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*e primary motivation of the paper is to define a new class Chδ(α, β, c) which consists of univalent functions associated with
Chebyshev polynomials. For this class, we determine the coefficient bound and convolution preserving property. Furthermore, by
using subordination structure, two new subclasses of Chδ(α, β, c) are introduced and denoted by M(λ1, λ2, s) and N(λ1, λ2, s),
respectively. For these subclasses, we obtain coefficient estimate, extreme points, integral representation, convexity, geometric
interpretation, and inclusion results. Moreover, we prove that, under some restrictions on parameters, Chδ(α, β, c) � N(λ1, λ2, s).

1. Introduction

LetA be the class of analytic univalent functions in the open
unit disk:

D � z ∈ C: |z|< 1{ }, (1)

with Taylor expansion series of the form

f(z) � z + 􏽘
∞

k�2
akz

k
. (2)

Also, denote by S the class of univalent functions which
are normalized by f(0) � f′(0) − 1 � 0, see [1, 2]. Fur-
thermore, suppose thatN be the subclass ofA consisting of
functions with negative coefficients of the type:

f(z) � z − 􏽘
∞

k�2
akz

k
, ak ≥ 0. (3)

*e significance of Chebyshev polynomials in nu-
merical analysis is very important in both practical and
theoretical points of view. *ere are four kinds of such
polynomials. Many researchers consider orthogonal
polynomials of Chebyshev and obtain many interest
results.

*e Chebyshev polynomials of the first and second kinds
are well known and introduced by

Tn(t) � cos θ andUn(t) �
sin(n + 1)θ

sin θ
, (−1< t< 1), (4)

where t � cos θ and n is the degree of polynomial. For more
details, one may refer to [1–6]. *e polynomials in (4) are
connected by the following relations:

dTn(t)

dt
� nUn−1(t),

Tn(t) � Un(t) − tUn−1(t),

(5)

2Tn(t) � Un(t) − Un−2(t). (6)

We note that if t � cos θ, where θ ∈ (−π/3, π/3), then

H(z, t) �
1

1 − 2 cos θz + z
2

� 1 + 􏽘
∞

k�2

sin(k + 1)θ
sin θ

z
k
, (z ∈ D).

(7)

Also, we can write
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H(z, t) � 1 + U1(t)z + U2(t)z
2

+ · · · ,

(z ∈ D, − 1< t< 1),
(8)

where

Un−1(t) �
sin(n arccos t)

�����
1 − t

2
􏽰 , (n ∈ N), (9)

are the Chebyshev polynomials of the second kind, see [7–9].
*e Hadamard product (convolution) for functions

f(z) � z − 􏽘
∞

k�2
akz

k
,

g(z) � z − 􏽘
∞

k�2
bkz

k
,

(10)

is denoted by f∗g and defined as follows:

(f∗g)(z) � z − 􏽘
∞

k�2
akbkz

k
� (g∗f)(z), (z ∈ D). (11)

*e generating function of the first kind of Chebyshev
polynomial Tn(t), t ∈ [−1, 1] is given by

􏽘

∞

n�0
Tn(t)z

n
�

1 − tz

1 − 2tz + z
2, (z ∈ D), (12)

see [10].
Now, we consider the functions:

H1(z) � 1 +(2 cos θ + 1)z − H(z, t),

H2(z) � 1 +(1 + cos θ)z −
1 − tz

1 − 2tz + z
2,

(13)

V(z) � H1 ∗H1( 􏼁∗ H2 ∗H2( 􏼁∗f(z), (14)

where f(z) � z − 􏽐
∞
k�2 akzk ∈N and “∗ ” denotes the

convolution. By a simple calculation, we conclude that
V(z) ∈N and in the form

V(z) � z − 􏽘
∞

k�2
T
2
k(t)

sin2(k + 1)θ
sin2 θ

akz
k
, (15)

where θ ∈ (−π/3, π/3) and t � cos θ.
Let Chδ(α, β, c) denote the subclass of N consisting of

functions of form (15) satisfying the condition:

V′(z) + zV″(z) − 1
2cV′(z) − α(1 + β)c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< δ, (16)

where 0< α≤ 1, 0< β≤ 1, 0≤ c≤ 1, 0≤ δ < 1, and V(z) is
given by (15), see [11].

2. Main Results

In this section, we introduce a sharp coefficient bound for
V(z) ∈ Chδ(α, β, c). Also, convolution preserving property
under parameters α and β is proved.

Theorem 1. V(z) ∈ Chδ(α, β, c) if and only if

􏽘

∞

k�2

k(k + 2cδ)T
2
k(t)sin2(k + 1)θ
sin2 θ

ak ≤ δc(2 − α(1 + β)). (17)

Proof. Let inequality (17) hold true, and suppose
z ∈ zD � z ∈ D: |z| � 1{ }. *en, we obtain

V′(z) + zV″(z) − 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − δ 2cV′(z) − α(1 + β)c
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� − 􏽘
∞

k�2

kTk(t)(sin(k + 1)θ)

sin θ
􏼢 􏼣

2

akz
k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− δ 2c − 􏽘
∞

k�2

2ckT
2
k(t)sin2(k + 1)θ
sin2 θ

akz
k− 1

− α(1 + β)c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 􏽘
∞

k�2

k(k + 2cδ)T
2
k(t)sin2(k + 1)θ
sin2 θ

− δc(2 − α(1 + β))≤ 0.

(18)

Hence, by maximum modulus theorem, we conclude
that V(z) ∈ Chδ(α, β, c).

Conversely, let V(z), defined by (15), be in the class
Chδ(α, β, c), so condition (16) yields

V′(z) + 2V″(z) − 1
2cV′(z) − α(1 + β)c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

􏽐
∞
k�2 k

2
T
2
k(t)sin2(k + 1)θ/sin2 θakz

k− 1

2c − 􏽐
∞
k�2 2ckT

2
k(t)sin2(k + 1)θ/sin2 θakz

k−1
− α(1 + β)c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< δ. (19)

Since, for any z, |Rez|< |z|, then

Re
􏽐
∞
k�2 T

2
k(t)sin2(k + 1)θ/sin2 θ k

2
􏽨 􏽩akz

k− 1

c(2 − α(1 + β)) − 􏽐
∞
k�2 T

2
k(t)sin2(k + 1)θ/sin2 θ[2ck]akz

k−1

⎧⎨

⎩

⎫⎬

⎭ < δ. (20)

By letting z⟶ 1 through real values, we obtain
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􏽘

∞

k�2

T
2
k(t)sin2(k + 1)θ

sin2 θ
k
2

􏽨 􏽩ak ≤ δc(2 − α(1 + β)) − 􏽘
∞

k�2

T
2
k(t)sin2(k + 1)θ

sin2 θ
[αcδk]ak, (21)

and this completes the proof. □

Remark 1. We note that the function,

W(z) � z −
sin2 θ􏼐 􏼑cδ(2 − α(1 + β))

4(1 + cδ)cos22θ sin23θ
z
2
, (22)

shows that inequality (17) is sharp.

Theorem 2. If f(z) � z − 􏽐
∞
k�2 akzk and g(z) � z −

􏽐
∞
k�2 bkzk are in the class Chδ(α, β, c), then

(i) (f∗g)(z) belongs to Chδ(α, β, c)[α∗], where

α∗ ≤
2

1 + β
−

sin θ(2 − α(1 + β))

Tk(t)sin(k + 1)θ
􏼠 􏼡

2
cδ

k(k + 2cδ)(1 + β)
.

(23)

(ii) (f∗g)(z) belongs to Chδ(α, β∗, c), where

β∗ ≤
2
α

− 1 +
sin θ(2 − α(1 + β))

Tk(t)sin(k + 1)θ
􏼠 􏼡

2
cδ

k(k + 2cδ)(1 + β)
⎛⎝ ⎞⎠.

(24)

Proof. (i) It is sufficient to show that

􏽘

∞

k�2

k(k + 2cδ)T
2
k(t)sin2(k + 1)θ

sin2 θδc(2 − α(1 + β)) α∗􏼂 􏼃
akbk ≤ 1. (25)

By using the Cauchy–Schwarz inequality from (31),
we obtain

􏽘

∞

k�2

k(k + 2cδ)sin2(k + 1)θ
sin2 θδc(2 − α(1 + β)) α∗􏼂 􏼃

����

akbk

􏽱

≤ 1. (26)

Hence, we find the largest α∗ such that

􏽘

∞

k�2

k(k + 2cδ)sin2(k + 1)θ
sin2 θδc 2 − α∗(1 + β)( 􏼁

akbk ≤ 􏽘

∞

k�2

k(k + 2cδ)sin2(k + 1)θ
sin2 θδc(2 − α(1 + β))

����

akbk

􏽱

≤ 1. (27)

*is inequality holds if

sin2 θδc(2 − α(1 + β))

k(k + 2cδ)T
2
k(t)sin2(k + 1)θ

≤
2 − α∗(1 + β)

2 − α(1 + β)
, (28)

or equivalently

α∗ ≤
2

1 + β
+

sin θ(2 − α(1 + β))

Tk(t)sin(k + 1)θ
􏼠 􏼡

2
cδ

k(k + 2cδ)(1 + β)
.

(29)

(ii) By using the same techniques as in the part (i), we
can easily prove the part (ii), so the proof is
complete. □

3. Subclass of Chδ(α, β, γ) and Their
Geometric Properties

In this section, we introduce two new subclasses of
Chδ(α, β, c) and conclude their geometric properties.

For analytic functions f(z) and F(z) in D, we say f is
subordinate to F, written f≺F, if there exists a function w

analytic in D, with w(0) � 0 and |w(z)|< 1 such that
f(z) � F(w(z)), see [3, 12]. If F is univalent, then

f≺F⇔f(0) � F(0),

f(D) ⊂ F(D).
(30)

Let M(λ1, λ2, s) consist of all analytic functions g(z) ∈ D
for which g(0) � 1 and

g(z)≺
1 + λ2 + λ1 − λ2( 􏼁(1 − s)( 􏼁z

1 + λ2z
, (31)

where −1≤ λ1 < λ2 ≤ 1, 0< λ2 ≤ 1, and 0≤ s< 1. Let
N(λ1, λ2, s) denote the class of all functions
V(z) ∈ Chδ(α, β, c) for which

zV′(z)

V(z)
∈M λ1, λ2, s( 􏼁, (32)

where V(z) is given by (15).

Theorem 3. V(z) ∈ N(λ1, λ2, s) if and only if

􏽘

∞

k�2
1 +

(k − 1) λ2 + 1( 􏼁

λ2 − λ1( 􏼁(1 − s)
􏼠 􏼡

Tk(t)sin(k + 1)θ
sin θ

􏼠 􏼡

2

ak < 1. (33)

Proof. Let V(z) ∈ N(λ1, λ2, s); then, by (16), (31), and (32),
we have
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􏽐
∞
k�2 T

2
k(t)sin2(k + 1)θ/sin2 θ[(k − 1)]akz

k

λ2 − λ1( 􏼁(1 − s) − 􏽐
∞
k�2 T

2
k(t)sin2(k + 1)θ/sin2 θ λ2(k − 1) + λ2 − λ1( 􏼁(1 − s)􏼂 􏼃akz

k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1, (34)

which implies that

Re
􏽐
∞
k�2 T

2
k(t)sin2(k + 1)θ/sin2 θakz

k

λ2 − λ1( 􏼁(1 − s) − 􏽐
∞
k�2 T

2
k(t)sin2(k + 1)θ/sin2 θ λ2(k − 1) + λ2 − λ1( 􏼁(1 − s)􏼂 􏼃akz

k

⎧⎨

⎩

⎫⎬

⎭ < 1. (35)

Now, we choose the values of z on the real axis, and
letting z⟶ 1− , we get the required result.

Conversely, assume that condition (33) holds true. We
must show that V(z) ∈ N(λ1, λ2, s) or equivalently

|Y| �
V(z) − zV′(z)

λ2zV′(z) − λ2 + λ2 − λ1( 􏼁(1 − s)( 􏼁V(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1.

However,we have

|Y| �
􏽐
∞
k�2 T

2
k(t)sin2(k + 1)θ/sin2 θak

λ2 − λ1( 􏼁(1 − s) − 􏽐
∞
k�2 T

2
k(t)sin2(k + 1)θ/sin2 θ λ2(k − 1) + λ2 − λ1( 􏼁(1 − s)􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(36)

By using (33), we get |Y|< 1, so the proof is
complete. □

Corollary 1. Let V ∈ N(λ1, λ2, s); then,

ak <
λ2 − λ1( 􏼁(1 − s) Tk(t)sin(k + 1)θ/sin θ( 􏼁

2

λ2 − λ1( 􏼁(1 − s) + λ2 + 1( 􏼁(k − 1)
. (37)

Theorem 4. Let λ2 ≠ 1, V(z) ∈ N(λ1, λ2, s), and

zV′(z)

V(z)
� a + ib � X. (38)

=en, the values of X lie in the circle.

Proof. By (31) and (32), we have

X � a + ib �
1 + λ2 + λ2 − λ1( 􏼁(1 − s)( 􏼁W(z)

1 + λ2W(z)
, (|W(z)|< 1).

(39)

*en,

(a + ib) 1 + λ2W(z)( 􏼁 � 1 + λ2 + λ2 − λ1( 􏼁(1 − s)( 􏼁W(z)

or a − 1 + ib � λ2 + λ2 − λ1( 􏼁(1 − s) − aλ2 − ibλ2􏼂 􏼃W(z).
(40)

After a simple calculation, we obtain

a −
1 − λ2 λ2 + λ2 − λ1( 􏼁(1 − s)( 􏼁

1 − λ22
􏼢 􏼣

2

+ b
2 <

λ2 − λ1( 􏼁(1 − s)

1 − λ22
􏼢 􏼣

2

.

(41)

Hence, the value of X lies in the circle with center at

1 − λ2 λ2 + λ2 − λ1( 􏼁(1 − s)( 􏼁

1 − λ22
, 0􏼠 􏼡 (42)

and radius (λ2 − λ1)(1 − s)/1 − λ22. □

Theorem 5. If

λ2 + 1
λ2 − λ1( 􏼁(1 − s)

≤
k
2

+ 2cδ(k − 1) + cαδ(1 + β)

δc(2 − α(1 + β))
, (43)

then Chδ(α, β, c) � N(λ1, λ2, s).

Proof. By equation (32), we have

N λ1, λ2, s( 􏼁⊆Chδ(α, β, c). (44)

Now, assume that V ∈ Chδ(α, β, c); then, by *eorem 1,
we have
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􏽘

∞

k�2
k(k + 2cδ)

Tk(t)sin(k + 1)θ
sin θ

􏼠 􏼡

2

ak ≤ δc(2 − α(1 + β)).

(45)

By *eorem 3, it is enough to show that (33) holds true,
which is possible when

1 +
(k − 1) λ2 + 1( 􏼁

λ2 − λ1( 􏼁(1 − s)
􏼢 􏼣≤

k(k + 2cδ)

δc(2 − α(1 + β))
, (46)

or equivalently

k − 1)) λ2 + 1(( 􏼁

λ2 − λ1􏼁(1 − s( 􏼁
≤

k
2

+ 2cδ(k − 1) + δcα(1 + β)

δc(2 − α(1 + β))
. (47)

Since k starts from 2, then k − 1≥ 1, and hence, from the
last inequality, we obtain the required result. □

In the next theorems, we prove the inclusion property
and convex combination concept. Also, extreme points and
integral representation are introduced.

Theorem 6. Let 0≤ s2 < s1 < 1; then,

N λ1, λ2, s( 􏼁 s1􏼂 􏼃 ⊂ N λ1, λ2, s( 􏼁 s2􏼂 􏼃. (48)

Proof. Suppose f ∈ N(λ1, λ2, s)[s1]; then, by*eorem 3, we
have

􏽘

∞

k�2
1 +

(k − 1) λ2 + 1( 􏼁

λ2 − λ1( 􏼁(1 − s) s1􏼂 􏼃
􏼠 􏼡

Tk(t)sin(k + 1)θ
sin θ

􏼠 􏼡

2

ak ≤ δc(2 − α(1 + β)). (49)

We have to prove

􏽘

∞

k�2
1 +

k − 1) λ2 + 1(( 􏼁

λ2 − λ1( 􏼁(1 − s))
􏼠 􏼡

Tk(t)sin(k + 1)θ
sin θ

􏼠 􏼡

2

ak ≤ δc(2 − α(1 + β)). (50)

However, the last inequality holds true if

1 +
(k − 1) λ2 + 1( 􏼁

λ2 − λ1( 􏼁(1 − s)
≤ 1 +

(k − 1) λ2 + 1( 􏼁

λ2 − λ1( 􏼁(1 − s)
, (51)

and this inequality by hypothesis (s2 < s1) definitely holds
true, so the proof is complete. □

Theorem 7. N(λ1, λ2, s) is a convex set.

Proof. We have to prove that if

Vj(z) � z − 􏽘
∞

k�2

Tk(t)sin(k + 1)θ
sin θ

􏼠 􏼡

2

ak,jz
k
, (j � 1, 2, . . . , m),

(52)

is in the class N(λ1, λ2, s), then the function,

L(z) � 􏽘
m

j�1
djVj(z), (53)

is also in N(λ1, λ2, s), where 􏽐
m
j�1 dj � 1. However, we have

L(z) � z − 􏽘
∞

k�2
􏽘

m

j�1

Tk(t)sin(k + 1)θ
sin θ

􏼠 􏼡

2

djak,j
⎛⎝ ⎞⎠z

k
. (54)

We have to prove that if fj(z) (j � 1, 2, . . . , m) is in the
class N(λ1, λ2, s), then the function L(z) � 􏽐

m
j�1 djfj(z) is

also in N(λ1, λ2, s), where 􏽐
m
j�1 dj � 1. We have

L(z) � z − 􏽘
∞

k�2
􏽘

m

j�1
djak,j

⎛⎝ ⎞⎠z
k
. (55)

Since, by *eorem 3,

􏽘

∞

k�2
1 +

λ2 + 1( 􏼁(k − 1)

ls
􏼠 􏼡

Tk(t)sin(k + 1)θ
sin θ

􏼠 􏼡

2

􏽘

m

j�1
djak,j

⎛⎝ ⎞⎠

� 􏽘
m

j�1
􏽘

∞

k�2
1 +

λ2 + 1( 􏼁(k − 1)

λ2 − λ1( 􏼁(1 − s)
􏼠 􏼡

Tk(t)sin(k + 1)θ
sin θ

􏼠 􏼡

2

ak,j
⎡⎣ ⎤⎦dj

< 􏽘
m

j�1
dj � 1

(56)

so L ∈ N(λ1, λ2, s) and the proof is complete. □

Theorem 8. =e function V1(z) � z and
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Vk(z) � z −
λ2 − λ1( 􏼁(1 − s)

λ2 − λ1( 􏼁(1 − s) + λ2 + 1( 􏼁(k − 1)
􏼠 􏼡

sin θ
Tk(t)sin(k + 1)θ

􏼠 􏼡

2

akz
k
, (k≥ 2), (57)

are the extreme points of N(λ1, λ2, s).

Proof. We have to prove that L ∈ N(λ1, λ2, s) if and only if

L(z) � 􏽘

∞

k�2
[1]dkVk(z), (58)

where dk ≥ 0 (k≥ 1) and 􏽐
∞
k�2 [1]dk � 1. □

Proof. Let L ∈ N(λ1, λ2, s). If we set

dk �
λ2 − λ1( 􏼁(1 − s) + λ2 + 1( 􏼁(k − 1)

λ2 − λ1( 􏼁(1 − s)

sin θ
Tk(t)sin(k + 1)θ

􏼠 􏼡

2

ak, (k≥ 2), (59)

we get dk ≥ 0, and if we put d1 � 1 − 􏽐
∞
k�2 dk, then we obtain

L(z) � z − 􏽘
∞

k�2

λ2 − λ1( 􏼁(1 − s)

λ2 − λ1( 􏼁(1 − s) + λ2 + 1( 􏼁(k − 1)

sin θ
Tk(t)sin(k + 1)θ

􏼠 􏼡

2

dkz
k

� z − 􏽘
∞

k�2
dk z − Vk(z)( 􏼁

� 􏽘
∞

k�2
dkVk(z).

(60)

Conversely, suppose

L(z) � 􏽘
∞

k�2
[1]dkVk(z). (61)

*en, we have

L(z) � d1V1(z) + 􏽘
∞

k�2
dkVk(z)

d1z + 􏽘
∞

k�2
z −

λ2 − λ1( 􏼁(1 − s)

λ2 − λ1( 􏼁(1 − s) + λ2 + 1( 􏼁(k − 1)

sin θ
Tk(t)sin(k + 1)θ

􏼠 􏼡

2

dkz
k⎡⎣ ⎤⎦

� z − 􏽘
∞

k�2

λ2 − λ1( 􏼁(1 − s)

λ2 − λ1( 􏼁(1 − s) + λ2 + 1( 􏼁(k − 1)

sin θ
Tk(t)sin(k + 1)θ

􏼠 􏼡

2

dkz
k
.

(62)
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Since

􏽘

∞

k�2
dk 1 +

λ2 + 1( 􏼁(k − 1)

λ2 − λ1( 􏼁(1 − s)
􏼠 􏼡

λ2 − λ1( 􏼁(1 − s)

λ2 − λ1( 􏼁(1 − s) + λ2 + 1( 􏼁(k − 1)
􏼠 􏼡 ×

×
sin θ

Tk(t) sin(k + 1)θ
􏼠 􏼡

2
Tk(t) sin(k + 1)θ

sin θ
􏼠 􏼡

2

� 􏽘
∞

k�2
dk � 1 − d1 < 1,

(63)

therefore, by *eorem 3, we conclude the result. □

Theorem 9. Let f ∈ N(λ1, λ2, s); then,

V(z) � exp 􏽚
z

0

1 − λ2 + λ2 − λ1( 􏼁(1 − s)( 􏼁W(t)

t 1 − λ2W(t)( 􏼁
dt􏼠 􏼡, (64)

where |W(z)|< 1.

Proof. By letting U(z) � zV′/V, since f ∈ N(λ1, λ2, s), so

U(z)≺
1 + λ2 + λ1 − λ2( 􏼁(1 − s)( 􏼁z

1 + λ2z
, (65)

or equivalently

U(z) − 1
U(z)λ2 − λ2 + λ1 − λ2( 􏼁(1 − s)( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1. (66)

*erefore,

U(z) − 1
U(z)λ2 − λ2 + λ1 − λ2( 􏼁(1 − s)( 􏼁

� W(z), (|w(z)| < 1).

(67)

Hence, we can write

V′(z)

V(z)
�
1 − λ2 + λ1 − λ2( 􏼁(1 − s)( 􏼁W(z)

z 1 − λ2W(z)( 􏼁
. (68)

After integration, we get the required result. □

4. Conclusion

Univalent functions have always been the main interests of
many researchers in geometric function theory. Many
studies recently related to Chebyshev polynomials revolved
around classes of analytic normalized univalent functions. In
this particular work, the geometric properties are obtained
for functions in more general class denoted by Chδ(α, β, c)

using the Chebyshev polynomials associated with the con-
volution structure. Some other geometric results are in-
troduced for the subclasses of Chδ(α, β, c).
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The aim of this particular article is at studying a holomorphic function f defined on the open-unit disc D = fz ∈ℂ : jzj < 1g for
which the below subordination relation holds zf ′ðzÞ/f ðzÞ ≺ q0ðzÞ = 1 + tan hðzÞ: The class of such functions is denoted by S∗

tan h:
The radius constants of such functions are estimated to conform to the classes of starlike and convex functions of order β and
Janowski starlike functions, as well as the classes of starlike functions associated with some familiar functions.

1. Introduction

To completely comprehend the mathematical concepts used
throughout our key observations, some of the essential liter-
ature of the geometric function theory must be described
and analyzed here. Let us begin with the symbol An which
describes the family of holomorphic (or analytic) functions
in a subset D of the complex plan ℂ having the following
series expansion

f zð Þ = z + an+1z
n+1 + an+2z

n+2+⋯: ð1Þ

Also, let the family of all univalent functions be denoted
by S and is a subset of the class A1 =A: Next, we define
that the subordination between the function belongs to
the class A. Let g1, g2 ∈A: Then, g1 ≺ g2 or g1ðzÞ ≺ g2ðzÞ,
the mathematical form of the subordination between g1
and g2, if a holomorphic function w occurs in D with the
restriction wð0Þ = 0 and jwðzÞj < 1 in such a way that f ðzÞ

= gðwðzÞÞ hold. Further, if g2 ∈S in D, then, the follow-
ing relation holds:

g1 zð Þ ≺ g2 zð Þ,⇔ g1 0ð Þ = g2 0ð Þ and g1 Dð Þ ⊂ g2 Dð Þ: ð2Þ

Three significant subfamilies of S, which are well stud-
ied and have nice geometric interpretations, are the families
of starlike S∗ðξÞ, convex KðξÞ, and strongly starlike S

S∗ðζÞ functions of order ξð0 ≤ ξ < 1Þ and ζð0 < ζ ≤ 1Þ,
respectively. These families are defined as follows:

SS∗ ζð Þ≔ f ∈S :
zf ′ zð Þ
f zð Þ ≺

1 + z

1 − z

� �ζ

, z ∈Dð Þ
( )

,

S∗ ξð Þ≔ f ∈S :
zf ′ zð Þ
f zð Þ ≺

1 + 1 − 2ξð Þz
1 − z

, z ∈Dð Þ
( )

,

K ξð Þ≔ f ∈S :
zf ′ zð Þ
� �

′

f ′ zð Þ
≺
1 + 1 − 2ξð Þz

1 − z
, z ∈Dð Þ

8<
:

9=
;:

ð3Þ
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Particularly, the notations SS∗ð1Þ =S∗ð0Þ =S∗ and
Kð0Þ =K represent familiar families of starlike and convex
functions, respectively. These subfamilies of S satisfy the
following relationship

K ⊂S∗ ⊂S: ð4Þ

The reverse of the above relation hold only under cer-
tain restriction of the domain. That is; if f ∈S in D, then,
it was given in [1], Corollary, p. 98, that f maps the disc
jzj < r onto a region which is star shaped about the origin
for every r ≤ r0 = tan hðπ/4Þ. The constant r0 is known as
the radius of starlikness for the family S. Also, given in
[1], Corollary, p. 44, the radius of convexity for the families
S∗ and S is 2 −

ffiffiffi
3

p
.

To make a radius statement for other things than starli-
keness and convexity, we choose two subfamilies G and H

of the set A. The G radius for the family H , represented
by RGðHÞ, is the largest number R such that r−1 f ðrzÞ ∈ G
for every 0 < r ≤ R and f ∈H . Consequently, an alternative
formulation of the radius of starlikeness for S is that the
S∗ radius for the family S is RS∗ðSÞ = tan hðπ/4Þ:

In 1992, Ma and Minda [2] considered the general form
of the families as

S∗ φð Þ≔ f ∈A :
zf ′ zð Þ
f zð Þ ≺ φ zð Þ

( )
,

K φð Þ≔ f ∈A : 1 + zf ″ zð Þ
f zð Þ ≺ φ zð Þ

( )
,

ð5Þ

where φ is a holomorphic function with φ′ð0Þ > 0 and has
positive real part. Also, the function φ maps D onto a star-
shaped region with respect to φð0Þ = 1 and is symmetric
about the real axis. They addressed some specific results
such as distortion, growth, and covering theorems. In recent
years, several subfamilies of the set A were studied as a spe-
cial case of the class S∗ðφÞ. For example,

(i) If we take φðzÞ = ð1 + LzÞ/ð1 +MzÞ with −1 ≤M
< L ≤ 1, then, we achieved the class S∗½L,M� ≡
S∗ðð1 + LzÞ/ð1 +MzÞÞ which is described by the
functions of the Janowski starlike class investigated
in [3]. Furthermore, S∗ðξÞ≔S∗½1 − 2ξ,−1� is the
familiar starlike function family of order ξ with 0
≤ ξ < 1

(ii) The family S∗
L ≔S∗ðφðzÞÞ with φðzÞ = ffiffiffiffiffiffiffiffiffiffi1 + z

p
was developed in [4] by Sokol and Stankiewicz.
The function φðzÞ = ffiffiffiffiffiffiffiffiffiffi1 + z

p
maps the region D

onto the the image domain which is bounded by
jw2 − 1j < 1

(iii) The class S∗
car ≔S∗ðφðzÞÞ with φðzÞ = 1 + ð4/3Þz

+ ð2/3Þz2 was examined by Sharma and his coau-
thors [5] which consists of function f ∈A in such

a manner that ðzf ′ðzÞÞ/ð f ðzÞÞ is located in the
region bounded by the cardioid given by

9x2 + 9y2 − 18x + 5
� �2 − 16 9x2 + 9y2 − 6x + 1

� �
= 0 ð6Þ

(iv) The family S∗
R ≔S∗ðφðzÞÞ with φðzÞ = 1 + ðz/JÞ

ðJ + z/J − zÞ, J =
ffiffiffi
2

p
+ 1 is studied in [6] while

S∗
cos ≔S∗ðcos ðzÞÞ and S∗

cos h ≔S∗ðcosh ðzÞÞ
were contributed by Raza and Bano [7] and Alo-
taibi et.al [8], respectively

(v) By choosing φðzÞ = 1 + sin z, we obtain the class
S∗

sin ≔S∗ðφðzÞÞ which was established in [9].
The authors determined radius problems in this
article for the defined class S∗

sin

(vi) The class S∗
e ≔S∗ðezÞ was explored recently in

[10]. For such a class S∗
e , the authors calculated

Hankel determinant bounds of order three in
[11]. Also, the class S∗

RL ≔S∗ðhRLðzÞÞ with

hRL zð Þ =
ffiffiffi
2

p
−

ffiffiffi
2

p
− 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z

1 + 2
ffiffiffi
2

p
− 1

� �
z

vuut ð7Þ

was contributed by Mendiratta et al. [12] in which
they investigated the radius problems

(vii) The family S∗
C ≔S∗ðφðzÞÞ with φðzÞ = z +ffiffiffiffiffiffiffiffiffiffiffiffi1 + z2

p
was introduced and studied by Raina and

Sokół [13]

(viii) By considering the function φðzÞ = 1 + sin h−1z, we
get the recently examined family S∗

ρ ≔S∗ð1 +
sin h−1zÞ introduced by Kumar and Arora [14].
They discussed relationships of this class with the
already known classes. For more particular classes,
see the articles [15–20]

In the present paper, we consider a trigonometric func-
tion φ1ðzÞ = 1 + tan hz with φ1ð0Þ = 1: Also, one can easily
obtain that Reφ1ðzÞ > 0: By using this function, we define
the below family of functions as

S∗
tan h ≔ f ∈S :

zf ′ zð Þ
f zð Þ ≺ 1 + tan hz, z ∈Dð Þ

( )
: ð8Þ

In other words, a function f ∈S∗
tan h if and only if there

exists a holomorphic function q, fulfilling qðzÞ ≺ q0ðzÞ≕ 1
+ tan hz, such that

f zð Þ = z exp
ðz
0

q tð Þ − 1
t

dt
� �

: ð9Þ

Now, we construct some examples of our newly
described family S∗

tan h. For this, consider the following
functions
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q1 zð Þ = 1 + z

3 ,

q2 zð Þ = 4 + 2z
4 + z

,

q3 zð Þ = 7 + 3z
7 + z

,

q4 zð Þ = 1 + tan h1ð Þz:

ð10Þ

Since q0ðzÞ = 1 + tanh z is univalent in D, qið0Þ = 1 = q0
ð0Þ,ði = 1, 2, 3, 4Þ, and qiðDÞ ⊆ q0ðDÞ, this implies that for
each i = 1, 2, 3, 4, the relation qi ≺ q0 holds. Thus, from (8),
the functions

f1 zð Þ = zez/3,

f2 zð Þ = z + z2

4 ,

f3 zð Þ = z 1 + z

7
� �2

,

f4 zð Þ = ze tan h1ð Þz,

ð11Þ

corresponding to the functions q1ðzÞ,q2ðzÞ,q3ðzÞ, and q4ðzÞ,
respectively, belong to the family S∗

tanh: By taking qðzÞ = q0
ðzÞ = 1 + tan hz in (8), we get the below function that plays
a role of the extremal in many problems of the class S∗

tan h
:

f0 zð Þ = z exp
ðz
0

tan ht
t

dt
� �

= z + z2 + 1
2 + 1

18 z
4 −

5
72 z

5+⋯:

ð12Þ

In this article, we work on determining the radius of
starlikeness and convexity and S∗

tanh radius for some sub-
families of starlike functions, mentioned above in which
mostly have simple geometric interpretation. Besides these
subfamilies, we also discuss the S∗

tanh radius for some fami-
lies of A, whose functions have been expressed as a ratio
between two functions.

2. Radii of Starlikeness and Convexity

In this portion, we examined the radius of starlikeness and
convexity for the family S∗

tanh:

Theorem 1. The S∗ðξÞ radius for the family S∗
tan h is r0 =

tan−1ð1 − ξÞ with 0 ≤ ξ < 1:

Proof. If f ∈S∗
tan h, then, by virtue of (7), a Schwarz function

w exists with jwðzÞj ≤ jzj such as

zf ′ zð Þ
f zð Þ = 1 + tan h w zð Þð Þ: ð13Þ

Now, let wðzÞ = Reiv with R ≤ jzj = r,−π ≤ v ≤ π: After
easy computation, we get

tan h Reiv
� �		 		2 = cos h2 R cos vð Þ − cos2 R sin vð Þ

cos h2 R cos vð Þ + cos2 R sin vð Þ − 1
=Ψ vð Þ:

ð14Þ

The equation Ψ′ðvÞ = 0 has five roots in ½−π, π�, namely,
0,±π and ±ðπ/2Þ. Since ΨðvÞ =Ψð−vÞ, it is sufficient to show
that v ∈ ½0, π�. Furthermore, we can see that Ψð0Þ = tan h2R
=ΨðπÞ, Ψðπ/2Þ = tan2R, and

max Ψ 0ð Þ,Ψ πð Þ,Ψ π

2
� �n o

=Ψ
π

2
� �

= tan2R ≤ tan2r: ð15Þ

Thus, we have

Re
zf ′ zð Þ
f zð Þ

 !
≥ 1 − tanh w zð Þð Þj j, ≥ 1 − tan r ≥ ξ, ð16Þ

whenever 1 − tan r − ξ ≥ 0: The radius of starlikeness of
order ξ, for the family S∗

tan h, is the smallest positive root
r0 ∈ ð0, 1Þ of 1 − tan r − ξ = 0:

Taking ξ = 0 in the above Theorem 1, we obtain the fol-
lowing corollary.

Corollary 1. The S∗ radius, for the family S∗
tan h, is r0 =

tan−1ð1Þ ≈ 0:78:

Theorem 2. The KðξÞ radius r0, for the family f ∈S∗
tan h, is

r0 =min fr1, r2g, where r1 is the smallest root of the equation

1 − ξ − tan hr sec2r
� �

1 − r2
� �

1 − tan rð Þ − r sec2r = 0, ð17Þ

and r2 is such that 1 − tan r2 > 0:

Proof. If f ∈S∗
tanh, then, a holomorphic function w occurs

with wð0Þ = 0 and jwðzÞj ≤ jzj, such that

zf ′ zð Þ
f zð Þ = 1 + tan hw zð Þ: ð18Þ

By simple computation, it gives

1 + zf ″ zð Þ
f ′ zð Þ

= 1 + tan hw zð Þ + zw′ zð Þ sec h2w zð Þ
1 + tan hw zð Þ : ð19Þ

From (18), we get

Re 1 + zf ″ zð Þ
f ′ zð Þ

 !
≥ 1 +Re tan hw zð Þð Þ

−
zj j w′ zð Þ		 		 sec h2w zð Þ		 		
1 − tan h w zð Þð Þj j :

ð20Þ
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Assume that wðzÞ = Reiv , with R ≤ jzj = r,−π ≤ v ≤ π for
calculating the minumum value of the right side of the last
inequality. A simple calculation reveals that

Re tan h Reiv
� �

= tan h Rxð Þ sec2 Ryð Þ
1 + tan h2 Rxð Þ tan2 Ryð Þ , ð21Þ

where y = sin v,x = cos v, and x, y ∈ ½−1, 1�: It is easy to
observe that

tan h Rxð Þ ≥ − tan hR ≥ − tan hr,
1 ≤ sec2 Ryð Þ ≤ sec2R ≤ sec2r:

ð22Þ

Consequently, we have

Re 1 + tan hw zð Þð Þ ≥ 1 − tan hR sec2R ≥ 1 − tan hr sec2r: ð23Þ

Now, consider that

The equation ϕ′ðvÞ = 0 attained has five roots in ½−π, π�,
namely, 0, ±π and ±ðπ/2Þ. Also, ϕðvÞ = ϕð−vÞ; it is enough
to consider only those roots which lie in ½0, π�. Furthermore,
we seen that ϕð0Þ = sec h4R = ϕðπÞ, and ϕðπ/2Þ = sec4R;
therefore

max ϕ 0ð Þ, ϕ πð Þ, ϕ π

2
� �n o

= ϕ
π

2
� �

= sec4R ≤ sec4r: ð25Þ

Hence,

sec h2 eivR
� �		 		 ≤ sec2R ≤ sec2r: ð26Þ

Also,

tan hw zð Þj j ≤ tan R ≤ tan r: ð27Þ

Using the above facts along with the well-known inequal-
ity of Schwarz functions wðseeradii19Þ, we have

w′ zð Þ		 		 ≤ 1 − w zð Þj j2
1 − zj j2 = 1 − R2

1 − zj j2 ≤
1

1 − zj j2 ≤
1

1 − r2
: ð28Þ

Using (19), we obtain

Re 1 + zf ″ zð Þ
f ′ zð Þ

 !
≥ 1 +Re tan hw zð Þð Þ

−
sec h2w zð Þ		 		 zw′ zð Þ		 		
1 − tan hw zð Þj j ,

≥ 1 − tan hr sec2r

−
sec2r
� �

r

1 − tan rð Þ 1 − r2ð Þ ≥ ξ:

ð29Þ

The last inequality is true if ð1 − ξ − tan hr sec2rÞð1 − r2Þ
ð1 − tan rÞ − r sec2r ≥ 0 with tan r < 1 holds.

Hence, KðξÞ radius r0 for the family S∗
tan h is the minu-

mum of r1 and r2, where r1 is the smallest positive root of
the equation

1 − ξ − tan hr sec2r
� �

1 − r2
� �

1 − tan rð Þ − r sec2r = 0, ð30Þ

and r2 is such that tan r2 < 1:

Corollary 2. The K radius, for the family S∗
tan h, is r0 ≈

0:33286:

Remark 1. The result in the last Theorem is not the best one.
Considering the function f0 described by (11) provides a
sharp result. For the function f0, we have

ϕ zð Þ =Re
zf 0′ zð Þ
� �

′

f 0′ zð Þ
=Re 1 + tan hz + z sec h2z

1 + tan hz

 !
,

ð31Þ

and ϕðrÞ = 0:

3. Radius Problems

To address our main results in this portion, first, we consider
a few well-known families as follows.

P n L,M½ �≔
(
p zð Þ = 1 + 〠

∞

k=n
cnz

n : p zð Þ

≺
1 + Lz
1 +Mz

,−1 ≤M < L ≤ 1
)
:

ð32Þ

Also, for n ∈ℕ,

P n ξð Þ≔P n 1 − 2ξ,−1½ �,
P n ≔P n 0ð Þ:

ð33Þ

sec h2 eivR
� �		 		2 = 1

cos h4 R cos vð Þ + 2 cos h2 R cos vð Þ cos2 R sin vð Þ + cos4 R sin vð Þ−2 cosh2 R cos vð Þ − 2 cos2 R sin vð Þ + 1
�� ≕ ϕ vð Þ:

ð24Þ
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If we put pðzÞ≕ ðzf ′ðzÞÞ/ð f ðzÞÞ, for f ∈An, then, the
family P n½L,M� is reduced to S∗

n ½L,M� and S∗
nðξÞ≕S∗

n
½1 − 2ξ,−1�: Let the family MðβÞ contains the functions f ∈
An satisfying that Re ððzf ′ðzÞÞ/ð f ðzÞÞÞ < β, for β > 1: Fur-
thermore, let

S∗
tan h,n ≔An ∩S∗

tan h,S∗
n ξð Þ =An ∩S∗ ξð Þ,S∗

L ,n

=An ∩S∗
L ,

Mn βð Þ =An ∩M βð Þ:
ð34Þ

Ali et al. [21] recently studied the below families

Sn ≔ f ∈An :
f zð Þ
z

∈P n


 �
,

CSn ξð Þ≔ f ∈An :
f zð Þ
g zð Þ ∈P n, g ∈S∗

n ξð Þ

 � ð35Þ

and calculated S∗
L ,n radii for certain families. Further, they

achieved the conditions on L and M such that S∗
n ½L,M� ⊂

S∗
L ,n: In this portion,S

∗
tan h,n radii for the family of Janowski

starlike function and some other geometrically described
families are explored. To get our results, we employ the fol-
lowing lemmas.

Lemma 1 [22]. If p ∈P nðξÞ, then, for jzj = r,

zp′ zð Þ
p zð Þ

					
					 ≤ 2nrn 1 − ξð Þ

1 + 1 − 2ξð Þrnð Þ 1 − rnð Þ : ð36Þ

Lemma 2 [23]. If p ∈P n½L,M�, then, for jzj = r,

p zð Þ − 1 − LMr2n

1 −M2r2n

				
				 ≤ L −Mð Þrn

1 −M2r2n
: ð37Þ

In particular, if p ∈P nðξÞ, then, for jzj = r,

p zð Þ − 1 + 1 − 2ξð Þr2n� �
1 − r2n

				
				 ≤ 2rn 1 − ξð Þ

1 − r2n
: ð38Þ

The aim of the following lemma is at finding the largest
and the smallest disks centered at ða, 0Þ and (1,0), respec-
tively, such that the domain Ωtan h ≔ q0ðDÞ, where q0ðzÞ≔
1 + tan hz, is contained in the smallest disk and contains
the largest disk.

Lemma 3. Let

1 − tan h1 ≤ a ≤ 1 + tan h1: ð39Þ

And ra = tan h1 − ja − 1j: Then, the following inclusions
holds

w ∈ℂ : w − aj j < raf g ⊂Ωtan h ⊂ w ∈ℂ : w − 1j j < tan 1f g:
ð40Þ

Proof. Since wðzÞ = Reiv with R ≤ jzj = r, we have

1 + tan hw zð Þ = σ vð Þ − iρ vð Þ, ð41Þ

with

σ vð Þ = 1 + tan h R cos vð Þð Þ sec2 R sin vð Þð Þ
1 + tan h2 R cos vð Þð Þ tan2 R sin vð Þð Þ

,

ρ vð Þ = tan h R sin vð Þð Þ sec h2 R cos vð Þð Þ
1 + tan h2 R cos vð Þð Þ tan2 R sin vð Þð Þ

:

ð42Þ

First, we consider the square of the distance from ða, 0Þ
to a point on the boundary of Ωtan h, which is given by

h vð Þ = d2 vð Þ = a − 1 − tan h cos vð Þð Þ sec2 sin vð Þð Þ
1 + tan h2 cos vð Þð Þ tan2 sin vð Þð Þ

" #2

+ tan h sin vð Þð Þ sec h2 cos vð Þð Þ
1 + tan h2 cos vð Þð Þ tan2 sin vð Þð Þ

" #2
:

ð43Þ

To show that jw − aj < ra is the largest disk contained in
Ωtan h, it is sufficient to show that min−π≤v≤πdðvÞ = ra. But
since hðvÞ = hð−vÞ, therefore, we consider the range 0 ≤ v ≤
π. Now, it can easily be obtained that h′ðvÞ = 0 has three
roots 0, π, and v0 ∈ ð0, πÞ: The root v0 is dependent on a.
The graph of hðvÞ shows that it is decreasing in ½v0, π�
and increasing in the interval ½0, v0�. Hence, the minimum of
hðvÞ is calculated on either π or 0. A computation provides

h πð Þ≔ a − 1 + tan h1ð Þ2,
h 0ð Þ≔ a − 1 − tan h1ð Þ2:

ð44Þ

Thus, we get

min
−π≤v≤λ

h vð Þ =min h πð Þ, h 0ð Þð Þ

=
h πð Þ, if − tan h1 ≤ a − 1 ≤ 0,

h 0ð Þ, if 0 ≤ a − 1 ≤ tan h1:

( ð45Þ

Therefore, we can write that

min
−π≤v≤λ

d vð Þ =
tan h1 + a − 1ð Þ, if − tanh 1 ≤ a − 1 ≤ 0,
tan h1 − a − 1ð Þ, if 0 ≤ a − 1 ≤ tanh 1,

(

ð46Þ
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or equivalently

min
−π≤v≤λ

d vð Þ = tan h1 − a − 1j j: ð47Þ

For the circle of the minimum radius centered at ð1, 0Þ,
which contains f ðDÞ = 1 + tanh z, we find the maximum dis-
tance from ð1, 0Þ to a point on the boundary of f ðDÞ =Ωtan h
and the square of this distance function is given by

ϕ vð Þ = cosh2 cos vð Þ − cos2 sin vð Þð Þ� �
cosh2 cos vð Þð Þ + cos2 cos vð Þð Þ − 1

: ð48Þ

It is easy to verify that ϕðvÞ achieves its maximum value at
π/2, which is ϕðπ/2Þ = tan21:Hence, the radius of the smallest
disk which contains Ωtan h is tan 1:☐

In the following examples, we apply Lemma 3 , to find
the necessary and sufficient conditions for two specific func-
tions that belong to the family S∗

tan h:

Example 1.

(a) The function

f zð Þ = z + d2z
2 ∈S∗

tan h, ð49Þ

if and only if

d2j j ≤ tan h1
1 + tan h1 ≈ 0:43233 ð50Þ

(b) The function

f zð Þ = z

1 − bzð Þ2 ∈S∗
tan h, ð51Þ

if and only if

bj j ≤ tan h1
2 + tan h1 ≈ 0:27578 ð52Þ

Proof.

(a) We know that f ðzÞ = z + d2z
2 ∈S∗, if and only if j

d2j ≤ ð1/2Þ. Since S∗
tan h ⊂S∗, we get jd2j ≤ ð1/2Þ,

whenever f ∈S∗
tan h: The function

w zð Þ = zf ′ zð Þ
f zð Þ = 1 + 2d2z

1 + d2z
, ð53Þ

maps D onto the disk

w −
1 − 2 d2j j2
1 − d2j j2

					
					 < d2j j

1 − d2j j2
: ð54Þ

Since

1 − 2 d2j j2
1 − d2j j2

≤ 1, ð55Þ

then, from Lemma 3 , the above disk will be contained in
Ωtan h if

1 − tan h1 ≤ 1 − 2 d2j j2
1 − d2j j2

,

d2j j
1 − d2j j2

≤
1 − 2 d2j j2
1 − d2j j2

− 1 + tan h1:
ð56Þ

The above two inequalities give

d2j j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan h1

1 + tan h1

r
,

d2j j ≤ tan h1
1 + tan h1 ,

ð57Þ

respectively. Thus, we have

d2j j ≤min tan h1
1 + tan h1 ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan h1

1 + tan h1

r( )
= tan h1
1 + tan h1 ð58Þ

(b) Logarithmic differentiation of the function

f zð Þ = z

1 − bzð Þ2 , ð59Þ

yields that

w zð Þ = zf ′ zð Þ
f zð Þ = 1 + bzð Þ

1 − bzð Þ , ð60Þ

maps D onto the disk

w zð Þ − 1 + bj j2
1 − bj j2

					
					 ≤ 2 bj j

1 − bj j2
, ð61Þ

since

1 ≤ 1 + bj j2
1 − bj j2

: ð62Þ
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The disk above is contained in Ωtan h, in Lemma 3,
whenever

1 + bj j2
1 − bj j2

≤ 1 + tan 1,

2 bj j
1 − bj j2

≤ 1 + tan 1 − 1 + bj j2
1 − bj j2

:

ð63Þ

The above two inequalities give

bj j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan h1

2 + tan h1

r
,

bj j ≤ tan h1
2 + tan h1 ,

ð64Þ

respectively. Thus, we have

bj j ≤min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan h1

2 + tan h1

r
; tan h1
2 + tan h1

( )
= tan h1
2 + tan h1 : ð65Þ

This completes the required proof.

Theorem 3. The sharp S∗
tan h,n radius for the family Sn is

given by

RStan h,n
Snð Þ = tan h1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 + tan h21
p

+ n

� �1/n
: ð66Þ

Proof. Suppose that f ∈Sn: Consider the function h : D
⟶ℂ described by

h zð Þ = f zð Þ
z

: ð67Þ

Using logarithmic differentiation, we get

zf ′ zð Þ
f zð Þ − 1 = zh′ zð Þ

h zð Þ : ð68Þ

Implementing Lemma 1 , we have

zf ′ zð Þ
f zð Þ − 1

					
					 = zh′ zð Þ

h zð Þ

					
					 ≤ 2nrn

1 − r2n
: ð69Þ

According to Lemma 3 , if the following inequality holds,
the image of jzj ≤ r under the function ðzf ′ðzÞÞ/ð f ðzÞÞ lies
on disk Ωtan h:

2nrn
1 − r2n

≤ tan h1, ð70Þ

or equivalently

tan h1ð Þr2n + 2nrn − tan h1 ≤ 0: ð71Þ

Thus,S∗
tan h,n radius ofSn is the smallest positive root of

tan h1ð Þr2n + 2nrn − tan h1 = 0, ð72Þ

in (0,1). Assume the function

f0 zð Þ = z 1 + znð Þ
1 − znð Þ : ð73Þ

Then, it is clear to see that Reðð f0ðzÞÞ/zÞ > 0 in the unit
disk D: Hence, f0 ∈Sn and

zf 0′ zð Þ
f0 zð Þ = 1 + 2nzn

1 − z2n
: ð74Þ

Further, f0 assures the sharpness of the results since at
z =RS∗

tan h,n
ðSnÞ, we obtain

zf 0′ zð Þ
f0 zð Þ − 1 = 2nzn

1 − z2n
= tan h1: ð75Þ

This completes the proof.

Theorem 4. The sharp S∗
tan h,n radius for the family CSnðξÞ

is given by

Proof. Let f ∈CSnðξÞ and describe a function

h zð Þ = f zð Þ
g zð Þ , ð77Þ

where g ∈S∗
nðξÞ: Then, h ∈P n: According to the definition

of h, we get

zf ′ zð Þ
f zð Þ = zh′ zð Þ

h zð Þ + zg′ zð Þ
g zð Þ : ð78Þ

RS∗
tan h,n

CSn ξð Þð Þ = tan h1

n − ξ + 1ð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan h1 + 2 1 − ξð Þ½ � tan h1 + 1 + n − ξð Þ2

q
0
B@

1
CA

1/n

: ð76Þ

7Journal of Function Spaces



Utilizing Lemma 1 and Lemma 2, we conclude that

zf ′ zð Þ
f zð Þ −

1 + 1 − 2ξð Þr2n
1 − r2n

					
					 ≤ 2 1 + n − ξð Þrn

1 − r2n
: ð79Þ

Since

1 + 1 − 2ξð Þr2n
1 − r2n

≥ 1, ð80Þ

it follows from Lemma 3 and (78) that the function f ∈
S∗

tan h,n if the following holds:

1 + 1 − 2ξð Þr2n + 2 1 + n − ξð Þrn
1 − r2n

≤ 1 + tan h1, ð81Þ

or equivalently, the inequality

2 − 2ξ + tan h1ð Þr2n + 2 1 + n − ξð Þrn − tan h1 ≤ 0 ð82Þ

holds. Thus, the S∗
tan h,n radius for the class CSnðξÞ is the

smallest positive root of

2 1 + n − ξð Þrn + 2 − 2ξ + tan h1ð Þr2n − tan h1 = 0: ð83Þ

Now, assume the functions described by

f0 zð Þ = z 1 + znð Þ
1 − znð Þ n+2−2ξð Þ/n ,

g0 zð Þ = z

1 − znð Þ 2 1−ξð Þð Þ/n :
ð84Þ

Then, we get

f0 zð Þ
g0 zð Þ = 1 + znð Þ

1 − znð Þ and
zg0′ zð Þ
g0 zð Þ = 1 + 1 − 2ξð Þznð Þ

1 − znð Þ : ð85Þ

Furthermore, it is obvious that

Re
f0 zð Þ
g0 zð Þ
� �

> 0,

Re
zg0′ zð Þ
g0 zð Þ

 !
> ξ,

ð86Þ

in the unit disk D. Therefore, f0 ∈CSnðξÞ: The function f0
described in (83), at z =RS∗

tan h,n
ðCSnðξÞÞ satisfies that

zf 0′ zð Þ
f0 zð Þ = 1 + 1 − 2ξð Þz2n + 2 1 + n − ξð Þzn

1 − z2n
= 1 + tan h 1ð Þ:

ð87Þ

Hence, the verified result is sharp.

Theorem 5. The S∗
tan h,n radius for the family S∗

n ½L,M� is
given by

RS∗
tan h,n

S∗
n L,M½ �ð Þ =

min 1 : r1ð Þ,−1 ≤M ≤ 0 < L ≤ 1

min 1 : r2ð Þ, 0 <M < L ≤ 1

( )
,

ð88Þ

where

r1 =
2 tan h1

L −Mð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L −Mð Þ2 + 4 M2 1 + tan h1ð Þ − LM½ � tan h1

q
0
B@

1
CA

1/n

,

r2 =
2 tanh 1

L −Mð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L −Mð Þ2 + 4 M2 tanh 1 − 1ð Þ + LM½ � tanh 1

q
0
B@

1
CA

1/n

:

ð89Þ

Proof. Let f ∈S∗
n ½L,M�: Then, by Lemma 2 , we get

zf ′ zð Þ
f zð Þ − b

					
					 ≤ L −Mð Þrn

1 −M2r2n
, ð90Þ

where center of the disk is b = ð1 − LMr2nÞ/ð1 −M2r2nÞ,
jzj = r: Applying Lemma 3 , it is easy to see that b ≥ 1 for
M < 0 and we achieved

1 − LMr2n + L −Mð Þrn
1 −M2r2n

≤ 1 + tan h1: ð91Þ

After some simple calculation, we have

r ≤
2 tan h1

L −Mð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L −Mð Þ2 + 4 M2 1 + tan h1ð Þ − LM½ � tan h1

q
0
B@

1
CA

1/n

= r1:

ð92Þ

In addition, if M = 0 for b = 1 and from (89), we get

zf ′ zð Þ
f zð Þ − 1

					
					 ≤ Lrn 0 < L ≤ 1ð Þ: ð93Þ

Implementing Lemma 3 with a = 1 leads to f ∈S∗
tan h,n, if

r ≤
tanh 1

L

� �1/n
: ð94Þ

For 0 <M < L ≤ 1, we get b < 1: Thus, from (89) and
Lemma 3 , we see that f ∈S∗

tan h,n, if the following holds:

L −Mð Þrn + LMr2n − 1
1 −M2r2n

≤ b + tan h1 − 1, ð95Þ
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or equivalently, if

r ≤
2 tan h1

L −Mð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L −Mð Þ2 + 4 M2 tan h1 − 1ð Þ + LM½ � tan h1

q
0
B@

1
CA

1/n

= r2:

ð96Þ

This completes the proof.☐

Theorem 6. Let −1 <M < L ≤ 1: If either

(a) L − 1 ≤ ð1 −MÞðtanh 1 − 1Þ and ð1 − tanh 1Þð1 −M2

Þ ≤ L −M ≤ 1 −M2 or

(b) L + 1 ≤ ð1 +MÞðtanh 1 + 1Þ and 1 −M2 ≤ L −M ≤ 1
+ tanh 1

holds, then, S∗
n ½L,M� ⊂S∗

tan h,n:

Proof. Let pðzÞ = ðzf ′ðzÞÞ/ð f ðzÞÞ: Since f ∈S∗
n ½L,M�, using

Lemma 2, we get

p zð Þ − 1 − LM

1 −M2

				
				 ≤ L −M

1 −M2 : ð97Þ

Therefore, either 1 − LM/1 −M2 ≤ 1 or 1 − LM/1 −M2

≥ 1:
For ð1 − LMÞ/ð1 −M2Þ ≤ 1, using Lemma 3 , we see that

f ∈S∗
tan h,n, if the following holds:

L −M

1 −M2 ≤
1 − LM

1 −M2 − 1 − tan h1ð Þ,

1 − tan h1 ≤ L −M

1 −M2 ≤ 1,
ð98Þ

which, upon simplification, reduces to the condition stated
in ðaÞ:

For ð1 − LMÞ/ð1 −M2Þ ≥ 1, again, applying Lemma 3 ,
we see that f ∈S∗

tan h,n, if the following holds:

L −M

1 −M2 ≤ 1 + tan h1ð Þ − 1 − LM

1 −M2 ,

1 ≤ L −M
1 −M2 ≤ 1 + tan h1ð Þ,

ð99Þ

which, upon simplification, reduces to the condition stated
in (b).☐

Theorem 7. The sharpS∗
tan h radii for the familiesS∗

L ,S
∗
RL ,

S∗
car ,S∗

C ,BS∗ðξÞ,MðβÞ,S∗
CT ,SS∗ðξÞS∗

B, and S∗
T ðuÞ are

RS∗
tan h

S∗
Lð Þ = 2 − tan h1ð Þ tan h1 ≈ 0:944,

RS∗
tan h

S∗
RLð Þ =

2 + 1 +
ffiffiffi
2

p� �
tan h1

� �
tan h1

6 − 3
ffiffiffi
2

p
+ 4

ffiffiffi
2

p
− 1

� �
tan h1 − sec h22

≈ 0:992,

RS∗
tan h

S∗
carð Þ = 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 + 3 tan h1ð Þ

p
− 2

� �
≈ 0:463,

RS∗
tan h

S∗
Cð Þ = tan h1 2 + tan h1ð Þ

2 1 + tan h1ð Þ ≈ 0:217,

RS∗
tan h

BS∗ ξð Þð Þ = 2 tan h1

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4ξ tan h21

p , for 0 ≤ ξ < 1,

RS∗
tan h

M βð Þð Þ = tan h1
2 β − 1ð Þ + tan h1

, β > 1,

RS∗
tan h

S∗
CTð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2 tan h1

p
− 1 ≈ 0:589,

RS∗
tan h

SS∗ ξð Þð Þ = 1 + tan h1ð Þ1/ξ − 1

1 + tan h1ð Þ1/ξ + 1
,  0 ≤ ξ ≤ 1ð Þ,

RS∗
tan h

S∗
Bð Þ = ln 1 + ln 1 + tan h1ð Þ½ � ≈ 0:449,

RS∗
tan h

S∗
T uð Þð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2u ln 1 + tan h1ð Þp

− 1
u

:

ð100Þ

Proof.

(1) Let f ∈S∗
L , then,

zf ′ zð Þ
f zð Þ ≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
: ð101Þ

Thus, for jzj = r, we have

zf ′ zð Þ
f zð Þ − 1

					
					 ≤ 1 −

ffiffiffiffiffiffiffiffiffi
1 − r

p
≤ tan h1: ð102Þ

For

r ≤ 2 − tan h1ð Þ tan h1 =RS∗
tan h

S∗
Lð Þ: ð103Þ

For checking the sharpness of the result, we assume the
function f0 described by

f0 zð Þ = 4z exp 2 ffiffiffiffiffiffiffiffiffiffi
z + 1p

− 1
� �� 


1 + ffiffiffiffiffiffiffiffiffiffi1 + z
p� �2 : ð104Þ

Since

zf 0′ zð Þ
f0 zð Þ =

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
, ð105Þ
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it follows that f0 ∈S
∗
L and at z = −RS∗

tan h
ðS∗

LÞ and we see
that

zf 0′ zð Þ
f0 zð Þ − 1 = − tan h1, ð106Þ

and hence, the result is sharp

(2) For function f ∈S∗
RL , then,

zf ′ zð Þ
f zð Þ ≺

ffiffiffi
2

p
−

ffiffiffi
2

p
− 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z

1 + 2
ffiffiffi
2

p
− 1

� �
z

vuut : ð107Þ

Thus, for jzj = r, we get

zf ′ zð Þ
f zð Þ − 1

					
					 ≤

ffiffiffi
2

p
−

ffiffiffi
2

p
− 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z

1 + 2
ffiffiffi
2

p
− 1

� �
z

vuut − 1

							
							

≤ 1 −
ffiffiffi
2

p
−

ffiffiffi
2

p
− 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + r

1 − 2
ffiffiffi
2

p
− 1

� �
r

vuut
≤ tan h1:

ð108Þ

For

r ≤
2 + 1 +

ffiffiffi
2

p� �
tan h1

� �
tan h1

6 − 3
ffiffiffi
2

p
+ 4

ffiffiffi
2

p
− 1

� �
tan h1 − sec h22

=RS∗
tan h

S∗
RLð Þ:

ð109Þ

For checking the sharpness, assume the function f0
described by

f0 zð Þ = z exp
ðz
0

q0 tð Þ − 1
t

dt
� �

, ð110Þ

where

q0 zð Þ =
ffiffiffi
2

p
−

ffiffiffi
2

p
− 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z

1 + 2
ffiffiffi
2

p
− 1

� �
z

� �
vuut : ð111Þ

Since q0ðzÞ = ðzf 0′ðzÞÞ/ð f0ðzÞÞ and from the definition of
f0 at z = −RS∗

tan h
ðS∗

RLÞ, we have

zf 0′ zð Þ
f0 zð Þ =

ffiffiffi
2

p
−

ffiffiffi
2

p
− 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z

1 + 2
ffiffiffi
2

p
− 1

� �
z

� �
vuut = − tan h1,

ð112Þ

and hence, the sharpness of the result is verified

(3) Let f ∈S∗
car, then,

zf ′ zð Þ
f zð Þ ≺ 1 + 4z

3 + 2z2
3 : ð113Þ

Therefore, for jzj = r, we get

zf ′ zð Þ
f zð Þ − 1

					
					 = 1 + 4z

3 + 2z2
3 − 1

				
				 ≤ 4r

3 + 2r2
3 ≤ tan h1:

ð114Þ

For

r ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 + 3 tan h1ð Þp

− 2
2 : ð115Þ

For checking the sharpness, assume the function f0
described by

f0 zð Þ = z exp 4z + z2

3


 �
: ð116Þ

Since

zf 0′ zð Þ
f0 zð Þ = 1 + 4z

3 + 2z2
3 , ð117Þ

it follows that f0 ∈S
∗
car and at z =RS∗

tan h
ðS∗

carÞ and we get

zf 0′ zð Þ
f0 zð Þ − 1 = tan h1: ð118Þ

Hence, the result is sharp

(4) Let f ∈S∗
C : Then,

zf ′ zð Þ
f zð Þ ≺ z +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + z2

p
: ð119Þ

Thus, for jzj = r, we get

zf ′ zð Þ
f zð Þ − 1

					
					 ≤ r +

ffiffiffiffiffiffiffiffiffiffiffi
1 + r2

p
− 1 ≤ tan h1, ð120Þ

for

r ≤
tan h1 2 + tan h1ð Þ

2 1 + tan h1ð Þ : ð121Þ
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For checking the sharpness of the result, consider the
function f0 defined by

f0 zð Þ = z exp
ðz
0

q0 tð Þ − 1
t

dt
� �

: ð122Þ

Since

q z0ð Þ = zf 0′ zð Þ
f0 zð Þ = z +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + z2

p
, ð123Þ

it follows that f0 ∈S
∗
C and at z =RS∗

tanh
ðS∗

CÞ, we have

zf 0′ zð Þ
f0 zð Þ − 1 = tan h1: ð124Þ

Hence, the result is sharp

(5) For function f ∈BS∗ðξÞ, we have

zf ′ zð Þ
f zð Þ ≺ 1 + z

1 − ξz2ð Þ , 0 ≤ ξ < 1ð Þ: ð125Þ

Therefore, for jzj = r, we have

zf ′ zð Þ
f zð Þ − 1

					
					 ≤ r

1 − ξr2ð Þ ≤ tan h1: ð126Þ

For 0 ≤ ξ < 1, we obtain

r ≤
2 tan h1

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4ξ tan h21

p =RS∗
tan h

BS∗ ξð Þð Þ: ð127Þ

For checking the sharpness of the result, we assume the
function

f0 zð Þ = z exp
ðz
0

q0 tð Þ − 1
t

dt
� �

, ð128Þ

where

q0 zð Þ = 1 + z

1 − ξz2ð Þ : ð129Þ

Since q0ðzÞ = ðzf 0′ðzÞÞ/ð f0ðzÞÞ, it follows that f0 ∈B
S∗ðξÞ and at z =RS∗

tan h
ðBS∗ðξÞÞ and we have

zf 0′ zð Þ
f0 zð Þ − 1 = tan h1: ð130Þ

Hence, the verified result is sharp

(6) Let f ∈MðβÞ: Then, by Lemma 2 , for n = 1, we have

zf ′ zð Þ
f zð Þ −

1 + 1 − 2βð Þ2
1 − r2

					
					 ≤ 2 β − 1ð Þr

1 − r2
: ð131Þ

Obviously,

1 + 1 − 2βð Þr2
1 − r2

				
				 ≤ 1: ð132Þ

Hence, by Lemma 3 , the above disk contains in Ωtan h,
so

1 − tan h1 ≤ 1 + 1 − 2βð Þr2
1 − r2

,

2 β − 1ð Þr
1 − r2

≤
1 + 1 − 2βð Þr2

1 − r2
− 1 + tan h1:

ð133Þ

Simple calculation gives

r ≤
tan h1

2 β − 1ð Þ + tan h1 : ð134Þ

For checking the sharpness, assume the function defined
as

f0 zð Þ = z exp
ðz
0

q0 tð Þ − 1
t

dt
� �

: ð135Þ

Since

zf 0′ zð Þ
f0 zð Þ = 1 + 2 β − 1ð Þz + 2 β − 1ð Þ + tanh 1½ �z2, ð136Þ

it follows that f0 ∈MðβÞ, at z =RS∗
tanh

ðMðβÞÞ, we get

zf 0′ zð Þ
f0 zð Þ − 1 = tanh 1: ð137Þ

Hence, this verified that the result is sharp.

(7) Let f ∈S∗
CT : Then

zf ′ zð Þ
f zð Þ ≺ 1 + z + z2

2 : ð138Þ

Therefore, for jzj = r, it gives

zf ′ zð Þ
f zð Þ − 1

					
					 ≤ r + r2

2 ≤ tanh 1: ð139Þ

For

r ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2 tan h1

p
− 1 =RS∗

tan h
S∗

CTð Þ: ð140Þ
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For checking the sharpness, assume the function defined
as

f0 zð Þ = ze z+ z2/4ð Þð Þ: ð141Þ

Since

zf 0′ zð Þ
f0 zð Þ = 1 + z + z2

2 , ð142Þ

it follows that f0 ∈S
∗
CT and at z =RS∗

tan h
ðS∗

CT Þ and we
have

zf 0′ zð Þ
f0 zð Þ − 1 = tanh 1: ð143Þ

This shows that the result is sharp

(8) Supposing that f ∈SS∗ðζÞ, we have

zf ′ zð Þ
f zð Þ ≺

1 + zð Þ
1 − zð Þ

� �ζ

,  0 < ζ ≤ 1ð Þ: ð144Þ

Thus, for jzj = r, we get

zf ′ zð Þ
f zð Þ − 1

					
					 ≤ 1 + rð Þ

1 − rð Þ
� �ζ

− 1 ≤ tan h1: ð145Þ

For

r ≤
1 + tan h1ð Þ1/ζ − 1
1 + tan h1ð Þ1/ζ + 1

=RS∗
tan h

SS∗ ζð Þð Þ: ð146Þ

For checking the sharpness, assume the function
described as

f0 zð Þ≔ z exp
ðz
0

q0 tð Þ − 1ð Þ
t

dt
� �

, ð147Þ

where

q0 zð Þ = 1 + zð Þ
1 − zð Þ

� �ζ

: ð148Þ

Since q0ðzÞ = ðzf 0′ðzÞÞ/ð f0ðzÞÞ, it follows that f0 ∈SS∗

ðζÞ and at z =RS∗
tan h

ðSS∗ðζÞÞ and we have

zf 0′ zð Þ
f0 zð Þ − 1 = tan h1: ð149Þ

Hence, this showed that the result is sharp

(9) Supposing that f ∈S∗
B, then,

zf ′ zð Þ
f zð Þ ≺ ee

z−1: ð150Þ

Thus, for jzj = r, we have

zf ′ zð Þ
f zð Þ − 1

					
					 ≤ ee

r−1 − 1 ≤ tan h1: ð151Þ

For

r ≤ ln 1 + ln 1 + tan h1ð Þ½ �: ð152Þ

To show the sharpness of the result, we assume the func-
tion described by

f0 zð Þ = z exp
ðz
0

q0 tð Þ − 1
t

dt
� �

, ð153Þ

where

q0 zð Þ = ee
z−1 = zf 0′ zð Þ

f0 zð Þ : ð154Þ

Since ðzf 0′ðzÞÞ/ð f0ðzÞÞ = q0ðzÞ, it follows that f0 ∈S
∗
B

and z =RS∗
tan h

ðS∗
BÞ and we have

zf 0′ zð Þ
f0 zð Þ − 1 = tan h1, ð155Þ

and hence, the sharpness of the result is verified.

(10) Let f ∈S∗
T ðuÞ: Then,

zf ′ zð Þ
f zð Þ ≺ ez+uz

2/2,  u ≥ 1ð Þ: ð156Þ

Thus, for jzj = r, we easily get

zf ′ zð Þ
f zð Þ − 1

					
					 ≤ er+ur

2/2 ≤ tan h1: ð157Þ

For

r ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2u ln 1 + tan h1ð Þp

− 1
u

=RS∗
tan h

S∗
T uð Þð Þ: ð158Þ

Now, we choose the following function to confirm its
sharpness

f0 zð Þ = z exp
ðz
0

q0 tð Þ − 1
t

dt
� �

: ð159Þ
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Since

zf 0′ zð Þ
f0 zð Þ = q0 zð Þ = ez+uz

2/2, ð160Þ

it follows that f0 ∈S
∗
T ðuÞ and at z =RS∗

tan h
ðS∗

T ðuÞÞ and we
have

zf 0′ zð Þ
f0 zð Þ − 1 = tan h1: ð161Þ

This result is sharp.

4. Functions Defined in terms of the
Ratio of Functions

Now, for the following families, we will talk about the radius
problem. For brevity, we shall denote them by

F1 = f ∈An : Re
f zð Þ
g zð Þ
� �

> 0 andRe
g zð Þ
z

� �
> 0, g ∈An


 �
,

F2 = f ∈An : Re
f zð Þ
g zð Þ
� �

> 0 andRe
g zð Þ
z

� �
> 1
2 , g ∈An


 �
,

F3 = f ∈An :
f zð Þ
g zð Þ − 1
				

				 < 1 andRe
g zð Þ
z

� �
> 0, g ∈An


 �
:

ð162Þ

Theorem 8. The sharp S∗
tan h,n radii for function in the fam-

ilies F1,F2,F3, respectively, are

RS∗
tan h,n

F1ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4n2 cot h21

p
− 2n cot h1

� �1/n
,

RS∗
tan h,n

F2ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9n2 + 4n tan h1 + 4 tan h21

p
− 3n

2 n + tan h1ð Þ

 !1/n

,

RS∗
tanh,n

F3ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9n2 + 4n tan h1 + 4 tan h21

p
− 3n

2 n + tan h1ð Þ

 !1/n

:

ð163Þ

Proof.

(1) Let f ∈F1 and describe the function p,h : D⟶ℂ
by

p zð Þ = g zð Þ
z

,

h zð Þ = f zð Þ
g zð Þ :

ð164Þ

Then, obviously p,h ∈P n: Since

f zð Þ = zp zð Þh zð Þ, ð165Þ

it follows from Lemma 1 that

zf ′ zð Þ
f zð Þ − 1

					
					 ≤ 4nrn

1 − r2n
≤ tan h1, ð166Þ

for

r ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 cot h21 + 1

p
− 2n cot h1

� �1/n
=RS∗

tan h,n
F1ð Þ:
ð167Þ

For checking the sharpness of the result, we assume the
functions

f0 zð Þ = z
1 + zn

1 − zn

� �2
,

g0 zð Þ = z
1 + zn

1 − zn

� �
:

ð168Þ

Thus, obviously,

Re
f0 zð Þ
g0 zð Þ

� �
> 0,

Re
g0 zð Þ
z

� �
> 0,

ð169Þ

and hence, f ∈F1: A computation shows that at z =
RS∗

tan h,n
ðF1Þeiðπ/nÞ

zf 0′ zð Þ
f0 zð Þ = 1 + 4nzn

1 − z2n
= 1 − tan h1: ð170Þ

Hence, the result is sharp

(2) Let f ∈F2: Describe the function p,h : D⟶ℂ by

p zð Þ = g zð Þ
z

,

h zð Þ = f zð Þ
g zð Þ :

ð171Þ

Then, p ∈P n and h ∈P nð1/2Þ. Since

f zð Þ = zp zð Þh zð Þ, ð172Þ

it follows from Lemma 1 that

zf ′ zð Þ
f zð Þ − 1

					
					 ≤ nrn

1 − r2
+ 4nrn
1 − r2n

= nr2n + 3nrn
1 − r2n

≤ tan h1:

ð173Þ
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For

r ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9n2 + 4n tan h1 + 4 tan h21

p
− 3n

2 n + tan h1ð Þ

 !1/n

=RS∗
tan h,n

F2ð Þ:

ð174Þ

Thus, f ∈S∗
tan h,n for r ≤RS∗

tan h,n
ðF2Þ: For checking the

sharpness of the result, assume the functions

f0 zð Þ = z 1 + znð Þ
1 − znð Þ2 ,

g0 zð Þ = z

1 − zn
:

ð175Þ

Then, obviously,

Re
f0 zð Þ
g0 zð Þ
� �

≥ 0,

Re
g0 zð Þ
z

� �
≥
1
2 ,

ð176Þ

and hence, f ∈F2: The sharpness is obvious, since at z =
RS∗

tan h,n
ðF2Þ, we get

zf 0′ zð Þ
f0 zð Þ − 1 = 3nzn + nz2n

1 − z2n
= tan h1 ð177Þ

(3) Let f ∈F3: Describe the functions p,h : D⟶ℂ by

p zð Þ = g zð Þ
z

,

h zð Þ = g zð Þ
f zð Þ :

ð178Þ

Then, p ∈P n: We know that jð1/hðzÞÞ − 1j < 1 if and
only if Re ðhðzÞÞ > ð1/2Þ, and therefore, h ∈P nð1/2Þ: Using
Lemma 1 , we have

zf ′ zð Þ
f zð Þ − 1

					
					 ≤ nr2n + 3nrn

1 − r2n
: ð179Þ

Applying Lemma 3, we obtain

nr2n + 3nrn
1 − r2n

≤ tan h1: ð180Þ

For checking the sharpness, consider the functions

f0 zð Þ = 1 + znð Þ2z
1 − znð Þ ,

g0 zð Þ = 1 + znð Þz
1 − zn

:

ð181Þ

From the definition of f0 and g0, we get

Re
g0 zð Þ
f0 zð Þ

� �
=Re

1
1 + zn

� �
> 1
2 ,

Re
g0 zð Þ
z

� �
=Re

1 + zn

1 − zn

� �
> 0:

ð182Þ

Hence, f0 ∈F3: Now, at z =RS∗
tan h,n

ðF3Þeiπ/n, we get

zf 0′ zð Þ
f0 zð Þ − 1 = 3nzn − nz2n

1 − z2n
= − tan h1: ð183Þ

This result is sharp.
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This article deals with the study of the higher-order Kirchhoff-type equation with delay term in a bounded domain with initial
boundary conditions, where firstly, we prove the global existence result of the solution. Then, we discuss the decay of solutions
by using Nakao’s technique and denote polynomially and exponentially. Furthermore, the blow-up result is established for
negative initial energy under appropriate conditions.

1. Introduction

In this paper, we establish the higher-order Kirchhoff-type
equation with delay term as follows:

utt +
ð
Ω

Am/2u
�� ��2dx� �q

Amu + μ1 μt x, tð Þj jr−1μt x, tð Þ

+μ2 μt x, t − τð Þj jr−1ut x, t − τð Þ = uj jp−1u, x, tð Þ ∈Ω × 0, Tð Þ,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ x ∈Ω

ut x, t − τð Þ = f0 x, t − τð Þ x ∈Ω, t ∈ 0, τð Þ,
∂iu
∂vi

= 0, i = 0, 1,⋯,m − 1 x ∈ ∂Ω,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ

where A = −Δ, m ≥ 1is a natural number, q, r ≥ 0 are real
numbers, p > 1 is a real number and is a bounded domain
with smooth boundary ∂Ω in Rn, n = 1 ; 2 ; 3; v is the outer
normal. τ > 0 denotes time delay, and 1 and 2 are positive
real numbers. The functions ðu0, u1, f0Þ are the initial data
belong to a suitable space.

The problem (1) is a general form of a model introduced
by Kirchhoff [1]. To be more precise, Kirchhoff recom-
mended a model denoted by the equation for f = g = 0,

ph
∂2u
∂t2

+ δ
∂u
∂t

+ g
∂u
∂t

� �
= ρ0 +

Eh
2L

ðL
0

∂u
∂x

� �2
dx

( )
∂2u
∂x2

+ f uð Þ,

ð2Þ

for 0 < x < L, t ≥ 0, where uðx, tÞ is the lateral displace-
ment, ρ is the mass density, h is the cross-section area, E is
the Young modulus, L is the length, ρ0 is the initial axial ten-
sion, and f , g are the external forces. Furthermore, (2) is
called a degenerate equation when ρ0 = 0 and nondegenerate
one when ρ0 > 0.

Time delays often appear in many various problems,
such as thermal, economic phenomena, biological, chemical,
and physical. Recently, the partial di/erential equations with
time delay have become an active area, (see [2, 3] and refer-
ences therein). Datko et al. [4] indicated that a small delay in
a boundary control is a source of instability. An arbitrarily
small delay may destabilize a system which is uniformly
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asymptotically stable without delay unless additional condi-
tions or control terms have been used in many cases [5].
Additional control terms will be necessary to stabilize hyper-
bolic systems including delay terms, (see [6–8] and refer-
ences therein). In [6], Nicaise and Pignotti studied the
equation as follows:

utt x, tð Þ − Δu x, tð Þ + a0ut x, tð Þ + aut x, t − τð Þ = 0, ð3Þ

where a0 and a are positive real parameters. The authors
obtained that, under the condition 0 ≤ α ≤ a0, the system is
exponentially stable. In the case α ≥ α0, they obtained a
sequence of delays that shows the solution is instable. In
[8], Xu et al. obtained the same result similar to the [6] for
the one space dimension by adopting the spectral analysis
approach. In [9], Nicaise et al. studied the wave equation
in one space dimension in the case of time-varying delay.
In that work, the authors showed that an exponential stabil-
ity result under the condition

α ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − dα0

p
, ð4Þ

where d is a constant such that

τ′ tð Þ ≤ d < 1, ∀t > 0: ð5Þ

In recent years, some other authors investigate hyper-
bolic type equation with delay term (see [10–16]).

Without delay term ðμ2jutðx, t‐τÞjr‐1utðx, t − τÞÞ, in
2004, Li [17] studied the higher-order Kirchho/-type equa-
tion as follows:

μtt +
ð
Ω

Dm/2u
�� ��2dx� �q

−Δð Þmu + ut utj jr = uj jpu, ð6Þ

where m > 1 is a positive integer, and q, p, r > 0 is a positive
constant. The author obtained that the solution exists glob-
ally if p ≤ r, while if p >max fr, 2qg. He also established
the blow-up result for E ð0Þ < 0. Later, in 2007, Messaoudi
and Houari [18] obtained the blow-up of solutions with E ð
0Þ > 0 of the equation (6). Then, Piskin and Polat [19] con-
sidered global existence and decay estimates utilizing
Nakao’s inequality of the equation (6).

Without delay term, when m = 1 and q = 0, equation (1)
takes the form of a semilinear hyperbolic equation as fol-
lows:

utt − Δu + ut utj jr−1 = uj jp−1u: ð7Þ

Georgiev and Todorova [20] obtained the blow-up of
solutions for E ð0Þ < 0 if 1 < r < p ð1 < p < n/ðn − 2Þfor n ≥ 3,
p > 1 for n < 3Þ of the equation (7). Under the condition of
positive upper bounded initial energy, Vitillaro [21] proved
the same results of equation (7). Also, Ohta [22, 23] studied
related problems for the blow-up results of the equation (7).

Messaoudi [24] studied the following equation

utt + Δ2u + utj jr2ut = uj jp2u ð8Þ

and obtained an existence result for the equation (8) and
proved that the solution continues to exists globally if r ≥ p;
however, if r < p and the initial energy is negative, the solu-
tion blows up in finite time. Chen [25] established that the
solution of (8) blows up with E ð0Þ > 0. In the presence of
strong damping term ð−ΔutÞ, Piskin and Polat [26] obtained
the decay estimates by using Nakao’s inequality of equation
(8).

When m = 1 and without delay term, equation (1) takes
the form the following Kirchhoff-type equation:

utt‐
ð
Ω

Duj j2dx
� �γ

Δu + ut utj jr = uj jpu: ð9Þ

Many authors had studied existence and blow-up results
at night time for equation (9) (see [27–30]). Ono [30] proved
the blow-up results if p >max fr, 2γgðp < 2/ðn − 4Þfor n ≥ 5
, p > 0 for n ≤ 4Þ and E ð0Þ < 0 for equation (9). Later,
Benaissa and Messaoudi [31] obtained the similar result for
the generalized Kirchhoff-type equation as follows:

utt −M
ð
Ω

eϕ xð Þ ∇uj j2dx
� �

e−ϕ xð Þ div eϕ xð Þ∇u
� �

+ α utj jr−2ut = b uj jp−2u,

ð10Þ

where M : R+ ⟶ R+ and ϕðxÞ are bounded functions.
Then, Wu [32], verified the same result of the general
Kirchhoff-type equation

utt −M ∇uk k22
� 	

Δu + utj jr−2ut = uj jp−2u, ð11Þ

with the positive upper bounded initial energy. In 2013, Ye
[33] considered the global existence results by constructing
a stable set in H1

0ðΩÞ and showed the decay by using a
lemma of Komornik for the nonlinear Kirchhoff-type equa-
tion (11) with dissipative term. Moreover, Ye [34] obtained
the global existence results by constructing a stable set in
Hm

0 ðΩÞ and showed the energy decay by using a lemma of
V . Komornik for a nonlinear higher-order Kirchhoff-type
equation with dissipative term is as follows:

utt + A1/2u


 

2pAu + a utj jr−2ut = b uj jp−2u, ð12Þ

where A = ð−ΔÞm,m > 1 is a positive integer.
Gao et al. [35] considered the Kirchhoff-type equation

without delay term as follows:

utt +M Dmuk k22
� �

−Δð Þmu + utj jr−2ut = uj jp−2u: ð13Þ

The authors obtained the blow-up of solutions for E ð0Þ
> 0 under appropriate conditions for equation (13).

In [36–40], some authors studied abstract evolution
equations as follows:

P utð Þ½ �tA t, uð Þ +Q t, utð Þ = F uð Þ ð14Þ

on suitable Banach space, and they proved some global
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nonexistence of solutions. Some other authors studied
related problems (see [41–45]).

Motivated by the above works, we deal with the exis-
tence, decay, and blow-up results for the higher-order Kirch-
hoff type equation (1) with delay term and source term.
There is no research, to our best knowledge, related to the

higher-order Kirchhoff-type ððÐ
Ω
jAm/2uj2dxÞqAmuÞ equa-

tion (1) with delay ðu2jutðx, t − τÞjr‐1utðx, t − τÞÞ and source
ðjujp−1uÞ terms; hence, our work is the generalization of the
above studies.

This work consists of five sections in addition to the
introduction: Firstly, in Sect. 2, we recall some lemmas and
assumptions. Then, in Section 3, we get the global existence
of solutions. Moreover, in Section 4, we establish the decay
results by using Nakao’s tecnique. Finally, in Section 5, we
obtain the blow-up of solutions for negative initial energy.

2. Preliminaries

In this part, we present some lemmas and assumptions for
the proof of our result. Let HmðΩ Þ denote the Sobolev space
with the norm

uk kHm Ωð Þ = 〠
αj j≤m

Dαuk k2L2 Ωð Þ

 !1/2

:, ð15Þ

Hm
0 ðΩ Þ denotes the closure in HmðΩ Þ of C∞

0 ðΩÞ. For
simplicity of notation, we denote by k⋅kp the Lebesgue space
LpðΩÞ norm, k⋅k denotes L2ðΩÞ norm, and we write equiv-
alent norm k∇⋅kinstead of H1

0ðΩÞ norm k⋅kH1
0ðΩÞ. We

denote by Ciði = 1, 2,⋯, nÞ various positive constants which
may be different at different occurrences.

Lemma 1 (see [46, 47] Sobolev-Poincarė inequality). If 2 ≤
p ≤ ð2n/½n − 2m�+Þð2 ≤ p<∞ if n = 2mÞ, then for some C∗,

kukp ≤ C∗kð−ΔÞm/2uk for u ∈Hm
0 ðΩÞ,

where we put ½α�+ = max f0, αg, 1/½α�+ =∞ if ½α�+ = 0.

Lemma 2 (see [48]). Let ϕðtÞ be nonincreasing and nonneg-
ative function defined on ½0, T�, T > 1 and satisfies

ϕ1+α tð Þ ≤w0 ϕ tð Þ − ϕ t + 1ð Þð Þ, t ∈ 0, T½ � ð16Þ

for w0 is a positive constant, and α is a nonnegative con-
stant. Then, we have for each t ∈ ½0, T�,

ϕ tð Þ ≤ ϕ 0ð Þe−w1 t−1½ �+ , α = 0,

ϕ tð Þ ≤ ϕ 0ð Þ−α +w−1
0 α t − 1½ �+� 	−1/α, α = 0,

8<
: ð17Þ

where ½t − 1�+ = max ft − 1, 0g, and w1 = ln ðw0/w0 − 1Þ.
We make the assumptions on parameters r, p, and m as

follows:
(A1)

1 < p<∞, n ≤ 2m,

1 < p < n
n − 2m

, n > 2m,

8<
: ð18Þ

(A2)

1 < r<∞, n ≤ 2m,

1 < r < n + 2m
n − 2m

, n > 2m:

8<
: ð19Þ

3. Global Existence

In this part, we consider the global existence results of the
problem (1). Firstly, we introduce the new function z similar
to the [7],

z x, k, tð Þ = ut x, t − τkð Þ, x ∈Ω, k ∈ 0, 1ð Þ: ð20Þ

Thus, we have

τzt x, k, tð Þ + zk x, k, tð Þ = 0, inΩ × 0, 1ð Þ × 0,∞ð Þ: ð21Þ

Hence, problem (1) can be transformed as follows:

utt +
ð
Ω

Am/2u
�� ��2dx� �q

Amu + μ1 ut x, tð Þj jr−1ut x, tð Þ + μ2 z x, 1, tð Þj jr−1z x, 1, tð Þ = uj jp−1u x, tð Þ ∈Ω × 0, Tð Þ,

τxt x, k, tð Þ + zk x, k, tð Þ = 0 inΩ × 0, 1ð Þ × 0,∞ð Þ,
z x, k, 0ð Þ = f0 x,−τkð Þ x ∈Ω,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ x ∈Ω,

∂iu
∂vi

= 0, i = 0, 1,⋯,m − 1 x ∈ ∂Ω:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð22Þ
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We define the energy functional for any regular solution
of (22) as follows:

E tð Þ = 1
2 utk k2 + 1

2 q + 1ð Þ Am/2u


 

2 q+1ð Þ −

1
p + 1 uk kp+1p+1

+ ς

r + 1

ð
Ω

ð1
0
zr+1 x, k, sð Þdkdx,

ð23Þ

such that

τr μ2j j < ς < τ r + 1ð Þμ1 − μ2j jð Þ: ð24Þ

Also, have

J tð Þ = J u tð Þð Þ = 1
2 q + 1ð Þ Am/2u



 

2 q+1ð Þ −
1

p + 1 uk kp+1p+1

+ ς

r + 1

ð
Ω

ð1
0
zr+1 x, k, sð Þdkdx,

ð25Þ

I tð Þ = I u tð Þð Þ = Am/2u


 

2 q+1ð Þ − uk kp+1p+1 + ς

ð
Ω

ð1
0
zr+1 x, k, sð Þdkdx:

ð26Þ
We easily see that

E tð Þ = J tð Þ + 1
2 utk k2: ð27Þ

Furthermore, we define

W = u : u ∈Hm
0 Ωð Þ ∩H2m Ωð Þ, I uð Þ > 0

� �
∪ 0f g: ð28Þ

Next, lemma gives that the energy functional E ðtÞ is a
nonincreasing.

Lemma 3. Assume that ðu, zÞ is the solution of (22), then for
t ≥ 0,

E′ tð Þ = − μ1 −
ς

τ r − 1ð Þ −
μ2
r + 1

� �
ut tð Þk kr+1r+1

−
ς

τ r + 1ð Þ −
μ2r
r + 1

� �ð
Ω

zr+1 x, 1, tð Þdx ≤ 0:
ð29Þ

Proof. We multiply the first equation in (22) by ut , integrate
over, and use integration by parts, and we obtain

d
dt

1
2 ut tð Þk k2 + 1

2 q + 1ð Þ Am/2u


 

2 q+1ð Þ −

1
p + 1 uk kp+1p+1


 �

+ μ1 ut tð Þk kr+1r+1

ð
Ω

μ2 z x, 1, tð Þj jr−1z x, 1, tð Þut x, tð Þdx = 0:

ð30Þ

Integrating (30) over ð0, tÞ, we get

1
2 ut tð Þk k2 + 1

2 q + 1ð Þ Am/2u


 

2 q+1ð Þ −

1
p + 1 uk kp+1p+1


 �

+
ðt
0
μ1 us sð Þk kr+1r+1ds + μ2

ðt
0

ð
Ω

z x, 1, sð Þj jr−1z x, 1, sð Þus x, sð Þdxds

= 1
2 u1k k2:

ð31Þ

We multiply the second equation in (22) by ςjzjr−1z and
integrate the result over Ω × ð0, 1Þ × ð0, tÞ, and we get

ς

r + 1
d
dt

ðt
0

ð
Ω

ð1
0
z x, k, tð Þj jr−1 x, k, tð Þzt x, k, tð Þdkdxds

= −
ς

τ r + 1ð Þ
ðt
0

ð
Ω

ð1
0

∂
∂k

z x, k, tð Þj jr+1dkdxds

= −
ς

τ r + 1ð Þ
ðt
0

ð
Ω

z x, 1, tð Þj jr+1 − z x, 0, tð Þj jr+1� �
dxds

= −
ς

τ r + 1ð Þ
ðt
0

ð
Ω

z x, 1, tð Þj jr+1dxds

+ ς

τ r + 1ð Þ
ðt
0
ut tð Þk kr+1r+1ds:

ð32Þ

By combining (31) and (32), we arrive at

E tð Þ + μ1 −
ς

τ r + 1ð Þ
� �ðt

0
us sð Þk kr+1r+1ds

+ ς

τ r + 1ð Þ
ðt
0

ð
Ω

z x, 1, sð Þj jr+1dxds

+ μ2

ðt
0

ð
Ω

z x, 1, sð Þj jr−1z x, 1, sð Þus x, sð Þdxds = E 0ð Þ:

ð33Þ

Utilizing the Young inequality on the fourth term of the
left hand side of (33), we conclude that

E tð Þ + μ1 −
ς

τ r + 1ð Þ −
μ2
r + 1

� �ðt
0
us sð Þk kr+1r+1ds

+ ς

τ r + 1ð Þ −
μ2r
r + 1

� �ðt
0

ð
Ω

z x, 1, sð Þj jr+1dxds = E 0ð Þ:

ð34Þ

Deriving the (34), we have the desired result. Hence, the
proof is completed.

Remark 4. From the condition (24), we obtain

c1 = μ1 −
ς

τ r + 1ð Þ −
μ2
r + 1

� �
> 0, c2 =

ς

τ r + 1ð Þ −
μ2r
r + 1

� �
> 0:

ð35Þ
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Lemma 5. Assume that (19) and p > 2q + 1 hold. Let u0 ∈W
and u1 ∈Hm

0 ðΩÞ, such that

β = C∗
2 q + 1ð Þ p + 1ð Þ

p − 2q − 1
E 0ð Þ

� �p−2q−1/2 q+1ð Þ
< 1, ð36Þ

then u ∈W for each t ≥ 0.

Proof. It follows the continuity of uðtÞ, since Ið0Þ > 0, such
that

I tð Þ > 0, ð37Þ

for some interval near t = 0. Assume that Tm > 0 is a
maximal time, when (26) holds on ½0, Tm�.

By (25) and (26), we obtain

J tð Þ = 1
p + 1 I tð Þ + p − 2q − 1

2 q + 1ð Þ p + 1ð Þ Am/2u


 

2 q+1ð Þ

+ p − rð Þ
r + 1ð Þ p + 1ð Þ ς

ð
Ω

ð1
0
zr+1 x, k, tð Þdkdx

� �

≥
p − 2q − 1

2 q + 1ð Þ p + 1ð Þ Am/2u


 

2 q+1ð Þ

:

ð38Þ

From (23), (38), and Lemma 3, we have

Am/2u


 

2 q+1ð Þ ≤

2 q + 1ð Þ p + 1ð Þ
p − 2q − 1 J tð Þ ≤ 2 q + 1ð Þ p + 1ð Þ

p − 2q − 1 E tð Þ

≤
2 q + 1ð Þ p + 1ð Þ

p − 2q − 1 E 0ð Þ:

ð39Þ

Using Lemma 1 and (39), we get

uk kp+1p+1 ≤ C∗ Am/2u


 

p+1 = C∗ Am/2u



 

p−2q−1 Am/2u


 

2 q+1ð Þ

≤ C∗
2 q + 1ð Þ p + 1ð Þ

p − 2q − 1 E 0ð Þ
� �p−2q−1/2 q+1ð Þ

Am/2u


 

2 q+1ð Þ

= β Am/2u


 

2 q+1ð Þ < Am/2u



 

2 q+1ð Þ on t ∈ 0, Tm½ �:
ð40Þ

Thus, from (26), we arrive at IðtÞ > 0 for all t ∈ ½0, Tm�.
Tm is extended to T , by repeating the procedure. Hence,
the proof is completed.

Lemma 6. Suppose that the assumptions of Lemma 5 hold.
Then, there exists η1 = 1 − β, such that

uk kp+1p+1 ≤ 1 − η1ð Þ Am/2u


 

2 q+1ð Þ

: ð41Þ

Proof. By (40), we obtain

uk kp+1p+1 ≤ β Am/2u


 

2 q+1ð Þ

: ð42Þ

Let η1 = 1 − β; therefore, we obtain the result.

Remark 7. By Lemma 6, we conclude that

Am/2u


 

2 q+1ð Þ ≤

1
η1

I tð Þ: ð43Þ

Theorem 8. Assume that the assumptions (A2), μ2 < μ1, and
p > 2q + 1 hold. Let u0 ∈W satisfying (36) and f0 ∈ L

2ðΩ × ð
0, 1ÞÞ be given. Then, the solution of problem (22) is global.

