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In their first centuries, scientific and engineering develop-
ments were dominated by empirical understanding which
encapsulated the first paradigm of scientific discovery. After
the Renaissance, the scientific revolution and the develop-
ment of calculus led to a new scientific viewpoint whereby
physical principles, laws of nature, and engineering models
were established by proposing new theoretical constructs that
could be verified through specific experiments. This was the
second paradigm of scientific discovery. More recently, the
computational era, or the third paradigm of discovery, has
allowed us to solve complex andnonlinear scientific and engi-
neering problems that were beyond our analytically tractable
methodologies. Today, there is a new fourth paradigm of
discovery, which is a data-driven science and engineering
framework whereby complex models and physical laws are
directly inferred from data.

Therefore, there is increasing change in the objective of
computational algorithms used in simulations. Until now,
the purpose was to accurately discretize systems of linear
and nonlinear continuum equations derived from physical
laws, models, and principles frequently established prior to
the computational era; these equations were inferred from
observation on limited experimental data and significantly
simplified to make them analytically tractable. Today, the
available experimental data and the complexity of the equa-
tions are no longer amajor limitation to the point that wemay

compute physical processes without resorting to analytical
laws, principles, or models; we just need to predict the correct
output from the system for a given input even when there
is not a well-defined model. However, for this endeavor, we
need new computational algorithms capable of learning the
complex behavior of the system and of establishing those
governing equations of the systemdirectly fromexperimental
data, with the flexibility of not having to rely on analytical
equations. An example is the determination of the nonlin-
ear behavior of solids and fluids under general conditions
directly from measured data, without specifying the form of
the constitutive relations. Many fields already have started
to capitalize on such methods, developing algorithms for
fuzzy relations, leading to data-driven decision-making by
constructing purely computational predictive analytics in
such complex fields as economics, consumer behavior and
dynamics, security, and even web utilities. The engineering
sciences are now poised to also take advantage of data-
driven methods in obtaining physical principles and models
which yield reliable laws and accurate predictions, using
fewer hypotheses and fewer analytical relations and balancing
the parametrization of physical models with the amount of
available measurements.

The purpose of the special issue on data-driven model
learning in science and engineering is to bring representative
novel state-of-the-art contributions in this line. Many papers
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were submitted from leading authors in data-driven proce-
dures. After a rigorous review process, among them, only ten
outstanding contributions were selected for the special issue.
These are representative of different algorithmic approaches
and application fields.

Clustering is an important aspect of unsupervised data-
driven procedures. In these techniques, data groups are
identified and tagged. T. Du et al., in their paper entitled
“A Data-Driven Parameter Adaptive Clustering Algorithm
Based on Density Peak,” develop such an algorithm named
DDPA-DP to avoid the influence of artificial parameters,
improving the congruence and flexibility of clustering. The
authors compare their proposal to other existing algorithms,
using both synthetic data and real-world data obtained from
the thermal power industry. The authors conclude that their
proposal is advantageous in terms of accuracy of clustering
and time complexity.

Reduced order modeling will be extremely important in
biomechanics, for example, in obtaining workable consti-
tutive relations of complex phenomena for simulations of
tissue and cell behavior. In this line, B. Adam and S. Mitran
present in “Data-Driven Finite Element Models of Passive
Filamentary Networks” a procedure to substantially reduce
the cost of finite element simulations of actin filaments in
the cytoskeleton. They employ at the smaller scale Brownian
dynamics with tens of millions of state variables. Then,
applying a singular value decomposition, they reduce the
problem to obtain a representative numerical constitutive
equation at a much smaller scale. They show through an
example that the reduced model captures the key features
present in the behavior of the full model.

Data-driven algorithms have been used for long in the
field of computer vision and are now being increasingly
used in mechanics and material science. F. Nguyen et al.,
in their paper “Computer Vision with Error Estimation
for Reduced Order Modeling of Macroscopic Mechanical
Tests,” use clustering and convolutional neural networks
trained by supervised machine learning on digital images of
mechanical tests on a specimen, under a variety of loading
conditions. With their procedure, they identify a reduced
ordermodel.This reduced order model is fast to be employed
inmanufacturing procedures tomake part-specific decisions.

Data-driven models bring a new ingredient in the overall
modeling of complex systems. Data-driven models may be
combined with classical modeling approaches and ensemble-
based modeling. Therefore, new meta-modeling methods
are also needed to manage, in a systematic and automatic
manner, the combined modeling and application procedures
themselves. S. V. Kovalchuk et al., in their paper “A Concep-
tual Approach to Complex Model Management with Gener-
alized Modelling Patterns and Evolutionary Identification,”
present such an algorithm for mixed model management,
considering the spaces of functions, parameters, and mod-
eling approaches relating to them. They show in their paper
interesting applications in metocean simulations, health care
processes, and mining in social media.

One of the main aspects in the design of tires is the
friction behavior, which largely affects its performance,
temperature, and longevity. The friction laws are complex

functions of different parameters like sliding velocity, contact
pressure, and temperature. The usual approach is to establish
an analytical law with fitted material parameters (e.g., the
Huemer friction law). A more flexible and accurate data-
driven approach is presented by A. Serafińska et al. in their
paper entitled “Artificial Neural NetworksBased Friction Law
for Elastomeric Materials Applied in Finite Element Sliding
Contact Simulations.” In their work, the authors use artificial
neural networks to obtain a regularized numerical nonlinear
data-driven thermomechanical friction law, function of the
mentioned variables, and the temperature. They obtain an
excellent fitting to experimental results. They include their
law in a finite element contact formulation and perform sim-
ulations in tires for different acceleration/brake conditions.

In the aircraft industry, the timely detection of internal
damage in composite structures is a difficult and complex
procedure. The purpose of structural health monitoring
(SHM) is to be able to perform such detections and damage
classification. In this field, data-driven approaches are espe-
cially useful and very promising. The paper of Tibaduiza et
al. entitled “ADamage Classification Approach for Structural
HealthMonitoring UsingMachine Learning” presents a data-
driven methodology using data collected from piezoelectric
sensors under different structural states and guided waves to
identify damage type and location in CFRP (carbon fibre-
reinforced polymer) sandwich structures and plates. Their
examples include different types of damage as delamination
and cracking of the skin. Their procedure consists in a
hierarchical nonlinear principal component analyses with
machine learning.

S. Pan and K. Duraisamy, in their paper “Long-Time
Predictive Modeling of Nonlinear Dynamical Systems Using
Neural Networks,” develop data-driven models for nonlinear
dynamical systems using feedforward neural networks with
a Jacobian regularization for the loss function. The purpose
of the Jacobian regularization is, for example, to improve the
robustness of the model for limited data and to improve the
predictions when the model is unstable. They compared their
approach to a sparse identification of nonlinear dynamical
systems approach with a background function library.

Also in the field of nonlinear dynamic analysis of systems,
in the paper “Analyzing Nonlinear Dynamics via Data-
Driven Dynamic Mode Decomposition-Like Methods,” S.
Le Clainche and J. M. Vega review and analyze two dif-
ferent approaches useful for data-driven analyses. These
approaches are the high-order dynamic mode decomposition
(HODMD) method, based on the classical dynamic mode
decomposition, and the spatiotemporal Koopman decompo-
sition (STKD) by linear expansion. In a nutshell, the former
considers different snapshots (steps) to account for the evo-
lutionary, nonlinear response of the system through different
updating matrices, whereas the second approach considers
different spatiotemporal decomposition (possibly nonlinear
time frequency and spatial wave number correlations of the
components). Some applications are also explored in their
paper.

Koopman representations, with more general Koopman
eigenfunctions, are also used by J. N. Kutz et al. in their paper
“Applied KoopmanTheory for Partial Differential Equations
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andData-DrivenModeling of Spatio-Temporal Systems.”The
authors focus their presentation in the impact of the choice
of observable variables in the quality of the approximations
obtained. They perform the analysis through several care-
fully selected examples which highlight their conclusions;
these examples are the Burgers equation, the nonlinear
Schrödinger equation, the cubic-quintic Ginzburg-Landau
equation, and the equations from a reaction-diffusion system.
They demonstrate that a poor choice of the observable
variables brings approximations worse than those obtained
with the classical DMD. The authors present a step-by-step
procedure for a good selection of the mentioned variables.

R. Ibáñez and his coworkers present in their paper “A
Multidimensional Data-Driven Sparse Identification Tech-
nique: The Sparse Proper Generalized Decomposition” a
novel PGD-based data-driven identification procedure for
high dimensional problems using Kriging interpolants. This
procedure uses nonstructured datasets, is robust with respect
to high dimensionality, and alleviates the curse of dimen-
sionality, this latter property obtained through the method
of separation of variables employed by the authors in previ-
ous publications to obtain reduced order models. To avoid
nonparsimonious predictions, due to the solution being in a
highly nonlinear manifold, the authors use sliced domains,
collocation points, and local PGD versions. They name the
method “sparse-PGD.”They compare their approach to other
available solution methods using different synthetic and
physical problems.
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This article presents a review on two methods based on dynamic mode decomposition and its multiple applications, focusing on
higher order dynamic mode decomposition (which provides a purely temporal Fourier-like decomposition) and spatiotemporal
Koopman decomposition (which gives a spatiotemporal Fourier-like decomposition). Thesemethods are purely data-driven, using
either numerical or experimental data, and permit reconstructing the given data and identifying the temporal growth rates and
frequencies involved in the dynamics and the spatial growth rates and wavenumbers in the case of the spatiotemporal Koopman
decomposition. Thus, they may be used to either identify and extrapolate the dynamics from transient behavior to permanent
dynamics or construct efficient, purely data-driven reduced order models.

1. Introduction

Uncovering the quantitative essence of complex signals, either
numerical or experimental, coming from nonlinear systems
is an interesting topic in data science and fluid dynamics.
Among its several applications in multidisciplinary sciences,
the purely data-driven analysis of nonlinear dynamics has
raised the interest of applied mathematicians (to understand
the dynamics of ordinary or partial differential equations and
systems, such as the complex Ginzburg-Landau equation),
doctors (to find relevant patterns in medical images), and
aeronautical, mechanical, and civil engineers (looking for
flow patterns or global instabilities or computing aerody-
namic forces on slender or bluff bodies). Even in simple, low-
dimensional dynamical systems, such as the Lorenz system (3
ordinary differential equations), it is possible to find complex
dynamics, including periodic, quasi-periodic, and chaotic
behaviors, as well as complex transients.

Fourier analysis has long been used as a data-processing
tool for analyzing complex signals. In addition to improving
the standard Fourier transform (e.g., fast Fourier transform,
power spectral density [1], and the so-called Laskar method
[2, 3]), several techniques have been developed in recent
years that extend the scope of Fourier analysis by seeking not

only the frequencies of the signal but also the growth rates,
which are relevant to transient behavior. One of the most
popular methods to obtain such an expansion is dynamic
mode decomposition (DMD) [4] (see also [5–7]), which needs
to be extended to give optimal results [8], as will be discussed
in this paper. These DMD-like methods are based on the
idea of decomposing a signal as an expansion in Fourier-like
modes, as

𝑣 (𝑡) ≃ 𝑁∑
𝑛=1

𝑎𝑛𝑢𝑛e(𝛿𝑛+i𝜔𝑛)𝑡 for 𝑡1 ≤ 𝑡 ≤ 𝑡1 + 𝑇, (1)

where 𝑣 is a time-dependent vector signal, which can be
either real or complex, 𝑢𝑛 are conveniently normalized spatial
modes, 𝑎𝑛 > 0 are the mode amplitudes, and 𝛿𝑛 and 𝜔𝑛
are the associated growth rates and frequencies, respectively.
Dynamics of the type (1) are paramount in applications, as
it will be illustrated in the paper. A good example is the
joint wake (accounting for interaction between the individual
wakes of the various buildings) of urban topographies; see
Figure 1. This example is interesting for two reasons. First,
direct numerical simulation is not affordable in realistic
conditions due to the huge value of the Reynolds number,
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Figure 1: An urban topography composed by three skyscrapers and four elongated buildings (left) and horizontal snapshots of the associated
joint wake (right).

meaning that numerical data must be obtained using turbu-
lence modeling, which only captures the large scales. These
are temporally quasi-periodic and may be described in the
form (1); small scales, instead, exhibit spatiotemporal chaos.
Experimental data, on the other hand, exhibit nonnegligible
errors that must be filtered out and also describe the large
scales only.

Expansion (1) is appropriate to represent temporally
growing (if 𝛿𝑛 > 0) or decaying (if 𝛿𝑛 < 0), periodic (if the
frequencies 𝜔𝑛 are commensurable) or quasi-periodic (if the
frequencies are incommensurable) phenomena. Commensu-
rability is a subtle matter in finite precision computations,
where exact incommensurability is not possible. Instead,
we shall guess that a set of frequencies are incommensu-
rable when the computed values are not commensurable
to some small tolerance. Namely, e.g., three frequencies are
incommensurable if no relation of the form 𝑚𝜔1 ± 𝑛𝜔2 ±𝑝𝜔3 = 𝜀 is possible for moderate values (say, not larger
than 10) of the natural numbers 𝑚, 𝑛, and 𝑝 and some small
(say, ∼ 10−5) 𝜀. This can be discerned provided that the
frequencies are computed with great accuracy. Moreover, the
robustness and accuracy of the approximation (1) are a good
means to ensure that the right periodic or quasi-periodic
dynamics have been captured. In chaotic dynamics, instead,
an infinite number of modes should be considered even for
moderate accuracy and the analysis using these methods is
subtle.

In the data-driven methods described and used along the
paper, space and time will both be discretized. However, it
is enlightening to consider at the moment continuous time,
with the vector snapshots 𝑣 of size 𝐽. The simplest problem
giving the dynamics in the right hand side of (1) is the ODE
linear system

𝑑𝑣 (𝑡)𝑑𝑡 = A𝑣 (𝑡) , (2)

for an appropriate 𝐽 × 𝐽 matrix A that may be computed via
the pseudoinverse (applied to a discretized version of this
equation, considering a collection of nearby snapshots and
approximating the time derivative by finite differences).

Obviously, (2) makes sense if the dynamics associated
with the snapshots are linear.However, expansion (1) and thus
the linear equation (2) also apply to nonlinear dynamics. This
is because the linear system (2) only intends to approximate

the particular trajectory in the left hand side of (1), not the
complete dynamics of the nonlinear system. In other words,
if a different trajectory of the nonlinear system is given,
for different initial conditions, matrix A is also generally
different. In any event, for generic A, all solutions of (2) are
of the form displayed in the right hand side of (1), where
the modes 𝑢𝑛 are the eigenvectors of A and 𝛿𝑛 + i𝜔𝑛 are
the associated eigenvalues. However, not all expansions of
form (1) are solutions of (2) because (2) provides at most 𝐽
modes, while the number of terms involved in (1), 𝑁, which
is known as the spectral complexity of expansion (1), can be
larger than 𝐽. More precisely, defining the spatial complexity
of expansion (1), 𝑀 ≤ 𝐽, as the dimension of the span of
the modes 𝑢1, . . . , 𝑢𝑁, the linear problem (2) is appropriate to
compute (1) only if𝑀 = 𝑁 (note that𝑀 cannot be larger than𝑁). We insist here that the spectral and spatial complexities
are defined for expansion (1), not for the dynamical system
from which the snapshots may come. However, 𝑁 > 𝑀 in
many dynamical systems of scientific/technological interest,
such as the following:

(i) The Lorenz system [9] (and other ODEs) in which𝑀 = 3, while𝑁may be quite large

(ii) Many nonlinear, infinite-dimensional dynamical sys-
tems (PDEs) exhibiting an inertial manifold [10] (lim-
ited 𝑀) but complex (e.g., quasi-periodic) temporal
behavior

(iii) Extrapolating from transients to obtain attractors [11]
requiring identifying additional (temporally decaying
modes), which increases𝑁

(iv) Experimental noise/numerical errors adding (unphys-
ical) temporal complexity that increases 𝑁 and must
be identified to clean the postprocessed data

When 𝑁 > 𝑀, the number of involved modes is increased
by using a higher order ODE system. Specifically the linear
system (1) can be replaced by

𝑑𝑑𝑣𝑑𝑡𝑑 = A1
𝑑𝑑−1𝑣 (𝑡)𝑑𝑡𝑑−1 + A2

𝑑𝑑−2𝑣 (𝑡)𝑑𝑡𝑑−2 + ⋅ ⋅ ⋅ + A𝑑−1
𝑑𝑣 (𝑡)𝑑𝑡

+ A𝑑𝑣 (𝑡) ,
(3)
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for appropriate 𝐽 × 𝐽 matrices A1, . . . ,A𝑑. Obviously, this
linear problem can also be written in the form (3), as

𝑑�̃�𝑑𝑡 = A�̃�. (4)

Here, Ṽ is a vector of size 𝐽𝑑 that collects 𝑣, 𝑑𝑣/𝑑𝑡, . . .,
and 𝑑𝑑−1𝑣/𝑑𝑡𝑑−1, and the (𝐽𝑑) × (𝐽𝑑)-matrix A is a sparse
matrix whose blocks are the unit 𝐽 × 𝐽-unit matrix and the
matrices A1, . . . ,A𝑑. The matrix A can be computed via the
pseudoinverse applied to �̃�(𝑡). Now, for an appropriate value
of the index 𝑑, any dynamics of the form displayed in the
right hand side of (1) can be captured. Note that the size of
the matrix A is huge when 𝐽 and 𝑑 are both large, which
would require very large computational resources. However,
these resources are greatly decreased by applying this idea
after appropriate dimension reduction; see below.

In the discrete counterpart of (1), the time variable is
discretized at𝐾 equispaced values of 𝑡, as 𝑡𝑘 = 𝑡1 + (𝑘 − 1)Δ𝑡,
withΔ𝑡 = 𝑇/𝐾, and a set of snapshots is defined as 𝑣𝑘 = 𝑣(𝑡𝑘).
The counterparts of (1), (2), and (3) are

𝑣𝑘 ≃ 𝑁∑
𝑛=1

𝑎𝑛𝑢𝑛e(𝛿𝑛+i𝜔𝑛)𝑡𝑘 for 𝑘 = 1, . . . , 𝐾, (5)

𝑣𝑘+1 = 𝑅𝑡𝑣𝑘 for 𝑘 = 1, . . . , 𝐾 − 1, (6)

𝑣𝑘+𝑑 = 𝑅𝑡1𝑣𝑘+𝑑−1 + 𝑅𝑡2𝑣𝑘+𝑑−2 + ⋅ ⋅ ⋅ + 𝑅𝑡𝑑𝑣𝑘
for 𝑘 = 1, . . . , 𝐾 − 𝑑, (7)

respectively. Obviously, (1) follows from (5) by just setting𝑡𝑘 continuous (interpolation in 𝑡). Interpolation can also be
made in the spatial variable, which yields the continuous
temporal DMD expansion (cf. (1)):

𝑣 (𝑥, 𝑡) ≃ 𝑁∑
𝑛=1

𝑎𝑛𝑢𝑛 (𝑥) e(𝛿𝑛+i𝜔𝑛)𝑡 for 𝑡1 ≤ 𝑡 ≤ 𝑡1 + 𝑇, (8)

where the modes 𝑢𝑛 depend on the spatial variable and the
vector 𝑣 may account for a vector state variable, such as the
velocity vector in fluid flows.

Equation (6) is the essence of standard DMD [6] that, as
explained above, only applies when the spatial and spectral
complexities coincide. Equation (7), instead, is the basis of
higher order DMD (HODMD) [8]. This method permits
computing the expansion (1) in the general case 𝑀 <𝑁 choosing an appropriate value of the tunable index 𝑑.
Note that the main difference between (6) and (7) is that
the latter equation relates each snapshot with not only the
last snapshot but also the former 𝑑 − 1 snapshots. In fact,
HODMD reduces to standard DMD if 𝑑 = 1. For 𝑑 >1, instead, HODMD can be seen as a result of applying
standard DMD to a set of enlarged snapshots containing also
the delayed snapshots. Thus, HODMD synergically combines
the advantages of standard DMD and some consequences
[12] of the delayed embedding theorem by Takens [13], who
followed and formalized former seminal ideas by Packard et
al. [14]. In fact, combination of DMD and delayed snapshots
had previously been suggested [7] and performed [15], in a

spirit different from that in [8]. Other applications of Takens’
theorem in different contexts (not related to DMD) include,
e.g., modal parameter identification and model reduction
[16], identification of invariant sets and bifurcations from
time-series [17], and analysis of high-dimensional time-
series combining the Laplacian eigenmaps with time-lagged
embedding [18]. On the other hand, some of the many
improvements of standardDMDbased on different ideas (not
related to time-lagged snapshots) are as follows:

(i) Optimized DMD [19], in which the expansion is com-
puted via an optimization problem. Compared to this
method, standard DMD and HODMD are simpler,
purely linear algebra driven approaches. However,
some linear algebra oriented (and thus less computa-
tionally expensive) approaches have been developed
to treat separable nonlinear least squares problems
[20], in particular, that involved in optimized DMD
[21].

(ii) Sparsity promoting DMD [22], which uses a penalty
to identify a smaller set of important modes via con-
vex optimization techniques.

(iii) Extended DMD [23], which extends the standard
DMDapproximation to includemore basis functions,
allowing the method to capture more complex behav-
ior.

(iv) Total least squares DMD [24], which combines total
least squares and standard DMD to treat noisy data.
Let us mention here that other improvements of
standard DMD have been developed to correct the
effect of noise. Among these, Dawson et al. [25] also
tried to characterize the noise properties, Takeishi et
al. [26] combined a Bayesian formulation with DMD,
and Dicle et al. [27] computed low-rank factors of the
DMD operator while satisfying the total least squares
constraints.

On the other hand, for spatially developing flows, 𝑡 may be
replaced in (8) by a distinguished spatial variable 𝑥, obtaining
the spatial DMD expansion

𝑣 (𝑥,𝑦, 𝑡) = 𝑀∑
𝑚=1

𝑎𝑚𝑢𝑚 (𝑦, 𝑡) e(]𝑚+i𝜅𝑚)𝑥, (9)

where 𝑦 collects the remaining transversal spatial variables
and ]𝑚 and 𝜅𝑚 are the spatial growth rates and wavenumbers,
respectively. Still, a simultaneous exponential behavior in
space and time may be relevant, considering the spatiotem-
poral Koopman decomposition (STKD) [28]

𝑣 (𝑥,𝑦, 𝑡) = 𝑀∑
𝑚=1

𝑁∑
𝑛=1

𝑎𝑚𝑛𝑢𝑚𝑛 (𝑦) e(]𝑚+i𝜅𝑚)𝑥+(𝛿𝑛+i𝜔𝑛)𝑡, (10)

which will be obtained by an appropriate STKD method
described below. This method roughly consists in applying
HODMD along the 𝑥 and 𝑡 coordinates simultaneously.
Expansion (10) has been attempted in [29] in a data-driven
fashion, through an approach based on Koopman operator
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theory plus the use of appropriate basis functions. See also
the analysis in [30], where some aspects of the theory of
operator-valued kernels for machine learning with delay-
coordinate maps of dynamical systems are combined. Similar
spatiotemporal expansions have also been already derived
(via a not purely data-driven method) for the Navier-Stokes
(NS) equations in [31] by first projecting the NS equations
into the temporal modes and then applying spatial DMD to
these modes using appropriate basis functions.

The modes 𝑢𝑚𝑛(𝑦) are appropriately normalized and
expansion (10) will be further truncated by retaining only
those modes whose amplitudes 𝑎𝑚𝑛 are larger than a given
threshold. In other words, expansion (10) will not generally
contain the 𝑀 × 𝑁 modes indicated in (10), but a smaller
number of modes, which is emphasized rewriting (10) as

𝑣 (𝑥,𝑦, 𝑡) = ∑
𝑚,𝑛

𝑎𝑚𝑛𝑢𝑚𝑛 (𝑦) e(]𝑚+i𝜅𝑚)𝑥+(𝛿𝑛+i𝜔𝑛)𝑡. (11)

It is interesting to note that the methods considered above
are related to former seminal ideas by Koopman [32]; see
also [5, 31, 33]. Koopman operator theory is concerned
with observability in dynamical systems. Specifically, for a
dynamical system 𝑣(𝑡), we may consider the temporal shift𝑡 → 𝑡 + Δ𝑡, with fixed Δ𝑡. For an arbitrary vector observable
function 𝑔, the Koopman operator 𝑅𝑡 is defined as

(𝑅𝑡 ⋅ 𝑔) (𝑣 (𝑡)) = 𝑔 (𝑣 (𝑡 + Δ𝑡)) . (12)

This operator is linear, because obviously 𝑅𝑡 ⋅ (𝛼1𝑔1 +𝛼2𝑔2) =𝛼1𝑅𝑡 ⋅ 𝑔1 + 𝛼2𝑅𝑡 ⋅ 𝑔2, and infinite-dimensional, since it
acts on the infinite-dimensional space of observables. Thus,
its eigenvalues and eigenvectors allow for giving an exact
representation of any observable. Setting 𝑔 =the identity, the
Koopman operator (12) reduces to (6) and is thus related
to the standard DMD method. Similarly, considering an
observable that also takes into account delayed snapshots,
the Koopman operator reduces to (7) and is thus related to
HODMD. Still, particular realizations of the spatiotemporal
Koopman operator 𝑅𝑥,𝑡, defined as

(𝑅𝑥,𝑡 ⋅ 𝑔) (𝑣 (𝑥,𝑦, 𝑡)) ) = 𝑣 (𝑥 + Δ𝑥, 𝑦, 𝑡 + Δ𝑡) , (13)

are related to the STKD method mentioned above. This con-
nection is why we call this method spatiotemporal Koopman
decomposition.

Finally, we note that in the weakly nonlinear analysis of
oscillatory pattern forming systems [34, 35], some equations
similar to (9) and (10) are also obtained. However, these
methods require both knowing the governing equations
and assuming that the dynamics are small perturbations of
a known steady or periodic solution. In contrast, DMD,
HODMD, and STKD provide approximations of type (9)
and (10) in a purely data-driven fashion for arbitrary fully
nonlinear dynamics, which are great advantages, specially in
the case of the analysis of experimental data. Note in this
context that expansions (9) and (10) can be seen as semian-
alytical expressions that allow for the fast online computation
of the associated spatiotemporal data, which leads to a purely
data-driven reduced order model (ROM). Among the most

important applications of such a ROM, (i) it avoids numerical
computation, which may be quite computationally expensive
in large scale systems, or even not possible when the model
is obtained from experimental data; (ii) it predicts different
flow states through available data reducing the number of
data collected in experiments; and (iii) it provides efficient
tools for various applications, including flow control [36] and
optimization design [37].

With the above in mind, the main object of this paper
is to present the HODMD and STKD methods, illustrating
them in simple toy models and applying them to various
problems of scientific and technological interest. To this end,
the HODMDmethod is described and illustrated in a simple
toy model in Section 2, while several applications of this
method are considered in Section 3. The STKD method is
developed in Section 4 and applied to various problems in
Section 5. The paper ends with some concluding remarks in
Section 6.

2. Higher Order Dynamic
Mode Decomposition

As above, for a time-dependent dynamical system given by
the vector state variable 𝑣(𝑡), of size 𝐽, we consider a set of 𝐾
snapshots at equispaced values of 𝑡,
𝑣𝑘 ≡ 𝑣 (𝑡𝑘) ,

with 𝑡𝑘 = 𝑡1 + (𝑘 − 1) Δ𝑡 for 𝑘 = 1, . . . , 𝐾. (14)

If the dynamical system is infinite-dimensional, the finite-
dimensional state vector V generally results from spatial
discretization. The snapshots are organized in a snapshot
matrix (whose columns are the snapshots), as

𝑉
𝐾
1 = [𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝐾] . (15)

In the sequel, the accuracy of the various approximations of
the snapshots will be measured in terms of the relative root
mean square (RMS) error, defined as

RRMS error = √∑𝐾𝑘=1 𝑣approx𝑘 − 𝑣𝑘22∑𝐾𝑘=1 𝑣𝑘22 , (16)

where ‖ ⋅ ‖2 denotes the usual Euclidean norm. The right
hand side of (16) measures the collective RMS error in space
and time normalized with the spatiotemporal RMS norm
of the snapshots. Obviously, other norms (omitted here for
the sake of brevity) would be more appropriate when the
dynamics exhibit disparate localized behavior in space and/or
time.

For simplicity, only the temporal expansion (5) will
be considered in this section. The spatial expansion (9) is
obtained by just interchanging the roles of 𝑥 and 𝑡.
2.1.TheHODMDMethod. TheHODMDalgorithm proceeds
in two steps (see [8] for more details).
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Step 1 (dimension reduction). Applying truncated singular
value decomposition (SVD) [38] to the snapshot matrix 𝑉𝐾1
yields

𝑉
𝐾
1 ≃ 𝑃Σ𝑄⊤ ≡ 𝑃�̂�𝐾1 (or 𝑣𝑘 = 𝑃�̂�𝑘) ,

with �̂�
𝐾

1 = Σ𝑄⊤, (17)

where the matrix �̂�
𝐾

1 is known as the dimension-reduced
snapshot matrix and their columns, the dimension-reduced
snapshots, �̂�𝑘. The number of retained modes, which is the
spatial complexity defined above, 𝑀, is determined by a
(tunable) tolerance 𝜀1, requiring that the RRMS error of
the approximation, as defined in (16), be smaller than 𝜀1;
this error is easily computed in terms of the singular values
using well-known SVD formulae [38]. For noisy data we may
choose 𝜀1 comparable to the noise level, which helps to clean
the data [39]. Now we note that if we had a DMD expansion
for the dimension-reduced snapshots, as

�̂�𝑘 ≃ 𝑁∑
𝑛=1

𝑎𝑛�̂�𝑛e(𝛿𝑛+i𝜔𝑛)𝑡𝑘 for 𝑘 = 1, . . . , 𝐾, (18)

which in fact will be computed in the next step, substituting
this expansion into (17) (namely, premultiplying (18) by the
matrix 𝑃), then we obtain the DMD expansion (5) we are
looking for.

Step 2 (the DMD-d algorithm for the dimension-reduced
snapshots). Now, we must treat the standard DMD and
the HODMD algorithms separately. For ordinary DMD, we
consider the Koopman assumption (6) for the dimension-
reduced snapshots, which reads

�̂�𝑘+1 ≃ �̂�𝑡 �̂�𝑘, (19)

where the 𝑀 ×𝑀 matrix �̂�𝑡 (reduced Koopman matrix)
is computed from the dimension-reduced snapshots via the
pseudoinverse. Now, the reduced expansion (18) is computed
as follows. The reduced modes �̂�𝑛 are normalized eigen-
vectors of �̂�𝑡, the exponents are related to the eigenvalues,𝜇𝑛, as 𝛿𝑛 + i𝜔𝑛 = log 𝜇𝑛/Δ𝑡, and the amplitudes 𝑎𝑛 are
computed via least squares fitting (as in optimized DMD [19])
of the dimension-reduced snapshots in expansion (18). This
completes the algorithm for standard DMD.

Concerning HODMD, the counterpart of (6) for the
reduced snapshots,

�̂�𝑘+𝑑 ≃ �̂�1�̂�𝑘+𝑑−1 + �̂�2�̂�𝑘+𝑑−2 + . . . + �̂�𝑑�̂�𝑘, (20)

is treated using the enlarged snapshots

�̃�𝑘 ≡
[[[[[[[[[

�̂�𝑘

�̂�𝑘+1. . .
�̂�𝑘+𝑑−2

�̂�𝑘+𝑑−1

]]]]]]]]]
. (21)

Applying Step 1 above (a second dimension reduction that
eliminates redundancies between the snapshots and delayed
snapshots) gives a new set of enlarged dimension-reduced
snapshots, ̂̃𝑡𝑘, which are assumed to satisfy the counterpart of
(19), namely, ̂̃𝑡𝑘+1 ≃ �̃�𝑡̂̃𝑡𝑘, where thematrix �̃�𝑡 is computed via
the pseudo inverse, as above. The eigenvalues of eigenvectors
of �̃�𝑡 permit obtaining the counterpart of (18) for the enlarged
dimension-reduced snapshots. Considering only the first𝑀
components in this expansion, we obtain the dimension-
reduced expansion (18), where the mode amplitudes 𝑎𝑛 are
computed via least square fitting with the dimension-reduced
snapshots, which completes the derivation of (18) in the
HODMDmethod.

Once expansion (18) has been computed either for
standard DMD or for HODMD, the expansion is sorted
in decreasing order of the mode amplitudes and is further
truncated by eliminating those modes such that

𝑎𝑛𝑎1 < 𝜀2, (22)

for some tunable parameter 𝜀2.
Some remarks about the method are now in order:

(i) A solver for the DMD-𝑑 algorithm described above
can be found in [40].

(ii) It is interesting to note that the enlarged snapshots,
containing also the delayed snapshots, are defined
for the reduced snapshots (whose size is 𝑀), not for
the (usually much larger) original snapshots, which,
as anticipated, would greatly increase the computa-
tional cost of the method. In fact, the ratio of the
computational cost of HODMD to that of standard
DMD scales with a first or second power (depending
on the comparative values of 𝐽, 𝑀𝑑, and 𝐾) of𝐽/(𝑀𝑑), which is of order one in most applications
(but obviously not always).

(iii) Considering periodic or quasi-periodic dynamics,
and measuring the accuracy of the DMD recon-
struction with the RRMS error defined in (16), the
method is quite robust in connection with the tunable
parameters 𝑑, 𝜀1, and 𝜀2. In particular, the plot of the
RRMS error versus 𝑑 is fairly flat near the minimum,
which means that the selection of 𝑑 is not critical.
In principle, if the data were exact, the smaller 𝜀1
and 𝜀2, the better the approximation. However, in the
presence of noise or discretization/truncation errors,𝜀1 and 𝜀2 must be not too small to avoid that the
method captures unphysical modes. In other words,
these two parameters must be comparable to the
noise/errors level, but see the next remark. Finally,
the timespan 𝑡𝐾 − 𝑡1 and the time shift between
snapshots, Δ𝑡, must be selected as somewhat larger
and smaller than the largest and smallest involved
periods, respectively.

(iv) An obvious trade-off of the HODMD method is that
we have an additional tunable parameter 𝑑, which
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Figure 2: Toy model function defined in (16) (thin solid lines) and the reconstruction using DMD-800 (thick dashed lines) andDMD-1 (thin
dashed line).

is no present in standard DMD and must be chosen
via trial-and-error. However, as explained above, the
method is robust in connection with the parameter 𝑑.

(v) The parameters 𝜀1 and 𝜀2 can be seen as govern-
ing spatial and temporal truncation, respectively.
For finite accuracy and given values of the tunable
parameters, a new application of the method to the
HODMD reconstructed solution does not necessarily
give the same reconstruction. This is specially inter-
esting for noisy data, in which the iterative appli-
cation of the method (iterative HODMD, see [41])
improves noise filtering (beyond the well-known [39]
noise filtering effect associated with the application
of truncated SVD in Step 1). It is to be noted that
iterating HODMD with fixed tolerances 𝜀1 and 𝜀2
eliminates both spurious SVD modes and spurious
DMD frequencies, decreasing along the iterations
both the spatial and spectral complexities, 𝑀 and 𝑁,
respectively. The iteration is terminated when𝑀 and𝑁 do not decrease further. By choosing 𝜀1 and 𝜀2
comparable to the noise level, the method permits
uncovering physical phenomena that were masked by
noise in the original data. A striking example of the
ability of the iterative HODMDmethod to filter noise
and uncovering the physically relevant dynamics will
be given in Section 3.2.

(vi) When more than one spatial coordinate is present,
and spatial discretization is made in a structured
mesh in some of the spatial coordinates, the given
data can be organized in a snapshot tensor instead of
a snapshot matrix. In this case, standard DMD can
be substituted in Step 1 (see [41]) by HOSVD [42],
a well-known extension of standard DMD by Tucker
[43]. HOSVD decomposes the tensor as a linear

combination of tensor products of modes in the
various directions. The DMD-𝑑 algorithm is applied
separately (perhaps with different values of 𝑑) to the
various sets of modes.

2.2. Illustration of the HODMD Method in a Toy Model. Let
us first illustrate the method in the following quasi-periodic
simple toy model

V (𝑡) = √1 + 12 sin 𝑡 sin (√3𝑡). (23)

This model exhibits the incommensurable fundamental fre-
quencies √3 ± 1, which are somewhat disparate from each
other and their joint harmonics. The spatial complexity is𝑀 = 1, while the spectral complexity 𝑁 (which increases
as the accuracy of the reconstruction is required to be more
and more strict) is larger than one. The convenience of
using delayed snapshots when the spatial complexity is 1 was
alreadymentioned in [7].TheHODMDalgorithm DMD-800
is applied to a set of 𝐾 = 2000 snapshots in the timespan0 ≤ 𝑡 ≤ 32, with tolerances 𝜀1 = 10−10 and 𝜀2 = 10−4. The
method identifies 𝑁 = 27 frequencies and reconstructs the
snapshots with RRMS error, as defined in (16), ∼ 2 ⋅ 10−4 in
this interval. Thus, the original quasi-periodic function and
its reconstruction are plot-indistinguishable (see Figure 2-
left).Moreover, the extrapolation of this reconstruction to the
interval 180 ≤ 𝑡 ≤ 200 (Figure 2-right) is still quite good,
since the RRMS error is ∼ 2.7 ⋅ 10−3. On the contrary, the
standard DMD algorithm DMD-1 (Figure 2-left, thin dashed
line) identifies just one spurious frequency and gives a 𝑂(1)
RRMS error.

More realistic applications of the HODMD method and
its iterative extension are considered in the next section.
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3. Applications of HODMD

The discussion about spectral and spatial complexities is a
key point to understand the wide range of applications of
HODMD. As anticipated in Section 1 and further explained
in [11], there are several natural cases in which the spectral
complexity is larger than the spatial complexity.Here, we shall
concentrate on two such cases, one driven by numerical data
from the complex Ginzburg-Landau equation (CGLE) and
another by experimental data from the zero-net-mass-flux
(ZNMF) jet, which will be considered in Sections 3.1 and 3.2,
respectively. Additional applications will be briefly addressed
in Section 3.3.

3.1. Application to the CGLE. Let us consider the following
CGLE with periodic boundary conditions:

𝜕𝑡𝐴 = (1 + i𝛼) 𝜕2𝑥𝑥𝐴 + 𝜇𝑢 − (1 + i𝛽) |𝐴|2 𝐴, (24)

𝐴 (−1, 𝑡) = 𝐴 (1, 𝑡) ,
𝜕𝑥𝐴 (−1, 𝑡) = 𝜕𝑥𝐴 (1, 𝑡) . (25)

The dependent variable 𝐴 is complex and can be seen as the
complex amplitude when using (24) as the weakly nonlinear
“normal form”, which applies at the onset of oscillatory
instabilities in many relevant physical systems [34, 35]. The
CGLE is a well-known paradigm of pattern forming systems
that exhibits complex dynamics [44] due to the modulational
instability if 𝛼𝛽 < −1 (Newell’s condition [44]) and 𝜇
exceeds a threshold value. For typical values of 𝛼, 𝛽, and𝜇, the CGLE possesses an inertial manifold contained in
a linear subspace of dimension 20-30 (upper limit of the
spatial complexity), while the dynamics may be complex,
meaning that the spectral complexity can be large. Thus,
the standard DMD-1 algorithm fails except for the simplest
monochromatic attractors [8].

Problem (24)-(25) is invariant under the 𝑂(2) × 𝑆𝑂(2)
symmetry group generated by spatial translations and reflec-
tions, and phase shifts in 𝐴,

𝑥 → 𝑥 + 𝑐1,𝑥 → −𝑥,
𝐴 → 𝐴ei𝑐2 .

(26)

Because of the latter symmetry, it is convenient to write down
expansion (1) for the CGLE as

𝐴 (𝑥, 𝑡) = ei𝜔0𝑡
𝑁∑
𝑛=1

𝑎𝑛𝑢𝑛 (𝑥) ei𝜔𝑛𝑡, (27)

where the frequencies 𝜔1, 𝜔2, . . . are linear combinations with
integer coefficients of some fundamental frequencies, which
are generally incommensurable with 𝜔0. Thus, the dynamics
of𝐴 are more complex than those of |𝐴|. In other words,𝐴 is
periodic if |𝐴| is stationary, and 𝐴 represents a 2-torus if |𝐴|
is periodic. In the sequel, we consider just two attractors, one

such that |𝐴| is periodic and another such that |𝐴| is quasi-
periodic. Both attractors are obtained for

𝛼 = −10,
𝛽 = 10, (28)

and two values of 𝜇. Note that since |𝛼| and |𝛽| are both
somewhat large, dispersion and nonlinear detuning are large
compared to diffusion and nonlinear damping, respectively,
which is demanding from the computational point of view
and promotes complex dynamics. For the construction of the
databases, the equation is solved numerically using a Crank-
Nicolson plus Adams-Bashforth scheme [45] for temporal
discretization, with time step Δ𝑡 = 10−5, while the second-
order spatial derivative is discretized using centered finite
differences in a uniform grid of 1000 points. HODMD is
applied to a set of 2000 snapshots, collected in an appropriate
time interval of length 1, disregarding a transient time-stage.
In the two cases considered below, a good value of the index𝑑when applying the HODMD algorithm is 𝑑 = 50, while the
remaining tunable parameters are 𝜀1 = 10−8 and two values
of 𝜀2, namely,

𝜀2 = 5 ⋅ 10−3 (high accuracy) ,
𝜀2 = 10−4 (low accuracy) . (29)

Selecting these values of the tunable parameters as common
for the two cases considered below illustrates the robustness
of the method, which is further checked noting that low and
high accuracy computations are consistent among each other,
and the results coincide when different timespans are used in
the computations.

The first case to be considered in that for 𝜇 = 20, in which
using the DMD-50 algorithm, the RRMS reconstruction
error (see (16)) is ∼ 6 ⋅ 10−3 and ∼ 2 ⋅ 10−5 for low and
high accuracy, respectively, retaining 6 and 12 DMD modes,
respectively.The semilogarithmic plot of the DMDamplitude
versus frequency is plotted in Figure 3-left, where it can be
seen that the relevant points are approximately contained
in two straight lines centered at 𝜔0 = 11.6, which means
that expansion (27) converges spectrally; using the standard
DMD method (DMD-1 algorithm), instead, gives spurious
results, plotted with red symbols in the figure.The remaining
points obtained via the DMD-50 algorithm lie equispaced in
frequency, with a distance between them equal to 𝜔 = 118.7,
which means that the frequencies 𝜔𝑛 appearing in expansion
(27) are all (positive or negative) harmonics of 𝜔. Thus,|𝐴| is time-periodic (see Figure 3, middle), with a period2𝜋/𝜔, while 𝐴 is quasi-periodic (2-torus), with fundamental
frequencies 𝜔0 and 𝜔. Since 𝜔0 is small compared to 𝜔 the
pattern is slowly modulated (Figure 3, right). The spatial
modes appearing in the expansion (27), 𝑢𝑛, which are not
plotted for the sake of brevity, exhibit a reflection symmetry
around 𝑥 = −0.17 (indicated with a vertical white line in
Figure 3), meaning that the whole pattern also exhibits this
symmetry, consistently with the invariance of the problem
under the actions (26). This implies that the pattern can be
seen as a standing wave (SW), as indicated with the vertical
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Figure 4: Counterpart of Figure 3 for = 22.
while solid line in Figure 3, but it can also be considered as
either a right or left travelingwave (TW), as indicatedwith the
oblique dashed lines in this figure. This dual interpretation
cannot be ascertained from the shape of the modes 𝑢𝑛, but
this issue will be revisited and further checked in Section 5.1.

As a second case, we consider the value 𝜇 = 22 (Figure 4),
in which the dynamics are more complex. Again, the DMD-1
algorithm yields spurious results. Instead, for low and high
accuracy (see (29)), the DMD-50 algorithm retains 17 and
49 modes, giving a RRMS reconstruction error (see (16))∼ 8 ⋅ 10−3 and ∼ 2 ⋅ 10−4, respectively. The main difference
with the case considered in Figure 3 is that now the plot of
the amplitude versus the frequency forms a triangular pattern
that also decays spectrally but shows that, in addition to 𝜔0 =−21.2, the frequencies in the expansion in the right hand side
of (27) are linear combinations with integer coefficients of the
fundamental frequencies 𝜔1 = 156.6 and 𝜔2 = 22.2, which
are not easily identified in Figure 4, left. Thus, guessing that
the three fundamental frequencies are incommensurable, the
attractor for |𝐴| is contained in a 2-torus while that for 𝐴 lies
in a 3-torus. Finally, the middle and right plots in Figure 4

show that the pattern is a TW but, as in the former case,
elucidating this issue from the shape of the modes 𝑢𝑛(𝑥)
appearing in (27) turns out to be a difficult (and unnatural)
issue. The STKD method, which will be applied to the CGLE
in Section 5.1, instead, will solve this issue in a natural way.

In summary, the HODMD method is able to precisely
compute the temporal DMD expansion for the CGLE, giving
robust results and distinguishing between periodic and quasi-
periodic phenomena. However, identifying SWs and TWs
requires additional ingredients, which will be included in the
STKD method, developed in Section 4 and applied to the
CGLE in Section 5.1.

3.2. Application to the Zero-Net-Mass-Flux Jet. A zero-net-
mass-flux (ZNMF) jet [46, 47] is a pulsatile jet promoted by a
piston or membrane that interchanges fluid flow through an
orifice with an outer ambient fluid that is at rest far from the
orifice.Thenetmass flux is zero, but at largeReynolds number
there is a nonzero (and large) net flux of momentum that,
in addition to its own scientific interest, is useful in various
fields. For instance, synthetic jet actuators promote pulsatile
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Figure 5: Pseudo-streamlines in a meridional section for two representative snapshots of the injection (left) and suction (right) phases in the
ZNMF jet.

jets [48] that are useful in, e.g., mixing enhancement [49], jet
vectoring [50], heat transfer [51], and active flow control of
boundary layer separation [52].These jets are also relevant in
nature, in connection with squid, octopus, salp, and jellyfish
swimming [53].

It must be noted that the nonzero momentum flux at
large Reynolds number is due to the fact that, even if the
periodic forcing is temporally reflection symmetric, the flow
is highly nonreflection symmetric, as illustrated in Figure 5,
where an approximately rotationally symmetric jet produced
by a circular orifice is considered. As can be seen, a vortex
ring is formed in the injection phase that travels downstream,
while the suction phase is characterized by a saddle point that
separates the fluid reentering the cavity from that still moving
downstream.

The ZNMF jet promotes a complex flow structure that
involves various, disparate spatiotemporal scales, whose
understanding remains as an open topic. Thus, this is a
convenient problem to test the performance of the HODMD
method. Also, in order to test the noise filtering ability of
the iterative HODMD method, the analysis will be based on
experimental data resulting from particle image velocimetry
(PIV), as obtained [46, 47] in the experimental facility
for ZNMF jets of the Laboratory for Turbulence Research
and Combustion at Monash University. Such measurements
exhibit an error ∼ 2.4% at the 95% confidence level. Two
nondimensional parameters characterize the flow conditions,
namely the Reynolds and Strouhal numbers, defined as Re=𝑈𝐷/] and St= 𝑓𝐷/𝑈, respectively, where 𝐷 is the jet orifice
diameter, ] is the kinematic viscosity, 𝑈 is related to the peak
oscillation velocity of the piston 𝑉𝑝 as 𝑈 = 5𝑉𝑝/√2 (see [41]
for details), and 𝑓 is the piston oscillation frequency. In the
present case, we have Re= 13329 and St= 0.03, which give a
flow lying in the laminar-transitional regime.The flow is fully
turbulent in the far field, but laminar in the near field (near
the orifice), which will be the region of the jet considered
here; see [41] for further details on the experimental facility
and the PIV measurement.

The orifice is circular and the resulting near field flow
is approximately axi-symmetric, at least in the large scale.
The experimental data consists in 𝐾 = 1872 snapshots rep-
resenting 12 piston oscillation cycles, giving the streamwise
and radial velocity components, 𝑢(𝑥𝑖, 𝑟𝑗, 𝑡𝑘) and V(𝑥𝑖, 𝑟𝑗, 𝑡𝑘),
respectively, at 𝐼 × 𝐽 = 52 × 68 grid points in a meridional
rectangle (interrogation window), where 𝑥 and 𝑟 are the
streamwise and radial coordinates, respectively, with origin
at the center of the orifice and 𝑡 is the time variable, with

origin at the beginning of the suction phase.The time variable
has been rescaled such that the (nondimensional) oscillating
frequencies are measured in terms of the associated Strouhal
number defined above, meaning that the piston oscillating
period is 𝑇 = 2𝜋/0.03. Thus, we have a snapshot tensor
(instead of a matrix) and HOSVD must be used instead of
standard SVD in the first step of the HODMD method (see
[41] for details). Assuming permanent dynamics (zero or very
small growth rates) the aim of the iterative HODMDmethod
is to obtain an expansion of the form

𝑣 (𝑥, 𝑟, 𝑡) ≃ 𝑁∑
𝑛=1

𝑢𝑛 (𝑥, 𝑟) ei𝜔𝑛𝑡, (30)

The iterative DMD-𝑑 algorithm has been applied to obtain
this expansion using two values of the index 𝑑, namely, 𝑑 = 1
(standard DMD) and 𝑑 = 700 (strictly higher order DMD),
with two tolerance sets, namely,

𝜀1 = 𝜀2 = 2.4 ⋅ 10−2 (low accuracy) ,
𝜀1 = 𝜀2 = 10−2 (high accuracy) , (31)

which correspond to the estimated experimental error and
more precise computations, respectively. Using the latter
tolerances, below the experimental error, will permit eluci-
dating the ability of the iterative HODMDmethod to uncover
physical phenomena that are masked by the experimental
errors in the given data.

Figure 6 shows the amplitude versus frequency (nondi-
mensionalized as the Strouhal number) obtained in the
analyses. DMD-1 captures 11 modes, all of them spurious.

On the contrary, DMD-700 captures𝑁 = 19 and𝑁 = 49
DMD modes using low and high accuracy, respectively. It is
remarkable that the spatial complexity 𝑀 is much smaller
than the spectral complexity, 𝑁, since 𝑀 = 5 and 𝑀 = 11
for low and high accuracy, respectively, which justifies the
failure of DMD-1.Themethod shows that the flow is periodic
in the near field, with dominant frequency St= 0.03 (piston
oscillation frequency). Since the data are real, the DMD
modes appear in complex-conjugate pairs, meaning that the
retained modes contain the mean flow (St=0) and 9 and 24
nonzero harmonics for low and high accuracy, respectively.

The suction phase (see Figure 5-left) is not quite demand-
ing, since it just shows a saddle point at the axis of the
jet. The reconstructions using DMD-700 with low and high
accuracies are qualitatively similar to their counterparts for
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Figure 6: Amplitude versus St obtained for low accuracy via DMD-1 (red crosses) and DMD-700 (blue circles) and for high accuracy using
DMD-700 (black circles).
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Figure 7: Two snapshots in the suction phase, for 𝑡 = 𝑇/18 (left plot) and 𝑡 = 2𝑇/9 (middle plot), and a snapshot at the very beginning of
the injection phase, for 𝑡 = 𝑇/2 + 𝑇/72 (right plot).
the original PIV data. Themain difference is that the iterative
HODMDmethod gives smoother results with high accuracy
than with low accuracy, and both are smoother than the
original PIV data. This is an indication of the ability of the
method to filter experimental errors, but this issue cannot be
confirmed because the actual physical data are not available.
Concentrating on the reconstructions with low accuracy, it
is seen that the saddle point is created near the orifice at
the beginning of this phase and travels downstream to a
distance that is approximately equal to 2𝐷, where it remains
steady for most part of the suction phase (Figure 7, left and
middle plots). This saddle point is blown downstream at the
beginning of the injection phase, where a new saddle point
is created near the orifice that travels dowstream very fast
(Figure 7, right plot) and leaves the near field, in a short
timespan of the order of 𝑇/100. This saddle point must be
present for topological reasons, but it had never been seen
in studies previous to [41], just because it is quite short
living. In fact, it is not present in any of the snapshots used
to apply the HODMD method. It must be noted that this
saddle point would be present (with some spatial noise) in
the experimental snapshots if the sampling frequency was
sufficiently large. Thus, the identification of this saddle point
illustrates well the advantages of the temporal interpolation
that is implicit in the HODMDmethod.

The injection phase (see Figure 5, right) is more inter-
esting in the present context. Figure 8 shows a comparison
of the original data with the reconstructions provided by
DMD-700 for low and high accuracy. As can be seen, the
reconstructions are much smoother than the original PIV
data, as it happened in the suction phase. However, the
reconstruction with high accuracy (recall that this is below
the experimental error) is qualitatively different, since it
shows some small vortices leaving the edge of the cavity
that cannot be even guessed in the original PIV data and do
not appear in the low accuracy reconstruction because they
involve a quite small energy.These small vortices are smooth,
which may indicate that they are not artifacts associated
with higher order modes resulting from experimental errors.
However, this cannot be ascertained since the actual physical
dynamics is not available.Therefore, we have conducted some
numerical simulations to elucidate this point. The value of
the Reynolds number in the experimental data considered
above, Re∼13000, is a quite large value that would need huge
numerical resources, even using the computationally efficient
solver Nek5000 [54] (an open source spectral element code).
Therefore, we have performed computations using the lower
Reynolds number Re=1000 and the same Strouhal number as
in the experimental data considered above, namely, St=0.03.
The numerical counterpart of the snapshot considered in
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Figure 8: Instantaneous pseudo-streamlines and streamwise velocity contours for a representative snapshot (𝑡 = 𝑇/9) in the injection phase,
showing the original PIV data (left plot) and the reconstructions using DMD-700 for low (middle plot) and high (right plot) accuracy.
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Figure 9: Counterpart of the snapshot considered in Figure 5 but as
numerically computed for Re=1000.

