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High-throughput genomic technology has enabled us to
screen the entire genome and generate hypotheses at
relatively low costs. One of the driving forces in high-
throughput genomic technology is high-throughput sequenc-
ing (HTS).With its rapid development and affordability, HTS
has quickly become the go-to choice for interrogating the
entire genome. The analysis methodology development for
HTS has been at the forefront of bioinformatics in recent
years. Hundreds of tools and pipelines have been developed
to aid researchers in interpreting HTS data. The aim of this
special issue is to promote research and reflect the most
recent advances in addressing HTS data analysis.

We received a total of 14 manuscripts and, through rigor-
ous review, selected six for publication in this special issue.
What follows is a brief summary of the six manuscripts:

(1) Title: “Chromosome 1 Sequence Analysis of C57BL/
6J-Chr1KM Mouse Strain.” In this article, the authors
studied the chromosome 1 sequence of the Chinese
Kunming mouse and compared the sequence to three
other mouse species.

(2) Title: “The Utilization of Formalin Fixed-Paraffin-
Embedded Specimens in High Throughput Genomic
Studies.” In this review article, the authors thoroughly
examined the practicability of conducting high-
throughput genomic assays, including HTS using
formalin-fixed paraffin-embedded specimens.

(3) Title: “An Integrating Approach for Genome-Wide
Screening of MicroRNA Polymorphisms Mediated
Drug Response Alterations.” In this study, the authors

examined the relationship between polymorphisms
and drug response in microRNA.

(4) Title: “Comparative Transcriptome Analysis Reveals
Effects of Exogenous Hematin on Anthocyanin
Biosynthesis during Strawberry Fruit Ripening.”
Through RNA sequencing, the authors examined
the expression change of genes in strawberries that
had been applied with exogenous hematin.

(5) Title: “Differential Gene Expression during Larval
Metamorphic Development in the Pearl Oyster,
Pinctada fucata, Based on Transcriptome Analysis.”
Through RNA sequencing, the authors studied
changes in the gene expression pattern during the
metamorphic development of a pearl oyster.

(6) Title: “RNA Sequencing of Formalin-Fixed, Paraffin-
Embedded Specimens for Gene Expression Quantifi-
cation and Data Mining.” In this study, the authors
examined the efficiency of two ribosomal RNA dele-
tion kits: Ribo-Zero and RNase H.
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The Chinese Kunming (KM) mouse is a widely used outbred mouse stock in China. However, its genetic structure remains unclear.
In this study, we sequenced the genome of the C57BL/6J-Chr1KM (B6-Chr1KM) strain, the chromosome 1 (Chr 1) of which was
derived from one KM mouse. With 36.6× average coverage of the entire genome, 0.48 million single nucleotide polymorphisms
(SNPs) and 96,679 indels were detected on Chr 1 through comparison with reference strain C57BL/6J. Moreover, 46,590 of
them were classified as novel mutations. Further functional annotation identified 155 genes harboring potentially functional
variants, among which 27 genes have been associated with human diseases. We then performed sequence similarity and Bayesian
concordance analysis using the SNPs identified on Chr 1 and their counterparts in three subspecies, Mus musculus domesticus,
M. m. musculus, and M. m. castaneus. Both analyses suggested that the Chr 1 sequence of B6-Chr1KM was predominantly
derived from M. m. domesticus while 9.7% of the sequence was found to be from M. m. musculus. In conclusion, our analysis
provided a detailed description of the genetic variations on Chr 1 of B6-Chr1KM and a new perspective on the subspecies origin
of KM mouse which can be used to guide further genetic studies with this mouse strain.

1. Introduction

The Chinese Kunming (KM) mouse colony, the largest
outbred mouse stock maintained by commercial dealers
nationwide in China, has been widely used in pharmaceutical
and genetic studies [1]. Unlike other outbred mice, KM
mouse has a complex evolutionary history. In 1944 during
the World War II, Swiss mice were initially introduced into
Kunming, Yunnan Province, China, from the IndianHaffkine
Institute byProfessor FeifanTang via theHumproutewith the
help of the American Volunteer Group [2]. These mice were
named KMmice after their initial location in China. Because
most other mouse strains were lost and mouse facilities
were damaged during the World War II, KM mouse became
the only laboratory mouse available afterwards. They were
gradually distributed throughout most of the country
for medical studies. However, despite the importance

of this outbred mouse, its underlying genetic structure
remains unclear.

According to the Mouse Genome Informatics (http://
www.informatics.jax.org/), over one thousand quantitative
trait loci (QTLs) have been mapped on mouse chromosome
1 (hereafter referred to as Chr 1) including large amounts of
QTLs related to metabolism disorder. However, very few
candidate genes have been identified partly because of
the large QTL intervals. In order to finemap themetabolism
disorder QTLs on Chr 1 and identify the candidate genes, we
established a population of Chr 1 substitution mouse
strains, in which C57BL6/J (B6) was the host strain, and
one KM mouse, five inbred strains, and twenty-four wild
mice captured from various locations in China were
selected as the Chr 1 donors [3]. In order to dissect the
genetic structure and variations of this population and better
severe further genetic studies, we have resequenced 18 strains
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of this population including C57BL/6J-Chr1KM (B6-Chr1KM)
with next-generation sequencing technology [4].

In this study, we analyzed the genome sequence data
from B6-Chr1KM strain and identified 0.48 million single
nucleotide polymorphisms (SNPs) and 96,679 indels on
Chr 1, of which 6.4% SNPs and 16.3% indels were considered
to be novel. Functional annotation suggested that 474 vari-
ants had deleterious effect on gene functions. In addition,
we explored the KM mouse genetic structure by performing
sequence similarity and Bayesian concordance analysis
(BCA) on Chr 1. Results suggested that KM mouse was
predominately originated from Mus musculus domesticus
and part of the sequence was from M. m. musculus.

2. Materials and Methods

2.1. Animals. B6 andKMmice were purchased from Shanghai
SLAC Laboratory Animal Co., Ltd., China. One male KM
mouse was mated with female B6 to produce hybrid F1,
followed by 8 generations of backcrossing with B6 using
marker-assisted selection, then brother × sister mating to
create a B6-Chr1KM Chr 1 substitution strain [3]. All mice
were maintained under specific pathogen-free (SPF)
conditions according to the People’s Republic of China
Laboratory Animal Regulations, and the study was con-
ducted in accordance with the recommendations of and
was approved by the Laboratory Animal Committee of
Donghua University.

2.2. DNA Sequencing.B6-Chr1KM genomicDNAwas extracted
from tail tissue of a male mouse using an AxyPrep™ Multi-
source Genomic DNA Miniprep Kit (Axygen, Hangzhou,
China) according to the manufacturer’s protocol.

Purified genomic DNA was sheared and size selected
(300–500 bp). Paired-end sequencing (2× 125 bp) was carried
out with an Illumina HiSeq 2500 instrument (Illumina
Inc., San Diego, CA, USA) on two lanes by WuXi AppTec
(Shanghai, China) according to the manufacturer’s protocol.

2.3. Read Alignment. Raw reads were filtered using NGS QC
toolkit v2.3 [5] to remove reads containing more than 30%
low-quality (Q20) bases. Filtered reads were aligned to the
C57BL/6J reference genome (December 2011 release of the
mouse reference genome (mm10) from Ensembl) using
BWA (version 0.7.10-r789) with 12 threads [6]. The resulting
SAM file was converted to a binary format and sorted with
SAMtools v1.1 [7], followed by themarking of duplicate reads
using picard-tools v1.119 (http://picard.sourceforge.net). To
improve SNP and indel calling, indel realignment was con-
ducted with Genome Analysis Toolkit (GATK v3.3) [8].

2.4. SNP/Indel Identification and Annotation. SNPs and
indels were called using SAMtools mpileup and BCFtools call
functions [7], with the '-uf' and '-cv' parameters, respectively.
To identify a high-quality variant data set, variants were
filtered using the BCFtools filter and VCFtools varFilter
function [9]. The following parameters were used: for
BCFtools filter, '-g 10 -G 3 -i 'QUAL>10 && MIN(MQ)>25
&& MIN(DP)>6 && MAX(DP)<199 && (DP4[2]+DP4[3])
> 2', and for VCFtools varFilter, '-2 0'.

Ensembl Variant Effect Predictor tool (VEP, v78) [10]
was used to characterize the SNPs and indels, and the algo-
rithm SIFT was used to predict whether a missense variant
would have a deleterious effect on a protein-coding gene.

2.5. Sequence Similarity Analysis. SNP information for
WSB/EiJ (WSB), PWK/PhJ (PWK), and CAST/EiJ (CAST)
was downloaded from the Mouse Genome Project (MGP)
database of the Sanger Institute. The Chr 1 consensus
sequence for each strain was constructed using the SAMtools
consensus parameters. The repeat-masked B6-Chr1KM Chr 1
sequence was divided into 1955 100 kb segments. The
similarities of each segment with the corresponding segments
in theWSB, CAST, and PWKwere evaluated. Sliding window
similarity analysis was also performed using 500 kb windows
and 100 kb sliding intervals.

2.6. Phylogenetic Analysis. Phylogenetic analysis was con-
ducted with the previously reported BCA method [11],
with the Rattus norvegicus Chr 1 sequence (version rn5)
downloaded from Ensembl used as the out-group. Briefly,
consensus sequences from theWSB, PWK, and CAST strains
weremapped to the alignment and gaps filled with Ns. Collin-
ear segments were partitioned into 830 loci using a
minimum description length algorithm with a default
maximum cost.

2.7. Phylogenetic Tree Evaluation. Nexus files corresponding
to the WSB-derived or PWK-derived regions were converted
to FASTA files, and then a neighbor-joining phylogenetic
tree was constructed using MEGA6 program [12]. Subse-
quently, 1000 bootstrap replicates were performed to generate
branch support values.

3. Results

3.1. B6-Chr1KM Genome Background. Chromosome substitu-
tion strains, also named as consomic strains, are designed to
simplify the genome background and increase the power and
speed of QTL mapping. The characteristic of consomic strain
is that it only contains a single chromosome from the donor
strain substituting the corresponding chromosome in the
host strain. For B6-Chr1KM consomic strain, Chr 1 sequence
was derived from one KM mouse, while the genome back-
ground was from the B6 strain (Figure 1). In addition,
sequences in the primary mouse reference assembly come
fromthe sameB6 strain. Therefore, our analysis ofB6-Chr1KM

whole genome resequencing data only focused on Chr 1.

3.2. SNP and Indel Discovery. In this study, approximately
one billion reads from the B6-Chr1KM mouse strain were
generated on two lanes of Illumina HiSeq 2500. A total of
78.65% of the reads were considered to be clean reads after
quality control evaluation. Of them, more than 99% were
aligned to the B6 mouse reference genome (mm10) using
BWA with a mean genome-wide coverage of 36.6×.

A total of 479,956 SNPs and 96,679 indels were detected
using SAMtools/BCFtools on Chr 1, in which 462,755
(96.42%) of the sites were homozygous. These variants were
compared with variant calls from 36 key mouse strains from
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the Sanger Institute [13] as well as NCBI dbSNP142 variant
data sets. This led to the identification of 449,089 SNPs
(93.6%)asknown, and the remaining30,867SNPs (6.4%)were
classified as novel. For indels, 15,723 (16.3%)were classified as
novel. In addition, we evaluated the variant calls using Sanger
sequencing in our previous study which achieved high accu-
racy with 0.57% false positive and 0% false negative rate [4].

Next, we detected the distribution and density of SNPs
over 100 kb window sizes. The observed average SNP density
across the entire Chr 1 was 250 per 100 kb. However, differ-
ent regions showed varying densities. For example, 29.5%
of the Chr 1 sequence had an extremely low (0–5 SNPs per
100 kb) SNP density, while 9.1% had a high density (800 or
more SNPs per 100 kb). The proximal region of Chr 1 was
the longest region with a low SNP density encompassing
nearly 25Mb (Figure 2).

3.3. Functional Consequences of the SNPs and Indels. The
putative consequences of SNPs and indels were cataloged
using VEP from Ensembl (Table 1). The majority of the SNPs
were located in intergenic (224,557, 18.7%) and intronic
regions (575,013, 47.8%), and nearly 12% were classified as
noncoding transcript variants. With regard to splice sites,
40 splice variants (including splice donor and splice acceptor
variants) were found. The numbers of SNPs causing a prema-
ture stop codon or stop loss were 19 and 5, respectively. In
addition, 2,378 (0.2%) missense variants were detected in

358 genes (one or more variants per gene). Among them,
380 variants (31.6%) from 113 genes were considered to have
deleterious effects (SIFT < 0 05). Similar to the SNPs, the
majority of indels were intronic (49.3%) and intergenic
(17.1%) or within 5 kb upstream or downstream of a gene
(16.9%). Only a small number of indels caused frameshift
(22) and stop gain or loss (2). Among the novel variants, 7
caused a disruption of the translational reading frame; 10were
predicted as premature truncationof theprotein due to gain or
loss of stop codons; and 9were located in splice donor regions.
In addition, 104 novel missense variants from 20 genes had
deleterious effects.

Next, we annotated these genes containing amino acid
altering variants (SIFT < 0 05) and those with stop gain or
loss, frameshift, and splice region variant genes with the
Human-Mouse: Disease Connection database from Mouse
Genome Informatics [14]. This analysis, which contained
155 genes, resulted in 27 genes associated with 49 different
human disease-related phenotypes (Table 2), including mac-
ular degeneration, breast cancer, and immunodeficiency.
Among these 27 disease genes, 9 have been investigated with
mouse models, which had an in-depth phenotype informa-
tion in different mouse genome background.

3.4. Sequence Similarity Analysis. The house mouse, Mus
musculus, consists of three principal subspecies, with M. m.
domesticus in Western Europe and the Middle East, M. m.

C57BL/6J

B6-Chr1KM

Chromosome 1 Others

Figure 1: The characteristics of B6-Chr1KM genome background. Blue bars represent B6 chromosome while the red represents KM
mouse chromosome.
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Figure 2: Distribution of SNP density on B6-Chr1KM Chr 1. The SNP density is represented by the number of SNPs mapped within 100 kb
physical intervals across Chr 1.
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musculus in Eastern Europe and Asia, and M. m. castaneus
in Southeast Asia and India. Three genome sequences of
the wild-derived inbred mouse strains, WSB, PWK, and
CAST, which are broadly used to represent each of the
subspecies, were selected for phylogenetic analysis. A Chr 1
consensus sequence was constructed for each strain using
the SNP information from MGP. Because the simplest way
to analyze phylogenetic divergence is by assessing sequence
similarity, the Chr 1 sequence was separated into 1955
100 kb blocks and the similarities between each fragment
and the corresponding sequences from WSB, PWK, and
CAST were determined. The Chr 1 sequence was found to
contain a large number of fragments with high sequence sim-
ilarity to the corresponding sequence in WSB (Figure 3(a)),
which is consistent with previous reports showing that KM
mouse is derived from Swiss mice originated from the
M. m. domesticus subspecies [1]. In addition, a bimodal dis-
tribution of blocks with two peaks of similarity was observed
in a comparison of B6-Chr1KM Chr 1 with PWK counterpart
(Figure 3(a)). The first peak had only 99.05–99.1% sequence
similarity to PWK, indicating the intersubspecies genome
divergence of the Chr 1 sequence from M. m. musculus.
The second peak had >99.7% sequence similarity to PWK
(Figure 3(a)), indicating that the sequence ofM. m. musculus
introgressed into the KM mouse Chr 1. For the comparison
of B6-Chr1KM and CAST, we just observed one peak which

suggested no signs of introgression of M. m. castaneus into
the KM mouse Chr 1.

We next performed sliding window similarity ana-
lysis using 500 kb windows and 100 kb sliding intervals
(Figure 3(b)). We found that 13.5% and 6.4% of the Chr 1
sequences had high similarity (>99.7%) with the correspond-
ing sequences of PWK and CAST, respectively. The distal
portion of the B6-Chr1KM Chr 1 was found to have several
regions that were highly similar to the corresponding regions
of PWK with sharp boundaries between the regions of high
and low similarity. However, we did not find any distinct
boundaries between B6-Chr1KM and CAST Chr 1 sequence.

3.5. Bayesian Concordance Analysis. To determine the extent
of phylogenetic discordance in B6-Chr1KM Chr 1, we assessed
the discordance along Chr 1 by BCA. A total of 886 parti-
tioned individual locus trees were used to estimate Bayesian
concordance factors. In BCA, 87.7% of the loci supported a
single KM/WSB topology with higher posterior probability,
and 9.7% supported a single KM/PWK topology. None of
the loci supported a KM/CAST topology, and the re-
maining 2.6% had a complicated topology (Figure 4(a)).
Highly conserved genomic regions (Figure 3(b)) between
the KM and PWK were almost found to have a relatively
close topological relationship (Figure 4(a)). Furthermore, five
loci with KM/WSB or KM/PWK topology were randomly

Table 1: Predictions of functional consequences of SNPs and indels.

Consequences SNPs Novel SNPs Indels Novel indels

splice_donor_variant 29 9 2 0

splice_acceptor_variant 11 0 4 0

stop_gained 19 8 1 1

frameshift_variant 0 0 22 7

stop_lost 5 1 1 0

start_lost 11 3 2 0

missense_variant 2378 486 — 0

inframe_insertion 0 0 28 2

inframe_deletion 0 0 26 2

splice_region_variant 1117 63 244 18

synonymous_variant 4238 281 0 0

stop_retained_variant 3 0 0 0

coding_sequence_variant 1 0 1 0

mature_miRNA_variant 4 2 2 0

5_prime_UTR_variant 1210 86 198 31

3_prime_UTR_variant 6563 484 1617 191

non_coding_transcript_exon_variant 11,955 640 2140 290

intron_variant 575,013 36,838 139,815 21,458

NMD_transcript_variant 42,052 2609 10,291 1372

non_coding_transcript_variant 143,110 8770 32,985 5190

upstream_gene_variant 96,888 8357 24,321 3992

downstream_gene_variant 93,184 5752 23,557 3390

intergenic_variant 224,557 13,198 48,568 8312

Consequences were predicted using Ensembl VEP and gene models from Ensembl version 76. Novel SNPs or indels are defined as variants that were not in
MGP and dbSNP142 data sets.
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Table 2: List of human disease-associated genes with loss of function variants in B6-Chr1KM Chr 1.

Gene Ensembl ID Variant type Phenotype OMIM ID

Col4a3 ENSMUSG00000079465 Frameshift

Alport syndrome, autosomal dominant 104200

Alport syndrome, autosomal recessive 203780

Hematuria, benign familial; BFH 141200

Fn1 ENSMUSG00000026193 Frameshift
Glomerulopathy with fibronectin deposits 2; GFND2 601894

Plasma fibronectin deficiency 614101

Pde6d ENSMUSG00000026239 Splice donor Joubert syndrome 22; JBTS22 615665

Hmcn1 ENSMUSG00000066842 Frameshift Macular degeneration, age-related, 1; ARMD1 603075

Cd244 ENSMUSG00000004709 Stop gain; splice donor Rheumatoid arthritis; RA 180300

Rab3gap2 ENSMUSG00000039318
Splice acceptor,

missense
Martsolf syndrome 212720

Warburg micro syndrome 2; WARBM2 614225

Lamb3 ENSMUSG00000026639 Splice acceptor

Amelogenesis imperfecta, type IA; AI1A 104530

Epidermolysis bullosa, junctional, Herlitz type 226700

Epidermolysis bullosa, junctional, non-Herlitz type 226650

Dst ENSMUSG00000026131 Missense
Epidermolysis bullosa simplex, autosomal recessive 2; EBSB2 615425

Neuropathy, hereditary sensory and autonomic, type VI;
HSAN6

614653

Ercc5 ENSMUSG00000026048 Missense Xeroderma pigmentosum, complementation group G; XPG 278780

Casp8 ENSMUSG00000026029 Missense
CASPase 8 deficiency 607271

Dermatitis, atopic 603165

Tmem237 ENSMUSG00000038079 Missense
Joubert syndrome 1; JBTS1 213300

Joubert syndrome 14; JBTS14 614424

Bard1 ENSMUSG00000026196 Missense Breast cancer 114480

Bcs1l ENSMUSG00000026172 Missense

Bjornstad syndrome; BJS 262000

Gracile syndrome 603358

Leigh syndrome; LS 256000

Mitochondrial complex III deficiency, nuclear type 1;
MC3DN1

124000

Obsl1 ENSMUSG00000026211 Missense Three M syndrome 2; 3 M2 612921

Tm4sf20 ENSMUSG00000026149 Missense Specific language impairment 5; SLI5 615432

Dis3l2 ENSMUSG00000053333 Missense Perlman syndrome; PRLMNS 267000

Chrng ENSMUSG00000026253 Missense
Multiple pterygium syndrome, Escobar variant; EVMPS 265000

Multiple pterygium syndrome, lethal type; LMPS 253290

Ugt1a1 ENSMUSG00000089960 Missense

Crigler-Najjar syndrome, type I 218800

Crigler-Najjar syndrome, type II 606785

Gilbert syndrome 143500

Hyperbilirubinemia, transient familial neonatal; HBLRTFN 237900

Steap3 ENSMUSG00000026389 Missense
Anemia, hypochromic microcytic, with iron overload 2;

AHMIO2
615234

Ube2t ENSMUSG00000026429 Missense Fanconi anemia, complementation group T; FANCT 616435

Ppox ENSMUSG00000062729 Missense Porphyria variegata 176200

Ackr1 ENSMUSG00000037872 Missense Malaria, susceptibility to 611162

Spta1 ENSMUSG00000026532 Missense

Elliptocytosis 2; EL2 130600

Pyropoikilocytosis, hereditary; HPP 266140

Spherocytosis, type 3; SPH3 270970

Ephx1 ENSMUSG00000038776 Missense

Epoxide hydrolase 1, microsomal; EPHX1 132810

Hypercholanemia, familial; FHCA 607748

Preeclampsia/eclampsia 1; PEE1 189800

Rd3 ENSMUSG00000049353 Missense Leber congenital amaurosis 12; LCA12 610612
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selected, and the phylogenetic trees were confirmed by
Mega software (Figure 4(b)).