Proof. It is sufficient to show that kutk2 + kAm/2uk2ðq+1Þ is
bounded independently of t. To obtain this, by using (23)
and (26), we have

E 0ð Þ ≥ E tð Þ = 1
2 utk k2 + 1

2 q + 1ð Þ Am/2u


 

2 q+1ð Þ −

1
p + 1 uk kp+1p+1

+ ς

r + 1

ð
Ω

ð1
0
zr+1 x, k, xð Þdkdx = 1

2 utk k2

+ p − 2q − 1
2 q + 1ð Þ p + 1ð Þ Am/2u



 

2 q+1ð Þ

+ p − rð Þ
r + 1ð Þ p + 1ð Þ ς

ð
Ω

ð1
0
zr+1 x, k, tð Þdkdx

� �

+ 1
p + 1 I tð Þ ≥ 1

2 utk k2 + p − 2q − 1
2 q + 1ð Þ p + 1ð Þ Am/2u



 

2 q+1ð Þ,

ð44Þ

since IðtÞ ≥ 0. Thus,

utk k2 + Am/2u


 

2 q+1ð Þ ≤ CE 0ð Þ, ð45Þ

where C =max f2, ð2ðq + 1Þðp + 1Þ/p − 2q − 1Þg. Therefore,
we obtain the global existence of solutions. Therefore, we
completed the proof.

4. Decay of Solution

In this part, we obtain the decay of solutions of the problem
(22) by using Nakao’s technique.

Theorem 9. Assume that the assumption (A2) and (36) hold.
Let u0 ∈W , f0 ∈ L

2ðΩ × ð0, 1ÞÞ, be given. Hence, we have fol-
lowing decay estimates:

E tð Þ ≤
E 0ð Þe−w1 t−1½ �+ , if r = 1,

E 0ð Þ−α + C−1
7 α t − 1½ �+� 	−1/α, if r > 1,

8<
: ð46Þ

where w1, α and C7 are positive constants which will be
defined later.

Proof. We integrate (29) over ½t, t + 1�, t > 0, to get

E tð Þ − E t + 1ð Þ = D tð Þ½ �r+1, ð47Þ
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where

D tð Þ½ �r+1 = c1

ðt+1
t

utk kr+1r+1ds + c2

ðt+1
t

ð
Ω

zr+1 x, 1, sð Þdxds:

ð48Þ

From (48) and Hölder inequality, we see that

ðt+1
t

ð
Ω

utj j2dxdt +
ðt+1
t

ð
Ω

z x, 1, sð Þj j2dxds ≤ x Ωð Þ D tð Þ½ �2,

ð49Þ

where cðΩÞ = volðΩÞ.Therefore, by (49), there exists t1
∈ ½t, t + 1/4� and t2 ∈ ½t + 3/4, t + 1�, so that

ut tið Þk k2 + z x, 1, tið Þk k2 ≤ c Ωð Þ D tð Þ½ �2, i = 1, 2: ð50Þ

We multiply the first equation in (22) by u and integrate
over Ω × ½t1, t2�. Use integration by parts, Hölder’s inequal-
ity, adding, and subtracting the term

Ð t2
t1

Ð
Ω

Ð 1
0ςz

r+1ðx, k, tÞdk
dxdt, we have

ðt2
t1

I tð Þdt ≤ ut t1ð Þk k2 u t1ð Þk k2 + ut t2ð Þk k2 u t2ð Þk k2

+
ðt2
t1

utk k2dt +
ðt2
t1

ð1
0
ς
ð
Ω

zr+1 x, k, tð Þdxdkdt

− μ1

ðt2
t1

ð
Ω

utj jr−1 utj judxdt

− μ2

ðt2
t1

ð
Ω

z x, 1, tð Þj jr−1z x, 1, tð Þudxdt:

ð51Þ

Now, we estimate the right hand side for (51).
From (39), (50), and Lemma 1, we obtain

ut tið Þk k2 u tið Þk k2 ≤ C1D tð Þ sup
t1≤s≤t2

E1/2 sð Þ, ð52Þ

where C1 = 2C∗ðð2ðq + 1Þðp + 1Þ/p − 2q − 1ÞEð0ÞÞ1/2ðq+1Þ.
By using (32) that

ðt2
t1

ð1
0

ð
Ω

zr+1 x, k, tð Þdxdkdt ≤ 1
2τ

ðt2
t1

ðt2
t1

ut sð Þk kr+1r+1dsdυ

≤
ðt2
t1

dυ

 ! ðt2
t1

ut sð Þk kr+1r+1ds

 !
≤ t2 − t1ð Þ D tð Þ½ �r+1:

ð53Þ

Utilizing Hölder inequality, we get

ðt2
t1

ð
Ω

utj jr−1 utj judxdt ≤
ðt2
t1

ut tð Þk krr+1 u tð Þk kr+1: ð54Þ

Utilizing the Sobolev-Poincare inequality and (39), we

have

ðt2
t1

ut tð Þk krr+1 u tð Þk kr+1dt
�����

����� ≤ C∗

ðt2
t1

ut tð Þk krr+1 Am/2u


 

dt

≤ C∗
2 q + 1ð Þ p + 1ð Þ

p − 2q − 1 E 0ð Þ
� �1/2 q+1ð Þðt2

t1

ut tð Þk krr+1E1/2 sð Þdt

≤ C∗
2 q + 1ð Þ p + 1ð Þ

p − 2q − 1 E 0ð Þ
� �1/2 q+1ð Þ

sup
t1,≤s≤t2

E1/2 sð Þ
ðt2
t1

ut tð Þk krr+1dt

≤ C∗
2 q + 1ð Þ p + 1ð Þ

p − 2q − 1 E 0ð Þ
� �1/2 q+1ð Þ

sup
t1,≤s≤t2

E1/2 sð Þ D tð Þ½ �r:

ð55Þ

Also, we obtain

ðt2
t1

ð
Ω

z x, 1, tð Þj jr−1z x, 1, tð Þudxdt ≤ C∗

ðt2
t1

z x, 1, tð Þk krr+1 uk kr+1dt

≤ C∗
2 q + 1ð Þ p + 1ð Þ

p − 2q − 1 E 0ð Þ
� �1/2 q+1ð Þðt2

t1

z x, 1, tð Þk krr+1E1/2 sð Þdt

≤ C∗
2 q + 1ð Þ p + 1ð Þ

p − 2q − 1 E 0ð Þ
� �1/2 q+1ð Þ

sup
t1≤s≤t2

E1/2 sð Þ
ðt2
t1

z x, 1, tð Þk krr+1dt

≤ C∗
2 q + 1ð Þ p + 1ð Þ

p − 2q − 1 E 0ð Þ
� �1/2 q+1ð Þ

sup
t1≤s≤t2

E1/2 sð Þ D tð Þ½ �r:

ð56Þ

Then, from (51)-(56), we get

ðt2
t1

I tð Þdt ≤ C2 sup
t1≤s≤t2

E1/2 sð ÞD tð Þ + D tð Þ½ �2 + t2 − t1ð Þ D tð Þ½ �r+1
"

+ 2C∗
2 q + 1ð Þ p + 1ð Þ

p − 2q − 1 E 0ð Þ
� �1/2 q+1ð Þ

sup
t1≤s≤t2

E1/2 sð Þ D tð Þ½ �r
#
:

ð57Þ

Moreover, by (23), (26), and Remark 7, we have

E tð Þ ≤ 1
2 utk k2 + C3I tð Þ, ð58Þ

where C3 = ð1/η1Þðp − 2q − 1/2ðq + 1Þðp + 1ÞÞ + ð1/p + 1Þ
.

Integrating (58) over ½t1, t2�, we get

ðt2
t1

E tð Þdt ≤ 1
2

ðt2
t1

utk k2dt + C3

ðt2
t1

I tð Þdt: ð59Þ
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Hence, from (57) and (59), we obtain

ðt2
t1

E tð Þdt ≤ 1
2C D tð Þ½ �2 + C3C2 sup

t1≤s≤t2
E1/2 sð ÞD tð Þ + D tð Þ½ �2

"

+ t2 − t1ð Þ D tð Þ½ �r+1 + 2C∗

� 2 q + 1ð Þ p + 1ð Þ
p − 2q − 1 E 0ð Þ

� �1/2 q+1ð Þ
sup

t1≤s≤t2
E1/2 sð Þ D tð Þ½ �r

#
:

ð60Þ

Integrating ðd/dtÞEðtÞ over ½t, t2�, we conclude that

E tð Þ = E t2ð Þ +
ðt2
t

μ1 −
ς

τ r + 1ð Þ −
μ2
r + 1

� �
us sð Þk kr+1r+1ds

+
ðt2
t

ς

τ r + 1ð Þ −
μ2r
r + 1

� �ð
Ω

z x, 1, sð Þj jr+1dxds:

ð61Þ

Thus, since t2 − t1 ≥ 1/2, we arrive at
ðt2
t1

E tð Þdt ≥ t2 − t1ð ÞE t2ð Þ ≥ 1
2 E t2ð Þ: ð62Þ

Hence,

E t2ð Þ ≤ 2
ðt2
t1

E tð Þdt: ð63Þ

As a result, from (47), (60), (61), (63), and since t1, t2
∈ ½t, t + 1�, we get

E tð Þ ≤ 2
ðt2
t1

E tð Þdt +
ðt+1
t

μ1 −
ς

τ r + 1ð Þ −
μ2
r + 1

� �
us sð Þk kr+1r+1ds

+
ðt+1
t

ς

τ r + 1ð Þ −
μ2r
r + 1

� �ð
Ω

z x, 1, sð Þj jr+1dxds

= 2
ðt2
t1

E tð Þdt + D tð Þ½ �r+1:

ð64Þ

Then, from (60), we have

E tð Þ ≤ 1
2C + C3C2

� �
D tð Þ½ �2 + C3C2 D tð Þ½ �r+1

+ C4 D tð Þ + D tð Þ½ �r½ �E1/2 tð Þ:
ð65Þ

Thus, utilizing Young inequality, we have

E tð Þ ≤ C5 D tð Þ½ �2 + D tð Þ½ �r+1 + d tð Þ½ �2r� �
: ð66Þ

Hence, we have the decay estimates as follows:

Case 1. If r = 1, by (66), we obtain

E tð Þ ≤ 3C5 D tð Þ½ �2 = 3C5 E tð Þ − E t − 1ð Þ½ �: ð67Þ

Utilizing Lemma 2, we have

E tð Þ ≤ E 0ð Þe−w1 t−1½ �+ , ð68Þ

where w1 = ln ð3C5/3C5 − 1Þ.

Case 2. If r > 1, by (66), we have

E tð Þ ≤ C5 D tð Þ½ �2 1 + D tð Þ½ �r−1 + D tð Þ½ �2r−2� 	
: ð69Þ

Then, by (47), since EðtÞ ≤ Eð0Þ, ∀t ≥ 0, we see that

E tð Þ ≤ C5 1 + Er−1/r+1 0ð Þ + E2 r−1ð Þ/r+1 0ð Þ
� �

D tð Þ½ �2

≤ C6 D tð Þ½ �2, t ≥ 0:
ð70Þ

Then, we get

E tð Þr+1/2 ≤ C7 D tð Þ½ �r+1 ≤ C7 E tð Þ − E t + 1ð Þð Þ: ð71Þ

Therefore, by (71) and Lemma 2, we obtain

E tð Þ ≤ E 0ð Þ−α + C−1
7 α t − 1½ �+� 	−1/α

: ð72Þ

Thus, we completed the proof of Theorem 9.

5. Blow-Up of Solution

In this part, we get the blow-up of solutions for negative ini-
tial energy, in the case r > 1.

Theorem 10. Let ðu0, u1Þ ∈ ðH2mðΩÞ ∩Hm
0 ðΩÞÞ ×Hm

0 ðΩÞ
and f0 ∈ L

2ðΩ × ð0, 1ÞÞ be given. Assume that p >max f2, r,
2q + 1g and the assumptions (A1)-(A2) hold. Then, the solu-
tion of (22) blows up in a finite time with Eð0Þ < 0.

Proof. Setting

H tð Þ = −E tð Þ, ð73Þ

from Lemma 3, we obtain

H ′ tð Þ ≥ − μ1 −
ς

τ r + 1ð Þ −
μ2
r + 1

� �
ut tð Þk kr+1r+1

−
ς

τ r + 1ð Þ −
μ2r
r + 1

� �ð
Ω

zr+1 x, 1, tð Þdx:
ð74Þ

Thus,

0 <H 0ð Þ ≤H tð Þ ≤ 1
p + 1 uk kp+1p+1, t > 0: ð75Þ
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Let

M tð Þ = uk k22: ð76Þ

Differentiating (76) twice, we get

M ′ tð Þ = 2
ð
Ω

utudx,

M″ tð Þ = 2 utk k2 + 2
ð
Ω

uttudx:

ð77Þ

Using the first equation in (22), to have

M″ tð Þ = 2 utk k2 − 2 A
m
2u



 

2 q+1ð Þ
2 − 2μ1

ð
Ω

ut x, tð Þj jr−1uut x, tð Þdx

− 2μ2
ð
Ω

z x, 1, tð Þj jr−1uz x, 1, tð Þdx + 2 uk kp+1p+1,

ð78Þ

we add and subtract the term 2ðp + 1ÞHðtÞ, and then
(78) becomes the form

M″ tð Þ ≥ p + 3ð Þ utk k2 + 2 p + 1ð ÞH tð Þ
+ p + 1

q + 1 − 2
� �

A
m
2u



 

2 q+1ð Þ
2

− 2μ1
ð
Ω

ut x, tð Þj jr−1uut x, tð Þdx

− 2μ2
ð
Ω

z x, 1, tð Þj jr−1uz x, 1, tð Þdx

+ 2ς p + 1ð Þ
r + 1

ð
Ω

ð1
0
zr+1 x, k, sð Þdkdx:

ð79Þ

Now, we define

L tð Þ =H tð Þ1−κ + 2ϵM ′ tð Þ: ð80Þ

Differentiating (80), we obtain

L′ tð Þ = 1 − κð ÞH tð Þ−κH ′ tð Þ + 2εM″ tð Þ: ð81Þ

Replacing (79) in (81), we arrive at

L′ tð Þ ≥ 1 − κð ÞH tð Þ−κH ′ tð Þ2ε p + 3ð Þ μtk k2

+ 4ε p + 1ð ÞH tð Þ + 2ε p + 1
q + 1 − 2
� �

A
m
2μ



 

2 q+1ð Þ
2

− 4εμ1
ð
Ω

μt x, tð Þj jr−1uut x, tð Þdx

− 4εμ2
ð
Ω

z x, 1, tð Þj jr−1uz x, 1, tð Þdx

+ 4ες p + 1ð Þ
r + 1

ð
Ω

ð1
0
zr+1 x, k, sð Þdkdx:

ð82Þ

From (75) and utilizing Hölder inequality, we get

ð
Ω

utÞx, tj jr−1uut x, tð Þdx
����

���� ≤ utk krr+1 uk kr+1
≤ c1 uk kr+1/p+1r+1 uk k1−r+1/p+1r+1 uk krr+1
≤ c2 uk kr+1/p+1r+1 H tð Þ

1
p+1−

r+1
p+1ð Þ2 utk krr+1:

ð83Þ

From Young’s inequality and (74), we have

ð
Ω

ut x, tð Þj jr−1uut x, tð Þdx
����

����
≤ c3 ρ1/1+p μk kr+1r+1H 0ð Þ−�k + ρ−r ′H 0ð Þk−�kH ′ tð ÞH tð Þ−k
� �

,

ð84Þ

where �k = 1/p + 1 − r + 1/ðp + 1Þ2 > 0, ρ > 0, r′ = r + 1/r, let-
ting 0 < k < �k. In a similar way, we obtain

ð
Ω

u z x, 1, tð Þj jr−1z x, 1, tð Þdx
����

����
≤ c3 ρ

1
1+p μk kr+1r+1H 0ð Þ−�k + ρ−r ′H 0ð Þk−�kH ′ tð ÞH tð Þ−k

� �
:

ð85Þ

By using (82), (84), and (85), to have

L′ tð Þ ≥ 1 − κð Þ − 4ε μ1 + μ2ð ÞHk−�k 0ð Þρ−r ′
h i

H tð Þ−κH ′ tð Þ
− 4ε μ1 + μ2ð ÞH 0ð Þ−�kρ1/1+p uk kr+1r+1 + 2ε p + 3ð Þ utk k2

+ 4ε p + 1ð ÞH tð Þ + 2ε p + 1
q + 1 − 2
� �

Am/2μ


 

2 q+1ð Þ

2

+ 4ες p + 1ð Þ
r + 1

ð
Ω

ð1
0
zr+1 x, k, sð Þdkdx,

ð86Þ

for ε sufficiently small, we obtain

1 − κð Þ − 4ε μ1 + μ2ð ÞHk−�k 0ð Þρ−r ′
h i

≥ 0: ð87Þ

Setting s = r + 1 ≤ p + 1 such that

μk ksr+1 ≤ c1 Am/2μ


 

 + μk kp+1p+1
� �

, ð88Þ

where c = 4ðμ1 + μ2ÞHð0Þ−�kρ1/p+1c1 and taking ðp + 1/q + 1
− 2Þ > c. Thus, we have

L′ tð Þ ≥ 2ε p + 1
q + 1 − 2 − c
� �

Am/2u


 

2 q+1ð Þ

2

− εc μk kp+1p+1 + 4ε p + 1ð ÞH tð Þ + 2ε p + 3ð Þ μk k2

+ 4ε ζ p + 1ð Þ
r + 1

ð
Ω

ð1
0
zr+1 x, k, sð Þdkdx:

ð89Þ
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By using the notations a1 = 2ðp + 1/q + 1 − 2 − cÞ, a2 = c,
a3 = 4ðp + 1Þ, and a4 = 2ðp + 3Þ, (89) takes the form

L′ tð Þ ≥ a1ε Am/2μ


 

2 q+1ð Þ

2 − εa2 μk kp+1p+1 + εa3H tð Þ + εa4 μtk k2:
ð90Þ

Similarly to the approach of Messaoudi [49], we assume
that p = 2a5 + ðp − 2a5Þ, where a5 < min ða1, a2, a3, a4Þ, and
then (90) becomes the form

L′ tð Þ ≥ a1 − a5ð Þε Am/2μ


 

2 q+1ð Þ

2 + ε a5 − a2ð Þ μk kp+1p+1

+ ε a3 − a5ð ÞH tð Þ + ε a4 − a5ð Þ μtk k2:
ð91Þ

Then,

L′ tð Þ ≥ δε A
m
2u



 

2 q+1ð Þ
2 + μtk kp+1p+1 +H tð Þ + utk k2

h i
: ð92Þ

We conclude that

L′ tð Þ ≥ δε uk kp+1p+1 +H tð Þ + utk k2
h i

, ð93Þ

where δ > 0 is the minimum of the coefficients of kukp+1p+1,
HðtÞ, kutk2. Pick out ε such that

L 0ð Þ =H1−κ 0ð Þ + 2ε
ð
Ω

u1u0dx > 0: ð94Þ

As a result, we getsetting ϖ = 1/1 − k, and since k < �k < 1,
we see that 1 < ϖ < 1/1 − �k. Set

L tð Þ =H tð Þ1−κ + 2ε
ð
Ω

uutdx: ð95Þ

Then,

L tð Þ =H tð Þ1/ϖ + 2ε
ð
Ω

uutdx ≤H tð Þ1/ϖ

+ 2ε
ð
Ω

uutdx + 2E1 uk kp+1
� �p+1/ϖ

:

ð96Þ

Utilizing Young, Hölder’s inequalities, and (96), we

conclude that

L tð Þϖ ≤ H tð Þ1/ϖ + 2ε
ð
Ω

uutdx + 2E1 uk kp+1
� �p+1/ϖ
 �ϖ

≤ 2ϖ−1 H tð Þ + 2ε
ð
Ω

uutdx + 2E1 uk kp+1
� �p+1/ϖ� �ϖ
 �

≤ 2ϖ−1 H tð Þ + 2ϖ−1 2ε
ð
Ω

uutdx
� �ϖ

+ 2E1 uk kp+1p+1

� �
 �

≤ 2ϖ−1 H tð Þ + 2ϖ−1 βϖ utk kϖ2 uk kϖ2 + 2E1 uk kp+1p+1
� �h i

≤ 2ϖ−1 H tð Þ + 2ϖ−1 βϖ utk kϖ2 uk kϖ2
� 	

+ 2ϖ−1 2E1 uk kp+1p+1
� �h i

≤ c2 H tð Þ +½ � utk kϖ2 uk kϖ2 + uk kp+1p+1,
ð97Þ

where c2 = max f2ϖ−1, βϖg. Furthermore, for p > 1, utilizing
Hölder and Young inequalities, we obtain

utk kϖ2 uk kϖ2 ≤ c3 utk kϖ2 uk kϖp+1 ≤ c4 utk k22 + uk k2 1−kð Þ/1−2k
p+1

� �
,

uk k2 1−kð Þ/1−2k
p+1 = uk kp+1p+1 uk k2 1−kð Þ/1−2k− p+1ð Þ

p+1

≤ c5H 0ð Þ2 1−kð Þ/ 1−2kð Þ p+1ð Þ−1 uk kp+1p+1:

ð98Þ

Then, (97) becomes the form

L tð Þϖ ≤ c6 H tð Þ + utk k2 + uk kp+1p+1
� �

: ð99Þ

By combining (93) and (99), we conclude that

L′ tð Þ ≤ c7L tð Þϖ, c7 > 0, ϖ > 1: ð100Þ

Therefore, a simple integration over (0, t), we have the
desired result. Hence, we completed the proof.

6. Conclusions

Time delays often appear in many various problems, such as,
thermal, economic phenomena, biological, chemical, and
physical. Recently, the partial differential equations with
time delay have become an active area (see [2, 3] and refer-
ences therein). In recent years, there has been published
much work concerning the wave equation with constant
delay or time-varying delay. However, to the best of our
knowledge, there were no global existence, decay, and
blow-up results for the higher-order Kirchhoff-type equa-
tion with delay term. Firstly, we have been obtained the
global existence result. Later, we have been established the
decay results by using Nakao’s technique. Finally, we have
proved the blow-up of solutions with negative initial energy
for the problem (1) under the sufficient conditions in a
bounded domain. In the next work, we will extend our cur-
rent study to more general case of the problem (1).
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In this article, we aim to study the upper bounds of the fourth Toeplitz determinant T4ð2Þ for the function class S∗
s , which are

connected with the sine function.

1. Introduction

Suppose that A represents the class of analytic functions f
which in the open unit disk D = fz : ∣z∣<1g of the form

f zð Þ = z + a2z
2 + a3z

3+⋯ z ∈Dð Þ, ð1Þ

and suppose that S is the subclass of A consisting of
univalent functions.

Let P denotes the class of analytic functions p normalized
by

p zð Þ = 1 + c1z + c2z
2 + c3z

3+⋯, ð2Þ

and meeting the conditionRðpðzÞÞ > 0ðz ∈DÞ: Let f and g be
analytic functions in D. Then, we say that the function g is
subordinate to the function f , and we write

g zð Þ ≺ f zð Þ z ∈Dð Þ, ð3Þ

if there exists a Schwarz function ωðzÞ with ωð0Þ = 0 and
∣ωðzÞ ∣ <1, such that (see [1])

g zð Þ = f ω zð Þð Þ z ∈Dð Þ: ð4Þ

In 2018, Cho et al. [2] introduced the following func-
tion class S∗s :

S∗s ≔ f ∈A :
zf ′ zð Þ
f zð Þ ≺ 1 + sin zð Þ z ∈Dð Þ

( )
, ð5Þ

which means that the quantity zf ′ðzÞ/f ðzÞ lies in an eight-
shaped region in the right-half plane.

Thomas and Halim [3] defined the symmetric Toeplitz
determinant TqðnÞ as follows:

Tq nð Þ =

an an+1 ⋯ an+q−1

an+1 an ⋯ an+q−1

⋮ ⋮ ⋮

an+q−1 an+q+2 ⋯ an

�����������

�����������
n ≥ 1, q ≥ 1ð Þ:

ð6Þ

As a special case, we have

T4 2ð Þ =

a2 a3 a4 a5

a3 a2 a3 a4

a4 a3 a2 a3

a5 a4 a3 a2

�����������

�����������
n = 2, q = 4ð Þ: ð7Þ
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That is,

T4 2ð Þ = a22 − a23
� �2 + 2 a23 − a2a4

� �
a2a4 − a3a5ð Þ − a2a3 − a3a4ð Þ2

+ a24 − a3a5
� �2 − a3a4 − a2a5ð Þ2:

ð8Þ

Many and many researchers have studied several Hankel
and Toeplitz determinants for various classes of functions.
For example, Janteng et al. [4, 5] investigated second Hankel
determinant for a function with a positive real part deriva-
tive and starlike and convex functions, respectively; Bansal
[6] and Lee et al. [7] discussed the second Hankel determi-
nant for certain analytic functions; Bansal et al. [8], Zaprawa
[9], Zhang et al. [10] and Babalola [11] derived third-order
Hankel determinant for certain different univalent func-
tions; Raza et al. [12] and Shi et al. [13, 14] studied upper
bounds of the third Hankel determinant for some classes
of analytic functions related to lemniscate of Bernoulli, car-
dioid domain and exponential function; Mahmood et al.
[15] found third Hankel determinant for a subclass of q
-starlike functions. Following the above work, Zhang et al.
[16] recently considered fourth-order Hankel determinants
of starlike functions related to the sine function. On the
other hand, Thomas et al. [3] and Ali et al. [17] studied Toe-
plitz matrices whose elements are the coefficients of starlike,
close-to-convex, and univalent functions. Besides, Tang et al.
[18] studied third-order Hankel and Toeplitz determinant
for a subclass of multivalent q-starlike functions of order α;
Zhang et al. [19] considered third-order Hankel and Toe-
plitz determinants of starlike functions, which are defined
by using the sine function; Ramachandran et al. [20] derived
an estimation for the Hankel and Topelitz determinant with
domains bounded by conical sections involving Rusche-
weygh derivative; Srivastava et al. [21] found the Hankel
determinant and the Toeplitz matrices for this newly-
defined class of analytic q-starlike functions. Based on the
work of Shi et al. [14], Zhang and Tang [16], Thomas and
Halim [3], and Ali et al. [17], in the present paper, we aim
to investigate the fourth-order Toeplitz determinant T4ð2Þ
for this function class S∗

s associated with sine function and
obtain the upper bounds for the determinants T4ð2Þ.

2. Main Results

Due to prove our desired results, we require the following
lemmas.

Lemma 1 (see [22]). If pðzÞ ∈P , then exists some x, z with
∣x ∣ ≤1, ∣z∣ ≤ 1, such that

2c2 = c21 + x 4 − c21
� �

, ð9Þ

4c3 = c31 + 2c1x 4 − c21
� �

− 4 − c21
� �

c1x
2 + 2 4 − c21

� �
1 − xj j2� �

z:

ð10Þ

Lemma 2 (see [23]). Let pðzÞ ∈P , then

∣c41 + c22 + 2c1c3 − 3c21c2 − c4∣ ≤ 2 ; ð11Þ

∣c51 + 3c1c
2
2 + 3c21c3 − 4c31c2 − 2c1c4 − 2c2c3 + c5∣ ≤ 2 ; ð12Þ

∣c61 + 6c21c
2
2 + 4c31c3 + 2c1c5 + 2c2c4 + c23 − c32 − 5c41c2

− 3c21c4 − 6c1c2c3 − c6 ∣ ≤ 2 ;
ð13Þ

∣cn∣ ≤ 2, n = 1, 2,⋯: ð14Þ
Lemma 3 (see [24]). Let pðzÞ ∈P , then, we have

∣c2 −
c21
2
∣ ≤ 2 −

c1j j2
2

; ð15Þ

∣cn+k − μcnck∣ < 2, 0 ≤ μ ≤ 1 ; ð16Þ
∣cn+2k − μcnc

2
k∣ ≤ 2 1 + 2μð Þ: ð17Þ

The following are the main conclusions of this paper and
related proof.

Theorem 1. Suppose that f ðzÞ ∈ S∗
s and of the form (1), then

∣a2∣ ≤ 1, ∣a3∣ ≤
1
2
, ∣a4∣ ≤ 0:344, ∣a5∣ ≤

3
8
, ∣a6 ∣ ≤

67
120

, ∣a7 ∣ ≤
5587
10800

:

ð18Þ

Proof. Because f ðzÞ ∈ S∗
s , by the definition of subordination,

so there exists a Schwarz function ωðzÞ with ωð0Þ = 0 and ∣
ωðzÞ ∣ <1, such that

zf ′ zð Þ
f zð Þ = 1 + sin ω zð Þð Þ: ð19Þ

☐

Now

zf ′ zð Þ
f zð Þ = z +∑∞

n=2 nanz
n

z +∑∞
n=2 anz

n
= 1 + 〠

∞

n=2
nanz

n−1
 !

� 1 − a2z + a22 − a3
� �

z2 − a32 − 2a2a3 + a4
� �

z3
�
+ a42 − 3a22a3 + 2a2a4 − a5
� �

z4+⋯
�

= 1 + a2z + 2a3 − a22
� �

z2 + a32 − 3a2a3 + 3a4
� �

z3

+ 4a5 − a42 + 4a22a3 − 4a2a4 − 2a23
� �

z4

+ 5a6 − 5a2a5 + a52 − 5a3a4 − 5a32a3 + 5a22a4 + 5a2a23
� �

z5

+ 6a7 − 6a2a6 + 6a22a5 − 6a3a5 + 12a2a3a4 − a62
�

− 6a32a4 − 3a24 + 2a33 − 9a22a23 + 6a42a3
�
z6+⋯:

ð20Þ

Define a function

p zð Þ = 1 + ω zð Þ
1 − ω zð Þ = 1 + c1z + c2z

2+⋯: ð21Þ
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Apparently so, pðzÞ ∈P and

ω zð Þ = p zð Þ − 1
1 + p zð Þ =

c1z + c2z
2 + c3z

3+⋯
2 + c1z + c2z2 + c3z3+⋯

: ð22Þ

On the other hand,

1 + sin ω zð Þð Þ = 1 + 1
2 c1z +

c2
2 −

c21
4

� �
z2 + 5c31

48 + c3 − c1c2
2

� �
z3

+ c4 − c1c3
2 + 5c21c2

16 −
c22
4 −

c41
32

� �
z4

+ c5 − c1c4 − c2c3
2 + 5c21c3 + c1c

2
2

16 −
c31c2
8 + c51

3840

� �
z5

+ c6 − c1c5 − c2c4
2 +

	 5c1c2c3
8 + 5c32

48 −
c23
4

+ 5c61
512 + c41c2

768 −
3c21c22
16 + 5c21c4

16 −
c31c3
8


z6+⋯:

ð23Þ

Comparing the coefficients of z, z2, z3, z4, z5, z6 between
the equations (20) and (23), we obtain

a2 =
c1
2 , a3 =

c2
4 , a4 =

c3
6 −

c1c2
24 −

c31
144 , a5

= c4
8 −

c1c3
24 + 5c41

1152 −
c21c2
192 −

c22
32 ,

ð24Þ

a6 =
−3c1c4
80 −

7c2c3
120 −

11c51
4800 −

43c1c22
960 + 71c31c2

5760 + c5
10 ,

ð25Þ

a7 =
c21c4
480 + c1c2c3

480 + 833c61
691200 −

41c21c22
3840 −

109c41c2
11520

−
c1c5
30 −

5c2c4
96 + 5c32

1152 + c6
12 + c31c3

144 :
ð26Þ

By virtue of Lemma 2, we can obtain

∣a2∣ ≤ 1, ∣a3∣ ≤
1
2 ,

ð27Þ

∣a4∣ =
c3
6 −

c1c2
24 −

c31
144

����
���� = 1

6 c3 −
c1c2
3

h i
+ c1
72 c2 −

c21
2

� �����
����:
ð28Þ

Let c1 = c, c ∈ ½0, 2� and using Lemma 3, we get

∣a4∣ =
1
6 c3 −

c1c2
3

h i
+ c1
72 c2 −

c21
2

� �����
���� ≤ 1

3 + c 2 − c2/2
� �

72 ,

ð29Þ

setting

F cð Þ = 1
3 + c 2 − c2/2

� �
72 , ð30Þ

It can be easily verified that FðcÞ takes its maximum
value at c = 2

ffiffiffi
3

p
/3, that is

∣a4∣ ≤ F
2
ffiffiffi
3

p

3

 !
= 1
3 +

ffiffiffi
3

p

162 ≈ 0:344, ð31Þ

∣a5∣ =
c4
8 −

c1c3
24 + 5c41

1152 −
c21c2
192 −

c22
32

����
����

= 1
8 c4 −

c1c3
3

h i
−

c21
576 c2 −

c21
2

� �
−

c2
32 c2 −

c21
2

� �
−
7c21c2
576

����
����:

ð32Þ
Let c1 = c, c ∈ ½0, 2� from Lemma 3, we obtain

 ∣a5∣ ≤
1
4 + 5c2 2 − c2/2

� �
576 + 1

16 2 − c2

2

� �
+ 7c2
288 , ð33Þ

taking

F cð Þ = 1
4 + 5c2 2 − c2/2

� �
576 + 1

16 2 − c2

2

� �
+ 7c2
288 , ð34Þ

It can be easily verified that maximum of FðcÞ occurs at
c = 0, that is,

∣a5∣ ≤ F 0ð Þ = 3
8 ,

ð35Þ

∣a6∣ =
−3c1c4
80 −

7c2c3
120 −

11c51
4800 −

43c1c22
960 + 71c31c2

5760 + c5
10

����
����

= 1
24 c5 −

9c1c4
10

� �
+ 7
120 c5 − c2c3½ � + 11c31

2400 c2 −
c21
2

� �����
−
43c1c2
960 c2 −

c21
2

� �
−
211c31c2
14400

����:
ð36Þ

Assume c1 = c, c ∈ ½0, 2�, by Lemma 3, we get

∣a6∣ ≤
7
60 + 1

12 + 11c3 2 − c2/2
� �
2400 + 43

240 2 − c2

2

� �
+ 211c3

7200 ,

ð37Þ

putting

F cð Þ = 7
60 + 1

12 + 11c3 2 − c2/2
� �
2400 + 43

240 2 − c2

2

� �
+ 211c3

7200 ,

ð38Þ

it is demonstrable that maximum of FðcÞ occurs at c = 0,
that is,

∣a6∣ ≤ F 0ð Þ = 67
120 :

ð39Þ
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∣a7∣ =
c21c4
480 + c1c2c3

480 + 833c61
691200 −

41c21c22
3840 −

109c41c2
11520

����
−
c1c5
30 −

5c2c4
96 + 5c32

1152 + c6
12 + c31c3

144

����
= −37c61

691200 −
25c21c22
5760 −

c1c5
30 + c21 c4 − c22

� �
480 + c1c2 c3 − c1c2½ �

480

����
+ c31 c3 − c1c2½ �

144 −
29c41 c2 − c21/2

� �
11520

+ 5c22 c2 − c21/2
� �
1152 + c6 − 5/8c2c4½ �

12

����:
ð40Þ

Let c1 = c, c ∈ ½0, 2� and applying Lemma 3, we get

 ∣a7∣ ≤
1
6 + c2

240 + 9c
120 + 29c4 2 − c2/2

� �
11520 + 37c6

691200

+ c3

72 + 25c2
1440 + 5 2 − c2/2

� �
288 ,

ð41Þ

showing

F cð Þ = 1
6 + c2

240 + 9c
120 + 29c4 2 − c2/2

� �
11520 + 37c6

691200

+ c3

72 + 25c2
1440 + 5 2 − c2/2

� �
288 ,

ð42Þ

further, we get

F ′ cð Þ ≥ 0: ð43Þ

So, the function FðcÞ takes its maximum value at c = 2,
that is,

 ∣a7∣ ≤ F 2ð Þ = 5587
10800 : ð44Þ

Theorem 2. Suppose that f ðzÞ ∈ S∗
s and of the form (1),

then, we get

∣a23 − a22∣ ≤
5
4
: ð45Þ

Proof. According to equation (26), we have

∣a23 − a22∣ =
c22
16 −

c21
4

����
����: ð46Þ

By applying Lemma 1, we get

∣a23 − a22∣ =
c41
64 + x2 4 − c21

� �2
64 + c21x 4 − c21

� �
32 −

c21
4

�����
�����: ð47Þ

Let jxj = t, t ∈ ½0, 1�, c1 = c, c ∈ ½0, 2�: Then, by the trian-
gle inequality, we obtain

∣a23 − a22∣ ≤
c2t 4 − c2
� �
32 + t2 4 − c2

� �2
64 + c4

64 + c2

4 : ð48Þ

Suppose that

F c, tð Þ = c2t 4 − c2
� �
32 + t2 4 − c2

� �2
64 + c4

64 + c2

4 , ð49Þ

then ∀t ∈ ½0, 1�, ∀c ∈ ½0, 2�, the upper bound of Fðc, tÞ
corresponds to t = 1, c = 2. Hence,

∣a23 − a22∣ ≤ F 1, 2ð Þ = 5
4 : ð50Þ

☐

Theorem 3. Suppose that f ðzÞ ∈ S∗
s and of the form (1), then,

we have

∣a2a3 − a3a4∣ ≤
25
36

: ð51Þ

Proof. From (26), we have

∣a2a3 − a3a4∣ = ∣
c1c2
8 + c31c2

576 −
c2c3
24 + c1c

2
2

96 ∣

= c2
4

c1
2 −

c3 − c1c2/4ð Þ
6 + c31

144

� �����
����:

ð52Þ

If we insert c1 = c, c ∈ ½0, 2� and according to Lemma 3,
we get

∣a2a3 − a3a4∣ ≤
1
2

c
2 + 1

3 + c3

144

� �
: ð53Þ

Assume that

F cð Þ = 1
2

c
2 + 1

3 + c3

144

� �
: ð54Þ

Therefore, we have ∀c ∈ ð0, 2Þ

F ′ cð Þ = 1
4 + c2

96 > 0, ð55Þ

namely, the maximum value of FðcÞ can be obtained at c = 2,
that is,

∣a2a3 − a3a4∣ ≤ F 2ð Þ = 25
36 : ð56Þ

☐
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Theorem 4. Suppose that f ðzÞ ∈ S∗
s and of the form (1), then,

we get

∣a2a4 − a23∣ ≤
1
4
: ð57Þ

Proof. Suppose that f ðzÞ ∈ S∗
s , then, through equation (26),

we get

∣a2a4 − a23∣ =
c1c3
12 −

c21c2
48 −

c41
288 −

c22
16

����
����: ð58Þ

☐

Now, according to Lemma 1, we obtain

∣a2a4 − a23∣ =
c1c3
12 −

c21c2
48 −

c41
288 −

c22
16

����
����

= −
5c41
576 −

x2c21 4 − c21
� �
48 −

x2 4 − c21
� �2
64 + c1 4 − c21

� �
1 − xj j2� �

z

24

�����
�����:

ð59Þ

If we insert c1 = c, c ∈ ½0, 2�, ∣x ∣ = t, t ∈ ½0, 1�: Then, by
the triangle inequality, we get

∣a2a4 − a23∣ ≤
t2c2 4 − c2
� �
48 + 1 − t2

� �
c 4 − c2
� �

24 + t2 4 − c2
� �2
64 + 5c4

576 :

ð60Þ

Putting

F c, tð Þ = t2c2 4 − c2
� �
48 + 1 − t2

� �
c 4 − c2
� �

24 + t2 4 − c2
� �2
64 + 5c4

576 ,

ð61Þ

then, ∀t ∈ ½0, 1�, ∀c ∈ ½0, 2�, the upper bound of Fðc, tÞ corre-
sponds to t = 1, c = 0. Hence,

∣a2a4 − a23∣ ≤ F 0, 1ð Þ = 1
4 : ð62Þ

Theorem 5. Suppose that f ðzÞ ∈ S∗
s and of the form (1), then,

we get

∣a2a5 − a3a4∣ ≤
11
36

: ð63Þ

Proof. Assume that f ðzÞ ∈ S∗
s , then, on the basis of equation

(26), we obtain

∣a2a5 − a3a4∣ =
5c51
2304 + c1c4

16 −
c1c

2
2

192 −
c21c3
48 −

c31c2
1152 −

c2c3
24

����
����

= −
c31 c2 − c21/2
� �
1152 −

c3 c2 − c21/2
� �

24 + c1 c4 − c1c3½ �
24

����
+ c51
576 + c1 c4 − 1/4c22

� �
48

����:
ð64Þ

☐

If we insert c1 = c, c ∈ ½0, 2�, from Lemma 3, we obtain

∣a2a5 − a3a4∣ ≤
c3 2 − c2/2
� �
1152 + 2 − c2/2

� �
12 + c

8 + c5

576 : ð65Þ

Taking

F cð Þ = c3 2 − c2/2
� �
1152 + 2 − c2/2

� �
12 + c

8 + c5

576 : ð66Þ

Then, easy to show that maximum of FðcÞ occurs at
c = 2,∀c ∈ ½0, 2�, also which is

∣a2a5 − a3a4∣ ≤ F 2ð Þ = 11
36 : ð67Þ

Theorem 6. Suppose that f ðzÞ ∈ S∗
s and in the form (1),

then, we get

∣a3a5 − a2a4∣ ≤
9
16

: ð68Þ

Proof. Assume that f ðzÞ ∈ S∗
s , then, according to equation

(26), we get

∣a3a5 − a2a4∣ =
c32
128 + c1c3

12 −
c21c2
48 −

c41
288 −

5c41c2
4608

����
−
c2c4
32 + c1c2c3

96 + c21c
2
2

768

����
= c1 c3 − c1c2/4½ �½

12 + 5c21c2 c2 − c21/2
� �
2304

����
−
c2 c4 − 1/3c1c3½ �

32 + c22 c2 − c21/2
� �
128 + 7c21c22

2304 −
c41
288

����:
ð69Þ

☐

If we insert c1 = c, c ∈ ½0, 2� and in view of Lemma 3,
we have

∣a3a5 − a2a4∣ ≤
c
6 + 1

8 + 5c2 2 − c2/2
� �
1152 + 2 − c2/2

� �
32 + 7c2

576 + c4

288 :

ð70Þ
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Taking

F cð Þ = c
6 + 1

8 + 5c2 2 − c2/2
� �
1152 + 2 − c2/2

� �
32 + 7c2

576 + c4

288 :

ð71Þ

Then, ∀c ∈ ½0, 2�, the demonstrable function FðcÞ
obtains the maximum value at c = 2, that is,

∣a3a5 − a2a4∣ ≤ F 2ð Þ = 9
16 : ð72Þ

Theorem 7. Suppose that f ðzÞ ∈ S∗
s and of the form (1),

then, we get

∣a5a3 − a24∣ ≤
97
324

: ð73Þ

Proof. Suppose that f ðzÞ ∈ S∗
s , then, by the equation (26),

we obtain

a5a3 − a24
�� �� = 7c41c2

13824 + c2c4
32 + c1c2c3

288 −
c32
128 + c31c3

432 −
7c21c22
2304 −

c23
36 −

c61
20736

����
����

= c2 c4 − c1c3/9½ �
32 −

c3 c3 − c1c2/4½ �
36 −

c22 c2 − c21/2
� �
128

����
−
c21c2 c2 − c21/2
� �
144 + c31 c3 − 31/32c1c2½ �

432 −
5c41c2
6912 −

c61
20736

����:
ð74Þ

☐

If we insert c1 = c, c ∈ ½0, 2� and by Lemma 3, we obtain

∣a5a3 − a24∣ ≤
1
8 + 1

9 + 2 − c2/2
� �

32 + c2 2 − c2/2
� �

72 + c3

216 + 5c4
3456 + c6

20736 :

ð75Þ

Putting

F cð Þ = 1
8 + 1

9 + 2 − c2/2
� �

32 + c2 2 − c2/2
� �

72 + c3

216 + 5c4
3456 + c6

20736 :

ð76Þ

∀c ∈ ð0, 2Þ,F ′ðcÞ > 0, Then, maximum of FðcÞ occurs at
c = 2, that is

∣a5a3 − a24∣ ≤ F 2ð Þ = 97
324 : ð77Þ

Theorem 8. Suppose that f ðzÞ ∈ S∗
s and of the form (1), then,

we get

∣T4 2ð Þ∣ ≤ 263384:5
104976

≈ 2:51: ð78Þ

Proof. Since

T4 2ð Þ = a22 − a23
� �2 + 2 a23 − a2a4

� �
a2a4 − a3a5ð Þ

− a2a3 − a3a4ð Þ2 + a24 − a3a5
� �2 − a3a4 − a2a5ð Þ2,

ð79Þ

then, by applying the triangle inequality, we get

∣T4 2ð Þ∣ ≤ a22 − a23
�� ��2 + 2 a23 − a2a4

�� �� a2a4 − a3a5j j
+ a2a3 − a3a4j j2 + a24 − a3a5

�� ��2 + a3a4 − a2a5j j2:
ð80Þ

Now, substituting (18), (45)–(73) into (80), we easily
obtain the desired assertion (78). ☐

3. Conclusion

In this paper, based on the paper [15], we continuously
discuss the problem of the fourth-order Toeplitz determi-
nant of starlike functions, which are connected with the
sine function and get the upper bounds of the determi-
nant. In the next step, we can consider the fourth-order
Toeplitz determinant of other function classes defined by
various linear or nonlinear operators and also make the
related discussion on the fifth-order Toeplitz determinant
for certain function classes.
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Recently, hypergeometric functions of four variables are investigated by Bin-Saad and Younis. In this manuscript, our goal is to
initiate a new quadruple hypergeometric function denoted by Xð4Þ

84 , and then, we ensure the existence of solutions of systems of
partial differential equations for this function. We also establish some integral representations involving the quadruple

hypergeometric function Xð4Þ
84 .

1. Introduction

Special functions, in recent years, are a piece of research that
turned out to be very attractive to many scholars, hunting
generalisations which are almost always evoked by applica-
tions. Hypergeometric functions of several variables have
many applications in mathematical physics, statistical sci-
ences, physics, dynamics, quantum mechanics, chemistry,
and engineering (see, e.g., [1–7]). Multivariable hypergeo-
metric functions occur in diverse areas of mathematics such
as approximation theory, partition theory, representation
theory, group theory, mirror symmetry, and algebraic geom-
etry. They possess important properties such as recurrence
and explicit relations, summation formulas, symmetric and
convolution identities, and algebraic properties. Further-
more, multidimensional hypergeometric functions are used
to solve boundary value problems (Dirichlet problem, Neu-
mann problem, and Holmgren problem) for multidimen-
sional degenerate differential equations (see [8–12]).

In [13], Bin-Saad and Younis introduced several integral
representations of Euler type and Laplace type for new hyper-
geometric functions in four variables. The authors, in [14],
defined four new quadruple hypergeometric functions,

namely, Xð4Þ
80 , X

ð4Þ
81 , X

ð4Þ
82 , andX

ð4Þ
83 , and they obtained frac-

tional derivative formulas, integral representations, and
operational formulas for these quadruple hypergeometric
functions. More recently, Younis et al. [15] introduced and
studied further quadruple hypergeometric functions denoted

by Xð4Þ
85 , X

ð4Þ
86 ,⋯, Xð4Þ

90 . Each quadruple function in [13–15]
can be expressed as

X 4ð Þ ·ð Þ = 〠
∞

m,n,p,q=0
Θ m, n, p, qð Þ x

m

m!

yn

n!
zp

p!
uq

q!
, ð1Þ

where Θðm, n, p, qÞ is a sequence of complex parameters
and there are twelve parameters in every series Xð4Þð·Þ
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(eight a’s and four c’s). The 1st, 2nd, 3rd, and 4th param-
eters in Xð4Þð·Þ are connected with the integers m, n, p, and
q, respectively. Every repeated parameter in the series
Xð4Þð·Þ points out a term with double parameters in Θðm, n,
p, qÞ. Hence, it is possible to form various combinations of
indices. It seems that there is no way to establish indepen-
dently the number of distinct Gaussian hypergeometric series
for each arbitrary integer n ≥ 2 without giving explicitly all
such series. Hence, in each situation with n = 4, one ought to
start with actually building the set like the case n = 3 (refer to
[16]).

Motivated by the works [13–15], we define here the fol-
lowing quadruple hypergeometric function:

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= 〠
∞

m,n,p,q=0

ℓ1ð Þ2m+n ℓ2ð Þn+p ℓ3ð Þp+q ℓ4ð Þq
j1ð Þm+p j2ð Þn j3ð Þq

xm

m!

yn

n!
zp

p!
tq

q!

� xj j < 1
4 , yj j < 1 < zj j < 1 < tj j < 1

� �
,

ð2Þ

where ðℓÞn is the well-known Pochhammer symbol given as

ℓð Þn ≔
1, n = 0,
ℓ ℓ + 1ð Þ⋯ ℓ + n − 1ð Þ, n ∈ℕ≔ 1, 2,⋯f g:

(
ð3Þ

Throughout this paper, ℕ, ℤ−, and ℂ denote the sets of
positive integers, negative integers, and complex numbers,
respectively. Also,

ℕ0 ≔ℕ ∪ 0f g,
ℤ−

0 ≔ℤ− ∪ 0f g:
ð4Þ

Recently, various interesting hypergeometric functions in
several variables have been investigated by many authors
(see, e.g., [17–24]). In Section 2, we show how to find the lin-
early independent solutions of partial differential equations

satisfied by the function Xð4Þ
84 . Section 3 is aimed at presenting

some integral representations of Euler type for our quadruple
function.

2. Solving Systems of Partial
Differential Equations

Following the theory of multiple hypergeometric functions
[25], the system of partial differential equations for the qua-

druple hypergeometric function Xð4Þ
84 is given as follows:

where u = Xð4Þ
84 ðℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tÞ: Starting from (5) and by making use of some elementary

calculations, we define the system of second-order partial dif-
ferential equations:

j1 + x
∂
∂x

+ z
∂
∂z

� �
x
∂
∂x

+ 1
� �

x−1u − ℓ1 + 2x ∂
∂x

+ 2y ∂
∂y

+ 1
� �

ℓ1 + 2x ∂
∂x

+ 2y ∂
∂y

� �
u = 0,

j2 + y
∂
∂y

� �
y
∂
∂y

+ 1
� �

y−1u − ℓ1 + 2x ∂
∂x

+ 2y ∂
∂y

� �
ℓ2 + 2x ∂

∂x
+ y

∂
∂y

� �
u = 0,

j1 + x
∂
∂x

+ z
∂
∂z

� �
z
∂
∂z

+ 1
� �

z−1u − ℓ2 + y
∂
∂y

+ z
∂
∂z

� �
ℓ3 + z

∂
∂z

+ t
∂
∂t

� �
u = 0,

j3 + t
∂
∂t

� �
t
∂
∂t

+ 1
� �

t−1u − ℓ3 + z
∂
∂z

+ t
∂
∂t

� �
ℓ4 + t

∂
∂t

� �
u = 0,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð5Þ

x 1 − 4xð Þuxx − 4xyuxy + zuxz − y2uyy + j1 − 2 2ℓ1 + 3ð Þx½ �ux − 2 ℓ1 + 1ð Þyuy − ℓ1 ℓ1 + 1ð Þu = 0,
y 1 − yð Þuyy − 2xyuxy − 2xzuxz + yzuxz − 2ℓ2xux + j2 − ℓ1 + ℓ2 + 1ð Þy½ �uy − ℓ1zuz − ℓ1ℓ2u = 0,
z 1 − zð Þuzz − xuxz − yzuyz + ytuyt − ztuzt − ℓ3yuy + j1 − ℓ3 + ℓ2 + 1ð Þz½ �uz − ℓ2tut − ℓ2ℓ3u = 0,
t 1 − tð Þutt − ztuzt − ℓ4zuz + j3 − ℓ3 + ℓ4 + 1ð Þt½ �ut − ℓ3ℓ4u = 0:

8>>>>><
>>>>>:

ð6Þ
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It is noted that four equations of the system (6) are simul-

taneous. In fact, the hypergeometric function Xð4Þ
84 verifies the

system. To find the linearly independent solutions of system
(6), we will search the solutions in the form

u = xαyβzγtδw, ð7Þ

where w is an unknown function and α, β, γ, and δ are con-
stants, which are to be determined. So, substituting u = xαyβ

zγtδw into the system (6), we get

Systems (8) and (6) have the same structure and can
therefore be approached with similar techniques. System
(8) implies

α = 0,
β β + j2 − 1ð Þ = 0,
γ = 0,
δ δ + j3 − 1ð Þ = 0:

8>>>>><
>>>>>:

ð9Þ

Therefore, system (9) has the following solutions:

1 2 3 4
α≔ 0 0 0 0
β≔ 0 1 − j2 0 1 − j2

γ≔ 0 0 0 0
δ≔ 0 0 1 − j3 1 − j3

: ð10Þ

Finally, substituting two solutions of the system (10) into
(8), we find the following linearly independent solutions of
the system (6) at the origin:

u1 x, y, z, tð Þ = X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ,

u2 x, y, z, tð Þ = y1−j2X 4ð Þ
84 ℓ1 + 1 − j2, ℓ2 + 1 − j2, ℓ3, ℓ4 ; j1, 2ð

− j2, j3 ; x, y, z, tÞ,
u3 x, y, z, tð Þ = t1−j3X 4ð Þ

84 ℓ1, ℓ2, ℓ3 + 1 − j3, ℓ4 + 1ð
− j3 ; j1, j2, 2 − j3 ; x, y, z, tÞ,

u4 x, y, z, tð Þ = y1−j2 t1−j3X 4ð Þ
84 ℓ1 + 1 − j2, ℓ2 + 1 − j2, ℓ3ð

+ 1 − j3, ℓ4 + 1 − j3 ; j1,2 − j2, 2
− j3 ; x, y, z, tÞ:

ð11Þ

3. Integral Representations of Euler Type

Here, we give eight integral representations of Euler type for

Xð4Þ
84 whose kernel contains the Gaussian hypergeometric

function 2F1 (see [16]), Appell function F3 (see for details
[16, 25]), the Exton triple functions X16, X17, X19 [26], Laur-
icella’s function of three variables FN [16], and the quadruple

functions Xð4Þ
4 , Xð4Þ

24 (see [20, 21]):

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ
= Γ j2ð ÞΓ j3ð Þ
Γ ℓ2ð ÞΓ ℓ4ð ÞΓ j2 − ℓ2ð ÞΓ j3 − ℓ4ð Þ
�
ð∞
0

ð∞
0

e−αð Þℓ2 1 − e−αð Þj2−ℓ2−1 e−β
� �ℓ4

× 1 − e−β
� �j3−ℓ4−1 1 − ye−αð Þ−ℓ1 1 − te−β

� �−ℓ3
× F3

 
ℓ1
2 , 1 + ℓ2 − j2,

ℓ1 + 1
2 , ℓ3 ; j1 ;

4x
1 − ye−αð Þ2 ,

−ze−α

1 − e−αð Þ 1 − te−β
� �

!
dαdβ R ℓ2ð Þð

> 0,R ℓ4ð Þ > 0,R j2 − ℓ2ð Þ > 0,R j3 − ℓ4ð Þ > 0Þ,

ð12Þ

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= 2Mℓ2Γ j2ð Þ
Γ ℓ2ð ÞΓ j2 − ℓ2ð Þ

ð∞
0

cosh α sinh2α
� �ℓ2−1/2

1 +M sinh2α
� �j2−ℓ1

× 1 +M sinh2α
� �

−My sinh2α
� 	−ℓ1FN

�
 
ℓ4,

ℓ1
2 , 1 + ℓ2 − j2, ℓ3,

ℓ1 + 1
2 , ℓ3 ; j3, j1, j1 ;

� t, 4x 1 +M sinh2α
� �2

1 +M sinh2α
� �

−My sinh2α
� 	2 , −zM sinh2α

!

� dα R ℓ2ð Þ > 0,R j2 − ℓ2ð Þ > 0,M > 0ð Þ,
ð13Þ

x 1 − 4xð Þwxx − 4xywxy + zwxz − y2wyy + j1 + γ + 2α − 2 2 l1 + 2α + βð Þ + 3½ �xf gwx − 2 ℓ1 + 2α + β + 1ð Þywy + αx−1zwz − −α j1 + α + γ − 1ð Þx−1 + ℓ1 + 2α + βð Þ ℓ1 + 2α + β + 1ð Þ� 	
w = 0,

y 1 − yð Þwyy − 2xywxy − 2xzwxz − yzwyz − 2 ℓ2 + α + βð Þxwx + j2 + 2β − ℓ1 + 2α + βð Þ + ℓ2 + β + γð Þ + 1½ �yf gwy − ℓ1 + 2α + βð Þzwz − −β j2 + β − 1ð Þy−1 + ℓ1 + 2α + βð Þ ℓ2 + β + γð Þ� 	
w = 0,

z 1 − zð Þwzz + xwxz − yzwyz − ytwyt − ztwzt + γxz−1wx − ℓ3 + γ + δð Þywy + j1 + α + 2γ − ℓ2 + β + γð Þ + ℓ3 + γ + δð Þ + 1½ �zf gwz − ℓ2 + β + γð Þtwt − −γ j1 + α + γ − 1ð Þz−1 + ℓ2 + β + γð Þ ℓ3 + γ + δð Þ
 �
w = 0,

t 1 − tð Þwtt − ztwzt − ℓ4 + δð Þzwz + j3 + 2δ − ℓ3 + γ + δð Þ + ℓ4 + δð Þ + 1½ �tf gwt − −δ j3 + δ − 1ð Þt1 + ℓ3 + γ + δð Þ ℓ4 + δð Þ� 	
w = 0:

8>>>>>><
>>>>>>:

ð8Þ
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X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= 2 1 +Mð Þℓ1Γ j2ð Þ
Γ ℓ1ð ÞΓ j2 − ℓ1ð Þ

ðπ/2
0

sin2α
� �ℓ1−1/2 cos2α

� �j2−ℓ1−1/2
1 +M sin2α
� �j2−ℓ2

× 1 +M sin2α
� �

− 1 +Mð Þy sin2α� 	−ℓ2FN

�
 
ℓ4,

1 + ℓ1 − j2
2 , ℓ2, ℓ3,

ℓ1 − j2
2

+ 1, ℓ3 ; j3, j1, j1 ; t, 4x 1 +Mð Þ2 tan4α,

� z 1 +M sin2α
� �

1 +M sin2α
� �

− 1 +Mð Þy sin2α� 	
!

� dα R ℓ1ð Þ > 0,R j2 − ℓ1ð Þ > 0,M>−1ð Þ,

ð14Þ

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= 2Mj3−ℓ3Γ j3ð Þ
Γ ℓ3ð ÞΓ j3 − ℓ3ð Þ

ðπ/2
0

sin2α
� �j3−ℓ3−1/2 cos2α

� �ℓ3−1/2
cos2α +M sin2α
� �j3−ℓ4

× cos2α +M sin2α
� �

− t cos2α
� 	−ℓ4X16

� ℓ1, ℓ2, 1 + ℓ3 − j3 ; j1, j2 ; x, y,−
z cot2α
M

� �
dα

� R ℓ3ð Þ > 0,R j3 − ℓ3ð Þ > 0,M>−1ð Þ,

ð15Þ

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ
= Γ ℓ3 + ℓ4ð ÞΓ j2ð Þ
Γ ℓ1ð ÞΓ ℓ3ð ÞΓ ℓ4ð ÞΓ j2 − ℓ1ð Þ W1 − V1ð Þj2−ℓ2−1 W2 − V2ð Þℓ3+ℓ4−1

�
ðW1

V1

ðW2

V2

× α − V1ð Þℓ1−1 W1 − αð Þj2−ℓ1−1 β − V2ð Þℓ3−1

� W2 − βð Þℓ4−1 × W1 − V1ð Þ − α − V1ð Þy½ �−ℓ2X19

�
 
ℓ3 + ℓ4, ℓ2,

1 + ℓ1 − j2
2 , ℓ1 − j2

2 + 1 ; j3, j1 ;

� β − V2ð Þ W2 − βð Þt
W2 − V2ð Þ2 , β − V2ð Þz

W2 − V2ð Þ , 4
α − V1
W1 − α

� �2
x

!

� dαdβ R ℓ1ð Þ > 0,R ℓ3ð Þ > 0,R ℓ4ð Þ > 0,R j2 − ℓ1ð Þð
> 0, V1 <W1, V2 <W2Þ,

ð16Þ

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= Γ ℓ3 + bð ÞΓ j1ð Þ
2ℓ3+b+j1−2Γ ℓ3ð ÞΓ að ÞΓ bð ÞΓ j1 − að Þ

ð1
−1

ð1
−1

1 + αð Þℓ3−1

� 1 − αð Þb−1 × 1 + βð Þa−1 1 − βð Þj1−a−1X17

�
ℓ1, ℓ2, ℓ3

+ b ; a, j2, j1 − a ; 1 + βð Þx
2 , y, 1 + αð Þ 1 − βð Þz

4

�
2

� F1 ℓ4, 1 − b ; j3,
1 + α

α − 1

� �
t

� �
dαdβ R ℓ3ð Þð

> 0,R að Þ > 0,R bð Þ > 0,R j1 − að Þ > 0Þ,
ð17Þ

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= 4Γ ℓ1 + ℓ4ð ÞΓ ℓ2 + ℓ3ð Þ
Γ ℓ1ð ÞΓ ℓ2ð ÞΓ ℓ3ð ÞΓ ℓ4ð Þ

ðπ/2
0

ðπ/2
0

sin2α
� �ℓ1−1/2

� cos2α
� �ℓ4−1/2 sin2β

� �ℓ2−1/2 × cos2β
� �ℓ3−1/2X 4ð Þ

4

�
�
ℓ1, ℓ1, ℓ2, ℓ1, ℓ1, ℓ2, ℓ2, ℓ2 ; j1, j2, j1, j3 ;

� x sin4α, y sin2α sin2β, z sin
22β
4 , t cos2α cos2β

�
� dαdβ R ℓið Þ > 0 i = 1, 2, 3, 4ð Þð Þ,

ð18Þ

X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ

= 1 +Mð Þℓ1Γ ℓ1 + ℓ4ð Þ
Γ ℓ1ð ÞΓ ℓ4ð Þ

ð1
0

αℓ1−1 1 − αð Þℓ4−1
1 +Mαð Þℓ1+ℓ4

× X 4ð Þ
24

�
 
ℓ1, ℓ1, ℓ2, ℓ1, ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j1, j3 ;

� 1 +Mð Þ2α2x
1 +Mαð Þ2 , 1 +Mð Þαy

1 +Mαð Þ , z, 1 − αð Þt
1 +Mαð Þ

!

� dα R ℓ1ð Þ > 0,R ℓ4ð Þ > 0,M>−1ð Þ,

ð19Þ

where the Gaussian hypergeometric function 2F1, Appell
function F3, Lauricella triple hypergeometric function FN ,
Exton hypergeometric functions X16, X17, X19, and the qua-

druple functions Xð4Þ
4 , Xð4Þ

24 are defined, respectively, by

2F1 a, b ; c ; xð Þ = 〠
∞

n=0

að Þn bð Þn
cð Þn

xn

n!
∣x∣<1ð Þ, ð20Þ

F3 a, b, c, d ; e ; x, yð Þ

= 〠
∞

m,n=0

að Þm bð Þn cð Þm dð Þn
eð Þm+n

xm

m!

yn

n!
max ∣x∣,∣y ∣f g < 1ð Þ,

ð21Þ

FN ℓ1, ℓ2, ℓ3, b1, b2, b1 ; j1, j2, j2 ; x, y, zð Þ

= 〠
∞

m,n,p=0

ℓ1ð Þm ℓ2ð Þn ℓ3ð Þp b1ð Þm+p b2ð Þn
j1ð Þm j2ð Þn+p

xm

m!

yn

n!
zp

p

� r + s < 1∧v < 1, ∣x∣ ≤ r, ∣y∣ ≤ s, ∣z∣ ≤ vð Þ,

ð22Þ

X16 ℓ1, ℓ2, ℓ3 ; j1, j2 ; x, y, zð Þ

= 〠
∞

m,n,p=0

ℓ1ð Þ2m+n ℓ2ð Þn+p ℓ3ð Þp
j1ð Þm+p j2ð Þn

xm

m!

yn

n!
zp

p!

� s < 1∧v ≤ Tv sð Þ∧r < 1
4 1 − sð Þ2

� �

∪ s < 1∧Tv sð Þ < v < 1 − s∧r < v
1 − v

ℓ2
s

1 − v

� �� �
,

ð23Þ
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Tv sð Þ =
1 − s

1 − 1/2s

� �2
, 0 < s < 2

3 ,

1 − s
2s , 2

3 ≤ s < 1

8>>><
>>>:

∣x∣ ≤ r, ∣y∣ ≤ s, ∣z∣ ≤ vð Þ,

ð24Þ
X17 ℓ1, ℓ2, ℓ3 ; j1, j2, j3 ; x, y, zð Þ

= 〠
∞

m,n,p=0

ℓ1ð Þ2m+n ℓ2ð Þn+p ℓ3ð Þp
j1ð Þm j2ð Þn j3ð Þp

xm

m!

yn

n!
zp

p!

� r < 1
4∧v < 1∧s < 1 − 2

ffiffi
r

p� �
1 − vð Þ, ∣x∣ ≤ r, ∣y∣ ≤ s, ∣z∣ ≤ v

� �
,

ð25Þ
X19 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2 ; x, y, zð Þ

= 〠
∞

m,n,p=0

ℓ1ð Þ2m+n ℓ2ð Þn ℓ3ð Þp ℓ4ð Þp
j1ð Þm j2ð Þn+p

xm

m!

yn

n!
zp

p!

� s + 2
ffiffi
r

p
< 1∧v < 1, ∣x∣ ≤ r, ∣y∣ ≤ s, ∣z∣ ≤ v

� �
,

ð26Þ

X 4ð Þ
4 ℓ1, ℓ1, ℓ2, ℓ1, ℓ1, ℓ2, ℓ2, ℓ2 ; j1, j2, j1, j3 ; x, y, z, tð Þ

= 〠
∞

m,n,p,q=0

ℓ1ð Þ2m+n+q ℓ2ð Þq+n+2p
j1ð Þm+p j2ð Þn j3ð Þq

xm

m!

yn

n!
zp

p!
tq

q!

� ∣x∣ < 1
4 , ∣y∣ < 1, ∣z∣ < 1

4 , ∣t∣ < 1
� �

,

ð27Þ

X 4ð Þ
24 ℓ1, ℓ1, ℓ2, ℓ1, ℓ1, ℓ2, ℓ3, ℓ3 ; j1, j2, j1, j3 ; x, y, z, tð Þ

= 〠
∞

m,n,p,q=0

ℓ1ð Þ2m+n+q ℓ2ð Þn+p ℓ3ð Þp+q
j1ð Þm+p j2ð Þn j3ð Þq

xm

m!

yn

n!
zp

p!
tq

q!

� ∣x∣ < 1
4 , ∣y∣ < 1, ∣z∣ < 1, ∣t∣ < 1

� �
:

ð28Þ

Proof. We begin by recalling the following integral represen-
tations of the beta function (see, for example, [27, 28]):

B a, bð Þ =

ð1
0
αα−1 1 − αð Þb−1dα R að Þ > 0,R bð Þ > 0ð Þ,

Γ a + bð Þ
Γ að ÞΓ bð Þ a, bℂ/Z−

0ð Þ,

8>>><
>>>:

ð29Þ

B a, bð Þ =
ð1
0
αa−1 1 − αð Þb−1dα

= W −Vð Þ1−a−b
ðW
V

α − Vð Þa−1 W − αð Þb−1dα

� R að Þ > 0,R bð Þ > 0, V <Wð Þ,

ð30Þ

B a, bð Þ = 2
ðπ/2
0

sin αð Þ2a−1 cos αð Þ2b−1dα

=
ð∞
0

e−αð Þa 1 − e−αð Þb−1dα R að Þ > 0,R bð Þ > 0ð Þ,

ð31Þ

B a, bð Þ = 21−a−b
ð1
−1

1 + αð Þa−1 1 − αð Þb−1dα

= 2Ma
ð∞
0

cosh α sinh αð Þ2a−1
1 +M sinh2α
� �a+b dα R að Þð

> 0,R bð Þ > 0,M > 0Þ:

ð32Þ

For convenience, let℧ denote the right-hand side of rela-
tion (12). Then, by substituting the expression of F3 from
definition (21) into the right-hand side of (12) and using
(31), we have

℧ = 〠
∞

m,n,p,q=0

ℓ1ð Þ2m ℓ1 + 2mð Þn 1 + ℓ2 − j2ð Þp ℓ3ð Þp ℓ3 + pð Þq −1ð Þp
j1ð Þm+p

× Γ j2ð Þ
Γ ℓ2ð ÞΓ j2 − ℓ2ð Þ

ð∞
0

e−αð Þℓ2+n+p 1 − e−αð Þj2−ℓ2−p−1dα

× Γ j3ð Þ
Γ ℓ4ð ÞΓ j3 − ℓ4ð Þ

ð∞
0

e−β
� �ℓ4+q 1 − e−β

� �j3−ℓ4−1
dβ

× xm

m!

yn

n!
zp

p!
tq

q!
= 〠

∞

m,n,p,q=0

1 + ℓ2 − j2ð ÞpΓ j2 − ℓ2 − pð Þ −1ð Þp
Γ j2 − ℓ2ð Þ

×
ℓ1ð Þ2m+n ℓ2ð Þn+p ℓ3ð Þp+q ℓ4ð Þq

j1ð Þm+p j2ð Þn j3ð Þq
xm

m!

yn

n!
zp

p!
tq

q!

= 〠
∞

m,n,p,q=0

ℓ1ð Þ2m+n ℓ2ð Þn+p ℓ3ð Þp+q ℓ4ð Þq
j1ð Þm+p j2ð Þn j3ð Þq

xm

m!

yn

n!
zp

p!
tq

q!

= X 4ð Þ
84 ℓ1, ℓ2, ℓ3, ℓ4 ; j1, j2, j3 ; x, y, z, tð Þ ;

ð33Þ

we are led to the desired result. A similar argument in the
proof of relation (12) will be able to establish the results
(13)–(19). So, details of the proof are omitted. ☐
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In this article, we introduce a new subclass of analytic functions utilizing the idea of Mittag-Leffler type Poisson distribution
associated with the Janowski functions. Further, we discuss some important geometric properties like necessary and sufficient
condition, convex combination, growth and distortion bounds, Fekete-Szegö inequality, and partial sums for this newly defined
class.

1. Introduction, Definitions, and Motivation

Let A represent the collections of holomorphic (analytic)
functions f defined in the open unit disc:

D = z : z ∈ℂ and zj j < 1f g, ð1Þ

such that the Taylor series expansion of f is given by

f zð Þ = z + 〠
∞

n=2
anz

n z ∈Dð Þ: ð2Þ

By convention, S stands for a subclass of class A com-
prising of univalent functions of the form (2) in the open unit
disc D. Let P represent the class of all functions p that are

holomorphic in D with the condition

R p zð Þð Þ > 0, ð3Þ

and has the series representation

p zð Þ = 1 + 〠
∞

n=1
cnz

n z ∈Dð Þ: ð4Þ

Next, we recall the definition of subordination, for two
functions h1, h2 ∈A , we say h1 is subordinated to h2 and is
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symbolically written as

h1 ≺ h2, ð5Þ

if there exists an analytic function wðzÞ with the properties

w zð Þj j ≤ zj j,w 0ð Þ = 0, ð6Þ

such that

h1 zð Þ = h2 w zð Þð Þ: ð7Þ

Further if h2 ∈ S , then the above condition becomes

h1 ≺ h2 ⇔ h1 0ð Þ = h2 0ð Þ,
h1 Dð Þ ≤ h2 Dð Þ:

ð8Þ

Now, recall the definition of convolution, let f ∈A given
by (2) and hðzÞ given by

h zð Þ = z + 〠
∞

n=2
bnz

n, ð9Þ

then their convolution denoted by ð f ∗ hÞðzÞ is given by

f ∗ hð Þ zð Þ = z + 〠
∞

n=2
anbnz

n z ∈Dð Þ: ð10Þ

The most important and well-known family of analytic
functions is the class of starlike functions denoted by S∗

and is defined as

S∗ = f ∈A : R
zf ′ zð Þ
f zð Þ

 !
> 0 ∀z ∈Dð Þ

( )
: ð11Þ

Next, for −1 ≤ B < A ≤ 1, Janowski [1] generalized the
class S∗ as follows.

Definition 1. A function h with property that hð0Þ = 1 is
placed in the class P ½A, B� if and only if

h zð Þ ≺ 1 + Az
1 + Bz

−1 ≤ B < A ≤ 1ð Þ: ð12Þ

Janowski also proved that for a function p ∈P , a function
hðzÞ belongs to P ½A, B� if the following relation holds

h zð Þ = A + 1ð Þp zð Þ − A − 1ð Þ
B + 1ð Þp zð Þ − B − 1ð Þ : ð13Þ

Also, function f of form (2) belongs to the class S∗½A, B�
if

zf ′ zð Þ
f zð Þ = A + 1ð Þp zð Þ − A − 1ð Þ

B + 1ð Þp zð Þ − B − 1ð Þ −1 ≤ B < A ≤ 1ð Þ: ð14Þ

Kanas et al. (see [2, 3]; see also [4, 5]) were the first to

define the conic domain Ωkðk ≧ 0Þ as follows:

Ωk = u + iv : u > k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u − 1ð Þ2 + v2

q� �
: ð15Þ

Moreover, for fixed k, Ωk represents the conic region
bounded successively by the imaginary axis ðk = 0Þ. For k =
1, it is a parabola, and for 0 < k < 1, it is the right-hand branch
of the hyperbola, and for k > 1, it represents an ellipse.

For these conic regions, the following functions play the
role of extremal functions:

pk zð Þ =

χ1 k, zð Þ, k = 0ð Þ,
χ2 k, zð Þ, k = 1ð Þ,
χ3 k, zð Þ, 0 ≦ k < 1ð Þ,
χ4 k, zð Þ, k > 1ð Þ,

8>>>>><
>>>>>:

ð16Þ

where

χ1 k, zð Þ = 1 + z
1 − z

= 1 + 2z + 2z2+⋯,

χ2 k, zð Þ = 1 + 2
π2 log 1 + ffiffiffi

z
p

1 − ffiffiffi
z

p
� �2

,

χ3 k, zð Þ = 1 + 2
1 − k2

sinh2 2
π

arccos k
� �

arctanh
ffiffiffi
z

p� �� �
,

χ4 k, zð Þ = 1 + 1
k2 − 1

sin π

2K κð Þ
ðu zð Þ/ ffiffiκp

0

dtffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2t2

p
 !

+ 1
k2 − 1

,

u zð Þ = z −
ffiffiffi
κ

p
1 − ffiffiffi

κ
p

z
∀z ∈Dð Þ, ð17Þ

and κ ∈ ð0, 1Þ is chosen such that λ = cosh ðπK ′ðκÞ/ð4KðκÞÞÞ.
Here KðκÞ is Legendre’s complete elliptic integral of first kind
and K ′ðκÞ = Kð ffiffiffiffiffiffiffiffiffiffiffiffi

1 − κ2
p Þ, that is, K ′ðκÞ is the complementary

integral of KðκÞ. Assume that

pk zð Þ = 1 + P1z + P2z
2+⋯ ∀z ∈Dð Þ: ð18Þ

Then, in [6], it has been shown that, for (16), one can
have

P1 =

2N2

1 − k2
, 0 ≦ k < 1ð Þ,

8
π2 , k = 1ð Þ,

π2

4k2 κð Þ2 1 + κð Þ ffiffiffi
κ

p , k > 1ð Þ,

8>>>>>>>><
>>>>>>>>:

ð19Þ

P2 =D kð ÞP1, ð20Þ
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where

D kð Þ =

N2 + 2
3 , 0 ≦ k < 1ð Þ,

2
3 , k = 1ð Þ,

4K κð Þ½ �2 κ2 + 6κ + 1
� �

− π2

24 K κð Þ½ �2 1 + κð Þ ffiffiffi
κ

p , k > 1ð Þ,

8>>>>>>>><
>>>>>>>>:

ð21Þ

with

N = 2
π
arccos k: ð22Þ

Definition 2. A function f of the form (2) is said to be in class
k − ST , if and only if

l
zf ′ zð Þ
f zð Þ ≺ pk zð Þ, k ≥ 0: ð23Þ

Noor and Malik [7] combined the concepts of the
Janowski functions and the conic regions and gave the fol-
lowing definition.

Definition 3. A function h ∈P is said to be in the class k −
P ½A, B� if and only if

h zð Þ ≺ A + 1ð Þpk zð Þ − A − 1ð Þ
B + 1ð Þpk zð Þ − B − 1ð Þ ,−1 ≤ B < A ≤ 1, k ≥ 0: ð24Þ

Geometrically, hðzÞ ∈ k −P ½A, B� takes all values in
domain Δk½A, B�, which is defined as follows

Δk A, B½ � = w : R
B − 1ð Þw − A − 1ð Þ
B + 1ð Þw − A + 1ð Þ

� �
> k

B − 1ð Þw − A − 1ð Þ
B + 1ð Þw − A + 1ð Þ − 1
				

				
� �

,

ð25Þ

the domain Δk½A, B� represents conic-type regions, which
was introduced and studied by Noor andMalik [7] and is fur-
ther generalized by the many authors, see for example [8] and
the references cited therein.

Definition 4 [7]. A function f ∈A is said to be in the class k
− S∗½A, B� if and only if

zf ′ zð Þ
f zð Þ ≺

A + 1ð Þpk zð Þ − A − 1ð Þ
B + 1ð Þpk zð Þ − B − 1ð Þ : ð26Þ

The generalized exponential series:

Eα zð Þ = 〠
∞

k=0

zk

Γ 1 + αkð Þ , α, z ∈ℂ and R αð Þ > 0, ð27Þ

is one special-type function with single parameter α, was
introduced by Mittag-Leffer (see [9]), and is therefore known

as the Mittag-Leffler function. Another function Eα,βðzÞ with
two parameters α and β having similar properties to those of
Mittag-Leffler function is given by

Eα,β zð Þ = 〠
∞

k=0

zk

Γ β + αkð Þ α, β, z ∈ℂð Þ, ð28Þ

and was introduced by Wiman [10, 11] Agrawal [12], and by
the many other (see for example [13–16]). It can be seen that
the series Eα;βðzÞ converges for all finite values of z if

R αð Þ > 0,R βð Þ > 0: ð29Þ

During the last years, the interest in Mittag-Leffler type
functions has considerably increased due to their vast poten-
tial of applications in applied problems such as fluid flow,
electric networks, probability, and statistical distribution the-
ory. For a detailed account of properties, generalizations and
applications of functions (27) and (28), one may refer to [17–
19] and [20].

Geometric properties including starlikeness, convexity,
and close-to-convexity for the Mittag-Leffler function Eα,βð
zÞ were recently investigated by Bansal and Prajapat in
[21]. Differential subordination results associated with gener-
alized Mittag-Leffler function were also obtained in [22].

A variable N is said to be Poisson distributed if it takes
the values 0, 1, 2, 3,⋯ with probabilities e−ψ, ψe−ψ/1!, ψ2e−ψ

/2!, ψ3e−ψ/3!, ⋯ respectively, where ψ is called the parame-
ter. Thus,

Pn N = nð Þ = ψne−ψ

n!
n = 0, 1, 2, 3,⋯ð Þ: ð30Þ

It is easy to see that (30) is a mass probability function
because

P ψ, α, β ; nð Þ zð Þ ≥ 0,

〠
∞

n=0
P ψ, α, β ; nð Þ zð Þ = 1:

ð31Þ

The power series Yðψ, zÞ given by

Y ψ, zð Þ = z + 〠
∞

n=2

ψn−1e−ψ

n − 1ð Þ! z
n ∀z ∈D andψ > 0ð Þ, ð32Þ

which coefficients are probabilities of Poisson distribution is
introduced by Porwal [23]. We can see that by ratio test the
radius of convergence of Yðψ, zÞ is infinity. Porwal [23] also
defined and introduced the following series:

G ψ, zð Þ = 2z − Y ψ, zð Þ = z − 〠
∞

n=2

ψn−1e−ψ

n − 1ð Þ! z
n ∀z ∈D andψ > 0ð Þ:

ð33Þ

The works of Porwal [23] motivate researchers to intro-
duced a new probability distribution if it assumes the positive
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values and its mass function is given by (30) (see for example
[24–26]).

It was Porwal and Dixit [24] who studied and connected
the Poisson distribution and the well-known Mittag-Leffer
function systematically. They called it the Mittag-Leffer type
Poisson distribution and prevailed moments. The Mittag-
Leffer type Poisson distribution is given by (see [24])

Y ψ, α, βð Þ zð Þ = z + 〠
∞

n=2

ψn−1

Γ α n − 1ð Þ + βð ÞEα;β ψð Þ z
n, ð34Þ

where Yðψ, α, βÞðzÞ is a normalized function of class S , since

Y ψ, α, βð Þ 0ð Þ = 0 = Y ′ ψ, α, βð Þ 0ð Þ − 1: ð35Þ

The probability mass function for the Mittag-Leffer type
Poisson distribution series is given by

P ψ, α, β ; nð Þ zð Þ = ψn

Eα;β ψð ÞΓ αn + βð Þ n = 0, 1, 2, 3,⋯ð Þ,

ð36Þ

where Eα;βðψÞ is given by (28). It is worthy to note that the
Mittag-Leffer type Poisson distribution is a generalization
of Poisson distribution. Furtheremore, Bajpai [27] also stud-
ied and obtain some necessary and sufficient conditions for
this distribution series.

Very recently, using theMittag-Leffer type Poisson distri-
bution series, Alessa et al. [28] defined the convolution oper-
ator as

Ω ψ, α, βð Þf zð Þ = Y ψ, α, βð Þ ∗ f zð Þ = z + 〠
∞

n=2
φn
ψ α, βð Þanzn,

ð37Þ

where

φn
ψ α, βð Þ = ψn−1

Γ α n − 1ð Þ + βð ÞEα;β ψð Þ : ð38Þ

Using this convolution operator, they defined and stud-
ied a new subclass of analytic function systematically. They
obtained certain coefficient estimates, neighborhood results,
partial sums, and convexity and compactness properties for
their defined functions class.

In recent years, binomial distribution series, Pascal distri-
bution series, Poisson distribution series, and Mittag-Leffer
type Poisson distribution series play important role in the
geometric function theory of complex analysis. The sufficient
ways were innovated for certain subclasses of starlike and
convex functions involving these special functions (see for
example [26, 29–32]). Motivated by the abovementioned
works and from the work of Alessa et al. [28], in this article,
by mean of certain convolution operator for Mittag-Leffer
type Poisson distribution, we shall define a new subclass of
starlike functions involving both the conic-type regions and

the Janowski functions. We then obtain some interesting
properties for this newly defined function class including
for example necessary and sufficient condition, convex com-
bination, growth and distortion bounds, Fekete-Szegö
inequality, and partial sums. We now define a subclass of
Janowski-type starlike functions involving the conic domains
by mean of certain convolution operator for Mittag-Leffer
type Poisson distribution as follows.

Definition 5. For −1 ≤ B < A ≤ 1, a function f ∈A is in class
k −ΩS∗ðα, β, A, BÞ if

R
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1

� �

≥ k
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1
				

				,
ð39Þ

where

ϑ f ; ψ, α, βð Þ = z Ω ψ, α, βð Þf zð ÞÞð Þ′
Ω ψ, α, βð Þf zð Þ : ð40Þ

For the proofs of our key findings, we need the following
lemma.

Lemma 6 [33]. Let p ∈P have the series expansion of form
(4), then

a3 − ζa22
		 		 ≤ 2 max 1, 2ζ − 1j jf g,whereζ ∈ℂ: ð41Þ

2. Main Results

Theorem 7. Let f ∈ k −ΩS∗ðα, β, A, BÞ and is of the form (2),
then

〠
∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ anj j < B −Aj j:

ð42Þ

The result is sharp for the function given in (51).

Proof. Suppose that inequality (42) holds true, then it is
enough to show that

k
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1
				

				 −R
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1

� �
< 1:

ð43Þ

For this, consider

k
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1
				

				 −R
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1

� �
:

ð44Þ
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As we have set

ϑ f ; ψ, α, βð Þ = z Ω ψ, α, βð Þf zð ÞÞð Þ′
Ω ψ, α, βð Þf zð Þ , ð45Þ

therefore, after some straightforward simplifications, we have

k
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1
				

				 −R
B − 1ð Þϑ f ; ψ, α, βð Þ − A − 1ð Þ
B + 1ð Þϑ f ; ψ, α, βð Þ − A + 1ð Þ − 1

� �
,

≤ k + 1ð Þ B − 1ð Þz Ω ψ, α, βð Þf zð ÞÞð Þ′ − A − 1ð ÞΩ ψ, α, βð Þf zð Þ
B + 1ð Þz Ω ψ, α, βð Þf zð ÞÞð Þ′ − A + 1ð ÞΩ ψ, α, βð Þf zð Þ

− 1
					

					,
= 2 k + 1ð Þ Ω ψ, α, βð Þf zð Þ − z Ω ψ, α, βð Þf zð ÞÞð Þ′

B + 1ð Þz Ω ψ, α, βð Þf zð ÞÞð Þ′ − A + 1ð ÞΩ ψ, α, βð Þf zð Þ

					
					,

= 2 k + 1ð Þ ∑∞
n=2 1 − nð Þφn

ψ α, βð Þanzn
B − Að Þz +∑∞

n=2 n 1 + Bð Þ − 1 + Að Þ½ �φn
ψ α, βð Þanzn

					
					,

≤
2 k + 1ð Þ∑∞

n=2 1 − nj jφn
ψ α, βð Þ anj j

B − Aj j − ∑∞
n=2 n 1 + Bð Þ − 1 + Að Þj jφn

ψ α, βð Þ anj j :

ð46Þ

By using (42), the above inequality is bounded above by
1, and hence, the proof is completed. ☐

Example 8. For the function

f zð Þ = z + 〠
∞

n=2

B −Aj j
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ xnz
n z ∈Dð Þ,

ð47Þ

such that

〠
∞

n=2
xnj j = 1, ð48Þ

we have

〠
∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ anj j

= 〠
∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ

· B − Aj j
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ xnj j

= B − Aj j〠
∞

n=2
xnj j = B − Aj j:

ð49Þ

Hence, f ∈ k −ΩS∗ðα, β, A, BÞ and the result is sharp.

Corollary 9. Let the function f of the form (2) be in the class
k −ΩS∗ðα, β, A, BÞ: Then,

anj j ≤ B − Aj j
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ : ð50Þ

The result is sharp for the function f tðzÞ given by

f t zð Þ = z + B − Aj j
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ z
n:

ð51Þ

Theorem 10. The class k −ΩS∗ðα, β, A, BÞ is closed under
convex combination.

Proof. Let f kðzÞ ∈ k −ΩS∗ðα, β, A, BÞ such that

lf k zð Þ = z + 〠
∞

n=2
an,kz

n, k ∈ 1, 2f g: ð52Þ

It is enough to show that

t f1 zð Þ + 1 − tð Þf2 zð Þ ∈ k −ΩS∗ α, β, A, Bð Þ t ∈ 0, 1½ �ð Þ: ð53Þ

As

lt f1 zð Þ + 1 − tð Þf2 zð Þ = z + 〠
∞

n=2
tan,1 + 1 − tð Þan,2½ �zn: ð54Þ

Now, by Theorem 7, we have

〠
∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �

· φn
ψ α, βð Þ tan,1 + 1 − tð Þan,2

		 		
≤ 〠

∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �

· φn
ψ α, βð Þ t an,1

		 		 + 1 − tð Þ an,2
		 		
 �

≤ t 〠
∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �

· φn
ψ α, βð Þ an,1

		 		 + 1 − tð Þ

· 〠
∞

n=2
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ an,2
		 		

< t B − Aj j + 1 − tð Þ B − Aj j = B − Aj j:
ð55Þ

Hence,

t f1 zð Þ + 1 − tð Þf2 zð Þ ∈ k −ΩS∗ α, β,A, Bð Þ, ð56Þ

which completes the proof. ☐
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Theorem 11. Let f ∈ k −ΩS∗ðα, β, A, BÞ, then for jzj = r

r −
B − Aj j

2 k + 1ð Þ + 2B − A + 1j jφ2
ψ α, βð Þ r

2 ≤ f zð Þj j

≤ r + B − Aj j
2 k + 1ð Þ + 2B − A + 1j jφ2

ψ α, βð Þ r
2:

ð57Þ

The result is sharp for the function given in (51) for n = 2.

Proof. Let f ∈ k −ΩS∗ðα, β,A, BÞ. Using Theorem 7, we can
deduce the following inequity:

f zð Þj j ≤ zj j + 〠
∞

n=2
anj j znj j ≤ zj j + zj j2 〠

∞

n=2
anj j

≤ r + B − Aj j
2 k + 1ð Þ + 2B − A + 1j jφ2

ψ α, βð Þ r
2:

ð58Þ

Similarly,

f zð Þj j ≥ zj j − 〠
∞

n=2
anj j znj j ≥ zj j − zj j2 〠

∞

n=2
anj j

≥ r −
B − Aj j

2 k + 1ð Þ + 2B − A + 1j jφ2
ψ α, βð Þ r

2:

ð59Þ

☐

Theorem 12. Let f ∈ k −ΩS∗ðα, β, A, BÞ, then for jzj = r

f ′ zð Þ		 		 ≤ 1 + 2 B − Aj j
2 k + 1ð Þ + 2B − A + 1j jφ2

ψ α, βð Þ r,

f ′ zð Þ		 		 ≥ 1 −
2 B − Aj j

2 k + 1ð Þ + 2B − A + 1j jφ2
ψ α, βð Þ r:

ð60Þ

The result is sharp for the function given in (51) for n = 2.

Proof. The proof is quite similar to Theorem 11, so left for
reader. ☐

Now, we evaluate a kind of Hankel determinant problem,
which is also known as the Fekete-Szegö functional.

Theorem 13. If f is of the form (2) and belongs to k −ΩS∗ð
α, β, A, BÞ, then

a3 − ξa22
		 		 ≤ P1 A − Bð Þ

4φ3
ψ α, βð Þ max 1,

B − 2P2 + 1ð Þφψ α, βð Þ − 2ξ A − Bð ÞP2
1

2P1φψ α, βð Þ

					
					

( )
,

ð61Þ

where P1 and P2 are defined by (19) and (20), respectively.

Proof. To prove inequality (61), we let

ϑ f ; ψ, α, βð Þ = z Ω ψ, α, βð Þf zð Þð Þ′
Ω ψ, α, βð Þf zð Þ , ð62Þ

then from (26), we have

ϑ f ; ψ, α, βð Þ ≺ A + 1ð Þpk zð Þ − A − 1ð Þ
B + 1ð Þpk zð Þ − B − 1ð Þ =Φ zð Þ sayð Þ: ð63Þ

Thus, if

pk zð Þ = 1 + P1z + P2z
2+⋯, ð64Þ

then by simple computation, we get

Φ zð Þ = 1 + 1
2 P1 A − Bð Þz + 1

4 A − Bð Þ 2P2 − 1 + Bð ÞP2
1

� �
z2+⋯:

ð65Þ

Now, from (63), there exists an analytic function hðzÞ
such that

h zð Þ = 1 +Φ−1 ϑ f ; ψ, α, βð Þð Þ
1 −Φ−1 ϑ f ; ψ, α, βð Þð Þ = 1 + c1z + c2z

2+⋯, ð66Þ

is analytic and

R h zð Þð Þ > 0, ð67Þ

in open unit disc D. Also, we have

ϑ f ; ψ, α, βð Þ =Φ
h zð Þ − 1
h zð Þ + 1

� �
, ð68Þ

where

z ϑ f ; ψ, α, βð Þð Þ′
ϑ f ; ψ, α, βð Þ = 1 + φ2

ψ α, βð Þa2z + 2φ3
ψ α, βð Þa3 − φ4

ψ α, βð Þa22
� 


z2+⋯:

ð69Þ

Φ
h zð Þ − 1
h zð Þ + 1

� �
= 1 + 1

4 A − Bð ÞP1c1z +
1
4 A − Bð Þ

� P1c2 +
P2
2 −

1 + B
4 −

P1
2

� �
c21

� �
z2+⋯:

ð70Þ
After comparing the (69) and (70), we get

a2 =
1

4φ2
ψ α, βð Þ A − Bð ÞP1c1, ð71Þ

a3 =
1

8φ3
ψ α, βð Þ A − Bð Þ P1c2 +

P2
2 −

1 + B
4 −

P1
2

� �
c21

� �
:

ð72Þ
Now, by making use of (71) and (72), in conjunction with
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Lemma, we have

a3 − ξa22
		 		 ≤ P1 A − Bð Þ

4φ3
ψ α, βð Þ max 1,

B − 2P2 + 1ð Þφψ α, βð Þ − 2ξ A − Bð ÞP2
1

2P1φψ α, βð Þ

					
					

( )
,

ð73Þ

which is the required result. ☐

3. Partial Sums

In this section, we will examine the ratio of a function of form
(2) to its sequence of partial sums

f j zð Þ = z + 〠
j

n=2
anz

n, ð74Þ

when the coefficients of f are sufficiently small to satisfy con-
dition (42). We will determine sharp lower bounds for

R
f zð Þ
f j zð Þ

 !
,

R
f j zð Þ
f zð Þ

� �
,

R
f ′ zð Þ
f j′ zð Þ

 !
,

R
f j′ zð Þ
f ′ zð Þ

 !
:

ð75Þ

Theorem 14. If f of form (2) satisfies condition (42), then

R
f zð Þ
f j zð Þ

 !
≥ 1 −

1
ρj+1

∀z ∈Dð Þ, ð76Þ

R
f j zð Þ
f zð Þ

� �
≥

ρj+1
1 + ρj+1

∀z ∈Dð Þ, ð77Þ

where

ρj =
2 k + 1ð Þ 1 − nj j + n 1 + Bð Þ − 1 + Að Þj j½ �φn

ψ α, βð Þ
A − Bj j : ð78Þ

The result is sharp for the function given in (51).

Proof. It is easy to verify that

ρn+1 > ρn > 1 for n > 2: ð79Þ

Thus, in order to prove the inequality (76), we set

ρj+1
f zð Þ
f j zð Þ − 1 − 1

ρj+1

 !" #
=
1 +∑j

n=2anz
n−1 + ρj+1∑

∞
n=j+1anz

n−1

1 +∑j
n=2anzn−1

= 1 + h1 zð Þ
1 + h2 zð Þ :

ð80Þ

We now set

1 + h1 zð Þ
1 + h2 zð Þ =

1 +w zð Þ
1 −w zð Þ : ð81Þ

Then, we find after some suitable simplification that

w zð Þ = h1 zð Þ − h2 zð Þ
2 + h1 zð Þ + h2 zð Þ : ð82Þ

Thus, clearly, we find that

w zð Þ = ρj+1∑
∞
n=j+1anz

n−1

2 + 2∑j
n=2anzn−1 + ρj+1∑

∞
n=j+1anz

n−1
: ð83Þ

By applying the trigonometric inequalities with jzj < 1,
we arrived at the following inequality:

w zð Þj j ≤ ρj+1∑
∞
n=j+1 anj j

2 − 2∑j
n=2 anj j − ρj+1∑

∞
n=j+1 anj j

: ð84Þ

We can now see that

w zð Þj j ≤ 1, ð85Þ

if and only if

2ρj+1 〠
∞

n=j+1
anj j ≤ 2 − 2〠

j

n=2
anj j, ð86Þ

which implies that

〠
j

n=2
anj j + ρj+1 〠

∞

n=j+1
anj j ≤ 1: ð87Þ

Finally, to prove the inequality in (76), it suffices to show
that the left-hand side of (87) is bounded above by the follow-
ing sum:

〠
∞

n=2
ρn anj j, ð88Þ
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which is equivalent to

〠
j

n=2
ρn − 1ð Þ anj j + 〠

∞

n=j+1
ρn − ρj+1

� 

anj j ≥ 0: ð89Þ

In virtue of (89), the proof of inequality in (76) is now
completed.

Next, in order to prove the inequality (77), we set

1 + ρj+1

� 
 f j zð Þ
f zð Þ −

ρj+1
1 + ρj+1

 !