Figure 8 is given in Figure 9, which confirms the presence of
the small vortices.

In summary, the results above illustrate well the ability
of the iterative HODMD method to both (i) take advantage
of temporal interpolation to uncover fast events (such as the
saddle point at the beginning of the injection phase) that
are not present in the snapshots and (ii) filter experimental
errors so well that some small patterns (such as the small
vortices in the injection phase) can be identified that were
completely masked by the experimental noise. In addition,
the analysis above permits constructing a purely data-driven
(from experimental data) ROM that reproduces well the
periodic behavior of the ZNMF jet and shows a fast online
operation.

3.3. Additional Applications. Some additional applications
are now briefly quoted.

The HODMD method permits identifying flow instabil-
ities by monitoring those DMD modes whose growth rate

changes sign. On the other hand, as anticipated, retaining
only those terms appearing in the DMD expansion (1) that
exhibit zero (or very small) growth rate, the final attractor
may be obtained from transient data. This latter idea can be
used to strongly decrease the CPU time required to compute
the final attractor, avoiding continuing the numerical inte-
gration until final attractor is reached, which may require an
extremely large timespan, specially near bifurcation points.
Transient dynamics are usually found in the initial stage of a
numerical simulation, where a large number of modes (either
physical or spurious) appear simultaneously.

Let us illustrate these two applications by considering the
cylinder wake, namely, the wake behind a circular cylinder
immersed in a free stream with constant, spatially uniform
velocity, which is a basic fluid dynamics problem [55, 56].This
problem depends on a unique nondimensional parameter,
the Reynolds number Re = 𝑈𝐷/], where𝑈 is the free stream
velocity, 𝐷 is the cylinder diameter, and ] is the dynamic
viscosity of the fluid, assumed to be incompressible. Thus,
the nondimensional velocity and pressure obey the continuity
and Navier-Stokes equations:

∇ ⋅ 𝑣 = 0, (32)

𝜕𝑣𝜕𝑡 + (𝑣 ⋅ ∇) 𝑣 = −∇𝑝 + 1
Re

Δ𝑣, (33)

which are usually integrated imposing 𝑣 is equal to the
free stream velocity at the inlet boundary, no-slip boundary
conditions at the boundary of the body, appropriate (non-
reflecting) boundary conditions at the sides and exit of the
computational domain, and periodic boundary conditions
in the spanwise direction, with a period 𝐿𝑧. The wake is
two-dimensional and steady for small Re, but at Re≃ 46 it
exhibits a first unsteady instability (Hopf bifurcation [57, 58])
that produces a still two-dimensional but unsteady, periodic
von Karman vortex street flow. The flow remains orbitally
stable up to Re≃ 190, where it suffers a secondary bifurcation
(Floquet multiplier= 1) and becomes three-dimensional [59]
for spanwise period 𝐿𝑧 > 3𝐷 (with D the cylinder diameter).
The resulting mode is a long-wave, periodic, flow known as
mode A. For larger values of Re, at Re=259, a second periodic
short-wavemode appears if 𝐿𝑧 > 1.5𝐷 that is known asmode
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Figure 10: Streamwise velocity contours for modes A (left) and B (right) obtained at Re= 280, with and 𝐿𝑧 = 6.99.
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Figure 11: Measurements upstream the wind turbine in the LiDAR experimental campaign. Data are available in the six planes that are closer
to the wind turbine, while the data on the seventh plane are to be predicted.

B. Modes A and B are illustrated in Figure 10. These modes
are usually obtained via Floquet stability analysis of the basic
two-dimensional periodic solution [59–61], but they can also
be obtained via HODMD applied to the whole dynamics
obtained via numerical simulations [62]. It is relevant to note
that for higher values of the Reynolds number, at Re ≃ 380,
a new instability takes place that is associated with a pair of
complex-conjugate Floquet multipliers that give a family of
quasi-periodic solutions [61].Thesemodeswere also identified
in [62].

As for temporal extrapolation via the HODMD method,
this idea has been used [11] precisely in the three-dimensional
cylinder wake, with Re=220 and 𝐿𝑧 = 4. The numerical data
was obtained using the above-mentioned numerical solver
Nek5000 [54]. Temporal HODMD extrapolation divided by
five the CPU time required computing the final attractor with
a reasonable accuracy; see [11] for further details.

Additional applications involving numerically generated
data include the analysis of the turbulent wake of a cross flow
wind turbine [63] and an off-shore wind turbine [64], as well
as the analysis of wakes interaction [65].

Concerning analyses based on experimental data, a good
example, linked to the field of renewable energies, is the
postprocess of light detection and ranging (LiDAR) [66, 67]
measurements. LiDAR is an experimental method for the
remote measurement of the line-of-sight component of wind
speed, usually employed in the wind energy industry with
different goals, including the maximization of the power
generated by the wind turbine. Measurements are made at

a few (say, 𝑀) points upstream the wind turbine, based on
detection of the Doppler shift for light backscattered from
natural aerosols transported by the wind in the atmosphere.
LiDAR measurements offer 𝑀 time-dependent signals that
present high noise levels (15 − 20%). Thus, the spatial
complexity 𝑀 is small, making HODMD a suitable tool to
analyze the data and detect the dominant frequencies. A
great difficulty is that LiDAR experiments only measure at
distances between 20 m and 200 m from the measurement
device, which is a restriction in certain situations. Figure 11
shows six planes of LiDAR measurements located at dis-
tances between 33 m and 201 m upstream the wind turbine.
HODMD is used to analyze such data and to predict the
wind velocity at a seventh distance (228 m), which is well
beyond the LiDAR device measurement range. The idea used
in [68] is to extrapolate the spatial modes in the DMD
expansion, guessing the data at the seventh distance with
relative errors ∼ 2%. The computational cost for predicting
these measurements is negligible, making it possible to easily
update the model in real-time (leading to a fast, purely data-
driven ROM).

Additional applications using experimental data where
the HODMD method have proved to give good results
including nonisothermal flows around square objects in a
channel [69] and the analysis of aeroelastic data in aircraft
flight tests [70]. The aim in the latter application is to
obtain the natural aeroelastic frequencies, and the associated
damping rates, of the various aircraft parts (e.g., wings or
fuselage) from data obtained at some sensors along the
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aircraft when this is subject to various types of impulsive
excitation.

4. Spatiotemporal Koopman Decomposition

As seen in the previous sections, HODMD is suited for
analyzing complex dynamics and provides accurate signal
descriptions in terms of dominant frequencies and DMD
modes. Nevertheless, the spatial components of the data ana-
lyzed may bring some relevant information that, combined
with the temporal information, helps in the analysis and
interpretation of the data.Themain benefit of this idea, which
gives rise to the spatiotemporal Koopman decomposition
(STKD) method presented below, is that it further simplifies
the spatiotemporal description of complex data in terms of
TWs.The STKDmethod leads to data approximations of the
type of (11), which for the sake of clarity is rewritten here as

𝑣 (𝑥,𝑦, 𝑡) = ∑
𝑚,𝑛

𝑎𝑚𝑛𝑢𝑚𝑛 (𝑦) e(]𝑚+i𝜅𝑚)𝑥+(𝛿𝑛+i𝜔𝑛)𝑡, (34)

for 𝑥1 ≤ 𝑥 ≤ 𝑥1 + 𝑋 and 𝑡1 ≤ 𝑡 ≤ 𝑡1 + 𝑇. This expansion
can be seen as a linear combination of monochromatic TWs,
with phase velocities 𝑐𝑚𝑛 = −𝜔𝑛/𝜅𝑚, which may be organized
in various types of more complex standing or propagative
patterns [28]. For a given finite accuracy, it is frequent that
only some combinations of 𝑚 and 𝑛 need to be retained
that, moreover, are grouped along straight lines in 𝜔 versus𝜅 plane (called the 𝜔-𝜅 diagram below), which may be either
horizontal or oblique and correspond to either standing or
traveling patterns, respectively.

Pure TWs are a particular case, in which the number of
spatial and temporal modes coincide, the amplitude matrix𝑎𝑛𝑚 is diagonal, 𝛿𝑛 = ]𝑚 = 0, and 𝜔𝑛 = −𝑐𝜅𝑚. Then, (34) can
be expressed as

𝑣 (𝑥 − 𝑐𝑡,𝑦) ≃ 𝑁∑
𝑛=1

𝑎𝑛𝑚𝑢𝑛𝑚 (𝑦) ei𝜅𝑚(𝑥−𝑐𝑡). (35)

In this case, the relevant points in the 𝜔 − 𝜅 diagram are in
a straight line passing through the origin. If 𝑐 = 0, then the
pattern is a pure SW. When the points in the 𝜔 − 𝜅 diagram
can be organized in families of horizontal or oblique, parallel
straight lines, then the pattern is a modulated SW or TW,
respectively. Combinations of these two give more general
patterns; see the examples presented below.

In some cases, the dynamics present oscillatory behavior
in more than one spatial direction. Concentrating for sim-
plicity in the case in which two spatial directions 𝑥 and 𝑦
are involved, the STKDmethod provides an expansion of the
type

𝑣 (𝑥, 𝑦, 𝑧, 𝑡) ≃ ∑
𝑚1,𝑚2,𝑛

𝑎𝑚1𝑚2𝑛𝑢𝑚1𝑚2𝑛 (𝑧)
⋅ e(]1𝑚1+i𝜅1𝑚1 )𝑥+(]2𝑚2+i𝜅2𝑚2 )𝑦+(𝛿𝑛+i𝜔𝑛)𝑡, (36)

which also give TWs. For instance, if the temporal and spatial
growth rates are all equal to zero and the wavenumbers and
frequencies are such that𝜔𝑛

√(𝜅1𝑚1)2 + (𝜅2𝑚2)2
= −𝑐,

𝜅2𝑚2 = 𝑑𝜅1𝑚1 ,
(37)

then pattern (36) represents a pure TW with phase velocity 𝑐
that propagates in the direction of the lines 𝑑𝑦−𝑥 = constant.
As in the simpler case in which only one spatial direction is
involved, pure SWs correspond to the case 𝑐 = 0, and more
general patterns are obtained combining these basic patterns.
The extension to the case in which the three spatial variables
are involved is straight forward.

4.1. The STKD Method. Let us now present the STKD
method, considering the discrete counterpart of (34), with
the discrete values of 𝑥 and 𝑡 defined as 𝑥𝑗 = 𝑥1 + 𝑗Δ𝑥
and 𝑡𝑘 = 𝑡1 + 𝑘Δ𝑡, for 𝑗 = 1, . . . , 𝐽 and 𝑘 = 1, . . . , 𝐾, withΔ𝑥 = 𝑋/𝐽 and Δ𝑡 = 𝑇/𝐾; as in the temporal HODMD
method, the continuous decomposition is obtained from the
discrete decomposition by just allowing 𝑥𝑗 and 𝑡𝑘 to take
continuous values. In addition, for simplicity, we consider a
scalar state variable in the strictly one-dimensional case, in
which no dependence on the transversal variable 𝑦 is present.
Namely, we substitute (34) by

V (𝑥𝑗, 𝑡𝑘) = ∑
𝑚,𝑛

𝑎𝑚𝑛𝑢𝑚𝑛e(]𝑚+i𝜅𝑚)𝑥𝑗+(𝛿𝑛+i𝜔𝑛)𝑡𝑘 , (38)

where themodes𝑢𝑚𝑛 are complex numberswith unit absolute
value. The method proceeds in two steps.

Step 1 (dimension reduction). As in HODMD, truncated
SVD with a tunable tolerance 𝜀1 (which determines the
number of retained SVD modes, 𝑀) is applied to the 𝐽 × 𝐾
snapshot matrix (15), but in the present case the reduced
spatial and temporal modes are scaled differently. In other
words, (17) is replaced by

𝑉
𝐾
1 ≃ 𝑃Σ𝑄⊤ ≡ (�̂�𝐽1)⊤ �̂�𝐾1 , (39)

where𝑀× 𝐽 and𝑀×𝐾matrices 𝑋𝐽1 and 𝑇
𝐾
1 are defined as

�̂�
𝐽

1 = √Σ𝑃⊤,
�̂�
𝐾

1 = √Σ𝑄⊤. (40)

Thesematrices are called the reduced spatial and temporal
snapshot matrices, respectively, and their columns, �̂�𝑗 and
�̂�𝑘, the reduced spatial and temporal snapshots, respectively.
Comparison between (40) and (17) shows that while the SVD
singular values were used in the temporal HODMD method
to scale the reduced temporal snapshots, they are equidis-
tributed now to rescale the reduced spatial and temporal
snapshots, which are both scaled with the square root of the
singular values.
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Step 2 (computation of the STKD expansion). The higher
DMD-d algorithm described in Section 2 is applied to the
reduced spatial and temporal snapshots, using appropriate
indexes 𝑑𝑥 and 𝑑𝑡, respectively, which leads to

�̂�𝑗 ≃ 𝑀∑
𝑚=1

𝑎𝑥𝑚�̂�𝑥𝑚e(]𝑚+i𝜅𝑚)𝑥𝑗 , for 𝑗 = 1, . . . , 𝐽, (41)

�̂�𝑘 ≃ 𝑁∑
𝑛=1

𝑎𝑡𝑛�̂�𝑡𝑛e(𝛿𝑛+i𝜔𝑛)𝑡𝑘 for 𝑘 = 1, . . . , 𝐾. (42)

The numbers of retained modes, 𝑀 and 𝑀, are the spec-
tral spatial and temporal complexities, respectively, and are
selected in terms of the spatial and temporal amplitudes, 𝑎𝑥𝑚
and 𝑎𝑡𝑛, respectively, as we did in Section 2. Namely,𝑀 and𝑁
are the smallest values of the indexes 𝑚 and 𝑛 such that

𝑎𝑥𝑀+1𝑎𝑥1 < 𝜀2,
𝑎𝑡𝑁+1𝑎𝑡1 < 𝜀2.

(43)

for some tunable tolerance 𝜀2.
Now, substituting (41)-(42) into the columns of the

reduced snapshot matrices �̂�𝐽1 and �̂�
𝐾

1 appearing in (39)
yields the STKD expansion (38), with

𝑎𝑚𝑛 = 𝑞𝑚𝑛 > 0,
𝑞𝑚𝑛 = 𝑞𝑚𝑛𝑞𝑚𝑛 ,

(44)

where

𝑞𝑚𝑛 = 𝑎𝑥𝑚𝑎𝑡𝑛 (�̂�𝑥𝑚)⊤ �̂�𝑡𝑛. (45)

Note that themodes 𝑞𝑚𝑛 are complex numbers exhibiting unit
absolute value, as required, and that the resulting expansion
(38) exhibits 𝑀 × 𝑁 spatiotemporal modes. However, this
number of modes can be decreased by eliminating those
modes such that

𝑎𝑚𝑛 < 𝜀2, (46)

where the threshold 𝜀2 is tunable.
The method described above can be called a parallel

method because the spatial and temporal variables, 𝑥 and 𝑡,
are treated in the same way. The extension of the method to
the case in which more than one spatial variable is involved
(see, e.g., (34) and (36)) is straight forward, except that the
snapshot matrix becomes a snapshot tensor and HOSVD
needs to be used instead of SVD in Step 1 (as in Section 3.2).
For the sake of brevity, we do not describe this extension here;
see [28] for a detailed development and illustration of this
extension.

Instead of the parallel method described above, a simpler
but less consistent sequential method may be used to obtain

the discrete STKD expansion (38) as follows. First, the
temporal DMD-𝑑 algorithm described in Section 2, with an
appropriate index 𝑑𝑡, is applied to the snapshot matrix, which
leads to

V (𝑥𝑗, 𝑡𝑘) ≃ 𝑁∑
𝑛=1

𝑎𝑡𝑛𝑢𝑡𝑛𝑗𝑒(𝛿𝑛+i𝜔𝑛)𝑡𝑘 . (47)

As a second step, we apply the spatial DMD-𝑑 algorithm, with
an appropriate index 𝑑𝑥, to the 𝑁 × 𝐽 snapshot matrix 𝑊𝐽1
whose (𝑛, 𝑗) element is 𝑎𝑡𝑛𝑢𝑡𝑛𝑗, which leads to

𝑎𝑡𝑛𝑢𝑛𝑗 ≃ 𝑀∑
𝑚=1

𝑎𝑥𝑚𝑢𝑥𝑚𝑛𝑒(]𝑚+i𝜅𝑚)𝑥𝑗 . (48)

Substituting this into (47) and setting

𝑎𝑚𝑛 = 𝑎𝑥𝑚𝑢𝑥𝑚𝑛 ,
𝑢𝑚𝑛 = 𝑎𝑥𝑚𝑢𝑥𝑚𝑛𝑎𝑥𝑚𝑢𝑥𝑚𝑛

(49)

yields the discrete expansion (38), as required. However, as in
the parallel method, the number of terms in this expansion is𝑀×𝑁, which can be decreased by ignoring those modes that
satisfy (46).

Two remarks about the sequential method are now in
order:

(i) The order in which the variables 𝑥 and 𝑡 are treated
above can be interchanged, which generally gives
slightly different results.

(ii) Aswith the parallelmethod,whenmore than one spa-
tial variable is present, the snapshot matrix becomes
an snapshot tensor and standard SVD must be
replaced by HOSVD in the application of the
HODMDmethod.

Because the parallel method is more consistent, specially
when treating more than one spatial variable, it will be this
method that will be used in the remainder of this section,
unless otherwise stated.

As with the HODMD, the STKD method can be used
to analyze experimental data. The noisy artifacts that may
cover the actual physical data can be cleaned using the
proper tolerances and applying the method iteratively (as in
the example presented in Section 3.2). Similarly, the STKD
method is suitable for analyzing transient dynamics (as in the
example shown in Section 3.3).

4.2. Illustration of the STKD Method in a Toy Model. Let us
now apply these two methods in the following toy model,
already considered in [29], defined as

𝑢 (𝑥, 𝑡) = (0.5 + sin 𝑥)
⋅ [2 cos (𝜅1𝑥 − �̃�1𝑡) + 0.5 cos (𝜅2𝑥 − �̃�2𝑡)] , (50)

with �̃�1 = 2, 𝜅2 = 10, �̃�1 = 2𝜋/45, and �̃�2 = √10. It is a simple
(but demanding because �̃�1 and �̃�2 are disparate from each



Complexity 15

100

90

80

70

60

50

40

30

20

10

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

00
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

x x

t t

2/1

2/2

Figure 12: Color map of the toy model (50) (left plot) and its restriction to the sampled spatiotemporal square where the STKD method is
applied (right plot).
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Figure 13: 𝜔 − 𝜅 diagram of the toy model (50).

other; see Figure 12-left) model that can be cast into the form
(34), with ]𝑚 = 𝛿𝑛 = 0, involving 12 wavenumbers, namely,±𝜅1, ±𝜅2, ±(𝜅1 ± 1), ±(𝜅2 ± 1), and 4 frequencies, namely, ±�̃�1
and ±�̃�2. Thus the spectral spatial and temporal complexities
are𝑀 = 12 and𝑁 = 4, respectively.The pattern is temporally
quasi-periodic because �̃�1 and �̃�2 are incommensurable, but
spatially periodic, with a period equal to 2𝜋.

The STKD method is applied in the sampled square 0 ≤𝑥 ≤ 10, 0 ≤ 𝑡 ≤ 5 (see Figure 12, right), where 𝑥 and𝑡 are discretized using 50 and 25 points, respectively. The
tunable parameters of the method are 𝜀1 = 10−8, 𝜀2 = 10−7,𝑑𝑥 = 1, and 𝑑𝑡 = 10. The obtained 𝜔-𝜅 diagram is given in
Figure 13, which shows that the pattern is a modulated TW,
obtained as a linear superposition of two pure TWs, whose
phase velocities are 𝑐1 = 𝜔1/𝜅1 = 𝜋/45 and 𝑐2 = 𝜔2/𝜅2 =1/√10. The method provides the involved 12 wavenumbers
and 4 frequencies with zero machine accuracy, while the

RRMS error (see (16)) of the reconstruction is ∼ 10−14. It
is remarkable that these extremely good results are obtained
using a sampled spatial interval that is somewhat larger to the
spatial period, but a temporal sampled interval that is much
smaller than the largest temporal period, which is 2𝜋/�̃�1 =45. Also note that the extrapolation from the sampled time
interval 0 ≤ 𝑡 ≤ 5 (Figure 12, right) to the larger time
interval 0 ≤ 𝑡 ≤ 100 (Figure 12, left) still produces a
good reconstruction, whose RRMS error, as defined in (16),
is ∼ 10−14.

The sequential method has also been applied to analyze
this toy model, obtaining results that are similar to those
described above.

5. Applications of STKD

Let us now illustrate in some applications the ability of the
STKD method to uncover the spatiotemporal structure of
complex dynamics. Among these applications, we consider
the CGLE (already analyzed with the temporal HODMD
method in Section 3.1) and the dynamics of the thermal con-
vection in a rotating spherical shell subject to gravitational
force.

5.1. Application of the STKD Method to the CGLE. For the
CGLE, the STKD counterpart of (27) is

𝐴 (𝑥, 𝑡) = ei𝜔0𝑡∑
𝑚𝑛

𝑎𝑚𝑛𝑢𝑚𝑛ei(𝜅𝑚𝑥+𝜔𝑛𝑡), (51)

where the modes 𝑢𝑚𝑛 are now unit complex numbers.
Concentrating on the two cases analyzed in Section 3.1 and
Figures 3 and 4, we use the same snapshots and tunable
parameters used in Section 3.1, including the index 𝑑𝑡, which
is set as being equal to the index 𝑑 used in Section 3.1. The
index 𝑑𝑥, instead, is set as 𝑑𝑥 = 1. In both cases, the RRMS
reconstruction errors, as defined in (16), are comparable to
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Figure 14: 𝜔-𝜅 diagrams resulting from the STKD method applied to the CGLE for the cases considered in Figure 3 (left plot) and Figure 4
(right plot). As in Figure 3, left, and Figure 4, left, crosses and circles label results obtained with high and low accuracies, respectively.

their counterparts obtained in Section 3.1 using the temporal
HODMDmethod, retaining 25 and 71 spatiotemporal modes
for low and high accuracy, respectively, in the case considered
in Figure 3 and 17 and 49 modes for low and high accuracy,
respectively, in the case considered in Figure 4. The 𝜔-𝜅
diagrams for these two cases are given in Figure 14. The
left plot in this figure shows that points can be conformed
in either horizontal or oblique straight lines, which clearly
indicates that the pattern can be considered as either a
modulated SW or a modulated TW, consistent with what
is clearly seen in Figure 3. As anticipated in Section 3.1,
the value of 𝜔0 in the expansion (51) equals 11.6, while
the frequencies 𝜔𝑛 appearing in the expansion in the right
hand side of (51) are positive and negative harmonics of
the fundamental frequency 𝜔1 = 118.7, which is associated
with the wavenumber 𝜅1 = 𝜋. Thus, this pattern is slowly
modulated (because 𝜔0 is small compared to 𝜔1) and when
it is seen as a TW, the phase velocity is 𝑐 = ±𝜔1/𝜅1 = ±37.8.

Concerning the right plot in Figure 14, the points in this
plot are conformed in the indicated oblique straight lines,
which means that the pattern is a modulated TW. As in
Section 3.1, the frequency 𝜔0 appearing in (51) equals -21.2,
while the various frequencies appearing in the expansion in
the right hand side of this equations are all combinations of
the fundamental frequencies 𝜔1 = 156.6 and 𝜔2 = 22.2,
whose associated wavenumbers are 𝜅1 = 𝜋 and 𝜅2 = 2𝜋,
respectively; the associated phase velocities are 𝑐1 = −𝜔1/𝜅1 =−49.8 and 𝑐2 = −𝜔2/𝜅2 = −3.53, which are indicated in
Figures 3 and 4, middle and right plots.

In summary, the STKD method computes quite well the
frequencies and wavenumbers involved in SWs and TWs for
the CGLE and permits straightforward identification of the
associated phase velocities.

5.2. STKD in aThree-Dimensional Spherical Shell with Radial
Thermal Convection, Subject to Radial Gravity. Let us con-
sider the three-dimensional thermal convection in a rotating
spherical shell, heated from the inside, subject to a radial

gravitational force. This problem is relevant in geophysical
and astrophysical fluid dynamics [71], in connection with the
transport of mass and energy in the upper atmospheres of
stars and giant planets, where it is specially interesting the
identification of periodic and quasi-periodic rotating waves
promoted by convective instabilities.

The continuity, momentum, and energy equations gov-
erning the dynamics of the flow, using the Boussinesq
approximation in a rotating (with angular velocity Ω) frame
linked to the spherical shell, are

∇ ⋅ 𝑣, (52)

𝜕𝑡𝑣 + (𝑣 ⋅ ∇) 𝑣 + 2𝐸−1k × 𝑣 = −∇Π + ∇2
𝑣 +Θr, (53)

𝜎 (𝜕𝑡Θ + 𝑣 ⋅ ∇Θ) = ∇2Θ + 𝑅𝜂 (1 − 𝜂)−2 𝑟−3r ⋅ 𝑣. (54)

Here, 𝑣, Π, and Θ are the velocity vector, the pressure, and
the perturbation of the temperature from the quiescent purely
convective state, respectively, r = (𝑥, 𝑦, 𝑧) is the position
vector referred to a Cartesian coordinate system, with the
origin at the center of the sphere and the 𝑧 axis along the
axis of rotation, 𝑟 = |𝑟|, and k is the unit vector along the𝑧 axis. The boundary conditions are homogeneous Dirichlet
for both the velocity and temperature at the inner and outer
spheres.

The problem depends on three nondimensional param-
eters, the Prandtl number𝜎 = ]/𝜅 (where ] and 𝜅 are the
kinematic viscosity and thermal conductivity, respectively),
the Eckman number𝐸 = ]/(Ω𝑑2) (where 𝑑 = 𝑟∗𝑜 − 𝑟∗𝑖 is
the radial gap between the spheres), the Rayleigh number𝑅 =𝛾𝛼Δ𝑇𝑑4/(]𝜅) (where 𝛼 is the thermal expansion coefficient,𝛾𝑟∗𝑖 is the imposed radial gravity, and Δ𝑇 is increment in
temperature), and the inner to outer radii ratio𝜂 = 𝑟∗𝑖 /𝑟∗𝑜 .
This problem is invariant under the symmetry group 𝑆𝑂(2)×
Z2, generated by rotations about the 𝑧 axis and up-down
reflection on the equatorial plane. Invariance under rotation
is essential to obtain TWs (which are rotating waves along the
azimuthal direction in the present context), most of which are
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Figure 16: A snapshot showing the contour levels of Θ at the indicated surfaces for 𝑅 = 8 ⋅ 105.
also (instantaneously) invariant under the up/down reflection
symmetry.

The computational domain is composed by 25, 128, and
32 grid points in the radial, colatitudinal, and azimuthal
directions, respectively. The numerical solver used to solve
this problem is described in [72–75], where the problem is
reformulated by taking the curl of the momentum equation
(which eliminates the pressure) and writing the solenoidal
velocity field (which eliminates the continuity equation) as

𝑣 = ∇ × (Ψr) + ∇ × ∇ × (Φr) , (55)

whereΨ and Φ are the toroidal and poloidal scalar potentials,
respectively, first introduced by Chandrasekhar [76]. The
numerical data used in the analysis below have been provided
to us by Professors Marta Net and Joan Sánchez. These data
correspond to 𝐸 = 10−4, 𝜂 = 0.35, 𝜎 = 0.1, and two values of
the Rayleigh number, namely, 𝑅 = 8 ⋅ 105 and 𝑅 = 1.1 ⋅ 106. In
both cases, the STKD method is applied to the temperature
field, which gives the expansion

Θ(𝑟𝑗1 , 𝜃𝑗2 , 𝜙, 𝑡) ≃ 𝑀,𝑁∑
𝑚,𝑛=1

𝑎𝑚𝑛Θ𝑚𝑛𝑗1𝑗2ei(𝑘𝑚𝜙+𝜔𝑛𝑡), (56)

where 𝑟𝑗1 and 𝜃𝑗2 denote the mesh points in the radial
and colatitudinal directions, respectively, and 𝜙 denotes the

azimuthal coordinate. As in the previous applications of the
STKD method, two sets of values of the tunable parameters
are considered, namely, (𝜀1, 𝜀2) = (10−4, 5 ⋅ 10−3) and (10−5, 5 ⋅10−4), which will be referred to as low and high accuracy,
respectively. The index 𝑑 may be selected as 𝑑 = 1 for both
the spatial and temporal applications of theHODMDmethod
that are needed in the second step of the STKD method.

For 𝑅 = 8 ⋅ 105, the STKD method is applied considering
100 equispaced snapshots in a time interval of length 0.3,
selected after sufficiently large timespan to eliminate transient
behavior. The RRMS reconstruction error, as defined in (16),
is 1.6 ⋅ 10−3 and 1.5 ⋅ 10−5 for low and high accuracies, respec-
tively, retaining 5 and 9 spatiotemporal modes, respectively.
The 𝜔 − 𝜅 diagram is as given in Figure 15, which shows that
for both low and high accuracy; the relevant points (whose
frequencies and wavenumbers are multiples of 𝜔1 = 45.5 and𝜅1 = 8, respectively) are in a straight line passing through the
origin. As explained in Section 4, this means that the pattern
is a periodic, pure TW; namely, it is steady in a rotating
frame with phase speed, 𝑐 = −𝜔1/𝜅1 = −5.69. Such a steady
solution is considered in Figure 16, where the fundamental
wavenumber 𝜅1 = 8 is clearly seen in the equatorial section𝜙 = 𝜋/2.

Concerning the case 𝑅 = 1.1 ⋅ 106, in which the dynamics
are more complex than in the former case, the STKDmethod
is applied considering 500 equispaced snapshots in a time
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Figure 18: The quasi-periodic TW for 𝑅 = 1.1 ⋅ 106: color maps of Θ along the azimuthal coordinate at the indicated equatorial circles.

interval of length 1.4, again selected after sufficiently large
timespan to eliminate transient behavior. Now, the RRMS
reconstruction error, as defined in (16), is 8 ⋅ 10−3 and 1.4 ⋅10−4 for low and high accuracies, respectively, retaining 17
and 47 spatiotemporal modes, respectively. The 𝜔-𝜅 diagram
is as given in Figure 17, where it can be seen that the
relevant points are aligned along oblique straight lines. The
fundamental frequencies and wavenumbers are (𝜔1, 𝜅1) =(47.6, 8) and (−239.8, 6), while the remaining points are linear
combinations (with integer coefficients) of these. Thus, the
pattern is a modulated TW, which is periodic in a frame
moving with either of the phase velocities 𝑐1 = 𝜔1/𝜅1 = −5.95
or 𝑐2 = 𝜔2/𝜅2 = 40.

Since the counterpart of the space-time diagrams pre-
sented for the CGLE in Section 3.1 would lead to four-
dimensional plots that are not possible in the present case,
the character of the pattern as a modulated TW is illustrated
in Figure 18 considering the restricted space-time diagrams
(along the azimuthal coordinate) in two equatorial circles.
As can be seen in these plots, the modulated TW character
(with the already identified phase velocities, indicated here
with straight lines) of the pattern is clearly seen.

5.3. Additional Applications. The STKD method has already
been used in the analysis of TWs appearing in the following:

(i) Off-shore wind turbines [64], whose structure is of
great technological interest

(ii) The three-dimensional cylinder wake [77], which
permits identifying well the TWs associated with the
already mentioned periodic modes A and B, and also
with some quasi-periodic modes. These modes play a
fundamental role in the associated dynamics [61]

Additional ongoing applications include the following:

(i) Interacting wakes of bluff bodies, which generally
gives complex quasi-periodic phenomena, including
at least the frequencies and wavenumbers associated
with the individual wakes

(ii) Several turbomachinery configurations
(iii) The reconstruction the 3D flow from various (PIV)

2Dmeasurements, taking advantage of the fact that if
the 3D flow is given by (34), then the whole unsteady
3D flow field may be reconstructed if the (steady) 2D
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modes 𝑢𝑚𝑛(𝑦) are available. These can be computed
by fitting with unsteady 2D measurements. Note that
this is a demanding application of great scientific and
technological interest

(iv) The identification of the large scale dynamics in fully
turbulent flows from either experimental (PIV) or
numerical data resulting from direct numerical simu-
lation. Again, this is a demanding application of great
scientific interest

6. Conclusions

A review has been presented on the purely data-driven
HODMD and STKD methods and their multiple applica-
tions. These methods decompose either temporal or spa-
tiotemporal experimental or numerical signals as a combi-
nation of modes. In particular, HODMD is an extension of
standard DMD that has general validity, namely it provides
good results (identifying the relevant temporal growth rates
and frequencies) in cases in which standard DMD fails.
STKD also computes the relevant spatial growth rates and
wavenumbers, and provides 𝜔 − 𝜅 diagrams that permit
identifying TWs or SWs in the given data. These methods
allow for two main tasks:

(i) Uncovering the physics underlying the given data.
In particular, in the case of experimental data, these
methods are able to filter noise quite efficiently and
extract patterns that were completely masked by
experimental noise.

(ii) Constructing ROMs whose online operation is very
fast. This is because the HODMD and STKD recon-
structions involve semianalytic descriptions that only
require a limited amount of operations.

The HODMD and STKD methods have been illustrated in
various applications of basic scientific interest, including the
CGLE, the ZNMF jet, the thermal convection in a spherical
rotating shell, and the wake of a circular cylinder. Several,
more engineering oriented applications dealing with, e.g.,
aircraft flight tests and wind turbine problems, have also been
considered.
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Copyright © 2018 FranckNguyen et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, computer vision enables recommending a reduced order model for fast stress prediction according to various possible
loading environments. This approach is applied on a macroscopic part by using a digital image of a mechanical test. We propose a
hybrid approach that simultaneously exploits a data-driven model and a physics-based model, in mechanics of materials. During a
machine learning stage, a classification of possible reduced order models is obtained through a clustering of loading environments
by using simulation data. The recognition of the suitable reduced order model is performed via a convolutional neural network
(CNN) applied to a digital image of the mechanical test. The CNN recommend a convenient mechanical model available in a
dictionary of reduced order models.The output of the convolutional neural network being a model, an error estimator, is proposed
to assess the accuracy of this output.This article details simple algorithmic choices that allowed a realistic mechanical modeling via
computer vision.

1. Introduction

In biomechanics, computer vision and mechanical testing
have been coupled to obtain patient-specific simulation
approaches, as proposed in [1]. At the same time, with
the growth of industry 4.0, imaging techniques are more
and more widespread in factories. When combined with
artificial neural networks, digital images enable the clas-
sification of products to obtain the best possible process,
as proposed in [2] for olive batches classification in oil
extracting process or as shown in [3] for composite mate-
rials manufacturing. Nowadays, we have the possibility of
extending these methods to the classification of mechanical
parts produced in industry, in order to develop part-specific
decision approaches. For mechanical parts, the quality of
manufacturing processes has a direct influence on the ulti-
mate mechanical properties of the manufactured parts. For
example, the way the fracture is initiated in a specimen
often reveals defects in the material whose origin can be
tracked back to the manufacturing process [4]. In general,
the numerical computation of mechanical stresses in a given

manufactured part allows the predictive evaluation of the
link between the ultimate mechanical properties of this part
and the manufacturing process. The reader can find an
example of how to optimize a process for curing composite
parts in [5] according to this paradigm. The mechanical
modeling of manufactured parts has for purpose to verify if
defects induced by a manufacturing process are tolerable, if
an observed part must be rejected, or if the manufacturing
process must be improved.

In this paper, we restrict our attention to the stress
prediction in a part under an observed loading environment
by a digital image, while including all its geometrical defects.
We propose a hybrid approach that simultaneously exploits a
data-driven model and a physics-based model, in mechanics
ofmaterials. The reader can find a review on hybrid modeling
in [6] for remaining useful life predictions of engineering
systems. We show that the strength of the proposed hybrid
modeling is its ability to incorporate an error estimator
related to the modeling chain with computer vision and
convolutional neural networks (CNN) [7, 8].
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As explained in [9], computer vision with deep convo-
lutional neural networks has achieved state-of-the-art per-
formance on standard recognition datasets and tasks. In this
paper, we explore the capabilities of a CNNas a recommender
system for the mechanical modeling of structures submitted
to various loading. The proposed hybrid modeling couples
a noncentered principal component analysis (PCA) and a
CNN, in order to preserve an accurate description of spatial
information.

Image processing for computer vision is usually very
fast. It does not make sense to couple computer vision with
numerical simulations of mechanical stresses that take hours
of computation. Hence, we couple computer vision with
reduced order modeling of structures, in order to get fast
mechanical predictions of stresses.

A reduced order model is a surrogate model obtained by
the projection of high dimensional equations on a reduced
space, and it also involves a reduced approximation space
for the variables of the high dimensional problem. When
they are the same, the surrogate model is a Galerkin reduced
order model [10]. In hyperreduced order models these two
reduced spaces are different [11]. Then, because we consider
projection of physics-based equations, hyperreduced order
models preserve the physical parameters involved in the
high dimensional equations. The reduced spaces involved
in the hyperreduced modeling are spanned by empirical
modes extracted from simulation data, by using the proper
orthogonal decomposition [10] of known finite element pre-
dictions. This procedure is similar to a noncentred principal
component analysis (PCA). Hence, the proposed model-
ing via computer vision exploits both simulation data and
observational data, which are, respectively, finite element
predictions and digital images of mechanical tests.

In general, the empirical modes obtained by noncentred
PCA are very sensitive to the loading environment imposed
when computing the simulation data. If the variety of loading
conditions considered to calculate simulation data is too
wide, the number of empirical modes becomes too large.
They can no longer reduce the numerical complexity of the
mechanical balance equations. Clusteringmethods have been
applied for model-order reduction in [12, 13], in order to
preserve small reduced-bases of empirical modes. Moreover,
cluster-based reduced order modeling (CROM) has been
proposed in [14] to define a small subset of critical data to
learn an efficient (CROM)with a sparse approximation space
[15]. In this paper, a dictionary of hyperreduced ordermodels
is generated by considering clusters of possible loading
environments in the observed mechanical tests. Then, the
identification of the hyperreduced order model is done via
recognition of a class of mechanical loads by a convolutional
neural network. In practice, each item of the dictionary
is not directly a hyperreduced order model. In order to
face a possible variability on the geometry of the observed
structures, it ismore robust to define an item of the dictionary
as a set of finite element solutions for various ideal geometries
and for a given class ofmechanical loads.Hence, the proposed
workflow is robust enough to face geometrical defects in
the observed mechanical parts. We assume that the mesh
for the finite element modeling of the parts is obtained by

using image-meshing techniques, as proposed in [16], of
segmented 3D digital images obtained by X-ray computed
tomography. We refer the reader to [17, 18] for more details
on finite element modeling of 3D images obtained by X-
ray computed tomography. An example of X-ray computed
tomography applied to manufactured parts can be found in
[19].The ideal geometries involved in the proposed workflow
were obtained by using computer-aided-design (CAD). Such
CAD models are usually used to find an optimal design
of the manufactured parts, with parametric finite element
simulations [20].

2. Materials and Methods

Prior to the stress prediction, a reduced order model is
setup for the projection of the mechanical balance equations.
Here the reduced order model concerns the displacement in
the observed mechanical part. Usually, for the computation
of reduced approximations in nonlinear problems, we for-
mally consider all possible situations in a given parameter
space [21]. The parameters aim to describe all the possible
mechanical problems, in advance, before the observation of
a realization of one situation. This approach defines a tensor
for the description of all possible displacements. The order
of this tensor is the number of scalar parameters involved
in the parametric equations, plus one. For instance, if a
single parameter is introduced then we need two indices
i and j to have access to the value of the ith degree of
freedom of a finite element model for the jth value of the
parameter. WhenD parameters are introduced, we need D+1
indices: i, j(1), . . . j(D), to have access to a scalar value in the
tensor containing all the possible displacements. This tensor
formalism aims to introduce a sampling procedure of the
parameter space in order to get an estimation of the reduced
approximation, or a reduced basis, for the displacements.
For instance, this sampling procedure can be achieved by
the proper generalized decomposition (PGD) [21] or the
Tensor Train decomposition [22, 23]. In this paper, the
loading environment is depicted by an image of 3968 × 2976
pixels. Then the parameter space dimension is around 12
millions (the number of pixels) for the description of all
possible loading environments. Hence the tensor formalism
for model-order reduction would require the decomposition
of a tensor of order 12 millions. To our knowledge, no
tensor decomposition method has been applied to such a
huge tensor order. A purely tensor approach seems to be
unaffordable. In this paper, we do not pretend tomodel all the
possible solutions of mechanical equations related to a huge
parameter space. We do not follow the usual paradigm of low
rank approximations. The proposed image-based modeling
aims to exploit available data for fast approximate predictions
with fast error estimation.

The workflow of the proposed modeling via computer
vision is shown in Figure 1. Four kinds of inputs are required:

(i) a 2D digital image of the part in the test machine, this
image is denoted by 𝐼∗;

(ii) a database where are saved all simulation data,
orderedwith respect to a cluster index𝛽 and the index
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Figure 1: Workflow of the reduced order modeling via computer vision. The inputs are on the top of the figure; the outputs are the stress
prediction 𝜎(𝑥,𝑉∗𝛾∗) by using an hyperreduced order model and an error estimator 𝜂 related to the accuracy of the reduced basis 𝑉∗.

of the available ideal mesh in the list (𝐺𝑗)𝑀𝑗=1, these are
the meshes used when generating the simulation data
by the finite element method;

(iii) a 3D voxel image of the part alone, we assumed
that this 3D image is obtained by X-ray computed
tomography;

(iv) a measurement of the load magnitude at the end
of the mechanical test and a measurement of the
displacement at one fixed point of on the part, at the
end of the test.

The CNN network aims to recognize the index 𝛽 of the
class of loading environment. It gives access to the simulation
data required to create on the fly a hyperreduced ordermodel.
Themeasurement of the displacement magnitude helps to get
a precise location of the load by solving an inverse problem
with hyperreduced equations as proposed in [24].

The stress predicted by the hyperreduction is obtained
via constitutive equations in the framework of elasticity. It
depends on the spatial position in the part, denoted by 𝑥, and
nodal values of the displacement, denoted by the vector 𝑞∗.
This vector has 𝑑∗ components. 𝑑∗ is the order of the finite
element model of the part. The superscript ∗ is introduced
for the variables related to the observed mechanical part in
the experimental setup. The mesh of the mechanical part
is denoted by 𝐺∗ and the stress is denoted by 𝜎(𝑥, 𝑞∗).
The reduced approximation of the displacement reads 𝑞∗ ≈
𝑉 ∗ 𝛾∗, where 𝑉∗ is the matrix form of the reduced basis
(it has less columns than rows) and 𝛾∗ is the solution

of the hyperreduced balance equations. Since the finite
element method is a numerical scheme for partial differential
equations, Dirichlet boundary conditions are applied on the
boundary of the domain occupied by the mesh. Here these
conditions are null. Hence the displacements belong to a
vector space, which is a subspace of a Hilbert space. The
columns of 𝑉∗ span a subspace of this vector space. They
fulfill the Dirichlet boundary conditions applied on 𝐺∗. The
hyperreduced balance equations are set on a reduced mesh𝐺R∗, which is the restriction of 𝐺∗ to the finite elements
connected to a given list of degrees of freedom, denoted by
F. The residual of the finite element equations is denoted by
𝑟∗(𝑞∗). Hence the hyperreduced balance equation reads [20]

𝑉
∗𝑇 [𝐹, :] 𝑟∗ (𝑉∗𝛾∗) [𝐹] = 0 (1)

The larger the set F the higher the computational complexity
of the projection of the equations when considering the
observed geometry. In the sequel, F is the set of degrees
of freedom (dof) indices near the loading areas on 𝐺∗
supplemented by the list of dof in a region of interest. When
𝑉∗ is the identity matrix and F contains all the dof of the
mesh, then (1) returns to the original finite element equations,
𝑟 ∗ (𝑞∗) = 0.
Property 1. The following property holds: if the finite element
solution is unique, if the solution of the hyperreduced equa-
tion is unique, and if the reduced basis is exactly reproducing
the finite element solution, the hyperreduced solution is
exact. Hence the following expression holds: 𝑞∗ = 𝑉 ∗ 𝛾∗.
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In hybrid hyperreduced order models proposed in [24,
25], the reduced basis is extended with few finite element
shape functions available inside 𝐺R∗. By construction, these
shape functions are not connected to the remaining elements
of 𝐺∗. The set of indices of these shape functions is denoted
by P. It is a subset of F, by construction. For the sake
of simplicity, we order the degrees of freedom such that𝑃 = {1, . . . card(𝑃)} ⊂ 𝐹, where card(P) is the number of
elements in the set P. Hence the reduced basis of the hybrid
hyperreduced order model, denoted by 𝑉H, is the following
block matrix:

𝑉
𝐻 = [[[

[
𝐼𝑃
𝑉∗

0
]]]
]

(2)

where 𝐼𝑃 is the identity matrix in dimension card(P). By sub-
stituting 𝑉H for 𝑉∗ in the hyperreduced balance equations,
one obtains the hybrid hyperreduced equations, of which
solution is denoted by 𝛾𝐻. If the projection of 𝑞∗ on 𝑉∗
is exact, then it has also an exact projection on the larger
subspace spanned by 𝑉H. According to Property 1, if 𝑉∗ is
exact and if the hybrid hyperreduced equations have a unique
solution, then the first components of 𝛾𝐻 should be zero
and the last one should be equal to 𝛾∗. It turns out that if
𝑉∗ is exact and if the hybrid hyperreduced equations have a
unique solution, then the stress predictions 𝜎(𝑥,𝑉∗𝛾∗) and
𝜎(𝑥,𝑉𝐻𝛾𝐻) are equal. Hence, the following error estimator is
proposed, in order to assess the accuracy of the hyperreduced
ordermodel that has been recognized by the computer vision
workflow:

𝜂 (𝑥,𝑉∗) = 𝑐 𝜎 (𝑥,𝑉∗𝛾∗) − 𝜎 (𝑥,𝑉𝐻𝛾𝐻) , 𝑥 ∈ Ω𝑅 (3)

where Ω𝑅 is the spatial domain occupied by the reduced
mesh 𝐺R∗ and c is a constant. The larger 𝐺R∗, the more
complex the error estimation. When 𝜎(𝑥,𝑉𝐻𝛾𝐻) fulfills the
finite element equilibrium equations, this error indicator is
similar to the error indicator proposed in [26] for standard
materials. If 𝑐 = 1, if Ω𝑅 is the domain occupied by the full
mesh 𝐺∗, and if P contains all the dof indices, then 𝜂(𝑥,𝑉∗)
is the true error.The constant c can be evaluated by following
the procedure proposed in [25]. Here, we assume that 𝑐 =1.

As shown in Figure 1,𝑉∗ is obtained by a noncentred PCA
applied on simulation data 𝑋∗. These data are displacement
fields 𝑋(𝛼,𝛽) remapped on mesh G∗ from the mesh G𝛼 and
restrained to the loads in the class 𝛽 of the load clustering.
This clustering of loading environments in the mechanical
tests is presented below. A simple interpolation of the data
in 𝑋(𝛼,𝛽) is done for the remapping of the displacement
fields on the mesh G∗ for nodes in the domain occupied
by G𝛼. For nodes in G∗ that are not in the domain occu-
pied by the mesh G𝛼, the remapping is done via Laplace’s
equation with an enforced continuity at the boundary of
G∗ and outside G𝛼. In practice, a robust model reduction
is achieved if the meshes (𝐺𝑗)𝑀𝑗=1 are restricted to elements

that are not connected to nodes submitted to a concentrated
load or a Dirichlet boundary condition. In the remapping
procedure, the Dirichlet boundary conditions are enforced as
Dirichlet boundary conditions of the Laplace’s equation.Then
𝑋(𝛼,𝛽) fulfills the Dirichlet boundary condition on the mesh
G∗.

The clustering of loading environments in the mechanical
tests is performed by using the simulation data mentioned
in the workflow in Figure 1. Unfortunately, these data do
not have the same dimension since they are supported by
different meshes (𝐺𝑗)𝑀𝑗=1. Then, they are remapped on the
mesh of a bounding box that surrounds all the meshes(𝐺𝑗)𝑀𝑗=1, so comparisons are easier. The extrapolation of the
data outside themeshes (𝐺𝑗)𝑀𝑗=1 follows the Laplace’s equation
again. The remapped simulation data on the bounding box
are saved in the tensor 𝑋 ∈ R𝐿×𝑑×𝑀×�̃� of order 4. Four
indices are introduced to have access to scalar values saved
in 𝑋. This value is denoted by 𝑋(𝑖, 𝑝, 𝑗, 𝑛), where i is the
load case index, p is the dof index in the bounding box, j is
the index of the mesh in the list (𝐺𝑗)𝑀𝑗=1, and n is the index
related to additional parameter variations. For instance, local
variations of the mechanical properties have the capability
to enrich the simulation data for model-order reduction as
proposed in [11]. When considering simulation data related
to finite element models, a high resolution in spatial fields
is achieved by high dimensional finite element space. Hence𝑑, the second dimension of 𝑋, is often larger than 105 and
can reasonably be up to 107 in industrial applications. In
very high-dimension spaces, all the data are “far away” from
the centre. Hence, a feature extraction is required in the
framework of mechanical modeling, prior to clustering the
simulation data. Several tensor decomposition methods are
available in the literature for feature extraction. For instance,
the k-PCA has been coupled to the proper generalized
decomposition method in [27, 28] for extracting hidden
model parameters. We refer the reader to [29] for a review
on feature extraction. Here, we adopt a hierarchical Tucker
format [30]:

𝑋(𝑖, 𝑝, 𝑗, 𝑛) = 𝑑∑
𝑠=1

�̂�𝑝𝑠𝑋(𝑖, 𝑠, 𝑗, 𝑛) , 𝑑 ≤ 𝑑, (4)

where �̂� is obtained by the following truncated singular value
decomposition:

�̂� = �̂��̂��̂�𝑇,
𝑆𝑖𝑖 > 𝑆𝑖−1 𝑖−1 > 0, (5)

where �̂� is the reshape of𝑋 as a second order tensor:

𝐴𝑝𝑘 = 𝑋 (𝑖, 𝑝, 𝑗, 𝑛) ,
𝑘 = (𝑖 − 1)𝑀�̃� + (𝑗 − 1) �̃� + 𝑛 (6)
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We restrict the clustering of data to features in dimension 2,
for the ease of results visualization, and on the two following
average data:

⏞⏞⏞⏞⏞⏞⏞𝑋 (1)𝑖 = 1𝑀�̃�
�̃�∑
𝑛=1

𝑀∑
𝑗=1

𝑋(𝑖, 1, 𝑗, 𝑛) ,
⏞⏞⏞⏞⏞⏞⏞𝑋 (2)𝑖 = 1𝑀�̃�

�̃�∑
𝑛=1

𝑀∑
𝑗=1

𝑋(𝑖, 2, 𝑗, 𝑛)
(7)

This two-dimensional feature space enables visualizing clus-
ters on loading environments. Here, we arbitrary select K
clusters by using the k-meansmethod. In the future we would
experiment other clustering methods such as graph-based
clustering, for instance. Then, we obtain a partition of the
simulation data into K sets 𝐶1, . . . 𝐶𝐾. Each set is a list of
loading indices in {1, . . . L}.Then the original simulation data
related to the cluster 𝐶𝛽 and the mesh 𝐺𝛼 are𝑋(𝑖, 𝑝, 𝛼, 𝑛), for
i in 𝐶𝛽, p in {1, . . . 𝑑} and n in {1, . . . �̃�}.

The CNN architecture chosen for this work is based on
the layer composition initially described in [31]. The input
to the CNN is a fixed-size RGB image of 246 × 246 pixels,
denoted ℎ0. This input image is obtained by downscaling the
original 3968 × 2976 images denoted by 𝐼∗ in Figure 1.

The image goes through a set of convolutional layers
followed bymax-pooling layers.The convolution and pooling
stack is repeated 3 times. The rectified linear unit (ReLu)
activation function [8] is used for the convolutional layers.
This function is denoted by ⟨∙⟩+. Each layer generates a
feature map, denoted by ℎ𝑘 after the 𝑘th layer. Each feature
map is a tensor of order 3, which dimensions are denoted by𝑁𝑘1 , 𝑁𝑘2 , 𝑁𝑘3 . The first feature map is ℎ0. The 𝑘th convolution
layer applies linear filters to ℎ𝑘−1. Each linear filter is deter-
mined by the weights 𝑊𝑘 and the bias 𝑏𝑘𝜏 , such that

ℎ𝑘 (𝑖, 𝑗, 𝑝) = ⟨ 3∑
𝛼=1

3∑
𝛽=1

𝑊𝑘 (𝛼, 𝛽, 𝜏)

⋅ ℎ𝑘−1 (𝑖 + 2 − 𝛼, 𝑗 + 2 − 𝛽, 𝑙) + 𝑏𝑘𝜏⟩
+

(8)

where 𝑝 = (𝜏 − 1)𝑁𝑘−13 + 𝑙, 𝜏 = 1, . . . 𝑚𝑘𝐹, 𝑚𝑘𝐹 is the number
of filters in the kth layer, 𝑖 = 2, . . .𝑁𝑘−11 −1, 𝑗 = 2, . . . 𝑁𝑘−12 −1,
and 𝑙 = 1, . . .𝑁𝑘−13 . The first convolution layer uses 32 filters;
the next two use 64 filters. Here, the convolution kernel size
is set to 3 × 3 and the stride to 1 pixel, no padding is used.The
max-pooling is performed with windows of 2 × 2 pixels and
a stride of 2. It reads

ℎ𝑘 (𝑖, 𝑗, 𝑝) = max
𝛼,𝛽∈{0,1}

ℎ𝑘−1 (𝑖 + 𝛼, 𝑗 + 𝛽, 𝑝) (9)

where 𝑖 = 2 𝑖 − 1, 𝑗 = 2 𝑗 − 1. The output of the last pooling
layer is flattened and fed through 3 fully connected layers: the

Figure 2: Experimental setup. A mechanical load of 159.9 N is
applied on the top of the part in white. A displacement is measured
at a fixed point.

first one has 512 nodes and the second one 64 nodes; those
first two layers use the ReLu activation function. The third
layer is a soft-max layer with 4 nodes thus performing the 4-
way classification task, such that

ℎ𝑘𝑖 = 𝑒ℎ𝑘−1𝑖
∑4𝑗=1 𝑒ℎ𝑘−1𝑗 , 𝑖 = 1, . . . 4 (10)

In order to reduce overfitting, dropout regularization is
implemented for the first fully connected layer with a dropout
rate of 50%.

