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The arrival of big data era of internet of vehicles promotes the rapid development of logistics industry, which also indirectly leads
to the high traffic accident rate, resulting in huge casualties and property losses. Driving behavior is considered the most central
factor leading to traffic accidents. Therefore, a scientific and effective method for evaluating the safety of commercial vehicle
driving behavior is urgently needed. In this study, a comprehensive evaluation model of driving behavior security based on
multimembership function is proposed, and entropy weight method (EWM), analytic hierarchy process (AHP), and fuzzy
comprehensive evaluation algorithm are integrated. Firstly, the evaluation system of commercial vehicle safety of driving
behavior is established. Secondly, the weight vector of each evaluation index is determined by combining EW-AHP to
eliminate the subjectivity of the traditional AHP algorithm. Then, the fuzzy comprehensive evaluation matrix is calculated
based on the multimembership function and fuzzy mathematics theory, and the quantitative evaluation of driving behavior
safety is realized based on the matrix. Finally, the real road vehicle driving data and driving behavior data are verified by
experiments. The experimental results show that the model can accurately and reasonably evaluate the safety of driving
behavior, which is of great significance to improve road traffic safety.

1. Introduction

With the rapid development of internet of vehicles technol-
ogy and big data technology, the logistics industry has
developed rapidly [1]. But at the same time, the accident rate
of commercial vehicles increases quickly, causing huge
casualties and property losses. Driving behavior is generally
considered one of the most important factors in crash occur-
rence [2, 3]. However, due to the stochastic nature of driv-
ing, the measurement and modeling of driving behavior
remain a challenging topic today. By studying the relation-
ship between driving behavior and accident tendency and
exploring the key factors affecting driving risk, the safety of
individual driving behavior can be quantitatively evaluated,
which is helpful to distinguish safe from unsafe driving

and is of great significance for improving road traffic
safety [4].

In the safety research field of driving behavior, a large
number of researchers have participated and achieved
remarkable results. Among them, nonparametric methods
and data mining techniques are widely used [5–9]. For
example, Chang et al. proposed a classification and regres-
sion tree (CART) model to establish the relationship
between injury severity, driver/vehicle characteristics, and
accident variables, indicating that vehicle type is a very
important variable related to the severity of a car accident
[5, 6]. Wang et al. characterized the driving risks with the
characteristics of sharp deceleration dangerous events and
studied the relationship between vehicle motion state, poten-
tial collision type, driving environment, driver information,
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and driving risk by combining k-means clustering and clas-
sification regression tree method [7]. Zhu et al. represented
the driving risk by the number of historical accidents and
studied the relationship between driving behavior, driver
information, and accident risk with the method of the mul-
tilayer Bayesian network, so as to realize the evaluation of
driving behavior safety [8]. Li et al. compared the application
of support vector machine (SVM) with the traditional nega-
tive binomial model in predicting motor vehicle collision.
The results show that SVM is more effective [9]. In addition,
Guo et al. assessed the factors associated with individual
driver risk using naturalistic driving data [10]. Hong et al.
proposed an aggressive driving behavior assessment model
based on OBD and smart phone data [11].

In the evaluation model of driving behavior safety, the
selection of evaluation index is very important [12]. Jun
et al. compared and analyzed the driving behaviors of
drivers who had a car accident with those who had not
and found that there were significant differences in driving
range, driving speed, and acceleration between the two
groups [13]. Ayuso et al. found that the longer the dis-
tance young drivers travel in speeding, the greater the
probability of accidents. This study revealed the relation-
ship between accident tendency and speeding [14, 15].
Bruce et al. believe that the violent braking and starting
behaviors during driving are a kind of “high gravity accel-
eration” event, which can be used to predict the specific
type of accidents of young drivers [16]. Research by Omar
et al. show that drivers who have experienced traffic acci-
dents have more sudden braking, suggesting that sudden
braking may be an indicator of a driver’s participation in
dangerous traffic conditions [17]. To sum up, driving dis-
tance, driving speed, and acceleration are the key indica-
tors that affect the safety of driving behavior.

Previous research with the evaluation of driving behavior
safety have focused on passenger vehicles, while there are
few studies in the field of commercial vehicles. In addition,
the evaluation models proposed by many researchers all
focus on distinguishing safe and unsafe driving behaviors
and studying the causes affecting unsafe driving behaviors,
while there are few researches on quantitative score of the
safety of driving behaviors.

In this paper, based on the natural driving data of com-
mercial vehicles, we combine analytic hierarchy process
(AHP), entropy weight method (EWM), and fuzzy compre-
hensive evaluation algorithm to establish a multimember-
ship function fuzzy comprehensive evaluation model of
commercial vehicle driving behavior safety. Firstly, EW-
AHP is used to determine the weight vector of each evalua-
tion index, and then the fuzzy comprehensive evaluation
algorithm model is established. The single-factor member-
ship vector and comprehensive fuzzy evaluation matrix were
calculated successively by using fuzzy operation, and the
final driving behavior score was determined. Finally, the
rationality and validity of the model are verified by experi-
ments. The model can be used not only to analyze factors
affecting driving risk and identify driving styles but also to
distinguish safe and unsafe driving behaviors and quantify
the safety scores of driving behavior.

The paper is outlined as follows. In Section 2, the steps of
AHP, EWM, and fuzzy comprehensive evaluation algorithm
are introduced briefly. Section 3 proposes a safety evaluation
model of commercial vehicle driving behavior, combining
the EW-AHP and fuzzy comprehensive evaluation algo-
rithm. In Section 4, the validity of the model is verified based
on the natural driving data of commercial vehicles. Section 5
concludes the work and discusses further analysis.

2. Theoretical Background

2.1. Analytic Hierarchy Process (AHP). AHP is widely used
in multiobjective decision problems. It can decompose the
elements to be decided into three levels, target, criterion,
and index, and conducted qualitative and quantitative anal-
ysis on this basis [18]. The steps of AHP algorithm are
briefly summarized as follows:

(1) Select evaluation index and establish evaluation
system

(2) Construct the comparison scale between each index

(3) Construct a judgment matrix for each level

(4) Verify the consistency of each judgment matrix. If
the consistency test fails, step (3) will be returned
to modify the judgment matrix. If the consistency
test passes, proceed to the next step. In this step,
the calculation formula of consistency index CI is
as follows:

CI = λmax − n
n − 1

: ð1Þ

In formula (1), λmax is the maximum eigenvalue of the
judgment matrix, and n is the order of the judgment matrix.
Then, the corresponding mean random consistency index RI
can be found according to Table 1. Finally, the consistency
ratio CR can be calculated by formula (2).

CR =
CI
RI

: ð2Þ

When the consistency ratio CR = 0, the judgment matrix
has complete consistency, and then it passes the consistency
test. When CR < 0:1, the judgment matrix has satisfactory
consistency, and then it passes the consistency test. When
CR > 0:1, the judgment matrix does not have consistency,
and the consistency test does not pass, so the judgment
matrix needs to be modified.

(5) Calculate weight vector of each index

(6) Complete the evaluation of the goal.

2.2. Entropy Weight Method (EWM). EWM is an objective
method to calculate the weight. In information theory,
entropy is a way to measure the uncertainty of events. The
greater the uncertainty of the event, the greater the entropy
and the more information it contains. The smaller the
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uncertainty of the event, the smaller the entropy and the
smaller the information contained [19].

According to the characteristics of entropy, the random-
ness and disorder degree of an event can be judged by calcu-
lating the entropy value, and the dispersion degree of an
index can also be judged by the entropy value. The greater
the dispersion degree of an index, the greater the influence
(weight) of the index on the evaluation target will be; other-
wise, the less it will be [20]. The steps of EWM algorithm are
briefly summarized as follows:

(1) Import the data that need to calculate the entropy
weight

(2) Standardize the data matrix

It is assumed that the data matrix consisting of n objects
to be evaluated and m evaluation indexes is as follows:

X =

x11 x12 ⋯ x1m

x21 x22 ⋯ x2m

⋮ ⋮ ⋱ ⋮

xn1 xn2 ⋯ xnm

2
666664

3
777775: ð3Þ

Since the meanings of positive and negative indicators
are different, different formulas are needed for data stan-
dardization processing of positive and negative indicators.
Formula (4) for standardization of positive indicators and
formula (5) for standardization of negative indicators are
as follows:

zij =
x −min x1j,⋯, xnj

� �
max x1j,⋯,xnj

� �
−min x1j,⋯,xnj

� � , ð4Þ

zij =
min x1j,⋯, xnj

� �
− xij

max x1j,⋯,xnj
� �

−min x1j,⋯,xnj
� � ð5Þ

(3) Calculate the sample specific gravity

Calculate the proportion of the ith sample in the jth
index and regard it as the probability used in the calculation
of relative entropy. Calculated from the previous step, the
normalized matrix Z is

Z =

z11 z12 ⋯ z1m

z21 z22 ⋯ z2m

⋮ ⋮ ⋱ ⋮

zn1 zn2 ⋯ znm

2
666664

3
777775: ð6Þ

The probability matrix P can be calculated, where the
calculation formula of each element pij is as follows:

Pij =
zij

∑n
i=1zij

, i = 1⋯ n, j = 1⋯m ð7Þ

(4) Calculate information entropy and information util-
ity values of each index

For the jth index, its information entropy is calculated as
shown in Formula (8), and its information utility value is
calculated as shown in formula (9).

ej = −
1

ln n
〠
n

i=1
pij ln pij

� �
, j = 1,⋯,m, ð8Þ

dj = 1 − ej, j = 1,⋯,m ð9Þ

(5) Calculate the entropy weight of each index.

The calculation formula of entropy weight of each index
is as follows:

V j =
dj

∑n
i=1dj

, j = 1,⋯,m: ð10Þ

2.3. Fuzzy Comprehensive Evaluation Algorithm. Fuzzy
comprehensive evaluation is a method to quantify a number
of influence factors with unclear boundaries and difficult to
be quantified, and to conduct comprehensive evaluation of
the grade status of the evaluated object from multiple factors
[21, 22]. The steps of fuzzy comprehensive evaluation algo-
rithm are briefly summarized as follows:

(1) Establish the factor set of each evaluation index
(factors set)

(2) Determine the evaluation grade of the object to be
evaluated (evaluation set)

(3) Determine the weight vector of each evaluation
index

(4) Determine the membership function. The com-
monly used membership functions include the
Gaussian function, ridge function, and rectangle
function. Their formula is as follows:

Table 1: Mean random consistency index.

n 1 2 3 4 5 6 7

RI 0.00 0.00 0.52 0.89 1.12 1.26 1.36
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Gaussian function (minimum type, intermediate type,
and maximum type):

r xð Þ =
1, x ≤ a

e− x−að Þ/σð Þ2 x > a,

(
ð11Þ

r xð Þ =
0, x ≤ a

1 − e− x−að Þ/σð Þ2 x > a,

(
ð12Þ

r xð Þ = e− x−að Þ/σð Þ2 ,−∞ < x < +∞: ð13Þ

Start

Access to car networking data

Construct comparsion scale

Construct judgement matrix Calculate the proportion of the
ith sample in the jth index

Calculate the information 
entropy and information utility 

value of each index
Consistency check

Yes

No

ModifyAHP EWM

�e eigenvalue method
determines the index weight

Weighted comprehensive

Based on fuzzy comprehensive evaluation algorithm,
the safety evaluation of commercial vehicle driving

behavior is realized

End
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Target layer

Speed and mileage Acceleration Bad driving behavior

Safety evaluation of commercial vehicle driving behavior

Rule layer

Index layer D
M

M
E
S

S
D
S

M
A
S

N
E
A

N
E
B

N
L
T

P
O
T

N
N
T

N
H
S
L
G

N
F
D

Figure 2: Safety evaluation index system of commercial vehicle driving behavior.

4 Journal of Sensors



Ridge function (minimum type, intermediate type, and
maximum type):
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Rectangle function (minimum type, intermediate type,
and maximum type):

r xð Þ =
1, x ≤ a

0, x > a,

(
ð17Þ

r xð Þ =
0, x < a

1, x ≥ a,

(
ð18Þ

r xð Þ =
0, x < a

1, a ≤ x < b

0, x ≥ b

8>><
>>: ð19Þ

(5) The fuzzy comprehensive evaluation matrix is
obtained

Firstly, formula (20) is used to calculate the single-factor
membership vector, and formula (21) is used to calculate the
multifactor membership matrix.

Ri =Wk ⊙ ri, ð20Þ

R =

R1

R2

⋮

Rm

2
666664

3
777775: ð21Þ

In formula (20), Ri is a single-factor membership
vector. The basic principle is derived from the fuzzy trans-
formation ⊙ of the weight vector corresponding to ri (the

Table 3: Judgment matrix of index layer U1.

U1 U11 U12 U13 U14

U11 1 1/3 1/2 1

U12 3 1 2 2

U13 2 1/2 1 1

U14 1 1/2 1 1

Table 4: Judgment matrix of index layer U2.

U2 U21 U22 U23

U21 1 1 2

U22 1 1 3

U23 1/2 1/3 1

Table 5: Judgment matrix of index layer U3.

U3 U31 U32 U33 U34

U31 1 1/2 1/2 1/2

U32 2 1 2 1

U33 2 1/2 1 1/2

U34 2 1 2 1

Table 6: Weight summary results of EW-AHP combination.

Indicators
U1

(0.1311)
U2

(0.5267)
U3

(0.3422)
The comprehensive

weights

U11 0.5805 0.0761

U12 0.2677 0.0350

U13 0.1379 0.0181

U14 0.0149 0.0020

U21 0.2262 0.1191

U22 0.6632 0.3493

U23 0.1106 0.0583

U31 0.1977 0.0677

U32 0.1876 0.0642

U33 0.2622 0.0897

U34 0.3524 0.1206

Table 2: Judgment matrix of criterion layer U .

U U1 U2 U3

U1 1 3 4

U2 1/3 1 2

U3 1/4 1/2 1
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membership degree of the ith index for each evaluation
level) and the second-level index, The selected fuzzy opera-
tor [23, 24] is ð•+Þ, 1 ≤ k ≤ 3, 1 ≤ i ≤m.

S =W ⊙ R = W1,W2,W3ð Þ ⊙

r11 r12 ⋯ r1n

r21 r22 ⋯ r2n

⋮ ⋮ ⋯ ⋮

rm1 rm2 ⋯ rmn

2
666664

3
777775:

ð22Þ

S is the fuzzy comprehensive evaluation matrix, W is
the weight vector of driving behavior evaluation index
determined by formula (23), and R is the multifactor mem-
bership matrix determined by formula (21). The operator
symbol is the fuzzy operator ð•+Þ. Based on the above algo-
rithm steps, the quantitative evaluation of commercial vehi-
cle driving behavior safety can be realized.

(6) Quantify and score your goals.

3. Proposed Ensemble Method

The subjectivity of traditional AHP algorithm can be elimi-
nated by combining the three methods in the second section
and using the entropy weight analytic hierarchy process to
comprehensively assign weights to each evaluation index.
Then, the fuzzy comprehensive evaluation algorithm is used
to score the driving behavior quantitatively. The flow chart
of the overall algorithm is shown in Figure 1.

3.1. Establish the Safety Evaluation System of Commercial
Vehicle Driving Behavior. Referring to Section 1, we can
know that the driving mileage, driving speed, and accelera-
tion are the key indicators affecting the safety of driving
behavior. We can extend some other indicators from these
three indicators, such as driving mileage, mean speed, over-

speed, standard deviation of speed, maximum speed, emer-
gency acceleration, and emergency braking. However, in
the field of commercial vehicles, there are a large number
of bad driving behaviors such as large throttle, low gear
and high speed, neutral taxiing, and fatigue driving. There-
fore, we also choose the above indicators.

Of course, the indicators affecting the driving safety are
far more than this. Indicators such as weather, road condi-
tions, driver age, and gender will have a certain impact on
driving safety. However, the main research object of this
paper is the driver’s driving behavior, so these indicators
are not within the scope of consideration.

0.3493

0.1206 0.1191
0.0897

0.0761 0.0677 0.0642 0.0583
0.035

0.0181
0.002

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

NEB NFD NEA NHSLG DM POT NNT NLT MES SDS MAS

W
ei

gh
t

Indicators

Figure 3: The weight of each index.

Table 7: Corresponding scores of each rating level.

Road conditions
Rating

Excellent Good Average Poor Very poor

Urban road 90 70 50 30 10

The highway 90 80 60 45 25

Mixed road 85 65 45 25 5

Table 8: Selection scheme of multimembership function.

Driving mileage (DM)
Gaussian function

Mean speed (MES)

Standard deviation of the speed (SDS)

Ridge functionMaximum speed (MAS)

Number of emergency acceleration (NEA)

Number of emergency braking (NEB) Rectangle function

Number of large throttle (NLT)

Ridge function
Proportion of overspeed time (POT)

Number of neutral taxiing (NNT)

Number of high speed in low gear (NHSLG)

Number of fatigue driving (NFD) Rectangle function
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In addition, considering too many factors in the model is
not conducive to the development of subsequent analysis, so
we chose the key indicators identified above.

Therefore, the safety evaluation system of commercial
vehicle driving behavior shown in Figure 2 can be estab-
lished. Among them, the target layer is the safety evaluation
of commercial vehicle driving behavior (U). The criteria
layer includes speed and mileage (U1), acceleration (U2),
and bad driving behavior (U3). There are 11 indicators
(U11 −U34) in the index layer; they are the driving mileage
(DM), mean speed (MES), standard deviation of the speed
(SDS), maximum speed (MAS), number of emergency accel-
eration (NEA), number of emergency braking (NEB),
number of large throttle (NLT), proportion of overspeed
time (POT), number of neutral taxiing (NNT), number of
high speed in low gear (NHSLG), and number of fatigue
driving (NFD).

3.2. Determination of Index Weight Based on AHP. Based on
the SATTY1-9 scale method [25] and the opinions of senior
experts in the automobile industry, the judgment matrix of
each index layer can be obtained as shown in Tables 2–5.

According to formulas (1) and (2) and judgment matrix
of each indicator layer, it can be calculated that that the con-
sistency ratio (CR) of judgment matrix of each indicator

layer is less than 0.1, satisfying the consistency. Therefore,
the maximum eigenvalue of the consistent matrix and its
corresponding eigenvector can be obtained, which can rep-
resent the importance degree of each index layer, namely,
weight allocation.

Therefore, the weight vector of each level index can be cal-
culated by the MATLAB programming. The weight vector of
criterion layerU is [0.6250, 0.2385, 0.1365]. The weight vector
of indicator layer U1 is [0.1484, 0.4258, 0.2312, 0.1945]. The
weight vector of indicator layer U2 is [0.3874, 0.4434,
0.1692]. The weight vector of indicator layer U3 is [0.1404,
0.3300, 0.1996, 0.3300]. The comprehensive weight vector of
each indicator layer w = ½0:0928, 0:2661, 0:1445, 0:1216,
0:0924, 0:1058, 0:0404, 0:0192, 0:0450, 0:0272, 0:0450�.
3.3. Determine the Index Weight Based on Entropy Weight
Method (EWM). Combined with formulas (3)–(10), the weight
of each index can be calculated by the MATLAB programming
as follows: v = ½0:0371, 0:0007, 0:0286, 0:0386, 0:0263, 0:0631,
0:1438, 0:1292, 0:0662, 0:1035, 0:1635, 0:1993�.
3.4. EW-AHP Combination Weights. Based on the weights
obtained by the AHP and EWM algorithm in Sections 3.2
and 3.3, respectively, the combined weights of evalua-
tion indexes can be calculated according to the follow-
ing formula:

Table 9: Reference values of membership degrees of each indicator to each grade.

Indicator
Coefficient

x1 x2 x3 x4 x5 x6 x7 x8 x9
DM 50 155 260 365 470 575 680 785 1000

MES 66 69 72 75 78 81 84 87 90

SDS 5 10 15 20 25 30 35 40 —

MAS 88 92 95 97 99 101 103 105 —

NEA 0 1 2 3 4 5 6 7 —

NLT 5 20 35 50 65 80 95 110 —

POT 0 0.005 0.020 0.035 0.050 0.065 0.080 0.100 —

NNT 0 1 2 3 4 5 6 7 —

NHSLG 0 2 4 6 8 10 12 14 —

Table 10: Vehicle driving data.

Data generation
time

Latitude and
longitude

Speed
(km/h)

Rotate speed
(rpm)

Accumulated distance
(km)

Acceleration
(m/s2)

Time
(h)

2020-8-1 0:00
114.9279 |
31.9632

36.0 1166.000 22255.4 0.30 271.5

2020-8-1 0:00
114.9282 |
31.9641

47.6 1211.125 22255.6 0.41 271.5

2020-8-1 0:00
114.9287 |
31.9653

56.7 1114.125 22255.7 0.30 271.5

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2020-8-31 23:59
125.4410 |
43.9755

97.3 1190.125 54854.7 -0.09 697.8

2020-8-31 23:59
125.4425 |
43.9734

93.3 1147.125 54854.9 -0.06 697.8
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Wi =
wivi

∑n
i=1wivi

, i = 1,⋯, n: ð23Þ

In Sections 3.2 and 3.3, w is the weight of each evaluation
index calculated based on AHP, and v is the weight of each
evaluation index calculated based on EWM. According to for-
mula (23), the combined EW-AHP weight summary results
can be obtained, as shown in Table 6.

In order to better analyze the weight proportion of each
index, the weight bar chart of each evaluation index can be
drawn, as shown in Figure 3. As can be seen from
Figure 3, sudden braking is the most critical factor affecting
the safety of commercial vehicle driving behavior, and the

second factor is fatigue driving and rapid acceleration.
Therefore, the improvement of the safety of commercial
vehicles’ driving behavior should be started from the follow-
ing three aspects: emergency braking, fatigue driving, and
rapid acceleration.

3.5. Fuzzy Comprehensive Evaluation Algorithm and
Implementation. Section 2.3 has briefly introduced the steps
of fuzzy comprehensive evaluation algorithm. This section
will introduce in detail the specific implementation of the
application of the Fuzzy comprehensive evaluation algo-
rithm based on the EW-AHP combination weight to the
safety evaluation of commercial vehicle driving behavior.
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Figure 4: The scoring results of the top four drivers.

Table 11: Driving behavior data.

Start time End time Vehicle type Bad driving behavior The last time (s) Alarm location (latitude and longitude)

2020-8-1 1:43 2020-8-1 1:43 Tractor Large throttle 8 115.7339 | 37.6072

2020-8-1 3:12 2020-8-1 3:12 Tractor Large throttle 8 115.1235 | 36.5906

2020-8-1 3:39 2020-8-1 3:39 Tractor Large throttle 8 115.1118 | 36.2635

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2020-8-31 23:12 2020-8-31 23:12 Tractor Sudden braking 1 113.2730 | 23.4528

2020-8-31 23:13 2020-8-31 23:13 Tractor Neutral taxiing 6 113.2775 | 23.4523
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3.5.1. Establish Driving Behavior Factors Set for Commercial
Vehicles. According to Figure 2, the factor set can be estab-
lished as follows:

U = U1,U2,U3f g,
U1 = U11,U12,U13,U14f g,
U2 = U21,U22,U23f g,
U3 = U31,U32,U33,U34f g:

ð24Þ

3.5.2. Establish Evaluation Set on Commercial Vehicle
Driving Behavior. In order to quantify the final driving

behavior evaluation score between 0 and 100, it is necessary
to determine the corresponding score of each evaluation
level while determining the evaluation set. Therefore, the
evaluation set on the driving behavior of commercial vehi-
cles can be established as follows:

V = Excellent, Good, Average, Poor, Very Poorf g: ð25Þ

The corresponding scores of each rating level can be
established according to different driving conditions, as
shown in Table 7.
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Figure 5: Scoring results of the last four drivers.

