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Gerardo Leyva, Carlos Carreras, and Octavio Nieto-Taladriz
Volume 2009, Article ID 703267, 14 pages

Pipeline FFT Architectures Optimized for FPGAs, Bin Zhou, Yingning Peng, and David Hwang
Volume 2009, Article ID 219140, 9 pages

Answer Set versus Integer Linear Programming for Automatic Synthesis of Multiprocessor Systems from
Real-Time Parallel Programs, Harold Ishebabi, Philipp Mahr, Christophe Bobda, Martin Gebser,
and Torsten Schaub
Volume 2009, Article ID 863630, 11 pages

An ILP Formulation for the Task Graph Scheduling Problem Tailored to Bi-Dimensional Reconfigurable
Architectures, F. Redaelli, M. D. Santambrogio, and S. Ogrenci Memik
Volume 2009, Article ID 541067, 12 pages

A Message-Passing Hardware/Software Cosimulation Environment for Reconfigurable Computing
Systems, Manuel Saldaña, Emanuel Ramalho, and Paul Chow
Volume 2009, Article ID 376232, 9 pages

OveRSoC: A Framework for the Exploration of RTOS for RSoC Platforms, Benoı̂t Miramond,
Emmanuel Huck, Franois Verdier, Amine Benkhelifa, Bertrand Granado, Thomas Lefebvre, Mehdi Achouch,
Jean Christophe Prevotet, Yaset Oliva, Daniel Chillet, and Sébastien Pillement
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The fourth edition of the International Conference on Reco-
nfigurable Computing and FPGAs (ReConFig 2008) was held
in Cancun, Mexico, from December 3 to 5, 2008. ReConFig
is a Leading edge forum for researchers and engineers across
the world to present their latest research and to discuss future
research and applications. The conference seeks to promote
the use of reconfigurable computing and FPGA technology
for research, industry, education, and applications.

This special issue covers actual and future trends on
reconfigurable computing given by academic and industrial
specialists from all over the world. Papers presented in
this special issue were selected from all ReConFig 2008
submissions and were peer reviewed for the final publication
in this journal with the breadth and depth needed for readers
involved in the reconfigurable computing field.

There are a total of 12 articles in this issue. We begin
the special issue with two papers that extend across the
digital signal processing domain. The paper by G. Caffarena
et al. “Architectural synthesis of fixed-point datapaths using
FPGAs” addresses the automatic synthesis of fixed-point
datapaths by combining a multiple wordlength approach
with a wise mapping of operations to the embedded FPGA
resources leading improvements around 50%. In “Pipeline
FFT architectures optimized for FPGAs,” by B. Zhou et al.
optimized implementations of two pipeline FFT processors
using general optimization and architecture-specific opti-
mizations and different rounding schemes to achieve better
performances with lower resources than previous works.

Four papers are within the broad area of automated
design and multiprocessors systems on chips. The paper by
H. Ishebebi et al. presents an automated design approach for
multiprocessor systems on FPGAs which customizes archi-
tectures for parallel programs by simultaneously solving the

problems of task mapping, resource allocation, and schedul-
ing. Results show performance improvements by three orders
of magnitude highlighting the potential for solving difficult
instances of automated synthesis. In a second paper, “An
ILP formulation for the task graph scheduling problem
tailored to bi-dimensional reconfigurable architectures,” by
F. Redaelli et al. proposes an exact ILP formulation for the
task scheduling problem on a 2D dynamically and partially
reconfigurable architecture taking into account physical
constraints of the target device. Also, this work proposes
a reconfiguration-aware heuristic scheduler in an HW/SW
codesign method reducing the schedule length of application
by a factor of 2 in the best case. M. Saldaña et al., in “A
message-passing hardware/software co-simulation environ-
ment for reconfigurable computing systems,” address the
need for cosimulating a complete heterogeneous application
in high-performance configurable computers by providing
a message-passing simulation framework to simulate and
develop an interface enabling an MPI-based approach to
exchange data between×86 processors and hardware engines
embedded in FPGAs. The development, exploration, and
validation methodology of real-time operating systems for
reconfigurable Systems-on-Chip is covered in “OveRSoC: a
framework for the exploration of RTOS for RSoC platforms,”
by Benoı̂t Miramond. They present a method for the
distribution of operating services on such platforms with
an accurate modeling of the dynamic and deterministic
behavior of applications and RTOs.

Three articles are presented in the area of algorithms and
implementations mapped on reconfigurable hardware. J. H.
B. Zambrano et al. in “Parallel processor for 3D recovery
from optical flow” present a parallel processor for 3D
recovery from optical flow under real-time constraints. The
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presented design exhibits a good trade-off between hardware
resource usage, image resolution, and the processing speed.
S. Lloyd et al. in “Hardware accelerated sequence alignment
with traceback” present a space-efficient, global sequence
alignment algorithm and 256 processing elements archi-
tecture to speedup sequence alignment used in molecular
biology and biomedical applications. Performance gains over
300 times that of a desktop computer demonstrated showing
the potential to analyze genetic data in a timely manner.
B. Girau et al. in “Reaction-diffusion and chemotaxis for
decentralized gathering on FPGAs,” describe the feasibility
of gathering multiple computational units by means of
decentralized and simple local rules by a stochastic model
and discuss a fully parallel hardware implementation so
as to study its ability to provide a massively distributed
computational model for decentralized gathering.

The next article, by Y.-H.E. Yang et al., “Software
toolchain for large-scale RE-NFA construction on FPGA,”
presents a toolchain which automates the construction
and optimizations of regular expression matching engines
(REMEs) on FPGA. The automated REME optimizations
include centralized character classifications, multicharacter
matching, and staged pipelining. Also, authors designed a
benchmark generator which can produce RE-NFAs with
configurable pattern complexity parameters, including state
count, state fan-in, loop-back, and feed-forward distances.
A. Mendon et al. in “A hardware filesystem implemen-
tation with multi-disk support,” describes a file system
implementation with four basic operations (open, read,
write, and delete) and the potential of improving the
performance of data-intensive applications by connecting
secondary storage directly to FPGA compute accelerator.
Last but not least, the article “Analysis and enhancement
of random number generator in FPGA based on oscillator
rings” by Knut Wold addresses the fast implementation of a
true random number generator into an FPGA device. The
proposed implementation passes the standard statistical test
without postprocessing showing good quality randomness
characteristics. The throughput of the TRNG is 100 Mbps
and the resources used in the FPGA are less than 100 logic
elements in an Altera Cyclone II FPGA.

We sincerely thank authors for their valuable contribu-
tions and all reviewers for their help to ensure the quality
of this special issue. We hope that you enjoy the articles in
the ReConFig 2008 special issue and find its contents useful
and give readers a good idea of where researchers have been
focusing, both on long-studied problems still needing more
work and on newer challenges.

Please stay tuned for the coming issues of the Interna-
tional Journal on Reconfigurable Computing and FPGAs.

Lionel Torres
Cesar Torres
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We address the automatic synthesis of DSP algorithms using FPGAs. Optimized fixed-point implementations are obtained by
means of considering (i) a multiple wordlength approach; (ii) a complete datapath formed of wordlength-wise resources (i.e.,
functional units, multiplexers, and registers); (iii) an FPGA-wise resource usage metric that enables an efficient distribution of
logic fabric and embedded DSP resources. The paper shows (i) the benefits of applying a multiple wordlength approach to the
implementation of fixed-point datapaths and (ii) the benefits of a wise use of embedded FPGA resources. The use of a complete
fixed-point datapath leads to improvements up to 35%. And, the wise mapping of operations to FPGA resources (logic fabric and
embedded blocks), thanks to the proposed resource usage metric, leads to improvements up to 54%.

Copyright © 2009 Gabriel Caffarena et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

This paper addresses the architectural synthesis (AS) of
Digital Signal Processing (DSP) algorithms implemented
using modern FPGAs. High levels of optimization are
achieved by means of the use of Multiple wordlength (MWL)
fixed-point descriptions of the algorithms and also the use
of both LUT-based and embedded FPGA resources. The
former reduces implementation costs notably, and the latter
minimizes area in FPGA implementations.

The MWL implementation of fixed-point DSP algo-
rithms [1–4] has proved to provide significant cost savings
when compared to the traditional uniform wordlength
(UWL) design approach. The introduction of MWL issues in
AS increases optimization complexity, but it opens the door
to significant cost reductions [2, 3, 5, 6].

FPGA devices have been extensively used in the imple-
mentation of DSP algorithms, especially due to the recent
introduction of specialized embedded blocks (i.e., memory
blocks, DSP blocks, etc.). Traditional approaches to estimate
FPGA resource usage do not apply to modern FPGAs, which
present a heterogeneous architecture composed of both logic

fabric and embedded blocks, since they only account for
lookup table- (LUT-) based resources [7]. This situation calls
for new resource usage metrics that can be integrated as
part of automatic synthesis techniques to fully exploit the
possibilities that embedded resources offer [8–10].

The current approaches to perform MWL-oriented arc-
hitectural synthesis are not tuned to modern FPGAs [2, 3] or
an efficient distribution between logic fabric and specialized
embedded blocks is not applied [11, 12]. Also, the resource
set used during the optimization process does not include
the multiplexers necessary to transfer data from memory
elements to arithmetic resources.

The main contributions of this paper are the following.

(i) The presentation of a novel resource usage metric
that guarantees minimum resource usage for hetero-
geneous FPGA implementations if integrated within
an optimization framework.

(ii) The presentation of an architectural synthesis pro-
cedure tuned to fixed-point implementations, that
handles a complete datapath (functional units, mul-
tiplexers, and registers).

(iii) A novel strategy for fixed-point data multiplexing.
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Figure 1: Datapath architecture: FUs, registers, and multiplexers.

The paper is divided as follows. In Section 2, the architec-
tural synthesis of DSP datapaths using multiple wordlength
systems and modern FPGAs is introduced. Section 3 deals
with the implementation results from synthesizing several
DSP benchmarks for different latency constraints and output
noise constraints. Finally, in Section 4, the conclusions are
drawn.

2. Synthesis of Fixed-Point Datapaths

2.1. Formal Description. This work focuses on the time-
constrained resource minimization problem [13]. The nota-
tion used is based on [13], and it is similar to that in [2, 4, 6].

Given a sequencing graph GSEQ(O, S), a maximum
latency λ, and a set of resources R (e.g., functional units
RFU, registers RREG, and steering logic RMUX), it is the goal
of AS to find the time step when each operation is executed
(scheduling), the types and number of resources forming R
(resource allocation), and the binding between operations and
variables to functional units and registers (resource binding)
that comply with the constraints, while minimizing cost (i.e.,
area). As a result, a datapath able to compute the algorithm’s
operations (see Figure 1) as well as the required control logic
is generated.

GSEQ(O, S) is a formal representation of a single iteration
of an algorithm, where O is the set of operations and
S ⊂ O × O is the set of signals that determine the data
flow. We consider O = OM ∪ OG ∪ OA ∪ OD ∪ OI ∪
OO composed of typical DSP operations: multiplications,
gains (multiplication by a constant value), additions, unit
delays, and input and output nodes. Signals are in two’s
complement fixed-point format, defined by the pair (p,n),
where p is number of integer bits [4] and n is the wordlength
of the signal not including the sign bit (see Section 2.5).
The values of the couples (p,n) have been computed during
a previously performed wordlength optimization (WLO)
[1, 14–16]. See Section 2.5 for more information about the
wordlength optimization process.

Functional units (RFU) are in charge of executing the
set of operations from O. Registers (RREG) store the data
produced by FUs and some intermediate values. Finally,
steering logic (RMUX) interconnects FUs and registers by
means of multiplexers. The set of functional units RFU =
RALUT ∪ RMLUT ∪ RMEMB is composed of LUT-based adders,
LUT-based generic multipliers, and embedded multipliers.

This set of FUs covers a representative set of modern
FPGA devices. An FU r ∈ RFU is defined by its type
type(r) = {AdderLUT, MultiplierLUT, MultiplierEMB} and by
its size, that depends on the input wordlengths. An operation
is compatible with an FU if they have compatible types and
if the size of the operation is smaller than or equal to the size
of the FU [4, 6].

Scheduling is expressed by means of function ϕ : O →
Z+, which assigns a start time to each operation. Resource
binding is divided into FU binding and register binding. FU
binding makes use of the compatibility graph GCOMP(O ∪
R,C) [2], which indicates the compatible resources for each
o ∈ O by means of the set of edges C ⊂ O × R. The binding
between operations and resources is expressed by means of
function β : O → R × Z+, where β(o) = {r, i} indicates
that operation o is bound to the ith instance of resource r.
The compatibility rules impose that (o, r) ⊂ C. In a similar
fashion, register binding links variables d ∈ D to registers
r ∈ RREG by means of function γ : D → RREG × Z+.
The set of variables D is extracted from O considering that
there is a variable assigned to the output of each operation
from the subset OM ∪ OG ∪ OA and to each delay oD
connected to another delay. Registers have an associated size
nr that determines the maximum allowed wordlength of the
variables bound to them.

The steering logic consists of multiplexers connected at
the inputs of FUs and registers. They are in charge of sending
data to and from these two types of resources. RMUX is
determined by ϕ, β, and γ, since ϕ determines when data are
generated, β when data are used by FUs, and γ where data are
stored.

2.2. Handling Resource Heterogeneity. The recent appearance
of specialized blocks in FPGAs calls for new design methods
to efficiently exploit their advantages. In [8], it is proposed
to use a normalized resource usage vector. Given an FPGA
with M different types of resources Ri (i = 0 · · ·M−1), each
type with a maximum number of |Ri| resources, the resource
requirements of a particular design implementation d can be
expressed as the following normalized area vector:

̂A ≡
〈

#r0

|R0|
,

#r1

|R1|
, . . . ,

#rM−1

|RM−1|
�

, (1)

where #ri is the number of resources of type Ri used. Two
useful norms are the∞-norm and the 1-norm:

∥

∥

∥
̂A
∥

∥

∥∞ = max
{

#r0

|R0|
,

#r1

|R1|
, . . . ,

#rM−1

|RM−1|
}

, (2)

∥

∥

∥
̂A
∥

∥

∥

1
=

i=M−1
∑

i=0

#ri
|Ri|

. (3)

The inverse of ∞-norm represents the number of times
that the same implementation of design d can be replicated
within the FPGA device (see [8]), and the 1-norm gives
information about the overall resource usage of the imple-
mentation. Each norm is interesting on its own, but they have
some pitfalls. On the one hand, if two implementations have
the same ∞-norm this implies that they can be replicated
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the same number of times, but there is no way to know
which implementation requires less resources. On the other
hand, the 1-norm can tell if a design implementation requires
less resources than other, but that does not guarantee that
the implementation with less resources can be replicated
more times than the other. In the work presented here a
combination of ∞-norm and 1-norm , called +-norm (plus-
norm), is proposed and applied. A metric ‖ · ‖+ that exploits
the benefits of both norms but none of the drawbacks should
fulfill the following conditions:

∀i, j :
∥
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∥
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))
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(4)

This can be expressed by means of a combination of the
two norms

∥
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∥
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+
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∥
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∥
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∥

∥

1
. (5)

A feasible solution for K can be found by trying to
comply with (6) for areas A1 and A2, such that A1 requires
only one type of resource, ‖̂A1‖∞ > ‖̂A2‖∞ and ‖̂A2‖1 has
the biggest value that ‖̂A1‖∞ allows

∥
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+
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First let us find upper bounds for ‖̂A2‖∞ and ‖̂A2‖1

∥

∥

∥
̂A2

∥

∥

∥∞ ≤
∥

∥

∥
̂A1

∥

∥

∥∞ −
1

max(|Ri|)
,

∥

∥

∥
̂A2

∥

∥

∥

1
≤M ·

(
∥

∥

∥
̂A1

∥

∥

∥∞ −
1

max(|Ri|)
)

.

(7)

Substituting (5) and (7) into (6) allows
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∥

∥

∥
̂A1

∥

∥

∥∞ +
∥

∥

∥
̂A1

∥

∥

∥

1
> (K + M) ·

(
∥

∥

∥
̂A1

∥

∥

∥∞ −
1

max(|Ri|)
)

.

(8)

Since ‖̂A1‖1 = ‖̂A1‖∞ and ‖̂A1‖∞ ≤ 1, a possible range
of values of K that complies with (4) is expressed in terms
of the number of types of resources (M) and the maximum
number resources of any type (max(|Ri|))

K > (M − 1) · (max(|Ri|))−M. (9)

K guarantees that for any two implementations di and dj :
(i) if ‖Ai‖+ < ‖A j‖+ then di can be replicated more times
than dj ; (ii) if ‖Ai‖+ ≤ ‖A j‖+ then di can be replicated
more times than dj , or the same number of times consuming
less resources. Therefore, minimizing +-norm implies that
the design can be replicated within the FPGA the maximum
possible number of times while using the minimum possible
number of resources.

The metric +-norm has a low computational cost and it
is suitable for integer linear programming approaches [4, 15]
and heuristic approaches [6, 17].

2.3. Resource Modeling. Resources are divided into three
types: functional units (RFU), registers (RREG), and steering
logic (RMUX). The area and latency of FUs and registers (i.e.,
A(r) and l(r)) are expressed as functions of the input and
output wordlength information (p and n). They are obtained
by applying curve fitting to hundreds of synthesis results.
The use of accurate delay cost functions proved to provide
significant performance improvements compared to some
other existent naive approaches (from 12% to 63%, see [6]).
Registers are assumed to have a zero latency in terms of clock
period, which is true as long as the clock frequency enables
to comply with setup and hold times.

Note that A is a vector with as many components as
types of FPGA resources. Thus, it is possible to apply the
+-norm to A in order to optimize the total datapath area.
Multiplexers and wiring latencies are neglected, which could
be easily overcome by means of multiplying the clock period
by an empirical factor [18].

2.3.1. MWL Multiplexers. The area of multiplexers in UWL
systems is only affected by the data wordlength, which
sets the multiplexer size, and by the number of different
data sources (e.g., registers or FUs), which determines the
multiplexer width. An estimation of the area of an N-input
multiplexer of wordlength M for Virtex-II devices is given by

AMUX =M · N
4

slices. (10)

This estimation is specific for Virtex-II, Spartan-3, and
Virtex-4, since the implementation of multiplexers relies on
the combination of 4-input LUTs and dedicated multiplexers.
Another FPGA architectures (i.e., Altera’s Stratix-II) that
make use only of 4-input LUTs would require a different
estimation.

In MWL systems, data must be aligned before being
processed by FUs or stored by registers. In [19] the problem
of data alignment and multiplexing is tackled by means
of alignment blocks introduced before multiplexers. In this
work, multiplexers are used for both data multiplexing and
data alignment, since the combination of these two tasks
leads to a reduction in the number of control signals, and
therefore, control logic. In addition, the chances for logic
optimization are greater than if two separate blocks (an
alignment block and a multiplexer) are used.

Alignment is required at the inputs of adders and at
the outputs of both adders and multipliers. On one hand,
adders require the alignment of their inputs in order to
obtain a meaningful result. If an adder is shared to compute
several additions (i.e., a1 and a2), an alignment block is
required to arrange the MSB of the inputs in the right
position for each operation (different alignments will be
necessary for a1 and a2). On the other hand, the output
of the different arithmetic operations—both additions and
multiplications—in an algorithm can have the MSBs in
different positions. Again, if the FUs are shared the output’s
MSB changes its position depending on the operation
executed, therefore, it is necessary to dynamically align the
FU’s output using in order to store the data in a register.
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Figure 2: Signal alignment.

Figure 2 presents three different types of alignments for
a 4-input multiplexer with inputs signals a, b, c, and d
and output o: arbitrary alignment (see Figure 2(a)), least
significant bit (LSB) alignment (see Figure 2(b)), and most
significant bit (MSB) alignment (see Figure 2(c)). Note that
sign extension (see Figures 2(a) and 2(b)) does not offer any
opportunity for logic optimization, while zero padding (see
Figures 2(a) and 2(c)) does offer it, due to the reduction
in the number of signals and the introduction of constant
bits (zeros) that can be hard-wired into the multiplexer
logic. In fact, it is MSB alignment (see Figure 2(c)) the
option which allows a greater logic reduction. Therefore, it
is recommended to apply this alignment whenever possible.

A lower bound on the multiplexers’ area if the MSB
alignment is adopted can be computed as

AMUX = 1
4

N−1
∑

i=0

(ni + 1) slices, (11)

where M is the maximum wordlength present and ni is the
wordlength of signal i.

2.4. Optimization Procedure. In this subsection we extend on
the work presented in [6, 17], where the optimization was

Table 1: Simulated annealing parameters and conditions.

λ Latency constraint (in clock cycles)

αT Annealing factor (0.95)

|O| Number of operations in algorithm

Equilibrium state Accepted > |O| × |O|

Frozen state
Iterations > k · |O| × |O|, k > 1.0

3 consecutive times

Restart condition Alast > 1.5 · Amin

steered by the ∞-norm and registers and multiplexers were
not considered. The optimization procedure is based on Sim-
ulated Annealing (SA) [20] and it is shown in Algorithm 1.
The inputs are the sequential graph GSEQ(O, S) and the total
latency constraint λ. The optimization procedure determines
the set of resources of the datapath R = RFU ∪ RREG ∪ RMUX,
the scheduling ϕ, the FU binding β, and the register binding
γ, which define the datapath, the steering logic, and the
timing of the control signals.

2.4.1. Simulated Annealing. First, the set of functional units
RFU, the set of registers RREG, and the compatibility graph
GCOMP(O,RFU) are extracted (line 1). An initial resource
mapping m0 is selected by mapping each operation to the
fastest LUT-based resource among the available compatible
resources for that operation (line 2), and the area A0

occupied by the resulting datapath is used as the initial
area (line 3). From this point (lines 5–30), the optimization
proceeds following the typical SA behavior: the algorithm
iterates while producing changes (line 8)—also referred to
as movements—that modify the value of the cost function
(i.e., area) until a certain exit condition is reached. If these
changes lead to a cost reduction, they are accepted (line
11), if not, they are accepted with a certain probability
which depends on the current temperature T (line 15).
The temperature starts at a high value and decreases with
time. Most movements are accepted at the beginning of
the process, thus enabling a wide design space exploration.
As temperature decreases, only those movements which
produce small cost deviations are accepted. The temperature
is decreased when the equilibrium state is reached (line 19).
Sporadic restarting [21] is also allowed (line 27), which
repositions the optimization variables at the last minimum
state found.

A summary of simulated annealing parameters and
conditions is in Table 1. The annealing factor of 0.95 was
chosen empirically aiming at balancing the tradeoff between
optimality and solving time.

The variation in costΔA is normalized with respect to the
initial area A0 (line 10). This is a simple way to control that
the behavior of SA is not affected by the complexity of the
algorithm [22], which it is approximated by ‖̂A0‖n. The value
of n must be set to 1 (or ∞) for homogeneous-architecture
FPGAs, and to “+” for heterogeneous-architecture FPGAs.
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Input: GSEQ(O, S), λ
Output: R = RFU ∪ RREG ∪ RMUX, ϕ, β, γ
(1) Extract GCOMP(O,RFU), RFU, RREG

(2) Find initial mapping m0

(3) Compute initial area A0 from m0

(4) Amin = Alast = A0

mmin = mlast = m0

T = T0

iteration = accepted = exit = 0
(5) while ¬ exit condition do
(6) m = mlast

(7) iteration = iteration + 1
(8) Perform change to current m
(9) Compute area A from m (Algorithm 2)
(10) ΔA = (‖̂Alast‖n − ‖̂A‖n)/‖̂A0‖n
(11) if ΔA < 0 then
(12) ̂Amin = ̂Alast = A

mmin = mlast = m
accepted = accepted + 1

(13) else
(14) p = eΔA/T , r = rand[0 · · · 1)
(15) if r ≤ p then
(16) Alast = A, mlast = m

accepted = accepted + 1
(17) end if
(18) end if
(19) if equilibrium state then
(20) T = αT · T
(21) iterations = accepted = exit = 0
(22) else if frozen state then
(23) T = αT · T
(24) iterations = accepted = 0
(25) exit = exit + 1
(26) end if
(27) if restart condition then
(28) Alast = Amin

mlast = mmin

(29) end if
(30) end while

Algorithm 1: Optimization procedure.

The changes on the cost function (line 8) are performed
by applying with equal probabilities the following move-
ments to the resource mapping function m:

(i) MA: map an operation o ∈ O to a non mapped
resource,

(ii) MB: map an operation o to another already mapped
resource,

(iii) MC: swap the mapping of two compatible operations
mapped to different resources.

2.4.2. Area Computation. The computation of the area cost is
shown in Algorithm 2. First, it is checked whether the current
resource mapping m complies with latency λ (lines 1–4). If it
does not, the actual latency λ′ is computed. Later on (line
26), any deviation from the design constraints is penalized
by means of increasing the area cost of the solution. Thus,
solutions that do not meet the latency constraint are included
within the design space exploration [23]. Even though these

solutions are never accepted as valid, their inclusion allows a
wider architecture exploration than rejecting solutions that
do not comply with λ.

Then, the resource allocation and resource binding that
minimizes FU area is sought by means of a loop where several
list-based scheduling operations are performed (lines 5–18).
The purpose of the loop is to check different combinations
on the number of instances of the resources. Both lower
[24] and upper bounds on the number of instances for each
resource are computed (line 6). All combinations of possible
instances are computed and stored in the set of vectors I . The
list-based scheduling performs an ASAP scheduling to the
operations sorted by mobility in ascendant order, providing
a fast way to find a valid solution. Note that the size of I is
being pruned while the loop iterates; all combinations of FU
instances that require areas greater than the minimum found
so far are removed (line 15). Thus, resource allocation is sped
up.

Once the minimum FU area scheduling is found, the
datapath is defined. The tasks of register binding and
multiplexer allocation are not commonly included within
the optimization loop, in spite of their impact in the final
architecture. In this work, these two tasks are part of the
optimization procedure.

Register binding is performed by applying a left-edge
algorithm [13]. Inputs signals are supposed to be available
for all λ cycles and do not require storing. Each variable
assigned to a delay is initially assigned a register, and after
that, the left-edge algorithm is applied as usual.

From sets RFU and RREG and functions ϕ, β, and γ
it is possible to extract the steering logic resources RMUX.
Registers have a single multiplexer (see Figure 1), while FUs
have two. A goal of multiplexer definition is to maximize
the use of the MSB alignment. This aligment can be applied
directly to registers and multipliers. However, adders require
that the inputs must be aligned to each other. Thus, if an
MSB alignment if applied to the mux connected to one of the
inputs, it is not possible to do so for the remaining mux, and
vice versa. Finally, the control signals can be easily extracted
from the scheduling contained in ϕ.

The area vector is computed by adding the area of each
resource multiplied by the number of instances required (line
25). If λ′ > λ the area is penalized by means of factor αλ. If the
implementation does not comply with the latency constraint
and if the resulting penalized area is smaller than Amin, then
the area is forced to be bigger than Amin (see line 28).

Summarizing, the optimization procedure is actually
controlled by changing iteratively the mapping between
operations and FUs. These changes impact on the structure
of the datapath and, therefore, on its area cost, which is
the function to be minimized. This method provides a
robust way to simultaneously perform the tasks of schedul-
ing, resource allocation, and resource binding for multi-
ple wordlength systems. This procedure was satisfactorily
applied in [25].

2.5. Wordlength Optimization: A Case Study. Let us introduce
this section through a simple LTI case study (Algorithm 3).
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Input: GSEQ(O,E), λ
Output: R = RFU ∪ RREG ∪ RMUX, ϕ, β, γ, A
(1) Compute minimum latency λ′ for mapping m
(2) if λ′ < λ then
(3) λ′ = λ
(4) end if
(5) Find set of functional units R′FU = {r′o, . . . , r′N−1} with mapped operations
(6) for all r′ ∈ R′FU: Compute instances lower bound inst(r′) [24] and upper bound inst(r′)
(7) I = {all vectors ranging from 〈inst(r0), . . . , inst(rN−1)〉 to 〈inst(r0), . . . , inst(rN−1)〉}
(8) AFUmin = ∞
(9) for i ∈ I do
(10) for all r′j ∈ R′FU, inst(r′) = i[ j]
(11) A′ =∑r′∈R′FU

A(r′) · inst(r′)

(12) if ‖̂A′‖n < ‖ ̂AFUmin ‖n then
(13) if list scheduling(λ′,m) then
(14) AFUmin = A

̂imin = i
ϕmin = ϕ
βmin = β

(15) I = {i ∈ I : ‖∑r′R′FU
̂A(r′) · inst(r′)‖n < ‖ ̂AFUmin ‖n}

(16) end if
(17) end if
(18) end for
(19) for all r′j ∈ R′FU, inst(r′) = imin[ j]
(20) ϕmin = ϕ

βmin = β
(21) Extract D, RREG

(22) Compute register binding
(23) Extract RMUX

(24) R = RFU ∪ RREG ∪ RMUX

(25) A′ =∑r∈R A(r) · inst(r)
(26) αλ = (λ′ − λ)/λ
(27) A = A′ · (1 + αλ)
(28) if ‖̂A‖n < ‖̂Amin‖n then
(29) A = Amin · (1 + αλ)
(30) end if

Algorithm 2: Computation of area cost.

Input: a, b, c ∈ (−1/2, 1/2), uniformly distributed
Output: d
(1) while true do
(2) Get new value of a, b, and c
(3) m1 = a∗ 2.384
(4) m2 = b ∗ 0.0036
(5) s1 = m1 + m2
(6) s2 = s1 + c
(7) New value of output: d = s2
(8) end while

Algorithm 3: Case study.

Algorithm 3 performs the weighted summation of three
signals. The operations involved are two constant multipli-
cations (i.e., gains) and two additions. There are a total of 8
signals.

The goal of WLO is to define the fixed-point format for
each signal that enables to produce a hardware implementa-

tion of the algorithm. The fixed-point format, as mentioned
in Section 2.1, is composed of the pair (p,n). Thus, the
ultimate goal of WLO is to find the proper set of (p,n)
pairs to optimize the hardware realization of an algorithm.
Figure 3 depicts the meaning of this parameters: p is the
distance in bits from the fractionary point to the MSB (a zero
distance implies that there is no integer part in the number);
n is the number of bits used to represent the number without
considering the sign bit. A common way to address WLO is to
split it into two sequential subtasks: scaling, where the values
of p are selected, and wordlength selection, where the values
of n are chosen.

Scaling is performed by means of performing a floating-
point simulation and gathering the maximum absolute value
of each signal s and computing:

ps =
⌊

log(max|s|)⌋ + 1. (12)

Once scaling is accomplished, the values of p are fixed
and the values of n are obtained through an optimization
process (wordlength selection). The number of bits assigned
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Figure 3: Fixed-point format.

Table 2: UWL versus MWL wordlength optimization.

Signal
σ2 = 10−5 σ2 = 10−6

UWL MWL UWL MWL

(p,n) (p,n) (p,n) (p,n)

a (1,9) (−1,8) (1,11) (−1,10)

b (1,9) (−1,2) (1,11) (−1,5)

c (1,9) (−1,7) (1,11) (−1,8)

m1 (1,9) (1,9) (1,11) (1,10)

m2 (1,9) (−5,3) (1,11) (−5,4)

s1 (1,9) (1,9) (1,11) (1,10)

s2 (1,9) (1,8) (1,11) (1,10)

d (1,9) (1,8) (1,11) (1,10)

to a signal (i.e., n) determines the quantization noise that
the signal introduces, and, therefore, it has a high impact
in the final precision of the system, producing an error in
the output signal. During the optimization process different
combinations of n are tried in order to look for a particular
set that minimizes cost (i.e., area, speed, power) while
complying with the output error constraint. The error of
the system is typically measured in terms of the peak error
value [5, 26], the signal to quantization noise ratio (SQNR)
[11, 27], and the variance of the output error [15]. In this
work, we adopt the variance of the output error (σ2).

Table 2 contains the fixed-point formats (i.e., (p,n)) of
the signals of Algorithm 3 for both UWL and MWL WLO
approaches for different error constraints (σ2 = 10−5 and
σ2 = 10−6). The UWL synthesis is achieved by computing
the minimum values of p and n that if applied to all signals
the fixed-point realization complies with the noise constraint
[15]. The MWL synthesis is achieved by means of an SA-
based approach, which minimized the area of a resource-
dedicated implementation (with no resource sharing) [28].

Let us focus on the results for σ2 = 10−5. The
UWL approach clearly requires longer wordlengths than
the MWL approach. The main reason for this is that the
UWL optimization is far too simple. Also, note that some
signals’ wordlengths are decreased considerably in the MWL
approach (b and m2). This is due to the fact that signal b
is multiplied by a small constant, so the quantization noise
introduced is also small. Similar results are also present for
σ2 = 10−6. In this case the values of n are bigger since the
error constraint is more restrictive.

Summarizing, the MWL approach enables the generation
of fixed-point realizations that require a small number of
bits. The only drawback is that the complexity of the design
process is increased and techniques, such as the proposal in
this section, are required.

3. Results

Here, the implementation results are presented. The follow-
ing benchmarks are used:

(i) ITU RGB to YCrCb converter (ITU) [15],

(ii) 3rd-order lattice filter (LAT3) [29],

(iii) 4th-order IIR filter (IIR4) [30],

(iv) 8th-order linear-phase FIR filter (FIR8).

All algorithms are assigned 8-bit inputs and 12-bit con-
stant coefficients. The algorithm implementations have been
tested under different latency and output noise constraint
scenarios assuming a system clock of 125 MHz. In particular,
the noise constraints were σ2 = {10−k, 10−(k+1), 10−(k+2)},
where k is the minimum number that makes 10−k as close as
possible to the variance of the quantization noise that would
present the output of the benchmark if quantized to 8 bits
(σ2 = (2−2n+2p/12)|n=7).

The target devices belong to the Xilinx Virtex-II family.
The area results are normalized with respect to the XC2V40
device (256 slices, 4 embedded 18 × 18 multipliers) and
expressed according to (2). For instance, an area vector with
∞-norm equal to or smaller than 1.0 implies that the device
XC2V40 is the smallest-cost device able to hold the design;
whereas a ∞-norm greater than 1.0 and equal to or smaller
than 2.0 implies that the smallest-cost device able to hold the
design is the XC2V80, and so on.

Before AS, each algorithm is translated to a fixed-point
specification by means of two wordlength optimization
procedures, that follow a UWL approach and an MWL
approach, respectively.

The area results in this section are computed using the
resource model explained in Section 2.3, which provides a
good estimation of actual synthesis results.

3.1. Uniform Wordlength versus Multiple Wordlength Syn-
thesis: Homogeneous Architectures. Figures 4 and 5 display
results on the comparison of UWL versus MWL synthesis
using a homogeneous-resource architecture (i.e., only LUT-
based resources). Note that the subfigures are arranged in
couples, which are related to the same benchmark. The
left subfigures depict the area versus latency curves for a
particular output noise constraint (see Figures 4(a), 4(c),
5(a), and 5(c)), while the right subfigures contain the
detailed resource distribution graph of a particular point
of its counterpart (see Figures 4(b), 4(d), 5(b), and 5(d)).
Let us define λUWL-HOM

min as the minimum latency attainable
for a UWL-homogeneous implementation of an algorithm,
and λMWL-HOM

min the equivalent for an MWL-homogeneous
implementation. The latency used for the experiments ranges
from λMWL-HOM

min to λUWL-HOM
min + 10.

Figures 4(a) and 4(b) contain the implementation results
of the ITU benchmark with an output noise variance of
10−1. Figure 4(a) depicts how both the UWL and MWL
areas decrease as long as the latency increases. This is
expected since the greater the latency the greater the chance
of FU reuse. The comparison of the two implementation
curves yields that the improvement obtained by means of
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Figure 4: UWL versus MWL: homogeneous implementations (I).

using an MWL approach ranges from 51% to 77%. Also,
the minimum latency that each implementation achieves
differs considerably. The fine-grain tradeoff between area
and quantization noise performed by the MWL approach
allows important area reductions when compared to the
UWL approach. Figure 4(b) displays the detailed resource
distribution for the ITU UWL and MWL implementations
correspondant to σ2 = 10−1 and λ = 9. The overall area
savings are 77%, and it is due to the fact that the wordlengths
of the majority of signals, which impact on FUs, multiplexers
and registers, have been highly reduced; FUs’ area has been
reduced 83%, FU’s multiplexers 59%, registers 62%, and
registers’ multiplexers 39%. It is important to highlight
that the area due to multiplexers and registers, although
smaller than the FUs’ area, makes up a significant part of
the total area (20% for UWL and 39% for MWL). Hence the
importance of including its cost within the optimization loop
is analyzed in Section 3.4.

The other benchmarks also show large area improve-
ments: LAT3 up to 49% (see Figure 4(c)), IIR4 up to 49%

(see Figure 5(a)), and FIR8 up to 28% (see Figure 5(c)). As
observed in the detailed resource distribution subfigures (see
Figures 4(d), 5(b), and 5(d)), the area of the majority of the
resources has been highly decreased. Also, it is noted that the
percentage of area devoted to multiplexation and data storing
is high in proportion to the overall implementation area. The
minimum latency is also improved (see Figures 4(a), 4(b),
and 5(a)).

In Figure 4(c) the MWL area does not decrease as long
as the latency increases. This is due to the fact that the
wordlengths are small enough as to allow maximum resource
sharing for all latencies, thus the coincidence in the area
results for the MWL implementations. This situation might
change if a different error constraint (σ2) is applied during
WLO.

Table 3 contains the implementation results for all the
benchmarks corresponding to three different quantization
noise scenarios. For each quantization scenario the latency
ranges from λUWL-HOM

min to λUWL-HOM
min + 10, and the minimum,

maximum, and mean values of the area improvements
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Figure 5: UWL versus MWL: homogeneous implementations (II).

Table 3: UWL versus MWL for homogeneous architectures.

Bench. σ2 Area improvement (%)

Min Max Mean

ITU

10−1 51.36 77.66 68.32

10−2 48.44 76.31 66.41

10−3 46.51 75.40 65.13

LAT3

10−3 44.07 44.07 44.07

10−4 33.66 33.66 33.66

10−5 33.62 49.89 45.42

IIR4

10−3 37.85 49.86 39.69

10−4 34.30 63.55 50.65

10−5 37.08 64.99 52.72

FIR8

10−3 40.28 47.68 43.54

10−4 24.16 28.10 25.14

10−5 22.04 25.73 22.82

All 22.04 77.66 46.46

obtained by the MWL implementations in comparison to the
UWL implementations are computed. The first column in
the table contains the name of the benchmark. The second,
the output noise variance. And the third column contains
area improvement values. The last row holds the minimum,
maximum, and average improvements considering all results
simultaneously.

The area improvements obtained are remarkable: mean
improvements range from 47% to 77%. Note that the
minimum improvements obtained for all benchmarks are
quite close to both the maximum and the mean. The results
clearly show that an MWL-based AS approach achieves
significant area reductions.

Regarding latency, the minimum latency achievable by
UWL implementations is reduced in average a 22% by means
of MWL AS.

3.2. Uniform Wordlength versus Multiple Wordlength Syn-
thesis: Heterogeneous Architectures. Figures 6 and 7 contain
results on the comparison of UWL versus MWL synthesis
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Figure 6: UWL versus MWL: homogeneous implementations (I).

using a heterogeneous-resource architecture (i.e., both LUT-
based and embedded resources present). The arrangement
of figures is similar to that of the previous subsection. Now,
the latency ranges from λMWL-HET

min to λUWL-HET
min + 10 (HET

indicates heterogeneous implementations).
Figures 6(a), 6(c), 7(a), and 7(c) contain the implemen-

tation area versus latency curves. The graphs clearly show
how the area is reduced by means of an MWL synthesis:
ITU up to 79% (see Figure 6(a)), LAT3 up to 35% (see
Figure 6(c)), IIR4 up to 40% (see Figure 7(a)), and FIR8 up
to 26% (see Figure 7(b)). The detailed resource distribution
in Figures 6(b), 6(d), 7(b), and 7(d) shows how the majority
of resources are decreased, and in particular the embedded
multipliers and the FUs’ multiplexers are clearly optimized.
For instance, the ITU resource distribution for σ2 = 10−2

and λ = 10 (see Figure 6(b)) shows an overall area reduction
of 72%. The LUT-based resources are reduced 59% (LUT-
based FUs’ area has been reduced 32%, FU’s multiplexers
74%, registers 32%, and registers’ multiplexers 36%); while
the embedded FUs are reduced 75%.

Note that the area of embedded resources for Figures
6(d) and 7(d) is the same for both the UWL and MWL
approaches, in fact a single multiplier is being used (1 out
of 4). This happens because the wordlengths involved in
multiplications, though not the same, are small enough for
both UWL and MWL approaches as to enable the use of a
single embedded multiplier. However, the LUT-based areas
are quite different, and, as a result, the overall resource usage
is much smaller for the MWL implementation.

In Figure 6(c) the UWL and MWL areas do not decrease
as long as the latency increases. Again, this is due to the fact
that the particular wordlengths obtained allow maximum
resource sharing for all latencies. Different error constraints
(σ2) might change this situation.

Again, the figures show how the minimum latency can
be highly improved by means of an MWL approach. Also, it
can be seen that the LUT-based resources are devoted almost
entirely to data multiplexing and storing.

Table 4 contains the implementation results of all the
benchmarks corresponding to three different quantization
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Figure 7: UWL versus MWL: homogeneous implementations (II).

noise scenarios. For each quantization scenario the latency
ranges from λUWL-HET

min to λUWL-HET
min + 10, and the mini-

mum, maximum, and mean area improvements obtained
by the MWL implementations in comparison to the UWL
implementations are computed considering ∞-norm area,
the LUT-based area, and the embedded FUs area. The first
column in the table contains the name of the benchmark.
The second, the output noise variance applied. The third
column contains the minimum, maximum, and mean ∞-
norm area improvement values. The fourth column contains
the minimum, maximum, and mean values of the LUT-based
resource area. And the last column contains the minimum,
maximum, and mean values of the embedded FUs area.

The area improvements obtained are considerable; ITU
obtains up to 80.77%, LAT3 up to 48.87%, IIR4 up to 65.13%,
FIR8 up to 38.01%. Note that the minimum improvements
obtained for most of the benchmarks are again quite close to
both the maximum and the mean.

The LUT-based area reductions are up to 81.07% for
ITU, up to 48.87% for LAT3, up to 65.13% for IIR4,

and up to 43.83% for FIR8. The embedded resources are
only reduced for benchmarks ITU (up to a 75.00%) and
IIR4 (up to 83.33%). Benchmarks LAT3 and FIR8 use
the minimum possible number of embedded resources (1
embedded multiplier), hence the 0% improvement.

Area improvements up to 80.77% are achieved. The
average improvement is 44.88% for the overall area, 42.76%
for the LUT-based resources, and 24.03% for the embedded
resources. The results clearly show that an MWL-based
approach for AS leads to significant area reductions.

As a final note regarding these area results, the authors
would like to emphasized that the plus-norm has been used
during the optimization process, but it is not used to present
the results as it cannot be directly related to the percentage of
occupation of the FPGA. Thus, the∞-norm is used instead.

The latency analysis throws that the minimum UWL
latency is reduced an average 19% by means of MWL AS.

3.3. MWL Synthesis: Heterogeneous versus Homogeneous.
Table 5 contains the implementation results of all the
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Table 4: UWL versus MWL for heterogeneous architectures.

Bench. σ2 ‖̂A‖∞ % ALUT % AEMB %

Min Max Mean Min Max Mean Min Max Mean

ITU

10−1 54.85 80.77 73.69 55.56 81.07 63.19 50.00 75.00 72.73

10−2 52.37 79.71 71.37 52.37 79.71 60.41 50.00 75.00 72.73

10−3 47.80 77.76 66.71 47.80 77.76 56.33 50.00 75.00 72.73

LAT3

10−3 48.87 48.87 48.87 48.87 48.87 48.87 0.00 0.00 0.00

10−4 35.84 35.84 35.84 35.84 35.84 35.84 0.00 0.00 0.00

10−5 31.70 31.70 31.70 31.70 31.70 31.70 0.00 0.00 0.00

IIR4

10−3 37.47 41.27 38.33 37.47 45.10 39.05 0.00 0.00 0.00

10−4 32.97 40.70 34.74 32.97 40.70 34.74 0.00 0.00 0.00

10−5 40.32 65.13 49.57 40.32 65.13 48.55 50.00 83.33 71.67

FIR8

10−3 32.45 38.01 33.97 38.79 43.83 39.68 0.00 0.00 0.00

10−4 27.53 32.83 28.62 27.53 32.83 28.62 0.00 0.00 0.00

10−5 19.53 26.12 21.17 19.53 26.12 21.17 0.00 0.00 0.00

All 19.53 80.77 44.88 19.53 81.07 42.76 0.00 83.33 24.03

benchmarks corresponding to three different quantization
noise scenarios. For each quantization scenario the latency
ranges from λMWL-HOM

min to λMWL-HOM
min +10, and the minimum,

maximum, and mean values of the area improvements, in
terms of ∞-norm, obtained by the MWL implementations
in comparison to the UWL implementations are computed.
The first column of the table contains the name of the
benchmark. The second, the output noise variance applied.
And, the third column contains the minimum, maximum
and mean area improvement values.

The area improvements obtained are remarkable; ITU
obtains up to 54.76%, LAT3 up to 43.09%, IIR4 up to
48.79%, FIR8 up to 44.68%. Note that, again, the minimum
improvements obtained for all benchmarks are quite close
to both the maximum and the mean. Area improvements
up to 54.76% are achieved, being the average improvement
40.23%. The results clearly show that the inclusion of
embedded resources within AS leads to higly optimized DSP
implementations.

Regarding latencies, the minimum latency achievable
by both homogeneous and heterogeneous implementations
is the same for the experiments performed. This is due
to the fact that the latency of resources is very similar
in the particular conditions used for the tests. The same
experiments presented in this section were repeated increas-
ing the constant wordlength to 16 bits, obtaining that
heterogeneous implementations reduced 7% the minimum
latency in constrast to homogeous implementations.

3.4. Effect of Registers and Multiplexers. In this subsection
the effect of including the cost of registers and multi-
plexers within the optimization loop is investigated. As
in the previous experiments, the analysis is performed
implementing the benchmarks using different noise and
latency constraints. Before AS is applied a gradient-descent
quantization [28] is applied according to the given noise
constraint. The comparison is done by using Algorithm 1

Table 5: MWL synthesis: homogeneous versus heterogeneous
architectures.

Bench. σ2 ‖̂A‖∞ %

Min Max Mean

ITU
10−1 40.73 52.69 51.60

10−2 43.29 53.98 53.01

10−3 50.45 54.76 54.32

LAT3

10−3 42.68 43.09 42.72

10−4 39.36 39.36 39.36

10−5 38.73 39.74 38.82

IIR4

10−3 34.83 44.77 36.04

10−4 32.92 48.23 35.96

10−5 33.21 48.79 35.79

FIR8

10−3 21.42 41.46 28.37

10−4 27.02 44.68 33.24

10−5 27.46 44.62 33.52

All 21.42 54.76 40.23

to perform the AS using two different area cost estimation
solutions: (i) Algorithm 2, which is referred to as the complete
area estimation algorithm, and (ii) a simplified version of
Algorithm 2 (simplified area estimation algorithm) where
the cost of registers and multiplexers is neglected. When
the simplified area estimation is used, the cost of registers
and multiplexers is included after the optimization loop has
finished its execution, using the complete area estimation
(Algorithm 2).

Table 6 contains the results of this analysis. The latencies
range from λARCH

min to λARCH
min + 10, where ARCH refers

to the type of FPGA architecture used (homogeneous or
heterogeneous). The noise constraints are the same used
in the previous subsection (three σ2 for each benchmark),
though the results have been combined into a single row.
The first column contains the type of FPGA architecture.
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Table 6: Complete versus simplified cost estimation: area improve-
ment (%).

Arch. Bench.
Area improvement

Min Max Mean

HOM

ITU 0.00 0.95 0.30

LAT3 0.71 3.50 1.53

IIR4 0.00 5.35 1.26

FIR8 0.00 1.77 0.31

HET

ITU 0.00 25.85 1.89

LAT3 1.15 5.77 2.52

IIR4 0.00 35.57 8.09

FIR8 0.00 8.11 0.83

All 0.00 35.57 2.09

The second column indicates the benchmark used. And
the fourth column contains the minimum, maximum,
and average area improvements obtained by the complete
area estimation synthesis in contrast to the simplified area
estimation synthesis. The last row includes the minimum,
maximum, and mean improvements for all benchmarks.

The average improvements for the different benchmarks
range from 0.00% to 8.09%, being the overall average
improvement of 2.09%. The maximum improvement found
is 35.57%. These results clearly show that failing to include
the cost of registers and multiplexer during the optimization
procedure can lead to unwanted area penalties.

4. Conclusions

In this paper an architectural synthesis procedure able
to produce optimized fixed-point implementations using
modern FPGA devices is presented. The key to success
is provided by the use of highly accurate models of the
datapath resources, a complete datapath resource set that
includes multiplexer and registers, a novel method to handle
fixed-point data alignment and multiplexing, and also the
introduction of a novel resource usage metric that can cope
with LUT-based and embedded FGPGA resources.

The AS procedure produces area improvements of up to
80% when compared to uniform-wordlength implementa-
tions, and latency improvement of up to 22%. The efficient
use of embedded resources achieves area improvements of up
to 54% when compared to homogeneous implementations.
Also, the inefficiency of current FPGA architectures to
implement data steering was exposed.

These results are intented to be further improved by
means of tightly combining the fixed-point refinement
process within the architectural synthesis [4, 31]. Also, the
inclusion of the control logic in the resource model is
regarded as a future research line.
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1. Introduction

The Fast Fourier Transform (FFT), as an efficient algorithm
to compute the Discrete Fourier Transform (DFT), is one
of the most important operations in modern digital signal
processing and communication systems. The pipeline FFT is
a special class of FFT algorithms which can compute the FFT
in a sequential manner; it achieves real-time behavior with
nonstop processing when data is continually fed through
the processor. Pipeline FFT architectures have been studied
since the 1970’s when real-time large scale signal processing
requirements became prevalent. Several different architec-
tures have been proposed, based on different decomposition
methods, such as the Radix-2 Multipath Delay Commutator
(R2MDC) [1], Radix-2 Single-Path Delay Feedback (R2SDF)
[2], Radix-4 Single-Path Delay Commutator (R4SDC) [3],
and Radix-22 Single-Path Delay Feedback (R22SDF) [4].
More recently, Radix-22 to Radix-24 SDF FFTs were studied
and compared in [5]; in [6] an R23SDF was implemented
and shown to be area efficient for 2 or 3 multipath channels.
Each of these architectures can be classified as multipath or
single-path. Multipath approaches can process M data inputs
simultaneously, though they have limitations on the number
of parallel data-paths, FFT points, and radix. This paper
focuses on single-path architectures.

From the hardware perspective, Field Programmable
Gate Array (FPGA) devices are increasingly being used for
hardware implementations in communications applications.
FPGAs at advanced technology nodes can achieve high
performance, while having more flexibility, faster design
time, and lower cost. As such, FPGAs are becoming more
attractive for FFT processing applications and are the target
platform of this paper.

The primary goal of this research is to optimize pipeline
FFT processors to achieve better performance and lower
cost than prior art implementations. In this paper, two
comparative implementations (R4SDC and R22SDF) of
pipeline FFT processors targeted towards Xilinx Spartan-3
and Virtex-4 FPGAs are presented. Different parameters such
as throughput, area, and SQNR are compared.

The rest of the paper is organized as follows. Section 2
discusses the methodology used to select the two archi-
tectures. Section 3 describes the implementation tools and
optimization methods used to improve performance and
reduce resource utilization. Section 4 explains the balanced
rounding schemes that were implemented and their impact
on the signal-to-quantization noise ratio (SQNR). Section 5
presents the results, and Section 6 presents some brief
conclusions.
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Table 1: Hardware resource requirements comparison of pipeline FFT architectures (based on [4]).

Complex multipliers Complex adders Memory size Control logic
Comp. Utilization

add/sub Multiplier

R2SDF log2N − 2 2 log2N N − 1 simple 50% 50%

R4SDF log4N − 1 8 log4N N − 1 medium 25% 75%

R4SDC log4N − 1 3 log4N 2N − 2 complex 100% 75%

R22SDF log4N − 1 4 log4N N − 1 simple 75% 75%

R2MDC log2N − 2 2 log2N 3N/2− 2 simple 50% 50%

R4MDC 3(log4N − 1) 8 log4N 5N/2− 4 medium 25% 25%

Nt Nt Nt

Nt

Nt

Nt

C1 C2 C3

Figure 1: R4SDC commutator of stage t.

2. Pipeline FFT Architectures

2.1. Architecture Selection. The major characteristics and
resource requirements of several pipeline FFT architectures
are listed in Table 1. Computational efficiency is measured by
resource utilization percentage—how often the resources are
in an active state versus an idle state. As shown in the table,
the radix-4 Single-Path Delay-Commutator (R4SDC) and
radix-22 Single Path Delay Feedback (R22SDF) architectures
provide the highest computational efficiency and were
selected for implementation. The R4SDC architecture is
appealing due to the computational efficiency of its addition;
however the controller design is complex. The R22SDF
architecture has a simple controller but a less efficient
addition scheme. These designs are both radix-4 and scalable
to an arbitrary FFT size N (N is a power of 4).

2.2. R4SDC Architecture.

R4SDC Algorithms. The R4SDC was proposed by Bi and
Jones [3] and uses an iterative architecture to calculate the
radix-4 FFT. The key to the algorithm is splitting the FFT
into different stages by using different radices. In this paper,
the radix is always 4.

The derivation starts from the fundamental DFT equa-
tion for an N-point FFT:

X(k)=
N−1∑

n=0

x(n)WN
nk

(
k=0, 1 · · ·N − 1;WN=e− j(2π/N)

)
.