3. Results and Discussion

3.1. Experimental Setup. We consider a very simple mechan-
ical test on a part in order to check its manufacturing process
via the stress distribution in the part and the related response
of the part submitted to various loading environments on the
top of it. An image of the experimental setup is shown on
Figure 2.Themodeling via computer vision aims to recognize
the loading environment applied on the part, in order to
predict stresses by using a hyperreduced order model. The
magnitude of the load and the vertical displacement at a fixed
point are measured precisely during the mechanical test. But
the location of the load has to be determined by the computer
vision approach. We are considering L=18 possible loading
cases regularly spaced on the top of the part.

The region of interest shown in red in Figure 3 is hidden
in Figure 2 by the experimental setup. If this region of interest
would be visible on each image of the experimental design, a
digital image correlation [32] approach could have provided
an estimate of the mechanical stresses in the part. But it is not
appropriate here, because the part is partially masked in some
digital images.
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Figure 3: The red, blue, and yellow regions have been submitted
to variations of the Young modulus in order to enhance the space
spanned by the simulation data. The region in red is the region of
interest selected by the designer of the experimental setup.Themesh
shown here is the mesh G4. It has 5. 10

5 degrees of freedom.

3.2. Simulation Data, Feature Extraction, and Clusters of
Mechanical Loading. Prior to starting the manufacturing
process, the experimental setup has been designed by using
finite element simulations on four ideal geometries (M=4).
The material of the part is elastic, for each mesh Gj. The
mechanical constitutive equations are the following:

1 + 𝜐𝐸 𝜎 (𝑥, 𝑞𝑗) − 𝜐𝐸 tr [𝜎 (𝑥, 𝑞𝑗)] 𝐼 = 𝑑∑
𝑖=1

𝜀𝑖 (𝑥) 𝑞𝑗𝑖 (11)

where 𝜀𝑖 is the symmetric part of the ith finite element shape
function related to the ith degree of freedom of the mesh,
E is Young’s modulus, and 𝜐 is Poisson’s coefficient. The
mechanical properties of the material are E = 1,600 MPa,𝜐 = 0.3. Here, the residual of the finite element equilibrium
equation reads

𝑟𝑗𝑖 (𝑞𝑗) = ∫
Ω(𝐺𝑗)
𝜀𝑖 (𝑥) : 𝜎 (𝑥, 𝑞𝑗) 𝑑𝑥 + 𝐹𝛿𝑖𝜃 (12)

Here, 𝜃 is the dof indexwhere the load F is applied downward,Ω(𝐺𝑗) is the spatial domain occupied by the mesh 𝐺j, and𝛿𝑖𝜃 is the Kronecker delta. The observed magnitude of the
mechanical load is 159.9 N.

For each geometry, three local variations of the Young
modulus of -20% have been simulated by the finite element
model, in order to enhance the space spanned by using the
simulation data. The regions affected by these variations are
shown in Figure 3. It turns out that we have done �̃�= 4
predictions of the displacement fields, for each geometry and
each loading case. The region of interest is shown in red in
Figure 3. It covers the subdomain where stress concentrations
are expected to be highest during the mechanical test.

An example of the remapping of a vertical displacement
field onto the bounding box is shown on Figure 4. The mesh
of the bounding box has 𝑑= 8. 105 dofs.The first feature mode
(the first column of �̂�) is shown in the right of Figure 4. This
feature mode is consistent with the bending simulation of the
mechanical parts.

We have arbitrary chosen K = 4 centroids to cluster the
mechanical loadings. The L points (⏞⏞⏞⏞⏞⏞⏞𝑋 (1)𝑖 , ⏞⏞⏞⏞⏞⏞⏞𝑋 (2)𝑖 ) are shown
in Figure 5 with the 4 clusters presented by red circles.

3.3. Observational Data. About 250 high resolution digi-
tal images for each class of loading have been generated
before starting anymechanical experiment. Examples of such
images are shown on Figure 6. It takes approximately 10
minutes to get 1000 images. The size of each image is 3968× 2976 pixels.

3.4. Training and Testing the Convolutional Neural Network.
The CNN has been implemented with Keras library in
TensorFlow. The train/test set was built following a 90/10
ratio upon the 1000 digital images of loading environments.
The volume of training data was artificially increased by
using a synthetic data augmentation strategy. Each “original”
imagewas transformed using a combination of random sheer,
zoom, and horizontal flip values. The sheer was limited
to a maximum of 10% and the zoom to a maximum of
30%.

The training was performed by optimizing a multino-
mial cross entropy loss using a minibatch gradient descend
approach with the RMSprop adaptive learning rate method;
batch size is set to 32 and the model is trained on 120K steps
(60 epochs).

The performance of the CNN is assessed on the test
set; a top-1 error value of 1.9% was achieved. This great
performance is explained by the easiness of the classification
task due to no large variations between input images being
observed, since they are all related to the same experimental
setup.

3.5. Hyperreduction of Finite Element Equations. The mod-
eling via computer vision has been applied to a mechanical
test. The mesh G∗ of the part is in red in Figure 7. The
smallestHausdorff distance between the idealmeshes andG∗
is achieved by G4, so 𝛼 = 4.This is the grey mesh superposed
to G∗ in Figure 7. There is 𝑑∗=8. 105 dof in G∗.

The digital image of the mechanical part in the exper-
imental setup is shown in Figure 8. The convolutional
neural network recognizes the class number 3 of loading
environment. Then 𝛽=3, and we can extract the simulation
data from the database in order to compute the reduced basis
𝑉∗, by using the noncentred PCA. We restrict this reduced
basis to five empirical modes. Hence, the projection error of
the selected simulation data on this reduced basis is less than
0.1%.

The reduced mesh 𝐺R∗ is generated on the fly. It is
shown in Figure 9. Here, F is a set of dof in the region
of possible loading for class #3, plus the dof close to the
displacement measurement, plus the dof in the region of
interest. The elements of 𝐺R∗ are the elements connected to
F.

3.6. Stress Prediction and Error Estimation. A finite ele-
ment simulation takes 45 min. The stress prediction by the
hyperreduced order model shown in Figure 10 is obtained
in less than 10 min. 99% of this computational time is
spent for the solution of (1). By choosing a smaller set
of degrees of freedom F, one can obtain prediction in
less than 2 min. The larger the set F, the longer the
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Figure 4: On the left, examples of vertical displacements in the bounding box superposed to the related finite element prediction, for the
mesh G1 on the top and the mesh G4 on the bottom, with a colour scale related to the displacement magnitudes. On the right, the first feature
mode �̂�[: , 1], for vertical displacements too.

Figure 5: L=18 points (⏞⏞⏞⏞⏞⏞⏞𝑋 (1)𝑖 , ⏞⏞⏞⏞⏞⏞⏞𝑋 (2)𝑖 ) submitted to the k-means
methods with the K=4 clusters shown by red circles.

simulations. As we can see in Figure 10, the elements of
reduced mesh GR∗ are not necessarily in a continuous
domain. As explained in [11], the boundary conditions at
the interface between GR∗ and the remaining elements
of G∗ are similar to Dirichlet boundary conditions. They
are enforced by the empirical modes of the reduced basis.
Then, the mechanical coupling between the discontinu-
ous parts of the mesh GR∗ is enforced by the empirical
modes.

The exact error on the average stress in the region of
interest is 0.1%. The map of the error estimator is shown in
Figure 11. The dark grey elements in the reduced mesh (see
Figure 9) are connected to the dof in set P. According to
(1) by substituting the hybrid reduced basis 𝑉𝐻 for 𝑉∗, the
first finite element residuals are null, for i in {1, . . . card(𝑃)}.
Hence the error estimator 𝜂(𝑥,𝑉∗) accounts partially for
errors in finite element equilibrium equations. As shown

in [26], these errors explain the discrepancy between the
hyperreduced prediction and the finite element prediction of
the stress.

4. Conclusions

The proposed reduced order modeling is related to very
huge parameter space of dimension twelve millions, mainly
due to the input image of the loading environment. The
accuracy of the stress prediction is satisfactory to assess
the quality of the process with mechanical considerations,
even if the region of interest is hidden by the experimental
setup. It is also reasonably fast in order to be inserted
into a manufacturing process, aiming for part-specific deci-
sions.

The output of the proposed workflow has a high spatial
resolution. This is achieved by coupling a PCA, a clustering
and a convolutional neural network. A local error estima-
tor aims to indicate the discrepancy between the output
and the stress that a finite element simulation would give
corresponding to the loading environment recognized by
the convolutional neural network. But this error indicator
does not evaluate recognition errors, neither error on the
mechanical behaviour of the observed material. So, the
hyperreduced order model may not be the best that the
available data could give.

In this paper, the inputs of the reduced order model are
nonparametric loading conditions. They are defined solely
by images of the loading environment. Since digital colour
images are third order tensors, we expect a possible general-
ization of the workflow to more complex thermomechanical
loading environments and more complex variations for the
geometry of the observed parts.

Here, no Big-Data is required to train the proposed
reduced order modeling via computer vision. The training
starts with a nonsupervised machine learning by using
a noncentred PCA and a clustering procedure, both on
simulation data. Then, the CNN is trained on digital images
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Load class #1 Load class #2 Load class #3 Load class #4

Figure 6: Sample images for each of the four loading environment classes.

Figure 7: G∗ is in red; the closest ideal mesh is G4 in grey.

Figure 8: Digital image 𝐼∗ of the part in the experimental setup.

u = 

u = 

F(t), u = u = 

Figure 9: A transparency effect has been added to the full mesh𝐺∗.
Both dark grey and red finite elements are in the reducedmeshGR∗.
The grey elements are connected to degrees of freedom in the set P
related to the hybrid approximation.

Figure 10: vonMises stress, ‖𝜎(𝑥,𝑉∗𝛾∗)− (1/3)tr[𝜎(𝑥,𝑉∗𝛾∗)]𝐼‖, in
the reduced mesh GR∗.

0.% 0.15% 0.30%

Figure 11: Error estimator 𝜂(𝑥,𝑉∗)/maxy∈Ω𝑅‖𝜎(𝑦,𝑉𝐻𝛾𝐻)‖ × 100 in
the region of interest, where stresses are the highest.

by supervised machine learning upon the classes defined by
the clustering procedure. Obviously, this approach can be
implemented with larger sets of data.
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portement non linéaire [Ph.D. thesis], Mines ParisTech, 2017,
https://pastel.archives-ouvertes.fr/tel-01783950.

[24] J. Baiges, R. Codina, and S. Idelsohn, “A domain decomposition
strategy for reduced order models. Application to the incom-
pressible Navier-Stokes equations,” Computer Methods Applied
Mechanics and Engineering, vol. 267, pp. 23–42, 2013.

[25] J. Fauque, I. Ramière, and D. Ryckelynck, “Hybrid hyper-
reduced modeling for contact mechanics problems,” Interna-
tional Journal for NumericalMethods in Engineering, vol. 115, no.
1, pp. 117–139, 2018.

[26] D. Ryckelynck, L. Gallimard, and S. Jules, “Estimation of the
validity domain of hyper-reduction approximations in gener-
alized standard elastoviscoplasticity,” Advanced Modeling and
Simulation in Engineering Sciences, vol. 2, no. 1, 2015.
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[28] González, J. V. Aguado, E. Cueto, E. Abisset-Chavanne, and F.
Chinesta, “kPCA-Based Parametric Solutions Within the PGD
Framework,” Archives of Computational Methods in Engineerin:
State-of-the-Art Reviews, vol. 25, no. 1, pp. 69–86, 2018.

[29] N. Lee, AH. Phan, F. Cong, andA. Cichocki, “Nonnegative Ten-
sor TrainDecompositions forMulti-domain Feature Extraction
andClustering,” inNeural Information Processing. ICONIP 2016,
A. Hirose, S. Ozawa, K. Doya et al., Eds., 2016.

[30] L. Grasedyck, “Hierarchical singular value decomposition of
tensors,” SIAM Journal onMatrix Analysis and Applications, vol.
31, no. 4, pp. 2029–2054, 2009/10.

http://www.theses.fr/2014LIL10157
https://pastel.archives-ouvertes.fr/tel-01783950


10 Complexity

[31] D. C. Ciresan, U. Meier, J. Masci et al., “Flexible, high perfor-
mance convolutional neural networks for image classification,”
in Proceedings of the IJCAI Proceedings-International Joint Con-
ference on Artificial Intelligence, vol. 22, 2011.

[32] T. C. Chu, W. F. Ranson, and M. A. Sutton, “Applications of
digital-image-correlation techniques to experimental mechan-
ics,” Experimental Mechanics, vol. 25, no. 3, pp. 232–244, 1985.



Research Article
Applied Koopman Theory for Partial Differential Equations and
Data-Driven Modeling of Spatio-Temporal Systems

J. Nathan Kutz ,1 J. L. Proctor,2 and S. L. Brunton3

1Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
2Institute for Disease Modeling, 3150 139th Ave SE, Bellevue, WA 98005, USA
3Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA

Correspondence should be addressed to J. Nathan Kutz; kutz@uw.edu

Received 1 June 2018; Accepted 27 August 2018; Published 2 December 2018

Academic Editor: Qingdu Li

Copyright © 2018 J. Nathan Kutz et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We consider the application of Koopman theory to nonlinear partial differential equations and data-driven spatio-temporal
systems. We demonstrate that the observables chosen for constructing the Koopman operator are critical for enabling an
accurate approximation to the nonlinear dynamics. If such observables can be found, then the dynamic mode decomposition
(DMD) algorithm can be enacted to compute a finite-dimensional approximation of the Koopman operator, including its
eigenfunctions, eigenvalues, and Koopman modes. We demonstrate simple rules of thumb for selecting a parsimonious set of
observables that can greatly improve the approximation of the Koopman operator. Further, we show that the clear goal in
selecting observables is to place the DMD eigenvalues on the imaginary axis, thus giving an objective function for observable
selection. Judiciously chosen observables lead to physically interpretable spatio-temporal features of the complex system under
consideration and provide a connection to manifold learning methods. Our method provides a valuable intermediate, yet
interpretable, approximation to the Koopman operator that lies between the DMD method and the computationally intensive
extended DMD (EDMD). We demonstrate the impact of observable selection, including kernel methods, and construction of
the Koopman operator on several canonical nonlinear PDEs: Burgers’ equation, the nonlinear Schrödinger equation, the cubic-
quintic Ginzburg-Landau equation, and a reaction-diffusion system. These examples serve to highlight the most pressing and
critical challenge of Koopman theory: a principled way to select appropriate observables.

1. Introduction

Data-driven mathematical methods are increasingly impor-
tant for characterizing complex systems across the physical,
engineering, social, and biological sciences. These methods
are aimed at discovering and exploiting a relatively small
subset of the full space where low-dimensional models can
be used to describe the evolution of the system. Thus, solu-
tions can often be approximated through dimensionality
reduction methods where if n is the dimension of the original
high-dimensional system and r is the dimension of the sub-
space (or slow-manifold) where the dynamics is embedded,
then r≪ n. The reduced order modeling (ROM) community
has used this to great effect in applications such as large-
scale patterns of atmospheric variability [1], turbulent flow

control architectures [2], and/or spatio-temporal encodings
in neurosensory systems [3]. Traditionally, the large-scale
dynamics may be embedded in the low-dimensional space
using, for instance, the proper orthogonal decomposition
(POD) in conjunction with Galerkin projection. More
recently, the Dynamic Mode Decomposition (DMD) and
its Koopman generalization have garnered attention due
to the fact that they can (i) discover low-rank spatio-
temporal patterns of activity and (ii) they can embed the
dynamics in the subspace in an equation-free manner, unlike
the Galerkin-POD method of ROMs. In this manuscript, we
demonstrate that the judicious, and parsimonious, selection
of observables for the Koopman architecture can yield
accurate low-dimensional embedding for nonlinear partial
differential equations (PDEs) while keeping computational
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costs down and avoiding costly cross-validation. Critical to
its success is an appropriate choice of observables, which is
demonstrated to act as a nonlinear manifold learning
method. We demonstrate the success of the method, and
compare it to traditional DMD, on several canonical PDE
models: Burgers’ equation, the nonlinear Schrödinger equa-
tion, the cubic-quintic Ginzburg-Landau equation, and a
λ − ω reaction-diffusion system.

Historically, the DMD method originated in the fluid
dynamics community as a principled technique to decom-
pose complex flows into a simple representation based on
low-rank spatio-temporal coherent structures. Schmid [4]
first defined the DMD algorithm and demonstrated its abil-
ity to provide physically interpretable insights from high-
dimensional fluid data. The growing success of DMD stems
from the fact that it is an equation-free data-driven method
capable of providing an accurate decomposition of a com-
plex system into spatio-temporal coherent structures that
may be used for diagnostic analysis, short-time future state
prediction, and control. Importantly, Rowley et al. [5]
showed that DMD is connected to the underlying nonlinear
dynamics through Koopman operator theory [6] and is
readily interpretable using standard dynamical system tech-
niques [7–10]. Specifically, the DMD algorithm is a manifes-
tation of Koopman theory when the observable functions are
the identity or a linear transformation of the underlying
state space. Thus, DMD is a principled algorithmic architec-
ture allowing for an explicit approximation of the Koopman
operator. For more details, there are numerous detailed
references [5, 11, 12].

The approximation of the Koopman operator via DMD is
critically important for enabling evaluation of the operator
from data. Indeed, it transforms Koopman theory from an
abstract mathematical conception to a readily tractable
computation. It also highlights the important role played by
observables and their associated evolution manifolds. In
particular, nonlinear PDEs can be thought to evolve on
manifolds which are often difficult to characterize and are
rarely known analytically. A correct choice of observables
can, in some cases, linearize the nonlinear manifold. For
instance, the nonlinear evolution governed by Burgers’ PDE
equation can be linearized by the Cole-Hopf transformation,
thus providing a linear manifold which can trivially describe
the evolution dynamics. Such exact solutions to nonlinear
PDEs are extremely rare and do not often exist in practice,
with the inverse scattering transform (IST) for Korteweg-
deVries, nonlinear Schrödinger, and other integrable PDEs
being the notable exceptions [13]. Regardless, judiciously
chosen observables can help transform a PDE evolving on a
strongly nonlinear manifold to a weakly nonlinear manifold,
enabling a more accurate and broader range of applicability
of the Koopman approximation.

The selection of appropriate observables remains one of
the most important and open challenges for Koopman
theory. The widely used DMD algorithm simply takes the
state space variable as the observable. This provides the
simplest approximation to the Koopman operator. An alter-
native approach has been advocated by Williams et al. and
Kevrekidis et al. [14, 15] whereby machine learning concepts

(e.g., support vector machines (SVM)) are used to project the
data to a large number of variables using the so-called
extended DMD and kernel DMD (EDMD) methods. Thus,
the DMD approximation is computed in a large set of non-
linear observables of the original data. Recently, it has been
shown that the EDMD method is equivalent to the varia-
tional approach of conformation dynamics (VAC) [16, 17],
which was first derived by Noé and Nüske in 2013 for
simulating slow processes in stochastic dynamical systems
applied to molecular kinetics [18, 19]. The authors further
show that time-lagged independent component analysis
(TICA) [20, 21], which was originally developed in 1994,
is closely related to the DMD algorithm [17]. Regardless
of the EDMD/VAC strategy, it is well known in the
machine learning literature, such projections into higher
dimensional space, through SVM or deep neural nets,
can lead to improved predictions at the cost of loss of
interpretability. It also projects to variables that may have
no natural association with the underlying physics or nonlin-
ear manifold of the dynamics being considered. Importantly,
Klus et al. [17] show that the EDMD/VACmethod requires a
principled cross-validation strategy in order to make the
technique useful.

Our approach is aimed at improving the straightforward
DMD approximation by adding a parsimonious set of judi-
ciously chosen variables which are motivated by the govern-
ing equations, i.e., it is a version of EDMD with only a few
extra variables. Thus, simple choices of nonlinear observables
can greatly improve the Koopman approximation. Moreover,
we show that a clear goal in selecting observables is to move
DMD eigenvalues onto the imaginary axis. We show that
selecting a parsimonious set of observables allows us to
capitalize on the EDMD architecture while only incurring a
marginal increase in computational costs and avoiding costly
cross-validation for computing an improved approximation
to the Koopman operator. Further, the judicious choice of
observables can also be used to help understand the non-
linear manifold on which the dynamics evolve. Ultimately,
this provides a valuable third option for variable selection
that sits between the standard application of the DMD
and EDMD methods.

2. Koopman Theory, Observables, and Dynamic
Mode Decomposition

The original work of Koopman in 1931 [6] considered
Hamiltonian systems and formulated the Koopman opera-
tor as a discrete-time mapping. In the following year,
Koopman and von Neumann extended these results to
dynamical systems with continuous spectra [22]. Critical
to implementing this definition numerically is understand-
ing how to choose a finite set of observables g x . This
remains an open challenge today and will be addressed
in our PDE examples.

By construction, the Koopman operator is a linear
infinite-dimensional operator that acts on the Hilbert space
H of all scalar measurement functions g. The Koopman
operator acts on functions of the state space of the dynamical
system, trading nonlinear finite-dimensional dynamics for
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linear infinite-dimensional dynamics. It can be further gener-
alized to map infinite-dimensional nonlinear dynamics to
infinite-dimensional linear dynamics by appropriate choice
of observables. In practice, the computation of the Koopman
operator will require a finite-dimensional representation.
The advantage of the Koopman representation is compelling:
linear problems can be solved using standard linear operator
theory and spectral decompositions. With such methods,
the infinite dimensional representation is handled by con-
sidering a sufficiently large, but finite, sum of modes to
approximate the Koopman spectral solution.

The Koopman operator is defined for discrete-time
dynamical systems. A continuous dynamical system will
induce a discrete-time dynamical system given by the flow
map Ft M⟶M, which maps the state x t0 to a future
time x t0 + t :

Ft x t0 = x t0 + t = x t0 +
t0+t

t0

f x τ dτ 1

This induces the discrete-time dynamical system

xk+1 = Ft xk , 2

where xk = x kt . The analogous discrete-time Koopman
operator is given by K t such that K tg = g ∘ Ft . Thus, the
Koopman operator sets up a discrete-time dynamical system
on the observable function g:

K tg xk = g Ft xk = g xk+1 3

If an appropriate Koopman operator can be constructed,
then linear operator theory provides the spectral decompo-
sition required to represent the dynamical solutions of
interest. Specifically, the eigenfunctions and eigenvalues
of the Koopman operatorK give a complete characterization
of the dynamics. We consider the eigenvalue problem

Kφk = λkφk 4

The functions φk x are Koopman eigenfunctions, and
they define a set of intrinsic measurement coordinates, on
which it is possible to advance these measurements with a
linear dynamical system. The low-dimensional embedding
of the dynamics is ultimately extracted from the Koopman
eigenfunctions. More precisely, a reduced-order linear model
can be constructed by a rank-r truncation of the dominant
eigenfunctions φk.

A vector of observables g, which is in our new mea-
surement space, may be expressed in terms of Koopman
eigenfunctions φ as

g x =

g1 x
g2 x
⋮

gp x

= 〠
∞

k=1
φk x vk, 5

where vk is the kth Koopman mode associated with the
kth Koopman eigenfunction φk, i.e., it is the weighting
of each observable on the eigenfunction. In the original
theory [6], Koopman considered Hamiltonian flows that
are measure preserving, so that the Koopman operator is
unitary. In this case, the eigenfunctions are all orthonormal,
and (5) may be written explicitly as

g x = 〠
∞

k=1
φk x

φk, g1
φk, g2
⋮

φk, gp

= 〠
∞

k=1
φk x vk 6

The dynamic mode decomposition algorithm is used to
compute an approximation to the Koopman eigenvalues λk
and modes vk.

The nonlinear dynamical system defined by f and the
infinite-dimensional linear dynamics defined by K are
equivalent representations of a dynamical system. One can
either evolve the system in the original state space, requir-
ing computational effort since it is nonlinear, or one can
instead evolve using (5) so that the time dynamics are
trivially computed

Kg x =K 〠
∞

k=1
φk x vk = 〠

∞

k=1
Kφk x vk = 〠

∞

k=1
λkφk x vk

7

Thus, future solutions can be computed by simple multi-
plication with the Koopman eigenvalue. Such a mathematical
strategy for evolving nonlinear dynamical systems would
always seem to be advantageous. However, it remains an
open challenge how to systematically link the observables g
and the associated Koopman mode expansion to the original
evolution defined by f . For a limited class of nonlinear
dynamics, this can be done explicitly [23].

In theory, the modification of the Koopman operator to
PDEs would generate eigenfunctionals of the Koopman oper-
ator. In practice, the discretization of space and time, either
in experiment or simulation, yields a high-dimensional
system of ODEs. The PDE itself imposes clear relations
between the high-dimensional data which correspond to
spatial locations. Specifically, the data generated from the
PDE most certainly inherit the underlying dynamics
enforced by spatial relations and their spatial derivatives,
leading to dimensionality-reduction and low-rank truncation
possibilities. In our examples, the spatio-temporal patterns
can be represented in POD/DMD modes with a truncation
using the dominant r modes. This truncation to a low-
dimensional space is a direct consequence of the PDE nature
of the solutions. For a thorough discussion of the difference
simply between high-dimensional ODEs and PDEs, please
see [24].
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Figure 1 illustrates the underlying concept in the Koop-
man approach. A dynamical system consisting of snapshots
xk evolves according to the nonlinear dynamical system
defined by Ft in (2). In the state space, the nonlinearity gen-
erates a nonlinear manifold in which the data are embedded.
The DMD approximation produces a least-square fit linear
dynamical system approximating the flow map and the
low-dimensional embedding (left panel of Figure 1). Koop-
man theory ideally defines an operator that attempts to
linearize the space in which the data are embedded. The
Koopman operator then produces a linear flow map and
low-dimensional embedding that approximates the full
nonlinear dynamics (right panel of Figure 1).

The nonlinear manifold on which the dynamics evolve
can change due to parameter changes in the PDE. For
instance, the dynamics can undergo bifurcation and generate
a new nonlinear manifold. This requires building a new
Koopman operator to characterize the dynamics. The Koop-
man embedding can be used to build libraries of low-rank
representations for the dynamics. The concept of library
building of low-rank “features” from data is well established
in the computer science community. In the reduced-order
modeling community, it has recently become an issue of
intense investigation. Indeed, a variety of recent works have
produced libraries of ROM models that can be selected
and/or interpolated through measurement and classification
[25–31]. Alternatively, cluster-based reduced order models
use a k-means clustering to build a Markov transition model
between dynamical states [32]. More recently, such tech-
niques have been applied using the DMD approximation
for the Koopman operator [33]. The modeling of parametric
systems remains an open challenge for model reduction
frameworks.

3. The DMD and Koopman Algorithms

The DMD algorithm underlies the computation of the Koop-
man eigenvalues and modes directly from data. Its effective-
ness depends sensitively on the choice of observables.
Rowley et al. [5] showed that DMD approximates the Koop-
man operator for the set of observables g x = x. We will use
this fact in constructing a DMD algorithm for observables of
x instead of the state variable itself. To start, we use the fol-
lowing definition of the DMD decomposition [11]:

Definition 1.Dynamic mode decomposition [11]: suppose we
have a dynamical system (2) and two sets of data

X =
∣ ∣ ∣

x1 x2 ⋯ xm
∣ ∣ ∣

, 8a

X′ =
∣ ∣ ∣

x1′ x2′ ⋯ xm′

∣ ∣ ∣

, 8b

with xk an initial condition to (2) and x′k its corresponding
output after some prescribed evolution time Δt with there
being m initial conditions considered. The DMD modes are
eigenvectors of

AX =X′X†, 9

where † denotes the Moore-Penrose pseudoinverse.

The above definition provides a computational method
for evaluating the Koopman operator for a linear observable.
In practice, three practical constraints must be considered:
(i) We have data X and X′, but we do not necessarily know
Ft · , (ii) We will have to make a finite-dimensional approx-
imation to the infinite-dimensional Koopman operator K ,
and (iii) We will have to judiciously select the observables
g x in order to have confidence that that Koopman opera-
tor will approximate the nonlinear dynamics of Ft · . Points
(i) and (ii) go naturally together. Specifically, the number of
measurements in each column of X and X′ is n, while the
number of total columns (time measurements) is m. Thus,
finite-dimensionality is imposed simply from the data col-
lection limitations. The dimension can be increased with a
large set of observables, or it can be decreased via a low-
rank truncation during the DMD process. The observables
are more difficult to deal with in a principled way. Indeed, a
good choice of observables can make the method extremely
effective, but it would also require expert knowledge of
the system at hand [23]. This will be discussed further in
the examples.

xn

xn + 1
yn

yn + 1
yk = g (xk)

M

KoopmanDMD

Figure 1: The left panel illustrates the nonlinear manifold on which the dynamical system defined by Ft in (2) generates a solution. DMD
approximates the evolution on this manifold by a least-square fit linear dynamical system. In contrast, the selection of appropriate
observables g x define a Koopman operator that helps linearize the manifold so that a least-square fit linear dynamical system provides a
much better approximation to the system (right panel).
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The following gives a practical demonstration of how to
use the data, the DMD algorithm, and the observables to pro-
duce a Koopman operator and a future state prediction of the
nonlinear evolution. The Koopman algorithm simply applies
DMD on the space of observables.

(1) From the data matrices X and X′, create the data
matrices of observables Y and Y′:

Y =
∣ ∣ ∣

g x1 g x2 ⋯ g xm−1

∣ ∣ ∣

, 10a

Y′ =

∣ ∣ ∣

g x1′ g x2′ ⋯ g xm−1′

∣ ∣ ∣

, 10b

where each column is given by yk = g xk or
y′k = g x′k

(2) Perform the DMD algorithm on the pair Y and Y′
to compute

AY = Y′Y† 11

along with the low-rank counterpart AY obtained
by projection onto a truncated POD subspace.
The eigenvalues and eigenvectors of AY may approx-
imate Koopman eigenvalues and modes if the
observables are well chosen

(3) DMD can be used to compute the augmented
modes ΦY, which may approximate the Koompan
modes, by

ΦY = Y′VΣ−1W, 12

where W comes from the eigenvalue problem
AYW =WΛ and Y =UΣV∗. Note that an r-rank
truncation of the SVD is performed at this stage

(4) The future state in the space of observables is given by
the linear evolution

y t =ΦY diag exp ωt b, 13

where b =Φ†
Yy1 is determined by projecting back to

the initial data observable. The continuous-time
eigenvalues ω are obtained from the discrete-time
eigenvalues λk (i.e., diagonal elements of the matrix
Λ) where ωk = ln λk /Δt

(5) Transform from observables to state space

yk = g xk ⟶ xk = g−1 yk 14

This last step is trivial if one of the observables
selected to comprise g xk is the state variable xk
itself. If only nonlinear observables of xk are chosen,
then the inversion process can be difficult.

This process shows that the DMD algorithm is
closely related to the Koopman operator. Indeed, it is
the foundational piece for practical evaluation of the finite-
dimensional Koopman operator. It is stressed once again
here: selection of appropriate observables is critical for the
algorithm to generate good reconstructions and approxi-
mations to the future state. We can also now introduce
the following theorem [5, 11, 14, 34].

Theorem 1. Koopman and dynamic mode decomposition: let
φk be an eigenfunction of K with eigenvalue λk, and suppose
φk ∈ span gj , so that

φk x =w1g1 x +w2g2 x +⋯+wpgp x = w · g 15

for some w = w1w2 ⋯wp
T ∈ℂp. If w ∈ R Y , where R is the

range, then w is a left eigenvector of AY with eigenvalue λk so
that w∗AY = λkw∗.

Note here that the observables gj x as introduced in the
theorem [5, 11, 14, 34] are not denoted as vectors since the
theorem applies to functions. However, in practice, when a
system is discretized, then gj x ⟶ gj x as is explicitly
constructed in the algorithm above. Thus, the Koopman
eigenvalues are the DMD eigenvalues provided (i) the set of
observables is sufficiently large so that φk x ∈ span gj

and (ii) the data is sufficiently rich so that w ∈ R X . This
directly shows that the choice of observables is critical in
allowing one to connect DMD theory to Koopman spectral
analysis. If this can be done, then one can simply take data
snapshots of a finite-dimensional nonlinear dynamical sys-
tem in time and reparameterize it as a linear system in the
observable coordinates, which is amenable to a simple
eigenfunction (spectral) decomposition. This representation
diagonalizes the dynamics and shows that the time evolution
of each eigenfunction corresponds to multiplication by its
corresponding eigenvalue.

4. Koopman Observables and Kernel Methods

The effectiveness of Koopman theory hinges on one thing:
selecting appropriate observables. Once observables are
selected, the previous section defines a DMD-based algo-
rithm for computing the Koopman operator whose spectral
decomposition completely characterizes the approximation.
In the machine learning literature, observables are often the
basis of generating features, and we will build upon this
concept to generate appropriate observables. An important
practical consideration becomes the computational cost in
generating the DMD approximation as the number of rows
in the matrices Y and Y′ gets progressively larger with each
additional observable.
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To be more precise about the distinction between the
EDMD/VAC and the present work, we emphasize that the
state-of-the-art machine learning approach to EDMD is
given byWilliams et al. [14] and Klus et al. [17]. These works
provide a framework for projection to observables through
kernel SVM-like methods, as well as showing how to cross-
validate the results. As is common in such schemes, inter-
pretability and generalizability is typically lost. In the current
work, our goal is to select a parsimonious set of observables
based upon knowledge of the physics or its constraints. It
provides a viable strategy whereby expert knowledge can
be leveraged to guide the selection of observables. In the
previous works [14, 17], parsimony was not used in the
regression framework. Here, parsimony to produce inter-
pretable models, and potentially generalizable models, is
the critical innovation advocated. It should be noted that
we illustrate some of the kernel methods here in order
to simply show the lack of robustness of EDMD in the
absence of parameter tuning.

In the absence of expert-in-the-loop knowledge of the
dynamical system, one might consider, for instance, the
support vector machine (SVM) literature and associated
kernel methods [35–38] for feature selection (observables).
The SVM architecture suggests a number of techniques for
constructing the feature space g x , with a common choice
being the set of polynomials such that

gj x = x, x2, x3, x4,… , xp 16

Using a large number of polynomials can generate an
extremely large vector of observables for each snapshot in
time. This is closely related to the Carleman linearization
technique in dynamical systems [39–41]. Alternatively,
kernel methods have found a high degree of success using
(i) radial basis functions, typically for problems defined on
irregular domains, (ii) Hermite polynomials for problems
defined on ℝn, and (iii) discontinuous spectral elements for
large problems with block diagonal structures. Regardless
of the specific choice of feature space, the goal is to choose
a sufficiently rich and diverse set of observables that allow
an accurate approximation of the Koopman operator K .
Instead of choosing the correct observables, one then simply
chooses a large set of candidate observables with the expecta-
tion that a sufficiently diverse set will include enough features
for an accurate reconstruction of the Koopman modes,
eigenfunctions, and eigenvalues, which intrinsically charac-
terize the nonlinear dynamical system.

Williams et al. and Kevrekidis et al. [14, 15] have recently
capitalized on the ideas of machine learning by implement-
ing the so-called extended DMD and kernel DMD method
on extended observables (16) within the DMD architecture.
Moreover, they have developed an efficient way to compute
AY even for a large observable space. The kernel DMD
method is the most relevant in practice as the number of
observables (features) can rapidly grow so as to make n
extremely high-dimensional. In the context of the Koopman
operator, the kernel trick [35–38] will define a function
h x, x′ that can be related to the observables gj x used

for constructing Y and Y′. Consider the simple example
of a quadratic polynomial kernel

h x, x′ = 1 + xTx′
2
, 17

where x and x′ are data points in ℝ2. When expanded, the
kernel function takes the form

h x, x′ = 1 + x1x1′ + x2x2′ 2

= 1 + 2x1x1′ + 2x2x2′ + 2x1x2x1′x2′ + x21x1′
2 + x22x2′

2

= 1 + YT x′ Y x ,

18

where Y x = 2x1  2x2  2x1x2 x1
2 x2

2 T
. Note

that for this case, both the Koopman observables and the
kernel function (17) are equivalent representations that
are paired together through the expansion (18). The so-
called kernel trick posits that (17) is a significantly more effi-
cient representation of the polynomial variables that emerge
from the expansion (18). Instead of defining the Koopman
observables gi x , we instead define the kernel function
(17) as it provides a compact representation of the infinite-
dimensional feature space and an implicit computation of
the inner products required for the Koopman operator.

The computational advantages of the kernel trick are
considerable. For example, a polynomial kernel of degree p
acting on data vectors x and x′ in ℝn is given by

h x, x′ = 1 + xTx′
p
, 19

which requires a single computation of the inner product
α = xTx′. This requires O n and produces f x, x′ =
1 + α p where α is a constant. The resulting computa-
tional cost for this pth degree polynomial kernel remains
O n . In contrast, the alternative observable space using
Y requires construction of a vector of length

O
n + p

p
20

taking the form

Y x = 1 x1 ⋯ xn x21 x1x2 ⋯ x2n ⋯ xp1 ⋯ xpn
T 21

Computing the inner product YT x′ Y x is a signifi-
cantly larger computation than the kernel form (19). Thus,
the kernel trick enables an advantageous representation of
the various polynomial terms and circumvents the formation
and computation associated with (21). It should be noted that
these two representations are not equivalent. Rather, they
give two different representations of nonlinear observables
from which a feature space can be extracted. In the former

6 Complexity



(19), the computations are tractable, while in the latter (21),
the computation quickly becomes intractable.

The choice of kernel is important and in practice is not
robust for Koopman methods. Some standard choices are
often used, including the three most common kernels of
SVM-based data methods:

polynomial kernel degree p h x, x′ = a + xTx′
p
, 22a

radial basis functions h x, x′ = exp −a x − x′ 2 , 22b

sigmoid kernel h x, x′ = tanh xTx′ + a 22c

The advantage of the kernel trick is quite clear, providing
a compact representation of a very large feature space. For
the polynomial kernel, for instance, a 20th-degree polyno-
mial p = 20 using (22a) is trivial and does not compute
all the inner products directly. In contrast, using our stan-
dard Koopman observables g xj would require one to
explicitly write out all the terms generated from a 20th-
degree polynomial on an n-dimensional data set, which is
computationally intractable for even moderately large n.
The tuning parameter a must be carefully chosen in practice
for reasonable results.

In practice, the observables for Y are implicitly embedded
in the kernel h x, x′ . Specifically, we consider the observable
matrix elements defined by

YTY′ j,k = h x j, x′k , 23

where j, k denotes the jth row and kth column of the corre-
lation matrix, and xj and x′k are the jth and kth columns of
data. The kernel DMD formulation still requires the compu-
tation of the matrices V and Σ which can be produced from
Y∗YV = Σ2V. As before, the matrix elements of Y∗Y are
computed from Y∗Y j, k = h xj, xk . Thus, all the required
inner products are computed by projecting directly to the
new feature space defined by the specific kernel used. Note

that if the linear kernel function h x, y = xTy is chosen, the
kernel DMD reduces to the standard DMD algorithm.

5. Application to PDEs

To demonstrate the Koopman operator concepts, we
apply the methodology to various illustrative and canoni-
cal PDEs: Burgers’ equation, nonlinear Schrödinger equa-
tion, the cubic-quintic Ginzburg-Landau equation, and a
reaction-diffusion model. With these examples, we can
(i) illustrate a scenario where the Koopman operator can
exactly (analytically) linearize a dynamical system, (ii) dem-
onstrate how to judiciously select observables, and (iii) show
that kernel methods are highly sensitive as an observable
selection technique.

The simulations are based upon a pseudospectral tech-
nique whereby the spatial domain and its derivatives are
computed in the Fourier domain using the Fast Fourier
Transform (FFT). The time-stepping algorithm is based
upon an adaptive 4th-order Runge-Kutta scheme, i.e.,
ode45 in MATLAB. By default, the FFT-based strategy
imposes periodic boundary conditions.

5.1. Burgers’ Equation. To demonstrate the construction of a
specific and exact Koopman operator, we consider the
canonical nonlinear PDE: Burgers’ equation with diffusive
regularization. The evolution, as illustrated in Figure 2(a), is
governed by diffusion with a nonlinear advection [42]:

ut + uux − ϵuxx = 0 ϵ > 0, x ∈ −∞,∞ 24

When ϵ = 0, the evolution can lead to shock formation in
finite time. The presence of the diffusion term regularizes the
PDE, ensuring continuous solutions for all time.

Burgers’ equation is one of the few nonlinear PDEs whose
analytic solution form can be derived. In independent
seminal contributions, Hopf [43] and Cole [44] derived a
transformation that linearizes the PDE. The Cole-Hopf
transformation is defined as follows

u = −2ϵvx/v 25
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Figure 2: (a) Evolution dynamics of Burgers’ equation with initial condition u x, 0 = exp − x + 2 2 . (b) Fifteen mode DMD approximation
of the Burgers’ evolution. The simulation of (24) was performed over t ∈ 0, 30 where the sampling was taken at every Δt = 1. The domain was
discretized with n = 256 points on a domain x ∈ −15, 15 .
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The transformation to the new variable v x, t replaces
the nonlinear PDE (24) with the linear diffusion equation

vt = ϵvxx , 26

where it is noted that ϵ > 0 in (24) in order to produce a
well-posed PDE.

The diffusion equation can be easily solved using Fourier
transforms. Fourier transforming in x gives the ODE system

v̂t = −ϵk2v̂, 27

where v̂ = v̂ k, t denotes the Fourier transform of v x, t and
k is the wavenumber. The solution in the Fourier domain is
easily found to be

v̂ = v̂0 exp −ϵk2t , 28

where v̂0 = v̂ k, 0 is the Fourier transform of the initial
condition v x, 0 .

To construct the Koopman operator, we can then
combine the transform to the variable v x, t from (25)

v x, t = exp −
x
−∞u ξ, t dξ

2ϵ , 29

with the Fourier transform to define the observables

g u = v̂ 30

The Koopman operator is then constructed from (28)
so that

K = exp −ϵk2t 31

This is one of the rare instances where an explicit
expression for the Koopman operator and the observables
can be constructed analytically. The inverse scattering
transform [13] for other canonical PDEs, Korteweg-deVries
(KdV) and nonlinear Schrödinger (NLS) equations, also
can lead to an explicit expression for the Koopman
operator, but the scattering transform and its inversion are
much more difficult to construct in practice.

To make comparison between Koopman theory and
DMD, we consider the DMD method applied to governing
(24). Applying the algorithm of Section 3 to the observables
g x = x gives the DMD approximation to the Burgers’
dynamics as shown in Figure 2(b). For this simulation, data
snapshots were collected at intervals of Δt = 1 for the time
range t ∈ 0, 30 . The singular value decay for the dynamics
is shown in Figure 3(a), suggesting that a rank r = 15 trunca-
tion is appropriate. The DMD spectra and DMD modes are
illustrated in Figures 3(b) and 3(c), respectively. Thus, using
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Figure 3: DMD of the Burgers’ equation. (a) The singular value spectrum demonstrates that a rank r = 15 truncation should be adequate to
capture the dynamics of the front propagation in Figure 2. (b) The eigendecomposition in the DMD algorithm produces a DMD spectra
whose eigenvalues are decaying. (c) The DMD modes used for reconstructing the solution in Figure 2 ordered according the smallest to
largest (in magnitude) eigenvalues. The first mode is like a background mode since the eigenvalue is almost zero.
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u x, t directly as an observable produces a low-rank model
with fifteen modes. In contrast, by working with the observ-
able (30), the Koopman operator can be trivially computed
(31) and the dynamics analytically produced without need
of approximation. In this case, the Koopman operator exactly
linearizes the dynamics. This is the ideal which is hoped for
but rarely achieved with nonlinear PDEs (or nonlinear
dynamical systems in general).

5.2. Nonlinear Schrödinger Equation. The example of
Burgers’ equation was easy to quantify and understand since
the Cole-Hopf transformation was discovered nearly seven
decades ago. Thus, the observables chosen were easily
motivated from knowledge of the analytic solution. Unfor-
tunately, it is rarely the case that such linearizing transfor-
mations are known. In our second example, we consider the
Koopman operator applied to a second canonical nonlinear
PDE: the nonlinear Schrödinger equation

iut +
1
2 uxx + u 2u = 0, 32

where u x, t is a function of space and time modeling slowly
varying optical fields or deep water waves, for instance. Dis-
cretizing in the spatial variable x, we can Fourier transform
the solution in space and use a standard time-stepping

algorithm, such as a fourth-order Runge-Kutta, to integrate
the solution forward in time.

As with Burgers’ equation, we can compute the DMD by
collecting snapshots of the dynamics over a specified time
window. Specifically, we consider simulations of the equation
with initial data

u x, 0 = 2 sech x 33

over the time interval t ∈ 0, π . Twenty-one snapshots of the
dynamics are collected during the evolution, allowing us to
create the snapshot matrix X and X′. The DMD reconstruc-
tion of the dynamics is demonstrated in Figure 4(a). The
low-rank DMD reconstruction provides a good approxima-
tion to the dynamics of the PDE.

To be more precise, it is explicitly assumed in the DMD
reduction that the observables are simply the state variables
x where x = u x, t at discrete space and time points. The
DMD observables are then given by

gDMD x = x 34

Thus, as previously noted, the DMD approximation is a
special case of Koopman. The DMD spectrum for a rank
r = 10 approximation is shown in Figure 4(d). An ideal
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Figure 4: Reconstruction of the NLS dynamics using (a) a standard DMD approximation gDMD x , (b) the NLS motivated g1 x , and (c) a
quadratic observable g2 x . The Koopman spectra for each observable are demonstrated in (d), (e), and (f) which accompany the observables
of (a), (b), and (c), respectively. Note that the observable g1 x produces spectra which are approximately purely imaginary which is expected
of the 2-soliton evolution. The error between the three observables and the full simulation is shown (g). Note that the observable g1 x gives
an error reduction of four-orders of magnitude over DMD, while g2 x is an order of magnitude worse. This highlights the importance of
selecting good observables. The simulation was performed over t ∈ 0, π with 41 equally spaced snapshots taken. The domain was
discretized with n = 512 points on a domain x ∈ −15, 15 .
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approximation would have the eigenvalues aligned along
the imaginary axis since the evolution with the initial con-
dition given by (33) is known as the 2-soliton solution
which is purely oscillatory.

Koopman theory allows us a much broader set of
observables. In what follows, we consider two additional
observables

g1 x =
x
x 2x

, 35a

g2 x =
x
x 2 35b

The first observable g1 x is motivated by the form of the
nonlinearity in the NLS equation. The second, g2 x , is cho-
sen to have a simple quadratic nonlinearity. It has no special
relationship to the governing equations. Note that the choice
of the observable x 2 in g2 x is relatively arbitrary. For
instance, one could consider instead x 5x, x2, x3, or x5. These
all produce similar results to g2 x selected in (35b). Specifi-
cally, the observable g2 x is inferior to either the DMD or
judiciously selected g1 x for the Koopman reconstruction.

As has been repeatedly stated, the success of the Koop-
man decomposition relies almost exclusively on the choice
of observables. To demonstrate this in practice, we compute
the Koopman decomposition of the NLS (32) using the two
observables (35a) and (35b). The required data matrices have
2n rows of data, and only the state variables need to be
recovered at the end of the procedure. Note that the algo-
rithm produces both a state approximation since the first n
components are actually the state vector x and approxima-
tions to the nonlinearity. The Koopman eigenfunctions and
eigenvalues provide information about the evolution on the
observable space.

Figures 4(b) and 4(d) show the Koopman reconstruction
of the simulated data for the observables (35a) and (35b). The
observable g1 x provides an exceptional approximation to
the evolution while g2 x is quite poor. Indeed, the error of
the DMD approximation and two nonlinear observables
(35a) and (35b) are shown in Figure 4(g) where the following
error metric is used:

E tk = x tk − x tk k = 1, 2,… ,m, 36

where x is the full simulation and x is the DMD or Koopman
approximation. With the choice of observable g1 x , which
was judiciously chosen to match the nonlinearity of the
NLS, the Koopman approximation of the dynamics is four-
orders of magnitude better than a DMD approximation. A
poor choice of observables, given by g2 x , gives the worse
performance of all, an order of magnitude worse than
DMD. Note also the difference in the Koopman spectra as
shown in Figures 4(d)–4(f). In particular, note that the
judicious observable g1 x aligns the eigenvalues along the
imaginary axis as is expected from the dynamics. It further

suggests that much better long-time predictions can be
achieved with the Koopman decomposition using g1 x .

Observable selection in this case was facilitated by knowl-
edge of the governing equations. However, in many cases, no
such expert knowledge is available, and we must rely on
data. The kernel DMD method allows one to use the kernel
trick to consider a vast range of potential observables. As
already highlighted, the kernel method allows for an efficient
method to consider a large class of potential observables
without making the observation vector g x computation-
ally intractable. For instance, one can consider a radial basis
function kernel

f x, x′ = exp − x − x′ 2 37

The absolute value is conjectured to be important for
the case of the NLS equation considered due to the non-
linear evolution of the phase. This radial basis-type func-
tion is one of the more commonly considered kernels.
Other kernels that we might consider include the three
following observables

f x, x′ = 1 + xTx′
20
, 38a

f x, x′ = 1 + xT x′
20
, 38b

f x, x′ = exp −xTx′ 38c

The first function is the standard polynomial kernel
of 20th degree. The second instead takes the absolute
value of the variable in a polynomial in order to remove
the phase, and the third is a Gaussian-type kernel that
uses the same inner product as the polynomial kernel.
Note that it uses the same inner product in state space
but a completely different inner product in feature space.
The selection of these kernels is motivated by well-known
and often used kernels for real valued data. Other kernels
can easily be considered. Our objective is not so much to
evaluate a specific kernel but to demonstrate that kernel
selection produces highly variable results so that kernel
tuning via cross validation is of critical importance. It is
well known that SVM and deep neural nets require sig-
nificant cross-validation in order to work well. Moreover,
note that complex data are rarely considered for kernel
selection, so there is ambiguity about what impact this
may have. Indeed, this remains an open research question
in its own right. However, the NLS has a specific form of
nonlinearity which is phase-independent, thus motivating
some of our choices of potential kernels.

These three new kernels are compared to each other and
the radial basis function. Figure 5 shows the spectra gener-
ated by these four kernels along with a comparison to the
Koopman spectra generated by g1 x . Note the tremen-
dous variability of the results based upon the choice of
kernel. More precisely, it simply highlights the critical impor-
tance of calibrating the kernel through cross-validation.
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Specifically, the choice of kernel must be carefully selected for
either the extended or kernel DMD to give anything reason-
able. Cross-validation techniques could potentially be used to
select a suitable kernel for applications of interest. It could
also ensure that overfitting of the data does not occur. In
either case, this simple example should serve as a strong cau-
tionary tale for using kernel techniques in Koopman theory
unless results are carefully cross validated. In contrast, our
judiciously selected variables produce reasonable and parsi-
monious results which can be easily cross validated, saving
a great deal of computational effort in producing improved
performance over DMD.

5.3. Cubic Quintic Ginzburg-Landau Equation. A second and
more difficult example for the DMD and Koopman theory to
characterize is the cubic-quintic Ginzburg-Landau equation
(CQGLE). The CQGLE is a canonical model from mathe-
matical physics that exhibits a wide range of nonlinear
spatio-temporal dynamics, including spatio-temporal peri-
odicity and chaos. The evolution equation for CQGLE is
given by [45]

iut +
1
2 − iτ uxx − iκuxxxx + 1 − iβ u 2u

+ ν − iσ u 4u − iγu = 0,
39

where the state variable u x, t is a function of space and
time. Unlike the NLS equation, the CQGLE is not Hamilto-
nian and integrable, rather there are significant effects from

dissipation and gain effects, both linear and nonlinear. An
example solution generated from the CQGLE is illustrated
in Figure 6. This breather-type solution, although simple
looking, does not have a simple low-rank representation like
the NLS two-soliton breather. Indeed, the singular value
decay suggests that a large number of modes are required
for an accurate reconstruction. Importantly, the temporal
evolution of the POD modes, which can be extracted from
the columns of the V matrix of the SVD, shows that the
temporal evolution of the dynamics is quite complicated.
This makes it difficult for the DMD approximation since it
relies on approximating the temporal evolution by simple
Fourier modes in time.

We again consider two additional observables

g3 x =
x
x 2x
x 4x

, 40a

g4 x =
x
x 4 40b

The first observable g3 x is motivated by the form of
the nonlinearity in the CQGLE equation. The second,
g4 x , is chosen to have a quartic nonlinearity. The latter
of the observables has no special relationship to the gov-
erning equations. And as before, a wide range of other
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Figure 5: (a)–(d) Koopman spectra of the four kernels considered in (37) and (38a)–(38c), respectively. The red spectra are the Koopman
spectra generated from the rank r = 10 observable g1 x which provides an exceptionally accurate reconstruction of the NLS dynamics.
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randomly selected nonlinear observables produce similar
results to g4 x .

