADP(k)

zAh2(k)

zAh2(k)

zAh1(k)

zAh1(k)

zWa1(k)
􏼠 􏼡

� − ζa(k) · ea(k) · Wa2T(k) ·
z􏽢J(k)

zuADP(k)
􏼠 􏼡 ×

1
2

· (1 − Ah2(k) × Ah2(k))􏼒 􏼓􏼨 􏼩 · INaT(k).

(44)

Substituting equation (41) into equation (44), ΔWa1 can
be easily obtained.

So far, the training process is completed. And the op-
timal control signal uADP output by the action network will
be combined with ωs output by outer loop main controller 1,
that is

ωc � ωs + uADP, (45)

where the angular rate signal ωc ∈ R3×1 will be input as the
reference command of the inner loop controller 2, and the
control torque Mc output by controller 2 will operate the
vehicle to complete the attitude control task.

3.2. Inner Loop Controller. To ensure that the actual angular
rateω can stably track the expected reference angular rateωc,
similar to controller 1, the sliding variable is selected for
inner loop controller 2 as follows:

Sω � Sω1, Sω2, Sω3􏼂 􏼃
T

� eω + ρω 􏽚
t

0
eωdτ, (46)

where eω � ωc − ω ∈ R3×1 and
ρω � diag ρω1, ρω2, ρω3􏼈 􏼉 ∈ R3×3 with ρωi > 0, i � 1, 2, 3. In
order to ensure the inner loop tracking error eω asymp-
totically converges to the sliding surface Sω � 0, the actual
control law M has to be designed.

,e derivative of Sω is
_Sω � _eω + ρωeω

� _ωc + I
− 1ΩIω − I

− 1
Mc + ρωeω.

(47)

Take the following Lyapunov function L2:

L2 �
1
2

􏼒 􏼓S
T
ωSω > 0,

_L2 � S
T
ω

_Sω.

(48)

By Lyapunov stability, _L2 < 0 has to be guaranteed.
,erefore, the dynamics _Sω can be chosen as

_Sω � − τωsign Sω( 􏼁, (49)

where designed parameter τω > 0 and
sign(Sω) � [sign(Sω1), sign(Sω2), sign(Sω3)]

T denotes a sign
function.

According to equations (47) and (49), there exists

_ωc + I
− 1ΩIω − I

− 1
Mc + ρωeω � − τωsign Sω( 􏼁. (50)

So, the actual control law of the inner loop can be ob-
tained as follows:

Mc � I _ωc +ΩIω + Iρωeω + τωI · sign Sω( 􏼁. (51)

Similarly, a continuous saturation function is chosen to
replace the sign function to reduce the chattering.,erefore,
the actual control law is rewritten as follows:

Mc � I _ωc +ΩIω + Iρωeω + τωI · sat
Sω

ξω
􏼠 􏼡. (52)

where sat(Sω/ξω) � [sat(Sω1/ξω), sat(Sω2/ξω), sat(Sω3/ξω)]T

denotes a saturation function with width ξω > 0.
,erefore, for actual control law as equation (52), _L2 < 0

holds. ,at is, the actual attitude angular rate ω converges
asymptotically to the expected angular rate ωc.

4. Implementation Issues

In Section 3, the design of ADP auxiliary controller is
completed, but the parameter selection and training speed of
ADP cannot be ignored in practical application. So, in this
section, some issues are discussed about implementation of
ADP structure, including parameter selection for networks
and skills related to speed up training.

4.1. Network Parameters and Eeir Convergence. It is clear
that the critic network with a single hidden layer and
randomly initialized weights can approximate J with arbi-
trarily small errors, that is, limk⟶∞‖􏽢J(k) − J(k)‖ � 0.
Similarly, the action network with randomly initialized
weights can minimize the cost function 􏽢J and its output can
approximate to the optimal control law u∗ADP, that is,

u
∗
ADP � argmin

u∗ADP

‖􏽢J‖. (53)

In other words, both the critic network and action
network evolve towards the optimal direction to achieve
their goals. Furthermore, considering equations (25) and
(34), it is because of the adjustment of network weights Wc1,
Wc2, Wa1, andWa2 that the output of the networks reaches
the desired optimal value. ,at is, when the optimal control
strategy u∗ADP is obtained, the network weights will also reach
the optimal weights as follows [32]:
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Wc∗ � argmin
Wc

‖􏽢J(k) − U(k + 1) − λ􏽢J(k + 1)‖,

Wa∗ � argmin
Wa

‖􏽢J(k)‖,

⎧⎪⎪⎨

⎪⎪⎩
(54)

where Wc∗ and Wa∗ represent the optimal weights of the
critic and action network, respectively.

Lemma 1. In critic and action network, the weights Wc and
Wa are finally uniformly stable and approach the optimal
weights Wc∗ and Wa∗.

Proof. It is well known that the weights of the input to
hidden layer are similar to the weights of the hidden to
output layer. In order to facilitate the elaboration, this paper
only presents the uniform stability proof about Wc2 and
Wa2, which are the weights of the hidden to output layer. Let

the optimal weights corresponding to Wc2 and Wa2 be
Wc2∗ and Wa2∗, respectively, and they are bounded.
‖Wc2∗‖≤ κc, ‖Wa2∗‖≤ κa, and κc, κa are positive constants.

Equation (28) can be rewritten as

Ec(k) �
1
2

􏼒 􏼓e
2
c(k),

ec(k) � λ􏽢J(k) − (􏽢J(k − 1) − U(k))

� λ · Wc2(k) · Ch2(k) − (λ · Wc2(k − 1)

· Ch2(k − 1) − U(k)).

(55)

From equations (29) to (31), the update of Wc2 can be
rewritten as follows:

Wc2(k + 1) � Wc2(k) + ΔWc2(k)

� Wc2(k) + − ζc(k) ·
zEc(k)

zec(k)

zec(k)

z􏽢J(k)

z􏽢J(k)

Wc2(k)
􏼠 􏼡

� Wc2(k) − λ · ζc(k) · (λ · Wc2(k)

· Ch2(k) − ((λ · Wc2(k − 1)) · Ch2(k − 1)

− U(k))) · Ch2T(k).

(56)

Similarly, the update of Wa2 is

Wa2(k + 1) � Wa2(k) + ΔWa2(k),

� Wa2(k) + ζa(k) · −
zEa(k)

zWa2(k)
􏼠 􏼡

� Wa2(k) −
1
2

􏼒 􏼓 · ζa(k) · ea(k) · Wc1uADP

T
(k) · Wc2T(k) ×(1 − Ch2(k) × Ch2(k))􏼐 􏼑􏽮 􏽯 · Ah2T(k)

� Wa2(k) −
1
2

􏼒 􏼓 · ζa(k) · 􏽢J(k) · Θ(k) · Wc2T(k) · Ah2T(k)􏼐 􏼑

� Wa2(k) −
1
2

􏼒 􏼓 · ζa(k) · (Wc2(k) · Ch2(k)) · Θ(k) · Wc2T(k) · Ah2T(k)􏼐 􏼑,

(57)

where Θ(k) � Wc1uADP
T(k) × 1 − Ch2(k) × Ch2(k) 1−􏼂

Ch2(k) × Ch2(k)1 − Ch2(k) × Ch2(k)]T.

First, the Lyapunov method is adopted to analyse the
convergence of Wc2:

Vc(k) �
1

ζc(k)
tr 􏽥Wc2(k) 􏽥Wc2T(k)􏼐 􏼑, (58)

where 􏽥Wc2(k) � Wc2(k) − Wc2∗(k) is the error between
actual and optimal weights. ,en, the first-order difference
of Vc is expressed as

ΔVc(k) �
1

ζc(k)
tr 􏽥Wc2(k + 1) 􏽥Wc2T(k + 1)􏼐

− 􏽥Wc2(k) 􏽥Wc2T(k)􏼑.

(59)
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According to equation (56), (60) can be obtained:
􏽥Wc2(k + 1) � Wc2(k + 1) − Wc2∗

� Wc2(k) − λ · ζc(k) · [λ · Wc2(k) · Ch2(k) − (λ · Wc2(k − 1) · Ch2(k − 1) − U(k))] · Ch2T(k) − Wc2∗

� 􏽥Wc2(k) − λ · ζc(k) · λ · 􏽥Wc2(k) + Wc2∗( 􏼁 · Ch2(k) − (λ · Wc2(k − 1) · Ch2(k − 1) − U(k))􏼂 􏼃 · Ch2T(k)

� 􏽥Wc2(k) · I − λ2 · ζc(k) · Ch2(k)Ch2T(k)􏼐 􏼑 − λ · ζc(k) · λ · Wc2∗ · Ch2(k) − (λ · Wc2(k − 1)􏼂

· Ch2(k − 1) − U(k))] · Ch2T(k).

(60)

In addition, denote the approximation error between
actual and optimal output as

δc(k) � Wc2(k) − Wc2∗( 􏼁 · Ch2(k) � 􏽥Wc2(k) · Ch2(k).

(61)

Substituting equations (60) and (61) into equation (59),
ΔVc(k) can be deduced:

ΔVc(k) � − λ2 δc(k)
����

����
2

− λ2 1 − λ2 · ζc(k)‖Ch2(k)‖
2

􏼐 􏼑

· δc(k) + Wc2∗ · Ch2(k) +
1
λ

􏼒 􏼓U(k) −
1
λ

􏼒 􏼓Wc2(k − 1) · Ch2(k − 1)

�������

�������

2

+ λ · Wc2∗ · Ch2(k) + U(k) − Wc2(k − 1) · Ch2(k − 1)
����

����
2
.

(62)

Furthermore, applying the Cauchy–Schwarz inequality
[33], it can be deduced as

ΔVc(k)≤ − λ2 δc(k)
����

����
2

− λ2 1 − λ2 · ζc(k)‖Ch2(k)‖
2

􏼐 􏼑 δc(k) + Wc2∗ · Ch2(k) +
1
λ

U(k) −
1
λ
Wc2(k − 1) · Ch2(k − 1)

�������

�������

2

+ 2 λ · Wc2∗ · Ch2(k) + U(k) −
1
2
Wc2(k − 1) · Ch2(k − 1) −

1
2
Wc2∗ · Ch2(k − 1)

�������

�������

2
+
1
2
δc(k − 1)

����
����
2
.

(63)

Similarly, set Va(k) � (1/ψζa(k))tr( 􏽥Wa2(k) 􏽥Wa2T(k)),
(ψ > 0).

Denote the approximation error of the action network
between the actual and optimal output as

δa(k) � (Wa2(k) − Wa2∗) · Ah2(k) � 􏽥Wa2(k) · Ah2(k).
Referring to ΔVc, ΔVa satisfies

ΔVa(k)≤
1
ψ

􏼠 􏼡 − Θ(k) · Wc2T(k)
����

����
2

− ζa(k) · Θ(k) · Wc2T(k)
����

����
2
‖Ah2(k)‖

2
􏼒 􏼓 · ‖Wc2(k) · Ch2(k)‖

2
􏼚

+ ‖Wc2(k) · Ch2(k)‖
2 δa(k)
����

����
2

+ 4 Wc2∗ · Ch2(k)
����

����
2

+ 4 δc(k)
����

����
2
􏼛.

(64)

Furthermore, set Vδ(k) � (1/2)‖δc(k − 1)‖2, and then ΔVδ(k) �
1
2

􏼒 􏼓 δc(k)
����

����
2

− δc(k − 1)
����

����
2

􏼒 􏼓. (65)
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From the above derivation, we can finally take the total
Lyapunov function V(k) as

V(k) � Vc(k) + Va(k) + Vδ(k)

≤ − λ2 −
1
2

−
4
ψ

􏼠 􏼡 δc(k)
����

����
2

− λ2 1 − λ2 · ζc(k)‖Ch2(k)‖
2

􏼐 􏼑 · δc(k) + Wc2∗ · Ch2(k) +
1
λ

U(k) −
1
λ
Wc2(k − 1) · Ch2(k − 1)

�������

�������

2

−
1
ψ
Θ(k) · Wc2T(k)

����
����
2

− ζa(k) · Θ(k) · Wc2T(k)
����

����
2
‖Ah2(k)‖

2
􏼒 􏼓 · ‖Wc2(k) · Ch2(k)‖

2

+ 2 λ · Wc2∗(k) · Ch2(k) + U(k) −
1
2
Wc2(k − 1) · Ch2(k − 1) −

1
2
Wc2∗ · Ch2(k − 1)

�������

�������

2

+
1
ψ

‖Wc2(k) · Ch2(k)‖
2 δa(k)
����

����
2

+
4
ψ

Wc2∗(k) · Ch2(k)
����

����
2
.

(66)

Selecting some parameters as equation (67), then
equation (68) holds:

1
�
2

√ < λ< 1,

ζc(k) <
1

λ2‖Ch2(k)‖
2,

ζa(k) <
1

‖Ah2(k)‖
2,

ψ >
4

λ2 − (1/2)
,

(67)

ΔV(k)≤ − λ2 −
1
2

−
4
ψ

􏼠 􏼡 δc(k)
����

����
2

− λ2 1 − λ2 · ζc(k)‖Ch2(k)‖
2

􏼐 􏼑

· δc(k) + Wc2∗ · Ch2(k) +
1
λ

U(k) −
1
λ
Wc2(k − 1) · Ch2(k − 1)

�������

�������

2

−
1
ψ
Θ(k) · Wc2T(k)

����
����
2

− ζa(k) · Θ(k) · Wc2T(k)
����

����
2
‖Ah2(k)‖

2
􏼒 􏼓 · ‖Wc2(k) · Ch2(k)‖

2
+ D

2
,

(68)

where D2 represents

D
2

� 2 λ · Wc2∗(k) · Ch2(k) + U(k) −
1
2
Wc2(k − 1) · Ch2(k − 1) −

1
2
Wc2∗ · Ch2(k − 1)

�������

�������

2

+
1
ψ

‖Wc2(k) · Ch2(k)‖
2 δa(k)
����

����
2

+
4
ψ

Wc2∗(k) · Ch2(k)
����

����
2
.

(69)
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Furthermore, applying the Cauchy–Schwarz inequality,
we get

D
2 ≤ 8 λ2 Wc2∗(k) · Ch2(k)

����
����
2

+ U
2
(k) +

1
4
‖Wc2(k − 1) · Ch2(k − 1)‖

2
+
1
4

Wc2∗ · Ch2(k − 1)
����

����􏼒 􏼓,

+
2
ψ
Θ(k) · Wc2T

(k)
����

����
2

· ‖Wa2(k) · Ah2(k)‖
2

+ Wa2∗ · Ah2(k)
����

����
2

􏼒 􏼓 +
4
ψ

Wc2∗(k) · Ch2(k)
����

����
2
,

≤ 8λ2 + 4 +
4
ψ

􏼠 􏼡 · Wc22max · Ch22max +
4
ψ

· Wc22max ·Θ2maxWa22max · Ah22max + 8U
2
max � D

2
max,

(70)

where the subscript “max” represents the upper bound of the
corresponding parameters’ 2-norm, such as ‖Wc2‖≤ Wc2max.

,erefore, for any

ζc(k)
����

����>
Dmax��������������

λ − (1/2) − (4/ψ)
􏽰􏼠 􏼡, (71)

ΔV(k)≤ 0 holds. ,is indicates that the actual weights will
converge to the optimal weights. In other words, the weight
error δc and δa are uniformly bounded. ,is also results in a
stable ADP system and an optimal output.

Furthermore, note that the components of Ch2 and Ah2
are limited to [− 1, 1] due to the activation functions of the
hidden nodes, that are

− 1≤Ch2i ≤ 1, i � 1, . . . , M,

− 1≤Ah2j ≤ 1, j � 1, . . . , N.
(72)

So, there exist

‖Ch2(k)‖
2

� 􏽘
M

i�1
Ch2i(k)􏼂 􏼃

2 ≤M,

‖Ah2(k)‖
2

� 􏽘
N

j�1
Ah2j(k)􏽨 􏽩

2 ≤N.

(73)

According to equation (67), some networks’ parameters
should satisfy

1
�
2

√ < λ< 1,

ζc(k) <
1

λ2M
,

ζa(k) <
1
N

,

ψ >
4

λ2 − (1/2)
.

(74)

Equation (74) provides a simple and intuitive guidance
to select networks’ structure and learning rate, while
maintaining the stability of weights and ADP structure.

4.2. Improvement in Implementation. In the previous liter-
ature, when it comes to the training of feedforward net-
works, all weights usually need to be adjusted, so there are

serious dependencies between different layers. Moreover,
the algorithm based on gradient descent is widely applied to
the learning of various feedforward neural networks.
However, it is obvious that the learning method based on
gradient descent is usually very slow and time-consuming
because of improper learning steps, or it is easy to be
overtrained and falls into local minima.

In order to make the training process as time-saving as
possible and better meet the time matching between online
training and practical applications, we can consider two ideas:
one is based on Igelnik and Pao’s theory [34], that is, for a
single hidden-layer forward neural network, if the weights of
input to hidden layer are randomly initialized and kept
constant, as long as the number of hidden nodes is sufficient,
the approximation error of the network can be arbitrarily
small. ,e second is based on the extreme learning machine
(ELM) proposed by Huang et al. [35, 36]. For a single hidden
layer forward neural network, the weights of the input to
hidden layer are initialized randomly and kept constant, and
then the hidden nodes are arbitrarily selected. ,e weights of
hidden to output layer are directly determined analytically by
the Moore–Penrose inverse, without necessary to derive and
calculate partial derivatives layer by layer such as the gradient
descent method. ,e speed of extreme learning methods has
been proven to be tens or even thousands of times that of
ordinary gradient descent methods, and it can effectively
reduce complexity and avoid local minima [37].

To facilitate implementation, this paper will adopt the
first idea to improve the performance; that is, the weights
Wc1 and Wa1 are randomly initialized in a finite interval
and kept constant, and only the weights Wc2 and Wa2 are
adjusted by the gradient descent algorithm, resulting in
effectively avoiding excessive time consumption. As for the
thinking based on extreme learning machine, it is only given
here without in-depth discussion due to the limited space of
this paper and the lack of theoretical guidance in the ap-
plication of vehicles. We may make further analysis and give
more rigorous theories to support the application in prac-
tical vehicle control in future research.

5. Simulations

In this section, the control strategy with ADP derived above
is implemented to vehicle attitude control, and the
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effectiveness of the designed strategy is verified by com-
paring with the conventional controller without ADP.

According to a vehicle model in laboratory, the inertia
matrix I is taken as

I �

135 − 20 − 1

− 20 1060 − 1

− 1 − 1 975

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (75)

,e common parameters are taken as follows:
ρc � diag 1, 1, 1{ }, ρw � diag 0.5, 0.5, 0.5{ }; the width
ξc � ξw � 2 in the saturation function; τc � τw � 0.2. ,e
number of hidden nodes is M � N � 8. According to
equation (74), the discount factor takes λ � 0.9 with learning
rate ζc(k)< 0.155, ζa(k)< 0.125. Take Λ � diag 1, 1, 1{ }, and
all weights are randomly initialized in [− 0.2, 0.2].

Set the initial flight state of the vehicle as
c0 � [35, 0.5, 5]T deg and w0 � [0, 0, 0]T(rad/s). ,e desired
attitude instruction is cd � [37, 0, 10]T deg, and the simulation
step size is 0.02 s. To verify the performance of the controller,
pulsed disturbances d1 � d2 � [10, 20, 10] will be added at 10 s.

Figure 5 presents the tracking results of the three attitude
angles. As can be seen from these figures, the controller with
ADP is more responsive than the controller without ADP. For
example, the controller with ADP can accurately track in-
structions within 100 steps and cause less overshoot, while the
controller without ADP requires about 200 steps.When external
disturbances are added at 10 s, the controller with ADP also
responds more quickly and with less overshoot. ,rough these,
it can be seen that ADP improves the performance of the system.

,e controller with ADP shows faster performance and
less overshoot, which benefits from the ADP structure’s
auxiliary behaviour to the outer loop. ,rough the training
process that meets the expected threshold, the ADP struc-
ture generates the auxiliary optimal control signal to
compensate for the deficiency of the outer loop main
controller 1 in eliminating attitude error. Figures 6–11 show
the training process of the ADP network. Specifically,

Figures 6–9 show the dynamic adjustment of network
weights. Figures 10 and 11 are the estimated value of the cost
function output by the critic network and the optimal
control signal output by the action network. Compared to
the previous Figures 5, 6–9 show the rapid adjustment of the
network weights at the beginning stage to achieve the
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purpose of tracking instructions. As the system output
gradually keeps up with the instructions, the weights also
converge to the optimal weights (W∗ as demonstrated in
Section 4) and remain stable. When the external distur-
bances are added at 10 s, the network weights are adjusted
again and tend to other optimal weights. It shows that ADP
produces auxiliary output to play a certain role at the be-
ginning and when disturbance appears.

According to the thinking and analysis in Section 4.2, when
implementing this control strategy, it can be considered that
randomly initializing the weights of the input to hidden layer
(Wc1 and Wa1) and keeping them constant. During the
training, only adjusting the weightsWc2 andWa2 can not only
achieve the same optimal control goal but also greatly reduce
the time consumption. Figures 12 and 13 show the corre-
sponding weight changes. Simultaneously, Figure 14 shows the
comparison of time consumption in 12 group simulations. It
can be further concluded that the average time consumption of
maintaining the weights of the input-to-hidden layer (Wc1 and
Wa1) and only adjusting the weights of the hidden-to-output
layer (Wc2 and Wa2) is 31.9% lower than that of adjusting all
weights. Although the sample in Figure 14 is limited, combined
with the analysis in Section 4.2 and neural network theory, the
effectiveness of this idea in reducing time consumption and
improving efficiency is significant.

Furthermore, Figures 15–19 show the tracking control
results of time-varying attitude commands, using the controller
with ADP. ,e pulsed disturbances d � [5, 1, 1]T and
d � [10, 2, 2]T are introduced at 10 s and 20 s, respectively, as
shown by the yellow arrow in the figures. From Figures 15–17,
it can be seen that the controller with ADP auxiliary structure
can make the actual attitude angles accurately track the
commands. Figures 18–19 show the weights of action network
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and critic network in ADP. ,e weights of the action network
are dynamically adjusted to output the optimal auxiliary
control signal uADP in real time, as shown in Figure 20. Fig-
ure 21 shows the control torque acting on the vehicle. From
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these, it can be seen that the controller with ADP auxiliary
structure has good dynamic stability performance.

6. Conclusions

Combining the hottest reinforcement learning at present,
this paper presents an ADP-based attitude control meth-
odology for reentry vehicles, applying the ADP to the three-
channel attitude control. First, a nonlinear model of the
three-channel attitude system is established, and it is divided
into inner and outer loops according to the principle of time
scale separation. Both the inner and outer loops utilize a
conventional sliding mode controller as the main controller,
and an auxiliary ADP framework is introduced to the outer
loop. When facing the vehicle’s nonlinearity and sudden
disturbances in particular, the main controller is easy to be
weak due to its lack of sufficient adaptability. At this time,
the auxiliary role of ADP will be fully exerted. Because ADP
uses the critic network and action network, ADP structure
has good learning ability. It generates the optimal auxiliary
signal immediately after learning the tracking error to
compensate for the deficiency of the main controller and
improves the adaptability and response speed of the entire
control system. For implementation, this paper discusses
selection strategies of the ADP parameter and some tips for
speeding up training. And the stability is proved by the
Lyapunov method. Finally, simulation results of step and
time-varying commands demonstrate the effectiveness of
the designed scheme for the nonlinear attitude system.

In the future work, we will focus on some switching or
event-triggered strategies for this structure with dual controllers.
Imagining that if the ADP auxiliary structure is event-triggered
rather than time-triggered, it will greatly reduce consumption of
ADP’s time and system resources, to improve efficiency.
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In this study, a control scheme that allows performing height position regulation and stabilization for an unmanned planar vertical
take-off and landing aerial vehicle, in the presence of disturbance due to wind, is presented. To this end, the backstepping
procedure together with nested saturation function method is used. Firstly, a convenient change of coordinates in the aerial
vehicle model is carried out to dissociate the rotational dynamics from the translational one. Secondly, the backstepping procedure
is applied to obtain the height position controller, allowing the reduction of the system and expressing it as an integrator chain
with nonlinear disturbance. 1erefore, the nested saturation function method is used to obtain a stabilizing controller for the
horizontal position and roll angle.1e corresponding stability analysis is conducted via the Lyapunov secondmethod. In addition,
to estimate the disturbance due to wind, an extended state observer is used. 1e effectiveness of the proposed control scheme is
assessed through numerical simulations, from which convincing results have been obtained.

1. Introduction

1e Planar Vertical Take-Off and Landing (PVTOL) un-
manned aerial vehicle is a representation of the Harrier Yab-
8b aircraft when considering a minimum of inputs and
outputs to obtain a vertical short take-off and landing be-
havior [1], which has been used as a test bed for automatic
control applications. In fact, the PVTOL aerial vehicle is a
simplified model that embodies the behavior of several
actual vertical take-off and landing aircraft, which ultimately
makes it a suitable benchmark to test new and existing
controllers.1erefore, there is a vast literature on the subject.
However, a current and open challenge is the design of

robust controllers for the PVTOL system under wind dis-
turbance in order to pursue outdoor applications. 1us, this
paper presents a robust control scheme for a PVTOL system
subjected to disturbance due to wind.

1e works considered most relevant and closely re-
lated to the control problem treated in this study are
mentioned as follows. In [1], an input-output lineariza-
tion to achieve trajectory tracking control for the non-
minimum phase nonlinear system is presented. In [2], the
authors developed a nonlinear output-feedback controller
for the trajectory tracking of a reference model by using a
global exponential observer, coordinate transformations,
the Lyapunov’s method, and an extension of
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backstepping. In [3], a global stabilization control derived
from nonlinear combinations of linear saturation func-
tions was presented, whereas in [4], a nonlinear controller
for taking-off, hovering, tracking of a straight line, and
landing of the PVTOL system was introduced. 1e cor-
responding experimental implementation of the con-
troller was reported in [5], where a camera was used to
estimate the position and orientation of the PVTOL ve-
hicle. Also, in [6], a global configuration stabilization for
the VTOL aircraft with a strong input coupling using a
smooth static state feedback was reported. An alternative
feedback-based stabilization law to the one introduced in
[6] was presented in [7]. 1is law simplifies the term that
connects the state vector with the dynamics error. In [8],
the authors designed a stabilization control by trans-
forming the system into an integrator chain plus a
nonlinear disturbance, after which the saturation tech-
nique was used so that neither backstepping/forwarding
approaches nor small gain analysis is required. Further-
more, a nonlinear controller for a PVTOL vehicle, based
on prediction and partial feedback linearization, was
designed in [9]. A robust and linear state-feedback gain-
scheduled control to achieve hovering of a PVTOL system
with uncertainties in the mass, the momentum of inertia,
and the parasitic coupling parameter was introduced in
[10], while a nested set stabilization approach to locally
solve path following for the PVTOL system was intro-
duced in [11]. 1e system center of mass was constrained
to lie on the path, and the roll angle should be specified at
any given point on the path. In [12], the authors developed
a bounded backstepping method to achieve input-to-state
stability, with respect to the actuator errors, and to force
all trajectories of the system to track a reference trajectory
for all initial configurations. Also, Zavala-Rı́o et al. [13]
introduced a finite-time observer-based output-feedback
control for the global stabilization of both taking-off and
landing of the PVTOL system. In [14–16], a solution for
the regulation of a simplified version of the PVTOL
system was reported, which consisted of two control
actions that act simultaneously. Aguilar-Ibáñez et al. [14]
used, as first action, a feedback linearization along with a
saturation function to asymptotically stabilize the vertical
position. For the second action, backstepping was
exploited to stabilize both the horizontal and the angle
positions. Similarly, Aguilar-Ibañez et al. [15] utilized as
first action a feedback linearization in combination with a
nonlinear controller to stabilize the vertical variable. 1e
other action stabilizes the horizontal and angular variables
to the desired rest position through an energy-control
method, whereas Aguilar-Ibañez [16] employed again a
feedback linearization with a saturation function to sta-
bilize the vertical variable, while a PD-controller and a
sliding-mode controller were used to stabilize both the
horizontal and angular variables. Moreover, Yu-Chan
et al. [17] dealt with the stabilization of the PVTOL system
with unknown model parameters by applying a sliding-
mode technique to design a state feedback control law.
Recently, in [18], a controller for the stabilization of the
PVTOL vehicle was designed on the basis of the

immersion and invariance control technique. 1e con-
troller gives priority to the control of the aircraft’s altitude
before controlling the lateral displacement. More recently,
in [19], a cascade active disturbance rejection controller
was introduced to counteract the adverse effects caused by
an actuator failure in the PVTOL aircraft, while Escobar
et al. [20] were focused on finding conditions to determine
local asymptotic stability using a feedback linearization
control for the PVTOL platform, so that reaching any
singularity due to the transformation of the system is
prevented. Aguilar-Ibanez et al. [21] introduced an out-
put-feedback regulation control law for a PVTOL aircraft,
based on a version of the matching control energy
method. Such a control was improved to compensate
bounded, smooth, and matching perturbations with a
suitable finite time-varying identificator. Finally, Aguilar-
Ibanez et al. [22] proposed a robust controller to solve the
trajectory-tracking control problem of PVTOL aircraft
under crosswind by applying an input-output feedback
linearization to the PVTOL model under no crosswind
conditions. 1us, the resulting linearized system under
the crosswind effects is controlled using an active dis-
turbance rejection control approach to counteract the
effects of these perturbations.

Having reviewed the literature, it was found that almost all
the works mentioned above were developed to test the
PVTOL system indoor, mainly to avoid the undesirable effect
produced by the wind (instability and, even, the collapse of the
PVTOL system), which is not easy to counteract. 1erefore,
few controllers are robust under unknownmodel parameters,
actuator failure, and crosswind. 1us, with the intention of
contributing to overcome wind undesirable effects, a robust
control scheme that combines a backstepping approach and a
nested saturation function-based controller is proposed
herein to perform taking-off maneuvers in the presence of
disturbance due to wind. 1e backstepping is used to carry
out the trajectory tracking task over the vertical position of the
PVTOL system and, consequently, to control the height
position. 1en, from a set of convenient linear transforma-
tions, the system is represented as an integrator chain with a
nonlinear perturbation, for which a nested saturation func-
tion-based controller is developed to stabilize the horizontal
position and roll angle. 1is is carried out by satisfying
stability conditions obtained from application of the second
method of Lyapunov. 1erefore, boundedness of each state
and asymptotic convergence to the origin are ensured. Lastly,
to estimate the disturbance due to the wind, an extended state
observer is used.

1e remaining of the paper is organized as follows. In
Section 2, the PVTOL system and its dynamics are intro-
duced. In Section 3 the design of the backstepping controller
to perform trajectory tracking for the height position of the
system is presented. In Section 4, the controller based on
nested saturation functions for stabilization of the horizontal
position and the roll angle is designed. 1e extended state
observer is introduced in Section 5. In Section 6, the out-
come of numerical simulations that show the behavior of the
proposed control scheme is reported. Finally, Section 7 is
devoted to the concluding remarks.
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2. PVTOL System

Here, the PVTOL system and its dynamicmodel considering
a disturbance due to wind are presented.

1e PVTOL system emulates the vertical take-off and
landing of an aerial vehicle, whereas it is automatically
stabilized. Hence, in practice, this system has a rigid
structure and two motors collocated at the ends of the
structure, as can be seen in Figure 1, where θ1 is the roll
angle, x1 is the horizontal position in the x axis, y1 is the
vertical position in the y axis, f1 and f2 are the forces
produced by the motors, L is the distance between the center
of the rigid structure to the center of the motors, m is the
mass of the system, and g is the gravitational acceleration.

1e representation in state variables of the PVTOL
dynamic model, when L, m, and g are normalized, has been
previously reported in [1] and used in [14, 23, 24], which is
given by

_x1 � _x2,

_x2 � − u1sinθ1 + ϵu2cosθ1,

_y1 � y2,

_y2 � u1cosθ1 + ϵu2sinθ1 − 1,

θ
.

1 � θ2,

θ
.

2 � u2 + AL,

(1)

where x1, x2 � _x1, y1, y2 � _y1, θ1, and θ2 � θ
.

1 are the state
variables, u1 � f1 + f2 and u2 � f1 − f2 are the control
inputs, ϵ is the coefficient giving the coupling between the
rolling moment and the lateral acceleration, and AL is the
rolling moment due to the air, defined by Gomes and Ramos
[25] as

AL �
1
2

􏼒 􏼓ρClU
2
Va, (2)

with ρ being the air density, Cl being the nondimensional
coefficient of the rolling moment in the standard convention
for airships, U being the air speed, and Va being the airship
model volume.1at is, AL is considered as a disturbance due
to wind.

3. Height Position Control

To obtain the height position control, we apply the following
global coordinate change [26] to model (1):

x1 � x1 − ϵ sinθ1,

x2 � x2 − ϵθ2 cosθ1,

y1 � y1 + ϵ cosθ1 − 1( 􏼁,

y2 � y2 − ϵθ2 sinθ1,

θ1 � θ1,

θ2 � θ2.

(3)

Also, we introduce AL � AL − 􏽢AL, where 􏽢AL is an esti-
mation of the disturbance due to wind carried out by an
extended state observer, which is described later in Section 5.
1us, model (1) is transformed into the following system:

_x1 � x2,

_x2 � − u1sinθ1 − ϵALcosθ1,
_y1 � y2,

_y2 � u1cosθ1 − ϵALsinθ1 − 1,

θ
.

1 � θ2,

θ
.

2 � u2 + AL,

(4)

where u1 � u1 − ϵθ22 is a new control input.
From this point, the backstepping procedure can be

applied to force the system to track a desired trajectory and,
consequently, to reach a desired height position. To this end,
an error is defined as follows:

ey � y1d
− y1, (5)

with y1d
being the desired height position.1en, the method

of Lyapunov is used, considering the following candidate
function:

V ey􏼐 􏼑 �
1
2

􏼒 􏼓e
2
y, (6)

which is positive definite and whose time derivative results
in

_V ey􏼐 􏼑 � ey
_y1d

− y2􏼐 􏼑. (7)

To ensure the stabilization of ey, the auxiliary control, y2,
is proposed as

y2 � _y1d
+ α1ey, (8)

with α1 > 0, so that (7) results in the following negative
semidefinite expression:

_V ey􏼐 􏼑 � − α1e
2
y. (9)

xO

y

y1

x1

mg

L

f1

θ1

f2

Figure 1: Diagram of the PVTOL system.
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1en, it is proceeded with the following change of
variables:

e2y � y2 − _y1d
− α1ey. (10)

So, the augmented Lyapunov function is given by

V ey, e2y􏼐 􏼑 �
1
2

􏼒 􏼓 e
2
y + e

2
2y􏼐 􏼑, (11)

whose time derivative is determined by

_V ey, e2y􏼐 􏼑 � − eye2y − α1e
2
y + e2y

· u1 cos θ1 − 1 − ϵAL sin θ1􏼐 􏼑

− e2y
€y1d

+ α1 − e2y − α1ey􏼐 􏼑].􏽨

(12)

To facilitate the proposal of u1 that ensures stabilization
of e2y, let us make (12) equal to zero for a moment and solve
for u1. Since €y1d

� 0 is considered because it is the desired
acceleration of the height position, u1 is found as follows:

u1 �
1

cos θ1
ey + α1

e
2
y

e2y

⎛⎝ ⎞⎠ + α1 − e2y − α1ey􏼐 􏼑 + 1 + ϵALsin θ1⎡⎢⎢⎣ ⎤⎥⎥⎦.

(13)

Note that in order to avoid indeterminate (13),
− (π/2)< θ1 < + (π/2) is required.

Taking into account the previous result and proposing
α1(e2y/e2y) � − (α2e2y), it is clear that the stabilization of the
control system is accomplished if u1 is selected as follows:

u1 �
1

cos θ1
ey − α2e2y + α1 − e2y − α1ey􏼐 􏼑 + 1 + ϵAL sin θ1􏽨 􏽩,

(14)

because it achieves

_V ey, e2y􏼐 􏼑 � − α1e
2
y􏼐 􏼑 − α2e

2
2y􏼐 􏼑< 0, (15)

with α1 > 0, α2 > 0 and − (π/2)< θ1 < + (π/2). Hence,
y1⟶ y1d

, that is, the PVTOL system reaches the desired
height position.

4. Control of the Horizontal Position and
Roll Angle

In this section, a nested saturation function-based controller
for the stabilization of the horizontal position, x1, and roll
angle, θ1, is developed [27]. 1is technique has been used for
the stabilization of nonlinear systems that can be approxi-
mately expressed as integrator chain [28–30]. To solve the
PVTOL system stability problem, first a linear transfor-
mation to propose the stabilizing controller is used. 1en, it
is showed that the proposed controller guarantees the

boundedness of all states and, after a finite time, the closed-
loop system is asymptotically stable.

Before developing the control strategy, the definition of a
saturation function is introduced.

Definition 1 (see [31]). A linear saturation function
σb(s): R⟶ R is defined as

σb(s) �
s, if |s|≤ b,

b · sign(s), if |s|> b,
􏼨 (16)

with b> 0 being the upper bound of the function.

4.1. System as an Integrator Chain. After applying the
controller u1, the transformed system (4) can be reduced to
the subsystem (x1, θ1), that is:

_x1 � x2,

_x2 � − tanθ1 − ϵALsecθ1,

θ
.

1 � θ2,

θ
.

2 � u2 + AL.

(17)

To express system (17) as an integrator chain, with a
nonlinear perturbation, and to propose a controller for the
stabilization of the subsystem (x1, θ1), it is proceeded
similarly as in [32], so that the following global nonlinear
transformation is defined:

w1 � − tanθ1,

w2 � − θ2sec
2θ1,

] � − u2sec
2θ1 + 2θ

2
2tanθ1sec

2θ1.

(18)

Hence, the transformed system as an integrator chain is
given by

_x1 � x2,

_x2 � w1 − ϵALsecθ1,

w
.

1 � w2,

w
.

2 � ] + ALsec
2θ1,

(19)

whose matrix representation can be expressed as
_ξ � (Aξ + B] + ω), (20)

where ξ � (x1, x2, w1, w2) is the new state vector,
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A �

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B �

0
0
0
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ω �

0
− ϵALsecθ1

0
ALsec

2θ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(21)

4.2.NestedSaturationFunction-BasedController. In order to
obtain the stabilizing controller for system (20) and inspired
by [27], the linear transformation q � Sξ is used, in which S

must satisfy

SAS
− 1

�

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

SB �

1
1
1
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(22)

1ematrix S that achieves the aforementioned equalities
is given by [31]

S �

1 3 3 1

0 1 2 1

0 0 1 1

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

1us, q results in

q �

q1

q2

q3

q4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 3 3 1

0 1 2 1

0 0 1 1

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

which transforms system (20) into

_q1 � q2 + q3 + q4 + ] + ALsec
2θ1 − 3ϵALsecθ1,

_q2 � q3 + q4 + ] + ALsec
2θ1 − ϵALsecθ1,

_q3 � q4 + ] + ALsec
2θ1,

_q4 � ] + ALsec
2θ1,

(25)

for which, the following nested saturation function-based
stabilizing controller is proposed:

] � − q4 − σα q3 + σβ q2 + σc q1( 􏼁􏼐 􏼑􏼐 􏼑, (26)

where σα(·), σβ(·), and σc(·) are linear saturation functions
as defined in (16) and α, β, and c are the upper bounds
of each nested saturation function.

Finally, departing from (18) and using (26), u2 can be
constructed as follows:

u2 � −
1

sec2θ1
􏼠 􏼡] + 2θ

2
2 tanθ1􏼒 􏼓. (27)

4.3. Boundedness of All States. Now, it is proved that the
proposed closed-loop system, (25) with (26), ensures that
all the states are bounded and that the bound of each of
them directly depends on the design parameters of the
controller.

Step 1: to show that the state q4 is bounded, the fol-
lowing positive definite function is defined:

V4 �
1
2

􏼒 􏼓q
2
4, (28)

whose time derivative is expressed as

_V4 � − q
2
4 − q4 σα q3 + σβ q2 + σc q1( 􏼁􏼐 􏼑􏼐 􏼑 − ALsec

2θ1􏽨 􏽩.

(29)

It is clear that _V4 < 0 is accomplished when
|q4|≥ α + (ALsec2θ). 1erefore, there exists a finite time
T1 > 0, such that

q4(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< α + ALsec
2θ1, ∀t>T1. (30)

Step 2: now, the behavior of q3 is analyzed. For this, a
positive definite function is introduced as follows:

V3 �
1
2

􏼒 􏼓q
2
3. (31)

Differentiating it with respect to time and after
substituting (26) into _q3, the following is obtained:

_V3 � − q3 σα q3 + σβ q2 + σc q1( 􏼁􏼐 􏼑􏼐 􏼑 − ALsec
2θ1􏽨 􏽩.

(32)

To ensure _V3 < 0 is achieved, the following conditions
must be satisfied:

α> 2β + ALsec
2θ1, q3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> β + ALsec

2θ1. (33)

1en, there exists a finite time T2 >T1 after which
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q3(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< β + ALsec
2θ1, ∀t>T2. (34)

1us, when conditions in (33) are satisfied, q3 is
bounded and the stabilization controller (26) takes the
following structure:

] � − q4 − q3 − σβ q2 + σc q1( 􏼁􏼐 􏼑, ∀t>T2. (35)

Step 3: substituting (35) into the second differential
equation of (25), the following is obtained:

_q2 � − σβ q2 + σc q1( 􏼁􏼐 􏼑 − ϵALsecθ1 + ALsec
2θ1. (36)

1en, the following definite positive function is defined:

V2 �
1
2

􏼒 􏼓q
2
2, (37)

whose first time derivative is obtained using (36), as
follows:

_V2 � − q2 σβ q2 + σc q1( 􏼁􏼐 􏼑 + ϵALsecθ1 − ALsec
2θ1􏽨 􏽩.

(38)

With the purpose of performing _V2 < 0, it is required
that β and c satisfy the below conditions:

β> 2c − ϵALsecθ1 + ALsec
2θ,

q2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> c − ϵALsecθ1 + ALsec
2θ1.

(39)

Hence, there exists a finite time T3 >T2, after which

q2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< c − ϵALsecθ1 + ALsec
2θ1. (40)

Consequently, q2 is bounded and the control ] turns
out to be

] � − q4 − q3 − q2 − σc q1( 􏼁, ∀t>T3. (41)

Step 4: substituting (41) into the first equation of (25),
the following is obtained:

_q1 � − σc q1( 􏼁 − 3ϵALsecθ1 + ALsec
2θ1. (42)

To demonstrate that q1 is bounded, a definite positive
function is defined as follows:

V1 �
1
2

􏼒 􏼓q
2
1. (43)

Differentiating V1 along the trajectories of (42), the
following is obtained:

_V1 � − q1 σc q1( 􏼁 + 3ϵALsecθ1 − ALsec
2θ1􏽨 􏽩, (44)

where c must be selected so that c> − 3ϵALsecθ1 + ALsec2θ1
and |q1|> − 3ϵALsecθ1+ ALsec2θ1 to achieve _V1 < 0. 1ere-
fore, there exists a finite time T4 >T3, such that

q1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< − 3ϵALsecθ1 + ALsec
2θ1, ∀t>T4. (45)

Consequently, q1 is also bounded. Finally, the values of
the parameters α, β, and c can be determined as follows:

α> 2β + ALsecθ1 secθ1􏼐 􏼑,

β> 2c + ALsecθ1 secθ1 − ϵ􏼐 􏼑,

c>AL secθ1 secθ1 − 3ϵ􏼐 􏼑.

(46)

Since secθ1 > secθ1 − ϵ> secθ1 − 3ϵ, r> |ALsec2θ1|> 0
can be introduced, which is directly related to the magnitude
of the system disturbance, to select the upper bounds of the
saturation functions as

α � 7r, β � 3r, c � r. (47)

4.4. Convergence ofAll States toZero. Here, we prove that the
closed-loop system, provided by (25) and (26) satisfying
(47), is asymptotically stable.

Note that after t>T4, controller (26) is no longer sat-
urated. 1at is,

] � − q1 − q2 − q3 − q4, (48)

and the closed-loop system turns out to be

_q1 � − q1 + ALsec
2θ1 − 3ϵALsecθ1,

_q2 � − q1 − q2 + ALsec
2θ1 − ϵALsecθ1,

_q3 � − q1 − q2 − q3 + ALsec
2θ1,

_q4 � − q1 − q2 − q3 − q4 + ALsec
2θ1.

(49)

To demonstrate convergence to zero of all the states, the
following Lyapunov function is used:

V �
1
2

􏼒 􏼓q
T
q, (50)

and differentiating it along the trajectories of (49), the
following is obtained:

_V � − q
T
Mq + q1 + q2 + q3 + q4( 􏼁ALsec

2θ1
− 3q1 + q2( 􏼁ϵALsecθ1,

(51)

where
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M �

1 1/2 1/2 1/2

1/2 1 1/2 1/2

1/2 1/2 1 1/2

1/2 1/2 1/2 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (52)

is positive definite with λmin � (1/2). 1erefore, (51) is
strictly negative, when AL⟶ 0. 1en, the vector of states q

exponentially converges to zero after some time t>T4.

5. Extended State Observer

In this section, the extended state observer needed to esti-
mate the disturbance due to wind, AL, is introduced [33].

Consider only the disturbed coordinate:

θ
.

2 � u2 + AL. (53)

1e following extended state observer is designed:

􏽢θ
.

2 � u2 + 􏽢AL − λ1 􏽢θ2 − θ2􏼐 􏼑,

_􏽢AL � − λ2 􏽢θ2 − θ2􏼐 􏼑,

(54)

where 􏽢θ2 is the estimate of the roll velocity, 􏽢AL is the estimate
of the disturbance due to wind, λ1 and λ2 are the gains of the
observer, which must satisfy the following condition:
λ1≪ λ2, and lastly u2 is redefined and proposed as

u2 � u2 − 􏽢AL, (55)

where u2 � − (1/sec2θ1)] + 2θ22tanθ1 represents a fictitious
controller, acting on the coordinate θ2.

6. Simulation Results

In this section, the outcomes of some numerical tests are
presented in order to validate that the proposed control
scheme successfully achieves that
(x1, x2, y1, y2, θ1, θ2)⟶ (0, 0, y1d

, 0, 0, 0). 1at is, the
control scheme carries out height position regulation,
through performing trajectory tracking task, and stabiliza-
tion of the horizontal position and roll angle for the PVTOL
system in the presence of random disturbance due to wind.

1e simulations were performed with the normalized
model (1) in MATLAB-Simulink, using Euler’s numerical
method with fixed step and a sample time of 1ms. In that
direction, the coefficient giving the coupling between the
rolling moment and the lateral acceleration was chosen as in
[1], i.e., ϵ � 0.001. Also, the desired trajectory, y1d

, was
proposed as the following Bézier polynomial:

y1d
� v1 + v2 − v1( 􏼁Pd(t), (56)

where v1 � 0m and v2 � 2m are the constant values, Pd(t) is
defined by

Pd(t) �

0, if t≤ ti,

t − ti

tf − ti

􏼠 􏼡

5

r1 + r2
t − ti

tf − ti

􏼠 􏼡 + r3
t − ti

tf − ti

􏼠 􏼡

2

+ r4
t − ti

tf − ti

􏼠 􏼡

3

+ r5
t − ti

tf − ti

􏼠 􏼡

4

+ r6
t − ti

tf − ti

􏼠 􏼡

5
⎡⎣ ⎤⎦, if ti < t< tf,

1, if t≥ tf,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

which smoothly interpolates between v1 and v2 in the in-
terval [ti, tf], with ti being the initial time, tf being the final
one, and r1, r2, r3, r4, r5, and r6 selected as

r1 � 252,

r2 � − 1050,

r3 � 1800,

r4 � − 1575,

r5 � 700,

r6 � − 126.

(58)

Regarding the disturbance due to wind given in (2), the
air density of the Mexico City was used for ρ and the
aerodynamic coefficient Cl was characterized as the fol-
lowing linear approximation:

Cl � m1θ1, (59)

with m1 being the slope and θ1 being the roll angle of the
PVTOL system in degrees. It is important to mention that
this linear approximation was determined from the results of
Cl, obtained with respect to the variation of the roll angle of
an aircraft similar to the PVTOL system, by using a wind
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chamber [34]. Furthermore, the air speed U was generated as
follows:

U � AU cos
t
P

􏼒 􏼓 + ϕ + a, (60)

where AU is a random amplitude, t is time, P is a random
period, ϕ is a random phase, and a is a random offset.
1erefore, (2) is random and can be rewritten as

AL �
1
2

􏼒 􏼓ρ m1θ1( 􏼁 AU cos
t

P
􏼒 􏼓 + ϕ + a􏼔 􏼕

2
Va. (61)

1e whole parameters to construct AL are shown in
Table 1.

On the other hand, the tuning parameters of u1 were set
at

α1 � 8,

α2 � 8.
(62)

1e parameter r � 1 was chosen for u2 so that

α � 7,

β � 3,

c � 1.