4. Discussion

Because the KM mouse is used regularly in pharmaceutical
and genetic studies, its detailed genetic structure is of great
value to the research community. In this study, we sequenced
the genome of a male B6-Chr1KM mouse, in which Chr 1
was derived from one KM mouse. The detailed sequence
analysis would provide new insights into the application of
B6-Chr1KM in biomedical research.

In this study, we identified 479,956 SNPs and 96,679
indels on Chr 1, of which 8.1% did not exist in the MGP
and dbSNP142 data sets, indicating that these variants were
unique to the B6-Chr1KM mice. Therefore, these variants
can be used as unique genetic markers for the genetic quality
control of KM mouse. As the most common types of genetic
variants, SNPs and indels have been increasingly recognized
as having a wide range of effects on gene functions. Among
the variants identified on Chr 1, most were located within
intergenic or intronic regions. However, we also identified
474 functional variants (missense variant with SIFT < 0 05,
stop gain or loss variant, frameshift variant, and splice donor
or acceptor variant) which influenced 155 genes. Addition-
ally, several genes have been identified to be associated with
human diseases, making them interesting candidates for
further functional studies using KM mouse or our newly
build B6-Chr1KM strain. For example, Rd3, which is
associated with retinal degeneration, was identified as a
missense substitution (A->T) with significant deleterious
effects (p = 0 02). Previous studies have shown that mice with
a homozygous mutation in Rd3 exhibit retinal degeneration
at three weeks after birth [15]. We also identified a splice
acceptor variant in Lamb3 gene, which is associated with
blistering of the skin. The mouse models with homozygous
Lamb3 628 G->A showed blistering and erosions after
birth [16].

Since KM mouse is originated from Swiss mice, it has
been speculated to be contaminated with M. m. castaneus.
In 1991, the morphological characteristics and isozyme
polymorphisms of KM and Swiss mice were evaluated, re-
vealing the presence of distinct genetic differences between
them [17]. Comparison of KM mouse with wild mice of
M. m. castaneus captured in Kunming has revealed that the
former is more closely related to M. m. domesticus than to
M. m. castaneus. Conversely, contamination of KM mouse

by M. m. castaneus has been previously demonstrated
using the isozyme test [18]. In 2003, the results of a study
involving the detection of isozyme polymorphisms also
supported the grouping of KM and Swiss mice with M.
m. domesticus and not with M. m. musculus or M. m. casta-
neus [2]. However, it has not yet been confirmed whether
KM mouse contains part of the genome of M. m. musculus
or M. m. castaneus. Therefore, high resolution studies of
Chr 1 of KM mouse by next-generation sequencing may
clarify whether these mice were originated from Swiss mice
and/or other mice. Our sequence similarity analysis provided
substantial evidence that KM mouse was derived from
M. m. domesticus, which means that Swiss mice were their
ancestor. Both 100 kb blocks and sliding window similarity
analysis demonstrated that the Chr 1 of KM mouse was
largely composed of M. m. domesticus sequences with the
rest may derive from M. m. musculus or M. m. castaneus.
Therefore, further analysis is needed to determine the
proportion of each subspecies contribution to the Chr 1 of
KM mouse.

With the increasing number of whole genome data sets,
the reconstruction of phylogenetic trees at a genomic scale
has become feasible. Exploration of these large data sets has
revealed that there may be discordance among the topolo-
gies in different genomic regions [19, 20]. Although these
differences may be caused by incorrect estimations of gene
genealogies, incongruent gene trees can also be attributed to
the differing evolutionary histories of different genomic
regions, especially for close species or subspecies. Tradition-
ally, there are two types of phylogenetic analysis methods,
the consensus method and the total evidence method.
Both methods barely quantify the topological discordance
across the entire genome. Recently, BCA, which is an
improvement upon the consensus method, has been used
to statistically quantify the discordance, as well as to gen-
erate phylogenetic trees [21]. A few studies using BCA
have demonstrated its great potential for the reconstruction
of phylogenic trees of mouse subspecies [11, 13, 22]. These
studies indicate that BCA is a suitable method to quantify
the proportions of Chr 1 sequence in B6-Chr1KM derived
from the different subspecies. Through BCA, we found
approximately that 90% and 10% of the sequences of Chr 1
were derived from M. m. domesticus and M. m. musculus,
respectively. Although the sequence similarity analysis re-
vealed that there were some regions which had higher
sequence similarity with CAST, we did not observed the
same results in the BCA. Therefore, we cannot make the

Table 2: Continued.

Gene Ensembl ID Variant type Phenotype OMIM ID

Cd46 ENSMUSG00000016493 Missense
Hemolytic uremic syndrome, atypical, susceptibility to, 2;

AHUS2
612922

Cr2 ENSMUSG00000026616 Missense

Immunodeficiency, common variable, 2; CVID2 240500

Immunodeficiency, common variable, 7; CVID7 614699

Systemic lupus erythematosus, susceptibility to, 9; SLEB9 610927

OMIM: online Mendelian inheritance in man. Numbers in italic in OMIM ID column indicate that these diseases have mouse models. Human disease-
related phenotypes come from “Human-Mouse: Disease Connection” database (http://www.informatics.jax.org/humanDisease.shtml) in Mouse Genome
Informatics website.
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Figure 3: Sequence similarity between B6-Chr1KM andWSB, PWK, and CAST Chr 1. (a) Distribution of the numbers of 100 kb blocks of the
B6-Chr1KM Chr 1 with sequence similarities (%) to the corresponding blocks of theWSB, PWK, and CAST Chr 1. (b) Sliding window analysis
of the similarities of Chr 1 sequences between B6-Chr1KM and WSB, CAST, or PWK. The B6-Chr1KM Chr 1 sequence was compared using
500 kb windows and 100 kb sliding intervals. The horizontal line indicates the level of 99.7% sequence similarity.
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conclusion that some of Chr 1 sequence of B6-Chr1KM came
from CAST which represent M. m. castaneus. While for
PWK, highly conserved genomic regions (Figure 3(b)) with
KM aligned well with the BCA results (Figure 4(a)). Thus,
from both analyses, we can make the conclusion that Chinese
KM mouse has a mosaic genome structure with sequences
predominately derived from M. m. domesticus and with
at least some of the remaining sequences derived from
M. m. musculus.

In summary, we presented the analysis of a high-quality
genome sequence of the B6-Chr1KM. These data allow better
understanding of the structure and origin of the genetic
variations in the B6-Chr1KM mouse strain, which provides
insights into the utility of this mouse strain and the KM
outbred stock for further biomedical research and the study
of complex diseases.
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MicroRNAs (miRNAs) are a class of evolutionarily conserved small noncoding RNAs, ∼22 nt in length, and found in diverse organ-
isms and play important roles in the regulation of mRNA translation and degradation. It was shown that miRNAs were involved in
many key biological processes through regulating the expression of targets. Genetic polymorphisms inmiRNA target sitesmay alter
miRNA regulation and therefore result in the alterations of the drug targets. Recent studies have demonstrated that SNPs inmiRNA
target sites can affect drug efficiency. However, there are still a large number of specific genetic variants related to drug efficiency that
are yet to be discovered.We integrated large scale of genetic variations, drug targets, gene interaction networks, biological pathways,
and seeds region of miRNA to identify miRNA polymorphisms affecting drug response. In addition, harnessing the abundant high
quality biological network/pathways, we evaluated the cascade distribution of tarSNP impacts. We showed that the predictions can
uncover most of the known experimentally supported cases as well as provide informative candidates complementary to existing
methods/tools. Although there are several existing databases predicting the gain or loss of targeting function of miRNA mediated
by SNPs, such as PolymiRTS, miRNASNP, MicroSNiPer, and MirSNP, none of them evaluated the influences of tarSNPs on drug
response alterations. We developed a user-friendly online database of this approach named Mir2Drug.

1. Introduction

MicroRNAs (miRNAs) are a class of evolutionarily conserved
small noncoding RNAs, 19∼25 nt in length, and found in
diverse organisms [1]. MiRNAs play important roles by
binding to the 3󸀠-untranslated region (3󸀠 UTR) of the target
mRNA, causing the reduction of its abundance and trans-
lational efficiency [2]. It has been shown that miRNAs are
involved inmany biological processes of human complex dis-
eases through regulating gene expression [3].Many of the tar-
get genes of miRNAs are drug targets, and the genes involved
in drug disposition may also be regulated by miRNAs [4].
Therefore, genetic polymorphisms in miRNA target sites
may alter the miRNA regulation of these drug-related genes
and result in the differential expression of the drug-related
protein, which can in turn influence the drug response.

Recently, as the number of drug-related SNPs in miRNA
target sites are rapidly increasing, the importance of SNPs
positioned in the 3󸀠 UTR regions is becoming evident [5].
Several recent studies have demonstrated that the single
nucleotide polymorphisms in miRNA target sites can affect
drug efficiency. Mishra et al. showed that a functional SNP
presents in 3󸀠 UTR of dihydrofolate reductase, an important
drug target, and the SNP interferes with the miR-24 miRNA
function and leads to DHFR overexpression and methotrex-
ate resistance [6]. Wynendaele et al. demonstrated that an
SNP created an illegitimate miRNA target site within the 3󸀠
UTR of MDM4, which affected ovarian cancer progression
and chemo sensitivity [7]. Boni et al. also demonstrated
that several SNPs had a significant association with clinical
outcome of ovarian cancer patients treated with the 5-FU
and CPT-11 combination [8]. Polymorphisms in the miRNA
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target sites are emerging as powerful tools to elucidate the
underlying mechanisms of different responses to treatments
in patients. In addition, several other studies indicate that
miRNAs can affect drug sensitivity and resistance in cancer
chemo therapy [9]. Based on the above-mentioned exper-
imental evidence, we have reason to believe that SNP in
miRNA target sites affect drug response may be common,
and there are still a large number of these specific genetic
variants that have yet to be discovered. However, experimen-
tal approaches to identify these SNP that can affect drug
response are labor-intensive and time-consuming. To address
these challenges, computational and analytical tools can be
developed to provide the successful design of biological
experiments and interpretation of the results. Characteriza-
tion of SNP in miRNA target sites in drug response helps
predict patients’ responses to drug treatments, guides rational
drug use, and improves drug safety and efficacy.

Several studies have developed databases or tools that
can predict SNPs reside in miRNA target sites. Bao et al.
developed a database that collected naturally occurring DNA
variations in putative miRNA target sites; this database inte-
grates sequence polymorphism, phenotype, and expression
microarray data [10]. Hiard et al. developed a database that
compiled DNA sequence polymorphisms that are predicted
to perturb miRNA mediated gene regulation. The database
also includes the inclusion of copy number variants and
eQTL information that affect miRNA precursors as well as
genes encoding components of the silencing machinery [11].
Barenboim et al. developed a web-based tool that predicted
the impact of an SNP on putative miRNA targets [12].
This application interrogates the 3󸀠-untranslated region and
predicts if an SNPwithin the target site will disrupt/eliminate
or enhance/create a miRNA binding site. Hariharan et al.
analyzed SNPs in and around predicted miRNA target
sites; polymorphisms within 200 nucleotides that could alter
miRNA regulation were annotated [13]. However, all existing
tools above did not concern the correlation between poly-
morphisms in miRNA target sites and drug response. More
specifically, in addition to variation located in the target site,
variation near the target site has been identified as another
crucial factor that can influence an individual’s response to
drugs. For example, an SNP is located 14 bp downstream of
the miR-24 target site in DHFR 3󸀠 UTR, does not directly fall
within the miRNA target set, and resulted in DHFR overex-
pression and MTX resistance [6]. Instead, in this study, we
propose to analyze all the SNPs near the target sites in 3󸀠 UTR
of all mRNA, to have a general overview of the SNPs’ regula-
tory effect on the drug response.

We have developed a user-friendly online database,
Mir2Drug (publicly accessible at http://bioinfo.njmu.edu.cn/
Mir2Drug), which can help researchers to identify the SNPs,
names as tarSNPs, which can affect drug response that does
not only reside in target sites but also near target sites. We
also identified those SNPs that indirectly affect drug response
through protein-protein interaction (PPI) network and path-
way. We show that the database’s predictions can uncover
most of the known experimentally supported cases and
provide better performance than other existing databases and
tools. Mir2Drug can be used to predict drug response to

therapy and is useful for explaining the differences in drug
response, discovery, and characterization of novel predictive
and prognostic biomarkers.

2. Materials and Methods

2.1. Identifying SNPs Affected miRNA Regulation (tarSNPs).
Mature miRNA sequences were derived from the miRBase,
release 21 [14]. SNPs that are located in the 3󸀠 UTRs of all
known genes and 3󸀠 UTRs sequences were retrieved from
UCSC Genome browser (dbSNP build 147 and NCBI build
38) [15]. For each SNP, we extracted the 30 bp flanking
sequence of both upstream and downstreamof the SNP in the
3󸀠 UTR region of genes. Then, we assessed whether the two
alleles of an SNP lead to differentmiRNA target sites based on
the 61 bp DNA sequence, using the program PITA [16] with
default parameters. PITA predicts potential miRNA targets
using an estimated free energy. The SNPs changing the free
energy between miRNA and DNA sequence were defined as
tarSNPs.

The degree of binding is quantified using the PITA score
change. Mathematically, the binding degree is described as

diff = 𝑇wt − 𝑇var, (1)

where𝑇wt represents the score ofmiRNAbinding to the wild-
type 61 bp DNA sequences using the program PITA and 𝑇var
represents the score of miRNA binding to the variant-type
sequences. diff represents the degree of miRNA regulation
change from wild-type allele to the variant-type; a positive
diff represents a strengthen miRNA regulation ability from
wild-type allele to the variant-type; on the contrary, a negative
diff represents a weakenmiRNA regulation ability. According
to the binding of miRNA to the mRNA 3󸀠 UTR, we assigned
the potential tarSNPs to one of the four classes: “complete
gain,” the mRNA acquires a new target site through the wild-
type SNP into variant-type SNP; “complete loss,”mRNA loses
a predicted target site through thewild-type SNP into variant-
type SNP; “partial gain,” mRNA acquires more stable target
site than without the SNP; “partial loss,” mRNA target site
turns into instable target site with the SNP. For the scenario
of multiple tarSNPs identified in a single patient, we utilize
the normalized binding energy differences for prioritizing the
tarSNPs, which is described as

|diff|
max (󵄨󵄨󵄨󵄨𝑇wt

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑇var
󵄨󵄨󵄨󵄨)
. (2)

2.2. Mapping Predicted tarSNPs for Direct Drug Target. We
have already got all genes that contained at least one tarSNP.
Then, we mapped the predicted genes to drug target and
extracted the genes by drug target and by containing tarSNP,
we got all targets that at least one tarSNP is physically located
in it. These drug target genes that contained tarSNP defined
direct drug target. All known associations of drug and targets
were downloaded from the DrugBank database (DrugBank
5.0) [17]. We set all DrugBank targets containing tarSNP as
the direct drug targets.

http://bioinfo.njmu.edu.cn/Mir2Drug
http://bioinfo.njmu.edu.cn/Mir2Drug
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Figure 1: The workflow of the Mir2Drug database that identified SNPs affecting drug response.

2.3. Network Integrating for Prediction of Indirect Drug Target.
We extract all the genes that interact with direct drug target
genes in PPI network and defined them as a PPIN-indirect
drug target. Totally, 4234 PPIN-indirect drug target genes
were identified. The human PPI data was derived from the
HPRD database [18].We also get all the genes that are located
in the same pathway with direct drug target genes, we defined
them as pathway-indirect drug target, we get 2124 pathway-
indirect drug target genes in the metabolic pathway and
5424 in the nonmetabolic pathway, and we computed the
length of shortest paths for each pathway-indirect drug target
genes and drug target genes.Themetabolic andnonmetabolic
pathways were downloaded from the Reactome database [19].
To assist the identification of tarSNPs that can indirectly affect
drug response, we mapped the predicted tarSNPs to indirect
drug target and extracted the genes by indirect drug target
and by containing tarSNP.

2.4. Mir2Drug Database Construction. All useful results and
information in this work were organized into a set of rela-
tional MySQL tables for fast access. HTML, CSS, JavaScript,
and PHPwere used to construct the onlinewebsiteMir2Drug
which performs multiple browse and search functions run-
ning on Apache web server (http://www.apache.org).

3. Results

3.1. Functional miRNA Polymorphisms Widely Distributed
on Drug Targets. Unlike other tools (PolymiRTS [10, 20],
MicroSNiPer [12], MirSNP [21], and miRNASNP [22]), we
considered that both SNPs reside and near the target site can
affect the interaction of miRNA to the target site (tarSNPs).
Therefore, we also include all genes that are located in the
same pathway with direct drug target genes and that interact
with direct drug target genes in PPI network as target genes

(Figure 1). At least, we got direct 3408 drug target genes and
9143 indirect drug target genes; we got all targets that at least
one tarSNP is located in it. These genes are candidate drug
response genes underlying tarSNP regulation.

For a SNP in the miRNA target, if it gives rise to more
free energy changed, more instability of the structure of the
miRNA/mRNA interaction occurs. In addition, 5188 pairs of
experimentally confirmedmiRNA/mRNA interaction down-
loaded from miRTarBase [28]. And the average free energy
of the structures on miRNA/mRNA interaction is −4.58 ±
3.60 kcal/mol. The free energy change of the structures is
a relatively high level ranging from 1 to 33.71. About 50%
of energy changes are >2.5 kcal/mol, which may affect the
stability of the structure significantly. In our results, a set of
833134 out of 973671 SNPswere identified as tarSNPs on 10021
drug targets.The tarSNPs have been generally fallen into four
classes based on our methods. TarSNPs of class “complete
gain” and “partial gain” may cause a gain of miRNA function
and downregulation of the target protein; if themiRNA target
protein is a drug target, its decreased level will result in drug
sensitivity and vice versa: tarSNPs of class “complete loss”
and “partial loss” may cause a loss of miRNA regulation; it
will cause upregulation of the target protein, resulting in drug
resistance. Both direct drug targets and indirect drug targets
are featured in the database.

3.2. SNPs in 3󸀠 UTR of Drug Target Affect Drug Efficiency
Induced by Gain or Loss Function of miRNA Targeting. Some
drug target genes showed a significant downregulation or
upregulation in themRNA level in drug-treated cells compar-
ing to the nontreated cells. We supposed that drug treatment
may cause variation in the drug target genes’ 3󸀠 UTR to
change the stability of the structure of miRNA/mRNA inter-
action. Some research showed that BTG1 was upregulated in
response to treatment with tomato leaf extract (TLE) [23],

http://www.apache.org
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Table 1: Drugs and their predicted differentially expressed targets in Mir2Drug database.