The DMD and Koopman reconstructions of the dynam-
ics of the CQGLE are illustrated in Figure 7. As with the
NLS example, the CQGLE motivated g3 x gives the best

reconstruction. Importantly, the spectra generated are closest
to the imaginary axis, which is expected for the periodic
spatio-temporal dynamics observed. Indeed, the DMD algo-
rithm, or its Koopman variant applied to observables, ideally
generates a purely imaginary spectrum.
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Figure 6: Spatio-temporal breather solution of the CQGLE equation for the parameter regime τ = 0 08, κ = 0, β = 0 66, ν = −0 1, σ = −0 1,
and γ = −0 1. Although the dynamics illustrated (a) look relatively simple, the singular value decay (b) shows that a large number of
modes are required to reconstruct the fine spatio-temporal features of the nonlinear evolution. Moreover, the temporal dynamics of the
first four POD modes, which are extracted from the columns of the V matrix of the SVD (c), characterize a complicated temporal
behavior for the individual modes. Unlike the NLS example, a low-rank approximation does not work well for reconstructing the
dynamics. The simulation was performed over t ∈ 0, 40 with 301 equally spaced snapshots taken. The domain was discretized with
n = 512 points on a domain x ∈ −10, 10 .
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Figure 7: Reconstruction of the CQGLE dynamics of Figure 6(a) using a rank r = 60 expansion. Shown are (a) a standard DMD
approximation gDMD x , (b) the CQGLE motivated g3 x , and (c) a quartic observable g4 x . The Koopman spectra for each observable
are demonstrated in (d), (e), and (f) which accompany the observables of (a), (b), and (c), respectively. Note that the observable g3 x
produces spectra which are most approximately purely imaginary which is expected of the periodic evolution. A visual inspection shows
that the observable g3 x produces the best reconstruction.
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5.4. Reaction Diffusion System. As a final example, we
consider the λ − ω reaction-diffusion system [46]

ut =D∇2u + λ A u − ω A v, 41a

vt =D∇2v + ω A u + λ A v, 41b

where A2 = u2 + v2, ω A = −βA2, λ A = 1 − A2, D = 0 1,
β = 1, and periodic boundaries are applied. This model
generates spiral wave solutions which are sustained in the
reaction-diffusion process. For processing the data, a spatial
filter of the form f x, y = exp −0 01 x2 + y2 is applied to
the snapshots. This removes the boundary effects from
computing on a square domain.

Figure 8 shows key characteristics of the evolution
dynamics and the decomposition architecture. In Figure 8(a),
the first four POD modes are shown. These are the domi-
nant modes of the dynamics associated with the spiral
wave, containing approximately 99% of the total variance.

In the low-rank approximation applied, only the first two
modes r = 2 are used. Importantly, the temporal evolution
of the POD modes, which can be extracted from the col-
umns of the V matrix of the SVD, shows that the temporal
evolution of the dynamics is almost purely sinusoidal. This
makes it exceptionally easy for the DMD approximation
since it relies on approximating the temporal evolution by
simple Fourier modes in time. Indeed, given the simple
sinusoidal evolution in time, the direct application of
DMD is not improved upon by using additional observ-
ables. Specifically, we can consider the reaction-diffusion
motivated observable

g5 u, v =

u
v

u2 + v2 u

u2 + v2 v

, 42
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Figure 8: Diagnostic features of the reaction diffusion system (41a) and (41b) with β = 1 and D = 0 1. (a) The first four POD modes from
sampling snapshots of the spiral wave dynamics. For this data, the snapshots were collected once the spiral wave was formed.
Additionally, a spatial filter of the form f x, y = exp −0 01 x2 + y2 was applied in order to remove the effects of the periodic boundary
conditions on the dynamics. (b) There is a two-mode dominance in the dynamics. (c) The temporal dynamics of the first two POD
modes, which are extracted from the columns of the V matrix of the SVD. For the spiral waves, these temporal modes are nearly perfect
sinusoids. (d) A comparison of the error between the DMD reconstruction (solid line) and reaction-diffusion-inspired observable g5 u, v
(dash-dot line). Note that there is very little difference in the reconstruction error in contrast to the NLS and CQGLE examples. The
simulation was performed over t ∈ 0,100 with 1001 equally spaced snapshots taken. The domain was discretized with n = 128 points on
the domains x ∈ −20, 20 and y ∈ −20, 20 .

13Complexity



where u and v are the discretized and reshaped vectors
formed from numerically solving the reaction diffusion
system. Figure 8(d) shows the reconstruction error for
the DMD algorithm compared with the Koopman recon-
struction using the observable (42). The error for both is
comparable, which is in contrast to the previous exam-
ples of NLS and CQGLE where a significant increase in
accuracy was achieved using well-selected variables. The
fact is that given the almost perfectly sinusoidal low-rank
nature of the temporal dynamics, the DMD algorithm
simply does not require additional observables to produce
an exceptional approximation.

6. Outlook on Koopman Theory for PDEs

Koopman analysis is a remarkable theoretical architecture
with applicability to a wide range of nonlinear dynamical sys-
tems and PDEs. It combines a number of innovations across
disciplines, including dimensionality-reduction techniques,
manifold learning, linear operator theory, and dynamical
systems. Although the abstract architecture provides a tre-
mendously compelling viewpoint on how to transform
nonlinear dynamical systems to infinite-dimensional linear
dynamics, significant challenges remain in positing an
appropriate set of observables for construction of the
Koopman operator. If good candidate observables can be
found, then the DMD algorithm can be enacted to com-
pute a finite-dimensional approximation of the Koopman
operator, including its eigenfunctions, eigenvalues, and
Koopman modes. With a judicious choice of observables,
these computed quantities can often lead to physically
interpretable spatio-temporal features of the complex system
under consideration.

We have demonstrated the application of Koopman
theory on several canonical nonlinear PDEs: Burgers’ equa-
tion, the nonlinear Schrödinger equation, the cubic-quintic
Ginzburg-Landau equation, and a reaction-diffusion system.
For Burgers’ equation, the well-known Cole-Hopf transfor-
mation provides a critical link to an explicit calculation of
the Koopman operator for a nonlinear PDE. Indeed, we show
that the Koopman operator and associated observables can
be trivially constructed from knowledge of the Cole-Hopf
transformation. In contrast, choosing linear state observables
for Burgers’ yields a DMD approximation which is accurate
but lacks the clear physical interpretation of the exact Koop-
man reduction. Although the NLS equation can similarly be
linearized via the inverse scattering transform, the transform
and its inverse are technically difficult to compute for
arbitrary initial conditions. Instead, we demonstrate that
the selection of an observable that is motivated by the nonlin-
earity of the governing PDE gives a remarkably accurate
Koopman reduction. Indeed, the Koopman eigenfunctions
and eigenvalues provide an approximation that is nearly
equivalent to the accuracy of the numerical simulation itself.
Importantly, for the NLS example, we also demonstrate that
poor choices of observables are significantly worse than the
DMD approximation. And for the case of observables chosen
with a kernel method, the resulting spectra and eigenfunc-
tions are highly inaccurate and nonrobust, suggesting that

such generic techniques as kernel methods may face chal-
lenges for use in observable selection. Importantly, the cross
validation of the EDMD methods is critically important as
the large number of variables used to describe the dynamics,
most of which do not have any physical interpretability, must
be carefully tuned. Like NLS, the CQGLE model can be
similarly improved by variables motivated by the nonlinear-
ity of the PDE. In contrast, the reaction-diffusion system
shows that the standard DMD approximation is difficult to
improve upon given that the temporal dynamics are almost
purely sinusoidal. Such sinusoidal temporal evolution is ideal
for the DMD approximation. Even if the governing PDE is
not known, symmetries and/or conservation laws can help
inform appropriate choices of a parsimonious set of observ-
ables. If nothing is known of the physics, then the standard
EDMD remains a viable strategy for producing a model, even
if interpretability and generalizability is typically lost. This
remains an open direction of research which is beyond the
current manuscript.

The results presented here provide a prescriptive algo-
rithm for variable selection. Specifically, we recommend the
following heuristic measures for a variable selection algo-
rithm: (i) Upon performing the SVD of the data matrix
X =UΣV∗ of snapshots of the state space xj, evaluate the
temporal nature of the dominant modes via the columns of
the matrix V. If the dominant columns of V are approxi-
mately sinusoidal, then the standard DMD algorithm should
be used (see the reaction-diffusion example). (ii) If the
dominant temporal behavior is not sinusoidal, then select
observables motivated by the nonlinearity of the governing
PDE (see NLS and CQGLE examples). (iii) If the governing
PDE is unknown or the method in (ii) is performing poorly,
then enact the cross-validated EDMD architecture. All three
methods, DMD, judiciously chosen observables with DMD,
and EDMD, are all important components of a robust
strategy for evaluating nonlinear PDE dynamics.

Ultimately, the selected observables do not need to
exactly linearize the system, but they should provide a
method for transforming a strongly nonlinear dynamical
system to a weakly nonlinear dynamical system. In practice,
this is all that is necessary to make the method viable and
informative. The results presented here are simultaneously
compelling and concerning, highlighting the broader outlook
of the Koopman method in general. Specifically, the success
of the method will hinge on one issue: selection of observ-
ables. If principled techniques, from expert-in-the-loop
knowledge, the form of the governing equation, or informa-
tion about the manifold on which the data exists, can be
leveraged to construct suitable observables, then Koopman
theory should provide a transformative method for nonlinear
dynamical systems and PDEs. We posit that sparse statistical
regression techniques from machine learning may provide a
path forward towards achieving this goal of selecting quality
observables [23, 47]. Failing this, the Koopman architecture
may have a limited impact in the mathematical sciences.
Because of the importance of identifying meaningful observ-
ables, this is an exciting and growing area of research,
especially given new developments in machine learning that
may provide a robust and principled approach to observable
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selection. For those interested in pursuing the EDMD archi-
tecture further, we recommend the recent text [12] which
highlights many aspects of the current work and some of
the structure of the EDMD algorithm that makes in compu-
tationally tractable. Included in the book is a link to all codes
used in this manuscript.
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We study the use of feedforward neural networks (FNN) to develop models of nonlinear dynamical systems from data. Emphasis is
placed on predictions at long times, with limited data availability. Inspired by global stability analysis, and the observation of strong
correlation between the local error and the maximal singular value of the Jacobian of the ANN, we introduce Jacobian
regularization in the loss function. This regularization suppresses the sensitivity of the prediction to the local error and is shown
to improve accuracy and robustness. Comparison between the proposed approach and sparse polynomial regression is
presented in numerical examples ranging from simple ODE systems to nonlinear PDE systems including vortex shedding
behind a cylinder and instability-driven buoyant mixing flow. Furthermore, limitations of feedforward neural networks are
highlighted, especially when the training data does not include a low dimensional attractor. Strategies of data augmentation are
presented as remedies to address these issues to a certain extent.

1. Introduction

The need to model dynamical behavior from data is pervasive
across science and engineering. Applications are found in
diverse fields such as in control systems [1], time series
modeling [2], and describing the evolution of coherent struc-
tures [3]. While data-driven modeling of dynamical systems
can be broadly classified as a special case of system identifica-
tion [4], it is important to note certain distinguishing quali-
ties: the learning process may be performed off-line,
physical systems may involve very high dimensions, and
the goal may involve the prediction of long-time behavior
from limited training data.

Artificial neural networks (ANN) have attracted consid-
erable attention in recent years in domains such as image rec-
ognition in computer vision [5, 6] and in control applications
[7]. The success of ANNs arises from their ability to effec-
tively learn low-dimensional representations from complex
data and in building relationships between features and out-
puts. Neural networks with a single hidden layer and nonlin-
ear activation function are guaranteed to be able to predict

any Borel measurable function to any degree of accuracy on
a compact domain [8].

The idea of leveraging neural networks to model dynam-
ical systems has been explored since the 1990s. ANNs are
prevalent in the system identification and time series model-
ing community [9–12], where the mapping between inputs
and outputs is of prime interest. Billings et al. [13] explored
connections between neural networks and the nonlinear
autoregressive moving average model (NARMAX) with
exogenous inputs. It was shown that neural networks with
one hidden layer and sigmoid activation function represent
an infinite series consisting of polynomials of the input and
state units. Elanayar and Shin [14] proposed the approxima-
tion of nonlinear stochastic dynamical systems using radial
basis feedforward neural networks. Early work using neural
networks to forecast multivariate time series of commodity
prices [15] demonstrated its ability to model stochastic
systems without knowledge of the underlying governing
equations. Tsung and Cottrell [16] proposed learning the
dynamics in phase space using a feedforward neural network
with time-delayed coordinates.
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Paez and Urbina [17–19] modeled a nonlinear hardening
oscillator using a neural network-based model combined
with dimension reduction using canonical variate analysis
(CVA). Smaoui [20–22] pioneered the use of neural networks
to predict fluid dynamic systems such as the unstable mani-
fold model for bursting behavior in the 2-D Navier-Stokes
and the Kuramoto-Sivashinsky equations. The dimensional-
ity of the original PDE system is reduced by considering a
small number of proper orthogonal decomposition (POD)
coefficients [23]. Interestingly, similar ideas of using princi-
pal component analysis for dimension reduction can be
traced back to work in cognitive science by Elman [24].
Elman also showed that knowledge of the intrinsic dimen-
sions of the system can be very helpful in determining the
structure of the neural network. However, in the majority
of the results [20–22], the neural network model is only eval-
uated a few time steps from the training set, which might not
be a stringent performance test if longer time predictions are
of interest.

ANNs have also been applied to chaotic nonlinear
systems that are challenging from a data-driven modeling
perspective, especially if long time predictions are desired.
Instead of minimizing the pointwise prediction error, Bakker
et al. [25] satisfied the Diks’ criterion in learning the chaotic
attractor. Later, Lin et al. [26] demonstrated that even the
simplest feedforward neural network for nonlinear chaotic
hydrodynamics can show consistency in the time-averaged
characteristics, power spectra, and Lyapunov exponent
between the measurements and the model.

A major difficulty in modeling dynamical systems is the
issue of memory. It is known that even for a Markovian sys-
tem, the corresponding reduced-dimensional system could
be non-Markovian [27, 28]. In general, there are two main
ways of introducing memory effects in neural networks. First,
a simple workaround for feedforward neural networks
(FNN) is to introduce time delayed states in the inputs
[11]. However, the drawback is that this could potentially
lead to an unnecessarily large number of parameters [29].
To mitigate this, Bakker [25] considered following Broom-
head and King [30] in reducing the dimension of the delay
vector using weighted principal component analysis (PCA).
The second approach uses output or hidden units as addi-
tional feedback. As an example, Elman’s network [29] is a
recurrent neural network (RNN) that incorporates memory
in a dynamic fashion.

Miyoshi et al. [31] demonstrated that recurrent RBF
networks have the ability to reconstruct simple chaotic
dynamics. Sato and Nagaya [32] showed that evolutionary
algorithms can be used to train recurrent neural networks
to capture the Lorenz system. Bailer-Jones et al. [33] used a
standard RNN to predict the time derivative in discrete or
continuous form for simple dynamical systems; this can be
considered an RNN extension to Tsung’s phase space learn-
ing [16]. Wang et al. [34] proposed a framework combining
POD for dimension reduction and long-short-term memory
(LSTM) recurrent neural networks and applied it to a fluid
dynamic system.

We limit ourselves to feedforward neural networks, since
there are still many unanswered questions about modeling

dynamical systems even in this simplest form. It is known
that time delayed FNNs closely resemble simple RNNs
trained with teacher forcing [35]. Further, RNNs are not easy
to train since standard training algorithms (e.g., back propa-
gation through time [36]) are likely to introduce stronger
overfitting than FNN due to vanishing gradients [35].
Recently, sparse regression (SINDy) [3, 4] has gained popu-
larity as a tool for data-driven modeling. The idea is to search
for a sparse representation of a linear combination of func-
tions selected from a library. In this work, we will compare
it with FNN-based models and highlight some differences.

The paper is organized as follows: the problem descrip-
tion is provided in Section 2 and the mathematical formula-
tion of standard and Jacobian-regularized FNNs is presented
in Section 3. Results and discussion are presented in
Section 4. We first present a comparison with SINDy for
simple dynamical systems. Then, we highlight the impor-
tance of stabilization to control the global error of predicted
trajectory and the impact of Jacobian regularization. Finally,
we apply the model in a nonlinear PDE system where a low
dimensional attractor is not realized and discuss the limita-
tions of black-boxmodeling of dynamical system and propose
data augmentation as remedies. Conclusions are drawn in
Section 5.

2. Problem Description

Consider a dynamical system in Euclidean space ℝM

which is described by a continuously differentiable function
ϕ ℝ ×ℝM↦ℝM , where ϕ t, x = ϕt x . The state x ∈ℝM

satisfies the composition relation ϕt+s = ϕt ∘ ϕs for t, s ∈ℝ
and ϕ0 ℝM↦ℝM is the identity function. ϕt is the t map
of the flow described by a vector function Fc ℝM↦ℝM as

x = Fc x 1

Similarly, one can define a discrete dynamical system
induced by the above smooth dynamical system by consider-
ing a constant time step Δt ∈ℝ and a state transition map
Fd x = ϕΔt x : ℝM↦ℝM such that

xn+1 = Fd xn 2

Equivalently, one can rewrite the above system as

xn+1 − xn
Δt

= Fd xn − xn
Δt

≜ Fr xn , 3

where Fr ℝM↦ℝM resembles a first order solution [33]
to Fc.

Our goal is to find an approximation to the dynamics,

either (i) in a discrete sense Fd , given the data D = xi N−1
i=0

uniformly sampled from a trajectory given initial condition
x0 = x t = 0 or (ii) in a continuous sense Fc, given the

data D = xi, xi N−1
i=0 , where N is the number of data

points. It must be mentioned that—as highlighted in the
result section—data does not have to be collected on the
same trajectory.
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Depending on the way one defines the training and
testing set, two types of problems are considered in the
current work.

(1) Prediction of a certain trajectory starting from an
initial condition that is different from the training
trajectories

(2) Prediction of the future trajectory given the past
information of the trajectory as training data

Conservatively speaking, the success of tackling the first
of the above problems requires the trajectories in the training
data to be a representative of the distribution in the region of
interest, which may or may not be feasible depending on how
informative the data is. In the context of modeling dynamical
systems, it is often implied in previous literature [22] that the
initial condition of unseen testing data is not far away from
the training data. The second problem can also be difficult
since it will challenge the effectiveness of the model as past
information might not be sufficient for the model to be
predictive on unseen data. Again, it is often implied in the
previous works [20, 34, 37] that successful predictions are
often accompanied by an underlying low dimensional attrac-
tor so the past states as training data can be collected until it
becomes a representative of the future.

3. Mathematical Modeling Framework

In this section, we first define performance metrics of the
approximation to the dynamics f; then, introduce the stan-
dard FNN model and the Jacobian-regularized FNN model.
Finally, techniques to mitigate overfitting are described.

3.1. Definitions of Error Metrics. To measure the predic-
tion error for each sample in an a priori sense (i.e., given
exact xi), we define the local error vector ξilocal ∈ℝM for the
i-th sample xi, yi as

ξilocal = yi − f xi , 4

where yi ∈ℝM is the i-th target to learn from the i-th feature
xi ∈ℝM . For example, the feature is the state vector at the i-th
step, xi and the target can be xi+1 for discrete dynamical
system or xi for continuous dynamical system.

Then, we can define local error at the i-th sample by

eilocal = ξilocal 2
= yi − f xi 2, 5

where ⋅ 2 ℝM↦ 0, +∞ is the vector 2-norm, i.e., l2 norm,
and ⋅ : ℝ↦ 0,∞ is the absolute value.

We can further define the local error of the i-th sample
for the j-th component as shown by

eilocal,j = yij − f xi
j

6

The local error assumes that the i-th input feature xi is
predicted accurately. On the other hand, the global error

vector is defined by equation (7), in which x̂i is obtained by
iterative prediction, i.e., a posteriori evaluation, at the i-th
step from an initial condition through either time integration
or transition function as a discrete map. That is, x̂i is
obtained from f x̂i−1 in a recursive sense as follows:

ξiglobal = xi − x̂i 7

Similarly, the global error is defined by

eiglobal = ξiglobal 2
= xi − x̂i 2, 8

and for the j-th component specifically by

eiglobal,j = xij − x̂ij 9

Further, to obtain a holistic view of the model perfor-
mance in feature space, if Fd or Fc is known, either in
the continuous or discrete case, we can define stepwise
error as

estepwise x = Fc,d x − f x 2 10

Note that estepwise is not restricted by the training or
testing trajectory, but it can be evaluated arbitrarily in
the region of interest.

Finally, we consider the uniform averaged coefficient of
determination R2 as a scalar metric for measuring regression
performance

R2 = 1
M

〠
M−1

j=0
R2
j , 11

where R2
j is given by

R2
j = R2 yj, yj = 1 −

∑
nsample−1
i=0 yij − yij

∑
nsample−1
i=0 yij − yj

2 , 12

where nsample is the number of samples in the validation data,

yj = 1/nsample∑
nsample−1
i=0 yij and yi = f xi is the prediction of f

based on the i-th feature xi.

3.2. Feedforward Neural Network Model

3.2.1. Basic Model: Densely Connected Feedforward Neural
Network. The basic model approximates Fc in equation (1)
for the continuous case and Fr in equation (3) in the discrete
case using a feedforward neural network. The existence of an
arbitrarily accurate feedforward neural network approxima-
tion to any Borel measurable function given the enough
number of hidden units is guaranteed from the property of
the universal approximator [38]. It should be noted that
our basic model is related to Tsung’s phase-space-learning
model [16]. If the Markovian assumption is adopted, the
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training feature matrix snapshots X and training target
matrix snapshots Y are as follows:

X =

x1
0 …

x1
1

x1
N − 1 x2

N − 1 x3
N − 1 xM

N − 1

x2
0

x2
1

x3
0

x3
1

xM
0

xM
1…

…
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · RN × M, 13

and

Y =

y1
0 …

y1
1

y1
N − 1 y2

N − 1 y3
N − 1 yM

N − 1

y2
0

y2
1

y3
0

y3
1

yM
0

yM
1…

…
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · RN × M, 14

where M is the dimension of the state, N is the total number
of snapshots of training data, learning target Y is the time
derivative, and the subscript stands for the index of the com-
ponent. Note that each component of the feature and target
are normalized to zero mean and unit variance for better
training performance in the neural network.

By generally constructing a densely connected feedfor-
ward neural network f ⋅ : ℝM↦ℝM with L − 1 hidden layers
and output layer as linear, the following recursive expression
is defined for each hidden layer:

ηl = σl Wlη
l−1 + bl , l = 1,… , L − 1, 15

where η0 stands for the input of the neural network x, ηl ∈ Rnl,
nl ∈N+ is the number of hidden units in layer l, and σl is the
activation function of layer l. Note that the output layer is
linear, i.e., σL x = x:

f x ;WL, bL = ηL =WLη
L−1 + bL, 16

where the parameters of the neural network are WL =
Wi i=1,…,L, bL = bi i=1,…,L.

For example, if we consider using two hidden layers
where L=3 and the number of hidden units are the
same, the full expression for the neural network model
is given by

ŷ = f x ;W, b =W3σ W2σ W1x + b1 + b2 + b3, 17

where x ∈ℝM is the state of the dynamical system, i.e.,
the input to the neural network and ŷ ∈ℝM is the model-
ing target, i.e., the output of neural network. σ ⋅ : ℝ↦ℝ
is a nonlinear activation function. W1 ∈ℝnh×M , W2 ∈
ℝnh×nh , W3 ∈ℝM×nh b1 ∈ℝnh , b2 ∈ℝnh , b1 ∈ℝM . Sets of
weights and biases are W3 = W1,W2,W3 and b3 = b1,
b2, b3 . The problem is to find the set of parameters of
W3 and b3 that result in the best approximation of the
underlying ground truth (Fc, Fd, or Fr). Under the framework
of statistical learning, it is standard to perform empirical risk
minimization (ERM) with mean-square-error loss. The set

up and parameters corresponding to the desired solution
f x,W∗, b∗ can be written as

W∗, b∗ = arg min
W3,b3

1
Itrain

〠
i∈Itrain

f xi ;W3, b3 − yi 2
2, 18

where Itrain is the index set of training data, and xi and yi
correspond to the i-th feature target pair.

To deal with the high dimensionality of the optimization
problem, we employ Adam [39], a gradient-based algorithm,
which is essentially a mixture between momentum accelera-
tion and rescaling parameters. The weights are initialized
using a truncated normal distribution to potentially avoid
saturation and use the automatic differentiation (AD) pro-
vided by Tensorflow [40] to compute the gradients. The
neural network model is implemented in Python using the
Tensorflow library [40]. Due to the nonconvex nature of
equation (18), for such a high degree of freedom of parame-
ters, one can only afford to find a local minimum. In practice,
however, a good local minimum is usually satisfactory [35].
Hyperparameters considered in the current work for the
basic model are the number of units for each hidden layer
nh and activation function σ(·).

Model selection for neural networks is an active research
area [41–43]. Well-known methods involve grid search/
random search [41]/Tree of Parzen Estimators (TPE)
[42]/Bayesian optimization [43] with cross validation. We
pursue the following trial-error strategy:

(1) Given the number of training points, computing the
number of equations to satisfy if the network overfits
all the training data

(2) Pick a neural network with uniform hidden layer
structure to overfit the training data with the number
of parameters in the network no more than 10% to
50% of the number in step 1

(3) Keep reducing the size of neural network by either
decreasing the hidden units or number of layers
until the training and validation error are roughly
the same order

(4) For the choice of other hyperparameters, we simply
perform grid search

3.2.2. Jacobian Regularized Model. In standard FNNs,
minimizing mean-squared-error on the training data only
guarantees model performance in terms of the local training
error. It does not guarantee the reconstruction of even train-
ing trajectory in the a posteriori sense.

Here, we take a closer look at the error propagation in a
dynamical system for the FNN model when evaluated in an
iterative fashion, i.e., a posteriori sense. Without any loss of
generality, considering the discrete case, after we obtain the
model f, we can predict x̂i+1 given x̂i

x̂i+1 = f x̂i 19

4 Complexity



Moreover, given Fd, we can find the ξi+1global given x̂i and
ξiglobal as follows

ξi=1global = xi+1 − x̂i+1 = Fd xi − f x̂i = Fd x̂i + ξiglobal − f x̂i ,

20

ξi=1global = Fd x̂i + ξiglobal − f x̂i + ξiglobal

+ f x̂i + ξiglobal − f x̂i
21

Consider a Taylor expansion of f x̂i + ξiglobal about x̂i,
we have

ξi+1global = Fd x̂i + ξiglobal − f x̂i + ξiglobal + ∂f
∂x x=x̂i

ξiglobal

+ 1
2 ξ

i
global

T
Hξiglobal +⋯,

22

where H is the Hessian matrix evaluated at some point
between x̂i and x̂i + ξiglobal.

Assuming ξiglobal 2 ≪ 1, H 2 is bounded, and the high
order terms are negligible compared to the Jacobian term,
we have

ei+1global ≤ eilocal +
∂f
∂x x=x̂i 2

eiglobal + o eiglobal

≤ eilocal +
∂f
∂x x=x̂i F

eiglobal + o eiglobal

23

Similarly, in the continuous case, we have

ei+1global ≤ eiglobal +
i+1 Δt

iΔt
eτ/Δtlocaldτ +

i+1 Δt

iΔt

∂f
∂x x=x̂i

eτ/Δtglobaldτ

+ o eiglobalΔt ,

24

ei+1global ≤ 1 + Δt
∂f
∂x x=x̂i F

eiglobal +
i+1 Δt

iΔt
eτ/Δtlocaldτ

+ o eiglobalΔt

25

The right hand sides of equations (23) and (25) con-
tain contributions from the global error and accumulation
of local error. Optimization as in equation (18) can mini-
mize the latter term, but not necessarily the former. This
suggests that manipulating the eigenspectrum of the Jaco-
bian might be beneficial for stabilization by suppressing
the growth of the error. Due to the simplicity of comput-
ing the Frobenius norm compared to the 2-norm, we con-
sider penalizing the Frobenius norm of the Jacobian of the
neural network model. In the context of improving gener-
alization performance of input-output neural network
models, similar regularization has been also proposed by
Rifai et al. [44]. It should be noted that our purpose is
to achieve better error dynamics in a temporal sense,
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Figure 1: VDP case. (a) Distribution of training/testing sets. (b) Learning rate.

Table 1: Hyperparameter configuration of the basic model:
VDP case.

Layer
structure

Activation
function

Loss
function

Optimizer
Learning

rate

2-8-8-2 Swish MSE Adam 0.002
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which differs from the generalization goal in deep learn-
ing. Thus, one may seek a locally optimal solution that
can suppress the growth in global error while minimizing
the local error.

The regularized loss function inspired from the above
discussion is thus

W∗, b∗ = arg min
W,b

1
N train

〠
i∈Itrain

f xi ;W, b − yi 2
2

+ λ J xi ;W, b 2
F
,

26

where J is the Jacobian of the neural network output with
respect to the input and λ is a hyperparameter. On one
hand, it should be noted that regularizing the Frobenius
norm of the eigenspectrum of the Jacobian indirectly sup-
presses the magnitude of the eigenvalue of the Jacobian.

On the other hand, excessive weighting on the magnitude
of the eigenvalue would lead to less weighting on local
error, which might result in an undesirably large local
error. Thus, λ should be set as a relatively small value
without strongly impacting the model performance in an
a priori sense.

3.3. Reducing Overfitting. Overfitting is a common issue in
the training of machine learning models, and it arises when
models tend to memorize the training data instead of
generalizing true functional relations. In neural networks,
overfitting can occur from poor local minima and is partially
due to the unavoidable nonconvexity of an artificial neural
network. Overfitting cannot be completely eliminated for
most problems, given the NP-hard nature of the problem.
Generally, overfitting can be controlled by three kinds of
regularization techniques. The first follows the Occam’s razor
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Figure 2: A priori and a posteriori result of the basic model on VDP case. (a, b) Training data. (c, d) Testing data. (a, c) A priori.
(b, d) A posteriori.
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principle, e.g., L1 sparsity regularization [3]. However, there
is no guarantee that Occam’s razor is appropriate for all
cases, and finding the optimal sparsity level is often iterative.
The second is to smooth the function, e.g., using weight decay
[35]. The third type is especially suitable in iterative learning,

e.g., early stopping, which is a widely used strategy in the
deep learning community [35]. In this work, we found
validation-based early stopping to be sufficient. We split the
data further into pure training and validation sets, and then
monitor overfitting by measuring R2.
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Figure 3: Variation of local error and global error: basic model on VDP case. (a, b) Local error. (c, d) Global error. (e, f) Maximal singular
value of the Jacobian evaluated in a priori. (a, c, e) Training data. (b, d, f) Testing data.
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4. Results and Discussion

Given sequential training data, the capability of the basic
FNN is first evaluated in two-dimensional dynamical sys-
tems with polynomial nonlinearities in Section 4.1 and
nonpolynomial nonrational dynamics in Section 4.2. The
basic model is compared with SINDy [3], which is a
method that directly aims at learning functional models
using L1 sparse regression on a dictionary of candidate
basis functions. In Section 4.3, we demonstrate that the
basic model performs better than SINDy on the problem
of incompressible flow behind a cylinder, in spite of the
explicit addition of quadratic terms to the dictionary. In

addition, the local error is found to be strongly correlated
with the maximal singular value of the Jacobian, thus
serving as an inspiration for Jacobian regularization. In
Section 4.4, we demonstrate the stabilizing aspect of
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Figure 6: Stepwise error contour of SINDy on VDP case. (a) Training data. (b) Testing data. Blue dot: ground truth. Orange dot: prediction.
White arrow: direction of target vector of ground truth. Red arrow: direction of target vector of prediction.
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Table 2: Hyperparameter configuration of the basic model:
nonrational nonpolynomial case.

Layer
structure

Activation
function

Loss
function

Optimizer
Learning

rate

2-8-8-2 elu MSE Adam 0.005
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Jacobian regularization for the problem of laminar wake
behind a cylinder, where the system exhibits a low dimen-
sional attractor. In Section 4.5, we assess the ability of our
regularized FNN model to approximate a dynamically
evolving high-dimensional buoyancy-driven mixing flow
system that is a characteristic of flow physics driven by
instabilities. The results show that, for systems that do not
exhibit a low dimensional attractor, it is difficult for a
black-box model to have satisfactory long-time prediction
capabilities. In Section 4.6, we show that predictive proper-
ties can be improved by data augmentation in the state
space of interest.

4.1. 2D Polynomial System: Van der Pol Oscillator. The first
order forward discretized scheme of the Van der Pol (VDP)
system is given by

xn+11

xn+12
=

xn1

xn2
+ Δt xn2

μ 1−xn1xn1 xn2−x
n
1

, 27

where Δt=0.1 and μ=2.0. The modeling target is

yn =

xn+11 − xn1
Δt

xn+12 − xn2
Δt

= xn2
μ 1−xn1xn1 xn2−x

n
1

= Fr xn

28

Our goal is to reproduce the dynamics governed by Fr
from on data collected from a single trajectory. The loss
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function of the basic model in equation (18) is optimized
using training data from a single trajectory, containing
399 data points. Test data containing 599 points is gener-
ated using a different initial condition. The data distribu-
tion of the training and testing features is shown in
Figure 1. Note that initially, a few test points (orange)

are away from the training data (blue) which require the
model to perform extrapolation. Configuration of hyper-
parameters is shown in Table 1. Data is normalized to
zero mean and unit standard deviation for each compo-
nent. We use minibatch training with batch size = 64 and
80,000 epochs. The basic model consists of two hidden
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Figure 9: Variation of local error and global error: basic model on nonrational, nonpolynomial case. (a, b) Local error. (c, d) Global
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layers with each layer containing 8 hidden units. Two hid-
den layers are accompanied by Swish nonlinear activation
as σ x = x ⋅ sigmoid βx , where in practice, β is fixed as
unity [45]. The output layer is linear. Randomly 20% of
training data is used as a validation set, and we monitor
the performance on the validation set as a warning of
overfitting. In Figure 1, the learning curve suggests that
the model is well-trained and overfitting is not observed.

Results of a priori and a posteriori prediction are shown
in Figure 2. The basic model predicts the Fr at each training
point very well a priori, but slight phase lag is observed a pos-
teriori in testing, which originates from the extrapolation of
the testing data initially.

The variation of the local and global error together
with the maximal singular value of the Jacobian is shown
in Figure 3. For training data, elocal is observed to be rel-
atively uniform as expected, since the objective optimized
is MSE uniformly across all training data points. For test-
ing data, elocal exhibits peak values near the beginning of
the trajectory as expected, since the first few points are
far away from the training data shown in Figure 1. More-
over, it is interesting to observe that in Figure 3, the peak
of the temporal history of local/global error shows a
strong correlation with the maximal singular value of
the Jacobian.

Stepwise error contours are displayed in Figure 4. The
region of large error close to red (implying the difference
of the stepwise vector between neural network prediction
and ground truth is large) is located near the corner of fig-
ure, where there is a dearth of training points. The model
performs well near the training points as expected. In this
case, since testing data is not very far away from the training
data, good performance of extrapolation can be expected.
However, we would like to note that there is a moderate
amount of error associated with the vector direction in
Figure 4 not only at the corners but also near the origin.
This implies that a feedforward neural network can general-
ize to some extent, but with no guarantees, even in regions

enclosed by training data. The results also confirm that
the known result for a dynamical system with an attractor,
the neural network can reproduce the dynamics near the
attractor [13, 25, 33, 37, 46].

With the prior knowledge that the system is polynomial
in nature, one can use polynomial basis functions to extract
the ground truth. To illustrate this, results obtained from
SINDy [3] are shown in Figure 5, with threshold parameter
as 2× 10−4, maximal polynomial order as 3, and no validation
data set considered. As displayed in Figure 6, the excellent
result of SINDy shows the advantage of finding the global
features where the parameters obtained are not restricted to
the scope of training data since the ground truth is governed
by sparse polynomials.

4.2. 2DNonpolynomial System:ANonrationalNonpolynomial
Oscillator. The success of SINDy is a consequence of the fact
that the underlying system can be represented as a sparse
vector in a predefined basis library such as that consisting
of polynomial or rational functions [4]. Here, we choose a
different case: a nonrational nonpolynomial oscillator with
Δt=0.004

xn+11

xn+12

=
xn1

xn2
+ Δt 2 5 − 100 xn1x

n
2

1 + xn2/0 52 4

− 200 xn1x
n
2

1 + xn2/0 52 4 + 9 2 − 2 3xn2 − 1 28 xn2
3/2

29

Here, the basic model in equation (18) is optimized
using 1199 data points of a single trajectory. Testing data
contains 1799 points. Randomly, 20% of the training data
is taken as the validation set, but also included in later eval-
uation. The feature distribution in phase space is shown in
Figure 7. Hyperparameters are listed in Table 2 and 128
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Figure 12: Stepwise error contour of SINDy on nonrational nonpolynomial case. (a) Training data. (b) Testing data. Blue dot: ground truth.
Orange dot: prediction. White arrow: direction of target vector of ground truth. Red arrow: direction of target vector of prediction.
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minibatches and 20,000 epochs are used. The training error
and validation error is also shown in Figure 7.

Results for a priori and a posteriori performance on
training and testing data are shown in Figure 8. The training
trajectory is perfectly reconstructed while the predictions
show slight deviation.

The distribution of the local and global error is shown
in Figure 9. Again, we observe that maximal local/global
error correlates with the peaks of the maximal singular
value of the Jacobian. It is interesting to note that the
highest local testing error occurs at the peak of the maxi-
mal singular value of the Jacobian, instead of at the points
close to the initial condition.

The error contour in Figure 10 shows that the stepwise
error around the training trajectory is below 0.1. It is impor-
tant to note that model performance deteriorates at places far

away from the training trajectory, especially at the right cor-
ner shown in Figure 10.

For SINDy, the polynomial order is set to three and
threshold as 2× 10−4. A priori and a posteriori validation
for training and testing is shown in Figure 11. Correspond-
ingly, the stepwise error contour displayed in Figure 12
shows the misfit for the region of interests ranging from −1
to 3 for both two components. Because there is no sparsity
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Figure 13: Flow in a cylinder wake. (a) Data distribution of x1 vs. x2. (b) Data distribution of x1 and x3. (c) Data distribution of x2 and x3.
(d) Learning curve.

Table 3: Hyperparameter configuration of the basic model: flow in
a cylinder wake.

Layer
Structure

Activation
Function

Loss
Function

Optimizer
Learning

rate

2-20-20-2 elu MSE Adam 0.001
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in polynomial basis in this case, it is expected that SINDy
cannot reconstruct the dynamics correctly and would per-
form worse than the basic model of FNN. The implication
is that for strongly nonpolynomial systems, neural networks
are far more flexible compared to SINDy.

4.3. Nonlinear PDE System: Flow behind a Cylinder. In this
section, we compare the basic model with SINDy in
reconstructing the flow in a cylinder wake. The data is from
Brunton et al. [3] which comes from an immersed boundary
method solution [47] of the 2D incompressible N-S
equations with Re=100 based on the cylinder diameter.
The computational domain consists of a nonuniform grid
with near-wall refinement. The inlet condition is uniform
flow and the outlet is a convective boundary condition to
allow the vorticity to exit the domain freely. Testing data is
generated as a temporal extension of states that lie on a limit
cycle at the boundary of training data, which indicates that
this is not an extrapolation task. To work with such a high-
dimensional nonlinear PDE system, we use the coefficients
of two POD modes [23] and one “shift mode”, which

represents the shift of short-term averaged flow away from
the POD space of the first two harmonic modes to reduce
the spatial dimension. More details on POD and “shift-
modes” are provided in references [23, 48]. Training and test-
ing data is the same as in Brunton et al. [3] where the first
2999 snapshots in time are used for training, and a later
2994 snapshots used for testing. A random 10% of training
snapshots is considered as validation set but also included
in later evaluation. The distribution of training data and
testing data is shown in Figure 13.

Hyperparameters of the basic model are shown in Table 3
with 40,000 epochs. For SINDy, the hyperparameters are the
same as in the previous work [3]. As shown in Figure 14, for
training data, SINDy reconstructs a smaller growth rate of
oscillating behavior, while the basic model accurately recon-
structs both the shift mode and two POD modes. For testing
data, SINDy contains an observable phase lag for the time
period concerned, while the basic model achieves an almost
perfect match. This implies that the model obtained from
SINDy, although much easier to interpret than neural net-
work, is not the best model for this dynamical system in
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Figure 14: A posteriori comparison for flow in a cylinder wake between the basic model and SINDy. Red: first POD coefficient. Green: second
POD coefficient. Blue: shift-mode coefficient. (a, b) Basic model. (c, d) SINDy. (a, c) Training data. (b, d) Testing data.
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terms of accuracy. However, we note that from the data dis-
tribution in Figure 13, the basic model performs as expected,
as the training data covers the attractor well.

4.4. Stabilizing the Neural Network with Jacobian
Regularization. Due to the nonconvexity of the optimization
problem that arises in the solution of the basic model in
equation (18), employing a stochastic gradient-descent type
method might lead to a solution corresponding to a local
minimum, which is often undesirable and difficult to avoid.
Most works in the field of deep learning for feedforward neu-
ral networks focus on decreasing the impact of poor local
minima to promote generalizability. However, in the context
of modeling a dynamical system, as it is often assumed that
the trajectory of interest is stable with respect to small distur-
bances [25], the model should be able to approximately
reconstruct the training trajectory in the presence of local
errors that arise at each step. This would require regularizing
instabilities that could arise in a posteriori prediction. To
have meaningful comparisons, random number seeds are
fixed for initialization of weights and training data shuffling.
Nevertheless, we observe that in some cases, for example, in

the previous case of the cylinder wake, an inappropriate
choice of neural network configuration of the basic model,
e.g., number of hidden units and type of activation function,
can potentially lead to instability in a posteriori evaluation.
Such instabilities may materialize even while reconstructing
the training trajectory, while the corresponding a priori pre-
diction is almost perfect. Previous work [16] explicitly
ensured stability by simply adding more adjacent trajectories.
Here, we take a different approach by adding a Jacobian
regularization term in the cost function in equation (26).

In our numerical experiments, with a certain fixed
random seed, it is observed that, when the layer structure is
2-20-20-2 with tanh as activation function instead of elu,
the basic model becomes numerically unstable after 2000
steps for training data which is displayed in Figure 15. Similar
numerical instability is also observed in testing evaluations.
However, for the same fixed random seed, the regularized
model with λ=5× 10−5 shows numerically stable results with
the same neural network configuration for both training and
testing data.

The effectiveness of Jacobian regularizationmay be attrib-
uted to finding a balance between lowering the prediction
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Figure 15: A posteriori comparison between basic and regularized models for cylinder wake. Red: first POD coefficient. Green: second POD
coefficient. Blue: shift-mode coefficient. (a, b) Basic model. (c, d) Regularized model. (a, c) Training data. (b, d) Testing data.
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error, i.e., MSE, and suppressing the sensitivity of the predic-
tion of the future state to the current local error. As shown in
Figures 16 and 17, on average, the maximal eigenvalue of the
Jacobian is smaller for the regularized model than for the
basic model. Furthermore, the distribution of the eigen-
values of the Jacobian is shown in Figure 18 in the form of
a linear stability diagram with explicit 5th order Runge-
Kutta time integration. It is clear that the model with
Jacobian regularization has significantly smaller positive real
eigenvalues. Note that, due to the Frobenius norm, negative
real eigenvalues are also decreased in magnitude.

4.5. Nonlinear PDE System: Instability-Driven Buoyant
Mixing Flow. The test problems thus far have served to assess
the performance of the basic and Jacobian regularized
models on nonlinear dynamical systems that either evolve
on or towards an attractor. Such systems, even if high-

dimensional, are amenable for projection onto a lower
dimensional subspace, using, for instance, POD techniques.
In this section, we consider the Boussinesq buoyant mixing
flow [49, 50], also known as the unsteady lock-exchange
problem [51] which exhibits strong shear and Kelvin-
Helmholtz instability phenomena driven by the temperature
gradient. Compared to the cylinder flow that evolves on a
low-dimensional attractor approaching a limit cycle, the
Boussinesq flow is highly convective and instability driven.
Consequently, such a system state cannot be represented by
a compact set of POD modes from the spatial-temporal field
of nondimensionalized velocity and temperature. Rather, the
low-dimensional manifold itself evolves with time. Further,
any noise in the initial data can produce unexpected
deviations that makes such systems challenging to model,
even using equation-driven reduced order models such
as POD-Galerkin [51].
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Figure 16: Flow in a cylinder wake. Comparison of eigenvalue of the Jacobian between regularized and basic model on training data.
(a, b) Maximal real eigenvalue. (c, d) Maximal imaginary eigenvalue. (a, c) A priori. (b, d) A posteriori.
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The data set is generated by solving the dimensionless
form of the two-dimensional incompressible Boussinesq
equations [51], as shown in equation (30) on a rectangular
domain that is 0 < x< 8 and 0 < y < 1

∂u
∂x

+ ∂u
∂y

= 0, 30a

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y0 = −

∂P
∂x

+ 1
Re∇

2u, 30b

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −
∂P
∂y

+ 1
Re∇

2v + Riθ, 30c

∂θ
∂t

u
∂θ
∂x

+ v
∂θ
∂y

= 1
Re Pr∇

2θ, 30d

where u, v, and θ are the horizontal, vertical velocity, and
temperature components, respectively. The dimensionless
parameters Re, Ri, and Pr are the Reynolds number,
Richardson number, and Prandtl number, respectively,
with values chosen as follows: Re = 1000, Ri = 4 0, and
Pr =1.0. These equations are discretized on a 256× 33
grid. Initially, fluids at two different temperatures are sep-
arated by a vertical line at x = 4. The bounding walls are
treated as adiabatic with the no-slip condition. A fourth-
order compact finite difference scheme is used to com-
pute the derivatives in equation (30). The evolution of
the thermal field over the simulation time interval of 32
seconds is shown in Figure 19 and illustrates the highly
transient nature of the dynamics. To reduce the dimensional-
ity of the system, POD modes are extracted from the entire
data set consisting of 1600 snapshots. The reduced feature
set consisting of ten POD weights captures nearly 97%

8

7

6

5

4

3

M
ax

im
um

 re
al

 ei
ge

nv
al

ue

2

1

0

0 500 1000 1500
Index

2000 2500 3000
−1

Regularized
Basic

(a)

8

7

6

5

4

3

M
ax

im
um

 re
al

 ei
ge

nv
al

ue

2

1

0

0 500 1000 1500
Index

2000 2500 3000
−1

Regularized
Basic

(b)

3.0

2.5

2.0

M
ax

im
um

 im
ag

in
ar

y 
ei

ge
nv

al
ue

0.0

0 500 1000 1500
Index

2000 2500 3000

1.5

1.0

0.5

−0.5

Regularized
Basic

(c)

3.0

2.5

2.0

M
ax

im
um

 im
ag

in
ar

y 
ei

ge
nv

al
ue

0.0

0 500 1000 1500
Index

2000 2500 3000

1.5

1.0

0.5

−0.5

Regularized
Basic

(d)

Figure 17: Flow in a cylinder wake. Comparison of eigenvalue of the Jacobian between regularized and basic model on testing data.
(a, b) Maximal real eigenvalue. (c, d) Maximal imaginary eigenvalue. (a, c) A priori. (b, d) A posteriori.
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of the total energy is used to train the model and predict
the trajectory.

For the setup of training and testing, future state predic-
tion is pursued with the first 70% states of the trajectory
treated as training data and the rest for testing. For such a
system in 10 dimensions, it is observed that the problem of
the a posteriori instability in the basic model becomes more
pronounced and difficult to avoid. Challenges of numerical
instability were observed even for reconstruction for a wide
range of network configurations, and thus, results from the
basic model are not reported.

The Jacobian regularized model is employed with hyper-
parameters shown in Table 4, with Figure 20 showing a pos-
teriori evaluation on training data. The reconstruction is
successful, but the performance deteriorates on testing data
because the trajectory of the system does not exhibit a low
dimensional attractor as in the cylinder case. Therefore, the
training data is not informative for predictions on the test

set. For a black-box machine learning model, this phenom-
ena can be expected to be more pronounced in high dimen-
sional space due to data scarcity. Specifically, we discuss
this problem in the following section.

4.6. Improving Model Predictability by Data Augmentation.
In this section, we consider two scenarios of data augmenta-
tion: (i) augmenting the information in the data by spreading
training locations randomly following a uniform distribution
provided that one has access to Fc or Fd at any desired loca-
tion; (ii) augmenting the data by assembling several trajecto-
ries generated from different initial conditions.

4.6.1. Random Uniform Sampling in Phase Space. Recall
that, in the two-dimensional problems in Section 4.1 and
Section 4.2, the stepwise error contour shows that local error
increases on testing scenarios located far away from the train-
ing data which was highly concentrated in a compact region
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Figure 18: Flow in a cylinder wake. Comparison of linear stability diagram between regularized and basic model. (a) A priori on training data.
(b) A posteriori on training data. (c) A priori on testing data. (d) A posteriori on testing data.
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of phase space. Without any knowledge of system behavior, it
is sensible to start with training data from a random uniform
distribution in a compact region of phase space correspond-
ing to interesting dynamics. To conduct a thorough stepwise
error contour evaluation of the training target in phase space,
the VDP system is chosen to illustrate this idea.

Determining the most informative data samples would
potentially involve specific knowledge of the underlying
system and the models used and is beyond the scope of the
current work. Here, we simply consider uniform random
sampling in the phase space in a finite domain: [−3,3] for
the first component and [−5,5] for the second component.
We obtained a new set of 399 training data points using
random uniform sampling in phase space while retaining
the same testing data as in Section 4.1.

The performance of the basic model with the same hyper-
parameter setting as in Section 4.1 on randomly distributed
training data is shown in Figure 21.While the number of data
points has not been changed, the contour error of the result-
ing model decreased significantly compared to training with
the same number of data points in a single trajectory, which
indicates an improved generalizability with the same amount
of training data.

4.6.2. Training with Multiple Trajectories with Random
Initialization. Training data can also be augmented by multi-
ple trajectories with different initial conditions. Here, we take

the one-dimensional viscous Burgers equation shown in
equation (31) as example.

The initial conditions are generated following a specific
energy spectrum [28, 52] shown in equation (32).

∂u
∂t

+ u
∂u
∂x

v
∂2u
∂x2

, 31

where x ∈ 0, 2π is a periodic domain discretized using 2048
uniformly distributed grid points, and t ∈ 0, 20 , ν = 0 01.

u x, 0 = 〠
kc

k=1

1
π

2AE k sin kx + βk , 32

where for each k, βk is a random number drawn from a uni-
form distribution on −π, π , E k = 5–5/3 if 1 ≤ k ≥ 5, A = 25,
and E k = k−5/3 if k > 5. Multiple trajectories are generated
using different seeds for random numbers to obtain the tra-
jectories of the full-order system. To fully resolve the system
as a DNS, equation (31) is solved using a standard pseudos-
pectral method with SSP-RK3 [53] for time stepping. Here,
we choose kc = 2. Discrete cosine transformation (DCT) is
used to reduce the dimension of the full system tofirst 4 cosine
modes in the system where around 97% of kinetic energy
is preserved. For simplicity, we seek a closed Markovian

Table 4: Hyperparameter configuration of the Jacobian regularized model for buoyant mixing flow.

Layer structure Activation function Loss function Optimizer Learning rate λ

10-20-20-10 Penalized tanh [56] MSE Adam 0.001 5e-4
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Figure 20: A posteriori comparison between prediction of Jacobian regularized model and ground truth for POD coefficient of buoyant
mixing flow. Dashed: model. Solid: ground truth.
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reduced-order-system, whereas the underlying dynamics is
clearly non-Markovian [28, 54].

Since the first component of the DCT is constant, the
remaining components of feature space are shown in
Figure 22. The training data is far away from the testing data
initially, whereas the data converges at a later stage. This is
because of the presence of a spiral fixed point attractor result-
ing from the viscous dissipative nature of the system. There-
fore, if the model is only trained from a single trajectory, it
will be very difficult for the model to generalize well in the
phase space especially where the state of the system is not
near an attractor.

Many dynamical systems in nature exhibit attractors in
the asymptotic sense. From the viewpoint of data-driven
modeling of such dynamics, data scarcity is encountered

at the start of trajectory where the number of trajectories
required to provide enough information to cover the
region of interest grows exponentially. Much research on
applying neural network-basedmodels for dynamical systems
[16, 20, 34] demonstrate problems starting on limit cycles or
chaotic attractors in a low-dimensional feature space, where
the issue of initial data scarcity is not significant, or can be eas-
ily alleviated by a small increase in available data. However,
for the purpose of modeling phenomena such as turbulent
fluid flow, which can be high dimensional even after
dimension reduction, the model would likely fail for
long-time prediction due to data scarcity. Such a situation
may be realized in regions of phase space where the state
has not arrived at the low manifold attractor. Therefore,
the training data might not be representative of testing
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Figure 21: A priori and a posteriori result of the basic model on the VDP system, training with random sampled data distribution. (a) A priori
evaluation. (b) A posteriori evaluation. (c) Learning curve. (d) Stepwise error contour. Blue dot: ground truth. Orange dot: prediction. White
arrow: direction of target vector of ground truth. Red arrow: direction of target vector of prediction.
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data which violates the fundamental assumption of a well-
posed machine learning problem [55]. Moreover, data
scarcity will shrink the region of generalizability of the
model as the dimension of the system increases.

A key benefit of using a neural network model is its linear
growth in complexity with dimension of the system, in con-
trast to traditional polynomial regression methods [35].
However, initial data scarcity would limit the generalizability
of an ANN in modeling a high dimensional dynamical sys-
tem that does not exhibit a low dimensional attractor. We
believe that this phenomenon of data scarcity observed from
this simple nonlinear PDE example also applies to other non-
linear dynamical systems.

To alleviate the initial data scarcity issue, a solution is to
augment the training data with more trajectories with differ-
ent random number seeds in generating the initial condition,
while keeping the energy spectrum the same across all cases.
In this case, we choose 18 such trajectories. Each trajectory
contains states of 1000 snapshots equally spaced in time.
For testing data, we simply consider one DNS result with
an initial condition different from all training trajectories.
The corresponding training and testing trajectories are
visualized in phase space as shown in Figure 22.

