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The primary motivation of the paper is to define a new class Chs («, 8, ) which consists of univalent functions associated with
Chebyshev polynomials. For this class, we determine the coefficient bound and convolution preserving property. Furthermore, by
using subordination structure, two new subclasses of Ch; (a, 3,y) are introduced and denoted by M (1,,1,,s) and N (A;,1,,s),
respectively. For these subclasses, we obtain coefficient estimate, extreme points, integral representation, convexity, geometric
interpretation, and inclusion results. Moreover, we prove that, under some restrictions on parameters, Chs (a, 8,y) = N (A}, 1,, 5).

1. Introduction

Let of be the class of analytic univalent functions in the open
unit disk:

D={zeC: |z|<1}, (1)

with Taylor expansion series of the form
fz)=z+ Z akzk. (2)
k=2

Also, denote by & the class of univalent functions which
are normalized by f(0)= f'(0)-1=0, see [1, 2]. Fur-
thermore, suppose that /" be the subclass of & consisting of
functions with negative coefficients of the type:

f(2)=2z- Z akzk, a, =0. (3)
k=2

The significance of Chebyshev polynomials in nu-
merical analysis is very important in both practical and
theoretical points of view. There are four kinds of such
polynomials. Many researchers consider orthogonal
polynomials of Chebyshev and obtain many interest
results.

The Chebyshev polynomials of the first and second kinds
are well known and introduced by

T,(t) =cos and U, (t) = w
sin 6

where t = cos 6 and n is the degree of polynomial. For more
details, one may refer to [1-6]. The polynomials in (4) are
connected by the following relations:

,(-1<t<1), (4)

dar, (t) _aU (),

dt (5)
Tn (t) = Un (t) - tUn—l (®),

2T, (1) = U, (£) = U,y (8). (©6)

We note that if ¢t = cos 0, where 6 € (-n/3,7/3), then
1

H(z,t)=——————
1-2cos 0z + 2°

< sin(k+1)0 @)
_1+Zsm( + )Zk

sin 0 » (z€D)

k=2

Also, we can write
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2
H(Z,t):1+U1(t)Z+U2(t)z2+..., ®
(zeD, —1<t<1),
where
sin (n arccos t)
U, (t)=—F7—"> (neN), (9)

Vi-g o

are the Chebyshev polynomials of the second kind, see [7-9].
The Hadamard product (convolution) for functions

f(2)=2z- Z akzk,
k=2

- (10)
g(z) =z - Z bkzk,
k=2
is denoted by f * g and defined as follows:
(fx9) (@ =z-Y ahz* =(g*f)(2), (zeD). (11)

k=2

The generating function of the first kind of Chebyshev
polynomial T, (¢), t € [-1,1] is given by

T ()" = ——, e D), 12
Z() 1_mz(z ) (12)
see [10].
Now, we consider the functions:
H,(z) =1+(2 cos 0+ 1)z — H(z,1),
(13)
1-tz
H,(z)=1+(1+cos )z ————,
2(2) ( ) 1-2tz +2°
V(2) = (H, * Hy) * (H, * H,) * f (2), (14)

where f(z)=z-Yp,az" € #/ and “x” denotes the
convolution. By a simple calculation, we conclude that
V(z) € / and in the form

Vi =z-Y 120 )Wak'zk,

k=2

(15)

V' (2)+2V"(2) - 1] |

Y& KT (t)sin” (k + 1)6/sin® fa, 2" |

Journal of Function Spaces

where 0 € (—n/3,7/3) and t = cos 6.
Let Chy(a, 3, y) denote the subclass of .4 consisting of
functions of form (15) satisfying the condition:
V' (2) +2V" (2) —1|<
29V (2) a1+ By

where 0<a<1, 0<f<1, 0<y<1, 0<d<1, and V(2) is
given by (15), see [11].

(16)

2. Main Results

In this section, we introduce a sharp coeflicient bound for
V (z) € Chs(a,f3,y). Also, convolution preserving property
under parameters « and f is proved.

Theorem 1. V (z) € Chy(a, f,y) if and only if
i k (k + 2y8)T; (t)sin” (k + 1)0

.2
) sin” 6

a, <0y (2-a(1+p). (17)

Proof. Let inequality (17) hold true, and suppose
z €0D = {z € D: |z| = 1}. Then, we obtain

[V'(2) +2V" (2) = 1| = 8|29V (2) — a(1 + B)y|

[ka(t) (sin (k + 1)6)] akzk

sin 0

z Zyka (t)sm (k+1)8 Zk_l
s sin® 0

- 62y -

-a(l+p)y

0o 2 .2
_ Z k(k+ 2y6)T.k (Zt)sm (k+ 1)9_ 3y(2 - a(1 +p)) <O0.
Pt sin” 6

(18)

Hence, by maximum modulus theorem, we conclude
that V (2) € Chg(a, 3, ).

Conversely, let V (z), defined by (15), be in the class
Chg (e, 5,7), so condition (16) yields

Since, for any z, |[Rez| < |z|, then

= 19
29V’ (2) - «(1 + P)y| |2y — ¥ 29kT7 (t)sin® (k + 1)6/sin’ O,z — (1 + ﬁ)y| (19)
Yo Tk(t)sm (k + 1)0/sin’ G[kz]akz ! 5 (20)
<.
y(2 a(1+p) - Y, Ti(t)sin” (k + 1)6/sin” 0[2yklaz""

By letting z — 1 through real values, we obtain
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S TR (t)sin” (k+1)0 S Ty (£)sin” (k +1)0
Zf[k ]aks6y(2—a(1+ﬁ))—zf[(xy6k]ak, (21)
i sin” 6 v sin” 0
. ) sin 02 —a(1+B)\ 0
d th letes th f. O —— .
ane this compietes The proo B = <1 +< T, (Dsin (k + 1)0 ) k(k+2y0) (1 +p)
Remark 1. We note that the function, (24)
.2
sin” 0)yd (2 —a(l +
W ey = 2 - I O RSO
4(1 + yd)cos™20 sin”"30
Proof. (i) It is sufficient to show that
shows that inequality (17) is sharp. 5 5
i k(k +2y8)T; (t)sin” (k + 1)6a b <1 (25)
Theorem 2. If f(z2)=z-Y%, a2 and g(z)=z- & sin? 00y (2 —a(1+p)[a*] ©*
Y, bk are in the class Chg(a, B, y), then
. " By using the Cauchy-Schwarz inequality from (31),
(i) (f = g)(z) belongs to Ché((x,ﬁz, y)[a*], where we obtain
s —(S‘; e ‘g‘;ﬁ{?) T § Kbzt o
P RS+ Ty B kzzsinz 08y (2 —a(l+p)[a’] k=T
(23)
(ii) (f * g)(2) belongs to Chy(a, B*, ), where Hence, we find the largest a* such that
& k(k +2y8)sin’ (k + 1)6 & k(k + 2pd)sin’ (k+ 1) ——
Z 2 14 ” ao < Z 2 14 akb <l (27)
Ssin” 00y(2—a” (1+P)) = sin” 08y (2 — a(1 + B))
<Fo f(0)=F(0),
This inequality holds if u u (30)

sin” 08y (2 — a(1 + ) 2-a(1+)

Kk 20 (Osint (k+ 06~ 2-a1+ )
or equivalently
o_ 2 (sin02-a(l+p)Y w
ST R T\ T (wsin(k + 18 ) k(k+2y0) (1 + B)
(29)

(ii) By using the same techniques as in the part (i), we
can easily prove the part (ii), so the proof is
complete. O

3. Subclass of Chy(a, B, ) and Their
Geometric Properties

In this section, we introduce two new subclasses of
Chg(a, B, y) and conclude their geometric properties.

For analytic functions f (z) and F(z) in D, we say f is
subordinate to F, written f<F, if there exists a function w
analytic in D, with w(0)=0 and |w(z)|<1 such that
f(2z) = F(w(z)), see [3, 12]. If F is univalent, then

f(D) ¢ F(D).

Let M (A}, A,, s) consist of all analytic functions g(z) € D
for which g(0) =1 and

P AL+ -1)1Q-9)z

31
9() 1+1,z (31)
where -1<1,<A,<1, 0<A,<1, and 0<s<1. Let
N(A,,A,,s)  denote the «class of all functions
V (z) € Chg(a, B,y) for which
zV' (2)
V) e M(A,Ay,5), (32)

where V (z) is given by (15).

Theorem 3. V(z) € N (A, A,,s) if and only if

(k=1 (A, +1) [T, ()sin (k + 1)0\
(A, -A)(1 —s))( sin @ ) %<1 (33)

[ee]

kz_;(n

Proof. LetV (z) € N(A;,A,,s); then, by (16), (31), and (32),
we have
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| Y2, T; (t)sin” (k + 1)8/sin” O[(k — 1)]a;2" - (34)
[(Ay = 1) (1= 5) = 32, T2 ()sin® (k + 1)0/sin® O[A, (k- 1) + (Ay - 1) (1 - 9)]ape"|
which implies that
Re Y Ti (t)sin® (k + 1)6/sin” fa, 2" - (35)
(A = 1) (1 =) = 32, T7 (t)sin® (k + DO/sin® O[A, (k- 1)+ (A, =) (1 -s)]az" |

Now, we choose the values of z on the real axis, and
letting z — 17, we get the required result.

| V(z)-2zV'(2)

Y]

Conversely, assume that condition (33) holds true. We
must show that V(z) € N (14,4,,s) or equivalently

_ |
M2V’ (2) = (A, + (A, =) (1= 9)V (s)| b

However, we have (36)
- | ¥, Ti (t)sin” (k + 1)0/sin” Oa, |
[(A, =2 (1 =s) = ¥, T2 (t)sin® (k + 1)6/sin® B[, (k— 1) + (A, — 1,) (1 = 5)]|
By using (33), we get [Y|<1, so the proof is Then, the values of X lie in the circle.
complete. O
Corollary 1. Let V € N (A, Ay, s); then, Proof. By (31) and (32), we have
I+ +(A, =A) (A -9))W
- (=21 (1 = 9) (T (sin (k + 1)6/sin 0)’ 37 X=arib= + (s +(12+A é\),((z) IWE - (w21 <).
ST, A (=9 + (4, + 1) (k- 1) ? (39)
Theorem 4. Let A, #1, V(z) € N(A}, Ay, s), and Then,
zZV' (2) )
= = . 38
v ¢ +ib=X (38)
(a+ib)(1+A,W(2) =1+, + (A, = A;) (1 - 5))W (2) (40)
ora-1+ib=[A+(A, —A)(1-5)—al, —ibL,|W (2).
After a simple calculation, we obtain Theorem 5. If
A +1 K +2y8(k = 1) + yad(1+ p)
1-L, L+, -4) -9 (A -1)1-97 2 < . (43)
[a_ » (4, 1—2/\§ 1 +b2<# . L -A)(1-s) Sy2—a(l+p)
(41) then Chg(a, B,y) = N (A, A,,9).
Hence, the value of X lies in the circle with center at
Proof. By equation (32), we have
<1—/12(/12+(A2—A1)(1—s)),0) (42) N(A;,A,,5) € Chy(a, B, ). (44)

1-15

and radius (A, —A,) (1 -s)/1 —/\%. O

Now, assume that V' € Chs (a, 3, 9); then, by Theorem 1,
we have
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0 . 2
S k(k+ zm(%(’;”)e) a, <8y (2 — a(1+p)).
k=2

(45)

By Theorem 3, it is enough to show that (33) holds true,
which is possible when

Since k starts from 2, then k — 1> 1, and hence, from the
last inequality, we obtain the required result. O

In the next theorems, we prove the inclusion property
and convex combination concept. Also, extreme points and
integral representation are introduced.

[1 N (()l: - 1/1)())L(21+ 1))] <5 écz(k + (zlyi)ﬁ)), (46)  Theorem 6. Let 0<s, <s, <1; then,
- -5 y2-a
- s N (A 8)[1] € N (A, 45) s3] (48)
or equivalently
(k-1))(A, + 1) K +2p8 (k- 1) + dya(1 + B)
L -A) (- s) Sy (2—a(l+p) : (47) ﬁ;(\)fzf Suppose f € N (A, 1,,5)[s,]; then, by Theorem 3, we
& (k=1)(A,+1) \[/Ti(t)sin(k +1)6)°
kzz( 0 1) (=5[] g a, <0y (2 —a(l+p)). (49)
We have to prove
® (k=1)(A, + 1) \ (T4 (t)sin (k + 1)0° B
I;(1+ 0L ) (=) 5 a <8y (2-a(l+p)). (50)
However, the last inequality holds true if We have to prove thatif f;(2) (j=1,2,..., m) is in the
B _ class N (11,1, s), then the function L(z) = Y d,f.(z) is
1+ (k=1D@, +1) < (k=D +1) (51)  also in N(A4,1,,s), where Z] 1 dj=1. We hajve o

oA (-s)

and this inequality by hypothesis (s, <s;) definitely holds
true, so the proof is complete. O

(A =A)(1-9)"

Theorem 7. N (A,,1,,s) is a convex set.

Proof. We have to prove that if

(o8} . 2
Vi (2) =z—Z<M> a2 (=12...,m),

pe? sin 6
(52)
is in the class N (;,4,,s), then the function,
L(z) = Zdjvj (2), (53)
=1

is also in N (1, A,, s), where Y = 1. However, we have

]11

& & (T wsin(k + DO .
L(Z) —Z-];(Z(T) djak’j>z . (54)

i1

L(z)=z- i(i djak,j>z’<. (55)
k=2 \ j=1

Since, by Theorem 3,

at A+ 1) (k=1)\[T.(t) k+1)0
51+ et D) (e Y (§ )

C&[R(L L M+ (k-1)\ (T ®)sin(k + 1O
) z[l;<l " (-4,)( —S)>< sin 0 > |4

(56)

so L € N(A,A,,s) and the proof is complete. O

Theorem 8. The function V| (z) = z and
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_ (A =1,)(1-5) sin 6 P
Vi@ ‘Z_(()t2 ") (A-9)+ (M, + 1) (k- 1))<Tk(t)sin(k+ 1)9) Gz (k22)

are the extreme points of N (A, A, s). where d; >0 (k>1) and Y2, [1]d, = 1.

Proof. We have to prove that L € N (A, 1,,s) if and only if

(o)

L(2) = Y [11d, Vi (2), (58)

k=2

Proof. Let L € N(Ay,A,,s). If we set

_(/12—/\1)(1—5)+(/\2+1)(k_1) sin 6 2
dy = (A, —,11)(1 —-5) (Tk (t)sin (k + 1)9) a,  (k=2),

we get d;. >0, and if we putd, =1 - Y7, dy, then we obtain

& (A, —A)(1-5) sin 6 2
Lz)=z gé(AZ—AI)(l—s)+()t2+1)(k—1)(Tk(t)sin(k+1)6> dz

=z- de(z—Vk(z))
k=2

=Y diVy(2).
k=2
Conversely, suppose Then, we have
L(z) = Z [11d,V (2). (61)
k=2

L(z) =d,\V,(2) + ) dV,(2)

k=2
- (A =A)(1-5) sin 6 2
dl“; T )-8+ (A + 1) (k- 1)<Tk(t)sin(k+ 1)9) dz
R (A=) (1-s) sin 6 2
‘z'k; A (1—s)+ (A + 1) (k- 1)<Tk(t)sin(k+ 1)6) hz’

(57)

(59)

(60)

(62)
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Since
§d<l+(/\2+1)(k—1)>( A =-4)(A-s) >><
ST -2 -9)\ (L -A) Q-9+ (4, + 1) (k-1)
. 2 . 2
o S}n 0 T, (t) 51.n(k +1)0 (63)
T, (t)sin(k +1)0 sin 0
:dezl—d1<l,
k=2
therefore, by Theorem 3, we conclude the result. O Data Availability

Theorem 9. Let f € N(A,1,,5); then,

. exp(r -, +(A,-A)(1- s))W(t)dt) (64)

0 t(1-A,W (1))

where |W (2)| < 1.

Proof. By letting U (z) = zV'/V, since f € N (A, 1,,5), so

L +(h+(A -A) (1 -9)z

U@ 1+A,z (65)
or equivalently
U(z)-1 |
U@ -+ (- aya-a) <
Therefore,
U(z)-1 B
U, =+ O —h)a-s) ¥ & (w@l<h.
(67)
Hence, we can write
Vi(z) 1-(A+(-1)(1-9)W(2) (68)
Viz) z(1-L,W (2)) '
After integration, we get the required result. O

4. Conclusion

Univalent functions have always been the main interests of
many researchers in geometric function theory. Many
studies recently related to Chebyshev polynomials revolved
around classes of analytic normalized univalent functions. In
this particular work, the geometric properties are obtained
for functions in more general class denoted by Ch; (a, 3, y)
using the Chebyshev polynomials associated with the con-
volution structure. Some other geometric results are in-
troduced for the subclasses of Chy(a, 3,7).

The data used to support the findings of this study are in-
cluded within the article.
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The aim of this particular article is at studying a holomorphic function f defined on the open-unit disc ® = {3 € C : |3| < 1} for

*

which the below subordination relation holds 3f'(3)/f(3) < q,(3) = 1 + tan h(3). The class of such functions is denoted by & .
The radius constants of such functions are estimated to conform to the classes of starlike and convex functions of order  and
Janowski starlike functions, as well as the classes of starlike functions associated with some familiar functions.

1. Introduction

To completely comprehend the mathematical concepts used
throughout our key observations, some of the essential liter-
ature of the geometric function theory must be described
and analyzed here. Let us begin with the symbol 2, which
describes the family of holomorphic (or analytic) functions
in a subset D of the complex plan C having the following
series expansion

F(3)=3+a,18""" +a,,,8" 4+ (1)

Also, let the family of all univalent functions be denoted
by © and is a subset of the class 2, = 2. Next, we define
that the subordination between the function belongs to
the class 2. Let g,, g, € A. Then, g, < g, or g,(3) < 9,(3),
the mathematical form of the subordination between g,
and g,, if a holomorphic function w occurs in ® with the
restriction w(0) =0 and |w(3)| <1 in such a way that f(3)

=g(w(3)) hold. Further, if g, € © in D, then, the follow-
ing relation holds:

91(3) < 92(3), © 9,(0) = 9,(0) and g, (D)  g,(D).  (2)

Three significant subfamilies of &, which are well stud-
ied and have nice geometric interpretations, are the families
of starlike & (&), convex F(&), and strongly starlike &
&"(¢) functions of order £(0<&<1) and {(0<{<1),
respectively. These families are defined as follows:

()= of'6)  (1+a)f
cle) ({)-—{fe@.f(s) <(1_5),(3e$)},

of'(6) 1+ (1-28);
(OB ,(55@}, ®)

H(E) = {fe@: (') < H(l_mé,(se@)}.

& (§)= {fe@:

') 1-3
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Particularly, the notations ®&*(1) =&"(0) =&" and
H (0) = H represent familiar families of starlike and convex
functions, respectively. These subfamilies of & satisfy the
following relationship

VAdCHdCE (4)

The reverse of the above relation hold only under cer-
tain restriction of the domain. That is; if f € © in D, then,
it was given in [1], Corollary, p. 98, that f maps the disc
|3| <7 onto a region which is star shaped about the origin
for every r<r,=tan h(n/4). The constant r, is known as
the radius of starlikness for the family &. Also, given in
[1], Corollary, p. 44, the radius of convexity for the families
&* and & is 2 — /3.

To make a radius statement for other things than starli-
keness and convexity, we choose two subfamilies & and #
of the set A. The & radius for the family 7, represented
by Ry (%), is the largest number R such that r'!f(r3) € &
for every 0 <r <R and f € #. Consequently, an alternative
formulation of the radius of starlikeness for @ is that the
&" radius for the family & is Rg- (&) = tan h(n/4).

In 1992, Ma and Minda [2] considered the general form
of the families as

of'(3)
) "’“’)}’

H(p) = {fe A1+ 5}},,(5) <¢<a>},

' (9) = {fem

where ¢ is a holomorphic function with ¢'(0) >0 and has
positive real part. Also, the function ¢ maps D onto a star-
shaped region with respect to ¢(0)=1 and is symmetric
about the real axis. They addressed some specific results
such as distortion, growth, and covering theorems. In recent
years, several subfamilies of the set 2 were studied as a spe-
cial case of the class & (¢). For example,

(i) If we take @(3)=(1+L3)/(1+Mz) with -1<M
<L <1, then, we achieved the class &*[L, M] =
&"((1+L3)/(1+M3)) which is described by the
functions of the Janowski starlike class investigated
in [3]. Furthermore, &* (&) := @*[1 — 2£,-1] is the
familiar starlike function family of order £ with 0
<é<1

(ii) The family &%, :=&"(¢(3)) with ¢(3) =1+
was developed in [4] by Sokol and Stankiewicz.
The function ¢(3)=+/1+ 3 maps the region D
onto the the image domain which is bounded by
lw*-1|<1

(iii) The class &, ==&"(¢(3)) with ¢(3) =1+ (4/3)3
+(2/3)3* was examined by Sharma and his coau-
thors [5] which consists of function f € 2 in such
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a manner that (3f'(3))/(f(3)) is located in the
region bounded by the cardioid given by

(9x% +9y> ~ 18x +5)* ~ 16(9x> + 9y* —6x + 1) =0 (6)

(iv) The family &5 :=&"(¢(3)) with ¢(3) =1+ (3/])
(J+3/J—3), J=v2+1 is studied in [6] while
@:03 =" (COS (5)) and @:os ni= ©* (COSh (5))
were contributed by Raza and Bano [7] and Alo-

taibi et.al [8], respectively

(v) By choosing ¢(3) =1+ sin 3, we obtain the class
&, =©"(¢(3)) which was established in [9].
The authors determined radius problems in this
article for the defined class &,

sin
(vi) The class & = &"(e?) was explored recently in
[10]. For such a class &, the authors calculated

Hankel determinant bounds of order three in
[11]. Also, the class ©%,o, == ©"(hgy,o(3)) with

hae(3) = V2- (\/5_ 1) ﬁ (7)

was contributed by Mendiratta et al. [12] in which
they investigated the radius problems

(vii) The family &2 :=&"(p(3)) with ¢(3)=3+
v/1+ 32 was introduced and studied by Raina and
Sokot [13]

(viii) By considering the function ¢(3) = 1 +sin h™'3, we
get the recently examined family &, :=@&"(1+
sin h™'3) introduced by Kumar and Arora [14].
They discussed relationships of this class with the
already known classes. For more particular classes,
see the articles [15-20]

In the present paper, we consider a trigonometric func-
tion ¢, (3) =1+ tan hg with ¢,(0) =1. Also, one can easily
obtain that Reyp,(3) > 0. By using this function, we define
the below family of functions as

3f'(3)
1)

@fanh:{fE@i <1+tanh3,(3e®)}. (8)

*

In other words, a function f € &, ,, if and only if there
exists a holomorphic function g, fulfilling q(3) < g,(3) =1
+ tan h3, such that

fo=sesp ([ 192 ar). )

0

Now, we construct some examples of our newly
described family &, ,. For this, consider the following
functions
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F)
:l —,
9,(3)=1+ 3
4+23
3) = >
7433
95(3) = 743"

q,(3) =1+ (tan hl)3.

Since g,(3) =1 + tanh 3 is univalent in D, ¢,(0) =1=¢,
(0),(i=1,2,3,4), and q,(D) € q,(D), this implies that for
each i=1,2, 3,4, the relation g, < g, holds. Thus, from (8),
the functions

fi(3) = 3¢,

2

fle)=s+ %
f@=s(1+2),

Fi(2) = gelt %,

(11)

corresponding to the functions q,(3),4,(3).45(3), and q,(3),
respectively, belong to the family &, ;. By taking g(3) = q,
(3) =1+tan hy in (8), we get the below function that plays
a role of the extremal in many problems of the class &;,

3 tan ht
fo(3) =3 exp (J p dt)
0
1 1 5
_ 2 - - 4__ 5
AR RTINS

(12)

In this article, we work on determining the radius of
starlikeness and convexity and &;, ; radius for some sub-
families of starlike functions, mentioned above in which
mostly have simple geometric interpretation. Besides these
subfamilies, we also discuss the &;, , radius for some fami-
lies of A, whose functions have been expressed as a ratio

between two functions.

2. Radii of Starlikeness and Convexity

In this portion, we examined the radius of starlikeness and
convexity for the family &; ;.

Theorem 1. The &* (&) radius for the family &, is r,=
tan!(1-&) with 0<&E< 1.

Proof. If f € &, ,,» then, by virtue of (7), a Schwarz function
w exists with |w(3)| <3| such as

—5f’<5) = an h(w
) 1 +tan h(w(3)). (13)

Now, let w(z) =Re" with R<|3|=r—m<v<m. After
easy computation, we get

‘tan h(ReiV) ’2 _ cos hZ(R cos v) — cos*(R sin v)

=¥(v).
cos I? (R cosv) + cos? (Rsinv) -1 v)

(14)

The equation ¥'(v) = 0 has five roots in [-7, 7], namely,
0,+7 and +(71/2). Since ¥ (v) = ¥(-v), it is sufficient to show
that v € [0, 7z]. Furthermore, we can see that ¥(0) = tan h*R
=¥(m), ¥(n/2) = tan®R, and

max {‘P(O), ¥(m), ‘P(g) } = ‘P(g) =tan’R < tan’r. (15)

Thus, we have

Re <—5'J;(S)> >1-|tanh (w(3))|,>1—-tanr>¢&,  (16)

whenever 1—tanr—£&>0. The radius of starlikeness of

order &, for the family &;, ,, is the smallest positive root

ro€(0,1) of 1 —tanr—&=0. O

Taking & = 0 in the above Theorem 1, we obtain the fol-
lowing corollary.

Corollary 1. The @* radius, for the family &;

tan h’ is To=
tan~!(1) = 0.78.

Theorem 2. The % (&) radius r,, for the family f € &;  ,, is
ro=min {r;, r,}, where r, is the smallest root of the equation

(1-&—tan hr sec’r) (1-r°)(1-tanr) —r sec’r =0, (17)
and r, is such that 1 —tanr, > 0.

Proof. If f € &, then, a holomorphic function w occurs
with w(0) =0 and |w(3)| <3|, such that

M =1+ tan hw(3). (18)

1)

By simple computation, it gives

At
1)

5w'(5) sec hzw(g) (19)

=l+tanh
+tan hw(3) + 1 + tan hw(3)

From (18), we get

Re <1 N 5f,"(5)> > 1+ Re(tan hw(3))
(3) , (20)
- |g,|’w (3,)Hsec hzw(z,)’

1 - [tan h(w(y))|




Assume that w(3) = Re”, with R<|3|=r—m<v<n for
calculating the minumum value of the right side of the last
inequality. A simple calculation reveals that

tan h(Rx) sec*(Ry)
1+ tan h*(Rx) tan?(Ry)’

Re tan h(Re") = (21)

where y=sinvx=cosv, and x,y€[-1,1]. It is easy to
observe that
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tan h(Rx) = — tan AR > — tan hr,
(22)
1 <sec’(Ry) < sec’R < sec’r.

Consequently, we have
Re(1 +tan hw(z)) > 1 - tan hR sec’R > 1 — tan hr sec’r.  (23)

Now, consider that

1

|sec W (eiVR) }2 =

The equation ¢’ (v) = 0 attained has five roots in [-7, 7],
namely, 0, +7 and +(71/2). Also, ¢(v) = ¢(—v); it is enough
to consider only those roots which lie in [0, 77]. Furthermore,
we seen that ¢(0)=sec h'R=¢(n), and¢(m/2)=sec'R;
therefore

max {gb(O), é(m), (/)(z) } = ¢(g) =sec'R<secr.  (25)

2
Hence,
|sec h* (e"R) | < sec®R < sec’r. (26)
Also,
[tan hw(3)| <tan R<tanr. (27)

Using the above facts along with the well-known inequal-
ity of Schwarz functions w(seeradiil9), we have

1-|w(3)” 1-R? 1 1
lw'(3)] < | (2)| = 5 < s<1a (29
13 =3 1-3 r

Using (19), we obtain

!

Re (1 + "’j{”((;))> > 1+ Re(tan hw(3))

~ ]sec hzw(a)ng'(g)]
1-|tan hw(z)| (29)

> 1 — tan hr sec’r

(sec’r)r .
B (1-tanr)(1-r%) &

The last inequality is true if (1 —& — tan hr sec’r)(1 —r?)
(1—tan r) — r sec’r > 0 with tan r < 1 holds.

(cos h4(R cos v) + 2 cos K (R cos v) cosZ(R sin v) + cos*(R sin v)-2 coshz(R cos v) — 2 cos? (Rsinv) + 1)

=9(v).

(24)

Hence, # (&) radius r, for the family &, , is the minu-

tan
mum of r; and r,, where r; is the smallest positive root of

the equation
(1-&—tan hr sec’r) (1-7*)(1—tanr) - r sec’r=0, (30)
and r, is such that tan r, < 1. O

Corollary 2. The K radius, for the family &, is ry=
0.33286.

Remark 1. The result in the last Theorem is not the best one.
Considering the function f, described by (11) provides a
sharp result. For the function f;, we have

(5f(/)(5)> / 3 sec h*3
é(3) =ZReW =2Re<l +tan hy + m),

(31)
and ¢(r) =0.
3. Radius Problems

To address our main results in this portion, first, we consider
a few well-known families as follows.

Pl M] = {P(s) =1+ i 3" 1 p(3)

(32)
1+L3 }
< —1<M<L<1 5.
1+ M3
Also, for n € N,
P (E)=P,[1-2£,-1],
(&)= (1~ 26-1) )

P, =P, (0).
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If we put p(3) = (sf '(5))/(f(3)), for f €A, then, the
family 2,[L, M] is reduced to &[L,M] and & (§) =&,
[1-2&,-1]. Let the family .#(f3) contains the functions f €

21[1,1 satisfyilng that Re ((3f'(3))/(f(3))) < B, for B> 1. Fur-
thermore, let

t*an hn = 2[11 n @t*an h> @: (E) = 2[n n @*(E)’ @g,n
=A, NS,
M, (B) =AU, N AM(B).

(34)
Ali et al. [21] recently studied the below families

@n::{fe%nzjﬁe%}’

se,@)={rew, L ez, ge o)

and calculated @7, radii for certain families. Further, they
achieved the conditions on L and M such that & [L, M] C
©%,,. In this portion, &, . ;, , radii for the family of Janowski
starlike function and some other geometrically described
families are explored. To get our results, we employ the fol-

lowing lemmas.

Lemma 1 [22]. If p € 2,(§), then, for |3| =T,

3p'(3) - 2nr"(1-8)
p(3) | (I+(I=28)rm)(I-r")

(36)

Lemma 2 [23]. If p € ,[L, M], then, for |3| =T,

1-LMr"
1= Mz

(L-M)r"
< .
T 1- M

’p(s) (37)

In particular, if p € 2, (&), then, for |3| =7,

(1+(1-2&)r")

n —
1 2n <2r (1 5)
—r

1-—r2n (38)

‘P(s) -

The aim of the following lemma is at finding the largest
and the smallest disks centered at (a,0) and (1,0), respec-
tively, such that the domain Q,, , = q,(D), where ¢,(3) =
1 +tan h3, is contained in the smallest disk and contains
the largest disk.

Lemma 3. Let

I—-tanhl<a<1+tanhl. (39)

And r,=tan hl —|a—1|. Then, the following inclusions
holds

{weC:|lw-a|<r,} CQ,,;, C{weC: |w-1|<tan I}.

(40)
Proof. Since w(3) = Re” with R < |3| =r, we have
1 +tan hw(3z) =o(v) —ip(v), (41)
with
o(v) =1+ 1 tin h;l; ;os (v)) seiz(lj s;n (v)) ’
;: an. (R cos (1;1)2) an*(R sin (v)) (42)
p(v) = tan k(R sin (v)) sec h™(R cos (v))

 l+tan h*(R cos (v)) tan?(R sin (v))

First, we consider the square of the distance from (a, 0)
to a point on the boundary of O, ;,, which is given by

1 + tan h*(cos (v)) tan?(sin (v

h(v) = d(v) - [a . tan h(cos (v)) sec*(sin (v)) r
)

1 +tan hz(cos (v)) tan?(sin (v))

. [ tan h(sin (v)) sec h*(cos (v)) r.

(43)

To show that |w — a| < r, is the largest disk contained in
Qg it is sufficient to show that min___,_ d(v)=r,. But
since h(v) = h(-v), therefore, we consider the range 0 <v <
7. Now, it can easily be obtained that h'(v) =0 has three
roots 0,7, and v, € (0,7). The root v, is dependent on a.
The graph of h(v) shows that it is decreasing in [v,, 7]
and increasing in the interval [0, v,]. Hence, the minimum of
h(v) is calculated on either 7 or 0. A computation provides

h(m)=(a-1+tan hl)z,

(44)
h(0)=(a-1-tan hl)z.

Thus, we get

_g&g\h(v) =min (h(m), h(0))
h(m),
B { h(0),

Therefore, we can write that

if-tanhl<a-1<0, (45)

if0<a-1<tan hl.

if —tanh1<a-1<0,
min d(v) =
—n<v<A

tan hl + (a - 1),
tan hl1 — (a-1), if0<a-1<tanhl,

(46)



or equivalently

min d(v) =tan hl - |a—1|. (47)

—<v<A

For the circle of the minimum radius centered at (1, 0),
which contains f(D) =1 + tanh 3, we find the maximum dis-
tance from (1, 0) to a point on the boundary of f(D) =Q,,, 1
and the square of this distance function is given by

cosh? (cos (v) — cos?(sin (v)))

) cosh?(cos (v)) + cos?(cos (v)) =1

v) (48)

It is easy to verify that ¢(v) achieves its maximum value at
71/2, which is ¢(77/2) = tan*1. Hence, the radius of the smallest
disk which contains 0, ,, is tan 1.0J |

In the following examples, we apply Lemma 3 , to find
the necessary and sufficient conditions for two specific func-
tions that belong to the family &;

tan h°
Example 1.

(a) The function

f(&) =3t d252 € gfan h> (49)
if and only if
tan hl
do < o =043233 (50)

(b) The function

3

f3)= m €S, (51)
if and only if
_tnhl G a7s7s (52)
bl = 2+tan hl

Proof.

(a) We know that f(3) =3 +d,3* € @, if and only if |
d,| <(1/2). Since &; , C&", we get |d,| <(1/2),

whenever f € @ . The function

Cof'(3) _ 1+2dy
wla)= f(3)  1+dy’ 53)

maps D onto the disk

Al
1= ]d;f

1-2|d,|?
‘w_ |d2‘ (54)

1-|d,*
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Since

1-2/d,[?

NPT 55
1-|dy|° >

then, from Lemma 3 , the above disk will be contained in
‘Qtan h if
120
L |dy*
2
d 120
L= |d,? "~ 1-|d,f

1-tanhl <
(56)
— 1 +tan hl.

The above two inequalities give

gl < / tan hl
| 2|_ 1+ tan hl’ (57)

| < tan hl
2 1+ tan hl’

respectively. Thus, we have

4l <mi tan hl [ tan hl tan hl (58)
< min 5 =
| 1+tan hl 1+ tan hl 1+tan hl

(b) Logarithmic differentiation of the function

3
f@)=———3 (59)
2 (1-b3)*
yields that
8f'(s) _ (1+Dbp)
w(3)= -~ = , 60
O Fw " 0w 0
maps D onto the disk
w(z) - L+ [b]*| _ 2[b| (61)
Ve -
since
1+ b
1< . 62
1- b (62)
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The disk above is contained in Q,,,;, in Lemma 3,
whenever

1+ b
5 < 1+tan 1,
1-1b|
(63)
2|b| 1+|b?
5 <l+tan1l- 5
1-1b| 1-1p|

The above two inequalities give

b < [ tan hl
N 2 +tan hl (64)

b < tan hl
~ 2+tan hl’

respectively. Thus, we have

. tan hl tan hl tan hl
\b| < min ; = . (65)
2+tan hl 2 +tan hl 2 +tan hl

This completes the required proof. O

Theorem 3. The sharp &,

wan b Tadius for the family ©, is
given by

tan hl 1in
%(@)() . (66)

n2 +tan h’1 +n

Proof. Suppose that f € ©,. Consider the function h: D
— C described by

n(z)="1% (67)

Using logarithmic differentiation, we get

7
Implementing Lemma 1 , we have
! / n
f (@) | _[gh @) _ 2n" (69)
f3) h(g) |~ 1-r

According to Lemma 3, if the following inequality holds,

the image of |3| <7 under the function (3f'(3))/(f(3)) lies
on disk O,

n

T S tan hl, (70)

or equivalently
(tan h1)r*" + 2nr" — tan h1 <0. (71)
Thus, &, ;, , radius of @, is the smallest positive root of
(tan h1)r*" + 2nr" —tan h1 =0, (72)

in (0,1). Assume the function

_s(1+3")
fO(s) - (1 _ 5n) .

Then, it is clear to see that Re((f,(3))/3) > 0 in the unit
disk ©. Hence, f, € ©, and

(73)

afo(3) . 2ng"
ORI . (74)

1- 5271
Further, f,, assures the sharpness of the results since at

s=Re: . (©,), we obtain
! 2 n
8old) _y_ " tan hl. (75)
fo(3) I-g"

This completes the proof. O
Theorem 4. The sharp @, ,  radius for the family €& ()
is given by

1/n
tan hl

of ' (3) sl (3)
T RG) (68)
R (68,(§)) =

(76)

tan h,n

Proof. Let f € €&, (&) and describe a function

hs) = % (77)

(n=&+ 1)+ \/[tan 71 +2(1 - &)] tan b1 + (1 +n )’

where g € ©; (§). Then, h € &,. According to the definition
of h, we get

of'(3) 3h'(3) 39 (3)
o) he) T oaG) 78)




Utilizing Lemma 1 and Lemma 2, we conclude that

of'(3) _ 1+ (1-25r"
f(3) L-r2

2(1+n-&)r"
= 1-r2n

(79)

1+ (1-2&)r"

—— =1, (80)

it follows from Lemma 3 and (78) that the function f €
tan o if the following holds:
1+ (1=-28)r*"+2(1+n-&)r"

[ <1+tanhl, (81)
-7

or equivalently, the inequality
(2-28+tan h1)r*" +2(1+n-&E)r" —tanh1<0  (82)

holds. Thus, the &

tan h,n
smallest positive root of

radius for the class €&, () is the

2(l+n-&)r"+(2-2E+tan h1)r*" —tan h1=0.  (83)

Now, assume the functions described by

_ o s(1+3")
Jo(3)= W
; (84)
90(3) = (1— gm) 080
Then, we get

fole) (048 e (=202

9(3) (1-3")  9o(3) (1-3")

Furthermore, it is obvious that

()

390(3)
Re < 90(3) > >%

in the unit disk D. Therefore, f, € €& ,(&). The function f
described in (83), at 3 = Rg: | (€©,(£)) satisfies that

(86)

foa) L LH (=205 +200n=83" )y

fo(3) 1 -3

(87)

Hence, the verified result is sharp. O
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Theorem 5. The ©;, radius for the family & [L, M] is

tan h,n
given by
. min (1:7;),~-1<M<0<L<I
e, (@MY =1 ,
i min (1:7,),0<M<L<1
(88)
where
1in
. 2tan hl
1= >
(L= M)+ \/(L—M)? + 4]M?(1 + tan k1) — LM] tan h1
Iin
. 2tanh I
=
(L= M) +/(L-M)? +4[M?(tanh 1~ 1) + LM] tanh 1
(89)
Proof. Let f € ©,[L, M]. Then, by Lemma 2 , we get
!
L-M)r"
f(3) 1 — M?*r2n

where center of the disk is b= (1-LMr*")/(1 - M*r*"),
|z| = r. Applying Lemma 3 , it is easy to see that b>1 for
M <0 and we achieved

1-LMr*" + (L - M)r"
1— M?r2

<1+tanhl. (91)
After some simple calculation, we have

1/n
2 tan hl
r< =r.
(L= M)+ \/(L—M)? + 4[M*(1 + tan 1) - LM] tan h1
(92)

In addition, if M =0 for b=1 and from (89), we get

/' (3)
I )yl cpm0<L<1). (93)
f(3)
Implementing Lemma 3 with a =1leads to f € & | > if
tanh 1\ /"
r<\—g . (94)

For 0<M<L<1, we get b<1. Thus, from (89) and
Lemma 3 , we see that f € & if the following holds:

tan h,n’

(L-M)r" + LM -1

YT <b+tanhl-1, (95)
- M°r
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or equivalently, if

1/n
2 tan hl
r< =1,.
(L= M)+ /(L — M)? + 4[M?(tan b1~ 1) + LM] tan h1

(96)

This completes the proof.(J |
Theorem 6. Let —1 <M < L < 1. If either
(a) L-1<(I1-M)(tanh I-1) and (I-tanh 1)(I- M?
)<SL-M<1-M?or

(b) L+ 1<(I+M)(tanh I+1) and 1-M>*<L-M<1
+ tanh 1

holds, then, @ [L,M] c &

tan h,n*

Proof. Let p(3) = (3 (3))/((3))- Since f € @;[L, M], using
Lemma 2, we get

Therefore, either 1 - LM/1-M?><1 or 1-LM/1 - M?
>1.
For (1-LM)/(1 - M?) <1, using Lemma 3 , we see that

f €S, . if the following holds:
L-M 1-ILM
——— <——— —(1-tanhl),
1-M*> " 1-M? (98)
1-tanhl< —— 5 <1,
1 —

which, upon simplification, reduces to the condition stated
in (a).

For (1-LM)/(1-M?) > 1, again, applying Lemma 3 ,
we see that f € &, if the following holds:

tan h,n’

L-M 1-LM
3 S(1+tanh1)——2,
1-M 1-M

(99)
1<

L-M
<(1+tan hl),
1_M2 ( )

which, upon simplification, reduces to the condition stated
in (b).0 O

Theorem 7. The sharp &, ,, radii for the families ©%,, @, ,
©!,.C5BC" (&), (B),Cy, S (§)Sy, and ©(u) are

car’

9
%@: h(@;) = (2—tan hl) tan hl = 0.944,
(2+ (1 + \/5) tan hl) tan hl
‘%@;‘m N (S%y) = >
6—3\/§+4(\/§—1) tan h1 - sec h2
= (0.992,
R &y —1 2(2+3tan hl) —2) = 0.463
&, (@) = 5 (V223 tan bl - 2) = 0.463,
., tanhl(2+tanhl) _
E%gl*anh(@%)_ 2(1+tan hl) ~0217,
2tan hl
R (BES(E)) = a2 , foro<E<l,
an 1++/1+4E tan W1
tan hl
(% * /A = 5 . > 1’
@i (HF)) 2(B—-1)+tan hl p>
Re: (Sly)=V1+2tan hl-1~0.589,
) (1+tan h1)" — 1
R (6&"(E))=——"2L | (0<E<]),
@i, (€€7() (1+tan h1)" +1 ( )
e%@: h(@%) =In[I+In (I +tan hl)] = 0.449,
. I+2uln (I+tanhl)-1
@;;nh( g(u) = v u :
(100)
Proof.
(1) Let f € @5, then,
3f'(3)
<y/1+3. (101)
f()
Thus, for |3 =7, we have
!
3Gyl - T <tan . (102)
f(a)
For
r<(2-tanhl)tan hl=Rg. (S7,). (103)

tan h

For checking the sharpness of the result, we assume the
function f, described by

_ 43 exp {2(v/3+1- 1)}

fo(3) (1 vies) (104)
Since
sf(,)(&):\/m’ (105)

fo(3)
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it follows that f, € @3, and at 3 = -%g; | (&%) and we see
that

!
8ol8) _ 1=-tanhl, (106)
fo(3)
and hence, the result is sharp
(2) For function f € €y, , then,
!
o (3) <\/§—(\/§—1) s o
f(3) 1+2<\/Z—1)5
Thus, for |3| =1, we get
!
M—IS\/E—(\/E—I) 173 -1
f(3) 1+2<\/§—1)3
<1-v2- (\/E_ 1) A
1—2(\/5— l>r
<tan hl.
(108)
For
(2 + (1 + \/5) tan hl) tan hl
rs =%, (@az)-
6—3\/E+4(\/E—1) tan h1 - sec h22
(109)

For checking the sharpness, assume the function f,
described by

fo(3) =3 exp (rwﬂlt) (110)

0

where

CEER)

Since q,(3) = (3f0(3))/(f,(3)) and from the definition of

(111)

q0<3>=ﬁ—(ﬁ—1)J

foats=-Rg: (©5), we have
3 _ 5 (5 1-3 .
fo(3) -2 (ﬁ 1>\l(1+2(\/i—1)3)_ an

(112)

and hence, the sharpness of the result is verified
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(3) Let f € &, then,

car?

! 2
4 2
af. (5) <1 d F)

CIRERER (112)

Therefore, for |3| =1, we get

! 2 2
6f7 (5) —1l=11+ _%jé + E%gi_ -1 < f%f + E;Zl— < tan hl.
f(3) 3003 303
(114)
For
_\AEF s -2 (115

2

For checking the sharpness, assume the function f,
described by

oo = {12, (116)
Since

sfo(3) _ 4 28

fo(s)_1+3+ 3 (117)

it follows that f, € &

car

and at 3 = Rg:  (S,) and we get

car

5f(,)(5) —1=tan hl.

(118)
fo(3)
Hence, the result is sharp
(4) Let f € &, Then,
!
8 (3) <3+ 1+3% (119)
f3)
Thus, for |3| =1, we get
!
M—1§r+ 1+r2-1<tanhl, (120)
f3)
for
_tan h1(2 +tan hl) (121)

2(1 +tan h1)
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For checking the sharpness of the result, consider the
function f, defined by

f@=ser ([ 20 0a). o)
Since
q(z0) 80(3) —3+ /142 (123)

AG)

it follows that f, € @5 and at 3 = R (&%), we have

Jo@) | _n . (124)
o)
Hence, the result is sharp
(5) For function f € B&* (&), we have
,
"’;(S’) <1+ (1_3552),(0s5<1). (125)
Therefore, for |3| =7, we have
!
5}{(5) g _rg,z) <tan hl. (126)
For 0 < & < 1, we obtain
e 2tanhl =R (BS'(E).  (127)

> = S*
1++/1+4€ tan K21 o

For checking the sharpness of the result, we assume the
function

fo(3) =3 exp (rwdt)

0

(128)

where

3

4(3) =1+ - (129)

Since g,(3) = (34(8))/(f,()), it follows that f, e
©°(§) and at 3= Ae:  (BS7(§)) and we have

3/4(3)
fo(3)

—1=tan hl.

(130)

Hence, the verified result is sharp

(6) Let f € #(B). Then, by Lemma 2, for n =1, we have

11
of'(3)  1+(1-2B)°| _2(B-1)r
i | s (13D
Obviously,
1+(11__r22ﬁ)r2 <1. (132)

Hence, by Lemma 3 , the above disk contains in Q,, ,

S0
_ 2
1-tan hl < 41 i (11 22/3)1’ ,
-7 , (133)
2(B-Dr _1+(1-2B)r A ttan bl
1-12 1-12
Simple calculation gives
po_ @kl (134)
T 2(f-1)+tanhl’
For checking the sharpness, assume the function defined
as
{4 -1
fy(s) = s exp (j bl dt). (135)
0
Since
!
o8 1 pB-1)3+ 2(B-1) +tanh 1% (136)
fo(3)

it follows that f, € (), at 3 = R+ (M(P)), we get

tanh

!
#old) 1 _anh1. (137)
fo(3)
Hence, this verified that the result is sharp.
(7) Let f € @ Then
/ 2
o (5)<1+3+3—. (138)
f(3) 2
Therefore, for |3| =7, it gives
! 2
M—1 <r+_ <tanh1. (139)
f3) 2
For
r<Vi+2tanhl -1=Re. (Sgg)- (140)
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For checking the sharpness, assume the function defined
as
fol3) = 36l E). (141)
Since
! 2
o(8) _y TP (142)
fo(3) 2

it follows that f, € @45 and at 3=Rg: (Sgy) and we
have

o(3) —1=tanh 1.

143
fo(3) (14
This shows that the result is sharp
(8) Supposing that f € @&*({), we have
of (@) ((1 + a))‘
7o \i=g)» Oce=t (0
Thus, for |3| =1, we get
of' (@) (L))
W_I‘SQI—@) —1<tanhl. (145)
For
g _
pdttanhl) > -1 e (S&°().  (146)

T (1+tan A" 41

For checking the sharpness, assume the function
described as

A =sen ([ BOa),  aw)
where
o= (DY (148)

Since q,(3) = (3fo(3))/(f,(3)), it follows that f, € ©&*
(¢) and at 3= Rg. (©&*({)) and we have

tan h

08) | _n
) e

Hence, this showed that the result is sharp

(149)

(9) Supposing that f € @g, then,
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8f'(3) o1,

o) (150)
Thus, for |3| =r, we have
) ~1|<e’ ' —1<tan hl. (151)
/()
For
r<In [l +In (1+tan hl)]. (152)

To show the sharpness of the result, we assume the func-
tion described by

fw=sen ([297a).  osy
where
_ o ed-1 _ 5f(,)(5) (154)

Bla)=e=F0)

Since (3fo(3))/(f4(3)) = 4,(3), it follows that f, € Sy
and 3 = Ag:  (©Sy) and we have

!
o) 1y _tan 1, (155)
fo(3)
and hence, the sharpness of the result is verified.
(10) Let f € &% (u). Then,
!
Y @) gsn (yz1). (156)
f(3)
Thus, for |3| =, we easily get
!
i @) ~1| <& <tan hl. (157)
f(3)
For
1+2uln (1+tan hl) -1
peVI2uln(rtanhl)=1_ 5 o) (158)

*
u tan h

Now, we choose the following function to confirm its
sharpness

(159)

fo3) =3 exp (r q‘)(? - ldt>-

0
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Since

5f(/)(5) 3+uz2/2

.(3) =qo(3) =€, (160)

it follows that f, € @ (u) and at 3 = Rg: (S5 (u)) and we
have

!
8ole) _ 1 =tan hl. (161)
fo(3)
This result is sharp. O

4. Functions Defined in terms of the
Ratio of Functions

Now, for the following families, we will talk about the radius
problem. For brevity, we shall denote them by

F = {fe%[n : 2Re<£§—z;> >0andme<@> >0,g€2[n},

Q
I

9(3

0‘3:{](62[" : ’g(a)

<land§){e(g(:)) >0,g€2[n}.

(162)
Theorem 8. The sharp @, ,, , radii for function in the fam-
ilies F |, F ,,F 5, respectively, are

1/n
(g1)=(\/m—2ncoth1) :

7

tan h,n

1
V912 + 4n tan hl + 4 tan K21 — 3n !
2(n + tan hl) ’

e, 1, (F2) = <

% o V92 + 4n tan hl + 4 tan K21 - 3
@:a"h-n( 3)= 2(n+tan hl) '
(163)
Proof.
(1) Let f € #, and describe the function p,h: ® — C
by
3
p(s) = ﬁ,
(164)
z) = 18
9(3)
Then, obviously p,h € &,. Since
f(3)=2ap(3)h(3), (165)

) {fe%[n : E){e(f(z’)> >0and9{e<g(;)> > ;,geﬂn},

13
it follows from Lemma 1 that
!
4 n
o (6) _ < mz <tan hl, (166)
f(3) 1-r2
for
Vi ot P14 1 o .
r< ( 4n? cot h*1 + 1 —2n cot hl) =Re: M(J’1)~
(167)

For checking the sharpness of the result, we assume the
functions

- 5,1 (168)
90(8) = s(i - §>
Thus, obviously,
Re (fo(3)) S0,
90(3) (169)
Re

()

and hence, fe%,. A computation shows that at 3=

(%@:;n . (gl)el(n/ﬂ)
! 4"
3/o(3) —1+ n52 =1-tan hl. (170)
fo(3) 1=

Hence, the result is sharp

(2) Let f € #,. Describe the function p,h : D — C by

3
p@)= Q,
f(g) (171)
h(z)=—=.
@ 9(3)
Then, pe P, and h € 2,(1/2). Since
f(3)=3p(3)h(3), (172)
it follows from Lemma 1 that
of (3) ~ nr' 4nr"  nr’ +3nr"
%) S{-ptio,m - 1o <tan hl.
(173)
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For

Vo ¥ 4n tan 1 + 4 tan 721 -3
re n? + 4n tan an n R (F).
2(n+tan hl) an hin
(174)
Thus, f € &, ), for r< g hm(?iz). For checking the

sharpness of the result, assume the functions

_ 3(1+3M)
=0y 73
90(5)= 2
Then, obviously,
fo(3)
Re >0,
(g()ES;) 1 (176)
9o\é
ERe( ; )2 3

and hence, f € #,. The sharpness is obvious, since at 3 =

9{5@;“ h_n(*cjz)’ we get
! n 2n
5f0(5) 1= 3;15 + ;’15 =tan hl (177)
fo(3) 1=~

(3) Let f € #;. Describe the functions p,h : ® — C by

p(3) s -
hs) = 98
1)

Then, p € &,. We know that |(1/h(3)) - 1| <1 if and
only if Re (h(3)) > (1/2), and therefore, h € &,(1/2). Using
Lemma 1, we have

! 2n n
3
@) ) nriednr (179)
/() L-r
Applying Lemma 3, we obtain
nr*" + 3nr"
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For checking the sharpness, consider the functions

1+3")%
fo(3)= ﬁ
(181)
_(1+8"s
90(3) = NPT
From the definition of f, and g,, we get
ne(i0) e(e) e
ol 5n (182)
) :me<”5 ) ~0.
1-3"

(")

Hence, f, € ;. Now, at 3 = R+

tan hn

(F5)e™", we get

! n_ 2n
";{‘E(;)) —1=3"‘;’7;f=—tanh1. (183)
. _
This result is sharp. O
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This article deals with the study of the higher-order Kirchhoff-type equation with delay term in a bounded domain with initial
boundary conditions, where firstly, we prove the global existence result of the solution. Then, we discuss the decay of solutions
by using Nakao’s technique and denote polynomially and exponentially. Furthermore, the blow-up result is established for

negative initial energy under appropriate conditions.

1. Introduction

In this paper, we establish the higher-order Kirchhoff-type
equation with delay term as follows:

q
e ([ Amu) A s O w51
JO

il (6= 0)] (o £ - 7) = [uff (5.1)€Qx (0,T),

u(x,0) = uy(x), u,(x,0) = uy (x) xe
u,(x,t=7)=fo(x,t - 7) xe€0,te(0,1),
d'u

=0,i=0,1,--,m—1 x €00,

g

(1)

where A = —-A, m > lis a natural number, g, r > 0 are real
numbers, p > 1 is a real number and is a bounded domain
with smooth boundary 0Q in R", n=1;2;3; v is the outer
normal. 7 >0 denotes time delay, and ; and , are positive
real numbers. The functions (u, 1y, f,,) are the initial data
belong to a suitable space.

The problem (1) is a general form of a model introduced
by Kirchhoff [1]. To be more precise, Kirchhoff recom-
mended a model denoted by the equation for f = g =0,

o*u Ju ou Eh (% (0u\? o*u
ot 4o +g<§> - {p0+ EL (a> dx}w +f(u),
(2)

for 0 <x<L,t>0, where u(x, t) is the lateral displace-
ment, p is the mass density, 4 is the cross-section area, E is
the Young modulus, L is the length, p,, is the initial axial ten-
sion, and f, g are the external forces. Furthermore, (2) is
called a degenerate equation when p;, = 0 and nondegenerate
one when p; > 0.

Time delays often appear in many various problems,
such as thermal, economic phenomena, biological, chemical,
and physical. Recently, the partial di/erential equations with
time delay have become an active area, (see [2, 3] and refer-
ences therein). Datko et al. [4] indicated that a small delay in
a boundary control is a source of instability. An arbitrarily
small delay may destabilize a system which is uniformly
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asymptotically stable without delay unless additional condi-
tions or control terms have been used in many cases [5].
Additional control terms will be necessary to stabilize hyper-
bolic systems including delay terms, (see [6-8] and refer-
ences therein). In [6], Nicaise and Pignotti studied the
equation as follows:

Uy (x, ) — Au(x, t) + agu, (x, t) + au, (x, t —7) =0,  (3)

where a, and a are positive real parameters. The authors
obtained that, under the condition 0 < @ < a,, the system is
exponentially stable. In the case a>a,, they obtained a
sequence of delays that shows the solution is instable. In
[8], Xu et al. obtained the same result similar to the [6] for
the one space dimension by adopting the spectral analysis
approach. In [9], Nicaise et al. studied the wave equation
in one space dimension in the case of time-varying delay.
In that work, the authors showed that an exponential stabil-
ity result under the condition

a<y/1-da, (4)
where d is a constant such that
T (t)<d<1, Vt>0. (5)

In recent years, some other authors investigate hyper-
bolic type equation with delay term (see [10-16]).

Without delay term (u,|u,(x, t-7)| " u,(x, t — 7)), in
2004, Li [17] studied the higher-order Kirchho/-type equa-
tion as follows:

q
Yy + (J ’D”’/zulzdx> (=2)"u+ u|u,|" = |ufu, (6)
Q

where m > 1 is a positive integer, and g, p, 7 > 0 is a positive
constant. The author obtained that the solution exists glob-
ally if p<r, while if p>max {r,2g}. He also established
the blow-up result for E (0) < 0. Later, in 2007, Messaoudi
and Houari [18] obtained the blow-up of solutions with E (
0) > 0 of the equation (6). Then, Piskin and Polat [19] con-
sidered global existence and decay estimates utilizing
Nakao’s inequality of the equation (6).

Without delay term, when m =1 and g = 0, equation (1)
takes the form of a semilinear hyperbolic equation as fol-
lows:

y = Au+ g fu, [ = |ufP (7)

Georgiev and Todorova [20] obtained the blow-up of
solutions for E(0) <0if 1 <r<p(l<p<n/(n-2)forn=>3,
p > 1forn<3) of the equation (7). Under the condition of
positive upper bounded initial energy, Vitillaro [21] proved
the same results of equation (7). Also, Ohta [22, 23] studied
related problems for the blow-up results of the equation (7).

Messaoudi [24] studied the following equation

Uy + Au || u, = |ulP?u (8)
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and obtained an existence result for the equation (8) and
proved that the solution continues to exists globally if r > p;
however, if < p and the initial energy is negative, the solu-
tion blows up in finite time. Chen [25] established that the
solution of (8) blows up with E (0) > 0. In the presence of
strong damping term (-Au, ), Piskin and Polat [26] obtained
the decay estimates by using Nakao’s inequality of equation
(8).

When m =1 and without delay term, equation (1) takes
the form the following Kirchhoff-type equation:

Y
(j Du|2dx) A vwlul = lubu. ()
0

Many authors had studied existence and blow-up results
at night time for equation (9) (see [27-30]). Ono [30] proved
the blow-up results if p > max {r,2y}(p<2/(n—4)forn>5
,p>0forn<4) and E(0)<0 for equation (9). Later,
Benaissa and Messaoudi [31] obtained the similar result for
the generalized Kirchhoff-type equation as follows:

Uy — M(J e?®) \Vu\zdx) e %) div <e¢(")Vu> +afu,|2u, = bluffu,
Q
(10)

where M : R* — R* and ¢(x) are bounded functions.
Then, Wu [32], verified the same result of the general
Kirchhoff-type equation

= M([|Vu3) A+ ot |, = |, (11)

with the positive upper bounded initial energy. In 2013, Ye
[33] considered the global existence results by constructing
a stable set in Hy(Q) and showed the decay by using a
lemma of Komornik for the nonlinear Kirchhoff-type equa-
tion (11) with dissipative term. Moreover, Ye [34] obtained
the global existence results by constructing a stable set in
H{'(Q) and showed the energy decay by using a lemma of
V. Komornik for a nonlinear higher-order Kirchhoff-type
equation with dissipative term is as follows:

Uy + |}A1/2u|‘2PAu+a|ut|”2ut:b|u|p’2u, (12)
where A= (-A)", m> 1 is a positive integer.

Gao et al. [35] considered the Kirchhoft-type equation
without delay term as follows:

g+ M([D" ) (~4)"u+ || P, = uf 2w, (13)

The authors obtained the blow-up of solutions for E (0)
> 0 under appropriate conditions for equation (13).

In [36-40], some authors studied abstract evolution
equations as follows:

[P(u)] At u) + Q(t uy) = F(u) (14)

on suitable Banach space, and they proved some global
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nonexistence of solutions. Some other authors studied
related problems (see [41-45]).

Motivated by the above works, we deal with the exis-
tence, decay, and blow-up results for the higher-order Kirch-
hoff type equation (1) with delay term and source term.
There is no research, to our best knowledge, related to the
higher-order Kirchhoff-type ((/,lA™ 2u|2dx)quu) equa-
tion (1) with delay (u,|u, (x, t — )| u,(x, t — 7)) and source
(|u[""u) terms; hence, our work is the generalization of the
above studies.

This work consists of five sections in addition to the
introduction: Firstly, in Sect. 2, we recall some lemmas and
assumptions. Then, in Section 3, we get the global existence
of solutions. Moreover, in Section 4, we establish the decay
results by using Nakao’s tecnique. Finally, in Section 5, we
obtain the blow-up of solutions for negative initial energy.

2. Preliminaries

In this part, we present some lemmas and assumptions for
the proof of our result. Let H™ () denote the Sobolev space
with the norm

12
[l ) = ( Z |D“u|iz(9>> > (15)

|ae|<m

H{(Q) denotes the closure in H™(Q) of C{°(Q). For
simplicity of notation, we denote by ||-||, the Lebesgue space

LP( Q) norm, ||-|| denotes L?(£2) norm, and we write equiv-
alent norm ||V-||instead of Hy(Q) norm ||-|H(Q2). We
denote by C;(i=1,2, --+, n) various positive constants which
may be different at different occurrences.

Lemma 1 (see [46, 47] Sobolev-Poincaré inequality). If 2 <
p < (2n/[n—2m]")(2 < p<coif n=2m), then for some C,,
lll, < C.UI(=4)""ul| for ue Hy(Q),
where we put [«]" = max {0, a}, I/[a]" = 0o if [a]" = 0.

X%, (%, k, t) + 2, (%, k, £) =0

z(x, k, 0) = fo(x,—7k)

(x,0) = g (x), (3, 0) = (x)
o'u

W:o,i=0,1,~--,m—1

Lemma 2 (see [48]). Let ¢(t) be nonincreasing and nonneg-
ative function defined on [0, T|, T > 1 and satisfies

¢ (8) < wo($(t) = ¢(t + 1)), t € [0,T] (16)

for w, is a positive constant, and « is a nonnegative con-
stant. Then, we have for each t € [0, T],
, a=0,

é(t) < ¢(0)e 1]
(t) < ¢(0) » a7)

o(t) < (¢(0)* +wylalt - 1]7) ", a=0,

where [t — 1" = max {t - 1,0}, and w, = In (w,/w, - I).
We make the assumptions on parameters r, p, and m as

follows:
(A1)
I<p<oo, n<2m,
(18)
I1<p< ,n>2m,
n—2m
(A2)
1<r<oo, n<2m,
n+2m (19)
I<r< , n>2m.
n-2m

3. Global Existence

In this part, we consider the global existence results of the
problem (1). Firstly, we introduce the new function z similar
to the [7],
zZ(x, k,t) =u,(x, t —7k),x € Q, k€ (0, 1). (20)
Thus, we have

72,(%, k, t) + 2 (x, k, 1) = 0,inQ x (0, 1) x (0,00).  (21)

Hence, problem (1) can be transformed as follows:

q
U, + (J ’Am/2u|2dx> A"+ |ug (26, 8)) "y (3, 1) + py|2( L 1) 2(x, L) = [uf ' (x,t) €Qx (0, T),
o

inQx (0, 1) x (0,00),
x€Q, (22)
x €],

x €0Q.



We define the energy functional for any regular solution
of (22) as follows:

_ 1 2 2(gq+1) p+l
B0 = 5l + 3 -l
1
+ LJ J z’“(x, k, s)dkdx,
r+1J)a)o
(23)
such that
Trlpy| <g <T((r+1)p; — |p,])- (24)
Also, have
1 2(q+1) +1
— _ Am/2 q P
I =10(0) = g Al -
¢ 1
+ —J J Z’“(x, k, s)dkdx,
r+1Ja)o
(25)
1
1(t) = I(u(t)) = [ A™2u] ") — o2} + CLJOZ’“(x, k, s)dkdx.
(26)
We easily see that
1
E(0)=1(0) + 5 [l (27)

Furthermore, we define
W ={u:ueHy(Q)NH"(Q),I(u)>0}u{0}. (28)

Next, lemma gives that the energy functional E (¢) is a
nonincreasing.

Lemma 3. Assume that (u, z) is the solution of (22), then for
>0,

B == (= g ) w0l

— ¢ _ Hot r+1
(T(T+ 1) r 1>JQZ (x; 1, f)de 0.

Proof. We multiply the first equation in (22) by u,, integrate
over, and use integration by parts, and we obtain

(29)

a2l

d 1 2 ptl
31O+ 5 -yl
il O3l 1,0 <G 1, s 0.