=
1 +∑j

n=2anz
n−1 − ρj+1∑

∞
n=j+1anz

n−1

1 +∑∞
n=2anz

n−1 , = 1 +w zð Þ
1 −w zð Þ ,

ð90Þ

where

w zð Þj j ≤
1 + ρj+1

� 

∑∞

n=j+1 anj j
2 − 2∑ j

n=2 anj j − ρj+1 − 1
� 


∑∞
n=j+1 anj j

≤ 1: ð91Þ

This last inequality in (91) is equivalent to

〠
j

n=2
anj j + ρj+1 〠

∞

n=j+1
anj j ≤ 1: ð92Þ

Finally, we can see that the left-hand side of the inequality
in (92) is bounded above by the following sum:

〠
∞

n=2
ρn anj j, ð93Þ

so we have completed the proof of the assertion (77). ☐

We next turn to ratios involving derivatives.

Theorem 15. If f of the form (2) satisfies condition (42), then

R
f ′ zð Þ
f j′ zð Þ

 !
≥ 1 −

j + 1
ρj+1

∀z ∈Dð Þ,

R
f j′ zð Þ
f ′ zð Þ

 !
≥

ρj+1
ρj+1 + j + 1

∀z ∈Dð Þ,
ð94Þ

where ρj is given by (78). The result is sharp for the func-
tion given in (51).

Proof. The proof of Theorem 15 is similar to that of Theorem
14; we here choose to omit the analogous details. ☐

4. Concluding Remarks and Observations

In our present work, by making use of the idea of Mittag-
Leffler type Poisson distribution, we have defined and studied

certain new subclasses of starlike functions involving the
Janowski functions. Further, we have discussed some impor-
tant geometric properties like necessary and sufficient condi-
tion, convex combination, growth and distortion bounds,
Fekete-Szegö inequality, and partial sums for this newly
defined functions class.
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This content replicates some discrete nonlinear fractional inequalities by virtue of the fractional sum operator �Ψ on time scales.
Through the recognition of the principle of discrete fractional calculus, we are able to recover the precise estimates for unknown
functions of inequalities of the Gronwall type. The resultant inequalities are of unique structure comparative with the latest
reviewing disclosures and can be described as a complementary tool for numerically testing the solutions of discrete partial
differential equations. The foremost consequences are probably confirmed via handling of assessment procedure and technique
of mean value speculation. We display few examples of the proposed inequalities to represent the incentives of our effort.

1. Introduction and Essentials

Fractional calculus and its conceptual applications have
acquired a huge amount of potential in terms of the reality
that fractional operators are becoming a valuable asset with
more specificity and success in demonstrating a few compli-
cated discoveries in numerous seemingly diverse and wide
fields of science and in many areas, such as fluid flow, phys-
ics, chaos, image analysis, virology, and financial economy
[1, 2]. A few years earlier, fractional differential equations
and dynamic systems have been validated as being signifi-
cant gadgets in showing a few marvels in different parts of
applied and pure sciences. They draw enormous impor-
tance in research-oriented fields (see the basic monograph
and the interesting paper [3, 4]. The set of implications that
encouraged the formation of a discrete fractional theory is
established [5].

The aim of the paper is to impose discrete fractional sum
equations in order to build up a procedure to comprehend
certain equations and to extract corresponding Gronwall sort
of inequality. Especially, Gronwall’s inequality is illustrated
to be among the primary inequalities for the foundation of
differential equations. From now on and into the near future,
various assumptions and development of such inequalities

have ended up being a major component. Discrete Gronwall
inequality was suggested by Sugiyama [6] in 1969. He carried
out the related framework of reliable and discrete type of
Gronwall inequality:

Theorem 1. Let Lð�ΩÞ and kð�ΩÞ be real-valued functions
defined for �Ω ∈ℕ0 and kð�ΩÞ > 0 for every �Ω ∈ℕ0. If

L �Ω
� �

≤ bϖ0 + 〠
�Ω−1

�ρ=0
k �ρð ÞL �ρð Þ, �Ω ∈ℕ0, ð1Þ

where bω0 is a nonnegative constant, and then

L �Ω
� �

≤ bω0

Y�Ω−1

�ρ=0
1 + k �ρð Þ½ �: ð2Þ

Theorem 1 is often used differential and integral equations
that possess the unification of discrete factor models.

It is interesting that discretization cycle is among the
most demanded tools for researchers who are captivated in
multiplication and computational assessment. Keep in mind
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that not all discrete operators have identical characteristics to
continuous ones, and the formation of discrete fractional cal-
culus is becoming an essential prerequisite. Several other
authors have dedicated their resources to the quest for arbi-
trary new operators. Definitely, the range of such methods
provides analysts with more chances to adapt them in multi-
ple models.

Fractional calculus that consists of derivative and integral
of noninteger order is normal augmentations of the standard
integer order calculus. Fractional calculus is by all accounts
universal in light of its fascinating applications with regards
to different aspects of science, for example, viscoelastic mate-
rials, dispersion, central nervous biology, regulation hypoth-
esis, and statistical data [7–9].

Despite the existence of a rigorous scientific standard for
the continuity of fractional calculus, the possibility of
improving a discrete fractional calculus has been insufficient.
Although we all realize, discovering fractional difference
equations requires a thorough understanding of system
identification. Recently, surprising achievement has been
produced as a result of arduous attempts in fractional
difference structures by Du and Jia [10]. The existence and
uniqueness of solutions are the foundation for examining
the stability problem that has been exploited using fractional
Gronwall and Bihari inequality, for example [11, 12].

The essentially identical to discrete hypothesis by a frac-
tional sum of order �Ψ > 0 was identified due to Miller and
Ross [13] through solution based on linear differential equa-
tion, and many key aspects of proposed operator were tested.
Moreover, Atici and Eloe [14] implemented a discrete
method for Laplace transformation containing a fractional
class of finite difference equations. Atici and Eloe [15] identi-
fied the causes of the initial value in the discrete fractional
analysis. Atici and Eloe [16] investigated the structure of a
discrete fractional calculus with the nabla operator. They cre-
ated exponential laws and the item rule to the forward frac-
tional calculus. Atici and Sengul [17] built up the Leibniz
rule and summation by part equation in discrete fractional
theory. Bastos and Torres [18] introduced the more broad
discrete fractional operator which was specified by delta
and nabla fractional sums. Holm [19] presented operators
with fractional sums and applied one such hypothesis to
tackle fractional initial value problems. Anastassiou [20]
determined the privilege discrete nabla fractional of Taylor
equation. The innovation that made look like a consequence
of this depiction was charming to several readers and now
subjected to outrageous review, in numerous approaches:
discrete nature and precision of fractional equations, tumor
formation simulating [21], consistency of tumor cell solu-
tions related order of Legendre’s derivative �Ψ [22], and
Euler-Lagrange equation and Legendre’s optimality condi-
tion for the calculus of variations problems [23]. The idea
of a discrete version of fractional calculus is adopted just as
late, usually because of the impact of exploration in fractional
analysis (see [24–26]).

Inequalities of finite difference that demonstrate distinct
bounds of undefined functions suggest a highly useful and
beneficial way to enhance understanding of finite difference
equations. As a consequence, difference equations tend to

be a realistic instrument that correctly represents real-life
scenarios like question queueing, power systems, and finan-
cial measurements, and to attempt such kind of mechanism,
this protection is mandated. Probably the least impossible
enormously difference equations right now have begun to
achieve the attention [27].

In the stage when we have to examine many features of a
differential equation, there are multiple interpretations for
certain categories of inequalities. Essentially, based on capa-
bility of the aforementioned inquiry, we formulate in this
material some generalizations of discrete fractional nonlinear
inequalities linked to the fractional sum operator �Ψ that
assemble to describe fractional inequalities and incorporate
some proven publication tests. To reflect theoretical hypoth-
eses, it was shown that the transmitted inequalities may be
used to evaluate certain classifications of discrete fractional
equations. In order to explore the usefulness and drawbacks
of the usage of fractional sum difference equations, the com-
pletion of this paper secures a few instances.

Definitive portions of the document are classified as such.
We address relevant actual considerations and basic assump-
tions in Section 2. Section 3 is committed to the theoretical
experiences of nonlinear discrete fractional inequalities with
some remarks. The remaining section is considered in
accomplishing the theoretical examination specifications.

2. Preliminaries

And with that initiative, without the absence of a specific
argument, let M̂ be a constant, ℕ�ρ = fbρ , bρ + 1, bρ + 2,⋯g,
H�ρ = ½�ρ, M̂� ∩ℕ�ρ, where M̂, �ρ ∈ℕ�ρ, ∑

bϑ
�ρ=ĉkð�ρÞ = 0, ℝ+ = ½0,

∞Þ, and difference operator of a be assigned as ΔaðbϑÞ =
aðbϑÞ − aðbϑ − 1Þ, bϑ ∈ℕ�ρ.

A part of primitive specifications and theorems of dis-
crete fractional measurement is represented as

Definition 2 (see [17]). Let �Ψ be any positive real number, g
be any real number and σð�ρÞ = �ρ + 1, and then �Ψ − th frac-
tional sum of k is defined for �Ω = g (mod 1) by

Δ−�Ψ
g k �ρð Þ = 1

Γ �Ψ
� � 〠

�ρ−�Ψ

bΩ=g

�ρ − σ �Ω
� �� ��Ψ−1

k �Ω
� �

, ð3Þ

such that ð�ρÞ�Ψ = Γð�ρ + 1Þ/Γð�ρ − �Ψ + 1Þ, and Δ−�Ψ
g k is defined

for �ρ = g + �Ψ (mod1) and Δ−�Ψ
g : ℕg ⟶ℕg+�Ψ.

Definition 3 (see [17]). Let bν > 0,and bΛ − 1 < bν < bΛ . Then,bν − th fractional difference of k is classified as

Δν∧k �ρð Þ = ΔΛ∧−�Ψk �ρð Þ = ΔΛ∧ Δ−�Ψk �ρð Þ
� �

, ð4Þ

where bΛ is a positive integer and −�Ψ = bν − bΛ .
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Theorem 4 (see [15]). If a real-valued function k be prescribed
on ℕg, such that bν , �Ψ > 0, so

Δ−�Ψ Δ−ν∧k �ρð Þ� �
= Δ− �Ψð +ν∧

k �ρð Þ = Δ−ν∧ Δ−�Ψk �ρð Þ
� �

: ð5Þ

Theorem 5 (see [15]). Let �Ψ > 0 and k be a function which is
real valued on ℕg, and then

Δ−�ΨΔ k �ρð Þ = ΔΔ−�Ψ k �ρð Þ = �ρ − lð Þ�Ψ−1

Γ �Ψ
� � k gð Þ: ð6Þ

The reader may bring attention to [15, 17] for further
desirable characteristics on a discrete fractional proposition.

3. Result Declaration

Presently, we will adjust the basic tests.

Theorem 6. Suppose that L ∈ℕ�Ψ−1 ⟶ℝ+, J,U : ℕ�Ψ

⟶ℝ+ are functions, 0 < �Ψ ≤ 1 and bω0 ≥ 0 are constants,

andcΠ : ℝ+ ⟶ℝ+ be a nondecreasing continuous function
withcΠðtÞ > 0 for t > 0. If

L �ρð Þ ≤ bω0 + Δ−�Ψ
0 J �ρð ÞcΠ L �ρ + �Ψ − 1

� �� �h i
+ 1

Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

U �Ω
� �

L �Ω + �Ψ − 1
� �cΠ

� L �Ω + �Ψ − 1
� �� �

, �ρ ∈H �Ψ−1,
ð7Þ

is satisfied, then

L �ρð Þ ≤ u∧−1 ℵ∧−1 bℵ bu bω0ð Þ + 〠
�ρ

�Ω=�Ψ
j �Ω − �Ψ
� � !("

+ 〠
�ρ

�Ω=�Ψ
u �Ω − �Ψ
� �)#

, �ρ ∈H �Ψ−1,
ð8Þ

for 0 ≤ �ρ ≤ �ρ1, provided with

bu nð Þ =
ðn
n0

1cΠ að Þ
da, n ≥ n0 > 0, lim

n⟶∞
bu nð Þ =∞, ð9Þ

bℵ lð Þ =
ðl
l0

1
u∧−1 qð Þ dq, l ≥ l0 > 0, lim

l⟶∞
bℵ lð Þ =∞: ð10Þ

u∧−1, ℵ∧−1 is the inverses of bu , bℵ , and �ρ1 ∈H �Ψ−1 is cho-
sen so that

bℵ bu bω0ð Þ + 〠
�ρ

�Ω=�Ψ
j �Ω − �Ψ
� � !

+ 〠
�ρ

�Ω=�Ψ
u �Ω − �Ψ
� �

∈Dom ℵ∧−1� �
,

ð11Þ

J �Ω, �ρ
� �

= 1

Γ �Ψ
� � �ρ − �Ω − 1

� ��Ψ−1
J �Ω
� �

, ð12Þ

U �Ω, �ρ
� �

= 1

Γ �Ψ
� � �ρ − �Ω − 1

� ��Ψ−1
U �Ω
� �

: ð13Þ

Proof. Let bω0 > 0. Defining

y �ρð Þ = bω0 + Δ−�Ψ
0 J �ρð ÞcΠ L �ρ + �Ψ − 1

� �� �h i
+ 1
Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

U �Ω
� �

L �Ω + �Ψ − 1
� �cΠ

� L �Ω + �Ψ − 1
� �� �

,
ð14Þ

then one has

L �ρð Þ ≤ y �ρð Þ, �ρ ∈H �Ψ−1: ð15Þ

From Definition 2 and (14), we have

y �ρð Þ = bω0 +
1

Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

J �Ω
� �cΠ L �Ω + �Ψ − 1

� �� �
+ 1
Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

U �Ω
� �

L �Ω + �Ψ − 1
� �cΠ

� L �Ω + �Ψ − 1
� �� �

, �ρ ∈H �Ψ−1 = bω0 + 〠
�ρ−�Ψ

�Ω=0
J �Ω, �ρ
� �cΠ

� L �Ω + �Ψ − 1
� �� �

+ 〠
�ρ−�Ψ

�Ω=0
U �Ω, �ρ
� �

L �Ω + �Ψ − 1
� �cΠ

� L �Ω + �Ψ − 1
� �� �

,
ð16Þ

where Jð�Ω, �ρÞ and Uð�Ω, �ρÞ are defined as in (11) and (13).
Hence, yð�ρÞ ≥ 0 is nondecreasing. Now, Jð�Ω, �ρÞ, Uð�Ω, �ρÞ,
and ð�ρÞ�Ψ by their definition and Jð�Ω, �ρÞ,Uð�Ω, �ρÞ is decreas-
ing in �ρ for each �Ω ∈ℕ0. In the equation (14) using straight-
forward computation for �ρ ∈H �Ψ and (8), we get

y �ρð Þ − y �ρ − 1ð Þ = J �ρ − �Ψ, �ρ
� �cΠ L �ρ − 1ð Þð Þ + 〠

�ρ−�Ψ−1

�Ω=0
J �Ω, �ρ
� ��

− J �Ω, �ρ − 1
� ��cΠ L �Ω + �Ψ − 1

� �� �
+U �ρ − �Ψ, �ρ

� �
L �ρ − 1ð ÞcΠ L �ρ − 1ð Þð Þ

+ 〠
�ρ−�Ψ−1

�Ω=0
U �Ω, �ρ
� �

−U �Ω, �ρ − 1
� �� �

×L �Ω + �Ψ − 1
� �cΠ L �Ω + �Ψ − 1

� �� �
= j �ρ − �Ψ
� �cΠ y �ρ − 1ð Þð Þ + u �ρ − �Ψ

� �
y �ρ − 1ð ÞcΠ

� y �ρ − 1ð Þð Þ,
ð17Þ
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monotonicity ofcΠ , and y produces

cΠ y �ρ − 1ð Þð Þ >cΠ y �Ψ − 1
� �� �

=cΠ bω0ð Þ > 0, �ρ ∈H �Ψ, ð18Þ

from (17) and (18), and one has

Δy �ρ − 1ð ÞcΠ y �ρ − 1ð Þð Þ
≤ j �ρ − �Ψ
� �

+ u �ρ − �Ψ
� �

y �ρ − 1ð Þ, �ρ ∈H �Ψ: ð19Þ

By mean value theorem, it can be seen that

Δbu y �ρ − 1ð Þð Þ = bu y �ρð Þð Þ − bu y �ρ − 1ð Þð Þ = u∧′ bρð ÞΔy �ρ − 1ð Þ
= Δy �ρ − 1ð ÞcΠ bρð Þ

≤
Δy �ρ − 1ð ÞcΠ y �ρ − 1ð Þð Þ

; bρ ∈ y �ρ − 1ð Þ, y �ρð Þ½ �,

ð20Þ

relations (19) and (20) summarize into

Δbu y �ρ − 1ð Þð Þ ≤ j �ρ − �Ψ
� �

+ u �ρ − �Ψ
� �

y �ρ − 1ð Þ, �ρ ∈H �Ψ,
ð21Þ

summation (21) from �Ψ to �ρ − 1 and from (9), we obtain

〠
�ρ−1

�Ω=�Ψ
Δbu y �Ω − 1

� �� �
≤ 〠

�ρ−1

�Ω=�Ψ
j �Ω − �Ψ
� �

+ 〠
�ρ−1

�Ω=�Ψ
u �Ω − �Ψ
� �

y �Ω − 1
� �

,

ð22Þ

particularly

bu y �ρ − 1ð Þð Þ ≤ bu bω0ð Þ + 〠
�ρ−1

�Ω=�Ψ
j �Ω − �Ψ
� �

+ 〠
�ρ−1

�Ω=�Ψ
u �Ω − �Ψ
� �

y �Ω − 1
� �

,

ð23Þ

y �ρ − 1ð Þ ≤ u∧−1 v �ρð Þð Þ, ð24Þ
where

v �ρð Þ = bu bω0ð Þ + 〠
�ρ−1

�Ω=�Ψ
j �Ω − �Ψ
� �

+ 〠
�ρ−1

�Ω=�Ψ
u �Ω − �Ψ
� �

y �Ω − 1
� �

,

ð25Þ

for 0 ≤ �ρ ≤ �ρ1, and we get

v �Ψ − 1
� �

= bu bω0ð Þ + 〠
�ρ1−1

�Ω=�Ψ
j �Ω − �Ψ
� �

, ð26Þ

and furthermore with (24) and (25), we proceed to

v �ρ − 1ð Þ − v �ρð Þ = u �ρ − �Ψ − 1
� �

y �ρ − 2ð Þ ≤ u �ρ − �Ψ − 1
� �

u∧−1 v �ρ − 1ð Þð Þ,
ð27Þ

related moves from (18)-(20) with acceptable improvements
to the above inequality yields

Δv �ρ − 1ð Þ
u∧−1 vð �ρ − 1ð Þ ≤ u �ρ − �Ψ − 1

� �
, ð28Þ

sum over ½�Ψ, �ρ − 1� in (28) and from (10), (26) with �ρ1 is
chosen arbitrary, and we acquire

bℵ v �ρ − 1ð Þð Þ ≤ bℵ bu bω0ð Þ + 〠
�ρ−1

�Ω=�Ψ
j �Ω − �Ψ
� � !

+ 〠
�ρ−1

�Ω=�Ψ
u �Ω − �Ψ
� �

, �ρ ∈H �Ψ,
ð29Þ

and thus

bℵ v �ρð Þð Þ ≤ bℵ bu bω0ð Þ + 〠
�ρ

�Ω=�Ψ
j �Ω − �Ψ
� � !

+ 〠
�ρ

�Ω=�Ψ
u �Ω − �Ψ
� �

, �ρ ∈H �Ψ−1,
ð30Þ

and the conclusion of (8) can be followed by substituting (30)
in (15) and (24) for �ρ ∈H �Ψ−1. ☐

Remark 7. By inserting �Ψ = 1, Γð1Þ = 1 (gamma function
property), cΠðLÞ =L , and U = 0 in (7), hence Theorem 6
shifts to Theorem 1 [6].

Remark 8. Theorem 6 converted into Theorem 7 by Du and
Jia [24] if J = 1 and U = 0 in (7).

Theorem 9. Under the same suppositions ofL , J,cΠ , �Ψ, bω0,
and Jð�Ω, �ρÞ of Theorem 6, if the inequality

L �ρð Þ ≤ bω0 + Δ−�Ψ
0 J �ρð ÞLr �ρ + �Ψ − 1

� �cΠ L �ρ + �Ψ − 1
� �� �h i

, �ρ ∈H �Ψ−1,

ð31Þ

satisfies for r > 0, r ≠ 1, r is a constant, then

L �ρð Þ ≤ ℵ∧−1
1 ℵ∧1 ω∧

1
1−r
0

� �
+ 1 − rð Þ 〠

�ρ

�Ω=�Ψ
j �Ω − �Ψ
� �" #( ) 1

1−r

, �ρ ∈H �Ψ−1,

ð32Þ

where

bℵ1 fð Þ =
ðf
f0

1cΠ q1/rð Þ
dq, f≥ f0 > 0, lim

f⟶∞
bℵ1 fð Þ =∞: ð33Þ

bℵ−1
1 is the inverse of bℵ1, so that

bℵ1 bω0ð Þ + 1 − rð Þ 〠
�ρ

�Ω=�Ψ
j �Ω − �Ψ
� �

∈Dom bℵ−1
1

� �
: ð34Þ
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Proof. Infer bω0 > 0 and denoting

p1 �ρð Þ = bω0 + Δ−�Ψ
0 J �ρð ÞLr �ρ + �Ψ − 1

� �cΠ L �ρ + �Ψ − 1
� �� �h i

,

ð35Þ

therefore, one has

L �ρð Þ ≤ p1 �ρð Þ, ð36Þ

and employing Definition 2 to (35), we deduce

p1 �ρð Þ = bω0 +
1

Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

J �Ω
� �

Lr

� �Ω + �Ψ − 1
� �cΠ L �Ω + �Ψ − 1

� �� �
, �ρ ∈H �Ψ−1,

ð37Þ

where Jð�Ω, �ρÞ is defined in (11), and p1ð�ρÞ ≥ 0 is nondecreas-
ing. With the assistance of direct calculation for �ρ ∈H �Ψ,
decreasing property of Jð�Ω, �ρÞ for �Ω ∈ℕ0, the definition

of Jð�Ω, �ρÞ, ð�ρÞ�Ψ, (35), and (36), we conclude

p1 �ρð Þ − p1 �ρ − 1ð Þ = J �ρ − �Ψ, �ρ
� �

Lr �ρ − 1ð ÞcΠ L �ρ − 1ð Þð Þ

+ 〠
�ρ−�Ψ−1

�Ω=0
J �Ω, �ρ
� �

− J �Ω, �ρ − 1
� �� �

Lr

� �Ω + �Ψ − 1
� �cΠ L �Ω + �Ψ − 1

� �� �
≤ j �ρ − �Ψ
� �

pr1 �ρ − 1ð ÞcΠ p1 �ρ − 1ð Þð Þ:
ð38Þ

By mean value axiom, we accomplish

1
1 − r

p1−r1 �ρð Þ − p1−r1 �ρ − 1ð Þ� �
= p1−r1 �ρð Þ − p1−r1 �ρ − 1ð Þ

ρ∧ �ρð Þ½ �r , ð39Þ

for some bρð�ρÞ ∈ ½p1ð�ρ − 1Þ, p1ð�ρÞ�. Therefore,

p1−r1 �ρð Þ − p1−r1 �ρ − 1ð Þ ≤ 1 − rð Þ p1 �ρð Þ − p1 �ρ − 1ð Þ
p1 �ρ − 1ð Þ½ �r

� 	
≤ 1 − rð Þj �ρ − �Ψ

� �cΠ p1 �ρ − 1ð Þð Þ, �ρ ∈H �Ψ,
ð40Þ

summing prior inequality from �Ψ to �ρ − 1 and taking into
account p1ð�Ψ − 1Þ = bω0 implies

p1−r1 �ρ − 1ð Þ ≤ �ω1−r
0 + 1 − rð Þ 〠

�ρ−1

�Ω=�Ψ
j �Ω − �Ψ
� �cΠ p1 �Ω − 1

� �� �
:

ð41Þ

Let

p2 �ρð Þ = �ω1−r
0 + 1 − rð Þ 〠

�ρ−1

�Ω=�Ψ
j �Ω − �Ψ
� �cΠ p1 �Ω − 1

� �� �
, ð42Þ

from (41) and (42), and we have

p1−r1 �ρ − 1ð Þ ≤ p2 �ρð Þ⇒ p1 �ρ − 1ð Þ ≤ p
1

1−r
2 �ρð Þ, ð43Þ

in addition from (42); we see

p2 �ρð Þ − p2 �ρ − 1ð Þ = 1 − rð Þj �ρ − �Ψ − 1
� �cΠ p1 �ρ − 2ð Þð Þ

≤ 1 − rð Þj �ρ − �Ψ − 1
� �cΠ p

1
1−r
2 �ρ − 1ð Þ

� �
,

ð44Þ

monotonicity ofcΠ , and p2 gives

cΠ p
1

1−r
2 �ρ − 1ð Þ

� �
>cΠ p

1
1−r
2 �Ψ − 1
� �� �

=cΠ bω 1
1−r
0

� �
> 0, �ρ ∈H �Ψ,

ð45Þ

equation (44) with inequality (45) becomes

Δp2 �ρ − 1ð ÞcΠ p1/1−r2 �ρ − 1ð Þ� � ≤ 1 − rð Þj �ρ − �Ψ − 1
� �

, �ρ ∈H �Ψ: ð46Þ

analysis of mean value theorem approaches to

Δ bℵ1 p2 �ρ − 1ð Þð Þ = bℵ1 p2 �ρð Þð Þ − bℵ1 p2 �ρ − 1ð Þð Þ
= bℵ1′ bρð ÞΔp2 �ρ − 1ð Þ = Δp2 �ρ − 1ð ÞcΠ ρ∧ð Þ1/1−r

≤
Δp2 �ρ − 1ð ÞcΠ p1/1−r2 �ρ − 1ð Þ� � ; bρ ∈ p2 �ρ − 1ð Þ, p2 �ρð Þ½ �,

ð47Þ

inequalities (46) and (47) that offer

Δ bℵ1 p2 �ρ − 1ð Þð Þ ≤ 1 − rð Þj �ρ − �Ψ − 1
� �

, �ρ ∈H �Ψ, ð48Þ

inequality (48) by summing from �Ψ to �ρ − 1 and utilizing
p2ð�Ψ − 1Þ = �ω1/1−r

0 equals to

〠
�ρ−1

�Ω=�Ψ
Δ bℵ1 p2 �Ω − 1

� �� �
≤ 1 − rð Þ 〠

�ρ−1

�Ω=�Ψ
j �Ω − �Ψ
� �

, ð49Þ

that is,

bℵ1 p2 �ρ − 1ð Þð Þ ≤ bℵ1 bω 1
1−r
0

� �
+ 1 − rð Þ 〠

�ρ−1

�Ω=�Ψ
j �Ω − �Ψ
� �

, �ρ ∈H �Ψ,

ð50Þ

p2 �ρð Þ ≤ bℵ−1
1 bℵ1 bω 1

1−r
0

� �
+ 1 − rð Þ 〠

�ρ

�Ω=�Ψ
j �Ω − �Ψ
� �" #

, �ρ ∈H �Ψ−1,

ð51Þ
substitute the resulting inequality in (43) and (36) to get the
acquired bound in (32) with �ρ ∈H �Ψ−1. ☐
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Remark 10. By taking Theorem 9 alters into [28], Lemma 5
ðβ1Þ, by letting r = 1, �Ψ = 1, Γð1Þ = 1, bω0 = bωð�ρÞ, andcΠðLð�ρÞÞ = 1.

Remark 11. Theorem 9 changes to Theorem 7 by taking r = 0
and J = 1 due to Du and Jia [24].

4. Boundedness and Uniqueness

This segment is related to a valid procedure of Theorem 6 to
determine boundedness and uniqueness of discrete fractional
inequalities. Consider the following pattern of fractional
difference equation:

L �ρð Þ = bω0 + Δ−�Ψ
0 S �ρ,L �ρ + �Ψ − 1

� �� �� �
, �ρ ∈H �Ψ−1, ð52Þ

where S : ℕ0 ×ℝ⟶ℝ and �ρ, �Ψ, bω0, L , and cΠ be the
same as in Theorem 6.

The accompanying example can describe the bounded-
ness on the solutions of (52).

Example 12. Suppose that

S �ρ,Lð Þj j ≤ J �ρð Þ cΠ Lð Þ



 


 +U �ρð Þ Lj j cΠ Lð Þ




 


, ð53Þ

for �ρ ∈ℕ0, L ∈ℝ. If Lð�ρÞ is a solution of (52), then

L �ρð Þj j ≤ u∧−1 ℵ∧−1 bℵ bu bω0ð Þ + 〠
�ρ

�Ω=�Ψ
j �Ω − �Ψ
� � !("

+ 〠
�ρ

�Ω=�Ψ
u �Ω − �Ψ
� �)#

, �ρ ∈H �Ψ−1,
ð54Þ

Proof. Equation (52) with the blend of Definition 2 is
encoded into

L �ρð Þ = bω0 +
1

Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

S �Ω,L �Ω + �Ψ − 1
� �� �

: ð55Þ

Evidently, equation (55) with the utilization of (53) takes
the form

L �ρð Þj j = bω0 +
1

Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

S �Ω,L �Ω + �Ψ − 1
� �� �














≤ bω0j j + 1

Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1 × J �Ω

� � cΠ L �Ω + �Ψ − 1
� �� �


 


h

+U �Ω
� �

L �Ω + �Ψ − 1
� �

 

 cΠ L �Ω + �Ψ − 1

� �� �


 


i
≤ bω0j j + 1

Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

J �Ω
� � cΠ L �Ω + �Ψ − 1

� �� �


 



+ 1
Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

U �Ω
� �

L �Ω + �Ψ − 1
� �

 

 cΠ




� L �Ω + �Ψ − 1
� �� �


:

ð56Þ

The rest of the calculations can be performed by assum-
ing the right composition of Theorem 6 in order to gather
the necessary inequality (54). ☐

The uniqueness of (52) solutions can be defined from an
illustration below.

Example 13. Let

S �ρ,L1ð Þ −S �ρ,L2ð Þj j ≤ J �ρð Þ cΠ L1ð Þ −cΠ L2ð Þ



 




+U �ρð Þ L1 −L2j j cΠ L1ð Þ −cΠ L2ð Þ



 


,

ð57Þ

and then (52) has at most one solution.

Proof. Equation (52) with solutionsL1ð�ρÞ andL2ð�ρÞ can be
represented as

L1 �ρð Þ −L2 �ρð Þ = 1
Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

S �Ω,L1 �Ω + �Ψ − 1
� �� �

−
1

Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

S �Ω,L2 �Ω + �Ψ − 1
� �� �

:

ð58Þ

Assertion (57) with the prior inequality generates

L1 �ρð Þ −L2 �ρð Þj j = 1
Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

S �Ω,L1 �Ω + �Ψ − 1
� �� �







−
1

Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

S �Ω,L2 �Ω + �Ψ − 1
� �� �







≤
1

Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

J �Ω
� � cΠ L1 �Ω + �Ψ − 1

� �� �



−cΠ L2 �Ω + �Ψ − 1

� �� �



+ 1
Γ �Ψ
� � 〠�ρ−�Ψ

�Ω=0
�ρ − �Ω − 1
� ��Ψ−1

U �Ω
� �

L1 �Ω + �Ψ − 1
� �



−L2 �Ω + �Ψ − 1
� �

 × cΠ L1 �Ω + �Ψ − 1

� �� �



−cΠ L2 �Ω + �Ψ − 1

� �� �


:
ð59Þ

The previous inequality by having a few amendments to
∣L1ð�ρÞ −L2ð�ρÞ ∣ in the process of Theorem 6 introduces

L1 �ρð Þ −L2 �ρð Þj j ≤ 0: ð60Þ

Subsequently,L1ð�ρÞ =L2ð�ρÞ and at least one solution of
fractional difference equation (52) exist. ☐
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5. Concluding Remarks

Discrete fractional calculus has made great progress of
real-world phenomena, like fractional chaotic maps, image
coding, and more discrete time modeling. One of the pre-
eminent crucial issues in investigation of difference equa-
tions is to explore the subjective attributes of solutions of
these previously mentioned fields. Discrete fractional vari-
ants are notable pathways that speed disabling. In this
article, fixed on the framework of discrete fractional
analytics and with the aid of fractional sum inequalities,
we proposed new kinds of discrete fractional Gronwall
inequalities. We also extracted the expansion of the
decreasing feature sequences in the time-scale domain
frame. Such inequalities can be shown not only to recall
explicit estimates for solutions of fractional difference
equations of a discrete form but also to the uniqueness
and continuous dependency on initial value of the solu-
tions in the literature.
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In this paper, we establish weak and strong convergence theorems for mean nonexpansive maps in Banach spaces under the
Picard–Mann hybrid iteration process. We also construct an example of mean nonexpansive mappings and show that it exceeds
the class of nonexpansive mappings. To show the numerical accuracy of our main outcome, we show that Picard–Mann hybrid
iteration process of this example is more effective than all of the Picard, Mann, and Ishikawa iterative processes.

1. Introduction and Preliminaries

Suppose Y is a Banach space and ∅≠W ⊆Y . Consider a
selfmap S : W ⟶W . If an element e0 ∈W exists such that
e0 = Se0, then we say that e0 is a fixed point for S. In this man-
uscript, we essentially represent the set fe0 ∈W : e0 = Se0g by
FS. The selfmap S : W ⟶W is called contraction [1] if

Sp − Sqk k ≤ α p − qk k, forall p, q ∈W and α ∈ 0, 1½ Þ: ð1Þ

The selfmap S : W ⟶W is called nonexpansive if (1)
holds for the value α = 1. In 1965, Browder [2] and Gohde
[3] proved a fixed point theorem for a nonexpansive map
S : W ⟶W under the restriction that Y is a uniformly
convex Banach space (UCBS) and ∅≠W ⊆Y is bounded
as well as closed and convex.

In [4], Zhang provided the following class of mappings.

Definition 1. LetW ≠∅ be a subset of a Banach space. A self-
map S : W ⟶W is called mean nonexpansive if for all p,
q ∈W there are non-negative real numbers a, b such that a
+ b ≤ 1, we have

Sp − Sqk k ≤ a p − qk k + b p − Sqk k: ð2Þ

Zhang [4] provided an existence of fixed point result for
mean nonexpansive mappings in Banach space setting under
the normal structure assumption. After this, Wu and Zhang
[5] and Zuo [6] investigated some other elementary properties
and fixed point results for these mappings. In [7], Zhou and
Cui used Ishikawa [8] iteration for approximating fixed points
for these maps. The main aim here is to suggest some weak
and strong convergence theorems for these mappings under
the Picard-Mann hybrid [9] iteration and to show by a new
example of mean nonexpansive maps that it converges better
than the Ishikawa [8] and Mann [10] iteration processes.

Remark 2. It is easy to observe that each nonexpansive map-
ping is mean nonexpansive. Once again, in this research, we
shall provide a new example to show that the converse is not
true in general, that is, the class of mean nonexpansive maps
properly includes the class of nonexpansive maps.

In the following example, S is mean nonexpansive but not
nonexpansive.

Example 3 (see [6]). Consider W = ½0, 1� and set S : W ⟶
W by
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Sp =

p
5 if p < 1

2
p
6 if p ≥

1
2 :

8>><
>>:

ð3Þ

The Banach [1] celebrated fixed point theorem suggests
the existence and uniqueness of a fixed point for a self
contraction S : W ⟶W under the restriction that Y is
complete metric space and ∅≠W ⊆Y is closed. Also this
theorem essentially uses the Picard iteration [11] for finding
this unique fixed point. Nevertheless, in the case of nonex-
pansive maps and hence for generalized nonexpansive maps,
the Picard iteration fails to converge in the associated fixed
point set. For some more literature on iterative schemes,
please cite the work in [12–14]. Assume that W is any non-
empty subset of a Banach space and S : W ⟶W .

The Picard [11] iterative process is stated as:

p1 ∈W ,
pm+1 = Spm,m ≥ 1,

(
ð4Þ

Mann [10] iterative process is stated as:

p1 ∈W ,
pm+1 = 1 − αmð Þpm + αmSpm,m ≥ 1,

(
ð5Þ

where αm ∈ ð0, 1Þ.
Ishikawa [8] iteration process may be viewed as a two-

step Mann iteration, stated as follows:

p1 ∈W ,
qm = 1 − βmð Þpm + βmSpm,
pm+1 = 1 − αmð Þpm + αmSqm,m ≥ 1,

8>><
>>:

ð6Þ

where αm, βm ∈ ð0, 1Þ.
Khan [9] introduced the Picard–Mann hybrid iteration

as follows:

p1 ∈W ,
qm = 1 − αmð Þpm + αmSpm,
pm+1 = Sqm,m ≥ 1,

8>><
>>:

ð7Þ

where αm ∈ ð0, 1Þ.
Khan [9] provided the weak and strong convergence of

the scheme (7) for the class of nonexpansive operators. Fur-
thermore, he proved that the Picard–Mann hybrid iteration
process is more effective than the Picard (4), Mann (5) and
Ishikawa (6) iteration processes in the setting of nonexpan-
sive maps. In this paper, we connect this scheme with the
class of mean nonexpansive mappings, and in this way, we
extend his results in the more general setting of mean nonex-
pansive mappings.

Now we provide some elementary definitions and results,
which will be used in sequel.

Definition 4 [15]. A Banach space Y is called UCBS if and
only if for every choice of r ∈ ð0, 2�, one has a s > 0 such that
for every p, q in Y , 1/2kp + qk ≤ ð1 − sÞ whenever kpk ≤ 1,
kqk ≤ 1 and kp − qk > r:

Definition 5 [16]. A Banach space Y is said to satisfy the
Opial’s property if any weakly convergent sequence fpmg in
Y which admits a weak limit c ∈Y , one has

limsup
m⟶∞

pm − ck k < limsup
m⟶∞

pm − c′
�� ��, foreach c′ ∈Y − cf g:

ð8Þ

Definition 6 [17]. Suppose W ≠∅ is any subset of a Banach
spaceY . A selfmap S : W ⟶W is said to be endowed with
the condition ðIÞ if and only if a function L : ½0,∞Þ⟶ ½0,
∞Þ exists sucht that Lð0Þ = 0 and LðrÞ > 0 for all r > 0 and
kp − Spk ≥ Lðdðp, FSÞÞ for each p ∈W .

The following lemma holds, which suggests many exam-
ples of mean nonexpansive mappings.

Lemma 7. If S is a selfmap and nonexpansive on a subset
W ≠∅ of a Banach space. Then S is mean nonexpansive.

From the definition of mean nonexpansive maps, we
have the following facts.

Lemma 8. If S is a selfmap and mean nonexpansive on a sub-
setW ≠∅ of a Banach spaceY . Then FS is closed. Moreover,
ifY is strictly convex andW is convex, then FS is also convex.

Theorem 9 [6]. Let W ≠∅ be a subset of a reflexive Banach
space (RBS) Y having Opial property. Let S : W ⟶W be a
mean nonexpansive mapping. If fpmg ⊆W be such that.

(a0) fpmg converges weakly to e0,
(b0) limm⟶∞kSpm − pmk = 0,
then e0 = Se0.

Any UCBS can be characterized by the following way.

Lemma 10 [18]. If Y is a UCBS and If fsmg and fwmg are
two sequences in Y such that limsupm⟶∞ksmk ≤ l,
limsupm⟶∞kwmk ≤ l and limm⟶∞kδmsm + ð1 − δmÞwmk
= l for some l ≥ 0 and 0 < q ≤ δm ≤ p < 1. Then, limm⟶∞ksm
−wmk = 0.

2. Main Results

The following results are the main outcome of this section.
Notice that all these results improve and extend some main
results of Khan [9] from the case of nonexpansive maps to
case of mean nonexpansive maps.

Lemma 11. LetW ≠∅ be a convex closed subset of a UCBSY
and S : W ⟶W be a mean nonexpansive mapping and FS
≠∅. Assume that fpmg is a sequence of Picard–Mann hybrid
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iterative process (7). Consequently limm⟶∞kpm − e0k exists
for each e0 ∈ FS.

Proof. Let e0 ∈ FS. Then using (7), we have

qm − e0k k ≤ 1 − αmð Þ pm − e0k k + αm pm − e0k k
≤ 1 − αmð Þ pm − e0k k + αm Spm − e0k k
= 1 − αmð Þ pm − e0k k + αm Spm − Se0k k
≤ 1 − αmð Þ pm − e0k k + αm a pm − e0k k + b pm − Se0k kð Þ
= 1 − αmð Þ pm − e0k k + αm a pm − e0k k + b pm − e0k kð Þ
= 1 − αmð Þ pm − e0k k + αm a + bð Þ pm − e0k kð Þ
= 1 − αmð Þ pm − e0k k + αm pm − e0k k
≤ pm − e0k k:

ð9Þ

This implies that

pm+1 − e0k k = Sqm − e0k k
= Sqm − Se0k k
≤ a qm − e0k k + b qm − Se0k k
= a qm − e0k k + b qm − e0k k
= a + bð Þ qm − e0k k
≤ qm − e0k k
≤ pm − e0k k:

ð10Þ

We have showed that kpm+1 − e0k ≤ kpm − e0k. It follows
that fkpm − e0kg is nonincreasing and bounded. Thus
limm⟶∞kpm − e0k exists for each e0 ∈ FS. ☐

Theorem 12. LetW ≠∅ be a convex closed subset of a UCBS
Y and S : W ⟶W be a mean nonexpansive mapping and
FS ≠∅. Assume that fpmg is a sequence of Picard–Mann
hybrid iterative process (7). Consequently, fpmg is bounded
in Y with the property limm⟶∞kSpm − pmk = 0.

Proof. Since the set FS is nonempty so we may choose any
e0 ∈ FS. By Lemma 11, limm⟶∞kpm − e0k exists and fpmg
is bounded. Suppose that

lim
m⟶∞

pm − e0k k = s: ð11Þ

By looking in the proof of Lemma 11, one see

qm − e0k k ≤ pm − e0k k,⇒ limsup
m⟶∞

qm − e0k k ≤ limsup
m⟶∞

pm − e0k k = s:

ð12Þ

Now

Spm − e0k k = Spm − Se0k k
≤ a pm − e0k k + b pm − Se0k k
= a + bð Þ pm − e0k k
≤ pm − e0k k:

ð13Þ

It follows that

limsup
m⟶∞

Spm − e0k k ≤ limsup
m⟶∞

pm − e0k k = s: ð14Þ

Again by looking in the proof of Lemma 11, one see

pm+1 − qk k ≤ qm − qk k: ð15Þ

It follows that

s ≤ liminf
m⟶∞

qm − e0k k: ð16Þ

From (12) and (16), we obtain

s = lim
m⟶∞

qm − e0k k: ð17Þ

From (17), we have

s = lim
m⟶∞

qm − qk k
= lim

m⟶∞
1 − αmð Þpm + αmSpm − e0k k

= lim
m⟶∞

1 − αmð Þ pm − e0ð Þ + αm Spm − e0ð Þk k:
ð18Þ

Hence,

s = lim
m⟶∞

1 − αmð Þ pm − e0ð Þ + αm Spm − e0ð Þk k: ð19Þ

Now from (11), (14) and (19) together with Lemma 10,
we obtain

lim
m⟶∞

Spm − pmk k = 0: ð20Þ

☐

We now provide a weak convergence theorem under the
assumption of the Opial’s condition.

Theorem 13. LetW ≠∅ be a convex closed subset of a UCBS
Y and S : W ⟶W be a mean nonexpansive mapping and
FS ≠∅. Assume that fpmg is a sequence of Picard–Mann
hybrid iterative process (7). If Y has the Opial property, then
fpmg converges weakly to a point of of FS.

Proof. By Theorem 12, the sequence fpmg is bounded and
limn⟶∞kSpm − pmk = 0. Since Y is UCBS, it follows that
Y is RBS. Thus one has a weakly convergent subsequence
fpmi

g of fpmg exists with some weak limit q1 ∈W . By Theo-
rem 9, q1 ∈ FS. Next we show that fpmg is weakly convergent
to q1. We may suppose that fpmg is not weakly convergent to
q1, that is, one has a weakly convergent subsequence fpmj

g of
fpmg with a weak limit q2 ∈W and q2 ≠ q1. Again applying
Theorem 9, q2 ∈ FS. By applying Opial’s condition and keep-
ing Lemma 11 in mind, it follow that
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lim
m⟶∞

pm − q1k k = lim
i⟶∞

pmi
− q1

���
���

< lim
i⟶∞

pmi
− q2

���
���

= lim
m⟶∞

pm − q2k k
= lim

j⟶∞
pmj

− q2
���

���

< lim
j⟶∞

pmj
− q1

���
���

= lim
m⟶∞

pm − q1k k:

ð21Þ

Hence we have seen a contradiction. Accordingly, we
have q1 = q2. Thus, fpmg converges weakly to q1 ∈ FS. ☐.

The strong convergence theorem under the assumption
of compactness is established as follows.

Theorem 14. Let W ≠∅ be a convex compact subset of a
UCBSY and S : W ⟶W be a mean nonexpansive mapping
and FS ≠∅. Assume that fpmg is a sequence of Picard–Mann
hybrid iterative process (7). If W is compact, then fpmg con-
verges strongly to an element of FS.

Proof. SinceW is compact, and fpmg ⊆W . One can choose a
strongly convergent subsequence fpmk

g of fpmg such that
pmk

⟶ u. Now we show that Su = u. For this

u − Suk k ≤ u − pmk

���
��� + pmk

− Spmk

���
��� + Spmk

− Su
���

���
≤ u − pmk

���
��� + pmk

− Spmk

���
���

+ a pmk
− u

���
��� + b u − Spmk

���
���

� �

≤ u − pmk

���
��� + pmk

− Spmk

���
���

+ a pmk
− u

���
��� + b u − pmk

���
��� + b pmk

− Spmk

���
���

� �

= a + b + 1ð Þ u − pmk

���
��� + b + 1ð Þ pmk

− Spmk

���
���:
ð22Þ

☐

Consequently, we obtained

u − Suk k ≤ a + b + 1ð Þ u − pmk

���
��� + b + 1ð Þ pmk

− Spmk

���
���:
ð23Þ

According to Theorem 12, we have limk⟶∞kpmk
− Spmk

k = 0, so applying k⟶∞, we obtain Su = u. This shows that
u ∈ FS. By Lemma 11, limm⟶∞kpm − uk exists. Conse-
quently, u is the strong limit of fpmg and element of FS.

The strong convergence theorem without the compact-
ness assumption is established as follows.

Theorem 15. LetW ≠∅ be a convex closed subset of a UCBS
Y and S : W ⟶W be a mean nonexpansive mapping and
FS ≠∅. Assume that fpmg is a sequence of Picard–Mann
hybrid iterative process (7). Then fpmg converges strongly to
an element of FS if and only if liminfm⟶∞dðpm, FSÞ = 0.

Proof. The necessity is obvious.
Conversely, suppose that liminfm⟶∞dðpm, FSÞ = 0 and

e0 ∈ FS. From the Lemma 11, limm⟶∞kpm − e0k exists.
Therefore limm⟶∞dðpm, FSÞ = 0, by assumption. We prove
that fpmg is a Cauchy sequence inW . As limm⟶∞dðpm, FSÞ
= 0, for a given ε > 0, there exists r0 ∈ℕ such that for each
m ≥ r0,

d pm, FSð Þ < ε

2 :⇒ inf pm − e0k k: e0 ∈ FSf g < ε

2 : ð24Þ

In particular inf fkpr0 − e0k: e0 ∈ FSg < ε/2. Therefore
there exists e0 ∈ FS such that

pr0 − e0
���

��� < ε

2 : ð25Þ

Now for r,m ≥ k0,

pm+r − pmk k ≤ pm+r − e0k k + pm − e0k k
≤ pr0 − e0
���

��� + pr0 − e0
���

���
= 2 pr0 − e0

���
��� < ε:

ð26Þ

This shows that fpmg is a Cauchy sequence inW . AsW is
closed subset of a Banach space Y, so there exists a point e0
∈W such that limm⟶∞pm = e0. Now limm⟶∞dðpm, FSÞ =
0 gives that dðe0, FSÞ = 0. Since from Lemma 8, we have the
set FS a closed set inW . Hence e0 ∈ FS. ☐.

The below facts are essentially due to Sentor and
Dotson [17].

Definition 16. LetW ≠∅ be a subset of a Banach spaceY . A
selfmap S : W ⟶W is said to be endowed with the condi-
tion ðIÞ if and only if a function L : ½0,∞Þ⟶ ½0,∞Þ exists
such that Lð0Þ = 0 and LðrÞ > 0 for all r > 0 and kp − Spk ≥
Lðdðp, FSÞÞ for each p ∈W .

The strong convergence theorem under the assumption
of condition ðIÞ is established as follows.

Theorem 17. LetW ≠∅ be a convex closed subset of a UCBS
Y and S : W ⟶W be a mean nonexpansive mapping and
FS ≠∅. Assume that fpmg is a sequence of Picard–Mann
hybrid iterative process (7). If S is endowed with condition
ðIÞ, then fpmg converges strongly to an element of FS.

Proof. From Theorem 12, we have

lim
m⟶∞

Spm − pmk k = 0: ð27Þ
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Condition (I) of S provides

lim
m⟶∞

d pm, FSð Þ = 0: ð28Þ

Now all the requirements of the Theorem 15 are
available, so we conclude that fpmg converges strongly to
an element of FS. ☐

Remark 18. In the view of Lemma 7, our results contains the
case of nonexpansive mappings.

3. Example

Now we want to provide a new example of mean nonexpan-
sive maps.

Example 19. Let S : ½0, 1�⟶ ½0, 1� be defined by Sp = 0 if 0
≤ p < 1/515 and Sp = p/5 for 1/515 ≤ p ≤ 1. Suppose a = 1/4
= b. Then it is easy to show a + b ≤ 1:

Now we may consider the following cases.

(i) Suppose that 0 ≤ p, q < 1/515. Then

Sp − Sqj j = 0 ≤ a p − qj j + b p − Sqj j: ð29Þ

(ii) Suppose that 1/515 ≤ p, q ≤ 1. Then

a p − qj j + b p − Sqj j = 1
4 p − qj j + b p −

q
5

���
���

≥
1
4 p − qj j

≥
1
5 p − qj j

= Sp − Sqj j

ð30Þ

(iii) Suppose that 0 ≤ q < 1/515 and 1/515 ≤ p ≤ 1

a p − qj j + b p − Sqj j = a p − qj j + 1
4 p − 0j j

≥
1
4 pj j

≥
1
5 pj j

= Sp − Sqj j:

ð31Þ

(iv) Suppose that 0 ≤ p < 1/515 and 1/515 ≤ q ≤ 1

a p − qj j + b p − Sqj j = 1
4 p − qj j + 1

4 p −
q
5

���
���

≥
1
4 p − qð Þ − p −

q
5

� ����
���

= 1
4
4q
5

����
���� =

1
5 qj j = Sp − Sqj j:

ð32Þ

Table 1: Strong convergence of Picard–Mann hybrid, Picard, Ishikawa and Mann iterations to the fixed point e0 = 0 of S in Example 19.

m Picard-Mann hybrid (7) Picard (4) Ishikawa (6) Mann (5)

1 0.90000000000000 0.90000000000000 0.90000000000000 0.90000000000000

2 0.07920000000000 0.18000000000000 0.33048000000000 0.39600000000000

3 0.00696960000000 0.03600000000000 0.12135225000000 0.17424000000000

4 0.00061332480000 0.00720000000000 0.04456054840320 0.07666560000000

5 0 0.00144000000000 0.01636263337365 0.03373286400000

6 0 0 0.00600835897480 0.01484246010000

7 0 0 0.00220626941554 0.00653068247000

8 0 0 0.00066188082466 0.00287350028697

9 0 0 0.00019856424739 0.00126434012626

10 0 0 0.00005956927421 0.00037930203788

11 0 0 0.00001787078226 0.00011379061136

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

Pm

P
m
+1

Figure 1: Behaviors of Picard-Mann hybrid (black), Picard (blue),
Ishikawa (cyan) and Mann (red) iterates to the unique fixed point
e0 = 0 of the selfmap S.
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Thus we conclude that S is mean nonexpansive. Notice
that, when p = 1/600 and q = 1/515, then jSp − Sqj > ∣p − q ∣
and so S is not nonexpansive. Choose αm = 0:70 and βm =
0:65, then the strong convergence and effectiveness of the
Picard-Mann hybrid iteration can be seen in Table 1 and
Figure 1.

4. Conclusions

We begun the finding of fixed points for mean nonexpansive
operators in Banach spaces under the Picard–Mann hybrid
iterative process. Some convergence results are established
under different assumptions. It has been showen by an exam-
ple that the notion of mean nonexpansive maps is properly
more general than the notion of nonexpansive maps. Also,
the Picard-Mann hybrid iterates of this example converge
faster than the Picard, Ishikawa and Mann iterates. In partic-
ular, our results essentially improve and extended the results
Khan [9] from the setting of nonexpansive operators to the
larger frame work of mean nonexpansive operators.
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It is well-known that the logarithmic coefficients play an important role in the development of the theory of univalent functions. If
S denotes the class of functions f ðzÞ = z +∑∞

n=2anz
n analytic and univalent in the open unit diskU, then the logarithmic coefficients

γnð f Þ of the function f ∈ S are defined by log ð f ðzÞ/zÞ = 2∑∞
n=1γnð f Þzn. In the current paper, the bounds for the logarithmic

coefficients γn for some well-known classes like Cð1 + αzÞ for α ∈ ð0, 1� and CV hplð1/2Þ were estimated. Further, conjectures for
the logarithmic coefficients γn for functions f belonging to these classes are stated. For example, it is forecasted that if the
function f ∈Cð1 + αzÞ, then the logarithmic coefficients of f satisfy the inequalities jγnj ≤ α/ð2nðn + 1ÞÞ, n ∈ℕ: Equality is
attained for the function Lα,n, that is, log ðLα,nðzÞ/zÞ = 2∑∞

n=1γnðLα,nÞzn = ðα/nðn + 1ÞÞzn +⋯,z ∈U:

Dedicated to the memory of Professor Gabriela Kohr (1967-2020)

1. Introduction

Let U≔ fz ∈ℂ : jzj < 1g denote the open unit disk in the
complex plane ℂ. Let A be the category of analytic functions
f in U for which f has the following representation:

f zð Þ = z + 〠
∞

n=2
anz

n, z ∈U: ð1Þ

Also, let S be the subclass ofA consisting of all univalent
functions in U. Then, the logarithmic coefficients γn of the
function f ∈ S are defined with the aid of the following series
expansion:

log f zð Þ
z

= 2〠
∞

n=1
γn fð Þzn, z ∈U: ð2Þ

These coefficients play an important role for different
estimates in the theory of univalent functions, and note that
we use γn instead of γnð f Þ. Kayumov [1] solved Brennan’s
conjecture for conformal mappings with the help of studying
the logarithmic coefficients. The significance of the logarith-
mic coefficients follows from Lebedev-Milin inequalities ([2],
chapter 2; see also [3, 4]), where estimates of the logarithmic
coefficients were applied to obtain bounds on the coefficients
of f . Milin [2] conjectured the inequality

〠
n

m=1
〠
m

k=1
k γkj j2 − 1

k

� �
≤ 0, n = 1, 2, 3,⋯, ð3Þ

that implies Robertson’s conjecture [5] and hence Bieber-
bach’s conjecture [6], which was the well-known coefficient
problem in the theory of univalent functions. De Branges
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[7] proved Bieberbach’s conjecture by establishing Milin’s
conjecture.

Recall that we can rewrite (2) in the power series form as
follows:

2〠
∞

n=1
γnz

n = a2z + a3z
2 + a4z

3+⋯−
1
2 a2z + a3z

2 + a4z
3+⋯

� �2
+ 1
3 a2z + a3z

2 + a4z
3+⋯

� �3+⋯, z ∈U,

ð4Þ

and equating the coefficients of zn for n = 1, 2, 3, it follows
that

2γ1 = a2,

2γ2 = a3 −
1
2 a

2
2,

2γ3 = a4 − a2a3 +
1
3 a

3
2:

8>>>>><
>>>>>:

ð5Þ

If the functions f and g are analytic inU, the function f is
called to be subordinate to the function g, written f ðzÞ ≺ gðzÞ,
if there exists a functionw analytic inU with jwðzÞj < 1, z ∈U,
and wð0Þ = 0, such that f = g ≺w. In particular, if g is univa-
lent in U, then the following equivalence relationship holds
true:

f zð Þ ≺ g zð Þ⇔ f 0ð Þ = g 0ð Þ,
f Uð Þ ⊂ g Uð Þ:

ð6Þ

Using the principle of subordination, Ma and Minda [8]
introduced the classes S∗ðφÞ and CðφÞ, where we make here
the weaker assumptions that the function φ is analytic in the
open unit diskU and satisfies φð0Þ = 1, such that it has a series
expansion of the form

φ zð Þ = 1 + B1z + B2z
2 + B3z

3+⋯,z ∈U, with B1 ≠ 0: ð7Þ

They considered the abovementioned classes as follows:

S∗ φð Þ≔ f ∈A :
zf ′ zð Þ
f zð Þ ≺ φ zð Þ

( )
,

C φð Þ≔ f ∈A : 1 + zf ′′ zð Þ
f ′ zð Þ

≺ φ zð Þ
( )

:

ð8Þ

Some special subclasses of the classS∗ðφÞ andCðφÞ play a
significant role in the Geometric Function Theory because of
their geometric properties.

For example, taking φðzÞ = ð1 + AzÞ/ð1 + BzÞ where A ∈
ℂ, −1 ≤ B ≤ 0, and A ≠ B, we get the classes S∗½A, B� and C ½
A, B�, respectively (see also [9, 10]). The mentioned classes
with the restriction −1 ≤ B < A ≤ 1 reduce to the popular
Janowski starlike and Janowski convex functions, respectively.
By replacing A = 1 − 2α and B = −1, where 0 ≤ α < 1, we
obtain the classes S∗ðαÞ and CðαÞ of the starlike functions

of order α and convex functions of order α, respectively. In
particular, S∗ ≔ S∗ð0Þ and C ≔Cð0Þ are the class of starlike
functions and of convex functions in the open unit disk U,
respectively. Further, by altering A = α and B = 0, where 0 ≤
α < 1, we get the classes S∗ð1 + αzÞ and Cð1 + αzÞ, which
are the extensions of the classes S∗ð1 + zÞ and Cð1 + zÞ,
respectively (see [11]), that is,

S∗ 1 + αzð Þ≔ f ∈A :
zf ′ zð Þ
f zð Þ − 1

�����
����� < α

( )
,

C 1 + αzð Þ≔ f ∈A :
zf ′′ zð Þ
f ′ zð Þ

�����
����� < α

( )
,

ð9Þ

where 0 < α ≤ 1.
Supposing that Ψα,n ∈ S

∗ð1 + αzÞ is such that

zΨα,n′ zð Þ
Ψα,n zð Þ = 1 + αzn, n ∈ℕ, ð10Þ

each function Ψα,n is of the form

Ψα,n zð Þ = z exp
ðz
0

1 + αtn − 1
t

dt
� �

= z + α

n
zn+1+⋯, z ∈U,

ð11Þ

and is the extremal function for various problems in S∗ð1
+ αzÞ. Also, suppose that Lα,n ∈Cð1 + αzÞ is such that

1 + zLα,n′′ zð Þ
Lα,n′ zð Þ

= 1 + αzn, n ∈ℕ: ð12Þ

Then, each function Lα,n is of the form

Lα,n zð Þ =
ðz
0
exp

ðx
0

1 + αtn − 1
t

dt
� �

dx

= z + α

n n + 1ð Þ z
n+1+⋯, z ∈U,

ð13Þ

and plays as extremal function for some extremal problems
in the set Cð1 + αzÞ.

Lately, Kanas et al. [12] introduced the categories S

T hplðsÞ and CV hplðsÞ by

ST hpl sð Þ≕ f ∈A :
zf ′ zð Þ
f zð Þ ≺ qs zð Þ≔ 1

1 − zð Þs , 0 < s ≤ 1
( )

,

CV hpl sð Þ≔ f ∈A : 1 + zf ′′ zð Þ
f ′ zð Þ

≺ qs zð Þ≔ 1
1 − zð Þs , 0 < s ≤ 1

( )
,

ð14Þ

and obtained some geometric properties in these categories.
Further, the functions
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Φs,n zð Þ = z exp
ðz
0

qs t
nð Þ − 1
t

dt
� �

= z + s
n
zn+1+⋯, z ∈U, n ∈ℕ,

Ks,n zð Þ =
ðz
0
exp

ðx
0

qs t
nð Þ − 1
t

dt
� �

dx

= z + s
n n + 1ð Þ z

n+1+⋯, z ∈U, n ∈ℕ,
ð15Þ

play as extremal functions for some issues of the families
ST hplðsÞ and CV hplðsÞ, respectively.

Lately, several researchers have subsequently investigated
same problems regarding the logarithmic coefficients and the
coefficient problems [9, 13–23], to mention a few of them.

For instance, the rotation of the Koebe function kðzÞ = z

ð1 − eiθzÞ−2 for each θ ∈ℝ has the logarithmic coefficients
γn = eiθn/n, n ≥ 1. If f ∈ S , then by applying the Bieberbach
inequality for the first relation of (5), it follows that jγ1j ≤ 1,
and using the Fekete-Szegö inequality for the second relation
of (5) (see [24], Theorem 3.8) leads to

γ2j j = 1
2 a3 −

1
2 a22

����
���� ≤ 1

2 1 + 2e−2
� �

≃ 0:635⋯: ð16Þ

It was established in ([25], Theorem 4) that the logarith-
mic coefficients γn of f ∈ S satisfy the inequality

〠
∞

n=1
γnj j2 ≤ π2

6 , ð17Þ

and the equality is obtained for the Koebe function. For f ∈
S∗, the inequality jγnj ≤ 1/n holds but is not true for the full
class S , even in order of magnitude (see [24], Theorem 8.4).
In 2018, some first logarithmic coefficients γn were estimated
for special subclasses of close-to-convex functions in [15, 20].
However, the problem of the best upper bounds for the loga-
rithmic coefficients of univalent functions for n ≥ 3 is pre-
sumably still a concern. In [13], the authors obtained the
bounds of logarithmic coefficients γn, n ∈ℕ, for the general
class S∗ðφÞ, and the bounds of the logarithmic coefficients
γn when n = 1, 2, 3 for the class KðφÞ, while the estimated
bounds would generalize many of the previous outcomes.

In the present study, which is motivated essentially by the
recent works [13, 16], the bounds for the logarithmic coeffi-
cients γn, n ∈ℕ, of the class Cð1 + αzÞ for α ∈ ð0, 1� and C

V hplð1/2Þ were estimated. Further, conjectures for the loga-
rithmic coefficients γn for f belonging to these classes are
stated.

2. Main Results

First, we will obtain the bounds for γn of the classes S
∗ð1 +

αzÞ and Cð1 + αzÞ for α ∈ ð0, 1�. In this regard, the following
outcomes will be employed in the key results.

Lemma 1 (see [13], Theorem 1). Let f ∈ S∗ðφÞ. If φ is convex
univalent, then the logarithmic coefficients of f satisfy the fol-
lowing inequalities:

γnj j ≤ B1j j
2n

, n ∈ℕ, ð18Þ

〠
∞

n=1
γnj j2 ≤ 1

4
〠
∞

n=1

Bnj j2
n2

: ð19Þ

The inequalities in (18) and (19) are sharp, such that for
any n ∈ℕ, there exist the function f n given by zf n′ðzÞ/f nðzÞ
= φðznÞ and the function f given by zf ′ðzÞ/f ðzÞ = φðzÞ,
respectively, for those equalities we obtain.

Lemma 2 (see [13], Theorem 2). Let f ∈CðφÞ. Then, the log-
arithmic coefficients of f satisfy the inequalities

γ1j j ≤ B1j j
4

, ð20Þ

γ2j j ≤
∣B1 ∣
12

, if  4B2 + B2
1

�� �� ≤ 4 B1j j,

4B2 + B2
1

�� ��
48

, if  4B2 + B2
1

�� �� > 4 B1j j,

8>><
>>: ð21Þ

and if B1, B2, and B3 are real values, then

γ3j j ≤ B1j j
24

H q1 ; q2ð Þ, ð22Þ

where Hðq1 ; q2Þ is given in ([26], Lemma 2) (or [9], Lemma
5), q1 = ðB1 + ð4B2/B1ÞÞ/2, and q2 = ðB2 + ð2B3/B1ÞÞ/2. The
bounds (20) and (21) are sharp.

Lemma 3 (see [18], Theorem 30). If f ∈CV hplð1/2Þ, then

γ1j j ≤ 1
8
, γ2j j ≤ 1

24
, γ3j j ≤ 1

48
: ð23Þ

The first two bounds are sharp for f = K1/2,1 and f = K1/2,2,
respectively.

If we consider Lemma 1 with the function φðzÞ≕ 1 + αz,
then we immediately get the next result:

Theorem 4. If f ∈ S∗ð1 + αzÞ, then

γnj j ≤ α

2n
, n ∈ℕ,

〠
∞

n=1
γnj j2 ≤ α

4
:

ð24Þ

These inequalities are sharp for f =Ψα,n and f =Ψα,1,
respectively.
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Corollary 5. Let f ∈Cð1 + αzÞ. Then, the logarithmic coeffi-
cients of f satisfy the inequalities

γ1j j ≤ α

4
,

γ2j j ≤ α

12
,

γ3j j ≤ α

24
:

ð25Þ

Equalities in these inequalities are attained for the func-
tions Lα,n for n = 1, 2, 3, respectively.

Proof. For φðzÞ = 1 + αz, where B1 = α, B2 = B3 = 0, in Theo-
rem 6, we obtain the required result. Also, since

log Lα,1 zð Þ
z

= 2〠
∞

n=1
γn Lα,1ð Þzn = α

2 z+⋯, z ∈U,

log Lα,2 zð Þ
z

= 2〠
∞

n=1
γn Lα,2ð Þzn = α

6 z
2+⋯, z ∈U,

log Lα,3 zð Þ
z

= 2〠
∞

n=1
γn Lα,3ð Þzn = α

12 z
3+⋯, z ∈U,

ð26Þ

it follows that these inequalities are attained for the functions
Lα,n for n = 1, 2, 3, respectively. ☐

Theorem 6. Let f ∈Cð1 + αzÞ. Then, the logarithmic coeffi-
cients of f satisfy the inequalities

γnj j ≤ α

4n
, n ∈ℕ: ð27Þ

This inequality is sharp for ∣γ1 ∣ for the function Lα,1.

Proof. If f ∈Cð1 + αzÞ, this is equivalent to f ∈A and

1 + zf ′′ zð Þ
f ′ zð Þ

≺ 1 + αz ≕ φα zð Þ: ð28Þ

If we define pðzÞ≔ zf ′ðzÞ/f ðzÞ, then pð0Þ = 1, and the
above subordination relation can be written as

p zð Þ + zp′ zð Þ
p zð Þ ≺ φα zð Þ: ð29Þ

Supposing that the function ψα satisfies the differential
equation

ψα zð Þ + zψα
′ zð Þ

ψα zð Þ = φα zð Þ, ψα 0ð Þ = 1, ð30Þ

we will prove that ψα is a convex univalent function in U.
The function φα has positive real part in U whenever α

∈ ð0, 1�. Therefore, using ([27], Theorem 1) for β = 1, γ = 0,
and c = 1, it follows that the solution ψα of the differential

equation (30) is analytic in U, with Re ψαðzÞ > 0 for all z ∈
U, and

ψα zð Þ =H zð Þ
ðz
0

H tð Þ
t

dt
� �−1

= αz exp αzð Þ
exp αzð Þ − 1

= 1 + α

2 z+⋯, z ∈U,
ð31Þ

where

H zð Þ = z exp
ðz
0

φα tð Þ − 1
t

dt
� �

= z exp αzð Þ, ð32Þ

and all powers are considered at the principal branch, that is,
log 1 = 0.

Since φα is convex and ψα is analytic with Re ψαðzÞ > 0
for all z ∈U, using [28] (Theorem 3.2i) for n = 1, we deduce
that ψα is univalent in U. Moreover, from Figure 1 made with
MAPLE software, we get

Ψ zð Þ≔ Re 1 + zψα
′′ zð Þ

ψα
′ zð Þ

 !
> 0, z ∈U, ð33Þ

and ψα
′ð0Þ = α/2 ≠ 0, so ψα is a convex function. Hence, it

follows that ψα is a convex univalent function in U.
Therefore, according to [28] (Theorem 3.2i), the differen-

tial subordination (29) implies

p zð Þ ≺ ψα zð Þ, ð34Þ

for all 0 < α ≤ 1, and ψα is the best dominant. Thus,

zf ′ zð Þ
f zð Þ ≺ ψα zð Þ, ð35Þ

for all 0 < α ≤ 1. Hence,

C 1 + αzð Þ ⊂ S∗ ψαð Þ: ð36Þ

From the above relation, we get

sup γn fð Þj j: f ∈C 1 + αzð Þf g ≤ sup γn fð Þj j: f ∈ S∗ ψαð Þf g:
ð37Þ

Hence, from Lemma 1, we obtain

sup γn fð Þj j: f ∈C 1 + αzð Þf g ≤ α

4n : ð38Þ

Therefore, for f ∈Cð1 + αzÞ and for all n ∈ℕ, we con-
clude that

γn fð Þj j ≤ α

4n : ð39Þ

☐
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Remark 7. If we compare the results of Corollary 5 with those
of Theorem 6, then we conclude that the results of Theorem 6
are not the best possible. We conjecture that if the function
f ∈Cð1 + αzÞ, then the logarithmic coefficients of f satisfy
the inequalities

γnj j ≤ α

2n n + 1ð Þ , n ∈ℕ: ð40Þ

Equality is attained for the function Lα,n, that is,

log Lα,n zð Þ
z

= 2〠
∞

n=1
γn Lα,nð Þzn = α

n n + 1ð Þ z
n+⋯, z ∈U:

ð41Þ

Theorem 8. Let f ∈CV hplð1/2Þ. Then, the logarithmic coeffi-
cients of f satisfy the inequalities

γnj j ≤ 1
8n

, n ∈ℕ: ð42Þ

This inequality is sharp for jγ1j for the function K1/2,1.

Proof. Letting f ∈CV hplð1/2Þ, it follows that

1 + zf ′′ zð Þ
f ′ zð Þ

≺
1ffiffiffiffiffiffiffiffiffiffi
1 − z

p ≕ q1
2
zð Þ: ð43Þ

Suppose that p satisfies the differential equation

p zð Þ + zp′ zð Þ
p zð Þ = 1ffiffiffiffiffiffiffiffiffiffi

1 − z
p : ð44Þ

If we define pðzÞ≔ zf ′ðzÞ/f ðzÞ, then the subordination
(43) can be rewritten as

p zð Þ + zp′ zð Þ
p zð Þ ≺ q1

2
zð Þ: ð45Þ

According to the inequality (20) of [12] (Theorem 2.3),
the function q1/2 is analytic with positive real part in U.
Therefore, using [27] (Theorem 1) for β = 1, γ = 0, and c =
1, it follows that the solution p of the differential equation
(44) is analytic in U with Re pðzÞ > 0, z ∈U, and

p zð Þ =H zð Þ
ðz
0

H tð Þ
t

dt
� �−1

= 4z

1 +
ffiffiffiffiffiffiffiffiffiffi
1 − z

p� 	2
� 1

−8/ 1 +
ffiffiffiffiffiffiffiffiffiffi
1 − z

p� 	� 	
− 8 ln 1 +

ffiffiffiffiffiffiffiffiffiffi
1 − z

p� 	
+ 4 + 8 ln 2

= 1 + 1
4 z+⋯, z ∈U,

ð46Þ
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Figure 1: The plot of ΨðReitÞ for t ∈ ½0, 2πÞ, R = 1, and α ∈ ð10−6, 1�.
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where

H zð Þ = z exp
ðz
0

q1/2 tð Þ − 1
t

dt
� �

= 4z

1 +
ffiffiffiffiffiffiffiffiffiffi
1 − z

p� 	2 , ð47Þ

and all powers are considered at the principal branch, that is,
log 1 = 0. Moreover, from Figure 2 made with MAPLE soft-
ware, we get

Ψ zð Þ≔ Re 1 + zp′′ zð Þ
p′ zð Þ

 !
> 0, z ∈U, ð48Þ

and p′ð0Þ = 1/4 ≠ 0. Hence, ψ is convex in U.
Since p satisfies in the subordination (45), using [28]

(Theorem 3.2i), we conclude that pðzÞ ≺ ψðzÞ, that is,

zf ′ zð Þ
f zð Þ ≺ p zð Þ, ð49Þ

and p is the best dominant. Thus, f ∈CV hplð1/2Þ implies f
∈ S∗ðpÞ, that is,

CV hpl 1/2ð Þ ⊂ S∗ pð Þ: ð50Þ

Therefore, since p is convex univalent, from Lemma 1, it
follows that

sup γn fð Þj j: f ∈CV hpl
1
2

� �
 �
≤ sup γn fð Þj j: f ∈ S∗ pð Þf g = 1

8n ,

ð51Þ

and we obtain the result. This completes the proof.□

Remark 9. If we compare the results of Lemma 1 with those of
Theorem 8, then we conclude that the results of Theorem 8
are not the best possible. We conjecture that if the function
f ∈CV hplð1/2Þ, then the logarithmic coefficients of f satisfy
the inequalities

γnj j ≤ 1
4n n + 1ð Þ , n ∈ℕ: ð52Þ

Equality is attained for the function K1/2,n, that is,

log K1/2,n zð Þ
z

= 2〠
∞

n=1
γn K1/2,nð Þzn = 1

2n n + 1ð Þ z
n+⋯, z ∈U:

ð53Þ
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This article is aimed at studying novel generalizations of Hermite-Mercer-type inequalities within the Riemann-Liouville k
-fractional integral operators by employing s-convex functions. Two new auxiliary results are derived to govern the novel
fractional variants of Hadamard-Mercer-type inequalities for differentiable mapping Ψ whose derivatives in the absolute values
are convex. Moreover, the results also indicate new lemmas for Ψ′, Ψ′′, and Ψ′′′ and new bounds for the Hadamard-Mercer-
type inequalities via the well-known Hölder’s inequality. As an application viewpoint, certain estimates in respect of special
functions and special means of real numbers are also illustrated to demonstrate the applicability and effectiveness of the
suggested scheme.

1. Introduction

Recently, two fundamental notions have been introduced in
pure and applied analysis having potential utilities in every
field and are known as convexity and concavity. Interestingly,
the convexity theory is attributed to Jensen. Several mono-
graphs and articles have played a prominent role in the devel-
opments, speculations, and modifications of convexity in
different directions such as η-convexity, harmonic convexity,
h-convexity, and strong convexity. Moreover, a strong con-
nection has been developed between diverse kinds of convex
functions and inequality theory. Their fertile applications in
optimization theory, functional analysis, physics, and statisti-
cal theory have made it a much fascinating subject, and
hence, it is assumed as an incorporative subject between
combinatorics, orthogonal polynomials, hypergeometric
functions, quantum theory, and linear programming. This
is the major motivation behind the keen investigation and
progress of the integral inequalities in the literature [1, 2].

Let 0 < ζ1 ≤ ζ2 ≤⋯≤ζn and let ρ = ðρ1, ρ2,⋯, ρnÞ be non-
negative weights such that ∑n

j=1ρj = 1. The famous Jensen’s

inequality (see [1]) in the literature states that ifΨ is a convex
function on the interval ½ θ1, θ2�, then

Ψ 〠
n

j=1
ρjζj

 !
≤ 〠

n

j=1
ρjΨ ζj

� � !
, ð1Þ

for all ζj ∈ ½ θ1, θ2�, ρj ∈ ½0, 1�, and j = 1, 2,⋯, n. It is one of
the key inequalities that helps to extract bounds for useful
distances in information theory (see [3, 4]).

In 2003, a new variant of Jensen’s inequality was intro-
duced by Mercer [5].

If Ψ is a convex function on ½ θ1, θ2�, then

Ψ θ1 + θ2 − 〠
n

j=1
ρjζj

 !
≤Ψ θ1ð Þ +Ψ θ2ð Þ − 〠

n

j=1
ρjΨ ζj

� �
, ð2Þ

for all ζj ∈ ½ θ1, θ2�, ρj ∈ ½0, 1�, and j = 1, 2,⋯, n.
Matkovic and Pećarić proposed several generalizations

on Jensen-Mercer operator inequalities [6]. Later on,
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Niezgoda [7] has provided several extensions to higher
dimensions for Mercer-type inequalities. Recently, the
Jensen-Mercer-type inequality has made a significant contri-
bution to inequality theory due to its prominent
characterizations.

In the present study, we consider s ∈ ð0,∞Þ, the class of
Breckner s-convex functions (which for 0 < s < 1 were called
in [8, 9]), s-convex in the second sense. In [10], Dragomir
and Fitzpatrick introduce the concept of a real-valued
Breckner s-convex function Ψ on a convex subset C of a lin-
ear space V as

Ψ ρ1ζ1 + ρ2ζ2ð Þ ≤ ρsψ ζ1ð Þ + 1 − ρð ÞsΨ ζ2ð Þ, ð3Þ

whenever ρ1, ρ2 ≥ 0 with ρ1 + ρ2 = 1 and ζ1, ζ2 ∈ C. For s = 1,
it reduces to the usual notion of convexity. As a result, he
generalizes Jensen’s inequality (1) as

Ψ 〠
n

j=1
ρjζj

 !
≤〠

n

j=1
ρsjΨ ζj

� �
, ð4Þ

whenever ρi ≥ 0, ζi ∈ C, and ∑n
i=1ρi = 1.

In [9], the class of s-convex functions in the first and second
senses is introduced along with their significant properties.

Definition 1. Let s ∈ ð0, 1�, a real-valued function Ψ on an
interval I = ½0,∞Þ is s-convex in the second sense provided
that (3) holds for all ζ1, ζ2 ∈ I and ρ1, ρ2 ≥ 0 with ρ1 + ρ2 = 1.

They denote this class of function by ðΨ ∈ K2
s Þ. Moreover,

they proved that the class ðΨ ∈ K2
s Þ is stronger than convexity

in the first and original sense for 0 < s < 1. Several properties
of s-convex functions in both senses are presented in a compre-
hensivemanner with supporting examples. It is interesting to see
that if 0 < s < 1 and Ψ ∈ K2

s , then ψ is nonnegative. This result
may not hold in general when the function is convex (i.e., s =
1). Also, the situation is more interesting when f ð0Þ = 0.

Viewing this literature, we intend to extend the Jensen-
Mercer inequality for Breckner s-convex functions. For this,
we use the ideology of Mercer’s concept [5] and give the fol-
lowing important lemma.

Lemma 2. IfΨ is a real-valued Breckner s-convex function on
the interval ½ θ1, θ2� ⊂ℝ+ and s > 0 such that ρ1, ρ2 ≥ 0, ρ1 +
ρ2 = 1, and ρs1 + ρs2 ≤ 1, then for any finite positive increasing
sequence fζngnk=1 ∈ ½ θ1, θ2�, we have

Ψ θ1 + θ2 − ζkð Þ ≤Ψ θ1ð Þ +Ψ θ2ð Þ −Ψ ζkð Þ, ð5Þ

for all 1 ≤ k ≤ n.

Proof. Let yk = θ1 + θ2 − ζk. Then, θ1 + θ2 = yk + ζk, so the
pairs θ1, θ2 and yk, ζk possess the same midpoint. Since that
is the case, there exist ρ1, ρ2 ∈ ½0, 1�, with ρ1 + ρ2 = 1 such that
ζk = ρ1θ1 + ρ2θ2 and yk = ρ2θ1 + ρ1θ2. Therefore, employing
(3) and the assumed condition, we get

Ψ ykð Þ =Ψ ρ2θ1 + ρ1θ2ð Þ ≤ ρs2Ψ θ1ð Þ + ρs1Ψ θ2ð Þ
≤ 1 − ρs1ð ÞΨ θ1ð Þ + 1 − ρs2ð ÞΨ θ2ð Þ =Ψ θ1ð Þ

+Ψ θ2ð Þ − ρs1Ψ θ1ð Þ − ρs2Ψ θ2ð Þ =Ψ θ1ð Þ
+Ψ θ2ð Þ − ρs1Ψ θ1ð Þ + ρs2Ψ θ2ð Þ½ � ≤Ψ θ1ð Þ
+Ψ θ2ð Þ −Ψ ρ1θ1 + ρ2θ2ð Þ =Ψ θ1ð Þ
+Ψ θ2ð Þ −Ψ ζkð Þ,

ð6Þ

which completes the proof.

Now, we give the result for the Jensen-Mercer inequality
in the Breckner s-sense.

Theorem 3. Let ρ1, ρ2,⋯, ρn be positive real numbers n ≥ 2
such that ∑n

k=1ρk = 1 and ∑n
k=1ρ

s
k ≤ 1. If ψ is a real-valued

Breckner s-convex function on ½ θ1, θ2� ⊂ℝ+, then for any
finite positive increasing sequence fζngnk=1 ∈ ½ θ1, θ2�, we have

Ψ θ1 + θ2 − 〠
n

k=1
ρkζk

 !
≤Ψ θ1ð Þ +Ψ θ2ð Þ − 〠

n

k=1
ρkð ÞsΨ ζkð Þ:

ð7Þ

Proof. One can prove it by following a similar idea as in [5];
however, we need to employ Lemma 2 and generalized Jen-
sen’s inequality (4) for Breckner s-convex functions.

For further properties and applications of s-convex func-
tions, see [9, 11] and references therein. The following lemma
is of great interest for applications.

Lemma 4 (see [11]). Let Ψ : ½ θ1, θ2�⟶ℝ be a convex func-
tion. Then, the following results hold:

(i) If Ψ is nonnegative, then it is s-convex for s ∈ ð0, 1�
(ii) If Ψ is nonpositive, then it is s-convex for s ∈ ½1,∞Þ
One of the famous integral inequalities for convex func-

tions is the Hermite-Hadamard inequality (see [2]):

Ψ
θ1 + θ2

2

� �
≤

1
θ2 − θ1

ðθ2
θ1

Ψ λð Þdλ ≤ Ψ θ1ð Þ +Ψ θ2ð Þ
2

, ð8Þ

provided that if a mapping Ψ : I ⊆ℝ⟶ℝ is a convex
function on I and θ1, θ2 ∈ I.

Fractional-order calculus deals with more general behav-
ior than integer-order calculus, and it not only provides new
mathematical methods for practical systems but also has
been applied into various fields due to its accurate description
in many active fields, such as fraction-order memristive cha-
otic circuit, fractional-orderrelaxation-oscillation model,
mathematical biology, and economics (see [12]).

The theory of Riemann-Liouville k-fractional integrals is
a pertinent extension of Riemann-Liouville fractional inte-
grals. It is important to note that if k ≠ 1, the properties of
Riemann-Liouville k-fractional integrals are quite dissimilar

2 Journal of Function Spaces



from those of general fractional integrals. For this, the
Riemann-Liouville k-fractional integrals have agitated the
interest of many researchers. Now, we demonstrate some
essential concepts of k-fractional calculus for the investiga-
tion of our results.

Definition 5 (see [13]). Diaz and Pariguan have defined the k
-gamma function Γkð·Þ, a generalization of the classical
gamma function, which is given by the following formula:

Γk αð Þ = lim
m⟶∞

m!km mkð Þ α/kð Þ−1

αð Þm,k
, k > 0, α ∈ C \ kZ−, ð9Þ

where ðαÞm,k is the Pochhammer k-symbol given by

αð Þm,k = α α + kð Þ α + 2kð Þ,⋯, α + m − 1ð Þkð Þ: ð10Þ

It is shown that the Mellin transform of the exponential
function e−μ

k/k is the k-gamma function clearly given by

Γk αð Þ =
ð∞
0
e−μ

k/kμα−1dμ, ð11Þ

for Re ðαÞ > 0 with αΓkðαÞ = Γkðα + kÞ, where Γkð:Þ stands
for the k-gamma function.

Many researchers have generalized the classical and
fractional operators by introducing a parameter k > 0
about a decade ago. Mubeen et al. [14] used special k
-function theory in fractional calculus for the first time
in the literature in the form of Riemann-Liouville k-frac-
tional integrals.

Definition 6 (see [15]). Let Ψ ∈ L1½ θ1, θ2�. The Riemann-
Liouville k-fractional integrals of Ψ with k > 0, k Jαθ1+Ψ and
k J

α
θ2−

Ψ of order α > 0 with θ1 ≥ 0 are defined by

k J
α

θ1+Ψ ζð Þ = 1
kΓ αð Þ

ðζ
θ1

ζ − λð Þ α/kð Þ−1Ψ λð Þdλ, ζ > θ1,

k Jαθ2−Ψ ζð Þ = 1
kΓ αð Þ

ðθ2
ζ

λ − ζð Þ α/kð Þ−1Ψ λð Þdλ, ζ < θ2,

ð12Þ

respectively.

Remark 7. If k = 1, then Riemann-Liouville k-fractional inte-
grals reduce to classical Riemann-Liouville fractional inte-
grals. And if α = 1 and k = 1, the fractional integral reduces
to the classical integral.

Recently, many researchers are presenting new fractional
differential and integral operators and they generalized by
using the iteration procedure and by introducing a new
parameter k > 0. They also found relationships of these gen-
eralized fractional operators with existing fractional and clas-
sical operators under the special values of the parameter k.

Many k-fractional operators, their properties, related identi-
ties, and inequalities are proved during the past years. For
instance, see [16, 17] and references therein.

2. Main Results

This section contains several new generalizations of Hermite-
Hadamard-Mercer-type inequalities for s-convex functions
in the second sense (Breckner sense) via k-fractional calculus
theory.

Throughout the paper, we assumed the following
assumptions:

A1: let ζ1, ζ2 ∈ ½θ1, θ2� ⊆ℝ+ with ζ1 < ζ2, α, k > 0, and for
some fixed s ∈ ð0, 1�, λ ∈ ½0, 1� and Γkð:Þ is the k-gamma
function.

A2: for λ ∈ ½0, 1�, ðð1 + λÞ/2Þs + ðð1 − λÞ/2Þs ≤ 1, whenever
we use the definition of the Jensen-Mercer inequality for the s
-convex function.

Theorem 8. Let Ψ : ½θ1, θ2�⟶ℝ be the s-convex function
such that Ψ ∈ L1ð½θ1, θ2�Þ along with assumptions A1 and A2
. Then, the following Riemann-Liouville k-fractional integral
inequalities hold:

1

2 α/kð Þ−s Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �
≤

Γk α + kð Þ
ζ2 − ζ1ð Þα/k

× k J
α

θ1+θ2−ζ1ð Þ−Ψ θ1 + θ2 −
ζ1 + ζ2

2

� ��

+ k J
α

θ1+θ2−ζ2ð Þ+Ψ θ1 + θ2 −
ζ1 + ζ2

2

� ��
≤
Ψ θ1ð Þ +Ψ θ2ð Þ

2 α/kð Þ−1

−
α

k2 α/kð Þ+s U α, k, s, λð Þ + B
α

k
, s + 1

� 	n o
Ψ ζ1ð Þ +Ψ ζ2ð Þð Þ,

ð13Þ

Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �
≤ Ψ θ1ð Þ +Ψ θ2ð Þ½ � − 2 α/kð Þ−sΓk α + kð Þ

ζ2 − ζ1ð Þα/k

× k J
α

ζ+1
Ψ

ζ1 + ζ2
2

� �
+ k J

α

ζ−2
Ψ

ζ1 + ζ2
2

� �� �
≤Ψ θ1ð Þ +Ψ θ2ð Þ

−Ψ
ζ1 + ζ2

2

� �
,

ð14Þ

where Uðα, k, s, λÞ = Ð 10λðα/kÞ−1ð1 + λÞsdλ and Bð−, − Þ is the
beta function.

Proof. By employing the definition of the s-convex function
Ψ, we get

Ψ θ1 + θ2 −
u + v
2

� 	
=Ψ

θ1 + θ2 − u + θ1 + θ2 − v
2

� �

≤
1
2s Ψ θ1 + θ2 − uð Þ +Ψ θ1 + θ2 − vð Þð Þ ∀u, v ∈ θ1, θ2½ �ð Þ:

ð15Þ

By change of variables u = ðð1 + λÞ/2Þζ1 + ðð1 − λÞ/2Þζ2
and v = ðð1 − λÞ/2Þζ1 + ðð1 + λÞ/2Þζ2, λ ∈ ½0, 1�, we get
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2sΨ θ1 + θ2 −
ζ1 + ζ2

2

� �
≤ Ψ θ1 + θ2 −

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �


+Ψ θ1 + θ2 −
1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� ��
:

ð16Þ

Now, multiplying the above inequality by λðα/kÞ−1 and
then integrating w.r.t. λ over ½0, 1� yield

2sΨ θ1 + θ2 −
ζ1 + ζ2

2

� �ð1
0
λ α/kð Þ−1dλ ≤

ð1
0
λ α/kð Þ−1

� Ψ θ1 + θ2 −
1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �


+Ψ θ1 + θ2 −
1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� ��
dλ:

ð17Þ

By change of variable, we have

1
2 α/kð Þ−s Ψ θ1 + θ2 −

ζ1 + ζ2
2

� �
≤

Γk α + kð Þ
ζ2 − ζ1ð Þα/k

× k J
α

θ1+θ2−ζ1ð Þ−Ψ θ1 + θ2 −
ζ1 + ζ2

2

� ��

+ k J
α

θ1+θ2−ζ2ð Þ+Ψ θ1 + θ2 −
ζ1 + ζ2

2

� ��
,

ð18Þ

and so the first inequality of (13) is proved.
Now, for the proof of the second inequality of (13), we first

note that if Ψ is an s-convex function, then for λ ∈ ½0, 1�, it
gives

Ψ θ1 + θ2 −
1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �
≤Ψ θ1ð Þ +Ψ θ2ð Þ

−
1 + λ

2

� �s

Ψ ζ1ð Þ + 1 − λ

2

� �s

Ψ ζ2ð Þ

 �

,

ð19Þ

Ψ θ1 + θ2 −
1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� �
≤Ψ θ1ð Þ +Ψ θ2ð Þ

−
1 − λ

2

� �s

Ψ ζ1ð Þ + 1 + λ

2

� �s

Ψ ζ2ð Þ

 �

:

ð20Þ
By adding the inequalities of (19) and (20), we have

Ψ θ1 + θ2 −
1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �

+Ψ θ1 + θ2 −
1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� �

≤ 2 Ψ θ1ð Þ +Ψ θ2ð Þð Þ − 1 − λ

2

� �s


+ 1 + λ

2

� �s�
Ψ ζ1ð Þ +Ψ ζ2ð Þð Þ:

ð21Þ

Now,multiplying the above inequality by λðα/kÞ−1 and then
integrating w.r.t. λ over ½0, 1�, we get
ð1
0
λ α/kð Þ−1 Ψ θ1 + θ2 −

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �


+Ψ θ1 + θ2 −
1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� ��
dλ ≤

2
α/k Ψ θ1ð Þð

+Ψ θ2ð ÞÞ × 1
2s

ð1
0
λ α/kð Þ−1 1 + λð Þsdλ

�

+
ð1
0
λ α/kð Þ−1 1 − λð Þsdλ

�
Ψ ζ1ð Þ +Ψ ζ2ð Þð Þ:

ð22Þ

Consequently, we get

2α/kkΓk αð Þ
ζ2 − ζ1ð Þα/k

× k J
α

θ1+θ2−ζ1ð Þ−Ψ θ1 + θ2 −
ζ1 + ζ2

2

� ��

+ k J
α

θ1+θ2−ζ2ð Þ+Ψ θ1 + θ2 −
ζ1 + ζ2

2

� ��

≤
2
α/k Ψ θ1ð Þ +Ψ θ2ð Þð Þ − 1

2s U α, k, s, λð Þf

+ B
α

k
, s + 1

� 	o
Ψ ζ1ð Þ +Ψ ζ2ð Þð Þ,

ð23Þ

Γk α + kð Þ
ζ2 − ζ1ð Þα/k

× k J
α

θ1+θ2−ζ1ð Þ−Ψ θ1 + θ2 −
ζ1 + ζ2

2

� ��

+ k J
α

θ1+θ2−ζ2ð Þ+Ψ θ1 + θ2 −
ζ1 + ζ2

2

� ��

≤
Ψ θ1ð Þ +Ψ θ2ð Þ

2 α/kð Þ−1 −
α

k2 α/kð Þ+s U α, k, s, λð Þf

+ B
α

k
, s + 1

� 	o
Ψ ζ1ð Þ +Ψ ζ2ð Þð Þ:

ð24Þ
Combining (18) and (23), one can get (13). In order to

prove (14), we employ the Jensen-Mercer inequality for the s
-convex function Ψ in the second sense; then, for λ ∈ ½0, 1�, it
yields

Ψ θ1 + θ2 −
u + v
2

� 	
≤Ψ θ1ð Þ +Ψ θ2ð Þ − Ψ uð Þ +Ψ vð Þ

2s , u, v ∈ θ1, θ2½ �:
ð25Þ

Now, by change of variables u = ðð1 + λÞ/2Þζ1 + ðð1 − λÞ/
2Þζ2 and v = ðð1 − λÞ/2Þζ1 + ðð1 + λÞ/2Þζ2, ∀ζ1, ζ2 ∈ ½θ1, θ2�
and λ ∈ ½0, 1� in (25), we have

Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �
≤Ψ θ1ð Þ +Ψ θ2ð Þ

−
Ψ 1 + λð Þ/2ð Þζ1 + 1 − λð Þ/2ð Þζ2ð Þ +Ψ 1 − λð Þ/2ð Þζ1 + 1 + λð Þ/2ð Þζ2ð Þ

2s :

ð26Þ
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Multiplying by λðα/kÞ−1 and then integrating w.r.t. λ over
½0, 1� give

2sk
α

Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �
≤
2sk
α

Ψ θ1ð Þ +Ψ θ2ð Þ½ �

−
ð1
0
λ α/kð Þ−1 Ψ

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �


+Ψ
1 − λ

2 ζ1 +
1 + λ

2 ζ2

� ��
dλ:

ð27Þ

It follows that

2sk
α

Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �
≤
2sk
α

Ψ θ1ð Þ +Ψ θ2ð Þð Þ

−
2 α/kð Þ−1Γk α + kð Þ

ζ2 − ζ1ð Þα/k
k J

α

ζ−1
Ψ

ζ1 + ζ2
2

� ��

+ k J
α

ζ+2
Ψ

ζ1 + ζ2
2

� ��
Ψ θ1 + θ2 −

ζ1 + ζ2
2

� �

≤ Ψ θ1ð Þ +Ψ θ2ð Þ½ � − 2 α/kð Þ−sΓk α + kð Þ
θ2 − θ1ð Þα/k

× k J
α

ζ+1
Ψ

ζ1 + ζ2
2

� �
+ k J

α

ζ−2
Ψ

ζ1 + ζ2
2

� �� �
,

ð28Þ

and so the first inequality of (14) is proved.
Now, for the proof of the second inequality of (14), we first

note that ifΨ is an s-convex function, then for λ ∈ ½0, 1�, it gives

Ψ
ζ1 + ζ2

2

� �
=Ψ

1 + λð Þ/2ð Þζ1 + 1 − λð Þ/2ð Þζ2 + 1 − λð Þ/2ð Þζ1 + 1 + λð Þ/2ð Þζ2
2

� �

≤
Ψ 1 + λð Þ/2ð Þζ1 + 1 − λð Þ/2ð Þζ2ð Þ +Ψ 1 − λð Þ/2ð Þζ1 + 1 + λð Þ/2ð Þζ2ð Þ

2s :

ð29Þ

Multiplying by λðα/kÞ−1 and then integrating w.r.t. λ over
½0, 1� give

2sk
α

Ψ
ζ1 + ζ2

2

� �
≤
ð1
0
λ α/kð Þ−1 Ψ

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� ���

+Ψ
1 − λ

2 ζ1 +
1 + λ

2 ζ2

� ��
dλgΨ ζ1 + ζ2

2

� �

≤
2 α/kð Þ−sΓk α + kð Þ

ζ2 − ζ1ð Þα/k
k J

α

ζ+1
Ψ

ζ1 + ζ2
2

� �
+ k J

α

ζ−2
Ψ

ζ1 + ζ2
2

� �� �
:

ð30Þ

Therefore, we have

−
2 α/kð Þ−sΓk α + kð Þ

ζ2 − ζ1ð Þα
k J

α

ζ+1
Ψ

ζ1 + ζ2
2

� ��

+ k J
α

ζ−2
Ψ

ζ1 + ζ2
2

� ��
≤ −Ψ

ζ1 + ζ2
2

� �
:

ð31Þ

AddingΨðθ1Þ +Ψðθ2Þ to both sides in (31), we get the sec-
ond inequality of (14).