(63)

1e gains implemented for the extended state observer
were selected as

λ1 � 5,

λ2 � 20.
(64)

1e initial conditions of the PVTOL system were set as
indicated in Table 2.

1e corresponding simulation results are shown in
Figure 2. With the intention of comparing the perfor-
mance of the proposed control scheme with a classical
controller, Figure 2 also presents simulation results when
using a PID structure for u1 and u2 to carry out regulation
of the system. For the simulation of the normalized
system in closed loop with the PID controllers, (61)
with parameters in Table 1 was preserved, the initial
conditions in Table 2 were set, the gains of the observer
were maintained, and the gains of the controllers were
tuned as

kp1 � 1.5,

ki1 � 1.5,

kd1 � 3,

(65)

for u1 and

kp2 � 0.1,

ki2 � 0,

kd2 � 0.5,

(66)

for u2. To distinguish the results, the ones associated with the
PID controllers are denoted with the subscript PID.

In Figure 2, it can be observed that the proposed control
scheme allows achieving successfully the height position
regulation, through the trajectory tracking task, and sta-
bilization of the horizontal position and roll angle when the
system is subjected to random disturbance due to wind.
1at is, (x1, x2, y1, y2, θ1, θ2)⟶ (0, 0, y1d

, 0, 0, 0) is ac-
complished. Note that the execution of the trajectory
tracking task in the vertical position provides maneuver-
ability when taking-off the PVTOL system. However, with
the PID controllers, the regulation of state x1 cannot be
achieved, but only for the positions y1 and θ1. 1at is,
stabilization of the whole system is not achieved. Although
PID structure can achieve the height position regulation
when the system is far from the desired height, it requires
excessive values for u1 and u2 and does not allow the
taking-off of the system in a controlled way. 1us, ad-
vantages of the proposal presented herein are maneuver-
ability and whole stabilization, when the system is under
the undesired effect caused by wind.

Table 1: Parameters of AL.

Parameter Value
ρ 0.908906 kg/m2

m1 − 0.0013
AU [4, 12]

P [1.6, 4.8] s
ϕ [12°, 21°]
a [− 2, 2]

Va 0.1m3

Table 2: Initial conditions.

State Value
x1 0.1m
x2 0m/s
y1 0m
y2 0m/s
θ1 0.15 rad
θ2 0 rad/s
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Complexity 9



7. Conclusions

In this study, a nested saturation function-based con-
troller, in combination with a backstepping controller, for
stabilizing the PVTOL system under a disturbance due to
wind was used. With this approach, the control design
complexity of a higher-order system is reduced to design a
control for a lower-order nonlinear subsystem of the
original system. 1us, the proposed control approach
allows designing a controller based on nested saturation
functions, which contemplates perturbations, guaran-
teeing the convergence of the roll angle to zero within a
finite time and, consequently, the convergence to zero of
the horizontal state. 1e stability analysis of the closed-
loop system was based on the second method of Lyapu-
nov, using a simple candidate function. It is important to
remark that the controller, based on backstepping and
nested saturation functions, allows performing take-off
maneuvers in the presence of exogenous disturbances,
which are found when aircraft carries out actual ma-
neuvers. Furthermore, an extended state observer is used
to estimate the disturbance due to wind. Numerical
simulations were carried out to test the effectiveness of the
proposed controller, having obtained convincing results.
Finally, the proposed scheme was compared with a
classical controller, finding that the controller based on
backstepping and nested saturation functions presented
herein has better performance.

It is worth mentioning that an experimental platform
that allows configuring the PVTOL system has been
designed, whose construction is in process. 1us, experi-
mental implementation of the control scheme proposed
herein is considered as a future work.
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In this paper, a delayed control strategy for a class of nonlinear underactuated fourth-order systems is developed. +e proposal is
based on the implementation of the tangent linearization technique, differential flatness, and a study of the σ-stabilization of the
characteristic equation of the closed-loop system. +e tangent linearization technique allows obtaining a local controllability
property for the analyzed class of systems. Also, it can reduce the complexity of the global control design, through the use of a
cascade connection of two second-order controllers instead of designing a global controller of the fourth-order system. +e
stabilizing behavior of the delayed controller design is supported by the σ-stability criterion, which provides the controller
parameter selection to reach the maximum exponential decay rate on the system response. To illustrate the efficiency of the
theoretical results, the proposal is experimentally assessed in two cases of study: a flexible joint system and a pendubot.

1. Introduction

+e control of underactuated systems has attracted some
attention from the academic community, as noticed in the
growing list of articles and new approaches to solve the
problems of estimation, regulation, and trajectory tracking
involving both linear and nonlinear underactuated systems.
In the literature, there are a variety of control strategies,
including controlled Lyapunov functions [1, 2], energy-
based control [3–5], passivity approaches [6, 7], active
disturbance rejection [8–10], planning algorithms, and
feedback stabilization schemes [11].

One of the most important problems of nonlinear
underactuated systems is the fact that the controllability
property may be subject to singularities (ill-conditioned
relative degree [12]), which conditions the controllable

(normal) forms of the models to a certain class of systems
[13]. An alternative to locally overcome the aforementioned
problem is the use of the tangent linearization technique,
since the tangent linearized models of an important class of
underactuated systems are differentially flat [9]. +e last fact
means that the linearized systems are controllable and there
exists a set of variables, named flat outputs, which can
characterize them [14]. Besides the flatness of the linearized
system, another important advantage for this class of sys-
tems is the called cascade form [15], which allows finding a
relation between 2n − th-order time derivatives (fourth-
order, sixth-order, and so on) of the flat output and a
measurable variable of the system. +is form can reduce the
complexity of the global control design in which, instead of
designing a global controller of a 2n − th-order system, the
task can be the cascade connection of second-order
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controllers, which is especially important for sensitive sys-
tems or noise amplification effects due to high-order ob-
server designs, among others. In particular, for the case of
fourth-order systems, this scheme allows, instead of stabi-
lizing a fourth-order integrator, implementing a cascade
control arrangement of two second-order systems, for in-
stance, classic controllers with derivative action. +e
implementation of the derivative action has at least three
natural disadvantages. Firstly, the estimation algorithms
typically increase the controller design. Secondly, the ap-
plication of filters or compensators often increases the order
of the closed-loop system. +irdly, the use of measurement
tools (encoders) is usually very noisy. An alternative is the
use of delayed controllers, which means to deliberately
include retarded actions (time delays) in the controller.
Delayed controllers have better performance in practical
applications compared to controllers with derivative actions
[16]. Since these controllers type noise attenuation, they do
not require estimators or filters to approximate the time
derivative, providing soft control signals which do not
damage actuators, and their numerical implementation is
computationally more efficient than other low-order con-
trollers. Moreover, a delayed controller has a simple
structure which is easy to implement, like classic controllers.

+e deliberate use of retarded actions to stabilize a
system is a topic that has been investigated in recent decades,
among which are the pioneering contributions of [17–28].
Concerning derivative-free control based schemes, such as
the proportional retarded (PR) scheme [19, 25, 29–31],
which consists in using the relation between the time de-
rivative approximations in terms of a differential difference
equation, involving a time delay. +is approximation is
taken as a baseline to avoid using a derivative compensation,
but a proportional retarded one.

+e use of delayed controllers has been previously
studied for the stabilization of chains of integrators. It has
been proven [32–34] that a chain of n integrators cannot be
stabilized with less than n delay blocks, which increases
significantly the complexity of the closed-loop system. +e
migration of a double imaginary characteristic root to the
left half-plane or the right half-plane under the variation of
two parameters of a quasi-polynomial is given in [35].
However, in none of the above proposals, there are criteria
or methodologies to explicitly tune the controller gains.

For the class of underactuated systems satisfying the
cascade property, the use of a cascade control structure of PR
controllers (delayed controller) can be a derivative-free al-
ternative of stabilizing control, including the complete dy-
namics (some reported schemes based on the linearization
deal with a part of the dynamics such as the switched control
[36]). However, the existing analyses are restricted to a class
of second-order LTI systems, and the system to analyze
becomes a cascade of two-order systems, whose analysis
cannot be considering the isolated dynamics but the cascade
structure.

+e stability analysis of delayed controllers can be
commonly addressed on the study of the relative stability of
degree σ of the characteristic function, also known as
σ-stability. +is approach in conjunction with the

D-decomposition methodology (see [37–40]) can lead us to
obtain conditions, under which the system response can
reach the maximal exponential decay rate.

+us, the contributions of this manuscript are listed as
follows:

(1) It analyzed a class of underactuated systems, espe-
cially those whose tangent linearization is control-
lable (flat). Moreover, it developed a controller
through the use of the cascade property in the flat
linearized system, which allows reducing the com-
plexity of the control loops.

(2) +e control approach consists in using a cascade
structure of proportional retarded controllers in each
of the second-order structures derived from the cas-
cade system. In this proposal, the fourth-order system
is controlled by a tandem array of PR controllers in
which two delays are used for the main structure.

(3) +e stability analysis considers the complete fourth-
order structure and provides the tuning conditions
for the controller design and, moreover, provides
competitive experimental results, which denote the
importance of using a more complex controller with
the aim of obtaining appropriate results for noisy
measurements, in which additional filtering schemes
are demanded. In addition, the tuning procedure is
reported and the involved numerical algorithms are
provided for practitioners.

(4) +e combination of the aforementioned concepts
provides an alternative control approach for a class
of fourth-order underactuated systems subject to
noisy measurements, with a possible extension to the
highest-order systems.

(5) +e analysis and synthesis of a cascade proportional
retarded controllers for a class of underactuated
systems in cascade structure are proposed (Figure 1).
Also, analytic conditions, on the parameters of the
controller, to reach the maximal exponential decay
rate of the system response are proposed.

(6) Experimental implementations of the proposal,
which validate its practical effectiveness, are also
proposed. Two classic challenging systems were used
for the assessment: a rotatory flexible link and a
pendubot.

+e remaining of the contribution is organized as fol-
lows. In Section 2, the basic concepts related to time-delay
systems and differentially flatness are presented. In Section
3, a methodology based on the differential flatness to rep-
resent a class of fourth-order underactuated systems as a
cascade arrangement of two-order systems is presented. +e
main contributions of the present manuscript are intro-
duced in Section 4, where the σ-stability of the system is
analyzed and analytic conditions to reach the maximal
exponential decay rate of the system response are provided.
Section 5 is devoted to the implementation results in tra-
jectory tracking tasks.+e article ends with some concluding
remarks.
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Notation. Given a vector x(t) ∈ Rn, x⊺(t) denotes its
transpose and ‖x(t)‖ stands for the Euclidean norm. Let
s ∈ C; then, Re(s) and Im(s) denote its real and imaginary
parts, respectively. For a function x(t), x(i)(t), i ∈ Z+ de-
notes the i-th time derivative of the function.

2. Mathematical Preliminaries

In this section, we introduce some basic concepts, con-
cerning both time-delay systems and differentially flat sys-
tems, necessary for the development of this contribution.

2.1. Differentially Flat Systems. In this subsection, the flat-
ness concept for single-input single-output (SISO) systems
of nonlinear and linear types is taken. Further compre-
hensive information can be taken from [14, 41, 42] and
references therein.

Definition 1. Let us consider a nonlinear system of the
following form:

_x(t) � f(x(t), u(t)), (1)

where x(t) ∈ Rn, u(t) ∈ R, and f(·) � f1(·) f2(·)􏼂

· · ·fn(·)]⊺ is a smooth function of x(t), u(t), and the rank of
the Jacobian matrix, and (zf(·))/(zu(t)) is equal to 1.
System (1) is said to be differentially flat if there exists a
differential function, denoted as y(t) ∈ R, given by

y(t) � r x(t), u(t), _u(t), €u(t), . . . , u
(α)

(t)􏼐 􏼑, α ∈ Z+
,

(2)

which completely differentially parametrizes all the variables
of the system. +is means that states, inputs, and original
output variables in the system can be written as differential
functions of the flat output y(t), that is,

x(t) � ϕ y(t), _y(t), . . . , y
(c)

(t)􏼐 􏼑,

u(t) � ψ y(t), _y(t), . . . , y
(c+1)

(t)􏼐 􏼑, c ∈ Z+
.

(3)

Flatness is a structural property of the system that
trivializes the exact linearization procedure of a nonlinear
system even when it is not expressed in an affine form. It also
allows an easier manner of designing control laws in tra-
jectory tracking tasks, by taking advantage of the differential
parametrization. For the case of linear SISO systems, the
flatness property can be directly related to the controllability
of the system.

Definition 2. Consider the linear time-invariant SISO
system:

_x(t) � Ax(t) + bu(t), (4)

with A ∈ Rn×n, b ∈ Rn, x(t) ∈ Rn, and u(t) ∈ R. Let the pair
(A, b) be controllable, that is, the controllability matrix:

Kc � b Ab A
2
b · · · A

n− 1
b􏽨 􏽩, (5)

which has full rank n. +en, it is said that system (4) is
controllable; hence, it is differentially flat with the flat output
given by

y(t) � 0 0 · · · 1􏼂 􏼃K
− 1
c x(t). (6)

2.2. Time-Delay Systems. In the present section, some def-
initions and general results concerning linear time-delay
systems are introduced; for these purposes, it is considered a
basic system of the following form:

_x(t) � A0x(t) + A1x(t − τ) + A2x(t − h), t≥ 0. (7)

Here, A0, A1 ∈ Rn×n, and τ, h ∈ R+ are time delays. Now,
some stability concepts related to system (7) are presented.

Definition 3 (see [43]). +e solution x(t,φ) of a system of
the form (7) is said to be exponentially stable, if there exist
L, σ ∈ R+ such that the following inequality holds:

‖x(t, φ)‖≤ Le− σt
‖φ‖H, t≥ 0. (8)

Here, H � max τ, h{ }, φ: [− H, 0]⟶ C denotes the
initial function andC ≔ C([− H, 0],Rn) is a Banach space of
continuous functions in [− H, 0] with the norm
‖φ‖H � maxθ∈[− H,0]‖φ(θ)‖.

Definition 4 (see [43]). A s0 ∈ C is said to be an eigenvalue of
system (7) if it is a root of the characteristic function; that is,

Q s0, τ, h( 􏼁 � det s0I − A0 − A1e
− s0τ − A2e

− s0h
􏼐 􏼑 � 0. (9)

+e set of all the distinct eigenvalues of the system is
called the spectrum of system (7) and this is denoted as
Λ(Q).

An equivalent definition of exponential stability is given
hereinafter.

Definition 5 (see [43]). System (7) is exponentially stable if
and only if the spectrum of the system lies in the open left
half-plane of the complex plane; that is, Re(sj)< 0,
∀sj ∈ Λ(Q).

Definition 6. A linear time-delay system of the form (7) is
said to be σ-stable, if

s
∗

� − σ, (10)

for σ ∈ R+ and s∗ � maxj�1,...,∞ Re(sj): sj ∈ Λ(Q)􏽮 􏽯.

From these definitions, note that σ-stability ensures
exponential stability with the decay rate σ in the system
response (7).

–– 1/s21/s2
x (s)s2 x (s)u (s) = s4 x (s)

kp1 – kr1e–sτ

kp2 – kr2e–sh

Figure 1: Schematic of the PR controller for a cascade structure.
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In the following section, a class of fourth-order
underactuated systems is described.

3. Preliminary Results

Euler-Lagrange underactuated systems of the fourth order
can generally be described by

P(q(t))u(t) � M(q(t))€q(t) + C(q(t), _q(t)) _q(t) + g(q(t)),

(11)

where q(t) ≔ q1(t) q2(t)􏼂 􏼃
⊺ represents the generalized

coordinates, M(q(t)) ∈ R2×2 is the inertia matrix, and
C(q(t), _q(t)) ∈ R2×2 describes the Coriolis matrix and
centrifugal forces. Let g(q(t)) ∈ R2 be the vector of gravi-
tational forces and P(q(t)) ∈ R2 is the vector mapping the
external forces. Finally, u(t) ∈ R denotes the control input.

Systems of the form (11) can be rewritten in a state-space
representation as follows:

_xa(t) � xb(t),

_xb(t) � f xa(t), txbn(t)􏼁 + ζ xa(t)(( 􏼁u(t),
(12)

where xa(t) stands for the vector of joint positions
q1(t) q2(t)􏼂 􏼃

⊺, xb(t) denotes the articular velocities vector
_q1(t) _q2(t)􏼂 􏼃

⊺, and

f xa(t), xb(t)( 􏼁 � − M(q(t))
− 1

[C(q(t), _q(t)) _q(t) + g(q(t))],

ζ xa(t)( 􏼁 � M(q(t))
− 1

P(q(t)).

(13)

After a slight rearrangement of the state vector as x(t) �

q1(t) _q1(t) q2(t) _q2(t)􏼂 􏼃
⊺ and by denoting x(t) as an

equilibrium point of the nonlinear representation (12), a
tangent linearization around the equilibrium point x(t) is
given by

_xδ(t) � Axδ(t) + Buδ(t). (14)

Here, xδ(t) � x(t) − x(t) and uδ(t) � u(t) − u(t). +e
controllability matrix of system (14) is given by

Kc � bA bA
2

bA
3

b􏽨 􏽩. (15)

Under the assumption that det(Kc)≠ 0, the system is con-
trollable and hence, according to [14, 42], differentially flat.
+e flat output can be obtained as follows:

yf(t) � Cfxδ(t), (16)

where Cf ∈ Rn and defined as

Cfϵ :� ϵ 0 0 0 1􏼂 􏼃K
− 1
c . (17)

Here, ϵ ∈ R/ 0{ } is an arbitrary constant. In order to
determine the relative degree of system (14), we first need to
compute the high-order time derivatives. To this end, notice
that the following relations hold:

Cfb � CfAb � CfA
2
b � 0, CfA

3
b≠ 0, (18)

and the time derivatives of the flat output are given by

yf(t) � Cfxδ(t),

_yf(t) � CfAxδ(t),

€yf(t) � CfA
2
xδ(t),

y
(3)
f (t) � CfA

3
xδ(t),

y
(4)
f (t) � CfA

4
xδ(t) + CfA

3
buδ(t).

(19)

Since CfA3b≠ 0, then, the relative degree of the system is
four. It is worth noting that the even time derivatives of
yf(t) can be expressed as a linear combination of the flat
output, which correspond to those variables that can be
measured and coincide with the vector of generalized po-
sitions q(t).

Now, let us define the output estimation error as

ei(t) ≔ y
(i− 1)
f (t) − y

∗(i− 1)
f (t), i � 1, . . . , 4. (20)

Here, y∗f (t) denotes the desired output. +en, the error
dynamics is governed by

_e1(t) � e2(t),

_e2(t) � e3(t),

_e3(t) � e4(t),

_e4(t) � y
(4)
f (t) − y

∗ (4)
f (t),

(21)

by proposing the auxiliary control

uδ(t) � CfA
3
b􏼐 􏼑

− 1
u(t) − CfA

4
xδ(t) + y

∗ (4)
f (t)􏼔 􏼕, (22)

and then (21) can be expressed as a fourth-order integration
chain; that is,

_e1(t) � e2(t),

_e2(t) � e3(t),

_e3(t) � e4(t),

_e4(t) � u(t).

(23)

Now, a delayed controller u(t) that fulfills the
cascade control structure proposed in Figure 1 is given as
follows:

u(t) � − kp1
e1(t) + kr1

e1(t − τ) − kp2
e3(t) + kr2

e3(t − h),

(24)

where τ, h ∈ R+ are the delays and kp1,2
, kr1,2
∈ R+ are the

control gains.+us, the closed-loop representation of system
(23) is now

_e(t) � A0e(t) + A1e(t − τ) + A2e(t − h). (25)

4 Complexity



Here,

A0 �

0 1 0 0

0 0 1 0

0 0 0 1

− kp1
0 − kp2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A1 �

0 0 0 0

0 0 0 0

0 0 0 0

kr1
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 �

0 0 0 0

0 0 0 0

0 0 0 0

0 0 kr2
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(26)

and e(t) � e1(t) e2(t) e3(t) e4(t)􏼂 􏼃
⊺. +us, the charac-

teristic function or characteristic quasi-polynomial of sys-
tem (25) is given by

Q s, kp1,2
, kr1,2

, τ, h􏼐 􏼑 � s
4

+ kp2
s
2

+ kp1
− kr1

e
− sτ

− s
2
kr2

e
− sh

.

(27)

4. Main Results

In the present section, analytic conditions on the parameters
of the delayed controller (24) are presented. Here, a general
form of quasi-polynomial (27) is considered:

Q s, kp1,2
, kr1,2

, τ, h􏼐 􏼑 � P1 s, kp1,2
􏼐 􏼑 + P2 s, kr1

􏼐 􏼑e
− sτ

+ P3(s)kr2
e

− sh
,

(28)

where Pi(·), i � 1, 2, 3, are polynomials with real coefficients
which satisfy the following degree condition:
deg(P1(·))> deg(P2,3(·)). In order to analyze the σ-stability
of the quasi-polynomial (28), the change of variable
s⟶ (s − σ) is considered; thus, (28) is now in the following
form:

Q s − σ, kp1,2
, kr1,2

, τ, h􏼐 􏼑 ≔ Qσ s, kp1,2
, kr1,2

, τ, h􏼐 􏼑

� Pσ1 s, kp1,2
􏼐 􏼑 + Pσ2 s, kr1

􏼐 􏼑e
− τ(s− σ)

+ Pσ3(s)e
σh

kr2
e

− sh
.

(29)

Based on the D-decomposition methodology [44], the
σ-stability regions of the modified characteristic function
(29) can be now obtained.+is procedure will play a key role
in determining the analytic conditions to obtain themaximal
decay rate σ∗.

Proposition 1. Let us consider a quasi-polynomial of the
form (28), with given control parameters kp1

, kp2
, kr1

, and τ.
Let σ ∈ R+ be fixed; then, by defining

Γ(s, σ) � Pσ1 s, kp1,2
􏼐 􏼑 + Pσ2 s, kr1

􏼐 􏼑e
− (s− σ)τ

, (30)

the σ-stability regions on the (h, kr) parametric space are
bounded by the following conditions.

When s � 0,

kr2
(h) � −

Γ(0, σ)

Pσ3(0)e
σh

, h ∈ R+
. (31)

When s � iω, ω ∈ R+,

h(ω) �
1
ω
cot− 1

−
Re (Γ(iω, σ))/ Pσ3(iω)􏼐 􏼑􏼐 􏼑

Im (Γ(iω, σ))/ Pσ3(iω)􏼐 􏼑􏼐 􏼑
⎛⎝ ⎞⎠ +

πn

ω
,

n � 0, ±1, ±2, . . . ,

(32)

kr2
(h,ω) �

1
e
σh sin(ωh)

Im
Γ(iω, σ)

Pσ3(iω)
􏼠 􏼡. (33)

Proof. It should be noted that the σ crossing boundaries of
the quasi-polynomial (28), in the parametric space (h, kr),
are given by the critical crossings roots of quasi-polynomial
(29), which occur when s � 0 and s � ± iω. In this regard, on
the one hand, the solutions of quasi-polynomial (29) when
s � 0 are given by

0 � Qσ s, kp1,2
, kr1,2

, τ, h􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌s�0

� Pσ1 0, kp1,2
􏼐 􏼑 + Pσ2 0, kr1

􏼐 􏼑e
τσ

+ Pσ3(0)e
σh

kr2
,

(34)

or equivalently

kr2
� −

Pσ1 0, kp1,2
􏼐 􏼑 + Pσ2 0, kr1

􏼐 􏼑eτσ

Pσ3(0)eσh
. (35)

On the other hand, the solutions of the quasi-polynomial
(29) when s � iω are given by

0 � Qσ s, kp1,2
, kr1,2

, τ, h􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌s�iω

� Pσ1 iω, kp1,2
􏼐 􏼑 + Pσ2 iω, kr1

􏼐 􏼑e
− (iω− σ)τ

+ Pσ3(s)e
σh

kr2
e

− iωh
.

(36)

+ereby,

−
1

kr2
e
σh

Γ(iω, σ)

Pσ3(iω)
􏼠 􏼡 � e

− iωh
� cos(ωh) − i sin(ωh), (37)

from which

cos(ωh) � −
1

kr2
e
σh
Re
Γ(iω, σ)

Pσ3(iω)
􏼠 􏼡,

sin(ωh) �
1

kr2
e
σh
Im
Γ(iω, σ)

Pσ3(iω)
􏼠 􏼡.

(38)
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From the above equation, it follows that

cos(ωh)

sin(ωh)
Im
Γ(iω, σ)

Pσ3(iω)
􏼠 􏼡 � − Re

Γ(iω, σ)

Pσ3(iω)
􏼠 􏼡. (39)

+en, the solutions of (39) (with respect to h) are of the
following form:

h �
1
ω
cot− 1

−
Re (Γ(iω, σ))/ Pσ3(iω)􏼐 􏼑􏼐 􏼑

Im (Γ(iω, σ))/ Pσ3(iω)􏼐 􏼑􏼐 􏼑
⎛⎝ ⎞⎠ +

πn

ω
,

n � 0, ±1, ±2, . . . , andω ∈ R+
.

(40)

Finally, solving kr2
from (38), equation (33) follows.

In the following corollary, the σ-stability boundaries in
the (h, kr2

) parametric space are written particularly for the
quasi-polynomial (23), where P1(s, kp1,2

) � s4 + kp2
s2 + kp1

,
P2(s, kr1

) � − kr1
, and P3(s) � − s2. □

Corollary 1. Consider the quasipolynomial of the form (23).
Ien, the σ-stability boundaries (31)–(33) look as follows.

For s � 0,

kr2
(h) �

kp2
σ4 + kp2

σ2 + kp1
− kr1

e
στ

σ2eσh
. (41)

For s � iω, ω ∈ R+,

h(ω) �
1
ω
cot− 1

−
Φ
Ψ

􏼒 􏼓 +
πn

ω
,

kr2
(h,ω) �

Ψ

e
σh sin(ωh) σ2 + ω2

􏼐 􏼑
2.

(42)

Here, n � 0, ± 1, ± 2, . . ., and Ψ and Φ are defined as

Ψ � 2ωσ kp1
− σ2 + ω2

􏼐 􏼑
2

􏼒 􏼓

− kr1
e
τσ 2σω cos(ωτ) − σ2 − ω2

􏼐 􏼑sin(ωτ)􏼐 􏼑,

Φ � σ2 − ω2
􏼐 􏼑 σ2ω2

+ kp1
− kr1

e
τσ cos(ωτ)􏼐 􏼑

+ kp2
σ2 + ω2

􏼐 􏼑
2

− 2kr1
σωe

τσ sin(ωτ) + σ6 − ω6
􏼐 􏼑.

(43)

+emethodology to graphically determine the σ-stability
boundaries (31)–(33) is as follows:

(1) Propose an initial value of σ ∈ R+ close to zero,
denoted by σ0

(2) For the critical frequencies s � 0: from (31), graph
the parametric boundaries for kr2

(h) on the para-
metric space (h, kr2

) considering h ∈ (0, h], h ∈ R+,
and σ0

(3) For the critical frequencies s � iω:

(a) From (32), calculate h considering ω ∈ (0,ω],
ω ∈ R+, and σ0

(b) From (33), compute kr2
considering ω ∈ (0,ω],

σ0, and h (from (a))

(c) Plot the values of h and kr2
, obtained in the

previous steps, on the parametric space (h, kr2
)

(4) Detect the closed regions/curves in the parametric
plane (h, kr2

) and discard the unstable ones; the
remaining regions are considered as the σ-stability
regions of (28)

(5) Select σ1 > σ0
(6) Repeat steps 2–5, considering σ1, until the σ-stability

regions collapse in a single point

Proposition 1 and Corollary 1 provide conditions to de-
termine the σ-stability boundaries in the parametric plane
(h, kr2

) of quasi-polynomial (28). Next, the main result of the
contribution is presented, where analytic expressions relative to
the tuning of the controller gains h∗ and k∗r2 to reach the
maximal decay rate σ∗ are obtained. +e result is based on the
fact that when the maximal decay rate σ∗ is reached, there exist
three dominant roots of the quasi-polynomial (28) in s � − σ;
this phenomenon occurs when the concentric σ-stability re-
gions collapse in a single point, denoted by (h∗, k∗r2 ), as σ
increases. +e value of σ, when the collapse occurs, determines
the maximal decay rate σ∗; see [25, 30]. +en, the analytical
equations are determined to obtain the parameters h∗ and k∗r2 ,
considering that there are three dominant roots on σ∗.

Proposition 2. Let us consider the closed-loop system (25).
Ien, the quasi-polynomial (28) has a root of multiplicity at least
three on s � − σ∗ if k∗r2 and h∗ satisfy the following equations:

h
∗

� h σ∗( 􏼁 �
(z/zs)Pσ3(s)

Pσ3(0)
−

(z/zs) Γ s, σ∗( )( )

Γ 0, σ∗( )
􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

, (44)

k
∗
r2

� kr2
σ∗, h
∗

( 􏼁 �
− (z/zs) Γ s, σ∗( 􏼁( 􏼁

􏼌􏼌􏼌􏼌s�0

eσ
∗h∗

(z/zs)Pσ3(s)
􏼌􏼌􏼌􏼌􏼌s�0 − h

∗
Pσ3(0)􏼒 􏼓

,

(45)

and σ∗ is the smallest positive real root of

f σ, kp1
, kp2

, kr1
, τ􏼐 􏼑

� Pσ3(0)
2 Γ(0, σ)

z2

zs2
Γ(s, σ) −

z

zs
Γ(s, σ)

2
􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

+ Γ(0, σ)
2 z

zs
Pσ3(s)􏼠 􏼡

2

− Pσ3(0)
z2

zs2
Pσ3(s)⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0
.

(46)

Proof. Clearly, quasi-polynomial (28) presents three dom-
inant roots at the point s � − σ if the quasi-polynomial (29)
has three dominant roots at s � 0. +us, the conditions

Qσ(·)
􏼌􏼌􏼌􏼌s�0 � 0,

d
ds

Qσ(·)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0
� 0,

d2

ds2
Qσ(·)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0
� 0,

(47)
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must be satisfied; consequently,

0 � Γ(0, σ) + Pσ3(0)kr2
e
σh

, (48)

0 �
z

zs
Γ(s, σ)􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

+ kr2
eσh z

zs
Pσ3(s)e− sh

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

, (49)

0 �
z2

zs2
Γ(s, σ)􏼡􏼠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

+kr2
eσh z2

zs2
Pσ3(s)e− sh

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

. (50)

+e first two (44) and (45) can be easily verified. First,
expression (45) follows directly from (49). Now, to obtain
(44), from (48) and (49), it follows that

0 �
z

zs
Γ(s, σ)􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

−
Γ(0, σ)

Pσ3(0)

z

zs
Pσ3(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0
+ hΓ(0, σ),

(51)

and we get (44):

h �
(z/zs)Pσ3(s)

Pσ3(0)
−

(z/zs)(Γ(s, σ))

Γ(0, σ)
􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

. (52)

To address (46), from (48) and (50), it follows that

0 �
z2

zs2
Γ(s, σ)􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

+ kr2
eσh z2

zs2
Pσ3(s)e− sh

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

�
z2

zs2
Γ(s, σ)􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

−
Γ(0, σ)

Pσ3(0)

z2

zs2
Pσ3(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

+ 2h
Γ(0, σ)

Pσ3(0)

z

zs
Pσ3(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0
− h

2Γ(0, σ).

(53)

Substituting (52) in the above equation yields

0 � Pσ3(0)
2 Γ(0, σ)

z2

zs2
Γ(s, σ) −

z

zs
Γ(s, σ)􏼠 􏼡

2
⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0

+ Γ(0, σ)
2 z

zs
Pσ3(s)􏼠 􏼡

2

− Pσ3(0)
z2

zs2
Pσ3(s)⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌s�0
,

(54)

which ends proof.
In the following corollary, conditions (44)–(46) are written
particularly for the quasi-polynomial (27), where
P1(s, kp1,2

) � s4 + kp2
s2 + kp1

, P2(s, kr1
) � − kr1

, and P3(s) �

− s2. □

Corollary 2. Consider the quasi-polynomial of the form (27);
then, the controller gains h∗, k∗r2 and the function f(σ, ·) given
by equations (44)–(46) look as

f σ, kp1,2
, kr1

, τ􏼐 􏼑 � σ4 2σ kp2
− 2σ2􏼐 􏼑 − kr1

τe
στ

􏼐 􏼑
2

+ σ2κ σ2 2kp2
+ 12σ2 − kr1

τ2eστ􏼐 􏼑􏽨 􏽩2σ2κ2,

(55)

where κ � kp1
− kr1

eστ + σ2(σ2 + kp2
) and

h
∗ σ, kp1,2

, kr1
, τ􏼐 􏼑 �

2σμ1 − kr1
τe

στ

kp1
− kr1

e
στ

+ σ2μ2
−
2
σ

,

k
∗
r2

σ, kp1,2
, kr1

, h, τ􏼐 􏼑 � e
σh
2σμ1 − kr1

τe
στ

σ(2 + hσ)
,

(56)

with μ1 � kp2
+ 2σ2 and μ2 � μ1 − σ2.

+e conditions introduced in this section are only focused on
the appropriate selection of the control parameters σ∗, k∗r2 , and
h∗ that guarantee reaching themaximal exponential decay rate,
but there are no conditions involving the remaining control
parameters. In the following, a simple approach for the ap-
proximate selection of the control parameters is presented. On
the one hand, let us consider quasi-polynomial (27), where the
exponential terms are estimated by its first-order Taylor series
truncated expansion; that is,

Q s, kp1,2
, kr1,2

, τ, h􏼐 􏼑 � s
4

+ kp2
s
2

+ kp1
􏼐 􏼑 − kr1

(1 − sτ)

− kr2
s
2
(1 − sh)

� s
4

+ hkr2
s
3

+ kp2
− kr2

􏼐 􏼑s
2

+ τkr1
s

+ kp1
− kr1

􏼐 􏼑.

(57)

Now, let us propose a Hurwitz stable polynomial of the
following form:

p(s) � s
2

+ 2ξcωcs + ω2
c􏼐 􏼑

2
, (58)

where ξc,ωc ∈ R+. +us, the dynamics of the previous
polynomial is matched with (57). +en, simple calculations
show that the controller gain parameters kp1

, kp2
, kr1

, and τ
can be chosen according to the following conditions (for
α1 > 1 and α2 > 2):

kp1
> α1ω

4
c ,

kp2
> α2ω

2
c 1 + 2ξ2c􏼐 􏼑,

(59)

kr1
� kp1

− ω4
c ,

τ �
4ξcω

3
c

kr1

.
(60)

Remark 1. Due to the simple nature of conditions (54) and
(60), they must be considered only as a starting point in the
process of tuning the delayed control law (24) and subsequently
adjusted according to the performance of the system.

5. Cases of Study

5.1. Rotatory Flexible Link. +e rotatory flexible link plat-
form consists of a rotating base driven by a belt-pulley
mechanism actuated by a DCmotor, a link is attached to the
rotating base by two springs of identical nature, which re-
sults in a flexible joint. +e schematic of such a manipulator
is presented in Figure 2.+e variables θ1(t) and θ2(t) denote
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the angular positions of the rotating base and the link, re-
spectively, l represents the length of the link, Jb stands for the
inertia of the rotating base, and Jl is the moment of inertia of
the link. Finally, ks denotes the stiffness of the spring and
u(t) is the torque input applied to the system.

+e problem formulation is stated as follows. For the
rotatory flexible link, a smooth rest to rest angular position
reference trajectory for the rotating base is demanded while
the nonactuated link is desired to remain in a vicinity zero
position, avoiding oscillations during the tracking
maneuver.

5.1.1. Ie Dynamic Model. Following the methodology
presented in Section 3 the Euler-Lagrange formalism (11) is
used to represent the mathematical model of the rotatory
flexible link system, where the viscous friction is neglected
and the unmodeled nonlinear terms are ignored:

M(q(t))€q(t) + C(q(t), _q(t)) _q(t) + g(q(t)) � Pτ(t),

(61)

with

M(q) �
Jb + Jl Jl

Jl Jl

􏼢 􏼣,

C(q, _q) �
0 0

0 0
􏼢 􏼣,

g(q) �
0

ksθ2(t)
􏼢 􏼣,

q(t) � θ1(t) θ2(t)􏼂 􏼃
⊺
,

P � 1 0􏼂 􏼃
⊺
,

(62)

or in an equivalent form:

θ
..

1(t) �
ks

Jb

θ2(t) +
τ(t)

Jb

,

θ
..

2(t) � − ks

Jb + Jl

JbJl

􏼠 􏼡θ2(t) −
τ(t)

Jb

.

(63)

5.1.2. Cascade Structure Representation. Let us introduce the
state vector:

x(t) � x1(t) x2(t) x3(t) x4(t)􏼂 􏼃
⊺

� θ1(t) θ
.

1(t) θ2(t) θ
.

2(t)􏽨 􏽩
⊺
.

(64)

+en, the applied torque can be expressed as
τ(t) � Nτm, where τm � (kτ/Rm)V(t) is the torque in terms
of the input voltage, N represents the gear ratio, kτ is the
torque constant, and Rm denotes the motor armature re-
sistance. Since (63) is linear, it can be rewritten in space state
representation (24) as follows:

_x(t) � Ax(t) + bV(t), (65)

A �

0 1 0 0

0 0
ks

Jb

0

0 0 0 1

0 0 −
Jl + Jb

JlJb

􏼠 􏼡ks 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b �

0

Nkτ

RmJb

0

−
Nkτ

RmJb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(66)

Let us define the Kalman controllability matrix as in (5).
Direct calculations show that the pair (A, b) is controllable
and consequently, by Definition 2, it is flat. +e flat output
can be computed according to (16), where by defining
ε � (RmJbJl)/(kτksN), the flat output yf(t) is expressed as

yf(t) � x1(t) + x3(t). (67)

+e flat output time derivatives are

yf(t) � x1(t) + x2(t),

_yf(t) � x2(t) + x4(t),

€yf(t) � −
ks

Jl

x3(t),

y
(3)
f (t) � −

ks

Jl

x4(t),

y
(4)
f (t) �

k
2
s Jl + Jb( 􏼁

J
2
l Jb

x3(t) +
kτksN

RmJbJl

V(t).

(68)

Let us define the output error as in (20); then, its dy-
namics are

_e1(t) � e2(t),

_e2(t) � e3(t),

_e3(t) � e4(t),

_e4(t) �
k
2
s Jl + Jb( 􏼁

J
2
l Jb

x3(t) +
kτksN

RmJbJl

V(t) − y
∗(4)
f (t),

(69)

l

Jb
Jl

ks

τ (t) θ1

θ2

Figure 2: Schematics of the rotatory flexible link.
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where the auxiliary control V(t) is proposed as

V(t) � a1 u(t) −
k
2
s Jl + Jb( 􏼁

J
2
l Jb

x3(t) + y
∗(4)
f (t)􏼢 􏼣,

a1 �
RmJbJl

kτksN
.

(70)

5.1.3. Delayed Control Law. If the following delayed con-
troller, u(t) � u(t) is considered:

uD(t) � − kp1
e1(t) + kr1

e1(t − τ) − kp2
e3(t) + kr2

e3(t − h).

(71)

+e chain of integrators representation (25) is obtained.

Remark 2. It is worth noting that both the auxiliary control
V(t) and the delayed controller uD(t) depend completely on
the measurable variables that correspond to angular posi-
tions x1(t) � θ1(t) and x3(t) � θ2(t).

5.1.4. Feedback State Control Law. In order to compare the
proposed delayed controller with a classical scheme, a
feedback state control is designed as follows:

uFS(t) � − κ1e1(t) − κ2e2 − κ3e3(t) − κ4e4(t), (72)

where the set of gains [κ1, κ2, κ3, κ4] is chosen as κ1 � ϖ4,
κ2 � 4ςϖ3, κ3 � 4ς2ϖ2 + 2ϖ2, and κ4 � 4ςϖ.

Remark 3. Now, the auxiliary control V(t) and the feedback
state control law uFS(t) depend on the complete vector state
x(t), due to the fact that the velocity states x2(t) � θ

.

1(t) and
x4(t) � θ

.

2(t) are not available; then, a low pass filter with
transfer function G(s) � (200s)/(s + 200) is used to estimate
the velocity using themeasurable variables x1(t) � θ1(t) and
x3(t) � θ2(t); this methodology allows us to reduce the
noise generated by the estimation of the so-called “dirty
derivative” [45].

5.1.5. Experimental Results. In Figure 3, the rotatory flexible
link experimental platform is presented. +e prototype
consists of a DC motor NISCA model NC5475 attached to
the rotating base by means of a belt-pulley system with a 16 :
1 ratio. +e angular position of both the rotating base and
the link is measured by means of incremental encoders with
a resolution of 1000 counts per revolution. +e data ac-
quisition is carried out with a data card Sensoray, model 626.
+e data card acquires the signals from the optical incre-
mental encoders and supplies the control voltages to the
power amplifiers (Quanser amplifier model VoltPAQ-X2).
+e control scheme is implemented in the Matlab-Simulink
platform with a sampling time of 0.001[s].

+e rotatory flexible link parameters are

Inertias: Jb � 0.0481 [Kg − m2] and Jl � 0.0036
[Kg − m2].
Length of the link: l � 0.55 [m].

Stiffness of the spring: ks � 4 [N − m/rad].
Armature resistance: kτ � 0.0724 [Ω].
Torque constant: τm � 2.983 [Ω].
Mechanical advantage: N � 16.

In this experiment, the tracking trajectory problem is
addressed. +e initial conditions are x(0) � 0. +e desired
trajectory y∗f (t) consists of a path initialized at
y∗f (0) � 0[rad]. After two seconds in this position, the
mechanism moves, in an interval of 0.7[s], to
y∗f (2) � π/2[rad] where it stands still for 7.3[s]. Finally, the
reference path returns to its initial condition in an interval of
0.7[s].

+e parameters of the controller were selected as follows.
According to (38) and (39), the following values were
proposed ωc � 52 and ξc � 1.2; thus, kp1

� 29246464,
kp2

� 33572.864, kr1
� 21934848, and τ � 0.02. Now, the

conditions presented in Corollary 4 lead to σ∗ � 66.65 and
consequently k∗r2 � 18839.729 and h∗ � 0.00476.

+e σ-stability boundaries were calculated following
Corollary 1, which is illustrated in Figure 4. +e red mark
symbolizes the maximal achievable decay rate σ∗ and, as it
can be seen, represents the point where all the σ-stable
regions collapse.

Figure 5 depicts the rightmost root locus of the closed-
loop system, where it can be appreciated that a triple real
dominant root is located at the point σ∗ � 66.65 as stated in
Proposition 3.

+e set of gains for the feedback state controller were
chosen as ϖ � 52 and ς � 1.2. +e main challenge when
controlling the rotatory flexible link platform is to avoid the
oscillations that appear intrinsically due to the flexible na-
ture of the system. In Figure 6, the rotatory flexible link
tracking trajectory task under the control actions of the
proposed cascade PR scheme and feedback state is pre-
sented.+e desired trajectory y∗f (t) is represented by a black
line, while the flat output yfD(t) with the delayed controller
is depicted in blue and the yfFS(t) with the feedback is
represented by a red line. It can be seen that the tracking task
is carried out satisfactorily by both controllers, avoiding
oscillations and reaching the reference without overshoot-
ing.+e tracking errors are detailed in Figure 7, noticing that
both errors eD and eFS are restricted to the interval
[− 0.075, 0.075][rad] with similar performance. Figures 8 and
9 represent the evolution of the angular positions θ1 and θ2

Link

SpringRotating
base

Figure 3: Rotatory flexible link prototype.
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when the system follows the reference trajectory. Figure 10
shows the control voltages of both schemes. Notice that the
peak voltageVD does not exceed ±10[Volts] butVFS presents
a larger amplitude. As a consequence of avoiding the use of
the time derivatives in the proposed control scheme, the
voltage VD signal appears relatively free of noise, as expected

but VFS presents high-frequency components; it can be
corroborated in Figure 11 where a Power Spectrum Density
of control signals VD and VFS is presented. Here, it can be
observed that FSPSD presents more frequency components in
comparison with DPSD. Finally, the performance of the
system is evaluated by means of a quadratic index of the
applied voltage (see Figure 12) where it can be noticed that
VFS consumes more energy.
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Figure 4: σ-stability boundaries.
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5.2. Pendubot System. +e pendubot consists of a planar
double inverted pendulum, whose schematic is presented in
Figure 13. +e first link is driven by a DC motor while the
second link is an underactuated simple pendulum. +e
variables θ1 and θ2 denote the angular positions of the links,
u represents the control torque input, and the parameters m1

and m2 denote the masses of the links. +e lengths of the
links are represented as l1 and l2, while lc1 and lc2 are the
distances to the center of the masses. Finally, I1 and I2
denote the inertias of the links.

+e problem formulation is given as follows: a smooth
rest to rest angular position reference trajectory for the first
link is demanded, while the nonactuated second link is
desired to remain around its unstable vertical position,
without falling during the entire tracking maneuver or
moving away from the equilibrium point.
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5.2.1. Ie Nonlinear Dynamic Model. As carried out for the
flexible link system, the Euler-Lagrange formalism is used to
represent the dynamic model of the considered system:

M(q(t))€q(t) + C(q(t), _q(t))q(t) + g(q(t)) � Pτ(t),

(73)

with q(t) � θ1(t) θ2(t)􏼂 􏼃
⊺ and P � 1 0􏼂 􏼃

⊺. Here,

M(q) �
β1 + β2 + 2β3 cos θ2(t)( 􏼁 M1,2(θ)

β2 + β3 cos θ2(t)( 􏼁 β2
⎡⎢⎢⎣ ⎤⎥⎥⎦,

C(q, _q) �
− β3θ

.

1(t)sin θ2(t)( 􏼁 β3C1,2(θ)

β3θ
.

1(t)sin θ2(t)( 􏼁 0

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

g(q) �
β4g cos θ1(t)( 􏼁 + β5g cos θ1(t) + θ2(t)( 􏼁

β5g cos θ1(t) + θ2(t)( 􏼁

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(74)

where

β1 � m1l
2
c1

+ m2l
2
c2

+ I1,

β2 � m2l
2
c2

+ I2,

β3 � m2l1lc2,

β4 � m1lc1 + m1l1, β5 � m2lc2,

M1,2(θ) � β2 + β3 cos θ2(t)( 􏼁,

C1,2(θ) � θ
.

1(t) + θ
.

2(t)􏼒 􏼓sin θ2(t)( 􏼁.

(75)

5.2.2. Cascade Structure Representation. In this section, the
procedure presented in Section 3 is applied. +e state vector
is defined as

x(t) � x1(t) x2(t) x3(t) x4(t)􏼂 􏼃
⊺

� θ1(t) θ
.

1(t) θ2(t) θ
.

2(t)􏽨 􏽩
⊺
.

(76)

+e applied torque can be expressed as
τ(t) � (kτ/Rm)V(t) in terms of the input voltage, where kτ is
the torque constant and Rm represents the motor armature
resistance. For V � 0, the considered equilibrium point x(t)

is

x(t) �
π
2

0 0 0􏼔 􏼕
⊺
. (77)

+en, the tangent linearization looks as

_xδ(t) � Axδ(t) + bV(t), (78)

where xδ(t) � x1(t) − π2 x2(t) x3(t) x4(t)􏼂 􏼃
⊺,

A �

0 1 0 0

β3β5 − β2β4( 􏼁g

β23 − β1β2
0

β3β5g
β23 − β1β2

0

0 0 0 1

β2 + β3( 􏼁β4 − β1 + β3( 􏼁β5( 􏼁g

β23 − β1β2
0 −

β1 + β3( 􏼁β5g
β23 − β1β2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b � 0 −
kτβ2

Rm β23 − β1β2􏼐 􏼑
0

kτ β2 + β3( 􏼁

Rm β23 − β1β2􏼐 􏼑
􏼢 􏼣

T

.

(79)

By defining the Kalman controllability matrix as
Kc � b Ab A

2
b A

3
b􏽨 􏽩, the pair (A, b) is controllable since

Kc has full rank. +en, according to Definition 2, it implies
that system (42) is flat, and the corresponding flat output is
computed as

yf(t) � ε 0 0 0 1􏼂 􏼃K
− 1
c xδ(t) �

β2 + β3
β2

xδ1(t) + xδ3(t).

(80)

Here, ε is selected as ε � (Rmβ2(β
2
3 − β1β2))/(kτβ3β5g).

Now, by straightforward calculations, the flat output time
derivatives (10) are given by

yf(t) �
β2 + β3
β2

xδ1(t) + xδ3(t),

_yf(t) �
β2 + β3
β2

xδ2(t) + xδ4(t),

€yf(t) �
gβ5
β2

xδ1(t) + xδ3(t)( 􏼁,

y
(3)
f (t) �

gβ5
β2

xδ2(t) + xδ4(t)( 􏼁,

y
(4)
f (t) � ρ1xδ1(t) − ρ2 xδ1(t) + xδ3(t)( 􏼁 + ρ3V(t),

(81)

with

g

l1

lc1

lc2 l2

I2

I1

m2

m1

θ2

θ1

τ (t)

Figure 13: Schematics of the pendubot system.
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ρ1 �
β3β4β5( 􏼁g

2

β2 β23 − β1β2􏼐 􏼑
,

ρ2 �
β1β

2
5g

2

β2 β23 − β1β2􏼐 􏼑
,

ρ3 �
kτβ3β5g

Rmβ2 β23 − β1β2􏼐 􏼑
.