Drug SNP ID Gene symbol miRNA Wild free
energy

Mutation free
energy

ΔΔ𝐺
(kcal/mol) Effect class Literature

TLE rs764927448 BTG1 hsa-miR-1255b-5p −0.26 0.8 −1.06 Partial loss [23]
Recombinant
bromelain rs764927448 BTG1 hsa-miR-1255b-5p −0.26 0.8 −1.06 Partial loss [24]

IGF-I rs764927448 BTG1 hsa-miR-1255b-5p −0.26 0.8 −1.06 Partial loss [25]
Anti-HER2/neu
trastuzumab antibody rs746218880 WT1 hsa-miR-1193 None −8.11 8.11 Complete

gain [26]

Norlichexanthone
and anomalin A rs72552389 PIM1 hsa-miR-7114-5p None −11.12 11.12 Complete

gain [27]

recombinant bromelain [24], and insulin-like growth factor
I (IGF-I) [25] in the MCF-7 breast cancer cell line, which
contained a SNP (rs764927448) in BTG1 by query of the
Cancer Cell Line Encyclopedia (CCLE). Moreover, we found
that BTG1 loss is regulated by has-miR-1255b-5p through the
wild-type SNP into variant-type SNP in Mir2Drug database
(Table 1). Conversely, Tuna et al. showed that HER2/neu
engages Akt to increaseWT1 expression to stimulate S-phase
proliferation and inhibit apoptosis in breast cancer cells,
and then inhibition of HER2/neu with the anti-HER2/neu
trastuzumab antibody decreased WT1 protein levels in
HER2/neu-overexpressing BT-474 cells [26]. Ebada et al.
showed that in vitro IC50 values of Norlichexanthone and
anomalin A inhibited PIM1 in A2780 ovary cancer cell line
[27].We also found an SNP (rs746218880) inWT1 3󸀠UTRand
an SNP (rs72552389) in PIM1 3󸀠 UTR, which create miRNA/
mRNA interaction in Mir2Drug database (Table 1).

3.3. Harnessing the Molecular Networks Mir2Drug Increased
the Efficiency of Identifying Novel tarSNPs as well as Recapit-
ulating Known tarSNPs. To demonstrate the effectiveness of
our optimized method of recapitulating known cases where
SNPs affected the miRNA binding, we manually compiled
nine experimentally confirmed tarSNPs using text mining
(Table 2). Although there are several existing databases
predicting the gain or loss of targeting function of miRNA
mediated by SNPs, such as PolymiRTS, miRNASNP, MicroS-
NiPer, and MirSNP, none of them evaluated the influences of
tarSNPs on drug response alterations. In spite of the lack of
large scale experimentally confirmed tarSNP data, notably, all
nine only compared their performance with Mir2Drug using
validated data from Table 2. All nine known tarSNPs con-
firmed in the literature had been predicted in our database.

From twelve cases, only four was corroborated in all four
databases. Other four cases were corroborated no more than
two databases; in our databases, they all have a certain degree
of change in score. One case was not corroborated in all four
databases, but it was predicted in our databases. The highest
of the free energy change is 10.9 kcal/mol about rs2278414 in
ZNF350 3󸀠 UTR and has-miR-21-3p. And rs2278414: C > T
was significantly associated with age-related cataract (ARC)
risk, which associated with DNA double-strand break repair
(DSBR) and nucleotide excision repair (NER) pathway [29].

3.4. Online Database Implementation. We have constructed a
user-friendly web tool on genetic variations in miRNA target
sites and their potential function in drug response. More
specifically, an important focus of this study is to highlight the
association of tarSNPs and drug response, thereby identifying
tarSNPs that might possibly be involved in drug sensitiv-
ity and resistance. We presented a user-friendly website,
Mir2Drug database, which will serve as the platform site
to provide a practical resource of these drug target-related
miRNA polymorphisms and their potential drug response
alterations caused by target loss and gain information for
all researchers and explore the association of variations in
miRNA targets and cancer therapies efficacy and facilitate
a mechanistic understanding of relationships among the
genetic variations and drugs response. We packaged all the
data into a MySQL database and built a user-friendly online
website. The Mir2Drug database provides information from
the two aspects: (1) drug response alterations medicated by
miRNA polymorphisms in target 3󸀠 UTR and (2) drug, path-
way, and PPI information about drug targets. Mir2Drug
supplies multiple functions for data browsing and searching
by search gene symbol, SNP ID, miRNA ID, and an advanced
search.

4. Discussion

In this study, we present a database, Mir2Drug, which pro-
vides comprehensive annotation information on genetic vari-
ations located in miRNA target sites belonging to drug target
genes. We evaluate all SNPs in the 3󸀠 UTRs, even if farther
away from themiRNA target site, which can alter the miRNA
regulation and hence would contribute to drug response. It is
appreciated that most of the known cases can be rediscovered
in our database. An important goal of this work is to identify
the SNPs that can alter miRNA regulations and are also
potentially associated with drug sensitivity and resistance in
clinical trials. The database would be a valuable resource for
experimentalists to explore the functional role of this class of
SNP.

Although these SNPs are rare, they may be functionally
important, because they can alter extensive mRNA expres-
sion by gain or loss of miRNA regulation. Recent studies
have reported that genetic variations in miRNA processing
genes and miRNA binding sites may affect the biogenesis of
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miRNA and the regulatory effect of miRNAs on their target
genes and have a role in cancer development and treatment
response [30–34]. However, a few of genes were found on the
relationship between SNP in this gene and drug response.We
have a new discovery that an SNP (rs751012151) in MRPL4
can be downregulated by hsa-miR-6089 and decrease drug
resistance in our database (ΔΔ𝐺 = 45.54 kcal/mol), but so far
it has no literature reported about the relationship between
the MRPL4 and drug response. Future studies are necessary
to explore the functional role of this class of SNPs. In
addition, the known experimentally verified miRNA-disease
associations were insufficient in this study. However, in many
cases, such information would be very valuable. For example,
we can collect this information to quantitatively compare
the performance of existing tools (PolymiRTS, MicroSNiPer,
MirSNP, and miRNASNP) using cross-validation method
if we have sufficient experimentally verified cases and fur-
ther optimize our method. With the accumulation of such
validation and experimental confirmation of miRNA target
interactions data, we plan to include this information in next
version of our database; we would expect a much better
annotation of Mir2Drug in the near future.
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High throughput genomic assays empower us to study the entire human genome in short time with reasonable cost. Formalin
fixed-paraffin-embedded (FFPE) tissue processing remains themost economical approach for longitudinal tissue specimen storage.
Therefore, the ability to apply high throughput genomic applications to FFPE specimens can expand clinical assays and discovery.
Many studies havemeasured the accuracy and repeatability of data generated fromFFPE specimens using high throughput genomic
assays. Together, these studies demonstrate feasibility and provide crucial guidance for future studies using FFPE specimens. Here,
we summarize the findings of these studies and discuss the limitations of high throughput data generated from FFPE specimens
across several platforms that include microarray, high throughput sequencing, and NanoString.

1. Introduction

The technique of FFPE is a widely used histological method
that uses formalin to fix and paraffin embedding to preserve
tissues for extended periods of time. However, the advantages
of FFPE processing such as technical ease and low storage
cost come at the expense of the sample quality. During
the process of fixation, the tissue DNA can be altered by
chemical modification, DNA trapping and fragmentation [1,
2], resulting from extensive cross-linking between proteins
and nucleic acids [3].

The effects of formalin-fixation are far greater on RNA,
as RNA can be altered by severe RNA degradation, chemical
modification [4], poly-A tail damage [5], and covalentmodifi-
cation of RNAnucleotide bases bymonomethylol (-CH2OH)
addition [6].These covalentmodifications can impact reverse
transcription from mRNA to cDNA and significantly alter
gene expression profiling.

Despite these shortcomings, researchers have successfully
been using RNA and DNA extracted from FFPE specimens
for high throughput genomic studies. Herein, we review the
applications of FFPE specimens in high throughput genomic

studies using several technologies, includingmicroarray, high
throughput sequencing (HTS), and NanoString.

2. Technical Challenges and Concerns

One major challenge in using FFPE specimens in genomic
assays is the low quality and quantity of nucleic acids
extracted from FFPE blocks.The process of FFPE is designed
to well preserve cellular proteins that can be evaluated by
immunohistochemistry based assays rather than preserving
DNA or RNA. It is known that formalin-fixation can cause
nucleic acids fragmentation, degradation, and cross-linking
to proteins [1–3, 7–11]. In addition, the long storage time can
further compromise the quality of the nucleic acids within
FFPE blocks [12]. Nucleic acid degradation and crosslinking
to proteins can significantly reduce the quantity of DNA
and RNA extracted from FFPE specimens, while nucleic
acids fragmentation can reduce library fragment size and
uniformity. Further complicating genomic assay is the limited
quality control measurements that are performed on FFPE
specimens such as traditional RNA integrity number (RIN)
measurements that do not truly reflect the success chance

Hindawi
International Journal of Genomics
Volume 2017, Article ID 1926304, 9 pages
https://doi.org/10.1155/2017/1926304

https://doi.org/10.1155/2017/1926304


2 International Journal of Genomics

of sequencing from FFPE specimens [13]. Together, reduced
quantity and integrity of the extracted nucleic acids can lead
to the failure of HTS library construction.

Prior to sequencing, commercially available kit, such
as Illumina TruSeq, is required to assemble a sequencing
library. Most commercial kits have similar performance.
Unlike DNA, there are several methods to enrich for RNA
prior to library construction that use depletion of highly
abundant ribosomal RNA or oligo-dT to capture mRNAs
with polyA tails. For RNA library construction, ribosomal
RNA depletion method is preferred to oligo dT capture
because many mRNA transcripts from FFPE specimens
have lost their polyA tails from to extensive fragmentation
[14]. Both Illumina and SOLiD HTS platforms have been
demonstrated to work well with FFPE derived libraries and
different platforms does not seem to have a bias toward
FFPE specimens [15, 16]. While HTS libraries have been
constructed from nucleic acids with poor quality, those
studies [17, 18] have shown that the sequencing data generated
were less than ideal quality.

3. Microarray

Gene expression microarray uses large-scale arrays of fluo-
rescent oligonucleotide probes to measure mRNA expression
across many genes simultaneously and was the driving
force for high throughput gene expression studies prior to
the introduction of RNA-seq. During the gene expression
microarray era, FFPE specimens had been extensively used
for expression profiling purposes [19–22]. Because the quality
of RNA extract from FFPE specimens is always of question-
able quality,many studies [23–28] were conducted to evaluate
the integrity of FFPE gene expression microarray data by
comparing the gene expression consistency between paired
FFPE and fresh frozen (FF) samples. All of the comparative
studies have found that reasonable consistency of gene
expression quantified from FFPE and FF specimens likely
attributed the oligonucleotide probes measure expression
being located at several positions across a gene. In addition
to mRNA transcript quantification, microarray technology
has been adapted to measure DNA copy number, single
nucleotide polymorphisms (SNPs), and DNA methylation.

The most frequent types of variation in the genome are
single base differences between two DNA sequences and
genotyping microarray has been developed to detect single
nucleotide polymorphisms in genomic DNA. AlthoughDNA
is more stable than RNA, the quality of DNA extracted
from FFPE specimens can be considerably compromised
by artefactual nucleotide changes introduced by formalin-
fixation. Therefore, many studies have evaluated the feasi-
bility of using DNA extracted from FFPE specimens for
genotyping array analysis [29–33]. These studies have shown
a high concordance in SNP calls between FF and FFPE
specimens. Encouraged by these findings, researchers have
widely used FFPE specimens in a variety of genotyping
array studies [30, 31, 34–37]. In addition to SNP detection,
genotyping arrays can also be used to estimate DNA copy
number variance (CNV). However, CNV estimation from
DNA obtained from FFPE specimens can be challenging,
as DNA usually degraded and fragmented. Nonetheless,

several modified protocols have been reported and different
array platforms have been tested for the practicability of
performing CNV analysis with FFPE specimens [29, 33,
36]. All these studies show plausible concordance of CNVs
identified between paired FFPE and FF specimens.

In addition to CNV estimation from genotype arrays,
comparative genomic hybridization (CGH) arrays have been
developed as a genome-wide, high-resolution technique
for the detection of copy number variations between two
genomes. As aforementioned, CNV detection is more sus-
ceptible to the fragmented nature of DNA extracted from
FFPE specimens. One study has shown that FFPE specimens
can have spurious copy number variation in array-CGH
profiles [38]. For successful CNV estimation from array-
CGH, several requirements for DNA have been suggested
for FFPE [39]. First, it was found that only FFPE tissues that
supported polymerase chain reaction (PCR) amplification of
>300 bp DNA fragment provided high quality, reproducible
array-CGH data. Second, roughly 10 ng DNA from FFPE
tissues is needed as input for array-CGH analysis prior to
whole genome amplification.Third, high tumor cellularity of
greater than 70% tumor DNAwas required for reliable array-
CGH analysis [39].

Prior to hybridization,DNAmust undergowhole genome
DNA amplification and several amplification methods can
also affect the quality of array-CGH data [40]. Random-
primed amplification was found to be superior to degenerate
oligonucleotide-primed amplification [40]. Several studies
have proposed optimized protocols for array-CGH analysis
using DNA from FFPE specimens [41, 42]. Comparison
studies using either paired FF specimens or fluorescent
in situ hybridization (FISH) methods as a gold standard
have demonstrated that array-CGH are reliable for CNV
estimation from FFPE specimens [43–45].This reliability has
allowed for a clinical application of array-CGH to distinguish
Spitz nevus and melanoma in FFPE specimens [46].

DNA can be modified by several mechanisms that can
alter gene transcription including methylation of CpG sites
and microarray technologies have been adapted to measure
global methylation patterns of DNA. These methods largely
rely on bisulfite treatment to convert unmethylated cytosine
to uracil and the latest methylation EPIC BeadChips from
Illumina can interrogate over 850,000 CpG sites at single
nucleotide resolution. Several studies compared methylation
values measured from Illumina methylation arrays on paired
FFPE and FF specimens and found high level of concordance
(𝑅2 > 0.95) [47–50]. While study did report lower concor-
dance between FFPE and FF specimens (𝑟 = 0.6) [51], others
have questioned the statistical considerations and batch effect
that may have impacted this study [52]. The overall good
performance of FFPE in methylation arrays is likely due to
the better stability of DNA compared to RNA. To date, many
epigenetic methylation studies have used FFPE specimens as
their source [53, 54].

4. RNA-Seq

With the rise of HTS technology, RNA-seq has inevitably
replaced microarray as the platform of choice for expression
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profiling technology [55–59]. RNA-seq provides numerous
advantages over microarray technology, including the iden-
tification of all RNAs in the library rather than RNA with
predesigned probes, allowing the expression quantification at
multiple levels (gene, transcript, and exon) without design-
ing specific probes and permitting the additional discovery
opportunities such as gene fusion and allelic specific expres-
sion.

Similar to microarray technology, FF tissue samples pro-
vide the highest data quality. However, majority of specimens
are processed by FFPE and researchers have been applying
the same strategy as during the microarray era, evaluating
the accuracy and repeatability of gene quantification using
HTS technology by comparingmatched pairs of FF and FFPE
specimens from the same subject.

Norton et al. calculated the correlation of gene expression
across nine matched pairs of FF and FFPE specimens and
Pearson correlations ranged from 0.60 to 0.83 [60]. Graw et
al. analyzed RNA-seq data from six pairs of FF/FFPE tumor
samples and found that the correlations of gene expression
data were greater than 0.89. The same study also reported
99.67% concordance between sequence variations identified
from FFPE RNA and FF DNA [61]. In Hester et al.’s study,
storage time was shown to impact concordance between
paired FF and FFPE specimens with high concordance of
specimens stored less than 2 years (𝑟2 = 0.99) compared
to FFPE specimens with storage greater than 20 years (𝑟2 =
0.84) [62]. Hedegaard et al. compared the expression profiles
from 27 FFPE and FF pairs from different tissues (colon,
bladder, and prostate) and with different storage time. The
results revealed a high degree of Pearson correlation (𝑟 >
0.90) across all pairs [18]. Zhao et al. used two ribosomal
RNA removal kits (Ribo Zero and Duplex-Specific Nuclease)
to sequence paired FFPE and FF specimens. Both protocols
resulted in a Pearson correlation of about 0.90 between
matched pair of FFPE and FF specimens [63]. Eikrem et
al. compared the gene expression profiles across 16 pairs of
FF and FFPE specimens and the correlation of the average
expression is 0.97 [64]. Li et al. also reported a correlation
more than 0.91 between FF and FFPE pairs [65].These studies
show that reliable gene expression data can be obtained
from whole transcriptome sequencing of FFPE specimens;
provided tissues blocks have not been stored from long
periods.

In addition to gene expression quantification, RNA-
seq data can be mined for single nucleotide variants and
structural alterations such as gene rearrangements that result
in hybrid transcripts [66]. However, unlike gene expression
quantification, these additional data mining opportunities
do not apply well for RNA-seq data generated from FFPE
specimens. One comparative study found that only 24% of
high-confidence fusion transcripts detected in FF specimens
were also detected inmatched FFPE specimens [60].This low
recovery rate occurs despite threefold increases sequencing
depth. Another study found that between SNVs identified
from RNA-seq replicates from FFPE specimens showed
extremely poor genotype consistency (<50%), rendering it
unreliable for SNV detection [14].

Thus far, overwhelming findings provided emerging evi-
dence of the accurate expression profiles obtained from FFPE
specimens; an increasing number of studies began to use
RNA-seq technology on FFPE specimens to perform gene
expression profiling [67–75]. While gene expression quan-
tification has produced reliable results, other data mining
opportunities such as gene fusion and SNV detection have
been found to be not feasible with FFPE specimens.

5. Small RNA-Seq

MicroRNAs (miRNA) are small noncoding RNA molecules
containing around 22 nucleotides and have been found
to play an important role in many biological processes.
MiRNAs function through base-pairing with complemen-
tary sequences within mRNA molecules and these mRNA
molecules are subsequently silenced. HTS has also revolu-
tionized the miRNA research area. Compared to traditional
methods such as TaqMan gene expression assay andmicroar-
ray, HTS enables the detection of almost all small RNAs
present in the samples, including novel and underexpressed
miRNAs as well as small RNAs of other categories [76].

Since miRNAs are more stable than RNA molecules
[77–79], HTS is quite promising for quantifying miRNA
profiles from FFPE specimens. Several pioneering studies
using matched FF and FFPE specimens have already been
performed to evaluate the usefulness of FFPE specimen
for miRNA-seq technology. These studies have found that
miRNA-seq data generated from FFPE specimens have simi-
lar number of total reads but tend to have a slightly shorter
average read length after trimming for adapter sequences
[80–83].

In addition, the proportion of reads that can be mapped
to miRNAs was also lower in FFPE specimens [80, 81].
The decreased mapping could be due to small fragments of
other RNA species such as degraded lncRNAs and mRNAs
in the small RNA library [81]. Most studies agree that the
small RNAs composition from FFPE specimens is similar to
that from FF specimens [81, 83], and correlations between
miRNA expression levels quantified from paired FF and
FFPE specimens range from 0.71 to 0.98 [80, 81, 83]. More
interestingly, against common intuition, two studies found
that storage time of the FFPE blocks did not affect the
quality of miRNA-seq data [81, 83]. These studies further
showed that while the total miRNA expression profile is
highly correlated between matched FF and FFPE specimens,
the relative read count of each miRNA is dependent on GC
content. Specifically, GC-poor miRNAs were shown to be
more degraded than GC-rich miRNAs [80].

Encouraged by these validation studies, researchers began
to apply HTS miRNA-seq to FFPE specimens [84, 85].
Plieskatt et al. applied miRNA-seq on FFPE preserved
nasopharyngeal carcinoma tissues. They found that FFPE
tissue can yield RNA of sufficient quality for downstream
sequencing analysis. Using themiRNAprofile generated from
these FFPE specimens, the authors identified Epstein Barr
Virus miRNAs as potential NPC biomarkers [84]. Riester
et al. collected 16 osteosarcomas FFPE specimens and 14
osteoblastomas FFPE specimens. miRNA-seq analysis of
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these 30 FFPE specimens allows the authors to identify miR-
210 as a discriminatory marker that distinguishes between
osteoblastoma and osteosarcoma [85].

6. DNA-Seq

HTS technologies have been widely used to characterize
variations and quantity of DNA from both normal and
diseased tissue. DNA-sequencing can be used to characterize
genomic variants such as SNV, insertions/deletions (Indels),
copy number variations (CNVs), and structural gene rear-
rangements. HTSDNA-seq performs better with high quality
DNA from FF specimens as starting materials. However,
FFPE specimens have also been evaluated using DNA-seq.