Table 12: Driver E score difference table.

Indicators
Journey number

36 33 42 35 17 39 11 5

DM 748.7 329.2 102.4 253.4 278.2 198.8 174 197.4

NEA 34 11 6 5 2 2 0 0

NEB 2 2 0 0 0 0 0 0

POT 0.03 0.02 0.00 0.00 0.03 0.00 0.00 0.00

NHSLG 80 2 0 0 1 2 4 0

NFD 1 1 0 0 0 0 0 0

Score 52.36 62.21 76.69 77.61 78.12 85.78 86.22 86.84
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3.5.3. Determine the Weight Vector of Each Evaluation
Indicator. According to Table 6, the normalized result of
index weight is:

W = 0:1311, 0:5267, 0:3422ð Þ,
W1 = 0:5805, 0:2677, 0:1379, 0:0149ð Þ,
W2 = 0:2262, 0:6632, 0:1106ð Þ,
W3 = 0:1977, 0:1876, 0:2622, 0:3524ð Þ:

ð26Þ

3.5.4. Determine the Membership Function. Due to the differ-
ent characteristics of each evaluation index, the membership
of each index cannot be reasonably explained by using only
one membership function. Therefore, this paper proposes a
method of using multiple membership functions to explain
the membership of the selected evaluation index separately.
After repeated experiments and comparisons of membership
functions, the selection scheme of multiple membership
functions as shown in Table 8 was finally determined.

In Equations (11)–(19), the parameters a, b, c, and d are
replaced by xi. The reference value of membership function
is different for different indicators. The calculation formula
of reference value of membership degree of each indicator
is as follows:

Ii xið Þ =mean Iið Þ ± 5 − ij j × STD Iið Þ: ð27Þ

In formula (27), if i is less than 5, it takes a negative sign;
otherwise, it takes a positive sign. IiðxiÞ is the reference value
of the membership degree of the ith grade of the ith index,
meanðIiÞ is the mean of the data column in which the ith
index is located, and STDðIiÞ is the standard deviation of
the data column of the ith index.

For the reference value of membership degree of driving
mileage, we divide its maximum value and minimum value
into equal parts. The other indexes are calculated according
to formula (27) and then dynamically adjusted. The refer-
ence values of each index to each grade of membership are
shown in Table 9.
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Figure 6: Data normalization results of driver E.
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Because the number of emergency braking and fatigue
alarm is the rectangle function (with fewer parameters), it
is different from the other two membership functions.
According to the different data characteristics, the member-
ship scheme of the two indexes is as follows: if the number of
emergency braking is zero times, it belongs to the excellent
level; if one time, it belongs to the good level; if two times,
it belongs to the average level; if three times, it belongs to
the poor level; if over three times, it belongs to the very poor
level. If the number of fatigue alarm is zero times, it is clas-
sified as excellent, one time is poor, and more than one time
is very poor. Finally, according to formulas (20)–(22), the
fuzzy comprehensive evaluation matrix can be calculated
to achieve the quantitative scoring of commercial vehicle
driving behavior.

4. Validation and Results

The vehicle driving data of several sections of a company in
August were selected, including “Hangzhou-Harbin,”
“Guangzhou-Changchun,” and “Guangzhou-Hefei.” Then,
the vehicle travel data was divided into various journeys
(the engine running from start to stop and the driving dis-
tance greater than 10 km was classified as a complete jour-
ney). All the travel data of 8 drivers within one month
were selected from these three roads, and a total of 403 com-

plete journeys were divided. The original driving data and
driving behavior data of one of the drivers are shown in
Tables 10 and 11.

The quantitative scoring model of commercial vehicle
driving safety established in this study can calculate the
scores of 8 drivers, and the results are shown in Figures 4
and 5.

By comparing the final scores of the eight drivers, it can
be seen that the scores of driver A are generally low, and the
scores are stable without great fluctuations. Therefore, we
can think that the driving style of driver A belongs to the
nonstandard driving type with low driving safety; however,
driver B, driver C, driver F, and driver H have relatively high
overall and stable scores. Therefore, we can conclude that
they have normative and stable driving styles with high driv-
ing safety. The scores of driver D, driver E, and driver G are
both high and low, and the scores fluctuate greatly. There-
fore, it can be considered that the driving styles of them
belong to the random type of driving with unstable driving
safety. The final driving behavior score obtained by referring
to the comprehensive evaluation model can standardize the
driving style of nonstandard drivers and encourage drivers
to maintain the standard driving, which is conducive to
improve the safety of road traffic.

As can be seen from Figure 3, the total weight of the first
six indicators exceeds 80%, so the analysis of these six
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indicators is sufficient to prove the rationality of our evalua-
tion model. We choose drivers D, E, and G whose scores
fluctuated greatly for in-depth analysis. For the analysis of
a single driver, such as driver E, we selected 8 journeys with
significant differences. The scores of the 8 journeys are
shown in Table 12. In order to better verify our model, each
indicator in Table 12 is normalized, and the line diagram as
shown in Figure 6 can be drawn.

As can be seen from Figure 6, for journeys with low scores
(such as journeys 36 and 33), they have a poor performance in
indicators with high weight (such as emergency braking and
fatigue driving), so they have the lowest score. On the con-
trary, for journeys with high scores (such as journeys 39, 11,
and 5), they performwell in all indicators and thus have higher
scores. For journeys with medium scores (such as journeys 42,
35, and 17), they performedmore modestly (neither too much
nor too little) on all indicators and so scored moderately. By
analyzing all the journeys of the other seven drivers, we can
find that their scores were consistent with our analysis.

By comparing the 8 journeys with significantly different
scores of drivers D, E, and G, a multidriver score comparison
diagram can be drawn, as shown in Figures 7 and 8. Among
them, low-scoring journeys include journeys 1 and 2,
medium-scoring journeys include journeys 3, 4, and 5, and
high-scoring journeys include journeys 6, 7, and 8.

Figures 7 and 8 compared and analyzed the scores of
drivers D, E, and G. It is obvious that the three drivers
perform poorly in various driving behavior indicators of
journeys 1 and 2 (such as a large amount of emergency
braking, emergency acceleration, and fatigue driving), so
the score is low. With the decrease of bad driving behavior
performance, the score increases accordingly. Therefore,
our model can reasonably achieve the quantitative evalua-
tion of the safety of commercial vehicle driving behavior.

5. Conclusion

In this study, a commercial vehicle driving safety evaluation
model combining EW-AHP and fuzzy comprehensive eval-

uation algorithm is proposed as a method basis for studying
the relationship between driving risks, risk causes, and quan-
tification of driving behaviors. Based on the natural driving
data of commercial vehicles, a safety evaluation system for
commercial vehicle driving behavior based on AHP was
established, which combines four main aspects of driving
behavior characteristics including driving mileage, driving
speed, acceleration, and bad driving behavior.

Based on EW-AHP, the weight coefficient of each evalua-
tion index is effectively determined, which solves the problem
that the traditional AHP algorithm is too subjective and finds
out the key causes affecting the driving risk, which are emer-
gency braking, fatigue driving, and rapid acceleration, respec-
tively. In view of the different characteristics of each evaluation
index, it is hard to explain the membership of each index by
using only one membership function. Therefore, a method
to explain the membership of each evaluation index by using
the multimembership function is proposed. Compared with
previous studies, this model can not only distinguish safe
and unsafe drivers but also identify driving styles and achieve
quantitative scoring of driving behavior safety. The model is
tested by using the actual driving data of multiple sections
and the effectiveness of the proposed method is verified.

The results of this study can be used to quantitatively
evaluate the driving behavior of commercial vehicle drivers,
standardize driving, and help drivers develop good driving
habits to improve road traffic safety. In the future research,
there are still some limitations and improvements worth
noting. For example, although this study is based on multi-
ple roads driving data, the data of roads can be more com-
prehensive and extensive. In addition, the research scope
can not only be limited to drivers’ driving behaviors but also
include more factors (such as environmental factors, roads,
and drivers’ emotions).

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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How to accurately reconstruct the 3D model human face is a challenge issue in the computer vision. Due to the complexity of face
reconstruction and diversity of face features, most existing methods are aimed at reconstructing a smooth face model with ignoring
face details. In this paper a novel deep learning-based face reconstruction method is proposed. It contains two modules: initial face
reconstruction and face details synthesis. In the initial face reconstruction module, a neural network is used to detect the facial
feature points and the angle of the pose face, and 3D Morphable Model (3DMM) is used to reconstruct the rough shape of the
face model. In the face detail synthesis module, Conditional Generation Adversarial Network (CGAN) is used to synthesize the
displacement map. The map provides texture features to render to the face surface reconstruction, so as to reflect the face
details. Our proposal is evaluated by Facescape dataset in experiments and achieved better performance than other current
methods.

1. Introduction

Face is one of the most important biological characteristics of
human beings, and face modeling is often used in security,
animation, biometrics, and other fields [1, 2]. In recent years,
due to the limitations of 2D images, the research of human
face has gradually shifted from 2D plane images to 3D space
models.

The steps of 3D face reconstruction are very complex if it
is reconstructed step by step. Moreover, this reconstruction
model will lead to more data loss and less accuracy. To stress
this issue, one-step reconstruction model is presented (see
Figure 1). The reconstruction system is divided into two
parts: the initial face reconstruction module and the face
detail synthesis module, and both are based on deep learning
[3]. The initial face reconstruction module is mainly respon-
sible for face alignment. The supervised learning method is
used to train 60K face images from 300W-LP dataset to
obtain the corresponding dictionary. In this process, a CNN
network is used to align the negative faces and detect their
feature points. The feature points are input into the principal

component analysis- (PCA-) based 3DMM [4] to obtain a
rough face shape. The face detail synthesis module is based
on CGAN, which inputs the original image to synthesize
the displacement map, and the displacement map retains
the more complete details of the face [5]. The face detail syn-
thesis module refers to DFDN to train high-quality images
and get the training data, which can synthesize the displace-
ment map from the original image.

In this paper, we propose a reconstruction system to
recover the details of the face model. Our reconstruction sys-
tem can better solve the problem of face pose reconstruction
and facial expression reconstruction from the input image.
The facial detail synthesis module of the reconstruction sys-
tem can extract facial features from the input image and syn-
thesize the displacement map containing most of the details
of the target face. Compared with the initial shape model,
the detail face model with displacement map has better visual
effect and more accurate data.

The rest of the paper is organized as follows. Section 2
describes the researchers’ related work on 3D face. Section
3 describes the initial face reconstruction module. Section 4
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describes the face detail synthesis module. Section 5 is the
experiment and analysis. Section 6 concludes the paper.

2. Related Work

With the application of deep learning methods to graphics,
the transition from 2D planar images to 3D spatial models
has become one of the popular research directions. Blanz
et al. proposed the concept of 3DMM and obtained a Basel
Face Model (BFM) by training the objects and related data
collected by the depth camera [6]. The parameterized BFM
has the universal characteristics of a human face, and a
deformed 3D model can be obtained by inputting shape, tex-
ture, and attribute parameters. A large number of 3DMM-
based algorithms have been proposed. Tran et al. proposed
a nonlinear 3D face deformation model method [7], which
used a large number of unconstrained pictures as training
objects to train a new architecture of 3DMM without using
3D scanning equipment. Galteri et al. used CGAN to refine
3DMM [8].

In addition to traditional 3DMM, an end-to-end method
based on deep learning can also better reconstruct 3D face
models. The end-to-end method can perform face alignment
on the input face image. In the vector space, the detected fea-
ture points are mapped to the face model of the dense point
cloud one by one. This method is simple and fast. Compared
with the traditional 3DMM, its accuracy is higher in most
cases. Yao et al. designed PRNet [9] based on the CNN net-
work structure and deep residual network and used the UV
vector space to complete the mapping of the 3D face model.
Jackson et al. proposed a combination of 3DMM and CNN
VRN [10] to reconstruct the model of nonfrontal face images.
Tran et al. used the end-to-end neural network to reconstruct
the details of extreme face [11].

The rendering of face model is also a key part. Ranjan
et al. proposed COMA method to generate the head network
and used an MPI-IS Mesh Processing Library for rendering
[12]. MPI-IS Mesh Processing Library is an efficient 3D
model rendering tool. Li et al. designed a Flame model to ren-
der the basic shape and expression of the face model [13].

Sanyal et al. proposed RingNet based on Flame [14]. RingNet
can reconstruct the head model by inputting face image and
can better simulate the facial expression. A deep 3D face
reconstruction method was proposed by Deng et al. [15].
This method is based on 3DMM and coarse facial expression
[16], and the rendered model is more accurate.

3. Initial Face Reconstruction Module

The initial face reconstruction module is the key module in
proposed reconstruction system. This module outputs the
input face image directly to the rough initial face model,
which includes pose face alignment, feature point detection,
and model fitting.

3.1. Construction of Rough Face Model

3.1.1. Face Alignment. In our method, the feature point coor-
dinates are used as the input of 3DMM based on the PCA
algorithm to construct a parameterized model.

Because the manual labeling is time-consuming and
labor-intensive, and the traditional feature point detection
is poor in robustness and accuracy, we use a CNN to deal
with the face alignment of nonfrontal face images. This arti-
cle uses the DLIB library to detect feature points. DLIB
library uses regression tree set cascade [17] to generate fea-
ture point model through supervised learning and training
image sets with feature point annotations. Input an image,
the algorithm will generate the initial shape based on the tar-
get face and roughly estimate the location of the feature
points. Then, a gradient boosting algorithm is used to reduce
the error between the initial shape and the real landmark, and
the least square method is used to minimize the error to
obtain the cascade rt of each stage.

Ŝ
t+1 = Ŝ

t + rt I, Ŝt
� �

, ð1Þ

where t is the number of cascade regressions, Ŝ
t
is the shape

vector of the tth secondary cascade regression, and I is the

Face alignment 
network

Initial face 
reconstruction module

Training data

Detail synthesis 
network

Face detail 
synthesis module

Training data

3DMM

Rendering

Figure 1: Reconstruction system structure.
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input image. The key point of the cascade is that the regressor
rt predicts according to the image pixel intensity value and

indexes it relative to the current shape vector Ŝ
t
. The feature

points of a nonfrontal face image are divided into two parts:
visible and invisible. Since the latter is difficult to predict,
deep learning methods can effectively deal with this problem.

We train 60K face images with face deflection angle data
and feature point coordinate data in the 300W-LP dataset
[18] to obtain a dictionary. Through the index dictionary,
the output finds the index target that is closest to the deflec-
tion angle of the input face image. In addition, referring to
the weight setting of the main components of the human face
by referring to the PRNet, the feature points in the vicinity of
the eyes, nose, and mouth are given greater weights to high-
light the changes and recognition of the model

l f p =Mface ∗Wfp, ð2Þ

whereMface detects the coordinates of face feature points and
Wfp is the weight. Figure 2 shows an example of feature point
detection.

3.1.2. 3DMM Face Reconstruction. A rough face model with a
smooth surface is relatively average, without too much facial
detail but contains most of the depth information of the face.
Inputting the face image fitting model will change the vertex,

and the topological network of the BFM will average face
model. The method in this paper employ BFM2017 [19] to
fit a 3D face with less detail.

Taking the original image as input, assuming that the grid
vertex coordinates of the 3D model are S = ðxi, yi, ziÞ. The
feature points according to Equation (2) are used to calculate
the PCA parameters. According to [6], n shape vectors of the
initial face model is

Sshape = 〠
n

i

αiSi, ð3Þ

where αi is the shape weight coefficient.
According to the average face shape �S obtained from the

training set of 200 images, the difference between the shape
of each face model and the average face shape ΔSi = Si − �S cal-
culates the covariance matrix CS of the shape vector.
Through PCA, the orthogonal coordinate system formed by
the eigenvector si of CS is transformed into the basis:

Smod el = �S + 〠
m−1

i=1
αisi: ð4Þ

Due to the universality of main features of human face,
the distribution of shape vector parameter αi is normal

Figure 2: Feature point detection.
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distribution (as shown in Equation (5)). Texture parameters
are similar to shape parameter.

p αð Þ ∼ ~ exp − 〠
m−1

i=1

α2i
2σ2

 !
: ð5Þ

For the shape parameter α, texture parameter β, and
attribute parameter γ, the RGB vector of the projected image
of the reconstruction model is

Imod el x, yð Þ = Ir x, yð Þ, Ig x, yð Þ, Ib x, yð Þ� �T
: ð6Þ

The error between the projected image of the recon-
structed model and the input image is

Eimage =〠
x,y

Iinput x, yð Þ − Imod el x, yð Þ�� ��2: ð7Þ

Matching the input face image with the 3D modeled face
is an ill-posed problem. In the vector space of the face model,
the matching quality and a priori method can be used to
obtain the solution with constraints [6]. Similar to Equation
(5), pðαÞ and pðβÞ obey normal distribution, pðγÞ is obtained
by the point-to-point method. According to Bayesian deci-
sion, the input image can be obtained through the maximum
posterior probability with the parameters ðα, β, γÞ, and the
model Imodel is reconstructed through the three parameters.
But under the influence of noise, the observed image Iinput
will be disturbed.

Assuming the standard deviation σG of the Gaussian
noise of the observed image, the parameter probability of
the observed image is

p α, β, γð Þ = exp −
1

2σ2
G

⋅ E1

� �
: ð8Þ

The posterior probability of the parameter is expressed
by minimizing the cost function:

E = 1
σ2G

E1 + 〠
m−1

i=1

α2i
σ2S,i

+ 〠
m−1

i=1

β2
i

σ2T ,i
+〠

i

γi − �γið Þ2
σ2
γ,i

: ð9Þ

3.2. Camera Model

3.2.1. Weak Perspective Projection Function. To visualize a
3D model, the topology of the 3D model needs to be pro-
jected onto a two-dimensional plane. Compared with orthog-
onal projection, perspective projection can freely set the
reduction and enlargement of the projected image.

During the projection process, it may appear that the
dense 3D coordinates are superimposed on the 2D coordi-
nate points of the projection surface due to dimensionality
reduction. Aiming at the projection of the pose face model,
this paper uses a weak perspective projection function similar
to the perspective projection function to deal with the problem
of projecting a 3D model onto a 2D plane [20]. Figure 3

explains the difference between orthographic projection and
weak perspective projection.

In this paper, assuming that the positive direction of the
camera model is the weak perspective projection in the z
direction, referring to [21], we use the orthogonal projection
matrix Λ ∈ℝ3×3 and the target displacement calibration x to
design the weak perspective projection function:

P = f ∗Λ ∗ R ∗ Smod el + x: ð10Þ

Optimizing Equation (10),

P = 〠
n

i=1
f ∗Λ ∗ R ∗ αiSik k + xi, ð11Þ

where f is the focal length ratio, R is the rotation matrix, and
xi is the displacement coefficient of the ith vertex coordinate.
The weak perspective projection function projects the nor-
malized face mesh vertices from the 3D space to the 2D
plane, which is convenient for subsequent operations and
processing.

Minimize the error of projecting the initial reconstruc-
tion model based on the PCA algorithm to the plane [22]:

E =〠
k
ωk Lk‐P lk α, βð Þð Þk k2 + λk αk k2, ð12Þ

where Lk is the kth feature point of the planar face, lkðα, βÞ is
the coordinates of the kth vertex of the 3D model, ωk is the
weight of the kth feature point, and λk is the regularization
coefficient of the shape parameter.

3.2.2. Hidden Surfaces Remove. In the dense 3D mesh, under
nonfrontal face conditions, some vertices will always overlap,
which affects the result and accuracy of feature point acquisi-
tion. In this paper, the z-buffer algorithm [23] is used to solve
the ambiguity of the depth value.

The z-buffer algorithm buffers the depth value of the vis-
ible surface into the depth buffer area, and the depth value of
the hidden surface is removed. So, the single view only has
the depth of the visible surface. The depth z value is not the
true Euclidean distance of the Cartesian space coordinate
system, but a relative measure of the distance from the vertex
to the viewpoint. Assuming that the model is viewed from the
perspective of the z-axis as the positive direction, the projec-
tion surface is the xoy plane. ðx, yÞ is the coordinates of each

Figure 3: Orthogonal projection and weak perspective projection.
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pixel in the overlapping area of the projection surface. The
ray parallel to the z-axis are the depth values, which are z1
and z2, respectively, and the maximum of (z1,z2) is stored
in the z-buffer.

Figure 4 demonstrates the difference between whether to
use the z-buffer depth map. The depth map of the depth map
using the z-buffer algorithm is distinct, and there is no ambi-
guity in the depth value due to the posture self-occlusion
caused by a single perspective.

3.3. Face Alignment Network. The purpose of the face align-
ment is to obtain a dictionary through training. The input
face image is indexed after face detection, etc., and then, the
angle of the target face relative to the frontal perspective
can be obtained, and the target face can be aligned [24].
The face alignment obtains the angle of the target face with
the feature point detection of DLIB library and the improved
feature point loss function. When the input is a face image
with a large pose, not only the visible feature points can be
accurately detected but also the feature points that are invis-
ible due to the posture self-occlusion can be predicted more
accurately.

Test an image in the test set n times, and take the average
value of its location map feature points. Improved loss func-
tion Lf p:

Lf p =〠 �S − SGT
�� �� ∗Wfp, ð13Þ

where �S is the average value of n tests of the feature point
landmarks of the location map, SGT is the real landmark,
and Wfp is the weight of the feature points.

The face alignment network is a CNN architecture based
on the residual network [25, 26], composed of 10 residual
modules. Figure 5 is a diagram of the face alignment network
structure.

When using the face alignment network training and the
angle of the training set image corresponding to the annota-
tion, 3D point cloud and additional parameters are used as
the training object, and the projection normalized coordinate
code (PNCC) feature [18] that can represent the shape of the
model is used to generate a dictionary.

PNCC is composed of normalized coordinate code (NCC)
and z-buffer algorithm. NCC normalizes the coordinates c =
ðx, y, zÞ of the vertices of the 3D average face model, and its
calculation formula is

NCC =
�Sc −min �Sc

� �
max �Sc

� �
−min �Sc

� � : ð14Þ

The purpose of PNCC is to use z-buffer algorithm to
remove the hidden surface normalized by NCC to achieve
the effect of projection. PNCC calculation formula:

PNCC = z − buffer V3D ρð Þ, NCCð Þ, ð15Þ

(a) (b) (c)

Figure 4: The difference between using z-buffer depth map. (a) Original image. (b) Depth map using z-buffer. (c) Depth map without
z-buffer.
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where V3DðρÞ is the 3D surface after projection and ρ is a
model parameter.

4. Face Detail Synthesis Module

In the initial face reconstruction module, although the
3DMM reconstruction model based on the PCA algorithm
has most of the information of the reconstruction target, it
loses part of the detailed information due to dimensionality
reduction. We use a face detail synthesis module to make
up for face detail information.