(30)
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Integrating (30) over (0, t), we get

e

1 2
HEOIe p

t
o]l >||Mds+u2[ [ e 1)1 21, ) o )
Jo Q

p+1

1
= 5l
(31)

We multiply the second equation in (22) by ¢|z|" 'z and

integrate the result over Qx (0,1) X (0, £), and we get

t 1
ri_I%J J J l2(x, k, £)] 7 (3%, k, £)2,(x, k, £)dkdxds
0J0QJO

t

19
J =200k 1) ddxds
0

[|2(x 1, 8)["" = |2(x, 0, )" ] dxds
Q

S r+1
=- z(x, 1,t dxds
T(r+1)J0 Q' ( )

S ‘ r+l
+ t d
e ) Tl

By combining (31) and (32), we arrive at

o)+ (1= o) I
< th |2(x, 1, 5)|" dxds

(r+1) Jola

+ ‘uzLLJz(x, Ls)|" " z(x, 1, s)uy(x, s)dxds = E(0).
(33)

Utilizing the Young inequality on the fourth term of the
left hand side of (33), we conclude that

ey ) [ i

N (T(ri - r‘%) JOJQ|z(x, 1,5)|"* dxds = E(0).
(34)

E()+ (1 -

Deriving the (34), we have the desired result. Hence, the
proof is completed. O

Remark 4. From the condition (24), we obtain

= __ S _H - c KT
Cl_(MI T(r+1) r+1>>0’c2 (T(i’+1) r+1>>0
(35)
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Lemma 5. Assume that (19) and p > 2q+ 1 hold. Let uy € W
and u; € H}'(Q), such that

p-2q-1/2(q+1)

p=C, (WE(0)> <1, (36)
p-2q9-1

then ue W for each t > 0.

Proof. Tt follows the continuity of u(¢), since I(0) > 0, such
that

1(t) >0, (37)
for some interval near t=0. Assume that T,,>0 is a

maximal time, when (26) holds on [0, T,,,].
By (25) and (26), we obtain

1 -2q-1 2 112(q+1
J(t) = o 1I( )+ 2(5+ 1)q(p+ y ||Am/ I (q+1)
(P_ 7’) ! r+1
+ W (CJQJOZ (x, k, t)dkdx) (38)
p-29-1

HAWZ”HZWI)'

Z g+ Dp+ 1)

From (23), (38), and Lemma 3, we have

HAm/ZuHZ(qH) < 2(q+ 1)(p+ l) (t) < 2(q+ 1)(p+ 1)E(t)

p—2q-1 p—29-1
< 2(g+1)(p+ I)E(O).
p—2q-1

(39)
Using Lemma 1 and (39), we get

p+l
p+l =

_ C*||Am/2u||p_2q_1||Am/2u||2(q+l)

<C. <2(q +1)(p+1) E(O)>P241/2(q+1)
p-2q9-1
= BllA™u| " < [ A2u) """ onte [0, T,,)-
(40)

[[ul

HAm/2”H2<q+1)

Thus, from (26), we arrive at I(¢) >0 for all t€ [0, T,].
T, is extended to T, by repeating the procedure. Hence,
the proof is completed. |

Lemma 6. Suppose that the assumptions of Lemma 5 hold.

Then, there exists n; = 1 — 3, such that
1 (q+1)
s < (1= ) || Al (41)
Proof. By (40), we obtain
1 2(g+1
el < B A" . (12)

Let 7, = 1 — f3; therefore, we obtain the result. O

Remark 7. By Lemma 6, we conclude that

a2 D < nif(t). (43)
1

Theorem 8. Assume that the assumptions (A2), u, < u,, and
p>2q+1 hold. Let uy € W satisfying (36) and f, € L*(Q x (
0,1)) be given. Then, the solution of problem (22) is global.
Proof. 1t is sufficient to show that [u,||* + ||Am/2u\| (@) i
bounded independently of t. To obtain this, by using (23)
and (26), we have

_ 1 2 p+l
E0) 2 E() = 3l + 5 - gl
S ' 1 2
+ —J J 27 (%, k, x)dkdx = — ||u,||
r+1])nlo 2
p-2q9-1 mf2 112(4+1)
tgrnpen A
_ 1
+—£LQ_<ﬁJgW&“MMO
(r+D)+1) \Jalo
1 1 p—2q— +1)
I - 2, m/2 (4
* o102 gl + e A
(44)
since I(#) = 0. Thus,
[, )? + [ A7) < CE(0), (45)

where C=max {2,(2(q+1)(p+1)/p—-2g—1)}. Therefore,
we obtain the global existence of solutions. Therefore, we
completed the proof. O

4. Decay of Solution

In this part, we obtain the decay of solutions of the problem
(22) by using Nakao’s technique.

Theorem 9. Assume that the assumption (A2) and (36) hold.
Let uge W, f,€ L*(Q2x (0, 1)), be given. Hence, we have fol-
lowing decay estimates:

E(0)e 1, ifr=1,
E(t) < , (46)
(B0 +Cla[t- 1), ifr>1,

where w,,a and C, are positive constants which will be
defined later.

Proof. We integrate (29) over [t, ¢ +1],¢> 0, to get

E(t) - E(t +1) = [D(1)]"*, (47)



where

t+1

t+1
[D(t)]"*! = clj [l || s + CZJ J 2 (x, 1, s)dxds.
tJa

t

(48)

From (48) and Holder inequality, we see that

J~t+1JQ|ut|2dth + JHIJQV(M 1, 5)|dxds < x(Q)[D(£)]%,

t t

(49)

where ¢(Q) =vol(Q).Therefore, by (49), there exists t;
€[t,t+1/4] and t, € [t + 3/4, t + 1], so that

e (&)1 + 1l2(x 1L )| < (@)D, i=1,2. (50)

We multiply the first equation in (22) by u and integrate
over Q x [t;,t,]. Use integration by parts, Holder’s inequal-
ity, adding, and subtracting the term jiz fgféczr+1(x, k,t)dk
dxdt, we have

J:I(f)dfﬁ el et + Nl () [l

123 t, rl
+J HutszHJ H 2% (x, k, t)dxdkdt
ty (9}

tJo

t2
_“1J J |”t|r71|“z|”dxdt

tJa

5}
_F‘zj J l2(x, 1,8)| " z(x, 1, t)udxdt.

tJo

(51)

Now, we estimate the right hand side for (51).
From (39), (50), and Lemma 1, we obtain

e ()l [|4(83) I, < CD(t) sup EY*(s), (52)

t<s<t,

where C, =2C, ((2(g+ 1)(p+1)/p — 2q - 1)E(0)) 21,
By using (32) that

t, 1 1 (% (-
J ” 2 (x, k, t)dxdkdt < _J J (|14, (s) |1} dsdv
a 2T ‘) "

) <J:dv> (Jt (s )H::}d5> <(t _t1)[D(t)]’+1.
(53)

Utilizing Holder inequality, we get

t, t
[ e < |

nJa t

|:+1||u(t)||r+1' (54)

Utilizing the Sobolev-Poincare inequality and (39), we
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have

t)
cj g (81, | A"

1

Jtzuu O 4] <

1/2(q+1) ¢t,
O e ant) I W RO TR
2q+1)(p+1) 1/2(q+1) t, .
sc. (UM E0) T s 2 ol o
pP—2q b <ssty ty
2(q+ 1) 1) 1/2(q+1)
s, (k) sup D)
p- 2q 1 t) Ss<t,

(55)

Also, we obtain

ty ty
||| 1zt o tate  uddes . et 1)l
21

t

1/2(q+1) oty
<C. (ME(O)) J 2o 1, 1), B (s)dt
p-2q-1 f
2(q+1)(p+1) )1/2(q+1) 12 [
<C,|—————=E(0 sup E'“(s z(x, 1, ¢t
(U)ol
1/2(q+1)
<c, (ME(O)) sup EV2(s)[D(t)]'.
p—-2q9-1 t,<s<t,

(56)

Then, from (51)-(56), we get

Jtzl(f)dt <G, | sup E"(s)D(t) + [D(t)]* + (t, — 1) [D(t)]""!
t, t)<s<t,
2(q+1)(p+1) 12a+1) 12 r
r2c, (M0 50)) T sup B[00
(57)
Moreover, by (23), (26), and Remark 7, we have
1 2
E(t) < 5 [lu]l* + CoI(0) (59)
where C; = (1/1,)(p—29—-1/2(q+1)(p+1)) + (1/p+1)

Integrating (58) over [t, t,], we get

r (H)dt < - L”utl dt+C3JZ (Bt (59)

a1 t
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Hence, from (57) and (59), we obtain

t 1 <s<t,

JtzE(t)dt < %C[D(t)]z +C5C, { sup E'2(s)D(t) + [D(t)]?

+(t, = t,)[D()]"" +2C,

1/2(q+1)
(M E) s D) |

t,<s<t,

(60)

Integrating (d/dt)E(t) over [t, t2], we conclude that

) =) + [ (1= oS = Il

; T(r+1) r+1

t2
+J S _ J |z(x, l,s)|r+1dxds.
c\T(r+1) r+1))q

(61)
Thus, since t, — ¢, > 1/2, we arrive at
t, 1
J E(t)dt=(t, - t))E(t,) 2 5E(tz). (62)
t
Hence,
5}
E(t,) szj E(t)dt. (63)
f

As a result, from (47), (60), (61), (63), and since t,,¢,
€[t t+ 1], we get

t

t+1
_ S _
E(t)dt+L (”1 (r+1) r+l

E(t) < ZL ) i, (5) 722

t+1
+J © Mt J 12(x, 1, 5) [ doxds
 \T(r+1) r+1)]),

- ZJtZE(t)dt + D)

t

(64)
Then, from (60), we have
E(t) < Gc + c3cz) [D(t)]* + C,C,[D(1)]™ (65)
+ Cy[D(t) + [D(£)]"JEY (1)
Thus, utilizing Young inequality, we have
E(t) < G5[[D(1)]* + [D(O)]"™ + [d(t)]"].  (66)

O

Hence, we have the decay estimates as follows:

Case 1. If r =1, by (66), we obtain
E(t) <3Cs[D(t))* = 3Cs[E(t) - E(t - 1)]. (67)

Utilizing Lemma 2, we have

E(t) <E(0)e 1", (68)
where w; =1n (3C5/3C5 - 1).
Case 2. If r > 1, by (66), we have
E(t) < C5[D(t)* (1 + [D(£)]"" + [D(£)]?). (69)
Then, by (47), since E(t) < E(0), Vt > 0, we see that
E(t) < Cs (14 BV (0) + B0 (0) ) [D(1) 0
< C4[D(1)), t=0.
Then, we get
E(t)™*'"? < C,[D(1)]™"" < C,(E(t) - E(t + 1)). (71)
Therefore, by (71) and Lemma 2, we obtain
E(t) < (E(0)™ + C;laft - 1]") ™. (72)

Thus, we completed the proof of Theorem 9.

5. Blow-Up of Solution

In this part, we get the blow-up of solutions for negative ini-
tial energy, in the case r > 1.

Theorem 10. Let (u, u;) € (H*™(Q) N HY'(Q)) x HY'(Q)
and f, € L*(Q % (0, 1)) be given. Assume that p > max {2,r,
2q + 1} and the assumptions (A1)-(A2) hold. Then, the solu-
tion of (22) blows up in a finite time with E(0) < 0.
Proof. Setting

H(t) = -E(t), 73)

from Lemma 3, we obtain

H'0)2 (1= 5 = ) Il ”
- (T (ri - r"‘jg) Jﬂz”l(x, 1, t)dx.
Thus,
0<H(0)<H(t)< L||u||§ﬂ,t>0. (75)

Tp+1l



Let
M(t) = [|ul5- (76)

Differentiating (76) twice, we get

M'(t) = 2j u,udx,
o

M" (1) =2|Ju, | + 2J U, udx.
Q
Using the first equation in (22), to have

M (0) = 2 2 =2 AT 20|t ), )
(0]

- zmj l2(x, 1, ) uz(x, 1, £)dx + 2||ul b7,
0

(78)

we add and subtract the term 2(p+ 1)H(¢), and then
(78) becomes the form

M"(t)2 (p+3)|Ju||* +2(p + 1)H(t)

1 m
+(P+ —2>;Amyz<4*“
q+1 2
—ZMJ u, (%, 8)| " uu, (x, t)dx
et 79)

- Zyzj |z(x, 1, t)|"1uz(x, 1,t)dx
0

1
+ MJ J 2 (x, k, s)dkdx.
r+1 Jaolo

Now, we define
L(t)=H(t)" ™ +2eM'(t). (80)
Differentiating (80), we obtain
L'(t)=(1-x)H(t)™H'(t) + 2eM" (¢). (81)
Replacing (79) in (81), we arrive at
L'(t) 2 (1-x)H(t)"H' (1)2e(p + 3) |1, ]|*
+4e(p+1)H(t) +2¢ (‘Z—: - 2) HA%‘MHz(qH)
- 48//11J |u, (6, )| un, (x, t)dx
Q

- 481‘2] |Z(X, 1, t)|’_1uz(x, 1, t)dx
0

4 1 1
+ MJ J z’“(x, k, s)dkdx.
r+1 alo
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From (75) and utilizing Holder inequality, we get

ull

r+1|| r+1

U ), €7t (3, )| < [
0

rrlptly lertl/pl (83)

S [ P i [ 0

r+1/p+1 e r
S Gfull HE™ e ],

From Young’s inequality and (74), we have

J |u, (2, 1)), (x, t)dx
Q

<o (PPl ST HO) 4 o HOFH () H( ™),

r+1

(84)

where l_<:1{p+ 1-r+1/(p+1)>>0,p>0,7" =r+1/r, let-
ting 0 < k < k. In a similar way, we obtain

H ulz(x,1,t) " z(x, 1, t)dx
Q
<5 (Pl H(O) F + o HO) T H (0H (1) ).
(85)
By using (82), (84), and (85), to have
L'(f)=|(1-x) -4 Hk 0y |H(H)™*H'
(t) = | (1 =) = 4e(py +pp) H(0)p™" |H(t) "H (1)
—de(py + ) H(0) Fp! P ||u|[ 7] + 2e(p + 3) |||

p+l mi2 || 2(a+1)
+4e(p + 1)H(t)+2s<m —Z)HA Pl

4 1 !
+ MJ J 21 (x, k, ) dkdx,
(0]

r+1 0
(86)
for € sufficiently small, we obtain
{(1 —K) —4e(p, + yz)Hk’]}(O)p”’] >0. (87)
Setting s=7+ 1< p+ 1 such that
Dol < (A7 + i) (85)

where c=4(y, + [JZ)H(O)_];p”PJrlc1 and taking (p+1/g+1
—2) > c. Thus, we have

' p+1 m/2. 112(q+1)
L (t)22s<q+1 —2—c)||A 22
—ec||u||f1y +4e(p+ D) H(t) +2e(p +3)[ul* (89)

+4e {p+1) J JIZM (x, k, s)dkdx.
I

r+1 0




Journal of Function Spaces

By using the notations a; =2(p+1/g+1-2-¢), a, =¢,
a;=4(p+1), and a, =2(p + 3), (89) takes the form

(q+1)

L'(t) > aye| A" ul 1 — eay ||l + easH(t) + eay |

(90)

Similarly to the approach of Messaoudi [49], we assume
that p =2as + (p — 2as), where a5 <min (a,, ,, a5, 4,), and
then (90) becomes the form

1

- as) ||

L'(t)= (a, -
+ s(a3 —as)H(t) +¢(ay

HAm/z HZ(qH +s(a5 _

Then,

m 2(+1> 1
L' (£) 2 e A% + Iy + H(E) + ] (92)

We conclude that
L (t) = e

1
lallpr + H(E) + ]| (93)

where 8 >0 is the minimum of the coefficients of HuHﬁﬁ,
H(t), ||u,||*. Pick out & such that
L(0)=H"™(0) + 2£J Uy uydx > 0. (94)
o

As a result, we getsetting @ = 1/1 — k, and since k < k<1,
we see that 1 < @< 1/1 — k. Set

L(t)=H(t)" ™+ 2£J uu,dx. (95)
Then,

L(t)=H(t)"® + ZsJ uu,dx < H(t)"'®
“ (96)
p+l/@
+2€J uu,dx+2E1(Hqu+1) .
[0}

Utilizing Young, Holder’s inequalities, and (96), we

conclude that

va]®
L(t)° < {H(t)l/‘”+2€J uu,dx+2E1(||u||p+1)p+ ]
Q
ptli@ ®
[H ( utdx + 26, (] ., ) ) ]
@
<901 [H £) +2° l<<28J uutdx> +2E1||u§ﬂ>}
0

1
227 [H (1) + 27 (B0l SIS + 2Bl |
— — — 1
<2° 1[H<t> 277 (B S +2°7 (2Bl ) |

p+l
<G [H () + w13 1[ulls + l[llpers

I/\

(97)

where ¢, = max {297, 8°}. Furthermore, for p > 1, utilizing
Holder and Young inequalities, we obtain

(1-k)/1-2k
O N AT N (PR T g

(1-k)/1-2k ptl (1-k)/1-2k—(p+1)
el = e e
< csH(0)2 /IRy 1
(98)
Then, (97) becomes the form
1
L0 < co(HE) + P+ Julfl). (99)
By combining (93) and (99), we conclude that
L'(t) <, L(t)° ¢, >0,@> 1. (100)

Therefore, a simple integration over (0, t), we have the
desired result. Hence, we completed the proof. O

6. Conclusions

Time delays often appear in many various problems, such as,
thermal, economic phenomena, biological, chemical, and
physical. Recently, the partial differential equations with
time delay have become an active area (see [2, 3] and refer-
ences therein). In recent years, there has been published
much work concerning the wave equation with constant
delay or time-varying delay. However, to the best of our
knowledge, there were no global existence, decay, and
blow-up results for the higher-order Kirchhoft-type equa-
tion with delay term. Firstly, we have been obtained the
global existence result. Later, we have been established the
decay results by using Nakao’s technique. Finally, we have
proved the blow-up of solutions with negative initial energy
for the problem (1) under the sufficient conditions in a
bounded domain. In the next work, we will extend our cur-
rent study to more general case of the problem (1).
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In this article, we aim to study the upper bounds of the fourth Toeplitz determinant T,(2) for the function class &7, which are

connected with the sine function.

1. Introduction

Suppose that &f represents the class of analytic functions f
which in the open unit disk D = {z : |z|<1} of the form

f(z2) =z +a,2* + a2+ (z € D), (1)
and suppose that & is the subclass of &/ consisting of

univalent functions.
Let & denotes the class of analytic functions p normalized

by
p(2) =1+ z+ 62" + 320+, (2)
and meeting the condition R(p(z)) > 0(z € D). Let f and g be

analytic functions in D. Then, we say that the function g is
subordinate to the function f, and we write

9(2) <f(2)(z € D), (3)

if there exists a Schwarz function w(z) with w(0)=0 and
lw(z) | <1, such that (see [1])

9(2) =f(w(2))(z € D). (4)

In 2018, Cho et al. [2] introduced the following func-
tion class S;:

zf'(2)
f(2)

S::z{feﬂ: <(1+sinz)(z€|D)}, (5)

which means that the quantity zf'(z)/f(z) lies in an eight-
shaped region in the right-half plane.

Thomas and Halim [3] defined the symmetric Toeplitz
determinant T, (n) as follows:

n n+l n+q—1
an+1 an an+q—1
Tq(n)= : (n>1,921)
an+q—1 an+q+2 ay
(6)
As a special case, we have
a, 4z 44 4as
as 4, 4z 4y
T,(2)= (n=2,9=4). (7)

a, a; a, as

as a, as a,
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That is,

2
T4(2)= (“3 - ag) + 2(“§ - a2a4)(a2a4 —asas) — (aa5 - “3“4)2
2
+ (ai - a3a5) — (a3a, — ayas)’.

(8)

Many and many researchers have studied several Hankel
and Toeplitz determinants for various classes of functions.
For example, Janteng et al. [4, 5] investigated second Hankel
determinant for a function with a positive real part deriva-
tive and starlike and convex functions, respectively; Bansal
[6] and Lee et al. [7] discussed the second Hankel determi-
nant for certain analytic functions; Bansal et al. [8], Zaprawa
[9], Zhang et al. [10] and Babalola [11] derived third-order
Hankel determinant for certain different univalent func-
tions; Raza et al. [12] and Shi et al. [13, 14] studied upper
bounds of the third Hankel determinant for some classes
of analytic functions related to lemniscate of Bernoulli, car-
dioid domain and exponential function; Mahmood et al.
[15] found third Hankel determinant for a subclass of g
-starlike functions. Following the above work, Zhang et al.
[16] recently considered fourth-order Hankel determinants
of starlike functions related to the sine function. On the
other hand, Thomas et al. [3] and Ali et al. [17] studied Toe-
plitz matrices whose elements are the coefficients of starlike,
close-to-convex, and univalent functions. Besides, Tang et al.
[18] studied third-order Hankel and Toeplitz determinant
for a subclass of multivalent g-starlike functions of order a;
Zhang et al. [19] considered third-order Hankel and Toe-
plitz determinants of starlike functions, which are defined
by using the sine function; Ramachandran et al. [20] derived
an estimation for the Hankel and Topelitz determinant with
domains bounded by conical sections involving Rusche-
weygh derivative; Srivastava et al. [21] found the Hankel
determinant and the Toeplitz matrices for this newly-
defined class of analytic g-starlike functions. Based on the
work of Shi et al. [14], Zhang and Tang [16], Thomas and
Halim [3], and Ali et al. [17], in the present paper, we aim
to investigate the fourth-order Toeplitz determinant T,(2)
for this function class &7 associated with sine function and
obtain the upper bounds for the determinants T,(2).

2. Main Results

Due to prove our desired results, we require the following
lemmas.

Lemma 1 (see [22]). If p(z) € P, then exists some x, z with
|x | <1, |z| < 1, such that

2c2=cf+x(4—cf), )

des=c+20x(4—c]) = (4= ) e, + 2(4— ) (1 - |x[)z.
(10)
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Lemma 2 (see [23]). Let p(z) € P, then
It +c5+2c,65-3cic, — ¢l <25 (11)

I3 +3c,65+ 3cc; —4dejc, — 2¢,0, = 26,65+ ¢5| < 25 (12)

6 3 3_rd
8 + 623 +4cicy + 2¢,¢5 + 2¢,¢4 + 3 — €3 — 5ctc,

=3¢, — 60,6,65— ¢4l < 2
le,l<2,n=1,2,---. (14)

Lemma 3 (see [24]). Let p(z) € P, then, we have

2 2
- D<o lal (15)
2 2
€k — pC Gl <2,0<u<T; (16)
|Cn+2k_n"lcnci|£2(1+2/’l)' (17)

The following are the main conclusions of this paper and
related proof.

Theorem 1. Suppose that f(z) € ST and of the form (1), then

la, < 1 las) < 2+ la,l < 0.344 lag] < 2 lagl < 2 oy < 227
a,| < 4, |as < =, |a, < U. 1Az S =, A S —, 47| &£ ————.
2 3=t 1782 T 12077 T 10800

(18)

Proof. Because f(z) € 85, by the definition of subordination,
so there exists a Schwarz function w(z) with w(0) =0 and |
w(z) | <1, such that

=1+sin (w(2)). (19)

Now

!
of'(2) 2+ s nad (1 . Z)
n=2

f)  z+¥2 a2

[1-ayz+ (a3 - a;)2* - (a5 - 24,05 +a,) 2

+ (a3 - 3aja; + 2a,a, — ag)z'+---]
=1+ayz+ (20, —a3)2" + (a; — 3a,a; + 3a,)2°
+ (4as — aj + 4asa; — 4aya, - 2a3) 7"
+ (5a5 — 5a,a5 + a3 — 5a;a, — 5a3a; + 5a3a, + 5a,a3)z°
+ (6a, — 6a,a5 + 6a5as — 6a;a5 + 12a,a,a, — a3

- 6a3a, — 3aj + 24} — 9a5a; + 6a3a;) 2%+

(20)
Define a function
_1+w(z) _ 2
p(z)—l_—w(z)—l+clz+czz+ . (21)
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Apparently so, p(z) € & and

2 3
CZ+ 2% + 320+

p(z) -1 _
1+p(z)

On the other hand,

1 2 5 3 _
1+sin (0(z)) =1+ 2cz+ (2 - D)2+ (20, 5702
2 2 4 48 2

-6 5c2c2 3 C%)z“
4

w(2)= (22)

2402+ 622 + 34

+

( 32
+< —clc4—c2c3 Sce+ag 6o . o ) 5
16 8 3840
. (c6 —clc5 & | 56166 56 g
8 48 4
5¢ C?Cz _ 3ciq | 5cic _ € g

512 768 16 16 8
(23)

Comparing the coefficients of z, 2%, 2%, z%, z°, z° between
the equations (20) and (23), we obtain

3
c C c CC C
a,=Lay=2,q,=2-92_ 1 ,
2 4 6 24 144 (24)
_G_as 5¢ ey, &
8 24 1152 192 32’
=3¢, Te63 1l 43¢ 71cc, L5
ag = - - - —,
°7 80 120 4800 960 5760 10
(25)
o= e L aas 833 4lcg  109cic
7480 0 480 691200 3840 11520 (5

3 3
Gl 50¢ 56 Cs  C1C3

30 96

1152 12 144°

By virtue of Lemma 2, we can obtain

NS

la,| <1, |as| <

3
G abh 9

ail=18 = 20 " Taa)
(28)
Let ¢; =¢, ¢ € [0, 2] and using Lemma 3, we get
1 cc c c 1 c(2-¢12
mﬂz__&y_gj]+_ch_; _+_L___l,
6 3 72 2 3 72
(29)
setting
1 c(2-¢2n
P =L+ R (30)

It can be easily verified that F(c) takes its maximum
value at ¢ = 21/3/3, that is

o a5 dqo g

8 24 1152 192 32
1 el 3l o a\  7dc
LY T P R |
8 3 576 2 32 2 576
Let ¢; =¢,c € [0, 2] from Lemma 3, we obtain

2 _ 2
|a5|gi+w+i<2_c_>+z (33)

|asl =

576 16 2 288°
taking
1 52(2-¢%2 1 2 7c2
F(c)=—+7( )+— 2- & +L, (34)
4 576 16 2 288

It can be easily verified that maximum of F(c) occurs at
¢ =0, that is,

3
las| < F(0) = ¢, (35)
o | = =3c6; 760 1l 43¢6 . 71cic, L5
6 80 120 4800 960 5760 10

1 a4l 7 1l c
=|— ¢ — — |5 — ¢,¢C G- =
2417 10 120[5 263] * 2400 2

43¢,c, A\ 2llcc,
- o — )=
960 \* 2 14400
(36)
Assume ¢, =¢, c € [0, 2], by Lemma 3, we get
1 118(2-c2) 43 &\ | 211e
lagl<s —+ =+ ——— 2+ — [ 2— — |+ ——,
60 12 2400 240 2 7200
(37)
putting
7 1 1E(2-E12) 43 A\ 2118
O==+—=+— 2+ —|2-— | + ——,
60 12 2400 240 2 7200
(38)

it is demonstrable that maximum of F(c) occurs at ¢=0,
that is,

67

o (39)

lagl < F(0) =



la,| = C%ﬁ Q66 833 B 41cic3 B 109¢}c,
7771480 T 480 691200 3840 11520
_ Gl 566G 50 ¢ Cij

30 96 1152 12 144

-37¢} 2566 65 cifes -] . €16]e3 - €16

691200 5760 30 480 480
les— 6] 29¢i[e, — /2]
144 11520
5¢5[c, = c1/2] . [cs — 5/8¢5¢4]
1152 12

(40)

Let ¢; =¢,c€]0,2] and applying Lemma 3, we get

29t (2-¢2) 37
—+ — +
6 240 120 11520 691200 (41
S 25 5(2-¢12)
+ =+ +
72 1440 288

1 & 9¢
la;| < — + +

>

showing
1 & 9 29cH(2-¢2) 37
Flo)=—+ —+ — +
6 240 120 11520 691200 (45
¢ 252 5(2-712)

>

+
72 1440 288

further, we get
F'(c)>0. (43)

So, the function F(c) takes its maximum value at c=2,
that is,

5587
<F2)= ——. 44

Theorem 2. Suppose that f(z) € ST and of the form (1),
then, we get

5
laj —a3| < 7 (45)

Proof. According to equation (26), we have

g a
2_ 2 2 _ 4
=2 46
las — a3 6 2 (46)
By applying Lemma 1, we get
4 2(4-3)? x(a-& 2
ag—aglzc—l+ ( 1) + L ( 1)—6—1. (47)
64 64 32 4
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Let |x|=t,t€[0,1],¢; =¢, c€(0,2]. Then, by the trian-
gle inequality, we obtain

Ct(4-¢7) .\ t2(4—c2)2 . o N f )

2 2
— <
s -l < —5 64 64 1

Suppose that

ia-2) Pu-ey & & )

+
32 64 64 4

F(c t)=

then Vte[0,1],Vce[0,2], the upper bound of F(c,t)
corresponds to f=1,c=2. Hence,

la3 — a5l < F(1,2) = =. (50)

| u

d

Theorem 3. Suppose that f(z) € §; and of the form (1), then,
we have

25
laya; —aza,l < % (51)

Proof. From (26), we have

3 2
a6 GG GG
|aza3—a3a4|=|12+ 172 =2%3 12|

8 576 24 96 (52)
P [cl (c3 = ¢16,/4) . a } ‘

4

2 6 144

If we insert ¢; =, c €[0,2] and according to Lemma 3,
we get

| |<1C+1+C3 (53)
a3 — azay < = |- + = + —|.
2RO 12 03 144
Assume that
Ife 1 ¢
Flio)==|=+=-+—|. 54
© 2{2 3 144] (54)
Therefore, we have V¢ € (0, 2)
1 &
F'(c)==+ — >0, 55
©=3* o (53)

namely, the maximum value of F(c) can be obtained at ¢ =2,
that is,

25
a,a; —aza,| < F(2) = R (56)

d
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Theorem 4. Suppose that f(z) € S and of the form (1), then,
we get

1
laa, — aj| < 7 (57)

Proof. Suppose that f(z) € 7, then, through equation (26),
we get

4 2
‘16 ¢, _4a 9

. (58)
12 48 288 16

2
aa, - as| =

Now, according to Lemma 1, we obtain

2 4 2
a6 a6 4 S

— 2 = —_— - =
s =@l = |~ S T 288 T 16
5¢t xch(4—cf) x2(4—cf)2 61(4—cf)(1—\x\2)z
1576 48 ST e 24 '

(59)

If we insert ¢, =c¢,c€[0,2],|x| =¢t,t€[0,1]. Then, by
the triangle inequality, we get

202(4_ 2 1= 2)e(4— 2 2(4 2 4
a2a4—a§|§tc( c)+( )e( c)+t( ) +5i,
48 24 64 576
(60)

Putting
2:2(4 — 2 1= c(4 -2 24_622 4
pon - PEU=E) | (1-R)(a=¢) PE-e) st
48 24 64 576

(61)

then, V¢ € [0, 1], Vc € [0, 2], the upper bound of F(c, t) corre-
sponds to t =1, c=0. Hence,

laa, —a3] < F(0,1) = ~. (62)

|

Theorem 5. Suppose that f(z) € §; and of the form (1), then,
we get

layas — aza,l < % (63)

Proof. Assume that f(z) € $7, then, on the basis of equation
(26), we obtain

5¢ L ac A R
2304 16 192 48 1152 24
_| Glo-a2] ol -q] La [cy — €165
1152 24 24
5 —1/4 2
.4 . a ¢y —1/463]
576 48

aya5 — asa,| = ‘

(64)
O
If we insert ¢; =¢, c € [0, 2], from Lemma 3, we obtain

cR-én] 2-¢2r] ¢ ¢

a,d: — a,a,| < + + .
;a5 = a3, 1152 12 8 576

Taking

v _63[2—62/2] . [2—62/2] L I
()= 1152 12 38576

(66)

Then, easy to show that maximum of F(c) occurs at
c=2\¥ce|0,2], also which is

11

- <F(2)=—. 67
layas — asay| (2) 36 (67)

Theorem 6. Suppose that f(z) € ST and in the form (1),
then, we get

9
lasas —asa,l < 6 (68)

Proof. Assume that f(z) € 5, then, according to equation
(26), we get

c L as de, o 5l
128 12 48 288 4608
Gl | GGG | 46
32 96 768
5¢i6, (¢, — ¢1/2]

lazas — aya,| =

[c1]c5 — cr65/4]

12 2304
_Gles = 1/3¢164) . Gleo-al2] 74d o
32 128 2304 288
(69)
O

If we insert ¢, =¢,c€[0,2] and in view of Lemma 3,
we have

c 1 572-cr2] [2-dr2] 7P
lasas —aya,l < — + - + + ot —.
6 8 1152 32 576 288
(70)




1 5¢)2-¢n2]  [2-¢72]

c . 7 &
6 8 1152 32

+—+ :
576 288

(71)

Then, Vce(0,2], the demonstrable function F(c)
obtains the maximum value at ¢ =2, that is,

9
lasas — a,a,| < F(2) = R (72)

Theorem 7. Suppose that f(z) € ST and of the form (1),
then, we get

97

— (73)

2
lasa; —agl <

Proof. Suppose that f(z) € 85, then, by the equation (26),
we obtain

lagas - a2 = TG GG a6 6 e TdGg 6 4
13824 32 288 128 432 2304 36 20736
_lala-—aa  ala-aai]  Glo-dlr]
- 32 36 128
_dale-ar] s -3182¢¢] Sde
144 432 6912 20736
(74)
O

If we insert ¢, = ¢, c € [0, 2] and by Lemma 3, we obtain

w1 1 [2-énr] JR-¢r] & 5 ¢
asa; —ag| < - + - + + ottt .
8 9 32 72 216 3456 20736
(75)

Putting

[2 - 62/2} c? [2 - (:2/2] a3 5c* c®
+ + -+ TR
32 72 216 3456 20736
(76)

1 1
Flc)==-+ -+
©=5*3

Vce (0,2),E'(c) >0, Then, maximum of F(c) occurs at
c=2, that is

97
—al|<F(2)= —. 77
lasa; — aj| (2) 324 (77)

Theorem 8. Suppose that f(z) € 8§ and of the form (1), then,
we get

263384.5 _

T,2) < =27 = 2.5]. 78
IT4(2)] 104976 (78)
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Proof. Since

2
T,(2)= (a% - “g) + 2(“§ - ‘12’14) (aya4 — asas)
2
- (aya5 - a3a4)2 + (ai - “3“5) - (aza, - azas)z’

(79)
then, by applying the triangle inequality, we get

IT,(2) < |a§ - ag}z +2|a§ - a2a4||a2a4 — asas|
2 2 2 2
+]aya; — asay|” + ‘“4 - a3a5| +aza, — ayas|”.

(80)

Now, substituting (18), (45)-(73) into (80), we easily
obtain the desired assertion (78). O

3. Conclusion

In this paper, based on the paper [15], we continuously
discuss the problem of the fourth-order Toeplitz determi-
nant of starlike functions, which are connected with the
sine function and get the upper bounds of the determi-
nant. In the next step, we can consider the fourth-order
Toeplitz determinant of other function classes defined by
various linear or nonlinear operators and also make the
related discussion on the fifth-order Toeplitz determinant
for certain function classes.
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Recently, hypergeometric functions of four variables are investigated by Bin-Saad and Younis. In this manuscript, our goal is to
initiate a new quadruple hypergeometric function denoted by Xgi , and then, we ensure the existence of solutions of systems of
partial differential equations for this function. We also establish some integral representations involving the quadruple

hypergeometric function Xf{i).

1. Introduction

Special functions, in recent years, are a piece of research that
turned out to be very attractive to many scholars, hunting
generalisations which are almost always evoked by applica-
tions. Hypergeometric functions of several variables have
many applications in mathematical physics, statistical sci-
ences, physics, dynamics, quantum mechanics, chemistry,
and engineering (see, e.g., [1-7]). Multivariable hypergeo-
metric functions occur in diverse areas of mathematics such
as approximation theory, partition theory, representation
theory, group theory, mirror symmetry, and algebraic geom-
etry. They possess important properties such as recurrence
and explicit relations, summation formulas, symmetric and
convolution identities, and algebraic properties. Further-
more, multidimensional hypergeometric functions are used
to solve boundary value problems (Dirichlet problem, Neu-
mann problem, and Holmgren problem) for multidimen-
sional degenerate differential equations (see [8-12]).

In [13], Bin-Saad and Younis introduced several integral
representations of Euler type and Laplace type for new hyper-
geometric functions in four variables. The authors, in [14],
defined four new quadruple hypergeometric functions,
namely, Xgé),Xg),Xg, anng), and they obtained frac-
tional derivative formulas, integral representations, and
operational formulas for these quadruple hypergeometric
functions. More recently, Younis et al. [15] introduced and
studied further quadruple hypergeometric functions denoted
by Xé‘?,Xé?, ---,Xg(l)). Each quadruple function in [13-15]
can be expressed as

© moyn op 14
XWey= O(m,n,p,q xryz (1)
(> m,n;qzo ( )m' Yl'p' q'

where ®(m, n,p,q) is a sequence of complex parameters
and there are twelve parameters in every series X*(-)


https://orcid.org/0000-0001-7116-3251
https://orcid.org/0000-0003-4606-7211
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5580131

(eight a’s and four ¢’s). The 1st, 2nd, 3rd, and 4th param-
eters in X(*)(-) are connected with the integers m, n, p, and
q, respectively. Every repeated parameter in the series
X™(.) points out a term with double parameters in ®(m, n,
p>q)- Hence, it is possible to form various combinations of
indices. It seems that there is no way to establish indepen-
dently the number of distinct Gaussian hypergeometric series
for each arbitrary integer n >2 without giving explicitly all
such series. Hence, in each situation with n = 4, one ought to
start with actually building the set like the case n = 3 (refer to
(16]).

Motivated by the works [13-15], we define here the fol-
lowing quadruple hypergeometric function:

4 L
Xé4)(21,{’,2,€3,€4;]1,]2,]3;x,y,z,t)
OZO: (el)2m+n(£2)n+p(£3)p+q(e4)qﬂ)’_nfﬁ
) mipUn)n(s), — minlplgl  (2)

m,n,p,q=0

1
-<|x|<1,|y|<1<z<1<|t|<1>,

where (£), is the well-known Pochhammer symbol given as

1, n=0,
(®),= { (3)

ee+1)---(€+n-1), neN:={12,--}.
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Throughout this paper, N, Z~, and C denote the sets of
positive integers, negative integers, and complex numbers,
respectively. Also,

N, :=NU {0},

Z,=17"U{0}. )

Recently, various interesting hypergeometric functions in
several variables have been investigated by many authors
(see, e.g., [17-24]). In Section 2, we show how to find the lin-
early independent solutions of partial differential equations

satisfied by the function X éi). Section 3 is aimed at presenting

some integral representations of Euler type for our quadruple
function.

2. Solving Systems of Partial
Differential Equations

Following the theory of multiple hypergeometric functions
[25], the system of partial differential equations for the qua-

druple hypergeometric function Xéi) is given as follows:

4 C
where u =X (8, €, €3, 845 i s j3 35952 1),

'+xa+ 0 xa+1 xu- E+2xa+2 a+1 €+2xa+2 g u=0
1 FXS eSS Ix 1 Ix J’@ 1 Ix )’@ =Y
i) + g a+1 Ty - €+2xa+2 g €+2xa+ g u=0
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Starting from (5) and by making use of some elementary
calculations, we define the system of second-order partial dif-
ferential equations:

x(1—4x)u,, — dxyu,, +zu,, —yzuyy + iy —2(28) +3)x]u, = 2(8; + 1)yu, — £, (€, + 1)u =0,
y(1 —y)uy), = 2Xyu,, — 2XZU,, + yZU,, — 20, xu, + [j, — (€, + €, + l)y]u), —8zu, — £,6,u=0,
2(1 = 2)u,, — Xt — yzu, +ytu, — ztu —Lyu, + [j; = (€ + & + 1)z]u, — & tu, — €,€u =0,

H(1 = t)u, — ztu,, — Lzu, + [j; — (€ + €, + 1)tJu, — 658,u=0.
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It is noted that four equations of the system (6) are simul-
taneous. In fact, the hypergeometric function X gi) verifies the
system. To find the linearly independent solutions of system

(6), we will search the solutions in the form

u=x"yPz"tow, (7)

where w is an unknown function and «, 3, y, and & are con-
stants, which are to be determined. So, substituting u = x*y#
2'%w into the system (6), we get

x(1 = 4xX)wy,, — dxyw,, + 2w, = yw,, + {j, +y +2a =221 + 20+ B) + 3x}w, - 2(8; + 2+ B+ Dyw, + ax'zw, - [a(j, +a+y—1)x + (€ + 20+ B)(¢ +2a+ f+1)]w=0,

y(1=
z(1-

Systems (8) and (6) have the same structure and can
therefore be approached with similar techniques. System
(8) implies

a=0,
i, —1)=0,
PB+j,-1) )
y=0,
0(6+j,—-1)=0.

Therefore, system (9) has the following solutions:

1 2 3 4
a= 0 0 0 0

B= 0 1-7 0 1-j7. (10)
y= 0 0 0 0

= 0 0 1-7 1-j7

Finally, substituting two solutions of the system (10) into
(8), we find the following linearly independent solutions of
the system (6) at the origin:

4 .
uy (%9, 2, t) :X§34) (815 €5, €35 845 15 oo J3 3 % 15 20 1),
i (4 . . .
Uy (%, 3,2, 1) = y' ]ZXi(M) (€ +1—jpty+1-j58,85),2
_j2:j3;x>ya Z, t):
us3(x,y,2,t) = tl_j3X§i) (5,88 +1—j5, 8, +1
—J33didp2 =33 % )% 1),
uy(x, > 2, 1) :J’l_jztl_j3Xz<§i) (C+1-jpt+1—j8
t1-jp b+ 1-j35j2 )52

ysxpat).

PIW,y = 2xyw,, = 2x2W,.. = yzw,, = 2(8 + a+ Pxw, + {j, + 2 [(& + 20+ f) + (& + f+y) + 1]yjw, — (& + 20+ f)zw, - [*ﬁ(jl +B-1)y "+ (0 +2a+ ) (L, + B+ y)}w =0,
)W, +xW,, — yzw,, — ytw,, - ztw,, +yxz ' w, — (& +y+0)yw + {ji+a+2y—[(G+f+y) + (G +y+0) + 1 zjw, — (& + B +y)tw, - {~v(, +a+y- Dz + (& +B+y)(t + y+0)jw=0,

(1= tyw,, —ztw,, — (& + 8)zw, + {j; +26 — [(&; +y + ) + (& +J) + 1]t }w, — [—5(j3+8— l)tl + (& +y+8)(Ly +5)]w=0.

(8)

3. Integral Representations of Euler Type

Here, we give eight integral representations of Euler type for

Xgi) whose kernel contains the Gaussian hypergeometric
function ,F, (see [16]), Appell function Fj (see for details
[16, 25]), the Exton triple functions X4, X;,, X, [26], Laur-

icella’s function of three variables Fy [16], and the quadruple

functions Xi4),X(2? (see [20, 21]):
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5> —zM sinh? (x>

(13)



(4)

T TG, - )
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where the Gaussian hypergeometric function ,F,, Appell
function F;, Lauricella triple hypergeometric function Fy,
Exton hypergeometric functions X, X7, X;4, and the qua-

druple functions Xf;l), Xgi) are defined, respectively, by

(20)

xn
,Fi(a,bsc5x) = o (lxI<1),
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Proof. We begin by recalling the following integral represen-
tations of the beta function (see, for example, [27, 28]):

Jla“@ o) 'da (R(a)>0,R(b) >0),

Blab)= I(a+b) oG-
T{@)T(b) (@ 0C/%0)
(29)
B(a,b) = Jl 11— ) da
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For convenience, let U denote the right-hand side of rela-
tion (12). Then, by substituting the expression of F; from
definition (21) into the right-hand side of (12) and using
(31), we have

(& +2m),(1+8 - j,),(85), (& +p),(-1)
(]l)m+p

(e
U= z ( 1)2m
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) mipUn)alis), — minlplg!
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we are led to the desired result. A similar argument in the
proof of relation (12) will be able to establish the results
(13)-(19). So, details of the proof are omitted. O
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In this article, we introduce a new subclass of analytic functions utilizing the idea of Mittag-Leffler type Poisson distribution
associated with the Janowski functions. Further, we discuss some important geometric properties like necessary and sufficient
condition, convex combination, growth and distortion bounds, Fekete-Szego inequality, and partial sums for this newly defined

class.
1. Introduction, Definitions, and Motivation holomorphic in D with the condition
Let o/ represent the collections of holomorphic (analytic)
functions f defined in the open unit disc: R(p(2) >0, (3)
D={z:zeCand|z[<1}, (1) and has the series representation

such that the Taylor series expansion of f is given by

(e8]
flz)=z+ Zanz”(zelD). (2) o0
n=2 pz)=1+ Z 2" (zeD). (4)
n=1
By convention, & stands for a subclass of class &/ com-
prising of univalent functions of the form (2) in the open unit Next, we recall the definition of subordination, for two
disc D. Let & represent the class of all functions p that are  functions hy, h, € &/, we say h, is subordinated to 4, and is
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symbolically written as
hy < h,, (5)

if there exists an analytic function w(z) with the properties

|w(z)| < |2, w(0) =0, (6)
such that
hy(2) = Iy (w(2)). 7)
Further if h, € &, then the above condition becomes
h, < h, © h,(0) = h,(0), ®)
h,(D) < h,(D).

Now, recall the definition of convolution, let f € &/ given
by (2) and h(z) given by

=z+ Z b,z", (9)
n=2
then their convolution denoted by (f = h)(z) is given by

=z+ OZO:anbnz” (zeD). (10)

n=2

(f = h)(2)

The most important and well-known family of analytic
functions is the class of starlike functions denoted by §*
and is defined as

§*={fed:m<zﬁg)>>o(vze|D)}. (11)

Next, for -1 <B<A<1, Janowski [1] generalized the
class &* as follows.

Definition 1. A function h with property that h(0)=1 is
placed in the class 2[A, B] if and only if

1+Az
(2)< 1+Bz(

-1<B<A<I). (12)

Janowski also proved that for a function p € &, a function
h(z) belongs to P[A, B] if the following relation holds

(A1)~ (A1)
"= B ipe) - (B-1)

(13)

Also, function f of form (2) belongs to the class $*[A, B]
if

zf'(z) _ (A+1)p(z)-(A-1) 3 <
flz)  (B+1 (-1<B<A<l). (14)

Kanas et al. (see [2, 3]; see also [4, 5]) were the first to
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define the conic domain Q2 (k 2 0) as follows:

Qk:{u+iv:u>k (u—1)2+v2}. (15)

Moreover, for fixed k, ; represents the conic region
bounded successively by the imaginary axis (k=0). For k=
1,itis a parabola, and for 0 < k < 1, it is the right-hand branch
of the hyperbola, and for k > 1, it represents an ellipse.

For these conic regions, the following functions play the
role of extremal functions:

xi(kz), (k=0),
xalk2), (k=1),
p(2)=4 " (16)
Xs(k2), (0=k<1),
Xs(k2),  (k>1),
where
x, (k. z) = ? =1+2z+22%+,
2 1+,2\°
k) =1+ 2 (log {7)
X;(kz) =1+ smh2{ (— arccos k) arctanh (\f)},
kz)=1+ 1
wlb et J Vi-e tzm
z-/k
u(z) = 1_\/_ (VzeD), (17)

and « € (0, 1) is chosen such that A = cosh (7K' (x)/(4K (x))).
Here K (k) is Legendre’s complete elliptic integral of first kind

and K' (k) = K(v/1 - «2), that is, K

integral of K(x). Assume that

(k) is the complementary

pi(z)=1+Piz+P2*+-(Vz D). (18)

Then, in [6], it has been shown that, for (16), one can
have

e (02k<1)
8
p={ 2 (k=1), (19)
L
() (14 ) i
P, =D(k)P,, (20)
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where
N23+2, (0<k<1),
D=1 2 (k=1),
[4K (x)]? (x22+ 6K +1) - k1),
24[K(K)P(1+ 1) V&
(21)
with
N= % arccos k. (22)

Definition 2. A function f of the form (2) is said to be in class
k- &7, if and only if

(@)
f(2)
Noor and Malik [7] combined the concepts of the

Janowski functions and the conic regions and gave the fol-
lowing definition.

<pi(2), k=0. (23)

Definition 3. A function h € & is said to be in the class k —
P|A, B] if and only if

(A+D)p(z)-(A-1) < o
(B+1)pk(z)_(3_1)’ 1<B<A<1,k=0. (24)

h(z) <

Geometrically, h(z) € k— P[A, B] takes all values in
domain A[A, B], which is defined as follows

A4 = {w:%<(3- 1)w—(A—1)> B 1)w—(A—1; _1‘})

(B+1w—-(A+1)

(25)

the domain A[A, B] represents conic-type regions, which
was introduced and studied by Noor and Malik [7] and is fur-
ther generalized by the many authors, see for example [8] and
the references cited therein.

Definition 4 [7]. A function f € & is said to be in the class k
- 8*[A, B] if and only if

f'(2) , (A+Dp(2)

|
=
|

@ ‘wrpe-e-n
The generalized exponential series:
ok
E,(z) = ;m,a,ze Cand R(a)>0,  (27)

is one special-type function with single parameter o, was
introduced by Mittag-Leffer (see [9]), and is therefore known

as the Mittag-Leffler function. Another function E, g(z) with

two parameters o and f3 having similar properties to those of
Mittag-Leftler function is given by

0 Zk
Eup(2) = k;)m (a0, B,z € C), (28)

and was introduced by Wiman [10, 11] Agrawal [12], and by
the many other (see for example [13-16]). It can be seen that
the series E,3(z) converges for all finite values of z if

R(a) >0, R(B) > 0. (29)

During the last years, the interest in Mittag-Lefller type
functions has considerably increased due to their vast poten-
tial of applications in applied problems such as fluid flow,
electric networks, probability, and statistical distribution the-
ory. For a detailed account of properties, generalizations and
applications of functions (27) and (28), one may refer to [17-
19] and [20].

Geometric properties including starlikeness, convexity,
and close-to-convexity for the Mittag-Leffler function E, 4(

z) were recently investigated by Bansal and Prajapat in
[21]. Differential subordination results associated with gener-
alized Mittag-Leffler function were also obtained in [22].

A variable ./ is said to be Poisson distributed if it takes
the values 0, 1,2, 3, --- with probabilities e”¥, ye ¥/1!, y?eV
12, y2e7V/3], --- respectively, where v is called the parame-
ter. Thus,

yreV
Py =n)= T (120,1,2,3,). (30)

It is easy to see that (30) is a mass probability function
because

P(y, o0 B3 )(2) 20,

X 31
ZP(w,a,[};n)(z)zl. G1)

n=0

The power series Y (v, z) given by

0 n—-1 -y
Y(y.2) =2+ Z%z” (VzeDandy>0),  (32)
n=2 °

which coefficients are probabilities of Poisson distribution is
introduced by Porwal [23]. We can see that by ratio test the
radius of convergence of Y (v, z) is infinity. Porwal [23] also
defined and introduced the following series:

(o] n-1 -y
Sy, 2)=2z-Y(y,2) =2z~ Z%z” (VzeDandy >0).
n=2 :

(33)

The works of Porwal [23] motivate researchers to intro-
duced a new probability distribution if it assumes the positive



values and its mass function is given by (30) (see for example
[24-26]).

It was Porwal and Dixit [24] who studied and connected
the Poisson distribution and the well-known Mittag-Leffer
function systematically. They called it the Mittag-Leffer type
Poisson distribution and prevailed moments. The Mittag-
Leffer type Poisson distribution is given by (see [24])

y'! n
)T BE) e Y

Ve f)@) =24 Y
where Y (y, «, 8)(z) is a normalized function of class &, since

Y(y,o0 B)(0)=0=Y (o0 f)(0) 1. (35)

The probability mass function for the Mittag-Leffer type
Poisson distribution series is given by

1//11

P B3 () = e

(n=0,1,2,3,--),
(36)

where E,5(y) is given by (28). It is worthy to note that the
Mittag-Leffer type Poisson distribution is a generalization
of Poisson distribution. Furtheremore, Bajpai [27] also stud-
ied and obtain some necessary and sufficient conditions for
this distribution series.

Very recently, using the Mittag-Leffer type Poisson distri-
bution series, Alessa et al. [28] defined the convolution oper-
ator as

O B ()= Vo f) » () =2+ Y. g Bla,
7)

where

) ~ 1Vn—l
Py B) = T(a(n=1)+P)Eus(y)

(38)

Using this convolution operator, they defined and stud-
ied a new subclass of analytic function systematically. They
obtained certain coeflicient estimates, neighborhood results,
partial sums, and convexity and compactness properties for
their defined functions class.

In recent years, binomial distribution series, Pascal distri-
bution series, Poisson distribution series, and Mittag-Leffer
type Poisson distribution series play important role in the
geometric function theory of complex analysis. The sufficient
ways were innovated for certain subclasses of starlike and
convex functions involving these special functions (see for
example [26, 29-32]). Motivated by the abovementioned
works and from the work of Alessa et al. [28], in this article,
by mean of certain convolution operator for Mittag-Leffer
type Poisson distribution, we shall define a new subclass of
starlike functions involving both the conic-type regions and
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the Janowski functions. We then obtain some interesting
properties for this newly defined function class including
for example necessary and sufficient condition, convex com-
bination, growth and distortion bounds, Fekete-Szego
inequality, and partial sums. We now define a subclass of
Janowski-type starlike functions involving the conic domains
by mean of certain convolution operator for Mittag-Leffer
type Poisson distribution as follows.

Definition 5. For -1 <B< A <1, a function f € ¢ is in class
k—Q8"(a, B, A, B) if

(B-19(f sy, a.f)—(A-1)
m<<B+1)9(f;u/»a,/5)—(A+1> 1)

>k‘(B—1)9(f;1p,oc,[§)—(A_1)_1' (39)
B+ sy B) - (A+1) )
where

Wswap)= Z(%((lll;,t,l;))];‘((zz)))) ' (40)

For the proofs of our key findings, we need the following
lemma.

Lemma 6 [33]. Let p € & have the series expansion of form
(4), then

|a; - {a3| < 2 max {1,(2{ - 1|}, where( € C. (41)

2. Main Results

Theorem 7. Let f € k— Q8™ (a, 8, A, B) and is of the form (2),
then

D [2(k+ 1)1 =n| +|n(1+B) = (1+A)|[g, (o B)lay| <|B~A].

n=2

(42)

The result is sharp for the function given in (51).

Proof. Suppose that inequality (42) holds true, then it is
enough to show that

A-1) (B=1)3(fsy p) - (A-1)
+1) ‘1"m<<3+1>9<f;w,a,ﬁ>—<A+1> ”) <t

(B - (A=)
1‘ m((BH)S(f;w,a,ﬁ)—(Aﬂ) 1)'

(44)
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As we have set

2y @ B)f (2)))’

Ifsy )= Oy, o, B)f(z)

(45)

therefore, after some straightforward simplifications, we have

=~

{(B—l)S(f;w,vc,ﬁ)—(A—l)71‘7m<(3—1>9(f;w,a»ﬁ>—(f\—1)71)
B+ D3(f 5y, B) - (A+1) B+ v, ap)-(A+1) )’
Oy, 0 f)f(2))' - (A= 1)Q(y, e B)
Oy, 0, B)f(2))) - (A+1 )
s )| QeBE) Qs pE) |
|(B+1)z(Q(y: 0 Bf (2))) - (A+ DOy, & B)f (2)]
) | $00, (1= n)gl (o, B)a,z"
=2 D G A (1 B) - (1 A @ B
2(k+ 1) 25,11 - gt (o B)la,|
B A~ 2, n(1+B)— (L+ A)g (@ Bla,|

<(k+1) B

(46)

By using (42), the above inequality is bounded above by
1, and hence, the proof is completed. d

Example 8. For the function

I |B-A| \
@)=+ 2 e DT (1 ¥ B~ (L A ) €
(47)
such that
Ylkl=1 (48)
n=2
we have
Y 2(k+ 1)[1=n|+[n(1+B) - (1+A4)[g} (« B)|a,]
n=2
= Y [2(k+1)[1=n| +|n(1+B) - (1+A)[J¢} (e B)
n=2
. |B—A| |x |
2(k+1)[1=n[+|n(1+B) - (1+A)[]¢j (e, B) "
=[B-A| ) |x,|=|B-A].
n=2
(49)

Hence, f € k— Q8™ (a, B, A, B) and the result is sharp.

Corollary 9. Let the function f of the form (2) be in the class
k—Q8*(a, B, A, B). Then,

|B- 4]

= B DT A+ (1 B) = (1 ATy )

(50)

5
The result is sharp for the function f,(z) given by
|B-A4 "
Z)=z+ z".
T2 G = o1+ B) = T+ A) [ )
(51)

Theorem 10. The class k— Q8™ (
convex combination.

o, B, A, B) is closed under

Proof. Let f,(z) € k — Q8™ (a, B, A, B) such that
Ifi(z)=z+ Za,,,kz”,ke {L,2}. (52)
n=2

It is enough to show that

t,(2) + (1-)f,(2) € k- Q" (&, B, A, B) (t € [0,1]).  (53)
As
tfi(2)+ (1-1t)f,(z) =z+ OZO:[tan)l +(1-t)a,,]z". (54)

Now, by Theorem 7, we have

[2(k+1)|]1=n|+|n(1+B) - (1+A)]]

M8

X
I
[N]

@ Bta, + (1-t)a,,|

< 2[2(k+ D|1=n|+|n(1+B)-(1+A)|]
0 B) [t + (1= D]

Stip(k+ D)|1-n|+|n(1+B)-(1+A)|]

@y (o, B)|a,, | + (1)

: Zf(’” D)1 =n|+|n(1+B) = (1+A)[jgs (o, B)|a,|
<tB-A|+(1-1)[B-A|=|B-A|.
(55)
Hence,
tf,(z) + (1= 1)f,(2) k- QS*(a, B, A, B),  (56)

which completes the proof. O



Theorem 11. Let f € k— Q8™ (a, 8, A, B), then for |z| =7

B-A| §
r_2(k+1)+|ZB—A+1|¢§/(a,ﬁ)r2—|f(Z)| .
1B - Al (57)

<r+

2(k+1)+|2B-A+ 1|y ( B)
The result is sharp for the function given in (51) for n = 2.

Proof. Let f € k— Q8™ (a, B, A, B). Using Theorem 7, we can
deduce the following inequity:

0 0
2
f) <zl + X la,l2"| < 2| + |2 ) la]
n=2 n=2

(58)
<r+ |B- A 2
= 2(k+1)+2B-A+1|¢%(a, B)
1’/ >
Similarly,
2 |z| - Z\anllzl>lzl l2I? Zlﬂnl
(59)
_ W-AI 2
2(k+1) +[2B- A+ 1oy (o B)
O

Theorem 12. Let f € k— Q8™ (a, 8, A, B), then for |z| =7

o 2|B- A
f@)f <1+ 2(k+ 1)+ |2B- A+ 1|2 (a )

2|B- A (€0)

f'(@)| 21~ 2(k+1)+[2B~ A+ 1|92 (o, B) "

The result is sharp for the function given in (51) for n = 2.

Proof. The proof is quite similar to Theorem 11, so left for
reader. O

Now, we evaluate a kind of Hankel determinant problem,
which is also known as the Fekete-Szegd functional.

Theorem 13. If f is of the form (2) and belongs to k — Q8™ (
o, 3, A, B), then

(61)

where P, and P, are defined by (19) and (20), respectively.

L. P,(A-B) |(B—2P, + 1)p, (- B) - 25(A - B)P]
|a; —&a3| < max l‘

4¢3, (o B) 2P, (o B)

Proof. To prove inequality (61), we let

(fsva )= 250
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then from (26), we have

s f) <

Thus, if
pk(z)=1+Plz+P2z2+...’ (64)
then by simple computation, we get
1
D(z) =1+ P (A-B)z+ 4 (A B)(2P, — (1+ B)P)2*+---.
(65)

Now, from (63), there exists an analytic function h(z)
such that

L+ ((f 39,0 B))
L= (3(f59, 0 B))

=1+cz+ 2%+,  (66)

h(z) =

is analytic and
R(h(z)) >0, (67)

in open unit disc D. Also, we have

9(f sy, ) =<D<h(z)_ 1), (68)

h(z) +1
where

00 3v>a.B))’
93y )

ofl0) -

=1+ g} (@ Baz + (20} (@ Bas - 9} (o a3 )+

(69)

(A B)Piciz+ -

P, 1+B P
- |Picy + 2 -1 cf 2
2 4 2

(70)

(A B)

After comparing the (69) and (70), we get

a, = (A-B)Pc,, (71)

-
4¢y, (. B)

1 P, 1+B P
a3= —5——(A-B) (P162 + <2 P 1)6%).
8¢;,(x B) 2 4 2

(72)

Now, by making use of (71) and (72), in conjunction with
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Lemma, we have

|ay - &a3| < P\(4-B) max {1, |(B_2P2+ Doy (.P) ~25(A-B)P;

493 (@ B) | 2P,¢, (a, B)

b

(73)

which is the required result. d

3. Partial Sums

In this section, we will examine the ratio of a function of form
(2) to its sequence of partial sums

fi(z)=z+ ianz”, (74)

when the coefficients of f are sufficiently small to satisfy con-
dition (42). We will determine sharp lower bounds for

f@)
m(ﬂ&»’

(%)

(75)

f(2) 1
SR<]%> >1- o (VzeD), (76)
f(Z) P +1
m(ff(z)) > 1+fpj+1 (Vz e D), (77)
where
2(k+ D|I-n|+|n(1+B)-(1+A)]¢"(a,
p - B DLl i )= 0 )

The result is sharp for the function given in (51).

Proof. 1t is easy to verify that

Pui1 > Py > Lforn>2. (79)

Thus, in order to prove the inequality (76), we set

|:f(z) _ (1 1 >:| _ 1"’z‘,]r1=2('11f1‘2"r171 +pj+lz(r§j+lanzn71
j+1 -

fi@) P 1+ Y 0,2
_1+h(2)
1+ hy(z)
(80)
We now set
L+h(z) 1+w(z) (s1)

1+hy(z) 1-w(z)

Then, we find after some suitable simplification that

Thus, clearly, we find that

o n—1
Pj+12n:j+1anz

B j -1 00 -1
2+ 22;1:2“112” + pj+12n:j+1anzn

w(z (83)

By applying the trigonometric inequalities with |z| <1,
we arrived at the following inequality:

Pj+12;>zj+l|un|

w(z)| £ —— )
2- 22n=2|un| - Pj+12n=j+1|an|
We can now see that
lw(z)| <1, (85)
if and only if
00 j
2pj+1 Z |an|S2_22|an|’ (86)
n=j+1 n=2
which implies that
j 00
Z|an|+Pj+l Z ‘anlgl' (87)
n=2 n=j+1

Finally, to prove the inequality in (76), it suffices to show
that the left-hand side of (87) is bounded above by the follow-

ing sum:

00
Z Pn|an|’ (88)
n=2



which is equivalent to

J 0
Yeu-Vla+ Y (py=ppa)lalz0.  (89)
n=2 n=j+1

In virtue of (89), the proof of inequality in (76) is now
completed.
Next, in order to prove the inequality (77), we set

£2) P
(1 + Pj+1> <fj(—z) - 1+Jpj+1>

_ 1+ Z]rlt:Zanznil - Pj+1232;+1an2"71 _ 1+ w(Z)
1+Y25a,z"! T ol-w(z)’
(90)
where
(1 + Pj+1>zzij+1 |an|
lw(z)| < , <1. (91)
(e}
2-28 ol = (pjur = 1) Ziyalal
This last inequality in (91) is equivalent to
J 0
[0+ Pyy D, lan] <1 (92)
n=2 n=j+1

Finally, we can see that the left-hand side of the inequality
in (92) is bounded above by the following sum:

Y. Palay, (93)
n=2
so we have completed the proof of the assertion (77). d

We next turn to ratios involving derivatives.

Theorem 15. If f of the form (2) satisfies condition (42), then

m(f,,(z)> >1- 1 yzep),
fi(2) Pj+1

w(HO) s P (e
f'@))  prati+] ’

where p; is given by (78). The result is sharp for the func-

(94)

tion given in (51).

Proof. The proof of Theorem 15 is similar to that of Theorem
14; we here choose to omit the analogous details. O

4. Concluding Remarks and Observations

In our present work, by making use of the idea of Mittag-
Leffler type Poisson distribution, we have defined and studied
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certain new subclasses of starlike functions involving the
Janowski functions. Further, we have discussed some impor-
tant geometric properties like necessary and sufficient condi-
tion, convex combination, growth and distortion bounds,
Fekete-Szego inequality, and partial sums for this newly
defined functions class.
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This content replicates some discrete nonlinear fractional inequalities by virtue of the fractional sum operator ¥ on time scales.
Through the recognition of the principle of discrete fractional calculus, we are able to recover the precise estimates for unknown
functions of inequalities of the Gronwall type. The resultant inequalities are of unique structure comparative with the latest
reviewing disclosures and can be described as a complementary tool for numerically testing the solutions of discrete partial
differential equations. The foremost consequences are probably confirmed via handling of assessment procedure and technique
of mean value speculation. We display few examples of the proposed inequalities to represent the incentives of our effort.

1. Introduction and Essentials

Fractional calculus and its conceptual applications have
acquired a huge amount of potential in terms of the reality
that fractional operators are becoming a valuable asset with
more specificity and success in demonstrating a few compli-
cated discoveries in numerous seemingly diverse and wide
fields of science and in many areas, such as fluid flow, phys-
ics, chaos, image analysis, virology, and financial economy
[1, 2]. A few years earlier, fractional differential equations
and dynamic systems have been validated as being signifi-
cant gadgets in showing a few marvels in different parts of
applied and pure sciences. They draw enormous impor-
tance in research-oriented fields (see the basic monograph
and the interesting paper [3, 4]. The set of implications that
encouraged the formation of a discrete fractional theory is
established [5].