Similar to comparisons of microarray and RNA-seq,
many studies have used matched paired FFPE and FF spec-
imens to evaluate the quality of genomic variants identified
from FFPE specimens. The overall concordance of SNV calls
between FF and FFPE specimens across different studies
ranges from 70% to 99.8% [15–18, 86–92]. Inmost cases, more
than 80% of SNVs identified in FF specimens can be reliably
recovered from the matched FFPE specimens. Furthermore,
many studies found that a significantly higher number of
unique SNVs can be identified from FFPE specimens than
matched FF specimens and likely attributed to chemical
modification of nucleotides by formalin-fixation. Specifically,
formalin-fixation can cause deamination of cytosine bases to
uracil. Thus, during amplification, if DNA polymerase reads
across a uracil change, artefactual C>T/G>A changes can
occur and introduce false positives [10]. Kerick et al. found
that among the 149 false positives SNV calls from a FFPE
specimen, all but four can be explained by the fixation process
[88]. As an alternative, uracil-DNA glycosylase (UDG) was
reported to be used to remove uracil-containing deaminated
DNA molecules before library construction and treatment
reduces C>T and A>G variant calls by 77% and 94%,
respectively [93]. While FFPE specimens have a higher rate
of nonreproducible SNVs, their random distributions allow
for increased coverage to diminish the false positive rate [89].
One study showed that increasing sequencing coverage to 80x
reduced significantly the false positive rate and increased the
concordance between FF and FFPE specimens [88]. However,
the depth of sequencing to produce reliable SNV calls is
unrealistic for most whole genome sequencing and whole
exome sequencing analysis.

Similar to SNVdetection, FFPE specimens have also been
evaluated for their feasibility for insertions and deletions
(indel) detection. The concordance of indel calls between
FFPE specimens and matched FF specimens has been mixed,
ranging from 62% to 98.25% [88, 89, 91]. CNV estimations
have also been inconsistent among studies with DNA-seq
from FFPE specimens. Using whole genome sequencing,
Schweiger et al. reported that the CNVs found were identical
for FF and FFPE specimens [16]. However, Menon et al.
used whole exome sequencing and reported that there is a
high degree of noise in CNV calling from FFPE specimens,
probably due to DNA degradation [15]. Munchel et al. used
low-pass whole genome sequencing and found that the CNVs
within segmented regions between paired FF and FFPE

specimens are similar although the size of predicted CNVs
differed between paired samples [89]. Several factors may
have contributed to the relatively poor concordance of CNV
calls between FF and FFPE specimens. First, FFPE specimens
tend to have a high degree of cellular heterogeneity. A low
purity of tumor cells or the presence of substantial immune
cells canmake CNV estimations noisy from FFPE specimens.
Isolating pure population of tumor cells from FFPE specimen
by flow cytometry based methods may circumvent this issue
and improve CNV detection [87]. Another potential expla-
nation for high CNV variation may stem from comparisons
using lower coverage [89].

Together, these studies provide convincing evidence that
accurate SNV can be identified from DNA-seq data from
FFPE specimens andmany studies have already taken advan-
tage of large FFPE repository with DNA-seq technology to
drive new scientific discoveries [93–103].

7. Applications in Other Type of HTS

DNA-seq has been modified to measure global DNA methy-
lation patterns similar to methylation arrays using bisulfite
treatment of DNA. Although less popular than DNA and
RNA-seq, there have been successful usages of FFPE in
bisulfite sequencing [104, 105]. One study evaluated the
practicability of using FFPE specimens in bisulfite sequencing
and found that the correlation between paired FFPE and FF
specimens was good (𝑟 = 0.87) [106]. Several protocols and
methodologies for bisulfite sequencing of FFPE specimens
have been established [107, 108].

Chromatin immunoprecipitation sequencing (ChIP-seq)
is a form of HTS that can identify global binding sites of
DNA associated proteins. The usage of FFPE specimens for
ChIP-seq can be difficult due to limited isolation of soluble
DNA-protein complexes that are altered by excessive chemi-
cal cross-linking during formalin-fixation process. However,
Fanelli et al. published a protocol, which demonstrated
successful identification of DNA-protein binding sites using
FFPE specimens [109]. This protocol has yet to be adapted
widely for the usage of FFPE specimens. In 2016, Cejas et
al. proposed a fixed-tissue chromatin immunoprecipitation
sequencing (FiT-seq), which enables reliable extraction of
soluble chromatin from FFPE specimens [110]. Whether this
method will be more received by the research community
remains to be seen. There are other types of HTS such
as nuclear run-on assay (GRO-seq or PRO-seq) and cross-
linking immunoprecipitation sequencing (CLIP-seq). These
types of applications of HTS have not been used to the extent
of DNA- andRNA-seq; thus few studies have been done using
FFPE specimens.

8. NanoString

Similar to microarray technology, the NanoString nCounter
system can directly measure gene expression by using multi-
plexed color-coded probe-pairs and offers high levels of pre-
cision and sensitivity (<1 copy per cell). The technology uses
molecular “barcodes” and single molecule imaging to detect
and count hundreds of unique transcripts in a single reaction.
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Because nCounter system is quantitative and does not require
reverse transcription and amplification, it is free from any
bias and errors introduced by the reverse transcription and
the amplification processes. This is also the major reason
for the claim that NanoString nCounter technology works
well with FFPE specimens [111]. Naturally, several studies
also investigated the performance of NanoString on FFPE
specimens.

An original study conducted by NanoString company
from 2008 measured concordance of gene expression mea-
sured by NanoString and RT-PCR/microarray and found
high correlations (RT-PCR 𝑅2 = 0.79, Microarray 𝑅2 =
0.95). However, several additional follow-up studies found
onlymoderate correlation between NanoString and RT-PCR,
with correlation ranging from 0.48 to 0.59 [112–114]. This
level of correlation holds true for both mRNA and miRNA
measurement. In addition, the concordance of NanoString
with other high throughput platforms, such as microarray
and HTS, was also less than ideal, with correlations around
0.5 [14, 115–117]. On a positive note,NanoStringwas usedwith
FFPE specimens to subtype diffuse large B-cell lymphoma
[118]. The subtyping results by nCounter system have a
90% concordance rate with the results generated by Hans
immunohistochemistry [118]. Based on the overall evidence
presented thus far, we are not yet convinced that NanoString
nCounter system is the definite technology for measuring
gene expression from FFPE specimens. One of the major
limitations of NanoString is that it is not a true high through-
put technology, measuring up to a few hundred genes that
have been chosenwith prior knowledge.However, the limited
throughput of NanoString is efficient enough to perform
clinical assays such as Prosigna Panel and MammaPrint.

9. Discussion

FFPE processing of tissue is not the most ideal method for
quantifying RNA and DNA variations with HTS methods.
However, it is often chosen over FF storage because of mini-
mal cost and ease of storage. With high throughput genomic
assays dominating the biomedical research field, the ability to
expand these studies to existing large FFPE specimen reposi-
tories can accelerate and rapidly verify discoveries. Numerous
studies have been conducted to evaluate the performance
of FFPE specimens with high throughput assays, including
gene expression microarray, genotyping microarray, aCGH,
methylation array, RNA-seq, DNA-seq, bisulfite sequencing,
ChIP-seq, and NanoString. Together the current studies have
established that FFPE can generate reliable data for gene
expression and SNV detection. However, for more complex
alterations such as indel, CNV estimation, and detection
of hybrid transcripts, FFPE specimens have been proven to
be less than ideal. The overall consensus for utilizing FFPE
specimens in high throughput genomic study is that the
data quality is negatively correlated to storage time. However,
small RNAs have been shown to be an exception to this rule,
due to the already small size of the small RNA which is less
affected by the degradation of RNA.

Overall, FFPE specimens provide great value in biomed-
ical research and can be utilized for HTS applications. How-
ever, there is always a high risk associated FFPE specimen
based high throughput genomic assays because the quality of
the FFPE specimens is near impossible to determine. Thus, a
small pilot studies should be considered to establish feasibility
prior to committing resources to a large FFPE based study.
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Anthocyanin in strawberries has a positive effect on fruit coloration. In this study, the role of exogenous hematin on anthocyanin
biosynthesis was investigated. Our result showed that the white stage of strawberries treated with exogenous hematin had higher
anthocyanin content, compared to the control group. Among all treatments, 5𝜇Mof hematin was the optimal condition to promote
color development. In order to explore the molecular mechanism of fruit coloring regulated by hematin, transcriptomes in the
hematin- and non-hematin-treated fruit were analyzed. A large number of differentially expressed genes (DEGs) were identified
in regulating anthocyanin synthesis, including the DEGs involved in anthocyanin biosynthesis, hormone signaling transduction,
phytochrome signaling, starch and sucrose degradation, and transcriptional pathways. These regulatory networks may play an
important role in regulating the color process of strawberries treated with hematin. In summary, exogenous hematin could promote
fruit coloring by increasing anthocyanin content in the white stage of strawberries. Furthermore, transcriptome analysis suggests
that hematin-promoted fruit coloring occurs through multiple related metabolic pathways, which provides valuable information
for regulating fruit color via anthocyanin biosynthesis in strawberries.

1. Introduction

Strawberry (Fragaria × ananassa Duch.) is one of the most
popular fruits with global economic importance [1]. Because
of its appealing red coloration and abundant nutrition,
strawberries are highly sought after by consumers [2, 3].
These qualities are partially due to the high anthocyanin
content in strawberry. Anthocyanins have a high antioxidant
activity [4]. Research suggests that anthocyanins have poten-
tial health benefits for a variety of conditions including car-
diovascular disorders, advanced age-induced oxidative stress,
inflammatory response [5], and diverse degenerative diseases
[6, 7]. Increasing anthocyanin content in strawberries has
been a relevant research topic in recent years.

Biosynthesis of anthocyanins is a complex biological
process which is affected by genetic, developmental, and

environmental factors [8]. Over the past few years, most
structural genes encoding enzymes in the anthocyanin
biosynthetic pathways have been isolated and character-
ized in strawberries. The first group of structural genes
involved in these pathways includes phenylalanine ammo-
nia lyase (PAL), chalcone synthase (CHS), flavanone 3-
hydroxylase (F3H), dihydroflavonol-4-reductase (DFR), leu-
coanthocyanidin reductase (LAR)/anthocyanidin synthase
(ANS), and UDP-glucose flavonoid 3-O-glucosyltransferase
(UFGT). These structural genes comprise the pathways
needed for the synthesis of anthocyanins [9]. These genes
are regulated primarily by the Myb/bHLH/WD40 (MBW)
complex in many plants [10, 11].

It has been shown that anthocyanin synthesis increases
rapidly after the white stage in strawberries [12]. Phytohor-
mones such as abscisic acid (ABA), cytokinin (CTK), and
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ethylene and methyl jasmonate (JA) also play an important
role in regulating the color development process in strawber-
ries by increasing anthocyanin accumulation [12, 13]. Auxin
and gibberellins (GAs) are known to reduce anthocyanin
biosynthesis during the color development in fruit [8].

Light is one of the most important environmental fac-
tors regulating anthocyanin biosynthesis [14]. Phytochromes,
which act as photoreceptors, play an important role in light
stimulation during the development of strawberries [15].
Phytochromes are homodimeric chromoproteins where each
holophytochrome is composed of a phytochrome protein
covalently bound to a linear tetrapyrrole chromophore phy-
tochromobilin (PΦB). PΦB acts as a light-receiving antenna
for phytochrome. PΦB is synthesized in the plastid from
heme catalyzed by heme oxygenase (HO) and subsequently
phytochromobilin synthase [16]. Heme oxygenase 1 (HO1)
is crucial to this process and acts as a rate-limiting enzyme
in the biosynthesis of PΦB. HO1 catalyzes the oxygenation
of heme to carbon monoxide, Fe2+, and biliverdin (BV)
in plants [17]. Additionally, HO1 has been shown to play
an important role in anthocyanin accumulation in plants.
For example, tomato [18, 19] and Arabidopsis [20–22] HO1
deficientmutants, which can not synthesize the phytochrome
chromophore, have a major reduction in anthocyanin accu-
mulation.

Hematin (C
34
H
33
O
5
N
4
Fe), a protoporphyrin complex,

is an inducer and substrate of HO1 in animals and plants
[17, 23]. Exogenous hematin was shown to alleviate mercury-
induced oxidative damage in the roots of Medicago sativa
[17], induce adventitious root numbers and root length of
cucumbers [24], regulate Brassica nigra seed germination
under nanosilver stress, and relieve etiolation in the leaves
of wheat seedlings under complete darkness [25, 26]. These
effects might be derived from a hematin induced HO1
enzymatic reaction product.

In this study, the effect of exogenous hematin on the
white stage of strawberries was investigated by comparing the
anthocyanin contents in the hematin-treated fruit and the
control group. In order to gain insight into the underlying
molecular mechanisms regulating fruit coloring in response
to the hematin treatment, an analysis of mRNA expression
profiles was performed using high-throughput sequencing.
The results demonstrated that exogenous hematin could
promote fruit coloring. Comparative transcriptome analyses
may give us a better understanding of the mechanism of the
coloring process in strawberry fruit.

2. Materials and Methods

2.1. Plant Materials, Growth Condition, and Hematin Treat-
ments. Strawberry (Fragaria × ananassa Duch cv. Beni-
hoppe), an octoploid (2𝑛 = 8𝑋 = 56) species, was planted
under standard culture conditions in a greenhouse (30/15∘C,
14/10 h day/night, relative humidity 50–80%). The maximum
light intensity inside the greenhouse was 55,300 lux. The
developmental stage of the strawberry fruit was divided
into seven visual stages: small green (SG), big green (BG),
degreening (DG), white (Wt), initial red (IR), partial red
(PR), and full red (FR) [12]. Strawberry plants at the white

stage (about 25 d after anthesis) were chosen to study the
effect of hematin on fruit coloration in the study. To study
the effect of different concentration of hematin on fruit
coloration, white stage strawberry plants (𝑛 ≥ 50 for each
treatment) were sprayed with 0, 1, 10, or 100 𝜇M hematin
(H3281, Sigma-Aldrich, St. Louis, MO, USA), respectively
[26]. Strawberry fruits (𝑛 ≥ 30 for each treatment) were
harvestedwhen the fruit entered the PR stage (48 h after treat-
ment). The fruits were immediately frozen in liquid nitrogen
and stored at −80∘C for further analysis. We found the 10 𝜇M
hematin-treated strawberries accumulatedmost anthocyanin
among all treatments (Figure S1, in Supplementary Material
available online at http://dx.doi.org/10.1155/2016/6762731). By
using the same method to treat the fruits with 0, 5, 10, or 15-
𝜇M hematin, we found the treatment by 5 𝜇M hematin was
the optimal condition for increasing anthocyanin production
in strawberry (Figure 1) (𝑝 < 0.01). The treatment with 5𝜇M
hematinwas used for subsequent analysis.Three independent
replicates were prepared for each treatment.

2.2. Determination of the Anthocyanin Content. The total
anthocyanin content of the strawberries was determined
using the method previously reported [6]. Absorbance was
recorded on a BeckmanDU640B spectrophotometer (Fuller-
ton, CA, USA) at 510 and 700 nm for anthocyanin solutions
in a pH 1.0 and pH 4.5 buffer, respectively. The calculated
absorbance was obtained according to

𝐴 = [(𝐴
510
− 𝐴
700
)pH 1.0 − (𝐴510 − 𝐴700)pH 4.5] . (1)

The molar extinction coefficient is 26,900 as described
in other studies (e.g., [6]). Anthocyanin concentrations were
expressed in milligrams of cyanidin-3-galactoside equivalent
per gram of fresh weight. Three independent replicates were
conducted for each treatment.

2.3. BV Preparation and Assay. Strawberry fruit (1 g) was
homogenized in a Potter-Elvehjemhomogenizer using 1.2mL
ice-cold 0.25M sucrose solution containing 1mM phenyl-
methyl sulfonyl fluoride, 0.2mM EDTA, and 50mM potas-
sium phosphate buffer (pH 7.4). Homogenates were cen-
trifuged at 20,000×g for 20min and chloroplasts were used
for activity determination. BV was assayed as previously
described [27]. The concentration of BV was estimated using
a molar absorption coefficient at 650 nm of 6.25mM−1 cm−1
in 0.1M HEPES-NaOH buffer (pH 7.2). Three independent
replicates were conducted for each treatment.

2.4. RNA Isolation and cDNA Library Construction. Total
RNA isolation was carried out as previously described [28].
The procedure is briefly presented below. Strawberry fruits
were ground into powder and mixed at a ratio of 0.5 g
powder to 20mL extraction buffer (200mM Tris-HCl (pH
8.2), 100mM LiCl, 50mM ETA, 1.5% SDS, 2% PVP (Sigma,
PCP40), 2% BSA (Sigma), and 10mM DTT (Sigma)). A
total of 200𝜇L 10mg/mL proteinase K (Merck, Darmstadt,
Germany) was added to remove contaminating proteins.
Total RNA was extracted using phenol/chloroform/isoamyl
alcohol (25 : 24 : 1) and precipitated in a sodium acetate
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Figure 1: Fruit coloration and the anthocyanin content in the strawberry fruit. The color of the 5 𝜇M hematin-treated strawberry fruit was
redder than the control (CK) at 48 h after treatment (a). The anthocyanin content in the strawberry fruit was measured after treatment with
different concentrations of hematin (0, 5, 10, and 15𝜇M) (b). Vertical bars represent standard errors; values with different letter are significantly
different at 𝑝 < 0.01.

and ethanol mixture. The mixture was resuspended in an
appropriate volume of DEPC-treated distilled water and
then stored at −80∘C for the next step. The quality and
quantity of the total RNA were measured using a NanoDrop
ND-1000 Spectrophotometer (NanoDrop, Wilmington, DE,
USA). Only samples that met the criteria of 1.8 ≤OD260/280
≤ D2.0 and OD260/230 ≥ 1.8 and concentration ≥ 200 ng/𝜇L
were used for sequencing. RNA samples of 30 strawberry
fruits harvested in the same treatment group were pooled
together for subsequent experiments.

RNA samples from two biological replicates were used
for cDNA library construction and RNA-Seq at the Beijing
Genomics Institute (BGI, Shenzhen, China). Total RNA
samples were treated with DNase I (TaKaRa, Dalian, China)
to remove any possible DNA contamination.ThemRNA was
enriched by using oligo (dT) magnetic beads (Illumina, San
Diego,CA,USA) and cut into short fragments (about 200 bp).
The first-strand cDNA was synthesized using a Superscript
Preamplification System Kit (Gibco-BRL, Grand Island, NY,
USA) as described in the manufacturer’s instructions. The
double stranded cDNAwas purified with the oligo (dT)mag-
netic beads following the manufacturer’s instructions. End
repair was performed and adaptors were ligated to the ends
of these fragments. Ligation products were purified using
TAE-agarose gel electrophoresis. The fragments were then
enriched by PCR amplificationwith an initial denaturing step
at 98∘C for 30 s, followed by 15 cycles of amplification (98∘C
for 10 s, 65∘C for 30 s, and 72∘C for 5min) and a final extension
at 72∘C for 5min. The PCR products were then purified

using the oligo (dT) magnetic beads. DNA size, purity, and
concentration were checked on an Agilent 2100 Bioanalyzer
(Agilent, Santa Clara, CA, USA).

2.5. RNA Sequencing and Identification of Differentially
Expressed Genes. RNA sequencing was performed using the
ion proton platform at the Beijing Genomics Institute. The
original sequence data were filtered to obtain clean reads for
further analyses by removing short reads (less than 30 bp) and
trimming adapters. Adapter reads were trimmed by first cal-
culating the average quality of the first 15 bases from 3󸀠-end
until the average quality was larger than 10 and then removing
the bases that were counted. The high-quality clean reads
were mapped against the strawberry reference genome
(http://strawberry-garden.kazusa.or.jp/) using Ion Torrent’s
mapping program (TMAP, version 0.2.3; https://github.com/
iontorrent/TMAP). No more than two mismatches were
allowed in the sequence alignment. Quality assessment of
reads, statistics of alignment, sequencing saturation analysis,
and randomness assessments were carried out subsequently
to assess the quality of sequencing.