The basic model is trained with hyperparameters in
Table 5 and 1000 epochs. The resulting learning curve and
a posteriori evaluation are shown in Figure 23. Relatively
large discrepancy is observed near the initial condition as
the initial data scarcity is not completely eliminated due to
limited number of additional trajectories. Increasing the
number of additional trajectories may be unaffordable for

very high dimensional systems. Moreover, the result also
shows that the error decreases once the trajectory falls on
the fixed point attractor. Thus, if the model starts in the
low dimensional attractor where the information is well-
preserved in the training data, better performance might
be expected. This hypothesis is consistent with the previ-
ous work [34], where successful prediction of future states
starts at the time when the states converge to a low
dimensional attractor.

5. Conclusions

This work investigated the modeling of dynamical systems
using feedforward neural networks (FNN), with a focus on
long time prediction. It was shown that neural networks have
advantages over sparse polynomial regression in terms of
adaptability, but with a trade-off in training cost and diffi-
culty in extrapolation, which is a natural barrier for almost
all supervised learning. From the perspective of global error
analysis, and the observation of the strong correlation
between the local error and maximal singular value of the
Jacobian, we propose the suppression of the Frobenius norm
of the Jacobian as regularization. This showed promise in
improving the robustness of the basic FNN model given
limited data, or when the model has a nonideal architecture,
or when the model is unstable. The effectiveness of Jacobian
regularization is attributed to finding a balance between
lowering the prediction error and suppressing the sensitivity
of the prediction of the future state to the current local error.
In terms of modeling dynamical systems that do not involve
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Figure 22: Feature distribution of training/testing data for component x2,x3,x4. (a) With one training trajectory. (b) With 18 training
trajectory. Black line: testing data. Red line: training data.

Table 5: Hyperparameter configuration of the basic model: VBE system with four modes.

Layer structure Activation function Loss function Optimizer Learning rate

4-30-30-30-4 elu MSE Adam 0.0005
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low-dimensional attractors, limitations of FNNs, and per-
haps all local ML methods, was demonstrated in a buoyant
mixing flow. Challenges were noted in the example of the
reduced-order viscous burgers system, where significant ini-
tial data scarcity is present. Augmenting the data either by
altering the distribution of training data in phase space or
by simply adding multiple trajectories from different initial
conditions resulted in improvement of the performance of
FNN model to some extent. However, these remedies require
a significant amount of additional sampling in phase space,
especially for high dimensional systems for the period of time
without the apparent low-dimensional attractor which
suffers data sparsity from the curse of dimensionality.

Data Availability

Most of the data contained in the current study are
synthetic data which can be easily generated through the
configuration described. In addition, the cylinder flow data
is directly downloadable in the public repo of SINDy [41]:
faculty.washington.edu/sbrunton/sparsedynamics.zip. And
the instability-driven buoyant mixing flow data were sup-
plied by Professor Balaji Jayaraman under license and so
cannot be made freely available. Requests for access to
these data should be made to balaji.jayaraman@okstate.edu.
Furthermore, all of the data used to support the findings of
this study are available from the corresponding author upon
request. Ref: [1] Brunton, Steven L., Joshua L. Proctor, and J.
Nathan Kutz. “Discovering governing equations from data
by sparse identification of nonlinear dynamical systems.”
Proceedings of the National Academy of Sciences 113.15
(2016): 3932–3937.
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Inspection strategies with guided wave-based approaches give to structural health monitoring (SHM) applications several
advantages, among them, the possibility of the use of real data from the structure which enables continuousmonitoring and online
damage identification. These kinds of inspection strategies are based on the fact that these waves can propagate over relatively
long distances and are able to interact sensitively with and uniquely with different types of defects. The principal goal for SHM is
oriented to the development of efficient methodologies to process these data and provide results associatedwith the different levels
of the damage identification process. As a contribution, thiswork presents a damage detection and classificationmethodologywhich
includes the use of data collected from a structure under different structural states bymeans of a piezoelectric sensor network taking
advantage of the use of guided waves, hierarchical nonlinear principal component analysis (h-NLPCA), andmachine learning.The
methodology is evaluated and tested in two structures: (i) a carbon fibre reinforced polymer (CFRP) sandwich structure with
some damages on the multilayered composite sandwich structure and (ii) a CFRP composite plate. Damages in the structures were
intentionally produced to simulate different damage mechanisms, that is, delamination and cracking of the skin.

1. Introduction

Data-driven algorithms have demonstrated their utility in
structural health monitoring (SHM) applications. In fact, the
use of this kind of approaches is a useful tool for real-time
condition monitoring (CM). However, one of the challenges
in the use of data-driven algorithms is associated with the
size and quantity of information which is often obtained from
sensor networks or multiple sensors. This information repre-
sents a great deal of data to process and analyse. In this sense,
it is necessary to develop better methodologies which allow
avoiding false alarms in the damage identification process.

An SHM system typically includes five steps in its design:
these are (i) sensor network design; (ii) data acquisition; (iii)
feature extraction, (iv) diagnosis, and (v) prognosis. The first
four stages normally involve methods for data-sensor fusion,
multivariate statistical modelling and pattern recognition
algorithms. For the later, a physics-based model is almost
inevitable so that reliable predictions can be performed. It is
evident that structural health monitoring systems have been
advancing worldwide as shown by the amount of relevant
available scientific papers and recent practical applications
[1–3]. Among the solutions in the application of data driven
algorithms for SHM, there are many applications in bridges
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[4–6], aeronautics [7, 8], aerospace [9, 10], wind turbines [11–
13], among others.

As a contribution to the development of new ways to
process and evaluate the condition of a structure using data
from sensors, a methodology for damage classification and
detection is presented in this paper. This work is also moti-
vated by the need to further develop, integrate and evaluate
damage identification algorithms [7, 14, 15]. The proposed
methodology is based on an acousto-ultrasonic approach
in which ultrasonic waves are generated in a piezoelectric
transducer sensor network in several actuation phases. The
captured signals are preprocessed by means of the discrete
wavelet transform (DWT) for feature extraction and then
integrated into a nonlinear multivariate model where some
nonlinear components are generated in order to form feature
vectors for all the actuation phases and to train a machine
by means of the machine learning point of view. Afterward,
measurements with the sensor network are captured from
the structure in an unknown state and the interaction with
the training machine allows defining the current structural
state according to the states defined in the training step. To
validate the proposed methodology, experiments are carried
out in a composite sandwich structure in which increasing
damage is intentionally introduced and a composite plate
with simulated damages.

The remaining part of this paper is organized as follows.
For completeness, the article first presents a brief summary of
the basic theoretical background for the different evaluated
signal processing algorithms. Afterward, the methodology is
introduced in Section 3. Section 4 is devoted to the experi-
mental validation, where the experimental setup and results
are included. Finally, conclusions are given in Section 5.

2. Theoretical Background

This section introduces some brief concepts about some well-
knownmethods that are used in the developed methodology.
Authors suggest reviewing the references in each subsection
if more information about each method is required.

2.1. Discrete Wavelet Transform. The discrete wavelet trans-
form (DWT) is a very useful tool, used in an increasingly
broad horizon, image processing, health care, energy dis-
tribution, SHM, and others. That can be defined as a filter
bank structure to distinguish features through the use of low-
pass filters and high-pass filters [16, 17]. This configuration
allows representing the variability of a given function by
means of coefficients at a specified time and scale. These
coefficients are calculated by using quadrature mirror filters
and are decomposed in approximation (A1, A2,. . .) and detail
coefficients (D1, D2,. . .) [7] as is shown in Figure 1.

Detail coefficients are low-scale, high-frequency com-
ponents, while the approximation coefficients represent the
high-scale, low-frequency components. The wavelet tech-
nique has been of great interest in recent years and has
direct application for the SHM like demonstrates some
research works [18–22]. For further details about DWT and
its implementation, please refer to [23].

Figure 1: Discrete wavelet transform decomposition.

2.2. Hierarchical Nonlinear Principal Component Analysis.
The hierarchical nonlinear principal component analysis is
also known as h-NLPCA and is also defined as a nonlinear
generalization of traditional PCA [24]. This is a method
based on a multi-layered perceptron (MLP) architecture with
an auto-associative topology. The auto-associative network
works with the inputs and outputs to perform the identity
mapping by using the square error [24]. This architecture,
shown in Figure 2, includes a bottleneck layer which allows
us to compress data and reduce the dimension of the original
data. Note that the nodes in the mapping and demapping lay-
ersmust have nonlinear transfer functions; nonlinear transfer
functions are not necessary for the bottleneck layer [25].With
the purpose of guaranteeing that the calculated nonlinear
components have the same hierarchical order as the linear
components in standard principal component analysis (PCA)
and in contrast to standard NLPCA, the reconstruction
error is controlled by searching a k dimensional subspace
of minimum mean square error (MSE) under the constraint
that the (k-1) dimensional subspace is also of minimal MSE
[26].

This process is repeated for any k-dimensional subspace
where all subspaces must be of minimal MSE. h-NLPCA
describes the data with greater accuracy and/or by fewer
factors than PCA, provided that there are sufficient data to
support the formulation of more complex mapping functions
[27, 28].

2.3. Machine Learning. In the recent years, the machine
learning (ML) has been the focus of many researchers
in the area of structural health monitoring (SHM) by its
effectiveness and continuous development [29–32]. Machine
learning is a set of algorithms that can extract, in an automatic
way, the hidden patterns in a large group of data [33, 34].
There are two different approaches in ML according to the
training process:

(i) Supervised, where the machine gets the inputs and the
expected outputs. The machine is trained to find the
complex patterns and relationships between themand
obtain generalized responses based on this training
with right answers [35, 36].
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Figure 2: Network architecture for h-NLPCA.

(ii) Unsupervised, where the machine is trained to find
the similarities in the data and provide a clustering
organization to indicate its proximity [37, 38].

In this work, a supervised training is explored; in this sense,
some of the supervised machines used in the methodology
are then explained. On one hand, k nearest neighbours
(kNN) is a machine learning algorithm that has a very
simple strategy. More precisely, the elements are classified
by the distance to others and the frequency with which this
proximity is presented. It is important not to take the risk
of overfitting. In this case, the trained machine will only
apply for the current group of data. Therefore, to ensure
that this does not occur, it is important to keep a moderate
number of characteristics and training examples. On the
other hand, decision trees are a predictive model used in,
for instance, data mining and statistics. This mechanism
maps the observations in a structure that allows us to reveal
conclusions about these observations. This structure also
allows us to extrapolate these conclusions and predict new
behaviours with new observations. To extract the desired
structure that describes the information, an analysis of the
data and the critical values that builds a better division of
them is performed. This division is performed after locating
the choice nodes and the change nodes in the decision
structure with the aim of obtaining a better decision branches
and a best behaviour in the prediction.

In order to facilitate that the machine reaches the goal,
it is very common to simplify the input data through some
techniques [2, 39]. In this work, only the supervised type is
explored and results are presented by the use of the confusion
matrices. These types of matrices are a very useful tool to
classify data considering the following classes: true positives,
false negatives, false positives and true negatives.

3. Damage Classification Methodology

In this work, piezoelectric transducers were used because
these devices are cheap, easy to install, lightweight, and with

several other good characteristics [40, 41]. Figure 3 shows
a representation of the methodology applied. This can be
divided into two parts: training and testing, where in both
cases the strategy uses data from the structure collected by a
piezoelectric sensor network in several actuation phases.This
network is built with several piezoelectric transducers which
are attached to the structure under test in a permanent way
and distributed over its surface as in Figures 9 and 13. Because
these transducers can work as actuators or as sensors, each
actuation phase is defined by a PZT working as an actuator
and using the rest of PZTs as sensors, this procedure is
repeated for each PZT in the sensor network [42].Thismeans
that an excitation signal is applied to a piezoelectric sensor
and propagated signals through the structure are collected by
the rest of sensors, organized and preprocessed. This process
is repeated for each sensor in the structure [43, 44]. Each
signal captured by the acquisition system is preprocessed by
the Discrete Wavelet Transform at a defined decomposition
level and, as result, a reduced signal is obtained and organized
by each actuation phase as in [43]. These steps are the same
for training and testing steps. Once data are preprocessed and
organized, during the training step, h-NLPCA is applied to
the data by each actuation phase and a determined number of
nonlinear components are obtained and used for training the
machines; in particular for the explored cases in this paper the
first three scores (S1, S2, and S3) were used by each actuation
phase to define the feature vector for training the machines
as it is shown in Figure 4. This Figure is an example when
only four sensors are used as in the case of the specimen
1. As result of this step, a machine with the information of
the structural states is trained and is available for the testing
step.

Testing is performed by using data from the structure in
an unknown structural state and projecting the information
to the nonlinear components, as results of this projection
appear the scores which are used as input to the trained
machine to predict the kind of structural state.This procedure
allows us to detect and classify the structural state.
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Figure 3: Damage classification methodology.
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Figure 4: Methodology-machine learning.

4. Experimental Validation

To validate the methodology, data from two structures
are considered. A carbon fiber-reinforced plastic (CFRP)

sandwich structure with some damages on the multilay-
ered composite sandwich structure and a CFRP plate with
an added mass to simulate damages were used. Several
experiments were collected per each structural damage state
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Table 1: Damage description.

Damage Number Description

1
Delamination: started symmetrically from the right side of the sample
at its middle position along the y-axis. Its width along the y-axis is 16

mm and its depth along the x-axis is 10 mm

2 Extended the previous damage to a width of 33 mm and depth of 42
mm

3 A crack of 25 mm length initiated at the middle position along the
vertical y-axis and in the parallel direction to the x-axis

4 Extended the previous crack to a length of 30 mm
5 Extended the previous crack to a length of 45 mm
6 Extended the previous crack to a length of 70 mm

SENSORAS
ACTUATOR SENSOR

Hamming
Signal
12Vpp
30Khz

Signal collected
60.000 samples per channel

60.000 X 3 sensors
180.000

Figure 5: Structure exploration.

(including undamaged state) to train the machines and to
test the behaviour of the prediction as will be explained in
the following subsections. In addition, there is a detailed
description of the measurement procedure, the structures,
and the results obtained from the use of the developed
methodology.

4.1. Measurement Procedure. As it has been previously intro-
duced in the last section, the interaction with the structure
is performed by the signals applied and collected to the
piezoelectric sensor network. In the cases of the structures
evaluated in this paper, piezoelectric sensors PIC-151 were
used. The inspection is performed in four phases for the
specimen 1 and nine phases for the specimen 2 due to the
number of piezoelectric sensors installed in each structure.
During the first actuation phase (phase I), the first piezoelec-
tric was stimulated with aHamming windowed cosine signal,
12 volts of the peak value, and a frequency determined for
each structure, and the information of the interaction of the
propagated waves with the structure is collected in different
places of the structure by the rest of the sensors. Figure 5
describes an example of this actuation phase. The second
actuation phase (phase II) implies the use of the second
piezoelectric as an actuator and the rest used as sensors and
so on. This process ends when all piezoelectric transducers
have been used as an actuator. All this information is stored
for the subsequent process in several matrices and files, one
per each actuation phase.

Experiments consider different structural states (healthy
and structure with damage in different positions) as it will be

explained in the following subsections. Number of samples of
each sensor is 60.000.Thismeans that the number of columns
in this matrix is (n-1) sensors x 60.000 samples. Figure 6
shows this organization, the corresponding preprocessing,
and the procedure to extract the h-NLPCA scores for the case
of a structure with four piezoelectric sensors. In this case,
the first 30 scores are retained during the model construction
with h-NLPCA.

After scores are obtained per each actuation phase, the
feature vector for training is defined. Figure 7 shows the
assembled training vector. In this case, training is made with
a vector of twelve elements (three scores from each actuation
phase), this means that, for instance, in the case of specimen
1 with 4 sensors, 4 actuation phases were considered as in
Figure 7. In the sameway, the Figure shows the casewhere 150
experiments were acquired for each structural damage state.
With respect to the normalization, group scaling was used in
each matrix from each actuation phase [45].

These steps are repeated in the same way for data during
training and testing process. Following some details about the
particular experiments with each evaluated specimen will be
presented.

4.2. Specimen 1: CFRP Sandwich Structure. Thefirst structure
corresponds to a CRFP sandwich structure (Figure 8), where
the damages are intentionally produced to simulate different
damage mechanisms, i.e. delamination and cracking of the
skin. These damage mechanisms are summarized in Table 1.
The overall size of this structure is 217 mm x 217 mm x 31
mm and it is made of carbon/epoxy material with a 0.5 mm
thickness. The stacking sequence is [0∘ 90∘] (Figure 9).

The core is made of polyetherimide foam with a 30
mm thickness. Four PIC-151 piezoelectric transducers from
PI Ceramics are attached to the surface of the structure
with equidistant spacing. Figure 9 shows a photo of the
experiment.

The scan frequency was a 50 kHz, with a peak voltage of
12 V, and Hamming windowed cosine form, with five cycles.
Seven structural states were studied (healthy state and six
damages) as it was previously explained. In each structural
state 150 experiments were performed, according to the fol-
lowing distribution: 100 experiments were used for training
and 50 experiments for testing. Data from each experi-
ment was preprocessed by means of the DWT. The family
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Figure 6: Data organization: h-NLPCA scores, before building the training vector.

Daubechies (db8) was chosen to obtain the approximation
coefficients [46, 47].This selection was applied since previous
works demonstrated that this family contains most relevant
information for this kind of applications. Coefficients are
used to build the hierarchical nonlinear PCA model for
each actuation phase. The architecture of the h-NLPCA is
a five-layer nonlinear autoencoder network with 3-4-2-4-3
components as in [48]. As a result, three components by
each actuation phase are used to build the feature vector
that is used as the input for the training process to different
machines. For the training part, the MATLAB classification
learner app was used.

Subsequently, testing is performed by using data from
the structure in an unknown structural state and projecting
the information to the nonlinear components. The projected
information, called scores, is used as the input to the trained
machine to predict the kind of structural state.This procedure
allows to detect and classify the structural state.

Several machines were trained to determine the elements
in the feature vector, i.e., to determine the influence and the
number of scores to use by actuation phase and the number of
experiments for an adequate training machine. Table 2 shows
the results in the prediction process when two scores by each
actuation phase and fifty experiments are used in the training
step. During the prediction, one hundred experiments per
damage are used. Twenty supervised learning machines were
training using MATLAB’s classification learner toolbox.

As it is possible to observe, all structural states are
not properly predicted in all the trained machines, this
means that a low number of scores affect the classification
process. Table 3 shows the results when the number of scores
per actuation phase are increased to five. As it is possible
to observe, prediction improves in most of the machines,
however, it is necessary to determine an adequate number of
scores, because when it is increased could produce machine
overfitting, and the learning may be poor. This is that the
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Figure 7: Assembled training vector.
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31 mm

Figure 8: Specimen 1: CFRP sandwich structure and PZT distribution.

mistakes are added to others predictions and growing up the
uncertainty.

Consistent with previous research, fine kNN and
weighted kNN showed better results in the classification.
However, when the number of scores is increased, other
machines such as bagged trees and subspace kNN
significantly improved their performance. Following
this analysis, three scores were defined as the number of
scores to use because present similar results to the obtained
with a greater number of scores.

Some consideration about the algorithms can be summa-
rized as follows, the k nearest neighbour (kNN) classifier is
an algorithm recommended to work with low dimensional
data. Particularly, in this kind of machine, the number of
neighbours have an effect over the response so, in general,
the use of a reduced number of neighbours improve the
outcome. Decision trees (DT) are a different kind ofmachine.
In this case, DT is a classification mechanism that allows us
to construct a predictive model where the value of splits can
increase or decrease the flexibility of this algorithm, as well
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Table 2: Behavior of machines with two scores per sensor (specimen 1, four sensors).

Machine type UND DMG1 DMG2 DMG3 DMG4 DMG5 DMG6
Complex Tree 90% 99% 13% 92% 100% 90% 100%
Medium Tree 90% 88% 13% 92% 100% 90% 100%
Simple Tree 90% 99% 0% 0% 100% 90% 100%
Linear SVM 96% 98% 81% 95% 99% 99% 100%
Quadratic SVM 96% 98% 96% 95% 99% 99% 100%
Cubic SVM 96% 99% 98% 95% 99% 99% 100%
Fine Gaussian SVM 68% 100% 57% 87% 79% 78% 99%
Medium Gaussian SVM 97% 100% 76% 100% 97% 98% 100%
Coarse Gaussian SVM 95% 98% 94% 96% 99% 99% 100%
Fine KNN 97% 100% 96% 98% 99% 100% 100%
Medium KNN 95% 100% 93% 94% 99% 100% 100%
Coarse KNN 91% 100% 85% 80% 99% 100% 94%
Cosine KNN 95% 100% 74% 89% 99% 100% 100%
Cubic KNN 95% 99% 89% 93% 99% 99% 100%
Weighted KNN 95% 100% 95% 97% 99% 100% 100%
Boosted Trees 90% 100% 20% 1% 100% 98% 100%
Bagged Trees 99% 100% 71% 95% 100% 100% 100%
Subspace Discriminant 97% 100% 64% 97% 100% 100% 100%
Subspace KNN 97% 100% 82% 98% 100% 100% 100%
Rusboosted Trees 90% 100% 0% 0% 0% 0% 0%

Table 3: Behavior of machines with five scores per sensor (specimen 1, four sensors).

Machine type UND DMG1 DMG2 DMG3 DMG4 DMG5 DMG6
Complex Tree 90% 99% 18% 99% 99% 97% 100%
Medium Tree 90% 99% 18% 99% 99% 97% 100%
Simple Tree 90% 99% 0% 100% 0% 97% 100%
Linear SVM 97% 100% 100% 99% 99% 99% 100%
Quadratic SVM 97% 100% 100% 99% 99% 99% 100%
Cubic SVM 97% 100% 100% 99% 99% 99% 100%
Fine Gaussian SVM 100% 9% 8% 28% 8% 30% 56%
Medium Gaussian SVM 99% 100% 98% 99% 99% 98% 100%
Coarse Gaussian SVM 98% 100% 100% 100% 99% 100% 100%
Fine KNN 97% 100% 100% 100% 99% 100% 100%
Medium KNN 97% 100% 100% 100% 99% 100% 100%
Coarse KNN 93% 100% 100% 99% 97% 100% 100%
Cosine KNN 96% 100% 100% 100% 99% 100% 100%
Cubic KNN 95% 100% 100% 100% 99% 99% 100%
Weighted KNN 97% 100% 100% 100% 99% 100% 100%
Boosted Trees 90% 100% 0% 100% 0% 100% 100%
Bagged Trees 99% 100% 100% 100% 100% 100% 100%
Subspace Discriminant 98% 100% 100% 100% 99% 100% 100%
Subspace KNN 98% 100% 100% 100% 99% 100% 100%
Rusboosted Trees 90% 100% 0% 0% 0% 0% 0%

as the use of various trees (ensemble). Other kind of machine
explored in this paper is the RUS (Random Under Sampling)
algorithm in RUSBoost, which is a mechanism to eliminate
data distribution imbalances.

Figures 10 and 11 show the results in the damage classifi-
cation process for fine kNN, weighted kNN, simple tree, and
rusboosted trees. Detailed information about the definition
of these machines can be found in [7, 44, 49]. As it is
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Figure 9: CRFP sandwich structure.

Predicted class ->

Tr
ue

 cl
as

s -
>

98.00%
(49)

2.00%
(1)

98.00%
(49)

2.00%
(1)

0 100.00%
(50) 0 0 0 0 0

0 0 0 0 0

100.00%
(50)

0.00%
(0)

0 0 98.00%
(49)

2.00%
(1) 0 0 0

98.00%
(49)

2.00%
(1)

0 0 0 100.00%
(50) 0 0 0

100.00%
(50)

0.00%
(0)

0 0 0 0 100.00%
(50) 0 0

100.00%
(50)

0.00%
(0)

0 0 0 0 0 100.00%
(50) 0 

100.00%
(50)

0.00%
(0)

0 0 0 0 0 0 100.00%
(50)

100.00%
(50)

0.00%
(0)

U
N

D
D

M
G

1
D

M
G

2
D

M
G

3
D

M
G

4
D

M
G

5
D

M
G

6

UND DMG1 DMG2 DMG3 DMG4 DMG5 DMG6 TPR/FNR

Confusion Matrix - Fine KNN

Predicted class ->

Tr
ue

 cl
as

s -
>

96.00%
(48)

4.00%
(2) 0 0 0 0 0

0 0 0 0 0

96.00%
(48)

4.00%
(2)

0 100.00%
(50)

100.00%
(50)

0.00%
(0)

0 0 100.00%
(50) 0 0 0 0

100.00%
(50)

0.00%
(0)

0 0 0 100.00%
(50) 0 0 0

100.00%
(50)

0.00%
(0)

0 0 0 0 100.00%
(50) 0 0

100.00%
(50)

0.00%
(0)

0 0 0 0 0 100.00%
(50) 0 

100.00%
(50)

0.00%
(0)

0 0 0 0 0 0 100.00%
(50)

100.00%
(50)

0.00%
(0)

U
N

D
D

M
G

1
D

M
G

2
D

M
G

3
D

M
G

4
D

M
G

5
D

M
G

6

UND DMG1 DMG2 DMG3 DMG4 DMG5 DMG6 TPR/FNR

Confusion Matrix - Weighted KNN

Figure 10: Confusion matrices for fine kNN (left) and weighted kNN (right) machines.

possible to observe in Figure 10, both fine kNN and weighted
kNN presented some of the best results since in most of
the experiments, the classification was properly performed,
verifying its good behaviour like a statistical classifier [50].
For instance, in the fine kNN classifier, 348 cases have
been correctly classified out of 350 cases. This magnitude
represents 99,4% of correct decisions. It is worth noting that
the specimen with damage is never confused with the healthy
state of the structure thus leading to an absence of missing
faults. The only misclassification between damages occurs
with a sample corresponding to damage 2 that is classified
as damage 3. Similar results are obtained when the weighted
kNN is considered as the classifier. In this case, 348 cases have
been correctly classified out of 350 cases, which represents
99,4% of correct decisions, too. However, in this case, all the
damages are perfectly classified. The number of false alarms

is quite reduced in both cases: 1 out of 50 (2%) and 2 out
of 50 (4%), with respect to fine kNN and weighted kNN,
respectively.

Worst results in the classification are obtained when
rusboosted trees and simple tree machines are used. These
results are summarized through the corresponding confusion
matrices in Figure 11. The overall accuracy is 26,3% and
88,9%, in the case of rusboosted trees and simple tree
machines, respectively. The classification is especially unac-
ceptable in the case of rusboosted trees where damages 2 to 6
are all misclassified.

4.3. Specimen 2: CFRP Composite Plate. The second struc-
ture, shown in Figures 12 and 13, corresponds to a CFRP
plate made of 4 equal layers and stacking of [0∘ 90∘ 90∘ 0∘].
Dimensions are 200mmx 250mmwith a thickness of 1.7mm
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Figure 11: Confusion matrices for rusboosted trees (left) and simple tree (right) machines.
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Figure 12: Specimen 2: CFRP composite plate, sensors distribution.

Figure 13: CFRP composite plate.

and a density of 1.700 kg/m3. Nominal material parameters of
the unidirectional (UD) layers are E1 =122 GPa, E2 = 10 GPa,
]12= 0,33, ]13=0,3, ]23=0,34,G12=G13=7,4 GPa, and G23=5,4
GPa.

This structure was instrumented with nine piezoelectric
transducers PIC-151 from PI Ceramics which are attached to
the surface of the structure as it is shown inFigure 12.Damage
on the tested composite was simulated by localizing masses at
different positions as described in Table 4.

The excitation signal is a 12 V Hamming windowed
cosine train signal with 5 cycles, 150 experiments have been
performed and signals from sensors have been also recorded
per sensor–actuator configuration to each structural state.
To determine the carrier central frequency for the actuation
signal in each structure, a frequency sweep was performed
and spectral analysis of each signal was analysed in order to
determine the optimal excitability frequency (structure and
sensors) where the obtained signals have a signal/noise ratio
that helps to the data analysis. The carrier frequency in this
specimen was found to be 30 kHz. A photo of this second
specimen can be found in Figure 13.

As with the previous specimen, several machines were
trained and three scores were used per actuation phase.
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Table 4: Damages in the CFRP composite plate.

Damage number Damage location between sensors X position [mm] Y position [mm]
1 Sensors 1-2 65 220
2 Sensors 2-3 135 220
3 Sensors 3-6 170 172.5
4 Sensors 6-9 170 66.5
5 Sensors 5-8 100 66.5
6 Sensors 5-4 65 125
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Figure 14: Confusion matrices for fine kNN (left) and weighted kNN (right) machines.

For this second experiment and for the case of fine kNN
and weighted kNN, the result are even better (Figure 14).
More precisely, in the fine kNN classifier, 349 cases have
been correctly classified out of 350 cases. This magnitude
represents 99,7% of correct decisions. It is worth noting that
the specimen with damage is never confused with the healthy
state of the structure thus leading to an absence of missing
faults. The only misclassification between damages occurs
with a sample corresponding to damage 1 that is classified
as damage 2. A perfect classification is obtained when the
weighted kNN is considered as the classifier. In this case, 350
cases have been correctly classified out of 350 cases, which
represents 100% of correct decisions. With respect to this
second specimen, false alarms are no longer present.

Worst results in the classification are obtained when
rusboosted trees and simple tree machines are used. These
results are summarized through the corresponding confusion
matrices in Figure 15. The overall accuracy is 28,3% and
70,9%, in the case of rusboosted trees and simple tree
machines, respectively. The classification is especially unac-
ceptable in the case of rusboosted trees where damages 2 to
6 are all misclassified. Although the percentage of correct
decisions fluctuates between 28,3% and 70,9%, bothmachines
are able to accurately identify the structure with no damage.

In general, the behaviour of these four machines in
this paper with respect to both specimens is coherent with
previous results in the literature. For instance, in the work

of Vitola et al. [44, 49], a distributed sensor network is used
to detect and classify structural changes with and without
the influence of environmental conditions. Although in those
papers how the data is collected and preprocessed differs
significantly from the current work, the performance of both
fine kNN and weighted kNN is similar.

5. Conclusions

In this work, a damage classification methodology has been
introduced. The proposed methodology includes the use
of a piezoelectric sensor network, discrete wavelet trans-
form, hierarchical nonlinear PCA, and machine learning
approaches. The methodology has been validated with excel-
lent results showing its capability for damage classification
tasks. Althoughdifferentmachineswere trained, only the best
two and the worst two of them were included in the paper,
showing that the best resultswere obtainedwith fine kNNand
weighted kNNmachines andworst results are obtained by the
use of trees. This is because the way as the data is organized
by the different machines as was introduced along the paper.

In order to work with machine learning algorithms, it is
very important to select the training data in a proper way.
Otherwise, results in the trained machine can be different to
the system expectations. The nonlinear scores demonstrated
that the extracted information was very useful, since these
scores reduced significantly the information by facilitating
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Figure 15: Confusion matrices for simple tree (left) and rusboosted trees (right) machines.

the training and reducing the error possibilities in the
predictions. In all studied cases, the use of three nonlinear
scores demonstrates to be enough for building the featured
vector by fusing data from all actuation phases.

The k nearest neighbours algorithm has also shown to be
an efficient and useful mechanism to applications in struc-
tural health monitoring. Results in this work also indicated
its usefulness with the use of nonlinear features.

The use of neural networks in this work is only considered
to obtain the nonlinear components; however it is expected
to work in a near future with different neural networks
approaches for classification.

Although this work is not focused on the study of the
relationship between the number and the location of sensors
but on the damage classification methodology, the inspected
structures allow us to extend the idea of the usefulness of
this methodology by the following differences between the
validations:

(1) Different structures with different materials and con-
figurations.

(2) Structures with real (delamination and cracks) and
simulated damage (addedmass in different locations).

(3) Progressive damage.
(4) Structures with different sizes.
(5) Structures inspected with a different number of sen-

sors at different locations. In the case of the first
structure only four sensors were used and the second
structure was inspected with nine sensors.

Future work will involve the influence of the number of
sensors and location. However this study allows us to observe
that the methodology can be used with similar results in
different structures with different number and position of the
sensors and with different kind of damages because of the
pattern recognition approach.
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A realistic characterization of the frictional behaviour of materials and mechanical systems is of prime importance for the
assessment of their contact interaction properties, especially in the context of undesired temperature rise or intensivewear leading to
service life reduction. A characteristic tribological property of elastomericmaterials is the dependency of the friction coefficient on
the local contact pressure, sliding velocity, and temperature in the contact interface.Thus, the friction coefficient is not constant in
the entire contact area but varies according to the magnitudes of the aforementioned three influencing factors. In this contribution,
a friction law based on artificial neural networks (ANN) is presented, which is able to capture the nonlinear dependencies of
the friction coefficient on the contact pressure, sliding velocity, and temperature. Due to an extraordinary adaptivity of the ANN
structure, these nonlinear relations stemming from experimental data can bemodelled properly within the introduced friction law,
in contrast to other friction formulations, which are limited by the fitting quality of their parameters.The ANNbased friction law is
implemented into a contact formulation of the finite element method (FEM). Especially, the linearization of contact contributions
to the weak form ofmomentumbalance equation, required for the FEM, is developed taking into account the differentiability of the
ANN.The applicability of the developed friction law within the finite element analysis of tires as well as within sliding simulations
of rubber elements is presented in this paper.

1. Introduction

In this contribution, a novel method enabling to capture the
thermo-mechanical frictional characteristics ofmaterials and
mechanical systems is developed. An accurate modelling of
frictional properties is crucial for the assessment of structural
durability, since the friction energy dissipation in the contact
interface can lead to pronounced wear [1] and temperature
increase. Thereby, the intensification of both these effects
results commonly in a material failure or degradation of
surfaces in contact.

In order to model the friction phenomena of elastomeric
structures in its whole complexity, the dependency of the
friction coefficient on the contact pressure, sliding velocity,
and temperature as well as on the topology of contacting
surfaces has to be captured.

When considering the friction of elastomeric struc-
tures with respect to surface roughness, two contributions

determining the magnitude of the friction coefficient can be
distinguished, the hysteresis and adhesion contribution [2].
Hysteresis friction is related to an internal energy dissipa-
tion appearing in viscoelastic materials during sliding over
rough surfaces. On the other hand, adhesion friction results
from intermolecular, distance-dependent interaction forces
between two surfaces, which are pronounced especially on
flat surfaces.

Analytical approaches introducing friction theories con-
sidering surface roughness are proposed by Klüppel and
Heinrich [2, 3] aswell as by Persson [4]. Furthermore, numer-
ical approaches for the modelling of friction are developed,
which are based on the finite element method, multiscale
analysis, and homogenization; see [5–7].

For the analysis of the frictional behaviour of mechanical
systems, which are commonly performed at a structural
level, macroscopic friction laws are predominantly applied.
These formulations do not consider surface roughness and
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frictional properties at multiple scales. They rather provide
formulations for the dependency of tangential stresses or
the friction coefficient on the local contact pressure, sliding
velocity, and temperature in the contact interface. These
dependencies are developed for certain materials in contact.
Such macroscopic friction laws are proposed in [8–10].

The friction law introduced in this contribution also
belongs to the category of macrosopic friction laws. Though,
while other macroscopic equations for friction commonly
take into account only one or two mentioned factors,
which influence the magnitude of the friction coefficient,
the herein presented method enables to account for all
three factors and can be even extended to more aspects, if
required.

In the proposed constitutive equation for friction, meta-
models in form of response surfaces based on artificial
neural networks [11] are implemented within the friction
formulation. Due to an outstanding adaptivity of the ANNs,
the fitting quality to the experimental results is commonly
higher than the one obtained for other friction formulations.
Furthermore, the differentiability of the ANN formulation
enables a direct specification of linearization terms of contact
contributions to the weak form of momentum balance equa-
tion, required for the Newton method to find the solution.
Thus, a straightforward implementation into the FEM is
feasible.

A further advantage of the introduced friction law is its
temperature dependency, which enables the application of
the law within thermo-mechanically coupled FE analyses.
This fact is of significant importance, since the properties
of elastomeric materials change distinctively due to the
influence of temperature.

The benefits of the utilization of ANNs in various engi-
neering tasks and disciplines have been noticed in many
publications; e.g., in [12], an overview of the application of
ANNs in civil engineering is presented. ANNs have been
introduced tomaterial law formulations; see [13–15]. Further-
more, ANNs are commonly employed for the approximation
of a response surface, which can substitute the computational
model of the structural analysis, compare [16, 17]. Moreover,
the application of ANNs to structural analysis with uncertain
data [18] and to pattern recognition approaches (see [19])
is known from the literature, though, an ANN based fric-
tion law characterized by a consistent formulation for the
FEM, applicable to thermo-mechanically coupled analysis,
is still an unexplored topic and, thus, in the scope of this
contribution.

This paper is structured as follows. In Section 2, the
results of an experimental investigation of friction properties
are presented and a friction coefficient response surface
approximation on the basis of ANN is shown. In Section 3, the
architecture and the training procedure of the applied feed-
forward artificial neural network are introduced. Section 4
is devoted to the formulation of the proposed metamodel
based friction law and its implementation into the framework
of the FEM. Finally, in Section 5 three examples visualizing
the results of the FE analysis of elastomeric structures under
the application of the developed friction formulation are
presented.
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Figure 1: Friction coefficient at various contact pressures𝑝𝑁, sliding
velocities V𝑇, and temperatures𝑇.

2. Friction Coefficient Response Surface Based
on Experimental Data

The constitutive equation for friction investigated in this
contribution is formulated as

t𝑇 = 𝜇 (𝑝𝑁 , k𝑇 , 𝑇) 𝑝𝑁 ġ𝑇ġ𝑇 , (1)

where t𝑇 denotes the tangential stress, g𝑇 stands for the
tangential slip, and 𝜇 is the friction coefficient. Thereby,
the dependency of the friction coefficient on the normal
pressure 𝑝𝑁, the sliding velocity V𝑇, and the temperature 𝑇
is considered.

In order to identify the frictional properties of rubber
and to account for the aforementioned friction coefficient
formulation, experimental investigations including friction
tests on a tribometer are conducted. Rubber samples of
size 20x20x4 mm stemming from the tire tread pattern are
subjected to frictional contact with a granite surface. Within
the test, various temperature, velocity, and normal load
(pressure) conditions are applied to identify the dependency
of the friction coefficient on these factors. Especially, the
temperature range 𝑇 = [20, 100]∘𝐶, the normal pressure
range 𝑝𝑁 = [0.114, 0.714] 𝑁/𝑚𝑚2, and the velocity range
V𝑇 = [0.1, 300] 𝑚𝑚/𝑠 are tested. In each single experiment,
the rubber block is subjected to a prescribed normal pressure,
sliding velocity and temperature. Thereby, in every experi-
ment nearly constant temperature conditions are provided
since the rubber samples are preheated to a predefined
temperature and the experiment is executed in a climate
chamber with the same predefined indoor temperature. The
tested rubber sample is fixed to a cantilever arm, which
transmits the normal load and is subjected to contact with
a disc rotating at a prescribed velocity.

In Figure 1, the results of the friction test are visualized.
Thereby, a decrease of the friction coefficient with increasing
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Figure 2: Friction coefficient response surfaces provided by ANN for experimental results at 𝑇 = 20∘𝐶 and 𝑇 = 40∘𝐶.
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(a) Fitting results at 𝑇 = 70∘𝐶
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(b) Fitting results at 𝑇 = 100∘𝐶

Figure 3: Friction coefficient response surfaces provided by ANN for experimental results at 𝑇 = 70∘𝐶 and 𝑇 = 100∘𝐶.

rubber temperature can be observed, except in the low
pressure and high sliding velocity regimes. Furthermore, a
steep ascent of the friction coefficient in the low sliding
velocity range and a moderate ascending friction coefficient
values in higher sliding velocity ranges are shown in Figure 1.
Finally, the relation of the friction coefficient to the normal
pressure is defined by decreasing 𝜇 magnitudes with the
increasing 𝑝𝑁magnitudes.

In this contribution, a metamodel in form of an artificial
neural network is developed, which is able to reproduce
all the mentioned dependencies 𝜇 (𝑝𝑁, V𝑇, 𝑇) with a very
high accuracy. Furthermore, a single ANN is able to provide
friction coefficient response surfaces at various temperatures,
compare Figure 1. An advantage of such a response surface is
the availability of the friction coefficient values interpolated
between the measured friction coefficient magnitudes.

In Figures 2 and 3, the response surfaces provided by an
ANN at tread block temperatures 𝑇 = 20, 40, 70, 100∘𝐶 are
visualized. Due to its extraordinary adaptivity, a single ANN
is able to reproduce various shapes of response surfaces at
subsequent temperature levels.

Especially, the friction coefficient response surfaces at𝑇 = 20∘𝐶 and 𝑇 = 40∘𝐶 are characterized by a steep ascent
of the friction coefficient in low sliding velocity range and
a flattening of the surface in higher sliding velocity range.
On the other hand, the response surfaces at 𝑇 = 70∘𝐶 and𝑇 = 100∘𝐶 show a smooth transition between the region with
a steep ascent of the friction coefficient and the flatter region.

In order to visualize the high fitting quality of the ANN,
cut-offs from response surfaces presented in Figures 2 and
3 at certain normal pressures 𝑝𝑁 = 0.248 𝑁/𝑚𝑚2 and𝑝𝑁 = 0.548 𝑁/𝑚𝑚2 are prepared; see Figure 4. The friction
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Figure 4: Friction coefficient𝜇 provided byANNversus experimental result at normal pressure𝑝𝑁 = 0.248 𝑁/𝑚𝑚2 and𝑝𝑁 = 0.548 𝑁/𝑚𝑚2
and at various temperatures.

coefficients computed by the ANN match the experimental
results with a very high accuracy. All dependencies including
the decrease of the friction coefficient with the increase of
temperature and with the increase of normal pressure are
captured by the developed metamodel.

As a reference solution for the developed metamodel
based friction law, the Huemer friction law [8] enhanced by
the temperature dependency is applied. The Huemer friction
law is formulated as

t𝑇 = 𝜇𝐻 𝑝𝑁 Δg𝑇Δg𝑇 , (2)

where the friction coefficient 𝜇𝐻 is represented by

𝜇𝐻 = 𝛼 𝑝𝑁𝑛−1 + 𝛽𝑎 + 𝑏/ k𝑇1/𝑚 + 𝑐/ k𝑇2/𝑚 . (3)

The free parameters of the Huemer friction law 𝛼, 𝛽,𝑎, 𝑏, 𝑐, 𝑚, 𝑛 are fitted for the experimental data available at
four temperature levels 𝑇 = 20, 40, 70, 100∘𝐶 correspond-
ing to constant rubber block temperatures; see Figure 1.
Taking into account the obtained four parameter sets, each
parameter can be considered as temperature dependent𝛼(𝑇), 𝛽(𝑇), 𝑎(𝑇), 𝑏(𝑇), 𝑐(𝑇),𝑚(𝑇), 𝑛(𝑇). In this way, the for-
mulation of the Huemer friction law is extended by the
temperature dependency.

In Figure 5, the friction coefficients obtained by the
Huemer friction law are plotted versus the experimental
results at normal pressures 𝑝𝑁 = 0.248 𝑁/𝑚𝑚2 and 𝑝𝑁 =0.548 𝑁/𝑚𝑚2. Although for each temperature level, a sep-
arate set of parameters, which best approximates the exper-
imental results, has been used, the fitting quality of the
extended Huemer friction law is not as good as of the

metamodel based friction law. Especially, in the high sliding
velocity regime, the friction coefficients computed within the
Huemer friction law differ from the experimentally identified
friction coefficients. Thereby, it should be noticed that a
single metamodel is able to generate friction coefficient
response surfaces at various temperature levels, whereas for
the Huemer friction law, a separate parameter set is required
to reproduce the friction coefficients at a certain temperature.

3. Architecture of Artificial Neural Networks

In this section, the architecture of the feedforward artificial
neural network applied to the approximation of the friction
coefficient response surfaces, presented in Section 2, is
described. Since the structure of an ANN mimics the one of
the humain brain, two main structural components, neurons
and synapses, can be distinguished, compare [11]. Thereby,
the functionality of neurons as the information processing
units involves a mapping of the neuron input signal 𝑥𝑖 onto
the output signal 𝜃𝑗; see Figure 6. Synapses, constituting
the connections between two neurons 𝑖 and 𝑗, are able to
transmit the signal, which can be additionally strengthened
or weakened according to the respective weight 𝜔𝑖𝑗 of the
synaptical connection.

Within a neuron 𝑗, the aggregation of the input signals𝑥𝑖, which are multiplied by the synaptical weights 𝜔𝑖𝑗, is
accomplished by the summing junction functionality

𝑢𝑗 = 𝑛∑
𝑖=1

𝜔𝑖𝑗𝑥𝑖 + ]𝑗. (4)

In (4), ]𝑗 stands for a bias term. Subsequently, the summing
junction 𝑢𝑗 is evaluated by an activation function F yield-
ing the neuron output signal 𝜃𝑗; see Figure 6. Within the
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Figure 5: Friction coefficient 𝜇 provided by the Huemer friction law versus experimental result at normal pressure 𝑝𝑁 = 0.248 𝑁/𝑚𝑚2 and𝑝𝑁 = 0.548 𝑁/𝑚𝑚2 and at various temperatures.
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Figure 6: Information processing within a neuron.

developed ANN, logistic sigmoid functions are implemented
as activation functions due to their advantageous properties,
e.g., nonlinearity and differentiability

𝜃𝑗 = F (𝑢𝑗) = 11 + 𝑒−∑𝑛𝑖=1 𝜔𝑖𝑗𝑥𝑖+]𝑗 . (5)

Within the artificial neural network architecture, neurons
belong to one of three layer types, the input, the hidden
and the output layer. For the approximation of the friction
coefficient response surface an ANN with an input layer
containing three neurons, which process the normal pressure𝑝𝑁, the velocity V𝑇, and the temperature𝑇 as the input signals,
is applied; see Figure 7. The selected ANN contains one
hidden layer with 14 neurons and an output layer with a single

neuron returning the computed friction coefficient𝜇𝑎𝑛𝑛 as the
output signal 𝜃𝑘.

Since in this approach the feedforward neural networks
are utilized, one-directional information flow is assumed.The
output signal of each neuron is transmitted to several neurons
of the following layer by synaptical connections.

3.1. Training Procedure. The ANN with the presented struc-
ture is provided by a procedure for the identification of
an optimal ANN architecture. The optimization algorithm
analyses various configurations of hidden layers, especially
their number as well as the number of neurons within each
layer, and identifies an architecture providing best fitting to
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Figure 7: Architecture of an ANN applied for the computation of the friction coefficient 𝜇𝑎𝑛𝑛.

the experimental results.TheANN input signals𝑥𝑖 , 𝑖 = 1, 2, 3,
which enter the training procedure, are normalized

𝑥𝑠𝑖  = 𝑆 (𝑥𝑖) =
𝑥𝑖 − 𝜇𝑥𝑖𝜎𝑥𝑖 . (6)

Thereby, 𝑥𝑖 ∈ [𝑝𝑁, V𝑇, 𝑇] are the contact pressures, sliding
velocities and temperatures evaluated within the friction test.
The function 𝑆 accounts for the Gaussian distribution of
experimental 𝑥𝑖 magnitudes, where 𝜇𝑥𝑖 stands for the mean
value and 𝜎𝑥𝑖 for the standard deviation.

The training of the feedforward ANN is executed by
means of a backpropagation algorithm [11]. This method
computes the gradient of an error function, which is defined
as a difference between the experimental friction coefficient
and the one provided by ANN, to identify the optimal
configuration of synaptical weights 𝜔𝑖𝑗.
3.2. Computation of the Friction Coefficient by the ANN. A
fitted ANN is applied within a friction law and enables the
computation of the friction coefficient, which succeeds in
several steps. First, the outcome of the hidden layer neuron𝜃𝑗 is calculated for the normalized ANN input quantities𝑝𝑠𝑁,𝑛+1, k𝑠𝑇 and 𝑇𝑠𝑛+1, which stem from the FE analysis

𝜃𝑗 = F( 3∑
𝑖=1

𝜔𝑖𝑗𝑥𝑖 + ]𝑗)
= F (𝜔1𝑗 𝑝𝑠𝑁,𝑛+1 + 𝜔2𝑗 k𝑠𝑇 + 𝜔3𝑗𝑇𝑠𝑛+1 + ]𝑗) .

(7)

Thereby, 𝜔𝑖𝑗 stands for the synaptical weight associated with
a neural connection between the input layer neuron 𝑖 and the
hidden layer neuron 𝑗, whereas ]𝑗 defines a bias term of the
hidden layer neuron. Second, the outcome of the output layer
neuron 𝜃𝑘 is calculated

𝜃𝑘 = F(𝑀∑
𝑗=1

𝜔𝑗𝑘𝜃𝑗 + ]𝑘) , (8)

where 𝜔𝑗𝑘 is the synaptical weight of the neural connection
between the hidden layer neuron 𝑗 and the output layer
neuron 𝑘 and ]𝑘 is the bias term of the output layer neuron
accordingly.

Finally, the output layer signal 𝜃𝑘 is evaluated by the
transformation functionT to provide the friction coefficient𝜇𝑎𝑛𝑛 𝜇𝑎𝑛𝑛 = T (𝜃𝑘) = 𝑘𝑠𝑐 arctanh (2𝜃𝑘 − 1) . (9)

Thereby, 𝑘𝑠𝑐 is the scale factor of the friction coefficient,
which is calculated during the training procedure.The trans-
formation function T aims to scale the normalized signals
processed within the ANN back to the real output parameter
range.

The friction coefficient 𝜇𝑎𝑛𝑛 computed by the ANN is
evaluated within the friction law presented in (1), which is
applied in the finite element simulation framework

t𝑇 = 𝜇𝑎𝑛𝑛 (𝑝𝑁 , k𝑇 , 𝑇) 𝑝𝑁 ġ𝑇ġ𝑇 . (10)

4. Temperature-Dependent Friction Law Based
on ANN

4.1. Friction in the Contact Formulation of the FEM. In the
FEM, formulations for the tangential contact and friction are
employed when two bodies slide on each other. Thereby, a
stick and slip state as well as a transition zone between these
states is considered in the tangential contact; see Figure 8.
Especially, the slip state occurs if, due to the acting tangential
force 𝐹𝐻, the critical tangential stress is achieved. In order
to enable a smooth transition between the stick and slip
state and to avoid differentiability problems in this zone, the
hyperbolic tangent regularization is applied; see Figure 8.
Thus, (10) results in

t𝑇 = 𝜇𝑎𝑛𝑛 (𝑝𝑁 , k𝑇 , 𝑇) 𝑝𝑁 tanh(
Δg𝑇𝛽 ) Δg𝑇Δg𝑇 . (11)

The hyperbolic tangent regularization, marked by a dashed
line in Figure 8, is specified in dependency on the tangential
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slip rate Δg𝑇 and the regularization coefficient 𝛽; see [20].
Especially, while only minor relative slips are regarded during
the sticking state, the magnitude of relative motion increases
with the increase of the tangential stress t𝑇 until the critical
t𝑇 and the slip state is reached. How close the regularized
stick-slip transition approximates the classical double-branch
transition depends on the magnitude of the coefficient 𝛽.

If in the FE analysis contact between two bodies is estab-
lished at some position, the associated contact constraint is
set active and the following penalty term is added to the
expression for the total energy

Π𝑐 = 12 ∫Γ𝑐 (𝜖𝑁 (𝑔𝑁)2 + t𝑇 ⋅ g𝑇) 𝑑𝐴, 𝜖𝑁 > 0. (12)

Thereby, 𝑔𝑁 denotes the penetration function within the
normal contact formulation and Γ𝑐 is the surface boundary
in contact. In (12), 𝜖𝑁 = 10 ⋅ 𝑘𝑟𝑒𝑝 stands for the penalty term
and 𝑘𝑟𝑒𝑝 is the representative underlying element stiffness.

The minimization of the total energy, which leads to
the weak form of the balance of momentum, requires the
variation of (12)

𝛿Π𝑐 = ∫
Γ𝑐

(𝜖𝑁𝑔𝑁𝛿𝑔𝑁 + t𝑇 ⋅ 𝛿g𝑇) 𝑑𝐴, 𝜖𝑁 > 0. (13)

Finally, the linearization of the weak form of balance of
momentum needs to be provided for the Newton method
to find the solution of the system of equations and, thus,
a formulation for the linearized contact contribution is
specified

𝑑𝛿Π𝑐 = ∫
Γ𝑐

(𝑑𝑔𝑁𝜖𝑁𝛿𝑔𝑁 + 𝑑𝛿𝑔𝑁𝜖𝑁𝑔𝑁 + 𝑑t𝑇 ⋅ 𝛿g𝑇
+ 𝑑𝛿g𝑇 ⋅ t𝑇) 𝑑𝐴.

(14)

Equation (14) contains a term defining the linearized tangen-
tial stress 𝑑t𝑇, which is computed considering the developed
constitutive equation for friction. Especially, since in (11) the
tangential stresses are specified in dependency on the contact
pressure, sliding velocity and temperature, the expression 𝑑t𝑇

is a function of the derivatives of tangential stresses t𝑇 with
respect to 𝑝𝑁, g𝑇, and 𝑇

𝑑t𝑇 = 𝜕t𝑇𝜕𝑝𝑁𝑑𝑝𝑁 +
𝜕t𝑇𝜕g𝑇𝑑g𝑇 +

𝜕t𝑇𝜕𝑇 𝑑𝑇. (15)

The formulation of these derivatives is given in the following
section.

4.2. Linearization Terms for the Implementation of the Friction
Law within the FEM. The implementation of the developed
ANN based friction law within the framework of the FE
analysis requires the specification of the algorithmic tangent
including the derivatives of the tangential stresses 𝜕t𝑇/𝜕𝑝𝑁,𝜕t𝑇/𝜕g𝑇, and 𝜕t𝑇/𝜕𝑇.