4.1. Displacement Map Based on Texture Bump. The details
of the face include gullies and wrinkles, so it is difficult to
detect and extract them with a unified standard method.
Undifferentiated detection and detail extraction integration
can effectively solve this problem. We uses the deep learning
method to build a detailed synthesis network, which detects
the face in the image and extracts the texture map of the face
area, and synthesizes a displacement map based on the tex-
ture map.

The displacement map is similar to the normal map.
Normal map highlights the unevenness of the model. The
normal map represents the normal vector corresponding to
the vertices, but cannot change the vertex coordinates of
the model itself. Since all the details are only reflected in the
map, the displacement map can use micropolygon tessellate
[27] to change details of the model surface. For a 3DMM
composing of triangular meshes, first, inlay a triangular
structure with the same size as the image pixel size on the
effective area of the model. The bump map is grayed out,
and the depth z coordinate is determined by the gray level.
Then, according to the triangle mesh obtained by mosaic,
the vertices are moved along the original surface normal
direction. Then, determine the new normal vector for the
new mesh vertex.

The lower x and y of the model’s three-dimensional coor-
dinates are represented by the uv coordinates of the texture,
i.e., the image color. z coordinate is represented by the gray
scale of the displacement map. The depth information of
the shifted texture obtained by graying the texture is incom-
plete. The reason is that for face images, some face details
may be treated as noise, or the depth of some details is too

similar to the main area of the face, resulting in a large devi-
ation of the model.

Our method proposes a detailed synthesis network based
on the gray-scale displacement map, and the subtle details of
the face are used as noise to extract the difficult-to-handle
details of the texture map from the generator. The extracted
detail noise is used as a feature map and cyclically synthe-
sized to a displacement map. According to the gray value,
the depth of the model is changed in a small amount to high-
light the details. The pixels of the synthesized texture are
4096 ∗ 4096, and there are more pixels corresponding to
details, which is more convenient for processing. The three
images in Figure 6 are the RGB texture map, the normal
map, and the displacement map.

In Figure 7, the red frame area of the detail model recon-
structed by the method in this paper represents three details
from small to large depth. Rendering the displacement map
to the model can clearly see that the fit of different degrees
of detail is relatively good.

4.2. Facial Expression Process. The recognition and fitting of
facial expressions is a key problem that needs to be solved
in the field of 3D face reconstruction. The dynamic
changes and severity of the face will affect the analysis of
the main components of the face. When projecting, because
the 3D space dimensionality reduction will lose part of the
information, the facial expressionmodel will appear ambiguity
when it is projected onto the 2D plane.

Figure 6: Examples of texture map, normal map, and displacement map.

Figure 7: Rendered detailed model.
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Our method mainly uses the expression fitting function
of BFM2017 to realize the dynamic changes of the face.
According to Equation (3), on the basis of the neutral expres-
sion face shape vector, an additional expression vector e is
added to it, i.e.,

Sshape = 〠
n

i

αiSi + ei: ð16Þ

However, the expression fitting function of BFM2017
mainly changes the mouth vector, and the fitting effect of
other face parts is not ideal. Therefore this article uses a
semantically defined emotion feature predictor and physical
appearance features. The emotion feature predictor is based
on deep learning training to obtain the corresponding
expression parameters, and the appearance feature is the
expression fitting of BFM2017.

Referring to the processing of facial dynamic expressions
in DFDN, the emotion feature predictor is trained from a
total of 450k images with 11 expressions in the AffectNet
dataset [28]. The epredictor ∈ℝ128 used to represent the feature
vector of human emotion is obtained by the network training
of CNN structure, and the emotion parameters are randomly
generated in the standard normal distribution. The emo-
tional feature vector with expression parameters is used to
render the emotional image set, and the training set is input
to the emotional feature predictor to obtain the feature vector
of the face object in the image set [22]. The emotional feature
vector is combined with the physical appearance feature to
obtain a semantically defined feature vector.

According to the one-to-one correspondence between
the feature vector of the image set and the expression param-
eter, a dictionary is set to represent the mapping of the fea-
ture vector to the expression parameter. Input a facial
expression image, get its emotion feature vector through
the emotion feature predictor, traverse the dictionary, and
find the expression parameter closest to this vector.

4.3. GAN-Based Detail Synthesis Network. The Conditional
Generative Adversarial Network (CGAN) [29] based on
GAN is divided into two parts: generator network and dis-
criminator network. The generator network randomly gener-
ates constrained images, and the generated images pass
through the discriminator to perform feature threshold dis-
crimination, save valid features, and cycle the generation-
judgment process until the discriminator cannot determine
the wrong image.

In this article, dealing with 3D face models, the loss func-
tion of CGAN is as follows:

VGAN D,Gð Þ = Ex,y log D x ∣ yð Þ½ � + Ex,z log 1 −D G x ∣ zð Þð Þð Þ½ �,
ð17Þ

where x is the input image, y is the feature point, and z is ran-
dom noise. Refer to [30], optimizing Equation (17):

LG =VCGAN D,Gð Þ + λ1L1 Gð Þ,
LD = −VCGAN D,Gð Þ,

(
ð18Þ

where LG is the generator loss function, LD is the discrimina-
tor loss function, L1ðGÞ is the generator’s L1 loss function,
and λ1 is set to 100.

The U-net model based on improved FCN [31] is a struc-
ture including down-sampling and up-sampling, with the
purpose of increasing the accuracy of the image. Down-
sampling is used to display environmental information, and
up-sampling combines the environmental information from
down-sampling with the input information of up-sampling
to restore detailed information, making the texture of the
human face more real.

This network uses the U-net-6 structure and takes the
original target image as input, to generate displacement maps
from the semantically defined texture structure map. The
generator network and the 4-layer fully connected layer con-
strain the generated data through feature points and calculate
the PCA parameters. Except for the fully connected layer,
every linear part is activated by the ReLU function. The
LeakyReLU function is used to activate between the fully
connected layers. The structure of the U-net-6 network gen-
erator is shown in Figure 8.

The network discriminator judges the validity of the out-
put image through the threshold. In this paper, the discrimi-
nator is based on PatchGAN [32]. The input image is divided
into an N ×N matrix, and after convolution, an m ×m
matrix is output. The output matrix is averaged, the thresh-
old is judged, and the logical result is output. The network
structure of the discriminator is shown in Figure 9.

5. Experiment and Discussion

5.1. Face Alignment Evaluation. The visible and invisible fea-
ture points of nonfrontal faces obtained by face alignment
will directly affect the subsequent initial face reconstruction.
In our evaluation experiment, the normalized mean error
(NME) calculated by comparing with real landmarks repre-
sents the accuracy of feature points.

For the face alignment experiment, this article uses the
300W-LP dataset as the training set. The dataset contains
faces deflection from 0 to 90 degrees, with a total of more
than 60K images. Use the DLIB library to detect human faces
and crop each image into a 256 × 256 × 3 face image.

Aiming at the accuracy evaluation of the feature points of
face poses at different angles, this paper randomly selects
1000 images from 300W-LP dataset. Calculate the average
of the normalized mean error (NME) between the 68
detected feature points of the face and the real landmarks
to evaluate the accuracy in this paper. In addition, we com-
pare our method with other two advanced face alignment
methods PRNet and 3DDFA. The results obtained are shown
in Figure 10.

According to Figure 10, compared with the other two
methods, our method can get better results in the feature
point detection experiment of 300W-LP sample set.

5.2. Reconstruction Evaluation in Constrained Scenarios. For
the evaluation of face image reconstruction in constrained
scenes, this experiment uses Facescape dataset [33]. Aiming
at the evaluation of the 3D model [34], the evaluation
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experiment in this paper is based on the root mean square
error (RMSE) and standard deviation (SD) between the point
cloud of the reconstructed model and ground truth. Among
them, RMSE is used to evaluate the accuracy of the recon-
structed model, and SD is used to assess the degree of disper-
sion of the point cloud of the reconstructed model itself. In
the reconstruction evaluation, the accuracy values of neutral
face evaluation, facial expression evaluation, and robustness
evaluation are represented by RMSE 1, RMSE 2, and RMSE
3, respectively. The lower the RMSE and SD, the better the
accuracy and dispersion of the reconstruction model.

5.2.1. Frontal Face Model Evaluation. In this experiment, the
accuracy (RMSE 1) and the discrete value (SD) of the frontal
face reconstruction model are used as the evaluation stan-
dard. In this evaluation process, 10 frontal face images of
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Figure 9: Network structure diagram of the discriminator.
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Table 1: Mean RMSE 1 and mean SD of test set 1.

Method RMSE 1 SD

Our 3.13 1.87

PRNet 3.64 2.08

3DDFA 4.70 2.96

RingNet 5.12 3.13
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the subject were randomly selected from Facescape dataset as
test set 1, and the test set 1 images were reconstructed
through the integrated network proposed in this paper, and
10 sets of models were obtained. In addition, this experiment
compares our method with three other advanced algorithms,
PRNet [9], 3DDFA [18], and RingNet [14].

According to the evaluation standard, the mean RMSE 1
and SD of the 10 groups of reconstruction models are calcu-
lated. The data of the test set 1 are shown in Table 1. The
detailed data of our method and the model reconstructed
by PRNet, 3DDFA, and RingNet are shown in Figure 11.

Based on the above data comparison, our method has
higher accuracy and dispersion in reconstructing the frontal
neutral face image compared to the other three methods.
Figure 12 shows examples of the heat distribution of the sam-
ple reconstruction model error.

5.2.2. Frontal Face Model with Expression Evaluation. The
difficulty of facial expression reconstruction is often greater
than that of neutral expression face reconstruction. We show
more reconstruction models of images in unconstrained
environment in Figure 13.
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In this experiment, Facescape dataset was used to evalu-
ate the reconstruction of facial expressions. Facescape dataset
contains the depth information data of 20 facial dynamic
expressions of each collected object. Eight dynamic facial
expression images of the object are randomly selected from
Facescape dataset for reconstruction, and the root mean
square error (RMSE2) is calculated (as shown in Figure 14).

In the same method, the accuracy of facial expression
reconstruction model is often slightly lower than that of neu-
tral face reconstruction model. In Figure 14, although the
RMSE 2 of face models with expression reconstructed by

our method is higher than the mean RMSE 1, it is lower than
the mean RMSE 1 of the face model with neutral recon-
structed by other methods. The accuracy of our method for
facial expression reconstruction is significantly higher than
that of neutral face reconstruction model of other compari-
son methods, so our method also has higher advantages in
facial expression fitting.

5.2.3. Robustness Evaluation under Noise Environment. In the
field of 3D reconstruction, robustness is an important evalu-
ation criterion for reconstruction model algorithms. It can

(a)

(b)

(c)

Figure 13: Reconstructed models using our method. (a) Target face images. (b) Smooth model without high frequency details. (c) Fine
models with high frequency details.

3.16 3.63 3.4
3.15 3.52 3.47 3.41 3.44

3.64

4.7
5.12

3.13

0

1

2

3

4

5

6

Neutral Smile Mouth
stretch

Dimpler Grin Jaw left Sadness Cheek
blowing

M
ea

n 
RM

SE
 2

 o
f f

ac
e w

ith
 ex

pr
es

sio
n

Face image with expression

PRNet (mean RMSE 1 of neutral)
RingNet (mean RMSE 1 of neutral)

Our (expression)

3DDFA (mean RMSE 1 of neutral)
Our (mean RMSE 1 of neutral)

Figure 14: RMSE 2 of expression face model.

10 Journal of Sensors



clearly indicate the degree of adaptation of the algorithm in
a complex environment and whether it can reduce the influ-
ence of interference factors on model reconstruction. The
robustness evaluation in this paper is mainly about face
reconstruction under noisy environment. First, randomly
select 6 images from the Facescape dataset, and apply
Gaussian noise and salt and pepper noise to these 6 images,
respectively. As can be seen in Figure 15, an example com-
pares the difference between detail reconstruction model of
the original image and detail reconstruction model of the
noise image.

The image after applying noise is the test set 2. Then, the
original image and the noise image of the test set 2 were
reconstructed through the integrated network, compared
with the ground truth, and the root mean square error
(RMSE 3) was calculated (as shown in Figure 16).

According to the test set 2 of the noise evaluation exper-
iment and the corresponding noise image, the fluctuation
interval of the RMSE3 of the noise image reconstruction
and the original image reconstruction is (-0.04, 0.18). In
addition, there may be a large number of noise points cover-
ing the high-frequency details, which will affect the discrim-
inating process of the discriminator of the face detail
synthesis module, resulting in the increase of iterations and
the slight improvement of the accuracy of the whole model.

6. Conclusion

We propose a reconstruction system for face model. The ini-
tial face reconstruction module uses a face alignment net-
work and 3DMM to initially reconstruct a face with a
smooth surface. The face detail synthesis network generates

(a) (b) (c)

Figure 15: Robustness evaluation example model. (a) Original image reconstruction model. (b) Gaussian noise image reconstruction model.
(c) Salt and pepper noise image reconstruction model.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5 6

RM
SE

 3
 o

f t
es

t s
et

 2

Test set 2

Original images
Gaussian moise images
Salt and pepper noise images

Figure 16: Robustness evaluation.

11Journal of Sensors



a displacement map, which contains most of the details of the
reconstructed object. For facial expressions, we use an emo-
tional feature predictor to fit facial expressions. The three-
dimensional sense and accuracy of the detailed face model
are better than the 3DMM reconstruction model based on
PCA. Through the evaluation of face alignment, accuracy,
and robustness in unconstrained scenes, our method obtains
ideal results. Compared with other advanced methods, our
method also has more advantages.
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A variety of climate factors influence the precision of the long-term Global Navigation Satellite System (GNSS) monitoring data. To
precisely analyze the effect of different climate factors on long-term GNSS monitoring records, this study combines the extended
seven-parameter Helmert transformation and a machine learning algorithm named Extreme Gradient boosting (XGboost) to
establish a hybrid model. We established a local-scale reference frame called stable Puerto Rico and Virgin Islands reference
frame of 2019 (PRVI19) using ten continuously operating long-term GNSS sites located in the rigid portion of the Puerto Rico
and Virgin Islands (PRVI) microplate. The stability of PRVI19 is approximately 0.4mm/year and 0.5mm/year in the horizontal
and vertical directions, respectively. The stable reference frame PRVI19 can avoid the risk of bias due to long-term plate
motions when studying localized ground deformation. Furthermore, we applied the XGBoost algorithm to the postprocessed
long-term GNSS records and daily climate data to train the model. We quantitatively evaluated the importance of various daily
climate factors on the GNSS time series. The results show that wind is the most influential factor with a unit-less index of 0.013.
Notably, we used the model with climate and GNSS records to predict the GNSS-derived displacements. The results show that
the predicted displacements have a slightly lower root mean square error compared to the fitted results using spline method
(prediction: 0.22 versus fitted: 0.31). It indicates that the proposed model considering the climate records has the appropriate
predict results for long-term GNSS monitoring.

1. Introduction

Within the various remote sensing technologies, Global Nav-
igation Satellite Systems (GNSS) plays an important role in
providing fundamental infrastructure and has been success-
fully implemented in deformation monitoring. The global
GNSS, such as the United States’ Global Positioning System
(GPS), Russia’s Global Navigation Satellite System (GLO-
NASS), the European Union’s Galileo, and China’s Beidou
Navigation Satellite System (BDS), serve as highly efficient
monitoring tools for precise geodetic surveying. Different
unions or countries have installed numerous Continuously
Operating Reference Stations (CORS) for various monitoring
purposes, including the Plate Boundary Observatory (PBO)

maintained by National Science Foundation (NSF) Earth-
Scope, the CORS GPS network maintained by the U.S.
National Geodetic Survey, and the GPS Earth Observation
Network (GEONET) of Japan. More than 506 worldwide
permanent GNSS stations are managed by the International
GNSS Service (IGS) group as of December 08, 2019. The
original RINEX (Receiver Independent Exchange Format)
files for the GNSS stations in different CORS networks are
free to download through University NAVSTAR Consortium
(UNAVCO) or National Geodetic Survey (NGS) data archiv-
ing facilities [1, 2]. The GPS, originally NAVSTAR GPS, is a
widely used satellite positioning system, and it especially
refers to the GNSS owned and operated by the United States.
In the United States, the GPS signal has been widely used in
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the monitoring service since 1989 [3]. Although this study
only used GPS signals, GNSS is currently used as an umbrella
term for all the aforementioned global satellite positioning
systems. For this reason, this study uses the term GNSS.

Understanding the climate variations of GNSS time series
are important for monitoring applications. In practice, dur-
ing the period of half, one, or two years, the long-term mon-
itoring time series have cyclical fluctuation and rebound
characteristics triggered by climate influence, which makes
the users who do not major in geodesy confuse about the pre-
cision of GNSS monitoring. The climate factors, mainly
including the rainfall, temperature difference, wind speed,
visibility, dew, and humidity, have always been a question
among the long-term monitoring GNSS operators and data
users. Xu et al. [4] proved that climate change led to the peri-
odical variety of thermal expansion of bedrock (TEB). Dong
et al. [5] established the hybrid model to remove the seasonal
variations from long-term time series. Yan et al. [6] com-
bined the thermal expansion model with the mass loading
model to study the observed annual GNSS height changes.
Munekane [7] proposed that the large temperature difference
induced the maximum vertical displacements of three milli-
meters within 24 hours and established a model to move it.
The climate variations are recognized as impact factors of
the target deformation. Moreover, since the climate includes
a variety of parts, the effects due to local climate variations on
GNSS observations need to be carefully further studied.
Thus, it is necessary to quantitatively analyze the weights of
impacts caused by different climate factors on the long-
term GNSS monitoring time series.

To achieve the quantitative analysis results of the impact
on the GNSS time series caused by different daily climate fac-
tors, we need high-precision GNSS records. The accuracy
and precision of GNSS observations are impacted by the
types of GNSS equipment used and the processing method
applied. In general, there are two widely used GNSS data
postprocessing approaches: relative positioning and absolute
positioning. The relative positioning approach uses the
carrier-phase double-difference (DD) method to fix differ-
enced phase ambiguities to integer values between stations
and between satellites [8]. The DD method uses simulta-
neous GNSS records from at least two GNSS stations, and
at least one of the GNSS stations should be installed in a sta-
ble foundation or known position with respect to a specific
reference frame. The absolute positioning approach only
needs a single GNSS station to determine the position with-
out using any synchronous data from other stations. This
method used undifferenced dual-frequency pseudo-range
and carrier-phase observations in addition to precise satellite
orbits and clock information to determine the position of a
stand-alone GNSS station [9].

Precise Point Positioning (PPP) is a typical GNSS post-
processing absolute positioning approach, which uses a
single-receiver phase-ambiguity-fixed resolution to calculate
daily original raw data. The precision of the PPP solutions
has dramatically increased during the last decade, which pri-
marily attributes to highly precise satellite orbits and clock
data provided by the International GNSS Service (IGS) and
new algorithms used to resolve phase ambiguity within a sin-

gle receiver [10]. Moreover, the PPP algorithm has opera-
tional simplicity and can provide consistent accuracy [11,
12]. Considering the risk of lacking high-quality reference
GNSS station when using the relative DD method, it is con-
venient to use the PPP method to process the GNSS data that
monitor the long-term structural deformation or surface
land movements. In this study, the software package GIP-
SY/OASIS (V6.4) employing the PPP processing strategy
was applied [13]. The estimation of wide lane and phase bias
was maintained by the Jet Propulsion Laboratory (JPL).
When applying the GIPSY/OASIS software to solve daily
positions, they are processed within the X, Y , and Z geocen-
tric Cartesian coordinate systems. The widely accepted global
reference named the International Terrestrial Reference
Frame (ITRF) is derived from the method of minimizing
the overall horizontal movements of selected global perma-
nent stations [14]. Using the GNSS to study the global tec-
tonic movement, the most common global reference frame
based on GNSS sites is required. Currently, the latest earth-
centered, earth-fixed global reference frame International
GNSS service of 2014 (IGS14) is established and aligned to
ITRF2014 datum, which was updated from ITRF2008 in Jan-
uary 2017 [15]. However, the reference frame selection is
motivated by the purpose of the study. In a continental-
scale study area, such as North American, the NA12 was
defined by 299 GPS stations and designed to corotate with
the stable interior of the North American tectonic plate
[16]. Also, another North American Plate fixed reference
frame (NAD83 reference frame) was established resulting
from requirements of the coordinates for sites located in
the Conterminous United States (CONUS), Alaska, and US
territories in the Caribbean. However, the high-precision
GNSS monitoring time series inevitably include background
tectonic motion within the subcentimeter level in the conti-
nental scale reference frame [17]. The millimeter-level inter-
nal tectonic movements could be easily obscured and biased
within an inappropriate reference frame [18]. For this reason,
there is a need to establish a stable regional or local reference
frame for studies focusing on regional or local scales.

The scale, the orientation, the origin, and the change of
these parameters over time are the main physical and math-
ematical properties of a reference frame. In geodetic applica-
tions, a stable local reference frame is primarily transformed
from the latest and well-established global reference frame
using the Helmert transformation. A group of GNSS refer-
ence stations (common points) are used to tie the target
regional or local reference frames to a global reference frame
(e.g., IGS14). Pearson and Snay [19] used a 14-parameter
transformation method to transform coordinates from the
global reference frame IGS08 to the regional reference frame
NAD83, which is maintained by NGS. Theoretically, the
coordinates of a point referred to the IGS14 global reference
frame vary when they are transformed to a regional or local
reference frame. Nevertheless, deformation monitoring
mainly focuses on the deformation rates/displacements of
the target study area rather than the coordinates themselves
in both reference frames. In general, relative high precision
displacements or deformation velocities are needed in differ-
ent area monitoring applications.
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In practice, after the highly precise GNSS records are
processed, it is still a challenge to quantitatively analyze the
weights of impact from different climate factors on the GNSS
time series. However, with computing science development,
the machine learning approach achieves a dramatic develop-
ing rate and provides a new tool to explore new analysis
methods in geodesy and geosciences. The approach can
quantitatively analyze the hypothesis and assist to capture
high-dimensional data sets [20, 21]. Furthermore, machine
learning methods have been widely applied in geosciences.
Rouet et al. [22] evaluate the fault movements in the Cascadia
subduction zone. Phrampus et al. [23] predict the probability
of encountering global SEAFLEA. Anderson and Lucas [24]
proposed the climate ensemble method to predict weather
and establish various climate models. Ren et al. [25] used
the machine learning algorithm to estimate the fault friction
with high precision. The machine learning algorithm has the
potential to help researchers make further explanations and
explore the theories behind the questions in geosciences.
Therefore, we applied the ensemble learning method to ana-
lyze the weights of impact from various daily climate factors
on the GNSS monitoring time series. In this study, we used
an appropriate supervised machine learning (SML) algo-
rithm, Extreme Gradient Boosting (XGBoost), to determine
the relationship between various daily climate factors and
highly precise GNSS data.