The aim of the paper is to impose discrete fractional sum
equations in order to build up a procedure to comprehend
certain equations and to extract corresponding Gronwall sort
of inequality. Especially, Gronwall’s inequality is illustrated
to be among the primary inequalities for the foundation of
differential equations. From now on and into the near future,
various assumptions and development of such inequalities

have ended up being a major component. Discrete Gronwall
inequality was suggested by Sugiyama [6] in 1969. He carried
out the related framework of reliable and discrete type of
Gronwall inequality:

Theorem 1. Let Z(Q) and ¥(Q) be real-valued functions
defined for Q € N, and ¥(Q) > 0 for every Q € N,. If

where @, is a nonnegative constant, and then

{Q |

s@o 1+f (2)

‘U |

Theorem 1 is often used differential and integral equations
that possess the unification of discrete factor models.

It is interesting that discretization cycle is among the
most demanded tools for researchers who are captivated in
multiplication and computational assessment. Keep in mind
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that not all discrete operators have identical characteristics to
continuous ones, and the formation of discrete fractional cal-
culus is becoming an essential prerequisite. Several other
authors have dedicated their resources to the quest for arbi-
trary new operators. Definitely, the range of such methods
provides analysts with more chances to adapt them in multi-
ple models.

Fractional calculus that consists of derivative and integral
of noninteger order is normal augmentations of the standard
integer order calculus. Fractional calculus is by all accounts
universal in light of its fascinating applications with regards
to different aspects of science, for example, viscoelastic mate-
rials, dispersion, central nervous biology, regulation hypoth-
esis, and statistical data [7-9].

Despite the existence of a rigorous scientific standard for
the continuity of fractional calculus, the possibility of
improving a discrete fractional calculus has been insufficient.
Although we all realize, discovering fractional difference
equations requires a thorough understanding of system
identification. Recently, surprising achievement has been
produced as a result of arduous attempts in fractional
difference structures by Du and Jia [10]. The existence and
uniqueness of solutions are the foundation for examining
the stability problem that has been exploited using fractional
Gronwall and Bihari inequality, for example [11, 12].

The essentially identical to discrete hypothesis by a frac-
tional sum of order ¥ >0 was identified due to Miller and
Ross [13] through solution based on linear differential equa-
tion, and many key aspects of proposed operator were tested.
Moreover, Atici and Eloe [14] implemented a discrete
method for Laplace transformation containing a fractional
class of finite difference equations. Atici and Eloe [15] identi-
fied the causes of the initial value in the discrete fractional
analysis. Atici and Eloe [16] investigated the structure of a
discrete fractional calculus with the nabla operator. They cre-
ated exponential laws and the item rule to the forward frac-
tional calculus. Atici and Sengul [17] built up the Leibniz
rule and summation by part equation in discrete fractional
theory. Bastos and Torres [18] introduced the more broad
discrete fractional operator which was specified by delta
and nabla fractional sums. Holm [19] presented operators
with fractional sums and applied one such hypothesis to
tackle fractional initial value problems. Anastassiou [20]
determined the privilege discrete nabla fractional of Taylor
equation. The innovation that made look like a consequence
of this depiction was charming to several readers and now
subjected to outrageous review, in numerous approaches:
discrete nature and precision of fractional equations, tumor
formation simulating [21], consistency of tumor cell solu-
tions related order of Legendre’s derivative ¥ [22], and
Euler-Lagrange equation and Legendre’s optimality condi-
tion for the calculus of variations problems [23]. The idea
of a discrete version of fractional calculus is adopted just as
late, usually because of the impact of exploration in fractional
analysis (see [24-26]).

Inequalities of finite difference that demonstrate distinct
bounds of undefined functions suggest a highly useful and
beneficial way to enhance understanding of finite difference
equations. As a consequence, difference equations tend to
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be a realistic instrument that correctly represents real-life
scenarios like question queueing, power systems, and finan-
cial measurements, and to attempt such kind of mechanism,
this protection is mandated. Probably the least impossible
enormously difference equations right now have begun to
achieve the attention [27].

In the stage when we have to examine many features of a
differential equation, there are multiple interpretations for
certain categories of inequalities. Essentially, based on capa-
bility of the aforementioned inquiry, we formulate in this
material some generalizations of discrete fractional nonlinear
inequalities linked to the fractional sum operator ¥ that
assemble to describe fractional inequalities and incorporate
some proven publication tests. To reflect theoretical hypoth-
eses, it was shown that the transmitted inequalities may be
used to evaluate certain classifications of discrete fractional
equations. In order to explore the usefulness and drawbacks
of the usage of fractional sum difference equations, the com-
pletion of this paper secures a few instances.

Definitive portions of the document are classified as such.
We address relevant actual considerations and basic assump-
tions in Section 2. Section 3 is committed to the theoretical
experiences of nonlinear discrete fractional inequalities with
some remarks. The remaining section is considered in
accomplishing the theoretical examination specifications.

2. Preliminaries

And with that initiative, without the absence of a specific
argument, let M be a constant, N,={p,p+1Lp+2,},
(5 A i 5 9 §(5) _
H, =[p, M|NIN;, where M,peN;, Y- -t(p)=0, IR+: [0,
00), and difference operator of a be assigned as Aa(9) =

a(9)-a(9-1),9eN,.

A part of primitive specifications and theorems of dis-
crete fractional measurement is represented as

Definition 2 (see [17]). Let ¥ be any positive real number, g
be any real number and o(p) = p + 1, and then ¥ — th frac-
tional sum of f is defined for Q=g (mod 1) by

such that (;3)‘? =I'(p+1)/II'(p—¥+1),and Ag“pf is defined
for p=g+ ¥ (modl) and A;‘a : Ny — Ny,

Definition 3 (see [17]). Let ¥ > 0,and A-1<7% < A. Then,
v — th fractional difference of ¥ is classified as

AH(p) = A VE(p) = AN (AE (), (4)

where A is a positive integer and —¥ =V — A.
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Theorem 4 (see [15]). If a real-valued function ¥ be prescribed
on N, such that v, ¥ >0, s0

A (a4(p) =4 U (p) = a7 (4K (p)). ()

Theorem 5 (see [15]). Let ¥ > 0 and £ be a function which is
real valued on N, and then

A7 A(p) = A8 1(7) = (J,) (6)

The reader may bring attention to [15, 17] for further
desirable characteristics on a discrete fractional proposition.

3. Result Declaration

Presently, we will adjust the basic tests.

Theorem 6. Suppose that L €Ny, — R, F,U: Ny
— R, are functions, 0<¥V <1 and @,>0 are constants,

and 11 : R, — R, be a nondecreasing continuous function
with I1(t) > 0 for t > 0. If

{ o
p —_ —
+ Y u(Q-¥)|,peHy
0=y
for 0< p < p,, provided with
w(n)=| ——da,n>n,>0, lim u(n)=oc0, 9
(n) Lon(a) )>0, lim a(n) o)
- [ 1
NI=J ———dq,1>21,>0, thI . 10
0= v (h=co.  (10)
un~l, RAL is the inverses of 1, R, and p, € Hy_, is cho-
sen so that

3
3(0.7)= gy (0-2-1"3@). 02)
U(0,p) = ﬁ(p—()—])lplu(()). (13)

9(p) =@+ 4" [F(P)L(Z(p+¥-1))]
T
_ -0-1 UDNZ(Q+¥Y -1)II
+T(‘f’)o:o(P ) U(Q)Z(Q+¥-1)
(Z(@+7-1)),
(14)
then one has
Z(p)<y(p)peHy,. (15)
From Definition 2 and (14), we have
-y _ . L
r,(p)=a0+r(;_/)o_0(p_g_1)5”ls(a)n(g(mav_l))
p-¥ _ -

+ F({P) z (p-0-1)"" U@ 2@+ ¥ -1)T
(3(Q+‘f/—1)),peH\p,1:60+’i_WS(Q,p)/ﬁ
(Z(@+P-1))+ Zi_wu(ﬁ,p)fz(()wff— )T
(Z(Q+7-1)), 7

(16)

where §(Q, p) and U(Q, p) are defined as in (11) and (13).
Hence, y(p) >0 is nondecreasing. Now, J(Q, p), U(2, p),
and (p)” by their definition and (2, p), U(Q, p) is decreas-
ing in p for each Q € N,,. In the equation (14) using straight-
forward computation for p € Hy and (8), we get

=i(p-¥)TI(n(p—1))+u(p-¥)y(p- I
- (9(p-1))



monotonicity of 11, and y produces
TI(y(p-1))>TI(y(¥-1)) =TI (@y) >0, pe Hy, (18)
from (17) and (18), and one has

Ay(p—1)

T(y(p-1) <i(p-¥)+u(p-¥)y(p-1),peHy. (19)

By mean value theorem, it can be seen that

At(y(p—1))=T(y(p) ~ U(w(p—1)) =un'(p)Ay(p - 1)

Ayp-1) _ Myp-1) o o 5
= <= ;P em(p-1).9(p)
75) S Tmp-1) p€m(p-1).9(p)]

(20)
relations (19) and (20) summarize into

Au(y(p-1))<i(p-¥) +u(p-¥)y(p-1),p€Hy,
(21)

summation (21) from ¥ to p — 1 and from (9), we obtain

S Aim(@-1)< T i@-7)+ T u(@-Ppy(@-1),

=y

ol
o]l

(22)

particularly

o=y Q=¥
(25)
for 0 < p < p,, and we get
-
p(P-1)=1(a,)+ ) i(Q-¥), (26)

and furthermore with (24) and (25), we proceed to

p(p-1)-v(p)=u(p-¥-1)y(p-2)<u(p-¥-1)ur" (v(p-1)),
(27)

related moves from (18)-(20) with acceptable improvements
to the above inequality yields
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Av(p—1) -
mSu(p—lp—1), (28)

sum over [¥,p—1] in (28) and from (10), (26) with p, is
chosen arbitrary, and we acquire

and thus

and the conclusion of (8) can be followed by substituting (30)
in (15) and (24) for pe Hy_,. O

Remark 7. By inserting ¥ =1, I'(1)=1 (gamma function
property), /1'\[(.9) =%, and U=0 in (7), hence Theorem 6
shifts to Theorem 1 [6].

Remark 8. Theorem 6 converted into Theorem 7 by Du and
Jia [24] it F=1and U =0in (7).

Theorem 9. Under the same suppositions of Z, , I, %, Wy
and §(Q, p) of Theorem 6, if the inequality

Z(p) 2o+ 8" [S(P)L (p+¥ - )TI(Z(p+¥~1))],peHy

(31)
satisfies for v > 0, v # 1, ¢ is a constant, then
Z(p) < {N/\f NA, <w/\;> +(1-1) i i(Q-7) }I_lr,peH\I,_l
o
(32)

where

~ f 1 ~
N = — dq,f=1,>0, lim X, (f) = c0. 33
=] = i 2o 0.l Ry =co. (39

~—] —~
N, is the inverse of N, so that

R, (@,) + (1-1) i i(Q-7) eDom(Sz; ) (34)

=¥
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Proof. Infer @, > 0 and denoting

Pi(p) =@y + 47 [S(P) L (p+ ¥ - )TL(Z(p+ ¥ -1)) ],

(35)
therefore, one has
Z(p) <Pi(p): (36)
and employing Definition 2 to (35), we deduce
b =00+ (-0 g(@)
I(?) 45 (37)

(Q+P-1 ﬁ(g(()wf’—l)),peH.p,l,

where J(Q, p) is defined in (11), and p, (p) > 0 is nondecreas-
ing. With the assistance of direct calculation for p € Hy,
decreasing property of F(0,p) for Q €N, the definition

of F(Q,p), (p)‘P, (35), and (36), we conclude

Pi(p) - P (p-1)=F(p-¥.p) L (p- NII(L(p-1))

p-P-1
+ ) [3(@p)-3(@p-1)]
Q=0
(Q+¥- 1)ﬁ(3(@+‘?— 1))
<i(p=P)¥i(p- DI (pi(p-1).
(38)
By mean value axiom, we accomplish
1 [pi r( ) pi 1:( )] P t( Ep/\?;)]t( ), (39)
for some p(p) € [p,(p—1), p,(p)]. Therefore,
) (- <1 ORI
<(1-v)j(p=P) I (Py(p~ 1)), p € Hys
(40)

summing prior inequality from ¥ to p— 1 and taking into
account p, (¥ — 1) = @, implies

P (p- 1) <@l + (1-1) i (b, (@-1))
(a1)

Let

B =@+ (1-1) Y §(@- )T (p(Q-1)), (42)

5
from (41) and (42), and we have
P - D<h(p) = h(p-)<¥(p)  (43)
in addition from (42); we see
P2(P) ~Pa(p—1) = (1-1)i(p-¥ - 1) I (p,(p-2))
<(1-v)j(p-¥- 1) (¥ (p- 1)),
(44)

monotonicity of I, and p, gives

/I‘T(p?(p - 1)) > ﬁ(p?(lf/ - 1)) :ﬁ(ab—) >0,pe€Hyg,
(45)
equation (44) with inequality (45) becomes
Apz(l_) B 1)
(3} (p- 1))

<(1-1)j(p-¥-1),peHy. (46)

analysis of mean value theorem approaches to

A§1(P2(p_ 1)) = ﬁl(Pz@)) - ?Zl(pz(p— 1))

= Ri(p)Ap,(p-1) = %
A2P=1) 5 tp (51 3,(P)]

ST (P (p-1))

inequalities (46) and (47) that offer
AR, (1,(p-1)) < (1-1)i(p- ¥ ~1).peHyr  (48)

inequality (48) by summing from ¥ to p— 1 and utilizing
P, (¥ - 1) =)' equals to

~

AR, (p, (02

’O‘M 3

that is,

Ry (py(p-1)) < ?2&6?‘) +(1-x) i i(Q-¥),peHy,

: (50)
1| ~ P _
Po(p) S NNy (a\’(l)f) +(1-1) 727 I(Q_]P) »pE€Hy_y,
Q=¥
(51)

substitute the resulting inequality in (43) and (36) to get the
acquired bound in (32) with p € Hy_;. O



Remark 10. By taking Theorem 9 alters into [28], Lemma 5
(By), by letting v=1, ¥=1, I'(1)=1, @,=&(p), and

o~

(Z(p)) = 1.

Remark 11. Theorem 9 changes to Theorem 7 by taking r =0
and =1 due to Du and Jia [24].

4. Boundedness and Uniqueness

This segment is related to a valid procedure of Theorem 6 to
determine boundedness and uniqueness of discrete fractional
inequalities. Consider the following pattern of fractional
difference equation:

Z(p)=wy+ A" [&(p, Z(p+¥-1))],peHyy, (52)
where @ : Ny x R— R and p, ¥, @, <, and T be the
same as in Theorem 6.

The accompanying example can describe the bounded-

ness on the solutions of (52).

Example 12. Suppose that

©(p.2)|< 3(p)|[L(2)| + U(p)ZI[T(2),  (53)
for pe N, Z e R. If Z(p) is a solution of (52), then
p
|Z(p)| <un™ | RAT! { R (a(ao) + Y Q- if))
o (54)

spe€Hy ),

=7

Proof. Equation (52) with the blend of Definition 2 is
encoded into

Z(p)=@y+ F(lay)fjf(p-o— D" (2.2(Q+¥-1)). (55)

o

Evidently, equation (55) with the utilization of (53) takes
the form

< || + F(l,); (p-0-1)""'3(Q)[TI(2(@+7-1)
N F(lg,) :) (p-0-1)""u(@)|7(@+¥ - 1)|[T

Journal of Function Spaces

The rest of the calculations can be performed by assum-
ing the right composition of Theorem 6 in order to gather
the necessary inequality (54). O

The uniqueness of (52) solutions can be defined from an
illustration below.

Example 13. Let

87 21) - ©(p. 2)| < 3(7)|[T(£) - TT(2,)

>

+U(P)\Z, - Ll TT(2) - TI(2,)

(57)

and then (52) has at most one solution.

Proof. Equation (52) with solutions &, (p) and &, (p) can be
represented as

P _
gl(p)_gz(p):ﬁ (p-0-1)""e(0,2,(0+7-1))
0=0
Ry N Z Py -
_ﬁozo(;}_oq) 8(0.2,(2+¥-1))

|Z1(p) - Z£,(p)| = F(I\P)”(p—b 1) (0.2, (Q+¥P-1))
_F;_):o(p—g 1)7e(Q 2,0+ -1))
SF(;);_O(p-o-l)*ls(o)m(gl(mqf—l))
-T(2,(@+ ¥ -1))|
LN pam ) u@) e @71

(59)

The previous inequality by having a few amendments to
|Z1(p) —Z,(p) | in the process of Theorem 6 introduces

|Z1(p) —Z,(p)| <0. (60)

Subsequently, &, (p) = &, (p) and at least one solution of
fractional difference equation (52) exist. O
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5. Concluding Remarks

Discrete fractional calculus has made great progress of
real-world phenomena, like fractional chaotic maps, image
coding, and more discrete time modeling. One of the pre-
eminent crucial issues in investigation of difference equa-
tions is to explore the subjective attributes of solutions of
these previously mentioned fields. Discrete fractional vari-
ants are notable pathways that speed disabling. In this
article, fixed on the framework of discrete fractional
analytics and with the aid of fractional sum inequalities,
we proposed new kinds of discrete fractional Gronwall
inequalities. We also extracted the expansion of the
decreasing feature sequences in the time-scale domain
frame. Such inequalities can be shown not only to recall
explicit estimates for solutions of fractional difference
equations of a discrete form but also to the uniqueness
and continuous dependency on initial value of the solu-
tions in the literature.
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In this paper, we establish weak and strong convergence theorems for mean nonexpansive maps in Banach spaces under the
Picard-Mann hybrid iteration process. We also construct an example of mean nonexpansive mappings and show that it exceeds
the class of nonexpansive mappings. To show the numerical accuracy of our main outcome, we show that Picard-Mann hybrid

iteration process of this example is more effective than all of the Picard, Mann, and Ishikawa iterative processes.

1. Introduction and Preliminaries

Suppose % is a Banach space and @# % < %. Consider a
selfmap S: #" — . If an element e, € 7 exists such that
e, = Se, then we say that e, is a fixed point for S. In this man-
uscript, we essentially represent the set {e, € 7" : ¢, = Se, } by
Fg. The selfmap S : #°— W' is called contraction [1] if

ISP — Sq|| < a||p — q||, forallp,g € # anda € [0,1). (1)

The selfmap S : # — W  is called nonexpansive if (1)
holds for the value a = 1. In 1965, Browder [2] and Gohde
[3] proved a fixed point theorem for a nonexpansive map
S: W — W under the restriction that % is a uniformly
convex Banach space (UCBS) and @# % € % is bounded
as well as closed and convex.

In [4], Zhang provided the following class of mappings.

Definition 1. Let %" + & be a subset of a Banach space. A self-
map S: W —> W is called mean nonexpansive if for all p,
q € 7 there are non-negative real numbers a, b such that a
+b <1, we have

1Sp = Sql| < allp— q|| + bllp — Sq- 2)

Zhang [4] provided an existence of fixed point result for
mean nonexpansive mappings in Banach space setting under
the normal structure assumption. After this, Wu and Zhang
[5] and Zuo [6] investigated some other elementary properties
and fixed point results for these mappings. In [7], Zhou and
Cui used Ishikawa [8] iteration for approximating fixed points
for these maps. The main aim here is to suggest some weak
and strong convergence theorems for these mappings under
the Picard-Mann hybrid [9] iteration and to show by a new
example of mean nonexpansive maps that it converges better
than the Ishikawa [8] and Mann [10] iteration processes.

Remark 2. It is easy to observe that each nonexpansive map-
ping is mean nonexpansive. Once again, in this research, we
shall provide a new example to show that the converse is not
true in general, that is, the class of mean nonexpansive maps
properly includes the class of nonexpansive maps.

In the following example, S is mean nonexpansive but not
nonexpansive.

Example 3 (see [6]). Consider #" =0, 1] and set S: # —
W by
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The Banach [1] celebrated fixed point theorem suggests
the existence and uniqueness of a fixed point for a self
contraction S: % — W under the restriction that % is
complete metric space and P+ # < ¥ is closed. Also this
theorem essentially uses the Picard iteration [11] for finding
this unique fixed point. Nevertheless, in the case of nonex-
pansive maps and hence for generalized nonexpansive maps,
the Picard iteration fails to converge in the associated fixed
point set. For some more literature on iterative schemes,
please cite the work in [12-14]. Assume that 7 is any non-
empty subset of a Banach spaceand S : # — %'

The Picard [11] iterative process is stated as:

V€Y,
{pe ()

pm+1 :Spm’mz 1’

Mann [10] iterative process is stated as:

V€Y,
{pe (5)

P = (1 _‘xm)pm *"xrnspm”ln2 1,

where a,, € (0, 1).
Ishikawa [8] iteration process may be viewed as a two-
step Mann iteration, stated as follows:

PIEW,
Q= (1= B)Pm + BrSPr> (6)

pm+1 = (1 - am)pm + ‘xmsqm’ m=>1,

where «,,, 8,, € (0, 1).
Khan [9] introduced the Picard-Mann hybrid iteration
as follows:

P eV,
qm:(l_‘xm)pm+“mspm’ (7)

pm+1 = Sqm’ mz 1’

where «,, € (0, 1).

Khan [9] provided the weak and strong convergence of
the scheme (7) for the class of nonexpansive operators. Fur-
thermore, he proved that the Picard—Mann hybrid iteration
process is more effective than the Picard (4), Mann (5) and
Ishikawa (6) iteration processes in the setting of nonexpan-
sive maps. In this paper, we connect this scheme with the
class of mean nonexpansive mappings, and in this way, we
extend his results in the more general setting of mean nonex-
pansive mappings.

Now we provide some elementary definitions and results,
which will be used in sequel.

Journal of Function Spaces

Definition 4 [15]. A Banach space ¥ is called UCBS if and
only if for every choice of r € (0, 2], one has a s > 0 such that
for every p,q in ¥, 1/2||p +q|| < (1 —s) whenever |p| <1,
g/l < 1 and [[p - gf| > .

Definition 5 [16]. A Banach space ¥ is said to satisfy the
Opial’s property if any weakly convergent sequence {p,, } in
% which admits a weak limit ¢ € %, one has

, foreach ¢’ € % - {c}.

(8)

limsup |p,, - ¢|| <limsup||p,, ¢’
m—00 m—00

Definition 6 [17]. Suppose #" # & is any subset of a Banach
space %. A selfmap S : #" — W' is said to be endowed with
the condition (I) if and only if a function L : [0,00) — [0,
00) exists sucht that L(0) =0 and L(r) >0 for all r >0 and
llp = Spll = L(d(p, F)) for each pe 7.

The following lemma holds, which suggests many exam-
ples of mean nonexpansive mappings.

Lemma 7. If S is a selfmap and nonexpansive on a subset
W + D of a Banach space. Then S is mean nonexpansive.

From the definition of mean nonexpansive maps, we
have the following facts.

Lemma 8. If S is a selfmap and mean nonexpansive on a sub-
set W + & of a Banach space ¥. Then Fy is closed. Moreover,
if ¢ is strictly convex and W' is convex, then Fy is also convex.

Theorem 9 [6]. Let W + & be a subset of a reflexive Banach
space (RBS) ¥ having Opial property. Let S : W — W be a
mean nonexpansive mapping. If {p,,,} €W be such that.

(ap) {p,,} converges weakly to e,

(bO) hmm—»ooHSpm _pm” =0,

then e, = Se,.

Any UCBS can be characterized by the following way.

Lemma 10 [18]. If % is a UCBS and If {s,,} and {w,,} are
two sequences in ¥ such that limsup,_  |[s,| <1l
timsup, ol <1 and 1,185, + (10,0,
=1 for some l>0and 0<q<$6, <p<1. Then, lim
- wm” =0.

2. Main Results

The following results are the main outcome of this section.
Notice that all these results improve and extend some main
results of Khan [9] from the case of nonexpansive maps to
case of mean nonexpansive maps.

Lemma 11. Let %" + & be a convex closed subset of a UCBS ¥
and S : W — W be a mean nonexpansive mapping and F
# Q. Assume that {p,,} is a sequence of Picard-Mann hybrid
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iterative process (7). Consequently lim —eyl| exists

for each e, € F.

m—scollPm

Proof. Let e, € Fg. Then using (7), we have

NPm = €oll + % |P = ol
)P = €oll + @ ISP, = €|

) [P = €oll + %[ SP, = Seo|
NP = €l + @ (allpy, = €| + bl|P, = Seo|)
NP = €oll + @m(allpy, = |l + bl — €l
)P = €oll + @ ((a+b)Ip,, = ell)

This implies that

[1Pmer = €oll = 1159, — €|
= 115q,,, — Seo|
<alq,, — el + bl|q,, — Seo|
= al|q,, — eol| + bl|q,, — €| (10)
= (a+b)||q,, — el
<l — el
< — €l

We have showed that ||p,, ., — e <||p,, — €l|- It follows
that {||p,, —¢ll} is nonincreasing and bounded. Thus

lim,, . |lp,, — || exists for each e, € Fj. O

Theorem 12. Let % + & be a convex closed subset of a UCBS
Y and S : W — W be a mean nonexpansive mapping and
Fg+ Q. Assume that {p,} is a sequence of Picard—-Mann
hybrid iterative process (7). Consequently, {p,.} is bounded

in Y with the property lim,,__, ||Sp,, = p.|l = 0.
Proof. Since the set Fg is nonempty so we may choose any
€y € Fg. By Lemma 11, lim,,_,_||p,, — €| exists and {p,, }
is bounded. Suppose that

lim (p,, - el =5 (11)

By looking in the proof of Lemma 11, one see

14 = oll <[P = oll> = limsup||q,, —¢o|| <limsup||p,, — | =s.
(12)

Now

1P = €oll = [|SPm = Secl

<allp,, = & +bllp,, — Seol (13)
=(a+D0)|p,, — el
< Hpm - eOH'

3
It follows that
limsup||Sp,, — e, < limsup||p,, — & || = s- (14)
Again by looking in the proof of Lemma 11, one see
1Prsr = Il <1, — 4l (15)
It follows that
s <liminf|q,, — || (16)
From (12) and (16), we obtain
s= lim |lq, - . (17)

From (17), we have

§= mhi)nm||qm - qH
zmh.—I>noo||(1_am)pm+amspm_eo|‘ (18)

= Hm [[(1=a,)(p, —eo) +(Sp, —€o) -
Hence,
s= lim [[(1=a,) (P, —e) +u(Sp, =€)l (19)

Now from (11), (14) and (19) together with Lemma 10,
we obtain

lim [|Sp,, = p,, || =0 (20)

d

We now provide a weak convergence theorem under the
assumption of the Opial’s condition.

Theorem 13. Let 7" + & be a convex closed subset of a UCBS
Y and S : W —> W be a mean nonexpansive mapping and
Fy#@. Assume that {p,,} is a sequence of Picard-Mann
hybrid iterative process (7). If % has the Opial property, then
{p,,} converges weakly to a point of of Fg.

Proof. By Theorem 12, the sequence {p, } is bounded and
lim, . |ISp,, — p,,|| =0. Since % is UCBS, it follows that
% is RBS. Thus one has a weakly convergent subsequence
{p,, } of {p,,} exists with some weak limit g, € 77". By Theo-
rem 9, g, € Fy. Next we show that {p,, } is weakly convergent
to q,. We may suppose that {pm} is not weakly convergent to
q,» that is, one has a weakly convergent subsequence { ij} of

{p,,} with a weak limit g, € 7" and g, # q,. Again applying
Theorem 9, g, € F. By applying Opial’s condition and keep-
ing Lemma 11 in mind, it follow that



4
lim ||pm_q1||=hm pmi_ql
m—00 1—>00
< hm pm - q2
= i lp -
(21)
= hm pm- -4
j—00 J
< hm pmv - ql
Jj—00 J

= 1im [|p,, ~ 4|

Hence we have seen a contradiction. Accordingly, we
have g, =¢,. Thus, {p,,} converges weakly to g, € Fs.  [I.

The strong convergence theorem under the assumption
of compactness is established as follows.

Theorem 14. Let W + & be a convex compact subset of a
UCBS ¥ and S : W — W be a mean nonexpansive mapping
and Fg + @. Assume that {p,, } is a sequence of Picard—-Mann
hybrid iterative process (7). If W is compact, then {p,,} con-
verges strongly to an element of Fj.

Proof. Since 7/ is compact, and {p,, } € 7". One can choose a
strongly convergent subsequence {p,, } of {p,,} such that

P, — . Now we show that Su = u. For this

o=t = =y || + ([P, = S0, | + |80, = S

<= || * [P, ~ P,

)

+ (aHpmk - uH +b u—Spmk

IN

u_pmk + pmk _Spmk

)

(22)

S

:(a+b+1)Hu—pmk

+(b+ I)Hpmk - Spmk

O

Consequently, we obtained

u=Sul < (@+b+1)[u=p,, ||+ ©+1)|p,, - by,

(23)

According to Theorem 12, we have lim;__,.[[p,, — Sp,,,
|l = 0, so applying k — oo, we obtain Su = u. This shows that
u€Fg By Lemma 11, lim,_ ||p,, —u|| exists. Conse-
quently, u is the strong limit of {p,,} and element of Fj.

The strong convergence theorem without the compact-
ness assumption is established as follows.
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Theorem 15. Let % + & be a convex closed subset of a UCBS
Y and S : W —> W be a mean nonexpansive mapping and
Fg+@. Assume that {p, } is a sequence of Picard-Mann
hybrid iterative process (7). Then {p,,} converges strongly to
an element of Fg if and only if liminf,,_,_ d(p,,, Fs) =0.

Proof. The necessity is obvious.

Conversely, suppose that liminf,,_ d(p,, Fs) =0 and
ey € Fg. From the Lemma 11, lim,_ . ||p,, — el exists.
Therefore lim,, ,  d(p,,, Fs) =0, by assumption. We prove
that {p,,} is a Cauchy sequence in %". As lim,,_, . d(p,,, Fs)
=0, for a given &> 0, there exists r, € N such that for each
mz=r,

d(p Fs) < 5. = inf {|lp, —epll: e Fs}<>.  (24)

In particular inf {[[p, —e[: ey € Fs} <&/2. Therefore
there exists e, € Fg such that

€
pro_eOH <5 (25)
Now for r, m > k,,,

||pm+r_pm|| < ||pm+r_e()|| + Hpm _eO”
<lev, <o + o, = (26)

e <=

This shows that {p,, } is a Cauchy sequence in 7. As 7" is
closed subset of a Banach space %, so there exists a point e,
€ % such that lim,,__p, =e,. Now lim,_, d(p,, Fs) =
0 gives that d(e, Fg) =0. Since from Lemma 8, we have the
set Fg a closed set in 7. Hence ¢, € F. O.

The below facts are essentially due to Sentor and
Dotson [17].

Definition 16. Let W+ & be a subset of a Banach space %. A
selfmap S : # — W is said to be endowed with the condi-
tion (I) if and only if a function L : [0,00) — [0,00) exists
such that L(0) =0 and L(r) >0 for all r >0 and ||p - Sp|| =
L(d(p, Fs)) foreach pe #'.

The strong convergence theorem under the assumption
of condition (I) is established as follows.

Theorem 17. Let W + & be a convex closed subset of a UCBS
Y and S : W — W be a mean nonexpansive mapping and
Fy+ Q. Assume that {p,} is a sequence of Picard-Mann
hybrid iterative process (7). If S is endowed with condition
(I), then {p,,} converges strongly to an element of Fy.

Proof. From Theorem 12, we have

m@m||spm_Pm|| =0. (27)
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TaBLE 1: Strong convergence of Picard—-Mann hybrid, Picard, Ishikawa and Mann iterations to the fixed point e, = 0 of S in Example 19.
m Picard-Mann hybrid (7) Picard (4) Ishikawa (6) Mann (5)
1 0.90000000000000 0.90000000000000 0.90000000000000 0.90000000000000
2 0.07920000000000 0.18000000000000 0.33048000000000 0.39600000000000
3 0.00696960000000 0.03600000000000 0.12135225000000 0.17424000000000
4 0.00061332480000 0.00720000000000 0.04456054840320 0.07666560000000
5 0 0.00144000000000 0.01636263337365 0.03373286400000
6 0 0 0.00600835897480 0.01484246010000
7 0 0 0.00220626941554 0.00653068247000
8 0 0 0.00066188082466 0.00287350028697
9 0 0 0.00019856424739 0.00126434012626
10 0 0 0.00005956927421 0.00037930203788
11 0 0 0.00001787078226 0.00011379061136
0.4
|Sp—Sq| =0<alp—q| +blp - Sq|. (29)
0.3
Té (ii) Suppose that 1/515<p,q<1. Then
£ 027
! q
o1 alp =l +blp=Sq|= o~ +b]p- 3
> 14
0.0 1 ; i i i i =3 p q (30)
0.0 0.2 0.4 0.6 0.8 1
Pm 2 zlp—4l
FIGURE 1: Behaviors of Picard-Mann hybrid (black), Picard (blue), =|Sp- Sq|
Ishikawa (cyan) and Mann (red) iterates to the unique fixed point
e, = 0 of the selfmap S.
Condition (I) of S provides (iii) Suppose that 0 <q<1/515and 1/515<p<1
lim d(p,,, Fs)=0. (28) 1
S alp—q| +blp—Sq|=alp—q|+ 2 |p 0|
Now all the requirements of the Theorem 15 are S 1 2|
available, so we conclude that {p,} converges strongly to T4 (31)
an element of Fj. O 1
s z3 Pl
Remark 18. In the view of Lemma 7, our results contains the = |Sp - Sq|.
case of nonexpansive mappings.
3. Example
i < <g<
Now we want to provide a new example of mean nonexpan- (iv) Suppose that 0<p<1/515and 1/515<q<1
sive maps.
1 1 q
Example 19. Let S : [0, 1] — [0, 1] be defined by Sp=0if 0 alp—q|+blp-Sq| = Z|P“1| 3 ’P - g‘
<p<1/515 and Sp=p/5 for 1/515< p < 1. Suppose a=1/4 1 q
=b. Then it is easy to show a + b < 1. 21‘@‘9)‘(]’_5)’ (32)
Now we may consider the following cases. 14| 1
=—|—|==|q|=|Sp - Sq|
112 - 3= 1sp-sd

(i) Suppose that 0 < p, g < 1/515. Then



Thus we conclude that S is mean nonexpansive. Notice
that, when p =1/600 and g =1/515, then |Sp—Sq| > |p—q|
and so S is not nonexpansive. Choose «,, =0.70 and 3, =
0.65, then the strong convergence and effectiveness of the
Picard-Mann hybrid iteration can be seen in Table 1 and
Figure 1.

4. Conclusions

We begun the finding of fixed points for mean nonexpansive
operators in Banach spaces under the Picard-Mann hybrid
iterative process. Some convergence results are established
under different assumptions. It has been showen by an exam-
ple that the notion of mean nonexpansive maps is properly
more general than the notion of nonexpansive maps. Also,
the Picard-Mann hybrid iterates of this example converge
faster than the Picard, Ishikawa and Mann iterates. In partic-
ular, our results essentially improve and extended the results
Khan [9] from the setting of nonexpansive operators to the
larger frame work of mean nonexpansive operators.
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It is well-known that the logarithmic coefficients play an important role in the development of the theory of univalent functions. If
& denotes the class of functions f (z) = z + Y e, a,z" analytic and univalent in the open unit disk U, then the logarithmic coefficients
y,(f) of the function f € & are defined by log (f(z)/z) =2Y2,y,(f)2". In the current paper, the bounds for the logarithmic
coefficients y,, for some well-known classes like €(1 + az) for a € (0, 1] and €7, (1/2) were estimated. Further, conjectures for
the logarithmic coefficients y, for functions f belonging to these classes are stated. For example, it is forecasted that if the
function f € €(1 +az), then the logarithmic coefficients of f satisfy the inequalities |y,| <a/(2n(n+1)),n € N. Equality is

attained for the function L

a,n>

1. Introduction

Let U={z€C: |z| <1} denote the open unit disk in the
complex plane C. Let & be the category of analytic functions
f in U for which f has the following representation:

flz)=z+ ianz”, zel. (1)

Also, let § be the subclass of & consisting of all univalent
functions in U. Then, the logarithmic coefficients y, of the
function f € § are defined with the aid of the following series
expansion:

log@:22yn(f)z”, zeU. (2)

that is, log (L, ,(2)/z) =2Y 021V, (Lay)2" = (/n(n+1))2" + -,z € U.

Dedicated to the memory of Professor Gabriela Kohr (1967-2020)

These coeflicients play an important role for different
estimates in the theory of univalent functions, and note that
we use y, instead of y,(f). Kayumov [1] solved Brennan’s
conjecture for conformal mappings with the help of studying
the logarithmic coefficients. The significance of the logarith-
mic coefficients follows from Lebedev-Milin inequalities ([2],
chapter 2; see also [3, 4]), where estimates of the logarithmic
coeflicients were applied to obtain bounds on the coefficients
of f. Milin [2] conjectured the inequality

> i(kwkf— %) <0, n=123 (3

m=1k=1

that implies Robertson’s conjecture [5] and hence Bieber-
bach’s conjecture [6], which was the well-known coefficient
problem in the theory of univalent functions. De Branges
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[7] proved Bieberbach’s conjecture by establishing Milin’s
conjecture.

Recall that we can rewrite (2) in the power series form as
follows:

(ayz +a32° + a4z3’+--~)2

N =

[ee]
n _ 2 3 _
ZZynz =0a,Z+ 032" +a,z +-

n=1

3
+ = (ayz+ a2 + a2+ )+, zel,

SN

(4)

and equating the coeflicients of z" for n=1,2, 3, it follows
that

2y, =ay,

1,
2y, =a; - 5“2’ (5)

1
2y, =a,—aa; + gaz.

If the functions f and g are analytic in U, the function f is
called to be subordinate to the function g, written f(z) < g(z),
if there exists a function w analytic in U with |w(z)| < 1,z € U,
and w(0) = 0, such that f = g < w. In particular, if g is univa-
lent in U, then the following equivalence relationship holds
true:

(6)

Using the principle of subordination, Ma and Minda [8]
introduced the classes §*(¢) and @ (¢), where we make here
the weaker assumptions that the function ¢ is analytic in the
open unit disk U and satisfies ¢(0) = 1, such that it has a series
expansion of the form

¢(z)=1+Bz+B,z* + Byz’++--,z€U, withB, #0. (7)

They considered the abovementioned classes as follows:

S*(9) = {f ed : Z;;S) < (p(z)},

f'(z)

Some special subclasses of the class §*(¢) and €(¢) play a
significant role in the Geometric Function Theory because of
their geometric properties.

For example, taking ¢(z) = (1 + Az)/(1 + Bz) where A €
C, -1<B<0, and A # B, we get the classes §*[A, B] and €]
A, B], respectively (see also [9, 10]). The mentioned classes
with the restriction —1<B<A<1 reduce to the popular
Janowski starlike and Janowski convex functions, respectively.
By replacing A=1-2«a and B=-1, where 0<a <1, we
obtain the classes §*(a) and €(a) of the starlike functions
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of order a and convex functions of order a, respectively. In
particular, $* := §*(0) and & := €(0) are the class of starlike
functions and of convex functions in the open unit disk U,
respectively. Further, by altering A = « and B =0, where 0 <
a <1, we get the classes (1 +az) and €(1 + az), which
are the extensions of the classes §*(1+z) and €(1+z),
respectively (see [11]), that is,

f'(2) _
f2)
zf"(2)
f'@)

cS’*(1+ocz)::{fed:

C(1+az):= {fe&i:

where 0 < a < 1.
Supposing that ¥, , € $*(1 + az) is such that

2¥,,(2)

=1+az",
lIIlX,i’l (z)

neNN, (10)

each function ¥, is of the form

“1+at" -1 o
lIIa’n<Z) =Z exp (J B dt) =z + _z"+1+...’

zel,
0 t n

(11)

and is the extremal function for various problems in &*(1
+az). Also, suppose that L, , € €(1 + az) is such that

L, Lanl?)
Lr2)

an

=1l+az", nelN. (12)

Then, each function L, is of the form

Lot,n (Z> = JO exp <JO % dt> dx ( )
13

o
=z+——7z"4 zel,
n(n+1)

and plays as extremal function for some extremal problems
in the set €(1 + az).
Lately, Kanas et al. [12] introduced the categories &

T hpl (s) and EV 1 (s) by

cS’?/”hpl(s) = {fe&f:% <q,(z) = (l_lz)s,0<s£1},

f"(2)
1)

‘g%hpl(s):z{fed:1+ <qs(z):=(1_1z)5,0<ssl},
(14)

and obtained some geometric properties in these categories.
Further, the functions
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D, ,(z) =z exp (J Lt)_l dt>

0
N

=z+—z2"4..., zeUmneN,
n
Z X tn _1
Ks,n(z)=J exp (J a(t) =1 dt>dx
0 h 0 t (15)
=z+ 24, zeU,neN
n(n+1)

play as extremal functions for some issues of the families
ST ppi(s) and €7,y (s), respectively.

Lately, several researchers have subsequently investigated
same problems regarding the logarithmic coefhicients and the
coeflicient problems [9, 13-23], to mention a few of them.
For instance, the rotation of the Koebe function k(z)=z

(1- e"‘gz)_2 for each 0 € R has the logarithmic coefficients
y,=€%/n, n>1.If f €S, then by applying the Bieberbach
inequality for the first relation of (5), it follows that |y,| <1,
and using the Fekete-Szego inequality for the second relation
of (5) (see [24], Theorem 3.8) leads to

2
ay| <

(1+2¢7%)=0.635--.  (16)

NI>—‘

1
2

1
=_la
1y, 2

It was established in ([25], Theorem 4) that the logarith-
mic coefficients y,, of f € & satisfy the inequality

2

2 7T
< —, 17
< (17)

Mg

Il
—

n

and the equality is obtained for the Koebe function. For f €
&, the inequality |y, | < 1/n holds but is not true for the full
class &, even in order of magnitude (see [24], Theorem 8.4).
In 2018, some first logarithmic coefficients y,, were estimated
for special subclasses of close-to-convex functions in [15, 20].
However, the problem of the best upper bounds for the loga-
rithmic coefficients of univalent functions for n >3 is pre-
sumably still a concern. In [13], the authors obtained the
bounds of logarithmic coefficients y,, n € N, for the general
class §* (), and the bounds of the logarithmic coefficients
y, when n=1,2,3 for the class #(¢), while the estimated
bounds would generalize many of the previous outcomes.

In the present study, which is motivated essentially by the
recent works [13, 16], the bounds for the logarithmic coeffi-
cients y,, n € N, of the class (1 + az) for a € (0,1] and €
7 p1(1/2) were estimated. Further, conjectures for the loga-
rithmic coefficients y, for f belonging to these classes are
stated.

2. Main Results

First, we will obtain the bounds for y, of the classes &™ (1 +
az) and B(1 + az) for a € (0, 1]. In this regard, the following
outcomes will be employed in the key results.

Lemma 1 (see [13], Theorem 1). Let f € §*(¢). If ¢ is convex
univalent, then the logarithmic coefficients of f satisfy the fol-
lowing inequalities:

<20 wew, (18)

(19)

M8
»JAIN

S

The inequalities in (18) and (19) are sharp, such that for
any n € N, there exist the function f, given by zf,(2)If ,(2)
=¢(2") and the function f given by zf'(z)If(z) = ¢(z),

respectively, for those equalities we obtain.

n=1

Lemma 2 (see [13], Theorem 2). Let f € €(¢). Then, the log-
arithmic coefficients of f satisfy the inequalities

|Bil

< 20

|yl < ik (20)
B
|1’2| , if |4B,+B}| <4B,|,

< 21

|YZ| |4BZ+B5| . . ( )

—n 4B, + Bj| > 4|B,],

and if B}, B,, and B; are real values, then

\B\

|y;l < H(q;54,) (22)

where H(q, ; q,) is given in ([26], Lemma 2) (or [9], Lemma
5), q; = (B, + (4B,/B,))/2, and q, = (B, + (2B;/B;))/2. The
bounds (20) and (21) are sharp.

Lemma 3 (see [18], Theorem 30). I f € €7/,,,(1/2), then

|V1|< val < 550 lvsl < 25 (23)

The first two bounds are sharp for f =K, and f =K 5,
respectively.

If we consider Lemma 1 with the function ¢(z) =1 + az,
then we immediately get the next result:

Theorem 4. If f € §*(1 + az), then

[04
Wn|— HEN’

2n’
24
> s .
n=1 4
These inequalities are sharp for f=¥, , and f=¥,,

respectively.



Corollary 5. Let f € (1 + az). Then, the logarithmic coeffi-
cients of f satisfy the inequalities

(44
< —
|YI‘ 4
0(

25
B
3] < 24

Equalities in these inequalities are attained for the func-
tions L, for n =1, 2, 3, respectively.

Proof. For ¢(z) =1 + az, where B, =a, B, = B; =0, in Theo-
rem 6, we obtain the required result. Also, since

=2 Z z = —Z+ » zel,
L (o)
log —“’i(z) =2 y,(Ly)?" = gzz+-~-, zel, (26)
n=1
L (ee)
log # =2) Vu(Lys)?" = %Z o zel
n=1

it follows that these inequalities are attained for the functions
L,, for n=1,2, 3, respectively. O

Theorem 6. Let f € €(1 + az). Then, the logarithmic coeffi-
cients of f satisfy the inequalities

Si, n € N. 27
YH 4”

This inequality is sharp for |y, | for the function L, ;.

Proof. If f € B(1 + az), this is equivalent to f € &/ and

of"(2)
7@

If we define p(z) = zf'(z)/f(z), then p(0) =1, and the
above subordination relation can be written as

<l+az=¢, (2). (28)

!
2p (2)
p(z)+ <9, (2). (29)
@+ 5 <o
Supposing that the function v, satisfies the differential
equation

ale) + 2 “(f)) ~0.(2)

v(0)=1,  (30)

we will prove that , is a convex univalent function in U.
The function ¢, has positive real part in U whenever «

€ (0, 1]. Therefore, using ([27], Theorem 1) for =1, y =0,

and c¢=1, it follows that the solution v, of the differential
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equation (30) is analytic in U, with Re y,(2) >0 for all z €
U, and

“H(t) , \'  azexp (az)
Otdt> exp (az) - 1 (31)

va(@) =) |

a
=1+ —z+-, z€el,
2

where
H(z)=zexp (JZ Mz_ldt) =z exp (az), (32)

and all powers are considered at the principal branch, that is,
log 1=0.

Since ¢, is convex and v, is analytic with Re y,(2z) >0
for all z € U, using [28] (Theorem 3.2i) for n = 1, we deduce
that v is univalent in U. Moreover, from Figure 1 made with
MAPLE software, we get

¥(2) = Re <1 Wz )> >0, zeU,  (33)
¥.(2)
and y.(0) =a/2#0, so y, is a convex function. Hence, it

follows that v is a convex univalent function in U.
Therefore, according to [28] (Theorem 3.2i), the differen-
tial subordination (29) implies

P(2) < ¥, (2), (34)

for all 0 < @ < 1, and v, is the best dominant. Thus,

T <Yl (35)

for all 0 < « < 1. Hence,
E(l+az)cS*(v,). (36)
From the above relation, we get

sup {|y,(f)]: f € €(1 +az)} <sup {|y,(f)]: f € S ()}
(37)

Hence, from Lemma 1, we obtain
o
sup {[y, ()| feB(1+az}< o (39)

Therefore, for f € €(1 + az) and for all n € N, we con-
clude that

)< 5 (39)

d
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F1GURE 1: The plot of ¥(Re") for t € [0,27), R=1, and a € (1075, 1].

Remark 7. If we compare the results of Corollary 5 with those
of Theorem 6, then we conclude that the results of Theorem 6
are not the best possible. We conjecture that if the function
f€@(1+az), then the logarithmic coefficients of f satisfy
the inequalities

(24

< — €NN. 40
nIS i " (40)
Equality is attained for the function L, ,, that is,
L, ,(2) N «
log "/ — ) L (S LT clU.

(41)

Theorem 8. Let f € €7/,,/(1/2). Then, the logarithmic coeffi-
cients of f satisfy the inequalities

1
|Yn| <= nelN. (42)

T 8n’
This inequality is sharp for |y,| for the function K, ;.

Proof. Letting f € €7/,,(1/2), it follows that

1+

5
Suppose that p satisfies the differential equation
!
zp (2) 1
p(z) + = . 44

If we define p(z) = zf'(2)/f(z), then the subordination
(43) can be rewritten as

<a(2). (45)

According to the inequality (20) of [12] (Theorem 2.3),
the function q,,, is analytic with positive real part in U.
Therefore, using [27] (Theorem 1) for =1, y=0, and c=
1, it follows that the solution p of the differential equation
(44) is analytic in U with Re p(z) >0, z € U, and

p(z)=H(z) <r@dt>_l . -

0 (1+vi=z)
1
.(—8/(1+\/E))—81n (1+m>+4+81n2

1
=14+ -z+-, zel,

(46)
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F1GURE 2: The plot of ¥(Re") for t € [0,27) and R=1.
where
z -1 4z
H(z) =z exp (J 4%/2(2 dt) =—— ., (47)
0

) (1+m)2’

and all powers are considered at the principal branch, that is,
log 1= 0. Moreover, from Figure 2 made with MAPLE soft-
ware, we get

¥(2) = Re (1 + Zp,”(z)

Vo) ) >0, zel, (48)

and p'(0) = 1/4 # 0. Hence, v is convex in U.
Since p satisfies in the subordination (45), using [28]
(Theorem 3.2i), we conclude that p(z) < y(z), that is,

<p(2), (49)

and p is the best dominant. Thus, f € €7/,,(1/2) implies f
€ &*(p), that is,

GV p(112) < S* (p). (50)

Therefore, since p is convex univalent, from Lemma 1, it
follows that
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1 . 1
sup {Wf)\:fe%%pl(g)} <sup {[y, (1) f€S"(0)} = o
(51)
and we obtain the result. This completes the proof.0]

Remark 9. If we compare the results of Lemma 1 with those of
Theorem 8, then we conclude that the results of Theorem 8
are not the best possible. We conjecture that if the function
f € €7 ,u(1/2), then the logarithmic coefficients of f satisfy

the inequalities

1
Vo< s neEN. (52)

T 4n(n+1)

Equality is attained for the function K, ,, that is,

Kllz,n(z) _ O n _ 1 n
log . _Z;Yn(KIIZ,n)Z —mz +-, zel.
(53)
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This article is aimed at studying novel generalizations of Hermite-Mercer-type inequalities within the Riemann-Liouville k
-fractional integral operators by employing s-convex functions. Two new auxiliary results are derived to govern the novel
fractional variants of Hadamard-Mercer-type inequalities for differentiable mapping ¥ whose derivatives in the absolute values
are convex. Moreover, the results also indicate new lemmas for ¥', ¥'’, and ¥''’ and new bounds for the Hadamard-Mercer-
type inequalities via the well-known Hoélder’s inequality. As an application viewpoint, certain estimates in respect of special
functions and special means of real numbers are also illustrated to demonstrate the applicability and effectiveness of the

suggested scheme.

1. Introduction

Recently, two fundamental notions have been introduced in
pure and applied analysis having potential utilities in every
field and are known as convexity and concavity. Interestingly,
the convexity theory is attributed to Jensen. Several mono-
graphs and articles have played a prominent role in the devel-
opments, speculations, and modifications of convexity in
different directions such as #-convexity, harmonic convexity,
h-convexity, and strong convexity. Moreover, a strong con-
nection has been developed between diverse kinds of convex
functions and inequality theory. Their fertile applications in
optimization theory, functional analysis, physics, and statisti-
cal theory have made it a much fascinating subject, and
hence, it is assumed as an incorporative subject between
combinatorics, orthogonal polynomials, hypergeometric
functions, quantum theory, and linear programming. This
is the major motivation behind the keen investigation and
progress of the integral inequalities in the literature [1, 2].
Let0<{, <(,<---<(, andlet p=(p,, p,, -, p,) be non-
negative weights such that )7, p;= 1. The famous Jensen’s

inequality (see [1]) in the literature states that if ¥ is a convex
function on the interval [0}, 6,], then

q/<]z pjcj> < (JZ pjwc,-)), ()

for all {; €[6,,6,], p;€[0,1], and j=1,2, -+, n. It is one of
the key inequalities that helps to extract bounds for useful
distances in information theory (see [3, 4]).

In 2003, a new variant of Jensen’s inequality was intro-
duced by Mercer [5].

If ¥ is a convex function on [0, 6,], then

av(el +0,- i%) <w(O) +¥(0,) - Yo (). @
j=1 J=1

forall §; € [6,6,], p;€[0,1],and j=1,2, -, n.
Matkovic and Pecari¢ proposed several generalizations
on Jensen-Mercer operator inequalities [6]. Later on,
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Niezgoda [7] has provided several extensions to higher
dimensions for Mercer-type inequalities. Recently, the
Jensen-Mercer-type inequality has made a significant contri-
bution to inequality theory due to its prominent
characterizations.

In the present study, we consider s € (0,00), the class of
Breckner s-convex functions (which for 0 < s < 1 were called
in [8, 9]), s-convex in the second sense. In [10], Dragomir
and Fitzpatrick introduce the concept of a real-valued
Breckner s-convex function ¥ on a convex subset C of a lin-
ear space V as

P (piC1+p,00) < PY(Gy) + (1= p)W(GL), (3)

whenever p,, p, >0 with p, + p, =1and {;,{, € C. For s =1,
it reduces to the usual notion of convexity. As a result, he
generalizes Jensen’s inequality (1) as

o(3o0) <3ovic) "
=1 i1

whenever p,>0,{;€C,and Y p,=1.
In [9], the class of s-convex functions in the first and second
senses is introduced along with their significant properties.

Definition 1. Let s € (0, 1], a real-valued function ¥ on an
interval I =[0,00) is s-convex in the second sense provided
that (3) holds for all {;,{, € I and p,, p, >0 with p, + p, = 1.

They denote this class of function by (¥ € K?). Moreover,
they proved that the class (‘¥ € K?2) is stronger than convexity
in the first and original sense for 0 <s < 1. Several properties
of s-convex functions in both senses are presented in a compre-
hensive manner with supporting examples. It is interesting to see
that if 0 <s < 1 and ¥ € K2, then v is nonnegative. This result
may not hold in general when the function is convex (ie., s =
1). Also, the situation is more interesting when f(0) = 0.

Viewing this literature, we intend to extend the Jensen-
Mercer inequality for Breckner s-convex functions. For this,
we use the ideology of Mercer’s concept [5] and give the fol-
lowing important lemma.

Lemma 2. If ¥ is a real-valued Breckner s-convex function on
the interval [0,,0,] C R* and s> 0 such that p,, p,>0, p, +
p, =1, and p5 + p5 < 1, then for any finite positive increasing
sequence {{, }_, €[6,,0,], we have

V(0 +6,-C) <W(6)) +¥(0,) - () (5)
forall1<k<n.

Proof. Let y, =0, +0,—{,. Then, 0, +6, =y, +{, so the
pairs 0,0, and y,, {; possess the same midpoint. Since that
is the case, there exist p,, p, € [0, 1], with p, + p, = I such that
(e =p,0, + p,0, and y, = p,0, + p,0,. Therefore, employing
(3) and the assumed condition, we get
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Y (yp) =¥(p,0, + p16,) < p3¥(0,) + p1¥(6,)
S(1=-p)¥(6)) + (1-p3)¥(6,) =¥ (6))
+¥(0,) - p1¥(0,) - p3¥(6,) =¥(6))
+¥(0,) - [p1¥(6,) + p3 ¥ (6,)] <¥(6,)
+W¥(6,) —¥(p,0, + p,0,) =¥(6,)
+¥(0,) - ¥({p)s

(6)

2
which completes the proof.

Now, we give the result for the Jensen-Mercer inequality
in the Breckner s-sense.

Theorem 3. Let p,, p,, -+, p, be positive real numbers n>2
such that Y _p.=1 and Y;_pi <1. If y is a real-valued
Breckner s-convex function on [0,,0,] CR", then for any
finite positive increasing sequence {{, }_, € [0;,0,], we have

n

¥ (91 +0,- i Pkck> <¥(0,)+¥(0,) - Z (Pi)"¥ (Ck)-
k=1 k=1
(7)

Proof. One can prove it by following a similar idea as in [5];
however, we need to employ Lemma 2 and generalized Jen-
sen’s inequality (4) for Breckner s-convex functions.

For further properties and applications of s-convex func-
tions, see [9, 11] and references therein. The following lemma
is of great interest for applications.

Lemma 4 (see [11]). Let ¥ : [6,,0,] — R be a convex func-
tion. Then, the following results hold:

(i) If ¥ is nonnegative, then it is s-convex for s € (0, 1]
(ii) If ¥ is nonpositive, then it is s-convex for s € [1,00)

One of the famous integral inequalities for convex func-
tions is the Hermite-Hadamard inequality (see [2]):

6,
LP(Ql ;62> = eziel LI‘P(AWS w, @®

provided that if a mapping ¥ : ICR—R is a convex
function on I and 0,0, € L.

Fractional-order calculus deals with more general behav-
ior than integer-order calculus, and it not only provides new
mathematical methods for practical systems but also has
been applied into various fields due to its accurate description
in many active fields, such as fraction-order memristive cha-
otic circuit, fractional-orderrelaxation-oscillation model,
mathematical biology, and economics (see [12]).

The theory of Riemann-Liouville k-fractional integrals is
a pertinent extension of Riemann-Liouville fractional inte-
grals. It is important to note that if k # 1, the properties of
Riemann-Liouville k-fractional integrals are quite dissimilar
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from those of general fractional integrals. For this, the
Riemann-Liouville k-fractional integrals have agitated the
interest of many researchers. Now, we demonstrate some
essential concepts of k-fractional calculus for the investiga-
tion of our results.

Definition 5 (see [13]). Diaz and Pariguan have defined the k
-gamma function I';(-), a generalization of the classical
gamma function, which is given by the following formula:

1M (a/k)-1
I(a)= lim —m.k (k)

(@)

. k>0,aeC\kZ", (9)

m,k
where (), , is the Pochhammer k-symbol given by

(@) i = (et k)(a+2k), -+, (a+ (m - 1)k). (10)

It is shown that the Mellin transform of the exponential
function e #/¥ is the k-gamma function clearly given by

Fi(e) = J e dy, (11)
0

for Re («) >0 with al',(«)
for the k-gamma function.

=T (a+k), where I';(.) stands

Many researchers have generalized the classical and
fractional operators by introducing a parameter k>0
about a decade ago. Mubeen et al. [14] used special k
-function theory in fractional calculus for the first time
in the literature in the form of Riemann-Liouville k-frac-
tional integrals.

Definition 6 (see [15]). Let ¥ € L,[6,,6,]. The Riemann-
Liouville k-fractional integrals of ¥ with k>0, k ]gl LY and

k]gz_‘f’ of order « > 0 with 0, > 0 are defined by

'Y(Ndr, (>0,

¢
k]gl+1f,({) kfl((x) J (( _ /\)(a/k),

J (A0 Np()dr,  C<6,
¢

(12)
respectively.

Remark 7. If k = 1, then Riemann-Liouville k-fractional inte-
grals reduce to classical Riemann-Liouville fractional inte-
grals. And if =1 and k =1, the fractional integral reduces
to the classical integral.

Recently, many researchers are presenting new fractional
differential and integral operators and they generalized by
using the iteration procedure and by introducing a new
parameter k > 0. They also found relationships of these gen-
eralized fractional operators with existing fractional and clas-
sical operators under the special values of the parameter k.

Many k-fractional operators, their properties, related identi-
ties, and inequalities are proved during the past years. For
instance, see [16, 17] and references therein.

2. Main Results

This section contains several new generalizations of Hermite-
Hadamard-Mercer-type inequalities for s-convex functions
in the second sense (Breckner sense) via k-fractional calculus
theory.

Throughout the paper, we assumed the following
assumptions:

A let §,,0, €10,,0,] <R with {; <{,, a, k>0, and for
some fixed s€(0,1], A€[0,1] and I'(.) is the k-gamma
function.

Ay:for A€ [0,1], (1 +24)/2)" + ((1 = 1)/2)° <1, whenever
we use the definition of the Jensen-Mercer inequality for the s
-convex function.

Theorem 8. Let ¥ : [0,,0,] — R be the s-convex function
such that ¥ € L,(]0,,0,]) along with assumptions A, and A,
. Then, the following Riemann-Liouville k-fractional integral
inequalities hold:

1 0 +0 I'i(a+k)
2<a/k)_5lf/(91 +62 - 2 > < (Cz _(I)a/k

kq® _(1"’(2
X{](9+92 {)- (6 9 2 )
{;+¢ ¥(0,) +¥(0,)
+k](e +0,-0,)+ (9 +0, - 12 2>}S ;(a/k)—l :

[o4

- W{U((x, ks h)+B(Tos+1) J¥E) +¥(),
(13)

_ 2(“/]‘)751}{(0( + k)
(=)™

(14)

"(1+A)°d)A and B(—, —) is the

J" (X/k
0

where U(a, k, s, A
beta function.

Proof. By employing the definition of the s-convex function

¥, we get
B u+v> :W(91+92—u+91+92—v>
2 2

21( (0, +0,—u)+¥ (0, +0,-v))(Yu,ve[0,,0,]).

‘I’(Gl+62 s

((L+1)/2)¢, + ((1-1)/2)¢,
((1+A1)/2)¢,, A €]0, 1], we get

By change of variables u =
andv=((1-1)/2)(; +



23\11(91 +6, - %) < {IP(GI +0, - (1;/\(1 + 1%%))
‘I’<61+62— ( ¢+ “A( ))}

(16)
Now, multiplying the above inequality by A“/Y~! and
then integrating w.r.t. A over [0, 1] yield

W(@lwz_ﬂ)J 3 (@)= 1dA<LMk
-|:‘I’<91+92—<1;/\ - >) (17)
av(91+92— (1% ))}

By change of variable, we have

1 {+C I'i(a+k)
2(oc/k (6 6 1 2 2) = ({2 _(l)a/k
x {"]?9]+92 - (9 vo,- Y ;Q> (18)

a +
+ k](61+92—(2)+l11<91 + 92 _ Cl 5 (2> }’

and so the first inequality of (13) is proved.

Now, for the proof of the second inequality of (13), we first
note that if ¥ is an s-convex function, then for A € [0, 1], it
gives

‘f’(Gl +0, - (1;)&51 + 1;)\(:2)) <VY(6,) +Y(6,)

e r ()]
(19)

v(o0- (R0 500 ) v e

() e (5 v}

(20)
By adding the inequalities of (19) and (20), we have
1+A 1-A
l‘U<91 +0, - (Ta + T(z))
1-2A 1+
'1”<61 +0, - < ) ¢+ TQ))
(21)

<2(¥(0,)+¥(0,)) - K%)S
N (#N (P (0,) + ¥ (05)-
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Now, multiplying the above inequality by A**~! and then

integrating w.r.t. A over [0, 1], we get

! A -A
[ (oo (5o 7))
v(or0,- (10 00 ) ) |as veen

+¥(0,)) X — {J;Wk (1+1)"d)

2$
. Jl)\<“/k)_l(1 _A)Sd)t}(&”((l) +¥(05))-
0
22)
Consequently, we get

29KET (o « (G +¢
ooy T ¥ (000 252)

+]6+6( <9 +9_{1;C2>}

2 1
< a—/k(q/(el) +¥(0,)) - F{U(“’ k,s, A)

+B<%,s+ 1)}(?(@) +¥(0,)),

(23)
T(a+k) o Gi+¢
W {k] 00,07 <91 +02- %>
§i+8,
+k](9+92 (5] (6 6, - 2 )}
Y(0,) + ¥ (0,
= 2<)a;<>—1( - s (V@ s )
+B(%,s+1>}(‘l’((1)+5”(52))-
(24)

Combining (18) and (23), one can get (13). In order to
prove (14), we employ the Jensen-Mercer inequality for the s
-convex function ¥ in the second sense; then, for A € [0, 1], it
yields

#(u)+¥(v) wvelf, 0]
> > 1 03]

(25)

u+v
av(el +0, - T) <W(0,)+¥(6,) -

Now, by change of variables u = ((1 + 1)/2){; + ((1 - A1)/
2)¢; and v=((1-2)/12)f; + ((1+A)/2)05, V(1 G, €[6,, 0]
and A € [0, 1] in (25), we have

v (0,+0,- 155 <o) +viey

Y((1+A)2)0 + (1=2)12)0,) +P(((1 - A)/2)¢, +
25

((1 +)L)/2)CZ).

(26)
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Multiplying by A%~
[0, 1] give

! and then integrating w.r.t. A over

25k (9 ‘0, - ¢ ;Cz> < %{k[\f/(el) +¥(0,)]

N @k 1+A 1-2
JOA/ [lf/< > C1+sz> (27)

1-1 1+A
‘P( 5 CI+TCZ)]d/\.
It follows that

Tk(e e—ﬁ%§>SEQW@)

[»4

29071 (a+ k) (oo (0 +0,
G- {]“&U( 2 >

+k]2‘;q,<C1 ;C2> }‘I’(Ql 16, - ¢ ;Cz) (28)

20T (a+ k)
(6 -0 )oc/k

L (028) e (225))

and so the first inequality of (14) is proved.
Now, for the proof of the second inequality of (14), we first
note that if ¥ is an s-convex function, then for A € [0, 1], it gives

+¥(0,))

<[¥(01) +¥(0,)] -

‘P<(1 +(2> :‘I’<<(1 +A)12)0 + (1= A)/2)¢, +

2 2

(1=2)/2)0,) + P((1 = 1)/2)8 +
28

(1=A)2)¢ +((1+ /\)/2)(2>
Y((1+A)/2)¢, +

((L+ )/2)%)

(29)

Multiplying by A%~
[0,1] give

e . A A
B (1)
(e a5

2(1x/k) ‘Fk(oc+k) k4% ( +C k4% ( +Z:
< —((2_(1)0‘”‘ { ]q\}/< 12 2) + ](;‘P( 12 2)}

! and then integrating w.rt. A over

(30)
Therefore, we have
(alk)—s @
2T i (176
(PRXE ! 2 (31)

(58} (5)

Adding ¥ (6,) + ¥(6,) to both sides in (31), we get the sec-
ond inequality of (14).