The tangential stresses and their derivatives are computed
in each time step 𝑡𝑛+1 of the FE analysis based on the
developed friction law.Thus, (11) results in

t𝑇,𝑛+1 = 𝜇𝑎𝑛𝑛 (𝑝𝑁,𝑛+1 , k𝑇 , 𝑇𝑛+1) tanh(
Δg𝑇𝛽 )

⋅ 𝑝𝑁,𝑛+1 Δg𝑇Δg𝑇 .
(16)

For a simplified formulation of the derivatives of tangential
stresses t𝑇,𝑛+1, the following notation of (16) is introduced:

t𝑇,𝑛+1 = 𝐶𝑓𝑟,𝑛+1n𝑛+1, (17)

with n𝑛+1 = Δg𝑇/‖Δg𝑇‖ and 𝐶𝑓𝑟 defined as

𝐶𝑓𝑟,𝑛+1 = 𝜇𝑎𝑛𝑛 (𝑝𝑁,𝑛+1 , k𝑇 , 𝑇𝑛+1) tanh(
Δg𝑇𝛽 )

⋅ 𝑝𝑁,𝑛+1 .
(18)

First, the derivative of the tangential stress t𝑇,𝑛+1 with respect
to the contact pressure 𝑝𝑁,𝑛+1 is specified as

𝜕t𝑇,𝑛+1𝜕𝑝𝑁,𝑛+1 =
𝜕𝐶𝑓𝑟,𝑛+1𝜕 𝑝𝑁,𝑛+1

𝜕 𝑝𝑁,𝑛+1𝜕𝑝𝑁,𝑛+1 n𝑛+1, (19)

with

𝜕𝐶𝑓𝑟,𝑛+1𝜕 𝑝𝑁,𝑛+1 =
𝜕𝜇𝑎𝑛𝑛𝜕 𝑝𝑁,𝑛+1 tanh(

Δg𝑇𝛽 ) 𝑝𝑁,𝑛+1
+ 𝜇𝑎𝑛𝑛tanh(Δg𝑇𝛽 ) ,

(20)

𝜕 𝑝𝑁,𝑛+1𝜕𝑝𝑁,𝑛+1 = sign (𝑝𝑁,𝑛+1) = −1 for 𝑝𝑁,𝑛+1 < 0. (21)

Please note that, in (20), the derivative 𝜕𝜇𝑎𝑛𝑛/𝜕|𝑝𝑁,𝑛+1| is
computed taking into account the architecture and the
properties of the underlying ANN, which is presented later
in this section.
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Second, the derivative of tangential stress t𝑇,𝑛+1 with
respect to the tangential slip g𝑇,𝑛+1 is formulated as

𝜕t𝑇,𝑛+1𝜕g𝑇,𝑛+1 = n𝑛+1 ⊗ 𝜕𝐶𝑓𝑟,𝑛+1𝜕g𝑇,𝑛+1 + 𝐶𝑓𝑟,𝑛+1
𝜕n𝑇,𝑛+1𝜕g𝑇,𝑛+1 , (22)

where
𝜕𝐶𝑓𝑟,𝑛+1𝜕g𝑇,𝑛+1 = 𝜕𝜇𝑎𝑛𝑛𝜕g𝑇,𝑛+1 tanh(

Δg𝑇𝛽 ) 𝑝𝑁,𝑛+1
+ 𝜕 (tanh (Δg𝑇 /𝛽))𝜕g𝑇,𝑛+1 𝜇𝑎𝑛𝑛 𝑝𝑁,𝑛+1 .

(23)

The formulation of the derivative of the friction coefficient𝜇𝑎𝑛𝑛 with respect to the tangential slip g𝑇,𝑛+1 in (23) is based
on the formulation of the sliding velocity k𝑇

𝜕𝜇𝑎𝑛𝑛𝜕g𝑇,𝑛+1 =
𝜕𝜇𝑎𝑛𝑛𝜕 k𝑇

𝜕 k𝑇𝜕g𝑇,𝑛+1 . (24)

Thereby, the derivative 𝜕𝜇𝑎𝑛𝑛/𝜕‖k𝑇‖ is computed considering
the differentiability and the architecture of the ANN.

Taking into account the dependency between the sliding
velocity ‖k𝑇‖ and the tangential slip g𝑇,𝑛+1, ‖k𝑇‖ = ‖Δg𝑇‖/Δ𝑡,
where Δg𝑇 = g𝑇,𝑛+1 − g𝑇,𝑛, yields

𝜕 k𝑇𝜕g𝑇,𝑛+1 =
𝜕 k𝑇𝜕Δg𝑇 ⋅ 𝜕Δg𝑇𝜕g𝑇,𝑛+1 =

1Δ𝑡 Δg𝑇Δg𝑇 ⋅ I, (25)

where I is the second order identity tensor.
To complete the formulation in (23), the derivative of the

hyperbolic tangent regularization term is specified

𝜕 (tanh (Δg𝑇 /𝛽))𝜕g𝑇,𝑛+1
= (1 − tanh2 (Δg𝑇𝛽 )) 1𝛽 Δg𝑇Δg𝑇 ⋅ I.

(26)

The last term required for the specification of the derivative𝜕t𝑇,𝑛+1/𝜕g𝑇,𝑛+1 in (22) is given by

𝜕n𝑛+1𝜕g𝑇,𝑛+1 =
𝜕n𝑛+1𝜕Δg𝑇 ⋅

𝜕Δg𝑇𝜕g𝑇,𝑛+1 =
𝜕n𝑛+1𝜕Δg𝑇 ⋅ I, (27)

where
𝜕n𝑛+1𝜕Δg𝑇 =

1Δg𝑇 (I − n𝑛+1 ⊗ n𝑛+1) . (28)

Finally, the expression for the derivative of the tangential
stress t𝑇,𝑛+1 with respect to the temperature 𝑇𝑛+1 is given, as a
last part of the formulation of the algorithmic tangent

𝜕t𝑇,𝑛+1𝜕𝑇𝑛+1 =
𝜕𝐶𝑓𝑟,𝑛+1𝜕𝑇𝑛+1 n𝑛+1, (29)

where
𝜕𝐶𝑓𝑟,𝑛+1𝜕𝑇𝑛+1 = 𝜕𝜇𝑎𝑛𝑛𝜕𝑇𝑛+1 tanh(

Δg𝑇𝛽 ) 𝑝𝑁,𝑛+1 . (30)

The introduced equations specifying the algorithmic tangent
require the computation of the derivatives 𝜕𝜇𝑎𝑛𝑛/𝜕|𝑝𝑁,𝑛+1|,𝜕𝜇𝑎𝑛𝑛/𝜕‖k𝑇‖, and 𝜕𝜇𝑎𝑛𝑛/𝜕𝑇𝑛+1, which refer to the formulation
of the friction coefficient computed by the ANN. Especially,
the calculation of these derivatives is conditioned by the
differentiability of the ANN formulation as well as of the
applied activation function. In this work, sigmoid logistic
activation functions are utilized, for which the derivative
equals to

F
 = F (1 −F) . (31)

From the formulation of the friction coefficient given in (9)
and from the definition of the neuronal output shown in (7)
and (8), the derivative 𝜕𝜇𝑎𝑛𝑛/𝜕|𝑝𝑁,𝑛+1| is specified as

𝜕𝜇𝑎𝑛𝑛𝜕 𝑝𝑁,𝑛+1 =
𝜕𝜇𝑎𝑛𝑛𝜕𝜃𝑘

𝜕𝜃𝑘𝜕 𝑝𝑠𝑁,𝑛+1
𝜕 𝑝𝑠𝑁,𝑛+1𝜕 𝑝𝑁,𝑛+1 , (32)

with

𝜕𝜃𝑘𝜕 𝑝𝑠𝑁,𝑛+1 =
𝜕𝜃𝑘𝜕𝜃𝑗

𝜕𝜃𝑗𝜕 𝑝𝑠𝑁,𝑛+1 = F
(𝑀∑
𝑗=1

𝑤𝑗𝑘𝜃𝑗 + ]𝑘)
⋅F (𝑤1𝑗 𝑝𝑠𝑁,𝑛+1 + 𝑤2𝑗 k𝑠𝑇 + 𝑤3𝑗𝑇𝑠𝑛+1 + ]𝑗) .

(33)

Considering (31), the expression in (33) can be rewritten as

𝜕𝜃𝑘𝜕 𝑝𝑠𝑁,𝑛+1 = 𝜃𝑘 (1 − 𝜃𝑘) 𝑀∑
𝑗=1

𝑤𝑗𝑘𝜃𝑗 (1 − 𝜃𝑗)𝑤1𝑗. (34)

In a similar way, the derivative 𝜕𝜇𝑎𝑛𝑛/𝜕‖k𝑇‖ is formulated

𝜕𝜇𝑎𝑛𝑛𝜕 k𝑇 =
𝜕𝜇𝑎𝑛𝑛𝜕𝜃𝑘

𝜕𝜃𝑘𝜕 k𝑠𝑇
𝜕 k𝑠𝑇𝜕 k𝑇 , (35)

where

𝜕𝜃𝑘𝜕 k𝑠𝑇 = 𝜃𝑘 (1 − 𝜃𝑘) 𝑀∑
𝑗=1

𝑤𝑗𝑘𝜃𝑗 (1 − 𝜃𝑗)𝑤2𝑗. (36)

The derivative 𝜕𝜇𝑎𝑛𝑛/𝜕𝑇𝑛+1 is specified analogously to the
derivatives 𝜕𝜇𝑎𝑛𝑛/𝜕|𝑝𝑁,𝑛+1| and 𝜕𝜇𝑎𝑛𝑛/𝜕‖k𝑇‖

𝜕𝜇𝑎𝑛𝑛𝜕𝑇𝑛+1 =
𝜕𝜇𝑎𝑛𝑛𝜕𝜃𝑘

𝜕𝜃𝑘𝜕𝑇𝑠𝑛+1
𝜕𝑇𝑠𝑛+1𝜕𝑇𝑛+1 , (37)

where

𝜕𝜃𝑘𝜕𝑇𝑠𝑛+1 = 𝜃𝑘 (1 − 𝜃𝑘) 𝑀∑
𝑗=1

𝑤𝑗𝑘𝜃𝑗 (1 − 𝜃𝑗)𝑤3𝑗. (38)
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For the formulation of the derivatives in (32), (35), and (37),
terms accounting for the transformation functionT and the
normalization function 𝑆 are defined as

𝜕𝜇𝑎𝑛𝑛𝜕𝜃𝑘 = 𝜕T (𝜃𝑘)𝜕𝜃𝑘 = −12 (𝜃2𝑘 − 𝜃𝑘) , (39)

𝜕 𝑝𝑠𝑁,𝑛+1𝜕 𝑝𝑁,𝑛+1 =
𝜕𝑆 (𝑝𝑁,𝑛+1)𝜕 𝑝𝑁,𝑛+1 = 1𝜎𝑝𝑁 ,

𝜕 k𝑠𝑇𝜕 k𝑇 =
𝜕𝑆 (k𝑇)𝜕 k𝑇 = 1𝜎k𝑇 ,

(40)

𝜕𝑇𝑠𝑛+1𝜕𝑇𝑛+1 =
𝜕𝑆 (𝑇𝑛+1)𝜕𝑇𝑛+1 = 1𝜎𝑇 . (41)

5. FE Frictional Contact Simulation of
Elastomeric Structures

The developed metamodel based friction formulation is
applied for the investigation of contact properties of elas-
tomeric structures and elements. Three examples are pre-
pared. First, an isothermal FE simulation of a rubber block
sliding on a rigid surface is carried out, whereas various rub-
ber block temperatures are applied to assess their influence on
the tangential stresses in the contact interface. Second, a fully
thermo-mechanically coupled FE analysis of a rubber block
with tread pattern moving on a tire-rotation-like displace-
ment path is accomplished to quantify the performance of the
friction law in a thermo-mechanically coupled simulation.
Finally, isothermal FE analyses of a tire in a steady state rolling
situation are carried out to visualize the applicability of the
friction law within the steady state transport analysis, which
is based on the arbitrary Lagrangian-Eulerian approach.

In all three examples, the constitutive behaviour of rubber
is described by a hyperelastic material formulation utilizing
the Marlow model; see [21]. The strain energy density is
determined in the Marlow model by

𝑊(𝐼1) = ∫𝜆𝑇(𝐼1)−1
0

𝑇 (𝜖) 𝑑𝜖, (42)

where 𝐼1 is the first invariant of the left Cauchy-Green strain
tensor B = FF𝑇 and F is the deformation gradient. In
(42), 𝜖 denotes the uniaxial strain, 𝑇(𝜖) the nominal uniaxial
traction, and 𝜆𝑇(𝐼1) stands for the uniaxial stretch obtained
as a solution of the following equation

𝜆𝑇 (𝐼1)3 − 𝐼1𝜆𝑇 (𝐼1) + 2 = 0. (43)

In order to define 𝑇(𝜖), a uniaxial test data set is applied.
TheMarlow model is selected for the implementation within
the following examples due to its straightforward formulation
by means of only the first invariant 𝐼1. Several hyperelastic
material models, as the Yeoh model [22] or the Arruda &
Boyce model [23], are specified using only the first invariant𝐼1 as well, though they are characterized by a certain math-
ematical formulation with various parameters, which need
to be fitted. Contrarily, in the Marlow model the material

Table 1: Loading and boundary conditions in the simulation of a
sliding rubber block.

𝑝𝑁 = 0.248 𝑀𝑃𝑎 𝑝𝑁 = 0.548 𝑀𝑃𝑎
k𝑇 = 70 𝑚𝑚/𝑠 k𝑇 = 70 𝑚𝑚/𝑠

Sim 𝑇[∘C] Sim 𝑇[∘C]
1 20 4 20
2 70 5 70
3 100 6 100

response is determined solely by the test data in form of
uniaxial stress-strain curve, which integration yields directly
the strain energy density, as shown in equation (42). The
idea of modelling rubber as a viscoelastic material, which is
presented, e.g., in the model by Simo [24], Reese &Govindjee
[25], orHolzapfel [26], is not followed in this contribution but
could be introduced within the following examples without
any restrictions.

In all examples, the artificial neural network presented in
Sections 2 and 3 with an architecture comprised of 3 input
layer neurons, 14 hidden layer neurons, and 1 output layer
neuron is applied.

5.1. Rubber Block Sliding on a Rigid Surface. Within the
first example, a rubber block sliding on a fixed rigid surface
is investigated. The rubber block is subjected to a normal
pressure 𝑝𝑁 applied uniformly at the top of the block
and moves with a constant velocity k𝑇; see Figure 9. The
rubber block has a prescribed initial temperature 𝑇, which
remains constant during the simulation due to the isothermal
conditions within the simulation.

In this example, two normal pressure magnitudes 𝑝𝑁 =0.248 𝑀𝑃𝑎 and𝑝𝑁 = 0.548 𝑀𝑃𝑎 are investigated; see Table 1,
whereas for each 𝑝𝑁 three rubber block temperatures 𝑇 =[20, 70, 100]∘𝐶 are prescribed. Thereby, in all six simulations,
a sliding velocity k𝑇 = 70 𝑚𝑚/𝑠 is applied.

The rubber block is discretized by 8-node solid ele-
ments. The application of the newly developed friction law
accounting for the dependency of 𝜇 on the nodal 𝑝𝑁, k𝑇,
and 𝑇 magnitudes enables an adequate computation of the
tangential stresses.

In Figure 9, the tangential stresses t𝑇 obtained in all six
simulations are plotted against the tangential slip g𝑇.Thereby,
in each graph, the sticking regime with minor elastic slip
magnitudes, the transition zone between sticking and sliding
and the sliding regime with a constant t𝑇 magnitude are
clearly visible. Furthermore, a significant influence of the
temperature-dependent formulation of the friction law on
the course of tangential stresses is apparent from Figure 9.
Especially, at 𝑝𝑁 = 0.248 𝑀𝑃𝑎 as well as at 𝑝𝑁 =0.548 𝑀𝑃𝑎, t𝑇 decreases with increasing temperature 𝑇,
which is conform with experimental results presented in
Figure 1. This simple example shows that sticking, sliding,
and the transition between these states can be simulated
properly with the developed formulation of the friction
law.
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Figure 9: Tangential stresses in the rubber block simulation in dependency on temperature and normal pressure.
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Figure 10: Rubber block moving on a tire-rotation-like displacement path.

5.2. Rubber Block Moving on a Tire-Rotation-Like Displace-
ment Path. In the second example, the proposed friction
formulation is applied to a thermo-mechanically coupled FE
analysis of a rubber block moving on a tire-rotation-like
displacement path. In Figure 10, the considered rubber block
with tread pattern is visualized. Furthermore, the movement
of the block along a displacement path is presented, which
consists of three steps including the establishment of contact
between the rubber block and the road, the sliding of the
block at the road surface, and the final step, where the block
detaches from the road surface.

A tire in a standard operating condition is subjected to
angular and translational velocity, whereas the magnitudes of
these velocities determine whether braking, acceleration or a
free rolling state is obtained. Analogously, these states can be
achieved in the presented simulation of the rubber block by
applying a translation velocity k𝑅 to the road and letting the
blockmove on a displacement path according to a prescribed
angular velocity 𝜔𝐵; see Figure 10.

In the applied thermo-mechanically coupled simulation,
two heat sources can be identified. First, the temperature

block

road

ＮT

qf

qc

qc

pN

ＰT

Figure 11: Rubber block-road contact interface.

increase in the contact interface due to friction energy
dissipation is considered. Second, the heat exchange between
the rubber block and surrounding air influences the rubber
block temperature; see Figure 11. The prescribed initial
temperatures of the rubber block and the road are denoted
by 𝑇𝐵,0 and 𝑇𝑅,0, respectively, whereas the air temperature is
denoted by 𝑇𝐴; compare Figure 10.
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Figure 12: Temperature amplitude in the acceleration and braking simulation.

The heat flux 𝑞𝑓 arising due to the friction energy
dissipation in the contact interface is defined as

𝑞𝑓 = 𝜂𝑓D𝑠, (44)

where D𝑠 is the friction energy, 𝜂 is the fraction of D𝑠
converted into heat, and 𝑓 is the heat distribution factor
between the two surfaces in contact. While 𝜂 and 𝑓 take
values from the interval [0, 1], the friction energyD𝑠 is given
as

D𝑠 = t𝑇ġ𝑇. (45)

The heat flux 𝑞𝑐 arising due to the heat exchange between the
rubber block and the surrounding air is defined as

𝑞𝑐 = ℎ (𝑇𝐵 − 𝑇𝐴) , (46)

where ℎ stands for the film coefficient. The left and right side
as well as the bottom of the block, marked by blue shaded
surface in Figure 10, are subjected to the heat exchange with
the surrounding air. The remaining surfaces of the block are
assumed to be in contact with other tire parts.

Both, the rubber block and the road, are modelled
as flexible bodies, which are discretized by 8-node solid
elements with displacements and temperature degrees of
freedom. The road is modelled as a linear elastic material
with temperature-dependent Young’s modulus. The applied
magnitudes of the thermal conductivity 𝑘, the specific heat 𝑐𝑝
and the Young’s modulus 𝐸 are given in Table 2.

In this example, two types of simulation are performed,
the first one capturing the accelerating and the second
one the braking condition. These conditions are defined by
the relation of the angular and the translational velocity,
compare Table 3. Furthermore, for each simulation type,
three initial rubber block temperatures 𝑇𝐵,0 = [20, 70, 100]∘𝐶
are considered. The initial road temperature is set to 𝑇𝑅,0 =

Table 2: Material properties in the simulation of a rubber block
moving on a tire-rotation-like displacement path.

rubber material road material𝑘 [𝑊/𝑚𝐾] 0.279 0.9𝑐𝑝 [𝐽/𝑘𝑔𝐾] 2010 ⋅ 106 1200 ⋅ 106𝐸 [𝑀𝑃𝑎] - 2200 at 𝑇𝑅 = 20∘𝐶
- 1300 at 𝑇𝑅 = 100∘𝐶
- 530 at 𝑇𝑅 = 200∘𝐶

20∘𝐶 and the air temperature to𝑇𝐴 = 20∘𝐶 in all simulations.
Further quantities required for the computation of heat fluxes
are defined as 𝜂 = 1, ℎ = 22 ⋅10−1𝑊/𝑚𝑚2𝐾,𝑓 = 0.8, whereas𝑓 denotes the heat distribution factor determining the heat
flux into the block surface.

In Figures 12 and 13, the results of the accelerating and
braking simulation are plotted for a chosen node in the
bottom surface of the rubber block, which is contacting the
road. In Figure 12, the temperature amplitudeΔ𝑇 = 𝑇𝐵,𝑖−𝑇𝐵,0,
defined as a difference between the nodal temperature 𝑇𝐵,𝑖
in the 𝑖th time increment and the initial temperature 𝑇𝐵,0 is
plotted over the simulation time. Thereby, in Figure 12(a) the
results of the accelerating simulation and in Figure 12(b) the
results of the braking simulation performed at various initial
rubber block temperatures 𝑇𝐵,0 are visualized.

Within Figure 12(a), the three stages of the simulation
can be clearly identified, first stage—before the contact
establishment—when the nodal temperature decreases due
to the heat exchange with air, the full contact stage when
the temperature increases as a result of the friction energy
dissipation, and the third stage when the block leaves the
contact interface and the temperature decreases again due
to heat exchange with air. It should be noticed that, for the
simulation with initial block temperature 𝑇𝐵,0 = 20∘𝐶, the
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Table 3: Loading and boundary conditions in the simulation of a rubber block moving on a tire-rotation-like displacement path.

accelerating braking
k𝑅 = 300 𝑚𝑚/𝑠 k𝑅 = 300 𝑚𝑚/𝑠𝜔𝐵 = 1.064 𝑟𝑎𝑑/𝑠 𝜔𝐵 = 0.98 𝑟𝑎𝑑/𝑠

Sim 𝑇𝐵,0[∘C] 𝑝𝑁 [𝑁/𝑚𝑚2] k𝑇 [𝑚𝑚/𝑠] Sim 𝑇𝐵,0[∘C] 𝑝𝑁 [𝑁/𝑚𝑚2] k𝑇 [𝑚𝑚/𝑠]
1 20 0.506 87.438 4 20 0.487 78.197
2 70 0.502 81.038 5 70 0.492 78.748
3 100 0.500 81.042 6 100 0.491 78.750
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Figure 13: Tangential stresses versus slip in the acceleration and braking simulation.

temperature is not decreasing in stage one but stays constant
due to the same magnitude of the air temperature 𝑇𝐴,0 =20∘𝐶. The temperature increase within the simulation with𝑇𝐵,0 = 20∘𝐶 is more pronounced than for simulations with𝑇𝐵,0 = 70∘𝐶 and 𝑇𝐵,0 = 100∘𝐶 due to higher values of the
friction coefficient 𝜇 and, therefore, higher magnitude of the
dissipated friction energy D𝑠. The same observations are
valid for the results of the braking simulation presented in
Figure 12(b). In this example, larger temperature amplitudes
are obtained within the braking simulation than within the
accelerating simulation i.a. due to a slightly larger magnitude
of relative braking in comparison to relative acceleration.

In Figure 13, the tangential stresses t𝑇 are plotted versus
the tangential slip g𝑇.Thereby, a clear tendency characterized
by achieving higher t𝑇 at lower initial rubber block tem-
peratures 𝑇𝐵,0 is visible, which is conform with the magni-
tudes of the friction coefficient obtained in the experiments
for the contact pressure and sliding velocity ranges under
consideration. Representative values for 𝑝𝑁 and k𝑇, which
are obtained in the simulation during sliding at g𝑇 =±3 𝑚𝑚, are shown in Table 3. Furthermore, within a single
simulation at certain initial rubber block temperature 𝑇𝐵,0, a
variation of tangential stress magnitudes in the full contact
stage can be observed. This effect is achieved due to the

Table 4: Residual force in subsequent equilibrium iterations at two
selected time increments 𝑡1 and 𝑡2.

𝑡1 𝑡2
iteration 𝐹𝑟𝑒𝑠 [𝑁] 𝐹𝑟𝑒𝑠 [𝑁]
1 1.406 ⋅ 10−3 −1.545 ⋅ 10−3
2 9.356 ⋅ 10−6 4.492 ⋅ 10−6

dependency of the tangential stress formulation on the local
nodal pressure and temperature, which magnitudes change
during the simulation.

Within this example, the rate of convergence of the
formulation is examined. In almost all time increments the
Newton method is able to find the solution within 1-3 iter-
ations. Thereby, a quadratic rate of convergence is obtained,
which is confirmed by the magnitudes of the residual force𝐹𝑟𝑒𝑠 in subsequent equilibrium iterations at two selected time
increments 𝑡1 and 𝑡2; see Table 4.Thereby, the considered time
increments refer to the time, when the rubber block is sliding
on the road surface.

The presented results confirm that the application of the
newly developed friction law within a thermo-mechanically
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Table 5: Representative values of tangential stresses obtained in the FE tire simulation with corresponding 𝑝𝑁, k𝑇, and 𝑇 values.

node 𝑇[∘C] 𝑝𝑁[𝑁/𝑚𝑚2] k𝑇[𝑚𝑚/𝑠] t𝑇[𝑁/𝑚𝑚2]
1 20 0.371 147.887 -0.355
1 70 0.384 181.090 -0.362
2 20 0.455 130.700 -0.396
2 70 0.467 179.130 -0.402
3 20 0.448 161.790 -0.426
3 70 0.448 514.825 -0.423

−6.16e−01
−4.31e−01
−2.46e−01
−6.06e−02
+1.24e−01
+3.09e−01
+4.94e−01

(a) (b)
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Figure 14: Tangential stress distribution in the contact interface of a rolling tire.

coupled FE simulation enables to properly capture the contact
phenomena related to temperature and friction.

5.3. Tire Simulation. In this example, two isothermal FE
simulations of tires in the steady state rolling condition are
performed. In the first simulation, the temperature of all
tire components is set to 𝑇 = 20∘𝐶, whereas in the second
simulation to 𝑇 = 70∘𝐶. The tire is subjected to inner
pressure 𝑝 = 0.26 𝑀𝑃𝑎 and a vertical load 𝐹𝑉 = 5250 𝑁.
In both simulations, the translational velocity is equal to k =108 𝑘𝑚/ℎ and the angular velocity to 𝜔 = 100 𝑟𝑎𝑑/𝑠, which
corresponds to a braking state; see Figure 14.

In the applied tire model, the rubber parts are discretized
by 8-node hybrid solid elements, in which pressure stress is
an additional independently interpolated solution variable,
that is coupled to the displacement solution. Such element
formulation is suited for nearly incompressible materials.
The tire reinforcement is modelled by means of rebar layers
embedded in the solid elements and the road is defined as a
rigid body.

The FE steady state rolling analysis applied in the frame-
work of this contribution is accomplished by means of the
arbitrary Lagrangian-Eulerian approach; see [27–29]. Thus,
tire rotation is regarded as a rigid body rotation and described
in the Eulerian frame whereas the material deformation is
described in the Lagrangian frame.The rotation is considered
as a material flow through a standing FE mesh, where the

flow occurs at surface streamlines. The application of the
arbitrary Lagrangian-Eulerian approach permits an adaptive
discretization of the tire model, where a fine mesh is required
solely in the tire-road contact zone. Thus, efficient FE simu-
lations characterized by a low computational cost but a high
accuracy can be performed.

The application of the developed friction law within a
steady state transport analysis, which is stationary and thus
time independent, requires the consideration of a different
dependency between the sliding velocity ‖k𝑇‖ and the tan-
gential slip g𝑇,𝑛+1 than in a transient analysis. Since this
dependency is given as ‖k𝑇‖ = ‖Δg𝑇‖, in equation (25), which
is utilized for the specification of the algorithmic tangent, the
term 1/Δ𝑡 vanishes.

The results of the FE tire simulations accomplished in this
study are visualized in Figure 14. Especially, the distributions
of tangential stresses obtained in the FE analyses with
prescribed tire temperatures 𝑇 = 20∘𝐶 and 𝑇 = 70∘𝐶 are
shown.Thereby, the stress component in the driving direction
of the tire is considered. In Figure 14, the tangential stresses
t𝑇 vary with respect to the local temperature, contact pressure
and sliding velocity. In Table 5, representative values of t𝑇 and
the corresponding influencing factors are given for selected
nodes in the tire contact area, see Figure 14. The tangential
stresses on the right-hand side of the contact patch are larger
in the tire simulation with tire temperature 𝑇 = 20∘𝐶 than
with tire temperature 𝑇 = 70∘𝐶.
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This example confirms, that the developed metamodel
based constitutive equation for friction is applicable within
the arbitrary Lagrangian-Eulerian approach and can be uti-
lized in the simulation of steady state rolling tires.

6. Conclusions

In this contribution, a new frictionmodel enabling to capture
the thermo-mechanical tribological properties of elastomeric
structures is proposed. The developed macroscopic equation
for friction accounts for the dependency of the friction
coefficient on the local contact pressure, sliding velocity and
temperature in the contact interface. Since a metamodel is
integrated into the friction formulation, an extraordinary
high fitting quality to the experimental results is achieved.
Furthermore, a consistent formulation of the law enabling its
implementation within the framework of the finite element
method is provided. Various applications of the proposed
constitutive equation for friction to FE simulations indicate
its good performance in transient isotherm and thermo-
mechanically coupled analyses as well as in isotherm steady
state transport analyses.
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Sparse model identification bymeans of data is especially cumbersome if the sought dynamics live in a high dimensional space.This
usually involves the need for large amount of data, unfeasible in such a high dimensional settings. This well-known phenomenon,
coined as the curse of dimensionality, is here overcome by means of the use of separate representations. We present a technique
based on the same principles of the Proper Generalized Decomposition that enables the identification of complex laws in the low-
data limit. We provide examples on the performance of the technique in up to ten dimensions.

1. Introduction

In recent years there has been a growing interest in incor-
porating data-driven techniques into the field of mechanics.
While almost classical in other domains of science like eco-
nomics, sociology, etc., big data has arrived with important
delay to the field of computational mechanics. It is worth
noting that, in our field, the amount of data available is
very often no so big, and therefore we speak of data-driven
techniques instead of big-data techniques.

Among the first in incorporating data-driven technolo-
gies to the field of computational mechanics one can cite the
works of Kirchdoerfer et al. [1, 2], or the ones by Brunton
et al. [3–5]. Previous attempts exist; however, to construct
data-driven identification algorithms, see, for instance [6, 7].
More recently, the issue of compliance with general laws
like the ones of thermodynamics has been also achieved,
which is a distinct feature of data-drivenmechanics [8].Other
applications include the identification of biological systems
[9] or financial trading [10], to name but a few.

The problem with high dimensional systems is that data
in these systems is often sparse (due precisely to the high

dimensional nature of the phase space) while the system
has, on the contrary, low dimensional features—at least very
frequently. Based on this, a distinction should be made
between methods that require an a priori structure of the
sampling points and others which do not require such a
regularity.

Regarding the methods that need a rigid structure in the
sampling points, the Nonintrusive Sparse Subspace Learning
(SSL) method is a novel technique which has proven to
be very effective [11]. The basic ingredient behind such a
technique is that the parametric space is explored in a hierar-
chical manner, where sampling points are collocated at the
Gauss-Lobato-Chebychev integration points. Also, using a
hierarchical base allows improving the accuracy adding more
hierarchical levels without perturbing the previous ones. To
achieve such hierarchical property, just the difference at a
given point between the real function minus the estimated
value, using the precedent hierarchical levels, is propagated.
For more details about the method, the reader is referred to
[11]. However, in the high-dimensional case, this technique
shows severe limitations, as will be detailed hereafter.
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On the other hand, nonstructured data-driven techniques
are commonly based on Delaunay triangularization tech-
niques, providing an irregular mesh whose nodes coincides
with the sampling points. Afterwards, depending on the
degree of approximation inside each one of the Delaunay
triangles, it gives rise to different interpolation techniques;
i.e., linear, nearest, cubic, and natural, among other tech-
niques, are commonly used. Apart from techniques that
depend on a given triangularization, it is worth mentioning
Kriging interpolants as an appealing technique to provide
response surfaces from nonstructured data points. The key
ingredient behind such technique is that each sampling point
is considered as a realization of a random process. Therefore,
defining a spatial correlation function allows to infer the
position of unknown points just like providing confidence
intervals based on the distance to the measured points.
Nevertheless, the calibration of the correlation matrix has an
important impact in the performance of the method itself.

Kriging also possesses a very interesting property: it is
able to efficiently filter noise and outliers. Therefore, it is
expected that it also could help us in problems with noise in
the data.

However, in high dimensional settings, all of the just
mentioned techniques fail to identify the nature of the
system due precisely to the curse of dimensionality. A recent
alternative for such a system could be Topological Data
Analysis (TDA), which is based on the use of algebraic
topology and the concept of persistent homology [12]. A sparse
version of this technique also exists [13].

Hence, if a competitive data-driven identification tech-
nique is desired, such a technique should meet the following
requirements:

(i) Nonstructured data set: this characteristic provides
versatility to the method. Indeed, when evaluating
the response surface requiring a lot of computational
effort, recycling previous evaluations of the response
surface, which do not coincide with a given structure
of the data, may be very useful. In addition, the
SSL technique establishes sampling points at locations
in the phase space with no physical meaning in an
industrial setting.

(ii) Robustness with respect to high dimensionality:
triangularization-based techniques suffer when
dealing with multidimensional data just because
a high dimensional mesh has to be generated.
Nevertheless, the separation of variables could be an
appealing technique to circumvent the problem of
generating such a high dimensional mesh.

(iii) Curse of dimensionality: all previous techniques suf-
fer when dealing with high dimensional data. For
instance, the SSL needs 2𝐷 sampling points just to
reach the first level of approximation. Thus, when
dealing with high dimensional data (𝐷 > 10 uncor-
related dimensions) plenty of sampling points are
required to properly capture a given response surface.

In what follows we present a method based on the
concept of separate representations to overcome the curse of

dimensionality. Such separate representation has previously
been employed by the authors to construct a priori reduced-
order modeling techniques, coined as Proper Generalized
Decompositions [14–20]. This will give rise to a sparse
Proper Generalized Decomposition (s-PGD in what follows)
approach to the problem.We then analyze the just developed
technique through a series of numerical experiments in
Section 4, showing the performance of themethod. Examples
in up to ten dimensions are shown. The paper is completed
with some discussions.

2. A Sparse PGD (s-PGD) Methodology

2.1. Basics of the Technique. In this section we develop a novel
methodology for sparse identification in high dimensional
settings. For the ease of the exposition and, above all,
representation, but without loss of generality, let us begin by
assuming that the unknown objective function 𝑓(𝑥, 𝑦) lives
in R2 and that is to be recovered from sparse data. As in
previous references, see, for instance [21]; we have chosen to
begin with a Galerkin projection, in the form

∫
Ω
𝑤∗ (𝑥, 𝑦) (𝑢 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦 = 0, (1)

where Ω ⊂ R2 stands for the—here, still two-
dimensional—domain in which the identification is
performed and 𝑤∗(𝑥, 𝑦) ∈ C0(Ω) is an arbitrary test
function. Finally, 𝑢(𝑥, 𝑦) will be the obtained approximation
to 𝑓(𝑥, 𝑦), still to be constructed. In previous works of the
authors [8] as well as in other approaches to the problem
(e.g., [21]), this projection is subject to additional constraints
of thermodynamic nature. In this work no particular
assumption is made in this regard, although additional
constraints could be imposed to the minimization problem.

Following the same rationale behind the Proper Gener-
alized Decomposition (PGD), the next step is to express the
approximated function 𝑢𝑀(𝑥, 𝑦) ≈ 𝑢(𝑥, 𝑦) as a set of separate
one-dimensional functions,

𝑢𝑀 (𝑥, 𝑦) = 𝑀∑
𝑘=1

𝑋𝑘 (𝑥) 𝑌𝑘 (𝑦) . (2)

The determination of the precise form of functional pairs𝑋𝑘(𝑥)𝑌𝑘(𝑦), 𝑘 = 1, . . . ,𝑀, is done by first projecting them
on a finite element basis and by employing a greedy algorithm
such that once the approximation up to order𝑀−1 is known,
the new𝑀th order term

𝑢𝑀 (𝑥, 𝑦) = 𝑢𝑀−1 (𝑥, 𝑦) + 𝑋𝑀 (𝑥) 𝑌𝑀 (𝑦)
= 𝑀−1∑
𝑘=1

𝑋𝑘 (𝑥) 𝑌𝑘 (𝑦) + 𝑋𝑀 (𝑥) 𝑌𝑀 (𝑦) , (3)

is found by any nonlinear solver (Picard, Newton,. . .).
It is well-known that this approach produces optimal

results for elliptic operators (here, note that we have in fact
an identity operator acting on 𝑢) in two dimensions, see
[14] and references therein. There is no proof, however, that



Complexity 3

this separate representation will produce optimal results (in
other words, will obtain parsimonious models) in dimensions
higher than two. In two dimensions and with 𝑤∗ = 𝑢∗ it
provides the singular value decomposition of 𝑓(𝑥, 𝑦) [15].
Our experience, nevertheless, is that it produces almost
optimal results in the vast majority of the problems tested so
far.

It is worth noting that the product of the test func-
tion 𝑤∗(𝑥, 𝑦) times the objective function 𝑓(𝑥, 𝑦) is only
evaluated at few locations (the ones corresponding to the
experimental measurements) and that, in a general high
dimensional setting, we will be in the low-data limit neces-
sarily. Several options can be adopted in this scenario. For
instance, the objective function can be first interpolated in
the high dimensional space (still 2D in this introductory
example) and then integrated together with the test function.
Indeed, this will be the so-called PGD in approximation [15],
commonly used when either 𝑓(𝑥, 𝑦) is known everywhere
and a separated representation is sought or if 𝑓(𝑥, 𝑦) is
known in a separated format but a few pairs 𝑀 are needed
for any reason. Under this rationale the converged solution𝑢(𝑥, 𝑦) tries to capture the already interpolated solution in the
high dimensional space but in a more compact format. As a
consequence, the error due to interpolation of experimental
measurements on the high dimensional space will persist in
the final separate identified function.

In order to overcome such difficulties, we envisage a
projection followed by interpolation method. However since
information is just known at 𝑃 sampling points (𝑥𝑖, 𝑦𝑖), 𝑖 =1, . . . , 𝑃, it seems reasonable to express the test function not
in a finite element context, but to express it as a set of Dirac
delta functions collocated at the sampling points,

𝑤∗ (𝑥, 𝑦) = 𝑢∗ (𝑥, 𝑦) 𝑃∑
𝑖=1

𝛿 (𝑥𝑖, 𝑦𝑖)
= (𝑋∗ (𝑥) 𝑌𝑀 (𝑦) + 𝑋𝑀 (𝑥) 𝑌∗ (𝑦)) 𝑃∑

𝑖=1

𝛿 (𝑥𝑖, 𝑦𝑖) ,
(4)

giving rise to

∫
Ω
𝑤∗ (𝑥, 𝑦) (𝑢 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

= ∫
Ω
𝑢∗ (𝑥, 𝑦) 𝑃∑

𝑖=1

𝛿 (𝑥𝑖, 𝑦𝑖) (𝑢 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦
= 0,

(5)

The choice of the test function 𝑤∗(𝑥, 𝑦) in the form
dictated by (4) is motivated by the desire of employing a
collocation approach while maintaining the symmetry of
standard Bubnov-Galerkin projection operation.

2.2. Matrix Form. Let us detail now the finite element pro-
jection of the one-dimensional functions 𝑋𝑘(𝑥) and 𝑌𝑘(𝑦),𝑘 = 1, . . . ,𝑀, (often referred to as modes) appearing in
(2). Several options can be adopted, ranging from standard
piecewise linear shape functions, global nonlinear shape

functions, maximum entropy interpolants, splines, kriging,
etc. Regarding the kind of interpolant to use, an analysis will
be performed in the sequel. Nevertheless, no matter which
precise interpolant is employed, it can be expressed in matrix
form as

𝑋𝑘 (𝑥) = 𝑁∑
𝑗=1

𝑁𝑘𝑗 (𝑥) 𝛼𝑘𝑗 = [𝑁𝑘1 (𝑥) . . . 𝑁𝑘𝑁 (𝑥)] [[[[[
𝛼𝑘1...𝛼𝑘𝑁
]]]]]

= (N𝑘𝑥)𝑇 a𝑘,
(6)

𝑌𝑘 (𝑦) = 𝑁∑
𝑗=1

𝑁𝑘𝑗 (𝑦) 𝛽𝑘𝑗 = [𝑁𝑘1 (𝑦) . . .𝑁𝑘𝑁 (𝑦)][[[[[
𝛽𝑘1...𝛽𝑘𝑁
]]]]]

= (N𝑘𝑦)𝑇 b𝑘,
(7)

where 𝛼𝑘𝑗 and 𝛽𝑘𝑗 , 𝑗 = 1, . . . , 𝑁, represent the degrees of
freedom of the chosen approximation. We employ Nk as the
most usual nomenclature for the shape function vector. It is
important to remark that the approximation basis could even
change from mode to mode (i.e., for each 𝑖). For the sake of
simplicity we take the same number of terms for both 𝑋𝑘(𝑥)
and 𝑌𝑘(𝑦), namely,𝑁.

By combining (1), (2), (4), (6), and (7) a nonlinear system
of equations is derived, due to products of terms in both
spatial directions. An alternate direction scheme is here
preferred to linearize the problem, which is also a typical
choice in the PGD literature. Note that, when computing
modes 𝑋𝑀(𝑥), the variation in the other spatial direction
vanishes, 𝑌∗(𝑦) = 0, and vice versa.

In order to fully detail the matrix form of the resulting
problem, we first employ the notation “⊗” as the standard
tensorial product (i.e., b ⊗ c = 𝑏𝑖𝑐𝑗) and define the following
matrices

A𝑘ℓ𝑥 = N𝑘𝑥 ⊗ Nℓ𝑥,
A𝑘ℓ𝑦 = N𝑘𝑦 ⊗ Nℓ𝑦,
C𝑘ℓ𝑥𝑦 = N𝑘𝑥 ⊗ Nℓ𝑦.

(8)

For the sake of simplicity but without loss of generality,
evaluations of the former operators at point (𝑥𝑖, 𝑦𝑖) are
denoted as

A𝑘ℓ𝑥𝑖 = N𝑘𝑥 (𝑥𝑖) ⊗Nℓ𝑥 (𝑥𝑖) ,
A𝑘ℓ𝑦𝑖 = N𝑘𝑦 (𝑦𝑖) ⊗Nℓ𝑦 (𝑦𝑖) ,
C𝑘ℓ𝑥𝑖𝑦𝑖 = N𝑘𝑥 (𝑥𝑖) ⊗N𝑗𝑦 (𝑦𝑖) .

(9)

Equations (10)-(11) below show the discretized version of
the terms appearing in the weak form, (1), when computing
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modes in the 𝑥 direction. Again,𝑀 stands for the number of
modes in the solution 𝑢(𝑥, 𝑦) while 𝑃 denotes the number of
sampling points.

∫
Ω
𝑢∗ (𝑥, 𝑦) 𝑃∑

𝑖=1

𝛿 (𝑥𝑖, 𝑦𝑖) 𝑢 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
= 𝑀∑
𝑘=1

𝑃∑
𝑖=1

((b𝑀)𝑇A𝑀𝑘𝑦𝑖 b𝑘) ((a∗)𝑇A𝑀𝑘𝑥𝑖 a𝑘) ,
(10)

∫
Ω
𝑢∗ (𝑥, 𝑦) 𝑃∑

𝑖=1

𝛿 (𝑥𝑖, 𝑦𝑖) 𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
= 𝑃∑
𝑖=1

𝑓 (𝑥𝑖, 𝑦𝑖) ((a∗)𝑇 C𝑀𝑀𝑥𝑖𝑦𝑖 b𝑀) .
(11)

Hence, by defining

M𝑥 = 𝑃∑
𝑖=1

((b𝑀)𝑇A𝑀𝑀𝑦𝑖 b𝑀)A𝑀𝑀𝑥𝑖 ,
m𝑥 = 𝑀−1∑

𝑘=1

𝑃∑
𝑖=1

((b𝑀)𝑇A𝑀𝑘𝑦𝑖 b𝑘)A𝑀𝑘𝑥𝑖 a𝑘,
f𝑥 = 𝑃∑
𝑖=1

𝑓 (𝑥𝑖, 𝑦𝑖)C𝑀𝑀𝑥𝑖𝑦𝑖 b𝑀,
(12)

allows to write a system of algebraic equations

M𝑥a
𝑀 = f𝑥 −m𝑥. (13)

Exactly the same procedure is followed to obtain an
algebraic system of equations for b𝑀. This allows performing
an alternating directions scheme to extract a new couple of𝑋𝑀(𝑥) and 𝑌𝑀(𝑦)modes.

This formulation has several aspects that deserve to be
highlighted:

(1) No assumption about 𝑓(𝑥, 𝑦) has been made other
than assuming known its value at sampling points.
Indeed, both problems of either interpolating or
making a triangulation in a high dimensional space
are circumvented due to the separation of variables.

(2) The operatorM𝑥 is composed of 𝑃 rank-one updates,
meaning that the rank of such operator is at most 𝑃.
Furthermore, if a subset of measured points share the
same coordinate 𝑥𝑖, the entire subset will increase the
rank of the operator in one unity.

(3) The position of the sampling points will constrain the
rank of the PGD operators. That is the reason why
even if the possibility of having a random sampling of
points is available, it is always convenient to perform a
smart sampling technique such that the rank in each
direction tends to be maximized. Indeed, the higher
the rank of the PGD operator is, the more cardinality
of a and b can be demanded without degenerating
into an underdetermined system of equations.

There are plenty of strategies to smartly select the position
of the sampling points. They are based on either knowing an
a priori error indicator or having a reasonable estimation of
the sought response surface. Certainly, an adaptive strategy
based on the gradient of the precomputed modes could be
envisaged. However, the position of the new sampling points
will depend on the response surface calculated using the
previous sampling points, making parallelization difficult.
That is the reason why Latin hypercube is chosen in the
present work. Particularly, Latin hypercube tries to collocate𝑃 sampling points in such a way that the projection of those
points into 𝑥 and 𝑦 axis are as far as possible.

2.3. Choice of the 1D Basis. In the previous section, nothing
has been specified about the basis in which each one of the
one-dimensionalmodeswas expressed. In this subsection, we
will use an interpolant based on Kriging techniques. Simple
Kriging has been used throughout history in order to get
relatively smooth solutions, avoiding spurious oscillations
characteristic of high order polynomial interpolation. This
phenomena is called Runge’s phenomenon. It appears due to
the fact that the sampling point locations are not chosenprop-
erly; i.e., they will not be collocated, in general, at the Gauss-
Lobato-Chebychev quadrature points. Kriging interpolants
consider each point as a realization of a Gaussian process, so
that high oscillations are considered as unlikely events.

Hence, by defining a spatial correlation function based on
the relative distance between two points, D(𝑥𝑖 − 𝑥𝑗) = D𝑖𝑗,
an interpolant is created over the separated 1D domain,

𝑋𝑘 (𝑥) = 𝑁∑
𝑖=1

𝛼𝑘𝑖𝑁 + 𝑁∑
𝑗=1

𝜆 (𝑥 − 𝑥𝑗)(𝛼𝑘𝑗 − 𝑁∑
𝑙=1

𝛼𝑘𝑙𝑁) , (14)

where 𝜆(𝑥 − 𝑥𝑗) is a weighting function which strongly
depends on the definition of the correlation function and
the 𝛼𝑖 coefficients are the nodal values associated to the 𝑥𝑖
Kriging control points. Note that these control points are
not the sampling points. We have chosen this strategy so as
to allow us to accomplish an adaptivity strategy that will be
described next. In the present work, these control points are
uniformly distributed along the 1D domain. Although several
definitions of the correlation function exist, a Gaussian
distribution is chosen as

D𝑖𝑗 = D (𝑥𝑖 − 𝑥𝑗) = 1𝜎√2𝜋𝑒−(𝑥𝑖−𝑥𝑗)2/2𝜎2 , (15)

where 𝜎 is the variance of the Gaussian distribution. Several
a priori choices can be adopted to select the value of the
variance based on the distance between two consecutive
control points, e.g., 𝜎 = ℎ√(𝑥𝑖+1 − 𝑥𝑖)2. The magnitude of ℎ
should be adapted depending on the desired global character
of the support. To ensure the positivity of the variance, ℎ
should be in the interval ]0, +∞[.

Let us define now a set of 𝐶 control points

x𝑐𝑝 = [𝑥𝑐𝑝1 , 𝑥𝑐𝑝2 , . . . , 𝑥𝑐𝑝𝐶 ] (16)

and the 𝑃 sampling points

x𝑠𝑝 = [𝑥𝑠𝑝1 , 𝑥𝑠𝑝2 , . . . , 𝑥𝑠𝑝𝑃 ] . (17)
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Let us define in turn a correlation matrix between all control
points and a correlation matrix between the control points
and the sampling points as

C
𝑐𝑝−𝑐𝑝
𝑖𝑗 = D (𝑥𝑐𝑝𝑖 − 𝑥𝑐𝑝𝑗 ) ,

C
𝑐𝑝−𝑠𝑝
𝑖𝑗 = D (𝑥𝑐𝑝𝑖 − 𝑥𝑠𝑝𝑗 ) . (18)

Under these settings, we define a weighting function for each
control point and for each sampling point as

Λ = (C𝑐𝑝−𝑐𝑝)−1C𝑐𝑝−𝑠𝑝, (19)

where 𝜆(𝑥𝑐𝑝𝑖 − 𝑥𝑠𝑝𝑗 ) = Λ 𝑖𝑗.
If we reorganize the terms in the same way that we did in

the previous section to have a compact and close format of
the shape function N𝑘𝑥, we arrive to

𝑋𝑘 (𝑥𝑠𝑝𝑗 ) = 𝑁∑
𝑖=1

N𝑘𝑖 (𝑥𝑠𝑝𝑗 ) 𝛼𝑘𝑖
= [𝑁𝑘1 (𝑥𝑠𝑝𝑗 ) . . . 𝑁𝑘𝑁 (𝑥𝑠𝑝𝑗 )][[[[[

𝛼𝑘1...𝛼𝑘𝑁
]]]]]

= (N𝑘
𝑥
𝑠𝑝

𝑗

)𝑇 a𝑘,

(20)

where each shape function is given by

𝑁𝑘𝑖 (𝑥𝑠𝑝𝑗 ) = 1 − ∑𝑁𝑗=1 Λ 𝑖𝑗𝑁 + Λ 𝑖𝑗. (21)

Figures 1 and 2 depict the appearance of the simple Krig-
ing interpolants using 7 control points uniformly distributed
along the domain, for ℎ = 1 and ℎ = 1/3, respectively.
It can be highlighted that both the Kronecker delta (i.e.,
strict interpolation) and the partition of unity properties are
satisfied for any value of ℎ. Moreover, it is worth noting that
the higher the variance the correlation function has, the more
global the shape functions are. Furthermore, it is known that99 per cent of the probability of a Gaussian distribution is
comprised within an interval of [𝑚−3𝜎,𝑚+3𝜎], being𝑚 the
mean value of the distribution. This issue explains perfectly
well why the support of each Gaussian distribution takes 2
elements for the case, where ℎ = 1/3. Indeed, the shape of the
interpolants is quite similar to standard finite element shape
functions, but with a Gaussian profile. The remaining 1 per
cent of probability is comprised in the small ridges happening
in the middle of the elements.

In light of these results, a family of interpolants based
on Kriging can be easily created just selecting the value
of the variance within the correlation function. Therefore,
globality of the support can be easily adjusted always under
the framework of the partition of unity.

−1

0

1

2

N
(x

)

−0.5 0 0.5 1−1
X

Figure 1: Kriging shape functions using 𝜎 = √(𝑥𝑖+1 − 𝑥𝑖)2 for 7
control points uniformly distributed along the 1D domain.
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Figure 2: Kriging shape functions using 𝜎 = (1/3)√(𝑥𝑖+1 − 𝑥𝑖)2 for
7 control points uniformly distributed along the 1D domain.

2.4. Modal Adaptivity Strategy. In a standard PGD frame-
work, the final solution is approximated as a sum of𝑀modes
or functional products; see (2). Each one of the separated
modes must be projected onto a chosen basis to render the
problem finite dimensional. A standard choice is to select the
same basis for each one of the modes:

N1 = N2 = ⋅ ⋅ ⋅ = N𝑀. (22)

Despite of the fact that this choice seems reasonable,
when dealing with nonstructured sparse data, it may not be
such. In the previous section we proved that the rank of the
separated system strongly depends on the distribution of the
data sampling. Therefore, the cardinality of the interpolation
basis must not exceed the maximum rank provided by the
data sampling. Indeed, this constraint, which provides an
upper bound to build the interpolation basis, only guarantees
that the minimization is satisfied at the sampling points,
without saying anything out of the measured points. Hence,
if sampling points are not abundant, in the limit of low-data
regime, high oscillations may appear out of these measured
points. These oscillations are not desirable since the resulting
prediction properties of the proposed method could be
potentially decimated.

In order to tackle this problem, we take advantage of the
residual-based nature of the PGD. Indeed, the greedy PGD
algorithm tries to enrich a solution composed by𝑀modes,

𝑢𝑀 (𝑥, 𝑦) = 𝑀∑
𝑘=1

𝑋𝑘 (𝑥) 𝑌𝑘 (𝑦) , (23)
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just by looking at the residual that accounts for the contribu-
tion of the previous modes, as shown in 8).

