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Integral equations are one of the most useful mathematical
tools in both pure and applied mathematics. They have
enormous applications in many real problems. Many initial
and boundary value problems associated with ordinary dif-
ferential equation (ODE) and partial differential equation
(PDE) can be transformed into problems of solving some
approximate integral equations.

Indeed, modeling such problems using integral equations
with the exact parameters is not only easy but also impossible
in the real problems. For this purpose, one way is using some
uncertainty measures for handling such lack of information.
One of the most and recent approaches is using Zadeh’s
fuzzy concept. So, instead of using deterministic models, we
provide fuzzy integral equations of both linear and nonlinear
forms.

In fact, obtaining the exact solutions of such fuzzy integral
equations is not possible in all cases because of the inherited
restrictions form application of fuzzy concepts in these
problems. So, in this special issue, we intend to consider
the numerical methods to solve fuzzy integral equations and
the related topics with real applications. These topics include
fuzzy linear and nonlinear integral equations with numerical
methods, investigating the convergence, stability, and con-
sistency of numerical approaches, numerically modeling the
real problems associated with numerical methods, consider-
ing the differences between deterministic and fuzzy numer-
ical methods to solve fuzzy integral equations, numerically
solving fuzzy differential equations of arbitrary order using
the equivalence fuzzy integral equations, obtaining some

approximations of the solutions via ranking approaches,
and applications in real-world problems with numerical
techniques.

Our special issue contains few papers in which different
numerical techniques are employed. The paper “A simpli-
fied Milstein scheme for SPDEs with multiplicative noise”
replaces the exponential term with a Padé approximation
of order 1 and denotes the resulting scheme by simplified
Milstein scheme. The paper “On properties of pseudointegrals
based on pseudoaddition decomposable measures” discussed
pseudointegrals based on a pseudoaddition decomposable
measure. Particularly, the definition of the pseudointegral
for a measurable function based on a strict pseudoaddition
decomposable measure by generalizing the definition of
the pseudointegral of a bounded measurable function was
stated. The paper “Quadrature rules and iterative method
for numerical solution of two-dimensional fuzzy integral
equations” introduced some generalized quadrature rules to
approximate two-dimensional, Henstock integral of fuzzy-
number-valued functions. Also, it gave error bounds for
mappings of bounded variation in terms of uniformmodulus
of continuity. Moreover, it proposed an iterative procedure
based on quadrature formula to solve two-dimensional lin-
ear fuzzy Fredholm integral equations of the second kind
(2DFFLIE2) and presented the error estimation of the pro-
posed method. The paper “On solution of integrodifferential
equation with delay parameter by Sinc basis functions” is
considered. For this purpose, a numerical solution is obtained
for an integrodifferential equation with an integral boundary
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condition and delay parameter. This type of problems arises
in mathematical physics, mechanics, population growth, and
other fields of physics and mathematical chemistry. Then,
convergence of this approach is discussed by presenting a
theorem which gives exponential type convergence rate and
guarantees the accuracy of that. The paper “A new recon-
struction of variational iteration method and its application to
nonlinear Volterra integrodifferential equations” is proposed.
Indeed, it reconstructed the variational iteration method,
that is, the so-called parametric iteration method (PIM).
The proposed method was applied for solving nonlinear
Volterra integrodifferential equations (NVIDEs). The paper
“Approximating the solution of the linear and nonlinear fuzzy
Volterra integrodifferential equations using expansionmethod”
is considered. To this end, it introduced an innovativemethod
applying power series to solve numerically the linear and
nonlinear fuzzy integrodifferential equation systems.

We hope the papers published in this special issue will
provide a useful guide to a large community of researchers
and will give way to development of new innovative theories
and numerical approaches in the fields of modeling and
approximating fuzzy integral equations and the related topics.
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This paper deals with a research question raised by Jentzen and Röckner (A Milstein scheme for SPDEs, arXiv:1001.2751v4 (2012)),
whether the exponential term in their introduced scheme can be replaced by a simpler mollifier.This replacement can lead to more
simplification and computational reduction in simulation. So, in this paper, we essentially replace the exponential term with a Padé
approximation of order 1 and denote the resulting scheme by simplified Milstein scheme.The convergence analysis for this scheme
is carried out and it is shown that even with this replacement the order of convergence is maintained, while the resulting scheme is
easier to implement and slightly more efficient computationally. Some numerical tests are given that confirm the order of accuracy
and also computational cost reduction.

1. Introduction

Many models in engineering, physics, complex phenomena,
and so forth are described by stochastic partial differential
equations (SPDEs); for example, see [1–6]. Since the exact
solutions of these equations are rarely known, the numerical
analysis of SPDEs has been recently the subject of many
papers; for example, see [7–14], for more detailed discussion
on this topic and many examples in applied sciences. In this
paper, we consider strong approximation (see [4, Section 9.3])
of SPDEs of evolutionary type. To demonstrate the results of
this paper clearly, we focus on the following example of SPDE:

𝑑𝑋
𝑡
(𝑥) = [𝜆

𝜕
2

𝜕𝑥2
𝑋
𝑡
(𝑥) + 𝑓 (𝑥,𝑋

𝑡
(𝑥))] 𝑑𝑡

+ 𝑏 (𝑥,𝑋
𝑡
(𝑥)) 𝑑𝑊

𝑡
(𝑥) ,

(1)

with initial condition 𝑋
0
(𝑥) = 𝜉(𝑥) and Dirichlet boundary

conditions 𝑋
𝑡
(0) = 𝑋

𝑡
(1) = 0 for all 𝑥 ∈ (0, 1)

and 𝑡 ∈ [0, 𝑇], where 𝜆 ∈ (0,∞). Let (Ω, 𝐹, 𝑃) be a
probability space with a normal filtration (F

𝑡
)
𝑡∈[0,𝑇]

, let𝐻 =

𝐿
2
((0, 1),R) be the R-Hilbert space of equivalence classes of

Lebesgue square integrable functions from (0, 1) toR, and let

𝑓, 𝑏 : (0, 1) × R → R be two appropriate smooth and
regular functions with globally bounded derivatives. Let𝑊 :

[0, 𝑇] ×Ω → 𝐻 be a standard𝑄-Wiener process with regard
to (F

𝑡
)
𝑡∈[0,𝑇]

, with a trace class operator 𝑄 : 𝐻 → 𝐻 and
𝜉 : [0, 1] → Rwith 𝜉(0) = 𝜉(1) = 0 being a smooth function.
The covariance operator 𝑄 : 𝐻 → 𝐻 has orthonormal basis
𝑔
𝑗
∈ 𝐻, 𝑗 ∈ N, of eigenfunctions with summable eigenvalues

𝜇
𝑗
∈ [0,∞) 𝑗 ∈ N. Under the previous assumption, the SPDE

(1) has a unique mild solution. Specifically, there exists an
up to unpredictable unique adapted stochastic process 𝑋 :

[0, 𝑇]×Ω → 𝐻with continuous sample path which satisfies

𝑋
𝑡
= 𝑒
𝐴𝑡
𝜉 + ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐹 (𝑋
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑𝑊

𝑠
,

(2)

for all 𝑡 ∈ [0, 𝑇], where 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 is the Laplacian
with Dirichlet boundary conditions times the constant 𝜆 ∈

(0,∞) and where 𝐹 : 𝐻 → 𝐻 and 𝐵 : 𝐻 → 𝐻𝑆(𝑈,𝐻) are
given by (𝐹(V))(𝑥) = 𝑓(𝑥, V(𝑥)) and (𝐵(V)𝑢)(𝑥) = 𝑏(𝑥, V(𝑥)) ⋅
𝑢(𝑥) for all 𝑥 ∈ (0, 1), V ∈ 𝐻 and all 𝑢 ∈ 𝑈

0
where 𝑈

0
= 𝑄

1/2

with ⟨V, 𝑤⟩
𝑈0
= ⟨𝑄

−1/2V, 𝑄−1/2𝑤⟩ for all V, 𝑤 ∈ 𝑈
0
is the image
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R-Hilbert space of 𝑄1/2 (see [15, Appendix C]); note that 𝐴
and 𝑄 commutate in our example SPDE (2). Now we are
concerned about the strong approximation of the SPDE (1).
More formally we want to compute numerical approximation
𝑌 : Ω → 𝐻 such that

(𝐸
𝑋𝑇 − 𝑌


2

𝐻
)
1/2

:= (𝐸 [∫
(0,1)

𝑋𝑇 (𝑥) − 𝑌 (𝑥)

2

𝑑𝑥])

1/2

< 𝜀

(3)

holds for a given precision 𝜀 > 0 with the least possible com-
putational effort. To simulate the numerical approximation
on a computer, one has to discretize both the time interval
[0, 𝑇] and the infinite dimensional space𝐻 = 𝐿

2
((0, 1),R). In

this paperwe consider spectral Galerkin for spatial discretiza-
tion and difference method for temporal discretization. A
simple full discretization for (1) is the linear implicit Euler
method combined with spectral Galerkin method which is
given by

𝑌
𝑁

𝑘+1
= 𝑃
𝑁
(𝐼 −

𝑇

𝑁3
𝐴)

−1

× (𝑌
𝑁

𝑘
+

𝑇

𝑁3
𝑓(⋅, 𝑌

𝑁

𝑘
)

+ 𝑏 (⋅, 𝑌
𝑁

𝑘
) (𝑊

𝑁

(𝑘+1)𝑇/𝑁
3 −𝑊

𝑁

𝑘𝑇/𝑁
3)) ,

(4)

𝑘 = 0, 1, . . . , 𝑁
3
− 1, and all𝑁 ∈ N, with 𝑌𝑁

0
= 𝜉
𝑁 and 𝜉𝑁 =

𝑃
𝑁
(𝜉), where 𝑃

𝑁
is a bounded linear operator such that 𝑃

𝑁
:

𝐻 → 𝐻 with

(𝑃
𝑁
(V)) (𝑥) =

𝑁

∑

𝑛=1

2 sin (𝑛𝜋𝑥)∫
1

0

sin (𝑛𝜋𝑦) V (𝑦) 𝑑𝑦 (5)

for all 𝑥 ∈ (0, 1), V ∈ 𝐻, and 𝑁 ∈ N, and the finite dimen-
sional Wiener processes 𝑊𝑁 : [0, 𝑇] × Ω → 𝐻, 𝑁 ∈ N,
are given by 𝑊𝑁

𝑡
(𝜔) = 𝑃

𝑁
(𝑊
𝑡
(𝜔)) for all 𝑡 ∈ [0, 𝑇], 𝜔 ∈ Ω,

and𝑁 ∈ N. According to the analysis of [16], for method (4)
with 𝑘 = 𝑁

3, there exist real numbers 𝐶
𝑟
> 0 that for small

𝑟 ∈ (0, 3/2)

(𝐸

𝑋
𝑇
− 𝑌

𝑁

𝑁
3



2

𝐻
)
1/2

≤ 𝐶
𝑟
𝑁
𝑟−3/2 (6)

holds for all 𝑁 ∈ N. This means that the method has overall
convergence 3/8− (for a real number 𝛽 ∈ (0,∞), we write 𝛽−
for the convergence order if the convergence order is higher
in order than 𝛽 − 𝜖 for all arbitrary small 𝜖 ∈ (0, 𝛽)). In
[16] Jentzen and Rockner proposed an infinite dimensional

analog of Milstein type scheme for (1) given by �̃�𝑁
0
= 𝜉
𝑁

0
=

𝑃
𝑁
(𝜉) and

�̃�
𝑁

𝑘+1
= 𝑃
𝑁
𝑒
𝐴(𝑇/𝑁

2
)

× (�̃�
𝑁

𝑘
+

𝑇

𝑁2
𝑓 (⋅, �̃�

𝑁

𝑘
)

+ 𝑏 (⋅, �̃�
𝑁

𝑘
) (𝑊

𝑁

(𝑘+1)𝑇/𝑁
2 −𝑊

𝑁

𝑘𝑇/𝑁
2)

+
1

2
(
𝜕

𝜕𝑦
𝑏) (⋅, �̃�

𝑁

𝑘
) 𝑏 (⋅, �̃�

𝑁

𝑘
)

× ((𝑊
𝑁

(𝑘+1)𝑇/𝑁
2 −𝑊

𝑁

𝑘𝑇/𝑁
2)
2

−
𝑇

𝑁2

𝑁

∑

𝑖=1

𝜂
𝑖
𝑔
2

𝑖
))

(7)

for all 𝑘 ∈ {0, 1, . . . , 𝑁
2
− 1} and 𝑁 ∈ N. Here we use the

notations V ⋅ 𝑤 : (0, 1) → R, V2 : (0, 1) → R, and
(𝜙(⋅, V))(𝑥) = 𝜙(𝑥, V(𝑥)) for all 𝑥 ∈ (0, 1) and all functions
V, 𝑤 : (0, 1) → R, 𝜙 : (0, 1) × R → R. Method (7)
gives a break of complexity of the numerical approximation
of nonlinear SPDE with multiplicative trace class noise. More
precisely, it is shown in [16] that 𝑁2 time steps in contrast
to 𝑁3 time steps for the linear implicit Euler scheme (4) are
required to achieve (6). That is the Milstein type scheme (7)
with 𝑁2 time steps guarantees that for real numbers 𝐶

𝑟
> 0,

𝑟 ∈ (0, 3/2), such that

(𝐸

𝑋
𝑇
− 𝑌

𝑁

𝑁
2



2

𝐻
)
1/2

≤ 𝐶
𝑟
𝑁
𝑟−3/2 (8)

holds for all𝑁 ∈ N. Thus the scheme has the overall conver-
gence order of 1/2−. Consequently scheme (7) increases the
overall convergence order from 3/8− to 1/2−. As mentioned
before, in this paper essentially the exponential term in
the Milstein type scheme [16] is replaced by a first order
approximation which makes the scheme easier to implement
and slightly more efficient computationally while preserving
the order of convergence. The analysis and implementation
will be carried out as follows. In Section 2 the required
setting and assumptions are formulated. In Section 3 the
simplified Milstein scheme is formulated. In Section 4 we
state and prove the main result of this section concerning
the convergence of the simplified Milstein scheme. Finally
in Section 5 numerical example for a stochastic reaction
diffusion equation is presented to show numerically the
order of convergence and computational costs.Thenumerical
simulations will be carried out in MATLAB environment on
a PC with CPU 2.66GHz.

2. Setting and Assumptions

Throughout this paper suppose that the setting and following
assumptions are fulfilled. Fix 𝑇 ∈ (0,∞). Let (Ω, 𝐹, 𝑃) be a
probability space with a normal filtration {𝐹

𝑡
}
𝑡∈[0,𝑇]

and let
(𝐻, ⟨, ⟩, ‖ ⋅ ‖

𝐻
) and (𝑈, ⟨, ⟩, ‖ ⋅ ‖

𝑈
) be two separableR-Hilbert

spaces. Moreover, let𝑊 : [0, 𝑇] × Ω → 𝑈 be a standard 𝑄-
Wiener process with respect to {𝐹

𝑡
}
𝑡∈[0,𝑇]

, with a trace class
operator 𝑄 : 𝑈 → 𝑈.
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Assumption 1 (linear operator 𝐴). Let 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻

be a linear operator such that

𝐴V = −∑
𝑖∈N

𝜆
𝑖
⟨𝑒
𝑖
, V⟩
𝐻
𝑒
𝑖 (9)

for every V ∈ 𝐷(𝐴) with 𝐷(𝐴) = {𝑤 ∈ 𝐻 | ∑
𝑖∈N |𝜆𝑖|

2

|⟨𝑒
𝑖
, 𝑤⟩

𝐻
|
2
< ∞}.

Here (𝜆
𝑖
)
𝑖∈N is a family of real numbers with inf

𝑖∈N𝜆𝑖 ∈

(0,∞) and (𝑒
𝑖
)
𝑖∈N is an orthonormal basis of 𝐻. By 𝑉

𝑟
:=

𝐷((−𝐴)
𝑟
) equipped with the norm ‖V‖

𝑉𝑟
= ‖(−𝐴)

𝑟V‖
𝐻
for all

V ∈ 𝑉
𝑟
, 0 ≤ 𝑟, we denote the R-Hilbert space of domains of

fractional powers of the linear operator −𝐴 : 𝐷(𝐴) → 𝐻.

Assumption 2 (drift term 𝐹). Let 𝛽 ∈ [0, 1) be a real number
and let 𝐹 : 𝑉

𝛽
→ 𝐻 be a globally Lipschitz continuous; that

is, supV,𝑤∈𝐻(‖𝐹(V) − 𝐹(𝑤)‖𝐻/‖V − 𝑤‖𝐻) < ∞ and ‖𝐹(V)‖
𝐻
<

𝑐(1 + ‖V‖
𝑉𝛽
), 𝑐 ∈ (0,∞); in addition

sup
V∈𝑉𝛽


𝐹

(V)
𝐿(𝐻)

< ∞,

sup
V∈𝑉𝛽


𝐹

(V)
𝐿(2)(𝑉𝛽 ,𝐻)

< ∞.

(10)

Assumption 3 (diffusion term 𝐵). Let 𝐵 : 𝑉
𝛽

→ 𝐻𝑆(𝑈
0
,

𝐻) be a globally Lipschitz continuous mapping
and twice continuously Frechet differentiable map-
ping with supV∈𝑉𝛽‖𝐵


(V)‖

𝐿(𝐻,𝐻𝑆(𝑈0 ,𝐻))
< ∞ and

supV∈𝑉𝛽‖𝐵

(V)‖

𝐿
(2)
(𝑉𝛽 ,𝐻𝑆(𝑈0 ,𝐻))

< ∞. In addition 𝛼 ∈ (0,∞),
𝛿, 𝜃 ∈ (0, 1/2) with 𝛽 ≤ 𝛿 + 1/2, 𝛾 ∈ [max(𝛿, 𝛽), 𝛿 + 1/2), and
𝑐 ∈ (0,∞) is a real number such that 𝐵(𝑉

𝛿
) ⊂ 𝐻𝑆(𝑈

0
, 𝑉
𝛿
) and

‖𝐵 (𝑢)‖
𝐻𝑆(𝑈0 ,𝑉𝛿)

≤ 𝑐 (1 + ‖𝑢‖
𝑉𝛿
) , (11)


𝐵

(V) 𝐵 (V) − 𝐵 (𝑤) 𝐵 (𝑤)

𝐻𝑆(2)(𝑈0 ,𝐻)
≤ 𝑐‖V − 𝑤‖

𝐻
, (12)


(−𝐴)

−𝜗
𝐵 (V) 𝑄−𝛼

𝐻𝑆(𝑈0 ,𝐻)
≤ 𝑐 (1 + ‖V‖

𝑉𝛾
) , (13)

hold for all 𝑢 ∈ 𝑉
𝛿
and V, 𝑤 ∈ 𝑉

𝛾
. Additionally, let the bilinear

Hilbert-Schmidt operator 𝐵

(V)𝐵(V) ∈ 𝐻𝑆

(2)
(𝑈
0
, 𝐻) be

symmetric for all V ∈ 𝑉
𝛽
. Note that the operator 𝐵(V)𝐵(V) :

𝑈
0
× 𝑈

0
→ 𝐻, given by

(𝐵

(V) 𝐵 (V)) (𝑢, �̃�) = (𝐵 (V) (𝐵 (V) 𝑢)) �̃� (14)

for all 𝑢, �̃� ∈ 𝑈
0
, is a bilinear Hilbert-Schmidt operator in

𝐻𝑆
(2)
(𝑈
0
, 𝐻) for all V ∈ 𝑉

𝛽
.

The assumed symmetry of 𝐵(V)𝐵(V) ∈ 𝐻𝑆(2)(𝑈
0
, 𝐻) thus

reads as [16, Remark 1].

Assumption 4 (initial value 𝜉). Let 𝜉 : Ω → 𝑉
𝛾
be an

𝐹
0
/𝐵(𝑉

𝛾
)-measurable mapping with 𝐸‖𝜉‖2

𝑉𝛾
< ∞.

Proposition 5 (existence of the mild solution). Let 𝑇 > 0.
Then under Assumptions 1–4, there exists an up to modifica-
tions unique predictable stochastic process𝑋 : [0, 𝑇]×Ω → 𝑉

𝛾

which fulfills sup
𝑡∈[0,𝑇]

𝐸‖𝑋
𝑡
‖
2

𝑉𝛾
< ∞,

sup
𝑡∈[0,𝑇]

𝐸
𝐵 (𝑋𝑡)


2

𝐻𝑆(𝑈0 ,𝑉𝛿)
< ∞,

𝑋
𝑡
= 𝑒
𝐴𝑡
𝜉 + ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐹 (𝑋
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑𝑊

𝑠
,

(15)

for all 𝑡 ∈ [0, 𝑇]; moreover, we have

sup
𝑡1 ,𝑡2∈[0,𝑡]

(𝐸

𝑋
𝑡2
− 𝑋

𝑡1



2

𝐻
)
1/2

𝑡2 − 𝑡1

min(𝛾,1/2) < ∞. (16)

Proposition 5 immediately follows from Theorem 1 in
[17].

3. The Proposed Simplified Milstein Scheme

We construct the simplified Milstein scheme for nonlinear
stochastic partial differential equations. For this work first we
use Taylor formula in Banach space for coefficients 𝐵 and 𝐹
for the problem (2). More formally using 𝐹(𝑋

𝑠
) ≈ 𝐹(𝑋

0
) and

𝐵(𝑋
𝑠
) ≈ 𝐵(𝑋

0
) + 𝐵


(𝑋
0
)(𝑋
𝑠
− 𝑋

0
) for small 𝑠 ∈ [0, 𝑇] shows

𝑋
𝑡
= 𝑒
𝐴𝑡
𝜉 + ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐹 (𝑋
0
) 𝑑𝑠

+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵

(𝑋
0
) (𝑋

𝑠
− 𝑋

0
) 𝑑𝑊

𝑠

(17)

for small 𝑡 ∈ [0, 𝑇]. Using the approximation 𝑋
𝑠
≈ 𝑋

0
+

∫
𝑠

0
𝐵(𝑋

0
)𝑑𝑊

𝑢
for small 𝑠 ∈ [0, 𝑇] gives

𝑋
𝑡
≈ 𝑒
𝐴𝑡
𝑋
0
+ 𝑡𝑒

𝐴𝑡
𝐹 (𝑋

0
)

+ ∫

𝑡

0

𝑒
𝐴𝑡
𝐵 (𝑋

0
) 𝑑𝑊

𝑠

+ ∫

𝑡

0

𝑒
𝐴𝑡
𝐵

(𝑋
0
) (∫

𝑠

0

𝐵 (𝑋
0
) 𝑑𝑊

𝑢
)𝑑𝑊

𝑠
.

(18)

We then substitute 𝑒𝐴𝑡 ≈ (𝐼 − 𝑡𝐴)
−1 for small 𝑡 ∈ [0, 𝑇] to

obtain

𝑋
𝑡
≈ 𝑆
𝑡
(𝑋
0
+ 𝑡𝐹 (𝑋

0
)

+ ∫

𝑡

0

𝐵 (𝑋
0
) 𝑑𝑊

𝑠

+ ∫

𝑡

0

𝐵

(𝑋
0
) (∫

𝑠

0

𝐵 (𝑋
0
) 𝑑𝑊

𝑢
)𝑑𝑊

𝑠
) ,

(19)
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where 𝑆
𝑡
= (𝐼 − 𝑡𝐴)

−1. Combining the temporal approx-
imation (19) and spatial discretization in (4) suggests the
numerical scheme given by 𝑌𝑁

0
= 𝑃
𝑁
(𝜉) = 𝜉

𝑁 and

𝑌
𝑁

𝑘+1
= 𝑃
𝑁
𝑆
𝑇/𝑁
2

× (𝑌
𝑁

𝑘
+

𝑇

𝑁2
𝐹 (𝑌

𝑁

𝑘
)

+ 𝐵 (𝑌
𝑁

𝑘
) (𝑊

𝑁

(𝑘+1)𝑇/𝑁
2 −𝑊

𝑁

𝑘𝑇/𝑁
2)

+ ∫

(𝑘+1)𝑇/𝑁
2

𝑘𝑇/𝑁
2

𝐵

(𝑌
𝑁

𝑘
)

× (∫

𝑠

𝑘𝑇/𝑁
2

𝐵 (𝑌
𝑁

𝑘
) 𝑑𝑊

𝑁

𝑢
)𝑑𝑊

𝑁

𝑠
) ,

(20)

for all 𝑘 ∈ {0, 1, . . . , 𝑁
2
− 1} and all 𝑁 ∈ N, where 𝑆

𝑇/𝑁
2 =

(𝐼−(𝑇/𝑁
2
)𝐴)
−1.The difficulty in this formula is workingwith

the term corresponding to the double integral. As suggested
by Jentzen and Rockner (see [16, Subsection 6.7]), this double
integral can be replaced by

∫

(𝑘+1)𝑇/𝑁
2

𝑘𝑇/𝑁
2

𝐵

(𝑌
𝑁

𝑘
) (∫

𝑠

𝑘𝑇/𝑁
2

𝐵 (𝑌
𝑁

𝑘
) 𝑑𝑊

𝑁

𝑢
)𝑑𝑊

𝑁

𝑠

=
1

2
(
𝜕

𝜕𝑦
𝑏) (⋅, 𝑌

𝑁

𝑘
) 𝑏 (⋅, 𝑌

𝑁

𝑘
)

× ((𝑊
𝑁

(𝑘+1)𝑇/𝑁
2 −𝑊

𝑁

𝑘𝑇/𝑁
2)
2

−
𝑇

𝑁2

𝑁

∑

𝑖=1

𝜂
𝑖
𝑔
2

𝑖
) .

(21)

By using (21), the numerical scheme (20) thus reduces to

𝑌
𝑁

𝑘+1
= 𝑃
𝑁
𝑆
𝑁

𝑇/𝑁
2

× (𝑌
𝑁

𝑘
+

𝑇

𝑁2
𝑓 (⋅, 𝑌

𝑁

𝑘
) + 𝑏 (⋅, 𝑌

𝑁

𝑘
)

× (𝑊
𝑁

(𝑘+1)𝑇/𝑁
2 −𝑊

𝑁

𝑘𝑇/𝑁
2)

+
1

2
(
𝜕

𝜕𝑦
𝑏) (⋅, 𝑌

𝑁

𝑘
) 𝑏 (⋅, 𝑌

𝑁

𝑘
)

× ((𝑊
𝑁

(𝑘+1)𝑇/𝑁
2 −𝑊

𝑁

𝑘𝑇/𝑁
2)
2

−
𝑇

𝑁2

𝑁

∑

𝑖=1

𝜂
𝑖
𝑔
2

𝑖
)) ,

(22)

where 𝑆𝑁
𝑇/𝑁
2 = (𝐼−(𝑇/𝑁

2
)𝐴)
−𝑁 and for all 𝑘 ∈ {0, 1, . . . , 𝑁2−

1},𝑁 ∈ N.
For the simplifiedMilstein scheme (22) applied to (1), the

main result of this paper, that is, Theorem 7, will show that
with 𝐾 = 𝑁

2

(𝐸

𝑋
𝑇
− 𝑌

𝑁

𝑁
2



2

𝐻
)
1/2

≤ 𝐶
𝑟
𝑁
𝑟−3/2

, 0 < 𝑟 <
3

2
. (23)

Similar to scheme (7), the numerical method (22) can be
simulated quite easily. The term (𝑇/𝑁

2
) ∑
𝑁

𝑖=1
𝜂
𝑖
𝑔
2

𝑖
in (22) can

Table 1: Runtime (seconds) for one path simulation using three
methods 𝑌𝑁

𝑁
3 , �̃�𝑁

𝑁
2 , and 𝑌𝑁

𝑁
2 for𝑁 = 64, 128, 256, 512, 1024.

𝑁
Implicit Euler

scheme
Milstein
scheme

Simplified Milstein
scheme

64 38.316292 0.703536 0.690610
128 381.021714 3.628195 3.581998
256 3874.629760 19.811083 19.405515
512 46885.088426 126.663048 124.849040
1024 5.1574𝑒 + 005 842.699400 834.842365

be computed once in advance for which 𝑂(𝑁
2
) computa-

tional operations are needed.With the term (𝑇/𝑁
2
) ∑
𝑁

𝑖=1
𝜂
𝑖
𝑔
2

𝑖

at hand, 𝑂(𝑁 log𝑁) further computational operations and
independent standard normal random variables are needed
to compute 𝑌𝑁

𝑘+1
from 𝑌

𝑁

𝑘
by using fast Fourier transform.

Therefore, since 𝑁2 time steps are used, 𝑂(𝑁3 log𝑁) com-
putational operations and random variables are required to
obtain 𝑌𝑁

𝑁
2 . The logarithmic term in𝑂(𝑁3 log𝑁) arises from

fast Fourier transform computations, due to the nonlineari-
ties of 𝑓 and 𝑏. Taking into account the convergence order
3/2− in (23), one can show that scheme (22) shares the same
overall convergence order of 1/2−, which is greater than the
overall convergence order 3/8− of the linear implicit scheme
(4). We then take a more closer look at schemes (7) and (22)
at each step. It is obvious that theMilstein scheme (7) requires
evaluation of exponential term, while the simplified Milstein
scheme needs one simple mollifier (𝐼 − (𝑇/𝑁2)𝐴)−1 instead
of exponential term. The CPU time for one path simulation
by the simplified Milstein scheme (22) applied to (1) is less
than that for (7). For example, see Table 1; for 𝑁 = 1024,
one path simulation of the simplified Milstein scheme (22)
requires 834.842365 CPU seconds, while this simulation by
Milstein scheme (7) needs 842.699400 CPU seconds. This
difference is due to the fact that evaluation of the exponential
term takes more time than that of the simple mollifier term.
A natural question thus arises on whether such substitution
can maintain the high convergence order of (7). In this paper
we investigate this issue and prove that the simplifiedMilstein
scheme maintains the expected order of convergence.

4. Convergence Analysis

Let (𝑔
𝑗
)
𝑗∈N ⊂ 𝑈 be an orthonormal basis consisting of the

eigenfunctions of 𝑄 : 𝑈 → 𝑈, and let (𝜇
𝑗
)
𝑗∈N ⊂ [0,∞) be

their corresponding eigenvalues with 𝑄 : 𝑈 → 𝑈 as a trace
class operator; that is,

𝑄𝑢 = ∑

𝑗∈N

𝜇
𝑗
⟨𝑔
𝑗
, 𝑢⟩

𝑈
𝑔
𝑗 (24)

for all 𝑢 ∈ 𝑈. We define the linear projection operator

𝑃
𝑁
: 𝐻 → 𝐻 by 𝑃

𝑁
V =

𝑁

∑

𝑗=1

⟨𝑒
𝑗
, V⟩
𝐻
𝑒
𝑗
. (25)

Furthermore, we defineWiener processes𝑊𝑁 : [0, 𝑇]×Ω →

𝑈
0
by 𝑊

𝑁

𝑡
(𝜔) = ∑

𝑁

𝑗=1
⟨𝑔
𝑗
,𝑊
𝑡
(𝜔)⟩

𝑈
𝑔
𝑗
for all 𝑡 ∈ [0, 𝑇],



Abstract and Applied Analysis 5

𝜔 ∈ Ω, and 𝑁 ∈ N. Let 𝑇 = 𝑀Δ𝑡, 𝑀 = 𝑁
2, and Δ𝑡 be

the time discretization step, and let𝐻 = 𝑈 = 𝐿
2
((0, 1),R) be

the R-Hilbert space of equivalence classes of 𝛽(0, 1)/𝛽(R)-
measurable and Lebesgue square integrable functions from
(0, 1) to R with the scalar product ⟨𝑢, V⟩

𝐻
= ∫

1

0
𝑢(𝑥)V(𝑥)𝑑𝑥

and the norm ‖V‖
𝐻
= (∫

1

0
|V(𝑥)|2𝑑𝑥)1/2 for 𝑢, V ∈ 𝐻 = 𝑈. Now

we start our investigation to analyze the proposed method
for SPDE fulfilling Assumptions 1–4. Based on (1) we then
consider 𝐴 = 𝜆(𝜕

2
/𝜕𝑥

2
) and 𝑒

𝑘
(𝑥) = √2 sin(𝑘𝜋𝑥), 𝑘 ∈ N, as

the orthonormal basis of𝐻 = 𝐿
2
((0, 1),R), which satisfy

𝐴𝑒
𝑘
= −𝜆

𝑘
𝑒
𝑘
, 𝜆

𝑘
= 𝜆𝜋

2
𝑘
2
. (26)

For the drift term to fulfill Assumption 2, let 𝑓 : (0, 1) ×

R → R be a continuously differentiable function with
∫
1

0
|𝑓(𝑥, 0)|

2
𝑑𝑥 < ∞ and

sup
𝑦∈R



𝜕𝑓

𝜕𝑦
(𝑥, 𝑦)


< ∞. (27)

Then, the operator 𝐹 : 𝐻 → 𝐻 given by (𝐹(V))(𝑥) =

𝑓(𝑥, V(𝑥)), for 𝑥 ∈ (0, 1) and V ∈ 𝐻, satisfies Assumption 2.
For the diffusion term to satisfy Assumption 3, we consider
𝑏 : (0, 1) × R → R to be a twice continuously differentiable
function with

|𝑏 (𝑥, 0)| ≤ 𝑅,



𝜕𝑏

𝜕𝑥
(𝑥, 𝑦)


≤ 𝑅,



𝜕𝑏

𝜕𝑥
(𝑥, 𝑦)

𝐿(R,R)
≤ 𝑅,

(28)

and also

𝐸
𝐵 (𝑋𝑡)


2

𝐻𝑆(𝑈0,𝑉𝛿)
≤ 𝑅,


𝐹

(V)
𝐿(𝐻)

≤ 𝑅,


𝐹

(V)
𝐿(2)(𝑉𝛽 ,𝐻)

≤ 𝑅, 𝐸
𝐹 (𝑋𝑡)


2

𝐻
≤ 𝑅,


𝐵

(V)
𝐿(𝐻,𝐻𝑆(𝑈0 ,𝑉𝛿))

≤ 𝑅,

𝐵

(V)
𝐿(2)(𝑉𝛽 ,𝐻𝑆(𝑈0 ,𝑉𝛿))

≤ 𝑅,

𝐸
(−𝐴)

𝛾
𝑋
𝑡


2

𝐻
= 𝐸

𝑋𝑡

2

𝑉𝛾
≤ 𝑅,

𝐸

𝑋
𝑡2
− 𝑋

𝑡1



4

𝑉𝛽

≤ 𝑅
𝑡2 − 𝑡1


min(4(𝛾−𝛽),2)

,

(29)

for all 𝑥 ∈ (0, 1) and some given 𝑅 ∈ (0,∞). Let 𝑏 : 𝐻 →

𝐻𝑆(𝑈
0
, 𝐻) be the operator (𝐵(V)𝑢)(𝑥) = 𝑏(𝑥, V(𝑥)) ⋅ 𝑢(𝑥) for

all 𝑥 ∈ (0, 1).
It has been shown in [16] that𝐵 : 𝐻 → 𝐻𝑆(𝑈

0
, 𝐻) fulfills

Assumption 3. For the initial value to satisfy Assumption 4,
we assume that 𝑥

0
: (0, 1) → R is a twice continuously

differentiable function with 𝑥
0
|
𝜕(0,1)

= 0. Then the mapping
𝜉 : Ω → 𝑉

𝛾
given by 𝜉(𝜔) = 𝑥

0
for all 𝜔 ∈ Ω fulfills

Assumption 4 for all 𝛾 ∈ (0, 1). With the above setting, the
SPDE (1) reduces to

𝑑𝑋
𝑡
(𝑥) = [𝜆Δ𝑋

𝑡
(𝑥) + 𝑓 (𝑥,𝑋

𝑡
(𝑥))] 𝑑𝑡

+ 𝑏 (𝑥,𝑋
𝑡
(𝑥)) 𝑑𝑊

𝑡
(𝑥) ,

(30)

with 𝑋
𝑡
(0) = 𝑋

𝑡
(1) = 0 and 𝑋

0
= 𝑥

0
(𝑥) for 𝑡 ∈ [0, 𝑇], 𝑥 ∈

(0, 1), and Δ = 𝜕
2
/𝜕𝑥

2.
Moreover, we define a family 𝛽

𝑗
(𝜔) = (1/√𝜇𝑗)

⟨𝑔
𝑗
,𝑊
𝑡
(𝜔)⟩

𝑈
for all 𝜔 ∈ Ω, 𝑡 ∈ [0, 𝑇] and all 𝑗 ∈ N, and we

consider themappingsΔ𝑊𝑁
𝑘
: Ω → 𝑈

0
, 𝑘 ∈ {0, 1, . . . , 𝑁2−1}

by Δ𝑊𝑁
𝑘
(𝜔) = 𝑊

𝑁

(𝑘+1)Δ𝑡
(𝜔) − 𝑊

𝑁

𝑘Δ
(𝜔).

Using these notations, the SPDE (30) can be rewritten as

𝑑𝑋
𝑡
(𝑥) = [𝜆

𝜕

𝜕𝑥2
𝑋
𝑡
(𝑥) + 𝑓 (𝑥,𝑋

𝑡
(𝑥))] 𝑑𝑡

+

𝑁

∑

𝑗=1

[𝑏 (𝑥,𝑋
𝑡
(𝑥))√𝜇𝑗𝑔𝑗 (𝑥)] 𝑑𝛽

𝑗

𝑡
,

(31)

with 𝑋
𝑡
(0) = 𝑋

𝑡
(1) = 0 and 𝑋

0
(𝑥) = 𝑥

0
(𝑥) for 𝑡 ∈ [0, 𝑇] and

𝑥 ∈ (0, 1).
Scheme (21)-(22) applied to the SPDE (30) reduces to

𝑌
𝑁

𝑘+1
= 𝑃
𝑁
(𝑆
Δ𝑡
𝑌
𝑁

𝑘
+ Δ𝑡𝑆

Δ𝑡
𝐹 (𝑌

𝑁

𝑘
)

+ ∫

(𝑘+1)Δ𝑡

𝑘Δ𝑡

𝑆
Δ𝑡
𝐵 (𝑌

𝑁

𝑘
) 𝑑𝑊

𝑁

𝑠

+ ∫

(𝑘+1)Δ𝑡

𝑘Δ𝑡

𝑆
Δ𝑡
𝐵

(𝑌
𝑁

𝑘
)

× (∫

𝑠

𝑘Δ𝑡

𝐵 (𝑌
𝑁

𝑘
) 𝑑𝑊

𝑁

𝑢
)𝑑𝑊

𝑁

𝑠
) ,

(32)

where 𝑆
Δ𝑡
= (𝐼−Δ𝑡𝐴)

−1 andΔ𝑡 = 𝑇/𝑁2, 𝑘 ∈ {0, 1, . . . , 𝑁2−1},
𝑁 ∈ N. Therefore the numerical method (32) satisfies

𝑌
𝑁

𝑘
= 𝑆
𝑘

Δ𝑡
𝑌
𝑁

0
+ 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
𝐹 (𝑌

𝑁

𝑙
) 𝑑𝑠)

+ 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
𝐵 (𝑌

𝑁

𝑙
) 𝑑𝑊

𝑁

𝑠
)

+ 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
𝐵

(𝑌
𝑁

𝑙
)

× (∫

𝑠

𝑙Δ𝑡

𝐵 (𝑌
𝑁

𝑙
) 𝑑𝑊

𝑁

𝑢
)𝑑𝑊

𝑁

𝑠
) ,

(33)

where 𝑆𝑘
Δ𝑡
= (𝐼 − Δ𝑡𝐴)

−𝑘 and for all 𝑘 ∈ {0, 1, . . . , 𝑁
2
}, 𝑁 ∈

N. The following inequalities are classical and one can easily
prove them by using the spectral decomposition of 𝐴 [1]:


(−𝐴)

𝑠
𝑆
𝑙

Δ𝑡

𝐿(𝐻)
≤ 𝑀𝑡

−𝑠

𝑙
, 𝑙 ≥ 1, 𝑠 ∈ [0, 1] , (34)


(−𝐴)

𝑠
𝑒
𝑡𝐴𝐿(𝐻)

≤ 𝑀𝑡
−𝑠
, 𝑡 > 0, (35)


𝑆
𝑙

Δ𝑡
− 𝑒
𝑙Δ𝑡𝐴𝐿(𝐻)

≤
𝑀

𝑙
, (36)


(−𝐴)

−𝑠
(𝑒
𝑡𝐴
− 𝐼)

𝐿(𝐻)
≤ 𝑀𝑡

𝑠
, (37)

(−𝐴)
−𝑠
(𝑆
Δ𝑡
− 𝐼)

𝐿(𝐻) ≤ 𝑀(Δ𝑡)
𝑠
, 𝑠 ∈ [0, 1] . (38)
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To give the order of the 𝐿2 convergence for the simplified
Milstein approximation of the evolution equation, we need
the following version of the Gronwall lemma.

Lemma 6. Let {𝛼
𝑛
}
𝑛≥0
, {𝛽
𝑛
}
𝑛≥0

be two sequences of nonnega-
tive numbers such that 𝛼

0
= 𝛽

0
= 0 and such that there exists

a positive constant 𝐿 such that

𝛼
𝑛
≤ 𝐿

𝑛−1

∑

𝑘=0

𝛼
𝑘
+ 𝛽
𝑛
, ∀𝑛 ≥ 1; (39)

then

𝛼
𝑛
≤

𝑛−1

∑

𝑘=0

𝑒
(𝑛−𝑘−1)𝐿

(𝛽
(𝑘+1)

− 𝛽
𝑘
) , ∀𝑛 ≥ 1. (40)

Proof. ByMathematical inductionwith respect to 𝑛 using 𝐿 ≤
𝑒
𝐿
− 1 .

From the above lemma we can deduce that

∀𝑛 ≥ 1, 𝛼
𝑛
≤ 𝑒
(𝑛−1)𝐿

𝛽
𝑛
. (41)

The main result of this section is stated below.

Theorem 7. Let 𝑇 > 0, Δ𝑡 = 𝑇/𝑁
2, and 𝑋

0
∈ 𝐿

2
(Ω,𝐻).

Suppose that𝑋 is the solution of (2) on [0, 𝑇]. Let Assumptions
1–4 hold, and let {𝑌𝑁

𝑙
}
𝑙≥0

be the numerical approximations
obtained by scheme (33). Then there exists a positive constant
𝐶 such that

(𝐸

𝑒
𝑁

𝑘



2

𝐻
)
1/2

≤ 𝐶(( inf
𝑗>𝑁+1

𝜆
𝑗
)

−𝛾

+
(𝐸
𝑋0


2

𝐻
)
1/2

𝑘

+ ( sup
𝑗>𝑁+1

𝜇
𝑗
)

𝛼

+ (Δ𝑡)
min(2(𝛾−𝛽),𝛾)

) .

(42)

Proof. To start the proof, we first note that the exact solution
of SPDE (2) satisfies

𝑋
𝑘Δ𝑡

= 𝑒
𝐴𝑡
𝑋
0
+ ∫

𝑘Δ𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐹 (𝑋
𝑠
) 𝑑𝑠

+ ∫

𝑘Δ𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑𝑊

𝑠

= 𝑒
𝐴𝑡
𝑋
0
+

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑒
𝐴(𝑡−𝑠)

𝐹 (𝑋
𝑠
) 𝑑𝑠

+

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑𝑊

𝑠
,

(43)

where 𝑡 = 𝑘Δ𝑡. In particular, (43) shows

𝑃
𝑁
(𝑋
𝑘Δ𝑡
) = 𝑒

𝐴𝑡
𝑋
𝑁

0
+ 𝑃
𝑁
(∫

𝑘Δ𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐹 (𝑋
𝑠
) 𝑑𝑠)

+ 𝑃
𝑁
(∫

𝑘Δ𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑𝑊

𝑠
)

= 𝑒
𝐴𝑡
𝑋
𝑁

0
+ 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑒
𝐴(𝑡−𝑠)

𝐹 (𝑋
𝑠
) 𝑑𝑠)

+ 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑𝑊

𝑠
) .

(44)

Let

𝑒
𝑁

𝑘
= 𝑋

𝑘Δ𝑡
− 𝑌

𝑁

𝑘

= 𝑋
𝑘Δ𝑡

− 𝑃
𝑁
(𝑋
𝑘Δ𝑡
) + 𝑃

𝑁
(𝑋
𝑘Δ𝑡
) − 𝑌

𝑁

𝑘

= 𝑒
𝑁

𝑘
+ 𝑒
𝑁

𝑘
,

(45)

where

𝑒
𝑁

𝑘
= 𝑋

𝑘Δ𝑡
− 𝑃
𝑁
(𝑋
𝑘Δ𝑡
) , 𝑒

𝑁

𝑘
= 𝑃
𝑁
(𝑋
𝑘Δ𝑡
) − 𝑌

𝑁

𝑘
.

(46)

For the spatial discretization error 𝑒𝑁
𝑘
, we have

𝐸

𝑒
𝑁

𝑘



2

𝐻
= 𝐸

𝑋𝑘Δ𝑡 − 𝑃𝑁 (𝑋𝑘Δ𝑡)

2

𝐻

= 𝐸
(𝐼 − 𝑃𝑁)𝑋𝑘Δ𝑡


2

𝐻

= 𝐸
(−𝐴)

−𝛾
(𝐼 − 𝑃

𝑁
) (−𝐴)

𝛾
𝑋
𝑘Δ𝑡



2

𝐻

≤
(−𝐴)

−𝛾
(𝐼 − 𝑃

𝑁
)


2

𝐿(𝐻)
𝐸
𝑋𝑘Δ𝑡


2

𝑉𝛾

≤ 𝑅(𝑠
𝑁
)
2

;

(47)

the real numbers (𝑠
𝑁
)
𝑁∈N are given by (see [16])

𝑠
𝑁
:=
(−𝐴)

−𝛾
(𝐼 − 𝑃

𝑁
)
𝐿(𝐻) = ( inf

𝑗>𝑁+1

𝜆
𝑗
)

−𝛾

. (48)

For the 𝑒𝑁
𝑘
with respect to (33) and (44), we have

𝑒
𝑁

𝑘
= 𝑒
𝐴𝑡
𝑋
𝑁

0
− 𝑆
𝑘

Δ𝑡
𝑌
𝑁

0

+ 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

(𝑒
𝐴(𝑡−𝑠)

𝐹 (𝑋
𝑠
)

− 𝑆
𝑘−𝑙

Δ𝑡
𝐹 (𝑌

𝑁

𝑙
)) 𝑑𝑠)

+ 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

(𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑𝑊

𝑠
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− 𝑆
𝑘−𝑙

Δ𝑡
𝐵 (𝑌

𝑁

𝑙
) 𝑑𝑊

𝑁

𝑠
)

−

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
𝐵

(𝑌
𝑁

𝑙
)

× (∫

𝑠

𝑙Δ𝑡

𝐵 (𝑌
𝑁

𝑙
) 𝑑𝑊

𝑁

𝑢
)𝑑𝑊

𝑁

𝑠
)

= 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼,

(49)

where 𝐼 = 𝑒𝐴𝑡𝑋𝑁
0
−𝑆
𝑘

Δ𝑡
𝑌
𝑁

0
and 𝐼𝐼 and 𝐼𝐼𝐼 are, respectively, the

other terms under 𝑃
𝑁
operator. From (36), the first term of

(49) can be easily estimated by

𝐸‖𝐼‖
2

𝐻

= (𝐸

(𝑒
𝐴𝑡
− 𝑆
𝑘

Δ𝑡
)𝑋
𝑁

0
+ 𝑆
𝑘

Δ𝑡
(𝑋
𝑁

0
− 𝑌

𝑁

0
)


2

𝐻
)

≤ 𝐶(
𝐸

𝑋
𝑁

0



2

𝐻

𝑘2
+ 𝐸


𝑒
𝑁

0



2

𝐻
) .