Remark 9.Under the assumption of Theorem 8 for inequality
(13) with s = α = k = 1, one has

Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �
≤

1
ζ2 − ζ1

ðζ2
ζ1

Ψ θ1 + θ2 − λð Þdλ ≤Ψ θ1ð Þ

+Ψ θ2ð Þ − Ψ ζ1ð Þ +Ψ ζ2ð Þ
2

� �
:

ð32Þ

The inequality (32) is proposed by Kian and Moslehian
in [18].

Remark 10. If we choose s = k = 1 in Theorem 8, we get
Theorem 2 in [19].

3. New Identities and Related Results via
Riemann-Liouville k-Fractional Integrals

Lemma 11. LetΨ : ½θ1, θ2�⟶ℝ be a differentiable mapping
on ðθ1, θ2Þ with θ1 < θ2 along with assumption A1. If Ψ′ ∈ L½
θ1, θ2�, then the following equality for Riemann-Liouville k
-fractional integrals holds:

Ψ θ1 + θ2 − ζ1ð Þ +Ψ θ1 + θ2 − ζ2ð Þ
2

� �
−
2 α/kð Þ−1Γk α + kð Þ

ζ2 − ζ1ð Þα/k

× k J
α

θ1+θ2−ζ2ð Þ+ Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �� ��

+ k J
α

θ1+θ2−ζ1ð Þ− Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �� ��

= ζ2 − ζ1
4

ð1
0
λα/k Ψ′ θ1 + θ2 −

1 + λ

2
ζ1 +

1 − λ

2
ζ2

� �� ��


−Ψ′ θ1 + θ2 −
1 − λ

2
ζ1 +

1 + λ

2
ζ2

� �� ��
dλ�:

ð33Þ

Proof. It suffices to write that

I = ζ2 − ζ1
4 I1 − I2f g, ð34Þ

where

I1 =
ð1
0
λα/kΨ′ θ1 + θ2 −

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �
dλ

= 2Ψ θ1 + θ2 − ζ1ð Þ
ζ2 − ζ1ð Þ −

2 α/kð Þ+1 α/kð Þ
ζ2 − ζ1ð Þ α/kð Þ+1

ðθ1+θ2−ζ1
θ1+θ2− ζ1+ζ2ð Þ/2ð Þ

� w − θ1 + θ2 −
ζ1 + ζ2

2

� �� � α/kð Þ−1
Ψ wð Þdw = 2Ψ θ1 + θ2 − ζ1ð Þ

ζ2 − ζ1ð Þ

−
2 α/kð Þ+1Γk α + kð Þ
ζ2 − ζ1ð Þ α/kð Þ+1

k J
α

θ1+θ2−ζ1ð Þ−Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �� �
:

ð35Þ
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Analogously,

I2 =
ð1
0
λα/kΨ′ θ1 + θ2 −

1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� �
dλ

= −
2Ψ θ1 + θ2 − ζ2ð Þ

ζ2 − ζ1ð Þ + 2 α/kð Þ+1 α/kð Þ
ζ2 − ζ1ð Þ α/kð Þ+1

×
ðθ1+θ2− ζ1+ζ2ð Þ/2ð Þ

θ1+θ2−ζ2
θ1 + θ2 −

ζ1 + ζ2
2

� �
−w

� � α/kð Þ−1
Ψ wð Þdw

= −
2Ψ θ1 + θ2 − ζ2ð Þ

ζ2 − ζ1ð Þ + 2 α/kð Þ+1Γk α + kð Þ
ζ2 − ζ1ð Þ α/kð Þ+1

� k J
α

θ1+θ2−ζ2ð Þ+Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �� �
:

ð36Þ

Combining (35) and (36) with (34), we get (33).

Corollary 12. For α = k = 1 in Lemma 11, we acquire

Ψ θ1 + θ2 − ζ1ð Þ + i θ1 + θ2 − ζ2ð Þ
2

−
1

ζ2 − ζ1

ðθ1+θ2−ζ1
θ1+θ2−ζ2

Ψ uð Þdu

= ζ2 − ζ1
4

ð1
0
λ Ψ′ θ1 + θ2 −

1 + λ

2
ζ1 +

1 − λ

2
ζ2

� �� ��

−Ψ′ θ1 + θ2 −
1 − λ

2
ζ1 +

1 + λ

2
ζ2

� �� ��
dλ:

ð37Þ

Remark 13. Taking α = k = 1 with ζ1 = θ1 and ζ2 = θ2 in
Lemma 11, we get Lemma 2.1 in [20] and the following
equality holds:

Ψ θ1ð Þ +Ψ θ2ð Þ
2 −

1
θ2 − θ1

ðθ2
θ1

Ψ uð Þdu = θ2 − θ1
4

ð1
0
λ Ψ′
n

� 1 − λ

2 θ1 +
1 + λ

2 θ2

� �
−Ψ′

� 1 + λ

2 θ1 +
1 − λ

2 θ2

� ��
dλ:

ð38Þ

Theorem 14. Suppose that Ψ : ½θ1, θ2�⟶ℝ is a differentia-
ble mapping on ðθ1, θ2Þ with θ1 < θ2 and Ψ′ ∈ L½θ1, θ2� along
with assumptions A1 andA2. If jΨ′j is an s-convex function on
½θ1, θ2�, then the following inequality for Riemann-Liouville k
-fractional integrals holds:

Ψ θ1 + θ2 − ζ1ð Þ +Ψ θ1 + θ2 − ζ2ð Þ
2

−
2 α/kð Þ−1Γk α + kð Þ

ζ2 − ζ1ð Þα/k
�����

× k Jαθ1+θ2−ζ1ð Þ− Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �� ��

+ k J
α

θ1+θ2−ζ2ð Þ+ Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �� ������
≤
ζ2 − ζ1

4
2

α/kð Þ + 1ð Þ Ψ′ θ1ð Þ�� �� + Ψ′ θ2ð Þ�� ��� 	


−
1
2s

U α, k, s, λð Þ + B
α

k
, s + 1

� 	n o
Ψ ζ1ð Þ +Ψ ζ2ð Þð Þ

�
,

ð39Þ

where Uðα, k, s, λÞ = Ð 10λα/kð1 + λÞsdλ.

Proof. By using Lemma 11 and the Jensen-Mercer inequality
and the s-convexity of ∣Ψ′ ∣ , we have

Ψ θ1 + θ2 − ζ1ð Þ +Ψ θ1 + θ2 − ζ2ð Þ
2

� �
−
2 α/kð Þ−1Γk α + kð Þ

ζ2 − ζ1ð Þα/k
�����

× k J
α

θ1+θ2−ζ2ð Þ+ Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �� ��

+ k J
α

θ1+θ2−ζ1ð Þ− Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �� ������
≤
ζ2 − ζ1

4

ð1
0
λα/k Ψ′ θ1 + θ2 −

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �����
����

�


+ Ψ′ θ1 + θ2 −
1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� �����
����
�
dλ�

≤
ζ2 − ζ1

4

ð1
0
λα/k Ψ′ θ1ð Þ�� �� + Ψ′ θ2ð Þ�� ��n


−
1 + λ

2

� �s

Ψ′ ζ1ð Þ�� �� + 1 − λ

2

� �s

Ψ′ ζ2ð Þ�� ��� ��
dλ

+
ð1
0
λα/k Ψ′ θ1ð Þ�� �� + Ψ′ θ2ð Þ�� �� − 1 − λ

2

� �s

Ψ′ ζ1ð Þ�� ����

+ 1 + λ

2

� �s

Ψ′ ζ2ð Þ�� ����dλ�:
ð40Þ

After simple computations, we get the required result
of (39).

Corollary 15. For s = α = k = 1 in Theorem 14, we get

Ψ θ1 + θ2 − ζ1ð Þ +Ψ θ1 + θ2 − ζ2ð Þ
2

−
1

ζ2 − ζ1

ðθ1+θ2−ζ1
θ1+θ2−ζ2

Ψ uð Þdu
�����

�����
≤
ζ2 − ζ1

4
Ψ′ θ1ð Þ�� �� + Ψ′ θ2ð Þ�� �� − Ψ′ ζ1ð Þ�� �� + Ψ′ ζ2ð Þ�� ��

2

 !( )
:

ð41Þ

Remark 16. Taking s = α = k = 1 with ζ1 = θ1 and ζ2 = θ2 in
Theorem 14, we recapture Theorem 2.2 in [21]:

Ψ θ1ð Þ +Ψ θ2ð Þ
2 −

1
θ2 − θ1

ðθ2
θ1

Ψ uð Þdu
�����

�����
≤
θ2 − θ1

4
Ψ′ θ1ð Þ�� �� + Ψ′ θ2ð Þ�� ��

2

 !
:

ð42Þ

Remark 17. If we choose s = k = 1 in Theorem 14, we get The-
orem 4 in [19].

Theorem 18. Suppose that Ψ : ½θ1, θ2�⟶ℝ is a differentia-
ble function on ðθ1, θ2Þ with θ1 < θ2 along with assumptions
A1 and A2. If Ψ′ ∈ L½θ1, θ2� and jΨ′jq is an s-convex function
on ½θ1, θ2�, where ð1/rÞ + ð1/qÞ = 1, r > 1, with q = r/ðr − 1Þ,
then the following inequality for Riemann-Liouville k-frac-
tional integrals holds:
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Ψ θ1 + θ2 − ζ1ð Þ +Ψ θ1 + θ2 − ζ2ð Þ
2

� �
−
2 α/kð Þ−1Γk α + kð Þ

ζ2 − ζ1ð Þα/k
�����

× k J
α

θ1+θ2−ζ2ð Þ+ Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �� ��

+ k J
α

θ1+θ2−ζ1ð Þ− Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �� ������ ≤ ζ2 − ζ1
4

× 1
α/kð Þr + 1ð Þr Ψ′ θ1ð Þ�� ��q + Ψ′ θ2ð Þ�� ��q�n


−
2S+1 − 1
2s s + 1ð Þ Ψ′ ζ1ð Þ�� ��q + 1

2s s + 1ð Þ Ψ′ ζ2ð Þ�� ��q� ��1/q

+ Ψ′ θ1ð Þ�� ��q + Ψ′ θ2ð Þ�� ��q − 1
2s s + 1ð Þ Ψ′ ζ1ð Þ�� ��q��

+ 2S+1 − 1
2s s + 1ð Þ Ψ′ ζ2ð Þ�� ��q��1/q)�

:

ð43Þ

Proof. Employing Lemma 11 and the Jensen-Mercer inequal-
ity with noted Hölder’s inequality and utilizing the s-con-
vexity of jΨ′jq, we have

Ψ θ1 + θ2 − ζ1ð Þ +Ψ θ1 + θ2 − ζ2ð Þ
2

� �
−
2 α/kð Þ−1Γk α + kð Þ

ζ2 − ζ1ð Þα/k
�����

× k J
α

θ1+θ2−ζ2ð Þ+ Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �� ��

+ k J
α

θ1+θ2−ζ1ð Þ− Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �� ������
≤
ζ2 − ζ1

4

ð1
0
λα/k Ψ′ θ1 + θ2 −

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �����
����

�


+ Ψ′ θ1 + θ2 −
1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� �����
����
�
dλ
�

≤
ζ2 − ζ1

4

ð1
0
λ α/kð Þrdλ

� �1/r

·
ð1
0
Ψ′ θ1 + θ2 −

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �q

dλ
����

����
� �1/q"

+
ð1
0
Ψ′ θ1 + θ2 −

1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� �����
����
q

dλ
� �1/q#

≤
ζ2 − ζ1

4

ð1
0
λ α/kð Þrdλ

� �1/r
×

ð1
0

Ψ′ θ1ð Þ�� ��q + Ψ′ θ2ð Þ�� ��qn�


−
1 + λ

2

� �s

Ψ′ ζ1ð Þ�� ��q + 1 − λ

2

� �s

Ψ′ ζ2ð Þ�� ��q� ��
dλ
�1/q

+
ð1
0

Ψ′ θ1ð Þ�� ��q + Ψ′ θ2ð Þ�� ��q − 1 − λ

2

� �s

Ψ′ ζ1ð Þ�� ��q���

+ 1 + λ

2

� �s

Ψ′ ζ2ð Þ�� ��q��dλ�1/q#
≤
ζ2 − ζ1

4

· 1
α/kð Þr + 1ð Þ1/r

Ψ′ θ1ð Þ�� ��q + Ψ′ θ2ð Þ�� ��q − 2S+1 − 1
2s s + 1ð Þ Ψ′ ζ1ð Þ�� ��q���"

+ 1
2s s + 1ð Þ Ψ′ ζ2ð Þ�� ��q�Þ1/q + Ψ′ θ1ð Þ�� ��q + Ψ′ θ2ð Þ�� ��q�

−
1

2s s + 1ð Þ Ψ′ ζ1ð Þ�� ��q + 2S+1 − 1
2s s + 1ð Þ Ψ′ ζ2ð Þ�� ��q� ��1/q)�

:

ð44Þ

This completes the proof.

Theorem 19. Suppose that Ψ : ½θ1, θ2�⟶ℝ is a differentia-
ble function on ðθ1, θ2Þ with θ1 < θ2 along with assumptions
A1 and A2. If Ψ′ ∈ L½θ1, θ2� and jΨ′jq is an s-convex function
on ½θ1, θ2�, where ð1/rÞ + ð1/qÞ = 1, r ≥ 1, with q = r/ðr − 1Þ,
then the following inequality for Riemann-Liouville k-frac-
tional integrals holds:

 
Ψ θ1 + θ2 � ζ1ð Þ +Ψ θ1 + θ2 � ζ2ð Þ

2

� �����
 � 2 α/kð Þ�1Γk α + kð Þ

ζ2 � ζ1ð Þα/k

  × k J
α

θ1+θ2�ζ2ð Þ+ Ψ θ1 + θ2 �
ζ1 + ζ2

2

� �� ��

 +k J
α

θ1+θ2�ζ1ð Þ� Ψ θ1 + θ2 �
ζ1 + ζ2

2

� �� ������
  ≤

ζ2 � ζ1
4

1
α/kð Þ + 1

� �1� 1/qð Þ"

  × Ψ′ θ1ð Þ�� ��q + Ψ′ θ2ð Þ�� ��q
α/kð Þ + 1

 (

 � U α, k, s, λð Þ
2s

Ψ′ ζ1ð Þ�� ��q�

 +B α/kð Þ + 1, s + 1ð Þ
2s

Ψ′ ζ2ð Þ�� ��q��1/q

  + Ψ′ θ1ð Þ�� ��q + Ψ′ θ2ð Þ�� ��q
α/kð Þ + 1

 

 � B α/kð Þ + 1, s + 1ð Þ
2s

Ψ′ ζ1ð Þ�� ��q�

 +U α, k, s, λð Þ
2s

Ψ′ ζ2ð Þ�� ��q��1/q
)#

, ð45Þ

where Uðα, k, s, λÞ = Ð 10λα/kð1 + λÞsdλ.

Proof. For r ≥ 1, taking into account Lemma 11 and the
Jensen-Mercer inequality with the noted power-mean
inequality and utilizing the s-convexity of jΨ′jq, we have

 
Ψ θ1 + θ2 � ζ1ð Þ +Ψ θ1 + θ2 � ζ2ð Þ

2

� �����
 � 2 α/kð Þ�1Γk α + kð Þ

ζ2 � ζ1ð Þα/k

  × k J
α

θ1+θ2�ζ2ð Þ+ Ψ θ1 + θ2 �
ζ1 + ζ2

2

� �� ��
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 +k J
α

θ1+θ2�ζ1ð Þ� Ψ θ1 + θ2 �
ζ1 + ζ2

2

� �� ������

  ≤
ζ2 � ζ1

4

ð1
0
λα/k




  × Ψ′ θ1 + θ2 �
1 + λ

2 ζ1 +
1� λ

2 ζ2

� �� �����
����

�

 + Ψ′ θ1 + θ2 �
1� λ

2 ζ1 +
1 + λ

2 ζ2

� �� �����
����
�
dλ



  ≤
ζ2 � ζ1

4

ð1
0
λα/kdλ

� �1� 1/qð Þ"

  ×
ð1
0
λα/k Ψ′ θ1 + θ2 �

1 + λ

2 ζ1 +
1� λ

2 ζ2

� �� �����
����
q

dλ
� �1/q(

 +
ð1
0
λα/k Ψ′ θ1 + θ2 �

1� λ

2 ζ1 +
1 + λ

2 ζ2

� �� �����
����
q

dλ
� �1/q)#

  ≤
ζ2 � ζ1

4

ð1
0
λα/kdλ

� �1� 1/qð Þ"

  ×
ð1
0
λα/k

1 + λ

2

� �s

Ψ′ θ1ð Þ�� ��q + Ψ′ θ2ð Þ�� ��q���

 � 1 + λ

2

� �s

Ψ′ ζ1ð Þ�� ��q + 1� λ

2

� �s

Ψ′ ζ2ð Þ�� ��q� ��
dλ
�1/q

  +
ð1
0
λα/k

1 + λ

2

� �s

Ψ′ θ1ð Þ�� ��q + Ψ′ θ2ð Þ�� ��q��

 � 1� λ

2

� �s

Ψ′ ζ1ð Þ�� ��q + 1 + λ

2

� �s

Ψ′ ζ2ð Þ�� ��q� ��
dλ
�1/q)#

:

ð46Þ

Simple computations yield the desired inequality (45).

Next, we demonstrate results for twice differentiable func-
tions Ψ′′. For that, we give the following new lemma.

Lemma 20. LetΨ : ½θ1, θ2�⟶ℝ be a differentiable mapping
on ðθ1, θ2Þ with θ1 < θ2 along with assumption A1. If Ψ′′ ∈ L
½θ1, θ2�, then the following equality for Riemann-Liouville k
-fractional integrals holds:

2 α/kð Þ−1Γk α + kð Þ
ζ2 − ζ1ð Þα/k

k J
α

θ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ+Ψ θ1 + θ2 − ζ1ð Þ
n

+ k J
α

θ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ−Ψ θ1 + θ2 − ζ2ð Þ
o
−Ψ θ1 + θ2 −

ζ1 + ζ2
2

� �

= ζ2 − ζ1ð Þ2
8 α/kð Þ + 1ð Þ

ð1
0
1 − λð Þ α/kð Þ+1Ψ″ θ1 + θ2 −

1 + λ

2
ζ1

���

+ 1 − λ

2
ζ2

�
Þdλ +

ð1
0
1 − λð Þ α/kð Þ+1Ψ″

· θ1 + θ2 −
1 − λ

2
ζ1 +

1 + λ

2
ζ2

� �� �
dλ
�
:

ð47Þ

Proof. It suffices to write that

I = ζ2 − ζ1ð Þ2
8 α/kð Þ + 1ð Þ I1 + I2f g, ð48Þ

where

I1 =
ð1
0
1 − λð Þ α/kð Þ+1Ψ″ θ1 + θ2 −

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �
dλ

= −
2

ζ2 − ζ1ð ÞΨ′ θ1 + θ2 −
ζ1 + ζ2

2

� �
+ 2 α/kð Þ + 1ð Þ

θ2 − θ1ð Þ
×
ð1
0
1 − λð Þα/kΨ′ θ1 + θ2 −

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �
dλ

= −
2

ζ2 − ζ1ð ÞΨ′ θ1 + θ2 −
ζ1 + ζ2

2

� �
−
4 α/kð Þ + 1ð Þ
ζ2 − ζ1ð Þ2

Ψ

� θ1 + θ2 −
ζ1 + ζ2

2

� �
+ 4 α/kð Þ + 1ð Þ

ζ2 − ζ1ð Þ2
ð1
0
1 − λð Þ α/kð Þ−1Ψ

� θ1 + θ2 −
1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �
dλ

= −
2

ζ2 − ζ1ð ÞΨ′ θ1 + θ2 −
ζ1 + ζ2

2

� �
−
4 α/kð Þ + 1ð Þ
ζ2 − ζ1ð Þ2

Ψ

� θ1 + θ2 −
ζ1 + ζ2

2

� �
+ 2 α/kð Þ+2 α/kð Þ + 1ð ÞΓk α + kð Þ

ζ2 − ζ1ð Þ α/kð Þ+2

� k J
α

θ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ+
� 	

Ψ θ1 + θ2 − ζ1ð Þð Þ,

ð49Þ

and similarly, we can find

I2 =
ð1
0
1 − λð Þ α/kð Þ+1Ψ″ θ1 + θ2 −

1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� �
dλ

= 2
ζ2 − ζ1ð ÞΨ′ θ1 + θ2 −

ζ1 + ζ2
2

� �
−
4 α/kð Þ + 1ð Þ
ζ2 − ζ1ð Þ2

Ψ

� θ1 + θ2 −
ζ1 + ζ2

2

� �
+ 2 α/kð Þ+2 α/kð Þ + 1ð ÞΓk α + kð Þ

ζ2 − ζ1ð Þ α/kð Þ+2

� k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ−
� 	

Ψ θ1 + θ2 − ζ2ð Þð Þ:

ð50Þ

Combining (49) and (50) with (48), we get the identity (47).

Remark 21. In Lemma 20, taking k = 1, with ζ1 = θ1 and ζ2
= θ2, recaptures Lemma 1 in [22].

Remark 22. For α = k = 1, with ζ1 = θ1 and ζ2 = θ2, in Lemma
20, it reduces to Lemma 2 proved in [22].
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Theorem 23. Suppose that Ψ : ½θ1, θ2�⟶ℝ is a differentia-
ble mapping on ðθ1, θ2Þ with θ1 < θ2 and Ψ ∈ L½θ1, θ2� along
with assumptions A1 and A2. If jΨ′′j is an s-convex function
on ½θ1, θ2�, then the following inequality holds:

2 α/kð Þ−1Γk α + kð Þ
ζ2 − ζ1ð Þα/k

k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ+Ψ θ1 + θ2 − ζ1ð Þ
n�����

+k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ−Ψ θ1 + θ2 − ζ2ð Þ
o
−Ψ θ1 + θ2 −

ζ1 + ζ2
2

� ������
≤

ζ2 − ζ1ð Þ2
8 α/kð Þ + 1ð Þ 2

Ψ″ θ1ð Þ�� �� + Ψ″ θ2ð Þ�� ��
α/kð Þ + 2

 !"

−
U1 α, k, s, λð Þ

2s
+ Γ α/kð Þ + s + 2ð Þ
2sΓ α/kð Þ + s + 3ð Þ

� ��

· Ψ″ ζ1ð Þ�� �� + Ψ″ ζ2ð Þ�� ��� 	o#
,

ð51Þ

where U1ðα, k, s, λÞ =
Ð 1
0ð1 − λÞðα/kÞ+1ð1 + λÞsdλ.

Proof. By using Lemma 20 with the Jensen-Mercer inequality
and the s-convexity of jΨ′′j, we have

2 α/kð Þ−1Γk α + kð Þ
ζ2 − ζ1ð Þα/k

k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ+Ψ θ1 + θ2 − ζ1ð Þ
n�����

+k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ−Ψ θ1 + θ2 − ζ2ð Þ
o
−Ψ θ1 + θ2 −

ζ1 + ζ2
2

� ������
≤

ζ2 − ζ1ð Þ2
8 α/kð Þ + 1ð Þ

ð1
0
1 − λð Þ α/kð Þ+1 Ψ″ θ1 + θ2 −

1 + λ

2 ζ1

������
�

+ 1 − λ

2 ζ2

�
Þjdλ +

ð1
0
1 − λð Þ α/kð Þ+1 Ψ″��

· θ1 + θ2 −
1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� �����dλ
�
≤

ζ2 − ζ1ð Þ2
8 α/kð Þ + 1ð Þ

×
ð1
0
1 − λð Þ α/kð Þ+1 Ψ″ θ1ð Þ�� �� + Ψ″ θ2ð Þ�� �� − 1 + λ

2

� �s��


· Ψ″ ζ1ð Þ�� �� + 1 − λ

2

� �s

Ψ″ ζ2ð Þ�� ���gdλ + ð1
0
1 − λð Þ α/kð Þ+1

· Ψ″ θ1ð Þ�� �� + Ψ″ θ2ð Þ�� �� − 1 − λ

2

� �s

Ψ″ ζ1ð Þ�� ����

+ 1 + λ

2

� �s

Ψ″ ζ2ð Þ�� ����dλ�:
ð52Þ

After simplifications, we get the required result.

Remark 24. For choosing k = 1 with ζ1 = θ1 and ζ2 = θ2 in
Theorem 23, we will get Theorem 2 proved in [22].

Theorem 25. Suppose that Ψ : ½θ1, θ2�⟶ℝ is a differentia-
ble function on I along with assumptions A1 and A2. If Ψ′′
∈ L½θ1, θ2� and jΨ′′jq is an s-convex function, where ð1/rÞ +
ð1/qÞ = 1, q > 1, then the following inequality holds:

2 α/kð Þ−1Γk α + kð Þ
ζ2 − ζ1ð Þα/k

k J
α

θ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ+Ψ θ1 + θ2 − ζ1ð Þ
n�����

+ k J
α

θ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ−Ψ θ1 + θ2 − ζ2ð Þ
o
−Ψ θ1 + θ2 −

ζ1 + ζ2
2

� ������
≤

ζ2 − ζ1ð Þ2
8 α/kð Þ + 1ð Þ

1
α/kð Þ + 1ð Þr + 1

� �1/r
× Ψ″ θ1ð Þ�� ��q + Ψ″ θ2ð Þ�� ��q�n"

−
2S+1 − 1
2s s + 1ð Þ Ψ″ ζ1ð Þ�� ��q + 1

2s s + 1ð Þ Ψ″ ζ2ð Þ�� ��q� ��1/q

+ Ψ″ θ1ð Þ�� ��q + Ψ″ θ2ð Þ�� ��q − 1
2s s + 1ð Þ Ψ″ ζ1ð Þ�� ��q��

+ 2S+1 − 1
2s s + 1ð Þ Ψ″ ζ2ð Þ�� ��q��1/q)#

:

ð53Þ

Proof. By using Lemma 20 and the well-known Hölder’s
inequality and the Jensen-Mercer inequality along with the
fact that jΨ′′jq is an s-convex function, we have

 
2 α/kð Þ�1Γk α + kð Þ

ζ2 � ζ1ð Þα/k
�����

  × k Jαθ1+θ2� ζ1+ζ2ð Þ/2ð Þð Þ+Ψ θ1 + θ2 � ζ1ð Þ
n

 + k Jαθ1+θ2� ζ1+ζ2ð Þ/2ð Þð Þ�Ψ θ1 + θ2 � ζ2ð Þ
o

 �Ψ θ1 + θ2 �
ζ1 + ζ2

2

� �����
  ≤

ζ2 � ζ1ð Þ2
8 α/kð Þ + 1ð Þ

ð1
0
1� λð Þ α/kð Þ+1

�

  × Ψ′ θ1 + θ2 �
1 + λ

2 ζ1 +
1� λ

2 ζ2

� �� �����
����dλ

  +
ð1
0
1� λð Þ α/kð Þ+1

  × Ψ′ θ1 + θ2 �
1� λ

2 ζ1 +
1 + λ

2 ζ2

� �� �����
����dλ
�

  ≤
ζ2 � ζ1ð Þ2

8 α/kð Þ + 1ð Þ

  ×
ð1
0
1� λð Þr α/kð Þ+1ð Þdλ

� ��

  ×
ð1
0
Ψ′ θ1ð Þ +Ψ′ θ2ð Þ���

 � 1 + λ

2 Ψ′ ζ1ð Þ + 1� λ

2 Ψ′ ζ2ð Þ
� �����

q

dλ
�1/q

  +
ð1
0
1� λð Þr α/kð Þ+1ð Þdλ

� �1/r
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  ×
ð1
0
Ψ′ θ1ð Þ +Ψ′ θ2ð Þ���

 � 1� λ

2 Ψ′ ζ1ð Þ + 1 + λ

2 Ψ′ ζ2ð Þ
� �����

q

dλ
�1/q)

  ≤
ζ2 � ζ1ð Þ2

8 α/kð Þ + 1ð Þ
ð1
0
1� λð Þ α/kð Þ+1ð Þrdλ

� �1/r"

  ×
ð1
0

1� λ

2

� �s

Ψ′ θ1ð Þ�� ��q + Ψ′ θ2ð Þ�� ��q���

 � 1 + λ

2

� �s

Ψ′ ζ1ð Þ�� ��q + 1� λ

2

� �s

Ψ′ ζ2ð Þ�� ��q� ���1/q

  +
ð1
0

1� λ

2

� �s

Ψ′ θ1ð Þ�� ��q + Ψ′ θ2ð Þ�� ��q��

 � 1� λ

2

� �s

Ψ′ ζ1ð Þ�� ��q + 1 + λ

2

� �s

Ψ′ ζ2ð Þ�� ��q� ���1/q)#
:

ð54Þ

By direct computations, we get the required result.

Remark 26. For choosing k = 1 with ζ1 = θ1 and ζ2 = θ2 in
Theorem 25, we will get Theorem 3 proved in [22].

Corollary 27. For α = k = 1 in Theorem 25, we get

1
ζ2 − ζ1

ðθ1+θ2−ζ1
θ1+θ2−ζ2

Ψ uð Þdu −Ψ θ1 + θ2 −
ζ1 + ζ2

2

� ������
�����

≤
ζ2 − ζ1ð Þ2

16
1

2r + 1

� �1/r
× Ψ′′ θ1ð Þ�� ��q + Ψ′′ θ2ð Þ�� ��q� 	nh

−
2s+1 − 1
2s s + 1ð Þ Ψ′′ ζ1ð Þ�� ��q + 1

2s s + 1ð Þ Ψ′′ ζ2ð Þ�� ��q� ��1/q

+ Ψ′′ θ1ð Þ�� ��q + Ψ′′ θ2ð Þ�� ��q� 	
−

1
2s s + 1ð Þ Ψ′′ ζ1ð Þ�� ��q��

+ 2s+1 − 1
2s s + 1ð Þ Ψ′′ ζ2ð Þ�� ��q��1/q�

:

ð55Þ

Finally, we state our results for third-order differentiable
functions Ψ′′′.

Lemma 28. LetΨ : ½θ1, θ2�⟶ℝ be a differentiable mapping
on ðθ1, θ2Þ with θ1 < θ2 along with assumption A1. If Ψ′′′ ∈
L½θ1, θ2�, then the following equality for Riemann-Liouville k
-fractional integrals holds:

2 α/kð Þ−1Γk α + kð Þ
ζ2 − ζ1ð Þα/k

× k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ+
� 	

Ψ θ1 + θ2 − ζ1ð Þð Þ + k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ−
� 	n

· Ψ θ1 + θ2 − ζ2ð Þð Þ
�
−

ζ2 − ζ1ð Þ2
4 α/kð Þ + 1ð Þ α/kð Þ + 2ð ÞΨ″

· θ1 + θ2 −
ζ1 + ζ2

2

� �
−Ψ θ1 + θ2 −

ζ1 + ζ2
2

� �

= ζ2 − ζ1ð Þ3
16 α/kð Þ + 1ð Þ α/kð Þ + 2ð Þ

ð1
0
1 − λð Þ α/kð Þ+2Ψ‴

�

· θ1 + θ2 −
1 + λ

2
ζ1 +

1 − λ

2
ζ2

� �� �
dλ

−
ð1
0
1 − λð Þ α/kð Þ+2Ψ‴ θ1 + θ2 −

1 − λ

2
ζ1 +

1 + λ

2
ζ2

� �� �
dλ
�
:

ð56Þ

Proof. It suffices to write that

I = ζ2 − ζ1ð Þ3
16 α/kð Þ + 1ð Þ α/kð Þ + 2ð Þ I1 − I2f g, ð57Þ

where

I1 =
ð1
0
1 − λð Þ α/kð Þ+2Ψ‴ θ1 + θ2 −

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �
dλ

= −
2

ζ2 − ζ1ð ÞΨ″ θ1 + θ2 −
ζ1 + ζ2

2

� �
+ 2 α/kð Þ + 2ð Þ

ζ2 − ζ1ð Þ
�
ð1
0
1 − λð Þ α/kð Þ+1Ψ′′ θ1 + θ2 −

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �
dλ

= −
2

ζ2 − ζ1ð ÞΨ″ θ1 + θ2 −
ζ1 + ζ2

2

� �
−
4 α/kð Þ + 2ð Þ
ζ2 − ζ1ð Þ2

Ψ′

� θ1 + θ2 −
ζ1 + ζ2

2

� �
+ 4 α/kð Þ + 1ð Þ α/kð Þ + 2ð Þ

ζ2 − ζ1ð Þ2

�
ð1
0
1 − λð Þα/kΨ′ θ1 + θ2 −

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �
dλ

= −
2

ζ2 − ζ1ð ÞΨ″ θ1 + θ2 −
ζ1 + ζ2

2

� �
−
4 α/kð Þ + 2ð Þ
ζ2 − ζ1ð Þ2

Ψ′

� θ1 + θ2 −
ζ1 + ζ2

2

� �
−
8 α/kð Þ + 2ð Þ α/kð Þ + 1ð Þ

ζ2 − ζ1ð Þ3
Ψ

� θ1 + θ2 −
ζ1 + ζ2

2

� �
+ 2 α/kð Þ+3 α/kð Þ + 1ð Þ α/kð Þ + 2ð ÞΓk α + kð Þ

ζ2 − ζ1ð Þ α/kð Þ+3

� k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ+
� 	

Ψ θ1 + θ2 − ζ1ð Þð Þ

= −
2

ζ2 − ζ1ð ÞΨ″ θ1 + θ2 −
ζ1 + ζ2

2

� �
−
4 α/kð Þ + 2ð Þ
ζ2 − ζ1ð Þ2

Ψ′

� θ1 + θ2 −
ζ1 + ζ2

2

� �
−
8 α/kð Þ + 2ð Þ α/kð Þ + 1ð Þ

ζ2 − ζ1ð Þ3
Ψ

� θ1 + θ2 −
ζ1 + ζ2

2

� �
+ 2 α/kð Þ+3Γk α + 3kð Þ

ζ2 − ζ1ð Þ α/kð Þ+3

� Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ+
� 	

Ψ θ1 + θ2 − ζ1ð Þð Þ,
ð58Þ
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and similarly, we can find

I2 =
ð1
0
1 − λð Þ α/kð Þ+2Ψ′′′ θ1 + θ2 −

1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� �
dλ

= 2
ζ2 − ζ1ð Þ Ψ′′ θ1 + θ2 −

ζ1 + ζ2
2

� �
−
4 α/kð Þ + 2ð Þ
ζ2 − ζ1ð Þ2

Ψ′

� θ1 + θ2 −
ζ1 + ζ2

2

� �
+ 8 α/kð Þ + 2ð Þ α/kð Þ + 1ð Þ

ζ2 − ζ1ð Þ3
Ψ

� θ1 + θ2 −
ζ1 + ζ2

2

� �
−
2 α/kð Þ+3Γk α + 3kð Þ

ζ2 − ζ1ð Þ α/kð Þ+3

� Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ−
� 	

Ψ θ1 + θ2 − ζ2ð Þð Þ:

ð59Þ

Replacing the values of the integrals I1 and I2 in (57), we
get the identity (56).

Remark 29. In Lemma 28, choosing k = 1 with ζ1 = θ1 and
ζ2 = θ2, it recaptures Lemma 3.1 proved in [23].

Remark 30. For k = α = 1 with ζ1 = θ1 and ζ2 = θ2 in Lemma
28, it reduces to Lemma 2.1 proved in [24].

Theorem 31. Suppose that Ψ : ½θ1, θ2�⟶ℝ is a three times
differentiable mapping on ðθ1, θ2Þ with θ1 < θ2 and Ψ ∈ L½θ1
, θ2� along with assumptions A1 and A2. If jΨ′′′j is an s-con-
vex function on ½θ1, θ2�, then the following inequality for k
-fractional integrals holds:

2 α/kð Þ−1Γk α + kð Þ
ζ2 − ζ1ð Þ α/kð Þ × k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ+

� 	
Ψ θ1 + θ2 − ζ1ð Þð Þ

n�����
+ k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ−
� 	

Ψ θ1 + θ2 − ζ2ð Þð Þ
o

−
ζ2 − ζ1ð Þ2

4 α/kð Þ + 1ð Þ α/kð Þ + 2ð ÞΨ″ θ1 + θ2 −
ζ1 + ζ2

2

� �

−Ψ θ1 + θ2 −
ζ1 + ζ2

2

� ����� ≤ ζ2 − ζ1ð Þ3
16 α/kð Þ + 1ð Þ α/kð Þ + 2ð Þ

· 2
Ψ‴ θ1ð Þ
��� ��� + Ψ‴ θ2ð Þ

��� ���
α/kð Þ + 3

0
@

1
A −

U2 α, k, s, λð Þ
2s

��2
4

+ 1
2s α/kð Þ + s + 3ð Þ

�
Ψ‴ ζ1ð Þ
��� ��� + Ψ‴ ζ2ð Þ

��� ���� 	�#
,

ð60Þ

where U2ðα, k, s, λÞ =
Ð 1
0ð1 − λÞðα/kÞ+2ð1 + λÞsdλ.

Proof. By using Lemma 28 and the Jensen-Mercer inequality
and the s-convexity of jΨ′′′j, we have

2 α/kð Þ−1Γk α + kð Þ
ζ2 − ζ1ð Þ α/kð Þ × k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ+

� 	
Ψ θ1 + θ2 − ζ1ð Þð Þ

n�����
+ k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ−
� 	

Ψ θ1 + θ2 − ζ2ð Þð Þ
o

−
ζ2 − ζ1ð Þ2

4 α/kð Þ + 1ð Þ α/kð Þ + 2ð ÞΨ″ θ1 + θ2 −
ζ1 + ζ2

2

� �

−Ψ θ1 + θ2 −
ζ1 + ζ2

2

� �
j ≤ ζ2 − ζ1ð Þ3

16 α/kð Þ + 1ð Þ α/kð Þ + 2ð Þ
�
ð1
0
1 − λð Þ α/kð Þ+2 Ψ‴ θ1 + θ2 −

1 + λ

2 ζ1 +
1 − λ

2 ζ2

� �� �����
����dλ

�

� −
ð1
0
1 − λð Þ α/kð Þ+2 Ψ‴ θ1 + θ2 −

1 − λ

2 ζ1 +
1 + λ

2 ζ2

� �� �����
����dλ
�

≤
ζ2 − ζ1ð Þ3

16 α/kð Þ + 1ð Þ α/kð Þ + 2ð Þ
ð1
0
1 − λð Þ α/kð Þ+2 Ψ‴ θ1ð Þ

��� ���n


+ Ψ‴ θ2ð Þ
��� ��� − 1 + λ

2

� �s

Ψ‴ ζ1ð Þ
��� ��� + 1 − λ

2

� �s

Ψ‴ ζ2ð Þ
��� ���� ��

dλ

+
ð1
0
1 − λð Þ α/kð Þ+2 Ψ‴ θ1ð Þ

��� ��� + Ψ‴ θ2ð Þ
��� ��� − 1 − λ

2

� �s

Ψ‴ ζ1ð Þ
��� �����

+ 1 + λ

2

� �s

Ψ‴ ζ2ð Þ
��� �����dλ� ≤ ζ2 − ζ1ð Þ3

16 α/kð Þ + 1ð Þ α/kð Þ + 2ð Þ

� 2
Ψ‴ θ1ð Þ
��� ��� + Ψ‴ θ2ð Þ

��� ���
α/kð Þ + 3

0
@

1
A −

U2 α, k, s, λð Þ
2s

��2
4

+ 1
2s α/kð Þ + s + 3ð ÞÞ Ψ‴ ζ1ð Þ

��� ��� + Ψ‴ ζ2ð Þ
��� ���� 	)#

:

ð61Þ

Remark 32. Choosing k = s = 1 with ζ1 = θ1 and ζ2 = θ2 in
Theorem 31, we will get Theorem 18 proved in [23].

Theorem 33. Suppose that Ψ : ½θ1, θ2�⟶ℝ is a three times
differentiable function on I along with assumptions A1 and A2.
If Ψ′′′ ∈ L½θ1, θ2� and jΨ′′′jq is an s-convex function, where
ð1/rÞ + ð1/qÞ = 1, q > 1, then the following k-fractional inte-
gral inequality holds:

2 α/kð Þ−1Γk α + kð Þ
ζ2 − ζ1ð Þ α/kð Þ × k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ+

� 	
Ψ θ1 + θ2 − ζ1ð Þð Þ

n�����
+ k Jαθ1+θ2− ζ1+ζ2ð Þ/2ð Þð Þ−
� 	

Ψ θ1 + θ2 − ζ2ð Þð Þ
o

−
ζ2 − ζ1ð Þ2

4 α/kð Þ + 1ð Þ α/kð Þ + 2ð ÞΨ″ θ1 + θ2 −
ζ1 + ζ2

2

� �

−Ψ θ1 + θ2 −
ζ1 + ζ2

2

� ����� ≤ ζ2 − ζ1ð Þ3
16 α/kð Þ + 1ð Þ α/kð Þ + 2ð Þ

· 1
α/kð Þ + 2ð Þr + 1

� �1/r
× Ψ‴ θ1ð Þ

��� ���q + Ψ‴ θ2ð Þ
��� ���q�n"

−
2S+1 − 1
2s s + 1ð Þ Ψ‴ ζ1ð Þ

��� ���q + 1
2s s + 1ð Þ Ψ‴ ζ2ð Þ

��� ���q� ��1/q

+ Ψ‴ θ1ð Þ
��� ���q + Ψ‴ θ2ð Þ

��� ���q − 1
2s s + 1ð Þ Ψ‴ ζ1ð Þ

��� ���q��

+ 2S+1 − 1
2s s + 1ð Þ Ψ‴ ζ2ð Þ

��� ���q��1/q)#
:

ð62Þ

Proof. By using Lemma 28 with the Jensen-Mercer inequality
and the well-known Hölder’s inequality on the fact that
jΨ′′′jq is s-convexity, we have

 
2 α/kð Þ�1Γk α + kð Þ

ζ2 � ζ1ð Þα/k
�����
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  × k Jαθ1+θ2� ζ1+ζ2ð Þ/2ð ÞÞ+
� 	

Ψ θ1 + θ2 � ζ1ð Þð Þ
n

 + k Jαθ1+θ2� ζ1+ζ2ð Þ/2ð Þð Þ�
� 	

Ψ θ1 + θ2 � ζ2ð Þð Þ
o

 � ζ2 � ζ1ð Þ2
4 α/kð Þ + 1ð Þ α/kð Þ + 2ð Þ

  ×Ψ′′ θ1 + θ2 �
ζ1 + ζ2

2

� �
�Ψ θ1 + θ2 �

ζ1 + ζ2
2

� �����
  ≤

ζ2 � ζ1ð Þ3
16 α/kð Þ + 1ð Þ α/kð Þ + 2ð Þ

  ×
ð1
0
1� λð Þ α/kð Þ+2

� �


  × Ψ′′′ θ1 + θ2 �
1 + λ

2 ζ1 +
1� λ

2 ζ2

� �� �����
����dλ

 �
ð1
0
1� λð Þ α/kð Þ+2

 × Ψ′′′ θ1 + θ2 �
1� λ

2 ζ1 +
1 + λ

2 ζ2

� �� �����
����dλ
��

  ≤
ζ2 � ζ1ð Þ3

16 α/kð Þ + 1ð Þ α/kð Þ + 2ð Þ

  ×
ð1
0
1� λð Þ α/kð Þ+2ð Þrdλ

� �1/r"

  ×
ð1
0
Ψ′′′ θ1ð Þ +Ψ′′′ θ2ð Þ���

 � 1 + λ

2 Ψ′′′ ζ1ð Þ + 1� λ

2 Ψ′′′ ζ2ð Þ
����
q

dλ
� �1/q)

  +
ð1
0
1� λð Þ α/kð Þ+2ð Þrdλ

� �1/r

  ×
ð1
0
Ψ′′′ θ1ð Þ +Ψ′′′ θ2ð Þ���

 � 1� λ

2 Ψ′′′ ζ1ð Þ + 1 + λ

2 Ψ′′′ ζ2ð Þ
����
q

dλ
� �1/q)#

  ≤
ζ2 � ζ1ð Þ3

16 α/kð Þ + 1ð Þ α/kð Þ + 2ð Þ

  ×
ð1
0
1� λð Þ α/kð Þ+2ð Þrdλ

� �1/r"

  ×
ð1
0

Ψ′′′ θ1ð Þ�� ��q + Ψ′′′ θ2ð Þ�� ��q���

 � 1 + λ

2

� �s

Ψ′′′ ζ1ð Þ�� ��q + 1� λ

2

� �s

Ψ′′′ ζ2ð Þ�� ��q� ���1/q

  +
ð1
0

Ψ′′′ θ1ð Þ�� ��q + Ψ′′′ θ2ð Þ�� ��q��

 � 1� λ

2

� �s

Ψ′′′ ζ1ð Þ�� ��q + 1 + λ

2

� �s

Ψ′′′ ζ2ð Þ�� ��q� ���1/q)#
:

ð63Þ

After some simplifications, we get the required results.

Remark 34. Choosing k = s = 1 with ζ1 = θ1 and ζ2 = θ2 in
Theorem 33, we will get Theorem 19 proved in [23].

4. Applications

4.1. Some Applications of the Means. Let us consider the fol-
lowing special means for different values of a1 and a2:

(1) The arithmetic mean:

A a1, a2ð Þ = a1 + a2
2 : ð64Þ

(2) The geometric mean:

G a1, a2ð Þ = a1a2ð Þ1/2: ð65Þ

(3) The harmonic mean:

H =
2a1a2
a1 + a2

: ð66Þ

Proposition 35. Suppose a1, a2 ∈ℝ, 0 < a1 < a2, 0 ∉ ½a1, a2�.
Then, for all r > 1, the following inequality holds:

1
ζ2 − ζ1ð Þ s + 1ð Þ 2A a1, a2ð Þ − a1ð Þs+1 − 2A a1, a2ð Þ − a2ð Þs+1� �����

− 2A a1, a2ð Þð Þsj ≤ ζ2 − ζ1ð Þ2
16

s s − 1ð Þ 1
2r + 1

� �1/r

× 2A a s−2ð Þq
1 , a s−2ð Þq

2

� 	� 	
−

2s+1 − 1
2s s + 1ð Þ a s−2ð Þ

1

��� ���q��


+ 1
2s s + 1ð Þ a s−2ð Þ

2

��� ���q�g1/q + 2A a s−2ð Þq
1 , a s−2ð Þq

2

� 	� 	n

−
1

2s s + 1ð Þ a s−2ð Þ
1

��� ���q + 2s+1 − 1
2s s + 1ð Þ a s−2ð Þ

2

��� ���q� ��1/q#
:

ð67Þ

Proof. The proof is an immediate consequence from Corol-
lary 27 by selecting ΨðxÞ = xs and s ∈ ð0, 1Þ.
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Proposition 36. Suppose a1, a2 ∈ℝ, s ∈ ð0, 1Þ, 0 < a1 < a2, 0
∉ ½a1, a2�. Then, for all r > 1, the following inequality holds:

1
ζ2 − ζ1ð Þ 1 − sð Þ

2A a1, a2ð Þ − a2ð Þs−1 − 2A a1, a2ð Þ − a1ð Þs−1
G2 2A a1, a2ð Þ − a1ð Þ, 2A a1, a2ð Þ − a2ð Þ� �s−1

" #�����
− H a1, a2ð Þð Þs

����� ≤ ζ2 − ζ1ð Þ2
16

s s + 1ð Þ 1
2r + 1

� �1/r

× 2A a− s+2ð Þq
1 , a− s+2ð Þq

2

� 	
−

2s+1 − 1
2s s + 1ð Þ a− s+2ð Þ

1

��� ���q��


+ 1
2s s + 1ð Þ a− s+2ð Þ

2

��� ���q��1/q
+ 2A a− s+2ð Þq

1 , a− s+2ð Þq
2

� 	n

−
1

2s s + 1ð Þ a− s+2ð Þ
1

��� ���q + 2s+1 − 1
2s s + 1ð Þ a− s+2ð Þ

2

��� ���q� ��1/q#
:

ð68Þ

Proof. The proof is an immediate consequence from Corol-
lary 27 by taking into account Lemma 4 by selecting ΨðxÞ
= 1/xs and s ∈ ð0, 1Þ.
4.2. q-Digamma Function. Suppose 0 < q < 1; the q-digamma
function φq is the q-analogue of the digamma function φ (see
[25]) given as

φq = − ln 1 − qð Þ + ln q〠
∞

k=0

qk+ζ
1 − qk+ζ = − ln 1 − qð Þ + ln q〠

∞

k=0

qkζ
1 − qkζ :

ð69Þ

For q > 1 and ζ > 0, the q-digamma function φq can be
given as

φq = − ln q − 1ð Þ + ln q ζ −
1
2 − 〠

∞

k=0

q− k+ζð Þ

1 − q− k+ζð Þ

" #

= − ln q − 1ð Þ + ln q ζ −
1
2 − 〠

∞

k=0

q−kζ
1 − q−kζ

" #
:

ð70Þ

Proposition 37. Let a1, a2, q, and q be real numbers such that
0 < a1 < a2, q > 1, and 0 < q < 1. Then, the following inequality
holds:

φq 2A a1, a2ð Þ − a1ð Þ − φq 2A a1, a2ð Þ − a2ð Þ
ζ2 − ζ1

− φq′ A a1, a2ð Þð Þ
����

����
≤

ζ2 − ζ1ð Þ2
16

1
2r + 1

� �1/r
× φ 3ð Þ

q a1ð Þ
��� ���q + φ 3ð Þ

q a2ð Þ
��� ���q� 	nh

−
2s+1 − 1
2s s + 1ð Þ φ 3ð Þ

q a1ð Þ
��� ���q + 1

2s s + 1ð Þ φ 3ð Þ
q a2ð Þ

��� ���q� ��1/q

+ φ 3ð Þ
q a1ð Þ

��� ���q + φ 3ð Þ
q a2ð Þ

��� ���q� 	
−

1
2s s + 1ð Þ φ 3ð Þ

q a1ð Þ
��� ���q��

+ 2s+1 − 1
2s s + 1ð Þ φ 3ð Þ

q a2ð Þ
��� ���q��1/qi

:

ð71Þ

Proof. By employing the definition of the q-digamma func-
tion φqðζÞ, it is easy to notice that the q-trigamma function

ζ⟶ φq′ðζÞ is completely monotonic on ð0,∞Þ. This ensures
that the function φð3Þ

q is again completely monotonic on ð0,
∞Þ for each q ∈ ð0, 1Þ and consequently is convex and non-
negative (see [26], p. 167). Now, by applying Corollary 27,
we extract that the inequality (71) is valid for q ∈ ð0, 1Þ.

As another application of inequality (71), we can deliver
the following inequalities for the q-trigamma and q-poly-
gamma functions and the analogue of harmonic numbers
Hnq defined by

Hnq =〠 qk
1 − qk , n ∈N: ð72Þ

So, from inequality (71), we use the equation

φq n + 1ð Þ = φq 1ð Þ − log qð ÞHnq, n ∈N: ð73Þ

Consequently, we obtain the following result.

Corollary 38. Suppose n ∈N , q > 1, and 0 < q < 1. Then, the
following inequality holds:

−
log qð ÞHnq

n
− φq′ A 1, n + 1ð Þð Þ

����
����

≤
n2

16
1

2r + 1

� �1/r
× φ 3ð Þ

q 1ð Þ
��� ���q + φ 3ð Þ

q n + 1ð Þ
��� ���q� 	nh

−
2s+1 − 1
2s s + 1ð Þ φ 3ð Þ

q 1ð Þ
��� ���q + 1

2s s + 1ð Þ φ 3ð Þ
q n + 1ð Þ

��� ���q� ��1/q

+ φ 3ð Þ
q 1ð Þ

��� ���q + φ 3ð Þ
q n + 1ð Þ

��� ���q� 	
−

1
2s s + 1ð Þ φ 3ð Þ

q 1ð Þ
��� ���q��

+ 2s+1 − 1
2s s + 1ð Þ φ 3ð Þ

q n + 1ð Þ
��� ���q��1/qi

:

ð74Þ

Proposition 39. Suppose n is an integer and q > 1. Then, the
following inequality holds:

Hn

n
− φ′ A 1, n + 1ð Þð Þ

����
���� ≤ n2

16
1

2r + 1

� �1/r

× φ 3ð Þ 1ð Þ
��� ���q + φ 3ð Þ n + 1ð Þ

��� ���q� 	
−

2s+1 − 1
2s s + 1ð Þ φ 3ð Þ 1ð Þ

��� ���q��


+ 1
2s s + 1ð Þ φ 3ð Þ n + 1ð Þ

��� ���q��1/q
+ φ 3ð Þ 1ð Þ

��� ���q + φ 3ð Þ n + 1ð Þ
��� ���q� 	n

−
1

2s s + 1ð Þ φ 3ð Þ 1ð Þ
��� ���q + 2s+1 − 1

2s s + 1ð Þ φ 3ð Þ n + 1ð Þ
��� ���q� ��1/q�

:

ð75Þ

Proof. From inequality (74), when q⟶ 1, we use the
relation
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limq⟶1 log qð ÞHnq = lim
q⟶1

log qð Þ
q − 1

� �
: q − 1ð ÞHnq


 �

= − lim
q⟶1

〠
n

k=1

1 − q
1 − qk = −Hn:

ð76Þ

We obtain the required result.

Remark 40. By using the equation

Hn = γ + φ n + 1ð Þ, ð77Þ

where γ is the Euler-Mascheroni constant, the inequality (75)
becomes

γ + φ n + 1ð Þ
n

− φ′ A 1, n + 1ð Þð Þ
����

���� ≤ n2

16
1

2r + 1

� �1/r

× φ 3ð Þ 1ð Þ
��� ���q + φ 3ð Þ n + 1ð Þ

��� ���q� 	
−

2s+1 − 1
2s s + 1ð Þ φ 3ð Þ 1ð Þ

��� ���q��


+ 1
2s s + 1ð Þ φ 3ð Þ n + 1ð Þ

��� ���q��1/q
+ φ 3ð Þ 1ð Þ

��� ���q + φ 3ð Þ n + 1ð Þ
��� ���q� 	n

−
1

2s s + 1ð Þ φ 3ð Þ 1ð Þ
��� ���q + 2s+1 − 1

2s s + 1ð Þ φ 3ð Þ n + 1ð Þ
��� ���q� ��1/q�

:

ð78Þ

5. Conclusion

In this paper, we have explored new k-fractional variants of
Hermite-Mercer-type integral inequalities for s-convex func-
tions. New results and novel connections are built for the left
and right sides of Hermite-Hadamard-type inequalities for
differentiable mappings whose derivatives in absolute values
at certain powers are s-convex in the second sense. New inte-
gral identities for differentiable mappings are obtained, and
related results are established. In the application viewpoint,
our findings illustrate new generalizations with the connec-
tion of special function theory (special means of real num-
bers and q-digamma function) and harmonic numbers. It is
quite open to think about Jensen-Hermite-Mercer variants
for generalized integral operators having nonlocal and non-
singular kernels by applying generalized convexities. How-
ever, it is not easy to extend such inequalities for other
existing types of convexities. The suggested scheme is viable,
effective, and computationally appealing in fractional differ-
ential equations, optimization theory, and other related areas
of convexity.
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In this paper, we introduce degenerate multi-poly-Bernoulli polynomials and derive some identities of these polynomials. We give
some relationship between degenerate multi-poly-Bernoulli polynomials degenerate Whitney numbers and Stirling numbers of the
first kind. Moreover, we define degenerate multi-poly-Bernoulli polynomials of complex variables, and then, we derive several
properties and relations.

1. Introduction

For any λ ∈ℝ/f0g (or ℂ/f0g), degenerate version of the
exponential function exλðtÞ is defined as follows (see [1–15])

exλ tð Þ≔ 1 + λtð Þxλ = 〠
∞

n=0
xð Þn,λ

tn

n!
, ð1Þ

where ðxÞ0,λ = 1 and ðxÞn,λ = xðx − λÞ⋯ ðx − ðn − 1ÞλÞ for n
≥ 1, (cf. [1–15]). It follows from (1) is limλ→0e

x
λðtÞ = ext. Note

that e1λðtÞ≔ eλðtÞ:
Carlitz [1] introduced the degenerate Bernoulli polyno-

mials as follows:

t
eλ tð Þ − 1 e

x
λ tð Þ = 〠

∞

n=0
βn x ; λð Þ t

n

n!
: ð2Þ

Upon setting x = 0, βnð0 ; λÞ≔ βnðλÞ are called the
degenerate Bernoulli numbers.

Note that

lim
λ→0

βn x ; λð Þ = Bn xð Þ, ð3Þ

where BnðxÞ are the familiar Bernoulli polynomials (cf. [1, 3,
4, 6, 8, 11, 12, 14, 16–22])

t
et − 1 e

xt = 〠
∞

n=0
Bn xð Þ t

n

n!
, tj j < 2πð Þ: ð4Þ

For k ∈ℤ, the polyexponential function EikðxÞ is defined
by (see [21])

Eik xð Þ = 〠
∞

n=1

xn

n − 1ð Þ!nk , k ∈ℤð Þ: ð5Þ

Setting k = 1 in (5), we have Ei1ðxÞ = ex − 1:
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The degenerate modified polyexponential function [12]
is defined, for k ∈ℤ and jxj < 1, by

Eik;λ xð Þ = 〠
∞

n=1

1ð Þn,λ
n − 1ð Þ!nk x

n: ð6Þ

Note that Ei1;λðxÞ = eλðxÞ − 1:
Let k ∈ℤ and λ ∈ℝ. The degenerate poly-Bernoulli poly-

nomials, cf. [12], are defined by

Eik;λ logλ 1 + tð Þð Þ
eλ tð Þ − 1 exλ tð Þ = 〠

∞

n=0
B kð Þ
n,λ xð Þ t

n

n!
, ð7Þ

logλ 1 + tð Þ = 〠
∞

n=1
λn−1 1ð Þn,1

λ

tn

n!
, λ ∈ℝð Þ, ð8Þ

where logλð1 + tÞ are called the degenerate version of the log-
arithm function (cf. [8, 12]), which is also the inverse func-
tion of the degenerate exponential function eλðtÞ as shown
below (cf. [8])

eλ logλ 1 + tð Þð Þ = logλ eλ 1 + tð Þð Þ = 1 + t: ð9Þ

Letting x = 0 in (7), BðkÞ
n,λð0Þ≔ BðkÞ

n,λ are called the type 2 degen-
erate poly-Bernoulli numbers.

The degenerate Stirling numbers of the first kind (cf.
[8, 13]) and second kind (cf. [4–6, 9, 17]) are defined,
respectively, by

1
k!

logλ 1 + tð Þð Þk = 〠
∞

n=k
S1,λ n, kð Þ t

n

n!
, k ≥ 0ð Þ, ð10Þ

and (cf. [1–27])

1
k!

eλ tð Þ − 1ð Þk = 〠
∞

n=k
S2,λ n, kð Þ t

n

n!
, k ≥ 0ð Þ: ð11Þ

Note that limλ→0 in (10) and (1.8), we have (cf. [8, 13])

log 1 + tð Þð Þk
k!

= 〠
∞

n=k
S1 n, kð Þ t

n

n!
k ≥ 0ð Þ, ð12Þ

and (cf. [4–6, 9, 17, 24])

et − 1ð Þk
k!

= 〠
∞

n=k
S2 n, kð Þ t

n

n!
k ≥ 0ð Þ, ð13Þ

where S1ðn, kÞ and S2ðn, kÞ are called the Stirling numbers
of the first kind and second kind.

The following paper is as follows. In Section 2, we define
the degenerate multi-poly-Bernoulli polynomials and num-
bers by using the degenerate multiple polyexponential func-
tions and derive some properties and relations of these
polynomials. In Section 3, we consider the degenerate
multi-poly-Bernoulli polynomials of a complex variable and

then we derive several properties and relations. Also, we
examine the results derived in this study [28, 29].

2. Degenerate Multi-Poly-Bernoulli
Polynomials and Numbers

Let k1, k2,⋯, kr ∈ℤ. The degenerate multiple polyexponen-
tial function Eik1,k2,⋯,kr ;λðxÞ is defined (cf. [15]) by

Eik1,k2,⋯,kr ;λ xð Þ = 〠
0<n1<n2<⋯<nr

1ð Þn1,λ ⋯ 1ð Þnr ,λx
nr

n1 − 1ð Þ!⋯ nr − 1ð Þ!nk11 ⋯ nkrr
,

ð14Þ

where the sum is over all integers n1, n2,⋯, nr satisfying
0 < n1 < n2 <⋯ < nr . Utilizing this function, Kim et al. [15]
introduced and studied the degenerate multi-poly-Genocchi
polynomials given by

2rEik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ
eλ tð Þ + 1ð Þr exλ tð Þ = 〠

∞

n=0
g k1,k2,⋯krð Þ
n,λ xð Þ t

n

n!
: ð15Þ

Inspired by the definition of degenerate multi-poly-Genocchi
polynomials, using the degenerate multiple polyexponential
function (14), we give the following definition.

Definition 1. Let k1, k2,⋯, kr ∈ℤ and λ ∈ℝ, we consider the
degenerate multi-poly-Bernoulli polynomials are given by

r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ
eλ tð Þ − 1ð Þr exλ tð Þ = 〠

∞

n=0
B

k1,k2,⋯,krð Þ
n,λ xð Þ t

n

n!
:

ð16Þ

Upon setting x = 0 in (16), the degenerate multi-poly-
Bernoulli polynomials reduce to the corresponding numbers,
namely, the type 2 degenerate multi-poly-Bernoulli numbers

B
ðk1,k2,⋯,krÞ
n,λ ð0Þ≔B

ðk1,k2,⋯,krÞ
n,λ .

Remark 2. As λ→ 0, the degenerate multi-poly-Bernoulli
polynomials reduce to the multi-poly-Bernoulli polynomials
given by

r!Eik1,k2,⋯,kr log 1 + tð Þð Þ
et − 1ð Þr ext = 〠

∞

n=0
B k1,k2,⋯,krð Þ

n xð Þ t
n

n!
: ð17Þ

Remark 3. Upon setting r = 1 in (16), the degenerate multi-
poly-Bernoulli polynomials reduce to the degenerate poly-
Bernoulli polynomials in (7).

Before going to investigate the properties of the degen-
erate multi-poly-Bernoulli polynomials, we first give the
following result.
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Proposition 4 (Derivative Property). For k1, k2,⋯, kr ∈ℤ
and λ ∈ℝ, we have

d
dx

Eik1 ,k2 ,⋯,kr ;λ xð Þ = 1
x
Eik1 ,k2 ,⋯,kr−1;λ xð Þ: ð18Þ

Proof. By (14), we see that

d
dx

Eik1,k2,⋯,kr ;λ xð Þ = d
dx

〠
0<n1<n2<⋯<nr

� 1ð Þn1,λ ⋯ 1ð Þnr ,λx
nr

n1 − 1ð Þ!⋯ nr − 1ð Þ!nk11 ⋯ nkrr

= 1
x

〠
0<n1<n2<⋯<nr

� 1ð Þn1,λ ⋯ 1ð Þnr ,λx
nr

n1 − 1ð Þ!⋯ nr − 1ð Þ!nk11 ⋯ nkr−1r

= 1
x
Eik1,k2,⋯,kr−1;λ xð Þ:

ð19Þ

Theorem 5. The following relationship

B
k1 ,k2 ,⋯,krð Þ
n,λ xð Þ = 〠

n

j=0

n

j

 !
B

k1 ,k2 ,⋯krð Þ
n−j,λ xð Þj,λ, ð20Þ

holds for n ≥ 0.

Proof. Recall Definition 1 that

〠
∞

n=0
B

k1,k2,⋯,krð Þ
n,λ xð Þ t

n

n!
=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr exλ tð Þ

= 〠
∞

n=0
B

k1,k2,⋯,krð Þ
n,λ

tn

n!
〠
∞

j=0
xð Þj,λ

tm

m!

= 〠
∞

n=0
〠
n

j=0

n

j

 !
B

k1,k2,⋯krð Þ
n−j,λ xð Þj,λ

 !
tn

n!
,

ð21Þ

which gives the asserted result (20).

The degenerate Bernoulli polynomials of order r are
given by the following series expansion:

〠
∞

n=0
β rð Þ
n x ; λð Þ t

n

n!
= t

eλ tð Þ − 1

� �r

exλ tð Þ, ð22Þ

(cf. [3, 6, 8, 17]).
We provide the following theorem.

Theorem 6. For n ≥ r. Then

B
k1 ,k2 ,⋯,krð Þ
n,λ xð Þ = 〠

n+r

m=0
〠

0<n1<n2<⋯<nr≤m

�
n + r

m

 !
β rð Þ
n+r−m x ; λð ÞS1:λ m, nrð Þ

×
n!r!nr! 1ð Þn1 ,λ ⋯ 1ð Þnr ,λ

n + rð Þ! n1 − 1ð Þ!⋯ nr − 1ð Þ!nk11 ⋯ nkrr
:

ð23Þ

Proof. Recall from Definition 1 and (10) that

〠
∞

n=0
B

k1,k2,⋯,krð Þ
n,λ xð Þ t

n

n!
= r!exλ tð Þ

eλ tð Þ − 1ð Þr 〠
0<n1<n2<⋯<nr

� 1ð Þn1,λ ⋯ 1ð Þnr ,λ logλ 1 + tð Þð Þnr
n1 − 1ð Þ!⋯ nr − 1ð Þ!nk11 ⋯ nkrr

= r!exλ tð Þ
eλ tð Þ − 1ð Þr 〠

0<n1<n2<⋯<nr

� 1ð Þn1,λ ⋯ 1ð Þnr ,λnr!
n1 − 1ð Þ!⋯ nr − 1ð Þ!nk11 ⋯ nkrr

� 〠
∞

m=nr
S1:λ m, nrð Þ t

m

m!

= r!
tr

trexλ tð Þ
eλ tð Þ − 1ð Þr

� �
〠
∞

m=nr

� 〠
0<n1<n2<⋯<nr≤m

1ð Þn1,λ ⋯ 1ð Þnr ,λS1:λ m, nrð Þnr!
n1 − 1ð Þ!⋯ nr − 1ð Þ!nk11 ⋯ nkrr

 !

� t
m

m!
= r!
tr
〠
∞

l=0
β

rð Þ
l x ; λð Þ t

l

l!
〠
∞

m=nr

� 〠
0<n1<n2<⋯<nr≤m

1ð Þn1,λ ⋯ 1ð Þnr ,λS1:λ m, nrð Þnr!
n1 − 1ð Þ!⋯ nr − 1ð Þ!nk11 ⋯ nkrr

 !

� t
m

m!
= 〠

∞

n=r
〠
n

m=0

n

m

 !
〠

0<n1<n2<⋯<nr≤m

� r!nr! 1ð Þn1,λ ⋯ 1ð Þnr ,λ
n1 − 1ð Þ!⋯ nr − 1ð Þ!nk11 ⋯ nkrr

� β rð Þ
n−m x ; λð ÞS1:λ m, nrð Þ t

n−r

n!
,

ð24Þ

which means the claimed result (23).

Theorem 7. The following formula

B
k1 ,k2 ,⋯,krð Þ
n,λ x + yð Þ = 〠

n

j=0

n

j

 !
yð Þj,λB

k1 ,k2 ,⋯,krð Þ
n−j,λ xð Þ, ð25Þ

is valid for k1, k2,⋯, kr ∈ℤ and n ≥ 0.
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Proof. In view of Definition 1, we see that

〠
∞

n=0
B

k1,k2,⋯,krð Þ
n,λ x + yð Þ t

n

n!
=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr ex+yλ tð Þ

= 〠
∞

i=0
B

k1,k2,⋯,krð Þ
i,λ xð Þ t

i

i!
〠
∞

j=0
yð Þj,λ

tm

m!

= 〠
∞

n=0
〠
n

j=0

n

j

 !
yð Þm,λB

k1,k2,⋯,krð Þ
n−j,λ xð Þ

 !
tn

n!
,

ð26Þ

which implies the desired result (25).

Theorem 8. The following relation

d
dx

B
k1 ,k2 ,⋯,krð Þ
n,λ xð Þ= n

l=1
n

l

 !
B

k1 ,k2 ,⋯,krð Þ
n−l,λ xð Þ −λð Þl−1 l − 1ð Þ!,

ð27Þ

is valid for k1, k2,⋯, kr ∈ℤ and n ≥ 0.

Proof. To investigate the derivative property ofBðk1,k2,⋯,krÞ
n,λ ðxÞ

that

〠
∞

n=0

d
dx

B
k1,k2,⋯,krð Þ
n,λ xð Þ t

n

n!
=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr
d
dx

exλ tð Þ

= 〠
∞

n=0
B

k1,k2,⋯,krð Þ
n,λ xð Þ t

n

n!
1
λ
ln 1 + λtð Þ

= 〠
∞

n=0
B

k1,k2,⋯,krð Þ
n,λ xð Þ t

n

n!

 !
〠
∞

l=1

−1ð Þl+1
l

λl−1tl

= 〠
∞

n=0
〠
∞

l=1
B

k1,k2,⋯,krð Þ
n,λ xð Þ −1ð Þl+1

l
λl−1

tn+l

n!
,

ð28Þ

which provides the asserted result (27).

We here give a relation including the degenerate multi-
poly-Bernoulli polynomials with numbers and the degener-
ate Stirling numbers of the second kind.

Theorem 9. The following correlation

B
k1 ,k2 ,⋯,krð Þ
n,λ xð Þ = 〠

n

m=0
〠
m

l=0

n

m

 !
xð ÞlS2,λ m, lð ÞB k1 ,k2 ,⋯,krð Þ

n−m,λ ,

ð29Þ

is valid for k1, k2,⋯, kr ∈ℤ and n ≥ 0.

Proof. By means of Definition 1, we attain that

〠
∞

n=0
B

k1,k2,⋯,krð Þ
n,λ xð Þ t

n

n!
=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr exλ tð Þ

=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr eλ tð Þ − 1 + 1ð Þx

=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr 〠
∞

l=0

x

l

 !
eλ tð Þ − 1ð Þl

= 〠
∞

n=0
B

k1,k2,⋯,krð Þ
n,λ

tn

n!
〠
∞

l=0
xð Þl 〠

∞

m=l
S2,λ m, lð Þ t

m

m!

= 〠
∞

n=0
〠
n

m=0
〠
m

l=0

n

m

 !
xð ÞlS2,λ m, lð ÞB k1,k2,⋯,krð Þ

n−m,λ

 !
tn

n!
,

ð30Þ

where the notation ðxÞl is falling factorial that is defined
by ðxÞ0 = 1 and ðxÞn = xðx − 1Þ⋯ ðx − ðn − 1ÞÞ for n ≥ 1,
(cf. [1, 2, 5–14, 21, 23, 24]). So, the proof is completed.

Kim [5] introduced the degenerate Whitney numbers are
given by

emλ tð Þ − 1ð Þk
mkk!

eαλ tð Þ = 〠
∞

n=k
Wm,α n, k λjð Þ t

n

n!
, k ≥ 0ð Þ: ð31Þ

Kim also provided several correlations including the degen-
erate Stirling numbers of the second kind and the degenerate
Whitney numbers (see [5]).

We now give a correlation as follows.

Theorem 10. For k1, k2,⋯kr ∈ℤ and n ≥ 0, we have

B
k1 ,k2 ,⋯,krð Þ
n,λ xu + αð Þ = 〠

n

m=0
〠
m

l=0

n

m

 !
ul xð ÞlWu,α m, l λjð ÞB k1 ,k2 ,⋯,krð Þ

n−m,λ :

ð32Þ

Proof. Using (31) and Definition 1, we acquire that

〠
∞

n=0
B

k1,k2,⋯,krð Þ
n,λ xu + αð Þ t

n

n!

=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr eαλ tð Þexuλ tð Þ

=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr eαλ tð Þ euλ tð Þ − 1 + 1ð Þx

=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr eαλ tð Þ〠
∞

l=0

x

l

 !
euλ tð Þ − 1ð Þl

=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr 〠
∞

l=0
ul xð Þl

euλ tð Þ − 1ð Þl
l!ul

eαλ tð Þ
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=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr 〠
∞

l=0
ul xð Þl

euλ tð Þ − 1ð Þl
l!ul

eαλ tð Þ

= 〠
∞

n=0
B

k1,k2,⋯,krð Þ
n,λ

tn

n!
〠
∞

n=0
〠
n

l=0
ul xð ÞlWu,α n, l λjð Þ t

n

n!

= 〠
∞

n=0
〠
n

m=0
〠
m

l=0

n

m

 !
ul xð ÞlWu,α m, l λjð ÞB k1,k2,⋯,krð Þ

n−m,λ

 !
tn

n!
,

ð33Þ

which implies the asserted result (32).

3. Degenerate Multi-Poly-Bernoulli
Polynomials of Complex Variable

In [25], Kim et al. defined the degenerate sine sinλt and
cosine cosλt functions by

sin xð Þ
λ tð Þ = eixλ tð Þ − e−ixλ tð Þ

2i and cos xð Þ
λ tð Þ = eixλ tð Þ + e−ixλ tð Þ

2 ,

ð34Þ

where i =
ffiffiffiffiffiffi
−1

p
. Note that limλ→0sin

ðxÞ
λ ðtÞ = sin xt and

limλ→0cos
ðxÞ
λ ðtÞ = cos xt. From (34), it is readily that

eixλ tð Þ = cos xð Þ
λ tð Þ + isin xð Þ

λ tð Þ: ð35Þ

By these functions in (34), the degenerate sine-
polynomials Sk,λðx, yÞ and degenerate cosine-polynomials
Ck,λðx, yÞ are introduced (cf. [25]) by

〠
∞

n=0
Sk,λ x, yð Þ t

n

n!
= exλ tð Þsin yð Þ

λ tð Þ, ð36Þ

〠
∞

n=0
Ck,λ x, yð Þ t

n

n!
= exλ tð Þcos yð Þ

λ tð Þ: ð37Þ

Several properties of these polynomials in (36) and (37) are
studied and investigated in [25]. Also, by means of these
functions, Kim et al. [25] introduced the degenerate Euler
and Bernoulli polynomials of complex variable and investi-
gate some of their properties. Motivated and inspired by
these considerations above, we define type 2 degenerate
multi-poly-Bernoulli polynomials of complex variable as
follows.

Definition 11. Let k1, k2,⋯, kr ∈ℤ. We define a new form of
the degenerate multi-poly-Bernoulli polynomials of complex
variable by the following generating function:

r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ
eλ tð Þ − 1ð Þr ex+iyλ tð Þ = 〠

∞

n=0
B k1,k2,⋯,krð Þ
n,λ x + iyð Þ t

n

n!
:

ð38Þ

By (34) and (38), we observe that

〠
∞

n=0

B k1,k2,⋯,krð Þ
n,λ x + iyð Þ − B k1,k2,⋯,krð Þ

n,λ x − iyð Þ
� �

2i
tn

n!

=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr exλ tð Þsin yð Þ
λ tð Þ,

ð39Þ

and

〠
∞

n=0

B k1,k2,⋯,krð Þ
n,λ x + iyð Þ + B k1,k2,⋯,krð Þ

n,λ x − iyð Þ
� �

2
tn

n!

=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr exλ tð Þcos yð Þ
λ tð Þ:

ð40Þ

In view of (39) and (40), we consider the degenerate

multi-poly-sine-Bernoulli polynomials Bðk1,k2,⋯,kr ;SÞ
n,λ ðx, yÞ

with two parameters and the degenerate multi-poly-cosine-

Bernoulli polynomials Bðk1,k2,⋯,kr ;CÞ
n,λ ðx, yÞ with two parame-

ters as follows:

〠
∞

n=0
B k1,k2,⋯,kr ;Sð Þ
n,λ x, yð Þ t

n

n!
=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr exλ tð Þsin yð Þ
λ tð Þ,

ð41Þ

〠
∞

n=0
B k1,k2,⋯,kr ;Cð Þ
n,λ x, yð Þ t

n

n!
=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr exλ tð Þcos yð Þ
λ tð Þ:

ð42Þ

Note that

lim
λ→0

B k1,k2,⋯,kr ;Sð Þ
n,λ x, yð Þ≔ B k1,k2,⋯,kr ;Sð Þ

n x, yð Þ and

lim
λ→0

B k1,k2,⋯,kr ;Cð Þ
n,λ x, yð Þ≔ B k1,k2,⋯,kr ;Cð Þ

n x, yð Þ,
ð43Þ

which are multi-poly-sine-Bernoulli polynomials

Bðk1,k2,⋯,kr ;SÞ
n ðx, yÞ and multi-poly-cosine-Bernoulli polyno-

mials Bðk1,k2,⋯,kr ;CÞ
n ðx, yÞ with two parameters.

By (39)-(42), we see that

B k1,k2,⋯,kr ;Sð Þ
n,λ x, yð Þ =

B k1,k2,⋯,krð Þ
n,λ x + iyð Þ − B k1,k2,⋯,krð Þ

n,λ x − iyð Þ
� �

2i ,

B k1,k2,⋯,kr ;Cð Þ
n,λ x, yð Þ =

B k1,k2,⋯,krð Þ
n,λ x + iyð Þ + B k1,k2,⋯,krð Þ

n,λ x − iyð Þ
� �

2 :

ð44Þ

We now give the two summation formulae by the follow-
ing theorem.
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Theorem 12. For k1, k2,⋯, kr ∈ℤ and n ≥ 0, we have

B k1 ,k2 ,⋯,krð Þ
n,λ x + iyð Þ = 〠

n

m=0

n

m

 !
B k1 ,k2 ,⋯krð Þ
n−m,λ xð Þ iyð Þm,λ, ð45Þ

B k1 ,k2 ,⋯,krð Þ
n,λ x + iyð Þ = 〠

n

m=0

n

m

 !
B k1 ,k2 ,⋯krð Þ
n−m,λ x + iyð Þm,λ:

ð46Þ

Proof. The proofs of this theorem can be done by using the
same proof methods used in Theorems 5 and 7. So, we omit
the proofs.

We here provide the two derivative formulae by the fol-
lowing theorem.

Theorem 13. For k1, k2,⋯, kr ∈ℤ and n ≥ 0, we have

d
dt

B k1 ,k2 ,⋯,krð Þ
n,λ x + iyð Þ = nB k1 ,k2 ,⋯,krð Þ

n−1,λ x + iyð Þ,

d
dx

B
k1 ,k2 ,⋯,krð Þ
n,λ x + iyð Þ= n

l=1
n

l

 !
B

k1 ,k2 ,⋯,krð Þ
n−l,λ x + iyð Þ −λð Þl−1 l − 1ð Þ!:

ð47Þ

Proof. The proofs of this theorem can be done by using the
same proof methods used in Theorem 8. So, we omit the
proofs.

We give the following theorem.

Theorem 14. For k1, k2,⋯, kr ∈ℤ and n ≥ 0, we have

B k1 ,k2 ,⋯,kr ;Sð Þ
n,λ x, yð Þ= n

l=0
n

l

 !
B k1 ,k2 ,⋯,krð Þ
n−l,λ Sl,λ x, yð Þ,

B k1 ,k2 ,⋯,kr ;Cð Þ
n,λ x, yð Þ= n

l=0
n

l

 !
B k1 ,k2 ,⋯,krð Þ
n−l,λ Cl,λ x, yð Þ:

ð48Þ

Proof. From (36), (37), and (38), we get

〠
∞

n=0
B k1,k2,⋯,kr ;Sð Þ
n,λ x, yð Þ t

n

n!

=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr exλ tð Þsin yð Þ
λ tð Þ

= 〠
∞

n=0
B k1,k2,⋯,krð Þ
n,λ

tn

n!
〠
∞

n=0
Sn,λ x, yð Þ t

n

n!

=∞
n=0

n
l=0

n

l

 !
B k1,k2,⋯,krð Þ
n−l,λ Sl,λ x, yð Þ

 !
tn

n!
,

〠
∞

n=0
B k1,k2,⋯,kr ;Cð Þ
n,λ x, yð Þ t

n

n!

=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr exλ tð Þcos yð Þ
λ tð Þ

= 〠
∞

n=0
B k1,k2,⋯,krð Þ
n,λ

tn

n!
〠
∞

n=0
Cn,λ x, yð Þ t

n

n!

=∞
n=0

n
l=0

n

l

 !
B k1,k2,⋯,krð Þ
n−l,λ Cl,λ x, yð Þ

 !
tn

n!
,

ð49Þ

which complete the proof of the theorem.

We note that (cf. [25])

sin yð Þ
λ tð Þ=∞

n=1
n−1
2½ �

k=0 λ
n−2k−1 −1ð Þky2k+1S1,λ n, 2k + 1ð Þ t

n

n!
, ð50Þ

cos yð Þ
λ tð Þ=∞

n=0
n
2½ �
k=0λ

n−2k −1ð Þky2kS1,λ n, 2kð Þ t
n

n!
: ð51Þ

We give the following theorem.

Theorem 15. For k1, k2,⋯, kr ∈ℤ and n ≥ 0, we have

B k1 ,k2 ,⋯,kr ;Sð Þ
n,λ x, yð Þ= n

l=1
l−1
2½ �

k=0

n

l

 !
B k1 ,k2 ,⋯,krð Þ
n−l,λ

� xð Þλl−2k−1 −1ð Þky2k+1S1,λ l, 2k + 1ð Þ,

B k1 ,k2 ,⋯,kr ;Cð Þ
n,λ x, yð Þ= n

l=1
l
2½ �
k=0

n

l

 !
B k1 ,k2 ,⋯,krð Þ
n−l,λ

� xð Þλl−2k−1 −1ð Þky2k+1S1,λ l, 2k + 1ð Þ,
ð52Þ

where the notation ½·� is Gauss’ notation and represents the
maximum integer which does not exceed a number in the
square bracket.

Proof. By (41)–(51), we observe that

〠
∞

n=0
B k1,k2,⋯,kr ;Sð Þ
n,λ x, yð Þ t

n

n!

= 〠
∞

n=0
B k1,k2,⋯,krð Þ
n,λ xð Þt

n

n!

∞

n=1

n−1
2½ �

k=0
λn−2k−1 −1ð Þky2k+1S1,λ n, 2k + 1ð Þ t

n

n!

=∞
n=0

n
l=1

n

l

 !
B k1,k2,⋯,krð Þ
n−l,λ xð Þ

l−1
2½ �

k=0 λ
l−2k−1 −1ð Þky2k+1S1,λ l, 2k + 1ð Þ

 !
tn

n!
,
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〠
∞

n=0
B k1,k2,⋯,kr ;Cð Þ
n,λ x, yð Þ t

n

n!

=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr exλ tð Þcos yð Þ
λ tð Þ

= 〠
∞

n=0
B k1,k2,⋯,krð Þ
n,λ xð Þt

n

n!

∞

n=1

n
2½ �
k=0

λn−2k −1ð Þky2kS1,λ n, 2kð Þ t
n

n!

=∞
n=0

n
l=1

n

l

 !
B k1,k2,⋯,krð Þ
n−l,λ xð Þ

l
2½ �
k=0λ

l−2k −1ð Þky2kS1,λ l, 2kð Þ
 !

tn

n!
:

ð53Þ

So, the proof is completed.

We give the following proposition.

Proposition 16. The following relations

B k1 ,k2 ,⋯,kr ;Sð Þ
n,λ x + u, yð Þ= n

l=0
n

l

 !
B k1 ,k2 ,⋯,kr ;Sð Þ
n−l,λ x, yð Þ uð Þl,λ,

B k1 ,k2 ,⋯,kr ;Cð Þ
n,λ x + u, yð Þ= n

l=0
n

l

 !
B k1 ,k2 ,⋯,kr ;Cð Þ
n−l,λ x, yð Þ uð Þl,λ:

ð54Þ

hold for k1, k2,⋯, kr ∈ℤ,u ∈ℂ and n ≥ 0.

Proof. The proofs of this proposition can be done by utilizing
the same proof methods used in Theorem 7. So, we omit the
proofs.

Upon setting x = 0 in (41) and (42), we consider the
degenerate multi-poly-sine-Bernoulli polynomials

Bðk1,k2,⋯,kr ;SÞ
n,λ ðyÞ and the degenerate multi-poly-cosine-Ber-

noulli polynomials Bðk1,k2,⋯,kr ;CÞ
n,λ ðyÞ as follows

〠
∞

n=0
B k1,k2,⋯,kr ;Sð Þ
n,λ yð Þ t

n

n!
=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr sin yð Þ
λ tð Þ,

ð55Þ

〠
∞

n=0
B k1,k2,⋯,kr ;Cð Þ
n,λ yð Þ t

n

n!
=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr cos yð Þ
λ tð Þ:

ð56Þ
We now provide the following theorem.

Theorem 17. For k1, k2,⋯, kr ∈ℤ and n > 0, we have

B
k1 ,k2 ,⋯,kr ;Cð Þ
n,λ x, yð Þ = 〠

n

m=0
〠
m

l=0

n

m

 !
xð ÞlS2,λ m, lð ÞB k1 ,k2 ,⋯,kr ;Cð Þ

n−m,λ

� yð ÞwithB k1 ,k2 ,⋯,kr ;Cð Þ
n,λ x, yð Þ = 0:

ð57Þ

Proof. The proofs of this theorem can be done by utilizing the
same proof methods in Theorem 9.

Let α be any fixed real (or complex) number. The Ber-
noulli polynomials of order α is defined by (cf. [25])

t
et − 1

� �α

ext = 〠
∞

n=0
B αð Þ
n xð Þ t

n

n!
, tj j < 2πð Þ: ð58Þ

When x = 0, the Bernoulli polynomials of order α reduce to
the Bernoulli numbers of order α, denoted by BðαÞ

n .We give
the following relation.

Theorem 18. For k1, k2,⋯, kr ∈ℤ and n ≥ 0, we have

B k1 ,k2 ,⋯,kr ;Sð Þ
n,λ 1, yð Þ − B k1 ,k2 ,⋯,kr ;Sð Þ

n,λ yð Þ

= n〠
n−1

l=0

n − 1

l

 !
B k1 ,k2 ,⋯,kr ;Sð Þ
n−1−l,λ yð ÞB −1ð Þ

l ,
ð59Þ

B k1 ,k2 ,⋯,kr ;Cð Þ
n,λ 1, yð Þ − B k1 ,k2 ,⋯,kr ;Cð Þ

n,λ yð Þ

= n〠
n−1

l=0

n − 1

l

 !
B k1 ,k2 ,⋯,kr ;Cð Þ
n−1−l,λ yð ÞB −1ð Þ

l :
ð60Þ

Proof. By (55) and (56), we acquire

〠
∞

n=0
B k1,k2,⋯,kr ;Sð Þ
n,λ 1, yð Þ t

n

n!
− 〠

∞

n=0
B k1,k2,⋯,kr ;Sð Þ
n,λ yð Þ t

n

n!

=
r!Eik1,k2,⋯,kr ;λ logλ 1 + tð Þð Þ

eλ tð Þ − 1ð Þr sin yð Þ
λ tð Þ eλ tð Þ − 1ð Þ

= 〠
∞

n=0
B k1,k2,⋯,kr ;Sð Þ
n,λ yð Þ t

n+1

n!
〠
∞

n=0
B −1ð Þ
n

tn

n!

= 〠
∞

n=0
〠
n

l=0

n

l

 !
B k1,k2,⋯,kr ;Sð Þ
n−l,λ yð ÞB −1ð Þ

l

tn+1

n!
:

ð61Þ

Thus, (59) is proved. We prove (60) in the same way.

Here is a special case of Theorem 18.

Corollary 19. For k1, k2,⋯, kr ∈ℤ and n ≥ 0, we have

B k1 ,k2 ,⋯,krð Þ
n,λ 1ð Þ − B k1 ,k2 ,⋯,krð Þ

n,λ = n〠
n−1

l=0

n − 1

l

 !
B k1 ,k2 ,⋯,krð Þ
n−1−l,λ B −1ð Þ

l ,

ð62Þ

which is a relation including the degenerate multi-poly-
Bernoulli polynomials.

4. Conclusions

In this paper, we defined the degenerate multi-poly-Bernoulli
polynomials by employing the degenerate multiple
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polyexponential functions. We have established some identi-
ties and relations between degenerate Whitney numbers and
degenerate Stirling numbers of the first kind. Also, we have
established addition formulas and derivative formulas of
degenerate multi-poly-Bernoulli polynomials. In the last
section, we have defined degenerate multi-poly-Bernoulli
polynomials of complex variables and then we have derived
several properties and relations.
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In this paper, we introduce and investigate several inclusion relationships of new k -uniformly classes of analytic functions defined
by the Mittag-Leffler function. Also, integral-preserving properties of these classes associated with the certain integral operator are
also obtained.

1. Introduction

Let A be the class of analytic functions in the open unit disc
U = fz : jzj < 1g which in the form

f zð Þ = z + 〠
∞

n=2
anz

n: ð1Þ

For f ðzÞ and gðzÞ ∈A , we say that the function f ðzÞ is
subordinate to gðzÞ, written symbolically as follows:

f ≺ g or f zð Þ ≺ g zð Þ, ð2Þ

if there exists a Schwarz function wðzÞ, which (by defini-
tion) is analytic in U with wð0Þ = 0 and jwðzÞj < 1, ðz ∈UÞ,
such that f ðzÞ = gðwðzÞÞ for all z ∈U. In particular, if the
function gðzÞ is univalent in U, then we have the following
equivalence relation (cf., e.g., [1, 2]; see also [3]):

f zð Þ ≺ g zð Þ⇔ f 0ð Þ ≺ g 0ð Þ and f Uð Þ ⊂ g Uð Þ: ð3Þ

Let f be as in (1) and hðzÞ = z +∑∞
n=2bnz

n, then Hada-
mard product (or convolution) of f ðzÞ and hðzÞ is given by

f ∗ hð Þ zð Þ = z + 〠
∞

k=2
akbkz

k z ∈Uð Þ: ð4Þ

For ζ, η ∈ ½0, 1Þ, we denote by S∗ðζÞ, CðζÞ, Kðζ, ηÞ, and
K∗ðζ, ηÞ the subclasses of A consisting of all analytic func-
tions which are, respectively, starlike of order ζ, convex of
order ζ, close-to-convex of order ζ and type η, and quasicon-
vex of order ζ and type η in U.

Also, let the subclasses USðμ, ζÞ, UCðμ, ζÞ, USKðμ, ζ, ηÞ,
andUCKðμ, ζ, ηÞ ofA ðη ∈ 0, 1Þ < 1 ; μ ≥ 0Þ be defined as fol-
lows:

US μ, ζð Þ = f ∈A : R
zf ′ zð Þ
f zð Þ − ζ

 !
> μ

zf ′ zð Þ
f zð Þ − 1

�����
�����

( )
,

UC μ, ζð Þ = f ∈A : R 1 + zf ″ zð Þ
f ′ zð Þ

− ζ

 !
> μ

zf ″ zð Þ
f ′ zð Þ

�����
�����

( )
,
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USK μ, ζ, ηð Þ =
(
f ∈A : ∃h ∈US μ, ζð Þ

s:t:R
zf ′ zð Þ
h zð Þ − ζ

 !
> μ

zf ′ zð Þ
h zð Þ − 1
�����

�����
)

UCK μ, ζ, ηð Þ = f ∈A : ∃h ∈UC μ, ζð Þ
8<
:
s:t:R

zf ′ zð Þ
� �

′

h′ zð Þ
− ζ

0
@

1
A > μ

zf ′ zð Þ
� �

′

h′ zð Þ
− 1

������
������
9=
;:

ð5Þ

We note that

US 0, ζð Þ = S∗ ζð Þ, UC 0, ζð Þ = C ζð Þ,
USK 0, ζ, ηð Þ = K ζ, ηð Þ andUCK 0, ζ, ηð Þ

= K∗ ζ, ηð Þ 0 ≤ ζ ; η < 1ð Þ:
ð6Þ

Moreover, let qμ,ζðzÞ be an analytic function which maps

U onto the conic domain Φμ,ζ = fu + iv : u > kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu − 1Þ2 + v2

q
+ ζg such that 1 ∈Φμ,ζ defined as follows:

where uðzÞ = ðz − ffiffiffi
μ

p Þ/ð1 − ffiffiffi
μ

p
zÞ and ςðμÞ is such that μ =

cosh ðπς′ðzÞ/4ςðzÞÞ: By virtue of properties of the conic
domain Φμ,ζ (cf., e.g., [4, 5]), we have

R qμ,ζ zð Þ
n o

> μ + ζ

μ + 1 : ð8Þ

Making use of the principal of subordination and the def-
inition of qμ,ζðzÞ, we may rewrite the subclasses USðμ, ζÞ, U
Cðμ, ζÞ, USKðμ, ζ, ηÞ, and UCKðμ, ζ, ηÞ as follows:

US μ, ζð Þ = f ∈A :
zf ′ zð Þ
f zð Þ ≺ qμ,ζ zð Þ

( )
,

UC μ, ζð Þ = f ∈A : 1 + zf ′′ zð Þ
f ′ zð Þ

≺ qμ,ζ zð Þ
( )

,

USK μ, ζ, ηð Þ = f ∈A : ∃h ∈US μ, ηð Þ s:t: zf ′ zð Þ
h zð Þ ≺ qμ,ζ zð Þ

( )

ð9Þ

and

UCK μ, ζ, ηð Þ = f ∈A : ∃h ∈UC μ, ζð Þ
8<
:
s:t:

zf ′ zð Þ
� �

′

h′ zð Þ
≺ qμ,ζ zð Þ

9=
;:

ð10Þ

Attiya [6] introduced the operator Hγ,k
α,βð f Þ, where

Hγ,k
α,βð f Þ: A ⟶A is defined by

Hγ,k
α,β fð Þ = μ

γ,k
α,β ∗ f zð Þ z ∈Uð Þ, ð11Þ

with β, γ ∈ℂ, Re ðαÞ >max f0, Re ðkÞ − 1g and Re ðkÞ > 0.
Also, Re ðαÞ = 0 when Re ðkÞ = 1; β ≠ 0: Here, μγ,kα,β is the

generalized Mittag–Leffler function defined by [7], see also
[6], and the symbol (∗) denotes the Hadamard product.