Therefore, an appealing strategy to minimize spurious
oscillations out of the sampling points is to start the PGD
algorithm looking for modes with relatively smooth basis
(for instance, Kriging interpolants with a few control points).
Therefore, an indicator in order to make an online modal
adaptive strategy is required. In the present work, we use the
norm of the PGD residual,

R
𝑀
P = 1√𝑃√∑𝑖∈P (𝑓 (𝑥𝑖, 𝑦𝑖) − 𝑢𝑀 (𝑥𝑖, 𝑦𝑖))2, (24)

where P is the set of 𝑃 measured points and 𝑓(𝑥, 𝑦) is the
function to be captured.

In essence, when the residual norm stagnates, a new
control mesh is defined, composed by onemore control point
and always uniformly distributed, following

ΔR𝑀P =R
𝑀
P −R

𝑀−1
P < 𝜖𝑟. (25)

By doing this, oscillations are reduced, since higher-order
basis will try to capture only what remains in the residual.
Here, 𝜖𝑟 is a tolerance defining the resilience of the sPGD to
increase the cardinality of the interpolation basis. The lower𝜖𝑟 is, the more resilient method is to increase the cardinality.

To better understand the method, we will quantify the
error for two set of points: the first set is associated with the
sampling points,P,

EP = 1
#P

∑
𝑠∈P

√ (𝑓 (𝑥𝑠, 𝑦𝑠) − 𝑢𝑀 (𝑥𝑠, 𝑦𝑠))2𝑓 (𝑥𝑠, 𝑦𝑠)2 , (26)

where 𝑓(𝑥𝑠, 𝑦𝑠) is assumed not to vanish and where L also
includes points other than the sampling points. This is done
in order to validate the algorithm, by evaluating the reference
solution—which is a priori unknown in a general setting—at
points different to the sampling ones,

EL = 1
#L

∑
s∈L

√ (𝑓 (𝑥𝑠, 𝑦𝑠) − 𝑢𝑀 (𝑥𝑠, 𝑦𝑠))2𝑓 (𝑥𝑠, 𝑦𝑠)2 . (27)

Since the s-PGD algorithm minimizes the error only at
the sampling points P it is reasonable to expect that EP ≤
EL.

2.5. A Preliminary Example. To test the convergence of the
just presented algorithm, we consider

𝑓1 (𝑥, 𝑦) = (cos (3𝜋𝑥) + sin (3𝜋𝑦)) 𝑦2 + 4, (28)

which presents a quite oscillating behavior along the 𝑥 direc-
tion, whereas the𝑦 direction is quadratic.We are interested in
capturing such a function in the domain Ω𝑦 = Ω𝑥 = [−1, 1].

Figures 3 and 4 show the errorsEP andEL in identifying
the function 𝑓1(𝑥, 𝑦). In this case, we consider two distinct
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Figure 3: EL (points) and EP (asterisk) versus the number of
modes for 𝑓1(𝑥, 𝑦), #P = 100, #L = 1000. No modal adaptivity.
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Figure 4: EL (points) and EP (asterisk) versus the number of
modes for 𝑓1(𝑥, 𝑦), #P = 100, #L = 1000. Modal adaptivity based
on the residual, 𝜖𝑟 = 1e-2.

possibilities: nomodal adaptivity at all and amodal adaptivity
based on the residual, respectively. Several aspects can be
highlighted. The first one is that EP (asterisks) decreases
much faster when there is no modal adaptivity. This is
expected, since we are minimizing with a richer basis since
the very beginning, instead of starting with smooth functions
like in the residual based approach. However, even if themin-
imization in the sampling points is well achieved, when no
modal adaptivity is considered, the error out of the sampling
points may increase as the solution is enriched with new
modes. Nevertheless, the residual-based modal adaptivity
alleviates this problem. As it can be noticed, starting with
relatively smooth functions drives the solution out of the
sampling points to be smooth as well, avoiding the problem
of high oscillations appearing out of the sampling points.

3. A Local Approach to s-PGD

It is well-known that, as in POD, reduced basis or, in general,
any other linear model reduction technique, PGD gives poor
results—in the formof a nonparsimonious prediction—when
the solution of the problem lives in a highly nonlinear
manifold. Previous approaches to this difficulty included the
employ of nonlinear dimensionality reduction techniques
such as Locally Linear Embeddings [22], kernel Principal
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Component Analysis [23, 24] or isomap techniques [25].
Another, distinct, possibility, is to employ a local version of
PGD [18], in which the domain is sliced so that at every sub-
region PGD provides optimal or nearly optimal results. We
explore this last option here for the purpose of sparse regres-
sion, although a bit modified, as will be detailed hereafter.

The approach followed herein is based on the employ
of the partition of unity property [26, 27]. In essence, it
is well-known that any approximating function (like finite
element shape functions, for instance) that forms a partition
of unity can be enriched with an arbitrary function such that
the resulting approximation inherits the smoothness of the
partition of unity and the approximation properties of the
enriching function.

With this philosophy in mind, we proposed to enrich
a finite element mesh with an s-PGD approximation. The
resulting approximation will be local, due to the compact
support of finite element approximation, while inheriting
the good approximation properties, already demonstrated,
of s-PGD. In essence, what we propose is to construct an
approximation of the type𝑢 (𝑥, 𝑦) ≈ ∑

𝑖∈I

𝑁𝑖 (𝑥, 𝑦) 𝑢𝑖
+ ∑
𝑝∈Ienr

∑
𝑒∈I𝑝

𝑁𝑒 (𝑥, 𝑦) 𝑀∑
𝑘=1

𝑋𝑘𝑝 (𝑥) 𝑌𝑘𝑝 (𝑦)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑓enr𝑝 (𝑥,𝑦)

, (29)

whereI represents the node set in the finite element mesh,
Ienr the set of enriched nodes, 𝑢𝑖 are the nodal degrees of
freedom of the mesh, I𝑝 is the number of finite elements
covered by node 𝑝 shape function’s support and 𝑋𝑘𝑝(𝑥) and𝑌𝑘𝑝(𝑥) functions are the 𝑘-th one-dimensional PGD modes
enriching node𝑝, that in fact constitute an enriching function𝑓enr(𝑥, 𝑦).

Of course, as already introduced in Eqs. (6) and (7), every
PGDmode is in turn approximated byGalerkin projection on
a judiciously chosen basis. In other words,𝑢 (𝑥, 𝑦)

≈ ∑
𝑖∈I

𝑁𝑖 (𝑥, 𝑦) 𝑢𝑖
+ ∑
𝑝∈Ienr

∑
𝑒∈I𝑝

𝑁𝑒 (𝑥, 𝑦) 𝑀∑
𝑘=1

(N𝑘𝑥)𝑇 a𝑘𝑝 (N𝑘𝑦)𝑇 b𝑘𝑝,
(30)

with a𝑘𝑝 and b𝑘𝑝 the nodal values describing each one-
dimensional PGD mode.

In this framework, the definition of a suitable test func-
tion can be done in several ways. As a matter of fact, the test
function can be expressed as the sum of a finite element and
a PGD contribution, 𝑢∗ = 𝑢∗𝐹𝐸𝑀 + 𝑢∗𝑃𝐺𝐷, (31)
so that an approach similar to that of Eq. (4) can be
accomplished.

An example of the performance of this approach is
included in Section 4.4.
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Figure 5: EL of 𝑓1(𝑥, 𝑦) varying #P for different identification
techniques. #L = 1000.
4. Numerical Results

The aim of this section is to compare the ability of sparse
model identification for different interpolation techniques.
On one hand, the performance of standard techniques based
on Delaunay triangulation such as linear, nearest neighbor
or cubic interpolation is compared. Even though these
techniques are simple, they allow to have a nonstructured
sampling point set since they rely on a Delaunay triangu-
lation. On the other hand, the results are compared to the
Sparse Subspace Learning (SSL) [11]. The convergence and
robustness of this method is proven to be very effective since
the points are collocated at the Gauss-Lobato-Chebychev
points. However, two main drawbacks appear considering
this method.The first one is that there is a high concentration
of points in the boundary of the domain, so that this
quadrature is meant for functions that vary mainly along the
boundary. Indeed, if the variation of the function appears
in the middle of the domain, many sampling points will be
required to converge to the exact function. The second one is
that the sampling points have to be located at specific points
in the domain. The s-PGD method using simple Kriging
interpolants will be compared as well.

The numerical results are structured as follows: first
two synthetic 2D functions are analyzed; secondly, two
2D response surfaces coming from a thermal problem and
a Plastic Yield function are reconstructed; finally, a 10D
synthetic function is reconstructed by means of the s-PGD
algorithm.

4.1. 2D Synthetic Functions. The first considered function
is 𝑓1(𝑥, 𝑦), as introduced in the previous section. Figure 5
shows the reconstruction error (EL) of 𝑓1(𝑥, 𝑦) for different
sampling points. As it can be noticed, the s-PGD algorithm
performs well for a wide range of sampling points. Neverthe-
less, the SSLmethod is the one presenting the lower error level
when there are more than 150 sampling points.

A second synthetic function is defined as𝑓2 (𝑥, 𝑦) = cos (3𝑥𝑦) + log (𝑥 + 𝑦 + 2.05) + 5. (32)

This function is intended to be reconstructed in the domainΩ𝑥 = Ω𝑦 = [−1, 1]. It was chosen in such a way that it is
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Figure 6: EL of 𝑓2(𝑥, 𝑦) varying #P for different identification
techniques. #L = 1000.
relatively smooth in the center of the domain, whereas the
main variation is located along the boundary of the domain.
Indeed, this function ismeant to show the potential of the SSL
technique.

Figure 6 shows the reconstruction error of the 𝑓2(𝑥, 𝑦)
function for different interpolation techniques. As it can be
noticed, both SSL and s-PGD methods are the ones that
present the best convergence properties. If the number of
points is increased even more, the SSL method is the one
that presents the lowest interpolation error.They are followed
by linear and natural neighbor interpolations. Finally, the
nearest neighbormethod is the one presenting theworst error
for this particular case.

4.2. 2D Response Surfaces Coming from Physical Problems.
Once the convergence of the methods have been unveiled for
synthetic functions, it is very interesting to analyze the power
of the former methods by trying to identify functions that
are coming from either simulations or models popular in the
computational mechanics community. Indeed, two functions
will be analyzed: the first one is an anisotropic Plastic Yield
function, whereas the second one is a solution coming from
a quasistatic thermal problem with varying source term and
conductivity.

Figure 7 shows the Yld2004-18p anisotropic plastic yield
function, defined by Barlat et al. in [28]. Under plane stress
hypothesis, this plastic yield function is a convex and closed
surface defined in a three-dimensional space. Therefore, the
position vector of an arbitrary point in the surface can be
easily parameterized in cylindrical coordinates as 𝑅(𝜃, 𝜎𝑥𝑦).
The 𝑅(𝜃, 𝜎𝑥𝑦) function for the Yld2004-18p is shown in
Figure 8, where anisotropies can be easily seen. Otherwise,
the radius function will be constant for a given 𝜎𝑥𝑦.

Figure 9 shows the error in the identification of Barlat’s
plastic yield function Yld2004-18p. As it can be noticed, the
s-PGD technique outperforms the rest of techniques. Indeed,
the s-PGD is exploiting the fact that the response surface is
highly separable.

As mentioned above, the second problem is the sparse
identification of the solution of a quasistatic thermal problem
modeled by
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Figure 7: Barlat’s Yld2004-18p function under plane stress hypoth-
esis.
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Figure 8: 𝑅(𝜃, 𝜎𝑥𝑦) function for Barlat’s Yld2004-18p yield function.
∇ ⋅ (𝜂 (𝑥, 𝑡) ∇ (𝑢 (𝑥, 𝑡))) = 𝑓 (𝑡) ,

in Ω𝑥 × Ω𝑡 = [−1, 1] × [−1, 1] , (33)

where conductivity varies in space-time as

𝜂 (𝑥, 𝑡) = (1 + 10 abs (𝑥) + 10𝑥2) log (𝑡 + 2.5)
𝑢 (1, 𝑡) = 2 (34)

𝑓 (𝑥, 𝑡) = 10 cos (3𝜋𝑡)𝑢 (−1, 𝑡) = 2, (35)

and the source term varies in time. Homogeneous Dirichlet
boundary conditions are imposed at both spatial boundaries
and no initial conditions are required due to quasistationarity
assumptions.

Figure 10 shows the evolution of the temperature field as a
function of space time for the set of (33)-(35). It can be noticed
how the variation of the temperature throughout time is
caused mainly due to the source term. However, conductivity
modifies locally the curvature of the temperature along the
spatial axis. Symmetrywith respect the𝑥 = 0 axis is preserved
due to the fact that the conductivity presents a symmetry
along the same axis.

Figure 11 shows the performance of each one of the
techniques when trying to reconstruct the temperature field
fromcertain sampling points. As can be noticed, the s-PGD in
conjunction with Kriging interpolants is the one that presents
the fastest convergence rate to the actual function, which
is considered unknown. It is followed by linear and natural
interpolations. The SSL method presents a slow convergence
rate in this case, due to the fact that the main variation of the
function 𝑢(𝑥, 𝑡) is happening in the center of the domain and
not in the boundary.
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Figure 10: Quasistatic solution to the thermal problem 𝑢(𝑥, 𝑡).
4.3. A 10D Multivariate Case. In this subsection, we would
like to show the scalability that s-PGD presents when dealing
with relatively high-dimensional spaces. Since our solution is
expressed in a separated format, an 𝑁 dimensional problem
(𝑁𝐷) is solved as a sequence of 𝑁 1D problems, which are
solved using a fixed-point algorithm in order to circumvent
the nonlinearity of the separation of variables.

The objective function that we have used to analyze the
properties of the s-PGD is defined as

𝑓3 (𝑥1, 𝑥2, . . . , 𝑥𝑁) = 2 + 18 𝑁∑𝑖=1𝑥𝑖 +
𝑁∏
𝑖=1

𝑥𝑖 + 𝑁∏
𝑖=1

𝑥2𝑖 , (36)

with𝑁 = 10 in this case.
Figure 12 shows the error convergence in both sampling

points (EP, asterisks) and points out of the sampling (EL,
filled points). The L data set was composed by 3000 points,
and theP data subset for the s-PGDalgorithmwas composed
by 500 points. The number of points required to properly
capture the hypersurface has increased with respect to the
2D examples due to the high dimensionality of the problem.
Special attention has to be paid when increasing the cardi-
nality of the interpolant basis without many sampling points,
because the problem of high oscillations outside the control
points may be accentuated.

4.4. An Example of the Performance of the Local s-PGD.
The last example corresponds to the sparse regression of
an intricate surface that has been created by mixing three
different Gaussian surfaces so as to generate a surface with
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Figure 11: EL of 𝑢(𝑥, 𝑡) varying #P for different identification
techniques. #L = 1000. 𝜖𝑟 = 2.5 ⋅ 10−3.
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modes for 𝑓3(𝑥1, 𝑥2, . . . , 𝑥𝑁), #P = 500, #L = 3000. Modal
adaptivity based on the residual, 𝜖𝑟 = 1𝑒 − 3.
no easy separate representation (a nonparsimonious model,
if we employ a different vocabulary). The appearance of this
synthetic surface is shown in Figure 13.

The sought surface is defined in the domain Ω =[0, 1]2, which has been split into the finite element mesh
shown in Figure 14. Every element in the mesh has been
colored according to the number of enriching PGD functions,
ranging froma single one to four.The convergence plot of this
example as a function of the number of PGDmodes added to
the approximating space is included in Figure 15.

5. Conclusions

In this paper we have developed a data-based sparse reduced-
order regression technique under the Proper Generalized
Decomposition framework. This algorithm combines the
robustness typical of the separation of variables together with
properties of collocation methods in order to provide with
parsimonious models for the data at hand. The performance
of simple Kriging interpolation has proven to be effective
when the sought model presents some regularity. Further-
more, a modal adaptivity technique has been proposed in
order to avoid high oscillations out of the sampling points,
characteristic of high-order interpolationmethodswhen data
is sparse.
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Figure 15: Convergence plot for the example in Section 4.4.

For problems in which the result lives in a highly
nonlinear manifold, a local version of the technique, which
makes use of the partition of unity property, has also been
developed. This local version outperforms the standard one
for very intricate responses.

The s-PGD method has been compared advantageously
versus other existing methods for different example func-
tions. Finally, the convergence of s-PGD method for a high
dimensional function has been demonstrated as well.

Although the sparsity of the obtained solution could
not seem evident for the reader, we must highlight the fact

that the very nature of the PGD strategy a priori selects
those terms on the basis that it plays a relevant role in the
approximation. So to speak, PGD algorithms automatically
discard those terms that in other circumstances will be
weighted by zero. Sparsity, in this sense, is equivalent in
this context to the number of sums in the PGD separated
approximation. If only a few terms are enough to reconstruct
the data—as is almost always the case—then sparsity is
guaranteed in practice.

Sampling strategies other than the Latin hypercube
method could be examined as well. This and the coupling
with error indicators to establish good stopping criteria
constitute our effort of research at this moment. In fact,
the use of reliable error estimators could even allow for the
obtention of adaptive samplings in which the cardinality of
the basis could be different along different directions.
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[27] I. Babuška and J. M. Melenk, “The partition of unity method,”
International Journal for NumericalMethods in Engineering, vol.
40, no. 4, pp. 727–758, 1997.

[28] J. W. Yoon, F. Barlat, R. E. Dick, and M. E. Karabin, “Prediction
of six or eight ears in a drawn cup based on a new anisotropic
yield function,” International Journal of Plasticity, vol. 22, no. 1,
pp. 174–193, 2006.



Research Article
A Conceptual Approach to Complex Model Management with
Generalized Modelling Patterns and Evolutionary Identification

Sergey V. Kovalchuk ,1 Oleg G. Metsker,1 Anastasia A. Funkner ,1

Ilia O. Kisliakovskii ,1 Nikolay O. Nikitin,1 Anna V. Kalyuzhnaya ,1

Danila A. Vaganov,1,2 and Klavdiya O. Bochenina 1

1 ITMO University, Saint Petersburg, Saint Petersburg, Russia
2University of Amsterdam, Amsterdam, Netherlands

Correspondence should be addressed to Sergey V. Kovalchuk; sergey.v.kovalchuk@gmail.com

Received 1 June 2018; Accepted 17 September 2018; Published 1 November 2018

Guest Editor: Rafael Gómez-Bombarelli
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Complex systems’ modeling and simulation are powerful ways to investigate a multitude of natural phenomena providing extended
knowledge on their structure and behavior. However, enhanced modeling and simulation require integration of various data and
knowledge sources, models of various kinds (data-driven models, numerical models, simulation models, etc.), and intelligent
components in one composite solution. Growing complexity of such composite model leads to the need of specific approaches
for management of suchmodel.This need extends where the model itself becomes a complex system. One of the important aspects
of complex model management is dealing with the uncertainty of various kinds (context, parametric, structural, and input/output)
to control the model. In the situation where a system beingmodeled, or modeling requirements change over time, specific methods
and tools are needed tomakemodeling and application procedures (metamodeling operations) in an automaticmanner. To support
automatic building and management of complex models we propose a general evolutionary computation approach which enables
managing of complexity and uncertainty of various kinds. The approach is based on an evolutionary investigation of model phase
space to identify the best model’s structure and parameters. Examples of different areas (healthcare, hydrometeorology, and social
network analysis) were elaborated with the proposed approach and solutions.

1. Introduction

Today the area of modeling and simulation of complex sys-
tems evolves rapidly. A complex system [1] is usually charac-
terized by a large number of elements, complex long-distance
interaction between elements, and multiscale variety. One of
the results of the area’s development is growing complexity
of the models used for investigation of complex systems. As
a result, contemporary model of a complex system could be
easily characterized by the same features as a natural complex
system.Usually, a complexity of amodel is considered in tight
relation to a complexity of a modeling system. Nevertheless,
in many cases, the complexity of a model does not mimic
the complexity of a system under investigation (at least
exactly). It leads to additional issues in managing a complex
model during identification, calibration, data assimilation,

verification, validation, and application. One of the core
reasons for these issues is the uncertainty of various kinds
[2, 3] applied on levels of system, data, andmodel. In addition,
complexity is even more extended within multidisciplinary
models and models which incorporate additional complex
or/and third-party submodels. From the application point
of view, complex models are often difficult to support and
integrate with a practical solution because of a low level of
automation and high modeling skills needed to support and
adapt a model to the changing conditions.

On the other hand, recently evolutionary approaches are
popular for solving various types of model-centered oper-
ations like model identification [4], equation-free methods
[5], ensemble management [6], data assimilation [7], and
others. Evolutionary computation (EC) provides the ability to
implement automatic optimization and dynamic adaptation
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Figure 1: Basic concepts of complex modeling on model (𝑀), data (𝐷), and system (𝑆) layers.

of the system within a complex state space. Still, most of
the solutions are still tightly related to the application and
modeling system.

Within the current research, we are trying to develop a
unified conceptual and technological approach to support
core operation with a complex model by distinguishing con-
cepts and operations on model, data, and system levels. We
consider a combination of EC and data-driven approaches
as a tool for building intelligent solutions for more precise
and systematic managing (and lowering) uncertainty and
providing the required level of automation, adaptability, and
extendibility.

2. Conceptual Basis

The proposed approach is based on several key ideas, aimed
to extend uncertainty management in complex system mod-
eling and simulation.

(1) Disjoint consideration of model, data, and system in
terms of structure, behavior, and quality is aimed toward
a system-level review of modeling and simulation process
and distinguishes between the uncertainties of various kinds
originated from different level [8].

(2) Intelligent technologies like data mining, process
mining, machine learning, and knowledge-based approaches
are to be hired to fill the gap in automation of modeling and
simulation. Key sources for the development of such solution
include formalization of various knowledgewithin composite

solutions [9] and data-driven technologies to support the
identification of model components.

(3) EC approaches are widespread in modeling and
simulation of complex systems [8, 10]. We believe that
systematization of this process with separate consideration of
spaces for a system (with its subsystems) and a model (with
its submodels) could enhance such solutions significantly.

(4) The aim of the approach’s development is twofold.
First, it is aimed towards automation of modeling opera-
tions to extend the functionality of possible model-based
applications. Second, working with a combination of EC and
intelligent data-driven technologies could be considered as an
additional knowledge source for system and model analysis.

Furtherly, this section considers the conceptual basis of
the proposed approach with a special focus on the role of
EC algorithms and data-driven intelligent technologies for
building and exploiting complex models.

2.1. Core Concepts. To distinguish between main modeling
concepts and operations, we propose a conceptual framework
(see Figure 1) for consideration of key processes and opera-
tions duringmodeling of the complex system.The framework
may be considered as a generalization and extension of a
framework [11, 12] previously defined and used by authors
for ensemble-based simulation. Current research extends
the concept beyond ensemble-based simulation. It is mainly
focused on complex modeling in general with identifica-
tion of key model management procedures and important
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artifacts which can be used for model development and
application.

The proposed framework considers three main layers of
complex systems’ modeling, namely, model (𝑀), data (𝐷),
and system (𝑆). Main operations (arrows on the diagram)
within the framework are defined within three concepts:
quantitative parameters (Ξ), functional characteristics (Φ),
and structure (Σ). We denote operations by Γ𝐴

𝐿
, where 𝐴 and

𝐿 stay for concepts and layer (respectively) involved in the
operation. Transitions between concepts and between layers
are denoted by 𝐴1 → 𝐴2 and 𝐿1 → 𝐿2 respectively; e.g.,
operator ΓΞ

𝑆→𝐷
reflects observation of quantitative param-

eters and operator ΓΞ
𝐷→𝑀

stays for basic data assimilation.
Also, a set of operators may refer to a single modeling
operation; e.g., operators ΓΦ→Ξ

𝑀
and ΓΣ→Ξ
𝑀

are often imple-
mented within a single monolithic model. Mainly, operators
are related to the specific submodel within a complex model.
We consider three key classes of models. F-models are usually
classical continuous models developed with knowledge of
a system. DD-models are data-driven models based on
analysis of available data sets with corresponding techniques
(statistics, data mining, process mining, etc.). A-models are
mainly intelligent components of a system usually based on
machine learning or knowledge-based approaches. Also, we
consider EC-based components as belonging to A-models
class.

A key problemwithin complex systemmodeling and sim-
ulation is related to the absent or at least significantly limited
possibility to observe the structure and functional charac-
teristics of the system (operators ΓΦ

𝑆→𝐷
and ΓΣ
𝑆→𝐷

) directly.
The general solution usually includes implicit substitution
of the operators with the expertise of modeler (operators
ΓΦ
𝑆→𝑀

and ΓΣ
𝑆→𝑀

). Still, the more complex the system under
investigation and the model are, the more limited those oper-
ations are. To overcome this issue, additional DD-models are
involved (operators ΓΞ→Σ

𝐷
and ΓΞ→Φ
𝐷

for mining in available
data, ΓΦ→Ξ

𝐷→𝑀
for extended discovery of model parameters for

various functional characteristics). Also, A-models are hired
to extend expert knowledge in discovery of𝑀-layer concepts
with either formalized knowledge or knowledge discovered
in data with machine learning approaches (operators ΓΞ→Σ

𝐷→𝑀
,

ΓΞ→Φ
𝐷→𝑀

, ΓΣ
𝐷→𝑀

, and ΓΦ
𝐷→𝑀

for direct discovery of struc-
ture and functional characteristics directly and operators
ΓΣ→Φ
𝐷

, ΓΦ→Σ
𝐷

, ΓΣ→Φ
𝑀

, and ΓΦ→Σ
𝑀

for interconnection of
discovered characteristics in available data and within the
used model). In the proposed approach, primary attention
is paid to these kinds of solutions where DD- and A-models
enable enhancement of complex modeling process with an
additional level of automation, adaptation, and knowledge
providing.

2.2. Complex Modeling Patterns. Considering the defined
conceptual framework, we identify several patterns of mod-
eling and simulation of a complex system (see Figure 2).
The patterns are defined as combinations in a context of the
framework described previously (3 layers, 3 concepts). An
essential idea of the proposed patterns is systematization of

complex model management approaches with combinations
of expertise, intelligent solution (A-models), DD-models, and
EC.

The pattern extends the operators described in Section 2.1
for model building with operators for model application (i.e.,
modelling and simulation) and results analysis (e.g., assessing
model quality) required for automated model identification.
These additional Operators are denoted with Γ𝐴

𝐿
and similar

notation for indices.
P1. Regular modeling of a system (Figure 2(a)) is a

basic pattern usually applied to discover new knowledge
on the system under investigation. A model is built using
(a) expertise of modeled for identification of structure and
functional characteristics of the model (ΓΦ

𝑆→𝑀
and ΓΣ

𝑆→𝑀
);

(b) available input data usually representing quantitative
parameters of a system considered as a static input of the
model or source for data assimilation (DA) via operators
ΓΞ
𝑆→𝐷

and ΓΞ
𝐷→𝑀

. Results of model application (ΓΞ
𝑀→𝐷

,
Γ
Σ

𝑀→𝐷
, and ΓΦ

𝑀→𝐷
) could be considered from descriptive

(mainly structural or quantitative characteristics) or predic-
tive (often forecasting or other functional characteristics).
The obtained results are analyzed in comparison to available
information about the investigated system (ΓΞ

𝐷→𝑆
, ΓΣ
𝐷→𝑆

,
and ΓΦ

𝐷→𝑆
) forming an optimization loop which can be

considered within the scope of all three concepts. Certain
limitations within this pattern being applied to complex
system modeling and simulation are introduced by two
factors. First, workingwith complex structural and functional
characteristics of the model requires a high level of expertise
which leads to a limitation of extensibility and automation
of model operation. Second, performing optimization in a
loop with most algorithms require multiple runs of a model.
As a result, computational-intensive models have limitations
in optimization-based operations (identification, calibration,
etc.) due to performance reasons.

P2. Data-driven modeling (Figure 2(b)) provides an
extension to the modeling operation describing the rela-
tionship between data attributes. Application of data-driven
models may be considered as replacement of actual “full”
model, providing (a) information about structure of system
and model with data mining (DM) and process mining
(PM) techniques (ΓΞ→Σ

𝐷
); (b) generating surrogate models

for functional characteristics (ΓΞ→Φ
𝐷

); (c) providing estima-
tion of investigated parameters with machine learning (ML)
algorithms and models (ΓΞ→Ξ

𝐷
). In contrast to the previous

pattern data-driven models usually operate quickly (although
it could require significant time to train the model). Still,
such models have lower quality than original “full” models.
Nevertheless, combining this pattern with others provides
significant enhancement in functionality and performance;
e.g., data-drivenmodels can be used in optimization loop (see
previous pattern).

P3. Ensemble-based modeling (Figure 2(c)) extends P1
for working with sets of objects (models, data sets, and
states) reflecting uncertainty, variability, or alternative solu-
tions (e.g., models). Previously [11] we identified 5 classes
of ensembles (see E1-E5 in Figure 2(c)): decomposition
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Figure 2: Complexmodeling patterns: (a) regularmodeling; (b) data-drivenmodeling; (c) ensemble-basedmodeling; (d) data-driven support
of complex modeling; (e) EC in hybrid complex modeling; (f) evolutionary space discovery in hybrid complex modeling.

ensemble, alternative models ensemble, data-driven ensem-
ble, parameter diversity ensemble, and metaensemble. All
these patterns can be applied within a context of the proposed
framework. Still, an extension of ensemble structure increases
structural complexity of the model and thus leads to the need
for additional (automatic) control procedures. Moreover,
the performance issues of P1 are getting even worthier in
ensemble modeling.

P4. One of the key ideas of the proposed approach is
an implementation of data-driven analysis of model states,
structure, and behavior. To implement it within a conceptual
framework we propose pattern for data-driven complex
modeling (Figure 2(d)). It includes identification and predic-
tion of a model structure through DM and PM techniques
(ΓΞ→Σ
𝐷→𝑀

) and generation of surrogate models for injection
into the complex model (ΓΞ→Φ

𝐷→𝑀
). In addition, it is possible

to use data-driven techniques to predict the quality of the
considered model and use it for model optimization (ΓΞ

𝐷→𝑆
,

Γ
Ξ→Σ

𝐷→𝑆
, and ΓΞ→Φ

𝐷→𝑆
).

P5. A key pattern for EC implementation is presented in
Figure 2(e). Here EC is used to identify a model structure
(ΓΞ→Σ
𝐷→𝑀

) and surrogate submodels (ΓΞ→Φ
𝐷→𝑀

) with a consider-
ation of population of models. As a result, modeling result is
also (as well as in P3) presented in multiple instances which
may be analyzed, filtered end evolved within consequent
iterations over changing time (and processing of coming
observations of the system) or within a single timestamp (and
fixed observation data).

P6. Finally, last presented pattern (Figure 2(f)) is aimed
at investigation of system phase space using DD-models
and/or EC to reflect unobservable landscape for estimation
of model positioning, assessing its quality in inferring of
(sub-)optimal structural (ΓΞ→Σ

𝐷→𝑆
and ΓΣ

𝑀→𝐷
) and functional

(ΓΞ→Φ
𝐷→𝑆

and ΓΦ
𝑀→𝐷

) characteristics of the actual system.
These patterns could be easily combined to obtain better

results within a specific application. Especial interest from
the point of view of EC is attracted to the patterns where
a set of models (or sub-model) instances is considered (P5,
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Figure 3: Artifacts and procedures within a typical composite solution.

P6). It is possible to consider ensemble-based techniques
(P3) in a fashion of EC, but within our approach, we prefer
consideration of ensemble as a composite model with several
submodels. In that case, ensemble management refers to the
concept of complex model structure.

Several important goals may be reached within the pre-
sented patterns:

(i) automation of complex model management with
intelligent solutions, DD-models, and EC;

(ii) optimization of model structure and application
under defined limitations in precision and perfor-
mance;

(iii) enhanced ways of domain knowledge discovery for
applications and general investigation of a system.

2.3. Composite Solution Development. The proposed struc-
ture of core concepts and patterns may be applied in various
ways to form a solution which combine operators with
original implementationwithin the solutions or implemented
as external model calls. Figure 3 shows the essential elements
(artifacts and procedures) in a typical composite solution
within the proposed conceptual layers (𝑆, 𝐷, and 𝑀). 𝑆-
layer includes actual system’s state which can be assessed
through the observation procedure and described by explicit
domain knowledge. 𝐷-layer includes datasets divided into
observation data and simulation/modeling data with proce-
dures for data processing and data assimilation. Finally, 𝑀-
layer includes a set of available basicmodels𝑀1 . . .𝑀𝑁which
may be identified, calibrated with available data having tuned

models 𝑀1 . . .𝑀


𝑁 as a result. Here, essential elements
are model composition (which may be performed either
automatically, or by the modeler) and application of the
model.

The key benefit of the approach is an application of a
combination of EC, data-driven and intelligent procedures
to manage the whole composite solution including data
processing, modeling, and simulation to lower uncertainty in
Σ×Ξ×Φ. Within the shown structure these procedures may
be applied:

(i) to rank and select alternative models;
(ii) to support model identification, calibration, compo-

sition, and application;
(iii) to manage artifacts on various conceptual layers in a

systematic way;
(iv) to infer implicit knowledge from available data and

explicitly presented domain knowledge.
The shown example draws a brief view on the compos-

ite solution development while the particular details may
differ depending on a particular application. Key important
procedures within the proposed composite solution are the
implementation of intelligent procedures to support model
identification and systematic management of composite
model are considered in Sections 2.4 and 2.5.

2.4. Evolutionary Model Identification. Implementing evolu-
tion of models within a complex modeling task structure,
functional and quantitative parameters are usually consid-
ered as genotype whereas model output (data layer) are
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considered as phenotype. Within the proposed approach we
can adapt basic EC operations definition within genotype-
phenotype mapping [13]:

(i) epigenesis as model application: 𝑓1 : 𝑆 × 𝑀 → 𝐷;
(ii) selection: 𝑓2 : 𝑆 × 𝐷 → 𝐷;
(iii) genotype survival: 𝑓3 : 𝑆 × 𝐷 → 𝑀;
(iv) mutation: 𝑓4 : 𝑀 → 𝑀.

In addition, we consider quality assessment usually
treated as fitness for selection and survival (or in more
complex algorithms for controlling of other operations like
mutation):

(i) data quality: 𝑞𝑑 : 𝑆 × 𝐷 → 𝑄𝑑;
(ii) model quality: 𝑞𝑚 : 𝑆 × 𝑀 → 𝑄𝑚.

Here 𝑄𝑑 and 𝑄𝑚 are often considered as R𝑁 with
some quantitative quality metrics. Model quality usually are
considered through data quality, i.e., 𝑞𝑚 ∼ 𝑞𝑑(𝑠, 𝑓1(𝑠,𝑚)),
but within our approach this separation is considered as
important because in addition we introduce supporting oper-
ations with data-driven procedures as in complex modeling
many of these functions (first of all 𝑓1, 𝑞𝑚, and 𝑞𝑑) have
significant difficulties to be applied directly (some of these
issues are considered in relationship with patterns). Data
driven operations (first of all, 𝑓1 and 𝑞𝑚) can be introduced
as substitution of previously introduced basic operations (see
also patterns P2, P4, and P6):

(i) epigenesis as DD-model application: 𝑓𝑑
1
: 𝑆 × 𝑀 →

𝐷;
(ii) model generation: 𝑔𝑑 : 𝑆 × 𝐷 → 𝑀;
(iii) model quality prediction: 𝑞𝑑

𝑚
: 𝑆 × 𝑀 → 𝑄𝑚;

(iv) space discovery: 𝑤𝑑 : 𝑆 × 𝐷 → 𝑆.

Operation 𝑤𝑑 could be used within an intelligent exten-
sion within selection or survival operations (𝑓2 and 𝑓3). It
becomes especially important in case of lack of knowledge in
system’s structure or functional characteristics. Operation 𝑔𝑑
at the same time could be used as a part ofmutation operation
𝑓4 (or initial population generation). Having this extension,
we can implement enhanced versions of EC algorithms (e.g.,
genetic algorithms, evolution strategies, and evolutionary
programming) with data-driven operations to overcome or
at least to lower complex modeling issues.

2.5. Model Management Approach and Algorithm. By model
management we assume operations with models within
problem domain solution development and application. This
includes identification, calibration, DA, optimization, predic-
tion, and forecasting. To systematize the model management
in the presented patterns we propose an approach for explicit
consideration of spaces 𝑆, 𝐷, and𝑀 within hybrid modeling
with EC and DD-modeling. To summarize complex model-
ing procedures within the approach, we developed a high-
level algorithm which includes series of steps to be imple-
mented within a context of complex model management.

Step 1 (space discovery). This step identifies the description
of phase space (in most cases, 𝑆) in case of lack of knowledge
or for automation purposes. For example, the step could
be applied in the discovery of system state space or model
structure. Space descriptionmay include (a) distance metrics;
(b) proximity structure (e.g., graph, clustering hierarchy, and
density); (c) positioning function. One of the possible ways to
perform this step is an application of DM and EC algorithm
to available data (see pattern P6).

Step 2 (identification of supplementary functions). Data-
driven functions (Φ) are applied to work in model evolution
with consideration of space (landscape) representation as
available information.

Step 3 (evolutionary processing of a set of models). This
step is described by a combination of basic EC operations
(population initialization, epigenesis, selection, mutation,
and survival) with supplementary functions. A form of
combination depends on (a) selected EC algorithm; (b)
application requirements and restrictions; (c) model-based
issues (e.g., performance, quality of surrogate models, etc.).

Step 4 (assimilation of updated data and knowledge). This
step is applied for automatic adaptation purposes and imple-
ment DA algorithm. DA can be applied to (a) set of models,
(b) EC operations (e.g., affecting selection function); (c) sup-
plementary functions (as they are mainly data-driven); (d)
phase space description (if descriptive structure is identified
from changed data or/and knowledge).

The steps can be repeated in various combination
depending on an application and implemented pattern. Also,
the steps are general and could be implemented in various
ways. Several examples are provided in the Section 3.

2.6. Available Building Blocks of a Composite Solutions. EC
proposes a flexible and robust solution to identify complex
model structures within a complex landscape with possible
adaptation towards changing condition and system’s state
(including new states without prior observation. A signif-
icant additional benefit is an ability to manage alternative
solutions simultaneously with possible switching and various
combination of them depending on the current needs. Still,
within the task of model identification and management, the
EC (and also many metaheuristics) have certain drawbacks
which require additional steps to implement the approach
within particular conditions:

(i) high computational cost due to the multiple runs of a
model;

(ii) low reproducibility and interpretability of obtained
results due to randomized nature of the searching
procedure;

(iii) complicated tuning of hyperparameters for better EC
convergence;

(iv) indistinct definition of genotype boundaries;
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(v) complicated mapping of genotype to phenotype
space.

To overcome these issues, the proposed approach involves
two options. First, the intelligent procedures may be used to
tune EC hyperparameters (P5), predict features of genotype-
phenotype mapping, boundaries, etc. (P4), and discover
interpretable states and filters (for system, data, and model)
to control convergence and adaptation of population (P2,
P4, and P5) with interpretable and reproducible (through
the defined control procedure). Second, the composite model
may use various approaches,methods, and elements to obtain
better quality and performance of the solution:

(i) surrogate models (P2, P4, P5) which may increase
performance (for example, within preliminary and
intermediate optimization steps);

(ii) ensemble models (P3) which may be considered as
interpretable and controllable population;

(iii) interpretation and formal inference using explicit
domain-specific knowledge and results of data min-
ing to feed procedures of EC and infer parameters in
both models and EC.

(iv) controllable space decomposition (P6) with predic-
tive models for possible areas and directions of popu-
lation migration in EC to explicitly lower uncertainty
and obtain additional interpretability;

Finally, an essential feature of the proposed approach
is a holistic analysis of a composite solution with possible
coevolution models (submodes within a composite model)
and data processing procedures.

3. Application Examples

This section presents several practical examples where the
proposed approach, patterns, or some of their elements
were applied. The examples were intentionally selected
from diverse problem domains to consider generality of
the approach. The considered problems are developed in
separated projects which are in various stages. Problem #1
(ensemble metocean simulation) was investigated in a series
of projects (see, e.g., [11, 14, 15]). Within this research we
are trying to extend model calibration and DA with EC
techniques to develop more flexible and accurate multimodel
ensembles. Problem #2 (clinical pathways (CPs) modelling)
is important in several ongoing project aimed to model-
based decision support in healthcare (see, e.g., [16–18]).
The proposed approach plays important role by enabling
deeper analysis of clinical pathways in various scenarios
(interactive analysis of available CPs with identification of
clusters of similar patients, DA in predictive modelling of
ongoing cases, etc.). Finally, Problem #3 shows very early
results in recently started project in online social network
analysis.

3.1. Problem #1: Evolution in Models for Metocean Simulation.
The environmental simulation systems usually contain

several numerical models serving for different purposes
(complementary simulation processes, improving the
reliability of a system by performing alternative results, etc.).
Each model typically can be described by a large number
of quantitative parameters and functional characteristics
that should be adjusted by an expert or using intelligent
automatized methods (e.g., EC). Alternative models inside
the environmental simulation system can be joined in
ensemble according to complex modeling pattern based
on evolutionary computing (a combination of P3 and P5
patterns). In the current case study, we introduce an example
illustrated an ensemble concept in forms of the alternative
models ensemble, parameter diversity ensemble, and
metaensemble. For identification of parameters of proposed
ensembles (in a case of model linearity) least square method
or (in a case of nonlinearity) optimization methods can be
used. As we need to take into account not only functional
spaceΦ and space of parameters Ξ for a single model but also
perform optimal coexistence of models in the system (i.e.,
Σ), evolutionary and coevolutionary approaches seem to be
an applicable technique for this task. It is worth mentioning
that coevolutionary approach can be applied to independent
model realizations through an ensemble as a connection
element. In this case parameters (weights) in the ensemble
can be estimated separately from the coevolution procedure
in a constant form or dynamically. As a case study of complex
environmental modeling we design ensemble model that
consists of the SWAN (http://swanmodel.sourceforge.net/)
model for ocean wave simulation based on two different
surface forcings by NCEP (https://www.esrl.noaa.gov/psd/
data/gridded/data.ncep.reanalysis.html) and ERA Interim
(https://www.ecmwf.int/en/forecasts/datasets/archive-data-
sets/reanalysis-datasets/era-interim). Thus, different imple-
mentations of SWAN model were connected in the form of
an alternative models ensemble with least-squares-calculated
coefficients defining structure of the complex model. Two
parameters—wind drag andwhitecapping rate (WCR)—were
calibrated using evolutionary and coevolutionary algorithms
implementing ΓΞ→Φ

𝐷→𝑀
in P5 (for detailed sensitive analysis

of SWAN see [19]). Case of coevolutionary approach can
be represented in a form of parameter diversity ensemble,
where each population is constructed an ensemble of
alternative model results with different parameters. Also, we
can add ensemble weights to model parameters diversity
and get metaensemble that can be identified in a frame of
coevolutionary approach.

In a process of model identification and verification,
measurements from several wave stations in Kara sea were
used. Fitness function represents the mean error (RMSE)
for all wave stations. For results verification MAE (mean
absolute error) and DTW (dynamic time wrapping) metrics
were used.

Figure 4(a) represents surface (landscape) of RMSE in
the space of announced parameters (drag and WCR) for
implementations SWAN+ERA and SWAN+NCEP. It can be
seen that the evolutionary-obtained results converge to the
minimum of possible error landscape. The landscape was
obtained by starting the model with all parameters variants

http://swanmodel.sourceforge.net/
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim


8 Complexity

RM
SE

 (m
)

2

4

6

8

1 2 3

10

Drag

log(WCR)

0 −5 −10 −15 −20

NCEP
ERA

(a)

Log(RM
SE)

−0.3

−0.2

−0.1

0

1.6

Drag WCR4e-5

coNCEP
coERA

3e-5
2e-5

1e-5

coEnsemble

1.4 1.2 1 0.8 0.6

0.1

0.2

(b)
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Figure 5: Coevolution convergence of diversity parameters ensemble for metocean models.

from full 30x30 grid (i.e., 900 runs), while evolutionary
algorithm was converged in 5 generations with 10 individ-
uals (parameters set) in population (50 runs) that allows
performing identification two orders faster. The convergence
of co-evolution for SWAN+ERA+NCEP case is presented in
Figure 5.

Although error landscapes for a pair of implementations
SWAN+ERA and SWAN+NCEP are close to each other, sep-
arated evolution does not consider optimization of ensemble
result. For this purpose, we apply coevolutionary approach
that produces the set of Pareto-optimal solutions for each
generation. Figure 4(b) shows that the error of each model in

the ensemble is significant (coNCEP and coERA for models
along), but the error of the whole ensemble (coEnsemble)
converges to minimum very fast.

Obtained result can be analyzed from the uncertainty
reduction point of view. Model parameters optimization
helps to reduce parameters uncertainty that can be estimated
through error function. But when we apply an ensemble
approach to evolutionary optimized results, it is suitable
to talk about reduction of the uncertainty connected with
input data sources (NCEP and ERA) as well. Moreover,
metaensemble approach allowed reduction of uncertainty,
connected with ensemble parameters.
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Figure 6: Graph-based representation of processes space in healthcare (interactive view) (Demonstration available at https://www.youtube
.com/watch?v=EH74f1w6EeY).

Summarizing results of the metocean case study we can
denote that EC approach shows significant efficiency up to
120 times compared with grid search without accuracy losses.
According to this experimental study, quality of ensemble
with evolutionary optimized models is similar to results of
the grid search and MAE metric is equal to 0.24 m and
DTWmetric – 51. Also, we can mention that coevolutionary
approach provides 10 % accuracy gain compared with results
of single evolution of model implementations, but this is
still similar to ensemble result with evolutionary optimized
models. Nevertheless, coevolutionary approach allowed to
achieve 200 times acceleration. Within the context of the
proposed approach space Φ were investigated using defined
structure of the model in space Σ for the purpose of model
calibration.

3.2. Problem #2: Modeling Health Care Process. Modeling
healthcare processes are usually related to the enormous
uncertainty and variability even when modeling single dis-
ease. One of the ways to identify a model of such process
is PM [20]. Still, direct implementation of PM methods
does not remove a major part of the uncertainty. Within
current research, we applied the proposed approach for
identification purposes both in the analysis of historical
cases and prediction of single process development. Here we
consider processes of providing health care in acute coronary
syndrome (ACS) cases which is usually considered as one of
the major death causes in the world. We used a set of 3434
ACS cases collected during 2010-2015 in Almazov National
Medical Research Centre one of the leading cardiological
centers in Russia. The data set contains electronic health
records of these patients with all registered events and
characteristics of a patient.

To simplify consideration of multidimensional space of
possible processes (ΓΞ→Σ

𝐷→𝑆
ΓΞ
𝑆→𝐷

for analysis of Σ on layer 𝑆)

we introduced graph-based representation of this space with
vertices representing cases and edges representing proximity
of cases. Analysis of such structure enables easy discovering
of common cases (e.g., as communities in graph). Such
discovering enables explicit interpretable structuring of the
space and representation of further landscape for EC in terms
of P6 pattern. Moreover, direct interactive investigation of
visual representation of such structure (see Figure 6) provides
significant insights for medical researchers.

We have developed evolutionary-based algorithm for
patterns identification and clustering in such representation
with two criteria to be optimized (see Figure 7). Here
processes were represented by a sequence of labels (symbols)
denoting key events in PM model. Typical patterns were
then selected for Pareto frontier. The convergence process is
demonstrated in Figure 8 (10 best individuals from Pareto
frontier according to the integral criterion were selected). As
a result, this solution may refer to P5 pattern and operator
ΓΞ→Σ
𝐷→𝑀

while discovering model structure. Figure 9 shows an
example of typical process model (i.e., structural characteris-
tic of the model) for one of the identified clusters. Detailed
description of the approach, algorithms, and results on CPs
discovering, clustering, and analysis including comparison of
three version of CP discovery algorithms with performance
comparison can be found in [10]. An important outcome
of the approach being applied in this application is inter-
pretability of the clusters and identified patterns. For example,
10 clusters and corresponding CPs obtained interpretation
by cardiologists from Almazov National Medical Research
Centre. The obtained interpretation and further discovering
and application with CP structure are presented in [17].
Another important benefit given by such space structure
discovering is lowering uncertainty of patient’s treatment
trajectory by a hierarchical positioning of an evolved process
(selection of a cluster and selection of position within
the cluster). For example, discrete-event simulation model
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Figure 10: Evolution of synthetic CPs: (a) CP population convergence; (b) evolution of possible CP (demonstration available at https://www
.youtube.com/watch?v=twvfX9zKsY8); (c) number of synthetic CPs; (d) % of CPs in correct cluster.

described in [17] provides a more appropriate length of stay
distribution within simulation with discovered classes of
CPs (Kolmogorov-Smirnov statistics decreased by 51% (from
0.255 to 0.124).

Furtherly we propose an algorithm to dynamically gen-
erate possible development of the process in healthcare using
identified graph-based space representation with evolution-
ary strategies, assimilating incoming data (events) within a
case (ΓΣ

𝑀→𝐷
in P5 and ΓΞ→Σ

𝐷
in P2). We consider conver-

gence (Figure 10(a)) of the introduced synthetic continuation
of the processes to the right class (identified clusters of
typical cases were used) with mapping to the graph-based
space representation with proximity measures (Figure 10(b)).
As a result, the appearance of the CP’s events decreases
the number of synthetic CPs and increases percentage of
CPs positioned in the correct cluster (see an example in
Figure 10(c) and Figure 10(d) correspondingly). This enables
interpretable positioning and uncertainty lowering in pre-
dicting further CP’s development for a particular patient.

Here a combination of patterns P2, P5, and P6 in the
implementation of the proposed algorithm (see Section 2.5)
enables interactive investigation of processes space and data
assimilation into a population of possible continuations of
a single process during its evolving. This solution can be
applied in exploratory modeling and simulation of patient
flow processing as well as decision support in specialized
medical centers.

3.3. Problem #3: Mining Social Media. Nowadays social
media analysis (that began with static network models
emphasizing a topology of connections between users) strives
to explore dynamic behavioral patterns of individuals which
can be recovered from their digital traces on the web. The
prediction of social media activities requires combining
analytical and data-driven models as well as identifying the
optimal structure and parameters of these models according
to the available data. Herewe show an example of the problem
in this field involving evolutionary identification of a model.

https://www.youtube.com/watch?v=twvfX9zKsY8
https://www.youtube.com/watch?v=twvfX9zKsY8
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Figure 12: Example of process model (a) with expanded cycles and (b) with collapsed cycles.

A digital trace of a user in an online social network (OSN)
is a sequence (chain) of observed activities separated with
time gaps. Each OSN supports different types of “hidden”
and observable activities. For example, in a largest Russian
social network vk.com (further is denoted as VK) a user
has a personal page (wall) with three types of activities:
post (P)—when a user makes a record by himself; repost
(R)—when the user copies the record of another user or
community to his or her wall and comment (C)—when
the user comments the record on his or her wall. Figure 11
illustrates the distribution of these activities for subscribers of
large Russian bank community in VK. The collected dataset

consists of 100 (or less if unavailable) last entries (posts or
reposts), and comments for the entries for 8K user walls in
a period January 2017–December 2017. Comments are much
less common than posts and reposts. The distributions of
the posts and reposts are similar, but there is a group of
“spreaders” with a significant number of reposts.

We applied the technique described in Section 3.2 to
analyze the processes. Still, the considered process has sig-
nificantly different structure. By default, it is continuous with
random repetition of events, while healthcare process in ACS
cases has finite andmore “strong” structure. Figure 12 shows a
typical process structure identified with EC-based approach
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Table 1: Mean of activities’ combinations for users’ clusters.

Cluster Size CCC CCP CCR CPP CPR CRR PPP PPR PRR RRR
1 5238 0.52 0.74 0.24 1 0.72 0.42 6.68 6.4 7.56 8.53
2 2110 0.11 0.13 0.16 0.16 0.36 0.59 2.09 3.95 12.32 60.3
3 1120 0.91 1.38 0.14 3.62 0.75 0.18 50.02 11.78 5 2.77

and visualized with expanded cycles (a) and with collapsed
cycles (b). The second one could be considered as more
relevant than the first one which is significantly affected by
a length of selected history. It is natural to consider it as a
random process or state-transition model. In that case, three
identified clusters (characterized by various frequencies of
transitions) could be interpreted as typical behavior models.

N-grams analysis is often used to detect patterns in peo-
ple’s behaviors [21, 22]. N-grams analysis is based on counting
frequencies of combinations or sequences of activities. We
collected all sorted 3-grams (so called 3-sets) for each user’s
sequence to analyze the frequency of event combinations.
As a result, three clusters of vectors with 3-sets chains were
identified with k-means clustering method. Figure 13 shows
all combinations and transitions between them for cluster #3
as an example. Using Figure 12 and Table 1, it is possible to see
that cluster #3 includes users who oftenmake new records (P)
and sometimes comment records (C). So, cluster #3 mostly
consists of “bloggers.” Cluster #2 includes “spreaders” who
copy other records (R) frequently. And the biggest cluster
#1 consists of people who make new records and copy other
ones equally but less intensively comparing to other clusters.

That may be considered as a typical behavior for user of
OSN. N-grams analysis allows detecting typical behavioral
patterns and obtaining process models for social media
activities using chains of different lengths as input data. Thus,
this type of data-driven modeling is more appropriate to
research continuous processes. Figure 14 shows a graph-based
representation of process space with of all users’ patterns.

This subsection provides very early results. Next step
within application of the proposed approach in this appli-
cation includes an extension of process model structure (a)
with temporal labeling (gaps between events); (b) considering
process within a sliding time window to get more structured
processes; (c) linking the model with causal inference; (d)
introduction ofDM techniques for EC positioning of ongoing
processes in model space. We believe that these extensions
could enhance discovery of model structure (P4) and provide
deeper insight on social media activity investigation.