(50)

Let 𝐶 denote a constant which may depend on 𝐴, 𝑓, 𝑏, 𝑅,𝑁,
𝑀, or 𝑇. We now treat the second term of (49)

𝐼𝐼 = 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

(𝑒
𝐴(𝑡−𝑠)

𝐹 (𝑋
𝑠
)

− 𝑆
𝑘−𝑙

Δ𝑡
𝐹 (𝑌

𝑁

𝑙
)) 𝑑𝑠)

= 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

(𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡
) 𝐹 (𝑋

𝑠
) 𝑑𝑠)

+ 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
(𝐹 (𝑋

𝑠
) − 𝐹 (𝑋

𝑙Δ𝑡
)) 𝑑𝑠)

+ 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
(𝐹 (𝑋

𝑙Δ𝑡
) − 𝐹 (𝑌

𝑁

𝑙
)) 𝑑𝑠)

= 𝐼𝐼
1
+ 𝐼𝐼

2
+ 𝐼𝐼

3
.

(51)

According to Assumption 2 and the fact that ‖𝑃
𝑁
(V)‖

𝐻
⩽

‖V‖
𝐻
for all V ∈ 𝐻, we get

𝐼𝐼1
𝐻 ≤ 𝐶

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡


𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡

𝐿(𝐻)

× (1 +
𝑋𝑠

𝑉𝛾
) 𝑑𝑠

≤ 𝐶∫

𝑘Δ𝑡

(𝑘−1)Δ𝑡


𝑒
𝐴(𝑡−𝑠)

− 𝑆
Δ𝑡

𝐿(𝐻)
(1 +

𝑋𝑠
𝑉𝛾
) 𝑑𝑠

+ 𝐶

𝑘−2

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡


𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡

𝐿(𝐻)

× (1 +
𝑋𝑠

𝑉𝛾
) 𝑑𝑠.

(52)

For the first term on the right-hand side of inequality (52), we
have

𝐸(∫

𝑘Δ𝑡

(𝑘−1)Δ𝑡


𝑒
𝐴(𝑡−𝑠)

− 𝑆
Δ𝑡

𝐿(𝐻)
(1 +

𝑋𝑠
𝑉𝛾
) 𝑑𝑠)

2

≤ 𝑀(Δ𝑡)
2
(1 + sup

𝑡∈[0,𝑇]

𝐸
𝑋𝑡


2

𝑉𝛾
) .

(53)

To estimate the second term of (52), one should note that


𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡

𝐿(𝐻)
≤

𝑒
𝐴(𝑡−𝑠)

− 𝑒
𝐴(𝑘−𝑙−1)Δ𝑡𝐿(𝐻)

+

𝑒
𝐴(𝑘−𝑙−1)Δ𝑡

− 𝑆
𝑘−𝑙

Δ𝑡

𝐿(𝐻)

(54)

and from (35) and (37), we have


𝑒
𝐴(𝑡−𝑠)

− 𝑒
𝐴(𝑘−𝑙−1)Δ𝑡𝐿(𝐻)

≤

(−𝐴)

𝛾
𝑒
𝐴(𝑘−𝑙−1)Δ𝑡𝐿(𝐻)

×

(−𝐴)

−𝛾
(𝑒
𝐴(𝑙+1)Δ𝑡−𝑠

− 𝐼)
𝐿(𝐻)

≤ 𝐶
((𝑙 + 1)Δ𝑡 − 𝑠)

𝛾

((𝑘 − 𝑙 − 1)Δ𝑡)
𝛾
.

(55)

Therefore, from (35), (38), and (36), we have


𝑒
𝐴(𝑘−𝑙−1)Δ𝑡

− 𝑆
𝑘−𝑙

Δ𝑡

𝐿(𝐻)

≤

(−𝐴)

𝛾
(𝑒
𝐴(𝑘−𝑙−1)Δ𝑡

) (−𝐴)
−𝛾
(𝐼 − 𝑆

Δ𝑡
)
𝐿(𝐻)

+

𝑆
Δ𝑡
(𝑒
𝐴(𝑘−𝑙−1)Δ𝑡

− 𝑆
𝑘−𝑙−1

Δ𝑡
)
𝐿(𝐻)

≤ 𝑀(
Δ𝑡
𝛾

((𝑘 − 𝑙 − 1) Δ𝑡)
𝛾
+

1

𝑘 − 𝑙 − 1
)

≤ 𝐶
(Δ𝑡)

𝛾

((𝑘 − 𝑙 − 1)Δ𝑡)
𝛾
;

(56)

thus we have


𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡

𝐿(𝐻)
≤ 𝑀(

(Δ𝑡)
𝛾

((𝑘 − 𝑙 − 1) Δ𝑡)
𝛾
) . (57)
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Therefore, by taking the expectation of (52) to the power of 2
and using (53) and (57), we get

𝐸
𝐼𝐼1


2

𝐻

≤ 𝐶(

𝑘−2

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

(Δ𝑡)
𝛾

((𝑘 − 𝑙 − 1)Δ𝑡)
𝛾
(1 + 𝐸

𝑋𝑠

2

𝑉𝛾
) 𝑑𝑠)

2

+ 𝐶(Δ𝑡)
2
,

(58)

in which the summation can be estimated as

𝑘−2

∑

𝑙=0

Δ𝑡

((𝑘 − 𝑙 − 1)Δ𝑡)
𝑑
≤

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑑𝑡

𝑡𝑑

≤
1

1 − 𝑑
𝑇
1−𝑑

, 𝑑 < 1.

(59)

For the second term of (51), Proposition 5 and Assumption 2
lead to

𝐸
𝐼𝐼2


2

𝐻
≤

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡


𝑆
𝑘−𝑙

Δ𝑡



2

𝐿(𝐻)
(Δ𝑡)

2min{𝛾,1/2}
𝑑𝑠

≤ 𝐶(Δ𝑡)
2min{𝛾,1/2}

.

(60)

For the third term of (51), by using Assumption 2, we have

𝐼𝐼3
𝐻 ≤

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡


𝑆
𝑘−𝑙

Δ𝑡
(𝑓 (𝑋

𝑙Δ𝑡
) − 𝑓 (𝑌

𝑁

𝑙
))
𝐻
𝑑𝑠

≤

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡


𝑆
𝑘−𝑙

Δ𝑡

𝐿(𝐻)


𝑒
𝑁

𝑙

𝐻
𝑑𝑠

≤ 𝐶

𝑘−1

∑

𝑙=0

Δ𝑡

𝑒
𝑁

𝑙

𝐻

(61)

which leads to

𝐸
𝐼𝐼3


2

𝐻
≤ 𝐶(

𝑘−1

∑

𝑙=0

(Δ𝑡) (𝐸

𝑒
𝑁

𝑙



2

𝐻
)
1/2

)

2

, (62)

where we have used the Minkowski inequality in (62).
Therefore, from (58), (60), and (62), we get

𝐸‖𝐼𝐼‖
2

𝐻
≤ 𝐶((Δ𝑡)

2𝛾
+ (Δ𝑡)

2min{𝛾,1/2}

+ (

𝑘−1

∑

𝑙=0

(Δ𝑡) (𝐸

𝑒
𝑁

𝑙



2

𝐻
)
1/2

)

2

) .

(63)

Now for the last term of (49), we obtain

𝐼𝐼𝐼 = 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

(𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑𝑊

𝑠

− 𝑆
𝑘−𝑙

Δ𝑡
𝐵 (𝑌

𝑁

𝑙
) 𝑑𝑊

𝑁

𝑠
)

−

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
𝐵

(𝑌
𝑁

𝑙
)

× (∫

𝑠

𝑙Δ𝑡

𝐵 (𝑌
𝑁

𝑙
) 𝑑𝑊

𝑁

𝑢
)𝑑𝑊

𝑁

𝑠
)

= 𝐼𝐼𝐼
1
+ 𝐼𝐼𝐼

2
+ 𝐼𝐼𝐼

3
+ 𝐼𝐼𝐼

4
,

(64)

where

𝐼𝐼𝐼
1
= 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑒
𝐴(𝑡−𝑠)

× 𝐵 (𝑋
𝑠
) (𝑑𝑊

𝑠
− 𝑑𝑊

𝑁

𝑠
)) ,

𝐼𝐼𝐼
2
= 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

(𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡
)

× 𝐵 (𝑋
𝑠
) 𝑑𝑊

𝑁

𝑠
) ,

𝐼𝐼𝐼
3
= 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡

× (𝐵 (𝑋
𝑙Δ𝑡
) − 𝐵 (𝑌

𝑁

𝑙
)) 𝑑𝑊

𝑁

𝑠
) ,

𝐼𝐼𝐼
4
= 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡

× (𝐵 (𝑋
𝑠
) − 𝐵 (𝑋

𝑙Δ𝑡
)) 𝑑𝑊

𝑁

𝑠

−

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
𝐵

(𝑌
𝑁

𝑙
)

× (∫

𝑠

𝑙Δ𝑡

𝐵 (𝑌
𝑁

𝑙
) 𝑑𝑊

𝑁

𝑢
)𝑑𝑊

𝑁

𝑠
) .

(65)

Using the fact that ‖𝑃
𝑁
(V)‖

𝐻
⩽ ‖V‖

𝐻
for all V ∈ 𝐻, for 𝐼𝐼𝐼

1
, we

have

𝐸


∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑 (𝑊

𝑠
−𝑊

𝑁

𝑠
)



2

𝐻

= 𝐸



∞

∑

𝑗=𝑁+1

(∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑔
𝑗
𝑑 ⟨𝑔

𝑗
,𝑊
𝑠
⟩)

𝐻

=

∞

∑

𝑗=𝑁+1

𝜇
𝑗
(∫

𝑡

0

𝐸

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑔
𝑗



2

𝐻
𝑑𝑠) ,

(66)
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and therefore

𝐸


∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑 (𝑊

𝑠
−𝑊

𝑁

𝑠
)



2

𝐻

=

∞

∑

𝑗=𝑁+1

𝜇
𝑗
(∫

𝑡

0

𝐸

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑄
−𝛼
𝑄
𝛼
𝑔
𝑗



2

𝐻
𝑑𝑠)

=

∞

∑

𝑗=𝑁+1

(𝜇
𝑗
)
2𝛼+1

(∫

𝑡

0

𝐸

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑄
−𝛼
𝑔
𝑗



2

𝐻
𝑑𝑠) .

(67)

Thus

𝐸


∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑 (𝑊

𝑠
−𝑊

𝑁

𝑠
)



2

𝐻

≤ ( sup
𝑗>𝑁+1

𝜇
𝑗
)

2𝛼

×

∞

∑

𝑗=𝑁+1

𝜇
𝑗
(∫

𝑡

0

𝐸

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑄
−𝛼
𝑔
𝑗



2

𝐻
𝑑𝑠)

≤ ( sup
𝑗>𝑁+1

𝜇
𝑗
)

2𝛼

×

∞

∑

𝑗=1

𝜇
𝑗
(∫

𝑡

0

𝐸

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑄
−𝛼
𝑔
𝑗



2

𝐻
𝑑𝑠)

(68)

which means

𝐸


∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑 (𝑊

𝑠
−𝑊

𝑁

𝑠
)



2

𝐻

≤ ( sup
𝑗>𝑁+1

𝜇
𝑗
)

2𝛼

× (∫

𝑡

0

𝐸

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑄
−𝛼
𝑔
𝑗



2

𝐻𝑆(𝑈0 ,𝐻)
𝑑𝑠)

≤ ( sup
𝑗>𝑁+1

𝜇
𝑗
)

2𝛼

× (∫

𝑡

0

(𝑡 − 𝑠)
2𝜃
𝐸

(−𝐴)

−𝜃
𝐵 (𝑋

𝑠
) 𝑄
−𝛼

2

𝐻𝑆(𝑈0 ,𝐻)
𝑑𝑠) .

(69)

Therefore, from (13), we get

𝐸


∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑 (𝑊

𝑠
−𝑊

𝑁

𝑠
)



2

𝐻

≤ 𝐶( sup
𝑗>𝑁+1

𝜇
𝑗
)

2𝛼

× (∫

𝑡

0

(𝑡 − 𝑠)
−2𝜃
𝐸 [(1 +

𝑋𝑠
𝑉𝛾
)
2

] 𝑑𝑠)

≤ 𝐶( sup
𝑗>𝑁+1

𝜇
𝑗
)

2𝛼

× (∫

𝑡

0

(𝑡 − 𝑠)
−2𝜃

[(1 + 𝐸
𝑋𝑠

𝑉𝛾
)
2

] 𝑑𝑠)

≤ 𝐶( sup
𝑗>𝑁+1

𝜇
𝑗
)

2𝛼

(∫

𝑡

0

(𝑡 − 𝑠)
−2𝜃
𝑑𝑠) ,

(70)

which leads to

𝐸
𝐼𝐼𝐼1


2

𝐻
≤ 𝐸


∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵 (𝑋
𝑠
) 𝑑 (𝑊

𝑠
−𝑊

𝑁

𝑠
)



2

𝐻

≤ 𝐶( sup
𝑗>𝑁+1

𝜇
𝑗
)

2𝛼

.

(71)

For 𝐼𝐼𝐼
2
, by Proposition 5, it is seen that

𝐸



𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

(𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡
) 𝐵 (𝑋

𝑠
) 𝑑𝑊

𝑁

𝑠



2

𝐻

≤

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝐸

(𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡
) 𝐵 (𝑋

𝑠
)


2

𝐻𝑆(𝑈0 ,𝐻)
𝑑𝑠

≤

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡


(−𝐴)

−𝛿
(𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡
)


2

𝐿(𝐻)

×
𝐵 (𝑋𝑠)


2

𝐻𝑆(𝑈0 ,𝑉𝛿)
𝑑𝑠

≤ 𝑅

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡


(−𝐴)

−𝛿
(𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡
)


2

𝐿(𝐻)
𝑑𝑠,

(72)

in which

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δt


(−𝐴)

−𝛿
(𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡
)


2

𝐿(𝐻)
𝑑𝑠

=

𝑘−2

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡


(−𝐴)

−𝛿
(𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡
)


2

𝐿(𝐻)
𝑑𝑠

+ ∫

𝑘Δ𝑡

(𝑘−1)Δ𝑡


(−𝐴)

−𝛿
(𝑒
𝐴(𝑡−𝑠)

− 𝑆
Δ𝑡
)


2

𝐿(𝐻)
𝑑𝑠.

(73)

Now for the first term on the right-hand side of (73), we need
to estimate


(−𝐴)

−𝛿
(𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡
)


2

𝐿(𝐻)

≤

(−𝐴)

−𝛿
(𝑒
𝐴(𝑡−𝑠)

− 𝑒
𝐴(𝑘−𝑙−1)Δ𝑡

)
𝐿(𝐻)

+

(−𝐴)

−𝛿
(𝑒
𝐴(𝑘−𝑙−1)Δ𝑡

− 𝑆
𝑘−𝑙

Δ𝑡
)
𝐿(𝐻)

(74)
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and then by (34) and (36), we obtain

(−𝐴)

−𝛿
(𝑒
𝐴(𝑡−𝑠)

− 𝑒
𝐴(𝑘−𝑙−1)Δ𝑡

)
𝐿(𝐻)

≤

(−𝐴)

1−𝛿
𝑒
𝐴(𝑘−𝑙−1)Δ𝑡𝐿(𝐻)

×

(−𝐴)

−1
(𝑒
𝐴(𝑙+1)Δ𝑡−𝑠

− 𝐼)
𝐿(𝐻)

≤ 𝐶
((𝑘 + 1) Δ𝑡 − 𝑠)

((𝑘 − 𝑙 − 1) Δ𝑡)
1−𝛿

.

(75)

Similarly from (34), (35), we obtain

(−𝐴)

−𝛿
(𝑒
𝐴(𝑘−𝑙−1)Δ𝑡

− 𝑆
𝑘−𝑙

Δ𝑡
)
𝐿(𝐻)

≤

(−𝐴)

1/2−𝛿
𝑒
𝐴(𝑘−𝑙−1)Δ𝑡

(−𝐴)
−1/2

(𝐼 − 𝑆
Δ𝑡
)
𝐿(𝐻)

+

(−𝐴)

−𝛿
𝑆
Δ𝑡
(𝑒
𝐴(𝑘−𝑙−1)Δ𝑡

− 𝑆
𝑘−𝑙−1

Δ𝑡
)
𝐿(𝐻)

≤ 𝐶(
(Δ𝑡)

1/2

((𝑘 − 𝑙 − 1) Δ𝑡)
1/2−𝛿

+
1

𝑘 − 𝑙 − 1
)

≤ 𝐶(
(Δ𝑡)

1/2

((𝑘 − 𝑙 − 1) Δ𝑡)
1/2−𝛿

+
(Δ𝑡)

𝛾1

((𝑘 − 𝑙 − 1) Δ𝑡)
𝛾1
) ,

(76)

where 𝛾
1
> 0 is such that

𝛾 < 𝛾
1
<
1

2
, (77)

which is possible since

𝛾 <
1

2
. (78)

Therefore,

(−𝐴)

−𝛿
(𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡
)


2

𝐿(𝐻)

≤ 𝐶(
(Δ𝑡)

((𝑘 − 𝑙 − 1) Δ𝑡)
1−2𝛿

+
(Δ𝑡)

2𝛾1

((𝑘 − 𝑙 − 1) Δ𝑡)
2𝛾1
) .

(79)

For the second term on the right-hand side of (73), we can
write


(−𝐴)

−𝛿
(𝑒
𝐴(𝑡−𝑠)

− 𝑆
Δ𝑡
)


2

𝐿(𝐻)

≤

(−𝐴)

−𝛿
(𝑒
𝐴(𝑡−𝑠)

− 𝐼) + (𝐼 − 𝑆
Δ𝑡
)
𝐿(𝐻)

≤ 𝐶 ((𝑡 − 𝑠)
𝛿
+ (Δ𝑡)

𝛿
) ,

(80)

from which we get

∫

𝑘Δ𝑡

(𝑘−1)Δ𝑡


(−𝐴)

−𝛿
(𝑒
𝐴(𝑡−𝑠)

− 𝑆
Δ𝑡
)


2

𝐿(𝐻)
𝑑𝑠 ≤ 𝐶(Δ𝑡)

1+2𝛿
. (81)

Thus from (73), after replacing (79) and (81) in (72), we obtain

𝐸



𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

(𝑒
𝐴(𝑡−𝑠)

− 𝑆
𝑘−𝑙

Δ𝑡
) 𝐵 (𝑋

𝑠
) 𝑑𝑊

𝑁

𝑠



2

𝐻

≤ 𝐶 ((Δ𝑡) + (Δ𝑡)
2𝛾1 + (Δ𝑡)

1+2𝛿
) ,

(82)

which gives

𝐸
𝐼𝐼𝐼2


2

𝐻
≤ 𝐶(Δ𝑡)

2𝛾1 ≤ 𝐶(Δ𝑡)
2𝛾
, since 𝛾 < 𝛾

1
. (83)

For the third term 𝐼𝐼𝐼
3
, we have

𝐸



𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
(𝐵 (𝑋

𝑙Δ𝑡
) − 𝐵 (𝑌

𝑁

𝑙
)) 𝑑𝑊

𝑁

𝑠



2

𝐻

≤

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝐸

𝑆
𝑘−𝑙

Δ𝑡
(𝐵 (𝑋

𝑙Δ𝑡
) − 𝐵 (𝑌

𝑁

𝑙
))
𝐻𝑆(𝑈0 ,𝐻)

𝑑𝑠

≤

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝐸

𝑆
𝑘−𝑙

Δ𝑡

𝐿(𝐻)

×

(𝐵 (𝑋

𝑙Δ𝑡
) − 𝐵 (𝑌

𝑁

𝑙
))
𝐻𝑆(𝑈0 ,𝐻)

𝑑𝑠

≤ 𝐶

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝐸

𝑒
𝑁

𝑙



2

𝐻
𝑑𝑠.

(84)

This implies that

𝐸
𝐼𝐼𝐼3


2

𝐻

≤ 𝐸



𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
(𝐵 (𝑋

𝑙Δ𝑡
) − 𝐵 (𝑌

𝑁

𝑙
)) 𝑑𝑊

𝑁

𝑠



2

𝐻

≤ 𝐶

𝑘−1

∑

𝑙=0

(Δ𝑡) 𝐸

𝑒
𝑁

𝑙



2

𝐻
.

(85)

Finally for 𝐼𝐼𝐼
4
, the last term of (65), we should recall

𝐼𝐼𝐼
4
= 𝑃
𝑁
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡

× (𝐵 (𝑋
𝑠
) − 𝐵 (𝑋

𝑙Δ𝑡
)) 𝑑𝑊

𝑁

𝑠

−

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
𝐵

(𝑌
𝑁

𝑙
)

× (∫

𝑠

𝑙Δ𝑡

𝐵 (𝑌
𝑁

𝑙
) 𝑑𝑊

𝑁

𝑢
)𝑑𝑊

𝑁

𝑠
) .

(86)

Using the fact that

𝐵 (𝑋
𝑠
) − 𝐵 (𝑋

𝑙Δ𝑡
)

= 𝐵

(𝑋
𝑙Δ𝑡
) (𝑋

𝑠
− 𝑋

𝑙Δ𝑡
)

+ ∫

1

0

𝐵 (𝑋
𝑙Δ𝑡
+ 𝑟 (𝑋

𝑠
− 𝑋

𝑙Δ𝑡
)) (𝑋

𝑠
− 𝑋

𝑙Δ𝑡
, 𝑋
𝑠
− 𝑋

𝑙Δ𝑡
)

× (1 − 𝑟) 𝑑𝑟

(87)
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for all 𝑠 ∈ [𝑙Δ𝑡, (𝑙 + 1)Δ𝑡], 𝑙 ∈ {0, 1, 2, . . . , 𝑁2 − 1},𝑁 ∈ N, and
𝑟 ∈ (0, 1) and using the inequality

(𝑎
1
+ 𝑎
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑛
)
2

≤ 𝑛 (𝑎
2

1
+ 𝑎
2

2
+ ⋅ ⋅ ⋅ + 𝑎

2

𝑛
) (88)

for all 𝑎
𝑖
∈ R, 𝑖 = 1, . . . , 𝑁, for 𝐼𝐼𝐼

4
, we obtain

𝐸
𝐼𝐼𝐼4


2

𝐻

≤ 2𝐸



𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
𝐵

(𝑋
𝑙Δ𝑡
)

× (𝑋
𝑠
− 𝑋

Δ𝑡
− ∫

𝑠

𝑙Δ𝑡

𝐵 (𝑋
𝑙Δ𝑡
) 𝑑𝑊

𝑁

𝑢
)𝑑𝑊

𝑁

𝑠



2

𝐻

+ 2𝐸



∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
∫

1

0

𝐵

(𝑋
𝑙Δ𝑡
+ 𝑟 (𝑋

𝑠
− 𝑋

𝑙Δ𝑡
))

× (𝑋
𝑠
− 𝑋

𝑙Δ𝑡
, 𝑋
𝑠
− 𝑋

𝑙Δ𝑡
)

× (1 − 𝑟) 𝑑𝑟 𝑑𝑊
𝑁

𝑠



2

𝐻

.

(89)

To estimate the first term of (89), we first approximate

𝐸


𝑋
𝑠
− 𝑋

𝑙Δ𝑡
− ∫

𝑠

𝑙Δ𝑡

𝐵 (𝑋
𝑙Δ𝑡
) 𝑑𝑊

𝑁

𝑢



2

𝐻

(90)

for all 𝑙Δ𝑡, 𝑠 ∈ [0, 𝑇], with 𝑙Δ𝑡 ≤ 𝑠 and all 𝑁 ∈ N. More
precisely, with respect to (88), we have

𝐸


𝑋
𝑠
− 𝑋

𝑙Δ𝑡
− ∫

𝑠

𝑙Δ𝑡

𝐵 (𝑋
𝑙Δ𝑡
) 𝑑𝑊

𝑁

𝑢



2

𝐻

≤ 5𝐸

(𝑒
𝐴(𝑠−𝑙Δ𝑡)

− 𝐼)𝑋
𝑙Δ𝑡



2

𝐻

+ 5𝐸


∫

𝑠

𝑙Δ𝑡

𝑒
𝐴(𝑠−𝑢)

𝐹 (𝑋
𝑢
) 𝑑𝑢



2

𝐻

+ 5𝐸


∫

𝑠

𝑙Δ𝑡

𝑒
𝐴(𝑠−𝑢)

𝐵 (𝑋
𝑢
) 𝑑 (𝑊

𝑢
−𝑊

𝑁

𝑢
)



2

𝐻

+ 5𝐸


∫

𝑠

𝑙Δ𝑡

(𝑒
𝐴(𝑠−𝑢)

− 𝐼) 𝐵 (𝑋
𝑢
) 𝑑𝑊

𝑁

𝑢

𝐻

+ 5𝐸


∫

𝑠

𝑙Δ𝑡

(𝐵 (𝑋
𝑢
) − 𝐵 (𝑋

𝑠
)) 𝑑𝑊

𝑁

𝑢



2

𝐻

.

(91)

By using (71), we have

𝐸


𝑋
𝑠
− 𝑋

𝑙Δ𝑡
− ∫

𝑠

𝑙Δ𝑡

𝐵 (𝑋
𝑙Δ𝑡
) 𝑑𝑊

𝑁

𝑢



2

𝐻

≤ 5

(−𝐴)

−𝛾
(𝑒
𝐴(𝑠−𝑙Δ𝑡)

− 𝐼)


2

𝐿(𝐻)
𝐸
(−𝐴)

𝛾
𝑋
𝑙Δ𝑡


2

𝐻

+ 5 (𝑠 − 𝑙Δ𝑡) (∫

𝑠

𝑙Δ𝑡

𝐸

𝑒
𝐴(𝑠−𝑢)

𝐹 (𝑋
𝑢
)


2

𝐻
𝑑𝑢)

+ 𝐶( sup
𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

+ 5(∫

𝑠

𝑙Δ𝑡

𝐸

(𝑒
𝐴(𝑠−𝑢)

− 𝐼) 𝐵 (𝑋
𝑢
)


2

𝐻𝑆(𝑈0,𝐻)
𝑑𝑢)

+ 5(∫

𝑠

𝑙Δ𝑡

𝐸
𝐵 (𝑋𝑢) − 𝐵 (𝑋𝑙Δ𝑡)


2

𝐻𝑆(𝑈0,𝐻)
𝑑𝑢) .

(92)

This implies that

𝐸


𝑋
𝑠
− 𝑋

𝑙Δ𝑡
− ∫

𝑠

𝑙Δ𝑡

𝐵(𝑋
𝑙Δ𝑡
)𝑑𝑊

𝑁

𝑢



2

𝐻

≤ 5𝑅(𝑠 − 𝑙Δ𝑡)
2𝛾
+ 5 (𝑠 − 𝑙Δ𝑡)

× (∫

𝑠

𝑙Δ𝑡

𝐸
𝐹 (𝑋𝑢)


2

𝐻
𝑑𝑢) + 𝐶( sup

𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

+ 5(∫

𝑠

𝑙Δ𝑡


(−𝐴)

−𝛿
(𝑒
𝐴(𝑠−𝑢)

− 𝐼)


2

𝐿(𝐻)

× 𝐸

(−𝐴)

𝛿
𝐵 (𝑋

𝑢
)


2

𝐻𝑆(𝑈0,𝐻)
𝑑𝑢)

+ 5𝑅
2
(∫

𝑠

𝑙Δ𝑡

𝐸
𝑋𝑢 − 𝑋𝑙Δ𝑡


2

𝐻
𝑑𝑢)

≤ 5𝑅(𝑠 − 𝑙Δ𝑡)
2𝛾
+ 5𝑅(𝑠 − 𝑙Δ𝑡)

2
+ 𝐶( sup

𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

+ 5(∫

𝑠

𝑙Δ𝑡


(−𝐴)

−𝛿
(𝑒
𝐴(𝑠−𝑢)

− 𝐼)


2

𝐿(𝐻)

× 𝐸

(−𝐴)

𝛿
𝐵 (𝑋

𝑢
)


2

𝐻𝑆(𝑈0 ,𝐻)
𝑑𝑢)

+ 5𝑅
2
(∫

𝑠

𝑙Δ𝑡

𝐸
𝑋𝑢 − 𝑋𝑙Δ𝑡


2

𝐻
𝑑𝑢)

≤ 5𝑅(𝑠 − 𝑙Δ𝑡)
2𝛾

+ 5𝑅(𝑠 − 𝑙Δ𝑡)
2
+ 𝐶( sup

𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

+ 5(∫

𝑠

𝑙Δ𝑡

(𝑠 − 𝑢)
2𝛿
𝐸

(−𝐴)

𝛿
𝐵 (𝑋

𝑢
)


2

𝐻𝑆(𝑈0 ,𝐻)
𝑑𝑢)

+ 5𝑅
2
(∫

𝑠

𝑙Δ𝑡


(−𝐴)

−𝛽𝐿(𝐻)
𝐸
𝑋𝑢 − 𝑋𝑠


2

𝑉𝛽
𝑑𝑢)

(93)
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for all 𝑙Δ𝑡, 𝑠 ∈ [0, 𝑇], with 𝑙Δ𝑡 ≤ 𝑠, and all 𝑘 ∈ N. Therefore,
we obtain

𝐸


𝑋
𝑠
− 𝑋

𝑙Δ𝑡
− ∫

𝑠

𝑙Δ𝑡

𝐵 (𝑋
𝑙Δ𝑡
) 𝑑𝑊

𝑁

𝑢



2

𝐻

≤ 5𝑅(𝑠 − 𝑙Δ𝑡)
2𝛾
+ 5𝑅(𝑠 − 𝑙Δ𝑡)

2

+ 𝐶( sup
𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

+ 5𝑅(∫

𝑠

𝑙Δ𝑡

(𝑠 − 𝑢)
2𝛿
𝑑𝑢)

+ 5𝑅
4
(∫

𝑠

𝑙Δ𝑡

𝐸
𝑋𝑢 − 𝑋𝑙Δ𝑡


2

𝑉𝛽
𝑑𝑢)

≤ 10𝑅
3
(𝑠 − 𝑙Δ𝑡)

2𝛾
+ 𝐶( sup

𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

+ 5𝑅(𝑠 − 𝑙Δ𝑡)
1+2𝛿

+ 5𝑅
4
(∫

𝑠

𝑙Δ𝑡

𝐸
𝑋𝑢 − 𝑋𝑙Δ𝑡


2

𝑉𝛽
𝑑𝑢)

≤ 15𝑅
3
(𝑠 − 𝑙Δ𝑡)

2𝛾
+ 𝐶( sup

𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

+ 5𝑅
4
(∫

𝑠

𝑙Δ𝑡

(𝐸
𝑋𝑢 − 𝑋𝑙Δ𝑡


4

𝑉𝛽
)
1/2

𝑑𝑢)

≤ 15𝑅
3
(𝑠 − 𝑙Δ𝑡)

2𝛾
+ 𝐶( sup

𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

+ 5𝑅
4
(∫

𝑠

𝑙Δ𝑡

𝑅(𝑢 − 𝑙Δ𝑡)
min(4(𝛾−𝛽),2)

)

1/2

𝑑𝑢

(94)

and hence

𝐸


𝑋
𝑠
− 𝑋

𝑙Δ𝑡
− ∫

𝑠

𝑙Δ𝑡

𝐵 (𝑋
𝑙Δ𝑡
) 𝑑𝑊

𝑁

𝑢



2

𝐻

≤ 15𝑅
3
((𝑠 − 𝑙Δ𝑡)

2𝛾
+ 𝐶( sup

𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

+ 5𝑅
5
(∫

𝑠

𝑙Δ𝑡

(𝑢 − 𝑙Δ𝑡)
min(4(𝛾−𝛽),2)

)𝑑𝑢)

≤ 15𝑅
3
((𝑠 − 𝑙Δ𝑡)

2𝛾
+ 𝐶( sup

𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

+ 5𝑅
5
(𝑠 − 𝑙Δ𝑡)

1+min(4(𝛾−𝛽),2)
)

≤ 𝐶((𝑠 − 𝑙Δ𝑡)
min(4(𝛾−𝛽),2𝛾)

+ ( sup
𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

)

(95)

for all 𝑙Δ𝑡, 𝑠 ∈ [0, 𝑇], with 𝑙Δ𝑡 ≤ 𝑠.

Therefore,

𝐸



𝑘−1

∑

𝑙=0

∫

𝑙+1Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
𝐵

(𝑋
𝑙Δ𝑡
)

× (𝑋
𝑠
− 𝑋

𝑙Δ𝑡
− ∫

𝑠

𝑙Δ𝑡

𝐵 (𝑋
𝑙Δ𝑡
) 𝑑𝑊

𝑁

𝑢
)𝑑𝑊

𝑁

𝑠



2

𝐻

≤

𝑘−1

∑

𝑙=0

∫

𝑙+1Δ𝑡

𝑙Δ𝑡

𝐸

×


𝐵

(𝑋
𝑙Δ𝑡
)

× (𝑋
𝑠
− 𝑋

𝑙Δ𝑡

−∫

𝑠

𝑙Δ𝑡

𝐵 (𝑋
𝑙Δ𝑡
) 𝑑𝑊

𝑁

𝑢
)𝑑𝑊

𝑁

𝑠



2

𝐻𝑆(𝑈0 ,𝐻)

𝑑𝑠

≤ 𝑅
2
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝐸

×


𝑋
𝑠
− 𝑋

𝑙Δ𝑡
− ∫

𝑠

𝑙Δ𝑡

𝐵 (𝑋
𝑙Δ𝑡
) 𝑑𝑊

𝑁

𝑢



2

𝐻

𝑑𝑠)

(96)

and hence from (95), we get

𝐸



𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
𝐵

(𝑋
𝑙Δ𝑡
)

× (𝑋
𝑠
− 𝑋

𝑙Δ𝑡
− ∫

𝑠

𝑙Δ𝑡

𝐵 (𝑋
𝑙Δ𝑡
) 𝑑𝑊

𝑁

𝑢
)𝑑𝑊

𝑁

𝑠



2

𝐻

≤ 𝐶(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

((𝑠 − 𝑙Δ𝑡)
min(4(𝛾−𝛽),2𝛾)

+( sup
j>𝑁+1

𝜂
𝑗
)

2𝛼

)𝑑𝑠)

≤ 𝐶(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

(𝑠 − 𝑙Δ𝑡)
min(4(𝛾−𝛽),2𝛾)

𝑑𝑠

+( sup
𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

)

≤ 𝐶(𝑁
2
(Δ𝑡)

(1+min(4(𝛾−𝛽),2𝛾))
+ ( sup

𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

)

≤ 𝐶((Δ𝑡)
min(4(𝛾−𝛽),2𝛾)

+ ( sup
𝑗>𝑁+1

𝜂
𝑗
)

2𝛼

) .

(97)
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And for the second term of (89), we have

𝐸



𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑆
𝑘−𝑙

Δ𝑡
∫

1

0

𝐵

(𝑋
𝑙Δ𝑡
+ 𝑟 (𝑋

𝑠
− 𝑋

𝑙Δ𝑡
))

× (𝑋
𝑠
− 𝑋

𝑙Δ𝑡
, 𝑋
𝑠
− 𝑋

𝑙Δ𝑡
)

× (1 − 𝑟) 𝑑𝑟 𝑑𝑊
𝑁

𝑠



2

𝐻

(98)

≤

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

∫

1

0

𝐸

𝐵

(𝑋
𝑙Δ𝑡
+ 𝑟 (𝑋

𝑠
− 𝑋

𝑙Δ𝑡
))

× (𝑋
𝑠
− 𝑋

𝑙Δ𝑡
,

𝑋
𝑠
− 𝑋

𝑙Δ𝑡
)


2

𝐻𝑆(𝑈0,𝐻)
𝑑𝑟 𝑑𝑠

≤

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝐸 [(𝑅
𝑋𝑠 − 𝑋𝑙Δ𝑡


2

𝑉𝛽
)
2

] 𝑑𝑠

≤ 𝑅
2

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝐸
𝑋𝑠 − 𝑋𝑙Δ𝑡


4

𝑉𝛽
𝑑𝑠

≤ 𝑅
2
(

𝑘−1

∑

𝑙=0

∫

(𝑙+1)Δ𝑡

𝑙Δ𝑡

𝑅(𝑆 − 𝑙Δ𝑡)
min(4(𝛾−𝛽),2)

𝑑𝑠

≤ 𝑅
3

𝑘−1

∑

𝑙=0

(Δ𝑡)
1+min(4(𝛾−𝛽),2)

)

≤ 𝐶(Δ𝑡)
min(4(𝛾−𝛽),2)

.

(99)

Therefore, from (71), (83), (85), (89), (97), and (98), we obtain

𝐸‖𝐼𝐼𝐼‖
2

𝐻

≤ 𝐶(( sup
𝑗>𝑁+1

𝜇
𝑗
)

2𝛼

+ (Δ𝑡)
2𝛾
+

𝑘−1

∑

𝑙=0

(Δ𝑡) 𝐸

𝑒
𝑁

𝑙



2

𝐻
)

+ (Δ𝑡)
min(4(𝛾−𝛽),2𝛾)

+ ( sup
𝑗>𝑁+1

𝜇
𝑗
)

2𝛼

+ (Δ𝑡)
min(4(𝛾−𝛽),2𝛾)

≤ 𝐶(( sup
𝑗>𝑁+1

𝜇
𝑗
)

2𝛼

+ (Δ𝑡)
min(4(𝛾−𝛽),2𝛾)

+

𝑘−1

∑

𝑙=0

(Δ𝑡) 𝐸

𝑒
𝑁

𝑙



2

𝐻
) .

(100)

Hence from (50), (63), and (100), we obtain

(𝐸

𝑒
𝑁

𝑘



2

𝐻
)
1/2

≤ 𝐶(
(𝐸
𝑋0


2

𝐻
)
1/2

𝑘
+ (𝐸


𝑒
𝑁

0



2

𝐻
)
1/2

+ (Δ𝑡)
𝛾

+ (Δ𝑡)
min{𝛾,1/2}

+

𝑘−1

∑

𝑙=0

(Δ𝑡) (𝐸

𝑒
𝑁

𝑘



2

𝐻
)
1/2

+ ( sup
𝑗>𝑁+1

𝜇
𝑗
)

𝛼

+ (Δ𝑡)
min(2(𝛾−𝛽),𝛾)

+

𝑘−1

∑

𝑙=0

(Δ𝑡) (𝐸

𝑒
𝑁

𝑘



2

𝐻
)
1/2

) .

(101)

Now we take an integer 𝑞 ≥ 1 and use the Holder inequality
for the two summations in the last estimation to get

𝑘−1

∑

𝑙=0

(Δ𝑡) (𝐸

𝑒
𝑁

𝑙



2

𝐻
)
1/2

≤ (

𝑘−1

∑

𝑙=0

Δ𝑡)

(2𝑞−1)/2𝑞

× (

𝑘−1

∑

𝑙=0

(Δ𝑡) (𝐸

𝑒
𝑁

𝑙



2

𝐻
)
2𝑞/2

)

1/2𝑞

≤ 𝐶(

𝑘−1

∑

𝑙=0

(Δ𝑡) (𝐸

𝑒
𝑁

𝑙



2

𝐻
)
𝑞

)

1/2𝑞

.

(102)

Therefore, with using (97) and (98), we obtain

(𝐸

𝑒
𝑁

𝑘



2

𝐻
)
𝑞

≤ 𝑅((
(𝐸
𝑋0


2

𝐻
)
1/2

𝑘
+ (𝐸


𝑒
𝑁

0



2

𝐻
)
1/2

+ (Δ𝑡)
min(2(𝛾−𝛽),𝛾)

+ ( sup
𝑗>𝑁+1

𝜇
𝑗
)

𝛼

)

2𝑞

+

𝑘−1

∑

𝑙=0

(Δ𝑡) (𝐸

𝑒
𝑁

𝑘



2

𝐻
)
𝑞

+

𝑘−1

∑

𝑙=0

(Δ𝑡) (𝐸

𝑒
𝑁

𝑘



2

𝐻
)
𝑞

) .

(103)

We then have

(𝐸

𝑒
𝑁

𝑘



2

𝐻
)
𝑞

≤ 𝐶((
(𝐸
𝑋0


2

𝐻
)
1/2

𝑘
+ (𝐸


𝑒
𝑁

0



2

𝐻
)
1/2
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+ (Δ𝑡)
min(2(𝛾−𝛽),𝛾)

+ ( sup
𝑗>𝑁+1

𝜇
𝑗
)

𝛼

)

2𝑞

+ (1 + Δ𝑡)

𝑘−1

∑

𝑙=0

(Δ𝑡) (𝐸

𝑒
𝑁

𝑘



2

𝐻
)
𝑞

) .

(104)

Hence, we conclude from (41) that

(𝐸

𝑒
𝑁

𝑘



2

𝐻
)
1/2

≤ 𝐶(
(𝐸
𝑋0


2

𝐻
)
1/2

𝑘
+ ( sup

𝑗>𝑁+1

𝜇
𝑗
)

𝛼

+ (Δ𝑡)
min(2(𝛾−𝛽),𝛾)

) .

(105)

Finally, with respect to (47) and (105), we obtain

(𝐸

𝑒
𝑁

𝑘



2

𝐻
)
1/2

≤ 𝐶(( inf
𝑗>𝑁+1

𝜆
𝑗
)

−𝛾

+
(𝐸
𝑋0


2

𝐻
)
1/2

𝑘
+ ( sup

𝑗>𝑁+1

𝜇
𝑗
)

𝛼

+ (Δ𝑡)
min(2(𝛾−𝛽),𝛾)

)

(106)

which completes the proof of the theorem.

5. Simulation Results

In this section we consider SPDE (1) and solve it by numerical
scheme (22). More formally, let 𝑘 = 1/100 and 𝜉 : [0, 1] →
R be given by 𝜉(𝑥) = 0 for all 𝑥 ∈ [0, 1] and suppose that
𝑓, 𝑏 : (0, 1) × R → R are given by 𝑓(𝑥, 𝑦) = 1 − 𝑦 and
𝑏(𝑥, 𝑦) = (1 − 𝑦)/(1 + 𝑦

2
) for all 𝑥 ∈ (0, 1), 𝑦 ∈ R. The SPDE

(1) reduces to

𝑑𝑋
𝑡
(𝑥) = [

1

100

𝜕
2

𝜕𝑥2
𝑋
𝑡
(𝑥) + 1 − 𝑋

𝑡
(𝑥)] 𝑑𝑡

+
1 − 𝑋

𝑡
(𝑥)

1 + 𝑋2
𝑡
(𝑥)

𝑑𝑊
𝑡
(𝑥)

(107)

with 𝑋
𝑡
(0) = 𝑋

𝑡
(1) = 0 and 𝑋

0
= 0 for 𝑥 ∈ (0, 1) and

𝑡 ∈ [0, 1]. We also assume that the SPDE (107) should be
solved with a precision of, say, two decimals, that is, with
the precision 𝜀 = 0.01 in (3). To confirm numerically our
theoretical founding in Theorem 7, we recall that for SPDE
(107) there should exist some real number 𝐶

𝑟
∈ (0,∞) such

that

(𝐸

𝑋
𝑇
− 𝑌

𝑁

𝑁
2



2

𝐻
)
1/2

⩽ 𝐶
𝑟
𝑁
𝑟−3/2 (108)
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Figure 1: Approximation error in the sense of (22) of the linear
implicit Euler and simplified Milstein and Milstein type schemes
against the precise number of independent standard normal random
variables needed to compute the corresponding approximation for
𝑁 ∈ {2, 4, 8, 16, 32, 64}.

holds for each small 𝑟 ∈ (0, 3/4). The overall convergence
order of the linear implicit Euler method (4) is 3/8− (see
[16]), while the overall convergence of the simplifiedMilstein
scheme (22) and Milstein scheme (7) is 1/2. In Figure 1 the
approximation error in the sense of (6) of the linear implicit
Euler approximation 𝑌

𝑁

𝑁
3 , obtained by (4), of the approx-

imation �̃�
𝑁

𝑁
2 , obtained by Milstein scheme (7), and of the

approximation 𝑌𝑁
𝑁
2 , obtained by simplified Milstein scheme

(22), is plotted against the precise number of independent
standard normal random variables that is needed to compute
the corresponding approximation for 𝑁 ∈ {2, 4, 8, . . . , 128}

on a log-log scale. Figure 1 confirms the order of convergence
of our scheme and compares with the other two schemes.
Besides, the simplified Milstein scheme (22) and the Mil-
stein scheme (7) produce nearly the same approximation
errors. Numerical results also show that the linear simplified
Milstein scheme (21) and the Milstein type scheme (7) are
much computationally effective than the linear implicit Euler
scheme (4). To simulate one path 𝑌32

32
3 , one needs to generate

32
4
= 1048576 independent normal random variables, but

this amount for simulation of �̃�32
32
2 and 𝑌32

32
2 reduces to 323 =

32768. From the numerical results reported in Table 1 and
Figure 1, we conclude that the simplified Milstein scheme is
more effective than implicit Euler method and slightly better
than Milstein scheme.

6. Conclusions

A simplified Milstein scheme for solving stochastic partial
differential equations of the form (1) with multiplicative trace
class noise was theoretically and numerically investigated.
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This scheme has advantages to some other methods such
as linear implicit Euler and Milstein schemes. We have
shown the 𝐿2 convergence of this method under the stated
conditions and then we have illustrated the effectiveness of
the simplified Milstein scheme numerically.
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We mainly discussed pseudointegrals based on a pseudoaddition decomposable measure. Particularly, we give the definition of the
pseudointegral for a measurable function based on a strict pseudoaddition decomposable measure by generalizing the definition
of the pseudointegral of a bounded measurable function. Furthermore, we got several important properties of the pseudointegral
of a measurable function based on a strict pseudoaddition decomposable measure.

1. Introduction

The classical measure theory is one of the most important
theories in mathematics [1, 2]. Although the additive mea-
sures are widely used, they do not allow modelling many
phenomena involving interaction between criteria. For this
reason, the fuzzymeasure proposed by Sugeno is an extension
of classical measure in which the additivity is replaced by
a weaker condition, that is, monotonicity [3, 4]. Therefore,
fuzzy measure and the corresponding integrals, for example,
Choquet and Sugeno, are introduced [5–10].