(1)

Table 2: Implementation tools.

Design step Tool

VHDL simulation ModelSim SE 6.2b

FPGA synthesis Synplicity Synplify Pro; Xilinx XST

FPGA implementation Xilinx ISE 9.1

Target FPGA
Spartan-3 Family; Virtex-E Family;

Virtex-4 Family

Verification Matlab R2006a

N can be represented as composite of v numbers N =
r1r2 · · · rv and defined as

Nt = N

r1r2 · · · rt , 1 ≤ t ≤ v − 1, (2)

where t is the stage, and rt is the stage radix. After putting

(2) into (1) and applying the relationship W
Njk
NiNj

=WNi
k, (1)

becomes

X(k) =
N1−1∑

q1=0

WN
q1k

r1−1∑

p=0

x
(
N1p + q1

)
Wr1

pk. (3)

Indeces k1 and m1 can be defined by k = r1k1 + m1, where
0 ≤ k1 ≤ N1 − 1, 0 ≤ m1 ≤ r1 − 1. Equation (3) becomes

X(r1k1 + m1) =
N1−1∑

q1=0

x1
(
q1,m1

)
WN1

q1k1 ,

x1
(
q1,m1

) =WN
q1m1

r1−1∑

p=0

x
(
N1p + q1

)
Wr1

pm1 .

(4)

Therefore the complete N-point DFT can be written as
v − 1 different stages with intermediate stages in a recursive
equation:

xt
(
qt,mt

) =W
qtmt

Nt−1

rt−1∑

p=0

xt−1
(
Nt p + qt,mt−1

)
W

pmt
rt . (5)
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W
qtmt

Nt−1
is the twiddle factor. For radix-4, the equations

become

X(4k1 + m1) =
N/4−1∑

q1=0

x1
(
q1,m1

)
WN/4

q1k1 ,

xt
(
qt,mt

) =W
qtmt

Nt−1

3∑

p=0

xt−1
(
Nt p + qt,mt−1

)
W4

pmt

(6)

The R4SDC architecture is presented in Figures 1–3.
An N-point radix-4 pipeline FFT is decomposed to log4N
stages. Each stage consists of a commutator, a butterfly,
and a complex multiplier. Figure 1 outlines the commutator
for the R4SDC. Its six shift registers provide Nt delays.
The control signals are generated by logic functions. The
butterfly element, shown in Figure 2, performs the sum-
mation, where trivial multiplication is replaced by add/sub
and imaginary/real part swapping. Figure 3 shows the overall
architecture.

2.3. R22SDF Architecture. The R22SDF architecture was
proposed by He and Torkelson [4] and also begins from (1).
He applies a 3-dimensional index map:

n =
〈
N

2
n1 +

N

4
n2 + n3

�

N
; k = 〈k1 + 2k2 + 4k3〉N . (7)

Using the Common Factor Algorithm (CFA) to decom-
pose the twiddle factor, the FFT can be reconstructed as a set
of 4 DFTs of length N/4:

X(k1 + 2k2 + 4k3) =
N/4−1∑

n3=0

[
H(k1, k2,n3)Wn3(k1+2k2)

N

]
Wn3k3

N/4

(8)

H(k1, k2,n3) can be expressed as

H(k1, k2,n3) =
BF 2I︷ ︸︸ ︷

[x(n3) + (−1)k1x(n3 + (N/2))] +(− j)(k1+2k2)

BF 2I︷ ︸︸ ︷
[x(n3 + (N/4)) + (−1)k1x(n3 + (3/4)N)]

︸ ︷︷ ︸
BF 2II

, (9)

The R22SDF algorithm can be mapped to the architecture
shown in Figures 4–6. The number of stages is log4N . Every
stage contains two butterfly elements, each associated by
an Nt feedback shift register. A simple counter creates the
control signals. Pipeline registers can be added between
butterfly elements and between stages. Registers are also
added inside the complex multipliers to reduce the critical
path through the summation to the multiplier. The total
latency is approximately N + 4(log4N − 1) cycles.

3. FPGA-Based Implementations
and Optimizations

3.1. Specifications, Tool Flow, and Verification. Both of these
FFT architectures were implemented with generic synthesiz-
able VHDL code and verified with simulation against Matlab
scripts using Modelsim. Synplify or XST was used to perform
the synthesis, and ISE was used for place and route and
implementation. The architectures were optimized to achieve
maximum throughput with minimal area (slices). The tools
and development environment used are shown in Table 2.

3.2. General Optimization Methods. Some general optimiza-
tion measures were performed, including FSM encoding,
retiming, and CAD-related optimizations. Since the FFT
processors were targeted to Xilinx Spartan-3 and Virtex-
4 FPGAs (as well as synthesized for Virtex-E FPGAs), the
SRL16 component, which can implement a 16-bit shift
register within a single LUT, was inferred as much as possible
to preserve LUTs. This particularly helped the R22SDF

architecture because of the large number of shift registers.
R4SDC also benefited from SRL16 components in its com-
mutator registers. Block RAMs were used to store twiddle
factors, which dramatically reduced the combinational logic
utilization.

3.3. Architecture-Specific Optimization. A number of
architecture-specific optimizations were used. For both
architectures, a complex multiplication technique was used.
Usually, a complex multiplication is computed as:

(a + bi)× (c + di) = a× c − b × d + (a× d + b× c)i. (10)

This requires 4 multiplications and 2 add/suboperations.
As is well known, the equation is simplified to save one
multiplier:

(a + bi)× (c + di) = [a× (c + d)− (a + b)× d]

+ [a× (c + d) + (a− b)× c]i.
(11)

This requires only 3 multiplications and 5 add/sub-
operations. Pipeline registers were also added in order to
avoid the long critical path brought by the connection of real
adders and multipliers. Figure 7 shows the pipeline stages
inserted which were effective to reduce the critical path (REG
means pipeline register).

3.3.1. R4SDC Optimization. The R4SDC has a complex
controller, which creates a long critical path. By observing
that all stages have the same control bits but have different
sequences, using a ROM with an incremental address was
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a simpler solution than using a complex FSM. Pipeline
registers were also added to the butterfly elements, multi-
pliers, and between stages. Figure 8 illustrates the addition
of pipeline registers to cut the critical path efficiently within
the butterfly element. Since two continuous add/subelements
bring about a long propagation path, they were split using
pipelining. Figure 9 shows the addition of pipeline registers
between majority elements and between stages. For timing
purposes, the applicable control signals were also buffered.

There were some special measures taken into account
within controller in order to keep proper timing of signals.
Twiddle factors should also be delayed to cope with the
delayed sequence.

3.3.2. R22SDF Optimization. Due to its simple control
requirements, a simple counter was sufficient as the entire
controller for the R22SDF. To speed up the controller, a
fast adder could potentially be faster than a simple ripple-
carry adder. However, due to the small number of stages
(log4N), no substantial savings were found for a fast adder.
Pipeline registers were added between major elements and
also between stages. Note that the R22SDF is not suited
for adding pipeline registers within individual butterfly
elements, because this would break the timing for the data
feedback path. Figure 10 presents the pipelined stages. Note
that registers were only added between element units; in
addition, registers were added as necessary to keep the
control signals properly timed.

4. Rounding Scheme and SQNR

Due to finite wordlength effects, the implemented FFTs
always scaled by 1/N at the output of the design. This

scaling factor was distributed as divide-by-two operations
throughout each stage to reduce error propagation. As is
well known, truncation or conventional rounding (which is
denoted as round-half-up) will bring a notable quantization
error bias in divide-by-two operations, and this bias will
accumulate throughout the processing chain [5]. To alleviate
the bias, three unbiased rounding methods are investigated
for division by two.

Sign Bit-Based Rounding. In this scenario, if the MSB of
the number to be divided is 0 (i.e., positive number) it
is rounded-half-up. This will have a positive bias. On the
other hand, if the MSB is 1 (i.e., negative number) it
is truncated, leaving a negative bias. Assuming that the
positive and negative numbers are uniformly distributed,
this approach will lead to an unbiased rounding scheme.
However, selecting the bias based on the MSB implies that
these two rounding methods coexist in a single rounding
position, which requires extra hardware. This increases the
critical path, harming the performance. So it is not chosen.

Randomized [7]. In this scenario, if the bit to be rounded
is 1, a random up or down rounding is performed. If
it is 0, the same rounding scheme as done previously
is performed. From the statistical point of view, no bias
exists. But this method requires a random bit generator
and a long accumulation time, requiring big extra hardware
resources and significantly affects the performance. So it is
not implemented.

Balanced Stages Rounding [11]. This rounding method
explores balancing between stages. Round-half-up and trun-
cation are used in an interlaced fashion, as shown in
Figure 11.
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Table 3: SQNR with different FFT sizes.

FFT size Input data width Twiddle factor width Stage number SQNR (dB)

R4SDC

16 16 16 2 82.29

64 16 16 3 73.49

256 16 16 4 67.47

1024 16 16 5 61.25

R22SDF

16 16 16 2 81.82

64 16 16 3 74.47

256 16 16 4 68.22

1024 16 16 5 62.68

Table 4: Implementation results on Spartan-3 devices.

Point Input data Twiddle factor
Slices

Block Max. speed Latency Transform time Throughput Throughput/area

size width width RAM (MHz) (cycles) Cycles Time (μs) (MS/s) (MS/s/slice)

R4SDC

16 16 16 468 2 108.20 21 16 0.15 108.20 0.231

64 16 16 952 2 107.23 73 64 0.60 107.23 0.113

256 16 16 1990 3 111.98 269 256 2.76 111.98 0.056

1024 16 16 4409 8 123.84 1041 1024 8.27 123.84 0.028

R22SDF

16 16 16 427 2 121.24 22 16 0.13 121.24 0.284

64 16 16 810 2 98.14 74 64 0.65 98.14 0.121

256 16 16 1303 3 98.73 270 256 2.59 98.73 0.076

1024 16 16 2802 8 95.25 1042 1024 10.75 95.25 0.034

Table 5: Implementation results on Virtex-4 devices.

Point Input data
DSP48 Slices

Block Max. speed Latency Transform time Throughput Throughput/area

size width RAM (MHz) (cycles) Cycles Time (μs) (MS/s) (MS/s/slice)

R4SDC

16 16 4 530 1 236.7 21 16 0.07 236.7 0.447

64 16 8 803 2 236.4 73 64 0.27 236.4 0.294

256 16 12 1370 3 218.9 269 256 1.17 218.9 0.160

1024 16 16 3064 8 219.2 1041 1024 4.67 219.2 0.072

R22SDF

16 16 4 517 1 237.9 22 16 0.07 237.9 0.460

64 16 8 779 2 236.7 74 64 0.27 236.7 0.304

256 16 12 1234 3 236.7 270 256 1.08 236.7 0.192

1024 16 16 2256 8 235.6 1042 1024 4.35 235.6 0.104

Table 6: Performance comparison versus prior art on Virtex-E devices.

FFT
Design

Point Input data Twiddle factor
Slices

Block Max. speed Latency Transform time Throughput Throughput/area

size width width RAM (MH) (Cycle) Cycles Time (μs) (MS/s) (MS/s/slice)

Amphion
[8]

1024 13 13 1639 9 57 5097 4096 71.86 14.25 0.009

Xilinx
[8, 9]

1024 16 16 1968 24 83 4096 4096 49.35 20.75 0.011

Sundance
[10]

1024 16 10 8031 20 49 1320 1320 27.00 49.00 0.006

Suksawas
R22SDF
[8]

1024 16 16 7365 28 82 1099 1024 12.49 82.00 0.011

Our
R22SDF

1024 16 16 5008 32 95.0 1042 1024 10.78 95.00 0.019

Our
R4SDC

1024 16 16 7052 32 94.2 1041 1024 10.87 94.20 0.013
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For an even number of stages, this will achieve the
same result as the randomized approach, while having a
smaller resource usage and simpler control. This scheme
fits the R22SDF architecture particularly well, because the
two butterfly elements within same stage of R22SDF can be
naturally balanced. This method was chosen for the designs
presented in the paper.

In order to compute the signal-to-quantization noise
ratio (SQNR), random generated noise was used as the
input to the pipeline FFT. A Matlab script generated double
precision floating point FFT results, which were used as
the true values. Figure 12 shows how they are compared
with the fixed-point implementations. Random experiments
were run several times and averaged to get a better error
approximation.

5. Results and Analysis

5.1. SQNR Results. Figure 13 shows the SQNR results with
different rounding schemes (balanced stages, truncation, and
round-half-up), for R4SDC and R22SDF, respectively, for a
16-bit data width (input data, twiddle factors, and output

data are 16 bits). The balanced stage rounding typically
improved the SQNR by 1-2 dB. The balanced stages scheme
gives better SQNR, because it leverages the randomness
between stages. The truncation and round-half-up only
reserve half of the information.

Table 3 presents the SQNR results as they vary with FFT
size. The larger the FFT, the worse the SQNR due to the
longer processing chain. Both architectures gave comparable
results in terms of SQNR. It is clear that larger data widths
will also give better SQNR but will increase area and critical
path. A 16-bit wordlength is a sufficient choice for many
signal processing applications.

The FFT architectures with smaller wordlengths than 16
bits are also implemented. The example in the Figure 14
shows the R4SDC architecture for an N = 1024 point FFT.
Every bit of word length increment brings about 6 dB of
SQNR gain.

5.2. Implementation Results. Table 4 gives the performance
results of both architectures with different FFT sizes on
Spartan-3 FPGAs (90 nm) [12]. The R22SDF achieved a
smaller area and better throughput per area than the R4SDC.
Due to the pipeline design, the maximum clock frequency
did not change drastically with FFT size for either design. As
expected the throughput per area decreases for larger FFT
sizes, which require more stages and area.

Table 5 presents the results on Virtex-4 FPGAs (90 nm)
using a 16-bit wordlength. Virtex-4 FPGAs have hardwired
DSP modules called DSP48 blocks, which are high-speed
modules optimized for signal processing operations such as
multiply-accumulate, and FIR filtering. By utilizing these
DSP48 blocks, the maximum clock frequency increased
substantially over the Spartan-3 devices.

Comparisons with prior art are shown in Table 6, which
shows publicly available pipeline FFT implementations on
FPGAs from literature. For fair comparison, since many of
the prior art implementations were implemented on Virtex-
E FPGAs (180 nm), the designs are also implemented on
Virtex-E. The best performance for the R22SDF method for
a 16-bit 1024-point FFT was published by Sukhsawas and
Benkrid in [8]. They used Handel-C as a rapid prototype lan-
guage and implemented the design on Virtex-E FPGAs. They
achieved 82 MHz maximum clock frequency and 7365 slices,
giving a throughput per area ratio of 0.011 Msamples/s/slice.

On the Virtex-E, our R22SDF achieved better perfor-
mance of 95 MHz and a smaller area of 5008 slices, giving a
superior throughput per area ratio of 0.019 Msamples/s/slice.
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Our R4SDC architecture was also superior to prior art,
running at 94.2 MHz and using 7052 slices, a throughput per
area ratio of 0.013 Msamples/s/slice.

Another point of reference is the Xilinx FFT IP core. For
comparison sake, the IP core for Virtex-E is shown in the
table. The Virtex-E core shows four times the latency (4096)
in cycles due to its internal architecture. Its throughput
per area ratio is also only 0.011 Msamples/s/slice. Note that
all comparisons for throughput per area do not take into
account block RAMs, though each of the designs had a
similar number of required block RAMs. However, the
Xilinx FFT DSP core could perform better with new Xtreme
technology: on Virtex 4 device 4vsx25-10, 1024-point FFT
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could be finished within 2.85 nanoseconds in best case, while
cost 2141 Slices, 7 block RAMs, and 46 Xtreme DSP slices
[13].

6. Conclusions

In this paper, optimized implementations of R4SDC and
R22SDF pipeline FFT processors on Spartan-3, Virtex-4,
and Virtex-E FPGAs are presented. The 16-bit 1024-point
FFT with the R22SDF architecture had a maximum clock
frequency of 95.2 MHz and used 2802 slices on the Spartan-
3. The R4SDC ran at 123.8 MHz and used 4409 slices on
the Spartan-3. On Virtex-4 device, the numbers became
235.6 MHz and 2256 slices for R22SDF and 219.2 MHz
and 3064 slices for R22SDF, respectively. Different round-
ing schemes were analyzed and compared. SQNR analysis
showed the balanced stages rounding scheme gave high
SQNR with small overhead. The SQNR will gain around 6 dB
with every bit increment of word length.

The R22SDF architecture outperformed the R4SDC
architecture in terms of throughput per area, a measure of
efficiency, for the 1024-point FFT. This is due to its simpler

controller and compatibility with pipelining insertion. Both
architectures have comparable maximum clock frequency
and SQNR with the balanced stages rounding scheme.
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1. Introduction

In order to build flexible systems that can be adapted to
applications, researchers have explored FPGA-based multi-
processor systems in an attempt to exploit both high-level
parallelism in applications and the flexibility of reconfig-
urable devices, targeting both single [1, 2] and multiFPGA
platforms [3, 4].

The process of implementing such systems is a very
complex undertaking, consisting of phases such as the design
of constituent IP-blocks (e.g., processors, memories, and
buses), task mapping and architecture determination (high-
level synthesis), low-level system integration, and finally,
FPGA synthesis and placement and routing. The focus of this

work is on task-mapping and high-level synthesis, and builds
up on a design platform that targets system integration and
synthesis [1].

An automated architecture synthesis methodology based
on combinatorial optimization is used to simplify the design
process. This methodology addresses the problem of deter-
mining application-specific optimum system architectures
as well as mapping and scheduling corresponding parallel
programs.

Often, an optimum solution requires the sharing of
processor resources between tasks, necessitating the use of a
task scheduler, whose impact on the overall solution must
be considered. In cases where cooperative schedules suffice,
that is, for applications without strict timing requirements,



2 International Journal of Reconfigurable Computing

the resulting analysis during optimization is straightforward.
This is because the overhead is easy to compute. In
that case, the overall optimization objective is simply to
minimize the overall execution time of the application, the
makespan, or alternately, to explore area-throughput-power
tradeoff.

However, applications which impose deadline guarantees
for periodic tasks may require preemptive schedulers. In such
situations, one must determine how often task switching
actually takes place, depending on task priorities and the
schedule. The reason is that the schedule has a direct impact
on the overall execution time, and hence on the opti-
mum task mapping and resource allocation. Moreover, the
optimization process must take into account schedulability
constraints, because some task mappings may not guarantee
deadlines.

The method presented in this paper considers the effect
of fixed-priority scheduling during architecture synthesis.
This covers a broad spectrum of embedded applications,
with and without real-time requirements. Experimental
results for parallel implementations of IEEE 802.11g and
WCDMA signal processing algorithms provide a proof of
concept.

Because the structure of targeted parallel programs as
well as task deadlines is known a priori, it is possible
to synthesize multiprocessor architectures that are opti-
mum for the programs. It can be experimentally shown
that such customized architectures are superior compared
to domain-specific ones. That fact is important because
embedded applications exhibit a wide diversity with respect
to the complexity of their algorithms, the rate at which
the algorithms need to operate, as well as their mem-
ory and intertask communication patterns. The conse-
quence is that it is virtually impossible to find a good
architecture that can meet the requirements of a wide
range of algorithms. Customized architectures are therefore
vital.

Since it is desirable to customize a system for a target
embedded parallel application, automated tools for design
space exploration are required to cope with the complexity.
Whereas a skilled engineer can effectively utilize workbench-
based tools [5, 6] to design a feasible architecture, the
sheer number of design parameters renders a disciplined
exploration infeasible. Further, it has been shown in [7] that
often no consistent trend with respect to design objectives
can be observed when design parameters are systematically
changed, where the value of the objective function can
increase or decrease by more than two orders of magnitude
in an apparently random manner when moving between
adjacent sets of parameters in the design space. Moreover,
results obtained can be counter-intuitive. Consequently, even
experienced designers cannot effectively execute a guided
exploration based on their expertise because it is not easy to
predict the outcome of parameter variation so that superior
design points can be easily missed. Those results underline
the need for an automated approach.

To enable an automatic exploration, design parameters
and the objective must be mathematically modeled. Since
this is inherently a combinatorial optimization problem,

it is natural to model the problem as such and solve it
using Integer Linear Programming (ILP). However, the large
number of design parameters that needs to be considered
at the system level leads to a huge number of variables and
constraints, thereby posing a serious challenge for ILP solvers
that manifests itself in very long synthesis time. But to be
useful, this automated synthesis approach must be fast in
order to facilitate a systematic exploration.

On the other hand, recent advances in propositional
satisfiability (SAT) methods [8] have spurred significant
improvements in methods for Answer Set Programming
(ASP) [9, 10]. ASP is a form of declarative programming
oriented towards difficult search problems. Given the success
that has been reported for solving such problems, it is
interesting to study the effectiveness of these methods for
speeding up the automated synthesis problem. Therefore,
this paper compares ILP versus ASP-based high-level syn-
thesis both in terms of synthesis runtime and the quality of
synthesized architectures. The study uses parallel implemen-
tations of baseband signal processing chains for IEEE 802.11g
and WCDMA wireless standards.

The rest of this paper is organized as follows. Summaries
on related work and on our design flow are given in Sections
2 and 3, respectively. The ILP model for optimization is
presented in Section 4, followed by a model of the problem
in ASP semantics in Section 5. Finally, a comparison of the
two methods and concluding remarks are given in Sections 6
and 7, respectively.

2. Related Work

Mathematical modeling and tool automation for synthe-
sizing multiprocessor systems are an area that has been
extensively discussed in the literature using techniques
ranging from combinatorial optimization, through dynamic
programming, simulated annealing, evolutionary algorithms
to application-specific heuristics.

The vast majority of related work in this area have
the drawback that the design space is preconstrained by
fixing the architecture first, followed by task mapping and
scheduling [11–13]. Since no customization is possible,
resulting solutions are not optimum because the optimum
application-specific system is imposed by the nature of the
application, as dictated by operations performed within its
tasks, as well as by intertask communication pattern. Often
preconstraining is employed to overcome the complexity of
the design space.

Some approaches attempt to reduce the design com-
plexity by eliminating design dimensions [14, 15] thereby
limiting the optimality of architectures. Advanced related
works [16–18] recognize and address this aspect and attempt
to solve the subproblems simultaneously. However, these
approaches separately consider subproblems, effectively pre-
constraining the design space, albeit to a much smaller
degree. Other approaches such as [19] randomly search for
a feasible solution and may not lead to an optimum solution.

Scheduling during or after mapping too has been
extensively treated in the literature [19, 20]. There also
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have been efforts to map tasks in a way that optimizes
for power [21], reduces chip temperature at run time
[22], or minimizes interprocessor communications [23].
Dynamic mapping techniques have also been introduced
with objectives such as temperature management [24] and
performance optimization through adaptive mapping [25].
These approaches however consider scheduling on fixed
architectures.

In contrast, in order to synthesize application-specific
optimum architectures, it is important to simultaneously (i)
select processors, (ii) map and schedule tasks to them, and
(iii) select one or several networks for communications, such
that design constraints and objectives are met. This avoids
the problem of preconstraining the design space, leading to
globally optimum architectures.

The contribution of the method presented in this paper
is a comprehensive mathematical model that can be used
for automated design space exploration without limiting the
design space as well as a comparison of candidate approaches
to tackle the problem.

3. The Design Flow

Figure 1 depicts the flow. The input to the flow is a parallel
program, and optionally information on task periods. The
application is simulated and analyzed to obtain intertask data
traffic and task precedence information. This information is
used to specify an instance of an ILP problem or an ASP
program. Similarly to other related work in this area, the
other input to the design flow is information on available
processing elements and communication networks, as well as
their costs and constraints. In our approach, the design space
is not pre-constrained, and the problem dimensions are
not ranked. This ensures the optimality of found solutions.
For real-time systems, it is often sufficient to meet timing
constraints so that the interest is not to find the fastest
solution. In such situations, the flow can be used to find the
smallest system instead.

The solution generated by the ILP/ASP solver is used
to generate an abstract description of the system, which is
passed to further tool-chains described in [1] to generate the
configuration bit stream. Because postsynthesis results could
deviate from initial cost models used, new cost models can
optionally be extracted after placement and routing to start a
new iteration.

4. ILP Model

The ILP model used for automated synthesis in this work
consists of two major parts. The first part covers constraints
that establish the system functionality, without any regards
to deadlines [7]. The second part covers scheduling and the
optimization objective and is the focus of this paper.

The following notation is used. Ii ∈ {I0, . . . , In} is a task,
J j ∈ {J0, . . . , Jm} is a processor, and xi j is a Binary Decision
Variable (BDV). xi j = 1 means that task Ii is mapped on
processor J j , xi j = 0 otherwise.

The objective function for a terminating parallel pro-
gram, or for one period of a non-terminating program, is
expressed as

min

⎛
⎝

n∑

i=0

m∑

j=0

xi j · Tij + Tnet + Tswitch

⎞
⎠, (1)

where Tij is the execution time of task Ii on processor J j , and
Tnet is the cost in time of using communication resources as
described in [7]. Tswitch is the cost in time of task switching
which depends on several factors as described in subsequent
sections

Tswitch =
2n−2∑

l=0

m∑

j=0

γl j · Fl j ·
(
Tsl j · t j +Oj

)
. (2)

4.1. The Processor Architecture. This is the actual cost of
switching context, which depends on the memory and on the
microarchitecture, as well as on the mechanism for context
switching (i.e., under software or with hardware support).
The coefficient t j captures this cost and can be reliably
precomputed for processors of interest. Whether this cost is
actually incurred depends on task mapping as discussed in
Section 4.4.

4.2. The Kernel/OS. The kernel or real-time OS introduces
a control overhead due to scheduling (polling, moving tasks
between run and delay queues, etc.). In this formulation, it
is assumed that kernel/OS is already selected and is fixed,
for each of the processors in the design space (i.e., OS
selection is not a part of the optimization problem, so that
the associated cost is coupled to the selected processor). This
is however not a limitation because, when desired, instances
of the same processor running different operating systems or
microkernels can be specified in the ILP problem to extend
the design space.

The overhead is caused by the clock interrupt handler
interfering the execution of application tasks because of its
higher priority. This increases the number of task switching
and the response time of application tasks. The coefficient
Oj in (2) captures the latter cost, the clock-handler time. The
analysis in [26] describes how the clock-handler time can be
estimated for fixed-priority schedulers. Because the overhead
is kernel/OS-specific, and may depend on task mapping, the
computation/estimation of Oj in the problem formulator
(Figure 1) is implemented in an extensible way to support
new kernel/OS models.

4.3. The Schedule/Task Switching. The schedule determines
how often task switching takes place as captured by the
coefficient Tsl j in (2). Tsl j is the number of task switching
that is incurred for the duration of the application, or for
one period, when a particular group of tasks with the index
l is mapped on a processor J . One can distinguish between
three major scheduler categories: cooperative, fixed-priority
preemptive, and deadline-driven schedulers.

In simple cooperative schedulers (e.g., cyclic executives),
there is no preemption, so that Tsl j = 0. The overhead
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Figure 1: Architecture synthesis flow.

incurred when a task begins and ends is already captured by
Tij in (1) as part of function-call overhead.

Preemptive schedulers often require task priorities to
make decisions by letting higher-priority tasks run first.
This can improve performance if critical tasks are assigned
higher priorities. Priorities can be fixed or dynamic depend-
ing on whether priorities can change at runtime. The
exception to this distinction are measures against priority
inversion. Even though such measures do change priorities
dynamically, the changes are temporary to otherwise fixed
priorities.

Deadline-driven schedulers change task priorities
dynamically and have the advantage that deadlines can
be guaranteed at higher CPU utilization compared to
fixed-priority scheduling. In either case, Tsl j is a function
of the number of context switching, and its usage in the
ILP model is the same. This section discusses how the
worst-case number of context switching can be estimated for
fixed-priority schedulers, which are more typical in real-time
embedded systems.

For these schedulers, Tsl j is equal to the number of
interferences due to higher priority tasks and is obtained
from Rate Monotonic Analysis (RMA) [27] within the
problem formulator. The RMA in the formulator currently

supports tasks with single deadlines, and which have fixed
durations and nonvarying periods. However, the implemen-
tation is easily extensible to support flexible RMA models.
Such models can be adapted to applications with arbitrary,
multiple, or internal deadlines [28]. Future extensions will
affect the computation of Tsl j only. The ILP model for
synthesis remains unaffected.

RMA is conducted for all possible task groups and
mappings. The output of RMA, the response r, is used
to estimate Tsl j . Algorithm 1 shows how the parameter is
computed.

The first line computes a scheduling table for a group
Gl of tasks, if the group would be mapped on a processor
J j . The rows in the scheduling table contain the priority of
a tasks in the group, together with their deadlines, periods
and execution times on the processor. The priorities are
computed according to [27].

The table is initially filled in arbitrary order with task
information, and the priorities are initially zero. The rows are
then sorted in two passes according to periods and deadlines.

Prior to sorting, deadlines are relaxed according to
Algorithm 2 in order to avoid pessimistic schedulability
analysis. The analysis assumes that all tasks are released at
the same time. If the response of a task is then greater than
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(1) Table T = createSchedulingTable(Gl , J j ,
task time Tij , task deadlines Di, task periods Ti)

(2) for all Ii ∈ Gl do
(3) Response ri = computeResponse(Ii,T)
(4) Fl j = 1
(5) if r > Di then
(6) Fl j = 0
(7) end if
(8) end for
(9) r = computeLargestResponse(Gl ,T)
(10) Tsl j = �r/period of highest priority task in Gl�

Algorithm 1: Determining context switching cost.

(1) for each Ii ∈ Gl , set parent deadline to zero
(2) while Gl is not empty do
(3) if Gl is circular then
(4) select Ii ∈ Gl such that Ti ≤ Ti2 for all Ii2 ∈ Gl

(5) else
(6) select Ii ∈ Gl with no parent in Gl

(7) end if
(8) for each child Ii2 of Ii in Gl do
(9) if parent deadline < Di then
(10) set parent deadline to Di

(11) end if
(11) end for
(12) if Ii had a parent in Gl then
(13) Di+ = parent deadline
(14) end if
(15) remove Ii from Gl

(17) end while

Algorithm 2: Deadline relaxation during RMA.

the deadline as shown in Algorithm 1, the schedule is
declared infeasible. However, if there is a precedence relation-
ship, not all tasks are released at the same time. In particular,
if there is an edge between Ii1 and Ii2 , then Ii2 cannot start
until Ii1 has finished. Therefore, the deadline Di2 needs to be
relaxed to Di2 = Di2 + Di1 to reflect the fact that there is an
offset from the release time of its parent task.

Relaxation proceeds by selecting the most critical task. If
the subgraph Gl of the application graph G is circular, it is
not immediately obvious which task is most critical because
of circular producer-consumer relationships. Therefore, the
algorithm selects the task in Gl with the shortest deadline.
Because a critical task is eliminated fromGl at the end of each
iteration, this selection has the effect of introducing cuts inGl

which removes circular paths. Otherwise, if Gl has no cycles,
the most critical task in Gl is the one that does not consume
data from other tasks in the subset. Before a task is removed
from Gl, its deadline is relaxed by adding the deadline of its
already removed parent, if the task had one. If the task had
multiple parents, then the largest of its parents’ deadlines
is selected according to lines 8–12. This relaxation does not

impose any limitation to the type of application graph that
can be handled by the synthesis flow.

After relaxation, sorting begins. The first pass sorts tasks
according to periods in ascending order. If the tasks have
different periods, andGl is at least partially connected, then a
critical assumption is made that if there is a node in Gl with a
period less than that of any of its parent, then the edge between
the node and the parent represents a weak precedence meaning
that the corresponding task can execute without receiving data
from its parent. An example would be a task that infrequently
obtains new parameters from another task for its internal
computations. Otherwise, the application graph is faulty, and
the resulting schedule is meaningless. Partial connectedness
in this context means that Gl contains at least one nontrivial
connected subgraph.

The second pass sorts the table again according to
deadlines, but the sorting is done only within rows contain-
ing the same period. Since deadlines have been previously
relaxed, no distinction with respect to precedence relation-
ship between tasks needs to be made; if tasks Ii1 and Ii2
have no direct or indirect precedence, then Ii1 must finish
before Ii2 if Di1 < Di2 , because Ii1 needs to finish earlier; if
there is a precedence relationship, then Di1 < Di2 because of
the relaxation step, and Ii1 must appear before Ii2 . Indirect
precedence in this context means that there is a path from Ii1
to Ii2 via one or more intermediate tasks. Therefore, because
second sorting is only done within rows, tasks with shorter
periods appear before those with longer periods regardless of
whether or not latter tasks have shorter deadlines.

The sorting is topological and is thus not unique.
Moreover, if the group represents a nonconnected graph,
then the result after sorting is a partial order. The final order
after sorting reflects the priorities in descending order, which
are assigned by a simple enumeration.

With the table in place, the algorithm proceeds to
compute the response time of each task in the group Gl

according to the scheduling table. The response is computed
recursively according to [27] as

ri = Tij +
∑

∀Iih∈Gl|priority(Iih)>priority(Ii)

⌈
ri
Tih

⌉
· Tih j . (3)

This model of response time differs slightly from that of Liu
and Layland [27] in that no bound in task blocking time
due to safeguarding against priority inversion is included.
This is because the programming model used here is message
passing so that tasks do not share protected data such that
semaphore-based synchronization for variables or memory
locations is not required.

The analysis then concludes by comparing the response
time against the execution time in lines 4–7 of Algorithm 1.
The scheduling feasibility parameter Fl j in (2) is set to 0
if the response time is larger. Finally, the number of task
switching is estimated in line (10) from the response time of
the lowest-priority task and the period of the highest-priority
task. This worst-case estimate is conservative by making
the assumption that all tasks in the group are always ready
when released so that the lowest-priority task experiences
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maximum interference. The use of the parameter Fl j is
explained in the following subsection.

4.4. Task Mapping. Task mapping influences the switching
costs in two ways: (i) by selecting the processor, the switching
mechanism, and thus the cost, is determined and (ii) by
grouping tasks on one processor, the optimum schedule that
can be applied, and thus the number of task switching,
is determined. Consequently, scheduling and task-mapping
influence each other during optimization.

To include this cross-effect during optimization, two
strategies can be followed: (i) integrate scheduling in an
ILP solver so that a schedule is computed prior to cost
calculation for a candidate mapping or (ii) precompute
optimum schedules for all possible mappings, and integrate
the schedules in the ILP formulation. In this work, we opted
for the latter strategy as discussed in the previous subsection.
This is because, by pre-computing the schedules, infeasible
mappings can be eliminated to reduce the size of the ILP
instance. For this purpose, a coefficient Fl j is used in the
formulation in (2). This coefficient is computed in the ILP
formulator during RMA. Its value is 1 if there is a feasible
schedule for a group of tasks with the index l on processor J ,
and 0 otherwise. We next describe how Fl j is used to enforce
feasibility constraints in the formulation.

Let P (I) be the power set of the task set I = {I0, . . . , In}.
Let Gl be an element in the power set excluding the empty
set, with l = {0, 1, . . . , 2n − 2}. Let Imapped ⊂ P (I) be a
set, so that each element contains one or more tasks that
will be mapped on the same processor. The solution to
the combinatorial optimization problem consists of the set
Imapped. Each element in Imapped is associated with a task
switching overhead as dictated by its schedule.

Now since Imapped is not known at formulation time, a
variable Ml j is introduced for each element Gl in the power
set P (I). If Ml j = 1, then Gl ∈ Imapped. If Ml j = 0, then Gl is
not an element of Imapped. Therefore, we insist that

Ml j ≤ Fl j ∀Ml j , (4)

so that if and only if the mapping is feasible, then Ml j

constitutes a degree of freedom during synthesis. We next
describe how the decision variables Ml j and xi j are linked
through ILP constraints.

Recalling that xi j = 1 implies that a task Ii is mapped on a
processor J j , it follows for any group Gl, Ml j = 1 if and only
if xi j = 1 for all Ii ∈ Gl. This results into a logical constraint

Ml j =
(
xil0 j ∧ xil1 j ∧ · · · ∧ xilg j

)
∀Ml j

with Gl =
{
Iil0 , Iil1 , . . . , Iilg

}
, lg = |Gl| − 1.

(5)

To transform the logical constraint into a linear form, two
steps were applied. First, we specified that

Ml j = 0 −→
(
xil0 j + xil1 j + · · · + xilg j

)
< |Gl|,

Ml j = 1 −→
(
xil0 j + xil1 j + · · · + xilg j

)
= |Gl|.

(6)

These two constraints insure that when a schedule is not
feasible, then at least one Ii ∈ Gl is not mapped on J j . This
implies that other groups which are either proper subsets of
Gl, or which are not super sets of Gl, can be mapped on J j ,
provided that they have a feasible schedule. The second step
then is a set of inequalities that satisfy the specification in(6)

xil0 j + xil1 j + · · · + xilg j ≤ |Gl| − 1 + Ml j , (7)

xil0 j + xil1 j + · · · + xilg j ≥ |Gl| ·Ml j . (8)

With (4), (7), and (8), feasible mappings are guaranteed.
The last step is to capture the switching cost of the groups
in the objective. A contribution of a group to the switching
cost is given by Ml j · Tsl j . However, this contribution cannot
be directly used in the objective function by taking the sum
of all contributions from all groups. This is because, as it
can be observed from (7) and (8), if a group Gl is mapped
on a processor J j , then the value of Ml j for all groups
which are subsets of Gl is also one. Consequently, taking the
sum of contributions directly would erroneously include the
switching cost of subgroups.

To prevent this incorrect inclusion of switching costs, we
need to specify that the switching contribution of a group
should be counted only when Ml j = 0 for all of its supersets.
This leads to nonlinear terms in the objective function of the
form Ml j(Mls1 j−1)(Mls2 j−1) . . ., where ls1 and ls2 are indices
of supersets for a group with an index l.

To break the non-linearity, a BDV γl j is introduced for
each Ml j . Its value is 1 only when the group is mapped, and
Ml j = 0 for all supersets. To model this property, we note
from (8) that the left-hand side of the inequality for a group
Gl1 with Ml1 j = 1 is greater than the left-hand side of the
same inequality for a group Gl2 , if Gl2 ⊂ Gl1 . Therefore, the
following relationship holds:

0 ≤ 1
|I|

⎛
⎝∑

Ii∈I
xi j −

∑

Ii∈Gl

xi j

⎞
⎠ < 1 ∀Gl, J j . (9)

The first sum in the above relationship is the total number
of tasks that have been mapped on J j . The second sum is the
size of a group, which is the same as the left-hand side of
(8). The difference of the two sums is zero in two cases: (i)
if nothing is mapped on J j and (ii) if a mapped group has
no superset Gls for which Mls j = 1 for that specific mapping.
The sum is greater than zero, if for Gl, there is a superset Gls

with Mls j = 1. This is because there is at least one decision
variable xi j with value 1 in the first sum, which is not present
in the second. The largest value that the difference of the two
sums can have is |I| − 1, so that the upper limit in (9) is 1.

We next exploit this relationship by specifying that

γl j +
1
|I|

⎛
⎝∑

Ii∈I
xi j −

∑

Ii∈Gl

xi j

⎞
⎠ ≤ 1,

γl j +
1
|I|

⎛
⎝∑

Ii∈I
xi j −

∑

Ii∈Gl

xi j

⎞
⎠ ≥Ml j − 1 +

1
|I| .

(10)
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4.5. Processor-External Factors. Processor-external factors
such as interrupts and data availability have a direct runtime
impact on the schedule. The foregoing formulation has the
limitation that it is based on worst-case assumptions in rate
monotonic analysis. In particular, it is assumed that tasks in a
group Gl with no precedence relationship can become ready
at the same time.

With respect to data availability, the worst-case assump-
tions can be relaxed by taking into account in RMA
when data can actually arrive depending on source-task-
destination-task mapping, and on the selected communica-
tion network.

A possible relaxing solution is to compute offsets between
release times of tasks with indirect precedence. For example,
if there are three tasks such that the first sends data to the
second, and the second to the third, and the mapping is
such that the first and third are mapped on one processor,
and the second on another, then there is an offset between
release times of the first and third tasks. This offset is equal
to the time needed for data to be sent to the second task, plus
the response time of the second task, plus the time for the
resulting data to be sent from the second task to the third
task. A suitable ILP formulation that will not significantly
increase the problem size needs to be found.

5. Answer Set Programming

Answer Set Programming (ASP) is different from procedural
programming in that a problem is described using a formal
language, and a solver finds a solution. A problem is
presented as a logic program consisting of a set of atoms
and rules [29]. An atom is a Boolean proposition about
the problem universe; whereas rules specify relationships
between the atoms. A solution to a program is called a stable
model and tells which atoms are true [29]. This is similar to
SAT problems if rules and stable models are perceived to be
clauses and satisfying assignments, respectively. ILP models
can be encoded into equivalent ASP programs. We opted to
use the ASP solver clasp [9] whose grounding tool natively
supports the encoding of linear constraints [30]. The native
support eliminates the need of having to translate constraints
into clauses, a procedure that can lead to a huge number
of clauses [31]. The rest of this section describes how the
ILP model from Section 4 is coded into an equivalent ASP
program. The same notation is used so that variables from
Section 4 now stand for atoms.

Linear inequalities are coded into rules whose general
form is

b[v0 = a0, v1 = a1, . . . , vn = an]c, (11)

where the syntax vi = ai, ai ∈ N denotes the weight
ai of a variable vi in a linear (in)equality, and the syntax
b[· · · ]c, b, c ∈ N is a general form for constraining such
that a coded constraint represents an equality if b = c,
a less-than inequality if b is not specified (is absent), and
a greater-than inequality if c is not specified [30]. Since
weights in the ILP model are generally out of R whereas
ai, b, c ∈ N, rounding is required. We therefore round ai

and b up, and c is rounded down. Consequently, more
restrictive constraints result, which can theoretically exclude
a solution that otherwise does not violate the original
problem constraints. This is the reason that we compare the
quality of generated solutions in Section 6.

The general form (11) is used throughout for constraints,
with a few exceptions in which constraints can be directly
expressed as clauses, and thus directly as ASP rules. This
has the advantage of eliminating auxiliary variables and
associated constraints such that the overall problem size
becomes smaller. An example is (5); the link between the
auxiliary variable Ml j for a group of tasks and mapping
decision variables xi j is already in conjunctive form so that
the constraint can be specified directly as a rule

Ml j ←− xil0 j , xil1 j , . . . , xilg j , (12)

thereby dropping (7) and (8). However, (12) represents a
logical implication, whereas (5) is a logical equality. Without
further measures, a stable model can potentially have Ml j

as true when one or several of the atoms xilg j are false. We
therefore additionally add the rule

←−Ml j , 1
[

not xil0 j , not xil1 j , . . . , not xilg j
]

, (13)

as an integrity constraint [30] such that Ml j is not derived if
any of its associated atoms is not derived.

Similarly, while not directly obvious, (10) stand for
logical conjunctions that can be represented by the rule

γl j ←−Ml j , not Mls0 j , not Mls1 j , . . . , (14)

where Mlsi j
is the ith superset of the group Gl. The

implication is that γl j is derived when the corresponding
group Ml j is derived, but none of the atoms for associated
supersets is derived.

Using the same syntax for specifying weights, the objec-
tive function has the form [30]

minimize [v0 = a0, v1 = a1, . . . , vn = an], (15)

but in this case the weights ai are not directly rounded, rather,
the weights which represent costs in time are converted into
processor cycles so that (15) matches (1) as close as possible.
In order to avoid large numbers which can overflow the
computation of the objective function, these weights are
expressed in terms of cycles that would have been spent on
the slowest processor, normalized by the number of cycles on
the same processor that would have been consumed for the
smallest weight in the objective.

6. Comparison of Synthesis Results

This section compares synthesis runtime as well as quality
of results for ASP-based synthesis against the ILP-based
flow. For this purpose, two parallel programs have been
implemented using the Message Passing Interface (MPI)
standard [32]. Only a subset of the standard that can be
efficiently implemented in embedded systems has been used.
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Table 1: WLAN tasks.

Function Index Deadline P1 P2 P3

Master I0 19 6032 1034 11

Phase I1 988 3504 601 601

Channel I2 988 909 156 156

Timing I3 19 33781 5791 17

Demap I4 1216 598 102 102

FFT I5 1216 534 534 534

Fine I6 19 11 11 11

Coarse I7 19 13 13 13

Table 2: WCDMA tasks.

Function Index Deadline P4 P5

Master I0 65 4376 43

FFT I1 4160 3788 3788

Vector mul I2 4160 3082 3082

FFT I3 4160 3788 3788

ov. add I4 4160 3665 3665

Long Code I5 1040 3784 147

DLL I6 1040 8746 1000

Short Code I7 1040 835 143

Rake I8 1040 16204 686

Combiner I9 16640 383 383

The first application implements a signal processing
chain for IEEE 802.11g WLAN standard between the antenna
and the channel decoder. The algorithms are described in
[33–36]. The second application implements the function-
ality for the same portion for WCDMA. The algorithms are
described in [37–39]. Tables 1 and 2 show the parallel tasks
and their deadlines in nanoseconds. In this implementation,
the deadlines are equal to the periods. The latter were
obtained from the standards. The three last columns in
Table 1 show approximated execution time in nanoseconds
of the tasks on three different processors with loosely coupled
accelerators. The execution times were obtained by executing
the tasks on given processors. Similarly, the two last columns
in Table 2 show the approximated time for WCDMA tasks on
two other processors.

The differences in execution times in the two tables
are caused by different type of accelerators attached to the
processors. For example, all cores have a butterfly accelerator
based on the architecture described in [40]; therefore, the
execution time for FFT tasks is the same for all processors
(the difference for FFT tasks between WLAN and WCDMA
is due to the different number of FFT points). On the other
hand, only P2 and P3 have a CORDIC accelerator; therefore,
the execution time for the carrier-phase offset estimation and
compensation task is only 156 nanoseconds for these cores,
versus 909 nanoseconds for P1.

Tables 3 and 4 show the communication traffic between
tasks for the two applications. These were obtained from MPI
simulations for 27 OFDM symbols for WLAN, and for one
slot for WCDMA. The third and fourth columns show the
amount and number of data transfers, respectively.

Table 3: Traffic pattern for WLAN.

Src (i1) Dst (i2) Di1 i2 (bytes) Bi1 i2
I0 I2 220 55

I0 I7 2339608 2242

I0 I1 220 55

I4 I2 5824 28

I4 I1 5824 28

I6 I5 7168 28

I2 I1 5824 28

I7 I6 2913300 2241

I5 I4 7168 28

I1 I3 5824 56

In order to additionally compare the synthesis runtime
with and without fixed-priority preemptive scheduling,
configurations with a basic cyclic executive and with a
preemptive kernel were used for all processors with each run.

For ILP, the same solver settings were used for all cases
(node auto-ordering, most feasible basis crash, automatic
branch and bound branching, and presolving of rows and
columns) [41].

No options were specified for ASP. However, we deter-
mined that splitting the objective into its three constituent
parts for execution, communication, and scheduling time
significantly speeds up the ASP solver time by up to
two orders of magnitude. This circumstance was exploited
subsequently since the speed up is not accompanied by any
penalty in quality of the solution. Splitting the objective
function is a feature in clasp/clingo that was conceived to
avoid possible overflows when computing the value of the
objective function because of integrality of weights [30].

Tables 5 and 6 show the parameters of used processors
and networks, respectively. The number of processors and
networks used was 6 in each case. Whereas the number of
resources could be selected to reflect the number of nodes
and edges in the application graph, it is advantageous to start
with a smaller number to speedup the synthesis. If resources
are exhausted, the number should be increased in another
run to avoid preconstraining the design space.

Table 7 summarizes the results, which were obtained on
a machine with a T5500 processor and 2 GB of memory. The
columns “No. cons.” show the number of constraints and
the number of rules for ILP and ASP modes, respectively.
Similarly, the columns “No. var.” show the number of
decision variables and atoms for the two modes. These
numbers give a measure for the complexity of the problem
instances. The number of variables for ILP mode is much
less than the number of atoms for ASP mode because the ILP
solver, lp solve, has a presolve option that can reduce the size
of the problem by eliminating redundant constraints. This
option was exploited because presolving tends to reduce the
solver time.

The columns “Form.” and “Solver” show synthesis run-
time spent formulating and solving the problem, respectively.
Formulator time is rather large; most of this time is
spent reading text files generated from MPI simulations.
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Table 4: Traffic pattern for WCDMA.

Src (i1) Dst (i2) Di1 i2 (bytes) Bi1 i2
I8 I9 40948 2560

I1 I2 81924 161

I0 I1 81412 160

I5 I8 10236 2559

I5 I6 40960 10240

I4 I6 40964 10241

I3 I4 81924 161

I2 I3 81924 161

I6 I8 81892 5119

I7 I8 10236 2559

Table 5: Parameters of used processors.

Name Tj (μs) Aj (slices) No. instances

P1 0.70 450 2

P2 0.93 526 2

P3 1.20 605 2

P4 1.20 553 3

P5 1.19 724 3

Table 6: Parameters of used networks.

Type Mk Lk (μs) pk τk (μs) No. instances

Link 2 6.25 0 0 3

Bus 16 8.00 0.0625 16 3

The sizes of the files in these experiments were 4.8 GB
and 6.4 GB for WCDMA and WLAN, respectively. They
contain, among others, time stamps for each data packet
transmitted between tasks. This large time is not a limitation
for automated exploration; much faster time can be achieved
by using compressed binary files and/or usage of cache
files to capture relevant information only during automated
explorations.

The solver times for ASP mode are dramatically shorter
by up to three orders of magnitude. Given that ASP solver
time is in the order of few seconds (versus up to 8 hours
for ILP mode), synthesizing using ASP is a promising
approach for automatically exploring a large number of
design alternatives as it is the requirement for this flexible
multiprocessor synthesis problem.

As previously mentioned, we additionally need to com-
pare the quality of results because of a potential for over-
constraining in ASP mode, particularly in light of the fact
that ASP mode is much faster. The columns “Obj.” show
the value of the objective function after optimization. Since
both methods are heuristic, it is interesting to know how
far integer solutions are away from corresponding relaxed
solutions, which is a measure of how good a solution is
in case the solver times out. A timeout occurred once for
WCDMA for ILP synthesis mode under cyclic scheduling.
The columns “Gap” give this measure, which indicates that
the solution was quite good even in the timeout case.

I0 I6

I7

I1

I3

I2

I4

I5

P3 P3 P1

(a) WLAN ILP

I0 I6

I7

I2

I5

I1 I3

I4

P3 P2 P3

(b) WLAN ASP

I0

I1

I2

I3

I4

I5

I6

I8

I9

I7

P5 P5

(c) WLAN ILP and ASP

Figure 2: Synthesized architectures under preemptive scheduling.
Dashed lines: links, full lines: buses.

Comparing the value of the objectives for the two
modes, the differences before rounding are insignificant with
the exception of the timeout case where ASP mode found
a better solution. The impact of more restrictive constraints
for ASP mode due to rounding as discussed in Section 5 was
not apparent in these experiments. While these particular
results are suggestive, experiments with a much larger set
of parallel programs are still required to characterize the
potential impact.

The impact of scheduling constraints can be seen by
comparing the values of the objective functions under the
two scheduling modes. Better values were obtained under
cyclic scheduling because no deadlines were imposed when
mapping tasks so that only the execution times needed to
be considered. Consequently, the solvers attempt to group
tasks such that expensive intertask communications are
minimized. However, these apparently faster architectures
are practically not usable because of no deadline guarantees.

Figure 2 shows synthesized architectures under the two
modes for preemptive scheduling. These architectures are
very similar for WLAN, and the same architecture was
obtained for WCDMA. This result emphasizes the potential
for ASP-based synthesis, since the quality of results was
not traded against solver runtime. Synthesized architectures
are not necessarily unique because there may exist several
optimum solutions to a combinatorial problem. Thus, for
WLAN case, where the two architectures are similar but
not the same, it is quite possible that either architecture
could have been obtained through either of ILP or ASP
synthesis mode. This is because all resources are allocated
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Table 7: Synthesis results. Nonshaded rows for ILP, shaded rows for ASP.

Cyclic Preemptive

Problem size Run time (sec) Obj. gap Problem size Run time (sec) Obj. Gap

Appl. No. cons. No. var. form. solver (sec) No. cons. No. var. form. solver (sec)

WLAN 7089 3638 497 636 0.0001 0.0 5901 2538 552 1010 0.10 9.6

WCDMA 32261 13320 701 28811 18.25 7.8 25394 12792 704 19567 16.90 0.2

WLAN 7033 207412 1467 2.421 0.0002 — 7033 207412 1477 16.797 0.08 —

WCDMA 25631 21806 977 6.781 16.898 — 25631 21806 1125 10.219 16.90 —

through a non-constraining combinatorial optimization
process according to (1) based on resource parameters and
characteristics of the parallel program, and not on the
synthesis method used.

Finally, two discussion points are in order for these
architectures. First, as previously mentioned, our proposed
design flow does not pre-constrain the design space. As
a result, multiple communication resources are allocated
between any pair of processors in this experiment. This
allocation minimizes expensive intertask communications
which are necessary under preemptive scheduling because
of schedulability constraints leading to conditions such that
certain tasks cannot be mapped on the same processor. Thus,
the generated architecture description (Figure 1) includes
not only the netlist, but also information on which commu-
nication libraries a task should use to communicate with any
other task. This information is used by configuration tools
to automatically bind appropriate low-level communication
libraries for different networks, links and buses.

Second, the physical implementations of messaging
passing interfaces make use of FIFO to queue messages.
This means that, once a task has initiated a data transfer
by calling the appropriate function, the task is free to do
further processing and to initiate or wait for data via another
communication resource. The result is that communication
latencies can be hidden through overlapping. However, this
effect is not accounted for in the objective function because
temporal information is not used. Consequently, the actual
cost in total computation time can be smaller than what the
objective function indicates.