In this paper, we proposed a hybrid method to evaluate
the impact of daily climate factors on the GNSS time series,
using the extended Helmert transformation method and
XGBoost algorithm. The model is trained by high-precision
GNSS records and various long-term climate records. The
contributions of this paper are shown as follows:

(1) To remove the background tectonic movements
when monitoring local ground deformation, we pro-
posed the extended Helmert transformation to estab-
lish the highly stable PRVI19 local reference frame
based on ten well-distributed continuously operating
GNSS stations with at least five years of data

(2) By combining the GNSS records with millimeter
accuracy and the local climate data with a span of at
least five years, we applied the XGboost machine
learning algorithm to derive the quantitative results
of the weights of impact from different daily climate
factors on the GNSS time series

(3) Based on the model, we predicted the GNSS records
and validate them with the real raw GNSS data. The
results show that the high accuracy of the prediction
and it is expected that this study can provide a new
prospect to explore the potential deformation moni-
toring problem

2. Data and Methods

2.1. Coordinate Transformation Using the Extended Helmert
Transformation Method. The Helmert transformation, also
called a 7-parameter transformation, is used to conduct
distortion-free reference frame transformations within a

three-dimensional (3D) space in the geodesy area. The 7-
parameter approach employs three parameters from transla-
tions, three parameters from rotations, and one parameter
from the scale at a selected epoch and the rates of these seven
parameters over time. For daily GNSS positional coordinate
transformation from the PPP solutions, the geocentric coor-
dinates of a site with respect to the local reference frame can
be approximated by the following formula:

X tð Þlocal = TX tð Þ + 1 + s tð Þ½ �∙X tð ÞIGS14 + RZ tð Þ∙Y tð ÞIGS14
− RY tð Þ∙Z tð ÞIGS14,

ð1Þ

Y tð Þlocal = TY tð Þ + RZ tð Þ∙X tð ÞIGS14 + 1 + s tð Þ½ �∙Y tð ÞIGS14
+ RX tð Þ∙Z tð ÞIGS14,

ð2Þ
Z tð Þlocal = TZ tð Þ + RY tð Þ∙X tð ÞIGS14 − RX tð Þ∙Y tð ÞIGS14

+ 1 + s tð Þ½ �∙Z tð ÞIGS14,
ð3Þ

where RXðtÞ, RYðtÞ, and RZðtÞ are counterclockwise rotations
along X axis, Y axis, and Z axis of the geocentric coordinate
system; TXðtÞ, TYðtÞ, and TZðtÞ are translations about these
three axes; and sðtÞ is a differential scale change between
IGS14 and local reference frame.

Theoretically, the seven parameters for each epoch/day
are different. Therefore, to obtain the positional time series
in the local reference frame, the seven parameters at each
epoch have to be provided. Currently, there are two strategies
that can be employed to perform the transformation, daily
seven-parameter transformation, and 14-parameter transfor-
mation [19]. Continuous observations have made it possible
to calculate the seven transformation parameters on a daily
basis and transform the daily positional time series from
one reference frame to another. However, calculating daily
transformation parameters is too complex for most end-
users, since users have to include a large number of reference
stations for calculating transformation parameters at each
epoch. Besides, it is difficult to ensure the data quality and
availability for all the reference stations at each day. Thus,
the GNSS time series of these seven transformation parame-
ters can be simulated by the linear method with equations:

αt =

TX tð Þ
TY tð Þ
TZ tð Þ

2
664

3
775, βt =

RX tð Þ
RY tð Þ
RZ tð Þ

2
664

3
775, α′ =

TX′

TY′

TZ′

2
664

3
775, β′ =

RX′

RY′

RZ′

2
664

3
775,
ð4Þ

αt = αt0 + α′∙ t − t0ð Þ, ð5Þ

βt = βt0
+ β′∙ t − t0ð Þ, ð6Þ

s tð Þ = s t0ð Þ + s′∙ t − t0ð Þ: ð7Þ
Here, t0 denotes a specific epoch, which is set as specific

epoch. TXðt0Þ, TYðt0Þ, TZðt0Þ, RXðt0Þ, RYðt0Þ, RZðt0Þ, and s

3Journal of Sensors



ðt0Þ are the seven Helmert transformation parameters at spe-
cific epoch t0. TX′ , TY′ , TZ′ , RX′ , RY′ , RZ′ , and s′ are the first deriv-
atives (rates) of these seven parameters, which are assumed to
be constant; the units of the translational components (TXðtÞ
, TYðtÞ, TZðtÞ) are meters; the units of the three rotational
components (RXðtÞ, RYðtÞ, RZðtÞ) are radians; the units of
the rates of translational components (TX′ , TY′ , TZ′) are
meter/year; the units of the rates of the rotational compo-
nents (RX′ , RY′ , RZ′) are radian/year, and sðtÞ is a unitless scale.
The local reference frame is tied to the same origin and scale
of the original global reference frame, which is the IGS14
global reference frame in this study. The above formulas also
require the use of a scale factor sðtÞ to minimize the distor-
tion of point-to-point distances between the two reference
frames. In general, the scale factor sðtÞ can be set as zero in
frame transformations between a global reference frame
and a local reference frame [26]. The common points are
used to solve the inverse problem by the least square method.

Then, the coordinates of the target GNSS stations
referred to the local reference frame can be obtained through:

X tð Þlocal = X tð ÞIGS14 + TX′∙ Δtð Þ + RZ′∙ Δtð Þ∙Y tð ÞIGS14
− RY′ ∙ Δtð Þ∙Z tð ÞIGS14,

ð8Þ

Y tð Þlocal = Y tð ÞIGS14 + TY′ ∙ Δtð Þ − RZ′∙ Δtð Þ∙X tð ÞIGS14
+ RX′∙ Δtð Þ∙Z tð ÞIGS14,

ð9Þ

Z tð Þlocal = Z tð ÞIGS14 + TZ′∙ Δtð Þ + RY′ ∙ Δtð Þ∙X tð ÞIGS14
− RX′∙ Δtð Þ∙Y tð ÞIGS14,

ð10Þ

Δt = t − t0ð Þ: ð11Þ
Also, since a linear model is assumed, the changing rates

can be easily calculated with two sets of transformation
parameters at two different epochs. In this study, the epochs
are set as t0 (i.e., 2015) and t1 (i.e., 2018). So, the coordinates
in both frames at epoch t0 are the same, and the seven
parameters are all zeros. The method aligns the two frames
at the epoch t0. The coordinates at epoch t0 are calculated
with the following equation:

X t0ð ÞIGS14
Y t0ð ÞIGS14
Z t0ð ÞIGS14

0
BB@

1
CCA =

X t0ð Þlocal
Y t0ð Þlocal
Z t0ð Þlocal

0
BB@

1
CCA: ð12Þ

In order to calculate the transformation parameters at
another epoch t1, the coordinates at epoch t1 in IGS14 and
local reference frame can be derived by using the following
equations:

X t1ð Þlocal
Y t1ð Þlocal
Z t1ð Þlocal

0
BB@

1
CCA ≈

X t0ð Þlocal
Y t0ð Þlocal
Z t0ð Þlocal

0
BB@

1
CCA: ð13Þ

Here, the velocity in local reference frame is regarded as

zero since local reference frame is designed to have a velocity
of zero relative to the rigid part of the region. With the coor-
dinates at epoch t0 in both IGS14 and local reference frame,
equations (1), (2), and (3) can be solved for the seven param-
eters at epoch t0. By knowing the six parameters for epoch t0
and t1, the parameter rates can be obtained by a simple differ-
ential method:

TX′ =
TX t1ð Þ − TX t0ð Þð Þ

Δt
, ð14Þ

RX′ =
RX t1ð Þ − RX t0ð Þð Þ

Δt
: ð15Þ

Then, the coordinates of a GNSS site at any epoch can be
transformed from IGS14 to the local reference frame with TX′ ,
TY′ , TZ′ , RX′ , RY′ , and RZ′ parameters.

2.2. Extreme Gradient Boosting (XGboost) Algorithm. In this
study, we applied the Extreme Gradient Boosting (XGboost)
algorithm to predict ground displacements and to under-
stand which climate factors have more impact on the GNSS
monitoring time series. XGBoost was proposed by Chen
et al. [27], which can combine many regression trees into
one strong ensemble learner. Because of the ensemble,
XGBoost can sufficiently capture complex interaction of var-
iables in monitoring time series and then fit the nonlinear
dynamic changes of displacements. This is one of the motiva-
tions for us to select XGBoost in this paper. Another reason is
that the strong explanation power of XGBoost can help us
understand the relationship between different daily climate
variables and predict the high-precision GNSS
displacements.

In XGBoost, K additive regression trees are together to
predict displacements. That is:

ŷi = 〠
K

k=1
gk xið Þ, gk ∈F , ð16Þ

where F = fgðxÞ =wqðxÞg ðq : Rm → T ,w ∈RTÞ is the
space of used regression trees, xi is a data set containing his-
torical displacements, each gk represents an independent
regression tree structure q and leaf weights w, and T repre-
sents the number of leaves of the regression tree.

The optimization function of XGBoost can be written as:

L =〠
i

l ŷi, yið Þ +〠
k

Ω gkð Þ, ð17Þ

Ω gð Þ = βT + 1
2
λ wk k2, ð18Þ

where β and λ are coefficients, l is a differentiable convex loss
function which represents the differences between measured
displacements and predicted displacements, and ΩðgÞ is the
penalty term of the objective function which helps avoid
the overfitting problem.

However, because of the complex architecture, it is diffi-
cult to train the ensemble learner once. An additive strategy
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has been widely applied which means trees are trained one by
one. The trees that have already been trained will be fixed,
and then, a new tree is added at one step. Suppose that the

predicted displacement at step t is ŷðtÞi , then the optimization
function at this step can be written as:

L t =〠
i

l yi, ŷ
t−1ð Þ
i + gt xið Þ

� �
+〠

k

Ω gtð Þ + C, ð19Þ

where C is a constant. To approximate the optimization
function using a second-order Taylor expansion, it can be
rewritten as:

L t = 〠
n

i=1
aigt xið Þ + 1

2
big

2
t xið Þ

� �
+Ω gtð Þ, ð20Þ

where

ai =
∂l yi, ŷ

t−1ð Þ
i

� �
∂ŷ t−1ð Þ

i

, ð21Þ

bi =
∂2l yii, ŷ

t−1ð Þ
i

� �
∂ y∧ t−1ð Þ

i

� �2 : ð22Þ

With equations (19) and (20), the optimization function
can be revised as:

L = 〠
T

j=1
〠
i∈I j

ai

 !
wj +

1
2

〠
i∈I j

bi + λ

 !
w2

j

" #
+ βT , ð23Þ

where I j = fi ∣ qðxiÞ = jg. Given a tree structure qðxÞ, the
weight of the jth node and extreme value of LðqÞ can be
obtained as:

wj = −
∑i∈I j ai

∑i∈I jbi + λ
, ð24Þ

L qð Þ = −
1
2
〠
T

j=1

∑i∈I j ai
� �2
∑i∈I j bi + λ

+ βT: ð25Þ

As studied by Breiman and Friedman [28], for a single
regression tree ðRTÞ, the following equation can be used to
measure the relative importance of independent variables in
the tree:

I2d RTð Þ = 〠
T−1

t=1
α2t I v jð Þ = dð Þ, ð26Þ

where t is a nonterminal node and T is the terminal node of
tree RT, xd is the splitting variable of node t, and α2t is the
improvement of square error of the prediction if xd is used
as splitting variable. For an ensemble learner, which is a col-
lection of M regression trees fRTmgM1 , the relative impor-

tance of variable x can be obtained by its average over all
additive trees:

I2d =
1
M

〠
M

m=1
I2d RTmð Þ: ð27Þ

The XGBoost is implemented using the “xgboost” pack-
age in the R software [29].

2.3. Data and Selection. In geodesy, a terrestrial reference
frame is realized by selecting a set of reference stations and
defining their positions and velocities. The selection of the
reference stations is critical for establishing a stable reference
frame. Here, it is very hard to set any mathematical or tech-
nical standard for selecting appropriate GNSS reference sta-
tions. In general, with some previously proposed guidelines,
the reference stations are selected based on overall geo-
graphic distribution and long-term (e.g., >5 years) continu-
ous records [30, 31]. Also, it requires no considerable
subsidence or uplift with vertical velocity magnitude less than
0.5mm/year referred to the global reference frame IGS14. A
reference station that is not locally stable will degrade the
overall stability or precision of the reference frame. The selec-
tion is mostly based on the availability of long-term CORS in
the study area. In addition, if the selected GNSS sites have
detailed station logs, which it may help explain the unex-
pected steps. The step means that the GNSS time series have
sudden ascending or descending jump induced by the earth-
quake, volcano eruption, or/and GNSS equipment change. In
this paper, we selected Puerto Rico and the Northern Virgin
Islands (PRVI) to be the target area. In the tectonic setting,
the motivation results from the results that researchers pro-
posed the exist of rigid block of Puerto Rico and the Northern
Virgin Islands (PRVI) between the Caribbean Plate and the
North American Plate [32, 33]. The area is recognized as a
tectonic stable microplate without notably tectonic move-
ments in the Caribbean area and can minimize the influence
from tectonic movements. The PRVI region is recognized as
an appropriate area to apply the method.

Also, the PRVI region has established an appropriate
GNSS infrastructure and has a long-term land monitoring
history. Since 1986, GNSS stations were installed by
researchers for studying Caribbean plate tectonic movements
[34]. In the PRVI region, as of 2020, 28 GNSS stations are
recording the displacement observations with 15 seconds
positioning. GNSS station coverage within this region is
exceptionally dense. The PRVI region owns the densest
GNSS stations in the United States and has been well moni-
tored by numerous permanent GNSS stations [30]. For
example, the coverage along the coast of Puerto Rico is
approximately 20.0 stations per kilometer. Eight GNSS sta-
tions within the PRVI region were installed by the Puerto
Rico Seismic Network (PRSN) at the University of Puerto
Rico at Mayaguez (UPRM). The installation was primarily
funded by a National Science Foundation (NSF) Major
Research Instrumentation (MRI) project (EAR-0722540).
The daily GNSS records with a sample rate of 15 seconds
are archived at UNAVCO public data archiving facility.
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The HLCM Group Inc. also installed eight GNSS stations in
the PRVI region for land surveying. The HLCM Group Inc.
is a private surveying company, and it archives the GNSS
data at the NGS data archiving facility. Other public agencies,
such as the U.S. Coast Guard, Federal Aviation Administra-
tion (FAA), and Jet Propulsion Laboratory (JPL), also oper-
ate GNSS stations in the PRVI region. Therefore, the well-
established GNSS network and the complete equipment

maintenance record offer a strong foundation to apply the
experiment (Figure 1). Moreover, since the GNSS signals
are likely to be blocked by the circumstance, the GNSS sta-
tions need to be installed in the open area. The open area,
such as the building roof or top of the mountain, could keep
minimum interference from GNSS multiple paths and signal
block. Figure 2 shows the site views at four typical permanent
GNSS stations in the PRVI region, all of which were installed
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Figure 1: Map showing the locations of current GNSS stations in the Puerto Rico and Virgin Islands region. VI represents the Virgin Islands;
WB represents the Whiting basin; VIB represents the Virgin Islands basin; SCB represents the St. Croix basin.
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Figure 2: Figure showing the site views of four typical continuously operating permanent GNSS stations in the PRVI region. (a) A site view at
Cerrillos_PR2008 GNSS station (ID: P780) installed in Ponce, PR. The antenna is mounted to a short-drilled braced monument (SDBM)
designed by UNVCO. (b) A site view at BayamonSciPR2008 GNSS station (ID: BYSP) and a nearby strong motion accelerometer installed
in the Bayamón Science Park, Bayamón, PR. (c) A typical building based GNSS station (ID: PRLP) installed by the HLCM Group Inc. in
Las Piedras, PR. (d) A site view at DVirgGordaBVI2013 GNSS station (ID: CN03) installed at the top of a mountain in North Sound,
Virgin Gorda.
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Figure 3: Plots showing the geocentric positional time series (X, Y , Z) of the ten frame sites with respect to the global reference frame IGS14.
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in the open area to avoid the GNSS signal block or multipath
effects, with solid monuments, i.e., the short-drilled braced
monument, and building mount monument.

The climate impacts the seasonal ground deformation,
and different climate factors perform different impact
weights in the GNSS time series. In this study, PRVI region
that presently follows a tropical rainforest climate is selected
to test the hybrid method. The area has recorded an annual
mean temperature of 28°C, and it has a trend of increasing
since the 1950s [35]. The precipitation records show a long-
term trend of decreasing precipitation in the northern area
and show historically drier with a positive rainfall trend in
the southern area [36]. Since the PRVI is one of the islands
located in the Caribbean region, it has a wind speed of
10mph~14mph which is recorded at 10 meters above the
ground. However, hurricane activity has increased since
1995. This increase in hurricane activity may also be a result
of natural variability [37]. Also, historical records from tide
gauges since 1900 show a Sea Level Rise (SLR) of
1.7mm/year. Recent satellite-based remote sensing technol-
ogy shows a SLR rate of 3.2mm/year since 1992 [38]. More-
over, since the snow/ice has different characteristics in a
variety of areas (such as Alaska and Texas in the U.S), it leads
to a tremendously different impact weight in GNSS time
series [39]. Notably, we expect the hybrid method to be fully

tested and have the characteristics of generality and effi-
ciency. Thus, we select the location without snow/ice to test
the hybrid method. Besides, to precisely evaluate the impact
caused by different climate factors, the selected study area
needs to have consistent climate data. We choose to use the
original daily climate monitoring continuous station which
is installed near the permanent continuous GNSS station in
the PRVI region.

3. Results

3.1. PRVI19 Local Reference Frame. This study used the
GIPSY-OASIS software package (V6.4) to obtain daily solu-
tions using the PPP method. Firuzabadi and King [40] and
Wang [41] proposed an outlier detection and removing algo-
rithm to clean the positional or displacement time series. On
average, 6~ 7% of the total samples have been removed as
outliers in this study. According to the previous investiga-
tions, daily PPP solutions would achieve 3-5mm horizontal
accuracy and 5-8mm vertical accuracy in the PRVI area
[30]. The PPP solutions of the GNSS stations are provided
with respect to a global reference frame. The positional time
series referred to the IGS14 global reference frame are shown
in Figure 3. Also, the raw PPP solutions inevitably include the
common background of global tectonic movements. Thus,
the GNSS observations referred to a stable local reference
frame could minimize the influence induced from the global
background movements.

In this study, we used the extended Helmert transforma-
tion and selected ten permanent stations to realize the
PRVI19 reference frame. The MIDAS method was used to
calculate velocity and uncertainty [42]. The velocities of the
ten selected reference stations with respect to different refer-
ence frames are shown in Figure 4. The locations of these per-
manent stations and corresponding site velocities referred to
IGS14 and PRVI19, respectively, are listed in Table 1. The
seven Helmert parameters for transforming the global
IGS14 reference frame to the local PRVI19 reference frame
are listed in Table 2. Moreover, the plate reconstructions

Table 1: Detailed information of the ten reference stations and the site velocities referred to IGS14 and PRVI19 reference frames.

Reference GNSS
Location (degree)

Site velocity Uncertainty of
the velocity
(mm/year)∗∗

IGS14, mm/year PRVI19, mm/year

Location Longitude Latitude EW NS UD EW NS UD EW NS UD

P780 Ponce, PR -66.5791 18.075 8.9 13.8 -0.3 0.1 0.1 -0.3 0.2 0.2 0.8

BYSP Bayamón, PR -66.1612 18.408 8.8 13.8 -0.5 0.2 -0.2 -0.9 0.2 0.2 0.8

PRJC San Sebastian, PR -66.9995 18.342 9.0 13.6 -0.8 0.4 0.1 -0.9 0.3 0.3 1.0

PRLP Las Piedras, PR -65.8683 18.195 9.3 14.8 0.1 0.5 0.7 -0.1 0.3 0.3 1.0

PRAR Cercadillo, PR -66.647 18.450 8.9 14.4 -0.5 0.3 0.7 -0.9 0.3 0.3 0.9

PRN4 Coamo, PR -66.369 18.079 9.0 13.6 0.6 0.2 -0.3 0.6 0.3 0.3 1.1

CUPR Culebra Island, PR -65.2825 18.307 8.5 14.6 -0.5 -0.3 0.2 -0.9 0.3 0.3 1.0

VITH St. Thomas Island, USVI -64.9692 18.343 8.6 14.8 -0.1 -0.1 0.2 -0.5 0.2 0.3 0.9

CN03 Gorda Peak, BVI -64.403 18.490 8.9 15.5 -0.2 0.2 0.6 -0.5 0.4 0.4 1.3

ABVI Anegada Island, BVI -64.3325 13.730 8.4 14.9 -0.3 -0.2 -0.1 -0.9 0.3 0.3 1.0
∗PR: Puerto Rico; USVI: U.S. Virgin Islands; BVI: British Virgin Islands. ∗∗The uncertainty represents the 95% confidence interval of the velocity estimate.

Table 2: Seven parameters for Helmert reference frame
transformation from IGS14 to PRVI19.

Parameters Unit IGS14 to PRVI19

dTx m/year 2.652437E-02

dTy m/year -2.130450E-02

dTz m/year -9.310699E-02

dRx Radian/year 1.386115E-08

dRy Radian/year 1.273412E-09

dRz Radian/year 5.511930E-09

t0 1/year 2015.0
∗Counterclockwise rotations of axes (X, Y , Z) are positive.
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and geodynamic modeling are defined by the rigidity of tec-
tonic plates. The stability of the local reference frame also
relies on the assumption of the rigidity of the tectonic plate.
The stability or the accuracy of the reference frame can be
assessed by the average velocities of all reference stations with
respect to the reference frame. Since the reference frame is
defined by the reference stations, in an ideal situation, all ref-
erence stations should have no relative movement between
each other with respect to the defined reference frame. Thus,
if the PRVI region is recognized as a rigid microplate in tec-

tonics, the stability of the local reference frame is to be
0mm/year. However, in practice, a tectonic plate is not
completely rigid, and it cannot be strictly stable. For PRVI19,
the stability reaches approximately 0.4mm/year in horizon-
tal and approximately 0.5mm/year in vertical. This level of
accuracy is essential for studying millimeter-per-year ground
motions in the PRVI region.

Theoretically, the longer length of GNSS data and better
geographical distribution of reference stations can improve
the stability of a reference frame. Wang et al. [18] updated
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the PRVI14 local reference frame to PRVI18 with the latest
global reference frame (from IGS08 to IGS14) and reference
stations. However, it indicated that there was no considerable
improvement in reference frame stability. In this study, we
established the local reference frame to PRVI19 with ten ref-
erence stations and a longer length of GNSS data. The PRGY,
PRLT, and PRMI GNSS stations, which are located at south-
western and southern of the PRVI region, are excluded from
reference stations. Those stations are located nearby the
South Lajas fault which is an active Holocene structure
within the past 5,000 years [43]. The Lajas Valley currently
experiences a 1.5mm/year north-south direction extension
and minor right-lateral strike-slip [9]. Also, the MIPR station
is excluded from the reference stations because it is close to
P780 and PRN4 in geographic distribution, and the GNSS
station stops recording data since October of 2017. Though
the location of MIPR station can form well geographical dis-
tribution for the local reference frame, we still excluded it
from the reference stations because P780 station has better
quality and longer length of data and locates in the same area.
However, the stability of the PRVI19 still does not consider-
ably increase compared with the previous two local reference
frames, i.e., PRVI14 and PRVI18 [18, 31]. Based on the pre-
vious versions of local reference frames and PRVI19, it

proves that the stability of the PRVI19 local reference frame
is approaching the rigidity of the PRVI tectonic block.