So far, there have been many different fuzzy measures,
such as the decomposable measure, the 𝜆-additive measure,
the belief measure, the possibility measure, and the plausibil-
ity measure. Among the fuzzy measures mentioned before,
the decomposable measure was independently introduced by
Dubois and Prade [11] and Weber [12]. Since the close rela-
tions with the classical measure theory, further developments
of decomposable measures and related integrals have been
extensive [13–18]. Decomposable measures include several
well-known fuzzy measures such as the 𝜆-additive measure
and probability and possibility measures, and they provide a
natural setting for relaxing probabilistic assumptions regard-
ing the modeling of uncertainty [19, 20]. Decomposable
measures and the corresponding integrals are very useful in
decision theory and the theory of nonlinear differential and
integral equations [21–24].

In many problems with uncertainty as in the theory of
probabilistic metric spaces [20, 25, 26], multivalued logics
[27, 28], and general measures [1, 4] often wework withmany
operations different from the usual addition and multiplica-
tion of reals. Some of them are triangular norms, triangular
conorms, pseudoadditions, pseudomultiplications, and so
forth [21, 29]. Based on the above-mentioned measures,
pseudoanalysis as a generalization of the classical analysis is
developed, where instead of the field of real numbers a semir-
ing is taken on a real interval [𝑎, 𝑏] ⊂ [−∞, +∞] endowed
with pseudoaddition ⊕ and with pseudomultiplication ⊙

(see [13, 19, 30–33]). The families of the pseudooperations
generated by a function 𝑔 turn out to be solutions of well-
known nonlinear functional equations [22–24].

In this paper, we will discuss pseudointegrals based
on pseudoaddition decomposable measures. In Section 2,
we recall the concepts of the pseudoaddition ⊕ and the
pseudomultiplication ⊙, which form a real semiring on the
interval [𝑎, 𝑏] ⊂ [−∞, +∞] and the notion of the 𝜎-⊕-
decomposable measure. Then we will give the definition of
the pseudointegral of a measurable function based on a strict
pseudoaddition decomposable measure by generalizing the
definition of the pseudointegral of a bounded measurable
function. In Section 3, we will discuss several important
properties of the pseudointegral of a measurable function
based on the strict pseudoaddition decomposable measure.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 782040, 12 pages
http://dx.doi.org/10.1155/2014/782040



2 Abstract and Applied Analysis

2. Preliminaries

Let [𝑎, 𝑏] be a closed subinterval of R (in some cases we will
also take semiclosed subintervals). The total order on [𝑎, 𝑏]

will be denoted by ⪯. This can be the usual order of the real
line, but it can also be another order. We will denote by Δ

maximum element on [𝑎, 𝑏] (usually Δ is either 𝑎 or 𝑏) with
respect to this total order.

Definition 1 (see [34]). Let {𝑥
𝑛
} be a sequence from [𝑎, 𝑏].

(1) If 𝑥
𝑚

⪯ 𝑥
𝑛
whenever 𝑛 > 𝑚, then we say that the

sequence {𝑥
𝑛
} is an increasing sequence.

(2) If 𝑥
𝑚

≺ 𝑥
𝑛
whenever 𝑛 > 𝑚, then we say that the

sequence {𝑥
𝑛
} is a strict increasing sequence.

(3) If 𝑥
𝑛

⪯ 𝑥
𝑚
whenever 𝑛 > 𝑚, then we say that the

sequence {𝑥
𝑛
} is a decreasing sequence.

(4) If 𝑥
𝑛

≺ 𝑥
𝑚
whenever 𝑛 > 𝑚, then we say that the

sequence {𝑥
𝑛
} is a strict decreasing sequence.

Let𝑋 be a nonempty set; wewill denote byS,A, andB
𝑋

algebra, 𝜎-algebra, and Borel 𝜎-algebra of subsets of a set 𝑋,
respectively.

Denote byF(𝑋) the set of all functionals from𝑋 to [𝑎, 𝑏].
For each 𝜆 ∈ [𝑎, 𝑏] the constant functional in F(𝑋) with
value 𝜆 will also be denoted by 𝜆. It will be clear from the
context which usage is intended. A functional 𝑓 ∈ F(𝑋) is
said to be finite if 𝑓(𝑥) ≺ Δ for all 𝑥 ∈ 𝑋. The functional
𝑓 ∈ F(𝑋) is said to be bounded if there exists Ω ≺ Δ, such
that 𝑓(𝑥) ⪯ Ω for all 𝑥 ∈ 𝑋. Denote by B(𝑋) the set of all
bounded functionals.

Let𝑓 and ℎ be two functions defined on𝑋 andwith values
in [𝑎, 𝑏] and let ⋆ be arbitrary binary operation on [𝑎, 𝑏].
Then, we define for any 𝑥 ∈ 𝑋

(𝑓 ⋆ ℎ) (𝑥) = 𝑓 (𝑥) ⋆ ℎ (𝑥) , (1)

and for any 𝜆 ∈ [𝑎, 𝑏], (𝜆 ⋆ 𝑓)(𝑥) = 𝜆 ⋆ 𝑓(𝑥). Let A be a
subset of F(𝑋). If 𝑓 ⋆ ℎ ∈ A for all 𝑓, ℎ ∈ A, then A is ⋆-
closed.The total order ⪯ on [𝑎, 𝑏] induces a partial order ⪯ on
F(𝑋) defined pointwise by stipulating that 𝑓 ⪯ ℎ if and only
if 𝑓(𝑥) ⪯ ℎ(𝑥) for all 𝑥 ∈ 𝑋. Thus (F(𝑋), ⪯) is a poset, and
whenever we considerF(𝑋) as a poset then it will always be
with respect to this partial order. Let S[𝜆 ≺ 𝑓] = {𝑥 | 𝑥 ∈

𝑋, 𝜆 ≺ 𝑓(𝑥), 𝑓 ∈ F(𝑋)}.

Definition 2 (see [35]). A binary operation ⊕ : [𝑎, 𝑏] ×

[𝑎, 𝑏] → [𝑎, 𝑏] is called a pseudoaddition, if it satisfies the
following conditions, for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ [𝑎, 𝑏]:

(1) 0⊕𝑥 = 𝑥, where 0 is a zero element (usually 0 is either
𝑎 or 𝑏) (boundary condition);

(2) 𝑥 ⊕ 𝑧 ⪯ 𝑦 ⊕ 𝑤 whenever 𝑥 ⪯ 𝑦 and 𝑧 ⪯ 𝑤 (monoton-
icity);

(3) 𝑥 ⊕ 𝑦 = 𝑦 ⊕ 𝑥 (commutativity);
(4) (𝑥 ⊕ 𝑦) ⊕ 𝑧 = 𝑥 ⊕ (𝑦 ⊕ 𝑧) (associativity).

A pseudoaddition ⊕ is said to be continuous if it is a
continuous function in [𝑎, 𝑏]

2; a pseudoaddition ⊕ is called

strict if ⊕ is continuous and strictly monotone.The following
are examples of pseudoadditions: 𝑥 ∨

⊕
𝑦 = 𝑦 if and only if

𝑥 ⪯ 𝑦; 𝑥 ⊕ 𝑦 = 𝑔
−1

(𝑔(𝑥) + 𝑔(𝑦)), where 𝑔 : [𝑎, 𝑏] → [0, 1]

is a strictly monotone and continuous generator surjective
function and 𝑥 ⪯ 𝑦 if and only if 𝑔(𝑥) ≤ 𝑔(𝑦). It is obvious
that Δ ⊕ 𝑥 = Δ for all 𝑥 ∈ [𝑎, 𝑏].

Let [𝑎, 𝑏]
+

= {𝑥 | 𝑥 ∈ [𝑎, 𝑏], 0 ⪯ 𝑥}. In this paper, we
assume [𝑎, 𝑏] = [𝑎, 𝑏]

+
.

Definition 3 (see [35]). A binary operation ⊙ : [𝑎, 𝑏] ×

[𝑎, 𝑏] → [𝑎, 𝑏] is called a pseudomultiplication, if it satisfies
the following conditions, for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ [𝑎, 𝑏]:

(1) 1⊙𝑥 = 𝑥, where 1 ∈ [𝑎, 𝑏] is a unit element (boundary
condition);

(2) 𝑥 ⊙ 𝑧 ⪯ 𝑦 ⊙ 𝑤 whenever 𝑥 ⪯ 𝑦 and 𝑧 ⪯ 𝑤

(monotonicity);
(3) 𝑥 ⊙ 𝑦 = 𝑦 ⊙ 𝑥 (commutativity);
(4) (𝑥 ⊙ 𝑦) ⊙ 𝑧 = 𝑥 ⊙ (𝑦 ⊙ 𝑧) (associativity).

A pseudomultiplication ⊙ is said to be continuous if it is
a continuous function in [𝑎, 𝑏]

2. The following are examples
of pseudomultiplications: 𝑥 ∧

⊙
𝑦 = 𝑥 if and only if 𝑥 ⪯ 𝑦;

𝑥⊙
𝑔
𝑦 = 𝑔

−1

(𝑔(𝑥)⋅𝑔(𝑦)), where 𝑔 : [𝑎, 𝑏] → [0, 1] is a strictly
monotone and continuous generator surjective function and
𝑥 ⪯ 𝑦 if and only if 𝑔(𝑥) ≤ 𝑔(𝑦). It is obvious that 𝑔(0) = 0.

We assume also that 0 ⊙ 𝑥 = 0 and that ⊙ is a distributive
pseudomultiplication with respect to ⊕; that is,

𝑥 ⊙ (𝑦 ⊕ 𝑧) = (𝑥 ⊙ 𝑦) ⊕ (𝑥 ⊙ 𝑧) . (2)

The structure ([𝑎, 𝑏], ⊕, ⊙) is called a real semiring.
Because of the associative property of the pseudoaddition

⊕, it can be extended by induction to 𝑛-ary operation by
setting

𝑛

⊕
𝑖=1

𝑥
𝑖

= (
𝑛−1

⊕
𝑖=1

𝑥
𝑖
) ⊕ 𝑥
𝑛
. (3)

Due tomonotonicity, for each sequence {𝑥
𝑖
}
𝑖∈N of elements of

[𝑎, 𝑏], the following limit can be considered:

∞

⊕
𝑖=1

𝑥
𝑖

= lim
𝑛→∞

𝑛

⊕
𝑖=1

𝑥
𝑖
. (4)

Definition 4 (see [36]). Let𝐴 be a nonempty set and⊕ a pseu-
doaddition. A binary operation 𝑑

⊕
: 𝐴 × 𝐴 → [𝑎, 𝑏] is called

a pseudometric on 𝐴, if it satisfies the following conditions,
for all 𝑥, 𝑦, 𝑧 ∈ 𝐴:

(1) 𝑑
⊕

(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(2) 𝑑
⊕

(𝑥, 𝑦) = 𝑑
⊕

(𝑦, 𝑥);
(3) there exists 𝜆 ∈ [𝑎, 𝑏] such that

𝑑
⊕

(𝑥, 𝑦) ⪯ 𝜆 ⊙ (𝑑
⊕

(𝑥, 𝑧) ⊕ 𝑑
⊕

(𝑧, 𝑦)) , (5)

where ⊙ is a distributive pseudomultiplication with respect to
⊕.
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Let {𝑥
𝑛
}
𝑛≥1

be a sequence from [𝑎, 𝑏]. The sequence
{𝑥
𝑛
}
𝑛≥1

is said to be convergent, if for any 0 ≺ 𝜀, there exists
positive integer 𝑁(𝜀), such that 𝑑

⊕
(𝑥
𝑛
, 𝑥) ≺ 𝜀 for all 𝑛 ≥ 𝑁(𝜀),

denoted by 𝑥 = lim
𝑛→∞

𝑥
𝑛
, and 𝑥 is said to be the limit of the

sequence {𝑥
𝑛
}
𝑛≥1

;

lim
𝑛→∞

𝑥
𝑛

=
∞

∨
⊕

𝑛=1

(∧
⊙

𝑘≥𝑛

𝑥
𝑘
) (6)

is said to be the lower limit of the sequence {𝑥
𝑛
}
𝑛≥1

;

lim
𝑛→∞

𝑥
𝑛

=
∞

∧
⊙

𝑛=1

(∨
⊕

𝑘≥𝑛

𝑥
𝑘
) (7)

is said to be the upper limit of the sequence {𝑥
𝑛
}
𝑛≥1

. It is
obvious that lim

𝑛→∞
𝑥
𝑛

⪯ lim
𝑛→∞

𝑥
𝑛
. Let {𝑓

𝑛
}
𝑛≥1

be a
sequence from F(𝑋). The sequence {𝑓

𝑛
}
𝑛≥1

is said to be
convergent, if for any 0 ≺ 𝜀, and for each point 𝑥

0
∈ 𝑋, there

exists positive integer 𝑁(𝜀, 𝑥
0
), such that 𝑑

⊕
(𝑓
𝑛
(𝑥
0
), 𝑓(𝑥

0
)) ≺

𝜀 for all 𝑛 ≥ 𝑁(𝜀, 𝑥
0
), denoted by 𝑓 = lim

𝑛→∞
𝑓
𝑛
, and 𝑓

is said to be the limit functional of the functionals sequence
{𝑓
𝑛
}
𝑛≥1

.
LetA be a subset ofF(𝑋).TheposetA is said to be upper

complete if lim
𝑛→∞

𝑓
𝑛

∈ A for each increasing sequence
{𝑓
𝑛
}
𝑛≥1

from A; the poset A is said to be lower complete if
lim
𝑛→∞

𝑓
𝑛

∈ A for each decreasing sequence {𝑓
𝑛
}
𝑛≥1

from
A; the poset A is said to be complete if lim

𝑛→∞
𝑓
𝑛

∈ A
for each sequence {𝑓

𝑛
}
𝑛≥1

from A, where the limit of the
sequence of functionals {𝑓

𝑛
}
𝑛≥1

is given by (lim
𝑛→∞

𝑓
𝑛
)(𝑥) =

lim
𝑛→∞

𝑓
𝑛
(𝑥) for all 𝑥 ∈ 𝑋.

For any continuous pseudoaddition ⊕ and 𝑥, 𝑦 ∈ [𝑎, 𝑏]

with 𝑥 ⪯ 𝑦, there exists at least one point 𝑧 ∈ [𝑎, 𝑏] such that
𝑦 = 𝑥 ⊕ 𝑧. If pseudoaddition ⊕ is strict, then there exists only
one point 𝑧 ∈ [𝑎, 𝑏] such that 𝑦 = 𝑥 ⊕ 𝑧 for all 𝑥, 𝑦 ∈ [𝑎, 𝑏]

with 𝑥 ≺ Δ. Thus we have the following concepts.

Definition 5 (see [34]). For any continuous pseudoaddition ⊕

and 𝑥, 𝑦 ∈ [𝑎, 𝑏] with 𝑥 ⪯ 𝑦, the paracomplement set 𝑦−
⊕

𝑥 is
a nonempty set of all points 𝑧 such that 𝑦 = 𝑥 ⊕ 𝑧.

Example 6. Let the total order ⪯ on [0, 1] be the usual order
of the real line and let the pseudoaddition ⊕ be the usual
multiplication of the real numbers. It is obvious that zero
element is 1. If 𝑥 = 0, then 𝑦 = 0 and 𝑦−

⊕
𝑥 = [0, 1]. If 𝑥 ̸= 0,

then for any 0 ≤ 𝑦 < 𝑥, we have 𝑦−
⊕

𝑥 = {𝑦/𝑥} ⊆ [0, 1].

Definition 7 (see [34]). For any continuous pseudoaddition
⊕, if𝑓, ℎ ∈ F(𝑋), then define the paracomplement set |𝑓−

⊕
ℎ|

as the set of all those functionals 𝜑 such that

𝜑 (𝑥) = {
𝑓 (𝑥) −

⊕
ℎ (𝑥) , if ℎ (𝑥) ⪯ 𝑓 (𝑥) ,

ℎ (𝑥) −
⊕

𝑓 (𝑥) , if 𝑓 (𝑥) ≺ ℎ (𝑥) ,
(8)

for all 𝑥 ∈ 𝑋.

Definition 8 (see [34]). For any strict pseudoaddition ⊕ and
𝑥, 𝑦 ∈ [𝑎, 𝑏] with 𝑥 ⪯ 𝑦, the complement 𝑦−



⊕
𝑥 is defined as

𝑦−


⊕
𝑥 = {

𝑧 ∈ [𝑎, 𝑏] , such that 𝑦 = 𝑥 ⊕ 𝑧, if 𝑥 ≺ Δ,

0, otherwise.
(9)

Definition 9 (see [34]). For any strict pseudoaddition ⊕, if
𝑓, ℎ ∈ F(𝑋), then define the complement functional |𝑓−



⊕
ℎ|

pointwise as


𝑓−


⊕
ℎ


(𝑥) = {

𝑓 (𝑥) −


⊕
ℎ (𝑥) , if ℎ (𝑥) ⪯ 𝑓 (𝑥) ,

ℎ (𝑥) −


⊕
𝑓 (𝑥) , if 𝑓 (𝑥) ≺ ℎ (𝑥) ,

(10)

for all 𝑥 ∈ 𝑋.

Definition 10 (see [34]). For any pseudoaddition ⊕, a non-
empty subsetK ofF(𝑋) is said to be a functional space with
respect to ⊕, denoted by (K, ⊕), if (𝜆 ⊙ 𝑓) ⊕ (𝜇 ⊙ ℎ) ∈ K
for all 𝑓, ℎ ∈ K and 𝜆, 𝜇 ∈ [𝑎, 𝑏], where ⊙ is a distributive
pseudomultiplication with respect to ⊕.

It is clear that (F(𝑋), ⊕) is the greatest functional space
with respect to any pseudoaddition ⊕. Thus the functional
space (K, ⊕) with K ⊆ F(𝑋) is also called a subspace of
(F(𝑋), ⊕). If (K, ⊕) is a functional space with respect to ⊕,
then we just write K instead of (K, ⊕) whenever ⊕ can be
determined from the context.

Definition 11 (see [34]). For each subsetA ofF(𝑋) the upper
closure ofA, denoted by Â, is the set of all elements ofF(𝑋)

having the form lim
𝑛→∞

𝑓
𝑛
for some increasing sequence

{𝑓
𝑛
}
𝑛≥1

fromA.

It follows from Definition 11 that A ⊆ Â and A = Â if
and only ifA is upper complete.

Definition 12 (see [34]). For any continuous pseudoaddition
⊕, a subspace (K, ⊕) will be called paracomplemented if
|𝑓−
⊕

ℎ| ⊆ K for all 𝑓, ℎ ∈ K; for any strict pseudoaddition ⊕,
a subspace (K, ⊕)will be called complemented if |𝑓−



⊕
ℎ| ∈ K

for all 𝑓, ℎ ∈ K.

Definition 13 (see [34]). For any continuous pseudoaddition
⊕, a paracomplemented subspace (K, ⊕) is regular if it con-
tains 1 and is closed under ∨

⊕
; for any strict pseudoaddition

⊕, a complemented subspace (K, ⊕) is normal if it contains 1
and is closed under ∨

⊕
.

Note that (𝑓∨
⊕

ℎ) ⊕ (𝑓∧
⊙

ℎ) = 𝑓 ⊕ ℎ for all 𝑓, ℎ ∈ F(𝑋)

and thus a paracomplemented subspace ofF(𝑋) is∧
⊙
-closed

if and only if it is ∨
⊕
-closed. It is obvious that regular and

normal are closed under ∧
⊙
.

Definition 14 (see [37]). The pseudocharacteristic function of
a set 𝐸 ⊆ 𝑋 is defined with

𝐼
𝐸

(𝑥) = {
0, 𝑥 ∉ 𝐸,

1, 𝑥 ∈ 𝐸,
(11)

where 0 is zero element for ⊕ and 1 is unit element for ⊙.

Definition 15 (see [21]). A functional 𝜑 ∈ F(𝑋) is said to be
elementary if it has the following representation:

𝜑 =
𝑛

⊕
𝑖=1

𝜆
𝑖

⊙ 𝐼
𝐸𝑖

, (12)
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for each 𝜆
𝑖

∈ [𝑎, 𝑏] and 𝐸
𝑖

∈ A pairwise disjoint and with
𝑋 = ⋃

𝑛

𝑖=1
𝐸
𝑖
, and the set of such elementary functionals will

be denoted by E(𝑋). It is obvious that 𝐼
𝐸

∈ E(𝑋), for all
𝐸 ⊆ 𝑋.

Definition 16 (see [21]). A set function 𝑚 : A → [𝑎, 𝑏] (or
semiclosed interval) is called a 𝜎-⊕-decomposable measure if
it satisfies the following conditions:

(1) 𝑚(0) = 0;
(2) 𝑚(𝐸) ⪯ 𝑚(𝐹) for all 𝐸, 𝐹 ∈ A with 𝐸 ⊂ 𝐹;
(3) 𝑚(𝐸∪𝐹) = 𝑚(𝐸)⊕𝑚(𝐹) for all𝐸, 𝐹 ∈ A and𝐸∩𝐹 = 0;
(4) 𝑚(⋃

∞

𝑖=1
𝐸
𝑖
) = ⊕

∞

𝑖=1
𝑚(𝐸
𝑖
) for any sequence {𝐸

𝑖
}
𝑖≥1

of
pairwise disjoint sets fromA.

A pair (𝑋,A) consisting of a nonempty set 𝑋 and a
𝜎-algebra of subsets of 𝑋 is called a measurable space. A
functional 𝑓 : 𝑋 → [𝑎, 𝑏] is said to be a measurable
functional if 𝑓

−1

(B
[𝑎,𝑏]

) ⊆ A. Let M(A) be the set of all
measurable mappings from (𝑋,A) to ([𝑎, 𝑏],B

[𝑎,𝑏]
); that is,

M (A) = {𝑓 ∈ F (𝑋) | 𝑓
−1

(B
[𝑎,𝑏]

) ⊆ A} . (13)

ThenE(S)will denote the set of those elements𝑓 ∈ E(𝑋) for
which 𝑓

−1

(𝜆) = {𝑥 ∈ 𝑋 | 𝑓(𝑥) = 𝜆} ∈ S for each 𝜆 ∈ 𝑓(𝑋).
In particular, thismeans thatE(A) = M(A)∩E(𝑋). Denote
byB(A) the set of all bounded measurable functionals.

Definition 17 (see [38]). Let ⊕ be a continuous pseudoaddi-
tion and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-decomposable measure.
Let {𝑓

𝑛
}
𝑛≥1

be a sequence of measurable functionals of a.e.
pseudofinite on 𝑋. If there exists a measurable functional 𝑓

of a.e. pseudofinite on 𝑋, such that

lim
𝑛→∞

𝑚S [𝜎 ⪯ 𝑑
⊕

(𝑓
𝑛
, 𝑓)] = 0, (14)

for arbitrary 0 ≺ 𝜎 ≺ Δ, then the functionals sequence {𝑓
𝑛
}
𝑛≥1

is said to be convergent to 𝑓 with respect to ⊕-measure,
denoted by 𝑓

𝑛
⇒ 𝑓. If the functionals sequence {𝑓

𝑛
}
𝑛≥1

does not converge to 𝑓 with respect to ⊕-measure, denote by
𝑓
𝑛

 𝑓.

Definition 18 (see [35]). Let ⊕ be a continuous pseudoaddi-
tion and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-decomposable measure.

(i) If 𝑚(𝑋) ≺ Δ, then the pseudointegral of an elemen-
tary measurable function 𝜑 : 𝑋 → [𝑎, 𝑏] is defined
by

∫

⊕

𝑋

𝜑 ⊙ 𝑑𝑚 =
𝑛

⊕
𝑖=1

𝜆
𝑖

⊙ 𝑚 (𝐸
𝑖
) , (15)

for 𝜆
𝑖

∈ [𝑎, 𝑏] and 𝐸
𝑖

∈ A pairwise disjoint and with
𝑋 = ⋃

𝑛

𝑖=1
𝐸
𝑖
.

(ii) If 𝑚(𝑋) ≺ Δ and {𝜑
𝑛
} is the sequence of elementary

measurable functions such that, for each 𝑥 ∈ 𝑋,

𝑑
⊕

(𝜑
𝑛

(𝑥) , 𝑓 (𝑥)) → 0 uniformly as 𝑛 → ∞, (16)

where a sequence of elementary functions {𝜑
𝑛
} from

the previous definition is constructed in [34], then the
pseudointegral of a bounded measurable function 𝑓 :

𝑋 → [𝑎, 𝑏] is defined by

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝑋

𝜑
𝑛

⊙ 𝑑𝑚. (17)

If there exists an increasing sequence of sets {𝐸
𝑛
} ⊂ A

with 𝑚(𝐸
𝑛
) ≺ Δ, 𝑛 = 1, 2, . . ., such that 𝑋 = ⋃

∞

𝑛=1
𝐸
𝑛
, then we

say that𝑋 is 𝜎-finite set of⊕-measure and {𝐸
𝑛
} is a ⊕-measure

finite and monotone cover of 𝑋. The sequence of bounded
measurable functionals [𝑓]

𝑛
is given by

[𝑓]
𝑛

(𝑥) = {
𝑓 (𝑥) , if 𝑓 (𝑥) ⪯ 𝜇

𝑛
,

𝜇
𝑛
, if 𝜇

𝑛
≺ 𝑓 (𝑥) ,

(18)

0 ≺ 𝜇
1

≺ 𝜇
2

≺ ⋅ ⋅ ⋅ ≺ 𝜇
𝑛

≺ ⋅ ⋅ ⋅ , 𝜇
𝑛

⊕ 𝜇
𝑛

= 𝜇
2𝑛

and
lim
𝑛→∞

𝜇
𝑛

= Δ. It is obvious that {[𝑓]
𝑛
} is an increasing

functionals sequence.

Definition 19. Let ⊕ be a strict pseudoaddition and 𝑚 : A →

[𝑎, 𝑏] a 𝜎-⊕-decomposable measure. If 𝑋 is 𝜎-finite of ⊕-
measure and {𝐸

𝑛
} is a ⊕-measure finite and monotone cover

of 𝑋, then the pseudointegral of a measurable function 𝑓 :

𝑋 → [𝑎, 𝑏] is defined by

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚. (19)

3. Main Results

Lemma 20 (see [21]). Let ⊕ be a continuous pseudoaddition
and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-decomposable measure. If 𝑚(𝑋) ≺

Δ, then for all 𝑓, ℎ ∈ B(A), we have

(1) ∫
⊕

𝑋

(𝑓∨
⊕

ℎ) ⊙ 𝑑𝑚 = ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚∨
⊕

∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;

(2) ∫
⊕

𝑋

(𝑓∧
⊙

ℎ) ⊙ 𝑑𝑚 = ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚∧
⊙

∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;
(3) If 𝑓 ⊕ ℎ ∈ B(A), then

∫

⊕

𝑋

(𝑓 ⊕ ℎ) ⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚; (20)

(4) 𝑓 ⪯ ℎ ⇒ ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⪯ ∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;

(5) ∫
⊕

𝑋1∪𝑋2

𝑓 ⊙ 𝑑𝑚 = ∫
⊕

𝑋1

𝑓 ⊙ 𝑑𝑚 ⊕ ∫
⊕

𝑋2

𝑓 ⊙ 𝑑𝑚, where
𝑋
1
, 𝑋
2

∈ A with 𝑋
1

∪ 𝑋
2

= 𝑋 and 𝑋
1

∩ 𝑋
2

= 0;

(6) ∫
⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = 0 whenever 𝐸 ∈ A with 𝑚(𝐸) = 0.

Theorem 21. Let ⊕ be a strict pseudoaddition and 𝑚 : A →

[𝑎, 𝑏] a 𝜎-⊕-decomposable measure. If 𝑋 is 𝜎-finite of ⊕-
measure and 𝑓 ∈ M(A). Let {𝐸

(𝑖)

𝑛
} (𝑖 = 1, 2) be two

different ⊕-measure finite and monotone covers of 𝑋 and let
{𝑘
(𝑗)

𝑛
} (𝑗 = 1, 2) be two different positive integer sequences with

lim
𝑛→∞

𝑘
(𝑗)

𝑛
= +∞. Then

lim
𝑛→∞

∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝐸
(2)

𝑛

[𝑓]
𝑘
(2)

𝑛

⊙ 𝑑𝑚. (21)
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Proof. Let 𝑠 = lim
𝑛→∞

∫
⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚. Since {∫
⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙

𝑑𝑚} is an increasing sequence, we have

∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚 ⪯ 𝑠, (22)

for every positive integer 𝑛. Let 𝐹 ∈ A with 𝑚(𝐹) ≺ Δ and 𝑘

is an arbitrary positive integer. If 𝑘
(1)

𝑛
> 𝑘, then we have

∫

⊕

𝐹

[𝑓]
𝑘

⊙ 𝑑𝑚

= ∫

⊕

𝐹∩𝐸
(1)

𝑛

[𝑓]
𝑘

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐹−𝐸
(1)

𝑛

[𝑓]
𝑘

⊙ 𝑑𝑚

⪯ ∫

⊕

𝐹∩𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚 ⊕ (𝜇
𝑘

⊙ 𝑚 (𝐹 − 𝐸
(1)

𝑛
))

⪯ ∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚 ⊕ (𝜇
𝑘

⊙ 𝑚 (𝐹 − 𝐸
(1)

𝑛
))

⪯ 𝑠 ⊕ (𝜇
𝑘

⊙ 𝑚 (𝐹 − 𝐸
(1)

𝑛
)) .

(23)

Since {𝐹 − 𝐸
(1)

𝑛
} is a decreasing sequence and

∞

⋂

𝑛=1

(𝐹 − 𝐸
(1)

𝑛
) = 𝐹 −

∞

⋃

𝑛=1

𝐸
(1)

𝑛
= 𝐹 − 𝑋 = 0, (24)

byTheorem 3.3 in [38], we have

lim
𝑛→∞

𝑚 (𝐹 − 𝐸
(1)

𝑛
) = 𝑚 ( lim

𝑛→∞

(𝐹 − 𝐸
(1)

𝑛
)) = 0, (25)

which implies that

∫

⊕

𝐹

[𝑓]
𝑘

⊙ 𝑑𝑚 ⪯ 𝑠 ⊕ (𝜇
𝑘

⊙ lim
𝑛→∞

𝑚 (𝐹 − 𝐸
(1)

𝑛
))

= 𝑠 = lim
𝑛→∞

∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚.

(26)

In particular, let 𝐹 = 𝐸
(2)

𝑙
and 𝑘 = 𝑘

(2)

𝑙
. Then we have

∫

⊕

𝐸
(2)

𝑙

[𝑓]
𝑘
(2)

𝑙

⊙ 𝑑𝑚 ⪯ lim
𝑛→∞

∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚, (27)

for every positive integer 𝑙. Hence, we get that

lim
𝑙→∞

∫

⊕

𝐸
(2)

𝑙

[𝑓]
𝑘
(2)

𝑙

⊙ 𝑑𝑚 ⪯ lim
𝑛→∞

∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚. (28)

On the contrary, using a similar argument, we can obtain

lim
𝑛→∞

∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚 ⪯ lim
𝑙→∞

∫

⊕

𝐸
(2)

𝑙

[𝑓]
𝑘
(2)

𝑙

⊙ 𝑑𝑚. (29)

In Theorem 21, put 𝑘
(1)

𝑛
= 𝑛 and 𝑘

(2)

𝑙
= 𝑙. Then we

can easily see that the pseudointegral in Definition 19 has
a unique value. In particular, we can get some elementary
properties of the pseudointegral in the following theorem.

Theorem 22. Let ⊕ be a strict pseudoaddition and 𝑚 : A →

[𝑎, 𝑏] a𝜎-⊕-decomposablemeasure. If there exists an increasing
sequence of sets {𝐸

𝑛
} ⊂ A with 𝑚(𝐸

𝑛
) ≺ Δ, 𝑛 = 1, 2, . . ., such

that 𝑋 = ⋃
∞

𝑛=1
𝐸
𝑛
, then for all 𝑓, ℎ ∈ M(A), we have

(1) ∫
⊕

𝑋

(𝑓∨
⊕

ℎ) ⊙ 𝑑𝑚 = ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚∨
⊕

∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;

(2) ∫
⊕

𝑋

(𝑓∧
⊙

ℎ) ⊙ 𝑑𝑚 = ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚∧
⊙

∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;

(3) ∫
⊕

𝑋

(𝑓 ⊕ ℎ) ⊙ 𝑑𝑚 = ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⊕ ∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;

(4) 𝑓 ⪯ ℎ ⇒ ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⪯ ∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;

(5) ∫
⊕

𝑋1∪𝑋2

𝑓 ⊙ 𝑑𝑚 = ∫
⊕

𝑋1

𝑓 ⊙ 𝑑𝑚 ⊕ ∫
⊕

𝑋2

𝑓 ⊙ 𝑑𝑚, where
𝑋
1
, 𝑋
2

∈ A with 𝑋
1

∪ 𝑋
2

= 𝑋 and 𝑋
1

∩ 𝑋
2

= 0;

(6) ∫
⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = 0 whenever 𝐸 ∈ A with 𝑚(𝐸) = 0.

Proof. For (1) and (2), we only prove (1) holds. By a similar
proof, we can prove (2) holds. Since

[𝑓]
𝑛

(𝑥) = {
𝑓 (𝑥) , if 𝑓 (𝑥) ⪯ 𝜇

𝑛
,

𝜇
𝑛
, if 𝜇

𝑛
≺ 𝑓 (𝑥) ,

[ℎ]
𝑛

(𝑥) = {
ℎ (𝑥) , if ℎ (𝑥) ⪯ 𝜇

𝑛
,

𝜇
𝑛
, if 𝜇

𝑛
≺ ℎ (𝑥) ,

(30)

𝑛 = 1, 2, . . ., we get that

([𝑓]
𝑛
∨
⊕

[ℎ]
𝑛
) (𝑥) = {

(𝑓∨
⊕

ℎ) (𝑥) , if (𝑓∨
⊕

ℎ) (𝑥) ⪯ 𝜇
𝑛
,

𝜇
𝑛
, if 𝜇

𝑛
≺ (𝑓∨

⊕
ℎ) (𝑥) ,

(31)

which implies that

[𝑓∨
⊕

ℎ]
𝑛

= ([𝑓]
𝑛
∨
⊕

[ℎ]
𝑛
) . (32)

Thus, by (1) of Lemma 20, we have

∫

⊕

𝑋

(𝑓∨
⊕

ℎ) ⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓∨
⊕

ℎ]
𝑛

⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝐸𝑛

([𝑓]
𝑛
∨
⊕

[ℎ]
𝑛
) ⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚∨
⊕
lim
𝑛→∞

∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚

= ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚∨
⊕

∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚.

(33)
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(3) Since

[𝑓 ⊕ ℎ]
𝑛

(𝑥) = {
(𝑓 ⊕ ℎ) (𝑥) , if (𝑓 ⊕ ℎ) (𝑥) ⪯ 𝜇

𝑛
,

𝜇
𝑛
, if 𝜇

𝑛
≺ (𝑓 ⊕ ℎ) (𝑥) ,

([𝑓]
𝑛

⊕ [ℎ]
𝑛
) (𝑥)

=

{{

{{

{

(𝑓 ⊕ ℎ) (𝑥) , if (𝑓∨
⊕

ℎ) (𝑥) ⪯ 𝜇
𝑛
,

𝜇
𝑛

⊕ (𝑓∧
⊙

ℎ) (𝑥) , if (𝑓∧
⊙

ℎ) (𝑥) ⪯ 𝜇
𝑛

≺ (𝑓∨
⊕

ℎ) (𝑥) ,

𝜇
𝑛

⊕ 𝜇
𝑛

= 𝜇
2𝑛

, if 𝜇
𝑛

≺ (𝑓∧
⊙

ℎ) (𝑥) ,

(34)

𝑛 = 1, 2, . . ., we get that

[𝑓 ⊕ ℎ]
𝑛

⪯ [𝑓]
𝑛

⊕ [ℎ]
𝑛

⪯ [𝑓 ⊕ ℎ]
2𝑛

. (35)

Thus, we have

∫

⊕

𝐸𝑛

[𝑓 ⊕ ℎ]
𝑛

⊙ 𝑑𝑚 ⪯ ∫

⊕

𝐸𝑛

([𝑓]
𝑛

⊕ [ℎ]
𝑛
) ⊙ 𝑑𝑚

⪯ ∫

⊕

𝐸𝑛

[𝑓 ⊕ ℎ]
2𝑛

⊙ 𝑑𝑚

⪯ ∫

⊕

𝐸2𝑛

[𝑓 ⊕ ℎ]
2𝑛

⊙ 𝑑𝑚.

(36)

By (3) of Lemma 20, we have

∫

⊕

𝐸𝑛

([𝑓]
𝑛

⊕ [ℎ]
𝑛
) ⊙ 𝑑𝑚 = ∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚,

(37)

which implies that

∫

⊕

𝐸𝑛

[𝑓 ⊕ ℎ]
𝑛

⊙ 𝑑𝑚 ⪯ ∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚

⪯ ∫

⊕

𝐸2𝑛

[𝑓 ⊕ ℎ]
2𝑛

⊙ 𝑑𝑚.

(38)

Hence, we get that

lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓 ⊕ ℎ]
𝑛

⊙ 𝑑𝑚

⪯ lim
𝑛→∞

(∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚)

= lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ lim
𝑛→∞

∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚

⪯ lim
𝑛→∞

∫

⊕

𝐸2𝑛

[𝑓 ⊕ ℎ]
2𝑛

⊙ 𝑑𝑚,

(39)

which implies that

∫

⊕

𝑋

(𝑓 ⊕ ℎ) ⊙ 𝑑𝑚 ⪯ ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚

⪯ ∫

⊕

𝑋

(𝑓 ⊕ ℎ) ⊙ 𝑑𝑚;

(40)

that is,

∫

⊕

𝑋

(𝑓 ⊕ ℎ) ⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚. (41)

(4) If 𝑓 ⪯ ℎ, then [𝑓]
𝑛

⪯ [ℎ]
𝑛
, 𝑛 = 1, 2, . . .. Thus, by (4) of

Lemma 20, we have

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 ⪯ ∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚. (42)

Hence, we get that

lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 ⪯ lim
𝑛→∞

∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚, (43)

that is,

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⪯ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚; (44)

(5) Since 𝑋 = ⋃
∞

𝑛=1
𝐸
𝑛
with 𝑚(𝐸

𝑛
) ≺ Δ, we have 𝑋

1
=

⋃
∞

𝑛=1
(𝐸
𝑛

∩ 𝑋
1
) with 𝑚(𝐸

𝑛
∩ 𝑋
1
) ≺ Δ and 𝑋

2
= ⋃
∞

𝑛=1
(𝐸
𝑛

∩ 𝑋
2
)

with 𝑚(𝐸
𝑛

∩ 𝑋
2
) ≺ Δ. By (5) of Lemma 20, we have

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝐸𝑛∩𝑋1

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸𝑛∩𝑋2

[𝑓]
𝑛

⊙ 𝑑𝑚,

(45)

which implies that

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝐸𝑛∩𝑋1

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸𝑛∩𝑋2

[𝑓]
𝑛

⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝐸𝑛∩𝑋1

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ lim
𝑛→∞

∫

⊕

𝐸𝑛∩𝑋2

[𝑓]
𝑛

⊙ 𝑑𝑚

= ∫

⊕

𝑋1

𝑓 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋2

𝑓 ⊙ 𝑑𝑚.

(46)

(6) Since 𝑋 = ⋃
∞

𝑛=1
𝐸
𝑛
, we have 𝐸 = ⋃

∞

𝑛=1
(𝐸
𝑛

∩ 𝐸). By the
monotonicity of 𝜎-⊕-decomposable measure 𝑚, we get that if
𝑚(𝐸) = 0, then 𝑚(𝐸

𝑛
∩ 𝐸) = 0. By (6) ofTheorem 22, we have

∫

⊕

𝐸∩𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 = 0, (47)

which implies that

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝐸∩𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 = 0. (48)

Theorem 23. Let ⊕ be a strict pseudoaddition and 𝑚 : A →

[𝑎, 𝑏] a 𝜎-⊕-decomposable measure.
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(1) If 𝑓 ∈ M(A) and 𝐸 ∈ A is a 𝜎-finite set of ⊕-measure,
then ∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = 0 if and only if 𝑓 = 0 a.e. on 𝐸.

(2) If 𝑓 ∈ M(A), then for any 𝐸 ∈ A, lim
𝑚𝐸→ 0 ∫

⊕

𝐸

𝑓 ⊙

𝑑𝑚 = 0.

Proof. (1) Suppose ∫
⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = 0. For arbitrary 0 ≺ 𝛿, let
𝐸
𝛿

= {𝑥 ∈ 𝐸 | 𝛿 ⪯ 𝑓(𝑥)} ∈ A. Then we get that

𝛿 ⊙ 𝑚 (𝐸
𝛿
) ⪯ ∫

⊕

𝐸𝛿

𝑓 ⊙ 𝑑𝑚 ⪯ ∫

⊕

𝐸𝛿

𝑓 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸−𝐸𝛿

𝑓 ⊙ 𝑑𝑚

= ∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = 0.

(49)

Thus, we have 𝑚(𝐸
𝛿
) = 0. Since 0 ≺ 𝛿 is arbitrary, we have

𝑚(S[0 ≺ 𝑓] ∩ 𝐸) = 0.
Suppose 𝑓 = 0 a.e. on 𝐸, that is, 𝑚(𝐸 ∩S[0 ≺ 𝑓]) = 0. By

(6) of Theorem 22, we have

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = ∫

⊕

𝐸∩S[0≺𝑓]
𝑓 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸∩S[𝑓=0]
𝑓 ⊙ 𝑑𝑚 = 0.

(50)

(2) If there exists Ω ≺ Δ, such that 𝑓(𝑥) ⪯ Ω for all 𝑥 ∈ 𝐸,
then

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 ⪯ Ω ⊙ 𝑚 (𝐸) , i.e., lim
𝑚𝐸→ 0

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = 0.

(51)

For any 𝑓 ∈ M(A), we have

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝐸

[𝑓]
𝑛

⊙ 𝑑𝑚, (52)

which implies that

lim
𝑚𝐸→0

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = lim
𝑚𝐸→0

lim
𝑛→∞

∫

⊕

𝐸

[𝑓]
𝑛

⊙ 𝑑𝑚

= lim
𝑛→∞

lim
𝑚𝐸→0

∫

⊕

𝐸

[𝑓]
𝑛

⊙ 𝑑𝑚 = 0.

(53)

Lemma 24 (see [38]). Let ⊕ be a strict pseudoaddition. The
function 𝑑

⊕
: [𝑎, 𝑏]

2

→ [𝑎, 𝑏] given by

𝑑
⊕

(𝑥, 𝑦) =

𝑥−


⊕
𝑦


= {

𝑦−


⊕
𝑥, if 𝑥 ⪯ 𝑦,

𝑥−


⊕
𝑦, if 𝑦 ≺ 𝑥,

(54)

is a pseudometric on [𝑎, 𝑏] with 𝜆 = 1.

Theorem 25. Let ⊕ be a strict pseudoaddition and 𝑋 a 𝜎-finite
set of ⊕-measure. If 𝑚 : A → [𝑎, 𝑏] is a 𝜎-⊕-decomposable
measure, then for any 𝑓, ℎ ∈ M(A),


∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 −


⊕
∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚


⪯ ∫

⊕

𝑋


𝑓−


⊕
ℎ


⊙ 𝑑𝑚. (55)

Proof. Let 𝐸 = {𝑥 | ℎ(𝑥) ⪯ 𝑓(𝑥), 𝑥 ∈ 𝑋} and 𝐹 = {𝑥 | 𝑓(𝑥) ≺

ℎ(𝑥), 𝑥 ∈ 𝑋}. Then 𝐸 and 𝐹 are two ⊕-measure 𝜎-finite sets
of 𝑋. By (4) of Theorem 22, we have

∫

⊕

𝐸

ℎ ⊙ 𝑑𝑚 ⪯ ∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚, ∫

⊕

𝐹

𝑓 ⊙ 𝑑𝑚 ⪯ ∫

⊕

𝐹

ℎ ⊙ 𝑑𝑚.

(56)

Thus, by (3) of Theorem 22, we have

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = ∫

⊕

𝐸

(

𝑓−


⊕
ℎ


⊕ ℎ) ⊙ 𝑑𝑚

= ∫

⊕

𝐸


𝑓−


⊕
ℎ


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸

ℎ ⊙ 𝑑𝑚,

∫

⊕

𝐹

ℎ ⊙ 𝑑𝑚 = ∫

⊕

𝐹

(

𝑓−


⊕
ℎ


⊕ 𝑓) ⊙ 𝑑𝑚

= ∫

⊕

𝐹


𝑓−


⊕
ℎ


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐹

𝑓 ⊙ 𝑑𝑚,

(57)

which implies that

∫

⊕

𝐹


𝑓−


⊕
ℎ


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚

= ∫

⊕

𝐸


𝑓−


⊕
ℎ


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚.

(58)

If ∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚 ⪯ ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚, then we have

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 =


∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 −


⊕
∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚


⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚

⪯ ∫

⊕

𝐸


𝑓−


⊕
ℎ


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚

⪯ ∫

⊕

𝑋


𝑓−


⊕
ℎ


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚,

(59)

which implies that


∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 −


⊕
∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚


⪯ ∫

⊕

𝑋


𝑓−


⊕
ℎ


⊙ 𝑑𝑚. (60)

Similarly, if ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ≺ ∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚, we can also get this
conclusion.

Theorem 26. Let ⊕ be a strict pseudoaddition, and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If

(1) {𝑓
𝑛
} ⊂ M(A);

(2) 𝑓
𝑛

⪯ 𝐹 a.e. on 𝑋, 𝑛 = 1, 2, . . ., and 𝐹 ∈ M(A);
(3) 𝑓
𝑛

⇒ 𝑓,

then 𝑓 ∈ M(A) and

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚. (61)
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Proof. Since 𝑓
𝑛

⇒ 𝑓 on 𝑋, by Theorem 3.8 in [38], there
exists a subsequence {𝑓

𝑛𝑖
} of {𝑓

𝑛
} that a.e. converges to 𝑓 on

𝑋. By Theorem 3.5 in [38], we have 𝑓 ∈ M(A).
(I) Suppose𝑚(𝑋) ≺ Δ. By (2) ofTheorem 23, for arbitrary

0 ≺ 𝜀 = 𝜀
1

⊕ 𝜀
1
, there exists 0 ≺ 𝛿 such that if 𝐸 ⊂ 𝑋 with

𝑚(𝐸) ≺ 𝛿, we have

∫

⊕

𝐸

𝐹 ⊙ 𝑑𝑚 ≺ 𝜀
1
. (62)

Since 𝑓
𝑛

⇒ 𝑓, there exists a natural number 𝑁 > 0, such that
𝑚(S[𝜎 ⪯ |𝑓−



⊕
𝑓
𝑛
|]) ≺ 𝛿 for all 𝑛 ≥ 𝑁, where 𝜀

1
= 𝜎 ⊙ 𝑚(𝑋).