Remark 9. Under the assumption of Theorem 8 for inequality
(13) with s=a =k =1, one has

w(o,+0,- 1) ! cz‘l’(91+02—l)d/\£‘lf(01)
( 2 ) GG Jcl
e (6226

(32)

The inequality (32) is proposed by Kian and Moslehian
n [18].

Remark 10. If we choose s=k=1 in Theorem 8, we get
Theorem 2 in [19].

3. New Identities and Related Results via
Riemann-Liouville k-Fractional Integrals

Lemma 11. Let ¥ : [0,,0,] — R be a differentiable mapping
on (8,,0,) with 0, < 0, along with assumption A,. If¥' € L]
0,,0,], then the following equality for Riemann-Liouville k
-fractional integrals holds:

21T (& + k)
(cz C )a/k

(‘P(91+62—Cl)42r‘1/(9 +02—C2)>

X{k]‘(xgﬁgz_(z) ( (6 +9 _ (1+{2))

+k]((x91+92_(1) < <9 +6 _ (1+C2>)}
S G e 1+A 1-2
_ZTUOA/{ (6 o (2 C”sz))

_lpl<91+92—(¥ 1+,\ ))}d}t

Proof. It suffices to write that

5 -4
4

(33)

I= {I, - L}, (34)

where

1 _
I :J MW(@I 6, - <_1 ;A(I s 2%))&
0

_2¥(0,+0,-,) ~ 2001 (k) J9,+92-(1
(CZ - (1) (( C ) (a/k)+1 6,40, (0, +)12)

(o o555

2M L (@ 4 ) [ {4t
W {k](ewez—cl)*‘l”(@l +0,- 21 i 2) }
(35)




Analogously,

1 —
I, :J etk <91 0, - (%cl . 1%%))&
0

_2¥(0,+0,-8,) | 2N (alk)
G0 (G-
110 =((61 162 o
xje 0,-((¢ ()/2)<(61+92_(1+(2)_w) ¥(w)dw
0,+6,-¢, 2
__2¥(0,46,-0y) 29T (at k)
G=0) (G-
‘{k]z(em 05" <9 +6 _(1;(2>}.

(36)
Combining (35) and (36) with (34), we get (33).

Corollary 12. For a =k =1 in Lemma 11, we acquire

2 CZ - (1 6,+6,—(,

G, A -1
Sl (e 5)

0
1-A 1+A
_‘P'(61+92—( 3 G+ 2))}d)t.

Remark 13. Taking a=k=1 with {; =60, and {, =6, in
Lemma 11, we get Lemma 2.1 in [20] and the following
equality holds:

¥ (u)du

Y(0,+0,-C)+i(0,+0,-(,) 1 rﬁ@r(;

0, 1
l{/(e) J ¥ (u du— IJA{‘P’
92 91 0, 0

: (ﬂel . 292)}M
2 2

Theorem 14. Suppose that ¥ : [0,,0,] — R is a differentia-
ble mapping on (0,,0,) with 0, <0, and ¥' € L[0,,0,] along
with assumptions A, and A,. If|¥' | is an s-convex function on
[0;,0,], then the following inequality for Riemann-Liouville k
~fractional integrals holds:

YO0, +0,-0,)+¥(0,+0,-,) 20T (a+k)

2 (€= ¢)™
e (o0 52))
T O )
< (2 - C]

o e (¥ @l +1# @)
1

- 5{(}(% ks, A) +B(k,s+ 1)}(‘11((1) +‘I’(4”2))}

where U(a, k,s, 1) = [JA%(1+1)°d).
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Proof. By using Lemma 11 and the Jensen-Mercer inequality
and the s-convexity of |¥' |, we have

2L (a+ k)

(‘P(61 +6,-0,) +¥(0,+6, - 42)> _
2 (G- 5™

x{k]((xh@( < (9 +0, - Cl;rCz))
+ 0 00 < (e +6, —51;(2))}
ot [l ( (s
o (0122 o

gcz—ﬁ JAa/k{’ 91} ‘lp 6,) ‘

-((58) waols ((58) ') far
A B

=0))

(40)

After simple computations, we get the required result
of (39).

Corollary 15. For s=a =k =1 in Theorem 14, we get

WO, +0,-C)+V(0,+60,-0) 1 (Ol
’ 2 L4, Lﬁgz_(f”(”)d“

_ , . y! } %
S%{lwlwwm—(' Gl ] “”')}.

(41)

Remark 16. Taking s=a=k=1 with {; =6, and {, =0, in
Theorem 14, we recapture Theorem 2.2 in [21]:

¥ (0,) +¥(0,) 1 %
2 0, -6, JQI‘I’(u)du

< 0, -6, <|l‘y’(91>| + |1PI(92)|>
<= 5 )

Remark 17. If we choose s = k = 1 in Theorem 14, we get The-
orem 4 in [19].

Theorem 18. Suppose that ¥ : [0,,6,] — R is a differentia-
ble function on (0,,0,) with 8, <0, along with assumptions
A, and A, If V' €L[6,,0,)] and |¥'|" is an s-convex function
on [0,,0,], where (1/r) + (1/q) =1, r> 1, with q=r/(r - 1),
then the following inequality for Riemann-Liouville k-frac-
tional integrals holds:



Journal of Function Spaces

2("‘”‘)’11",((& +k)
((2 - Cl)a/k

{ (6,46,-0,)* ( < C1+(2))
+*T0,10,¢) <‘P(1+92 51+52)>} <
{ alk)r+1)" {(Hﬂ ¥'(6,)|" (43)
-(Gerp e ﬁlvf’@lq))uq
(e e (kg
e IW’<<Z>|4>)WH.

Proof. Employing Lemma 11 and the Jensen-Mercer inequal-
ity with noted Holder’s inequality and utilizing the s-con-

[\S)

'( (6,+6, (1)+\p(9,+92-(2)>_

-G
4

vexity of |¥'|7, we have

2@R71F (a+ k)

V(0,+0,-C)+¥(0,+0,-(,)
( 2 > ( (l)tx/k

x{k]?9+92 o ( (9 +0,- C‘MZ))

+ 0,10, ¢ (‘P (61 +0,— ﬂ)) }'
ol (oo (0152
< () o
[

(I

(

o (300 )
loon (126 o)
= <J“’“M) X[(J;{Iv'wl)!“w"(ez)lq

(5 e (5 ) a)”

(] {Y’ v~ (5 A) ¥ @)
(e
{Wiw{(lww el - (G @

!

1/q
+ D) |‘P'(Cz)|q>) + (}‘f’l(elﬂq* 7 (6,)]"

(el e rer)) ]

[

+

+

This completes the proof.

Theorem 19. Suppose that ¥ : [0,,60,] — R is a differentia-
ble function on (0,,0,) with 8, <0, along with assumptions
A, and A, If¥' € L[0,,0,] and |¥'|" is an s-convex function
on [0,,0,], where (1/r) + (1/q) =1, r>1, with q=r/(r - 1),
then the following inequality for Riemann-Liouville k-frac-
tional integrals holds:

’ (lp(@l +60,—10;) ; ¥(0,+0, — C2)>

20=1T, (a + k)

G =)™

kg CG+G
x{ J(6,46,-0,)" ‘P(Gl +0, 5 ))
+k]?91+92,{1 - <‘P (91 +0, — %)) H

< Cz _ CI 1 1—(1/q)
- (alk) + 1

)
4
y {<|av’<61>|q+|a"’<ez>|q
(alk) + 1

U(a ks,
_ ((‘"275‘1;/ @)
+B((oc/k);1,s+ 1) "P’(C;)]q>)1/q

. (\vf’<01>|q+ |#'(62)]"
(alk) + 1

B <B((a/k) +1,s+1) |

25

+W|tp (] ))UQH, (45)

JoA (1 + ) dA.

(@)

where U(a, k,s, ) =

Proof. For r>1, taking into account Lemma 11 and the
Jensen-Mercer inequality with the noted power-mean

inequality and utilizing the s-convexity of [¥'|%, we have

’ (qf(el +0, — () +¥(0,+0, — C2)>

2

B 200-1T, (a + k)
(= ¢)™

Ky _C1+(2
x{](91+92_(2)+<‘l’<91+02 3 ))




)}

1w’ (0,)]"+ ' (6,)"

_<(1;A>1w%aﬂq+
({5
() weors (55) 1w >}‘“>WH'

(46)

(
)

Simple computations yield the desired inequality (45).

Next, we demonstrate results for twice differentiable func-
tions ¥''. For that, we give the following new lemma.

Lemma 20. Let ¥ : [0,,0,] — R be a differentiable mapping
on (0,,0,) with 0, <0, along with assumption A,. If¥'' € L
[0,,0,], then the following equality for Riemann-Liouville k
-fractional integrals holds:
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20017 (a+ k) ky
(CZ - )a/k (0,+0,-((¢,+0,)/2))’
1

+ ]9‘#’92 (@2 T (01 +6, - Cz)} <91+62—

_%{J(I A)a/kul{,u(e 10, (1;)Lcl

(2) )dA + J (1 — /\)(Oé/k)ﬂlpu
2 0

-<61+02—<1;A(1+ 1;)‘ 2)){&}.

Proof. It suffices to write that

(0, +6,-¢))

(1’;(2)

(47)

(SN

= W{Iﬁfz}) (48)

where

o1 _
L= -ty (91 +0,- (1 A %(ZDM
Jo

B 2 ’ G +0, 2((alk) +1)
“(cz—m‘”(g‘*e’ 2 >+ 6,-6,)

1 -
XJ (14)“’@’(91%27 <1;Acl+ 12Ac2>>dA
0

~ L+ G 4((¢x/k) +1)
= ) (0 +0, 3 ) T ) 4

&0
(ew c1+c2> EZ@(;;)J{J(I_MMk—W (49)
(

6,46, <1+A 1;)\ 2>>dA

2 {,+¢, _ 4((alk) +1)
¥ (e -0y
C1+CZ 2R 2((afk) + 1) (a + k)
(6, +6,-
( + > (C C)(a/k+2

‘(k]'(xeﬁez (€+5)2)) )( (6,+6,-01)),

and similarly, we can find

_ 1 I ~ 1+)\
I, J0(1 )@k (91+92 ( G+ ))dl
2 / G+4 ((“/k)+1)
= Y¥'(0,+0,- - b4
¢, -¢) ( ’ 2 ) (52_51)2 (50)
. (6 Lo e +C2) . 2R 2((a/k) + 1) Ty (et + k)
110, 5 0 -

1) (a/k)+2

(Tioorioaymy ) (T +0,-8))

Combining (49) and (50) with (48), we get the identity (47).

Remark 21. In Lemma 20, taking k =1, with (,
=0,, recaptures Lemma 1 in [22].

=0, and (,

Remark 22. For a = k=1, with {; =0, and {, = 6,, in Lemma
20, it reduces to Lemma 2 proved in [22].
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Theorem 23. Suppose that ¥V : [0,,0,] — R is a differentia-
ble mapping on (0,,0,) with 0, <6, and ¥ € L[0,,0,] along
with assumptions A, and A,. If |¥''| is an s-convex function
on [0,,0,), then the following inequality holds:

200711 (o + k)
((2 - Q)Mk

« ( +<’
T loy10,-(¢y1cm) ¥ (01 + 62 Cz)} (61+02_ %)
. G-y

2<‘l}/ll 0 )‘ ‘\PH 02 })
= 8((ark) + 1) (a/k) +2

_{(Ul((x,zlsc,s,)u) , Ltk +5+2) )

2T ((a/k) + s+ 3)
'W”W”W@Wﬂ

{ ] (0;+6,—( <1+(2)/2))+l{’(61 + 62 - cl)

(51)
where U, (e k, s, 1) = [1(1 - )R (1 4 ) dA.

Proof. By using Lemma 20 with the Jensen-Mercer inequality
and the s-convexity of |¥'’|, we have

21T, (a+ k)
(=)™

10,10, ) P (01 + 05 (z)} (91 +0,- & J;CZ)
! ;/\(2) JdA + J;(l — )
.(61+92,<1;Azl+¥(2))'dl}gw)ll)
x U;(l —A)<“/k>+1{\\p”(91)| + " (0,)] - ((#)
G|+ (#)SHJ”(CZ)\) JA + J;(l _
{WWMHW@W(G¥ﬁW@M
(2 o) o

After simplifications, we get the required result.

{k]?(a,% (G (O +6,=81)

(=

(52)

Remark 24. For choosing k=1 with {; =6, and {, =6, in
Theorem 23, we will get Theorem 2 proved in [22].

Theorem 25. Suppose that ¥V : [0,,0,] — R is a differentia-
ble function on I along with assumptions A, and A,. If ¥"'
€L[0,,0,] and |¥"'|" is an s-convex function, where (1/r) +
(1/1q) =1, g > 1, then the following inequality holds:

26071 (a+k) (oa
AT {0002 ¥ B +6:-0)
2 1

G +¢
+ k](e +0,—(({;+¢,)12 )Jp(e +9 {2)} <91 + 62 - %)

(Cz - (1)2 1 1r . )
= 8((all) + 1) {(((tx/k)+1)r+1) X{(‘”I’ O)]"+ " (6,)|"

281 _ g " 1 " 1iq
g D)
+ <|¥’”(91){q+ |¥,//(92)}‘1 _ (ﬁ |'1V”(C1)|q

+§:0WVM)Y?}

Proof. By using Lemma 20 and the well-known Hoélder’s
inequality and the Jensen-Mercer inequality along with the

! . .
fact that |¥''|? is an s-convex function, we have

(53)

21 (a+ k)
(=4

< { Moo, et P (61 +6, = 01)

k 7o
+ o6, (¢, 102y T (01 +0; = (z)}

—‘P(Ol v, -0 +52>
2




10

(J |¥'(6,)+¥'(6,)
) )

|-

(5

{(%)]w’(cl)!“ (HA) Sl >)>qu

(54)
By direct computations, we get the required result.

Remark 26. For choosing k=1 with {; =60, and {, =6, in
Theorem 25, we will get Theorem 3 proved in [22].

Corollary 27. For « = k=1 in Theorem 25, we get
1 6,+0,~(, B ~ C] +CZ
7(2‘(1 Lﬁezg'{/(u)du ‘P<61+02 3 >

2 1r
<G () <[{(reor e ear)
2+ -1 Iy q 1 Iy q 1
‘<m|‘f’ (9] +m|‘f’ (G)] )}
I I 1 I
{ (el 19 ") - (5 1N

etwen)]

Finally, we state our results for third-order differentiable
functions ¥'"".

(55)

Lemma 28. Let ¥ : [0,,0,] — R be a differentiable mapping
on (0,,0,) with 0, < 0, along with assumption A,. If¥'" €
L[0,,0,], then thefollowmg equality for Riemann- Lzouwlle k
-fractional integrals holds:
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2071 (o + k)
(G=¢)™
X{<k]?91+9 (€2 >( (0 +6,-¢,)) + < (0,46, ((cﬁcz)m)’)

(¢ _(1) "
(W(0,+0,- {z))} - 4((alk) + 1) ((alk) + 2) b4

-(9 +6, —@> —\y(e +6, -%)

1 A) (a/k) +2lI/

16((oc/k +1 oc/k)+2 { 0

(ar+0.- (gc, 1) Ja

o] _
_J (1 —A,)(‘x/k)+2l1/l,, <91 +6,- (1 2/\(1 . IZA
0

W)

(56)
Proof. It suffices to write that
(6=’
I= I, -L}, 57
16((oc/k)+1)(((x/k)+2){ 1L} (57)
where
1 —
1= J (1 - )2y <91 +0,- (#cl + IZJQ) ) i
0

_ " ~ (G +, 2((alk) +2)
e GRS e s
1

(
~J(1—A)<‘””‘>*‘vf”(el+ez—(1”61 1”())&
2 " (1+Cz> 4((alk) +2) .,
=S v (6,+6,- _ 2y
((2_(1) ( o2 2 (cz_cl)

. <91 +0,- ¢, +(2) L A(ark) + 1)(((x£k) +2)
2 ((Z_CI)

.Jl(l_/\)a,k\l,,(el 0, - (1;)&(1 . 1;’152»«1/\
0
4((atk) +2)

2 " C]‘*‘Cz)
=————-V(0,+0,- - 5
-0 ( )T G

. <91 16, - G +52) _ 8((a/k) + )(("‘/k)+ Dy
2 G-
. (91+92_ G erfz) L2 ((“/k)+1)((“2’2;2)Fk(“+k)
(-8

'(k]aeﬁez (@) >( (6, +0,-0y)

)

_ 2 " _(1+C2 4((alk)+2)
N (9”62 2 ) G-0F
. (91 vo,- ¢ erfz> _ 8((ark) +2)((oc§k)+ 1)‘P

((z 1)
: <] (0,+6,~((4,+0,)12)) ) ¥(0,+0, (
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and similarly, we can find

1 —
I =J (1 )bzl (61 +0,— (L 5 Acl 134 ;'\(2>)d)t
0

2 {+¢, 4((alk) +2)
(9] (9 0 ) G-0F
(6 vo,- ¢ +(2> N 8((alk) +2)((alk) + l)lP (59)
(CZ_zl)a
(a/k)+31—-k(‘x+3k)

(1 + :2)
(Cz _ Cl)(a/k)+3

(1 sttt ) (¥ (01465 =02).

Replacing the values of the integrals I, and I, in (57), we
get the identity (56).

Remark 29. In Lemma 28, choosing k=1 with ,
{, =0,, it recaptures Lemma 3.1 proved in [23].

=0, and

Remark 30. For k=a =1 with {; =0, and {, =0, in Lemma
28, it reduces to Lemma 2.1 proved in [24].

Theorem 31. Suppose that ¥ : [0,,0,] — R is a three times
differentiable mapping on (0,,0,) with 6, <0, and ¥ € L[6,
,0,] along with assumptions A, and A,. If |[¥'""| is an s-con-
vex function on [0,,0,), then the following inequality for k
~fractional integrals holds:

(ark) F k
ﬁgt/z)x{(](e,w @ty ) (O +6,-01)

( T (6,+0,~(({,+0,)12)) ) (¥(6,+6,- Cz))}

( )2 " (1+<§2
((oc/k)+1)((oc/k)+2) ( 140;- =5 )
S +(2 ((2_51)3 (60)
\F(G +6, ) = 16((alk) + 1)((alk) + 2)

O]+ [P (wks
k) g
*ramrers) (V6] ”’(@)\)H,

where U,(a, k,s, ) = [, (1 )@R*2(1 1 L)% d.

Proof. By using Lemma 28 and the Jensen-Mercer inequality

. !
and the s-convexity of |¥'"'|, we have

21 (o + k
ﬁ()(“/k)) {( T 046, >(‘f’(91+92 &)

(oot ) (F O +6,-0)) }

( 2_(1) " (1 +(2
T (@R + (@R 2 (91+62_ 2 )

11

SRR AT (S 9§
—‘P<91+92‘ 5 )"16((a/k)+1)((“/k)+2)

\1/”(91+92— (#(1+ I;A 2))‘611
lp’”<91+92— <I;A{1+ lgA 2))'41}
= 16((a/k()(i;)il(£/k) +2) U;(l - A)(Mkm{ ‘l‘ym(el)‘

(el (o))

+ J;(l —A)(“’k>+2{ w(0,)] + ¥ 0,)| - ((%) v

" (P;—A) (%) D }‘”} = 16((a/k()(:)((l(£/k) +2)
“f’ 92\ [ (Us(a ks A)

() {2

+ W)(IW”’<51){ +[¥"(@)) H

(61)

Remark 32. Choosing k=s=1 with {; =6, and {, =0, in
Theorem 31, we will get Theorem 18 proved in [23].

Theorem 33. Suppose that ¥ : [0,,0,] — R is a three times
differentiable function on I along with assumptions A; and A,.
IfY'" eLlB,,0,) and |¥'"|" is an s-convex function, where
(1/r)+ (11q9) =1, q > 1, then the following k-fractional inte-
gral inequality holds:

2001, (a+ k) N
% _(k)(a/k) X {(k](9,+9 (G452 )( (0,+6,-0,))
2 1

+ (k]‘(xﬂﬁﬂz (€+8)12)) )( (0,+0,- (2))}

(2:2_(1) " RS
(k) + 1)((alk) +2) (61+92_ 2 >
{i+4 (CZ_(I)3
_11/(9,+92— 3 )S16(((x/k)+1)((“/k)+2)

i . i (62)
K((a/k)jZ)rH) <{(|#" @[ + | ©)|'

Gl el gl )
(ol 0 (g
Femel) |

Proof. By using Lemma 28 with the Jensen-Mercer inequality

and the well-known Holder’s inequality on the fact that
|#'""|% is s-convexity, we have

201 (a + k)
(=4
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x{(k131+92 (6 40,)/2))+ )( 0, +6, —C)))
+<k] 791+9r<<<1+<z>/z>>*) (¥ (6, +6, — Cz))}

i (6~ &)
4((alk) + 1)((alk) + 2)

qf”<91+92—C1;(2) —W<61+92—C1;CZ>‘

(6 =8’
16((a/k) + 1)((alk) + 2)

1
11 (oc/k)+2}
[{Lo-v
. A, 1o
¥ <el 10, — (l%cl " 1752» ‘d)\

_ Jl(l e

0

av(e 46, (%c + 1;_}‘{» ‘d/\H

(6 =8’
16((a/k) + 1)((alk) +2)

1 1/r
x l(J (1 . /‘)((u/k)+2>rd/l)
0

1
] e e
0
q )Uq}
1 1r
+ (J (1 _ A)((oc/k)+2)rdl)
0

{J ' (0,)+¥'"(6,)

X

X

A //, A Iy
(5 )

1

_ q
(12%’”«;% E iy [ar

"

(=8’
16((al/k) + 1)((alk) + 2)

’ [(JLU - A)((a/k)ﬂ)rd/l) o
X { q ;(’qﬂ"@ﬁl" +|9"7(6,)]"
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(e ()"
N (NCRCSIRTON

-((55) e+ (57) 1) )))qu

(63)

After some simplifications, we get the required results.

Remark 34. Choosing k=s=1 with {; =0, and {, =0, in
Theorem 33, we will get Theorem 19 proved in [23].

4. Applications

4.1. Some Applications of the Means. Let us consider the fol-
lowing special means for different values of 4, and a,:

(1) The arithmetic mean:

Alay, a,) = 4 ;uz : (64)

(2) The geometric mean:
G(ay,a,) = (”1“2)1/2- (65)

(3) The harmonic mean:
H= ﬁ (66)

Proposition 35. Suppose a;,a,€R,0<a; <a,, 0¢a;,a,)
Then, for all r > 1, the following inequality holds:

‘m [(ZA(al) a;) - al)SH - (2A(ay, a,) - az)ﬁl}
(CZ B 61)2 1

- !12))5| = TS(S 1) <2r + 1) ’

. . 25+I —1
X (ZA (a(l Z)q, a(z 2>q)) N\ =—=a
2(s+1)

(-2) “7
1

L e2r)y (-2 (-2
L DR (CICREC )
~ 1 (5_2)’q 25+1_1 a(S—Z)‘q 1/q

2(s+1) I 2(s+1)17 '

(67)

Proof. The proof is an immediate consequence from Corol-
lary 27 by selecting ¥(x) =x* and s € (0, 1).
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Proposition 36. Suppose a;,a,€R,s€(0,1),0<a,<a,,0
¢ [a,, a,). Then, for all r > 1, the following inequality holds:

1 (2A(ay, a;) - “z)H - (2A(ap a5) - al)H
(62 =C)(1=5) | (G*(2A(ap a,) - ay), (2A(ap a5) — ay))

2 1Ir
- 1
< (€2=5) s(5+1)( )
16 2r+1
s (s 21
2A< (+2)q’ a2< +2)q) _ a
2(s+1)
1 —(s liq s —(s
" 2(s+1) ‘az( b q) } {ZA (al( ) +2)q>
(! 1+ "
s+ 1)1 ‘
Proof. The proof is an immediate consequence from Corol-

lary 27 by taking into account Lemma 4 by selecting ¥(x)
=1/x*and s € (0, 1).

~(H(ay a5))

(s+2)]1

q 21— ’ ~(s+2)
——|a
2(s+1)1 7

(68)

4.2. q-Digamma Function. Suppose 0 < q < 1; the q-digamma
function ¢ is the g-analogue of the digamma function ¢ (see

[25]) given as

Pq= +lnqz +lnqz

(69)

For @ > 1 and { >0, the q-digamma function ¢, can be
given as

¢q=—ln(q—1)+lnqlé—l— >
:—ln(q—l)+lnqlC—

Proposition 37. Let a,, a,, g, and q be real numbers such that
0<a,<a, q>1,and0<q< 1 Then, the following inequality
holds:

$q(2A(ay, az) —a;) = 94 (2A(a;, a5) = ay)

(2 _(1
<SR () (e s e

(el )}
+{<\¢ss><al>v+isowr)—( sl
b))

s+1

- gyAlan )

on'te
(71)
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Proof. By employing the definition of the q-digamma func-
tion ¢ ({), it is easy to notice that the g-triggmma function

{— (p&(( ) is completely monotonic on (0, co). This ensures

that the function (p£13> is again completely monotonic on (0,

00) for each q € (0, 1) and consequently is convex and non-
negative (see [26], p. 167). Now, by applying Corollary 27,
we extract that the inequality (71) is valid for q € (0, 1).

As another application of inequality (71), we can deliver
the following inequalities for the gq-trigamma and q-poly-
gamma functions and the analogue of harmonic numbers
H, defined by

q

=) —, €N. 72

nq 1— qk n ( )
So, from inequality (71), we use the equation

P (n+1)=g¢,(1)-log (q)H neN. (73)

Consequently, we obtain the following result.

Corollary 38. Suppose ne€ N, q> 1, and 0 < q < 1. Then, the
following inequality holds:

B soq< <1n+1>>]

I’l

=76\ 2rr1 (’(P‘l

2$+1_1 1 1/q
—— _1o®(n

2(s+1) ‘q"l ’ +2(5+1)‘(P (n ”)))}

‘SDq n+1)‘) (25(51”) ]¢513>(1)‘q

q
‘ + ‘(p513)(n+1)‘ )

(74)

Proposition 39. Suppose n is an integer and q > 1. Then, the
following inequality holds:

n2 1/r

16 (2r1+1>

[l o) - (Zt oo
)Y (ol e
(bl Zgrg o o)} ]

(75)

Mg anr )|

1
LA INC)
2(s+1) o 0n

Proof. From inequality (74), when q— 1, we use the
relation



14

q-1
1 (76)
——limz - =—H,
q—>1k:11—q

We obtain the required result.

Remark 40. By using the equation

=y+o(n+1), (77)

where y is the Euler-Mascheroni constant, the inequality (75)

becomes
—9' (A(Ln+1))| < %(Tl-r—l)l/
[{temor )Gz
25(s+1 ‘(p (n+ 1)‘ )} {<‘¢(3)(1)‘q+ ‘(P(3>(”+ 1)‘51)

Pl gl o))

(78)

y+o(n+l)
n

(7o

5. Conclusion

In this paper, we have explored new k-fractional variants of
Hermite-Mercer-type integral inequalities for s-convex func-
tions. New results and novel connections are built for the left
and right sides of Hermite-Hadamard-type inequalities for
differentiable mappings whose derivatives in absolute values
at certain powers are s-convex in the second sense. New inte-
gral identities for differentiable mappings are obtained, and
related results are established. In the application viewpoint,
our findings illustrate new generalizations with the connec-
tion of special function theory (special means of real num-
bers and g-digamma function) and harmonic numbers. It is
quite open to think about Jensen-Hermite-Mercer variants
for generalized integral operators having nonlocal and non-
singular kernels by applying generalized convexities. How-
ever, it is not easy to extend such inequalities for other
existing types of convexities. The suggested scheme is viable,
effective, and computationally appealing in fractional differ-
ential equations, optimization theory, and other related areas
of convexity.
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In this paper, we introduce degenerate multi-poly-Bernoulli polynomials and derive some identities of these polynomials. We give
some relationship between degenerate multi-poly-Bernoulli polynomials degenerate Whitney numbers and Stirling numbers of the
first kind. Moreover, we define degenerate multi-poly-Bernoulli polynomials of complex variables, and then, we derive several
properties and relations.

1. Introduction Note that
For any A € R/{0} (or C/{0}), degenerate version of the
exponential function €5 (¢) is defined as follows (see [1-15]) lAm}) B,(x;A)=B,(x), (3)
()= (1+ Atﬁ _ i (x) ﬁ’ (1) where B,,(x) are the familiar Bernoulli polynomials (cf. [1, 3,
2l 4,6,8,11, 12, 14, 16-22])
where (x),, =1and (x),, =x(x=A) --- (x = (n - 1)A) for n t o R t"
> 1, (¢f. [1-15]). It follows from (1) is lim,_oef (£) = ¢¥. Note 716 - ;}Bn@m’ (|t < 27). (4)

that e} (¢) = e, ().
Carlitz [1] introduced the degenerate Bernoulli polyno-
mials as follows: For k € Z, the polyexponential function Ei;(x) is defined
by (see [21])

t \- t"
e (t)= Y Bl ) (2) ©
e (-1 4 = n! Eiy (x) = Z(n_l)'nk,(kel) (5)

Upon setting x=0, f3,(0;4):=p,(A) are called the
degenerate Bernoulli numbers. Setting k=1 in (5), we have Ei (x) =¢* - 1.
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The degenerate modified polyexponential function [12]
is defined, for k € Z and |x| < 1, by

Eiga(x)= ). mx"~ (6)

Note that Ei ;) (x) = ¢;(x) = 1.
Let k € Z and A € R. The degenerate poly-Bernoulli poly-
nomials, cf. [12], are defined by

e UEDX(CEC
log, (1+1) = ZA”_I(UH%%’ (A€R), (8)

where log, (1 +t) are called the degenerate version of the log-
arithm function (cf. [8, 12]), which is also the inverse func-
tion of the degenerate exponential function e, (#) as shown
below (cf. [8])

ey(log) (1 +1)) =log(ey(1+1)) =1+t 9)

Letting x = 0 in (7), B%(O) = B% are called the type 2 degen-
erate poly-Bernoulli numbers.

The degenerate Stirling numbers of the first kind (cf.
[8, 13]) and second kind (cf. [4-6, 9, 17]) are defined,
respectively, by

1 < n
crllog (1+0)= Y5, (k) (k20), (10)
: n=k
and (cf. [1-27])
1
gl ZS“ (n,k —., k>0). (11)

Note that lim,_,, in (10) and (1.8), we have (cf. [8, 13])

ZSlnk

(log 1+1)) k >0), (12)

and (cf. [4-6, 9, 17, 24])

e—l

Zsz (n, k >0), (13)

where S;(n, k) and S,(n, k) are called the Stirling numbers
of the first kind and second kind.

The following paper is as follows. In Section 2, we define
the degenerate multi-poly-Bernoulli polynomials and num-
bers by using the degenerate multiple polyexponential func-
tions and derive some properties and relations of these
polynomials. In Section 3, we consider the degenerate
multi-poly-Bernoulli polynomials of a complex variable and
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then we derive several properties and relations. Also, we
examine the results derived in this study [28, 29].

2. Degenerate Multi-Poly-Bernoulli
Polynomials and Numbers

Let kl’ kz, R
tial function Eij ; ...
1K2>

k, € Z. The degenerate multiple polyexponen-
J;1(x) is defined (cf. [15]) by

1 e (1 xM
2,___)kr;A(x) _ Z ( )nl,/\ ( )n,,Ak -
0<n, <ny<---<n, (1’11 - 1)'(7’1r - 1)!7111 sy

(14)

Eikl,k

where the sum is over all integers n,,n,,---, n, satisfying
0<mn, <n,<---<n,. Utilizing this function, Kim et al. [15]
introduced and studied the degenerate multi-poly-Genocchi
polynomials given by

erikl;kz»"'yk,;A(log/\(l + t)) ex(t) _ i g(kl,kz,---k,) (x) t (15)
A - nA P

(e)t(t) + 1)" =0 n!

Inspired by the definition of degenerate multi-poly-Genocchi
polynomials, using the degenerate multiple polyexponential
function (14), we give the following definition.

Definition 1. Let ki, k,, -+, k, € Z and A € R, we consider the

degenerate multi-poly-Bernoulli polynomials are given by

r!Eikl Jysee kA (lOgA (1 + t

(ex(t) = 1)’

x Z §B n'
(16)

Upon setting x =0 in (16), the degenerate multi-poly-
Bernoulli polynomials reduce to the corresponding numbers,
namely, the type 2 degenerate multi-poly-Bernoulli numbers

%g},kz,...,k,) (0) = ?lelkaz,n.,kr)_

Remark 2. As A — 0, the degenerate multi-poly-Bernoulli
polynomials reduce to the multi-poly-Bernoulli polynomials
given by

rlEi g ..k (log (1 +1))

@1y

Z%“‘ X n'. (17)

Remark 3. Upon setting r =1 in (16), the degenerate multi-
poly-Bernoulli polynomials reduce to the degenerate poly-
Bernoulli polynomials in (7).

Before going to investigate the properties of the degen-
erate multi-poly-Bernoulli polynomials, we first give the
following result.
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Proposition 4 (Derivative Property). For k;, k,, -+, k, € Z
and A € R, we have

d _. I_.

EElk,,kz,---,k,;A(x) = ;Elkl,kz,---,k,—l;/l(x)' (18)

Proof. By (14), we see that

d_.
%Elkl,kz,m,kr;/\(x) =

)

0<ny<n,<-+-<n,

W
(m = 1)t
_1 y (19)

X
0<ny<n,<-++<n,

S

( l)n,,lxnr

(n, - 1)!71’{1 b

) (1)n1 A (l)nr,/\xnr
(n, =)l (n, - 1)!n]1<‘ !
1.
= ;Elkl,kz,w,k,—lgk(x)'

Theorem 5. The following relationship

kpkyye ook, (N Ky k,
B3 () = Z( . )%ﬁ_j,; @ )
=0\ ]
holds for n > 0.
Proof. Recall Definition 1 that
t" 7B g g (logy(1+1))

Y gl £

n=0 nl (ex(t) = 1)r

:Z?B

n=0 j=0

-5 ( )

which gives the asserted result (20).

8
3

8

The degenerate Bernoulli polynomials of order r are
given by the following series expansion:

[ee] , . tn B t r
YAy = (o) 40 @

n=0

(f. [3, 6, 8, 17]).
We provide the following theorem.

Theorem 6. For n>r. Then

n+r

LD

m=0 0<n;<n,<---<n,.<m

n+r
- ( )ﬁfm (X3 0)S; ) (m,m,)

(1)11,,/\
(n+r)l(n; =1l (n, - I)Inlf’ nlf .
(23)

(k)
%n,/l (

nlrln (1), 5 -

X

Proof. Recall from Definition 1 and (10) that

e (1)
(D2 (1), 2 (oga (1+1))™
. (1, = D)lee(n, = 1)l ol
rlei (1)
(D)p o (1), 21!

Lee(n, - 1)!n’f‘ .

(o) n
ka ko L:
= n!

(1), 2S1a(ms an)

lee(n, - 1)!n]1(‘ o

3]
M
=

;
>.4
ng

) (1) A (l)nr,}tsl.l(m’ n)n,!
0<n <nz< -<n,<m ”1 - 1)!"'(", - 1)!1’!11(' n’:,

w23() %

n=r m=0 0<n, <ny<---<n,<m
(1), (1),
(ny = 1)l (n, - l)lnlf‘ ol
n-r

B 1S, a(m)
(29)

which means the claimed result (23).

Theorem 7. The following formula

kpkg,ok, c h kpokyye ook,
B ><x+y>=z<j)<y>j,A%,&j,A Jx), (29

j=0

is valid for k;, k,, -+, k, € Z and n > 0.



Proof. In view of Definition 1, we see that

k,;k(log)»(l + t)) x+y

§8<k1‘k2)m’ky>( )i_ r!Eikl,kz,m,

" xX+y)—== = e, (t
20 l @n-1y 2
_ Ntk E R t"
= 2B @Y 0
i=0 j=0
0 n n n
Kyodeyye ek, t
= Z( )(nmi” ><x>)—,,
< . n:
n=0 \j=0 \ J

which implies the desired result (25).

Theorem 8. The following relation

d
2 sl

’kr) n
Ir (x)

1l
m
-
—
3
v

iz
R
<
Z

—~

Nay

—

>

N

7

—

—

~

—

is valid for k;, k,, -+, k, € Z and n > 0.

Proof. To investigate the derivative property of %( ook )(x)
that

gt B o) 4
i dx n! (erx(t) - 1) dx!
_ o) (kpkye ik, ﬂll 1+ At
;;)%m (x)n!/\ n (1A
- o i\ @ l+l
_ <z %( . ) Z ALy
n=0 k=1

tn+l

%(kl’kZ"“’kv)(x) ( )ZH /\—1
A ) n!’

(28)

|
Nl
M8

0 =

3
Il
—_

which provides the asserted result (27).
We here give a relation including the degenerate multi-
poly-Bernoulli polynomials with numbers and the degener-

ate Stirling numbers of the second kind.

Theorem 9. The following correlation
kpkyy ok, RN (kppkyyeoo ok,
B, )= Y Z( ><x>,sn<m IR
(29)

is valid for k;, ky, -+, k, € Z and n > 0.
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Proof. By means of Definition 1, we attain that

O kkk), " TIEL 2 (log (1 +1))
2B = oy A
rEip ¢ o (logy (1
_ kl)kl&e;((ﬂt;(_ 1g;\r( +t))(ek(t)—1+1)"

k(108 (L+1)) S X e () =1}
@O-1y 10(1)(/\(0 1)

" m!
n (kpdeyyrk) | £
( )(x)smm DB )
. !

where the notation (x), is falling factorial that is defined
by (x)p=1 and (x),=x(x-1)--(x—(n-1)) for n>1,
(cf. [1, 2, 5-14, 21, 23, 24]). So, the proof is completed.

rlEiy x

|
18
8
>
3|

=
I
=1
T
o
3
i

I
Mg
M:
M=

3
i
1)
3
il
o
T
1)

Kim [5] introduced the degenerate Whitney numbers are
given by

n

GO )~ 3w,k o (20, (1)

k!
mkk! o’

Kim also provided several correlations including the degen-
erate Stirling numbers of the second kind and the degenerate
Whitney numbers (see [5]).

We now give a correlation as follows.

Theorem 10. For k;, k,, ---k, € Z and n > 0, we have

(kpkayreok,)

kpokyy
2851,/\ (m l‘/\) n—m,A

m=0 |=0

xu+tx ii(;)ul
(32)

Proof. Using (31) and Definition 1, we acquire that

tn
Z % (xu+a)—
n!
_ r!Elkl,kz,»-»,k,;A(log)t(1 +1))

e

rlEi; . .. 4 (log, (1
_ kvkzief(rf)(_ f;f D oy - 141y

rBi g ga(logy(148) XX
) CIOED) Z<l>

=0

r1Eij . logA (1+1)) & l(x el(
= L2 u 76 (1)
( ( ) ; l Nyl A
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B gk (10gr(1+1)) & ei(t)-1)
— — Zul I(A(')[ )6/\(1')
(ex(r)—1) = !
kokyok) B X t"
= Y BTSN ), Wi 12)
n=0 n=0 [=0
clewel " i (kykysreosk,) t
= Z Z u (x)lwutx(m’lM)%n mA E’
n=0 \ m=0 =0 m
(33)

which implies the asserted result (32).

3. Degenerate Multi-Poly-Bernoulli
Polynomials of Complex Variable

In [25], Kim et al. defined the degenerate sine sin,t and
cosine cos, t functions by

ixt_ —ixt » ixt —1xt
Sin(;)(t)zﬁ();k ()andcosy(t):e“)’;el ()

(34)
where i=+/—1. Note that limlbosingx)(t):sin xt and
lim, _ocos\” () = cos xt. From (34), it is readily that

e (t) = cos(x)(t) + isin(x)(t) (35)
A (1) = CoSy A ()
By these functions in (34), the degenerate sine-

polynomials S, ,(x,y) and degenerate cosine-polynomials
Cy) (%, y) are introduced (cf. [25]) by

(o) tn )
Y Sealny)— =& (1)sing” (1), (36)
n=0 :
(e8] tﬂ
Y Cral®y)— = i(t)ecos” (1), (37)
n=0

Several properties of these polynomials in (36) and (37) are
studied and investigated in [25]. Also, by means of these
functions, Kim et al. [25] introduced the degenerate Euler
and Bernoulli polynomials of complex variable and investi-
gate some of their properties. Motivated and inspired by
these considerations above, we define type 2 degenerate
multi-poly-Bernoulli polynomials of complex variable as
follows.

Definition 11. Let ky, k,, --+, k, € Z. We define a new form of
the degenerate multi-poly-Bernoulli polynomials of complex
variable by the following generating function:

rlEi g ..ka(l0gy(1+1)) £t

k) t”
COED ZB i)

5
By (34) and (38), we observe that
Ky koo, ) ko ok, )
i(QA e+ i) ~B i)
=0 21 n' (39)
rIEi 4 (log, (1 + ¢
)
(6 -
and
Ky ook, ) Ky dyyeeik, .
s (B ) B i)
=0 2 n! (40)
rlEi, . .., (logy (1 +¢
- kl,kzie,k(,;})( lg)lr( D et (t)cos? (0.
(1) -

In view of (39) and (40), we consider the degenerate
multi-poly-sine-Bernoulli  polynomials qu’fj\’kz""’k'ﬂ (x,y)
with two parameters and the degenerate multi-poly-cosine-
Bernoulli polynomials Bg}’kz’m’k';C) (
ters as follows:

x,y) with two parame-

< s " rlEi i a(logy(1+1)) .0
B, L e = e (t)siny’ (1),
y;) )7’1' (e,\(t)—l) /\() A ()
(41)
kl ey " rlEig i ea(logy(1+1)) )
Z B 'x’ )m - (E)L(t) — l)r é/{(t)COS)L (t)
(42)
Note that
hmB(lf vk )(x,y) = Blkwker-ohisS) (x,y)and
e (Ky gy -k 5C) Ky ks (43)
limB " (x, ) = B R (x, ),
which  are  multi-poly-sine-Bernoulli ~ polynomials
Bk k) (x,y) and multi-poly-cosine-Bernoulli polyno-
mials Bk k) (%, y) with two parameters.

By (39)-(42), we see that

(kyokeysenik,) . (ky gk, )
(Ky ook 38) (Bn,/\ ’ (x+iy) =B, (x— zy))
Bn,)t (X, y) = 2 R

i) + B - )
2 .

B(kl ek
(kp Ky 5C) _ nA
Bn,/\ (x’ y) -

(44)

We now give the two summation formulae by the follow-
ing theorem.



Theorem 12. For k, k,, --+, k, € Z and n > 0, we have

n
(kyppkgses k1 ks
Bn,/\ x + ly Z n mA
m=0

n
Bffi’kz’m (x+iy) = Z( )
m=0

Proof. The proofs of this theorem can be done by using the
same proof methods used in Theorems 5 and 7. So, we omit
the proofs.

(@) (i), (45)

W xriy),,

(46)

We here provide the two derivative formulae by the fol-
lowing theorem.

Theorem 13. For k, k,, ---, k, € Z and n > 0, we have

(ks

d .
gtk )(x +iy) = an >(x +1iy),

a nA

d (ko k, " Kk ) _
=B M xriy)=p, (J%ﬁ w M i EnT -
(47)
Proof. The proofs of this theorem can be done by using the
same proof methods used in Theorem 8. So, we omit the
proofs.
We give the following theorem.

Theorem 14. For k;, k,, -+, k, € Z and n > 0, we have

Kk ok S n Kok ook
B;(a,/\ ’ >(x, y)= 7:0( ] )Bfa-z,f

(kyskge-k,3C) n (s
B,y (%)=L ( l )Bn’,j

')SI,A("’)’)>
(49)

Cia(x: ).

Proof. From (36), (37), and (38), we get

g (kg iS) t"
DB ()
=0 n:

_ rEi g g (logy (1+1)) . 0)

(ex(t) = 1)

Il
iMve
:UUA
o
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(Ky ey, 5C t"
ZB > x,y)ﬁ

r!Elkl)kz)_._,k ;A(log (1 + t))
- R & (t)cosy” (1)

[ee] n o0 n
(kykyeoik,) £ t

Z Bn,)l\ ’ ﬁ Z Cn,)t(x’y) E

n=0 " n=0 :

n n
kyokyseeeok,)
= (nxz)o (?_o ( ] >B5¢—11,A2

' Cz,a(’“)’)) R

(49)

which complete the proof of the theorem.

We note that (cf. [25])

n

. e . t

s (6= 2 g A" ()RS 2k 1) L (50)
n— t

cosg ()= Sl H DSk S (6D

We give the following theorem.

Theorem 15. For k;, k,, .-+, k, € Z and n > 0, we have

(kpkzr""kr; ) _n
B, (% ¥)=1xo

n
(ko kiC) v 3] (ko)
Bn,/l\ : (x’y)_ 7=1k2—0< I>Bnll,/\2

( )Al 2k1 kka”Sl/\ l 2k+1)

(52)

where the notation [-] is Gauss’ notation and represents the
maximum integer which does not exceed a number in the
square bracket.

Proof. By (41)-(51), we observe that

(ky ey 38 "
ZB (x, y)m

_ ZB(IQ Skyoeenky) x e [%}An—lk—l(_l)ky2k+ls (7[ 2k + 1)1
ﬂ'n:lk:O 1A n!
n "
°°<<Z>B‘ A - >"y2k*lsl,A<l,2k+l>)m’
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tn
ZBkk2 kC)x e

n:

B allog(141)
(ex(t) =1
© t"oo [%] !

e t
A1) 58,0 (n, 2K)

& (t)cosy (1)

n'n:1k=o
_oo [ n (kl Ky
=n=0| I=1 l B,

So, the proof is completed.

n

2 @) A 158, 2k>> o

We give the following proposition.

Proposition 16. The following relations

(kppkyye-5k,58) _ TN gk, sS)
B,y (x+uy)=1, ( | ) B, X (6 ) (1) 15

Kyokyr ok sC n Ky ke ik sC
B %x+wﬁ=u<l)BLx (%) (u),,

hold for k;, k,, -+, k, € Z,u € C and n > 0.

Proof. The proofs of this proposition can be done by utilizing
the same proof methods used in Theorem 7. So, we omit the
proofs.

Upon setting x=0 in (41) and (42), we consider the
degenerate multi-poly-sine-Bernoulli polynomials

Bi’f}"kz"“’k';s) (y) and the degenerate multi-poly-cosine-Ber-

noulli polynomials B,g’fi’kz""’k';c) (») as follows

S ks " rlEi oo (logy (1 +¢
ZB(k/]\,kz, J,58) ) = kypokss ,k,,/\( gar( ))singy) (1),
P n! (ea(t) = 1)

S s m rlEi ea(logy(1+t
Z B(ki,kz) k,;C) e = Ky ok ,k,,)t( gxr( ) COS&)’) (1).
n=0 " n! (e)l(t> - 1)

(56)
We now provide the following theorem.

Theorem 17. For k;, k,, --+, k, € Z and n > 0, we have

n o m n
Kyoke -k 3C kpkgye ek sC
B\ Ww=zz<>M@mw%mk>
m

() withB ) (x, ) = 0.

(57)

Proof. The proofs of this theorem can be done by utilizing the
same proof methods in Theorem 9.

Let «a be any fixed real (or complex) number. The Ber-
noulli polynomials of order « is defined by (cf. [25])

t ¢ Xt \ (@) t
e =) BY(x)—,
(&55) - Ly

When x =0, the Bernoulli polynomials of order « reduce to
the Bernoulli numbers of order a, denoted by B%).We give
the following relation.

(|t|<2m).  (58)

Theorem 18. For k;, k,, .-+, k, € Z and n > 0, we have

(kg (kpokeyye -5k, 39)
By (1) - By )
n-1/n-—1 (59)
(SRR (-1)
=n ( >Bn11,)t )()’)Bl >
1=0 )
(pkg ek (kp gk 5C)
Bn)x )(1,)/) BnA (y)
n-1/n-—1 (60)
_ (kyskege-5k,3C) (-1)
=n ( )Bn 1- m (7)B,
I=0 )
Proof. By (55) and (56), we acquire
\ (kl)kz"")kﬁs) tn \ (kl’kz"”)kﬁs) tn
ZBn,/\ (1>)’)E - Z B\ (}")ﬁ
n=0 ° n=0 :
B g ea(logy(1+1)) ()
= Dk koA LB D) G (1) (0 (1)~ 1)
(er(t) - 1) 4 g (61)
— \ (k1>k2>""kr§s) tn“ . -1 tn
- Z(:)Bn,l (y) nl _0B1(1 )E

||M8

n
(ky koo, 38 -1
Z()m; )8
0 =0 .

Thus, (59) is proved. We prove (60) in the same way.
Here is a special case of Theorem 18.

Corollary 19. For k;, k5, -+,

n—1 -1
(kpskeyse- k) (kpke-k,) n (kpkyrr-k,) pp(~1)
B, (1) =B,y ”Z< 1 )Bn_‘lfu B,

(62)

k. € Z and n> 0, we have

which is a relation including the degenerate multi-poly-
Bernoulli polynomials.

4. Conclusions

In this paper, we defined the degenerate multi-poly-Bernoulli
polynomials by employing the degenerate multiple



polyexponential functions. We have established some identi-
ties and relations between degenerate Whitney numbers and
degenerate Stirling numbers of the first kind. Also, we have
established addition formulas and derivative formulas of
degenerate multi-poly-Bernoulli polynomials. In the last
section, we have defined degenerate multi-poly-Bernoulli
polynomials of complex variables and then we have derived
several properties and relations.
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In this paper, we introduce and investigate several inclusion relationships of new k -uniformly classes of analytic functions defined
by the Mittag-Leffler function. Also, integral-preserving properties of these classes associated with the certain integral operator are

also obtained.

1. Introduction

Let & be the class of analytic functions in the open unit disc
U={z: |z] < 1} which in the form

flz)=z+ OZO:anz”. (1)

For f(z) and g(z) € o/, we say that the function f(z) is
subordinate to g(z), written symbolically as follows:

f<gorf(z)<g(2) (2)

if there exists a Schwarz function w(z), which (by defini-
tion) is analytic in U with w(0) =0 and |w(z)| <1, (z € U),
such that f(z) = g(w(z)) for all z€U. In particular, if the
function g(z) is univalent in U, then we have the following
equivalence relation (cf,, e.g., [1, 2]; see also [3]):

f(2)<g(2) ©f(0)<g(0)andf(U)cg(U).  (3)

Let f be as in (1) and h(z) =z + Y ,2,b,z", then Hada-
mard product (or convolution) of f(z) and h(z) is given by

(f *h)(z) =z + iakbkzk (z€ ). (4)
k=2

For {,n€[0,1), we denote by S*({), C({), K({,n), and
K*({,n) the subclasses of o/ consisting of all analytic func-
tions which are, respectively, starlike of order {, convex of
order (, close-to-convex of order { and type #, and quasicon-
vex of order ¢ and type # in U.

Also, let the subclasses US(u, ¢), UC(u, (), USK(y, {, ),
and UCK (u, {,n) of of (€0,1) < 1;u>0)be defined as fol-

lows:

_ (7@
US(y,C)—{fed.m<f(z) —(>>

of'(2)
‘7

-1

UC(M,C):{fed:ER<1+ Z;,((ZZ)) —c> >
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USK (1, ¢, n) = {fe&f :3h e US(u, Q)
#'(2) of'(2)
s.t.?l(h(z) —C>>(4 hz) _1‘}
UCK(u,¢,n) = {fe,szf :3he UC(1, Q)

SR (M _C) >u L

" (2)

}.

1+(1-20)z
1-z

1-¢

(u=0),

1-p?
q‘u,( (Z) =

2,
— cos {; (cos™'u)ilog

1++/z

2

1+ 21-¢) <log

uz)

- V2
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We note that

US(0,¢) =S*(¢), UC(0,{) = C({),
USK(0,¢, 1) = K(¢, 1) and UCK(0,{, ) (6)
—K*({n) (0<C3n<1).

Moreover, let g,, () be an analytic function which maps

U onto the conic domain @, ={u+iv:u>k

(u—1)*++2 +{} such that 1 € @, defined as follows:

1+vz| w-¢
1—\/2}_1—;42(0<M<1)’
) =1, )

dt Y

1-¢ in v Jﬂ
w-1 26(1)

where u(z) = (z - \/u)/(1 — \/pz) and ¢(u) is such that p =
cosh (116" (z)/4¢(2)). By virtue of properties of the conic
domain @, (cf, e.g. [4, 5]), we have

®{q,.2)}> ’;—:‘; (8)

Making use of the principal of subordination and the def-
inition of q,,;(z), we may rewrite the subclasses US(w, {), U

C(u,¢), USK (1, ¢, 1), and UCK(y,{, 1) as follows:

US(.0) = {f et L8 m(z)},

UC( ) - {f esti1e ij, (S) < qﬂ,@v(z)},

USK (.G 17) = { fed : IneUS(ur)st. ZJ; (S) < qM(z)}
©)

2—(( > 1),
/ u -1 ;
0 1-12,/1— p2t?

and

UCK(u,¢,n) = {fe d :3he UC(u, ()

s.t.w < qﬂ)z(z)}.

(10)
h'(2)

Attiya [6] introduced the operator HZ{Z( f), where
HZ’;(f) o —> of is defined by

k k
Hyy(f) = g * f(2) (2 € ), (11)
with f3,y € C,Re («) > max {0,Re (k) =1} and Re (k) > 0.
Also, Re («) =0 when Re (k) =1; +0. Here, P‘KI;S is the
generalized Mittag-Lefller function defined by [7], see also
[6], and the symbol (*) denotes the Hadamard product.

Due to the importance of the Mittag-Leffler function, it is
involved in many problems in natural and applied science. A
detailed investigation of the Mittag-LefHler function has been
studied by many authors (see, e.g., [7-12]).
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Attiya [6] noted that

< I'(y+nk)I(«
H(DE =2+ Y LR

n=2

2 (12)

Also, Attiya [6] showed that

(e’ = (15 (@) - § (st ),

Next, by using the operator H Z’; (f), we introduce the fol-
lowing subclasses of analytic functions in U

USh(w: ) = {f eof : Hypf (2) € US(w,0) |,
UCK(§)={f e ol : Hijgf () € UC( () },
{fed HIf(2) e USK (L)},

{fed: HIf () e UCK (. Lm) ),
(15)

where S,y €C, R(a) >max {0, R(k) - 1}and R(k) > 0.
Also, R(a) =0 when R(k) =1; f#0.
Also, we note that

USK (- 8o1)

UCK} (4 1)

f(2) € UCK(w §) & 2f' (2) € USy(1: ), (16)

f(z) € UCKy(w,¢,m) & 2f '(2) € USK (. Gom). - (17)

In this paper, we introduce several inclusion properties of
the classes US;;(M, 0), UC};(M, 0), USKE(y, {,#), and UCK}3
(4, ¢, 7). Also, integral-preserving properties of these classes
associated with generalized Libera integral operator are also
obtained.

. . . . k
2. Inclusion Properties Associated with H! 5f(2)

Lemma 1 (see [13]). If h(z) is convex univalent in U with
h(0) =1 and R{Eh(z) +{} > 0({ € C). Let p(z) be analytic
in U with p(0) = 1 which satisfy the following subordination
relation

!

zp (2)
Ep(z) +¢

p(z) + <h(z), (18)

then

p(2) <h(z). (19)
Lemma 2 (see [2]). If h(z) is convex univalent in U and let
w be analytic in U with R{w(z)} > 0. Let p(z) be analytic

in U and p(0) = h(0) which satisfy the following subordina-
tion relation

p(2) +w(z)zp’ (2) < h(2), (20)
then
p(2) <h(z). (21)

Theorem 3. If R(y/k) > —(u+{)/(p+ 1), then USE™ (1,0
c USy(u: ).

Proof. Let f(z) € USEH(,M, (), put

z(HZZ,}f(z)) !

p(z)= o) (z€U), (22)

we note that p(z) is analytic in U and p(0) = 1. From (13) and
(22), we have

Hy'f(2) _ &
HIGf(z) vk

(p(z) + %) . (23)

Differentiating (23) with respect to z, we obtain

Z<HZ,+[3ka(Z)>, zp'(2)
e P meam @Y

From the above relation and using (7), we may write

2p'(2)

PO o+ iR

< q%((z) (zel). (25)
Since R{q,,;(2)} > (4 +{)/(p + 1), we see that

R (q,(2) + %) >0(zeU). (26)

Applying Lemma 1, it follows that p(z) < q,.(z), that is,

f(2) € US(w, ).
Using the same technique in Theorem 3 with relation
(14), we have the following theorem.

Theorem 4. If R(a/f) > —(u+{)/(u+ 1), then USE(‘M, {)c
US). (1 0).



Theorem 5. If R(y/k) >
c UCK(w Q).

~(u+ )+ 1), then UCK™ (1,0)

Proof. Applying Theorem 3 and relation (16), we observe that

f2) e UCK™ (1.0) & 2f ' (2) € USE™ ()

27
= zf'(2) € USy(w.) & f(2) € UCK(1, ), )

which evidently proves Theorem 5.
Similarly, we can prove the following theorem.

Theorem 6. If R(a/f3) >
UCh,, (1. 0).

—(u+)/(u+1), then UCE(‘M, {)c

—(u+Q)/(u+1), then USKYH(,M,C

Theorem 7. If R(y/k) > 5

1) € USK(p, G, ).

Proof. Let f(z) € USKEH(‘M, (,7). Then, there exists a func-
tion r(z) € US(y, {) such that

2(HI3" (=)'

@ < qM(z). (28)

We can choose the function h(z) such that HKTBI kh(z) =
r(z). Then, h(z) € US%H(‘LL, {) and
Lk
<(HI3" (=)'

HY 3 hz)

<G (2)- (29)

Z(Hy’];;f(z)), HY*”‘ f ( )
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Now, let

Z(HV’I;f(z))'
p(2) = 7H£]/;h(z) , (30)

where p(z) is analytic in U with p(0) = 1. Since h(z) € US%+1
(4> €), by Theorem 3, we know that h(z)eUS(u, {). Let

z(Hyh(z))!

t(z) =
HY'h(2)

(zel), (31)

where t(z) is analytic in U with R{t(2)} > (u+{)/(u+1).
Also, from(30), we note that

2(HIf(2)) =Hlgef (@) = (HIph@)) ple).  (32)

Differentiating both sides of (32) with respect to z, we
obtain

2(Higef'(2))' 2(High(2)’ ,
Hykh( ) - HZZ[’I( ) p(Z)+Zp (Z) (33)

ap
= t(z)p(z) +2p’ (2).

Now, using (13) and (33), we obtain

(HV’sz’(z)) "+ (R HYgef (@)

Highz) HZ}J"W) 2(HIGh(z))' + (pk) HLh(2)
(st @) Hhte)) + (k) (= (s 2)) 1) (34
B ((HV" z))’/HV ) (y/k)
k
RULE +<(>y LRy t(zz)p+<( .

Since R(p/k) > —(u+{)/(u + 1), we see that
®{t(z) + %} >0(zeU). (34)

Hence, applying Lemma 2, we can show that p(z) < Qg

(z), so that f(z) € USKZ([J, ¢,n). This completes the proof

of Theorem 7.
Similarly, we can prove the following theorem.

Theorem 8. If R(a/f) >
)C USK%H(M, ¢,n).

~(u+Q)/(u+1), then USKE(H, iy
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We can also prove Theorem 9 by using Theorem 7 and
relation (17).

Theorem 9. If R(y/k) >
) € UCKY (w1,

—(u+Q)/(u+1), then UCK%H(‘LL,

Also, we obtain the following theorem.

Theorem 10. If R(a/f) >
1) CUCK}, ().

—(u+Q)/(u+1), then UCK), (y,(

Now, we obtain squeeze theorems for inclusion by com-
bining the above theorems as follows:

Combining both theorems 3 and 4, we have the following
corollary.

Corollary 11. If (u+{)/(u+ 1) > —min {R(y/k),
then

R(a/B)},

USy" (0) C USi(1,0) C US,, (0). (36)

Combining both theorems 5 and 6, we have the following
corollary.

Corollary 12. If (u+{)/(u+ 1) > —min {R(y/k),
then

R(a/B)}

UCK™ (.0) cUCK(m{) cUCK, (). (37)

Combining both theorems 7 and 8, we have the following
corollary.

Corollary 13. If (u+{)/(u+ 1) > —min {R(y/k),
then

R(a/B)}

USKy™ (4. ¢.1m) € USK (. G m) € USK, (. Cop)- - (38)

Combining both theorems 9 and 10, we have the follow-
ing corollary.

Corollary 14. If (u+{)/(u+1)>-min {R(y/k),
then

R(a/p)},

UCKE”(M, {n)c UCKE([J, Gim) C UCKEH (- Gom)- (39)

3. Integral Preserving Properties
Associated with F;

The generalized Libera integral operator Fy (see [14-16],
also, see related topics [17-19]) is defined by

Fs(f)(2) = —j}“f(r)dt, (40)

where f(z) € f and § > -1.

Theorem 15. Let § > —(u+{)/(u+1). If f € US};([J, (), then
Fs(f) € USp(p: ).

Proof. Let f € US;;(pt, () and set

Z(HYSF5(f)(2))’
el ( : 5(1)@) ew) )
Hy 4Fs(f)(2)
where p(z) is analytic in U with p(0) = 1. From definition of
HY'4(f) and (40), we have

2(HIGEs()(2))' = (6 + VHL (2) — SHIGFs(£) (2).

(42)
Then, by using (41) and (42), we obtain
p.k
(5“)% =p(z) +0. (43)
Hy o F5(f)(2)

Taking the logarithmic differentiation on both sides of
(43) and simple calculations, we have

zp'(z) - Z(sz;f(z»/
O 3re iy W @
Since R(q,,, +6) > (4 +)/(1+1) +8) >0, by virtue of

Lemma 1, we conclude that p(z) < q,,;(z) in U, which implies
that F5(f) € USE(,u, 0).

Theorem 16. Let § > —(u+{)/(u+1). If f € UC%(‘M, (), then
Ey(f) € UCH(1,0).

Proof. By applying Theorem 15, it follows that

f(2) € UCK(.€) & 2f'(2) € US)(1)
= Fy(2f") (2) € USh( )
& 2(F(f)(2)) € USh(.0)
& Fy(f)(2) € UCK(1, ),

(45)

which proves Theorem 16.

Theorem 17. Let 8> —(u+()/(u+1). If f € USK?[;(‘M, &),
then Fs(f) € USKE(/A, ¢, n).



Proof. Let f(z) € USKlys(,u, (¢, 7). Then, there exists a function
h(z) e US%(‘u, {) such that

z(HY’]ZJf(z)) '

R <q,(2). (46)
Thus, we set
2(HiFs(/)(2)"
aBt S
p(z) = (zeU), (47)
HYFs(h)(2)

where p(z) is analytic in U with p(0) = 1. Since h(z) e U
Sk (¢ ¢), we see from Theorem 15 that Fs(h) € USj (s, {). Let
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where t(z) is analytic in U with R{¢(z)} >
Using (47), we have

(H+0)(p+1).

gk

HYyjzFs' (1)(2) = (HigFs(h)(2)) p(). (49)

Differentiating both sides of (49) with respect to z and
simple calculations, we obtain

2(HV's2Es (f)(2) z(HYGFs(h) () ,
Lt o) A ey
HYLFs(h)(2) HYFs(h)(2)

t(2)p(z) +2p’ (2)-

(50)
= UBRO0) (45 o |
HI%Fy () (2) Now, using the identity (42) and (50), we obtain
(@) Hiep'n) =(H ,nga z)’+6HVﬁzFa £))
Hkh(z)  HIGh(z) ( (2) >’+ SHYFs(h) (2)
_(e(Hugrs ()2) H” Fy(h)(2)) + ((H%(f)( ) HEGEs()(2)) (51)
. (=(HEEFs (@) 1 Fo () (2) ) +0
_t@p@) 2 ) o) @) >
t(z)+0 tz)+6°

Since 8 > —(u+{)/(u+ 1) and R{t(z)} > (u+ )/ (u + 1),

we see that
R{t(z) +0} >0(zel). (52)

Applying Lemma 2 into relation (51), it follows that p(z)
< q%((z), which is Fg(f) € USKIV;([A, ¢,n).

We can deduce the integral-preserving property asserted
by 18 by using Theorem 17 and relation (17).

Theorem 18. Let § > (—u+{)/(u+1). If f € UCK%(‘M, ),
then Fs(f) € UCKj(u,{,n).
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The operators DCy, and Cg,D are defined by DCqy,(f) = (f e @)’ and Cy,D(f) = f' o @ where @ is an analytic self-map of the unit
disc and f is analytic in the disc. A characterization is provided for boundedness and compactness of the products of
composition and differentiation from the spaces of fractional Cauchy transforms F, to the Bloch-type spaces BF, where a >0
and > 0. In the case f3 < 2, the operator DC,, : F, — B is compact ©DC,, : F, — B is bounded &®' € Bf, ®®’ € Bf and
|®||, < 1. For B< 1, CyD : F, — B is compact &CyD : F, — BF is bounded &® € Bf and ||®||, < 1.

1. Introduction

Let U={z€ C: |z|<1} and let H(U) denote the family of
functions analytic on U. Let M denote the Banach space of
complex Borel measures on T={x€ C: |x| =1}, endowed
with the total variation norm. For « >0, the space F, of
fractional Cauchy transforms is the family of functions of
the form

@)= | o w@E<). 0

where ¢ € M. The principal branch of the logarithm is used
here. The space F, is a Banach space, with norm

If

g, = inf [l (2)

where p varies over all measures in M for which (1) holds. The
families F, have been studied extensively [1, 2]. Interest in
these spaces was first established in connection with the classi-
cal family S of normalized univalent functions. It is known that
SC F, for any a > 2 [2]. The reference [2] also includes Mac-
Gregor’s construction of a function f € S with f ¢ F,.