(82)

By defining the output error as in (20), then, the set of
error dynamics (21) are given as follows:

_e1(t) � e2(t),

_e2(t) � e3(t),

_e3(t) � e4(t),

_e4(t) � ρ1xδ1(t) − ρ2 xδ1(t) + xδ3(t)( 􏼁

+ ρ3uδ1(t) − y
∗(4)
f (t).

(83)

Now, by proposing the auxiliary control

V(t) � ρ− 1
3 u(t) − ρ1xδ1(t) + ρ2 xδ1(t) + xδ3(t)( 􏼁􏼂 􏼃

+ ρ− 1
3 y
∗(4)
f (t),

(84)

and by considering the delayed control law

u(t) � uD(t) � − kp1
e1(t) + kr1

e1(t − τ) − kp2
e3(t)

+ kr2
e3(t − h),

(85)

the desired chain of integrators representation (25) is
obtained.

Remark 4. As in the previous experiment, the auxiliary
control V(t) and the delayed control law uD(t) depend
completely on the measurable variables that correspond to
the angular positions.

5.2.3. Feedback State Control Law. As in the previous test,
feedback state control is designed in order to compare its
performance with the proposed delayed controller:

uFS(t) � − κ1e1(t) − κ2e2 − κ3e3(t) − κ4e4(t), (86)

where the following set of gains [κ1, κ2, κ3, κ4] is chosen as
κ1 � ϖ4, κ2 � 4ςϖ3, κ3 � 4ς2ϖ2 + 2ϖ2, and κ4 � 4ςϖ.

Remark 5. +e velocity states x2(t) and x4(t) are estimated
using a low pass filter with transfer function
G(s) � (200s/s + 200).

5.2.4. Experimental Results. Figure 14 shows the experi-
mental pendubot prototype. It consists of a DC motor
NISCA model NC5475, which drives the first link. +e
angular position of both links is measured by means of
incremental encoders with a resolution of 10000 counts per
revolution. +e same data acquisition model of the former
example was used.+e power amplifier consists of a Quanser

amplifier model VoltPAQ-X2. +e control strategy was
implemented in the Matlab-Simulink platform, and the
sampling time was set to be 0.001[s]. +e pendubot pa-
rameters are as follows.

+e test on the pendubot was carried out as follows:

Links Inertias: I1 � 0.00053 [Kg − m2] and I2 � 0.00077
[Kg − m2].
Mass of the links: m1 � 0.210 [Kg] and m2 � 0.1 [Kg].
Length of the links: l1 � 0.15 [m] and l2 � 0.3 [m].
Distance to the center of mass: lc1 � 0.12 [m] and lc2 �

0.15 [m].
Armature resistance: kτ � 0.0724 [Ω].
Torque constant: τm � 2.983 [Ω].

+e initial conditions are set as x1(0) � π/2[rad] and
x3(0) � 0[rad]. +e desired trajectory consists of a rest to
rest smooth trajectory, described as follows:

y
∗
f (t) �

β2 + β3
β2

x
∗
δ1(t) + x

∗
δ3(t),

y
∗
f (t) �

β2 + β3
β2

θ ∗1 (t) −
π
2

􏼒 􏼓 + θ∗2 (t).

(87)

At t � 0, the trajectory is set at y ∗f (0) � 0; it implies that
θ ∗1 (t) � π/2 and θ ∗2 (t) � 0; when the time reaches t � 4.5,
the desired trajectory moves to y∗f (6) � ((β2 + β3)/
β2)(π/6) − (π/6) with θ∗1 (t) � (2/3)π and θ∗2 (t) � − (π/6)

on a lapse of 2.5 seconds. +en, when time is t � 9.5[s], it
moves to y∗f (13.5) � − ((β2 + β3)/β2)(π/6) + (π/6) with
θ ∗1 (t) � (π/3) and θ ∗2 (t) � − (π/6) in 4 seconds, and finally,
when t � 17.5[s], it returns to the initial position and re-
mains in this position until the test is finished. Figure 15
shows the desired rest to rest positions of the pendubot
system.

Link 2

Link 1

Figure 14: Pendubot prototype.
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+e parameters of the controller were chosen according
to (59 and 60), selecting ωc � 14 and ξc � 1.2 and then
kp1

� 460992, kp2
� 4562.88, kr1

� 422576, and τ � 0.0311.
+e remainder of the parameters are calculated following
Corollary 2, leading to σ∗ � 8.8477, kr2

� 2832.39, and
h∗ � 0.021. +e σ-stability boundaries are computed by
means of Corollary 1, see Figure 16, where the maximal
achievable decay rate σ∗ is marked as a red spot. Here, the
zone outside the concentric regions corresponds to the
unstable region. +e set of gains for the feedback state
controller were chosen as ϖ � 14 and ς � 1.2. Notice that the
gain value coincides with the gain value used to select the
proposed delayed control.

Figure 17 shows the flat output trajectory tracking
performance of both controllers, the reference trajectory
y∗f (t) is depicted in black line, the delayed controller re-
sponse yD(t) is shown in the blue line, and the feedback
controller response is shown in the red line yFS(t), where it
can be seen that the pendubot tracks the desired trajectory
with adequate results, even when it is far from the equi-
librium point. Figure 18 shows that the tracking errors eD(t)

and eFS(t) are bounded in an interval of approximately
[− 0.025, 0.025][rad]. Figures 19 and 20 show the variation of
the positions of the links during the tracking trajectory task.
Figure 21 exhibits the control input voltage VD calculated
without using any time derivatives, which shows less noise

θ2 = 0∗

θ1 = π/2∗ θ1 = 2/3π∗

θ2 = –π/6∗ θ2 = π/6∗

θ1 = π/3∗

Figure 15: Pendubot desired rest to rest positions.
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and less amplitude in contrast with VFS. +e performance of
both controllers is similar to good results; the main dif-
ference is on the voltage control. +e Power Spectrum
Density of VD and VFS is depicted in Figure 22. Notice that
FSPSD shows high-frequency components with a peak on 50

[Hz]. Figure 23 shows an analysis using a quadratic index of
the voltage, where VFS consumes more energy. +us, the
proposed delay controller represents an attractive alternative
to control a set of underactuated mechanical systems. A
sensitivity analysis with a quadratic error index of the
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trajectory tasks was performed in simulation using a set of
initial conditions for the angular positions θ1(0) and θ2(0).
Figure 24 shows the first link performance; notice that the
PR controller rank of initial conditions θ1D(0) remains on
[− 8, 8] degrees, in comparison with the FS controller rank of
initial conditions θ1FS(0) that remains on the interval [− 7, 7]

degrees. Similarly, Figure 25 shows the second link per-
formance, the rank of the initial conditions for θ2D(0) is
[− 12, 12] degrees, while θ2FS(0) is [− 11, 11]. Notice that the
PR controller can control the pendubot system with further

initial conditions from the equilibrium point than the PD
controller.

6. Conclusion

In this paper, an alternative approach to control a class of
underactuated systems of the fourth order through pro-
portional retarded based controllers was proven and ex-
perimentally tested, leading to smooth tracking results
thanks to the derivative-free control philosophy. +e tuning
procedure allows the practitioner to find appropriate control
gains (the proposal is constructive). +e cascade form of the
tangent linearization of the underactuated system is an
important design tool for the model simplification and the
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Figure 23: Performance index of the controller.
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local controllability property for the design of a wide variety
of controllers. Future research concerning the topic deals
with the extension of the procedure to larger order systems
as well as a more comprehensive development of the con-
ditions involving all the control parameters. +e case of
study can be also extended for disturbed dynamics, in which
integral actions can be proposed and tested.
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y Posgrado-IPN” under Grants SIP20201675 and
SIP20201830, and CONACYT-México and InIAT Uni-
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References

[1] C. A. Ibañez and O. G. Frias, “Controlling the inverted
pendulum by means of a nested saturation function,” Non-
linear Dynamics, vol. 53, no. 4, pp. 273–280, 2008.

[2] C. A. Ibañez, O. G. Frias, and M. S. Castañón, “Lyapunov-
based controller for the inverted pendulum cart system,”
Nonlinear Dynamics, vol. 40, no. 4, pp. 367–374, 2005.

[3] I. Fantoni, R. Lozano, and M. W. Spong, “Energy based
control of the pendubot,” IEEE Transactions on Automatic
Control, vol. 45, no. 4, pp. 725–729, 2000.

[4] B. Lu, Y. Fang, and N. Sun, “Continuous sliding mode control
strategy for a class of nonlinear underactuated systems,” IEEE
Transactions on Automatic Control, vol. 50, 2018.

[5] R. Xu and Ü. Özgüner, “Sliding mode control of a class of
underactuated systems,” Automatica, vol. 44, no. 1,
pp. 233–241, 2008.
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/is article concerns the problem of input-to-state stabilization for a group of uncertain nonlinear systems equipped with
nonabsolutely available states and exogenous disturbances. To appropriately cope with these partially measurable state variables as
well as dramatically minimize controller updating burden and communication costs, an event-triggered mechanism is skillfully
devised and an observer-based impulsive controller with the combination of sample control is correspondingly presented. By
resorting to the iterative method and Lyapunov technology, some sufficient criteria are established to guarantee the input-to-state
stability of the newly uncertain controlled system under the employed controller, in which an innovative approximation condition
as to the uncertain term is proposed and the linear matrix inequality technique is utilized for restraining sophisticated parameter
uncertainties. Furthermore, the Zeno behavior in the proposed event-triggered strategy is excluded. /e control gains and event-
triggered mechanism parameters are conjointly designed by resolving some inequalities of linear matrix. Eventually, the
availability and feasibility of the achieved theoretical works are elucidated by two simulation examples.

1. Introduction

Since it is originally put forward by [1, 2], input-to-state
stabilization has caught widespread attention [3–5], attrib-
uting to its performance in characterizing dynamical sys-
tems reaction to exogenous disturbances with bounded
magnitude. /e property of input-to-state stabilization,
crudely speaking, symbolizes that the system state will ul-
timately approach the origin neighborhood whose di-
mension is in direct proportion to the size of the system
input regardless of the magnitude of the initial state. With
this characteristic, a system is asymptotically stabilizable
under disturbance-free condition and has the evolution of
bounded state in the bounded perturbation circumstance.
Indeed, input-to-state stability behavior can characterize
robustness and stability on dynamic systems possessed
disturbances, in which the corresponding stabilization
problem has a great signality for the control issue of [5–7].
Input-to-state stability is incipiently introduced for con-
tinuous systems to evaluate dynamical behaviors, which is

especially a fundamental conception for investigating robust
dynamics on nonlinear systems influenced by noise, inputs,
or interferences [8]. Afterwards, it is diffusely capitalized for
stabilizing controller synthesis and stabilization analysis of
diverse discontinuous systems, to name a few, switched
systems [9, 10], stochastic systems [5, 11], and fuzzy systems
[12, 13].

Accompanied by the prompt development of some
technologies such as digital control for resource-limited
models and sensors incorporated embedded microproces-
sors, event-triggered impulsive control strategy, more re-
cently, has been highly valued. On the one hand, the
impulsive system, composed of discrete dynamics and
continuous dynamics, is an important hybrid system in
which the uncontinuous behavior is a momentary state jump
occurring at given moments, while the consecutive behavior
is usually expressed as differential equation. Correspond-
ingly, impulsive control is a control approach that the
control signals are transmitted to a system only at certain
moments. In comparison with continuous control [14, 15], it
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has the advantages of only discrete control which is required
for deriving the desired performance, discontinuity, and
stronger robustness. Consequently, the control approach is
extensively applied in practice, such as ecosystem man-
agement [16, 17], satellite orbit transfer [18], secure com-
munication [19], pharmacokinetics [20], and complex
switched network [21]. Furthermore, controlling the oper-
ation of systems all the while is unnecessary or even im-
possible in practice. In populationmodel [16], for example, it
is merited to release predators at appropriate discrete cir-
cumstances, rather than the continuous instances for con-
trolling the amount of a category insect. Moreover, as [22]
amply demonstrated, impulsive control allows utilizing
small control impulses as much as possible to stabilize a type
of chaotic system. Not merely does it reduce redundant
information transmission, but it increases the robustness of
disturbances rejection. On the other hand, event-based
control, as the name implies, is the strategy that event is
triggered by some elaborate state-based or output-based
event conditions to update the control input, which com-
pared to the conventional time-triggered control is capable
of avoiding unnecessary communication since a system
adjusts the sampling rate adaptively according to the current
situation [23, 24]. Specifically, the issue of self-learning
optimal supervision on discrete systems via event-driven
formulation is investigated in [24]. And the critics learning
standard is improved for the design of nonlinear H∞ state-
feedback control based on events [25]. Distinct from the
extant achievements involving sectionally continuous or
consecutive control inputs, event-triggered impulsive con-
trol is able to dramatically minimize communication load
and communication cost as well as enhance robustness,
which, for these reasons, is deserving increasing attention.
Simultaneously, the integration of two control strategies also
creates tremendous challenges in designing appropriate
controller.

As yet, some (but few) significant accomplishments
about the event-triggered impulsive control such as [26–29]
have been reported. Taking [26] as an instance, the syn-
chronization issue on multiple neural networks with dis-
connected switching topology and delay under this control
strategy is studied. Nevertheless, systems are generally af-
fected by some uncertain factors such as human error,
random disturbance, information loss, inherent deviation,
or environmental noise. /e uncertainty caused by these
factors is referred to as the parametric uncertainty that is
perhaps foremost provenance of model uncertainty [30].
Without taking model uncertainty into account, it seems to
be far-fetched and preposterous in reality for analyzing
performances of various systems like estimating the property
indexes on steady state. In this condition, none of the before-
mentioned results are valid. Besides, in the control engi-
neering application, when it comes to the fact that the system
states may not be fully available because of implementation
costs or physical restrictions, it becomes crucial and in-
evitable to formulate the event-triggered impulsive control
strategy according to practical observer measurements. At
this juncture, once the incomplete testability of states and
the uncertainty of parameters are incorporated into the

characterization of nonlinear systems, then these un-
certainties may give rise to a totally new rule with more
uncertain antecedents and results. What is exhilarating is
that there is no work on the observer-based event-triggered
impulsive control strategy to achieve the input-to-state
property of uncertain nonlinear systems. After all, it is of
more difficulty to find a feasible analytical framework
compared with the nominal nonlinear systems. Moreover, in
comparison with the previous methods, the robust handling
for uncertain parameters during the course of system per-
formance implementation becomes increasingly tricky as the
number of uncertain parameters surges. /erefore, the
theoretical challenges and technical deficiencies urge us to
explore the actual performance evaluation for nonlinear
systems with parametric uncertainties under observer-based
control.

/e abovementioned analysis motivates us to focus on
issues of both input-to-state stability and event-triggered
impulsive control scheme design on a type of uncertain
nonlinear systems with incomplete measurable state vari-
ables and exogenous disturbances in this paper. Firstly, we
establish a category of newly uncertain nonlinear systems,
where the uncertainty terms are legitimately estimated by
capitalizing on a creationary approximation condition of
uncertainties, matrix synthesis method, and some in-
equalities of linear matrix. Secondly, a novel observer is
constructed on the uncertain nonlinear system, in which the
information between plant and observer is transmitted as
impulses. In particular, the impulsive controllers are de-
pendent upon the partial measurement output of observer
and plant, which can eliminate the adverse effects of output
data loss attributed to the external environment. /irdly, an
applicable observer-based event-triggered mechanism is
designed and an event-triggered impulsive control strategy
is correspondingly constructed, which could lessen burden
of sampling and information transmission. At last, several
sufficient criteria on excluding the Zeno behavior and an-
alyzing the input-to-state stability property are developed,
meanwhile, which suggest that a more extensible framework
in complex dynamics can be explored through taking full
advantage of a range of the employed ideas and methods.

/e content of the remaining sections is summarized as
follows. Section 2 puts forward the model and preparatory
works for a kind of uncertain nonlinear systems. Section 3
furnishes primary research results. In addition, Section 4
corroborates the validity of the derived results by two nu-
merical simulations. Finally, conclusion is exhibited in
Section 5.

2. Preliminaries and Model Description

2.1.Notations. /roughout this article,Rq×p,Rq, and N+ are
separately the set of all q × p real matrices and
q− dimensional Euclidean space and the set of positive in-
tegers. I stands for an identity matrix with matched di-
mensionality in matrices or matrix inequalities. 0 in matrices
is a zero matrix of appropriate dimensions. Let ‖D‖ and
‖D‖S denote the 2-norm of matrixD and the supremum of
‖D‖ on the interval S, respectively. For a matrix D, D− 1,

2 Complexity



DT, λmax(D), and λmin(D) represent severally its inverse,
transposition, maximum eigenvalue, and minimum eigen-
value. /e symbol ∗ is defined as the symmetric term in
a matrix. s∨d and s∧d represent the maximum and mini-
mum of s and d, respectively.D> 0 andD< 0 mean thatD
are symmetric positive definite and symmetric negative
definite separately. Let He(D) � D + DT, K∞ � ϕ ∈􏼈

C(R+,R+) |ϕ(0) � 0, lim
s⟶∞

ϕ(s) �∞, and ϕ(s) is strictly
increasing in s}, and KL � ψ ∈ C(R+ × R+,R+) |ψ(s, j)􏼈 ,
for each fixed j≥ 0, belongs to the function of class K as
regards s, but ψ(s, j), for each fixed s≥ 0, is strictly de-
creasing to 0 as j⟶∞}.

2.2. Some Preliminaries and Problem Formulation. A class of
uncertain nonlinear systems incorporated exogenous dis-
turbances is of the following form:

_x(t) � (B + ΔB)x(t) + Bd + ΔBd( 􏼁f(x(t))

+(A + ΔA)u(t) +(C + ΔC)](t),

y(t) � (D + ΔD)x(t),

(1)

in which t≥ t0, x(t) ∈ Rn, y(t) ∈ Rp, and ](t) ∈ Rn are the
system state, the measurement output, and measurable lo-
cally bounded exogenous disturbances, respectively; u(t) �

u1(t) + u2(t) means the control input in which u1(t) is the
sample control input and u2(t) is the Dirac delta control
input; a nonlinear vector-valued function f: Rn⟶ Rn

satisfies some conditions that will be provided in the sequel,
and _x(t) represents the right-hand derivative of x(t). B, Bd,
A, C, and D are constant matrices, and ΔB, ΔBd, ΔA, ΔC,
and ΔD are the norm-bounded uncertain parameters.

Given that the incompletely procurable system states can
generate the ineffectiveness of state-feedback controllers, an
observer-based controller is considered in this paper, and
the state observer for uncertain system (1) is constructed by

_x(t) � Bx(t) + Bdf(x(t)) + Au3(t) + C](t),

y(t) � Dx(t),
(2)

where t≥ t0; x(t) ∈ Rn; and y(t) ∈ Rp are separately the
estimated state and the estimated output. /e control input
u3(t) of observer is described as

u3(t) � 􏽘
∞

a�1
(Ky(t) + Ky(t) − Ky(t))δ t − ta( 􏼁, (3)

where t ∈ [ta, ta+1); K and K are control gains; δ is the Dirac
delta function, which is also called the impulsive control
function. And the impulsive time sequence ta􏼈 􏼉

∞
a�1 satisfies

t1 < t2 < · · · < ta < · · · and lima⟶∞ta � +∞. It is well-
known that the Dirac delta function has two properties: for
any constants c and Δ1 > 0 and function g(t), (1) δ(t − c) � 0
only when t≠ c; (2) 􏽒

c+Δ1
c− Δ1

g(t)δ(t − c)dt � g(c). /en, by
virtue of (2) and (3) and the properties of function δ, what
we can see is that u3(t) � 0 at t≠ ta and a ∈ N+, and for any
constant Δ(> 0) that is small enough,

x ta + Δ( 􏼁 − x ta − Δ( 􏼁

� 􏽚
ta+Δ

ta − Δ
Bx(s) + Bdf(x(s)) + C](s)􏼂 􏼃ds

+ 􏽚
ta+Δ

ta− Δ
􏽘

∞

a�1
A(Kyt(s)n + qKhy(s)x − 7KCy;(s))δ s − ta( 􏼁ds

� 􏽚
ta+Δ

ta − Δ
Bx(s) + Bdf(x(s)) + C](s)􏼂 􏼃ds

+ A Ky ta( 􏼁 + Ky ta( 􏼁 − Ky ta( 􏼁( 􏼁,

(4)

where 􏽒
ta+Δ
ta− Δ􏽐

∞
a�1 A(Ky(s) + Ky(s) − Ky(s))δ(s − ta)ds,

which can be regarded as the convolution in the interval
[ta − Δ, ta + Δ] based on the properties of function δ, rep-
resents the sum of the effects of all unit impulses on the
observer state over [ta − Δ, ta + Δ].

Let Δ⟶ 0 and Δx(t) � x(t+
a) − x(t−

a ); then we can
infer that

Δx(t) � A Ky ta( 􏼁 + Ky ta( 􏼁 − Ky ta( 􏼁( 􏼁, t � ta. (5)

By means of the above calculation, the controller u3(t)

with function δ can make the observer state change in-
stantaneously in the discrete time sequence ta􏼈 􏼉

∞
a�1 so as to

achieve the impulsive effect. /us, observer (2) is converted
into an impulsive control system as follows:

_x(t) � Bx(t) + Bdf(x

Δx(t) � A Ky t
−

( ) + Ky t
−

( ) − Ky t
−

( )( 􏼁, t � ta,

y(t) � Dx(t),

(6)

where the left-continuous case of the estimate of x(t) is
always considered; that is, x(t) � x(t− )≜limΔ⟶0x(t − Δ).

According to the aforementioned observer, the control
inputs u1(t) and u2(t) are devised as

u1(t) � Lx ta( 􏼁, t ∈ ta, ta+1􏼂 􏼁,

u2(t) � 􏽘
∞

a�1
Ky(t)δ t − ta( 􏼁, t ∈ ta, ta+1􏼂 􏼁,

(7)

where L is the gain of u1(t). In a similar way, uncertain
system (1) can be transformed into

_x(t) � (B + ΔB)x(t) + Bd + ΔBd( 􏼁f(x(t))

+(A + ΔA)Lx ta( 􏼁 +(C + ΔC)](t), t≠ ta,

Δx(t) � (A + ΔA)Ky t
−

( ), t � ta,

y(t) � (D + ΔD)x(t).

(8)

Without loss of generality, we always assume that the
state of system (8) is left-continuous. For forward complete
impulsive systems, there is no fundamental difference be-
tween utilizing left-continuous model and employing right-
continuous model. /en by defining the tracking error
e(t) � x(t) − x(t), the error system can be expressed as
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_e(t) � Be(t) + Bd(f(x(t)) − f(x(t))) +(A + ΔA)Lx ta( 􏼁

+(C + ΔC)](t) + ΔBx(t) + ΔBdf(x(t)), t≠ ta,

Δe(t) � (− ΔAKD − AKD)e t
−

( )

+(ΔAKD − AKΔD)x t
−

( ), t � ta.

(9)

Remark 1. Since uncertain system (1) is a category of im-
pulsive systems, coupled with the incomplete measurability
of the system state, we need to construct an appropriate
observer and subsequently establish an applicable error
system related to plant and observer. Based on the pre-
requisite of ensuring real-time monitoring, fault-tolerant
control, easy realization, and so on, as a result, it is necessary
and natural to construct observer (2) which is only influ-
enced by impulsive. One more point needs noting that the
controllers u2(t) and u3(t) designed by us can exert positive
effects on the unstable systems and meanwhile control them
only at the impulsive instant. In this way, u2(t) and u3(t) can
stabilize systems (1) and (2), respectively, for ages, while
reducing unnecessary computing costs.

Let

℘(t) � x
T
(t), e

T
(t)􏼐 􏼑

T
,

ζ(t) � ]T
(t), ]T

(t)􏼐 􏼑
T
,

F(t) � f
T
(x(t)), f

T
(x(t)) − f

T
(x(t))􏼐 􏼑

T
,

(10)

and then the argument system can be deduced as

_℘(t) � 􏽥B℘(t) + 􏽥BdF(t) + 􏽥A􏽥L℘ ta( 􏼁 + 􏽥Cζ(t), t≠ ta,

℘(t) � 􏽥K℘ t
−

( ), t � ta,

(11)

where

B �
B + ΔB 0

ΔB B
􏼢 􏼣,

􏽥Bd �
Bd + ΔBd 0

ΔBd Bd

􏼢 􏼣,

􏽥A �
A + ΔA 0

0 A + ΔA
􏼢 􏼣,

􏽥L �
L − L

L − L
􏼢 􏼣,

􏽥C � ​
C + ΔC 0

0 C + ΔC
​􏼢 􏼣,

􏽥K �
I +(A + ΔA)KD − (A + ΔA)KD

ΔAKD − AKΔD I − ΔAKD − AKD
􏼢 􏼣.

(12)

Furthermore, ∀t ∈ [ta, ta+1], a ∈ N+, argument system
(11) is rewritten as

_℘(t) � A1℘(t) + A2F(t) + A3ϱ(t) + A4ζ(t), t≠ ta,

℘(t) � 􏽥K℘ t
−

( ), t � ta,

(13)

where ϱ(t) � ℘(ta) − ℘(t);

A1 �
B + ΔB +(A + ΔA)L − (A + ΔA)L

ΔB +(A + ΔA)L B − (A + ΔA)L
􏼢 􏼣,

A2 � 􏽥Bd �
Bd + ΔBd 0

ΔBd Bd

􏼢 􏼣,

A3 � 􏽥A􏽥L �
(A + ΔA)L − (A + ΔA)L

(A + ΔA)L − (A + ΔA)L
􏼢 􏼣,

A4 � 􏽥C � ​
C + ΔC 0

0 C + ΔC
​􏼢 􏼣.

(14)

An adaptive event-triggered mechanism, determining
the continuously updated controller works at the instants
ta | a ∈ N+􏼈 􏼉 known as the triggered time sequence, is in-
troduced to decrease the burden of updating and commu-
nication in control. It is notable that the system states are
imperfectly accessible, so the event-triggered mechanism
included exogenous disturbances as well as the system and
observer output is designed. By defining

I(t) � y
T
(t), (y(t) − y(t))

T
􏼐 􏼑

T
,

􏽥D �
D + ΔD 0

ΔD D
􏼢 􏼣,

ϱ(t) � 􏽥Dϱ(t),

(15)

the event-triggered mechanism is formulated as

ta+1 � t
⋆
a+1∧ ta + ℓ( 􏼁,

t
⋆
a+1 � inf t≥ ta

􏼌􏼌􏼌􏼌H(t)≥ 0􏽮 􏽯,
(16)

where the event generator function
H(t) � ‖ϱ(t)‖2 − η‖I(ta)‖2 − ρ‖ζ(t)‖

2
[t0 ,t], t ∈ [ta, ta+1);

parameters η> 0, ρ> 0, and ℓ > 0 in which ℓ is a forced
triggered constant. Denote by t⋆a􏼈 􏼉

∞
a�1 the event-triggered

time sequence that it is determined by function H(t). For
t≥ ta(a ∈ N+), the next event t⋆a+1 will be triggered only
when the correlative measurement reaches or surpasses the
stated threshold, and then, the next triggered instant (im-
pulsive instant) will be generated by comparing the obtained
event-triggered time with the forced triggered time. In
addition, it is worth mentioning that the aforesaid two se-
quences may differ depending on the selected parameters ℓ,
η, and ρ.

In what follows, two assumptions are proposed around
the uncertain terms and the nonlinear function.

Assumption 1

ΔB ΔBd ΔA ΔC ΔD􏼂 􏼃 � ME(t) F1 F2 F3 F4 F5􏼂 􏼃,

(17)
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in which E(t) is the unknown time-varying matrix with
αI≤ET(t)E(t) ≤ I, the adjustment coefficient of the un-
certain term α ∈ (0, 1], and F1, F2, F3, F4, and F5 are
constant matrices with compatible dimensionality.

Remark 2. Different from existing achievements, such as
[21, 30, 31], this paper has more uncertain parameters. Note
that, in the practical application, each program will in-
evitably be subjected to the actual limitation of imprecise
modeling for controlled plant and affected by external
factors like environmental noise. /erefore, it is favorable
and urgent for increasing the number of uncertainties to
describe a larger range nonlinear system.

Remark 3. Only the norm-bounded uncertainties are
taken into account in this article to efficaciously avoid
needlessly intricate notations and restrain parameter
uncertainty. In accordance with Assumption 1 and several
linear matrix inequalities, the uncertainties ΔB, ΔBd, ΔA,
ΔC, and ΔD can be reasonably eliminated. Moreover,
compared with the conventional constraint conditions of
uncertain terms, the adjustment coefficient α is added in
this paper, which not merely does not change the norm
value range of the uncertain terms but also can in-
geniously resolve the input-to-state stability problem of
fairly sophisticated system. Even though the uncertainty
parameters are also present at other singular structures,
the subsequent results could be popularized to this cir-
cumstance in parallel.

Assumption 2. Suppose that there exists a scalar β> 0 such
that the nonlinearity f satisfies |f(y1) − f(y2)|≤ β|y1 − y2|,
∀y1, y2 ∈ Rn. Particularly, f(0) � 0.

Hereafter, a definition and several lemmas are in-
troduced for latter use.

Definition 1. For every initial condition (t0,℘0) and each
measurable locally bounded exogenous disturbance ζ(t) (see
[1]), system (13) is said to be input-to-state stabilizable under
the given event-triggered mechanism (16) if there exist
functions Y ∈KL and Z ∈K∞ such that the solution
℘(t) satisfies

‖℘(t)‖≤Y ℘0
����

����, t − t0􏼐 􏼑 + Z ‖ζ(t)‖ t0 ,t[ ]􏼒 􏼓, t≥ t0. (18)

Lemma 1. Given constant matrices U, P, and V with
suitable dimensionality and a matrix function M(t) (see
[23, 32]),

(1) ∀ε1 > 0 and MT(t)M(t)≤ I, then

PM(t)V + V
T
M

T
(t)P

T ≤
1
ε1
PP

T
+ ε1V

T
V. (19)

(2) ∀ε2 > 0 such that ε2V
TV< I and MT(t)M(t)≤ I,

then

(U + PM(t)V)(U + PM(t)V)
T

≤U I − ε2V
T
V􏼐 􏼑

− 1
U

T
+
1
ε2
PP

T
.

(20)

Particularly, when U ≡ 0, we obtain

PM(t)V(PM(t)V)
T ≤

1
ε2
PP

T
. (21)

Lemma 2. ∀s1, s2 ∈ Rq (see [33]), the inequality

s
T
1 s2 + s

T
2 s1 ≤ s1

T
Rs1 + s

T
2 R

− 1
s2, (22)

holds, where R ∈ Rq×q is a positive definite matrix.

Lemma 3. Given constant matrices B1,B2, andB3 (see
[34]), where B1 � BT

1 and B2 > 0, then

B1 + B
T
3B

− 1
2 B3 < 0, (23)

if and only if
B1 BT

3

B3 − B2

⎡⎣ ⎤⎦< 0,

or
− B2 B3

BT
3 B1

􏼢 􏼣< 0.

(24)

3. Main Results

/is section is devoted to the following tripartite through
theoretical analysis and demonstrates the following:

(T1) /e presence of the lower bound of adjacent
impulse instants is testified, whereafter, the Zeno be-
havior can be excluded.
(T2) /e resultant augmented system which is
equipped with parameter uncertainties and exogenous
disturbances is input-to-state stabilizable where the
uncertainties are tactfully subdued.
(T3) /e control gains and event-triggered scheme
parameters are devised without strong constrained
condition under system (13) corresponding stability.

Before verifying the above statements, it is necessary to
introduce some symbols:
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B �
B 0

0 B

⎡⎢⎣ ⎤⎥⎦,

ΔB �
ΔB 0

ΔB 0
⎡⎢⎣ ⎤⎥⎦,

Bd �
Bd 0

0 Bd

⎡⎢⎣ ⎤⎥⎦,

ΔBd �
ΔBd 0

ΔBd 0
⎡⎢⎣ ⎤⎥⎦,

A �
A 0

0 A

⎡⎢⎣ ⎤⎥⎦,

ΔA �
ΔA 0

0 ΔA
⎡⎢⎣ ⎤⎥⎦,

C �
C 0

0 C

⎡⎢⎣ ⎤⎥⎦,

ΔC �
ΔC 0

0 ΔC
⎡⎢⎣ ⎤⎥⎦,

D �
D 0

0 D

⎡⎢⎣ ⎤⎥⎦,

ΔD �
ΔD 0

ΔD 0
⎡⎢⎣ ⎤⎥⎦,

M �
M 0

0 M

⎡⎢⎣ ⎤⎥⎦,

E(t) �
E(t) 0

0 E(t)

⎡⎢⎣ ⎤⎥⎦,

K1 �
I + AKD − AKD

0 I − AKD

⎡⎢⎣ ⎤⎥⎦,

K2 �
KD − KD

KD − KD

⎡⎢⎣ ⎤⎥⎦,

K3 �
0 0

0 − AK

⎡⎢⎣ ⎤⎥⎦.

(25)

According to Assumption 1, we have

ΔB ΔBd ΔA ΔC ΔD􏼂 􏼃

� ME(t) F1 F2 F3 F4 F5􏼂 􏼃,
(26)

where

F1 �
F1 0

F1 0
􏼢 􏼣,

F2 �
F2 0

F2 0
􏼢 􏼣,

F3 �
F3 0

0 F3
􏼢 􏼣,

F4 �
F4 0

0 F4
􏼢 􏼣,

F5 �
F5 0

F5 0
􏼢 􏼣.

(27)

Theorem 1. Under event-triggered scheme (16), then (T1)
holds, where the positive lower bound J of adjoining im-
pulsive moments conforms to
J � (ln((φ1(η∧ρ)/φ2∨φ3) + 1)/φ1)∧ℓ, constants η, ρ, and ℓ
are specified in (16), and

φ1 � 2‖B + A􏽥L‖ + 2‖M‖ · F1
����

���� + 2‖M‖ · F3
􏽥L

����
����

+ 2β Bd

����
���� + 2β‖M‖ · F2

����
���� + 2‖A􏽥L‖

+ 2‖M‖ · F3
􏽥L

����
����φ3,

φ2 � ‖B + A􏽥L‖ +‖M‖ · F1
����

���� +‖M‖ · F3
􏽥L

����
���� + β Bd

����
����

+ β‖M‖ · F2
����

����,

φ3 � ‖C‖ · ‖D‖ + ‖C‖ · ‖M‖ · ‖F5‖ + ‖D‖ · ‖M‖ · ‖F4‖

+ ‖M‖
2

· ‖F4‖ · ‖F5‖.

(28)

Proof. For the sake of checking on (T1), we consider the
following three cases:

Case (i). /e generation of the triggered time sequence
ta􏼈 􏼉
∞
a�1 depends entirely on the event-triggered time

sequence t∗a􏼈 􏼉
∞
a�1. Based on ϱ(t) � 􏽥Dϱ(t) �

I(ta) − I(t), in this case, the upper right Dini de-
rivative of ϱ(t) in the interval [ta, ta+1) is calculated as

6 Complexity



D
+
‖ϱ(t)‖

2

� 2‖ϱ(t)‖D
+
‖ϱ(t)‖

� 2‖ϱ(t)‖ · ‖ 􏽥D _℘(t)‖

≤ 2‖ϱ(t)‖ · 􏽥DA1t℘n(t)q + h 􏽥DA2xF7(t)C+;
����

· 􏽥DA39(t) + 􏽥DA4ζ(t)
����

≤ 2‖ϱ(t)‖ · A1
����

���� · ‖I(t)‖ + 2β‖ϱ

+ 2 A3
����

���� · ‖ϱ(t)‖
2

+ 2‖ϱ

≤ A1
����

���� ‖ϱ(t)‖
2

+‖I(t)‖
2

􏼐 􏼑 + β A2
����

���� ‖ϱ(t)‖
2

+‖I(t)‖
2

􏼐 􏼑

+ 2 A3
����

���� · ‖ϱ(t)‖
2

+‖ 􏽥D‖ · A4
����

���� ‖ϱ(t)‖
2

+‖I(t)‖
2

􏼐 􏼑

≤ A1
����

���� ‖ϱ(t)‖
2

+ I ta( 􏼁 − ϱ(t)
����

����
2

􏼒 􏼓

+ β A2
����

���� ‖ϱ(t)‖
2

+ I ta( 􏼁 − ϱ(t)
����

����
2

􏼒 􏼓

+ 2 A3
����

���� · ‖ϱ(t)‖
2

+‖ 􏽥D‖ · A4
����

���� ‖ϱ(t)‖
2

+‖ζ(t)‖
2

􏼐 􏼑

≤ 2 A1
����

���� + 2β A2
����

���� + 2 A3
����

���� +‖ 􏽥D‖ · A4
����

����􏼐 􏼑‖ϱ(t)‖
2

+ A1
����

���� + β A2
����

����􏼐 􏼑 I ta( 􏼁
����

����
2

+‖ 􏽥D‖ · A4
����

���� · ‖ζ(t)‖
2

≤ 2‖B + A􏽥L‖ + 2‖M‖ · F1
����

���� + 2‖M‖ · F3
􏽥L

����
����􏼐

+ 2β Bd

����
���� + 2β‖M‖ · F2

����
���� + 2‖A􏽥L‖ + 2‖M‖ · F3

􏽥L
����

����

+ ‖D‖ +‖M‖ · F5
����

����􏼐 􏼑 · ‖C‖ +‖M‖ · F4
����

����􏼐 􏼑􏼑‖ϱ(t)‖
2

+ ‖B + A􏽥L‖ +‖M‖ · F1
����

���� +‖M‖ · F3
􏽥L

����
���� + β Bd

����
����􏼐

+β‖M‖ · F2
����

����􏼑 I ta( 􏼁
����

����
2

+ ‖D‖ +‖M‖ · F5
����

����􏼐 􏼑 · ‖C‖ +‖M‖ · F4
����

����􏼐 􏼑 · ‖ζ(t)‖
2

≤φ1‖ϱ(t)‖
2

+ φ2 I ta( 􏼁
����

����
2

+ φ3‖ζ(t)‖
2

t0 ,ta+1[ ).

(29)

Let φa � φ2‖I(ta)‖2 + φ3‖ζ(t)‖
2
[t0 ,ta+1); then,

D
+
‖ϱ(t)‖

2 ≤φ1‖ϱ(t)‖
2

+ φa, ∀t ∈ ta, ta+1􏼂 􏼁. (30)

Using e− φ1(t− ta) to premultiplication and post-
multiplication in (30) results in

D
+

e
− φ1 t− ta( )‖ϱ(t)‖

2
􏼒 􏼓≤φae

− φ1 t− ta( ). (31)

By considering ϱ(t0) � 0 and integrating both sides of
(31) from ta to t, we have

‖ϱ(t)‖
2 ≤

φa

φ1
e
φ1 t− ta( ) − 1􏼒 􏼓, ∀t ∈ ta, ta+1􏼂 􏼁. (32)

When mechanism (16) is triggered, we can derive
η‖I(ta)‖2 + ρ‖ζ(t)‖

2
[t0 ,ta+1) � ‖ϱ(ta+1)‖

2. Together with
φa � φ2‖I(ta)‖2 + φ3‖ζ(t)‖

2
[t0 ,ta+1), it follows that

(η∧ρ) I ta( 􏼁
����

����
2

+‖ζ(t)‖
2

t0 ,ta+1[ )􏼒 􏼓

≤
eφ1 ta+1− ta( ) − 1

φ1
× φ2∨φ3( 􏼁 × I ta( 􏼁

����
����
2

􏼒

+‖ζ(t)‖
2

t0 ,ta+1[ )􏼓,

(33)

which indicates that

ta+1 − ta≥
ln φ1(η∧ρ)/φ2∨φ3( 􏼁+1( 􏼁

φ1
>0, a∈N+

. (34)

Case (ii). Only the forced triggered time sequence
t0 + nℓ􏼈 􏼉

∞
a�1 exists in the sequence ta􏼈 􏼉

∞
a�1. Obviously, in

this case, ta+1 − ta � ℓ > 0, a ∈ N+.
Case (iii). /e sequence ta􏼈 􏼉

∞
a�1 is composed of the

event-triggered instants t∗s (s ∈ N+) and the forced
triggered instants tj(j ∈ N+). If the Zeno behavior lives
in argument system (13), it must be that a finite time
interval owns infinite impulse jumps in this case. To
exhibit this phenomenon, suppose that T presents the
accumulation time (or Zeno time) on the finite time
interval [t0, T]. By defining ς � (T − ([ℓ/2]))∨t0, it is
apparent that countless of impulsive instants appears in
the interval [ς, T]. Denote by tN0+s􏽮 􏽯

∞
s�1 ∈ [ς, T] the

subsequence of ta􏼈 􏼉
∞
a�1 satisfying tN0+s⟶ T as

s⟶∞, where integer N0 ≥ 0. If there is no forced
triggered moment in [ς, T], similar to the discussion of
Case (i), we conclude that tN0+s⟶∞ as s⟶∞,
which contradicts the definition of the accumulation
time T. If there exists tj ∈ tN0+s􏽮 􏽯

∞
s�1 for some j ∈ Z+

over the interval [ς, T], recalling the definition of ς, it
can be deduced that only one tj ∈ tN0+s􏽮 􏽯

∞
s�1, which

implies that the triggeredmoments totally consist of the
event-triggered moments in (tj, T]. /en it follows
from Case (i) that tN0+s⟶∞ as s⟶∞. Hence, the
Zeno behavior is precluded in Case (iii).

From the foregoing discussion, the lower bound of
neighboring impulsive instants is ultimately acquired, which
symbolizes that the Zeno behavior can be eliminated.

Remark 4. When designing event-triggered mechanism
(16), ‖ζ(t)‖

2
[t0 ,t] cannot be superseded by ‖ζ(t)‖2. It is on

account of a discovery that the correlation ‖ζ(t)‖2 over
[ta, ta+1) and ‖ζ(ta+1)‖

2 is not easily obtained in the
abovementioned reasoning process of excluding the Zeno
phenomenon. /erefore, it is essential for the device of (16)
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to take the supremum of ‖ζ(t)‖2 in [t0, t]. In addition, the
study in [29] assists us in detecting the indispensability of the
forced trigger condition in (16).

Remark 5. As described earlier, mechanism (16) is presented
to select the optimal triggered moment according to the
steady state of resulting system (13). Based on the results of
/eorem 1, it can be proved that the designed event-
triggered mechanism is effective. By comparison with the
existing results of the uncertain models, such as [21, 35, 36],
although they reduce the transmission of information,
impulsive controller with fixed impulsive moments, in
design, is still conservative. Now, in this paper, the con-
troller based on event-triggered mechanism only is updated
at the triggered moment. By this means, the burden of
controller update can be decreased without affecting ac-
curate control. Moreover, the sampling control adopted in
this paper is only dependent on the state information of
observer at the triggered moment, which can reduce the
communication between the equipment under test and the
observer.

Assumption 3. 􏽥K is a nonsingular matrix, and there exists
a constant c> 0 such that λmax(

􏽥K)≤ e− (1/2)c.

Theorem 2. Uncertain system (13) is input-to-state stable via
the event-triggered scheme (16); suppose that for given pa-
rameters η ∈ (0, (1/2)), ρ> 0, and ℓ > 0 and the control gains
K, K ∈ Rq×p, and L ∈ Rq×n, there exist matrices P> 0 and
Hι > 0(ι � 1, 2, 3) and constants 􏽢ϑ> 0, ϑ> 0, c> 0, and
εb > 0(b � 1, 2, 3, . . . , 58), such that

Ψ1 0 0

∗ Ψ2 0

∗ ∗ Ψ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0, (35)

Ω1 DTPDBd DTPDA􏽥L DTPDC

∗ − H1 0 0
∗ ∗ − H2 0
∗ ∗ ∗ − H3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (36)

Ω2 M KT
2F

T
3 K3M FT

5

∗ − ε57I 0 0 0

∗ ∗ −
1
ε57

I 0 0

∗ ∗ ∗ − ε58I 0

∗ ∗ ∗ ∗ −
1
ε58

I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0, (37)

c − 􏽥ϑℓ > 0, (38)

where

Ψ1 �

I F5M

∗
1
ϖ1

I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ψ2 �

I Λ2M

∗
1
ϖ2

I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ψ3 �

I MTPM

∗
1
ϖ3

I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ω1 � − ϑI + R1,Ω2 � He K1( 􏼁 − 2e
− (1/2)c

I,

􏽥ϑ � 􏽢ϑ +
(1 − 2η) ‖D‖ + α‖M‖ · F5

����
����􏼐 􏼑

2
ϑ + 2ηλmax R2( 􏼁

(1 − 2η) ‖D‖ + α‖M‖ · F5
����

����􏼐 􏼑
2
λmin(P)

,

R1 � He D
T
PDΛ1􏼐 􏼑 + μ1Λ

T
3Λ3 + μ2Λ

T
2Λ2 + μ3F

T
5F5

+ μ4F
T
1F1 + μ5􏽥L

T
F

T
3F3

􏽥L + μ6Λ
T
1F

T
5F5Λ1

+
1
ε8
ΛT
1Λ

T
2Λ2Λ1 + μ7βF

T
2F2β

+ μ8βB
T
dF

T
5F5Bdβ +

1
ε25

βBT
dΛ

T
2Λ2Bdβ + βH1β,

R2 � μ9􏽥L
T
F

T
3F3

􏽥L + μ10􏽥L
T
A

T
F

T
5F5A􏽥L

+
1
ε37

􏽥L
T
A

TΛT
2Λ2A􏽥L + H2,

Λ1 � B + A􏽥L,

Λ2 � M
T
PD,

Λ3 � M
T
D

T
PD,

ϖ1 � max ε5, ε7, ε17, ε20, ε24, ε32, ε36, ε44, ε48, ε56􏼈 􏼉,

ϖ2 � max ε10, ε12, ε27, ε39, ε51􏼈 􏼉,

ϖ3 � max ε14, ε16, ε19, ε29, ε31, ε41, ε43, ε53, ε55􏼈 􏼉,

μ1 � ε1 + ε2 + ε21 + ε33 + ε45,

μ2 � ε3 + ε4 + ε6 + ε22 + ε23 + ε34 + ε35 + ε46 + ε47,

μ3 � ε8 + ε9 + ε11 + ε13 + ε15 + ε18 + ε25 + ε26

+ ε28 + ε30 + ε37 + ε38 + ε40 + ε42 + ε49

+ ε50 + ε52 + ε54,

μ4 �
1
ε1

+
1

ε4ε5
+

1
ε9ε10

+
1

ε15ε16ε17
,

μ5 �
1
ε2

+
1

ε6ε7
+

1
ε11ε12

+
1

ε18ε19ε20
,

μ6 �
1
ε3

+
1

ε13ε14
,

μ7 �
1
ε21

+
1

ε23ε24
+

1
ε26ε27

+
1

ε30ε31ε32
,

μ8 �
1
ε22

+
1

ε28ε29
,

μ9 �
1
ε33

+
1

ε35ε36
+

1
ε38ε39

+
1

ε42ε43ε44
,

μ10 �
1
ε34

+
1

ε40ε41
.

(39)

8 Complexity



Proof. Suppose that ℘(t) � ℘(t, t0,℘(0)) is the solution of
system (13) with the initial value (t0,℘(0)). Due to the
imperfect measurability of the system states, the Lyapunov
functional related to the relevant outcomings is considered
as V(t) � IT(t)PI(t). ∀t ∈ [ta, ta+1), a ∈ Z+, the derivative
of V(t) can be calculated that

_V � 2IT
(t)P _I(t)

� 2℘T(t) 􏽥D
T
P 􏽥D _℘(t)

≤ 2℘T(t) 􏽥D
T
P 􏽥DA1℘(t) + 􏽢ϑ℘T(t) 􏽥D

T
P 􏽥D℘(t)

+ 2℘T(t) 􏽥D
T

P 􏽥DA2F(t) + 2℘T(t) 􏽥D
T
P 􏽥DA3ϱ(t)

+ 2℘T(t) 􏽥D
T

P 􏽥DA4ζ(t).