Thus, we get that

∫

⊕

S[𝜎⪯|𝑓−⊕𝑓𝑛|]
𝐹 ⊙ 𝑑𝑚 ≺ 𝜀

1
. (63)

Hence, by Theorem 25, we have


∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 −


⊕
∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚



⪯ ∫

⊕

𝑋


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚

= ∫

⊕

S[𝜎⪯|𝑓−
⊕
𝑓𝑛|]


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚

⊕ ∫

⊕

S[|𝑓−
⊕
𝑓𝑛|≺𝜎]


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚

⪯ ∫

⊕

S[𝜎⪯|𝑓−⊕𝑓𝑛|]
𝐹 ⊙ 𝑑𝑚

⊕ (𝜎 ⊙ 𝑚 (S [

𝑓−


⊕
𝑓
𝑛


≺ 𝜎]))

≺ 𝜀
1

⊕ (𝜎 ⊙ 𝑚 (𝑋)) = 𝜀
1

⊕ 𝜀
1

= 𝜀.

(64)

By Lemma 24, we obtain that

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚. (65)

(II) Suppose 𝑚(𝑋) = Δ. For arbitrary 0 ≺ 𝜀 = 𝜀
1

⊕ 𝜀
1
,

there exists 𝐸
𝑘

⊆ 𝑋 with 𝑚(𝐸
𝑘
) ≺ Δ, such that

∫

⊕

𝑋

𝐹 ⊙ 𝑑𝑚 ≺ ∫

⊕

𝐸𝑘

[𝐹]
𝑘

⊙ 𝑑𝑚 ⊕ 𝜀
1
. (66)

Thus, we have

∫

⊕

𝐸𝑘

[𝐹]
𝑘

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋−𝐸𝑘

𝐹 ⊙ 𝑑𝑚

⪯ ∫

⊕

𝐸𝑘

𝐹 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋−𝐸𝑘

𝐹 ⊙ 𝑑𝑚

= ∫

⊕

𝑋

𝐹 ⊙ 𝑑𝑚 ≺ ∫

⊕

𝐸𝑘

[𝐹]
𝑘

⊙ 𝑑𝑚 ⊕ 𝜀
1
;

(67)

that is, ∫
⊕

𝑋−𝐸𝑘

𝐹 ⊙ 𝑑𝑚 ≺ 𝜀
1
. Since the measurable functionals

sequence {|𝑓−


⊕
𝑓
𝑛
|} satisfies

(i) |𝑓−


⊕
𝑓
𝑛
| ⪯ 𝐹 a.e. on 𝐸

𝑘
;

(ii) |𝑓−


⊕
𝑓
𝑛
| ⇒ 0 on 𝐸

𝑘
,

by (I), we get that there exists a natural number 𝑁 > 0, such
that

∫

⊕

𝐸𝑘


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚 ≺ 𝜀

1
, (68)

for all 𝑛 > 𝑁. Hence, by Theorem 25, we have

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 −


⊕
∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚



⪯ ∫

⊕

𝑋


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚

= ∫

⊕

𝑋−𝐸𝑘


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸𝑘


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚

⪯ ∫

⊕

𝑋−𝐸𝑘

𝐹 ⊙ 𝑑𝑚 ⊕ 𝜀
1

≺ 𝜀
1

⊕ 𝜀
1

= 𝜀.

(69)

Consequently, we obtain that

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚. (70)

Corollary 27. If the condition (3) ofTheorem 26 is replaced by
𝑓
𝑛

→ 𝑓 a.e. on 𝑋, then the conclusion of Theorem 26 holds.

Proof. Since 𝑓
𝑛

→ 𝑓 a.e. on 𝑋, by Theorem 3.5 in [38], we
have 𝑓 ∈ M(A).

(I) Suppose 𝑚(𝑋) ≺ Δ. By Theorem 3.9 in [38], if 𝑓
𝑛

→

𝑓 a.e. on 𝑋, then 𝑓
𝑛

⇒ 𝑓. By Theorem 26 (I), we have

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚. (71)

(II) Suppose 𝑚(𝑋) = Δ. Since 𝑋 is 𝜎-finite set of ⊕-
measure, there exists an increasing sequence of sets {𝐸

𝑛
} ⊂ A

with 𝑚(𝐸
𝑛
) ≺ Δ, 𝑛 = 1, 2, . . ., such that 𝑋 = ⋃

∞

𝑛=1
𝐸
𝑛
. For

any 𝐸
𝑘
, 𝑘 = 1, 2, . . ., the sequence of measurable functionals

{|𝑓−


⊕
𝑓
𝑛
|} satisfies

(i) |𝑓−


⊕
𝑓
𝑛
| ⪯ 𝐹 a.e. on 𝐸

𝑘
, 𝑘 = 1, 2, . . .;

(ii) |𝑓−


⊕
𝑓
𝑛
| → 0 a.e. on 𝐸

𝑘
, 𝑘 = 1, 2, . . ..

By Theorem 3.9 in [38], we have

(ii) |𝑓−


⊕
𝑓
𝑛
| ⇒ 0 on 𝐸

𝑘
, 𝑘 = 1, 2, . . ..

By (I) and proof of Theorem 26 (II), we have

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚. (72)
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Lemma 28. Let ⊕ be a strict pseudoaddition, and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If {𝑥

𝑛
} is a monotone sequence, then

the sequence {𝑥
𝑛
} is convergence.

Proof. If {𝑥
𝑛
} is an increasing sequence, then

lim
𝑛→∞

𝑥
𝑛

=
∞

∨
⊕

𝑛=1

(∧
⊙

𝑘≥𝑛

𝑥
𝑘
) =
∞

∨
⊕

𝑛=1

𝑥
𝑛
,

lim
𝑛→∞

𝑥
𝑛

=
∞

∧
⊙

𝑛=1

(∨
⊕

𝑘≥𝑛

𝑥
𝑘
) =
∞

∨
⊕

𝑛=1

𝑥
𝑛
.

(73)

If {𝑥
𝑛
} is a decreasing sequence, then

lim
𝑛→∞

𝑥
𝑛

=
∞

∨
⊕

𝑛=1

(∧
⊙

𝑘≥𝑛

𝑥
𝑘
) =
∞

∧
⊙

𝑛=1

𝑥
𝑛
,

lim
𝑛→∞

𝑥
𝑛

=
∞

∧
⊙

𝑛=1

(∨
⊕

𝑘≥𝑛

𝑥
𝑘
) =
∞

∧
⊙

𝑛=1

𝑥
𝑛
.

(74)

Thus, we have

lim
𝑛→∞

𝑥
𝑛

= lim
𝑛→∞

𝑥
𝑛
. (75)

By Theorem 3.2 in [38], we get that the sequence {𝑥
𝑛
} is

convergent.

Theorem 29. Let ⊕ be a strict pseudoaddition and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If {𝑓

𝑛
} is an increasing sequence of

measurable functionals on 𝑋, then

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚. (76)

Proof. Let {𝑓
𝑛
} be an increasing sequence of measurable

functionals on 𝑋. By Lemma 28, we get that the sequence
of measurable functionals {𝑓

𝑛
} is convergent. Let 𝑓 =

lim
𝑛→∞

𝑓
𝑛
. ByTheorem 3.5 in [38], we have 𝑓 ∈ M(A) with

𝑓
𝑛

⪯ 𝑓 on 𝑋. By (4) of Theorem 22, we get that

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 ⪯ ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚, (77)

which implies that

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 ⪯ ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚. (78)

On the contrary, since 𝑋 is 𝜎-finite set of ⊕-measure,
there exists an increasing sequence of sets {𝐸

𝑛
} ⊂ A with

𝑚(𝐸
𝑛
) ≺ Δ, 𝑛 = 1, 2, . . ., such that 𝑋 = ⋃

∞

𝑛=1
𝐸
𝑛
. For any

given integer 𝑘 > 0, {[𝑓
𝑛
]
𝑘
}
𝑛≥𝑘

is an increasing sequence of
measurable functionals and [𝑓

𝑛
]
𝑘

⪯ 𝑓 on 𝑋, for all 𝑛 ≥ 𝑘.
Now we show that

lim
𝑛→∞

[𝑓
𝑛
]
𝑘

= [𝑓]
𝑘
. (79)

For arbitrary 𝑥
0

∈ 𝑋,

(i) if 𝑓
𝑛
(𝑥
0
) ⪯ 𝜇
𝑘
, that is, [𝑓

𝑛
]
𝑘
(𝑥
0
) = 𝑓
𝑛
(𝑥
0
) for all 𝑛 ≥ 𝑘,

then 𝑓(𝑥
0
) ⪯ 𝜇
𝑘
, that is, [𝑓]

𝑘
(𝑥
0
) = 𝑓(𝑥

0
). Thus, we

have

lim
𝑛→∞

[𝑓
𝑛
]
𝑘

(𝑥
0
) = [𝑓]

𝑘
(𝑥
0
) ; (80)

(ii) if there exists 𝑛
0

≥ 𝑘, such that 𝜇
𝑘

≺ 𝑓
𝑛0

(𝑥
0
), then

𝜇
𝑘

≺ 𝑓
𝑛
(𝑥
0
); that is, [𝑓

𝑛
]
𝑘
(𝑥
0
) = 𝜇

𝑘
for all 𝑛 ≥ 𝑛

0
; it

follows that 𝜇
𝑘

⪯ 𝑓(𝑥
0
); that is, [𝑓]

𝑘
(𝑥
0
) = 𝜇
𝑘
. Thus,

we have

lim
𝑛→∞

[𝑓
𝑛
]
𝑘

(𝑥
0
) = [𝑓]

𝑘
(𝑥
0
) = 𝜇
𝑘
. (81)

Hence, by Corollary 27, we get that

∫

⊕

𝐸𝑘

[𝑓]
𝑘

⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝐸𝑘

[𝑓
𝑛
]
𝑘

⊙ 𝑑𝑚 ⪯ lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚,

(82)

which implies that

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 = lim
𝑘→∞

∫

⊕

𝐸𝑘

[𝑓]
𝑘

⊙ 𝑑𝑚 ⪯ lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚.

(83)

Consequently, we obtain that

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 = ∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚. (84)

Theorem 30. Let ⊕ be a strict pseudoaddition, and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If {𝑓

𝑛
} is a decreasing sequence of finite

measurable functionals and pseudointegral of 𝑓
1
is finite on 𝑋,

then

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚. (85)

Proof. Let {𝑓
𝑛
} be a decreasing sequence of measurable

functionals on 𝑋. By Lemma 28, we get that the sequence
of measurable functionals {𝑓

𝑛
} is convergent. Let 𝑓 =

lim
𝑛→∞

𝑓
𝑛
. By Theorem 3.5 in [38], we have 𝑓 ∈ M(A).

Since {𝑓
1
−


⊕
𝑓
𝑛
} is an increasing sequence of measurable

functionals, by Theorem 29, we have

lim
𝑛→∞

∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓
𝑛
) ⊙ 𝑑𝑚 = ∫

⊕

𝑋

lim
𝑛→∞

(𝑓
1
−


⊕
𝑓
𝑛
) ⊙ 𝑑𝑚. (86)

Since 𝑓
1

= (𝑓
1
−


⊕
𝑓
𝑛
) ⊕ 𝑓
𝑛
and ⊕ is continuous, we have

𝑓
1

= lim
𝑛→∞

(𝑓
1
−


⊕
𝑓
𝑛
) ⊕ lim
𝑛→∞

𝑓
𝑛

= lim
𝑛→∞

(𝑓
1
−


⊕
𝑓
𝑛
) ⊕ 𝑓. (87)

Since 𝑓
1

= (𝑓
1
−


⊕
𝑓) ⊕ 𝑓 ≺ Δ and ⊕ is strict, we get that

lim
𝑛→∞

(𝑓
1
−


⊕
𝑓
𝑛
) = 𝑓
1
−


⊕
𝑓, (88)
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which implies that

lim
𝑛→∞

∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓
𝑛
) ⊙ 𝑑𝑚 = ∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓) ⊙ 𝑑𝑚. (89)

By (3) of Theorem 22, we have

∫

⊕

𝑋

𝑓
1

⊙ 𝑑𝑚 = ∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓
𝑛
) ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚,

∫

⊕

𝑋

𝑓
1

⊙ 𝑑𝑚 = ∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓) ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚.

(90)

Thus, we get that

∫

⊕

𝑋

𝑓
1

⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓
𝑛
) ⊙ 𝑑𝑚 ⊕ lim

𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚

= ∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓) ⊙ 𝑑𝑚 ⊕ lim

𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚.

(91)

Since ∫
⊕

𝑋

𝑓
1

⊙ 𝑑𝑚 ≺ Δ and ⊕ is strict, we obtain that

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 = ∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚. (92)

Theorem 31. Let ⊕ be a strict pseudoaddition, and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If {𝑓

𝑛
} is a sequence of measurable

functionals on 𝑋, then

∫

⊕

𝑋

(
∞

⊕
𝑛=1

𝑓
𝑛
) ⊙ 𝑑𝑚 =

∞

⊕
𝑛=1

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚. (93)

Proof. Let ℎ
𝑛

= ⊕
𝑛

𝑖=1
𝑓
𝑖
, 𝑛 = 1, 2, . . .. Then {ℎ

𝑛
} is an increasing

sequence ofmeasurable functionals on𝑋. ByTheorem 29, we
have

lim
𝑛→∞

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

lim
𝑛→∞

ℎ
𝑛

⊙ 𝑑𝑚. (94)

By (3) of Theorem 22, we have

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑛

⊕
𝑖=1

𝑓
𝑖

⊙ 𝑑𝑚 =
𝑛

⊕
𝑖=1

∫

⊕

𝑋

𝑓
𝑖

⊙ 𝑑𝑚; (95)

that is,

lim
𝑛→∞

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚 =
∞

⊕
𝑛=1

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚. (96)

Since lim
𝑛→∞

ℎ
𝑛

= ⊕
∞

𝑛=1
𝑓
𝑛
, we have

∫

⊕

𝑋

(
∞

⊕
𝑛=1

𝑓
𝑛
) ⊙ 𝑑𝑚 =

∞

⊕
𝑛=1

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚. (97)

Theorem 32. Let ⊕ be a strict pseudoaddition, and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If 𝑓 is a measurable functional on 𝑋,

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 =
∞

⊕
𝑛=1

∫

⊕

𝐸𝑛

𝑓 ⊙ 𝑑𝑚, (98)

for any sequence {𝐸
𝑛
} of pairwise disjoint sets fromAwith𝑋 =

⋃
∞

𝑛=1
𝐸
𝑛
.

Proof. A functionals sequence [𝑓]
𝑛
is given by

𝑓
𝑛

(𝑥) = {
𝑓 (𝑥) , if 𝑥 ∈ 𝐸

𝑛
,

0, if 𝑥 ∈ 𝑋 − 𝐸
𝑛
,

𝑛 = 1, 2, . . . , (99)

then 𝑓 = ⊕
∞

𝑛=1
𝑓
𝑛
and

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝐸𝑛

𝑓
𝑛

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋−𝐸𝑛

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝐸𝑛

𝑓 ⊙ 𝑑𝑚.

(100)

ByTheorem 31, we have

∫

⊕

𝑋

∞

⊕
𝑛=1

𝑓
𝑛

⊙ 𝑑𝑚 =
∞

⊕
𝑛=1

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚. (101)

Hence, we obtain that

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 =
∞

⊕
𝑛=1

∫

⊕

𝐸𝑛

𝑓 ⊙ 𝑑𝑚. (102)

Theorem 33. Let ⊕ be a strict pseudoaddition, and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If {𝑓

𝑛
} is a sequence of measurable

functionals on 𝑋, then

∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚 ⪯ lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚. (103)

Proof. Let ℎ
𝑛

= ∧
⊙

∞

𝑘=𝑛
𝑓
𝑘
, 𝑛 = 1, 2, . . .. Then {ℎ

𝑛
} is an

increasing sequence ofmeasurable functionals on𝑋. By proof
of Theorem 29, we have

lim
𝑛→∞

ℎ
𝑛

=
∞

∨
⊕

𝑛=1

ℎ
𝑛

=
∞

∨
⊕

𝑛=1

∞

∧
⊙

𝑘=𝑛

𝑓
𝑘

= lim
𝑛→∞

𝑓
𝑛
. (104)

ByTheorem 29, we have

∫

⊕

𝑋

lim
𝑛→∞

ℎ
𝑛

⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚, (105)

which implies that

∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚. (106)

By (4) of Theorem 22 and ℎ
𝑛

⪯ 𝑓
𝑘
for all 𝑘 ≥ 𝑛, we have

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚 ⪯ ∫

⊕

𝑋

𝑓
𝑘

⊙ 𝑑𝑚, (107)
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for all 𝑘 ≥ 𝑛, which implies that

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚 ⪯
∞

∧
⊙

𝑘=𝑛

∫

⊕

𝑋

𝑓
𝑘

⊙ 𝑑𝑚. (108)

By (4) of Theorem 22 and the monotonicity of {ℎ
𝑛
}, we have

{∫
⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚} is an increasing sequence. Thus, by proof of
Theorem 29, we have

lim
𝑛→∞

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚 =
∞

∨
⊕

𝑛=1

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚. (109)

Hence, we obtain that

∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚 ⪯
∞

∨
⊕

𝑛=1

∞

∧
⊙

𝑘=𝑛

∫

⊕

𝑋

𝑓
𝑘

⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚.

(110)

Example 34. Let the total order ⪯ on [0, +∞) be the usual
order of the real line and the pseudoaddition ⊕ is defined by

𝑥 ⊕ 𝑦 =
{

{

{

𝑥 + 𝑦

2
, if 𝑥, 𝑦 ∈ (0, ∞) ,

max {𝑥, 𝑦} , if 𝑥 = 0 or 𝑦 = 0,

(111)

and the pseudomultiplication ⊙ is the usual multiplication of
the real numbers. It is obvious that zero element is 0 and unit
element is 1. Let the decomposable measure 𝑚 be Lebesgue
measure on [0, 1]. We know that the pseudointegral is

∫

⊕

[0,1]

𝑓 ⊙ 𝑑𝑚 =
1

2
∫

1

0

𝑓 (𝑥) 𝑑𝑥, (112)

for each 𝑓 ∈ M(A([0, 1])), where the right hand side is the
Lebesgue integral. Let

𝑓
𝑛

(𝑥) =

{{{

{{{

{

𝑛,
1

2𝑛
≤ 𝑥 ≤

1

𝑛
,

0,
1

𝑛
< 𝑥 ≤ 1 or 0 ≤ 𝑥 <

1

2𝑛
.

(113)

Then, we get that

∫

⊕

[0,1]

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

[0,1/2𝑛]

0 ⊙ 𝑑𝑚 ⊕ ∫

⊕

[1/2𝑛,1/𝑛]

𝑛 ⊙ 𝑑𝑚

⊕ ∫

⊕

[1/𝑛,1]

0 ⊙ 𝑑𝑚 =
1

4
;

(114)

that is, lim
𝑛→∞

∫
⊕

[0,1]

𝑓
𝑛

⊙ 𝑑𝑚 = 1/4 and lim
𝑛→∞

𝑓
𝑛

= 0,
which implies that ∫

⊕

[0,1]

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚 = 0. Hence, we
obtain that

∫

⊕

[0,1]

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚 ≤ lim
𝑛→∞

∫

⊕

[0,1]

𝑓
𝑛

⊙ 𝑑𝑚. (115)

4. Conclusions

In this paper, we mainly discussed pseudointegral based on
pseudoaddition decomposablemeasure. Particularly, we have
given the definition of the pseudointegral of a measurable
function based on a strict pseudoaddition decomposable
measure by generalizing the definition of the pseudointegral
of a bounded measurable function. Furthermore, we have
derived several important properties of the pseudointegral
of a measurable function based on strict pseudoaddition
decomposable measure. Finally, we have obtained that some
theorems on the integral and the limit can be exchanged.

Recently, pseudoanalysis has obtained rapid development
in the mechanical, chemical, biological, medical, and com-
puter fields and has solved some uncertainty problems of
knowledge. Pseudoanalysis theory has important applica-
tions in the field of computer image processing [39, 40];
for example, it can analyze and grasp the variation range
of the image gray value, solve the relationship between the
grey value and image color change, and take appropriate
grey value to achieve better image processing effect. With
the development of computer technology, pseudoanalysis will
also get more and more widely used in computer science. We
also hope that our results in this papermay lead to significant,
new, and innovative results in other related fields.
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Sugeno integral,” Fuzzy Sets and Systems, vol. 161, no. 17, pp.
2237–2347, 2010.

[11] D. Dubois and H. Prade, “A class of fuzzy measures based on
triangular norms. A general framework for the combination
of uncertain information,” International Journal of General
Systems, vol. 8, no. 1, pp. 43–61, 1982.

[12] S. Weber, “⊥-decomposable measures and integrals for
Archimedean t-conorms ⊥,” Journal of Mathematical Analysis
and Applications, vol. 101, no. 1, pp. 114–138, 1984.

[13] D. Denneberg, Non-Additive Measure and Integral, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1994.

[14] E. Pap, “An integral generated by a decomposable measure,”
Zbornik Radova Prirodno-Matematichkog Fakulteta, vol. 20, no.
1, pp. 135–144, 1990.

[15] D. Qiu, W. Zhang, and C. Li, “On decomposable measures
constructed by using stationary fuzzy pseudo-ultrametrics,”
International Journal of General Systems, vol. 42, no. 4, pp. 395–
404, 2013.

[16] D. Qiu, W. Q. Zhang, and C. Li, “Extension of a class of
decomposable measures using fuzzy pseudometrics,” Fuzzy Sets
and Systems, vol. 222, pp. 33–44, 2013.

[17] D. Qiu andW. Zhang, “On decomposable measures induced by
metrics,” Journal of Applied Mathematics, vol. 2012, Article ID
701206, 8 pages, 2012.

[18] Y. H. Shen, “On the probabilistic Hausdorff distance and a class
of probabilistic decomposable measures,” Information Sciences,
vol. 263, pp. 126–140, 2014.

[19] I. Gilboa, “Additivizations of nonadditivemeasures,”Mathemat-
ics of Operations Research, vol. 14, no. 1, pp. 1–17, 1989.

[20] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-
Holland, Amsterdam, Netherlands, 1983.

[21] E. Pap, “Decomposable measures and nonlinear equations,”
Fuzzy Sets and Systems, vol. 92, no. 2, pp. 205–221, 1997.

[22] E. Pap, “Applications of the generated pseudo-analysis to non-
linear partial differential equations,” Contemporary Mathemat-
ics, vol. 377, pp. 239–259, 2005.

[23] E. Pap, “Pseudo-analysis approach to nonlinear partial differ-
ential equations,” Acta Polytechnica Hungarica, vol. 5, no. 1, pp.
31–45, 2008.
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[39] E. Pap and N. Ralević, “Pseudo-Laplace transform,” Nonlinear
Analysis, vol. 33, no. 5, pp. 533–550, 1998.

[40] E. Pap, “Pseudo-additive measures and their aplications,” in
Handbook of Measure Theory, E. Pap, Ed., pp. 1403–1465,
Elsevier, Amsterdam, The Netherlands, 2002.



Research Article
Quadrature Rules and Iterative Method for Numerical Solution
of Two-Dimensional Fuzzy Integral Equations

S. M. Sadatrasoul and R. Ezzati

Department of Mathematics, College of Basic Sciences, Karaj Branch, Islamic Azad University, Alborz, Iran

Correspondence should be addressed to R. Ezzati; ezati@kiau.ac.ir

Received 25 December 2013; Accepted 11 March 2014; Published 19 May 2014

Academic Editor: Soheil Salahshour

Copyright © 2014 S. M. Sadatrasoul and R. Ezzati. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We introduce some generalized quadrature rules to approximate two-dimensional, Henstock integral of fuzzy-number-valued
functions. We also give error bounds for mappings of bounded variation in terms of uniform modulus of continuity. Moreover,
we propose an iterative procedure based on quadrature formula to solve two-dimensional linear fuzzy Fredholm integral equations
of the second kind (2𝐷𝐹𝐹𝐿𝐼𝐸2), and we present the error estimation of the proposedmethod. Finally, some numerical experiments
confirm the theoretical results and illustrate the accuracy of the method.

1. Introduction

The concept of fuzzy numbers and arithmetic operations
with these numbers were first introduced and investigated
by Zadeh and others. The topic of fuzzy integrations is
discussed in [1]. The Henstock and Riemann integral for
fuzzy-number-valued functions was introduced and studied
in [2, 3]. Their numerical computation was also proposed;
see, for example, [3–6]. In [6], the authors obtained the
upper estimates of error of some fuzzy quadrature rules
for mappings of bounded variation and of Lipschitz type
and gave some applications. In [7], the authors studied the
Gaussian quadrature rules for fuzzy integrals. Also, in [8],Wu
presented some optimal fuzzy quadrature formula for classes
of fuzzy-number-valued functions of Lipschitz type. To study
other works, see [9–12].

Since many real-valued problems in engineering and
mechanics can be brought in the form of two-dimensional
fuzzy integral equations, it is important that we develop
quadrature rules and numerical methods for such integral
equations. In this paper, we introduce two-dimensional fuzzy
integrals and propose some generalized quadrature rules
and their dependent theorems for mappings of bounded
variation. Also, we present the conditions for existence of
unique solution for 2DFFLIE2. Finally, we introduce an

iterative method for solving 2DFFLIE2. The rest of the
paper is organized as follows. In Section 2, we give basic
information about the fuzzy set theory and develop them
to two-dimensional space. Also, we define two-dimensional
fuzzy integral equation and some other properties of it in
this section. In Section 3, we derive the proposed method to
obtain numerical solutions of 2DFFLIE2 based on an iterative
procedure. The error estimation of the introduced method
is presented in Section 4 in terms of uniform modulus of
continuity to prove the convergence of the method. Some
numerical experiments are presented in Section 5.

2. Preliminaries

In this section, we review some necessary basic definitions on
fuzzy numbers, fuzzy-number-valued functions, and fuzzy
integrals.

Definition 1 (see [13, 14]). A fuzzy number is a function 𝑢 :

𝑅 → [0, 1] having the following properties:

(i) 𝑢 is normal; that is, ∃𝑥
0
∈ 𝑅, such that 𝑢(𝑥

0
) = 1;

(ii) 𝑢 is fuzzy convex set (i.e., 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦) ≥

min{𝑢(𝑥), 𝑢(𝑦)}, for all 𝑥, 𝑦 ∈ 𝑅, 𝜆 ∈ [0, 1]);

(iii) 𝑢 is upper semicontinuous on 𝑅;
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(iv) the support {𝑥 ∈ 𝑅 : 𝑢(𝑥) > 0} is a compact set, where
𝐴 denotes the closure of 𝐴.

The set of all fuzzy numbers is denoted by 𝑅
ϝ
. According

to [2], any real number 𝛼 ∈ 𝑅 can be interpreted as a fuzzy
number 𝛼 = 𝜒

{𝛼}
, and therefore 𝑅 ⊂ 𝑅

ϝ
. Also, the neutral

element with respect to ⊕ in 𝑅
ϝ
is denoted by 0̃ = 𝜒

{0}
.

Definition 2 (see [2, 15]). For any 0 < 𝑟 ≤ 1, an arbitrary fuzzy
number is represented in parametric form, by an ordered
pair of functions (𝑢(𝑟), 𝑢(𝑟)), which satisfies the following
properties:

(i) 𝑢(𝑟) is bounded left continuous nondecreasing func-
tion over [0, 1];

(ii) 𝑢(𝑟) is bounded left continuous nonincreasing func-
tion over [0, 1];

(iii) 𝑢(𝑟) ≤ 𝑢(𝑟).

Moreover, the addition and scalar multiplication of fuzzy
numbers in 𝑅

ϝ
are defined as follows:

(i)

(𝑢 ⊕ V) (𝑟) = (𝑢 (𝑟) + V (𝑟) , 𝑢 (𝑟) + V (𝑟)) , (1)

(ii)

(𝜆 ⊙ V) (𝑟) = {
(𝜆𝑢 (𝑟) , 𝜆𝑢 (𝑟)) 𝜆 ≥ 0,

(𝜆𝑢 (𝑟) , 𝜆𝑢 (𝑟)) 𝜆 < 0.
(2)

Also, according to [2, 16], the following algebraic proper-
ties for any 𝑢, V, 𝑤 ∈ 𝑅

ϝ
hold:

(i) 𝑢 ⊕ (V ⊕ 𝑤) = (𝑢 ⊕ V) ⊕ 𝑤;
(ii) 𝑢 ⊕ 0̃ = 0̃ ⊕ 𝑢 = 𝑢;
(iii) with respect to 0̃, none of 𝑢 ∈ (𝑅

ϝ
− 𝑅), 𝑢 ̸= 0̃ has

opposite in (𝑅
ϝ
, +);

(iv) (𝑎 ⊕ 𝑏) ⊙ 𝑢 = 𝑎 ⊙ 𝑢 ⊕ 𝑏 ⊙ 𝑢, for all 𝑎, 𝑏 ∈ 𝑅 with 𝑎𝑏 ≥ 0

or 𝑎𝑏 ≤ 0;
(v) 𝑎 ⊙ (𝑢 ⊕ V) = 𝑎 ⊙ 𝑢 ⊕ 𝑎 ⊙ V, for all 𝑎 ∈ 𝑅;
(vi) 𝑎 ⊙ (𝑏 ⊙ 𝑢) = (𝑎𝑏) ⊙ 𝑢, for all 𝑎 ∈ 𝑅 and 1 ⊙ 𝑢 = 𝑢.

Definition 3 (see [2, 17]). For arbitrary fuzzy numbers 𝑢 =

(𝑢(𝑟), 𝑢(𝑟)), V = (V(𝑟), V(𝑟)), the quantity 𝐷(𝑢, V) =

sup
𝑟∈[0,1]

max{|𝑢(𝑟) − V(𝑟)|, |𝑢(𝑟) − V(𝑟)|} is the distance
between 𝑢 and V. Also, the following properties hold [6]:

(i) (𝑅
ϝ
, 𝐷) is a complete metric space;

(ii) 𝐷(𝑢 ⊕ 𝑤, V ⊕ 𝑤) = 𝐷(𝑢, V) for all 𝑢, V, 𝑤 ∈ 𝑅
ϝ
;

(iii) 𝐷(𝑘⊙𝑢, 𝑘⊙V) = |𝑘|𝐷(𝑢, V) for all 𝑢, V ∈ 𝑅
ϝ
for all 𝑘 ∈

𝑅;
(iv) 𝐷(𝑢⊕V, 𝑤⊕𝑒) ≤ 𝐷(𝑢, 𝑤)+𝐷(V, 𝑒) for all𝑢, V, 𝑤, 𝑒 ∈ 𝑅

ϝ
;

(v) 𝐷(𝑘
1
⊙ 𝑢, 𝑘

2
⊙ 𝑢) = |𝑘

1
− 𝑘
2
|𝐷(𝑢, 0̃) for all 𝑘

1
, 𝑘
2
∈ 𝑅

with 𝑘
1
𝑘
2
≥ 0 and for all 𝑢 ∈ 𝑅

ϝ
.

Throughout this paper, we denote that ‖ ⋅ ‖
ϝ
= 𝐷(⋅, 0).

Theorem 4 (see [14]). (i) (𝑅
ϝ
, 𝐷) is a complete metric space.

(ii) The pair (𝑅
ϝ
, 𝐷) is a commutative semigroup with 0̃ =

𝜒
0
zero elements but cannot be a group for pure fuzzy numbers.
(iii) ‖ ⋅ ‖

ϝ
has the properties of a usual norm on 𝑅

ϝ
; that

is, ‖ ⋅ ‖
ϝ
= 0 if and only if 𝑢 = 0, ‖𝜆 ⊙ 𝑢‖

ϝ
= |𝜆|‖𝑢‖

ϝ
, and

‖𝑢 ⊕ V‖
ϝ
≤ ‖𝑢‖

ϝ
+ ‖V‖

ϝ
.

(iv) |‖𝑢‖
ϝ
− ‖V‖

ϝ
| ≤ 𝐷(𝑢, V) and 𝐷(𝑢, V) ≤ ‖𝑢‖

ϝ
+ ‖V‖

ϝ
for

any 𝑢, V ∈ 𝑅
ϝ
.

In [2], the authors introduced the concept of theHenstock
integral for a fuzzy-number-valued function. We present a
generalized definition of this concept for two-dimensional
Henstock integrability for bivariate fuzzy-number-valued
functions.

Definition 5. Suppose that 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
is a

bounded mapping, and then the function 𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, ⋅) :

𝑅
+
∪ 0 → 𝑅

+
defined by

𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, 𝛿) = sup {𝐷 (𝑓 (𝑥, 𝑦) , 𝑓 (𝑠, 𝑡)) ;

𝑥, 𝑠 ∈ [𝑎, 𝑏] ; 𝑦, 𝑡 ∈ [𝑐, 𝑑] ;

√(𝑥 − 𝑠)
2
+ (𝑦 − 𝑡)

2
≤ 𝛿}

(3)

is called the modulus of oscillation of 𝑓 on [𝑎, 𝑏] × [𝑐, 𝑑].
Also, if 𝑓 ∈ 𝐶

ϝ
([𝑎, 𝑏] × [𝑐, 𝑑]) (i.e., 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] →

𝑅
ϝ
is continuous on [𝑎, 𝑏] × [𝑐, 𝑑]), then 𝜔

[𝑎,𝑏]×[𝑐,𝑑]
(𝑓, 𝛿) is

called uniform modulus of continuity of 𝑓. The following
properties will be very useful in what follows. The proofs
of these properties in one-dimensional case are presented in
[14] and those in two-dimensional case will be obtained in a
similar way.

Theorem 6. The following properties hold:

(i) 𝐷(𝑓(𝑥, 𝑦), 𝑓(𝑠, 𝑡)) ≤

𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓,√(𝑥 − 𝑠)
2
+ (𝑦 − 𝑡)

2
) for any 𝑥, 𝑠 ∈ [𝑎, 𝑏]

and 𝑦, 𝑡 ∈ [𝑐, 𝑑];
(ii) 𝜔

[𝑎,𝑏]×[𝑐,𝑑]
(𝑓, 𝛿) is a nondecreasing mapping in 𝛿;

(iii) 𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, 0) = 0;
(iv) 𝜔

[𝑎,𝑏]×[𝑐,𝑑]
(𝑓, 𝛿

1
+ 𝛿

2
) ≤ 𝜔

[𝑎,𝑏]×[𝑐,𝑑]
(𝑓, 𝛿

1
) +

𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, 𝛿
2
) for any 𝛿

1
, 𝛿
2
≥ 0;

(v) 𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, 𝑛𝛿) ≤ 𝑛𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, 𝛿) for any 𝛿 ≥ 0 and
𝑛 ∈ 𝑁;

(vi) 𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, 𝜆𝛿) ≤ (𝜆 + 1)𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, 𝛿) for any
𝛿, 𝜆 ≥ 0.

Definition 7. Let 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
, for Δ𝑛

𝑥
: 𝑎 = 𝑥

0
<

𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 𝑏 and Δ𝑛

𝑦
: 𝑐 = 𝑦

0
< 𝑦

1
< ⋅ ⋅ ⋅ < 𝑦

𝑛
= 𝑑, be

two partitions of the intervals [𝑎, 𝑏] and [𝑐, 𝑑], respectively.
Let one consider the intermediate points 𝜉

𝑖
∈ [𝑥

𝑖−1
, 𝑥
𝑖
] and

𝜂
𝑖
∈ [𝑦

𝑗−1
, 𝑦
𝑗
], 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑛, and 𝛿 : [𝑎, 𝑏] →

𝑅
+
and 𝜎 : [𝑐, 𝑑] → 𝑅

+
. The divisions 𝑃

𝑥
= ([𝑥

𝑖−1
, 𝑥
𝑖
]; 𝜉
𝑖
),

𝑖 = 1, . . . , 𝑛, and 𝑃
𝑦
= ([𝑦

𝑗−1
, 𝑦
𝑗
]; 𝜂
𝑗
), 𝑗 = 1, . . . , 𝑛, denoted

shortly by 𝑃
𝑥
= (Δ𝑛, 𝜉) and 𝑃

𝑦
= (Δ𝑛, 𝜂) are said to be 𝛿-fine
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and 𝜎-fine, respectively, if [𝑥
𝑖−1

, 𝑥
𝑖
] ⊆ (𝜉

𝑖
− 𝛿(𝜉

𝑖
), 𝜉
𝑖
+ 𝛿(𝜉

𝑖
))

and [𝑦
𝑗−1

, 𝑦
𝑗
] ⊆ (𝜂

𝑗
− 𝜎(𝜂

𝑗
), 𝜂
𝑗
+ 𝜎(𝜂

𝑗
)).

The function 𝑓 is said to be two-dimensional Henstock
integrable to 𝐼 ∈ 𝑅

ϝ
if for every 𝜀 > 0 there are functions

𝛿 : [𝑎, 𝑏] → 𝑅
+
and 𝜎 : [𝑐, 𝑑] → 𝑅

+
such that for

any 𝛿-fine and 𝜎-fine divisions we have 𝐷(∑
𝑛

𝑖=0
∑
𝑛

𝑗=0
(𝑥
𝑖
−

𝑥
𝑖−1

)(𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓(𝜉
𝑖
, 𝜂
𝑗
), 𝐼) < 𝜖, where∑ denotes the fuzzy

summation. Then, 𝐼 is called the two-dimensional Henstock
integral of𝑓 and is denoted by 𝐼(𝑓) = (𝐹𝐻) ∫

𝑑

𝑐
∫
𝑏

𝑎
𝑓(𝑠, 𝑡)𝑑𝑠 𝑑𝑡.

If the above 𝛿 and 𝜎 are constant functions, then one
recaptures the concept of Riemann integral. In this case, 𝐼 ∈

𝑅
ϝ
will be called two-dimensional integral of 𝑓 on [𝑎, 𝑏] ×

[𝑐, 𝑑] and will be denoted by (𝐹𝑅) ∫𝑑
𝑐
∫
𝑏

𝑎
𝑓(𝑠, 𝑡)𝑑𝑠 𝑑𝑡.

Corollary 8. In [13], the authors proved that if 𝑓 ∈ 𝐶
ϝ
[𝑎, 𝑏],

its definite integral exists, also (𝐹𝑅) ∫𝑏
𝑎
𝑓(𝑡; 𝑟)𝑑𝑡 = ∫

𝑏

𝑎
𝑓(𝑡, 𝑟)𝑑𝑡,

and (𝐹𝑅) ∫
𝑏

𝑎
𝑓(𝑡; 𝑟)𝑑𝑡 = ∫

𝑏

𝑎
𝑓(𝑡, 𝑟)𝑑𝑡. In a similar way, we can

prove that if 𝑓 ∈ 𝐶
ϝ
([𝑎, 𝑏] × [𝑐, 𝑑]), its definite integral exists,

and one has

(𝐹𝑅)∫
𝑑

𝑐

∫
𝑏

𝑎

𝑓 (𝑠, 𝑡; 𝑟) 𝑑𝑠 𝑑𝑡 = ∫
𝑑

𝑐

∫
𝑏

𝑎

𝑓 (𝑠, 𝑡, 𝑟) 𝑑𝑠 𝑑𝑡,

(𝐹𝑅)∫
𝑑

𝑐

∫
𝑏

𝑎

𝑓 (𝑠, 𝑡; 𝑟) 𝑑𝑠 𝑑𝑡 = ∫
𝑑

𝑐

∫
𝑏

𝑎

𝑓 (𝑠, 𝑡, 𝑟) 𝑑𝑠 𝑑𝑡.

(4)

Theorem 9. If 𝑓 and 𝑔 are Henstock integrable mappings on
[𝑎, 𝑏] × [𝑐, 𝑑] and if 𝐷(𝑓(𝑠, 𝑡), 𝑔(𝑠, 𝑡)) is Lebesgue integrable,
then

𝐷((𝐹𝐻)∫
𝑑

𝑐

∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡, (𝐹𝐻)∫
𝑑

𝑐

∫
𝑏

𝑎

𝑔 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

≤ (𝐿) ∫
𝑑

𝑐

∫
𝑏

𝑎

𝐷(𝑓 (𝑠, 𝑡) , 𝑔 (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡.

(5)

Proof. In [2, 17], the authors demonstrated that
for any integrable functions ℎ, 𝑟 : [𝛼, 𝛽] → 𝑅

ϝ

we have 𝐷((𝐹𝐻) ∫
𝛽

𝛼
ℎ(𝑥)𝑑𝑥, (𝐹𝐻) ∫

𝛽

𝛼
𝑟(𝑥)𝑑𝑥) ≤

(𝐿) ∫
𝛽

𝛼
𝐷(ℎ(𝑥), 𝑟(𝑥))𝑑𝑥, and, clearly, we obtain

𝐷((𝐹𝐻)∫
𝑑

𝑐

∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡, (𝐹𝐻)∫
𝑑

𝑐

∫
𝑏

𝑎

𝑔 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡)

≤ (𝐿) ∫
𝑑

𝑐

𝐷((𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠, (𝐹𝐻)∫
𝑏

𝑎

𝑔 (𝑠, 𝑡) 𝑑𝑠) 𝑑𝑡

≤ (𝐿) ∫
𝑑

𝑐

∫
𝑏

𝑎

𝐷(𝑓 (𝑠, 𝑡) , 𝑔 (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡,

(6)

which completes the proof.

Theorem 10. If 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
is an integrable

bounded mapping, then for any fixed 𝑢 ∈ [𝑎, 𝑏] and V ∈ [𝑐, 𝑑]

the function 𝜑
𝑢V : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅

+
, defined by 𝜑

𝑢V(𝑠, 𝑡) =

𝐷(𝑓(𝑢, V), 𝑓(𝑠, 𝑡)), is Lebesgue integrable on [𝑎, 𝑏] × [𝑐, 𝑑].

Proof. Regarding [6], Lemma 1, part (ii), it is easy to see that
if 𝑓 is two-dimensional Henstock integrable and bounded
on [𝑎, 𝑏] × [𝑐, 𝑑], then 𝑓

𝑟

−
(𝑠, 𝑡) and 𝑓𝑟

+
(𝑠, 𝑡) as real functions

of (𝑠, 𝑡) ∈ [𝑎, 𝑏] × [𝑐, 𝑑] are two-dimensional integrable and
uniformly bounded with respect to 𝑟 ∈ [0, 1]; that is, 𝑓𝑟

−
(𝑠, 𝑡)

and 𝑓𝑟
+
(𝑠, 𝑡) are Lebesgue measurable (as functions of (𝑠, 𝑡))

and uniformly bounded with respect to 𝑟 ∈ [0, 1] by

𝜑
𝑢V (𝑠, 𝑡) = 𝐷 (𝑓 (𝑢, V) , 𝑓 (𝑠, 𝑡))

= sup
𝑟∈[0,1]

max {𝑓
𝑟

−
(𝑢, V) − 𝑓

𝑟

−
(𝑠, 𝑡)

 ,

𝑓
𝑟

+
(𝑢, V) − 𝑓

𝑟

+
(𝑠, 𝑡)

}

= sup
𝑟
𝑛
∈[0,1]

max {𝑓
𝑟
𝑛

−
(𝑢, V) − 𝑓

𝑟
𝑛

−
(𝑠, 𝑡)

 ,

𝑓
𝑟
𝑛

+
(𝑢, V) − 𝑓

𝑟
𝑛

+
(𝑠, 𝑡)

} ,

(7)

where 𝑟
𝑛
, 𝑛 ∈ 𝑁, represent all the rational numbers in [0, 1].

By Lebesgue’s theorem of dominated convergence, it follows
that 𝜑

𝑢V(𝑠, 𝑡) is Lebesgue integrable on [𝑎, 𝑏] × [𝑐, 𝑑], and this
ends the proof.

Definition 11. A function 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
is said to be

bounded if there exists 𝑀 such that ‖𝑓(𝑥, 𝑦)‖
ϝ
≤ 𝑀 for any

(𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑].

Definition 12. A function 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
is said to

be of bounded variation if

sup
(𝑥,𝑦)∈[𝑎,𝑏]×[𝑐,𝑑]

𝑉
Δ
𝑛

𝑥𝑦

< ∞, (8)

where

𝑉
Δ
𝑛

𝑥𝑦

=

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

𝐷(𝑓 (𝑥
𝑖+1

, 𝑦
𝑗+1

) , 𝑓 (𝑥
𝑖
, 𝑦
𝑗
)) (9)

is the variation of 𝑓 related to partitions Δ𝑛
𝑥
, Δ𝑛
𝑦
. The total

variation of 𝑓 is defined to be, in this case, the number

⋁(𝑓) = sup
(𝑥,𝑦)∈[𝑎,𝑏]×[𝑐,𝑑]

𝑉
Δ
𝑛

𝑥𝑦

∈ 𝑅. (10)

It is known also that a function of bounded variation is
Riemann integrable (see [18]), so it isHenstock integrable too.

Theorem 13. (i) If [𝑎, 𝑏] × [𝑐, 𝑑] ⊆ [𝑒, 𝑓] × [𝑔, ℎ], then
𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, 𝛿) ≤ 𝜔
[𝑒,𝑓]×[𝑔,ℎ]

(𝑓, 𝛿) for all 𝛿 ≥ 0.
(ii) If 𝑓 is of bounded variation, then 𝜔

[𝑎,𝑏]×[𝑐,𝑑]
(𝑓, 𝛿) ≤

⋁(𝑓) for all 𝛿 ≥ 0.
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Proof. (i) It is easy to see that

sup {𝐷 (𝑓 (𝑥, 𝑦) , 𝑓 (𝑠, 𝑡)) | 𝑥, 𝑠 ∈ [𝑎, 𝑏] , 𝑦, 𝑡 ∈ [𝑐, 𝑑] ,

√(𝑥 − 𝑠)
2
+ (𝑦 − 𝑡)

2
≤ 𝛿}

≤ sup {𝐷 (𝑓 (𝑥, 𝑦) , 𝑓 (𝑠, 𝑡)) | 𝑥, 𝑠 ∈ [𝑒, 𝑓] , 𝑦, 𝑡 ∈ [𝑔, ℎ] ,

√(𝑥 − 𝑠)
2
+ (𝑦 − 𝑡)

2
≤ 𝛿} ,

(11)

and, therefore, we obtain the required inequality.
(ii) Let 𝑥, 𝑠 ∈ [𝑎, 𝑏] and 𝑦, 𝑡 ∈ [𝑐, 𝑑]; assume that 𝑎 <

𝑥 < 𝑠 < 𝑏, 𝑐 < 𝑦 < 𝑡 < 𝑑, 𝑉
Δ𝑥

= 𝑎 = 𝑥
0
< 𝑥

1
= 𝑥 <

𝑥
2
= 𝑠 < 𝑏, and 𝑉

Δ𝑦
= 𝑐 = 𝑦

0
< 𝑦

1
= 𝑦 < 𝑦

2
= 𝑡 < 𝑑.

Taking supremum for any 𝑥, 𝑠 ∈ [𝑎, 𝑏] and 𝑦, 𝑡 ∈ [𝑐, 𝑑] with
√(𝑥 − 𝑠)

2
+ (𝑦 − 𝑡)

2
≤ 𝛿, we obtain the required inequality.