Let 3 > 0. The Bloch-type space B is the Banach space of

functions analytic in U such that sup, (1 - |z|2)B| f'(2)]
< 00, with norm

1l = O+ sup.eo (1= [2P)]If ) (3)

The relation (1) implies that F, ¢ B**!, and there is a con-
stant C depending only on « such that ||f]|gen < C||f]|; for
allfeF,.

Let @ be an analytic self-map of U. The composition oper-
ator Cy, is defined by Cy(f) = f o @ for f € H(U). The differ-
entiation operator D is defined by D(f) = f'. In this paper, the
products Cy,D(f)=f'o®@ and DCy(f)=@'(f o ®) are
studied. Conditions on @ are given, necessary and sufficient
to imply boundedness or compactness of CyD : F, — BF
and DC, : F, — BF.

Products of composition and differentiation on the Bloch
space were studied by Ohno in [3]. In [4], Li and Stevi¢
studied Cy,D and DC,, acting between the weighted Bergman
spaces and the Bloch-type spaces. In [5], Hibschweiler and
Portnoy studied these operators between Bergman and
Hardy spaces.


https://orcid.org/0000-0002-8389-3718
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2. Preliminary Results

Fix a > 0. For fixedz € U and for n =0, 1, ... , the relation (1)
yields a constant C depending only on n such that | ()]

atn

<Clfllp, /(1= 12" [21.

For each w e U, |[1/(1 - wz)"[|; =1[2].

We follow the convention that C denotes a positive con-
stant, the precise value of which will differ from one appear-
ance to the next.

Lemma 1 and Lemma 2 will be used to develop test func-
tions for F,. Proofs appear in [6].

Lemma 1. Fix a > 0. For w € U, define

1-|w)’

)0¢+1 (

hy(z) = zeU). (4)

(1-wz

Then, h, € F, and there is a constant C such that
|yl <C forallweU.

Lemma 2. Fix a > 0. For w € U, define

(1-JwP)’

ky(2) = W(z eU). (5)

Then, k, € F,, and there is a constant C such that
llkyllp <CforallweU.

3. The Operator DC,, : F, — BF

In [7], Shapiro proved that the condition ||®||., <1 is neces-
sary for Cg : X — X to be compact, for Banach spaces X
obeying boundary regularity and Mobius invariance. In
particular, Shapiro’s result applies to the Lipschitz spaces
and thus, to the space B when y <1 [8].

Theorem 3. Fix a > 0 and 0 < 3 < 2. Let O be an analytic self-
map of U.

DCg : E, — BF isbounded &
@' eBF, 00" € B and ||| < 1o (6)

DCq : F,— BPis compact.

Proof. First, assume that DC, : F, — BF is bounded, that is,
there is a constant C such that [|[DCq(f)||zs < C||f]|; for all

feF,. Ttis clear that @' = DCy(z) € B and @@’ = DC, (2>
12) € BP. Thus,

(1-|zP) 0" (z)| <C. (7)

and
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for all z € U. It follows that
NP 2
sup (1-1]2[)"|@"(2)| < o0, 9)
zZ€

and thus, @ € BF2.
Let w € U and define

gule) = — L Pl
(1-2w)2)”  (1-D(w)z)

By Lemma 1 and the preliminary results, there is a
constant C independent of w such that ||g, ||, < C, and thus,

IDCo(g) |l g =11(g," ° @)@ [| 45 < C. It follows that

a0 g

sup.co (1- 2|9, (@(2)) (@'(2) "+ g, (@(2)) @"(2)| < C,

(11)

for all w € U. Calculations yield g, (®(w)) = 0 and

oo+ 1)<D_w)2

—_— . (12)
(1-|ow)])

9" (P(w)) =

The substitution z = w in (11) now yields

pa@r DO _

su 1—|w|2
T o)

and thus,

(1-wP)’ |’ (w)[’

su < 00. 14
Plow)|>112 (1_ \(D(w)|2)“+2 (14)
By the relation (9),
B! 2
(1-Jwf*) | (w)]
SUP ¢y (< - < 00. (15)
|D(2)|<1/2 (1 _ |<D(w)\2) +2
Thus,
1— w0 (w)|
R T
wet (1~ [@(w)])

It follows that

wup (L7 12P) [ )]

o (L7 12P) [ )
weU (1= [ow)P)?

et (1 _ |<D(w)\2)(a+2)/2
(17)

By Xiao’s result [9], Cy, : BF> — BP”? is bounded. Fur-
thermore, (16) yields
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(1- w?)™* |0’ (w)
(1 [@(w)*)*

< C(1 - |D(w)P) P o, (18)

as |®(w)| — 1. Thus, Cg, : BF> — BF? is compact [9], and
it follows as in [7] that ||| ., < 1. It has been established that
the conditions @' € B, ®®' € B, and ||®||,
sary if DCy, : F, — BP is bounded.

Next, assume that @' € Bf, @@’ € B, and ||®||, < 1. To
show that DCy, : F, — BF is compact, let (f,) be a bounded
sequence in F, with f, — 0 uniformly on compact subsets
of U as n— oo. It is enough to prove that ||[DCq(f, )|l
— 0 as n—> oo. First, note that |f,"(@(0))®' (0)| — 0
as n — 00. For z e U, (9) yields

<1 are neces-

(1-1P)|(DCaf,) )] = (1= 12P)P |7, (@) (@' (2))
+f, (@)@ (2)
< C maxy oy |f,"'(w)|

|0 [| s maxyy <oy |f (w)]-
(19)

Since f," — 0and f," — 0 uniformly on compact sub-

sets as 1 —> 00, the argument shows that sup, (1 - |z|2)ﬁ|
(DCyf,)' (2)] — 0 as n—> co. Thus, || DCy(f,,)]lzs — 0
as n — 00, and DCy, : F, — BF is compact, as required.

The remaining implication is clear, and the proof is
complete.

Theorem 4. Fix o > 0 and 3 > 2. Let @ be an analytic self-map
of U. Then,

DCy : F, —> BF isbounded & (20)

NP
- (0}
712 100

a+l1 0, (21)
@ (1-0()f)

and

sup (1 - |Z|2)ﬁ|(D,(aZ+)2|2 < 00. (22)
@ (1-[0())

Proof. Fix a, 3 and @ as described.
First, assume (21) and (22). Let f € F,. By (21) and the
introductory remarks in Section 2,

Cllfll,

@)@ (2)| < (1= 2])F |0 (2)|———e
2@l 0P 10 @l s

-2’ |f (@

<Clfl,
(23)

A similar argument using (22) yields

B 2
(1=1) 1" @@)][@" () <Clflly, (24
2\B ’
= [[7)"(DCof) (2)| < ClIf I -
Since  [(DCqf)(0)[ <C|fllz, it now follows that
IDCo (£l < Clf . as required.
For the converse, assume that || DCo,(f)||s < C|f]| . for

a constant C independent of f € F,. In particular, @' € BP.
The argument leading to (16) remains valid for > 2.
Thus, (22) holds. It remains to prove (21). First, note that

forall z € U. Thus, sup, (1

(1_ |w|2)ﬁ’(D//(w)| é a+l , -
(1 B |®(w)|2)oc+1 s (3) ||(D HB‘g < 00.
(25)

SUP | p(w)|<1/2

For w € U, define

(a+3)(1-[(w)[)

(e )(1-@@)P)”
(1 —d)(_w)z)‘x+1

H,(z)= ~ a2
) (1-D(w)z2)

(26)

for ze€ U. By Lemma 1 and Lemma 2, there is a constant C

independent of w such that |H,|; <C. Thus,
|DCy(H,,)| g < C for all w. It follows that
2Bl " N
sup.y (1= o) |H,' (@(2))0"'(2) + (¢ (2)) H,"'(@(2))| < C.
(27)
for all we U. An argument using H,'(®(w)) = (a+1)
O(w)/(1 - |o(w)P)* and H," (®(w)) = 0 yields
B!t
1- |wl’) |0 (w)
SuP1/2<|<1>(w)\( ) | S| | < 00. (28)

(1-|@w))

The relations (25) and (28) establish relation (21), and
the proof is complete.

Theorem 5. Fix o > 0 and assume 3> 2. Let O be a self-map
of U for which DC,, : F, — BP is bounded.

DCy : F,— BPis compact & (29)

lim (1‘|Z|2)ﬁ|®”(zl>| —0, (30)
oeI 1 (1~ 0@))"

and

T 2)0' @) -0. (31)

. at+2
PO (1= (0(2)F)




Proof. First, assume that DCg, : F, — Bf is bounded and
relations (30) and (31) hold. Let (f,) be a bounded sequence
in F, such that f, — 0 uniformly on compact subsets of U.
As previously noted, there is a constant C depending only on
a such that

=)o@
(1-lo(=2)])"

(1-2P)F|fy@(2)||@' (2)]" <
(32)

for n=1,2,... and z € U. Relation (31) now implies that
given & > 0, there exists r, 0 < r, < 1, such that

sup (1-12)°[f,"(@)]|@'(2) <&, (33)

[2(2)[>ro

for all n.
Since DCy : F, — BP is bounded, relation (9) holds,
and thus,

B 2
(1= 2P) @)@ ()] < Clf," (@), (34)
for all ze U. Since f,"’ — 0 uniformly on {w : |w|<r,},
there exists N > 0 such that

sup (1-122)°[f,"(@))]|@'(2) <&, (35)

\‘D(Z)|<To
for all n > N. The relations (33) and (35) yield

sup (1-[2)|1, " (@(@)[|@'(2) <& (36)

for n > N.
A similar argument using @' € Bf and (30) yields N, > 0
such that

sup (1 - 2PV IS @@)| |0 (2) <e, (37)
for n> N,. The relations (36) and (37) yield
sup (1-[2)"|(DCaf,)' (&) — 0. (39)
as n — 00.

Since |(DCqf,)(0)] — 0 as n— oo, the argument
yields [[DCq(f,)||ge — 0 as n — oo for any sequence (f,)
as described, and therefore, DC,, : F, — BF is compact.

For the converse, assume that DCy, : F, — BF is compact.
We may assume that | D|| , = 1. Let (z,,) be any sequence in U
with |®(z,,)] — 1 as n — o0. For z € U, define
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(a+3)(1-|@(z,))

(1-@(z,)2)™"

_(ar)(1-jo,)P)"

(1-@(z,)2)""

faul2) =
(39)

By the lemmas above, ||f,||, <C. Also, f, — 0 uni-

formly on compact subsets. Therefore, |[DCq(f )|z — 0
and

sup (1= [2)°|f,(@(2)@" () +£, " (@(2)) (@’@))2‘ —o,

zeU

(40)
as n — oo. Calculations yield f, "' (®(z,)) = 0 and
, (@+ 1)z,
fu (@(2,) = ———— = (41)
(1-|2(z,))
Substitution into (40) yields
(1-=R eI e L,y

(1-|@(z,))""

as n — 00. Since (z,,) is a generic sequence with |®(z,,) | —1
as n — 00, this yields the relation (30).
A similar argument using the functions

2

(a+2)(1-|D(z,)])
(1-@(z,)2)""

C(atD(1-]0(z,))
(1-0(z,)2)""

9.(2) =
(43)
yields the relation (31). The details are omitted.

Theorem 3 implies that if DCg, : F, —> BF is bounded
for fixed o,  with <2, then DCq, : F, — BF is compact
for all y > 0. The next corollary gives a related result when

B=2.

Corollary 6. Fix a > 0 and 3 > 2. Let @ be a self-map of U and
assume that DCg : F, — BP is bounded. Then, DCqy : F

— BFis compact for any y,0 <y < a.

Proof. By assumption, there is a constant C such that
IDCo(f)lgs < C|f|lz for all feF,. Fix y with 0<y<a

and let f € F,. Then, f € F, and |/f| < Hf||F} [2]. There-
fore, DCq, : F), — BP is bounded and Theorem 5 applies.
Since DCg, : F, — BF is bounded, (21) yields

(1-[2)f |0 (2)
(1-1@@))"™

| <C(1-|2(2))"", (44)
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and therefore,

i (2112 @)

|@(z)|—1 (1 _ |¢)(Z)|2)y+1 =0. (45)

A similar argument using (22) yields

lim (1_‘Z‘2>ﬁ}®l(z)2|2=0. (46)
PO (1-@())

Theorem 5 now yields DCq, : F), — BP is compact.

4. The Operator C;,D

In this section, characterizations are given for self-maps @ for
which CyD : F, — B is bounded or compact. The proofs
are similar to those in Section 3, so details are kept to a
minimum.

Theorem 7. Fix a > 0 and 0< 3 < 1.
CyD : F, — BP isbounded &
QeBfand|0|| <1e (47)

CoD:F,— BPis compact.

Proof. First, assume that there is a constant C independent of
f € F, such that ||C,D(f) || gs < C||f]| - In particular, @ € B
. For w e U, define

5 (zeU). (48)

= oty

There is a constant C independent of w € U such that
9,|lz <C,and it follows that

sup(1-[2) [g, (@)@ () <€ (49)

for all w € U. The substitution z = w yields

1) |D(w)|*|@’
(1- o) L DPRED] _ (5
(1-|o(w)[)
for all w € U. Therefore,
1- [wP)f|o’
su ( \w|) | 8:)2)] < 00. (51)
12<|0(w)| (1—|CD(w)|2)
Since @ € B,
12\ B!
su (1 [l ) {(D sz)’ < 00. (52)

ow)s1z (1-|0(w)])

It follows that

2\ B!
sup (1= ) |qz szﬂ <00 (53)
vt (1~ [0(w)])

and therefore

(1= |wP)’ [’ (w)]
sup < 00. (54)
wel (1= o)l

By [9], Cy : B — BP is bounded. A further argument as
in the proof of Theorem 3 yields that Cg, : B — B is com-
pact. Since <1, Shapiro’s result [7] applies and yields
|®||, < 1. Thus, the conditions @ € Bf and ||®@||, <1 are
necessary in order for Co,D : F, — BF to be bounded.

Next, assume @€ BF and ||@| <1. Let (f,) be a
bounded sequence in F, with f, — 0 uniformly on compact

subsets of U. First, note that |, (®(0))] — 0 as n — co.
Forze U,

(L= 1P)°| (£, o @) @) < 1Pl maxyicyan_IF," ()]
(55)

Since f, '’ — 0 uniformly on compact subsets, the argu-
ment yields [|CyD(f,)||s — 0 and CyD: F, — BF is
compact.

The remaining implication is trivial, and the proof is
complete.

Theorem 8. Fix a > 0 and 3> 1. Let @ be a self-map of U.

CyD : F, — BP isbounded &
1z |0’ 56
(=P '@ _ (56)

su a+2

wU (1-]0(2)f)

Proof. First, assume that the supremum is finite.
Let f € F,. By previous remarks, | f' (®(0))| < C||f]|; . By
an argument as in the proof of Theorem 4,

(1-12P)| (£ o @) @) = (1-12P) | (@(@) |0 (2)
5 CUflz, |2’ (2)]
(1-[o(2)])™

<(1- |z|2)

<Clflg,
(57)

and thus, [|Cy,D(f)|[ps < Cl|f]|, as required.
To complete the proof, assume that |[Cy,D(f)||z <C
|| /|l for a constant C independent of f. The argument lead-

ing to (53) remains valid for 8> 1. This proves the opposite
implication, and the proof is complete.



Theorem 9. Fix o> 0 and 3> 1. Let @ be a self-map of U and
assume that Cy,D : F, — BF is bounded.

CyD: F,— BPis compact &

o IO 9
PO (1~ |0(2))"

Proof. First, assume that C,D : F, — Bf is bounded and
the limit condition holds. Let (f,) be a bounded sequence
in F, with f, — 0 uniformly on compact subsets as n —

0. Clearly, |f,'(®(0))] — 0 as n— c0. As in previous
arguments,

(1-[2)f|@ (2)] ’
(1-]2(2)]) "

(1-2)F|f," (@(2)]|@'(2)| < C
(59)

for all z € U. The hypothesis now implies that, given & > 0,
there exists r, 0 < 7, < 1, such that

sup (1-122)°|f,"(@(2))]|@'(2)| <& (60)

|®(2)[>ro

for all n. Since ® € B and since f,"' — 0 uniformly on
compact subsets,

sup (1-[2)°|f," (@(2))[|®' ()| —0,  (61)

(2)|<ry

as n — 00. By (60) and (61),

sup(1-[L)'| (£, @) @) —0. (&2)

as n—o00. The argument yields [|f, o ®|;z — 0 as
n— oo for any sequence (f,) as described above. Thus,
CoD:F,— BP is compact.

Now, assume that C,D : F, — BP is compact. We may
assume that ||®@|, = 1. Let (z,) be any sequence in U with
|®(z,) | —1 as n —> 00. For n=1,2, -+, define

1-|®(z,)|?
(e = 2 (©3)
(1-9(z,)z)
for z€ U. By Lemma 1, ||f,||; <C for all n. Also, f, —0

uniformly on compact subsets. Therefore, |[Co,D(f,)|zs
— 0 as n — 00. Given ¢ > 0, there exists N > 0 such that

sup (1-[2[)[1, " (@(@))[[0'(2) [ <& (64

for all n > N. In particular, (1 - |z,,\2)ﬁ|fn”(®(zn))||®/(zn)|
< & for n> N. Calculations yield
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(1= [2,) (@ + 1) (@ +2)|0(z,)P|@ (2,)]
(1= |®(z,) )"

<e  (65)

for n > N. Since (z,,) is a generic sequence with |®(z,)| — 1,
it follows that

lim (1_|Z|2)ﬁ’®’(zz)| -0. (66)
PO (1= ()"

The proof is complete.

Assume that Cg,D : F, — BP is bounded for fixed a > 0
and B < 1. By Theorem 7, ® € B and ||®||, < 1. It follows
that Co,D : F, — BP is compact for any y > 0. Corollary 10
gives a related result in the case $> 1.

Corollary 10. Fix a>0,3>1 and assume that CyD : F,
— BF is bounded. Then, CyD : F, — BP is compact for
any y,0<y<a.

Proof. Fix 0<y <a and let f € F,. Then, f € F, and |/f][,
<|Ifllg, [2]. Therefore, CoD: F, — BP is bounded and
Y

Theorem 9 applies.
By Theorem 8, there is a constant C with

(1-12%) "2’ (2)|

o <G (67)
(1-lo@))

for all z € U. Therefore,

[CRERULICTS

(1-|@))"™ C(l-|o@E))" " —0,  (68)

as|®(z) | —1. By Theorem 9, Cy,D : F, — BP is compact.

Data Availability

This manuscript does not contain any data.

Conflicts of Interest

The author declares that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This research was conducted under the employ of the
Department of Mathematics and Statistics at the University
of New Hampshire, Durham, NH, USA.



Journal of Function Spaces

References

(1]

(2]
(3]

(4]

J. A. Cima, A. L. Matheson, and W. T. Ross, The Cauchy Trans-
form, Mathematical Surveys and Monographs, vol. 125, Ameri-
can Mathematical Society, Providence, 2006.

R. A. Hibschweiler and T. H. Mac Gregor, Fractional Cauchy
Transforms, Chapman and Hall/CRC, Boca Raton, 2006.

S. Ohno, “Products of differentiation and composition on Bloch
spaces,” Bulletin of the Korean Mathematical Society, vol. 46,
no. 6, pp. 1135-1140, 2009.

S. Li and S. Stevi¢, “Composition followed by differentiation
between the weighted Bergman spaces and Bloch type spaces,”
Journal of Applied Functional Analysis, vol. 3, no. 3, pp. 333-
340, 2008.

R. A. Hibschweiler and N. Portnoy, “Composition followed by
differentiation between Bergman and Hardy spaces,” Rocky
Mountain Journal of Mathematics, vol. 35, pp. 843-866, 2005.

R. A. Hibschweiler, “Weighted composition operators between
the fractional Cauchy spaces and the Bloch-type spaces,” Jour-
nal of Complex Analysis, vol. 2017, Article ID 9486907, 5 pages,
2017.

J. H. Shapiro, “Compact composition operators on spaces of
boundary-regular holomorphic functions,” Proceedings of the
American Mathematical Society, vol. 100, no. 1, pp. 49-57, 1987.
C. Cowen and B. D. Mac Cluer, Composition Operators on
Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.

J. Xiao, “Composition operators associated with Bloch-type

spaces,” Complex Variables and Elliptic Equations, vol. 46,
pp. 109-121, 2001.



Hindawi

Journal of Function Spaces

Volume 2021, Article ID 5546833, 6 pages
https://doi.org/10.1155/2021/5546833

Research Article

Hindawi

Toeplitz-Superposition Operators on Analytic Bloch Spaces

M. A. Bakhit(®' and A. El-Sayed Ahmed (9>

IFaculty of Science, Math. Dept, Jazan University, Jazan, Saudi Arabia
2Mathematics Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to A. El-Sayed Ahmed; ahsayed80@hotmail.com

Received 1 March 2021; Revised 23 March 2021; Accepted 15 April 2021; Published 28 April 2021

Academic Editor: Gangadharan Murugusundaramoorthy

Copyright © 2021 M. A. Bakhit and A. El-Sayed Ahmed. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

The important purpose of this current work is to study a new class of operators, the so-called Toeplitz-superposition operators as an
expansion of the weighted known composition operators, induced by such continuous entire functions mapping on bounded
specific sets. Minutely, we have deeply discussed the conditions for boundedness of this new type of operators between certain
types of some holomorphic Bloch classes with some specific values of the weighted functions.

1. Introduction

Fundamentals of the needed analytic function spaces as
well as the types of concerned operators are briefly intro-
duced. The paper focuses first on the concerned setting of
certain classes of function spaces and the new defined
operator, which in turn is motivated essentially by some
certain classical concepts of known operators such as
superposition operators as well as Toeplitz operator. There
is an emphasis in the concerned paper on intensive tying
together the needed type of analytic function spaces and
the concerned operators, to illustrate the roles of the
obtained results.

All of the needed information to justify the target of this
research is collected in this concerned section. Moreover,
here, basic concerned concepts, the Bloch space of analytic-
type, certain needed concerned lemmas, and superposition
and Toeplitz operators are presented.

Let D = {z € C : |z|<1} be the open unit disk in C, and let
% (D) denote the class of all analytic functions in D. Let dA
(z) = dx dy denote the concerned Lebesgue measures on D.

Numerous intensive studies on analytic Bloch-type
spaces are researched in literature (see [1-5] and others).

Let he Z(D) and 0< b < co, the b-Bloch space B’ is
defined by

B = {f € 7(D): [|hll o = sup (1 - |c|2)b |f’(<:)|<oo}.
{eD
(1)

The space %' is called the Bloch space and denoted by %8
(see [3]).

The following interesting needed lemma has been proved
in [6].

Lemma 1. For a given 0 <a < oo, let the function h € ° .
Then, we have

1Al e ifo<a<l;
Wil ge In ——, ifa=1;

h(()l < ~ [l 2)
%’ ifa>1'
(1-1F)
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The following useful integral estimate is well known and
can be found in [7].

Lemma 2. Let s> 0 and t > —1. Then

forall zeD. (3)

J (1—|w|2)“dA(w>< 1

|1 _ Zw|2+t+s ~ (1 _ |Z|2)5 >

For a > -1 and p € (0,00), the weighted Bergman spaces
/(D) is the space of all functions h € (D), for which

||h||};[£:JD\h(C)\PdAa(()<oo, where  dA,({) = (1—\(|2)“dA(().
(4)

When a=0, we simply write &/#(D) for o/5(D), and
when p =2, &/2(D) is a Hilbert space. It is well known that
the Bergman kernel K,(w) of the Hilbert space </2(D) is
given by K, (w) = (1 - wz) %, where z, w € D. The Bergman
projection P, is the orthogonal projection from L*(D, dA,)
onto Hilbert space o/*(D), which given as:

P,(z) = JDKz<w>h<w>dAa<w>- (5)

For a > -1 and h € #(D), the Toeplitz-type operator T
with symbol u € H®(D) is defined by

u(w)h(w)

Thh(z) = JD o dA,(w). (6)

(I-wz

This paper is organized as follows: during Section 2, we
have defined the Toeplitz-superposition operators on the
normed (metric) subspaces. Throughout Section 3, we estab-
lish the conditions for the Toeplitz-superposition operators
to be bounded from a-Bloch space 9“ into b-Bloch space
S, in the case a€ (0,1) and b>a or b<a. Section 4 is
devoted to a study the boundedness of Toeplitz-
superposition operators between weighted Bloch spaces in
the case 0<a<bora=0,b>0.

Remark 3. It is concerned remarkable to say that two con-
cerned quantities Ny, and N, , where both depending on the
concerned function h € % (D) , the expression N, <Ny, can
be satisfied when we have a concerned positive constant C,,
for which N, < C|N;}, . When N <N, <N} , the expression
N, =N} can be written to say that there is an equivalence
relation between the concerned quantities N, and Nj.
Furthermore, when N, = N, we deduce that Nj < 0o & Nj,
< 00.

2. Toeplitz-Superposition Operators

Let &(C) denote the set of all entire functions on the complex
plane C. For a function ¢ € &(C), the superposition operator
Sy : # (D) — (D) is defined by S4(h) = (¢ o h). Moreover,
if ue Z(D) and ¢ € &(C), the weighted superposition oper-
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ator Sy, : (D) — # (D) is defined by S, (h)(z) = u(z)$(

S(Au = S¢, for any z € D.

For any normed subspace X ¢ # (D), we will consider
the set #(X), defined by

H(X)={heX:¢oheX, where

$e&(C)}. ()

Now, we define the Toeplitz-superposition operators
acting on (D).

Definition 4. Let two functions ¢ € E(C) and ue # (D) .
Then, the Toeplitz-superposition operators T,S, on the

normed (metric) subspace X are given by

forall he X (X).

(8)

TuSs(h) =Ty (¢oh)=P(u-(¢°h)),

Let a, 3 be the scalers if ¢ is a fixed entire function and
u,ve (D). Then, from the definition of Toeplitz-
superposition operators, we have

Ttxu+,BvS¢(h) = Tocu+[3v(¢°h) :P(ocu ’ (¢°h) +ﬂV' ((/)oh))

= aP(u- (¢ h)) + BP(v- (§=h))
=aT,S,(h) + BT,Sy(h),

©)

which holds for all he % (X), and hence, the Toeplitz-
Superposition operators are linear on the normed subspace X.

It can be seen that whenever ue (D), then, the
operator T,S, becomes the operator S,,. So, Toeplitz-

superposition operators can be taken as an extension of
weighted superposition operators. The present paper is inter-
ested in answering the following interesting questions.

(i) Can we transform one holomorphic function space
into another by what kinds of entire functions?

(ii) What are the holomorphic spaces that can be trans-
formed one into another by certain weighted classes
of entire functions such as specific analytic polyno-
mials of a certain degree and certain entire-type
functions of given type and order?

(iii) When does the holomorphic function ¢ induces a
Toeplitz-superposition operators to form one
holomorphic function space into another?

As a concerned result, the obtained results will introduce
answers of the above mentioned questions by using the class
of Toeplitz-superposition operators that are acting between
different classes of Bloch functions.

Also, the answers for some of these concerned questions
have been introduced by several authors; the following cita-
tions can be stated for interesting and intensive studies [8-20].
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3. Boundedness in the case a € (0, 1) and b > a or
b<a

Several important discussions on boundedness property of
the new operator acting on the analytic Bloch spaces are
presented in this concerned section. Furthermore, some
essential equivalent characterizations for its boundedness
are established too.

Now, we will introduce the main results of boundedness.

Theorem 5. Fora € (0, 1) and b > a. Suppose that u € H®(D)
and let ¢ &(C) , with ¢+0 . Then, the Toeplitz-
superposition operator T, Sy : B* — B is bounded.
Proof. First, assume that u € H® (D). Let h € &Y, since
b-1
Ikl g = sup (1= |2*)" |h(2)], (10)
zeD
we have
b-1
1T, Sghllge = sup (1~ [2*) " |T,Syhl
zeD

=sup(1- |z|2)b71 JD Moh))z(w)dA(w)

2eD (1-wz
<sup(1- |z|2)b_1j %_(h(zw))'dA(w)
zeD D |1 —wz|
<lu ap (1 — 212)0" l$p(h(w) | w
<l sup (1 -[2f) 7 [ S daw)

(11)

Now, let the constant R > 0 where h € %* such that ||k

s <R, by Lemma 1, we have |h(z) | <R. Set R, = max | ¢
z|=R

(z) |, then |¢(h(z)) | <R,. Since b > a, we have the fact that

B* c B, and since a € (0, 1), we have that B* c H®(D).
Thus,

dA(w)

b-1
IT,Sshll v < Ry llutll oo sup (1 - |2]* J —
o1l 1IUl g P( ||) pl-wz  (12)

zeD

< Null oo < llull ggo < 00,

where R, R, depended only on g, b, and ¢. This shows that
T,Ss: B — A" is bounded.

Theorem 6. For 0<b<a< 1, letu € L (D) be harmonic and
let ¢ € &(C) . Then, the Toeplitz-superposition operator T,
Sp 1 B> B is bounded if and only if u € H®(D) and ¢ is
a constant entire function.

Proof. 1t is trivial that if u € H*(D) and ¢ is constant, then
T,Sy: B — " is bounded. If ¢ is constant, not identically
0,and TS, maps %* into " then it is clear that u € H® (D).
Assume now that  #0 and ¢ is not constant, and set T',S
maps %° into BY. Let h be the constant function defined

by h({) = A, for all { € D, such that ¢(A) 0. Since h € B°,
it follows that T,S,h({) = T,¢(A) € . This implies that u
€ B c H®(D), since 0 < b < 1. Finally, since ¢ is not con-
stant, then there is a disk |w —w, | <¢ and & > 0, on which
|¢(w) | >8]wl. Set the test function hy(w) = wy + r(1 - w)" ™
€ %°. Then, for all w € D, we have

b-1
1T, Ssholl e = i‘:[%:(l — [2*) 1T, Syhl

J u(w)(¢ehy)(w)

(1-wz)*

2 sup (1 - |z\2)b_lj &dA(w).

zeD p |l - w|*1-wz|
(13)

_ 1- 2 b-1
sup (1 - [2°)

dA(w)

But, along with the positive radius, we get |u(w)|/(
|1 —w|*|1 —wz|*) = 0o, as w— 1. This shows that TS,
: B — B is not bounded.

4. Boundednessinthecase0<a<bora=0,b>0

Theorem 7. For a> 0, let u € L'(D) be harmonic and let ¢
€&(C) . Then, T,S, is bounded on B* if and only if u €
H® (D) and ¢ is an affine function (linear function plus a
translation).

Proof. First, suppose that u € H® (D) and ¢ is an affine func-
tion. It is easy to explain TS, is bounded from 98* into itself.

On the other hand, assume that u € H*(D) and ¢ € &(C)
does not linear function. Then, by using the Cauchy esti-
mates for ¢ € &(C), we can find a sequence {w,} c C, for

each n €N such that |w, | — 0o as n— 0o and |[p(w, )| =

|max|</>(w)| > |w, |*. Also, since the weight (1 —[¢|*)" is typi-

w|=n

cal, we can find a sequence of points {z,} cD such
that|z, | - 17, with (0.5<|z,|<1) and such that (1-|z,|) |
w,, | =1, for all n € N. Now consider the sequence of func-
tions {h,} contained in AB* satisfies |, [g <1
and|h,(z,) | = |w, |. Furthermore, we can suppose that h,,
(z,) =w,. Hence,

1T, (Rl = sup (1= |2,12) " I Ty, (2,)) |

z,€D
2\ b-1 |wn|2
2 [lull o sup (1= |2,[*) ————dA(w)
zeD p|1-wz,|
b-1 w
2 ull oo sup (1 [2,2) J 1l gy
zeD p |1 - wz|

— 00, asn — Q.
(14)

Because |w, | — 0o as n— oo. This shows that T,S,

: B — B cannot be bounded if ¢ € &(C) is not a linear
function.



Theorem 8. For 0<a<b, let u€ L' (D) be harmonic and let
¢ € &(C) be an increasing and continuous function. Then,
T,Sy: B — B is bounded if and only if u e H®(D) , and
for each A€ (0,1) , there is a positive constant y whenever
lw| >y, such that

lp(w)l s p(Alw]). (15)

Proof. First, suppose that u € H*®(D) and (15) is true. Now,
consider R, >0 and let h € B? satisty ||h] 4 <R; and select
A€ (0,1) such that AR, < 1. Then, there is # > 0, such that
|¢p(w) | <p(A|w]), whenever |w|>%. Thus, since Dy = {w
€ C : |[w|<R} is a compact set and ¢ € &(C) is a continuous
function, we can assume that |¢(w)|<1, for all w € Dy.
Hence,

b—
1T, Shll e = sup (1-1z.) 1T, (h(2))l

b-1
1—[z[*)"|T,Syhl

= sup
{zeD,|h(w)|<R}
b,
+ sup (1-[2P) T IT,¢(h(2)
{zeD,|h(w)|>R}
b-1 dA(w)
< lull oo sup (1= |z]? J—
= zel]f( | |) |D|1—IDZ‘2

b- 16
e sup (12 IJ ¢ (16)
{zeD,h(w)|>R} D

) AI Ilhllﬁa | dA(LU)
(1=lw?)" ) 1 -wep
< l[ull oo+t oo sUp (1= IZIZ)HJ ¢
zeD D

.(M ! m) dAw)
(1—|w| ) |1 - wz|

Using that the function ¢ is increasing and the fact that
A <1, we have

b-1 dA w
1T, Syhl s < Nl +lutl oo sup (1 - |2P) J _AAw)
zeD D |1 - wz\

< llull oo

(17)

This shows that TS : * — A" is bounded.

On the other hand, assume that u € H*(D) and ¢ € &(
C) does not satisfy (15). Then, we can find A, € (0,1) and a
sequence {w, } C C such that |w, | = 00 as n — 0o and |¢$(
w,) | =¢(A, |w,|), for all neN. Since the weight
(1-12|*)" is typical, we can find a sequence of points {z,}
C D such that |z, | > 17 as n — co. Thus, we can consider
a sequence of functions {h,} contained in B* satisfies |h,
g <1 and |h,(z,) | <lw,|. Now, let z € D and set the func-
tion f,(z) =w,h,(z)/h,(z,) for all n € N. Then, we have f,
(z,) =w, and ||f [l g < 1. For large enough n € IN, we obtain
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b,
TSy s = sup (1= 2,%) T, Suf u(20) |

2 sup (1 - \zn|2)b71J Mc{A(w)
2,eD p |1-wz,
2 [lullggeo sup (1 - \zn|2)b71J MdA(w)
z,€D p|1-wz,|

b-1 1
> o sup (1= |2, J SR —
f zneﬂg( | ) [D¢ (1—|wn|2)
dA(w)
————— —00,as 1 — 0.
|1-wz,|

(18)

Then, we conclude that T,S, : B* — B cannot be
bounded.

Theorem 9. For 1<a<b, let u € L'(D) be harmonic and let
¢ € &(C) . Then, the following are equivalent:

(i) T,Sy maps B* into RB°

(i) u € H®(D) and ¢ is a polynomial of degree at most
b-1la-1

(iii) T,Sy: B — B is bounded

Proof. First, suppose that (i) holds, let ¢ = z" be a polynomial
with n< (b—1)/(a—1), then, we have that u € H®(D).

Now, suppose that the entire function ¢ is a polynomial
of degree m > b —1/a — 1. Then, for an integer n and a posi-
tive constant &, there is a sequence z,, — oo such that |¢(z,,)

| >0|z,|". We may assume without losing generality that
|z, | >1 and [arg z, | <min {an/4, /2}, for an integer n.
Now, we let h (w)=(1-w)' e % then, we show that
T,Seh, ¢ . The point w, =1 - (z,)* such that |1 -w,
| <1 and |arg (1 —w,,) | <71/4, and satisfies that |1 - w, | <(1
—w,), for an integer n. Thus, we have

(1 - |Zn‘2)h_1|TuS¢hu(zn)|
oy s
_(1 |Zn|) |JD (1_17)2”)2 dA(w)|

8l u(w) | dA(w) (19)

b-1
z (1= |Zn|2 J —
( ) [D|1_Zn| wzn‘z
- Ol u(w)|

~ JD |1 _ zn|mafm7b+l|l _ w|a‘1 —'II)ZH|2

ma|1_

dA(w).

Since ma — m — b+ 1 > 0, then, we obtain
(1- |zn|2)b_1|TMS¢ha(zn) | > co,asn — co. (20)

This implies that T,Syh, ¢ #°. Based on the above it is
clear that (i) = (ii).
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Second, assume that u € H®(D) and ¢ = z" are a polyno-
mial of degree n< (b—1)/(a—1). For all he $* and b -1
—na—-n>0, by Lemma 1 and 2, where # is bounded, we
have

b
I7,84hpe = sup (1 [2F) T, S4h(2)]
z€

o B

zeD

b h(w)|"
< Jlull oo sup (1 - |2[2) ‘J T 4w
zeD p |1 - wz|

b-1-na-n dA(w)
< NullyeolBl ™ sup (1 = |z]? J —
H * zeIDP( ‘ | ) D|1—IDZ|2

< llull o 1A Zge

(21)

This shows that (ii) = (iii). Thus, the proof has been
completed.

Theorem 10. For b > —1, let u € L'(D) be harmonic and let
¢ € &(C) , with order p and type T . Then, the following are
equivalent:

(i) T,S, maps R into B

(ii) u e H®(D) and ¢ € &(C) with p< 1 or (with p=1
and t=10);

(iii) T,Sy:RB— B is bounded

Proof. First, assume that T,S, maps & into B. Now, we
assume on the antithesis that (ii) does not hold. Then, the
function ¢ € &(C) with p > 1 or (with p=1and 7 > 0). Thus,
there is a positive constant A and a sequence {w,, } of complex
numbers such that |w, | = co and
|¢p(w,)|zexp (Aw,|), for any neNlN. (22)
Hence, as in the proof of Theorem 8, we can consider the
sequence {w,} cD and {h,} c % satisfies ||h,llz<1 and
|h,(z,) | <lw,|. Now, let ze D and set the function f,(z)
=w,h,(2)/h,(z,) for all n € N. Then, we have f,(z,) =w,
and |f,llz < 1. For large enough, n €N, since |w, | = oo,
we obtain

1T, Sef ull g = suﬂg(l —[2,?) T, Sy (2]
zZ€

zsup(1- |Z"|Z)h_l.[m W«M(w)

zeD \1—71’Zn|2
-1 exp (A |w, |
2 Il sup (1= o, )" [ ZEEEE ) daqw)
zeD p |1-wz,]
— 00,as 1 — 00.

(23)

Then, we conclude that T,S,: % — B cannot be

bounded. Based on the above results, it is clear that (i) = (ii).

Second, set M(t, ¢) = max | ¢(w) |, where t > 0, the order
w|=t

pofpe&(C)is
loglogM(t,¢)

p= h{rlsolip ot (24)

If 0 < p < 00, then the type 7 of ¢ € E(C) is

7 = limsup M. (25)

t—00 tP

For given A = b/R > 0, the condition (ii) implies that (see
for example [18])
|¢p(w)| <exp (Ajw|), forany weC. (26)

Moreover, for a function h € %, with ||k 4 < 1, we know
that

|h(w)] < <1+log 1—|w|>’ for weD. (27)
Then,
e b
o)l zesp (AAw) ) < (7)< @)

Thus, we have

b
IT,Syhllge = suﬂg(l -2 1|TuS¢h(z)|
zZE€

L[ dA(w)
< (2) 1l oo sup (1 — |2[2)" ‘J Btk
( ) H ze[é))( | |) [D|1—L7)Z|2

< (2¢)?lullgeo < 00.

(29)

This shows that TMS(p : B — B is bounded. So, (ii) =
(iii).

5. Conclusion and Future Study

This manuscript deals with a radical study of a concerned
class of Toeplitz superposition operators acting between
some certain classes of analytic function spaces of Bloch-
type. Global discussions of the boundedness property of the
new class of operators are presented class of the univalent
Bloch functions. All concerned entire functions which trans-
form a class of holomorphic Bloch-type spaces into another
using the so-called Toeplitz superposition operators in terms
of their order and type or the degree of polynomials are
characterized in this paper. Moreover, all the defined
Toeplitz-superposition operators induced by concerned
entire functions are cleared to be bounded actually. We have
cleared that for two spaces of normed-type which belonging



to %(D), where X = %* and Y = %, we can find certain
concerned functions ¢ and u, with ¢ € &(C) and u € Z(D),
for which the newly Toeplitz-superposition operators T',Sy

can map % into & for some specific values of a and b. Fur-
thermore, the operator TS, : X — Y is shown to be actually

bounded.
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In this paper, upper bounds for the fourth-order Hankel determinant H,(1) for the function class & associated with the sine

function are given.

1. Introduction

Let of denote the class of functions f which are analytic in the
open unit disk D = {z : |z|<1} of the form

fz)=z+a2* +azz’++--(z € D), (1)

and let & denote the subclass of &/ consisting of univalent
functions.

Suppose that & is the class of analytic functions p
normalized by

p(2)=1+cz+ 62" +c327+ (2)

and satisfying the condition

R(p(z)) > 0(z € D). (3)

Assume that f and g are two analytic functions in D.
Then, we say that the function g is subordinate to the func-
tion f, and we write

9(z) <f(2)(2 € D), (4)

if there exists a Schwarz function w(z) with @(0) =0 and |w
(z) | <1, such that (see [1])

9(2) =f(w(2))(z € D). (5)

In 2018, Cho et al. [2] introduced the following function
class S;:

#f'(2)
f(2)

S:::{fed: <(1+sinz)(zE|D)}, (6)

which implies that the quantity (zf'(2))/(f(z)) lies in an
eight-shaped region in the right-half plane.

In 1976, Noonan and Thomas [3] stated the g™ Hankel
determinant for g > 1 and n > 1 of functions f as follows:

an Ant1 an+q—1
Anv1 a, an+q—2
Hy(n) = o |@=1) (7)
an+q—1 an+q—2 an
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In particular, we have

a, a
Hy)=| " 7|=a-ai(a,=1n=1q=2)
a, as
a, 4as
H,(2) = = 4,04 (n=2,9=2)
as Ay
a, a, 4as
Hy(1)=|a, a; a,|(n=1,9=3) (8)
as; 4,y 4s
a a, daz 4dy
a, 4as 4ag a4
H,(1) = (n=1,q=4).
as 4d4 4s dg
a, as 4dg 4y

Since f € &, a, =1, thus

H,(1)= a7{a3 (“2“4 - ag) —ay(a, — ayaz) +as (a3 - “%)}

- aé{% a5 — asa,) — ay(as — a,a,) + ag (‘13 “%)}
+ as{as (“3“5 ) as(as — ayay) + ag(a, — a2a3)}
+ as{a3 (“3“5 ) as(as — ayay) + ag(a, — az“s)}
_‘14{“4(‘13“5 _‘14) as(a,as — asay) +a6(“4‘“2“3)}-

©)

We note that H, (1) is the well-known Fekete-Szego func-
tional (see [4-6]).

In recent years, many papers have been devoted to find-
ing upper bounds for the second-order Hankel determinant
H,(2) and the third-order Hankel determinant H; (1), whose
elements are various classes of analytic functions; it is worth
mentioning that [7-20]. For instance, Murugusundara-
moorthy and Bulboacé [21] defined a new subclass of ana-
lytic functions MR!(A, ¢) and got upper bounds for the
Fekete-Szegé functional and the Hankel determinant of
order two for f € MRZ(A, ¢). Islam et al. [22] examined the
g-analog of starlike functions connected with a trigonometric
sine function and discussed some interesting geometric prop-
erties, such as the well-known problems of Fekete-Szego, the
necessary and sufficient condition, the growth and distortion
bound, closure theorem, and convolution results with partial
sums for this class. Zaprawa et al. [23] obtained the bound of
the third Hankel determinant for the univalent starlike func-
tions. Very recently, Arif et al. [24] studied the problem of
fourth Hankel determinant H,(1) for the first time for the
class of bounded turning functions and successfully obtained
the bound of H,(1). Recently, Khan et al. [25] discussed
some classes of functions with bounded turning which are
connected to the sine functions and obtained upper bounds
for the third- and fourth-order Hankel determinants related
to such classes. Inspired by the aforementioned works, in this
paper, we mainly investigate upper bounds for the fourth-
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order Hankel determinant H,(1) for the function class &7
associated with the sine function.

2. Main Results

By proving our desired results, we need the following
lemmas.

Lemma 1 (see [26]). If p(z) € P, then exists some x,z with

x| <L, |z| <1, such that

2c,=c;+x(4-¢}),

des=ci+2cx(4-c]) - (4- ), +2(4- ) (1 - |x[)z.
(10)

Lemma 2 (see [27]). Let p(z) € P, then

¢} + 6+ 2¢,05 = 3cic, — ¢y <2,

|c] +3¢,65 + 3cje; — dejc, — 2¢)¢, — 2c,¢5+ 5| < 2,

IS +6¢7¢5 +4cjc; + 2c,¢5+ 20,6, + ¢ — €

—5¢ic, = 3cic, — 6¢,0505 — ¢4l <2,
lc,l<2,n=1,2,---. (11)

Lemma 3 (see [28]). Let p(z) € P, then we have

o, gplal
27 5| 3
(12)
‘Cn+k_n"icnck|<21 OS[JSI,

|Cn+2k - A“Cncil < 2(1 + 2&”)

We now state and prove the main results of our present
investigation.

Theorem 4. If the function f(z) € 8¢ and of the form ((1)),
then

la,| <1,

3
las| < < (13)

5587

/1< o800

Proof. Since f(z) € 87, according to subordination relation-
ship, thus there exists a Schwarz function w(z) with w(0) =
0 and |w(z) | <1, satisfying
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=1+sin (w(2)). (14)

Here,

! 0 n 00
+
f'(2) _z+X,na, " _ <1 s Z”%Z"l> [1- a2+ (@ - )2
n=2

f@) 2+ Ela.z
— (@) - 2aya5 + a,) 2" + (a5 — 3a3a, + 2a,a, — a) 2+
=1+ayz+ (2a; - a3) 2" + (a; - 3aya5 + 3a,)2°
(4a5 - a3 + 4aza, — 4aya, - 243) 2"

5 3 2 2\ 5
(5(16 —5a,a5 + a; — 5a;a, — 5a5a; + 5aya, + 5a2a3)z

+ o+ o+

(6a, — 6a,a, + 6a3a; — 6a,a5 + 12a,a;a, — a5
- 6a3a, — 3aj + 24} — 9a5a; + 6a3a;) 2°+.
(15)

Now, we define a function

p(z) = %28

=142+ 2+ (16)

It is easy to see that p(z) € & and
w(z) = p(z)-1  qz+6t e+

T 1+4p(z) 24zt et

(17)

On the other hand,

1 o & 563 ¢ —c¢c
L+sin (0(z) =1+ -cz+ (2 - 2|2+ (2 + 2127
2 2 4 48 2

c-c 5¢2 e
L (BT0% 209 9 _ G
4 32

2 16

2 3 5
S +ag o g ) 5

C5— €€y —
I e U e L a% 2
2 16 8 3840
Ce—Ci1Cs— 66 561605 56 & 58
( 2 8 48 4 512

cle, 333 5cd¢, o S5
768 16 16 8

(18)

Comparing the coefficients of z, 2%, 2%, z*, z°, z° between
equations (15) and (18), we obtain

O
az—?,
)
613—2,
o 9G4 1)
1T 6 24 144
h_G_ 0%, 54 _do g
T8 24 1152 192 32’

Lo T3aG Tae 1] 43¢ 7ldc, L5 (20)
6 80 120 4800 960 5760 10’

ey o6 8338 4lda

480 480 691200 3840
5¢,¢ 5 ¢, cc

e L T I\

96 1152 12 144~

4
109¢ic,  ¢¢c5

11520 30

(21)

Applying Lemma 2, we easily get

3
G _aa 9

S (I TR ¥
(22)
Let ¢; = ¢, c € [0, 2]; by using Lemma 3, we show
1 A1 1 c(2-¢2
= [Hfes- 212+ 2 [e,- G < 1+ CCZ22),
6 3 72 2 3 72
(23)
also, let
1 c(2-¢12)
Flo)= 2+ ———"3 24
=5+ (4)
obviously, we find
1
F'le)= — - . 25
=13 "8 (25)

Setting F'(c) = 0, we have ¢ = 24/3/3, and so, F(c) has a
maximum value attained at ¢ = 2v/3/3, also which is

a,|<F —2\/§ = —1 + _\/§ = (.344,
4
3 3 162

4 2 2
G_a% 5¢] _clcz_cz‘

|115| =
8 24 1152 192 32

1 e A o 3\ 7dc
:—{c4——}——c2———— - =) -
8 3 576 2 32 2 576

(26)

Let ¢; = ¢, ¢ € [0, 2], according to Lemma 3, we obtain

1 57(2-¢N2) L1 (2_ c2> L e (27)

lagl < — + — — —.
4 576 16 2 288
Putting
1 52(2-¢42) 1 N 7
F(c)=—+7( )+— - & +L, (28)
4 576 16 2 288



we get

7c 50

Flioy)=—__ - <. 29
()=-122 ~ 288 (29)

Therefore, the function F(c) has a maximum value
attained at ¢ =0, also which is

3

as| < F(0)=—,

sl < F(0)= 2
|- “3c¢, 766, 1l 43¢ Tl s
6 80 120 4800 960 5760 10

1 9G], 7 [ 1+ 11c; a
=|—|c5— —es —¢yc —— - —
2417 10 1200° 2300400 |2 2

43¢,c, (C c%) 211cc,
_ - a)

960 2 14400

(30)

Let ¢; = ¢, c € [0, 2], in view of Lemma 3, we have that

7 1 118(2-¢r2) 43 A\ 211
lagls —+ —+ ————— 2+ — [ 2—- — | + .
60 12 2400 240 2 7200
(31)
Taking
7 1 1E(2-2) 43 A\ 2118
Fo)=—+—=+——— 2+ —(2-— |+ ——,
60 12 2400 240 2 7200
(32)
we obtain
277¢*  55¢ c
F'(c)= (33)

T 2400 4800 240

Thus, ¢ = 0 is the root of the function F'(c) =0 and F'/(
0) < 0; we are easy to see that the function F(c) has a maxi-
mum value attained at ¢ = 0, also which is

67
ag| < F(0)= —,
jagl < F(0) = 15
| dey e, 8338 4l 109cic,
a-| = |—= — _
71480 480 691200 3840 11520
_as 5¢y¢4 563 Co cfj

30 96 1152 12 144
|37 258 e e - L aa [c5 = ¢16))
1691200 5760 30 480 480
e —ao) 29¢i [, = c1/2] 565 (e, — /2]
144 11520 1152
. [cs = 5/8¢,¢4)
12
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Let ¢; =¢, c € [0, 2], by virtue of Lemma 3, we have that

1 & 9
la;| < — + — + —
6 240 120

25 5(2-¢%2)

+ +
1440 288

29¢t(2-¢%2) 37 &
+ + —
11520 691200 = 72

(35)
Letting

1 & 9  29(2-¢2) 378

O)=—+—=+-—+ + + =
6 240 120 11520 691200 72

25 5(2-¢%2)
+

1440 288

+ >
(36)
so we get

F'(c)>0. (37)

Thus, the function F(c) has a maximum value attained at
¢ =2, also which is

5587
<F(2)= 2% 38
la71 < F(2) = 10800 (38)

Hence, the proof is complete.

Theorem 5. If the function f(z) € 8¢ and of the form ((1)),
then we have

1
la; a3l < 5. (39)

Proof. Applying equation (21), we have

o
lay —a3| = ZZ_ZI (40)
Then, by applying Lemma 1, we get
x(4-¢a) &
|a3—a§|: %_é (4])

Suppose that |x| = ¢, € [0, 1], ¢; =¢, ¢ € [0, 2]. Then, using
the triangle inequality, we obtain

t(4-c2 e
|a3—a§|s%+§. (42)
Suppose
t(4-32) &
(e t) = % s (43)

then for any ¢ € (0, 1) and c € (0, 2), we get
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aF_4—c2>0 (44)
ot 8 ’

which means that F(c,t) is an increasing function on the
closed interval [0,1] about t. Therefore, the function F(c, ¢)
can get the maximum value at t = 1, that is,

S
]

maxF(c,t):F(c,l):(él_Tcz)+§:%. (45)

So, obviously,
la; —a3| < ~. (46)

Hence, the proof is complete.

Theorem 6. If the function f(z) € ST and of the form ((1)),
then we have

1
lasa; —a,l < 3 (47)
Proof. From (21), we have
g —ay =92, GG a9 _laa &, G
2 8 144 6 24 6 6 144
(48)

Now, in view of Lemma 1, we get

7a, (-d)er  (4-2)(1- )|

a,a, — a,| =
;35 = | 144 24 12

(49)

Let |x| =t,t € [0, 1], ¢; = ¢, c € [0, 2]. Then, using the trian-
gle inequality, we deduce that

76 (4-)ct? (4-)(1-1)
la,a; — a4l < Tt 54 + B . (50)

Assume that

73 (4-)ct?  (4-)(1-F

F(c,t)=i+( c)e +( )l ) (51)
144 24 12

Therefore, for any ¢ € (0,1) and c € (0, 2), we have

OF (4~ A)t(c-2)
ot 12 <0 (2)

that is, F(c, t) is an decreasing function on the closed interval
[0,1] about ¢. This implies that the maximum value of F(c, t)
occurs at t =0, which is

7¢3 4-¢?
maxF(c,t)zF(c,O)zﬁ+ ( P )

(53)

Define

(4 - c2) 7¢3

+— 54
12 144 (54)

we clearly see that the function G(c) has a maximum value
attained at ¢ = 0, also which is

laya; — a,| < G(0) = (55)

W~

Hence, the proof is complete.

Theorem 7. If the function f(z) € 8¢ and of the form ((1)),
then we have

1
la,a, — a3l < 7 (56)

Proof. Let f(z) € 87, then by equation (21), we get

2 4
G R T

2
2
ST e R o O 1 ) 57
a2, =51 = 15"~ 4s ™ 288 16‘ (57)
Now, in terms of Lemma 1, we obtain
2 4
cc, ¢ ¢ c
e, —al=|92 92 _ 49 _ &
12 48 288 16
| 5t X(4-q) 2(4-3)°
~ 576 48 64 (58)
2
) o (4-c)(1-1|x*)z .

24

Let x| =t,t €0, 1], ¢; = ¢, c € [0, 2]. Then, using the trian-
gle inequality, we get

Pe(-c) (1-0)e(4-¢) r(E-2)° s

— 2 -
120, - a3l < — ¢ 24 T T
(59)
Setting

PR (4-¢ 1-2)c(4-3) £2(4-3)P 5
b FEA-E) (-P)ti-e) Py s
48 24 64 576

(60)

then, for any ¢ € (0, 1) and c € (0, 2), we have

OF _t(c®—8c+12)(4-2)

N 1
ot % >0 (61)

which implies that F(c,t) increases on the closed interval
[0,1] about ¢. That is, that F(c, t) has a maximum value at
t =1, which is



6
(4-¢? 4-2) 54
max F(c, t)=F(c, 1) = ( ) + ( ) + 25 (62)
48 64 576
Putting
2A-3) (4-3)? ¢t
Go= ") Boe)
48 64 576
then we have
c(4-c? 3 c(4-¢2 5¢3
G'(C)zg_i_u+i_ (64)
24 24 16 144

If G'(c) =0, then the root is ¢ = 0. Also, since G''(0) =
-1/12 <0, so the function G(c) can take the maximum value
at ¢ =0, which is

laya, — agl <G(0) = (65)

o

Hence, the proof is complete.

Theorem 8. If the function f(z) € ST and of the form ((1)),
then we have

11
layas — aza,l < % (66)

Proof. Let f(z) € 87, then by using (21), we have

5¢ L A% 6ce  dey o 66
2304 16 192 48 1152 24
_|_ q [Cz - c%/Z] ] [Cz - C%/z] L a ¢4 — €163

1152 24 24

. i . I [c4—1/4c§]

576 48

layas — asa,l = ‘

(67)

Let ¢; = ¢, c € [0, 2], according to Lemma 3, we obtain

1 53(2-¢2) 1 A\ | 7e
las| < —+ ———2+ —(2- = |+ 5= (68)
4 576 16 2 288
Taking
A2-212 2-¢7%2 5
F(c)= [ ]+[ ]+£+C—. (69)
1152 12 8 576

Then, Vc € (0, 2), we have

¢ g 1
=+ -S4 5o, (70)
192 "128 1278

which implies that F(c) increases on the closed interval [0,2]
about c. Namely, the maximum value of F(c) attains at ¢ =2,
also which is
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la,a; — aza,| < F(2) = R

(71)

The proof of Theorem 8 is completed.

Theorem 9. If the function f(z) € 87 and of the form ((1)),
then we have

13

las —aya,l < T (72)

Proof. Assume that f(z) € 87, then from (21), we obtain

4 2 2
a6 a9 _ 9 4

las — aya,| =

128 8 64 32 8

[c] +6 +2¢165 = 3cj6, — ¢y

_5¢i[e, — /2]

32 64
3[cy — 2/3¢,65]
32 '
(73)
Next, by virtue of Lemma 3, we obtain
1 5¢[2-¢12]
as — a,a,] < it — (74)
Setting
1 5¢[2-¢712]
F(c)=- . 75
=3+ 75)
Then, we have
, 5¢ 50
=2 76
=1 (76)

Let F'(c)=0, we get c=0 or c=+/2 and F'(v/2) <0,
which implies that the maximum value of F(c) attains at ¢
=+/2, also which is

las — aya,| < F(\/E) =_—. (77)

Hence, the proof is complete.

Theorem 10. If the function f(z) € ST and of the form ((1)),
then we have

97
asa; —a;| < 24 (78)
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Proof. Assume that f(z) € 87, then from (21), we obtain

|a5a3 —ail = 76%62 + % + G665 — C_g + C:l)’j
13824 32 288 128 432
74 g I
2304 36 20736
el —aal9] gl —ao]  Gle -l
B 32 36 128
_dalo-an] cl[ - 31/32¢,6,]
144 432
5cic, ¢
6912 20736/

Next, in terms of Lemma 3, we obtain

o 1 1 [2-¢n] J)2-¢r] &
asa; —ag| < -+ - + + +—
8 9 32 72 216
5¢4 I
+ + .
3456 20736
(80)
Putting
1 1 [2-¢12] 22— 3
F(c)=—+—+[ }+ [ ]+C—
8 9 32 72 216 (81)
s 5c ¢
3456 20736

Then, for any c € (0,2), we have F'(c) > 0, which means
that the maximum value of F(c) arrives at ¢ = 2, also which is

97

-a;|<F
lasas a4| (2)= 324"

(82)

Hence, the proof is complete.

Theorem 11. If the function f(z) € §& and of the form ((1)),
then we have

|H, (1) < 0.81945. (83)
Proof. Because of

H,(1)= ‘17{‘13 (‘1204 - “é) —ay(ay — aya3) +as (“3 - “3)}
- ‘16{‘73 (@85 — asay) — ay(as — a,a,) + ag (“3 )}
- as{aa aya5 — asa,) — ay(as — a,a,) + ag (“3 - “z)}
+ “5{“3 (‘13“5 - ’14) as(as — ayay) + ag(a, — “2“3)}
_‘14{”4(‘13‘75 _‘74) as(ayas — aza,) +a6(“4_“2“3)}’

(84)

7
then, by applying the triangle inequality, we get
|H, (1) = |a7||a3|||a2a4 - ‘1§| +1a,||ay|la, — ayas]
+a,||as| |‘13 - ‘1§| +ag|as||ayas — asay
+agl|ay|as — ayay] + |“6‘2|“3 - a%’
+ |as||a;] |a3a5 - aﬁ| + |“5|2|“5 — a4,
+as||ag||ay — aya3] + |a4\2|a3a5 - ‘1421|
+ay||as||ayas — aza,| +|ay||ag||a, — aas].
(85)

Next, substituting (13) and (39)-(78) into (85), we easily
obtain the desired assertion (83).

3. Conclusion

In the present paper, we mainly get upper bounds of the
fourth-order Hankel determinant H,(1) of starlike functions
connected with the sine function. However, the results
obtained in this paper are not sharp. In the future, we will
consider the sharpness of the results. Also, we can discuss
the related research of the fifth-order Hankel determinant
and fifth-order Toeplitz determinant for this function class.
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This article deals with the g-differential subordinations for starlike functions associated with the lemniscate of Bernoulli and
cardioid domain. The primary goal of this work is to find the conditions on y for 1+ (yz0, h(z))/(h" (z) ) < V1 + z, where h(z)

is analytic function and is subordinated by the function which is producing cardioid domain as its image domain while mapping
the open unit disk. Along with this, certain sufficient conditions for g-starlikeness of analytic functions are determined.

1. Introduction

Consider the class A of analytic functions defined in open
unit disk F with normalization condition f(0)=0 and f’
(0) =1 which provides the Taylor series expansion of the
form

flz)=z+ ianz”, z€F. (1)

The class S consists of functions from A which are univa-
lent functions in F, and the class P contains the analytic func-
tions whose codomains are bounded by the open right half
plane. For more details, see [1, 2].

The concept of differential subordination plays a vital
role in the study of geometric properties of analytic func-

tions. It was first introduced by Lindelof, but Littlewood [3]
did the remarkable work in this field. Many researchers con-
tributed in the study of differential subordinations. History
and the development of works in the field related to differen-
tial subordination are briefly described and included in the
book by Miller and Mocanu [4]. The major development in
the field of differential subordination started in 1974 by
Miller et al. [5].

An analytic function f is considered to be subordinated
by analytic function g, denoted as f < g, if there exists
another analytic function w with the property that w(0) =0
and |w(z) | < |z| such that f(z) = g(w(z)). Moreover, in case
of univalent functions in F, we can have

f<gef(0)=4g(0),

2
f(F) € g(E). 2
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Recently, many mathematicians have used this concept
of differential subordinations to prove many helpful results.
Familiar Jack’s lemma [6] has produced several advance-
ments for the generalization of differential subordinations
and found many applications in this field. The work of Ma
and Minda [7] in this field is not negligible as they studied
the function @ which is analytic, and condition of normaliza-
tion given for prescribed function is defined as @(0) = 1 and
@' (0) > 0 with a positive real part. With the help of the func-
tion @, they introduced the following subclasses for starlike
and convex functions.

#f'(2)
f(z)

of"(2)
@

S*((D)z{feA: <(D(z);zeF},

(3)

C((D):{feA:l+ <<D(z);zeF}.

These subclasses helped many researchers for further
studies in the field of differential subordination. Ali et al.
[8] used the concept of differential subordination to prove
analytic functions to be Janowski starlike. Ali et al. [9] also
evaluated several differential subordinations: 1+ yz(p'(z)/
p"(2)) and found the y for p(z) < v/1 + z. Raina and Sokol
[10] used subordinations for coefficient estimation of star-
like functions. Similar kinds of works have also been done
by Sharma et al. [11] by using starlikeness for cardioid
function, and Yunus et al. [12] studied for limacon.

Quantum calculus is the new branch of mathematics
and is equally important for its applications both in phys-
ics and in mathematics as well. Jackson [13, 14] presented
the functions of g-derivatives and g-integrals and
highlighted their definitions for the first time. He also
holds the credit for the systematic initiation of g-calcu-
lus. Ismail et al. [15] were the pioneers to contribute in
the application of g-calculus in geometric function theory.
The new form of the subclass of starlike functions S*(®)
with the involvement of g-derivative was introduced by
Seoudy and Aouf [16]. By choosing different image
domains instead of @(z), so many attractive subclasses of
starlike functions are obtained. Mahmood et al. [17] have
dealt with the class of g-starlike functions by relating them
with conic domains. The most recent work related to g
-starlikeness of functions is done by Srivastava et al.
[18]. The contributions of Haq et al. [19] are remarkable.
They proved differential subordinations with g-analogue
for cardioid and limacon domain with the involvement
of Janowski function and found the sufficient conditions
for g-starlike functions. The g version of Jack’s lemma
which is the soul of our work was given by Cetinkaya
and Polatoglu [20]. These recent efforts of mathematicians
discussed above motivated us and provide strength to con-
tribute in the field of differential subordinations with the
involvement of its g-analogue, which is the main idea of
this article. The foundation of all this work in g-ana-
logue is the g-derivative which is defined below.
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The g-derivative of a complex-valued function f, defined
in the domain F, is given as follows:

f(2) - f(q?)
1-9)z

, 2#0,
q)

(qu) () = (4)

z=0,

(
f10),

where 0 < g < 1. This implies the following:

lim (D,f)(z) = lim f@)=2) ey (s

o (1= q)

provided the function f is differentiable in domain F. The
function D, f has Maclaurin’s series representation

o0

(Dyf)(2) = ) [n],a,2" ", (6)
n=0
where

1= g"
I _Z , neC,

(=19 . (7)
Z ¢ =1+q+@++q""', neN.
k=0

For more details about g-derivatives and recent work on
it, we refer the reader to [21-25].

Definition 1. The function f(z) € A is said to be in the class
Sk, if
q:c

20,f(2)
/(2)

Lemma 2 (g-Jack’s lemma, [20]). Consider an analytic func-
tion w in F with w(0) = 0. For a maximum value of w on
the circle |z| = 1 at z , = ae”, where 0 € [-m, 7], and 0< q <
1, then, we have

4 2
<1+-z+-z* z€F. (8)
3 3

2p0qu(z,) = mw(z,). )
Here, m is real and m > 1.

By using the above lemma, we have proved our main
results.