4. Conclusion and Future Work

Thedevelopment of the proposed approach is still an ongoing
project. We aimed for further systematization and detailing
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Figure 14: Graph-based representation of processes’ space for three clusters in social media activity.

of the proposed concepts, methods, and algorithms, as well
as more comprehensive and deeper implementation of EC-
based applications. Further work of the development includes
the following directions:

(i) dualization on the role of data-driven and intelligent
operations in proposed approach and described pat-
terns;

(ii) extended analysis of various EC techniques applicable
within the approach;

(iii) investigation on EC-based discovery for models of
complex systems with lack or inconsistent observa-
tions;

(iv) detailed formalization of expertise and knowledge-
based methods within the approach;

(v) extending the approach with interactive user-
centered modelling and phase space analysis;

(vi) development of multilayered approach for decision
support and control of system and process 𝑆, available
data 𝐷, and complex model𝑀.
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A data-driven procedure is introduced to construct finite element models of heterogeneous systems for which an accurate
microscopic description is available. A filter to define coarsened finite element nodal values is defined from the principal modes
obtained by singular value decomposition of the microscopic data. The resulting finite element nodal values are subsequently
used to reconstruct local linearization of the system behavior, defining drag and stiffness matrices for an overdamped system.
The procedure is exemplified for an actin mesh described by Brownian dynamics and eight-node cuboid finite elements but is
generally applicable with respect to both the microscopic model and the type of finite element approximation. In contrast to
standard finite element formulations derived from hypotheses on assumed deformation behavior, the data-driven procedure
introduced here is completely determined by the observed behavior be it obtained from simulations or experiment.

1. Introduction

Materials with heterogeneous microscopic structure arise in a
wide variety of applications and are frequently encountered
in nature. For example, the mechanical behavior of a biolog-
ical cell is largely determined by a network of actin filaments
that actively polymerize and depolymerize exerting force on
the cellular membrane and leading to cellular motility [1].
Many cellular processes depend on remodeling the actin net-
work configuration leading to diverse mechanical responses
[2]. The filamentary actin (F-actin) network exhibits visco-
elastic behavior that becomes nonlinear at large deforma-
tions [3]. Observed elastic moduli are strongly influenced
by dynamically varying cross-linking between network
filaments ranging from 0.03 Pa to 300Pa depending on
cross-linker concentration [4]. While the qualitative physics
of such networks [4, 5] can identify regions within the phase
space of concentrations of various components, detailed and
quantitatively correct models of cellular mechanics will
probably require numerical simulation. Various approaches
to modeling of networks arising in biology are reviewed in
[6, 7]. The main difficulty encountered in constructing

accurate models is that while the basic behavior of individual
components within a cell are fairly well understood, the over-
all complexity renders such almost first-principle approaches
exceedingly expensive. For example, Brownian dynamic
methods have been attempted for entire cell simulation [8]
or extraction of viscoelastic properties [9], at considerable
computational effort. Such studies have identified network
stiffening mechanisms [10], the crucial role played by
cross-linkers [11] in establishing viscoelastic properties of
the network, that compare favorably with the mechanics
of networks reconstituted from observation [12].

Of particular interest here are finite element models for
the actin mesh. One line of research [13] introduces various
types of behavior for individual components of the network
such as filament elements or cross-linkers. At the other end
of the modeling resolution scale are finite element gel
continuum [14] models based upon large-deformation
mechanics and an assumed constitutive relationship.
Related to these approaches, the procedure introduced in
this work seeks to use detailed microscopic simulation to
obtain a finite element model, since this is the resolution
level at which the basic biophysical processes are well
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defined, and obtain a homogenized model. In contrast to
aforementioned approaches, neither is a constitutive rela-
tionship at the continuum scale assumed to be known,
nor is the goal to construct a finite element model of each
constituent element of the network. The approach consists
in leveraging microscopic simulation (Brownian dynamics
in this work) to extract an effective finite element model,
defining the constitutive relationships underlying network
response to forcing from available microscopic data. As
described in more detail below, the approach combines a suc-
cession of data reduction procedures based upon projection
in Euclidean spaces. Data from the microscopic model are
filtered by the principal modes observed during the motion.
The filtered data are used to define nodal deformation values.
The principal modes are also reduced to smaller dimension
to define effective drag and stiffness matrices describing the
linearized viscoelastic behavior of the network. Final model
coefficients are determined by fitting to observed behavior
over an ensemble of network instances to account for
variability in network configuration.

2. Methods

The Brownian dynamics (BD) model of [15] is adopted to
describe the actin network. In this approach, the velocity vi
t = xi t of actin monomer i is determined by the interac-
tion potential Ui x , an overall repulsive potential Um

i x ,
and a background stochastic force from solvent molecules ξ,

γvi = −∇iUi x − ∇iU
m
i x + ξ, 1

where x = x1 … xN T ∈ℝm is the vector of all N =m/3
monomer positions, ∇i = ∂/∂xi is the gradient with respect
to position vector of monomer i, and the stochastic forcing
is assumed to be Gaussian

ξ t ξ t′ = 2γkBTδαβδ t − t′ ,  ξ t = 0, 2

with indices α, β running over spatial components, γ the drag
coefficient, kB the Boltzmann constant, and T the tempera-
ture. The interaction potential Ui contains terms describing
interactions of monomers within filaments (length and angle
dependent) and a volume exclusion term of Lennard Jones
form. The overall repulsive potential Um

i is also of Lennard
Jones form. No length and angle interaction terms act upon
free actin monomers. For full details consult [15], including
the model coefficients used in computations here.

The BD (1) form a nonlinear system of stochastic differ-
ential equations that accurately describes the processes of
actin polymerization that leads to generation of mechanical
force. For studies over a small part of a cell, such as in the
immediate vicinity of a small portion of the cellular
membrane in order to characterize the Brownian ratchet
mechanism of cellular protrusion [16–20], direct numerical
solution of the BD system (1) is feasible. However, for
larger-scale studies of the actin mesh network over an entire
cell, the computational cost becomes prohibitive, and a
reduced model capturing essential features is required. In

particular, it is desirable to obtain a model of the constitutive
relationship for the homogenized model informed by the
accurate detailed BD model. Though the discussion here is
presented for the particular case of the actin mesh network
forming the cytoskeleton of a cell, the above situation is
generic and also appears in consideration of various gels
[5, 21] or the collagen extracellular matrix [22–24] among
other applications.

From the nonlinear system describing time evolution of
the mesh network

x = h t, x, ξ , 3

a local linearization around the state x0 can be written as

Dx +Kx = f 4

We assume that x t describes deviation from the
reference state x0 such that the time average over simulation
time T x t = T−1 T

0 x t dt = x0. Given the nonlinearity and
possible history dependence of the network configuration, it
can be expected that the drag and stiffness matrices depend
on the chosen reference state, D x0 , K x0 , and the analysis
presented below would need to be repeated for markedly
different reference states. In the example presented here, an
ensemble of reference states x0 is generated by simulating
growth of a mesh from random placement of actin mono-
mers within the computational domain until the average
filament length ℓ reaches some fraction f of the simulation
domain edge length L, i.e., f = ℓ/L = 0 1. The resulting
ensemble exhibits randomness of filament orientation, initial
stress produced by filament growth, and cross-linkage
formation. The ensemble is representative of newly formed
actin meshes, with considerable reconfiguration possible by
repeated forcing (e.g., as produced by motile behavior).

The microscopic mesh state is characterized by positions,
velocities of all monomers, x t , x t ∈ℝm, with m ~ O 105
in order to accurately describe a portion of the cytoskeleton
of volume ~ 1 μm3, sufficient to determine protrusion force
[15]. For a typical human cell volume of 100μm3, the
number of microscopic state variables would be O 107 . We
seek a reduced description of the mesh within a 1μm3 control
volume through a linear combination x = Bpy, with Bp ∈
ℝm×p an orthonormal set of p basis vectors. The reduced
linear system obtain by projection of (4) onto span B is

Dpy +Kpy = g, 5

with Dp = BT
pDBp, Kp = BT

pKBp, and g = BT
p f the reduced

drag, stiffness matrices, and reduced force, respectively.
The drag and stiffness matrices (both at full resolution D,

K, and reduced resolution Dp, Kp) are not known explicitly
and cannot be readily evaluated through Taylor series
expansions such as K = ∂h x0 /∂x due to the complex forms
of the interaction potentials Ui x and Um

i x and the action
of the stochastic forcing term ξ. Rather than seeking such an
analytical derivation, a data-driven approach is adopted
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based upon results obtained from numerical simulation with
a forcing term

f = a x sin ωt + ξ, 6

that models the solvent stochastic force ξ and a periodic
forcing along a single direction as would be produced by
an extensional rheometer, ax sin ωt (here, x denotes a
scalar coordinate). The positional data x ti at n time steps
ti = iδt, δt = T/n, is given by the matrix

X = x1 … xn ∈ℝm×n 7

Both the drag and stiffness matrices must be symmetric
positive definite due to physical considerations (xTKx ≥ 0
gives the elastic deformation energy, xTDx ≥ 0 gives the
dissipation energy due to drag of solvent on the monomers),
and similar properties are imposed for the reduced matrices
through the eigen-decompositions

Dp =VpΛv
pVT

p ,Kp =UpΛx
pUT

p , 8

in which Vp and Up are orthogonal eigenvector matrices,
and the diagonal eigenvalue matrices Λv

p and Λx
p have

positive components.
The descriptive capability of the reduced model depends

crucially on the choice of a basis set Bp that efficiently cap-
tures the possible configurations of the actin mesh in as
few modes as possible, p≪m. To this end, the basis set is
chosen from the dominant modes of the singular value
decomposition (SVD), X = BΣST . Note that the correlation
matrix C =XXT can be expressed as C = BΣΣTBT , and the
p dominant singular modes Bp = b1 … bp ∈ℝm×p

correspond to those eigenmodes of the correlation matrix
most readily observed during the simulation.

In the reduced model (5), no particular significance is
attributed to the components of y, which are simply the
coefficients of the linear combination x = Bpy. In some par-
ticular cases, it is possible to use straightforward averaging
over geometric positions to attach significance to the reduced
parameter vector y, e.g., for one-dimensional elements as
in [25]. Such an approach is difficult to justify in higher
dimensions though.

Recall that a standard finite element for an elastic body is
expressed as f e =Keue, to relate the displacements ue ∈ℝdq at
the q control nodes within d dimensions linearly through the
element stiffness matrix Ke to the nodal forces fe. The
corresponding formulation for a viscoelastic element is

Deue +Keue = f e 9

The positions of the control nodes can be chosen
arbitrarily but are typically taken to be on the boundary of
the finite element in order to invoke continuity of deforma-
tion between adjacent elements. In the following, we consider
the control nodes at the corners of a three-dimensional right
rectangular prism, to obtain the commonly used brick

element, hence d = 3, q = 8, and the displacements ue x ∈
ℝd within the element are given as

ue t, x = 〠
q

k=1
Nk x uek t , 10

where uek t ∈ℝd are the displacements at node k of the
element, and Nk x are form functions

Nk x ∈
1
8 1 ± x 1 ± y 1 ± z , k = 1,… , 8, 11

with x, y, z coordinates from the element center, x = x, y, z .
The interpolation (10) can be expressed as

ue t, x =NT x ue t , 12

with

NT x = N1 x … Nq x , ue t = ue1 t … ueq t

13

We now consider the procedure to link the finite element
formulation to the data available from the BD simulation. At
time step ti = iδt, construct the data set

Di = x j 0 , x j ti − x j 0 , j = 1,… ,N 14

of displacements of all monomers within the mesh ui,j ≡
u ti, x j 0 = x j ti − x j 0 . A least squares fit of data Di to
the finite element approximation (12) at time ti, ue ti, x ,
could furnish the nodal values ue ti , and a subsequent fit
to the observed nodal values would provide the element drag
and stiffness matricesDe,Ke we seek. However, such a proce-
dure would include all the observed motion, including the
stochastic thermal effects. Rather than fitting toDi, the nodal
values are obtained by fitting onto the data projected onto the
dominant p modes contained in the data set

Di = x j 0 , x j ti − x j 0 , j = 1,… ,N , 15

with x j t the projection of x j t onto span Bp , x j t = Bp

BT
p x j t . In essence, the dominant modes obtained from the

SVD are used as a filter of the observed microscopic motion.
After carrying out the least squares fit to data sets Di,

i = 1,… , n, the nodal displacements ue ti are known, and
the nodal velocities can be approximated by, e.g., finite
difference approximations

ve ti ≡ ue ti ≅
ue ti+1 − ue ti−1

2δt 16
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As in the case of the full drag, stiffness matrices,
similar physical constraints are imposed onto the finite
element matrices

De =VeΛe
v Ve T ,

Ke =UeΛe
x Ue T ,

17

withVe,Ue ∈ℝ dq × dq orthogonal matrices and components
of diagonal matrices Λe

v, Λe
x constrained to be positive.

The columns of Ve and Ue describe the velocity and posi-
tional modes of the finite element. In standard finite element
analysis of an elastic body, such modes would result from
hypotheses on the deformation behavior. Typically, stretch,
shear, twist, and bending of the finite element would be
of interest, assumed to be independent of another (i.e.,
orthogonal modes), and used to construct Ve and Ue.
The components of Λe

v and Λe
x would result from, say, a

Lagrangian formulation of the equations of motion. Such
an approach is reasonable for a homogeneous material, but
the deformation modes of an actin mesh are likely to be
strongly dependent on mesh configuration and can be
expected to always couple the intuitively derived stretch,
shear, twist, and bending modes. Rather than impose
assumed deformation modes, we seek to construct these from
an ensemble of actin mesh configurations.

Consider s instances of actin mesh configurations
X1,… ,Xs ∈ℝm×n obtained from s distinct BD simulations
(1), from which the basis sets B1

p,… , Bs
p ∈ℝ

m×p are obtained
through SVDs. The ensemble average basis set

Bp =
1
s
〠
s

l=1
Bl
p 18

captures both variability from thermal forcing and that
due to mesh configuration through different initial states
x1 0 ,… , xs 0 . The kth column of Ue ∈ℝ dq × dq is denoted
by uek ∈ℝ dq can be interpreted as the coefficient set needed
to reconstruct an approximation of the microscopic mesh
displacement uk x through the finite element interpolation
(12) as

uk x = x − x 0 ≅

NT x1 uek
⋮

NT xN uek

≡ w x, uek 19

A link can now be made to the available data by choos-
ing p = dq and computing the solutions zek, for k = 1,… ,
p of the p least squares problems

min
uek

bk − x 0 −w x, zek 20

The vectors zek are not necessarily orthogonal as
desired for the columns of Ue, so a QR-decomposition
UeR = Ze ≡ ze1 … zep is computed to obtain Ue.

Note that the above procedure homogenizes both vari-
ability in mesh configuration and that due to stochastic
effects to obtain data-driven deformation modes. An anal-
ogous procedure is applied to the velocity data X to
obtain the velocity modes Ve. For a purely elastic system,
the velocity modes would be identical to the deformation
modes, but for viscoelastic systems, the modes can differ
due to phase differences and history dependence (note
that even though each monomer is affected by the same
type of thermal stochastic forcing ξ, the interaction
potentials can induce correlation between the stochastic
modes of the overall system).

Once the reduced modes Ue and Ve are determined, the
remaining task to completely define the finite element model
is to compute the diagonal matrices Λe

x and Λe
v by a least-

squares fit over the time history ue ti , ue ti determined
by fitting to data sets Di, i.e., solving the problem

min
Λe
x ,Λe

v

〠
n

i=1
VeΛe

v Ve Tue ti +UeΛe
x Ue Tue ti − fe ti

21

3. Results

An initial test of the above data-driven finite element
construction procedure is carried out for data from seven
network instances forced at nondimensional periods of
T = 1 57,3 14 (see [15] for details on reference units used
to obtain nondimensional quantities). The goal here is to
carry out basic verification of the model reduction procedure
rather than obtain a fully realistic description of the biome-
chanics of F-actin networks. The networks contain N =
1706 monomers at n = 2000 evenly spaced time steps during
the period T . A typical sequence of monomer displacement
vectors is shown in Figure 1 and is included here mainly to
highlight the difficulty in ascertaining dominant deformation
types from such data. Though the forcing (6) is applied along
a single coordinate direction, the random nature of filamen-
tary orientation and cross-linkage leads to a complex
response of the structure.

A stress-strain curve along the forcing direction may be
extracted from the microscopic data and compared to that
obtained by integrating the finite element model (9). The
results are presented in Figure 2. The microscopic model
shows considerable variation and hysteresis over the period
T . During the first quarter period 0, T/4 corresponding to
rising extensional stress applied to the system, the filament
network on average shows rising strain but interspersed with
strain release events that probably correspond to network
reconfiguration. During the next half period T/4, 3T/4 of
decreasing extensional stress, strain release occurs but with
clear plastic behavior due to the viscous terms in the system,
and the final quarter period 3T/4, T/2 exhibits a different
average slope indicating strain hardening.

No claim is made within these preliminary results of
accurate capturing of true biological F-actin meshes, but
the reduced finite element model constructed by seeking peri-
odic solutions of (9) ue t = a0 +∑8

k=1 ak cos 2πkt/T +
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Figure 1: Sequence of actin monomer positions at six equidistant times during a period of the forcing. Notice that some free actin monomers
exhibit large displacements, and the overall response to forcing along a single coordinate direction is difficult to ascertain from this data.

[0,T/4]
[T/4,T/2]

[T/2,3T/4]
[3T/4,T]

−0.05 0.00 0.05 0.10 0.15 0.20 0.25
𝜖x

−1.0

−0.5

0.0

0.5

1.0

𝜎
x

Figure 2: Comparison of strain-stress curve of microscopic model (plot markers, distinct for each quarter period of the forcing period T) and
the strain stress curve resulting from the finite element model (9).
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bk sin 2πkt/T captures the main features of the micro-
scopic simulation to within a relative error of 3.3% for the
stress-strain curve. Note that the microscopic data exhibit
initial transient behavior, not the long-term periodic
behavior that results from repeated application of the
oscillatory extensional force (6), and this is observed in the
behavior at t ≅ 0 and t ≅ T .

4. Discussion

A general procedure has been introduced to define a finite
element model from data obtained by Brownian dynamics
simulation of an F-actin network. Though the presentation
used data from numerical simulation and exemplified the
procedure using an eight-node cuboid finite element, the
approach can readily be applied to obtain different types of
finite element approximation or use data from experiments.
Of particular interest is the extraction of essential behavior
from the available data without any assumption on deforma-
tion modes or constitutive relationships within the material.
For the case of the F-actin network considered here, the
derived finite element approximation captures the stress-
strain relationship from the microscopic model with a
relative error of εr ≤ 0 04, at negligible computational cost
by comparison to Brownian dynamics simulations. Multiple
application of the procedure can be used to model nonlinear
behavior or parametrized to model active systems concur-
rently with biochemical reaction models.

At this point, the reduced finite element model is deter-
ministic, capturing the average behavior of the filamentary
network. The procedure however forms the basis of estab-
lishing a stochastic finite element approximation through
recognition of the close relationship between the singular
value decomposition (SVD) and the Karhunen-Loeve expan-
sion. In this work, only the singular modes from the SVD
were used in constructing a deterministic finite element
approximation. Such modes correspond to the eigenmodes
in a Karhunen-Loeve expansion, while the singular values
give the mode variances. Use of the variances would allow
formulation of a stochastic finite element, the subject of
upcoming work.
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Clustering is an important unsupervised machine learning method which can efficiently partition points without training data set.
However, most of the existing clustering algorithms need to set parameters artificially, and the results of clustering are much
influenced by these parameters, so optimizing clustering parameters is a key factor of improving clustering performance. In
this paper, we propose a parameter adaptive clustering algorithm DDPA-DP which is based on density-peak algorithm. In
DDPA-DP, all parameters can be adaptively adjusted based on the data-driven thought, and then the accuracy of clustering is
highly improved, and the time complexity is not increased obviously. To prove the performance of DDPA-DP, a series of
experiments are designed with some artificial data sets and a real application data set, and the clustering results of DDPA-DP
are compared with some typical algorithms by these experiments. Based on these results, the accuracy of DDPA-DP has
obvious advantage of all, and its time complexity is close to classical DP-Clust.

1. Introduction

Clustering is one of the most important methods in machine
learning, and by clustering, data points are partitioned to
several groups [1], and the ones in the same group are much
similar, and points in different groups are much different
[2–4]. Clustering algorithm can deal with data points
without any labelled samples, so it is much fit for the fast-
changing environment, in which the samples are hardly
obtained [5]. Nowadays, with the development of big data,
clustering has been more and more applied in Internet of
things, environment monitoring, image processing, etc. [6].

There have been more and more researches focused in
designing high efficient clustering algorithm, and these
researches can be divided to four kinds: the partition-based
methods, such as K-means [7] and K-medoids [8]; the
hierarchy-based methods, such as BIRCH [9], ROCK [10],
and Chameleon [11]; the density-based methods, such
as DBSCAN [12] and OPTICS [13]; and grid-based
methods, such as STING [14] and CLIQUE [15]. In classical
partition-based algorithms, the number of clusters should be

artificially defined before clustering, which much restricts
the flexibility of clustering application, and they are not
able to efficiently cluster the nonhypersphere data set [1].
In classical hierarchy-based algorithms, the threshold of
merging microclusters or dividing macroclusters is the
key parameter of clustering, and it is also set artificially
before clustering [16], and these algorithms’ time complex-
ity is relatively large. In classical grid-based algorithms,
grid granularity is the key parameter, and the clustering
accuracy will be poor if it is set too large, otherwise, the
time complexity will be much increased if it is set too little
[17]. Density-based clustering algorithms can cluster arbi-
trary shapes of data sets and the clustering results are
not influenced by noise points, so density-based algo-
rithms have been the focus of clustering researches, and
there have been many new algorithms proposed [18–20].
Density peak-based clustering (DP-Clust) is one of the
important algorithms of these researches, and on the basis
of the advantages of density based algorithms, DP-Clust
improves the efficiency of clustering by detecting centers,
borders, and outliers from all data points [21]. However, as
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other density-based algorithms, DP-Clust needs to set the
local field’s radius of every point to accomplish clustering,
and the thresholds of detecting centers and outliers are also
set in advance, and then the performance is not good at
dealing with sparse distribution data set.

Based on the above analysis, it can be seen that the artifi-
cial setting of clustering parameters has been the key factor of
influencing the performance of clustering, so nowadays,
some researchers have focused on optimizing parameters to
improve clustering efficiencies: FEAC can adapt the number
of clusters which was proposed by Silva to get rid of the defect
K-means [22], however the complexities of time and memory
are too large and it cannot efficiently cluster arbitrary shapes
of data sets; Hou proposed a parameter independent hierar-
chy based algorithm named DSets-histeq [23], in which
microclusters are merged according to the theory of
dominant set, and it can automatically adjust parameters by
establishing similarity matrices of every pair of microclusters,
so the complexity of clustering is much increased; Myhre
proposed a grid-based algorithm named KNN-MS, in which
data points are partitioned to K grids, and by mode seeking
theory, all grids would be adjusted and the result are not
influenced by the value of K [24], but it is much influenced
by noise points. And there are many other algorithms pro-
posed to reduce the influence of the parameter’s initial value;
however, these ones have defects in dealing with arbitrary
shapes of data sets or the efficiency in clustering. Then to
use the advantages of high efficiency in clustering arbitrary
data sets and relative simple clustering procedure of DP-
Clust, many density peak-based algorithms are proposed to
realize self-adapting parameters to improve clustering per-
formance; however, these researches have more or less
artificial factors when setting clustering parameters, and they
cannot realize fully data-driven parameter adaptive cluster-
ing algorithm based on density peak. To improve the
independence of parameters when clustering, we propose a
fully data-driven parameter adaptive clustering algorithm
based on density peak (DDPA-DP). In DDPA-DP, all
parameters can be updated by the distribution of data points,
and the procedure of adapting parameters is simple to be
accomplished to reduce the time complexity of whole algo-
rithm. The rest of this paper is organized as follows: in
section two, the basic thought of DP-Clust is introduced,
and related researches are analyzed; in section three, the
thought of DDPA-DP is proposed, and the detail of this algo-
rithm is designed; in section four, a series of experiments are
simulated, and the other three algorithms are compared
with DDPA-DP; and at last, the contribution of this paper
is concluded.

2. Related Work

2.1. The Introduction of Density Peak Clustering. In 2014,
Rodriguez proposed a density-based clustering algorithm
named DP-Clust, and the basic thought of DP-Clust is that
the centers of all clusters should be located at the peak of local
density changing curve, and the borders will be located at the
neighborhoods of centers, and outliers will be far away from

high-density area [21]. To detect centers, borders, and
outliers, two conceptions are defined in DP-Clust:

Definition 1. Local density is an attribute to measure the
density station of point i by computing the influence of
other points in point i neighborhood to point i, and it can
be computed as (1) or as (2).

ρi =〠X × d i, j − r , X =
1, d i, j > r,
0, d i, j < r,

1

ρi =〠exp d i, j 2

r2
2

In (1) and (2), r is a cutoff distance, and the radius
of point i’s neighborhood is r and the center is i. Then
d i, j is the distance from i to its neighbor j which is
located in i’s neighborhood. By (1) and (2), just the
points in i’s neighborhood can influence its local density.
After all points’ local densities are obtained, a list L will
be established, and in L all points will be rearranged
with the descending order of their local densities as
ρq1, ρq2, ρq3,… , ρqn .

Definition 2. The distance from the nearest neighbor with
larger local density than i is defined as (3), and this is an
attribute to measure the point whether be located in the
center of a high-density field.

δqi =
minj<i dqi,qj , i ≥ 2

maxj≥2 dqi,qj , i = 1
3

According to (3), if point i is the first one in list L, the
value of δqi is set as the distance to the farthest point from
i; otherwise, the value of δqi is set as the distance from i to
the nearest point whose position in L is in front of i.

After obtaining the ρ and δ of every point, the one has
both larger ρ and δ can be detected as centers, because larger
ρmeans this point located in a high-density area, and larger δ
means there are not any points in the same high-density area
with larger ρ than it, and then it can be seemed as the center
of this area. Otherwise, if the point has less ρ and larger δ, it
can be detected as outlier, because less ρ means this point is
located in a sparse area, and meanwhile, larger δ means this
point is far away any high-density area, and then it can be
seemed as be out of all clusters. At last, all remaining points
can be detected as borders, and these points have larger
ρ and less δ, which means every border is located in a
high-density area, but there is at least one point in the
same area located nearer to the center. After all points’
roles are being obtained, every border will join the nearest
center to format cluster.

Because just local density instead of global density needs
to be computed, DP-Clust has obvious advantage in cluster-
ing nonuninform density fields comparing to DBSCAN, and
its clustering procedure is simple to be deployed in
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application. Now, DP-Clust has dropped much attention,
and many density peak-based clustering algorithms have
been proposed [25–27]; however, same as DP-Clust, these
algorithms should set three main thresholds as the radius of
local field r, the standards of larger or less of local density,
and the standards of larger or less of the nearest distance to
neighbor with larger local density, and these settings restrict
the clustering performance especially in sparse and change-
able environments.

2.2. Existing Researches of Parameter Optimized Density
Peak-Based Clustering. To reduce the influence of initial
setting of parameters of DP-Clust, there are two problems
to be resolved: one is how to determine the thresholds of local
density ρ and the distance to the nearest neighbor with larger
local density δ; the other is how to select optimizing radius of
local field r.

In ref [28], Chen and He proposed an algorithm named
ACC-FSFDP, in which a curve fitting method is adopted
to automatically find the points with both larger ρ and
δ to determine centers. ACC-FSFDP designed a variable
γ = ρ ∗ δ, and centers will be detected by finding the points
with obvious larger γ than the value predicting by the curve
fitting function. Although ACC-FSFDP can automatically
obtain centers, it did not take outliers into account, which
leads the accuracy is much influenced by noise. In ref [29],
Saki and Kehtarnavaz used a histogram to reflect the distri-
bution of all points’ ρ and δ, and centers and outliers will
be detected by data-driven method; however, this algorithm
time complexity is large, because it takes too many calcula-
tions when establishing histogram. In ref [30], Xu et al.
proposed a FNLT algorithm, in which two different linear-
regression analysis functions are established to, respectively,
detect centers and outliers, and clusters will be stored as
Leading Tree and centers as Fat Nodes of these trees, and
by merging trees to optimize the distribution of clusters.
Although FNLT can detect points’ roles by data driven, the
clustering procedure is too complex to be deployed because
of the complex structure of FNLT, and the linear-regression
analysis method is less accurate in predicting the change
tendency of ρ and δ.

Besides the defects of setting thresholds of centers and
outliers, the algorithms mentioned above adopt fixed and
preset radius of local field to accomplish clustering, which
much restricts the performance in complex environments.
Nowadays, there are two kinds of effective algorithms that
focus on optimizing the local field radius of density peak
clustering: one adopts K nearest neighbors-based method to
divide the local field instead of by radius; the other directly
optimizes the local field’s radius to reduce the affection of
initial setting.

DPC-KNN is a classical KNN-based algorithm [26],
and in DPC-KNN, the points’ local density is computed
as (4).

ρi = exp −
1
K

〠
j∈KNNi

d2ij 4

FKNN-DPC [31] is another KNN-based one, and the
local density in FKNN-DPC is computed as (5).

ρi = 〠
j∈KNNi

exp −dij 5

Comparing (1) and (2) with (4) and (5), in the KNN-
based algorithms, a point will obtain its local density by
computing the distances to its K neighbors, and the
parameter K needs to be input in advance. The advantage
of KNN-based method is that clustering complexity will
be much less than DP-Clust if all points’ KNN have been
known. However, in most application environments, the
operation of obtaining KNN of every point will be so
hard that the performance is not obviously improved.
Liu et al. proposed an adaptive KNN-based algorithm
ADPC-KNN [32], and in this algorithm, the local density
is computed by combination of DP-Clust and DPC-KNN
as (1), in which r is deduced by K as (6) and (7), and
the value of K can be adjusted by evaluating the distribution
of clusters.

r = μK + 1
N − 1〠

N

i=1
δKi − μK

2
, 6

μK = 1
N
〠
N

i=1
δKi , 7

where N is the number of all points, and δKi =maxj∈KNNi
dij is

the distance from i to its Kth nearest neighbor. Based on (6),
ADPC-KNN can optimize the value of r by all data points;
however, the calculation complexity is much increased.
Besides the clustering efficiency, the performances of KNN-
based algorithms are relatively poor in nonuniform fields,
because in these fields, density in a point’s KNN will be much
different with others, which leads to the centers in sparse area
cannot be well detected. And the value of K will influence the
result of clustering, which does not well satisfy the demand of
parameter independence.

In ref [33], a DP-Clust-based algorithm named DCore
was proposed by Chen et al. DCore uses a concept of density
core to find high-density fields and to determine centers and
borders, in which the clusters in sparse area can be detected
by mean shift thought. In Dcore, data-driven thought is used
to adjust the clusters’ distribution; however, the value of is r
fixed, and the threshold of determine centers is artificially
set which restrict the DCore’s performance in nonuniform
fields. Based on Dcore, DCNaN was proposed by Xie et al.
[34], and in DCNaN, every point will compute its local field’s
radius by (8).

ri =
∑j∈NaN i d i, j

b i
8

In (8),NaN i is the natural neighbors’ set of point i, and
b i is the number of natural neighbors of point i, and the
concept of natural neighbors was introduced in ref [ccc]
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and [ddd]. Then, a list of sorted scanning radiuses r is
established, and by computing the variation of adjacent r in
this list, centers and outliers are detected. In this algorithm,
the data-driven method in dynamical adjusting local field’s
radius improves the clustering performance in sparse area;
however, in DCNaN, the thresholds of judging natural
neighbors, centers, and outliers are preset and fixed, and
the procedure of adjusting the local field’s radius needs
too many iterative computations to much increase the
complexity of clustering.

Based on the application of clustering, it can be con-
cluded that there are three key problems that should be
resolved when designing clustering algorithm: the accuracy
in clustering arbitrary data set, the parameter independence
when clustering, and the complexity of time and memory.
However, based on the above analysis, existing researches
have much or less defects so that these problems are not

well resolved, and now these problems have been the major
obstacles of restricting the clustering application.

3. The Design of DDPA-DP

To obtain the target of improving clustering performance, we
propose a fully data-driven parameter adaptive clustering
algorithm based on density peak (DDPA-DP), and in
DDPA-DP, the parameter of the local field’s radius r can be
dynamically adjusted, and the thresholds of detecting points’
roles are determined by data distribution, and the complexity
of this algorithm is also better than classical density-based
ones. In DDPA-DP, there are three steps: density attributes
are computed by initial value of r, and then points’ roles
are automatically detected, and a self-adaptive procedure
will be called to optimize r. The flow of DDPA-DP is shown
in Figure 1.
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Calculate
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second fitted

curve
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Figure 1: The flow of DDPA-DP.
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In the first step of DDPA-DP, r will be set an initial
value, and then all points’ local density ρ and the dis-
tance to the nearest higher density neighbor δ will be
computed with the current value of r; secondly, according
to the current points’ values of ρ and δ, a series of fitting
curves will be established, and the points whose ρ and δ
are obviously different to most of the others will be
detected, and their roles will be determined based their
ρ and δ; at last, by the distribution of points’ roles, the
value of r will be evaluated and optimized. Repeat these
three steps until r is convergent.

3.1. Automatically Detecting Points’ Roles. According to the
thought of DP-Clust, we propose a series of fitted curves
to predict the combination value of ρ and δ, and based
on the distribution of the difference between predicting
value and real value of every point, a point’s ρ and δ
are larger or less one among all points can be automati-
cally determined, and then by the density attributes of all
points, their roles can be detected. Meanwhile a new kind
of points named “pending point” is defined as Definition 3.
To better illustrate the algorithm, a simple model as Figure 2
is established.

Definition 3. When a point’s ρ is less than most points and
meanwhile its δ is less than most points too, it is hard to
determine that this point belongs to borders or outliers, so
we call these points “pending point.” This role does exist in
data points, but existing algorithms do not research it.

Assuming D d1, d2, d3,… , dN is the target data set with
N points, and every point has n attributes. Centers’ ρ and δ
are both larger than most of the other points, so a variable
γ = δ × ρ is defined to establish the fitted curve as (9).

γ = a0 + a1 × Ic + a2 × I2c +⋯ + aN × INc 9

In (9), Ic ic1, ic2,… , icM is the index of N data
points, which is used to act as independent variable,
and a0, a1, a2,… , aN are the coefficients of fitted curve.
By this curve, if a data point’s index is known, the value
of γ can be predicted. The difference between the real
value of γ∗ and its predicted value γ is Δγ, and then
both the mean and the variance of Δγ can be obtained.
The frequency histogram of the distribution of Δγ is shown
in Figure 3. In Figure 3, ε is the mean of Δγ and its value is
0, which means that the predicting values of γ of most
points are very close to their real value, and σ is the var-
iance of Δγ. From Figure 3, most of the points are distrib-
uted in the value range −σ ≤ Δγ ≤ σ . When a point’s
Δγ > σ, it means that this point has larger γ than most
of the other points, and it can be seemed as candidate cen-
ter, and the corresponding relations are shown in Figure 4.
Based on this procedure, the thresholds of judging centers
are determined by the distribution of points and they need
not be artificially set, which reflects the advantages of
data-driven thought.

After detecting centers, outliers should be detected from
remained points. So a variable γ′ = δ ÷ ρ is defined to find

the points with larger δ and less ρ, and a fitted curve as
(10) is established to predict the value of γ′.

γ′ = b0 + b1 × Ic + b2 × I2c +⋯ + bm × Imc 10

By (10), Δγ′ is obtained which is the difference between
γ′∗ and γ′, and the frequency histogram of Δγ′ is shown
in Figure 5, in which most of the points’ Δγ′ are distrib-
uted in the value range Δγ′ ≤ σ . Then, outliers can be
automatically detected by finding the points whose Δγ′ is
larger than σ, and the corresponding relations between
outliers and their values of Δγ′ are shown in Figure 6.

As the operations of detecting centers and outliers, pend-
ing points can be detected by finding the points with less δ
and less ρ, so a variable ω = δ ÷ ρ is defined, and a fitted curve
as (11) is established to predict the value of ω. When the
difference between real value and predicted value of a point
is larger than the variance, it can be seemed as pending
points, which is shown in Figure 7.

ω = c0 + c1 × Ic + c2 × I2c +⋯ + cm × Imc 11

After centers, outliers and pending points are detected,
remained points can be seemed as borders of clusters, and
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Figure 2: A simple model of clusters.
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then every border will join the nearest center and form the
cluster, and the result is shown in Figure 8.

3.2. Optimizing the Radius of Local Field. In Figure 8, there
are two pending points, and these points have less ρ which
means they are located in sparse area; however they have less
δ which means every pending point has at least one neighbor
with larger local density than it. As in Figure 8, the pending
points’ local field connects a relative dense area and a relative
sparse area, and it is hard to determine the role of pending
point in cluster. So the distribution of pending point means
that the radius of points’ local field is not well set, and then
we propose a self-adaptive method to optimize the value of
local field radius as (12).

Δr = ri−1 − ri−2 × −1 x ÷ ρi−1 × e− ρi−2−ρi−1 /ρn−1 , i ≥ 2,
Δr = ri−1 − ri−2 ÷ ρi−1 − ρi−2 , ρi−1 = ρi−2

12

In (12), Δr is the adjustment quantity of local field radius,
and ri−1 is the current value of radius which is used to detect
points’ roles in the last round of computing, and ri−2 is the
last value of radius; pi−1 is the number of pending points in
the last round of computing, and pi−2 is the number of pend-
ing points in the penultimate computing, x is an accommo-
dation coefficient as ri−1 − ri−2 × pi−2 − pi−1 , in which
ri−1 − ri−2 is used to obtain the change tendency of radius,
and pi−2 − pi−1 is used to quantify the effect of adjustment:
ri−1 − ri−2 > 0 means that the last adjustment of r is
increased, if pi−2 − pi−1 > 0 means pending points are

reduced and the tendency of adjustment should be main-
tained, otherwise if pi−2 − pi−1 < 0 means the adjustment
should be turned; when ri−1 − ri−2 < 0, if pending points
are reduced, pi−2 − pi−1 > 0 and then r will be reduced
continually, otherwise if pi−2 − pi−1 > 0, the value of r
will be increased to turn the tendency.

The points’ distribution is shown in Figure 8 where the
initial value of r is set as 0.25, and there are two pending
points detected; then, by (12), the optimized value of r is
0.29, and the result of computing is shown in Figure 9, in
which there are three pending points; then, the value of r is
reduced to 0.21 by (12), and the result of computing is shown
in Figure 10, in which there is no pending point, and the
procedure of optimizing is complete, and all points are
well clustered.

Although the result of Figure 10 is a particular case,
DDPA-DP has a suspension method to avoid increasing the
time complexity: if there are C continuous rounds of comput-
ing with same number of pending points or the changing
range of pending points is less than 1/C, the optimizing
procedure will be completed, in which C is the number of
centers. If there are still some pending points after optimizing
r, they will be analyzed to be divided to borders or outliers by
the next two principles: if a point is a pending point and its
nearest neighbor with larger ρ is an outlier, this pending
point is also an outlier; if a point is a pending point, and its
nearest neighbor point with larger ρ is a center or border, this
point can be seemed as a border point.

3.3. The Complexity of DDPA-DP. Time complexity is an
important performance in designing clustering algorithm
because there are a large number of data sets to be computed.
In DDPA-DP, n points are used to accomplish initial local
density computing by initial parameter, and the fitted curves
are established, so the complexity of this step is O (n2); and
then in the local field radius optimizing step, just pending
points should be redetected and its average number assumes
p, and the complexity of this step is O (p∗k), where k is the
average computing rounds’ number; then, at the last step,
the optimized r is used to compute final points’ roles and
clustering, and the complexity is O (n2) too. Because the
numbers of p and k are much less than n, the complexity
of whole DDPA-DP is O (n2), which is the same with
DP-Clust. Based on this analysis, it can be concluded that
DDPA-DP can maintain relative high performance in
complexity with parameter independence.
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Figure 4: The corresponding points of centers.
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4. Experiments and Results

To prove the advantages of DDPA-DP, a series of experi-
ments are designed and simulated, and three typical cluster-
ing algorithms DBSCAN [12], DP-Clust [21], DPC-KNN
[26], FKNN-DPC [31], Dcore [32], and DCNaN [33] are
compared with DDPA-DP in these experiments. In this
section, experiments are simulated by MATLAB 2015b, and

two main performances are analyzed: the accuracies of all
clustering algorithms are compared and analyzed in Section
4.1, and the real-time performances of these algorithms are
compared and analyzed in Section 4.2. Six artificial data sets
with arbitrary shapes of distribution and one real data set
GL1 are used to be simulated, which are listed in Table 1.
In Table 1, N means the number of data points, K means
the number of clusters, and D means the number of dimen-
sions. The distributions of 2-D data sets are shown in
Figures 11–14.
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Figure 6: The corresponding points of outliers.
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4.1. The Accuracy of Clustering. Accuracy is one of the
most important performances of clustering algorithms,
and to compare different algorithms’ clustering accuracy,
the clustering purities of all algorithms in the same data
set are calculated, and clustering purity has been used in

most researches to judge clustering accuracy [24, 26, 27, 32].
purity =∑k

i=1 Cd
i / Ci /K in (13).

purity = 〠
k

i=1

Cd
i / Ci

K
13

In (13),K is the number of clusters, and ∣Cd
i ∣ represents the

number of data points correctly distributed to cluster i, and
Ci represents the number of all data points in cluster i.
Then, purity is the ratio of correctly clustered to all points,
and its value is between 0 and 1. The ratio is higher, the
clustering result is more accurate, so it can be used to
directly illustrate the different algorithms’ performance in
the same data set, and the experiments in this section are
compared based on clustering purity.

Before clustering, initial parameters should be preset to
deal with different data sets, and in DBSCAN, DP-Clust,
DCore, DCNaN, and DDPA-DP, the initial parameter
should be set is the radius of local field, and in DPC-KNN
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Figure 10: The distribution of points’ roles when r is 0.21.

Table 1: The parameters of experiment data set.

Data set N K D

Aggregation 788 7 2

Pathbased 300 3 2

Spiral 312 3 2

Jain 373 2 2

DIM 1024 16 32

KDDCUP04Bio 145751 2000 74

GL1 280307 16 18
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Figure 11: The distribution of JAIN.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Figure 12: The distribution of Spiral.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Figure 13: The distribution of Pathbased.
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and FKNN-DPC, the initial parameter should be set is the
neighbors’ number of every point. In this paper, the initial
parameters are defined also by data driven instead of by
experience, and to overall simulate different applications,
three initial states are designed in this section to better
illustrate the parameter independence and accuracy of dif-
ferent algorithms. The first parameter state is set that the
local field’s radius r1 is as (14), and the neighbors’ number
K1 is by as (15).

r1 = 〠
C

x=1
〠

i=nx ,j=nx

i=1,j=1,i≠j

2dij
nxC

, 14

K1 = 〠
C

j=1
〠
N

i=1

xi
C
, xi =

1, d i, cj < r1,

0, d i, cj > r1
15

In (14), C is the number of clusters in the data set, and nx
is the number of points in xth cluster, and it can be seen that
r1 is computed by the average distance between points in the
same clusters. Meanwhile in (15), N is the number of all
points, and cj is the center of cluster j, and if point i is located
in the local field of cj, xi is set 1, otherwise it is set 0. It can be
seen that K1 is computed by the average number of points in
the centers’ local fields.

The second parameter state is as the local field’s radius
r2 is as (16), in which the parameters’ means are the same
as (14), and it can be seen that r2 is computed by the
average distance among all points in the data set. The
neighbors’ number K2 is as (17), and it can be seen that
K2 is decided by the average number of points in all
points’ local fields.

r2 = 〠
N

i=1,j=1,i≠j

2dij
N

, 16

K2 = 〠
N

j=1
〠
N

i=1,i≠j

xi
N
, xi =

1, d i, j < r2,
0, d i, j > r2

17

The third parameter state is as the local field’s radius
r3 is decided by the average distance among the points
in different clusters as (18), and the neighbors’ number
K is decided by the average number of points in all points’
local fields too.

r3 = 〠
C

Cx=1
〠
C

Cy=Cx+1
〠

i∈cx ,j∈cy

2dij
mn

18

In (18), m is the points’ number in cluster cx and n is
the e points’ number of cy. It can be seen that r3 is com-
puted by the average distance among the points in differ-
ent clusters.

Among three initial local field’s radiuses, r1 is the least
because the distances between points in the same cluster are
obviously less than the distances between different clusters
as r3, and r2 is at the middle of r1 and r3, so by these three
initial radiuses, DBSCAN, DP-Clust, DCore, DCNaN, and
DDPA-DP can be relatively overall simulated and compared.
Meanwhile, the initial values of K are also divided to three
levels: K1 is the largest one because it is decided by the
neighbors of centers, and centers have obviously more neigh-
bors than other points; then, K2 is decided by the average
neighbors of all points, and borders and outliers have less
neighbors than centers, so it is obviously less than K1; K3 is
at the middle of K1 and K2, because when computing K3,
the points’ local field is expanded, so it is larger than K2,
however, it is also decided by all points’ neighbors, and then
it is less than K1. By these three levels of K, DPC-KNN and
FKNN-DPC are also able to be overall compared.

In Figure 15, the clustering results of these algorithms
for JAIN are shown. JAIN 1 means the state the local
field’s radius r in DBSCAN, DP-Clust, DCore, DCNaN,
and DDPA-DP is set as r1 with value 2 computed by (14),
and the neighbors’ number K in DPC-KNN and FKNN-
DPC is set as K1 with value 70 by (15); JAIN 2 means the
state the local field’s radius is set as set as r2 with value 2.5
by (16), and the neighbors’ number is K2 with value 50 by
(17); JAIN 3 means the state the local field’s radius is set as
r3 with value 2.75 by (18), and the neighbors’ number is set
as K3 with value 60 by (17) with r2. By Figure 15, it can be
concluded that DDPA-DP has obvious advantage in the
accuracy of clustering no matter what initial states set, and
its accuracy is not less than 0.96; DCore and DCNaN have
relative stable accuracy, but they have no advantage over
DPC-KNN and FKNN-DPC; DPC-KNN and FKNN-DPC
are influenced by the value of K, and the larger accuracy will
be obtained with larger K; DP-Clust is much influenced by
the value of r and it is just advanced than DBSCAN.

In Figure 16, the clustering accuracy of these algorithms
in Spiral is shown, and because the distribution of Spiral is
much unbalance and there are some sparse areas, the cluster-
ing accuracies of most algorithms are declined; however,
DDPA-DP can still maintain the accuracy is not less than
0.95, and it is not much influenced by initial set of r. The
results of DP-Clust, DPC-KNN, and FKNN-DPC are influ-
enced by initial parameter much obviously, and the results
of DCore and DCNaN are also obviously influenced by

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Figure 14: The distribution of Aggregation.
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parameter. The initial parameters in Spiral 1 is that the local
field’s radius r1 is set as 1.5, and the neighbors’ number K1 is
set as 75; Spiral 2 means the state r2 is set as 1.7 and K2 is set
as 50; Spiral 3 means the state r3 is set as 2 and K3 is set as 65.

In Figures 17 and 18, the clustering accuracies in Path-
based data set and Aggregation data set of these algorithms
are shown. Although the density of these two data sets are
relatively uniform, but the shapes of clusters are arbitrary.
It can be seen that the accuracies of DDPA-DP are both
stable and in a relative high level; and other algorithms’
performances are not stable especially in Aggregation.
According to (14), (15), (16), (17), and (18), in the initial
parameters, Pathbased 1 means the local field’s radius r1 is
set as 5, and the neighbors’ number K1 is set as 60; Pathbased
2 means r2 is set as 3, and the neighbors’ number K2 is set as

50; Pathbased 3 means r3 is set as 4, and the neighbors’
number K3 is set as 55. Then, the initial parameters in Aggre-
gation 1 are that the local field’s radius r is set as 2, and the
neighbors’ number K is set as 100; in Aggregation 2, the local
field’s radius r is set as 2.5 and the neighbors’ number K is set
as 85; in Aggregation 3, the local field’s radius r is set as 3 and
the neighbors’ number K is set as 75.

In Figures 19–21, the clustering results of these algo-
rithms in high-dimension data sets DIM, KDDCUP04Bio,
and GL1 are shown, and in these data sets, the accuracies
of all algorithms are declined obviously. In DIM, the accu-
racies of DBSCAN and DP-Clust are less than 0.75 in all
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Figure 18: The simulation results in Aggregation.

10 Complexity



states; and although DPC-KNN and FKNN-DPC have rel-
ative large accuracies, but they are much influenced by the
value of K, and the range abilities are larger than 10%;
although DCore and DCNaN have stable accuracies, they
are still less than DDPA-DP, and just DDPA-DP can
obtain the clustering accuracy larger than 0.9. In DIM 1,
the local field’s radius r is set as a 32-dimension vector
with value 5 and K is set as 100; in DIM 2, the local field’s
radius r is set as 6, and K is set as 120; in DIM 3, r is set
as 7, and K is set as 150.

In Figure 20, the accuracies of clustering are further down
because of the large number of data points in KDDCUP04Bio

with high dimensions. By the results of Figure 20, the advan-
tage of DDPA-DP is more obvious with the increase of
points, and there are no any algorithms that can obtain the
clustering accuracies larger than 0.8 except DDPA-DP, and
DDPA-DP can maintain the accuracy as 0.9 in every state.
In this data set, there are too many points to obtain the exact
parameters by the method as the used in last five data sets, so
we define the parameters by random sampling 20% points
from all. Then by (14) to (18), in KDDCUP04Bio 1, the local
field’s radius r1 is set as a 74-dimension vector with value 20,
and K1 is set as 2000; in KDDCUP04Bio 2, r2 is set as 27, and
K2 is set as 1500; in KDDCUP04Bio 3, r3 is set as 35, and K3
is set as 1200.

In Figure 21, the data set GL1 is a real data collected from
a thermal power plant, and the distribution of GL1 is more
uniform than KDDCUP04Bio although it has more points.
By Figure 21, all algorithms’ accuracies are improved than
KDDCUP04Bio, and the advantage of DDPA-DP is not
obvious as KDDCUP04Bio, but it is still the most acute and
stable one. The parameters in GL1 are set by the same
method as in KDDCUP04Bio. In GL1 1, r1 is set as an
18-dimension vector with value 17, and K1 is set as
1750; in GL1 2, r2 is set as 21, and K2 is set as 1395; In
GL1 3, r3 is set as 27, and K3 is set as 1535.

Based on the simulated results in this section, it can be
concluded that DDPA-DP has obvious advantage in cluster-
ing accuracy, because the parameters in DDPA-DP are
continuously adapted by the data-driven method, by which
the parameters are optimized to improve the clustering
accuracy, and then the optimized parameters can reduce
the influence by initial set values which ensures the clustering
accuracy is stable at high level. The advantages of DDPA-DP
are more obvious with more complex data set, so DDPA-DP
is fitter for the big data applications.

4.2. The Runtime of Clustering. Runtime is also an important
standard to estimate the performance of clustering algo-
rithm, and it can be used to estimate the time complexity of
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Figure 19: The simulation results in DIM.
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clustering. In this section, the runtime of DDPA-DP is com-
pared with DBSCAN, DP-Clust, DPC-KNN, FKNN-DPC,
DCore, and DCNaN, and the results of experiments are
shown in Figures 22 and 23. These results are obtained by
computing the average runtime of every algorithm in the
three states introduced in Section 4.1.

In Figure 22, the results of these algorithms simulated in
relative small data sets are shown. From these results, it can
be concluded that DP-Clust has the best time complexity of
all, because the calculation procedure of DP-Clust is the
simplest; among other algorithms, the runtimes have little
differences, because in small data sets, the calculation proce-
dure of iterating, optimizing, and searching neighbor points
in local field can be accomplished in a short time.

In Figure 23, the runtimes of these algorithms in two
large data sets are shown. Based on these results, it can be
seen that the runtime of DDPA-DP has become obvious less
than other ones except DBSCAN and DP-Clust. In DBSCAN
and DP-Clust, all clustering operations are executed one
time, which reduces their time complexity; in DCore and
DCNaN, large data set means there will be many “false
peaks” when detecting points’ roles, and the discovery of
density core needs many comparing operations, so much
iteration will be executed in these two algorithms, which
leads the runtime of DCore and DCNaN are the longest ones;
in DPC-KNN and FKNN-DPC, the K neighbors should be
used to judge the local fields for every point, and to obtain
high clustering accuracy, the value of K is generally large in
large data sets, and meanwhile, the iteration should be
executed to optimize the choose of neighbors, which leads
the time complexities of these two algorithms are just less
than DCore and DCNaN and larger than others; in DDPA-
DP, the optimization of local field radius r is determined by
the distribution of “pending points,” and these points are
small in number among all points especially in large data sets,
and the calculation of detecting pending points is much less
than detecting other roles, so the time complexity in iteration
is not much increased, and its runtime will be close to
DP-Clust with high clustering accuracy.

5. Conclusion

Based on the classical density-based clustering algorithm
DP-Clust, we proposed a parameter adaptive clustering
algorithm named DDPA-DP in this paper. The data-driven
thought goes through the design of DDPA-DP: at first, a
series of fitted curves are established to automatically detect
points’ roles by points’ density attributes instead of any arti-
ficial thresholds; meanwhile, a new point’s role “pending
point” is defined, and then by the change of pending points’
number, the local field’s radius can be adaptively optimized.

DDPA-DP improves the flexibility of clustering by
avoiding the influence of artificial parameters, and the time
complexity of DDPA-DP is not significantly increased com-
paring with DP-Clust because there is little extra calculation
added to optimize parameters. A series of experiments are
designed to compare DDPA-DP with some existing cluster-
ing algorithms, and in these experiments, some typical
synthetic data sets and a real-world data set from thermal

power industry are simulated with different initial conditions
to overall estimate these algorithms. By the results of experi-
ments, it can be concluded that DDPA-DP has advantage in
the performance of clustering accuracy and time complexity.

Data Availability

All artificial data sets can be downloaded from the following
website: http://cs.uef.fi/sipu/datasets/.
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