It is obvious now that under this condition 𝑓 is bounded;
therefore, we obtain

𝑓(𝑥, 𝑦)
ϝ = 𝐷(𝑓 (𝑥, 𝑦) , 0̃)

≤ 𝐷 (𝑓 (𝑥, 𝑦) , 𝑓 (𝑎, 𝑐)) + 𝑑 (𝑓 (𝑎, 𝑐) , 0̃)

≤ ⋁(𝑓) +
𝑓 (𝑎, 𝑐)

ϝ,

(12)

which completes the proof.

Definition 14. A function 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
is said to

be L-Lipschitz, if

𝐷(𝑓 (𝑥, 𝑦) , 𝑓 (𝑠, 𝑡)) ≤ 𝐿√(𝑥 − 𝑠)
2
+ (𝑦 − 𝑡)

2
, (13)

for any 𝑥, 𝑠 ∈ [𝑎, 𝑏] and 𝑦, 𝑡 ∈ [𝑐, 𝑑].

Definition 15. A function 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
is said to

beM-Condition, if

𝐷(𝑓 (𝑥, 𝑦) , 𝑓 (𝑠, 𝑡)) ≤ 𝑀 (𝑏 − 𝑎) (𝑑 − 𝑐) , (14)

for any 𝑥, 𝑠 ∈ [𝑎, 𝑏] and 𝑦, 𝑡 ∈ [𝑐, 𝑑].

Remark 16. We see that if 𝑓 isM-Condition function, then 𝑓

is of bounded variation and

⋁(𝑓) ≤ 𝑀(𝑏 − 𝑎) (𝑑 − 𝑐) . (15)

Indeed, we have

𝑉
Δ
𝑛

𝑥𝑦

=

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

𝐷(𝑓 (𝑥
𝑖+1

, 𝑦
𝑗+1

) , 𝑓 (𝑥
𝑖
, 𝑦
𝑗
))

≤

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

(𝑀 (𝑥
𝑖+1

− 𝑥
𝑖
) (𝑦

𝑗+1
− 𝑦
𝑗
))

= 𝑀 (𝑏 − 𝑎) (𝑑 − 𝑐) ,

(16)

and since

⋁(𝑓) = sup
(𝑥,𝑦)∈[𝑎,𝑏]×[𝑐,𝑑]

𝑉
Δ
𝑛

𝑥𝑦

, (17)

we obtain the required result.

3. Quadrature Rules for Two-Dimensional
(2D) Henstock Integrals

In this section, we present some quadrature rules for 2D
Henstock integral. The following theorem gives a unified
approach to quadrature rules in 2D Henstock integrals.

Theorem 17. Let 𝑓 : [𝑐, 𝑑] × [𝑐, 𝑑] → 𝑅
ϝ
be Henstock

integrable, boundedmappings.Then, for any divisions 𝑎 = 𝑥
0
<

𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 𝑏 and 𝑐 = 𝑦

0
< 𝑦

1
< ⋅ ⋅ ⋅ < 𝑦

𝑛
= 𝑑 and any

points 𝜉
𝑖
∈ [𝑥

𝑖−1
, 𝑥
𝑖
] and 𝜂

𝑗
∈ [𝑦

𝑗−1
, 𝑦
𝑗
], one has

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝜉
𝑖
, 𝜂
𝑗
))

≤

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) 𝜔
[𝑥
𝑖−1
,𝑥
𝑖
]×[𝑦
𝑗−1
,𝑦
𝑗
]

⋅ (𝑓,√(𝑥
𝑖
− 𝑥
𝑖−1

)
2
+ (𝑦

𝑗
− 𝑦
𝑗−1

)
2

) .

(18)

Proof. It is known that the Henstock integrals are additive
related to interval. This leads us to

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝜉
𝑖
, 𝜂
𝑗
))

= 𝐷( (𝐹𝐻)∫
𝑑

𝑐

(

𝑛

∑
𝑖=1

(𝐹𝐻)∫
𝑥
𝑖

𝑥
𝑖−1

𝑓 (𝑠, 𝑡) 𝑑𝑠)𝑑𝑡,

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝜉
𝑖
, 𝜂
𝑗
))

= 𝐷((𝐹𝐻)

𝑛

∑
𝑗=1

∫
𝑦
𝑗

𝑦
𝑗−1

(

𝑛

∑
𝑖=1

(𝐹𝐻)∫
𝑥
𝑖

𝑥
𝑖−1

𝑓 (𝑠, 𝑡) 𝑑𝑠)𝑑𝑡,

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝐹𝐻)∫
𝑦
𝑗

𝑦
𝑗−1

(𝐹𝐻)∫
𝑥
𝑖

𝑥
𝑖−1

𝑓 (𝜉
𝑖
, 𝜂
𝑗
) 𝑑𝑠 𝑑𝑡) ,

(19)
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and, by Definition 3 part (iv) andTheorem 9, we have

𝐷(

𝑛

∑
𝑗=1

(𝐹𝐻)∫
𝑦
𝑗

𝑦
𝑗−1

(

𝑛

∑
𝑖=1

(𝐹𝐻)∫
𝑥
𝑖

𝑥
𝑖−1

𝑓 (𝑠, 𝑡) 𝑑𝑠)𝑑𝑡,

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝐹𝐻)∫
𝑦
𝑗

𝑦
𝑗−1

(𝐹𝐻)∫
𝑥
𝑖

𝑥
𝑖−1

𝑓 (𝜉
𝑖
, 𝜂
𝑗
) 𝑑𝑠 𝑑𝑡)

≤

𝑛

∑
𝑗=1

𝐷((𝐹𝐻)∫
𝑦
𝑗

𝑦
𝑗−1

𝑛

∑
𝑖=1

(𝐹𝐻)∫
𝑥
𝑖

𝑥
𝑖−1

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

𝑛

∑
𝑖=1

(𝐹𝐻)∫
𝑦
𝑗

𝑦
𝑗−1

(𝐹𝐻)∫
𝑥
𝑖

𝑥
𝑖−1

𝑓 (𝜉
𝑖
, 𝜂
𝑗
) 𝑑𝑠 𝑑𝑡)

≤

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

𝐷((𝐹𝐻)∫
𝑦
𝑗

𝑦
𝑗−1

(𝐹𝐻)∫
𝑥
𝑖

𝑥
𝑖−1

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

(𝐹𝐻)∫
𝑦
𝑗

𝑦
𝑗−1

(𝐹𝐻)∫
𝑥
𝑖

𝑥
𝑖−1

𝑓 (𝜉
𝑖
, 𝜂
𝑗
) 𝑑𝑠 𝑑𝑡)

≤

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝐿) ∫
𝑦
𝑗

𝑦
𝑗−1

(𝐿) ∫
𝑥
𝑖

𝑥
𝑖−1

𝐷(𝑓 (𝑠, 𝑡) , 𝑓 (𝜉
𝑖
, 𝜂
𝑗
)) 𝑑𝑠 𝑑𝑡.

(20)

From part (i) of Theorem 6, we conclude that

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝐿) ∫
𝑦
𝑗

𝑦
𝑗−1

(𝐿) ∫
𝑥
𝑖

𝑥
𝑖−1

𝐷(𝑓 (𝑠, 𝑡) , 𝑓 (𝜉
𝑖
, 𝜂
𝑗
)) 𝑑𝑠 𝑑𝑡

≤

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) 𝜔
[𝑥
𝑖−1
,𝑥
𝑖
]×[𝑦
𝑗−1
,𝑦
𝑗
]

⋅ (𝑓,√(𝑥
𝑖
− 𝑥
𝑖−1

)
2
+ (𝑦

𝑗
− 𝑦
𝑗−1

)
2

) ,

(21)

which completes the proof.

From the above inequality, we infer some generalization
of well-known trapezoidal-type, midpoint-type, and three-
point-type inequalities with error estimations.

Corollary 18. Assume that 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ

is a Henstock integrable, bounded mapping. Then, with the
notation

𝜔
𝑥𝑦×𝑧𝑡

= 𝜔
[𝑥,𝑦]×[𝑧,𝑡]

(𝑓,√(𝑦 − 𝑥)
2
+ (𝑡 − 𝑧)

2
) , (22)

one has

(i)

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

(𝑏 − 𝑎) (𝑑 − 𝑐) ⊙ 𝑓 (𝑥, 𝑦) )

≤ (𝑥 − 𝑎) (𝑦 − 𝑐)𝑤
𝑎𝑥×𝑐𝑦

+ (𝑏 − 𝑥) (𝑦 − 𝑐)𝑤
𝑎𝑏×𝑐𝑦

+ (𝑥 − 𝑎) (𝑑 − 𝑦)𝑤
𝑎𝑥×𝑦𝑑

+ (𝑏 − 𝑥) (𝑑 − 𝑦)𝑤
𝑥𝑏×𝑦𝑑

,

(23)

for any (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑];

(ii)

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻) ∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

[(𝑥 − 𝑎) (𝑦 − 𝑐)

⊙ 𝑓 (𝑢, 𝛼) ⊕ (𝑥 − 𝑎) (𝑑 − 𝑦)

⊙ 𝑓 (𝑢, 𝛽) ⊕ (𝑏 − 𝑥) (𝑑 − 𝑦)

⊙ 𝑓 (𝑐, 𝛽) ⊕ (𝑏 − 𝑥) (𝑑 − 𝑦)

⊙𝑓 (V, 𝛽)] )

≤ (𝑥 − 𝑎) (𝑦 − 𝑐)𝑤
𝑎𝑥×𝑐𝑦

+ (𝑏 − 𝑥) (𝑦 − 𝑐)𝑤
𝑥𝑏×𝑐𝑦

+ (𝑥 − 𝑎) (𝑑 − 𝑦)𝑤
𝑎𝑥×𝑦𝑑

+ (𝑏 − 𝑥) (𝑑 − 𝑦)𝑤
𝑥𝑏×𝑦𝑑

,

(24)

for any 𝑥 ∈ [𝑎, 𝑏], 𝑦 ∈ [𝑐, 𝑑], 𝑢 ∈ [𝑎, 𝑥], V ∈ [𝑥, 𝑏], 𝛼 ∈ [𝑐, 𝑦],
and 𝛽 ∈ [𝑦, 𝑑];

(iii)

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

[(𝛼 − 𝑎) (𝜃 − 𝑐) ⊙ 𝑓 (𝑢, 𝑟)

⊕ (𝛼 − 𝑎) (𝛾 − 𝜃) ⊙ 𝑓 (𝑢, 𝑝)

⊕ (𝛼 − 𝑎) (𝑑 − 𝛾) ⊙ 𝑓 (𝑢, 𝑧)

⊕ (𝛽 − 𝛼) (𝜃 − 𝑐) ⊙ 𝑓 (V, 𝑟)

⊕ (𝛽 − 𝛼) (𝛾 − 𝜃) ⊙ 𝑓 (V, 𝑝)
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⊕ (𝛽 − 𝛼) (𝑑 − 𝛾) ⊙ 𝑓 (𝑢, 𝑧)

⊕ (𝑏 − 𝛽) (𝜃 − 𝑐) ⊙ 𝑓 (𝑤, 𝑟)

⊕ (𝑏 − 𝛽) (𝛾 − 𝜃) ⊙ 𝑓 (𝑤, 𝑝)

⊕ (𝑏 − 𝛽) (𝑑 − 𝛾) ⊙ 𝑓 (𝑤, 𝑧)] )

≤ (𝛼 − 𝑎) (𝜃 − 𝑐) 𝜔
𝑎𝛼×𝑐𝜃

+ (𝛼 − 𝑎) (𝛾 − 𝜃) 𝜔
𝑎𝛼× 𝜃𝛾

+ (𝛼 − 𝑎) (𝑑 − 𝛾) 𝜔
𝑎𝛼×𝛾𝑑

+ (𝛽 − 𝛼) (𝜃 − 𝑐) 𝜔
𝛼𝛽×𝑐𝜃

+ (𝛽 − 𝛼) (𝛾 − 𝜃) 𝜔
𝛼𝛽×𝜃𝛾

+ (𝛽 − 𝛼) (𝑑 − 𝛾) 𝜔
𝛼𝛽×𝛾𝑑

+ (𝑏 − 𝛽) (𝜃 − 𝑐) 𝜔
𝛽𝑏×𝑐𝜃

+ (𝑏 − 𝛽) (𝛾 − 𝜃) 𝜔
𝛽𝑏×𝜃𝛾

+ (𝑏 − 𝛽) (𝑑 − 𝛾) 𝜔
𝛽𝑏×𝛾𝑑

,

(25)

for any 𝑢, V, 𝑤, 𝛼, 𝛽, 𝑟, 𝑝, 𝜃, 𝛾, and 𝑧 with 𝑎 < 𝑢 < 𝛼 < V <

𝛽 < 𝑤 < 𝑏 and 𝑐 < 𝑟 < 𝜃 < 𝑝 < 𝛾 < 𝑧 < 𝑑.

Proof. (i) Taking in the previous theorem that 𝑛 = 2, 𝑥
1
=

𝜉
1
= 𝜉

2
= 𝑥, and 𝑦

1
= 𝜂

1
= 𝜂

2
= 𝑦, we obtain the required

inequality. Indeed,

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

2

∑
𝑗=1

2

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝜉
𝑖
, 𝜂
𝑗
))

= 𝐷( (𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

2

∑
𝑗=1

[(𝑥 − 𝑎) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝑥, 𝑦)

⊕ (𝑏 − 𝑥) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝑥, 𝜂
𝑗
)])

= 𝐷( (𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

2

∑
𝑗=1

[(𝑥 − 𝑎) (𝑦 − 𝑐) ⊙ 𝑓 (𝑥, 𝑦)

⊕ (𝑏 − 𝑥) (𝑦 − 𝑐) ⊙ 𝑓 (𝑥, 𝑦)

⊕ (𝑥 − 𝑎) (𝑑 − 𝑦) ⊙ 𝑓 (𝑥, 𝑦)

⊕ (𝑏 − 𝑥) (𝑑 − 𝑦) ⊙ 𝑓 (𝑥, 𝑦)])

= 𝐷( (𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

2

∑
𝑗=1

[(𝑏 − 𝑎) (𝑑 − 𝑐) ⊙ 𝑓 (𝑥, 𝑦)])

≤

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) 𝜔
[𝑥
𝑖−1
,𝑥
𝑖
]×[𝑦
𝑗−1
,𝑦
𝑗
]

⋅ (𝑓,√(𝑥
𝑖
− 𝑥
𝑖−1

)
2
+ (𝑦

𝑗
− 𝑦
𝑗−1

)
2

)

= (𝑥 − 𝑎) (𝑦 − 𝑐) 𝜔
𝑎𝑥×𝑐𝑦

+ (𝑏 − 𝑥) (𝑦 − 𝑐) 𝜔
𝑥𝑏×𝑐𝑦

+ (𝑥 − 𝑎) (𝑑 − 𝑦) 𝜔
𝑎𝑥×𝑦𝑑

+ (𝑏 − 𝑥) (𝑑 − 𝑦) 𝜔
𝑥𝑏×𝑦𝑑

.

(26)

(ii) Taking that 𝑛 = 2, 𝑥
1
= 𝑥, 𝜉

1
= 𝑢, 𝜉

2
= V, 𝑦

1
= 𝑦,

𝜂
1
= 𝛼, and 𝜂

2
= 𝛽 in Theorem 17, we obtain the required

inequality. Indeed,

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

2

∑
𝑗=1

2

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝜉
𝑖
, 𝜂
𝑗
))

≤ 𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

2

∑
𝑗=1

[(𝑥 − 𝑎) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝑢, 𝜂
𝑗
)

⊕ (𝑏 − 𝑥) (𝑦𝑗 − 𝑦
𝑗−1

) ⊙ 𝑓 (V, 𝜂
𝑗
)] )

= 𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

[(𝑥 − 𝑎) (𝑦 − 𝑐) ⊙ 𝑓 (𝑢, 𝛼)

⊕ (𝑥 − 𝑎) (𝑑 − 𝑦) ⊙ 𝑓 (𝑢, 𝛽)

⊕ (𝑏 − 𝑥) (𝑦 − 𝑐) ⊙ 𝑓 (V, 𝛼)

⊕ (𝑏 − 𝑥) (𝑑 − 𝑦) ⊙ 𝑓 (V, 𝛽)] )

≤

2

∑
𝑗=1

2

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) 𝜔
𝑥
𝑖−1
,𝑥
𝑖
×𝑦
𝑗−1
,𝑦
𝑗

= (𝑥 − 𝑎) (𝑦 − 𝑐) 𝜔
𝑎𝑥×𝑐𝑦

+ (𝑏 − 𝑥) (𝑦 − 𝑐) 𝜔
𝑥𝑏×𝑐𝑦

+ (𝑥 − 𝑎) (𝑑 − 𝑦) 𝜔
𝑎𝑥×𝑦𝑑

+ (𝑏 − 𝑥) (𝑑 − 𝑦) 𝜔
𝑥𝑏×𝑦𝑑

.

(27)
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(iii) Considering 𝑛 = 4 and performing the similar way in
part (ii), it is obvious that the inequality in previous theorem
becomes the inequality stated above.

Corollary 19. Let 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
be a two-

dimensional Henstock integrable, bounded mapping. Then, the
following inequalities hold:

(i) 𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

(𝑏 − 𝑎) (𝑑 − 𝑐) ⊙ 𝑓(
𝑎 + 𝑏

2
,
𝑐 + 𝑑

2
))

≤ (𝑏 − 𝑎) (𝑑 − 𝑐)𝑤[𝑎,𝑏]×[𝑐,𝑑] (𝑓,
(𝑏 − 𝑎) (𝑑 − 𝑐)

4
) ,

(ii) 𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

(𝑏 − 𝑎) (𝑑 − 𝑐)

4
⊙ [𝑓 (𝑎, 𝑐) ⊕ 𝑓 (𝑎, 𝑑)

⊕𝑓 (𝑏, 𝑐) ⊕ 𝑓 (𝑏, 𝑑)] )

≤ (𝑏 − 𝑎) (𝑑 − 𝑐)𝑤
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓,
(𝑏 − 𝑎) (𝑑 − 𝑐)

4
) ,

(iii) 𝐷((𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

(𝑏 − 𝑎) (𝑑 − 𝑐)

36
⊙ [𝑓 (𝑎, 𝑐) ⊕ 𝑓 (𝑎, 𝑑)

⊕ 4 ⊙ 𝑓(𝑎,
𝑐 + 𝑑

2
)

⊕ 4 ⊙ 𝑓(
𝑎 + 𝑏

2
, 𝑐)

⊕ 16 ⊙ 𝑓(
𝑎 + 𝑏

2
,
𝑎 + 𝑐

2
)

⊕ 4 ⊙ 𝑓(
𝑎 + 𝑏

2
, 𝑑)

⊕ 4 ⊙ 𝑓(𝑏,
𝑐 + 𝑑

2
)

⊕𝑓 (𝑏, 𝑐) ⊕ 𝑓 (𝑏, 𝑑)] )

≤ (𝑏 − 𝑎) (𝑑 − 𝑐)𝑤
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓,
(𝑏 − 𝑎) (𝑑 − 𝑐)

36
) .

(28)

Proof. (i) If we take 𝑥 = (𝑎 + 𝑏)/2 and 𝑦 = (𝑐 + 𝑑)/2

in the assertion (i) of Corollary 18, we obtain the required
inequality. In other words, we have

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

(𝑏 − 𝑎) (𝑑 − 𝑐) ⊙ 𝑓(
𝑎 + 𝑏

2
,
𝑐 + 𝑑

2
))

≤ (
𝑎 + 𝑏

2
− 𝑎)(

𝑐 + 𝑑

2
− 𝑐)𝜔

𝑎((𝑎+𝑏)/2)×𝑐((𝑐+𝑑)/2)

+ (𝑏 −
𝑎 + 𝑏

2
)(

𝑐 + 𝑑

2
− 𝑐)𝜔

((𝑎+𝑏)/2)𝑏×𝑐((𝑐+𝑑)/2)

+ (
𝑎 + 𝑏

2
− 𝑎)(𝑑 −

𝑐 + 𝑑

2
)𝜔

𝑎((𝑎+𝑏)/2)×((𝑐+𝑑)/2)𝑑

+ (𝑏 −
𝑎 + 𝑏

2
)(𝑑 −

𝑐 + 𝑑

2
)𝜔

((𝑎+𝑏)/2)𝑏×((𝑐+𝑑)/2)𝑑

=
(𝑏 − 𝑎) (𝑑 − 𝑐)

4

× [𝜔
𝑎((𝑎+𝑏)/2)×𝑐((𝑐+𝑑)/2)

+ 𝜔
((𝑎+𝑏)/2)𝑏×𝑐((𝑐+𝑑)/2)

+ 𝜔
𝑎((𝑎+𝑏)/2)×((𝑐+𝑑)/2)𝑑

+ 𝜔
((𝑎+𝑏)/2)𝑏×((𝑐+𝑑)/2)𝑑

]

≤ (𝑏 − 𝑎) (𝑑 − 𝑐) 𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓,
(𝑏 − 𝑎) (𝑑 − 𝑐)

4
) .

(29)

(ii) Taking 𝑥 = (𝑎+𝑏)/2, 𝑦 = (𝑐+𝑑)/2, 𝑢 = 𝑎, V = 𝑏, 𝛼 = 𝑐,
and 𝛽 = 𝑑 in the assertion (ii) of the previous corollary, we
obtain

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

(
𝑎 + 𝑏

2
− 𝑎)(

𝑐 + 𝑑

2
− 𝑐) ⊙ 𝑓 (𝑎, 𝑐)

⊕ (
𝑎 + 𝑏

2
− 𝑎)(𝑑 −

𝑐 + 𝑑

2
) ⊙ 𝑓 (𝑎, 𝑑)

⊕ (𝑏 −
𝑎 + 𝑏

2
)(

𝑐 + 𝑑

2
− 𝑐) ⊙ 𝑓 (𝑏, 𝑐)

⊕ (𝑏 −
𝑎 + 𝑏

2
)(𝑑 −

𝑐 + 𝑑

2
) ⊙ 𝑓 (𝑎, 𝑑))

=
(𝑏 − 𝑎) (𝑑 − 𝑐)

4

× [𝜔
𝑎((𝑎+𝑏)/2)×𝑐((𝑐+𝑑)/2)

+ 𝜔
((𝑎+𝑏)/2)𝑏×𝑐((𝑐+𝑑)/2)

+ 𝜔
𝑎((𝑎+𝑏)/2)×((𝑐+𝑑)/2)𝑑

+ 𝜔
((𝑎+𝑏)/2)𝑏×((𝑐+𝑑)/2)𝑑

]

≤ (𝑏 − 𝑎) (𝑑 − 𝑐) 𝜔[𝑎,𝑏]×[𝑐,𝑑] (𝑓,
(𝑏 − 𝑎) (𝑑 − 𝑐)

4
) .

(30)

(iii) It is easy to see that the inequality follows from
the corresponding assertion (iii) of the previous corollary by
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taking 𝑛 = 4, 𝛼 = (5𝑎 + 𝑏)/6, 𝛽 = (𝑎 + 5𝑏)/6, 𝑢 = 𝑎,
V = (𝑎 + 𝑏)/2, 𝑤 = 𝑏, 𝜃 = (5𝑐 + 𝑑)/6, 𝛾 = (𝑐 + 5𝑑)/6, 𝑟 = 𝑐,
𝑝 = (𝑐 + 𝑑)/2, and 𝑧 = 𝑑. Indeed, we have

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

(𝑏 − 𝑎) (𝑑 − 𝑐)

36

⊙ [𝑓 (𝑎, 𝑐) ⊕ 𝑓 (𝑎, 𝑑) ⊕ 4 ⊙ 𝑓(𝑎,
𝑐 + 𝑑

2
)

⊕ 4 ⊙ 𝑓(
𝑎 + 𝑏

2
, 𝑐)

⊕ 16 ⊙ 𝑓(
𝑎 + 𝑏

2
,
𝑎 + 𝑐

2
) ⊕ 4 ⊙ 𝑓(

𝑎 + 𝑏

2
, 𝑑)

⊕ 4 ⊙ 𝑓(𝑏,
𝑐 + 𝑑

2
) ⊕ 𝑓 (𝑏, 𝑐) ⊕ 𝑓 (𝑏, 𝑑)])

≤ (𝑏 − 𝑎) (𝑑 − 𝑐) 𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓,
(𝑏 − 𝑎) (𝑑 − 𝑐)

36
) .

(31)

The next corollaries present simpler error estimation for
the inequality stated inTheorem 17.

Corollary 20. Let 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
be a two-

dimensional Henstock integrable, bounded mapping. Then, for
any divisions Δ𝑛

𝑥
: 𝑎 = 𝑥

0
< 𝑥

1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 𝑏 and

Δ𝑛
𝑦

: 𝑐 = 𝑦
0
< 𝑦

1
< ⋅ ⋅ ⋅ < 𝑦

𝑛
= 𝑑, 𝜉

𝑖
∈ [𝑥

𝑖−1
, 𝑥
𝑖
] and

𝜂
𝑖
∈ [𝑦

𝑗−1
, 𝑦
𝑗
], 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑛, one has

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝜉
𝑖
, 𝜂
𝑗
))

≤ (𝑏 − 𝑎) (𝑑 − 𝑐) 𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, V (Δ
𝑥𝑦
)) ,

(32)

where V(Δ
𝑥𝑦
) = max

𝑖,𝑗=1,...,𝑛
{(𝑥
𝑖
−𝑥
𝑖−1

)(𝑦
𝑗
−𝑦
𝑗−1

)} is the norm
of the divisions Δ𝑛

𝑥
and Δ𝑛

𝑦
.

Proof. Considering Theorem 17 and parts (i), (ii) of
Theorem 13 and by regarding the definition of ⋁(𝑓),
we infer that

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝜉
𝑖
, 𝜂
𝑗
))

≤

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) 𝜔
[𝑥
𝑖−1
,𝑥
𝑖
]×[𝑦
𝑗−1
,𝑦
𝑗
]

⋅ (𝑓,√(𝑥
𝑖
− 𝑥
𝑖−1

)
2
+ (𝑦

𝑗
− 𝑦
𝑗−1

)
2

)

≤

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) 𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, V (Δ
𝑥𝑦
))

= (𝑏 − 𝑎) (𝑐 − 𝑑) 𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, V (Δ
𝑥𝑦
)) .

(33)

Corollary 21. Let 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
be a two-

dimensional Henstock integrable, bounded mapping. Then, for
any divisions Δ𝑛

𝑥
: 𝑎 = 𝑥

0
< 𝑥

1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 𝑏 and

Δ𝑛
𝑦

: 𝑐 = 𝑦
0
< 𝑦

1
< ⋅ ⋅ ⋅ < 𝑦

𝑛
= 𝑑, 𝜉

𝑖
∈ [𝑥

𝑖−1
, 𝑥
𝑖
] and

𝜂
𝑖
∈ [𝑦

𝑗−1
, 𝑦
𝑗
], 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑛, one has

𝐷((𝐹𝐻)∫
𝑑

𝑐

(𝐹𝐻)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝜉
𝑖
, 𝜂
𝑗
))

≤ V (Δ
𝑥𝑦
)

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

𝜔
[𝑎,𝑏]×[𝑐,𝑑]

⋅ (𝑓,√(𝑥
𝑖
− 𝑥
𝑖−1

)
2
+ (𝑦

𝑗
− 𝑦
𝑗−1

)
2

) .

(34)

Proof. Since V(Δ
𝑥𝑦
) is the least upper bound of partitions Δ𝑛

𝑥

and Δ𝑛
𝑦
, we conclude that (𝑥

𝑖
− 𝑥
𝑖−1

)(𝑦
𝑗
− 𝑦
𝑗−1

) ≤ V(Δ
𝑥𝑦
) for

any 𝑖, 𝑗 = 1, 𝑛. Hence, the required inequality holds.

Remark 22. If 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
is a two-dimensional

Riemann integrable function, it is also Henstock integrable
function. Therefore, the above quadrature rules hold for
Riemann integrable function too.

Theorem 23. Let 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
be a mapping of

bounded variation. Then, for any divisions Δ𝑛
𝑥
: 𝑎 = 𝑥

0
<

𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 𝑏 and Δ𝑛

𝑦
: 𝑐 = 𝑦

0
< 𝑦

1
< ⋅ ⋅ ⋅ < 𝑦

𝑛
= 𝑑,

𝜉
𝑖
∈ [𝑥

𝑖−1
, 𝑥
𝑖
] and 𝜂

𝑖
∈ [𝑦

𝑗−1
, 𝑦
𝑗
], 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑛, one

has

𝐷((𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝜉
𝑖
, 𝜂
𝑗
))

≤ V (Δ
𝑥𝑦
) ⋅ ⋁ (𝑓) .

(35)

Proof. If we define 𝜑
𝑥𝑦

: [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
+
such that

𝜑
𝑥𝑦
(𝑠, 𝑡) = 𝐷(𝑓(𝑠, 𝑡), 𝑓(𝑥, 𝑦)) for any (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑],

we see that 𝜑 is of bounded variation and we have

⋁𝜑
𝑥𝑦
(𝑠, 𝑡) ≤ ⋁(𝑓) , (𝑥, 𝑦) ∈ [𝑎, 𝑏] ⊗ [𝑐, 𝑑] ; (36)
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in other words,

𝑉
Δ
𝑛

𝑥𝑦

(𝐷 (𝑓 (𝑠, 𝑡) , 𝑓 (𝑥, 𝑦)))

=

𝑛−1

∑
𝑘=0

𝑛−1

∑
𝑚=0

𝐷 (𝑓 (𝑡
𝑘+1

, 𝑠
𝑚+1

) , 𝑓 (𝑥, 𝑦))

− 𝐷 (𝑓 (𝑡
𝑘
, 𝑠
𝑚
) , 𝑓 (𝑥, 𝑦))



≤

𝑛−1

∑
𝑘=0

𝑛−1

∑
𝑚=0

(𝐷 (𝑓 (𝑡
𝑘+1

, 𝑠
𝑚+1

) , 𝑓 (𝑥, 𝑦))) = 𝑉
Δ
𝑛

𝑥𝑦

(𝑓) .

(37)

Considering Theorem 13, Theorem 17, Corollary 21, and [18]
and since any real valued function of bounded variation is
Lebesgue integrable, we observe that

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) 𝜔
[𝑥
𝑖−1
,𝑥
𝑖
]×[𝑦
𝑗−1
,𝑦
𝑗
]

⋅ (𝑓,√(𝑥
𝑖
− 𝑥
𝑖−1

)
2
+ (𝑦

𝑗
− 𝑦
𝑗−1

)
2

)

≤ V (Δ
𝑥𝑦
)

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

𝜔
[𝑥
𝑖−1
,𝑥
𝑖
]×[𝑦
𝑗−1
,𝑦
𝑗
]

⋅ (𝑓,√(𝑥
𝑖
− 𝑥
𝑖−1

)
2
+ (𝑦

𝑗
− 𝑦
𝑗−1

)
2

)

= V (Δ
𝑥𝑦
)

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

[𝑦
𝑗−1
,𝑦
𝑗
]

⋁
[𝑥
𝑖−1
,𝑥
𝑖
]

(𝑓)

= V (Δ
𝑥𝑦
) ⋅ ⋁ (𝑓) .

(38)

Theorem 24. If 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅
ϝ
is L-Lipschitz

mapping, then, for any divisions Δ𝑛
𝑥
: 𝑎 = 𝑥

0
< 𝑥

1
< ⋅ ⋅ ⋅ <

𝑥
𝑛
= 𝑏 and Δ𝑛

𝑦
: 𝑐 = 𝑦

0
< 𝑦

1
< ⋅ ⋅ ⋅ < 𝑦

𝑛
= 𝑑, 𝜉

𝑖
∈ [𝑥

𝑖−1
, 𝑥
𝑖
]

and 𝜂
𝑖
∈ [𝑦

𝑗−1
, 𝑦
𝑗
], 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑛, one has

𝐷((𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝜉
𝑖
, 𝜂
𝑗
))

≤ 𝐿

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

((𝑥
𝑖
− 𝑥
𝑖−1

)
2
(𝑦
𝑗
− 𝑦
𝑗−1

)
2

) .

(39)

Proof. Analogous to the proof of Theorem 17 and by defini-
tion of L-Lipschitz mapping, we infer that

𝐷((𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝑥
𝑖
− 𝑥
𝑖−1

) (𝑦
𝑗
− 𝑦
𝑗−1

) ⊙ 𝑓 (𝜉
𝑖
, 𝜂
𝑗
))

≤

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝐿) ∫
𝑦
𝑗

𝑦
𝑗−1

(𝐿) ∫
𝑥
𝑖

𝑥
𝑖−1

𝐷(𝑓 (𝑠, 𝑡) , 𝑓 (𝜉
𝑖
, 𝜂
𝑗
)) 𝑑𝑠 𝑑𝑡

≤ 𝐿

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝐿) ∫
𝑦
𝑗

𝑦
𝑗−1

(𝐿) ∫
𝑥
𝑖

𝑥
𝑖−1

√(𝑠 − 𝜉
𝑖
)
2
+ (𝑡 − 𝜂

𝑗
)
2

𝑑𝑠 𝑑𝑡

≤ 𝐿

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

(𝐿) ∫
𝑦
𝑗

𝑦
𝑗−1

(𝐿)

⋅ ∫
𝑥
𝑖

𝑥
𝑖−1

((𝑥
𝑖
− 𝑥
𝑖−1

)
2

+(𝑦
𝑗
− 𝑦
𝑗−1

)
2

)
1/2

𝑑𝑠 𝑑𝑡

= 𝐿

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

((𝑥
𝑖
− 𝑥
𝑖−1

)
2
+ (𝑦

𝑗
− 𝑦
𝑗−1

)
2

) .

(40)

4. 2D Fuzzy Fredholm Integral Equations

Here, we consider the two-dimensional fuzzy Fredholm
integral equations as follows:

𝐹 (𝑠, 𝑡) = 𝑓 (𝑠, 𝑡) ⊕ 𝜆 ⊙ ∫
𝑑

𝑐

∫
𝑏

𝑎

𝐾(𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝐹 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

(41)

where 𝜆 > 0, 𝐾(𝑠, 𝑡, 𝑥, 𝑦) is an arbitrary positive kernel on
[𝑎, 𝑏] × [𝑐, 𝑑] × [𝑎, 𝑏] × [𝑐, 𝑑] and 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅

ϝ
.

We assume that𝐾 is continuous, and therefore it is uniformly
continuous with respect to (𝑠, 𝑡). This property implies that
there exists𝑀 > 0 such that

𝑀 = max
𝑎≤𝑠,𝑥≤𝑏

𝑐≤𝑡,𝑦≤𝑑

𝐾 (𝑠, 𝑡, 𝑥, 𝑦)
 . (42)

Now, we will prove the existence and uniqueness of the
solution of (41) by the method of successive approximations.
Let 𝑋 = {𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅

ϝ
; 𝑓 is continuous} be the

space of two-dimensional fuzzy continuous functions with
the metric

𝐷
∗
(𝑓, 𝑔) = sup

𝑎≤𝑠≤𝑏

𝑐≤𝑡≤𝑑

𝐷(𝑓 (𝑠, 𝑡) , 𝑔 (𝑠, 𝑡))
(43)
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that is called the uniform distance between two-dimensional
fuzzy-number-valued functions. We define the operator 𝐴 :

𝑋 → 𝑋 by

𝐴 (𝐹) (𝑠, 𝑡)

= 𝑓 (𝑠, 𝑡) ⊕ 𝜆 ⊙ ∫
𝑑

𝑐

∫
𝑏

𝑎

𝐾(𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝐹 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

∀ (𝑠, 𝑡) ∈ [𝑎, 𝑏] × [𝑐, 𝑑] , ∀𝑓 ∈ 𝑋.

(44)

Sufficient conditions for the existence of a unique solution
of (41) are given in the following result.

Theorem 25. Let 𝐾(𝑠, 𝑡, 𝑥, 𝑦) be continuous and positive for
𝑎 ≤ 𝑠, 𝑥 ≤ 𝑏, and 𝑐 ≤ 𝑡, 𝑦 ≤ 𝑑, and let 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅

ϝ

be continuous on [𝑎, 𝑏] × [𝑐, 𝑑]. If 𝐵 = 𝜆𝑀(𝑏 − 𝑎)(𝑑 − 𝑐) < 1,
then the iterative procedure

𝐹
0
(𝑠, 𝑡) = 𝑓 (𝑠, 𝑡) ,

𝐹
𝑚
(𝑠, 𝑡) = 𝑓 (𝑠, 𝑡) ⊕ 𝜆 ⊙ (𝐹𝑅)

⋅ ∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐾(𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝐹
𝑚−1

(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

𝑚 ≥ 1,

(45)

converges to the unique solution 𝐹∗ of (41).
Moreover, the following error bound holds:

𝐷
∗
(𝐹
∗
, 𝐹
𝑚
) ≤

𝐵𝑚+1

1 − 𝐵
𝑀
1
, (46)

where

𝑀
1
= sup
𝑎≤𝑠≤𝑏

𝑐≤𝑡≤𝑑

‖𝐹(𝑠, 𝑡)‖ϝ. (47)

Proof. To prove this theorem, we investigate the conditions of
the Banach fixed point principle.We first show that𝐴maps𝑋
into𝑋 (i.e.,𝐴(𝑋) ⊂ 𝑋). To the end, we show that the operator
𝐴 is uniformly continuous. Since𝑓 is continuous on compact
set of [𝑎, 𝑏]×[𝑐, 𝑑], we deduce that it is uniformly continuous,
and hence for 𝜀

1
> 0 exists 𝛿

1
> 0 such that

𝐷(𝑓 (𝑠
1
, 𝑡
1
) , 𝑓 (𝑠

2
, 𝑡
2
)) < 𝜀

1

whenever √(𝑡
2
− 𝑡
1
)
2
+ (𝑠

2
− 𝑠
1
)
2
< 𝛿
1
,

∀𝑠
1
, 𝑠
2
∈ [𝑎, 𝑏] , ∀𝑡

1
, 𝑡
2
∈ [𝑐, 𝑑] .

(48)

As mentioned above, 𝐾 also is uniformly continuous; thus,
for 𝜀

2
> 0 exists 𝛿

2
> 0 such that

𝐾 (𝑠
1
, 𝑡
1
, 𝑥, 𝑦) − 𝐾 (𝑠

2
, 𝑡
2
, 𝑥, 𝑦)

 < 𝜀
2

whenever √(𝑡
2
− 𝑡
1
)
2
+ (𝑠

2
− 𝑠
1
)
2
< 𝛿
2
,

∀𝑠
1
, 𝑠
2
∈ [𝑎, 𝑏] , ∀𝑡

1
, 𝑡
2
∈ [𝑐, 𝑑] .

(49)

Let 𝛿 = min{𝛿
1
, 𝛿
2
}, 𝑠
1
, 𝑠
2
∈ [𝑎, 𝑏], and 𝑡

1
, 𝑡
2
∈ [𝑐, 𝑑], with

√(𝑡
2
− 𝑡
1
)
2
+ (𝑠

2
− 𝑠
1
)
2
< 𝛿. According to Definition 3 and

Theorem 9, we obtain

𝐷(𝐴 (𝐹) (𝑠
1
, 𝑡
1
) , 𝐴 (𝐹) (𝑠

2
, 𝑡
2
))

≤ 𝐷 (𝑓 (𝑠
1
, 𝑡
1
) , 𝑓 (𝑠

2
, 𝑡
2
))

+ 𝐷(𝜆 ⊙ (𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐾(𝑠
1
, 𝑡
1
, 𝑥, 𝑦)

⊙ 𝐹 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

𝜆 ⊙ (𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐾(𝑠
2
, 𝑡
2
, 𝑥, 𝑦)

⊙ 𝐹 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦)

≤ 𝜀
1
+ 𝜆 ⊙ (𝐹𝑅)∫

𝑑

𝑐

𝐷((𝐹𝑅)∫
𝑏

𝑎

𝐾(𝑠
1
, 𝑡
1
, 𝑥, 𝑦)

⊙ 𝐹 (𝑥, 𝑦) 𝑑𝑥,

(𝐹𝑅)∫
𝑏

𝑎

𝐾(𝑠
2
, 𝑡
2
, 𝑥, 𝑦)

⊙ 𝐹 (𝑥, 𝑦) 𝑑𝑥)𝑑𝑦

≤ 𝜀
1
+ 𝜆 ⊙ (𝐹𝑅)

⋅ ∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐷(𝐾 (𝑠
1
, 𝑡
1
, 𝑥, 𝑦) ⊙ 𝐹 (𝑥, 𝑦) ,

𝐾 (𝑠
2
, 𝑡
2
, 𝑥, 𝑦) ⊙ 𝐹 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

≤ 𝜀
1
+ 𝜆

𝐾 (𝑠
1
, 𝑡
1
, 𝑥, 𝑦) − 𝐾 (𝑠

2
, 𝑡
2
, 𝑥, 𝑦)



⊙ (𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

(𝐹 (𝑥, 𝑦) , 0̃) 𝑑𝑥 𝑑𝑦

≤ 𝜀
1
+ 𝜆𝜀

2
⊙ (𝐹𝑅)∫

𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐹 (𝑥, 𝑦)
ϝ𝑑𝑥 𝑑𝑦

≤ 𝜀
1
+ 𝜆𝜀

2
(𝑏 − 𝑎) (𝑑 − 𝑐)

𝐹 (𝑥, 𝑦)
ϝ

≤ 𝜀
1
+ 𝜆 (𝑏 − 𝑎) (𝑑 − 𝑐)𝑀1𝜀2

where 𝑀
1
= sup
𝑎≤𝑠≤𝑏

𝑐≤𝑡≤𝑑

‖𝐹 (𝑠, 𝑡)‖ϝ,

(50)

and by choosing 𝜀
1
= 𝜀/2 and 𝜀

2
= (1/2𝑀

1
𝜆(𝑏 − 𝑎)(𝑑 − 𝑐))𝜀,

we derive

𝐷(𝐴 (𝐹) (𝑠
1
, 𝑡
1
) , 𝐴 (𝐹) (𝑠

2
, 𝑡
2
)) ≤ 𝜀. (51)

This shows that𝐴(𝐹) is uniformly continuous for any 𝐹 ∈

𝑋 and so continuous on [𝑎, 𝑏] × [𝑐, 𝑑], and hence 𝐴(𝑋) ⊂ 𝑋.
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Now, we prove that the operator 𝐴 is a contraction map.
So, for 𝐹

1
, 𝐹
2
∈ 𝑋, 𝑠 ∈ [𝑎, 𝑏], and 𝑡 ∈ [𝑐, 𝑑], we have

𝐷(𝐴 (𝐹
1
) (𝑠, 𝑡) , 𝐴 (𝐹

2
) (𝑠, 𝑡))

≤ 𝐷 (𝑓 (𝑠, 𝑡) , 𝑓 (𝑠, 𝑡))

+ 𝐷(𝜆 ⊙ (𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐾(𝑠, 𝑡, 𝑥, 𝑦)

⊙ 𝐹
1
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

𝜆 ⊙ (𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐾(𝑠, 𝑡, 𝑥, 𝑦)

⊙ 𝐹
2
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦)

≤ 𝜆 ⊙ (𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐷(𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝐹
1
(𝑥, 𝑦) ,

𝐾 (𝑠, 𝑡, 𝑥, 𝑦)

⊙ 𝐹
2
(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

= 𝜆
𝐾 (𝑠, 𝑡, 𝑥, 𝑦)

 ⊙ (𝐹𝑅)

⋅ ∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐷(𝐹
1
(𝑥, 𝑦) , 𝐹

2
(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

≤ 𝜆𝑀 ⊙ (𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐷(𝐹
1
(𝑥, 𝑦) ,

𝐹
2
(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

≤ 𝜆𝑀 ⊙ (𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐷
∗
(𝐹
1
, 𝐹
2
) 𝑑𝑥 𝑑𝑦

= 𝜆𝑀(𝑏 − 𝑎) (𝑑 − 𝑐)𝐷
∗
(𝐹
1
, 𝐹
2
) = 𝐵𝐷

∗
(𝐹
1
, 𝐹
2
) .

(52)

Therefore, we obtained

𝐷
∗
(𝐴 (𝐹

1
) (𝑠, 𝑡) , 𝐴 (𝐹

2
) (𝑠, 𝑡)) ≤ 𝐵𝐷

∗
(𝐹
1
, 𝐹
2
) . (53)

Since 𝐵 < 1, the operator 𝐴 is a contraction on Banach space
(𝑋,𝐷

∗). Consequently, Banach’s fixed point principle implies
that (41) has a unique solution 𝐹∗ in𝑋 and we also have

𝐷(𝐹
∗
(𝑠, 𝑡) , 𝐹𝑚 (𝑠, 𝑡))

≤ 𝐷
∗
(𝐹
∗
, 𝐹
𝑚
)

≤ 𝜆𝑀 (𝑏 − 𝑎) (𝑑 − 𝑐)𝐷
∗
(𝐹
∗
, 𝐹
𝑚−1

)

= 𝐵𝐷
∗
(𝐹
∗
, 𝐹
𝑚−1

) ≤ 𝐵𝐷
∗
(𝐹
∗
, 𝐹
𝑚
) + 𝐵𝐷

∗
(𝐹
𝑚−1

, 𝐹
𝑚
)

≤ 𝐵𝐷
∗
(𝐹
∗
, 𝐹
𝑚
) + 𝐵

𝑚
𝐷
∗
(𝐹
0
, 𝐹
1
) ;

(54)

therefore,

𝐷
∗
(𝐹
∗
, 𝐹
𝑚
) ≤

𝐵𝑚

1 − 𝐵
𝐷
∗
(𝐹
0
, 𝐹
1
) ; (55)

on the other hand,

𝐷
∗
(𝐹
0
, 𝐹
1
)

= sup
𝑎≤𝑠≤𝑏

𝑐≤𝑡≤𝑑

𝐷(𝑓 (𝑠, 𝑡) ⊕ 0̃, 𝑓 (𝑠, 𝑡) ⊕ 𝜆 ⊗ (𝐹𝑅)

⋅ ∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐾(𝑠, 𝑡, 𝑥, 𝑦)

⊙ 𝐹
0
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦)

≤ sup
𝑎≤𝑠≤𝑏

𝑐≤𝑡≤𝑑

𝜆 ⊙ (𝐹𝑅)

⋅ ∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐷(0̃, 𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝐹
0
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦)

≤ 𝑀𝜆 ⊙ (𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

sup
𝑎≤𝑠≤𝑏

𝑐≤𝑡≤𝑑

𝐷(0̃, 𝐹
0
(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

= 𝜆𝑀(𝑏 − 𝑎) (𝑑 − 𝑐)𝑀
1
= 𝑀

1
𝐵,

(56)

so by (55) and (56), we obtained inequality (46), which
completes the proof.

Now, we introduce a numerical method to solve (41).
We consider (41) with continuous kernel 𝐾(𝑠, 𝑡, 𝑥, 𝑦) having
positive sign on [𝑎, 𝑏] × [𝑐, 𝑑] × [𝑎, 𝑏] × [𝑐, 𝑑] and uniform
partitions

𝐷
𝑥
: 𝑎 = 𝑠

0
< 𝑠
1
< 𝑠
2
< ⋅ ⋅ ⋅ < 𝑠

𝑛−1
< 𝑠
𝑛
= 𝑏,

𝐷
𝑦
: 𝑏 = 𝑡

0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑛−1
< 𝑡
𝑛
= 𝑑,

(57)

with 𝑠
𝑖
= 𝑎+𝑖ℎ, 𝑡

𝑗
= 𝑐+𝑗ℎ, where ℎ = (𝑏−𝑎)/𝑛, ℎ = (𝑑−𝑐)/𝑛.