Figure 5 depicts nearly 13-year North-South, East-West,
and vertical displacement time series at BYSP (2008-2020)
with respect to the IGS14 and the PRVI19 reference frames.
It shows a notable difference in horizontal velocities when
referred to the global (IGS14) and local (PRVI19) reference
frames. The 13 years of BYSP observations show that it has
a velocity of 13:8 ± 0:2mm/year in NS and a velocity of 8:8
± 0:2mm/year in EW with respect to the global IGS14 refer-
ence frame; it has a velocity of 0:2 ± 0:2mm/year in NS and a
velocity of 0:2 ± 0:2mm/year in EW with respect to the local
PRVI19 reference frame, respectively. In general, most engi-
neer monitoring applications only focus on the local target
deformation displacements and do not consider the move-
ments with respect to a global reference frame. The compar-
ison of the BYSP GNSS time series within IGS14 and PRVI19
reference frames demonstrates that the background global or
regional tectonic movements can bias or obscure the local
ground deformation when using a global or regional refer-
ence frame.

3.2. Daily Climate Impact Factors. Climate change is consid-
ered as an important external impact factor influencing the
GNSS data precision. However, it is a challenge to clarify
the relationship between daily climate change and daily
GNSS records. The main reasons are because the daily cli-
mate change influence could be partially removed by the
24-hour GNSS processing method. Thus, we selected the
continuous operating GNSS station BYSP, which is installed
nearby a real-time climate-monitoring device. The 5-year
continuous climate data are used in the model, which is col-
lected by the weather station (TJSJ) nearby the BYSP (NOAA
National Weather Service). Here, we established two models
between which the only difference is that one considers the
daily climate features and the other not. We used the model
to evaluate whether climate change can influence the preci-
sion of the 24-hour GNSS time series, which has been trans-
formed to the PRVI19 reference frame using the extended
Helmert transformation method. The dimensionless index
shows that the model without considering the daily climate
change is 0.32 and the other one considering the daily climate
change is 0.25. The lower dimensionless index means that the
model has better performance. The results prove that daily
climate change is one of the impact factors in the GNSS time
series.

Furthermore, we determined the quantitative weights of
impact from different daily climate factors on the GNSS time
series. Figure 6 shows the importance of the 20 selected cli-
mate factors on the GNSS time series using the XGBoost
model. The XGBoost parameters used to evaluate the dis-
placements are shown in Table 3. Each row displays the
impact of the feature, in which the contribution weight is
shown on the x-axis. Here, we used two complementary fea-
tures, North-South (NS) feature and East-West (EW) feature,
which are the physical movements due to the vertical dis-
placements. Theoretically, the NS and EW observations
should change when the GNSS station has vertical move-
ments. For this reason, we involve the two features to help
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Figure 6: Plot showing the impact weights of different climate
factors evaluated by the combined method. Sea: sea level; Temp:
temperature; Hum: humidity; Vis: visibility. NS represents the
North-South displacements. Events represent the operation log of
weather station. EW represents the East-West displacements. Avg
represents the average of daily values. Low represents the lowest
daily value. High represents the highest daily value.

Table 3: XGBoost hyperparameters.

nrounds =400 nthread =8 eta=0.01

Gamma=0.01 max_depth =8 min_child_weight =2

Subsample =0.54 colsample_bytree =0.54 Lambda =0.01
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the hybrid model precisely evaluate different climate features
and corresponding impact weights. The relationship between
these two physical features is in good agreement with the
results reported in Li et al. [44], which indicated that the
key feature for the NS movements was the variance of the
subsidence or uplift area. Based on the five years of monitor-
ing climate records, we analyze the weight of different climate
factors influencing the GNSS displacements. We found that
the wind speed (average) and temperature (minimum) were
the two climate factors that have the biggest impact on the
daily GNSS time series. Interestingly, the humidity, tempera-
ture (average), and dew are not sensitive in the model. In the
daily GNSS postprocessing records, except for the mega
weather conditions, it is hard to determine the relationship
between these features that can impact the vertical
displacements.

3.3. GNSS Time Series Prediction. The hybrid model fore-
casted the GNSS monitoring displacements by learning the
previous data and expected to explore the potential deforma-
tion problem in various monitoring applications. The predic-
tion of GNSS observations is derived from the previous
displacements that are referred to the stable local PRVI19 ref-
erence frame. Here, we used the BYSP GNSS postprocessing
records referred to PRVI19 to train the model. The hybrid
model was trained by the 1823 days of GNSS displacements.
Also, we used the root mean square error (RMSE) as an indi-
cator to evaluate the forecasting precision [45, 46]:

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ x − �xð Þ2

n

r
, ð28Þ

where x is the prediction value, �x is the measured value, and n
is the sample size of test dataset. In the experiment, we need
to use the prediction results to compare with real deforma-
tion results monitored by the GNSS station. However, the
GNSS time series still inevitably include the nonlinear
change, such as the noise, which is complex and hard to
remove. Gazeaux et al. [47] tested different models and
methods to minimize the white noise and colored noise such

as the first-order Gauss Markov model and auto-regressive
moving average model. However, the best noise model is
location dependent, which is impacted by the location of
the GNSS site, GNSS raw data processing method, and mon-
ument designs [48]. Thus, in the comparison, we used cubic
spline function interpolation to fit the GNSS measured solu-
tions, which have been transformed to PRVI19 [49]. Figure 7
shows the predicted model results compared with the post-
fitted GNSS displacements using the cubic spline function
in the experiment. We used optimized parameters for the
cubic spline method and found the predicted values per-
formed well. It shows that the RMSE of the forecasting
method is 0.22, which is slightly lower than 0.31 from the
fitted results using the cubic spline function. Moreover, we
tested all parameters enrolled in the cubic spline method. It
also shows that the precision of the forecasted results meets
well with the spline fitted results, which are processed using
the real raw GNSS records.

4. Conclusions

To precisely analyze the impact of various daily climate fac-
tors on the GNSS time series, we proposed a hybrid method
and applied it in the PRVI area. We used the extended Hel-
mert transformation method to establish the PRVI19 local
reference frame, which could help avoid the bias of back-
ground global or regional tectonic movements in the GNSS
time series when studying local ground deformation. The sta-
bility of the PRVI19 reference frame is approximately
0.4mm/year and 0.5mm/year in the horizontal and vertical
directions, respectively. Also, we adopted the XGBoost algo-
rithm and the highly stable PRVI19 local reference frame to
quantitatively assess the effects of daily climate factors on
the GNSS daily (24 hours) observations. Based on the 13
years of GNSS records referred to PRVI19 and climate data
recorded by a nearby climate-monitoring device, we
observed that the wind had the biggest impact on the GNSS
time series. The results show that the average, lowest, and
highest wind speeds are the first, second, and fourth-largest
weights among all the climate factors. Besides, the result also
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Figure 7: Plot showing the detailed comparisons between the fitted values frommeasured values and predicted values in 600 days. The orange
dots represent the results predicted by the combined machine learning method. The yellow dots represent the fitted results based on GNSS
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shows that the lowest temperature also greatly affects the
GNSS displacements, which is the third-largest weight
among all climate factors. This paper introduces a new
method that can quantitatively determine the impact weights
of different climate factors on the GNSS time series. More-
over, we used the model to predict the GNSS records and
indicate users to explore potential deformation risk. It is
hoped that this study can promote the applications of the
GNSS techniques and improve the understanding of the
impact of different climate factors on the GNSS monitoring
time series.
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Energy management strategies can improve fuel cell hybrid electric vehicles’ dynamic and fuel economy, and the strategies based
on model prediction control show great advantages in optimizing the power split effect and in real time. In this paper, the
influence of prediction horizon on prediction error, fuel consumption, and real time was studied in detail. The framework of
energy management strategy was proposed in terms of the model prediction control theory. The radial basis function neural
network was presented as the predictor to obtain the short-term velocity in the future. A dynamic programming algorithm was
applied to obtain optimized control laws in the prediction horizon. Considering the onboard controller’s real-time
performance, we established a simple fuel cell vehicle mathematical model for simulation. Different prediction horizons were
adopted on UDDS and HWFET to test the influence on prediction and energy management strategy. Simulation results
showed the strategy performed well in fuel economy and real-time performance, and the prediction horizon of around 20 s was
appropriate for this strategy.

1. Introduction

The transportation industry is one of the primary sources of
energy consumption and exhaust emissions. Many technolo-
gies on NEVs (new energy vehicles) have high fuel efficiency
and fewer emissions. As one of the most popular NEVs,
FCVs (fuel cell vehicles) have huge development space in
transportation, depending on their zero emission and high
efficiency.

The vehicle with fuel cell stack as the single energy
source has a poor dynamic response, and the practical
solution is to add a short-term storage system to assemble
a hybrid vehicle, thus improving the vehicle’s drivability
and dynamic. The most common short-term storage sys-
tems include battery and supercapacitor—the former can
store more electricity due to its higher specific energy,
and the latter has high power density. The hybrid vehicle’s
dynamic performance and fuel economy are related to the
architecture, the components, and the energy management
strategy of the vehicle [1]. The work focused on the opti-

mization of fuel economy for FCV with an energy man-
agement strategy.

The vehicle propulsion system’s power split is optimized
by the energy management strategy when the dynamic vehicle
performance is satisfied. Depending on the control method,
energy management strategies include optimization-based
and rule-based ones.

Current energy management strategies are mostly based
on certain/fuzzy logic rules. Certain rule-based strategies
are first presented to solve the power split for hybrid electric
vehicles, and these strategies have been extensively applied to
real vehicles such as Toyota’s Mirai and Hyundai’s Nexo.
Fuzzy logic-based strategies, relying on the fuzzy processing
of control variables and the threshold value, are more robust
and adaptive than those based on specific rules.

Buntin et al. first proposed a switching logic control
system for hybrid vehicles [2]. For the fuel cell/battery FCV
configuration, Liu et al. designed a control strategy to realize
the vehicle’s cold start in terms of meeting the dynamic
performance requirements [3]. Hemi et al. analysed the
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performance of FCV’s three configurations in the unknown
driving cycle and real-time driving conditions [4]. However,
the formulation of rule-based strategies relies on engineering
experience, different from practical solutions.

Optimization-based strategies can be decided into instan-
taneous optimization, global optimization, and MPC-based
(model-predictive-control-based) ones. The most popular
instantaneous optimization strategy is ECMS (equivalent
consumption minimization strategy), wherein the equivalent
consumption of hydrogen in the fuel cell is changed into that
of fuel in the battery, and the strategy is used to minimize the
equivalent fuel consumption at each sampling time [5, 6].
Global optimization strategy, adopting the optimization
algorithms such as DP (dynamic programming) [7, 8],
Pontryagin’s minimum principle [9], and pseudospectral
method [10], can obtain the global optimal control laws fol-
lowing the certain drive cycle. And in addition to that, Lü
et al. present a review of energy management system of fuel
cell hybrid vehicle from the perspective of heuristic algorithm
[11]. In a sense, the MPC-based strategy can be regarded as a
compromise between instantaneous optimization and global
optimization ones. In this strategy, the vehicle’s short-term
future demanded velocity is predicted by the constructed
model, and the controller optimizes the control laws in the
prediction horizons [12–14].

In this paper, a MPC-based energy management strategy
for fuel cell vehicles was proposed, and the influence of pre-
diction horizon was studied in detail. In the built MPC
framework, a radial basis function (RBF) neural network
was adopt as predictor to obtain the prediction speed,
dynamic programming algorithm was employed as the solver
to get the optimal trajectory of SOC, and different prediction
horizons were tested in terms of prediction error, fuel con-
sumption, and real-time performance. This work is based
on fuel cell vehicles, but the method is applicable to other
vehicles with two energy sources.

The remainder of this paper is organized as follows. The
fuel cell vehicle power system’s mathematical model is estab-
lished in Section 2. The MPC-based energy management
strategy is presented in Section 3, and Section 4 shows the
simulation results. Section 5 shows the conclusion.

2. FCV Mathematical Model

2.1. Vehicle and Drivetrain. Figure 1 shows the studied vehi-
cle structure. A vehicle propulsion system contains the fuel
cell system and battery, which provide power to the motor
during the vehicle operation. The bus voltage is provided by
connecting the battery to the bus, and a unidirectional DC-
DC converter is used to connect the fuel cell system to the
bus. The vehicle operates with the kinetic energy provided
by the DC motor.

When the impacts of lateral dynamics and rotating mass
are ignored, the traction force Ft can be calculated by

Ft =m
dv
dt

+ 1
2 ρCdAf v

2 +mgf cos αð Þ +mg sin αð Þ, ð1Þ

where m is the vehicle’s total mass, v is the vehicle’s current
velocity, ρ is the air density, Af is the frontal area, Cd is the
aerodynamic drag’s coefficient, f is the rolling resistance
coefficient, and α is the road’s inclination angle. Table 1
shows the parameters of the fuel cell vehicle.

With the calculated traction force and velocity, the torque
Tw and the speed ωw of wheels are given by

Tw = rFt , ð2Þ

ωw = v
r
, ð3Þ

where r is the rolling radius of the wheel. When the wheel
torque is positive, the motor exports kinetic energy to drive
the vehicle; when it is negative, the vehicle is in the braking
energy recycling, and the motor converts the braking energy
into electricity to charge the battery. With the wheel torque
and wheel speed, the torque Tm, the speed ωm, and the power
demand Pm of the motor are as follows.

Tm =

Tw

ηfdrfd
, Tw ≥ 0,

Twηfd
rfd

, Tw < 0,

8>>><
>>>:

ð4Þ

ωm = ωwrfd, ð5Þ

Pm =
Tmωm

ηm
, Tm ≥ 0,

Tmωmηm, Tm < 0,

8><
>: ð6Þ

wherein ηfd and rfd are the efficiency and gear ratio of the
final drive, respectively. The efficiency of the motor can be
looked up in the motor’s efficiency map.

It is defined that the motor power demand Pm is positive
during the traction phase and negative during the breaking
phase. The fuel cell net power Pfc is positive all the time,
and the battery power Pbat is positive when discharging and
negative when charging. The relationship of three variables
is written as

Pm = Pfc + Pbat: ð7Þ

2.2. Fuel Cell System.A 50kW fuel cell system is chosen as the
primary energy source of the vehicle. A complete onboard
fuel cell system [15] contains a fuel cell stack and other
auxiliary equipment such as a hydrogen storage system,

Fuel cell
system

DC/DC
converter

DC
motor

Battery

Final
drive

D
iff

er
en

tia
l

DC bus

wheel

Figure 1: Structure of FCV. The red and black lines represent the
electrical and mechanical connections of FCV, respectively.
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hydrogen circuit, air circuit, water circuit, and coolant circuit.
The complete model can obtain the fuel cell system’s detailed
internal dynamic responses, but cost more time. In this work,
a simplified model is adopted to obtain a rapid response. The
net power Pfc can be divided into the stack power Pstack and
the auxiliary power Paux as

Pfc = Pstack + Paux: ð8Þ

The hydrogen consumption rate _mH2
can be written as

the function of the stack current Istack :

_mH2
=
NMH2

nF
Istack, ð9Þ

where N is the number of cells, MH2
is the molar mass of

hydrogen, F is the Faraday constant, and n is the number
of electrons lost in electrochemical reactions.

The net power is a function of the stack current, and the
hydrogen consumption rate can be described as a function of
the net power. Figure 2 shows the relationship between them.

The efficiency ηfc of a fuel cell system is defined as a func-
tion of the net power and the power provided by hydrogen:

ηfc =
Pfc
_mH2LHV

, ð10Þ

where LHV is the low heating value of hydrogen.

2.3. Battery. Figure 3 shows a typical physical model of bat-
tery. In this model, the battery can be denoted by an ideal
voltage source in series with internal resistance. The output
power of the battery can be written as

Pb = VocIb + I2bRint, ð11Þ

where Voc, Ib, and Rint are the open-circuit voltage, the
terminal current, and the internal resistance of the battery,
respectively.

The open-circuit voltage and the internal resistance are
the functions of the SOC and the temperature. The test can
be used to obtain internal resistance and the relationship
between the open-circuit voltage and SOC (see Figure 4).

The battery temperature is assumed to be constant in this
work.

The change rate of SOC is defined as the ratio of the
terminal current and the battery capacity:

_SOC = −
Ib
Qb

, ð12Þ

where _SOC is the change rate of SOC and Qb is the battery
capacity. With formulas (11) and (12), the change rate of
SOC is calculated by

_SOC = −
Voc −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

oc − 4PbRint
p
2RintQb

: ð13Þ

Table 1: Parameters of the fuel cell vehicle.

Parameters Value

Vehicle total mass (kg) 1380

Air density (kg/m3) 1.2

Aerodynamic drag coefficient 0.335

Vehicle frontal area (m2) 2

Wheel radius (m) 0.282

Gear ratio 6.67

Transmission efficiency (%) 0.95

Rolling resistance coefficient 0:9e − 2
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Figure 2: Curve of hydrogen consumption rate.
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Figure 3: Equivalent circuit of the battery.
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Every single battery has a capacity of 6Ah and a peak
voltage of 3.8V. A battery pack is constituted with 87 cells
in series and three battery packs formed by the parallel
connection for simulation.

3. MPC-Based Energy Management Strategy

3.1. Structure of MPC-Based Energy Management Strategy.
With the transformation of global optimization into a
series of suboptimizations, MPC can obtain the optimal
local control laws based on model prediction, rolling opti-
mization, and feedback correction. In Figure 5, the typical
MPC-based energy management strategy consists of three
steps [16].

Step 1. Predict the vehicle’s future short-term velocity
through the constructed prediction model.

Step 2. Obtain the optimal control rules in the short-term
drive cycle by minimizing the cost function.

Step 3.Apply the optimal control rules in the first time step of
the prediction horizon to vehicles’ control system. Repeat the
above steps until the drive cycle ends.

The whole system is discretized into constrained optimi-
zation problems in the finite time domain, and DP algorithm
[17, 18] is employed as the solution algorithm. The power
split factor and SOC are selected as the control variable and
state variable, respectively. Therefore, the system function
at each prediction step is described as

xk+1 = xk + f k xk, uk, vkð Þ,  k = 1, 2,⋯,N , ð14Þ

where xk is the battery’s SOC, uk is the power split factor, vk is
the prediction velocity, and N is the length of drive cycle.

The fuel consumption is employed as the cost function:

J = 〠
N

k=1
_m xk, uk, vkð ÞΔt, ð15Þ

where _mðxk, ukvkÞ is the fuel consumption per step and Δt is
the rolling step length (1 s).

For the structure of fuel cell vehicle, a terminal constraint
is implemented to the SOC at every control horizon

SOC k +Hp

� �
= SOC 0ð Þ, ð16Þ

Sampling
horizon

Prediction
horizon

Step (k)

Step (N–1) Step (k+1)
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Vpre
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Figure 5: Structure of MPC-based energy management strategy.
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where SOCðk +HpÞ is the terminal target SOC of every con-
trol horizon and Hp is the length of the prediction horizon.

Tmot¯min ≤ Tmot ≤ Tmot¯max,

ωmot¯min ≤ ωmot ≤ ωmot¯max,

Ibatt¯min ≤ Ibatt ≤ Ibatt¯max,

Pbatt¯min ≤ Pbatt ≤ Pbatt¯max,

PFC¯min ≤ PFC ≤ PFC¯max,

SOCmin ≤ SOC ≤ SOCmax:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð17Þ

Other parameters under constraints are shown in
equation (17).

3.2. Velocity Prediction with Neural Network. The neural
networks can respond to the nonlinear relationship between
inputs and outputs through training the black-box model. In
this work, a neural network of the radial basis function is
trained to predict the velocity.

In Figure 6, the neural network inputs are the historical
velocity sequence [Vðtk−Hh+1Þ, VðtkÞ]; the outputs are the
prediction velocity sequence [Vðtk+1Þ, Vðtk+Hp

Þ] in the

future; Hh is the sampling horizon length; Hp is the length
of prediction horizon. The Gaussian function is selected as
the activation function of the hidden layer, which is formu-
lated as

a1j = exp −
IW − Pk k2
2b2

� �
, ð18Þ

where IW is the neural network center, P is the input vector,
and b is the maximum width between selected centers.

Here, a RBF-neural network with the structure of 10-
50-Hp is constructed to predict the velocity. Seven stan-
dard drive cycles (ARB-02, LA92, NYCC, REP05, SC03,
UNIF01, and US06), including urban, suburban, and high-
way conditions, are used for the network training; 70% of
the data are employed as the training dataset and 30% as
the test dataset. In addition, untrained drive cycle (UDDS)
and highway fuel economy test (HWFET) are used as the
validate dataset.

4. Simulation Results and Discussion

The simulation was performed at MATLAB 2018b on a
laptop with the configurations of Inter Core i3-3227U
CPU @ 1.90GHz. Seven drive cycles were used to train the
network, the other two was used to test the performance of
the network and the MPC-based energy management strat-
egy. It was defined that the sampling time Hh was 10 s, and
the prediction time Hp was 5 s to 25 s. The initial SOC of
the battery was 0.6, and the terminal target SOC per pre-
diction horizon was set as the same value of initial SOC.
The upper and lower boundaries of SOC were 0.5 and
0.7, respectively. Also, the average root mean squared
error (RMSE) was employed to assess the network perfor-
mance, formulated as

RMSE ið Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

Hp

j=1 vijpre − vijact
� �2

Hp

vuut , ð19Þ

RMSEave =
∑N

i=1EMSE ið Þ
N

, ð20Þ

where RMSEðiÞ is the RMSE of prediction for the predic-
tion horizon (from i + 1 seconds to i +Hp seconds) at step
i, RMSEave is the global average RMSE of prediction, and
N is the length of the drive cycle.
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Figure 7: Prediction results for UDDS in three horizons.
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In fact, with the structure of MPC, the final SOC for
the global time horizon is practically impossible to have
SOCð0Þ = SOCðNÞ. SOC deviation is converting into
equivalent hydrogen consumption to eliminate the impact
above.

To evaluate the performance of the constructed control-
lers, DP-based energy management strategy is employed as
the benchmark of the simulation. It should be noted that
unlike the DP algorithm mentioned in Section 3.1, the DP-
based energy management strategy selected there is a global
optimization strategy, aiming to obtain the optimal control
rules and the hydrogen consumption at the whole drive cycle.

Different prediction horizons are tested in this work to
explore the effect of the prediction horizon on fuel economy.
Figure 7 shows the results of UDDS in prediction horizons
are 10 s, 15 s, and 20 s. The prediction results of three predic-
tion horizons reflect the changing trend of velocity without
exception; however, with the increasing reduction horizon,
the predicted velocity is further different from the actual
velocity, which means the prediction error increases.
Figure 8 presents the results of HWFET in the prediction
horizons are 10 s, 15 s, and 20 s, and it shows the same trends
as the results of UDDS; however, it is obvious that the predic-
tion results of HWFET are more close to the actual velocity
trajectory compared with UDDS.

Figures 9 and 10 show the SOC trajectories for UDDS
and HWFET, respectively. Each figure includes 4 SOC trajec-
tories, 3 of which are obtained with three predictors (the pre-
diction horizons are 10 s, 15 s, and 20 s, respectively) and the
other one is obtained with DP-based energy management
strategy. In these two figures, the SOC trajectory of DP is
different from these trajectories of MPC; this is related to
the optimization horizons of the two algorithms. Benefiting
from global optimization, the SOC trajectory planned by
the DP algorithm is optimal for the specific drive cycle,
whereas the MPC-based energy management strategy
obtains a locally optimal SOC trajectory at every prediction
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horizon. And for the MPC-based energy management strat-
egy, with the same constraints in the final SOC, the battery’s
power split capacity can be improved by increasing the pre-
diction horizon.