Gene expression levels were quantified by the software
Sailfish [29]. Raw counts were normalized to Reads Per
Kilobase of exon model per Million mapped reads (RPKM).
Differential expression analysis was performed using the
EBSeq package [30].𝑄 value< 0.05 and |log

2
(fold change)| >

1were set as the threshold to identify significant differentially
expressed genes. In statistics, correction for false positive
errors was carried out using the FDR statistic [31].

http://strawberry-garden.kazusa.or.jp/
https://github.com/iontorrent/TMAP
https://github.com/iontorrent/TMAP
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2.6. Gene Ontology and Pathway Enrichment Analysis of
Differentially Expressed Genes. Gene functions of strawberry
were annotated according to the Gene Ontology (GO) stand-
ardized terms for molecular function, cellular component,
and biological process using Blast2GO (https://www.blast2go
.com/). Gene function was annotated using the following
databases: NCBI nonredundant protein sequences, NCBI
nonredundant nucleotide sequences, protein family, Clusters
of Orthologous Groups of proteins, the manually annotated
and reviewed protein sequence database, KEGG Ortholog
database, and Gene Ontology. After GO annotation for
DEGs, we performed GO functional classification for DEGs
by the WEGO software [32] and analyzed the distribution
of gene functions. We used the GO Term Finder tool
(http://www.yeastgenome.org/help/analyze/go-term-finder)
to search for significant shared GO terms.

𝑝 = 1 −
𝑚−1

∑
𝑖=0

(𝑀
𝑖
) (𝑁−𝑀
𝑛−𝑖
)

(𝑁
𝑛
)
, (2)

where 𝑁 is the number of all genes with GO annotation;
𝑛 is the number of DEGs in 𝑁; 𝑀 is the number of all
genes that are annotated to certain GO terms; and 𝑚 is the
number of DEGs in𝑀. The calculated 𝑝 value was subjected
to Bonferroni Correction [33]. The corrected 𝑝 value < 0.05
was set as the threshold. GO terms fulfilling this condition
are defined as significantly enriched GO terms in DEGs.
The pathway enrichment analyses using the KEGG database
(http://www.genome.jp/kegg/) were conducted subsequently
to study the functions of differentially expressed genes identi-
fied between the control and the hematin-treated strawberry
groups. The formula is the same as that in GO analysis. Here
𝑁 is the number of all genes with KEGG annotation, 𝑛 is the
number ofDEGs in𝑁,𝑀 is the number of all genes annotated
to specific pathways, and𝑚 is the number of DEGs in𝑀.

2.7. Quantitative Real-Time PCR Analysis. Quantitative real-
time PCR (qRT-PCR) experiments were conducted to assess
the reliability of the RNA-Seq data [34]. Eleven pairs of gene
specific primers were designed to verify the DEGs in the
strawberry fruit (Table S1). Strawberry RNA was extracted
from the fruit according to the previously detailed method.
Total RNA was digested with DNase I for 30min at 25∘C to
remove DNA contamination according to the manufacturer’s
instructions. The qRT-PCR was performed using a SYBR
PCR master mix (TaKaRa, Dalian, China) on a Bio-Rad IQ-
5 thermal cycler (Bio-Rad, Philadelphia, PA, USA). Three
replicates of each sample were conducted to calculate the
average Ct values.The relative expression level was calculated
by the comparative 2−ΔΔCt method [35, 36]. The significance
was determined with the SPSS software (SPSS 17.0, IBM,
Chicago, IL, USA) (𝑝 < 0.05).

3. Results and Discussion

3.1. Effects of Exogenous Hematin on Anthocyanin and
Biliverdin Accumulation. Hematin is an inducer and sub-
strate of HO1 in animals and plants [17, 23]. In this study,
strawberries at theWt stage were treated with 0 𝜇M(control),
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Figure 2: The BV content in strawberry fruit was measured after
treatment with 0 and 5 𝜇Mhematin. Vertical bars represent standard
errors; values with different letter are significantly different at 𝑝 <
0.01.

5, 10, or 15 𝜇M hematin. The results indicated that the antho-
cyanin content in the hematin-treated strawberries was more
than the control after 48 h. The treatment by 5𝜇M hematin
was found to be the optimal condition for increasing antho-
cyanin production (Figure 1) (𝑝 < 0.01). The anthocyanin
content in the 5 𝜇M hematin-treated strawberries was 2.5
times higher than that in the control. This is the first report
that hematin could increase the anthocyanin production in
fruit. Wemeasured the expression of FaHO-1 and the content
of biliverdin (BV) which is themetabolite of heme oxygenase.
We found that hematin could also significantly increase the
expression of FaHO-1 in strawberry fruit (Figure 4) and
promote the accumulation of BV (Figure 2). These results
indicate that hematin promotes anthocyanin accumulation
through the heme metabolism pathway.

3.2. Sequences Assembly, Mapping, and Functional Anno-
tation. High-throughput sequencing technology is utilized
widely in analyzing gene expression in many organisms
[37, 38]. In this study, approximately 10.8 Gbp raw tags
were generated for each library. After eliminating adapters,
ambiguous nucleotides, and low-quality sequences, a total of
34,618,832 and 45,464,123 clean reads between 150 and 200
nucleotides in length were obtained (Table 1). Over 85% of
the clean tags from each library mapped to reference genes
with less than 2 bp mismatches. Less than 29% of the clean
tags from each library could not be aligned to any reference
genes because of incomplete sequences, and these tags were
designated as unknown. More than 67.3% of the clean tags
in each library were mapped to a single gene, while less than
4.7%mapped to multiple reference genes. Unknown tags and
tags mapped to multigenes were filtered out, and the unique

https://www.blast2go.com/
https://www.blast2go.com/
http://www.yeastgenome.org/help/analyze/go-term-finder
http://www.genome.jp/kegg/
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Table 1: Overview of the sequencing and assembly.

Biological replicate 1 Biological replicate 2
Sample Control Hematin-treated Control Hematin-treated
Clean reads 17808924 26809908 19235452 26228671
Genome map rate (%) 96.58 96.52 96.65 96.74
Gene map rate (%) 86.46 86.27 87.04 85.63
Perfect match (%) 4677273 (24.32%) 6510668 (24.28%) 4414050 (24.79%) 6149508 (23.45%)
Unique match (%) 15075148 (84.65%) 22628939 (84.41%) 16409557 (85.31%) 21986962 (83.83%)
Expressed genes 27976 28713 28999 28211
Mismatch (%) 11321162 (63.57%) 17101590 (63.79%) 12456871 (64.76%) 16697280 (63.66%)
Total unmapped reads 645135 (3.35%) 932213 (3.48%) 608914 (3.42%) 856028 (3.26%)

clean tags that mapped to a single gene were retained for
further DEG analysis.

In addition, the perfect match rates were 24.32%, 24.28%,
24.79%, and 24.35% in control 1, control 2, hematin 1, and
hematin 2, respectively.

The saturation of the libraries with and without the
hematin treatment was analyzed.The number of the detected
genes became saturated at about 2 million reads (Figure
S2). This indicates that the obtained reads are sufficient for
complete transcriptome coverage. The randomness of RNA
fragmentation in the four libraries was assessed for subse-
quent bioinformatics analysis. The results showed that the
reads in each position of the reference gene were distributed
evenly and demonstrated highly similar tendencies in all
libraries (Figure S3).

3.3. Genes Differentially Regulated in Response to Exogenous
Hematin. Based on sequencing results of the four mRNA
libraries, approximately 29,000 genes (about 70% of the
reference genes in the octoploid strawberry genome) were
detected in each library. Additionally, correlations among
genes based on RPKM between the two biological replicates
were analyzed; the correlation coefficients (𝑅2) were high
(0.93 and 0.95 for the control and hematin-treated group,
resp.). Genes expressed in both replicates were screened. A
total of 28,713, 28,999, 27,976, and 28,211 genes (Table 1) were
expressed in the control and hematin-treated samples.

To reveal the molecular pathways regulating strawberry
coloring in response to hematin, the DEGs between the con-
trol and hematin-treated fruit were analyzed. We compared
the gene expression profiles between the control and the
treated samples in both biological replicates. DEGs detected
in both biological replicates were screened for subsequent
analysis. A total of 1,080 (402 up- and 678 downregulated)
genes were differentially expressed in the 5𝜇M hematin-
treated groups comparedwith the control groups.More genes
were downregulated in the hematin-treated group compared
to the control group.

To facilitate the global analysis of gene expression, a
GO analysis was performed by mapping each differentially
expressed gene into the records of the GO database. Gene
Ontology (GO) enrichment analysis of the DEGs in the
control and hematin-treated groups was performed to reveal
the possible mechanisms under which hematin promotes

anthocyanin biosynthesis. GO terms with 𝑝 < 0.05 were
represented among genes with significant changes in expres-
sion over a given interval. In this study, only three terms
including anatomical structure arrangement,meristem struc-
tural organization, radial pattern formationwere significantly
enriched in biological process (Supplementary Table S2).
AlthoughmostGo termswere not significantly enriched, they
could provide a reference for further study. According to the
GO cellular components, a large number of the DEGs were
classified intomain cell organelles, such as vacuole, nucleolus,
mitochondrion, apoplast, chloroplast, plastid, cytoplasm, and
membrane. In particular, many DEGs were assigned to the
plastid and chloroplast (Figure 3), indicating that hematin
has an important impact on the expression of plastid and
chloroplast genes. It is probably because heme oxygenase 1 is
a soluble plastid protein [22]. According to the GO molec-
ular function, a large number of the DEGs were classified
intoUDP-glucosyltransferase, sucrose transmembrane trans-
porter activity, nucleic acid binding, and DNA binding terms
which are closely related to anthocyanin biosynthesis. Many
DEGs were classified into heme binding, peroxidase activity,
and tetrapyrrole binding (Figure 3). It is probably because
hematin can increase the activity of HO1 and promote the
degradation of hemoglobin [17]. In addition, anthocyanin
accumulation in fruit is closely related to hormone [8] and
carbohydrate biosynthesis [9]. According to the GO biologi-
cal process, a large number of the DEGs were classified into
regulation of hormone levels, cytokinin metabolic process,
response to hormone, response to abscisic acid, response to
auxin, and response to ethylene terms, indicating that the
hormone-related DEGs are involved in regulating the antho-
cyanin biosynthesis in the hematin-treated fruit. Many DEGs
were classified into starch and sucrose biosynthetic and trans-
port process and phenylpropanoid metabolic process terms,
indicating that hematin can promote anthocyanin accumu-
lation via the phenylpropanoid metabolic and carbohydrate
metabolism. In addition, many DEGs were classified into the
process for response to light stimulus term, indicating that
hematin may also participate in the light stimulus system.

Pathway enrichment analysis was performed to under-
stand the biological functions of the DEGs by identify-
ing significantly enriched signal transduction pathways or
metabolic pathways [39]. In the study, a number of altered
biological pathways associated with the hematin treatment
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Figure 3: Gene classification based on Gene Ontology (GO) for DEGs in the strawberries treated by hematin.

were identified, and three pathways, including RNA poly-
merase, pyrimidine metabolism, and purine metabolism,
were significantly enriched (𝑄-value < 0.05) (Table 2).
Although the majority of the pathway terms were not sig-
nificantly enriched, the pathway enrichment analysis helps
us to further understand the biological functions of the
DEGs and the molecular mechanisms that regulate fruit
coloring in response to the hematin treatment.These pathway
terms included metabolic pathways, biosynthesis of sec-
ondary metabolites, isoflavonoid biosynthesis, phenylalanine
metabolism, phenylalanine, tyrosine and tryptophan biosyn-
thesis, starch and sucrose metabolism, plant hormone signal
transduction, flavone and flavonol biosynthesis, and phenyl-
propanoid biosynthesis terms (Supplementary Table S2).

3.4. Analysis of DEGs Involved in Anthocyanin Biosynthesis

3.4.1. Transcription Factors. Transcription factors (TFs) are
proteins that regulate the expression of downstream target
genes. Many TFs, such as v-myb avian myeloblastosis viral
oncogene homolog (MYB), basic helix-loop-helix (bHLH),
WD40-repeats protein (WD40), and MADS-box (MADS),
directly regulating the expression of the structural genes in
anthocyanin biosynthesis have been identified from many
species [8]. Therefore, the enhanced expression of key TFs

might regulate the anthocyanin biosynthesis. In our study,
some anthocyanin biosynthesis-related TFs were found to be
uniquely present in the DEG profiling of the hematin-
treated fruit, for example, MYB, bHLH, PIF3, MADs-box,
AP2-EREBP, and ABI3/VP1 (Table 3). The anthocyanin bio-
synthesis genes are regulated primarily by the MBW tran-
scription factor, which is a ternary transcription factor com-
plex [10, 11]. Most of the MYBs involved in regulating antho-
cyanin biosynthesis are positive regulators of transcription
[8]. However, MYBs can act as repressors too, such as straw-
berry FaMYB1 and FaMYB9 and grapevine VvMYB4, which
can significantly suppress the biosynthesis of anthocyanins
and flavonols [40]. In this study, three unigenes belong-
ing to MYB transcription factors were differentially
expressed, and two MYB transcription factors were signifi-
cantly upregulated. Of these, the unigene “FANhyb
rscf00000146.1.g00007.1” from theMYB family of R2R3MYB
transcription factors was significantly upregulated.Moreover,
increasing evidence indicates that the expression of the
bHLHs promotes anthocyanin accumulation in fruit [41]. In
our study, all of the unigenes from the bHLH family were
downregulated, among which the expression level of unigene
FANhyb rscf00001292.1.g00003.1 was significantly decreased
6250-fold (Table 3). FANhyb rscf00002210.1.g00001.1 en-
codes a predicted MADS-box transcription factor, and it was
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Figure 4: qRT-PCR validation of the RNA-Seq based gene expression. The values indicate means of three biological replicates ± SD. Star
indicates that the expression level is significantly different between the hematin-treated and the control group (∗𝑝 < 0.05, ∗∗𝑝 < 0.01).
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Table 2: Pathway enrichment analysis of differentially expressed genes.

Pathway DEGs with pathway
annotation (451)

All genes with pathway
annotation (15877)

Corrected 𝑝 value 𝑄-value Pathway ID

RNA polymerase 16 183 6.88𝐸 − 5 0.0068107 ko03020
Pyrimidine metabolism 20 317 0.0007651746 0.0320 ko00240
Purine metabolism 21 347 0.0009710371 0.032044224 ko00230

significantly downregulated. There were three unigenes in
the AP2-EREBP family, with only one upregulated and the
others downregulated. These results suggest that exogenous
hematin is involved in developmental transcriptional
regulation of anthocyanin biosynthesis.

3.4.2. DEGs in Anthocyanin Biosynthesis. The anthocyanin
biosynthetic pathway has been studied intensively. The
anthocyanin biosynthetic pathway via the phenylpropanoid
pathway is well known [8]. In this study, the transcriptome
data showed a significant increase in the expression of genes
in the anthocyanin biosynthesis pathway when exposed
to exogenous hematin. The structural genes involved in
anthocyanin biosynthesis, including DFR, LAR, and UDP-
glycosyltransferase, exhibited significant differential expres-
sion in response to the hematin treatment (Table 4). For
example, two DFR genes and one LAR gene were signifi-
cantly upregulated (the expression increased 18-, 30-, and
3-fold in the hematin-treated fruit, resp.). In addition, all
six genes encodingUDP-glycosyltransferasewere significantly
upregulated. Among these, the expression of one gene
(Fanhy icon15742070o.1.g00001.1) was upregulated 18305-
fold. The results suggest that exogenous hematin may have
an important role in promoting anthocyanin biosynthesis.

3.4.3. DEGs in Hormone Signaling Transduction in Response
to Hematin. Auxin has been shown to negatively regulate
the expression of the anthocyanin biosynthesis genes [42]. In
this study, there were three unigenes involved in the auxin
signaling pathway, and all were downregulated, including
one gene encoding auxin efflux carrier component 1-like
(AUX1-like) and two genes encoding auxin response factors
(ARF). These results suggest that hematin promotes antho-
cyanin accumulation by regulating auxin in the coloration
process of strawberries. It has shown that auxin suppresses
anthocyanin biosynthesis in the red-fleshed apple callus [43].
Endogenous expression of auxin [44, 45] has been found
to impede anthocyanin accumulation in strawberries. In
additional, cytokinins are also known to play an important
role in anthocyanin biosynthesis. It has shown to enhance
anthocyanin accumulation in Zea mays and regulate antho-
cyanin production and composition in suspension cultures
of strawberry cells [46]. In this study, two unigenes related
to the cytokinin signaling pathway were identified, and they
were downregulated as well. One gene was identified as
cytokinin dehydrogenase 5-like which catalyzes the irre-
versible degradation of cytokinins. This result indicates that
hematin promotes anthocyanin accumulation by regulating
the cytokinin signaling pathway.

Extensive researches have shown that ABA plays an
important role in the regulation of anthocyanin biosynthesis
in nonclimacteric fruit [47]. In this study, a total of five uni-
genes related to the ABA signaling pathway were identified,
among which two were upregulated and three were down-
regulated. Two genes, which are involved in the abscisic acid
response, were upregulated. These two unigenes encode 9-
cis-epoxycarotenoid dioxygenase 1 (NCED1) and ABA overly
sensitive 5 (ABO5), respectively. ABA is synthesized from
carotenoids via several enzymatic reactions in the plastid.
The rate-limiting step in these reactions is catalyzed by 9-cis-
epoxycarotenoid dioxygenase 1 (NCED1) [48]. Mutations in
the FaNCED1 gene result in colorless strawberry fruit, which
can become colored through the application of exogenous
ABA [12]. Another unigene was identified to encode abscisic
acid 8󸀠-hydroxylase 1-like, a key enzyme in the oxidative
catabolism of abscisic acid, which was downregulated. Appli-
cation of exogenous ABA regulates phenylalanine ammonia
lyase activity and increases the phenolic and anthocyanin
content of strawberry fruit [12, 49]. Our results suggest
that hematin promotes ABA biosynthesis and inhibits ABA
disintegration in the hematin-treated fruit.

In Arabidopsis, JAs can affect anthocyanin accumulation
via the interaction of negative regulators with the MBW
complex of transcription factors involved in anthocyanin
biosynthesis [50]. Preharvest application of JA to “Fuji” apples
enhances red coloration [51]. JA vapor treatment can also
enhance anthocyanins in strawberry fruit [52]. In this study,
jasmonate O-methyltransferase-like exhibited significantly
differential expression. Jasmonate O-methyltransferase-like
is also known to be a key enzyme for jasmonate-regulated
plant responses to stimuli [53, 54]. These results suggest that
hematin increases the activity of the JA-regulated antho-
cyanin biosynthesis.

3.4.4. DEGs in the Phytochrome Signaling Pathway in Response
to Hematin. Phytochromes that act as photoreceptors play
an important role in anthocyanin regulation [15]. Phy-
tochromes are homodimeric chromoproteins, where each
holophytochrome is composed of a phytochrome protein
(apophytochrome) covalently bound to a linear tetrapyrrole
PΦB. HO1 is crucial to this process and acts as a rate-
limiting enzyme in the biosynthesis of PΦB [55]. Exogenous
hematin can also induce HO-1 expression in many plants
[56, 57]. In this study, we found exogenous hematin signif-
icantly increased the expression of FaHO1 (Table 5). This
result implies that hematin can promote PΦB biosynthesis.
Recently, it has been reported that hematin could induce
the accumulation of far-red phytochrome and phytochrome
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Table 3: DEGs acting as transcription factors in response to exogenous hematin.