(40)

It follows from Lemma 1 and conditions (26) and (35)
that

He D
T
PD ΔB ΔA􏽥L􏼂 􏼃􏼐 􏼑

≤
1
ε1
F

T
1F1

1
ε2

􏽥L
T
F

T
3F3

􏽥L􏼢 􏼣 + ΛT
3Λ3 ε1I ε2I􏼂 􏼃,

He D
T
PΔD Λ1 ΔB ΔA􏽥L􏼂 􏼃􏼐 􏼑

≤
1
ε3
ΛT
1F

T
5F5Λ1

1
ε4ε5

F
T
1F1

1
ε6ε7

􏽥L
T
F

T
3F3

􏽥L􏼢 􏼣

+ ΛT
2Λ2 ε3I ε4I ε6I􏼂 􏼃,

He ΔDT
PDΛ1􏼐 􏼑≤ ε8F

T
5F5 +

1
ε8
ΛT
1Λ

T
2Λ2Λ1,

He ΔDT
PD ΔB ΔA􏽥L􏼂 􏼃􏼐 􏼑

≤
1

ε9ε10
F

T
1F1

1
ε11ε12

􏽥L
T
F

T
3F3

􏽥L􏼢 􏼣 + F
T
5F5 ε9I ε11I􏼂 􏼃,

He ΔDT
PΔD Λ1 ΔB ΔA􏽥L􏼂 􏼃􏼐 􏼑

≤
1

ε13ε14
ΛT
1F

T
5F5Λ1

1
ε15ε16ε17

F
T
1F1

1
ε18ε19ε20

􏽥L
T
F

T
3F3

􏽥L􏼢 􏼣

+ F
T
5F5 ε13I ε15I ε18I􏼂 􏼃,

2℘T(t)D
T
PDΔBdF(t)

≤
1
ε21

F
T

(t)F
T
2F2F(t) + ε21℘

T
(t)ΛT

3Λ3℘(t),

2℘T(t)D
T
PΔD BdF(t) ΔBdF(t)􏼂 􏼃

≤
1
ε22

F
T
(t)B

T
dF

T
5F5BdF(t)

1
ε23ε24

F
T
(t)F

T
2F2F(t)􏼢 􏼣

+ ℘T(t)ΛT
2Λ2℘(t) ε22I ε23I􏼂 􏼃,

2℘T(t)ΔDT
PD BdF(t) ΔBdF(t)􏼂 􏼃

≤
1
ε25

F
T
(t)B

T
dΛ

T
2Λ2BdF(t)

1
ε26ε27

F
T
(t)F

T
2F2F(t)􏼢 􏼣
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+ ℘T(t)F
T
5F5℘(t) ε25I ε26I􏼂 􏼃,

2℘T(t)ΔDT
PΔD BdF(t) ΔBdF(t)􏼂 􏼃

≤
1

ε28ε29
F

T
(t)B

T
dF

T
5F5BdF(t)

1
ε30ε31ε32

F
T
(t)F

T
2F2F(t)􏼢 􏼣

+ ℘T(t)F
T
5F5℘(t) ε28I ε30I􏼂 􏼃,

2℘T(t)D
T
PDΔA􏽥Lϱ(t)

≤
1
ε33
ϱT(t)􏽥L

T
F

T
3F3

􏽥Lϱ(t) + ε33℘
T

(t)ΛT
3Λ3℘(t),

2℘T(t)D
T
PΔD A􏽥Lϱ(t) ΔA􏽥Lϱ(t)􏽨 􏽩

≤
1
ε34
ϱT(t)􏽥L

T
A

T
F

T
5F5A􏽥Lϱ(t)

1
ε35ε36
ϱT(t)􏽥L

T
F

T
3F3

􏽥Lϱ(t)􏼢 􏼣

+ ℘T(t)ΛT
2Λ2℘(t) ε34I ε35I􏼂 􏼃,

2℘T(t)ΔDT
PD A􏽥Lϱ(t) ΔA􏽥Lϱ(t)􏽨 􏽩

≤
1
ε37
ϱT(t)􏽥L

T
A

TΛT
2Λ2A􏽥Lϱ(t)

1
ε38ε39
ϱT(t)􏽥L

T
F

T
3F3

􏽥Lϱ(t)􏼢 􏼣

+ ℘T(t)F
T
5F5℘(t) ε37I ε38I􏼂 􏼃,

2℘T(t)ΔDT
PΔD A􏽥Lϱ(t) ΔA􏽥Lϱ(t)􏽨 􏽩

≤
1

ε40ε41
ϱT(t)􏽥L

T
A

T
F

T
5F5A􏽥Lϱ(t)

1
ε42ε43ε44

ϱT(t)􏽥L
T
F

T
3F3

􏽥Lϱ(t)􏼢 􏼣

+ ℘T(t)F
T
5F5℘(t) ε40I ε42I􏼂 􏼃,

2℘T(t)D
T
PDΔCζ(t)

≤ ε45℘
T
(t)ΛT

3Λ3℘(t) +
1
ε45

ζT
(t)F

T
4F4ζ(t),

2℘T(t)D
T
PΔD Cζ(t) ΔCζ(t)􏼂 􏼃

≤
1
ε46

ζT
(t)C

T
F

T
5F5Cζ(t)

1
ε47ε48

ζT
(t)F

T
4F4ζ(t)􏼢 􏼣

+ ℘T(t)ΛT
2Λ2℘(t) ε46I ε47I􏼂 􏼃,

2℘T(t)ΔDT
PD Cζ(t) ΔCζ(t)􏼂 􏼃

≤
1
ε49

ζT
(t)C

TΛT
2Λ2Cζ(t)

1
ε50ε51

ζT
(t)F

T
4F4ζ(t)􏼢 􏼣

+ ℘T(t)F
T
5F5℘(t) ε49I ε50I􏼂 􏼃,

2℘T(t)ΔDT
PΔD Cζ(t) ΔCζ(t)􏼂 􏼃

≤
1

ε52ε53
ζT

(t)C
T
F

T
5F5Cζ(t)

1
ε54ε55ε56

ζT
(t)F

T
4F4ζ(t)􏼢 􏼣

+ ℘T(t)F
T
5F5℘(t) ε52I ε54I􏼂 􏼃,

(41)
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and from Assumption 2 and Lemma 2, we derive

F(t)≤ β℘(t)

2℘T(t)D
T
PDBdF(t)≤℘T(t)D

T
PDBdH

− 1
1 B

T
dD

T
PD℘(t)

+ ℘T(t)βH1β℘(t),

2℘T(t)D
T
PDA􏽥Lϱ(t)≤℘T(t)D

T
PDA􏽥LH

− 1
2

􏽥L
T
A

T
D

T
PD℘(t)

+ ϱT(t)H2ϱ(t),

2℘T(t)D
T
PDCζ(t)≤℘T(t)D

T
PDCH

− 1
3 C

T
D

T
PD℘(t)

+ ζT
(t)H3ζ(t).

(42)

And then we infer that

2℘T(t) 􏽥D
T
P 􏽥DA1℘(t) + 2℘T(t) 􏽥D

T
P 􏽥DA2F(t)

� 2℘T(t)(D + ΔD)
T
P(D + ΔD) Λ1 + ΔB + ΔA􏽥L( 􏼁℘(t)

+ 2℘T(t)(D + ΔD)
T
P(D + ΔD) Bd + ΔBd( 􏼁F(t)

≤℘T(t)R1℘(t) + ℘T(t)D
T
PDBdH

− 1
1 B

T
dD

T
PD℘(t),

(43)

2℘T(t) 􏽥D
T
P 􏽥DA3ϱ(t)

� 2℘T(t)(D + ΔD)
T
P(D + ΔD)(A􏽥L + ΔA􏽥L)ϱ(t)

≤ ϱT(t)R2ϱ(t) + ℘T(t)D
T
PDA􏽥LH

− 1
2

􏽥L
T
A

T
D

T
PD℘(t),

(44)

2℘T(t) 􏽥D
T
P 􏽥DA4ζ(t)

� 2℘T(t)(D + ΔD)
T
P(D + ΔD)(C + ΔC)ζ(t)

≤ ζT
(t)R3ζ(t) + ℘T(t)D

T
PDCH

− 1
3 C

T
D

T
PD℘(t),

(45)

where

R3 �
1
ε45

+
1

ε47ε48
+

1
ε50ε51

+
1

ε54ε55ε56
􏼠 􏼡F

T
4F4

+
1
ε46

+
1

ε52ε53
􏼠 􏼡C

T
F

T
5F5C +

1
ε49

C
TΛT

2Λ2C + H3.

(46)

Consequently, under Lemma 3 and (35), substituting
(43)–(45) into (40) gives that, ∀t ∈ [ta, ta+1), a ∈ N+,

_V≤ ϑ℘T(t)℘(t) + 􏽢ϑ℘T(t) 􏽥D
T
P 􏽥D℘(t)

+ ϱT(t)R2ϱ(t) + ζT
(t)R3ζ(t)

≤ 􏽢ϑV(t) + ϑ‖℘(t)‖
2

+ λmax R2( 􏼁‖ϱ(t)‖
2

+ λmax R3( 􏼁‖ζ(t)‖
2
.

(47)

∀t ∈ [ta, ta+1), it holds from Assumption 1, (26), and the
fact ‖ϱ(t)‖2 ≤ η‖I(ta)‖2 + ρ‖ζ(t)‖

2
[t0 ,t] that

‖ϱ(t)‖
2 ≤

2η

(1 − 2η) ‖D‖ + α‖M‖ · F5
����

����􏼐 􏼑
2‖I(t)‖

2

+
ρ

(1 − 2η) ‖D‖ + α‖M‖ · F5
����

����􏼐 􏼑
2‖ζ(t)‖

2
t0 ,t[ ],

(48)

which supplied into (47) yields that

_V(t)≤ 􏽥ϑV(t) + ψ ‖ζ(t)‖ t0 ,t[ ]􏼒 􏼓, ∀t ∈ ta, ta+1􏼂 􏼁, (49)

where

ψ(c) � λmax R3( 􏼁 +
ρλmax R2( 􏼁

(1 − 2η) ‖D‖ + α‖M‖ · F5
����

����􏼐 􏼑
2

⎛⎜⎝ ⎞⎟⎠c
2
.

(50)

By virtue of condition (38), a positive constant ϑ> 􏽥ϑ
could be spotted with ease such that c − ϑℓ > 0, and it could
be derived that

_V(t)≤ ϑV(t), (51)

whenever V(t)≥ σψ(‖ζ(t)‖[t0 ,t]), σ � 1/(ϑ − t􏽥ϑ).
When t � ta+1, it is deduced from (13) that

V(t) � I
T

(t)PI(t) � ℘T(t) 􏽥D
T
P 􏽥D℘(t)

� ℘T t
−

( ) 􏽥K
T 􏽥D

T
P 􏽥D 􏽥K℘ t

−
( ).

(52)

By Assumption 3, there exists an invertible matrix R

such that

R
− 1 􏽥KR≤ e

− (1/2)c
I. (53)

In accordance with Lemma 1, we discover that

He ΔAK2( 􏼁≤
1
ε57

MM
T

+ ε57K
T
2F

T
3F3K2,

He K3ΔD( 􏼁≤
1
ε58

K3MM
T
K

T
3 + ε58F

T
5F5.

(54)

Afterwards, combined with Lemma 3, (37), (52), and
(53), we obtain

V(t)≤ e
− c

V t
−

( ). (55)

Pay attention that V(t0)> σψ(‖ζ(t0)‖). Accordingly, we
can define 􏽢t1 � inf t≥ t0 | V(t) ≤ σψ(‖ζ(t)‖[t0 ,t])􏽮 􏽯, which
symbolizes that V(t)≥ σψ(‖ζ(t)‖[t0 ,t]), ∀t ∈ [t0,􏽢t1). Con-
sider this case that􏽢t1 <∞ initially. If there is no impulse over
[t0,􏽢t1), it gives from (51) that

V(t)≤ e
ϑ t− t0( )V t0( 􏼁, ∀t ∈ t0,􏽢t1􏼂 􏼁. (56)

If there exist a few impulsive moments
t11 < t12 < · · · < t1m < · · · on [t0,􏽢t1), we can deduce that

V(t)≤ e
ϑ t− t0( )V t0( 􏼁, t ∈ t0,􏽢t1􏼂 􏼁. (57)

Based on (55), we get
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V t11( 􏼁≤ e
− c

V t
−
11( 􏼁≤ e

− c+ϑ t11− t0( )V t0( 􏼁, (58)

which illustrates that

V(t)≤ e
ϑ t− t11( )V t11( 􏼁≤ e

− c+ϑ t11− t0( )V t0( 􏼁, t ∈ t11, t12􏼂 􏼁.

(59)

Equally, the inequality V(t12)≤ e− 2c+ϑ(t12− t0)V(t0) holds.
Paralleling to the above deduction, we could get an inference
that, ∀t ∈ [t0,􏽢t1),

V(t)≤ e
− n t,t0( )c+ϑ t− t0( )V t0( 􏼁≤ e

− n t,t0( )c+ϑℓ
V t0( 􏼁, (60)

where n(t, t0) denote the number of impulsive moments in
the corresponding interval and c � c − ϑℓ > 0.

As a result, when 􏽢t1 <∞, whether impulse exists in
[t0,􏽢t1) or not, the following inequality is always attainable:

V(t)≤ e
− n t,t0( )c+ϑℓ

V t0( 􏼁, ∀t ∈ t0,􏽢t1􏼂 􏼁. (61)

When 􏽢t1 �∞, executing the similar argument as the
case of 􏽢t1 <∞, we could reason out

V(t)≤ e
− n t,t0( )c+ϑℓ

V t0( 􏼁, ∀t ∈ t0,∞􏼂 􏼁. (62)

Associating with the situation of 􏽢t1 <∞, let
�t1 � inf t≥􏽢t1 | V(t)≥ σψ(‖ζ(t)‖[t0 ,t])􏽮 􏽯; the priority concern
is the case of �t1 <∞. Evidently, whether impulse appears on
[􏽢t1,�t1) or not, it can be invariably obtained that

V(t)≤ σψ ‖ζ(t)‖ t0 ,t[ ]􏼒 􏼓, ∀t ∈ 􏽢t1,�t1􏼂 􏼁. (63)

Similarly, when �t1 �∞; V(t)≤ σψ(‖ζ(t)‖[t0 ,t]),
∀t ∈ [􏽢t1,∞).

Combined with the circumstance that �t1 <∞, it follows
that

V(t) ≤ e
− n t,t0( )c+ϑℓ

V t0( 􏼁 + σψ ‖ζ(t)‖ t0 ,t[ ]􏼒 􏼓, ∀t ∈ t0,�t1􏼂 􏼁,

(64)

and then let 􏽢t2 � inf t≥�t1 | V(t) ≤ σψ(‖ζ(t)‖[t0 ,t])􏽮 􏽯. When
􏽢t2 <∞, we give priority to the case of no impulse over
[�t1,􏽢t2); we could derive from V(�t1) � σψ(‖ζ(t)‖[t0 ,�t1)) that

V(t)≤ e
ϑ t− �t1( )V �t1( 􏼁≤ e

− ϑℓσψ ‖ζ(t)‖ t0 ,t[ ]􏼒 􏼓, t ∈ �t1,􏽢t2􏼂 􏼁.

(65)

If there exist impulsive moments
t21 < t22 < · · · < t2m < · · ·, it holds that

V(t)≤ e
ϑ t− �t1( )σψ ‖ζ(t)‖ t0 ,t[ ]􏼒 􏼓, ∀t ∈ �t1, t21􏼂 􏼁. (66)

According to (55), we have

V t21( 􏼁≤ e
− c

V t
−
21( 􏼁≤ e

− c+ϑ t21− �t1( )σψ ‖ζ(t)‖ t0 ,t[ ]􏼒 􏼓, (67)

which suggests that

V(t)≤ e
− c+ϑ t− �t1( )σψ ‖ζ(t)‖ t0 ,t[ ]􏼒 􏼓, ∀t ∈ t21, t22􏼂 􏼁. (68)

On account of c − ϑℓ > 0, performing semblable opera-
tion, we get

V(t)≤ e
ϑℓσψ ‖ζ(t)‖ t0 ,t[ ]􏼒 􏼓, ∀t ∈ �t1,􏽢t2􏼂 􏼁. (69)

When 􏽢t2 �∞, it can be inferred in repeating similar
iterations that

V(t)≤ e
ϑℓσψ ‖ζ(t)‖ t0 ,t[ ]􏼒 􏼓, ∀t ∈ �t1,∞􏼂 􏼁. (70)

Together with 􏽢t2 <∞, we derive

V(t)≤ e
− n t,t0( )c+ϑℓ

V t0( 􏼁 + e
ϑℓσψ ‖ζ(t)‖ t0 ,t[ ]􏼒 􏼓, ∀t ∈ t0,􏽢t2􏼂 􏼁.

(71)

Arguing in the identical manner, we conclude that

V(t)≤ e
− n t,t0( )c+ϑℓ

V t0( 􏼁 + e
ϑℓσψ ‖ζ(t)‖ t0 ,t[ ]􏼒 􏼓, ∀t ∈ t0,∞􏼂 􏼁,

(72)

which fulfills the proof of (T2) based on Definition 1.

Remark 6. Obviously, Assumption 3 and condition (37) play
a complementary role in the proof, which simultaneously
explains the rationality and significance of Assumption 3.

Next, for the purpose of achieving (T3), the following
hypothesis needs to be proposed.

Assumption 4. Matrices D and A with appropriate di-
mensionality are of full-row rank and full-column rank
separately.

Theorem 3. Assume that, for given constants ει(ι � 1, 2, 3),
there exist matrices P> 0, Si > 0, Ξi, and Θi, i � 1, 2, and
constants 􏽢ϑ> 0, ϑ> 0, c> 0, and εb > 0(b � 1, 2, 3, . . . , 58)

such that (35) and

He Σ1( 􏼁 M ΣT2F
T
3 Σ3M FT

5

∗ − ε57I 0 0 0

∗ ∗ −
1
ε57

I 0 0

∗ ∗ ∗ − ε58I 0

∗ ∗ ∗ ∗ −
1
ε58

I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (73)

Ω SDTPDBdS SDTPDAΘ SDTPDCS

∗ − ε1S 0 0
∗ ∗ − ε2S 0
∗ ∗ ∗ − ε3S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (74)

where
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Σ1 �

1 − e− 1
2 c􏼐 􏼑I + AΞ1 − AΞ1

0 1 − e− 1
2 c􏼐 􏼑I − Ξ2D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Σ2 �
Ξ1 − Ξ1

Ξ1 − Ξ1

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Σ3 �
0 0

0 − Ξ2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

S �
S1 0

0 S2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Θ �
Θ1 − Θ2

Θ1 − Θ2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Ω � − ϑS
2

+ R1,

R1 � μ1SD
T
PDMM

T
D

T
PDS + μ2SD

T
PMM

T
PDS

+ μ3SF
T
5F5S + μ4SF

T
1F1S + μ5Θ

T
F

T
3F3Θ

+ μ6SB
T
F

T
5F5BS + μ6Θ

T
A

T
F

T
5F5AΘ

+
1
ε8

SB
T
D

T
PMM

T
PDBS

+
1
ε8
ΘT

A
T
D

T
PMM

T
PDAΘ + μ7βSF

T
2F2Sβ

+ μ8βSB
T
dF

T
5F5BdSβ + He SD

T
PDBS􏼐 􏼑

+
1
ε25

βSB
T
dD

T
PMM

T
PDBdSβ + He SD

T
PDAΘ􏼐 􏼑 + ε1βSβ,

μ1 � ε1 + ε2 + ε21 + ε33 + ε45,

μ2 � ε3 + ε4 + ε6 + ε22 + ε23 + ε34 + ε35 + ε46 + ε47,

μ3 � ε8 + ε9 + ε11 + ε13 + ε15 + ε18 + ε25 + ε26

+ ε28 + ε30 + ε37 + ε38 + ε40 + ε42 + ε49

+ ε50 + ε52 + ε54,

μ4 �
1
ε1

+
1

ε4ε5
+

1
ε9ε10

+
1

ε15ε16ε17
,

μ5 �
1
ε2

+
1

ε6ε7
+

1
ε11ε12

+
1

ε18ε19ε20
,

μ6 �
1
ε3

+
1

ε13ε14
,

μ7 �
1
ε21

+
1

ε23ε24
+

1
ε26ε27

+
1

ε30ε31ε32
,

μ8 �
1
ε22

+
1

ε28ε29
,

(75)

and then system (13) is input-to-state stabilizable under
event-triggered strategy (16). In addition, the control
gains K, K, and L and parameters η, ρ, and ℓ are jointly
devised by

K � Ξ1D
T

DD
T

􏼐 􏼑
− 1

,

K � A
T
A􏼐 􏼑

− 1
A

TΞ2,

L � Θ1S
− 1
1

0< η<
κ

2 + 2κ
,

0< ℓ <
λmin(P)c

λmin(P)􏽢ϑ + ϑ
,

ρ> 0,

(76)

where

κ �
λmin(P)λmin2(S) (c/ℓ) − 􏽢ϑ − ϑ/λmin(P)( 􏼁􏼐 􏼑 ‖D‖ + α‖M‖ · F5

����
����􏼐 􏼑

2

λmax R2􏼐 􏼑
,

R2 � μ9Θ
T
F

T
3F3Θ + μ10Θ

T
A

T
F

T
5F5AΘ

+
1
ε37
ΘT

A
T
D

T
PMM

T
PDAΘ + ϵ2λmin2(S)S

− 1
,

μ9 �
1
ε33

+
1

ε35ε36
+

1
ε38ε39

+
1

ε42ε43ε44
,

μ10 �
1
ε34

+
1

ε40ε41
.

(77)

Proof. /e controller gains K and K, under /eorem 2,
could be determined by (73), which leads to (37). Mean-
while, let Hι � ειS− 1(ι � 1, 2, 3); then we use
diag S− 1, S− 1, S− 1, S− 1􏼈 􏼉 to postmultiplication and pre-
multiplication in inequality (74); condition (36) can be
derived. Furthermore, condition (38) is linearized to (76).
/is accomplishes the proof.

Remark 7. More recently, the design problems of adaptive
controller are studied for uncertain nonlinear systems with
diverse structures, such as lower triangular structure [37],
nonlower-triangular structure [38, 39], and nonstrict-
feedback structure [40, 41]. Inspired by these interesting and
pioneering works, the event-triggered impulsive control
scheme designed and the approach adopted in this paper
may be extended in these areas. In addition, through the
enlightenment of some excellent works like [42–44],
whether our model can be extended to various memristive
neural network models would be a probable and rewarding
research topic.
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4. Illustrative Examples

For the purpose of corroborating the merit and effectiveness
of the developed results, two numerical examples are con-
sidered in this section.

Example 1. Consider a dynamic model of a vehicle radar
servo system. Following [45, 46], the nonlinear dynamic
model with parametrized uncertainties can be modeled as

_x1 � x2,

_x2 � − (b + Δb)x2 +(c + Δc)u − (d + Δd) Fc + fVf􏼐 􏼑,

y � x1,

(78)

where x1 and x2 are the angular and the angular speed of the
motor, respectively; b � (Br/J + m(r2/G2)),
Δb � (ΔBr/ΔJ + m(r2/G2)), c � (Kf/J + m(r2/G2)),
Δc � (ΔKf/ΔJ + m(r2/G2)), d � (r/GJ + m(r2/G2)), and
Δd � (r/GΔJ + m(r2/G2)); J, m, r, G, Br, Kf, iq, Fc, and f

are the rotor inertia, the mass of radar antenna, the radius of
the gearing wheel, the gearing ratio, the rotor shaft friction,
the torque constant, the current in q axis, the dry friction
force, and the wind resistance coefficient, respectively; Vf is
a nonlinear function in regard to radar antenna velocity.
Besides, the parameters ΔBr, ΔJ, and ΔKf are not precisely
known, which are dependent on several factors in the
nonlinear dynamics; for instance, the direction of the radar
antenna changes with vehicle vibration and gusty winds.
Suppose that Fc is an interfering variable that varies over
time. To stabilize this system in the input-to-state sense,
now, some parameters are selected as

Br � 1.7 × 10− 4N · m · s,

J � 48 × 10− 3kg · m2
,

m � 1000kg,

r � 50mm,

G � 1,

Kf � 1.2
N · m
A

,

f � 1.4,

Fc � tanht,

Vf � 0.2tanh x2( 􏼁,

ΔBr � 0.2 × 10− 4 sin tN · m · s,

ΔJ � 3 × 10− 3 cos tkg · m2
,

ΔKf � 0.2 sin t
N · m
A

.

(79)

Based on /eorem 2 proposed in this paper, let
εi � 20, i � 1, 2, . . . , 29, εj � 25, j � 30, 31, . . . , 49, εl � 30,

and l � 50, 51, . . . , 58, and choose 􏽢ϑ � 0.45, ϑ � 3 × 10− 6,
and c � 0.03./en, the control gains and the event-triggered
mechanism parameters can be designed by utilizing
MATLAB toolbox as follows:

K � − 0.2164 − 0.1922􏼂 􏼃,

K � 0.2149 0.1974􏼂 􏼃,

L � − 1.6450 − 1.1250􏼂 􏼃,

0< η< 0.2253 × 10− 3
, 0< ℓ < 0.56.

(80)

In order to achieve simulation, we choose
η � 0.18 × 10− 3, ρ � 0.1, and ℓ � 0.4. When the designed
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controller does not act on system (78), as shown in Figure 1,
then the system is unstable. However, under control, the
change trend of error between the observer state and the
system state, the dynamics of the controller updates (the
points on the t-axis mean that the controller does not up-
date), and the sampling dynamics of the event triggering
mechanism are illustrated in Figures 2–4, respectively.
/ereinto, in Figure 4, the point with a value of 1 corre-
sponds to the event trigger sampling time, and the point with
a value of 0.5 corresponds to the forced trigger sampling
time. Assume that the total elapsed time of system is 20 s, if
the output signal is transmitted by a fixed impulsive time
sequence or time-triggered scheme, and the sampling period
is 0.05 s; then the number of data traffic will be 400, whereas,
as shown in Table 1, the amount of data communication can
be dramatically decreased by adopting the designed event-

triggered scheme. In conclusion, the aforementioned sim-
ulation outcomes reflect that when the system state is not
completely measurable and uncertainties and external in-
terferences exist in the system, the vehicle radar servo system
can accurately estimate the corresponding input in real time
and save unnecessary communication resources.

Example 2. To ensure the participation of more un-
certainties and the establishment of Assumption 4, uncertain
nonlinear system (1) incorporating two subsystems is taken
into consideration, whose parameters are set as follows:

B �
1 0

0 1
􏼢 􏼣,

Bd �
− 1.7 0

0 − 1.7
􏼢 􏼣,

A �
0.2

0.2
􏼢 􏼣,

C �
420.3819 0

0 420.3819
􏼢 􏼣,

D �
− 3526.2 0

0 − 3526.2
􏼢 􏼣,

f(x) �
0.3tanh x1( 􏼁

0.2tanh x2( 􏼁
􏼢 􏼣,

](t) �
sin(t)

tanh(t)
􏼢 􏼣,

M �
− 149.5759 0

0 − 149.5759
􏼢 􏼣,

F1 �
0.11 0

0 0.11
􏼢 􏼣,

F2 �
1 0

0 1
􏼢 􏼣,

F3 �
− 0.000545

− 0.000545
􏼢 􏼣,

F4 � F5

(81)

If system (1) has no the control input, as portrayed in
Figure 5, its dynamic behavior is unstable under exogenous
disturbance and uncertainties. Next, without capturing the
information of system states, an observer-based event-
triggered impulsive controller will be designed to implement
the input-to-state stabilization attribute on system (1). In
accordance with /eorem 3, let εi � 15, i � 1, 2, . . . , 29;
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Figure 3: /e dynamics of control inputs.
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Figure 4: /e dynamics of event-triggered mechanism.

Table 1: Amount of date communication under varying ℓ, η, and ρ.

(ℓ, η) (0.1, 0.00043) (0.2, 0.00024) (0.4, 0.00018)

​ ρ � 0.01 85 68 55
​ ρ � 0.05 74 61 51
​ ρ � 0.1 71 59 48
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εj � 18, j � 30, 31, . . . , 49; εl � 20, l � 50, 51, . . . , 58 and
choose 􏽢ϑ � 0.1, ϑ � 10− 10, c � 0.001, ε1 � 160, ε2 � 36520,
ε3 � 36971, and β � 18.9505; then we devise the control
gains as

K � 2.6446 2.6446􏼂 􏼃,

K � − 3.8464 − 3.8464􏼂 􏼃,

L � 0.01 0􏼂 􏼃,

(82)

and the parameter of event-triggered mechanism as
0< η< 0.0267, ρ> 0, and 0< ℓ < 0.643, so as to achieve the
control performance of the input-to-state stabilization. To
facilitate the simulation, we select η � 0.02, ρ � 0.4, and
ℓ � 0.4; then event-triggered mechanism (16) can be given by

ta+1 � t
⋆
a+1∧ ta + 0.4( 􏼁,

t
⋆
a+1 � inf t≥ ta

􏼌􏼌􏼌􏼌H(t)≥ 0􏽮 􏽯,
(83)

where

H(t) � ‖ϱ(t)‖
2

− 0.2 I ta( 􏼁
����

����
2

− 0.4‖ζ(t)‖
2

t0 ,t[ ]. (84)

By exploiting such mechanism and controller gains, the
trajectories of states and errors are separately illustrated in
Figures 6 and 7, where the evolution of control inputs is
exhibited in Figure 8. Moreover, viewed from the triggered
dynamics of Figure 9, the event-triggered scheme lessens
unnecessary sampling and avoids repeated sampling.

/e advantage of the presented strategy in reducing data
traffic, in the following, will be further verified. Assume that

0

200

400

600

800

1000

1200

1400

1600

1800

2000

x 
(t)

t
0 1 2 3 4 5

x1
x2

Figure 5: Responses of x1(t) and x2(t).

–3

–2

–1

0

1

2

3

4

5

x 
(t)

x1
x2

0 5 10 15 20
t

Figure 6: Responses of x1(t) and x2(t).

16 Complexity



the total elapsed time of the closed-loop system (13) is 20s,
analyzing in the same way as Example 1, then we can clearly
observe from Table 2 that the event-triggered scheme
proposed in this paper is superior to the periodic sampling
scheme put forward in [21, 35, 36]. /is table also exhibits
that the sampling amount varies with the parameters ℓ, η,
and ρ. It can be seen that the greater the value of ℓ or ρ is, the
less the data communication would be generated and thus
the more resources would be saved.

5. Concluding Remarks

/is article investigates innovatively the input-to-state sta-
bilization and controller design for a type of uncertain
nonlinear systems included partially measurable states and

exogenous disturbances. A suitable event-triggered mech-
anism is constructed which decides when the controllers are
updated. With the combination of sample control, sub-
sequently, an observer-based impulsive controller has been
devised to warrant the performance of input-to-state sta-
bilization on the uncertain controlled system. Particularly,
the Zeno behavior in presented control scheme has been
eliminated. With the aid of several analysis strategies and the
linear matrix inequality technology, some sufficient criteria
are deduced to guarantee the input-to-state stabilization. In
addition, substantial uncertain parameters are reasonably
estimated by exploiting some constant matrix inequalities
and an innovative hypothesis. Although the reasoning
process is slightly more complicated, fortunately, the result
of theoretical analysis and simulations can demonstrate that
the observer-based event-triggered impulsive scheme can
work well. In some circumstances, the controller perhaps
oversteps its physical restrictions that possibly lead to the
controlled system subjected to rigorous performance deg-
radation. Consequently, it is a probable research work for
observer-based event-triggered saturated impulsive control
on a category of nonlinear controlled systems in the future.
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An enhanced method able to perform accurate stability of constrained uncertain systems is presented. /e main objective of this
method is to compute a sequence of feedback control laws which stabilizes the closed-loop system. /e proposed approach is
based on robust model predictive control (RMPC) and enhanced maximized sets algorithm (EMSA), which are applied to
improve the performance of the closed-loop system and achieve less conservative results. In fact, the proposed approach is split
into two parts. /e first is a method of enhanced maximized ellipsoidal invariant sets (EMES) based on a semidefinite pro-
gramming problem. /e second is an enhanced maximized polyhedral set (EMPS) which consists of appending new vertices to
their convex hull to minimize the distance between each new vertex and the polyhedral set vertices to ensure state constraints.
Simulation results on two examples, an uncertain nonisothermal CSTR and an angular positioning system, demonstrate the
effectiveness of the proposed methodology when compared to other works related to a similar subject. According to the
performance evaluation, we recorded higher feedback gain provided by smallest maximized invariant sets compared to recently
studied methods, which shows the best region of stability. /erefore, the proposed algorithm can achieve less conservative results.

1. Introduction

Model predictive control (MPC) is a main concern for
control design applied in different systems such as linear or
nonlinear [1–3], continuous or discrete [4], and mono-
variable or multivariable [5]. Actually, MPC is a common
technique for the dynamical systems’ stabilization. /is
method is applicable already in numerous domains in in-
dustry [6] as regulation and control. Generally, real pro-
cesses are nonlinear, complex, and uncertain [7–10].
/erefore, a robust model predictive control (RMPC) has
been introduced to guarantee robustness as well as con-
straint satisfaction against uncertainty. Moreover, model
predictive control is an interesting approach to represent
systems using fuzzy logic for designing controllers. Several
works have focused on the use of fuzzy-model-based sliding
mode control of nonlinear systems in combination with
MPC algorithms [11–14]. In fact, the fuzzy logic technique is
quite attractive in terms of time, simplicity of

implementation, relatively low cost, and ability to rapidly
model complex systems.

For constrained control problems processing, robust
MPC is an effectual stabilization algorithm. /is technique
employs a specific model procedure based on input and
output constraints, for each sampling time, in order to
optimize system behavior through the prediction horizon.
/e controller implements merely the initial calculated input
and reproduces these computations at the next sampling
time, despite the fact that more than one input shift is
calculated [15]. /e major aim is to determine the state
feedback control law to facilitate the minimization of the
worst-case performance cost.

At each time phase, the convex problem is considered as
an optimization problem including linear matrix inequalities
(LMI). /e main common current algorithm for RMPC is
demonstrated to guarantee robust stability. But, due to the
fact that the optimization problem is truly settled at each
sampling time, it needs high computational time in online
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implementation. On the other hand, such problems rise
appreciably with the size of the polytopic uncertainty set
[16].

Many efforts have been made to design the state
feedback control law which minimizes the worst-case
performance cost. However, in future RMPC research [17],
some constructive simulation experiences still remain.
Several techniques have been performed in this field where
practical treatments of RMPC are still a challenging task for
model predictive control. Wan and Kothare [15] proposed
an algorithm based on an offline robust constrained MPC
by the use of ellipsoidal invariant sets subject to linear
matrix inequality (LMI). /is algorithm provides a detailed
explicit control laws sequence corresponding to stable
invariant ellipsoidal sequence asymptotically constructed
offline in the state space. In the work of Bumroongsri and
Kheawhom [18], the algorithm of Wan and Kothare [15] is
developed in order to ensure the performance of the closed-
loop system focused on polyhedral invariant sets. An offline
approach for the stabilization of constrained uncertain
system is presented in this study. Various approaches have
been proposed to investigate, estimate, or enlarge the
maximum region of the state space where the system can
operate without violating state and stabilization con-
straints. In fact, the obtainable difficulty is associated with
the determination of controlled invariant sets [19, 20]. /e
computation of the maximal controlled invariant set
process introduced in [21] and the corresponding state
feedback control laws for linear systems subject to poly-
hedral input and state constraints have been studied in
[22, 23]. Kouvaritakis et al. [24] developed an advanced
method to enlarge the terminal invariant set using a linear
programming approach. In the study by Henrion et al. [25],
convex optimization problems are formulated for the re-
gion enlargement and hence tuning parameters for the
positively invariant set improvement.

Many researchers [26–28] were interested in an automatic
enlargement of invariant sets. In the work by Li and Lin [26],
the characterization of the maximal contractively invariant
ellipsoid associated with a given positive definite matrix is
proposed for discrete-time linear systems. /is description
can be used to establish an algebraic computational approach
and thus determine such maximal contractively invariant
ellipsoids based on inputs from saturated linear feedback. In
this field, the authors first divide the state space into several
regions according to the saturation status of each input.
Second, the possible maximal contractively invariant ellip-
soids are computed in each region. Note that if none of the
inputs saturate on their intersections, no region has been
calculated. /e minimal one among these possible maximal
contractively invariant ellipsoids is the maximal contractively
invariant ellipsoids of the system.

In this work, a new approach for maximizing ellipsoidal
and polyhedral invariant sets associated with the determi-
nation of the corresponding state feedback control laws is
developed. /e contributions of this paper are twofold:
firstly, to highlight the robust control of states, an RMPC
algorithm [15, 18] was applied. /is approach is based on a
computation method of maximal controlled invariant sets

[21]. Secondly, the combination of MPC method and
maximized invariant sets procedure is proposed in order to
precisely advance the performance of the employed system.
/e considered techniques are realized to enlarge ellipsoidal
and polyhedral invariant sets. For invariant ellipsoidal sets
maximization, a semidefinite problem is used based on
quadratic Lyapunov function. Besides, the proposed method
for polyhedral sets enlargement consists of the iterative
expansion of an initial invariant set precomputed by the LMI
method, adding new vertices to its convex hull. /is is
achieved by minimizing the distance between each new
vertex from the vertices of the polyhedral set. Finally, an
online implementation strategy has been applied.

So, in summary, using this proposed approach, we
recorded these two contributions:

Maximization of the invariant ellipsoidal and polyhe-
dral sets in order to increase the region of stability
Providing less conservative results and efficient system
performance in terms of computational time

/is paper is organized as follows. Section 2 describes the
proposed methodology based on robust model predictive
control. In Section 3, simulation results and discussions of
the whole proposed approach are reported using two ex-
amples: an uncertain nonisothermal CSTR and an angular
positioning system. /e conclusion is provided in Section 4.
All preliminaries and notations used in this paper are
revealed in Table 1.

Schur’s Lemma 1 (see [16]). Let R, S, T be given matrices
with appropriate sizes and assume that Q> 0; then the

LMI R S

ST Q
􏼢 􏼣> 0 (respectively, ≥ 0) is feasible if and only if

the nonlinear constraint R − SQ−1ST> 0 (respectively, ≥ 0)
is feasible.

2. Methods

2.1. Description of Robust Model Predictive Control. In this
work, robust model predictive control (RMPC) analysis is
the employed procedure to emphasize stability and effec-
tively improve the performance of the uncertain discrete-
time linear systems. RMPC method is a typical scheme for
minimizing the worst-case performance cost in order to
determine the state feedback control law. /is technique
consists of two tasks: (i) offline part is introduced to search
the feedback gain Ki based on the resolution of Bumroongsri
and Kheawhom problem [18]; (ii) online part, at each
sampling time, determines the smallest invariant set con-
taining the measured state and implements the corre-
sponding state feedback control law to the process. In
general, RMPC preprocessing strategy is suitable for sta-
bilization process, decreasing computational time. Here, the
regulated output is demonstrated to considerably evolve the
system state faster to the origin. /e step-by-step method of
RMPC is described as follows.

Step 1. /e linear discrete-time system described by
Wan and Kothare [15] is considered with the following
polytopic uncertainty:
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x(k + 1) � A(k)x(k) + B(k)u(k),

y(k) � C(k)x(k),
􏼨 (1)

where x(k) ∈ Rnx , u(k) ∈ Rnu , and y(k) ∈ Rny are
state, control, and output variables of the system, re-
spectively. /en,

[A(k),B(k)] ∈Ω,

Ω� conv A1,B1􏼂 􏼃, A2,B2􏼂 􏼃, . . . , AL,BL􏼂 􏼃􏼈 􏼉,
(2)

where conv is the convex hull, Ω is a polytope, and
[Aj, Bj] are vertices of the polytope, where
j � 1, 2, . . . , L.
Step 2. Research to the feedback control law is as
follows:

u
k + i

k
􏼠 􏼡 � Kx(k + i). (3)

Equation (3) stabilizes system (1) with the following
cost:

min
u(k+i/k)

max
[A(k+i),B(k+i)]∈Ω,i≥0

J∞(k),

J∞(k) � 􏽘
∞

i�0

x
k + i

k
􏼠 􏼡

u
k + i

k
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Θ 0

0 R

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

x
k + i

k
􏼠 􏼡

u
k + i

k
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4)

subject to

uh

k + 1
k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ uh,max, h � 1, 2, . . . , nu,

yr

k + 1
k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤yr,max, r � 1, 2, . . . , ny,

(5)

where Θ > 0 and R> 0 are symmetric weighting
matrices.
Step 3. Choose a state sequence xi, i � 1, 2, . . . , N, and
solve problem (6)–(10) to get the state feedback gains
Ki � YiQ

−1
i , where Yi and Qi, i � 1, 2, . . . , N, are so-

lutions of the following problem:

min
ci ,Qi,Yi

ci, (6)

subject to

Qi QiA
T
j + YT

i BT
j QiΘ1/2 YT

i R1/2

AjQi + BjYi Qi 0 0

Θ1/2Qi 0 ciI 0

R1/2Yi 0 0 ciI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥0, (7)

∀j � 1, 2, . . . , L,

1 xT
i

xi Qi

⎡⎣ ⎤⎦≥ 0, (8)

X Yi

YT
i Qi

􏼢 􏼣≥ 0, (9)

Xhh ≤ u2
h,max, h � 1, 2, . . . , nu,

S C AjQi + BjYi􏼐 􏼑

AjQi + BjYi􏼐 􏼑
T
CT Qi

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦≥ 0, (10)

Srr ≤y2
r,max, r � 1, 2, . . . , ny, ∀j � 1, 2, . . . , L,

where Q is a symmetric matrix.
Step 4. For each Ki, the corresponding polyhedral
invariant set Si � xi/Mixi ≤ di􏼈 􏼉 is constructed in [18].

2.2.1eProposedMethodology. As illustrated in Figure 1, the
proposed methodology is composed of three steps:

Step 1. Enhanced maximized sets algorithm: by the
combination of an RMPC technique proposed by
Bumroongrsi and Kheawhom [18] and the enhanced
maximized invariant sets approach, a successful
progress of the closed-loop system performance was
obtained. Two methods are developed to maximize the
ellipsoidal and polyhedral invariant sets constructed by
the RMPC algorithm. /e ellipsoidal invariant sets
approach referred to in Section 2.2.1 is a semidefinite
programming method. Based on the work of Atha-
nasopoulos and Bitsoris [21], a second linear pro-
gramming approach is used to enlarge polyhedral sets.

Table 1: Preliminaries and notation.

Notation Signification
Capital letters Real matrices
AT Transpose of matrix A
det(A) Determinant of matrix A
A≥ 0 Symmetric matrix A is positive and semidefinite
A> 0 Symmetric matrix A is positive and definite
xi /e i th element of x

S � conv v1, . . . , vq􏽮 􏽯 /e convex hull of v1, . . . , vq􏽮 􏽯

Complexity 3



It consists of adding new vertices to their convex hull by
minimizing the distance between each new vertex and
the polyhedral set vertices for securing the state con-
straints. /e polyhedral invariant sets process is pre-
sented in Section 2.2.2.
Step 2. Online implementation of the feedback control
law: at each sampling time, determine the smallest
invariant set containing the measured state and im-
plement the corresponding state feedback control law
to the process.
Step 3. Evaluation criterion: the computational time
(CT) required for the proposed approach has been
reduced.

2.2.1. Enhanced Maximized Ellipsoidal Invariant Sets
(EMES). Subsequent to the RMPC problem resolution and
the feedback gains determination, an invariant ellipsoidal
sets sequence is built.

Let the following inequalities be

x
k

k
􏼠 􏼡

T

Px
k

k
􏼠 􏼡≤ 1, (11)

which is equivalent to

x
k

k
􏼠 􏼡

T

Q
−1

x
k

k
􏼠 􏼡≤ 1, (12)

where P � Q−1.
To maximize the ellipsoidal region

ξ � x | x
T
Px≤ 1􏽮 􏽯 � x | x

T
Q

−1
x≤ 1􏽮 􏽯, (13)

by guaranteeing a wider stability domain, a semidefinite
programming problem will be used.

Let us consider the quadratic Lyapunov function
V(x(k)) � x(k)TPx(k). /en, we have

ΔV(x(k)) � V(x(k + 1)) − V(x(k)) ≤ 0

� x(k)
T

(A + BK)
T
P(A + BK) − P􏽨 􏽩x(k)≤ 0.

(14)

Condition (14) is true if and only if

(A + BK)
T
P(A + BK) − P≤ 0. (15)

Using Schur’s lemma, the following condition with Q �

P−1 and K � YQ−1 is obtained:

Q AjQi + BjYi􏼐 􏼑
T

AjQi + BjYi Q

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≥ 0. (16)

A natural objective enables increasing the ellipsoid
volume which is proportional to det(Q). Hence, if the
maximal invariant ellipsoid volume corresponds to state
feedback law, solving the following semidefinite program-
ming is required:

max
Q,Y

log(det(Q)), (17)

subject to

Q AjQi + BjYi􏼐 􏼑
T

AjQi + BjYi Q

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≥ 0,

umax Y

YT Q
􏼢 􏼣≥ 0, umax ≥ |u|.

(18)

2.2.2. Enhanced Maximized Polyhedral Invariant Sets
(EMPS). Given the state feedback gains Ki � YiQ

−1
i ,

i � 1, . . . , N, calculated from RMPC algorithm, for each Ki,
the corresponding polyhedral invariant set Si � xi/􏼈

Mixi ≤ di} is constructed. /e enhanced maximized poly-
hedral invariant sets (EMPS) algorithm is given as follows.

Step 1. Let the polyhedral invariant sets Si be the convex
hull of its vertices:

Si � conv v
1
i , . . . , v

q
i􏽮 􏽯, i � 1, 2, . . . , N. (19)

Step 2. Consider new sets Si
′ � conv v1i , . . . , v

q
i , vsup􏽮 􏽯,

i � 1, 2, . . . , N, q � 1, 2, . . . , n, and choose a point
vch ∉ Si.

Constrained
uncertain system

Choose xi states,
i  {1, 2, ..., N}

Solving the RMPC 
problem

�e obtained feedback 
gain Ki

Constructed invariant 
sets

Maximized 
invariant sets

Maximized
ellipsoidal 

invariant sets

Maximized 
polyhedral 

invariant sets

Enhanced maximized sets algorithm (EMSA)

Online 
implementation of 

feedback control law
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Figure 1: Flowchart of the proposed methodology.
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Step 3. Solve the following EMPS problem:

min
vsup ,p,usup ,ε

vsup − v
ch

�����

�����∞
􏼚 􏼛, (20)

subject to

Avsup + Busup � 􏽘

j

i�1
piv

j

i + pj+1vsup, (21)

pi ≥ 0, i � 1, . . . , j + 1, (22)

􏽘

j+1

i�1
pi ≤ ε, (23)

0< ε< 1, (24)

Mivsup ≤di, (25)

where pj+1 ∈ [0, 1].
Once the problem is solved, an optimal vertex vsup is
obtained, and thus, the following maximized polyhe-
dral set is constructed:

Si
′ � conv v1i , . . . , v

q

i, vsup􏽮 􏽯. (26)

Relations (21)–(23) imply the positive invariance and
attractivity of Si

′, while (24) and (25) guarantee con-
straint satisfaction.
Step 4. At each sampling time, determine the smallest
maximized polyhedral invariant set containing the
measured state and implement the corresponding
state feedback control law u(k/k) � Kix(k/k) to the
process.

3. Results

3.1. Example 1. An uncertain nonisothermal CSTR [15] is
considered where the exothermic reaction A⟶ B takes
place. /e reaction is irreversible and the rate of reaction is
primary order with respect to component A. A cooling coil
is employed to eliminate heat which is released in the
exothermic reaction. /e uncertain parameters are the
reaction rate constant k0 and the heat of reaction Hrxn. /e
linearized model focused on the component balance and
the energy balance is given by the following state
equations:

_x(t) � Ax(t) + Bu(t),

y(t) � Cx(t),
􏼨 (27)

where CA

T
􏼢 􏼣 is the state vector x(t) and CA,F

FC

􏼢 􏼣 is the input

control vector u(t). Matrices are defined by

A �
0.85 − 0.0986α(k) −0.0014α(k)

0.9864α(k)β(k) 0.0487 + 0.01403α(k)β(k)
􏼢 􏼣,

B �
0.15 0

0 −0.912
􏼢 􏼣,

C �
1 0

0 1
􏼢 􏼣,

(28)

where CA is the concentration of A in the reactor, CA,F

presents the feed concentration of A, T denotes the reactor
temperature, and FC is the coolant flow. /e operating
parameters are as follows:

F � 1m3/min, V � 1m3

k0 � 109 − 1010 min− 1

E/R � 8330.1K
−ΔHrxn � 107 − 108 cal/kmol

ρ � 106 g/m3

UA � 5.34106 cal/(Kmin)

Cp � 1 cal/(gK)

Let CA � CA − CA,eq, CA,F � CA,F − CA,F,eq, and
FC � FC − FC,eq, where the subscript eq is used to denote the
corresponding variable at equilibrium condition. By dis-
cretization, using a sampling time (ST� 0.15min), the dis-

crete-time model with CA(k)

T(k)
􏼢 􏼣 and CA,F

FC(k)
􏼢 􏼣, as state and

control vectors, respectively, is given as follows:

x(k + 1) � Ax(k) + Bu(k),

y(k) � Cx(k),
􏼨 (29)

x(k + 1) �
CA(k + 1)

T(k + 1)
􏼢 􏼣

�
0.85 − 0.0986α(k) −0.0014α(k)

0.9864α(k)β(k) 0.0487 + 0.01403α(k)β(k)
􏼢 􏼣

CA(k)

T(k)
􏼢 􏼣

+
0.15 0
0 −0.912

􏼢 􏼣
CA,F

FC(k)
􏼢 􏼣,

y(k) �
1 0
0 1

􏼢 􏼣
CA(k)

T(k)
􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

where 1≤ α(k) � k0/109 ≤ 10 and 1≤ β(k) � −ΔHrxn/
107 ≤ 10.