2. Main Results

Theorem 3. Assume that

3(\/§+1)

20 (10)

Y2

and we define an analytic function h on F with h(0) = 1 which
satisfies
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I+yzoh(z) < VI1+z. (11)

In addition, we suppose that

1+yz0,h(z) =/1+w(z), (12)

where w is analytic in F with w(0) = 0. Then,
4 2
h(z) <1+ -z+ =2 13
(2) <1+ 38t 37 (13)

Proof. Consider the function
p(z) =1+yz0,h(z), (14)

which is analytic in F with the condition p(0) =1 and the
function

h(z)=1+ gw(z) + ng(z), (15)

where w is an analytic function in F with w(0) = 0. To prove
the result, it would be sufficient to show that |w(z)| <1 for

w(z) =p(?) - L. (16)
From (14) and (15), we deduce the following:

p(z)=1+ %zaqw(z){él(l +w(z))-2(1- q)zaqw(z)},
(17)

3
and with this, one can have
w(z) =p*(2) - 1= [£20,0(2) {4(1 + w(2)) - 2(1 - 9)20,w(2)}| ’
+2 gzaqw(z) {4(1 + w(z)) - 2(1 - g)zd,w(2) }] .
(18)
This implies that
2 Y 2
P(2) - 1| = ’ [5 20,w(z) {4(1 + w(2)) - 2(1 - q)zaqw(z)}}
+2 gzaqw(z){4(1 +w(z)) - 2(1 - g)ed,w(2)}] ‘
= ’z + gzaqw(z){4(l rw(z))-2(1- q)zaqw(z)}’
X %zaqw(z){4(l +w(z)) - 2(1 - q)z0,w(z) } ’
(19)

Now, considering the existence of a point z,, € F such that

max|w(z)| = [w(z)| = 1. (20)

|=[<lz|

Now, we use the g-Jack’s lemma which implies that
there exist a number m > 1 such that z,0qw(z,) = mw(z,).
This, with the consideration that w(z,) = €?, 6 € [, 7] for
z, € F, we have

‘pz(zo) - l‘ = ‘ 2+ %zoaqw(zo){él(l +w(zy)) —2(1- q)zoaqw(zo)} ‘.%zoaqw(zo){4(l +w(zy) —2(1- q)zoaqw(zo)} ‘

= ’2+ gmei0{4(l +ei9) -2m(1 —q)e’e}’.gm

ei9{4(1 + eie) -2m(1 - q)eie}’

= \/4+ gy2m2(4+ (2-m(1-q))*) + %6ym{

ym

1+ —(2—m(1—q))} cos 0 + gym(Z—m(l —q)) cos 20

3

216+ (4-2m(1 - )2 +8(4 - 2m(1 - )) cos 6.

The function

(21)

G(0) = \/4+ §y2m2(4+ (2-m(1-q))*) + ?ym{l + g(Z -m(1- q))} cos 0 + gym(Z— m(1—q)) cos 20

(22)
16+ (4= 2m(1 - g)) +8(4 - 2m(1 - ) cos 0
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is clearly an even function. So, in order to find the maximum
value of G, we will consider the interval [0, 7z]. Thus,

78ym\/9 +4y?m? +y?m*(2 = m(1 - q))* + 12ym cos 6 + 4y>m?*(2 — m(1 — q)) cos 6 + 6ym(2 — m(1 - q)) cos 26 (4 —2m(1 - q)) sin 0

G'()

9\/16 +(4-2m(1-q))*+8(4-2m(1-q)) cos O

1 ym\/16 +(4-2m(1-q))*+8(4-2m(1-q)) cos 0 (—12ym sin 6 — 4y*m?(2 — m(1 — q)) sin 6 — 12ym(2 — m(1 - q)) sin 26)
+ —
9

\/9 +4y’m? +y*m? (2 = m(1 - q))* + 12ym cos 0 + 4y*m? (2 — m(1 — q)) cos 6 + 6ym(2 — m(1 - q)) cos 20

(23)

gives G'(9) =0 for 0=0 and 7. Also, we can see that G’
"(m)>0 for 1<m<2.5, which results that G(6) > G(n).
Now, consider the function

e(m) = \/4+ %y2m2(4+ 2-m(1-q))?) - §ym{1 + g(Z—m(l )} gym(Z—m(l -9) g\/16+ (4-2m(1-q))> - 8(4—2m(1 - q))

4 4
= §y2m4(1 - ’1)2 - 5)”"2(1 -q).

(24)

So we have Theorem 5. Assume that

V2+1
0'(m)= Sy m (1-gf - Sym(1-g)>0. (25 V23 a (29)

and we define an analytic function h on F with h(0) = 1 which

Thus, @(m) is an increasing function which gives a min- ¢ atisfies

imum value for m = 1. Then, we have

1+ 1~ <VI+z. (30)
4 4 h(z
P -1]2 57 (-9 - 5r(1-a).  (26) )
In addition, we suppose that
From (10), we conclude that 23,h(2)
147 hqz) =/1+w(z), (31)
Ip*(z0) = 1] 2 1, (27)

where w is analytic in F with w(0) =0. Then,

but this result contradicts (11). Hence, |w(z)| <1 and this 4 2
leads us to the desired result. h(z)<1+ 32t 322. (32)
By taking h(z) = z0,f (z)/f (2), the above result reduces to

the following. Proof. Consider the function

Corollary 4. Let y > 3(/2+1)/2(1 - q) and f € A satisfy the 20,h(2)
subordination p(z)=1+y hz) (33)
20,f(2) which is analytic in F with the condition p(0) =1 and the
1+yzo, ( ) I+z (28)  function
f(z)
hz—1+4wz +2wzz (34)
Then, f(z) €. (2)= 3 (%) 3 (2),
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where w is an analytic function in F with w(0)=0. Using
(33) and (34), we obtain
~ (y/3)zaqw(z){4(l +w(z)) - 2(1 q)zaqw(z)}
pe)=1+ 1+ (4/3)w(z) + (2/13)w?(2) '
(35)

Proving the fact that |w(z)| < 1 will be sufficient to prove
our assertion. For this, consider

lp*2) -1
| 2(3+4w(z) + 2w (2)) +yz0,w(z) {4(1 +w(z))
‘ (3 +4w(z) + 2w?(z))
| y20,w(z) 1{4(1+w(2)) - 2(1 - q)z0,w(z)} |
(3+4w(z) +2u’(z)) |

-2(1- q)zaqw(z)}

(36)
Considering the existence of a point z; € F such that

max |w(z
||<|z| @l

=[w(z)[ =1, (37)

we can make use of g-Jack’s lemma which implies that
there exists a number m > 1 such that z,0qw(z,) = mw(z,).
Now, consider that w(z,)=¢e?, 0 € [-m, 7], then for z, € F,
we have

‘Pz (z0) = 1’

2(3 +4e? + ZeZie) + ymei9{4(1 + eie) —-2m(1- q)eie}

(3 +4e® + 2¢20)

yme’9{4(1 + e’e) 19}
(3 + 46 + 2e219)

Now, one can easily see that the function

V¥

G(0) =
V29 + 40 cos 0 + 29 cos 20
my\/16+ (4-2m(1-q))* +8(4-2m(1—q)) cos 0
' V/29 + 40 cos 0 + 29 cos 20
(39)
with

¥, =68 + 48ym + 8ym* + 4y*m"* + 32y *m* — 16y*m’
- 8ym*q + 16y*m’q — 8y*m*q + 4y*m*q* + 160 cos 0
+48ym*q cos 20 + 32 cos Oym*q + 16 cos Oy*m’
+96 cos 20 — 48ym* cos 26 + 96ym cos 20
+ 144 cos Oym — 16 cos Oy*m’ + 32 cos Oy*m*
— 32 cos Oym*

is clearly an even function. So, in order to find the maximum
value of G, we will consider the interval [0, ]. Now, we have

G'(0)=0 (41)

for 0=0 and 7. Also, we can see that G'/() > 0 for m=>1,
thus we conclude that G(0) > G(rr). So we have the function

O(m) = \/4 — 8ym? + 8ym2q + 4y2m* — 82miq + 4y miq?
~my(2m(1 - q)) = [2ym*(1 - q) - 2] [2ym* (1 - )]
(42)
This gives
O'(m)=16y*m*(1-q)> - 8ym(1-q)>0.  (43)

Thus, ©(m) is an increasing function which gives a min-
imum value for m = 1. Then, we have

P (20) = 1| 24y*(1-q)* - 4y(1 - g). (44)

From (29), we conclude that
P*(z0) -1 = 1, (45)
but this result contradicts (30). Hence, |w(z)| < 1 which pro-

vides the required result.
By taking h(z) = z0,f (2)/f (2), the above result reduces to

the following.

Corollary 6. Let y>+/2+1/2(1-q) and f € A satisfy the
subordination

A )

Then, f(z) €S,

Theorem 7. Assume that

V2+1

8 2.3(1-q)’ )

and we define an analytic function h on F with h(0) = 1 which
satisfies

o,h
1+ )/qu—(z') <VI+z. (48)
h(2)
In addition, we suppose that
0,h
+ yzzqi(z) =y/1+w(z), (49)
h(z)



where w is analytic in F with w(0) =0. Then,
4 2
h(z) <1+ 32t gzz. (50)

Proof. Let us define the function

20,4h(2)

y e (51)

p(z) =

which is analytic in F with the condition p(0) =1 and the
function
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(y/3)z0,w(2){4(1 + w(z)) - 2(1 - q)z0,w(z) }
(1+ (4/3)w(z) + (2/3)w?(z))* '

p)=1+

(53)

To prove the assertion, it would be enough to show that
|w(z)| < 1. Therefore,

|p2(z)—l|: 2+

(y/3)z8qw(z){4(1 +w(z))-2(1- q)zaqw(z)}
(1+ (43)w(z) + (2/3)w* (2)

2(2))°
(y/3)z0,w(z) {4(1 + w(z)) - 2(1 - q)z0,w(z) }

>

2
M) =1+ tue) + 2ui(e) 52) (1+ (43)w(z) + (2/3)w?(2))
3 3 (54)
where w is an analytic function in F with w(0)=0. Using
(51) and (52), we get which after using (9) gives
5 2(3 +4w(z,) + 2w2(zo))2 +3y20,w(zy) {4(1 + w(zy)) - 2(1 - q)zo0,w(z,) }
|p (ZO) - 1‘ = P 2
(3 +4w(zy) + 2w (zy)) (55)

| 372004 (20) {4(1 + w(z0)) - 2(1 - 9)200,w(z) } |

Now, we consider the function

“0)= G970 CO;/;I?- 12 cos 26)
3ym\/16 +(4-2m(1-q))*-8(4-2m(1-q)) cos 0
(29 + 40 cos 6 + 12 cos 20) ’
(56)
where

¥, = 1156 + 1104ym — 360ym* — 960ym* cos 0 + 360ym*q
+144y*m>q — 72y*m*q + 36y*m*q* + 288y*m*

— 144y*m’ + 36y*m* + 9664 cos 20 + 768ym cos 30

+2784ym cos 26 — 624ym”* cos 0 + 3120ym cos 0

+288y*m? cos 0 — 144y*m’ cos 0 + 2304 cos 40

+ 7680 cos 30 + 5440 cos 0 + 624ym*q cos 20

+960ym?*q cos 6 + 144y*m>q cos 6.

(57)

As we see that G(6) is an even function, so G’ () =0 at

6 =0, 7 and also we see that G' (1) > 0 for m > 1. Thus, we
conclude that G(0) > G(rr) and we get a new function

(3 + 4w(zy) + 2w? (zo))2

O(m) = \/4 - 24ym? + 24ym2q — 72y2m*q + 36y>miq? + 36y2m*
-3ym(2m(1 - q)),
(58)

and we have

0'(m)=72y*m’(1 - q)* + 12(6ym2(1 -q)-2)ym(1-q)>0.
(59)

So ®(m) is an increasing function, and it has its mini-
mum value at m = 1. Then, we have

P*(z9) = 1] 2 (6y(1 - q) —2)(6y(1-9q)).  (60)
Using (47), we get
|P2(Zo) - 1| =1, (61)

but this result contradicts (48). Hence, |w(z)| <1 which
proves the required result.
By taking h(z) = z0,f (2)/f (2), the above result reduces to

the following.
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Corollary 8. Let y>+/2+1/2.3(1 - q) and f € A satisfy the
subordination

i) o)

Then, f(z) €S,

Theorem 9. Assume that

V2+1

Yz 23(1-q) (63)

and we define an analytic function h on F with h(0) = 1 which
satisfies

0,h
1+)/Zq—(Z)<

P 02) I1+z. (64)

In addition, we suppose that

Proof. Let us define the function

yzaqh(z)
1 (2)

pla)=1+ , (67)

which is analytic in F with the condition p(0) =1 and the
function

h(z)=1+ %w(z) + ng(z), (68)

where w is an analytic function in F with w(0) =0. Using
(67) and (68), we obtain

(y/3)z0,w(2){4(1 + w(2)) - 2(1 - q)z0,w(z) } '
(1+ (413)w(2) + (2/3)w?(2))’

p(z) =1+
(69)

To prove the result, we have to show that |w(z)|<1.
Therefore,

2+(

¥/3)20,w(z) {4(1 +w(z)) - 2(1 - q)20 w(z) }‘

205~ 1| =
. yza;]h(z) _ /i), (65) [p@) -1 (1+ @3)w(z) + (23w (z))]
I (2) . (y/3)zaqw(z){4(1 +w(z))-2(1- q)zaqw(z)}
where w is analytic in F with w(0) =0. Then, (1+ (43)w(z) + (23w (2))’
(70)
4 2,
h(z) <1+ 377 3% (66) Hence, by applying (9), we obtain
|P2(Zo) - 1|

| 2(3 +4w(zy) + 2w’ (zo))3 +9y200,w(z) {4(1 + w(zy)) = 2(1 - q)z,0,w(z,) }

B (3 +dw(z,) + 2w (2,))’ (71)

| 272004 (20) {4(1 + w(z0)) = 2(1 - 9)2004w(z0) } |

Now, consider the function

b4
G6)= (29 +40 cos\G/:r‘slz cos 20)**
9ym\/16 +(4-2m(1-q))*+8(4-2m(1-¢q)) cos 0
' (29 +40 cos 6 + 12 cos 20)*" ’
(72)
where

(3 +4w(z,) + 2w (z,))’

W, = 19652 + 18288ym?*q cos 20 + 13824ym*q cos 36
+4608 cos 40ym>q + 12384 cos Oym?*q + 1296 cos Oy*m’q
+ 18432 cos 50ym — 720ym — 3384ym* + 138720 cos 0
+41184ym cos 20 + 80640ym cos 30 + 64512 cos 40ym
+3384ym?*q — 18288ym* cos 20 + 2592 cos Oy*m?
+5904 cos Oym — 1296 cos Oy*m’ — 12384 cos Oym?
—13824ym? cos 30 — 4608 cos 40ym* + 1296y*m’q
— 648y*m*q + 324y’ m*q* + 409632 cos 26 + 647680 cos 30
+ 578304 cos 46 + 276480 cos 50 + 55296 cos 60 + 2592y*m?
—1296y*m® + 324y*m*.

(73)



The above function is clearly an even function. So in
order to find its maximum value, we will consider the
interval [0,7]. Now, we have G'(6)=0 for =0 and 7.
Clearly, G''(7) > 0, and hence, we have obtained the min-
imum value of G at 0 =m, and thus, we conclude that G
(8) = G(7r). So now consider the function

O(m) = \/4 — 72ym? + 72ym?q — 648y*m*q + 324y*m*q* + 324y*m*

~9ym\/ 16+ (4-2m(1-q))* -8(4-2m(1 - gq)),
(74)

which gives
@' (m) =648y*m*(1 - q)* > 0. (75)

Thus, ®(m) is an increasing function. So for m=1, it
gives a minimum value. Then, we have

|%(20) = 1| = [18y(1 - q) - 2][18y(1 - @)} (76)
Using (63), we get
P (z0) = 1] 2 1, (77)
but this result contradicts (64). Hence |w(z)|<1 which
proves the required result.
By taking h(z) = z0,f (z)/f (2), the above result reduces to

the following.

Corollary 10. Let y > /2 + 1/2.3*(1 - q) and f € A satisfy the
subordination

PRY 0.f
el o) o

Then, f(z) €S,
Theorem 11. Assume that

V2+1

yzza%%z—@’ (79)

and we define an analytic function h on F with h(0) = 1 which
satisfies

y20,4h(2)

1+ —— 1+z. 80
t @ <Vi+z (80)
In addition, we suppose that
0,h
1+ )’Zhnqi(z()z) =/1+w(z), (81)

Journal of Function Spaces

where w is analytic in F with w(0) =0. Then,

4 2
h(z)<1+§z+§z2. (82)

We omit the proof of this result as it can be done by using
a similar technique as applied in the above results.
By taking h(z) = z0,f (z)/f(z), the above result reduces to

the following.

Corollary 12. Let y >+/2+ 1/2.3"1(1 - q) and f € A satisfy
the subordination

" /20
() )

Then, f(z) €S,

3. Conclusion

In this article, we have worked on g-differential subordina-
tions associated with lemniscate of Bernoulli and defined suf-
ficient conditions for g-starlikeness related to cardioid
domain. We have also determined the conditions on y to
prove the starlikeness of prescribed function such as

yz0,h(z)
+ 21 2 <V1+zforn=0,1,2,3, (84)
(h(2))

then
h(z)<1+§z+§zz. (85)

We can use these results to study the sufficiency criteria
of other analytic functions.
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The main aim of the present article is the introduction of a new differential operator in g-analogue for meromorphic multivalent
functions which are analytic in punctured open unit disc. A subclass of meromorphic multivalent convex functions is defined using
this new differential operator in g-analogue. Furthermore, we discuss a number of useful geometric properties for the functions
belonging to this class such as sufficiency criteria, coefficient estimates, distortion theorem, growth theorem, radius of
starlikeness, and radius of convexity. Also, algebraic property of closure is discussed of functions belonging to this class. Integral

representation problem is also proved for these functions.

1. Introduction and Definitions

Let 2, denote the family of all meromorphic p-valent func-

tions f that are analytic in the punctured disc D={z¢C
: 0 < |z| < 1} and obeying the normalization

f(z)=$+ ianz”, zeD. (1)

n=p+1

Also, let /€ ,(a) denote the well-known family of mer-

omorphic p-valent convex functions of order a(0<a<p)
and defined as

of'(z))’
f(z) € ME,(a) & Re % <-a. (2)

For 0 < g < 1, the g-difference operator or g-derivative of

a function f is defined by

flaz) - f(2)

, z#0,g#1. (3)
z(q-1)

0,f(2) =

It can easily be seen that for n € IN, where IN stands for
the set of natural numbers and z € D,

aq{ i anz”} =
n=1 n

[1’1, q]anznil’ (4)

Mg

1

where
1-q" o
[n.q] = =1+ ) q,
1-q z; (5)
[0,q] =0.
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For any nonnegative integer n, the g-number shift facto-
rial is defined by

[”"I}!={L =0 (6)
(1,9)2,9][3, 9] -~ [n.q], neN.

Also, the g-generalized Pochhammer symbol for x € R is
given by

1, n=0,
[x,fﬂf{ (7)

% g)[x+1,q] - [x+n-1,q, neN.

In (3), if g — 17, then this operator becomes the con-
ventional derivative in the classical calculus, so the limits
can be generalized by introducing the parameter g, with
condition 0<g<1, and all such concepts, which have
been developed thus, are known as quantum calculus (g
-calculus). Many physical phenomena are better explained
using this generalized operator, and as a result, this field
attracted a lot of the researchers due to its various appli-
cations in the branches of mathematics and physics (see
details in [1, 2]). Jackson [3, 4] was the pioneer of this
field, who gave some applications of g-calculus and intro-
duced the g-analogues of derivative and integral. Aral and
Gupta [1, 2, 5] defined an operator, which is known as ¢
-Baskakov Durrmeyer operator by using g-beta functions.
The generalization of complex operators known as g
-Picard and g-Gauss-Weierstrass singular integral opera-
tors was discussed by Aral and Anastassiu in [6-8]. Later,
Kanas and Raducanu [9] introduced the g-analogue of a
Ruscheweyh differential operator and studied its various
properties. More applications of this operator can be seen
in the paper [10]. Huda and Darus [11] utilized the ¢
-analogue of a Liu-Srivastava operator and defined an
integral operator. In somewhat similar way, Mohammed
and Darus [12] introduced a generalized operator along
with investigating a class of functions relating to g¢
-hypergeometric functions. Later, Seoudy [13] estimated
coeflicient bounds for some g-starlike and g-convex func-
tions of complex order. Recently, Arif and Ahmad
defined a new g-differential operator for meromorphic
multivalent functions and investigated classes related to
g-meromorphic starlike and convex functions in their
articles [14, 15].

In this article, we introduce a new g-differential opera-
tor for meromorphic functions and use this operator to
define and study some properties of a new family of mer-
omorphic multivalent functions associated with circular
domain.

We now define the differential operator &, ,

by

:2[p—>?[p

Dyof (2) = (1+ [p qu)f (2) + ug’20,f (), (8)

where ¢ > 0.

Journal of Function Spaces

Using (1), we can easily obtain

Duaf ()= 5 + Z (1+ [p, qlu + ud’[n, q))a,, 9)

et
We take
Dpaf (2) =
Do ()= Dy (Puaf ) = 5 o)
* i (1+[p.qlu+ pg’[n,q))°a,z

n=p+1

In a similar way, for m € N U {0}, we get

——+ Z (1+ [p.qlu+ug’[n,q))"a,2". (11)

n=p+1

QZ’"qf
From (8) and (11), we get the following identity:

9;”“ (z) = q"zaq@:j’qf (L+[p, qlu) Dy, f ()

We now define a subfamily .#€, ,(p, m, A, B) of 2, by

using the operator 2/, as follows.

Definition 1. For -1 <B<A<1 and 0< g <1, we define f €
2, to be in the class MEC,,(p, m, A, B), if it satisfies

_qpa (Za gm (Z)) p 1+ Az
[P, q]aqgqu( ) 1+Bz’

(13)

« ,»

Here, the relation symbol “<” is
subordinations.

used for the

We see that for particular values of p, m, A, B, u, and g, we
get some of the well-known classes few of which are listed
below:

(1) For m=0 and g— 17, we get the class of mer-
omorphic multivalent convex functions associ-
ated with Janowski functions denoted by
ME, A, B]

(2) For A=1,B=-1, and m =0, we get ﬂ%*)q, the class
of meromorphic multivalent convex functions in ¢
-analogue

(3) For A=1,B=-1,m=0, and g — 17, we get the class
of meromorphic multivalent convex functions

denoted by ./,
(4) For A=1,B=-1,m=0,p=1, and q— 17, we get
ME*, the class of meromorphic convex

functions
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the class 4%, ,(p, m, A, B), if and only if

3
It can easily be verified that a function f € 2, will be in
(20, (20, 2f () )/ (I ]aqu;;qf(z)) +1 3y »
A+ B((20,(20,21,f(2)) ) 09, (0,211 2) )/ (10 419,211 () ) - 419,210 f ()|

The following lemma is used in our main results.

Lemma 2 (see [16]). Let h(z) be analytic in D and have the
form

[ee]
(2)=1+ ) dz", (15)
n=1
and k(z) is analytic and convex in D with series representation
(e8]
k(z)=1+ ) k2" (16)
n=1

So if h(z) < k(z), then |d,| <|k;|, for ne N={1,2,---}.

2. Main Results and Their Consequences

In this section, we start with sufficiency criteria for this newly
defined class and then, we give the coefficient estimates for
the functions belonging to this class. The following lemma
is proved which will be used in this section.

Lemma 3. Suppose that the sequence {A,,,,}* .., is defined by

Then,

ptn

w(n) ¢(1) ¢(k+1)

Proof. From (17), we have

¢(n)y(n) Ay, = [p.q)(A~B) (Z W(k)Ak> : (19)
k=0

A VO PaA-BEpa@-BrE)

Thus, we obtain that

¢(n+ Dy (n+1)Ay,. = [pq)(A - B) (i 1//(k)Ak>

k=0

— b dl(A-Byy(mA,., + pal(A-B) Y w(k)A, (20)

k=0
= [P; q] (A - B)V/(n)ApM + (p(n)V/(n)Apm
= ([ gl(A = B) + ¢(n))y(n)A,, .

From (20), we find that

1 _ ([0 q)(A=B) +¢(n))y(n)
Xpm S gy ED @Y
Thus,
A +1n A +n—1 A +2
APM B Apin—l . A§+n—2 Airl
a2 pal(A-B)+¢(n—1)y(n-1)
o $(n)y(n)
_(pq)(A-B)+¢(1))y(1) p-q|(A-B)y(0)
P2y (2) (1)y(1)
_y(0) Pq 1(A-B) 1 [P, q)(A-B) + ¢(k)
~ Y H shrny (=Y

(22)

In conjunction with (17), we complete the proof of
Lemma 3.

Theorem 4. If f € A, is of the form (1), then it will be in the
class ME, ,(p, m, A, B) if and only if the inequality

(9]

Y. (€[ a(1+B)+(1+A)[nq][p,q))
n=p+1 (23)

"I+ [pglu+ pg’[n.q]"|a,]) < W

is satisfied.
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Proof. For fel®,,(p,m,A,B), we need to prove the
inequality (14). For this, consider

(qpaq (zaa@fﬁ (Z)))/ ([P’ q19,2;: (z)) +1

H:=
A+ B( (20, (20,21, (2)) )49, (20,21, 2) ) 1 (19 410,21 f (2) ) 0. 410, 251, f () »
| 7, (20,2714f (=) ) + [0 410,21 (2)
Alp, 410,22, f(2) + Bgpd, (zang/'f (z))
By using (8) and with the help of (3) and (11),
_ ‘ 2oy (L+ [Pl + ug’[n, 4)" (¢ [n. qI" + P> gl [, 4]} 2,2
~(((A=B)[p. q*) (A= B)[p, q*/qpzr*1) + X321 (1 + [ps gl + pg? [, )" (Alp. q)[m, q] + Bg?[n, q)%) a, 2"
_ ‘ 2oy (L+ [p alp+ ug’ [, 9)" (¢ [, aI" + [p- gl [ 4]) 2,27 (25)
~(((A=B)[p q*) (A= B)[p, q*/g?) + X321 (1 + [ps qlet + pg? [, 4))" (Alp. q)[n, q) + Bg[n, q)*)a, 2"+
< Yoper (1+ [P g+ ugf [n,q))™ (@ [, q)° + [p. q) [, q]) |4, | .
~ (((A=B)[p.a*) (A= B)[p. q1*1a") = X2 pr (1 + [p2 qlpt + p [, q))" (A[ps q) [, q) + B[, ] ) |a, |
Now, if we use the inequality (23), then Conversely, let f € 4, ,(p, m, A, B) and be of the form
(1); then, from (14), we have for z € D,
H<1, (26)
and this completes the direct part of the proof.
(20, (20,201 ) )/ (1p- 410,211 (2)) +1
A+B( (20, (20,21 () )49, (20, Z1,f (2) ) 1 (10 410,21 f (2) ) Ip. 10, 1 (2) @)
_ Loty (1+ [P qlp+ g’ [n, 4)" (@[, 4" + [P g ) 2,27
~(((A=B)[p, ) (A= B)[p, 4/ ) + T2pir (1 + > qles + [, q))" (A[p, q] [, q] + B[, ] )@, 27|
Since |Rez| < |z|, we have
- { Yoot (L+ [P qlu+ pg?n, q))" (47 [, q)° + [p. q)[n, q)) a, 2" }
¢ P 3 = - R <1. (28)
(((A=B)[p.qa]") (A= B)lp,q]"/a?) + X2, (1 + [p> qlpe + ua? [, q])" (Alp. q][n, q] + B [n, )" )@,z
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Now if the values of z are chosen on the real axis, then
(q°0,4(20,2,,,.f(2)))/([p 4]0,2},,f (2)) is real. Using some
calculations in the inequality (28) and letting z— 1~
through real values, we finally get (23).

Theorem 5. If f € M, ,(p, m, A, B) and is of the form (1),
then

p.4ql(A - B)y(0)

< gy )
v(0) 17 [P, 4)(A=B) + ¢(k)
|ap+"|S1//(n) 9! o+ ) (n=2),
(30)
where
$(n) =" [p+n,q” + [p q][p + . q), (31)
y(n)=(1+[p. gl +ug’[p.qlp+n q))". (32)

Proof. If f € 2[p is in the class ﬂ%ﬂ,q(p, m, A, B), then it sat-
isfies

_qpa (Za 9,4qf( )) 1+ Az

0,Z,.f () 1+Bz’ (33)
Now, let
49, (20,2,1,f (2))
") eI @) 34
Since
Re h(z) >0 (35)

so h(z) is in the class P with its representation which is given
by

[ee]
z)=1+ z d,z". (36)
n=1
Now,
1+ Az
< . 37
() 1+ Bz (37)
But
1+Az
=1+(A-B 38
1+ Bz + ot (38)
Now, using Lemma 2, we get
|du| < (A - B), (39)

now putting the series expansions of h(z) and f(z) in (34),
simplifying and comparing the coeflicients of z"*# on both
sides

~¢"(1+ [p, qlu+puq’[n+p.q)"[p+n,qa,,,
=p, q]hv+n q)(1+ [p, qlu+ ud’[n +p, q))" a,.,

Cpa Y (1 T )

(40)
which implies that
~(1+ [p. gl + ug’[n+p, q))"
(@ p+ g +[p.qllp +n.q))a,,,
= LP,q}ni(l +[p, qlu+ud’lp+i,q)" [p+ n. glay,d, ;.
- (41)

Now, by taking absolute on both sides with using the tri-
angle inequality and using (39), we obtain

(1+ [p, qlu+ug’[p +n. q)"
(o +n,q” + [ ql[p + 1)) | @p]

(42)
n-1
<pal(A=B) Y (L+[palu+ud’lp+i )" |ayl-
i=0
Using the notation (31) and (32) implies that
‘%H‘ < P q)(A-B)y(0) : (43)

$(Dw(1)

|3pin]
Now, we define the sequence {4,,,}" as follows:
,q|(A—B)y(0
4, = pAA-BYO) -
¢(Ly(1)
- (45)

In order to prove that

|aP+"|SAp+n (n=2),

(46)
we use the principle of mathematical induction. It is easy to
verify that

[apoal = A1 = =55 0) )



Thus, assuming that
=2,3,-,n), (48)

|apj| <Ap; G

we find from (44) and (48) that

e (5 )

(my(n) \& -
< w C
— P(m)y(n) (kz—(:) w(k)APJrk) Ap+n+1

Therefore, by the principle of mathematical induction,
we have

’aern‘SA;Hn (n>=2). (50)

By means of Lemma 3 and (45), we know that

_¥© pq ) 77 [P 9)(A - B) + ¢(k)

ptn W(”) ¢ e k + 1 (

n>2).

(51)

Combining (50) and (51), we readily get the coeflicient
estimates (30).

3. Closure Theorems

Let the functions f,(z),(k=1,2,3, ---,1) be defined by

1

fi(2) = - + Z a,,z" (zeD,a,; >0). (52)

n=p+1

Theorem 6. Let the functions f(z)(k=1,2,3,---,1) defined
by (52) be in the class M, ,(p, m, A, B). Then, thefunction

FeMlE,,(p,m, A, B), where

1 1
=Y MWfi(2) (Akzo, Z/\k=1>. (53)
k=1

k=1

Proof. From (53), we have

=+ Z <Z }Lkank>z (54)

n=p+1 \ k=1

Journal of Function Spaces

By Theorem 4, we have
(e8]

Y (@nql’(1+B)+(1+A)n,

n=p+1

“(1+[pqp +uqd’n,q)) (Z )‘kﬂnk>

qp-4l)

! 55
==;A(ﬁwxfmﬁfu+m+a+Anm@mﬂ)( )
- (1+ [p, qlutpg’[n,q)) ") a,.
S (b a?(A-B)\ _[p.af(A-B)
= ,;A’( : P - P

Hence, by Theorem 4, F € #€,,(p, m, A, B).

Theorem 7. The class ﬂ%’w (p, m, A, B) is closed under con-
vex combination.

Proof. Let the function f,(z)(k =1, 2) given by (52) be in the
class M€, ,(p, m, A, B). It is enough to show that

h(z)=af,(z) + (1 -a)f,(2),0<a <1, (56)

is in the class .#€,,(p, m, A, B). Since for 0<a <1,

:—+ Z [aa,; +

n=p+1

@), (57)

by Theorem 4, we have

o0

Z ([ q) (1 + B) + (1 + A)[n,

n=p+1
“(1+[p, qluaa,, +(1-a)a,,

= ;2,1 (¢ [nq* (1 +B) + (1 + A)[m, q][p. q])
- (1+ [p: gl +ug’[n, q))"a
- (¢"[n g/’ (1 +B) + (1 + A)[n,
“(L+[p,qlu+pg’[n.q)"a,,

_(XW +(1-a) P, q}zé}’:‘_B) _p Q]ZQ?_B),

qp-ql)

o0

n1 T (1- “)n:pﬂ

qlp- q))

(58)
Hence, by Theorem 4, h(z) € M€, ,(p, m, A, B).

Theorem 8. Let the function f(z)(k=1,2) given by (52)
belong to M€, ,(p, m, A, B); then, their weighted mean h;(z
) is also in the class ME,,(p, m, A, B), where h(z) is defined

by

+(1+j)f2(Z)}. (59)

%@z{Uﬁh@Z
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Proof. From (59), one can easily write

-5+ 2 [

n=p+1

1+J) 2| n.

To prove hj(z) € /%‘gw(p, m, A, B), we consider

o0

> (¢[n q*(1+B) + (1+ A)(n,

n=p+1

q)lp-4))

(L =) + (1 +))an

(14 [p qlurpd’ [n. q)" S

0D g1+ Byt + Al

n=p+1
1+ [p g+ pg’[n. g))"a,, < < z_j) = ;? )

L+ [pa*(A-B) _[pa’(A-B)
2 qP qP

(61)
Hence, by Theorem 4, h;(z) € M€, ,(p, m, A, B).

4. Distortion Theorem

In the next two results, we shall discuss the growth and dis-
tortion theorems for our newly defined class of functions.

Theorem 9. If f is in the class ME, ,(p, m, A, B) and has the
form (1), then for |z| =1, we have

1 1
r—P—SerS|f(z)|Sr—p+91rp, (62)
where
o [P 4 (A-B) ,
U@ (@p+ LaP(1+B)+ (1+ A)lp+ Lqllp.ql) (1 + [p gl + pa?[p + 1,q))"
(63)
Proof. As
@)=+ Y a2l Lo Yl (o
n=p+1 |Zp| n=p+1

for |z =r <1, we have " <P for n>p + 1 and

/(= )|<— +r Z @l (65)

n=p+1

7
Similarly,
1
f@)z 5 - 3 Jal (66)
n=p+1
Now, if fe.l 6, ,(p, m, A, B), then by (23),
Y (@l al(1+B)+(1+A)[nq][p. q])
n=p+1 , (67)
" L ql*(A-B
(1 ) oy < LD
But we know that
(€lp+1.q7(1+B) +(1+A)p+1,9][p. q])
1+ poqlu+pdlp+1,9)" Y |a,|
N n=p+1 (68)
< Y (¢ng’(1+B)+(1+A4)nqlp.q)
n=p+1
“(L+[p, qlu +uq’[n,q))"|a,|.
Hence,
(€[p+1Lq*(1+B) + (1+A)p+1,4][p. q])
m [es) , 2 A—-B
(g a)” Y ja s PEED,
n=p+1
(69)
which implies that
§:|a |< [P’q]Z(A‘B)
W T @ (@lp+ La (14 B) + (L+ A)[p+ L q)[p.q]) (1+ [p gl + ug?[p + 1, )"
(70)

Now, by putting this value in (65) and (66), we get the
required proof.

Theorem 10. Let f € ME,, ,(p,m, A, B) and have the form
(1). Then, for |z| =T,

P>Q]m _ p m ps q]m P
i s‘aqf(z)‘sm+92r, (71)
where
.. p.af'(A- B) ,
@@+ Lq(1+B)+(1+A)p.q))(I+[p.glu+uglp+1q)"

(=" n.

(72)



Proof. From the help of (3) and (4), we can write

a;"f(z) - (;rlnzwg}:zlm + Z [n=(m=-1),4q],,2,2""
n=p+1
(73)

Since |z| = r < 1 implies that ¥"™ <’ for m<n and n>
p+1, hence

0@ s Lo it Y e (m-1)4], 000

- qnm+(rm+p et
(74)
Similarly,
m P 4] \
oyf(e)|z e e Y = (= 1))l
q r n=p+1
(75)

Since f is in the class .#€,,(p, m, A, B), so by (23), we
have the inequality

(€lp+1,q)(1+B)+(1+A)[p.q))
(1+[pqlu+ug’lp+1,9)"

& lp.a*(4 - B) 76)
=Y [ glla, s LEAZD)
n=p+1 q
from which it can be deduced that
Y [mqlla,
n=p+1
< [p.q*(A-B)
T @ (@lp+1,q)(1+B)+ (1+A)[p.q])(1 + [p.qlu + ug?[p + 1,9))™"
(77)
but it can easily be seen that
Y In=(m-1).q)a,,[< Y [ndllal (78)
n=p+1 n=p+1
which implies
Z [” - (m - 1)’ qnapml
n=p+1
< [p.q*(A-B) .
T @ (@lp+Lg)(1+B)+ (1+A)[p,q])(1+ [p qlu+ pug?[p + 1,q])"
(79)

Now, using this inequality in (74) and (75), we obtain the
required proof.
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5. Integral Representation

Theorem 11. Let the function f given by (1) be in the class
ME,,(p,m, A, B). Then, the function G(z) represented by

G(z):(1+y)zip +ypj @dt (y=0,z€D), (80)
0
is in the class ME, ,(p, m, A, B).

Proof. From (1),

flz)y=z7*+ i a,z". (81)

n=p+1
Then,

i t_‘p + Zsozpﬂantn
0 t

G(Z)=(1+V)$ +ij dt

1 -11 Qoa
=(+y) S+l ——+ Q) 7 82
zF p P n:;m” (82)
o N WP .
ety Do

n=p+1

Consider

(9]

Y (€[nal*(1+B) + (1+A)[n,q)[p. q))

n=p+1
1+ [l + g’ )" |22

o (83)
< Y (¢[naP(1+B)+ (1+A)[nqp,q))

n=p+1
(L4 [poglu+ug [, q])"ypla,| < W’

since yp < 1.
Therefore, by Theorem 4, G(z) € #E,, ,(p, m, A, B).

6. Radius Problems

The following results are about the radii of convexity and
starlikeness for the functions of the class .#€, ,(p, m, A, B).

Theorem 12. If f € M€, ,(p,m, A, B) , then f € ME ,(ax) for
|z| <r; , where

. <qpp(p—a><qp[n+p,q]z<1+B>+<1+A>[n+p,q1m]><1+mqw+uq"[n+p,q]>"‘> "
‘ (p+m(n+p+alp.af(A-B)

(84)

Proof. Let f € ME,,,(p, m, A, B). To prove f € ME,(a), we
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only need to show

<1.

of"(@) + (p+ Df' (2 5
I/(

zf''(2) + (1 +2a - p)f' (2)

Using (1) along with some simple computation yields

G|l <1 (86)

nzl(p+n (p+n+0c)‘

As f is in the class 4@, ,(p, m, A, B), so we have from
(23)

Y. (@[ma’(1+B) + (1 +A4)[n.q][p.q))
n=p+1

“(1+ [p qlp + ug’ [, q])"|a,|

[pq](A Béiq (1+B)
q n=p+1
+(1+A)[m q)lp, q)) (1 + [ps gyt + pg’ [, q))" |a,| < 1.
(87)

Equivalently,
Y@ D) (s Apalpd)

L+ [pqlu+ pg’ [n+p, q))"|a,,,| <1.

Now, inequality (86) will be true, if the following
holds:

Z(P"’ ”*P*“)} ﬂ)HZ‘nnp

<

qu (¢°[n+p,q]"(1+B) + (1+A)[n+p,q)[p, q)) (1 + [p, gt + g’ [ + p, q))" |
[p.ql*(1-4) v

(89)
which implies that

@p(p—a)(¢[n+p, g’ (1 +B) + (1 +A)[n+p,q][p.q]) (1 + Lﬂvq]#”fﬂfl”[”ﬂ’ﬂi])m,

|| < 2
(p+n)(n+p+a)p.q°(A-B)

(90)
and so

1+B) + (L+A)[n+p.qllpq)) (1 + [p. qlp + pg’[n + p. q)
(p+n)(n+p+a)p.qf(A-B)

|2 <

(qPP(P —a) (qP[n+p, q]z( ,,,) 1/(n+2p)

(o1)

We get the required condition.

Theorem 13. Let f € ME,, ,(p,m, A, B) . Then, f € MS,(x)
for |z| <r,, where

. (qﬂ(p—w(ﬂm a’(1+B) + (1+ )l allp. ) (1 + [p. alu + g’ [ q})’")’“““"f
’ (n+p+a)lp.a’(4-B)
(92)
Proof. We know that f € # S, (a), if and only if
!
,Zf (Z) +pf(z) < 1. (93)
zf (2) = (P~ 20)f(2)
Using (1) and with some simplification, we get
w/n+pta w2
Z‘i (ﬁ) || |27 < 1. (94)
Now, from (23), we can easily obtain that
5 (@l q’(1+B) +(1 A dlp )+ pgina)” g
n=p+1 [P) q] (A-B)
(95)

For inequality (94) to hold, it will be enough if

2

<
n

n;P;a> ‘aw’Hz‘nﬂp
Q¢ (@[ (14 B) + (1+ A)[n, ql[p, q) (1 + [p, g + pq’ [, q])"
[.q)*(A-B) ’

1

(96)
which implies that

4 (p - @) (¢ [m q* (1 +B) + (1+ A)[n, q][p. q]) ( L+ [p.qlu+pg’In.q)"

‘z‘n+2p<
(n+p+¢x@q] (A-B)
(97)
and hence,
Iz‘<<qf<p o) (¢/naP(1+B)+ (1+A)[n,q]Lv,q])<1+Lﬂ,quq"[mq])m)”WP):,A
(n+p+a)p.aP(A-B) ’

(98)
Thus, we obtain the required result.

7. Conclusion

The applications of g-calculus have been the focus point in
the recent times in various branches of mathematics. This
article introduces a new operator in g-analogue for mero-
=n- morphic multivalent functions. Then, a new subclass of mul-
tivalent convex functions is defined and studied for some of
its geometric properties like sufficient conditions, coefficient
estimates, and distortion. Also, problems of closure and inte-
gral representation are discussed in detail. Many other classes
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can be defined using this operator which will open a lot of
new opportunities for research in this and related fields.
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Let h,(z) and h,(z) be two nonvanishing holomorphic functions in the open unit disc with h;(0)=h,(0) =1. For some
holomorphic function g(z), we consider the class consisting of normalized holomorphic functions f whose ratios f(z)/zq(z) and
q(z) are subordinate to h,(z) and h,(z), respectively. The majorization results are obtained for this class when h,(z) is chosen
either h,(z) =cosz or h(z) =1+sinz or h (z) =+/1 +zand h,(z) =1 +sin z.

1. Introduction

In order to better explain the terminology included in our key
observations, some of the essential relevant literature on geo-
metric function theory needs to be provided and discussed
here. We start with symbol &/ which represents the class of
holomorphic functions in the region of open unit disc U, =
{z€ C: |z| <1}, and if f(2) is in &, then it satisfies the rela-
tionship f(0)=f'(0)—1=0. Also, the family &c o/ con-
tains all univalent functions. Though function theory was
started in 1851, in 1916, due to coefficient conjecture pro-
vided by Bieberbach [1], this field emerged as a good area
of new research. This conjecture was proved by De-Branges
[2] in 1985. Many good scholars of the period attempted to
prove or disprove this conjecture between the years 1916
and 1985. As a result, they identified several subfamilies of
a class & of univalent functions linked to various image
domains. The families of star-like & and convex % func-
tions are the most basic, mostly studied, and beautiful geo-
metric representations of these subfamilies, which are
described as

S$* = {fe&:mzj:é? >0,(ze[Ud)},

z I(Z) !
K = feé’:m%>o,(zetud)

In 1970, Roberston [3] established the idea of quasisu-
bordination among holomorphic functions. Two functions
F\(z), F,(z) € o are related to the relationship of quasi-
subordination, denoted mathematically by %, (z)<,%,(z),
if there exist functions ¢(z), u(z) € o such that zf'(z)/¢(z)
is holomorphic in U, with |¢(z)| £ L,u(0) =0, and |u(z)| £
|z| satisfying the relationship

F1(2) = 9(2)F(u(2)), 2 € Uy (2)

Also, by choosing u(z) =z and ¢(z) =1, we obtain the
most useful concepts of geometric function theory known
as subordination between analytic functions. In fact, if
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F,(z) € S, then, for F,(z), F,(z) € o, the subordination
relationship has

F1(2) < F,(z) © [F1(Uy) ¢ F5(U,) with F,(0) = F,(0)].
(3)

By taking u(z)=z, the above definition of quasisu-
bordination becomes the majorization between holo-
morphic functions and is written mathematically by
F1(z) « F,(2), for F,(z), F,(z) e d. That is; F,(z) <
F,(z), if a function ¢(z) € &/ exists with |p(z)|£1 in
such a way that

zelU,. (4)

This idea was introduced by MacGregor [4] in 1967.
Numerous articles have been published in which this
idea was used. The work of Altintas and Srivastava [5],
Cho et al. [6], Goswami and Aouf [7], Goyal and Gos-
wami [8, 9], Li et al. [10], Panigraht and EIl-Ashwah
[11], Prajapat and Aouf [12], and the authors [13, 14]
are worth mentioning on this topic.

The general form of the class §* was studied in 1992 by
Ma and Minda [15] and was given by

#f'(2)
f2)

S*(A):{feé’: <A(z)(ze[Ud)}, (5)

where A(z) is a regular function with positive real part and
A'(0) >0. Also, the function A(z) maps U, onto a star-
shaped region with respect to A(0)=1 and is symmetric
about the real axis. They addressed some specific results such
as distortion, growth, and covering theorems. In recent years,
several subfamilies of the set &/ were studied as a special case
of the class §*(A). For example,

(i) if we take A(z) =1+ Mz/1+ Nz with -1<N<M
<1, then the deduced family §*[M,N]=§*(1+M
z/1+ Nz) is described by the functions of the
Janowski star-like family established in [16] and
later studied in different directions in [17, 18]

(i) the family &7 = 8" (A(z)) with A(z) =+v/1+z was
developed in [19] by Sokdl and Stankiewicz. The
image of the function A(z) = /1 + z demonstrates
that the image domain is bounded by the Bernoullis
lemniscate right-half plan specified by |w?(z) - 1|
<1

(iii) by selecting A(z)=1+sinz, the class §*(A(z))
leads to the family &7, which was explored in [20]
while & = & (¢) has been produced in the article
[21] and later studied in [22]

(iv) the family & =8"(A(z)) with A(z)=1+z/J(J +
2)/(J-z),J=+v2+1 is studied in [23] while &7
=8"(cos (z)) and &7 =8 (cosh (z))

cosh = were
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recently examined by Raza and Bano [24], and
Abdullah et.al [25], respectively

Now, let us take the nonvanishing analytic functions
hy(z) and h,(z) in U,; with h;(0)=h,(0)=1. Then, the
families defined in this article consist of functions f(z) €
o/ whose ratios f(z)/zq(z) and q(z) are subordinated to
hy(z) and h,(z), respectively, for some analytic function
q(z) with g(0) =1 as

f(2)
24(2) <hy(2), (6)

q(2) <hy(2).

We are now going to choose some particular functions
instead of h,(z) and h,(z). These choices are

hi(z)=1+sinz
orh,(z)=cos z
(7)
orh (z)=V1+z,
h,(z) =1 +sinz,

and by applying the above-mentioned concepts, we now
consider the following classes:

F s = {f(z) ed : ,;fq(_(zz)) < cos z&q(z) < h,(z),z € Ud},
(8)

f(ZZ) <V1+2z&q(z) < h,(z),z € lUd},
©)

Fon = {f(z) eot : L 14 ginz&q(e) <(e).z € [Ud}.

zq(z)
(10)

In the present article, we discuss majorization prob-
lems for each of the above-defined classes #_ ,% o, and

cos’
o
F in-

2. Main Results

To prove majorization results for the classes F_ ,% s, and
F 4> We need the following lemma.

Lemma 1. Let q(z) < I + sin z and for |z| < r. Then, q(z) sat-
isfies the following inequalities:

I-sinrcoshr<|q(z)|<1+sinrcoshr, (11)
zq' (2) < r cosh r. ' (12)
q(z) (I1-r?)(1-sinhr)
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Proof. 1f q(z) < 1 + sin z, then
q(z) =1+ sin w(z), (13)

for some Schwartz function w(z). Now, after some easy cal-
culations, we have

zq' (2) _ zw'(z) cos w(z)
q(z) l+sinw(z)

(14)

Let w(z) = Re? with |z| =r<R~m <O <m.A calculation
shows that

ﬁi(cos (Reie)) = cos (Rx) cosh (Ry), (15)
where
x =cos 0,
y=sin 0, (16)
forx, y € [-1,1].

Now, we can write

cos (Rx) = cos R=cos ,

1 < cosh (Ry) < cosh R<cosh r.
Thus, we have
R cos w(z) = cos 7. (18)
Now, consider

‘sin (Reie) ‘2 = cos (R cos 6)2 sinh (R sin 0)2

+sin (R cos 6)2 cosh (R sin 6)2 (19)
=¥ (0).

A calculation shows that the numbers, 0, 7, +77/2, are
the roots of equation (19) in [-7, 7z]. Since ¥(6) is an even
function, it is sufficient to consider 0 € [0, 7z]. We observe that
¥(1/2) = sinh?(R) and ¥(0) = sin?(R). Now, we can write

max {‘P(O),‘I’(;),‘P(n)} =sinh®(R).  (20)
Hence,
sin R(eie) ’ < sinh (R) <sinh 7. (21)

Similarly, one can easily show that

cos r < |cos w(z)| < coshr. (22)

Now, from well-known inequality for Schwartz function
w(z), we obtain

|w,(z)|<l—|w(z)|2= 1-R 1 .
Tz 1z 177

(23)

Now, by applying (21), (22), and (23) in (14), we get (12).

Theorem 2. Let the functions f(z) € o/,g9(z) € F_,, and also
suppose that f(z) < g(z) in Uy. Then, for |z| <),

' (2| <]d' ()] (24)
where r, is the smallest positive root of the equation
((1=r*) =r(I+p)) cos r—rsinh r) (25)

- (1-sinh r) - r cos r cosh r = 0.

Proof. If g(z) € F_, then by the subordination relationship,
we have

=cos w(z). (26)

Now, after simple calculations, we have

zg' (z) . zq' (z) B zw' (z) sin w(z). (27)

9(2) q(2) cos w(z)

Now, by using (21), (22), and (23) along with Lemma 1,
we obtain
9(2) 12|
9'(2)

B |1+2q' (2)/q(z) — 2w’ (2) sin w(z)/cos w(z)]

||

<
" 1-2q' (2)/q(z)| - |aw' (2) sin w(z)/cos w(z)]|
r(1=7*)(1 =sinh r) cos r
= (1-r?)(1-sinhr) cos r —r cos r cosh r — r sinh (1 —sinh r)

(28)

From (4), we can write
f(2)=9(z)g(2)- (29)

Differentiating the above equality on both sides, we get
f'(2)=¢"(2)9(2) + 9(2)g'(
=9'(2) <<P(Z) +9'(2)

2)
zg' (2) (30)
9(2) )

Also, the Schwartz function ¢(z) fulfils the below

inequality:

o@)s a0 - S ceuy. o




4
Now, applying (28) and (31) in (30), we have
' (1= |o(2)[*) (1 = sinh ) cos ,
‘f (Z)‘ s [(P(Z) * (1-r?)(1- sinh(rl) C(l(:ijlr)ci)ls r cosh r)— rsinh r(1 - sinh r)} }g (Z”
(32)
which by putting
9'(2)|=p(0sp=1) (33)
becomes the inequality
'@ s@i(r.p)|d (2)], (34)

where

r(1-|¢(z)P")(1 - sinh r) cos r
cos r —r sinh r)(1 —sinh r) — r cos r cosh

(Dl(r’ P) :(P(Z) + ((1 71,2)

(35)
To determine r,, it is sufficient to choose
ry=max (r €[0,1): @,(r,p) = 1,Vp €[0,1]), (36)
or, equivalently,
ry=max (r € [0,1): ¥,(r, p) 2 0,Vp €0, 1]), (37)
where
¥, (r,p)= ((1-r*=r(1+p)) cosr—rsinh r) (38)

- (1 =sinh r) —cos r cosh r.

Clearly, when p =1, the function ¥,(r, p) assumes its
minimum value, namely,

min (¥, (r, p), p € [0, 1]) =¥, (r, 1) =¥, (1), (39)
where

v, (r)=((1- 7’ —2r) cos r —r sinh r)

(40)
- (I —sinh r) —r cos r cosh r.
Next, we have the following inequalities:
Y. (0)=1>0,
) "

¥, (1) =-0.438 51 < 0.

There exists 7, such that ¥, (r) > 0 for all r € [0, r, ], where r,
is the smallest positive root of equation (25). Thus, the proof
is completed.

Theorem 3. Let f(z) e o,g(z) e Fy, and also suppose
that f(z) < g(z) in U, Then, for |z|<r,,

' ()|’ )] (42)
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where 1, is the root (smallest positive) of the equation:
(1-7%)(1-sinhr)—2r(coshr+1-sinhr)=0. (43)
Proof. 1f g(z) € F,, then by using (10) along with the subor-

dination relationship, a holomorphic function w(z) in U,
occurs with w(0) =0 and |w(z)| < |z| in such a way that

9 14
4@ 1 + sin w(z) (44)

hold. Now, after simple calculations, we have

zg'(2) s zq' (2) . zw' (z) cos w(z)' (45)

9(2) q(z) 1 +sin w(z)

Using (21), (22), and (23) along with Lemma 1, we obtain

2]

B |1 +2p'(2)Ip(z) + zw' (z) cos w(z)/1 + sin w(z)|
r(1-r*)(1 -sinhr)
(1-72)(1 —sinh r) —2r cosh r’

IN

(46)

Also, with the use of (31) and (46) in (30), we easily get

, r(1-]¢(2)|*)(1 -sinh r ,
|f (z)| = [go(z) N (1 —(:2)(|1§0E s>1|n})1(r1) - 2r cos)h r |g (2) ‘

(47)

Now, by the similar lines of Theorem 2 along with the vir-
tue of (33), we easily obtain the required result.

Theorem 4. Let f(z) € of,g(z) € F o, and also suppose that
f(2) is majorized by g(z) in U,. Then, for |z| <r,,

' (@) <1g'(2)]; (48)

where r, is the positive smallest root of the equation
(1-2r° = 5r)(1-sinh r) = 2r cosh r = 0. (49)

Proof. Let g(z) € F 4. Then, a holomorphic function w(z)
in U, occurs with w(0) =0 and |w(z)| < |z| so that

9() =/ 1+w(z). (50)

zq(z)

Now, after simple calculations, we have

z9'(z) . zq9'(z) zw'(2)
@ e ey Y
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Using (23), we obtain

l2l[w' ()] _ e+ [w(z)]) _ J2l(L+ [2])

21-w@)) " 2(1-[2f) T 2(1- )
_
2(1-12|) ~ 2(1-r)

By virtue of (23) and Lemma 1, we obtain

< ||
T 1-|2p' (2)Ip(2)| - |zw' (2)/2(1 + w(2))]
Zr(l - rz)(l —sinh r)

<
= 2(1-r?)(1-sinhr)—2r coshr—r(1+7)(1-sinhr) '

(53)
Now, using (31) and (53) in (30), we get

2r(1-|g(2)[*) (1 - sinh r) ,
(1=r2)(1 =sinh r) = 2r cosh r = r(1 + r)(1 —sinh r) |g (Z)|

(54)

@)= o)+ 5

The required result follows directly using similar calcula-
tions as Theorem 2 along with the use of (33).

3. Conclusion

For some particular subfamilies of holomorphic functions
which are connected with different shapes of image domains,
we studied the problems of majorization. These problems can
be examined for some other families such as for the families
of meromorphic functions as well as for the families of har-
monic functions.
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In this paper, by using certain inverse pairs of symbolic operators introduced by Choi and Hasanov in 2011, we establish several
decomposition formulas associated with the Gaussian triple hypergeometric functions. Some transformation formulas for these

functions have also been obtained.

1. Introduction

The use of many mathematical operations goes beyond the
class of elementary functions. The calculation of integrals,
the summation of series, and solution of algebraic, transcen-
dental, difference, and differential equations and their
systems require expanding the class of studied functions.
The development of the concept of a function, going in
parallel with the development of the concepts of number
and space, led to the emergence of new hypergeometric func-
tions of many complex variables.

The great success of the theory of hypergeometric func-
tions in a single variable has stimulated the development of
the theory of hypergeometric functions in several variables
by the fact that the solutions of partial differential equations
arising in many applied problems of mathematical physics
are given in terms of such hypergeometric functions (see,
e.g., [1-6]). Multiple hypergeometric functions occur in
numerous problems in hydrodynamics, control theory, elec-
trical current, heat conduction, and classical and quantum
mechanics (see, for details, [7-10], and the references cited
therein). In view of theory and applications, a large number
of hypergeometric functions have been developed; for exam-
ple, as many as 205 hypergeometric functions are recorded in

the monograph [11]. In particular, we recall the Gaussian
functions  Fyy,, iy Fisg Fizas Fizp Fizes Figas Froa Faga
and F,;, in three variables defined by (see [11])

Fi14(a1, a5, 03,0456, 6,3 %, ), 2)
_ i (al)m+n(a2)n+p(a3)m(a4)pﬁ)’_nz_p (1)
@mn(c),  minlpl’

m,n,p=0

Fiy.(ay,ay,a3,b5¢5%, 9, 2)
i (al)m+n(a2)n+p(a3)p(b)m—p ﬁ)ﬁf (2)
(€1) man m! n! p! ’

m,n,p=0

Fisa(ay, a5, 05501, 65%, 9, 2)
i (al)m+n(a2)n+p(a3)p+m ﬂ)ﬁf (3)
(€1)men(C2), m! n! p!

m,n,p=0

F17a(‘11’ Ay, Q3,04 5C15Cy5C35X, ), Z)
i (al)m+n+p(a2)m(a3)n(a4)p ﬁy_”z_p (4)
(cl)m(cz)n(c3)p m! n! p!’

m,n,p=0
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2
Fip(ay,ay,a3,b5¢,65%,9,2)
i (al)m+n+p(a2)n<a3)p(b)m—n ﬁ}’_"f (5)
m,n,p=0 (Cl)m(CZ)p m! }’l'p'
Fi(ay, a5, by, b5¢5%, 9, 2)
_ i (al)m+n+p(a2)p(bl)m—n(bZ)n—m ﬁ)’_"f (6)
e (C)P m! n! p!
Figa(ar ay, as,a,5¢1565%, 9, 2)
- io: (al)m+n+p(a2)m(a3)n(a4)pﬁy_nf (7)
m,n,p=0 (Cl)m+n (CZ)p m! n! p'
Fioa(ay, a3, 03,045 ¢5%, ), 2)
AN RCY LG
m,n,p=0 (C)m+n+p m‘ 1’1! p'
Faa(@1> 85, 835 €15 €3, C3 5%, 95 2)
_ i (al)m+n+p(a2)m+n(a3)p ﬁ)ﬁg (9)
mipeo (€1)(€2),(c3),  minlp!
Fys(ay, ay, a3, by, by5¢5%, 9, 2)
_ OZO: (al)m(QZ)m(a3)n(bl)n—p(b2)2p—m ﬁ)’i{
e (©), m! n! p!
(10)
Here, (a),, denotes the Pochhammer symbol given as
(a),, = r(;(;)m) —a(@+1) - (a+m-1) (meN:={1,2,-1), (@), = 1.

(11)

Burchnall and Chaundy presented the inverse pairs of
symbolic operators V and A [12, 13] (also see [14]) by means
of which they established several decomposition formulas for
Appell’s double hypergeometric functions in terms of the
Gaussian hypergeometric functions in one variable. Recently,
Hasanov and Srivastava [15, 16] introduced multivariable
analogues of Burchnall-Chaundy’s symbolic operators, and
with the help of these operators, the authors obtained a num-
ber of decomposition formulas associated with multiple

Lauricella hypergeometric functions FE;), Fg), F(Cr), and Fg>.
In [17, 18], the authors gave the following multivariable
symbolic operators:

H, . (ap)= i (ﬁ))r(a £8,4-49,)

()(f+8,+--+5,)

o0
kyyeook

(B oot (F01)g

1

-0 (Bt r 1ok ’

T
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@I+ 8,4-45)
HX]’,.,’xr ((X, ﬁ) - F(ﬁ)F(“ + 61+"'+8r)
ky

_ i (B= )k pas, (FO1),

(50
(T—a=8,==0,) . kylk,]

(13)

=0

T

J .
((Sj::xja—xj,]:1,-~-,r;rE]N::{1,2,3,-~-}>. (14)

Based on the operators (12) and (13), we aim in this work
to establish certain decomposition formulas for second-order
Gaussian hypergeometric functions in three variables (1), (2),
(3), (4), (5), (6), (7), (8), (9), and (10), which are used to
derive some interesting transformation formulas for these
functions.

2. Symbolic Form

Applying the symbolic operators in (12) and (13), we con-
struct the following set of operator identities involving the
classical Gauss hypergeometric function , F, [19], the Appell
functions F,, F,, F, [20], the Horn functions G,, H,, H, [21],
and the Gaussian triple hypergeometric functions defined in

(1), (2), (3), (4), (5), (6), (7), (8), (9), and (10):
Fii,(ay, ay, a3, a45¢156,5%, 9, 2)
=H, (a;,¢)(1 —x)" % (1-y)™,F, (az, ag56y5 %),

(15)

_ _ z
(1-x)"(1-y)™,F, (az,a4;czs m)

=H, (a1, ¢;)F114(ap, 055 a3, 44561, 6 5%, 9, 2),

(16)

Fii(apaya3b5¢5x,,2)

B a 1-x)z
=H, (a;c)(1-x) b(l—y) 2, F (az,a3;1—b;—( l—y) )

(17)

1_
e T
=H,,(a,,¢)Fy1(ay, a5, a3, b5 ¢3%, 3, 2),

Fisa(ay ap,055¢156,3%, 9, 2)

=H,y(a),¢)(1-x)"(1-y)"™,F (az, e W%‘)’))

(19)

Zz
(1 —x)(l—y)> (20)
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Fi74(ay, 05, 03,04 5¢1, 65,633 %, ), 2)
_ X y
a
=Hz(a4, C3)(1 —Z) 1F2 (aly ay), a3 5C1,Cy 5 l—Z) ﬁ))

(21)
- x Yy
1-2z)™F (a,a,a;c,c;—,—)
(1-2) 2\ G092 83360 05 T T, (22)
=H, (a3 ¢3)Fi7,(a1, a5 a3, 045¢15 6, 633X, ), 2),

Figp(ay,ay,a3,b5¢1,65%, 9, 2)

— X y
:Hz(af,) Cz)(l —Z) alHl (b, al, aZ;Cl N I—_Z’ I—_Z)’

_ x J
l—Z alH (b> > 5 5T —>
( ) 1104158556 -2’ 1-2 (24)

=H_(a3,¢)Fy7,(a, 85, a3, b3 ¢1, ¢35 %, 3 2),
Fize(ay, a5, b1, 0,5 ¢5%,,2)
x oy ) (25)

=H,(ayc)(1-2) G, (al, by bys T T

_ x y
1_ al )b bl b ; - 7)
(1-2)"G (al R Ll (26)
=H,(ay, ¢)F;.(ay, a5 by, b,5¢5%, . 2),

Figa(ay, a5, a3,a45¢1, 65X, 5 2)

—, x y
=H, (a5, ¢,)(1-2)"F, (%az,% T, fz)

(27)
_ x Y
1-2z)“F (a 7 N ;—,—)
( ) 1A 83565 70 7 (28)
=H, (a4, ¢;) F1,(a1> a5, a3, 445 €1, 633 X, Y, 2),
Fioq(ay> a5, 05,04 5¢3%, 9, 2) (29)
=H,, (a;,c)(1-x)"2(1-y) " (1-2)™",
1-x)(1—y) (1 —z) ™%
(1=5) (-3 (1-2) 0

= Hx,y,z(al’ €)F10a(a15 a5, a3, 845 €5 X, ¥, 2),

Froa(a15 89, 35¢15 €5, €33%, 9, 2)
_ x y
=H,(a;5,¢6)(1 - 2) a1F4(“1’az;C1>Cz;—1 12 z)’

(31)

(1-2)"™™F, (ul,az 561Gy x L)

1-z 1-z
=H as, C3 F20u ay,085,035C1,C5,C33X%,),2),
z

(32)

Fysc(ays ay, a3, 01, b, 5¢5%, , 2)
=H, (a5, c)(1 —y) " Hy(by a1, 8,51 = bys—~(1 - )z, %),
(33)

(1 _J’)_blH7(bza ap,ay;1=b;3=(1-y)z,x)

- (34)
=H, (a3, c)Fys.(ay, a,, a3, b, bysc5%,),2).

Each of the operator identities (15), (16), (17), (18), (19),
(20), (21), (22), (23), (24), (25), (26), (27), (28), (29), (30),
(31), (32), (33), and (34) can be proved by means of Mellin
and inverse Mellin transformation (see, for example, [11,
20, 22]). The proofs of the operator identities are omitted
here.