To explore the relationship between prediction error,
prediction horizon, and fuel consumption, the hydrogen
consumption at different prediction horizons for UDDS
and HWFET is shown in Tables 2 and 3, respectively. In
these tables, the calculated time Tcal of MPC is the optimized
time of each prediction horizon, and for the DP, it is the
entire drive cycle. For the UDDS, it should be noted that with
the increasing of prediction horizon Hp, the prediction accu-
racy EMSEave decreases, and the fuel economy CH2

improves.
The subsequent problem is that the calculated time Tcal
increases; while for the HWFET, with the increasing of pre-
diction horizon, the fuel economy improves first and then
decreases, and the best fuel consumption could be obtained
at Hp = 20 s. These trends are shown in Figure 11 obviously.

As an onboard controller, the real-time performance of
strategy should also be considered. The simulation time at
laptop is 0.213 s with the prediction horizon 20 s; this data
shows that the MPC-based energy management strategy
has a real-time basis. In this work, considering the require-
ments of energy management strategy on fuel consumption
and real-time performance, the prediction horizon is selected
to be 20 s. The following analysis is established in the selected
horizon. Table 4 shows the comparison between MPC-based
and DP-based energy management strategy. In terms of fuel
economy, the strategy’s effect based on model predictive con-
trol (with 20 s as the prediction horizon’s length) can reach
87.42% of DP-based in UDDS, while in HWFET, benefiting
from a smaller forecast error, this data can rise to 90.09%.

5. Conclusions

Based on the simple vehicle model, the RBF-based predictor,
and the DP-based solving algorithm, the work presented an
MPC-based energy management strategy on a fuel cell vehi-
cle. Models with different prediction horizons were built to
study the influence of the prediction time steps.

Simulation results showed that the fuel economy per-
formed best with 25 s as the prediction horizon for UDDS,
while for HWFET the best fuel economy appeared at 20 s.
In addition, large prediction horizon led to the longer opti-
mizing time. In fact, to a real vehicle, in addition for energy
management strategy, the onboard controller also needs to
process a lot of real-time data from other components, which
may result in much greater actual processing time than sim-
ulation. With this in mind, the prediction horizon of around
20 s is appropriate for the onboard MPC-based energy man-
agement strategy.

Although the structure of MPC-based energy manage-
ment strategy is studied in this work, the results are based
on the single prediction model with RBF neural network as
the frame. In the future, prediction models with multiple
algorithms will be studied to obtain the batter predictor.
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Table 2: Simulation results at different horizons of MPC for UDDS.

Hh (s) Hp (s) EMSEave SOC (N) Tcal (s) CH2
(g)

10 5 2.1279 0.602 0.071 140.95

10 10 3.9320 0.604 0.120 119.14

10 15 6.0122 0.604 0.168 111.39

10 20 7.5998 0.604 0.213 110.34

10 25 9.0285 0.604 0.267 109.58

Table 3: Simulation results at different horizons of MPC for
HWFET.

Hh (s) Hp (s) EMSEave SOC (N) Tcal (s) CH2
(g)

10 5 1.3259 0.6035 0.073 130.66

10 10 2.4245 0.6063 0.127 129.58

10 15 4.1004 0.6099 0.169 126.99

10 20 5.7272 0.6098 0.207 122.86

10 25 7.3255 0.6102 0.247 125.77
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C H
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Figure 11: H2 consumption for the different prediction horizons.

Table 4: Comparison of MPC and DP for two drive cycles.

Type
Hp

(s)
SOC
(N)

Tcal
(s)

CH2
(g)

Normalized
average (%)

UDDS-MPC 20 0.6046 0.2132 110.34 87.42

UDDS-DP — 0.6 113.60 98.01 100

HWFET-MPC 20 0.6098 0.207 122.86 90.09

HWFET-DP — 0.6 65.44 111.79 100
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With the continuous development of the manufacturing industry, the requirement for strip steel quality is becoming higher and
higher in automobile manufacturing, mechanical processing, and electronic and electrical industries. The precise control of strip
quality depends on the accurate prediction of strip quality to a certain extent. However, the data collected by a large number of
sensors on the complex strip production line and generated by the computer control system presents the characteristics of high
dimensionality, high coupling, and nonlinearity, which brings difficulties to the prediction of strip quality. The continuous
production of massive data in the production line also forces steel enterprises to seek new data mining methods, mining the
relationship between sensor data to predict and control strip quality. To solve these problems, this paper proposes a GBDBN-
ELM model, which is more efficient and more accurate than other algorithms. In this model, the RBM in DBN is replaced with
GBRBM, so that RBM no longer depends on the binary distribution, can handle continuity values, and retain more data
features. In order to solve the problem of too long DBN training time, this article replaces the BP network in DBN with an ELM
regression model. The ELM model predicts the strip quality based on the extracted data abstract features, thereby improving the
model’s prediction accuracy and shortening the training time. In this paper, the GBDBN-ELM model is compared with the BP
neural network, ELM, and DBN, and root mean square error, R square coefficient of determination, and training time are
selected as evaluation indexes of the models. The experimental results show that the improved GBDBN-ELM model can not
only improve the accuracy of strip steel quality prediction but also shorten the time of model training. The model proposed in
this paper has achieved good results in prediction accuracy and performance.

1. Introduction

In the industrial field, the steel industry is one of the national
basic industries. Most of the raw materials, resources, and
equipment of other industries are provided by the steel
industry. The development of the steel industry has also led
to the progress of construction, machinery, transportation,
and other industries. Although the current international steel
production is increasing year by year, the technology for roll-
ing high-quality steel still needs to be improved. With the
rapid development of industry and technology, many indus-
tries have higher and higher requirements for the quality of
strip steel, such as infrastructure engineering, automobile
manufacturing, mechanical processing, and electronic and
electrical industries. Therefore, the improvement of strip

quality has become one of the main tasks of the hot rolling
production process. The strip quality can be estimated in
advance through prediction, and then, the process parame-
ters can be adjusted in time through computer calculations
to achieve closed-loop control of the system, which can max-
imize the strip quality. Therefore, the strip quality prediction
method has gradually become a hot spot in the steel industry.

The traditional rolling mill control relies on manual
operation; the strip quality at the exit is controlled by simple
electric pressing or manual pressing, without the participa-
tion of many sensors. The steel industry has bid farewell to
traditional production modes with the extensive application
and development of modern automatic control theory in
the industrial field. The combination of modern equipment
and advanced technology has made the strip production
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process increasingly complex [1]. In the strip steel produc-
tion process, multiple devices are organically connected.
The process parameters and product quality parameters
involved in the subproduction stage are various, and the
relationship between the various parameters is complex.
The parameters of each stage often present a hierarchical
structure and are coupled with each other. It is difficult to
describe these parameters with linear or simple nonlinear
relationships [2].

Quality of the strips at the exit of hot continuous rolling
mainly depends on the finishing mill. The change of strip
width and thickness is caused by the rolling force from the
vertical stand and horizontal stand in finishing rolling. The
main factors affecting strip steel quality include rolling force,
reduction position, inlet temperature, roll bending force, roll
gap width, and rack speed. Moreover, factors such as water
flow, motor current, oil film compensation, and lubrication
also have a certain impact on the surface quality of the strip
[3]. Most of these variables are coupled with each other and
have serious nonlinearity, and some of them are difficult to
measure, which also brings certain difficulties to the predic-
tion of strip quality.

Moreover, with the development of technology, the pro-
duction model has spread from physical space to virtual
space, and the degree of digital production has gradually
deepened. More sensors, data acquisition equipment, and
computer network control system are involved in the pro-
duction process. A large amount of raw data are produced
in the strip production line every day. How to use these
data reasonably and mine more knowledge for strip qual-
ity prediction and control is also a problem that needs to
be studied.

In order to achieve closed-loop control of strip quality
and advance adjustment of process parameters, and to solve
the poor prediction accuracy of strip quality resulting caused
by high-dimensional, highly coupled, nonlinear data, the
main contributions of this paper are as follows.

This paper proposes a strip quality prediction model
combining DBN and ELM. In the combined model, DBN is
used to extract features from high-dimensional and high
coupling input data, and ELM predicts strip quality accord-
ing to the extracted data features.

Based on the DBN-ELM combined model, the RBM in
the DBN model is replaced by GBRBM to solve the depen-
dence on the binary distribution of the visible layer and
hidden layer of RBM. The model is improved to the
GBRBM-ELM model to suit the continuous value regression
problem.

The feasibility of the model is analyzed from the aspects
of prediction accuracy and model performance, and the pre-
diction effect of the model is compared with that of BP, ELM,
and DBN. The results show that the GBDBN-ELM model
can improve the prediction accuracy while shortening the
model training time.

The rest of this article is organized as follows: The second
chapter introduces the research progress of strip quality pre-
diction technology; the third chapter introduces the princi-
ple, network structure, and training method of the strip
quality prediction model; the fourth chapter validates the

model through the data on the production line of a steel
company; the last chapter is a summary of this article.

2. Related Works

Quality prediction and quality control problems often use
two types of methods, mathematical model methods and
data mining techniques.

2.1. Mathematical Model Methods. In traditional quality con-
trol, the mathematical model is used to predict the quality
parameters, and the variables such as temperature, pressure,
element, and their relationship are described by mathemati-
cal formulas [4, 5]. But the process of establishing the math-
ematical model of strip quality is very complex, because in
the rolling process, not only many physical quantities but
also much thermodynamic knowledge is involved. The strip
quality prediction based on the mathematical model ignores
and simplifies the influence of many on-site factors, and the
dynamic effects sometimes produce false results, leading to
large errors. Later, people paid attention to deformation laws
in the forming process, and the finite element method and
finite element simulation software were applied to the simu-
lation of the strip production process and the quality control
of the strip [6, 7]. However, the finite element analysis soft-
ware has high requirements for the user’s ability, and it often
requires level-by-level training to use it proficiently.

On the other hand, the growing mass of data has made
data mining methods centered onmachine learning and deep
learning more attention [8]. And it is used in manufacturing
production scheduling [9], equipment monitoring [10], qual-
ity control [11], and other aspects. The data mining methods
provide an effective way to predict and control the quality of
hot strip rolling. It can break the data island, deeply mine,
and utilize the data value. Specifically, initially, through data
mining, the correlation between process parameters and
quality parameters is discovered from the massive produc-
tion history data. Further, the strip quality is predicted
through these correlations. Finally, combined with the com-
puter control system, a closed loop is formed to the greatest
extent to control the quality of the strip.

2.2. Data Mining Techniques. Data mining techniques can be
divided into two parts: machine learning and deep learning.
Kotkunde et al. used artificial neural networks (ANN) and
support vector machines (SVM) to evaluate the thickness dis-
tribution of alloy sheets at various temperatures and blank
diameters [12]. Li and Dai used the k-means algorithm to
divide the production data into k clusters and uses the BP
neural network to predict the final strip rolling temperature
to improve the prediction accuracy [13]. Wu et al. improved
the ELM algorithm and created a two-hidden layer optimized
ELM model, and they applied it to the prediction of bending
force in the hot strip rolling process [14, 15].

The above studies are based on pure machine learning
predictions, but machine learning cannot handle high-
dimensional problems. Before using the machine learning
method, the above research often needs to select data features
to reduce the dimension of the input parameters [16].
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However, for the high coupling strip quality prediction prob-
lem, too few features often cannot contain all the features of
the data, which makes the prediction accuracy worse. The
deep learning network has deeper network layers and more
complex network structure compared with machine learning.
For example, the deep belief network (DBN) superimposes
RBM in front of the BP network. DBN has good feature
extraction ability and shows good performance when pro-
cessing high-dimensional input variables. It is widely used
in manufacturing.

Liu et al. used DBN to process a large amount of real-time
quality data collected by sensors and constructed a real-time
quality monitoring and diagnosis plan for the manufacturing
process [17]. Yang and Frangopol predict the remaining life
cycle of ships based on DBN and then propose a ship life cycle
management framework [18]. Zheng et al. combine DBN and
SVM, use DBN to extract high-level features of signals, and use
the SVM classifier for defect recognition, providing a new
method for the nondestructive testing of bolt anchorage [19].

It can be concluded from a large number of studies that
since deep belief networks were primarily used to classify
problems at first, now it is mainly used for classification
problems such as defect identification and quality classifica-
tion in manufacturing quality problems and less often
applied to regression problems such as quality parameter
prediction. However, because the deep belief network has
strong high-dimensional feature extraction capabilities and
good model generalization, it can be improved to suit contin-
uous value prediction problems on the basis of maintaining
the feature extraction capabilities. For example, in existing
research, DBN is combined with Particle Swarm Optimiza-
tion (PSO) [20], Firefly Algorithm (FA) [21], Support Vector
Machine (SVM) [22], Extreme Learning Machine (ELM)
[23], and other algorithms to improve the prediction accu-
racy and model feasibility.

Considering the complexity of the DBN network struc-
ture, this paper chooses the combination of DBN and ELM
to simplify the DBN training method and shorten the train-
ing time while improving the prediction accuracy.

3. Quality Prediction Model and
Network Structure

A deep belief network is one of the core algorithms in deep
learning. The deep belief network is composed of several
restricted boltzmann machines (RBM) and a BP neural net-
work, which can solve the high-dimensional and high-
coupling problem well. However, DBN has problems such
as unsuitable for continuous value and too long training time.
In this paper, DBN is improved to make it more suitable for
the quality prediction of the strip finishing process.

3.1. Deep Belief Network Model

3.1.1. Basic Structure of DBN. The deep belief network is
composed of multiple series-connected RBMs and a BP neu-
ral network. It has a powerful feature learning ability. The
structure of the deep belief network for strip steel quality pre-
diction is shown in Figure 1.

The first visible layer V and the second hidden layer h1
constitute RBM1. The hidden layer of RBM1 is also the visi-
ble layer of RBM2, forming RBM2 together with the third
hidden layer, and so on for each layer, stacking to form mul-
tilayer RBMs. RBM in DBN uses unsupervised learning,
mainly used for feature extraction; the BP network uses
supervised learning, mainly used for regression and output-
ting the predicted value of quality parameters.

3.1.2. DBN Training Process. It can be seen from the figure
that the training process of DBN is divided into two stages,
namely, the forward pretraining stage and the reverse fine-
tuning stage. DBN uses a greedy unsupervised learning
mechanism to complete layer-by-layer forward training from
bottom to top and extracts the abstract features of the
bottom-level data as the high-level input, until the features
are sent to the top-level regression unit. Then, it calculates
the error between the regression result and the real result
and uses the back propagation algorithm of the BP network
to complete the reverse fine-tuning of the parameters, further
reducing the model error and improving the training accu-
racy of the system.

DBN gives full play to and combines the advantages of
RBM and BP neural network, uses multilayer RBM to extract
and abstract high-dimensional data, retains important fea-
ture information as much as possible, uses the BP network
to complete regression, and uses the BP algorithm to fine-
tune the parameters of each layer, so as to achieve the optimal
state.
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Figure 1: Deep belief network structure.
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3.1.3. Shortcomings of DBN. Although the traditional DBN
has particularly good feature extraction capabilities, after
analyzing the model, it can be known that the traditional
DBN model also has the following shortcomings:

(a) The visible layer and hidden layer of traditional RBM
obey the binary distribution and have a good func-
tion of extracting feature signals for discrete data. In
the problem of strip quality prediction, the continu-
ous input signals need to be digitized, which leads
to the loss of information and reduces the accuracy
of the model

(b) In the process of DBN training, an important param-
eter that needs to be adjusted is the number of neu-
rons in each hidden layer, which directly affects the
prediction accuracy and training time of the model.
For the problem of strip quality prediction, the
dimension of input data involved is relatively high,
so it is more difficult to select the number of neurons

(c) Since the fine-tuning process of DBN is based on the
gradient descent algorithm, the convergence speed of
the BP network is relatively slow. In addition, the BP
algorithm is a local search algorithm, which may
cause the network to fall into a local optimum due
to improper selection of the initial network weights,
which may lead to network training failures

In order to solve the above problems, this paper intro-
duces Gauss-Bernoulli RBM instead of RBM in traditional
DBN to save the signal of continuous input data, introduces
particle swarm optimization to calculate the optimal number
of neurons in the hidden layer in the process of parameter
adjustment, and introduces extreme learning machine to
shorten the training time of the model, improve the general-
ization ability, and avoid falling into local optimization.

3.2. Gaussian-Bernoulli RBM (GBRBM)

3.2.1. Basic Structure of GBRBM. Restricted Boltzmann
machine (RBM) is a shallow random generation network
proposed by Hinton et al. It is an energy model for unsuper-
vised learning. It divides all neurons into the visible layer and
hidden layer. Data is input from the visible layer to express
data features. The hidden layer can extract features to express
the relationship between input variables, so the hidden layer
is also called a feature extractor. The two layers of neurons
are fully connected, and there is no connection between the
neurons in the same layer.

Suppose v1 ~ vm is the visible layer cell node, h1 ~ hn is
the hidden layer cell node, a1 ~ am is the visible layer node
offset, b1 ~ bn is the hidden layer node offset, and wn×m is
the weight matrix between the visible layer and the hidden
layer.

When the state of (v, h) is determined, the energy func-
tion of RBM can be defined as

E v, h ∣ θð Þ = −aTv − bTh − vTwn×mh: ð1Þ

The visible layer and hidden layer of the traditional RBM
are limited by the binary distribution [24], which has a good
performance when dealing with classification problems. But
Boolean variables are no longer suitable for the calculation
of continuous data when dealing with regression problems.
Therefore, this paper introduces GBRBM when carrying
out strip quality prediction.

Gaussian-Bernoulli RBM (GBRBM) is a restricted Boltz-
mann machine for nonbinomial data proposed by Kriz-
hevsky and Hinton. GBRBM introduces Gaussian function
between visible and hidden elements to process continuous
numbers between 0 and 1. The energy function expression
of GBRBM is as follows:

E v, h θjð Þ = 〠
m

i=1

vi − aið Þ2
2σ2

i

− 〠
n

j=1
bjhj − 〠

m

i=1
〠
n

j=1

vi
σi
wijhj: ð2Þ

The lower the energy of the system is, the more stable the
system is and the smaller the error of quality parameter pre-
diction results is. In equation (2), θ is the parameter to be
solved, θ = ðw, a, b, σÞ, and σi is the tolerance corresponding
to vi. When θ is determined, the joint probability distribution
of ðv, hÞ can be obtained through the energy function:

P v, h ∣ θð Þ = e−E v,h∣θð Þ

Z θð Þ : ð3Þ

In equation (3), ZðθÞ =∑v,he
−Eðv,h∣θÞ is the normalization

factor, also called the distribution function.
Since there is no connection between neurons in the same

layer of RBM, the activation states between the visible layer
and the hidden layer unit are independent of each other, so
when the V andH states are determined, the activation prob-
ability of the visible layer and the hidden layer unit can be
obtained as

P vi = x ∣ hð Þ = 1
σi

ffiffiffiffiffiffi
2π

p exp −
x − ai −∑n

j=1 wij hj
� �2

2σi2

0
B@

1
CA,

ð4Þ

P hj = 1 ∣ v
� �

= sigmoid ai + 〠
m

i=1

vi
σi
wij

 !
: ð5Þ

3.2.2. GBRBM Training Process. The purpose of RBM model
training is to calculate the optimal value of parameter θ =
ðw, a, b, σÞ, so as to obtain the optimal model. Usually, it
can be achieved through the maximum likelihood estima-
tion formula:

ln L θ ∣ vð Þ = ln 1
Z θð Þ〠h

e−E v,h∣θð Þ
 !

: ð6Þ

In order to calculate the updated equation of each param-
eter, we use the contrast divergence (CD) algorithm pro-
posed by Hinton to train the model and add the adjustment

4 Journal of Sensors



of σi in GBRBM; the training process is as follows: (a) at the
beginning of training, assign the input data to the nodes of
the visible layer to obtain vi and obtain the data features
mapped from the visible layer V to the hidden layer H
according to equation (5), (b) calculate reversely according
to equation (4) and map the output obtained in (a) to the vis-
ible layer V , and (c) calculate the error between the samples
according to the comparison between the reconstructed
results and the original data and adjust the interlayer weight
W to reduce the error. The updating process of parameter
vector θ = fw, a, b, σg is as follows:

Δwij = γ vihj
� �

data − vihj
� �

recon

� �
,

Δai = γ vih idata − vih irecon
� �

,

Δbj = γ hj
� �

data − hj
� �

recon

� �
,

Δσi = γ σih idata − σih irecon
� �

:

8>>>>>>><
>>>>>>>:

ð7Þ

In equation (7), γ is the RBM learning rate, h·idata is the
mathematical expectation of the input data, and h·irecon is
the mathematical expectation of the reconstructed data.
The output of the trained model forward passing can repre-
sent the original input of the visible layer; thus, the feature
extraction of the input data is completed.

3.3. Extreme Learning Machine. The BP neural network is
used in the upper layer of DBN. Although the BP neural net-
work has better adaptive ability, it adopts the gradient
descent algorithm in the training process. When the neuron
is close to 0 or 1, the convergence speed is relatively slow,
resulting in a longer training time for the model. Moreover,
the BP algorithm may fall into a local optimum for complex
nonlinear problems such as strip quality prediction. In order
to solve these problems, this paper introduces the extreme
learning machine model.

Extreme learning machine (ELM) is a single hidden layer
feedforward neural network proposed by Huang Guangbin
in 2004, including the input layer, hidden layer, and output
layer. The structure is shown in Figure 2. The offset of the
hidden layer node and the weight of the input layer in ELM
are randomly assigned during initialization, which greatly
shortens the training time of the model. The output weight
of ELM is adjusted by the regularized minimummean square
error, which can ensure the global optimization ability of
ELM. Therefore, ELM has relatively high learning efficiency
and strong generalization ability and is more suitable for
complex production scenarios such as the steel finishing roll-
ing process.

Suppose there are M sample ðXi, yiÞ, Xi = ½xi1, xi2,⋯,
xin�T ∈ Rn and yi = ½yi1, yi2,⋯, yim�T ∈ Rm are the input sam-
ples and their corresponding expected output, respectively.
Assuming that the number of hidden layer nodes is L, the
ELM model can be expressed as

〠
L

i=1
βig wi · xj + bi
� �

= oj, j = 1,⋯,M: ð8Þ

In equation (8), gðxÞ is the activation function of the hid-
den layer; wi and βi are the weight vectors between the input
layer and hidden layer and between the hidden layer and out-
put layer, respectively; bi is the offset of the hidden layer
node; and oj is the output of ELM. The purpose of network
training is to minimize the output error and find a special
wi, βi, bi so that the output value is the target value:

〠
L

i=1
βig wi · xj + bi
� �

= yj, j = 1, 2,⋯,M: ð9Þ

Expressed as a matrix:

Hβ = Y , ð10Þ

H =
g w1 · x1 + b1ð Þ ⋯ g wL · x1 + bLð Þ

⋮ ⋱ ⋮

g w1 · xM + b1ð Þ ⋯ g wL · xM + bLð Þ

2
664

3
775: ð11Þ

In equation (10), h is the hidden layer output matrix, β is
the weight matrix, and Y is the network output matrix. Since
ELM randomly generates wi and bi in the initialization stage,
the matrix H is uniquely determined. The training process of
the network can be transformed into a linear system solving
the problem. The approximate solution of β can be obtained
according to the Moore-Penrose generalized inverse matrix:

β∗ =H+Y : ð12Þ

In equation (12), H+ is the Moore-Penrose generalized
inverse of the hidden layer output matrix H.