Annotation transcription factors Gene ID
Real

fold-change
values

Upregulation/downregulation FDR

PREDICTED: AP2-like
ethylene-responsive transcription
factor AIL1-like

FANhyb icon00006295 a.1.g00001.1 9.38 Up 1.20𝐸 − 05

PREDICTED: AP2-like
ethylene-responsive transcription
factor AIL1-like

FANhyb rscf00003155.1.g00001.1 4 Down 4.80𝐸 − 16

PREDICTED: AP2-like
ethylene-responsive transcription
factor AIL5-like

FANhyb rscf00000029.1.g00010.1 4 Down 3.20𝐸 − 08

MYBdomain protein 66 FANhyb rscf00000146.1.g00007.1 6.54 Up 7.80𝐸 − 07
MYB-related protein 3R-1-like, partial FANhyb rscf00000141.1.g00016.1 2.82 Up 8.30𝐸 − 04
PREDICTED: transcription factor
GAMYB-like FANhyb rscf00000649.1.g00006.1 3.03 Down 1.50𝐸 − 13

PREDICTED: probable WRKY
transcription factor 53-like FANhyb rscf00001973.1.g00002.1 2.17 Down 2.00𝐸 − 08

Transcription factor bHLH80-like FANhyb rscf00001292.1.g00003.1 6250 Down 1.50𝐸 − 06
Transcription factor bHLH70-like FANhyb rscf00000295.1.g00003.1 5.26 Down 6.60𝐸 − 12
Transcription factor ICE1-like FANhyb rscf00000170.1.g00006.1 2.44 Down 4.50𝐸 − 18
C2H2-like zinc finger protein FANhyb rscf00001143.1.g00002.1 2.82 Up 5.90𝐸 − 04
Zinc finger protein MAGPIE-like FANhyb rscf00003024.1.g00001.1 2.04 Up 1.50𝐸 − 04
PREDICTED: axial regulator YABBY
5-like FANhyb rscf00001667.1.g00001.1 4.17 Down 7.30𝐸 − 05

PREDICTED: axial regulator YABBY
1-like FANhyb rscf00006899.1.g00001.1 3.57 Down 6.20𝐸 − 06

PREDICTED: dof zinc finger protein
DOF3.7-like isoform 1 FANhyb rscf00006856.1.g00001.1 2.63 Down 2.80𝐸 − 04

ZF-HD homeobox protein FANhyb rscf00000044.1.g00022.1 3.85 Down 4.20𝐸 − 08
ZF-HD homeobox protein
At4g24660-like FANhyb rscf00005241.1.g00001.1 3.57 Down 4.70𝐸 − 09

PREDICTED: B3 domain-containing
protein REM14-like FANhyb rscf00001009.1.g00002.1 2.43 Up 5.30𝐸 − 04

PREDICTED: B3 domain-containing
transcription factor ABI3-like FANhyb rscf00001271.1.g00002.1 4.55 Down 1.30𝐸 − 28

Growth-regulating factor 6 FANhyb rscf00000024.1.g00029.1 3.45 Down 3.30𝐸 − 34
Growth-regulating factor 5 FANhyb icon00009704 a.1.g00001.1 2.7 Down 1.90𝐸 − 06
GATA type zinc finger transcription
factor family protein FANhyb rscf00000393.1.g00013.1 11.11 Down 1.10𝐸 − 05

PREDICTED: zinc finger CCCH
domain-containing protein 2-like FANhyb icon00006770 a.1.g00001.1 3.13 Down 6.80𝐸 − 49

PREDICTED: E2F transcription
factor-like E2FE-like FANhyb icon00002702 a.1.g00001.1 2.78 Down 2.40𝐸 − 04

PREDICTED: uncharacterized protein FANhyb rscf00001066.1.g00001.1 2.63 Down 4.90𝐸 − 06
PREDICTED: nuclear transcription
factor Y subunit A-3-like isoform 1 FANhyb rscf00000008.1.g00035.1 3.85 Down 5.00𝐸 − 20

PREDICTED: homeobox-leucine
zipper protein ATHB-8-like FANhyb rscf00000015.1.g00005.1 2.63 Down 1.00𝐸 − 06

PREDICTED: MADS-box
transcription factor 18-like FANhyb rscf00000323.1.g00016.1 2.43 Down 1.80𝐸 − 06

PREDICTED: zinc finger protein
132-like isoform 1 FANhyb rscf00007015.1.g00001.1 2.43 Down 1.80𝐸 − 08

PREDICTED: transcription factor
PIF3-like FANhyb rscf00000669.1.g00002.1 3.46 Up 1.40𝐸 − 07
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Table 4: Regulation of the DEGs in anthocyanin biosynthesis in response to exogenous hematin.

Genes in anthocyanin
biosynthesis Gene ID

Real
fold-change

values
Regulation level FDR

Dihydroflavonol-4-
reductase FANhyb icon00002410 a.1.g00001.1 30.91 Up 9.10𝐸 − 06

Flavonol synthase FANhyb icon00015354 a.1.g00001.1 3.45 down 1.80𝐸 − 05
Isoflavone reductase
homolog FANhyb icon20341135 s.1.g00001.1 3.34 Up 7.50𝐸 − 14

UDP-glycosyltransferase FANhyb rscf00004969.1.g00001.1 3.07 Up 6.40𝐸 − 08
UDP-glycosyltransferase
activity FANhyb icon15742070 o.1.g00001.1 18 305.63 Up 5.10𝐸 − 09

UDP-glycosyltransferase
73C1 FANhyb icon00027696 a.1.g00001.1 2.98 Up 5.60𝐸 − 04

UDP-glycosyltransferase
activity FANhyb icon00008064 a.1.g00001.1 2.49 Up 3.10𝐸 − 04

PREDICTED:
UDP-glucose flavonoid
3-O-glucosyltransferase
7-like

FANhyb rscf00005563.1.g00001.1 2.12 Up 1.10𝐸 − 19

PREDICTED:
UDP-glycosyltransferase
76F1-like

FANhyb rscf00002177.1.g00003.1 2 Up 7.20𝐸 − 29

A transcripts in the etiolated leaves of wheat seedling phy-
tochromes [26]. However, our study shows that phytochrome
A was not differentially expressed. It is probably because
the hematin-treated strawberries were not shaded during the
experiment, while the function of phytochrome A is light-
dependent. In addition, we found that a downstream gene of
phytochrome, PIF3 (FANhyb rscf00000669.1.g00002.1), was
significantly upregulated. PIF3 is thought to be a positive reg-
ulator of phytochrome B mediated by light-dependent signal
transduction [58].These results suggest that the phytochrome
pathways may be involved in the anthocyanin biosynthesis
promoted by hematin.

3.4.5. DEGs in Starch and Sucrose Degradation. Proteomic
approaches have revealed that starch degradation contributes
to anthocyanin accumulation in tuberous roots of the purple
sweet potato variety [59]. Starch and sucrose biosynthesis is
important for anthocyanin accumulation in strawberry fruit
[60]. In this study, we found the DEGs involved in starch
and sucrose synthesis in the hematin-treated fruit were all
downregulated (Table 5). For example, the expression of the
unigenes encoding soluble starch synthase 3, sucrose trans-
port protein SUC2-like, and a probable sucrose-phosphate
synthase 4-like enzyme were decreased 2.3-, 4.6-, 3.2-, and
2-fold, respectively. This suggests that exogenous hematin
regulates the biosynthesis of starch and sucrose and hence
affects fruit coloring.

3.4.6. DEGs in the Calcium Pathway in Response to Hematin.
Calcium can also increase the transcription levels of key
structural genes F3H, DFR, ANT, and UFGT in the white
stage of strawberries [61]. In this study, we found that
three DEGs in calcium biosynthesis and transport were

downregulated in the hematin-treated fruit (Table 5). Only
the unigene encoding predicted cation/calcium exchanger
5-like was upregulated. The unigenes encoding a calpain-
type cysteine protease and a predicted calcium-binding pro-
tein PBP1-like were downregulated, respectively. Exogenous
application of calcium can promote apple coloring [62] in
addition to variation in anthocyanin content [61]. Our results
indicate that the biosynthesis and transport of calcium are
involved in the development of coloring in hematin-treated
strawberries.

3.5. Validation of Selected DEGs by qRT-PCR. To validate the
expression of the DEGs obtained from RNA-Seq, 11 DEGs
were selected for qRT-PCR, including structural genes (DFR
and UDFGs), transcription factor genes (MYB and bHLH),
and phytochrome chromophore-related gene (HO-1). The
primers used for qRT-PCR are listed in Supplementary Table
S1. The qRT-PCR results were consistent with the RNA-Seq
data (Figure 4), except for FANhyb rscf00000141.1.g00016.1,
which had a higher log

2
ratio (hematin-treated/control) in

the transcriptome data than in qRT-PCR. These results indi-
cate the RNA-Seq data from the strawberry transcriptome is
reproducible and accurate.

4. Conclusions

In this study, the anthocyanin content in the strawberry
fruit was elevated by the application of exogenous hematin.
This is the first report that hematin could increase the
anthocyanin production in fruit. Furthermore, we explored
the effects of the exogenous hematin on metabolic path-
ways using genome-wide transcriptome analysis. The results
indicate that the expression levels of many genes involved



International Journal of Genomics 11

Table 5: Other DEGs identified in anthocyanin biosynthesis-related pathways.

Anthocyanin
biosynthesis-related
pathways

Annotation genes Gene ID
Real fold-
change
values

Upregulation/downregulation FDR

Calcium ion binding

Cation/calcium
exchanger 5-like

FANhyb rscf00001906.1.g00001.1 2.03 Up 6.4𝐸 − 06

Calpain-type cysteine
protease family

FANhyb icon00011755 a.1.g00001.1 3.45 Down 1.8𝐸 − 09

Calcium-binding
protein PBP1-like

FANhyb rscf00000750.1.g00008.1 3.23 Down 9.7𝐸 − 04

Calpain-type cysteine
protease family

FANhyb icon00023658 a.1.g00001.1 2.33 Down 6.0𝐸 − 08

Cytokinin
Cytokinin

dehydrogenase 5-like
FANhyb iscf00325393 1 s.1.g00001.1 6.67 Down 6.2𝐸 − 06

Cytochrome P450
714A1

FANhyb rscf00000592.1.g00003.1 2.17 Down 9.8𝐸 − 10

Jasmonate
Jasmonate

O-methyltransferase-
like

FANhyb rscf00000004.1.g00013.1 2.01 Up 7.0𝐸 − 04

Abscisic acid

Protein ABSCISIC
ACID-INSENSITIVE

5-like
FANhyb rscf00002164.1.g00001.1 4 Down 1.6𝐸 − 18

ABA overly sensitive 5 FANhyb icon00051144 a.1.g00001.1 2.91 Up 2.4𝐸 − 05
9-cis-

epoxycarotenoid
dioxygenase NCED1

FANhyb icon18399909 o.1.g00001.1 4.41 Up 4.3𝐸 − 06

Abscisic acid
8󸀠-hydroxylase 1-like

FANhyb icon00000938 a.1.g00001.1 2.56 Down 1.4𝐸 − 06

Abscisic acid receptor
PYR1-like

FANhyb icon00020426 a.1.g00001.1 2.08 Down 3.0𝐸 − 06

Auxin

Auxin efflux carrier
component 1-like

FANhyb rscf00001008.1.g00003.1 3.84 Down 2.3𝐸 − 06

Auxin response factor
8

FANhyb rscf00001306.1.g00002.1 2.63 Down 6.1𝐸 − 17

Auxin response factor
17-like

FANhyb rscf00006074.1.g00001.1 2.17 Down 1.1𝐸 − 36

Starch and sucrose

Glycosyltransferase,
family 35

FANhyb rscf00000034.1.g00008.1 3.84 Down 1.1𝐸 − 05

Soluble starch
synthase 3

FANhyb rscf00000045.1.g00004.1 2.32 Down 3.8𝐸 − 12

Sucrose transport
protein SUC2-like

FANhyb icon00036727 a.1.g00001.1 4.55 Down 9.8𝐸 − 04

Sucrose transport
protein SUC2-like

FANhyb rscf00000755.1.g00002.1 3.23 Down 6.6𝐸 − 10

Probable
sucrose-phosphate
synthase 4-like

FANhyb rscf00001350.1.g00002.1 2.13 Down 1.1𝐸 − 14

Phytochrome

PREDICTED:
transcription factor

PIF3-like
FANhyb rscf00000669.1.g00002.1 3.46 up 1.4𝐸 − 07

Phytochrome E-like FANhyb rscf00000436.1.g00004.1 4 Down 3.3𝐸 − 05

Heme oxygenase 1 FANhyb icon00004395 a.1.g00001.1 2.58 2.7𝐸 − 07 2.7𝐸 − 07
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Figure 5: Genes and biological pathways that were involved in regulation of anthocyanin accumulation promoted by hematin. Outermost
box represents the cell wall. Bilayer oval shape represents the plastid.The red-brown ring and network represent the nuclear and endoplasmic
reticulum, respectively. The red crescent represents the vacuole. The box in the nucleus represents transcription factors (TFs). Yellow MYB,
greenWD40, and red bHLH represent a ternary transcription factor complex which transcribes anthocyanin biosynthesis genes. The circled
numbers represent biological pathways involved in the regulation of anthocyanin accumulation promoted by hematin. A represents the
phytochrome regulation pathway.B represents the starch and sucrose pathway.C,D,E, andF represent phytohormones ABA, JA, Auxin,
andCTK regulation pathways, respectively.G represents theCa2+ regulation pathway. Pfr represents the far-red phytochrome. PIF3 represents
phytochrome-interacting factor. Each anthocyanin biosynthesis regulatory pathway related gene is in Table 5.

in anthocyanin biosynthesis were significantly altered with
the hematin treatment. This suggests that the physiological
process of fruit color development is regulated through com-
plex interactions among anthocyanin biosynthesis pathways,
plant hormone signal transduction pathways, phytochrome
signal transduction pathways, starch and sugar metabolic
pathways, calcium pathways, and transcription factors (Fig-
ure 5). This study adds to the in-depth understanding of the
fruit coloration process in strawberry.
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P. fucata experiences a series of transformations in appearance, from swimming larvae to sessile juveniles, during which significant
changes in gene expression likely occur. Thus, P. fucata could be an ideal model in which to study the molecular mechanisms of
larvalmetamorphosis during development in invertebrates. To study themolecular driving force behindmetamorphic development
in larvae of P. fucata, transcriptomes of five larval stages (trochophore, D-shape, umbonal, eyespots, and spats) were sequenced
using an Illumina HiSeq� 2000 system and assembled and characterized with the transcripts of six tissues. As a result, a total
of 174,126 unique transcripts were assembled and 60,999 were annotated. The number of unigenes varied among the five larval
stages. Expression profiles were distinctly different between trochophore, D-shape, umbonal, eyespots, and spats larvae. As a
result, 29 expression trends were sorted, of which eight were significant. Among others, 80 development-related, differentially
expressed unigenes (DEGs) were identified, of which the majority were homeobox-containing genes. Most DEGs occurred among
trochophore, D-shaped, and UES (umbonal, eyespots, and spats) larvae as verified by qPCR. Principal component analysis (PCA)
also revealed significant differences in expression among trochophore, D-shaped, and UES larvae with ten transcripts identified
but no matching annotations.

1. Introduction

Metamorphosis is a series of key steps in the process of larval
development, the success of which affect the survival of the
organism. Metamorphosis is prevalent in insects, amphib-
ians, some fishes, and many marine invertebrates, such as
barnacles, sponges, shellfishes, shrimps, and echinoderms.
Similar to most benthic marine invertebrates, the pearl
oyster (Pinctada fucata) has a microscopic, free-swimming
larval phase in their complex life cycle [1]. Oyster larvae
spend several weeks in the water column before attaining
competency to attach andmetamorphose, commencing their
sessile life. The developmental processes of P. fucata, from
swimming larvae to sessile spats, have been classified into

six stages: fertilized egg, trochophore, D-shaped, umbonal,
juvenile, and adult stages [2]. In oysters, the transition from
free-swimming larvae to the attached juvenile form often
requires morphological, physiological, structural, and func-
tional changes, which are under genetic regulatory control
[3]. Therefore, the identification of key developmental genes
involved in the metamorphosis of P. fucata larvae, as well
as characterizing their expression patterns, is important
to understand the molecular mechanism of metamorphic
development of this economically important species.

Numerous studies have been conducted to explore
the mechanisms of hormones, neurotransmitters, genes,
and signaling pathways that regulate larval metamorphic
development. Some studies have demonstrated that eight

Hindawi Publishing Corporation
International Journal of Genomics
Volume 2016, Article ID 2895303, 15 pages
http://dx.doi.org/10.1155/2016/2895303

http://dx.doi.org/10.1155/2016/2895303


2 International Journal of Genomics

superfamily genes showed differential expression during the
metamorphosis ofCiona intestinalis [4–7]. Several homeobox-
containing genes were found to be responsible for larval
metamorphic development in Haliotis rufescens [8–10]. In
addition, abnormal dopamine and adrenaline were observed
in the larval attaching stage of the Pacific oyster, Crassostrea
gigas [11], while a different study observed increased expression
of a molluscan growth and differentiation factor (mGDF) in
the metamorphosing stage of the same organism [12]. These
findings indicate the diversity of genes involved in the transi-
tions of larval forms.

However, previous studies have focused on changes in a
small number of genes and have provided a fragmented view
of the genetic modulation of larval metamorphosis. Recent
developments in sequencing technology have allowed for the
development of new genomic tools, which can provide amore
global view of changes in gene expression over the course
of larval developmental stages [13–16]. In terms of genome-
wide studies, transcriptome analyses are considered to be
an ideal choice for obtaining comprehensive information
regarding animal development and growth [17, 18]. For P.
fucata, the draft genome [19] and tissue transcriptomes [20–
23] have been recently reported. Based on the transcriptomic
sequences from a mixture of nine developmental stages
of P. fucata [19], biomineralization-related gene expression
profiles during larval development have been investigated
[24, 25] and genes involved in body patterning [26], tran-
scription factors [27], and homeobox genes [28] have been
identified. Nonetheless, developmentally important genes
and their expression patterns during the larval stages of
developing P. fucata have not been systematically studied
at the transcript level to date. In the present study, the
transcriptomes of five larval stages (trochophore, D-shape,
umbonal, eyespots, and spats) and six tissues (gill, adductor
muscle, hepatopancreas, mantle, hemocytes, and pearl sac)
from P. fucata were sequenced using Illumina HiSeq 2000,
with an emphasis on the molecular mechanisms underlying
larval metamorphic development.This study aims to provide
a valuable insight into themechanisms of genetic modulation
over the course of larval metamorphic development for P.
fucata as well as for other molluscan species.

2. Materials and Methods

2.1. Larval Culture and Sample Collection. Larvae of P. fucata
were bred (using several females and males of a selectively
bred F3 generation as parents) through artificial insemina-
tion on March 10, 2013, in Sanya, Hainan Island, China,
as described by Fujimura et al. [2]. Fertilized eggs were
incubated in a 1000 L tank at 24∘C. After removing nonde-
veloping embryos and dead larvae, trochophore, D-shaped,
umbonal, eyespots, and spats larvae stages were harvested
with filtering net at 12 h, 36 h, 11.5 d, 18.5 d, and 23.5 d after
fertilization, respectively, and immediately preserved in RNA
later (TaKaRa Bio Inc) until RNA extraction. Meanwhile,
RNAs of six tissues (gill, adductor muscle, hepatopancreas,
mantle, hemocytes, andpearl sac) of three other adult animals
were sequenced for a more robust assembly.

2.2. RNA Extraction and cDNA Library Preparation. Follow-
ing the manufacturer’s instructions, total RNA was extracted
from five developmental stages (each stage with thousands of
larvae) and six tissues using Trizol and RNAs of each type of
tissues of the three individuals were mixed by equal weight.
RNA integrity and quantity were confirmed by lab-on-chip
analysis using a 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA) and visualized on a 1% agarose gel.
Then cDNA was synthesized using the mRNA fragments as
templates as usual and was sequenced by the BGI (Shenzhen,
China) using the Illumina HiSeq 2000 system (San Diego,
CA, USA) (PE100).

2.3. Sequence Assembly and Annotation. After filtering out
low quality sequences (containing more than 5% ambiguous
“N” nucleotides or >20% 𝑄 ≦ 10 reads) and the removal of
adapters from raw data, clean sequence data was assembled
into unigenes usingTrinity software and subsequently clustered
by TGICL v2.1 (-l 40 -c 10 -v 20) [29]. Phrap (-repeat
stringency 0.95 -minmatch 35 -minscore 35) (Release 23.0)
was used to produce the longest sequence possible (http://www
.phrap.org/). Assembled unigenes were annotated based on
the Nr, Swissprot, KEGG, and COG databases. The sequence
direction and amino sequence of the predicted coding region
(CDS) of unannotated unigenes were determined using
ESTScan with default settings [30]. Functional annotations
and classifications were performed by using Blast2GO [31]
and WEGO [32] (𝐸 value threshold 1 × 10−5), respectively.

2.4. Normalization and Quantification of Gene Expression.
Sequencing reads were mapped to the assembled reference
sequence using SOAP aligner/soap2 (-m 0 -x 500 -s 40 -l 35
-v 5 -r 2) [33], a tool designed specifically to assemble short
sequence alignments.The coverage of reads from a given gene
was used to calculate the expression level of that gene, which
was measured by fragments per kilobase exon per million
fragments (FPKM) [34], with the following formula:

FPKM = 10
6𝐶

𝑁𝐿/103
, (1)

where FPKM is the expression level of a unigene, 𝐶 is the
number of fragments that uniquely aligned to the unigene,
𝑁 is the total number of fragments that uniquely aligned
to all unigenes, and 𝐿 is the number of bases in the CDS
of the unigene. The FPKM method eliminates the influence
of sequences of differing lengths and coverage level on the
calculation of gene expression.Therefore, the calculated gene
expression can be directly used for comparing the difference
in gene expression between samples.