Due to the importance of the Mittag–Leffler function, it is
involved in many problems in natural and applied science. A
detailed investigation of the Mittag–Leffler function has been
studied by many authors (see, e.g., [7–12]).

qμ,ζ zð Þ =

1 + 1 − 2ζð Þz
1 − z

μ = 0ð Þ,

1 − ζ

1 − μ2
cos 2

π
cos−1μ
� �

i log 1 + ffiffiffi
z

p
1 − ffiffiffi

z
p

� 	
−
μ2 − ζ

1 − μ2
0 < μ < 1ð Þ,

1 + 2 1 − ζð Þ
π2 log 1 + ffiffiffi

z
p

1 − ffiffiffi
z

p

 �2

μ = 1ð Þ,

1 − ζ

μ2 − 1 sin π

2ς μð Þ
ðu zð Þffiffi

μ
p

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2t2

pq
8><
>:

9>=
>; + μ2 − ζ

μ2 − 1 μ > 1ð Þ,

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð7Þ
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Attiya [6] noted that

Hγ,k
α,β fð Þ zð Þ = z + 〠

∞

n=2

Γ γ + nkð ÞΓ α + βð Þ
Γ γ + kð ÞΓ β + αnð Þn! anz

n: ð12Þ

Also, Attiya [6] showed that

z Hγ,k
α,β

�
f zð Þð Þ′ = γ + k

k


 �
Hγ+1,k

α,β f zð Þ
� �

−
γ

k
Hγ,k

α,β f zð Þ
� �

,

ð13Þ

and

z Hγ,k
α,β+1

�
f zð Þð Þ′ = α + β

α


 �
Hγ,k

α,β f zð Þ
� �

−
β

α
Hγ,k

α,β+1 f zð Þ
� �

:

ð14Þ

Next, by using the operatorHγ,k
α,βð f Þ, we introduce the fol-

lowing subclasses of analytic functions in U

USγβ μ, ζð Þ = f ∈A : Hγ,k
α,β f zð Þ ∈US μ, ζð Þ

n o
,

UCγ
β μ, ζð Þ = f ∈A : Hγ,k

α,β f zð Þ ∈UC μ, ζð Þ
n o

,

USKγ
β μ, ζ, ηð Þ = f ∈A : Hγ,k

α,β f zð Þ ∈USK μ, ζ, ηð Þ
n o

,

UCKγ
β μ, ζ, ηð Þ = f ∈A : Hγ,k

α,β f zð Þ ∈UCK μ, ζ, ηð Þ
n o

,

ð15Þ

where β, γ ∈ℂ, RðαÞ >max f0, RðkÞ − 1g and RðkÞ > 0.
Also, RðαÞ = 0 when RðkÞ = 1; β ≠ 0:

Also, we note that

f zð Þ ∈UCγ
β μ, ζð Þ⇔ zf ′ zð Þ ∈USγβ μ, ζð Þ, ð16Þ

f zð Þ ∈UCKγ
β μ, ζ, ηð Þ⇔ zf ′ zð Þ ∈USKγ

β μ, ζ, ηð Þ: ð17Þ

In this paper, we introduce several inclusion properties of
the classes USγβðμ, ζÞ, UCγ

βðμ, ζÞ, USKγ
βðμ, ζ, ηÞ, and UCKγ

β

ðμ, ζ, ηÞ: Also, integral-preserving properties of these classes
associated with generalized Libera integral operator are also
obtained.

2. Inclusion Properties Associated with Hγ,k
α,βfðzÞ

Lemma 1 (see [13]). If hðzÞ is convex univalent in U with
hð0Þ = 1 and RfξhðzÞ + ζg > 0ðζ ∈ℂÞ. Let pðzÞ be analytic
in U with pð0Þ = 1 which satisfy the following subordination
relation

p zð Þ + zp′ zð Þ
ξp zð Þ + ζ

≺ h zð Þ, ð18Þ

then

p zð Þ ≺ h zð Þ: ð19Þ

Lemma 2 (see [2]). If hðzÞ is convex univalent in U and let
w be analytic in U with RfwðzÞg ≥ 0: Let pðzÞ be analytic
in U and pð0Þ = hð0Þ which satisfy the following subordina-
tion relation

p zð Þ +w zð Þzp′ zð Þ ≺ h zð Þ, ð20Þ

then

p zð Þ ≺ h zð Þ: ð21Þ

Theorem 3. If Rðγ/kÞ > −ðμ + ζÞ/ðμ + 1Þ, then USγ+1β ðμ, ζÞ
⊂USγβðμ, ζÞ:

Proof. Let f ðzÞ ∈USγ+1β ðμ, ζÞ, put

p zð Þ =
z Hγ,k

α,β f zð Þ
� �

′

Hγ,k
α,β f zð Þ

z ∈Uð Þ, ð22Þ

we note that pðzÞ is analytic inU and pð0Þ = 1. From (13) and
(22), we have

Hγ+1,k
α,β f zð Þ
Hγ,k

α,β f zð Þ
= k
γ + k

p zð Þ + γ

k

� �
: ð23Þ

Differentiating (23) with respect to z, we obtain

z Hγ+1,k
α,β f zð Þ

� �
′

Hγ+1,k
α,β f zð Þ

= p zð Þ + zp′ zð Þ
p zð Þ + γ/kð Þ : ð24Þ

From the above relation and using (7), we may write

p zð Þ + zp′ zð Þ
p zð Þ + γ/kð Þ ≺ qμ,ζ zð Þ z ∈Uð Þ: ð25Þ

Since Rfqμ,ζðzÞg > ðμ + ζÞ/ðμ + 1Þ, we see that

R qμ,ζ zð Þ + γ

k

� �
> 0 z ∈Uð Þ: ð26Þ

Applying Lemma 1, it follows that pðzÞ ≺ qμ,ζðzÞ, that is,

f ðzÞ ∈USγβðμ, ζÞ.
Using the same technique in Theorem 3 with relation

(14), we have the following theorem.

Theorem 4. If Rðα/βÞ > −ðμ + ζÞ/ðμ + 1Þ, then USγβðμ, ζÞ ⊂
USγβ+1ðμ, ζÞ:
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Theorem 5. If Rðγ/kÞ > −ðμ + ζÞ/ðμ + 1Þ, then UCγ+1
β ðμ, ζÞ

⊂UCγ
βðμ, ζÞ.

Proof.Applying Theorem 3 and relation (16), we observe that

f zð Þ ∈UCγ+1
β μ, ζð Þ⇔ zf ′ zð Þ ∈USγ+1β μ, ζð Þ

⇒ zf ′ zð Þ ∈USγβ μ, ζð Þ⇔ f zð Þ ∈UCγ
β μ, ζð Þ,

ð27Þ

which evidently proves Theorem 5.

Similarly, we can prove the following theorem.

Theorem 6. If Rðα/βÞ > −ðμ + ζÞ/ðμ + 1Þ, then UCγ
βðμ, ζÞ ⊂

UCγ
β+1ðμ, ζÞ:

Theorem 7. If Rðγ/kÞ > −ðμ + ζÞ/ðμ + 1Þ, then USKγ+1
β ðμ, ζ

, ηÞ ⊂USKγ
βðμ, ζ, ηÞ:

Proof. Let f ðzÞ ∈USKγ+1
β ðμ, ζ, ηÞ. Then, there exists a func-

tion rðzÞ ∈USðμ, ζÞ such that

z Hγ+1,k
α,β f zð Þ

� �
′

r zð Þ ≺ qμ,ζ zð Þ: ð28Þ

We can choose the function hðzÞ such that Hγ+1,k
α,β hðzÞ =

rðzÞ. Then, hðzÞ ∈USγ+1β ðμ, ζÞ and

z Hγ+1,k
α,β f zð Þ

� �
′

Hγ+1,k
α,β h zð Þ

≺ qμ,ζ zð Þ: ð29Þ

Now, let

p zð Þ =
z Hγ,k

α,β f zð Þ
� �

′

Hγ,k
α,βh zð Þ

, ð30Þ

where pðzÞ is analytic in U with pð0Þ = 1. Since hðzÞ ∈USγ+1β

ðμ, ζÞ, by Theorem 3, we know that hðzÞ∈USγβðμ, ζÞ. Let

t zð Þ =
z Hγ,k

α,βh zð Þ
� �

′

Hγ,k
α,βh zð Þ

z ∈Uð Þ, ð31Þ

where tðzÞ is analytic in U with RftðzÞg > ðμ + ζÞ/ðμ + 1Þ:
Also, from(30), we note that

z Hγ,k
α,β f zð Þ

� �
′ =Hγ,k

α,βzf ′ zð Þ = Hγ,k
α,βh zð Þ

� �
p zð Þ: ð32Þ

Differentiating both sides of (32) with respect to z, we
obtain

z Hγ,k
α,βzf ′ zð Þ

� �
′

Hγ,k
α,βh zð Þ

=
z Hγ,k

α,βh zð Þ
� �

′

Hγ,k
α,βh zð Þ

p zð Þ + zp′ zð Þ

= t zð Þp zð Þ + zp′ zð Þ:
ð33Þ

Now, using (13) and (33), we obtain

Since Rðγ/kÞ > −ðμ + ζÞ/ðμ + 1Þ, we see that

R t zð Þ + γ

k

n o
> 0 z ∈Uð Þ: ð34Þ

Hence, applying Lemma 2, we can show that pðzÞ ≺ qμ,ζ

ðzÞ, so that f ðzÞ ∈USKγ
βðμ, ζ, ηÞ. This completes the proof

of Theorem 7.
Similarly, we can prove the following theorem.

Theorem 8. If Rðα/βÞ > −ðμ + ζÞ/ðμ + 1Þ, then USKγ
βðμ, ζ, η

Þ ⊂USKγ
β+1ðμ, ζ, ηÞ:

z Hγ,k
α,β f zð Þ

� �
′

Hγ,k
α,βh zð Þ

=
Hγ+1,k

α,β zf ′ zð Þ
Hγ+1,k

α,β h zð Þ
=
z Hγ,k

α,βzf ′ zð Þ
� �

′ + γ/kð ÞHγ,k
α,βzf ′ zð Þ

z Hγ,k
α,βh zð Þ

� �
′ + γ/kð ÞHγ,k

α,βh zð Þ

=
z Hγ,k

α,βzf ′ zð Þ
� �

′/Hγ,k
α,βh zð Þ

� �
+ γ/kð Þ z Hγ,k

α,β f zð Þ
� �

′/Hγ,k
α,βh zð Þ

� �
z Hγ,k

α,βh zð Þ
� �

′/Hγ,k
α,βh zð Þ

� �
+ γ/kð Þ

= t zð Þp zð Þ + zp′ zð Þ + γ/kð Þp zð Þ
t zð Þ + γ/kð Þ = p zð Þ + zp′ zð Þ

t zð Þ + γ/kð Þ :

ð34Þ
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We can also prove Theorem 9 by using Theorem 7 and
relation (17).

Theorem 9. If Rðγ/kÞ > −ðμ + ζÞ/ðμ + 1Þ, then UCKγ+1
β ðμ,

ζ, ηÞ ⊂UCKγ
βðμ, ζ, ηÞ:

Also, we obtain the following theorem.

Theorem 10. If Rðα/βÞ > −ðμ + ζÞ/ðμ + 1Þ, then UCKγ
βðμ, ζ

, ηÞ ⊂UCKγ
β+1ðμ, ζ, ηÞ:

Now, we obtain squeeze theorems for inclusion by com-
bining the above theorems as follows:

Combining both theorems 3 and 4, we have the following
corollary.

Corollary 11. If ðμ + ζÞ/ðμ + 1Þ > −min fRðγ/kÞ,Rðα/βÞg,
then

USγ+1β μ, ζð Þ ⊂USγβ μ, ζð Þ ⊂USγβ+1 μ, ζð Þ: ð36Þ

Combining both theorems 5 and 6, we have the following
corollary.

Corollary 12. If ðμ + ζÞ/ðμ + 1Þ > −min fRðγ/kÞ,Rðα/βÞg,
then

UCγ+1
β μ, ζð Þ ⊂UCγ

β μ, ζð Þ ⊂UCγ
β+1 μ, ζð Þ: ð37Þ

Combining both theorems 7 and 8, we have the following
corollary.

Corollary 13. If ðμ + ζÞ/ðμ + 1Þ > −min fRðγ/kÞ,Rðα/βÞg,
then

USKγ+1
β μ, ζ, ηð Þ ⊂USKγ

β μ, ζ, ηð Þ ⊂USKγ
β+1 μ, ζ, ηð Þ: ð38Þ

Combining both theorems 9 and 10, we have the follow-
ing corollary.

Corollary 14. If ðμ + ζÞ/ðμ + 1Þ > −min fRðγ/kÞ,Rðα/βÞg,
then

UCKγ+1
β μ, ζ, ηð Þ ⊂UCKγ

β μ, ζ, ηð Þ ⊂UCKγ
β+1 μ, ζ, ηð Þ: ð39Þ

3. Integral Preserving Properties
Associated with Fδ

The generalized Libera integral operator Fδ (see [14–16],
also, see related topics [17–19]) is defined by

Fδ fð Þ zð Þ = δ + 1
zδ

ðz
0
tδ−1 f tð Þdt, ð40Þ

where f ðzÞ ∈A and δ > −1:

Theorem 15. Let δ > −ðμ + ζÞ/ðμ + 1Þ. If f ∈USγβðμ, ζÞ, then
Fδð f Þ ∈USγβðμ, ζÞ:

Proof. Let f ∈USγβðμ, ζÞ and set

p zð Þ =
z Hγ,k

α,βFδ fð Þ zð Þ
� �

′

Hγ,k
α,βFδ fð Þ zð Þ

z ∈Uð Þ, ð41Þ

where pðzÞ is analytic in U with pð0Þ = 1. From definition of

Hγ,k
α,βð f Þ and (40), we have

z Hγ,k
α,βFδ fð Þ zð Þ

� �
′ = δ + 1ð ÞHγ,k

α,β f zð Þ − δHγ,k
α,βFδ fð Þ zð Þ:

ð42Þ

Then, by using (41) and (42), we obtain

δ + 1ð Þ
Hγ,k

α,β f zð Þ
Hγ,k

α,βFδ fð Þ zð Þ
= p zð Þ + δ: ð43Þ

Taking the logarithmic differentiation on both sides of
(43) and simple calculations, we have

p zð Þ + zp′ zð Þ
p zð Þ + δ

=
z Hγ,k

α,β f zð Þ
� �

′

Hγ,k
α,β f zð Þ

≺ qμ,ζ zð Þ: ð44Þ

Since Rðqμ,ζ + δÞ > ððμ + ζÞ/ðμ + 1Þ + δÞ > 0, by virtue of
Lemma 1, we conclude that pðzÞ ≺ qμ,ζðzÞ inU, which implies

that Fδð f Þ ∈USγβðμ, ζÞ.

Theorem 16. Let δ > −ðμ + ζÞ/ðμ + 1Þ. If f ∈UCγ
βðμ, ζÞ, then

Fδð f Þ ∈UCγ
βðμ, ζÞ.

Proof. By applying Theorem 15, it follows that

f zð Þ ∈UCγ
β μ, ζð Þ⇔ zf ′ zð Þ ∈USγβ μ, ζð Þ

⇒ Fδ zf ′
� �

zð Þ ∈USγβ μ, ζð Þ
⇔ z Fδ fð Þ zð Þð Þ′ ∈USγβ μ, ζð Þ
⇔ Fδ fð Þ zð Þ ∈UCγ

β μ, ζð Þ,

ð45Þ

which proves Theorem 16.

Theorem 17. Let δ > −ðμ + ζÞ/ðμ + 1Þ. If f ∈USKγ
βðμ, ζ, ηÞ,

then Fδð f Þ ∈USKγ
βðμ, ζ, ηÞ.
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Proof. Let f ðzÞ ∈USKγ
βðμ, ζ, ηÞ. Then, there exists a function

hðzÞ ∈USγβðμ, ζÞ such that

z Hγ,k
α,β f zð Þ

� �
′

Hγ,k
α,βh zð Þ

≺ qμ,ζ zð Þ: ð46Þ

Thus, we set

p zð Þ =
z Hγ,k

α,βFδ fð Þ zð Þ
� �

′

Hγ,k
α,βFδ hð Þ zð Þ

z ∈Uð Þ, ð47Þ

where pðzÞ is analytic in U with pð0Þ = 1. Since hðzÞ ∈U
Sγβðμ, ζÞ, we see from Theorem 15 that FδðhÞ ∈USγβðμ, ζÞ. Let

t zð Þ =
z Hγ,k

α,βFδ hð Þ zð Þ
� �

′

Hγ,k
α,βFδ hð Þ zð Þ

, ð48Þ

where tðzÞ is analytic in U with RftðzÞg > ðμ + ζÞ/ðμ + 1Þ.
Using (47), we have

Hγ,k
α,βzFδ ′ fð Þ zð Þ = Hγ,k

α,βFδ hð Þ zð Þ
� �

p zð Þ: ð49Þ

Differentiating both sides of (49) with respect to z and
simple calculations, we obtain

z Hγ,k
α,βzFδ ′ fð Þ zð Þ

� �
′

Hγ,k
α,βFδ hð Þ zð Þ

=
z Hγ,k

α,βFδ hð Þ zð Þ
� �

′

Hγ,k
α,βFδ hð Þ zð Þ

p zð Þ + zp′ zð Þ

= t zð Þp zð Þ + zp′ zð Þ:
ð50Þ

Now, using the identity (42) and (50), we obtain

Since δ > −ðμ + ζÞ/ðμ + 1Þ andRftðzÞg > ðμ + ζÞ/ðμ + 1Þ,
we see that

R t zð Þ + δf g > 0 z ∈Uð Þ: ð52Þ

Applying Lemma 2 into relation (51), it follows that pðzÞ
≺ qμ,ζðzÞ, which is Fδð f Þ ∈USKγ

βðμ, ζ, ηÞ.

We can deduce the integral-preserving property asserted
by 18 by using Theorem 17 and relation (17).

Theorem 18. Let δ > ð−μ + ζÞ/ðμ + 1Þ. If f ∈UCKγ
βðμ, ζ, ηÞ,

then Fδð f Þ ∈UCKγ
βðμ, ζ, ηÞ.
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The operators DCΦ and CΦD are defined by DCΦð f Þ = ð f ∘ΦÞ′ and CΦDð f Þ = f ′ ∘Φ where Φ is an analytic self-map of the unit
disc and f is analytic in the disc. A characterization is provided for boundedness and compactness of the products of
composition and differentiation from the spaces of fractional Cauchy transforms Fα to the Bloch-type spaces Bβ, where α > 0
and β > 0. In the case β < 2, the operator DCΦ : Fα ⟶ Bβ is compact ⇔DCΦ : Fα ⟶ Bβ is bounded ⇔Φ′ ∈ Bβ,ΦΦ′ ∈ Bβ and
kΦk∞ < 1. For β < 1, CΦD : Fα ⟶ Bβ is compact ⇔CΦD : Fα ⟶ Bβ is bounded ⇔Φ ∈ Bβ and kΦk∞ < 1.

1. Introduction

Let U = fz ∈ C : ∣z∣<1g and let HðUÞ denote the family of
functions analytic on U . Let M denote the Banach space of
complex Borel measures on T = fx ∈ C : jxj = 1g, endowed
with the total variation norm. For α > 0, the space Fα of
fractional Cauchy transforms is the family of functions of
the form

f zð Þ =
ð
T

1
1 − �xzð Þα dμ xð Þ zj j < 1ð Þ, ð1Þ

where μ ∈M. The principal branch of the logarithm is used
here. The space Fα is a Banach space, with norm

fk kFα
= inf μk k, ð2Þ

where μ varies over all measures inM for which (1) holds. The
families Fα have been studied extensively [1, 2]. Interest in
these spaces was first established in connection with the classi-
cal family S of normalized univalent functions. It is known that
S ⊆ Fα for any α > 2 [2]. The reference [2] also includes Mac-
Gregor’s construction of a function f ∈ S with f ∉ F2.

Let β > 0. The Bloch-type space Bβ is the Banach space of

functions analytic in U such that supz∈Uð1 − jzj2Þβj f ′ðzÞj
<∞, with norm

fk kBβ = f 0ð Þj j + supz∈U 1 − zj j2� �β
f ′ zð Þ�� ��: ð3Þ

The relation (1) implies that Fα ⊂ Bα+1, and there is a con-
stant C depending only on α such that k f kBα+1 ≤ Ck f kFα for
all f ∈ Fα.

LetΦ be an analytic self-map ofU . The composition oper-
ator CΦ is defined by CΦð f Þ = f ∘Φ for f ∈HðUÞ. The differ-
entiation operatorD is defined byDð f Þ = f ′. In this paper, the
products CΦDð f Þ = f ′ ∘Φ and DCΦð f Þ =Φ′ð f ′ ∘ΦÞ are
studied. Conditions on Φ are given, necessary and sufficient
to imply boundedness or compactness of CΦD : Fα ⟶ Bβ

and DCΦ : Fα ⟶ Bβ.
Products of composition and differentiation on the Bloch

space were studied by Ohno in [3]. In [4], Li and Stević
studied CΦD and DCΦ acting between the weighted Bergman
spaces and the Bloch-type spaces. In [5], Hibschweiler and
Portnoy studied these operators between Bergman and
Hardy spaces.
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2. Preliminary Results

Fix α > 0. For fixed z ∈U and for n = 0, 1,… , the relation (1)
yields a constant C depending only on n such that j f ðnÞðzÞj
≤ Ck f kFα

/ð1 − jzj2Þα+n [2].
For each w ∈U , k1/ð1 − �wzÞαkFα = 1 [2].
We follow the convention that C denotes a positive con-

stant, the precise value of which will differ from one appear-
ance to the next.

Lemma 1 and Lemma 2 will be used to develop test func-
tions for Fα. Proofs appear in [6].

Lemma 1. Fix α > 0. For w ∈U , define

hw zð Þ = 1 − wj j2
1 − �wzð Þα+1 z ∈Uð Þ: ð4Þ

Then, hw ∈ Fα, and there is a constant C such that
khwkFα ≤ C for all w ∈U .

Lemma 2. Fix α > 0. For w ∈U , define

kw zð Þ = 1 − wj j2� �2
1 − �wzð Þα+2 z ∈Uð Þ: ð5Þ

Then, kw ∈ Fα, and there is a constant C such that
kkwkFα

≤ C for all w ∈U .

3. The Operator DCΦ : Fα ⟶ Bβ

In [7], Shapiro proved that the condition kΦk∞ < 1 is neces-
sary for CΦ : X⟶ X to be compact, for Banach spaces X
obeying boundary regularity and Möbius invariance. In
particular, Shapiro’s result applies to the Lipschitz spaces
and thus, to the space Bγ when γ < 1 [8].

Theorem 3. Fix α > 0 and 0 < β < 2. Let Φ be an analytic self-
map of U .

DCΦ : Fα ⟶ Bβ is bounded⇔
Φ′ ∈ Bβ,ΦΦ′ ∈ Bβ and Φk k∞ < 1⇔

DCΦ : Fα ⟶ Bβ is compact:

ð6Þ

Proof. First, assume thatDCΦ : Fα ⟶ Bβ is bounded, that is,
there is a constant C such that kDCΦð f ÞkBβ ≤ Ck f kFα

for all

f ∈ Fα. It is clear that Φ′ =DCΦðzÞ ∈ Bβ and ΦΦ′ =DCΦðz2
/2Þ ∈ Bβ. Thus,

1 − zj j2� �β
Φ′′ zð Þ�� �� ≤ C, ð7Þ

and

1 − zj j2� �β
Φ zð ÞΦ′′ zð Þ + Φ′ zð Þ

� �2
����

���� ≤ C, ð8Þ

for all z ∈U . It follows that

sup
z∈U

1 − zj j2� �β
Φ′ zð Þ�� ��2 <∞, ð9Þ

and thus, Φ ∈ Bβ/2.
Let w ∈U and define

gw zð Þ = α + 1
1 − �Φ wð Þz� �α −

α 1 − Φ wð Þj j2� �
1 − �Φ wð Þz� �α+1 z ∈Uð Þ: ð10Þ

By Lemma 1 and the preliminary results, there is a
constant C independent ofw such that kgwkFα

≤ C, and thus,

kDCΦðgwÞkBβ = kðgw ′ ∘ΦÞΦ′kBβ ≤ C. It follows that

supz∈U 1 − zj j2� �β
gw

′′ Φ zð Þð Þ Φ′ zð Þ
� �2

+ gw ′ Φ zð Þð ÞΦ′′ zð Þ
����

���� ≤ C,

ð11Þ

for all w ∈U . Calculations yield gw ′ðΦðwÞÞ = 0 and

gw
′′ Φ wð Þð Þ = −α α + 1ð Þ �Φ wð Þ2

1 − Φ wð Þj j2� �α+2 : ð12Þ

The substitution z =w in (11) now yields

sup
w∈U

1 − wj j2� �β α α + 1ð Þ Φ wð Þj j2 Φ′ wð Þ�� ��2
1 − Φ wð Þj j2� �α+2 ≤ C, ð13Þ

and thus,

sup Φ wð Þj j>1/2
1 − wj j2� �β

Φ′ wð Þ�� ��2
1 − Φ wð Þj j2� �α+2 <∞: ð14Þ

By the relation (9),

sup Φ zð Þj j≤1/2
1 − wj j2� �β

Φ′ wð Þ�� ��2
1 − Φ wð Þj j2� �α+2 <∞: ð15Þ

Thus,

C = sup
w∈U

1 − wj j2� �β
Φ′ wð Þ�� ��2

1 − Φ wð Þj j2� �α+2 <∞: ð16Þ

It follows that

sup
w∈U

1 − wj j2� �β/2
Φ′ wð Þ�� ��

1 − Φ wð Þj j2� �β/2 ≤ sup
w∈U

1 − wj j2� �β/2
Φ′ wð Þ�� ��

1 − Φ wð Þj j2� � α+2ð Þ/2 <∞:

ð17Þ

By Xiao’s result [9], CΦ : Bβ/2 ⟶ Bβ/2 is bounded. Fur-
thermore, (16) yields
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1 − wj j2� �β/2
Φ′ wð Þ�� ��

1 − Φ wð Þj j2� �β/2 ≤ C 1 − Φ wð Þj j2� � α−β+2ð Þ/2
⟶ 0, ð18Þ

as jΦðwÞj⟶ 1. Thus, CΦ : Bβ/2 ⟶ Bβ/2 is compact [9], and
it follows as in [7] that kΦk∞ < 1. It has been established that
the conditions Φ′ ∈ Bβ,ΦΦ′ ∈ Bβ, and kΦk∞ < 1 are neces-
sary if DCΦ : Fα ⟶ Bβ is bounded.

Next, assume that Φ′ ∈ Bβ, ΦΦ′ ∈ Bβ, and kΦk∞ < 1. To
show thatDCΦ : Fα ⟶ Bβ is compact, let ð f nÞ be a bounded
sequence in Fα with f n ⟶ 0 uniformly on compact subsets
of U as n⟶∞. It is enough to prove that kDCΦð f nÞkBβ

⟶ 0 as n⟶∞. First, note that j f n ′ðΦð0ÞÞΦ′ð0Þj⟶ 0
as n⟶∞. For z ∈U , (9) yields

1 − zj j2� �β
DCΦ f nð Þ′ zð Þ�� �� = 1 − zj j2� �β

f n ′′ Φ zð Þð Þ Φ′ zð Þ
� �2

����
+ f n ′ Φ zð Þð ÞΦ′′ zð Þj

≤ C max wj j≤ Φk k∞ f n ′′ wð Þ�� ��
+ Φ′�� ��

Bβ
max wj j≤ Φk k∞ f n ′ wð Þ�� ��:

ð19Þ

Since f n ′ ⟶ 0 and f n ′′⟶ 0 uniformly on compact sub-

sets as n⟶∞, the argument shows that supz∈Uð1 − jzj2Þβj
ðDCΦ f nÞ′ðzÞj⟶ 0 as n⟶∞. Thus, kDCΦð f nÞkBβ ⟶ 0
as n⟶∞, and DCΦ : Fα ⟶ Bβ is compact, as required.

The remaining implication is clear, and the proof is
complete.

Theorem 4. Fix α > 0 and β ≥ 2. LetΦ be an analytic self-map
of U . Then,

DCΦ : Fα ⟶ Bβ is bounded⇔ ð20Þ

sup
z∈U

1 − zj j2� �β
Φ′′ zð Þ�� ��

1 − Φ zð Þj j2� �α+1 <∞, ð21Þ

and

sup
z∈U

1 − zj j2� �β
Φ′ zð Þ�� ��2

1 − Φ zð Þj j2� �α+2 <∞: ð22Þ

Proof. Fix α, β and Φ as described.
First, assume (21) and (22). Let f ∈ Fα. By (21) and the

introductory remarks in Section 2,

1 − zj j2� �β
f ′ Φ zð Þð Þ�� �� Φ′′ zð Þ�� �� ≤ 1 − zj j2� �β

Φ′′ zð Þ�� �� C fk kFα
1 − Φ zð Þj j2� �α+1

≤ C fk kFα
:

ð23Þ

A similar argument using (22) yields

1 − zj j2� �β
f ′′ Φ zð Þð Þ�� �� Φ′ zð Þ�� ��2 ≤ C fk kFα , ð24Þ

for all z ∈U . Thus, supz∈Uð1 − jzj2ÞβjðDCΦ f Þ′ðzÞj ≤ Ck f kFα
.

Since jðDCΦ f Þð0Þj ≤ Ck f kFα
, it now follows that

kDCΦð f ÞkBβ ≤ Ck f kFα
, as required.

For the converse, assume that kDCΦð f ÞkBβ ≤ Ck f kFα
for

a constant C independent of f ∈ Fα. In particular, Φ′ ∈ Bβ.
The argument leading to (16) remains valid for β ≥ 2.

Thus, (22) holds. It remains to prove (21). First, note that

sup Φ wð Þj j≤1/2
1 − wj j2� �β

Φ′′ wð Þ�� ��
1 − Φ wð Þj j2� �α+1 ≤

4
3

� 	α+1
Φ′�� ��

Bβ <∞:

ð25Þ

For w ∈U , define

Hw zð Þ = α + 3ð Þ 1 − Φ wð Þj j2� �
1 − �Φ wð Þz� �α+1 −

α + 1ð Þ 1 − Φ wð Þj j2� �2
1 − �Φ wð Þz� �α+2 ,

ð26Þ

for z ∈U . By Lemma 1 and Lemma 2, there is a constant C
independent of w such that kHwkFα ≤ C. Thus,
kDCΦðHwÞkBβ ≤ C for all w. It follows that

supz∈U 1 − zj j2� �β
Hw ′ Φ zð Þð ÞΦ′′ zð Þ + Φ′ zð Þ

� �2
Hw ′′ Φ zð Þð Þ

����
���� < C,

ð27Þ

for all w ∈U . An argument using Hw ′ðΦðwÞÞ = ðα + 1Þ
�ΦðwÞ/ð1 − jΦðwÞj2Þα+1 and Hw ′′ðΦðwÞÞ = 0 yields

sup1/2< Φ wð Þj j
1 − wj j2� �β

Φ′′ wð Þ�� ��
1 − Φ wð Þj j2� �α+1 <∞: ð28Þ

The relations (25) and (28) establish relation (21), and
the proof is complete.

Theorem 5. Fix α > 0 and assume β ≥ 2. Let Φ be a self-map
of U for which DCΦ : Fα ⟶ Bβ is bounded.

DCΦ : Fα ⟶ Bβ is compact⇔ ð29Þ

lim
Φ zð Þj j⟶1

1 − zj j2� �β
Φ′′ zð Þ�� ��

1 − Φ zð Þj j2� �α+1 = 0, ð30Þ

and

lim
∣Φ zð Þ∣⟶1

1 − zj j2� �β
Φ′ zð Þ�� ��2

1 − Φ zð Þj j2� �α+2 = 0: ð31Þ
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Proof. First, assume that DCΦ : Fα ⟶ Bβ is bounded and
relations (30) and (31) hold. Let ð f nÞ be a bounded sequence
in Fα such that f n ⟶ 0 uniformly on compact subsets of U .
As previously noted, there is a constant C depending only on
α such that

1 − zj j2� �β
f n′′ Φ zð Þð Þ�� �� Φ′ zð Þ�� ��2 ≤ C

1 − zj j2� �β
Φ′ zð Þ�� ��2

1 − Φ zð Þj j2� �α+2 ,

ð32Þ

for n = 1, 2,… and z ∈U . Relation (31) now implies that
given ε > 0, there exists r0, 0 < r0 < 1, such that

sup
Φ zð Þj j>r0

1 − zj j2� �β
f n ′′ Φ zð Þð Þ�� �� Φ′ zð Þ�� ��2 < ε, ð33Þ

for all n.
Since DCΦ : Fα ⟶ Bβ is bounded, relation (9) holds,

and thus,

1 − zj j2� �β
f n′′ Φ zð Þð Þ�� �� Φ′ zð Þ�� ��2 < C f n ′′ Φ zð Þð Þ�� ��, ð34Þ

for all z ∈U . Since f n ′′⟶ 0 uniformly on fw : jwj ≤ r0g,
there exists N > 0 such that

sup
Φ zð Þj j≤r0

1 − zj j2� �β
f n ′′ Φ zð Þð Þ�� �� Φ′ zð Þ�� ��2 < ε, ð35Þ

for all n >N . The relations (33) and (35) yield

sup
z∈U

1 − zj j2� �β
f n ′′ Φ zð Þð Þ�� �� Φ′ zð Þ�� ��2 < ε, ð36Þ

for n >N .
A similar argument using Φ′ ∈ Bβ and (30) yields N1 > 0

such that

sup
z∈U

1 − zj j2� �β
f n ′ Φ zð Þð Þ�� �� Φ′′ zð Þ�� �� < ε, ð37Þ

for n >N1. The relations (36) and (37) yield

sup
z∈U

1 − zj j2� �β
DCΦ f nð Þ′ zð Þ�� ��⟶ 0, ð38Þ

as n⟶∞.
Since jðDCΦ f nÞð0Þj⟶ 0 as n⟶∞, the argument

yields kDCΦð f nÞkBβ ⟶ 0 as n⟶∞ for any sequence ð f nÞ
as described, and therefore, DCΦ : Fα ⟶ Bβ is compact.

For the converse, assume thatDCΦ : Fα ⟶ Bβ is compact.
We may assume that kΦk∞ = 1. Let ðznÞ be any sequence in U
with jΦðznÞj⟶ 1 as n⟶∞. For z ∈U, define

f n zð Þ = α + 3ð Þ 1 − Φ znð Þj j2� �
1 − �Φ znð Þz� �α+1 −

α + 1ð Þ 1 − Φ znð Þj j2� �2
1 − �Φ znð Þz� �α+2 :

ð39Þ

By the lemmas above, k f nkFα
≤ C. Also, f n ⟶ 0 uni-

formly on compact subsets. Therefore, kDCΦð f nÞkBβ ⟶ 0
and

sup
z∈U

1 − zj j2� �β
f n ′ Φ zð Þð ÞΦ′′ zð Þ + f n ′′ Φ zð Þð Þ Φ′ zð Þ

� �2
����

����⟶ 0,

ð40Þ

as n⟶∞. Calculations yield f n ′′ðΦðznÞÞ = 0 and

f n ′ Φ znð Þð Þ = α + 1ð Þ �Φ znð Þ
1 − Φ znð Þj j2� �α+1 : ð41Þ

Substitution into (40) yields

1 − znj j2� �β
Φ znð Þj j Φ′′ znð Þ�� ��

1 − Φ znð Þj j2� �α+1 ⟶ 0, ð42Þ

as n⟶∞. Since ðznÞ is a generic sequence with ∣ΦðznÞ ∣⟶1
as n⟶∞, this yields the relation (30).

A similar argument using the functions

gn zð Þ = α + 2ð Þ 1 − Φ znð Þj j2� �
1 − �Φ znð Þz� �α+1 −

α + 1ð Þ 1 − Φ znð Þj j2� �2
1 − �Φ znð Þz� �α+2

ð43Þ

yields the relation (31). The details are omitted.

Theorem 3 implies that if DCΦ : Fα ⟶ Bβ is bounded
for fixed α, β with β < 2, then DCΦ : Fγ ⟶ Bβ is compact
for all γ > 0. The next corollary gives a related result when
β ≥ 2.

Corollary 6. Fix α > 0 and β ≥ 2. LetΦ be a self-map ofU and
assume that DCΦ : Fα ⟶ Bβ is bounded. Then, DCΦ : Fγ

⟶ Bβ is compact for any γ, 0 < γ < α.

Proof. By assumption, there is a constant C such that
kDCΦð f ÞkBβ ≤ Ck f kFα

for all f ∈ Fα. Fix γ with 0 < γ < α

and let f ∈ Fγ. Then, f ∈ Fα and k f kFα ≤ k f kFγ
[2]. There-

fore, DCΦ : Fγ ⟶ Bβ is bounded and Theorem 5 applies.

Since DCΦ : Fα ⟶ Bβ is bounded, (21) yields

1 − zj j2� �β
Φ′′ zð Þ�� ��

1 − Φ zð Þj j2� �γ+1 ≤ C 1 − Φ zð Þj j2� �α−γ, ð44Þ
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and therefore,

lim
Φ zð Þj j⟶1

1 − zj j2� �β
Φ′′ zð Þ�� ��

1 − Φ zð Þj j2� �γ+1 = 0: ð45Þ

A similar argument using (22) yields

lim
Φ zð Þj j⟶1

1 − zj j2� �β
Φ′ zð Þ�� ��2

1 − Φ zð Þj j2� �γ+2 = 0: ð46Þ

Theorem 5 now yields DCΦ : Fγ ⟶ Bβ is compact.

4. The Operator CΦD
In this section, characterizations are given for self-mapsΦ for
which CΦD : Fα ⟶ Bβ is bounded or compact. The proofs
are similar to those in Section 3, so details are kept to a
minimum.

Theorem 7. Fix α > 0 and 0 < β < 1.

CΦD : Fα ⟶ Bβ is bounded⇔
Φ ∈ Bβ and Φk k∞ < 1⇔

CΦD : Fα ⟶ Bβ is compact:

ð47Þ

Proof. First, assume that there is a constant C independent of
f ∈ Fα such that kCΦDð f ÞkBβ ≤ Ck f kFα

. In particular, Φ ∈ Bβ

. For w ∈U , define

gw zð Þ = 1
1 − �Φ wð Þz� �α z ∈Uð Þ: ð48Þ

There is a constant C independent of w ∈U such that
kgwkFα

≤ C, and it follows that

sup
z∈U

1 − zj j2� �β
gw ′′ Φ zð Þð ÞΦ′ zð Þ�� �� < C, ð49Þ

for all w ∈U . The substitution z =w yields

1 − wj j2� �β α α + 1ð Þ Φ wð Þj j2 Φ′ wð Þ�� ��
1 − Φ wð Þj j2� �α+2 < C, ð50Þ

for all w ∈U . Therefore,

sup
1/2< Φ wð Þj j

1 − wj j2� �β
Φ′ wð Þ�� ��

1 − Φ wð Þj j2� �α+2 <∞: ð51Þ

Since Φ ∈ Bβ,

sup
Φ wð Þj j≤1/2

1 − wj j2� �β
Φ′ wð Þ�� ��

1 − Φ wð Þj j2� �α+2 <∞: ð52Þ

It follows that

sup
w∈U

1 − wj j2� �β
Φ′ wð Þ�� ��

1 − Φ wð Þj j2� �α+2 <∞ ð53Þ

and therefore

sup
w∈U

1 − wj j2� �β
Φ′ wð Þ�� ��

1 − Φ wð Þj j2� �β <∞: ð54Þ

By [9], CΦ : Bβ ⟶ Bβ is bounded. A further argument as
in the proof of Theorem 3 yields that CΦ : Bβ ⟶ Bβ is com-
pact. Since β < 1, Shapiro’s result [7] applies and yields
kΦk∞ < 1. Thus, the conditions Φ ∈ Bβ and kΦk∞ < 1 are
necessary in order for CΦD : Fα ⟶ Bβ to be bounded.

Next, assume Φ ∈ Bβ and kΦk∞ < 1. Let ð f nÞ be a
bounded sequence in Fα with f n ⟶ 0 uniformly on compact
subsets of U . First, note that j f n ′ðΦð0ÞÞj⟶ 0 as n⟶∞.
For z ∈U ,

1 − zj j2� �β
f n ′ ∘Φ

� �
′ zð Þ

��� ��� ≤ Φk kBβ max wj j≤ Φk k∞ f n ′′ wð Þ�� ��:
ð55Þ

Since f n ′′⟶ 0 uniformly on compact subsets, the argu-
ment yields kCΦDð f nÞkBβ ⟶ 0 and CΦD : Fα ⟶ Bβ is
compact.

The remaining implication is trivial, and the proof is
complete.

Theorem 8. Fix α > 0 and β ≥ 1. Let Φ be a self-map of U .

CΦD : Fα ⟶ Bβ is bounded⇔

sup
z∈U

1 − zj j2� �β
Φ′ zð Þ�� ��

1 − Φ zð Þj j2� �α+2 <∞:
ð56Þ

Proof. First, assume that the supremum is finite.
Let f ∈ Fα. By previous remarks, j f ′ðΦð0ÞÞj ≤ Ck f kFα . By

an argument as in the proof of Theorem 4,

1 − zj j2� �β
f ′ ∘Φ

� �
′ zð Þ

��� ��� = 1 − zj j2� �β
f ′′ Φ zð Þð Þ�� �� Φ′ zð Þ�� ��

≤ 1 − zj j2� �β C fk kFα
Φ′ zð Þ�� ��

1 − Φ zð Þj j2� �α+2
≤ C fk kFα

,
ð57Þ

and thus, kCΦDð f ÞkBβ ≤ Ck f kFα
as required.

To complete the proof, assume that kCΦDð f ÞkBβ ≤ C
k f kFα

for a constant C independent of f . The argument lead-
ing to (53) remains valid for β ≥ 1. This proves the opposite
implication, and the proof is complete.

5Journal of Function Spaces



Theorem 9. Fix α > 0 and β ≥ 1. LetΦ be a self-map of U and
assume that CΦD : Fα ⟶ Bβ is bounded.

CΦD : Fα ⟶ Bβ is compact⇔

lim
Φ zð Þj j⟶1

1 − zj j2� �β
Φ′ zð Þ�� ��

1 − Φ zð Þj j2� �α+2 = 0:
ð58Þ

Proof. First, assume that CΦD : Fα ⟶ Bβ is bounded and
the limit condition holds. Let ð f nÞ be a bounded sequence
in Fα with f n ⟶ 0 uniformly on compact subsets as n⟶
∞. Clearly, j f n ′ðΦð0ÞÞj⟶ 0 as n⟶∞. As in previous
arguments,

1 − zj j2� �β
f n ′′ Φ zð Þð Þ�� �� Φ′ zð Þ�� �� ≤ C

1 − zj j2� �β
Φ′ zð Þ�� ��

1 − Φ zð Þj j2� �α+2 ,

ð59Þ

for all z ∈U . The hypothesis now implies that, given ε > 0,
there exists r0, 0 < r0 < 1, such that

sup
Φ zð Þj j>r0

1 − zj j2� �β
f n ′′ Φ zð Þð Þ�� �� Φ′ zð Þ�� �� < ε, ð60Þ

for all n. Since Φ ∈ Bβ and since f n ′′⟶ 0 uniformly on
compact subsets,

sup
Φ zð Þj j≤r0

1 − zj j2� �β
f n ′′ Φ zð Þð Þ�� �� Φ′ zð Þ�� ��⟶ 0, ð61Þ

as n⟶∞. By (60) and (61),

sup
z∈U

1 − zj j2� �β
f n ′ ∘Φ

� �
′ zð Þ

��� ���⟶ 0, ð62Þ

as n⟶∞. The argument yields k f n ′ ∘ΦkBβ ⟶ 0 as
n⟶∞ for any sequence ð f nÞ as described above. Thus,
CΦD : Fα ⟶ Bβ is compact.

Now, assume that CΦD : Fα ⟶ Bβ is compact. We may
assume that ∥Φ∥∞ = 1. Let ðznÞ be any sequence in U with
∣ΦðznÞ ∣⟶1 as n⟶∞. For n = 1, 2,⋯, define

f n zð Þ = 1 − Φ znð Þj j2
1 − �Φ znð Þz� �α+1 , ð63Þ

for z ∈U . By Lemma 1, k f nkFα
≤ C for all n. Also, f n ⟶ 0

uniformly on compact subsets. Therefore, kCΦDð f nÞkBβ

⟶ 0 as n⟶∞. Given ε > 0, there exists N > 0 such that

sup
z∈U

1 − zj j2� �β
f n ′′ Φ zð Þð Þ�� �� Φ′ zð Þ�� �� < ε, ð64Þ

for all n >N . In particular, ð1 − jznj2Þ
βj f n ′′ðΦðznÞÞjjΦ′ðznÞj

< ε for n >N . Calculations yield

1 − znj j2� �β
α + 1ð Þ α + 2ð Þ Φ znð Þj j2 Φ′ znð Þ�� ��
1 − Φ znð Þj j2� �α+2 < ε, ð65Þ

for n >N . Since ðznÞ is a generic sequence with jΦðznÞj⟶ 1,
it follows that

lim
Φ zð Þj j⟶1

1 − zj j2� �β
Φ′ zð Þ�� ��

1 − Φ zð Þj j2� �α+2 = 0: ð66Þ

The proof is complete.

Assume that CΦD : Fα ⟶ Bβ is bounded for fixed α > 0
and β < 1. By Theorem 7, Φ ∈ Bβ and kΦk∞ < 1. It follows
that CΦD : Fγ ⟶ Bβ is compact for any γ > 0. Corollary 10
gives a related result in the case β ≥ 1.

Corollary 10. Fix α > 0, β ≥ 1 and assume that CΦD : Fα

⟶ Bβ is bounded. Then, CΦD : Fγ ⟶ Bβ is compact for
any γ, 0 < γ < α.

Proof. Fix 0 < γ < α and let f ∈ Fγ. Then, f ∈ Fα and k f kFα

≤ k f kFγ
[2]. Therefore, CΦD : Fγ ⟶ Bβ is bounded and

Theorem 9 applies.
By Theorem 8, there is a constant C with

1 − zj j2� �β
Φ′ zð Þ�� ��

1 − Φ zð Þj j2� �α+2 ≤ C, ð67Þ

for all z ∈U . Therefore,

1 − zj j2� �β
Φ′ zð Þ�� ��

1 − Φ zð Þj j2� �γ+2 ≤ C 1 − Φ zð Þj j2� �α−γ
⟶ 0, ð68Þ

as∣ΦðzÞ ∣⟶1. By Theorem 9, CΦD : Fγ ⟶ Bβ is compact.
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The important purpose of this current work is to study a new class of operators, the so-called Toeplitz-superposition operators as an
expansion of the weighted known composition operators, induced by such continuous entire functions mapping on bounded
specific sets. Minutely, we have deeply discussed the conditions for boundedness of this new type of operators between certain
types of some holomorphic Bloch classes with some specific values of the weighted functions.

1. Introduction

Fundamentals of the needed analytic function spaces as
well as the types of concerned operators are briefly intro-
duced. The paper focuses first on the concerned setting of
certain classes of function spaces and the new defined
operator, which in turn is motivated essentially by some
certain classical concepts of known operators such as
superposition operators as well as Toeplitz operator. There
is an emphasis in the concerned paper on intensive tying
together the needed type of analytic function spaces and
the concerned operators, to illustrate the roles of the
obtained results.

All of the needed information to justify the target of this
research is collected in this concerned section. Moreover,
here, basic concerned concepts, the Bloch space of analytic-
type, certain needed concerned lemmas, and superposition
and Toeplitz operators are presented.

LetD = fz ∈ℂ : ∣z∣<1g be the open unit disk inℂ, and let
HðDÞ denote the class of all analytic functions in D. Let dA
ðzÞ = dx dy denote the concerned Lebesgue measures on D:

Numerous intensive studies on analytic Bloch-type
spaces are researched in literature (see [1–5] and others).

Let h ∈HðDÞ and 0 < b <∞, the b-Bloch space Bb is
defined by

Bb = f ∈H Dð Þ: ∥h∥Bb = sup
ζ∈D

1 − ζj j2
� �b

∣ f ′ ζð Þ∣<∞
( )

:

ð1Þ

The spaceB1 is called the Bloch space and denoted byB
(see [3]).

The following interesting needed lemma has been proved
in [6].

Lemma 1. For a given 0 < a <∞ , let the function h ∈Ba .
Then, we have

∣h ζð Þ∣ ≲

∥h∥Ba , if 0 < a < 1 ;

∥h∥Ba ln e

1 − ζj j2
, if a = 1 ;

∥h∥Ba

1 − ζj j2
� �a−1 , if a > 1:

8>>>>>>><
>>>>>>>:

ð2Þ
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The following useful integral estimate is well known and
can be found in [7].

Lemma 2. Let s > 0 and t > −1 . Then

ð
D

1 − wj j2� �t
dA wð Þ

1 − �zwj j2+t+s ≲
1

1 − zj j2� �s ,  for all z ∈D: ð3Þ

For a > −1 and p ∈ ð0,∞Þ, the weighted Bergman spaces
Ap

aðDÞ is the space of all functions h ∈HðDÞ, for which

∥h∥p
A

p
a
=
ð
D

h ζð Þj jpdAa ζð Þ <∞, where dAa ζð Þ = 1 − ζj j2
� �a

dA ζð Þ:

ð4Þ

When a = 0, we simply write ApðDÞ for A
p
0ðDÞ, and

when p = 2, A2
aðDÞ is a Hilbert space. It is well known that

the Bergman kernel KzðwÞ of the Hilbert space A2
aðDÞ is

given by KzðwÞ = ð1 − �wzÞ−a−2, where z,w ∈D. The Bergman
projection Pa is the orthogonal projection from L2ðD, dAaÞ
onto Hilbert space A2

aðDÞ, which given as:

Pah zð Þ =
ð
D

Kz wð Þh wð ÞdAa wð Þ: ð5Þ

For a > −1 and h ∈HðDÞ, the Toeplitz-type operator Ta
u

with symbol u ∈H∞ðDÞ is defined by

Ta
uh zð Þ =

ð
D

u wð Þh wð Þ
1 − �wzð Þa+2 dAa wð Þ: ð6Þ

This paper is organized as follows: during Section 2, we
have defined the Toeplitz-superposition operators on the
normed (metric) subspaces. Throughout Section 3, we estab-
lish the conditions for the Toeplitz-superposition operators
to be bounded from a-Bloch space Ba into b-Bloch space
Bb, in the case a ∈ ð0, 1Þ and b > a or b < a. Section 4 is
devoted to a study the boundedness of Toeplitz-
superposition operators between weighted Bloch spaces in
the case 0 < a ≤ b or a = 0, b > 0.

Remark 3. It is concerned remarkable to say that two con-
cerned quantities Nh and N∗

h , where both depending on the
concerned function h ∈HðDÞ , the expression Nh ≲N∗

h , can
be satisfied when we have a concerned positive constant C1,
for which Nh ≤ C1N

∗
h . When N∗

h ≲Nh ≲N∗
h , the expression

Nh ≈N∗
h can be written to say that there is an equivalence

relation between the concerned quantities Nh and N∗
h :

Furthermore, when Nh ≈N∗
h , we deduce that Nh <∞⇔N∗

h
<∞:

2. Toeplitz-Superposition Operators

LetEðℂÞ denote the set of all entire functions on the complex
plane ℂ. For a function ϕ ∈EðℂÞ, the superposition operator
Sϕ : HðDÞ→HðDÞ is defined by SϕðhÞ = ðϕ ∘ hÞ. Moreover,
if u ∈HðDÞ and ϕ ∈EðℂÞ, the weighted superposition oper-

ator Sϕ,u : HðDÞ→HðDÞ is defined by Sϕ,uðhÞðzÞ = uðzÞϕð
hðzÞÞ, for all h ∈HðDÞ and z ∈D. Note that, if uðzÞ = 1, then
Sϕ,u = Sϕ, for any z ∈D.

For any normed subspace X ⊂HðDÞ, we will consider
the set KðXÞ, defined by

K Xð Þ = h ∈ X : ϕ ∘ h ∈ X, where ϕ ∈E ℂð Þf g: ð7Þ

Now, we define the Toeplitz-superposition operators
acting on HðDÞ.

Definition 4. Let two functions ϕ ∈EðℂÞ and u ∈HðDÞ .
Then, the Toeplitz-superposition operators TuSϕ on the
normed (metric) subspace X are given by

TuSϕ hð Þ = Tu ϕ ∘ hð Þ = P u · ϕ ∘ hð Þð Þ,  for all h ∈K Xð Þ:
ð8Þ

Let α, β be the scalers if ϕ is a fixed entire function and
u, v ∈HðDÞ. Then, from the definition of Toeplitz-
superposition operators, we have

Tαu+βvSϕ hð Þ = Tαu+βv ϕ ∘ hð Þ = P αu · ϕ ∘ hð Þ + βv · ϕ ∘ hð Þð Þ
= αP u · ϕ ∘ hð Þð Þ + βP v · ϕ ∘ hð Þð Þ
= αTuSϕ hð Þ + βTvSϕ hð Þ,

ð9Þ

which holds for all h ∈KðXÞ, and hence, the Toeplitz-
Superposition operators are linear on the normed subspace X.

It can be seen that whenever u ∈HðDÞ, then, the
operator TuSϕ becomes the operator Sϕ,u. So, Toeplitz-
superposition operators can be taken as an extension of
weighted superposition operators. The present paper is inter-
ested in answering the following interesting questions.

(i) Can we transform one holomorphic function space
into another by what kinds of entire functions?

(ii) What are the holomorphic spaces that can be trans-
formed one into another by certain weighted classes
of entire functions such as specific analytic polyno-
mials of a certain degree and certain entire-type
functions of given type and order?

(iii) When does the holomorphic function φ induces a
Toeplitz-superposition operators to form one
holomorphic function space into another?

As a concerned result, the obtained results will introduce
answers of the above mentioned questions by using the class
of Toeplitz-superposition operators that are acting between
different classes of Bloch functions.

Also, the answers for some of these concerned questions
have been introduced by several authors; the following cita-
tions can be stated for interesting and intensive studies [8–20].
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3. Boundedness in the case a ∈ ð0, 1Þ and b > a or
b < a

Several important discussions on boundedness property of
the new operator acting on the analytic Bloch spaces are
presented in this concerned section. Furthermore, some
essential equivalent characterizations for its boundedness
are established too.

Now, we will introduce the main results of boundedness.

Theorem 5. For a ∈ ð0, 1Þ and b > a . Suppose that u ∈H∞ðDÞ
and let ϕ ∈EðℂÞ , with ϕ ≠ 0 . Then, the Toeplitz-
superposition operator TuSϕ : Ba →Bb is bounded.

Proof. First, assume that u ∈H∞ðDÞ. Let h ∈Bb, since

∥h∥Bb ≈ sup
z∈D

1 − zj j2� �b−1
h zð Þj j, ð10Þ

we have

∥TuSϕh∥Bb ≈ sup
z∈D

1 − zj j2� �b−1∣TuSϕh∣

= sup
z∈D

1 − zj j2� �b−1 ð
D

u wð Þ ϕ ∘ hð Þ wð Þ
1 − �wzð Þ2 dA wð Þ

����
����

≲ sup
z∈D

1 − zj j2� �b−1ð
D

u wð Þj j ϕ h wð Þð Þj j
1 − �wzj j2 dA wð Þ

≲ ∥u∥H∞ sup
z∈D

1 − zj j2� �b−1ð
D

∣ϕ h wð Þð ∣
1 − �wzj j2 dA wð Þ:

ð11Þ

Now, let the constant R > 0 where h ∈Ba such that ∥h
∥Ba ≤ R, by Lemma 1, we have ∣hðzÞ ∣ ≲R. Set R1 = max

∣z∣=R
∣ ϕ

ðzÞ ∣ , then ∣ϕðhðzÞÞ ∣ ≤R1. Since b > a, we have the fact that
Ba ⊂Bb, and since a ∈ ð0, 1Þ, we have that Ba ⊂H∞ðDÞ:
Thus,

∥TuSϕh∥Bb ≲ R1∥u∥H∞ sup
z∈D

1 − zj j2� �b−1ð
D

dA wð Þ
1 − �wzj j2

≲ ∥u∥H∞ < ∥u∥Ba <∞,
ð12Þ

where R, R1 depended only on a, b, and ϕ. This shows that
TuSϕ : Ba →Bb is bounded.

Theorem 6. For 0 < b < a < 1 , let u ∈ L1ðDÞ be harmonic and
let ϕ ∈EðℂÞ . Then, the Toeplitz-superposition operator Tu

Sϕ : Ba →Bb is bounded if and only if u ∈H∞ðDÞ and ϕ is
a constant entire function.

Proof. It is trivial that if u ∈H∞ðDÞ and ϕ is constant, then
TuSϕ : Ba →Bb is bounded. If ϕ is constant, not identically

0, and TuSϕ mapsBa intoBb then it is clear that u ∈H∞ðDÞ.
Assume now that u ≠ 0 and ϕ is not constant, and set TuSϕ
maps Ba into Bb. Let h be the constant function defined

by hðζÞ = λ, for all ζ ∈D, such that ϕðλÞ ≠ 0. Since h ∈Ba,
it follows that TuSϕhðζÞ = TuϕðλÞ ∈Bb. This implies that u

∈Bb ⊂H∞ðDÞ, since 0 < b < 1. Finally, since ϕ is not con-
stant, then there is a disk ∣w −w0 ∣ <ε and δ > 0, on which
∣ϕðwÞ ∣ >δ∣w∣. Set the test function h0ðwÞ =w0 + rð1 −wÞ1−a
∈Ba. Then, for all w ∈D, we have

∥TuSϕh0∥Bb ≈ sup
z∈D

1 − zj j2� �b−1∣TuSϕh0∣

= sup
z∈D

1 − zj j2� �b−1 ð
D

u wð Þ ϕ ∘ h0ð Þ wð Þ
1 − �wzð Þ2 dA wð Þ

����
����

≥ sup
z∈D

1 − zj j2� �b−1ð
D

∣u wð Þ ∣
1 −wj ja 1 − �wzj j2 dA wð Þ:

ð13Þ

But, along with the positive radius, we get juðwÞj/ð
j1 −wjaj1 − �wzj2Þ→∞, as w→ 1. This shows that TuSϕ
: Ba →Bb is not bounded.

4. Boundedness in the case 0 < a ≤ b or a = 0, b > 0

Theorem 7. For a > 0 , let u ∈ L1ðDÞ be harmonic and let ϕ
∈EðℂÞ . Then, TuSϕ is bounded on Ba if and only if u ∈
H∞ðDÞ and ϕ is an affine function (linear function plus a
translation).

Proof. First, suppose that u ∈H∞ðDÞ and ϕ is an affine func-
tion. It is easy to explain TuSϕ is bounded fromBa into itself.

On the other hand, assume that u ∈H∞ðDÞ and ϕ ∈EðℂÞ
does not linear function. Then, by using the Cauchy esti-
mates for ϕ ∈EðℂÞ, we can find a sequence fwng ⊂ℂ, for
each n ∈ℕ such that ∣wn ∣→∞ as n→∞ and jϕðwnÞj =
max
jwj=n

jϕðwÞj ≳ jwnj2. Also, since the weight ð1 − jζj2Þa is typi-
cal, we can find a sequence of points fzng ⊂D such
that∣zn ∣→ 1−, with ð0:5<∣zn∣<1Þ and such that ð1−∣zn ∣ Þ ∣
wn ∣ = 1, for all n ∈ℕ. Now consider the sequence of func-
tions fhng contained in Ba satisfies ∥hn∥Ba ≤ 1
and∣hnðznÞ ∣ = ∣wn ∣ . Furthermore, we can suppose that hn
ðznÞ =wn. Hence,

∥TuSϕ hnð Þ∥Bb ≈ sup
zn∈D

1 − znj j2� �b−1∣Tuϕ hn znð Þð Þ ∣

≳ ∥u∥H∞ sup
z∈D

1 − znj j2� �b−1ð
D

wnj j2
1 − �wznj j2 dA wð Þ

≳ ∥u∥H∞ sup
z∈D

1 − znj j2� �b−1ð
D

wnj j
1 − �wzj j2 dA wð Þ

→∞, as n→∞:

ð14Þ

Because ∣wn ∣→∞ as n→∞. This shows that TuSϕ
: Ba →Ba cannot be bounded if ϕ ∈EðℂÞ is not a linear
function.
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Theorem 8. For 0 < a ≤ b , let u ∈ L1ðDÞ be harmonic and let
ϕ ∈EðℂÞ be an increasing and continuous function. Then,
TuSϕ : Ba →Bb is bounded if and only if u ∈H∞ðDÞ , and
for each λ ∈ ð0, 1Þ , there is a positive constant η whenever
∣w ∣ >η , such that

∣ϕ wð Þ∣ ≲ ϕ λ ∣w ∣ð Þ: ð15Þ

Proof. First, suppose that u ∈H∞ðDÞ and (15) is true. Now,
consider R1 > 0 and let h ∈Ba satisfy ∥h∥Ba ≤ R1 and select
λ ∈ ð0, 1Þ such that λR1 < 1. Then, there is η > 0, such that
∣ϕðwÞ ∣ ≲ϕðλ ∣w ∣ Þ, whenever ∣w ∣ >η. Thus, since �DR = fw
∈ℂ : ∣w∣≤Rg is a compact set and ϕ ∈EðℂÞ is a continuous
function, we can assume that ∣ϕðwÞ ∣ ≤1, for all w ∈ �DR.
Hence,

∥TuSϕh∥Bb ≈ sup
zn∈D

1 − znj j2� �b−1∣Tuϕ h zð Þð Þ∣

= sup
z∈D,∣h wð Þ∣≤Rf g

1 − zj j2� �b−1∣TuSϕh∣

+ sup
z∈D,∣h wð Þ∣>Rf g

1 − zj j2� �b−1∣Tuϕ h zð Þð Þ∣

≲ ∥u∥H∞ sup
z∈D

1 − zj j2� �b−1ð
D

dA wð Þ
1 − �wzj j2

+∥u∥H∞ sup
z∈D,∣h wð Þ∣>Rf g

1 − zj j2� �b−1ð
D

ϕ

� λ ∣
∥h∥Ba

1 − wj j2� �a ∣

 !
dA wð Þ
1 − �wzj j2

≲ ∥u∥H∞+∥u∥H∞ sup
z∈D

1 − zj j2� �b−1ð
D

ϕ

� λ ∣
1

1 − wj j2� �a ∣

 !
dA wð Þ
1 − �wzj j2 :

ð16Þ

Using that the function ϕ is increasing and the fact that
λ < 1, we have

∥TuSϕh∥Bb ≲ ∥u∥H∞+∥u∥H∞ sup
z∈D

1 − zj j2� �b−1ð
D

dA wð Þ
1 − �wzj j2

≲ ∥u∥H∞ :

ð17Þ

This shows that TuSϕ : Ba →Bb is bounded.
On the other hand, assume that u ∈H∞ðDÞ and ϕ ∈Eð

ℂÞ does not satisfy (15). Then, we can find λ1 ∈ ð0, 1Þ and a
sequence fwng ⊂ℂ such that ∣wn ∣→∞ as n→∞ and ∣ϕð
wnÞ ∣ ≥ϕðλ1 ∣wn ∣ Þ, for all n ∈ℕ. Since the weight
ð1 − jzj2Þa is typical, we can find a sequence of points fzng
⊂D such that ∣zn ∣→ 1− as n→∞. Thus, we can consider
a sequence of functions fhng contained in Ba satisfies ∥hn
∥Ba ≤ 1 and ∣hnðznÞ ∣ ≲∣wn∣. Now, let z ∈D and set the func-
tion f nðzÞ =wnhnðzÞ/hnðznÞ for all n ∈ℕ. Then, we have f n
ðznÞ =wn and ∥f n∥Ba ≲ 1. For large enough n ∈ℕ, we obtain

∥TuSϕ f n∥Bb ≈ sup
zn∈D

1 − znj j2� �b−1∣TuSϕ f n znð Þ ∣

≳ sup
zn∈D

1 − znj j2� �b−1ð
D

u wð Þj j ϕ wnð Þj j
1 − �wznj j2 dA wð Þ

≳ ∥u∥H∞ sup
zn∈D

1 − znj j2� �b−1ð
D

ϕ λ1 wnj jð Þ
1 − �wznj j2 dA wð Þ

≳ ∥u∥H∞ sup
zn∈D

1 − znj j2� �b−1ð
D

ϕ
1

1 − wnj j2� �a
�����

�����
 !

� dA wð Þ
1 − �wznj j2 →∞,as n→∞:

ð18Þ

Then, we conclude that TuSϕ : Ba →Bb cannot be
bounded.

Theorem 9. For 1 < a ≤ b , let u ∈ L1ðDÞ be harmonic and let
ϕ ∈EðℂÞ . Then, the following are equivalent:

(i) TuSϕ maps Ba into Bb

(ii) u ∈H∞ðDÞ and ϕ is a polynomial of degree at most
b − 1/a − 1

(iii) TuSϕ : Ba →Bb is bounded

Proof. First, suppose that (i) holds, let ϕ = zn be a polynomial
with n ≤ ðb − 1Þ/ða − 1Þ, then, we have that u ∈H∞ðDÞ.

Now, suppose that the entire function ϕ is a polynomial
of degree m > b − 1/a − 1. Then, for an integer n and a posi-
tive constant δ, there is a sequence zn →∞ such that ∣ϕðznÞ
∣ ≥δjznjm. We may assume without losing generality that
∣zn ∣ >1 and ∣arg zn ∣ <min faπ/4, π/2g, for an integer n.
Now, we let haðwÞ = ð1 −wÞ1−a ∈Ba, then, we show that
TuSϕha ∉B

b. The point wn = 1 − ðznÞ−1/a such that ∣1 −wn

∣ <1 and ∣arg ð1 −wnÞ ∣ <π/4, and satisfies that ∣1 −wn ∣ ≲ð1
−wnÞ, for an integer n. Thus, we have

1 − znj j2� �b−1∣TuSϕha znð Þ∣

= 1 − znj j2� �b−1∣ð
D

u wð Þϕ ha wð Þð Þ
1 − �wznð Þ2 dA wð Þ∣

≳ 1 − znj j2� �b−1ð
D

δ ∣ u wð Þ ∣
1 − znj jma 1 − �wznj j2 dA wð Þ

≳
ð
D

δ ∣ u wð Þ ∣
1 − znj jma−m−b+1 1 −wj ja 1 − �wznj j2

dA wð Þ:

ð19Þ

Since ma −m − b + 1 > 0, then, we obtain

1 − znj j2� �b−1∣TuSϕha znð Þ ∣→∞,as n→∞: ð20Þ

This implies that TuSϕha ∉B
b. Based on the above it is

clear that (i) ⇒ (ii).
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Second, assume that u ∈H∞ðDÞ and ϕ = zn are a polyno-
mial of degree n ≤ ðb − 1Þ/ða − 1Þ. For all h ∈Ba and b − 1
− na − n ≥ 0, by Lemma 1 and 2, where n is bounded, we
have

∥TuSϕh∥Bb ≈ sup
z∈D

1 − zj j2� �b−1∣TuSϕh zð Þ∣

= sup
z∈D

1 − zj j2� �b−1 ð
D

u wð Þ ϕ ∘ hð Þ wð Þ
1 − �wzð Þ2 dA wð Þ

����
����

≤ ∥u∥H∞ sup
z∈D

1 − zj j2� �b−1ð
D

h wð Þj jn
1 − �wzj j2 dA wð Þ

≤ ∥u∥H∞∥h∥nBa sup
z∈D

1 − zj j2� �b−1−na−nð
D

dA wð Þ
1 − �wzj j2

≤ ∥u∥H∞∥h∥nBa :

ð21Þ

This shows that (ii) ⇒ (iii). Thus, the proof has been
completed.

Theorem 10. For b > −1 , let u ∈ L1ðDÞ be harmonic and let
ϕ ∈EðℂÞ , with order ρ and type τ . Then, the following are
equivalent:

(i) TuSϕ maps B into Bb

(ii) u ∈H∞ðDÞ and ϕ ∈EðℂÞ with ρ < 1 or (with ρ = 1
and τ = 0);

(iii) TuSϕ : B→Bb is bounded

Proof. First, assume that TuSϕ maps B into Bb. Now, we
assume on the antithesis that (ii) does not hold. Then, the
function ϕ ∈EðℂÞ with ρ > 1 or (with ρ = 1 and τ > 0). Thus,
there is a positive constant λ and a sequence fwng of complex
numbers such that ∣wn ∣→∞ and

∣ϕ wnð Þ∣ ≥ exp λ ∣wn ∣ð Þ,  for any n ∈ℕ: ð22Þ

Hence, as in the proof of Theorem 8, we can consider the
sequence fwng ⊂D and fhng ⊂B satisfies ∥hn∥B ≤ 1 and
∣hnðznÞ ∣ ≲ ∣wn ∣ . Now, let z ∈D and set the function f nðzÞ
=wnhnðzÞ/hnðznÞ for all n ∈ℕ. Then, we have f nðznÞ =wn
and ∥f n∥B ≲ 1. For large enough, n ∈ℕ, since ∣wn ∣→∞,
we obtain

∥TuSϕ f n∥Bb ≈ sup
z∈D

1 − znj j2� �b−1∣TuSϕ f n znð Þ∣

≳ sup
z∈D

1 − znj j2� �b−1ð
D

u wð Þj j ϕ wnð Þj j
1 − �wznj j2 dA wð Þ

≳ ∥u∥H∞ sup
z∈D

1 − znj j2� �b−1ð
D

exp λ1 ∣wn ∣ð Þ
1 − �wznj j2 dA wð Þ

→∞,as n→∞:

ð23Þ

Then, we conclude that TuSϕ : B→Bb cannot be
bounded. Based on the above results, it is clear that (i)⇒ (ii).

Second, setMðt, ϕÞ =max
∣w∣=t

∣ ϕðwÞ ∣ , where t ≥ 0, the order
ρ of ϕ ∈EðℂÞ is

ρ = limsup
t→∞

loglogM t, ϕð Þ
log t : ð24Þ

If 0 < ρ <∞, then the type τ of ϕ ∈EðℂÞ is

τ = limsup
t→∞

logM t, ϕð Þ
tρ

: ð25Þ

For given λ = b/R > 0, the condition (ii) implies that (see
for example [18])

ϕ wð Þj j ≲ exp λ wj jð Þ,  for any w ∈ℂ: ð26Þ

Moreover, for a function h ∈B, with ∥h∥B ≲ 1, we know
that

∣h wð Þ∣ ≲ 1 + log 1
1−∣w ∣

� �
,  for w ∈D: ð27Þ

Then,

∣ϕ h wð Þð Þ∣ ≲ exp λ ∣ h wð Þ ∣ð Þ ≤ e
1−∣w ∣

� �b

≤ 2eð Þb: ð28Þ

Thus, we have

∥TuSϕh∥Bb ≈ sup
z∈D

1 − zj j2� �b−1∣TuSϕh zð Þ∣

≲ 2eð Þb∥u∥H∞ sup
z∈D

1 − zj j2� �b−1ð
D

dA wð Þ
1 − �wzj j2

≲ 2eð Þb∥u∥H∞ <∞:

ð29Þ

This shows that TuSϕ : B→Bb is bounded. So, (ii) ⇒
(iii).

5. Conclusion and Future Study

This manuscript deals with a radical study of a concerned
class of Toeplitz superposition operators acting between
some certain classes of analytic function spaces of Bloch-
type. Global discussions of the boundedness property of the
new class of operators are presented class of the univalent
Bloch functions. All concerned entire functions which trans-
form a class of holomorphic Bloch-type spaces into another
using the so-called Toeplitz superposition operators in terms
of their order and type or the degree of polynomials are
characterized in this paper. Moreover, all the defined
Toeplitz-superposition operators induced by concerned
entire functions are cleared to be bounded actually. We have
cleared that for two spaces of normed-type which belonging
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to HðDÞ, where X =Ba and Y =Bb, we can find certain
concerned functions ϕ and u, with ϕ ∈EðℂÞ and u ∈HðDÞ,
for which the newly Toeplitz-superposition operators TuSϕ
can mapBa intoBb for some specific values of a and b. Fur-
thermore, the operator TuSϕ : X → Y is shown to be actually
bounded.
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In this paper, upper bounds for the fourth-order Hankel determinant H4ð1Þ for the function class S∗
s associated with the sine

function are given.

1. Introduction

LetA denote the class of functions f which are analytic in the
open unit disk D = fz : ∣z∣<1g of the form

f zð Þ = z + a2z
2 + a3z

3+⋯ z ∈Dð Þ, ð1Þ

and let S denote the subclass of A consisting of univalent
functions.

Suppose that P is the class of analytic functions p
normalized by

p zð Þ = 1 + c1z + c2z
2 + c3z

3+⋯ ð2Þ

and satisfying the condition

R p zð Þð Þ > 0 z ∈Dð Þ: ð3Þ

Assume that f and g are two analytic functions in D.
Then, we say that the function g is subordinate to the func-
tion f , and we write

g zð Þ ≺ f zð Þ z ∈Dð Þ, ð4Þ

if there exists a Schwarz function ωðzÞ with ωð0Þ = 0 and ∣ω
ðzÞ ∣ <1, such that (see [1])

g zð Þ = f ω zð Þð Þ z ∈Dð Þ: ð5Þ

In 2018, Cho et al. [2] introduced the following function
class S∗s :

S∗s ≔ f ∈A :
zf ′ zð Þ
f zð Þ ≺ 1 + sin zð Þ z ∈Dð Þ

( )
, ð6Þ

which implies that the quantity ðzf ′ðzÞÞ/ð f ðzÞÞ lies in an
eight-shaped region in the right-half plane.

In 1976, Noonan and Thomas [3] stated the qth Hankel
determinant for q ≥ 1 and n ≥ 1 of functions f as follows:

Hq nð Þ =

an an+1 ⋯ an+q−1

an+1 an ⋯ an+q−2

⋮ ⋮ ⋮

an+q−1 an+q−2 ⋯ an

�����������

�����������
a1 = 1ð Þ: ð7Þ
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In particular, we have

H2 1ð Þ =
a1 a2

a2 a3

�����
����� = a3 − a22 a1 = 1, n = 1, q = 2ð Þ,

H2 2ð Þ =
a2 a3

a3 a4

�����
����� = a2a4 − a23 n = 2, q = 2ð Þ,

H3 1ð Þ =
a1 a2 a3

a2 a3 a4

a3 a4 a5

��������

��������
n = 1, q = 3ð Þ,

H4 1ð Þ =

a1 a2 a3 a4

a2 a3 a4 a4

a3 a4 a5 a6

a4 a5 a6 a7

�����������

�����������
  n = 1, q = 4ð Þ:

ð8Þ

Since f ∈ S , a1 = 1, thus

H4 1ð Þ = a7 a3 a2a4 − a23
� �

− a4 a4 − a2a3ð Þ + a5 a3 − a22
� �� �

− a6 a3 a2a5 − a3a4ð Þ − a4 a5 − a2a4ð Þ + a6 a3 − a22
� �� �

+ a5 a3 a3a5 − a24
� �

− a5 a5 − a2a4ð Þ + a6 a4 − a2a3ð Þ� �
+ a5 a3 a3a5 − a24

� �
− a5 a5 − a2a4ð Þ + a6 a4 − a2a3ð Þ� �

− a4 a4 a3a5 − a24
� �

− a5 a2a5 − a3a4ð Þ + a6 a4 − a2a3ð Þ� �
:

ð9Þ

We note thatH2ð1Þ is the well-known Fekete-Szegö func-
tional (see [4–6]).

In recent years, many papers have been devoted to find-
ing upper bounds for the second-order Hankel determinant
H2ð2Þ and the third-order Hankel determinantH3ð1Þ, whose
elements are various classes of analytic functions; it is worth
mentioning that [7–20]. For instance, Murugusundara-
moorthy and Bulboacă [21] defined a new subclass of ana-
lytic functions MLa

c ðλ, ϕÞ and got upper bounds for the
Fekete-Szegö functional and the Hankel determinant of
order two for f ∈MLa

c ðλ, ϕÞ: Islam et al. [22] examined the
q-analog of starlike functions connected with a trigonometric
sine function and discussed some interesting geometric prop-
erties, such as the well-known problems of Fekete-Szegö, the
necessary and sufficient condition, the growth and distortion
bound, closure theorem, and convolution results with partial
sums for this class. Zaprawa et al. [23] obtained the bound of
the third Hankel determinant for the univalent starlike func-
tions. Very recently, Arif et al. [24] studied the problem of
fourth Hankel determinant H4ð1Þ for the first time for the
class of bounded turning functions and successfully obtained
the bound of H4ð1Þ. Recently, Khan et al. [25] discussed
some classes of functions with bounded turning which are
connected to the sine functions and obtained upper bounds
for the third- and fourth-order Hankel determinants related
to such classes. Inspired by the aforementioned works, in this
paper, we mainly investigate upper bounds for the fourth-

order Hankel determinant H4ð1Þ for the function class S∗
s

associated with the sine function.

2. Main Results

By proving our desired results, we need the following
lemmas.

Lemma 1 (see [26]). If pðzÞ ∈P , then exists some x, z with
∣x ∣ ≤1, ∣z∣ ≤ 1 , such that

2c2 = c21 + x 4 − c21
� �

,

4c3 = c31 + 2c1x 4 − c21
� �

− 4 − c21
� �

c1x
2 + 2 4 − c21

� �
1 − xj j2� �

z:

ð10Þ

Lemma 2 (see [27]). Let pðzÞ ∈P , then

c41 + c22 + 2c1c3 − 3c21c2 − c4
�� �� ≤ 2,

c51 + 3c1c
2
2 + 3c21c3 − 4c31c2 − 2c1c4 − 2c2c3 + c5

�� �� ≤ 2,

∣c61 + 6c21c
2
2 + 4c31c3 + 2c1c5 + 2c2c4 + c23 − c32

− 5c41c2 − 3c21c4 − 6c1c2c3 − c6 ∣ ≤ 2,

∣cn∣ ≤ 2, n = 1, 2,⋯: ð11Þ

Lemma 3 (see [28]). Let pðzÞ ∈P , then we have

c2 −
c21
2

����
���� ≤ 2 −

c1j j2
2

,

cn+k − μcnckj j < 2, 0 ≤ μ ≤ 1,
∣cn+2k − μcnc

2
k∣ ≤ 2 1 + 2μð Þ:

ð12Þ

We now state and prove the main results of our present
investigation.

Theorem 4. If the function f ðzÞ ∈ S∗
s and of the form ((1)),

then

a2j j ≤ 1,

a3j j ≤ 1
2
,

a4j j ≤ 0:344,

a5j j ≤ 3
8
,

a6j j ≤ 67
120

,

∣a7 ∣ ≤
5587
10800

:

ð13Þ

Proof. Since f ðzÞ ∈ S∗
s , according to subordination relation-

ship, thus there exists a Schwarz function ωðzÞ with ωð0Þ =
0 and ∣ωðzÞ ∣ <1, satisfying
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zf ′ zð Þ
f zð Þ = 1 + sin ω zð Þð Þ: ð14Þ

Here,

zf ′ zð Þ
f zð Þ = z +∑∞

n=2nanz
n

z +∑∞
n=2anz

n
= 1 + 〠

∞

n=2
nanz

n−1
 !

1 − a2z + a22 − a3
� �

z2
�

− a32 − 2a2a3 + a4
� �

z3 + a42 − 3a22a3 + 2a2a4 − a5
� �

z4+⋯
�

= 1 + a2z + 2a3 − a22
� �

z2 + a32 − 3a2a3 + 3a4
� �

z3

+ 4a5 − a42 + 4a22a3 − 4a2a4 − 2a23
� �

z4

+ 5a6 − 5a2a5 + a52 − 5a3a4 − 5a32a3 + 5a22a4 + 5a2a23
� �

z5

+ 6a7 − 6a2a6 + 6a22a5 − 6a3a5 + 12a2a3a4 − a62
�

− 6a32a4 − 3a24 + 2a33 − 9a22a23 + 6a42a3
�
z6+:

ð15Þ

Now, we define a function

p zð Þ = 1 + ω zð Þ
1 − ω zð Þ = 1 + c1z + c2z

2+⋯: ð16Þ

It is easy to see that pðzÞ ∈P and

ω zð Þ = p zð Þ − 1
1 + p zð Þ =

c1z + c2z
2 + c3z

3+⋯
2 + c1z + c2z2 + c3z3+⋯

: ð17Þ

On the other hand,

1 + sin ω zð Þð Þ = 1 + 1
2 c1z +

c2
2 −

c21
4

	 

z2 + 5c31

48 + c3 − c1c2
2

	 

z3

+ c4 − c1c3
2 + 5c21c2

16 −
c22
4 −

c41
32

	 

z4

+ c5 − c1c4 − c2c3
2 + 5c21c3 + c1c

2
2

16 −
c31c2
8 + c51

3840

	 

z5

+ c6 − c1c5 − c2c4
2 +

� 5c1c2c3
8 + 5c32

48 −
c23
4 + 5c61

512

+ c41c2
768 −

3c21c22
16 + 5c21c4

16 −
c31c3
8



z6+⋯:

ð18Þ

Comparing the coefficients of z, z2, z3, z4, z5, z6 between
equations (15) and (18), we obtain

a2 =
c1
2 ,

a3 =
c2
4 ,

a4 =
c3
6 −

c1c2
24 −

c31
144 ,

a5 =
c4
8 −

c1c3
24 + 5c41

1152 −
c21c2
192 −

c22
32 ,

ð19Þ

a6 =
−3c1c4
80 −

7c2c3
120 −

11c51
4800 −

43c1c22
960 + 71c31c2

5760 + c5
10 ,

ð20Þ

a7 =
c21c4
480 + c1c2c3

480 + 833c61
691200 −

41c21c22
3840 −

109c41c2
11520 −

c1c5
30

−
5c2c4
96 + 5c32

1152 + c6
12 + c31c3

144 :

ð21Þ
Applying Lemma 2, we easily get

∣a2∣ ≤ 1,

∣a3∣ ≤
1
2 ,

∣a4∣ =
c3
6 −

c1c2
24 −

c31
144

����
���� = 1

6 c3 −
c1c2
3

h i
+ c1
72 c2 −

c21
2

� 
����
����:
ð22Þ

Let c1 = c, c ∈ ½0, 2�; by using Lemma 3, we show

a4j j = 1
6 c3 −

c1c2
3

h i
+ c1
72 c2 −

c21
2

� 
����
���� ≤ 1

3 + c 2 − c2/2
� �

72 ;

ð23Þ

also, let

F cð Þ = 1
3 + c 2 − c2/2

� �
72 ; ð24Þ

obviously, we find

F ′ cð Þ = 1
36 −

c2

48 : ð25Þ

Setting F ′ðcÞ = 0, we have c = 2
ffiffiffi
3

p
/3, and so, FðcÞ has a

maximum value attained at c = 2
ffiffiffi
3

p
/3, also which is

a4j j ≤ F
2
ffiffiffi
3

p

3

 !
= 1
3 +

ffiffiffi
3

p

162 ≈ 0:344,

∣a5∣ =
c4
8 −

c1c3
24 + 5c41

1152 −
c21c2
192 −

c22
32

����
����

= 1
8 c4 −

c1c3
3

h i
−

c21
576 c2 −

c21
2

� 

−

c2
32 c2 −

c21
2

	 

−
7c21c2
576

����
����:

ð26Þ

Let c1 = c, c ∈ ½0, 2�, according to Lemma 3, we obtain

∣a5∣ ≤
1
4 + 5c2 2 − c2/2

� �
576 + 1

16 2 − c2

2

	 

+ 7c2
288 : ð27Þ

Putting

F cð Þ = 1
4 + 5c2 2 − c2/2

� �
576 + 1

16 2 − c2

2

	 

+ 7c2
288 , ð28Þ
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we get

F ′ cð Þ = −
7c
144 −

5c3
288 ≤ 0: ð29Þ

Therefore, the function FðcÞ has a maximum value
attained at c = 0, also which is

a5j j ≤ F 0ð Þ = 3
8 ,

∣a6∣ =
−3c1c4
80 −

7c2c3
120 −

11c51
4800 −

43c1c22
960 + 71c31c2

5760 + c5
10

����
����

= 1
24 c5 −

9c1c4
10

� 

+ 7
120 c5 − c2c3½ � + 11c31

2400 c2 −
c21
2

� 
����
−
43c1c2
960 c2 −

c21
2

	 

−
211c31c2
14400

����:
ð30Þ

Let c1 = c, c ∈ ½0, 2�, in view of Lemma 3, we have that

∣a6∣ ≤
7
60 + 1

12 + 11c3 2 − c2/2
� �
2400 + 43

240 2 − c2

2

	 

+ 211c3

7200 :

ð31Þ

Taking

F cð Þ = 7
60 + 1

12 + 11c3 2 − c2/2
� �
2400 + 43

240 2 − c2

2

	 

+ 211c3

7200 ,

ð32Þ

we obtain

F ′ cð Þ = 277c2
2400 −

55c4
4800 −

c
240 : ð33Þ

Thus, c = 0 is the root of the function F ′ðcÞ = 0 and F ′′ð
0Þ < 0; we are easy to see that the function FðcÞ has a maxi-
mum value attained at c = 0, also which is

a6j j ≤ F 0ð Þ = 67
120 ,

∣a7∣ =
c21c4
480 + c1c2c3

480 + 833c61
691200 −

41c21c22
3840 −

109c41c2
11520

����
−
c1c5
30 −

5c2c4
96 + 5c32

1152 + c6
12 + c31c3

144

����
= −37c61

691200 −
25c21c22
5760 −

c1c5
30 + c21 c4 − c22

� �
480 + c1c2 c3 − c1c2½ �

480

����
+ c31 c3 − c1c2½ �

144 −
29c41 c2 − c21/2

� �
11520 + 5c22 c2 − c21/2

� �
1152

+ c6 − 5/8c2c4½ �
12

����:
ð34Þ

Let c1 = c, c ∈ ½0, 2�, by virtue of Lemma 3, we have that

∣a7∣ ≤
1
6 + c2

240 + 9c
120 + 29c4 2 − c2/2

� �
11520 + 37c6

691200 + c3

72

+ 25c2
1440 + 5 2 − c2/2

� �
288 :

ð35Þ

Letting

F cð Þ = 1
6 + c2

240 + 9c
120 + 29c4 2 − c2/2

� �
11520 + 37c6

691200 + c3

72

+ 25c2
1440 + 5 2 − c2/2

� �
288 ,

ð36Þ

so we get

F ′ cð Þ ≥ 0: ð37Þ

Thus, the function FðcÞ has a maximum value attained at
c = 2, also which is

∣a7∣ ≤ F 2ð Þ = 5587
10800 : ð38Þ

Hence, the proof is complete.

Theorem 5. If the function f ðzÞ ∈ S∗
s and of the form ((1)),

then we have

∣a3 − a22∣ ≤
1
2
: ð39Þ

Proof. Applying equation (21), we have

∣a3 − a22∣ =
c2
4 −

c21
4

����
����: ð40Þ

Then, by applying Lemma 1, we get

∣a3 − a22∣ =
x 4 − c21
� �

8 −
c21
8

����
����: ð41Þ

Suppose that jxj = t, t ∈ ½0, 1�, c1 = c, c ∈ ½0, 2�: Then, using
the triangle inequality, we obtain

∣a3 − a22∣ ≤
t 4 − c2
� �

8 + c2

8 : ð42Þ

Suppose

F c, tð Þ = t 4 − c2
� �

8 + c2

8 , ð43Þ

then for any t ∈ ð0, 1Þ and c ∈ ð0, 2Þ, we get
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∂F
∂t

= 4 − c2

8 > 0, ð44Þ

which means that Fðc, tÞ is an increasing function on the
closed interval [0,1] about t. Therefore, the function Fðc, tÞ
can get the maximum value at t = 1, that is,

max F c, tð Þ = F c, 1ð Þ = 4 − c2
� �

8 + c2

8 = 1
2 : ð45Þ

So, obviously,

∣a3 − a22∣ ≤
1
2 : ð46Þ

Hence, the proof is complete.

Theorem 6. If the function f ðzÞ ∈ S∗
s and of the form ((1)),

then we have

∣a2a3 − a4∣ ≤
1
3
: ð47Þ

Proof. From (21), we have

∣a2a3 − a4∣ = ∣
c1c2
8 + c31

144 −
c3
6 + c1c2

24 ∣ = c1c2
6 −

c3
6 + c31

144

����
����:

ð48Þ

Now, in view of Lemma 1, we get

∣a2a3 − a4∣ =
7c31
144 + 4 − c21

� �
c1x

2

24 −
4 − c21
� �

1 − xj j2� �
z

12

�����
�����:
ð49Þ

Let jxj = t, t ∈ ½0, 1�, c1 = c, c ∈ ½0, 2�: Then, using the trian-
gle inequality, we deduce that

∣a2a3 − a4∣ ≤
7c3
144 + 4 − c2

� �
ct2

24 + 4 − c2
� �

1 − t2
� �
12 : ð50Þ

Assume that

F c, tð Þ = 7c3
144 + 4 − c2

� �
ct2

24 + 4 − c2
� �

1 − t2
� �
12 : ð51Þ

Therefore, for any t ∈ ð0, 1Þ and c ∈ ð0, 2Þ, we have

∂F
∂t

= 4 − c2
� �

t c − 2ð Þ
12 < 0, ð52Þ

that is, Fðc, tÞ is an decreasing function on the closed interval
[0,1] about t. This implies that the maximum value of Fðc, tÞ
occurs at t = 0, which is

max F c, tð Þ = F c, 0ð Þ = 7c3
144 + 4 − c2

� �
12 : ð53Þ

Define

G cð Þ = 4 − c2
� �

12 + 7c3
144 ; ð54Þ

we clearly see that the function GðcÞ has a maximum value
attained at c = 0, also which is

∣a2a3 − a4∣ ≤ G 0ð Þ = 1
3 : ð55Þ

Hence, the proof is complete.

Theorem 7. If the function f ðzÞ ∈ S∗
s and of the form ((1)),

then we have

∣a2a4 − a23∣ ≤
1
4
: ð56Þ

Proof. Let f ðzÞ ∈ S∗
s , then by equation (21), we get

∣a2a4 − a23∣ =
c1c3
12 −

c21c2
48 −

c41
288 −

c22
16

����
����: ð57Þ

Now, in terms of Lemma 1, we obtain

∣a2a4 − a23∣ =
c1c3
12 −

c21c2
48 −

c41
288 −

c22
16

����
����

= −
5c41
576 −

x2c21 4 − c21
� �
48 −

x2 4 − c21
� �2
64

�����
+ c1 4 − c21

� �
1 − xj j2� �

z

24

�����:
ð58Þ

Let jxj = t, t ∈ ½0, 1�, c1 = c, c ∈ ½0, 2�: Then, using the trian-
gle inequality, we get

∣a2a4 − a23∣ ≤
t2c2 4 − c2
� �
48 + 1 − t2

� �
c 4 − c2
� �

24 + t2 4 − c2
� �2
64 + 5c4

576 :

ð59Þ

Setting

F c, tð Þ = t2c2 4 − c2
� �
48 + 1 − t2

� �
c 4 − c2
� �

24 + t2 4 − c2
� �2
64 + 5c4

576 ,

ð60Þ

then, for any t ∈ ð0, 1Þ and c ∈ ð0, 2Þ, we have

∂F
∂t

= t c2 − 8c + 12
� �

4 − c2
� �

96 > 0, ð61Þ

which implies that Fðc, tÞ increases on the closed interval
[0,1] about t. That is, that Fðc, tÞ has a maximum value at
t = 1, which is
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max F c, tð Þ = F c, 1ð Þ = c2 4 − c2
� �
48 + 4 − c2

� �2
64 + 5c4

576 : ð62Þ

Putting

G cð Þ = c2 4 − c2
� �
48 + 4 − c2

� �2
64 + 5c4

576 , ð63Þ

then we have

G′ cð Þ = c 4 − c2
� �
24 −

c3

24 −
c 4 − c2
� �
16 + 5c3

144 : ð64Þ

If G′ðcÞ = 0, then the root is c = 0: Also, since G′′ð0Þ =
−1/12 < 0, so the function GðcÞ can take the maximum value
at c = 0, which is

∣a2a4 − a23∣ ≤G 0ð Þ = 1
4 : ð65Þ

Hence, the proof is complete.

Theorem 8. If the function f ðzÞ ∈ S∗
s and of the form ((1)),

then we have

∣a2a5 − a3a4∣ ≤
11
36

: ð66Þ

Proof. Let f ðzÞ ∈ S∗
s , then by using (21), we have

∣a2a5 − a3a4∣ =
5c51
2304 + c1c4

16 −
c1c

2
2

192 −
c21c3
48 −

c31c2
1152 −

c2c3
24

����
����

= −
c31 c2 − c21/2
� �
1152 −

c3 c2 − c21/2
� �

24 + c1 c4 − c1c3½ �
24

����
+ c51
576 + c1 c4 − 1/4c22

� �
48

����:
ð67Þ

Let c1 = c, c ∈ ½0, 2�, according to Lemma 3, we obtain

a5j j ≤ 1
4 + 5c2 2 − c2/2

� �
576 + 1

16 2 − c2

2

	 

+ 7c2
288 : ð68Þ

Taking

F cð Þ = c3 2 − c2/2
� �
1152 + 2 − c2/2

� �
12 + c

8 + c5

576 : ð69Þ

Then, ∀c ∈ ð0, 2Þ, we have

F ′ cð Þ = c2

192 + c4

128 −
c
12 + 1

8 > 0, ð70Þ

which implies that FðcÞ increases on the closed interval [0,2]
about c. Namely, the maximum value of FðcÞ attains at c = 2,
also which is

∣a2a5 − a3a4∣ ≤ F 2ð Þ = 11
36 : ð71Þ

The proof of Theorem 8 is completed.

Theorem 9. If the function f ðzÞ ∈ S∗
s and of the form ((1)),

then we have

∣a5 − a2a4∣ ≤
13
32

: ð72Þ

Proof. Assume that f ðzÞ ∈ S∗
s , then from (21), we obtain

∣a5 − a2a4∣ =
c41
128 −

c1c3
8 + c21c2

64 −
c22
32 + c4

8

����
����

= c41 + c22 + 2c1c3 − 3c21c2 − c4
� �

32 −
5c21 c2 − c21/2
� �
64

����
−
3 c4 − 2/3c1c3½ �

32

����:
ð73Þ

Next, by virtue of Lemma 3, we obtain

∣a5 − a2a4∣ ≤
1
4 + 5c2 2 − c2/2

� �
64 : ð74Þ

Setting

F cð Þ = 1
4 + 5c2 2 − c2/2

� �
64 : ð75Þ

Then, we have

F ′ cð Þ = 5c
16 −

5c3
32 : ð76Þ

Let F ′ðcÞ = 0, we get c = 0 or c =
ffiffiffi
2

p
and F ′ð ffiffiffi

2
p Þ < 0,

which implies that the maximum value of FðcÞ attains at c
=

ffiffiffi
2

p
, also which is

∣a5 − a2a4∣ ≤ F
ffiffiffi
2

p� �
= 13
32 : ð77Þ

Hence, the proof is complete.

Theorem 10. If the function f ðzÞ ∈ S∗
s and of the form ((1)),

then we have

∣a5a3 − a24∣ ≤
97
324

: ð78Þ
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Proof. Assume that f ðzÞ ∈ S∗
s , then from (21), we obtain

∣a5a3 − a24∣ =
7c41c2
13824 + c2c4

32 + c1c2c3
288 −

c32
128 + c31c3

432

����
−
7c21c22
2304 −

c23
36 −

c61
20736

����
= c2 c4 − c1c3/9½ �

32 −
c3 c3 − c1c2/4½ �

36 −
c22 c2 − c21/2
� �
128

����
−
c21c2 c2 − c21/2
� �
144 + c31 c3 − 31/32c1c2½ �

432

−
5c41c2
6912 −

c61
20736

����:
ð79Þ

Next, in terms of Lemma 3, we obtain

∣a5a3 − a24∣ ≤
1
8 + 1

9 + 2 − c2/2
� �

32 + c2 2 − c2/2
� �

72 + c3

216

+ 5c4
3456 + c6

20736 :

ð80Þ

Putting

F cð Þ = 1
8 + 1

9 + 2 − c2/2
� �

32 + c2 2 − c2/2
� �

72 + c3

216

+ 5c4
3456 + c6

20736 :
ð81Þ

Then, for any c ∈ ð0, 2Þ, we have F ′ðcÞ > 0, which means
that the maximum value of FðcÞ arrives at t = 2, also which is

∣a5a3 − a24∣ ≤ F 2ð Þ = 97
324 : ð82Þ

Hence, the proof is complete.