3.4. GBDBN-ELM Model. In this article, the RBM in the tra-
ditional DBN is replaced with GBRBM to form GBDBN, and
then, the GBDBN model and the ELM model are combined,
as shown in Figure 3. For an N-layer GBDBN-ELM model,
the strip quality sample data is assigned to the visible layer
V of the first layer of GBRBM, the first hidden layer h1 and
the second hidden layer h2 form GBRBM, the output of the
former GBRBM is also the input of the latter GBRBM, and
so on, until the N − 2 layer of the model; the N − 2 layer,
N − 1 layer, and the last output layer are the ELM. The
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Figure 2: Structure of ELM.
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N − 2 layer of the model is both the output of the last
layer of GBRBM and the input of ELM.

In this model, the strip quality input data is extracted by
multilayer GBRBM to form a low-dimensional feature
expression, which ensures the features of the original input
data set as much as possible. Then, input the extracted fea-
tures into ELM for regression prediction to obtain the pre-
dicted strip quality prediction data.

For an N-layer GBDBN-ELM model, suppose the num-
ber of neurons in the N − 1 layer network is n, and the num-
ber of neurons in the N − 2 layer network is m, the network
can be expressed as

〠
m

i=1
βig wi · hN−2 + bið Þ = oj, j = 1,⋯, n: ð13Þ

According to the ELM algorithm, the output matrix of
the N − 1 layer of the network and the solving equation of
β can be obtained as

HN−1 =
g w1 · hN−2,1 + b1ð Þ ⋯ g wL · hN−2,1 + bLð Þ

⋮ ⋱ ⋮

g w1 · hN−2,n + b1ð Þ ⋯ g wL · hN−2,n + bLð Þ

2
664

3
775,

ð14Þ

β∗ =HN−1
+Y : ð15Þ

The GBDBN-ELM model combines the unsupervised
learning characteristics of DBN with high learning efficiency
and strong generalization ability of ELM. It can improve the
training speed and prediction accuracy.

4. Experimental Study

The indexes to measure the quality of strip steel mainly
include the thickness, width, and surface temperature,
among which the thickness is the most important index to
evaluate whether the steel is up to the standard [25]. There-
fore, this paper verifies the feasibility of the improved deep
confidence network by predicting the thickness of the fin-
ished rolled strip and compares the improved model with
other machine learning algorithms and deep learning algo-
rithms to illustrate the superiority of the model.

4.1. Data Preparation

4.1.1. Data Source. The experimental data in this paper
comes from a 1580mm hot strip finishing line of a steel com-
pany. The production line consists of 7 units. After 5~7
passes of rough rolling, we can get intermediate billet of
25~60mm thick, which can be sent to the finishing mill after
the hot coil box, flying shear, and dephosphorization box.
The control of strip thickness is mainly in the finishing mill.
After the finishing mill, we can obtain the finished strip with
thickness of 1.2-12.7mm. The production line consists of
seven finishing mills, namely, F1~F7. A work roll bending
device is adopted on 7 rolling mills, among which F2~F4
are PC rolling mills with crossed rolls in pairs. Looper rolls
are installed between each two rolling mills to balance the
rolling tension and prevent plate stacking. The threading
speed, acceleration, reduction of each stand, and bending
force of each stand of the F1~F7 rolling mill are calculated
and set by a computer control system according to the variety
and specification of rolled strip and can be adjusted dynam-
ically. The exit of the F7 finishing mill is equipped with
rolling line detection instruments for thickness, width, tem-
perature, and crown of strip steel quality, which can monitor
the quality in real time and modify the process parameters to
improve the quality of rolled products.

In this experiment, the process parameters set by the
computer control system of the seven finishing mills in the
finishing rolling stage and the strip quality parameters
detected by the sensor at the F7 exit are collected within 8
days. The sampling time interval is 90 seconds, and a total
of 3350 sets of production data are collected. Each set of data
includes 7 sets of finishing mills’ reduction position, rolling
force, stand speed, oil film compensation, eccentric compen-
sation, and other process parameters, as well as their confi-
dence and number of points, totaling 234 columns of data.

4.1.2. Data Preprocessing. As there are 234 process parame-
ters collected, if all these data are used to predict the strip
thickness, the deep learning network will be very complex
and the training time will be very long. However, some of
the data are not highly correlated with the final strip exit
thickness. In this paper, the importance of each element is
sorted by the gradient boosting decision tree method, as
shown in Figure 4. Finally, 69 factors are selected as the input
parameters for strip quality prediction, including entrance
thickness, exit temperature, roll gap of each stand, rolling
force, stand speed, roll bending force, back tension, and
looper angle.
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Due to the complex production environment, water
vapor, and other interference factors, and the instability of
the computer system and sensor itself, the data collected
on-site has certain errors, missing data, and abnormal values.
For the problem of missing data, this paper uses the mean
method to supplement the missing value. For outliers, first,
calculate the Euclidean distance between samples by the k
-means clustering method and extract outliers, and then,
eliminate the outliers. The min–max normalization method
is used to carry out linear transformation on the original
data, and the data is mapped between ½0, 1�, so as to eliminate
the influence of parameter dimension on the prediction
results.

According to the holdout verification method, 3000
groups of data are randomly selected as the training set,
and the remaining 350 groups of data are used as the verifica-
tion set of the model after training.

4.2. Parameter Setting

4.2.1. Key Parameter. Before training and prediction, some
relevant parameters need to be set in advance. These param-
eters cannot be updated in the training process but given in
advance through the parameter setting method. These
parameters have a great impact on the learning ability of
the model and need to be adjusted continuously to maximize
the advantages of the model.

By analyzing the structure and principle of the network
model, the superparameters of the GBRBM-ELMmodel need
to be set in advance, including the number of GBRBM layers
in DBN, the number of hidden layer nodes in DBN and ELM,
the number of visible layer nodes in the first RBM layer, the
number of ELM output layer nodes, the size of data blocks
in the network training phase, the number of training
rounds, the learning rate and momentum term.

Since 69 input parameters are selected to predict the strip
thickness, the number of visible layer nodes is 69 and the
number of output layer nodes is 1. This paper uses different
methods to set and tune different parameters.

4.2.2. Grid Search Method. Grid search is to use prior knowl-
edge to specify the value range of parameters. In this range,
the parameters are listed hierarchically. Based on the experi-
mental results, the optimal parameter value with a small pre-
diction error can be selected.

Taking GBRBM layers as an example, it is one of the
important parameters of the DBN network structure. The
number of RBM layers directly affects the prediction effect
of the model. When the number of RBM layers is too small,
the model will not be able to take advantage of deep learning,
and the prediction effect will be poor. But too many layers
will lead to the training time process or cause overfitting.
According to prior knowledge, the change range of the num-
ber of layers is set to be between 1 and 10. The prediction
effect of the model is shown in Figure 5.

According to the comparison results, when the number
of RBM layers is 4, the model error is the smallest, so this
paper uses a 4-layer RBM network structure.

Using the same method, after multiple comparison
experiments, the number of hidden layer nodes in ELM, data
block size, training rounds, learning rate, and momentum
can be obtained. The optimal parameters of the network are
shown in Table 1.

4.2.3. Particle Swarm Optimization. Another main parameter
of the DBN model structure is the number of nodes in each
hidden layer. Because the hidden layers in the 4-layer RBM
are related to each other, the number of nodes varies widely,
and there are many node combinations; it is difficult to use
grid search to enumerate one by one to find the optimal
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Figure 4: The importance of each element to the thickness of the strip (the first 20).
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combination of the number of nodes. In this paper, particle
swarm optimization (PSO) is used to automatically calculate
the number of hidden layer nodes in each layer.

The particle swarm algorithm compares the optimized
solution of each objective function to the particles in the
search space. Each particle has two parameters, position
and velocity, and the fitness of the particle can be calculated
from the objective function. By comparing the fitness of the
particle at the current time with that at the previous time,
the individual optimal position pid can be obtained. Similarly,
the group optimal position gd can be obtained. According to
equation (14), the velocity and position of the particle can be
updated, and the global optimal solution satisfying the termi-
nation condition can be found:

vid t + 1ð Þ =wvid + c1r1 pid − xid tð Þð Þ + c2r2 gd − xid tð Þð Þ,
ð16Þ

xid t + 1ð Þ = xid tð Þ + vid t + 1ð Þ: ð17Þ

In equations (16) and (17), vidðtÞ and xidðtÞ are the veloc-
ity and position of particles at time t, c1 and c2 are the learn-
ing factors, and r1 and r2 are random numbers in (0,1).

Set the population size of PSO as 10 and the number of
alternations as 10, and finally, find the number of hidden
layer nodes of 4-layer DBN as ½63, 54, 46, 35�.

4.3. Model Training. The training of the GBDBN-ELM com-
bined model is divided into two parts:

(a) GBDBN Module Training. First, initialize the net-
work parameters, weights, and the number of hidden
layer nodes of the model. The first N − 2 layers of the
combined model are the GBDBNmodel, and the pre-
processed input data is allocated to the visible layer
nodes to establish vi. Next, the contrast divergence
(CD) algorithm is used to train each RBM layer by
layer from bottom to top. When one RBM layer is
trained, the parameters of the layer are fixed and used
as the input of the upper RBM to train the upper
RBM, and so on, until all RBM training is completed.
Finally, the bottom features are gradually gathered
into the high-level features and finally sent to the
regression unit.

(b) ELM Module Training. The connection weights of
the n − 1 layer and n − 2 layer are initialized. The
N − 2 layer is the feature extraction layer of the
last layer of GBDBN. The preprocessed high-
dimensional labeled data is used as the input of
the GBDBN module after training, and the feature
extraction result is used as the input of the initial
elm module. The elm algorithm is used for train-
ing to obtain better model parameters.

Based on GBDBN-ELM module training, effective DBN
and ELM are obtained, respectively. The test data set is pre-
processed to obtain high-dimensional sample data to be
detected. The trained GBDBN model is used for feature
extraction to obtain better feature data. The predicted strip
thickness can be obtained by the ELM module. The overall
process is shown in Figure 6.

4.4. Result Analysis and Comparison

4.4.1. Model Evaluation Index. In this paper, five indexes are
used to evaluate the prediction effect of the model, including
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Figure 5: Variation of residual sum of squares with RBM layers.

Table 1: Parameters of GBDBN-ELM model.

Number of RBM layers 4

Number of hidden layer nodes in ELM 60

Data block size 150

Training rounds 20

Learning rate 0.01

Momentum 0.5
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the sum of squares of residuals (SSR), root mean square error
(RMSE), R square coefficient of determination (R2), and
training time (T). The index is calculated as follows:

SSE = 〠
N

i=1
y∗i − yið Þ2,

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
N

i=1
y∗i − yið Þ2

vuut ,

R2 = 1 − ∑N
i=1 y∗i − yið Þ2

∑N
i=1 yi − yið Þ2

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð18Þ

The smaller SSE, RMSE, and MAE, the better the predic-
tion effect. R2 is the fitting degree of the model, and the closer
R2 is to 1, the better the regression effect of the model is; T is
the time from the beginning to the end of training, and the
smaller t is, the faster the model training is and the better
the model performance is.

4.4.2. Prediction Results. 350 sets of data were used in the test
set to evaluate the performance of the model. In this paper,
the simulation results of the prediction model are assessed
by analyzing the curve of the predicted value and the true
value of the strip thickness, the curve of the prediction error,
and the curve of the prediction relative error.
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Figure 6: Strip steel quality prediction process based on GBDBN-ELM.
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Table 2: Comparison of prediction results of different models.

Index\model BP ELM DBN DBN-ELM GBDBN-ELM

SSR 59.3560 78.2718 14.3091 22.398 8.5856

RMSE 0.4118 0.4728 0.2022 0.2530 0.1565

R2 0.9872 0.9607 0.9926 0.98854 0.9956

T 3.1548 0.5127 96.9802 32.0120 33.8380
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It can be seen from Figure 7 that the predicted value of
strip thickness obtained by the GBDBN-ELM model is very
close to the real value of strip thickness, and the fluctuation
trend and variation range of them are basically consistent.
By analyzing Figure 8, we can get the following results:
93.7% of the absolute error between the predicted value and
the real value is between ½−0:3, 0:3�, and only a few points
have relatively large error between ½−0:4, 0:8�. The reason is

that the test samples are randomly selected, and these points
have large mutation compared with the surrounding points,
and the change range of the model prediction is less than
the real change range. As shown in Figure 9, the relative error
of strip thickness predicted by the model is within 10%,
among which 80.9% is less than 5%. In conclusion, the pre-
diction model of strip thickness based on GBDBN-ELM has
high accuracy.
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40

35

30

25

20

Re
la

tiv
e e

rr
or

 (%
)

15

10

5

0
0 10 20 30 40 50

Test set

Relative error of ELM
Relative error of GBDBN-ELM

60 70 80 90 100

Figure 11: Comparison of relative errors of ELM and GBDBN-ELM (part).

11Journal of Sensors



4.4.3. Comparison of Different Models. In order to compre-
hensively analyze the prediction performance of the model
for strip steel quality, this paper compares it with the BP neu-
ral network, ELM, traditional DBN network, and DBN-ELM
model and evaluates the above models according to SSR,
RMSE, and R2. The results are shown in Table 2. In order
to intuitively compare the prediction error of the model,
Figures 10–13 show the relative error of the prediction results
of the first 100 groups of test data of GBDBN-ELM and show
the comparison with other models, respectively.

Comparing the prediction results of the BP neural net-
work and ELM in Table 2, we can find that the training
time of ELM is shorter, since it generates hidden layer off-
set and input layer weights randomly during initialization,
and there is no need to update them during training. How-
ever, the BP neural network can adjust the model to a bet-
ter state during training, so its prediction accuracy is higher
than that of ELM. However, by analyzing Figures 10 and
11, it can be found that a large part of the error of the
two neural network prediction results is greater than 10%,
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so it is not enough to use simple machine learning for strip
quality prediction.

It can be seen from Table 2 that although DBN-ELM sig-
nificantly shortens the training time, the prediction accuracy
is slightly lower than DBN. GBDBN-ELM improves the RBM
network on the basis of DBN-ELM to make it suitable for the
continuous value regression problem and can retain more
data features when predicting strip thickness. Therefore,
GBDBN-ELM combines the advantages of DBN and ELM.

By comparing the results in Table 2, it is found that com-
pared with DBN, GBDBN-ELM reduces the training time by
65.1%, the sum of squares error by 39.9%, and the root mean
square error by 22.6%; compared with DBN-ELM, GBDBN-
ELM reduces the sum of square error by 61.7% and the root
mean square error by 38.1%, and the training time only
increases by one second, which indicates that the improved
model can effectively improve the accuracy and shorten the
training time.

From Figures 12 and 13, we can see the prediction effect
of the three deep learning models for each test data more
intuitively. It can be seen that the overall relative error of
the prediction results of GBDBN-ELM is smaller than that
of DBN and DBN-ELM. The relative error of GBDBN-ELM
hardly exceeds 8%, and it is certain that the prediction accu-
racy of the improved model meets industry requirements. In
350 sets of test data, the error of GBDBN-ELM’s prediction
results is 63.7% less than DBN, and 65.7% less than DBN-
ELM. The average relative error is reduced, respectively, by
40.4% and 32.6%.

Especially for data with large prediction errors of DBN
and DBN-ELM, GBDBN-ELM can significantly reduce the
error and achieve better prediction results. The advantages
of the improved model are also reflected here to a large
extent.

The analysis of Table 2 and Figures 10–13 shows that the
improved GBDBN-ELM model can improve the prediction
accuracy and shorten the training time to a large extent.

5. Conclusion

This paper proposes an improved DBN strip quality predic-
tion method to solve the problem that the strip quality pre-
diction accuracy is not high because there are many sensors
involved in the strip production process, and most of the pro-
cess parameters are coupled with each other and have serious
nonlinearity. In this paper, the RBM in DBN is changed into
GBRBM to eliminate the dependence on binary distribution,
extract the features of high-dimensional and high coupling
input data, combine GBDBN with ELM, replace the BP net-
work in DBN with ELM, and input the extracted data fea-
tures into ELM for strip quality prediction. The GBDBN-
ELM model is verified by the data of the steel finishing line
and used to predict the strip thickness. We can draw the fol-
lowing conclusions.

The simple BP neural network and ELM model cannot
deal with the high dimension and high coupling nonlinear
data produced by the complex production process. Due to
the simple network structure, they cannot fully extract the
data features and mine the knowledge contained in the data,

resulting in the accuracy of strip thickness prediction being
not enough.

The GBDBN model proposed in this paper can solve the
problem of low prediction accuracy caused by complex input
data. The GBDBN network can retain as many abstract fea-
tures of input data as possible, so that ELM can obtain higher
prediction accuracy.

Through the comparison with the DBN network, it can
also be known that using the ELM algorithm for GBDBN
network training and prediction calculations can greatly
shorten the time and solve the problem of excessive training
time caused by the complexity of the DBN network.
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Severe vibration was observed at a scrubber system connected to a reciprocating compressor during commissioning stage. Field
measurements including vibration, pressure pulsation, and modal experiment were conducted to determine the causes of
vibration, which showed that the excessive vibration was caused by pressure pulsation-induced mechanical resonance. Vibration
reduction treatment for mechanical resonance avoidance via the installation of support on scrubber was proposed and then
validated by resonance analysis and one-way fluid structure interaction (FSI) analysis. Resonance analysis showed both the
dominant frequencies of pressure pulsation and rotational frequencies of compressor were beyond resonance regions, and FSI
analysis indicated that the vibration levels of the scrubber system at its design conditions were within the allowable limit.
Installation of two braces with a band clamp on the scrubber was implemented. The effectiveness of the treatment was verified
by comparison of measured data before and after scrubber modification; the peak amplitudes occurring at the dominant
excitation frequencies in both vibration and pulsation spectra declined greatly after modification, which guaranteed the long-
term stable operation of the scrubber.

1. Introduction

Reciprocating compressors are widely used to boost natural
gas pressure to be required because of their flexibility in
capacity and pressure range in natural gas storage industry.
Since the high-pressure gas discharged from the compression
cylinder of a compressor always contains lube oils, a scrubber
must be applied on the outlet of the compressor for removal
of the lube oils to ensure gas quality before entering the
underground storage facilities. Gas pressure pulsations pro-
duced by the reciprocating action of the piston could inevita-
bly be transmitted into the pipelines and equipment attached
to a reciprocating compressor; no problem occurs unless they
coincide with a particular mechanical or acoustic frequency
of the system. The pressure pulsations can then be greatly
amplified and excite the pipelines and/or equipment, which
may result in high vibration. Excessive vibration can lead to
many practical problems, such as pipeline fatigue failure,

equipment damage, instrument distortion, power consump-
tion, and energy loss. Pipelines and equipment carrying
high-pressure and high-speed gas need a high level of reli-
ability and stability.

The vibration of pipelines and equipment connected to
the reciprocating compressor is a typical flow-induced vibra-
tion. Relevant studies show that vibration is generally
induced by poor dynamic balance of structure, poor kine-
matical design, mechanical resonance, and large pressure
pulsations. Researches concerning such vibration have been
focusing on three different areas: vibration theory and analy-
sis, vibration diagnosis and identification techniques, and
vibration control methods. Vibration theory and analysis
mainly include establishment of a vibration model, analytical
and numerical solutions of the vibration model [1, 2], modal
analysis for avoidance of resonance, vibration analysis and
related experimental research [3], fluid-structure interaction
(FSI) vibration study [4, 5], vibration dynamic response of
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system, acoustic and pulsation analysis using acoustic wave
theory, transfer matrix method, and finite element methods
[6, 7]. Numerous vibration analysis techniques are employed
to predict the vibration level of system during the design
phase and to identify the source of high vibration in the oper-
ation phase, which mainly focus on field measurement
methods, test instrumentation, signal processing, and fre-
quency spectrum analysis [8, 9]. Vibration control methods
are aimed at proposing a proper design and/or modification
to reduce the mechanical vibration and pressure pulsation
to a minimum. Vibration can be controlled by increasing
pipe size, increasing buffer tank, shorting pipeline length,
adding support, installing orifice, and so on [10–13]. Recent
vibration reduction studies mainly focus on natural fre-
quency adjustment and pressure pulsation control [14–16].

These studies lay the foundation for diagnosis, identifica-
tion, analysis, and mitigation of flow-induced vibration in a
reciprocating compressor systems. This paper is devoted to
determine the main causes of high vibration encountered
by a scrubber system through field vibration measurement,
pulsation measurement, and modal experiment and put for-
ward effective vibration reduction treatment via resonance
analysis and one-way FSI vibration analysis.

2. Vibration Diagnosis and Cause Analysis

One underground natural gas storage station has employed
eight reciprocating compressors with a rated power of
4000 kW and a design processing capacity of 166 × 104
Nm3/d each to boost natural gas pressure. Each reciprocating
compressor is equipped with a scrubber in size Φ610mm ×
2921mm to remove lube oil to 0.1μm from natural gas to
ensure its quality and protect gas storage facilities. During
the commissioning of the reciprocating compressor, one
scrubber system (see Figure 1) encountered excessive vibra-
tion as high as 40mm/s RMS, which was considered to be
dangerous and should be controlled to values less than
18mm/s to ensure the safety and reliability of the scrubber
system [17]. Field measurements are conducted to investigate
the factors resulting in such problem, as presented in
Figure 2. Measuring parameters include vibration, pressure
pulsation, and modal. The measurement sensors employed
for field measurements comprise an accelerometer for vibra-
tion test, a pressure transmitter for pressure test, and an
impact hammer for modal test, in which main specifications
are given in Table 1.

2.1. Vibration Measurements and Analysis. Vibration
measurements were performed to investigate the causes of
vibration. The operating parameters of the reciprocating
compressor are listed in Table 2. Three vibration measuring
points V1, V2, and V3 are located at the scrubber inlet pipe-
line, the top of the scrubber, and the scrubber outlet pipeline,
respectively; each measuring point contains H (horizontal),
V (vertical), and A (axial) directions, as shown in Figure 1.
Vibration measurement results including vibration displace-
ment, velocity, and acceleration measured by an accelerome-
ter are listed in Table 3. Generally, the velocity method is
used to determine the vibration level for low-frequency

steady-state vibration. Table 3 reveals that the maximum
velocity is observed at the top of the scrubber, especially in
the A direction, and the velocity values measured at measur-
ing point V2 in the H and A directions are greater than the
allowable velocity limits (18mm/s), which indicates that the
scrubber stiffness in the A direction is weaker than that in
the H and V directions.