2.5. Differential Gene Expression (DEGs) across Develop-
mental Stages. Differential gene expression among different
larval stages was carried out via principal component anal-
ysis (PCA) using the R package (http://www.r-project.org/)
according to the manual.The pairwise differential expression
conducted by edgeR, with a threshold of the false discovery
rate (FDR) ≤ 0.001 and an absolute value of log 2 Ratio
≥ 1, was used to judge the significance of differences in
gene expression. Trends in the expression of all differentially

http://www.phrap.org/
http://www.phrap.org/
http://www.r-project.org/
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Table 1: Primers for genes used for qPCR verification.

Trend Unigene code Annotated gene Primer

0 Unigene27615 All Brachyury qBran-S: 5󸀠 GCCAAAGAAAGACCAGAAGG 3󸀠

qBran-A: 5󸀠 TCAGGCTAAGGCGATCACAA 3󸀠

0 Unigene27517 All Six3 qSix3-S: 5󸀠 ATACAGGGTGAGGAAGAAGT 3󸀠

qSix3-A: 5󸀠 TTATCTCCGCCTTGCTGTTG 3󸀠

3 Unigene23318 All Engrailed qEng-S: 5󸀠 TAGACAGAGCATCGCCTTTA 3󸀠

qEng-A: 5󸀠 TTGTGATTTAACTGCCTGCT 3󸀠

3 Unigene41009 All Pax-7 qPax-S: 5󸀠 GCGGAAACAGATGGGAAGCA 3󸀠

qPax-A: 5󸀠 ACCGAATGACGGAAACGACT 3󸀠

26 CL664.Crontig4 All MAPK qMAPK-S: 5󸀠 TTTACTCCAAACAGCCCTAC 3󸀠

qMAPK-A: 5󸀠 TTGCTATCTGGTCCACTTCA 3󸀠

29 CL7953.Contig2 All Notch qNotch-S: 5󸀠 CCAGCCACGGTATCCAAGTA 3󸀠

qNotch-A: 5󸀠AGCCTCGAACAGAATATCCACT 3󸀠

29 CL1306.Contig2 All Wnt 1 qWnt1-S: 5󸀠 TGATGCCTACGGTAAATACG 3󸀠

qWnt1-A: 5󸀠 TAACCTTGAGGTGGGAGAAC 3󸀠

29 Unigene27337 All Lox2 qLox2-S: 5󸀠 CTACCCGAGTTGAATGTGGG 3󸀠

qLox2-A: 5󸀠 GAAAGTAAGACGGACGAGCC 3󸀠

expressed genes were sorted using STEM (Short Time-
Series Expression Miner, v1.3.8) [35]. Functional annotation
and classification of genes involved in significant trends
were performed by using Blast2GO [31] and WEGO [32],
respectively. The enriched metabolic pathways or signal
transduction pathways of genes were identified based on the
KEGG database [36].

2.6. Identification and Expression Profile of Genes Involved in
the Larval Metamorphic Development of P. fucata. According
to annotations by Nr and Swissprot, development-related
genes were identified with those that had been previously
identified as keywords in the significant trends from the prior
step. If several unigenes were assigned to the same reference
gene, the sequence with the lowest 𝐸 value (Nr and Swissprot
annotation𝐸 value)was selected as a representative.Then, the
heatmap 2 module of the gplots package in R (https://cran
.r-project.org/web/packages/gplots/index.html) was used to
perform the clustering analysis of gene expression on the
normalized, filtered sequences to identify genes that were
significantly different among the five developmental stages.

2.7. qPCR Verification of Expression Trends of Development-
Related Genes. In order to verify the integrity of the tran-
scriptome sequences and the expression levels as revealed
by RNA-Seq, eight development-related genes were selected
randomly for qPCR verification. The genes and respective
primers are given in Table 1. qPCR was performed using
an Eppendorf real-time- (RT-) PCR system (Eppendorf,
Hamburg, Germany) using a SYBR(R) Premix Ex TaqTM
kit (TaKaRa) according to the manufacturer’s protocol. Tran-
script levels of target genes were normalized against the level
of a reference gene (18S rRNA). The qRT-PCR reactions
were performed under the following conditions: 94∘C for
5min (one cycle), 94∘C for 20 s, 50∘C to 60∘C for 20 s,
and 72∘C for 20 s (50 cycles). The comparative CT method
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Figure 1: Length distribution of unigenes and CDS.

(2−ΔΔCT method) was used to determine the relative mRNA
abundance [37].

3. Results

3.1. Sequence Assembly and Annotation. Over 55 million
reads per sample were generated with a base call accuracy
(Q20) of over 97%. The number of contigs varied from
118,010 to 215,808, with a median length (N50) of 352 to
582 bp (Table 2). The number of unigenes varied from 51,102
to 113,516 among samples, with the mean length ranging
from 536 to 689 bp, while N50 ranged from 495 to 1,025,
respectively. In total, 174,126 unigenes were assembled with
a mean length of 866 bp and an N50 of 1, 569 (based on 11
samples).Most unigeneswere 100–500 bp long, and 26%were
greater than 1,000 bp (Figure 1).

https://cran.r-project.org/web/packages/gplots/index.html
https://cran.r-project.org/web/packages/gplots/index.html
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Table 2: Summary statistics of sequence assembly from 11 samples of the pearl oyster, Pinctada fucata.

Sample Total raw reads Total clean reads Q20 Number of contigs ContigN50 Number of unigenes Mean length N50
Gill 59,492,360 53,662,442 97.67% 215,808 380 113,516 592 977
Adductor muscle 58,602,062 53,889,264 97.42% 127,634 347 76,240 415 495
Hepatopancreas 57,854,582 52,672,774 97.75% 163,089 398 85,839 544 811
Pearl sac 56,926,624 52,155,950 97.49% 149,236 582 97,501 545 827
Mantle 58,610,258 52,433,102 97.72% 183,633 384 100,679 567 900
Hemocytes 54,707,500 51,751,784 98.54% 178,460 509 96,469 599 1025
Trochophore 59,887,806 54,413,910 97.96% 175,174 399 75,400 584 785
D-shaped 58,511,662 51,746,334 97.98% 190,135 485 88,830 626 886
Umbonal 66,858,916 55,046,652 97.88% 118,010 352 51,102 536 683
Eyespots 58,534,394 52,943,288 97.88% 182,671 504 84,045 649 937
Spats 60,561,378 54,999,258 97.85% 180,265 521 82,133 689 1022
All 174,126 866 1569

Table 3: Summarized statistics of the functional annotation in 11
samples of the pearl oyster, Pinctada fucata.

Database Number of annotated genes
Nr annotation 38857
Swissprot annotation 49580
Annotation unigenes for KEGG 43753
Annotation unigenes for GO 13465
Annotation unigenes for COG 23754
CDS 60,946
CDS by ESTScan 13,966
Total 60999

In total, 60,999 unigenes were annotated (Table 3) and
74,912 CDSs (43.02%) were predicted (13,966 predicted by
ESTScan) (Figure 1, Table 3). Different databases annotated
different numbers of unigenes (Table 3), where the most
unigenes (49,580) were annotated by Swissprot database and
the least (13,465) by the GO database (Table 3). Numbers of
specific and shared unigenes annotated by COG, KEGG, Nr,
and Swissprot terms can be visualized in Figure 2. Among
them, 12,582 unigenes were annotated by the four databases
and 8,784 were annotated specifically by Nr (Figure 2). Both
KEGG and Swissprot analyses shared the most unigenes
(41,605) and COG and Nr shared the least (13,385).

The 23,754 COG-annotated unigenes can be further
classified into 25 functional groups, half of which were
sorted into the “general function” group (Figure 3). The
GO analysis revealed that 10,165 unigenes were attributed to
biological process, 8,442 unigenes to cell components, and
10,588 unigenes to molecular function (Figure 4). The top 26
KEGG pathways are summarized in Table 4. Most unigenes
(5,184 out of 43,753) were involved inmetabolic pathways and
1,401 unigenes were involved in calcium signaling pathways,
some of which may be involved in shell formation. Finally,
many unigenes in the top 26 KEGG pathways were involved
in immune pathways.

3.2. Differential Gene Expression (DEGs) and Expression
Trends during Developmental Stages. Principal component

COG
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219
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3193

92 1311 3971

108
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11406
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9674

Figure 2: Number of genes annotated by COG, KEGG, Nr, and
Swissprot terms based on five larval stages and six tissues ofPinctada
fucata.

analysis (PCA) revealed that differences in the expression
of unigenes were vast among trochophore, D-shaped, and
UES (umbonal, eyespots, and spats) larvae, but small within
UES stages (Figure 5(a)). Based on gene effects, measured by
the first principal component value, a total of 10 transcripts
with unknown functions were identified to be key factors
involved in the larval development of P. fucata. Differences
in the gene expression of these transcripts were the great-
est in trochophore, D-shaped, and UES larvae. They were
relatively highly expressed in trochophore larvae and then
downregulated during the D-shaped stage, and some were
subsequently upregulated during the UES stage, including
Unigens23340 All, Unigene8217 All, Unigene50061 All, and
Cl616 All (Figure 5(b)).

The numbers of up- and downregulated unigenes were
also much greater during early stage transitions (Figure 6),
consistent with the results of the PCA. From trochophore
to D-shape larvae, there were 18,725 unigenes upregulated
and 13,162 downregulated. In total, there were 57,228 DEGs
among the five developmental stages (Figure 7). Additionally,
17,609 genes were preferentially expressed at a single devel-
opmental stage, which indicates that they play an important
role in the corresponding developmental stage, while 39,619
were expressed preferentially during more than two stages.
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Table 4: Top 26 KEGG pathways.

Pathway Count (43,753) Pathway ID
Metabolic pathways 5184 ko01100
Regulation of actin
cytoskeleton 2302 ko04810

Vascular smooth muscle
contraction 2176 ko04270

Focal adhesion 2142 ko04510
Pathways in cancer 1607 ko05200
Tight junction 1544 ko04530
Hypertrophic
cardiomyopathy (HCM) 1426 ko05410

Dilated cardiomyopathy 1402 ko05414
Calcium signaling pathway 1401 ko04020
Amoebiasis 1384 ko05146
Tuberculosis 1379 ko05152
RNA transport 1336 ko03013
Salmonella infection 1333 ko05132
Neuroactive
ligand-receptor interaction 1304 ko04080

Epstein-Barr virus infection 1240 ko05169
Phagosome 1239 ko04145
Spliceosome 1231 ko03040
Purine metabolism 1191 ko00230
Vibrio cholera infection 1157 ko05110
Endocytosis 1139 ko04144
Huntington’s disease 1121 ko05016
Viral myocarditis 1090 ko05416
MAPK signaling pathway 1046 ko04010
Cardiac muscle contraction 1044 ko04260
Gastric acid secretion 1019 ko04971
Ubiquitin mediated
proteolysis 1014 ko04120

A total of 20,518 genes were differentially expressed in all five
of the development stages. All differentially expressed genes
were sorted into 29 expression trends (Figure 8), of which
eight trendswere significant, comprising over 45%of the total
DEGs. Furthermore, 6,653 unigenes were expressed highly
only during the trochophore stage. Across the five stages,
3,340 unigenes were expressed in an increasing pattern, while
2,631 unigenes were expressed in a decreasing pattern.

3.3. Functional Enrichment Analysis. A functional enrich-
ment analysis of the unigenes from the eight significant trends
showed that there were 104, 54, and 46 GO terms for biologi-
cal processes, molecular functions, and cellular components,
respectively, identified for GO function enrichment (see
Supplementary Table 1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2016/2895303), and 272
pathways identified for KEGG pathway enrichment (Supple-
mentary Table 2). For GO enrichment data, trends 0, 2, 3, 24,
26, 28, and 29 were involved in biological processes, where
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Figure 3: COG function classification of all unigenes.

most unigenes belonged to trend 3 andwere related to various
metabolic processes. Trends 0, 3, 24, 28, and 29 were involved
inmolecular function, wheremost unigenes fell within trends
0, 3, and 28, and were related to binding and catalytic
activity. Only trends 0, 3, 28, and 29 were involved in cellular
components, and most unigenes fell within trend 3 and were
involved in processes related to membranes and organelles.

Trends 0, 2, 3, 24, 26, 27, 28, and 29 were implicated
in KEGG pathway enrichment. For 272 significant enriched
pathways, 81 pathways were observed in trend 29, 77 in trend
28, 30 in trend 27, and 27 in trend 26 (Supplementary Table 2).
In trends 28 and 29, most unigenes were involved in immune
responses.

http://dx.doi.org/10.1155/2016/2895303
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Figure 4: GO categories of unigenes. 13,465 of 174,126 unigenes were assigned to GO annotation and divided into three categories: biological
processes, cellular components, and molecular functions.

In trend 0, GO enrichment showed that macromolecule
metabolic processes were the dominant groups in biological
process, followed by positive regulation of biological pro-
cess. For pathways involved in molecular function, DNA
binding was the most representative category, while for
cellular component pathways, all of the genes participate in
processes integral to the inner mitochondrial membrane and
are intrinsic to the inner mitochondrial membrane. In the
KEGG category, spliceosomes were prevalent, followed by
genes involved in the cell cycle.

In trend 3, GO enrichment data showed that 6,653 DEG
unigenes were further categorized into 43 functional groups;
among them, macromolecule metabolic processes were the
dominant groups in biological process, followed by cellu-
lar macromolecule metabolic processes. In the molecular
function category, a high percentage of genes came from

the binding and protein binding groups. Spliceosomes were
the most representative, followed by RNA transport and
regulation of the actin cytoskeleton.

In trends 27 and 28, GO enrichment reveled that there
were no significant categories. However, the calcium sig-
naling pathway, hedgehog signaling pathway, and insulin
signaling pathway were significantly enriched in the KEGG
database, as they are all involved in early development. In
trend 28, small molecule metabolic processes were the dom-
inant group in biological process followed by ion transport.
Catalytic activity was the most prevalent in the molecu-
lar function category, followed by transporter activity and
transmembrane transporter activity. In cellular component
pathways, membrane was the most representative, followed
by plasma membrane. In KEGG enrichment categories, we
also found genes related to the calcium signaling pathway in
trend 27.
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Figure 5: The distinction between five developmental stages as indicated by (a) principal component analysis and (b) expression levels of 10
representative genes, identified to be responsible for the distinction among the developmental stages.
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In trend 29, translational elongation was the only
enriched category for biological processes, while three cate-
gories were enriched in molecular function, including genes
involved in oxidoreductase activity, catalytic activity, and
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Figure 7: Specific and shared genes in five developmental stages of
the pearl oyster, Pinctada fucata.

lyase activity. In cellular component pathways, five categories
were enriched, while vacuole was the dominant group, fol-
lowed by lytic vacuole and lysosome groups. Genes in trend
29 were enriched in only one KEGG pathway, translational
elongation, with a significant 𝐸 value.

3.4. Identification and Expression Profiling of Genes Involved
in the Larval Metamorphic Development of P. fucata. In total,
80 development-related candidate DEGs were identified and
summarized in Table 5, which can be mapped to known
developmentally important genes, including several home-
obox genes, and can be sorted into 10 trends: trend 0 (25
unigenes), trend 28 (16), trend 3 (15), trend 29 (9), and
six other trends (1–5). Cluster analyses suggested that most
development-related candidate genes were highly expressed
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Profile 3: 6653 genes Profile 28: 4444 genes Profile 29: 3340 genes Profile 0: 2631 genes Profile 21: 1759 genes Profile 24: 1173 genes

Profile 2: 747 genes Profile 26: 701 genes Profile 27: 561 genes Profile 20: 231 genes Profile 12: 164 genes Profile 9: 138 genes

Profile 13: 137 genes Profile 25: 88 genes Profile 6: 77 genes Profile 18: 72 genes Profile 1: 65 genes Profile 22: 52 genes

Profile 10: 39 genes Profile 5: 38 genes Profile 14: 37.5 genes Profile 23: 37 genes Profile 4: 22 genes Profile 15: 20 genes

Profile 11: 18 genes Profile 19: 16 genes Profile 8: 8 genes Profile 7: 6 genes Profile 16: 3 genes Profile 17: 0 genes

Figure 8: Expression trends of unigenes across trochophore, D-shaped, umbonal, eyespots, and spats larval stages of Pinctada fucata. The
profiles were ordered based on the 𝑃 value of the number (at bottom-left corner) of genes assigned versus expected. Color square frames
denote significant profiles (𝑃 ≤ 0.01). Each graph displays the mean pattern of expression (black lines) of the profiled genes. The number
of profiles in each cluster is indicated in the top left corner. The 𝑥-axis represents stages and the 𝑦-axis represents log 2-fold change of gene
expression.

in the early developmental stages (Figure 9), including
engrailed-2-B, pax family, fox family members e1 and p1,
Wnt-4, and BMP3/3B upregulated in the trochophore stage
and LIM, foxg1, Hox3, bicaudal, hedgehog, EGFR, foxl2, and
bmp 2b genes upregulated from the D-shaped stage until the
eyespots stage. In the spats stage,wnt1 and notch-like protein 2
gene were upregulated. The qPCR showed that the trends in
the expression of selected genes (Figure 10) were consistent
with the expression trends indicated by the trend analysis of
RNA-Seq data (Figure 9), indicating that the sequence data in
our study are reliable.

4. Discussion
Not only does the pearl oyster, P. fucata, make an ideal model
organism for studies of biomineralization, but also it is a good
model to study the early stage metamorphic development of
invertebrates. In this study, we sequenced the transcriptomes

of five developmental stages inP. fucata, with the aimof devel-
oping a better understanding of the molecular mechanisms
driving the change of one larval stage to the next during early
life history. In our study, the de novo assembly was performed
with six tissue transcriptomes, as the draft genome of P.
fucata is not complete [19]. As a result, we obtained 174,126
unigenes, with a mean length of 866 bp. A total of 60,999
unigenes (35%) were annotated, a value slightly higher than
previous reports [21–23, 38]. Poor annotation efficiencies
have been widely prevalent in many marine organisms, likely
owing limited genomic resources from aquaculture species
in public databases to date [21–23, 38]. Alternatively, poor
annotation efficiencies could be the result of the short length
of the assembled unigene sequences [22] and great divergence
among the genomes of marine organism. Similar scenarios
have been reported in other marine organisms [39, 40]. In
the KEGG annotation, we observed that many pathways were
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Table 5: Early development-related DEGs and their expression trends in Pinctada fucata (80).

Unigene ID Annotated gene Reference species 𝐸 value Trend
Unigene41154 All Nanos-like protein 1 Crassostrea gigas 5.00𝐸 − 73 0
Unigene40485 All EGF-like 4 Crassostrea gigas 9.00𝐸 − 41 0
Unigene27615 All brachyury Saccostrea kegaki 0 0
Unigene40515 All TBX6 Crassostrea gigas 2.00𝐸 − 49 0
CL19363.Contig1 All foxn1 Homo sapiens 2.00𝐸 − 48 0
Unigene36457 All foxb1 Crassostrea gigas 6.00𝐸 − 129 0
Unigene47210 All foxi1c Caenorhabditis brenneri 4.00𝐸 − 16 0
Unigene49637 All OAR Crassostrea gigas 3𝐸 − 96 0
Unigene49559 All notch-like protein 1 Crassostrea gigas 3.00𝐸 − 67 0
CL26075.Contig2 All Cbx1 Mus musculus 5.00𝐸 − 60 0
CL4780.Contig2 All XHOX-3 Crassostrea gigas 1𝐸 − 124 0
Unigene23054 All ZF E-box-binding 4.00𝐸 − 60 0
Unigene30958 All ZF protein 64 6.00𝐸 − 08 0
Unigene18460 All aristaless-like 4 1𝐸 − 120 0
Unigene22708 All ARX 4.00𝐸 − 87 0
Unigene22940 All IRX-6 2𝐸 − 101 0
Unigene27129 All engrailed 2.00𝐸 − 56 0
Unigene27119 All homeobox-like protein 2.00𝐸 − 45 0
Unigene27517 All SIX3 4𝐸 − 129 0
Unigene31497 All ceh-9 4.00𝐸 − 64 0
Unigene31654 All Slou 1𝐸 − 103 0
Unigene40727 All unc-4-like protein 7𝐸 − 139 0
Unigene40815 All homeobox 2 7𝐸 − 120 0
Unigene49664 All even-skipped-like protein 1 2𝐸 − 107 0
Unigene50280 All not2 9𝐸 − 88 0
Unigene23318 All engrailed-2-B 8𝐸 − 61 3
Unigene51601 All BarH-like 1 6𝐸 − 31 3
Unigene31090 All PKNOX2 3𝐸 − 156 3
Unigene49991 All HMX1 2𝐸 − 27 3
Unigene41009 All Pax-7 4𝐸 − 128 3
Unigene17191 All Pax-2-A 5𝐸 − 102 3
CL11027.Contig2 All Polycomb BMI-1-A Danio rerio 3.00𝐸 − 78 3
CL13897.Contig2 All Polycomb suz12 Xenopus tropicalis 2.00𝐸 − 149 3
CL20556.Contig2 All pcgf3 Xenopus tropicalis 1.00𝐸 − 77 3
CL26777.Contig2 All EPC1 Homo sapiens 4.00𝐸 − 147 3
CL15780.Contig2 All Wnt-4 Homo sapiens 3.00𝐸 − 93 3
Unigene44847 All BMP 3/3b Branchiostoma japonicus 2.00𝐸 − 59 3
CL11806.Contig6 All FOXP1 Homo sapiens 5.00𝐸 − 104 3
Unigene32767 All foxe1 Crassostrea gigas 3.00𝐸 − 81 3
CL4477.Contig6 All Msx2 Crassostrea gigas 1.00𝐸 − 22 3
Unigene45481 All ceh-37 2𝐸 − 59 12
Unigene55326 All Pax-8 7𝐸 − 59 20
Unigene18153 All corepressor 1-like 0 21
Unigene45344 All SIX4 7𝐸 − 84 21
Unigene45422 All aristaless 5𝐸 − 72 21
Unigene45788 All HMX3-B 1𝐸 − 55 21
Unigene40909 All odd-skipped-related 1 Crassostrea gigas 7.00𝐸 − 74 21
Unigene22645 All Hox5 Haliotis rufescens 3.00𝐸 − 85 24
Unigene35405 All EGF-like 1 Crassostrea gigas 6.00𝐸 − 66 24
Unigene17944 All foxc2 Crassostrea gigas 8.00𝐸 − 174 24
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Table 5: Continued.