Accounting for temporal information is not a feasible
prospect because a far greater number of variables would
need to be considered to model and capture all possible
moments in which communications can be initiated.

7. Summary and Conclusion

In this paper, a method for automated architecture synthe-
sis for FPGA multiprocessor systems has been presented.
The method takes into account fixed-priority preemptive
scheduling to cover a broad spectrum of embedded appli-
cation requirements. Combinatorial optimization is used
during synthesis. A case study, in which architectures for
IEEE 802.11g and WCDMA baseband signal processing
algorithms are synthesized, demonstrates the feasibility of
the automated synthesis by showing that problems with sizes
that can be encountered in the embedded domain can be

solved. Synthesis based on ILP and ASP methods has been
compared. ASP mode has a far greater potential for solving
difficult synthesis problems. Solver times in this mode were
in the order of a few seconds, which is up to three orders of
magnitude faster compared to ILP-based synthesis without
sacrificing the quality of results.

References

[1] C. Bobda, T. Haller, F. Muehlbauer, D. Rech, and S. Jung,
“Design of adaptive multiprocessor on chip systems,” in
Proceedings of the 20th Symposium on Integrated Circuits and
System Design (SBCCI ’07), pp. 177–183, Rio de Janeiro, Brazil,
September 2007.

[2] W.-T. Zhang, L.-F. Geng, D.-L. Zhang, et al., “Design of
heterogeneous MPSoC on FPGA,” in Proceedings of the 7th
International Conference on ASIC (ASICON ’07), pp. 102–105,
Guilin, China, October 2007.

[3] M. Saldana, D. Nunes, E. Ramalho, and P. Chow, “Config-
uration and programming of heterogeneous multiprocessors
on a multi-FPGA system using TMD-MPI,” in Proceedings of
the IEEE International Conference on Reconfigurable Computing
and FPGA’s (ReConFig ’06), pp. 1–10, San Luis Potosi, Mexico,
September 2006.

[4] N. Njoroge, J. Casper, S. Wee, et al., “ATLAS: a chip-multi-
processor with transactional memory support,” in Proceedings
of the Conference on Design, Automation and Test in Europe
(DATE ’07), pp. 3–8, San Jose, Calif, USA, 2007.

[5] T. Kangas, P. Kukkala, H. Orsila, et al., “UML-based mul-
tiprocessor SoC design framework,” ACM Transactions on
Embedded Computing Systems, vol. 5, no. 2, pp. 281–320, 2006.

[6] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Extending the
transaction level modeling approach for fast communication
architecture exploration,” in Proceedings of Design Automation
Conference (DAC ’04), pp. 113–118, 2004.

[7] H. Ishebabi and C. Bobda, “Automated architecture synthesis
for parallel programs on FPGA multiprocessor systems,”
Microprocessors and Microsystems, vol. 33, no. 1, pp. 63–71,
2009.

[8] M. R. Prasad, A. Biere, and A. Gupta, “A survey of recent
advances in SAT-based formal verification,” International
Journal on Software Tools for Technology Transfer, vol. 7, no.
2, pp. 156–173, 2005.

[9] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “clasp:
a conflict-driven answer set solver,” in Proceedings of the 9th
International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR ’07), vol. 4483 of Lecture Notes in
Computer Science, pp. 260–265, Tempe, Ariz, USA, May 2007.

[10] E. Giunchiglia, Y. Lierler, and M. Maratea, “Answer set
programming based on propositional satisfiability,” Journal of
Automated Reasoning, vol. 36, no. 4, pp. 345–377, 2006.



International Journal of Reconfigurable Computing 11

[11] D. Bertozzi, A. Jalabert, S. Murali, et al., “NoC synthesis flow
for customized domain specific multiprocessor systems-on-
chip,” IEEE Transactions on Parallel and Distributed Systems,
vol. 16, no. 2, pp. 113–129, 2005.

[12] A. Hansson, K. Goossens, and A. Rǎdulescu, “A unified
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1. Introduction

Systems on a Chip (SoCs) have been evolving in complexity
and composition in order to meet increasing performance
demands and serve new application domains. Changing user
requirements, new protocol and data-coding standards, and
demands for support of a variety of different user applica-
tions require flexible hardware and software functionality
long after the system has been manufactured. Inclusion of
hardware reconfigurability addresses this need and allows a
deeper exploration of the design space.

Nowadays, reconfigurable hardware systems, FPGAs in
particular, are receiving significant attention. At first, they
have been employed as a cheap means of prototyping and
testing hardware solutions, while nowadays it is not uncom-
mon to even directly deploy FPGA-based solutions. In this
scenario, that can be termed Compile Time Reconfiguration
[1], the configuration of the FPGA is loaded at the end of the
design phase, and it remains the same throughout the whole
application runtime. With the evolution of technology, it

became possible to reconfigure the FPGA between different
stages of its computation, since the induced time overhead
could be considered acceptable. This process is called Run
Time Reconfiguration (RTR) [1]. RTR is exploited by creating
what has been termed virtual hardware [2, 3] following the
concept of virtual memory in general computers. When an
application bigger than the available FPGA area has to be
executed, it can be partitioned in m partitions that fit in
that area and these will be executed into numerical order,
from 1 to m, to obtain the correct result. This idea is
called time partitioning, and has been studied extensively
in literature (see [4, 5]). A further improvement in FPGA
technology allows novel devices to reconfigure only a portion
of its own area, leaving the rest unchanged. This can be
done using partial reconfiguration bitstreams. The partial
reconfiguration time depends on the FPGA logic that needs
to be changed. When both these features are available, the
FPGA is called partially dynamically reconfigurable.

However, this scenario turns the conventional embed-
ded design problem into a more complex one, where
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the reconfiguration of hardware is an additional explicit
dimension in the design of the system. Therefore, in order
to harvest the true benefit from a system which employs
dynamically reconfigurable hardware, existing approaches
pursue the best trade-off between hardware acceleration,
communication cost, dynamic reconfiguration overhead,
and system flexibility. In these existing approaches the
emphasis is placed on identifying computationally intensive
tasks, also called kernels, and then maximizing performance
by carrying over most of these tasks onto reconfigurable
hardware. In this scenario, software mostly takes over the
control dominated tasks. The performance model of the
reconfigurable hardware is mainly defined by the degree of
parallelism available in a given task and the amount of recon-
figuration and communication cost that will be incurred.
The performance model for software execution is on the
other hand static and does not become affected by external
factors. Starting from [6], HW/SW codesign researchers try
to provide both analysis and synthesis methods specific for
new architectures. Classical HW/SW Codesign techniques
need to be improved to design reconfigurable architectures,
because of a new degree of freedom. This new freedom
resides in the design flow: the system can now dynamically
modify the functionalities performed on the reconfigurable
device. The second aim of this work is to present a model
of the problem of scheduling a task graph onto a partially
dynamically reconfigurable FPGA, taking into account the
possibility of having both software and configurable hard-
ware executions. The novelty of this work resides in the
considered architectural model: Figure 1 shows the model.
There is a processor and a reconfigurable part, each one with
its own memory. The architecture is absolutely general and
can be used also for a non-FPGA scenario. Furthermore, in
an FPGA scenario, the processor can be within the FPGA
or outside the device. What is really effective is that it has
to be connected to the reconfigurable part with a channel.
The channel is modeled as a bidirectional bus. Once this
structure is ensured, the developed model works. With this
architecture, when a hardware task needs data from the
processor memory there is a latency due to this transfer.

This work provides the following contributions:

(i) an ILP formulation for the problem of minimizing
the schedule length of a task graph on a 2D partially
dynamically reconfigurable architecture to obtain
optimal performance results,

(ii) a heuristic scheduler which takes into consideration
antifragmentation techniques for general task graphs,
a mix between classical deconfiguration policies and
antifragmentation ones, and the use of out-of-order
scheduling to better exploit module reuse,

(iii) an ILP formulation and a heuristic scheduler for the
extended problems raised by introducing HW/SW
Codesign in the initial problem.

This paper will focus on the scheduling of tasks on
partially dynamically reconfigurable FPGAs in order to
minimize the overall latency of the application. Section 2
proposes a description of the target architecture, describing

Memory

Processor

Memory

Reconfigurable
part

Figure 1: Considered architecture.

(a) (b)

Figure 2: 1D and 2D placement constraints versus 1D and 2D
reconfiguration.

the architectural solution on which the proposed model
has been based. Section 3 describes the proposed ILP for-
mulations and Section 4 the heuristic schedulers. Section 6
presents a set of experimental results comparing the ILP
results and the heuristic ones to the results of the model
presented in [7]. Finally, the conclusions regarding the
proposed approach will be addressed in Section 7.

2. Target Device and Context Description

2.1. Architecture Description. The modern FPGA devices
exploit a technology that allows powerful reconfiguration
features. First, it is possible to perform dynamic reconfigu-
ration. Second, emerging technologies allow 2D reconfigura-
tion increasing the designer’s degree of freedom. The payback
for this increasing freedom is the necessity of new tools
capable of exploiting these features in an effective way. The
possibility of having a 2D partial dynamic reconfiguration
may lead to both better solutions for well-known problems
and feasible solutions for new problems.

Figure 2 shows the differences between 1D and 2D recon-
figurations. In a 1D scenario, a module occupying only a col-
umn portion needs the reconfiguration of the entire column,
while the same module in a 2D scenario can be reconfigured
in much less area. In the case of Figure 2, in a 1D scenario the
two modules would occupy 16 columns, while by exploiting
2D reconfiguration only 8 columns can be used. When a
portion of the FPGA has to be reconfigured, a specific file
called bitstream is needed: this file contains the information
concerning the next behavior of that portion of FPGA.

The main characteristic of bitstreams is that they have
a correlation with the operation they implement: once the
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bitstream is defined, the operation is defined too, while given
an operation, there could exist more than one bitstream
implementing it. Therefore, it is possible to assign to each
bitstream an attribute called type used to identify the
operation implemented, the area occupied on the target
architecture, and the time needed to be configured and to
be executed by that bitstream. The latest FPGA technology,
such as the Xilinx V4 [8, 9] and V5 [10, 11] families, allows
2D partial dynamic reconfiguration. At the same time, the
complexity of the problem of minimizing the schedule length
of an application by exploiting reconfiguration increases.
Furthermore, thanks to multiple reconfigurator devices,
concurrent reconfigurations can be performed, different
modules can be configured simultaneously onto the FPGA.

Let us define a set of reconfiguration features that have
to be taken into account to define the schedule. Module reuse
means that two tasks of the same type have the possibility
to be executed exactly on the same module on board, with
a single configuration at the beginning. The deconfiguration
policy is a set of rules used to decide when and how to remove
a module from the FPGA. Antifragmentation techniques
avoid the fragmentation of the available space on board
trying to maximize the dimension of free connected areas.
Configuration prefetching means that a module is loaded
onto the FPGA as soon as possible in order to hide its
reconfiguration time as much as possible.

2.2. Formal Problem Description. The 2D reconfigurable
device is modeled as a grid of reconfigurable units (RU)
by representing rows and columns as two sets R =
{r1, r2, . . . , r|R|} and C = {c1, c2, . . . , c|C|}: each cell repre-
sented by a pair (r, c), with r ∈ R and c ∈ C, is made
up of ρu CLBs. Columns and rows are linearly ordered, by
which we mean that rk is adjacent to rk±1 on the FPGA,
for every 1 < k < |R|; the same property holds also
for columns. The application is provided as a task graph
〈S, P 〉, which is a Directed Acyclic Graph (DAG). S is the
set of tasks in the graph, while P is the set of precedences
among them. The tasks can be physically implemented on
the target device using a set E of execution units (EUs), which
correspond to different configurations of the resources (RUs)
available on the device, therefore different bitstreams. In such
a scenario, the reconfigurable scheduling problem amounts
to scheduling both the reconfiguration and the execution of
each task according to a number of precedence and resource
constraints. Resource sharing occurs at EU level: different
tasks may exploit the same RUs if they are executed in
disjoint time intervals. Moreover, when they also share the
same EU, they can be executed consecutively with a single
reconfiguration at the beginning. Given any task s and any
of its feasible EU implementations i, we assume that suitable
algorithms exist to readily compute the latency li,s, the size ri
and the reconfiguration time di. Therefore, it is possible to
define a function that specifies for each task:

(i) the EU on which it has to be executed,

(ii) the position on the FPGA where to place the selected
EU,

(iii) the reconfiguration start time for the selected EU, or
the possibility of reuse if possible,

(iv) the execution start time for the task.

In this work the general problem has been simplified: for
each task type there is only one available EU. In this way the
problem does not lose much in generality, but becomes easier
to solve. Since each EU is associated with a bitstream and due
to the former simplification, the model works with a number
of bitstream types equal to the number of task types.

When HW/SW Codesign is considered, there is the
necessity of mapping each task on either the processor
or the FPGA. This introduces complexity in the problem
solution. In this case the task type concept needs to be
extended: each task has both a hardware implementation,
that is, a bitstream, and a software one. These two differ-
ent implementations share the same task type. Moreover,
when HW/SW Co-design is condidered, multiple hardware
implementations are considered: each task may have more
than one bitstream to be implemented on, but the task type
remains just one. Another issue, with HW/SW Codesign,
is that there is the necessity of moving data between
the memory of the processor and the memory of the
reconfigurable device. This introduces latency that must be
taken into account in the scheduling process. This latency
depends on the amount of data needed to be transferred from
a task to one of its children.

3. The ILP Formulation for the 2D
Reconfiguration and Software Executions

We consider a 2D reconfiguration scenario, as presented
in [12]: the sets C and R of RUs are respectively the set
of columns and the set of rows of the FPGA. Therefore,
all RUs have the same ρu (conventionally, ρu = 1). Each
task must be assigned to a rectangular set of RUs and due
to the possibility of having multiple reconfigurator devices,
concurrent multiple reconfiguration may be exploited. We
consider the following model. The starting scenario [12] has
been extended to include the possibility of having a task
executed also in software, we have to extend the classical pure
reconfigurable architecture, considering also the presence of
the processor, not only to take care of the reconfiguration
itself, but also as processing element. Within this scenario,
we can work with a processor host in the static area and
a reconfigurable area, each one with its own memory. The
architecture is absolutely general and can be used also for
a non-FPGA scenario. Furthermore, in an FPGA scenario,
the processor can be within the FPGA or outside the device.
What is really effective is that it has to be connected to the
reconfigurable part with a communication channel. Such
a communication channel is modeled as a bidirectional
bus. Once this structure is ensured, the developed model
works. With this architecture, when a hardware task needs
data from the processor memory there is a latency due to
this transfer. The model considers also multiple hardware
implementations for each task, to explore a bigger solution
space. Since there are two separated memories, one for the
processor and one for the FPGA, it is needed to transfer data
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between them when a task requires it. This consideration
introduces the concept of communication in the model. In
the following are presented only those parts of the model that
need to be added to the former one.

3.1. Constants.

(i) ai j := 1 if tasks i and j ∈ S can be executed on the
same bitstreams (by convention, aii = 1), if 0 they use
different bitstreams;

(ii) aMij := 1 if task i ∈ S can be executed on bitstream
j ∈M, 0 otherwise;

(iii) li j := latency of task i ∈ S executed on an instance of
bitstream j;

(iv) lpi := latency of task i ∈ S executed on the processor;

(v) di := time needed to reconfigure an instance of
bitstream i;

(vi) ci := number of RU columns required by an instance
of bitstream i,

(vii) ri := number of RU rows required by an instance of
bitstream i,

(viii) cdli j := time needed to transfer the data needed
by task j from task i between the FPGA and the
processor memories;

(ix) NREC := number of reconfigurator devices.

The scheduling time horizon T = {0, . . . , |T|} is large
enough to reconfigure and execute all tasks. A good estimate
of |T|may be obtained via a heuristic.

3.2. Variables. Binary variables:

(i) mihkm := 1 if one instance of bitstream i is present on
the FPGA starting from time h until time h + di and
cell (k,m) are the leftmost and bottommost used by
i, 0 otherwise;

(ii) bihkm := 1 if task i is present on the FPGA at time h
and cell (k,m) is the leftmost and bottommost used
by i, 0 otherwise;

(iii) pih := 1 if task i is present on the processor starting
from time h until time h + lpi, 0 otherwise;

(iv) tmi j := 1 if task i is executed on one instance of
bitstream j, 0 otherwise;

(v) cdi j := 1 if task j follows task i and there is the
necessity to transfer data through the channel, 0
otherwise;

(vi) tih := 1 if the reconfiguration of task i starts at time h,
0 otherwise;

(vii) mi := 1 if task i exploits module reuse, otherwise 0;

(viii) Son
i := arrival time of task i on the FPGA;

(ix) Soff
i := last time instant when task i is on the FPGA;

(x) te := overall execution time for the whole task graph.

3.3. Objective Function. The objective is to minimize the
overall completion time of the task graph,

min te. (1)

3.4. Constraints. We used the if-then transformation (see
[13]) to model the constraints marked with a∗.

3.4.1. Task-to-Bitstream Assignment Constraints. Each task
executed onto the FPGA must be executed on a particular
bitstream:

tmi j ≥ mjhkm + bi(h+dj )km − 1, i ∈ S, j ∈M,

k ∈ C, m ∈ R, h ≥ 1∧ h ≤ T − dj ,
(2)

tmjn − tmin ≤ 2− bihkm − bj(h−1)km,

i, j ∈ S, n ∈M, k ∈ C, m ∈ R, h ∈ T.
(3)

When a task is executed in software, it does not need any
bitstream, otherwise it needs exactly one bitstream:

∑

j∈M
tmij = 1−

∑

h∈T
pih, i ∈ S. (4)

3.4.2. No-Board Constraints. When a task is executed on the
processor, it cannot be placed also on the board:

∑

h∈T

∑

k∈C

∑

m∈R
bihkm ≤ T

∑

j∈M
tmij , i ∈ S. (5)

3.4.3. Non-Overlap Constraints. A task cannot be present on
the FPGA with different leftmost and bottommost cells:

pihkm +
∑

l∈C\{k}

∑

j∈R\{m}
binl j ≤ 1,

i ∈ S, h,n ∈ T , k ∈ C, m ∈ R.

(6)

3.4.4. Single-Cell Constraints. A task cannot be present on
the FPGA with different leftmost and bottommost cells:

bihkm +
∑

l∈C\{k}

∑

j∈R\{m}
binl j ≤ 1,

i ∈ S, h,n ∈ T , k ∈ C, m ∈ R.

(7)

3.4.5. Cell-on-the-Right-and-Top Constraints. The leftmost
column of task i cannot be one of the last ci − 1 columns;
the same constraint has to be assumed for the last ri−1 rows:

bihkm = 0 i ∈ S, h ∈ T , k ≥ |C| − ci + 2

∨ m ≥ |R| − ri + 2.
(8)

3.4.6. Arrival Time Constraints. The arrival time is the time
in which a task comes on the FPGA. Since this time is the
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first time step in which the associated p variables are set to 1,
it must not exceed that time step:∗

Son
i ≤h

∑

k∈C

∑

m∈R
bihkm + h · pih + |T|

⎛
⎝1−

∑

k∈C

∑

m∈R
bihkm − pih

⎞
⎠,

i ∈ S,h ∈ T.
(9)

3.4.7. Leaving Time Constraints. For each task i, the leaving
time must not precede either the last instant for which b is 1
or the time p is 1 plus lpi − 1:

Soff
i ≥ h

∑

k∈C

∑

m∈R
bihkm +

(
h + lpi − 1

)
pih, i ∈ S,h ∈ T.

(10)

3.4.8. No-Preemption Constraints. A task is present on the
FPGA in all time steps between the arrival and leaving time:
this constraint works thanks to (9), (10), and (7) (No-
preemption means that once the configuration of a task begins
the configured task lasts on the FPGA until the end of its own
execution). Equation (7) ensures that all the 1s of a particular
task need to be on the same position of the FPGA for all the
time that a task exists. This is because a task can perform its
work, either be reconfigured or be executed, only if it is on
the FPGA, and in specific only when its p variables are set to
1. Equation (9) ensures that the arrival time is lesser or equal
to the first, in terms of time, 1 of a task. Equation (10) ensures
that the leaving time is greater or equal to the last, in terms
of time, 1 of a task. To ensure a task to exist on the FPGA in
a single portion of time, the difference between the leaving
time and the arrival time needs to be equal to the sum of all
the 1s of that task. Since (7) ensures a single position, this
constraint ensures that a task cannot be placed and removed
and then placed again:

Soff
i − Son

i + 1 = lpi
∑

h∈T
pih +

∑

h∈T

∑

k∈C

∑

m∈R
bihkm, i ∈ S.

(11)

3.4.9. Precedence Constraints. Precedences must be resp-
ected:

Soff
i − l j ≥ Soff

i ,
(
i, j
) ∈ P . (12)

3.4.10. Task Length Constraints. A task must be present on
the FPGA at least for its execution time:

∑

h∈T

∑

k∈C

∑

m∈R
bihkm ≥

∑

r∈M
(lir · tmir), i ∈ S. (13)

3.4.11. Reconfiguration Start Constraints. Each task has a
single reconfiguration start time or none (if it exploits
module reuse):

∑

h∈T
tih = 1−

∑

j∈M
tmij , i ∈ S. (14)

Reconfiguration starts as soon as the task is on the FPGA,
therefore, if a task needs to be configured on the FPGA, its
reconfiguration will start at the first time step in which its p
variables are set to 1, that is, its arrival time:∗

−|T|
∑

j∈M
tmij ≤ Son

i −
∑

h∈T
htih ≤ |T|

∑

j∈M
tmij , i ∈ S.

(15)

3.4.12. Reconfiguration Overlap Constraints. At most NREC
reconfigurations can take place simultaneously:

∑

i∈S

h∑

m=max(1,h−di+1)

tim ≤ NREC, h ∈ T. (16)

3.4.13. Starting Time Constraints. This is the general for-
mulation for this constraint, since multiple bitstreams must
be considered, as for the nonoverlap constraints. This does
not change the constraint formulation itself, but several
instances of the constraint have to be created, one for each
bitstream. Thus, their number increases, but they are written
in the same way, with the obvious variable replacement.
The starting instant is reserved, so that the FPGA is initially
empty:

pi0km = 0, i ∈ S, k ∈ C, m ∈ R. (17)

3.4.14. Single Processor Constraints. Only one processor is
available:

∑

i∈S

h∑

l=h−lpi+1

pil ≤ 1, h ∈ T. (18)

3.4.15. Communication constraints. When two tasks i and j
are linked by a precedence relation, the results of task i must
be transferred to j. Due to the architectural model presented
in Section 1, when two tasks are executed on the same device,
either both on the FPGA or both on the processor, there is no
need to transfer any data because the memories are local to
the devices. When one tasks is executed on the FPGA and the
other one on the processor, there is the necessity of moving
the data from one to the other. For this reason a specific set
of constraints have been developed:

−cdi j ≤
∑

l∈M

(
tmil − tmjl

)
≥ cdi j , h

(
i, j
) ∈ P ,

cdi j ≤
∑

l∈M

(
tmil + tmjl

)
, h

(
i, j
) ∈ P ,

cdi j ≤ 2−
∑

l∈M

(
tmil + tmjl

)
, h

(
i, j
) ∈ P

(19)

3.4.16. Definition of the Overall Latency.

te ≥ Soff
i , i ∈ S. (20)
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3.5. Heterogeneous Case. So far, the proposed model
describes the problem of scheduling a task graph onto a
partially dynamically FPGA with homogeneous columns: all
the FPGA cells have the same type. In the latest FPGAs
devices it is possible to have columns of different types: CLBs,
multiplexer, multiplier, BRAM, and so on. For this reason,
a task can be implemented in different ways, due to which
columns are involved in the synthesis process. Different
implementations for the same tasks are now available, and
the design space exploration must be more accurate: a
bitstream for each one of these implementations must be
created. Using the bitstream concept is very useful, because
it is possible to use exactly the same ILP formulation for the
extended problem. A preprocessing phase is needed, in order
to avoid a bitstream to be placed on not compatible columns,
and in general cells.

For each bitstream j, for each time h, for each column k,
and for each row m, the variable mihkm is set to 0 if: given a
couple (i, l) such that i ≥ k ∧ i ≤ k + cj − 1 and l ≥ m∧ l ≤
m+ r j −1, cell (i, l) of the FPGA has a different type from cell
(i− k + 1, l−m+ 1) of the bitstream. Once all these variables
have been set, the proposal ILP can be applied.

4. Napoleon: A Heuristic Approach

From the results obtained through ILP solvers applied over
the previous model, see Section 6.1, it is impossible to rely on
it because of the huge amount of time needed. It is necessary
to develop a fast technique that still obtains good results
in terms of schedule length. A greedy heuristic scheduler
has been selected as the best choice, and we developed it
taking into account the experience achieved by writing the
ILP model.

Napoleon is a reconfiguration-aware scheduler for 2D
dynamically partially reconfigurable architectures. It is char-
acterized by the exploitation of configuration prefetching,
module reuse and antifragmentation techniques. Algorithm 1
shows the pseudocode of Napoleon. First, it performs an
infinite-resource scheduling in order to sort the task set S
by increasing ALAP values. Then, it builds subset RN with
all tasks having no predecessors. In the following, RN will
be updated to include all tasks whose predecessors have
all been already scheduled (available tasks). SN , instead,
is the set of scheduled tasks. As long as the dummy
end task Se is unscheduled, the algorithm performs the
following operations. First, it scans the available tasks in
increasing ALAP order to determine those which can reuse
the modules currently placed on the FPGA. Each time
this occurs, task S is placed in the position (k,m) which
hosts a compatible module and is the farthest from the
center of the FPGA. Unused modules can be present on
the FPGA because Napoleon adopts limited deconfiguration
as an antifragmentation technique: all modules are left on
the FPGA until other tasks require their space, in order
to increase the probability of reuse. The farthest placement
criterium is also an antifragmentation technique, that aims
at favoring future placements, as it is usually easier to place
large modules in the center of the FPGA [14]. The execution

t ← 1
S ← computeALAPandSort(S,P )
RN ←findAvailableTasks(S)
while Se is unscheduled do

SN ←∅
Reuse← true
for all S ∈ RN do
(k,m)← findFarthestCompatibleModule(S, t)

if ∃(k,m) then
schedule(S, t, k,m,Reuse)
RN ← RN \ {S}
SN ← SN ∪ {S}

end if
end for
Reuse← false
for all S ∈ RN do

(k,m)← findFarthestAvailableSpace(S, t)
if ∃(k,m) and ∃ free reconfigurators then

schedule(S, t, k,m, Reuse)
RN ← RN \ {S}
SN ← SN ∪ {S}

end if
end for
RN ← RN∪ newAvailableNodes(SN)
t← nextControlStep(t)

end while
return tSe + lSe

Algorithm 1: Algorithm Napoleon(S,P ).

starting time is tentatively set to the current time step t, but
it is postponed if any predecessor has not yet terminated (see
Algorithm 2 with Reuse = true). The task is also moved from
the available to the just scheduled tasks (subset SN). When
no further reuse is possible, Napoleon scans the available
tasks in increasing ALAP order to determine those which
can be placed on the FPGA in the current time step. The
placement is feasible when a sufficient space is currently
free or it can be freed by removing an unused module, and
when a reconfigurator is available. If this occurs, the position
for task S is chosen once again by the farthest placement
criterium. The reconfiguration starting time is set to the
current time step t and the execution starting time is first
set to t + dS and then possibly postponed to guarantee that
all the predecessors of S have terminated (see Algorithm 2
with Reuse = false). Thus, there might be an interval between
the end of the reconfiguration and the beginning of the
execution of a task (configuration prefetching). When all
possible tasks have been scheduled, the set of available
tasks RN is updated: Algorithm 3 does that by scanning the
successors of the tasks in SN , which have just been scheduled,
and determining the ones which must be added to RN .
Finally, the current time step is updated by replacing it with
the first time step in which a reconfigurator is available.
Algorithm 1 shows the basic scheduling algorithm used, but
for the sake of simplicity it does not report two optimizations
to increase efficiency: if in the current time step all configured
modules are in use, reuse is not possible and the first for
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place(S, k,m)
if Reuse = true then

tS ← t
else

tS ← t
tS ← t + dS

end if
for all S′ ∈ predecessors(S) do

tS ← max(tS, tS′ + lS′ )
end for

Algorithm 2: Procedure schedule(S, t, k,m, Reuse).

RN ′ ← ∅
for all S ∈ SN do

for all S′ ∈ successors(S) do
if predecessors(S′) are all scheduled then

RN ← RN ∪ {S′}
end if

end for
end for
return RN ′

Algorithm 3: Function newAvailableNodes(SN).

loop can be skipped; if there is not enough available area to
place any task, because no new placement is possible and the
second for loop can be skipped.

4.1. HW/SW Extension. The scheduling algorithm schedule
the task at the best possible time with respect to the
schedules metric. It is simple to add the concept of HW/SW
Codesign in this algorithm. Each time a task is considered
to be scheduled, the algorithm computes the earliest time it
can finish its execution on the processor, considering both
precedences and communication delay. Then, if this time is
lower than the minimum found on the FPGA device, the
algorithm schedules the task on the processor, otherwise on
the FPGA.

Figure 3 shows the schedule result obtained by using
Napoleon in its HW/SW Codesign version. The character-
istics for each task are listed in Table 1.

The number shown underneath the name of the tasks
in Figure 3 represents ALAP values. Is it possible to see that
Napoleon exploits the processor in an intensive way: it tries
to schedule on the FPGA those task types that have more
occurrences. This is done accordingly with the ALAP values
and the available reconfigurable area: task B and task C
share the same type, but their execution on the FPGA is not
performed because it will lead to local delay in the schedule.

5. Related Works

5.1. Reconfigurable Systems and Codesign Techniques. The
VULCAN system [15] has been one of the first frameworks

Table 1: Characteristics of tasks in Figure 3.

Area rec. time HW time SW time

A 2 2 1 3

B 3 3 1 2

C 3 3 1 2

D 2 2 3 4

E 4 4 2 4

F 2 2 1 3

G 2 2 3 4

H 2 2 1 3

to implement a complete codesign flow. The basic principle
of this framework is to start from a design specification
based on a hardware description language, HardwareC, and
then move some parts of the design into software. Another
early approach to the partitioning problem is the COSYMA
framework [16]. Unlike most partitioning frameworks,
COSYMA starts with all the operations in software, and
moves those that do not satisfy performance constraints
from the CPU to dedicated hardware. More recent work [17]
proposes a partitioning solution using Genetic Algorithms.
This approach starts with an all software description of the
system in a high level language like C or C++.

Camposano and Brayton [18] have been the first to
introduce a new methodology for defining the Hardware
(HW) and the Software (SW) sides of a system. They
proposed a partitioner driven by the closeness metrics, which
provides the designer with a measure on how efficient
a solution could be, one that implements two different
components on the same side, HW or SW. This technique
was further improved with a procedural partitioning [19,
20]. Vahid and Gajski [19] proposed a set of closeness metrics
for a functional partitioning at the system level.

In the context of reconfigurable SoCs, most approaches
focused on effective utilization of the dynamically recon-
figurable hardware resources. Related works in this domain
focus on various aspects of partitioning and context schedul-
ing. A system called NIMBLE was proposed for this task [21].
As an alternative to conventional ASICs, a reconfigurable
datapath has been used in this system. The partitioning
problem for architectures containing reconfigurable devices
has different requirements. It demands a two dimensional
partitioning strategy, in both spatial and temporal domains,
while conventional architectures only involve spatial parti-
tioning. The partitioning engine has to perform temporal
partitioning as the FPGA can be reconfigured at various
stages of the program execution in order to implement
different functionalities. Dick and Jha [22] proposed a
real-time scheduler to be embedded into the cosynthe-
sis flow of reconfigurable distributed embedded systems.
Noguera and Badia [23] proposed a design framework for
dynamically reconfigurable systems, introducing a dynamic
context scheduler and hw/sw partitioner. Banerjee et al.
[24] introduced a partitioning scheme that is aware of the
placement constraints during the context scheduling of the
partially reconfigurable datapath of the SoC.
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Figure 3: A scheduling example from Napoleon.

5.2. Scheduling Solution. The literature solutions for the
considered scheduling problem do not exploit all the pos-
sible features of partial dynamic devices where HW/SW
partitioning has been taken into consideration. Actual
hardware/software codesign approaches find a partitioning of
the original specification and then schedule the partitioned
application on an architecture similar to the one described
in Figure 4, where both the processor unit and the FPGA
can execute one or more partitions. This kind of approach
can be found in [25–28] and the scheduler used is almost
always based on list-based scheduling algorithms with the
priority function given by the mobility range of nodes. All
these schedulers are static schedulers: the schedule of the
task graph is done only one time before the real execution
starts. An existing solution to the problem of partitioning
and scheduling a task graph onto an architecture containing
a processor and a partially dynamically reconfigurable FPGA
[28] is shown in Figure 5.

In this architecture both the processor and the FPGA
have their own memory. The FPGA memory is called shared
just because it can be accessed by all the hardware modules
eventually deployed on the FPGA. The authors present an
exact approach based on an ILP formulation in order to show
how the partial reconfiguration and the tasks placement issue
have to be considered in the solution of this problem. This
ILP formulation gives as a solution the complete schedule of
the task graph and for each task state if it has to be executed
in SW or in HW; moreover for the HW task it gives the time
in which the reconfiguration has to start and in which is
position of the FPGA and the execution starting time. The
formulation takes into account dependences between tasks,
configuration prefetching for the HW tasks, communication
overhead between tasks placed in different partitions, and
as an improvement also multiple task implementations and

Processor

Local memory

Global memory

Local memory

FPGA

Figure 4: Architecture model for HW/SW Codesigned reconfig-
urable devices.

Memory

Processor

Shared memory

FPGA

Figure 5: Two separated memories architectural model.

heterogeneity in the conformation of the columns of the
FPGA. This is a model for the problem considered in this
work, but module reuse is never considered.
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A refinement of the module reuse concept is described in
[29], where a solution to the problem of HW/SW Codesign
of a task graph onto a partially dynamically reconfigurable
architecture is given by an ILP formulation. The formulation
is based on two concepts:

(i) early partial reconfiguration (EPR), which is similar
to the concept of configuration prefetching and simply
tries to reconfigure a hardware module as soon as
possible onto the FPGA; the aim of this technique
is to hide as much as possible the reconfiguration
overhead;

(ii) incremental reconfiguration (IR), which is based on
the concept of module reuse and states that if a
new hardware module has to be placed over another
already onto the FPGA, the configuration data that
have to be configured are only the percentages that
are not in common between the two modules.

The problem with this approach is that, in order to obtain
a good IR, it requires the computation of all the possible
differences between two task bitstreams and this takes a very
long time. Since the developed model is required to be useful
to realize a baseline scheduler, the model proposed in [29] is
not suitable for the same aim: in an online scenario, all the
difference bitstreams need to be in memory, thus, the total
memory requirement is very large.

There is a set of works made by Teich et al., [30–
32], where the authors present online heuristics for the
scheduling/placement policy, taking into account the routing
needed by the hardware modules to communicate among
themselves. In these works, modules can communicate
among themselves without sending data to the processor.
This solution is good when tasks have to remain on the device
for a long time and they need to frequently send data to
other modules, while in a general case when the first issue
is to free as soon as possible the reconfigurable area, this
approach is not so interesting. Angermeier and Teich [33],
present a heuristic scheduler for reconfigurable devices that
minimize reconfiguration overheads. The problem with this
algorithm is that it works for an architecture where tasks
can be placed in a set of identical reconfigurable regions
that communicate among themselves through a crossbar.
Here the shape of the hardware modules must be well
defined and it is impossible to place tasks bigger than a
reconfigurable region. Furthermore, the complexity of the
problem is reduced, and the scheduler works bad when tasks
with great differences in size need to be scheduled on the
device.

Some work has been done in the field of processing
pipelines, where the whole application is a succession of large
tasks that communicate with each other: the first task with
the second one, the second with the third, and so on. Specific
algorithms have been developed for managing this kind of
an application, very important in image processing. In these
works, such as [34, 35], the scheduling algorithm handles the
HW/SW Codesign in a way that tries to minimize the overall
execution time, the communication time among tasks, and
to improve the throughput of the system.

6. Experimental Results

6.1. Pure Hardware Reconfiguration: ILP Results. This sec-
tion compares the optimal results obtained by the models
proposed in [7, 36] to the results of the model described
in Section 3 considering input specifications characterized
by only hardware and reconfigurable hardware elements.
The evaluation has been performed by scheduling ten task
graphs of ten nodes on an FPGA with 5 columns and
5 rows. The instances considered have small task graphs
and few columns and rows because the problem is NP-
complete and the computation time grows rapidly. Both task
graphs and tasks have been generated by hand in order
to verify different behaviors of the models: task graphs
with tasks of different types, high module reuse, and high
reconfiguration time. Task occupancy spreads among one
column and one row, to four columns and 4 rows. The
execution time is of the same order as the reconfiguration
time. Furthermore, the number of dependencies goes from
linear graphs to almost completely connected ones. The
optimal schedule lengths are shown in Table 2. The first and
second columns report the results of the proposed model,
with 1 or 2 reconfigurators respectively, which correspond
to a realistic scenario. The third and fourth columns report
the results of the model proposed in [36], once again with 2
or 1 reconfigurators. The former is marked by an∗ because
the original model does not accommodate more than one
reconfigurator, and, hence, we have extended it to support
multiple reconfigurators. The fifth column reports the results
of the model proposed in [7], in which the number of
reconfigurators is unlimited but the reconfiguration must
immediately precede the execution and follow the end of
the preceding tasks. It is possible to see that increasing the
number of reconfigurator devices can improve the schedule
length. This improvement is not assured because it is not
always possible to hide completely the reconfiguration time.
The model proposed in [36] is dominated by our proposed
approach because it only allows 1D reconfiguration instead
of 2D reconfiguration. Dominated means that every solution
the model in [36] can find, our approach can find it too.
Furthermore, our model can find and explore a bigger design
space thanks to the possibility of having 2D reconfiguration.
The Fekete model, [7], can obtain worse results because it
does not exploit module reuse and configuration prefetching
even if it has possibility of reconfiguring as many tasks as
it needs at the same time. This is an interesting aspect of
our proposed model: by modeling all the physical features
recently introduced in reconfigurable devices, better results
can be obtained.

6.2. Reconfigurable Hardware and Software Executions: ILP
Results. This section compares the results obtained by the
proposed HW/SW model, Section 3, and the one proposed
in [28]. These same task graphs used in Section 6.1 have
been scheduled. The only difference is that, for the HW/SW
model, multiple hardware solutions have been taken into
account, along with a software solution. The model described
in [28] does not consider model reuse, so it is reasonable
to expect a worse behavior with high possibility of reuse.
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Table 2: ILP results comparison.

NRECS = 2 NRECS = 1 NRECS = 2 NRECS = 1 Fekete

ILP model ILP model [36]∗ [36] [7]

Ten1 15 17 15 17 18

Ten2 22 22 22 22 33

Ten3 16 16 16 16 25

Ten4 14 15 16 17 25

Ten5 21 21 21 21 28

Ten6 19 20 21 22 23

Ten7 20 20 20 20 28

Ten8 22 24 23 24 29

Ten9 26 26 26 26 32

Ten10 23 23 23 23 34

Table 3: ILP results comparison.

NRECS = 2 NRECS = 1 NRECS = 2 NRECS = 1

ILP model ILP model [28]∗ [28]

Ten1 13 13 14 14

Ten2 22 22 24 24

Ten3 14 14 18 18

Ten4 14 14 15 16

Ten5 16 16 17 18

Ten6 16 16 16 16

Ten7 16 16 20 21

Ten8 21 21 21 21

Ten9 22 22 22 22

Ten10 19 19 23 23

The resulting schedule lengths are shown in Table 3. The
second and third columns report the results of the proposed
model, with 2 or 1 reconfigurator devices respectively, which
correspond to a realistic scenario. The third and fourth
columns report the results of the model proposed in [28],
once again with 2 or 1 reconfigurator devices. The former
is marked by an∗ because the model had to be extended to
support multiple reconfigurators. The considered FPGA has
two different types of columns and so the tasks used to verify
the models. Each one of these tasks can be executed to at least
two different bitstreams; furthermore, the reconfiguration
model considered is 2D.

It is possible to see that increasing the number of recon-
figurator devices does not improve significantly the schedule
length. The reason is that multiple branches of a task graph
are executed on the FPGA and the other on the processor;
to take advantage by using multiple reconfigurator devices,
the tasks have to be on an area occupation very little with
respect to the FPGA area; moreover, multiple concurrent
branches have to be available. The model proposed in [28]
is always dominated by the one proposed here because of the
impossibility of having module reuse. The interesting aspect
of the proposed model is that it can exploit in the best
possible way the reconfiguration.

Comparing these results with the ones obtained without
HW/SW Codesign, see [12], shows that the possibility of

having a usable processor increases the schedule effective-
ness. The schedule length decreases thanks to the possibility
of having more parallelism: it is possible to execute tasks
on the FPGA, in parallel, and also on the processor, saving
reconfiguration time and FPGA area for subsequent tasks.

6.3. Reconfigurable Hardware and Software Executions:
Heuristic Results. In this section we make a comparison
between the the HW/SW Codesign model and the corre-
spondent heuristic scheduler. These schedulers have been
tested and compared on the following applications (useful
to extract features from a large set of data) that have
been selected from a popular data mining library, the NU-
MineBench suite [37]:

(1) variance application: it receives as input of a single
set of data and calculates the mean and the variance
among the whole data set;

(2) distance application: it receives as inputs of two sets of
data of equal size and calculates the distance between
them;

(3) variance1 application: it receives as input of a single
set of data and calculates the mean and the variance
among the whole data set. The tasks graph is different
than the former variance application, since it involves
different task types.

These applications are massive computing applications
where there are few task types and a lot of tasks available
at the same time. The developed schedulers are effective
in this case due to good management of the FPGA area,
the module reuse and configuration prefetching techniques.
These applications are characterized by large number of
tasks, grouped in two or three task types. Their graphs have
the shape of a reverse tree: the same operation, task, must
be done over the whole input set, then a new operation
over the results, and so on. Each task does not occupy more
than 5% of the reconfigurable device and its execution time
is really short: two or three clock cycles. Furthermore, the
communication time needed by data transfer is comparable
with the execution time. The reconfiguration time is two
orders of magnitude bigger than the execution time. Regard-
ing the software implemantations, their execution time is one
order of magnitude bigger than the hardware execution time.
Because of the comparison among heuristics and ILPs, we
choose to schedule task graphs with at most 32 tasks.

In this case, increasing the number of reconfigurator
devices allows better solution in most of the cases. This is
due to the fact that the parallelism can be handled in a more
effective way. Napoleon, in its HW/SW Codesign version,
reaches the optimal solution in just a case. With respect
to the model in [28] and [28]∗, the heuristic scheduler
obtains always better, or at least not worse, results. This is
because during the reconfiguration phases the processor can
handle some tasks. In this algorithm, the reconfiguration
time for each task is two orders of magnitude bigger than
the execution time, thus, the scheduler decides to use the
processor for a lot of tasks.
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Table 4: ILP/heuristic results comparison.

NRECS = 2 NRECS = 1 NRECS = 2 NRECS = 1

ILP model ILP model Napoleon Napoloen

HW/SW HW/SW

Ten1 13 13 13 14

Ten2 22 22 24 24

Ten3 14 14 15 17

Ten4 14 14 15 16

Ten5 16 16 18 18

Ten6 16 16 16 16

Ten7 16 16 19 22

Ten8 21 21 21 21

Ten9 22 22 22 22

Ten10 19 19 21 24

distance 520 520 520 520

variance 520 520 520 520

variance1 610 610 610 610

Table 5: ILP and heuristic execution time.

NRECS = 2 NRECS = 1 NRECS = 2 NRECS = 1

ILP model ILP model Napoleon Napoleon

Ten1 27 days 26 days 546 ms 477 ms

Ten2 31 days 25 days 413 ms 398 ms

Ten3 30 days 26 days 566 ms 513 ms

Ten4 27 days 25 days 578 ms 544 ms

Ten5 27 days 28 days 456 ms 401 ms

Ten6 34 days 31 days 670 ms 555 ms

Ten7 25 days 25 days 590 ms 487 ms

Ten8 23 days 20 days 602 ms 599 ms

Ten9 39 days 29 days 489 ms 433 ms

Ten10 36 days 37 days 716 ms 673 ms

distance 41 days 40 days 1,222 ms 1,001 ms

variance 35 days 36 days 1,321 ms 1,543 ms

variance1 45 days 41 days 1,561 ms 978 ms

Execution time for the experiments shown in Table 4 is
shown in Table 5.

It is possible to see that the ILP solutions are too heavy
to be used in real cases, while the heuristic approaches reach
good solution in a reasonable time. It is noticeble that the ILP
solutions for real applications do not scale bad: this is because
the solver exploits standard searching methods that lead to
“fast” solutions. Furthermore, due to the reconfiguration
time, the processor is used for a lot of tasks at the beginning
of the schedule, and this leads to an improvement in solution
time.

7. Conclusion

The main goal of this work was to introduce a formal
model for the problem of scheduling in a 2D partially
dynamically reconfigurable scenario. The proposed model
takes into account all the features available in a partial

dynamic reconfiguration scenario. The results show that
a reconfiguration-aware model can strongly improve the
solution. The second goal of this work was to propose a
heuristic reconfiguration-aware scheduler that obtains good
results, with respect to the optimal one, but in a much shorter
time. In fact an ILP solver takes a very long time to solve
the problem exactly, while the heuristic algorithm reaches a
good solution in a very short time. The results prove that
Napoleon can be used effectively as a baseline scheduler in
an online scenario. The next step in this work is to develop
an online scheduler that starting from the results obtained
by Napoleon, finds a feasible schedule and mapping at
runtime.
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1. Introduction

High-performance reconfigurable computers (HPRCs) are
now at a similar stage as supercomputers were before the
appearance of MPI [1]. Prior to MPI, every vendor had
their own Message passing application program interface
(API) to program their own supercomputers causing a
lack of portable designs. Currently there is no standard
API for the interaction between processors and FPGAs.
Companies such as Cray [2], SGI [3], Intel [4], XtremeData
[5], DRC [6], and SRC [7] provide their own software
APIs and their own hardware interfaces for application
hardware engines. This situation reduces the portability
and productivity because vendor-specific details distract
designers from focusing on the application algorithm. We
believe that in the same way a standard C program runs
in any X86 processor with most operating systems; a
standard VHDL/Verilog design can be implemented on any
FPGA, with the exceptions of using nonstandard code, for
example, specific resources on a given chip or non-ANSI C
functions.

In addition to the portability issue, the mix of X86
processors (X86 from now on) and FPGAs introduces new
design challenges that require new design tools. For example,
testing and debugging procedures for software are different
from the procedure used in hardware. A typical testing
procedure in software is a step-by-step execution or printing
debug information to the screen. In contrast, for hardware
components, such as FPGAs, a detailed behavioral or even
timing simulation is required. Both software and hardware
can be tested independently up to a certain extent but
system-level features or dynamic interaction between them
is harder to test that way. For example, a bus functional
model (BFM) helps with verifying and developing low-
level interactions with a given communication interface, but
higher-level protocols or application-level protocols cannot
be tested, especially if the behavior changes based on the data
received or sent.

A multi-FPGA multicore system with heterogeneous
computing elements running in parallel requires system-level
tests in addition to tests to the individual components in
isolation.
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In this paper we extend previous work on TMD-MPI
[8, 9], which implements a subset of the MPI standard
targeting multiple computing elements (hardware engines
and embedded processors) inside FPGAs to include X86
processors enabling a uniform and portable MPI-based
communication mechanism for HPRCs. To do this, we devel-
oped the Message-passing Simulation Framework (MSF)
that allows multiple X86 processes, running at full speed,
to exchange messages with computing elements inside the
FPGAs being simulated. With this approach we exercise the
system-level interaction while having full visibility of what
happens inside the FPGAs.

In this paper, we perform a functional system-level sim-
ulation of the LINPACK benchmark [10] with the purpose
of testing the communications, the simulation environment,
and quickly prototyping and verifying the correctness of the
LINPACK hardware engine, which is in the early stages of
development.

The rest of the paper is organized as follows. Section 2
provides a quick overview of previous work on TMD-MPI.
Section 3 contrasts our work to other related cosimulation
environments. Section 4 presents the communication infras-
tructure and its simulation framework. Section 5 explains
how TMD-MPI and the MSF can help with system-level
architecture exploration. Section 6 describes an example
simulation of the LINPACK benchmark system using the
MSF. Section 7 presents future work. Finally, conclusions are
discussed in Section 8. At the end of the paper there is a
glossary of all the acronyms used in this paper.

2. Background

As mentioned before, we use TMD-MPI to provide an
abstraction layer for the communications. TMD-MPI has
been developed as a result of the need for a program-
ming model for the Toronto Molecular Dynamics (TMDs)
machine being developed at the University of Toronto [11].
The TMD machine is a scalable Multi-FPGA configurable
system designed to accelerate Molecular Dynamic simula-
tions, although the machine is not limited to this particular
application. In fact, the generic MPI-based programming
model and the flexibility of FPGAs allow us to target
a broader spectrum of computing-intensive applications;
however, the TMD-MPI name still remains for historical
reasons.

Previously, TMD-MPI only supported MPI-based com-
munication between PowerPC embedded processors,
MicroBlaze soft-processors, and hardware engines
(collectively known as Computing Elements) across multiple
FPGAs, but now with HPRC featuring tightly coupled
FPGAs to X86 processors, we have extended TMD-MPI to
include X86 processors using shared memory as a medium
to exchange messages.

TMD-MPI does not include all the MPI functionality
described in the standard because it is targeted to run on
FPGAs with limited resources, such as memory (e.g., 4 MB
of on-chip RAM in Virtex5 chips compared to GigaBytes
for a typical X86 system). Nevertheless, functionality can

be added as needed depending on the application. TMD-
MPI supports blocking and nonblocking communications
as well as some collective operations, which is enough to
implement many parallel applications. With the appearance
of HPRC machines, a new window of opportunity arises
to have a more complete implementation of the standard.
For example, including MPI-2 functionality such as remote
memory access to implement DMA capabilities to exchange
data between X86 processors and FPGAs.

The TMD-MPI programming model is based on the
assumption that, from the communications perspective,
Computing Elements inside FPGAs can be treated as peers
rather than just coprocessing units, which is the way a
typical MPI program works. Also, modern FPGAs have
enough resources to host several Computing Elements
interconnected using an on-chip network, which TMD-
MPI also abstracts from the user. A system-level approach
at the beginning of the design flow can help to conceive
hardware accelerators as peers to processors rather than mere
coprocessors.

In an FPGA-as-coprocessor model, an X86 usually acts
as a message relay between Computing Elements located in
different FPGAs introducing big latencies and limiting what
FPGAs can do in terms of communication. For example, in
a typical Master-Slave parallel program, FPGA coprocessors
attached to the software slave processes would actually be
slaves of the slave processes. In contrast, with a peer-to-peer
model, Computing Elements (including X86 processors)
can exchange data between themselves regardless of their
physical location and without intermediaries, which reduces
the latency and also simplifies the programming model.

We have used TMD-MPI in multi-FPGA machines based
on Amirix [12] and BEE2 [13] boards to implement Molecu-
lar Dynamics. Currently we are porting the application to use
an HPRC with Intel processors and Xilinx FPGAs attached to
the FSB; it is for the latter case that we created the MSF to
help us develop and verify our designs.

3. Related Work

There has been abundant research on codesign method-
ologies and cosimulation environments [14]. The research
concludes that the lack of a system-level view of a mixed
HW/SW system leads to difficulties in verifying the entire
system, and hence to incompatibilities across the HW/SW
boundary leading to inefficient designs. However, most of
the research focuses on embedded systems with microcon-
trollers, DSPs, ASICs, and FPGAs, but the research does
not address explicitly the High-performance Supercomput-
ing sector. The appearance of FPGAs in Supercomputers
opens opportunities to adapt and apply codesign techniques
and cosimulation environments to HPRCs. Our TMD-MPI
and MSF are one step towards that direction by framing
cosimulation into an MPI-based paradigm.

Most of the cosimulation environments typically use
hardware in the form of accelerators to speedup the sim-
ulation itself. For example, in [15], the authors provide
a cosimulation environment where an X86 and an FPGA
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are placed on a dual socket motherboard to accelerate a
processor simulation tool called Simplescalar. In [16], the
authors use an FPGA plugged into the PCI bus to accelerate
ModelSim’s [17] functional simulations. In contrast, we
do not use the FPGA to accelerate a simulation. We use
ModelSim running in an X86 to simulate and emulate the
FPGA, and let it interact with other X86 processors as if the
FPGAs were present. Once the design inside the FPGA has
been verified in simulation it can run at full speed in the real
FPGA.

Other vendor-specific simulation frameworks such as
Cray’s simulation framework [18] and SGI’s SSP Stub [19]
only allow a Bus Functional Model (BFM) testing procedure
or low-level data transfer primitives. The user can provide a
set of inputs to the FPGA with certain delays and expected
outputs to compare the results against. This static kind
of verification is adequate to test the interaction with a
given interface or for independent FPGA testing, but not
as a system-level multi-FPGA approach. Our simulation
approach is more generic and portable, allowing the simula-
tion of multiple FPGAs, each with multiple hardware engines
(possibly heterogeneous) interacting with multiple X86 MPI
software processes concurrently.

4. Simulation Environment

In this section we describe our HPRC reference architecture
and the MPI-based communication system. Then we explain
how the MSF enables the simulation of such architectures.

4.1. Reference Architecture. Figure 1 shows our reference
architecture, which is based on an Intel 4-Processor Server
System S7000FC4UR motherboard and the Xilinx ACP M2
FPGA modules distributed by Nallatech [20]. These modules
can be stacked one on top of another (M2 Stack) to group a
number of FPGAs and plug them into the processor socket
on the motherboard, providing higher compute density. Any
combination between three Intel Xeon quad-core processors
and one M2 Stack, or three M2 Stacks and one Intel Xeon
quad-core processor is permitted. In all cases they share the
main system memory through the FSB North Bridge chip.