3. Decomposition Formulas

In [23] (p. 93), it is proved that, for every analytic function
f(&), the following formulas hold true:

di’l

U (33)

(=0),{f(§)} = (-1)"¢"

(@+0), @) =8~ g (E @) 6

where

o=t

dE;ae(C;nelNO::{O,l,Z,---}. (37)

In view of formulas (35) and (36), and taking into
account the differentiation formula for hypergeometric func-
tions, from operator identities (15), (16), (17), (18), (19),
(20), (21), (22), (23), (24), (25), (26), (27), (28), (29), (30),
(31), (32), (33), and (34), we have

Fi1,(ay, a5, 03, 045¢15 6,5, ), 2)

© (_l)i+j(a3)i(a2)j(cl_al)i+j

= (-9 Y

$j=0 (Cl)i+ji!j!
x Ny : z
) |7 F 20456y ,
(1—x) (1—)/) X2 1(“2*’] ay;56 1—;\/)
(38)
—a —a z
(1-x)""(1-y)™,F (az, a,3¢3 I —)/)
_ i (a3);(a2)(c1 =)y,
$j=0 (Cl)i+ji!j!
X XY F | 1a(a1, a5 +joay +i,a, 50 +i+j, 6 5% 9, 2),
(39)

Fyy(ay,a5,a5,b5¢5%,y,2) = (1 _x>_b(1 -y) " x

S (B x N[y Y
Z j 1( )<1yy) x ,F,

50 (€) 4! 1-x

. (a2+j,a3;1—b—i;—(1_x)z>,

(40)



- -a 1-x)z
(1-x) b(l_)’) L F, (az,a3;1—b;—(l_y) >

J - lal)wj x,‘y]‘ (41)
(€)1

XFuc(apaz +hasbtisctitjixy, z),

l

‘Mg

(1= (1=y)
S (_l)iﬂ(%) (a3);(c1 = a1),, i i
XZ (c1) 7 J(lfx> (1{y>

141
i,j=0 1 i+jl'J'

FlSa(al’az’a3 5C 65X, ), Z) =

><2F1<a2+j,a3+i;c2; i-

(1 - x)_a3<l _y)_azzFl (az) as;¢ys
_ 020: (a3);(a,)(c; —a
$j=0 (Cl)i+ji!j!

XFISa(al)a2+])a3+l;Cl+1+],Cz;x,y,z),

1)i+jxi j (43)

(1-2)™
SR 1)i\t3 ™ “%4); i
o3 IO ()R

. X y
. (a1 +1,az>ﬂ3;C1,C2;1—_Z; 1—_2),

Fi7a(ay, @y, a3, a45€15 6, C35%, ), 2) =

— x y
1 - a F ( bl bl bl bl bl )
(1-2) a5, ay,a55C1, 6 g
=y @G —a); g (45)
i=0 (c3);i! 17

(@) +1i,a,y,a3, a4 ¢, 6, 63+ 15X, Y, 2),
F17b(a1,a2,a3,b'cl,c2;x,y, )
—a Z \
“0-gx 3 C AER
1-z

. x oy
'(b,al +i,ay505 —0, 7),

-z 1-z
(46)
x Y
alH b > > )—)—)
(I-2) 1( B0 T T,
o0
z F17b(a1+z ay, a3, b5¢,¢,+15%,9,2),
(47)

—-a,

Fi(ayay b, by505%,2)=(1-2)
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X y>
1-z21-z

F17c(a1+1 ay b, bysc+isx,y,2),

(1 - Z>_al Gl (al) bz» b] 5

z (cc)izl

i=0

(49)

(I1-z)™
v ((D'(@)(a-ay), 2\
: ; ()i (1 —Z) Fy (50)

FlSa(“l’ ay, 03,04 5C1,Cy 5%, Y, Z) =

(51)

(1-x)"(1-y)*1-2)™

X y z
x-1"y-12z-1)

F19a(a1’a2’ Az, Ay 5C5%, ), Z) =

3
x F;)) (C_al’az’a3’a4 ;€5

(52)
(1=x)"(1=y) ™ (1-2)™
_ X (@)(as)(ag) (e =a) iy
=2 T yz
i,j,k=0 ( )z+]+kl]
XFg,(apa, +ias+j,a,+ksc+i+j+k;xy,z),
(53)

Fr0a(a1, 05, a35¢1, 6,633 %, 9, 2)

RED RS P

. X y
.(a1+1,a2;c1,62;1—_z, I——Z)’

— X y
N e
(o)

=y @il6 ),

z F20a(“1 +1,04,,055Cp5 €y, C3 +1;x,y,z),

i=0 (c3);!

(55)
Fys(ay,ay,a3, by, by 5¢5 x,y, )
b, bl c— a3)1
= X z (C 1
(y>l (bz)alj az,l b (l—y)z’x))
1-y

(56)
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(1-y) lH7(b2)‘11>“2 s1-b;5=(1-y)z,x)

z a3)’y’F23c(a1,a2,a3,b +i,bysc+15%,9,2).

i=l

(57)

4. Transformation Formulas

The transformation formulas defined below follow from the
expansion formulas (38), (39), (40), (41), (42), (43), (44),
(45), (46), (47), (48), (49), (50), (51), (52), (53), (54), (55),
(56), and (57):

(1-x)"%(1-y)®Fy,

x y z
x-1"y-1"1-y)

(1 _x)_b(l =y) “F

X y (1-x)z
x-1"y-1" 1-y )

(1-x)"%(1-y)®Fs,

Fia(ay a5, a5,a45¢1,63%,y,2) =

. (cl —a,,0,,03,0,3C,Cy 3

Fiy(ay,ay,a3,b5¢5%,y,2) =

: <c—a1,a2,a3,b;6;

Fis,(a1, a9, a35¢,6,5%,9,2) =

X y z
) Cl_alaaZ)a?,;cl)Cz;x_lyy_l)(l_x)(l_y) >
(1-2)"Fyy,

x y z>
1-z2"1-2"2z-1/°

Fia(ay, 05, 03,04 5¢15 6,633, ), 2) =

: (al’ Ay, A3, C3 = Ay 5 €156y, 635

(1-2)"Fy,
x y z )
1-z2"1-2"z-1/)

Fiyp(ay,ap,a3,b5¢,65%,y,2) =

. (al,az,c2 —a3,b5¢0,6;

Fize(aya b0y 5¢5%,y,2) = (1-2) 1 Fyy,
x ¥ z )

1-z21-2"z-1/)

-(ul,c—az,bl,bz;c;

= (1_2)*“11:‘18“
X y z )
1-z2"1-2"2z-1/

Figa(ay> a5, 03,4561, 6,3 %, )5 2)

: (al,az,a3,c2 44561565

—x) 2 (1-y) (1

x y oz
x-1y-12z-1)

(1-2) 1 Fy,
X y z )
1-z21-2"z-1/’

Froa(ays a5 a3, a45¢5% y,2) = (1 —z)™

3
X Fg)) (c—al,az,aS,a4;c;

Faoa(@15 035 A35€15 €55 635X, 5 2) =

: (al’a2’ C3=035€565,C35

(1 _y)ihl Fps.

. (al,az,c—a3,b1,b2;c;x,y%l,(l—y)z)

Fysc(ay, a3, b1, b5 5¢3%, ,2) =
(58)

5. Concluding Remarks

In this present paper, with the help of the inverse pairs of
symbolic operators, we established a number of decomposi-
tion formulas for some Gaussian triple hypergeometric func-
tions. Also, we investigated certain transformation formulas
for these functions. We conclude that mutually inverse
operators (12) and (13) can be applied to other multiple
hypergeometric functions.
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In the present paper, a subclass of analytic and biunivalent functions by means of Gegenbauer polynomials is introduced. Certain
coefficients bound for functions belonging to this subclass are obtained. Furthermore, the Fekete-Szeg6 problem for this subclass is
solved. A number of known or new results are shown to follow upon specializing the parameters involved in our main results.

1. Introduction

Orthogonal polynomials have been studied extensively as early
as they were discovered by Legendre in 1784 [1]. In mathemat-
ical treatment of model problems, orthogonal polynomials
arise often to find solutions of ordinary differential equations
under certain conditions imposed by the model.

The importance of the orthogonal polynomials for con-
temporary mathematics, as well as for a wide range of their
applications in physics and engineering, is beyond any doubt.
It is well-known that these polynomials play an essential role
in problems of the approximation theory. They occur in the
theory of differential and integral equations as well as in math-
ematical statistics. Their applications in quantum mechanics,
scattering theory, automatic control, signal analysis, and axi-
ally symmetric potential theory are also known [2, 3].

Formally speaking, polynomials P, and P,, of order r and
m are orthogonal if

Jb(b(x)P,(x)Pm(x)dx =0.forr +m, (1)

a

where @(x) is nonnegative function in the interval (a, b);
therefore, the integral is well-defined for all finite order poly-
nomials P, (x).

A special case of orthogonal polynomials is Gegenbauer
polynomials. They are representatively related with typically
real functions Ty as discovered in [4], where the integral
representation of typically real functions and generating
function of Gegenbauer polynomials are using common
algebraic expressions. Undoubtedly, this led to several use-
ful inequalities appear from the Gegenbauer polynomial
realm.

Typically, real functions play an important role in the
geometric function theory because of the relation T = coSy
and its role of estimating coeflicient bounds, where Sj
denotes the class of univalent functions in the unit disk
with real coefficients and coS; denotes the closed convex
hull of Sp.

This paper associates certain biunivalent functions with
Gegenbauer polynomials and then explores some proper-
ties of the class in hand. Paving the way for mathematical
notations and definitions, we provide the following
section.
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2. Definitions and Preliminaries

Let ¢/ denotes the class of all analytic functions f defined in
the open unit disk U={z€ C: |z| <1} and normalized by
the conditions f(0) =0 and f'(0) = 1. Thus, each f € o has
a Taylor-Maclaurin series expansion of the form

flz)=z+ ianz”, (zel). (2)

n=2

Further, let & denotes the class of all functions f € &/
which are univalent in U (for details, see [5]).

A subordination between two analytic functions f and g
is written as f < g. Conceptually, the analytic function f is
subordinate to g if the image under g contains the image
under f. Technically, the analytic function f is subordinate
to g if there exists a Schwarz function w with w(0) =0 and
lw(z)| < 1 for all z € U; such that

f(z) = g(w(2)). (3)

Besides, if the function g is univalent in U, then the
following equivalence holds:

f(z) < g(z) if and only if f(0) = g(0)
f(U)cg(U).
Further on the subordination principle, we refer to [6].
It is well-known that, if f(z) is an univalent analytic func-

tion from a domain D, onto a domain D,, then the inverse
function g(z) defined by

g(f(2)) =2 (z€Dy), ()

(4)

is an analytic and univalent mapping from D, to D,. More-
over, by the familiar Koebe one-quarter theorem (for details,
see [5]), we know that the image of U under every function
f € § contains a disk of radius 1/4.

According to this, every function f € § has an inverse
map f~! that satisfies the following conditions:

ff(2)=z(z€U),

©
£ ) = (wl <o)z )

In fact, the inverse function is given by

g(w) =f"(w) =w-a,w* + (2a; - a;)w’

(7)

- (5a3 - 5a,a5 + a)w'+---.

A function f € o is said to be biunivalent in U if both f
(z) and f™'(z) are univalent in U. Let = denotes the class of
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biunivalent functions in U given by (2). Examples of func-
tions in the class = are

~log (1-2), ; log (ﬂ) (8)

It is worth noting that the familiar Koebe function is not a
member of X, since it maps the unit disk U univalently onto
the entire complex plane except the part of the negative real
axis from —1/4 to —oo. Thus, clearly, the image of the domain
does not contain the unit disk U. For a brief history and some
intriguing examples of functions and characterization of the
class X, see [7-15].

In 1967, Lewin [16] investigated the biunivalent function
class ¥ and showed that |a, | <1.51. Subsequently, Brannan
and Clunie [17] conjectured that |a, | <v/2. On the other
hand, Netanyahu [18] showed that 1}16212x|a2 | =4/3. The

best-known estimate for functions in X has been obtained
in 1984 by Tan [19], that is, |a, | <1.485. The coefficient esti-
mate problem for each of the following Taylor-Maclaurin
coefficients |a, | (n € N'\ {1,2}) for each f € X given by (2)
is presumably still an open problem.

The most important and well-investigated subclasses of
the analytic and univalent function class & are the class
8*(g) of starlike functions of order ¢ in U and the class
F(g) of convex functions of order ¢ in U. By definition,
we have

() = {f:feé’and Re {Z}((S)} >, (zeU_J;Osc<1)},

H(G) = {f:feé’and Re {1+ Zf,"(Z)}>c,(ze[U;0sc<l)}.
=
(9)

For 0<¢<1, a function f € X is in the class §%(¢) of
bistarlike function of order ¢ or F#5(c) of biconvex func-
tion of order ¢ if both f and f_1 are, respectively, starlike
or convex functions of order ¢.

Very recently, Amourah [20] considered the Gegenbauer
polynomials H,(x,z), which are given by the following
recurrence relation:

For nonzero real constant «, a generating function of
Gegenbauer polynomials is defined by

1

H > = T o a
«(%2) (1-2xz +2%)"

(10)

where x € [-1, 1] and z € U. For fixed x, the function H, is
analytic in U, so it can be expanded in a Taylor series as

mma=2®M% (1)

where C%(x) is Gegenbauer polynomial of degree .
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Obviously, H, generates nothing when a = 0. Therefore,
the generating function of the Gegenbauer polynomial is set
to be

Hy(x,z)=1-log (1-2xz+2") = Z C'(x)z",  (12)
n=0

for a = 0. Moreover, it is worth to mention that a normaliza-
tion of & to be greater than —1/2 is desirable [3, 21]. Gegen-
bauer polynomials can also be defined by the following
recurrence relations:

with the initial values
Ci(x)=1,C}(x) =2axand C§(x) = 2a(1 + a)x* —a. (14)

First off, we present some special cases of the polynomials
Co(x):

(1) For a =1, we get the Chebyshev Polynomials
(2) For a =1/2, we get the Legendre Polynomials

Recently, many researchers have been exploring biuniva-
lent functions associated with orthogonal polynomials, few to
mention [22-28]. For Gegenbauer polynomial, as far as we
know, there is little work associated with biunivalent func-
tions in the literatures. Initiating an exploration on the prop-
erties of biunivalent functions associated with Gegenbauer
polynomials is the main goal of this paper. To do so, we take
into account, the following definitions.

Definition 1. Let A= 1, u>0,x € (1/2,1] and « is a nonzero
real constant. A function f € X given by (2) is said to be in
the class B5(A, x,a) if the following subordinations are
satisfied:

(1-1) (f(TZ)>” +Af'(2) (f(_z>> o <Hg(x,z), (15)

1 13 1 p-1
(1—/\)(M> +/\(f"1(w))'<m> < H,(x, w),

(16)

where the function f~'(w) is defined by (7) and H,, is the
generating function of the Gegenbauer polynomial given
by (10).

By suitably specializing the parameters y, A, and «, the
class B (A, x,a) leads to the following new subclasses of
biuniavlent functions:

Example 1. If y =1 and a function f € X given by (2) is said to

be in the class B (A, x, «) if the following subordinations are
satisfied:

(1—A)<f(zz)> +Af'(2) < !

(1-2xz+2%)"

fﬁl(w) -1 ! 1
“‘”(T)*W @) < Tz
(17)

where x € (1/2, 1] and the function £ (w) is defined by (7).

Example 2. 1f A = 1 and a function f € X given by (2) is said to
be in the class B%(x, &) if the following subordinations are

satisfied:
o (LN !
S (7) MRSty

—1 w p-l
() (%) ez

where x € (1/2, 1] and the function f™* (w) is defined by (7).

(18)

Example 3.1f A =1, y =1, and a function f € X given by (2) is
said to be in the class By (x, «) if the following subordina-
tions are satisfied:

< . A~ Na?
(1-2xz+22)"

. 1
(1-2xz+2%)"

(19)

where x € (1/2, 1] and the function f~' (w) is defined by (7).

Example 4. 1f A =1, y =0 and a function f € X given by (2) is
said to be in the class &5 (x, «) if the following subordinations
are satisfied:

(20)

where x € (1/2, 1] and the function f' (w) is defined by (7).

Remark 2. The subclasses Bf(A,x,1) = B5 (A, x) and BL
(A, x,1) =B (A, x) were studied by Bulut et al. [29] and
Bulut et al. [30], respectively.



In this paper, motivated by recent works of Amourah
et al. [20], we use Gegenbauer polynomials to obtain the esti-
mates on the initial Taylor coefficients |a,| and |a;| for the
function class B (A, x, ).

Unless otherwise mentioned, we assume in the remainder
of this paper that A > 1,4 >0, x € (1/2,1], and « is a nonzero
real constant.

3. Coefficient Bounds of the Class B'.(1, x, a)

In the following theorem, we determine the initial Taylor
coefficients |a,| and |a;| for the function class B%(A, x, «).

Theorem 3. Let f € X given by (2) belongs to the class B(A,
x, &). Then,

2|a|xy/2|e|x
Vol + A7 = 2[a(p+ 1)1+ a) = a2+ 22) (1 + )] 2|
40°x?

(u+2)°

laz| <

. 2|a|x
(u+2A) ’

|as] <

(21)
Proof. Let f € B5.(A, x, a). From (15) and (16), we have
2\ ¥ ) 2)\**
1 (DY o (1)

Tz (22)

=1+ Cf(x)c,z + [C‘l"(x)c2 + Cg(x)cﬂzz+---,

1 1z 1 p-1
a—»(ff”>+AU%wY<ff”>

=1+ C{(x)d,w + [C{(x)d, + C5 (x)di] )w’+---,
(23)

for some analytic functions

Z2)=c¢z+ 6,22 + 6,20+ (z € U),
p(z)=¢ 2 3 ( ) (24)
q(w) =dw+d,w* + dyw’+-+-(w e U),

such that p(0) =q(0) =0 and |p(z) | <1,|g(w) | <1 for all z, w
el.

It is fairly well known that if |p(z)| < 1, (z € U) and |q
(w)| <1, (weU), then

|c;| <1and|d;| <1foralljeN. (25)

Thus, upon comparing the corresponding coefficients
in (22) and (23), we have

(u+M)a, = C(x)cy, (26)

wran|(“F )i ra] ~ciwerma @)
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~(u+A)ay = Ci(x)dy, (28)

(u+2A) {”;—3

a; - a3] = CY(x)d, + C5(x)d>. (29)
It follows from (26) and (28) that
¢ =—d,, (30)
2(p+A)'ay = [CY)] (o +d7). (31)
If we add (27) and (29), we get
(+22)(1+p)ay = Ci(x) (e, + dy) + G (x) (¢ + 7). (32)

Substituting the value of (c?+d2) from (31) in the
right-hand side of (32), we deduce that

2 GO | 2 coivie v do).
[C‘i‘(x)]z 2 1(xX)(c; +dy)

(33)

Moreover, computations using (23), (25), and (33), we
find that

(H+20)(1+p)=2(p+2)

2|a|x/2]e|x ‘
\/|oc(/,t+)l)z —2[(x(‘u+A)2(1 +a) —a?(pu+21)(1 +[,4)}x2‘
(34)

|a,| <

Moreover, if we subtract (29) from (27), we obtain

2+ 20) (ay - ) = G (¥)(cs — dy) + CE() (¢~ ). (35)
Then, in view of (14) and (31), Eq. (35) becomes

o= [C%(x)]? (cf +d%) . Ci(x) (¢, —dy). (36)

C2(ut)) (u+24)
Thus, applying (14), we conclude that

40Px?
(e + 1)

2|ax|

+ ) (37)

|as| <

4. Fekete-Szego Problem for the Function
Class B (), x, a)

Fekete-Szegd inequality is one of the famous problems
related to coefficients of univalent analytic functions. It was
first given by [31], who stated that, if f € %, then

|a; - na%’ < 1+42¢72M07H), (38)

This bound is sharp when # is real.
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In this section, we aim to provide Fekete-Szego inequal-
ities for functions in the class B%.(A, x, a). These inequalities
are given in the following theorem.

2|alx
(u+21)°

’as - qa§| <
8ax|*[1 ~ 7]

lo(+ 1) =2+ 1) (1 + @) — a2 (p+ 24) (1 + )] 22|

Proof. From (33) and (35)

[Cllx(x)]s(cz +d,)
(4 +22)[1+ ][CT ()] = 2(u + 1)’ C5 (x)]

Ci(x)
+ W (e, —d,)

(40)

as—fva§=(1—f7)[

where

P11
h(n) = ,
"= e wicer 2@ iG]

xy/x

|a,| <

x? . x
(u+A)? ’

‘Ll3‘$ [/l+2A)

X

(u+21)°
|ay —na3| < \
|1 -7

V17200 07 = 3200+ 1) = 12(s+ 20) (1 + )] 2| ’

[172(u+ 1) = [3/2(u+ M) = 172(u+22) (1 + p)|22|

Theorem 4. Let f € = given by (2) belongs to the class B
(A, x, «). Then,

1] < “(‘LH'A)Z_2[“(”‘”\)2(1+oc)—0¢2(‘u+2,\)(1+‘u)]x2
T da(u+ 20)2
-1 a(p+A)* = 2[a(u+ ) (1+a) - a?(pu+24) (1 + )]
) Ga(u T ) .
(39)
Then, in view of (14), we conclude that
(S| <lh(n)| < o
T L )
3~ Na| = e . ) i 1
[CLOIAm)] | (’1)|—m,
(w2)

which completes the proof of Theorem 4.

5. Corollaries and Consequences

In this section, we apply our main results in order to deduce
each of the following new corollaries and consequences.

Corollary 5. Let f € X given by (2) belongs to the class B%(A,
x, 1/2). Then,

12(p+A)? = [312(u+ M) = 172(p + 20) (1 + p) ] 2
2(u+21)x%

In—1]<

12(u+A)? = [312(p+ A)* = 1/2(u +22) (1 + )] 2
2(p+20)x2 ’

In—1]2

(43)



Corollary 6. Let f € X given by (2) belongs to the class B(A
> Xy “) = %Z(A’ X, (X). Then,

2|a|xy/2|afx

|a,| <

40 x?

<
5] (1+A)

N 2|a|x
(1+21)°

2|a|x
(1+21)°

|ay —na3| <
8ocx|[1 7]

\/ya(l FA2 = 2[a(l + AP (1+a) - 262(1+2A)] 2|

(1 +2)> = 2[a(1+1)° (1 + &) — 202(1 + 21)| 22|

Corollary 7. Let f € X given by (2) belongs to the class BY.(1,
x, a) = B (x, «). Then,

0y < 2| /2]afx ,
Vot + 12 =2+ 121+ @) = e+ 2)(1+ )] 22
402 x? 2|arfx
Jas] < (u+1)?  (u+2)’
2]alx
R (u+2)

8|ax| |1 -7

’(x(y+ 1)Z —Z[a(y+ 1)2(1 +a) —a?(u+2)(1 +y)]x2{ ’

Corollary 8. Let f € 3 given by (2) belongs to the class B%(1,
x, ) = S5(x, ). Then,

ay) < 2|et|xv/2x
2 =21 -a)x
a;| < 4°x” + |ax,
3
1-2(1-a)x?
e, =1l |——g7—
8x?
|a3—11a§{§ 213
8a?|x’1 -1 s 1-2(1-a)x?
T—20-ax T1E T |

(46)

Corollary 9. Let f € X given by (2) belongs to the class B(1,
x, a) = Bx(x, a). Then,

Journal of Function Spaces

a(1+24)* = 2[a(1+A)*(1+a) — 202(1 +21) | x>

=11 2a(l+ 202

a(1+24)* = 2[a(1+A)*(1+a) - 202(1 +21) | x>

-1
=12 a1+ 20) 22

(44)

a(p+ 1)2 —2[a(pt+ 1)2(1 +a) —0(2([4+2)(1 +[4)]x2

-1
n=11= do(p+2)x?
-1 oc(y+1)2—2[a(y+1)2(1+0c)—0c2(y+2)(1+y)]x2 .
- do(p +2)x2
(45)
ay < |¢x|x\/2_x
T V-G w]
|as| < a?x” + 2|tx|x’
2|a)x 1-(2-a)x?
2, =15
2
|as —na . ,
20°x°|1 - 1| 1> I-(2-a)x
|1-(2-a)x?|’ 1 B 3x?
(47)
6. Concluding Remark

By taking a=1 and specializing y=1 or A=1, one can
deduce the above results for various subclasses of > studied
by Bulut et al. [29] and by Altinkaya and Yalcin [32].



Journal of Function Spaces

Data Availability

Data used to support the findings of this study are included
within the article.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

All authors jointly worked on the results and they read and
approved the final manuscript.

References

(1]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

A. Legendre, Recherches sur laattraction des sphéroides homo-
génes, vol. 10, Mémoires présentes par divers savants a laAca-
démie des Sciences de lalnstitut de France, Paris, 1785.

H. Bateman, Higher Transcendental Functions, McGraw-Hill,
1953.

B. Doman, The Classical Orthogonal Polynomials, World Sci-
entific, 2015.

K. Kiepiela, I. Naraniecka, and J. Szynal, “The Gegenbauer
polynomials and typically real functions,” Journal of Computa-
tional and Applied Mathematics, vol. 153, no. 1-2, pp. 273-282,
2003.

P. L. Duren, “Univalent Functions,” in Grundlehren der Math-
ematischen Wissenschaften, Band 259, Springer-Verlag, New
York, Berlin, Heidelberg and Tokyo, 1983.

S. Miller and P. Mocanu, Differential Subordination: Theory
and Applications, CRC Press, New York, 2000.

S. Bulut, “Coefficient estimates for a class of analytic and bi-
univalent functions,” Novi Sad Journal of Mathematics,
vol. 43, pp. 59-65, 2013.

B. A. Frasin, “Coefficient bounds for certain classes of bi-
univalent functions,” Hacettepe Journal of Mathematics and
Statistics, vol. 43, no. 3, pp. 383-389, 2014.

B. A. Frasin and M. K. Aouf, “New subclasses of bi-univalent
functions,” Applied Mathematics Letters, vol. 24, no. 9,
pp. 1569-1573, 2011.

L. Aldawish, T. Al-Hawary, and B. A. Frasin, “Subclasses of bi-
univalent functions defined by Frasin differential operator,”
Mathematics, vol. 8, no. 5, p. 783, 2020.

G. Murugusundaramoorthy, N. Magesh, and V. Prameela,
“Coefficient bounds for certain subclasses of bi-univalent func-
tion,” Abstract and Applied Analysis, vol. 2013, Article ID
573017, 3 pages, 2013.

Z. Peng, G. Murugusundaramoorthy, and T. Janani, “Coeffi-
cient estimate of biunivalent functions of complex order asso-
ciated with the Hohlov operator,” Journal of Complex Analysis,
vol. 2014, Article ID 693908, 6 pages, 2014.

H. M. Srivastava, A. K. Mishra, and P. Gochhayat, “Certain
subclasses of analytic and bi-univalent functions,” Applied
Mathematics Letters, vol. 23, no. 10, pp. 1188-1192, 2010.

F. Yousef, B. A. Frasin, and T. Al-Hawary, “Fekete-Szeg0
inequality for analytic and bi-univalent functions subordinate
to Chebyshev polynomials,” Univerzitet u Nisu, vol. 32, no. 9,
pp. 3229-3236, 2018.

F. Yousef, T. Al-Hawary, and G. Murugusundaramoorthy,
“Fekete-Szeg6 functional problems for some subclasses of bi-

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

univalent functions defined by Frasin differential operator,”
Afrika Matematika, vol. 30, no. 3-4, pp. 495-503, 2019.

M. Lewin, “On a coefficient problem for bi-univalent functions,”
Proceedings of the American Mathematical Society, vol. 18,
no. 1, pp. 63-68, 1967.

D. A. Brannan and J. G. Clunie, Aspects of Contemporary Com-
plex Analysis (Proceedings of the NATO Advanced Study Insti-
tute Held at the University of Durham, Durham; July 120,
1979), Academic Press, New York and London, 1980.

E. Netanyahu, “The minimal distance of the image boundary
from the origin and the second coeflicient of a univalent func-
tion in |z{<1,” Archive for Rational Mechanics and Analysis,
vol. 32, no. 2, pp. 100-112, 1969.

D. L. Tan, “Coefficient estimates for bi-univalent functions,”
Chinese Annals of Mathematics. Series, vol. 5, pp. 559-568,
1984.

A. Amourah, A. Alamoush, and M. Al-Kaseasbeh, “Gegen-
bauer polynomials and bi-univalent functions,” Palestine Jour-
nal of Mathematics, 2021.

M. Reimer, Multivariate polynomial approximation, Birkhau-
ser, 2012.

A. Amourah, “Initial bounds for analytic and bi-univalent
functions by means of (p,q)-Chebyshev polynomials defined
by differential operator,” General Letters in Mathematics,
vol. 7, no. 2, pp. 45-51, 2019.

A. Amourah, “Fekete-Szego inequality for analytic and bi-
univalent functions subordinate to (p,q)-Lucas polynomials,”
2020, https://arxiv.org/abs/2004.00409.

A. Amourah, “Faber polynomial coefficient estimates for a class
of analytic bi-univalent functions,” in AIP Conference Proceed-
ings, vol. 2096, Second International Conference of Mathemat-
ics (SICME 2019) Erbil, Iraq, 2019, no. 1.

A. Amourah, T. Al-Hawary, and B. A. Frasin, “Application of
Chebyshev polynomials to certain class of bi-Bazilevic functions
of order a+if,” Afrika Matematika, vol. 32, pp. 1-8, 2021.

A. Amourah, B. A. Frasin, G. Murugusundaramoorthy, and
T. Al-Hawary, “Bi-Bazilevi¢ functions of order $ \vartheta
+i\delta $ associated with $ (p, q)- $ Lucas polynomials,”
AIMS Mathematics, vol. 6, no. 5, pp. 4296-4305, 2021.

A. Amourah, “A comprehensive subclass of analytic and bi-
univalent functions associated with subordination,” Palestine
Journal of Mathematics, vol. 9, no. 1, pp. 187-193, 2020.

F. Yousef, S. Alroud, and M. Illafe, “New subclasses of analytic
and bi-univalent functions endowed with coefficient estimate
problems,” Analysis and Mathematical Physics, vol. 11, no. 2,
p. 58, 2021.

S. Bulut, N. Magesh, and C. Abirami, “A comprehensive class of
analytic bi-univalent functions by means of Chebyshev polyno-
mials,” Journal of Fractional Calculus and Applications, vol. 8,
no. 2, pp. 32-39, 2017.

S. Bulut, N. Magesh, and V. K. Balaji, “Initial bounds for ana-
Iytic and bi-univalent functions by means of chebyshev polyno-
mials,” Analysis, vol. 11, no. 1, pp. 83-89, 2017.

M. Fekete and G. Szegd, “Eine Bemerkung Aber ungerade
schlichte Funktionen,” Journal of the London Mathematical
Society, vol. 1, no. 2, pp. 85-89, 1933.

S. Altinkaya and S. Yalcin, “Estimates on coefficients of a general
subclass of bi-univalent functions associated with symmetric g-
derivative operator by means of the Chebyshev polynomials,”
Asia Pacific Journal of Mathematics, vol. 4, no. 2, pp. 90-99,
2017.


https://arxiv.org/abs/2004.00409

Hindawi

Journal of Function Spaces

Volume 2021, Article ID 5535629, 9 pages
https://doi.org/10.1155/2021/5535629

Research Article

Hindawi

Sharp Bounds of the Coefficient Results for the Family of Bounded
Turning Functions Associated with a Petal-Shaped Domain

Omar M. Barukab,! Muhammad Arif»,> Muhammad Abbas,” and Sher Afzal Khan>

"Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 344, Rabigh, 21911 Jeddah, Saudi Arabia
2Faculty of Physical and Numerical Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan

Correspondence should be addressed to Muhammad Arif; marifmaths@awkum.edu.pk

Received 14 January 2021; Revised 27 January 2021; Accepted 6 February 2021; Published 20 February 2021

Academic Editor: Gangadharan Murugusundaramoorthy

Copyright © 2021 Omar M. Barukab et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The goal of this article is to determine sharp inequalities of certain coeflicient-related problems for the functions of bounded
turning class subordinated with a petal-shaped domain. These problems include the bounds of first three coefficients, the

estimate of Fekete-Szeg6 inequality, and the bounds of second- and third-order Hankel determinants.

1. Preliminary Concepts

Let the family of holomorphic (or analytic) functions in the
region (or domain) of unit disc D={z€C: |z| <1} be
described by the symbol #'(D) and let o be the subfamily
of (D) which is defined by

o = {fe%(ﬂ)):f(z) = i a2" (witha, = 1)}. (1)

k=1

Further, the set & ¢ & contains all normalized univalent
functions in D. For two functions F,, F, € (D), we say that
F, is subordinate to F,, written symbolically by F, < F,, if
there exists a Schwarz function v with v(0) =0 and |v(z)| < 1
that is analytic in D such that f(z) = g(v(z)),z € D. However,
if F, is univalent in D, then the following relation holds:

F,(2) < F,(2), (z € D) & F,(0) = F,(0) and F, (D) ¢ F, (D).
(2)

In geometric function theory, the most basic and impor-
tant subfamilies of the set & are the family §* of starlike

functions and the family & of convex functions which are
defined as follows:

€ = fe&f:m <A(z) (zeD) 3 =€(A),

f(2)
§* = {fe o Z;(,S) <A(2) (z€ ID)} = 8" (A),
(3)
with
A(z):l+2§z”:z g,(zeﬂ)). (4)

By varying the function A(z) in (18), we get some sub-
families of the set &* which have significant geometric
sense. For example,

(i) If we take A(z) =(1+ Mz)/(1+Nz) with -1<N <
M <1, then the deduced family
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S*IM,N] = & G :%j) (5)

is described by the functions of the Janowski starlike
family established in [1] and later studied in different
directions in [2, 3]

(ii) The family &7 = 8™ (A(z)) with A(z) =+/1+z was
developed in [4] by Sokdl and Stankiewicz. The
image of the function A(z) = /1 +z demonstrates
that the image domain is bounded by the Bernoulli’s
lemniscate right-half plan specified by |w? — 1| <1

(ili) By selecting A(z) =1 + sin z, the class $*(A(z)) lead
to the family &7, which was explored in [5] while
87 =8"(e°) has been produced in the article [6]
and later studied in [7]

(iv) The family &7 =8"(A(z)) with A(z) =1+ (4/3)z
+ (2/3)z* was contributed by Sharma and his coau-
thors [8] which contains function f € o such that z
f'(2)If(z) is located in the region bounded by the
cardioid given by

(9x% +9y* ~18x+5)* ~16(9x> + 9y ~6x+1) =0 (6)

(v) The family &y =8"(A(z)) with A(z) =1+ (z/(+/2

+1)((\/2+1+2)/(y2+1-2)) is studied in [9]
while &7 =" (cos (z)) and &’y =" (cosh (z))
were recently examined by Bano and Raza [10] and
Alotaibi et al. [11], respectively

(vi) If we consider A(z)=1sinh"'z, then the class
Sp=8"(1+ sinh™'z) was provided by Kumar and
Arora [12] and is defined as a function feof
which is in the family cS’; if (18) holds for the

function A(z) = p(z), where
p(z)=1+sinh'z (7)
Clearly, the function p(z) is a multivalued function and has
the branch cuts about the line segments (—ico,—i) U (i, ico), on
the imaginary axis, and hence, it is holomorphic in D. In a geo-

metric point of view, the function p(z) maps the unit disc D
onto a petal-shaped region 0,

Q,={weC: [sinh (w-1)|<1}. (8)

Using this idea, we now consider a subfamily B5 , of
analytic functions as

BT, = {f ed : f'(z) < A(z),and A(z) is given by (s)}.
©)
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If we take the function A(z), given by (4), instead of A(z)
in (9), we get the familiar class % of bounded turning func-
tions. From the statement of the Nashiro-Warschowski theo-
rem, it follows that the functions in & are univalent in D.
The properties of this class was studied extensively by the
researchers, see [13-16].

The Hankel determinant #2,,,(f)(withg, n € N={1,2,
-+ }anda, =1) for a function f € & of the series form (1)
was given by Pommerenke [17, 18] as

ay, Ape1 7 Opeg
Api1 A Apiq
HDyu(f) = (10)
Anig-1  Bnig " OGniag2

Specifically, the first-, second-, and third-order Hankel
determinants, respectively, are

1 a, 5
HDy,(f)= =das —a,,
a, das
a, 4as
HDy,(f) = =a,a, — ag,
a; a,
1 a, a
H D, (f)=|a, a; a4
as 4y 4s

=4a, (“2“4 - ag) —ay(a, —ayas) +as (a3 - ‘1%)-

(11)

In literature, there are relatively few findings in relation to
the Hankel determinant for the function f belongs to the gen-
eral family . For the function f € &, the best established sharp
inequality is |#Z'9D, ,(f)| < Ay/n, where A is absolute constant,
which is due to Hayman [19]. Further, for the same class ¢, it
was obtained in [20] that

11
|#D,,(f)| <A forl<A< -

- 32 ++/285

15

4 (12)
‘%93,10){ S,l/l,for§ <u

The growth of |#'2, ,(f)| has often been evaluated for dif-
ferent subfamilies of the set & of univalent functions. For exam-
ple, the sharp bound of |Z'2, ,(f)|, for the subfamilies €, ™,
and & of the set &, was measured by Janteng et al. [21, 22].
These bounds are
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%, forf €,

|#D,,(f)|<q 1, forfeds™, (13)
4
5’ forf e %.

The exact bound for the collection of close-to-convex func-
tions of such a specific determinant is still unavailable (see [23]).
On the other hand, for the set of Bazilevi¢ functions, the best
estimate of | %', , (f)| was proved by Krishna and RamReddy
[24]. For more work on |#'2,,(f)|, see References [25-29].

It is very obvious from the formulae provided in (11) that
the estimate of | Z'2; ; (f)| is far more complicated compared
with finding the bound of |#'9,,(f)|. In the first paper on
|# D, (f)|, published in 2010, Babalola [30] obtained the
upper bound of |#Z;,(f)| for the families of €, &*, and
. He obtained the following bounds:

0.714---, forf e,
|72, (f)]| <1 16, for f € 8™, (14)
0.742 -+, forfe.

Later on, using the same methodology, some other authors
[31-35] published their work concerning |#2;,(f)| for
different subfamilies of analytic and univalent functions. In
2017, Zaprawa [36] improved Babalola’s [30] results by
applying a new technique which is given as

49
520 forf €,
\ZD;,(f)| <4 L, forfes™, (15)
41
&’ forf e %.

He argues that such limits are indeed not the best ones.
After that, in 2018, Kwon et al. [37] enhanced Zaprawa’s
bound for f € §* and showed that [Z2,(f)| <8/9, but it
is still not the best possible. The firstly examined papers in
which the authors obtained the sharp bounds of [ZZ; , (f)|
came to the reader’s hands in 2018. Such papers have been
written by Kowalczyk et al. [38] and Lecko et al. [39]. These
results are given as

4
—, f €E,
E

1 /1
5’ forfedS (2>,

where §*(1/2) indicates the starlike function family of order
1/2. We would also like to acknowledge the research provided
by Mahmood et al. [40] in which they examined the third
Hankel determinant in the g-analog for a subfamily of starlike
functions and for more contribution of such type families, see
[41, 42]. In the present article, our aim is to calculate the sharp
bounds of some of the problems related to Hankel determi-

|72, (f)| < (16)

nant for the class BT of bounded turning functions con-
nected with a petal-shaped domain.

2. A Set of Lemmas

Definition 1. Let P represent the class of all functions p that
are holomorphic in D with Re(p(z)) >0 and has the series
representation

For the proofs of our key findings, we need the following
lemma. It contains the well-known formula for c,, see [43],
the formula for ¢; due to Libera and Zlotkiewicz [44], and
the formula for ¢, proved in [45].

Lemma 2. Let p € P has the series form ((17)). Then, for x,
o,peD=DuU{1},

2c,=c;+x(4- ), (18)

des=ci+2(4-c))ex—c)(4- )+ 2(4- ) (1 - |x[*)o,

(19)
8c,=cj+ (4—c])x[c](x* = 3x + 3) +4x| —4(4—c]) (20)
(1= 1x) [e(x - )z + x0% = (1-|0]*) p].
Lemma 3. If p € 9 and has the series form ((17)), then
|Cn+k - [/lCan| <2 max (1’ ‘2H - 1|)’ (21)
c,| < 2forn=1, (22)

|Jc] = Keyep + Les| <2|] |+ |[K=2] [+ 2] - K+ L],  (23)

with J,K, L, u € C and for B€ |0, 1] with B(2B-1)<D<B,
we have

|c5 = 2Bcjc, + Dej| < 2. (24)
The inequalities (21), (22), (23), and (24) in the above

lemma are taken from [43, 46], [47-49], and [50], respectively.

3. Coefficient Inequalities for the Class 37

We begin this section by finding the absolute values of the
first three initial coeflicients for the function of class BT ..



Theorem 4. If f € BT, and has the series representation

((1)), then

IN

>

|a,]

, (25)

IA
A= W~ N~

|as|
la[ < -

These bounds are sharp.

Proof. Let f € BT . Then, (9) can be written in the form of
the Schwarz function as

f'(z) =1 +sinh™" (w(2)), (z € D). (26)

Now, if p € &, then it may be written in terms of the
Schwarz function w by

_l+uw(z)

p(z) = l——w(z) =1+0z+ 625 + 020+, (27)
equivalently,
p(z) -1 Gz + 62 + 620 ezt

w(z)= = . (28
@) p(2)+1 2424622 +632% + 2+ (28)

From (1), we easily get
f(2) =1+2a,z +3a;2" +4a,2° + 5a52" ++-. (29)

By simplification and using the series expansion (28), we
obtain

1 1 1
1+ sinh’l(w(z)) =1+ (§C1>Z+ (ECZ - Zcf)zz

(30)
Comparing (29) and (30),we get
wle, 61
3 e)
a,= %(E 3+ %cf 2c1c2), (33)
as = é(; 4 icg 312c‘11+ %clcz— %c1c3>. (34)
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For a,, implementing (22) in (31), we obtain

1
< - 35
< (35)

For as, reordering (32), we get

i)

as =

o NN

and using (21), we have

1
a;| < <. 37
jas] = 5 (37)
For a,, we can rewrite (33) as
1]5 1 1
|ay| = 4’486 504t 56| (38)

Application of triangle inequality plus (23), we get

1 5 1 5 5 1 1
lag| < = (2= +2]z =2 < ) [+2]-= - =+ =[|- (39)
4| |48 2 48 48 2 2

By simple calculations, we obtain
<L (40)
a, < -.
|| 1

These outcomes are sharp. For this, we consider a
function

fl(z)=1+sinh™'(z"), forn=1,2,3. (41)
Thus, we have

z 1 1
(1 + smh_l(t))dt =z + 722 — 7Z4+...’
0 2 24

Z

fi(z) =

- 1 1
. (1 + sinh 1(tz))dt=2+ g23 - Ez7+...)

Z

fi(2) =

(1+sinh™ () dt =z + Szt = L 204

f3(2) = . 1 60

(42)

Now, we discussed about the Hankel determinant prob-
lem, which is explicitly related to the Fekete-Szeg6 func-
tional which is an extraordinary instance of the Hankel

determinant.

Theorem 5. If f of the form ((1)) belongs to BT , then

3
|a; —yaﬁ’ < max { , |T}}|},forye C. (43)

This inequality is sharp.
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Proof. Employing (31) and (32), we may write

>
|ay —ya3| = G©_4._.a . (44)

6 12 '16

By rearranging, it yields

ool ()

Application of (21) leads us to

‘a3—ya§’ < é max {2,2

3y+4
LA 1‘} (46)
8
After the simplification, we obtain

1 3ly
|a3—ya§|§§max{ ,%} (47)

The required result is sharp and is determined by

f,(2) = J: (1+sinh™ (£))dt =z + %z3 - %zu---. (48)

Theorem 6. If f has the form ((1)) belongs to BT , , then

1
|a,a5 —ay) < 7 (49)

This inequality is sharp.

Proof. Using (31), (32), and (33), we have

1 2 ,
laya; —ay| = AL 2 3)a0t5za (50)
From (24), we have
2 2 7
0<B=-<1,B=->D=—, (51)
3 3 24
and also satisfy
2 /4 7
B2B-1)=Z(--1])<D=_—. (52)
3\3 24
Thus, by using (24), we have
1
|[a,a; —a,) < = (53)

4
Equality is achieved by using
Z

f3(2) =JO (1+sinh™ (£))dt =z + %z“ - %zl%m. (54)

Next, we will determine the second-order Hankel deter-
minant #92,,(f) for f € BT ..

Theorem 7. If f belongs to BT, , then the second Hankel
determinant

1
|%92)2(f)|=]a2a4—a§]§§. (55)

This result is the best possible.

Proof. From (31), (32), and (33), we have

1

1 1 1
3304 ¢ - 26, + —¢;¢ 2. (56)

HDy,(f) = @51 2t 3067 %62-

Using (18) and (19) to express ¢, and ¢; in terms of ¢; and
noting that without loss in generality we can write ¢, = ¢, with
0 < ¢ <2, we obtain

1, 1

1 2
| D,,(f)| = ~ 768 —1—2862(4—cz)x2—17(4_62) 2

1 2 2
+ ac(4—c ) (1=|x*)z|,

(57)
with the aid of the triangle inequality and replacing |z| <1, |
x| =b, with b< 1. So,

|%2,,(f)| < Ly ch(4—c2)b2 b (4-)?
22V 7687 T 128 14
1 2
+ =) (1-0) =¢(cb).
(58)
It is a simple exercise to show that ¢’ (¢, b) >0 on [0, 1], s0

that ¢(c, b) < ¢(c, 1). Putting b=1 gives

1 1 1
|7 Dra(f)] < megc’ + g€ (A=) + m(4-8)2 =¢(c 1).

= 768
(59)

Also, ¢'(c,1) <0, and so ¢(c, 1) is a decreasing function.
Thus, the maximum value at c=0 is

|%92,2(f)|S%:%~ (60)

The required second Hankel determinant is sharp and is
obtained by

fr(z) = J: (1+sinh™ ())dt =z + §Z3 - $z7+m. (61)

4. Third-Order Hankel Determinant

We will now determine the third-order Hankel determinant
H Dy, (f) for f e BT .



Theorem 8. If f belongs to BT, , then the third Hankel
determinant

| ZD5,(f)| < (62)

1
TR
This result is sharp.

Proof. The third Hankel determinant can be written as

HDs,(f)= (5‘2“4 - “%)% - (ayay — aya3)a, + (“1“3 - “3)‘15-

(63)
After simplification of the above equation, we have
H D3, (f) =2a,a5a, — a3 — a; + a;a; — a5as. (64)

Let ¢, = ¢ and putting the estimations of a,’s from (31),
(32), (33), and (34), we get

HDs3,1(f)

= oo (~151c% + 14dc’c, + 1584c°c; — 768¢°c
552960
— 8064c”c,+13824cc,c; — 7168¢; + 9216¢,c, — 8640c3).

(65)

To simplify computation, let t =4 — ¢* in (18), (19), and
(20). Now, using the simplified form of these formulae, we
obtain

144c*c, =72 (c6 + c4tx),
1584¢’c, = 396¢° + 792¢* tx — 396¢* tx” + 792¢°t (1 - |x|*) o,
768c%c3 =192 + 384c tx + 192624,

8064c’c, = 1008¢*tx” — 4032¢7tx(1 - [x[*)o
- 40327 tx(1 - [x[*)0” — 3024c* tx”
+4032¢7t(1 - |x[*) (1 - |o|*) p+4032¢°t (1 - |x[*)o
+3024c*tx + 1008¢° + 4032¢°tx%,

13824cc,c; = —1728¢£°x° — 1728¢*tx” + 3456¢1°x(1 — |x[*) o
+3456¢°°x7 + 34567t (1 — |x[*) o + 5184c*tx
+1728¢5,

71685 = 8961°x” + 2688c7t2x* + 2688¢*tx + 896¢°,

9216¢,¢, = 2304c*tx* + 2304t%x> + 5765 + 2304c* tx
+2304c°t(1 - |x[*) o + 2304 (1 - |x|*) (1 - |o]*) p
+17286 %% +2304ct’x(1 - |x|*) o
+23041°x(1 - |x*) (1 - |o]*) p — 1728¢* 1
-2304c’tx(1 - [x[*)0” - 2304ctx (1 - [x]*) 0
-1728¢£°x° - 23041°xx(1 — |x[*)0” + 576¢* 1
+576¢°x" - 2304ct’x” (1 - |x|*) 0,
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8640¢; = 540¢*°x* — 2160ct’x> (1 — |x[*) o - 2160 £
~1080c* 12 +2160¢ (1 - [x|*)°0?
+4320c°x(1 - |x[*) 0 + 2160 x” + 2160t (1 - |x|*)o
+2160c* tx + 540c°.
(66)

Substituting these expressions in (65), by simple but too
long computation,

1
552960
— 432 57 + 252 % + 96 tx + 367 12Xt

HDs,(f) = {-15¢° +2304°x° — 896£°x” — 17285 tx

~ 1296 £2%° + 1448 82% — 21607 (1 - [x ) 0?
+360c°t(1 - |x|*)o + 1728 tx(1 - |x[*)o
+1728ctx(1 - |x|*)0” - 1728t (1 - |x|) (1 - |o*) p
- 144cPx* (1 - |x|*) o - 2304£xx (1 - |x|*) 0”+1440ct’x (1 - |x[*) o
+23048°x(1 - |x]*) (1 - |o*) p}.
(67)

Since t =4 - ¢?,

1

7 2:1) = 553960

(vl(c, x) +v,(6, x)0 + v5(c, x)oz +¥(cx, a)p),
(68)
where p, x,0 € D, and
V(%) ==15¢" + (4 - ) [(4 - ) (-1280x° - 400¢°x” + 367"
+144¢°x%) - 1728¢°x7 — 432¢*x° + 252¢*%” + 96¢*x],

V(6 x) = (4= ) (1= |x*)[(4 - ) (1440cx — 144cx)
+1728¢°x +360¢° ],

vi(cx) = (4= ) (1 - [x[*) [(4— &) (-144x" - 2160) + 1728%],
V(e xz)=(4-c)(1-|x*) (1-|of*) [-1728¢* + 2304x(4 - 7).

(69)

Now, by using |x| = x,|o| = y and utilizing the fact |p| < 1,
we get

2
|7f93,1(f)| < 552960 (|V1(C’ x)|+[va(6x) |y + |vs(cx)|y
(e n0)
(70)
PR G (71)
<3552060 065 7)

where

G(ex,9) = 91(6,%) + g,( %)y + g3 (6 X)y* + gy (6, %) (1 - 77),
(72)
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with

9,(6,x) =15¢° + (4 - ) [(4 - ) (1280x + 400¢°x” + 36¢x*
+144¢°27) + 172807 % +432¢*x° + 2526 %7 + 96¢*x],

9,(6:x)= (4= ) (1-x%) [(4— ) (1440cx + 144ex) +1728¢x + 360¢7]

g3(6:x) = (4= ) (1 -x%) [(4 - ) (1442 + 2160) + 1728°%],

94(6x) = (4= ) (1-x*) [1728¢ + 2304x (4 - 7). (73)
Clearly, in the last four functions, g, (¢, x) and g, (¢, x) are

nonnegative in the interval [0, 2] x [0, 1]. So from (70) along

with y = |o] in the interval [0, 1], we get

G(6,%,y)=G(6x, 1), (74)

Therefore,

G(65,1) = 9,(6.%) + 9,(6:%) + 5(6:%) + g4(6.%) = F(6, ).
(75)

Here, we shall maximize F(c, x) over the interval [0, 2] x
[0, 1]. For this purpose, we consider possible cases:

(i) By taking x =0, we have

F(c,0) = 15¢° = 360¢° + 2160c* + 144¢> — 17280c + 34560 = f, (c).
(76)

Since f1(c) < 0 in [0, 2], so, f, (c) is decreasing over [0, 2].
Thus, f,(c) has its maxima at ¢ = 0 which is equal to 34560

(ii) By taking x =1, we have
F(c, 1) = —185¢° — 1968c* + 5952¢* + 20480 = f, ().  (77)

As fi(c)=0 has its optimum point at ¢, =0.674788.
Therefore, f,(c) is an increasing function for c<¢, and
decreasing for ¢, < c. Hence, f,(c) has its maxima at c=¢,
that is approximately equal to 22764.68167

(iii) By taking ¢ =0, we have

F(0,x) = —2304x* + 20480x° — 32256x + 34560 = f,(x).
(78)

As fi(x) < 0 over [0, 1], so, f;(x) is decreasing over [0, 1].

Thus, f;(x) has its maxima at x = 0 which is equal to 34560.
Now, by taking ¢ = 2, we obtain

F(2,x) <960 (79)

(iv) When (¢, x) lies in [0, 2] x [0, 1]. Then, some simple
computation shows that there exists real solution
for these equations

0F(c, x)
ox

0F(c,x)
oc

:0’

(80)

lies inside this region [0,2] x [0, 1] at (¢, x) = (0,0). Conse-
quently, we obtain

F(c, x) = 34560. (81)
Thus, from all the above cases, we conclude that
G(c, x,y) <34560 0n [0, 2] x [0, 1] x [0, 1]. (82)

From (71), we can write

1

e ~0.0625.  (83)
552960

1
’%93,1(f)| Gloxy)< —
16

If feRBT,, then the equality is obtained from the
function

Z

fi(z) = Jo (1+sinh™' (£))dt=z+ %z“ - 6—10zlo+---. (84)

5. Conclusion

For the family of bounded turning functions connected with
a petal-shaped domain, we studied the problems such as the
bounds of the first three coefficients, the estimate of the
Fekete-Szego inequality, and the bounds of Hankel determi-
nants of order three. All the bounds which we investigated
are sharp.
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In this work, we introduce the idea and concept of m-polynomial p-harmonic exponential type convex functions. In addition, we
elaborate the newly introduced idea by examples and some interesting algebraic properties. As a result, several new integral
inequalities are established. Finally, we investigate some applications for means. The amazing techniques and wonderful ideas of
this work may excite and motivate for further activities and research in the different areas of science.

1. Introduction

Theory of convexity present an active, fascinating, and
attractive field of research and also played prominence and
amazing act in different fields of science, namely, mathemat-
ical analysis, optimization, economics, finance, engineering,
management science, and game theory. Many researchers
endeavor, attempt, and maintain his work on the concept
of convex functions and extend and generalize its variant
forms in different ways using innovative ideas and fruitful
techniques. Convexity theory provides us with a unified
framework to develop highly efficient, interesting, and pow-
erful numerical techniques to tackle and to solve a wide class
of problems which arise in pure and applied sciences. In
recent years, the concept of convexity has been improved,
generalized, and extended in many directions. The concept
of convex functions also played prominence and meaningful
act in the advancement of the theory of inequalities. A num-
ber of studies have shown that the theory of convex functions
has a close relationship with the theory of inequalities.

The integral inequalities are useful in optimization the-
ory, functional analysis, physics, and statistical theory. In

diverse and opponent research, inequalities have a lot of
applications in statistical problems, probability, and numeri-
cal quadrature formulas [1-3]. So eventually due to many
generalizations, variants, extensions, widespread views, and
applications, convex analysis and inequalities have become
an attractive, interesting, and absorbing field for the
researchers and for attention; the reader can refer to [4-6].
Recently Kadakal and Iscan [7] introduced a generalized
form of convexity, namely, n-polynomial convex functions.

It is well known that the harmonic mean is the special
case of power mean. It is often used for the situations when
the average rates is desired and have a lot of applications in
different field of sciences which are statistics, computer sci-
ence, trigonometry, geometry, probability, finance, and elec-
tric circuit theory. Harmonic mean is the most appropriate
measure for rates and ratios because it equalizes the weights
of each data point. Harmonic mean is used to define the har-
monic convex set. In 2003, first time harmonic convex set
was introduced by Shi [8]. Harmonic and p-harmonic con-
vex function was for the first time introduced and discussed
by Anderson et al. [9] and Noor et al. [10], respectively.
Awan et al. [11] keeping his work on generalizations,
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introduced a new class called n-polynomial harmonically
convex function. Motivated and inspired by the ongoing
activities and research in the convex analysis field, we found
out that there exists a special class of function known as
exponential convex function, and nowadays, a lot of people
working are in this field [12, 13]. Dragomir [14] introduced
the class of exponential type convexity. After Dragomir,
Awan et al. [15] studied and investigated a new class of expo-
nentially convex functions. Kadakal and Iscan introduced a
new definition of exponential type convexity in [16].
Recently, Geo et al. [17] introduced n—polynomial harmonic
exponential type convex functions. The fruitful benefits and
applications of exponential type convexity is used to manip-
ulate for statistical learning, information sciences, data min-
ing, stochastic optimization and sequential prediction [7,
18, 19] and the references therein. Before we start, we need
the following necessary known definitions and literature.

2. Preliminaries

In this section, we recall some known concepts.

Definition 1 (see [5]). Let w : I — R be a real valued func-
tion. A function v is said to be convex, if

y(py + (1= K)py) <k (py) + (1-K)y(p,), (1)
holds for all g,, p, € I and « € [0, 1].

Definition 2 (see [20]). A function v : I € (0,00) — R is said
to be harmonic convex, if

£16, <x e ’
W<m) <ky(p) + (1-0)y(p,).  (2)

holds for all g,, p, € I and « € [0, 1].

For the harmonic convex function, Iscan [20] provided
the Hermite-Hadamard type inequality.

Definition 3 (see [21]). A function y : ] — Rissaidtobep -
harmonic convex, if

Up
qu @”lpiwp] >SK1//(Q1)+(1—K)‘/’(K’2)’ (3)

holds for all g,, , € I and « € [0, 1].
Note that ¥ = 1/2 in (3), we get the following inequality:

260 | _ vl + vie,)
(] ) e

holds for all p,,p, €I.

The function y is called Jensen p-harmonic convex
function.
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If we put p=—1 and p =1, then p-harmonic convex sets
and p-harmonic convex functions collapse to classical con-
vex sets, harmonic convex sets, and harmonic convex func-
tions, respectively.

Definition 4 (see [17]). A function y : I € (0,400) — [0,+
00) is called m-polynomial harmonic exponential type con-
vex function, if

1692 im K_ 1y
w(—% B _%) < LY (@ - 1yle)

holds for every p,,, € I,m € N and k € [0, 1].

Motivated by the above results, literature, and ongoing
activities and research, we organise the paper in the following
way. Firstly, we will give the idea and its algebraic properties
of m-polynomial p-harmonic exponential type convex func-
tions. Secondly, we will derive the new sort of (H-H) and
refinements of (H-H) type inequalities by using the newly
introduced idea. Finally, we will give some applications for
means and conclusion.

3. Generalized Exponential Type Convex
Functions and Its Properties

We are going to introduce a new definition called m—polyno-
mial p-harmonic exponential type convex function and will
study some of their algebraic properties. Throughout the
paper, one thing gets in mind m represents finite Z*, m-poly
p-harmonic exp convex function represents m—polynomial p
—harmonic exponential type convex function and (H-H)
represents Hermite-Hadamard.

Definition 5. A function y : I € (0,+00) —
m-poly p-harmonic exp convex, if

(et )t ven

[0,+00) is called

holds for every p,,, € I,m € N and k € [0, 1].
Remark 6.
(i) Taking m =1 in Definition 5, we obtain the following

new definition about p -harmonically exp convex
function:
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d@g Up) < e;c _ + el—x _
w(l—Kp‘;+(l—K)(flf] < (e = Dy(p) + ( 1)y(p,)
(7)

(ii) Taking m =2 in Definition 5, we obtain the following
new definition about 2-poly p-harmonically exp
convex function:

< [ > f’(pﬁ - @,,] UP) < (555 ) vt + (%)w(m
(8)

(iii) Taking p=1 in Definition 5, then, we get a defini-
tion, namely, m-poly harmonically exp convex
function which is defined by Geo et al. [17]

(iv) Taking p = -1 in Definition 5, we obtain the following
new definition about m-poly exp convex function:

(1-K)py) < — ) (= 1)

y(xgp, +

3=
gl
§IH
Ms

I
—_

<.

1l
—

J

(v) Taking m =1 and p =1 in Definition 5, we obtain the
following new definition about harmonically exp type
convex function:

£16, < (& — RE
‘”(m) (@Dl (7 - vie)
(10)

(vi) Taking m =1and p = -1 in Definition 5, then, we get
a definition, namely, exponential type convex func-
tion which is defined by Kadakal et al. [16]

That is the beauty of this newly introduce definition if we
put the values of m and p, then, we obtain new inequalities
and also found some results which connect with previous
results.

Lemma 7. The following mequalztzes (1/m) ¥ (e = 1) >x

and (Ilm)zj"ll(e(l ) — 1Y > (1-«) are hold. If for all ke
[0, 1].

Proof. The rest of the proof is clearly seen.

Proposition 8. Every p—harmonic convex function is m-poly
p-harmonic exp convex function.

Proof. Using the definition of p-harmonic convex function
and from the Lemma 7, since k< (1/m)}", (e~ 1) and

(1-x) < (Um) Y7 (e = 1) for all k€ [0, 1], we have

([ > “prfx @p] )w(m)ﬂl—@w(@z)

(" - l)j‘//(Wl)

<

s

I
—_

1

a]

(¢ = 1)y (p,).
(11)

Proposition 9. Every m-poly p-harmonic exp convex func-
tion is p-harmonic h-convex function with h(x)=1/m

Z] 1(€* _1)

Proof.

(et )t v

+
[
M=

-
I
—

Remark 10.

(i) If p=1 in Proposition 9, then as a result, we get
harmonically convex function, which is introduced
by Noor et al. [22]

(ii) If p = -1 in Proposition 9, then as a result, we get h—
convex function, which is defined by Varosanec [6]

Now, we make and investigate some examples by way of
newly introduced definition.

Example 11. If w(v) =v*1, Vx € (0,00) is p~harmonic con-
vex function, then according to Proposition 8, it is an m-poly
p-harmonic exp convex function.

Example 12. 1fy(v) = 1/v*,¥x € R\ {0} is p~harmonic con-
vex function, then according to Proposition 8, it is an m-poly

p-harmonic exp convex function.

Now, we will discuss and investigate some of its algebraic
properties.

Theorem 13. Let y, ¢ : [, p,] — R. Ify and ¢ are two m-
poly p—harmonic exp convex functions, then

(i) v+ ¢ is an m-poly p-harmonic exp convex function



(ii) For ce R(c>0), cy is an m-poly p-harmonic exp
convex function

Proof.

(i) Let v and ¢ be an m-poly p-harmonic exp convex,

then
@P(_}P :| Up)
+(1-x)gf

volli) |
W(Lf ]) ([ﬂﬁw} )

— e—l y(p,) +

which completes the proof.
Remark 14.

(i) If m=1 in Theorem 13, then as a result, we get the
Y + ¢ and cy are p-~harmonic exp convex functions

(i) If p=1 in Theorem 13, then as a result, we get
Theorem 3.2 in [17]

(iii) f m=p=1 in Theorem 13, then as a result, we get
the ¥ + ¢ and cy are harmonic exp convex functions
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(iv) If p=—1 in Theorem 13, then as a result, we get the
Y + ¢ and cy are m—poly exp convex functions

(v) If m=1and p=-1 in Theorem 13, then as a result,
we get Theorem 2.1 in [16]

Theorem 15. Let v : I = [p,, p,] — ] be p-harmonic convex
function and ¢ : ] — R is nondecreasing and m-poly exp
convex function. Then, the function @oy :1=p,,p,] —
R is an m-poly p-harmonic exp convex function.

Proof. Vg, g, € I, and « € [0, 1], we have

Remark 16.

(i) In case of m =1, we investigate the following new
inequality:

p
(9°v) Qpp Wpfftp,,] )s(e“—n(cpow)(m

+ (e = 1) (@oy)(p,)
(16)

(i) In case of p =1, the above Theorem 15 collapses to
Theorem 3.3 in [17]

(iii) In case of m = p =1, as a result, we obtain the follow-
ing new inequality:

(‘P‘”//)[ P12 }

woy + (L-K)g, (e =1)(poy)(g)

(= 1)(@oy)(p,)

(17)

(iv) In case of p=-1, then, the above Theorem 15
collapses to the following new inequality:
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(o) (0, + (1L-0)p,) < =Y (&= 1V (9o )(e)
Jj=1
P LS @) e w)(e)
j=1
(18)

(v) In case of m=1 and p=-1, as a result, the above
Theorem 15 collapses to the Theorem (2.2) in [16]

Theorem 17. Let 0<g, <@,y : [0, 0,] — [0,+00) be a
class of m-poly p-harmonic exp convex functions and y(u)
= supjwj(u). Then, v is an m-poly p—harmonic exp convex
function and U ={u € [p,, p,|: y(u)<+oo} is an interval.

Proof. Let p,, 0, € U and « € [0, 1], then

des 1" des 1"
(o] >=w<b vl )

1 & 1 &
< i (1) SupY () + E; supl/f,(@z)
1 & 1 &
=— ) (-1) — y(g,) < +00,
(19)

which completes the proof.
Remark 18.

(i) Incaseof p =1, asaresult, we get Theorem 3.4 in [17]

(ii) In case of m=1 and p=-1 in Theorem 17, as a
result, we get Theorem 2.3 in [16]

Theorem 19. If v : [, p,] — R is an m-poly p-harmonic
exp convex then y is bounded on [p,, @,|.

Proof. Let x € [p,,p,] and L=max {y(p,),v(p,)} then,

there exist Jx € [0, 1] such that x = [(glgh) / (kb + (1 - %)
@)]""P. Thus, since e* < e and e'* < e, we have

1p m
weo{ [ T 5 v

The above proof clearly shows that y is bounded above
from M. For bounded below, the readers using the identical
concept as in Theorem 2.4 in [16].