/e two parameters α(k) and β(k) are independent of
each other. /en, we consider the following polytopic un-
certain model with four vertices:

Ω � conv

0.751 −0.0014

0.986 0.063
􏼢 􏼣,

0.751 −0.0014

9.864 0.189
􏼢 􏼣

−0.136 −0.014

9.864 0.189
􏼢 􏼣,

−0.136 −0.014

98.644 1.451
􏼢 􏼣

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(31)
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By manipulating CA,F and FC, the control of concen-
tration CA and the reactor temperature T return to the
origin. /ese variables are constrained having
|CA,F|≤ 0.5 kmol/m3 and |FC|≤ 1.5m3/min.

/e cost function is given by (4) withΘ � I andR � 0.1I.
/e sequence of the chosen states is

xi �

(0.0525, 0.0525), (0.0475, 0.0475)

(0.0425, 0.0425), (0.0375, 0.0375)

(0.0325, 0.0325), (0.0275, 0.0275)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (32)

/ese sequences are used to compute six offline feedback
gains Ki, i � 1, 2, . . . , 6. /is allows building an ellipsoidal
and polyhedral invariant sets sequences.

Focused on the EMSA method, the maximized ellip-
soidal and polyhedral invariant sets are larger compared to
invariant sets [15, 18]. /e difference between these sets is,
respectively, shown in Figures 2 and 3.

For both techniques, the invariant sets, ellipsoidal
(Figure 2) and polyhedral ones (Figure 3), are constructed
based on the choice of the same states sequence xi,
i � 1, . . . , 6.

/e maximized polyhedral invariant sets enable us to
obtain an appreciably larger domain of stability compared to
the polyhedral invariant ones in [18], for each chosen state xi.
/is is due to the additional vertex of the obtained sets that have
been added by the EMPS approach. Figure 3 reveals the
comparison between the stabilizable sets of two feedback gains
in terms ofA and B points. As shown in Figure 3, it is clear that
the maximized polyhedral invariant sets stabilize the states at
point A by the use of feedback gain K1 since the states are
contained in the maximized sets S1. Contrariwise, the poly-
hedral sets [18] are not able to stabilize the states at point A
because they are not contained in the initial invariant set. As
illustrated in Figures 2 and 3, beginning at the point B, the
polyhedral set can stabilize the states to the origin taking on the
lowest feedback gain K1. In brief, the proposed approach
EMPS algorithm can regulate the states at point B to the origin
using a higher feedback gain K6 in the fact that the points are
contained in S6. In this case, EMPSmethod achieves the higher
feedback gain, when compared to previous studies. Conse-
quently, the proposed maximized approach attains less con-
servative results. To significantly clarify our results, Figures 4
and 5 demonstrate the regulated outputs. Here, we report that
the considered EMSA method provides less conservative re-
sults and efficient system performance, when the state evolves
faster to the origin. Compared to the previouswork [15, 18], the
proposed strategy seems to be helpful for uncertain system
control. As demonstrated in Table 2, we can deduce from the
stabilization validation results that the EMSA technique is
more efficient compared to the other model predictive control
methods [15, 18] in terms of stabilizable region and compu-
tational time (CT). EMSA strategy provides rigorous results in
terms of CT (4.951 s) and larger stabilization region in different
points. Although the construction of maximized polyhedral
invariants sets requests more computational time than the
standard ellipsoidal and polyhedral invariants sets, it is still
more precise in enlargement of stability domain. Table 3
summarizes the cumulative cost obtained in Example 1.

3.2. Example 2. We consider the angular positioning system
described by the following discrete-time equation [29]:

θ(k + 1)

θ
•

(k + 1)

⎡⎢⎢⎣ ⎤⎥⎥⎦ �
1 0.1

0 1 − 0.1α(k)
􏼢 􏼣

θ(k)

θ
•

(k)

⎡⎢⎢⎣ ⎤⎥⎥⎦

+
0

0.0787
􏼢 􏼣u(k),

y(k) � 1 0􏼂 􏼃
θ(k)

θ
•

(k)

⎡⎢⎢⎣ ⎤⎥⎥⎦,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

where θ(k) is the angular position of the antenna, θ
•

(k) is the
angular velocity, and u(k) is the input voltage of the motor.
It is assumed that the uncertain parameter is arbitrarily time
varying: 0.1≤ α(k) � k0/109 ≤ 10.

Let θ � θ − θeq, θ
•

� θ
•

− θ•
eq, and u � u − ueq, where the

subscript eq denotes the corresponding variable at equi-
librium condition Figure 6. /e obtained system can be
written as follows:

θ(k + 1)

θ
•

(k + 1)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

1 0.1

0 1 − 0.1α(k)
􏼢 􏼣

θ(k)

θ
•

(k)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

+
0

0.0787
􏼢 􏼣u(k),

y(k) � 0 1􏼂 􏼃
θ(k)

θ
•

(k)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

System (34) has the following polytopic structure:

A(k) ∈ conv
1 0.1

0 0.9
􏼢 􏼣,

1 0.1

0 0
􏼢 􏼣􏼨 􏼩. (35)

/e input constraint is

|u(k)|≤ 2 volts. (36)

/e weighting matrices Θ and R are given by

Θ �
1 0

0 0
􏼢 􏼣,

R � 0.00002I.

(37)

Let us choose the following seven states sequence:

xi �

(0.35, 0.35), (0.3, 0.3)

(0.25, 0.25), (0.02, 0.02)

(0.15, 0.15), (0.1, 0.1), (0.05, 0.05)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (38)

In this example, the sequence of seven states
xi, i � 1, . . . , 7, is used to compute seven state feedback
gains Ki corresponding to seven ellipsoidal and polyhedral
invariant sets. Using the EMSA algorithm, the maximized
ellipsoidal and polyhedral invariant sets are drawn com-
pared to invariant sets [15, 18]. Figure 7 exemplifies the
comparison between the maximized ellipsoidal and poly-
hedral invariant sets.
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Compared to the invariant set [18], the maximized
invariant set has a significantly larger domain of stability,
for each chosen state xi, i � 1, . . . , 7. Figure 7 reveals the
comparison between the stabilizable sets of three feed-
back gains in terms of A, B, and C points. Simulation
results illustrated in Figure 7 highlight the robustness of
the proposed method using maximized polyhedral in-
variant sets which stabilize the states at point A
employing the feedback gain K1 (the states are contained
in the maximized set S1). On the other hand, the poly-
hedral [18] and the maximized ellipsoidal sets are not able
to stabilize the states at point A (the states are not
contained in the original polyhedral and maximized el-
lipsoidal sets). Concerning the point B, the polyhedral set
[18] can stabilize the states to the origin corresponding to
the lowest feedback gain K1. In addition, the proposed

EMPS approach can regulate the states at point B to the
origin utilizing a higher feedback gain K5 (points con-
tained in S5). On the contrary, the maximized ellipsoidal
set and the ellipsoidal set [15] cannot control the states at
point B because they are not situated in these invariant
sets. Also, starting by the point C, it is obvious that the
maximized invariant set obtained from EMES approach
can stabilize the states to the origin containing the lowest
feedback gain K1. /e proposed EMSA model can control
the states at this point to the origin exploiting higher
feedback gain K7 (points contained in S7). Note that
previous studies [18] are capable of stabilizing these states
at points C from the feedback gain K6. Figures 8 and 9
display the regulated outputs. In this case, it is evident
that the projected EMSA method supplies less conser-
vative results. If the state evolves faster to the origin, the
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Figure 2: Resulting maximized ellipsoidal invariant sets (in red).
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Table 2: Performance comparison with previous works.

Methods Years

Stabilizable region

Stabilization
domain

Invariant
sets number

Maximization
methods Computational time (s)

Different points
A

(−0.05,
3)

B
(−0.08,
4)

C
(−0.1,
8)

Wan and Kothare
[15] 2003 Ellipsoidal

invariant sets 6 3.672

Bumroongsri and
Kheawhom [18] 2012 Polyhedral

invariant sets 6 4.372

/e proposed method Maximized
invariant sets 6 Semidefine and

linear programming 4.951

Table 3: Cumulative cost in Example 1.

Methods Cumulative cost Cumulative equation
Wan and Kothare [15] 20.48

􏽐
∞
i�0 xT

i Θxi + uT
i RuiBumroongsri and Kheawhom [18] 19, 02

Proposed approach 17, 9
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applied approach reaches better performance system. /e
resolution of the predictive control problem based on the
proposed EMSA algorithm aims to improve the uncertain
system performances under consideration. Depending on

the result of Table 4, we can assume that the proposed
scheme is more successfully having a larger stabilizable
region. Table 5 resumes the cumulative cost in the second
example.

u

Antenna

Target object

Goal: θ ≅ θr 

θ
θ·x = 

θr
θMotor

Figure 6: Angular positioning system.
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Figure 7: (a) Maximized ellipsoidal invariant sets compared to [15] and (b) maximized polyhedral invariant sets compared to [18].
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4. Conclusion

In this paper, we described an enhanced method which can
be used for constrained uncertain discrete-time linear sys-
tems stabilization. A useful RMPC technique was applied to
emphasize the robust control and improve the state stabi-
lization. /e proposed procedure gives appropriate opti-
mization and notable precision when compared to existing
model predictive control results. /en, we have suggested
the combined RMPC method and maximized invariant sets
process that can accurately progress the performance of the
closed-loop system. /e included methods are used to en-
large ellipsoidal and polyhedral invariant sets constructed by
the RMPC algorithm. An online implementation for the
obtained feedback control laws has been made. /e pro-
posed method has been compared with some existing al-
gorithms in order to enlarge stability domain. Experiment
results demonstrate that the proposed method can perma-
nently control system states having a larger stabilizable

region. /erefore, the performance of the proposed strategy
furnishes a rigid basis in support of solving the control
problem. As future works, we propose to use deep learning
to obtain flexible models for nonlinear model predictive
control (MPC).

Data Availability

No data were used to support this study.

Conflicts of Interest

/e authors declare that they have no conflicts of interest.

References

[1] L. Cavanini, G. Cimini, and G. Ippoliti, “Computationally
efficient model predictive control for a class of linear pa-
rameter-varying systems,” IET Control 1eory and Applica-
tions, vol. 12, no. 10, pp. 1384–1392, 2018.

–2
–1.8
–1.6
–1.4
–1.2

–1
–0.8
–0.6
–0.4
–0.2

0

y (
ra

di
an

)

EMSA
Bumroongsri and Kheawhom, 2012

Time (sec)
0 5 10 15 20 25 30 35 40 45 50

Figure 9: /e control input obtained with EMPS approach.

Table 4: Performance comparison with previous works.

Methods Years

Stabilizable region
Stabilization
domain

Invariant sets
number

Maximization
methods Computational time (s)Different points

A (−0.2,
0.4)

B (0,
2)

C (1.5,
−3)

Wan and Kothare
[15] 2003 Ellipsoidal

invariant sets 7 2.831

Bumroongsri and
Kheawhom [18] 2012 Polyhedral

invariant sets 7 3.541

/e proposed method Maximized
invariant sets 7 Semidefine and linear

programming 4.183

Table 5: Cumulative cost in Example 2.

Methods Cumulative cost Cumulative equation
Wan and Kothare [15] 0.19

􏽐
∞
i�0 xT

i Θxi + uT
i RuiBumroongsri and Kheawhom [18] 0.12

Proposed approach 0.9

10 Complexity



[2] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust
constrained model predictive control using linear matrix
inequalities,” Automatica, vol. 32, no. 10, pp. 1361–1379, 1996.

[3] N. Saraf and A. Bemporad, An Efficient Non-condensed Ap-
proach for Linear and NonlinearModel Predictive Control with
Bounded Variables, ArXiv, 1908.07247, 2019.

[4] D. Angeli, A. Casavola, and E. Mosca, “Constrained predictive
control of nonlinear plants via polytopic linear system em-
bedding,” International Journal of Robust and Nonlinear
Control, vol. 10, no. 13, pp. 1091–1103, 2000.

[5] M. J. Grimble, P. Majecki, and M. R. Katebi, “Extended
NGMV predictive control of quasi-LPV systems,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 4101–4107, 2017.

[6] J. H. Lee, “Model predictive control: review of the three
decades of development,” International Journal of Control,
Automation and Systems, vol. 9, no. 3, pp. 415–424, 2011.

[7] C. M. Massera, M. H. Terra, and D. F. Wolf, “Guaranteed cost
approach for robust model predictive control of uncertain
linear systems,” in Proceedings of the 2017 American Control
Conference (ACC), pp. 4135–4140, Seattle, WA, USA, May
2017.

[8] M. Mirzaei, N. K. Poulsen, and H. H. Niemann, “Robust
model predictive control of a nonlinear system with known
scheduling variable and uncertain gain,” IFAC Proceedings
Volumes, vol. 45, no. 13, pp. 616–621, 2012.

[9] D. Saoudi and C. Mechmeche, “TS fuzzy bilinear observer for
a class of nonlinear system,” in Proceedings of the 18th IEEE
Mediterranean Conference on Control and Automation,
pp. 1395–1400, Marrakech, Morocco, June 2010.

[10] A. S. Tlili and N. Benhadj Braiek, “H∞ optimization-based
decentralized control of linear interconnected systems with
nonlinear interconnections,” Journal of the Franklin Institute,
vol. 351, no. 6, pp. 3286–3304, 2014.

[11] C. Ghorbel, A. Tiga, and N. Benhadj Braiek, “Proportional
PDC design-based robust stabilization and tracking control
strategies for uncertain and disturbed TS model,” Complexity,
vol. 2020, Article ID 8910132, 9 pages, 2020.

[12] J. Luo and H. Liu, “Adaptive fractional fuzzy sliding mode
control for multivariable nonlinear systems,” Discrete Dy-
namics in Nature and Society, vol. 2014, no. 6, Article ID
541918, 10 pages, 2014.

[13] A. O. Sahed, K. Kara, and M. L. Hadjili, “Constrained fuzzy
predictive control using particle swarm optimization,” Ap-
plied Computational Intelligence and Soft Computing,
vol. 2015, Article ID 437943, 15 pages, 2015.

[14] N. M. N. Lima, L. Z. Liñan, R. M. Filho, M. R. W. Maciel,
M. Embiruçu, and F. Grácio, “Modeling and predictive
control using fuzzy logic: application for a polymerization
system,” AIChE Journal, vol. 56, no. 4, pp. 965–978, 2010.

[15] Z. Wan and M. V. Kothare, “An efficient off-line formulation
of robust model predictive control using linear matrix in-
equalities,” Automatica, vol. 39, no. 5, pp. 837–846, 2003.

[16] W. Hamdi, W. Bey, and N. B. Braiek, “Stabilization of con-
strained uncertain systems by an off-line approach using
zonotopes,” Advances in Science, Technology and Engineering
Systems Journal, vol. 3, no. 1, pp. 281–287, 2018.

[17] X. Liu, S. Feng, and M. Ma, “Robust MPC for the constrained
system with polytopic uncertainty,” International Journal of
Systems Science, vol. 43, no. 2, pp. 248–258, 2012.

[18] P. Bumroongsri and S. Kheawhom, “An off-line robust MPC
algorithm for uncertain polytopic discrete-time systems using
polyhedral invariant sets,” Journal of Process Control, vol. 22,
no. 6, pp. 975–983, 2012.

[19] F. Blanchini and S. Miani, Set-1eoretic Methods in Control,
Birkhuser, Boston, MA, USA, 2008.

[20] W. Zheng, Y. Li, D. Zhang, C. Zhou, and P. Wu, “Envelope
protection for aircraft encountering upset condition based on
dynamic envelope enlargement,” Chinese Journal of Aero-
nautics, vol. 31, no. 7, pp. 1461–1469, 2018.

[21] N. Athanasopoulos and G. Bitsoris, “A novel approach to the
computation of the maximal controlled invariant set for
constrained linear systems,” in Proceedings of the 2009 Eu-
ropean Control Conference (ECC), pp. 3124–3129, Budapest,
Hungary, August 2009.

[22] X.-B. Hu and W.-H. Chen, “Model predictive control: ter-
minal region and terminal weighting matrix,” Proceedings of
the Institution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering, vol. 222, no. 2, pp. 69–79,
2008.

[23] V. Rakovic and M. E. Villanueva, “/e maximal positively
invariant set: polynomial setting,” 2017, https://arxiv.org/abs/
1712.01150.

[24] B. Kouvaritakis, M. Cannon, A. Karas, B. Rohal-Ilkiv, and
C. Belavy, “Asymmetric constraints with polytopic sets in mpc
with application to coupled tanks system,” International
Journal of Robust and Nonlinear Control, vol. 14, no. 4,
pp. 341–353, 2004.

[25] D. Henrion, S. Tarbouriech, and V. Kučera, “Control of linear
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In this paper, an ecological model described by a couple of state-dependent impulsive equations is studied analytically and
numerically. .e theoretical analysis suggests that there exists a semitrivial periodic solution under some conditions and it is
globally orbitally asymptotically stable. Furthermore, using the successor function, we study the existence, uniqueness, and
stability of order-1 periodic solution, and the boundedness of solution is also presented. .e relationship between order-k
successor function and order-k periodic solution is discussed as well, thereby giving the existence condition of an order-3 periodic
solution. In addition, a series of numerical simulations are carried out, which not only support the theoretical results but also show
the complex dynamics in the model further, for example, the coexistence of multiple periodic solutions, chaos, and period-
doubling bifurcation.

1. Introduction

Since mathematical models represented by differential
equations were introduced into biological and ecological
systems, it has been proved that they are very useful tools to
deal with practical problems such as emerging disease [1]
and population dynamics between plankton and nutrient
[2–4], which also promote the development of the theory of
differential equation further. Especially, in the process, there
is a significant development in impulsive differential
equations [5–9] because many reality systems exhibit the
abrupt jumps phenomena in population sizes during the
evolution processes. Additionally, a theoretical method is
urgently needed to provide a guide for the management of
some practical problems such as pest outbreaks, phyto-
plankton blooms, vaccination, and so on. Accordingly,
impulsive differential equation theory may prove to be one
of the most potential theories to strategize about the ap-
proach of management for these problems, as impulsive
differential equation can model abrupt jump behaviors in-
duced by management, for example, some management

occurs at fixed time, which can be modeled using the models
with impulses at fixed times [10–13].

State-dependent impulsive differential equation, as a
branch of impulsive differential equation, has the advantage
to model the control behaviors depending on the population
state. In recent years, the studies on state-dependent im-
pulsive differential equation have been paid increasing at-
tention [13–16]. Many studies devote to the properties of
periodic solutions [17–20], including the existence, stability
and periodicity, etc. It has been confirmed that the Poincaré
map is a very useful tool to prove the existence of periodic
solution in state-dependent impulsive differential equations
[21–23]. In addition, Simeonov and Bainov [24] gave ana-
logue of Poincaré criterion in ref. [25], which contributes to
the stability of the periodic solution. Based on the Poincaré
map, it can be proved theoretically that the positive periodic
solution can bifurcate from the trivial periodic solution
through a transcritical bifurcation [25]. Particularly, Chen
[26] introduced the successor function a in semicontinuous
dynamical system described by state-dependent impulsive
differential equation to prove the existence of periodic
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solution. Using the successor function, Dai et al. [27] studied
homoclinic bifurcation in a semicontinuous dynamical
system [28]. .e successor function has been extensively
employed to investigate the existence of periodic solution
and even stability and bifurcation in state-dependent im-
pulsive differential equation [28–38]. .ese studies enrich
the theory of state-dependent impulsive differential equation
further.

In this paper, we will present a prey-predator two-species
model with state-dependent impulsive control strategy to
study the dynamics induced by impulsive control. Firstly, a
model describing population dynamics of prey and predator
is given below.

dx

dt
� rx 1 −

x

K
􏼒 􏼓 −

bxy

a + x
,

dy

dt
�
αbxy

a + x
− my,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where x and y denote the densities of prey and predator,
respectively; r is the intrinsic growth rate of the prey; K is the
carrying capacity of the prey; b is the maximum growth rate;
a represents the half-saturation concentration; α is the as-
similation efficiency of predator; and m is the specific
mortality rate of predator. Here, we employ a Holling II
functional response to present the interaction between prey
and predator because some results suggest that the pop-
ulation dynamic following Holling II may exist in reality
[2, 3, 39, 40].

For some species, when their densities are beyond a
certain value, some seriously negative effects will emerge, for
instance, algal bloom. For this reason, their densities should
be kept below the critical value by harvest or/and released
natural enemy. Obviously, the occurrence of control will rely
on the density of the species. Here, under the assumption
that the interaction between prey x and predator y follows
model (1), we investigate the dynamics of impulsive control
and control strategies for prey x using state-dependent
impulsive differential equation, and the model can be de-
scribed as

dx

dt
� rx 1 −

x

K
􏼒 􏼓 −

bxy

a + x

dy

dt
�
αbxy

a + x
− my

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

x< h,

Δx � − px

Δy � − qy + τ

⎫⎪⎪⎬

⎪⎪⎭
x � h,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where h> 0 denotes the critical value below which the density
of prey x should be kept. 0<p< 1 is the harvest rate of prey x;
τ ≥ 0 is the releasing amounts of predator y; and 0< q< 1
represents the harvest rate of predator y or the level of
negative effect caused by the harvest of prey x on predator y.

.e rest of the paper is organized as follows. In Section 2,
some notations, basic definitions, and lemmas are given. In
Section 3, a semitrivial solution and its stability are studied;
we also study the existence, uniqueness, and stability of an
order-1 periodic solution; moreover, the boundedness of
solution and some propositions of periodic solution are
discussed as well. Whereafter, a series of numerical results
are carried out to study the dynamics of model (2) further in
Section 4. Finally, the paper ends with the conclusion in
Section 5.

2. Preliminaries

In model (1), there exist three equilibria, E0 � (0, 0),
E1 � (K, 0), and E∗ � (x∗, y∗), where x∗ � ma/(αb − m)

and y∗ � r(K − x∗)(a + x∗)/(bK). When the condition
max(0, αb(K − a)/(K + a))<m<Kαb/(a + K) holds, E∗ is
a stable positive focus or node. We assume that the following
condition holds throughout the paper: (H)
0<m<Kαb/(a + K).

.e vertical isocline and the horizontal isocline can be
defined as follows:

L1: y �
r(K − x)(a + x)

bK
� f(x),

L2: x �
ma

αb − m
.

(3)

Furthermore, let N � (x, y) | x � (1 − p)h, y≥ 0􏼈 􏼉 be
the phase set, and M � (x, y)|x � h, y≥ 0􏼈 􏼉 denotes the
impulsive set. Under condition (H), we assume that L1
intersects with the phase set N at point O(xO, yO) and the
impulsive set M at point H(xH, yH) in the first quadrant
when h<x∗. We define Π � (x, y)|(1 − p)h≤􏼈

x≤ h, 0≤y≤f(x)} and Ω � (x, y)|0≤x≤ h, y≥ 0􏼈 􏼉.
Let z(t) � (x(t), y(t)) be any solution of model (2);

then, we define the positive trajectory initializing at point
z0 � z(t0) ∈ R2

+ � (x, y)|x≥ 0, y≥ 0􏼈 􏼉 for t≥ t0 as
π(t; z0, t0) � z(t) | z(t) ∈ R2

+, t≥ t0 ≥ 0, z(t0) � z0􏼈 􏼉.
In this paper, some notions are always mentioned, in-

cluding phased point, impulsive point, and successor point.
From works in [20, 23, 26], we state the following definition.

Definition 1. Take the point A0 ∈ N; set π(t; A0, t0) as the
trajectory initializing at point A0 in model (2). If there exists
tk > t0 such that the trajectory π(t; A0, t0) intersects the
impulsive set M at Ak � (h, yk) when t � tk (k � 1, 2, 3, . . .),
then a point A+

k exists in the phase set N, where point
A+

k � ((1 − p)h, y+
k � (1 − q)yk + τ). .e point A+

k is called
the phased point of point Ak, and the point Ak is called the
impulsive point of point A+

k ..e pointA+
k is called the order-

k successor point of point A0, and the vector AkA
+
k

�����→
is called

an impulsive line.

Definition 2. Set point E � N∩ (x, y)|x≥ 0, y � 0􏼈 􏼉; then,
we define a number axis L in the phase N, and set point E as
the origin of the number axis L. ∀A0 ∈ N, set the direction of
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vector EA0
���→

as the positive direction of number axis L, and set
a0 � |EA0

���→
| as the coordinate of point A0 in the number axis

L. .en, a map Fk: R+⟶ R(k � 1, 2, 3, . . .) can be defined

as Fk(a0) � ak − a0, where ak � |EA
+
k

���→
| and A+

k is the order-k
successor point of point A0. .e map Fk is called the order-k
successor function, that is, Fk(A0) � yA+

k
− yA0

.

Definition 3. Take a point S in the phase set N; then,
π(t; S, t0) is a solution of model (2). If there exists a positive
integer k≥ 1 such that k is the smallest integer for Fk(S) � 0,
then the solution π(t; S, t0) is called order-k periodic
solution.

Lemma 1 (see [26]). 0e successor function Fk(S) is con-
tinuous, where the point S ∈ N.

Obviously, we can obtain the following lemma by
Lemma 1.

Lemma 2. If there exist two points S1 � ((1 − p)h, yS1
) and

S2 � ((1 − p)h, yS2
) in model (2) and (yS1

− yO)

(yS2
− yO)≥ 0 such that F1(S1)F1(S2)< 0, then model (2) has

an order-1 periodic solution.
For the point O, we always assume the point O+

k � ((1 −

p)h, yO+
k
) is the order-k successor point of the point O, and

the point Ok � (h, yOk
) is the impulsive point of point O+

k ,
where k � 1, 2, 3, . . ..

3. Main Results

When the values of parameters in model (1) are given, the
dynamics of model (2) only depend on the parameters h, p,
q, and τ. In this paper, we are interested in the effect of
impulsive control on dynamics of model (2). Hence, we will
investigate the dynamical behaviors of model (2) under the
condition that the parameters of model (1) are fixed.

For points O and H, it is obvious that

(1) yO >yH if (1 − p/2)h>K − a/2.
(2) yO <yH if (1 − p/2)h<K − a/2 and K> a.

In this section, we just show the proof with respect to
case (K − a)/2< (1 − p)h< (1 − p/2)h in the figure of il-
lustration. .e proof corresponding to other cases is similar,
which has been omitted.

By model (1), it is obvious that h< x∗ implies dy/dt< 0.
Additionally, y(t+)<y(t) always holds when q ∈ (0, 1).

In model (2) with τ � 0, it is obvious that the following
semitrivial periodic solution exists for
t ∈ ((n − 1)T, nT] (n � 1, 2, 3, . . .) when the predator y � 0,

ξ(t) �
(1 − p)her(t− (n− 1)T)K

(1 − p)her(t− (n− 1)T) +(K − (1 − p)h)
,

η(t) � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

where the period T � (1/r)ln(K − (1 − p)h/(1 − p)

(K − h)). Set Γ � (ξ(t), η(t)). .en, we can get the following
theorem.

Theorem 1. Under condition (H), if h<x∗ and τ � 0, then
semitrivial periodic solution Γ is globally orbitally asymp-
totically stable in model (2) for any q ∈ (0, 1) and p ∈ (0, 1).

Proof. For τ � 0, solutions of model (2) will enter the space
Π eventually. Hence, we study the stability of the semitrivial
periodic solution in this space.

For any ε> 0, set Nε � ((1 − p)h, ε) and Mε � (h, ε).
.en, we assume that the trajectory π(t; Nε, t0) intersects
with impulsive set M at point P � (h, yP), and yP <yNε

� ε
under condition (H). Set δ � ε; then, for any point G �

((1 − p)h, yG) where 0<yG < δ � yNε
, we have yG+

1
<yP

under condition (H) because h<x∗ and q ∈ (0, 1) (see
Figure 1(a)), which suggests that the distance

d � d π t; G, t0( 􏼁, Γ( 􏼁 � inf
P0∈Γ

π t; G, t0( 􏼁 − P0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< ε, (5)

holds for all t> t0, where Γ � (ξ(t), η(t)). Hence, according
to the definition of orbital stability in ref. [40], the semitrivial
periodic solution Γ is orbitally stable.

For any G0 ∈ N, take a sequence of number
tk􏼈 􏼉 (k � 1, 2, 3, . . .), where 0< tk < tk+1 and
limk⟶+∞ tk � +∞, such that π(tk; G0, t0) �

((1 − p)h, yk) ∈ N. .en, the sequence of number yk􏼈 􏼉 is a
strictly decreasing positive sequence because h<x∗ and
q ∈ (0, 1). Hence, there exists a y∗ ≥ 0, such that
limk⟶+∞yk � y∗ ≥ 0, but yk ≥y∗. Set Q∗ � ((1 − p)h, y∗),
and let pointQ∗ be the order-1 successor point of pointQ# �

((1 − p)h, y#) if y∗ > 0, where y# >y∗. .en, for any point
Q ∈Q∗Q# (i.e., yQ∗

<yQ <yQ#), its order-1 successor point
is below the point Q∗ (see Figure 1(b)), that is, yQ+ ≤y∗.

Because limk⟶+∞yk � y∗, there exists a positive integer
Θ1 such that yQ∗

<yk <yQ# for k>Θ1. According to above
analysis, there exists a positive integer Θ2 >Θ1 such that
yk <y∗ when k>Θ2, which contradicts with yk ≥y∗. Hence,
limk⟶+∞yk � y∗ � 0, which means that the semitrivial
periodic solution Γ is orbitally attractive. So, the semitrivial
periodic solution Γ is orbitally asymptotically stable. Since
the attraction domain is Ω, the semitrivial periodic solution
Γ is globally orbitally asymptotically stable.

.is completes the proof.
Suppose that M is a positive constant, and then we have

the following theorem for any M ∈ (0, +∞). □

Theorem 2. Under condition (H), if h< x∗ and τ ∈ (0, M],
then there exists a unique order-1 periodic solution in model
(2) for any q ∈ (0, 1) and p ∈ (0, 1).

Proof. For any τ > 0, Figure 2(a) displays the relation be-
tween point O and its order-1 successor point O+

1 under
condition (H), where h<x∗. Obviously, OO1O is an order-1
periodic solution if yO � yO+

1
. If yO <yO+

1
, we have F1(O) �

yO+
1

− yO > 0 and F1(O+
1 ) � yO+

2
− yO+

1
< 0, where O+

2 is the
successor point of point O+

1 . According to Lemmas 1 and 2,
there exists an order-1 periodic solution in model (2).

If yO >yO+
1
, we take a point R � ((1 − p)h, τ) in phase set

N. .en, let the point R+
1 be the order-1 successor point of

point R and point R1 be the impulsive point of point R+
1 , and

yR+
1

� (1 − q)yR1
+ τ > τ � yR (see Figure 2(a)), so F1(R)> 0.
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By F1(O) � yO+
1

− yO < 0, there exists an order-1 periodic
solution in model (2) using Lemmas 1 and 2.

Hence, there exists an order-1 periodic solution for any
q ∈ (0, 1) and p ∈ (0, 1) when h< x∗ and τ > 0.

Suppose there are two order-1 periodic solutions in
model (2), which are Γ1 and Γ2, respectively. Let point A+ �

((1 − p)h, yA+ ) and A � (h, yA) be the phase point and
impulsive point of Γ1, respectively, and point B+ � ((1 −

p)h, yB+ ) and B � (h, yB) be the phase point and impulsive
point of Γ2, respectively. Without loss of generality, set
yA+ >yB+ . .en, the relation among A+, B+, and O is (i)
B+ ∈OA+ (yO <yB+ <yA+); (ii) A+ ∈B+O (yB+ <yA+ <yO);
and (iii) O ∈B+A+ (yB+ <yO <yA+).

Figure 2(b) shows case (i); it is obvious that Γ1 and Γ2
cannot coexist by disjoint property of trajectory of model (1).
Hence, the order-1 periodic solution is unique for this case.

For case (ii), because A+ ∈B+O, we only need to focus on
the regionΠ. We rewrite the model (1) in the regionΠ as the
following initial-value problem:

dy

dx
�

g(x, y)

f(x, y)
≜Ψ(x, y),

y x0( 􏼁 � y0, (x, y) ∈ Π,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

where f(x, y) � rx(1 − x/K) − bxy/a + x, g(x, y) � αbxy/
a + x − my.

Obviously, the function Ψ(x, y) is continuously differ-
entiable andmonotone decreasing in y on the spaceΠ..en,
the solution of model (6) is equivalent to the following
integral equation:

y x, y0( 􏼁 � y0 + 􏽚
x

x0

Ψ s, y s, y0( 􏼁( 􏼁ds. (7)

By equation (7), set

yi(x) � y x, yi+( 􏼁 � yi+ + 􏽚
x

(1− p)h
Ψ s, yi(s)( 􏼁ds, (8)

O

Nε

G

y

(dx/dt) = 0
H

Mε

P
G1

+

N M

(a)

(dx/dt) = 0

y Q

Q+
Q∗

Q#

O

H

MN

(b)

Figure 1: Illustration corresponding to the orbital (a) stability and (b) attractability of semitrivial periodic solution in model (2).

O1
+

O1
+O

O1
+

y

R1
+

R

N M

H
(dx/dt) = 0

(a)

N M

y
(dx/dt) = 0

Γ2

Γ1

B+

A+

O

H
B

A

(b)

Figure 2: Illustration with respect to (a) existence and (b) uniqueness of the order-1 periodic solution in model (2).
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where i � A, B; then, yA � yA(h) and yB � yB(h). Because
yA+ >yB+ , we have yA(x)>yB(x) on the space Π by the
disjoint property of trajectory of model (1). Hence,

yA − yB � yA(h) − yB(h)

� yA+ + 􏽚
h

(1− p)h
Ψ x, yA(x)( 􏼁dx − yB+

− 􏽚
h

(1− p)h
Ψ x, yB(x)( 􏼁dx

<yA+ − yB+ .

(9)

On the other hand, because both Γ1 and Γ2 are order-1
periodic solutions, we have yA+ − yB+ � (1 − q)

(yA − yB)< (yA − yB) by model (2), which is a contradic-
tion with inequality (9). Hence, the order-1 periodic solution
is unique for this case.

For case (iii), the proof is similar with case (ii), so it is
omitted.

Hence, there exists a unique order-1 periodic solution in
model (2) for any q ∈ (0, 1) and p ∈ (0, 1) when h< x∗ and
τ > 0.

.is completes the proof.
From .eorem 2, we can find that the existence and

stability of order-1 periodic solution depend on parameter τ.
Suppose point ((1 − p)h, y(τ)) is the phase point of the
order-1 periodic solution, then we can get the following
proposition. □

Proposition 1. Under condition (H), when h<x∗ and τ > 0,
y � y(τ) is a monotonously increasing function with respect
to τ.

Proof. Let θ be the angle between the impulsive line and the
x-axis. .en, tan θ � − qy + τ/− ph, so dθ/dτ � (d/dτ)tan− 1

(− qy + τ/− ph)< 0. Hence, θ(τ) is a monotonously de-
creasing function in τ. Given an order-1 periodic solution
Γ∗, let pointsU � (xU, yU) andW � (xW, yW) be the phased
point and impulsive point of Γ∗, respectively; then, τ1 �

yU − (1 − q)yW guarantees the existence of the order-1
periodic solution Γ∗.

For any ε> 0, when τ � τ1 + ε, the order-1 periodic
solution Γ∗ will disappear. Let point U+ � (xU+ , yU+ ) be the
order-1 successor point of point U; then, yU+ >yU because
θ(τ) is a monotonously decreasing function. In addition,
F1(U)> 0 and F1(U+)< 0. .erefore, there exists an order-1
periodic solution whose phase point belongs to UU+. By the
uniqueness of order-1 periodic solution, y � y(τ) is a
monotonously increasing function in τ.

.is completes the proof.
By .eorem 2, we know that the trajectory OO1O is an

order-1 periodic solution of model (2) when
τ � yO − (1 − q)yO1

≜τc. .en, we can get the following
theorem. □

Theorem 3. Under condition (H), if h< x∗, then the order-1
periodic solution is globally orbitally asymptotically stable in
model (2) for any q ∈ (0, 1) and p ∈ (0, 1) when τ ∈ (0, τc).

Proof. When τ ∈ (0, τc), the order-1 periodic solution of
model (2) must belong to space Π under condition (H). Γ+
denotes an order-1 periodic solution of model (2), whose
phased point and impulsive point are point C � (xC, yC)

and point D � (xD, yD), respectively. In addition, the so-
lutions of model (2) will enter the space Π eventually when
τ ∈ (0, τc). Hence, we only need to study the stability of
order-1 periodic solution on the space Π.

For any ε> 0, we assume that the trajectory π(t; Nε1, t0)

meets impulsive set M at point P1 � (xP1
, yP1

), where Nε1 �

((1 − p)h, ε + yC) (see Figure 3(a)); then, yP1
<yNε1

� yC + ε.
Take δ � ε; for any point G1 � (xG1

, yG1
), where xG1

� (1 −

p)h and yC <yG1
<yC + δ � yNε1

, we assume that the tra-
jectory π(t; G1, t0) intersects with impulsive set at point
G2 � (h, yG2

); then, yG1
> (1 − q)yG2

+ τ; otherwise, another
order-1 periodic solution exists above Γ+, which contradicts
with the uniqueness of order-1 periodic solution. Hence, the
distance

d � d π t; G1, t0( 􏼁, Γ+( 􏼁 � inf
P0∈Γ+

π t; G1, t0( 􏼁 − P0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< ε (10)

holds for all t> t0 according to equation (9).
On the other hand, for any 0< ε<yC, given δ � ε, when

yC − δ <yG1
<yC, we still have

d � d π t; G1, t0( 􏼁, Γ+( 􏼁 � inf
P0∈Γ+

π t; G1, t0( 􏼁 − P0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< ε, (11)

using the same method. Hence, according to definition of
orbital stability in ref. [41], the order-1 periodic solution Γ+
is orbitally stable.

For any G0 ∈ N, take a numerical sequence
tk􏼈 􏼉 (k � 1, 2, 3, . . .), where 0< tk < tk+1 and limk⟶+∞tk �

+∞, such that π(tk; G0, t0) � ((1 − p)h, yk) ∈ N. Due to
disjoint of impulsive line, there are two cases on the nu-
merical sequence yk􏼈 􏼉 when τ ∈ (0, τc) and h<x∗: (1) yk􏼈 􏼉 is
a strictly decreasing positive sequence; (2) yk􏼈 􏼉 is a strictly
increasing positive sequence.

For case (1) (see Figure 3(b)), we have limk⟶+∞yk �

y∗ ≥yC and yk ≥y∗. Let Q∗ � ((1 − p)h, y∗); there exists a
point Q# � ((1 − p)h, y#) when y∗ >yC, where y# >y∗,
such that point Q∗ is the order-1 successor point of point
Q#. For any point Q ∈Q∗Q# (i.e., yQ∗

<yQ <yQ#), its order-1 successor point is below the point Q∗. Let point Q+ be the
order-1 successor point of Q, then yQ+ <y∗.

Because limk⟶+∞yk � y∗ and yk ≥y∗, there exists a
positive integer Θ1 such that yQ∗

<yk <yQ# for k>Θ1.
According to above analysis, there exists a positive integer
Θ2 >Θ1 such that yk <y∗ when k>Θ2, which contradicts
with yk ≥y∗. So, limk⟶+∞yk � yC. Likewise, limk⟶+∞yk �

yC also holds for case (2), which says the order-1 periodic
solution Γ+ is orbitally attractive.

Hence, the order-1 periodic solution Γ+ is orbitally as-
ymptotically stable. Since the attraction domain is Ω, the
order-1 periodic solution Γ+ is globally orbitally asymp-
totically stable.

.is completes the proof. □

Proposition 2. Under condition (H), when h< x∗ and τ > 0,
if there exists an order-k (k≥ 3) periodic solution in model
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(2), setting points ((1 − p)h, yi)(i � 1, . . . , k) as the phase
points of the order-k periodic solution, then
yO ∈ (mini�1,...,k(yi),maxi�1,...,k(yi)).

Proof. If yO ≥maxi�1,...,k(yi), it is obvious that there is no
order-k(k≥ 2) according to the proofs in the previous
theorems. Hence, we only need to consider
yO ≤mini�1,...,k(yi). Let points (h, y+

i )(i � 1, 2, . . . , k) be the
impulsive point of the order-k periodic solution and
yi+1 � (1 − q)y+

i + τ; then, y1 � (1 − q)y+
k + τ. Because

yO ≤mini�1,...,k(yi), for any l, j ∈ 1, 2, . . . , k{ }, if yl >yj, then
y+

l >y+
j by the disjoint of trajectory of model (1).

For yO ≤mini�1,...,k(yi), the relationship among y1, y2,
and y3 is one of the following cases because of the disjoint of
the trajectory of model (1) and the disjoint of the impulsive
line of model (2):

①y1 >y3 >y2

②y3 >y1 >y2

③y2 >y1 >y3

④y2 >y3 >y1

For y1 >y3 >y2, we get y+
1 <y+

3 <y+
2 , so y2 <y4 <y3 <y1

using yi+1 � (1 − q)y+
i + τ. Hence, we claim

y2 < · · · <y2n <y2n− 1 < · · · <y1. (12)

When n � 1, 2, it is obvious that inequality (12) holds.
Now, suppose inequality (12) holds when n � σ. In the
following, we will prove that inequality (12) also holds when
n � σ + 1. Because y2 < · · · <y2σ <y2σ− 1 < · · · <y1, we have
y+
2 > · · · >y+

2σ >y+
2σ− 1 > · · · >y+

1 . Consequently,
y1 >y3 > · · · >y2σ+1 >y2σ > · · · >y2, that is, inequality (12)
holds when n � σ + 1. Hence, inequality (12) holds when
y1 >y3 >y2.

In this case, obviously, for an order-k periodic solution,
we have (1 − q)y+

k + τ <y1 when y1 >y3 >y2, which con-
tradicts to y1 � (1 − q)y+

k + τ. Hence, the order-k periodic
solution does not exist. Using similar procedure, it is proved
that the order-k (k≥ 3) periodic solution does not exist for

cases②,③, and④. So, there is no order-k (k≥ 3) periodic
solution in model (2) when yO ≤mini�1,...,k(yi). .erefore,
yO ∈ (mini�1,...,k(yi),maxi�1,...,k(yi)) when an order-
k(k≥ 3) periodic solution exists in model (2).

.is completes the proof.
By Proposition 2, the following theorem will exist. □

Theorem 4. Under condition (H), if h< x∗ and τ ≥yO, then
there exists a globally orbitally asymptotically stable and
unique order-1 periodic solution or a unique order-1 periodic
solution and an order-2 solution coexists in model (2) for any
q ∈ (0, 1), and there is no order-k (k≥ 3) periodic solution.

Proof. By Proposition 2, it is obvious that there is no order-
k (k≥ 3) periodic solution in model (2) because (1 − q)y +

τ > τ ≥yO for any y> 0. If order-2 periodic solution does not
exist, then a globally orbitally asymptotically stable and
unique order-1 periodic solution exists using .eorems 2
and 3. If an order-2 periodic solution exists, then the order-2
periodic solution coexists with a unique order-1 periodic
solution by .eorem 2.

.is completes the proof. □

Theorem 5. Under condition (H), if h< x∗, for given τ > 0,
then all the non-negative solutions of model (2) which start in
Ω are ultimately bounded, and the bound depends on pa-
rameter τ, q, p, and h.

Proof. By model (2) and the space Ω, obviously,
0< limt⟶+∞supx(t)≤ h and 0≤ limt⟶+∞supy(t) hold. In
addition, set ΛN � y | y is the ordinate of phase point􏼈 􏼉 and
ΛM � y | y is the ordinate of impulsive point􏼈 􏼉. .en,
yO1

� max(ΛM), so we can obtain yO+
1

� max(ΛN) by
yO+

1
� (1 − q)yO1

+ τ. Hence, limt⟶+∞supy(t)≤yO+
1
,

which obviously depends on τ, q, p, and h.
.is completes the proof.
From .eorem 5, it is not difficult to find that there is a

rough estimate of the bound, and we have the following
remark. □
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Figure 3: Illustration corresponding to the orbital (a) stability and (b) attractability of order-1 periodic solution in model (2).
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Remark 1. Under condition (H), if h<x∗, then
0< limt⟶+∞ supx(t)≤ h and
0≤ limt⟶+∞ supy(t)< (1 − q)yH + τ.

Proposition 3. Under condition (H), if there exists a point S

such that Fk(S) � 0 in model (2) when h<x∗, then there
exists an order-kf periodic solution, where the positive integer
kf is a factor of the positive integer k, including 1 and k.

Proof. Suppose positive integer kf is not a factor of the
positive integer k, then let kr be the remainder of k/kf and kq

be the quotient of k/kf. Because there exists an order-kf

periodic solution in model (2), without loss of generality,
assume Fkf

(S) � 0. Obviously, we have Fkqkf
(S) � 0, but

Fkr
(S)≠ 0. Hence, the equation Fkqkf+kr

(S)≠ 0, which is a
contradiction with Fk(S) � 0 because k � kqkf + kr. So, the
positive integer kf is a factor of the positive integer k. When
the positive integer kf is a factor of the positive integer k,
Fk(S) � 0 is obvious if there exists an order-kf periodic
solution in model (2).

.is completes the proof. □

Proposition 4. Under condition (H), if there exists a point
O0 below point O such that F3(O0)< 0 holds when h< x∗,
0< τ <yO, p ∈ (0, 1), and q ∈ (0, 1), then model (2) has an
order-3 periodic solution when F1(O)> 0, and the order-3
periodic solution coexists with an order-1 periodic solution.

Proof. Setting E � N∩ (x, y)|0<x≤ h, y � 0􏼈 􏼉, we have
F1(E)> 0, F2(E)> 0 and F3(E)> 0. Hence, there exists a
point O∗ ∈ EO0 such that F3(O∗) � 0 because F3(O0)< 0,
so an order-k(k � 1or3) periodic solution exists by Prop-
osition 3. However, owing to F1(O)> 0, it is obvious that
there is no order-1 periodic solution in space Π by the proof
of .eorem 2. .us, the periodic solution is the order-3 one.
Furthermore, because F1(O)> 0, there exists an order-1
periodic solution according to the proof of .eorem 2, and
its phased point is above point O. .erefore, the order-3
periodic solution coexists with an order-1 periodic solution.

.is completes the proof.
Although it is not proved that point O0 must exist in

Proposition 4, it provides a method to search an order-3
periodic solution for numerical analysis. Furthermore, the
existence of order-3 periodic solution means that order-
k (k> 3) periodic solution and chaos exist in model (2) by
Sarkovskii’s theorem [42] and Li and Yorke’s theorem
[43]. □

4. Numerical Results

In the previous section, we have analyzed the properties of
periodic solution in model (2), including the existence,
uniqueness, stability, and boundedness. In this section, we
will further show the complex dynamics induced by im-
pulsive control using the numerical simulations. Since the
focus of this paper is the role of impulsive control in the
population dynamics, the parameters of model (1) are fixed:
r � 0.9, K � 100, b � 1.2, a � 7, α � 0.7, andm � 0.7, and we
can obtain the equilibrium E∗ � (35, 20.475) with index +1.

Obviously, condition (H) always holds under this parameter
set.

By .eorem 1, there only exists a semitrivial periodic
solution in model (2) when τ � 0 and h< x∗. Given
h � 3, p � 0.6, q � 0.5, and τ � 0, we get a semitrivial pe-
riodic solution as shown in Figure 4(a), and its period is
about 1.309. In addition, we also obtain the theoretical
value of the period by T � (1/r)ln(K − (1 − p)h/
(1 − p)(K − h)), which is the same as the numerical one.
When h � 3 and p � 0.6, the point O is fixed at
(1.2, 6.0762). .e numerical simulation shows that all the
successor points of any trajectory except the semitrivial
solution are below initial point in model (2) and these
trajectories converge towards the semitrivial periodic so-
lution (see Figure 4(b)).

When τ > 0, however, the semitrivial periodic solution
disappears. .en, an order-1 periodic solution emerges and
it should be unique by .eorem 2. In phase set N, because
the order-1 successor point of any point above point O is
below point O+

1 , we compute the order-1 successor function
F1(y) where y ∈ (0, yO+

1
] for different values of τ (see

Figure 5(a)), where h � 32, p � 0.1, and q � 0.1. In the rest
of this section, we will employ this control parameter set
unless otherwise specified.