The M2-Stack consists of two kinds of M2 modules: the
M2 Base (M2B) and the M2 Compute (M2C). The M2B
module has one XC5VLX110 FPGA, which contains the
Xilinx FSB interface to provide access to the main system
memory. The M2C module has two XC5VLX330 FPGAs and
it plugs on top of the M2B. An additional M2C can be stacked
on top of the first M2C. The FPGAs in this three-layer stack
are connected through parallel LVDS lines.

Currently, the system runs a 64-bit CentOS Linux SMP
operating system with 8 GB of memory.

4.2. Message Passing on the ACP Platform. Figure 2 shows
an example of a parallel MPI application mapped to our
reference platform. For simplicity, in this case, one Quad-
core Xeon processor and one M2B module are used. The
application has a total of six tasks known as ranks in the
MPI jargon. Each rank in the system (logically represented
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Figure 1: Stacks of Xilinx M2 FPGA modules that can be placed in
standard CPU sockets on the motherboard.
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Figure 2: Example of a 6-rank MPI application, with three
ranks mapped to X86 processor cores and three ranks mapped to
hardware engines.

as ovals in Figure 2) has its own private memory space
(on-chip memory). Three of the ranks (R0, R1, and R2)
are software processes and run in three X86 cores inside
the Quad-core Intel Xeon processor. The remaining three
ranks (R3, R4, and R5) are inside the FPGA running as
hardware engines (hardware ranks), although they could
be Microblaze soft-processors or embedded PowerPC pro-
cessors as well. The X86 processors exchange messages
using shared memory, and the hardware engines exchange
messages using the Network-on-Chip (NoC). To exchange
messages between X86s and hardware engines the data must
travel through a shared memory MPI bridge (MPI Bridge),
which implements in hardware the same shared memory
protocol that the X86 processors use. This bridge takes data
to/from the NoC and issues read or write memory requests to
the vendor-specific low-level communications core (LLCC),
which executes the request. The MPI Bridge effectively
abstracts the vendor-specific communication details from
the rest of the on-chip network.

For this paper, we used Intel’s FSB Bus as the communi-
cation media but the same concepts can be applied to other
communication media, such as AMD’s HyperTransport [21],
Intel’s QuickPath [22], Cray’s Rapid Array Transport [18],
SGI’s Scalable System Port-NUMA link connection [19],
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Figure 3: HW/SW abstraction layers.

or even with a standard PCI Express core because they all
provide a physical connection to the main system memory.
The communication media determines what LLCC to use.
In this paper, we use a Xilinx-Intel FSB communication core
that handles the low-level protocol to read and write to
memory as well as the memory coherence control.

TMD-MPI’s shared-memory, message-passing protocol
should be mostly the same across HPRCs. The only change
is the physical interconnection between the MPI Bridge and
the vendor-specific LLCC. By implementing an MPI Bridge
for each type of LLCC we make the system portable. For
example, in this paper we use an MPI Xilinx FSB Bridge, but
we could also implement an MPI Cray Bridge to use a Cray
HPRC machine.

An extension of this approach to a distributed memory
machine (a Cluster) or many HPRC hosts is natural since
message-passing assumes no shared memory. A distributed
memory approach could use an MPI Ethernet Bridge, or
any other point-to-point communication interface to allow
the connection of multiple hosts through the FPGA itself;
however, this remains future work for now and in this paper
we focus only on a single host machine.

In Figure 2 only one FPGA is shown, but multi-FPGA
systems can also be part of the MPI communication by
plugging two more M2B modules or stacking M2C modules.
This is further explained in Section 4.5.

4.3. Abstraction Layers. Figure 3 shows the abstraction layers
for software and hardware in the TMD-MPI programming
model. A software application relies on the MPI library layer
to send and receive data (calls to MPI Send(), MPI Recv(),
etc.). In turn, TMD-MPI uses a kernel driver to allocate
memory for the shared memory buffers, to perform virtual-
to-physical memory translations and some low-level setup
for the LLCC in the FPGA. Data is then placed in memory
via the FSB and the MPI shared memory bridge will read
it and send it over the NoC, which will route the packets
to the proper destination Message Passing Engine (MPE).
Finally, the MPE will deliver the message to the application
hardware engine. Data traveling in the opposite direction
is also possible; the FPGA can be a master and send data
without the X86 first having to request it.

The MPE encapsulates part of the MPI functional-
ity in hardware. It is responsible for handling requests,
acknowledgments, and full-duplex data transmission and
reception. Also, it is in charge of packetizing/depacketizing
large messages as well as handling unexpected messages. A

hardware engine interacts with its MPE via FSLs, which are
Xilinx unidirectional FIFOS. An example of the interface
between a hardware engine and the MPE is further discussed
in Section 6.

With this communications architecture, applications
become more portable because the hardware accelerators
should remain unchanged from one HPRC to another as well
as the software code for the X86 processors since they are all
behind the message-passing abstraction.

4.4. The MSF FLI Module. By using TMD-MPI, hardware
engines and software processors are isolated from machine-
specific communications hardware. However, it introduces a
new challenge for the design and verification of applications.
In a typical MPI parallel program, an MPI rank is not tested
in isolation from the other MPI ranks. It has to be tested
with all ranks running at once to verify the correct collective
operation and synchronization between them. With FPGAs
as containers of MPI ranks, they must be part of the
system-level testing process. As mentioned before, FPGA
testing requires a cycle-accurate simulation, so the question
now becomes how to simulate such a system. Furthermore,
the complexity of the testing process increases if there are
multiple FPGAs to simulate, each with potentially different
hardware engines or embedded processors.

The MSF provides a portable simulation environment
based on ModelSim that emulates the FPGA and lets the
MPI ranks inside of the FPGAs exchange messages with the
ranks running in X86 processors or in other FPGAs. Figure 4
shows the simulation scheme of the architecture depicted in
Figure 2. Note that the FPGA in Figure 2 is now an X86 core
running ModelSim simulating the FPGA design. For ranks
R0, R1, and R2 running in the X86 processors, the FPGA in
simulation will be seen as a slow FPGA (simulation speed).
In this sense, the FPGA simulation is actually an emulation
of the FPGA. Naturally, the time it takes to send a message
will be drastically reduced when the FPGA is no longer in
simulation and runs in the real FPGA. However, keep in
mind that a message-passing paradigm assumes a coarse
grain parallelism in which tasks should have reasonable
communication demands to be efficient and also should be
latency tolerant. In other words, a correct MPI program does
not rely on the time it takes to send or receive a message
to produce the correct results, and therefore the latency
introduced by the simulation should not change the results
when the FPGA design runs in the actual physical FPGA.

The central part of the MSF is the use of ModelSim’s
Foreign Language Interface (FLI) [23], which is a typical way
to perform cosimulations by allowing a C program (actually
a shared library) to have access to ModelSim’s simulation
information, such as signal or register values, components
instantiated, and simulation control parameters. The MSF
FLI module replaces the vendor-specific LLCC by provid-
ing the required functionality directly to the MPI Bridge.
The MSF FLI accepts the MPI bridge memory requests
(address and data) and performs the reads and writes
directly to shared memory. In the case of the distributed
memory environment, the MSF FLI module would translate
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Figure 4: Simulation scheme for the sample application. One X86
core runs ModelSim with the FLI module for shared memory.

the send/receive requests to socket writes/reads allowing
the interaction of remote machines with the FPGA under
simulation.

The MSF FLI module uses TMD-MPI’s memory alloca-
tion and memory mapping subroutines to be able to access
the shared memory message buffers. In a typical transaction,
the MSF FLI module receives the physical addresses of a
buffer from the MPI Bridge and translates them to virtual
addresses before reading or writing to main memory. This is
required because the MSF FLI module is under the control of
the operating system as a normal user process, which cannot
access memory using a physical address.

Since there can be a variety of MPI Bridges based on
the vendor-specific LLCC, there will be a corresponding FLI
module that ModelSim can load at runtime. That is, there
will be MSF FLI module variations. For example, we use
the FLI Xilinx FSB module, but we could implement the
FLI Cray to simulate the interaction with the FPGA in a
Cray machine. This is convenient because the simulation
itself becomes portable. TMD-MPI and the MSF FLI module
absorb the platform changes and make the simulation in
different HPRCs transparent to the user.

An additional advantage of the MSF is that there is no
need to simulate the vendor-specific LLCC, which can be
proprietary and not public, such as the Intel FSB signals.
The MSF does not need to know the details of those
vendor-specific internals because the FLI module provides
the MPI Bridge with the same memory access (or network
device access for the distributed version) that the LLCC
provides. In other words, the MSF FLI module models the
functional behaviour of the LLCC in terms of memory access.

During the simulation, the user has full visibility inside
the FPGA at the resolution available in ModelSim, which
is useful when tracking bugs in the design, such as
glitches, signal delays, or any other subcycle events with the
caveat of reduced simulation speed. Black-box cosimulation
environments can be faster than ModelSim but limit the
design’s visibility to its outputs, and only use cycle-accurate
simulations, whereas Modlsim can simulate subcycle delays.
Also, in the MSF, the user has full control of the simulation
by using ModelSim’s console or GUI to stop it, pause

Shared memory message buffers (RAM)

FLI
module

M2B

FLI
module

M2B

FLI
module

M2B

Figure 5: Multiple FSB FLI Modules can independently access the
message buffers in shared memory during simulation.

it, and continue it. Even breakpoints can be asserted to
stop executing a particular hardware MPI rank and the
software MPI ranks can continue executing because they
are completely decoupled due to the implicit asynchronous
nature of the message-passing programming model. Only
those MPI ranks that are exchanging messages with a stopped
rank will be automatically blocked if using MPI blocking calls
or if there is a collective operation, such as an MPI Barrier
and MPI Bcast. However, if nonblocking communications
are used, then the ranks can overlap computation and
communication.

4.5. Multistack Simulation. At this point, only one M2B plus
one Xeon processor system has been presented to explain the
basic concept of TMD-MPI and the MSF. However, a fully
populated system with three M2-stacks (1 M2B and 2 M2C
per stack) would contain 15 FPGAs and a quad-core Xeon
processor per motherboard. To perform system-level tests, it
should be possible to simulate all the FPGAs at once while
communicating with MPI software processes running in the
X86.

Such a multi-FPGA, multistack simulation imposes chal-
lenges on the CAD tools to generate simulation models and
set up testbenches. In addition, an interstack communication
mechanism for simulation is required, and it poses an
increased demand on computing power to simulate such
large systems.

To address the multistack communication mecha-
nism in simulation, the shared memory protocol in the
MPI FSB Bridge and the TMD-MPI software library were
modified to support this feature. However, the MSF FLI
module only required minor modifications because it is only
an intermediary for performing memory reads and writes
as commanded by TMD-MPI’s shared-memory message-
passing protocol. From the MSF perspective, interstack
communication was a straightforward extension of the one-
stack MSF version. Now, as shown in Figure 5, multiple
FLI modules (multiple M2Bs in simulation) exchange infor-
mation through shared memory without Xeon processor
intervention, or having to set up or start the communication.

To generate the simulation models, the MSF uses the
Xilinx simgen command included as part of the ISE/EDK
design tools. Simgen generates a self-contained simulation
model of an EDK project, which represents an entire FPGA
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design. This includes simulation models for the components
instantiated inside the FPGA. The MSF then runs simgen
for as many FPGAs as there are in the system, and finally
it creates a ModelSim script to generate the clock and reset
signals.

Once the simulation models for all the FPGAs are
generated there are two options on how to set up the
simulation using ModelSim, and this is shown in Figure 6.
One option is to create a top-level testbench that instantiates
the FPGAs as components in the testbench and simulates all
the FPGAs in one ModelSim process. The second option is to
start three ModelSim processes, one per stack, and let them
simulate independently. In either case, the FLI module will
communicate the same way (through shared memory) and
every M2B will have its own FLI module. Also, the amount
of computation required to perform the simulation is the
same in both options because it is the same logic. However,
the second option should be able to take advantage of the
quad-core processor. By having three ModelSim processes,
each process can execute concurrently in their own X86 core,
leaving the fourth core for the X86 MPI software application.

To the best of our knowledge, ModelSim is not a parallel
application nor takes advantage of multicore processors. But
by virtue of using an implicit parallel programming model
(MPI) to program FPGAs we can also split and run the
simulation in parallel without ModelSim being a parallel
program itself and without modifying its code.

To prove this hypothesis we simulate a simple test that
consists of two hardware engines exchanging ping-pong
(round trip) messages between two M2B modules, one

hardware engine per module. One experiment will have both
M2B modules in one ModelSim process and the second
experiment will use two ModelSim processes, one per M2B.
The MPI application contains three ranks, rank 0 (X86
processor) will send the test configuration parameters as
messages as well as the “start test” message to ranks 1 and
2, which are the hardware engines. Then ranks 2 and 3 will
exchange round trip messages of increasing size and when
the test is complete they will inform rank 0 by sending a
“done message.” The actual messages will pass through the
FLI modules and shared memory because ranks 1 and 2 are
located in different stacks, and it is the same amount of logic
to simulate.

We measure the simulation time by using the
MPI Wtime() function, which returns the number of
seconds elapsed since the application started to run, and
obtain the time difference between the “start” and “stop”
messages. The time measurement reports 20 seconds for
the first option (both FPGAs in one ModelSim process)
and 10 seconds for the concurrent simulation. As expected,
the concurrent simulation is twofold faster than the single
process option. We anticipate that for a three-stack system,
the parallel simulation option would be three times faster
than the all-in-one simulation option.

5. Flexibility and Architecture Exploration

One of the biggest advantages of abstracting and standard-
izing the communications using MPI is the flexibility to
place the computing ranks in different places and using
different types of computing elements. Ranks can initially
be a processor (X86, PowerPC, MicroBlaze, etc.) or hardware
engines, and the designer can change forth and back the type
of the rank without having to change the code for the rest of
the ranks. In other words, a rank can be a software process
and then be replaced by a hardware engine with the same
functionality.

Similarly, if a rank is implemented in an FPGA, the rank
can be physically placed in one FPGA and later it can be
moved to another FPGA without changing the code of any
of the other ranks or the code of the rank that is being
moved. From the programmer and designer perspective, the
communication is being performed between two or more
ranks, regardless of their location. The on-chip network will
route the packets and make sure the messages arrive at their
destinations.

Figure 7 shows the ping-pong example from Section 4.5
but the ranks are implemented in different ways. In
Figure 7(a) the X86 processor is a software rank and
it exchanges messages with a hardware rank. The ping-
pong messages are exchanged through shared memory. In
Figure 7(b) the X86 software rank is replaced by a hardware
rank resulting in two hardware ranks implemented in
the same FPGA. In this case the ping-pong messages are
exchanged using only the on-chip network; there is no shared
memory access. Finally, in Figure 7(c) one of the hardware
ranks is moved to another FPGA and now the ping-pong
messages are exchanged using shared memory. Note that in
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this case the X86 processor is independent and does not
intervene in the ping-pong messages between the hardware
ranks. In all three scenarios the C and HDL code is the same,
changing only configuration files that indicate the mapping
of computing ranks to physical resources available.

The Message-Passing Simulation Framework allows the
designer to simulate the three options in Figure 7 and
perform this architectural exploration before running a
potentially lengthy place and route processes for all the
different combinations.

6. Case Example: LINPACK

This section presents a brief description of our LINPACK
benchmark parallel implementation and some insights of the
core and its communication interface. Keep in mind that we
use this application to test the MPI Bridge, the TMD-MPI
software library, and the MSF FLI module, rather than to
obtain peak performance in LINPACK.

6.1. LINPACK Implementation. The LINPACK Benchmark
[10] is a widely used algorithm that measures floating-
point computing performance by solving a system of linear
equations, Ax = b. It has two main subroutines: DGEFA
(performs an LU decomposition on the matrix A) and
DGESL (solves the system of linear equations by using vector
b). More than 97% of the time taken to compute the
benchmark is spent inside the DGEFA subroutine. DGEFA
comprises three BLAS [24] level 1 functions, IDAMAX,
DSCALI, and DAXPY, where the latter, alone, is responsible
for about 95% of the time spent in the DGEFA subroutine.
The original benchmark uses double precision, but for
simplicity we use single precision, which is acceptable for the
purposes of this paper.

To implement a parallel version of this algorithm, we
first parallelized the sequential LINPACK code using MPI
with all the ranks running in X86 processors, and verify the
correctness of the parallel algorithm itself purely in software.
At this point, high-level application decisions can be made,
such as the communication pattern or data partitioning
scheme. For the LINPACK benchmark, DAXPY accounts
for most of the time spent inside DGEFA, however, the
DGEFA subroutine was chosen to be the parallelization

focus to reduce the number of messages being sent across
the ranks. As in Figure 4, we use six MPI ranks, all of
them have the same functionality and perform the same
computation, except for rank 0, which also performs the
inital data distribution, stores the results back to the file
system, and computes the DGESL subroutine.

After successfully parallelizing the algorithm in software,
three of the six ranks are targeted to run in the FPGA. This
decision is just to show how software processes (ranks 3, 4,
and 5) can be turned into engines without changing a single
line of code for ranks (0, 1, and 2), following the peer-to-
peer model between X86 processors and hardware engines.
The DGEFA subroutine is converted to hardware manually,
without using any C-to-gates compiler, however, nothing in
the MSF or TMD-MPI paradigm prevents that.

Since each rank contains a full DGEFA subroutine,
columns of matrix A are cyclically distributed across the
ranks, that is, 1st column goes to rank 0, 2nd column to
rank 1, and so on. This reduces the data communication
in each iteration. After the first data distribution, which is
only done once, only two broadcasts occur in each iteration,
one column of matrix A and the corresponding pivot.
These broadcasts are performed after the DSCAL function
is executed and done by the rank storing the respective
column, which means that each iteration will have a different
broadcast source; therefore, there is communication between
all the ranks. Finally, when all the data is computed, it must
be sent back to rank 0, which will run the DGESL subroutine
and end the algorithm with the residual calculation.

6.2. The DGEFA Benchmark Hardware. The DGEFA com-
puting engine, shown in Figure 8, consists of a state-machine
that has encoded the DGEFA benchmark flow, and a BLAS1
block, which is a special-purpose fully pipelined engine that
calculates the BLAS level 1 functions. The DGEFA state-
machine issues send and receive commands to the MPE,
similar to the MPI calls for X86 processors. The MPE
implements the TMD-MPI protocol in hardware and gives
the DGEFA engine the ability to communicate with all
the other ranks in the system. The MPE has independent
command and data FIFOs, that allow the streaming of data
directly into the datapath of the DGEFA computing engine.
Figure 8 shows how the DGEFA engine connects to the MPE.

6.3. Verification of the Results. At the end of the application,
rank 0 has the final matrix, which is compared against the
sequential version of the code run only in software. There is
a maximum error of 0.64% with an average error of 0.0011%
in the results due to fact that the X86 uses 80- and 64-bit
precision floating-point units compared to only 32 bits in
the engine, but that can be improved. The point being made
is that by using the MSF we have a way to measure further
improvements to the engine’s precision or mixed (X86 +
engine) precision calculations.

A caveat of our approach is that the communication
latency between X86s and FPGAs is not known with
precision because of cache effects, system load and memory
traffic bring uncertainty about the exact memory transfer
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latencies. The MSF module does not simulate the LLCC nor
the FSB bus transactions; therefore, it is hard to predict the
entire application’s performance exactly. However, keep in
mind that the focus of the MSF is correct functionality rather
than accurate performance measurement. Nevertheless, we
can estimate the LINPACK core performance based on
measuring the most time consuming part of the application.
By using the LINPACK function second() we know that the
DAXPY loop takes 482 microseconds in the X86 processor
(3.4 GHz), compared to 818 microseconds in the DGEFA
engine (clocked at 100 MHz) measured in simulation. This is
a fair comparison since there is no communication involved
in that loop, just raw computation.

Due to the MPI paradigm and the DGEFA core imple-
mentation it is very easy to increase the number of ranks
in the system, as long as there are enough resources in the
FPGA. The code (C and VHDL) does not need to change
at all to include more ranks. Based on preliminary synthesis
results, we can place around 16 DGEFA engines (excluding
the on-chip network, MPEs, MPI Bridge, and the Xilinx FSB
core) on the XC5VLX110 FPGA.

7. Future Work

Future work includes the support for external memory
simulation models for those modules that have memory
chips next to the FPGA; this will allow us to simulate designs
with larger datasets because currently the hardware engines
and embedded processors are limited to work with on-chip
RAM. The MSF should be able to automatically generate
top-level testbenches that include these external memory
models.

Currently, the FLI module provides a one-clock
read/write main memory latency, which is not realistic. By
using Xilinx Chipscope in a placed and routed design we
have been able to measure the latency of a memory read
(MPI FSB Bridge requesting to read a memory location)
to be between 40 and 50 clock cycles (approximately
150 nanoseconds) in an unloaded system. However, this
changes in heavily loaded systems. Future releases of the
MSF FLI module will include parameters or functions to

introduce these latencies to further improve simulation
accuracy, although changes in latency should not change the
results of the application.

In this paper, only multiple M2B modules were simu-
lated, but to simulate 15 FPGAs (including M2C modules)
could be quite demanding on computing power, especially
for large FPGA designs. Future work will include fur-
ther performance measurements and optimizations to the
MSF.

8. Conclusions

In this paper we describe a portable MPI-based approach
for cosimulating multiple hardware engines implemented
in FPGAs communicating with multiple X86 processes.
Although, in this paper, we use an Intel-FSB-Xilinx-FPGA
platform, the same concepts and ideas can be applied to other
platforms.

Vendor-specific details should be hidden in a portable
design and considered perhaps for further optimization. For
initial stages of the design, a quick prototyping simulation
environment such as the MSF can be very useful to accelerate
the design flow and test the functionality as well as explore
design alternatives. The MSF has demonstrated its usefulness
during the development of a LINPACK system by allowing
a fast compile-debug-modify-recompile cycle speeding up
the design task because there is no need to run place
and route to test the algorithm. The LINPACK system was
cosimulated using six MPI ranks, half of them running
as X86 software processes and the other half as hardware
engines in simulation; all exchanging messages in a peer-to-
peer fashion.

By virtue of using an implicit parallel programming
model, the simulation of multiple FPGAs can also be dis-
tributed to multiple ModelSim processes and take advantage
of multicore processors. We show that a simulation dis-
tributed across two ModelSim processes achieved a twofold
speedup over a single ModelSim process simulation.

Similarly, latency tolerant designs are natural when the
designer has an asynchronous, distributed, message-passing
mind set. Therefore, communication latency between pro-
cessors and FPGAs, although key for performance, does
not need to be simulated to obtain a functionally correct
system.

Glossary

ACP: Accelerated computing platform
FLI: Foreign language interface
FSB: Front side bus
FSL: Fast simplex link
HDL: Hardware description language
HPRC: High-performance reconfigurable computer
LLCC: Low-level communication core
LVDS: Low-voltage differential signal
M2B: M2 base
M2C: M2 compute
MPE: Message passing engine
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MPI: Message passing interface
MSF: Message passing simulation framework
NoC: Network-on-chip
TMD: Toronto molecular dynamics.
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1 ETIS, CNRS-UMR8051, ENSEA, Université de Cergy-Pontoise, 6 avenue du Ponceau, 95000 Cergy-Pontoise, France
2 IETR INSA—UMR 6164 CNRS, CS 14315, 35043 Rennes, France
3 CAIRN—IRISA/ENSSAT, 6 rue de kerampont, 22300 Lannion, France

Correspondence should be addressed to Emmanuel Huck, emmanuel.huck@ensea.fr

Received 15 March 2009; Revised 19 October 2009; Accepted 20 December 2009

Recommended by Lionel Torres

This paper presents the OveRSoC project. The objective is to develop an exploration and validation methodology of embedded Real
Time Operating Systems (RTOSs) for Reconfigurable System-on-Chip-based platforms. Here, we describe the overall methodology
and the corresponding design environment. The method is based on abstract and modular SystemC models that allow to explore,
simulate, and validate the distribution of OS services on this kind of platform. The experimental results show that our components
accurately model the dynamic and deterministic behavior of both application and RTOS.

Copyright © 2009 Benoı̂t Miramond et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Nowadays, algorithmic complexity tends to increase in many
domains such as signal, image processing or control. In
parallel, embedded applications require a significant power
of calculation in order to satisfy real-time constraints. This
leads to the design of hardware architectures composed of
heterogeneous and optimized computation units operating
in parallel. Hardware components in SoC (System on Chip)
may exhibit programmable computation units, reconfig-
urable units, or even dedicated data-paths. In particular,
reconfigurable units, denoted here as Dynamically Reconfig-
urable Accelerators (DRA), allow an architecture to adapt to
various incoming tasks at runtime.

Due to their intrinsic complexities, such heterogeneous
architectures need even more complex management and
control. In this context, the utilization of an RTOS (Real
Time Operating System) is more and more required to
support services such as communications, memory manage-
ment, task scheduling, task placement, and so forth. These
services have to be fulfilled in real-time according to the
application constraints. Moreover, such an operating system

must provide a complete design framework independent of
the technology and of the hardware architecture. As for stan-
dard computers, the RTOS must also provide an abstraction
and a unified programming model of the heterogeneous
platforms. This abstraction permits to drastically reduce the
time to market by encouraging re-usability.

Embedded RTOS for SoCs are of great interest and
are subject of several significant studies. In the context of
reconfigurable architectures, a study in [1] has determined
and classified the different services that operating systems
should provide to handle reconfigurability. Today, two
different approaches have emerged for the development and
the integration of these dedicated services. The first consists
in utilizing an existing standard RTOS (RTAI, RTLinux,
VxWorks, etc.) and in adding functionalities dedicated to the
management of the reconfigurable resources [2]. The second
is to develop a specific RTOS from scratch by implementing
the necessary functionalities devoted to the management of
the reconfigurable resources [3, 4].

The design process of such complex and heterogeneous
reconfigurable systems requires method, rigor and tools.
The OveRSoC framework is developed to take into account
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both the RTOS, and the platform to propose an efficient
exploration of the design space. The OverSoC methodology
is based on 4 important design concepts: exploration,
separation of concerns, incremental refinement and re-
usability.

Firstly, a number of design choices have to be done
prior any implementation, especially when the platform
itself is designed and tailored for a specific application. We
advocate the use of a high level model of Reconfigurable
SoCs (RSoC) in order to explore different critical design
choices. Among these important choices we distinguish two
exploration issues:

(i) the exploration of the application partitioning onto
the processing resources (topic already addressed in
the literature [5, 6]),

(ii) the exploration of the RTOS services distribution and
their algorithms.

Each design strategy belonging to these exploration levels
is manually made by the designer. But the proposed method
helps the designer to easily and quickly build the executable
specification of the corresponding systems. The underly-
ing tools then bring performance evaluations in order to
analyze and compare design strategies. The design choices
corresponding to the second exploration issue (RTOS) are
the architecture of the embedded RTOS (centralized or
distributed, OS services organization, software, or hardware
implementation, etc.), the services algorithms (scheduling
policies, etc.), the interactions between OS service functions
and underlying resources (reconfigurable, memories, inter-
connects) and the software programming model.

Secondly, once validated the candidate design solutions
are incrementally refined toward lower levels of abstrac-
tion down to the final implementation. The OveRSoC
methodology permits the separation of concerns during the
modeling and refinement process. It also defines modeling
rules that facilitate independence and re-usability between
components. For each design concern specific and related
refinement steps are proposed. The resulting methodology
serves as a design map for the designer of RSoC platforms.

Finally, the method imposes a functional approach
at each level of abstraction which allows the validation
of the application functionality besides the performance
evaluation.

As a consequence, in the rest of the paper the problem of
OS design is presented as a platform management problem.
This paper presents the OveRSoC methodology and the
related framework that consists of a set of SystemC models.
The associated graphical exploration environment is also
presented.

The remainder of the paper is as follows. Related work
is described in Section 2. Section 3 presents the OveRSoC
methodology and the corresponding tool for RTOS design.
The flexible SystemC abstract RTOS model which allows
RTOS service distribution and customization is presented
in Section 4. Section 5 describes the RSoC architecture
modeling step. Section 6 provides experimental results while
Section 7 brings out our conclusions and presents the
perspectives of this work.

2. Related Work

One of the main issues in reconfigurable platforms consists
in determining efficient control mechanisms that may have
dynamical properties in the sense that they must take on-line
decisions from unpredictable system properties [7]. Several
studies such as [3, 8] aimed at identifying the properties
of the RTOS that can take dynamic reconfiguration into
account. Specific properties such as application partitioning
and tasks placement are described and placed in the context
of reconfigurable computing which is often based on a farm
of reconfigurable circuits. In [8], authors present one of the
first attempts to develop an OS dedicated to the management
of reconfigurable resources.

For the particular SoC domain, the authors in [9] list
important properties to stress the usefulness of an OS to
manage heterogeneous and static resources.

Adding reconfigurable units in a chip brings up many
other issues from a design point of view. Introducing an OS
for the management of an RSoC is of high interest in the
research community [10]. Indeed, the partial reconfiguration
abilities of current architectures need to be fully exploited
in order to improve performance, cost, power-efficiency and
time-to-market. Even if classical software approaches can
be used, the OS then needs to be adapted to this new
computation paradigm. More precisely, specific services are
requested to manage the specific properties and resources of
the dynamically reconfigurable units.

Designing a complete RSoC including an RTOS is a very
complex task and requires appropriate methodologies. In
this section we firstly introduce constraints on a dedicated
RTOS for RSoC, we then discuss a proposal of methodologies
in order to design these circuits efficiently.

2.1. Dedicated OS Services. The required specific services for
RSoC can be roughly decomposed in four categories:

2.1.1. Spatiotemporal Scheduling. The task scheduling service
is obviously one of the most important features of a multi-
tasking OS. Scheduling of hardware tasks on reconfigurable
areas adds a spatial dimension to the classical temporal
problem [11]. This is defined as the spatiotemporal schedul-
ing problem. The mapping of hardware tasks onto the
reconfigurable unit can follow two spatial schemes according
to the technology [3]: 1D or 2D schemes. While the 1D
technique is simple to support, its performance in terms
of computation density is low. On the other side, the 2D
placement technique ensures a more efficient utilization of
the reconfigurable area, but the associated algorithms are
more complex.

2.1.2. Reconfiguration and Resource Usage Management. The
resource management is very close to the placement service
which needs to know the global state of the system. The
resource table needs to be extended to store specific infor-
mation necessary to manage the reconfiguration [2]. We can
cite for example the area information for each reconfigurable
task, the task communication needs which must be ensured
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when the task is placed on the reconfigurable resource, the
form factor, and so forth. The area fragmentation problem
also appears when managing reconfigurable resources [12,
13]. This problem can prevent the placement of tasks while
there is enough area within the reconfigurable resource. In
this case, the designer can decide to implement a defrag-
mentation service into the OS to limit the task placement
rejection.

The reconfiguration latency of DRA represents a major
problem that must be taken into account. Several works can
be found addressing temporal partitioning for reconfigu-
ration latency minimization [14]. Moreover, configuration
prefetching techniques are used to minimize the reconfigura-
tion overhead [15]. A prefetch and replacement unit modifies
the schedule and significantly reduces the latency even for
highly dynamic tasks.

2.1.3. Task Preemption and Migration. hardware task migra-
tion is an interesting property that requires the imple-
mentation of the hardware task preemption service [16].
Efficient implementation of preemption and migration
requires several additional OS services, such as online
communications routing and spatial placement. To limit
the scheduling overhead and the number of configuration
phases, which can be very time consuming, some OS prevent
the preemption of hardware tasks. Non preemptive operating
systems are known to be more deterministic, but do not
take full advantage of platform flexibility. The conditions
allowing more complex hardware task preemptions are
defined in [17]. In this article, the authors describe three
types of requirements allowing to perform multitasking
on FPGA. First, save and restore mechanisms of current
state of all registers and internal memories are required.
Second, the configuration manager must obviously support
fast configuration and readback of the FPGA. It must also
have complete control over all the clock signals in order to
freeze execution during context switching. Finally, it requires
an open bitstream format in order to readback the status
information bits.

As an example, preemption of hardware tasks have been
studied in [18]. The authors present prospective architectural
extensions of SRAM-based FPGA devices allowing a very
fast and efficient context save and restoration. The proposed
architecture supports the hardware defragmentation.

2.1.4. Flexible Communications. This property deals with the
inter-task communication property of an OS and impacts the
routing service [19]. The communication functionality is an
important part of the system to ensure the data exchanges
between all tasks, whatever their type or localization. Con-
sidering the localization of the tasks, communications are
classically divided into two different types:

(i) the global communications: this communication
level enables data exchanges between the different
available resources (e.g., DSP, processors, reconfig-
urable units, etc.).

(ii) the local communications: this level ensures the data
routing between different tasks placed simultane-
ously into the same reconfigurable area.

The global communication structures have to support
flexible throughput and guaranteed bandwidth. In this case,
OS services must provide the capacities to manage these
structures. The requirements of the local communications
within the reconfigurable area are quite different. Tasks
implemented within this area are dedicated to intensive
computation and are generally constrained by real time
execution. In this case, communications do not support any
delay nor excessive latency.

2.2. RSoC Dedicated Methodologies. Several studies tend to
abstract the reconfiguration management by working at a
system-level model. This level enables the exploration of
systems while software, hardware or reconfigurable parts
are not completely defined. It also enables the validation of
various configurations to find the most efficient solution.

In order to introduce the reconfiguration in Symbad
[20] which is a system-level codesign platform for SoC, the
refinement phase has been modified to handle static and
reconfigurable modules [21]. Specific simulation parame-
ters, such as the reconfiguration time, are taken into account.
Associated tools enable the evaluation of the reconfigurable
contribution to the system performances. In [22], the
authors propose a methodology in order to implement an
application in an RSoC. This methodology is based on a
UML descriptive model of the software parts and on a
SystemC description of the architecture. Currently, these
works do not take the dynamicity of the reconfiguration into
account.

The collaborators of the Adriatic project propose an
original methodology that handles dynamic reconfiguration
[23]. The reconfigurable block is composed of a controller
that launches or stops reconfigurable tasks, and features an
input router that dispatches data among active blocks. Adri-
atic then proposes high level estimation of performances.
Different strategies and approaches of estimation, simulation
and partitioning are implemented in the Perfecto [24] and
ReChannel [25] frameworks. Unfortunately, none of these
works considers the development of an OS in order to
dynamically manage the RSoC.

New approaches tend to provide a high-level hardware
design model while managing the hardware implementa-
tion efficiently. This goal is achieved by a multi-languages
approach.

In [26], the authors develop a framework based on
the RTL language HIDE for implementation purpose, and
on Handel-C to describe hardware at a higher level of
abstraction. At present, the proposed framework does not
handle dynamically reconfigurable architectures.

The multi-languages strategy is also used in the European
Project Andres [27] which addresses heterogeneous systems.
It is built around the HetSC methodology for the specifica-
tion of the software part and the OSSS+R SystemC library for
the reconfigurable part. Andres also includes a part of analog
mixed design by supporting the SystemC AMS.
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A special case of RTOS generation is the definition
of dedicated OS services for DRA. The work presented
in [28] addresses this problem by proposing a RTOS/SoC
codesign framework. The customized RTOS is automatically
generated from existing OS basic blocks which are available
in software and/or in hardware. The 4S project [29] provides
a design flow to develop RSoC platforms including an
OS. In this project, algorithms are implemented into tasks
which are mapped onto reconfigurable or non reconfigurable
modules. The proposed tool provides information about
the performances of each task for a given mapping. In
an exploration step, the OS manages the implementation
of tasks within reconfigurable units and generates flexible
communication mechanisms. At present, these projects do
not include the OS definition as part of the design process.

As a conclusion, adding reconfigurability in a platform
imposes the management of hardware tasks at run-time.
These tasks have to be placed into a reconfigurable unit in
a dynamic and flexible manner. To ensure this management,
some OS services need to be adapted (synchronization,
migration, etc.), but some other services are completely
new and need to be developed from scratch (spatiotemporal
scheduling, fragmentation management, etc.). In the litera-
ture, to the best of our knowledge, no work proposes a com-
plete solution, neither on real platforms nor in simulation,
for the DRA management. The main contribution of this
paper is to propose a unified modeling environment where
all the needed services can be specified, tested and validated
when distributed onto an heterogeneous multiprocessor
platform. In this paper we do not provide and describe new
spatiotemporal algorithms nor defragmentation methods
but an open platform for the exploration of these complex
algorithms where existing and upcoming methods for DRA
management may be evaluated and compared. The services
and the underlying platform are part of the exploration
process. This objective has been reached thanks to the
following contributions:

(i) a design methodology adapted to the exploration of
the RSoC specific services,

(ii) a tool implementing this methodology,

(iii) a set of generic simulation models of MPSoC (Multi
Processors System-on-Chip) components,

(iv) a high-level model of a DRA,

(v) a top-down refinement process.

3. The OveRSoC Methodology

In this section, we describe the methodology which is devel-
oped in the OveRSoC project and the tool that implements
it. Our main goal is to provide a simulation framework for
hardware/software design exploration of an RSoC including
a dedicated RTOS. The framework is based on four main
concepts: a methodology based on several design and analysis
steps, the automation of simulation code generation from
a library of basic blocks, the separation of concerns and
the capability to simulate heterogeneous abstraction levels
during the modeling process.

3.1. Platform Exploration Flow. The global methodology
focuses on the original concepts addressed by OveRSoC,
that is, the exploration of a distributed control of dynamic
reconfiguration. In this way the methodology aims to explore
the appropriate OS services that will be necessary to manage
the RSoC platform. It relies on an iterative approach based
on the refinement concepts as depicted in Figure 1.

The input of the exploration flow consists in specifying
both the application and the system constraints. The RSoC
platform model requires parametrization. The application is
described as a set of tasks implemented whether in hardware
or software. Their communications and synchronizations are
also described as a graph of connections and dependencies.
These dependencies can represent either pure data streams
or synchronization mechanisms. Since version 2.0, SystemC
supports a very powerful generic model of computation [30]
but at the present time we only consider Communicating
Sequential Process, Data-flow, and Kahn Process Networks
[31]. These models satisfy the set of properties of the digital
and signal processing domains that we address in this work.
As imposed by the methodology, the functional behavior of
each task must be defined as a pure C specification whether
the tasks are executed in software or in hardware. During the
early modeling steps, we use a common specification for the
software or hardware implementation of a task. But for all
the tasks, information about the execution time, periodicity,
deadline are taken into account and considered as imple-
mentation specific attributes. This type of information may
be either first estimated and refined afterwards or directly
obtained by other tools that are capable of delivering accurate
timing in the case of reused software or hardware IPs.

The basic RSoC platform considered is composed by
three main types of components: the OS that manages
the entire structure, the Processing Elements (PEs): the
processors and the DRA, and the Communication Elements
(CEs) composed of a communication media and a memory
hierarchy. The OS may be distributed on the PEs of the
RSoC platform (at least one processor and one DRA). The
framework provides a set of models stored into the system
library for each type of component. The library can be
extended by adding new models to take into account new
architectures. All the components feature their own list of
design attributes. These attributes are used to customize
each block within the RSoC platform. For example, the
scheduler algorithm of a specific instance constitutes an
attribute for an operating system, the latency of a specific task
corresponds to an attribute for the application, the numbers
and types of available resources within the reconfigurable
area constitute one of the attributes that describe the
DRA.

Once the platform architecture is defined and cus-
tomized, the central work for the designer is to specify the
different services that are required by the operating system
in order to manage the global platform. Some services are
available in a service library, but it is also possible to create
new ones by specifying their behavior.

The validation of the design is based on the notion of
metrics. Metrics are component specific measurements that
can be reported to the designer during the simulation. They
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Figure 1: The OveRSoC exploration and refinement flow. Exploration is defined as an iterative process: modeling, simulation/validation
and exploration. The inputs of the method are the specification of the application as a pure functional C code, and the system constraints.
Once the system validated, the design process starts again at a lower level of abstraction until the final system description. At each level of
abstraction, the goal of the exploration depends on the separation of concerns paradigm (Section 3.2). This paradigm is defined as a 4 steps
process where the following concerns are successively addressed: application specification, architecture description, RTOS definition and
platform refinement.

help the designer to verify the system constraints such as the
PE workload, the communication congestion and so forth.

Examples of metrics that are already provided by the
library components concern the tasks sequencing, the num-
ber of preemptions, the usage of resources and all events that
may occur during the execution (semaphore’s pend and post,
etc.).

In particular, these metrics help to check the respect of
the timing constraints. Obviously, the functional behavior of
the application can still be validated by the designer. Once
the attributes are completely defined, the whole platform is
simulated in SystemC and metrics are evaluated. The analysis
step is then manually performed by the designer in order
to analyse the results of the simulation and to estimate the
impact of specific attributes on the overall performances. The

designer may then modify the value of some attributes and
iterate the global simulation of the platform to explore the
design space.

For the validation of the design choices, both the appli-
cation (functionality) and the underlying RSoC platform
(concurrency and timing) are simulated at high level in order
to substantially decrease the simulation time of the whole
platform. The exploration flow is conceived in a hierarchical
way, according to the refinement concepts, and allows
the designer to refine progressively his description of the
platform to get more and more detailed results. We identified
4 refinement levels described in Section 3.3. At the highest
level, we only consider the duration of tasks and RTOS calls,
but not the memory nor the communication time. Then
new attributes and metrics may appear as the description
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distribution of these services. This layer also brings concurrency
between threads according to the type of the associated PE. The
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and represents the embedded platform. This layer also brings
accurate timing evaluations.

becomes more accurate. For example, communications that
are not taken into account in a coarse level of description
may be accurately described to get more realistic values of
the execution latency. New metrics like deadlocks on an
interconnection network may also appear and provide the
designer with new information about the global functioning
of the platform.

3.2. Separation of Concerns. One of the main challenges of
the proposed method is to keep the RTOS model as abstract
as possible for exploration reasons while providing accuracy
of performance estimation. The RTOS is maintained at a
high level of description in order to easily add, remove,
and deploy services without impacting the binary code of
the cross-compiled application. The application is compiled
once and the designer cannot only modify and refine the
implementation of the RTOS services, but also scale the
number of processors and DRA in the platform. As a result,
the modeling space is separated into three independent
layers depicted in Figure 2 according to the principle of the
separation of concerns [32].

The top layer focuses on the functional specification of
the application. This is described as a pure functional C code
partitioned in C functions.

Then, some of these functions are associated with the
notion of task in the following layer. Functional code calls
RTOS services through a standard API (Application Pro-
gramming Interface) as explained in Section 4. Communica-
tions between tasks depend on the synchronization services

provided by the RTOS, for example, mutex, semaphores,
fifos, mailboxes, and so forth.

In the next step, the OS layer deals with the concurrency
between explicitly defined software processes. To reach this
goal, we have developed a flexible SystemC model of a RTOS
which is described in Section 4. Concurrent tasks are created
thanks to specific services within the RTOS API. Multiple
scheduling algorithms can be tested at this level according
to the application constraints and possible task mapping
to the underlying architecture without modification of the
functional layer. In this layer, the designer can also explore
the architecture of services into the distributed RTOS.

Finally, at the Architecture layer, the architecture of
the embedded system is specified as a composition of
heterogeneous processing elements (PEs) and communica-
tion elements (CEs). Each PE and CE may be modeled at
different levels of abstraction and a refinement process can
be performed without impacting the other modeling layers.
Precisely, an ISS (Instruction Set Simulator) of a general-
purpose processor executing a sequence of instructions
is a refined model for an abstract function block. The
independence of the hardware layer is ensured by a low
level API, the Hardware Abstraction Layer (HAL) that
always provides the same low-level services but with more
or less accuracy as described in Section 3.3. This layer is
also responsible for metrics’ evaluation: execution time,
processor utilization, memory usage, and so forth. Adopting
such a modeling approach allows to reach the presented
objective, that is, to explore the RTOS implementation at a
high level while providing accurate performance evaluation
of the entire system. According to the RTOS timer frequency,
we observed on our application (see Section 6) that the
execution time of the RTOS services represents ≈3 percent
of the total application execution time. This observation
corresponds to the results presented by Kohout et al. in [33].
Authors characterized the RTOS overhead according to the
processing power used by the applications. The measured
overhead grows from 2% to 9% for a preemptive RTOS and
from 0.6% to 1.25% for a RTOS using a nonpreemptive
strategy. But this is only for a monoprocessor system. In
our case, when deploying an application on a MP-R-SoC,
scheduling strategies and communication will completely
change the system behavior and the waiting state durations.
To deal with the OS overhead, we propose to keep the OS
services at high level to ease exploration of its distribution
or implementation. This observation is consistent with our
approach that will provide accurate performance estimation
on the Application layer which thus represents at least 90%
of the total execution time.

3.3. HAL Transactor and System Refinement. Independence
between modeling layers is ensured by a set of constant and
standard services provided to the upside neighbor layer:

(i) independence between the Application layer and the
Concurrency layer is ensured by the OS API,

(ii) independence between the Concurrency layer and the
Architecture layer is ensured by the HAL API.
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Table 1: Example of services provided by the OS and HAL API.

Service component OS API

Task management void OScreateTask(code pointer t f,

intu8 priority);

void OSdeleteTask(int task id);

. . .

Semaphore sem desc OScreateSem(sem state init);

management void OSreleaseSem(int sem id);

. . .

Timer management void OS time delayHMSM(

int h,int m, int s, int ms)

. . .

. . .

Architecture component HAL API

PE void compute(task t∗ t);

save context(task t∗ t);

restore context(task t∗ t);

timer set(int nbms);

timer set irq handler(

code irq handler t f);

timer start();

timer stop();

CE oversoc t rsp t transport(

oversoc t req t ∗REQ);

The set of services provided by the OS depends on the
chosen services. An example of service functions provided
by the OS and HAL API is presented in Table 1. PEs and CEs
provide to the OS components execution and transaction
services similar to those presented in [34]. The call to the
HAL services remains constant during all the refinement
process but their implementation depends on the accuracy of
the underlying layer. So both the OS and the HAL API allow
to explore and refine lower layers while keeping higher layers
unchanged.

Indeed PEs can represent abstract processing compo-
nents when modeled at high level. They can also repre-
sent cycle-accurate processor, FPGA, or dedicated hardware
models when described at lower levels. When the embedded
application is partitioned and assigned to a PE, the PE mainly
provides a compute() and transport() pseudo service to the
RTOS, allowing a timed simulation for the computation
and the communication. It also provides a service to trigger
interrupts as components of the corresponding RTOS HAL.

The simulation accuracy then depends on the description
of the internal architecture of the PE. We identify and
advocate 4 refinement levels depicted in Figure 3.

(i) Virtual nodes: the PEs are used as empty boxes and
the simulation is not timed. It corresponds to the
Programmer View of the TLM approach [35], that
is, a pure functional verification at high simulation
speed.

(ii) Annotated nodes: the PEs are described as simple
tables containing predicted execution times. The tim-
ings correspond to a back annotation of the execution
time of each application basic block (Programmer
View plus Time [35]) but without any modification
of the application source code.

(iii) Cycle accurate nodes: at an intermediate level, soft-
ware PEs are classically modeled as ISS (cycle-
accurate) as explained in Section 5.2. In Section 5
we describe an equivalent model for the hardware
PE (the DRA). From this refinement level, the HAL
is implemented as a transactor, that is, a modeling
artifact that translates transactional calls to RTL
signals activations.

(iv) RTL nodes: at the lower abstraction level, a PE
can still be described as an RTL model providing
cycle-accurate timing evaluations and bit-accurate
informations.

In a more general manner, thanks to the SystemC
blocking calls mechanism, the Architecture layer interacts
with the simulation core (SystemC) to advance the simu-
lation time of the caller process according to the executed
task. As for the synchronization and the preemption of
the SystemC processes, it is ensured by the upper level
which manages notification and waiting of SystemC events
as described in [37]. In the case of MPSoC platforms,
synchronization between processors is ensured by inter-
ruptions and by a hardware shared semaphore model.
But whatever the chosen abstraction level of the Archi-
tecture layer, the Concurrency layer (i.e., the OS services)
remains at the same abstraction level. This level is called
SAT (Service Accurate plus Time) and is described in
Section 4.

3.4. The DOGME Tool. Due to the complexity of the
exploration process, the HW/SW designer needs tools to
apply the OveRSoC methodology. The DOGME (Distributed
Operating system Graphical Modeling Environment) soft-
ware provides an integrated graphical environment to model,
simulate, and validate the distribution of OS services on
RSoC. The goal of the tool is to ease the use of the
exploration methodology and to generate automatically a
complete executable model of the RSoC platform (hardware
and software). The automation is based on a flexible
SystemC model of RTOS described in Section 4. This RTOS
model is a package of modular services. To develop each
service, an Object Oriented Approach has been adopted
and implemented using the SystemC 2.2 library. This
tool allows an application specific RTOS to be built by
assembling generic and custom OS service basic blocks
using a graphical editor [38]. The application is linked
to the resulting OS thanks to a standard POSIX API.
Finally, the entire platform is simulated using the SystemC
kernel.
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The developed tool follows five main design steps repre-
sented in Figure 4.

(i) Design of the platform: the design phase consists
in choosing and instantiating toolbox components
into the graphical workspace editor in order to
assemble the OS services and distribute them onto
the RSoC processing elements. Figure 5 shows an
example of RTOS composition including services
like task management, scheduling, semaphore, IRQ
controller. . . At this step the designer will succes-
sively, and according to the separation of concerns
paradigm, take decisions about

(i) functions mapping into threads,

(ii) hardware/software partitioning,

(iii) instantiation of the required services,

(iv) distribution of the services onto the PEs.

(ii) SystemC source code generation: after interconnecting
all components and verifying the bindings between
services, the structural source code of all the objects
that are instantiated into the platform is automati-
cally generated.

(iii) Compilation and simulation of the platform: to com-
plete the design of the platform, the parametrized
structural SystemC description is combined with the
behavioral source code of the components provided
by the user. The global SystemC description is
compiled and simulated.

(iv) Analysis of the simulation results: graphical diagrams
are produced to visualize the evolution of the system
metrics during the simulated time. This step helps the
designer to evaluate the current design quality. It acts
as a decision guide for the exploration of the design
solution space.

We are currently implementing the DOGME tool as
a stand-alone application based on an Eclipse Rich Client
Platform [39]. Typical project management functions like
importation of platforms or components into the standard
library are supported as well as the creation of new platform
models. Reusability is achieved in the tool by the possibility
to add the newly created platform to the standard library. All
data manipulated by DOGME are loaded and stored using
a proprietary XML format dedicated to embedded software
modeling as depicted in Figure 4.

4. Distributed RTOS Model

This section presents the essential mechanisms needed to
jointly model and simulate hardware/software tasks and the
RTOS in SystemC.

4.1. A RSoC Model Based on RTOS Services. In order to
model complex embedded platforms composed of multiple
parallel and heterogeneous (and reconfigurable) resources,
it is important to be able to jointly model the functional
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OS API OS API
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DRA
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Figure 3: Example of refinement of the minimal RSoC platform.
The first level begins after hw/sw partitioning of the application
and corresponds to virtual nodes. The second level refines PEs
to annotated nodes. At this level, each task has an estimated
execution time. The CE is modeled as a transactional bus called
CAS (Calling Abstraction Service). The two last levels correspond
to Cycle Accurate or RTL nodes. The global CE has been refined to
an OCP bus [36]. The memory accesses are now taken into account
accurately, that is, all the communications can be evaluated at the
lower level.

software, the underlying hardware and the glue between,
which is generally composed of RTOS instances.

In the step 3 of the design process (see Figure 1), to
explore the design solution space, we choose to model the
system at a high level of abstraction, where the hardware
is partially hidden. We focus our modeling process on the
services provided by the platform.

At the Concurrency layer (see Figure 2), we address
the SAT level of abstraction: Service Accurate plus Time.
This allows us to very quickly simulate the behavior of the
application, compared to lower detailed levels of abstraction.
This level of concern is different from the Donlin’s CP+T
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Figure 4: The DOGME tool brings facilities to manipulate the
components of the library. These components model RTOS services
for the control of an RSoC platform. In the library the services
are described both by a SystemC generic source code and an XML
exchange file. The designer graphically instantiates the components,
then the tool automatically adds debug components for metric
evaluation into the specification and generates the code of the
corresponding platform. The platform is compiled and linked with
the SystemC libraries and simulated thanks to graphical interfaces.
The designer can finally evaluate the metrics of his platform and can
take decisions about exploration or refinement.

(Communicating Processes with Time) level [35] which
mainly focuses on hardware modeling but which does not
include the RTOS services. This level of modeling implies
that the architecture is not modeled explicitly, all the appli-
cation tasks are functional, annotated with approximated or
measured execution timing, and all the RTOS services are
explicit and timed.

The core element of our distributed architecture model
is a high-level functional model of a RTOS written in
SystemC. Since SystemC does not support OS modeling
facilities in its actual version, a first step was then to extend
SystemC with embedded software modeling features [37].
The works presented in [40–43] are examples of simulation
environments dealing with this challenge.

The proposed RTOS model [37] acts as a Service Accurate
+ Time model of a virtual PE (processor or DRA) in the
sense that all the necessary services of an embedded RTOS are
modeled as independent modules with their own behavior
and timing. The RTOS model is built as a collection of
service modules implemented in the form of a hierarchical

sc modules to foster high level exploration of custom
architectures. The main RTOS model instantiates all its
modules and uses sc export to provide a global API to
the application code as illustrated in Figure 6. Each service
module has its own interface that furnishes the corresponding
services’ functions to the embedded application. This model
includes mechanisms for modeling dynamic creation of
tasks, task preemption and interrupt handling as described
in [37]. Figure 6 illustrates the hierarchical structure of the
SystemC RTOS model composed of the following service
modules:

(i) a task manager that keeps the information and
properties of each task according to its implementa-
tion (software or hardware): state, context, priority,
timings, area, used software or hardware resources . . .