Theorem 11. If the function f ðzÞ ∈ S∗
s and of the form ((1)),

then we have

∣H4 1ð Þ∣ ≤ 0:81945: ð83Þ

Proof. Because of

H4 1ð Þ = a7 a3 a2a4 − a23
� �

− a4 a4 − a2a3ð Þ + a5 a3 − a22
� �� �

− a6 a3 a2a5 − a3a4ð Þ − a4 a5 − a2a4ð Þ + a6 a3 − a22
� �� �

− a6 a3 a2a5 − a3a4ð Þ − a4 a5 − a2a4ð Þ + a6 a3 − a22
� �� �

+ a5 a3 a3a5 − a24
� �

− a5 a5 − a2a4ð Þ + a6 a4 − a2a3ð Þ� �
− a4 a4 a3a5 − a24

� �
− a5 a2a5 − a3a4ð Þ + a6 a4 − a2a3ð Þ� �

,
ð84Þ

then, by applying the triangle inequality, we get

∣H4 1ð Þ∣ = a7j j a3j j∣ a2a4 − a23
�� �� + a7j j a4j j a4 − a2a3j j

+ a7j j a5j j a3 − a22
�� �� + a6j j a3j j a2a5 − a3a4j j

+ a6j j a4j j a5 − a2a4j j + a6j j2 a3 − a22
�� ��

+ a5j j a3j j a3a5 − a24
�� �� + a5j j2 a5 − a2a4j j

+ a5j j a6j j a4 − a2a3j j + a4j j2 a3a5 − a24
�� ��

+ a4j j a5j j a2a5 − a3a4j j + a4j j a6j j a4 − a2a3j j:
ð85Þ

Next, substituting (13) and (39)–(78) into (85), we easily
obtain the desired assertion (83).

3. Conclusion

In the present paper, we mainly get upper bounds of the
fourth-order Hankel determinant H4ð1Þ of starlike functions
connected with the sine function. However, the results
obtained in this paper are not sharp. In the future, we will
consider the sharpness of the results. Also, we can discuss
the related research of the fifth-order Hankel determinant
and fifth-order Toeplitz determinant for this function class.
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This article deals with the q-differential subordinations for starlike functions associated with the lemniscate of Bernoulli and
cardioid domain. The primary goal of this work is to find the conditions on γ for 1 + ðγz∂q hðzÞÞ/ðhn ðzÞ Þ ≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
, where hðzÞ

is analytic function and is subordinated by the function which is producing cardioid domain as its image domain while mapping
the open unit disk. Along with this, certain sufficient conditions for q-starlikeness of analytic functions are determined.

1. Introduction

Consider the class A of analytic functions defined in open
unit disk F with normalization condition f ð0Þ = 0 and f ′
ð0Þ = 1 which provides the Taylor series expansion of the
form

f zð Þ = z + 〠
∞

n=2
anz

n, z ∈ F: ð1Þ

The class S consists of functions from A which are univa-
lent functions in F, and the class P contains the analytic func-
tions whose codomains are bounded by the open right half
plane. For more details, see [1, 2].

The concept of differential subordination plays a vital
role in the study of geometric properties of analytic func-

tions. It was first introduced by Lindelof, but Littlewood [3]
did the remarkable work in this field. Many researchers con-
tributed in the study of differential subordinations. History
and the development of works in the field related to differen-
tial subordination are briefly described and included in the
book by Miller and Mocanu [4]. The major development in
the field of differential subordination started in 1974 by
Miller et al. [5].

An analytic function f is considered to be subordinated
by analytic function g, denoted as f ≺ g, if there exists
another analytic function w with the property that wð0Þ = 0
and jwðzÞ j < jzj such that f ðzÞ = gðwðzÞÞ: Moreover, in case
of univalent functions in F, we can have

f ≺ g⇔ f 0ð Þ = g 0ð Þ,
f Fð Þ ⊂ g Fð Þ:

ð2Þ
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Recently, many mathematicians have used this concept
of differential subordinations to prove many helpful results.
Familiar Jack’s lemma [6] has produced several advance-
ments for the generalization of differential subordinations
and found many applications in this field. The work of Ma
and Minda [7] in this field is not negligible as they studied
the functionΦwhich is analytic, and condition of normaliza-
tion given for prescribed function is defined as Φð0Þ = 1 and
Φ′ð0Þ > 0 with a positive real part. With the help of the func-
tion Φ, they introduced the following subclasses for starlike
and convex functions.

S∗ Φð Þ = f ∈ A :
zf ′ zð Þ
f zð Þ ≺Φ zð Þ ; z ∈ F

( )
,

C Φð Þ = f ∈ A : 1 + zf ′′ zð Þ
f ′ zð Þ

≺Φ zð Þ ; z ∈ F

( )
:

ð3Þ

These subclasses helped many researchers for further
studies in the field of differential subordination. Ali et al.
[8] used the concept of differential subordination to prove
analytic functions to be Janowski starlike. Ali et al. [9] also
evaluated several differential subordinations: 1 + γzðp′ðzÞ/
pnðzÞÞ and found the γ for pðzÞ ≺ ffiffiffiffiffiffiffiffiffiffi

1 + z
p

. Raina and Sokol
[10] used subordinations for coefficient estimation of star-
like functions. Similar kinds of works have also been done
by Sharma et al. [11] by using starlikeness for cardioid
function, and Yunus et al. [12] studied for limacon.

Quantum calculus is the new branch of mathematics
and is equally important for its applications both in phys-
ics and in mathematics as well. Jackson [13, 14] presented
the functions of q-derivatives and q-integrals and
highlighted their definitions for the first time. He also
holds the credit for the systematic initiation of q-calcu-
lus. Ismail et al. [15] were the pioneers to contribute in
the application of q-calculus in geometric function theory.
The new form of the subclass of starlike functions S∗ðΦÞ
with the involvement of q-derivative was introduced by
Seoudy and Aouf [16]. By choosing different image
domains instead of ΦðzÞ, so many attractive subclasses of
starlike functions are obtained. Mahmood et al. [17] have
dealt with the class of q-starlike functions by relating them
with conic domains. The most recent work related to q
-starlikeness of functions is done by Srivastava et al.
[18]. The contributions of Haq et al. [19] are remarkable.
They proved differential subordinations with q-analogue
for cardioid and limacon domain with the involvement
of Janowski function and found the sufficient conditions
for q-starlike functions. The q version of Jack’s lemma
which is the soul of our work was given by Çetinkaya
and Polatoglu [20]. These recent efforts of mathematicians
discussed above motivated us and provide strength to con-
tribute in the field of differential subordinations with the
involvement of its q-analogue, which is the main idea of
this article. The foundation of all this work in q-ana-
logue is the q-derivative which is defined below.

The q-derivative of a complex-valued function f , defined
in the domain F, is given as follows:

Dqf
� �

zð Þ =
f zð Þ − f qzð Þ

1 − qð Þz , z ≠ 0,

f ′ 0ð Þ, z = 0,

8><
>: ð4Þ

where 0 < q < 1: This implies the following:

lim
q⟶1−

Dqf
� �

zð Þ = lim
q⟶1−

f zð Þ − f qzð Þ
1 − qð Þz = f ′ zð Þ, ð5Þ

provided the function f is differentiable in domain F: The
function Dqf has Maclaurin’s series representation

Dqf
� �

zð Þ = 〠
∞

n=0
n½ �qanzn−1, ð6Þ

where

n½ �q =

1 − qn

1 − q
, n ∈ℂ,

〠
n−1

k=0
qk = 1 + q + q2+⋯+qn−1, n ∈ℕ:

8>>>><
>>>>:

ð7Þ

For more details about q-derivatives and recent work on
it, we refer the reader to [21–25].

Definition 1. The function f ðzÞ ∈ A is said to be in the class
S∗q,c, if

z∂q f zð Þ
f zð Þ ≺ 1 + 4

3 z +
2
3 z

2, z ∈ F: ð8Þ

Lemma 2 (q-Jack’s lemma, [20]). Consider an analytic func-
tion w in F with wð0Þ = 0. For a maximum value of w on
the circle jzj = 1 at z 0 = aeiθ, where θ ∈ ½−π, π�, and 0 < q <
1, then, we have

z0∂qw z0ð Þ =mw z0ð Þ: ð9Þ

Here, m is real and m ≥ 1:

By using the above lemma, we have proved our main
results.

2. Main Results

Theorem 3. Assume that

γ ≥
3

ffiffiffi
2

p
+ 1

� �
2 1 − qð Þ , ð10Þ

and we define an analytic function h on F with hð0Þ = 1 which
satisfies
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1 + γz∂qh zð Þ ≺
ffiffiffiffiffiffiffiffiffiffi
1 + z

p
: ð11Þ

In addition, we suppose that

1 + γz∂qh zð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +w zð Þ

p
, ð12Þ

where w is analytic in F with wð0Þ = 0: Then,

h zð Þ ≺ 1 + 4
3
z + 2

3
z2: ð13Þ

Proof. Consider the function

p zð Þ = 1 + γz∂qh zð Þ, ð14Þ

which is analytic in F with the condition pð0Þ = 1 and the
function

h zð Þ = 1 + 4
3w zð Þ + 2

3w
2 zð Þ, ð15Þ

where w is an analytic function in F with wð0Þ = 0: To prove
the result, it would be sufficient to show that jwðzÞj ≤ 1 for

w zð Þ = p2 zð Þ − 1: ð16Þ

From (14) and (15), we deduce the following:

p zð Þ = 1 + γ

3 z∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �
,

ð17Þ

and with this, one can have

w zð Þ = p2 zð Þ − 1 = γ

3 z∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �h i2
+ 2 γ

3 z∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �h i
:

ð18Þ

This implies that

p2 zð Þ − 1
		 		 = γ

3 z∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �h i2				
+ 2 γ

3 z∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �h i			
= 2 + γ

3 z∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �			 			
× γ

3 z∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �			 			:
ð19Þ

Now, considering the existence of a point z0 ∈ F such that

max
zj j≤ zj j

w zð Þj j = w z0ð Þj j = 1: ð20Þ

Now, we use the q-Jack’s lemma which implies that
there exist a number m ≥ 1 such that z0∂qwðz0Þ =mwðz0Þ:
This, with the consideration that wðz0Þ = eiθ, θ ∈ ½−π, π� for
z0 ∈ F, we have

The function

p2 z0ð Þ − 1
		 		 = 2 + γ

3 z0∂qw z0ð Þ 4 1 +w z0ð Þð Þ − 2 1 − qð Þz0∂qw z0ð Þ� �			 			: γ3 z0∂qw z0ð Þ 4 1ð +w z0ð Þ − 2 1 − qð Þz0∂qw z0ð Þ� �			 			
= 2 + γ

3meiθ 4 1 + eiθ
� �

− 2m 1 − qð Þeiθ
n o			 			: γ3meiθ 4 1 + eiθ

� �
− 2m 1 − qð Þeiθ

n o			 			
=


4 + 4

9 γ
2m2 4 + 2 −m 1 − qð Þð Þ2� �

+ 16
3 γm 1 + γm

3 2 −m 1 − qð Þð Þ
n o

cos θ + 8
3 γm 2 −m 1 − qð Þð Þ cos 2θ

r

:
mγ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 + 4 − 2m 1 − qð Þð Þ2 + 8 4 − 2m 1 − qð Þð Þ cos θ

q
:

ð21Þ

G θð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 + 4

9 γ
2m2 4 + 2 −m 1 − qð Þð Þ2� �

+ 16
3 γm 1 + γm

3 2 −m 1 − qð Þð Þ
n o

cos θ + 8
3 γm 2 −m 1 − qð Þð Þ cos 2θ

r

:
mγ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 + 4 − 2m 1 − qð Þð Þ2 + 8 4 − 2m 1 − qð Þð Þ cos θ

q ð22Þ
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is clearly an even function. So, in order to find the maximum
value of G, we will consider the interval ½0, π�: Thus,

gives G′ðθÞ = 0 for θ = 0 and π. Also, we can see that G′
′ðπÞ > 0 for 1 <m < 2:5, which results that GðθÞ ≥GðπÞ:
Now, consider the function

So we have

Θ′ mð Þ = 16
3 γ2m3 1 − qð Þ2 − 8

3 γm 1 − qð Þ > 0: ð25Þ

Thus, ΘðmÞ is an increasing function which gives a min-
imum value for m = 1: Then, we have

p2 z0ð Þ − 1
		 		 ≥ 4

9 γ
2 1 − qð Þ2 − 4

3 γ 1 − qð Þ: ð26Þ

From (10), we conclude that

p2 z0ð Þ − 1
		 		 ≥ 1, ð27Þ

but this result contradicts (11). Hence, jwðzÞj < 1 and this
leads us to the desired result.

By taking hðzÞ = z∂q f ðzÞ/f ðzÞ, the above result reduces to
the following.

Corollary 4. Let γ ≥ 3ð ffiffiffi
2

p
+ 1Þ/2ð1 − qÞ and f ∈ A satisfy the

subordination

1 + γz∂q
z∂q f zð Þ
f zð Þ


 �
≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
: ð28Þ

Then, f ðzÞ ∈ S∗q,c:

Theorem 5. Assume that

γ ≥
ffiffiffi
2

p
+ 1

2 1 − qð Þ , ð29Þ

and we define an analytic function h on F with hð0Þ = 1 which
satisfies

1 +
γz∂qh zð Þ
h zð Þ ≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
: ð30Þ

In addition, we suppose that

1 +
γz∂qh zð Þ
h zð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +w zð Þ

p
, ð31Þ

where w is analytic in F with wð0Þ = 0: Then,

h zð Þ ≺ 1 + 4
3 z +

2
3 z

2: ð32Þ

Proof. Consider the function

p zð Þ = 1 + γ
z∂qh zð Þ
h zð Þ , ð33Þ

which is analytic in F with the condition pð0Þ = 1 and the
function

h zð Þ = 1 + 4
3w zð Þ + 2

3w
2 zð Þ, ð34Þ

G′ θð Þ =
−8γm


9 + 4γ2m2 + γ2m2 2 −m 1 − qð Þð Þ2 + 12γm cos θ + 4γ2m2 2 −m 1 − qð Þð Þ cos θ + 6γm 2 −m 1 − qð Þð Þ cos 2θ

q
4 − 2m 1 − qð Þð Þ sin θ

9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 + 4 − 2m 1 − qð Þð Þ2 + 8 4 − 2m 1 − qð Þð Þ cos θ

q

+ 1
9
γm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 + 4 − 2m 1 − qð Þð Þ2 + 8 4 − 2m 1 − qð Þð Þ cos θ

q
−12γm sin θ − 4γ2m2 2 −m 1 − qð Þð Þ sin θ − 12γm 2 −m 1 − qð Þð Þ sin 2θ
� �


9 + 4γ2m2 + γ2m2 2 −m 1 − qð Þð Þ2 + 12γm cos θ + 4γ2m2 2 −m 1 − qð Þð Þ cos θ + 6γm 2 −m 1 − qð Þð Þ cos 2θ

q
ð23Þ

Θ mð Þ =

4 + 4

9 γ
2m2 4 + 2 −m 1 − qð Þð Þ2� �

−
16
3 γm 1 + γm

3 2 −m 1 − qð Þð Þ
n o

+ 8
3 γm 2 −m 1 − qð Þð Þ

r
mγ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 + 4 − 2m 1 − qð Þð Þ2 − 8 4 − 2m 1 − qð Þð Þ

q

= 4
9 γ

2m4 1 − qð Þ2 − 4
3 γm

2 1 − qð Þ:

ð24Þ
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where w is an analytic function in F with wð0Þ = 0: Using
(33) and (34), we obtain

p zð Þ = 1 +
γ/3ð Þz∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �

1 + 4/3ð Þw zð Þ + 2/3ð Þw2 zð Þ :

ð35Þ

Proving the fact that jwðzÞj ≤ 1 will be sufficient to prove
our assertion. For this, consider

p2 zð Þ − 1
		 		

=
2 3 + 4w zð Þ + 2w2 zð Þ� �

+ γz∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �
3 + 4w zð Þ + 2w2 zð Þð Þ

					
					

·
γz∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �

3 + 4w zð Þ + 2w2 zð Þð Þ

					
					:

ð36Þ

Considering the existence of a point z0 ∈ F such that

max
zj j≤ zj j

w zð Þj j = w z0ð Þj j = 1, ð37Þ

we can make use of q-Jack’s lemma which implies that
there exists a number m ≥ 1 such that z0∂qwðz0Þ =mwðz0Þ:
Now, consider that wðz0Þ=eiθ, θ ∈ ½−π, π�, then for z0 ∈ F,
we have

p2 z0ð Þ − 1
		 		

= 2 3 + 4eiθ + 2e2iθ
� �

+ γmeiθ 4 1 + eiθ
� �

− 2m 1 − qð Þeiθ� �
3 + 4eiθ + 2e2iθ
� �

					
					

× γmeiθ 4 1 + eiθ
� �

− 2m 1 − qð Þeiθ� �
3 + 4eiθ + 2e2iθ
� �

					
					:

ð38Þ

Now, one can easily see that the function

G θð Þ =
ffiffiffiffiffiffi
Ψ1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29 + 40 cos θ + 29 cos 2θ

p

·
mγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 + 4 − 2m 1 − qð Þð Þ2 + 8 4 − 2m 1 − qð Þð Þ cos θ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29 + 40 cos θ + 29 cos 2θ

p

ð39Þ

with

Ψ1 = 68 + 48γm + 8γm2 + 4γ2m4 + 32γ2m2 − 16γ2m3

− 8γm2q + 16γ2m3q − 8γ2m4q + 4γ2m4q2 + 160 cos θ
+ 48γm2q cos 2θ + 32 cos θγm2q + 16 cos θγ2m3q

+ 96 cos 2θ − 48γm2 cos 2θ + 96γm cos 2θ
+ 144 cos θγm − 16 cos θγ2m3 + 32 cos θγ2m2

− 32 cos θγm2

ð40Þ

is clearly an even function. So, in order to find the maximum
value of G, we will consider the interval ½0, π�: Now, we have

G′ θð Þ = 0 ð41Þ

for θ = 0 and π: Also, we can see that G′′ðπÞ > 0 for m≥1,
thus we conclude that GðθÞ ≥ GðπÞ: So we have the function

Θ mð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 8γm2 + 8γm2q + 4γ2m4 − 82m4q + 4γ2m4q2

p
·mγ 2m 1 − qð Þð Þ = 2γm2 1 − qð Þ − 2

� 

2γm2 1 − qð Þ� 


:

ð42Þ

This gives

Θ′ mð Þ = 16γ2m3 1 − qð Þ2 − 8γm 1 − qð Þ > 0: ð43Þ

Thus, ΘðmÞ is an increasing function which gives a min-
imum value for m = 1. Then, we have

p2 z0ð Þ − 1
		 		 ≥ 4γ2 1 − qð Þ2 − 4γ 1 − qð Þ: ð44Þ

From (29), we conclude that

p2 z0ð Þ − 1
		 		 ≥ 1, ð45Þ

but this result contradicts (30). Hence, jwðzÞj < 1 which pro-
vides the required result.

By taking hðzÞ = z∂q f ðzÞ/f ðzÞ, the above result reduces to
the following.

Corollary 6. Let γ ≥
ffiffiffi
2

p
+ 1/2ð1 − qÞ and f ∈ A satisfy the

subordination

1 + γz
f zð Þ

z∂q f zð Þ

 !
∂q

z∂q f zð Þ
f zð Þ


 �
≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
: ð46Þ

Then, f ðzÞ ∈ S∗q,c:

Theorem 7. Assume that

γ ≥
ffiffiffi
2

p
+ 1

2:3 1 − qð Þ , ð47Þ

and we define an analytic function h on F with hð0Þ = 1 which
satisfies

1 +
γz∂qh zð Þ
h2 zð Þ ≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
: ð48Þ

In addition, we suppose that

1 +
γz∂qh zð Þ
h2 zð Þ

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +w zð Þ

p
, ð49Þ
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where w is analytic in F with wð0Þ = 0: Then,

h zð Þ ≺ 1 + 4
3 z +

2
3 z

2: ð50Þ

Proof. Let us define the function

p zð Þ = 1 + γ
z∂qh zð Þ
h2 zð Þ

, ð51Þ

which is analytic in F with the condition pð0Þ = 1 and the
function

h zð Þ = 1 + 4
3w zð Þ + 2

3w
2 zð Þ, ð52Þ

where w is an analytic function in F with wð0Þ = 0: Using
(51) and (52), we get

p zð Þ = 1 +
γ/3ð Þz∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �

1 + 4/3ð Þw zð Þ + 2/3ð Þw2 zð Þð Þ2
:

ð53Þ

To prove the assertion, it would be enough to show that
jwðzÞj ≤ 1: Therefore,

p2 zð Þ − 1
		 		 = 2 +

γ/3ð Þz∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �
1 + 4/3ð Þw zð Þ + 2/3ð Þw2 zð Þð Þ2

					
					

·
γ/3ð Þz∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �

1 + 4/3ð Þw zð Þ + 2/3ð Þw2 zð Þð Þ2
					

					,
ð54Þ

which after using (9) gives

Now, we consider the function

G θð Þ =
ffiffiffiffiffiffi
Ψ2

p
29 + 40 cos θ + 12 cos 2θð Þ

·
3γm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 + 4 − 2m 1 − qð Þð Þ2 − 8 4 − 2m 1 − qð Þð Þ cos θ

q
29 + 40 cos θ + 12 cos 2θð Þ ,

ð56Þ

where

Ψ2 = 1156 + 1104γm − 360γm2 − 960γm2 cos θ + 360γm2q

+ 144γ2m3q − 72γ2m4q + 36γ2m4q2 + 288γ2m2

− 144γ2m3 + 36γ2m4 + 9664 cos 2θ + 768γm cos 3θ
+ 2784γm cos 2θ − 624γm2 cos θ + 3120γm cos θ
+ 288γ2m2 cos θ − 144γ2m3 cos θ + 2304 cos 4θ
+ 7680 cos 3θ + 5440 cos θ + 624γm2q cos 2θ
+ 960γm2q cos θ + 144γ2m3q cos θ:

ð57Þ

As we see that GðθÞ is an even function, so G′ðθÞ = 0 at
θ = 0, π and also we see that G′′ðπÞ > 0 for m ≥ 1. Thus, we
conclude that GðθÞ ≥GðπÞ and we get a new function

Θ mð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 24γm2 + 24γm2q − 72γ2m4q + 36γ2m4q2 + 36γ2m4

p
· 3γm 2m 1 − qð Þð Þ,

ð58Þ

and we have

Θ′ mð Þ = 72γ2m3 1 − qð Þ2 + 12 6γm2 1 − qð Þ − 2
� �

γm 1 − qð Þ > 0:
ð59Þ

So ΘðmÞ is an increasing function, and it has its mini-
mum value at m = 1. Then, we have

p2 z0ð Þ − 1
		 		 ≥ 6γ 1 − qð Þ − 2ð Þ 6γ 1 − qð Þð Þ: ð60Þ

Using (47), we get

p2 z0ð Þ − 1
		 		 ≥ 1, ð61Þ

but this result contradicts (48). Hence, jwðzÞj < 1 which
proves the required result.

By taking hðzÞ = z∂q f ðzÞ/f ðzÞ, the above result reduces to
the following.

p2 z0ð Þ − 1
		 		 = 2 3 + 4w z0ð Þ + 2w2 z0ð Þ� �2 + 3γz0∂qw z0ð Þ 4 1 +w z0ð Þð Þ − 2 1 − qð Þz0∂qw z0ð Þ� �

3 + 4w z0ð Þ + 2w2 z0ð Þð Þ2
					

					
×

3γz0∂qw z0ð Þ 4 1 +w z0ð Þð Þ − 2 1 − qð Þz0∂qw z0ð Þ� �
3 + 4w z0ð Þ + 2w2 z0ð Þð Þ2

					
					:

ð55Þ
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Corollary 8. Let γ ≥
ffiffiffi
2

p
+ 1/2:3ð1 − qÞ and f ∈ A satisfy the

subordination

1 + γz
f zð Þ

z∂q f zð Þ

 !2

∂q
z∂q f zð Þ
f zð Þ


 �
≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
: ð62Þ

Then, f ðzÞ ∈ S∗q,c:

Theorem 9. Assume that

γ ≥
ffiffiffi
2

p
+ 1

2:32 1 − qð Þ , ð63Þ

and we define an analytic function h on F with hð0Þ = 1 which
satisfies

1 +
γz∂qh zð Þ
h3 zð Þ ≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
: ð64Þ

In addition, we suppose that

1 +
γz∂qh zð Þ
h3 zð Þ

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +w zð Þ

p
, ð65Þ

where w is analytic in F with wð0Þ = 0: Then,

h zð Þ ≺ 1 + 4
3 z +

2
3 z

2: ð66Þ

Proof. Let us define the function

p zð Þ = 1 + γ
z∂qh zð Þ
h3 zð Þ , ð67Þ

which is analytic in F with the condition pð0Þ = 1 and the
function

h zð Þ = 1 + 4
3w zð Þ + 2

3w
2 zð Þ, ð68Þ

where w is an analytic function in F with wð0Þ = 0: Using
(67) and (68), we obtain

p zð Þ = 1 +
γ/3ð Þz∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �

1 + 4/3ð Þw zð Þ + 2/3ð Þw2 zð Þð Þ3
:

ð69Þ

To prove the result, we have to show that jwðzÞj ≤ 1:
Therefore,

p2 zð Þ − 1
		 		 = 2 +

γ/3ð Þz∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �
1 + 4/3ð Þw zð Þ + 2/3ð Þw2 zð Þð Þ3

					
					

·
γ/3ð Þz∂qw zð Þ 4 1 +w zð Þð Þ − 2 1 − qð Þz∂qw zð Þ� �

1 + 4/3ð Þw zð Þ + 2/3ð Þw2 zð Þð Þ3
					

					:
ð70Þ

Hence, by applying (9), we obtain

Now, consider the function

G θð Þ =
ffiffiffiffiffiffi
Ψ3

p
29 + 40 cos θ + 12 cos 2θð Þ3/2

·
9γm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 + 4 − 2m 1 − qð Þð Þ2 + 8 4 − 2m 1 − qð Þð Þ cos θ

q
29 + 40 cos θ + 12 cos 2θð Þ3/2

,

ð72Þ

where

Ψ3 = 19652 + 18288γm2q cos 2θ + 13824γm2q cos 3θ
+ 4608 cos 4θγm2q + 12384 cos θγm2q + 1296 cos θγ2m3q

+ 18432 cos 5θγm − 720γm − 3384γm2 + 138720 cos θ
+ 41184γm cos 2θ + 80640γm cos 3θ + 64512 cos 4θγm
+ 3384γm2q − 18288γm2 cos 2θ + 2592 cos θγ2m2

+ 5904 cos θγm − 1296 cos θγ2m3 − 12384 cos θγm2

− 13824γm2 cos 3θ − 4608 cos 4θγm2 + 1296γ2m3q

− 648γ2m4q + 324γ2m4q2 + 409632 cos 2θ + 647680 cos 3θ
+ 578304 cos 4θ + 276480 cos 5θ + 55296 cos 6θ + 2592γ2m2

− 1296γ2m3 + 324γ2m4:

ð73Þ

p2 z0ð Þ − 1
		 		

=
2 3 + 4w z0ð Þ + 2w2 z0ð Þ� �3 + 9γz0∂qw z0ð Þ 4 1 +w z0ð Þð Þ − 2 1 − qð Þz0∂qw z0ð Þ� �

3 + 4w z0ð Þ + 2w2 z0ð Þð Þ3
					

					
×

9γz0∂qw z0ð Þ 4 1 +w z0ð Þð Þ − 2 1 − qð Þz0∂qw z0ð Þ� �
3 + 4w z0ð Þ + 2w2 z0ð Þð Þ3

					
					:

ð71Þ
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The above function is clearly an even function. So in
order to find its maximum value, we will consider the
interval ½0, π�: Now, we have G′ðθÞ = 0 for θ = 0 and π.
Clearly, G′′ðπÞ > 0, and hence, we have obtained the min-
imum value of G at θ = π, and thus, we conclude that G
ðθÞ ≥GðπÞ: So now consider the function

Θ mð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 72γm2 + 72γm2q − 648γ2m4q + 324γ2m4q2 + 324γ2m4

q
· 9γm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 + 4 − 2m 1 − qð Þð Þ2 − 8 4 − 2m 1 − qð Þð Þ

q
,

ð74Þ

which gives

Θ′ mð Þ = 648γ2m2 1 − qð Þ3 > 0: ð75Þ

Thus, ΘðmÞ is an increasing function. So for m = 1, it
gives a minimum value. Then, we have

p2 z0ð Þ − 1
		 		 ≥ 18γ 1 − qð Þ − 2½ � 18γ 1 − qð Þ½ �: ð76Þ

Using (63), we get

p2 z0ð Þ − 1
		 		 ≥ 1, ð77Þ

but this result contradicts (64). Hence jwðzÞj < 1 which
proves the required result.

By taking hðzÞ = z∂q f ðzÞ/f ðzÞ, the above result reduces to
the following.

Corollary 10. Let γ ≥
ffiffiffi
2

p
+ 1/2:32ð1 − qÞ and f ∈ A satisfy the

subordination

1 + γz
f zð Þ

z∂q f zð Þ

 !3

∂q
z∂q f zð Þ
f zð Þ


 �
≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
: ð78Þ

Then, f ðzÞ ∈ S∗q,c:

Theorem 11. Assume that

γ ≥
ffiffiffi
2

p
+ 1

2:3n−1 1 − qð Þ , ð79Þ

and we define an analytic function h on F with hð0Þ = 1 which
satisfies

1 +
γz∂qh zð Þ
hn zð Þ ≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
: ð80Þ

In addition, we suppose that

1 +
γz∂qh zð Þ
hn zð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +w zð Þ

p
, ð81Þ

where w is analytic in F with wð0Þ = 0: Then,

h zð Þ ≺ 1 + 4
3 z +

2
3 z

2: ð82Þ

We omit the proof of this result as it can be done by using
a similar technique as applied in the above results.

By taking hðzÞ = z∂q f ðzÞ/f ðzÞ, the above result reduces to
the following.

Corollary 12. Let γ ≥
ffiffiffi
2

p
+ 1/2:3n−1ð1 − qÞ and f ∈ A satisfy

the subordination

1 + γz
f zð Þ

z∂q f zð Þ

 !n

∂q
z∂q f zð Þ
f zð Þ


 �
≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
: ð83Þ

Then, f ðzÞ ∈ S∗q,c:

3. Conclusion

In this article, we have worked on q-differential subordina-
tions associated with lemniscate of Bernoulli and defined suf-
ficient conditions for q-starlikeness related to cardioid
domain. We have also determined the conditions on γ to
prove the starlikeness of prescribed function such as

1 +
γz∂qh zð Þ
h zð Þð Þn ≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
for n = 0, 1, 2, 3, ð84Þ

then

h zð Þ ≺ 1 + 4
3 z +

2
3 z

2: ð85Þ

We can use these results to study the sufficiency criteria
of other analytic functions.
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The main aim of the present article is the introduction of a new differential operator in q-analogue for meromorphic multivalent
functions which are analytic in punctured open unit disc. A subclass of meromorphic multivalent convex functions is defined using
this new differential operator in q-analogue. Furthermore, we discuss a number of useful geometric properties for the functions
belonging to this class such as sufficiency criteria, coefficient estimates, distortion theorem, growth theorem, radius of
starlikeness, and radius of convexity. Also, algebraic property of closure is discussed of functions belonging to this class. Integral
representation problem is also proved for these functions.

1. Introduction and Definitions

Let Ap denote the family of all meromorphic p-valent func-
tions f that are analytic in the punctured disc D = fz ∈ℂ
: 0 < jzj < 1g and obeying the normalization

f zð Þ = 1
zp

+ 〠
∞

n=p+1
anz

n, z ∈D: ð1Þ

Also, let MCpðαÞ denote the well-known family of mer-
omorphic p-valent convex functions of order αð0 ≤ α < pÞ
and defined as

f zð Þ ∈MCp αð Þ⇔ Re
zf ′ zð Þ
� �

′

f ′ zð Þ
< −α: ð2Þ

For 0 < q < 1, the q-difference operator or q-derivative of

a function f is defined by

∂q f zð Þ = f qzð Þ − f zð Þ
z q − 1ð Þ , z ≠ 0, q ≠ 1: ð3Þ

It can easily be seen that for n ∈ℕ, where ℕ stands for
the set of natural numbers and z ∈D,

∂q 〠
∞

n=1
anz

n

( )
= 〠

∞

n=1
n, q½ �anzn−1, ð4Þ

where

n, q½ � = 1 − qn

1 − q
= 1 + 〠

n

l=1
ql,

0, q½ � = 0:
ð5Þ
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For any nonnegative integer n, the q-number shift facto-
rial is defined by

n, q½ �! =
1, n = 0,
1, q½ � 2, q½ � 3, q½ �⋯ n, q½ �, n ∈ℕ:

(
ð6Þ

Also, the q-generalized Pochhammer symbol for x ∈ℝ is
given by

x, q½ �n =
1, n = 0,
x, q½ � x + 1, q½ �⋯ x + n − 1, q½ �, n ∈ℕ:

(
ð7Þ

In (3), if q→ 1−, then this operator becomes the con-
ventional derivative in the classical calculus, so the limits
can be generalized by introducing the parameter q, with
condition 0 < q < 1, and all such concepts, which have
been developed thus, are known as quantum calculus (q
-calculus). Many physical phenomena are better explained
using this generalized operator, and as a result, this field
attracted a lot of the researchers due to its various appli-
cations in the branches of mathematics and physics (see
details in [1, 2]). Jackson [3, 4] was the pioneer of this
field, who gave some applications of q-calculus and intro-
duced the q-analogues of derivative and integral. Aral and
Gupta [1, 2, 5] defined an operator, which is known as q
-Baskakov Durrmeyer operator by using q-beta functions.
The generalization of complex operators known as q
-Picard and q-Gauss-Weierstrass singular integral opera-
tors was discussed by Aral and Anastassiu in [6–8]. Later,
Kanas and Răducanu [9] introduced the q-analogue of a
Ruscheweyh differential operator and studied its various
properties. More applications of this operator can be seen
in the paper [10]. Huda and Darus [11] utilized the q
-analogue of a Liu-Srivastava operator and defined an
integral operator. In somewhat similar way, Mohammed
and Darus [12] introduced a generalized operator along
with investigating a class of functions relating to q
-hypergeometric functions. Later, Seoudy [13] estimated
coefficient bounds for some q-starlike and q-convex func-
tions of complex order. Recently, Arif and Ahmad
defined a new q-differential operator for meromorphic
multivalent functions and investigated classes related to
q-meromorphic starlike and convex functions in their
articles [14, 15].

In this article, we introduce a new q-differential opera-
tor for meromorphic functions and use this operator to
define and study some properties of a new family of mer-
omorphic multivalent functions associated with circular
domain.

We now define the differential operator Dμ,q : Ap →Ap

by

Dμ,q f zð Þ = 1 + p, q½ �μð Þf zð Þ + μqpz∂q f zð Þ, ð8Þ

where μ ≥ 0:

Using (1), we can easily obtain

Dμ,q f zð Þ = 1
zp

+ 〠
∞

n=p+1
1 + p, q½ �μ + μqp n, q½ �ð Þanzn: ð9Þ

We take

D0
μ,q f zð Þ = f zð Þ,

D2
μ,q f zð Þ =Dμ,q Dμ,q f zð Þ� �

= 1
zp

+ 〠
∞

n=p+1
1 + p, q½ �μ + μqp n, q½ �ð Þ2anzn:

ð10Þ

In a similar way, for m ∈ℕ ∪ f0g, we get

Dm
μ,q f zð Þ = 1

zp
+ 〠

∞

n=p+1
1 + p, q½ �μ + μqp n, q½ �ð Þmanzn: ð11Þ

From (8) and (11), we get the following identity:

Dm+1
μ,q f zð Þ = μqpz∂qD

m
μ,q f zð Þ + 1 + p, q½ �μð ÞDm

μ,q f zð Þ: ð12Þ

We now define a subfamily MCμ,qðp,m, A, BÞ of Ap by
using the operator Dm

μ,q as follows.

Definition 1. For −1 ≤ B < A ≤ 1 and 0 < q < 1, we define f ∈
Ap to be in the class MCμ,qðp,m, A, BÞ, if it satisfies

−qp∂q z∂qD
m
μ,q f zð Þ

� �
p, q½ �∂qDm

μ,q f zð Þ ≺
1 + Az
1 + Bz

: ð13Þ

Here, the relation symbol “≺” is used for the
subordinations.

We see that for particular values of p,m, A, B, μ, and q, we
get some of the well-known classes few of which are listed
below:

(1) For m = 0 and q→ 1−, we get the class of mer-
omorphic multivalent convex functions associ-
ated with Janowski functions denoted by
MC∗

p ½A, B�
(2) For A = 1,B = −1, and m = 0, we get MC∗

p,q, the class
of meromorphic multivalent convex functions in q
-analogue

(3) For A = 1, B = −1,m = 0, and q→ 1−, we get the class
of meromorphic multivalent convex functions
denoted by MC∗

p

(4) For A = 1, B = −1,m = 0, p = 1, and q→ 1−, we get
MC∗, the class of meromorphic convex
functions
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It can easily be verified that a function f ∈Ap will be in
the class MCμ,qðp,m, A, BÞ, if and only if

The following lemma is used in our main results.

Lemma 2 (see [16]). Let hðzÞ be analytic in D and have the
form

h zð Þ = 1 + 〠
∞

n=1
dnz

n, ð15Þ

and kðzÞ is analytic and convex inD with series representation

k zð Þ = 1 + 〠
∞

n=1
knz

n: ð16Þ

So if hðzÞ ≺ kðzÞ, then jdnj ≤ jk1j, for n ∈ℕ = f1, 2,⋯g:

2. Main Results and Their Consequences

In this section, we start with sufficiency criteria for this newly
defined class and then, we give the coefficient estimates for
the functions belonging to this class. The following lemma
is proved which will be used in this section.

Lemma 3. Suppose that the sequence fAp+ng∞n=1 is defined by

Ap+n =
p, q½ � A − Bð Þψ 0ð Þ

ϕ 1ð Þψ 1ð Þ n = 1ð Þ,

Ap+n =
p, q½ � A − Bð Þ
ϕ nð Þψ nð Þ 〠

n−1

k=0
ψ kð ÞAp+k

 !
n ≥ 2ð Þ:

8>>>><
>>>>:

ð17Þ

Then,

Ap+n =
ψ 0ð Þ
ψ nð Þ · p, q½ � A − Bð Þ

ϕ 1ð Þ
Yn−1
k=1

p, q½ � A − Bð Þ + ϕ kð Þ
ϕ k + 1ð Þ   n ≥ 2ð Þ:

ð18Þ

Proof. From (17), we have

ϕ nð Þψ nð ÞAp+n = p, q½ � A − Bð Þ 〠
n−1

k=0
ψ kð ÞAk

 !
: ð19Þ

Thus, we obtain that

ϕ n + 1ð Þψ n + 1ð ÞAp+n+1 = p, q½ � A − Bð Þ 〠
n

k=0
ψ kð ÞAk

 !

= p, q½ � A − Bð Þψ nð ÞAp+n + p, q½ � A − Bð Þ〠
n−1

k=0
ψ kð ÞAk

= p, q½ � A − Bð Þψ nð ÞAp+n + ϕ nð Þψ nð ÞAp+n

= p, q½ � A − Bð Þ + ϕ nð Þð Þψ nð ÞAp+n:

ð20Þ

From (20), we find that

Ap+n+1
Ap+n

= p, q½ � A − Bð Þ + ϕ nð Þð Þψ nð Þ
ϕ n + 1ð Þψ n + 1ð Þ   n ≥ 1ð Þ: ð21Þ

Thus,

Ap+n =
Ap+n
Ap+n−1

·
Ap+n−1
Ap+n−2

⋯
Ap+2
Ap+1

· Ap+1 =
p, q½ � A − Bð Þ + ϕ n − 1ð Þð Þψ n − 1ð Þ

ϕ nð Þψ nð Þ
⋯

p, q½ � A − Bð Þ + ϕ 1ð Þð Þψ 1ð Þ
ϕ 2ð Þψ 2ð Þ · p, q� A − Bð Þψ 0ð Þ

ϕ 1ð Þψ 1ð Þ

= ψ 0ð Þ
ψ nð Þ · p, q� A − Bð Þ

ϕ 1ð Þ
Yn−1
k=1

p, q½ � A − Bð Þ + ϕ kð Þ
ϕ k + 1ð Þ   n ≥ 2ð Þ:

ð22Þ

In conjunction with (17), we complete the proof of
Lemma 3.

Theorem 4. If f ∈Ap is of the form (1), then it will be in the
class MCμ,qðp,m, A, BÞ if and only if the inequality

〠
∞

n=p+1
qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �

� 1 + p, q½ �μ + μqp n, q½ �m anj jð Þ ≤ p, q½ �2 A − Bð Þ
qp

ð23Þ

is satisfied.

qp∂q z∂qD
m
μ,q f zð Þ

� �� �
/ p, q½ �∂qDm

μ,q f zð Þ
� �

+ 1

A + B qp∂q z∂qD
m
μ,q f zð Þ

� �� �
qp∂q z∂qD

m
μ,q f zð Þ

� �
/ p, q½ �∂qDm

μ,q f zð Þ
� �

p, q½ �∂qDm
μ,q f zð Þ

� �
������

������ < 1: ð14Þ
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Proof. For f ∈MCμ,qðp,m, A, BÞ, we need to prove the
inequality (14). For this, consider

By using (8) and with the help of (3) and (11),

Now, if we use the inequality (23), then

H < 1, ð26Þ

and this completes the direct part of the proof.

Conversely, let f ∈MCμ,qðp,m,A, BÞ and be of the form
(1); then, from (14), we have for z ∈D,

Since jRezj ≤ jzj, we have

H ≔
qp∂q z∂qD

m
μ,q f zð Þ

� �� �
/ p, q½ �∂qDm

μ,q f zð Þ
� �

+ 1

A + B qp∂q z∂qD
m
μ,q f zð Þ

� �� �
qp∂q z∂qD

m
μ,q f zð Þ

� �
/ p, q½ �∂qDm

μ,q f zð Þ
� �

p, q½ �∂qDm
μ,q f zð Þ

� �
������

������
=

qp∂q z∂qD
m
μ,q f zð Þ

� �
+ p, q½ �∂qDm

μ,q f zð Þ
A p, q½ �∂qDm

μ,q f zð Þ + Bqp∂q z∂qD
m
μ,q f zð Þ

� �
������

������:
ð24Þ

H ≔
∑∞

n=p+1 1 + p, q½ �μ + μqp n, q½ �ð Þm qp n, q½ �2 + p, q½ � n, q½ �� �
anz

n−1

− A − Bð Þ p, q½ �2� �
A − Bð Þ p, q½ �2/qpzp+1� �

+∑∞
n=p+1 1 + p, q½ �μ + μqp n, q½ �ð Þm A p, q½ � n, q½ � + Bqp n, q½ �2� �

anzn−1

�����
�����

=
∑∞

n=p+1 1 + p, q½ �μ + μqp n, q½ �ð Þm qp n, q½ �2 + p, q½ � n, q½ �� �
anz

n+p

− A − Bð Þ p, q½ �2� �
A − Bð Þ p, q½ �2/qp� �

+∑∞
n=p+1 1 + p, q½ �μ + μqp n, q½ �ð Þm A p, q½ � n, q½ � + Bqp n, q½ �2� �

anzn+p

�����
�����

≤
∑∞

n=p+1 1 + p, q½ �μ + μqp n, q½ �ð Þm qp n, q½ �2 + p, q½ � n, q½ �� �
anj j

A − Bð Þ p, q½ �2� �
A − Bð Þ p, q½ �2/qp� �

− ∑∞
n=p+1 1 + p, q½ �μ + μqp n, q½ �ð Þm A p, q½ � n, q½ � + Bqp n, q½ �2� �

anj j :

ð25Þ

qp∂q z∂qD
m
μ,q f zð Þ

� �� �
/ p, q½ �∂qDm

μ,q f zð Þ
� �

+ 1

A + B qp∂q z∂qD
m
μ,q f zð Þ

� �� �
qp∂q z∂qD

m
μ,q f zð Þ

� �
/ p, q½ �∂qDm

μ,q f zð Þ
� �

p, q½ �∂qDm
μ,q f zð Þ

� �
������

������
=

∑∞
n=p+1 1 + p, q½ �μ + μqp n, q½ �ð Þm qp n, q½ �2 + p, q½ � n, q½ �� �

anz
n+p

− A − Bð Þ p, q½ �2� �
A − Bð Þ p, q½ �2/qp� �

+∑∞
n=p+1 1 + p, q½ �μ + μqp n, q½ �ð Þm A p, q½ � n, q½ � + Bqp n, q½ �2� �

anzn+p

�����
�����:

ð27Þ

Re
∑∞

n=p+1 1 + p, q½ �μ + μqp n, q½ �ð Þm qp n, q½ �2 + p, q½ � n, q½ �� �
anz

n+p

A − Bð Þ p, q½ �2� �
A − Bð Þ p, q½ �2/qp� �

+∑∞
n=p+1 1 + p, q½ �μ + μqp n, q½ �ð Þm A p, q½ � n, q½ � + Bqp n, q½ �2� �

anzn+p

( )
<1: ð28Þ
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Now if the values of z are chosen on the real axis, then
ðqp∂qðz∂qDm

μ,q f ðzÞÞÞ/ð½p, q�∂qDm
μ,q f ðzÞÞ is real. Using some

calculations in the inequality (28) and letting z→ 1−
through real values, we finally get (23).

Theorem 5. If f ∈MCμ,qðp,m, A, BÞ and is of the form (1),
then

ap+1
�� �� ≤ p, q� A − Bð Þψ 0ð Þ

ϕ 1ð Þψ 1ð Þ , ð29Þ

ap+n
�� �� ≤ ψ 0ð Þ

ψ nð Þ · p, q� A − Bð Þ
ϕ 1ð Þ

Yn−1
k=1

p, q½ � A − Bð Þ + ϕ kð Þ
ϕ k + 1ð Þ   n ≥ 2ð Þ,

ð30Þ
where

ϕ nð Þ≔ qp p + n, q½ �2 + p, q½ � p + n, q½ �, ð31Þ

ψ nð Þ≔ 1 + p, q½ �μ + μqp p, q½ � p + n, q½ �ð Þm: ð32Þ
Proof. If f ∈Ap is in the class MCμ,qðp,m, A, BÞ, then it sat-
isfies

−qp∂q z∂qD
m
μ,q f zð Þ

� �
p, q½ �∂qDm

μ,q f zð Þ ≺
1 + Az
1 + Bz

: ð33Þ

Now, let

h zð Þ =
−qp∂q z∂qD

m
μ,q f zð Þ

� �
p, q½ �∂qDm

μ,q f zð Þ : ð34Þ

Since

Re h zð Þ > 0, ð35Þ

so hðzÞ is in the class P with its representation which is given
by

h zð Þ = 1 + 〠
∞

n=1
dnz

n: ð36Þ

Now,

h zð Þ ≺ 1 + Az
1 + Bz

: ð37Þ

But

1 + Az
1 + Bz

= 1 + A − Bð Þz+⋯: ð38Þ

Now, using Lemma 2, we get

dnj j ≤ A − Bð Þ, ð39Þ

now putting the series expansions of hðzÞ and f ðzÞ in (34),
simplifying and comparing the coefficients of zn+p on both
sides

−qp 1 + p, q½ �μ + μqp n + p, q½ �ð Þm p + n, q½ �2ap+n
= p, q½ � p + n, q½ � 1 + p, q½ �μ + μqp n + p, q½ �ð Þmap+n

+ p, q½ �〠
n−1

i=0
1 + p, q½ �μ + μqp p + i, q½ �ð Þm p + i, q½ �ap+idn−i,

ð40Þ

which implies that

− 1 + p, q½ �μ + μqp n + p, q½ �ð Þm
� qp p + n, q½ �2 + p, q½ � p + n, q½ �� �

ap+n

= p, q½ �〠
n−1

i=0
1 + p, q½ �μ + μqp p + i, q½ �ð Þm p + n, q½ �ap+idn−i:

ð41Þ

Now, by taking absolute on both sides with using the tri-
angle inequality and using (39), we obtain

1 + p, q½ �μ + μqp p + n, q½ �ð Þm
� qp p + n, q½ �2 + p, q½ � p + n, q½ �� �

ap+n
�� ��

≤ p, q½ � A − Bð Þ〠
n−1

i=0
1 + p, q½ �μ + μqp p + i, q½ �ð Þm ap+i

�� ��:
ð42Þ

Using the notation (31) and (32) implies that

ap+1
�� �� ≤ p, q� A − Bð Þψ 0ð Þ

ϕ 1ð Þψ 1ð Þ , ð43Þ

ap+n
�� �� ≤ p, q� A − Bð Þ

ϕ nð Þψ nð Þ 〠
n−1

k=0
ψ kð Þ ap+k

�� �� !
  n ≥ 2ð Þ: ð44Þ

Now, we define the sequence fAp+ng∞n=1 as follows:

Ap+1 =
p, q½ � A − Bð Þψ 0ð Þ

ϕ 1ð Þψ 1ð Þ n = 1ð Þ,

Ap+n =
p, q½ � A − Bð Þ
ϕ nð Þψ nð Þ 〠

n−1

k=0
ψ kð ÞAp+k

 !
n ≥ 2ð Þ:

8>>>><
>>>>:

ð45Þ

In order to prove that

ap+n
�� �� ≤ Ap+n  n ≥ 2ð Þ, ð46Þ

we use the principle of mathematical induction. It is easy to
verify that

ap+1
�� �� ≤ Ap+1 =

p, q½ � A − Bð Þψ 0ð Þ
ϕ 1ð Þψ 1ð Þ : ð47Þ
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Thus, assuming that

ap+j
�� �� ≤ Ap+j  j = 2, 3,⋯,nð Þ, ð48Þ

we find from (44) and (48) that

ap+n+1
�� �� ≤ p, q½ � A − Bð Þ

ϕ nð Þψ nð Þ 〠
n

k=0
ψ kð Þ ap+k

�� �� !

≤
p, q½ � A − Bð Þ
ϕ nð Þψ nð Þ 〠

n

k=0
ψ kð ÞAp+k

 !
= Ap+n+1:

ð49Þ

Therefore, by the principle of mathematical induction,
we have

ap+n
�� �� ≤ Ap+n  n ≥ 2ð Þ: ð50Þ

By means of Lemma 3 and (45), we know that

Ap+n =
ψ 0ð Þ
ψ nð Þ · p, q� A − Bð Þ

ϕ 1ð Þ
Yn−1
k=1

p, q½ � A − Bð Þ + ϕ kð Þ
ϕ k + 1ð Þ   n ≥ 2ð Þ:

ð51Þ

Combining (50) and (51), we readily get the coefficient
estimates (30).

3. Closure Theorems

Let the functions f kðzÞ,ðk = 1, 2, 3,⋯, lÞ be defined by

f k zð Þ = 1
zp

+ 〠
∞

n=p+1
an,kz

n z ∈D, an,k ≥ 0ð Þ: ð52Þ

Theorem 6. Let the functions f kðzÞðk = 1, 2, 3,⋯, lÞ defined
by (52) be in the class MCμ,qðp,m, A, BÞ. Then, the function
F ∈MCμ,qðp,m, A, BÞ, where

F zð Þ = 〠
l

k=1
λk f k zð Þ λk ≥ 0, 〠

l

k=1
λk = 1

 !
: ð53Þ

Proof. From (53), we have

F zð Þ = 1
zp

+ 〠
∞

n=p+1
〠
l

k=1
λkan,k

 !
zn: ð54Þ

By Theorem 4, we have

〠
∞

n=p+1
qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �

� 1 + p, q½ �μð +μqp n, q½ �Þm 〠
l

k=1
λkan,k

 !

= 〠
l

k=1
λk

∞
n=p+1 qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� ��

� 1 + p, q½ �μð +μqp n, q½ �Þm�an,k
≤ 〠

l

k=1
λk

p, q½ �2 A − Bð Þ
qp

 !
= p, q½ �2 A − Bð Þ

qp
:

ð55Þ

Hence, by Theorem 4, F ∈MCμ,qðp,m, A, BÞ:

Theorem 7. The class MCμ,qðp,m, A, BÞ is closed under con-
vex combination.

Proof. Let the function f kðzÞðk = 1, 2Þ given by (52) be in the
class MCμ,qðp,m, A, BÞ. It is enough to show that

h zð Þ = αf1 zð Þ + 1 − αð Þf2 zð Þ, 0 ≤ α ≤ 1, ð56Þ

is in the class MCμ,qðp,m, A, BÞ: Since for 0 ≤ α ≤ 1,

h zð Þ = 1
zp

+ 〠
∞

n=p+1
αan,1 + 1 − αð Þan,2½ �zn, ð57Þ

by Theorem 4, we have

〠
∞

n=p+1
qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �

� 1 + p, q½ �μð αan,1 + 1 − αð Þan,2
= α∞n=p+1 qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �
� 1 + p, q½ �μð +μqp n, q½ �Þman,1 + 1 − αð Þ∞n=p+1
� qp n, q½ �2 1 + Bð Þ +�

1 + Að Þ n, q½ � p, q½ �Þ
� 1 + p, q½ �μ + μqp n, q½ �ð Þman,2

≤ α
p, q½ �2 A − Bð Þ

qp
+ 1 − αð Þ p, q½ �2 A − Bð Þ

qp
= p, q½ �2 A − Bð Þ

qp
:

ð58Þ

Hence, by Theorem 4, hðzÞ ∈MCμ,qðp,m, A, BÞ:

Theorem 8. Let the function f kðzÞðk = 1, 2Þ given by (52)
belong to MCμ,qðp,m,A, BÞ; then, their weighted mean hjðz
Þ is also in the classMCμ,qðp,m, A, BÞ, where hjðzÞ is defined
by

hj zð Þ = 1 − jð Þf1 zð Þ + 1 + jð Þf2 zð Þ
2

� �
: ð59Þ
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Proof. From (59), one can easily write

hj zð Þ = 1
zp

+ 〠
∞

n=p+1

1 − jð Þan,1 + 1 + jð Þan,2
2

	 

zn: ð60Þ

To prove hjðzÞ ∈MCμ,qðp,m, A, BÞ, we consider

〠
∞

n=p+1
qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, qð Þ p, q½ �� �

� 1 + p, q½ �μð +μqp n, q½ �Þm 1 − jð Þan,1 + 1 + jð Þan,2
2

	 


= 1 − jð Þ
2 〠

∞

n=p+1
qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �

� 1 + p, q½ �μð +μqp n, q½ �Þman,1
+ 1 + jð Þ

2 〠
∞

n=p+1
qp n, q½ �2 1 + Bð Þ�

+ 1 + Að Þ n, q½ � p, q½ �Þ

� 1 + p, q½ �μ + μqp n, q½ �ð Þman,2 ≤
1 − jð Þ
2

p, q½ �2 A − Bð Þ
qp

+ 1 + jð Þ
2

p, q½ �2 A − Bð Þ
qp

= p, q½ �2 A − Bð Þ
qp

:

ð61Þ

Hence, by Theorem 4, hjðzÞ ∈MCμ,qðp,m, A, BÞ:

4. Distortion Theorem

In the next two results, we shall discuss the growth and dis-
tortion theorems for our newly defined class of functions.

Theorem 9. If f is in the classMCμ,qðp,m,A, BÞ and has the
form (1), then for jzj = r , we have

1
rp

− ϑ1r
p ≤ f zð Þj j ≤ 1

rp
+ ϑ1r

p, ð62Þ

where

ϑ1 =
p, q½ �2 A − Bð Þ

qp qp p + 1, q½ �2 1 + Bð Þ + 1 + Að Þ p + 1, q½ � p, q½ �� �
1 + p, q½ �μ + μqp p + 1, q½ �ð Þm :

ð63Þ

Proof. As

f zð Þj j = 1
zp

+ 〠
∞

n=p+1
anz

n

�����
����� ≤ 1

zpj j + 〠
∞

n=p+1
anj j zj jn, ð64Þ

for jzj = r < 1, we have rn < rp for n ≥ p + 1 and

f zð Þj j ≤ 1
rp

+ rp 〠
∞

n=p+1
anj j: ð65Þ

Similarly,

f zð Þj j ≥ 1
rp

− rp 〠
∞

n=p+1
anj j: ð66Þ

Now, if f ∈MCμ,qðp,m, A, BÞ, then by (23),

〠
∞

n=p+1
qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �

� 1 + p, q½ �μ + μqp n, q½ �ð Þm anj j ≤ p, q½ �2 A − Bð Þ
qp

:

ð67Þ

But we know that

qp p + 1, q½ �2 1 + Bð Þ + 1 + Að Þ p + 1, q½ � p, q½ �� �
� 1 + p, q½ �μ + μqp p + 1, q½ �ð Þm 〠

∞

n=p+1
anj j

≤ 〠
∞

n=p+1
qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �

� 1 + p, q½ �μ + μqp n, q½ �ð Þm anj j:

ð68Þ

Hence,

qp p + 1, q½ �2 1 + Bð Þ + 1 + Að Þ p + 1, q½ � p, q½ �� �
� 1 + p, q½ �μ + μqp p + 1, q½ �ð Þm 〠

∞

n=p+1
anj j ≤ p, q½ �2 A − Bð Þ

qp
,

ð69Þ

which implies that

〠
∞

n=p+1
an+p
�� �� ≤ p, q½ �2 A − Bð Þ

qp qp p + 1, q½ �2 1 + Bð Þ + 1 + Að Þ p + 1, q½ � p, q½ �� �
1 + p, q½ �μ + μqp p + 1, q½ �ð Þm :

ð70Þ

Now, by putting this value in (65) and (66), we get the
required proof.

Theorem 10. Let f ∈MCμ,qðp,m,A, BÞ and have the form
(1). Then, for jzj = r,

p, q�m
qmp+ζrm+p − ϑ2r

p ≤ ∂mq f zð Þ
��� ��� ≤ p, q�m

qmp+ζrm+p + ϑ2r
p, ð71Þ

where

ϑ2 =
p, q½ �2 A − Bð Þ

qp qp p + 1, q½ � 1 + Bð Þ + 1 + Að Þ p, q½ �ð Þ 1 + p, q½ �μ + μqp p + 1, q½ �ð Þm ,

ζ= m
n=1n:

ð72Þ
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Proof. From the help of (3) and (4), we can write

∂mq f zð Þ = −1ð Þm p, q½ �m
qmp+ζzp+m

+ 〠
∞

n=p+1
n − m − 1ð Þ, q½ �m+1anz

n−m:

ð73Þ

Since jzj = r < 1 implies that rn−m ≤ rp for m ≤ n and n ≥
p + 1, hence

∂mq f zð Þ
��� ��� ≤ p, q�m

qmp+ζrm+p + rp 〠
∞

n=p+1
n − m − 1ð Þ, q½ �m+1 anj j:

ð74Þ

Similarly,

∂mq f zð Þ
��� ��� ≥ p, q�m

qmp+ζrm+p − rp 〠
∞

n=p+1
n − m − 1ð Þ, q½ �m+1 anj j:

ð75Þ

Since f is in the class MCμ,qðp,m, A, BÞ, so by (23), we
have the inequality

qp p + 1, q½ � 1 + Bð Þ + 1 + Að Þ p, q½ �ð Þ
� 1 + p, q½ �μ + μqp p + 1, q½ �ð Þm

� 〠
∞

n=p+1
n, q½ � anj j ≤ p, q½ �2 A − Bð Þ

qp
,

ð76Þ

from which it can be deduced that

〠
∞

n=p+1
n, q½ � anj j

≤
p, q½ �2 A − Bð Þ

qp qp p + 1, q½ � 1 + Bð Þ + 1 + Að Þ p, q½ �ð Þ 1 + p, q½ �μ + μqp p + 1, q½ �ð Þm ,

ð77Þ

but it can easily be seen that

〠
∞

n=p+1
n − m − 1ð Þ, q½ � ap+n

�� �� ≤ 〠
∞

n=p+1
n, q½ � anj j, ð78Þ

which implies

〠
∞

n=p+1
n − m − 1ð Þ, q½ � ap+n

�� ��
≤

p, q½ �2 A − Bð Þ
qp qp p + 1, q½ � 1 + Bð Þ + 1 + Að Þ p, q½ �ð Þ 1 + p, q½ �μ + μqp p + 1, q½ �ð Þm :

ð79Þ

Now, using this inequality in (74) and (75), we obtain the
required proof.

5. Integral Representation

Theorem 11. Let the function f given by (1) be in the class
MCμ,qðp,m, A, BÞ: Then, the function GðzÞ represented by

G zð Þ = 1 + γð Þ 1
zp

+ γp
ðz
0

f tð Þ
t

dt γ ≥ 0, z ∈Dð Þ, ð80Þ

is in the class MCμ,qðp,m, A, BÞ:

Proof. From (1),

f zð Þ = z−p + 〠
∞

n=p+1
anz

n: ð81Þ

Then,

G zð Þ = 1 + γð Þ 1
zp

+ γp
ðz
0

t−p +∑∞
n=p+1ant

n

t
dt

= 1 + γð Þ 1
zp

+ γp
−1
p

1
zp

+ 〠
∞

n=p+1

an
n
zn

 !

= z−p + 〠
∞

n=p+1

anγp
n

zn:

ð82Þ

Consider

〠
∞

n=p+1
qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �

� 1 + p, q½ �μ + μqp n, q½ �ð Þm anγp
n

��� ���
≤ 〠

∞

n=p+1
qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �

� 1 + p, q½ �μ + μqp n, q½ �ð Þmγp anj j ≤ p, q½ �2 A − Bð Þ
qp

,

ð83Þ

since γp ≤ 1:
Therefore, by Theorem 4, GðzÞ ∈MCμ,qðp,m, A, BÞ:

6. Radius Problems

The following results are about the radii of convexity and
starlikeness for the functions of the class MCμ,qðp,m, A, BÞ:

Theorem 12. If f ∈MCμ,qðp,m,A, BÞ , then f ∈MCpðαÞ for
jzj < r1 , where

r1 =
qpp p − αð Þ qp n + p, q½ �2 1 + Bð Þ + 1 + Að Þ n + p, q½ � p, q½ �� �

1 + p, q½ �μ + μqp n + p, q½ �ð Þm
p + nð Þ n + p + αð Þ p, q½ �2 A − Bð Þ

 !1/n+2p

:

ð84Þ

Proof. Let f ∈MCμ,qðp,m, A, BÞ. To prove f ∈MCpðαÞ, we
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only need to show

zf ′′ zð Þ + p + 1ð Þf ′ zð Þ
zf ′′ zð Þ + 1 + 2α − pð Þf ′ zð Þ

�����
����� < 1: ð85Þ

Using (1) along with some simple computation yields

〠
∞

n=1

p + nð Þ p + n + αð Þ
p p − αð Þ an+p

�� �� zj jn+2p < 1: ð86Þ

As f is in the class MCμ,qðp,m, A, BÞ, so we have from
(23)

〠
∞

n=p+1
qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �

� 1 + p, q½ �μ + μqp n, q½ �ð Þm anj j

≤
p, q½ �2 A − Bð Þ

qp
⇒ 〠

∞

n=p+1
qp qp n, q½ �2 1 + Bð Þ�

+ 1 + Að Þ n, q½ � p, q½ �Þ 1 + p, q½ �μ + μqp n, q½ �ð Þm anj j < 1:
ð87Þ

Equivalently,

〠
∞

n=1
qp qp n + p, q½ �2 1 + Bð Þ + 1 + Að Þ n + p, q½ � p, q½ �� �
� 1 + p, q½ �μ + μqp n + p, q½ �ð Þm an+p

�� �� < 1:
ð88Þ

Now, inequality (86) will be true, if the following
holds:

〠
∞

n=1

p + 1ð Þ n + p + αð Þ
p p − αð Þ an+p

�� �� zj jn+2p
< 〠

∞

n=1
qp

qp n + p, q½ �2 1 + Bð Þ + 1 +Að Þ n + p, q½ � p, q½ �� �
1 + p, q½ �μ + μqp n + p, q½ �ð Þm

p, q½ �2 1 −Að Þ an+p
�� ��,
ð89Þ

which implies that

zj jn+2p < qpp p − αð Þ qp n + p, q½ �2 1 + Bð Þ + 1 + Að Þ n + p, q½ � p, q½ �� �
1 + p, q½ �μ + μqp n + p, q½ �ð Þm

p + nð Þ n + p + αð Þ p, q½ �2 A − Bð Þ ,

ð90Þ

and so

zj j < qpp p − αð Þ qp n + p, q½ �2 1 + Bð Þ + 1 + Að Þ n + p, q½ � p, q½ �� �
1 + p, q½ �μ + μqp n + p, q½ �ð Þm

p + nð Þ n + p + αð Þ p, q½ �2 A − Bð Þ

 !1/ n+2pð Þ
= r1:

ð91Þ

We get the required condition.

Theorem 13. Let f ∈MCμ,qðp,m, A, BÞ . Then, f ∈MS∗
p ðαÞ

for jzj < r2 , where

r2 =
qp p − αð Þ qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �

1 + p, q½ �μ + μqp n, q½ �ð Þm
n + p + αð Þ p, q½ �2 A − Bð Þ

 !1/ n+2pð Þ
:

ð92Þ

Proof. We know that f ∈MS∗
p ðαÞ, if and only if

zf ′ zð Þ + pf zð Þ
zf ′ zð Þ − p − 2αð Þf zð Þ

�����
����� < 1: ð93Þ

Using (1) and with some simplification, we get

〠
∞

n=1

n + p + α

p − α

� �
an+p
�� �� zj jn+2p < 1: ð94Þ

Now, from (23), we can easily obtain that

〠
∞

n=p+1

qp qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �
1 + p, q½ �μ + μqp n, q½ �ð Þm

p, q½ �2 A − Bð Þ anj j < 1:

ð95Þ

For inequality (94) to hold, it will be enough if

〠
∞

n=1

n + p + α

p − α

� �
an+p
�� �� zj jn+2p

< 〠
∞

n=1

qp qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �
1 + p, q½ �μ + μqp n, q½ �ð Þm

p, q½ �2 A − Bð Þ ,

ð96Þ

which implies that

zj jn+2p < qp p − αð Þ qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �
1 + p, q½ �μ + μqp n, q½ �ð Þm

n + p + αð Þ p, q½ �2 A − Bð Þ ,

ð97Þ

and hence,

zj j < qp p − αð Þ qp n, q½ �2 1 + Bð Þ + 1 + Að Þ n, q½ � p, q½ �� �
1 + p, q½ �μ + μqp n, q½ �ð Þm

n + p + αð Þ p, q½ �2 A − Bð Þ

 !1/ n+2pð Þ
= r2:

ð98Þ

Thus, we obtain the required result.

7. Conclusion

The applications of q-calculus have been the focus point in
the recent times in various branches of mathematics. This
article introduces a new operator in q-analogue for mero-
morphic multivalent functions. Then, a new subclass of mul-
tivalent convex functions is defined and studied for some of
its geometric properties like sufficient conditions, coefficient
estimates, and distortion. Also, problems of closure and inte-
gral representation are discussed in detail. Many other classes
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can be defined using this operator which will open a lot of
new opportunities for research in this and related fields.
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Let h1ðzÞ and h2ðzÞ be two nonvanishing holomorphic functions in the open unit disc with h1ð0Þ = h2ð0Þ = 1. For some
holomorphic function qðzÞ, we consider the class consisting of normalized holomorphic functions f whose ratios f ðzÞ/zqðzÞ and
qðzÞ are subordinate to h1ðzÞ and h2ðzÞ, respectively. The majorization results are obtained for this class when h1ðzÞ is chosen
either h1ðzÞ = cos z or h1ðzÞ = 1 + sin z or h1ðzÞ =

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
and h2ðzÞ = 1 + sin z:

1. Introduction

In order to better explain the terminology included in our key
observations, some of the essential relevant literature on geo-
metric function theory needs to be provided and discussed
here. We start with symbol A which represents the class of
holomorphic functions in the region of open unit disc Ud =
fz ∈ℂ : jzj < 1g, and if f ðzÞ is in A , then it satisfies the rela-
tionship f ð0Þ = f ′ð0Þ − 1 = 0: Also, the family S ⊂A con-
tains all univalent functions. Though function theory was
started in 1851, in 1916, due to coefficient conjecture pro-
vided by Bieberbach [1], this field emerged as a good area
of new research. This conjecture was proved by De-Branges
[2] in 1985. Many good scholars of the period attempted to
prove or disprove this conjecture between the years 1916
and 1985. As a result, they identified several subfamilies of
a class S of univalent functions linked to various image
domains. The families of star-like S∗ and convex K func-
tions are the most basic, mostly studied, and beautiful geo-
metric representations of these subfamilies, which are
described as

S∗ ≕ f ∈ S : R
zf ′ zð Þ
f zð Þ > 0, z ∈Udð Þ

( )
,

K ≕ f ∈ S : R
zf ′ zð Þ
� �

′

f ′ zð Þ
> 0, z ∈Udð Þ

8<
:

9=
;:

ð1Þ

In 1970, Roberston [3] established the idea of quasisu-
bordination among holomorphic functions. Two functions
F1ðzÞ,F2ðzÞ ∈A are related to the relationship of quasi-
subordination, denoted mathematically by F1ðzÞ≺qF2ðzÞ,
if there exist functions φðzÞ, uðzÞ ∈A such that zf ′ðzÞ/φðzÞ
is holomorphic in Ud with jφðzÞj ≦ 1,uð0Þ = 0, and juðzÞj ≦
jzj satisfying the relationship

F1 zð Þ = φ zð ÞF2 u zð Þð Þ, z ∈Ud: ð2Þ

Also, by choosing uðzÞ = z and φðzÞ ≡ 1, we obtain the
most useful concepts of geometric function theory known
as subordination between analytic functions. In fact, if
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F2ðzÞ ∈ S , then, for F1ðzÞ,F2ðzÞ ∈A , the subordination
relationship has

F1 zð Þ ≺F2 zð Þ⇔ F1 Udð Þ ⊂F2 Udð ÞwithF1 0ð Þ =F2 0ð Þ½ �:
ð3Þ

By taking uðzÞ = z, the above definition of quasisu-
bordination becomes the majorization between holo-
morphic functions and is written mathematically by
F1ðzÞ≪F2ðzÞ, for F1ðzÞ,F2ðzÞ ∈A . That is; F1ðzÞ≪
F2ðzÞ, if a function φðzÞ ∈A exists with jφðzÞj ≦ 1 in
such a way that

F1 zð Þ = φ zð ÞF2 zð Þ, z ∈Ud: ð4Þ

This idea was introduced by MacGregor [4] in 1967.
Numerous articles have been published in which this
idea was used. The work of Altintas and Srivastava [5],
Cho et al. [6], Goswami and Aouf [7], Goyal and Gos-
wami [8, 9], Li et al. [10], Panigraht and El-Ashwah
[11], Prajapat and Aouf [12], and the authors [13, 14]
are worth mentioning on this topic.

The general form of the class S∗ was studied in 1992 by
Ma and Minda [15] and was given by

S∗ Λð Þ = f ∈ S :
zf ′ zð Þ
f zð Þ ≺Λ zð Þ z ∈Udð Þ

( )
, ð5Þ

where ΛðzÞ is a regular function with positive real part and
Λ′ð0Þ > 0: Also, the function ΛðzÞ maps Ud onto a star-
shaped region with respect to Λð0Þ = 1 and is symmetric
about the real axis. They addressed some specific results such
as distortion, growth, and covering theorems. In recent years,
several subfamilies of the set A were studied as a special case
of the class S∗ðΛÞ. For example,

(i) if we take ΛðzÞ = 1 +Mz/1 +Nz with −1 ≤N <M
≤ 1, then the deduced family S∗½M,N� ≡ S∗ð1 +M
z/1 +NzÞ is described by the functions of the
Janowski star-like family established in [16] and
later studied in different directions in [17, 18]

(ii) the family S∗
L ≡ S∗ðΛðzÞÞ with ΛðzÞ = ffiffiffiffiffiffiffiffiffiffi

1 + z
p

was
developed in [19] by Sokól and Stankiewicz. The
image of the function ΛðzÞ = ffiffiffiffiffiffiffiffiffiffi

1 + z
p

demonstrates
that the image domain is bounded by the Bernoullis
lemniscate right-half plan specified by jw2ðzÞ − 1j
< 1

(iii) by selecting ΛðzÞ = 1 + sin z, the class S∗ðΛðzÞÞ
leads to the family S∗

sin which was explored in [20]
while S∗

e ≡ S∗ðezÞ has been produced in the article
[21] and later studied in [22]

(iv) the family S∗
R ≡ S∗ðΛðzÞÞ with ΛðzÞ = 1 + z/JðJ +

zÞ/ðJ − zÞ,J = ffiffiffi
2

p
+ 1 is studied in [23] while S∗

cos
≔ S∗ðcos ðzÞÞ and S∗

cosh ≔ S∗ðcosh ðzÞÞ were

recently examined by Raza and Bano [24], and
Abdullah et.al [25], respectively

Now, let us take the nonvanishing analytic functions
h1ðzÞ and h2ðzÞ in Ud with h1ð0Þ = h2ð0Þ = 1: Then, the
families defined in this article consist of functions f ðzÞ ∈
A whose ratios f ðzÞ/zqðzÞ and qðzÞ are subordinated to
h1ðzÞ and h2ðzÞ, respectively, for some analytic function
qðzÞ with qð0Þ = 1 as

f zð Þ
zq zð Þ ≺ h1 zð Þ,

q zð Þ ≺ h2 zð Þ:
ð6Þ

We are now going to choose some particular functions
instead of h1ðzÞ and h2ðzÞ. These choices are

h1 zð Þ = 1 + sin z

or h1 zð Þ = cos z

or h1 zð Þ =
ffiffiffiffiffiffiffiffiffiffi
1 + z

p
,

h2 zð Þ = 1 + sin z,

ð7Þ

and by applying the above-mentioned concepts, we now
consider the following classes:

Fcos = f zð Þ ∈A :
f zð Þ
zq zð Þ ≺ cos z&q zð Þ ≺ h2 zð Þ, z ∈Ud

� �
,

ð8Þ

FSL = f zð Þ ∈A :
f zð Þ
zq zð Þ ≺

ffiffiffiffiffiffiffiffiffiffi
1 + z

p
&q zð Þ ≺ h2 zð Þ, z ∈Ud

� �
,

ð9Þ

F sin = f zð Þ ∈A :
f zð Þ
zq zð Þ ≺ 1 + sin z&q zð Þ ≺ h2 zð Þ, z ∈Ud

� �
:

ð10Þ
In the present article, we discuss majorization prob-

lems for each of the above-defined classes Fcos,FSL , and
F sin:

2. Main Results

To prove majorization results for the classes Fcos,FSL , and
F sin, we need the following lemma.

Lemma 1. Let qðzÞ ≺ 1 + sin z and for jzj ≤ r: Then, qðzÞ sat-
isfies the following inequalities:

1 − sin r cosh r ≤ q zð Þj j ≤ 1 + sin r cosh r, ð11Þ

zq′ zð Þ
q zð Þ

�����
����� ≤ r cosh r

1 − r2ð Þ 1 − sinh rð Þ : ð12Þ
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Proof. If qðzÞ ≺ 1 + sin z, then

q zð Þ = 1 + sin w zð Þ, ð13Þ

for some Schwartz function wðzÞ: Now, after some easy cal-
culations, we have

zq′ zð Þ
q zð Þ = zw′ zð Þ cos w zð Þ

1 + sin w zð Þ : ð14Þ

Let wðzÞ = Reiθ with jzj = r ≤ R,−π ≤ θ ≤ π:A calculation
shows that

R cos Reiθ
� �� �

= cos Rxð Þ cosh Ryð Þ, ð15Þ

where

x = cos θ,
y = sin θ,

for x, y ∈ −1, 1½ �:
ð16Þ

Now, we can write

cos Rxð Þ ≥ cos R ≥ cos r,
1 ≤ cosh Ryð Þ ≤ cosh R ≤ cosh r:

ð17Þ

Thus, we have

R cos w zð Þ ≥ cos r: ð18Þ

Now, consider

sin Reiθ
� ���� ���2 = cos R cos θð Þ2 sinh R sin θð Þ2

+ sin R cos θð Þ2 cosh R sin θð Þ2
=Ψ θð Þ:

ð19Þ

A calculation shows that the numbers, 0, ±π, ±π/2, are
the roots of equation (19) in ½−π, π�: Since ΨðθÞ is an even
function, it is sufficient to consider θ ∈ ½0, π�. We observe that
Ψðπ/2Þ = sinh2ðRÞ and Ψð0Þ = sin2ðRÞ. Now, we can write

max Ψ 0ð Þ,Ψ π

2
� �

,Ψ πð Þ
n o

= sin h2 Rð Þ: ð20Þ

Hence,

sin R eiθ
� ���� ��� ≤ sinh Rð Þ ≤ sinh r: ð21Þ

Similarly, one can easily show that

cos r ≤ cos w zð Þj j ≤ cosh r: ð22Þ

Now, from well-known inequality for Schwartz function
wðzÞ, we obtain

w′ zð Þ�� �� ≤ 1 − w zð Þj j2
1 − zj j2 = 1 − R2

1 − zj j2 ≤
1

1 − r2
: ð23Þ

Now, by applying (21), (22), and (23) in (14), we get (12).

Theorem 2. Let the functions f ðzÞ ∈A ,gðzÞ ∈Fcos and also
suppose that f ðzÞ≪ gðzÞ in Ud . Then, for jzj ≤ r1,

f ′ zð Þ�� �� ≦ g′ zð Þ�� ��, ð24Þ

where r1 is the smallest positive root of the equation

1 − r2
� 	

− r 1 + ρð Þ� 	
cos r − r sinh r

� 	
� 1 − sinh rð Þ − r cos r cosh r = 0:

ð25Þ

Proof. If gðzÞ ∈Fcos, then by the subordination relationship,
we have

g zð Þ
zq zð Þ = cos w zð Þ: ð26Þ

Now, after simple calculations, we have

zg′ zð Þ
g zð Þ = 1 + zq′ zð Þ

q zð Þ −
zw′ zð Þ sin w zð Þ

cos w zð Þ : ð27Þ

Now, by using (21), (22), and (23) along with Lemma 1,
we obtain

g zð Þ
g′ zð Þ

�����
����� = zj j

1 + zq′ zð Þ/q zð Þ − zw′ zð Þ sin w zð Þ/cos w zð Þ�� ��
≦

zj j
1 − zq′ zð Þ/q zð Þ�� �� − zw′ zð Þ sin w zð Þ/cos w zð Þ�� ��

≦
r 1 − r2
� 	

1 − sinh rð Þ cos r
1 − r2ð Þ 1 − sinh rð Þ cos r − r cos r cosh r − r sinh r 1 − sinh rð Þ :

ð28Þ

From (4), we can write

f zð Þ = φ zð Þg zð Þ: ð29Þ

Differentiating the above equality on both sides, we get

f ′ zð Þ = φ′ zð Þg zð Þ + φ zð Þg′ zð Þ

= g′ zð Þ φ zð Þ + φ′ zð Þ zg′ zð Þ
g zð Þ

 !
:

ð30Þ

Also, the Schwartz function φðzÞ fulfils the below
inequality:

φ′ zð Þ�� �� ≦ 1 − φ zð Þj j2
1 − zj j2 = 1 − φ zð Þj j2

1 − r2
z ∈Udð Þ: ð31Þ
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Now, applying (28) and (31) in (30), we have

f ′ zð Þ�� �� ≦ φ zð Þ + r 1 − φ zð Þj j2� 	
1 − sinh rð Þ cos r

1 − r2ð Þ 1 − sinh rð Þ cos r − r cos r cosh r − r sinh r 1 − sinh rð Þ

" #
g′ zð Þ�� ��,
ð32Þ

which by putting

φ′ zð Þ�� �� = ρ 0 ≦ ρ ≦ 1ð Þ ð33Þ

becomes the inequality

f ′ zð Þ�� �� ≦Φ1 r, ρð Þ g′ zð Þ�� ��, ð34Þ

where

Φ1 r, ρð Þ = φ zð Þ + r 1 − φ zð Þj j2� 	
1 − sinh rð Þ cos r

1 − r2ð Þ cos r − r sinh rð Þ 1 − sinh rð Þ − r cos r cosh r
:

ð35Þ

To determine r1, it is sufficient to choose

r1 = max r ∈ 0, 1½ Þ: Φ1 r, ρð Þ ≦ 1,∀ρ ∈ 0, 1½ �ð Þ, ð36Þ

or, equivalently,

r1 = max r ∈ 0, 1½ Þ: Ψ1 r, ρð Þ ≥ 0,∀ρ ∈ 0, 1½ �ð Þ, ð37Þ

where

Ψ1 r, ρð Þ = 1 − r2 − r 1 + ρð Þ� 	
cos r − r sinh r

� 	
� 1 − sinh rð Þ − cos r cosh r:

ð38Þ

Clearly, when ρ = 1, the function Ψ1ðr, ρÞ assumes its
minimum value, namely,

min Ψ1 r, ρð Þ, ρ ∈ 0, 1½ �ð Þ =Ψ1 r, 1ð Þ =Ψ1 rð Þ, ð39Þ

where

Ψ1 rð Þ = 1 − r2 − 2r
� 	

cos r − r sinh r
� 	
� 1 − sinh rð Þ − r cos r cosh r:

ð40Þ

Next, we have the following inequalities:

Ψ1 0ð Þ = 1 > 0,
Ψ1 1ð Þ = −0:438 51 < 0:

ð41Þ

There exists r1 such that Ψ1ðrÞ ≥ 0 for all r ∈ ½0, r1�, where r1
is the smallest positive root of equation (25). Thus, the proof
is completed.

Theorem 3. Let f ðzÞ ∈A ,gðzÞ ∈F sin and also suppose
that f ðzÞ≪ gðzÞ in Ud . Then, for jzj ≤ r2,

f ′ zð Þ�� �� ≦ g′ zð Þ�� ��, ð42Þ

where r2 is the root ðsmallest positiveÞ of the equation:

1 − r2
� 	

1 − sinh rð Þ − 2r cosh r + 1 − sinh rð Þ = 0: ð43Þ

Proof. If gðzÞ ∈F sin, then by using (10) along with the subor-
dination relationship, a holomorphic function wðzÞ in Ud
occurs with wð0Þ = 0 and jwðzÞj ≤ jzj in such a way that

g zð Þ
zq zð Þ = 1 + sin w zð Þ ð44Þ

hold. Now, after simple calculations, we have

zg′ zð Þ
g zð Þ = 1 + zq′ zð Þ

q zð Þ + zw′ zð Þ cos w zð Þ
1 + sin w zð Þ : ð45Þ

Using (21), (22), and (23) along with Lemma 1, we obtain

g zð Þ
g′ zð Þ

�����
����� = zj j

1 + zp′ zð Þ/p zð Þ + zw′ zð Þ cos w zð Þ/1 + sin w zð Þ�� ��
≦

r 1 − r2
� 	

1 − sinh rð Þ
1 − r2ð Þ 1 − sinh rð Þ − 2r cosh r

:

ð46Þ

Also, with the use of (31) and (46) in (30), we easily get

f ′ zð Þ�� �� ≦ φ zð Þ + r 1 − φ zð Þj j2� 	
1 − sinh rð Þ

1 − r2ð Þ 1 − sinh rð Þ − 2r cosh r

" #
g′ zð Þ�� ��:

ð47Þ

Now, by the similar lines of Theorem 2 along with the vir-
tue of (33), we easily obtain the required result.

Theorem 4. Let f ðzÞ ∈A ,gðzÞ ∈FSL and also suppose that
f ðzÞ is majorized by gðzÞ in Ud: Then, for jzj ≤ r4,

f ′ zð Þ�� �� ≦ g′ zð Þ�� ��, ð48Þ

where r4 is the positive smallest root of the equation

1 − 2r2 − 5r
� 	

1 − sinh rð Þ − 2r cosh r = 0: ð49Þ

Proof. Let gðzÞ ∈FSL : Then, a holomorphic function wðzÞ
in Ud occurs with wð0Þ = 0 and jwðzÞj ≤ jzj so that

g zð Þ
zq zð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +w zð Þ

p
: ð50Þ

Now, after simple calculations, we have

zg′ zð Þ
g zð Þ = 1 + zq′ zð Þ

q zð Þ + zw′ zð Þ
2 1 +w zð Þð Þ : ð51Þ
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Using (23), we obtain

zj j w′ zð Þ�� ��
2 1 − w zð Þj jð Þ ≤

zj j 1 + w zð Þj jð Þ
2 1 − zj j2� 	 ≤

zj j 1 + zj jð Þ
2 1 − zj j2� 	

= zj j
2 1 − zj jð Þ ≤

r
2 1 − rð Þ :

ð52Þ

By virtue of (23) and Lemma 1, we obtain

g zð Þ
g′ zð Þ

�����
����� ≦ zj j

1 − zp′ zð Þ/p zð Þ�� �� − zw′ zð Þ/2 1 +w zð Þð Þ�� ��
≦

2r 1 − r2
� 	

1 − sinh rð Þ
2 1 − r2ð Þ 1 − sinh rð Þ − 2r cosh r − r 1 + rð Þ 1 − sinh rð Þ :

ð53Þ

Now, using (31) and (53) in (30), we get

f ′ zð Þ�� �� ≦ φ zð Þ + 2r 1 − φ zð Þj j2� 	
1 − sinh rð Þ

2 1 − r2ð Þ 1 − sinh rð Þ − 2r cosh r − r 1 + rð Þ 1 − sinh rð Þ

" #
g′ zð Þ�� ��:
ð54Þ

The required result follows directly using similar calcula-
tions as Theorem 2 along with the use of (33).

3. Conclusion

For some particular subfamilies of holomorphic functions
which are connected with different shapes of image domains,
we studied the problems of majorization. These problems can
be examined for some other families such as for the families
of meromorphic functions as well as for the families of har-
monic functions.
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In this paper, by using certain inverse pairs of symbolic operators introduced by Choi and Hasanov in 2011, we establish several
decomposition formulas associated with the Gaussian triple hypergeometric functions. Some transformation formulas for these
functions have also been obtained.

1. Introduction

The use of many mathematical operations goes beyond the
class of elementary functions. The calculation of integrals,
the summation of series, and solution of algebraic, transcen-
dental, difference, and differential equations and their
systems require expanding the class of studied functions.
The development of the concept of a function, going in
parallel with the development of the concepts of number
and space, led to the emergence of new hypergeometric func-
tions of many complex variables.

The great success of the theory of hypergeometric func-
tions in a single variable has stimulated the development of
the theory of hypergeometric functions in several variables
by the fact that the solutions of partial differential equations
arising in many applied problems of mathematical physics
are given in terms of such hypergeometric functions (see,
e.g., [1–6]). Multiple hypergeometric functions occur in
numerous problems in hydrodynamics, control theory, elec-
trical current, heat conduction, and classical and quantum
mechanics (see, for details, [7–10], and the references cited
therein). In view of theory and applications, a large number
of hypergeometric functions have been developed; for exam-
ple, as many as 205 hypergeometric functions are recorded in

the monograph [11]. In particular, we recall the Gaussian
functions F11a, F11c, F15a, F17a, F17b, F17c, F18a, F19a, F20a,
and F23c in three variables defined by (see [11])

F11a a1, a2, a3, a4 ; c1, c2 ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm+n a2ð Þn+p a3ð Þm a4ð Þp
c1ð Þm+n c2ð Þp

xm

m!

yn

n!
zp

p!
, ð1Þ

F11c a1, a2, a3, b ; c ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm+n a2ð Þn+p a3ð Þp bð Þm−p

c1ð Þm+n

xm

m!

yn

n!
zp

p!
, ð2Þ

F15a a1, a2, a3 ; c1, c2 ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm+n a2ð Þn+p a3ð Þp+m
c1ð Þm+n c2ð Þp

xm

m!

yn

n!
zp

p!
, ð3Þ

F17a a1, a2, a3, a4 ; c1, c2, c3 ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm+n+p a2ð Þm a3ð Þn a4ð Þp
c1ð Þm c2ð Þn c3ð Þp

xm

m!

yn

n!
zp

p!
, ð4Þ
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F17b a1, a2, a3, b ; c1, c2 ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm+n+p a2ð Þn a3ð Þp bð Þm−n

c1ð Þm c2ð Þp
xm

m!

yn

n!
zp

p!
, ð5Þ

F17c a1, a2, b1, b2 ; c ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm+n+p a2ð Þp b1ð Þm−n b2ð Þn−m
cð Þp

xm

m!

yn

n!
zp

p!
, ð6Þ

F18a a1, a2, a3, a4 ; c1, c2 ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm+n+p a2ð Þm a3ð Þn a4ð Þp
c1ð Þm+n c2ð Þp

xm

m!

yn

n!
zp

p!
, ð7Þ

F19a a1, a2, a3, a4 ; c ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm+n+p a2ð Þm a3ð Þn a4ð Þp
cð Þm+n+p

xm

m!

yn

n!
zp

p!
, ð8Þ

F20a a1, a2, a3 ; c1, c2, c3 ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm+n+p a2ð Þm+n a3ð Þp
c1ð Þm c2ð Þn c3ð Þp

xm

m!

yn

n!
zp

p!
, ð9Þ

F23c a1, a2, a3, b1, b2 ; c ; x, y, zð Þ

= 〠
∞

m,n,p=0

a1ð Þm a2ð Þm a3ð Þn b1ð Þn−p b2ð Þ2p−m
cð Þn

xm

m!

yn

n!
zp

p!
:

ð10Þ
Here, ðaÞm denotes the Pochhammer symbol given as

að Þm = Γ a +mð Þ
Γ að Þ = a a + 1ð Þ⋯ a +m − 1ð Þ m ∈ℕ≔ 1, 2,⋯f gð Þ, að Þ0 = 1:

ð11Þ

Burchnall and Chaundy presented the inverse pairs of
symbolic operators ∇ and Δ [12, 13] (also see [14]) by means
of which they established several decomposition formulas for
Appell’s double hypergeometric functions in terms of the
Gaussian hypergeometric functions in one variable. Recently,
Hasanov and Srivastava [15, 16] introduced multivariable
analogues of Burchnall-Chaundy’s symbolic operators, and
with the help of these operators, the authors obtained a num-
ber of decomposition formulas associated with multiple

Lauricella hypergeometric functions FðrÞ
A , FðrÞ

B , FðrÞ
C , and FðrÞ

D .
In [17, 18], the authors gave the following multivariable
symbolic operators:

Hx1,⋯,xr α, βð Þ = Γ βð ÞΓ α + δ1+⋯+δrð Þ
Γ αð ÞΓ β + δ1+⋯+δrð Þ

= 〠
∞

k1,⋯,kr=0

β − αð Þk1+⋯+kr −δ1ð Þk1 ⋯ −δrð Þkr
βð Þk1+⋯+kr k1!⋯kr!

,

ð12Þ

�Hx1,⋯,xr α, βð Þ = Γ αð ÞΓ β + δ1+⋯+δrð Þ
Γ βð ÞΓ α + δ1+⋯+δrð Þ

= 〠
∞

k1,⋯,kr=0

β − αð Þk1+⋯+kr −δ1ð Þk1 ⋯ −δrð Þkr
1 − α − δ1−⋯−δrð Þk1+⋯+kr k1!⋯kr!

ð13Þ

δj ≔ xj
∂
∂xj

, j = 1,⋯, r ; r ∈ℕ≔ 1, 2, 3,⋯f g
 !

: ð14Þ

Based on the operators (12) and (13), we aim in this work
to establish certain decomposition formulas for second-order
Gaussian hypergeometric functions in three variables (1), (2),
(3), (4), (5), (6), (7), (8), (9), and (10), which are used to
derive some interesting transformation formulas for these
functions.

2. Symbolic Form

Applying the symbolic operators in (12) and (13), we con-
struct the following set of operator identities involving the
classical Gauss hypergeometric function 2F1 [19], the Appell
functions F1, F2, F4 [20], the Horn functionsG1,H1,H7 [21],
and the Gaussian triple hypergeometric functions defined in
(1), (2), (3), (4), (5), (6), (7), (8), (9), and (10):

F11a a1, a2, a3, a4 ; c1, c2 ; x, y, zð Þ
=Hx,y a1, c1ð Þ 1 − xð Þ−a3 1 − yð Þ−a2 2F1 a2, a4 ; c2 ;

z
1 − y

� �
,

ð15Þ

1 − xð Þ−a3 1 − yð Þ−a2 2F1 a2, a4 ; c2 ;
z

1 − y

� �
= �Hx,y a1, c1ð ÞF11a a1, a2, a3, a4 ; c1, c2 ; x, y, zð Þ,

ð16Þ

F11c a1, a2, a3, b ; c ; x, y, zð Þ
=Hx,y a1, cð Þ 1 − xð Þ−b 1 − yð Þ−a2 2F1 a2, a3 ; 1 − b;− 1 − xð Þz

1 − y

� �
,

ð17Þ

1 − xð Þ−b 1 − yð Þ−a2 2F1 a2, a3 ; 1 − b;− 1 − xð Þz
1 − y

� �
= �Hx,y a1, cð ÞF11c a1, a2, a3, b ; c ; x, y, zð Þ,

ð18Þ

F15a a1, a2, a3 ; c1, c2 ; x, y, zð Þ
=Hx,y a1, c1ð Þ 1 − xð Þ−a3 1 − yð Þ−a2 2F1 a2, a3 ; c2 ;

z
1 − xð Þ 1 − yð Þ

� �
,

ð19Þ

1 − xð Þ−a3 1 − yð Þ−a2 2F1 a2, a3 ; c2 ;
z

1 − xð Þ 1 − yð Þ
� �

= �Hx,y a1, c1ð ÞF15a a1, a2, a3 ; c1, c2 ; x, y, zð Þ,
ð20Þ

2 Journal of Function Spaces



F17a a1, a2, a3, a4 ; c1, c2, c3 ; x, y, zð Þ
=Hz a4, c3ð Þ 1 − zð Þ−a1F2 a1, a2, a3 ; c1, c2 ;

x
1 − z

, y
1 − z

� �
,

ð21Þ

1 − zð Þ−a1F2 a1, a2, a3 ; c1, c2 ;
x

1 − z
, y
1 − z

� �
= �Hz a4, c3ð ÞF17a a1, a2, a3, a4 ; c1, c2, c3 ; x, y, zð Þ,

ð22Þ

F17b a1, a2, a3, b ; c1, c2 ; x, y, zð Þ
=Hz a3, c2ð Þ 1 − zð Þ−a1H1 b, a1, a2 ; c1 ;

x
1 − z

, y
1 − z

� �
,

ð23Þ

1 − zð Þ−a1H1 b, a1, a2 ; c1 ;
x

1 − z
, y
1 − z

� �
= �Hz a3, c2ð ÞF17b a1, a2, a3, b ; c1, c2 ; x, y, zð Þ,

ð24Þ

F17c a1, a2, b1, b2 ; c ; x, y, zð Þ
=Hz a2, cð Þ 1 − zð Þ−a1G1 a1, b2, b1 ;

x
1 − z

, y
1 − z

� �
,

ð25Þ

1 − zð Þ−a1G1 a1, b2, b1 ;
x

1 − z
, y
1 − z

� �
= �Hz a2, cð ÞF17c a1, a2, b1, b2 ; c ; x, y, zð Þ,

ð26Þ

F18a a1, a2, a3, a4 ; c1, c2 ; x, y, zð Þ
=Hz a4, c2ð Þ 1 − zð Þ−a1F1 a1, a2, a3 ; c1 ;

x
1 − z

, y
1 − z

� �
,

ð27Þ

1 − zð Þ−a1F1 a1, a2, a3 ; c1 ;
x

1 − z
, y
1 − z

� �
= �Hz a4, c2ð ÞF18a a1, a2, a3, a4 ; c1, c2 ; x, y, zð Þ,

ð28Þ

F19a a1, a2, a3, a4 ; c ; x, y, zð Þ
=Hx,y,z a1, cð Þ 1 − xð Þ−a2 1 − yð Þ−a3 1 − zð Þ−a4 , ð29Þ

1 − xð Þ−a2 1 − yð Þ−a3 1 − zð Þ−a4
= �Hx,y,z a1, cð ÞF19a a1, a2, a3, a4 ; c ; x, y, zð Þ, ð30Þ

F20a a1, a2, a3 ; c1, c2, c3 ; x, y, zð Þ
=Hz a3, c3ð Þ 1 − zð Þ−a1F4 a1, a2 ; c1, c2 ;

x
1 − z

, y
1 − z

� �
,

ð31Þ

1 − zð Þ−a1F4 a1, a2 ; c1, c2 ;
x

1 − z
, y
1 − z

� �
= �Hz a3, c3ð ÞF20a a1, a2, a3 ; c1, c2, c3 ; x, y, zð Þ,

ð32Þ

F23c a1, a2, a3, b1, b2 ; c ; x, y, zð Þ
=Hy a3, cð Þ 1 − yð Þ−b1H7 b2, a1, a2 ; 1 − b1;− 1 − yð Þz, xð Þ,

ð33Þ

1 − yð Þ−b1H7 b2, a1, a2 ; 1 − b1;− 1 − yð Þz, xð Þ
= �Hy a3, cð ÞF23c a1, a2, a3, b1, b2 ; c ; x, y, zð Þ: ð34Þ

Each of the operator identities (15), (16), (17), (18), (19),
(20), (21), (22), (23), (24), (25), (26), (27), (28), (29), (30),
(31), (32), (33), and (34) can be proved by means of Mellin
and inverse Mellin transformation (see, for example, [11,
20, 22]). The proofs of the operator identities are omitted
here.