From Figure 5(a), it is not difficult to find that the
equation F1(y) � 0 has a unique root, which means that
there exists a unique order-1 periodic solution. Hence, we
carry out some numerical simulations with respect to these
roots of F1(y) � 0, and the results verify that these solutions
are order-1 periodic solutions as shown in Figure 5(b). But
we find that some of these order-1 periodic solutions are
unstable, which indicates that there may exist order-k pe-
riodic solution for some values of τ.

In order to illustrate the existence of order-k periodic
solution, we further compute order-1 successor function,
order-2 successor function, and order-3 successor function,
and the results are very interesting and are shown in
Figure 6(a). From Figure 6(a), it is easy to find that the
equation F1(y) � 0 has a unique root, the equation F2(y) �

0 has three roots, and the equation F3(y) � 0 has seven
roots. Furthermore, we can find that the root of F1(y) � 0 is
the common root of three equations: F1(y) � 0, F2(y) � 0,
and F3(y) � 0, which means that there exists an order-1
periodic solution corresponding to this root. Except this
root, the equation F2(y) � 0 still has two roots which in-
dicate an order-2 periodic solution exists in virtue of the
uniqueness of order-1 periodic solution. For order-3 suc-
cessor function F3(y), the equation F3(y) � 0 has six roots
except for the root of F1(y) � 0.

Except for the root of F1(y) � 0, it is not difficult to find
that F1(y) and F2(y) are positive or negative definite in a
small neighborhood of each root of F3(y) � 0, which means
that there may exist two order-3 periodic solutions in model
(2). .us, we perform some numerical simulations to show
the solutions corresponding to these roots. .e results show
that a stable order-3 periodic solution coexists with an
unstable order-3 periodic solution, an unstable order-2
periodic solution, and an unstable order-1 periodic solution
(see Figure 6(b)). Additionally, the numerical solutions for
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prey y are given to further exhibit these periodic solutions, as
shown in Figure 6(c).

.e above results indicate that the order-1 periodic
solutions are not always stable. Using order-1 and order-2
successor functions, we compute y − value with respect to
the phased point of order-1 periodic solution to simulate its
variation as parameter τ increases (see Figure 7(a)). From
Figure 7(a), the order-1 periodic solution is stable before
parameter τ reaches line l1, and the order-1 periodic solution
is still stable near l1 when parameter τ is beyond l1. .is
result is in accord with .eorem 3. Keeping parameter τ
increasing, the order-1 periodic solution loses its stability
until it is beyond l3. It is well worth noting that model (2)
only has order-1 and order-2 periodic solution when pa-
rameter τ is between l2 and l3, which agrees with.eorem 4.
Furthermore, Figure 7(a) demonstrates that the order-1
periodic solution is unique, which supports the result in
.eorem 2. Additionally, Figure 7(a) also shows that y �

y(τ) is a monotonously increasing function with respect to
τ, which is consistent with Proposition 1.

In addition, our numerical results also indicate that the
phased point of order-1 periodic solution rises along phase

set as parameter τ increases. In order to present the sta-
bility of order-1 periodic solution, we compute two groups
of order-k successor points whose initial point is on the
sides of the phased point of order-1 periodic solution,
respectively. It is revealed that these points monotonously
converge towards the phased point of order-1 periodic
solution (see Figure 7(b)). Hence, this order-1 periodic
solution is stable due to the nonexistence of other periodic
solutions.

In order to display complex dynamics, we chose pa-
rameter τ as the controlled parameter and ran numerous
simulations using a wide range of parameter τ to show the
bifurcation diagram (see Figure 8(a)). Since the stability of
order-1 periodic solution has been discussed above
(Figure 7(a)), we will present the dynamics when the order-1
periodic solution is unstable. From Figure 8(a), increased
parameter τ can generate chaos by a cascade of period-
doubling bifurcation. Keeping parameter τ increasing, an
order-3 periodic solution bifurcates from chaos. Subse-
quently, chaos occurs again with the increase of parameter τ.
Finally, chaos disappears again via a cascade of inverse
period-doubling bifurcation at higher values in the
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simulated range of parameter τ. To confirm the occurrence
of chaos further, we calculate the largest Lyapunov expo-
nents in the same range of parameter τ as Figure 8(a), which

agrees with the bifurcation diagram (see Figure 8(b)). In
addition, dozens of time-series of population y for differ-
ently initial values are given in Figure 8(c) to further show
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Figure 6: (a).e order-1 successor function F1(y), the order-2 successor function F2(y), and the order-3 successor function F3(y), where
the line L denotes line y � yO. (b) An order-1 periodic solution corresponding to the root of F1(y) � 0, an order-2 periodic solution
corresponding to roots of F2(y) � 0, and two order-3 periodic solutions corresponding to roots of F3(y) � 0, where the dashed curves
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chaos, which suggests that all states described by these time-
series are in disorder.

5. Conclusion

In this paper, we proposed an ecological model with state-
dependent impulsive control strategy to investigate the effect
of impulsive control on prey-predator dynamics..eoretical
results suggest that model (2) has a globally orbitally as-
ymptotically stable semitrivial periodic solution when pa-
rameter τ � 0 and h<x∗, where condition (H) holds to
guarantee existence of positive equilibrium E∗. When τ > 0,
the semitrivial periodic solution disappears, but the theo-
retical analysis shows that a unique order-1 periodic solution
emerges for any q ∈ (0, 1) and p ∈ (0, 1).

Furthermore, we find that the order-1 periodic solution
is globally orbitally asymptotically stable when the value of τ
is below τc. Additionally, when the value of τ is beyond yo,
theoretical analysis reveals that a globally orbitally asymp-
totically stable order-1 periodic solution exists or coexis-
tence of a unique order-1 periodic solution and order-2
periodic solution occurs.

Additionally, the existence of order-k is theoretically
analyzed based on equation Fk(y) � 0, which demonstrates
that an order-kf periodic solution exists when Fk(y) � 0,
and kf is a factor of the positive integer k, including 1 and k.

According to this result, we discuss the existence of order-3
periodic solution. Although we cannot get the exact range of
parameter τ with respect to the existence of order-3 periodic
solution, our results imply that the order-3 periodic solution
may exist for τ ∈ (τc, yO), which evenmeans that chaos may
occur.

In order to study dynamics induced by impulsive control
further, a series of numerical simulations are carried out,
which agreed with the theoretical results well. Numerical
simulations show that order-1, order-2, and order-3 periodic
solutions can coexist. Specially, we find the coexistence of
double order-3 periodic solutions. Moreover, numerical
bifurcation analysis shows that an unstable order-1 periodic
solution and a stable order-2 periodic solution can coexist
for τ >yo, but there exists only a stable order-1 periodic
solution when τ is beyond some critical value. In addition,
numerical simulations show that chaos occurs. Obviously,
dynamics induced by impulsive control is much richer.

.e theoretical and numerical results predict that the
population x can be controlled using the state-dependent
impulsive control strategies. Because h< x∗, the method by
impulsive harvesting population x was a unique choice
which can keep the density of population x below the critical
value. Our results shows that the control period is much
lower when the released amount τ is much smaller, which
means that the control frequency is much higher. But from
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the viewpoint of management for some ecological problems
(e.g., pest outbreak, phytoplankton blooms, etc.), it is always
hoped that the control period is much longer. .us, much
more predators are needed to be released. However, our
results also indicate that chaos may occur for some values of
τ, which is unfavourable for prediction of control period.
Hence, the released amount of predator should be chosen
carefully. Obviously, our results are much more interesting,
and we expect that these results are helpful to the man-
agement of ecological problems.
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We investigate a stochastic SIRS model with transfer from infectious to susceptible and nonlinear incidence rate. First, using stochastic
stability theory, we discuss stochastic asymptotic stability of disease-free equilibrium of this model. Moreover, if the transfer rate from
infectious to susceptible is sufficiently large, disease goes extinct. ,en, we obtain almost surely exponential stability of disease-free
equilibrium, which implies that noises can lead to extinction of disease. By the Lyapunov method, we give conditions to ensure that the
solution of this model fluctuates around endemic equilibrium of the corresponding deterministic model in average time. Furthermore,
numerical simulations show that the fluctuation increases with increase in noise intensity. Finally, these theoretical results are verified by
numerical simulations. Hence, noises play a vital role in epidemic transmission. Our results improve and extend previous related results.

1. Introduction

Mathematical models have become a crucial tool in un-
derstanding dynamics of population growth [1–3]. In recent
decades, some realistic mathematical models have been
established to investigate dynamics of epidemic [4–10]. In
order to simulate epidemic transmission process, many
dynamic models have been established, such as SIS, SEIR,
and SIRSmodels [11–13]. In these models, the incidence rate
is crucial. Classical disease transmission models adopt the
standard or bilinear incidence rate. However, in the course
of epidemic propagation, nonlinear incidence may be more
realistic than other incidence rates [14]. In addition, infected
individuals may recover after a period of treatment or be-
come susceptible individuals directly due to transient an-
tibody. In [15], a deterministic SIRS model with transfer
from infectious to susceptible and nonlinear incidence can
be modeled as follows:

_S � Λ + c1I + δR − βSf(I) − μS,

_I � βSf(I) − α + c1 + c2 + μ( 􏼁I,

_R � c2I − (δ + μ)R.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

Here, S, I, and R denote numbers of susceptible, in-
fectious, and recovered individuals, respectively. Λ is the
recruitment rate of susceptible; β denotes the disease
propagation coefficient; μ and α denote, respectively, the
natural death rate and mortality caused by the disease; δ
denotes the immunity loss rate; c1 represents the transfer
rate from infectious to susceptible; c2 denotes the recovery
rate of infectious individuals. In addition,Λ> 0, μ> 0, c1 ≥ 0,
c2 ≥ 0, δ ≥ 0, and α≥ 0.

From [15], (1) has disease-free equilibrium E0(Λ/μ, 0, 0)

which is globally asymptotic stable in (S, I, R) ∈{ R3
+: S +

I + R≤Λ/μ} if R0 � (βΛ)/[μ(c1 + c2 + μ + α)]< 1. If
R0 > 1, there exists a globally asymptotic stable endemic
equilibrium E∗(S∗, I∗, R∗).

However, dynamics of epidemic is often disturbed by
some random factors. Hence, stochastic epidemic models
are more realistic and have attractedmuch attention [16–19].
In [20], the authors discussed threshold behavior for a
stochastic SIS model. In [21], asymptotic properties of a
stochastic SIR model were considered. In [22, 23], the au-
thors investigated persistence and extinction for a stochastic
SIRS model. In [24], the authors studied stability of a sto-
chastic SIRS model. Fatini et al. [25] considered stochastic
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stability and instability for a stochastic SIR model. Recently,
Wang et al. [26] established a stochastic SIRS epidemic
model:

dS � Λ + c1I + δR − βSf(I) − μS􏼂 􏼃dt − σSf(I)dB(t),

dI � βSf(I) − α + c1 + c2 + μ( 􏼁I􏼂 􏼃dt + σSf(I)dB(t),

dR � c2I − (μ + δ)R􏼂 􏼃dt,

⎧⎪⎪⎨

⎪⎪⎩

(2)

with initial values S0 > 0, I0 > 0, andR0 > 0. Here, B(t) rep-
resents Brownian motion on (Ω,F,P) which is a complete
probability space. σ2 denotes the intensity of B(t). Other
parameters are defined as (1). Model (2) covers many
stochastic models as particular cases (see, for example,
[15, 22, 27]). In [26], extinction and persistence are
obtained.

As is well known, stability of the dynamic system means
that solutions are insensitive to small changes of initial value.
Hence, stability is one of the important topics encountered
in applications. However, because of the complexity of
stochastic dynamics, there are not many results on stability
of stochastic differential equations.

Motivated by the above work, we consider (2) and obtain
stochastic stability of disease-free equilibrium and asymp-
totic behavior around endemic equilibrium of corre-
sponding deterministic model (1).

,roughout this paper, we give the following hypotheses:

(H1) f is locally Lipschitz on [0,∞); f(I) > 0 for I> 0;
f(0) � 0
(H2) limI⟶0+ f(I)/I � 1 and f(I)/I is nonincreasing
on (0,∞)

From (H1), (2) has disease-free equilibrium
E0(Λ/μ, 0, 0). By (H2), if I ∈ (0,∞), then

I≥f(I). (3)

2. Preliminaries

We will give some definitions and lemmas. Consider

dx � F(x, t)dt + G(x, t)dW(t), t≥ t0. (4)

Here, F andG are, respectively, Rd− valued and
Rd×n− valued functions defined on Rd × [t0,∞) and
Rd × [t0,∞). W(t){ } denotes n-dimensional Brownian
motion on (Ω,F, Ft􏼈 􏼉t≥ 0,P). Assume that existence-and-
uniqueness theorem is fulfilled. For t≥ t0, G(0, t) � 0 and
F(0, t) � 0. Denote R+ � R+∪ 0{ } and K � μ ∈ C(R+,R+)􏼈

: μ is nondecreasing; μ(0) � 0; μ(r)> 0 if r> 0}. Set
Sh � x ∈ Rd: |x|< h􏽮 􏽯.

Definition 1 ([[28], p.108])

(i) Assume that V is continuous on Sh × [t0,∞) and
V(0, t) ≡ 0. If there is μ ∈ K such that, for
(x, t) ∈ Sh × [t0,∞),

V(x, t)≥ μ(|x|), (5)

then V is positive-definite. In addition, V is negative-
definite if − V is positive-definite.

(ii) Assume that V is nonnegative and continuous on
Sh × [t0,∞). If there is μ ∈ K, satisfying for
(x, t) ∈ Sh × [t0,∞),

V(x, t)≤ μ(|x|), (6)

then V is decrescent.

Definition 2 ([[28], p.110])

(i) If for any r> 0 and ε ∈ (0, 1), there is
δ � δ(ε, r, t0)> 0, satisfying for any x0 ∈ Rd with
|x0|< δ,

P x t; t0, x0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< r for t≥ t0􏽮 􏽯≥ 1 − ε, (7)

then trivial solution to (4) is stochastically stable.
(ii) ,e trivial solution to (4) is stochastically asymp-

totically stable if it is stochastically stable, and for any
ε ∈ (0, 1), there is δ0 � δ0(ε, t0)> 0 satisfying

P lim
t⟶∞

x t; t0, x0( 􏼁 � 0􏼚 􏼛≥ 1 − ε, (8)

whenever |x0|< δ0.
(iii) If for any x0 ∈ G ⊂ Rd,

lim supt⟶∞(ln|x(t; t0, x0)|)/t< 0 a.s., then trivial
solution to (4) is almost surely exponentially stable
in G.

Lemma 1 ([[28], p.112]). If V ∈ C2,1(Sh × [t0,∞);R+) is
positive-definite and decrescent, and LV(x, t) is negative-
definite, then trivial solution to (4) is stochastically asymp-
totically stable.

By 6eorem 1 and Remark 1 in [26], the following result
holds.

Lemma 2 (see [26]). For (S0, I0, R0) ∈ R3
+, there is a unique

global positive solution to (2). Moreover,

D � (S, I, R) ∈ R3
+: S + I + R≤

Λ
μ

􏼨 􏼩 (9)

is positively invariant.

3. Stability of Disease-Free Equilibrium

In epidemiology, stability has important practical
significance.

Theorem 1. If R0 < 1, (σ2Λ2)/(2μ2)< (μ + c1 + c2 + α)

(1 − R0), then disease-free equilibrium E0 to (2) is sto-
chastically asymptotically stable in D.

Proof. Denote x � (x1, x2, x3) � (− S + Λ/μ, I, R). Define
Lyapunov function

2 Complexity



V2(x) � x
2
1 + bx

2
2 + x

2
3 (10)

for (S, I, R) ∈ D, where b> 0 is to be chosen later. Clearly, V2
is positive-definite. Note that V2(x)≤ (1∨ b)|x|2 � : μ(|x|).
From Definition 1 (ii), it follows that V2 is decrescent. Now,
we show that LV2 is negative-definite.

From It􏽢o formula, for any (S, I, R) ∈ D,

LV2(x) � − 2
Λ
μ

− S􏼠 􏼡 Λ − μS − βSf(I) + δR + c1I( 􏼁

+ 2bI βSf(I) − μ + α + c1 + c2( 􏼁I􏼂 􏼃

+ 2R c2I − (δ + μ)R􏼂 􏼃 +(1 + b)(σSf(I))
2

≤ − 2μ
Λ
μ

− S􏼠 􏼡

2

+ 2
Λ
μ

− S􏼠 􏼡 βS − c1( 􏼁I

+ 2bβS − 2b μ + c1 + c2 + α( 􏼁 +(1 + b)σ2S2􏽨 􏽩I
2

+ 2c2IR − 2δ
Λ
μ

− S􏼠 􏼡R − 2(δ + μ)R
2

≤ − 2μ
Λ
μ

− S􏼠 􏼡

2

+ 2
Λ
μ

− S􏼠 􏼡
βΛ
μ

− c1􏼠 􏼡I

+
2bβΛ
μ

− 2b μ + c1 + c2 + α( 􏼁 +
(1 + b)σ2Λ2

μ2
􏼢 􏼣I

2

+ 2c2IR − 2δ(I + R)R − 2(δ + μ)R
2
.

(11)

Obviously, we have

− μ
Λ
μ

− S􏼠 􏼡

2

+
Λ
μ

− S􏼠 􏼡
βΛ
μ

− c1􏼠 􏼡I

� − μ
Λ
μ

− S􏼠 􏼡 −
1
2μ2

βΛ − c1μ( 􏼁I􏼢 􏼣

2

+
1
4μ3

βΛ − c1μ( 􏼁
2
I
2
,

(12)

− (μ + 2δ)R
2

+ c2 − δ( 􏼁IR � − (μ + 2δ) R −
c2 − δ

2(μ + 2δ)
I􏼢 􏼣

2

+
c2 − δ( 􏼁

2

4(μ + 2δ)
I
2
.

(13)

Substituting (12) and (13) into (11) yields

LV2(x)≤ − 2μ
Λ
μ

− S􏼠 􏼡 −
1
2μ2

βΛ − c1μ( 􏼁I􏼢 􏼣

2

+
1
2μ3

βΛ − c1μ( 􏼁
2
I
2

+
c2 − δ( 􏼁

2

2(μ + 2δ)
I
2

+
σ2Λ2

μ2
I
2

− 2b μ + c1 + c2 + α −
βΛ
μ

−
σ2Λ2

2μ2
􏼢 􏼣I

2

− 2(μ + 2δ) R −
c2 − δ

2(μ + 2δ)
I􏼢 􏼣

2

≤

− 2μ
Λ
μ

− S􏼠 􏼡 −
1
2μ2

βΛ − c1μ( 􏼁I􏼢 􏼣

2

− 2(μ + 2δ) R −
c2 − δ

2(μ + 2δ)
I􏼢 􏼣

2

− 2b μ + c1 + c2 + α −
βΛ
μ

−
σ2Λ2

2μ2
􏼠 􏼡􏼢

−
1
2μ3

βΛ − c1μ( 􏼁
2

−
σ2Λ2

μ2
−

c2 − δ( 􏼁
2

2(μ + 2δ)
􏼣I

2
.

(14)

Note (σ2Λ2)/(2μ2)< (α + c1 + c2 + μ)(1 − R0). ,en,
α + c1 + c2 + μ − (βΛ)/μ − (σ2Λ2)/(2μ2)> 0. Take

b>
1/2μ3( 􏼁 βΛ − c1μ( 􏼁

2
+ σ2Λ2/μ2 + c2 − δ( 􏼁

2/2(μ + 2δ)

2 μ + c1 + c2 + α − (βΛ/μ( 􏼁 − σ2Λ2/2μ2)( 􏼁
. (15)

,is yields that LV2 is negative-definite. From Lemma 1,
E0 is stochastically asymptotically stable in D. □

Lemma 3. For any (S0, I0, R0) ∈ D, solution (S, I, R) of (2)
satisfies the following:
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(i) If σ2 > (βμ)/Λ, then

lim sup
t⟶∞

1
t
ln I + R +

Λ
μ

− S􏼠 􏼡􏼢 􏼣≤
β2 − 2μσ2

2σ2
. (16)

(ii) If σ2 ≤ (βμ)/Λ, then

lim sup
t⟶∞

1
t
ln I + R +

Λ
μ

− S􏼠 􏼡􏼢 􏼣≤
βΛ
μ

− μ −
Λ2σ2

2μ2
. (17)

Proof. Obviously, (S, I, R) ∈ D for t≥ 0. Define

V3(S, I, R) � ln I + R +
Λ
μ

− S􏼠 􏼡􏼢 􏼣. (18)

,en,

LV3 �
− Λ + 2βSf(I) + μS − c1I − δR − μ + α + c1 + c2( 􏼁I − (δ + μ)R + c2I

I + R +((Λ/μ) − S)
− 2

σSf(I)

I + R +((Λ/μ) − S)
􏼢 􏼣

2

�
2βSf(I)

I + R +((Λ/μ) − S)
+

− c1I − δR − c1 + α( 􏼁I − δR

I + R +((Λ/μ) − S)
− μ − 2σ2

Sf(I)

R + I +((Λ/μ) − S)
􏼢 􏼣

2

≤ − μ − 2σ2
Sf(I)

R + I +((Λ/μ) − S)
􏼢 􏼣

2

+
2βSf(I)

I + R +((Λ/μ) − S)
.

(19)

Let Z � (Sf(I))/(I + R + (Λ/(μ − S))) and Ψ(Z) �

− 2σ2Z2 + 2βZ − μ. From S + I + R≤Λ/μ and (3),

Z≤
SI

I + R +((Λ/μ) − S)
≤

SI

2(I + R)
≤

S

2
≤
Λ
2μ

. (20)

Let r0 � supZ∈(0,Λ/(2μ))Ψ(Z). ,en,

dV3 � LV3dt +
2σSf(I)

I + R +((Λ/μ) − S)
dB(t)≤Ψ(Z)dt

+ 2σZdB(t)≤ r0dt + 2σZdB(t),

(21)

which yields

ln I(t) + R(t) +
Λ
μ

− S(t)􏼠 􏼡􏼢 􏼣≤ ln I0 + R0 +
Λ
μ

− S0􏼠 􏼡􏼢 􏼣

+ r0t + 􏽚
t

0
2σZ(s)dB(s).

(22)

From the strong law of large numbers,

lim
t⟶∞

1
t

􏽚
t

0
2σZ(s)dB(s) � 0 a.s. (23)

,en,

lim sup
t⟶∞

1
t
ln R(t) + I(t) +

Λ
μ

− S(t)􏼠 􏼡􏼢 􏼣≤ r0. (24)

Obviously, if σ2 > (βμ)/Λ, then r0 � Ψ(β/(2σ2)) �

(β2 − 2μσ2)/(2σ2); if σ2 ≤ (βμ)/Λ, then r0 � Ψ(Λ/(2μ)) �

(βΛ)/μ − μ − (Λ2σ2)/(2μ2). Lemma 3 holds.
By Lemma 3, the following result holds. □

Theorem 2. Assume that

(i) σ2 >max (βμ)/Λ, β2/(2μ)􏽮 􏽯

or
(ii) 2β(μ/Λ)(1 − μ2/(βΛ))< σ2 ≤ (βμ)/Λ.

,en, disease-free equilibrium E0 of (2) is almost surely
exponentially stable in D.

Remark 1

(i) If R0 < 1 and σ2 � 0, then (σ2Λ2)/(2μ2)< (μ + c1 +

c2 + α)(1 − R0) holds. From ,eorem 1, if R0 < 1,
then disease-free equilibrium E0 of (1) is asymp-
totically stable in D. Hence, ,eorem 1 extends
,eorem 2.1 in [15].

(ii) From ,eorem 2, if R0 < 1, βΛ< μ2, then disease-
free equilibrium E0 of (1) is exponentially stable in
D. Hence, ,eorem 2 partially improves ,eorem
2.1 in [15].

(iii) From ,eorem 1, if c1 > (σ2Λ2)/(2μ2) + β(Λ/μ)−

μ − c2 − α, then disease-free equilibrium E0 of (2) is
stochastically asymptotically stable in D.

Remark 2

(i) Assume that ((2βμ)/Λ) [1 − μ(μ + c1 + c2 + α)/
(Λβ)]> β2/(2μ) and R0 > 2. From condition (i) in
,eorem 2, if σ2 >max (βμ)/Λ, β2/(2μ)􏽮 􏽯 � β2/(2μ),
then disease-free equilibrium E0 of (2) is almost
surely exponentially stable in D. However,,eorem 2
in [26] implies that disease of (2) will become extinct if
(C3) of ,eorem 2 in [26] holds, i.e., σ2>max ((βμ)/􏼈

Λ) · (R0/2),((2βμ)/Λ)(1 − μ(μ+ c1 + c2 +α)/(Λ β))}.
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(ii) Assume that β2/(2μ)< (βμ)/Λ< ((2βμ)/Λ)(1 − μ
(c1 + c2 + α + μ)/(Λβ)) and R0 < 2. From ,eorem
2 (i), E0 is almost surely exponentially stable in D if
σ2 >max (βμ)/Λ, β2/(2μ)􏽮 􏽯 � (βμ)/Λ, whereas dis-
ease will become extinct with probability one if
σ2 >max (βμ)/Λ, ((2βμ)/Λ)(1 − μ(μ + c1 + c2 + α)/􏼈

(Λβ))} in [26].

Obviously, condition (i) of ,eorem 2 is weaker than
condition (C3) of ,eorem 2 in [26].

Remark 3. Let β2/(2(c1 + c2 + μ + α))> ((2βμ)/Λ)(1 − μ2
/(βΛ)). By ,eorem 2, E0 is almost surely exponentially
stable in D if condition (ii) holds. However, disease will
become extinct if max β2/(2(c1 + c2 + μ + α)), ((2βμ)/Λ)􏽮

(1 − μ(c1 + c2 + μ + α)/(Λβ))}< σ2 < (βμ)/Λ in [26]. ,us,
condition (ii) of,eorem 2 is weaker than condition (C2) of
,eorem 2 in [26].

Remark 4. From Remarks 2 and 3, ,eorem 2 partially
improves ,eorem 2 in [26].

4. Asymptotic Properties around
Endemic Equilibrium

In studying epidemic dynamics, we have interest in per-
sistence of epidemic. We consider the behavior of solutions
to (2) around endemic equilibrium E∗(S∗, I∗, R∗) of cor-
responding deterministic model (1). Denote

a1 �
α
c2

,

a2 �
2μ 2μ + c2 + α( 􏼁 + 2μδ + αδ􏼂 􏼃I∗

βδf I∗( )
,

a3 �
2μ
δ

.

(25)

Theorem 3. If R0 > 1 and σ2 < μ(a3 + 1)/(a2I
∗), then

lim sup
t⟶∞

1
t
E􏽚

t

0
η1 S − S

∗
( 􏼁

2
+ η2 I − I

∗
( 􏼁

2
+ η3 R − R

∗
( 􏼁

2
􏽨 􏽩ds

≤ a2I
∗

S
∗

( 􏼁
2σ2,

(26)

where (S, I, R) be the solution of (2) with (S0, I0, R0) ∈ R3
+

and

η1 � a3 + 1( 􏼁μ − a2I
∗σ2,

η2 � a3 μ + c2 + α( 􏼁 + μ + α,

η3 � a1(μ + δ) + μ.

(27)

Proof. Define V4 : R3
+⟶ R+ by

V4(S, I, R) � a1W1(R) + a2W2(I) + a3W3(S, I) + W4(S, I, R),

(28)

where

W1(R) �
1
2

R − R
∗

( 􏼁
2
,

W2(I) � I − I
∗

− I
∗ln

I

I∗
􏼒 􏼓,

W3(S, I) �
1
2

S − S
∗

+ I − I
∗

( 􏼁
2
,

W4(S, I, R) �
1
2

S − S
∗

+ R − R
∗

+ I − I
∗

( 􏼁
2
.

(29)

From It 􏽢o formula, (3), and (H2),

LW1 � R − R
∗

( 􏼁 c2I − (μ+δ)R􏼂 􏼃

� − (δ+μ) R − R
∗

( 􏼁
2

+ c2 I − I
∗

( 􏼁 R − R
∗

( 􏼁,

(30)

LW2 � I − I
∗

( 􏼁 − c1 + c2μ+α( 􏼁 +βSf(I)
1
I

􏼔 􏼕 +
1
2
I
∗ σSf(I)

1
I

􏼒 􏼓
2

� I − I
∗

( 􏼁 β S − S
∗

( 􏼁f I
∗

( 􏼁
1
I∗

􏼔

+βS f(I)
1
I

− f I
∗

( 􏼁
1
I∗

􏼒 􏼓􏼕 +
1
2
I
∗σ2S2 f(I)

1
I

􏼒 􏼓
2

≤β I − I
∗

( 􏼁 S − S
∗

( 􏼁f I
∗

( 􏼁
1
I∗

+βS I − I
∗

( 􏼁 f(I)
1
I

− f I
∗

( 􏼁
1
I∗

􏼒 􏼓 +σ2I∗ S − S
∗

( 􏼁
2

+σ2I∗ S
∗

( 􏼁
2≤β I − I

∗
( 􏼁 S − S

∗
( 􏼁f I

∗
( 􏼁

1
I∗

+σ2I∗ S − S
∗

( 􏼁
2

+σ2I∗ S
∗

( 􏼁
2
,

(31)

LW3 � S − S
∗

+ I − I
∗

( 􏼁 Λ+δR − μS − c2 +μ+α( 􏼁I􏼂 􏼃

� S − S
∗

+ I − I
∗

( 􏼁 − μ S − S
∗

( 􏼁􏼂

+δ R − R
∗

( 􏼁 − c2 +μ+α( 􏼁 I − I
∗

( 􏼁􏼃

� − μ S − S
∗

( 􏼁
2

− c2 +α+2μ( 􏼁 S − S
∗

( 􏼁 I − I
∗

( 􏼁

− c2 +α+μ( 􏼁 I − I
∗

( 􏼁
2

+δ R − R
∗

( 􏼁 S − S
∗

( 􏼁 + I − I
∗

( 􏼁􏼂 􏼃,

(32)

LW4 � R + I + S − R
∗

+ I
∗

+ S
∗

( 􏼁􏼂 􏼃[Λ − μS − (μ+α)I − μR]

� R − R
∗

+ S − S
∗

+ I − I
∗

( 􏼁 − μ S − S
∗

( 􏼁 − μ R − R
∗

( 􏼁􏼂

− (α+μ) I − I
∗

( 􏼁􏼃

� − μ R − R
∗

( 􏼁
2

− μ S − S
∗

( 􏼁
2

− (α+μ) I − I
∗

( 􏼁
2

− (α+2μ) I − I
∗

( 􏼁 S − S
∗

( 􏼁 − 2μ R − R
∗

( 􏼁 S − S
∗

( 􏼁

− (α+2μ) R − R
∗

( 􏼁 I − I
∗

( 􏼁.

(33)

From (25)–(33),
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LV4 ≤ a1c2 R − R
∗

( 􏼁 I − I
∗

( 􏼁 − a1(δ + μ) R − R
∗

( 􏼁
2

+
a2βf I∗( )

I∗
S − S
∗

( 􏼁 I − I
∗

( 􏼁 + a2I
∗σ2 S − S

∗
( 􏼁

2

+ a2I
∗σ2 S

∗
( 􏼁

2
− a3μ S − S

∗
( 􏼁

2
− a3 2μ + α + c2( 􏼁 I − I

∗
( 􏼁 S − S

∗
( 􏼁 − a3 μ + α + c2( 􏼁 I − I

∗
( 􏼁

2

+ a3δ S − S
∗

( 􏼁 R − R
∗

( 􏼁 + a3δ R − R
∗

( 􏼁 I − I
∗

( 􏼁 − μ S − S
∗

( 􏼁
2

− μ R − R
∗

( 􏼁
2

− (α + μ) I − I
∗

( 􏼁
2

− (α + 2μ) I − I
∗

( 􏼁 S − S
∗

( 􏼁

− 2μ R − R
∗

( 􏼁 S − S
∗

( 􏼁 − (α + 2μ) R − R
∗

( 􏼁 I − I
∗

( 􏼁

� − a3μ + μ − a2I
∗σ2􏼐 􏼑 S − S

∗
( 􏼁

2
− μ + α + a3 c2 + α + μ( 􏼁􏼂 􏼃 I − I

∗
( 􏼁

2

− μ + a1(δ + μ)􏼂 􏼃 R − R
∗

( 􏼁
2

+ a2I
∗

S
∗

( 􏼁
2σ2

� − η1 S − S
∗

( 􏼁
2

− η2 I − I
∗

( 􏼁
2

− η3 R − R
∗

( 􏼁
2

+ a2I
∗

S
∗

( 􏼁
2σ2.

(34)
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Figure 1: Trajectories of deterministic model (1) and stochastic model (2) with (a) β � 0.3, (b) c1 � 0.57, and (c) σ2 � 0.2.
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Hence, we have

dV(S, I, R)≤ a2I
∗

S
∗

( 􏼁
2σ2 − η1 S − S

∗
( 􏼁

2
− η2 I − I

∗
( 􏼁

2
􏽨

− η3 R − R
∗

( 􏼁
2
􏽩dt + σS I − I

∗
( 􏼁f(I)

1
I
dB(t).

(35)

It follows from (35) that

V(S(t), I(t), R(t)) − V S0, I0, R0( 􏼁

≤ 􏽚
t

0
− η2 I(s) − I

∗
( 􏼁

2
− η1 S(s) − S

∗
( 􏼁

2
􏽨

− η3 R(s) − R
∗

( 􏼁
2
􏽩ds

+ a2I
∗

S
∗

( 􏼁
2σ2t + 􏽚

t

0
σ

f(I(s))

I(s)
S(s) I(s) − I

∗
( 􏼁dB(s).

(36)

From (36),

EV(S(t), I(t), R(t)) − EV S0, I0, R0( 􏼁

≤E􏽚
t

0
− η2 I(s) − I

∗
( 􏼁

2
− η1 S(s) − S

∗
( 􏼁

2
􏽨

− η3 R(s) − R
∗

( 􏼁
2
􏽩ds + a2I

∗
S
∗

( 􏼁
2σ2t.

(37)

Consequently,

lim sup
t⟶∞

1
t
E􏽚

t

0
η1 S(s) − S

∗
( 􏼁

2
+ η2 I(s) − I

∗
( 􏼁

2
􏽨

+ η3 R(s) − R
∗

( 􏼁
2
􏽩ds≤ a2I

∗
S
∗

( 􏼁
2σ2.

(38)

□

Remark 5. ,eorem 3 shows that if R0 > 1, σ is small
enough and then solution to (2) fluctuates around E∗; that is,
disease will persist. Furthermore, if σ � 0, then (34) becomes
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Figure 2: Trajectories of deterministic SIRS model (1) and stochastic SIRS model (2) with (a) β � 0.3, (b) c1 � 0.01, and (c) σ2 � 0.3.
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LV4 ≤ − η1 S − S
∗

( 􏼁
2

− η2 I − I
∗

( 􏼁
2

− η3 R − R
∗

( 􏼁
2
, (39)

which yields that for (1), E∗ is globally asymptotically stable
in R3

+. ,is is consistent with Corollary 2.3 in [15]. Hence,
,eorem 3 generalizes Corollary 2.3 in [15].

5. Numerical Simulations

By numerical simulation, we analyze the asymptotic be-
havior of model (2) so that readers can better understand our
results. Let f(I) � I/(1 + I). ,en, I≥f(I) for I≥ 0. Let

Λ � 0.6, μ � 0.32, c2 � 0.1, α � 0.1, δ � 0.4,

S0, I0, R0( 􏼁 � (1, 0.8, 0).

(40)

Example 1. Take β � 0.3, c1 � 0.57, and σ2 � 0.2. By a
simple computation, we obtain R0 ≈ 0.516< 1,
0.352 ≈ (σ2Λ2)/(2μ2)< (μ + c1 + c2 + α)(1 − R0) ≈ 0.5276,
βΛ − c1μ � − 0.0024< 0, and c2 − δ � − 0.3< 0. Hence,
the conditions of ,eorem 1 hold. Furthermore, for
(2), E0(1.875, 0, 0) is stochastically asymptotically stable.
Figure 1 supports the result.

Example 2. Take β � 0.3, c1 � 0.01, and σ2 � 0.3. Hence,
R0 ≈ 1.0613> 1 and max (βμ)/Λ, β2/(2μ)􏽮 􏽯 � 0.16< σ2.
,en, according to conclusion (i) in ,eorem 2, solutions of
(2) will tend almost surely exponentially to E0(1.875, 0, 0).
However, from Corollary 2.3 in [15], the solution of de-
terministic model (1) will converge to
E∗(1.8261, 0.0337, 0.0047). ,is demonstrates that noises
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Figure 3: Trajectories of deterministic SIRS model (1) and stochastic SIRS model (2) with (a) β � 0.3, (b) c1 � 0.01, and (c) σ2 � 0.15.

8 Complexity



can result in extinction of disease. Figure 2 clearly supports
these results.

Example 3. Let β � 0.3, c1 � 0.01, and σ2 � 0.15 such that
R0 ≈ 1.0613> 1 and (2βμ/Λ)(1 − μ2/(βΛ)) ≈ 0.1380< σ2 <
(βμ)/Λ � 0.16. ,en, according to conclusion (ii) in ,e-
orem 2, solutions of (2) will tend almost surely exponentially
to E0(1.875, 0, 0). However, from Corollary 2.3 in [15],
endemic equilibrium E∗(1.8261, 0.0337, 0.0047) of (1) is
globally asymptotically stable in R3

+. ,is represents the
extinction of disease due to noise. Figure 3 clearly supports
these results.

Example 4. Take β � 0.5, c1 � 0.01. ,en, R0 ≈ 1.7689> 1
and σ2 < μ(a3 + 1)/(a2I

∗) ≈ 0.4644. By ,eorem 3, solutions

of (2) fluctuate around endemic equilibrium E∗(1.404,

0.3245, 0.0451) of deterministic model (1) in time average,
which can be verified by using Figure 4. In addition, Figure 4
shows that the fluctuation increases with increase in σ2.

Example 5. Take c1 � 0.01. Figure 5 plots the average in time
of infected (1/t) 􏽒

t

0 I(s)ds for different β in (a) and (b),
respectively. From Figure 5, the smaller the β is, the smaller
the number of infected cases is. In addition, when β tends to
0, the number of infected cases will tend to 0. ,is result can
also be derived from ,eorem 2.

Example 6. Take β � 0.5. Figure 6 plots the average in time
of infected (1/t) 􏽒

t

0 I(s)ds for different c1 in (a) and (b),
respectively. Figure 6 shows that the larger the c1 is, the
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Figure 4: Trajectories of deterministic SIRS model (1) and stochastic SIRS model (2) for different σ2 with β � 0.5 and c1 � 0.01.
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smaller the number of infected cases is. Furthermore, when
c1 is sufficiently large, the number of infected cases tends to
0. ,is result can be derived from Remark 1 (iii).

Example 7. Take β � 0.3. Figure 7 plots the number of
infected cases for different σ2 in (a) and (b), where c1 �

0.01 andR0 ≈ 1.0613> 1 in (a) and c1 � 0.02 and
R0 ≈ 1.0417> 1 in (b). From Corollary 2.3 in [15], en-
demic equilibrium of deterministic model (1) is globally
asymptotically stable in R3

+. Figure 7 shows that σ2 has a
significant effect on both extinction and persistence of
disease.
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Figure 5: Trajectories of the average in time of infected (1/t) 􏽚
t

0
I(s)ds for stochastic SIRS model (2) for different β with c1 � 0.01. (a)

σ2 � 0.02. (b) σ2 � 0.04.
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Figure 6: Trajectories of the average in time of infected (1/t) 􏽚
t

0
I(s)ds for stochastic SIRS model (2) for different c1 with β � 0.5. (a)

σ2 � 0.02. (b) σ2 � 0.1.
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6. Conclusions

Stability is one of the important topics encountered in
applications. However, because of the complexity of sto-
chastic dynamics, there are not many results on stability
analysis of stochastic differential equations.

Based on this, we investigate stochastic stability of a
stochastic SIRS model. To begin with, using stochastic
stability theory, we study stochastic asymptotic stability of
disease-free equilibrium of (2), which generalizes ,eo-
rem 2.1 in [15]. Moreover, if the transfer rate from in-
fectious to susceptible is sufficiently large, disease goes
extinct. ,en, exponential stability of disease-free equi-
librium is obtained. ,is result partially improves ,eo-
rem 2.1 in [15] and ,eorem 2 in [26] and demonstrates
that noises can result in extinction of the disease. Fur-
thermore, by the Lyapunov method, we give conditions to
ensure that solution of (2) fluctuates around endemic
equilibrium of (1) in time average. ,is generalizes
Corollary 2.3 in [15]. At last, numerical simulations are
presented to confirm theoretical results and find new
properties.

Figure 4 shows that ifR0 > 1 and σ2 < μ(a3 + 1)/(a2I
∗),

then the solution of (2) fluctuates around endemic
equilibrium of (1). Moreover, Figure 4 also shows that the
fluctuation increases with increase in noise intensity.
From Figure 5, the smaller the β is, the smaller the number
of infected individuals will be. In addition, when β tends
to 0, the number of infected individuals will tend to 0. ,is
result can also be derived from,eorem 2. Figure 6 shows
that the larger the c1 is, the smaller the number of infected
will be. Furthermore, when c1 is sufficiently large, the
number of infected tends to 0. ,is result can be derived
from Remark 1 (iii). Figure 7 shows that noise intensity
has a significant effect on both extinction and persistence

of the disease. Hence, noises play a vital role in epidemic
transmission.

For deterministic SIRS model (1), R0 is the basic
reproduction number. However, for stochastic SIRS
model (2), R0 is not a threshold parameter. From ,e-
orem 2, no matter what the value of R0 is, the disease
could go extinct. ,is can also be verified by the examples
in this paper.

Although there are important findings revealed by the
above investigation, the results still have some limita-
tions. One may consider stochastic asymptotic stability
inR3

+. In addition, our numerical simulation results show
that the disease goes extinct as long as R0 < 1. Regret-
tably, our theoretical results do not lead to this
conclusion.

Data Availability

No data were used to support this study.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Authors’ Contributions

All the authors contributed equally and significantly in
writing this paper. All authors read and approved the final
manuscript.

Acknowledgments

,is work was supported by the National Natural Science
Foundation of China (No. 11971279).

10 20 30 40 500
Time

σ2 = 0.02
σ2 = 0.03

σ2 = 0.20
σ2 = 0.30

0

0.2

0.4

0.6

0.8

1
In

fe
ct

ed

(a)

10 20 30 40 500
Time

σ2 = 0.02
σ2 = 0.03

σ2 = 0.20
σ2 = 0.30

0

0.2

0.4

0.6

0.8

1

In
fe

ct
ed

(b)

Figure 7: Trajectories of infected of stochastic SIRS model (2) for different σ2 with β � 0.3. (a) c1 � 0.01. (b) c1 � 0.02.
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Copyright © 2020 Victor Manuel Hernández-Guzmán et al. ,is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

In this paper, we solve the problem of position regulation in a magnetic levitation system that is fed by a DC/DC Buck power
electronic converter as a power amplifier. We present a formal asymptotic stability proof. Although this result is local, the merit of
our proposal relies on the fact that this is the first time that such a control problem is solved for a magnetic levitation system, a
nonlinear electromechanical plant. In this respect, we stress that most works in the literature on control of electromechanical
systems actuated by power electronic converters are devoted to control brushed DCmotors which are well known to have a linear
model. Furthermore, despite the plant that we control in the present paper is complex, our control law is simple. It is composed by
four nested loops driven by one sliding mode controller, two proportional-integral controllers, and a nonlinear proportional-
integral-derivative position controller. Each one of these loops is devoted to control each one of the subsystems that compose the
plant: electric current through the converter inductor, voltage at the converter capacitor, electric current through the elec-
tromagnet, and position of the ball. ,us, our proposal is consistent with the simple and intuitive idea of controlling each
subsystem of the plant in order to render robust the control scheme. We stress that such a solution is complicated to derive using
other control approaches such as differential flatness or backstepping. In this respect, our proposal relies on a novel passivity-
based approach which, by exploiting the natural energy exchange between the mechanical and electrical dynamics, renders
possible the design of a control scheme with the above cited features.

1. Introduction

One common technique that is used to supply power to
electromechanical systems is pulse width modulation
(PWM). However, the hard commutation that is intrinsic to
PWM stresses the electromechanical system inducing abrupt
changes in its dynamics which are observed as sudden
variations in voltages and electric currents [1]. One manner
to avoid this situation is the employment of DC/DC power
electronic converters. Since these devices have embedded
capacitors and inductors, they provide smooth voltages and
electric currents, diminishing the effects of hard commu-
tation in PWM-based power amplifiers.

,e mathematical models of some DC/DC power
electronic converter-DC motor systems were proposed for
the first time in [2]. Since then, many works have been
reported on control of several DC/DC power electronic
converter topologies and DC motors [3–12]. Among the
proposed control techniques are differential flatness, pro-
portional-integral (PI) control, generalized PI control,
passivity, adaptive control, PI fuzzy control, LQR (linear-
quadratic regulator) control, backstepping, and hierarchical
control. ,e control problems that have been solved are
unidirectional velocity regulation and tracking, velocity and
torque control focusing on electrical transients, smooth
velocity starters, and active disturbance rejection. In recent
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works [13–15], the introduction of an inverter between the
DC/DC power electronic converter and the DC motor has
rendered possible the bidirectional control of velocity.

,e approach in [16], to control the DC/DC Buck power
electronic converter-DC motor system, was inspired in part
by [17–19]. Control scheme in [16] has the advantage of
including a PI loop to control voltage at converter capacitor,
a PI loop to control motor armature’s current, and an ex-
ternal PI loop to regulate motor velocity. Hence, the main
components of the successful strategies employed in in-
dustry to control electromechanical systems are included in
the proposal of [16]. Moreover, another internal loop is
devoted to control electric current through converter in-
ductance. ,is loop is driven by a sliding mode control, a
common strategy for control of power electronic converters
in practice. ,e approach is proven in experiments to be
robust with respect to parametric uncertainties and external
disturbances.

On the contrary, magnetic levitation systems are com-
monly used as benchmark problems to test novel control
approaches. Among the proposed control techniques, the
passivity-based approaches presented in [20–22] have been
welcomed in the control community. In particular, the
solution presented in [20] is interesting because it possesses
a classical proportional-integral-derivative (PID) controller
to cope with the mechanical part of the system. However,
since the design is performed in terms of magnetic flux,
instead of electric current, efforts are oriented to avoid the
implementation of any internal loop to cope with the
electrical dynamics. ,is is because of the complications
arising frommagnetic fluxmeasurements. In this respect, we
stress that experimental results have been reported in the
literature showing that such internal loop is necessary to
improve performance in practice, see [23], for instance.

,e novel control technique known as immersion and
invariance (I&I) has been employed in [24, 25] to control
magnetic levitation systems. Novelty in those applications is
that a (small) parasitic capacitance is considered to be
present at terminals of the electromagnet. ,emain target to
use I&I in such a control problem is to extend the application
of any control law, say w, that has been designed when such a
parasitic capacitor is not present. However, since this re-
quires to feedback the time derivative of w, the online
computation of an important number of additional complex
terms are required.

In the present paper, we extend the work in [16] to
control the ball position in a magnetic levitation system
which is fed by a DC/DC Buck power electronic converter.
,is implies that additional inductance and capacitance
with considerable values are included in the electrical
circuitry of the magnetic levitation system. Since a
magnetic levitation system only requires unipolar voltage,
such a power converter topology is adequate and any
inverter is not required. We stress that a magnetic levi-
tation system is a complex and nonlinear system. Hence,
controlling for the first time and from a theoretical point
of view, a plant with these features when it is fed by a DC/
DC Buck power electronic converter represents one im-
portant contribution of the present paper.

Despite the complex and nonlinear nature of the mag-
netic levitation system, our proposal is simple. It is com-
posed by a PI loop to control voltage at the converter
capacitor, a PI loop to control the electromagnet electric
current, and an external PID loop to regulate the ball po-
sition. As in [16], an additional sliding modes’ internal loop
is employed to control electric current through the converter
inductance. Formalizing this intuitively simple idea to
control a complex plant is another important contribution of
the present paper. ,e key for this is a novel passivity-based
approach exploiting energy ideas, i.e., we take advantage
from the natural energy exchange among the several sub-
systems to design the control law. ,is represents another
contribution of the present paper.

,is paper is organized as follows. In Section 2, we
introduce the plant to be controlled and present its dy-
namical model. ,e passivity properties of the plant are
described in Section 3 where we also give some insight on
the rationale behind our approach. Our main result is
presented in Section 4. In Section 5, we present a simu-
lation study and, finally, some concluding remarks are
given in Section 6.