(ii) a scheduler that implements a specific algorithm:
EDF [7], HPF [7], horizon [44], . . .

(iii) a synchronization service using semaphores.

(iv) a time management service that keeps track of time,
timeouts, periods, deadlines . . .

(v) an interrupt manager that makes the system reactive
to external or internal events.

(vi) a specific simulation service (advance time).

Each service module is modeled as a SystemC hierarchi-
cal sc channel and is symbolized in the figure using the
SystemC representation [30]. A service module thus provides
several service functions through its interface.

For example, the task manager provides the following
functions: create (dynamically) a task, delete a task, get
the state of a task, change the state of a task. . . The task
creation function associates a simulation process (and thus
concurrency) to one of the pure C function present at the
Application layer.

Some service functions are accessible from the Appli-
cation layer through the OS API. Those are called external
service functions. Others are only accessible from the other
service modules through a SystemC port to establish inter-
module communications and are called internal service
functions.

At this layer, timed simulations of the application use
a specific simulation call (called OS WAIT()), associated
to each bloc of task code between two system-calls and
redirected through the Concurrency layer toward the Archi-
tecture layer. This service, represented in Figure 6, allows
each function to progress in time. In addition, each OS
service function within the OS itself may also be annotated
with timing information (depending on the processor)
allowing a timed simulation of a realistic system.

Actually the system library provides a set of basic generic
services: interrupt management, timer management, inter-
tasks synchronization, and memory management. It also
provides hardware and software specific services such as the
task management of software or hardware tasks, software
scheduling policies and hardware placement algorithms.
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Figure 5: The DOGME tool represents a distributed RTOS through hierarchical views: the Component Graphical Editor, where the services
are organized inside each PE, and the Platform Graphical Editor, where the groups of services are composed according to the number and
type of PEs into the RSoC platform. Here the Component Graphical Editor is shown. It uses toolbox components to specify and customize the
services of a dedicated group. Each service is modeled as a software (C++) component having ports and interfaces. Each service component
provides several service functions.
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Figure 6: The modular RTOS model and its composed API. Each
OS service exports its own interface to the application. Services are
connected together to ensure the global OS coherency and behavior.

4.2. Distant Communications and Services Requests. We
extend the model for distributed multiprocessor architec-
tures exploration with the following features: the whole
application is decomposed into multiple threads sharing

the same addressable memory, the application is statically
partitioned onto multiple processing nodes, each processor
has its own scheduling strategy (policy, priorities, etc). All
inter-processor communications are modeled using trans-
actions with respect to TLM 1.0 methodology. A unique
transport method is used for both requests and replies. All
communications are currently performed instantaneously
but this allows a communication refinement process and
thus a time accurate simulation by introducing bus-related
or network-related timings into transactional ports.

Our approach for modeling distributed OS services is
inspired from the middleware philosophy which consists in
using proxies and skeletons services. A proxy service provides
a local entry point to a distant service accessible through
an interconnection infrastructure. This adds dedicated ports
and interfaces to the RTOS (and also on services modules
needing to communicate).

Figure 7 illustrates transactions between two local
semaphore services (proxies) and a shared distant semaphore
implementation (skeleton). Get and release semaphore
invocations are performed locally to the proxy which for-
wards transactions to the distant service. By using a simple
transport method, all distant calls put the caller tasks into
an active waiting state. In case of access conflicts, the shared
service has its own arbitration policy. Then, replies are sent
back to the caller at the end of the service execution.

Communication from a distant service to local proxies
are performed by using signals which are similar to interrupt
requests that are managed by local proxies. Suspended tasks
may then be resumed by their own schedulers depending on
local policies.
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Figure 7: Activity diagram of local/distant calls to a shared semaphore proxy/skeleton between two OS models.

Based on this distant service invocation, we can easily
imagine and construct a model of a shared distant syn-
chronization service (potentially implemented in hardware),
like a semaphore. Then it allows to quickly map the
application onto a multiprocessor platform and evaluate
the potential acceleration that distribution of computations
could potentially allow, as shown on Figure 8.

Based on this mechanism, we can design a new RTOS
with dedicated services for a DRA. We can then explore
and evaluate their behavior, as shown in Figure 9, and
try different scheduling policies specific to hardware IP
placement on the DRA.

As illustrated in Figure 9, we propose a set of high-level
models for the preceding specific services. We are able to
create, schedule, preempt, and delete hardware tasks onto
a distant DRA. All these tasks execute and communicate
with the other local or distant tasks indifferently. At this first
level, the specific properties of the hardware implementation
remain abstract and the scheduler only considers the current
free area to take scheduling decisions. At lower levels of
abstraction, the services implementation directly depends on
the properties provided by the DRA model in the hardware
modeling layer as described in the next section.

5. Abstract Models of
the Reconfigurable Platform

During the refinement steps of the methodology, we need
to refine some elements of the design, as the Dynamically
Reconfigurable Area, and the processors for software tasks.
This implies to integrate more detailed elements as ISS for
processors and also a detailed DRA model referred as a
CSS (Configuration Set Simulator). These refined models

allow to automatically annotate software and hardware tasks
timing and to analyze more accurately their behavior during
execution.

5.1. Reconfigurable Architectures Modeling. Reconfigurable
modeling is a well known issue and has been addressed for
example by Becker in [45] for 1D partial regions.

In the OveRSoC project, the DRA model is composed of
both an active and a reactive component. Active component
models the hardware physical architecture. It encapsulates
the constraints of the physical circuits. It corresponds to the
internal organization of the DRA and ensures the execution
of hardware tasks. The Reactive component models the
dynamic behavior of the architecture. It represents the API
of the DRA which provides several OS services and attributes
through a fixed logical interface. In the OveRSoC project this
component constitutes the interface between the external OS
model and the DRA model.

These two components represent the reconfigurable
hardware unit and must support the exploration strategy
and the refinement of all manipulated objects. To ensure the
exploration process of OveRSoC and keep complexity under
control, the DRA is defined through a multilevel model.

Both active and reactive components are tightly coupled
and the refinement of each impacts the other. The explo-
ration process of the active and reactive parts of the DRA is
constrained by the level of description of each component.

Three levels of abstraction for each component are
proposed (see Figure 10). The refinement process applied to
the DRA consists in successively defining the three proposed
levels and their properties.

In the model, the level 1 corresponds to an annotated
node (Section 3.3). The different components are modeled
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through a small number of parameters and permit a fast and
coarse evaluation of methods and performances. The active
component is considered as an homogeneous unconstrained
rectangular area with a reconfiguration memory. The only
parameter which is required to execute the tasks in the
DRA is the task’s area. At this level, the resources of the
DRA are considered as unconstrained, that is, no bandwidth
limitation, no latency, no area constraints, and so forth.
In terms of performance, the designer evaluates the global
area required in the active components, as well as the
reconfiguration overhead introduced by its task management
services.

The second level refines the active components defined as
a rectangle which contains a set of heterogeneous resources

such as memory, abstract running blocks and interconnect
resources with limited bandwidth. The task heterogeneity
is present at this level and a minimal placement service
is required. At this level, the reactive component uses the
structural information of the active component to verify the
constraints of tasks. The corresponding definition of tasks
must be completed by parameters, such as the rectangular
size, the form factor of the area and so forth.

The level 3 is the most accurate level of description and all
the elementary blocks of the active components are described.
They are defined as an array of LUT (Look Up Table) with
glue logic for arithmetic computation and the corresponding
sequential elements, a set of memory allocated throughout
the array, columns of hardwired blocks and eventually
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Figure 10: Hierarchical model of the active and reactive compo-
nents of the DRA. The different levels permit to represents the DRA
with more or less details. Refinement process leads to the complete
definition of the internal architecture of the DRA. Belonging
to the refinement of architectural aspects (active component),
the supported services can be developed and evaluated (reactive
component).

hardware core processors like PowerPCs in last Xilinx’s
technology. The corresponding reactive component must
implement all the services described in Section 2. These
services take both the application constraints and the precise
circuit organization into account.

From this model, the DRA management can be explored
through the implementation of distributed OS services.

For example, we present a particular implementation of
the createTask OS service in Figure 11. In this example, a
placer and a loader service are also implemented in the DRA.
The first sequence of Figure 11 shows the hardware task
creation call, createTask(T3h). This OS call is performed
by the software task T1 and is handled by a processor
OS service. Since the task to create must be executed
onto the DRA, the OS service call is passed to the DRA
through the interface, createHWTask(T3h). This interface,
implemented by the reactive component, calls the DRA OS
service of task creation. Before loading the task, the DRA
must verify if this new task can be loaded and placed in
the reconfigurable area. To do that, the hardware OS calls
the placer service, isLoadable(T3h). At this step, the
verification depends on the level of DRA description. For
example, at level one, the placer checks if the available area

is sufficient for this new task. In this case, we can model this
verification as

Nt∑

i=1

Ai + Anewtask ≤ totalArea, (1)

whereAi is the necessary area for the task i,Anewtask is the area
of the new task to instantiate onto the DRA, Nt represents
the number of tasks already instantiated within the DRA, and
totalArea the total DRA area.

In the first part of this diagram, we illustrated
the case where the placement of a new task is pos-
sible. In this case, the placer calls the loader service,
loadTask(T3h). The loader ensures the loading of the
task bitstream, loadBistream(T3h), and finally starts the
task, start(T3h). This sequence can be modified in order
to evaluate potential overhead of different implementation
solutions.

In the second part of this sequence the CreateTask OS call
is performed by the software task T2, createTask(T4h).
The beginning of the sequence is the same as the first
sequence presented above, but in this case, we consider that
the placement of the new task into the DRA is not possible,
ie. the return value for the isLoadable(T4h) function is No
OK due to unavailable area. In this case, the task execution
is refused by the DRA, and an error signal is returned. To
finish this example, we suppose that a software version of task
T4h exists and the system decides to switch to the software
version, create(T4s), and to schedule it immediately.

5.2. Processor Modeling. In this work, we use ISS for soft-
ware simulation. As a proof of concept of our embedded
software modeling approach, we developed a SystemC ISS
corresponding to the ATMEL AVR Instruction Set Archi-
tecture. Targeting either hardcore processors or ISS follows
the same compilation flow. We can thus reuse standard
compilation tools. The binary code must then be loaded into
SystemC memory models by external modules (bootstrap).
The ISS communicates with memory through standard
hierarchical channels. At this level of the model framework,
communications can be refined towards Register Transfer
Level. The ISS fetches instructions and simulates opcode
execution. We implemented two modes of operation for the
ISS: accurate and fast mode. When functioning in its main
(accurate) mode the ISS classically extracts, executes 16-
bits opcodes and increments the program counter. Once a
basic block, has been executed, the ISS keeps track of the
simulated execution time into specific tables to minimize the
simulation overhead. Each basic block is thus associated with
a block ID which corresponds either to an entire software
task code or to instruction blocks within the task code.
The ISS can also be interrupted and can thus model task
preemption at a very fine level. In fast mode, preemption
is also possible but at a coarser level since simulated time
advances with a basic block precision. Interrupts can not
occur before the end of the single SystemC wait time
parameter. Once interrupted, the remaining time is saved in
tables and reused when the basic block is started again.
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Figure 11: Sequence diagram of the CreateTask service implementation. After a Create task system call a sequence of system call depends on
the services implemented on the DRA. Here we can evaluate and develop the loader and the placer services of the DRA dedicated RTOS.

Since components within each layer can be described
at different levels of abstraction, the challenge is therefore
to synchronize the functional and timed simulation across
the layers. This is particularly difficult for the software
models that exist at three different layers simultaneously:
the draft application specification is modeled as C func-
tions in the Application layer, RTOS services as SystemC
transactions in the Concurrency layer, and advanced version
software as instruction-accurate (compiled) descriptions in
the Architecture layer. Thanks to the adopted separation of
concerns approach, functional (Application layer) and timed
(Architecture layer) aspects can be separated. Functional and
timed aspects are thus limited to the corresponding layers.
Consequently, a cycle-accurate software description has its
high-level functional equivalent inside the top layer. Here,
the duplication of the application description follows and
reinforces the separation of concerns. It eases embedded
software design by allowing software IP reuse, simulation
of code portions with heterogeneous development levels,
and RTOS services exploration. Furthermore, the method
can be equally applied to hardware implementation of
the application tasks since the Application layer makes no

assumption about the hardware/software partitioning. This
co-existence of the task description and its implementation
version is referred as a Simulation Couple (SC) in our
framework. Thus coherent execution of the SC only depends
on a common definition of synchronization points. Those
correspond to the RTOS system calls present both in the
high-level code and in the binary code. So the granularity
of the Basic Blocks (BB) for the ISS is defined as the
sequences of instructions between two system calls. Each task
is associated a SystemC process and a synchronization event
managed by the RTOS model and shared by all the BB of the
task.

As depicted in Figure 12 the scheduler launches the
highest priority ready task by notifying its synchronization
event. The corresponding process is activated and its func-
tional code executes in the top layer in zero simulation
time till encountering a call to the RTOS API. The RTOS
service first uses the HAL API and delegates the execution
time evaluation of this BB to the PE. Without interrupt,
the PE estimates the duration of the BB and advances the
simulation time. If an interrupt occurs in the middle of a
BB, the ISS stops at the corresponding date and saves task
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Functional
results

void task code(){
int n = OS fifo pend();
int BB = fib(n) + fib(n− 1)
OS mutex pend(shared var mutex);
shared var = BB;

OS mutex post(shared var mutex);

}

void OS mutex pend(OS EVENT mutex){
HAL.compute(current Task);
wait for mutex(mutex);
reschedule();
}

PE

Time

· · ·
00000066 fib:
66: 0f 93 push r16
68: 1f 93 push r17
6a: cf 93 push r28
6c: df 93 push r29
6e: d9 2f mov r29, r25
70: c8 2f mov r28, r24
· · ·
90: 02 c0 rjmp .+4 ; 0x96
92: 81 e0 ldi r24, 0x01 ; 1
94: 90 e0 ldi r25, 0x00 ; 0
· · ·

Figure 12: Example of a Simulation Couple. The software part of
the application has two representations: a functionnal one used in
high level abstraction layer and a timed one based on the use of an
ISS.

context. The interrupt is then processed and the related
routine is executed in the Concurrency layer. When the
scheduler is reactivated, it can decide (according to the
chosen scheduling policy) to resume the task or to elect a new
one. The same scenario is repeated again until the end of the
simulation.

6. Experiments

We applied our framework to a realistic application in the
field of image processing for robotic vision. The application
(see Figure 13) is used to learn object views or landscapes
and extracts local visual features from the neighborhood of
image’s keypoints.

We specified at the Application layer the application
as a set of 30 different communicating tasks and some
of them could be run 400 times dynamically in parallel
depending on the entry data as depicted in Figure 14. The full
description of our application is out of the scope of this paper
[46]. However, following a biologically inspired approach,
this vision architecture belongs to a larger sensorimotor
loop that brings interesting dynamical properties: the degree
of parallelism and the execution time varies according to

input data, namely the number of interest points, and
the robot speed mode (high, intermediate, and low detail
mode).

6.1. Software Exploration. In this context, we performed
the profiling of the entire application on a hardware SoC
platform. We also built the profile of the μC/OS-II [47]
services (deterministic). For the purpose of the exploration
we have targeted a Nios-II [48] based multiprocessor
architecture (MPSoC) prototyped onto an Altera Cyclone-
II FPGA circuit. The profiling of embedded software is a
long and rigorous work which needs a non-preemptive and
non-intrusive measurement technique. For this purpose, we
modified the source code of the RTOS in order to provide
such a measure technique both for the application basic
blocks and for the OS services. After several executions
onto a set of representative images, we built a timing
data base for this application. For a simulation purpose,
assigning a unique and representative execution time to the
application tasks is a complex problem when the variance
of the measured values is important. According to the
refinement layers presented in Section 3.2, we currently
recommend the use of an average value as a first approx-
imation of the execution time and a stochastic draw into
the timing data-base as a better estimation. Then, these
timing data must be back-annotated into the high-level
model in order to explore and evaluate the architecture
dimensioning and the implementation strategies: tasks dis-
tribution, services distribution, scheduling algorithms, and
so forth.

At this step, the application and the soft RTOS services
were fully annotated into the Architecture layer. Following
the design flow presented in Figure 1, we then performed a
first set of simulations in order to evaluate the critical parts
of the application when partitioned onto several processors.
During these simulations the SystemC models related to
the Architecture layer estimate the global system execution
times. Figure 15(a) summarizes this information. Each plot
represents an average value of the system performance for
different images (number of keypoints). We can see that
a pure software application could not be more accelerated
using more than three processors (only a small gain between
two and three). This MPSoC implementation reaches a
global execution time of ≈27000 ms. Moreover we identified
that the gaussian pyramid [46] represents the critical part
of the application. So, we then explored the implementation
of the related tasks into hardware in a reconfigurable
device.

6.2. Heterogeneous Exploration Based on System Metrics. We
deployed our application using a static partitioning between
software and hardware tasks (more details can be found
in [46]). The result of the partitioning is a set of 12
software tasks and a set of 18 hardware regular treatments.
We realized the design of the hardware blocks in VHDL
and back annotated the synthesis results (number of slices,
execution times, communication latencies and configuration
times) into the functional DRA model. The acceleration of
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Figure 13: Graphical results of the SystemC functional model simulation of the robotic vision application.

a hardware implementation for the critical software tasks is
very important: their total execution time is divided by a
factor 4000. A second iteration of simulations (upper loop of
Figure 1) was processed in order to define the new adequate
architecture.

To figure out the right number of processors, we
performed a new set of experimentations, as shown on
Figure 15(b). The result of the second exploration is an
architecture composed of 3 processors and a DRA with
a yet undefined size. Indeed, the gain obtained by the
hardware implementation of the gaussian pyramid permits
to parallelize the 12 remaining software tasks to have a
significant gain.

During this exploration/refinement process, the designer
can use the system metrics presented in Section 3.1 and
automatically extracted by the tool. Some examples of
metrics used for the system dimensioning are the Gantt
chart, the DRA chart (Figure 16) and the Communication
chart depicted in Figure 17. The Gantt diagram represents
the state of each task (software or hardware) along time:
ready, running, waiting states and a configuring state for

hardware tasks only. The Gantt charts of Figure 16(a) depict
the new configuration of the system architecture. The 12
upper lines represent the ordering of the software tasks
onto the 3 processors and the remaining lines represent the
18 hardware tasks running in parallel in the DRA. This
architecture corresponds to the best achievable performances
since the size of the DRA has been computed as the sum of
the hardware tasks occupation. More precisely, the hardware
partition uses near to 1200 slices (In the Virtex-5 FPGA
slices are organized differently from previous generations.
Each Virtex-5 FPGA slice contains four LUTs and four
flip-flops -previously it was two LUTs and two flip-flops-),
14 BRAM and 12 DSP48 blocks. Hence, the estimated
resource utilization for the global architecture (DRA + three
processors) is about 4375 slices, 21 BRAM and 16 DSP48
blocks. This estimation would correspond for example to
the size of a LX30T Virtex 5 circuit [49]. The global
system latency ranging from 950 ms (Gantt of Figure 16)
to about 60 ms depending of the application mode. We
obtain about x28 acceleration compared to the pure software
implementation.
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6.3. Reconfiguration Management. In order to reduce the size
of the hardware partition we vary the number of slices of
the DRA and evaluated the capability of the system to adapt
the hardware scheduling to a restricted area. In Figure 16,
we present the results for one of the explored restricted
architecture. We observe on the Gantt chart a different
schedule of the hardware IP depending on the occupation
rate of the DRA. The comparison between DRA charts of
Figures 16(c) and 16(d) shows a clear difference in the
utilization of the DRA over the time.

In the first case (Figures 16(a) and 16(c)), the DRA
is never full and the tasks are configured as soon as the
RTOS puts them in the Ready State. Here, the configuration
only depends on the data dependencies in the application
graph.

In the second case (Figures 16(b) and 16(d)) we consider
a smaller DRA composed of 3000 slices. The DRA can not
configure all the tasks at the same time. Here configuration
depends both on the data dependencies and on the available
resources. At level 1 of the DRA model, the hardware
scheduler only manages available resources. It searches for
sleeping tasks within the DRA to be replaced by a new
task asking for resources. Besides, once a hardware task
finishes its execution, it is removed (its resources are freed),
enabling another task to be implemented. For the estimation
of the configuration time we used a metric which depends
on the size of the partial bitstream for the targeted DRA
technology (about 50 μs per block of 16 CLBs on a Virtex
5).

As a first conclusion the exploration of the architecture
for the robotic vision application leads us to model a
complete RSoC platform at a high-level of abstraction. This
high-level model focuses on the definition of the RTOS
services needed by the identified architectures. For the

systems presented in this section, we used as many OS as
processors. All these components (Figure 9) are composed of
the following services:

(i) a task management service to dynamically create
keypoints extraction tasks,

(ii) several shared semaphores and mutex to synchronize
the application and to protect image data into the
shared memories,

(iii) a priority based scheduler on each processor,

(iv) a time management service for timeouts,

(v) an interrupt manager for the management of the
multiprocessor architecture.

Also, another RTOS model is dedicated to the manage-
ment of hardware tasks. This RTOS model provides several
additional services:

(i) at level 1 of the DRA, a specific scheduling service
using only the available resources,

(ii) at level 2 of the DRA, a refined scheduling service
using also the localization and the shape of the tasks,

(iii) a placement service related to the level of the DRA
model,

(iv) a communication service using hardware FIFO
(results are presented on Figure 17),

(v) several mutex and semaphore proxies for the syn-
chronization with software tasks.

The refinement of the DRA to level 3 allows to test low-
level hardware scheduling and placement strategies. We have
implemented two simple placement algorithms to manage
the DRA resources at a finer grain.

6.4. Accuracy and Simulation Overhead of the Model. To
evaluate the efficiency of our modeling approach, we per-
formed two sets of experiments. First, we evaluated the
model accuracy and compared the simulated execution
time relative to actual board measurements for multiple
implementations. The average application times measured
on board is 2926 ms and the simulated time gives 2836 ms.
Those results validate our high level model considering the
simulation’s accuracy is within 3-4% of board measure-
ments.

Then we evaluated the simulation time of the application
on top of our RTOS model in comparison with a purely
functional description. The deployment of the application
tasks was explored and simulated using the Application and
Concurrency layers of Figure 2. We vary the number of
PEs within the architecture from 1 to 6 OS (Processors or
DRA). Tasks execute and communicate in the same way on
board and in simulation trough a single shared memory
space protected with shared semaphores. Table 2 shows the
scalability of our model. It indicates the simulation time tn
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Table 2: Simulation overhead versus number of OS.

n 0 1 2 3 4 5 6

simulation

time tn 5.5 6 7.4 8.6 9.8 11.1 12.8

(second)

overhead −8.9 0 23.3 43.3 63.3 85 113.3

sn (%)

of a platform modeled at the Concurrency layer composed
of n RTOS and the average simulation overhead sn = (tn −
t1)/t1 for different platform sizes. t0 represents the execution
time of the pure functional application specification (at the
Application layer). Simulations were realized on an Intel
DualCore workstation running at 1.66 GHz with 2 GB of
RAM.

For monoprocessor platforms, the RTOS model does not
impact the simulation time since the overhead is only 8.9%
more than the purely functional application description.
Results indicate that the simulation time overhead is around
23% more per simulated RTOS. This overhead is due to the
SystemC simulation kernel that works for the whole list of
SystemC sc thread of the system, which increases with the
number of RTOS.

Finally, the framework allows to simulate an application
in a functional and non-intrusive debug mode as illustrated
in Figure 13.

6.5. Perspectives. We are now working on the integration
of all the components into a basic and scalable target
architecture which is composed of one ISS, a DRA model, a
shared bus, a global memory and a distributed OS. The final
platform model uses the three layers presented in Figure 2

(Application, Concurrency and Architecture layers) in order
to provide a good tradeoff between performance accuracy
and simulation overhead. The first experiments show that
going down till the cycle-accurate level of the Architecture
layer (ISS and CSS models) brings a simulation overhead
500 times longer compared to a timed simulation at the
Concurrency layer.

7. Conclusion and Perspectives

In this paper, we have presented a modeling framework
for the design of a complete RSoC platform including
processor(s), Dynamically Reconfigurable Architecture and
OS services. The proposed design flow is based on a system
level modeling approach which eases the exploration of the
RTOS services distribution both onto processors and directly
inside a reconfigurable region of the considered hardware
unit. The main contribution of this work consists in
proposing a unified modeling and refinement methodology
for the software and the hardware parts of a dynamically
reconfigurable system.

We have also listed the specific services that are needed
in the literature for the management of the reconfigurable
resources of the architecture. Thanks to a modular and
flexible modeling approach we developed a library of generic
components for the description of RSoC platforms. Among
them, we developed basic hardware services such as hardware
task management, hardware/software synchronization and
bitstream management at high level of abstraction. The
global method and the SystemC models were validated on
an image processing application.

Today, the presented results show that the framework
allows to define, simulate, and explore the specific services
of RTOS for RSoC platforms very early in the design flow.
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(a) Gantt Chart for large DRA (b) Gantt Chart for smaller DRA

(c) Occupation rate of large DRA (d) Occupation rate of smaller DRA

Figure 16: (a) and (b) represent the Gantt diagram for all the application tasks in both software on 3 processors and in hardware on a DRA
of 4500 slices on the left and 3000 on the right. (c) and (d) represent the evolution of the DRA occupation over the time.
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Figure 17: The DOGME tool provides several metrics helping the designer to evaluate the simulated design solutions. The window shows
communications between tasks over time. It also computes the filling ratio for FIFO based communications.

Now, we have to refine some existing services such as the
hardware scheduler at lower levels of abstraction in order to
manage and estimate more accurately the resources used by
an application on a real FPGA. We also have to extend the
library of models: processing units, refined communication
media and services such as placement algorithms from the
literature. The OveRSoc framework could then be used as
a comparison environment for upcoming methods in the
context of DRA management.
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1. Introduction

3D recovery from a sequence of frames has been one of
the main efforts in computational vision. Unlike the case
of a single static image, the information contained in a
sequence is important because it allows the motion and
structure recognition of the objects in a scene. The purpose
of this technique is to build a 3D model from an object,
using data extracted from the analysis of a 2D representation
of such object. The implementation of a depth recovery
algorithm depends highly on the application to develop,
and the search of higher precision in 3D recovery has
led to the implementation of more complex and com-
putational demanding algorithms [1]. The main methods
for 3D recovery are stereo vision, shading, and motion
estimation. Stereo algorithms perform the calibration of two
or more cameras to then triangulate the computing points
of the scene [2]. Other methods try to recover the depth
information from the motion and intensity of elements in
the images. The methods based on correspondence try to
perform pairing between images features and then estimate
a single motion during the image sequence, to finally apply
triangulation, as the stereo algorithms do [2]. These methods
present good performance, but only when there is a cor-
respondence between features, which recover only disperse
surfaces.

Other techniques propose to perform a depth estimation
using operations that manipulate the changes in the intensity
of the image sequence and incorporate the information
in a Kalman filter [3]. The problem in correspondence
and intensity methods is that neither the features nor the
intensity of the images is constant or continuous, decreasing
the reliance of the results.

There are also other methods that compute the depth
from known objects in the scene. Other techniques for depth
estimation proposed to calculate the normal component of
the flow [4]. For its correct operation it is necessary to
know the trajectory followed between the camera and the
scenery [3]. Most of the algorithms impose restrictions as the
knowledge of the camera motion, its position with respect to
the scenery or complicated calibration techniques.

In the case of the optical flow approach, recovery can
be obtained by a camera without knowing its parameters.
Neither multiple cameras aligning nor previous knowledge
of the scene or the motion is necessary. All what is needed is
the relative motion between the camera and the scene to be
small.

The present paper introduces an FPGA-based processor
for the 3D recovery from the optical flow under a static
environment, so no object performs a movement in the
scene. The motion of the camera along each image of the
video sequence must be short, that is, a maximum of two
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pixels per frame. The processor meets the constraint that it is
capable of operating in near video rate time, that is, 22 frames
per second (fps) for images with Video Graphics Array (VGA)
resolution: 640× 480 pixels.

The paper is divided as follows. Section 2 includes an
analysis of related works in the field. Section 3 describes
the theoretical bases for the development of the research.
The functional description and interaction of the processor
blocks are discussed in Section 4. While in Sections 5 and
6, performance analysis and results of the architecture are
presented. Finally, conclusions and future work are presented
in Section 7.

2. Background

There have been several efforts to solve the problem of depth
recovery according to the characteristics and constraints
of the applications to develop. Fife and Archibald [5]
report an implementation for the navigation of autonomous
vehicles, using feature correspondence. For each frame in
the sequence, the system locates all the identified features
in the previous frame, and then update the actual position
estimation in the 3D space. This implementation was done
by reconfigurable computing and the use of embedded pro-
cessors. The performance obtained by this implementation
is 30 fps with a resolution of 320 × 240 pixels. The main
disadvantage of this architecture is that it only computes Z
(the depth) for specific points in the video sequence.

In [6], Diaz et al. present an FPGA implementation that
uses structured light. A code simplification is performed in
this work by looking for redundant operations. Moreover,
fixed point arithmetic is used under a format of 14 bits
for the integer part and 5 or 6 bits for the fractional one.
The processing time is around 20 seconds for images with
a resolution of 640× 480 pixels.

Zach et al. [7] present a work for dense 3D recovery in
stereo images. Their implementation was built as a hardware-
software codesign: the hardware part of the system is based
on a pairing procedure to avoid the accuracy loss due to
the limited resolution in 3D processors. Once the pairing
is performed, depth recovery is obtained applying epipolar
geometry. The software section only performs the flow
control and the information transfer. A calculation of over
130,000 depth values per second running on a standard
computer is reported.

3. Theoretical Framework

3.1. Optical Flow. Optical Flow is the apparent motion of
patterns of objects, surfaces, and edges caused by the relative
change of position among the observer (a camera) and
the scene [8, 9]. There are, in the literature, comparative
works of hardware implementations for several optical flow
algorithms [10–12]. Basically, the majority of the optical
flow implementations are based on two types of algorithms:
gradient-based algorithms and correlation-based algorithms.

The gradient-based algorithms calculate the optical flow
with space-time derivatives of the intensity of the pixels in an
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Candidate motion vector

Search window
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Figure 1: Basic operation of the correlation algorithms.

image, or through the filtered versions of the images (using
low-pass and high-pass filters) [13].

On the other hand, correlation-based algorithms work
by comparing windows or blocks: two consecutive frames
are taken from the video sequence, that are divided in
periodic and equal size blocks. These blocks can present
overlapping but always maintaining the same size. Given
the regularity of the operations, correlation-based algorithms
are better suited for hardware implementation. Figure 1
shows a graphical representation of the algorithms based on
correlation.

One of the simplest correlation metrics found in the
literature is the Sum of Absolute Differences (SAD) [14].
The main characteristics are its easy implementation and its
reduced use of hardware resources

SAD =
x+N−1∑

m=x

y+N−1∑

n=y

∣∣∣Ig(m,n)− Ig−1
(
m + dx,n + dy

)∣∣∣. (1)

3.2. 3D Recovery from Optical Flow. This section discusses
the equations that describe the relation among the depth
estimation and the optical flow generated by the camera
motion. The same notation found in [15] is used here. It
is also assumed that the camera motion is through a static
environment. The reference coordinate system is shown in
Figure 2.

The coordinate system X , Y , is fixed with respect to the
camera. The Z axis is located across the camera optical axis
so any motion can be described by two variables: translation

and rotation.
−→
T denotes the translational component of the

camera, while −→ω the angular velocity. Finally, the instant
coordinates of the point P in the environment are (X ,Y ,Z)
[15]. From these variables, (2) can be obtained, and from it
the value of Z can be calculated

Z = α2 + β2

(u− ur)α + (v − vr)β
, (2)
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Figure 2: Reference coordinate system.

where α, β, ur , and vr are defined as

α = −U + xW ,

β = −V + yW ,

ur = Axy − B(x2 + 1
)

+ Cy,

vr = A
(
y2 + 1

)− Bxy − Cx.

(3)

Equation (2) calculates Z in terms of the parameters
of the translation and rotation components. As there is
no calibration on the camera, these parameters are still
unknown. Nevertheless, their values are useful only to scale
the value of Z and they do not affect the recovered structure.
Therefore, it is possible to assume constant values for each
of these parameters. The disadvantage of this consideration
is that only a relative value of the depth information can be
obtained.

4. Architecture

The proposed architecture has the purpose of recovering
the 3D information from the optical flow found in a
video sequence. The system presents a maximum reuse of
data and is optimized for minimum hardware resources.
Processing is achieved in a predictable time, that is, under
real-time constrains. The architecture meets the following
specifications: it works with images in 256 levels gray scale,
and a resolution of 640 × 480 pixels. The image rate
processing obtained 22 frames per second limited by the
FPGA platform capacity, and maintaining a low relative error
for the 3D recovery.

4.1. Description. The architecture is divided in three main
functional blocks: the first one is for the calculation of the
optical flow, the second one for the 3D recovery, and the last
one is dedicated to data routing. The general operation of the
design is as follows. The data corresponding to the pixels of
the reference and search windows from a consecutive image
pair in the sequence are sent to the system through a data bus.

Sensor Driver
In

router

Optical
flow

3D
recovery Out

router

External RAM

Control

FPGA

Z

Figure 3: General block diagram of the architecture.

Subsequently, the optical flow processing is carried out. Here
the motion vectors are obtained and then sent to the block
for 3D recovery. Finally, the obtained values are presented
to the real world, stored in external memories or sent to
another process through an output data bus. The read and
write addresses are generated by the routers that control the
data flow. The signals that control the architectures operation
are arranged in a control bus. The architecture is shown in
Figure 3.

4.2. Optical Flow Module. The Optical Flow Module operates
with a 4 × 4 pixels reference window and a 8 × 8 pixels
search window. These values are usually used in the literature
[14]. Due to the nature of (4), the Optical Flow Module can
be formulated as a window-based operator considering that
the coefficients of the window mask are variable and new
windows are extracted from the first image to constitute the
reference window. Once the processing in the search area has
been completed, the window reference can be replaced with
a new one, and the processing goes on the same way until all
data is processed.

The number of operations per second (OPS) for the
calculation of the motion estimation is given by

OPS = 3∗ 2p ∗ 2p ∗Nh∗Nv ∗ f , (4)

where Nh and Nv are, respectively, the vertical and horizontal
of the image in pixels, p is the size of the search window, and
f represents the frames per second rate. For this particular
work, p = 8, f = 5, Nh = 640, and Nv = 480, the result
of (4) indicates a computational charge of 235, 929, 600
integer arithmetic operations per second. Thus, a sequential
approach or the use of a general purpose processor is
inadequate and insufficient for the motion estimation. The
Optical Flow Module is composed by a series of basic blocks
called Processing Elements (PEs). Each PE is in charge of the
subtraction operations among pixels and the absolute value
computation for the SAD equation. The block diagram of a
PE is depicted in Figure 4.

A Window Processing Module (WPM) is assembled
with 20 PEs working in parallel (Figure 4), where a set
of operations are performed at the same time in a single
clock cycle. The processing elements work in a systolic
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Figure 5: Computation of the correlation between the search and
the reference window with a WPM.

pipeline. When the window data moves through the buffers
to the next pixel location in the input image, several
pixels are overlapped with the previous windows. Therefore,
it is possible to use multiple instances of the WPM to
compute incrementally at several consecutive pixel locations
partial results of the window comparison operation. An
accumulator adds together the partial results until all the
data has been processed. Then, the accumulator is reset and a
new window comparison operation is started. In the current
implementation, the reference window is 4×4 pixels and the
search window is 8× 8 pixels.

The WPM performs in four clock cycles the computation
of the correlation between the search and the reference
window, but with the advantage that while calculating the
correlation in the first position inside the search window, the
correlations corresponding to the adjoining three positions
of the reference window begin to be calculated (Figure 5).
The design uses data recycling, taking advantage of the same
information previously read from external memory more
than once, to perform several calculations in the same WPM.
The WPM is replicated 5 times to cover the whole search
window.

The optical flow module presents a maximum data
recycling, exploiting the vertical and horizontal overlap of the
reference window (Figure 6). In addition, the processing time
using this implementation is reduced 50 times with respect to
the sequential approach.

A full search in a window is processed in 8 clock
cycles and the full image in 2, 386, 432 clock cycles. The
motion vectors are calculated pixel by pixel, contrary to
other hardware implementations where the motion vectors
are obtained only for each reference window. In Figure 7, an
approximation of the performance, obtained experimentally,
of the architecture for the calculation of the motion esti-
mation through optical flow is shown. The necessary clock
cycles for the processing of the reference and search windows
can be seen in (a), while (b) shows the number of clock cycles
that are necessary for the processing of a full image. Both
quantities depend on the number of PE blocks used.

4.3. 3D Recovery Module. The implementation of equation
(2) can be achieved in two ways: the first one is to implement
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the reference window with 5 WPMs.
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Figure 7: Performance analysis of the Optical Flow estimation for
different PEs per WPM. The best area/performance compromise is
around 20 PEs per WPM.

the equation with fully combinational elements. This option
is inconvenient due to the complexity of the mathematical
operations, which can lead to a significant degradation of
the architecture performance. A more attractive option is the
implementation using a pipeline architecture approach.
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Figure 8: Average error as a function of the resolution used in
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The 3D Recovery Module has A,B,C,U ,V ,W , x, y and
motion vectors data as input. In the first pipeline stage, the
values α and β are calculated: these variables depend only
on the inputs. Part of the ur and vr values are calculated in
this stage too. The square values of α and β and other part
of ur and vr are calculated in the second stage. In the third
stage, the variables ur , vr and the equation numerator are
calculated. The fourth stage computes the denominator of
the equation. Finally, in the last stage, Z is obtained.

Figure 9 shows the pipeline stages of the design with
each of the intermediate modules. The operations in each
stage are performed in fixed-point arithmetic, with different
lengths for the integer and fractional part. Small errors
are introduced due to the limited fixed point precision
used for data representation in processing elements of the
architecture. Currently a quantitative estimation of the error
is being performed avoiding the excessive use of hardware
resources.

The depth value is obtained with a 9-bit representation.
Z uses 0 bits for the integer and 9 bits for the fractional
part. The graphic in Figure 8 shows the average error
when representing fractional values, using variables with
different resolutions. For each case, all the variables have
the same resolution, and their representation is always in
fixed-point arithmetic. All the bits in this representation
are used for the fractional part of the variables. The values
shown were obtained through hardware implementation
experimentation.

In Figure 8, it can be appreciated that the average error
drops as the resolution of the input variables is incremented.
This reduction is not linear, and the graphic shows a point
where such reduction is not significant, no matter the
increment in the number of bits of the input variables. 9 bits
were chosen as a good compromise between area and average
error.

Table 1 shows the calculation of depth in each of
the pipeline stages. Once the motion vectors have been
computed, the process in which the value of the depth is
obtained begins. The input values A, B, C, U , V , and W
simulate a translational motion of an object in the direction
of the X axis. The motion of the object is of one pixel per
image in the simulation.



6 International Journal of Reconfigurable Computing

x

y

u

v

A

B

C

U

V

W

α

β

x2 + 1

y2 + 1

xy

α2

β2

B(x2 + 1)

A(y2 + 1)

A(xy)

Cy

Cx

v <<

u <<

ur

vr

α2+β2

(u− ur)α

(v − vr)β

(α2+β2) <<

(α2+β2)
(u− ur)α + (v − vr)β Z

Figure 9: Architecture for the calculation of Z.

Table 1: Calculation of the depth in the different stages of the pipeline.

Parameters Pipeline cycle Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

A = 0.00

1

α 0.50

B = 0.00 β 0.00

C = 0.00 y2 + 1 2.00

U = 0.50 x2 + 1 2.00

V = 0.00 y∗x 1.00

W = 0.00

2

α2 0.25

x = 1.00 β2 0.00

y = 1.00 A∗(y2 + 1) 0.00

u = 1.00 B∗(x2 + 1) 0.00

v = 0.00 A∗(x∗y) 0.00

B∗(x∗y) 0.00

C∗x 0.00

C∗y 0.00

3
ur 0.00

vr 0.00

4
(u− ur)α 0.50

(v − vr)β 0.00

5
α2 + β2 0.25

(u− ur)α+(v − vr)β 0.50

z 0.50

4.4. Routers. The function of the Router units is to generate
the addresses for the data read and write operations. To
avoid a huge number of memory accesses, the routers store
several rows from the images before the execution of any
other action regarding the external memory. The In-Router
module is composed by 12 buffers that store the rows of the
images.

The block works as follows: eight rows from the current
image (frame 1) are read and stored (search window). Then,
four rows from the previous image (frame 0) are also read
and stored (reference window). These pixel rows are stored in
independent internal RAM memories (buffers). The router
feeds 12 pixels in parallel to the optical flow module. When
a full search window has been processed, a new pixel is

read from the external memory and then stored in the last
buffer. Each pixel of the actual address is transferred to the
past buffer. The generation of the new read addresses is
performed at the same time. The functional block diagram
with input and output variables can be seen in Figure 10.

The OUT-Router (Figure 11) performs the writing of the
architecture results to the external RAM memory. This block
is simpler than the In-Router and is composed by an address
generator and a register.

The Gen Addr Esc module controls the storage address
of the datum corresponding to the depth, obtained in the
Depth calculation module. The Register module put together
4 depth values calculated by the architecture in order to
align them for memory write. This concatenation has the
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purpose of storing a 36-bit value in each of the RAM
locations.

4.5. Final Architecture. The final version of the architecture
works as follows: in the first step, a pair of images from a
sensor or another process is stored in the external memory.
Next, a data array of the two images is read by the In-Router
module: 8 rows of the previous image and 4 rows of the
actual one. Once this is done, the data stored in the module
are addressed to the WPM elements blocks, for the motion
estimation. After being calculated, the motion vectors are
passed to the next module for the depth calculation. In
a parallel fashion, a new datum of the actual image and
another of the reference image are acquired, and the process
of the motion estimation is started.

After the computation of the depth has been performed,
the result is stored in the external memory, where the system
waits for the motion vectors for performing the process
once again. This is repeated until the two images have been
completely processed. When this is finished, a new pair of
images is stored in the external memory.

5. Performance Analysis

From the general description of the architecture, an estima-
tion of the performance of the architecture can be obtained.
The processing speed of the architecture can be estimated as

a function of the size of the image, the number of necessary
cycles for the processing of a reference window of n × n,
the number of PEs operating in parallel, and the number of
times the WPM are instantiated in the complete architecture.
The analysis is based on the critical path which is the slowest
module (the Optical Flow Calculation).

The number of clock cycles that are necessary to process
a row of the search window ofm×m pixels with the reference
window of n × n pixels is given by the number of cycles
required to process a row of the reference window plus the
number of cycles that would take to process the positions
that the reference window occupies over the search window,
in a horizontal way. In order to compute the number of cycles
required to process a row of the search window, the following
is used:

cycles×row = cycles×Vr +

(
cycles×Vr

)(
Vr pos hor

)

Vr proc par
, (5)

where cycles×row is the number of cycles to process a row
of the search window, cycles×Vr is the number of cycles
to process a row of the reference window, Vr pos hor is the
number of positions that the reference window occupies over
the search window, in the horizontal direction, andVr proc par

is the number of windows processed in parallel.
The number of cycles that are necessary to process

a search window is the size of the reference window n,
multiplied by the number of cycles required in processing
a row of the search window by the number of positions
occupied by the reference window above the search window
in the vertical direction, divided by the number of processors
that work in parallel and the number of times that the PE
blocks array is repeated. Once the processing of the search
window is done, two data are read from the external memory,
so this will add 2 more clock cycles. Equation (6) allows the
calculation of the number of cycles necessary to process the
search window:

cycles×Vb =
n
(

cycles×row

)(
Vr pos ver

)

(
PEpar

)
(WPMblocks)

+ cyclesread, (6)

where cycles×Vb is the number of cycles required to process a
search window, n is the size of the search window, cycles×row
is the number of cycles required to process a row of the
reference window, Vr pos ver is the number of positions of
the reference window over the search window, PEpar is the
number of processing elements working in parallel, and
WPMblocks is the number of times that the PE array is
repeated.

Finally, (7) represents the total number of cycles nec-
essary to process a full image. This total is calculated
multiplying the number of cycles required to process the
search window by the number of search windows present in
the image, both in a horizontal and in a vertical way,

cycles×Imag =
(

cycles×Vb
)(

Imghor −m + 1
)

×
(

Imgver −m + 1
)
.

(7)
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Table 2: Synthesis results for the Optical Flow Calculation module.

Resources Usage

FFs 1,986 of 10,944

LUTs 5,192 of 10,944

Slices 3,519 of 5,472

Max. Operating Freq. 70 MHz

Table 3: Synthesis results for the Depth Calculation module.

Resources Usage

FFs 68 of 10,944

LUTs 1,882 of 10,944

Slices 983 of 5,472

Max. Operating Freq. 100 MHz

Table 4: Synthesis results for the full architecture.

Resources Usage

FFs 2,177 of 10,944

LUTs 8,024 of 10,944

Slices 4,739 of 5,472

Block Rams 12 of 36

Max. Operating Freq. 66 MHz

For validation in this work, the following values were
used:

(i) n = 4,

(ii) m = 8,

(iii) cycles×Vr = 4 cycles,

(iv) Vr pos hor = m− n = 8− 4 = 4 positions,

(v) Vr proc par = 4 windows,

(vi) Vr pos ver = m− n + 1 = 8− 4 + 1 = 5 positions,

(vii) PEpar = 4 PE blocks working in parallel,

(viii) WPMblocks = 5 blocks of 20 PEs,

(ix) Imghor = 640,

(x) Imgver = 480.

Replacing the values of cycles×Vr ,Vr pos hor, andVr proc par

in (5), the following equation is obtained:

cycles×Vrow
= 4 +

(4)(4)
4

= 8 cycles×row. (8)

Now the values of n, cycles×Vb , Vr pos ver, WPMblocks, and
PEpar are replaced in (6) to obtain the number of cycles
necessary to process the search window

cycles×Vb =
4(8)(5)
(4)(5)

+ 2 = 10 cycles p/Vb. (9)

To obtain the total number of cycles necessary to process
an image, the values of m, cycles×Vb , Imghor, and Imgver are
replaced in (7)

cycles×Imag = (10)(640− 8)(480− 8)

= 2, 994, 090 cycles p/frame.
(10)

Table 5: Percentage of consumed resources of the FPGA device, by
the modules of the proposed architecture.

Module % resources

Optical Flow Calculation module 47

Depth Calculation Module 17

Routers and logic 9

Complete Architecture 73

Figure 12: Image from the used sequence.

For example, with a clock frequency of 50 MHz, the
architecture could process 16 fps for a 640 × 480 pixels
resolution image stream.

6. Implementation and Results

6.1. Architecture Implementation and Synthesis. The hard-
ware design was described in Handel-C 4, the design was
simulated in MatLab 7, and the synthesis design was carried
on with Xilinx ISE Project Navigator 9.1. The board used for
testing was an ML403 from Xilinx. The ML403 integrates a
XC4VFX12 FPGA of the Virtex 4 family. The memory ZBT
RAM was used to store the image.

Table 2 shows the consumption of hardware resources
used by the Optical Flow Calculation module. Table 3 shows
the use of resources of the Depth Calculation module. Table 4
refers to the resources usage of the full architecture, and
finally Table 5 shows the percentage of resources used the
modules and the complete architecture.

6.2. Results. An image sequence of a soda can was used to
test the architecture (Figure 12). The sequence simulates the
translational movement of the object on X axis by 1 pixel per
frame.

Figure 13 shows the results of the optical flow obtained
by the hardware module using the images sequence.

In the computation of optical flow, to try to summarize
the resulting quality of millions of motion vectors as only
a number is a complicated task, so several metrics were
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Table 6: Comparison performance of the proposed architecture with other works.

Work FPS Resolution Implement platform Processed pixels/sec

Fife and Archibald [5] 30 320× 240 FPGA 2304000

Diaz et al. [6] 0.05 640× 480 FPGA 15630

Zach et al. [7] 2.46 640× 480 HW/SW 755712

Proposed architecture 22 640× 480 FPGA 6758400
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Figure 13: Optical flow calculated for the sequence.
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Figure 14: 3D recovery from optical flow for the can images.

evaluated. The first one is the error between the angle of
the vectors obtained by software simulation and by the
architecture [12]. The 100% of the vectors obtained by the
architecture are correct with respect to those of the software
implementation.

Figure 14 shows the results obtained by the processor for
the 3D recovery.

Figure 15 shows the error obtained in the calculation of
the depth against the resolution of the input variables. As
in the graphic of Figure 8, the curve decreases quickly for
the first values and then it stabilizes. At this point, the data
representation precision increment has a little effect in the
reduction of the error when calculating the 3D recovery.

Finally, the graphic in Figure 16 depicts the variation in
the number of used LUTs of the device against the resolution
of the input variables. Contrary to the last two graphics, this
one presents an almost linear behavior. The consumption of
resources grows as the number of bits used in the variables is
incremented.

From the graphics, the number of bits for the input
variables can be selected. In Figures 8 and 15, it can be seen
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Figure 15: RMSE error in the 3D recovery, as a function of the
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Figure 16: Number of used LUTs against the resolution of the input
variables A,B,C,U ,V , y,W .

that a resolution of 8 bits gives good results. Moreover, the
amount of resources used with this resolution is moderated.
It can also be seen that, when incrementing the number
of bits in more than 8, the reduction in the error of the
calculation of the 3D recovery is minimum. As a result of
these points, the selected resolution for the 3D recovery
based on the optical flow was 8 bits.

To measure the quality of the depth recovery, the RMSE
metric was used. The average error given was of 0.00105 for
several performed recoveries.

6.3. Discussion. The performance of the architecture is given
as a function of the number of processed images, the number
of operations performed in one second, and the number of
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computed depth values. The following show a quantitative
analysis of the architecture.

The processing time of the images in the architecture is
conditioned by the maximum operating frequency, which is
established as a function of the delays of the combinational
logic, the way in which the clock signal is distributed,
and the internal routing of the device. In the specific case
of the implemented architecture, the maximum operating
frequency is 66 MHz, which allows the processing of 22
frames per second, operating with 640 × 480 images. The
architecture has the capacity of processing 4, 915, 200 depth
values per second, with an average error of 0.00105.

Once the number of images per second that the design
can process is known, the number of operations per second
(OPS) performed by the architecture can be calculated. The
OPS is obtained by multiplying the number of fps, the
number of operations of the search window, and the amount
of search windows in the image

OPSSAD = fps∗
(

#operationsVb

)

∗
(

Imghor −m + 1
)
∗
(

Imgver −m + 1
)

,

OPSSAD = 16∗ (3∗ 16∗ 25)∗ (640− 8 + 1)

∗ (480− 8 + 1) = 5.748× 109.

(11)

For the 3D recovery from the optical flow, the number
of operations is obtained by multiplying the number of
frames per second, the number of operations necessary to
calculate a single depth value, and the number of motion
vectors calculated for the image. Equation (12) allows the
calculation of the number of performed operations that have
to be completed for the 3D recovery through optical flow

OPSZ = fps∗ (#operationsZ
)

∗
(

Imghor −m + 1
)(

Imgver −m + 1
)

,

OPSZ = 16(32)(640− 8 + 1)

∗ (480− 8 + 1) = 153.297× 106.

(12)

The architecture performs 7.904 GOPS (Giga Operations
per Second) in an integer representation for the optical flow,
and 210 millions OPS in fixed-point representation for the
3D recovery. Thus, the architecture performs a total of 8.115
GOPS during the full 3D recovery process.

Our results compares favorably (see Table 6) with other
implementations.

7. Conclusions and Future Work

The present work has discussed a parallel processor for
the 3D recovery through Optical Flow inside a video
sequence with real-time restrictions. The designs exhibit a
balance between area utilization and processing speed. The
implementation is capable of obtaining the optical flow from
image sequences with VGA resolution in a predictable time,
as it can process 22 fps.

It is possible to scale the proposed design so it can operate
over the 30 fps or work with higher resolutions. This is
performed by adding the necessary Optical Flow modules to
process more search windows in a parallel fashion. In this
way it could be possible to exploit the overlap of the search
windows.

The computational load to perform the 3D recovery is of
about 8 GOPS, which is difficult to perform in a short period
(in the order of the milliseconds) with current sequential
processors.

The architecture presents a small size, it is possible to
implement it in systems where the space restrictions and the
power consumption are the main concern, as in the case of
mobile vision systems and in robotic vision.

Some points regarding future work are the following.

(i) Test different reference and search window sizes and
analyze the results.

(ii) Analyze other algorithms for optical flow and their
adaptation to the proposed architecture. The reuse
of the architecture modules would imply minimum
changes and a small or even null increment in the
complexity of the proposed architecture.

(iii) Incorporate predictive algorithms and their hardware
implementation to achieve a better 3D recovery.
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1. Introduction

Searching and comparing biological sequences in genomic
databases are essential processes in molecular biology. The
collection of genetic sequence data is increasing expo-
nentially each year and consists mostly of nucleotide
(DNA/RNA) and amino acid (protein) symbols. Approx-
imately 3 billion nucleotide pairs comprise the human
genome alone. Given the large volume of data, sequence
comparison applications require efficient computing meth-
ods to produce timely results.

Biologists and other researchers use sequence alignment
as a fundamental comparison method to find common pat-
terns between sequences, predict protein structure, identify
important genetic regions, and facilitate drug design. For
example, sequence alignment is used to derive flu vaccines
[1] and by the nation’s BioWatch [2] program in identifying
DNA signatures of pathogens. Sequence alignment consists
of matching characters between two or more sequences
and positioning them together in a column. Gaps may be
inserted in regions where matches do not occur to reflect
an insertion or deletion evolutionary event. A count of
the matching characters results in a measure of similarity
between the sequences. Pairwise alignment involves two
sequences (see Figure 1) and multiple alignment considers
three or more sequences. Finding the optimal multiple

sequence alignment is NP-hard in complexity. As a first
step, multiple alignment algorithms [3, 4] often compute a
pairwise alignment between all the sequences.