3. Decomposition Formulas

In [23] (p. 93), it is proved that, for every analytic function
f ðξÞ, the following formulas hold true:

−δð Þn f ξð Þf g = −1ð Þnξn dn

dξn
f ξð Þf g, ð35Þ

α + δð Þn f ξð Þf g = ξ1−α
dn

dξn
ξα+n−1 f ξð Þ
n o

, ð36Þ

where

δ≔ ξ
d
dξ

; α ∈ℂ ; n ∈ℕ0 ≔ 0, 1, 2,⋯f g: ð37Þ

In view of formulas (35) and (36), and taking into
account the differentiation formula for hypergeometric func-
tions, from operator identities (15), (16), (17), (18), (19),
(20), (21), (22), (23), (24), (25), (26), (27), (28), (29), (30),
(31), (32), (33), and (34), we have

F11a a1, a2, a3, a4 ; c1, c2 ; x, y, zð Þ

= 1 − xð Þ−a3 1 − yð Þ−a2 × 〠
∞

i,j=0

−1ð Þi+j a3ð Þi a2ð Þj c1 − a1ð Þi+j
c1ð Þi+ji!j!

· x
1 − x

� �i y
1 − y

� �j

× 2F1 a2 + j, a4 ; c2 ;
z

1 − y

� �
,

ð38Þ

1 − xð Þ−a3 1 − yð Þ−a2 2F1 a2, a4 ; c2 ;
z

1 − y

� �

= 〠
∞

i,j=0

a3ð Þi a2ð Þj c1 − a1ð Þi+j
c1ð Þi+ji!j!

× xiyjF11a a1, a2 + j, a3 + i, a4 ; c1 + i + j, c2 ; x, y, zð Þ,
ð39Þ

F11c a1, a2, a3, b ; c ; x, y, zð Þ = 1 − xð Þ−b 1 − yð Þ−a2 ×

� 〠
∞

i,j=0

−1ð Þi+j bð Þi a2ð Þj c − a1ð Þi+j
cð Þi+ji!j!

x
1 − x

� �i y
1 − y

� �j

× 2F1

� a2 + j, a3 ; 1 − b − i;− 1 − xð Þz
1 − y

� �
,

ð40Þ
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1 − xð Þ−b 1 − yð Þ−a2 2F1 a2, a3 ; 1 − b;− 1 − xð Þz
1 − y

� �

= 〠
∞

i,j=0

bð Þi a2ð Þj c − a1ð Þi+j
cð Þi+ji!j!

xiyj

× F11c a1, a2 + j, a3, b + i ; c + i + j ; x, y, zð Þ,

ð41Þ

F15a a1, a2, a3 ; c1, c2 ; x, y, zð Þ = 1 − xð Þ−a3 1 − yð Þ−a2

× 〠
∞

i,j=0

−1ð Þi+j a3ð Þi a2ð Þj c1 − a1ð Þi+j
c1ð Þi+ji!j!

x
1 − x

� �i y
1 − y

� �j

× 2F1 a2 + j, a3 + i ; c2 ;
z

1 − xð Þ 1 − yð Þ
� �

,

ð42Þ

1 − xð Þ−a3 1 − yð Þ−a2 2F1 a2, a3 ; c2 ;
z

1 − xð Þ 1 − yð Þ
� �

= 〠
∞

i,j=0

a3ð Þi a2ð Þj c1 − a1ð Þi+j
c1ð Þi+ji!j!

xiyj

× F15a a1, a2 + j, a3 + i ; c1 + i + j, c2 ; x, y, zð Þ,

ð43Þ

F17a a1, a2, a3, a4 ; c1, c2, c3 ; x, y, zð Þ = 1 − zð Þ−a1

× 〠
∞

i=0

−1ð Þi a1ð Þi c3 − a4ð Þi
c3ð Þii!

z
1 − z

� �i
F2

� a1 + i, a2, a3 ; c1, c2 ;
x

1 − z
, y
1 − z

� �
,

ð44Þ

1 − zð Þ−a1F2 a1, a2, a3 ; c1, c2 ;
x

1 − z
, y
1 − z

� �
= 〠

∞

i=0

a1ð Þi c3 − a4ð Þi
c3ð Þii!

ziF17a

· a1 + i, a2, a3, a4 ; c1, c2, c3 + i ; x, y, zð Þ,

ð45Þ

F17b a1, a2, a3, b ; c1, c2 ; x, y, zð Þ

= 1 − zð Þ−a1 × 〠
∞

i=0

−1ð Þi a1ð Þi c2 − a3ð Þi
c2ð Þii!

z
1 − z

� �i
H1

· b, a1 + i, a2 ; c1 ;
x

1 − z
, y
1 − z

� �
,

ð46Þ

1 − zð Þ−a1H1 b, a1, a2 ; c1 ;
x

1 − z
, y
1 − z

� �
= 〠

∞

i=0

a1ð Þi c2 − a3ð Þi
c2ð Þii!

ziF17b a1 + i, a2, a3, b ; c1, c2 + i ; x, y, zð Þ,

ð47Þ

F17c a1, a2, b1, b2 ; c ; x, y, zð Þ = 1 − zð Þ−a1

× 〠
∞

i=0

−1ð Þi a1ð Þi c − a2ð Þi
cð Þii!

z
1 − z

� �i
G1

� a1 + i, b2, b1 ;
x

1 − z
, y
1 − z

� �
,

ð48Þ

1 − zð Þ−a1G1 a1, b2, b1 ;
x

1 − z
, y
1 − z

� �
= 〠

∞

i=0

a1ð Þi c − a2ð Þi
cð Þii!

ziF17c a1 + i, a2, b1, b2 ; c + i ; x, y, zð Þ,

ð49Þ

F18a a1, a2, a3, a4 ; c1, c2 ; x, y, zð Þ = 1 − zð Þ−a1

× 〠
∞

i=0

−1ð Þi a1ð Þi c2 − a4ð Þi
c2ð Þii!

z
1 − z

� �i
F1

� a1 + i, a2, a3 ; c1 ;
x

1 − z
, y
1 − z

� �
,

ð50Þ

1 − zð Þ−a1F1 a1, a2, a3 ; c1 ;
x

1 − z
, y
1 − z

� �
= 〠

∞

i=0

a1ð Þi c2 − a4ð Þi
c2ð Þii!

ziF18a a1 + i, a2, a3, a4 ; c1, c2 + i ; x, y, zð Þ,

ð51Þ

F19a a1, a2, a3, a4 ; c ; x, y, zð Þ = 1 − xð Þ−a2 1 − yð Þ−a3 1 − zð Þ−a4

× F 3ð Þ
D c − a1, a2, a3, a4 ; c ;

x
x − 1 ,

y
y − 1 ,

z
z − 1

� �
,

ð52Þ

1 − xð Þ−a2 1 − yð Þ−a3 1 − zð Þ−a4

= 〠
∞

i,j,k=0

a2ð Þi a3ð Þj a4ð Þk c − a1ð Þi+j+k
cð Þi+j+ki!j!k!

xiyjzk

× F19a a1, a2 + i, a3 + j, a4 + k ; c + i + j + k ; x, y, zð Þ,
ð53Þ

F20a a1, a2, a3 ; c1, c2, c3 ; x, y, zð Þ

= 1 − zð Þ−a1 × 〠
∞

i=0

−1ð Þi a1ð Þi c3 − a3ð Þi
c3ð Þii!

z
1 − z

� �i
F4

· a1 + i, a2 ; c1, c2 ;
x

1 − z
, y
1 − z

� �
,

ð54Þ

1 − zð Þ−a1F4 a1, a2 ; c1, c2 ;
x

1 − z
, y
1 − z

� �
= 〠

∞

i=0

a1ð Þi c3 − a3ð Þi
c3ð Þii!

ziF20a a1 + i, a2, a3 ; c1, c2, c3 + i ; x, y, zð Þ,

ð55Þ

F23c a1, a2, a3, b1, b2 ; c ; x, y, zð Þ

= 1 − yð Þ−b1 × 〠
∞

i=0

−1ð Þi b1ð Þi c − a3ð Þi
cð Þii!

· y
1 − y

� �i

H7 b2, a1, a2 ; 1 − b1 − i;− 1 − yð Þz, xð Þ,

ð56Þ
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1 − yð Þ−b1H7 b2, a1, a2 ; 1 − b1;− 1 − yð Þz, xð Þ

= 〠
∞

i=0

b1ð Þi c − a3ð Þi
cð Þii!

yiF23c a1, a2, a3, b1 + i, b2 ; c + i ; x, y, zð Þ:

ð57Þ

4. Transformation Formulas

The transformation formulas defined below follow from the
expansion formulas (38), (39), (40), (41), (42), (43), (44),
(45), (46), (47), (48), (49), (50), (51), (52), (53), (54), (55),
(56), and (57):

F11a a1, a2, a3, a4 ; c1, c2 ; x, y, zð Þ = 1 − xð Þ−a3 1 − yð Þ−a2F11a

� c1 − a1, a2, a3, a4 ; c1, c2 ;
x

x − 1 ,
y

y − 1 ,
z

1 − y

� �
,

F11c a1, a2, a3, b ; c ; x, y, zð Þ = 1 − xð Þ−b 1 − yð Þ−a2F11c

� c − a1, a2, a3, b ; c ;
x

x − 1 ,
y

y − 1 ,
1 − xð Þz
1 − y

� �
,

F15a a1, a2, a3 ; c1, c2 ; x, y, zð Þ = 1 − xð Þ−a3 1 − yð Þ−a2F15a

� c1 − a1, a2, a3 ; c1, c2 ;
x

x − 1 ,
y

y − 1 ,
z

1 − xð Þ 1 − yð Þ
� �

,

F17a a1, a2, a3, a4 ; c1, c2, c3 ; x, y, zð Þ = 1 − zð Þ−a1F17a

� a1, a2, a3, c3 − a4 ; c1, c2, c3 ;
x

1 − z
, y
1 − z

, z
z − 1

� �
,

F17b a1, a2, a3, b ; c1, c2 ; x, y, zð Þ = 1 − zð Þ−a1F17b

� a1, a2, c2 − a3, b ; c1, c2 ;
x

1 − z
, y
1 − z

, z
z − 1

� �
,

F17c a1, a2, b1, b2 ; c ; x, y, zð Þ = 1 − zð Þ−a1F17c

� a1, c − a2, b1, b2 ; c ;
x

1 − z
, y
1 − z

, z
z − 1

� �
,

F18a a1, a2, a3, a4 ; c1, c2 ; x, y, zð Þ = 1 − zð Þ−a1F18a

� a1, a2, a3, c2 − a4 ; c1, c2 ;
x

1 − z
, y
1 − z

, z
z − 1

� �
,

F19a a1, a2, a3, a4 ; c ; x, y, zð Þ = 1 − xð Þ−a2 1 − yð Þ−a3 1 − zð Þ−a4

× F 3ð Þ
D c − a1, a2, a3, a4 ; c ;

x
x − 1 ,

y
y − 1 ,

z
z − 1

� �
,

F20a a1, a2, a3 ; c1, c2, c3 ; x, y, zð Þ = 1 − zð Þ−a1F20a

� a1, a2, c3 − a3 ; c1, c2, c3 ;
x

1 − z
, y
1 − z

, z
z − 1

� �
,

F23c a1, a2, a3, b1, b2 ; c ; x, y, zð Þ = 1 − yð Þ−b1F23c

� a1, a2, c − a3, b1, b2 ; c ; x,
y

y − 1 , 1 − yð Þz
� �

:
ð58Þ

5. Concluding Remarks

In this present paper, with the help of the inverse pairs of
symbolic operators, we established a number of decomposi-
tion formulas for some Gaussian triple hypergeometric func-
tions. Also, we investigated certain transformation formulas
for these functions. We conclude that mutually inverse
operators (12) and (13) can be applied to other multiple
hypergeometric functions.
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In the present paper, a subclass of analytic and biunivalent functions by means of Gegenbauer polynomials is introduced. Certain
coefficients bound for functions belonging to this subclass are obtained. Furthermore, the Fekete-Szegö problem for this subclass is
solved. A number of known or new results are shown to follow upon specializing the parameters involved in our main results.

1. Introduction

Orthogonal polynomials have been studied extensively as early
as they were discovered by Legendre in 1784 [1]. Inmathemat-
ical treatment of model problems, orthogonal polynomials
arise often to find solutions of ordinary differential equations
under certain conditions imposed by the model.

The importance of the orthogonal polynomials for con-
temporary mathematics, as well as for a wide range of their
applications in physics and engineering, is beyond any doubt.
It is well-known that these polynomials play an essential role
in problems of the approximation theory. They occur in the
theory of differential and integral equations as well as in math-
ematical statistics. Their applications in quantum mechanics,
scattering theory, automatic control, signal analysis, and axi-
ally symmetric potential theory are also known [2, 3].

Formally speaking, polynomials Pr and Pm of order r and
m are orthogonal if

ðb
a
Φ xð ÞPr xð ÞPm xð Þdx = 0:for r ≠m, ð1Þ

where ΦðxÞ is nonnegative function in the interval ða, bÞ;
therefore, the integral is well-defined for all finite order poly-
nomials PrðxÞ.

A special case of orthogonal polynomials is Gegenbauer
polynomials. They are representatively related with typically
real functions TR as discovered in [4], where the integral
representation of typically real functions and generating
function of Gegenbauer polynomials are using common
algebraic expressions. Undoubtedly, this led to several use-
ful inequalities appear from the Gegenbauer polynomial
realm.

Typically, real functions play an important role in the
geometric function theory because of the relation TR = �coSR
and its role of estimating coefficient bounds, where SR
denotes the class of univalent functions in the unit disk
with real coefficients and �coSR denotes the closed convex
hull of SR.

This paper associates certain biunivalent functions with
Gegenbauer polynomials and then explores some proper-
ties of the class in hand. Paving the way for mathematical
notations and definitions, we provide the following
section.
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2. Definitions and Preliminaries

Let A denotes the class of all analytic functions f defined in
the open unit disk U = fz ∈ℂ : jzj < 1g and normalized by
the conditions f ð0Þ = 0 and f ′ð0Þ = 1. Thus, each f ∈A has
a Taylor-Maclaurin series expansion of the form

f zð Þ = z + 〠
∞

n=2
anz

n, z ∈Uð Þ: ð2Þ

Further, let S denotes the class of all functions f ∈A
which are univalent in U (for details, see [5]).

A subordination between two analytic functions f and g
is written as f ≺ g. Conceptually, the analytic function f is
subordinate to g if the image under g contains the image
under f . Technically, the analytic function f is subordinate
to g if there exists a Schwarz function w with wð0Þ = 0 and
∣wðzÞ∣ < 1 for all z ∈U; such that

f zð Þ = g w zð Þð Þ: ð3Þ

Besides, if the function g is univalent in U, then the
following equivalence holds:

f zð Þ ≺ g zð Þ if and only if f 0ð Þ = g 0ð Þ
f Uð Þ ⊂ g Uð Þ:

ð4Þ

Further on the subordination principle, we refer to [6].
It is well-known that, if f ðzÞ is an univalent analytic func-

tion from a domain D1 onto a domain D2, then the inverse
function gðzÞ defined by

g f zð Þð Þ = z, z ∈D1ð Þ, ð5Þ

is an analytic and univalent mapping from D2 to D1. More-
over, by the familiar Koebe one-quarter theorem (for details,
see [5]), we know that the image of U under every function
f ∈ S contains a disk of radius 1/4.

According to this, every function f ∈ S has an inverse
map f −1 that satisfies the following conditions:

f −1 f zð Þð Þ = z z ∈Uð Þ,

f f −1 wð Þ� �
=w wj j < r0 fð Þ ; r0 fð Þ ≥ 1

4

� �
:

ð6Þ

In fact, the inverse function is given by

g wð Þ = f −1 wð Þ =w − a2w
2 + 2a22 − a3
� �

w3

− 5a32 − 5a2a3 + a4
� �

w4+⋯:
ð7Þ

A function f ∈A is said to be biunivalent in U if both f
ðzÞ and f −1ðzÞ are univalent in U. Let Σ denotes the class of

biunivalent functions in U given by (2). Examples of func-
tions in the class Σ are

z
1 − z

,− log 1 − zð Þ, 12 log 1 + z
1 − z

� �
,⋯: ð8Þ

It is worth noting that the familiar Koebe function is not a
member of Σ, since it maps the unit disk U univalently onto
the entire complex plane except the part of the negative real
axis from −1/4 to −∞. Thus, clearly, the image of the domain
does not contain the unit diskU. For a brief history and some
intriguing examples of functions and characterization of the
class Σ, see [7–15].

In 1967, Lewin [16] investigated the biunivalent function
class Σ and showed that ∣a2 ∣ <1:51. Subsequently, Brannan
and Clunie [17] conjectured that ∣a2 ∣ ≤

ffiffiffi
2

p
: On the other

hand, Netanyahu [18] showed that max
f ∈Σ

∣a2 ∣ = 4/3: The

best-known estimate for functions in Σ has been obtained
in 1984 by Tan [19], that is, ∣a2 ∣ <1:485. The coefficient esti-
mate problem for each of the following Taylor-Maclaurin
coefficients ∣an ∣ ðn ∈ℕ \ f1, 2gÞ for each f ∈ Σ given by (2)
is presumably still an open problem.

The most important and well-investigated subclasses of
the analytic and univalent function class S are the class
S∗ðςÞ of starlike functions of order ς in U and the class
KðςÞ of convex functions of order ς in U. By definition,
we have

S∗ ςð Þ≔ f : f ∈ S and Re zf ′ zð Þ
f zð Þ

( )
> ς, z ∈U ; 0 ≤ ς < 1ð Þ

( )
,

K ςð Þ≔ f : f ∈ S and Re 1 + zf ′′ zð Þ
f ′ zð Þ

( )
> ς, z ∈U ; 0 ≤ ς < 1ð Þ

( )
:

ð9Þ

For 0 ≤ ς < 1, a function f ∈ Σ is in the class S∗
ΣðςÞ of

bistarlike function of order ς or KΣðςÞ of biconvex func-
tion of order ς if both f and f −1 are, respectively, starlike
or convex functions of order ς:

Very recently, Amourah [20] considered the Gegenbauer
polynomials Hαðx, zÞ, which are given by the following
recurrence relation:

For nonzero real constant α, a generating function of
Gegenbauer polynomials is defined by

Hα x, zð Þ = 1
1 − 2xz + z2ð Þα , ð10Þ

where x ∈ ½−1, 1� and z ∈U. For fixed x, the function Hα is
analytic in U, so it can be expanded in a Taylor series as

Hα x, zð Þ = 〠
∞

n=0
Cα
n xð Þzn, ð11Þ

where Cα
nðxÞ is Gegenbauer polynomial of degree n.
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Obviously, Hα generates nothing when α = 0. Therefore,
the generating function of the Gegenbauer polynomial is set
to be

H0 x, zð Þ = 1 − log 1 − 2xz + z2
� �

= 〠
∞

n=0
C0
n xð Þzn, ð12Þ

for α = 0. Moreover, it is worth to mention that a normaliza-
tion of α to be greater than −1/2 is desirable [3, 21]. Gegen-
bauer polynomials can also be defined by the following
recurrence relations:

Cα
n xð Þ = 1

n
2x n + α − 1ð ÞCα

n−1 xð Þ − n + 2α − 2ð ÞCα
n−1 xð Þ½ �,

ð13Þ

with the initial values

Cα
0 xð Þ = 1, Cα

1 xð Þ = 2αx andCα
2 xð Þ = 2α 1 + αð Þx2 − α: ð14Þ

First off, we present some special cases of the polynomials
Cα
nðxÞ:

(1) For α = 1, we get the Chebyshev Polynomials

(2) For α = 1/2, we get the Legendre Polynomials

Recently, many researchers have been exploring biuniva-
lent functions associated with orthogonal polynomials, few to
mention [22–28]. For Gegenbauer polynomial, as far as we
know, there is little work associated with biunivalent func-
tions in the literatures. Initiating an exploration on the prop-
erties of biunivalent functions associated with Gegenbauer
polynomials is the main goal of this paper. To do so, we take
into account, the following definitions.

Definition 1. Let λ ≥ 1, μ ≥ 0,x ∈ ð1/2, 1� and α is a nonzero
real constant. A function f ∈ Σ given by (2) is said to be in
the class B

μ
Σðλ, x, αÞ if the following subordinations are

satisfied:

1 − λð Þ f zð Þ
z

� �μ

+ λf ′ zð Þ f zð Þ
z

� �μ−1
≺Hα x, zð Þ, ð15Þ

1 − λð Þ f −1 wð Þ
w

 !μ

+ λ f −1 wð Þ� �′ f −1 wð Þ
w

 !μ−1

≺Hα x,wð Þ,

ð16Þ

where the function f −1ðwÞ is defined by (7) and Hα is the
generating function of the Gegenbauer polynomial given
by (10).

By suitably specializing the parameters μ, λ, and α, the
class B

μ
Σðλ, x, αÞ leads to the following new subclasses of

biuniavlent functions:

Example 1. If μ = 1 and a function f ∈ Σ given by (2) is said to
be in the classBΣðλ, x, αÞ if the following subordinations are
satisfied:

1 − λð Þ f zð Þ
z

� �
+ λf ′ zð Þ ≺ 1

1 − 2xz + z2ð Þα ,

1 − λð Þ f −1 wð Þ
w

 !
+ λ f −1 wð Þ� �′ ≺ 1

1 − 2xz + z2ð Þα ,

ð17Þ

where x ∈ ð1/2, 1� and the function f −1ðwÞ is defined by (7).

Example 2. If λ = 1 and a function f ∈ Σ given by (2) is said to
be in the class Bμ

Σðx, αÞ if the following subordinations are
satisfied:

f ′ zð Þ f zð Þ
z

� �μ−1
≺

1
1 − 2xz + z2ð Þα ,

f −1 wð Þ� �′ f −1 wð Þ
w

 !μ−1

≺
1

1 − 2xz + z2ð Þα ,
ð18Þ

where x ∈ ð1/2, 1� and the function f −1ðwÞ is defined by (7).

Example 3. If λ = 1, μ = 1, and a function f ∈ Σ given by (2) is
said to be in the class BΣðx, αÞ if the following subordina-
tions are satisfied:

f ′ zð Þ ≺ 1
1 − 2xz + z2ð Þα ,

f −1 wð Þ� �′ ≺ 1
1 − 2xz + z2ð Þα ,

ð19Þ

where x ∈ ð1/2, 1� and the function f −1ðwÞ is defined by (7).

Example 4. If λ = 1, μ = 0 and a function f ∈ Σ given by (2) is
said to be in the class S∗

Σðx, αÞ if the following subordinations
are satisfied:

zf ′ zð Þ
f zð Þ ≺

1
1 − 2xz + z2ð Þα ,

z f −1 wð Þ� �′
f −1 wð Þ ≺

1
1 − 2xz + z2ð Þα ,

ð20Þ

where x ∈ ð1/2, 1� and the function f −1ðwÞ is defined by (7).

Remark 2. The subclasses B
μ
Σðλ, x, 1Þ =B

μ
Σðλ, xÞ and B1

Σ
ðλ, x, 1Þ =BΣðλ, xÞ were studied by Bulut et al. [29] and
Bulut et al. [30], respectively.
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In this paper, motivated by recent works of Amourah
et al. [20], we use Gegenbauer polynomials to obtain the esti-
mates on the initial Taylor coefficients ja2j and ja3j for the
function class Bμ

Σðλ, x, αÞ:
Unless otherwise mentioned, we assume in the remainder

of this paper that λ ≥ 1,μ ≥ 0, x ∈ ð1/2, 1�, and α is a nonzero
real constant.

3. Coefficient Bounds of the Class Bμ
Σðλ, x, αÞ

In the following theorem, we determine the initial Taylor
coefficients ja2j and ja3j for the function class Bμ

Σðλ, x, αÞ:

Theorem 3. Let f ∈ Σ given by (2) belongs to the class Bμ
Σðλ,

x, αÞ: Then,

a2j j ≤ 2 αj jx ffiffiffiffiffiffiffiffiffiffi
2 αj jxp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α μ + λð Þ2 − 2 α μ + λð Þ2 1 + αð Þ − α2 μ + 2λð Þ 1 + μð Þ� �

x2
		 		q ,

a3j j ≤ 4α2x2

μ + λð Þ2
+ 2 αj jx

μ + 2λð Þ :

ð21Þ

Proof. Let f ∈Bμ
Σðλ, x, αÞ: From (15) and (16), we have

1 − λð Þ f zð Þ
z

� �μ

+ λf ′ zð Þ f zð Þ
z

� �μ−1

= 1 + Cα
1 xð Þc1z + Cα

1 xð Þc2 + Cα
2 xð Þc21

� �
z2+⋯,

ð22Þ

1 − λð Þ f −1 wð Þ
w

 !μ

+ λ f −1 wð Þ� �′ f −1 wð Þ
w

 !μ−1

= 1 + Cα
1 xð Þd1w + Cα

1 xð Þd2 + Cα
2 xð Þd21

� ��
w2+⋯,

ð23Þ
for some analytic functions

p zð Þ = c1z + c2z
2 + c3z

3+⋯ z ∈Uð Þ,
q wð Þ = d1w + d2w

2 + d3w
3+⋯ w ∈Uð Þ,

ð24Þ

such that pð0Þ = qð0Þ = 0 and ∣pðzÞ ∣ <1,∣qðwÞ ∣ <1 for all z,w
∈U:

It is fairly well known that if jpðzÞj < 1, ðz ∈UÞ and jq
ðwÞj < 1, ðw ∈UÞ, then

cj
		 		 ≤ 1 and dj

		 		 ≤ 1 for all j ∈ℕ: ð25Þ

Thus, upon comparing the corresponding coefficients
in (22) and (23), we have

μ + λð Þa2 = Cα
1 xð Þc1, ð26Þ

μ + 2λð Þ μ − 1
2

� �
a22 + a3


 �
= Cα

1 xð Þc2 + Cα
2 xð Þc21, ð27Þ

− μ + λð Þa2 = Cα
1 xð Þd1, ð28Þ

μ + 2λð Þ μ + 3
2 a22 − a3


 �
= Cα

1 xð Þd2 + Cα
2 xð Þd21: ð29Þ

It follows from (26) and (28) that

c1 = −d1, ð30Þ

2 μ + λð Þ2a22 = Cα
1 xð Þ½ �2 c21 + d21

� �
: ð31Þ

If we add (27) and (29), we get

μ + 2λð Þ 1 + μð Þa22 = Cα
1 xð Þ c2 + d2ð Þ + Cα

2 xð Þ c21 + d21
� �

: ð32Þ

Substituting the value of ðc21 + d21Þ from (31) in the
right-hand side of (32), we deduce that

μ + 2λð Þ 1 + μð Þ − 2 μ + λð Þ2 Cα
2 xð Þ

Cα
1 xð Þ½ �2

" #
a22 = Cα

1 xð Þ c2 + d2ð Þ:

ð33Þ

Moreover, computations using (23), (25), and (33), we
find that

a2j j ≤ 2 αj jx ffiffiffiffiffiffiffiffiffiffi
2 αj jxp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α μ + λð Þ2 − 2 α μ + λð Þ2 1 + αð Þ − α2 μ + 2λð Þ 1 + μð Þ� �

x2
		 		q :

ð34Þ

Moreover, if we subtract (29) from (27), we obtain

2 μ + 2λð Þ a3 − a22
� �

= Cα
1 xð Þ c2 − d2ð Þ + Cα

2 xð Þ c21 − d21
� �

: ð35Þ

Then, in view of (14) and (31), Eq. (35) becomes

a3 =
Cα
1 xð Þ½ �2

2 μ + λð Þ2 c21 + d21
� �

+ Cα
1 xð Þ

2 μ + 2λð Þ c2 − d2ð Þ: ð36Þ

Thus, applying (14), we conclude that

a3j j ≤ 4α2x2
μ + λð Þ2

+ 2 αxj j
μ + 2λð Þ : ð37Þ

4. Fekete-Szegö Problem for the Function
Class Bμ

Σðλ, x, αÞ
Fekete-Szegö inequality is one of the famous problems
related to coefficients of univalent analytic functions. It was
first given by [31], who stated that, if f ∈ Σ, then

a3 − ηa22
		 		 ≤ 1 + 2e−2η/ 1−μð Þ: ð38Þ

This bound is sharp when η is real.
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In this section, we aim to provide Fekete-Szegö inequal-
ities for functions in the class Bμ

Σðλ, x, αÞ. These inequalities
are given in the following theorem.

Theorem 4. Let f ∈ Σ given by (2) belongs to the class Bμ
Σ

ðλ, x, αÞ. Then,

Proof. From (33) and (35)

a3 − ηa22 = 1 − ηð Þ Cα
1 xð Þ½ �3 c2 + d2ð Þ

μ + 2λð Þ 1 + μ½ � Cα
1 xð Þ½ �2 − 2 μ + λð Þ2Cα

2 xð Þ� �
+ Cα

1 xð Þ
2 μ + 2λð Þ c2 − d2ð Þ

= Cα
1 xð Þ h ηð Þ + 1

2 μ + 2λð Þ

 �

c2 + h ηð Þ − 1
2 μ + 2λð Þ


 �
d2


 �
,

ð40Þ

where

h ηð Þ = Cα
1 xð Þ½ �2 1 − ηð Þ

μ + 2λð Þ 1 + μð Þ Cα
1 xð Þ½ �2 − 2 μ + λð Þ2Cα

2 xð Þ� � , ð41Þ

Then, in view of (14), we conclude that

a3 − ηa22
		 		 ≤

Cα
1 xð Þj j

μ + 2λð Þ 0 ≤ h ηð Þj j ≤ 1
2 μ + 2λð Þ ,

2 Cα
1 xð Þj j h ηð Þj j h ηð Þj j ≥ 1

2 μ + 2λð Þ ,

8>>><
>>>:

ð42Þ

which completes the proof of Theorem 4.

5. Corollaries and Consequences

In this section, we apply our main results in order to deduce
each of the following new corollaries and consequences.

Corollary 5. Let f ∈ Σ given by (2) belongs to the class Bμ
Σðλ,

x, 1/2Þ. Then,

a3 − ηa22
		 		 ≤

2 αj jx
μ + 2λð Þ , η − 1j j ≤ α μ + λð Þ2 − 2 α μ + λð Þ2 1 + αð Þ − α2 μ + 2λð Þ 1 + μð Þ� �

x2

4α μ + 2λð Þx2
					

					
8 αxj j3 1 − ηj j

α μ + λð Þ2 − 2 α μ + λð Þ2 1 + αð Þ − α2 μ + 2λð Þ 1 + μð Þ� �
x2

		 		 , η − 1j j ≥ α μ + λð Þ2 − 2 α μ + λð Þ2 1 + αð Þ − α2 μ + 2λð Þ 1 + μð Þ� �
x2

4α μ + 2λð Þx2
					

					:

8>>>>><
>>>>>:

ð39Þ

a2j j ≤ x
ffiffiffi
x

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/2 μ + λð Þ2 − 3/2 μ + λð Þ2 − 1/2 μ + 2λð Þ 1 + μð Þ� �

x2
		 		q ,

a3j j ≤ x2

μ + λð Þ2
+ x

μ + 2λð Þ ,

a3 − ηa22
		 		 ≤

x
μ + 2λð Þ , η − 1j j ≤ 1/2 μ + λð Þ2 − 3/2 μ + λð Þ2 − 1/2 μ + 2λð Þ 1 + μð Þ� �

x2

2 μ + 2λð Þx2
					

					
x3 1 − ηj j

1/2 μ + λð Þ2 − 3/2 μ + λð Þ2 − 1/2 μ + 2λð Þ 1 + μð Þ� �
x2

		 		 , η − 1j j ≥ 1/2 μ + λð Þ2 − 3/2 μ + λð Þ2 − 1/2 μ + 2λð Þ 1 + μð Þ� �
x2

2 μ + 2λð Þx2
					

					:

8>>>>><
>>>>>:

ð43Þ
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Corollary 6. Let f ∈ Σ given by (2) belongs to the class B1
Σðλ

, x, αÞ =BΣðλ, x, αÞ: Then,

Corollary 7. Let f ∈ Σ given by (2) belongs to the class Bμ
Σð1,

x, αÞ =B
μ
Σðx, αÞ: Then,

Corollary 8. Let f ∈ Σ given by (2) belongs to the class B0
Σð1,

x, αÞ = S∗
Σðx, αÞ: Then,

a2j j ≤ 2 αj jx ffiffiffiffiffi
2x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2 1 − αð Þx2j jp ,

a3j j ≤ 4α2x2 + αj jx,

a3 − ηa22
		 		 ≤

αj jx, η − 1j j ≤ 1 − 2 1 − αð Þx2
8x2

				
				

8α2 x31 − η
		 		

1 − 2 1 − αð Þx2j j , η − 1j j ≥ 1 − 2 1 − αð Þx2
8x2

				
				:

8>>><
>>>:

ð46Þ

Corollary 9. Let f ∈ Σ given by (2) belongs to the class B1
Σð1,

x, αÞ =BΣðx, αÞ: Then,

a2j j ≤ αj jx ffiffiffiffiffi
2x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2 − αð Þx2j jp ,

a3j j ≤ α2x2 + 2 αj jx
3

,

a3 − ηa22
		 		 ≤

2 αj jx
3

, η − 1j j ≤ 1 − 2 − αð Þx2
3x2

				
				

2α2x3 1 − ηj j
1 − 2 − αð Þx2j j , η − 1j j ≥ 1 − 2 − αð Þx2

3x2

				
				:

8>>><
>>>:

ð47Þ

6. Concluding Remark

By taking α = 1 and specializing μ = 1 or λ = 1, one can
deduce the above results for various subclasses of Σ studied
by Bulut et al. [29] and by Altinkaya and Yalcin [32].

a2j j ≤ 2 αj jx ffiffiffiffiffiffiffiffiffiffi
2 αj jxp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 1 + λð Þ2 − 2 α 1 + λð Þ2 1 + αð Þ − 2α2 1 + 2λð Þ� �

x2
		 		q ,

a3j j ≤ 4α2x2
1 + λð Þ2

+ 2 αj jx
1 + 2λð Þ ,

a3 − ηa22
		 		 ≤

2 αj jx
1 + 2λð Þ , η − 1j j ≤ α 1 + λð Þ2 − 2 α 1 + λð Þ2 1 + αð Þ − 2α2 1 + 2λð Þ� �

x2

4α 1 + 2λð Þx2
					

					
8 αxj j3 1 − ηj j

α 1 + λð Þ2 − 2 α 1 + λð Þ2 1 + αð Þ − 2α2 1 + 2λð Þ� �
x2

		 		 , η − 1j j ≥ α 1 + λð Þ2 − 2 α 1 + λð Þ2 1 + αð Þ − 2α2 1 + 2λð Þ� �
x2

4α 1 + 2λð Þx2
					

					:

8>>>>><
>>>>>:

ð44Þ

a2j j ≤ 2 αj jx ffiffiffiffiffiffiffiffiffiffi
2 αj jxp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α μ + 1ð Þ2 − 2 α μ + 1ð Þ2 1 + αð Þ − α2 μ + 2ð Þ 1 + μð Þ� �

x2
		 		q ,

a3j j ≤ 4α2x2
μ + 1ð Þ2 + 2 αj jx

μ + 2ð Þ ,

a3 − ηa22
		 		 ≤

2 αj jx
μ + 2ð Þ , η − 1j j ≤ α μ + 1ð Þ2 − 2 α μ + 1ð Þ2 1 + αð Þ − α2 μ + 2ð Þ 1 + μð Þ� �

x2

4α μ + 2ð Þx2
					

					
8 αxj j3 1 − ηj j

α μ + 1ð Þ2 − 2 α μ + 1ð Þ2 1 + αð Þ − α2 μ + 2ð Þ 1 + μð Þ� �
x2

		 		 , η − 1j j ≥ α μ + 1ð Þ2 − 2 α μ + 1ð Þ2 1 + αð Þ − α2 μ + 2ð Þ 1 + μð Þ� �
x2

4α μ + 2ð Þx2
					

					:

8>>>>><
>>>>>:

ð45Þ
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The goal of this article is to determine sharp inequalities of certain coefficient-related problems for the functions of bounded
turning class subordinated with a petal-shaped domain. These problems include the bounds of first three coefficients, the
estimate of Fekete-Szegö inequality, and the bounds of second- and third-order Hankel determinants.

1. Preliminary Concepts

Let the family of holomorphic (or analytic) functions in the
region (or domain) of unit disc D = fz ∈ℂ : jzj < 1g be
described by the symbol HðDÞ and let A be the subfamily
of HðDÞ which is defined by

A = f ∈H Dð Þ: f zð Þ = 〠
∞

k=1
akz

k with a1 = 1ð Þ
( )

: ð1Þ

Further, the set S ⊂A contains all normalized univalent
functions in D. For two functions F1, F2 ∈HðDÞ, we say that
F1 is subordinate to F2, written symbolically by F1 ≺ F2, if
there exists a Schwarz function v with vð0Þ = 0 and jvðzÞj < 1
that is analytic in D such that f ðzÞ = gðvðzÞÞ,z ∈D. However,
if F2 is univalent in D, then the following relation holds:

F1 zð Þ ≺ F2 zð Þ, z ∈Dð Þ⇔ F1 0ð Þ = F2 0ð Þ and F1 Dð Þ ⊂ F2 Dð Þ:
ð2Þ

In geometric function theory, the most basic and impor-
tant subfamilies of the set S are the family S∗ of starlike

functions and the family C of convex functions which are
defined as follows:

C = f ∈A :
zf ′ zð Þ

� �
′

f ′ zð Þ
≺Λ zð Þ z ∈Dð Þ

8<
:

9=
;≔C Λð Þ,

S∗ = f ∈A :
zf ′ zð Þ
f zð Þ ≺Λ zð Þ z ∈Dð Þ

( )
≔ S∗ Λð Þ,

ð3Þ

with

Λ zð Þ = 1 + 2〠
∞

n=2
zn ≔

1 + z
1 − z

, z ∈Dð Þ: ð4Þ

By varying the function ΛðzÞ in (18), we get some sub-
families of the set S∗ which have significant geometric
sense. For example,

(i) If we take ΛðzÞ = ð1 +MzÞ/ð1 +NzÞ with −1 ≤N <
M ≤ 1, then the deduced family
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S∗ M,N½ � ≡ S∗ 1 +Mz
1 +Nz

� �
ð5Þ

is described by the functions of the Janowski starlike
family established in [1] and later studied in different
directions in [2, 3]

(ii) The family S∗
L ≡ S∗ðΛðzÞÞ with ΛðzÞ = ffiffiffiffiffiffiffiffiffiffi

1 + z
p

was
developed in [4] by Sokól and Stankiewicz. The
image of the function ΛðzÞ = ffiffiffiffiffiffiffiffiffiffi

1 + z
p

demonstrates
that the image domain is bounded by the Bernoulli’s
lemniscate right-half plan specified by ∣w2 − 1 ∣ <1

(iii) By selectingΛðzÞ = 1 + sin z, the class S∗ðΛðzÞÞ lead
to the family S∗

sin which was explored in [5] while
S∗

e ≡ S∗ðezÞ has been produced in the article [6]
and later studied in [7]

(iv) The family S∗
c ≔ S∗ðΛðzÞÞ with ΛðzÞ = 1 + ð4/3Þ z

+ ð2/3Þz2 was contributed by Sharma and his coau-
thors [8] which contains function f ∈A such that z
f ′ðzÞ/f ðzÞ is located in the region bounded by the
cardioid given by

9x2 + 9y2 − 18x + 5
� �2 − 16 9x2 + 9y2 − 6x + 1

� �
= 0 ð6Þ

(v) The family S∗
R ≡ S∗ðΛðzÞÞ with ΛðzÞ = 1 + ðz/ð√2

+ 1ÞÞðð√2 + 1 + zÞ/ð√2 + 1 − zÞÞ is studied in [9]
while S∗

cos ≔ S∗ðcos ðzÞÞ and S∗
cosh ≔ S∗ðcosh ðzÞÞ

were recently examined by Bano and Raza [10] and
Alotaibi et al. [11], respectively

(vi) If we consider ΛðzÞ = 1 sinh−1z, then the class
S∗

ρ ≔ S∗ð1 + sinh−1zÞ was provided by Kumar and
Arora [12] and is defined as a function f ∈A
which is in the family S∗

ρ if (18) holds for the
function ΛðzÞ = ρðzÞ, where

ρ zð Þ = 1 + sinh−1z ð7Þ

Clearly, the function ρðzÞ is a multivalued function and has
the branch cuts about the line segments ð−i∞,−iÞ ∪ ði, i∞Þ, on
the imaginary axis, and hence, it is holomorphic inD: In a geo-
metric point of view, the function ρðzÞ maps the unit disc D
onto a petal-shaped region Ωρ,

Ωρ = w ∈ℂ : sinh w − 1ð Þj j < 1f g: ð8Þ

Using this idea, we now consider a subfamily BT s of
analytic functions as

BT s = f ∈A : f ′ zð Þ ≺ ~Λ zð Þ, and ~Λ zð Þ is given by 8ð Þ
n o

:

ð9Þ

If we take the function ΛðzÞ, given by (4), instead of ~ΛðzÞ
in (9), we get the familiar class R of bounded turning func-
tions. From the statement of the Nashiro-Warschowski theo-
rem, it follows that the functions in R are univalent in D.
The properties of this class was studied extensively by the
researchers, see [13–16].

The Hankel determinant HDq,nð f Þðwith q, n ∈ℕ = f1, 2,
⋯ g and a1 = 1Þ for a function f ∈ S of the series form (1)
was given by Pommerenke [17, 18] as

HDq,n fð Þ≔

an an+1 ⋯ an+q−1

an+1 an+2 ⋯ an+q

⋮ ⋮ ⋯ ⋮

an+q−1 an+q ⋯ an+2q−2

											

											
: ð10Þ

Specifically, the first-, second-, and third-order Hankel
determinants, respectively, are

HD2,1 fð Þ =
1 a2

a2 a3

					
					 = a3 − a22,

HD2,2 fð Þ =
a2 a3

a3 a4

					
					 = a2a4 − a23,

HD3,1 fð Þ =
1 a2 a3

a2 a3 a4

a3 a4 a5

									

									
= a3 a2a4 − a23

� �
− a4 a4 − a2a3ð Þ + a5 a3 − a22

� �
:

ð11Þ

In literature, there are relatively few findings in relation to
the Hankel determinant for the function f belongs to the gen-
eral family S. For the function f ∈ S, the best established sharp
inequality is jHD2,nð f Þj ≤ λ

ffiffiffi
n

p
, where λ is absolute constant,

which is due to Hayman [19]. Further, for the same class S, it
was obtained in [20] that

HD2,2 fð Þ		 		 ≤ λ, for 1 ≤ λ ≤
11
3 ,

HD3,1 fð Þ		 		 ≤ μ, for 49 ≤ μ ≤
32 +

ffiffiffiffiffiffiffi
285

p

15 :

ð12Þ

The growth of jHDq,nð f Þj has often been evaluated for dif-
ferent subfamilies of the set S of univalent functions. For exam-
ple, the sharp bound of jHD2,2ð f Þj, for the subfamilies C , S∗,
and R of the set S, was measured by Janteng et al. [21, 22].
These bounds are
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HD2,2 fð Þ		 		 ≤
1
8 , for f ∈C ,

1, for f ∈ S∗,
4
9 , for f ∈R:

8>>>>><
>>>>>:

ð13Þ

The exact bound for the collection of close-to-convex func-
tions of such a specific determinant is still unavailable (see [23]).
On the other hand, for the set of Bazilevic̆ functions, the best
estimate of jHD2,2ð f Þj was proved by Krishna and RamReddy
[24]. For more work on jHD2,2ð f Þj, see References [25–29].

It is very obvious from the formulae provided in (11) that
the estimate of jHD3,1ð f Þj is far more complicated compared
with finding the bound of jHD2,2ð f Þj. In the first paper on
jHD3,1ð f Þj, published in 2010, Babalola [30] obtained the
upper bound of jHD3,1ð f Þj for the families of C , S∗, and
R. He obtained the following bounds:

HD3,1 fð Þ		 		 ≤
0:714⋯ , for f ∈C ,
16, for f ∈ S∗,
0:742⋯ , for f ∈R:

8>><
>>: ð14Þ

Later on, using the samemethodology, some other authors
[31–35] published their work concerning jHD3,1ð f Þj for
different subfamilies of analytic and univalent functions. In
2017, Zaprawa [36] improved Babalola’s [30] results by
applying a new technique which is given as

HD3,1 fð Þ		 		 ≤
49
540 , for f ∈C ,

1, for f ∈ S∗,
41
60 , for f ∈R:

8>>>>><
>>>>>:

ð15Þ

He argues that such limits are indeed not the best ones.
After that, in 2018, Kwon et al. [37] enhanced Zaprawa’s
bound for f ∈ S∗ and showed that jHD3,1ð f Þj ≤ 8/9, but it
is still not the best possible. The firstly examined papers in
which the authors obtained the sharp bounds of jHD3,1ð f Þj
came to the reader’s hands in 2018. Such papers have been
written by Kowalczyk et al. [38] and Lecko et al. [39]. These
results are given as

HD3,1 fð Þ		 		 ≤
4
135 , for f ∈C ,

1
9 , for f ∈ S∗ 1

2

� �
,

8>><
>>: ð16Þ

where S∗ð1/2Þ indicates the starlike function family of order
1/2:We would also like to acknowledge the research provided
by Mahmood et al. [40] in which they examined the third
Hankel determinant in the q-analog for a subfamily of starlike
functions and for more contribution of such type families, see
[41, 42]. In the present article, our aim is to calculate the sharp
bounds of some of the problems related to Hankel determi-

nant for the class BT s of bounded turning functions con-
nected with a petal-shaped domain.

2. A Set of Lemmas

Definition 1. Let P represent the class of all functions p that
are holomorphic in D with ReðpðzÞÞ > 0 and has the series
representation

p zð Þ = 1 + 〠
∞

n=1
cnz

n z ∈Dð Þ: ð17Þ

For the proofs of our key findings, we need the following
lemma. It contains the well-known formula for c2, see [43],
the formula for c3 due to Libera and Zlotkiewicz [44], and
the formula for c4 proved in [45].

Lemma 2. Let p ∈P has the series form ((17)). Then, for x,
σ, ρ ∈ �D =D ∪ f1g,

2c2 = c21 + x 4 − c21
� �

, ð18Þ

4c3 = c31 + 2 4 − c21
� �

c1x − c1 4 − c21
� �

x2 + 2 4 − c21
� �

1 − xj j2� �
σ,

ð19Þ

8c4 = c41 + 4 − c21
� �

x c21 x2 − 3x + 3
� �

+ 4x

 �

− 4 4 − c21
� �

� 1 − xj j2� �
c x − 1ð Þz + �xσ2 − 1 − σj j2� �

ρ

 �

:
ð20Þ

Lemma 3. If p ∈P and has the series form ((17)), then

cn+k − μcnckj j ≤ 2 max 1, 2μ − 1j jð Þ, ð21Þ

cnj j ≤ 2 for n ≥ 1, ð22Þ

Jc31 − Kc1c2 + Lc3
		 		 ≤ 2 Jj j + K − 2Jj j + 2 J − K + Lj j, ð23Þ

with J , K , L, μ ∈ℂ and for B ∈ ½0, 1� with Bð2B − 1Þ ≤D ≤ B,
we have

c3 − 2Bc1c2 +Dc31
		 		 ≤ 2: ð24Þ

The inequalities (21), (22), (23), and (24) in the above
lemma are taken from [43, 46], [47–49], and [50], respectively.

3. Coefficient Inequalities for the Class BT s

We begin this section by finding the absolute values of the
first three initial coefficients for the function of class BT s:
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Theorem 4. If f ∈BT s and has the series representation
((1)), then

a2j j ≤ 1
2
,

a3j j ≤ 1
3
,

a4j j ≤ 1
4
:

ð25Þ

These bounds are sharp.

Proof. Let f ∈BT s: Then, (9) can be written in the form of
the Schwarz function as

f ′ zð Þ = 1 + sinh−1 w zð Þð Þ, z ∈Dð Þ: ð26Þ

Now, if p ∈P , then it may be written in terms of the
Schwarz function w by

p zð Þ = 1 +w zð Þ
1 −w zð Þ = 1 + c1z + c2z

2 + c3z
3+⋯, ð27Þ

equivalently,

w zð Þ = p zð Þ − 1
p zð Þ + 1 = c1z + c2z

2 + c3z
3 + c4z

4+⋯
2 + c1z + c2z2 + c3z3 + c4z4+⋯

: ð28Þ

From (1), we easily get

f ′ zð Þ = 1 + 2a2z + 3a3z2 + 4a4z3 + 5a5z4+⋯: ð29Þ

By simplification and using the series expansion (28), we
obtain

1 + sinh−1 w zð Þð Þ = 1 + 1
2 c1

� �
z + 1

2 c2 −
1
4 c

2
1

� �
z2

+ 1
2 c3 +

5
48 c

3
1 −

1
2 c1c2

� �
z3

� 1
2 c4 −

1
4 c

2
2 −

1
32 c

4
1 +

5
16 c

2
1c2 −

1
2 c1c3

� �
z4+⋯:

ð30Þ

Comparing (29) and (30),we get

a2 =
1
4 c1,

ð31Þ

a3 =
1
3

1
2 c2 −

1
4 c

2
1

� �
, ð32Þ

a4 =
1
4

1
2 c3 +

5
48 c

3
1 −

1
2 c1c2

� �
, ð33Þ

a5 =
1
5

1
2 c4 −

1
4 c

2
2 −

1
32 c

4
1 +

5
16 c

2
1c2 −

1
2 c1c3

� �
: ð34Þ

For a2, implementing (22) in (31), we obtain

a2j j ≤ 1
2 : ð35Þ

For a3, reordering (32), we get

a3 =
1
6 c2 −

1
2 c1c1

� �
, ð36Þ

and using (21), we have

a3j j ≤ 1
3 : ð37Þ

For a4, we can rewrite (33) as

a4j j = 1
4

5
48 c

3
1 −

1
2 c1c2 +

1
2 c3

				
				: ð38Þ

Application of triangle inequality plus (23), we get

a4j j ≤ 1
4 2 5

48

				
				 + 2 1

2 − 2 5
48

� �				
				 + 2 5

48 −
1
2 + 1

2

				
				

� 

: ð39Þ

By simple calculations, we obtain

a4j j ≤ 1
4 : ð40Þ

These outcomes are sharp. For this, we consider a
function

f n′ zð Þ = 1 + sinh−1 znð Þ, for n = 1, 2, 3: ð41Þ

Thus, we have

f1 zð Þ =
ðz
0

1 + sinh−1 tð Þ� �
dt = z + 1

2 z
2 −

1
24 z

4+⋯,

f2 zð Þ =
ðz
0

1 + sinh−1 t2
� �� �

dt = z + 1
3 z

3 −
1
42 z

7+⋯,

f3 zð Þ =
ðz
0
1 + sinh−1 t3

� �� �
dt = z + 1

4 z
4 −

1
60 z

10+⋯:

ð42Þ

Now, we discussed about the Hankel determinant prob-
lem, which is explicitly related to the Fekete-Szegö func-
tional which is an extraordinary instance of the Hankel
determinant.

Theorem 5. If f of the form ((1)) belongs to BT s, then

a3 − γa22
		 		 ≤max 1, 3 γj j

4

� �
, for γ ∈ℂ: ð43Þ

This inequality is sharp.
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Proof. Employing (31) and (32), we may write

a3 − γa22
		 		 = c2

6 −
c21
12 − γ

c21
16

				
				: ð44Þ

By rearranging, it yields

a3 − γa22
		 		 = 1

6 c2 −
3γ + 4
8

� �
c2

� �				
				: ð45Þ

Application of (21) leads us to

a3 − γa22
		 		 ≤ 1

6 max 2, 2 2 3γ + 4
8 − 1

				
				

� �
: ð46Þ

After the simplification, we obtain

a3 − γa22
		 		 ≤ 1

3 max 1, 3 γj j
4

� �
: ð47Þ

The required result is sharp and is determined by

f2 zð Þ =
ðz
0

1 + sinh−1 t2
� �� �

dt = z + 1
3 z

3 −
1
42 z

7+⋯: ð48Þ

Theorem 6. If f has the form ((1)) belongs to BT s , then

a2a3 − a4j j ≤ 1
4
: ð49Þ

This inequality is sharp.

Proof. Using (31), (32), and (33), we have

a2a3 − a4j j = 1
8 c3 − 2 2

3

� �
c1c2 +

7
24 c

3
1

				
				: ð50Þ

From (24), we have

0 ≤ B = 2
3 ≤ 1, B = 2

3 ≥D = 7
24 , ð51Þ

and also satisfy

B 2B − 1ð Þ = 2
3

4
3 − 1

� �
≤D = 7

24 : ð52Þ

Thus, by using (24), we have

a2a3 − a4j j ≤ 1
4 : ð53Þ

Equality is achieved by using

f3 zð Þ =
ðz
0
1 + sinh−1 t3

� �� �
dt = z + 1

4 z
4 −

1
60 z

10+⋯: ð54Þ

Next, we will determine the second-order Hankel deter-
minant HD2,2ð f Þ for f ∈BT s:

Theorem 7. If f belongs to BT s , then the second Hankel
determinant

HD2,2 fð Þ		 		 = a2a4 − a23
		 		 ≤ 1

9
: ð55Þ

This result is the best possible.

Proof. From (31), (32), and (33), we have

HD2,2 fð Þ = −
1

2304 c
4
1 −

1
288 c

2
1c2 +

1
32 c1c3 −

1
36 c

2
2: ð56Þ

Using (18) and (19) to express c2 and c3 in terms of c1 and
noting that without loss in generality we can write c1 = c, with
0 ≤ c ≤ 2, we obtain

HD2,2 fð Þ		 		 = −
1
768 c

4 −
1
128 c

2 4 − c2
� �

x2 −
1
144 4 − c2

� �2
x2

				
+ 1
64 c 4 − c2

� �
1 − xj j2� �

z
				,

ð57Þ

with the aid of the triangle inequality and replacing jzj ≤ 1, j
xj = b, with b ≤ 1: So,

HD2,2 fð Þ		 		 ≤ 1
768 c

4 + 1
128 c

2 4 − c2
� �

b2 + 1
144 4 − c2

� �2
b2

+ 1
64 b 4 − c2

� �
1 − b2
� �

≔ ϕ c, bð Þ:
ð58Þ

It is a simple exercise to show that ϕ′ðc, bÞ ≥ 0 on ½0, 1�, so
that ϕðc, bÞ ≤ ϕðc, 1Þ: Putting b = 1 gives

HD2,2 fð Þ		 		 ≤ 1
768 c

4 + 1
128 c

2 4 − c2
� �

+ 1
144 4 − c2

� �2 ≔ ϕ c, 1ð Þ:
ð59Þ

Also, ϕ′ðc, 1Þ < 0, and so ϕðc, 1Þ is a decreasing function.
Thus, the maximum value at c = 0 is

HD2,2 fð Þ		 		 ≤ 16
144 = 1

9 : ð60Þ

The required second Hankel determinant is sharp and is
obtained by

f2 zð Þ =
ðz
0
1 + sinh−1 t2

� �� �
dt = z + 1

3 z
3 −

1
42 z

7+⋯: ð61Þ

4. Third-Order Hankel Determinant

We will now determine the third-order Hankel determinant
HD3,1ð f Þ for f ∈BT s.
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Theorem 8. If f belongs to BT s , then the third Hankel
determinant

HD3,1 fð Þ		 		 ≤ 1
16

: ð62Þ

This result is sharp.

Proof. The third Hankel determinant can be written as

HD3,1 fð Þ = a2a4 − a23
� �

a3 − a1a4 − a2a3ð Þa4 + a1a3 − a22
� �

a5:

ð63Þ

After simplification of the above equation, we have

HD3,1 fð Þ = 2a2a3a4 − a33 − a24 + a3a5 − a22a5: ð64Þ

Let c1 = c and putting the estimations of ai’s from (31),
(32), (33), and (34), we get

HD3,1 fð Þ = 1
552960 −151c6 + 144c4c2 + 1584c3c3 − 768c2c22

�
− 8064c2c4+13824cc2c3 − 7168c32 + 9216c2c4 − 8640c23

�
:

ð65Þ

To simplify computation, let t = 4 − c2 in (18), (19), and
(20). Now, using the simplified form of these formulae, we
obtain

144c4c2 = 72 c6 + c4tx
� �

,

1584c3c3 = 396c6 + 792c4tx − 396c4tx2 + 792c3t 1 − xj j2� �
σ,

768c2c22 = 192c6 + 384c4tx + 192c2t2x2,

8064c2c4 = 1008c4tx3 − 4032c3tx 1 − xj j2� �
σ

− 4032c2t�x 1 − xj j2� �
σ2 − 3024c4tx2

+ 4032c2t 1 − xj j2� �
1 − σj j2� �

ρ + 4032c3t 1 − xj j2� �
σ

+ 3024c4tx + 1008c6 + 4032c2tx2,

13824cc2c3 = −1728c2t2x3 − 1728c4tx2 + 3456ct2x 1 − xj j2� �
σ

+ 3456c2t2x2 + 3456c3t 1 − xj j2� �
σ + 5184c4tx

+ 1728c6,

7168c32 = 896t3x3 + 2688c2t2x2 + 2688c4tx + 896c6,

9216c2c4 = 2304c2tx2 + 2304t2x3 + 576c6 + 2304c4tx
+ 2304c3t 1 − xj j2� �

σ + 2304c2t 1 − xj j2� �
1 − σj j2� �

ρ

+ 1728c2t2x2 + 2304ct2x 1 − xj j2� �
σ

+ 2304t2x 1 − xj j2� �
1 − σj j2� �

ρ − 1728c4tx2

− 2304c2t�x 1 − xj j2� �
σ2 − 2304c3tx 1 − xj j2� �

σ

− 1728c2t2x3 − 2304t2x�x 1 − xj j2� �
σ2 + 576c4tx3

+ 576c2t2x4 − 2304ct2x2 1 − xj j2� �
σ,

8640c23 = 540c2t2x4 − 2160ct2x2 1 − xj j2� �
σ − 2160c2t2x3

− 1080c4tx2 + 2160t2 1 − xj j2� �2
σ2

+ 4320ct2x 1 − xj j2� �
σ + 2160c2t2x2 + 2160c3t 1 − xj j2� �

σ

+ 2160c4tx + 540c6:
ð66Þ

Substituting these expressions in (65), by simple but too
long computation,

HD3,1 fð Þ = 1
552960 −15c6 + 2304t2x3 − 896t3x3 − 1728c2tx2

�
− 432c4tx3 + 252c4tx2 + 96c4tx + 36c2t2x4

− 1296c2t2x3 + 144c2t2x2 − 2160t2 1 − xj j2� �2
σ2

+ 360c3t 1 − xj j2� �
σ + 1728c3tx 1 − xj j2� �

σ

+ 1728c2t�x 1 − xj j2� �
σ2 − 1728c2t 1 − xj j2� �

1 − σj j2� �
ρ

− 144ct2x2 1 − xj j2� �
σ − 2304t2x�x 1 − xj j2� �

σ2+1440ct2x 1 − xj j2� �
σ

+ 2304t2x 1 − xj j2� �
1 − σj j2� �

ρ
�
:

ð67Þ

Since t = 4 − c2,

HD3,1 fð Þ = 1
552960 v1 c, xð Þ + v2 c, xð Þσ + v3 c, xð Þσ2 +Ψ c, x, σð Þρ� �

,

ð68Þ

where ρ, x, σ ∈ �D, and

v1 c, xð Þ = −15c6 + 4 − c2
� �

4 − c2
� �

−1280x3 − 400c2x3 + 36c2x4
�


+ 144c2x2
�
− 1728c2x2 − 432c4x3 + 252c4x2 + 96c4x

�
,

v2 c, xð Þ = 4 − c2
� �

1 − xj j2� �
4 − c2
� �

1440cx − 144cx2
� �


+ 1728c3x + 360c3
�
,

v3 c, xð Þ = 4 − c2
� �

1 − xj j2� �
4 − c2
� �

−144x2 − 2160
� �

+ 1728c2�x

 �

,

Ψ c, x, zð Þ = 4 − c2
� �

1 − xj j2� �
1 − σj j2� �

−1728c2 + 2304x 4 − c2
� �
 �

:

ð69Þ

Now, by using jxj = x,jσj = y and utilizing the fact jρj ≤ 1,
we get

HD3,1 fð Þ		 		 ≤ 1
552960 v1 c, xð Þj j + v2 c, xð Þj jy + v3 c, xð Þj jy2�

+ Ψ c, x, σð Þj jÞ,
ð70Þ

≤
1

552960G c, x, yð Þ, ð71Þ

where

G c, x, yð Þ = g1 c, xð Þ + g2 c, xð Þy + g3 c, xð Þy2 + g4 c, xð Þ 1 − y2
� �

,
ð72Þ
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with

g1 c, xð Þ = 15c6 + 4 − c2
� �

4 − c2
� �

1280x3 + 400c2x3 + 36c2x4
�


+ 144c2x2
�
+ 1728c2x2 + 432c4x3 + 252c4x2 + 96c4x

�
,

g2 c, xð Þ = 4 − c2
� �

1 − x2
� �

4 − c2
� �

1440cx + 144cx2
� �

+ 1728c3x + 360c3

 �

,

g3 c, xð Þ = 4 − c2
� �

1 − x2
� �

4 − c2
� �

144x2 + 2160
� �

+ 1728c2�x

 �

,

g4 c, xð Þ = 4 − c2
� �

1 − x2
� �

1728c2 + 2304x 4 − c2
� �
 �

: ð73Þ

Clearly, in the last four functions, g2ðc, xÞ and g3ðc, xÞ are
nonnegative in the interval ½0, 2� × ½0, 1�: So from (70) along
with y = jσj in the interval ½0, 1�, we get

G c, x, yð Þ =G c, x, 1ð Þ: ð74Þ

Therefore,

G c, x, 1ð Þ = g1 c, xð Þ + g2 c, xð Þ + g3 c, xð Þ + g4 c, xð Þ = F c, xð Þ:
ð75Þ

Here, we shall maximize Fðc, xÞ over the interval ½0, 2� ×
½0, 1�: For this purpose, we consider possible cases:

(i) By taking x = 0, we have

F c, 0ð Þ = 15c6 − 360c5 + 2160c4 + 144c3 − 17280c2 + 34560 = f1 cð Þ:
ð76Þ

Since f 1′ðcÞ < 0 in ½0, 2�, so, f1ðcÞ is decreasing over ½0, 2�:
Thus, f1ðcÞ has its maxima at c = 0 which is equal to 34560

(ii) By taking x = 1, we have

F c, 1ð Þ = −185c6 − 1968c4 + 5952c2 + 20480 = f2 cð Þ: ð77Þ

As f 2′ðcÞ = 0 has its optimum point at c0 = 0:674788:
Therefore, f2ðcÞ is an increasing function for c ≤ c0 and
decreasing for c0 ≤ c: Hence, f2ðcÞ has its maxima at c = c0
that is approximately equal to 22764.68167

(iii) By taking c = 0, we have

F 0, xð Þ = −2304x4 + 20480x3 − 32256x2 + 34560 = f3 xð Þ:
ð78Þ

As f 3′ðxÞ < 0 over ½0, 1�, so, f3ðxÞ is decreasing over ½0, 1�:

Thus, f3ðxÞ has its maxima at x = 0 which is equal to 34560.
Now, by taking c = 2, we obtain

F 2, xð Þ ≤ 960 ð79Þ

(iv) When ðc, xÞ lies in ½0, 2� × ½0, 1�: Then, some simple
computation shows that there exists real solution
for these equations

∂F c, xð Þ
∂x

= 0,

∂F c, xð Þ
∂c

= 0,
ð80Þ

lies inside this region ½0, 2� × ½0, 1� at ðc, xÞ ≈ ð0, 0Þ: Conse-
quently, we obtain

F c, xð Þ = 34560: ð81Þ

Thus, from all the above cases, we conclude that

G c, x, yð Þ ≤ 34560 on 0, 2½ � × 0, 1½ � × 0, 1½ �: ð82Þ

From (71), we can write

HD3,1 fð Þ		 		 ≤ 1
552960G c, x, yð Þ ≤ 1

16 ≈ 0:0625: ð83Þ

If f ∈BT s, then the equality is obtained from the
function

f3 zð Þ =
ðz
0

1 + sinh−1 t3
� �� �

dt = z + 1
4 z

4 −
1
60 z

10+⋯: ð84Þ

5. Conclusion

For the family of bounded turning functions connected with
a petal-shaped domain, we studied the problems such as the
bounds of the first three coefficients, the estimate of the
Fekete-Szegö inequality, and the bounds of Hankel determi-
nants of order three. All the bounds which we investigated
are sharp.
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In this work, we introduce the idea and concept of m–polynomial p–harmonic exponential type convex functions. In addition, we
elaborate the newly introduced idea by examples and some interesting algebraic properties. As a result, several new integral
inequalities are established. Finally, we investigate some applications for means. The amazing techniques and wonderful ideas of
this work may excite and motivate for further activities and research in the different areas of science.

1. Introduction

Theory of convexity present an active, fascinating, and
attractive field of research and also played prominence and
amazing act in different fields of science, namely, mathemat-
ical analysis, optimization, economics, finance, engineering,
management science, and game theory. Many researchers
endeavor, attempt, and maintain his work on the concept
of convex functions and extend and generalize its variant
forms in different ways using innovative ideas and fruitful
techniques. Convexity theory provides us with a unified
framework to develop highly efficient, interesting, and pow-
erful numerical techniques to tackle and to solve a wide class
of problems which arise in pure and applied sciences. In
recent years, the concept of convexity has been improved,
generalized, and extended in many directions. The concept
of convex functions also played prominence and meaningful
act in the advancement of the theory of inequalities. A num-
ber of studies have shown that the theory of convex functions
has a close relationship with the theory of inequalities.

The integral inequalities are useful in optimization the-
ory, functional analysis, physics, and statistical theory. In

diverse and opponent research, inequalities have a lot of
applications in statistical problems, probability, and numeri-
cal quadrature formulas [1–3]. So eventually due to many
generalizations, variants, extensions, widespread views, and
applications, convex analysis and inequalities have become
an attractive, interesting, and absorbing field for the
researchers and for attention; the reader can refer to [4–6].
Recently Kadakal and Iscan [7] introduced a generalized
form of convexity, namely, n–polynomial convex functions.

It is well known that the harmonic mean is the special
case of power mean. It is often used for the situations when
the average rates is desired and have a lot of applications in
different field of sciences which are statistics, computer sci-
ence, trigonometry, geometry, probability, finance, and elec-
tric circuit theory. Harmonic mean is the most appropriate
measure for rates and ratios because it equalizes the weights
of each data point. Harmonic mean is used to define the har-
monic convex set. In 2003, first time harmonic convex set
was introduced by Shi [8]. Harmonic and p–harmonic con-
vex function was for the first time introduced and discussed
by Anderson et al. [9] and Noor et al. [10], respectively.
Awan et al. [11] keeping his work on generalizations,
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introduced a new class called n–polynomial harmonically
convex function. Motivated and inspired by the ongoing
activities and research in the convex analysis field, we found
out that there exists a special class of function known as
exponential convex function, and nowadays, a lot of people
working are in this field [12, 13]. Dragomir [14] introduced
the class of exponential type convexity. After Dragomir,
Awan et al. [15] studied and investigated a new class of expo-
nentially convex functions. Kadakal and İşcan introduced a
new definition of exponential type convexity in [16].
Recently, Geo et al. [17] introduced n–polynomial harmonic
exponential type convex functions. The fruitful benefits and
applications of exponential type convexity is used to manip-
ulate for statistical learning, information sciences, data min-
ing, stochastic optimization and sequential prediction [7,
18, 19] and the references therein. Before we start, we need
the following necessary known definitions and literature.

2. Preliminaries

In this section, we recall some known concepts.

Definition 1 (see [5]). Let ψ : I ⟶ℝ be a real valued func-
tion. A function ψ is said to be convex, if

ψ κ℘1 + 1 − κð Þ℘2ð Þ ≤ κψ ℘1ð Þ + 1 − κð Þψ ℘2ð Þ, ð1Þ

holds for all ℘1, ℘2 ∈ I and κ ∈ ½0, 1�:

Definition 2 (see [20]). A function ψ : I ⊆ ð0,∞Þ⟶ℝ is said
to be harmonic convex, if

ψ
℘1℘2

κ℘2 + 1 − κð Þ℘1

� �
≤ κψ ℘1ð Þ + 1 − κð Þψ ℘2ð Þ, ð2Þ

holds for all ℘1, ℘2 ∈ I and κ ∈ ½0, 1�.

For the harmonic convex function, İşcan [20] provided
the Hermite–Hadamard type inequality.

Definition 3 (see [21]). A function ψ : I ⟶ℝ is said to be p –
harmonic convex, if

ψ
℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
≤ κψ ℘1ð Þ + 1 − κð Þψ ℘2ð Þ, ð3Þ

holds for all ℘1, ℘2 ∈ I and κ ∈ ½0, 1�.
Note that κ = 1/2 in (3), we get the following inequality:

ψ
2℘p

1℘
p
2

℘p
1 + ℘p

2

" #1/p !
≤
ψ ℘1ð Þ + ψ ℘2ð Þ

2 , ð4Þ

holds for all ℘1, ℘2 ∈ I.

The function ψ is called Jensen p–harmonic convex
function.

If we put p = −1 and p = 1, then p–harmonic convex sets
and p–harmonic convex functions collapse to classical con-
vex sets, harmonic convex sets, and harmonic convex func-
tions, respectively.

Definition 4 (see [17]). A function ψ : I ⊆ ð0,+∞Þ⟶ ½0,+
∞Þ is called m–polynomial harmonic exponential type con-
vex function, if

ψ
℘1℘2

κ℘2 + 1 − κð Þ℘1

� �
≤

1
m
〠
m

j=1
eκ − 1ð Þjψ ℘1ð Þ

+ 1
m
〠
m

j=1
e1−κ − 1
� �j

ψ ℘2ð Þ,
ð5Þ

holds for every ℘1, ℘2 ∈ I,m ∈ℕ and κ ∈ ½0, 1�.

Motivated by the above results, literature, and ongoing
activities and research, we organise the paper in the following
way. Firstly, we will give the idea and its algebraic properties
ofm–polynomial p–harmonic exponential type convex func-
tions. Secondly, we will derive the new sort of (H–H) and
refinements of (H–H) type inequalities by using the newly
introduced idea. Finally, we will give some applications for
means and conclusion.

3. Generalized Exponential Type Convex
Functions and Its Properties

We are going to introduce a new definition calledm–polyno-
mial p–harmonic exponential type convex function and will
study some of their algebraic properties. Throughout the
paper, one thing gets in mindm represents finite ℤ+,m–poly
p–harmonic exp convex function representsm–polynomial p
–harmonic exponential type convex function and (H–H)
represents Hermite–Hadamard.

Definition 5. A function ψ : I ⊆ ð0,+∞Þ⟶ ½0,+∞Þ is called
m–poly p–harmonic exp convex, if

ψ
℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
≤

1
m
〠
m

j=1
eκ − 1ð Þjψ ℘1ð Þ

+ 1
m
〠
m

j=1
e1−κ − 1
� �j

ψ ℘2ð Þ,

ð6Þ

holds for every ℘1, ℘2 ∈ I,m ∈ℕ and κ ∈ ½0, 1�.

Remark 6.

(i) Taking m = 1 in Definition 5, we obtain the following
new definition about p –harmonically exp convex
function:
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ψ
℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
≤ eκ − 1ð Þψ ℘1ð Þ + e1−κ − 1

� �
ψ ℘2ð Þ

ð7Þ

(ii) Takingm = 2 in Definition 5, we obtain the following
new definition about 2–poly p–harmonically exp
convex function:

ψ
℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
≤

e2κ − eκ

2

� �
ψ ℘1ð Þ + e2 1−κð Þ − e1−κ

2

� �
ψ ℘2ð Þ

ð8Þ

(iii) Taking p = 1 in Definition 5, then, we get a defini-
tion, namely, m–poly harmonically exp convex
function which is defined by Geo et al. [17]

(iv) Taking p = −1 in Definition 5, we obtain the following
new definition about m–poly exp convex function:

ψ κ℘1 + 1 − κð Þ℘2ð Þ ≤ 1
m
〠
m

j=1
eκ − 1ð Þjψ ℘1ð Þ + 1

m
〠
m

j=1
e1−κ − 1
� �j

ψ ℘2ð Þ

ð9Þ

(v) Takingm = 1 and p = 1 in Definition 5, we obtain the
following new definition about harmonically exp type
convex function:

ψ
℘1℘2

κ℘2 + 1 − κð Þ℘1

� �
≤ eκ − 1ð Þψ ℘1ð Þ + e1−κ − 1

� �
ψ ℘2ð Þ

ð10Þ

(vi) Takingm = 1 and p = −1 in Definition 5, then, we get
a definition, namely, exponential type convex func-
tion which is defined by Kadakal et al. [16]

That is the beauty of this newly introduce definition if we
put the values of m and p, then, we obtain new inequalities
and also found some results which connect with previous
results.

Lemma 7. The following inequalities ð1/mÞ∑m
j=1ðeκ − 1Þj ≥ κ

and ð1/mÞ∑m
j=1ðeð1−κÞ − 1Þj ≥ ð1 − κÞ are hold. If for all κ ∈

½0, 1�.

Proof. The rest of the proof is clearly seen.

Proposition 8. Every p–harmonic convex function is m–poly
p–harmonic exp convex function.

Proof. Using the definition of p–harmonic convex function
and from the Lemma 7, since κ ≤ ð1/mÞ∑m

j=1ðeκ − 1Þj and
ð1 − κÞ ≤ ð1/mÞ∑m

j=1ðe1−κ − 1Þj for all κ ∈ ½0, 1�, we have

ψ
℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
≤ κψ ℘1ð Þ + 1 − κð Þψ ℘2ð Þ

≤
1
m
〠
m

j=1
eκ − 1ð Þjψ ℘1ð Þ

+ 1
m
〠
m

j=1
e1−κ − 1
� �j

ψ ℘2ð Þ:

ð11Þ

Proposition 9. Every m–poly p–harmonic exp convex func-
tion is p–harmonic h–convex function with hðκÞ = 1/m
∑m

j=1ðeκ − 1Þj.

Proof.

ψ
℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
≤

1
m
〠
m

j=1
eκ − 1ð Þjψ ℘1ð Þ

+ 1
m
〠
m

j=1
e1−κ − 1
� �j

ψ ℘2ð Þ

≤ h κð Þψ ℘1ð Þ + h 1 − κð Þψ ℘2ð Þ:
ð12Þ

Remark 10.

(i) If p = 1 in Proposition 9, then as a result, we get
harmonically convex function, which is introduced
by Noor et al. [22]

(ii) If p = −1 in Proposition 9, then as a result, we get h–
convex function, which is defined by Varošanec [6]

Now, we make and investigate some examples by way of
newly introduced definition.

Example 11. If ψðνÞ = νp+1, ∀x ∈ ð0,∞Þ is p–harmonic con-
vex function, then according to Proposition 8, it is anm–poly
p–harmonic exp convex function.

Example 12. If ψðνÞ = 1/ν2p, ∀x ∈ℝ \ f0g is p–harmonic con-
vex function, then according to Proposition 8, it is anm–poly
p–harmonic exp convex function.

Now, we will discuss and investigate some of its algebraic
properties.

Theorem 13. Let ψ, φ : ½℘1, ℘2�⟶ℝ: If ψ and φ are twom–
poly p–harmonic exp convex functions, then

(i) ψ + φ is an m–poly p–harmonic exp convex function
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(ii) For c ∈ℝðc ≥ 0Þ, cψ is an m–poly p–harmonic exp
convex function

Proof.

(i) Let ψ and φ be an m–poly p–harmonic exp convex,
then

ψ + φð Þ ℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !

= ψ
℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
+ φ

℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !

≤
1
m
〠
m

j=1
eκ − 1ð Þjψ ℘1ð Þ + 1

m
〠
m

j=1
e1−κ − 1
� �j

ψ ℘2ð Þ

+ 1
m
〠
m

j=1
eκ − 1ð Þjφ ℘1ð Þ + 1

m
〠
m

j=1
e1−κ − 1
� �j

φ ℘2ð Þ

= 1
m
〠
m

j=1
eκ − 1ð Þj ψ ℘1ð Þ + φ ℘1ð Þ½ �

+ 1
m
〠
m

j=1
e1−κ − 1
� �j

ψ ℘2ð Þ + φ ℘2ð Þ½ �

= 1
m
〠
m

j=1
eκ − 1ð Þj ψ + φð Þ ℘1ð Þ + 1

m
〠
m

j=1
e1−κ − 1
� � j

ψ + φð Þ ℘2ð Þ

ð13Þ

(ii) Let ψ be an m–pol p–harmonic exp convex, then

cψð Þ ℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !

≤ c
1
m
〠
m

j=1
eκ − 1ð Þjψ ℘1ð Þ + 1

m
〠
m

j=1
e1−κ − 1
� �j

ψ ℘2ð Þ
" #

= 1
m
〠
m

j=1
eκ − 1ð Þjcψ ℘1ð Þ + 1

m
〠
m

j=1
e1−κ − 1
� �j

cψ ℘2ð Þ

= 1
m
〠
m

j=1
eκ − 1ð Þj cψð Þ ℘1ð Þ + 1

m
〠
m

j=1
e1−κ − 1
� �j

cψð Þ ℘2ð Þ

ð14Þ

which completes the proof.

Remark 14.

(i) If m = 1 in Theorem 13, then as a result, we get the
ψ + φ and cψ are p–harmonic exp convex functions

(ii) If p = 1 in Theorem 13, then as a result, we get
Theorem 3.2 in [17]

(iii) If m = p = 1 in Theorem 13, then as a result, we get
the ψ + φ and cψ are harmonic exp convex functions

(iv) If p = −1 in Theorem 13, then as a result, we get the
ψ + φ and cψ are m–poly exp convex functions

(v) If m = 1 and p = −1 in Theorem 13, then as a result,
we get Theorem 2.1 in [16]

Theorem 15. Let ψ : I = ½℘1, ℘2�⟶ J be p–harmonic convex
function and φ : J ⟶ℝ is nondecreasing and m–poly exp
convex function. Then, the function φ ∘ ψ : I = ½℘1, ℘2�⟶
ℝ is an m–poly p–harmonic exp convex function.

Proof. ∀℘1, ℘2 ∈ I, and κ ∈ ½0, 1�, we have

φ ∘ ψð Þ ℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
= φ ψ

℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !

≤ φ κψ ℘1ð Þ + 1 − κð Þψ ℘2ð Þð Þ ≤ 1
m
〠
m

j=1
eκ − 1ð Þjφ ψ ℘1ð Þð Þ

+ 1
m
〠
m

j=1
e1−κ − 1
� �j

φ ψ ℘2ð Þð Þ = 1
m
〠
m

j=1
eκ − 1ð Þj φ ∘ ψð Þ ℘1ð Þ

+ 1
m
〠
m

j=1
e1−κ − 1
� �j

φ ∘ ψð Þ ℘2ð Þ:

ð15Þ

Remark 16.

(i) In case of m = 1, we investigate the following new
inequality:

φ ∘ ψð Þ ℘p
1℘

p
2

t℘p
2 + 1 − tð Þ℘p

1

" #1/p !
≤ eκ − 1ð Þ φ ∘ ψð Þ ℘1ð Þ

+ e1−κ − 1
� �

φ ∘ ψð Þ ℘2ð Þ
ð16Þ

(ii) In case of p = 1, the above Theorem 15 collapses to
Theorem 3.3 in [17]

(iii) In case ofm = p = 1, as a result, we obtain the follow-
ing new inequality:

φ ∘ ψð Þ ℘1℘2
κ℘2 + 1 − κð Þ℘1

� �
≤ eκ − 1ð Þ φ ∘ ψð Þ ℘1ð Þ

+ e1−κ − 1
� �

φ ∘ ψð Þ ℘2ð Þ
ð17Þ

(iv) In case of p = −1, then, the above Theorem 15
collapses to the following new inequality:
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φ ∘ ψð Þ κ℘1 + 1 − κð Þ℘2ð Þ ≤ 1
m
〠
m

j=1
eκ − 1ð Þj φ ∘ ψð Þ ℘1ð Þ

+ 1
m
〠
m

j=1
e1−κ − 1
� �j

φ ∘ ψð Þ ℘2ð Þ

ð18Þ

(v) In case of m = 1 and p = −1, as a result, the above
Theorem 15 collapses to the Theorem (2.2) in [16]

Theorem 17. Let 0 < ℘1 < ℘2,ψj : ½℘1, ℘2�⟶ ½0,+∞Þ be a
class of m–poly p–harmonic exp convex functions and ψðuÞ
= sup jψjðuÞ. Then, ψ is an m–poly p–harmonic exp convex
function and U = fu ∈ ½℘1, ℘2�: ψðuÞ<+∞g is an interval.

Proof. Let ℘1, ℘2 ∈U and κ ∈ ½0, 1�, then

ψ
℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
= sup

j
ψj

℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !

≤
1
m
〠
m

j=1
eκ − 1ð Þj sup

j
ψj ℘1ð Þ + 1

m
〠
m

j=1
e1−κ − 1
� �j sup

j
ψj ℘2ð Þ

= 1
m
〠
m

j=1
eκ − 1ð Þjψ ℘1ð Þ + 1

m
〠
m

j=1
e1−κ − 1
� �j

ψ ℘2ð Þ < +∞,

ð19Þ

which completes the proof.

Remark 18.

(i) In case of p = 1, as a result, we get Theorem 3.4 in [17]

(ii) In case of m = 1 and p = −1 in Theorem 17, as a
result, we get Theorem 2.3 in [16]

Theorem 19. If ψ : ½℘1, ℘2�⟶ℝ is an m–poly p–harmonic
exp convex then ψ is bounded on ½℘1, ℘2�:

Proof. Let x ∈ ½℘1, ℘2� and L =max fψð℘1Þ, ψð℘2Þg, then,
there exist ∃κ ∈ ½0, 1� such that x = ½ð℘p

1℘
p
2Þ / ðκ℘p

2 + ð1 − κÞ
℘p
1Þ�1/p: Thus, since eκ ≤ e and e1−κ ≤ e, we have

ψ xð Þ = ψ
℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
≤

1
m
〠
m

j=1
eκ − 1ð Þjψ ℘1ð Þ

+ 1
m
〠
m

j=1
e1−κ − 1
� �j

ψ ℘2ð Þ ≤ 1
m
〠
m

j=1
eκ + e1−κ − 2
� �j ⋅ L

≤
2L
m

〠
m

j=1
e − 1ð Þj� 	

=M:

ð20Þ

The above proof clearly shows that ψ is bounded above
from M: For bounded below, the readers using the identical
concept as in Theorem 2.4 in [16].

Remark 20.

(i) In case of p = 1, we obtain Theorem 3.5 in [17]

(ii) In case ofm = 1 and p = −1, we obtain Theorem 2.4 in
[16]

4. (H–H) Type Inequality via Generalized
Exponential Type Convexity

The main object of this section is to investigate and prove
a new version of (H–H) type inequality using m–poly p–
harmonic exp convexity.

Theorem 21. Let ψ : ½℘1, ℘2�⟶ ½0,+∞Þ be an m–poly p–
harmonic exp convex function. If ψ ∈ L½℘1, ℘2�, then

m

2∑m
j=1

ffiffi
e

p
− 1

� �j ψ 2℘p
1℘

p
2

℘p
1 + ℘p

2

" #1/p !
≤

p℘p
1℘

p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ νð Þ
νp+1

dν

≤
ψ ℘1ð Þ + ψ ℘2ð Þ

m

� �
〠
m

j=1
e − 2½ �j:

ð21Þ

Proof. Since ψ is an m–poly p–harmonic exp convex func-
tion, we have

ψ
xpyp

κyp + 1 − κð Þxp
� �1/p !

≤
1
m
〠
m

j=1
eκ − 1ð Þjψ xð Þ + 1

m
〠
m

j=1
e1−κ − 1
� � j

ψ yð Þ,

ð22Þ

which lead to

ψ
2xpyp
xp + yp

� �1/p !
≤

1
m
〠
m

j=1

ffiffi
e

p
− 1

� �j
ψ xð Þ + 1

m
〠
m

j=1

ffiffi
e

p
− 1

� �j
ψ yð Þ:

ð23Þ

Using the change of variables, we get

ψ
2℘p

1℘
p
2

℘p
1 + ℘p

2

" #1/p !
≤

1
m
〠
m

j=1

ffiffi
e

p
− 1

� �j × ψ
℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1
� �
" #1/p !(

+ ψ
℘p
1℘

p
2

κ℘p
1 + 1 − κð Þ℘p

2
� �
" #1/p !)

:

ð24Þ

Integrating the above inequality with respect to κ on
½0, 1�, we obtain
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m

2∑m
j=1

ffiffi
e

p
− 1

� �j ψ 2℘p
1℘

p
2

℘p
1 + ℘p

2

" #1/p !
≤

p℘p
1℘

p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ νð Þ
νp+1

dν,

ð25Þ

which completes the left side inequality.
For the right side inequality, first of all, we change the

variable of integration by ν = ½ð℘p
1℘

p
2Þ/ðκ℘p

2 + ð1 − κÞ℘p
1Þ�1/p

and using Definition 5 for the function ψ, we have

p℘p
1℘

p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ νð Þ
νp+1

dν =
ð1
0
ψ

℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
dκ

≤
ð1
0

1
m
〠
m

j=1
eκ − 1ð Þjψ ℘1ð Þ

"

+ 1
m
〠
m

j=1
e1−κ − 1
� �j

ψ ℘2ð Þ
#
dκ

= ψ ℘1ð Þ
m

〠
m

j=1

ð1
0
et − 1
� �jdκ

+ ψ ℘2ð Þ
m

〠
m

j=1

ð1
0
e1−κ − 1
� �j

dκ

= ψ ℘1ð Þ + ψ ℘2ð Þ
m

� �
〠
m

j=1
e − 2½ �j,

ð26Þ

which completes the proof.

Corollary 22. In case ofm = 1 in Theorem 21, then, we get the
following new (H–H) type inequality for p–harmonic exp con-
vex functions:

1

2
ffiffi
e

p
− 1

� �ψ 2℘p
1℘

p
2

℘p
1 + ℘p

2

" #1/p !
≤

p℘p
1℘

p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ νð Þ
νp+1

dν

≤ e − 2ð Þ ψ ℘1ð Þ + ψ ℘2ð Þ½ �:
ð27Þ

Corollary 23. In case of p = −1 in Theorem 21, then as a
result, we investigate the following new (H–H) type inequality
for m–poly exp convex functions:

m

2∑m
j=1

ffiffi
e

p
− 1

� �j ψ ℘1 + ℘2

2

� �
≤

1
℘2 − ℘1

ð℘2

℘1

ψ νð Þdν

≤
ψ ℘1ð Þ + ψ ℘2ð Þ

m

� �
〠
m

j=1
e − 2½ �j:

ð28Þ

Remark 24.

(i) In case of p = 1, then as a result, we obtain Theorem
4.1 in [17]

(ii) In case of m = 1 and p = −1, then as a result, we
obtain Theorem 3.1 in [16]

(iii) In case ofm = 1 and p = 1, then as a result, we obtain
Corollary 1in [17]

5. Refinements of (H–H) Type Inequality via
Generalized Exponential Type Convexity

In this section, in order to prove our main results regarding
on some Hermite–Hadamard type inequalities for m–poly p
–harmonic exp convex function, we need the following
lemmas:

Lemma 25. Let ψ : I = ½℘1, ℘2� ⊆ℝ \ f0g⟶ℝ be differen-
tiable function on the I∘ of I. If ψ′ ∈ L½℘1, ℘2�, then

ψ ℘1ð Þ + ψ ℘2ð Þ
2

−
p℘p

1℘
p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ xð Þ
x1+p

dx

= ℘1℘2 ℘p
2 − ℘p

1

� �
2p

ð1
0

μ κð Þ
Ap+1
κ

ψ′ ℘1℘2

Aκ

� �
dκ,

ð29Þ

where Aκ = ½κ℘p
2 + ð1 − κÞ℘p

1�1/p and μðκÞ = ð1 − 2κÞ:

Proof. Let

I = ℘p
2 − ℘p

1
2p℘p

1℘
p
2

ð1
0
1 − 2κð Þ ℘p

1℘
p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1+1
p

ψ′ ℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
:

ð30Þ

Using integration by parts

I = ℘p
2 − ℘p

1
2p℘p

1℘
p
2

−p℘p
1℘

p
2

℘p
2 − ℘p

1
1 − 2κð Þψ ℘p

1℘
p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !











1

0

8<
:

−
2p℘p

1℘
p
2

℘p
2 − ℘p

1

ð1
0
ψ

℘p
1℘

p
2

κ℘p
2 + 1 − κð Þ℘p

1

" #1/p !
dκ

)

= ψ ℘1ð Þ + ψ ℘2ð Þ
2 −

p℘p
1℘

p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ xð Þ
x1+p

dx:

ð31Þ

Lemma 26 (see [23]). Let ψ : I = ½℘1, ℘2� ⊆ℝ \ f0g⟶ℝ be
differentiable function on the I∘ of I. If ψ′ ∈ L½℘1, ℘2�, then

1
8

ψ ℘1ð Þ + 3ψ
3℘p

1℘
p
2

℘p
1 + 2℘p

2

" #1/p !
+ 3ψ

3℘p
1℘

p
2

2℘p
1 + ℘p

2

" #1/p !
+ ψ ℘2ð Þ

" #

−
p℘p

1℘
p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ xð Þ
x1+p

dx = ℘1℘2 ℘p
2 − ℘p

1

� �
p

ð1
0

μ κð Þ
Ap+1
κ

ψ′ ℘1℘2

Aκ

� �
dκ,

ð32Þ
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where Aκ = ½κ℘p
2 + ð1 − κÞ℘p

1�1/p and

μ κð Þ =

κ −
1
8
, if κ ∈ 0, 1

3

� �
,

κ −
1
2
, if κ ∈

1
3
, 2
3

� �
,

κ −
7
8
, if κ ∈

2
3
, 1

� �
:

8>>>>>>>><
>>>>>>>>:

ð33Þ

Theorem 27. Let ψ : I = ½℘1, ℘2� ⊆ℝ \ f0g⟶ℝ be differen-
tiable function on the I∘ of I. If ψ′ ∈ L½℘1, ℘2� and jψ′jq is an
m-poly p–harmonic exp convex function on I, q ≥ 1, then

ψ ℘1ð Þ + ψ ℘2ð Þ
2

−
p℘p

1℘
p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ xð Þ
x1+p

dx












 ≤ ℘1℘2 ℘p

2 − ℘p
1

� �
2p

� G1− 1/qð Þ
1 G2 ψ′ ℘1ð Þ

 

q + G3 ψ′ ℘2ð Þ

 

qh i1/q� �

,

ð34Þ

where

G1 =
ð1
0

∣1 − 2κ ∣
Ap+1
κ

dκ,G2 =
1
m

ð1
0

∣1 − 2κ ∣ ∑m
j=1 eκ − 1ð Þj

A1+p
κ

dκ,

G3 =
1
m

ð1
0

∣1 − 2κ ∣ ∑m
j=1 e1−κ − 1
� �j

A1+p
κ

dκ:

ð35Þ

Proof. Using Lemma 25, properties of modulus, power mean
inequality, and m–poly p–harmonic exp convexity of the
jψ′jq, we have

ψ ℘1ð Þ + ψ ℘2ð Þ
2 −

p℘p
1℘

p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ xð Þ
x1+p

dx












 ≤ ℘1℘2 ℘p

2 − ℘p
1

� �
2p

ð1
0

1 − 2κj j
Ap+1
κ

� ψ′ ℘1℘2
Aκ

� �








dκ ≤ ℘1℘2 ℘p

2 − ℘p
1

� �
2p

ð1
0

1 − 2κj j
Ap+1
κ

dκ
� �1− 1/qð Þ

�
ð1
0

1 − 2κj j
Ap+1
κ

ψ′ ℘1℘2
Aκ

� �








qdκ

� �1/q
≤
℘1℘2 ℘p

2 − ℘p
1

� �
2p

ð1
0

1 − 2κj j
Ap+1
κ

dκ
� �1− 1/qð Þ

×
ð1
0

1 − 2κj j 1/mð Þ∑m
j=1 eκ − 1ð Þj ψ′ ℘1ð Þ

 

q + 1/mð Þ∑m

j=1 e1−κ − 1
� �j

ψ′ ℘2ð Þ

 

qh i
A1+p
κ

dκ

0
@

1
A

1/q

≤
℘1℘2 ℘p

2 − ℘p
1

� �
2p

ð1
0

1 − 2κj j
Ap+1
κ

dκ
� �1− 1/qð Þ

× 1
m

ð1
0

∣1 − 2κ ∣ ∑m
j=1 eκ − 1ð Þj

A1+p
κ

ψ′ ℘1ð Þ

 

qdκ + 1
m

ð1
0

1 − 2κj j∑m
j=1 e1−κ − 1
� �j

A1+p
κ

ψ′ ℘2ð Þ

 

qdκ
 !1/q

≤
℘1℘2 ℘p

2 − ℘p
1

� �
2p G1− 1/qð Þ

1 G2 ψ′ ℘1ð Þ

 

q + G3 ψ′ ℘2ð Þ

 

qh i1/q� �
,

ð36Þ

which completes the proof.