2. Mathematical Model

,e DC/DC Buck power electronic converter-Magnetic
levitation system is depicted in Figure 1(a). ,e DC/DC
Buck power converter is composed by a transistor Q, a diode
D, an inductor Lc, a capacitor C, and a resistance Rc.
Symbols ic and υ represent electric current through in-
ductance Lc and voltage at capacitor terminals C, respec-
tively, whereas E stands for voltage of the DC power supply.
,e system input is u which only takes the discrete values
0, +1{ } representing the off and on states of transistor Q, see
Figure 1(b).

,e magnetic levitation system consists of an electro-
magnet, with inductance L(y) and internal resistance R, and
a ball with mass m, made in a ferromagnetic material, which
receives an upwards magnetic force F from the electro-
magnet. ,is force must cancel the downwards ball weight
mg in order to levitate the ball in space. Electromagnet is
basically a ferromagnetic core with a conductor wire wound
around it. ,e electric voltage υ is applied at the electro-
magnet terminals which force an electric current i to flow
through the electromagnet winding and this current pro-
duces the attractive magnetic force F � (1/2)(dL(y)/dy)i2

on the ball. Symbol λ represents the magnetic flux produced
by electric current i within the electromagnet core. Ball
position, measured from the bottom of the electromagnet to
the top of ball is represented by y≥ 0. We remark that
inductance of electromagnet, L(y)> 0 for all y≥ 0, depends
on the ball position y in the form shown in Figure 2. In order
to understand this, recall that the magnetic flux is given as
λ � L(y)i. Suppose that i remains constant and the ball
approaches to electromagnet, i.e., y decreases. ,is reduces
both the air gap and the reluctance. Hence, λ increases. Since
λ � L(y)i and i remains constant, this means that L(y) must
increase. ,us, L(y) increases as y decreases. When
y⟶∞, it is obtained as the case when the ball is not
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present, and in such a case, L(y) reaches a minimum
positive value. ,is also means that dL(y)/dy < 0.

We refer the reader to [23] for a detailed description of a
magnetic levitation system as well as for precise instructions
to construct one of them for experimental purposes. Fur-
thermore, the complete procedure to obtain its dynamical
model is presented and some experiments are provided to
identify its parameters. Also, some controllers are designed
and tested experimentally.

Using Kirchhoff’s Laws (see Figure 1(b)), Faraday’s Law,
and Newton’s Second Law, we find that the mathematical
model of the DC/DC Buck power electronic converter-
magnetic levitation system is given as follows [16, 23, 26, 27]:

Lc

dic

dt
� − υ + Eu, (1)

C
dυ
dt

� ic − i −
υ
Rc

, (2)

L(y)
di

dt
� −

dL(y)

dy
i
dy

dt
− Ri + υ, (3)

m €y �
1
2
dL(y)

dy
i
2

+ mg, (4)

dL(y)

dy
< 0, ∀y≥ 0. (5)

Important for our purposes is the following class of
saturation functions.

Definition 1. Given positive constants L∗ and M, with
L∗ <M, a function σ: R⟶R: ς↦σ(ς) is said to be a
strictly increasing linear saturation for (L∗, M) if it is locally
Lipschitz, strictly increasing, and satisfies [28]

σ(ς) � ς, when |ς|≤L
∗
,

|σ(ς)|<M, ∀ς ∈R.
(6)

3. The Rationale behind Our Proposal

Consider the following slightly modified version of the
mathematical model in (1)–(5):

C
dυ
dt

� ic − i −
υ
Rc

,

L(y)
di

dt
� −

dL(y)

dy
i _y − Ri + υ,

m €y �
1
2
dL(y)

dy
i
2

− G(y),

(7)

where G(y) � dP(y)/dy with P(y) is a positive semidefinite
scalar function.,e total energy stored in the system is given
as follows:

Ve(υ, y, _y, i) �
1
2

Cυ2 +
1
2

L(y)i
2

+
1
2

m _y
2

+ P(y), (8)

where the first term stands for electric energy stored in the
capacitor of the Buck power converter, whereas the last three
terms stand for the magnetic, kinetic, and potential energies
stored in the electrical and the mechanical subsystems, re-
spectively, of the magnetic levitation system. ,e time de-
rivative of Ve along the trajectories of system in (7) is given
as follows:

_Ve � υC
dυ
dt

+
1
2
dL(y)

dy
_yi
2

+ iL(y)
di

dt
+ _ym €y +

dP(y)

dy
_y

� υ ic − i −
υ
Rc

􏼢 􏼣 +
1
2
dL(y)

dy
_yi
2

+ i −
dL(y)

dy
i _y − Ri + υ􏼢 􏼣

+ _y
1
2
dL(y)

dy
i
2

− G(y)􏼢 􏼣 + G(y) _y

� −
υ2

Rc

− Ri
2

+ icυ,

(9)

Notice that the cancellation of terms
1
2
dL(y)

dy
_yi
2

−
dL(y)

dy
i
2

_y +
1
2
dL(y)

dy
_yi
2

� 0,

iυ − υi � 0,

(10)

represent (1) natural energy exchange between the electrical
and the mechanical subsystems of the magnetic levitation
system and (2) natural energy exchange between the ca-
pacitor and the electrical subsystem of the magnetic levi-
tation system. Another cancellation of the terms involves
±G(y) _ywhich represents the exchange between kinetic and
potential energies in the magnetic levitation system. Hence,
if we define the input ic and the output υ, then

_Ve ≤ −
υ2

Rc

+ υic. (11)

,e expression in (11) proves that the model in (7) is
output strictly passive [29], Definition 6.3.

In the present paper, we exploit these properties by
proceeding as follows. First, we design u as a sliding mode
controller to force ic to reach a desired function idc . ,en,
ic � idc is employed as the control input for the sliding surface
systems (2)–(4). In order to perform this step, we first obtain
the error equation for this system by adding and subtracting
some convenient terms (notice that these terms are not
introduced using any control law), i.e.,

C
dε
dt

� i
d
c − 􏽥I − i

d
−

ε
Rc

−
υd

Rc

− C
dυd

dt
,

L(y)
d􏽥I

dt
� −

dL(y)

dy
􏽥I
dy

dt
−
dL(y)

dy
i
ddy

dt
− R􏽥I − Ri

d

+ ε + υd
− L(y)

did

dt
,

m €y �
1
2
dL(y)

dy
􏽥I
2

+
dL(y)

dy
i
d􏽥I +

1
2
dL(y)

dy
i
d2

+ mg,

(12)
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where ε � υ − υd and 􏽥I � i − id. ,e equivalence of these
expressions and those in (2)–(4) can be verified by reducing
the redundant terms in the three expressions in (12). De-
fining VE1(ε, 􏽥I, _y) � (1/2)Cε2 + (1/2)L(y)􏽥I

2
+ (1/2)m _y2

and using the three expressions in (12), we have that

_VE1 � ε i
d
c − 􏽥I − i

d
−

ε
Rc

−
υd

Rc

− C
dυd

dt
􏼢 􏼣 +

1
2
dL(y)

dy
_y􏽥I

2

+ 􏽥I −
dL(y)

dy
􏽥I
dy

dt
−
dL(y)

dy
i
ddy

dt
− R􏽥I − Ri

d
􏼢

+ ε + υd
− L(y)

did

dt
􏼣

+ _y
1
2
dL(y)

dy
􏽥I
2

+
dL(y)

dy
i
d􏽥I +

1
2
dL(y)

dy
i
d2

+ mg􏼢 􏼣.

(13)

Hence, choosing idc � (υd/Rc) + idcd, idcd � − k1ε,
υd � − k2

􏽥I, id �

��������������

2Fd/|(dL(y)/dy)|

􏽱

, Fd � Fd + Fs, and Fd �

k3 _y and taking advantage from several natural cancellations,
as in (10), we have

_VE1 � −
1
Rc

+ k1􏼠 􏼡ε2 + ε − i
d

− C
dυd

dt
􏼢 􏼣 − R + k2( 􏼁􏽥I

2

+ 􏽥I − Ri
d

− L(y)
did

dt
􏼢 􏼣 − k3 _y

2
− _yFs + _y[mg],

(14)

where (dL(y)/dy)/(|dL(y)/dy|) � − 1. Finally, if we choose
Fs � k4(y − y∗) + mg and VE � VE1 + (1/2)k4(y − y∗)2, we
find

_VE � −
1
Rc

+ k1􏼠 􏼡ε2 + ε − i
d

− C
dυd

dt
􏼢 􏼣 − R + k2( 􏼁􏽥I

2

+ 􏽥I − Ri
d

− L(y)
did

dt
􏼢 􏼣 − k3 _y

2
.

(15)

,us, Fs suitably shapes the potential energy of the
mechanical subsystem to have a unique minimum at y � y∗,
whereas Fd, idcd, and υd, represent the damping injection
terms, as usual in standard passivity-based control [20].

In Section 4, we will show that several cross terms arising
from the rectangular brackets in (15) do not cancel naturally.
,is means that additional terms must be included in the
control law if they are required to be cancelled. Hence, we
prefer to dominate these terms instead of feeding back them
in order to artificially cancel them. ,is allows us to design
simpler control laws when compared to previous passivity-
based approaches [20] where those terms must be online
computed and fed back in order to be cancelled artificially.
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Figure 1: Electromechanical diagram of the DC/DC Buck power electronic converter-magnetic levitation system. (a) Implementation of the
DC/DC Buck power electronic converter-magnetic levitation system using one diode and one transistor. (b) Ideal representation of the DC/
DC Buck power electronic converter-magnetic levitation system using a switch S1.
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Figure 2: Inductance L as a function of the ball position y.
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In this respect, we stress that it is recognized in the literature
that increasing the number of online computations deteri-
orates performance because this increases numerical errors
and the effects of noise. Moreover, we will also show that
including PI and PID controllers (instead of proportional
controllers as above) is straightforward. Notice that this
feature is important to render robust the control scheme.
,e features described in this paragraph render novel and
advantageous our passivity-based approach with respect to
that in [20] where the natural cancellations shown in (10) are
not exploited.

4. Main Result

Our main result is stated in the following proposition.

Proposition 1. Consider the mathematical model in (1)–(5)
in a closed loop with the following controller:

u �
1
2

1 − sign sc( 􏼁􏼂 􏼃, sc � ic − i
∗
c , (16)

i
∗
c �

υ
Rc

− kp1e − ki1 􏽚
t

0
e(r)dr

− Cαp −
dL(y)

dy
i
∗

_y + υ􏼠 􏼡 − Cαi
􏽥i, e � υ − υ,

(17)

υ � − αpL(y)􏽥i − αi 􏽚
t

0
􏽥i(r)dr, 􏽥i � i − i

∗
, (18)

i
∗

�

������������
2

|dL(y)/dy|
F
∗

􏽳

,

F
∗

� kph(􏽥y) + kd _y + kisat(z), 􏽥y � y − y
∗
,

(19)

z � 􏽚
t

0
α 1 +

βkp

ki

􏼠 􏼡h(􏽥y) + 1 +
αβkd

ki

􏼠 􏼡 _y􏼢 􏼣ds, (20)

where y∗ > 0 is a real constant standing for the desired po-
sition, h(􏽥y) � σ(􏽥y), and sat(z) � σ(z), where σ(·) is a
strictly increasing linear saturation function for some (L∗, M)

(see Definition 1). Furthermore, it is also required that
function σ(·) be continuously differentiable such that

0<
dσ(ς)
dς
≤ 1, ∀ς ∈R. (21)

,e closed-loop state evolution is assumed to be con-
strained to a subset D ⊂R7, where

dL(y)

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
> c1,

F
∗ > c2,

|􏽥y|≤L
∗
,

(22)

for some c1 > 0 and c2 > 0. Under these conditions there
always exist constant scalars α, β, kp1, ki1,
kp, kd, ki, αp, and αi, such that the closed-loop system has a

unique equilibrium point which is asymptotically stable as
long as

0< υ + Lc

di∗c
dt
<E. (23)

At this equilibrium point, 􏽥y � 0.

4.1. Reaching the Sliding Surface. ,e time derivative of the
positive definite and radially unbounded scalar function
Vc(sc) � (1/2)s2c , along the trajectories of [1] is

_Vc � sc _sc � sc

dic

dt
−
di∗c
dt

􏼢 􏼣

≤
sc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Lc

− υ − Lc

di∗c
dt

+
1
2

E

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
−
1
2

E􏼢 􏼣< 0,

(24)

where [15] has been used, if | − υ − Lc(di∗c /dt) + (1/2)E|−

(1/2)E< 0. By considering the two possibilities − υ−

Lc(di∗c /dt) + (1/2)E> 0 and − υ − Lc(di∗c /dt) + (1/2)E< 0, it
is not difficult to show that (24) implies (23). From the
sliding condition _sc � 0, [1, 22], we find that the equivalent
control satisfies the following bound:

0< ueq �
1
E

υ + Lc

di∗c
dt

􏼢 􏼣< 1, (25)

which means that the sliding regime is possible. On the
contrary, (24) ensure that the sliding surface sc � ic − i∗c � 0
is reached, i.e., ic � i∗c is reached.,us, we only have to study
the stability of dynamics (2)–(5) in closed loop with
(17)–(20) when evaluated at ic � i∗c .

4.2. Closed-Loop Dynamics on the Sliding Surface. Using
ic � i∗c , [16] in [2], and adding and subtracting the terms i∗,
(1 + CαpR)

����������������
2mg/(|dL(y∗)/dy|)

􏽰
, C _υ, we find

C _e � −
1
Rc

+ kp1􏼠 􏼡e − 􏽥i − 1 + CαpR􏼐 􏼑 i
∗

−

����������
2mg

dL y∗( 􏼁/dy
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽳

⎡⎢⎣ ⎤⎥⎦

− ki1ξ − CαpL(y)
di∗

dt
− CαpR􏽥i,

(26)

ξ � 􏽚
t

0
e(r)dr +

1 + CαpR

ki1

����������
2mg

dL y∗( 􏼁/dy
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽳

, (27)

where
dL y∗( 􏼁

dy
�
dL(y)

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�y∗
. (28)

On the other hand, adding and subtracting the terms i∗,
υ, L(y)(di∗/dt), R

����������������
2mg/(|dL(y∗)/dy|)

􏽰
, L(y)(di∗/dt), and

(dL(y)/dy)i∗ _y, in [3], and replacing [17], we obtain
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L(y)
d􏽥i
dt

� e − R + αpL(y)􏼐 􏼑􏽥i − αiz1 − R i
∗

−

����������
2mg

dL y∗( 􏼁/dy
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽳

⎡⎢⎣ ⎤⎥⎦

−
dL(y)

dy
􏽥i _y −

dL(y)

dy
i
∗

_y − L(y)
di∗

dt
,

(29)

z1 � 􏽚
t

0
􏽥i(r)dr +

R

αi

����������
2mg

dL y∗( 􏼁/dy
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽳

, (30)

where

di∗

dt
�

2F∗

|dL(y)/dy|
􏼠 􏼡

− 1/2

×
d
dy

dL(y)

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 1

􏼠 􏼡 _y × kph(􏽥y)􏽨􏼨

+ kd _y + kis(z) + mg􏼃

+
dL(y)

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 1

kp

dh(􏽥y)

d􏽥y
_y + kd €y + ki

dsat(z)

dz
_z􏼢 􏼣􏼩,

(31)

s(z) � sat(z) −
1
ki

mg. (32)

Finally, adding and subtracting the terms 1/2(dL(y)/
dy)i∗i, (1/2)(dL(y)/dy)i∗􏽥i, and (1/2)(dL(y)/dy)i∗2, and
replacing i∗ and F∗ from [18], the expression in [4] becomes

m €y �
1
2
dL(y)

dy
􏽥i
2

+
dL(y)

dy
􏽥ii
∗

− kph(􏽥y) − kd _y − kis(z).

(33)

,e closed-loop dynamics is given by (26)–(33) and (20).
Equilibria of this dynamics are found as follows. From the
state equation _􏽥y � _y � 0, it is concluded that _y � 0 at the
equilibrium point. Using this result in _z � 0 (from (20))
yields 􏽥y � 0. From _z1 � 0 (see (30)), we find 􏽥i � 0. ,en,
from m €y � 0, in (33), we find z � (1/ki)mg if

L
∗ >

1
ki

mg. (34)

Using the above results in (19) yields
i∗ �

����������������
2mg/(|dL(y∗)/dy|)

􏽰
and from _ξ � 0 in (27), we find

that e � 0. From (31), we have that di∗/dt � 0. Using _e � 0 in
(26), we have that ξ � 0 at the equilibrium point. Hence,
from (29), we find that z1 � 0.

,is means that the only equilibrium point of the closed-
loop dynamics is ζ � [ _y, 􏽥y, z − (1/ki)mg,􏽥i, z1, e, ξ]T �

[0, 0, 0, 0, 0, 0, 0]T. Notice that this closed-loop dynamics is
autonomous because it can be written as _ζ � f(ζ) for some
nonlinear f(·) ∈R7.

4.3. Stability Analysis. ,e closed-loop dynamics (26)–(33)
and (20) can be rewritten as follows:

C _e � Ic − 􏽥i −
1
Rc

+ kp1􏼠 􏼡e, (35)

L(y)
d􏽥i
dt

� − R + αpL(y)􏼐 􏼑􏽥i −
dL(y)

dy
􏽥i _y + Υ, (36)

m €y �
1
2
dL(y)

dy
􏽥i
2

− G, (37)

_z1 � 􏽥i, _ξ � e,

_z � α 1 +
βkp

ki

􏼠 􏼡h(􏽥y) + 1 +
αβkd

ki

􏼠 􏼡 _y,
(38)

Ic � − 1 + CαpR􏼐 􏼑 i
∗

−

����������
2mg

dL y∗( 􏼁/dy
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽳

⎡⎢⎣ ⎤⎥⎦ − ki1ξ

− CαpL(y)
di∗

dt
− CαpR􏽥i,

G � −
dL(y)

dy
􏽥ii
∗

+ kph(􏽥y) + kd _y + kis(z),

Υ � e − R i
∗

−

����������
2mg

dL y∗( 􏼁/dy
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽳

⎛⎝ ⎞⎠ −
dL(y)

dy
i
∗

_y

− L(y)
di∗

dt
− αiz1.

(39)

Notice that (35)–(38) are almost identical to the open-
loop dynamics in (7) if we replace y, _y, i, υ, G, ic by
􏽥y, _y,􏽥i,Υ,G,Ic. One important difference is that the resis-
tances Rc and R in (7) have been enlarged to (1/Rc) + kp1
and R + αpL(y) in (35) and (36), respectively. Moreover, we
can see that suitable damping can be introduced thanks to
term kd _y in the definition of G. Another important dif-
ference is the three new equations in (38) which represent
the integral terms of the PI electric current controller, the PI
controller of voltage at the capacitor, and the PID position
controller, which are intended to compensate for the effects
of the gravity term mg.

,ese observations motivate the use of the following
“energy” storage function for the closed-loop dynamics:

W _y, 􏽥y, z −
mg

ki

,􏽥i, z1, e, ξ􏼠 􏼡 �
1
2

Ce
2

+
1
2
ki1ξ

2
+
1
2

L(y)􏽥i
2

+
1
2
αiz

2
1 + Vm _y, 􏽥y, z −

mg

ki

􏼠 􏼡,

(40)

where

Vm 􏽥y, _y, z −
mg

ki

􏼠 􏼡 �
1
2

m _y
2

+ αmh(􏽥y) _y + αkd 􏽚
􏽥y

0
h(r)dr

+ kp 􏽚
􏽥y

0
h(r)dr + ki 􏽚

z

mg/ki

s(r)dr

+ αβms(z) _y.

(41)
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We stress that function Vm( _y, 􏽥y, z − mg/ki) defined in
(40) is very similar to the function V(􏽥q, _q, z − (ki

′)− 1g(qd))

analyzed in [30]. ,us, conditions to ensure that
Vm( _y, 􏽥y, z − mg/ki) is positive definite and radially un-
bounded are the same as those introduced in [30]. For the
sake of completeness of this work, these conditions are
presented in Appendix A as (A.1), (A.2), and (A.5) and
kp > 0, α> 0, and β> 0. ,us, the function
W( _y, 􏽥y, z − mg/ki,

􏽥i, z1, e, ξ) qualifies as a Lyapunov func-
tion candidate because it is positive definite and radially
unbounded if ki1 > 0 and αi > 0.

,e first two terms in W represent the electric energy
stored in the converter’s capacitor and “energy” stored in the
integral term of the PI voltage controller. ,e third and
fourth terms represent the magnetic energy stored in the
electrical system and the “energy” stored in the integral term
of the PI electric current controller. On the other hand,
function Vm includes the kinetic energy and the closed-loop
“potential energy”

P(􏽥y) � kp 􏽚
􏽥y

0
h(r)dr, (42)

as well as the “energy” stored in the integral of position
through an integral of s(·). ,e cross terms αmh(􏽥y) _y and
αβms(z) _y are required to provide _W with negative qua-
dratic terms in both h(􏽥y) and s(z). In this respect, it is easy
to verify that

d
dt

1
2

L(y)􏽥i
2

+
1
2

m _y
2

+ P(􏽥y)􏼒 􏼓 � − R + αpL(y)􏼐 􏼑􏽥i
2

− kd _y
2

+􏽥iΥ +
dL(y)

dy
_y􏽥ii
∗

− kis(z) _y.

(43)

Since Υ depends on both h(􏽥y) and s(z), negative
quadratic terms on both h(􏽥y) and s(z) are required to
dominate some cross terms in both h(􏽥i) and􏽥i and s(z) and􏽥i.
,is is the reason for the cross terms αmh(􏽥y) _y and αβms

(z) _y (the quadratic term − (R + αpL(y))􏽥i
2 already exists).

,e integral term αkd 􏽒
􏽥y
0 h(r)dr is intended to cancel an

undesired cross term appearing in the time derivative of
αmh(􏽥y) _y. Notice that term 􏽥ie, arising from the product 􏽥iΥ
above, cancels with term − e􏽥i, arising from (d/dt)(Ce2/2).
Moreover, some third order terms involving i∗ appear from
􏽥iΥ. ,ese terms can be dominated by quadratic negative
terms in _y and 􏽥i because |h(􏽥y)| and |s(z)| are bounded by
finite constants. ,is is the reason to employ a PID position
controller with saturated proportional and integral actions.

After some straightforward natural cancellations (i.e.,
not requiring to use additional terms in the control law to
achieve them), which include the closed-loop equivalents of
(10) (see Remark 6), we find that the time derivative of W

along the trajectories of the closed-loop systems (35)–(38) is
given as follows:

_W � −
1
Rc

+ kp1􏼠 􏼡e
2

− R + αpL(y) −
α
2
dL(y)

dy
h(􏽥y) −

αβ
2

dL(y)

dy
s(z)􏼠 􏼡􏽥i

2

− kd − αm
dh(􏽥y)

d􏽥y
− αβm

ds(z)

dz
1 +

αβkd

ki

􏼠 􏼡􏼢 􏼣 _y
2

− αkph
2
(􏽥y) − αβkis

2
(z)

− e 1 + CαpR􏼐 􏼑 + R􏽥i􏽨 􏽩 i
∗

−

����������
mg

dL y∗( 􏼁/dy
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽳

⎛⎝ ⎞⎠ + α
dL(y)

dy
h(􏽥y)􏽥ii

∗
+ α2βm

ds(z)

dz
1 +

βkp

ki

􏼠 􏼡h(􏽥y) _y

+ αβ
dL(y)

dy
s(z)􏽥ii

∗
− CαpRe􏽥i − L(y)􏽥i

di∗

dt
− CαpeL(y)

di∗

dt
.

(44)

Taking into account (19), (31), and Appendix B, it is
found that _W can be upper bounded as follows:

_W≤ − x
T
Qx − αp2L(y)􏽥i

2
+

1
2m

krrkdkσ |􏽥i|
3

+
Cαp

2m
krrkdkσ |e||􏽥i|

2
+

Cαp

2m
krrkdkσkδ|e||􏽥i|| _y|

− αp4L(y)􏽥i
2

− kp3e
2

− kd4 _y
2

+
1
2m

krrkdkσkδ
􏽥i
2
| _y| − αp3L(y)􏽥i

2
+ Cαpkrkd + 1 + CαpR􏼐 􏼑kt􏽨 􏽩|e| _y

2
− kd3 _y

2

+ krkd + Rkt( 􏼁| | i| _y
2

− kd2 _y
2
,

x
T

� [| _y|, |h(􏽥y)|, |s(z)|, |􏽥i|, |e|],

(45)
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where kd1, kd2, kd3, kd4, αp1, αp2, αp3, αp4, kp2, and kp3 are
positive constant scalars such that kd1 + kd2 + kd3 + kd4 � kd,

αp1 + αp2 + αp3 + αp4 � αp, and kp2 + kp3 � kp1. ,e entries
of matrix Q are defined as follows:

Q11 � kd1 − αm − αβm 1 +
αβkd

ki

􏼠 􏼡,

Q22 � αkp,

Q33 � αβki,

Q44 � R + αp1L(y) −
α
2

kσM − αβkσM −
1
m

krrkdkσI
∗
(0),

Q55 �
1
Rc

+ kp2,

Q12 � Q21 � −
α2βm

2
1 +

βkp

ki

􏼠 􏼡,

Q31 � Q13 � Q23 � Q32 � 0,

Q14 � Q41 � −
krkpM

2
− krkiM −

krmg

2
−

krrkp

2
−

krrk
2
d

2m
−

Rk∗

2

−
kikrr

2
1 +

αβkd

ki

􏼠 􏼡 −
αkσkδM

2
− αβMkδkσ −

3RktM

2
,

Q42 � Q24 � −
krrkdkp

2m
−
αkikrr

2
1 +

βkp

ki

􏼠 􏼡 −
αkσI∗(0)

2
−

Rk∗

2
,

Q43 � Q34 � −
krrkdki

2m
−
αβkσI∗(0)

2
−

Rk∗

2
,

Q15 � Q51 � −
1 + CαpR􏼐 􏼑k∗

2
−
3 1 + CαpR􏼐 􏼑ktM

2
−

CαpkrkpM

2

− CαpkrkiM − Cαp

krmg

2
− Cαp

krrkp

2
− Cαp

krrk
2
d

2m
− Cαp

kikrr

2
1 +

αβkd

ki

􏼠 􏼡,

Q52 � Q25 � −
1 + CαpR􏼐 􏼑k∗

2
− Cαp

krrkdkp

2m
− Cαp

αkikrr

2
1 +

βkp

ki

􏼠 􏼡,

Q53 � Q35 � −
1 + CαpR􏼐 􏼑k∗

2
− Cαp

krrkdki

2m
,

Q45 � Q54 � −
1
2

CαpR −
Cαp

2m
krrkdkσI

∗
(0),

(46)

where

kr � max L(y)
2F∗

|dL(y)/dy|
􏼠 􏼡

− 1/2
d

dy

dL(y)

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 1􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎨

⎩

⎫⎬

⎭ ,

krr � max L(y)
2F∗

|dL(y)/dy|
􏼠 􏼡

− 1/2 dL(y)

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 1⎧⎨

⎩

⎫⎬

⎭ ,

(47)
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and constants kσ , kδ, k∗, kt, and I∗(0) are defined in Ap-
pendix B.

Notice that the four leading principal minors of matrix Q

can always be rendered positive definite by suitable selection
of the controller gains kp1, kd1, kp, ki, and αp1, and hence,
λmin(Q)> 0. Furthermore, all of the expressions in the seven
rows in (45) can be rendered negative, at least locally, using
suitable gains kd2, kd3, kd4, αp2, αp3, αp4, kp2, and kp3. Hence,
it is concluded that _W≤ 0 for all ζ ∈ D, where D is a subset
of R7 containing the origin. ,us, stability of the origin is
concluded. Since the closed-loop system is autonomous, the
LaSalle invariance principle is invoked to prove asymptotic
stability. ,is completes the proof of Proposition 1.

Conditions for this stability result are summarized by
(A.1), (A.2), and (A.5), in Appendix A, kp > 0, α> 0, β> 0,
ki1 > 0, and αi > 0, (34), the four leading principal minors of
matrix Q defined in (45) are positive, and kd2, kd3, kd4, αp2,
αp3, αp4, kp2, and kp3 are chosen such that the seven rows in
(45) are rendered negative. ,ese stability conditions con-
stitute explicit tuning guide lines.

Remark 1. Notice that the ith leading principal minor of
matrix Q can be rendered positive by choosing large enough
Qii entry of matrix Q and choosing small some constants
such as α> 0 and β> 0. In this respect, it is important to
stress that each one of the Qii entries depend on a controller
gain. ,us, once the ith leading principal minor is rendered
positive by choosing a suitable controller gain, the (i + 1)th
leading principal minor can be rendered positive by suitably
enlarging the entry Q(i+1)(i+1) of matrix Q and so on.
Moreover, these ideas suggest that an intuitive try-and-error
tuning procedure can also be derived; choose larger con-
troller gains in the Qii entries as i is larger.

Remark 2. Notice that the system evolves by itself as long as
the sliding surface is not reached. However, it is proven in
standard books on sliding mode control that the system
reaches the sliding surface in a finite time which depends on
the initial conditions. Once the sliding surface is reached, the
system evolves on the sliding surface starting from the state
values that it has at the time where the sliding surface is
reached. ,us, if initial conditions are close to the desired
equilibrium point, then asymptotic convergence to the
desired equilibrium point is ensured by Proposition 1.

On the other hand, limits in currents ic and i are imposed
by the circuit parameters and the applied voltage. With the
problem at hand, limits on these currents are imposed by the
DC power supply E which is manipulated through the
variable u representing the on-off state of transistor Q. In
Section 5, we explain how the variables u and E affect the
system performance. Finally, saturation of the internal PI’s
only might occur if the state variables are allowed to take
large values. Since our stability result is local, this prohibits
the state to take such large values.

Remark 3. In Figure 3, we present a block diagram of the
control scheme in control scheme in Proposition 1. Notice
that this controller is made up of three main loops: (1) a PI
controller for voltage at the DC/DC Buck power converter

output (at the capacitor terminals), (2) a PI controller for
electric current through the electromagnet, and (3) a non-
linear PID (NPID) controller for the ball position. ,us, our
proposal contains the fundamental components in industrial
applications and, hence, it is expected to be robust with
respect to parametric uncertainties and external distur-
bances. Furthermore, another internal loop is provided to
control electric current through the inductance of the DC/
DC Buck power converter. ,is loop is driven by a sliding
mode controller which constitutes one common technique
to control power electronic devices in practice.

Remark 4. It is stressed that we introduce the factor L(y) as
a part of the proportional gain in (18) in order to ensure to be
constant the term that is added to the integral term in (27).
,is is a necessary step for the integral action of the PI
controller of voltage at the capacitor. In this respect, the last
two terms in (17) are included in order to cancel some terms
arising in (26) because of the fact that − C _υ must be added
and subtracted to complete (26).

Remark 5. Notice that the region where the result is valid
can be enlarged by including the terms − kq

􏽥i _y2 − kf
􏽥i|􏽥i| −

kh
􏽥i|e| in (18) and the terms − kme _y2 − kne|􏽥i| in (17), for some

positive constants kq, kf, kh, km, and kn, to proceed as in [30]
to dominate the positive terms in the five rows of (45).
However, we have decided not to include the above cited
terms because of several reasons. (1) ,e stability result
would still remain to be local, as usual in magnetic levitation
systems. (2) Including the above terms in (18) would result
in additional complex terms that should be cancelled using
the definition of i∗c in (17). (3) In order to maintain the
simple control law, we have decided not to proceed in-
cluding the terms − kq

􏽥i _y2 − kf
􏽥i|􏽥i| − kh

􏽥i|e| in (18) which
renders useless to include − kme _y2 − kne|􏽥i| in (17). ,us,
proposing a simple and robust control law performing well is
one important objective of our proposal.

Remark 6. ,e novel passivity-based approach that is
employed in this paper has the following properties:

(i) Several terms cancel naturally. ,is means that they
cancel without requiring to compute and feedback
them. ,is property is a direct consequence of the
fact that the closed-loop dynamics (35)–(38) is al-
most identical to the open-loop model in (6). Recall
that the open-loop model was proven in Section 3 to
be output strictly passive, and the existence of
several natural cancellations is instrumental for this.
,is property is opposite to what happens in exact
feedback linearization approaches where the plant
undesired terms are online computed and fed back
in order to force their cancellation.
,e natural cancellation of terms that we refer to in
this item is the same that is referred to before (44),
which includes (1/2)(dL(y)/dy)􏽥i

2
_y − (dL(y)/dy)􏽥i

2

_y − (dL(y)/dy)􏽥ii∗ _y belonging to (d/dt)((1/2)L(y)
􏽥i
2
) and (1/2)(dL(y)/dy)􏽥i

2
_y + (dL(y)/dy)􏽥ii∗ _y be-

longing to (d/dt)((1/2)m _y2), as well as the
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cancellation of − e􏽥i belonging to (d/dt)((1/2)Ce2) and
e􏽥i belonging to (d/dt)((1/2)L(y)􏽥i

2
).

,ese natural term cancellations are very useful to
obtain a simple control law. As stated above, other
control approaches require to use additional terms
in the control law in order to cancel these terms.

(ii) A nested-loop passivity-based control approach is
exploited in [20]. ,is means that the electric
current error is first proven to converge exponen-
tially to zero, and this allows to use this variable as a
vanishing perturbation for the mechanical subsys-
tem.,is, however, requires the online computation
of either the time derivative of the desired force or
the time derivative of the desired electric current.
Instead of that we use an approach which is similar
to what was called in [20] passivity-based control
with total energy shaping. Although the latter ap-
proach has been disregarded in [20] by arguing that
it results in more complex controllers, we prove the
opposite in the present paper. ,is is one important
novelty of our approach.

(iii) ,e previous features of our approach allow (1) to
straightforwardly include PI internal loops and an
external PID loop, which are important to improve
the robustness properties of the control scheme and
(2) to avoid the requirement on the exact knowledge
of the electric resistance of the electromagnet, which
is a parameter that changes during normal opera-
tion conditions.

Remark 7. ,e present work is inspired by [16] in the sense
that some PI and PID loops are included for both the
electrical and the mechanical dynamics of the electrome-
chanical system, and a sliding mode controller is devoted to

control electric current through the inductor of the DC/DC
Buck converter, see Figure 4. However, the control scheme
in [16] is designed for unidirectional control of velocity in a
brushed DC motor, whereas the controller in the present
work contains several refinements that extend work in [16]
to control position in a magnetic levitation system, a highly
nonlinear system. ,ese refinements include (1) a clever
selection of a nonlinear PID position controller, (2) a clever
selection of internal PI controllers, and (3) proposing a
suitable Lyapunov function for stability analysis. We stress
that, aside from the sliding mode controller, the closed-loop
system in [16] is linear, whereas both plant and controller are
nonlinear in the present work.

5. Simulation Results

In this section, we present a numerical example to give some
insight on the achievable performance when the controller
in Proposition 1 is employed. To this aim, we use the nu-
merical values of the magnetic levitation system that has
been tested experimentally in [23]. In that work, the elec-
tromagnet inductance is modeled as follows:

L(y) � k0 +
k

1 + (y/a)
, (48)

where k0 � 36.3 × 10− 3 H, k � 3.5 × 10− 3 H, and
a � 5.2 × 10− 3 m, and the remaining parameters are
R � 2.72Ohm, m � 0.018 kg, and g � 9.81m/s2. ,e prac-
tical range of input voltages is [0, +12]V and the range of
electric current through the electromagnet is [0, +3]A. ,e
Buck DC/DC power electronic system parameters were
chosen as Lc � 0.686H, C � 114.4 × 10− 6 F, and
Rc � 28.5Ohm. We also use E � 12V if 2 s< t< 3 s and
E � 50V, otherwise in order to study the response when
disturbances appear in the DC power supply. ,ese pa-
rameters are similar to the experimental values reported in
[16].

,e controller gains were chosen to be kp � 8, kd � 1,
ki � 2, αp � 470, αi � 1000, α � 64, β � 1, kp1 � 6000, and
ki1 � 18000. Inspired by [28], we used the saturation
function:

σ(x) �

− L∗ + M − L∗( )tanh
x + L∗

M − L∗
􏼠 􏼡, if x< − L∗,

x, if |x|≤L∗,

L∗ + M − L∗( )tanh
x − L∗

M − L∗
􏼠 􏼡, if x> L∗,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

where M � 0.51 and L∗ � 0.5.,e initial conditions were set
as follows y(0) � 0.006m, _y(0) � 0, i(0) � 1.56A,
υ(0) � 4.2V, ic(0) � 1.65A, 􏽒

0
− ∞

􏽥idt � − 4.24362 × 10− 3,
􏽒
0
− ∞ edt � 0.022, andn z(0) � 0.0885. ,e desired position

y∗, in meters, was chosen as follows:

u
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1/2 [1 – sign (sc)]

+
– i∗c
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Figure 3: Control scheme in Proposition 1, where η � − (υ/Rc)+

Cαp(− (dL(y)/dy)i∗ _y + υ) + Cαi
􏽥i.
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y
∗

�

0.006, 0≤ t< 1,

0.008, 1≤ t< 4,

0.006, 4≤ t< 5.5,

0.004, 5.5≤ t.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(50)

In Figure 5, we can see that the actual ball position y

reaches its desired value y∗ in the steady state. Notice that
the settling time is about 0.5 s. We observe that the position
response is very damped. In this respect, we have performed
several additional simulations which make us to conclude
that the term (1 + αβ(kd/ki)) _y appearing in (20) is re-
sponsible for such a damped response.

In Figures 6 and 7, we verify that electric current through
the electromagnet i and voltage at the electromagnet ter-
minals υ remain within [0, +3]A and [0, +12]V, respec-
tively, the actual ranges of values reported experimentally in
[23].

In Figure 8, we present electric current through the
converter inductor which also remains within the range
[0, +3]A. Finally, in Figure 9, we verify that evolution of all
the above signals is achieved by applying, at the transistor
input, a switching signal only taking the discrete values 1 or
0. Notice that, despite this hard switching signal, electric
current through the electromagnet is smooth enough, see
Figure 6. Moreover, this is achieved despite voltage at the
electromagnet terminals has a small ripple, see Figure 7.

We also observe in Figure 5 that the step changes in the
DC power supply, i.e., E, appearing at t � 2 s and t � 3 s have
an almost imperceptible effect in the ball position. Moreover,
the effects of these changes are more noticeable in Figures 7
and 8 as a simple change in ripple of both voltage at the
electromagnet terminals and electric current through the
converter inductor. ,e effects of these step changes are very
small thanks to the employment of a sliding mode controller
for electric current through the converter inductor and this
is the reason why we employ sliding mode control in our
approach.

Finally, we stress that the control signal u is constrained
to only take the discrete values 0 or 1 and all of the system
evolution must be controlled while u takes these discrete
values. However, the designer has an additional degree-of-
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Figure 9: On-off signal u applied at the transistor input.
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freedom in this respect; a larger value for E can be chosen if
the system evolution requires more control effort. We have
arrived to this conclusion during the simulations that we
have performed. For instance, we can observe in Figure 9
three clear zones at t � 1 s, t � 4 s, and t � 5.5 s which are
evidences that control effort saturates at its extremum
values, i.e., either 1 or 0, when step changes in the desired
position are commanded. We also have observed that the
ball escapes if larger reference changes are commanded.,is
is the reason why we have used E � 50V for most of the time
in the above simulations.

Now, we present some simulation results when using the
following classical control scheme:

υ � kpi i
∗

− i( 􏼁 + kii 􏽚
t

0
i
∗

− i( 􏼁dt, (51)

i
∗

� kp y − y
∗

( 􏼁 + kd _y + ki 􏽚
t

0
y − y
∗

( 􏼁dt. (52)

It is assumed that the DC/DC Buck power electronic
converter is not present and a static PWM-based power
amplifier is employed. Notice that position error is given as
y − y∗ for the classical PID controller. ,is is usual in
control of magnetic levitation systems. A feature that is
required because of the negative gain of the system which, in
turn, is produced by the fact that (dL(y)/dy) < 0.

,e controller gains were chosen to be kpi � 4.7,
kii � 100, kd � 0.0277, kp � 0.866, and ki � 1.082. ,is re-
sults in two real dominant closed-loop poles located at
s � − 21.5 and s � − 2.11. A third real closed-loop pole is at
s � − 140 and two very fast complex conjugate poles, due to
the PI control of the electrical dynamics, located at
s � − 19 ± 500j.

Our intention is not to compare results obtained with the
controller in Proposition 1 and result with the classical control
scheme since such a comparison would be unfair.We just want
to point out on some features of the classical control scheme.
,e simulation results are shown in Figures 10–12.,e desired
position y∗ is given, again, as in (50).

Notice that the position response has a very short rise
time but a large settling time. ,is is produced by initial fast
changes on both the applied voltage and the resulting electric
current, which tend slowly to constant values afterwards.
Notice that position response exhibits a large overshoot
despite the dominant closed-loop poles being real. Recall
that the fast complex conjugate poles due to the electrical
dynamics cannot produce such a slow overshoot. As it is
clearly explained in [31], reason for such a large overshoot is
the open-loop unstable pole of the magnetic levitation
system which is responsible of its open-loop instability. It is
also demonstrated in [31] that this feature cannot be avoided
when using the classical control scheme in (51) and (52).

Since classical control schemes rely on linear approxi-
mations of the plant to control, it is reasonable to wonder
whether some advantages could be obtained when proposing
control schemes that take into account more information of
the plant nonlinear dynamical model.,is is the intention of
nonlinear control schemes as the one presented in

Proposition 1 aside from taking into account some addi-
tional dynamics as that of the DC/DC Buck power electronic
converter.

Notice that the expressions in (18)–(20) are the non-
linear versions of (51) and (52), i.e., they represent a PI
electric current loop and a PID position loop. On the
contrary, (16) and (17), represent a slidingmode control loop
for electric current at the converter inductor and a nonlinear
PI loop for voltage at the converter capacitor. ,is means
that (16) and (17) are additional control loops that are in-
cluded to cope with system components that are not present
in standard magnetic levitation systems. ,is is what we
mean when stating that the control scheme in Proposition 1
is simple if we take into account the complexity of the
nonlinear model of the plant.

6. Conclusions

In this paper, we have solved the position regulation
problem in a magnetic levitation system when it is fed by a
DC/DC Buck power electronic converter as power amplifier.
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Contrary to previous works in the literature, which are
concerned with control of DC motors, we have solved this
problem for the first time for a nonlinear electromechanical
system.

,is fact represents the merit of our proposal despite the
local nature of the results. In this respect, we stress that the
region of attraction might be enlarged by including addi-
tional nonlinear terms to the control law. However, we have
decided not to do this because we are interested in pre-
senting a simple control law in order to render it free of
numerical errors and noise amplification.

Our proposal relies on a novel passivity-based approach
which exploits the natural energy exchange existing among
the mechanical and electrical subsystems that compose the
plant.,is allows several nonlinear terms to naturally cancel,
i.e., without requiring to include additional terms in the
control law, which renders simple the control law. More-
over, contrary to previous well known works in the litera-
ture, our approach does not rely on proving exponential
convergence to zero of the electrical dynamics. ,is is good
news since, otherwise, we would require to online compute
and feedback both the time derivative of the desired electric
current in the electromagnet and the time derivative of the
desired voltage at the electromagnet terminals. Such online
computations would render the control law complex and
sensitive to numerical errors and noise amplification.

Finally, although the control law is simple, the stability
proof may require much attention from the reader. ,is
might be seen as a disadvantage of the approach but it is the
authors’ belief that it is the role of the control community to
cope with mathematical analysis and other related theo-
retical complications. ,e important practical thing is that
the resulting control scheme is intuitively simple to

understand and to implement: a multiloop scheme driven by
PI and PID controllers provided with explicit tuning guide
lines. We must also say that our approach only considers the
regulation task.

Appendix

A. Conditions for Positive Definiteness of
Vm( _y, 􏽥y, z−mg/ki), Defined in (40)

Choose

0< L
∗ <M, (A.1)

and kd > 0 large enough such that

G(􏽥y)≥ α∗2mH(􏽥y), ∀􏽥y ∈R, (A.2)

where α∗ > α> 0 and

G(􏽥y) �

kd

2
􏽥y
2
, |􏽥y|≤L∗,

kd

2
L
∗2

+ kdL
∗

􏽥y − L
∗

( 􏼁, 􏽥y> L∗,

kd

2
L
∗2

− kdL
∗

􏽥y + L
∗

( 􏼁, 􏽥y< − L∗,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(􏽥y) �
􏽥y2, |􏽥y|≤M,

M2, |􏽥y|>M.

⎧⎪⎨

⎪⎩

(A.3)

We stress that (A.2) can always be verified graphically.
Define d � mg/ki, z′ � z − d, and

Γ z′( 􏼁 �

ki

2
z′( 􏼁

2
, − L∗ ≤ z′ + d≤L∗,

ki

2
L
∗

− d( 􏼁
2

+ ki z′ + d − L
∗

( 􏼁 L
∗

− d( 􏼁, z′ + d> L∗,

ki

2
− L
∗

− d( 􏼁
2

+ ki z′ + d + L
∗

( 􏼁 − L
∗

− d( 􏼁, z′ + d< L∗,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F z′( 􏼁 �

z′
2
, − M≤ z′ + d≤M,

(M − d)2, z′ + d>M,

(− M − d)2, z′ + d< − M.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(A.4)

Choose a large enough ki > 0 such that

Γ z′( 􏼁≥ α∗2β∗2mF z′( 􏼁, (A.5)

for some α∗ > α> 0 and β∗ > β> 0. Notice that (A.5) can
always be verified graphically. Function Vm( _y, 􏽥y, z − mg/ki)

is positive definite and radially unbounded if kp > 0, α> 0,
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and β> 0 and (A.1), (A.2), and (A.5) are satisfied. Proof of
this result is presented in [30].

B. Some Algebraic Relations for Proof of
Proposition 1

Notice the following:

i
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

�����������������������������
2

|dL(y)/dy|min
kpM + kd| _y| + kiM􏼐 􏼑

􏽳

� I
∗
(| _y|),

(B.1)

where (19) has been employed. On the other hand, according
to the Mean Value ,eorem:

0≤ I
∗
(| _y|) − I

∗
(0) �

dI∗(| _y|)

d| _y|

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌| _y|�ζ
(| _y| − 0),

dI∗(| _y|)

d| _y|

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌| _y|�ζ
> 0, ∀ζ > 0,

(B.2)

i.e.,

I
∗
(| _y|) �

dI∗(| _y|)

d| _y|

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌| _y|t�nζ
| _y| + I

∗
(0), (B.3)

for some ζ > 0 belonging to the line joining the points | _y| and
0. Hence, from (B.1) and (B.3), we find

i
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ kδ| _y| + I

∗
(0),

kδ � max
| _y|>0

dI∗(| _y|)

d| _y|
􏼨 􏼩.

(B.4)

Notice that kδ and I∗(0) are positive and finite. ,is
allows to write

dL(y)

dy
􏽥i
2
i
∗

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ kσ

􏽥i
2

kδ| _y| + I
∗
(0)( 􏼁,

α
dL(y)

dy
h(􏽥y)􏽥ii

∗
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ αkσkδM|􏽥i|| _y| + αkσ |􏽥i||h(􏽥y)|I

∗
|0|,

αβ
dL(y)

dy
s(z)􏽥ii

∗
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 2αβMkσkδ|

􏽥i|| _y| + αβkσ |􏽥i||s(z)|I
∗
(0),

kσ � max
dL(y)

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩.

(B.5)

We stress that kσ > 0 is always finite, i.e., the maximal
value of |dL(y)/dy| appears when y � 0. On the contrary, we
have that at the equilibrium point i∗ � i∗e , where

i
∗
e �

����������
2mg

dL y∗( 􏼁/dy
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽳

. (B.6)

Hence, if we assume that

i
∗

� i
∗
(h(􏽥y), _y, s(z))

�

����������������������������������
2

|dL(y)/dy|
kph(􏽥y) + kd _y + kis(z) + mg􏽨 􏽩

􏽳

,

(B.7)

then i∗e � i∗(0, 0, 0). ,us, according to the Mean Value
,eorem

i
∗

−

����������
2mg

dL y∗( 􏼁/dy
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽳

� i
∗
(h(􏽥y), _y, s(z)) − i

∗
(0, 0, 0)

�
zi∗(x)

zx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�p
(h(􏽥y), _y, s(z))

T
− (0, 0, 0)

T
􏼐 􏼑,

(B.8)

for some p belonging to the line joining the points
(h(􏽥y), _y, s(z)) and (0, 0, 0). Finally, recalling that
|vTw|≤ ‖v‖‖w‖, for all v, w ∈Rn and ‖x‖≤ ‖x‖1, we can write

i
∗

−

����������
2mg

dL y∗( 􏼁/dy
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽳􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ k
∗

+ kt| _y
􏼌􏼌􏼌􏼌􏼐 􏼑[|h(􏽥y)| + | _y| + |s(z)|],

(B.9)

where the constants k∗ and kt are defined from the norm of
the following vector:

zi∗(x)

zx
�

2F∗

|dL(y)/dy|
􏼠 􏼡

− 1/2

× [1, 0, 0]
d
dy

dL(y)

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 1

􏼠 􏼡􏼨

×
d y∗ + 􏽥y( 􏼁

d􏽥y

d􏽥y

dh(􏽥y)
kph(􏽥y) + kis(z) + mg􏽨 􏽩

+
dL(y)

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 1

kp, kd, ki􏽨 􏽩}

+
2F∗

|dL(y)/dy|
􏼠 􏼡

− 1/2

[1, 0, 0]
d
dy

dL(y)

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 1

􏼠 􏼡

×
d y∗ + 􏽥y( 􏼁

d􏽥y

d􏽥y

dh(􏽥y)
kd _y,

(B.10)

recalling that, according to (21), d􏽥y/dh(􏽥y) is bounded,
|dL(y)/dy|> 0, (2F∗/(|dL(y)/dy|))− 1/2, and d/dy|dL(y)/
dy|− 1 are bounded, and |h(􏽥y)|≤M and |s(z)|≤ 2M. ,us,
k∗ and kt are finite.
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Based on the influence of random environmental perturbations and the patch structure, we propose a stochastic Nicholson-type
delay system under Markovian switching on patches. Existence of a global positive solution is studied. .en, we show ultimate
boundedness and estimation of the sample Lyapunov exponent of the solution. Furthermore, sufficient conditions for extinction
of species are established, which is the main new ingredient of this paper. Finally, some numerical examples are presented. Our
results improve and generalize previous related results.