Global and local pairwise alignments are the two most
common alignment problems. Global alignment [5] con-
siders both sequences from end to end and finds the best
overall alignment. Local alignment [6] identifies the sections
with greatest similarity and only aligns the subsequences.
Both alignment problems are typically solved with dynamic
programming (DP), which fills a two-dimensional matrix
with score or distance values in a forward scan from upper
left to lower right, followed by a traceback procedure.
Traceback occurs from a designated lower right position
following a path to upper left, thereby determining the best
alignment.

The computational cost for an optimal sequence align-
ment increases exponentially with the length of each
sequence and with the number of sequences. This complexity
poses a challenge for sequence alignment programs to return
results within a reasonable time period as biologists compare
greater numbers of sequences. Using current methods,
an alignment program may run for days or even weeks
depending on the number of sequences and their length.

Unlike most acceleration methods that focus on
sequence comparison, this research describes and evaluates
a space-efficient, global sequence alignment algorithm and



2 International Journal of Reconfigurable Computing

- - T
T

T
TT

C
CCC CC

T - - - -
-

T
TT
TA

AA
AG

G
T
T

T
T

C
CC

Figure 1: Example pairwise alignment.

architecture that includes traceback for implementation on
reconfigurable hardware. Given a pair of sequences, the
accelerator returns a list of edit operations constituting the
optimal alignment. A library of accelerator functions is easily
incorporated into multiple sequence alignment programs
that run on platforms equipped with reconfigurable hard-
ware.

2. Related Work

Most efforts to accelerate biosequence applications with
hardware have focused on database searches. Ramdas and
Egan [7] compare several of these architectures in their
survey. Given a query sequence, an entire genetic database
is scanned looking for other sequences that are similar.
Searching a genetic database for matches with a biosequence
is similar in nature to a search of the web that returns
“hits” sorted by relevance. Accelerating a database search
is a simpler problem than alignment. Only the score for
the comparison is computed by hardware in the forward
scan; whereas alignment requires traceback in addition to
the forward scan. The sequence comparison problem can
be mapped to a linear systolic array of processing elements
(PEs) requiring O(min(m,n)) space, where m and n are
the lengths of the sequences. However, global alignment
necessitates extra storage for traceback pointers and a
traceback procedure, which are not addressed by sequence
comparison solutions.

Traceback support in hardware has the most benefit
when the traceback path spans a significant portion of the
DP matrix. Global alignment applications realize the greatest
performance gain because the traceback path extends across
the entire DP matrix; whereas local alignment applications
with a shorter path show less benefit. After a forward scan
in hardware, any alignment in software must recompute the
DP matrix and traceback pointers for the section of interest
before determining an optimal traceback path. For instance,
accelerated database search applications may compute an
alignment in software only between high-scoring matches
and the query sequence after the comparison phase. These
search applications usually run in acceptable time with rela-
tively short query sequences; however, comparative genomic
applications commonly align long sequences at greater
computational cost and stand to benefit from accelerated
alignment. Examples include whole genome alignment [8],
whole genome phylogeny [9], and computation of pathogen
detection signatures [10].

The predominant, nonparallel algorithms for global
sequence alignment are described by Gotoh [11] and Myers
and Miller [12]. Both algorithms execute inO(mn) time. The
algorithm presented by Gotoh requires O(mn) space, while
the algorithm of Myers-Miller needs onlyO(logm+n) space,
but it incurs a factor of 2 time penalty. Most of the space

is used to hold values of the DP matrix and the traceback
pointers. Saving all traceback pointers in an array requires
only one forward scan through the DP matrix followed
by one traceback pass. Otherwise, multiple passes through
the DP matrix are required if not saving all the traceback
pointers. The downside of saving all the traceback pointers
is the O(mn) space requirement, which can be significant
for longer sequence lengths or prohibitive when limited by
FPGA memory.

A few efforts propose hardware methods for accelerating
pairwise alignment and traceback. The work presented by
Hoang and Lopresti [13] describes an FPGA architecture
which consists of a linear systolic array of PEs that output
traceback data. However, the type of sequences is limited
to only DNA and the sequence length is limited by the
number of PEs on the accelerator (a couple of hundred
nucleotides). The works by Jacobi et al. [14] and VanCourt
and Herbordt [15] suggest accelerated traceback methods,
but with few details. The sequence length accommodated by
their accelerators is also limited by the number of PEs on
the accelerator like the one described by Hoang. Another
limitation of the Hoang and VanCourt methods is that
traceback cannot be overlapped with another forward scan
since the systolic array is used for both scan and traceback.

The methods presented by Yamaguchi et al. [16] and
Moritz et al. [17] allow longer sequences by partitioning
the sequences through the pipeline of PEs. Nevertheless, the
traceback data must be saved to external memory, since the
size of the data exceeds the amount of available internal
FPGA memory. Hence, the traceback performance of both
methods is limited by the FPGA bandwidth to external
memory. The design described by Benkrid et al. [18] also par-
titions sequences, but the size of FPGA memory ultimately
limits the length of sequences that are aligned with hardware
acceleration. Operating at 100 MHz, a systolic array with
256 PEs requires at least 6.4 GB/s of memory bandwidth to
store 2-bit traceback data from each PE. As PE densities and
clock frequencies increase, the external memory bandwidth
is easily exceeded. Internal FPGA memory has sufficient
bandwidth, but even modest sequence lengths of 16 K require
64 MB of traceback store, which far exceeds current FPGA
internal memory capacities.

The global alignment algorithm presented in this paper
overcomes the memory size and bandwidth limitations of
FPGA accelerators and does not limit the sequence length
by the number of PEs. Long sequences of DNA and protein
are accommodated by the algorithm through a space-
efficient traceback procedure that is accelerated in hardware.
Traceback may occur in parallel with the next forward scan
since it is implemented in a separate process from the systolic
array.

3. Algorithm

The general algorithm is described first followed by the FPGA
architecture in the next section. The algorithm is based on
dynamic programming (DP), but partitions the problem into
slices for the FPGA hardware. A description of the general
sequence alignment problem is also found in [5, 11].
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Figure 2: Forward scan and traceback.

Given a pair a sequences A = a1a2 . . . am and B =
b1b2 . . . bn of length |A| = m and |B| = n from the finite
alphabet Σ, a sequence alignment is obtained by inserting gap
characters “-” into A and B. The aligned sequences A′ and
B′ from the extended alphabet Σ′ = Σ ∪ {“-”} are of equal
length such that |A′| = |B′|. Let the function s : Σ× Σ → Z
determine the similarity of symbol ai with bj , and let the
constant α represent the cost of inserting/deleting a gap.
Let H denote the DP matrix and the element H[i, j] the
similarity score of sequences a1a2 . . . ai and b1b2 . . . b j . An
optimal alignment is obtained by maximizing the score in
each element of H . The values of H are determined by the
following recurrence relations for 1 ≤ i ≤ m and 1 ≤ j ≤ n:

H[0, 0] = 0,

H[i, 0] = H[i− 1, 0] + α,

H
[
0, j
] = H

[
0, j − 1

]
+ α,

H
[
i, j
] = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H
[
i− 1, j − 1

]
+ s
(
ai, bj

)
,

H
[
i− 1, j

]
+ α,

H
[
i, j − 1

]
+ α.

(1)

The matrix fill occurs in a scan from upper left
to lower right because of dependencies from neighbor-
ing elements. During the forward scan, a pointer p ∈
{DIAG, ABOVE, LEFT} indicates the current selection of
the max function in (1). Given a tie, fixed priority resolves
the selection. The value of p is saved to the traceback matrix
T , thus T[i, j] = p. Following the forward scan, traceback
proceeds from T[m,n] to T[0, 0], thereby determining the
best alignment. The result is a list of edit operations e ∈
{SUBSTITUTE, INSERT, DELETE}.

The scan algorithm presented here builds upon the
space-saving concepts described by Edmiston et al. [19], and
the divide-and-conquer scheme of Guan and Uberbacher
[20]. Since sequence lengths are often longer than the
number of PEs available in a systolic array, the problem
is often partitioned [21]. The forward scan consists of two
fundamental scan procedures ScanPartial and ScanFull. The
Partial and Full descriptors refer to the amount of traceback

data saved by the procedures. ScanPartial partitions the DP
matrix H into slices of width W . The slices are processed
iteratively. The result of processing each slice is a column
of traceback pointers R[k, j] that refer to a row in a prior
slice (see Figure 2). The designated columns k are given by
k ∈ {c | c mod W = 0 ∨ c = m}. The row pointers
form a partial traceback path through H that link only the
right-most columns of each slice. Given that p indicates the
heritage of element H[i, j], the following recurrences for
1 ≤ i ≤ m and 1 ≤ j ≤ n determine R

If i mod W = 1, then

R
[
i, j
] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

j − 1 if p = DIAG,

j if p = LEFT,

R
[
i, j − 1

]
if p = ABOVE,

else

R
[
i, j
] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R
[
i− 1, j − 1

]
if p = DIAG,

R
[
i− 1, j

]
if p = LEFT,

R
[
i, j − 1

]
if p = ABOVE.

(2)

Only the designated columns of R are actually stored, which
correspond to the right-most columns of a slice. The values
for the other columns are retained temporarily with a vector
variable that follows the wavefront of the scan. In contrast,
the ScanFull procedure does not partition the DP matrix and
produces a full matrix T of traceback pointers that refer to
adjacent elements of H .

The TracePartial procedure differs from TraceFull in that
the partial set of traceback pointers from R are followed
instead of the full set from T . The row pointers, from R[m,n]
to R[0, 0] in designated columns, identify waypoints on the
optimal path through the DP matrix. Since the row pointer
in R[k, j] refers to a row in a prior slice, a block between the
columns is identified, along with corresponding segments of
A and B. The segments of A and B are passed to ScanFull
and TraceFull to determine the full path from [k, j] back
to [kprev,R[k, j]]. The alignment results from each block are
concatenated and thereby form a complete path from [m,n]
to [0, 0].

Since the vertical height of a block (the length of a B
segment) is unbounded, the traceback space available to
the Full procedures may be exceeded. To avoid this case,
a vertical threshold Y is defined such that if exceeded, the
Partial procedures are called instead, with the segments of
A and B interchanged in the calls. Algorithm 1 shows the
procedure that is central to bounding the memory required
for traceback. TracePartial is called recursively a maximum
of once. Any segments passed to the Full procedures will not
exceed W and Y in length because of the partitioning done
by ScanPartial. In the worst case, the length of sequence A is
bounded by the first call to ScanPartial and the length of B is
bounded by the second call.
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procedure TracePartial(A,B,m,n,R,E)
{
x2 ← m, y2 ← n
while (x2 > 1) do
x1 ← 	(x2 − 1)/W
 ·W + 1
y1 ← (x1 > 1∧ y2 ≥ 1) ?R[x2, y2] + 1 : 1
xlen← x2 − x1 + 1, ylen← y2 − y1 + 1
if (ylen = 0) then

Add xlen DELETE operations to E′

else if (ylen ≤ Y) then
ScanFull(Ax1, By1, xlen, ylen, T)
TraceFull(Ax1, By1, xlen, ylen, T , E′)

else // interchange A and B
ScanPartial(By1, Ax1, ylen, xlen, R′)
TracePartial(By1, Ax1, ylen, xlen, R′, E′)
∀e ∈ E′: replace DELETE⇔ INSERT

end if
E ← E ∪ E′
x2 ← x1 − 1, y2 ← y1 − 1

end while
}

Algorithm 1: Procedure for TracePartial.

ABC

PW alignment

Switch

DP FIFO Host interface

PCI Express

Figure 3: System architecture.

4. Architecture

The global alignment accelerator is implemented using Qnet
[22], an open-source packet-switched network architecture
similar to DIMEtalk [23]. Qnet components interconnect the
host and other FPGA accelerator modules in the system. The
architecture facilitates system design with reusable modules
that encapsulate sharable devices or resources. Qnet encour-
ages parallelism by offering concurrent, high-performance
data paths between modules. Figure 3 shows the alignment
system constructed with Qnet modules and components.
A few specifics of Qnet are given before describing the
alignment accelerator module and system operation.

4.1. Qnet Components. The basic network components con-
sist of a switch, Qports, and Qlinks. As the central figure in
the network, the switch provides a path for communicating
packets to other modules. Qports are the interface between
modules and the network, and are the addressable endpoints
of communication. Qports are connected by Qlinks, which

Byte 0 Byte 1 Byte 2 Byte 3

Dst ID

Protocol

Src ch

Payload length

SequenceDst chSrc ID

Figure 4: Qpacket header.

consist of paired, unidirectional, point-to-point signaling
channels that are each 32-bits wide in this system, but may
be implemented with other bit widths. Each Qport has
word-based flow control that will apply back-pressure on
a link, delaying communication until the port is ready to
receive. Hence, packets are not arbitrarily discarded, and
the requirement to buffer an entire packet at the input of
a module is removed while still maintaining performance.
Qnet communication performance has been shown to be
very near the theoretical max bandwidth between modules
on the FPGA while also maintaining latencies very near
theoretical minimums.

Qnet reliably transfers data packets between endpoints
through a simple protocol that requires minimal FPGA
resources. Packets consist of a small header (see Figure 4) and
a payload of variable size. The header specifies the source and
destination endpoints with unique port identifiers and also
indicates the payload length. When a packet header enters the
switch, the output port is determined from the destination
endpoint and remains the same for all following words of the
packet. With a cut-through packet forwarding method, the
full packet is not buffered in the switch. Packets that enter
the switch simultaneously with different destinations pass
through concurrently. This architecture allows parallel data
transfer on all ports of an accelerator module.

4.2. System Modules. Host Interface. The host computer
communicates with the FPGA accelerator through the PCI
Express [24] module, which contains DMA engines and
translates PCI packets into Qnet packets. Two ports on this
module allow both sequences to be sent in parallel to the
accelerator.

DP Matrix FIFO. If the length of sequence A is longer than
the number of PEs in the accelerator, the DP matrix H must
be processed in slices of width W = (num. PEs) as described
in Section 3. After processing a slice, the right column of
DP matrix values will exit the pipeline of PEs. These H
values are sent in a packet to the DP matrix FIFO and
retained for processing the next slice through the pipeline.
Any packet sent to the DP matrix FIFO will be returned
to the originating Qport, as indicated by the packet header,
thus cycling the pipeline output to the input. The FIFO may
be implemented with any memory technology of sufficient
bandwidth and size to handle the stream of data from the PE
pipeline. Since only one H value exits the pipeline each clock
cycle, the bandwidth requirement is not excessive.

Pairwise Alignment Module. The compute intensive portions
of the alignment algorithm are performed by the pairwise
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alignment module, which contains the pipeline of PEs. This
module has 3 Qports through which the sequences are
provided and results are returned (see Figure 3). In parallel,
Sequence A is input on port A and sequence B is input on
port B, while the traceback results are returned on port C.

Figure 5 shows the internal architecture of the alignment
module. The front-end of the pipeline synchronizes the A
and B streams of symbols, and the back-end sends the partial
traceback results R out on port A and the H values on port
B. The symbols of sequence B that flow through the pipeline
are merged with the H values on output, since they will also
be needed in processing additional slices. Merged B and H
values that exit the pipeline are sent in a packet to the DP
matrix FIFO. As sequence A is fed into the pipeline, merged
B and H values from the end of the pipeline flow from the
alignment module through the DP matrix FIFO and back
into the front-end of the pipeline at port B. This cycle occurs
for each slice of the scan, except for the last.

Most systems commonly load a segment of A into the
pipeline and then shift in B; whereas this system entersA and
B in parallel [25]. Sequence B is shifted in as usual, but A is
bussed to each PE and latched when the first symbol of B
reaches a PE in the pipeline (see Figure 6). The recurrence
equations described in Section 3 are calculated by the PEs
each time a pair of symbols enter the pipeline. As a forward
scan proceeds from upper left to lower right, the pipeline
of PEs operates in parallel along an antidiagonal wavefront
through the DP matrix. Figure 7 shows the progression of

symbols in the pipeline and shows the mapping of PEs to DP
matrix cells over several cycles.

Both of the forward Scan procedures are implemented by
the pipeline of PEs. ScanPartial enables the R (partial row
pointer) output, while ScanFull enables the T (full traceback
pointer) output. Configuration bits in the packet header of
sequence A determine which pointer type is enabled. For
each slice processed by ScanPartial, a column of R is returned
to the host in a packet. ScanFull will only process one slice,
while saving the full traceback data in FPGA block RAM,
which has the bandwidth to store pointers from every PE in
parallel. The vertical threshold Y , as described in Section 3,
is determined by the depth of FPGA block RAM allocated to
full traceback.

A state machine implements the TraceFull procedure that
follows the pointers saved in block RAM by ScanFull. To
initiate a full traceback, a request packet is sent to Port C of
the pairwise alignment module from the host. The results,
a list of edit operations e ∈ E, are returned to the host
from Port C. TracePartial is implemented in software on the
host, but calls the Full procedures for most of the work (see
Algorithm 1).

Access to traceback pointers T[i, j] in block RAM
requires a skewed addressing scheme because of the storage
method used in the forward scan. Storing a diagonal wave-
front of pointers as a row in block RAM skews the traceback
matrix T in memory (see Figure 8). A full traceback begins
with a request packet that contains the cell address of T[1, 1]
and the lengths of sequences A and B. The address of T[1, 1]
is saved at the start of a full forward scan and will always be
the lowest address in a row (leftmost). From the address of
T[1, 1] and the width W of block RAM in cells, the address
of T[m,n] is calculated

m′ = m− 1,

n′ = n− 1,

addrT[m,n] = addrT[1,1] +W(m′ + n′) +m′.

(3)

Traceback proceeds from T[m,n] to T[0, 0] following the
pointer in each accessed cell. Given a traceback pointer p
from the current cell, the following equation determines the
address of the next cell in block RAM

addr =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

addr− (2W + 1) if p = DIAG,

addr− (W + 1) if p = LEFT,

addr−W if p = ABOVE.

(4)

Since block RAM is dual-ported, traceback reads can
occur while the next forward scan concurrently saves point-
ers in another portion of the traceback memory. Address
calculations into block RAM wrap around when the range
is exceeded.

4.3. System Parameters. Most system parameters are imple-
mented with VHDL generics. For example, symbol width,
number of PEs, traceback memory depth, and various
register sizes are all specified at a high level in the module
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Figure 7: Symbol flow and the corresponding DP matrix wavefront for sequential cycles of the PE pipeline.
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hierarchy and passed as generics to lower modules. This
allows different configurations of the accelerator with min-
imal changes to the source. Protein sequences require 5-bit
symbols and DNA sequences require at least 2-bit symbols.
Mega-length sequences may be handled by the architecture

and algorithm by setting system constants and rebuilding a
system. The number of PEs is scalable to match the target
hardware resources.

Several system parameters affect the maximum sequence
length Lmax that can be processed by the accelerator. As
mentioned previously, the DP matrix FIFO must be deep
enough to hold the merged B symbols and H values that
come from the end of the pipeline. The FIFO length limit
is determined by LF = NFIFO/NBH , where NBH denotes the
number of bytes for a single B-H pair and NFIFO denotes the
DP matrix FIFO size in bytes. Also, the substitution and gap
costs combined with the H register size affect the maximum
sequence length. Each stage of the pipeline increments an
H value by the gap cost α or the result of the similarity
function s(ai, bj). To avoid H register overflow, the H length
limit is LH = (2NH−1 − 1)/Imax, where NH denotes the
number of bits inH registers, and Imax denotes the maximum
absolute value of the gap cost α or the similarity function s.
In conjunction with the other parameters, the R register size
affects the maximum sequence length. A register for R must
hold an index into sequence B without overflow. Given NR,
the number of bits in R registers, the R length limit is LR =
2NR − 1. From the contributing length limits, the maximum
sequence length is determined by Lmax = min(LF ,LH ,LR).

5. Timing Model

A timing model is presented for the sequence alignment
algorithm and architecture described in Sections 3 and 4.
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First, constants for the system are defined with the values in
parenthesis being specific to the evaluation system:

W : number of PEs (256),

Y : threshold for length of sequence B (768),

Cpad : cycles to pad pipeline (8),

ts : communication startup
(
1.5μs

)
,

th : host overhead
(
3μs

)
,

tclk1 : period of clock 1
(

1
100 MHz

)
,

tclk2 : period of clock 2
(

1
150 MHz

)
.

(5)

Timing varies as a function of the following variables:

l = ∣∣A′∣∣ = ∣∣B′∣∣, aligned length,

m = |A|, length of sequence A,

n = |B|, length of sequence B,

Nslice = �m/W�, number of slices.

(6)

The time for processing a slice is determined by the length
of B or the length of the pipeline plus padding, whichever is
greater. Flush time depends on how much of sequence B is
left in the pipeline after processing a slice and is calculated
from the length of B minus padding (zero limited) or the
length of the pipeline, whichever is less

tslice = tclk1

[
max

(
n,W + Cpad

)
+ 1
]

,

tflush = tclk1 min
(
W , max

(
0,n− Cpad

))
.

(7)

Based on the previous definitions, execution times for the
Scan and Trace procedures are

tscanF = tslice + tflush + 4ts,

ttraceF = tclk2(2l + 4) + 2ts,

tscanP = Nslice(tslice + ts) + tflush + 4ts,

ttraceP = Nslice(tscanF + ttraceF).

(8)

Finally, the time to perform a global sequence alignment is
given by:

talign =
⎧
⎨

⎩

tscanF + ttraceF + th if m ≤W ∧ n ≤ Y ,

tscanP + ttraceP + th, else.
(9)

This analytical model matches experimental results and
predicts the scalability and performance of the architecture
under various system configurations.

6. Experimental Setup

Application. Three global alignment implementations are
tested in the evaluation: (1) as a baseline, a software-only

version of the algorithm presented in this paper; (2) a version
accelerated by the FPGA; and (3) an implementation of the
Myers-Miller global alignment algorithm for an additional
point of reference. The host computer is used to evaluate
the software only versions of the algorithms. Seq-Gen [26]
produced varying lengths of test sequences ranging from 128
to 16383 symbols for the evaluation. The applications use a
gap cost of −2, a substitution score of 1, and a match score
of 2.

Host. The host platform consists of a desktop computer with
a 2.4 GHz Intel Core2 Duo processor running Fedora 6
Linux as the operating system. All benchmark applications
execute in a single thread and are compiled with gcc using
−O3 optimization. For accurate timing, the processor’s
performance counters are used.

Accelerator. An 8-lane PCI Express add-in card with a Xilinx
Virtex-4 FX100 FPGA provides the hardware acceleration. To
conserve FPGA resources, only 4 of the 8 PCI Express lanes
are used in the experimental system. All of the components
are implemented in VHDL. As shown in Figure 3, a 4-port
switch connects the three FPGA modules using 32-bit Qlinks
that run at 150 MHz. For simplicity and minimal latency, the
switch is implemented with a fixed address table and a fixed
port priority resolution scheme. The DP matrix FIFO uses
64 KB of FPGA block RAM, which is enough to hold 16 K
entries of B symbols and H values. Driven by a 100 MHz
clock, the pipeline consists of 256 PEs placed in a tiled
pattern. DNA and protein sequences are accommodated with
5-bit symbol values. An 8-bit look-up table that requires
one block RAM per PE implements the similarity function
s(ai, bj). Each PE outputs a 2-bit traceback pointer p that is
stored in traceback memory, which is instantiated in 64 KB of
block RAM with a width of 512 bits and a depth of 1024. The
traceback memory depth determines theY threshold. Within
the system, DP matrix values H and row pointer values R
both require 16-bits.

Through the use of constraints and floor planning, 90%
slice utilization is achieved. First, an area shape and size
constraint for one PE is determined, in this case, by repeated
place and route trials. Then, given this shape and size, a
simple (75 line) Perl script tiles the PEs in a programed
pattern by generating area constraints for each PE. Keep-out
areas are also given to the Perl script. The text output from
the Perl script is pasted into the user constraints file for use
by the place and route tools along with the other constraints.
Only slice resources are constrained for the PEs, since the
block RAM needed for each PE may not reside within the
area constraint. To meet timing, the first and last PEs of
the pipeline are kept closer to the Qport interfaces of the
switch and alignment module, which is shown in Figure 9
along with the tiling pattern. The traceback block RAMs
are constrained to a centrally located area of the FPGA to
minimize path lengths from distant PEs. For proximity to
the traceback memory, the traceback state machine is also
centrally located. Table 1 shows the relative resource usage of
the various components.
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Table 1: Resource usage.

Component Slices FPGA percentage

PCI Express 6175 14.6%

Host interface 1221 2.9%

4-port switch 448 1.1%

Traceback 283 0.7%

DP FIFO 192 0.5%

PE (one) 111 0.3%

Traceback

PCI Express
core

Host interface
(DMA)

256 PEs

4-port
switch

DP FIFO
PE 255

PE 0

Figure 9: FPGA floorplan.

7. Results

Figure 10 shows the performance of the three global
sequence alignment implementations with varying lengths
of sequences and Table 2 compares the speedup between
the implementations. The host-only version averages a
speedup of 1.6 over the Myers-Miller implementation and
the accelerated version achieves a max speedup of 304 over
the host version. During the forward scan, the accelerator
reaches a peak dynamic programming rate of 25.6 × 109

cell updates/s (CUPS). Traceback occurs at a peak rate of
75× 106 pointers/s. Figure 11 shows the actual performance
compared with the timing model from Section 5. For longer
sequences, the actual performance is near the theoretical
peak. The timing model suggests a high degree of scalability
for the presented algorithm and architecture. For example,
performance predicted by the model gives a speedup of 580
with 512 PEs operating at 100 MHz on a larger FPGA.

Supported by the low communication overhead of Qnet,
sequences of length 10 or greater are aligned faster on
the accelerator. Sending a single packet from the host to
the accelerator takes minimally 1.5 μs. The demonstration
system takes a minimum of 14 μs for an alignment with
most of the time being attributed to the overhead of several
packets, since only 2.65 μs is required for a single pipeline fill
and flush once sequences are ready at the front-end of the
pipeline.

Table 2: Speedup between implementations.

Sequence length tFPGA μs
tMyers

tFPGA

tHost

tFPGA

511 64 131 107

1023 128 171 124

2047 327 264 181

4095 969 357 236

16383 11696 471 304
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Figure 10: Global alignment execution time.

Sequences shorter than W have a lower bound on
alignment time, because unused PEs must be filled with null
symbols. Longer sequences realize greater performance on
the accelerator because the pipeline does not require a flush
between adjacent slices. Adjacent slices need only 1 cycle
of spacing in the pipeline. Longer sequences are also more
efficient because of proportionately less time spent in the
traceback. The average traceback time relative to the forward
scan can be visualized in Figure 2 as the area of the sub-
blocks relative to the area of the whole matrix.

Even though the algorithm presented here requires
O(mn) space, the traceback memory is reduced by a sig-
nificant constant. For example, given sequences with 100 K
symbols, saving all the traceback data requires 2.5 GB. By
saving the partial traceback pointers in a system with 256
PEs, the traceback data is reduced to 78 MB. Perhaps more
importantly, the necessary memory bandwidth to store the
partial traceback pointers is reduced to a practical level that
is achievable between the host computer and the FPGA
accelerator. With the pipeline running at 100 MHz and 16-
bit R values, the partial traceback data rate is only 200 MB/s.

Qnet provides communication bandwidth up to
600 MB/s per link in each direction between modules,
which exceeds the rate needed by the alignment module to
maintain maximum throughput in the pipeline. With excess
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Figure 11: Timing model compared with actual FPGA performance. The model is nearly indistinguishable from the FPGA time. (a)
Sequence alignment execution time, (b) speedup relative to the host-only version.

bandwidth at each end of the pipeline, stalls occur
infrequently. Sequences enter the alignment module on
ports A and B at a rate of 100 MB/s. Concurrently, partial
traceback pointers exit port A at 200 MB/s destined for
the host, and merged B-H values exit port B at 400 MB/s
destined for the DP FIFO.

Notice that the presented algorithm does not limit the
sequence length by the number of PEs or by the amount of
full traceback memory. Matching system parameters, such
as the number of PEs and the size of traceback memory, to
the available FPGA resources maximizes performance. The
experimental results and timing model together demonstrate
the scalability of the algorithm without memory bandwidth
limitations.

8. Conclusion

With the presented algorithm and architecture, long
sequences are globally aligned with supercomputing per-
formance on reconfigurable hardware. A speedup over 300
is achieved with the example implementation on FPGA
technology when compared to a desktop computer. The
architecture is scalable to larger capacity FPGAs for a further
increase in performance. Beyond sequence comparison, the
full alignment of long sequences is accelerated without
memory and I/O bottlenecks through a space-efficient
algorithm. After executing traceback in hardware, the accel-
erator returns a list of edit operations to the host, which
constitutes an optimal alignment. Other global alignment
acceleration methods only address sequence comparison,
limit the sequence length, or exhibit memory and I/O
bottlenecks.

The key features of the algorithm are the bounded space
requirement for full traceback memory and the reduced

space for partial traceback memory. These space reductions
enable high-performance alignment of long sequences on
a reconfigurable accelerator and are a match for FPGA
memory capacities and bandwidth. Only 64 KB of FPGA
block RAM is used for full traceback in the demonstrated
implementation. Partial traceback data sent to the host
at a rate of 200 MB/s is supported by commodity FPGA
boards.

Future work includes combining coarse-grain parallel
methods [27] with the fine-grain parallelism of this method
for multiplied performance gain on reconfigurable comput-
ing clusters. Also, the advantages of the presented method are
applicable to accelerating local alignment. A general-purpose
accelerated alignment library that consists of both local
and global methods may be applied to multiple sequence
alignment codes with minimal effort.

Acknowledgment

An earlier version of this paper appeared as “Sequence
Alignment with Traceback on Reconfigurable Hardware.”
In Proceedings of the 2008 International Conference on
ReConFigurable Computing and FPGAs (ReConFig’08), Pages
259–264, December 2008.

References

[1] C. Macken, H. Lu, J. Goodman, and L. Boykin, “The value of a
database in surveillance and vaccine selection,” in Options for
the Control of Influenza IV, vol. 1219 of International Congress
Series, pp. 103–106, October 2001.

[2] S. N. Gardner, M. W. Lam, N. J. Mulakken, C. L. Torres,
J. R. Smith, and T. R. Slezak, “Sequencing needs for viral
diagnostics,” Journal of Clinical Microbiology, vol. 42, no. 12,
pp. 5472–5476, 2004.



10 International Journal of Reconfigurable Computing

[3] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL
W: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice,” Nucleic Acids Research,
vol. 22, no. 22, pp. 4673–4680, 1994.

[4] C. Notredame, D. G. Higgins, and J. Heringa, “T-coffee:
a novel method for fast and accurate multiple sequence
alignment,” Journal of Molecular Biology, vol. 302, no. 1, pp.
205–217, 2000.

[5] S. B. Needleman and C. D. Wunsch, “A general method
applicable to the search for similarities in the amino acid
sequence of two proteins,” Journal of Molecular Biology, vol.
48, no. 3, pp. 443–453, 1970.

[6] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, vol.
147, no. 1, pp. 195–197, 1981.

[7] T. Ramdas and G. Egan, “A survey of FPGAs for acceleration
of high performance computing and their application to
computational molecular biology,” in Proceedings of the IEEE
Region 10 Annual International Conference (TENCON ’05), pp.
1–6, Melbourne, Australia, November 2005.

[8] P. Chain, S. Kurtz, E. Ohlebusch, and T. Slezak, “An
applications-focused review of comparative genomics tools:
capabilities, limitations and future challenges,” Briefings in
Bioinformatics, vol. 4, no. 2, pp. 105–123, 2003.

[9] F. Delsuc, H. Brinkmann, and H. Philippe, “Phylogenomics
and the reconstruction of the tree of life,” Nature Reviews
Genetics, vol. 6, no. 5, pp. 361–375, 2005.

[10] T. Slezak, T. Kuczmarski, L. Ott, et al., “Comparative genomics
tools applied to bioterrorism defence,” Briefings in Bioinfor-
matics, vol. 4, no. 2, pp. 133–149, 2003.

[11] O. Gotoh, “An improved algorithm for matching biological
sequences,” Journal of Molecular Biology, vol. 162, no. 3, pp.
705–708, 1982.

[12] E. W. Myers and W. Miller, “Optimal alignments in linear
space,” Computer Applications in the Biosciences, vol. 4, no. 1,
pp. 11–17, 1988.

[13] D. T. Hoang and D. P. Lopresti, “FPGA implementation of sys-
tolic sequence alignment,” in Field-Programmable Gate Arrays:
Architectures and Tools for Rapid Prototyping, H. Grünbacher
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1. Introduction

Spatial computing is a large research field where researchers
try to propose alternative computing devices that consist of
a (huge) amount of computational resources that are spread
across some physical structure. This research field includes
many different domains, such as biological computation,
robot swarms [1] and swarm intelligence [2], amorphous
computing [3], and reconfigurable computing. The common
constraints are that the communication cost between dif-
ferent computational resources strongly increases with their
distance, and that the global functionality emerges from
the collective behavior of the resources. In this research
field, the main algorithmic question may be summarized as
“how to make computing units cooperate to solve a given
task?” [4]. Our project (Amybia INRIA collaborative research
project, led by Nazim Fatès) takes place in this approach, by
considering an upstream question, “how to gather or assign
enough computing resources to solve a given task?”, in a
context where faulty units may appear.

More precisely, we consider here the problem of gather-
ing computing units in a strongly constrained context: (1)
units use only local rules, (2) units move on a lattice and
need to gather to form a compact cluster, (3) units have no
idea of their own position and of the position of the other
units, (4) units may only send messages that can be relayed
(possibly with errors) by the cells of the lattice, (5) units
only perceive the state of the neighboring cells, and (6) the
only action units may undertake is to move to these cells or
change the state of these cells. The possible applications of
this problem to several problems of spatial computing still
need to be deepened: we discuss them in Section 7. In this
paper, our ambition is only to show that a simple model is
able to achieve decentralized gathering, while being suitable
for efficient distributed implementations. Our approach is
inspired by biology, where such decentralized gathering is
observed, so as to derive a model and its implementation.

The cellular slime mold Dictyostelium discoideum is
a fascinating living organism that has the ability to live
as a monocellular organism (amoeba) and to transform
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into a multicellular organism when needed. In normal
conditions, the amoebae live as single individuals. How-
ever, when the environment becomes depleted of food, a
gathering phenomenon is triggered and single amoebae
aggregate to form a complex organism that moves and
reacts with coordinated changes. In the Amybia project,
we take inspiration from the first stage of the multicellular
organization process, the aggregation stage, which consists in
gathering all the amoebae in a compact mass called a mound
[5].

In [6, 7], Fatès proposes a simplified model of Dic-
tyostelium discoideum that exhibits the main behavioral
properties of the aggregation mechanism: reaction-diffusion
and chemotaxis. Our Amybia project is built around this
model. It uses a cellular automaton to describe the environ-
ment, and a multiagent approach to model the amoebae.
This paper focuses on the hardware aspects of our project. It
is roughly divided into two parts. In the first part, the FPGA
is used as an accelerator for simulations of the dynamics
of the environment, especially close to phase transitions.
In the second part, beyond being an accelerator, the FPGA
is also considered as a representative device for massively
distributed computation so as to study the main issues
that may appear while using reaction-diffusion chemotaxis
for decentralized gathering within heterogeneous spatial
computing devices.

Section 2 focuses on the biological inspiration of our
work, describing the aggregation process that is observed
with Dictyostelium discoideum. The model of [6, 7] consists
of an environmental layer and a particle layer. The environ-
mental layer and its properties are described in Section 3,
while its hardware implementation for fast simulations
is depicted in Section 4. Then Section 5 summarizes the
particle layer model and its properties before Section 6
describes its FPGA implementation that performs decentral-
ized gathering on-chip. Section 7 shortly discusses possible
contexts of use for such decentralized gathering. Finally, we
derive conclusions about the main obstacles and possible
modifications of our approach.

2. Decentralized Gathering and Bioinspiration

Decentralized algorithms to gather robots to form circular
or polygonal shapes have been proposed in [8], where all
robots “see” the positions of each other. Similar problems
with a limited visibility range have been studied in [1, 9].
We refer to the work of [10] for recent developments on the
decentralized gathering problem. In this paper, we get rid of
any assumption on the visibility range using an environment
that transmits messages on arbitrarily long distances. The
decentralized gathering problem is also related to the Leader
Election problem, but our goal is not to select one unit
among many, but to gather randomly located units in a
compact location that emerges by consensus. This behavior
is part of the complex and unusual life cycle of the cellular
slime mold Dictyostelium discoideum; it corresponds to the
aggregation step of the multiple monocellular organisms that
gives birth to a single multicellular organism.

Figure 1: Some steps of the life cycle of Dictyostelium discoideum
(Copyright, M.J. Grimson & R.L. Blanton, Biological Sciences
Electron Microscopy Laboratory, Texas Tech University).

2.1. Dictyostelium discoideum. Despite the biological inspi-
ration of our work, we do not pretend to provide the
reader with accurate and complex biological notions. Some
biological terms may even be used with some approximation,
which does not penalize our work, since we model a
behavior and we do not model biological species. Therefore
this section only gives an overview of the specificities
of Dictyostelium discoideum, focusing on its aggregation
properties that inspire the model in [6, 7].

2.1.1. Life Cycle. Dictyostelium discoideum amoebae grow
as independent cells in natural environments such as moist,
decaying wood. In normal conditions, they behave as
monocellular organisms, but they are able to interact when
a coordinated reaction to extreme conditions is required.
Extreme conditions may correspond to a food-depleted envi-
ronment that might result in starvation for the population
of amoebae. By means of their interactions, single cells do
not only join to perform a collective reaction, they join to
generate a multicellular organism (containing thousands of
cells) that is able to better react to extreme conditions than
the population of individual cells.

As illustrated by Figure 1, after having grouped together,
the population becomes able of cell differentiation, which
results in several steps of a life cycle that adapts to the
environmental conditions. The mound of cells that results
from aggregation is then transformed into some elongated
migrating slug, and then into a fruiting body. We are only
interested in the process by which amoebae group together,
since it fulfills the different constraints for the decentralized
gathering of computing units we study.

2.1.2. Aggregation. In vitro experiments show that the aggre-
gation phenomenon of Dictyostelium is triggered by one or
several amoebae that attract other amoebae that are located
in their vicinity to form groups. The first groups merge until
only a few clusters remain; these will attract other amoebae
to them to form a cluster where cellular differentiations occur
to lead to the multicellular organism.

Attraction is led by the transmission of waves of chemical
messengers, which follow typical evolving reaction-diffusion
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Figure 2: Cycle of states for a cell of the environmental layer.

patterns. The chemical messengers are internally produced
by the amoebae. When an amoeba detects a high increase
in the external concentration of the messengers, it follows
the concentration gradient (this phenomenon is called
chemotaxis) and it releases its own internal messengers.
Then it becomes insensitive to the messengers during a
given refractory period, and in the meanwhile, the released
messengers diffuse and attract other sensitive amoebae.

2.2. Previous Models. Several models have been proposed to
study the dynamics of Dictyostelium (see a review in [11]).
Many of them are based on partial differential equations
[12, 13]. Some studies aim at being very close to the
biological inspiration, comparing simulation outputs with
observations of the aggregation of Dictyostelium [14], or
modeling the receptors of the chemical messengers [15].
Most studies use continuous or hybrid models; to our
knowledge, the model in [6, 7] that founds our Amy-
bia project is the first fully discrete model that captures
Dictyostelium’s behavior. By fully discrete, we mean that
time and space are discrete and the state of the amoebae
is described in qualitative terms rather than quantitative
(integers or decimal values). This discretization is useful
when digital hardware implementations are expected. The
reaction-diffusion mechanism alone is well understood, with
explicit links between the discrete and continuous models
(e.g., [16]). This mechanism shows problem-solving abilities
[17]. In our project, we use the model of Fatès [6, 7] that
adds virtual chemotaxis as a new feature to study and use.
Two layers compose it: the environmental layer is a cellular
automaton that models a reaction-diffusion process while
the particle layer describes the moves of virtual amoebae.

3. The Environmental Layer

As explained before, attraction of amoebae is led by the
transmission of waves of chemical messengers in the envi-
ronment. In this section, we only consider this reaction-
diffusion process. The study of the qualitative behavior of
the environmental layer is an important part of the Amybia
project. We aim at characterizing this behavior in terms of
complex system dynamics, and we study its robustness to
noise and obstacles. Therefore we assume here that waves
of excitation are initiated at randomly chosen positions, and
then we observe how these waves behave in the long term.

Next subsection defines the discrete model of this
environmental layer [6, 7], that mostly depends on one
parameter called the transmission rate. Then Section 3.2
summarizes the main results about the dynamics of this

reaction-diffusion process, where phase transitions depend
on this transmission rate. The goal of the implementation
described in the next section is to perform large scale
simulations of those phase transitions, and to extend these
results to various topologies and perturbations.

3.1. Discrete Model. Space is modelled by a regular lattice
L = {1, . . . ,X} × {1, . . . ,Y} in which each cell c = (cx, cy) ∈
L is associated to a state. The set of possible states for each
cell is {0, . . . ,M}, the state of cell c at time t is denoted by σtc .
State 0 is the neutral state, state M is the excited state.

A “source” cell is an initially excited cell. Any cell may
evolve from the neutral state to the excited state if at least
one of its neighbors is excited (rule (R1). To model the
uncertainty on this transition, we consider that it happens
with a given probability pT , called the transmission rate.
States 1 to M−1 are the refractory states. A cell in a refractory
state evolves in an autonomous way by decrementing its state
by 1 (rule (R2) until it reaches the neutral state. A neutral cell
surrounded by neutral cells stays neutral (rule (R3). Figure 2
illustrates the different possible states of the cell.

To express these rules without ambiguity, for a cell c ∈ L,
let us denote by Nc the neighborhood of this cell. Let Et

c be
the set of excited cells in the neighborhood of c at time t:
Et
c = {c′ ∈ Nc|σtc′ = M}. We also denote by |S| the cardinal

of a set S.
With these notations, for a time t ∈ IN and a cell c ∈ L,

let B(p) be a Bernoulli random variable that equals 1 with
probability p and equals 0 with probability 1 − p. The local
rule governing the evolution of the environment is

σt+1
c =M if σtc = 0,

∣
∣Et

c

∣
∣ > 0, B

(

pT
) = 1, (R1)

σt+1
c = σtc − 1 if σtc ∈ {1, . . . ,M}, (R2)

σt+1
c = 0 otherwise. (R3)

A set of adjacent cells that are all in the excited state M is
called an excitation front. In Section 5, we explain how the
excitation fronts guide the amoebae that move on the lattice
(chemotaxis).

3.2. Properties. The main properties of this model are
presented in [6, 7]. Since this paper focuses on the hardware
implementation issues, we only summarize the main results
below.

The dynamics of the environment depends on two
parameters: the excitation level M and the transmission
rate pT . The study of [6, 7] shows that different qualitative
behaviors may be observed: the static regime, the non-
coherent regime, and the extinction regime.
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Figure 3: Two aspects of the noncoherent regime (a): pT = 0.95, (b): pT = 0.25).

3.2.1. Static Regime. This regime is obtained in the case of
systematic transmission of waves (pT = 1): the excitation
fronts collide systematically and they annihilate themselves.
This phenomenon is well known for reaction-diffusion
processes.

3.2.2. Noncoherent Regime. This regime may be observed
in the case of nonperfect transmission conditions (pT <
1); the reaction-diffusion waves are independent from the
position of the source cells and no organization can occur.
Figure 3 illustrates the influence of pT on the transmission
of waves, in a 50 × 50 environment with M = 4 and a
Moore neighborhood. Black pixels denote neutral cells, and
red pixels stand for excited cells, while shaded colors are
used for refractory states. Reaction-diffusion waves remain
visible with pT = 0.95; whereas they appear unorganized
with pT = 0.25.

3.2.3. Extinction Regime. This regime is attained when the
transmission rate is less than a critical value (pT < 0.23 for
M = 3). In that case, waves spontaneously disappear.

Following well-known studies in statistical physics, the
first experiments depicted in [7, 18] indicate that the uni-
versality class of the phase transition from the non-coherent
regime to the extinction regime might be directed percolation
[19, 20]. The robustness properties of the model strongly
depend on the universality class of its phase transitions.
These experiments need to be extended to larger environ-
ments, but software simulations are very time-consuming.
Therefore we have developed a block-synchronous hardware
implementation to handle large-scale simulations.

4. Fast FPGA Simulation of Phase Transitions

The hardware part of the Amybia project is motivated by two
main goals. The first one is to develop fast implementations
to explore complex dynamics in large-scale environments.
The corresponding implementation work is described in this
section. The second goal is to perform a preliminary study of
the ability of our model to provide an efficient decentralized
gathering process for a large amount of distributed comput-
ing units. The corresponding implementation is the subject
of Section 6.

4.1. Block-Synchronous Implementation. The behavioral
description of each environment cell may reduce to a
very simple state machine that could be implemented
with very few hardware resources. Nevertheless, the most
area-greedy computation in the environment layer is not
the state transition, but the generation of the Bernoulli
law with probability pT for each cell. As a consequence, a
fully parallel implementation of the environmental layer
would not be able to implement environment sizes that
are out of reach for software simulations (a few thousands
of cells at most, see below for the implementation area of
the random generators). Therefore, we have chosen to use
a block-synchronous (or block-parallel) implementation
based on the embedded B-RAM memories (Block RAM) of
the FPGA, as in [21]. The environment is partitioned into
several blocks, with each block of cells being handled in a
fully parallel way by the FPGA while the different blocks
are sequentially handled. Let X × Y be the total number of
cells in the environment layer. Let n × m be the number of
cells that may be simultaneously handled on the FPGA. The
environment is partitioned into B = (X/n) × (Y/m) blocks
of n×m cells.

Let us consider a cell in the environment. It is located at
relative position (x, y) in block (α,β), so that its coordinates
in the whole environment are (αn + x,βm + y). We store
its state in a local B-RAM memory, with an address that
corresponds to the block number. The local position of the B-
RAM memory is sufficient to stand for the (x, y) coordinates,
so that they do not appear in the address. The computation
of the block is performed by using the same block-dependent
address for all local B-RAM memories, thus handling all cells
in this block. Then the computations are performed for the
next blocks by increasing the common address used for all
B-RAM memories. It should be pointed out that the choice
of B-RAMs to store cell states in this implementation is only
related to the need to store many states at the same location
in the FPGA; whereas the cell states will be stored in simple
elementary flip-flops when considering the fully parallel
implementation of the model with amoebae in Section 6.1.

Figure 4 illustrates the decomposition of the environ-
ment into blocks and the block-synchronous scheduling of
the computation. The different blocks are shown, each one
containing an outlined cell at relative position (x, y): the
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Figure 4: Block partitioning of the environmental layer.

states of all these outlined cells are stored in the same B-RAM
memory of the FPGA. All cells are handled simultaneously
in a given block, and the red arrows denote the cyclic block-
scheduling of the computation.

4.2. General Architecture. Figure 5 schematizes the general
architecture of our implementation of the environmental
layer. Since the environment is split into several blocks, this
architecture mostly consists of a grid of n × m identical
cell modules (gathered as groups of 4 or 6 cells using
the same B-RAM memory to handle on-chip data storage
and access) surrounded by border modules. An additional
control module computes the memory addresses that are
used by all modules (block-scheduling) and computes the
number of excited cells in the environment. Figure 5 only
illustrates a simple 4-neighborhood, but our implementation
handles the 8-neighborhood. The role of each component is
as follows.

4.2.1. Cell Module. Each cell module updates the state of
its corresponding cell within the currently handled block.
More precisely, we use a bufferized storage of the states
of all cells so as to synchronize the computations of all
blocks: a most significant bit δ or 1 − δ is added to the
addresses that are sent to the dual-port B-RAM memories;
the current states are read with δ, whereas updated states
are stored with 1 − δ. When the current iteration of the
equations of rules (R1), (R2), and (R3) has been performed
for all blocks, buffers are exchanged by means of δ ← 1 −
δ.

Depending on the value of M, the cell modules are split
in groups of 2 × 2 cells (M < 16) or 2 × 3 cells (M < 8) that
share common storage resources: a single 18 Kbit dual-port
B-RAM memory stores the states of 4 or 6 cells for all blocks
of cells, using 18-bit words.

4.2.2. Border Module. The border modules are simpler than
the cell modules. They only store one bit for each one of
the immediate neighbors of the most outer cells within each
block; this bit stands for the cell being excited or not. The
only difficulty is to handle the addressing scheme so that
the information stored within each of the 4 possible borders
is updated when the block that contains the corresponding
cells is being handled. This update requires long-range
connections from the cell modules on each side of the
block to the opposite border modules. Moreover, when the
borders lie outside the whole environmental layer, the border
modules simply generate the constant value 0 (not excited).

4.2.3. Control Module. The control module uses a 10-bit
counter to perform block-scheduling, and a 16-bit counter
to handle iterations on the environment. Moreover, our goal
is to study the phase transition between the non-coherent
regime and the extinction regime. Therefore, the control
module computes the number of excited cells within each
row of cells, it adds these numbers for all rows, and then
it accumulates the results for all blocks. Nevertheless, it is
sufficient to detect if the number of excited cells tends to zero,
so that all numbers are computed up to 64, which reduces the
cost of the adders.

4.3. Implementation of a Cell. A cell module mostly consists
of two parts: a random number generator (RNG) to compute
the Bernoulli random variable B(pT), and the cell state
update.

4.3.1. Generating the Bernoulli Law. In the software imple-
mentation developed by Fatès, the same RNG is used
for all cells, thanks to the assumed independence of the
successively generated numbers. It should be pointed out that
generating high-quality random variables to ensure a real
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Figure 5: General architecture (environment).

independence of successive random numbers still remains a
research subject. Nevertheless, this issue of software RNGs
does not appear as relevant for our model, where the
quality of usual RNGs is sufficient to break the symmetry of
wave transmissions (see [6, 7]). But in a parallel hardware
implementation, all cell modules must generate their own
random variable in parallel. Therefore we have to implement
n × m RNGs. The precision of the random processes is
particularly important when studying phase transitions.
Moreover, the spatial independence that is required for
symmetry breaking implies that the hardware RNGs we use
must be sufficiently good (long period, and independent
seeds). This induces an important cost in space for the
random aspects of the environmental layer. This hardware
resource cost is the counterpart of the computation time
that is mostly spent in generating random numbers in the
software implementation.

Our choices for the implementation of the random
processes have been carefully studied. Most digital hardware
solutions are based on LFSR or cellular automata (CA) [22].
Another approach takes advantage of large numbers stored
in parallel [23]. Since the LUTs of the FPGA logic cells may
be efficiently configured as synchronous RAMs standing for
shift registers [24], we use LFSR-based RNGs. See Section 8

for an extension of our work to spatially distributed and
mutualized CA-based RNGs.

Experiments in [6, 7] show that the transmission rate
needs to be taken into account with a rather high precision
(more than 16 bits). Taking into account this precision and
the need for random bitstreams as aperiodical as possible,
we use a 168-bit RNG adapted from [24] (a similar 63-bit
RNG will be depicted later in Figure 14), comparing at least
16 of its generated bits to pT so as to output 0 or 1 as B(pT).
To ensure spatial independence, all RNGs use different seeds
(set during initialization through on-chip registers).

4.3.2. Updating the Cell States. Figure 6 shows the simplified
architecture of a cell module. The current state of the cell is
read in the local B-RAM memory. It is compared to M so as
to send to the neighboring cells a signal that is equal to 1 if the
local cell is in the excited state. The current state is decreased
(if excited or refractory) by the “state decrease” module,
while a large AND gate outputs 1 if the state is neutral and if
there is at least one excited neighbor and if the Bernoulli law
generator currently outputs 1. A final multiplexer chooses
between M and the computed decreased state according to
the output of the AND gate. The resulting value is written in
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Table 1: Synthesis results for a single cell.

Single cell hardware resource utilization

Xilinx FPGA XC4VLX160ff1513-12

Number of Slice Flip Flops 24/135,168

Number of 4 input LUTs 53/135,168

Number of occupied Slices 44/67,584

Max Frequency 143 MHz

Table 2: Synthesis results for a block of cells.

32× 32 block hardware resource utilization

(16× 16 groups of 2× 2 cells)

Xilinx FPGA XC4VLX160ff1513-12

Number of Slice Flip Flops 25,397/135,168 (18.79%)

Number of 4 input LUTs 54,315/135,168 (40.18%)

Number of occupied Slices 39,728/67,584 (58.78%)

Frequency 100 MHz

the local B-RAM memory. It must be noticed that the storage
of the states in the B-RAM memories makes it impossible to
implement the cell as a simple finite state machine (unlike
the implementation in Section 6).

4.4. Performance

4.4.1. Implementation Results. The prototyping platform is
a PCI-based board (DN8000K10PCI) with three virtex-4
family FPGAs. For experimental results, the FPGA imple-
mentation of the model is only targeted towards the
XC4VLX160fff1513-12 device of this board. This FPGA has a
capacity of 135, 160 logic cells, and it contains 288 embedded
18 Kbit B-RAM memories. The design was synthesized,
placed, and routed with the Xilinx Foundation ISE 9.2i
tool suite. According to the reported synthesis results in
Table 1, a compact implementation was obtained since a
single cell requires 44 slices. It is important to point out
that these resources take into account the implementation
of the 168-bit RNG adapted from [24] which was efficiently
implemented as a LFSR using FPGA shift register LUT
primitives.