Corollary 28. Under the assumptions of Theorem 27 with
p = −1, we have the following new result:

ψ ℘1ð Þ + ψ ℘2ð Þ
2

−
1

℘2 − ℘1

ð℘2

℘1

ψ xð Þdx













≤

℘2 − ℘1ð Þ
2

1
2

� �1− 1/qð Þ 1
m
〠
m

j=1

8
ffiffi
e

p
− 2e − 7
2

� �j

� ψ′ ℘1ð Þ

 

q + ψ′ ℘2ð Þ

 

qh i1/q� �
:

ð37Þ

Corollary 29. Under the assumptions of Theorem 27 with
p = 1, we have the following new result:

ψ ℘1ð Þ + ψ ℘2ð Þ
2

−
℘1℘2

℘2 − ℘1

ð℘2

℘1

ψ xð Þ
x2

dx












 ≤ ℘1℘2 ℘2 − ℘1ð Þ

2

� G1′
1− 1/qð Þ

G2′ ψ′ ℘1ð Þ

 

q +G3′ ψ′ ℘2ð Þ

 

qh i1/q� �
,

ð38Þ

where

G1′ =
ð1
0

1 − 2κj j
A2
κ

dκ,G2′ =
1
m

ð1
0

1 − 2κj j∑m
j=1 eκ − 1ð Þj
A2
κ

dκ,

G3′ =
1
m

ð1
0

1 − 2κj j∑m
j=1 e1−κ − 1
� �j

A2
κ

dκ:

ð39Þ

Theorem 30. Let ψ : I = ½℘1, ℘2� ⊆ℝ \ f0g⟶ℝ be differ-
entiable function on the I∘ of I. If ψ′ ∈ L½℘1, ℘2� and
jψ′jq is an m–poly p–harmonic exp convex function on I,
r, q ≥ 1, ð1/rÞ + ð1/qÞ ≥ 1, then,

ψ ℘1ð Þ + ψ ℘2ð Þ
2

−
p℘p

1℘
p
2

℘p
2 − ℘p

1

ð℘2

a

ψ xð Þ
x1+p

dx












 ≤ ℘1℘2 ℘p

2 − ℘p
1

� �
2p

× G1/r
4 G5 ψ′ ℘1ð Þ

 

q +G6 ψ′ ℘2ð Þ

 

qh i1/q� �

,

ð40Þ

where

G4 =
ð1
0
1 − 2κj jrdκ,G5 =

1
m

ð1
0

∑m
j=1 eκ − 1ð Þj

A 1+pð Þq
κ

dκ,

G6 =
1
m

ð1
0

∑m
j=1 e1−κ − 1
� �j
A 1+pð Þq
κ

dκ:

ð41Þ

Proof. Using Lemma 25, properties of modulus, Hölder’s
inequality, and m–poly p–harmonic exp convexity of the
jψ′jq, we have
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ψ ℘1ð Þ + ψ ℘2ð Þ
2 −

p℘p
1℘

p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ xð Þ
x1+p

dx












 ≤ ℘1℘2 ℘p

2 − ℘p
1

� �
2p

�
ð1
0

1 − 2κj j
Ap+1
κ

ψ′ ℘1℘2
Aκ

� �








dκ ≤ ℘1℘2 ℘p

2 − ℘p
1

� �
2p

�
ð1
0
1 − 2κj jrdκ

� �1/r ð1
0

1
A 1+pð Þq
κ

ψ′ ℘1℘2
Aκ

� �









q

dκ

 !1/q

≤
℘1℘2 ℘p

2 − ℘p
1

� �
2p

ð1
0
1 − 2κj jrdκ

� �1/r

×
ð1
0

1
A 1+pð Þq
κ

1
m
〠
m

j=1
eκ − 1ð Þj ψ′ ℘1ð Þ

 

q + 1

m
〠
m

j=1
e1−κ − 1
� � j

ψ′ ℘2ð Þ

 

q" #
dκ

 !1/q

= ℘1℘2 ℘p
2 − ℘p

1
� �
2p G1/r

4 G5 ψ′ ℘1ð Þ

 

q +G6 ψ′ ℘2ð Þ

 

qh i1/q� �
,

ð42Þ

which completes the proof.

Corollary 31. Under the assumptions of Theorem 30 with
p = −1, we have the following new result:

ψ ℘1ð Þ + ψ ℘2ð Þ
2

−
1

℘2 − ℘1

ð℘2

℘1

ψ xð Þdx













≤

℘2 − ℘1ð Þ
2

ð1
0
1 − 2κj jrdκ

� �1/r 1
m
〠
m

j=1
e − 2ð Þj

� ψ′ ℘1ð Þ

 

q + ψ′ ℘2ð Þ

 

qh i1/q� �
:

ð43Þ

Corollary 32. Under the assumptions of Theorem 30 with
p = 1, we have the following new result:

ψ ℘1ð Þ + ψ ℘2ð Þ
2

−
℘1℘2

℘2 − ℘1

ð℘2

℘1

ψ xð Þ
x2

dx












 ≤ ℘1℘2 ℘2 − ℘1ð Þ

2

� G4′
1/r

G5′ ψ′ ℘1ð Þ

 

q +G6′ ψ′ ℘2ð Þ

 

qh i1/q� �
,

ð44Þ

where

G4′ =
ð1
0
1 − 2κj jrdκ,G5′ =

1
m

ð1
0

∑m
j=1 eκ − 1ð Þj

A2q
κ

dκ,

G6′ =
1
m

ð1
0

∑m
j=1 e1−κ − 1
� �j
A2q
κ

dκ:

ð45Þ

Theorem 33. Let ψ : I = ½℘1, ℘2� ⊆ℝ \ f0g⟶ℝ be differ-
entiable function on the I∘ of I. If ψ′ ∈ L½℘1, ℘2� and
jψ′jq is an m–poly p–harmonic exp convex function on I,
q ≥ , 1 then

1
8

ψ ℘1ð Þ + 3ψ
3℘p

1℘
p
2

℘p
1 + 2℘p

2

" #1/p !
+ 3ψ

3℘p
1℘

p
2

2℘p
1 + ℘p

2

" #1/p !
+ ψ ℘2ð Þ

" #





−

p℘p
1℘

p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ xð Þ
x1+p

dx






 ≤ ℘1℘2 ℘p
2 − ℘p

1

� �
p

� B1− 1/qð Þ
1 B4 ψ′ ℘1ð Þ

 

q + B5 ψ′ ℘2ð Þ

 

qh i1/q�

+ B1− 1/qð Þ
2 B6 ψ′ ℘1ð Þ

 

q + B7 ψ′ ℘2ð Þ

 

qh i1/q

+ B1− 1/qð Þ
3 B8 ψ′ ℘1ð Þ

 

q + B9 ψ′ ℘2ð Þ

 

qh i1/q�

,

ð46Þ

where

B1 =
ð1/3
0

κ − 1/8ð Þj j
Ap+1
κ

dκ, B2 =
ð2/3
1/3

κ − 1/2ð Þj j
Ap+1
κ

dκ,

B4 =
1
m

ð1/3
0

κ − 1/8ð Þj j∑m
j=1 eκ − 1ð Þj

Ap+1
κ

dκ,

B5 =
1
m

ð1/3
0

κ − 1/8ð Þj j∑m
j=1 e1−κ − 1
� �j

Ap+1
κ

dκ,

B6 =
1
m

ð2/3
1/3

κ − 1/2ð Þj j∑m
j=1 eκ − 1ð Þj

Ap+1
κ

dκ,

B7 =
1
m

ð2/3
1/3

κ − 1/2ð Þj j∑m
j=1 e1−κ − 1
� �j

Ap+1
κ

dκ,

B8 =
1
m

ð1
2/3

κ − 7/8ð Þj j∑m
j=1 eκ − 1ð Þj

Ap+1
κ

dκ,

B9 =
1
m

ð1
2/3

κ − 7/8ð Þj j∑m
j=1 e1−κ − 1
� �j

Ap+1
κ

dκ:

ð47Þ

Proof. Using Lemma 26, properties of modulus, power
mean inequality, and m–poly p-harmonic exp convexity
of the jψ′jq, we have

1
8 ψ ℘1ð Þ + 3ψ 3℘p

1℘
p
2

℘p
1 + 2℘p

2

" #1/p !
+ 3ψ 3℘p

1℘
p
2

2℘p
1 + ℘p

2

" #1/p !
+ ψ ℘2ð Þ

" #
−

p℘p
1℘

p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ xð Þ
x1+p

dx














≤
℘1℘2 ℘p

2 − ℘p
1

� �
p

×
ð1/3
0

κ − 1/8ð Þj j
A1+p
κ

ψ′ ℘1℘2
Aκ

� �








dκ +

ð2/3
1/3

κ − 1/2ð Þj j
A1+p
κ

ψ′ ℘1℘2
Aκ

� �








dκ

�

+
ð1
2/3

κ − 7/8ð Þj j
A1+p
κ

ψ′ ℘1℘2
Aκ

� �








dκ
#
≤
℘1℘2 ℘p

2 − ℘p
1

� �
p

×
ð1/3
0

κ − 1/8ð Þj j
A1+p
κ

dκ
� �1− 1/qð Þ"

�
ð1/3
0

κ − 1/8ð Þj j
A1+p
κ

ψ′ ℘1℘2
Aκ

� �









q

dκ
� �1/q

+
ð2/3
1/3

κ − 1/2ð Þj j
A1+p
κ

dκ
� �1− 1/qð Þ

�
ð2/3
1/3

κ − 1/2ð Þj j
A1+p
κ

ψ′ ℘1℘2
Aκ

� �








qdκ

� �1/q
+
ð1
2/3

κ − 7/8ð Þj j
A1+p
κ

dκ
� �1− 1/qð Þ

�
ð1
2/3

κ − 7/8ð Þj j
A1+p
κ

ψ′ ℘1℘2
Aκ

� �








qdκ

� �1/q#
≤
℘1℘2 ℘p

2 − ℘p
1

� �
p

×
ð1/3
0

κ − 1/8ð Þj j
A1+p
κ

dκ
� �1− 1/qð Þ"

×
ð1/3
0

κ − 1/8ð Þj j 1/mð Þ∑m
j=1 eκ − 1ð Þj ψ′ ℘1ð Þ

 

q + 1/mð Þ∑m

j=1 e1−κ − 1
� �j

ψ′ ℘2ð Þ

 

qh i
A1+p
κ

dκ

0
@

1
A

1/q

+
ð2/3
1/3

κ − 1/2ð Þj j
A1+p
κ

dκ
� �1− 1/qð Þ
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×
ð2/3
1/3

κ − 1/2ð Þj j 1/mð Þ∑m
j=1 eκ − 1ð Þj ψ′ ℘1ð Þ

 

q + 1/mð Þ∑m

j=1 e1−κ − 1
� �j ψ′ ℘2ð Þ

 

qh i

A1+p
κ

dκ

0
@

1
A

1/q

+
ð1
2/3

κ − 7/8ð Þj j
A1+p
κ

dκ
� �1− 1/qð Þ

×
ð1
2/3

κ − 7/8ð Þj j 1/mð Þ∑m
j=1 eκ − 1ð Þj ψ′ ℘1ð Þ

 

q + 1∕mð Þ∑m

j=1 e1−κ − 1
� �j

ψ′ ℘2ð Þ

 

qh i
A1+p
κ

dκ

0
@

1
A

1/q#

≤
℘1℘2 ℘p

2 − ℘p
1

� �
p

×
ð1/3
0

κ − 1/8ð Þj j
A1+p
κ

dκ
� �1− 1/qð Þ

× 1
m

ð1/3
0

∣κ − 1/8ð Þ ∣ ∑m
j=1 eκ − 1ð Þj

A1+p
κ

 "

� ψ′ ℘1ð Þ

 

qdκ + 1
m

ð1/3
0

∣κ − 1/8ð Þ ∣ ∑m
j=1 e1−κ − 1
� � j

A1+p
κ

ψ′ ℘2ð Þ

 

qdκ
!1/q

+
ð2/3
1/3

κ − 1/2ð Þj j
A1+p
κ

dκ
� �1− 1/qð Þ

× 1
m

ð2/3
1/3

∣κ − 1/2ð Þ ∣ ∑m
j=1 eκ − 1ð Þj

A1+p
κ

ψ′ ℘1ð Þ

 

qdκ
 

+ 1
m

ð2/3
1/3

∣κ − 1/2ð Þ ∣ ∑m
j=1 e1−κ − 1
� �j

A1+p
κ

ψ′ ℘2ð Þ

 

qdκ
!1/q

+ 1
m

ð1
2/3

κ − 7/8ð Þj j
A1+p
t

dt

 !1− 1/qð Þ

× 1
m

ð1
2/3

∣κ − 7/8ð Þ ∣ ∑m
j=1 eκ − 1ð Þj

A1+p
κ

ψ′ ℘1ð Þ

 

qdκ + 1
m

ð1
2/3

∣κ − 7/8ð Þ ∣ ∑m
j=1 e1−κ − 1
� �j

A1+p
κ

 

� ψ′ ℘2ð Þ

 

qdκ
!1/q#

= ℘1℘2 ℘p
2 − ℘p

1
� �
p

B1− 1/qð Þ
1 B4 ψ′ ℘1ð Þ

 

q + B5 ψ′ ℘2ð Þ

 

qh i1/q�

+ B1− 1/qð Þ
2 B6 ψ′ ℘1ð Þ

 

q + B7 ψ′ ℘2ð Þ

 

qh i1/q

+ B1− 1/qð Þ
3 B8 ψ′ ℘1ð Þ

 

q + B9 ψ′ ℘2ð Þ

 

qh i1/q�

,

ð48Þ

which completes the proof.

Corollary 34. Under the assumptions of Theorem 33 with
p = −1 and m = 1, we have the following new result:

1
8

ψ ℘1ð Þ + 3ψ
2℘1 + ℘2

3

� �
+ 3ψ

℘1 + 2℘2

3

� �
+ ψ ℘2ð Þ

� �




−

1
℘2 − ℘1

ð℘2

℘1

ψ xð Þdx




 ≤ ℘2 − ℘1ð Þ

� 17
576

� �
0:0069 ψ′ ℘1ð Þ

 

q + 0:036 ψ′ ℘2ð Þ

 

qh i1/q�

+ 0:183
360

� �
ψ′ ℘1ð Þ

 

q + ψ′ ℘2ð Þ

 

qh i1/q

+ 17
576

� �

� 0:036 ψ′ ℘1ð Þ

 

q + 0:0069 ψ′ ℘2ð Þ

 

qh i1/q�
: ð49Þ

Theorem 35. Let ψ : I = ½℘1, ℘2� ⊆ℝ \ f0g⟶ℝ be differ-
entiable function on the I∘ of I. If ψ′ ∈ L½℘1, ℘2� and
jψ′jq is an m–poly p–harmonic exp convex function on I,
r, q ≥ 1 and ð1/rÞ + ð1/qÞ ≥ 1 then

1
8

ψ ℘1ð Þ + 3ψ
3℘p

1℘
p
2

℘p
1 + 2℘p

2

" #1/p !
+ 3ψ

3℘p
1℘

p
2

2℘p
1 + ℘p

2

" #1/p !
+ ψ ℘2ð Þ

" #





−

p℘p
1℘

p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ xð Þ
x1+p

dx




 ≤ ℘1℘2 ℘p

2 − ℘p
1

� �
p

× 3r+1 + 5r+1

24r+1 r + 1ð Þ
� �1/r(

� B10 ψ′ ℘1ð Þ

 

q + B11 ψ′ ℘2ð Þ

 

q� �1/q
+ 2

6r+1 r + 1ð Þ
� �1/r

� B12 ψ′ ℘1ð Þ

 

q + B13 ψ′ ℘2ð Þ

 

q� �1/q
+ 3r+1 + 5r+1

24r+1 r + 1ð Þ
� �1/r

� B14 f ′ að Þ

 

qdt + B15 ψ′ ℘2ð Þ

 

q� �1/q)
,

ð50Þ

where

B10 =
1
m

ð1/3
0

∑m
j=1 eκ − 1ð Þj

A 1+pð Þq
κ

dκ,

B11 =
1
m

ð1/3
0

∑m
j=1 e1−κ − 1
� �j
A 1+pð Þq
κ

dκ,

B12 =
1
m

ð2/3
1/3

∑m
j=1 eκ − 1ð Þj

A 1+pð Þq
κ

dκ,

B13 =
1
m

ð2/3
1/3

∑m
j=1 e1−κ − 1
� �j
A 1+pð Þq
κ

dκ,

B14 =
1
m

ð1
2/3

∑m
j=1 eκ − 1ð Þj

A 1+pð Þq
κ

dκ,

B15 =
1
m

ð1
2/3

∑m
j=1 e1−κ − 1
� �j
A 1+pð Þq
κ

dκ:

ð51Þ

Proof. Using Lemma 26, properties of modulus, Hölder’s
inequality, and m–poly p–harmonic exp convexity of the
jψ′jq, we have

1
8 ψ ℘1ð Þ + 3ψ 3℘p

1℘
p
2

℘p
1 + 2℘p

2

" #1/p !
+ 3ψ 3℘p

1℘
p
2

2℘p
1 + ℘p

2

" #1/p !
+ ψ ℘2ð Þ

" #





−

p℘p
1℘

p
2

℘p
2 − ℘p

1

ð℘2

℘1

ψ xð Þ
x1+p

dx




 ≤ ℘1℘2 ℘p

2 − ℘p
1

� �
p

×
ð1/3
0

κ −
1
8












�

� 1
A1+p
κ

ψ′ ℘1℘2
Aκ

� �








dκ +

ð2/3
1/3

κ −
1
2










 1
A1+p
κ

ψ′ ℘1℘2
Aκ

� �








dκ

+
ð1
2/3

κ −
7
8










 1
A1+p
κ

ψ′ ℘1℘2
Aκ

� �








dκ
�
≤
℘1℘2 ℘p

2 − ℘p
1

� �
p

�
ð1/3
0

κ −
1
8











r

dκ
� �1/r ð1/3

0

1
A 1+pð Þq
κ

ψ′ ℘1℘2
Aκ

� �









q

dκ

 !1/q(

+
ð2/3
1/3

κ −
1
2











r

dκ
� �1/r ð2/3

1/3

1
A 1+pð Þq
κ

ψ′ ℘1℘2
Aκ

� �









q

dκ

 !1/q

+
ð1
2/3

κ −
7
8











r

dκ
� �1/r ð1

2/3

1
A 1+pð Þq
κ

ψ′ ℘1℘2
Aκ

� �









q

dκ

 !1/q)

≤
℘1℘2 ℘p

2 − ℘p
1

� �
p

×
ð1/3
0

κ −
1
8











r

dκ
� �1/r

×
ð1/3
0

1
A 1+pð Þq
κ

 (

� 1
m
〠
m

j=1
eκ − 1ð Þj ψ′ ℘1ð Þ

 

q + 1

m
〠
m

j=1
e1−κ − 1
� �j

ψ′ ℘2ð Þ

 

q" #
dκ

!1/q

+
ð2/3
1/3

κ −
1
2










rdκ

� �1/r
×

ð2/3
1/3

1
A 1+pð Þq
κ

1
m
〠
m

j=1
eκ − 1ð Þj ψ′ ℘1ð Þ

 

q" 

+ 1
m
〠
m

j=1
e1−κ − 1
� �j

ψ′ ℘2ð Þ

 

q#dκ
!1/q

+
ð1
2/3

κ −
7
8











r

dκ
� �1/r

×
ð1
2/3

1
A 1+pð Þq
κ

1
m
〠
m

j=1
eκ − 1ð Þj ψ′ ℘1ð Þ

 

q + 1

m
〠
m

j=1
e1−κ − 1
� �j

ψ′ ℘2ð Þ

 

q" #
dκ

 !1/q)

= ℘1℘2 ℘p
2 − ℘p

1
� �
p

× 3r+1 + 5r+1
24r+1 r + 1ð Þ
� �1/r 1

m

ð1/3
0

∑m
j=1 eκ − 1ð Þj

A 1+pð Þq
κ

ψ′ ℘1ð Þ

 

qdκ
 (

+ 1
m

ð1/3
0

∑m
j=1 e1−κ − 1
� �j
A 1+pð Þq
κ

ψ′ ℘2ð Þ

 

qdκ
!1/q

+ 2
6r+1 r + 1ð Þ
� �1/r

× 1
m

ð2/3
1/3

∑m
j=1 eκ − 1ð Þj

A 1+pð Þq
κ

φ′ ℘1ð Þ

 

qdκ + 1
m

ð2/3
1/3

∑m
j=1 e1−κ − 1
� �j
A 1+pð Þq
κ

ψ′ ℘2ð Þ

 

qdκ
 !1/q
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+ 3r+1 + 5r+1
24r+1 r + 1ð Þ
� �1/r

× 1
m

ð1
2/3

∑m
j=1 eκ − 1ð Þj

A 1+pð Þq
κ

∣ ψ′ ℘1ð Þ qdκ + 1
m

ð1
2/3

∑m
j=1 e1−κ − 1
� �j
A 1+pð Þq
κ

ψ′ ℘2ð Þ

 













q

dκ

 !1/q)

= ℘1℘2 ℘p
2 − ℘p

1
� �
p

× 3r+1 + 5r+1
24r+1 r + 1ð Þ
� �1/r

B10 ψ′ ℘1ð Þ

 

q + B11 ψ′ ℘2ð Þ

 

q� �1/q(

+ 2
6r+1 r + 1ð Þ
� �1/r

B12 ψ′ ℘1ð Þ

 

q + B13 ψ′ ℘2ð Þ

 

q� �1/q

+ 3r+1 + 5r+1
24r+1 r + 1ð Þ
� �1/r

B14 ψ′ ℘1ð Þ

 

qdκ + B15 ψ′ ℘2ð Þ

 

q� �1/q)
,

ð52Þ

which completes the proof.

Corollary 36. Under the assumptions of Theorem 35 with
p = −1 and m = 1, we have the following new result:

1
8

ψ ℘1ð Þ + 3ψ
2℘1 + ℘2

3

� �
+ 3ψ

℘1 + 2℘2

3

� �
+ ψ ℘2ð Þ

� �




−

1
℘2 − ℘1

ð℘2

℘1

ψ xð Þdxj ≤ ℘2 − ℘1ð Þ 3r+1 + 5r+1

24r+1 r + 1ð Þ
� �1/r"

� 0:0623 ψ′ ℘1ð Þ

 

q + 0:4372 ψ′ ℘2ð Þ

 

q� �1/q
+ 1

6r+1 r + 1ð Þ
� �1/r

0:2188 ψ′ ℘1ð Þ

 

q + ψ′ ℘2ð Þ

 

q� �1/q

+ 3r+1 + 5r+1

24r+1 r + 1ð Þ
� �1/r

0:4372 ψ′ ℘1ð Þ

 

q + 0:0623 ψ′ ℘2ð Þ

 

q� �1/q#
:

ð53Þ

6. Applications

In this section, we recall the following special means of two
positive number ℘1, ℘2 with ℘1 < ℘2:

(1) The arithmetic mean

A = A ℘1, ℘2ð Þ = ℘1 + ℘2
2 ð54Þ

(2) The geometric mean

G =G ℘1, ℘2ð Þ = ffiffiffiffiffiffiffiffiffiffi℘1℘2
p ð55Þ

(3) The harmonic mean

H =H ℘1, ℘2ð Þ = 2℘1℘2
℘1 + ℘2

ð56Þ

(4) The logarithmic mean

L = L ℘1, ℘2ð Þ = ℘2 − ℘1
ln ℘2 − ln ℘1

ð57Þ

These means have a lot of applications in areas and differ-
ent types of numerical approximations. However, the follow-
ing simple relationship are known in the literature:

H ℘1, ℘2ð Þ ≤G ℘1, ℘2ð Þ ≤ L ℘1, ℘2ð Þ ≤ A ℘1, ℘2ð Þ: ð58Þ

Proposition 37. Let 0 < ℘1 < ℘2 and p ≥ 1. Then we get the
following inequality

m

2∑m
j=1

ffiffi
e

p
− 1

� �j Hp ℘p
1, ℘

p
2

� �
≤

p℘p
1℘

p
2

℘p
2 − ℘p

1

℘1−p
2 − ℘1−p

1

1 − p

 !

≤ A ℘1, ℘2ð Þ 2
m
〠
m

j=1
e − 2½ �j:

ð59Þ

Proof. Taking ψðνÞ = ν for ν > 0 in Theorem 21, then,
inequality (59) is easily captured.

Proposition 38. Let 0 < ℘1 < ℘2 and p ≥ 1. Then, we get the
following inequality:

m

2∑m
j=1

ffiffi
e

p
− 1

� �j H−1
2p ℘p

1, ℘
p
2

� �
≤

p℘p
1℘

p
2

℘p
2 − ℘p

1

℘ 1/2ð Þ−p
2 − ℘ 1/2ð Þ−p

1

1/2ð Þ − p

 !−1

≤ A−1 ffiffiffi℘p
1,

ffiffiffi℘p
2

� � 2
m
〠
m

j=1
e − 2½ �j:

ð60Þ

Proof. Taking ψðνÞ = 1/ ffiffiffi
ν

p
for ν > 0 in Theorem 21, then,

inequality (60) is easily captured.

Proposition 39. Let 0 < ℘1 < ℘2 and p ≥ 1. Then, we get the
following inequality:

m

2∑m
j=1

ffiffi
e

p
− 1

� �j H ℘p
1, ℘

p
2

� �
≤

p℘p
1℘

p
2

℘p
2 − ℘p

1

℘2 − ℘1

L ℘1, ℘2ð Þ
� �

≤ A ℘p
1, ℘

p
2

� � 2
m
〠
m

j=1
e − 2½ �j:

ð61Þ

Proof. Taking ψðνÞ = νp for ν > 0 in Theorem 21, then,
inequality (61) is easily captured.

Proposition 40. Let 0 < ℘1 < ℘2 and p ≥ 1. Then, we get the
following inequality:

m

2∑m
j=1

ffiffi
e

p
− 1

� �j H2
p ℘p

1, ℘
p
2

� �
≤

p℘p
1℘

p
2

℘p
2 − ℘p

1

℘2−p
2 − ℘2−p

1

2 − p

 !

≤ A ℘2
1, ℘2

2

� � 2
m
〠
m

j=1
e − 2½ �j:

ð62Þ

Proof. Taking ψðνÞ = ν2 for ν > 0 in Theorem 21, then,
inequality (62) is easily captured.
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Proposition 41. Let 0 < ℘1 < ℘2 and p ≥ 1. Then, we get the
following inequality:

m

2∑m
j=1

ffiffi
e

p
− 1

� �j ln G ℘1, ℘2ð Þ ≤ p℘p
1℘

p
2

℘p
2 − ℘p

1

ð℘2

℘1

−ln x
xp+1

dx

≤ ln Hp ℘p
1, ℘

p
2

� � 2
m
〠
m

j=1
e − 2½ �j:

ð63Þ

Proof. Taking ψðνÞ = −ln ν for ν > 0 in Theorem 21, then,
inequality (63) is easily captured.

Proposition 42. Let 0 < ℘1 < ℘2. Then, we get the following
inequality:

m

2∑m
j=1

ffiffi
e

p
− 1

� �j eH ℘1 ,℘2ð Þ ≤
p℘p

1℘
p
2

℘p
2 − ℘p

1

ð℘2

℘1

ex

xp+1
dx

≤ A e℘1 , e℘2ð Þ 2
m
〠
m

j=1
e − 2½ �j:

ð64Þ

Proof. Taking ψðνÞ = eν for ν > 0 in Theorem 21, then,
inequality (64) is easily captured.

Proposition 43. Let 0 < ℘1 < ℘2. Then, we get the following
inequality:

A sin ℘1, sin ℘2ð Þ 2
m
〠
m

j=1
e − 2½ �j ≤ p℘p

1℘
p
2

℘p
2 − ℘p

1

ð℘2

℘1

sin x
xp+1

dx

≤
m

2∑m
j=1

ffiffi
e

p
− 1

� �j sin Hp ℘1, ℘2ð Þ:

ð65Þ

Proof. Taking ψðνÞ = sin ð−νÞ for ν ∈ ð0, ðπ/2ÞÞ in Theorem
21, then, inequality (65) is easily captured.

Remark 44. The above discussed means, namely, arithmetic,
geometric, harmonic, and logarithmic are well known in lit-
erature because these means have remarkable applications
in machine learning, probability, statistics, and numerical
approximation [24]. But, in the future, we will try to find
the applications of the He Chengtian mean (also called as
He Chengtian average), which was introduced by the first
time a famous ancient Chinese mathematician He Chengtian
[25]. The He Chengtian average was extended to solve non-
linear oscillators and it is called as He’s max–min approach
(also called as He’s max–min method), which was further
developed into a frequency–amplitude formulation for non-
linear oscillators [26, 27].

7. Conclusion

We have introduced and investigated some algebraic proper-
ties of a new class of functions, namely, m–poly p–harmonic
exp convex. We showed that our new introduced class of

function have some nice properties. We proved that our
new introduced class is very larger with respect to the known
class of functions, likem–polynomial convex andm–polyno-
mial harmonically convex. A new version of Hermite–Hada-
mard type inequality and an integral identity for the
differentiable function are obtained. It is high time to find
the applications of these inequalities along with efficient
numerical methods. We believe that our new class of func-
tions will have a very deep research in this fascinating field
of inequalities and also in pure and applied sciences. The
interesting techniques and wonderful ideas of this paper
can be extended on the coordinates along with fractional cal-
culus. In the future, our goal is that we will continue our
research work in this direction furthermore.
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The object of this work is to an innovation of a class k − ~USTsðℏ, υ, τ, ι, ςÞ in Y with negative coefficients, further determining
coefficient estimates, neighborhoods, partial sums, convexity, and compactness of this specified class.

1. Introduction

Let Y = fω : ∣ω∣<1g be an open unit disc in C . Consider the
analytic class function A that indicates j specified on the unit
disk along with normalization

j 0ð Þ = 0, j′ 0ð Þ = 1 ð1Þ

and has the form

j ωð Þ = ω + 〠
∞

n=2
onω

n, ð2Þ

indicated by S, the subclass of A lying of functions that are
univalent in Y : A function j ∈ A is stated in k −USTðιÞ, and
k −UCVðιÞ, “the class of k-uniformly starlike functions and
convex functions of order ι, 0 ≤ ι < 1,” if and only if

R
vj′ vð Þ
j vð Þ

( )
> k

vj′ vð Þ
j vð Þ − 1

�����
����� + ι, k ≥ 0ð Þ,

R 1 +
vj′′ vð Þ
j′ vð Þ

( )
> k

vj′′ vð Þ
j′ vð Þ

�����
����� + ι, k ≥ 0ð Þ:

ð3Þ

The classes UCV and UST were introduced by Goodman
[1] and studied by Ronning [2]. Due to Sakaguchi [3], the
class STs of starlike functions w.r.t. symmetric points are
defined as follows.

The function j ∈ A is stated to be starlike w.r.t. symmetric
points in Y

⇔R
2ωj′ ωð Þ

j ωð Þ − j −ωð Þ

( )
> 0, ω ∈ Yð Þ: ð4Þ

Owa et al. [4] defined the class STsðα, ςÞ as complies

R
1 − ςð Þωj′ ωð Þ
j ωð Þ − j ςωð Þ

( )
> α, ω ∈ Yð Þ, ð5Þ

where 0 ≤ α < 1, ∣ς ∣ ≤1, ς ≠ 1: Here, STsð0,−1Þ = STs and STs
ðα,−1Þ = STsðαÞ is named Sakaguchi function of order α:

In recent years, binomial distribution series, Pascal distri-
bution series, Poisson distribution series, etc., play important
role in GFT. The sufficient ways were innovated for ST, UCV
for some special functions in the GFT. By the motivation of
the works [5–13], we develop this work.
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In [14], Porwal, Poisson distribution series, gives a gra-
cious application on analytic functions; it exposed a new
way of research in GFT. Subsequently, the authors turned
on the distribution series of confluent hypergeometric,
hypergeometric, binomial, and Pascal and prevail necessary
and sufficient stipulation for certain classes of univalent
functions.

Lately, Porwal and Dixit [15] innovate Mittag-Leffler
type Poisson distribution and prevailed moments, mgf,
which is an abstraction of Poisson distribution using the def-
inition of this distribution. Bajpai [16] innovated Mittag-
Leffler type Poisson distribution series and discussed about
necessary and sufficient conditions.

The probability mass function for this is

P ℏ, τ, υ ; nð Þ ωð Þ = ℏn

Eτ,υ ℏð ÞΓ τn + υð Þ , n = 0, 1, 2,⋯ð Þ, ð6Þ

where

Eτ,υ ωð Þ = 〠
∞

n=0

ωn

Γ τn + υð Þ , τ, υ ∈C ,R τð Þ > 0,R υð Þ > 0ð Þ: ð7Þ

The series (7) converges for all finite values of ω if RðτÞ
> 0,RðυÞ > 0: This suggest that the series Eτ,υðℏÞ is conver-
gent for τ, υ, ℏ > 0: For further details of the study, see [17].
It is easy to see that the series (7) are reduced to exponential
series for τ = υ = 1:

A variable x is said to have Poisson distribution if it takes
the values 0, 1, 2, 3,⋯ with probabilities e−ℏ, ℏe−ℏ/1!, ℏ2e−ℏ/2
!, ℏ3e−ℏ/3!, ⋯ , respectively, where ℏ is called the parameter.

Thus,

P x = nð Þ = ℏne−ℏ

n!
, n = 0, 1, 2,⋯: ð8Þ

This motivates researchers (see [15, 17, 18], etc.) to intro-
duce a new probability distribution if it assumes nonnegative
values and its probability mass function is given by (6). It is
easy to see that Pðℏ, τ, υ ; nÞðωÞ given by (6) is the probability
mass function because

P ℏ, τ, υ ; nð Þ ωð Þ ≥ 0, 〠
∞

n=0
P ℏ, τ, υ ; nð Þ ωð Þ = 1: ð9Þ

It is worthy to note that for α = β = 1, it reduces to the
Poisson distribution.

Also note that

Eτ,υ ωð Þ = ωΓ υð ÞEτ,τ+υ ωð Þ: ð10Þ

In [18], Chakrabortya and Ong introduced and discussed
about the Mittag-Leffler function distribution—a new gener-
alization of hyper-Poisson distribution. The Mittag-Leffler

type Poisson distribution series was innovated by Porwal
and Dixit [15] and given as

K ℏ, τ, υð Þ ωð Þ = ω + 〠
∞

n=2

ℏn−1

Γ τ n − 1ð Þ + υð ÞEτ,υ ℏð Þω
n: ð11Þ

Equation (11) is a normalization function in S, since
Kðℏ, τ, υÞð0Þ = 0 and K ′ðℏ, τ, υÞð0Þ = 1: After that, in [19],
Porwal et al. discussed about the geometric properties of (11).

For j ∈ A given by (2) and lðωÞ given by

l ωð Þ = ω + 〠
∞

n=2
bnω

n, ð12Þ

their convolution, indicated by ðj ∗ lÞ, is given by

j ∗ lð Þ ωð Þ = ω + 〠
∞

n=2
onbnω

n = l ∗ jð Þ ωð Þ, ω ∈ Yð Þ: ð13Þ

Note that j ∗ l ∈ A:
Next, we innovate the convolution operator

I ℏ, τ, υð Þj ωð Þ = K ℏ, τ, υð Þ ∗ j ωð Þ = ω + 〠
∞

n=2
φn
ℏ τ, υð Þonωn,

ð14Þ

where φn
ℏðτ, υÞ = ℏn−1/ðΓðτðn − 1Þ + υÞEτ,υðℏÞÞ:

Then, using linear operator I ðℏ, τ, υÞ, we exemplifier a
contemporary subclass of functions in A:

Definition 1. If j ∈ A is named in the class k −USTsðℏ, υ, τ, ι, ςÞ
if for all ω ∈ Y

R
1 − ςð Þω I ℏ, τ, υð Þj ωð Þð Þ′

I ℏ, τ, υð Þj ωð Þ −I ℏ, τ, υð Þj ςωð Þ

( )

≥ k
1 − ςð Þω I ℏ, τ, υð Þj ωð Þð Þ′

I ℏ, τ, υð Þj ωð Þ −I ℏ, τ, υð Þj ςωð Þ − 1

�����
����� + ι,

ð15Þ

for k ≥ 0, ∣ς ∣ ≤1, ς ≠ 1, 0 ≤ ι < 1:

Moreover, we named that j ∈ k −USTsðℏ, υ, τ, ι, ςÞ is in
the subclass k − ~USTsðℏ, υ, τ, ι, ςÞ if jðωÞ is of the compiling
form

j ωð Þ = ω − 〠
∞

n=2
onω

n, on ≥ 0, n ∈ℕ, ω ∈ Y : ð16Þ

In this work, we analyze the bounds for coefficient, partial
sums, and some neighborhood outcomes of the class k − ~US
Tsðℏ, υ, τ, ι, ςÞ:

To claim our outcomes, we adopt lemmas [20].

Lemma 2. Let w be a complex number. Then, α ≤RðwÞ⇔
∣w − ð1 + αÞ ∣ ≤∣w + ð1 − αÞ∣.
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Lemma 3. Suppose a complex number w with real numbers
α, ι. Then,

R wð Þ > α∣w − 1∣ + ι⇔R w 1 + αeiρ
� �

− αeiρ
� �

> ι, −π < ρ ≤ πð Þ:
ð17Þ

2. Coefficient Bounds

Theorem 4. A function j given by (16) is in k − ~USTsðℏ, υ,
τ, ι, ςÞ

⇔〠
∞

n=2
φn
ℏ τ, υð Þ∣n k + 1ð Þ − jn k + ιð Þ∣on ≤ 1 − ι, ð18Þ

here k ≥ 0, ∣ς ∣ ≤1, ς ≠ 1, 0 ≤ ι < 1 and jn = 1 + ς +⋯+ςn−1:
The result is sharp for jðωÞ is

j ωð Þ = ω −
1 − ι

φn
ℏ τ, υð Þ ∣ n k + 1ð Þ − jn k + ιð Þ ∣ ω

n: ð19Þ

Proof. By Definition 1, we have

R
1 − ςð Þω I ℏ, τ, υð Þj ωð Þð Þ

I ℏ, τ, υð Þj ωð Þ −I ℏ, τ, υð Þj ςωð Þ 1 + keiρ
� �

− keiρ
� �

≥ ι,−π < ρ ≤ π:

ð20Þ

Let HðωÞ = ð1 − ςÞωðI ðℏ, τ, υÞjðωÞÞð1 + keiρÞ − keiρ½I ð
ℏ, τ, υÞjðωÞ −I ðℏ, τ, υÞjðςωÞ� and KðωÞ =I ðℏ, τ, υÞjðωÞ −
I ðℏ, τ, υÞjðςωÞ:

By Lemma 2, (20) becomes

H ωð Þ + 1 − ιð ÞK ωð Þj j ≥ H ωð Þ − 1 + ιð ÞK ωð Þj j, for 0 ≤ ι < 1:
ð21Þ

But

∣H ωð Þ + 1 − ιð ÞK ωð Þ∣ = ∣ 1 − ςð Þ

� 2 − ιð Þω − 〠
∞

n=2
φn
ℏ τ, υð Þ n + jn 1 − ιð Þð Þonωn − keiρ 〠

∞

n=2
φn
ℏ τ, υð Þ n − jnð Þonωn

( )
∣ ≥ ∣1 − ς∣

� 2 − ιð Þ ∣ ω∣−〠
∞

n=2
φn
ℏ τ, υð Þ ∣ n + jn 1 − ιð Þ ∣ on ∣ ωn∣−k〠

∞

n=2
φn
ℏ τ, υð Þ ∣ n − jn ∣ on ∣ ω

n ∣

( )
:

ð22Þ

Also

∣H ωð Þ − 1 + ιð ÞK ωð Þ∣ = ∣ 1 − ςð Þ

� −ιω − 〠
∞

n=2
φn
ℏ τ, υð Þ n − jn 1 + ιð Þð Þonωn − keiρ 〠

∞

n=2
φn
ℏ τ, υð Þ n − jnð Þonωn

( )
∣ ≤ ∣1 − ς∣

� ι ∣ ω∣+〠
∞

n=2
φn
ℏ τ, υð Þ ∣ n − jn 1 + ιð Þ ∣ on ∣ ωn∣+k〠

∞

n=2
φn
ℏ τ, υð Þ ∣ n − jn ∣ on ∣ ω

n ∣

( )
:

ð23Þ

So

∣H ωð Þ + 1 − ιð ÞK ωð Þ∣ − ∣H ωð Þ − 1 + ιð ÞK ωð Þ∣ ≥ ∣1 − ς∣

� 2 1 − ιð Þ ∣ ω∣−〠
∞

n=2
φn
ℏ τ, υð Þ ∣n + jn 1 − ιð Þ∣+∣n − jn 1 + ιð Þ∣+2k ∣ n − jn ∣½ �on ∣ ωn ∣

( )

≥ 2 1 − ιð Þ∣ω∣ − 〠
∞

n=2
2φn

ℏ τ, υð Þ∣n k + 1ð Þ − jn k + ιð Þ∣on∣ωn∣ ≥ 0:

ð24Þ

Conversely, suppose (18) holds. Then, we have

R
1 − ςð Þω I ℏ, τ, υð Þj ωð Þð Þ 1 + keiρ

� �
− keiρ I ℏ, τ, υð Þj ωð Þ −I ℏ, τ, υð Þj ςωð Þ½ �

I ℏ, τ, υð Þj ωð Þ −I ℏ, τ, υð Þj ςωð Þ

( )
≥ ι:

ð25Þ

Opting ω values on the +ve real axis, where 0 ≤ ∣ω ∣ =
r < 1, then

R
1 − ιð Þ − ∑∞

n=2φ
n
ℏ τ, υð Þ n 1 + keiρ

� �
− jn ι + keiρ
� �	 


onω
n−1

1 −∑∞
n=2φ

n
ℏ τ, υð Þjnonωn−1

( )
≥ 0:

ð26Þ

Since Rð−eiρÞ ≥ −∣eiρ∣ = −1, then

R
1 − ιð Þ − ∑∞

n=2φ
n
ℏ τ, υð Þ n 1 + kð Þ − jn ι + kð Þ½ �onrn−1

1 −∑∞
n=2φ

n
ℏ τ, υð Þjnonrn−1

� �
≥ 0:

ð27Þ

Taking limit r tends to 1−, we obtain our needed result.

Corollary 5. If jðωÞ ∈ k − ~USTsðℏ, υ, τ, ι, ςÞ, then

on ≤
1

1 − ιð Þ−1φn
ℏ τ, υð Þ ∣ n k + 1ð Þ − jn k + ιð Þ ∣ , ð28Þ

where k ≥ 0, ∣ς ∣ ≤1, ς ≠ 1, 0 ≤ ι < 1 and jn = 1 + ς +⋯+ςn−1:

3. Neighborhood Properties

The notion of β-neighbourhood was innovated and studied
by Goodman [21] and Ruscheweyh [22].

Definition 6. We define the β-neighborhood of a mapping
j ∈ A and indicate by NβðjÞ lying of all mappings gðωÞ =
ω −∑∞

n=2bnω
n ∈ Sðbn ≥ 0, n ∈ℕÞ satisfies the condition

〠
∞

n=2

φn
ℏ τ, υð Þ ∣ n k + 1ð Þ − jn k + ιð Þ ∣

1 − ι
on − bnj j ≤ 1 − β, ð29Þ

where k ≥ 0, ∣ς ∣ ≤1, ς ≠ 1, 0 ≤ ι < 1, β ≥ 0 and jn = 1 + ς +⋯+
ςn−1:

Theorem 7. Let jðωÞ ∈ k − ~USTsðℏ, υ, τ, ι, ςÞ and every real ρ
we get ιðeiρ − 1Þ − 2eiρ ≠ 0: For any ε ∈ℂ with ∣ε ∣ <βðβ ≥ 0Þ,
if j fulfills

j ωð Þ + εω

1 + ε
∈ k − ~USTs ℏ, υ, τ, ι, ςð Þ, ð30Þ

then, NβðjÞ ⊂ k − ~USTsðℏ, υ, τ, ι, ςÞ:
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Proof. It is evident that j ∈ k − ~USTsðℏ, υ, τ, ι, ςÞ

where −π ≤ ρ ≤ π for some s ∈ℂ and ∣s ∣ = 1, we obtain

In other words,

1 − sð Þ 1 − ςð Þω I ℏ, τ, υð Þj ωð Þð Þ 1 + keiρ
� �

− keiρ + 1 + ι + s −1 + keiρ + ι
� �� �

× I ℏ, τ, υð Þj ωð Þ −I ℏ, τ, υð Þj ςωð Þð Þ ≠ 0⇒ ω

− 〠
∞

n=2

φn
ℏ τ, υð Þ n − jnð Þ 1 + keiρ − skeiρ

� �
− s n + jnð Þ − jnι 1 − sð Þ� �

ι s − 1ð Þ − 2s
ωn ≠ 0:

ð33Þ

However, j ∈ k − ~USTsðℏ, υ, τ, ι, ςÞ⇔ ðj ∗ hÞ/ω ≠ 0, ω ∈
Y − f0g, where hðωÞ = ω −∑∞

n=2cnω
n and

cn =
φn
ℏ τ, υð Þ n − jnð Þ 1 + keiρ − skeiρ

� �
− s n + jnð Þ − jnι 1 − sð Þ� �

ι s − 1ð Þ − 2s
⇒ cnj j

≤
φn
ℏ τ, υð Þ n 1 + kð Þ − jn k + ιð Þj j

1 − ι
,

ð34Þ

since ððjðωÞ + εωÞ/ð1 + εÞÞ ∈ k − ~USTsðℏ, υ, τ, ι, ςÞ; therefore,
ω−1ððjðωÞ + εωÞ/ð1 + εÞ ∗ hðωÞÞ ≠ 0, which implies

j ∗ hð Þ ωð Þ
1 + εð Þω +

ε

1 + ε
≠ 0: ð35Þ

Now, suppose jðj ∗ hÞðωÞ/ωj < β: Then, by (35),

j ∗ hð Þ ωð Þ
1 + εð Þω +

ε

1 + ε

����
���� > ∣ε∣−β

∣1 + ε ∣
≥ 0, ð36Þ

which contradicts by ∣ε ∣ <β, and thus, we arrive jðj ∗ hÞðωÞ/
ωj ≥ β:

If gðωÞ = ω −∑2≤n≤∞bnω
n ∈NβðjÞ, then

β −
g ∗ hð Þ ωð Þ

ω

����
���� ≤ j − gð Þ ∗ hð Þ ωð Þ

ω

����
����

< 〠
∞

n=2

φn
ℏ τ, υð Þ ∣ n 1 + kð Þ − jn k + ιð Þ ∣

1 − ι
∣on − bn∣ ≤ β:

ð37Þ

4. Partial Sums

Theorem 8. If the function j is of the form (2) fulfill (18) then

R
j ωð Þ
jm ωð Þ

� �
≥ 1 −

1
χm+1

, ð38Þ

χn =
1, if 2 ≤ n ≤m ;

χm+1, if m + 1 ≤ n≤∞,

(
ð39Þ

where

χn =
φn
ℏ τ, υð Þ ∣ n 1 + kð Þ − jn k + ιð Þ ∣

1 − ι
: ð40Þ

The estimate (38) is sharp, for every m, with

j ωð Þ = ω +
ωm+1

χm+1
: ð41Þ

Proof. Now, we define ℘; we can define

1+℘ ωð Þ
1−℘ ωð Þ = χm+1

j ωð Þ
jm ωð Þ − 1 −

1
χm+1

� �� �

=
1 +∑2≤n≤monω

n−1 + χm+1∑
∞
n=m+1onω

n−1

1 +∑m
n=2onω

n−1


 �
:

ð42Þ

Then, from (42), we attain

℘ ωð Þ = χm+1∑
∞
n=m+1onω

n−1

2 + 2∑m
n=2onω

n−1 + χm+1∑
∞
n=m+1onω

n−1 ,

∣℘ ωð Þ∣ ≤ χm+1∑
∞
n=m+1on

2 − 2∑m
n=2on − χm+1∑

∞
n=m+1on

:

ð43Þ

⇔ 1 − ςð Þω I ℏ, τ, υð Þj ωð Þð Þ 1 + keiρ
� �

− keiρ + 1 + ι
� �

I ℏ, τ, υð Þj ωð Þ −I ℏ, τ, υð Þj ςωð Þð Þ
1 − ςð Þω I ℏ, τ, υð Þj ωð Þð Þ 1 + keiρð Þ + 1 − keiρ − ιð Þ I ℏ, τ, υð Þj ωð Þ −I ℏ, τ, υð Þj ςωð Þð Þ

����
���� < 1, ð31Þ

1 − ςð Þω I ℏ, τ, υð Þj ωð Þð Þ 1 + keiρ
� �

− keiρ + 1 + ι
� �

I ℏ, τ, υð Þj ωð Þ −I ℏ, τ, υð Þj ςωð Þð Þ
1 − ςð Þω I ℏ, τ, υð Þj ωð Þð Þ 1 + keiρð Þ + 1 − keiρ − ιð Þ I ℏ, τ, υð Þj ωð Þ −I ℏ, τ, υð Þj ςωð Þð Þ ≠ s: ð32Þ
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Now, ∣℘ðωÞ ∣ ≤1 if

2χm+1 〠
∞

n=m+1
on ≤ 2 − 2〠

m

n=2
on ⇒ 〠

m

n=2
on + χm+1 〠

∞

m+1
on ≤ 1:

ð44Þ

It is enough to prove that the LHS of (44) is bounded
above by ∑∞

n=2χnon, which implies

〠
m

n=2
χn − 1ð Þon + 〠

∞

n=m+1
χn − χm+1ð Þon ≥ 0: ð45Þ

To show that the mapping disposed by (41) gives the
exact result, we notice that for ω = reiπ/n,

j ωð Þ
jm ωð Þ = 1 + ωm

χm+1
: ð46Þ

Taking limit ω tends to 1−, we have

j ωð Þ
jm ωð Þ = 1 −

1
χm+1

: ð47Þ

Hence, the proof is completed.

Theorem 9. If j of the form (2) which fulfill (18) then

R
jm ωð Þ
j ωð Þ

� �
≥

χm+1
1 + χm+1

: ð48Þ

The result is sharp with (41).

Proof. Define

1+℘ ωð Þ
1−℘ ωð Þ = 1 + χm+1ð Þ jm ωð Þ

j ωð Þ −
χm+1

1 + χm+1

� �

=
1 +∑m

n=2onω
n−1 − χm+1∑

∞
n=m+1onω

n−1

1 +∑∞
n=2onω

n−1


 �
,

ð49Þ

where

℘ ωð Þ = 1 + χm+1ð Þ∑∞
n=m+1onω

n−1

− 2 + 2∑m
n=2onω

n−1 − 1 − χm+1ð Þ∑∞
n=m+1onω

n−1ð Þ ,

∣℘ ωð Þ∣ ≤ 1 + χm+1ð Þ∑∞
n=m+1on

2 − 2∑m
n=2on + 1 − χm+1ð Þ∑∞

n=m+1on
≤ 1:

ð50Þ

This last inequality is

〠
m

n=2
on + χm+1 〠

∞

n=m+1
on ≤ 1: ð51Þ

It is enough to prove that the LHS of (51) is bounded
above by ∑∞

n=2χnon, which implies

〠
2≤n≤m

χn − 1ð Þon + 〠
∞

n=m+1
χn − χm+1ð Þon ≥ 0: ð52Þ

This completes the proof.

Theorem 10. If j of the form (2) fulfill (18) then

R
j′ ωð Þ
jm′ ωð Þ

( )
≥ 1 −

m + 1
χm+1

, ð53Þ

R
jm′ ωð Þ
j′ ωð Þ

( )
≥

χm+1
1 +m + χm+1

, ð54Þ

where

χn ≥
1, if 1 ≤ n ≤m

n
χm+1
m + 1

, if m + 1 ≤ n≤∞

8<
:

9=
;: ð55Þ

and χn is given by (40). The computation in (53) and (54) are
sharp with (41).

Theorem 11. k − ~USTsðℏ, υ, ι, ςÞ is a convex and compact
subset of T:

Proof. Suppose jd ∈ k − ~USTsðℏ, υ, τ, ι, ςÞ,

jd ωð Þ = ω − 〠
∞

n=2
∣ad,n∣ω

n: ð56Þ

Then, for 0 ≤ ψ < 1, let j1, j2 ∈ k − ~USTsðℏ, υ, τ, ι, ςÞ be
given by (56). Then,

ξ ωð Þ = ψj1 ωð Þ + 1 − ψð Þj2 ωð Þ = ψ ω − 〠
∞

n=2
a1,n
�� ��ωn

 !

+ 1 − ψð Þ ω − 〠
∞

n=2
a2,n
�� ��ωn

 !

= ω − 〠
∞

n=2
ψ a1,n
�� �� + 1 − ψð Þ a2,n

�� ��� �
ωn,

〠
∞

n=2
φn
ℏ τ, υð Þ n k + 1ð Þ − jn k + ιð Þð Þ ψ ∣ a1,n∣+ 1 − ψð Þ ∣ a2,n ∣ð Þ

≤ ψ 1 − ιð Þ + 1 − ψð Þ 1 − ιð Þ = 1 − ι:

ð57Þ

Then, ξðωÞ = ψj1ðωÞ + ð1 − ψÞj2ðωÞ ∈ k − ~USTsðℏ, υ, τ, ι,
ςÞ: Therefore, k − ~USTsðℏ, υ, τ, ι, ςÞ is convex. Now, we have
to show k − ~USTsðℏ, υ, τ, ι, ςÞ is compact.
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For jd ∈ k − ~USTsðℏ, υ, τ, ι, ςÞ, ς ∈ℕ and ∣ω ∣ <rð0 < r < 1Þ,
then we arrive

∣jd ωð Þ∣ ≤ r + 〠
∞

n=2
∣ad,n∣r

n ≤ r + 〠
∞

n=2
φn
ℏ τ, υð Þ n k + 1ð Þ − jn k + ιð Þj j∣ad,n∣rn

≤ r + 1 + rð Þrn:
ð58Þ

Therefore, k − ~USTsðℏ, υ, τ, ι, ςÞ is uniformly bounded.
Let jdðωÞ = ω −∑∞

n=2 ∣ ad,n ∣ ω
n, ω ∈ Y , d ∈ℕ:

Also, let jðωÞ = ω −∑∞
n=2onω

n: Then, by Theorem 4, we
get

〠
∞

n=2
φn
ℏ τ, υð Þ n k + 1ð Þ − jn k + ιð Þj j∣on∣ ≤ 1 − ι: ð59Þ

Assuming jd ⟶ j, then we have ad,n ⟶ on as n⟶∞,
ðd ∈ℕÞ:

Let fρng be the array of partial sums of the series

〠
∞

n=2
φn
ℏ τ, υð Þ n k + 1ð Þ − jn k + ιð Þj j onj j: ð60Þ

Then, fρng is a nondecreasing array and by (59), it is
bounded above by 1 − ι:

Thus, it is convergent and

〠
∞

n=2
φn
ℏ τ, υð Þ n k + 1ð Þ − jn k + ιð Þj j∣ad,n∣ = lim

n→∞
ρn ≤ 1 − ι: ð61Þ

Therefore, j ∈ k − ~USTsðℏ, υ, τ, ι, ςÞ and the class k − ~US
Tsðℏ, υ, τ, ι, ςÞ is closed.
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In this paper, we define a new class of Sakaguchi type-meromorphic harmonic functions in the Janowski domain that are starlike
with respect to symmetric point. Furthermore, we investigate some important geometric properties like sufficiency criteria,
distortion bound, extreme point theorem, convex combination, and weighted means.

1. Introduction and Definitions

One of the contemporary developments in Mathematics is
the solicitations of harmonic analysis in other fields. Like
various other fields, it has immensely influenced and nur-
tured the branch of geometric function theory. Jahangiri
et al. [1] defined and studied a subclass of harmonic and
univalent functions. Another example of such work would
be an article of Porwal and Dixit [2], who used a certain
convolution operator involving hypergeometric functions
to define a class of univalent functions. As a consequence,
many mathematicians generalized many ideas of this field
and various important results with the help of some oper-
ators; the work of Porwal et al. [3], Porwal et al. [4], and
Porwal and Dixit [5] are worth mentioning here. Recently,
some subclasses of harmonic functions were investigated
by Arif et al. [6] and Khan et al. [7]. To start with, we
give preliminaries which will be useful in understanding
the concepts of this research.

A real-valued function uðx, yÞ is said to be harmonic in a
domain D ⊂ℂ if it has a continuous second partial derivative
and satisfy the Laplace’s equation

∂2u
∂x2

+ ∂2u
∂y2

= 0: ð1Þ

A continuous complex-valued function f = u + iv is said
to be harmonic in a complex domain U if both its real and
imaginary parts are real harmonic in U. In any simply con-
nected domain U ⊂ℂ, one can write f = h + �g, where h and
g are analytic in U. The class of such functions is denoted
by H . The condition jh′ðzÞj > jg′ðzÞj is necessary and suffi-
cient for f to be locally univalent and sense preserving in U,
see [8]. There are different papers on univalent harmonic
functions defined in unit disc D = fz : jzj < 1g, for details,
see [9–14]. For z ∈D∗ =D \ f0g, in the punctured open unit
disc and let MH denote the class of functions
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f zð Þ = h zð Þ + �g zð Þ = 1
z
+ 〠

∞

n=1
anz

n + �〠∞
n=1bnz

n, ð2Þ

which are harmonic inD∗ where h is analytic inD∗ and has a
simple pole at the origin with residue 1, while g is analytic in
D. The class MH was studied in [15–17]. Furthermore,
denoted by M �H , a subclass of MH , consisting a functions
of the form

f zð Þ = h zð Þ + �g zð Þ = 1
z
+ 〠

∞

n=1
anj jzn − 〠

∞

n=1
bnj j �zn, ð3Þ

which are harmonic univalent in punctured unit disc D∗:
For functions f ∈MH given by (2) and F ∈MH given by

F zð Þ =H zð Þ + �G zð Þ = 1
z
+ 〠

∞

n=1
Anz

n + �〠∞
n=1Bnz

n, ð4Þ

we recall the Hadamard product (or convolution) of f and
F by

f ∗ Fð Þ zð Þ = 1
z
+ 〠

∞

n=1
anAnz

n + �〠∞
n=1bnBnz

n z ∈D∗ð Þ: ð5Þ

In terms of the Hadamard product (or convolution),
we choose F as a fixed function in H such that ð f ∗ FÞð
zÞ exists for any f ∈H , and for various choices of F, we
get different linear operators which have been studied in
the recent past.

Recently, Khan et al. [18] introduced and studied a class
of meromorphic starlike functions with respect to symmetric
point in circular domain i.e.,

−
2zf ′ zð Þ

f zð Þ − f −zð Þ ≺
1 + Az
1 + Bz

: ð6Þ

Motivated from the above discussion on harmonic func-
tions and class of meromorphic starlike functions with
respect to symmetric point, we introduced the class of mero-
morphic harmonic univalent functions as:

Let −1 ≤ B < A ≤ 1: Then, the function f ∈MH is in the
class M∗∗

H ½A, B� if it satisfies the condition

−
2DH f zð Þ

f zð Þ − f −zð Þ ≺
1 + Az
1 + Bz

, z ∈Dð Þ, ð7Þ

where the symbol } ≺ } represent well-known subordination
and

DH f zð Þ = zh′ zð Þ − �zg′ zð Þ, ð8Þ

or equivalently

DH f zð Þ + f zð Þ − f −zð Þ/2ð Þ
BDH f zð Þ + A f zð Þ − f −zð Þ/2ð Þ
����

���� < 1, z ∈Dð Þ: ð9Þ

Furthermore, we denote M∗∗
�H
½A, B� subclass of M∗∗

H ½A,
B� consisting of harmonic meromorphic functions f = h + �g
of the form (3).

2. Main Results

Theorem 1. Let f = h + �g be of the form (2) and satisfies the
condition

〠
∞

n=1
αn anj j + βn bnj j ≤ 1, ð10Þ

with

αn =
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j

A − B
 and

 βn =
1 + Bð Þn − 1 + Að Þ 1 − −1ð Þn/2ð Þj j

A − B
, ð11Þ

then f is harmonic univalent sense-preserving in D∗ and f ∈
M∗∗

H ½A, B�:

Proof. For 0 < jz1j ≤ jz2j < 1, we obtain

f z1ð Þ − f z2ð Þ
h z1ð Þ − h z2ð Þ
����

���� ≥ 1 − g z1ð Þ − g z2ð Þ
h z1ð Þ − h z2ð Þ
����

����
= 1 − z1z2∑

∞
n=1bn zn1 − zn2ð Þ

z1 − z2ð Þ − z1z2∑
∞
n=1an zn1 − zn2ð Þ

����
����

> 1 − ∑∞
n=1n bnj j

1 − ∑∞
n=1n anj j > 1 − ∑∞

n=1βn bnj j
1 −∑∞

n=1αn anj j ≥ 0,

ð12Þ

where we have used (10) and this shows that the function is
univalent.

Now to show f ðzÞ is sense-preserving harmonic mapping in
D∗, consider

h′ zð Þ�� �� ≥ 1
zj j2 − 〠

∞

n=1
n anj j zj jn−1 ≥ 1 − 〠

∞

n=1
αn anj j ≥ 〠

∞

n=1
βn bnj j

≥ 〠
∞

n=1
n bnj j ≥ g′ zð Þ�� ��:

ð13Þ

This shows that f is sense-preserving.
Now, to show that f ∈M∗∗

H ½A, B� from (9), it is enough to
show that

DH f zð Þ + f zð Þ − f −zð Þ
2

����
���� − BDH f zð Þ + A

f zð Þ − f −zð Þ
2

����
���� < 0:

ð14Þ
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For this, consider

DH f zð Þ + f zð Þ − f −zð Þ
2

����
���� − BDH f zð Þ + A

f zð Þ − f −zð Þ
2

����
����

= 〠
∞

n=1
n + 1 − −1ð Þn

2

� �
anz

n + n + 1 − −1ð Þn
2

� �
�bnz

n
� ������

����� − A − B
z

����
+ 〠

∞

n=1
Bn + A

1 − −1ð Þn
2

� �
anz

n − Bn + A
1 − −1ð Þn

2

� �
�bnz

n
� �

j

≤ 〠
∞

n=1
n + 1 − −1ð Þn

2

� �
anj j zj jn + n + 1 − −1ð Þn

2

� �
bnj j zj jn

� �

−
A − B
zj j 〠

∞

n=1
Bn + A

1 − −1ð Þn
2

� �
anj j zj jn + Bn + A

1 − −1ð Þn
2

� �
bnj j zj jn

� �

≤ 〠
∞

n=1
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn

2

����
���� anj j zj jn

�
+ 1 + Bð Þnj

+ 1 + Að Þ 1 − −1ð Þn
2

���� bnj j zj jn − A − B
zj j

= A − B
zj j 〠

∞

n=1

1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j
A − B

anj j zj jn+1
�

+ 1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j
A − B

bnj j zj jn+1
�
−
A − B
zj j

< A − B
zj j 〠

∞

n=1
αn anj j + βn bnj j½ � − 1

( )
< 0:

ð15Þ

Hence, complete the proof.

Example 2. The meromorphic univalent function

f zð Þ = 1
z
+ 〠

∞

n=1

xn
αn

zn + 〠
∞

n=1

yn
βn

�zn, ð16Þ

such that ∑∞
n=1ðjxnj + jynjÞ = 1, we have

〠
∞

n=1
αn anj j + βn bnj jð Þ = 〠

∞

n=1
xnj j + ynj jð Þ = 1: ð17Þ

Thus, f ∈M∗∗
H ½A, B� and above coefficient bound given in

(10) is sharp for this function.

Theorem 3. Let f = h + �g ∈M �H and of the form (3), then
f ∈M∗∗

�H
½A, B� if it satisfies the condition

〠
∞

n=1
αn anj j + βn bnj j ≤ 1, ð18Þ

with

αn =
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j

A − B
  and

 βn =
1 + Bð Þn − 1 + Að Þ 1 − −1ð Þn/2ð Þj j

A − B
: ð19Þ

Proof. The proof is similar to Theorem 1, so omitted.

Theorem 4. Let f = h + �g ∈M∗∗
�H
½A, B� and of the form (3),

0 < jzj = r < 1: Then,

1
r
−

A − B
2 + A + B

r ≤ f zð Þj j ≤ 1
r
+ A − B
2 + A + B

r: ð20Þ

Proof. Consider

f zð Þj j = 1
z
+ 〠

∞

n=1
anz

n + �bnz
n� 	�����
����� ≤ 1

r
+ 〠

∞

n=1
anj j + bnj jð Þrn

≤
1
r
+ r 〠

∞

n=1
anj j + bnj jð Þ ≤ 1

r
+ A − B
2 + A + B

r:

ð21Þ

Similarly, proceeding as above we get

f zð Þj j = 1
z
+ 〠

∞

n=1
anz

n + �bnz
n� 	�����
����� ≥ 1

r
− r 〠

∞

n=1
anj j + bnj jð Þ

= 1
r
−

A − B
2 + A + B

r:

ð22Þ

Hence, this completes the result.

Theorem 5. Let f = h + �g, and of the form (3) then f ∈M∗∗
�H

½A, B� if and only if

f zð Þ = 〠
∞

n=0
γnhn + δngnð Þ, ð23Þ

where

h0 zð Þ = 1
z
, hn zð Þ = 1

z
+ A − B

1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j z
n, n = 1, 2,⋯,

g0 zð Þ = 1
z
, gn zð Þ = 1

z
−

A − B
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j

�zn, n = 1, 2,⋯,

ð24Þ

where 1 ≥ γn ≥ 0,1 ≥ δn ≥ 0, and ∑∞
n=0ðγn + δnÞ = 1:

Proof. Let

f zð Þ = γ0h0 + δ0g0 + 〠
∞

n=1
γnhn + δngnð Þ

= γ0 + δ0ð Þ 1
z
+ 〠

∞

n=1
γn

1
z
+ A − B

1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j z
n

� �

+ 〠
∞

n=1
δn

1
z
−

A − B
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j

�zn
� �

,

= 〠
∞

n=1
γn + δnð Þ 1

z
+ 〠

∞

n=1
γn

A − B
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j z

n

− 〠
∞

n=1
δn

A − B
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j

�zn:

ð25Þ
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Thus,

〠
∞

n=1
αn

A − B
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j γn

� ��

+ βn
A − B

1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j δn
� �


= 〠
∞

n=1
γn + δnð Þ = 1 − γ0 − δ0 ≤ 1,

ð26Þ

hence, f ∈M∗∗
�H
½A, B�: Conversely, let f ∈M∗∗

�H
½A, B�. Set

γn =
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j

A − B
anj j, 0 ≤ γn ≤ 1, δn

= 1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j
A − B

bnj j, 0 ≤ δn ≤ 1, γ0

= 1 − 〠
∞

n=1
γn − 〠

∞

n=1
δn:

ð27Þ

Therefore, f can be written as

f zð Þ = 1
z
+ 〠

∞

n=1
anj jzn − 〠

∞

n=1
bnj j �zn

= 1
z
+ 〠

∞

n=1

A − B
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j γn anj jzn

− 〠
∞

n=1

A − B
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j δn bnj j �zn

= 1
z
+ 〠

∞

n=1

A − B
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j γn anj jzn

− 〠
∞

n=1

A − B
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j δn bnj j �zn

= γ0 + δ0ð Þ 1
z
+ 〠

∞

n=1
γn

1
z
+ A − B

1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j z
n

� �

+ 〠
∞

n=1
δn

1
z
−

A − B
1 + Bð Þn + 1 + Að Þ 1 − −1ð Þn/2ð Þj j

�zn
� �

= 〠
∞

n=1
γnhn + δngnð Þ, hence required:

ð28Þ

Theorem 6. The class M∗∗
�H
½A, B� is closed under convex

combination.

Proof. For k ∈ℕ, let f k ∈M∗∗
�H
½A, B�, be of the form

f k zð Þ = 1
z
+ 〠

∞

n=1
ak,n
�� ��zn − bk,n

�� �� �zn� 	
: ð29Þ

Then form (10), we get

〠
∞

n=1
αn ak,n
�� �� + βn bk,n

�� ��� 	
≤ 1: ð30Þ

For ∑∞
k=1δk = 1,ð0 ≤ δk ≤ 1Þ, the convex combination of

f k is

〠
∞

k=1
δk f k zð Þ = 1

z
+ 〠

∞

n=1
〠
∞

k=1
δk ak,n
�� �� !

zn − 〠
∞

n=1
〠
∞

k=1
δk bk,n
�� �� !

�zn:

ð31Þ

Using (10), we have

〠
∞

n=1
αn 〠

∞

k=1
δk ak,n
�� �� + βn 〠

∞

k=1
δk bk,n
�� �� !

= 〠
∞

k=1
δk 〠

∞

n=1
αn ak,n
�� �� + βn bk,n

�� ��� 	" #
≤ 〠

∞

k=1
δk = 1,

ð32Þ

thus prove our desired results.

Theorem 7. Let f k ∈M
∗∗
�H
½A, B�, for k = f1, 2g be of the

form (29), then, their weighted Fi mean is also in the class
M∗∗

�H
½A, B�, where Fi is defined below

Fi zð Þ = 1 − ið Þf1 zð Þ + 1 + ið Þf2 zð Þ
2

: ð33Þ

Proof. From (33), one may easily write

Fi zð Þ = 1
z
+ 1 − ið Þf1 zð Þ + 1 + ið Þf2 zð Þ

2

= 1
z
+ 〠

∞

k=1

1 − jð Þ an,1
�� �� + 1 + jð Þ an,2

�� ��
2 zn

"

−
1 − jð Þ bn,1

�� �� + 1 + jð Þ bn,2
�� ��

2
�zn�:

ð34Þ

To show that Fi ∈M
∗∗
�H
½A, B�, it is enough to show that

〠
∞

k=1

1 − jð Þ an,1
�� �� + 1 + jð Þ an,2

�� ��
2

����
����αn

"

+ 1 − jð Þ bn,1
�� �� + 1 + jð Þ bn,2

�� ��
2

����
����βn� ≤ 1:

ð35Þ

Now consider

〠
∞

k=1

1 − jð Þ an,1
�� �� + 1 + jð Þ an,2

�� ��
2

����
����αn + 1 − jð Þ bn,1

�� �� + 1 + jð Þ bn,2
�� ��

2

����
����βn

" #

= 〠
∞

k=1

1 − jð Þ an,1
�� ��αn + 1 − jð Þ bn,1

�� ��βn

2 + 1 + jð Þ an,2
�� ��αn + 1 + jð Þ bn,2

�� ��βn

2

" #

= 1 − jð Þ
2 〠

∞

k=1
an,1
�� ��αn + bn,1

�� ��βn

� 	
+ 1 + jð Þ

2 〠
∞

k=1
an,2
�� ��αn + bn,2

�� ��βn

� 	
≤

1 − jð Þ
2 + 1 + jð Þ

2 = 1:

ð36Þ

Hence, Fi ∈M
∗∗
�H
½A, B�:
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Making use of the principle of subordination, we introduce a certain class of multivalently Bazilevic functions involving the
Lemniscate of Bernoulli. Also, we obtain subordination properties, inclusion relationship, convolution result, coefficients
estimate, and Fekete–Szegö problem for this class.

1. Introduction

Let HðUÞ be the class of analytic functions in the open unit
disk

U = ζ ∈ℂ : ζj j < 1f g, ð1Þ

and let Ap denote the subclass of HðUÞ consisting of func-
tions of the form:

f ζð Þ = ζp + 〠
∞

k=p+1
akζ

k p ∈ℕ = 1, 2, 3,⋯f gð Þ: ð2Þ

We write A1 =A . For f1, f2 ∈HðUÞ, we say that f1ðζÞ is
subordinate to f2ðζÞ, written symbolically, f1 ≺ f2 in U or f1
ðζÞ ≺ f2ðζÞðζ ∈UÞ, if there exists a Schwarz function ωðζÞ,
which (by definition) is analytic in U with ωð0Þ = 0 and
jωðζÞj < 1ðζ ∈UÞ such that f1ðζÞ = f2ðωðζÞÞ ðζ ∈UÞ. Further
more, if the function f2ðζÞ is univalent in U, then we have
the following equivalence (see [1, 2]):

f1 ζð Þ ≺ f2 ζð Þ ζ ∈Uð Þ⇔ f1 0ð Þ = f2 0ð Þ and f1 Uð Þ ⊂ f2 Uð Þ:
ð3Þ

Let ϕ : ℂ2 ×U⟶ℂ and hðζÞ be univalent in U. If gðζÞ
is analytic in U and satisfies the first order differential subor-
dination:

ϕ g ζð Þ, ζg′ ζð Þ ; ζ
� �

≺ h ζð Þ, ð4Þ

then gðζÞ is a solution of the differential subordination (4).
The univalent function qðζÞ is called a dominant of the solu-
tions of the differential subordination (4) if gðζÞ ≺ qðζÞ for all
gðζÞ satisfying (4). A univalent dominant ~q that satisfies ~q ≺ q
for all dominants of (4) is called the best dominant.

Sokól and Stankiewicz [3] introduced the class SL∗ con-
sisting of analytic functions f ∈A satisfying the following
condition

ζf ′ ζð Þ
f ζð Þ

" #2
− 1

�����
����� < 1, ð5Þ

which is equivalent to

ζf ′ ζð Þ
f ζð Þ ≺ q ζð Þ =

ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
, ð6Þ
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where the function

q ζð Þ =
ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
ζ ∈Uð Þ, ð7Þ

mapsU onto the domain O = fw ∈ℂ : Rw > 0, jw2 − 1j < 1g,
and its boundary ∂O is the right-half of the lemniscate of Ber-
noulli ðx2 + y2Þ2 − 2ðx2 − y2Þ = 0. Several geometric proper-
ties of SL∗ were investigated done by many authors in
([4–7]).

Now, we define a class Bpðλ, αÞ of Bazilevic functions
associated with lemniscate of Bernoullia by using the princi-
ple of differential subordination as follows.

Definition 1. A function f ∈Ap is said to be the class Bpðλ,
αÞ if it satisfies the following subordination condition:

1 − λð Þ f ζð Þ
ζp

� �α

+ λ
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

≺
ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
, ð8Þ

all the powers are principal values and throughout the paper
unless otherwise mentioned the parameters λ, α, and p are
constrained as λ ∈ℂ, α > 0, p ∈ℕ, and ζ ∈U.

We note that

(1) B1ðλ, αÞ =Bðλ, αÞ = f f ∈A : ð1 − λÞð f ðζÞ/ζÞα +
λðζf ′ðζÞ/f ðζÞÞð f ðζÞ/ζÞα ≺

ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
g

(2) Bpðλ, 1Þ = BpðλÞ = f f ∈Ap : ð1 − λÞð f ðζÞ/ζpÞ +
λð f ′ðζÞ/pζp−1Þ ≺

ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
g and B1ðλÞ =BðλÞ

(3) Bpð1, αÞ =BpðαÞ = f f ∈Ap : ðζf ′ðζÞ/pf ðζÞÞ
ð f ðζÞ/ζpÞα ≺

ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
g and B1ðαÞ =BðαÞ

(4) Bpð1, 0Þ = SL∗
p = f f ∈Ap : ðζf ′ðζÞ/pf ðζÞÞ ≺ffiffiffiffiffiffiffiffiffiffi

1 + ζ
p

g and SL∗
1 = SL∗

In order to establish our main results, we need the follow-
ing lemmas.

Lemma 2 [8]. Let the function h be analytic and convex (uni-
valent) in U with hð0Þ = 1. Suppose also that the function gðζÞ
given by

g ζð Þ = 1 + c1ζ + c2ζ
2+⋯, ð9Þ

is analytic in U. If

g ζð Þ + ζg′ ζð Þ
γ

≺ h ζð Þ R γð Þ ≥ 0 ; γ ≠ 0 ; ζ ∈Uð Þ, ð10Þ

then

g ζð Þ ≺ q ζð Þ = γζ−γ
ðζ
0
h tð Þtγ−1 dt ≺ h ζð Þ, ð11Þ

and qðζÞ is the best dominant.

Lemma 3. [9]. For real or complex numbers a, b, cðc ≠ 0,−1,
−2,⋯Þ and ζ ∈U,

ð1
0
tb−1 1 − tð Þc−b−1 1 − tζð Þ−adt

= Γ bð ÞΓ c − bð Þ
Γ cð Þ 2

F1 a, b ; c ; ζð Þ R cð Þ >R bð Þ > 0ð Þ,

2F1 a, b ; c ; ζð Þ = 1 − ζð Þ−a2F1 a, c − b ; c ; ζ

ζ − 1

� �
:

ð12Þ

Lemma 4. [10]. Let F be analytic and convex in U. If f , g ≺ F,
then

λf + 1 − λð Þg ≺ F 0 ≤ λ ≤ 1ð Þ: ð13Þ

Lemma 5 [11]. Let f ðζÞ =∑∞
k=1akζ

k be analytic in U and

gðζÞ =∑∞
k=1bkζ

k be analytic and convex in U. If f ≺ g, then

akj j < b1j j k ∈ℕð Þ: ð14Þ

Lemma 6 [12]. Let gðζÞ = 1 +∑∞
k=1ckζ

k ∈P , i.e., let g be
analytic in U and satisfy RfgðζÞg > 0 for ζ ∈U, then the
following sharp estimate holds

c2 − vc21
�� �� ≤ 2 max 1, 2v − 1j jf g for all v ∈ℂ: ð15Þ

The result is sharp for the functions given by

g ζð Þ = 1 + ζ2

1 − ζ2
org ζð Þ = 1 + ζ

1 − ζ
: ð16Þ

Lemma 7. [12]. If gðζÞ = 1 +∑∞
k=1ckζ

k ∈P , then

c2 − νc21
�� �� ≤

−4ν + 2 if ν ≤ 0,
2 if 0 ≤ ν ≤ 1,

4ν − 2 if ν ≥ 1,

8>><
>>:

9>>=
>>;, ð17Þ

when υ < 0 or ν > 1, the equality holds if and only if gðζÞ
= ð1 + ζÞ/ð1 − ζÞ or one of its rotations. If 0 < ν < 1, then
the equality holds if and only if gðζÞ = ð1 + ζ2Þ/ð1 − ζ2Þ or
one of its rotations. If ν = 0, the equality holds if and only
if

g ζð Þ = 1 + λ

2

� �
1 + ζ

1 − ζ
+ 1 − λ

2

� �
1 − ζ

1 + ζ
0 ≤ λ ≤ 1ð Þ, ð18Þ

or one of its rotations. If ν = 1, the equality holds if and
only if g is the reciprocal of one of the functions such that
equality holds in the case of ν = 0.
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Also, the above upper bound is sharp, and it can be
improved as follows when 0 < ν < 1:

c2 − νc21
�� �� + ν c1j j2 ≤ 2 0 ≤ ν ≤

1
2

� �
,

c2 − νc21
�� �� + 1 − νð Þ c1j j2 ≤ 2 1

2 ≤ ν ≤ 1
� �

:

ð19Þ

In the present paper, we obtain subordination properties,
inclusion relationship, convolution result, coefficients esti-
mate, and Fekete–Szegö inequalities for the class Bpðλ, αÞ.

2. Main Results

We begin by presenting our first subordination property
given by Theorem 8.

Theorem 8. If f ∈Bpðλ, αÞ with RðλÞ > 0, then

f ζð Þ
ζp

� �α

≺Q ζð Þ ≺
ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
, ð20Þ

where the function QðζÞ given by

Q ζð Þ = 1 + ζð Þ1/22F1 −
1
2
, 1 ; pα

λ
+ 1 ; ζ

1 + ζ

� �
, ð21Þ

is the best dominant.

Proof. Let f ∈Bpðλ, αÞ and suppose that

g ζð Þ = f ζð Þ
ζp

� �α

  ζ ∈Uð Þ: ð22Þ

Then, the function gðζÞ is of the form (9), analytic in U,
and gð0Þ = 1. By taking the derivatives in the both sides of
(22), we get

1 − λð Þ f ζð Þ
ζp

� �α

+ λ
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

= g ζð Þ + λ

pα
ζg′ ζð Þ:

ð23Þ

Since f ∈Bpðλ, αÞ, we have

g ζð Þ + λ

pα
ζg′ ζð Þ ≺

ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
: ð24Þ

Now, by using Lemma 2 for γ = pα/λ, we deduce that

f ζð Þ
ζp

� �α

≺Q ζð Þ = pα
λ

ζ− pα/λð Þ
ðζ
0
t pα/λð Þ−1 1 + tð Þ1/2 dt

= pα
λ

ð1
0
u pα/λð Þ−1 1 + ζuð Þ1/2du

= 1 + ζð Þ1/22F1 −
1
2 , 1 ;

pα
λ

+ 1 ; ζ

1 + ζ

� �
,

ð25Þ

where we have made a change of variables followed by the
use of identities in Lemma 3 with a = −1/2, b = pα/λn, and
c = b + 1. This completes the proof of Theorem 8.

For a function f ∈AðpÞ given by (2), the generalized
Bernardi-Libera-Livingston integral operator Fp,μ : AðpÞ
⟶AðpÞ, with μ > −p, is defined by (see [13–16])

Fp,μ f ζð Þ = μ + p
ζμ

ðζ
0
tμ−1 f tð Þ dt μ>−pð Þ: ð26Þ

It is easy to verify that for all f ∈AðpÞ, we have

ζ Fp,μ f ζð Þ� 	′ = μ + pð Þf ζð Þ − μFp,μ f ζð Þ: ð27Þ

Theorem 9. If the function f ∈AðpÞ satisfies the subordina-
tion condition

1 − λð Þ Fp,μ f ζð Þ
ζp

� �α

+ λ
f ζð Þ

Fp,μ f ζð Þ
Fp,μ f ζð Þ

ζp

� �α

≺
ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
,

ð28Þ

and Fp,μ is the integral operator defined by (26), then

Fp,μ f ζð Þ
ζp

� �α

≺ K ζð Þ ≺
ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
, ð29Þ

where the function K given by

K ζð Þ = 1 + ζð Þ1/22F1 −
1
2
, 1 ; α p + μð Þ

λ
+ 1 ; ζ

1 + ζ

� �
, ð30Þ

is the best dominant of (28).

Proof. Let

g ζð Þ = Fp,μ f ζð Þ
ζp

� �α

ζ ∈Uð Þ, ð31Þ

then g is analytic in U. Differentiating (31) with respect to ζ
and using the identity (28) in the resulting relation, we get

1 − λð Þ Fp,μ f ζð Þ
ζp

� �α

+ λ
f ζð Þ

Fp,μ f ζð Þ
Fp,μ f ζð Þ

ζp

� �α

= g ζð Þ + λζg′ ζð Þ
α p + μð Þ ≺

ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
:

ð32Þ

Employing the same technique that we used in the proof
of Theorem 8, the remaining part of the theorem can be
proved similarly.

Theorem 10. If λ2 ≥ λ1 ≥ 0, then

Bp λ2, αð Þ ⊂Bp λ1, αð Þ: ð33Þ
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Proof. Suppose that f ∈Bpðλ2, αÞ. We know that

1 − λ2ð Þ f ζð Þ
ζp

� �α

+ λ2
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

≺
ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
, ð34Þ

Thus, the assertion of Theorem 10 holds for λ2 = λ1 ≥ 0.
If λ2 > λ1 ≥ 0, by Theorem 8 and (34), we have

f ζð Þ
ζp

� �α

≺
ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
: ð35Þ

At the same time, we have

1 − λ1ð Þ f ζð Þ
ζp

� �α

+ λ1
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

= 1 − λ1
λ2

� �
f ζð Þ
ζp

� �α

+ λ1
λ2

"
1 − λ2ð Þ f ζð Þ

ζp

� �α

+ λ2
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α
#
:

ð36Þ

Moreover, since 0 ≤ λ1/λ2 < 1, and the function
ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
ðζ ∈UÞ is analytic and convex in U.

Combining (34)–(36) and Lemma 4, we find that

1 − λ1ð Þ f ζð Þ
ζp

� �α

+ λ1
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

≺
ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
, ð37Þ

that is f ∈Bpðλ1, αÞ, which implies that the assertion (33) of
Theorem 10 holds.

Theorem 11. If f ∈Ap, then f ∈Bpðλ, αÞ if and only if

f ζð Þ
ζp

� �α

∗
1 − Lζ +Mζ2

1 − ζð Þ2
" #

≠ 0  ζ ∈Uð Þ, ð38Þ

where

L = 1 + λ

αp

� �
e−iθ 1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + eiθ

p� �
+ 2

M = e−iθ 1 +
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + eiθ

p� �
+ 1:

ð39Þ

Proof. For any function f ∈Ap, we can verify that

f ζð Þ
ζp

� �α

= f ζð Þ
ζp

� �α

∗
1

1 − ζ
, ð40Þ

ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

= f ζð Þ
ζp

� �α

∗
1 − 1 − 1/pαð Þζ

1 − ζð Þ2
: ð41Þ

First, in order to prove that (38) holds, we will write (8)
by using the principle of subordination, that is,

1 − λð Þ f ζð Þ
ζp

� �α

+ λ
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +w ζð Þ

q
, ð42Þ

where wðζÞ is a Schwarz function, hence

1 − λð Þ f ζð Þ
ζp

� �α

+ λ
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

≠
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + eiθ

p
, ð43Þ

for all ζ ∈U and θ ∈ 0, 2πÞ. From (40) and (41), the relation
(43) may be written as

which is equivalent to

f ζð Þ
ζp

� �α

∗
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + eiθ

p
− 1 − λ/αpð Þ − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + eiθ

p� �
ζ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + eiθ

p
ζ2

1 − ζð Þ2

2
4

3
5 ≠ 0, ð44Þ

f ζð Þ
ζp

� �α

∗
1 − 1 + λ/pαð Þð Þe−iθ 1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + eiθ

p� �
+ 2

h i
ζ + e−iθ 1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + eiθ

p� �
+ 1

h i
ζ2

1 − ζð Þ2

2
4

3
5 ≠ 0, ð45Þ
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that is (38).
Reversely, suppose that f ∈Ap satisfy the condition (38).

Like it was previously shown, the assumption (38) is equiva-
lent to (41), that is,

1 − λð Þ f ζð Þ
ζp

� �α

+ λ
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

≠
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + eiθ

p
  ζ ∈Uð Þ:

ð46Þ

Denoting

φ ζð Þ = 1 − λð Þ f ζð Þ
ζp

� �α

+ λ
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

andψ ζð Þ

=
ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
,

ð47Þ

the relation (46) could be written as φðUÞ ∩ ψð∂UÞ =∅.
Therefore, the simply connected domain φðUÞ is included
in a connected component of ℂ \ ψð∂UÞ. From this fact,
using that φð0Þ = ψð0Þ = 1 together with the univalence of
the function ψ, it follows that φðζÞ ≺ ψðζÞ, that is f ∈Bp

ðλ, αÞ.

Theorem 12. If f ðζÞ given by (2) belongs to Bpðλ, αÞ, then

ap+1
�� �� ≤ p

2 pα + λj j : ð48Þ

Proof. Combining (2) and (8), we obtain

1 − λð Þ f ζð Þ
ζp

� �α

+ λ
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

= 1 + pα + λ

p

� �
ap+1ζ +⋯: ≺

ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
= 1 + 1

2 ζ −
1
8 ζ

2+⋯ :

ð49Þ

An application of Lemma 5 to (49) yields

pα + λ

p

� �
ap+1

����
���� < 1

2 : ð50Þ

Thus, from (50), we easily obtain (48) asserted by Theo-
rem 12.

3. Fekete–Szegö Problem

Many authors have considered the Fekete–Szegö problem for
many subclasses of analytic functions (see, for instance, [17–
21]). In this section, we evaluate the Fekete–Szegö inequal-
ities for the class Bpðλ, αÞ.

Theorem 13. If f given by (2) belongs to the class Bpðλ, αÞ,
then

ap+2 − μa2p+1
��� ��� ≤ p

2 αp + 2λð Þ max
(
1 ; 1

4
1

�����
+ p αp + 2λð Þ α − 1 + 2μð Þ

αp + λð Þ2
�����
)
:

ð51Þ

The result is sharp.

Proof. If f ∈Bpðλ, αÞ, then there is a Schwarz function ω inU
such that

1 − λð Þ f ζð Þ
ζp

� �α

+ λ
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

= ϕ ω ζð Þð Þ, ð52Þ

where ϕðζÞ =
ffiffiffiffiffiffiffiffiffiffi
1 + ζ

p
. Define the function gðζÞ by

g ζð Þ = 1 + ω ζð Þ
1 − ω ζð Þ = 1 + c1ζ + c2ζ

2+⋯ : ð53Þ

Since ωðζÞ is a Schwarz function, we see that g ∈P with
gð0Þ = 1. Therefore,

ϕ ω ζð Þð Þ = ϕ
g ζð Þ − 1
g ζð Þ + 1

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g ζð Þ
g ζð Þ + 1

s

= 1 + 1
4 c1ζ +

1
4 c2 −

5
32 c

2
1

� �
ζ2+:⋯

ð54Þ

Now by substituting (54) in (52), we have

1 − λð Þ f ζð Þ
ζp

� �α

+ λ
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

= 1 + 1
4 c1ζ +

1
4 c2 −

5
32 c

2
1

� �
ζ2+:⋯

ð55Þ

Equating the coefficients of ζ and ζ2, we obtain

ap+1 =
p

4 αp + λð Þ c1,

ap+2 =
p

4 αp + 2λð Þ c2 −
p
32

5
αp + 2λð Þ + p α − 1ð Þ

αp + λð Þ2
 !

c21:

ð56Þ

Therefore,

ap+2 − μa2p+1 =
p

4 αp + 2λð Þ c2 − vc21

 �

, ð57Þ
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where

ν = 1
8 5 + p αp + 2λð Þ α − 1 + 2μð Þ

αp + λð Þ2
" #

: ð58Þ

Our result now follows by an application of Lemma 6.
The result is sharp for the functions

1 − λð Þ f ζð Þ
ζp

� �α

+ λ
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

= ϕ ζ2
� �

,

1 − λð Þ f ζð Þ
ζp

� �α

+ λ
ζf ′ ζð Þ
pf ζð Þ

f ζð Þ
ζp

� �α

= ϕ ζð Þ:
ð59Þ

This completes the proof of Theorem 13.

Putting λ = 1 and α = 0 in Theorem 13, we obtain the fol-
lowing corollary.

Corollary 14. If f given by (2) belongs to the classBpðαÞ, then

ap+2 − μa2p+1
��� ��� ≤ p

2 αp + 2ð Þ max
(
1 ; 1

4
1
����

+ p αp + 2ð Þ α − 1 + 2μð Þ
αp + 1ð Þ2

����
)
:

ð60Þ

The result is sharp.

Putting λ = 1 and α = 0 in Theorem 13, we obtain the fol-
lowing corollary.

Corollary 15. If f given by (2) belongs to the class SL∗
p , then

ap+2 − μa2p+1
��� ��� ≤ p

4
max 1 ; 1 + 2p 2μ − 1ð Þj j

4

� 

: ð61Þ

The result is sharp.
Putting p = λ = 1 and α = 0 in Theorem 13, we obtain the

following corollary.

Corollary 16. If f given by (2) (with p = 1) belongs to the class
SL∗, then

a3 − μa22
�� �� ≤ 1

4
max 1 ; 4μ − 1j j

4

� 

: ð62Þ

The result is sharp.
Applying Lemma 7 to (57) and (58), we obtain the fol-

lowing theorem.

Theorem 17. Let

σ1 =
p αp + 2λð Þ 1 − αð Þ − 5 αp + λð Þ2

2p αp + 2λð Þ ,

σ2 =
p αp + 2λð Þ 1 − αð Þ + 3 αp + λð Þ2

2p αp + 2λð Þ ,

σ3 =
p αp + 2λð Þ 1 − αð Þ − αp + λð Þ2

2p αp + 2λð Þ :

ð63Þ

If f given by (2) belongs to the class Bpðλ, αÞ, then

Further, if σ1 ≤ μ ≤ σ3, then

ap+2 − μa2p+1
��� ��� + 1

2
5 αp + λð Þ2
p αp + 2λð Þ + α − 1 + 2μ
" #

ap+1
�� ��2

≤
p

2 αp + 2λð Þ :
ð65Þ

If σ3 ≤ μ ≤ σ2, then

ap+2 − μa2p+1
��� ��� + 1

2
3 αp + λð Þ2
p αp + 2λð Þ − α + 1 − 2μ
" #

ap+1
�� ��2

≤
p

2 αp + 2λð Þ :
ð66Þ

ap+2 − μa2p+1
��� ��� ≤

−
p

8 αp + 2λð Þ 1 + p αp + 2λð Þ α − 1 + 2μð Þ
αp + λð Þ2

" #
μ ≤ σ1ð Þ,

p
2 αp + 2λð Þ σ1 ≤ μ ≤ σ2ð Þ,

p
8 αp + 2λð Þ 1 + p αp + 2λð Þ α − 1 + 2μð Þ

αp + λð Þ2
" #

μ ≥ σ2ð Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð64Þ
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Putting λ = 1 in Theorem 17, we obtain the following
result.

Corollary 18. Let

δ1 =
p αp + 2ð Þ 1 − αð Þ − 5 αp + 1ð Þ2

2p αp + 2ð Þ ,

δ2 =
p αp + 2ð Þ 1 − αð Þ + 3 αp + 1ð Þ2

2p αp + 2ð Þ ,

δ3 =
p αp + 2ð Þ 1 − αð Þ − αp + 1ð Þ2

2p αp + 2ð Þ :

ð67Þ

If f given by (2) belongs to the class BpðαÞ, then

Further, if δ1 ≤ μ ≤ δ3, then

ap+2 − μa2p+1
��� ��� + 1

2
5 αp + 1ð Þ2
p αp + 2ð Þ + α − 1 + 2μ
" #

ap+1
�� ��2

≤
p

2 αp + 2ð Þ :
ð69Þ

If δ3 ≤ μ ≤ δ2, then

ap+2 − μa2p+1
��� ��� + 1

2
3 αp + 1ð Þ2
p αp + 2ð Þ − α + 1 − 2μ
" #

ap+1
�� ��2

≤
p

2 αp + 2ð Þ :
ð70Þ

Putting λ = 1 and α = 0 in Theorem 17, we obtain the fol-
lowing result for the subclass SL∗

p .

Corollary 19. If f given by (2) belongs to the class SL∗
p , then

ap+2 − μa2p+1
��� ��� ≤

−
p 1 + 2p 2μ − 1ð Þ½ �

16
μ ≤

2p − 5
4p

� �
,

p
4

2p − 5
4p

≤ μ ≤
2p + 3
4p

� �
,

p 1 + 2p 2μ − 1ð Þ½ �
16

μ ≥
2p + 3
4p

� �
:

8>>>>>>>><
>>>>>>>>:

ð71Þ

Further, if ðð2p − 5Þ/4pÞ ≤ μ ≤ ðð2p − 1Þ/4pÞ, then

ap+2 − μa2p+1
��� ��� + 1

4
5
p
− 2 + 4μ

� �
ap+1
�� ��2 ≤ p

4 : ð72Þ

If ðð2p − 1Þ/4pÞ ≤ μ ≤ ðð2p + 3Þ/4pÞ, then

ap+2 − μa2p+1
��� ��� + 1

4
3
p
+ 2 − 4μ

� �
ap+1
�� ��2 ≤ p

4 : ð73Þ

Putting λ = p = 1 and α = 0 in Theorem 17, we obtain the
following result obtained by ([18], Theorem 2.1).

Corollary 20. ([18], Theorem 2.1). If f given by (2) (with
p = 1) belongs to the class SL∗, then

a3 − μa22
�� �� ≤

−
1
16

4μ − 1ð Þ μ≤−
3
4

� �
,

1
4

−
3
4
≤ μ ≤

5
4

� �
,

1
16

4μ − 1ð Þ μ ≥
5
4

� �
:

8>>>>>>>><
>>>>>>>>:

ð74Þ

Further, if −ð3/4Þ ≤ μ ≤ 1/4, then

a3 − μa22
�� �� + 1

4 3 + 4μð Þ a2j j2 ≤ 1
4 : ð75Þ

ap+2 − μa2p+1
��� ��� ≤

−
p

8 αp + 2ð Þ 1 + p αp + 2ð Þ α − 1 + 2μð Þ
αp + 1ð Þ2

" #
μ ≤ δ1ð Þ,

p
2 αp + 2ð Þ δ1 ≤ μ ≤ δ2ð Þ,

p
8 αp + 2ð Þ 1 + p αp + 2ð Þ α − 1 + 2μð Þ

αp + 1ð Þ2
" #

μ ≥ δ2ð Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð68Þ
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If 1/4 ≤ μ ≤ 5/4, then

a3 − μa22
�� �� + 1

4 5 − 4μð Þ a2j j2 ≤ 1
4 : ð76Þ
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