1. Introduction

In 1980, Gurney et al. [1] established Nicholson’s blowflies
equation according to experimental data of Nicholson [2]. In
recent decades, there have been a large amount of results
related to the dynamical behaviors for this model and its
modification, see [3–13].

In ecosystems, the pattern of complex population dy-
namics is inevitably subject to some kind of environmental
noises. As a matter of fact, the phenomenon of stochasticity
plays a critical role in understanding the evolutionary dy-
namics and ecological characteristics of species. Particularly,
May [14] has revealed that due to environmental fluctua-
tions, the parameters in a system should be stochastic.
Environmental noises are classified into two categories: the
first is white noise, and the second one is coloured noise.
Stochastic population models [15–20] are more realistic
compared to deterministic population models. Wang et al.
[21] first studied a scalar stochastic Nicholson’s blowflies
delayed equation

dx(t) � − αx(t) + px(t − τ)e
− cx(t− τ)

􏽨 􏽩dt + σx(t)dB(t). (1)

Notice, however, that white noise is unable to depict the
phenomena that the species may be invaded by the alien

population [22] or suffer sudden catastrophic shocks [23].
And in recent years, some significant progress has been
made in the theory of the stochastic population models with
regime switching, see [24–27] and the references therein. In
[28], Zhu et al. considered a stochastic equation with
Markovian switching:

dx(t) � − αrt
x(t) + prt

x t − τrt
􏼐 􏼑e

− crt
x t− τrt
( 􏼁

􏼔 􏼕dt + σrt
x(t)dB(t),

(2)

where continuous-time Markov chain rt􏼈 􏼉t≥0 is defined on a
state space S � 1, 2, . . . , m{ }.

On the contrary, migration is a ubiquitous phenomenon
in the nature. Both continuous reaction-diffusion models
and discrete patchy systems could incorporate and explain
the phenomenology of spatial dispersion [29] in the liter-
ature of mathematical ecology. Objectively speaking, patch-
structured models illustrate the spatial heterogeneity of
species, depending on a lot of factors, such as ecological
systems in different geographic types (e.g., nature reserves
and other regions), various food-rich patches of habitats,
and many other circumstances. Besides, models in the
patchy environment include disease systems as well, such as
the two-compartment model of the cancer cell population.
In order to take the dispersal phenomenon into
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consideration, Berezansky et al. [30] introduced the Nich-
olson-type delay system on patches as follows:

x1′(t) � − a1x1(t) − b2x1(t) + b1x2(t) + p1x1(t − τ)e− c1x1(t− τ),

x2′(t) � − a2x2(t) − b1x2(t) + b2x1(t) + p2x2(t − τ)e− c2x2(t− τ),

⎧⎨

⎩ (3)

which includes the novel two-compartment models of
leukemia dynamics and the systems of marine protected
areas.

In particular, considering that the parameters ai of
system (3) are affected by the white noise, Yi and Liu [31]
formulated the stochastic diffusion system which consists of
two patches:

dx1(t) � − a1x1(t) − b2x1(t) + b1x2(t) + p1x1(t − τ)e− c1x1(t− τ)􏽨 􏽩dt + σ1x1(t)dB1(t),

dx2(t) � − a2x2(t) − b1x2(t) + b2x1(t) + p2x2(t − τ)e− c2x2(t− τ)􏽨 􏽩dt + σ2x2(t)dB2(t).

⎧⎪⎨

⎪⎩
(4)

We can further model random shift in different regimes
by a continuous-time Markov chain ℓ(t){ }t≥0 defined on a
state space M � 1, 2, . . . , N{ }. Let ℓ(t){ }t≥0 be right-con-
tinuous and Γ � (ρij)N×N be its generator of ℓ(t){ }t≥0, i.e.,

P ℓ(t + δ) � j ∣ ℓ(t) � i􏼈 􏼉 �
ρijδ + o(δ), if j≠ i,

1 + ρiiδ + o(δ), if j � i,
􏼨

(5)

where δ > 0, ρij ≥ 0 for i≠ j, and 􏽐j∈Mρij � 0, i, j ∈M.
Suppose that ℓ(t){ }t≥0 is irreducible and has the unique
stationary distribution π � (π1, π2, . . . , πN). Hence, we
obtain the stochastic Nicholson-type system under Mar-
kovian switching on the patch structure as follows:

dx1(t) � − a1(ℓ(t))x1(t) − b2(ℓ(t))x1(t) + b1(ℓ(t))x2(t) + p1(ℓ(t))x1(t − τ(ℓ(t)))e− c1(ℓ(t))x1(t− τ(ℓ(t)))􏽨 􏽩dt

+σ1(ℓ(t))x1(t)dB1(t),

dx2(t) � − a2(ℓ(t))x2(t) − b1(ℓ(t))x2(t) + b2(ℓ(t))x1(t) + p2(ℓ(t))x2(t − τ(ℓ(t)))e− c2(ℓ(t))x2(t− τ(ℓ(t)))􏽨 􏽩dt

+σ2(ℓ(t))x2(t)dB2(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

with initial conditions

x(t) � φ(t) � φ1(t),φ2(t)( 􏼁
T
, t ∈ [− τ, 0], ℓ(0) � ℓ0 ∈M,

(7)

where φh ∈ C([− τ, 0]; [0, +∞)) and φh(0)> 0 for h � 1, 2
and τ � maxi∈M τ(i){ }.

We focus on the meaning of parameters with respect to
fish population in marine protected area A1 and fishing area
A2. x1(t) and x2(t) are the number of fish populations in A1
and A2, respectively; for h � 1, 2 and i ∈M, a1(i) and a2(i)

are themortality rate inA1 andA2, respectively; let G(xh(t −

τ(i))) � ph(i)xh(t − τ(i))e− ch(i)xh(t− τ(i)) be the fish growth
rates; p1(i) and p2(i) represent the maximum per adult
yearly birth rate in A1 and A2, respectively; ch(i)> 0; 1/c1(i)

and 1/c2(i) are the number at which the reproduction at
their maximum birth rate in A1 and A2, respectively; τ(i) is
the maturation time; Bh(t) is the standard Brownian motion
defined on the complete probability space (Ω,F,P); and
σh(i)≥ 0, for any i ∈M and h � 1, 2. We assume ℓ(t){ }t⩾0 is

Ft-adapted. Nevertheless, suppose ℓ(t){ }t⩾0 and Bh(t) are
independent of each other, h � 1, 2.

Especially, system (6) can reduce to the model in [32] if
τ(i) ≡ τ, i ∈M. By contrast, our work differs from and
improves [32], which will be depicted further in detail.

In the field of ecology, it is important to use mathematics
to study extinction of species, see [33, 34] and the references
therein. However, no work has yet been done on the
problem of extinction for scalar equation (1), not to mention
the scalar equation withMarkovian switching (2) and system
(4). In order to prove the extinction of species, the con-
ventional method is to construct a proper Lyapunov
function or functional and then estimate the upper bound of
the drift term of its It􏽢o differential. Taking system (6) for
example, x1(t) and x2(t) are likely to appear in the de-
nominator of the expression of LV, and coefficients in front
of them are positive, for a general Lyapunov function
V(x1, x2). Unfortunately, this leads to some difficulties in
finding the upper bound of LV. So, based on this, we give a
new method for investigating extinction of species.
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Especially, system (6) reduces to (1), (2), (4), or the system in
[32] when parameters of system (6) assume some special
values..at is to say, we have derived extinction of the above
systems at the same time.

In this paper, system (6) is more general than the model
of [21, 28, 30–32]. In addition, our results improve and
generalize the corresponding results in these literature
studies.

.e remainder of this paper is built up as follows. In
Section 2, we show the global existence of almost surely
positive solution. .e asymptotic estimates for the solution,
stochastically ultimate boundedness, and boundedness for
the average in time of the θth moment of the solution are
then constructed in Section 3. In Section 4, we discuss the
pathwise properties of the solution. Sufficient conditions for
extinction of species are obtained in Section 5. Numerical
investigations are then given in Section 6. .e last part is a
conclusion.

2. Preliminary Results

To simplify, denote the solution of (6) with initial values (7):

x(t) ≔ x t;φ, ℓ0( 􏼁, (8)

where x(t) � (x1(t), x2(t))T. Let

β1(i) � a1(i) + b2(i),

β2(i) � a2(i) + b1(i), i ∈M.
(9)

We denote R+ � (0, +∞), R2
+ � (x1, x2)

T ∈􏽮

R2: x1 > 0, x2 > 0}, and R2×2
+ � (wuv)2×2 ∈ R2×2: wuv >􏼈

0, u, v � 1, 2}. For any Φ: M⟶ R, let 􏽢Φ � mini∈MΦ(i)

and �Φ � maxi∈MΦ(i). Let |·| denote Euclidean norm in R2.
Denote the trace norm |A| �

����������
trace(ATA)

􏽰
for matrix A.

Lemma 1. Given any initial values (7), system (6) has a
unique solution x(t) ∈ R2

+ for all t ∈ [− τ,∞) almost surely.

Proof. We omit the proof since it is analogous to that of [31]
by making use of the generalized It􏽢o formula (see, e.g.,
.eorem 1.45 in [35]) to 􏽐

2
h�1(xh − 1 − logxh). □

Remark 1. .e delay stochastic Nicholson-type model
under regime switching on patches (6) is a direct ex-
tension of the models in [21, 28, 30–32]. From Lemma 1, it
is worthy to point out that priori conditions α> σ2/2 in
[21] are unnecessary. .erefore, Lemma 1 improves and
generalizes Lemma 2.2 in [21]. In addition, this lemma
shows that both white noise and telegraph noise will not
destroy a great property that the solution of (3) does not
explode.

3. Boundedness

Because of resource constraints, asymptotic boundedness is
the core of the research in ecosystems. And it is the main
purpose of the present section. For simplicity, we use the
following notations. For any i ∈M, denote

K1(θ, i) ≔ a1(i) −
θ − 1
θ

b1(i) − b2(i)( 􏼁 −
1
2

(θ − 1)σ21(i) − (θ − 1),

K2(θ, i) ≔ a2(i) −
θ − 1
θ

b2(i) − b1(i)( 􏼁 −
1
2

(θ − 1)σ22(i) − (θ − 1),

Hh(θ, i) ≔ θ · sup
xh∈R+

− Kh(θ, i)x
θ
h +

ph(i)

ch(i)e
x
θ− 1
h􏼨 􏼩,

�Hh(θ) ≔ maxi∈MHh(θ, i),

A1(θ) ≔
2θ/2

θ(θ − 1)
􏽘
i∈M

πi H1(θ, i) + H2(θ, i)􏼂 􏼃,

A2(θ) ≔
􏽐

2
h�1

�Hh(θ)

θ(θ − 1)
,

A3(θ) ≔ 2θ/2 ·
􏽐

2
h�1

�H(θ)

θ(θ − 1)
, h � 1, 2.

(10)

Firstly, inspired by the work of Wang and Chen [32], we
give this theorem.

Theorem 1. Let θ> 1 such that Kh(θ, i)> 0, h � 1, 2, i ∈M.
Given any initial values (7), solution (x1(t), x2(t)) of (6)
satisfies

limsup
t⟶∞

1
t

􏽚
t

0
E xh(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
θds≤A1(θ), h � 1, 2, (11)

and
limsup
t⟶∞

E x
θ
1(t) + x

θ
2(t)􏼐 􏼑≤A2(θ). (12)

In particular,

limsup
t⟶∞

E|x(t)|
θ ≤A3(θ). (13)

.at is, system (6) is ultimately bounded.

Proof. Define

V1 x1, x2( 􏼁 � x
θ
1 + x

θ
2. (14)

.e generalized It􏽢o formula, together with the fact
ph(i)yhe− ch(i)yh ≤ (ph(i)/ch(i)e) and the elementary in-
equality AεB1− ε ≤Aε + B(1 − ε) for any A, B≥ 0 and
ε ∈ [0, 1], yields
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LV1 x1, x2, y1, y2, i( 􏼁

� − θa1(i)x
θ
1 − θb2(i)x

θ
1 + θb1(i)x

θ− 1
1 x2 +

1
2
θ(θ − 1)σ21(i)x

θ
1

− θa2(i)x
θ
2 − θb1(i)x

θ
2 + θb2(i)x1x

θ− 1
2 +

1
2
θ(θ − 1)σ22(i)x

θ
2

+ θ 􏽘
2

h�1
ph(i)x

θ− 1
h yhe

− ch(i)yh

≤ θ − a1(i) +
θ − 1
θ

b1(i) − b2(i)( 􏼁 +
1
2

(θ − 1)σ21(i) +(θ − 1)􏼢 􏼣x
θ
1􏼠

+ − a2(i) +
θ − 1
θ

b2(i) − b1(i)( 􏼁 +
1
2

(θ − 1)σ22(i) +(θ − 1)􏼢 􏼣x
θ
2

+ 􏽘
2

h�1

ph(i)

ch(i)e
x
θ− 1
h

⎞⎠ − θ(θ − 1) x
θ
1 + x

θ
2􏼐 􏼑

≤ 􏽘
2

h�1
θ − Kh(θ, i)x

θ
h +

ph(i)

ch(i)e
x
θ− 1
h􏼢 􏼣 − θ(θ − 1)V1 x1, x2( 􏼁

≤ 􏽘
2

h�1
Hh(θ, i) − θ(θ − 1)V1 x1(t), x2(t)( 􏼁.

(15)

.erefore, for t> 0,

dV1 x1(t), x2(t)( 􏼁≤ 􏽘
2

h�1
Hh(θ, ℓ(t)) − θ(θ − 1)V1

⎡⎣

· x1(t), x2(t)( 􏼁⎤⎦dt + 􏽘

2

h�1
θσh(ℓ(t))x

θ
h(t)dBh(t).

(16)

.en, (16) implies

0≤E V1 x1, x2( 􏼁( 􏼁≤φθ
1(0) + φθ

2(0) + 􏽚
t

0
􏽘

2

h�1
Hh(θ, ℓ(s))ds

− θ(θ − 1) 􏽚
t

0
EV1 x1(s), x2(s)( 􏼁ds.

(17)

Noting that the Markov chain ℓ(t) has an invariant
distribution π � (πi.i ∈M) and applying the ergodic
property of the Markov chain, it yields

limsup
t⟶∞

1
t

􏽚
t

0
EV1 x1(s), x2(s)( 􏼁ds≤ limsup

t⟶∞

1
θ(θ − 1)

·
1
t
V1 φ1(0),φ2(0)( 􏼁 +

1
t

􏽚
t

0
􏽘

2

h�1
Hh(θ, ℓ(s))ds⎛⎝ ⎞⎠

≤
1

θ(θ − 1)
􏽘
i∈M

πi H1(θ, i) + H2(θ, i)􏼂 􏼃, a. s.

(18)

Furthermore, we have

d e
θ(θ− 1)t

V1 x1(t), x2(t)( 􏼁􏽨 􏽩≤ e
θ(θ− 1)t

􏽘

2

h�1
Hh(θ, ℓ(t))dt + e

θ(θ− 1)t
􏽘

2

h�1
θσh(ℓ(t))x

θ
h(t)dBh(t)

≤ 􏽘
2

h�1

�Hh(θ)e
θ(θ− 1)tdt + e

θ(θ− 1)t
􏽘

2

h�1
θσh(ℓ(t))x

θ
h(t)dBh(t).

(19)

Hence,

e
θ(θ− 1)t

EV1 x1(t), x2(t)( 􏼁≤V1 φ1(0),φ2(0)( 􏼁

+
􏽐

2
h�1

�Hh(θ)

θ(θ − 1)
e
θ(θ− 1)t

−
􏽐

2
h�1

�Hh(θ)

θ(θ − 1)
.

(20)

Consequently, we infer immediately that (12) holds. On
the contrary, according to (12), (18), and the fact that

|x|
θ ≤ 2θ/2 max x

θ
1, x

θ
2􏽮 􏽯≤ 2θ/2V1(x), (21)

it follows that (11) and (13) hold. .e proof is therefore
complete. □

Remark 2. In.eorem 1, the parameter θ is greater than 1 in
the result. Although ultimate boundedness in the θth mo-
ment was derived for θ restricted to the precondition θ > 1,
θth moment of system (6) can be obtained when θ≤ 1 by
Hölder’s equality.

Remark 3. Without regime switching or without migration
and regime switching, .eorem 1 improves the corre-
sponding results in [21, 31]. If τ(i) ≡ τ, system (6) is a direct
extension of the model in [32]. Besides, no proof of ultimate
boundedness in the pth moment is given in [32], which is
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shown in .eorem 1. .erefore, this theorem extends and
improves.eorem 3.1 in [21],.eorem 2.2 in [28],.eorem
3.3 in [31], and .eorem 3.2 in [32].

Theorem 2. Given any initial values (7), solution
(x1(t), x2(t)) of (6) satisfies

limsup
t⟶∞

E|x(t)|≤ limsup
t⟶∞

E x1(t) + x2(t)􏼂 􏼃≤
􏽥p1

􏽢c1eλ
+

􏽥p2
􏽢c2eλ

,

(22)

where λ � min 􏽢a1, 􏽢a2􏼈 􏼉. 7at is, (6) is ultimately bounded in
mean.

Proof. Let V1(t, x1, x2) � eλt(x1 + x2). .en,

E x1(t) + x2(t)( 􏼁≤ e
− λt

V1 0,φ1(0),φ2(0)( 􏼁

+
�p1
􏽢c1e

+
�p2
􏽢c2e

􏼠 􏼡 􏽚
t

0
e

(s− t)λds.

(23)

Finally, (22) follows by letting t⟶∞. .e proof is
therefore complete. □

Remark 4. Compared with .eorem 1, this theorem de-
scribes the case that θ � 1, which does not require any
conditions. If τ(i) ≡ τ, we get (�p1/􏽢c1eλ) + (�p2/􏽢c2eλ)≤ (c/a),
where (c/a) is defined in [32]. So, this theorem improves and
extends .eorem 3.1 in [21] and .eorem 3.1 in [32].

Theorem 3. System (6) is stochastically ultimately bounded.

Proof. By (22), we derive

limsup
t⟶∞

E xh(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
�p1

􏽢c1eλ
+

�p2
􏽢c2eλ

, h � 1, 2. (24)

By the Chebyshev inequality, it yields, for any ε ∈ (0, 1),

limsup
t⟶∞

P xh(t)≥H􏼈 􏼉≤H
− 1 �p1

􏽢c1eλ
+

�p2
􏽢c2eλ

􏼠 􏼡 � ε, (25)

where H � (1/ε)((􏽥p1/􏽢c1eλ) + (􏽥p2/􏽢c2eλ)). .e proof is
therefore complete. □

Remark 5. .eorem 3 can be seen as the extension and
improvement of [31, 32].

4. Asymptotic Pathwise Estimation

We shall estimate a sample Lyapunov exponent in what
follows.

Lemma 2. If a ∈ R and b ∈ R+, then (ax2 + bx/1+

x2)≤K(a) for x ∈ R, where K(a) � (a +
������
a2 + b2

√
/2).

By the properties of quadratic functions, the proof of this
lemma is easy and so is omitted. In the process of finding
K(a), we know that the precondition is a − K(a)< 0. In this
case, we can choose K(a) which satisfies K(a) �

(a +
������
a2 + b2

√
/2). We have to mention that it has no relation

with the sign of parameter a. If a< 0, we get
(a +

������
a2 + b2

√
/2)< − (b2/4a) by simple computation. So,

this lemma is an improvement of Lemma 1.2 in [28] and
Lemma 2.1 in [32].

Theorem 4. Given any initial values (7), solution x(t) of (6)
satisfies

limsup
t⟶∞

1
t
log xh(t)≤ limsup

t⟶∞

1
t
log|x(t)|≤

Q

2
, a. s. (26)

where h � 1, 2, Q � maxi∈M minε∈R+
[Q1(i, ϵ) + Q2(i, ϵ)]􏽮 􏽯

with

Q1(i, ε) �

��������������������������������������������

2β1(i) − σ21(i) − b1(i) + b2(i)( 􏼁ϵ􏼂 􏼃
2

+ 4 p1(i)/c1(i)e( 􏼁
2

􏽱

− 2β1(i) − σ21(i) − b1(i) + b2(i)( 􏼁ϵ􏼂 􏼃

2
,

Q2(i, ε) �

�������������������������������������������

2β2(i) − σ22(i) − b1(i) + b2(i)/ε( 􏼁
2

+ 4 p2(i)/c2(i)e􏼁(
2

􏽱

− 2β2(i) − σ22(i) − b1(i) + b2(i)( 􏼁/ε( 􏼁

2
,

(27)
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for any positive constant ε. Proof. .e generalized It􏽢o formula, together with Lemma 2
and the Cauchy–Schwarz inequality, yields

log 1 + x
2
1(t) + x

2
2(t)􏼐 􏼑≤ log 1 + x

2
1(0) + x

2
2(0)􏼐 􏼑

+ 􏽚
t

0

− 2β1(ℓ(s)) − σ21(ℓ(s)) − b1(ℓ(s)) + b2(ℓ(s))( 􏼁 ∈􏼂 􏼃x2
1(s) + 2p1(ℓ(s))/c1(ℓ(s))e( 􏼁x1(s)

1 + x2
1(s) + x2

2(s)
ds

+ 􏽚
t

0

− 2β2(ℓ(s)) − σ22(ℓ(s)) − b1(ℓ(s)) + b2(ℓ(s))/ ∈( 􏼁􏼂 􏼃x2
2(s) + 2p1(ℓ(s))/c1(ℓ(s))e( 􏼁x2(s)

1 + x2
1(s) + x2

2(s)
ds

− 2 􏽘
2

h�1
σ2h(ℓ(s)) 􏽚

t

0

x4
h(s)

1 + x2
1(s) + x2

2(s)( 􏼁
2 ds + M1(t) + M2(t)

≤ log 1 + x
2
1(0) + x

2
2(0)􏼐 􏼑 + Qt − 2 􏽘

2

h�1
􏽚

t

0

σ2h(ℓ(s))x4
h(s)

1 + x2
1(s) + x2

2(s)( 􏼁
2 ds + M1(t) + M2(t),

(28)

where for any h ∈ 1, 2{ },

Mh(t) � 2􏽚
t

0

σh(ℓ(s))x2
h(s)

1 + x2
1(s) + x2

2(s)
dBh(s), (29)

with the quadratic variation

〈Mh(t), Mh(t)〉 � 4􏽚
t

0

σ2h(ℓ(s))x4
h(s)

1 + x2
1(s) + x2

2(s)( 􏼁
2ds. (30)

According to the exponential martingale inequality (see,
e.g., [36]), for any integer m> 0, we have

P sup
0≤t≤m

Mh(t) − 2􏽚
t

0

σ2h(ℓ(s))x4
h(s)

1 + x2
1(s) + x2

2(s)( 􏼁
2ds

⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

> 2 logm
⎫⎬

⎭ ≤
1

m2, h � 1, 2.

(31)

Since 􏽐
∞
m�1 1/m2 <∞ and Borel–Cantelli’s lemma (see,

e.g., [36]), there existΩ0 ∈ F with P(Ω0) � 1 and an integer
m0 � m0(ω) such that

Mh(t)≤ 2􏽚
t

0

σ2h(ℓ(s))x4
h(s)

1 + x2
1(s) + x2

2(s)( 􏼁
2ds + 2 logm,

h � 1, 2,

(32)

for all ω ∈ Ω0, 0≤ t≤m. Substituting the above inequality
into (28), for any ω ∈ Ω0, m≥m0, 0≤ t≤m, we have

log 1 + x
2
1(t) + x

2
2(t)􏼐 􏼑≤ log 1 + x

2
1(0) + x

2
2(0)􏼐 􏼑

+ Qt + 4 logm,
(33)

which yields

1
t
log 1 + x

2
1(t) + x

2
2(t)􏼐 􏼑≤

1
m − 1

log 1 + x
2
1(0) + x

2
2(0)􏼐 􏼑􏽨

+ Qm + 4 logm􏼃,

(34)

for all ω ∈ Ω0, 0≤m − 1≤ t≤m, m≥m0. Letting m⟶∞
and using the inequality y≤ (1/2)(1 + y2) for any
y ∈ (− ∞, +∞), we obtain

limsup
t⟶∞

1
t
log xh(t)≤ limsup

t⟶∞

1
2(m − 1)

log 1 + x
2
(0)􏼐 􏼑􏽨

+ Qm + 4 logm􏼃 �
Q

2
, a. s.

(35)
.e proof is therefore complete. □

Remark 6. Without migrations, we get

Q1(i) � (

�����������������������������

[2β1(i) − σ21(i)]2 + 4(p1(i)/c1(i)e)2
􏽱

− [2β1(i) −

σ21(i)]/2). By comparison, we find thatQ1(i)≤Ci, where Ci is
defined in [28]. In addition, without migration and regime
switching, we can get Q in.eorem 4 is less than K, where K

is defined in [21]. Furthermore, the condition 2α1 − σ21 −

(b1 + b2)ϵ> 0, 2α2 − σ22 − (b1 + b2)/ϵ> 0 in [31] means
that the parameter ϵ needs to be satisfied:
(b1 + b2)/2α2 − σ22 < ε< 2α1 − σ21/(b1 + b2). However, we
know that this condition is unnecessary from the above
theorem. Despite all this, if we let the parameter ε satisfy
ε ∈ (((b1 + b2)/2α2 − σ2), (2α21 − σ21/(b1 + b2))), we compute
that Q in .eorem 4 is less than Q in [31]. .erefore, the
above work is a promotion of .eorem 4.1 in [21], .eorem
2.2 in [28], and .eorem 4.1 in [31].
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5. Extinction

Sufficient conditions for extinction are the subject of this
section. Unless otherwise stated, we hypothesize
τ(i) ≡ τ, i ∈M in this section. We first rewrite (6) as
follows:

dx(t) � f1(x(t), x(t − τ), ℓ(t))dt + f2(x(t), ℓ(t))dB(t),

(36)

where the operator f1: R
2
+ × R2

+ × M⟶ R2
+ is defined as

f1(x, y, i) �
− β1(i)x1 + b1(i)x2 + p1(i)y1e

− c1(i)y1

− β2(i)x2 + b2(i)x1 + p2(i)y2e
− c2(i)y2

⎛⎝ ⎞⎠,

(37)

the operator f2: R
2
+ × M⟶ R2×2

+ is defined as

f2(x, i) �
σ1(i)x1 0

0 σ2(i)x2
􏼠 􏼡, and dB(t) �

dB1(t)

dB2(t)
􏼠 􏼡.

We first note that

f1(0, 0, i) ≡ 0,

f2(0, i) ≡ 0,
(38)

for i ∈M, whence (6) admits a trivial solution corre-
sponding to φ(0) � 0.

Before our result, we give a lemma.

Lemma 3. For system (36), the terms f1(x, y, i) and f2(x, i)

are locally bounded in (x, y) while uniformly bounded in i.
7at is, for any m> 0, there is Km > 0 satisfying

f1(x, y, i)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ∨ f2(x, i)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Km, (39)

for all i ∈M, x, y ∈ R2
+ with |x| ∨ |y|≤m.

.e proof is not particularly difficult, so we omit the
proof.

Theorem 5. Assume that

2􏽢β1 > �σ21 + �b1 +(1 +
�
2

√
)�b2 + 2 +

1
�
2

√􏼠 􏼡�p1 +(1 +
�
2

√
)�p2,

2􏽢β2 > �σ22 +(1 +
�
2

√
)�b1 + �b2 +(1 +

�
2

√
)�p1 + 2 +

1
�
2

√􏼠 􏼡�p2.

(40)

.en, the solution of (36) satisfies limt⟶∞x(t) � 0, a.s.,
for any initial values (7). .at is, all populations in system
(36) go to extinction with probability one.

Proof

Step 1: let

V2 x1, x2( 􏼁 � x
T

1
1
�
2

√

1
�
2

√ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x � x

2
1 +

�
2

√
x1x2 + x

2
2.

(41)

Obviously, V2 is positive-definite and radially un-
bounded. .at is,

lim
|x|⟶∞

V2 x1, x2( 􏼁 �∞. (42)

.e generalized It􏽢o formula yields

V2 x1(t), x2(t)( 􏼁 � V2 φ1(0),φ2(0)( 􏼁 + 􏽚
t

0
LV2(x(s), x

· (s − τ(ℓ(s))), ℓ(s))ds

+ 􏽚
t

0

z

zx
V2 x1(s), x2(s)( 􏼁􏼢 􏼣f2(x(s), ℓ

· (s))dB(s).

(43)

By computation, we know

LV2(x, y, i)≤ − 2β1(i) − σ21(i) − b1(i) − (1 +
�
2

√
)b2(i) − p1(i) −

1
�
2

√ p2(i)􏼢 􏼣x
2
1

− 2β2(i) − σ22(i) − (1 +
�
2

√
)b1(i) − b2(i) −

1
�
2

√ p1(i) − p2(i)􏼢 􏼣x
2
2

+ 1 +
1
�
2

√􏼠 􏼡p1(i)y
2
1 + 1 +

1
�
2

√􏼠 􏼡p2(i)y
2
2

≤ − λ1x
2
1 − λ2x

2
2 + 1 +

1
�
2

√􏼠 􏼡�p1y
2
1 + 1 +

1
�
2

√􏼠 􏼡�p2y
2
2,

(44)
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where λ1 � 2􏽢β1 − �σ21 − �b1 − (1 +
�
2

√
)�b2 − �p1 − (1/

�
2

√
)

�p2 and λ2 � 2􏽢β2 − �σ22 − (1 +
�
2

√
)�b1 − �b2 − (1/

�
2

√
)

�p1 − �p2.
It is straightforward to see from (40) that λh > 0, h �

1, 2. For simplicity, we let

F1(x) � min λ1, λ2􏼈 􏼉|x|
2
,

F2(x) � 1 +
1
�
2

√􏼠 􏼡max �p1, �p2􏼈 􏼉|x|
2
.

(45)

By condition (40) again, we obtain that

F(x) ≔ F1(x) − F2(x)

� min λ1, λ2􏼈 􏼉 − 1 +
1
�
2

√􏼠 􏼡max �p1, �p2􏼈 􏼉􏼢 􏼣|x|
2 > 0, x≠ 0.

(46)

Applying (44) and (46), we derive

􏽚
t

0
LV2(x(s), x(s − τ(ℓ(s))), ℓ(s))ds

≤ 􏽚
0

− τ
F2(x(s))ds − 􏽚

t

0
F(x(s))ds.

(47)

Substituting the preceding equality into (43), it yields

V2 x1(t), x2(t)( 􏼁≤V2 φ1(0),φ2(0)( 􏼁 + 􏽚
0

− τ
F2(x(s))ds

− 􏽚
t

0
F(x(s))ds

+ 􏽚
t

0

z

zx
V2 x1(s), x2(s)( 􏼁􏼢 􏼣f2(x(s), ℓ

· (s))dB(s).

(48)

.en, the nonnegative semimartingale convergence
theorem (see, e.g., [37]) implies

limsup
t⟶∞

V2 x1(t), x2(t)( 􏼁<∞ a. s. (49)

Moreover, we obtain from (48) that

E 􏽚
t

0
F(x(s))ds ≤V2 φ1(0),φ2(0)( 􏼁 + 􏽚

0

− τ
F2(x(s))ds.

(50)

.en, letting t⟶∞, together with the Fubini the-
orem, we have

E 􏽚
∞

0
F(x(t))dt <∞. (51)

Let Ak � ω|Y(ω) � 􏽒
∞
0 F(x(s,ω))ds> 2k􏽮 􏽯, where

k � 1, 2, . . .. Obviously, Ak􏼈 􏼉
Ak+1{ }. Combining Che-

byshev’s inequality and (51), we see that
􏽐
∞
k�1 P(Ak)<∞. By Borel–Cantelli’s lemma, one can

show that P(limk⟶∞Ak) � P ω|Y(ω) �∞{ } � 0, that
is,

􏽚
∞

0
F(x(t))dt <∞ a. s. (52)

Step 2: from (52), we observe

lim inf
t⟶∞

F(x(t)) � 0, a. s. (53)

One now needs to consider

lim
t⟶∞

F(x(t)) � 0 a. s. (54)

If the above conclusion would not hold, then
P limsupt⟶∞F(x(t))> 0􏼈 􏼉> 0. So, there is
ε ∈ (0, (1/3)) satisfying

P Ω1( 􏼁≥ 3ε, (55)

where

Ω1 � limsup
t⟶∞

F(x(t))> 2ε􏼨 􏼩. (56)

Noting that Lyapunov function V2(x(t)) and the so-
lution x(t) of (6) are all continuous, together with (49),
it yields

sup
− τ≤t<∞

V2(x(t))<∞, a.s. (57)

Define

](r) � inf
|x|≥k

V2(x), for k> 0. (58)
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Clearly,

sup
− τ≤t<∞

](|x(t)|)≤ sup
− τ≤t<∞

V2(x(t))<∞, a. s. (59)

In addition, by (42), we get

lim
k⟶∞

](k) �∞. (60)

So,

sup
− τ≤t<∞

|x(t)|<∞, a. s. (61)

Recalling (7), we know that the initial values satisfy
φh ∈ C([− τ, 0]; [0, +∞)) for h � 1, 2. We therefore
could find an integer m> 0, depending on ε, sufficiently
large for |φ(s)|<m for s ∈ [− τ, 0] almost surely, while

P Ω2( 􏼁≥ 1 − ε, (62)

where Ω2 � sup− τ≤t<∞|x(t)| <m􏼈 􏼉. By (55) and (62),
one implies

P Ω1 ∩Ω2( 􏼁≥P Ω1( 􏼁 − P Ωc
2( 􏼁≥ 2ε, (63)

where Ωc
2 is the complement of Ω2. Let

ρ1 � inf t≥ 0: F(x(t))≥ 2ε{ },

ρ2j � inf t≥ ρ2j− 1: F(x(t))≤ ε􏽮 􏽯, j � 1, 2, . . . ,

ρ2j+1 � inf t≥ ρ2j: F(x(t)) ≥ 2ε􏽮 􏽯, j � 1, 2, . . . ,

σm � inf t≥ 0: |x(t)|≥m{ }.

(64)

From (53) and the definitions of Ω1 and Ω2, we have

Ω1 ∩Ω2􏼈 􏼉 ⊂ σm �∞􏼈 􏼉∩ ∩
∞

j�1
ρj <∞􏽮 􏽯􏼠 􏼡􏼨 􏼩. (65)

Hence, we define ζ(t){ } � x(t∧ σm)􏼈 􏼉 for t> − τ, and
its differential is

dζ(t) � 􏽥f1(t)dt + 􏽥f2(t)dB(t), (66)

where

􏽥f1(t) � f1(x(t), x(t − τ), ℓ(t))I 0,σm[ )(t),

􏽥f2(t) � f2(x(t), ℓ(t))I 0,σm[ )(t).
(67)

Here, IA is the indicator function of A. Recalling
Lemma 3, we know

􏽥f1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ∨ 􏽥f2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Km, a. s, (68)

for any t≥ − τ, ℓ(t) ∈M, and |x(t)|∨ |x(t − τ)|≤m.
Moreover, the definition of yields |ζ(t)|≤m, t≥ 0. We
also note that, for all ω ∈ Ω1 ∩Ω2 and j≥ 1,

F ζ ρ2j− 1􏼐 􏼑􏼐 􏼑 − F ζ ρ2j􏼐 􏼑􏼐 􏼑 � ε,

F(ζ(t))≥ ε, t ∈ ρ2j− 1, ρ2j􏽨 􏽩.
(69)

In the close ball Sm � x ∈ R2: |x|≤m􏼈 􏼉, F(·) is uni-
formly continuous. .erefore, there exists ξ � ξ(ε)> 0
small sufficiently such that

|F(ζ) − F(ζ)|< ε, ζ, ζ ∈ Sm with |ζ − ζ|< ξ. (70)

For ω ∈ Ω1 ∩Ω2, we emphasize that if |ζ(ρ2j− 1 + t) −

ζ(ρ2j− 1)|< ξ for some T> 0 and t ∈ [0, T], then
ρ2j − ρ2j− 1 ≥T. Furthermore, let the number
T � T(ε, ξ, m)> 0 be small enough such that

2K
2
mT(T + 4)≤ εξ2. (71)

By (63) and (65), we can obtain that

P ρ2j <∞􏼐 􏼑≥ 2ε. (72)

In particular, if ρ2j <∞, then |ζ(ρ2j)|<m. Hence, the
definition of ζ(t) implies ρ2j < σm. So,

ζ(t,ω) � x(t,ω), (73)

for all 0≤ t≤ ρ2j, ω ∈ ρ2j <∞􏽮 􏽯. .en, from the
Hölder inequality and the Burkholder–Davis–Gundy
inequality, it follows that
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E I ρ2j− 1<∞􏼈 􏼉
sup0≤t≤T ζ ρ2j− 1 + t􏼐 􏼑 − ζ ρ2j− 1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼔 􏼕

≤E I ρ2j− 1<∞􏼈 􏼉
sup
0≤t≤T

􏽚
ρ2j− 1+t

ρ2j− 1

dζ(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
⎡⎣ ⎤⎦

� E I ρ2j− 1<∞􏼈 􏼉
sup
0≤t≤T

􏽚
ρ2j− 1+t

ρ2j− 1

􏽥f1(s)ds + 􏽚
ρ2j− 1+t

ρ2j− 1

􏽥f2(s)dB(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
⎡⎣ ⎤⎦

≤ 2E I ρ2j− 1<∞􏼈 􏼉
sup
0≤t≤T

􏽚
ρ2j− 1+t

ρ2j− 1

􏽥f1(s)ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ 􏽚
ρ2j− 1+t

ρ2j− 1

􏽥f2(s)dB(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ 2TE I ρ2j− 1<∞􏼈 􏼉
sup
0≤t≤T

􏽚
ρ2j− 1+t

ρ2j− 1

􏽥f1(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
ds􏼢 􏼣 + 8E I ρ2j− 1<∞􏼈 􏼉

sup
0≤t≤T

􏽚
ρ2j− 1+t

ρ2j− 1

􏽥f2(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
dB(s)􏼢 􏼣

≤ 2K
2
mT(T + 4),

(74)

which together with (71) and the Chebyshev inequality,
imply easily that

P ρ2j− 1 <∞􏽮 􏽯∩ sup
0≤t≤T

ζ ρ2j− 1 + t􏼐 􏼑 − ζ ρ2j− 1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ ξ􏼨 􏼩􏼠 􏼡≤ ε.

(75)

Obviously, we observe that ρ2j− 1 <∞ if ρ2j <∞. Hence,
by (72) and (75), we can derive that

P ρ2j <∞􏽮 􏽯∩ sup
0≤t≤T

ζ ρ2j− 1 + t􏼐 􏼑 − ζ ρ2j− 1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ξ􏼨 􏼩􏼠 􏼡

� P ρ2j <∞􏼐 􏼑 − P ρ2j <∞􏽮 􏽯∩ sup
0≤t≤T

ζ ρ2j− 1 + t􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌􏼨􏼠

− ζ ρ2j− 1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌≥ ξ􏼛􏼓

≥ ε.
(76)

.is, together with (70), we can get that

P ρ2j <∞􏽮 􏽯∩ ρ2j − ρ2j− 1 ≥T􏽮 􏽯􏼐 􏼑≥ ε. (77)

Recalling (51), (69), and (77), for all ω ∈ Ω1 ∩Ω2 and
j≥ 1, we compute

∞>E 􏽚
∞

0
F(x(t))dt

≥ 􏽘
∞

j�1
E I ρ2j<∞􏼈 􏼉 􏽚

ρ2j

ρ2j− 1

F(ζ(t))dt􏼢 􏼣

≥ ε􏽘
∞

j�1
E I ρ2j<∞􏼈 􏼉

ρ2j − ρ2j− 1􏼐 􏼑􏼔 􏼕

≥ εT 􏽘
∞

j�1
ε �∞,

(78)

which is a contradiction. Consequently, we infer (54).

Step 3: by (46) and (54), we now derive limt⟶∞x(t) �

0, a. s. .e proof is therefore complete. □

Corollary 1. Assume that are nonnegative constants,
τrt
≡ τ ≥ 0, and

2min
rt∈S

αrt
􏽮 􏽯> max

rt∈S
σrt

􏽮 􏽯
2

+ 3 +
3

�
2

√

2
􏼠 􏼡max

rt∈S
prt

􏽮 􏽯. (79)

.en, solution x(t) of (2) obeys

lim
t⟶∞

x(t) � 0, a. s., (80)

for any initial value x(t) � ϕ(t), t ∈ [− τ, 0],

ϕ(0)> 0,ϕ ∈ C([− τ, 0]; [0, +∞)). .at is, all populations in
equation (2) go to extinction with probability one.

Corollary 2. Assume that ah, bh, ph, ch, σh, τ are nonneg-
ative constants, h � 1, 2, and

2a1 > σ
2
1 + b1 +(

�
2

√
− 1)b2 + 2 +

1
�
2

√􏼠 􏼡p1 +(1 +
�
2

√
)p2,

2a2 > σ
2
2 +(

�
2

√
− 1)b1 + b2 +(1 +

�
2

√
)p1 + 2 +

1
�
2

√􏼠 􏼡p2.

(81)

.en, solution x(t) of (4) obeys

lim
t⟶∞

x(t) � 0, a. s., (82)

for any initial value xh(t) � ϕh(t), t ∈ [− τ, 0], ϕh

(0)> 0,ϕh ∈ C([− τ, 0]; [0, +∞)). .at is, all populations in
model (4) go to extinction with probability one.

Remark 7. .is theorem reveals that the solutions of (6) will
all tend to the origin asymptotically with probability one
when the intensities of noises and the parameters satisfy
condition (40). However, [21, 28, 31, 32] do not study ex-
tinction of populations. Besides, this method can be ex-
tended to research extinction in the above literature studies.
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Corollaries 1 and 2 give the conditions of extinction of (2)
and (4), respectively. .erefore, our work is the extension of
[21, 28, 31, 32].

6. Numerical Simulations

Based on [38], we show numerical simulations in the present
section.

Here, we consider model (6) with the same initial data
φ1(0) � 1, φ2(0) � 0.5 and the same ℓ(t){ }t≥0 on
M � 1, 2, 3{ } with

Γ �

− 10 4 6

2 − 3 1

3 5 − 8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (83)

.en, we know the Markov chain ℓ(t)t≥0 is irreducible
and has a unique stationary distribution
π � (0.1845, 0.6019, 0.2136).

In Figure 1, we give a simulation of the sample path of
ℓ(t)t≥0 with ℓ(0) � 3.

In Figure 2, we can choose a1 � [1, 2, 3];
b1 � [0.12, 0.23, 0.22]; p1 � [4, 5, 6]; c1 � [0.4, 0.5, 0.6];

σ1 � [1.2, 1.1, 2]; a2 � [3, 1, 2]; b2 � [0.23, 0.16, 0.12]; p2 �

[7, 4, 3]; c2 � [0.3, 0.4, 0.5]; σ2 � [0.45, 1.5, 0.25]; τ �

[1, 2, 3]. It is easy to see that 1 � a22 < (σ222/2) � 1.125 when
ξ(t) � 2. .ere is a good agreement between Lemma 1 and
Figure 2. By .eorem 2, we know ( �p1/ 􏽢c1eλ)+

( �p2/ 􏽢c2eλ) � 14.1020. Furthermore, we get Q � max
9.5553, 6.3244, 3.8081{ } by calculation. .erefore, condi-
tions of .eorem 4 have been checked. So,
lim supt⟶∞(1/t)lnxh(t)≤ 4.7777, a. s.

In Figure 3, we can choose a1 � [2.1, 2.2, 2]; b1 �

[0.11, 0.13, 0.12]; p1 � [3.2, 3, 3.5]; c1 � [0.83, 0.85, 0.86];

σ1 � [0.62, 0.61, 0.63]; a2 � [2, 2.1, 2.2]; b2 � [0.11, 0.13,

0.12]; p2 � [3.1, 3.3, 3.2]; c2 � [0.81, 0.8, 0.83]; σ2 � [0.71,

0.75, 0.71]. Let θ � 2. .en, conditions of .eorem 1 could
be checked. By calculation, we get lim supt⟶∞(1/t)
􏽒

t

0 E|xh(s)|θds≤ 31.9797, lim supt⟶∞E(xθ
1(t) + xθ

2(t))≤
19.3208, lim supt⟶∞E|x(t)|θ ≤ 38.6416. Figure 3 clearly
supports this result.

In Figure 4, we can choose a1 � [17, 18, 19]; b1 �

[0.14, 0.35, 0.15]; p1 � [4.55, 6, 5.43]; c1 � [0.8, 0.5, 0.6]; σ1
� [0.5, 0.45, 0.12]; a2 � [16.5, 16.9, 17.5]; b2 � [0.5, 0.13,

0.22]; p2 � [3.23, 4.67, 6]; c2 � [0.3, 0.4, 0.8]; σ2 � [0.49,

1, 0.65]; τ � [3, 3, 3]. By calculation, we get τ(1) � τ(2) �

τ(3) � 3, 35 � 2􏽢β1 > �σ21 + �b1 + (1 +
�
2

√
) �b2 + (2 + (1/

�
2

√
) �

)�p1+ (1 +
�
2

√
)�p2 ≈ 32.5350, and 33.28 � 2􏽢β2 > �σ22 + (1+�

2
√

)�b1 + �b2 + (1 +
�
2

√
)�p1 + (2 + (1/

�
2

√
))�p2 ≈ 33.0729.

.erefore, conditions of .eorem 5 have been checked.

.us, from .eorem 5, all species become extinct. Figure 4
clearly supports this result.

ξ (
t)

0

1

2

3

4

5

6

200 400 600 800 10000
Time t

ξ (0) = 3

Figure 1: Sample path of ℓ(t){ }t≥0 with ℓ(0) � 3.
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Figure 2: Numerical solutions of (6) with a1 � [1, 2, 3]; b1 � [0.12,

0.23, 0.22]; p1 � [4, 5, 6]; c1 � [0.4, 0.5, 0.6]; σ1 � [1.2, 1.1, 2];
a2 � [3, 1, 2]; b2 � [0.23, 0.16, 0.12]; p2 � [7, 4, 3]; c2 � [0.3, 0.4,

0.5]; σ2 � [0.45, 1.5, 0.25]; and τ � [1, 2, 3].
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7. Conclusions

By the conclusion of Lemma 1, it is worthy to point out that
the Brownian noise and colored noise will not destroy a great
property that the solution of (6) may not explode. Especially,
system (6) reduces to (1)–(4) or the model in [32] when
parameters of system (6) take some special values. From
Lemma 1, the condition α> (σ2/2) in [21] is too strict and

unnecessary. In .eorem 1, we comprehensively analyze
ultimate boundedness in the θth moment and boundedness
for the average in time of the θth moment of solution, which
is the improvement of .eorem 3.1 in [21], .eorem 2.2 in
[28], .eorem 3.3 in [31], and .eorem 3.2 in [32]. In
.eorem 4, we find an upper bound Q/2 of the sample
Lyapunov exponent. When parameters of system (6) take
some special values, we compute that the upper bound Q/2 is
less than the corresponding upper bound in [21, 28]. Fur-
thermore, we find that the condition 2α1 − σ21 − (b1+

b2)ϵ> 0, 2α2 − σ22 − b1 + b2/ϵ> 0 in [31] is not necessary.
Despite all this, if we let parameter ϵ satisfy the above
conditions, we compute that Q/2 is less than the upper
bound in [31]. One point should be stressed is that the
method for extinction in.eorem 5 can be used successfully
for the models in [21, 28, 31, 32]. And then, Corollaries 1 and
2 give the conditions of extinction of (2) and (4), respec-
tively. From Remarks 1–7, our work is a generalization and
promotion of the corresponding work in [21, 28, 30–32]. To
some extent, our proposed approaches are both more robust
and more efficient than the existing methods.
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