Then, the following iterative procedure gives the approximate
solution of (41) in point (𝑠, 𝑡):

𝑢
0
(𝑠, 𝑡) = 𝑓 (𝑠, 𝑡) ,

𝑢
𝑚
(𝑠, 𝑡) = 𝑓 (𝑠, 𝑡) ⊕

𝜆ℎℎ


4

⊙ [(𝐾 (𝑠, 𝑡, 𝑠
0
, 𝑡
0
) ⊙ 𝑢

𝑚−1
(𝑠
0
, 𝑡
0
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
0
, 𝑡
𝑛
) ⊙ 𝑢

𝑚−1
(𝑠
0
, 𝑡
𝑛
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑛
, 𝑡
0
) ⊙ 𝑢

𝑚−1
(𝑠
𝑛
, 𝑡
0
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑛
, 𝑡
𝑛
)

⊙ 𝑢
𝑚−1

(𝑠
𝑛
, 𝑡
𝑛
) )
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⊕ 2(

𝑛−1

∑
𝑖=0

𝐾(𝑠, 𝑡, 𝑠
𝑖
, 𝑡
0
)

⊙ 𝑢
𝑚−1

(𝑠
𝑖
, 𝑡
0
)

⊕

𝑛−1

∑
𝑗=0

𝐾(𝑠, 𝑡, 𝑠
0
, 𝑡
𝑗
)

⊙ 𝑢
𝑚−1

(𝑠
0
, 𝑡
𝑗
))

⊕ 4(

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

𝐾(𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗
)

⊙ 𝑢
𝑚−1

(𝑠
𝑖
, 𝑡
𝑗
))] .

(58)

The above recursive relation can be written as follows:
𝑢
0
(𝑠, 𝑡) = 𝑓 (𝑠, 𝑡) ,

𝑢
𝑚
(𝑠, 𝑡) = 𝑓 (𝑠, 𝑡) ⊕

𝜆ℎℎ


4

⊙

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

(𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗
) ⊙ 𝑢

𝑚−1
(𝑠
𝑖
, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗+1

)

⊙ 𝑢
𝑚−1

(𝑠
𝑖
, 𝑡
𝑗+1

)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗
)

⊙ 𝑢
𝑚−1

(𝑠
𝑖+1

, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗+1

)

⊙ 𝑢
𝑚−1

(𝑠
𝑖+1

, 𝑡
𝑗+1

)) .

(59)

4.1. Error Estimation. Here, we obtain an error estimate
between the exact solution and the approximate solution for
the given fuzzy Fredholm integral equation (41).

Theorem 26. Consider the 2DFFLIE2 (41) with continuous
kernel𝐾(𝑠, 𝑡, 𝑥, 𝑦) having positive sign on [𝑎, 𝑏]×[𝑐, 𝑑]×[𝑎, 𝑏]×
[𝑐, 𝑑] and suppose that 𝑓 is continuous on [𝑎, 𝑏] × [𝑐, 𝑑]. If
𝐵 = 𝜆𝑀(𝑏−𝑎)(𝑑−𝑐) < 1, where𝑀 = max 𝑎≤𝑠,𝑥≤𝑏

𝑐≤𝑡,𝑦≤𝑑

|𝐾(𝑠, 𝑡, 𝑥, 𝑦)|,

then the iterative procedure (59) converges to the unique
solution of (41), 𝐹, and the following error estimate holds true:

𝐷
∗
(𝐹, 𝑢

𝑚
) ≤ (

𝐵𝑚+1

1 − 𝑚
)Γ
0
+ (

𝐵

4 (1 − 𝐵)
)𝜔

[𝑎,𝑏]×[𝑐,𝑑]
(𝑓, ℎℎ


)

+ (
𝜇𝐵2 + 4𝜏𝐵

4𝑀 (1 − 𝐵)
)𝜔

𝑠𝑡
(𝐾, ℎ + ℎ


) ,

(60)

where

𝜔
𝑠𝑡
(𝐾, 𝛿) = sup { 𝐾 (𝑠

1
, 𝑡
1
, 𝑥, 𝑦) − 𝐾 (𝑠

2
, 𝑡
2
, 𝑥, 𝑦)

 ;

√(𝑠
2
− 𝑠
1
)
2
+ (𝑡

2
− 𝑡
1
)
2
≤ 𝛿}

∀𝛿 ≥ 0, 𝑎 ≤ 𝑠
1
, 𝑠
2
≤ 𝑏, 𝑐 ≤ 𝑡

1
, 𝑡
2
≤ 𝑑,

(61)

𝑀
𝑘
= sup
(𝑠,𝑡)∈[𝑎,𝑏]×[𝑐,𝑑]

𝑢𝑘(𝑠, 𝑡)
ϝ,

Γ
𝑘
= sup
(𝑠,𝑡)∈[𝑎,𝑏]×[𝑐,𝑑]

𝐹𝑘(𝑠, 𝑡)
ϝ,

(62)

𝜏 = max
𝑖=0,1,...,𝑚−1

{𝑀
𝑖
} ,

𝜇 = max
𝑖=0,1,...,𝑚−2

{Γ
𝑖
} .

(63)

Proof. Considering iterative procedure (59), for all (𝑠, 𝑡) ∈

[𝑎, 𝑏] × [𝑐, 𝑑], we have

𝐷(𝐹
1 (𝑠, 𝑡) , 𝑢1 (𝑠, 𝑡))

= 𝐷 (𝑓 (𝑠, 𝑡) , 𝑓 (𝑠, 𝑡))

+ 𝐷(𝜆 ⊙ (𝐹𝑅)

⋅ ∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐾(𝑠, 𝑡, 𝑥, 𝑦)

⊙ 𝐹
0
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

𝜆ℎℎ

4
⊙

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

[𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗
) ⊙ 𝐹

0
(𝑠
𝑖
, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗+1

) ⊙ 𝐹
0
(𝑠
𝑖
, 𝑡
𝑗+1

)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗
) ⊙ 𝐹

0
(𝑠
𝑖+1

, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗+1

)

⊙ 𝐹
0
(𝑠
𝑖+1

, 𝑡
𝑗+1

)] )

= 𝐷(𝜆 ⊙

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

(𝐹𝑅)

⋅ ∫
𝑠
𝑖+1

𝑠
𝑖

(𝐹𝑅)∫
𝑡
𝑗+1

𝑡
𝑗

𝐾(𝑠, 𝑡, 𝑥, 𝑦)

⊙ 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,
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𝜆ℎℎ

4
⊙

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

[𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗
) ⊙ 𝑓 (𝑠

𝑖
, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗+1

) ⊙ 𝑓 (𝑠
𝑖
, 𝑡
𝑗+1

)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗
) ⊙ 𝑓 (𝑠

𝑖+1
, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗+1

)

⊙ 𝑓 (𝑠
𝑖+1

, 𝑡
𝑗+1

)])

≤ 𝜆 ⊙

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

𝐷( (𝐹𝑅) ∫
𝑠
𝑖+1

𝑠
𝑖

(𝐹𝑅)∫
𝑡
𝑗+1

𝑡
𝑗

𝐾(𝑠, 𝑡, 𝑥, 𝑦)

⊙ 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

ℎℎ

4
⊙ [𝐾 (𝑠, 𝑡, 𝑠

𝑖
, 𝑡
𝑗
) ⊙ 𝑓 (𝑠

𝑖
, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗+1

) ⊙ 𝑓 (𝑠
𝑖
, 𝑡
𝑗+1

)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗
) ⊙ 𝑓 (𝑠

𝑖+1
, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗+1

)

⊙ 𝑓 (𝑠
𝑖+1

, 𝑡
𝑗+1

)] )

≤ 𝜆 ⊙

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

𝐷( (𝐹𝑅) ∫
𝑠
𝑖+1

𝑠
𝑖

(𝐹𝑅)∫
𝑡
𝑗+1

𝑡
𝑗

𝐾(𝑠, 𝑡, 𝑥, 𝑦)

⊙ 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

ℎℎ

4
⊙ [𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝑓 (𝑠

𝑖
, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝑓 (𝑠
𝑖
, 𝑡
𝑗+1

)

⊕ 𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝑓 (𝑠
𝑖+1

, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑥, 𝑦)

⊙ 𝑓 (𝑠
𝑖+1

, 𝑡
𝑗+1

)] )

+ 𝜆 ⊙

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

𝐷(
ℎℎ

4
[𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝑓 (𝑠

𝑖
, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝑓 (𝑠
𝑖
, 𝑡
𝑗+1

)

⊕ 𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝑓 (𝑠
𝑖+1

, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙𝑓 (𝑠
𝑖+1

, 𝑡
𝑗+1

)] ,

ℎℎ

4
⊙ [𝐾 (𝑠, 𝑡, 𝑠

𝑖
, 𝑡
𝑗
) ⊙ 𝑓 (𝑠

𝑖
, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗+1

) ⊙ 𝑓 (𝑠
𝑖
, 𝑡
𝑗+1

)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗
) ⊙ 𝑓 (𝑠

𝑖+1
, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗+1

)

⊙ 𝑓 (𝑠
𝑖+1

, 𝑡
𝑗+1

)] )

≤ 𝜆 ⊙

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

𝐾 (𝑠, 𝑡, 𝑥, 𝑦)


× 𝐷((𝐹𝑅)∫
𝑠
𝑖+1

𝑠
𝑖

(𝐹𝑅)∫
𝑡
𝑗+1

𝑡
𝑗

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

ℎℎ

4
⊙ [𝑓 (𝑠

𝑖
, 𝑡
𝑗
) ⊕ 𝑓 (𝑠

𝑖
, 𝑡
𝑗+1

)

⊕ 𝑓 (𝑠
𝑖+1

, 𝑡
𝑗
) ⊕ 𝑓 (𝑠

𝑖+1
, 𝑡
𝑗+1

)] )

+
𝜆ℎℎ

4
⊙

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

[𝐷 (𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝑓 (𝑠
𝑖
, 𝑡
𝑗
) ,

𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗
) ⊙𝑓 (𝑠

𝑖
, 𝑡
𝑗
))

+ 𝐷 (𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝑓 (𝑠
𝑖
, 𝑡
𝑗+1

) ,

𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗+1

) ⊙ 𝑓 (𝑠
𝑖
, 𝑡
𝑗+1

))

+ 𝐷 (𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝑓 (𝑠
𝑖+1

, 𝑡
𝑗
) ,

𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗
) ⊙ 𝑓 (𝑠

𝑖+1
, 𝑡
𝑗
))

+ 𝐷 (𝐾 (𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝑓 (𝑠
𝑖+1

, 𝑡
𝑗+1

) ,

𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗+1

) ⊙ 𝑓 (𝑠
𝑖+1

, 𝑡
𝑗+1

))] .

(64)

Using part (ii) ofCorollary 19, part (v) ofDefinition 3, and
part (i) of Theorem 13, we obtain

𝐷(𝐹
1 (𝑠, 𝑡) , 𝑢1 (𝑠, 𝑡))

≤
𝜆𝑀ℎℎ

4

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

(4𝜔
[𝑠
𝑖
,𝑠
𝑖+1
]×[𝑡
𝑗
,𝑡
𝑗+1
]
(𝑓,

ℎℎ

4
))

+
𝜆ℎℎ



4

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

[

𝐾 (𝑠, 𝑡, 𝑥, 𝑦) − 𝐾 (𝑠, 𝑡, 𝑠

𝑖
, 𝑡
𝑗
)


× 𝐷 (𝑓 (𝑠
𝑖
, 𝑡
𝑗
) , 0̃)

+

𝐾 (𝑠, 𝑡, 𝑥, 𝑦) − 𝐾 (𝑠, 𝑡, 𝑠

𝑖
, 𝑡
𝑗+1

)


× 𝐷 (𝑓 (𝑠
𝑖
, 𝑡
𝑗+1

) , 0̃)

+

𝐾 (𝑠, 𝑡, 𝑥, 𝑦) − 𝐾 (𝑠, 𝑡, 𝑠

𝑖+1
, 𝑡
𝑗
)


× 𝐷 (𝑓 (𝑠
𝑖+1

, 𝑡
𝑗
) , 0̃)

+

𝐾 (𝑠, 𝑡, 𝑥, 𝑦) − 𝐾 (𝑠, 𝑡, 𝑠

𝑖
, 𝑡
𝑗
)


× 𝐷 (𝑓 (𝑠
𝑖+1

, 𝑡
𝑗+1

) , 0̃)] .

(65)
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By part (ii) of Theorem 6 and direct computation, it
follows that

𝐷(𝐹
1
(𝑠, 𝑡) , 𝑢

1
(𝑠, 𝑡))

≤
𝜆𝑀 (𝑏 − 𝑎) (𝑑 − 𝑐)

4
𝜔 (𝑓, ℎℎ


)

+ 𝜆ℎℎ


𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

(

𝐾 (𝑠, 𝑡, 𝑥, 𝑦) − 𝐾 (𝑠, 𝑡, 𝑠

𝑖
, 𝑡
𝑗
)

)

⋅ sup
(𝑠,𝑡)∈[𝑎,𝑏]×[𝑐,𝑑]

𝐷(𝑓 (𝑠, 𝑡) , 0̃)

≤
𝜆𝑀 (𝑏 − 𝑎) (𝑑 − 𝑐)

4
𝜔 (𝑓, ℎℎ


) + 𝜆 (𝑏 − 𝑎) (𝑑 − 𝑐)

𝑀
0
𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) =

𝐵

4
𝜔 (𝑓, ℎℎ


) +

𝐵

𝑀
𝑀
0
𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) ;

(66)

therefore, we obtain

𝐷(𝐹
1
(𝑠, 𝑡) , 𝑢

1
(𝑠, 𝑡)) ≤

𝐵

4
𝜔 (𝑓, ℎℎ


) +

𝐵

𝑀
𝑀
0
𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) .

(67)

Now, since 𝐹
2
(𝑠, 𝑡) = 𝑓(𝑠, 𝑡) + 𝜆 ⊙

(𝐹𝑅) ∫
𝑑

𝑐
(𝐹𝑅) ∫

𝑏

𝑎
𝐾(𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝐹

1
(𝑥, 𝑦)𝑑𝑥 𝑑𝑦, we infer

that

𝐷(𝐹
2 (𝑠, 𝑡) , 𝑢2 (𝑠, 𝑡))

= 𝐷 (𝑓 (𝑠, 𝑡) , 𝑓 (𝑠, 𝑡))

+ 𝜆𝐷((𝐹𝑅)∫
𝑑

𝑐

(𝐹𝑅)∫
𝑏

𝑎

𝐾(𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝐹
1
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

ℎℎ

4
⊙

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

[𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗
) ⊙ 𝐹

1
(𝑠
𝑖
, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗+1

) ⊙ 𝐹
1
(𝑠
𝑖
, 𝑡
𝑗+1

)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗
) ⊙ 𝐹

1
(𝑠
𝑖+1

, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗+1

)

⊙ 𝐹
1
(𝑠
𝑖+1

, 𝑡
𝑗+1

)] )

≤ 𝜆

𝑛−1

∑
𝑖=0

𝑛−1

∑
𝑗=0

[𝐷((𝐹𝑅)∫
𝑠
𝑖+1

𝑠
𝑖

(𝐹𝑅)∫
𝑡
𝑗+1

𝑡
𝑗

𝐾(𝑠, 𝑡, 𝑥, 𝑦)

⊙ 𝐹
1
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

ℎℎ


4
⊙ 𝐾 (𝑠, 𝑡, 𝑥, 𝑦)

⊙ [𝐹
1
(𝑠
𝑖
, 𝑡
𝑗
) ⊕ 𝐹

1
(𝑠
𝑖
, 𝑡
𝑗+1

) ⊕ 𝐹
1
(𝑠
𝑖+1

, 𝑡
𝑗
)

⊕ 𝐹
1
(𝑠
𝑖+1

, 𝑡
𝑗+1

)] )

+
ℎℎ

4
𝐷(𝐾 (𝑠, 𝑡, 𝑥, 𝑦)

[𝐹
1
(𝑠
𝑖
, 𝑡
𝑗
) ⊕ 𝐹

1
(𝑠
𝑖
, 𝑡
𝑗+1

)

⊕ 𝐹
1
(𝑠
𝑖+1

, 𝑡
𝑗
) ⊕ 𝐹

1
(𝑠
𝑖+1

, 𝑡
𝑗+1

)] ,

𝐾 (𝑠, 𝑡, 𝑥, 𝑦)

× [𝑢
1
(𝑠
𝑖
, 𝑡
𝑗
)

⊕ 𝑢
1
(𝑠
𝑖
, 𝑡
𝑗+1

) ⊕ 𝑢
1
(𝑠
𝑖+1

, 𝑡
𝑗
)

⊕ 𝑢
1
(𝑠
𝑖+1

, 𝑡
𝑗+1

)] )

+
ℎℎ

4
𝐷(𝐾 (𝑠, 𝑡, 𝑥, 𝑦)

× [𝑢
1
(𝑠
𝑖
, 𝑡
𝑗
)

⊕ 𝑢
1
(𝑠
𝑖
, 𝑡
𝑗+1

) ⊕ 𝑢
1
(𝑠
𝑖+1

, 𝑡
𝑗
)

⊕ 𝑢
1
(𝑠
𝑖+1

, 𝑡
𝑗+1

)] ,

[𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗
) ⊙ 𝑢

1
(𝑠
𝑖
, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖
, 𝑡
𝑗+1

) ⊙ 𝑢
1
(𝑠
𝑖
, 𝑡
𝑗+1

)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗
) ⊙ 𝑢

1
(𝑠
𝑖+1

, 𝑡
𝑗
)

⊕ 𝐾 (𝑠, 𝑡, 𝑠
𝑖+1

, 𝑡
𝑗+1

)

⊙ 𝑢
1
(𝑠
𝑖+1

, 𝑡
𝑗+1

)] ) ]

≤
𝜆𝑀(𝑏 − 𝑎) (𝑑 − 𝑐)

4
𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝐹
1
, ℎℎ


)

+
𝜆𝑀 (𝑏 − 𝑎) (𝑑 − 𝑐)

4
[𝐷 (𝐹

1
(𝑠
𝑖
, 𝑡
𝑗
) , 𝑢

1
(𝑠
𝑖
, 𝑡
𝑗
))

+ 𝐷 (𝐹
1
(𝑠
𝑖
, 𝑡
𝑗+1

) , 𝑢
1
(𝑠
𝑖
, 𝑡
𝑗+1

))

+ 𝐷 (𝐹
1
(𝑠
𝑖+1

, 𝑡
𝑗
) , 𝑢

1
(𝑠
𝑖+1

, 𝑡
𝑗
))

+ 𝐷 (𝐹
1
(𝑠
𝑖+1

, 𝑡
𝑗+1

) ,

𝑢
1
(𝑠
𝑖+1

, 𝑡
𝑗+1

))]

+ 𝜆 (𝑏 − 𝑎) (𝑑 − 𝑐)𝑀1𝜔𝑠𝑡 (𝐾, ℎ + ℎ

) ;

(68)
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therefore, we have

𝐷(𝐹
2
(𝑠, 𝑡) , 𝑢

2
(𝑠, 𝑡))

≤
𝐵

4
𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝐹
1
, ℎℎ


)

+
𝐵

4
[𝐷 (𝐹

1
(𝑠
𝑖
, 𝑡
𝑗
) , 𝑢

1
(𝑠
𝑖
, 𝑡
𝑗
))

+ 𝐷 (𝐹
1
(𝑠
𝑖
, 𝑡
𝑗+1

) , 𝑢
1
(𝑠
𝑖
, 𝑡
𝑗+1

))

+ 𝐷 (𝐹
1
(𝑠
𝑖+1

, 𝑡
𝑗
) , 𝑢

1
(𝑠
𝑖+1

, 𝑡
𝑗
))

+𝐷 (𝐹
1
(𝑠
𝑖+1

, 𝑡
𝑗+1

) , 𝑢
1
(𝑠
𝑖+1

, 𝑡
𝑗+1

))]

+ 𝜆 (𝑏 − 𝑎) (𝑑 − 𝑐)𝑀
1
𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) .

(69)

By induction for 𝑚 ≥ 3, using (45), (46), (59), and (62), we
see that
𝐷(𝐹

𝑚 (𝑠, 𝑡) , 𝑢𝑚 (𝑠, 𝑡))

≤
𝐵

4
𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝐹
1
, ℎℎ


)

+
𝐵

4
[𝐷 (𝐹

𝑚−1
(𝑠
𝑖
, 𝑡
𝑗
) , 𝑢

𝑚−1
(𝑠
𝑖
, 𝑡
𝑗
))

+ 𝐷 (𝐹
1
(𝑠
𝑖
, 𝑡
𝑗+1

) , 𝑢
1
(𝑠
𝑖
, 𝑡
𝑗+1

))

+ 𝐷 (𝐹
𝑚−1

(𝑠
𝑖+1

, 𝑡
𝑗
) , 𝑢

𝑚−1
(𝑠
𝑖+1

, 𝑡
𝑗
))

+ 𝐷 (𝐹
𝑚−1

(𝑠
𝑖+1

, 𝑡
𝑗+1

) , 𝑢
𝑚−1

(𝑠
𝑖+1

, 𝑡
𝑗+1

))]

+
𝐵

𝑀
𝑀
𝑚−1

𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) ;

(70)

taking supremum for (𝑡, 𝑠) ∈ [𝑎, 𝑏] × [𝑐, 𝑑] from (70), we
conclude that
𝐷
∗
(𝐹
𝑚
, 𝑢
𝑚
)

≤
𝐵

4
𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝐹
𝑚−1

, ℎℎ

)

+ 𝐵𝐷
∗
(𝐹
𝑚−1

, 𝑢
𝑚−1

) +
𝐵

𝑀
𝑀
𝑚−1

𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) ,

𝐷
∗
(𝐹
𝑚−1

, 𝑢
𝑚−1

)

≤
𝐵

4
𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝐹
𝑚−2

, ℎℎ

)

+ 𝐵𝐷
∗
(𝐹
𝑚−2

, 𝑢
𝑚−2

) +
𝐵

𝑀
𝑀
𝑚−2

𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) ,

𝐷
∗
(𝐹
𝑚−2

, 𝑢
𝑚−2

)

≤
𝐵

4
𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝐹
𝑚−3

, ℎℎ

)

+ 𝐵𝐷
∗
(𝐹
𝑚−3

, 𝑢
𝑚−3

) +
𝐵

𝑀
𝑀
𝑚−3

𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) ,

...

𝐷
∗
(𝐹
1
, 𝑢
1
)

≤
𝐵

4
𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝐹
0
, ℎℎ


)

+ 𝐵𝐷
∗
(𝐹
0
, 𝑢
0
) +

𝐵

𝑀
𝑀
0
𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) ,

(71)

and multiplying the above inequalities by 1, 𝐵, 𝐵
2, . . . , 𝐵𝑚−1,

respectively, and summing them, we obtain

𝐷
∗
(𝐹
𝑚
, 𝑢
𝑚
)

≤
𝐵

4
(𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝐹
𝑚−1

, ℎℎ

) + 𝐵𝜔

[𝑎,𝑏]×[𝑐,𝑑]

× (𝐹
𝑚−2

, ℎℎ

)

+ ⋅ ⋅ ⋅ + 𝐵
𝑚−1

𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, ℎℎ

))

+
𝐵

𝑀
𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) (𝑀

𝑚−1
+ 𝐵𝑀

𝑚−2
+ 𝐵

2
𝑀
𝑚−3

+ ⋅ ⋅ ⋅ + 𝐵
𝑚−1

𝑀
0
) .

(72)

Since, for (𝑠
1
, 𝑡
1
), (𝑠

2
, 𝑡
2
) ∈ [𝑎, 𝑏] × [𝑐, 𝑑] with |𝑠

1
− 𝑠
2
| ≤ ℎ,

|𝑡
1
− 𝑡
2
| ≤ ℎ, we have

𝐷(𝐹
𝑚
(𝑠
1
, 𝑡
1
) , 𝐹

𝑚
(𝑠
2
, 𝑡
2
))

= 𝐷(𝑓 (𝑠
1
, 𝑡
1
) ⊕ 𝜆

⊗ ∫
𝑑

𝑐

∫
𝑏

𝑎

𝐾(𝑠
1
, 𝑡
1
, 𝑥, 𝑦)

⊗ 𝐹
𝑚−1

(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

𝑓 (𝑠
2
, 𝑡
2
) ⊕ 𝜆 ⊗ ∫

𝑑

𝑐

∫
𝑏

𝑎

𝐾(𝑠
2
, 𝑡
2
, 𝑥, 𝑦)

⊗ 𝐹
𝑚−1

(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦)

≤ 𝐷 (𝑓 (𝑠
1
, 𝑡
1
) , 𝑓 (𝑠

2
, 𝑡
2
)) ⊕ 𝜆

⊗ ∫
𝑑

𝑐

∫
𝑏

𝑎

𝐾 (𝑠
1
, 𝑡
1
, 𝑥, 𝑦) − 𝐾 (𝑠

2
, 𝑡
2
, 𝑥, 𝑦)



× 𝐷 (𝐹
𝑚−1

(𝑥, 𝑦) , 0̃) 𝑑𝑥 𝑑𝑦

≤ 𝐷 (𝑓 (𝑠
1
, 𝑡
1
) , 𝑓 (𝑠

2
, 𝑡
2
))

+
𝐵

𝑀
𝑤
𝑠𝑡
(𝐾, ℎ + ℎ


) Γ
𝑚−1

,

(73)

we infer that

𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝐹
𝑚
, ℎℎ


)

≤ 𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, ℎℎ

)

+
𝐵

𝑀
𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) Γ
𝑚−1

.

(74)
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By this inequality and (72), we see that

𝐷
∗
(𝐹
𝑚
, 𝑢
𝑚
)

≤
𝐵

4
(1 + 𝐵 + 𝐵

2
+ ⋅ ⋅ ⋅ + 𝐵

𝑚−1
) 𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, ℎℎ

)

+
𝐵

4𝑀
𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) (𝐵Γ

𝑚−2
+ 𝐵

2
Γ
𝑚−3

+ ⋅ ⋅ ⋅ + 𝐵
𝑚−1

Γ
0
)

+
𝐵

𝑀
𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) (𝑀

𝑚−1
+ 𝐵𝑀

𝑚−2
+ 𝐵

2
𝑀
𝑚−3

+ ⋅ ⋅ ⋅ + 𝐵
𝑚−1

𝑀
0
)

=
𝐵

4
(
1 − 𝐵

𝑚

1 − 𝐵
)𝜔

[𝑎,𝑏]×[𝑐,𝑑]
(𝑓, ℎℎ


) +

𝐵

4𝑀
𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


)

× [(𝐵Γ
𝑚−2

+ 𝐵
2
Γ
𝑚−3

+ ⋅ ⋅ ⋅ + 𝐵
𝑚−1

Γ
0
)

+ 4 (𝑀
𝑚−1

+ 𝐵𝑀
𝑚−2

+ 𝐵
2
𝑀
𝑚−3

+ ⋅ ⋅ ⋅ + 𝐵
𝑚−1

𝑀
0
)] .

(75)

By (62) and (63) and since 𝐵 < 1, we obtain

𝐷
∗
(𝐹
𝑚
, 𝑢
𝑚
)

≤
𝐵

4
(
1 − 𝐵

𝑚

1 − 𝐵
)𝜔

[𝑎,𝑏]×[𝑐,𝑑]
(𝑓, ℎℎ


)

+
𝐵

4𝑀
𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


)(

𝐵 (1 − 𝐵𝑚)

1 − 𝐵
𝜇 +

4 (1 − 𝐵
𝑚)

1 − 𝐵
𝜏)

≤
𝐵

4 (1 − 𝐵)
𝜔
[𝑎,𝑏]×[𝑐,𝑑]

(𝑓, ℎℎ

)

+
𝐵

4𝑀
𝜔
𝑠𝑡
(𝐾, ℎ + ℎ


) (

𝜇𝐵 + 4𝜏

1 − 𝐵
) ;

(76)

therefore, we obtain

𝐷
∗
(𝐹
𝑚
, 𝑢
𝑚
)

≤ (
𝐵

4 (1 − 𝐵)
)𝜔

[𝑎,𝑏]×[𝑐,𝑑]
(𝑓, ℎℎ


)

+ (
𝜇𝐵2 + 4𝜏𝐵

4𝑀 (1 − 𝐵)
)𝜔

𝑠𝑡
(𝐾, ℎ + ℎ


) .

(77)

By inequalities (77) and (46), we deduce that

𝐷
∗
(𝐹, 𝑢

𝑚
)

≤ 𝐷
∗
(𝐹, 𝐹

𝑚
) + 𝐷

∗
(𝐹
𝑚
, 𝑢
𝑚
)

≤ (
𝐵𝑚+1

1 − 𝐵
)Γ
0
+ (

𝐵

4 (1 − 𝐵)
)𝜔

[𝑎,𝑏]×[𝑐,𝑑]
(𝑓, ℎℎ


)

+ (
𝜇𝐵2 + 4𝜏𝐵

4𝑀 (1 − 𝐵)
)𝜔

𝑠𝑡
(𝐾, ℎ + ℎ


) .

(78)

Remark 27. Since 𝐵 < 1, it is easy to see that

lim
𝑚→∞

ℎ,ℎ


→0

𝐷
∗
(𝐹, 𝑢

𝑚
) = 0, (79)

which shows the convergence of the method.

5. Numerical Experiments

The proposed iterative method of successive approximations
was tested on three numerical examples to provide the
accuracy and the convergence of the method and illustrate
the correctness of the theoretical results. In these examples,
we assumed that [𝑎, 𝑏] × [𝑐, 𝑑] = [0, 1] × [0, 1], 𝜆 = 1, and we
performed the algorithm in point [𝑠

0
, 𝑡
0
] = [0.5, 0.5].

Example 1. Assume that

𝐹 (𝑠, 𝑡) = 𝑓 (𝑠, 𝑡) ⊕∬
1

0

𝐾(𝑠, 𝑡, 𝑥, 𝑦) ⊙ 𝐹 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦, (80)

where

𝑓 (𝑠, 𝑡, 𝑟) = (𝑓 (𝑠, 𝑡, 𝑟) , 𝑓 (𝑠, 𝑡, 𝑟)) ,

𝑓 (𝑠, 𝑡, 𝑟) = (𝑟
2
+ 𝑟) 𝑠 sin 𝑡

2
,

𝑓 (𝑠, 𝑡, 𝑟) = (4 − 𝑟
3
− 𝑟) 𝑠 sin 𝑡

2
,

𝐾 (𝑠, 𝑡, 𝑥, 𝑦) = 𝑠
2
𝑡𝑥;

(81)

the exact solution is given by

𝐹 (𝑠, 𝑡, 𝑟) = (𝐹 (𝑠, 𝑡, 𝑟) , 𝐹 (𝑠, 𝑡, 𝑟)) ,

𝐹 (𝑠, 𝑡, 𝑟) = (𝑟
2
+ 𝑟) (𝑠 sin 𝑡

2
−
16

21
(cos 1

2
− 1) 𝑠

2
𝑡) ,

𝐹 (𝑠, 𝑡, 𝑟) = (4 − 𝑟
3
− 𝑟) (𝑠 sin 𝑡

2
−
16

21
(cos 1

2
− 1) 𝑠

2
𝑡) .

(82)

To obtain numerical solution, we apply the proposed
method. To compare numerical and exact solutions, see
Table 1.

Example 2. Consider (80) with

𝑓 (𝑠, 𝑡, 𝑟) = (𝑓 (𝑠, 𝑡, 𝑟) , 𝑓 (𝑠, 𝑡, 𝑟)) ,

𝑓 (𝑠, 𝑡, 𝑟) = 𝑟 (
1

3
𝑟 +

8

3
) (1 + 𝑠 + 𝑡 −

7

12
𝑠𝑡) ,

𝑓 (𝑠, 𝑡, 𝑟) = (2𝑟
2
− 4𝑟 + 5) (1 + 𝑠 + 𝑡 −

7

12
𝑠𝑡) ,

𝐾 (𝑠, 𝑡, 𝑥, 𝑦) = 𝑠𝑡𝑥𝑦

(83)
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Table 1: Numerical results on the level sets for Example 1 in (𝑠
0
, 𝑡
0
) = (0.5, 0.5).

𝑟-level 𝑚 = 5, 𝑛 = 10 𝑚 = 5, 𝑛 = 20 𝑚 = 7, 𝑛 = 10 𝑚 = 7, 𝑛 = 20

|𝐹 − 𝑢
𝑚
| |𝐹 − 𝑢

𝑚
| |𝐹 − 𝑢

𝑚
| |𝐹 − 𝑢

𝑚
| |𝐹 − 𝑢

𝑚
| |𝐹 − 𝑢

𝑚
| |𝐹 − 𝑢

𝑚
| |𝐹 − 𝑢

𝑚
|

0.00 0.000000 0.000657 0.000000 0.000661 0.000000 0.000008 0.000000 0.000003
0.25 0.000067 0.000427 0.000051 0.000617 0.000011 0.000053 0.000001 0.000005
0.50 0.000086 0.000586 0.000024 0.000258 0.000066 0.000815 0.000043 0.000001
0.75 0.000150 0.000423 0.000022 0.000367 0.000069 0.000499 0.000008 0.000006
1.00 0.000229 0.000329 0.000131 0.000221 0.000154 0.000154 0.000005 0.000005

Table 2: Numerical results on the level sets for Example 2 in
(𝑠
0
, 𝑡
0
) = (0.5, 0.5).

r-level 𝑚 = 4, 𝑛 = 10 𝑚 = 8, 𝑛 = 20

|𝐹 − 𝑢
𝑚
| |𝐹 − 𝑢

𝑚
| |𝐹 − 𝑢

𝑚
| |𝐹 − 𝑢

𝑚
|

0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.000003 0.000008 0.000000 0.000002
0.4 0.000007 0.000011 0.000000 0.000008
0.6 0.000004 0.000006 0.000001 0.000000
0.8 0.000000 0.000005 0.000000 0.000000
1.0 0.000000 0.000000 0.000000 0.000000

and exact solution

𝐹 (𝑠, 𝑡, 𝑟) = (𝐹 (𝑠, 𝑡, 𝑟) , 𝐹 (𝑠, 𝑡, 𝑟)) ,

= (𝑟 (
1

3
𝑟 +

8

3
) (𝑠 + 𝑡 + 1) ,

(2𝑟
2
− 4𝑟 + 5) (𝑠 + 𝑡 + 1) ) .

(84)

We perform the proposed method and obtain numerical
solution. Comparison of these two results is presented in
Table 2.

Example 3. The integral equation (80) with

𝑓 (𝑠, 𝑡, 𝑟) = (𝑓 (𝑠, 𝑡, 𝑟) , 𝑓 (𝑠, 𝑡, 𝑟)) ,

𝑓 (𝑠, 𝑡, 𝑟) = (2𝑟 cos (1 − 𝑟) − 1) (1 + 𝑠
2
+ 𝑡 −

13

24
(𝑠 + 𝑡)) ,

𝑓 (𝑠, 𝑡, 𝑟) = (2 − sin 𝑟𝜋

2
) (1 + 𝑠

2
+ 𝑡 −

13

24
(𝑠 + 𝑡)) ,

𝐾 (𝑠, 𝑡, 𝑥, 𝑦) = (𝑠 + 𝑡) 𝑥𝑦

(85)

has the exact solution

𝐹 (𝑠, 𝑡, 𝑟) = (𝐹 (𝑠, 𝑡, 𝑟) , 𝐹 (𝑠, 𝑡, 𝑟)) ,

= ( (2𝑟 cos (1 − 𝑟) − 1) (𝑠
2
+ 𝑡 + 1) ,

(2 − sin 𝑟𝜋

2
) (𝑠

2
+ 𝑡 + 1)) .

(86)

For this linear example, we apply our proposed iterative
method and obtain numerical results that can be viewed in
Table 3.

Table 3: Numerical results on the level sets for Example 3 in
(𝑠
0
, 𝑡
0
) = (0.5, 0.5).

𝑟-level 𝑚 = 5, 𝑛 = 20 𝑚 = 5, 𝑛 = 40

|𝐹 − 𝑢
𝑚
| |𝐹 − 𝑢

𝑚
| |𝐹 − 𝑢

𝑚
| |𝐹 − 𝑢

𝑚
|

0.0 0.000047 0.000028 0.000008 0.000003
0.2 0.000039 0.000086 0.000006 0.000009
0.4 0.000009 0.000008 0.000003 0.000000
0.6 0.000004 0.000005 0.000001 0.000000
0.8 0.000012 0.000033 0.000007 0.000002
1.0 0.000006 0.000004 0.000000 0.000000

6. Conclusions

In this paper, we introduced 2D fuzzy mappings and defined
2D fuzzy integrals. Quadrature rules to approximate the
solution of 2D fuzzy integrals are given. We established the
theorem of existence of unique solution of 2DFFLIE2, and
we have proved it by using Banach’s fixed point principle.
Moreover, to approximate the solution of 2DFFLIE2, we
have proposed an iterative algorithm based on method of
successive approximations. The convergence to the unique
solution in our iterativemethod is investigated.Thepresented
numerical experiments show that the method applies well for
2DFFLIE2.
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We want to find a numerical solution for an integrodifferential equation with an integral boundary condition and delay parameter.
This type of problems arises in mathematical physics, mechanics, population growth, and other fields of physics and mathematical
chemistry. So, convergence of this approach is discussed by presenting a theorem which gives exponential type convergence rate
and guarantees the accuracy of that. Finally, by some numerical examples, we show the efficiency and accuracy of this numerical
method.

1. Introduction

Discussing integrodifferential equationswith integral bound-
ary condition consisting of delay parameter is a worthy
and significant branch of nonlinear applied mathematics.
It is important that integrodifferential equation with delay
parameter is generated often in investigations connectedwith
chemical engineering, mathematical physics, underground
water flow, engineering, and so on (see [1, 2]). Note that
the problems with integral boundary conditions have various
applications in applied fields such as population growth
problems and blood flow problems. For a detailed description
of the integrodifferential equations with delay parameter and
problems with integral boundary conditions, the reader can
refer to references of [3–7].

In this paper we discuss the following problem which
shows a first-order integrodifferential equation with integral
boundary condition consisting of delay parameter. The exis-
tence and uniqueness of solution for this problem are proved
in [8]. But analytic solving and reaching an exact solution
are impossible. Then in this paper we approximate the exact
solution by numerical method

𝑑𝑦

𝑑𝑥
= 𝑔 (𝑥, 𝑦 (𝑥) , 𝑦 (𝛾

1
(𝑥)) , 𝑈𝑦 (𝑥) , 𝑉𝑦 (𝑥)) ≡ 𝐺𝑦 (𝑥) ,

𝑦 (0) = 𝜂
1
𝑦 (𝜅) + 𝜂

2
∫

𝑏

0

𝜔 (𝑟, 𝑦 (𝑟)) 𝑑𝑟 + 𝑎,

(1)

where 𝑥 ∈ 𝐼 = [0, 𝑏] (𝑏 > 0), 𝑔 ∈ 𝐶(𝐼 × R4,R), where 𝐶 is
family of all continuous functions, and 𝛾

1
∈ 𝐶(𝐼, 𝐼), 𝜅 ∈ (0, 𝑏],

𝜔 ∈ 𝐶(𝐼 × R,R), 𝜂
1
, 𝜂
2
, 𝑎 ∈ R.

And

(𝑈𝑦) (𝑥) = ∫

𝛾
2
(𝑥)

0

𝑘 (𝑥, 𝑟) 𝑦 (𝐵 (𝑟)) 𝑑𝑟,

(𝑉𝑦) (𝑥) = ∫

𝑏

0

ℎ (𝑥, 𝑟) 𝑦 (𝐷 (𝑟)) 𝑑𝑟.

(2)

Here 𝛾
2
, 𝐵, 𝐷 ∈ 𝐶(𝐼, 𝐼), 𝑘(𝑥, 𝑟) ∈ 𝐶[𝐴,R+], and ℎ(𝑥, 𝑟) ∈

𝐶[𝐴
0
,R+] that

𝐴 = {(𝑥, 𝑟) ∈ R
2
| 0 ≤ 𝑟 ≤ 𝛾

2
(𝑥) , 𝑥 ∈ 𝐼} ,

𝐴
0
= {(𝑥, 𝑟) ∈ R

2
| 0 ≤ 𝑟 ≤ 𝑥, 𝑥 ∈ 𝐼} .

(3)

Here if 𝜂
1
= 1, 𝜂

2
= 𝑎 = 0, and 𝜅 = 𝑏, then we have a problem

with boundary condition of kind periodic, and if 𝜂
1
= 0, then

we have a problem with integral boundary condition, and if
𝜂
1

= 𝜂
2

= 0, we have a problem with an initial condition. So,
problem (1) is general type of these cases.
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Now, the following functional integral equation can be
easily concluded from (1):

𝑦 (𝑥) = 𝜂
1
𝑦 (𝜅) + 𝜂

2
∫

𝑏

0

𝜔 (𝑟, 𝑦 (𝑟)) 𝑑𝑟 + 𝑎

+ ∫

𝑥

0

𝑔(𝑡, 𝑦 (𝑡) , 𝑦 (𝛾
1
(𝑡)) , ∫

𝛾
2
(𝑡)

0

𝑘 (𝑡, 𝑟) 𝑦 (𝐵 (𝑟)) 𝑑𝑟,

∫

𝑏

0

ℎ (𝑡, 𝑟) 𝑦 (𝐷 (𝑟)) 𝑑𝑟) 𝑑𝑡

(4)

and in this paper we want to discuss solution of (1) in point of
equivalent integral equation (4). But we know the fact that we
cannot solve this integral equation to give an exact solution,
so numerical approaches are used to reach an approximated
solution.

Numerical approaches for estimated solution of integrod-
ifferential and integral equation and search for existence
and uniqueness of solution for some problems have been
researched bymany authors and reader can see thesemethods
in [9–15]. In these references authors use methods on an
estimate by basis function such as wavelets, polynomials,
and so forth or use some quadrature formulas. But these
technics usually have convergence rate of polynomial order
with respect to 𝑀 where 𝑀 represents the cardinal of terms
of sum in the expansion or the cardinal of points of the
quadrature formula. In [16] author showed that if we employ
the Sinc approach, the convergence rate is exponential order
such as 𝑂(exp(−𝑐𝑀

1/2
)) with some 𝑐 > 0. We know the

exponential rate is much faster than that of polynomial rate.
So, in this paper, we employ the Sinc function instead of
base function and an iterative technique to estimate exact
solution of (4) in marked points. Our approach dose not
contain of changing the solution of (4) to a systemof algebraic
equations by expanding 𝑦(𝑥) as basis functionwith unknown
coefficients, so this technique has computations less than
other methods and exponential rate in accuracy. Also in
this present paper, we prove a theorem to guarantee the
convergence of numerical technique.

2. Main Results

In this section, we introduce basic requirements and theorem
to prove existence and uniqueness of solution for first-
order integrodifferential equation with integral boundary
condition consisting of delay parameter (1). For detailed
descriptions, we refer the reader to [17, 18].

Definition 1. A function as 𝑦 ∈ 𝐶
1
(𝐼, 𝐼) is called a lower

solution of (1) if

𝑑𝑦

𝑑𝑥
≤ 𝐺𝑦 (𝑥) , 𝑥 ∈ 𝐼,

𝑦 (0) ≤ 𝜂
1
𝑦 (𝜅) + 𝜂

2
∫

𝑏

0

𝜔 (𝑟, 𝑦 (𝑟)) 𝑑𝑟 + 𝑎

(5)

and it is an upper solution of (1) if

𝑑𝑦

𝑑𝑥
≥ 𝐺𝑦 (𝑥) , 𝑥 ∈ 𝐼,

𝑦 (0) ≥ 𝜂
1
𝑦 (𝜅) + 𝜂

2
∫

𝑏

0

𝜔 (𝑟, 𝑦 (𝑟)) 𝑑𝑟 + 𝑎.

(6)

Theorem2. Let 𝑢
0
, V
0
∈ 𝐶
1
(𝐼,R) be lower and upper solutions

of (1), respectively, and 𝑢
0
(𝑥) ≤ V

0
(𝑥), 𝑥 ∈ 𝐼.

In addition consider the following.

(𝐿
1
): 𝑔 ∈ 𝐶(𝐼 × R4,R), 𝛾

1
, 𝛾
2
, 𝐵, 𝐷 ∈ 𝐶(𝐼, 𝐼), 𝛾

1
(𝑥), 𝛾
2
(𝑥),

𝐵(𝑥), 𝐷(𝑥) ≤ 𝑥, ∀𝑥 ∈ 𝐼, 𝜅 ∈ (0, 𝑏), 𝜔 ∈ 𝐶(𝐼 × R,R),
and 𝜂
1
, 𝜂
2
≥ 0.

(𝐿
2
): there are nonnegative bounded integrable functions

𝑀
1
(𝑥), 𝑀

2
(𝑥), 𝑀

3
(𝑥), 𝑀

4
(𝑥) on 𝐼 that

∫

𝑏

0

[𝑀
1
(𝑡) + 𝑀

2
(𝑥) + 𝑀

3
(𝑥) ∫

𝛾
2
(𝑥)

0

𝑘 (𝑥, 𝑟) 𝑑𝑟

+𝑀
4
(𝑥) ∫

𝑏

0

ℎ (𝑥, 𝑟) 𝑑𝑟] 𝑑𝑥 ≤ 1

(7)

such that

𝑔 (𝑥, 𝜙
1
, 𝜙
2
, 𝑈𝜙
1
, 𝑉𝜙
1
) − 𝑔 (𝑥, 𝜓

1
, 𝜓
2
, 𝑈𝜓
1
, 𝑉𝜓
1
)

≥ −𝑀
1
(𝑥) (𝜙

1
− 𝜓
1
) − 𝑀

2
(𝑥) (𝜙

2
− 𝜓
2
)

− 𝑀
3
(𝑥)𝑈 (𝜙

1
− 𝜓
1
) − 𝑀

4
(𝑥) 𝑉 (𝜙

1
− 𝜓
1
)

(8)

if𝑢
0
≤ 𝜓
1
≤ 𝜙
1
≤ V
0
,𝑢
0
(𝛾
1
(𝑥)) ≤ 𝜓

2
≤ 𝜙
2
≤ V
0
(𝛾
1
(𝑥)).