Remark 20.

(i) In case of p =1, we obtain Theorem 3.5 in [17]

(ii) Incase of m =1 and p = —1, we obtain Theorem 2.4 in
[16]

4. (H-H) Type Inequality via Generalized
Exponential Type Convexity

The main object of this section is to investigate and prove
a new version of (H-H) type inequality using m-poly p-
harmonic exp convexity.

Theorem 21. Let v : [p,, @,] — [0,+00) be an m-poly p-
harmonic exp convex function. If y € L[p,, p,], then
eI rz y(v

(] )-
27 (Ve-1) "\ ¢+ 0>~ it ¢

< [He)vies) $

m

1

J=1

(21)

Proof. Since y is an m-poly p-harmonic exp convex func-
tion, we have

xp P 1/p 1 m . X 1 m 1_
W({Wy—;c)xl’} )Sa.z(‘f BRAGA NG

which lead to

Using the change of variables, we get

26005 | LRy ees "
{(F BN (rierl

(el

Integrating the above inequality with respect to x on
[0,1], we obtain

(24)



m sz‘ﬂ ) Pt r’”V(”)dv
(-1 \|d+dh| )T v
(25)

which completes the left side inequality.
For the right side inequality, first of all, we change the

variable of integration by v = [(f5)/(xh + (1 - x)g))] e
and using Definition 5 for the function 1//, we have

e e N

(26)
which completes the proof.

Corollary 22. In case of m = 1 in Theorem 21, then, we get the
following new (H-H) type inequality for p-harmonic exp con-

vex functions:
; ([W] ) 0l oot
2e-0 \|gved] )T b de v

<(e=2)[y(p) + ¥(wo)l-
(27)

Corollary 23. In case of p=—1 in Theorem 21, then as a
result, we investigate the following new (H-H) type inequality
for m—poly exp convex functions:

m

s ) < o | v
< (M) i[e

J=1

(28)
Remark 24.

(i) In case of p = 1, then as a result, we obtain Theorem
4.11n [17]
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(ii) In case of m=1 and p=-1, then as a result, we
obtain Theorem 3.1 in [16]

(iii) In case of m =1 and p = 1, then as a result, we obtain
Corollary lin [17]

5. Refinements of (H-H) Type Inequality via
Generalized Exponential Type Convexity

In this section, in order to prove our main results regarding
on some Hermite-Hadamard type inequalities for m-poly p
-harmonic exp convex function, we need the following
lemmas:

Lemma 25. Let v : [ = [p,,0,] SR\ {0} — R be differen-
tiable function on the I' of I If y' € L[, g,), then

V() +vip,)  pehe r’z ¥(x)
2 0~ ), X1
_ 065 - 1) J uely (mm) i,

2p A,
(29)
where A,_ = [igh + (1 - «) pp and p(x) = (1 - 2xk).
Proof. Let
I:d_dr(l { d :|1+}, <|: e :|1/P>.
205 Jo woh + (1= K)o} ks + (1= )]

(30)

Using integration by parts

¢ e elet ]
"mﬁd{ ! 2W<Lw 1—K¢1>

2P(JPWPJ (l i ]1@)%}
@~ o1 @+ (1- )}
_ Ylpn) +v(p,) PR rzvl x

p 1+
2 @12)_@1 K’lx r

1

-pgl r@"

0

(31)

Lemma 26 (see [23]). Let v : I = [, p,] SR\ {0} — R be
differentiable function on the I of I If y' € L{p,, 0,), then

;l:V/(KJz) + 3w< [pflffgép] ) + 3w< L;f%p;p} ) + V/(Pz)}

AL e

(32)
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where A, = [k + I—Kppllp and
1 [ 1
-5 ] € 0)_ >
k-2 if k _ 3)
1 1 2
= - 5 ) € 505 33
u={ x5, e |33) (33)
7 2
- —, ifxe|=,1]).
K- 2 if k 3 )

Theorem 27. Let y : I = [p,, 0, C R\ {0} — R be differen-

tiable function on the I' of I If ' € Ll ,, p,] and |y'|" is an
m-poly p-harmonic exp convex function on I, g > 1, then

’1//(@1)‘“/’(802) _ e J“ ()
2 05— g, X7

' 1/
A el @l s el ]}

< 182 (le) - KJI;)
2p

(34)
where
I1-2 11 =-2c| 3" (e = 1Y
G1:J %d"’@: —J 21];1( ) dx,
o AP m), AP
1 (L= 26| 3™ (el - 1)
G;= — 27 ) dx.
m), Al
(35)

Proof. Using Lemma 25, properties of modulus, power mean
inequality, and m-poly p-harmonic exp convexity of the

ly'|%, we have

vie) +v(R,)  pele J“
2 -

"w'(p—fz> dx<

< (("1((32(((75 ’Pq) J'l |1 - 2]

dx| < ptl
AR

xltp
1

plwz(g’z: D) (J [L-24 ,

1-(1/q)
o A )

I q 1/q 1-(1/q)
(j j1-24 wr(m@z) dK) A (J I i"‘dx)
o AP A 2p o AL
T . . 1/q
<J~1|1—2x[(1/m) (& = 1)y ()" + (m)E, (€ —I)J\W'(sﬁz)\l] d)
% K
A1+p
0

_ow(eh-el) (1112 )
- Zp Ap+1

_ i 19
1L =2k Y7 (ef - 1) 11 -2x3" (e - 1)’
x (ZJ B2 2n 21 o s EJ P23 (0 o)
0

0 A,l‘+p A}l{+p
_ N 1/g
S—“mgﬁ d){Gi Y16,y )]+ Galv ()] Z}v

(36)

which completes the proof.

Corollary 28. Under the assumptions of Theorem 27 with
p=-1, we have the following new result:

vip) +v(p,) 1
2 £~

s ()

Aot iv'er] "}

Corollary 29. Under the assumptions of Theorem 27 with
p=1, we have the following new result:

rzw(x)dx

v(e) ty(w) 0, ”Zw(x) x| < €162(02 1)
2 £2 70 x? - 2
~(1/q) 1iq
'{G1 q[zh” 5’1| +G3|W @2” }’
(38)
where
hp-2 1 (L1237 (e — 1Y
ngj | 2K|dK,G;=—J | |Z]_21( )dK,
0o Ay mJo Az
1] =263 (el — 1)
- L[/ 2Bl
mJ, AK
(39)

Theorem 30. Let v : [ =[p,,p,] SR\ {0} — R be differ-
entiable function on the I' of I If y'€Llp, p, and

ly'|" is an m-poly p-harmonic exp convex function on I,
r,q=1, (1/r)+(1/q) 2 1, then,

v(p) +v(p,)  peleh [P w(x)
‘ 2 _{Jg—ng xHde

<J ey’ o))"+ Gl e}

< 18> (Kf[z] - W‘;)
2p

(40)
where
1 1y e — 1)
G, :J |1-2«|"dx, G5 = —J 21_1(4)(11@
0 mJo A,((H‘D)q
) (41)
1Y (el *-1)
G- L J (e -1y
m 0 AJ(CPFP)q

Proof. Using Lemma 25, properties of modulus, Hélder’s
inequality, and m-poly p-harmonic exp convexity of the

ly'|%, we have



8
|‘/’(@1)+W(Pz) _ Pele rz v(x) dx Pl@z(&’-’}’ &”-’P)
2 Kjg 7(-71; ©1 x!P 2P
.J~1|1—2K| w,(mm) i< B8 60
0 Aﬁ“ AK Zp
1 ur /g q l/q
r 1 {8182
: (J 11— 2] dk) (LAL“P“ y ( ™ > dx>
1
{lez Wp Wp (J - 2K|rdl€)
0

) 1/q
- 1)’Iw’(r@z)l"} dK)

oy [Galy' e[+ Gl )]

([l s st [

=1 Jj=1

_ m@z(ﬁ—@?) {

-

(42)

which completes the proof.

Corollary 31. Under the assumptions of Theorem 30 with
p=-—1, we have the following new result:

Vo) +yps) - L % g
' 2 g —KJJJ v

< (‘@2—;‘@1) (Jiz —2K|'d;<> Ur%i (e=2)

J=1

‘ {U‘V'@IW + ' (0.)]] ”q}.

Corollary 32. Under the assumptions of Theorem 30 with
p=1, we have the following new result:

00,0, — ;)

<
2

’w(mw(@z)_ 0,02 J“w(x) i
2
2 K270 )p, X

. 11
e o ol + oy’ )]}

where

! ! ! 1 !
G4=J |1-2x|"dx, Gs= —J
0 m)o

[,

2
mJ, A

G
A2

G, =

Theorem 33. Let v : [ =[p,,0,] CR\ {0} — R be differ-
entiable function on the I° of I. If v' €Llp, p,] and

ly'|" is an m-poly p-harmonic exp convex function on I,
q=>,1 then
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a2 ) (G5 ) e

_ Pl JPZM FJPZ(PP @p)
5~ ) o, X = p

B [ w0l el )]

1iq

1
+B2 (11q) [36}1;/ ©;) } +B7|V/I(K-’2)|q} !

+B -(t) [38’1// ©;) } +Bg}llfl(@2){q]”q},

(46)
where
13— (1/8 2B i~ (1/2
B1:J | £+1 )|dK’B2:J | ,t(>+1 )|dK’
0 AL 3 AR
1 = (U8)[S (¢~ 1)
B,= 7] S dx,
mJ, AK
1 e (8|S (e - 1)
35 = ;J AP+1 dK,
0 K
1P e ()T (e - 1)
B6 = ZJ APJFI dK,
13 X
LR e (12)|) (e - 1)’
B, = m APt dr,
13 X
1 e ZI8)[S (e - 1)
B8 - p+1 dx,
m J 3 AL
1 |k=(718)|X0, (e~ 1)
By=— ol dx.
m J 3 AL
(47)

Proof. Using Lemma 26, properties of modulus, power
mean inequality, and m-poly p-harmonic exp convexity

, we have

of the |y/|?

< KJ&’Z({JIZJ’((J‘;) N U‘“\K*

é [w(m) +3w<[é§ig] ) +

(178)]

v <§1(¢’2>

A1+P
U= (78)| |, (9105
+‘L/3 AP 'W (
(13 |k — (1/8)
‘ 1+ )| v 16
Al A,
” \K )| (e
1/3 A‘+P w AK
(J v (52)
2/3

1

v 0160,

llm

=1y ()| +

1p
(] )

r2/3

K-

dK+J lT
o AL

)] e rz y(x)
2 p‘z)_p}; o xl+p

1 (€18
v (5

(1/2) e

k- (118)]

] mzr@" ) [([

“ 2/3 [k - (1/2)]
+ l+p
1/3 A

’ Y - (718)|
+ Al+p

0

1-(1/g)
dK)
Al+p

)1 (1/g)
)1 (1/g)

qu) ] MJZ@" )

(1m)y"

( (13 i — (1/8))] 1 (1)
o Al °
1 (el -

Al+[7
1/3 [ = (1/8)|
X
0

. Jm k= (172)|
173 AHP

>1 (1/9)

A1+p

e l)‘w K-’zl} )W
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. (r/sx(l/2)|[(1/m) (e =1y (g |

T+p
13 Al

1 _ 1-(1/g)
(] e,
2/3 Al*P

. ([ o= (78)|[(Lm) T (e = 1Y )|+

T+
Jas AT

+(Um)YE (e - 1)f\w'(pz)\q] dK) "

Vm) j'il(el”‘—l)j|WV<Pz)ﬂ dK) ”4}

pltaz(k;é’m‘f) . [(JW \K—(1/8)|dx)"<”’1)x (lrwf(us)|z;11(e~71)f

o Al mJ, ALP
13 [ = (1/8) | Y7 (% =1 j q
'!'V © ‘ dk+ — L *}v/(m)l”dk
X

203 |, _ 1-(1/g) 283 | — (1/2 Vzl K _ 1\ ,
([ ) x(LJ o U

1/3 AHP 1/3 Ahp

1/ —(1/e
1 (k= (12) |2 (e = 1) T -y, )T
- %‘V/ () } dic | +|—| ——dt
m}y; AP mlys A

XGJI Ik~ (7/8) | X2y (¢ ~ 1)) 1J1 Ik~ (7/8) | Xy (¢!~ 1)/
2/3

T 1
m)as AP AP

N

v' (1) ["dic +

1/q
- 1/
~|w’<@z>\qdk> }:M{B' 0 [ByJy (00| + Bl ()]
1/ 1/q
B (Bl (o) + B v ()] B [Baly 00|+ Bolw (02)|] '},
(48)

which completes the proof.

<(p,— ;)

Corollary 34. Under the assumptions of Theorem 33 with
p=-1 and m=1, we have the following new result:
1 20, +
‘g {w(r@l) +3w(w) +3y (“ - ) +w(@2)}
1 02 d
- xX)dx
02 _K’zJ V)
17 1/q
: (57 [o 0069y (,)|* +0.036]y (0,)| }
0.183\ [, , ) g (17
+ (o) [l @l v @) "+ (5)
1/q
: [0.036|w’(p1)}q+0.0069|w’(pz)|‘1 } (49)
Theorem 35. Let v : I =[p,,p,] SR\ {0} — R be differ-

entiable function on the I' of I If v'€Llp, p,] and
ly'|* is an m-poly p-harmonic exp convex function on I,

r,q=1 and (1/r)+ (1/q) = 1 then

é {w(@,) +3w<[£i€%} > +3w( L;piﬁfp;g] ) 'H/’(Pz)}
P@l;(”g 2 9(x) < 162 (Fg - W}l)) % 3y s\

) J dx‘ R {( ))

wh—h Jo, x"P 24 (r+ 1

' <Bw|‘l/’(@1)|q + By W,(m”q)

2 1/r
6'”(r+1)) B
. , 1/q 3r+1 +5r+1 r
(Bulv' (@) + Bl (02)[ ")+ (2_4’”(r_+ 1))
, , 1
'(314|f (a)}th+315|1// (@2)|q> q}’

(50)

where
1 BY™ (e —1)
BIO= —J —Z'I_I(I ) dK,
mJ, ASCJFP)@
j
5 1/3 ZJ_ ( ) p
i N TR
mJo Ax
213 e — 1)
B, = —J ZEI—+>)dk,
13 Ag 2 (51)
12BY™ (efF -1 i
By=—| 257/ 4G ) dk
137 m) ;3 A(“P)q >

1 -1
BM—iJ Y )dK’

m J s A,((HP)q

o] P

1
m J s A,(c )

Proof. Using Lemma 26, properties of modulus, Hélder’s
inequality, and m-poly p-harmonic exp convexity of the

ly'|%, we have
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Lol (5]
173 r Ur /g g
) 18182
{(L 8 dK) ([0 g ¥ (AK ) dK)
2/3 r 1r q l/q
1 £182
+ dx dx
(JIIS > ( ( AK ) )
o1 r 1/r g
+ (J dx> ( (WIK%) dK> }
23 A
KJIKJZ(KJP KJP)
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{m;(e Yy (e m; -1y (e, I} )
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miz 23

j=1

2/3
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K_7’

1

J2/3 1
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K— —
8
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X —) (eF-1) T 2N (e 1) |y | dx
(e T N T
r+l r+1 r 13§ ok _ 1)/
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sy (e 1) ) Ya 2 1r
mjo A(1+p |V/ { dK) + (6r+1<r+ 1))
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3r+l gogrel \ VT
+
(24“1(wr 1))

1121e’1j ' 1 X (e
(B B s &L

qu+—J )
m Jys A P

ur , , 1/g
>> (Bw“/’ (Pl)‘quan/ (Pz)‘q) :

v' ()]

2/3

— Pl@z(k"g*pf) « { ( 3r+l +5y+l
p

24" (r+ 1

)

1/q

+ (ﬁ)u (Buly' (e[ + Buslv' (0)]")
SEARSEVE (Bmw’w|qu+Bls|w’(m>\”)”q},
(52)
which completes the proof.

Corollary 36. Under the assumptions of Theorem 35 with
p=-1 and m=1, we have the following new result:

‘é {w(rm)”w(@) +3w<“ - )+v/(r@2>}

1 0 3r+l 4 grel 1r
o= e m{(m>
, l/q
: (0.0623\1// (py)|" +0.4372|y (@z)!q)

(g 0215w @l e

3r+1 + 5r+1
(24”1 (r+1)

1/q

(53)

6. Applications

In this section, we recall the following special means of two
positive number g, g, with @, <,:

(1) The arithmetic mean

21162

A=A(p,,p,) = 5 (54)
(2) The geometric mean
G=G(py>0,) = VP10, (55)
(3) The harmonic mean
20,0
=H(p,,0,) = © j_pz (56)
)
(4) The logarithmic mean
£2 6
L(p,, =—= - 57
0 0)= 0 g (57)

Ir
> (0.4372|1(/'(p])|q + 0.0623|1///(p2)|q)1/1 .
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These means have a lot of applications in areas and differ-
ent types of numerical approximations. However, the follow-
ing simple relationship are known in the literature:

H(p,, 0,) <G, 0,) <L(01>0,) <A1 0,)-  (58)

Proposition 37. Let 0< @, <g, and p > 1. Then we get the
following inequality
_p)
(59)

[e—2).

T H, (¢ ) <

257 (ve-1) A AN

<A(p;> ;)

P (@5“” -,

RN
™M=

1l
—

J

Proof. Taking w(v)=v for v>0 in Theorem 21, then,
inequality (59) is easily captured.

Proposition 38. Let 0 <, <, and p> 1. Then, we get the
following inequality:

S H (¢ ) <

ppptop 1/2) - _ (1/2)7;; -1
257 (Ve-1y ( )

@5 — ¢ (1/2)-p

J=1

(60)

Proof. Taking y(v) =1/4/v for v>0 in Theorem 21, then,
inequality (60) is easily captured.

Proposition 39. Let 0 <, <, and p> 1. Then, we get the
following inequality:

eI < >

@b — ) \L(9 02)

<A(@h, ¢h) Z

=1

zz;zlwé— 1y Hlpire) <

Proof. Taking w(v)=vF for v>0 in Theorem 21, then,
inequality (61) is easily captured.

Proposition 40. Let 0< g, <, and p> 1. Then, we get the

following inequality:
P (@5 1 )
2-p
- ¢ @)

2 & ;
<A(pr03) p > le-2).
j=1

s e T

Proof. Taking y(v)=v*> for v>0 in Theorem 21, then,
inequality (62) is easily captured.
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Proposition 41. Let 0< g, <@, and p> 1. Then, we get the
following inequality:

M Gl e < DI [P
Ty e ool

<In H, (¢ ) %i
(63)

Proof. Taking y(v)=-Inv for v>0 in Theorem 21, then,
inequality (63) is easily captured.

Proposition 42. Let 0< @, < g,. Then, we get the following
inequality:

L (O PO JKJZ e"l dx
22;11(\/6_1)] pg_d (] X

< A(egjl) eKJZ) i
m#

(64)
[e— Z]f .

™=

Il
—

J

Proof. Taking w(v)=e" for v>0 in Theorem 21, then,
inequality (64) is easily captured.

Proposition 43. Let 0 < g, < g,. Then, we get the following
inequality:

p@ppp JKJZ smxdx

2 m
A(sin g, sin g, a}z [e-2)/ KJP 7 o

m

IN

W sin H, (g, 0,)-

(65)

Proof. Taking y(v) =sin (-v) for v € (0, (7/2)) in Theorem
21, then, inequality (65) is easily captured.

Remark 44. The above discussed means, namely, arithmetic,
geometric, harmonic, and logarithmic are well known in lit-
erature because these means have remarkable applications
in machine learning, probability, statistics, and numerical
approximation [24]. But, in the future, we will try to find
the applications of the He Chengtian mean (also called as
He Chengtian average), which was introduced by the first
time a famous ancient Chinese mathematician He Chengtian
[25]. The He Chengtian average was extended to solve non-
linear oscillators and it is called as He’s max-min approach
(also called as He’s max-min method), which was further
developed into a frequency-amplitude formulation for non-
linear oscillators [26, 27].

7. Conclusion

We have introduced and investigated some algebraic proper-
ties of a new class of functions, namely, m-poly p-harmonic
exp convex. We showed that our new introduced class of
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function have some nice properties. We proved that our
new introduced class is very larger with respect to the known
class of functions, like m—polynomial convex and m-polyno-
mial harmonically convex. A new version of Hermite-Hada-
mard type inequality and an integral identity for the
differentiable function are obtained. It is high time to find
the applications of these inequalities along with efficient
numerical methods. We believe that our new class of func-
tions will have a very deep research in this fascinating field
of inequalities and also in pure and applied sciences. The
interesting techniques and wonderful ideas of this paper
can be extended on the coordinates along with fractional cal-
culus. In the future, our goal is that we will continue our
research work in this direction furthermore.
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The object of this work is to an innovation of a class k— UST,(h,v,7,1,¢) in Y with negative coefficients, further determining
coefficient estimates, neighborhoods, partial sums, convexity, and compactness of this specified class.

1. Introduction

Let Y = {w : |w|<1} be an open unit disc in €. Consider the
analytic class function A that indicates j specified on the unit
disk along with normalization

j(0)=0,j"(0)=1 (1)
and has the form
jlw=w+ ) 0,0, (2)
n=2

indicated by S, the subclass of A lying of functions that are
univalent in Y. A function j € A is stated in k — UST(¢), and
k—UCV(1), “the class of k-uniformly starlike functions and
convex functions of order 1,0 <1< 1,” if and only if
vj'(v)
- -1

vj' (v)
m{ i) } ~K )

ER{I+ V]:,I’(V)} >k
J )

+1, (k> 0),

vi''(v)
i')

+1,(k=0).

The classes UCV and UST were introduced by Goodman
[1] and studied by Ronning [2]. Due to Sakaguchi [3], the
class ST, of starlike functions w.r.t. symmetric points are
defined as follows.

The function j € A is stated to be starlike w.r.t. symmetric
pointsin Y

owl] 29'(@
”‘{j(w) i)

}>0,(weY). (4)

Owa et al. [4] defined the class ST,(a, ¢) as complies

(1 - 5oy’ (@)
”‘{ (@) - j(ew)

} >a, (weY), (5)

where 0<a<1,[¢|<1,¢+# 1. Here, ST,(0,-1) = ST, and ST,
(a,—1) = ST («) is named Sakaguchi function of order a.

In recent years, binomial distribution series, Pascal distri-
bution series, Poisson distribution series, etc., play important
role in GFT. The sufficient ways were innovated for ST, UCV
for some special functions in the GFT. By the motivation of
the works [5-13], we develop this work.
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In [14], Porwal, Poisson distribution series, gives a gra-
cious application on analytic functions; it exposed a new
way of research in GFT. Subsequently, the authors turned
on the distribution series of confluent hypergeometric,
hypergeometric, binomial, and Pascal and prevail necessary
and sufficient stipulation for certain classes of univalent
functions.

Lately, Porwal and Dixit [15] innovate Mittag-Leftler
type Poisson distribution and prevailed moments, mgf,
which is an abstraction of Poisson distribution using the def-
inition of this distribution. Bajpai [16] innovated Mittag-
Leffler type Poisson distribution series and discussed about
necessary and sufficient conditions.

The probability mass function for this is

h}’l

P(h,7,v;n)(w) = E,, (W) (tn+0v)

,(1=0,1,2,-),  (6)

where

L (r,ue% R(1)>0,R(v) >0). (7)

The series (7) converges for all finite values of w if R(7)
>0, R(v) > 0. This suggest that the series E, () is conver-
gent for 7,v, i > 0. For further details of the study, see [17].
It is easy to see that the series (7) are reduced to exponential
series for r=v =1.

A varijable x is said to have Poisson distribution if it takes
the values 0, 1,2, 3, --- with probabilities e”, he™"/1!, h*e /2
Lidehy3), -

Thus,

, respectively, where # is called the parameter.

n_-h
P(x=n)=

,1=0,1,2, . (8)

This motivates researchers (see [15, 17, 18], etc.) to intro-
duce a new probability distribution if it assumes nonnegative
values and its probability mass function is given by (6). It is
easy to see that P(i1, 7, v ; n)(w) given by (6) is the probability
mass function because

P(h,1,v;n)(w) =0, i P(h,7,0;n)(w)=1. 9)

n=0

It is worthy to note that for a« = f=1, it reduces to the
Poisson distribution.
Also note that

E (@) =@l (V)E 1, (w)- (10)

In [18], Chakrabortya and Ong introduced and discussed
about the Mittag-Leftler function distribution—a new gener-
alization of hyper-Poisson distribution. The Mittag-Leffler
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type Poisson distribution series was innovated by Porwal
and Dixit [15] and given as

0 hn—l
K(h,7,0) (@) = @+ ;F(T(n_ EEN) @' (11)

Equation (11) is a normalization function in S, since
K(h,7,0)(0)=0 and K'(h,7,v)(0) = 1. After that, in [19],
Porwal et al. discussed about the geometric properties of (11).

For j € A given by (2) and I(w) given by

l(w)=w+ z b,w", (12)
their convolution, indicated by (j * ), is given by

Geh@=a+ Y obe=(xj)e)@er).  (13)

Note that j = [ € A.
Next, we innovate the convolution operator

J(h,1,v)j(w) =K(h, 7,0) * j(w) =w + Z ¢p(1,v)0,0",
n=2
(14)
where ¢ (7,v) =" /(I(t(n - 1) + v)E, , (h)).
Then, using linear operator .7 (h, 7, v), we exemplifier a

contemporary subclass of functions in A.

Definition 1. If j € A is named in the class k — UST (h, v, 7,1, ¢)
ifforalweY

(1-¢)w(I (A, 1,0)j(w))’
”‘{ﬂ }

h7,0)j(w) -7 (7, v)j(w)
, (15)
(1= w(7 (b, 7,v)j(w))

>k
T t,v)j(w) - T (B 7,0)(5w)

-1

+1,

fork>0,|c|<l,¢#1,0<:< 1.

Moreover, we named that j € k- UST (h,v,7,1,¢) is in
the subclass k — UST, (h, v, 7, 1,¢) if j(w) is of the compiling

form
(e8]
jw)=w- Zonw”, 0,20,neN,weY. (16)
n=2

In this work, we analyze the bounds for coefficient, partial

sums, and some neighborhood outcomes of the class k — US
T,(h,0,7,1,¢).
To claim our outcomes, we adopt lemmas [20].

Lemma 2. Let w be a complex number. Then, a <R(w) &
lw-(1+a)|<lw+(I-a)l.
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Lemma 3. Suppose a complex number w with real numbers
a, 1. Then,

R(w)>alw- 1| +1e R{w(1+ oceip) —aei"} >, (-n<p<m).
(17)

2. Coefficient Bounds
Theorem 4. A function j given by (16) is in k — UST (b, v,
7,1,6)

e Y gh(rv)ln(k+1)—j,(k+1)lo, <1-1, (18)

n=2

here k>0,|c|<I,¢#1,0<:1<1 and j, =1+¢+--+¢"".
The result is sharp for j(w) is

. _ _ I-1 n
I B A T IR

Proof. By Definition 1, we have

j(h; T, U)]((U)) w) (1 +keip) _keip} Zl,—T[<P§7T-

{ (1- o
T 7, 0)j() - 7 (B 7, 0)j(s
(20)

Let H(w)=(1-¢)w(I(h 1,0)j(w))(1 + ke?) — ke’ [F(
h,1,v)j(w) — F(h,1,0)j(cw)] and K(w)=F(h,1,v)j(w) -
I (h, 7,0)j(cw)

By Lemma 2, (20) becomes

[H(w) + (1 -)K(w)| 2 |H(w) -

(1+1)K(w)],for0<i< 1.

(21)
But

H(w)+ (1 -)K(w)|=1(1-¢)

©
(2- tw—z%‘rv)n+]n(l z))aw”—ke"’z%‘rv(n ]n)ow}|>\1 sl

h :
1

2-1)|wl- Z(ph‘ru VIn+j,(1-1)lo,]w"—- quJh(Tv [n=j,lo, " I}

(22)
Also

H(w) - (1+)K(w)|=1(1-¢)

00
—1w — Z(ph 7,0)(n—j,(1+1))o,w —kei/’Z(p;(‘r,v)(n—jn)onw"}lgll—ql

n=2

{/I(uHZ(ph‘rv ) n—j,(1+1) o, |w|+kZ<ph‘rv [n=j,lo,|w" I}

n=2

(23)

So

|H(w) + (1 - )K(w)| - |[H(w) = (1 +1)K(w)| = ]1 =g

X {2(1 -1 |w|—ozo:(pz(r,v)[|n+jn(l —)l+ln—-j,(1+0)+2k|n—-j,|]o, | " | }

n=2

00
22(1-1)|w| ~ Z 2¢p(7, v)|n(k +1) = j, (k+1)]o,|w"| = 0.

n=2

(24)

Conversely, suppose (18) holds. Then, we have

% (1-¢)w(F(h,1,v)j(w)) (1 + ke"p) - ke"f’[f(h, 7,0)j(w) - F(h, 7,)j(¢w)) .
T 0)j(w@) ~ T (<) =

(25)

Opting w values on the +ve real axis, where 0< |w| =
r <1, then

m{ (1-1) = Xogh(m0) [n(1+ke) - j, (1-+ ke) | O"wn_l} >0.

1= X5 @h(m v)j,0,0" !

(26)
Since R(-e¥) > ~[e®| = -1, then
g (170 = T (n o)1+ K) =, (+ Ko, o
1= 250k (T v)j,0,r"!
(27)

Taking limit 7 tends to 1, we obtain our needed result.

Corollary 5. If j(w) € k— UST(h, v, T, 1,¢), then
1
0,< — - , (28)
(=0 " ¢h(m.v) [ n(k+1) = j,(k+1)]

where k>0,|¢|<l,¢#1,0<1<landj, =1+¢+--+¢" L.

3. Neighborhood Properties

The notion of S-neighbourhood was innovated and studied
by Goodman [21] and Ruscheweyh [22].

Definition 6. We define the f3-neighborhood of a mapping

j€A and indicate by Ny(j) lying of all mappings g(w) =

w-Y2b,w"€S(b,>0,neN) satisfies the condition
[n(k+1)—j,(k+1)|

i q)g(T’ U) B ‘0
= 1-1 "

where k>0,[¢[<1,¢#1,0<:i<1,$>0and j,=1+¢+ -+
cn—l.

~b,|<1-f, (29)

Theorem 7. Let j(w) € k — UST,(h, v, 7,1,¢) and every real p
we get 1(e'? — 1) — 2¢'f # 0. For any € € C with |e | <B( > 0),
i ) fulfills

j(w) + ew

o k- UST,(hv,7,1,5), (30)

then, Ng(j) C k - UST,(h,v,7,1,6).
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Proof. Tt is evident that j € k — UST,(h, v, T, 1, ¢)

(1-¢)w(F(h,1,0)j(w)) (1 + keiP) - (keip +1+ t) (F(h,1,0)j(w) — F(h,T,0)j(cw))

<0 (7, 0)j(@)) (L ke?) + (1~ ke? ) (T (7, (@) ~ T (7, 0)j(ca)) | (1
where —7r < p <7 for some s € C and |s| = 1, we obtain
(1= ¢)w (I (1, 7, 0)j(w)) (1 + ke®) = (ke + 1 +1) (I (1, 7,v)j(w) - I (1, 7, v)j(cw)) . (32)

(1-¢)w(F(h,1,v)j(w))(1 +keP) + (1 - kelP —1)(F (h, 7,v)j(w) — F(h, T, v)j(w))

In other words, 4. Partial Sums

Theorem 8. If the function j is of the form (2) fulfill (18) then

x (J (b, 1,0)j(w) = I (h, 7,0)j(cw)) # 0 = w
~ "Z":(pg 7,0)((n - j,) (1 + ke — ske®) = s(n + j,) = j,i(1 —5)) W20, m{ ](w) } 51 1 ’ (38)
n=2 (s—1)=2s Jm(@) Xm+1
(33)
However, jek—UST,(hv,7,46) o (j*h)/w#0,w¢ X, = L f2<n<m; (39)
Y - {0}, where h(w)=w-};2,c,0" and " A\ Xy if m+1<n<oo,
_gp(mu)((n=j,) (1 + ke —ske®) —s(n+j,) = j,i(1-5)) - where
n= is=1)-2s ]
S @3 (1, U)|n(11+_kl) —Jn(k+ l)| _ op(t,v) [ n(1+k)—j,(k+1)] . (40)
(34) 11
. The estimate (38) is sharp, , with
since ((j(w) +ew)/(1+¢)) € k—UST,(h,v,1,1,6); therefore, ¢ estimate (38) s sharp, for every m, wi
0 ' ((j(w) + ew)/(1 + &) * h(w)) # 0, which implies »
j(w)=w+ © (41)
(j * h)(w) € Xm+1
2+ —— #0. (35)
(I+e)w  1+e¢
Proof. Now, we define g; we can define
Now, suppose |(j * h)(w)/w| < 8. Then, by (35),
| e (0 (L L))
’(] * h)(w) € > |€|_ﬁ > 0’ (36) 1—@(“’) il jm(w) Xm+1 (42)
(1 * 8)60 Lre |1 e I — 1+ Zzsrszonwn_l + Xm+lzzim+10nwn_l
1+Y" 0,w0"! '
which contradicts by |e | <f, and thus, we arrive |(j * h)(w)/
w| > . .
If g(@) = 0 — Y, enb,@" € Ng (j), then Then, from (42), we attain
(g *h)(w)| _|((~9)*h)(w) _ KXot L1900 @
ﬁ B ’ w = w ( ) p(w) 2+ ZZZLZOnwn_I + Xm+1222m+10nwn_1 , (43)
37
© (T, 1 o )
< Z(Ph<T U) | }’l( +k> ]n(k+1) | |On _ bn' Sﬁ. |K7(w)| < ri(mHZn:mHOnoo )
n=2 1—1 2- ZZn:ZOn - Xm+lzn:m+10n
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Now, |p(w) | <1 if

2X a1 Z 0,<2- 220 :>Zo +Xm+120

n=m+1 m+1

(44)

It is enough to prove that the LHS of (44) is bounded
above by Y /°, ¥, 0,, which implies

M=

(Xn - 1)0n + z (Xn - Xm+1>0n = 0. (45)
n=m+1

n=2

To show that the mapping disposed by (41) gives the
exact result, we notice that for w = re™",

j@) e (46)
Jm ((4)) Xm+1
Taking limit w tends to 17, we have
o 1 (47)
Jm(@) Xme1
Hence, the proof is completed.
Theorem 9. If j of the form (2) which fulfill (18) then
](w) I+ Xm+1
The result is sharp with (41).
Proof. Define
l+p(w) ]m( ) _ Xm+1
1— ( Xm+l) 1
p(w) ]((l)) + Xm+1 (49)

m n-1 " 1
_ 1+ zn:ZOnw Xm+lzn m+1 nW
- >
1+Y02,0,w"!

where
p(w) - (1 + Xm+1)zn m+10nwn !
_(2 + 2znm:20nwn71 - (1 - Xm+1)zn m+10nw )
(o)
|P(w)| < ngl + Xm+1)Zn=m+lOnOO <1.
2- 2211:2071 + (1 - Xm+1)2n:m+10n
(50)
This last inequality is

ZO +Xm+1 Z 0y (51)

n=m+1

It is enough to prove that the LHS of (51) is bounded
above by Y2, x,0,, which implies

Z (Xn_1)0n+ Z (Xn_XmH)OnZO' (52)
2<n<m n=m+1

This completes the proof.

Theorem 10. If j of the form (2) fulfill (18) then

m{;,'((:;} >1- ’)’Z_” (53)
m J:n(w) > Xm+1 (54)
i (w) Tltm+y,,,

where

1)
X”Z nXm+1
m+1’

and y, is given by (40). The computation in (53) and (54) are
sharp with (41).

ifl<n<m
}. (55)

if m+ 1< n<oco

Theorem 11. k- UST,(h,v,1,6) is a convex and compact
subset of T.

Proof. Suppose j,; € k- UST,(h, v, 7,1,5),
=w- Z lag,lw". (56)
n=2

Then, for 0<y <1, let j,j, € k— UST,(h,v,7,1,6) be
given by (56). Then,

E(w) =i (@) + (1= ¥)jp(w) = w(w - §|al,n|w”>

+(1-vy) (w - i’az)n}w”>

(o]

1//)|612,n|)(")n’

=w-— Z(w|a1)n| +(1
n=2

Z(Ph (mo)(n(k+1) = j,(k+0) (vl ayl+(1-y) [ay, ])
Ssy(l-n+(1-y)(1-=1-1
(57)
Then, &(w) = yj, (@) + (1 - y)j,(w) € k- UST,(h,v, 1,1,

g). Therefore, k — UST,(h, v, 7,1,6) is convex. Now, we have
to show k — UST,(h, v, 7,1, ¢) is compact.



Forj, ek - GSTS(h, 0, 7,56),¢€ Nand |w | <r(0<r<1),
then we arrive

ljg(w)l <7+ Z lag,\r" <r+ Z op(t,v)|n(k +1) = j, (k+1)|lag,|r"

n=2 n=2
<r+(1+n)r".

(58)

Therefore, k — UST, (h, v, 7, 1, ) is uniformly bounded.

Let jy(w)=w-Y2, lag, | 0", weY,deN.

Also, let j(w) =w—Y,,0,0". Then, by Theorem 4, we
get

Z(pg(r,v)|n(k+1)—jn(k+1)|lonlgl—l. (59)

Assuming j, — j, then we have a;,, — 0, as n — o0,
(deN).
Let {p,} be the array of partial sums of the series

. (o) |n(k+1) = j,(k+1)[|o,]. (60)

n=2

Then, {p,} is a nondecreasing array and by (59), it is
bounded above by 1 — .
Thus, it is convergent and

Y @h(rv)|n(k+1) = j,(k+1)|lag,| = lim p, <11 (61)

n=2

Therefore, je k- fJSTS(h, v, 7,1,6) and the class k — Us
T,(h,v,7,1,¢) is closed.
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In this paper, we define a new class of Sakaguchi type-meromorphic harmonic functions in the Janowski domain that are starlike
with respect to symmetric point. Furthermore, we investigate some important geometric properties like sufficiency criteria,

distortion bound, extreme point theorem, convex combination, and weighted means.

1. Introduction and Definitions

One of the contemporary developments in Mathematics is
the solicitations of harmonic analysis in other fields. Like
various other fields, it has immensely influenced and nur-
tured the branch of geometric function theory. Jahangiri
et al. [1] defined and studied a subclass of harmonic and
univalent functions. Another example of such work would
be an article of Porwal and Dixit [2], who used a certain
convolution operator involving hypergeometric functions
to define a class of univalent functions. As a consequence,
many mathematicians generalized many ideas of this field
and various important results with the help of some oper-
ators; the work of Porwal et al. [3], Porwal et al. [4], and
Porwal and Dixit [5] are worth mentioning here. Recently,
some subclasses of harmonic functions were investigated
by Arif et al. [6] and Khan et al. [7]. To start with, we
give preliminaries which will be useful in understanding
the concepts of this research.

A real-valued function u(x, y) is said to be harmonic in a
domain D c C if it has a continuous second partial derivative
and satisfy the Laplace’s equation

*u  d'u

A continuous complex-valued function f = u + iv is said
to be harmonic in a complex domain U if both its real and
imaginary parts are real harmonic in U. In any simply con-
nected domain U ¢ C, one can write f = h + g, where h and
g are analytic in U. The class of such functions is denoted
by %. The condition |h'(z)| > |g (z)| is necessary and suffi-
cient for f to be locally univalent and sense preserving in U,
see [8]. There are different papers on univalent harmonic
functions defined in unit disc D ={z : |z| < 1}, for details,
see [9-14]. For z € D* =D\ {0}, in the punctured open unit
disc and let .# 4, denote the class of functions
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f@)=h) + 9= L+ a2+ YT b (@)

which are harmonic in D* where £ is analytic in D* and has a
simple pole at the origin with residue 1, while g is analytic in
D. The class 4 was studied in [15-17]. Furthermore,
denoted by .# 5, a subclass of /g, consisting a functions

of the form

1 (e8] [ee] _
)=+ Ylale" = Yl (3)
n=1 n=1

which are harmonic univalent in punctured unit disc D*.
For functions f € .# g given by (2) and F € /4, given by

F(z)=H(z) + G(z) = % + i A"+ ZZ;an”, (4)

we recall the Hadamard product (or convolution) of f and
F by

(f * F)(z :% Za Z+Z

In terms of the Hadamard product (or convolution),
we choose F as a fixed function in % such that (f = F)(
z) exists for any f € #, and for various choices of F, we
get different linear operators which have been studied in
the recent past.

Recently, Khan et al. [18] introduced and studied a class
of meromorphic starlike functions with respect to symmetric
point in circular domain i.e.,

lannz (zeD"). (5)

22f' () 1+Az
) =2 “1+Bz ©)

Motivated from the above discussion on harmonic func-
tions and class of meromorphic starlike functions with
respect to symmetric point, we introduced the class of mero-
morphic harmonic univalent functions as:

Let -1 <B<A<1. Then, the function f € #, is in the
class 3 [A, B] if it satisfies the condition

1+Az

29,1 (2) -
1+Bz’

f@ -7 "

€D), (7)

where the symbol ~ <
and

represent well-known subordination

Dy f(2) =2h'(2) - 29’ (2), (8)

or equivalently

Daef(2) + (f(2) —f(=2)/2)
BDgf(2) + A(f(2) - f(=2)/2)

<l,(zeD). (9)
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Furthermore, we denote ./ ;f [A, B] subclass of /7 A,

B] consisting of harmonic meromorphic functions f =h + g
of the form (3).

2. Main Results

Theorem 1. Let f = h + g be of the form (2) and satisfies the
condition

2. @l + B, b <1, (10)
with
_|(1+B)n+ (1+A)(1-(-1)"/2)] .
&y = 1-B an
_|I+B)yn—(1+A)(1-(-1)"12)|
ﬁn_ A_B N (11)

then f is harmonic univalent sense-preserving in D* and f €
M A, Bl

Proof. For 0 < |z,| <|z,] < 1, we obtain

f(z1) - f(z)
h(z,) - h(z,)

>1- ‘g(zl) -9(z)
N h(z,) - h(z,)

—1- 215,21 ba (2] = 25)
(21— 25) — 212,22, (2] = 25)
S1— Ynei|by| _ L1 Balbyl >0
1-Y% 1-Y%® ’
n:ln|an| n= l‘xnla |

(12)

where we have used (10) and this shows that the function is
univalent.

Now to show f(z) is sense-preserving harmonic mapping in
D*, consider

@)= 2~ e

(e8]

_Zn|b\>|g (2)].

|Z|"1>1—Z nlan|>Zﬂ|b\

n=1

(13)

This shows that f is sense-preserving.
Now, to show that f € .Z3; [A, B from (9), it is enough to
show that

f(z)-f(=2)

Do (2) + = 1) -J(=2) —2f )| <o,

- ‘B@%f(z) +A

(14)



Journal of Function Spaces

For this, consider

f@)~(=2) @12
2 2

'gjyff(z) + - ‘B%zf (2)
i Kn + - (271)n>anZ” + (n + - (271)’1> b,.iz"}
+ i [(Bn Atz (271)">anz” - (Bn Atz (271)”> b[z”} |

< 3 (r+ =5 imler (e =5 e
= e

%1)")'“ Il + (Bn+A

(1+B) n+(1+A)(71)n

A-B
z

la,||z[" +|(1+B)n

+(1+A)1 ( i TB

=%;{|<1+B> (l,ffﬁ( eI
|1+ B+ (1+A)1=(-1)"12)| , . ] A-B
+ . ke -

e {Z[a 0.l + B, b, }—1}

(15)
Hence, complete the proof.
Example 2. The meromorphic univalent function
7+Zx” '+ Zy—” z", (16)
n=1"n
such that )2, (|x,| + [y,|) = 1, we have
[ee] [ee]
2 (@ylan] + B,|b|) = Z (beul + yal) = 1. (17)

Thus, f € M3 [A, B] and above coefficient bound given in
(10) is sharp for this function.

Theorem 3. Let f =h+ g€ M g and of the form (3), then
f e, A, B] if it satisfies the condition

7
3 e+ Bl <1, (18)
with
an—KHB)M(];f%(]_( C)
= 10+ Bin= A+ A= (C1'72) o)

Proof. The proof is similar to Theorem 1, so omitted.

Theorem 4. Let f=h+g¢€ /ﬂ}} [A, B] and of the form (3),
0<|z|=r< 1. Then,

1 A-B 1

<|f(e)| €=+ ——r. (20)

;_2+A+Br r

Proof. Consider

I & J
F@I=]2 + Y (@2 +52")| <+ Y (la,|+[b,)7
n=1 n=1
1 N 1 A-B
< - b )< -
R X R R
(21)
Similarly, proceeding as above we get
1 [ee] ; - 1 o0
F@I=]2 + Y (@ +b,2") |2~ =r Y (la,| +[b,)
n=1 n=1
1 A-B .
r 2+A+B
(22)

Hence, this completes the result.

Theorem 5. Let f = h + g, and of the form (3) then f € ./%};
[A, B] if and only if

[ee]

f@)= Y (Vuhy +8,9,), (23)
n=0
where
I 1 A-B R
S ey oy Yy 5 R
1 1 A-B S
9= 29 = L T T B e A= R
(24)
where 1>y,>0,1>8,>0,and Y, (y,+95,) =
Proof. Let
F@) =Yoo + 8090+ Y. (vl +8,9,)
n=1
oyl s S A-B ,
= E+nlyn<z 1+B)n+(1+A)(1—(— ) /2)\Z>
+;8”( (T+B)n+( 1+A)( “COR)] n)
v 1 A-B o
;( +0) 2+ZV" [T+ B)n+ (1+A)1-(-1)72)°
< s A-B -
AT B (T A= ()
(25)



4
Thus,
& A-B
Z{“”<|<1+B>n+<1+A><1 —<—1>"/2>|V")
A-B
+’3"<|<1+B>n+<1+A><1—<—1>"/2>|6”>} (26)

Mg

(Yat8,)=1-y,-8,<1,

=
I
—

hence, f € M/ %[A, B]. Conversely, let f € 4 %[A, BJ. Set

(Bt (L A)A= D)ooy <16

Yn= A-B
QB A QD g <5, <1,
=1_Zyn 26”
n=1 n=1

(27)

Therefore, f can be written as

@)=+ Ylaf = Ylble

) % " Z|(1 TBn+ (1A+;\§3(1 —cyra) Yl
B °°1 ((1+Byn+ (1A+;xl)3(1 R

B % i z|(1 TBn+ (1A+;A)B(1 — iy
- i\(l +B)n+ (1[:141)3(1 = l)n,2)|5n\bn|5"

A-B
Z(V°+6°)E * ;V"(E A Bn+ 1+ A)(1-

)

A-B .
T+ B+ (1+A) (1= (-1)2)]° >

hence required.
(28)

Theorem 6. The class /l%[A, B] is closed under convex

combination.

Proof. For k€ IN, let f, € M’s,[A, B], be of the form

H

1 X -
Ji(2) = i Z(|ak>n|zn = |by.|2").- (29)
n=1
Then form (10), we get
Y (@] ag,| + B, |bea|) < 1. (30)
n=1
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For 2,8, =1,(0< 8, <1), the convex combination of

S is
o0 1 (o] o0 o0 _
Z8kfk(z) =2 + Z (Z 8k’akn >Z - Z <Z 8k|bk,n|>zn
k=1 n=1 \ k=1 n=1 \ k=1
(31)
Using (10), we have
Z (‘xn Z Okl @l + B, Z 5k|bk,n|>
n=1 = k=1
(32)

k=1

- S S oot s ] < Sor-

thus prove our desired results.

Theorem 7. Let fke/%;;;[A,B], for k={1,2} be of the

form (29), then, their weighted F; mean is also in the class

M5, |A, B, where F is defined below

(I-i)fi(2) +

> (1 + i) Z(Z) . (33)

Fi(z) =

Proof. From (33), one may easily write

+ (1-9)f1(2) + (1 +i)f5(2)
2

!
— % + i [(1 _j)|an,1| + (1 +j)}an,2| 2" (34)

2

(1 _j>|bn,1| + (1 +j)|bn,2| Z_n]
2

To show that F, e /5

%[A, B], it is enough to show that

(1 _j)’anJ’ + (1 +j)‘un,2| o
2

z[ n
k=1 (35)

Bl<t.

. ‘u =) [Baa + (14 )],
2

Now consider

2

"z":{ 1 ]|an1|+ (1+7) }an2|

1(1 )] +(1+J‘)|bn,z\|ﬁ }
k=1

[ 1 ] }anl|a + 1 ] ‘hnl‘ﬁ
2

(1+4))|a,, |, + (1 +j)|bn,2|ﬁn:|

? IMS

) 1+9) S
DY (lanal, +|bn,l|ﬁ,,>+(

k=1 k=1
(1—1) L)

2 2

( n,2|0‘n + !bn,z{ﬁn)

<

(36)

Hence, F, € /%%[A, B.
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Making use of the principle of subordination, we introduce a certain class of multivalently Bazilevic functions involving the
Lemniscate of Bernoulli. Also, we obtain subordination properties, inclusion relationship, convolution result, coefficients

estimate, and Fekete-Szegd problem for this class.

1. Introduction

Let Z'(U) be the class of analytic functions in the open unit
disk

U={eC:|{|<1}, (1)

and let &/, denote the subclass of #/(U) consisting of func-
tions of the form:

[ee)

fQ=0+ ) alf(peN={1,2,31). (2

k=p+1

We write o, = of. For f,, f, € #(U), we say that f,({) is
subordinate to f,({), written symbolically, f, < f, in U or f;
(€) < £,(O)(¢ € V), if there exists a Schwarz function w({),
which (by definition) is analytic in U with w(0)=0 and
|w(¢)| < 1(¢ e U) such that f,(¢) =f,(w({)) (¢ € U). Further
more, if the function f,({) is univalent in U, then we have
the following equivalence (see [1, 2]):

f1(6) < £2(§) (L eU) & £,(0) = £,(0) and £, (U) < £,(V).
3)

Let ¢ : C* x U — C and h({) be univalent in U. If g({)
is analytic in U and satisfies the first order differential subor-
dination:

#(9(0).29'©)57) <h(0) (4)

then g({) is a solution of the differential subordination (4).
The univalent function q({) is called a dominant of the solu-
tions of the differential subordination (4) if g({) < q() for all
g(0) satisfying (4). A univalent dominant g that satisfies g < ¢
for all dominants of (4) is called the best dominant.

Sokdl and Stankiewicz [3] introduced the class §&Z* con-
sisting of analytic functions f € o/ satisfying the following
condition

g
Hf(()] 1|<1, (5)
which is equivalent to
YO =T, ©
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where the function

q(6)=V1+{(CeU), (7)

maps U onto the domain 6= {w e C: Rw >0, |w? - 1| <1},
and its boundary 00 is the right-half of the lemniscate of Ber-
noulli (x? +32)” = 2(x* —2) = 0. Several geometric proper-
ties of §&* were investigated done by many authors in
([4-7D).

Now, we define a class %,(A, @) of Bazilevic functions

associated with lemniscate of Bernoullia by using the princi-
ple of differential subordination as follows.

Definition 1. A function f € o/, is said to be the class %, (A,
«) if it satisfies the following subordination condition:

(G v o

all the powers are principal values and throughout the paper
unless otherwise mentioned the parameters A, «, and p are
constrained as A € C, «> 0, p€ N, and { € U.

We note that

(1) By (Aa) =B(La) = {fed : 1-1)(f(O)10)" +
M OQIFENFOR)* < /1+C}
2) ‘%p(k’l) = ‘%jp(A) = {fEépr : (1 —)L)(f(()/cp) +

M Q™) < /1+{} and B, (A) = B())
(3) B, (L, 0) =B, (o) = {f e, : (Lf' (O)Ipf())
(f@)A")" < \/1+{} and B, (a) = B(a)
(4) B,(1,0)=8Z, ={fed,: ({f'Q)pf(()) <
V1+(}and $&Z] =8Z"

In order to establish our main results, we need the follow-
ing lemmas.

Lemma 2 [8]. Let the function h be analytic and convex (uni-
valent) in U with h(0) = 1. Suppose also that the function g({)
given by

g(()=1+c1C+c2C2+--~, 9)

is analytic in U. If

<h({) (R(y)=0;y+#0;{ ), (10)

e
() <4(0) = yc‘yjohmﬂ* de<h@), (1)

and q({) is the best dominant.
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Lemma 3. [9]. For real or complex numbers a, b, c(c# 0,~1,
-2,--+)and { €l,

[ -y
(

_I(O)I(e=b) |

T @b ) (R(c)>R(b)>0),

2
Fi(a,bsc;0)=(1-0),F, (a,c—b;c; C—LJ
(12)

Lemma 4. [10]. Let F be analytic and convex in U. If f, g < F,
then

Af+(1-A)g<F(0<A<I). (13)

Lemma 5 [11]. Let f(():Z;ZIaka be analytic in U and
g9() = Zizlbk(k be analytic and convex in U. If f < g, then

|ay| < [by] (k € N). (14)

Lemma 6 [12]. Let g({)=1+Y2,¢ " € P, ie, let g be
analytic in U and satisfy R{g({)} >0 for { €U, then the
following sharp estimate holds

|c2—vci|32max {1,|2v—1|} forallve C.  (15)

The result is sharp for the functions given by

1+ 1+
9(0)= - sorg(f)= =¢ (16)
Lemma 7. [12]. If g({) =1+ ¥2,6,(" € P, then
—-4v+2 if  v<0,
e, —vei| < 2 if 0<v<l, p, (17)
w-2 if vzl

when v< 0 or v> 1, the equality holds if and only if g({)
=(1+{)/(1-{) or one of its rotations. If 0<v <1, then
the equality holds if and only if g(¢{)=(1+{°)/(1-C°) or
one of its rotations. If v =20, the equality holds if and only

if
a0~ ()17 (1) sz

or one of its rotations. If v=1, the equality holds if and
only if g is the reciprocal of one of the functions such that
equality holds in the case of v =0.
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Also, the above upper bound is sharp, and it can be
improved as follows when 0 < v < 1:

1
|c2 vc1’+v|cl| <2(0Sv£ E)’

1
|c1| <2(_ <v<l>
2

In the present paper, we obtain subordination properties,
inclusion relationship, convolution result, coefficients esti-
mate, and Fekete-Szegd inequalities for the class %, (A, a).

(19)
o2 =vei] + (

2. Main Results

We begin by presenting our first subordination property
given by Theorem 8.

Theorem 8. If f € %, (A, a) with R(A) > 0, then

<]%§)>Q<Q({)<\/1+(, (20)

where the function Q({) given by

1 pa

Q) = (1+0)", F, ( 1

¢
5 T+1,1—+C>, (21)

Proof. Let f € %,(A, a) and suppose that

a(0) = (%‘f)) Cev). 22)

Then, the function g({) is of the form (9), analytic in U,
and g(0) = 1. By taking the derivatives in the both sides of
(22), we get

is the best dominant.

o (TONT, Q) (O A
-0 () g () e et
(23)
Since f € B, (A, a), we have
o0+ 29 (< I+ (24)

Now, by using Lemma 2 for y = pa/A, we deduce that

(fé—g))a Q- 1% {@a/A)JZt(pa//\)—l(l 1)1 4t

p;J y(per)-1 (1 +(u)1/2du (25)
0

=(1+0)"*,F,

7 N
-
=)
>~[8
+
—_
—
+\m
I~
N———

where we have made a change of variables followed by the
use of identities in Lemma 3 with a=-1/2, b= pa/An, and
c=b+ 1. This completes the proof of Theorem 8.

For a function f € &/(p) given by (2), the generalized
Bernardi-Libera-Livingston integral operator F

put 4 (P)
—> 9 (p), with y > —p, is defined by (see [13-16])

R =P [ w0 atop. o

It is easy to verify that for all f € o/(p), we have

{(Fpf (©)' =

Theorem 9. If the function f € (p) satisfies the subordina-
tion condition

ROV, G
1-0(H5%) Al (M

(4 +P)f(C) =, f (O)- (27)

)m,
(28)

and F, , is the integral operator defined by (26), then

>a<K(()<\/I+C, (29)

where the function K given by

K@):(1+ZY”;2<-2,1;“@;*O

¢
1; s
+ I (> (30)
is the best dominant of (28).

Proof. Let

of0) - (“re

then g is analytic in U. Differentiating (31) with respect to {
and using the identity (28) in the resulting relation, we get

() B4

—o0+ 220 g

“@+u

)“@eu), (31)

(32)

Employing the same technique that we used in the proof
of Theorem 8, the remaining part of the theorem can be
proved similarly.

Theorem 10. If A, > A; > 0, then

B,(Ay» ) € By (A, ). (33)



4

Proof. Suppose that f € %,(A,, a). We know that

~ f(_() o Cf’(() f(_() o
a-n) (%) i () <vist e

Thus, the assertion of Theorem 10 holds for A, =, > 0.
If A, > A, >0, by Theorem 8 and (34), we have

(fé—g))“ <\V1+¢. (35)

At the same time, we have

() n i ()

() () e
Ay

Moreover, since 0 < A;/A, <1, and the function /1 +{
(¢ € U) is analytic and convex in U.
Combining (34)-(36) and Lemma 4, we find that

~ f(_() o {f’(C) f(_() o
a-n (%) s () <vist e

that is f € %, (A, a), which implies that the assertion (33) of
Theorem 10 holds.

Theorem 11. If f € o/, then f € B, (A, a) if and only if

(ﬂo)“*lz—L5+Am2

a u%flioaew )
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where

L= <1+ i>e"9(1+\/m) +2
ap

(39)
M=e’i9(1 +V1 +ei‘9) +1.
Proof. For any function f € o/, we can verify that
FON_ (FQ)*, 1
(7)) (7)== )
@) (£ C_(f©)\® , 1= (1= Upa)
wole) (%) i @

First, in order to prove that (38) holds, we will write (8)
by using the principle of subordination, that is,

(1—A)<f§_9>am

@) (f(()

i ) /e @

where w({) is a Schwarz function, hence

(f’(c) f(_C) ¢ i0
Voo L) #Ye @

for all { €U and 6 €0, 27r). From (40) and (41), the relation
(43) may be written as

o

which is equivalent to

(f(C))“ [1 ~ VI~ (1= (Map) ~2VT+0 )¢ - Vv e
(1-¢)

} #0, (44)

(f(‘:)y {1 - {(1 + ()L/poc))e’ie(l wm) +2}C+ [e”e(l mm) + 1}(2
(1-¢)°

} #0, (45)
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that is (38).
Reversely, suppose that f € &/, satisfy the condition (38).

Like it was previously shown, the assumption (38) is equiva-
lent to (41), that is,

1-0(2)

© (f( ))“

el (46)
#V1+e? ((el).
Denoting
o0 -0-H (1) AL O (I way)
=V1+G,

the relation (46) could be written as ¢(U) Ny(oU) =

Therefore, the simply connected domain ¢(U) is included
in a connected component of C\ y(0U). From this fact,
using that @(0) =y/(0) =1 together with the univalence of
the function y, it follows that ¢({) <y/((), that is f € 3B,

A a).

Theorem 12. If f({) given by (2) belongs to B, (A, a), then

p
|aP+1| s 2|p0£+)t| : (48)

Proof. Combining (2) and (8), we obtain
Cf @ (f (¢ )> ‘

“‘”(Jﬁ) )
=1+ <P“;A)ap+15+

1 1.,
=1+_-C—--C+
2C 8(

IR @)

An application of Lemma 5 to (49) yields

o+ A
(57

Thus, from (50), we easily obtain (48) asserted by Theo-
rem 12.

< % (50)

3. Fekete—Szego Problem

Many authors have considered the Fekete—-Szego problem for
many subclasses of analytic functions (see, for instance, [17-
21]). In this section, we evaluate the Fekete-Szeg6 inequal-
ities for the class %,(A, ).

Theorem 13. If f given by (2) belongs to the class B,(A, ),
then

1

L max 1'1
2(ap +21) "4

N plap +21)(a—1+2u)
(ap +A)?

’ap+2 ua p+1

(51)

|

Proof. If f € B,(A, ), then there is a Schwarz function w in U
such that

The result is sharp.

-y (I) AT TV geiey. )
where ¢({) = y/1 + (. Define the function g({) by
9(0)= %zgg =1+ {+ 4. (53)

Since w({) is a Schwarz function, we see that g € 2 with
g(0) = 1. Therefore,

(90 1Y _ [ 200)
¢(@(0)) —¢<g(() " 1) g(0)+1 (54)

1 1 5 )\,
=1+ Zc1(+ (ZCZ_ ch)( oo

Now by substituting (54) in (52), we have
Cf @ <f (¢ )) ‘

(1”)(&) )
=1+£C‘C+GCZ 35261>C+

Equating the coefficients of ¢ and % we obtain

(55)

_ p
T Sapr 1)V
_ p _ P 5 pla—-1)) ,
2 Ylapr2n)? 32 (((xp on (ap + A)2> o
(56)
Therefore,
2 p
ap+2 Auapﬂ 7{ Vcl} (57)

4(ap +2A)



(58)

1
v=—|5+
8[

Our result now follows by an application of Lemma 6.
The result is sharp for the functions

aon (fép)>“+ L (f(())“ng(cz))

plap+2A)(a—1+ 2[4)1 .
(ap+2)*

pf() r 59)
(]GO w0

This completes the proof of Theorem 13.

Putting A =1 and & = 0 in Theorem 13, we obtain the fol-
lowing corollary.

Corollary 14. If f given by (2) belongs to the class B, (a), then

p 1
‘ap+2 ‘l/l P+1 W max 1; Z 1
(60)
(ocp+2)( - 1+2u) ’
(ap+1)°
The result is sharp.
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Putting A = 1 and a = 0 in Theorem 13, we obtain the fol-
lowing corollary.

Corollary 15. If f given by (2) belongs to the class SZ,,, then

‘Z ax {1;%42”_1)'}. (61)

‘ap+2 ua p+1

The result is sharp.
Putting p=A =1 and & =0 in Theorem 13, we obtain the
following corollary.

Corollary 16. If f given by (2) (with p = 1) belongs to the class
S&L*, then

|as — pa3| < 2 max {1 |4‘u4 1} (62)

The result is sharp.
Applying Lemma 7 to (57) and (58), we obtain the fol-
lowing theorem.

Theorem 17. Let

o = plap+21)(1-a) = 5(ap + 1)’
! 2p(ap +21)

_ p((xp+2)t)(1—(x)+3(ap+)t)2’ (63)
2p(ap +21)

oo plap+21)(1-a) - (ap + 1)’
’ 2p(ap +21) '

>

If f given by (2) belongs to the class %, (A, «), then

B p plap +2A)(a—1+2u)
8(0cp+2/\) [ (“P"’A)Z ] ([4301),
‘apﬂ—;mf,ﬂ < m (0, su<0,), (64)
P plap+2A)(a—1+2u) .
8(06p+2A) [ + (OCP+A)2 ] (/"—02).

Further, if o, <y <03, then

(ap+A) 2
ap+2 [’lap+1 [7 + o - 1 + 2!/[ |ap+1|
‘ 2 |p(ap+21) (65)
<P
2(ap+2A)

If 0; <pu <o, then

—a+1-2u |‘1p+1|2

3(ap + 1)
20p

’a"*z W"“ (ap +21)

(66)
< P
T 2(ap+2M)°
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Putting A=1 in Theorem 17, we obtain the following 5
result. 5. = plap+2)(1-a)+3(ap+1)
? 2p(ap +2) ’
Corollary 18. Let 5.z plap+2)(1-a) - (ap+1)°
o 2p(ap +2) '
5. = Plap+2)(1-a) —5(ap+ 1)’ (67)
1_ 2p(ap +2) ’
If f given by (2) belongs to the class %, (a), then
N A X TCE EE ) A
(ap +2) (ap +1)
‘a —ua,, | < P (6, spu<dy), (68)
p+2 p+1 (ap + 2)
ap+2)(a—-1+2
p G A Gl bk Ul B
(ap +2) (ap+1)
Further, if §; < p < 85, then Further, if ((2p —5)/4p) < u < ((2p — 1)/4p), then
1/5 p
(ap+1) 2 a Q—2+4)|a <t (72)
Ay, a,., ——— +ta—-1+2ul|a,, p+2 Hp+1 U ) Gpe1] =
‘pZ Aupl [P(“P+2) U ’pl‘ (69) ’ 4 4
< P
= 2ap+2) If ((2p - 1)/4p) < u < ((2p + 3)/4p), then
1/3 p
If 65 < <, then ’apﬂ—yafm +Z<E+2_4‘u)|ap“|2£1' (73)
1 [3(ap +1)° 2
’ap” ua p+1 E W —a+1-2u ’ap+1‘ Putting A = p =1 and & = 0 in Theorem 17, we obtain the
plep (70)  following result obtained by ([18], Theorem 2.1).
p
< 2(¢xp+2)' Corollary 20. ([18], Theorem 2.1). If f given by (2) (with

Putting A =1 and & = 0 in Theorem 17, we obtain the fol-
lowing result for the subclass 7.

Corollary 19. If f given by (2) belongs to the class S<;, then

_P[L+2p(2u-1)] (#S 2p—5))
16 4p
p 2p-5 2p+3
)apu .“pﬂ 1 (41) <u< 4p>
pl1+2p(2u-1)] (#22p+3).
16 4p
(71)

p=1) belongs to the class SZ*, then

o1 3 5

|a3—‘lzla2|£ Z _Z S“SZ 5 (74)

1 5

—(4u—-1 > — ).

751 (M 4)
Further, if —(3/4) <y <1/4, then

o1 1
}as_ﬂaz|+z(3+4ﬂ)|“2| SZ (75)



If 1/4 <u<5/4, then

(76)

1 1
jay - pad| + 2 (5 -4l < .
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