As summarized in Table 2, a block of 16 × 16 groups
of 4 cells only requires around 59% of the total logic
resources available in the FPGA device, taking advantage of
the optimization of the slices that are partially used by a
single cell. The size of the grid, 1024 cells, is limited by the
amount of embedded distributed B-RAM memories in the
FPGA. For this grid size, 256 B-RAM memories are used
since the 4-bit states (we consider here the case M < 16) for
the 4 adjacent cells of a group in a block are stored in the
same memory.

In order to achieve large-scale efficient simulations, larger
grid sizes are desirable, corresponding to interesting experi-
mental environments. Therefore, this block implementation
is used as the basic computational unit for each part of
the partitioned environment. Only 8 additional B-RAM

memories are required to store the excitation states of the
2 × (32 + 32) border cells in the border modules. Therefore,
264 out of the 288 B-RAM memories of the XC4VLX160
are used. Finally, the module that controls the computation
scheduling of all blocks and that accumulates the number of
excited cells found in each block uses less than 2% of the logic
resources, so that the whole architecture uses 60,5% of the
FPGA resources.

4.4.2. Fast Large-Scale Simulations. The embedded B-RAM
memories are able to store the states of 512 groups of 4 cells
(with state buffering). Therefore we implement a total size
of 512 × 1024 cells for the environmental layer. Despite this
large size, we still have to face border effects when studying
phase transitions in these environments. Therefore, we take
advantage of the methodology inspired by [25] so as to study
phase transitions only at the limit of the stable state (where
all cells are neutral): all cell states are initially set to neutral,
except the central cell of the central block, that is initially
excited.

We estimate here the simulation speedup of our FPGA
implementation with respect to the software simulation tool
developed by Fatès. These estimations should be considered
with great caution, since the software tool and the hardware
implementation are difficult to compare: this software is a
not-optimized version written in Java with jdk 1.6; moreover,
the hardware and software computations are not fully equiv-
alent (considering the way random numbers are generated).
Therefore, we consider that the computed speedup should
only be interpreted in terms of order of magnitude. It should
be noted that unlike the widely spread idea that Java is slow,
recent benchmarks show that Java 1.6 easily compete with
C, C#, or C++. Yet, it is not possible to extrapolate this
comparison to a software with cache optimization or similar
improvements, for which the performance improvements
might be great, but highly dependent on the application.
For a 512 × 1024 environmental layer, Java-based software
simulations on a microprocessor-based computer, Pentium
4.2 GHz, require 0.5 s per evolution step, resulting in very
long experiments (thousands of iterations are required for
each run, and thousands of runs are required to reach
significant statistical results for each value of pT). The
computation time mostly lies in both the generation of the
random values and the cache management, because of the
huge number of cells.

With the above FPGA implementation, each iteration
lasts 512 clock cycles (number of blocks), so that the
observed speedup is Ω(105). Beyond this order of magnitude
that might be reduced if an optimized software was designed,
the important result is that experiments that are obviously
not within our grasp with a software approach may be
easily performed on the FPGA (some tens of seconds
being sufficient to have a valuable statistical estimate of the
behavior of the system for a given set of parameters).

Finally, we mention the fact that many experiments
handle values of M lower than 7, and the most up-to-date
FPGAs (XC6VLX160) contain up to 720 embedded 36 Kbit
B-RAM memories (each B-RAM being able to store the states
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of a group of 3 × 4 cells). Therefore our implementation
might scale up to more than 4 300 000 cells (the logic
resources utilization rate remaining markedly below 100%).

5. The Particle Layer

When restricted to the environmental layer, the model of [6,
7] only takes advantage of a reaction-diffusion mechanism.
We are mostly interested in the decentralized gathering that
occurs when amoebae are subject to a chemotaxis process.
We now focus on these amoebae that are modeled by agents.

5.1. Discrete Model. The amoebae are supposed to be all
identical, and in constant number as no birth or death
process is considered. Several amoebae may be located at the
same cell. We arbitrarily allow only one amoeba to move
from a nonempty cell at each time step. We do not limit
the number of amoebae that can simultaneously move to a
given cell, but we arbitrarily choose to allow an amoeba to go
on a neighboring cell only if this cell contains less than two
amoebae [5–7]. Let us define a cell that contains no amoeba
as an empty cell, and a cell that contains strictly less than two
amoebae as a free cell. The movement rules state that, at each
time step, for each non-empty cell, one single amoeba may

(i) move to an adjacent free cell (rule (R4),

(ii) move to an adjacent excited free cell (rule (R5),

(iii) stay on the same cell (rule (R6).

To apply rule (R4) (noise rule), we consider that each
non-empty cell may send an amoeba to one of its neighbors
with probability pA, called the agitation rate. This neighbor
is randomly selected among all neighbors that are free.
Similarly, to apply rule (R5) (chemotaxis rule), amoebae
move to a cell that is randomly selected among the excited
free cells of the neighborhood. Rules (R4) and (R5) are made
mutually exclusive. Formally, for t ∈ IN and c ∈ L, let Ñ t

c ,

respectively, Ẽt
c, be the set of free cells, respectively excited

free cells, in the neighborhood of c. For a finite set S, we
denote by R(S) the operation of selecting one element in
S with uniform probability, with the convention R(∅) =
∅. R randomly selects a neighbor for moving. We use a
Bernoulli function to impose noise on the moves of an
amoeba with probability pA. To represent the move of one
amoeba from a non-empty cell c to another cell Δt

c, with the
convention Δt

c = ∅ if no move occurs, we have

if B
(

pA
) = 1, then Δt

c =R
(

Ñ t
c

)

, (R4)

else if σtc = 0, then Δt
c =R

(

Ẽt
c

)

, (R5)

else Δt
c = ∅. (R6)

5.2. Coupling of Environment and Particles. Amoebae act on
the environment by emitting excitations that propagate to
neighboring cells. We do not take into account the number
of amoebae contained in each cell; a non-empty neutral cell
may become excited with probability pE called the emission
rate. Since this rule may interfere with rule (R1), we combine
both rules into rule (R1’):

σt+1
c =M if B

(

pT
) = 1, σtc = 0,

(∣
∣Et

c

∣
∣ > 0 or

(

c non-empty and B
(

pE
) = 1

))

.
(R1’)

5.3. Properties. Similar regimes may be observed as in
Section 3.2: the non-coherent regime (pT < 1), the extinc-
tion regime (pT less than a critical value that depends on
M), and the static regime, that is obtained in the case of
systematic transmission of waves (pT = 1) and if amoebae
constantly initiate wave fronts (pE = 1). In the static regime,
excitation fronts collide systematically, so that amoebae are
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not attracted by each other (no move can occur, since no
information may be exchanged between different amoebae).

The most promising behavior, the self-organizing regime,
is observed when the transmission is perfect and when
the emission rate is less than 1 (typically pE = 0.1)
and for various values of agitation rate. In this regime, a
gathering phenomenon shows a progressive merging of the
amoebae from small clusters to large clusters, after a few
tens to a few thousands of iterations (depending on the
environment). The complexity of this hierarchical dynamics
results from successive emerging behaviors: formation of
waves, formation of first groups, extension and shrinking of
the regions according to their respective size, and captures of
small clusters by a few clusters. Among interesting properties
observed in the system, Fatès has shown that gathering could
also occur in the presence of obstacles as the virtual amoebae
could take advantage of narrow corridors to find their way to
an attracting cluster [6, 7].

Figure 7 illustrates the resulting aggregation and the
propagation of waves (simulated by the software imple-
mentation developed by Fatès) in a “perfect” environment.
Figure 8 illustrates the same phenomenon in an environment
with both obstacles and noise. Purple pixels are the amoebae,
green pixels are obstacles, excited and refractory cells are
drawn with shaded orange colors, and neutral cells are white.
The behavior of the model satisfactorily reproduces the
aggregation properties of Dictyostelium discoideum, while
fulfilling all required constraints. Moreover, the decentral-
ized gathering appears as robust to noise and irregular
topologies. For further details and illustrations about the
model dynamics and its self-organizing regime, see [6, 7].

6. Hardware Implementation of the Model

Following the study of the dynamical behavior of the model
in [6, 7], we also set pT = 1 since aggregation only occurs
with perfect transmission. From now on, we arbitrarily use
the 8-neighborhood, and we set the excitation level to M = 3.

6.1. Cell and Amoebae Implementation. For implementation
purposes, we define a node as a cell together with the
amoebae it contains. The moves of amoebae may be simply
described as the evolution of the “population” of each node
as a part of its internal state. Figure 9 shows the I/O of the
node module.

6.1.1. State of a Cell. Considering the environmental layer
only, the state of each cell belongs to {0, 1, 2, 3}, so that we
code it with two bits (s1, s0). This state evolves according
to rules (R1’), (R2), and (R3). These rules may be expressed
as the state machine depicted in Figure 10. Signal pE stands
for B(pE). Input not empty codes for the presence of at least
one amoeba in the node (it is an internal signal generated by
the module that codes the population of the node).

6.1.2. Population of a Node. Considering the amoebae, they
are coded as the number of amoebae that are located in the
cell that corresponds to the local node. Amoebae may move
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Figure 7: Aggregation of amoebae (purple) and propagation of
waves (shaded orange) in a “perfect” environment (steps 0, 1, 2, 4,
10, 15, 20, and 40).

towards free cells only. Free cells contain at most one amoeba.
Since up to 8 amoebae may simultaneously move towards a
free cell, each node contains at most 9 amoebae. Instead of
coding the population size (using 4 bits and counting at each
time the number of arriving amoebae), we use 9 flip-flops:
though less compact in terms of number representation, this
solution does not require coding and counting resources, so
that it uses significantly less logic cells. The first flip-flop
stores “1” if there is at least one amoeba. Then the 8 other
flip-flops directly receive arriving amoebae. Each time an
amoeba leaves the node, one of the flip-flops storing “1” is
reset to “0” (the reset command is transmitted among flip-
flops until finding a “1”). Similarly, if amoeba arrivals occur
when the cell is empty, then the first flip-flop is set to “1” and
one of the other flip-flops is reset to “0”. Figure 11 depicts the
resulting architecture to store the node population. The node
indicates whether it is free or not with signal free out.

6.1.3. Amoeba Moves. Figure 12 shows how the moves of the
amoebae are implemented (rules (R4), (R5), (R6)). Signal pA
stands for B(pA). It controls 8 multiplexers (one for each
neighbor) that indicate whether the corresponding neighbor
is free or excited and free. Moreover signal neutral is used
in the second case (R5). It is internal and it codes for σtc = 0,
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Figure 8: Aggregation of amoebae (purple) with obstacles (green)
and noise (steps 0, 1, 2, 4, 10, 20, 40, and 60).

that is, (s1, s0) = (0, 0). In the same way, if signal not empty
is “0” then all choices are set to “0” because no amoeba may
move if the cell is empty. Then the Select module randomly
selects only one choice among possibly several. Finally an
OR gate determines if an amoeba will move while the bus
am towards indicates where it will move.

The random selection of a signal set to “1” among
possibly several is complex. In our implementation, we use
a cyclic priority module, where the main priority is given to
a signal that is randomly specified by three bits provided by a
linear feedback shift register (LFSR), as shown in Figure 13.
This implementation suffers the following drawbacks: (1)
it is not uniformly random, and (2) though it is fair, it
introduces some systematic bias in the selection of close
signals because of the cyclic priority. Nevertheless, first
experiments indicate that these drawbacks do not modify the
overall behavior of the model.

6.2. Random Processes. The definition of the model includes
several random aspects: B(pT), B(pA), B(pE), R(Ñ t

c),
R(Ẽt

c). The software implementation uses the same RNG
for all nodes and for all Bernoulli laws (see Section 4.3 for
a discussion about the required RNG quality). But in this
parallel hardware implementation, all streams of stochastic

bits must be generated by separate modules, in each node.
Since we consider the case, where pT = 1, and since our
random selection module (used for both R(Ñ t

c) and R(Ẽt
c))

just needs a single LFSR, we finally have to implement 3 X ×
Y RNGs. As for the environmental layer, the cost in space for
all random aspects of the model is huge.

We choose again to adapt the LFSR-based RNGs of [24].
Experiments in [6, 7] show that both emission and agitation
rates do not need a high precision. Therefore we use two
63-bit RNGs adapted from [24], comparing only 8 of their
generated bits to pE and pA (coded on 8 bits). All RNGs use
different seeds (set serially during initialization). Figure 14
depicts one of the used RNGs (to choose other irregularly
extracted bits, one has just to use other arrangements of
SRAMs and flip-flops, and pick the 8 signals at different
places).

The selection module uses a 3-bit random counter to
define the main priority choice. Since all 3 bits must be
simultaneously accessed, 3 flip-flops are required. Instead of
only using 3 bits for the random counter (resulting in an
8 cycle periodicity), we use here an adapted version of the
15-bit random counter of [24] that only needs 3 logic cells
to strongly increase the periodicity without requiring more
resources.

6.3. General Architecture. Figure 15 describes the general
architecture of our implementation. It consists of a grid of
40×30 identical nodes. Border nodes receive constant inputs
from their nonexisting neighbors (exc in, free in, and
cell in are set to “0” for these nodes).

6.3.1. Initialization. In this implementation, the user defines
the desired average number of amoebae. Then the induced
ratio (number of amoebae/number of cells) is sent at run
time to all nodes, that use it in combination with their 63-
bit RNG (threshold compared with the 8 extracted bits), so
as to decide whether they initially contain an amoeba or not.
This initialization scheme avoids the resource consumption
of the large demultiplexer that is required when an external
memory defines the exact initial positions of the desired
amoebae (this second version has been synthetized but not
validated onboard).

6.3.2. Output. In the current version (validated on board)
the states of all nodes are sequentially sent as an output to the
host PC though the Master bus. This large output is useful
for debug, but it requires a significant amount of resources,
and it takes time. In the final version (not yet validated
onboard), we take advantage of the quantitative criterion
BBR (bounding box ratio) that is used in the experimental
study of [6, 7] for the evaluation of the aggregation: minimal
relative size of an array of nodes that contains all amoebae.
Therefore, we implement an OR gate for each row and for
each column of nodes, and we compute on-chip the resulting
BBR, that is sent to the host PC in real time (i.e., during each
clock cycle, the BBR is computed while all node states are
updated).
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Table 3: Synthesis results for a 40×30 grid.

40× 30 grid hardware resource utilization

Xilinx FPGA XC4VLX160ff1513-12

Number of Slice Flip Flops 31,642/135,168 (23.4%)

Number of 4 input LUTs 113,458/135,168 (83.94%)

Number of occupied Slices 61,727/67,584 (91.33%)

Frequency 130 MHz

6.4. Implementation Results

6.4.1. Resource Consumption. The prototyping platform is
the same as in Section 4.4. Each node module requires 57
slices (21 for the different RNGs). Table 3 gives the synthesis
results for an environment of 40× 30 cells, taking advantage
of resource optimization. Among the 61,727 used slices, only
794 ones implement the control and I/O handling (though
we output all node states in the current version), so that
the whole architecture is implemented on 91 of the FPGA
resources.

6.4.2. Speedup. Software implementations on a micro-
processor-based computer, Pentium 4.2 GHz, require 170 μs
per evolution step for a 40× 30 grid. As for the simulation of
the environment alone, the main bottleneck for the software
computation time lies in the random number generation
(no cache management issue here). The maximum clock
frequency of the proposed hardware is 130 MHz. Thus, the
implementation on the Virtex-4 provides a speed factor up
to 22000×.

Again, it must be pointed out that the used software
is not optimized and has been written in Java, and that
it does not perform exactly the same computations as
the hardware architecture (random number generation,
handling of priorities among neighbouring cells). Therefore,
we consider that these results only indicate a Ω(104) order of
magnitude for the speedup.

6.4.3. Analysis. Depending on the parameter values, the size
of the environment and the obstacles, aggregation occurs
in the experiments in [6, 7] after up to 20,000 iterations.
Therefore the great speedup we obtain becomes particularly
interesting if we are able to implement much larger grids.

Such improvements strongly depend on the analysis of
the limits of the implementation depicted in this work
(which was the main goal of the hardware design of the whole
model with amoebae, as explained before). This analysis
highlights three major sources of area consumption: coding
and handling of populations of amoebae (28%), priority
handling (23%), and above all random number generators
(37%). Moreover, the implementation of the environment
alone shows the great improvements that may be obtained
thanks to a block-synchronous approach. But the described
implementation would require that we store 11 bits per node
(population + state) in the B-RAMs, and most of all, the
exchanges of amoebae between nodes at the border could not
be performed with sequentially handled blocks (since this
handling results from a bidirectional information exchange
through the cell in and am towards signals). This is why
the current description of the model does not easily fit a
block-synchronous version with amoebae.
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All these issues have led us to explore the definition
of a new model for this decentralized gathering process.
This new approach is fully based on cellular automata,
including the RNGs. Though many theoretical and hardware
aspects still need to be studied, it appears to be able to
reduce the implementation area drastically: populations are
directly handled through the cell state, resulting in a more
likely block-synchronous implementation (though a fully
parallel implementation corresponds more to the idea of
decentralized gathering we explore), and random number
resources are spatially mutualized. This is the main current
research subject within the Amybia project.

7. Towards Decentralized Gathering of
Computational Resources

The context of this work is the definition of innovative
schemes of decentralized and massively distributed comput-
ing. Recent trends of integrated circuit design investigate
various types of alternative computing devices based on
multiple generic computing units, possibly distributed in an
unknown and irregular way [26]. As stated in the introduc-
tion, our work aims at answering one of the problems raised
by such new computing paradigms: how to gather enough
computing resources to solve a given task. Though this paper
describes an upstream work that does not yet pretend to
define precisely how the gathering process will be applied to
a real system, we may exhibit two possible contexts of use for
such decentralized gathering.

7.1. Robot Swarms. Considering a swarm of simple robots
that evolve in an environment with very restricted commu-
nication possibilities (due to obstacles for example), one may
consider a task that alternates exploration and cooperation
steps. Exploration is performed by robots that behave as
autonomous agents, while cooperation is required when a
“target” has been found. Robots that find targets try to
attract other robots through decentralized gathering, until
a sufficient number of gathered agents are able to perform
the task associated to the target. Then robots start again their
individual exploration.

As a first experimental setup, we have already
implemented our decentralized gathering algorithm with
Alice micro-robots (see a demo on http://www.loria.fr/
∼fates/Amybia/project.html). This application shows the
great robustness of our algorithm, since these old robots
have only two sensors to detect the light-simulated waves
of the environment, and their motions are heterogeneous
and almost unpredictable, due to the faulty control of their
wheels. In such a context, the study of the properties of our
decentralized gathering algorithm is essential, and it may
take advantage of rapid simulations on FPGA; whereas an
embedded implementation of the whole algorithm has no
meaning, since each robot is an agent.

7.2. Task Assignment. Decentralized gathering may also be
useful to handle task assignment in a massively distributed
and heterogeneous computing device. In such a context,

“moving” agents might correspond to transmitting the
task assignments between units when using computational
resources with fixed locations. In such devices, commu-
nication costs depend on the distance between the units,
so that the communicating threads should be assigned to
neighboring resources if possible. In a multi-task context,
when a thread gives birth to other threads, they may be
assigned to available computational resources that are not
located in the neighborhood. When some resources become
idle after having completed some thread, a reassignment
process could be useful to gather the resources that handle
the threads associated to the same task. A permanent
decentralized gathering process might be useful for that if
the resources are irregularly distributed and possibly faulty,
provided that its cost is negligible with respect to the threads.
Other constraints must be studied, such as the cost of context
transfer between computational units, or the extension of
decentralized gathering to multiple sets of agents to handle
multiple tasks. Our preliminary implementation work does
not conclude yet about the feasibility of a decentralized
gathering process with a negligible cost.

8. Conclusion and Future Work

In this paper, a bioinspired model to solve the decentral-
ized gathering problem is shortly described. It is based
on the aggregation properties of the cellular slime mold
Dictyostelium discoideum that may live as a monocellular
organism, and that is able to behave as a multicellular
organism when needed. We model the environment and
the individual amoebae by means of cellular automata
and reactive agents (simple computational abilities and no
memory).

We have designed a hardware parallel implementation of
the environment alone, that helps us perform rapid large-
scale simulations to study the properties of our model, such
as its robustness to noise and obstacles. The implementation
results are highly satisfactory in terms of computation speed
and environment size. This implementation is currently used
so as to perform rapid simulations of phase transitions
within a close-to-the-stable-state experimental framework.

Focusing on the whole model (environment and amoe-
bae), we have designed a fully parallel hardware implemen-
tation so as to study its ability to provide a massively dis-
tributed computational model for decentralized gathering.
Despite a great speedup factor, our implementation work
points out two main limitations. In terms of embeddability,
the area cost of the stochastic aspects of the model is
important. Therefore, our theoretical study should evaluate
the robustness of our model to low-quality random streams
that may also be spatially correlated. In terms of usefulness
for large-scale efficient simulations, the grid size we are able
to handle does not correspond to interesting experimental
environments, and the corresponding software computation
time does not justify the use of fast FPGA-based simulations.
To significantly increase the grid sizes handled by the FPGA,
we currently explore solutions that are based on a block-
synchronous approach and a new description of the model
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that is fully based on cellular automata. This CA-based
approach does not only intend to insert the behaviour of
the agents within the state of each cell, but it also applies to
the generation of random numbers. We currently consider
the definition and design of spatially mutualized CA-based
RNGs, that ensure both low-area implementations and a
satisfactory spatial independence.
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1. Introduction

Regular expression matching (REM) has many applications
ranging from text processing to packet filtering. In the
narrow sense, each regular expression defines a regular
language over the alphabet of input characters. A regular
language applies three basic operators on the alphabet: con-
catenation (·), union (|), and Kleene closure (∗), which allow
the construction of complex expressions. There are other
common operators that also conform to the regular language
construct, such as character classes ([· · · ]), optionality (?),
and constrained repetitions ({a,}, {, b}, {a, b}). All of these
operators can be realized by proper arrangements of the three
basic ones.

Improving large-scale REM performance has been a
research focus in the recent years [1–11]. Since regular
languages can be necessarily and sufficiently accepted by
finite state automata, a regular expression matching engine
(REME) supporting concatenation, union, closure, repetition,
and optionality can always be implemented as either a non-
deterministic finite automaton (RE-NFA) or a deterministic

finite automaton (RE-DFA). Figure 1 compares side by side
the architectures of the two types of automata.

In an RE-NFA approach [2, 4, 7–10], individual regular
expressions and their character matching states are processed
in parallel with one another. As a result, more than one state
in an RE-NFA can be active at any time. Optimizations such
as input/output pipelining [4], common-prefix extraction
[2, 4], multicharacter input [9, 10], and centralized character
decoding [2, 12] can be applied to improve throughput and
reduce resource requirements of the overall design.

In an RE-DFA approach, several regular expressions
are grouped (union’d) into a DFA by expanding different
combinations of active states into additional combined states.
In principle, only one combined state in an RE-DFA is active
at any time. Various techniques [5, 6, 13, 14] are then applied
to improve memory access efficiency and to reduce the total
number of states, which usually suffers from quadratic to
exponential explosion [11].

Due to the matching power of regular expressions and the
complexity of the strings being matched, the REM process
can be the slowest bottleneck of a system. To match a regular
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Figure 1: Basic architectures of RE-NFA (a) and RE-DFA (b). Our work focuses on regular expression matching using the RE-NFA
architecture.

expression of length n over an alphabet of size Σ can take
up to O(n2) time to process each character (for RE-NFA) or
O(Σn) memory space to store the state transition table (for
RE-DFA) [11]. Furthermore, to match K concurrent regular
expressions, the overall throughput could be K times slower
(for RE-NFA) or take O(ΣK ) more memory space (for RE-
DFA) in the worst case.

Modern FPGAs offer large amount of reconfigurable
logic (LUTs) and on-chip memory (BRAM). We developed
a compact and high-performance RE-NFA architecture
for REM which utilizes both on-chip logic and memory
resources on modern FPGAs [10]. In this study, we focus
on the automatic parsing, translation, and construction of
regular expressions matching engine (REME) using our RE-
NFA architecture for fully automated FPGA implementation.
More specifically, we develop an REME construction soft-
ware with the following components

(1) Automatic conversion from regular expression parse
tree [15] to a uniform and modular RE-NFA struc-
ture.

(2) Automatic generation of RTL code in VHDL for each
RE-NFA. The resulting circuit is spatially stacked
a configurable number of times for multicharacter
matching.

(3) Allocation of centralized character classification in
BRAM for up to 256 REMEs using a simple heuris-
tics.

(4) Automatic construction of up to 16 pipelines in a
two-dimensional structure.

(5) A benchmark generator of regular expressions with
configurable pattern complexity parameters (state
count, state fan-in, loop-back, and feed-forward dis-
tances).

The rest of this paper is organized as follows. The back-
ground and prior work of RE-NFA on FPGA are discussed
in Section 2. An overview of our software toolchain is
given in Section 3. Section 4 describes REME construc-
tion, while Section 5 covers architectural optimization.

Section 6 introduces an REME benchmark generator and
uses it to evaluate the performance of the REME con-
struction and optimization software. Section 7 concludes the
paper.

2. Background and Related Work

Hardware implementation of regular expression matching
(REM) was first studied by Floyd and Ullman [15], where
an n-state RE-NFA is translated into integrated circuits using
no more than O(n) circuit area. Sidhu and Prasanna [8] later
proposed an algorithm to implement REM on FPGA in a
similar RE-NFA architecture, which has been used by most
other RE-NFA implementations on FPGAs [2, 4, 7, 9]. Yang
et al. [10] adopted a different approach to translate arbitrary
regular expressions to corresponding RE-NFAs with a more
modular and uniform circuit structure.

Automatic REME construction on FPGAs was first
proposed in [4] using JHDL for both regular expression
parsing and circuit generation. In particular, the (J)HDL
construction approach used in [4] is in contrast to the
self-configuration approach done by [8]. Reference [4]
also considered large-scale REME construction, where the
character input is broadcasted globally to all states in a
tree-structured pipeline. Automatic REME construction in
VHDL was proposed in [2, 7]. In [2], the regular expression
was first tokenized and parsed into a hierarchy of basic
NFA blocks, then constructed in VHDL using a bottom-up
scheme. In [7], a set of scripts was used to compile regular
expressions into op-codes, to convert op-codes into NFA,
and to construct the NFA circuits in VHDL.

A multi-character decoder was proposed in [16] to
improve pattern matching throughput. While the technique
was claimed to be applicable to REM, only the construc-
tion of a fixed-string matching circuit was explained. The
paper, however, did not describe an automatic mechanism
to translate any general pattern into a multi-character
matching circuit. An algorithm that extends any single-
character matching REME temporally into a multi-character
matching REME was proposed in [9]. In contrast, the
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Notations:
n [value] Content value of node n.
n [left|right|child] Left, right, or only child of node n.
s [next] Set of next-state transitions of state s.
s[char] Set of matching characters of state s.
Macros:
s← CREATE STATE (T):

Create a new state s in the state transition table
T.

p ← CREATE PSEAUDO():
Create a special pseudo-state p for later use.

ADD PSEUDO NEXT (p, S):
For every state s ∈ S, add the state set p [next]
to s [next]. Pseudo-state p is deleted afterward.

PROCEDURE Sout ⇐RE2NFA (nroot, Spre, TNFA)
nroot Root node of the parse (sub-)tree.
Spre Set of immediate previous states.
Sout Set of states transitioning directly outside of nroot.
TNFA The resulting state transition table.

BEGIN
ncur ← nroot;
whilencur /=null

ifncur [value] = OP CONCAT

Spre ←RE2NFA (ncur [left], Spre,TNFA);

ncur ← ncur [right];
else if ncur [value] = OP UNION

SL ← RE2NFA (ncur [left], Spre,TNFA);
SR ← RE2NFA(ncur [right], Spre,TNFA);

return SL ∪ SR;
else if ncur [value] = OP CLOSURE

p ← CREATE PSEUO();
Stmp ← Spre ∪ p;
SC ← RE2NFA (ncur [child], Stmp,TNFA);
ADD PSEUDO NEXT(p, SC);
return SC ∪ Spre;

else // ncur = leaf node
snew ← CREATE STATE(TNFA);
snew [char]← ncur [value];
foreachs inSpre

// addε-transitions
s [next]← s [next]∪snew;

end foreach

return snew;
end if

end while

// error: ncur [right] cannot benull
END

Algorithm 1: Modified McNaughton-Yamada construction (MMY) converting a regular expression parse-tree to an RE-NFA with a
modular and uniform structure.

uniform structure of the RE-NFA in [10] allows its circuit
to be stacked spatially and automatically to process multiple
characters per clock cycle.

3. Overview of the Software Toolchain

The main purpose of our software toolchain is to automate
the construction and optimization of large-scale RE-NFA
circuits on FPGA. The toolchain allows us to generate the

whole RTL circuit matching thousands of regular expressions
in orders of seconds using a single command. Such a
toolchain can help us not only to avoid the tedious and
error-prone circuit construction, but also to generate a
large-scale regular expression matching engine (REME) for
implementation in a small amount of time.

Figure 2 gives an overview of the toolchain. The toolchain
consists of two main parts: REME Construction and Architec-
tural Optimization, briefly described as follows:
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Figure 2: Overview of our toolchain for large-scale REME con-
struction.

(1) REME Construction: converts each regular expression
into an RE-NFA circuit and collects unique character
classes in BRAM across all regular expressions.

(2) Architectural Optimization: applies spatial stacking to
the individual RE-NFA circuits; marshals RE-NFAs
into a 2D staged pipeline to form the final circuit.

In practice, the two paths of REME Construction in Figure 2
are written as a single module interleaving the two tasks for
each input regular expression. Conceptually, however, they
are independent of each other and can be executed in parallel.
In contrast, the two tasks in Architectural Optimization,
spatial stacking, and pipeline marshaling must be performed
in serial. The details of the REME Construction part are
presented in Section 4, while those of the Architectural
Optimization part are in Section 5.

In addition to the basic operators of concatenation,
union (|) and Kleene closure (∗) used to define a regular
language, our software also handles most frequently used
operators by the Snort IDS [7] such as the repetition (+),
optionality (?), constrained repetition ({a,b}), and any
character class ([· · · ]). Table 1 lists the operators supported
by our software. The syntax and semantics of these operators
are compatible with the Perl-Compatible Regular Expression
[17]. For example, the expression “[0 − 9]{1, 3}(\ · [0 −
9]{1, 3}){3}[̂ 0 − 9]?” specifies any IP address followed by
an optional nonnumerical characters.

4. Automatic REME Construction

The REME Construction is performed in three steps: (1)
parse the regular expressions into tree structures, (2) use
the modified McNaughton-Yamada (MMY) construction
(Figure 4, Algorithm 1) to construct the RE-NFAs, (3) map
the RE-NFAs into structural VHDL suitable for FPGA
implementation.

4.1. From Regular Expression to Parse Tree. The first step
is to represent each regular expression as a corresponding
parse tree using a standard compiler technique. This step

|

f n

\x3F

\x2F

s

∗

s i

–

–

–

–

–

–

[  \r\n]∧

Figure 3: Parse-tree representation of “\ x2F(fn|s)\x3F[̂ \r\n]
∗si.”

c

(a) [c]

r1 r2

(b) r1 · r2

r1

r2

(c) r1 | r2

r3 ∗

(d) r3∗

Figure 4: Graphical representation of the modified McNaughton-
Yamada (MMY) construction. Note that unlike the original con-
struction, no ε-transition-only node is introduced in rules (c)
and (d), where the dashed ellipses are not part of the current
construction.

Table 1: REM operators support by our software.

Op. Name Example Description

- Concatenation q1q2 q2 right after q1

| Union q1|q2 Either q1 or q2

∗ Kleene closure q∗ q zero or more times

+ Repetition q+ q one or more times

? Optionality q? q zero or one times

m,n Constrained rep. q{m,n} q in m to n times

[· · · ] Character class [a–c] Either a, b or c

[̂ · · · ] Inv. char. class [̂ \r\n] Neither \r nor \n
̂ Match beginning q̂ q at beginning of input

$ Match ending q$ q at ending of input

is the same as that described in [15]. Figure 3 shows
a parse-tree representation of a regular expression “\
x2f(fn|s)\x3F[̂ \r\n]∗si.” This is simplified for the value
of illustration from an actual Snort [18] pattern. In particu-
lar, a union of any number of single characters is parsed as
a single character class (e.g., the [̂ \r\n] in Figure 3), which
can be matched very efficiently in our REM architecture [10].

The resulting parse tree always consists of three types
of internal nodes, op concat, op union, and op closure,
and a number of leaf nodes equal to the number of individual
(and possibly nonunique) character classes in the regular
expression.
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Figure 5: A modular NFA for “\ x2F(fn|s)\x3F[̂ \r\n]∗si”
constructed using the MMY rules specified in Figure 4.

4.2. From Regular Expression Parse Tree to NFA. Unlike previ-
ous work in [15] and later in [8] which use the McNaughton-
Yamada (MNY) construction to convert regular expressions
into RE-NFAs, we proposed the modified McNaughton-
Yamada (MMY) construction in [10] to perform the conver-
sion. Figure 4 gives a graphical description of the modified
construction rules.

A formal definition of the construction mechanism
is given in Algorithm 1. The algorithm takes the regular
expression parse tree generated from the previous subsection
as input. It is in general a recursive algorithm, where
the subtrees of each internal node is processed recursively
before the operator of the current node is handled. The
only exception is the right child of an op concat node,
where for performance reason the tail recursion is performed
iteratively. This avoids excessive recursion for a long sequence
of op concat operators (which is predominantly the case in
real-world patterns).

Two special entities are used in Algorithm 1 for the MMY
construction. The first is the set of immediate previous states
Spre, which contains the source states of all fan-in transitions
to the part of RE-NFA currently under construction. This
entity corresponds to the dashed ellipses on the left of Figures
4(c) and 4(d). It allows a long sequence of ε-transitions in
the original MNY construction to be collapsed into a single
ε-transition in the MMY construction.

The second entity is the pseudostate p, which works
as a placeholder for the source states of an op closure’s
feedback loop before the op closure is converted to be part
of the RE-NFA. This temporary placeholder is needed to
break the circular dependence of an op closure construc-
tion on the resulting fan-out states of the very op closure
construction.

The MMY construction algorithm produces an NFA
extremely modular and easy to map to HDL codes. For
example, using the modified construction algorithm, the reg-
ular expression “\ x2F(fn|s)\x3F[̂ \r\n]∗si” is converted
into a modular NFA with a uniform structure (Figure 5).
This conversion is arguably the most complex part of the
construction process, taking roughly 350 lines of C code for
the automation.

4.3. From RE-NFA to VHDL. To translate the RE-NFA (like
Figure 5) into VHDL, each pair of nodes inside a lightly

shaded ellipse is mapped to an entity statebit with one
parameter: the number of input ports, determined by the
number of “previous states” that immediately transition to
the current state. Inside the entity statebit, all inputs
aggregate to a single OR gate, followed by a character
matching via logic AND and a state value register. The single-
bit output value of the register is connected to the inputs of
the immediate “next states.”

The REM circuit for Figure 5 is shown in Figure 6. On
FPGA devices with 4-input LUTs, a k-input OR followed by a
2-input AND can be efficiently implemented on a single LUT
if k ≤ 3, or on a single slice of 2 LUTs if 4 ≤ k ≤ 7. The
mapping takes only about 300 lines of C code to convert any
RE-NFA to its RTL structural VHDL description.

4.4. BRAM-Based Character Classification. Our REM archi-
tecture in [10] used a 256-bit column of BRAM to match
any character class of 8-bit characters. Each bit of the column
represents the inclusion of an 8-bit character in the character
set. The value of every input characters is used as a row
index to BRAM to retrieve the matching result (true|false)
of that character against all character classes (one for each
column). Each single-bit result is routed from BRAM to its
corresponding correct entity statebit as the input to the
AND gate. As a result, character classification of an n-state RE-
NFA can be implemented on a block memory (BRAM) of no
more than 256× n bits.

Furthermore, if two states (either within the same regular
expression or across different regular expressions) match the
same character class, then they can share the same BRAM
column output. We use a two-phase procedure to aggregate
the matching outputs of identical character classes.

(i) In phase 1, the software collects the set of unique
character classes from a regular expression. Each
unique character class is associated with a floating-
point sorting key:

(a) if the character class appears only once in
the regular expression, then the sorting key
is its (only) position index within the regular
expression;

(b) if the charactter class appears multiple times in
the regular expression, then the sorting key is
the average of all its position indexes within the
regular expression;

(ii) In phase 2, the unique character classes are sorted
according to their sorting keys and instantiated as
BRAM columns. Each BRAM column is also associ-
ated with the identifier of the instantiated character
class. The output of each BRAM column is then
connected to the character matching inputs with the
same identifier.

The two-phase procedure allows our software to use the
minimum number of BRAM columns for character class
matching. It also minimizes routing distance by exploiting
the natural ordering (the sorting keys) of the character classes
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Figure 7: The construction of a 2-character matching circuit.

within the regular expressions. The aggregation of character
classes and their distribution to the RE-NFA states take∼250
lines of C code.

5. Automated Architectural Optimizations

After constructing REMEs individually for all regular expres-
sions, the software applies two architectural optimiza-
tions [10]. (1) The REMEs are stacked to form multi-
character matching (MCM) circuits which trade off mini-
mum resource usage for higher performance. (2) The MCM
REMEs are grouped into clusters of 16 and marshaled onto a
two-dimensional staged pipeline structure.

5.1. Circuit Stacking for Multicharacter Matching. In contrast
to the NFA-level temporal extension used in [9], we adopted
a circuit-level spatial stacking to construct multi-character
matching (MCM) REMEs. Figure 6 shows the basic con-
struction concept of a 2-character matching circuit from two
copies of a single-character matching circuit. An algorithm
for this spatial stacking approach and the proof of correctness
were given in [10]. Benefits of the spatial stacking approach
include the following.

Simplicity. The time complexity to construct an n-state, m-
character matching REME using spatial stacking is O(n×m)
[10]. In contrast, the time complexity of temporal extension
is O(n3 log m) [9].

Flexibility. The spatial stacking approach can generate an
MCM REME of any natural number m, while the temporal
extension approach only generates RE-NFAs with m = 2i.

In practice, n is usually a few tens while m between 2 to
8, making the spatial stacking approach hundreds of times
faster than the temporal extension approach. As discussed in
Section 6.2, our software can construct thousands of MCM
REMEs in ∼10 seconds. Also, the optimal value of m with
respect to performance efficiency (defined in [10]) is usually
not a power of 2. For example, the REMEs from Snort rules
achieve optimal performance efficiency at m = 6 [10].

The program code to construct any m-character match-
ing REME using spatial stacking is simple. Let C be a
single-character matching circuit. The program first makes
m copies of C, {C(1), . . . ,C(m)}, each receiving one of the
m consecutive input characters. Then, instead of routing
the state outputs back to the state inputs of the same
circuit, it removes the state registers of C(k) and connects the
(nonregistered) state outputs of C(k) to the state inputs of
C(k+1) for k = 1, . . . ,m−1. Finally, it connects the (registered)
state outputs of C(m) to the state inputs of C(1). The result is
an m-character matching circuit for C.

In general, to construct an (l + m)-character matching
circuit Cl+m, we perform the following transformations on
every state i ∈ {1, 2, . . . ,n− 1} of Cl and Cm:

(1) remove state register i of Cl; forward the AND gate
output to its state output,

(2) disconnect state output i of Cl from the state inputs of
Cl, and reconnect it to the corresponding state inputs
of Cm,

(3) disconnect state output i of Cm from the state inputs
of Cl, and reconnect it to the corresponding state
inputs of Cl,

(4) the combined circuit receives (l + m) character
matching signals per cycle. The first l signals are sent
to the Cl part; the last m signals are sent to the Cp

part.

5.2. REME Clustering for Staged Pipelining. With a straight-
forward implementation, the BRAM-based character clas-
sifier (Section 4.4) uses 256 bits per state. To implement
thousands of REMEs with tens of thousands states, the
character classifier would require tens of megabits of BRAM
and become the resource bottleneck on FPGA. A second
issue in implementing large number of REMEs on FPGA
is signal routing. The character matching results from the
centralized character classifier in BRAM must be distributed
to all REMEs, while the pattern matching result from every
REME must be collected and aggregated to the final output.
The potentially long routing makes the circuit hard to scale
to large number of REMEs.

A 2D staged pipeline design was proposed in [10] to solve
both problems. Figure 8 shows the basic structure of such
a staged pipeline. Each stage may contain a cluster of up to
16 REMEs. The horizontal arrows between the pipelines are
the signal paths of the input characters. The vertical arrows
between pipeline stages are the character matching signals
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and the pattern matching results. A priority encoder is used
at every stage and pipeline to aggregate the pattern matching
results.

Marshaling REMEs into this staged pipeline structure,
however, is painstaking and error-prone when done manu-
ally. This is mainly due to the buffering and distribution of
the character matching signals (the thick vertical arrows in
Figure 8). Additionally, different REME grouping can result
in different resource usage and routing complexity and give
rise to performance variation among REME clusters. To solve
these problems, our software use the following heuristic to
marshal k REMEs with total N states into p pipelines.

(1) First calculate the average number of states per
pipeline, v = N/p.

(2) Add any of the k REMEs into a new pipeline.
Compute the compatibility between the resulting
(single-REME) pipeline and each of the rest k − 1
REMEs. The compatibility between a pipeline and an
REME is defined as the number identical character
classes in both divided by the number of unique
character classes in the REME.

(3) Add the most compatible REME to the pipeline. Re-
compute the compatibility of all remaining REMEs.

(4) Repeat step 3 until the total number of states in the
pipeline is greater than v−σ , where σ 
 v is a design
constant.

(5) Go back to step 2 to work on a new pipeline until all
REMEs are exhausted.

After marshaling the REMEs into different pipelines, the
REMEs within each pipeline are marshaled into different
stages in a similar manner. When adding an REME to a
pipeline, a function is called to compare each of the character
class in the REME to the character classes previously
collected in BRAM. If an identical character class is found,
then proper connections are made from the BRAM output
to the inputs of the respective states.

The time complexity of this procedure is O(k × N × w),
where w is the number of distinct character classes among the
N states in the k REMEs. The space complexity is O(256×w).
In real applications, w grows almost linearly with respect to
N for small N , but quickly flats out and grows much slower
than O(log N) when N is moderately large (a few hundred).

Matching outputs from all REMEs are prioritized. Cur-
rently, the software assigns higher priority to lower-indexed
pipelines and stages, although the priority can be pro-
grammed in any other way with little additional complexity.

6. Experimental Results

6.1. Design of Benchmark Generator. We developed a regular
expression benchmark generator to test how different types
of regular expressions affect the performance of the REMEs
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Figure 8: Structure of a 2D staged pipeline with total p pipelines
and r stages per pipeline.
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Figure 9: Structure of the regular expressions from the benchmark
generator.

constructed by our software. The benchmark generator
produced regular expressions of different state count (n), state
fan-in (w), and variable lengths of loop-back(q) and feed-
forward (q − p). A general structure of the generated regular
expressions is described in Figure 9. ( Due to our use of
BRAM for character classification, every character class, no
matter how simple or complicated it is, takes exactly 256
BRAM bits and is matched by one BRAM access. Since the
complexity of character classes does not affect performance,
our benchmark generator assigns arbitrary values to the
character classes without loss of generality.)

State count represents the total number of states in an RE-
NFA. It was used by most related work as the primary metric
for REME complexity [2, 4, 7, 9]. We further defined state
fan-in as the maximum number of transitions entering any
state [10], since the state machine runs at the speed of the
slowest state transition. Both op union and op closure can
increase state fan-in, which is the secondary metric for REME
complexity.

A state transition loop-backis always caused by an
op closure, while a state transition feed-forward can be
caused by unbalanced alternative paths within an op union.
Both properties are high-order metrics describing the rout-
ing lengths of an REME. According to our experimental
experience, however, the actual routing complexity of the
REME circuit on FPGA is highly subject to the optimizations
done by the place and route software and may not reflect
these two metrics closely.

6.2. Performance Evaluation of the Software Toolchain. The
time taken to translate a set of parsed regular expressions
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Figure 11: Clock frequency and LUT usage of group of 6 identical
synthetic REMEs versus length of every REME. Solid lines (left
scale) are clock frequencies; dashed lines (right scale) are number
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to VHDL was roughly proportional to the product of the
number of states (n) and the size of multi-character input (m),
an observation agreeing with our analysis in Section 5.1. On
a 2 GHz Athlon 64 PC, it took between 6 and 12 seconds to
translate 1280 Snort REMEs (∼28k states) to VHDL, as m
increased from 2 to 8. In all cases, about 30% of the time was
used for file I/O. Figure 10 illustrates the construction time of
various cases in more detail. ( Due to the relatively large I/O
overhead and the short overall runtime, there is high variance
(∼15%) among different runs of the same construction. The
construction time is also greatly affected by the complexity
of regular expressions, especially the state count and the state
fan-in discussed in Section 6.1.)
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These results show that the software proposed in this
paper is suitable for large-scale REME construction. Since
it takes only a few seconds to translate a thousand regular
expressions into structural VHDL, the software can be used
to reconstruct a large-scale REME quickly in response to
dictionary changes. Due to the large number of logic resource
used, however, the synthesis and place and route times are in
the order of several tens minutes.

6.3. Performance Evaluation of the Constructed REMEs. We
first used the benchmark generator described in Section 6.1
to produce synthetic regular expressions of different
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numbers and complexities, then use our REME construction
software to convert the synthetic regular expressions into 2-
character matching REME circuits in VHDL. We synthesized
the VHDL into Xilinx NGC targeting the Virtex 4 LX device
family and extracted the estimated clock frequency from the
timing analysis.

Figure 11 shows clock frequency and LUT usage versus
length of REMEs. Series concat1 was produced by one long
sequence of concatenations. Series union2 was produced by
a union of two equal-length concatenations. In each test case,
6 identical REMEs were placed into a single stage.

Series union2 ran at lower clock frequency than series
concat1 due to the use of the op union operator, which
caused series union2 to have twice the (maximum) state
fan-in as concat1. The clock rates of both series started to
decline gradually with respect to REME length around 32 to
40 states per REME. This decline was due to the longer paths
to access the centralized character classification signals from
BRAM. This is evidenced by the fact that both concat1 and
union2 ran at about the same clock rates beyond the length
of 40 states, showing a bottleneck elsewhere from the state
transitions within the logic slices of FPGA.

In Figure 12, we analyzed the effect of the number of
REMEs on achievable clock frequency and total LUT usage.
In each test case, 64 states were generated for each REME; 30
states were wrapped inside an op closure (q = 30), which
was then op union-ed with a sequence of 30 other states
(p = 30) and concatenated with the last 4 states in sequence.
In the w-union series, w = 1, 2, or 3, the 30 states inside
the op closure were further wrapped by an op union of w
operands, each 30/w states in length. The purpose was to see
how clock rate scaled with respect to number of REMEs for
different REME structures and complexities.

As shown in Figure 12, clock frequency declined between
15% to 25% when number of REMEs varied from 1 to 16. All
these 16 REMEs are put inside a single stage by our software.
Since the added regular expressions were all identical, this
decline was again due to longer BRAM access, caused by both
longer routes and larger fan-out.

Above 16 REMEs, however, the staged pipeline came into
effect, keeping the clock rates at slightly above 300 MHz. This
evidently shows that the staged pipeline proposed in [10] was
effective in scaling up number of REMEs in a single circuit.
LUT usage maintained linear increase with respect to the
number of REMEs.

As expected, a higher w value results in a slightly lower
achievable clock frequency due to the higher state fan-in of
the REMEs.

Figure 13 examines clock frequency versus state fan-in
more thoroughly. In each test case, REMEs of 52 states were
constructed, with 24 states put inside an op union of w
operands, w varying from 1 (single 24-state sequence) to 12
(union of 2-state sequences). For the has loop series, there
was also a loop-back transition from the outputs of the 24-
state union back to the inputs of the union itself. There was
no such loop-back for the no loop series.

The clock frequency was found to decline sublinearly
with respect to the state fan-in, at a rate consistent with
the findings in Section 6.2. The decline however was not

completely smooth because the logic gates on the FPGA
device were organized as 4-input LUTs-fan-ins of size
multiples of 4 tend to perform better than the overall trend.
The loop-back transition around the op union (in the
has loop series) connected every state output of the union
operator to every input state of that operator. This resulted
in more complex routing and further impacted the clock
frequency.

Overall our experiments show that the REME construc-
tion algorithms proposed in [10] generated FPGA circuits
with high clock frequency and high LUT efficiency for large
number of highly complex regular expressions.

7. Conclusions

We presented a software toolchain which automates the
construction and optimizations of regular expression match-
ing engines (REMEs) on FPGA. The software accepts a
potentially large number of regular expressions as input and
generates RTL codes in VHDL as output, which could be
accepted directly by FPGA synthesis and implementation
tools. The automated REME optimizations include central-
ized character classifications, multi-character matching, and
staged pipelining. We also developed a benchmark generator
to produce REMEs of configurable pattern complexities to
evaluate the performance of the software.

On a 2 GHz Athlon 64 PC, our software generates a
compact and high-performance REME circuit matching
over a thousand regular expressions in just a few seconds.
Extensive studies showed that the two-dimensional staged
pipeline effectively localized signal routing and achieved
a clock rate over 300 MHz while processing hundreds of
REMEs in parallel.
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1. Introduction

Many FPGA devices available today are rich in special-
purpose blocks. These fixed-function cores, implemented on
the die, add capabilities to the ever-growing capacity of these
devices. The Virtex-4 FX devices, for example, in addition to
the conventional programmable logic and flip-flops, include
processors, Block RAMs, DSP48 cores, and high-speed serial
transceivers. The Multigigabit Transceiver (MGT) cores are
especially interesting because they allow for a wider range
of high-speed serial peripherals, such as disk drives, to be
directly connected to the devices.

These advances enable a designer to implement highly
integrated computing systems. For example, it is feasible to
integrate video, networking interfaces, disk controllers [1],
and other conventional peripherals onto a single Platform
FPGA device running a mainline Linux kernel. In fact, sev-
eral high-performance computing researchers are currently
investigating the feasibility of using Platform FPGAs as the
basic compute node in parallel computing machines [2–4].
If successful, there is an enormous potential for reducing
the size, weight, and cost while increasing the scalability of
parallel machines.

Within the context of parallel computing, the integration
of disk drives is especially interesting because of its potential
to speed up data-intensive parallel applications. In par-
ticular, out-of-core applications (MPI-IO) needing tightly
integrated secondary storage or streaming very large data sets
would benefit. Tight integration, specifically, is important
to these high-performance computing applications for a
number of reasons. It allows FPGA computational cores
to consume data directly from disk without interrupting
the processor (or traversing the operating system’s internal
interfaces). It also allows the introduction of simple striped
multidisk controllers (without the cost or size of peripheral
chipsets). Finally, it is possible to coordinate disks attached to
multiple discrete FPGA devices—again, without depending
on the processor.

Filesystems are typically implemented in software as
part of the operating system. This paper describes the
implementation of a hardware filesystem. Figure 1 illustrates
this concept. Figure 1(a) is the traditional organization with
the filesystem and device driver implemented in software,
Figure 1(b) is the filesystem migrated into hardware. The
simplest filesystems organize the sequential fixed-size disk
sectors into a collection of variable-sized files. Of course,
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Figure 1: (a) Traditional filesystem implementation. (b) Filesystem migrated into programmable logic.
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Figure 2: Compound annual growth rate of problem size, single
processor performance, and I/O subsystem performance.

most modern filesystems are much more complex and also
include a large amount of metainformation and further
organize files into a hierarchy of directories. The design
presented here, however, is narrowly defined to support
high-performance computing. This is not a particularly
serious weakness since SRAM-based FPGA devices can be
reprogrammed to incorporate new features in hardware.

For some scientific applications, these features are
extremely valuable. For example, in some cases, the reso-
lution of experiment or simulation is limited by the main
memory available to store the data structures. In order to
increase the detail of the simulation, computational scientists
are forced to code their algorithms so that data are explicitly
moved between secondary storage and main memory. (These
so-called out-of-core applications are far more efficient than
simply relying on the OS to swap memory to secondary
storage.)

Alternatively, if part of the computation is performed by
accelerators implemented in the programmable logic of an
FPGA, then the data do not necessarily have to go through
all of the traditional layers of an OS (device driver, filesystem
interface) just to have the application then forward it to
the core. Instead, the core can simply open the file and
access it directly. This frees the processor from handling I/O
requests and avoids the use of off-chip memory bandwidth
to buffer disk data as in other approaches [5]. It also
reduces the number of interrupts which has been shown to
negatively impact very large parallel systems [6, 7]. Finally,
by migrating part of the filesystem operations to hardware,
it becomes feasible to handle remote disk access directly
in hardware. (Again lowering the number of interrupts
the processor sees and avoids wasting memory bandwidth
to buffer data between disk and network subsystems.) In
short, this approach has the potential of increasing the
bandwidth from disk to core, lowering the latency, and
reducing the computational load on the processor for a large
number of FPGA devices configured for high-performance
computing.

In a third case, some applications are facing datasets that
are growing faster than computer speeds. Consider processor
speeds and the size of bioinformatic databases. Suppose that
single processor performance continues to double every 18
months and biological databases are growing even faster.
Figure 2 shows both growth rates of between 1994 and 2004
on a semilog graph. The nucleotide data points come from
GenBank [8], a public collection of sequenced genomes. A
line fitted to this data shows a compound annual growth
rate of 77% (compared to the 59% annual growth rate of
processors). Now consider the performance gains of I/O
subsystems (disk and interface). Secondary storage is not
keeping pace with processor speeds, let alone the growth rate
of the biological databases. The most aggressive estimates [9]
suggest a 10% compound annual growth rate in performance
while others [10] suggest a more modest 6% growth rate.
Regardless, the consequence is profound: the same question
(e.g., is this sequence similar to any known gene?) will take
longer and longer every year. In short, the problem size is
growing so fast; the bottleneck is simply I/O bandwidth. A
filesystem implemented in hardware will not directly address
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this issue; however, it does offer a first step towards alleviating
high I/O bandwidth needs.