(𝐿
3
): there is 𝜃(𝑥) ∈ 𝐶(𝐼,R+) such that𝜔(𝑥, 𝜓) − 𝜔(𝑥, 𝜓

−
) ≥

𝜃(𝑥)(𝜓 − 𝜓
−
), and if 𝑢

0
(𝑡) ≤ 𝜓

−
≤ 𝜓 ≤ V

0
(𝑥). then

problem (1) has extremal solutions 𝑢, V ∈ [𝑢
0
, V
0
]. In

addition, there are monotone sequences 𝑢
𝑛
(𝑥), V
𝑛
(𝑥) ⊂

[𝑢
0
, V
0
] such that 𝑢

𝑛
→ 𝑢, V

𝑛
→ V for 𝑛 → +∞ and

these are convergent uniformly on 𝑥 ∈ 𝐼, where 𝑢
𝑛
(𝑥),

V
𝑛
(𝑥) are defined as

𝑢
𝑛
(𝑥) = ∫

𝑥

0

𝑒
−∫
𝑥

𝑟
𝑀
1
(𝑠)𝑑𝑠

× [𝑔 (𝑟, 𝑢
𝑛−1

(𝑟) , 𝑢
𝑛−1

(𝛾
1
(𝑟)) ,

𝑈𝑢
𝑛−1

(𝑟) , 𝑉𝑢
𝑛−1

(𝑟) ) + 𝑀
1
(𝑟) 𝑢
𝑛−1

(𝑟)

− 𝑀
2
(𝑟) (𝑢
𝑛
− 𝑢
𝑛−1

) (𝛾
1
(𝑟))

− 𝑀
3
(𝑟) 𝑈 (𝑢

𝑛
− 𝑢
𝑛−1

) (𝑟)

−𝑀
4
(𝑟) 𝑉 (𝑢

𝑛
− 𝑢
𝑛−1

) (𝑟)] 𝑑𝑟

+ 𝑒
−∫
𝑥

0
𝑀
1
(𝑠)𝑑𝑠

[𝜂
1
𝑢
𝑛−1

(𝜅)

+ 𝜂
2
∫

𝑏

0

𝜔 (𝑟, 𝑢
𝑛−1

(𝑟)) 𝑑𝑟 + 𝑎] ;

∀𝑥 ∈ 𝐼, 𝑛 = 1, 2, 3, . . . ,
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V
𝑛
(𝑥) = ∫

𝑥

0

𝑒
−∫
𝑥

𝑟
𝑀
1
(𝑠)𝑑𝑠

× [𝑔 (𝑟, V
𝑛−1

(𝑟) , V
𝑛−1

(𝛾
1
(𝑟)) ,

𝑈V
𝑛−1

(𝑟) , 𝑉V
𝑛−1

(𝑟)) + 𝑀
1
(𝑟) 𝑧
𝑛−1

(𝑟)

− 𝑀
2
(𝑟) (V
𝑛
− V
𝑛−1

) (𝛾
2
(𝑟))

− 𝑀
3
(𝑟) 𝑈 (V

𝑛
− V
𝑛−1

) (𝑟)

−𝑀
4
(𝑟) 𝑉 (V

𝑛
− V
𝑛−1

) (𝑟)] 𝑑𝑟

+ 𝑒
−∫
𝑥

0
𝑀
1
(𝑠)𝑑𝑠

[𝜂
1
V
𝑛−1

(𝜅)

+ 𝜂
2
∫

𝑏

0

𝜔 (𝑟, V
𝑛−1

(𝑟)) 𝑑𝑟 + 𝑎] ;

∀𝑥 ∈ 𝐼, 𝑛 = 1, 2, 3, . . . ,

𝑢
0
≤ 𝑢
1
≤ ⋅ ⋅ ⋅ ≤ 𝑢

𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝑢 ≤ V ≤ ⋅ ⋅ ⋅ ≤ V

𝑛

≤ ⋅ ⋅ ⋅ ≤ V
1
≤ V
0
.

(9)

Proof. See [18].

Theorem 3. Consider that assumptions of Theorem 2 hold.
Moreover, consider the following.

(𝐿
4
): there are nonnegative bounded functions 𝛼

1
(𝑥), 𝛼

2
(𝑥),

𝛼
3
(𝑥), 𝛼

4
(𝑥) on 𝐼, such that

𝑔 (𝑥, 𝜙
1
, 𝜙
2
, 𝑈𝜙
1
, 𝑉𝜙
1
) − 𝑔 (𝑥, 𝜓

1
, 𝜓
2
, 𝑈𝜓
1
, 𝑉𝜓
1
)

≤ 𝛼
1
(𝑥) (𝜙

1
− 𝜓
1
) + 𝛼
2
(𝑥) (𝜙

2
− 𝜓
2
)

+ 𝛼
3
(𝑥)𝑈 (𝜙

1
− 𝜓
1
) + 𝛼
4
(𝑥)𝑉 (𝜙

1
− 𝜓
1
)

(10)

if 𝑢
0
(𝑥) ≤ 𝜓

1
≤ 𝜙
1

≤ V
0
(𝑥), 𝑢

0
(𝛾
1
(𝑥)) ≤ 𝜓

2
≤ 𝜙
2

≤

V
0
(𝛾
1
(𝑥)).

(𝐿
5
): there is𝛽(𝑥) ∈ C(𝐼,R+) such that𝜔(𝑥, 𝜓)−𝜔(𝑥, 𝜓

−
) ≤

𝛽(𝑥)(𝜓 − 𝜓
−
) if 𝑢
0
(𝑡) ≤ 𝜓

−
≤ 𝜓 ≤ V

0
(𝑥).

Then problem (1) has a unique solution 𝑢
−

∈ [𝑢
0
, V
0
].

In addition, there are sequences 𝑢
𝑛
(𝑥), V
𝑛
(𝑥) ⊂ [𝑢

0
, V
0
]

that these are monotone and 𝑢
𝑛

→ 𝑢
−, V
𝑛

→ 𝑢
−

for 𝑛 → +∞. This convergence is uniformly on 𝑥 ∈

𝐼, where 𝑢
𝑛
(𝑥), V

𝑛
(𝑥) are defined as (9) such that

‖𝑢
𝑛
− 𝑢
−
‖
𝑐
≤ 𝐿
𝑛
‖V
0
− 𝑢
0
‖
𝑐
, 𝑛 ∈ N, where

𝐿 = 𝜂
1
+ ∫

𝑏

0

[𝜂
2
𝛽 (𝑥) + 𝛼

1
(𝑥) + 𝑀

1
(𝑥) + 𝛼

2
(𝑥) + 𝑀

2
(𝑥)

+ (𝛼
3
(𝑥) + 𝑀

3
(𝑥)) ∫

𝛾
2
(𝑥)

0

𝐾 (𝑥, 𝑟) 𝑑𝑟

+ (𝛼
4
(𝑥) + 𝑀

4
(𝑥)) ∫

𝑏

0

ℎ (𝑥, 𝑟) 𝑑𝑟] 𝑑𝑥 < 1.

(11)

Proof. See [18].

3. Sinc Function

In this section, we recall the basis function and some of
its applicabilities. In here, definition of sinc(𝑥) function is
followed by

Sinc (𝑥) =

{{

{{

{

sin (𝜋𝑥)

𝜋𝑥
; 𝑥 ̸= 0,

1; 𝑥 = 0.

(12)

Now, for ℎ > 0 and integer 𝑗, we define 𝑗th Sinc function
with step size ℎ by

𝑆 (𝑗, ℎ) (𝑥) =
sin (𝜋 (𝑥 − 𝑗ℎ) /ℎ)

𝜋 (𝑥 − 𝑗ℎ) /ℎ
. (13)

3.1. Sinc Estimation on [𝑎, 𝑏]. Let 𝑥 = 𝜑(𝑤) be a transforma-
tion that denotes a conformal transformation which transfers
the simply connected domain 𝐴 onto a strip region 𝐴

𝑑
such

that

𝜑 ((𝑎, 𝑏)) = (−∞,∞) , lim
𝑥→𝑎

𝜑 (𝑥) = −∞,

lim
𝑥→𝑏

𝜑 (𝑥) = ∞.

(14)

In here 𝜕𝐴 is boundary of 𝐴 and in order to have the Sinc
estimation on (𝑎, 𝑏) conformal transformation is applied as
follows:

𝜑 (𝑡) = ln(
𝑡 − 𝑎

𝑏 − 𝑡
) . (15)

This function transfers the eye-shaped complex region

{𝑤 = 𝑥 + 𝑖𝑦 :


arg(

𝑤 − 𝑎

𝑏 − 𝑤
)


< 𝑑 ≤

𝜋

2
} (16)

onto 𝐴
𝑑
that it is a strip region:

𝐴
𝑑

= {𝜎 = 𝛼 + 𝛽𝑖 :
𝛽

 < 𝑑 <
𝜋

2
} . (17)

The basis functions on finite interval (𝑎, 𝑏) are given by

𝑆 (𝑗, ℎ) ∘ 𝜑 (𝑥) =
sin (𝜋 (𝜑 (𝑥) − 𝑗ℎ) /ℎ)

𝜋 (𝜑 (𝑥) − 𝑗ℎ) /ℎ
, (18)

and also, Sinc function for interpolation points 𝑥
𝑗

= 𝑗ℎ is
given by

𝑆 (𝑗, ℎ) (𝑘ℎ) = 𝛿
(0)

𝑗𝑘
= {

1; 𝑗 = 𝑘,

0; 𝑗 ̸= 𝑘.
(19)

Then, 𝑆(𝑗, ℎ) ∘ 𝜑(𝑥) shows behavior of Kronecker delta
function on the network points

𝑥
𝑗
= 𝜑
−1

(𝑗ℎ) =
𝑎 + 𝑏𝑒

𝑗ℎ

1 + 𝑒𝑗ℎ
. (20)
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The approximation of 𝑔(𝑥) by interpolation and quadrature
formulas for ∫

𝑏

𝑎
𝑔(𝑥)𝑑𝑥 is

𝑔 (𝑥) ≈

𝑀

∑

𝑗=−𝑀

𝑔 (𝑥
𝑗
) 𝑆 (𝑗, ℎ) ∘ 𝜑 (𝑥) ,

∫

𝑏

𝑎

𝑔 (𝑥) 𝑑𝑥 ≈ ℎ

𝑀

∑

𝑗=−𝑀

𝑔 (𝑥
𝑗
)

𝜑 (𝑥
𝑗
)
.

(21)

Theorem 4. Consider that, for a map 𝑤 = 𝜑
−1

(𝜉), the map
𝑔(𝜑
−1

(𝜉)) satisfies

(1) 𝑔 ∈ 𝐻
1
(𝐷
𝑑
), for 𝑑 > 0,

(2) 𝑔 decays exponentially on the real line such that

𝑔 (𝑥)
 ≤ 𝛼 exp (−𝛽 |𝑥|) , ∀𝑥 ∈ R, 𝛼, 𝛽 > 0 (22)

with some 𝛼, 𝛽, and 𝑑. Then one has

sup
𝑎<𝑥<𝑏



𝑔 (𝑥) −

𝑀

∑

𝑗=−𝑀

𝑔 (𝜑
−1

(𝑗ℎ)) 𝑆 (𝑗, ℎ) ∘ 𝜑 (𝑥)



≤ 𝐶√𝑀 exp(−√𝜋𝑑𝛽𝑀) .

(23)

That there is some 𝐶 and ℎ is ℎ = √𝜋𝑑/𝛽𝑀.

Proof. See [16].

Definition 5. Let 𝐿
𝛼
(𝐴) be the set of all analytic functions 𝑔,

for which there exists a constant 𝐶, such that

𝑔 (𝑧)
 ≤ 𝐶

|𝑒
𝜑(𝑧)

|
𝛼

(1 + |𝑒𝜑(𝑧)|)
2𝛼

; 𝑧 ∈ 𝐴, 0 < 𝛼 ≤ 1. (24)

Theorem6. Let𝑔/𝜑

∈ 𝐿
𝛼
(𝐴), with 0 < 𝛼 ≤ 1 and 0 < 𝑑 ≤ 𝜋;

also let ℎ = √𝜋𝑑/𝛼𝑀. Then there exists a constant 𝐶
1
, which

is independent of 𝑀, such that



∫

𝑥
𝑗

𝑎

𝑔 (𝑡) 𝑑𝑡 − ℎ

𝑀

∑

𝑘=−𝑀

𝛿
(−1)

𝑗𝑘

𝑔 (𝑥
𝑗
)

𝜑 (𝑥
𝑘
)



≤ 𝐶
1
𝑒
−√𝜋𝑑𝛼𝑀

,

(25)

where

𝛿
(−1)

𝑗𝑘
=

1

2
+ ∫

𝑗−𝑘

0

sin (𝜋𝑡)

𝜋𝑡
𝑑𝑡, (26)

and 𝜑(𝑥), 𝑥
𝑘
are defined as above.

Proof. See [16].

3.2. Sinc-Qudrature Method. In this section, for solving
equation

𝑦 (𝑥) = 𝜆
1
𝑦 (𝜅) + 𝜂

2
∫

𝑏

0

𝜔 (𝑟, 𝑦 (𝑟)) 𝑑𝑟 + 𝑎

+ ∫

𝑥

0

𝑔(𝑠, 𝑦 (𝑠) , 𝑦 (𝛾
1
(𝑠)) ,

∫

𝛾
2
(𝑠)

0

𝑘 (𝑠, 𝑟) 𝑦 (𝐵 (𝑟)) 𝑑𝑟,

∫

𝑏

0

ℎ (𝑠, 𝑟) 𝑦 (𝐷 (𝑠)) 𝑑𝑟) 𝑑𝑠,

(27)

we try to discrete integral equation by quadrature formula as

∫

𝑏

𝑎

𝑔 (𝑠) 𝑑𝑠 = ℎ

𝑀

∑

𝑗=−𝑀

𝑔 (𝑠
𝑗
)

𝜑 (𝑠
𝑗
)

+ 𝑂(exp(−
2𝜋𝑑𝑀

log (2𝜋𝑑𝑀/𝛽)
))

∫

𝑠

𝑎

𝑓 (𝑥) 𝑑𝑥 = ℎ

𝑀

∑

𝑗=−𝑀

𝑔 (𝑥
𝑗
)

𝜑 (𝑥
𝑗
)
𝜂
ℎ,𝑗

(𝑠)

+ 𝑂(
log𝑀

𝑀
exp(−

𝜋𝑑𝑀

log (𝜋𝑑𝑀/𝛽)
)) ,

(28)

where

𝜂
ℎ,𝑗

(𝑠) =
1

2
+

1

𝜋
𝑟
𝑖
(𝜋

𝑟 − 𝑗ℎ

ℎ
) ; 𝑟

𝑖
= ∫

𝑥

0

sin (𝑡)

𝑡
𝑑𝑡

(29)

with 𝑥
𝑗

= 𝑠
𝑗

= (𝑎 + 𝑏𝑒
𝑗ℎ

)/(1 + 𝑗ℎ), 𝑗 = −𝑀, . . . ,𝑀 and ℎ =

(1/𝑀) log(𝜋𝑑𝑀/𝛽) (see [16]).
Now, by substituting quadrature formulas in the integral

equation (4), we have

𝑦
𝑀

(𝑥) = 𝜂
1
𝑦 (𝜅) + 𝜂

2
ℎ

𝑀

∑

𝑗=−𝑀

𝜔 (𝑠
𝑗
, 𝑦 (𝑠
𝑗
))

𝜑 (𝑠
𝑗
)

+ 𝑎

+ ℎ

𝑀

∑

𝑗=−𝑀

𝑔(𝑠
𝑗
, 𝑦 (𝑠
𝑗
) , 𝑦 (𝛼 (𝑠

𝑗
)) ,

ℎ

𝑀

∑

𝑖=−𝑀

𝐾(𝑠
𝑗
, 𝑟
𝑖
) 𝑦 (𝐵 (𝑟

𝑖
))

𝜑 (𝑟
𝑖
)

𝜂
ℎ,𝑖

(𝑡) ,

ℎ

𝑀

∑

𝑖=−𝑀

ℎ (𝑠
𝑗
, 𝑟
𝑖
) 𝑦 (𝐷 (𝑟

𝑖
))

𝜑 (𝑟
𝑖
)

)

× (𝜑

(𝑠
𝑗
))
−1

𝜂
ℎ,𝑗

(𝑥) .

(30)
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Now, for 𝑛 = 1, 2, 3, . . ., let

𝑦
1,𝑀

(𝑥) = 𝜂
1
𝑦 (𝜅) ,

𝑦
𝑛+1,𝑀

(𝑥)

= 𝜂
1
𝑦
𝑛,𝑀

(𝜅) + 𝜂
2
ℎ

𝑀

∑

𝑗=−𝑀

𝜔 (𝑠
𝑗
, 𝑦
𝑛,𝑀

(𝑠
𝑗
))

𝜑 (𝑠
𝑗
)

+ 𝑎

+ ℎ

𝑀

∑

𝑗=−𝑀

𝑔(𝑠
𝑗
, 𝑦
𝑛,𝑀

(𝑠
𝑗
) , 𝑦
𝑛,𝑀

(𝛼 (𝑠
𝑗
)) ,

ℎ

𝑀

∑

𝑖=−𝑀

𝑎 (𝑠
𝑗
, 𝑟
𝑖
) 𝑦
𝑛,𝑀

(𝐵 (𝑟
𝑖
))

𝜑 (𝑟
𝑖
)

𝜂
ℎ,𝑖

(𝑥) ,

ℎ

𝑀

∑

𝑖=−𝑀

ℎ (𝑠
𝑗
, 𝑟
𝑖
) 𝑦
𝑛,𝑀

(𝛿 (𝑟
𝑖
))

𝜑 (𝑟
𝑖
)

)

× (𝜑

(𝑠
𝑗
))
−1

𝜂
ℎ,𝑗

(𝑥) .

(31)

4. Convergence of Method

In this section, we present a theorem that shows a bound
for 𝑦(𝑥) − 𝑦

𝑛
(𝑥) with the real norm where 𝑦(𝑥) is the exact

solution of problem (4) and 𝑦
𝑛
(𝑥) is an estimation for 𝑦(𝑥) by

using Sinc function in interpolaion and quadrature formula.
The result is shown as follows.

Theorem 7. Under the assumptions (𝐿
1
)–(𝐿
5
), iterative

approximation approach (31) is convergent to exact solution if
𝑦
1
(𝑥) is closed enough to the it and

𝑁
2
≤

1 − (𝜂
1
+ 𝜂
2
𝑏𝑁
1
)

𝑏 (2 + 𝑁
3
+ 𝑁
4
)

, (32)

where 𝑁
1

= sup{𝛽(𝑥); 𝑥 ∈ 𝐼}, 𝑁
2

= max{𝛼
𝑖
(𝑥); 𝑖 = 1, 2, 3, 4,

𝑥 ∈ 𝐼}, 𝑁
3

= sup{𝐾(𝑥, 𝑟); 𝑥, 𝑟 ∈ 𝐼}, and 𝑁
4

= sup{ℎ(𝑥, 𝑟);

𝑥, 𝑟 ∈ 𝐼}.

Proof. For a fixed 𝑀 let

𝑦
𝑛+1,𝑀

(𝑥) = 𝜂
1
𝑥
𝑛,𝑀

(𝜏) + 𝜂
2
∫

𝑏

0

𝜔 (𝑟, 𝑦
𝑛,𝑀

(𝑟)) 𝑑𝑟 + 𝑎

+ ∫

𝑥

0

𝑔 (𝑠, 𝑦
𝑛,𝑀

(𝑠) , 𝑦
𝑛,𝑀

(𝛾
1
(𝑠)) , 𝑈𝑦

𝑛,𝑀
(𝑠) ,

𝑉𝑦
𝑛,𝑀

(𝑠)) 𝑑𝑠,

𝑦 (𝑥) = 𝜂
1
𝑦 (𝜅) + 𝜂

2
∫

𝑏

0

𝜔 (𝑟, 𝑦 (𝑟)) 𝑑𝑟 + 𝑎

+ ∫

𝑥

0

𝑔 (𝑠, 𝑥 (𝑠) , 𝑦 (𝛾
1
(𝑠)) , 𝑈𝑦 (𝑠) , 𝑉𝑦 (𝑠)) 𝑑𝑠.

(33)

Now
𝑦𝑛+1,𝑀 (𝑥) − 𝑦 (𝑥)



≤ 𝜂
1

𝑦𝑛 (𝜅) − 𝑦 (𝜅)


+ 𝜂
2



∫

𝑏

0

(𝜔 (𝑟, 𝑦
𝑛
(𝑟)) − 𝜔 (𝑟, 𝑦 (𝑟))) 𝑑𝑟



+



∫

𝑥

0

[𝑔(𝑠, 𝑦
𝑛
(𝑠) , 𝑦
𝑛
(𝛾
1
(𝑠)) ,

∫

𝛾
2
(𝑠)

0

𝐾 (𝑠, 𝑟) 𝑦
𝑛
(𝐵 (𝑟)) 𝑑𝑟,

∫

𝑏

0

ℎ (𝑠, 𝑟) 𝑦
𝑛
(𝐷 (𝑟)) 𝑑𝑟)

− 𝑓(𝑠, 𝑦 (𝑠) , 𝑦 (𝛾
1
(𝑠)) ,

∫

𝛾
2
(𝑠)

0

𝐾 (𝑠, 𝑟) 𝑦 (𝐵 (𝑟)) 𝑑𝑟,

∫

𝑏

0

ℎ (𝑠, 𝑟) 𝑦 (𝐷 (𝑟)) 𝑑𝑟)]𝑑𝑠



≤ 𝜂
1

𝑦𝑛 (𝜅) − 𝑦 (𝜅)
 + 𝜂
2
𝑏𝑁
1

𝑦𝑛 (𝑥) − 𝑦 (𝑥)


+ 𝑏𝑁
2

𝑦𝑛 (𝑥) − 𝑦 (𝑥)
 + 𝑏𝑁

2

𝑦𝑛 (𝛾1 (𝑥)) − 𝑦 (𝛾
1
(𝑥))



+ 𝑏𝑁
2
𝑁
3

𝑥𝑛 (𝐵 (𝑟)) − 𝑦 (𝐵 (𝑟))


+ 𝑏𝑁
2
𝑀
4

𝑦𝑛 (𝐷 (𝑟)) − 𝑦 (𝐷 (𝑟))


≤ (𝜂
1
+ 𝜂
2
𝑏𝑁
1
+ 𝑏𝑁
2
(2 + 𝑁

3
+ 𝑁
4
))

𝑦𝑛,𝑀 (𝑥) − 𝑦 (𝑥)
 .

(34)

Then
𝑦𝑛+1,𝑀 (𝑥) − 𝑦 (𝑥)

 ≤ (𝜂
1
+ 𝜂
2
𝑏𝑁
1
+ 𝑏𝑁
2
(2 + 𝑁

3
+ 𝑁
4
))
𝑛

×
𝑦1,𝑀 (𝑥) − 𝑦 (𝑥)

 .

(35)

Now, by assumption in theorem, we have 𝜂
1
+𝜂
2
𝑏𝑁
1
+𝑏𝑁
2
(2+

𝑁
3
+ 𝑁
4
) < 1.

Because 𝜂
1
+ 𝜂
2
𝑏𝑁
1
+ 𝑏𝑁
2
(2 + 𝑁

3
+ 𝑁
4
) < 𝜂
1
+ 𝜂
2
𝑏𝑁
1
+

𝑏((1 − (𝜂
1
+ 𝜂
2
𝑏𝑁
1
))/𝑏(2 + 𝑁

3
+ 𝑁
4
))(2 + 𝑁

3
+ 𝑁
4
) = 1 and

then lim
𝑛→+∞

𝑦
𝑛+1,𝑀

(𝑥) = 𝑦(𝑥), 0 ≤ 𝑥 ≤ 𝑏.

5. Illustrative Examples

In this section, for showing efficiency of the iterative scheme
and in order to show the facts of the exact solution, we
give some examples below. All routines have been written in
Mathematica 7 and a Dual-Core CPU 2.00GHz is used to
run the programs. Also, about efficiency and accuracy of the
proposed numerical method, we present absolute errors for
different examples. Therefore numerical results are shown in
figures to illustrate the efficiency of this scheme.
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Figure 1: Absolute errors of Example 1. For different values of
iteration 𝑛.

Example 1. Consider the following problem:

𝑑𝑦

𝑑𝑥
=

1

15
𝑥
3
[𝑥 − 𝑦 (𝑥)] −

1

5
𝑥𝑦 (𝛾
1
(𝑥)) +

1

100
𝑥
2
𝑦
2
(𝛾
1
(𝑥))

+
1

500
𝑥[𝑥
3
− ∫

(1/2)𝑥

0

8𝑥𝑟𝑦 (𝑟
2
) 𝑑𝑟]

5

−
1

600
𝑥
2
[𝑥
3
− ∫

(1/2)𝑥

0

8𝑥𝑟𝑦(𝑟
2
)𝑑𝑟]

6

+
1

700
𝑥
2
[𝑥
2
− ∫

1

0

2𝑥
2
𝑟𝑦 (𝑟
2
) 𝑑𝑟]

7

−
1

800
𝑥
3
[𝑥
2
− ∫

1

0

2𝑥
2
𝑟𝑦(𝑟
2
)𝑑𝑟]

8

≡ 𝐺𝑦 (𝑥) ,

𝑥 ∈ 𝐼 = [0, 1] ,

𝑦 (0) =
1

4
𝑦 (𝜅) +

1

4
∫

1

0

(2𝑟 + 𝑦 (𝑟)) 𝑑𝑟 +
1

4
,

(36)

where 𝜅 ∈ (0, 1], 𝛾
1
∈ 𝐶(𝐼, 𝐼), and 𝛾

1
(𝑥) ≤ 𝑥 on 𝐼.

Now, we want to show that assumptions (𝐿
1
)–(𝐿
5
) and

convergence criterion which was prepared in Theorem 7 are
satisfied for integral equation (4).

Noting that 𝛾
2
(𝑥) = (1/2)𝑥, 𝐵(𝑥) = 𝐷(𝑥) = 𝑥

2, ∀𝑥 ∈ 𝐼,
then (𝐿

1
)–(𝐿
5
) is true. For details see [6].

In addition, we have 𝛽(𝑥) = 1, 𝛼
1
(𝑥) = 0, 𝛼

2
(𝑥) =

(1/50)𝑥
2, 𝛼
3
(𝑥) = 𝛼

4
(𝑥) = (1/100)𝑥

17, 𝐾(𝑥, 𝑟) = 8𝑥𝑟,
ℎ(𝑥, 𝑟) = 2𝑥

2
𝑟, and 𝜂

1
= 𝜂
2

= 1/4; then 𝑁
1

= 1, 𝑁
2

= 1/50,
𝑁
3
= 8, and 𝑁

4
= 2, and then

𝑁
2
=

1

50
≤

1 − (𝜂
1
+ 𝜂
2
𝑏𝑁
1
)

𝑏 (2 + 𝑁
3
+ 𝑁
4
)

=
1

24
. (37)

0.2 0.4 0.6 0.8 1.0

0.90

0.92

0.94

0.96

t

x
(t
)

Figure 2: Approximate solution for Example 1.

Therefore, the iterative method (31) converges to the exact
solution of this equation. Now, based on Sinc quadrature
scheme we can have some successive approximations for
solution of this example for 𝜅 = 1/2. Absolute error for 𝑛th
approximation and 𝑁 points quadrature method is defined
by

𝑒
𝑛,𝑀

= max
𝑥∈[0,1]

{
𝑦𝑛+1,𝑀 (𝑥) − 𝑦

𝑛,𝑀
(𝑥)

} ; 𝑛 = 1, 2, 3, . . . .

(38)

For different values of 𝑛 absolute errors are depicted in
Figure 1 and approximate solution for 𝑛 = 30 is depicted in
Figure 2.

Example 2. In Example 1 of [19], authors considered the
integrodifferential equation

𝑑𝑦

𝑑𝑥
= 1 −

1

3
𝑥
3
+ ∫

1

0

𝑥
3
𝑦
2
(𝑧) 𝑑𝑧,

𝑦 (0) = 0.

(39)

The exact solution is 𝑦(𝑥) = 𝑥. Maximum absolute error for
each iteration and different values of quadrature points are
depicted in Figures 3 and 4. By comparing these results with
the numerical results given in [19] in Table 2, efficiency and
accuracy of current approach are guaranteed.

6. Conclusion

In this paper, we apply a numerical approach by Sinc function
for reaching the estimated solution of integrodifferential
equation with enteral boundary condition and with delay
parameter. To reach this aim we change this problem to a
functional enteral equation. The Sinc estimation has expo-
nential convergence rate such as𝑂(−𝑐𝑒

𝑀
1/2

) that this property
is an advantage. so we applied it to solve our problem by
using collocation method. Finally, some examples are solved
by this numericalmethod to show the efficiency and accuracy
of Sinc estimation. It is worthy to note that this method can
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Figure 3: Maximum absolute error related to each iteration in
Example 2.
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Figure 4: Maximum error related to different quadrature points in
Example 2.

be used for solving integrodifferential equations with integral
boundary conditions with deviating arguments arising in all
sciences such as chemistry, physics, and other fields of applied
mathematics.
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We reconstruct the variational iteration method that we call, parametric iteration method (PIM). The purposed method was
applied for solving nonlinear Volterra integrodifferential equations (NVIDEs).The solution process is illustrated by some examples.
Comparisons are made between PIM and Adomian decomposition method (ADM). Also exact solution of the 3rd example is
obtained. The results show the simplicity and efficiency of PIM. Also, the convergence of this method is studied in this work.

1. Introduction

It is well known that many events in scientific fields deal
with integrodifferential equations. The nonlinear Volterra
integrodifferential equations play a major role in many
physical processes such as nanohydrodynamic [1], dropwise
condensation [2], and biologic [3]. The various numerical
methods exist for solving NVIDEs, for example, variational
iteration method (VIM), Adomian decomposition method
[4, 5], Chebyshev polynomials [6], and Bernstein’s approxi-
mation [7]. First, Liao purposed homotopy analysis method
[8] and it is applied in many scientific problems [9, 10]; then,
VIM was purposed by He [11]. In this paper, we reconstruct
the VIM that we call PIM. PIM was applied successfully for
solving boundary value problems [12].We consider nonlinear
integrodifferential equations as follows:

𝑢
(𝑚)

(𝑥) = 𝑓 (𝑥) + 𝜆∫

𝑥

0

𝑘 (𝑥, 𝑡) 𝐹 (𝑢 (𝑡)) 𝑑𝑡, 𝑎 ≤ 𝑥 ≤ 𝑏, (1)

𝑢
(𝑚)

(𝑥) = 𝑓 (𝑥) + 𝜆∫

𝑥

0

𝑘 (𝑥, 𝑡) 𝐹 (𝑢, 𝑢

) 𝑑𝑡, 𝑎 ≤ 𝑥 ≤ 𝑏,

(2)

and the initial value for both of the two equations is as follows:

𝑢
(𝑖)
(𝑥0) = 𝑦𝑖, (𝑖 = 0, 1, . . . , 𝑚 − 1) . (3)

In this work, the numerical solution of (1) and (2) is
possible by PIM when 𝑓, 𝑘, 𝑢 are continuous and 𝐹 is
continuous operator. Parametric iteration method provides
solution for NVIDEs as a sequence of iterations. In this study,
some examples are given and we solve them using parametric
iteration method and compare the obtained results with
ADM results. In all these cases, the present technique worked
excellently, as it will be shown in this study.

2. The Basic Idea of the Parametric
Iteration Method

In this section, we describe PIM for solving nonlinear
Volterra integrodifferential equations.Then, the local conver-
gence is discussed.

2.1. Parametric Iteration Method. The PIM provides the
solution for (1) and (2) as a sequence of approximations.This
method gives rapidly convergent successive approximations
of the exact solution if such a solution exists; otherwise,
approximations can be used for numerical purposes. We
assume 𝐿 and 𝑁 are the linear and nonlinear operators on
𝐶
𝑚
[𝑎, 𝑏]. To explain the basic idea of PIM, we consider (1)

and (2) as follows:

𝐿 (𝑢) + 𝑁 (𝑢) = 𝑓 (𝑥) , (4)
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where 𝐿 with the property 𝐿(𝑔) ≡ 0 when 𝑔 ≡ 0 denotes
the so-called auxiliary linear operator with respect to 𝑢, 𝑁
is a nonlinear continuous operator with respect to 𝑢, 𝑓(𝑥) is
the known continuous function, and 𝑢 ∈ 𝐶

𝑚
[𝑎, 𝑏]. The basic

essence of this method is to construct a family of iterative
processes for (1) and (2) as [13]

𝐿 [𝑢𝑘+1 (𝑥) − 𝑢𝑘 (𝑥)] = ℎ𝐻 (𝑥)𝐴 [𝑢𝑘 (𝑥)] , (5)

with the initial conditions

𝑢
(𝑖)
(𝑥0) = 𝑦𝑖, (𝑖 = 0, 1, . . . , 𝑚 − 1) , (6)

where

𝐴 [𝑢𝑘 (𝑥)] = 𝐿 [(𝑢𝑘 (𝑥) ] + 𝑁 [𝑢𝑘 (𝑥)] − 𝑓 (𝑥)

= 𝑢
(𝑚)

𝑘
− 𝜆∫

𝑥

0

𝑘 (𝑥, 𝑡) 𝑢
𝑛

𝑘 𝑑𝑡 − 𝑓 (𝑥) ,

(7)

or

𝐴 [𝑢𝑘 (𝑥)] = 𝐿 [(𝑢𝑘 (𝑥) ] + 𝑁 [𝑢𝑘 (𝑥)] − 𝑓 (𝑥)

= 𝑢
(𝑚)

𝑘
− 𝜆∫

𝑥

0

𝐹 (𝑥, 𝑡, 𝑢𝑘, 𝑢


𝑘) 𝑑𝑡 − 𝑓 (𝑥) ,

(8)

and 𝑢0(𝑥) is the initial guess which can be chosen arbi-
trarily, but the suitable selection is positively affect for the
rate of convergence [13], or it can also be solved from its
corresponding linear homogeneous equation 𝐿[𝑢0(𝑥)] = 0

or linear nonhomogeneous equation 𝐿[𝑢0(𝑥)] = 𝑓(𝑥). The
parameter ℎ ̸= 0 and function 𝐻(𝑥) ̸= 0 denote the so-called
auxiliary parameter and auxiliary function. The selection of
ℎ, 𝐻(𝑥) was described in [13]. Also, we are free to choose
the auxiliary linear operator 𝐿, the auxiliary parameter ℎ, the
auxiliary function𝐻(𝑥), and the initial approximation 𝑢0(𝑥).
Therefore, if the successive approximations 𝑢𝑘(𝑥), 𝑘 ≥ 0

are obtained by PIM in terms of the auxiliary parameter ℎ,
then exact solution may be given by 𝑢(𝑥) = lim𝑘→∞𝑢𝑘(𝑥).
According to [13], Let 𝑉 = {𝑢 : 𝑢 ∈ 𝐶

𝑚
[𝑎, 𝑏]} be the

solution space and let {𝑒𝑗(𝑥) : 𝑒𝑗(𝑥) ∈ 𝑉, 𝑗 = 0, 1, . . .}

denote the set of base functions. Hence, we can represent
the solution in the series 𝑢(𝑥) = ∑

∞

𝑗=0 𝛼𝑗𝑒𝑗(𝑥), where 𝛼𝑗 is
a coefficient belonging to real numbers. As long as the set of
base functions is determined, the auxiliary linear operator 𝐿,
the initial approximation 𝑢0(𝑥), and the auxiliary function
𝐻(𝑥) must be chosen in such a way that all solutions of
the corresponding PIM equations (4) exist and it can be
expressed by this set of base functions. Now, in order to avoid
expensive computational works for solving (1) and (2) via
PIM, it is straightforward to use the following set of base
functions:

{(𝑥 − 𝑎)
𝑗
| 𝑗 = 0, 1, . . .} ; (9)

that is,

𝑢 (𝑥) =

∞

∑

𝑗=0

𝛼𝑗(𝑥 − 𝑎)
𝑗
, (10)

where 𝛼𝑗 ∈ 𝑅 are unknown coefficients to be determined and
𝑎 is a constant belonging to real numbers. Now, we set the
auxiliary operator 𝐿 as follows:

𝐿 [𝑢 (𝑥)] = 𝑢
(𝑚)

(𝑥) . (11)

The initial guess is to form combination of 𝑚-terms of (9);
that is,

𝑢0 (𝑥) = 𝛼0 + 𝛼1 (𝑥 − 𝑎) + 𝛼2(𝑥 − 𝑎)
2
+ ⋅ ⋅ ⋅ + 𝛼𝑗(𝑥 − 𝑎)

𝑗
.

(12)

According to (11) and the initial conditions (3) and
with due attention to 𝐿[𝑢0(𝑥)] = 𝑓(𝑥), the coefficients
𝛼0, 𝛼1, 𝛼2, . . . , 𝛼𝑚 will be determined. Also, we set 𝐻(𝑥) = 1.
The selecting of 𝐻(𝑥) is arbitrary, but the suitable selection
depends on the base functions for solution [13], and we use
the PIM processes to compute the approximation solutions
of (1) and (2).

2.2. The Valid Region of ℎ. Assume that we gain a family of
solution series in terms of the auxiliary parameter ℎ bymeans
of PIM. We consider this solution as a function in terms of
ℎ, 𝑥; then,we derive (once ormore) this functionwith respect
to 𝑥 in 𝑥 = 𝛽 that 𝛽 ∈ [𝑎, 𝑏]; that is, let 𝑈 = 𝐺(𝑥, ℎ) be the
solution of (1) or (2); then, we set

Ω =

𝜕
𝑖
𝐺

𝜕𝑥
𝑖









𝑥=𝛽

, 𝛽 ∈ [𝑎, 𝑏] , (𝑖 = 1, 2, . . .) , (13)

therefore, Ω will be in terms of ℎ; now we plot Ω curve,
and according to these ℎ curves, it is easy to discover the
valid region of ℎ, which corresponds to the line segments
nearly parallel to the horizontal axis. This region is called
valid region of ℎ which we denote by 𝑅ℎ. We ensure that the
solution series converge for any ℎ ∈ 𝑅ℎ.

2.3. Analysis of Convergence of the Parametric Iteration For-
mula. In this section, we study the local convergence of
approximate solution provided by PIM for solving (1). The
convergence of approximate solution for (2) is similar to (1).

Initially, let 𝑢(𝑖)(0) = 0, (𝑖 = 0, 1, . . . , 𝑚 − 1) and set
𝐿[𝑢(𝑥)] = 𝑢

(𝑚)
(𝑥); therefore, we have from (5) the following

parametric iteration formula:

𝑢𝑘+1 (𝑥)

= (1 + ℎ) 𝑢𝑘 (𝑥) −
ℎ

(𝑚 − 1)!

× ∫

𝑥

0

(𝑥 − 𝑡)
𝑚−1

[𝑔 (𝑡) + 𝜆∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝐹 (𝑢𝑘 (𝑠)) 𝑑𝑠] 𝑑𝑡.

(14)

The iterative formula (14) expressed by sequence makes
a recurrence sequence {𝑢𝑘(𝑥)}. Obviously, the limit of the
sequence will be the solution of (1) if the sequence is
convergent.
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In order to prove that the sequence {𝑢𝑘(𝑥)} is convergent,
we construct a series:

𝑢0 (𝑥) + [𝑢1 (𝑥) − 𝑢0 (𝑥)] + ⋅ ⋅ ⋅ + [𝑢𝑘 (𝑥) − 𝑢𝑘−1 (𝑥)] + ⋅ ⋅ ⋅ .

(15)

Noticing that

𝑠𝑘+1 = 𝑢0 (𝑥) + [𝑢1 (𝑥) − 𝑢0 (𝑥)] + ⋅ ⋅ ⋅

+ [𝑢𝑘 (𝑥) − 𝑢𝑘−1 (𝑥)] = 𝑢𝑘 (𝑥) ,

(16)

the sequence {𝑢𝑘(𝑥)} will be convergent if the series is
convergent.

Theorem 1. If 𝐹(𝑢(𝑡)) is Lipschitz-continuous in [𝑎, 𝑏] and
𝑔(𝑥) ∈ 𝐶[𝑎, 𝑏] and |𝜆| ≤ 1/𝑀𝑁 where 𝑀, 𝑁 are positive
real numbers, then the series of (15) is convergent; that is, the
sequence {𝑢𝑘(𝑥)} is convergent for 𝑥 ∈ [𝑎, 𝑏].

Proof. According to (14), note that





𝑢1 (𝑥) − 𝑢0 (𝑥)






=










ℎ [𝑢0 (𝑥) −
1

(𝑚 − 1)!

× ∫

𝑥

0

(𝑥 − 𝑡)
𝑚−1

[𝑔 (𝑡) + 𝜆∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝐹 (𝑢0 (𝑠)) 𝑑𝑠]𝑑𝑡]










≤ |ℎ| [𝐿1 +
1

(𝑚 − 1)!

(𝐿2𝐿3𝑏 +
𝐿2𝐿4

2𝑁

𝑏
2
)] = |ℎ| 𝑟,

(17)

where

𝑟 := (𝐿1 +
1

(𝑚 − 1)!

) (𝐿2𝐿3𝑏 +
𝐿2𝐿4

2𝑁

𝑏
2
) ,

𝑀 = max
𝑎≤𝑡≤𝑥≤𝑏

|𝑘 (𝑥, 𝑡)| , 𝐿1 = max
𝑎≤𝑡≤𝑥≤𝑏





𝑢0 (𝑡)





,

𝐿2 = max
𝑎≤𝑡≤𝑥≤𝑏






(𝑥 − 𝑡)

𝑚−1



, 𝐿3 = max

𝑎≤𝑡≤𝑥≤𝑏





𝑔 (𝑡)





,

𝐿4 = max
𝑎≤𝑡≤𝑥≤𝑏





𝐹 (𝑢0 (𝑡))





.

(18)

From (14) and (17) and the assumption that |𝐹(𝑢𝑘+1) −

𝐹(𝑢𝑘)| ≤ 𝑁 |𝑢𝑘+1 − 𝑢𝑘| where 𝑁 denotes the Lipschitz
constant of 𝐹(𝑢(𝑡)), it follows that





𝑢2 − 𝑢1






=










[(1 + ℎ) (𝑢1 − 𝑢0) −
ℎ

(𝑚 − 1)!

× ∫

𝑥

0

(𝑥 − 𝑡)
𝑚−1

[𝜆∫

𝑡

0

𝑘 (𝑡, 𝑠) (𝐹 (𝑢1) − 𝐹 (𝑢0)) 𝑑𝑠]𝑑𝑡]










≤










|1 + ℎ|




𝑢1 − 𝑢0





+

|ℎ|

(𝑚 − 1)!

× ∫

𝑥

0

(𝑥 − 𝑡)
(𝑚−1)

[𝜆𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠)




𝑢1 − 𝑢0





𝑑𝑠] 𝑑𝑡










≤ |ℎ| 𝑟 [|1 + ℎ| +

𝐿2 |ℎ|

2 (𝑚 − 1)!

𝑏
2
]

= |ℎ| 𝑟

1

∑

𝑛=0

(

1

𝑛
) |1 + ℎ|

1−𝑛
(

𝐿2 |ℎ|

2 (𝑚 − 1)!

𝑏
2
)

𝑛

,

(19)




𝑢3 − 𝑢2






=










[(1 + ℎ) (𝑢2 − 𝑢1) −
ℎ

(𝑚 − 1)!

× ∫

𝑥

0

(𝑥 − 𝑡)
𝑚−1

[𝜆∫

𝑡

0

𝑘 (𝑡, 𝑠) (𝐹 (𝑢2) − 𝐹 (𝑢1)) 𝑑𝑠]𝑑𝑡]










≤










|1 + ℎ|




𝑢2 − 𝑢1





+

|ℎ|

(𝑚 − 1)!

× ∫

𝑥

0

(𝑥 − 𝑡)
(𝑚−1)

[𝜆𝑁∫

𝑡

0

𝑘 (𝑡, 𝑠)




𝑢2 − 𝑢1





𝑑𝑠] 𝑑𝑡










≤ |ℎ| 𝑟 [|1 + ℎ|
2
+

2𝐿2 |ℎ| |1 + ℎ|

2 (𝑚 − 1)!

𝑏
2
+

𝐿2
2
|ℎ|
2

(2 (𝑚 − 1)!)
2
𝑏
4
]

= |ℎ| 𝑟

2

∑

𝑛=0

(

2

𝑛
) |1 + ℎ|

1−𝑛
(

𝐿2 |ℎ|

2 (𝑚 − 1)!

𝑏
2
)

𝑛

...
(20)





𝑢𝑘+1 − 𝑢𝑘





≤ (|ℎ| 𝑟)

𝑘

∑

𝑛=0

(

𝑘

𝑛
) |1 + ℎ|

𝑘−𝑛
(

𝐿2 |ℎ| 𝑏
2

2 (𝑚 − 1)!

)

𝑛

.

(21)

In view of (21), the convergence of the series (15) can be
concluded for the solution domain 𝑥 > 0 and |1 + ℎ| < 1 with
the help of somemathematical software.Therefore, the series
of (15) is absolute convergence; that is, the sequence {𝑢𝑘(𝑥)}
is convergent for 𝑥 ∈ [𝑎, 𝑏].

3. Illustrative Examples

Now, we use PIM to solve two examples of the kind of (1) and
(2) and compare the obtained results with ADM [5] to show
the efficiency of PIM.

Example 1. Thefirst example is a nonlinearVolterra integrod-
ifferential equation of the second kind as follows:

𝑢

(𝑥) = −1 + ∫

𝑥

0

𝑢
2
(𝑡) 𝑑𝑡, 0 ≤ 𝑥 ≤ 1

𝑢 (0) = 0.

(22)
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Figure 1: The valid region of ℎ. Example 1 shows −1.2 ≤ ℎ ≤ −0.8.

According to PIM proceeding, we define

𝐿 [𝑢 (𝑥)] = 𝑢

(𝑥) ,

𝑁 [𝑢 (𝑥)] = ∫

𝑥

0

𝑢
2
(𝑡) 𝑑𝑡, 𝑓 (𝑥) = −1.

(23)

Then, we have from (10) that 𝑢0(𝑥) = 𝛼0 + 𝛼1𝑥. Using initial
condition and 𝐿[𝑢0(𝑥)] = 𝑓(𝑥) gives us, that 𝛼0 = 0, 𝛼1 =
−1 that is, 𝑢0(𝑥) = −𝑥. Now, If we set 𝐻(𝑥) = 1, then we
obtain from (5) and (8) that

𝑢


𝑘+1 (𝑥) − 𝑢


𝑘 (𝑥) = ℎ(𝑢


𝑘 (𝑥) − ∫

𝑥

0

𝑢
2

𝑘 (𝑡) 𝑑𝑡 + 1) . (24)

Thus we integrate from both sides of (25); then the PIM
equations are as follows:

𝑢𝑘+1 (𝑥) = 𝑢𝑘 (𝑥) + ℎ∫

𝑥

0

[(𝑢


𝑘 (𝑡) − ∫

𝑡

0

𝑢
2

𝑘 (𝑠) 𝑑𝑠 + 1)] 𝑑𝑥,

(𝑘 = 0, 1, . . .) .