Vibration spectrum analysis was applied to identify the
frequency contents of the vibration signals [18]. The vibra-
tion frequency spectra measured at points V1, V2, and V3
in the A direction are displayed in Figure 3. The problematic
frequency components can be seen straight. The spectrum
measured at point V1 in the A direction exhibits mainly
two dominant frequency components of 16.56Hz and
32.39Hz, which are related to the reciprocating compressor
rotational frequency and its second harmonics calculated by
Equation (1). This revealed that the main source of vibration
excitation at the scrubber inlet pipeline was the pressure pul-
sation caused by the intermittent suction/discharge flow of
the reciprocating compressor. The spectrum measured at
V2 in the A direction shows mainly two dominant frequency
components of 5.9Hz and 16.56Hz; the vibration peak at

A H

V

O

V1

V2

V3

P2

P1

In

S2

S1

S3

1

Figure 1: Scrubber system connected to a reciprocating
compressor.

Figure 2: Field measurements for the scrubber system.
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5.9Hz contributes to about 70% of the total vibration. Simi-
larly, the two dominant frequencies of 5.9Hz and 16.56Hz
are observed at the point V3 in the A direction. It is known
that the pipelines and equipment connected to the recipro-
cating compressor vibrate inevitably at the rotational fre-
quency and harmonics of the compressor. Hence, the
problematic frequency of 5.9Hz observed at the top of the
scrubber was usually related to the scrubber structure and/or
flow-induced vibration (FIV).

f ex =
N
60 ki, ð1Þ

where f ex is the compressor rotational frequency (Hz); N is
the compressor rotational speed (rpm), for single-action pis-
ton k = 1 or double-action piston k = 2; and i is the harmonic
order of frequency.

2.2. Acoustic and Pulsation Analysis

2.2.1. Acoustic Analysis. The pressure pulsations of fluid are
referred to as acoustical, because they travel through a system
at the speed of sound of the gas. Pressure pulsations are gen-
erally too weak to cause any problem; however, they can be
strongly amplified and result in high vibration due to acous-
tic resonance when a particular excitation frequency matches
the acoustic frequency. Acoustic analysis was carried out to
find out the acoustic frequencies of system using the transfer
matrix method. In this method, the structural system is
divided into several elements such as a pipe, a volume, and
a resistance [19]. Each element has a transfer matrix ½M�.
Ignoring damping effects, the 2 × 2 transfer matrix is then
formulated by multiplying all the transfer matrices to relate
the pressure pulsation p and the flow pulsation u between
the inlet and outlet of system, which can be written as [20]

pout

uout

" #
= Mn½ � Mn−1½ �⋯ M2½ � M1½ �

pin

uin

" #
: ð2Þ

The subscripts “in” and “out” represent the conditions at
the inlet and outlet of the system, respectively. As presented
in Figure 1, the scrubber system is mainly composed of three
elements: the inlet pipeline, scrubber itself, and outlet pipe-
line. Therefore, the mathematical model for the scrubber
system can be considered to a “P-V-P” (pipe-volume-pipe)
acoustic system, as shown in Figure 4. The transfer matrices
of the inlet pipeline, scrubber itself, and outlet pipeline are
given by Equations (3), (4), and (5), respectively. So the
matrix equation of an acoustic model for the scrubber system
can be expressed by Equations (6).

M1½ � =
cos ω

a
L1 −ρ0a sin

ω

a
L1

1
ρ0a

sin ω

a
L1 cos ω

a
L1

2
664

3
775, ð3Þ

M2½ � =
1 0
Vω

S2ρ0a
2

S1
S2

2
4

3
5, ð4Þ

Table 1: Measurement sensors and the main specifications.

Sensor Measuring parameter Type Technical specifications

Accelerometer Vibration PCB 608A11

Range: 0.5Hz to 10 kHz
Sensitivity(±15%): 100mV/g
Measurement range: ±50 g

Broadband resolution: 350μg

Pressure transmitter Pressure Wotian PCM 301

Range: 0~30MPa
Accuracy: ±0.5%

Response time: ≤1ms
Shock: 100 g

Impact hammer Modal PCB 086D20

Range: ±22,240Npk
Sensitivity (±15%): 0.23mV/N
Resonant frequency: 12 kHz

Nonlinearity: 1%

Table 2: The main operating parameters of the reciprocating
compressor.

Rotational
speed (rpm)

Processing
capacity (Nm3/d)

Inlet
pressure
(MPa)

Outlet pressure
(MPa)

First
stage

Second
stage

994 149:2 × 104 7.61 13.62 24.41

Table 3: Vibration measurement results at the three points V1, V2,
and V3.

Point Direction
Displacement
(μm RMS)

Velocity
(mm/s RMS)

Acceleration
(m/s2 RMS)

V1

H 196.1 15.33 1.85

V 125.65 11.55 1.63

A 105.49 10.78 1.31

V2

H 215.8 18.6 1.91

V 83.29 9.45 1.39

A 271.7 25.76 2.04

V3

H 49.03 4.41 0.89

V 57.97 5.83 0.94

A 71.32 8.56 1.12
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M3½ � =
cos ω

a
L2 −ρ0a sin

ω

a
L2

1
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a
L2 cos ω

a
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2
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3
775, ð5Þ

p3

u3

" #
= M3½ � M2½ � M1½ �
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" #
, ð6Þ

where ω is the angular velocity (rad/s), L is the effective
length of the pipeline (m), a is the sound speed of gas
(m/s), ρ is the density of gas (kg/m3), S is the cross-
sectional area inside the pipeline (m2),V is the volume of vol-
ume element (m3), and the subscripts 1, 2, and 3 represent
the number of each element.

The acoustic frequencies can be determined by solving
Equation (6) in consideration of boundary conditions. The
pipeline connected to a large volume can be regarded as an
open end, if not, a closed end. For an open end, the boundary
conditions are that the pressure pulsation p is zero but flow
pulsation u is not zero; for a closed end, the flow pulsation
u is zero but pressure pulsation p is not zero. The pulsation
can be set to 1 when it is not zero, which will not affect the
results of acoustic frequencies. So the boundary conditions
of the scrubber system are

p3 = 1, u3 = 0,
p1 = 1, u1 = 0:

(
ð7Þ

Using these boundary conditions in Equation (7),
Equation (6) can be derived as

sin ω

a
L2 cos

ω

a
L1 +

Vω
S2a

cos ω

a
L2 cos

ω

a
L1

+ cos ω

a
L2 sin

ω

a
L1 = 0,

ð8Þ

f ac =
ω

2π : ð9Þ

The acoustic frequencies f ac of the scrubber system not
only depend on its structure parameters but also on the fluid
parameters inside the scrubber, such as density and sound
speed of fluid. The key structure parameters of the scrubber
system and physical properties of the natural gas in the
scrubber system are given in Tables 4 and 5, respectively.
Using these data, the first four acoustic frequencies of the
scrubber system were calculated by solving Equation (8)
and Equation (9), in which results are listed in Table 6. As
discussed above, the main excitation frequencies of vibration
are 5.9Hz and 16.56Hz (the rotational frequency) and in its
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Figure 3: Vibration spectrum comparison of the three points in the A (axial) direction.
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Figure 4: Acoustic mathematical model of the scrubber system.

Table 4: The key structure parameters of the scrubber system.

Parameter L1 (m) L2 (m) S1 (m2) S2 (m2) V (m3)

Value 11 9 0.528 0.528 0.0154

Table 5: Physical properties of the natural gas in the scrubber
system.

Property Symbol Value

Ratio of specific heats kv 1.29

Relative density rρ 0.588

Gas constant (J/(kg·K)) Rg 488.06

Absolute pressure (MPa) p 24.41

Absolute temperature (K) T 311.15

Compressibility factor Z 0.838

Sound speed (m/s) a 431.4

Table 6: The first four acoustic frequencies of the scrubber system.

Acoustic frequency First Second Third Fourth

f ac (Hz) 10.42 13.41 29.81 36.32
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harmonics, it is obvious that the acoustic frequencies of the
scrubber system are far away from them. It can be concluded
that the acoustic frequencies of the scrubber system were not
excited by the main excitation frequencies; there was no
acoustic resonance in the scrubber system.

2.2.2. Pulsation Analysis. Even for steady flow conditions,
pressure pulsation is an important source of energy responsi-
ble for scrubber vibration. Pressure pulsation has several
characteristic frequencies, which normally results in low-
amplitude vibration, and no problem occurs unless these pul-
sations coincide with the mechanical and/or acoustical reso-
nance frequency of a system. Pulsation measurements were
performed upstream and downstream of the scrubber using
a pressure transmitter to find the dominant excitation fre-
quency components. Two pressure pulsation measuring
points P1 and P2 are shown in Figure 1. The frequency com-
ponents and magnitude of the pressure pulsation were ana-
lysed to determine its characteristics and its potential effect,
in which results are represented in Figure 5. It can be seen
that the resulting pressure pulsation is a low-frequency pul-
sation; the pulsation at point P1 mainly contains several har-
monics of the rotational frequency of 16.56Hz; however, the
pulsation at point P2 is strongest at 5.9Hz; spikes at the har-
monics of 16.56Hz exist as well. As the dominant frequency
of 5.9Hz was observed downstream of the scrubber but not
observed upstream of the scrubber, it can be concluded that
the dominant excitation frequency occurred at 5.9Hz.

2.3. Modal Analysis.Modal experiment was conducted at the
impact point① (see Figure 1) to acquire the MNFs (mechan-
ical natural frequencies) of the scrubber system. From
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Figure 6, two fundamental frequencies of 5.94Hz and 7.8Hz
are found in the three directions; the peak amplitude in the A
direction is greater compared to the other two directions,
which indicates that the scrubber is more likely to vibrate
in the A direction.

Meanwhile, the relationships among the vibration, pres-
sure pulsation, and MNFs of the scrubber system can be
compared to reveal potential causes of vibration. According
to the spectrum overlay shown in Figure 7, the dominant fre-
quency of pressure pulsation at 5.9Hz is very close to the first
MNF of the scrubber system of 5.94Hz; the highest vibration
occurs at 5.9Hz, so it can be concluded that the main cause of
the excessive vibration was pressure pulsation-induced
mechanical resonance.

3. Vibration Reduction Treatment and Analysis

3.1. Vibration Reduction Treatment. The motion equation of
forced vibration of a structure system is given by Equation
(10). In practice, it is useful to add mass, increase damping,
add stiffness, and reduce exciting force to minimize the vibra-
tion response of a structure system.

M €x tð Þf g + C _x tð Þf g + K x tð Þf g = F tð Þf g, ð10Þ

whereM is the mass matrix, C is the damping matrix, K is the
stiffness matrix, fFðtÞg is the exciting force vector, and fxð
tÞg is the vibration displacement vector.

The highest vibration level at 5.9Hz was due to reso-
nance, so it is necessary to separate the MNFs of the scrubber
system from the dominant frequency of pulsation as a coun-
termeasure against vibration. Resonance avoidance solutions

were needed to eliminate such vibration problem, such as
adjusting MNFs by adding support and change in operation
conditions to shift pulsation frequency. As the scrubber must
have a wide range of operating conditions to meet the
requirements of reciprocating compressor, changing the
MNFs of the scrubber system was more effective than chang-
ing the operation conditions to control vibration. As dis-
cussed above, the vibration of the scrubber system is low-
frequency vibration; the vibration response of the system
can be said to be stiffness dominated. A practical method of
changing the MNFs of the scrubber system may be installa-
tion of a new support to increase system stiffness. In this
study, two braces with a band clamp are installed at the mid-
dle of the scrubber to raise its MNFs beyond the resonance
region of concern, as displayed in Figure 8.

3.2. Resonance Analysis. The effectiveness of the vibration
reduction treatment should be analysed before implemen-
tation. Finite element method (FEM) is also useful to

(a)

kA

kV

kH

(b)

Figure 9: Pipe support: (a) common support; (b) support simplified model.

Table 7: The boundary conditions applied in the simulation model of the original scrubber system.

Location Boundary conditions

S1 kH = 3:80E + 03N/mm, kV = 7:60E + 05N/mm, kA = 2:67E + 04N/mm

S2 kH = 5:87E + 04N/mm, kV = 9:88E + 05N/mm, kA = 8:34E + 03N/mm

S3 kH = 2:17E + 06N/mm, kV = 3:29E + 06N/mm, kA = 3:09E + 05N/mm
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Figure 10: The effect of the axial stiffness of the brace on the first
MNF of the modified model.
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determine modal parameters of a structure system. The
simulation model of the original scrubber system modelled
from the construction drawings and physical measurement
was used to calculate the MNFs andmode shapes, which shall
be validated by the results of modal experiment discussed in
Section 2.3. Material of the scrubber system was steel with
density ρ = 7850 kg/m3, Young’s modulus E = 210GPa, and
Poisson’s ratio ν = 0:3. The scrubber inlet and outlet pipe-
lines are restrained by several supports, as presented in
Figure 1; each support can be simplified as a spring with three
stiffness values of kH, kV, and kA, as shown in Figure 9. These
stiffness values at locations S1, S2, and S3 (see Figure 1) can
be calculated by FEM using the software Ansys, the results
of which are listed in Table 7 [21].

Using these boundary conditions in Table 7, the first
mechanical natural frequency of the original scrubber system
is 6.21Hz. There is a relatively low (4%) disagreement com-
pared with the result of modal experiment. Such a slight dis-
agreement is acceptable in engineering application, so the
simulation model of the original scrubber system was vali-
dated and then was used to optimize the design of the two
braces. Some factors causing the disagreement could be ideal-
izations and simplifications of the scrubber structure, diffi-
culties in obtaining actual stiffness of support because of
insufficient support, uncertainties in surface soil effect on
concrete piers, etc.

A modified model of the scrubber system was modelled
on the basis of the vibration reduction treatment shown in
Figure 8, in which MNFs greatly depend on the stiffness of
the two braces. The brace can be defined as a spring with dif-
ferent axial and radial stiffness. Since the two braces and band
clamp are connected together by several bolted connections,
the axial stiffness of the brace has far greater influence on the
MNFs of the modified model than its radial stiffness. From
Figure 10, the first MNF of the modified model increases with
an increase in the axial stiffness of brace and increases greatly

from 1E + 04N/mm to 1E + 06N/mm. To control the vibra-
tion problem, the predicted MNFs of the modified model
should be designed to be separated from the dominant exci-
tation frequencies of 5.9Hz by at least 20%, which means the
axial stiffness of the brace should be at least 1:06E + 05
N/mm to ensure the modified model has a mechanical natu-
ral frequency higher than 7.08Hz.

In order to avoid mechanical resonance and acoustic res-
onance, the MNFs and acoustic frequencies of the modified
scrubber system should have a separation margin of 20%
from the significant excitation frequencies, such as dominant
pulsation frequency and the 1X (first) rotational frequency of
the reciprocating compressor. In this study, the first four
MNFs of the modified model were obtained by the finite ele-
ment method with the assumption that the axial stiffness of
the brace was 2E + 05N/mm. Resonance analysis was per-
formed to show the relationships among the MNFs, acoustic
frequencies, dominant pulsation frequency, and rotational
frequencies of the modified model. As show in Figure 11,
the blue boxes present the first four mechanical resonance
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Figure 11: Resonance analysis of the modified model of the scrubber system.
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regions, and the red boxes the first four acoustic resonance
regions; the dominant pulsation frequency, 1X rotational
frequency, and 3X rotational frequency are beyond the reso-
nance region; the 2X rotational frequency is within the third-
and fourth-order acoustic resonance regions, but not in the
core region. As the first-order acoustic frequency excited by
the dominant excitation frequency is often more destructive
than others in engineering application, it can be seen that
both mechanical resonance and acoustic resonance are
avoided by this vibration reduction treatment.

3.3. Fluid-Structure Interaction Vibration Analysis. The
vibration of the scrubber system is a complex fluid-
structure interaction (FSI) problem, the fluid flow exerts
pressure loads on the structure, and these pressure loads
induce structural deformation and vibration to change the
fluid flow itself. Such problems generally need numerical
simulations, as it is difficult to obtain analytical solutions.
From Table 3, the maximum vibration displacement of the
scrubber system is 215.8 micron; it can be seen that such dis-
placement is not large enough to have a significant impact on
the fluid flow, so one-way coupling FSI analysis can be appli-
cable for vibration simulation of the scrubber system. The
one-way FSI analysis process is illustrated in Figure 12, which
shows that the pressure calculated by CFD (Computational
Fluid Dynamics) calculation at the fluid-structure interface
is transferred to the mechanical model and applied as load
in structural calculation.

To evaluate the vibration level of the modified scrubber
system at its design condition, one-way FSI analysis was per-
formed. The CFDmodel of the modified scrubber system was
built up for CFD calculation. The numerical mesh of the CFD
model is constructed with a combination of unstructured and
structural mesh elements, as plotted in Figure 13. Since the
results of CFD calculation are very sensitive to the mesh qual-
ity, this numerical mesh independence was tested, which
showed that a deviation of less than 0.1% was obtained in
relation to pressure drop.

The design condition of the scrubber is the processing
capacity which is 166 × 104Nm3/d, the outlet pressure
30MPa, and the rotational frequency 16.667Hz (1000 rpm).
According to the API 618 standards, the maximum allowable

pressure pulsation is 0.5%, and the static pressure of gas is
30MPa, so the dynamic pressure calculated is 0.15MPa
[22]. Hence, the pressure at the end of the scrubber outlet
pipeline can be described as p = 30 + 0:075sinð104:667tÞ
(MPa); the boundary conditions for CFD calculation are
listed in Table 8. In this paper, transient-state CFD calcula-
tion was carried out using the software FLUENT, the realiz-
able k − ε model was employed, time step was 0.0001 s, and
total time is 0.06 s. The pressure distribution of the fluid-
structure interface in the CFD model at 0.04 s is presented
in Figure 14.

According to the one-way FSI analysis process in Figure 12,
these pressure loads were transferred to the mechanical model
of the modified scrubber system, and then, the vibration
response was simulated in structural calculation using the soft-
ware Ansys. Figure 15 shows the vibration velocity of the mod-
ified scrubber system; the maximum velocity of 9.63mm/s
observed at the top of the scrubber is below 18mm/s, which
illustrates that the vibration level is reduced to the allowable
limit when operating at its design condition.

4. Implementation and
Evaluation of Countermeasures

Both the resonance analysis and fluid-structure interaction
vibration analysis indicate that the vibration reduction treat-
ment proposed is effective to mitigate the vibration problem.
Installation of two braces with a band clamp is implemented
on the scrubber on the basis of the above analysis, as dis-
played in Figure 16. After modification of the scrubber sys-
tem, vibration and pressure measurements were carried out
at the same points as before. The operating parameters of

Cross section of pipe

Inlet

Outlet

Figure 13: Numerical mesh of the CFD model in the modified scrubber system.

Table 8: Boundary conditions of the CFD model in the scrubber
system for CFD calculation.

Position Boundary condition Value

Inlet Velocity inlet 4.215 (m/s)

Outlet Pressure outlet 30 + 0:075sin 104:667tð Þ (MPa)

Wall Wall No slip wall
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the reciprocating compressor during measurements after
modification are listed in Table 9, which are very similar to
that (see Table 2) before. The comparison of vibration veloc-
ity measured at points V1, V2, and V3 before and after mod-
ification is plotted in Figure 17; it can be seen that all the
vibration velocity values are reduced to a considerable extent;
especially, the maximum vibration velocity at point V2 in the
A direction is decreased by 67.31% from 25.76mm/s to
8.42mm/s. The velocity spectrum of point V2 after modifica-
tion, as shown in Figure 18, outlines that the dominant fre-
quency of vibration is the compressor rotational frequency
of 16.56Hz, but the vibration amplitudes occurring at
5.92Hz are small. By comparing the pressure spectrum of
point P2 before and after modification presented in
Figure 19, the dominant frequency is 16.56Hz, and pressure
pulsation occurring at 5.9Hz declines by 84.4% from
0.122MPa, peak to peak, to 0.019MPa, peak to peak.

5. Results and Discussion

The potential causes of vibration can be revealed by vibration
and pulsation measurements, acoustic analysis, and modal
analysis. Vibration measurement and analysis are beneficial
for diagnosis and characterization of vibration. Pulsation
measurement is a good way of understanding the character-
istics of pressure pulsation for pulsation reduction to control
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Figure 14: Pressure distribution of the fluid-structure interface in the CFD model at 0.04 s.
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Figure 15: Vibration velocity of the modified scrubber system at its design condition.
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Figure 16: The modified scrubber system supported by two braces.

Table 9: The operating parameters of the reciprocating compressor
after scrubber modification.

Rotational
speed (rpm)

Processing
capacity (Nm3/d)

Inlet
pressure
(MPa)

Outlet pressure
(MPa)

First
stage

Second
stage

994 145:8 × 104 7.56 13.32 24.26
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flow-induced vibration. Acoustic analysis is used to deter-
mine the acoustic frequencies of system to avoid acoustic res-
onance. Modal analysis using experiment and/or the finite
element method is used to obtain the modal parameters to
avoid mechanical resonance. In this paper, the highest vibra-
tion of the scrubber system was observed near the mechanical
resonance frequency of 5.94Hz, followed by 16.56Hz; the
excitation source resulting from pressure pulsation in the
scrubber had several clear spikes in the range of 0-70Hz,
which clearly contained 5.9Hz and 16.56Hz, so the excessive
vibration problem resulted from pressure pulsation-induced
mechanical resonance.

Effective vibration mitigation measures are needed to be
developed based on field measurement data and structural
dynamics models for optimizing feasible solutions. Flow-
induced vibration can be mainly controlled by avoiding
mechanical resonance, acoustic resonance, and high pressure
pulsation in a structure system. Resonance analysis is essen-
tial for avoidance of mechanical resonance and acoustic res-
onance in system. FSI analysis using the finite element
method can determine the vibration level of the structure sys-
tem. However, the accuracy of results depends greatly on the
idealizations and simplifications of system, the numerical
mesh quality, boundary conditions, etc. In this study, a
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vibration reduction treatment was proposed by installation
of two braces with a band clamp at the middle of the scrubber
to increase its MNFs; the simulation model of the original
scrubber system was developed and validated by comparison
with the modal experiment, resonance analysis revealed
mechanical resonance, and acoustic resonance can be
avoided when the brace had an axial stiffness greater than 2
E + 05N/mm, and the FSI vibration analysis revealed that
the vibration level of the modified scrubber system at its
design conditions was within the acceptable limit.

Two braces with band clamp were installed on the scrubber
as countermeasure against vibration. The effectiveness of the
vibration reduction treatment was confirmed by comparison
with the field measured data before and after modifications.
The MNFs of the modified scrubber increased and was away
from the dominant excitation frequencies of pressure pulsation,
so mechanical resonance was avoided. The vibration and pulsa-
tion values were reduced greatly after modification. To con-
clude, with this modification in the scrubber system, the
vibration problem was eliminated altogether and the scrubber
can operate safely at its design conditions.

6. Conclusions

Flow-induced vibration in a reciprocating compressor sys-
tem can only be minimized with proper design and configu-
ration of structure. There are two elastic vibration systems:
mechanical structure system and acoustic system; each sys-
tem has natural or resonant frequencies. Severe vibration
can be induced by mechanical and/or acoustic resonance
due to coincidence with a particular mechanical natural fre-
quency and/or acoustic frequency. Field measurements
including vibration, pressure pulsation, and modal experi-
ment in combination with frequency spectrum analysis are
useful to diagnose vibration problem. Development of a
practical and effective vibration control measure should need
field measured data, resonance analysis, and FSI vibration
analysis using the finite element method.
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