Our approach to this investigation is broken down into
three steps: first, a software implementation as a basic proof
of concept of how the filesystem in hardware will operate,
second, a simulation of the hardware filesystem, and third, a
synthesized implementation running on an FPGA.

The rest of this paper is organized as follows. The next
Section is a background section on filesystems, specifically
the Unix filesystem. In Section 3, the three designs (software,
simulation, and synthesized) implementations are presented.
Section 4, explains the testing methodology followed by the
presentation and analysis of the results. The paper concludes
with a brief summary and future directions.

2. Background

2.1. Disk Subsystem. The main purpose of a computing
system is to create, manipulate, store, and retrieve data. As
such, filesystems have been central to most modern comput-
ing systems. Filesystems are responsible for managing and
organizing files on a nonvolatile storage medium, such as a
Winchester-type disk drive (also known as a hard disk or
hard drive). Files are composed of bytes and the filesystem
is responsible for implementing byte-addressable files on
block-addressable physical media, such as disk drives. Key
functions of a filesystem are (1) efficiently use the space
available on the disk, (2) efficient run-time performance, and
(3) perform basic file operations like create file, read, write,
and delete. Of course most filesystems also provide many
more advanced features such as file editing, renaming, user
access permission, and encryption to name a few.

The hardware filesystem implemented is loosely modeled
after the well-known UNIX filesystem (UFS) [11]. UFS uses
logical blocks of 512 bytes (or larger multiples of 512).
Each logical block may consist of multiple disk sectors.
Logical blocks are organized into a filesystem using an Inode
structure that includes file information (such as file length), a
small set of direct pointers to data blocks, and a set of indirect
pointers. The indirect pointers point to logical blocks that
consist entirely of pointers. UFS uses a mutilevel indexed
block allocation scheme which includes a collection of direct,
single indirect, double indirect, and triple indirect pointers in
the Inode. The filesystem layout is as shown in the Figure 3.

Normally, the filesystem is designed to be independent of
the disk controller. The disk controller is typically a device
driver in an operating system that is responsible for com-
municating with the physical media and responds to block
transfer commands from the filesystem. For expediency, the
work here focuses on the most common, commodity drives
available today: Serial ATA (SATA). SATA provides a 4-
wire point-to-point configuration, supporting one device per
controller connection. Each device has dedicated bandwidth
and there are no master/slave configuration jumper issues
as with parallel ATA drives. The pin count is reduced
from 80 pins to 7 pins having 3 ground lines interspersed
between 4 data lines to prevent crosstalk. Several FPGA
devices include high-speed serial transceivers. For example,
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Figure 3: UNIX Inode structure.

the Xilinx Virtex II, Virtex-4, and Virtex-5 device families
have members that include multigigabit transceiver cores.
These cores can be configured to communicate via the SATA
protocol at the physical layer. There are commercial IP cores
available to do this.

2.2. Related Work. The hardware filesystem architecture
described in this paper is, to the authors’ knowledge, novel
and unique. However, there are several research efforts
pursuing related goals. These efforts are described below.

Work at the University of California, Berkeley, describes
BORPH’s kernel filesystem layer [5] which enables hardware
cores to access disk files by plugging into the software
interface of the operating system via a hardware system
call interface. However, the cores still have to traverse the
software stack of the OS. The approach proposed here allows
the hardware cores direct access to disk by implementing the
filesystem directly in hardware.

The Reconfigurable parallel disk system implemented in
the RDisk project [12] provides data filtering near disks for
bioinformatics databases by using a Xilinx Spartan 2 FPGA
board. While this is relevant for scan algorithms which read
in large datasets, it does not provide the capabilities of a
filesystem such as writing and deleting files.

Using FPGAs to mitigate the I/O bandwidth bottleneck
has been of interest commercially among server vendors such
as Netezza [13] and Bluearc [14]. Netezza database storage
servers have a tight integration of storage and processing
for SQL-type applications by having FPGAs chips in parallel
Snippet Processing Units (SPUs). These provide initial query
filtering to reduce the I/O and network traffic in the system.
Bluearc’s Titan 3000 network storage server uses a hardware-
based filesystem to speed up the I/O interface.

Finally, well-known RAID storage solutions have either
hardware or software controller managing data across mul-
tiple disks. However, these solutions operate on a single



4 International Journal of Reconfigurable Computing

I/O channel or bus [15] and still traverse the operating
system’s software stack. While this can be used to improve
disk performance, it does not necessarily improve disk to
compute accelerator performance. Moreover, the approach
proposed here has the ability to be directly integrated into the
network subsystem of a parallel machine—allowing multiple
I/O channels in a parallel filesystem implementation.

3. Design

To mitigate risk, the design and implementation of the Hard-
ware Filesystem (HWFS) was staged. The first stage focused
on a software reference design and hardware simulations to
judge the feasibility. This was reported in [16]. The work
here describes a design that correctly synthesizes for an
FPGA, includes a RAM Disk core to emulate the behavior
of a disk controller, and has support for multiple disks in a
RAID0 configuration. Below is a high-level description of the
Hardware Filesystem followed by a description of the RAM
Disk core and multidisk extensions.

3.1. Hardware Filesystem Core. As mentioned in the previous
section, the layout of the UNIX filesystem was the initial
starting point for the HWFS described here. However, UFS
was designed to be general-purpose whereas the aim of
this work is more narrowly focused on feeding streams
of data to computational accelerators. This has led to a
number of differences. First, the Hardware Filesystem uses
only direct and single indirect pointers in its inodes and the
last indirect logical block points to another block of indirect
pointers. Essentially, after the initial pointers in the inode
are exhausted, the system reverts to a linked-list structure
for very large files. This layout is shown in Figure 4. A
second difference in the Hardware Filesystem is that the file
names are merged into the Super Block along with filesystem
metadata such as freelist head and freelist index. The UFS
supports a hierarchy of directories and subdirectories but the
HWFS described here is flat.

A high-level block diagram of the HWFS is shown in
Figure 5. It consists of a single large state machine, a buffer
for the Super Block, a buffer for the currently open Inode, and
a Freelist buffer. A compute accelerator presents commands
and parameters to the core; the core is responsible for
making disk controller block requests and delivering that
data associated with a compute accelerator’s request.

Specifically, the state machine implements the Open,
Read, Write, and Delete file operations. The operation port
is driven by the compute accelerator to select from the four
main operations. The state machine asserts request and new
blknum signals to issue a new block request to data from
the disk controller. A command signal is used to distinguish
between read and write block requests. The logical block
numbers are issued from the blocknum port to address the
appropriate memory location. The HWFS core waits on a
cmd ack signal before issuing the next block request. On
completion of a block transaction, the memory interface
asserts the blk xfer done signal.
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Figure 4: HWFS Inode Structure.

The HWFS core has an additional functional improve-
ment over what was reported in [16]. Support for multiple
disks has been provided through the use of split transactions
on disk controller. This allows multiple block requests to
be issued to the memory subsystem. An internal counter
in the FSM keeps track of outstanding block transactions.
Subsection 3.2 discusses the multidisk controller and inte-
gration with the HWFS in more detail.

The rest of this subsection describes the various opera-
tions and the relevant states in the top-level state machine.

Open File. Open File takes in a file name along with an open
command and returns the file’s Root Inode location. The open
command is required before issuing the first read or write
command for a file. After the file is open, any number of
reads and writes can be issued.

The state machine starts from the Read Super Block state
and reads blocks 0–3 from disk into the Super Block buffer
4 bytes at a time. After reading 4 blocks, it transitions to
the Match Filename State which starts a linear search for
the 8 byte filename. The FSM sequences through the Super
Block buffer, starting at the first file slot and reads the BRAM
contents into a 64-bit equality comparator. If a match is
found with the required filename, the comparator sends a
found signal to the FSM which transitions to the Find Inode
state. If the search is unsuccessful, the file does not exist
in the filesystem Super Block and a file not found signal is
asserted. In Find Inode state, the state machine captures the
file’s Root Inode location from the filename-inode mapping
in the Super Block. Figure 6 depicts the open operation.

Read File. Once the file is opened, Read File uses the file’s
root inode block location to read in the file contents into
a Read FIFO. Read File (Figure 7) begins with the Read
Inode state. The Root Inode block of the file is first fetched
from disk into the Inode buffer using the inode location
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number as a blockid. The state machine then transitions to
the Read Data state via an intermediate state: Set Address
which accounts for the delay between setting the BRAM
address and reading the output blockid. In Read Data state,
the inode block is read sequentially, 4-bytes at a time. The
output inodes are fed back to the state machine and used
as blockids for fetching data blocks from disk into the Read
FIFO. The last inode in the root inode block links to the
next inode block of the file. The FSM uses this link inode for
fetching the next inode block of the file by cycling back to the
Read Inode state. The data blocks are read until an inode 0 is
found which signals the end of file. The state machine then
returns to the idle state.

Write File. Write File shown in Figure 8 either creates a file
if it does not exist on the disk or appends data to an existing
file. Once the file has been opened, the state machine extracts
the filesystem metadata from the Super Block buffer in Read
FSMD state. The Read Free Block state reads the first block
from the freelist into the Freelist buffer. The FSM then goes
to Write Data Block state where the data blocks are written
from the Write FIFO out to disk using free blockids from the
freelist buffer. The blockid is also simultaneously stored as
an Inode in the Inode buffer. In Write Inode Block, the inode
buffer’s contents are written to disk and a Root Inode block
for the file is created. As the file size increases, subsequent
inode blocks of the file are created and added as a linked list
to the root inode block. The file’s inode blocks thus exist in
the form of a linked list interspersed among the data blocks
and freelist blocks. After the data blocks and inode blocks are
written, the filesystem metadata and super blocks are written
to close the file so that HWFS is ready for the next operation.

Delete File. In Delete file, shown in Figure 9, the first block
from the freelist is read into the Freelist buffer and the Root
Inode block is read into the Inode buffer. The blockids from
Inode buffer are then transferred to Freelist buffer starting
from the freelist index, until it is full of free blockids. Next,
the contents of the freelist buffer are stored on disk. The FSM
reads the Super Block to delete the file name and update the
filesystem metadata. The new freelist head and freelist index
are written to the Super Block buffer and then transferred to
disk.

3.2. Multidisk and RAM Disk Support. To further explore the
feasibility and functionality of the HWFS core, a synthesized
and operational design was required. However, commercial
SATA disk controller cores are expensive and difficult
to justify for a feasibility study. To make experiments—
especially experiments with multiple disks—more feasible, a
RAM Disk core was developed.

Figure 10 illustrates a high-level block diagram of the
system using the hardware filesystem and a SATA disk.
The processor and computation core are both capable of
interfacing with the hardware filesystem across the system
bus. While the HWFS is targeted for a SATA hard disk,
the HWFS core itself is designed with a generic interface
to increase the number of devices that can be potentially
interfaced with, beyond a hard disk. The Xilinx ML-410
FPGA board [17] provides interfaces for both ATA and SATA
disks; however, to focus on the HWFS development the more
complex ATA and SATA interfaces have been replaced with a
RAM Disk.

Purpose of the RAM Disk. When presenting a hardware
filesystem, it would be assumed that the data would be stored
on a hard disk. In these tests we have opted to use a specially
designed RAM Disk in place of the SATA hard disk. One
might ask why to read about a disk-less hardware filesystem.
To this seemingly simple question, we would like to explain
our reasoning for the lack of a hard disk in the currently
implemented design. First and foremost is the cost of the
SATA IP core. While SATA IP cores are currently for sale [18],
they are prohibitively expensive to purchase outright without
any indication that the money would be well spent. Second
is the design complexity of having to both create a hardware
filesystem and integrate it with the SATA core in order to test
even the simplest of file operations. Finally, while SATA may
currently be the forerunner in the market, trends may soon
shift to alternative disks and interfaces which could cause
another redesign of the system.

Our implementation attempts to minimize initial cost
and risk by focusing first on the design of the hardware
filesystem. In simulation creating a simple SATA stub, which
mimics some of the simple functionality of the SATA
interface, enables a more rapid development of the hardware
filesystem. In hardware there is no SATA stub; instead a
fake disk must be created. External SDRAM presented itself
as the ideal candidate with its easy and well-documented
interface. This RAM Disk is not targeted to be competitive
with an actual hard disk, nor is it the long term goal
of the Hardware Filesystem to include the RAM Disk. It
simply provides an interface to large, off-chip storage that
would allow for better testing of the Hardware Filesystem
running on an actual FPGA. The data stored within the RAM
Disk—super, inode, data, and free blocks—are the same
as the data that would be stored on that of a SATA disk.
The key differences being the on-chip controller’s interface
and the data being stored in DDR2 instead of a physical
disk.

As a result of the RAM Disk interface, we are now able
to support any storage device by bridging the Hardware
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Filesystem’s interface with the storage device’s interface.
This can be seen in Figure 11. While the complexity of the
interfaces might be difficult to design, it should not be
impossible, merely time consuming. The advantage of such
an approach is that with a working hardware filesystem the
disk interface would take focus, reducing the number of
unknowns in the design.

Finally, we do not aim to use the RAM Disks for perfor-
mance. It should be obvious that the time to access a hard
disk (rotational delay + seek time) will be constant between
both a typical operating system’s filesystem and the hardware
filesystem. Therefore, a straightforward test between the two
filesystems is not immediately possible. Instead, what we
show is the efficiency of the hardware filesystem.
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Figure 10: Hardware system level interface between the SATA core
and hardware filesystem.

System Implementation. A hardware base system has been
created consisting of a processor, system bus, on-chip
memory, external memory, and the HWFS core. Linux 2.6
has been compiled and configured to run with this hardware
base system; however, it is important to note that Linux is
being used as the test bench and is not using the HWFS core.
Eventually, considering the results from these tests, Linux will
use the HWFS core in place of its current software file system.

Figure 11(a) depicts the high-level interface between the
HWFS and the RAM Disk. Between the HWFS and the
RAM Disk lies the Native Port Interface (NPI) to provide
a custom, direct interface to the memory controller. The
memory controller is a conventional soft IP core which
communicates with the external memory. Requests from the
HWFS are in the form of block transfers and it is the NPI
which converts those block transfers into physical memory
transfers.

Figure 11(b) highlights the flexibility of the HWFS core’s
design. Purchasing a SATA controller IP core and creating a
simple interface between the HWFS and the SATA controller
all that is necessary to port the RAM Disk implementation
to a SATA implementation. Likewise, for any additional
secondary storage the same process would apply.

Adding Multiple Disk Support. To support multiple disks a
Redundant Array of Independent Disks (RAID) [19] Level 0
controller has been designed and synthesized for the FPGA.
RAID 0 stripes data across n number of disks but does not
offer fault-tolerance or parity. RAID 0 was chosen for this
design as a first-order proof of concept to investigate the
question how hard is it to add multiple disk support to the
current Hardware Filesystem design? The initial design of the
Hardware Filesystem core only supported access to a single
disk, not a limitation, but instead a design choice to focus on
the HWFS’s internal functionality.

To provide support to multiple disks a handshaking
protocol was established between the HWFS and the RAID
0 controller. Since the number of disks in the RAID system
is unknown to the HWFS, requests should be issued as
generically as possible. The handshaking protocol requires
the HWFS to wait for a request acknowledge from the RAID
controller before issuing subsequent requests. Initial designs
with a single disk did not require this handshaking since only
one request was in process at any given moment.
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Figure 11: (a) System interface with RAM disk (b) Modular
interface with SATA.
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Figure 12: Hardware Filesystem connected to the RAID 0 Con-
troller which stripes the data blocks across two disks.

To illustrate the RAID 0, Figure 12 shows the Hardware
Filesystem connected to the RAID 0 controller which is
connected to two disks—this paper presents support for N
disks, but only two RAM Disks have been tested running
on the FPGA at the time of this writing. The stripe size in
this design is one full block, but subblocks could be just as
easily used. The RAID controller has been designed with a
generic interface to allow easy support of any number of
disks; limitations on the Xilinx ML-410 forced physical tests
on the FPGA to two disks. More extensive tests of systems
with greater than two disks have been performed and verified
in simulation.

For a RAID controller with multiple disks, each read or
write transaction could be to the same disk or to a different
disk. For requests to the same disk the transactions are
serialized, requiring the first transaction to complete before
the second transaction can commence. For two requests to
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two separate disks, both requests can be issued in parallel.
On a read request the RAID controller must also make sure
that the blocks are returned in the correct order since it is
possible for two concurrent requests to be returned out of
order.

With the successful integration of the RAID 0 controller,
it is feasible to integrate more sophisticated controllers
which offer parity, fault-tolerance, and mirroring of data in
future designs. These higher RAID levels would still likely
use the same interface to the HWFS core as the RAID 0;
the difference would be the functionality within the RAID
controller core itself.

4. Experimental Setup and Results

To establish whether implementing a filesystem directly
in hardware provides sufficient improvements in latency
and bandwidth while utilizing limited chip resources, we
simulated and synthesized the VHDL design code and
ran the design on a Xilinx ML-410 FPGA Development
board. The experimental setup, results obtained, and analysis
follows.

4.1. Simulation Setup and Results. The functionality of
the design was first verified in simulation with a VHDL
testbench and a satastub behavioral model. The testbench
instantiates the top level structural VHDL module of the
design. It then creates a 100 MHz master clock signal
to synchronize the design and provides a reset pulse to
initialize the state machine. Next, a test process generates
an input test sequence to exercise the design. This includes
a 64-bit file name for opening the required file from the
disk and a 2-bit operation signal to select from one of
the four operations: open, read, write, and delete. The
state machine transitions to the idle state and asserts the
stop-simulation signal on completing the operations. The
testbench checks for this signal and reports a “Testbench
Successful” message along with the iteration time. Mod-
elSim verification environment, version 6.3b, running on
a Linux Workstation was used for simulation and debug-
ging.

To evaluate the amount of overhead induced by the
filesystem itself the execution times of sequential read and
write operations were measured in simulation with an ideal
disk for file sizes ranging from 1 kilobytes to 5 gigabytes
shown in Table 1.

The filesystem’s efficiency was computed as the ratio of
the time taken to transfer raw data blocks of a file between the
HWFS and disk to the total transfer time with the filesystem’s
processing overhead:

eff = raw block transfer time
filesystem block transfer time

,

raw block transfer time = file size× clock cycle time
bytes per clock cycle

.

(1)
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Figure 13: HWFS sequential read/write efficiency in simulation
plotted against different file sizes.

The overhead includes the time taken to read the Super
Block, find a file name match, get its root inode block
(open file operation), read the inode blocks of the file (read
file operation), and read/write free blocks and inode blocks
(write file operation). Figure 13 shows a plot of the sequential
read and write efficiencies for 64 B, 256 B, and 512 B sized
blocks. It is observed that for small files (1 KB to 10 KB)
the efficiency is below 80%. It increases to 95% for 100 KB
files and saturates for very large files (shown by a flattening
of the plot for file sizes beyond 100 KB). This is due to the
overhead having little effect on the execution times for large
files thereby achieving efficient run-time performance (to
emphasize the transition in efficiency, the x-axis is restricted
to 250 KB in the figure).

4.2. Synthesis Setup and Results. The setup for the system
running on the ML-410 builds upon the description given
in Section 4.1. The test is running on a Linux-based system
which requires a device driver to allow the test application
to communicate with the HWFS core. The test begins with
the PowerPC initializing the RAM Disk with the empty
root filesystem. The PowerPC communicates directly with
the RAM Disk since it is a volatile storage device and it is
necessary to format the RAM Disk. Once the RAM Disk
has been initialized, the PowerPC’s test application exercises
the HWFS via the device driver. The test application simply
issues multiple open, read, write, and delete commands to the
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Table 1: HWFS sequential read/write execution time in simulation with different block sizes.

Read Write

File Size (Bytes) 64 B 256 B 512 B 64 B 256 B 512 B

1 KB 4.24 μs 5.32 μs 7.81 μs 5.47 μs 9.24 μs 15.52 μs

10 KB 32.56 μs 32.45 μs 32.39 μs 33.02 μs 34.26 μs 36.6 μs

100 KB 299.2 μs 268.6 μs 263 μs 293.4 μs 270.3 μs 269.3 μs

1 MB 3.03 ms 2.71 ms 2.67 ms 2.96 ms 2.7 ms 2.65 ms

10 MB 30.12 ms 26.8 ms 26.6 ms 29.6 ms 26.5 ms 26.5 ms

100 MB 300.4 ms 266.4 ms 264.3 ms 295 ms 263 ms 262.5 ms

1 GB 2.98 s 2.7 s 2.69 s 2.96 s 2.65 s 2.63 s

5 GB 14.6 s 13.6 s 13.5 s 14.4 s 13.2 s 13 s

Table 2: Hardware filesystem with a single disk resource utilization
synthesized for the XC4VFX60.

Block Size Slices LUTs F/Fs BRAMs

64 B 1378 2546 871 2

128 B 1302 2442 872 3

256 B 1254 2350 874 3

512 B 1335 2515 882 3

1024 B 1357 2559 887 4

4096 B 1317 2483 904 14

HWFS core. After the test finishes, the PowerPC reads the
RAM Disk to verify the successful completion of the test.

The VHDL design description was synthesized for
varying block sizes between 64 and 1024 bytes using the
Xilinx Synthesis Tool (XST) available in the Xilinx ISE
design suite, version 10.1, for the target device XC4VFX60-
11ff1152 from the Virtex-4 family to generate the Xilinx
specific NGC files. Table 2 shows the resource utilization
statistics with these varying block sizes. Since the super
block, inode, and freelist buffers are mapped onto BRAMs,
the logic resource (slice) utilization is independent of block
size. A slight variation in slice count is observed due
to the BRAM buffer’s address width variations and the
synthesis tool’s speed optimization efforts. Based on the
synthesized resource utilization results, the largest block size
without excessive BRAM usage is 1024 Bytes. At a block
size of 4096 Bytes a total of 14 BRAMs are used. In a
filesystem with a large number of small files, 4096 Byte
blocks would possibly introduce fragmentation; however, the
HWFS focuses on opening relatively few large files, orders
of magnitude greater than the block size. As a result the
block size is less of a restriction as the BRAM resource
utilization.

Table 3 shows the resource utilization breakdown for
the Hardware Filesystem, RAID Controller, and RAM Disk
interface with a block size of 1024 Bytes accessing two disks.
In this design the RAID Controller connects to two RAM
Disk interface cores which each connect to two external
SDRAM DIMMs. In this configuration the HWFS and RAID
Controller use a modest 7% of the slices while only using four
BRAMs. The RAM Disk interface uses two BRAMs to buffer
sending and receiving data between the HWFS and RAM.

Table 3: Hardware filesystem with multiple disk resource utiliza-
tion with Block Size 1024 synthesized for the XC4VFX60.

Resources HWFS RAID Ctlr RAM Disk IF

Slices 1357 343 678

F/Fs 887 255 601

LUTs 2559 626 1253

BRAMs 4 0 2

Single RAM Disk Results. Table 4 gives the execution mea-
surements for read/write operations with a single RAM Disk
synthesized and run in hardware. Unlike the simulation
tests, the RAM Disk is not an ideal disk and the execution
times increase accordingly. For a real SATA hard disk these
numbers would again increase; however, the importance of
this test is to show that running in actual hardware produces
similar trends to simulation when taking into account the
storage media’s access times.

Table 5 is presented to highlight the time taken by the
filesystem to process data in comparison with the RAM
Disk memory transaction time. For a write operation the
execution time of the Hardware Filesystem is 5.54 microsec-
onds compared to the simulation time of 5.47 microseconds
(Table 1). This shows that the Hardware Filesystem is able to
maintain the same performance with a RAM Disk as with
the simulation’s ideal disk. The same holds true for the read
operation.

The efficiency of the Hardware Filesystem with a single
RAM Disk is shown in Figure 14. The HWFS stalls until
both of the block requests to and from memory are satisfied.
Due to this added memory transaction latency, the efficiency
graph shows a dip in performance as compared to the
simulation efficiency in Figure 13.

Multiple RAM Disks Results. The split transactions imple-
mented for multidisk support provides an improvement over
the single disk efficiency. Test results and the efficiency graph
for read/write operations over two RAM Disks are shown in
Table 6 and Figure 15. The limiting factor on the number
of RAM Disks in the multiple RAM Disk test is based on
the Xilinx ML-410 development board consisting of two
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Table 4: Hardware filesystem read/write execution time with single RAM Disk synthesized for the XC4VFX60.

Read Write

File Size (Bytes) 64 B 512 B 1024 B 64 B 512 B 1024 B

1 KB 9.28 μs 12.54 μs 19.62 μs 9.4 μs 28.3 μs 51.77 μs

10 KB 73.59 μs 45.8 μs 51.28 μs 52.3 μs 59.55 μs 83.02 μs

100 KB 709.84 μs 380.97 μs 366.32 μs 483 μs 391.56 μs 396.65 μs

1 MB 7.18 ms 3.76 ms 3.55 ms 4.9 ms 3.57 ms 3.54 ms

10 MB 71.8 ms 37.44 ms 35.35 ms 48.97 ms 35.48 ms 34.82 ms

100 MB 717.93 ms 374.33 ms 353.32 ms 489.65 ms 354.53 ms 347.69 ms
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Figure 14: HWFS sequential read/write efficiency with single RAM
disk plotted against different file sizes.

Table 5: Hardware filesystem execution time for a 1 KB file with a
single ram disk with 64 byte block size.

Operation Total HWFS RAMs

Write 9.29 μs 5.54 μs 3.75 μs

Read 9.16 μs 4.32 μs 4.84 μs

Delete 5.27 μs 2.66 μs 2.61 μs

external memory channels. While it would be possible to
further model multiple disks by subdividing up the external
memory, two disks provide sufficient results to motivate the
research to investigate the HWFS with actual SATA disks.
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Figure 15: HWFS sequential read/write efficiency with two RAM
disks plotted against different file sizes.

For 64 byte blocks, the memory channel bandwidth
is underutilized. Ideal transactions would be bursts of
128 bytes or larger. It is observed from Figure 15 that
the efficiency increases with the size of the block for the
same file size. This is due to using larger blocks which
improve the data transfer bandwidth. Using large block sizes
increases the BRAM usage for the core’s metadata buffers
without providing any substantial improvement in efficiency.
Adding multiple disk support allowed two transactions to
be processed in parallel, increasing overall efficiency. Given
these trade-offs, 1024 B blocks prove to be ideal for this
design.



12 International Journal of Reconfigurable Computing

Table 6: Hardware filesystem read/write execution time with two RAM disk synthesized for the XC4VFX60.

Read Write

File Size (Bytes) 64 B 512 B 1024 B 64 B 512 B 1024 B

1 KB 8.4 μs 10.69 μs 17.05 μs 13.08 μs 21.87 μs 36.86 μs

10 KB 66.17 μs 34.47 μs 40.48 μs 78.33 μs 50.85 μs 62.87 μs

100 KB 636.63 μs 274.35 μs 274.45 μs 734.69 μs 344.09 μs 321.7 μs

1 MB 6.4 ms 2.75 ms 2.69 ms 7.4 ms 3.37 ms 3.02 ms

10 MB 64.3 ms 27.47 ms 26.7 ms 74.7 ms 33.54 ms 29.86 ms

100 MB 643.28 ms 274.68 ms 267.84 ms 746.8 ms 335.3 ms 298.38 ms

5. Conclusion and Future Work

This paper evaluates the feasibility, functionality, and perfor-
mance of a hardware filesystem implemented on an FPGA
device. The HWFS core provides a generic interface to
storage media and was evaluated with a RAM Disk. The
design was synthesized and run on an ML410 developer
board (Xilinx Virtex-4 device). By adding a RAID controller,
split transactions to multiple RAM Disks are also supported,
yielding additional performance benefits by allowing concur-
rent requests in parallel to separate disks.

Synthesis results show that the HWFS and RAID cores
in total use ≈7% of the slices for an XC4VFX60 device.
The design correctly implements the four basic filesystem
operations: open, read, write, and delete. The filesystem,
which was designed for situations that require relatively
few very large files provides efficient run-time performance
for file sizes greater than 100 KB as the metadata overhead
has little effect on the access times for files larger than
that threshold. The sequential read/write efficiencies improve
with larger disk block sizes due to higher data transfer rates
and smaller overhead.

The novel architecture proposed and implemented in
this project has the potential of increasing the disk to core
bandwidth by bypassing the sequential software stack of
the OS, avoiding the use of main memory bandwidth and
reducing the processor’s computational load.

Current results are limited to just RAM Disks but once a
SATA IP core is acquired, a simple interface can be created
to port to support SATA drives. This will allow the hardware
filesystem to be evaluated with actual File I/O performance
using HPC I/O benchmarks. Thus, this filesystem core is an
important first step in testing a parallel hardware filesys-
tem for coordinating file access from multiple, distributed
disks.
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1. Introduction

Traditionally, a high assurance implementation of crypto-
graphic algorithms has been done in application specific
integrated circuit (ASIC). During the recent years, more
and more of these implementations are done in field
programmable gate array (FPGA). There are several reasons
for this development. The FPGA can be reprogrammed,
leading to more flexibility for modification of algorithms,
changing algorithms, and fixing bugs. The development of
an algorithm in an FPGA is easier and faster as compared
to an ASIC design, resulting in a shorter time-to-market. In
addition, the latest FPGA devices are manufactured with the
state-of-the-art technology.

It is well known that a true random number gen-
erator (TRNG) is an important component of today’s
cryptographic systems. Typically a TRNG can be used for
generating keys, initialization vectors, random sequences for
cryptographic challenges-responses, and so forth. In a cryp-
tographic system, a private or secret parameter is normally
generated by a TRNG and is an interesting property to an
attacker. Therefore, the generation of a random bit sequence
is important and should be unpredictable to an attacker. One

common method for generating a truly random sequence is
to amplify the thermal noise in a diode [1]. The disadvantage
of this method is the use of external components. This
approach enables an attacker to manipulate and read the
random bit sequence from the device and consequently
violate the security of the entire cryptographic system. If
the TRNG is implemented entirely inside the FPGA, an
attacker will have difficulties in retrieving and manipulating
the random bit sequence. The challenge is to design a TRNG
in an FPGA passing all statistical tests and at the same time
using as few resources as possible and achieving a high
throughput of random bits.

In this paper, we examine more closely the TRNG based
on oscillator rings proposed by Sunar et al. [2]. We show
that the TRNG described in [2] is not random without
postprocessing. We propose an enhancement of the proposal
from [2] and experimentally show improved performance
with respect to FPGA resource usage and throughput. We
also show that our TRNG has no bias and, therefore, no
need for complicated postprocessing. We experimentally
demonstrate that the frequencies of the oscillator rings are
different due to the placement and routing of the inverters
inside the FPGA.
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We have implemented our proposal in an Altera Cyclone
II FPGA [3]. Our implementation of the TRNG based on
oscillator rings passes the NIST and DIEHARD statistical
tests with a throughput of 100 Mbps and the usage of less
than 100 logic elements in the FPGA. Repeated restarts
of the TRNG from the same reset state have shown that
the output of our random generator behaves truly random
and not pseudorandom. The standard deviation has been
calculated from 1000 traces recorded after reset. A short
startup period should be omitted in order to obtain good
quality of the randomness, but after the TRNG output
stabilizes, the standard deviation becomes constant and in
accordance with the theoretical values.

The rest of this paper is organized as follows: in Section 2,
we briefly examine the previous work on TRNG in FPGA.
In Section 3, we analyse the TRNG of [2]. In Section 4, we
propose an enhancement of the TRNG to achieve better
randomness on the output sequence. The analysis of the
randomness of our proposed TRNG and the investigation of
distribution of frequencies on oscillator rings are discussed
in Sections 5 and 6, respectively. In Section 7, we describe
in detail an implementation of our proposed TRNG. In
Section 8, we investigate the behavior of our TRNG after
repeated restarts from known reset state, and finally we make
a conclusion in Section 9.

2. Related Work

Several implementations of TRNG in FPGA have been
proposed during the recent years. The common entropy
source used is jitter on clock signals. Jitter can be viewed
as timing deviation from the theoretically correct position
due to electronic or thermal noise [4]. The random jitter
will typically follow a Gaussian distribution characterized
by a certain standard deviation (σ). Usually, jitter is an
unwanted property in a system, but this behavior is useful
when generating random signals in a TRNG.

In 2002, Fischer et al. [5] used the jitter in analogue
phase-locked loop (PLL) in FPGAs from Altera as entropy
source in a TRNG. The strategy was to create different clock
signals with jitter from the PLL and sample one of the clock
signals with the other. This method is restricted to FPGAs
containing such analogue components. Later, Kohlbrenner
and Gaj [6] used a similar technique, but the clocks are
generated by oscillator rings containing two transparent
latches, a buffer and an inverter. Since the frequencies of the
two oscillator rings have to be almost equal, the oscillator
rings have to be correctly matched. Tkacik [7] proposed
a TRNG using a linear feedback shift register (LFSR) and
a cellular automaton shift register (CASR) clocked by two
independent oscillator rings. Selected outputs from the LFSR
and CASR are combined by an XOR generating the final
random signal. The disadvantage of this scheme is that the
TRNG has memory and is, therefore, not stateless as pointed
out in [8]. In 2006, Golić [9] proposed a TRNG using a
Galois ring oscillator (GARO) and a Fibonacci ring oscillator
(FIRO). These LFSR-like structures use inverters as delay
elements instead of register elements. The outputs from one
GARO and one FIRO are combined by means of an XOR

Post
processing

· · ·

···

· · ·

· · ·

fs

Figure 1: TRNG based on oscillator rings [2].

and the random sequence is generated by sampling with a
D flip-flop. This design was further investigated by Dichtl
and Golić [10]. The output signal from these FIRO/GARO
structures has a noisy analogue behavior, making them more
susceptible to cross-talk from other signals inside the FPGA
than ordinary digital signals. In 2007, Sunar et al. [2] gave a
theoretical proposal of a TRNG based on several equal length
oscillator rings made up of an odd number of inverters (see
Figure 1). The outputs from the oscillator rings are XORed
together and sampled with a D flip-flop. To compensate for
the imbalance between the number of zeros and ones in
the random signal, a postprocessing stage is present on the
output of the D flip-flop. Schellekens et al. [11] implemented
this scheme in a Xilinx FPGA, but with a large number of
rings in order to make the random sequence output pass
the statistical tests. In 2008, Vasyltsov et al. [12] proposed a
TRNG based on a 5-stage metastable ring oscillator, where
each stage contains only one inverter. The result is a fast and
small implementation of a TRNG in an FPGA or ASIC, but
optimization in the synthesis process causes difficulties in the
FPGA implementation. Recently, Danger et al. [13] proposed
a fast TRNG based on creating metastability in open loop
structures in FPGAs.

3. TRNG Based on Oscillator Rings

Since our proposed enhancement is based on the TRNG of
Sunar et al. [2], we take a closer look on the design from
[2], see Figure 1. The TRNG consists of several equal length
oscillator rings connected to an XOR tree. The output from
the XOR tree is sampled by a D flip-flop, and the output
signal of the D flip-flop is then postprocessed in order to
increase the entropy and remove bias from the random
signal. The proposed postprocessing in [2] is a resilient
function implemented as a BCH-code. The suggested design
of the TRNG consists of 114 oscillator rings where each ring
consists of 13 inverters. The suggested sampling frequency is
40 MHz and the postprocessing is a [ 256, 16, 113] extended
BCH code. The resulting throughput of the TRNG in [2] is
2.5 Mbps.

The entropy source of the TRNG is the jitter created by
each oscillator ring. The jitter has a Gaussian distribution
around each clock transition between logic low and logic
high level. This jitter will create an accumulated phase drift
in each ring so that the transitions will be at different times
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Figure 2: Our proposal.

in the sampling period. Due to the jitter, the unpredictable
transition region is assumed to be uniformly distributed in
the sampling period. The number of rings needed can then
be calculated based on the coupon collector’s problem, that
is, the number of uniform random selections of N urns such
that all urns are selected at least once. The number of urns
is determined by the proportion of the jitter size compared
to the frequency of the oscillator ring. Because the number
of rings grows exponentially when filling up the last urns, a
lower fill rate than 100% is selected. To compensate for this, a
BCH-code is used for postprocessing. The resulting random
number throughput is reduced by a factor of 16 due to this
postprocessing scheme.

In [10], some weaknesses of this implementation were
mentioned. The main concern of the authors of [10] is that
the XOR-tree and the sampling D flip-flop cannot handle
the high number of transitions from the oscillator rings. The
frequency of an oscillator ring is approximately the same or
higher than the sampling frequency. With many oscillator
rings in parallel, the number of transitions during a sampling
period will be so high that the setup- and hold-times for the
lookup table (LUT) and the internal register element in the
FPGA will be shorter than specified for the device.

The analysis of the TRNG from [2] is shown in Sections
5 and 6 as it is better to present a comparison with the
proposed enhanced TRNG.

4. Our Proposed Enhancement

To cope with the problem with many transitions in the
sampling period, we suggest an enhancement of the TRNG
based on the oscillator rings in [2] by adding an extra D
flip-flop after each ring (Figure 2). As we will show, this
configuration will improve the randomness of the TRNG.
The randomness of the configuration relies on the jitter
variations of the oscillator rings. Adding these extra flip-flops
will not alter the collection of the randomness of each ring,
but improve the overall randomness at the output.

The frequency of the oscillator ring ( fi) is dependent on
the odd number of inverters in the ring. The frequency will
increase with the decreasing number of inverters. In order to
have a fast and small TRNG, the number of inverters should
be as low as possible making the frequency of the rings
become high as compared to the sampling frequency ( fs).
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Figure 3: Beat frequency.

The advantage of our enhancement is that the signals on the
input of the XOR will now be synchronous with the sampling
clock and only updated once in the sampling period. Due to
this reduction in transitions on the input to the XOR tree, the
setup- and hold-times for the internal logic in the FPGA will
now be within acceptable limits.

The frequency of the beat signal ( fb) after the extra flip-
flop will always be less than half of the sampling frequency
and lie in the interval [0, fs/2] (Figure 3). The sampling
frequency fs should be chosen such that the beat frequency
fb at the input of the XOR is as high as possible, and avoid
the frequency of the oscillator rings be a multiple of the
sampling frequency resulting in a beat frequency near zero
or no transitions (in the worts case) in the beat signal.

The result of adding the extra D flip-flop, is that the
switching activity on the input to the XOR-tree is signifi-
cantly reduced. The XOR calculation becomes deterministic
while the randomness is collected by the sampling of the
free running oscillator rings. The sampling of a free running
oscillator ring could lead to metastability in the flip-flop
causing the output of the flip-flop neither to be logic low
or logic high for a short time period. This phenomenon can
arise when a transition occurs during the setup and hold-
time of the flip-flop, which is the case for the extra D flip-
flops in our proposed TRNG. To avoid the metastable state
to propagate into the XOR tree, the output of the oscillator
ring could be sampled by one additional D flip-flop.

If a large number of rings is needed, the logic of the
XOR tree will be deep and contain many logic levels. The
result could be violating the timing inside the FPGA because
the time delay through the XOR tree is longer than the
sampling period. In this case, one or more register levels
can be inserted into the XOR tree. This will not affect the
throughput, but it will increase the latency of the TRNG
output and increase the resources used in the FPGA.

5. Bias in TRNG

One of the basic statistical tests of random number gener-
ators is the frequency test of ones and zeros. For a good
random bit sequence the probability of a zero or a one should
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be equal to 1/2. In other words, there should be no bias in the
random bit sequence.

Let X and Y be two random bit sources with expected
values E(X) = E(Y) = μ, respectively, and let ρ be their
correlation. Then the expected value of the XOR of the two
sequences (X ⊕ Y) is given by (see e.g., [14]).

E(X ⊕ Y) = 1
2
− 2
(
μ− 1

2

)2

− 2ρμ
(
1− μ). (1)

If μ is close to 1/2, (1) can be written as

E(X ⊕ Y) ≈ 1
2

(
1− ρ). (2)

It can be seen that correlation between the two sequences
will generate bias in the output from the XOR of two random
bit sequences. IfX andY are linearly independent, then ρ = 0
and E(X ⊕ Y) ≈ 1/2.

If there are n independent bits, each with expected value
μ, then the expected value of XOR of all these bits will be
given by

1
2

+ (−2)n−1
(
μ− 1

2

)n
= 1

2

(
1 + (−2ε)n

)
, (3)

where ε = μ− 1/2. Since μ ∈ (0, 1) ⇒ |2ε| < 1, the expected
value in (3) will converge to 1/2 for increasing number of
sequences, n. In other words, adding more oscillator rings
in the TRNG design should improve the bias if the rings are
independent.

We have carried out some experiments on the random-
ness of the TRNG in [2] (without any postprocessing) and
our proposal in Figure 2. The experiments are carried out
on a Starter Development Board from Altera containing a
Cyclone II FPGA. This device has a core voltage of 1.2 V and
is fabricated in 90 nm technology. Quartus II WebEdition
6.1 is used for synthesis and Place and Route (P&R). The
sequences of random bits generated inside the FPGA are
stored in an external SRAM and transmitted to a PC for
analysis through an asynchronous serial connection. The
result is a number of blocks of subsequent random number
bits from the TRNG where each block has a maximum size
of 4 Mbit. The sampling frequency used in this experiment
is 50 MHz. No constrains have been put on the P&R tool
regarding the placement of the inverters in the FPGA.

We have implemented the two configurations of TRNG
(Figures 1 and 2), recorded 10 blocks of 1 Mbit of random
data from each configuration, and determined the frequency
of ones in all blocks. We have performed the experiment
with oscillator rings of lengths 3 and 13, and with varying
number of rings. The results are shown in Figure 4. They
indicate that the design in [2] has a bias after the XOR of
the oscillator rings. The tendency is that the bias increases
with the increasing number of rings and there is a majority
of zeros in the output. Comparing these observations against
(1)–(3) shows that there is some dependency or correlation
in the random sequences creating a bias. It seems that
this bias is due to the problem with the high number of
transitions at the input of the XOR tree and the sampling
flip-flop. For our configuration (Figure 2), it is seen that
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Figure 4: Bias of the TRNG on Figures 1 and 2.
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Figure 5: |Bias− 1/2| of the TRNG on Figure 2.

the expected value is close to 1/2 for increasing number of
oscillator rings. Figure 5 shows a closer view of the curves,
where the absolute value of the bias from the ideal 0.5 level
is shown for our configuration with 3 and 13 inverters in the
oscillator rings. It is seen that the bias converges to 0, and
that our enhanced TRNG behaves according to the theory of
XOR of independent random sequences.

6. Distribution of Ring Frequencies

According to [2], the assumption of randomness is that the
equal length oscillator rings will have the same frequency
while the phase drift related to the jitter causes the drifting
of the transition regions. We believe that the frequencies of
the oscillator rings will be different from each other. We have
carried out an experiment where we have implemented 64
oscillator rings in the Altera Cyclone II FPGA and tapped out
the signal from each of these rings to I/O-pins on the FPGA.
These frequencies were measured with an oscilloscope.

Figure 6 shows the histograms of the frequencies of
oscillator rings with 5 and 31 inverters, respectively. (For
oscillator rings with 3 inverters, the measured signals are
outside the specification of the I/O-pins for our Cyclone
II FPGA (maximum frequency of 300 MHz). However, the
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Figure 6: Histogram of ring frequencies.
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Figure 7: Dispersion of frequencies.

frequencies are measurable and the measurements with 3
inverters gave a similar histogram as shown in Figure 6 with
5 inverters.) From this experiment, it is observed that the
distribution of the frequencies for short rings does not follow
a Gaussian distribution and the frequencies are clustered in
groups. For longer rings, the clustering is not so obvious
and the distribution is approaching Gaussian with only some
values far from the mean.

When examining similar histograms for other lengths, it
is observed that the dispersion is decreasing with increasing
number of inverters. In Figure 7, the dispersion is measured
by the coefficient of variation defined as the percentage
of σ/μ, where σ is the standard deviation and μ is the
mean of the measured frequencies. It can be seen that the
dispersion is high for short rings and decreasing with longer
oscillator rings. Based on this observation, using oscillator
rings with only 3 inverters will give the highest dispersion in
the frequencies.

To explain the behavior of the frequency distribution,
the architecture of the Altera Cyclone II FPGA [3] has to
be examined. This FPGA consists of a matrix with logic
elements (LEs), each containing a programmable register
and an LUT for implementing any logic function of four
inputs. 16 of these LEs are then grouped into a logic array
block (LAB). All the LEs and LABs are connected together
via different routing resources depending on the distance

between them inside the FPGA. When running P&R for the
design in an FPGA, the inverters in the oscillator rings are
located at physical LEs. Depending on the placement, the
routing delay between the LEs will differ. If all the inverters
are placed in LEs inside one LAB, the routing delay will be
short. If the inverters are placed in LEs in different LABs,
the routing delay will be increased resulting in a lower
frequency of the oscillator ring. In addition, there will also
be a variation in the delay of each LUT, typically following
a Gaussian distribution. All these variations in the routing
delays cause the distribution of the oscillator ring frequencies
and the clustering for short rings. For short oscillator rings,
the inverters of some of the rings are placed in the same
LAB, but for some of the other rings, the inverters are placed
in two or more LABs, resulting in routing delays with large
variations. For long oscillator rings, the difference between
the routing delays of each ring will be smaller due to the
fact that the inverters have to be placed in more than one
LAB. From Figure 7, this can be seen indirectly. For small
number of inverters, the dispersion is high, and decreasing
until the rings contains more than 16 inverters and therefore
filling up more than one LAB. For more than 16 inverters, the
dispersion is constant, indicating that the variation is only
due to the natural timing variation between the difference
logic elements in the FPGA. For other FPGAs with similar
architecture, the oscillator ring frequencies will result in
similar distributions.

Due to the observed distribution of frequencies of equal
length oscillator rings, the transition regions will quickly
be spread out over the sampling time period, much faster
than if only the accumulation of the oscillator ring jitter
was contributing. In order to examine the effect of this
frequency distribution on the randomness, we carried out
an experiment where a model of the TRNG was made in
MATLAB without involving the jitter in the generation of the
output sequence. 100 blocks of 1 Mbit each were recorded,
and for each block a new set of oscillator ring frequencies was
generated from a Gaussian distribution (same as generating
one block of data from 100 different TRNGs). The resulting
output sequence was tested by the NIST randomness test
suite [15], and it showed that with 50 or more oscillator rings
in the MATLAB TRNG model, the quality of the generated
random sequences was good enough to pass the NIST
test suite. This experiment shows that a TRNG combining
several equal length oscillator rings outputs where there is a
dispersion between the frequencies, generates bit sequences
that have good qualities even though they are deterministic.
The jitter introduced in the oscillator rings contributes with
the unpredictable behavior that is necessary to have a true
random source.

7. TRNG Implementation

We have implemented our proposed TRNG from Figure 2.
In order to have a fast and small TRNG, the number of
inverters in the oscillator ring is selected to be 3. A sampling
frequency of 100 MHz is selected, resulting in a throughput
of 100 Mbps since our TRNG does not use any postprocess-
ing. In most of real TRNG designs in cryptographic systems,
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Figure 8: Simulated probability of hitting a transition region.
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Figure 9: Selected results from the NIST suite.

using postprocessing is recommended in order to improve
the randomness by increasing the entropy and removing bias.
But, for our TRNG, a postprocessing is not needed to pass the
statistical tests, and, therefore, an additional post-processor
can be of a simple type like an XOR of two subsequent bits or
a von Neumann corrector.

The required number of rings is estimated based on the
probability to hit the transition region with the sampling.
Sunar et al. [2] computed this by using a combinatorial
approach (coupon collector’s problem). An alternative way
is to make a statistical model of the TRNG and perform
simulations in order to decide how many oscillator rings
are needed to achieve a high probability such that at least
one ring is sampled in the transition region. When the size
of the jitter is small compared to the sampling period, the
simulations show that the number of rings in the transition
region follows a Poisson distribution with a parameter λ =
k · r where r is the number of rings and k is a constant
depending on the size of the jitter compared to the sampling
period. The probability of sampling in at least one of the
transition regions versus the number of rings is shown in
Figure 8. It shows that the probability increases rapidly for
small number of rings, but many oscillator rings are needed
to get a 100% certainty.

We have carried out an experiment where we have used
50 oscillator rings with 3 inverters, a sampling frequency of
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Figure 10: Results from DIEHARD.

Table 1: Resources used in the Altera FPGA.

Oscillator rings LUT only LEs LUT/Register LEs Total LEs

25 57 26 83

50 116 51 167

100 MHz and no postprocessing. A total of 1000 blocks of
1 Mbit (a total of 1 Gbit) of random data have been captured
from the TRNG. The data was tested by using the statistical
tests of NIST (SP 800-22) [15] and DIEHARD [16]. The
random data passed both tests. We also performed the same
experiment with only 25 oscillator rings. The random data
also passed both the NIST and the DIEHARD tests (Figures 9
and 10). From these figures it can be observed that the sorted
P-values from the tests follow the ideal diagonal line. These
experiments indicate that it is probably not necessary to have
almost 100% certainty to hit at least one transition region in
order to pass the NIST and DIEHARD statistical tests for this
kind of TRNG.

Table 1 shows the amount of resources used for our
TRNG in the Altera Cyclone II FPGA. For 25 oscillator rings,
the number of LEs is less than 100 (<1% of the total number
of LEs in our medium size FPGA). For comparison, the
original design in [2] occupies more than 1800 LEs.

A TRNG design based on several oscillator rings is robust
because the placement of the inverters inside the FPGA is not
critical and no constraints on the P&R tool are necessary. As
the experiments show, having different delays of the inverter
chains contributes to the quality of randomness. However,
if there are interactions between the oscillator rings making
the rings oscillate with the same frequency and phase, the
output bit sequence will naturally not be random. We have
not seen any sign of interaction between the oscillator rings
in our experiments.

All the tests were performed at the room temperature.
The effect of varying the temperature is beyond the scope
of this study, but in general, changing the temperature
will influence the oscillator ring frequencies. An increase
in temperature will decrease the oscillator ring frequencies
and vice versa. But since all the rings will be influenced in
the same manner, there will be a shift in all the frequencies
and the dispersion between the frequencies will remain
approximately unchanged.
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Figure 12: Standard deviation of 1000 traces, sampling frequency
10 MHz and 25 rings.

8. Restart Experiment

In order to examine the randomness of our TRNG after
startup, an oscilloscope was used to capture the random
output when restarting the TRNG several times from the
same reset state. While the reset is active, the oscillator ring
outputs are kept at zero or low level. When the reset is
deactivated, the oscillator rings start to oscillate. In Figures
11 and 10 restart sequences from the output of the TRNG
are captured where the oscilloscope is triggered on a clocked
version of the reset signal at the origin of the graph. The
sampling frequency is 50 MHz. Because of the bandwidth
limitation in the oscilloscope, the measured outputs are not
square signals. It can be seen that all the outputs start at zero,
but there is a deviation after the first clock period of 20 ns.
This experiment shows that our TRNG outputs randomness
quickly after a restart. The experiment also shows that since
the traces are deviating from each other, the output contains
true randomness and not pseudorandomness. If the random
signal had been only pseudorandom, the restart experiment
should have given equal traces when repeatedly starting the
TRNG from the same reset state.

The restart experiment was expanded to capture 1000
restarts. The standard deviation for all these traces was
calculated and is shown in Figure 12 for a sampling frequency
of 10 MHz. The form of the curve is very regular because
all the traces are aligned with the sampling frequency, and
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Figure 13: Standard deviation of 1000 traces, sampling frequency
100 MHz and 25 rings.

because the random signal is digital with voltage level of
either +3.3 V or 0 V. Theoretically, the standard deviation
can be calculated by looking at the probability of a voltage
level of logic zero and logic one, and the probability of a
transition between the two logic levels. A good random signal
should have equal probability of zeros and ones, and also
equal probability of a transition or no transition. The mean
value of the voltage with these conditions, is then μ = 1.65 V.
The standard deviation can then be calculated for the two
cases: (1) the signal is in the middle of the sampling period,
and (2) the signal is at the sampling point. For case (1),
the standard deviation is σ = 1.65 V, and for case (2) the
standard deviation is σ = 1.17 V. From Figure 12 we can see
that the theoretical values match the measured data when
the starting period is omitted. It is also observed that the
standard deviation is stable after a short startup period.

Figure 13 shows the standard deviation with a sampling
frequency of 100 MHz. Due to the band limitation of the
oscilloscope, the values of the standard deviation differ from
the theoretical values. It is observed that in a short startup
period, the quality of the randomness is not optimal because
the standard deviation is not stabilized. From Figures 12 and
13, it is seen that this startup period is constant regarding the
sampling frequency or the throughput bit-rate. For the case
of a TRNG with 25 oscillator rings with 3 inverters in each
ring, this startup time is about 300ns. This indicates that the
first data bits should be omitted in order to have good quality
of the random sequence.

9. Conclusion

We have analyzed the TRNG in [2] and have proposed an
enhancement of a TRNG based on oscillator rings. By adding
an extra flip-flop after each inverter ring before the XOR tree,
we have shown that the performance is much better than [2]
regarding the random signal. We have also shown that the
frequencies of each ring are not equal but have some kind
of distribution. Smaller rings will have higher dispersion in
the distribution and therefore also better potential for fast
generation of randomness after restart.
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We have implemented the TRNG from Figure 2 and
carried out statistical tests on the resulting random bit
sequences. We have shown that our TRNG passes both
the NIST and DIEHARD tests without postprocessing. The
throughput of the TRNG is 100 Mbps and the resources used
in the FPGA are less than 100 logic elements in an Altera
Cyclone II FPGA.

The restart experiments show that the output of the
TRNG behaves truly random and not pseudorandom since
the traces differ when restarted from the same reset state.
These experiments also show that the standard deviation of
the traces is in accordance with the theory, and that it is stable
after a short startup period. Due to this startup period, the
first bits should be omitted in order to have good quality of
the randomness.
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