(25)

Some of the iterations obtained from (25) are as follows and
the other iterations have also been calculated by Maple 13:

𝑢1 (𝑥) = −𝑥 + ℎ (−

1

12

𝑥
4
) ,

𝑢2 (𝑥) = −𝑥 −

1

12

ℎ𝑥
4

+ ℎ (−

1

12960

ℎ
2
𝑥
10
−

1

252

ℎ𝑥
7
+

1

4

(−

1

3

ℎ −

1

3

)𝑥
4
).

...
(26)

The obtained result for the 3rd iteration was shown in Table 1;
also the valid region of ℎ that is 𝑅ℎ was presented in Figure 1.

Table 1: The results of Example 1 for 𝑢3(𝑥) with ℎ = −1.

𝑥 ADM PIM
0.0000 0.000000000 0.0000000
0.0938 −0.0937935 −0.0937935
0.2188 −0.2186090 −0.2186091
0.3125 −0.3117060 −0.3117064
0.4062 −0.4039390 −0.4039385
0.5000 −0.4948230 −0.4948225
0.6250 −0.6124310 −0.6124306
0.7188 −0.6969410 −0.6969414
0.8125 −0.7770900 −0.7770900
0.9062 −0.8519340 −08519338
1.0000 −0.9204760 −0.9204746

Example 2. We consider the nonlinear Volterra integrodiffer-
ential equation of the second kind as follows:

𝑢

(𝑥) = 1 + ∫

𝑥

0

𝑢 (𝑡) 𝑢

(𝑡) 𝑑𝑡, 0 ≤ 𝑥 ≤ 1, (27)

𝑢 (0) = 0. (28)

According to PIM procedure we set

𝐿 [𝑢 (𝑥)] = 𝑢

(𝑥) ,

𝑁 [𝑢 (𝑥)] = ∫

𝑥

0

𝑢 (𝑡) 𝑢

(𝑡) 𝑑𝑡, 𝑓 (𝑥) = 1.

(29)

Then, we have from (10) 𝑢0(𝑥) = 𝛼0 + 𝛼1𝑥, and (29) gives
us that 𝛼0 = 0, 𝛼1 = 1; that is, 𝑢0(𝑥) = 𝑥. Now similar to
Example 1, the iteration scheme is as follows:

𝑢𝑘+1 (𝑥) = 𝑢𝑘 (𝑥)

+ ℎ∫

𝑥

0

[(𝑢


𝑘 (𝑡) − ∫

𝑡

0

𝑢𝑘 (𝑠) 𝑢


𝑘 (𝑠) 𝑑𝑠 − 1)] 𝑑𝑥,

(𝑘 = 0, 1, . . .) .

(30)

Some of the iterations obtained from (30) are as follows:

𝑢1 (𝑥) = 𝑥 −

1

6

ℎ𝑥
3
,

𝑢2 (𝑥) = 𝑥 −

1

6

ℎ𝑥
3

+ ℎ (−

1

504

ℎ
2
𝑥
7
+

1

30

ℎ 𝑥
5
+

1

3

(−

1

2

ℎ −

1

2

) 𝑥
3
) .

...
(31)

The results of Example 2 are available in Table 2. 𝑅ℎ for
(27) is presented in Figure 2.
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Table 2: The results of Example 2 for 𝑢3(𝑥) with ℎ = −1.

𝑥 ADM PIM
0.0000 0.0000000 0.0000000
0.0938 0.0938065 0.0939377
0.2188 0.2189910 0.2205626
0.3125 0.3132980 0.3176876
0.4062 0.4084910 0.4177517
0.5000 0.5053030 0.5219304
0.6250 0.6381770 0.6691415
0.7188 0.7422990 0.7878390
0.8125 0.8518530 0.9155129
0.9062 0.9691440 1.0546355
1.0000 1.0973700 1.2083812

0−2 −1.5 −1 −0.5

h

1

0.8

0.6

0.4

0.2

Figure 2: The valid region of ℎ. Example 2 shows −1.2 ≤ ℎ ≤ −0.8.

Example 3. We consider the nonlinear Volterra integrodiffer-
ential equation of the second kind as follows:

𝑢

(𝑥) = 1 −

𝑥

2

+

𝑥𝑒
−𝑥
2

2

+ ∫

𝑥

0

𝑥𝑡𝑒
−𝑢
2
(𝑡)
𝑑𝑡, 0 ≤ 𝑥 ≤ 1, (32)

𝑢 (0) = 0. (33)

Similar to Examples 1 and 2

𝐿 [𝑢 (𝑥)] = 𝑢

(𝑥) , (34)

𝑁[𝑢 (𝑥)] = ∫

𝑥

0

𝑥𝑡𝑒
−𝑢
2
(𝑡)
𝑑𝑡, 𝑓 (𝑥) = 1 −

𝑥

2

+

𝑥𝑒
−𝑥
2

2

.

(35)

Now, we consider the initial solution as 𝑢0(𝑥) = 𝛼0 +

𝛼1𝑥, and (33) and (34) give us that 𝛼0 = 0, 𝛼1 = 1; that

is, 𝑢0(𝑥) = 𝑥. According to PIM iterative formula for this
example we have

𝑢𝑘+1 (𝑥) = (1 + ℎ) 𝑢𝑘 (𝑥)

+ ℎ [

1

4

+ 𝑥 −

1

4

𝑥
2
−

1

4

𝑒
𝑥
2

+(∫

𝑥

0

∫

𝑡

0

𝑡𝑠𝑒
−𝑢
2

𝑘
(𝑠)
𝑑𝑠)] 𝑑𝑡

(𝑘 = 0, 1, . . .) .

(36)

Starting with 𝑘 = 0 and initial solution that is 𝑢0(𝑥) =

𝑥, the exact solution of this example, which is 𝑢(𝑥) = 𝑥, is
achieved. The valid value of parameter for (36) is ℎ = −1.

4. Results

In this section, we present the results of Examples 1 and 2
in two tables and plot the ℎ-curve to determine 𝑅ℎ. All the
computations have been done with Maple 13.

5. Conclusion

In this paper, we reconstruct the VIM that we call parametric
iterationmethod, and PIMwas applied to solve the nonlinear
Volterra integrodifferential equations. In order to illustrate
the method, we solve three examples. PIM results compared
to ADM show that the former is easier in practice and
more accurate for NVIDEs. For the 3rd example exact
solution was achieved. Further, the convergence of PIM for
solving NVIDEs in the valid region of ℎ (𝑅ℎ) was presented.
Additionally, if we increase the number of iterations by PIM
scheme, it seems that the results will have more accuracy in
solutions.
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The present research study introduces an innovative method applying power series to solve numerically the linear and nonlinear
fuzzy integrodifferential equation systems. Finally, it ends with some examples supporting the idea.

1. Introduction

Fuzzy integrodifferential equations have attracted great inter-
ests in recent years since they play a major role in different
areas of theory such as control theory. For the first time,
Chang and Zadeh have introduced fuzzy numbers as well as
the related arithmetic operations [1, 2]. Furthermore, apply-
ing the operators on fuzzy numbers has been developed by
Mizumoto and Tanaka [3]. It should be mentioned that the
concept of LR fuzzy numbers was expressed by Dubois and
Prade [4]. In this regard, theymade a significant contribution
by providing a computational formula for operations on fuzzy
numbers. After that, the notation of fuzzy derivative was pre-
sented by Seikkala [5]. However, Goetschel, Jr., and Voxman
have proposed theRiemann integral-type approach [6]. Some
mathematicians have separately worked on the existence and
having a unique solution of fuzzy Volterra integrodifferential
equation [7–9]. Recently, numerical methods have been
applied to solve the linear as well as nonlinear differential
equation fuzzy integral equation and fuzzy integrodifferential
equation [7, 8, 10–13].

In this paper, we use the power series method of the
exact solution of linear or nonlinear fuzzy integrodifferential
equations, which is obtained by recursive procedure as
follows.

We consider the following system of fuzzy integrodiffer-
ential equations:

̃

𝑋



(𝑠) = 𝐺 (𝑠,

̃

𝑋 (𝑠)) ⊕ ∫

𝑠

0

𝑘 (𝑠, 𝑡,

̃

𝑋 (𝑡) ,

̃

𝑋



(𝑡)) 𝑑𝑡, (1)

with initial condition ̃𝐹(0) = 𝑎, and

̃

𝑋 = [𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
]

𝑇

,

̃

𝐺 = [𝑔

1
, 𝑔

2
, . . . , 𝑔

𝑛
]

𝑇

,

̃

𝐾 = [

̃

𝑘

𝑖𝑗
] , 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

𝑎 = [𝑎

1
, 𝑎

2
, . . . , 𝑎

𝑛
]

𝑇

.

(2)

In (1), ̃𝐺 and ̃𝐾 are given fuzzy functions and, also, 𝑎 is
fuzzy vector and vector fuzzy function ̃𝑋 is solution of (1),
which will be determined.

2. Basic Concepts

Here basic definitions of a fuzzy number are given as follows
[14–19].

Let 𝐸 be a set of all triangular fuzzy numbers.

Definition 1. An arbitrary fuzzy number �̃� ∈ 𝐸 in the para-
metric form is represented by an ordered pair of functions
(𝑢, 𝑢) which satisfy the following requirements.

(i) 𝑢 : 𝑟 → 𝑢(𝑟) ∈ R is a bounded left-continuous
nondecreasing function over [0, 1].

(ii) 𝑢 : 𝑟 → 𝑢(𝑟) ∈ R is a bounded left-continuous
nonincreasing function over [0, 1].

(iii) 𝑢 ≤ 𝑢, 0 ≤ 𝑟 ≤ 1.
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Definition 2. For arbitrary fuzzy numbers �̃�, Ṽ ∈ 𝐸, one uses
the distance (Hausdorff metric) [6]

𝐷(𝑢 (𝑟) , V (𝑟)) = max{ sup
𝑟∈[0,1]









𝑢 (𝑟) − V (𝑟)


,

sup
𝑟∈[0,1]

|𝑢 (𝑟) − V (𝑟)|} ,

(3)

and it is shown in [6] that (𝐸,𝐷) is a complete metric space
and the following properties are well known:

𝐷(�̃� + 𝑤, Ṽ + 𝑤) = 𝐷 (�̃�, Ṽ) , ∀�̃�, Ṽ ∈ 𝐸,

𝐷 (𝑘�̃�, 𝑘Ṽ) = |𝑘|𝐷 (�̃�, Ṽ) , ∀𝑘 ∈ R, �̃�, Ṽ ∈ 𝐸,

𝐷 (�̃� + Ṽ, 𝑤 + 𝑒) ≤ 𝐷 (�̃�, 𝑤) + 𝐷 (Ṽ, 𝑒) , ∀�̃�, Ṽ, 𝑤, 𝑒 ∈ 𝐸.
(4)

Definition 3. A triangular fuzzy number is defined as a fuzzy
set in 𝐸, which is specified by an ordered triple 𝑢 = (𝑎, 𝑏, 𝑐) ∈
R3 with 𝑎 ≤ 𝑏 ≤ 𝑐 such that [𝑢]𝑟 = [𝑢(𝑟), 𝑢(𝑟)] are the
endpoints of 𝑟-level sets for all 𝑟 ∈ [0, 1], where 𝑢(𝑟) =
𝑎 + (𝑏 − 𝑎)𝑟 and 𝑢(𝑟) = 𝑐 − (𝑐 − 𝑏)𝑟. Here, 𝑢(0) = 𝑎, 𝑢(0) =
𝑐, 𝑢(1) = 𝑢(1) = 𝑏, which is denoted by 𝑢1.

Definition 4. A fuzzy number ̃𝐴 is of 𝐿𝑅 type if there exist
shape functions 𝐿 (for left), 𝑅 (for right), and scalar 𝛼 ≥

0, 𝛽 ≥ 0 with

𝜇

𝐴
(𝑥) =

{

{

{

{

{

{

{

𝐿(

𝑎 − 𝑥

𝛼

) 𝑥 ≤ 𝑎,

𝑅(

𝑥 − 𝑎

𝛽

) 𝑥 ≥ 𝑎;

(5)

themean value of ̃𝐴, 𝑎 is a real number, and𝛼, 𝛽 are called the
left and right spreads, respectively. ̃𝐴 is denoted by (𝑎, 𝛼, 𝛽).

Definition 5. Let ̃𝑀 = (𝑚, 𝛼, 𝛽)

𝐿𝑅
, ̃𝑁 = (𝑛, 𝛾, 𝛿)

𝐿𝑅
, and 𝜆 ∈

R+. Then,

(1) 𝜆

̃

𝑀 = (𝜆𝑚, 𝜆𝛼, 𝜆𝛽)

𝐿𝑅

(2) 𝜆

̃

𝑀 = (−𝜆𝑚, 𝜆𝛽, 𝜆𝛼)

𝐿𝑅

(3)

̃

𝑀 ⊕

̃

𝑁 = (𝑚 + 𝑛, 𝛼 + 𝛾, 𝛽 + 𝛿)

𝐿𝑅

(4)

̃

𝑀 ⊙

̃

𝑁

≃

{

{

{

{

{

(𝑚𝑛,𝑚𝛾 + 𝑛𝛼,𝑚𝛿 + 𝑛𝛽)

𝐿𝑅

̃

𝑀,

̃

𝑁 > 0

(𝑚𝑛, 𝑛𝛼 − 𝑚𝛿, 𝑛𝛽 − 𝑚𝛾)

𝐿𝑅

̃

𝑀 > 0,

̃

𝑁 < 0

(𝑚𝑛, −𝑛𝛽 − 𝑚𝛿, −𝑛𝛼 − 𝑚𝛾)

𝐿𝑅

̃

𝑀,

̃

𝑁 < 0.

(6)

Definition 6. The integral of a fuzzy function was defined in
[6] by using the Riemann integral concept.

Let 𝑓 : [𝑎, 𝑏] → 𝐸

1, for each partition 𝑃 = {𝑡
0
, 𝑡

1
, . . . , 𝑡

𝑛
}

of [𝑎, 𝑏] and for arbitrary 𝜉
𝑖
∈ [𝑡

𝑖
− 1, 𝑡

𝑖
], 1 ≤ 𝑖 ≤ 𝑛, and

suppose

𝑅

𝑝
=

𝑛

∑

𝑖=1

𝑓 (𝜉

𝑖
) (𝑡

𝑖
− 𝑡

𝑖−1
) ,

Δ := max {


𝑡

𝑖
− 𝑡

𝑖−1









, 1 ≤ 𝑖 ≤ 𝑛} .

(7)

The definite integral of 𝑓(𝑡) over [𝑎, 𝑏] is

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 = lim
Δ→0

𝑅

𝑝
,

(8)

provided that this limit exists in the metric𝐷.

If the fuzzy function 𝑓(𝑡) is continuous in the metric 𝐷,
its definite integral exists [17], and also

(∫

𝑏

𝑎

𝑓 (𝑡, 𝑟) 𝑑𝑡) = ∫

𝑏

𝑎

𝑓 (𝑡, 𝑟) 𝑑𝑡,

(∫

𝑏

𝑎

𝑓 (𝑡, 𝑟) 𝑑𝑡) = ∫

𝑏

𝑎

𝑓 (𝑡, 𝑟) 𝑑𝑡.

(9)

Definition 7 (see [14]). Consider 𝑥, 𝑦 ∈ 𝐸. If there exists �̃� ∈ 𝐸
such that 𝑥 = 𝑦+ �̃�, then �̃� is called the H-difference of 𝑥 and
𝑦 and is denoted by 𝑥 ⊖ 𝑦.

Proposition 8 (see [14]). If ̃𝑓 : (𝑎, 𝑏) → 𝐸 is a continuous
fuzzy-valued function, then 𝑔(𝑥) = ∫𝑥

𝑎

̃

𝑓(𝑡) is differentiable,
with derivative 𝑔(𝑥) = ̃𝑓(𝑥).

Definition 9 (see [20]). Let 𝑓 : 𝑅 → 𝐸 be a fuzzy valued
function. If, for arbitrary fixed 𝑡

0
∈ 𝑅 and 𝜖 > 0, a 𝛿 > 0 such

that









𝑡 − 𝑡

0









< 𝛿 ⇒ 𝑑 (𝑓 (𝑡) , 𝑓 (𝑡

0
)) < 𝜖, (10)

𝑓 is said to be continuous.

Definition 10 (see [21]). Let be ̃𝑓 : (𝑎, 𝑏) → 𝐸 and 𝑥
0
∈ (𝑎, 𝑏).

One says that ̃𝑓 is differentiable at 𝑥
0
if

(1) there exists an element ̃𝑓(𝑥
0
) ∈ 𝐸 such that, for

all ℎ > 0 sufficiently near to 0, there are ̃

𝑓(𝑥

0
+ ℎ) ⊖

̃

𝑓(𝑥

0
), ∃ ̃𝑓(𝑥

0
) ⊖

̃

𝑓(𝑥

0
− ℎ), and the limits

lim
ℎ→0

+

̃

𝑓 (𝑥

0
+ ℎ) ⊖

̃

𝑓 (𝑥

0
)

ℎ

= lim
ℎ→0

+

̃

𝑓 (𝑥

0
) ⊖

̃

𝑓 (𝑥

0
− ℎ)

ℎ

=

̃

𝑓


(𝑥

0
)

(11)

or
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(2) there exists an element ̃𝑓(𝑥
0
) ∈ 𝐸 such that, for all ℎ <

0, sufficiently near to 0, there are ̃𝑓(𝑥
0
+ℎ)⊖

̃

𝑓(𝑥

0
), ∃

̃

𝑓(𝑥

0
)⊖

̃

𝑓(𝑥

0
− ℎ), and the limits

lim
ℎ→0

−

̃

𝑓 (𝑥

0
+ ℎ) ⊖

̃

𝑓 (𝑥

0
)

ℎ

= lim
ℎ→0

−

̃

𝑓 (𝑥

0
) ⊖

̃

𝑓 (𝑥

0
− ℎ)

ℎ

=

̃

𝑓


(𝑥

0
) .

(12)

Lemma 11 (see [14]). For 𝑥
0
∈ 𝑅 the fuzzy differential

equation

𝑦


=

̃

𝑓 (𝑥, 𝑦) ,

𝑦 (𝑥

0
) = 𝑦

0
∈ 𝐸,

(13)

where ̃𝑓 : 𝑅 × 𝐸 → 𝐸 is supposed to be continuous, if
equivalent to one of the integral equations:

𝑦 (𝑥) = 𝑦

0
+ ∫

𝑥

𝑥
0

𝑓 (𝑡, 𝑦 (𝑡)) , ∀𝑥 ∈ [𝑥

0
, 𝑥

1
] (14)

or

𝑦 (𝑥) = 𝑦

0
+ (−1) ∫

𝑥

𝑥
0

𝑓 (𝑡, 𝑦 (𝑡)) , ∀𝑥 ∈ [𝑥

0
, 𝑥

1
] . (15)

On some interval (𝑥
0
, 𝑥

1
) under the differentiability con-

dition, (i) or (ii), respectively.

Definition 12 (see [22]). For fuzzy number �̃�(𝑟) =

(𝑢(𝑟), 𝑢(𝑟)), 0 ≤ 𝑟 ≤ 1, one writes (1) �̃� > 0, if 𝑢(𝑟) > 0, (2)
�̃� ≥ 0, if 𝑢(𝑟) ≥ 0, (3) �̃� < 0, if 𝑢 < 0, and (4) �̃� ≤ 0, if 𝑢 ≤ 0.

Theorem 13 (see [14]). Let 𝑐 ∈ 𝐸 and 𝑔 : (𝑎, 𝑏) → 𝑅. If 𝑔 is
differentiable on 𝑥

0
, then the function 𝑓 : (𝑎, 𝑏) → 𝑅, defined

by 𝑓(𝑥) = 𝑐⊙𝑔(𝑥), ∀𝑥 ∈ (𝑎, 𝑏), is differentiable on 𝑥
0
and one

has 𝑓(𝑥
0
) = 𝑐 ⊙ 𝑔


(𝑥

0
).

Corollary 14 (see [14]). Let 𝑐 ∈ 𝐸 and 𝑔 : (𝑎, 𝑏) → 𝑅. And
define 𝑓 : (𝑎, 𝑏) → 𝑅 by 𝑓(𝑥) = 𝑐 ⊙ 𝑔(𝑥), ∀𝑥 ∈ (𝑎, 𝑏). If 𝑔
is differentiable on (𝑎, 𝑏) and 𝑔 is differentiable on 𝑥

0
∈ (𝑎, 𝑏),

then 𝑓 is differentiable on (𝑎, 𝑏) and twice differentiable on 𝑥
0
,

with 𝑓(𝑥
0
) = 𝑐 ⊙ 𝑔


(𝑥

0
).

Remark 15 (see [14]). In general, if the above 𝑔 is 𝑛 − 1 times
differentiable on (𝑎, 𝑏) and 𝑔𝑛−1 is differentiable on 𝑥

0
, then

𝑓(𝑥) = 𝑐⊙𝑔(𝑥) is differentiable of order 𝑛 on 𝑥
0
and𝑓𝑛(𝑥

0
) =

𝑐 ⊙ 𝑔

𝑛
(𝑥

0
).

Theorem 16 (see [21]). Let ̃𝑓 : (𝑎, 𝑏) → 𝐸 be a function and
denote [ ̃𝑓(𝑥)]

𝑟

= [𝑓(𝑟), 𝑓(𝑟)], for each 𝑟 ∈ [0, 1].Then one has
the following.

(i) If ̃𝑓 is differentiable in the first form (Definition 10),
then 𝑓, 𝑓 are differentiable functions and

[

̃

𝑓


(𝑥)]

𝑟

= [𝑓



(𝑥) , 𝑓



(𝑥)] . (16)

(ii) If ̃𝑓 is differentiable in the second form (Definition 10),
then 𝑓, 𝑓 are differentiable functions and

[

̃

𝑓


(𝑥)]

𝑟

= [𝑓



(𝑥) , 𝑓



(𝑥)] . (17)

3. Approximation Based on
the Expansion Method

Since s is positive so all derivatives of ̃𝑋(𝑠) in (18) are in case
(i) in Definition 10.

Suppose the solution of the system of fuzzy integrodiffer-
ential equations (1) is as follows:

̃

𝑋

𝑖
(𝑠) =

𝑚

∑

𝑗=0

𝑒

𝑖𝑗
𝑠

𝑗
, 𝑖 = 1, 2, . . . , 𝑛, (18)

where 𝑒
𝑖𝑗
∈ 𝐸, for all 𝑖 = 1, 2, . . . , 𝑛. By using initial conditions,

we have

𝑒

𝑖0
= 𝑥

𝑖
(0) , 𝑖 = 1, 2, . . . , 𝑛. (19)

The coefficients of (18) are computed step by step. Firstly,
the solution of problem (1) is considered as

̃

𝑋 (𝑠) = 𝑒

0
⊕ 𝑒

1
⊙ 𝑠, (20)

where 𝑒
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛, and 𝑒

1
are unknown. With

derivative of (20) we have ̃𝑋(𝑠) = 𝑒

1
and by substituting

̃

𝑋


(𝑠), (20) into (1), we have

𝑒

1
= 𝐺 (𝑠, 𝑒

0
⊕ 𝑒

1
⊙ 𝑠) ⊕ ∫

𝑠

0

𝑘 (𝑠, 𝑡, 𝑒

0
⊕ 𝑒

1
⊙ 𝑠, 𝑒

1
) 𝑑𝑡, (21)

where by integration and sort of terms of above equation we
obtain the following system:

(𝐴

1
⊙ 𝑒

1
⊖

̃

𝑏

1
) ⊕

̃

𝑄

1
(𝑠) =

̃

0, (22)

where 𝐴
1
is 𝑛 × 𝑛 constant matrix, ̃𝑏

1
is 𝑛 × 1 fuzzy vector,

̃

𝑄

1
(𝑠) = [𝑞

𝑖1
(𝑠)], 𝑖 = 1, 2, . . . , 𝑛, and 𝑞

𝑖1
(𝑠) are polynomials

of order equal or greater than 1. If 𝑠 = 0 by neglecting ̃𝑄
1
(𝑠),

we have fuzzy linear equations system of 𝑒
1
. By solving this

system, the coefficient of 𝑥 in (20) can be determined.
In the second step, we assume that

̃

𝑋 (𝑠) = 𝑒

0
⊕ 𝑒

1
⊙ 𝑠 ⊕ 𝑒

2
⊙ 𝑠

2
, (23)

where 𝑒
0
and 𝑒

1
are known and 𝑒

2
is unknown. With

derivative of (23) we have

case (1), if 𝑒
1
> 0 :

̃

𝑋


(𝑠) = 𝑒

1
⊕ 2𝑒

2
⊙ 𝑠;

case (2), if 𝑒
1
< 0 :

̃

𝑋


(𝑠) = ⊖𝑒

1
⊕ 2𝑒

2
⊙ 𝑠,

and by substituting ̃𝑋(𝑠), (23) into (1), we have

𝑒

1
⊕ 2𝑒

2
⊙ 𝑠 = 𝐺 (𝑠, 𝑒

0
⊕ 𝑒

1
⊙ 𝑠 ⊕ 𝑒

2
⊙ 𝑠

2
)

⊕ ∫

𝑠

0

𝑘 (𝑠, 𝑡, 𝑒

0
⊕ 𝑒

1
⊙ 𝑠 ⊕ 𝑒

2

⊙ 𝑠

2
, 𝑒

1
⊕ 2𝑒

2
⊙ 𝑠) 𝑑𝑡

(24)
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or

⊖𝑒

1
⊕ 2𝑒

2
⊙ 𝑠 = 𝐺 (𝑠, 𝑒

0
⊕ 𝑒

1
⊙ 𝑠 ⊕ 𝑒

2
⊙ 𝑠

2
)

⊕ ∫

𝑠

0

𝑘 (𝑠, 𝑡, 𝑒

0
⊕ 𝑒

1
⊙ 𝑠 ⊕ 𝑒

2

⊙ 𝑠

2
, ⊖𝑒

1
⊕ 2𝑒

2
⊙ 𝑠) 𝑑𝑡,

(25)

where by integration and sort of terms of above equation we
obtain the following system:

(𝐴

2
⊙ 𝑒

2
⊖

̃

𝑏

2
) ⊕

̃

𝑄

2
(𝑠) =

̃

0, (26)

where 𝐴
2
is 𝑛 × 𝑛 constant matrix, ̃𝑏

2
is 𝑛 × 1 fuzzy vector

𝐴

1
, and ̃𝑄

2
(𝑠) = [𝑞

𝑖2
(𝑠)], 𝑖 = 1, 2, . . . , 𝑛, and 𝑞

𝑖2
(𝑠) are

polynomials of order greater than unity, where by neglecting
̃

𝑄

2
(𝑠), we have again fuzzy system of linear equations of 𝑒

2

and by solving this system, coefficients of 𝑠2 in (23) can be
determined. This procedure can be repeated till the arbitrary
order coefficients of power series of the solution for the
problem are obtained.

The following theorem shows convergence of themethod.
Without loss of generality, we prove it for 𝑛 = 1.

Theorem 17. Let ̃𝑋 =

̃

𝐹(𝑠) be the exact solution of the
following fuzzy integrodifferential equation:

̃

𝑋



(𝑠) = 𝐺 (𝑠,

̃

𝑋 (𝑠)) ⊕ ∫

𝑠

0

𝑘 (𝑠, 𝑡,

̃

𝑋 (𝑡) ,

̃

𝑋



(𝑡)) 𝑑𝑡,

̃

𝑋 (0) = 𝑎.

(27)

Assume that ̃𝑓(𝑠) has a power series representation. Then,

lim
𝑚→∞

̃

𝑓

𝑚
(𝑠) =

̃

𝑓 (𝑠) . (28)

Proof. According to the proposed method, we assume that
the approximate solution to (27) is as follows:

̃

𝑓

𝑚
(𝑠) = 𝑒

0
⊕ 𝑒

1
⊙ 𝑠 ⊕ 𝑒

2
⊙ 𝑠

2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑒

𝑚
⊙ 𝑠

𝑚
. (29)

Hence, it is sufficient that we only prove

if: 𝑒
𝑚
> 0, 𝑒

𝑚
=

̃

𝑓

(𝑚)
(0)

𝑚!

,

if: 𝑒
𝑚
< 0, ⊖𝑒

𝑚
=

̃

𝑓

(𝑚)
(0)

𝑚!

(30)

for𝑚 = 1, 2, 3, . . ..
Note that, for𝑚 = 0, the initial condition gives

𝑒

0
=

̃

𝑓 (0) = 𝑎.
(31)

Moreover, for𝑚 = 1, if we set ̃𝑋 = ̃𝑓(𝑠) and 𝑠 = 0 in (27), we
obtain

̃

𝑓



(0) = 𝑔 (0,

̃

𝑓 (0)) ⊕

̃

0. (32)

On the other hand, from (29) and (31), we have

̃

𝑓

1
(𝑠) = 𝑒

0
⊕ 𝑒

1
⊙ 𝑠. (33)

By substituting (33) into (27) and setting 𝑠 = 0, we get

if: 𝑒
1
> 0, 𝑒

1
= 𝑔 (0,

̃

𝑓 (0)) ⊕

̃

0 =

̃

𝑓



(0) ,

if: 𝑒
1
< 0, ⊖𝑒

1
= 𝑔 (0,

̃

𝑓 (0)) ⊕

̃

0 =

̃

𝑓



(0) .

(34)

For𝑚 = 2, differentiating (27) with respect to s, we have

̃

𝑓



(𝑠) =

𝜎

𝜎𝑠

𝑔 (𝑠,

̃

𝑓 (𝑠)) ⊕

𝜎

𝜎𝑠

𝑔 (𝑠,

̃

𝑓 (𝑠))

̃

𝑓



(𝑠)

⊕ 𝐾 (𝑠,

̃

𝑓 (𝑠) ,

̃

𝑓



(𝑠))

⊕ ∫

𝑠

0

𝜎

𝜎𝑠

𝐾 (𝑠, 𝑡,

̃

𝑓 (𝑡) ,

̃

𝑓



(𝑡)) 𝑑𝑡.

(35)

Setting 𝑠 = 0 in (35), we get

̃

𝑓



(0) =

𝜎

𝜎𝑠

𝑔 (0,

̃

𝑓 (0)) ⊕

𝜎

𝜎𝑠

𝑔 (0,

̃

𝑓 (0))

̃

𝑓



(0)

⊕ 𝐾 (0,

̃

𝑓 (0) ,

̃

𝑓



(0)) .

(36)

According to (29), (31), and (34), let

̃

𝑓

2
(𝑠) =

̃

𝑓 (0) ⊕

̃

𝑓



(0) ⊙ 𝑠 ⊕ 𝑒

2
⊙ 𝑠

2
. (37)

By substituting (37) into (35) and setting 𝑠 = 0, we obtain

if: 𝑒
2
> 0, 𝑒

1
> 0,

2𝑒

2
=

𝜎

𝜎𝑠

𝑔 (0, 𝑒

0
) ⊕

𝜎

𝜎𝑠

𝑔 (0, 𝑒

0
) 𝑒

1
⊕ 𝐾 (0, 𝑒

0
, 𝑒

1
)

if: 𝑒
2
> 0, 𝑒

1
< 0,

2𝑒

2
=

𝜎

𝜎𝑠

𝑔 (0, 𝑒

0
) ⊕

𝜎

𝜎𝑠

𝑔 (0, 𝑒

0
) (⊖𝑒

1
) ⊕ 𝐾 (0, 𝑒

0
, ⊖𝑒

1
)

if: 𝑒
2
< 0, 𝑒

1
> 0,

⊖ 2𝑒

2
=

𝜎

𝜎𝑠

𝑔 (0, 𝑒

0
) ⊕

𝜎

𝜎𝑠

𝑔 (0, 𝑒

0
) 𝑒

1
⊕ 𝐾 (0, 𝑒

0
, 𝑒

1
)

if: 𝑒
2
< 0, 𝑒

1
< 0,

⊖ 2𝑒

2
=

𝜎

𝜎𝑠

𝑔 (0, 𝑒

0
) ⊕

𝜎

𝜎𝑠

𝑔 (0, 𝑒

0
) (⊖𝑒

1
) ⊕ 𝐾 (0, 𝑒

0
, ⊖𝑒

1
) .

(38)

So, with comparison (36) and (38), we conclude that

2𝑒

2
=

̃

𝑓



(0) ⇒ 𝑒

2
=

̃

𝑓


(0)

2!

(39)

or

⊖2𝑒

2
=

̃

𝑓



(0) ⇒ ⊖𝑒

2
=

̃

𝑓


(0)

2!

.

(40)

By constituting the above procedure, we can easily prove (30)
for𝑚 = 3, 4, . . ..
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4. Numerical Illustrations

Example 18. Consider the following system of fuzzy linear
Volerra integrodifferential equations:

𝑥



1
(𝑠) = 𝑔

1
(𝑠, 𝑥

1
(𝑠) , 𝑥

2
(𝑠))

⊖ ∫

𝑠

0

𝑘

1
(𝑠, 𝑡, 𝑥

1
(𝑡) , 𝑥

2
(𝑡)) 𝑑𝑡,

𝑥



2
(𝑠) = 𝑔

2
(𝑠, 𝑥

1
(𝑠) , 𝑥

2
(𝑠))

⊖ ∫

𝑠

0

𝑘

2
(𝑠, 𝑡, 𝑥

1
(𝑡) , 𝑥

2
(𝑡)) 𝑑𝑡,

(41)

with initial conditions

𝑥

1
(0) = (1 + 0.5 (𝑟 − 1) , 1 − 0.5 (𝑟 − 1)) ,

𝑥

2
(0) = (−1 + 0.5 (𝑟 − 1) , −1 − 0.5 (𝑟 − 1)) ,

𝑔

1
(𝑠, 𝑥

1
(𝑠) , 𝑥

2
(𝑠)) = 1 + 𝑠 + 𝑠

2
⊖ 𝑥

2
(𝑠) ,

𝑔

2
(𝑠, 𝑥

1
(𝑠) , 𝑥

2
(𝑠)) = −1 − 𝑠 ⊕ 𝑥

1
(𝑠) ,

𝑘

1
(𝑠, 𝑡, 𝑥

1
(𝑡) , 𝑥

2
(𝑡)) = 𝑥

1
(𝑡) ⊕ 𝑥

2
(𝑡) ,

𝑘

2
(𝑠, 𝑡, 𝑥

1
(𝑡) , 𝑥

2
(𝑡)) = 𝑥

1
(𝑡) ⊖ 𝑥

2
(𝑡) .

(42)

From the initial conditions

𝑒

0
= [

1 + 0.5 (𝑟 − 1) , 1 − 0.5 (𝑟 − 1)

−1 + 0.5 (𝑟 − 1) , −1 − 0.5 (𝑟 − 1)

]

𝑇

.
(43)

Let the solution of (41) be

𝑥

1
(𝑠) = 𝑒

10
⊕ 𝑒

11
⊙ 𝑠

= [1 + 0.5 (𝑟 − 1) , 1 − 0.5 (𝑟 − 1)] ⊕ 𝑒

11
⊙ 𝑠,

𝑥

2
(𝑠) = 𝑒

20
⊕ 𝑒

21
⊙ 𝑠

= [−1 + 0.5 (𝑟 − 1) , −1 − 0.5 (𝑟 − 1)] ⊕ 𝑒

21
⊙ 𝑠.

(44)

For obtaining 𝑒
11
, 𝑒
21
, we substitute (44) into (41); then we

will have

(𝑒

11
− 2 − 0.5 (𝑟 − 1))

+ (−𝑠 − 𝑠

2
+ 𝑒

21
𝑠 + (1 − 𝑟) 𝑠 −

𝑒

11
𝑠

2

2

−

𝑒

21
𝑠

2

2

) = 0,

(𝑒

11
− 2 + 0.5 (𝑟 − 1))

+ (−𝑠 − 𝑠

2
+ 𝑒

21
𝑠 + (1 − 𝑟) 𝑠 −

𝑒

11
𝑠

2

2

−

𝑒

21
𝑠

2

2

) = 0,

(𝑒

21
− 0.5 (𝑟 − 1)) + (3𝑠 − 𝑒

11
𝑠 +

𝑒

11
𝑠

2

2

+

𝑒

21
𝑠

2

2

) = 0,

(𝑒

21
+ 0.5 (𝑟 − 1)) + (3𝑠 − 𝑒

11
𝑠 +

𝑒

11
𝑠

2

2

+

𝑒

21
𝑠

2

2

) = 0,

(𝑒

11
− 2 − 0.5 (𝑟 − 1)) + 𝑞

11

(𝑠) = 0,

(𝑒

11
− 2 + 0.5 (𝑟 − 1)) + 𝑞

11
(𝑠) = 0,

(𝑒

21
− 0.5 (𝑟 − 1)) + 𝑞

21

(𝑠) = 0,

(𝑒

21
+ 0.5 (𝑟 − 1)) + 𝑞

21
(𝑠) = 0,

(45)

where 𝑞
11

(𝑠), 𝑞

11
(𝑠), 𝑞

21

(𝑠), 𝑞

21
(𝑠) are 𝑂(𝑠) and by neglect-

ing them, we have

𝐴

1
⊙ 𝑒

1
=

̃

𝑏

1
, (46)

where

𝐴

1
= [

1 0

0 1

] ,

̃

𝑏

1
= [

(2 + 0.5 (𝑟 − 1) , 2 − 0.5 (𝑟 − 1))

(0.5 (𝑟 − 1) , −0.5 (𝑟 − 1))

] ,

𝑒

1
= [

(𝑒

11
, 𝑒

11
)

(𝑒

21
, 𝑒

21
)

] .

(47)

So,

𝑒

1
= [

(2 + 0.5 (𝑟 − 1) , 2 − 0.5 (𝑟 − 1))

(0.5 (𝑟 − 1) , −0.5 (𝑟 − 1))

] . (48)

And then

𝑥

1
(𝑠) = [1 + 0.5 (𝑟 − 1) , 1 − 0.5 (𝑟 − 1)]

⊕ [2 + 0.5 (𝑟 − 1) , 2 − 0.5 (𝑟 − 1)] ⊙ 𝑠,

𝑥

2
(𝑠) = [−1 + 0.5 (𝑟 − 1) , −1 − 0.5 (𝑟 − 1)]

⊕ [0.5 (𝑟 − 1) , −0.5 (𝑟 − 1)] ⊙ 𝑠.

(49)

We go to next step. Let

𝑥

1
(𝑠) = [1 + 0.5 (𝑟 − 1) , 1 − 0.5 (𝑟 − 1)]

⊕ [2 + 0.5 (𝑟 − 1) , 2 − 0.5 (𝑟 − 1)] ⊙ 𝑠 ⊕ 𝑒

12
𝑠

2
,

𝑥

2
(𝑠) = [−1 + 0.5 (𝑟 − 1) , −1 − 0.5 (𝑟 − 1)]

⊕ [0.5 (𝑟 − 1) , −0.5 (𝑟 − 1)] ⊙ 𝑠 ⊕ 𝑒

22
𝑠

2
.

(50)

Similar to previous step, by substituting (50) into (41), we have

(2𝑒

12
− 1.5 (𝑟 − 1) − 1) 𝑠

+ (𝑒

22
𝑠

2
− (𝑟 − 1)

𝑠

2

2

+

𝑒

12
𝑠

3

3

+

𝑒

22
𝑠

3

3

) = 0,
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(2𝑒

12
+ 1.5 (𝑟 − 1) − 1) 𝑠

+ (𝑒

22
𝑠

2
+ (𝑟 − 1)

𝑠

2

2

+

𝑒

12
𝑠

3

3

+

𝑒

22
𝑠

3

3

) = 0,

(2𝑒

22
− 1.5 (𝑟 − 1) + 1) 𝑠

+ (𝑠

2
− 𝑒

22
𝑠

2
+ (𝑟 − 1)

𝑠

2

2

+

𝑒

12
𝑠

3

3

+

𝑒

22
𝑠

3

3

) = 0,

(2𝑒

22
+ 1.5 (𝑟 − 1) + 1) 𝑠

+ (𝑠

2
+ 𝑒

22
𝑠

2
+ (𝑟 − 1)

𝑠

2

2

+

𝑒

12
𝑠

3

3

+

𝑒

22
𝑠

3

3

) = 0.

(51)

So,

(2𝑒

12
− 1.5 (𝑟 − 1) − 1) 𝑠 + 𝑞

12

(𝑠) = 0,

(2𝑒

12
+ 1.5 (𝑟 − 1) − 1) 𝑠 + 𝑞

12
(𝑠) = 0,

(2𝑒

22
− 1.5 (𝑟 − 1) + 1) 𝑠 + 𝑞

22

(𝑠) = 0,

(2𝑒

22
+ 1.5 (𝑟 − 1) + 1) 𝑠 + 𝑞

22
(𝑠) = 0.

(52)

By neglecting 𝑞
12

(𝑠), 𝑞
12
(𝑠), 𝑞
22

(𝑠), 𝑞
22
(𝑠) which are O(𝑠2)

and solve system 𝐴
2
⊙ 𝑒

2
=

̃

𝑏

2
, we obtain

𝑒

2
=

[

[

[

[

(

3

4

(𝑟 − 1) +

1

2

, −

3

4

(𝑟 − 1) +

1

2

)

(

3

4

(𝑟 − 1) −

1

2

, −

3

4

(𝑟 − 1) −

1

2

)

]

]

]

]

(53)

and then in a similar way go to next step and we have

(3𝑒

13
−

5

4

(𝑟 − 1) − 0.5) 𝑠

2
+ 𝑞

13

(𝑠) = 0,

(3𝑒

13
−

5

4

(𝑟 − 1) − 0.5) 𝑠

2
+ 𝑞

13
(𝑠) = 0,

(3𝑒

23
−

5

4

(𝑟 − 1) + 0.5) 𝑠

2
+ 𝑞

23

(𝑠) = 0,

(3𝑒

23
+

5

4

(𝑟 − 1) + 0.5) 𝑠

2
+ 𝑞

23
(𝑠) = 0.

(54)

And

𝑒

3
=

[

[

[

[

(

5

12

(𝑟 − 1) +

1

6

, −

5

12

(𝑟 − 1) +

1

6

)

(

5

12

(𝑟 − 1) +

1

6

, −

5

12

(𝑟 − 1) +

1

6

)

]

]

]

]

. (55)

Example 19. As second example we consider the following
nonlinear fuzzy integrodifferential equation:

𝑥



(𝑠) = (1, 0.1, 0.4) ⊕ ∫

𝑠

0

𝑥 (𝑡) ⊙ 𝑥



(𝑡) 𝑑𝑡,

𝑥 (0) = (0, 0.2, 0.6) .

(56)

Typically, we use the power series method for obtaining
the solution of problem. From the initial condition, 𝑒(0) =
(0, 0.2, 0.6), let the solution of (56) be the form

𝑥 (𝑠) = 𝑒

0
⊕ 𝑒

1
⊙ 𝑠 = (0, 0.2, 0.6) ⊕ 𝑒

1
⊙ 𝑠. (57)

For obtaining 𝑒
1
= (𝑚, 𝛼, 𝛽), we substitute (57) into (56); we

will have

(𝑚, 𝛼, 𝛽) = (1 +

𝑚𝑠

2

2

, 0.1 +

𝛼𝑠

2

2

+ 0.2𝑠, 0.4 +

𝛽𝑠

2

2

+ 0.3𝑠) ,

(58)

or

(𝑚, 𝛼, 𝛽) = (1 + 𝑞

1
(𝑠) , 0.1 + 𝑞

2
(𝑠) , 0.4 + 𝑞

3
(𝑠)) . (59)

By neglecting 𝑞
1
, 𝑞
2
, 𝑞
3
which are 𝑂(𝑠), we obtain 𝑒

1
=

(1, 0.1, 0.4) and then

𝑥 (𝑠) = (0, 0.2, 0.6) ⊕ (1, 0.1, 0.4) ⊙ 𝑠. (60)

For the next step, we assume that

𝑥 (𝑠) = 𝑒

0
⊕ 𝑒

1
⊙ 𝑠 ⊕ 𝑒

2
⊙ 𝑠

2
. (61)

By substituting (61) into (56), we have

(1 + 2𝑚𝑠, 0.1 + 𝛼𝑠, 0.4 + 𝛽𝑠)

= (1 +

𝑠

2

2

, 0.1 + 0.2𝑠 + 𝑞

1
(𝑠) , 0.4 + 0.6𝑠 + 𝑞

2
(𝑠)) .

(62)

From above relation and by neglecting 𝑠2/2, 𝑞
1
(𝑠), 𝑞

2
(𝑠), we

have 𝑒
2
= (0, 0.1, 0.3).

By repeating this method, we can compute more coeffi-
cients of the solution.

Example 20. Consider the following nonlinear fuzzy inte-
grodifferential equation:

𝑥



(𝑠) = 𝑒

𝑠
−

1

3

𝑒

3𝑠
+ (

1

3

, 0.1, 0.3) ⊕ ∫

𝑠

0

𝑥

3

(𝑡) 𝑑𝑡,

𝑥 (0) = (1, 0.4, 0.4) .

(63)

Again, we use the power series method for obtaining the
solution of the problem. From the initial condition, 𝑒

0
=

(1, 0.4, 0.4). Assume that the solution of (63) is the form

𝑥 (𝑠) = 𝑒

0
⊕ 𝑒

1
⊙ 𝑠 = (1, 0.4, 0.4) ⊕ 𝑒

1
⊙ 𝑠. (64)

By substituting (64) into (63), we obtain

(𝑚, 𝛼, 𝛽) = (1 + 𝑞

1
(𝑠) , 0.4 + 𝑞

2
(𝑠) , 0.4 + 𝑞

3
(𝑠)) . (65)

By neglecting 𝑞
1
(𝑠), 𝑞

2
(𝑠), 𝑞

3
(𝑠), we obtain 𝑒

1
= (1, 0.4, 0.4)

and then

𝑥 (𝑠) = (1, 0.4, 0.4) ⊕ (1, 0.4, 0.4) ⊙ 𝑠. (66)

For the next step, we assume that

𝑥 (𝑠) = (1, 0.4, 0.4) ⊕ (1, 0.4, 0.4) 𝑠 ⊕ 𝑒

2
⊙ 𝑠

2
. (67)
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And by substituting it into (63), we have

(1 + 2𝑚𝑠, 0.4 + 2𝛼𝑠, 0.4 + 2𝛽𝑠)

= (1 + 𝑠 + 𝑞

1
(𝑠) , 0.4 + 0.6𝑠 + 𝑞

2
(𝑠) , 0.4 + 0.6𝑠 + 𝑞

3
(𝑠)) .

(68)

From the above relation and by neglecting 𝑞
1
(𝑠), 𝑞

2
(𝑠), 𝑞

3
(𝑠),

we have

𝑒

2
= (

1

2

, 0.3, 0.3) . (69)

By continuing this procedure, more coefficients of the solu-
tion can be computed.

5. Conclusion

In summary, this study has exploited power series to find
a numerical solution for linear as well as nonlinear fuzzy
Volterra integrodifferential equations. In effect, using power
series can provide an approximate solution for thementioned
integral equations. Since there are challenging issues to solve
the nonlinear integrodifferential equations, the presented
method can be simply applied to find an appropriate solution
for this kind of equations that is regarded as a considerable
benefit of this method undoubtedly.
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