Unigene ID Annotated gene Reference species 𝐸 value Trend
Unigene45321 All Dorsal root ganglia 2𝐸 − 123 26
CL664.Contig4 All MAPK Homo sapiens 7.00𝐸 − 127 26
Unigene23113 All LIM 7𝐸 − 122 27
Unigene44988 All DBX1-A 3𝐸 − 93 27
CL19911.Contig2 All foxg1 Xenopus laevis 5.00𝐸 − 25 27
Unigene17797 All Nkx-2.2a 2𝐸 − 137 28
Unigene44641 All Nkx-6.2 1𝐸 − 125 28
Unigene22323 All hhex 3𝐸 − 92 28
Unigene22601 All Xlox Euprymna scolopes 5.00𝐸 − 55 28
Unigene33207 All GBX-1 3.00𝐸 − 07 28
Unigene36590 All HOX3 8𝐸 − 89 28
Unigene45891 All MOX-2 9𝐸 − 82 28
CL20549.Contig2 All bicaudal Xenopus laevis 1.00𝐸 − 45 28
Unigene23139 All hedgehog Crassostrea gigas 5.00𝐸 − 99 28
CL13232.Contig2 All EGF-like D1044.2 Caenorhabditis elegans 9.00𝐸 − 06 28
CL178.Contig1 All EGFR Apis mellifera 0 28
CL5633.Contig3 All MAPKAPK5 Homo sapiens 5.00𝐸 − 132 28
Unigene22098 All O-fut1 Crassostrea gigas 1.00𝐸 − 131 28
Unigene31699 All foxl2 Crassostrea gigas 1.00𝐸 − 119 28
Unigene36180 All foxl1 Crassostrea gigas 1.00𝐸 − 119 28
Unigene40504 All foxslp2 Crassostrea gigas 8.00𝐸 − 116 28
Unigene31565 All bmp 2b Crassostrea gigas 6.00𝐸 − 96 29
CL7953.Contig2 All Notch Crassostrea gigas 1.00𝐸 − 139 29
Unigene36286 All Notch-like protein 2 Crassostrea gigas 5.00𝐸 − 65 29
Unigene27672 All ZF C2H2 Brugia malayi 4.00𝐸 − 07 29
Unigene27337 All LOX2 8.00𝐸 − 98 29
Unigene27686 All BarH-like 1-like Oreochromis niloticus 3.00𝐸 − 36 29
CL12322.Contig2 All ALDH16A1 Bos taurus 1.00𝐸 − 179 29
CL3565.Contig3 All ALDH2 Crassostrea gigas 0 29
CL1306.Contig2 All Wnt 1 Homo sapiens 7.00𝐸 − 13 29

related to immunity, indicating that innate protection is vital
in the early developmental stages.

Differential gene expressions (DEGs) occurred mainly
during early stage transitions (Figure 6). Most genes were
up- or downregulated from trochophore to D-shaped and
from D-shaped to umbonal stages, indicating that pro-
cesses associated with these transitions are very complicated.
Principal component analyses yielded consistent results,
where we identified 10 unigenes attributed to the divergence
among trochophore, D-shaped, andUES (umbonal, eyespots,
and spats) stages in P. fucata, being highly expressed in
the trochophore stage. However, no functional annotations
match these functionally important sequences, indicating
that further research would help to elucidate the molecular
mechanism of metamorphosis in this species in the future.

The analysis of expression trends indicated that 12,009 of
13,277 unigenes are sorted into eight significant expression
trend groups. Among the significant trends, there were 10,031
(trends 3, 0, and 2), 11,978 (trends 28, 29, 21, 24, 26, and
27), 9,046 (trend 28, 29, 26, and 27), 9,518 (trend 28, 29, 24,
and 27), and 5,214 (trend 29, 24, and 26) unigenes displaying

increased expression in trochophore, D-shaped, umbonal,
eyespots, and spats stages, respectively. This conveys that
more genes are expressed in the early stages, consistent
with the DEG and PCA analyses in our study. Particularly,
6,653 unigenes (trend 3) were highly expressed only in the
trochophore stage, 3,340 unigenes (trend 29) expressed in an
increasing pattern over the course of development, and 2,631
unigenes (trend 0) expressed in a decreasing pattern. These
genes are worth further investigation.

The KEGG pathway enrichment analysis indicated that
most unigenes in trend 3 were involved in pathways of
spliceosome or RNA transport, indicating that, in the early
stage of P. fucata, RNA synthesis is more predominant.
On the contrary, genes in trend 29 showed significant
enrichment in translational elongation pathways, suggesting
that protein synthesis is more and more prevalent during
larval development. In trends 27 and 28, a large number of
unigenes were involved in the calcium signaling pathway,
synchronizing with the shell formation of prodissoconchs I
and II in D-shaped and umbonal stages [24, 41]. In addition,
immune pathways were also enriched, indicating that innate
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Figure 9: Clusters of expression patterns of development-related genes across five larval stages in Pinctada fucata.

protection is important during the entire course of larval
development [3, 42, 43].

In our study, 80 known development-related, differen-
tially expressed unigenes were identified throughout the
five larval stages (Table 5). Half of them were homeobox-
containing genes, including genes known to be involved in
the development of body patterning (engrailed, SIX3, Pax-7,
LIM, and Hox family members), suggesting that these genes
play important roles in the metamorphic changes of P. fucata
larvae. Nearly half of the homeobox-containing genes were
upregulated in trochophore and D-shaped stages (Figure 9).
We identified two Hox genes, Hox5 and Hox3 (Figure 9),
which are highly expressed in D-shaped veliger, indicating
that they are involved in the growth of D-shaped larvae.
We also found early developmentally relevant signaling

molecules such as Hedghog, TGF𝛽, and Wnt family, which
are known to play important roles in axis formation, muscle
differentiation, andnervous systemdevelopment [26]. Recent
evidence has suggested that classic morphogens, such as
Wnts, TGF𝛽/BMP family members, and Hedgehogs, may all
serve as axon guidance cues for a variety of axons in different
organisms [44]. Several studies have provided increasing
evidence that Sonic hedgehog (Shh) is an important axon
guidance cue throughout vertebrate neural development [45,
46]. In our study, one hedgehog gene (Unigene23139 All)
was identified and highly expressed in umbonal and eyespots
stages (Figure 9), suggesting that increased neural develop-
ment was likely taking place during those stages.

The Wnt signal pathway has been shown to play an
important role in the segmentation of the marine polychaete
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Figure 10: Expression changes in (a)Wnt1, (b) Six3, (c) notch, (d) lox2, (e) engrailed, (f) branchyury, (g)MAPK, and (h) pax7 in trochophore,
D-shaped, umbonal, eyespots, and spats larval stages by qPCR.



International Journal of Genomics 13

Capitella capitata [47, 48], while themaintenance of primitive
hematopoiesis has been attributed to Wnt4 in the vertebrate
embryo [49]. Both Wnt4 and Wnt1 were observed in this
study; Wnt4 was highly expressed in the trochophore stage,
while Wnt1 was expressed in an increasing pattern over the
course of larval development, suggesting possible involve-
ment in blood formation from the beginning of development
and in body transformation during all stages. Ten classes of
fox genes were also found in our study, comprising the largest
number of genes identified in the DEGs and displaying dif-
ferent trends in expression. FoxL2, XX-dominantly expressed
in the differentiating ovaries of mammals [50], birds [51],
and fish [52–54], was expressed highly in the D-shaped stage,
suggesting the possible beginning of sexual development.
Some important growth-related genes were also identified
and differentially expressed among the five development
stages, including EGF-like,MAPK, andMAPKK genes, which
were actively expressed during the five developmental stages,
and may contribute significantly to the transitions between
developmental stages in P. fucata larvae.

Nonetheless, the body form transformations that take
place during larval development involve a series of morpho-
logical and physiological changes and corresponding molec-
ular changes, which have not been systematically studied and
remain unclear.Therefore, amore broad understanding of the
molecular underpinnings of important biological processes
still merits further investigation.

5. Conclusions

In this study, a total of 174,126 unique transcripts were assem-
bled and 60,999 were annotated. The number of unigenes
varied between the five larval stages. The expression profiles
of trochophore, D-shaped, and UES (umbonal, eyespots, and
spats) larvaewere distinctly different.Most unigeneswere up-
or downregulated in early stage transitions and 29 expression
trendswere sorted, eight of whichwere significant. In total, 80
development-related, differentially expressed unigenes were
identified and eight were verified by qPCR. These obser-
vations should be helpful in understanding the molecular
mechanisms of the larval metamorphic development of P.
fucata.

Additional Points

Highlights.(i) A large number of assembled transcripts from
Pinctada fucata are reported for the first time. (ii) Large
variations in expression ofDEGs related to development were
observed in early larval stages. (iii) Twenty-nine expression
trends were identified for the first time.
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Background. Proper rRNA depletion is crucial for the successful utilization of FFPE specimens when studying gene expression.
We performed a study to evaluate two major rRNA depletion methods: Ribo-Zero and RNase H. RNAs extracted from 4 samples
were treated with the two rRNA depletion methods in duplicate and sequenced (𝑁 = 16). We evaluated their reducibility, ability to
detect RNA, and ability tomolecularly subtype these triple negative breast cancer specimens.Results. Both rRNAdepletionmethods
produced consistent data between the technical replicates. We found that the RNase H method produced higher quality RNAseq
data as compared to the Ribo-Zero method. In addition, we evaluated the RNAseq data generated from the FFPE tissue samples
for noncoding RNA, including lncRNA, enhancer/super enhancer RNA, and single nucleotide variation (SNV). We found that the
RNase H is more suitable for detecting high-quality, noncoding RNAs as compared to the Ribo-Zero and provided more consistent
molecular subtype identification between replicates. Unfortunately, neither method produced reliable SNV data. Conclusions. In
conclusion, for FFPE specimens, the RNase H rRNA depletion method performed better than the Ribo-Zero. Neither method
generates data sufficient for SNV detection.

1. Background

Formalin-fixed paraffin-embedded (FFPE) tissue is the most
common method of tissue preparation used in clinics. FFPE
preservation was developed to maintain morphology with-
out any special considerations of preserving nucleic acids.
Therefore, the difficulty of evaluating gene expression levels
in FFPE samples remains one of the biggest disadvantages
of FFPE preservation because the process of fixing the tissue
samples and embedding them in paraffin often leads to
RNA degradation and chemical modification. Furthermore,
a nucleic acid can be cross-linked with a protein during the
formalin fixation process, andmost of the RNA isolated from
FFPE tissues is highly degraded and reduced to a much lower
yield than that of RNA isolated from the same amount of fresh

tissues. To that end, RNA isolated from recently embedded
tissues will be of better quality than RNA isolated from older
embedded tissues. As a result, when amplifying RNA with
oligo-dT primers, there is an overrepresentation of 3󸀠 data
due to the fragmented nature of RNA isolated from FFPE
tissues.

Given the aforementioned reasons, gene expression anal-
ysis based on FFPE samples has been historically challenging.
The most critical step in a FFPE sample based study is
tissue preparation, as it ensures the integrity of the yield and
data quality. It has been greatly emphasized that improper
FFPE tissue preparation can diminish the quality of the
nucleic acids from the tissue, limiting their use for gene
expression profiling [1]. Yet, FFPE samples are often sought
after due to their in-depth retrospective records. The success
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of a FFPE sample based study often depends on several
steps: RNA isolation, reverse transcription, qPCR primer
design, and preamplification. With carefully designed prepa-
ration protocols, FFPE samples have been proven to be an
invaluable source for gene expression studies. The potential
applications of FFPE samples in biomedical research are
substantial.

The vast majority of cellular RNA (>80%) is composed
of noninformative ribosomal RNAs (rRNAs, 28 S, 5.8 S, and
18 S rRNAs) that require removal prior to cDNA synthe-
sis for a RNA-seq library. For high-quality RNA samples,
polyadenylated RNA is enriched from intact RNA using
oligo-dT primers. Since the rRNA does not have a poly-A tail,
it is removed prior to cDNA synthesis along with other infor-
mative, non-polyA RNA species. RNA samples isolated from
FFPE tissues have two features that are not compatible with
oligo-dT primer selection: fragmented RNA that produces
3󸀠 bias from oligo-dT selection, and, the degradation of the
poly-A tail, thereby impacting the yield of recovered mRNA.
Currently, there are two major rRNA depletion methods
used for RNA isolated from FFPE samples: the Ribo-Zero
rRNA removal kit (Epicentre/Illumina) and the RNase H
method (also known as SDRNA) [2–4]. The Ribo-Zero kit
uses a biotinylated antisense set of DNA capture probes that
preferentially bind to rRNA. Magnetic beads are then used to
capture the rRNA:DNA capture probe duplex. The resulting
non-rRNA is left for cDNA synthesis. The RNase H method
uses a similar initial depletion strategy by annealing 50–
80 bp antisenseDNAprobes to the rRNA forming RNA:DNA
hybrids.TheRNA:DNAhybrids are treatedwith endoribonu-
clease RNase H that specifically degrades the phosphodiester
bonds of RNA hybridized to DNA. This step is followed by
a DNase I treatment to degrade the excess DNA probes. The
resulting RNA is then ready for cDNA synthesis.

In the 2000s, microarray technology dominated high-
throughput gene expression profiling but has since been re-
placed by RNAseq technology [5–9]. Successful gene expres-
sion studies based on FFPE samples by microarray technol-
ogy [10–12] are much more abundant than studies using the
relatively newer RNAseq technology. Here, we apply both
RNA depletionmethods, Ribo-Zero and RNase H, to isolated
RNA from FFPE specimens to compare the overall qualities
of data.

Furthermore, based on the premise that sequencing data
offers exciting opportunities for additional data mining [13,
14, 16], we examined the data mining practicability of three
types of supplementary information: SNVs, lncRNAs, and
enhancer RNAs. SNVs are traditionally identified through
DNA samples. SNV detection through RNAseq data has
been historically challenging, although, with careful quality
control, SNVs are detectable in RNAseq data [17–20]. Long
noncoding RNAs (lncRNAs) are arbitrarily defined as longer
than 200 nucleotides in length and do not encode proteins.
Recent findings have suggested that lncRNAs play important
roles in various diseases [21–28], and lncRNAs are detectable
through the total RNAseq preparation method by the Ribo-
Zero RNA rRNA removal kit [29]. Enhancer RNAs are a
type of RNA that regulate spatiotemporal gene expression
and impart cell-specific transcriptional outputs [30]. Recent

advancements in RNAseq technology have enabled the ready
detection of enhancer RNA [15, 30]. Super enhancer RNAs
are a subset of enhancer RNA that are associated with cell
identity and genetic risk of various diseases [31–33]. Our
unique set of FFPE RNAseq data allows us to answer the
question of whether a FFPE sample based RNAseq can
be used for these types of data mining and determine
which RNA isolation kit produces data most ideal for data
mining.

2. Methods

2.1. Sample Description. To evaluate the practicability and
effectiveness of gene expression profiling using FFPE sam-
ples, we designed a study using four triple negative breast
cancer (TNBC) FFPE tumor tissue samples. The H&E slides
were reviewed by a study pathologist and tumor tissues were
dissected from an unstained FFPE tissue section for total
RNA extraction. The tumor tissue sections were stored in
a vacuum chamber at 4∘C for eight to nine years before
RNA isolation was performed. Total RNA was extracted and
purified using aQiagen’smiRNeasy FFPEKit, a kit specifically
designed for purifying the total RNA and microRNA from
FFPE tissue sections. The input RNA amount for both
Ribo-Zero and RNase H rRNA depletion methods was
200 ng each. The quantity and quality of the RNA samples
extracted from tumor tissue FFPE sections were checked by
Nanodrop (E260, E260/E280 ratio, spectrum 220–320 nm)
and by separation on an Agilent BioAnalyzer. Total RNA
extracted from each of the four tumors was split into two
samples (for a total of eight samples). Two rRNA depletion
methods were used: Ribo-Zero and RNase H. Each of the
eight samples was treated with the two rRNA depletion
methods, prepared for library usingTruSeqRNA sample Prep
Kit v2 (Illumina), and sequenced by BGI Americas. In total,
16 RNAseq libraries were generated following manufacture
protocols and sequenced on two lanes (for a total of eight
samples per lane). The qualified libraries were amplified on
cBots to generate the cluster on the flow cell. The amplified
flow cell was sequenced paired-end on theHiSeq 2000 at read
length of the 90 base pairs.

2.2. Data Processing. RNAseq data was thoroughly quality-
controlled atmultiple stages (raw, alignment, and expression)
following the recommendation by Guo et al. [34]. Raw data
and alignment were quality-controlled using QC3 [35], while
expression data was quality-controlled using MultiRankSeq
[36]. Alignments were performed using Tophat 2 [37] against
the HG19 human reference genome. Read counts for protein
coding RNAs, lncRNAs enhancer RNAs, and super enchanter
RNAs for each sample were obtained using HTSeq [38]
against the collective General Transfer Format (GTF) file
build fromEnsemblHumanGTF v74, Gencode lncRNA v 1.9,
and enhancer RNA coordinates provided in [15]. Read count
data for each type of the RNA was normalized to the total
read counts of each sample. Cluster analysis was performed
using Heatmap3 to identify similarities among samples [39].
Spearman’s correlation coefficients were used to denote the
distance between any two samples.
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Table 1: Sample description and alignment statistics.

ID Library Raw data Alignment
Total reads BQ GC CR Non-CR CRMQ Non-CR MQ

1 Ribo-Zero 17.8M 31 71.4% 27.7% 72.3% 32 47
2 Ribo-Zero 16.1M 30 76.8% 31.4% 68.6% 23 47
3 Ribo-Zero 16.8M 31 70.7% 31.6% 68.4% 28 46
4 Ribo-Zero 14.0M 31 72.3% 46.0% 54.0% 34 47
1 Ribo-Zero 16.1M 31 70.4% 27.4% 72.6% 31 47
2 Ribo-Zero 14.9M 31 75.4% 37.9% 62.1% 21 47
3 Ribo-Zero 17.6M 31 71.1% 29.8% 70.2% 29 47
4 Ribo-Zero 15.6M 31 70.0% 46.1% 53.9% 36 47
1 RNase H 20.2M 35 51.6% 79.9% 20.1% 46 33
2 RNase H 20.5M 36 39.8% 42.6% 57.4% 45 41
3 RNase H 20.4M 35 51.6% 78.9% 21.1% 45 33
4 RNase H 21.4M 35 48.6% 58.0% 42.0% 45 37
1 RNase H 22.1M 35 52.5% 80.3% 19.7% 46 35
2 RNase H 22.4M 34 55.1% 74.7% 25.3% 44 33
3 RNase H 20.6M 35 52.0% 78.5% 21.5% 45 31
4 RNase H 24.0M 34 53.6% 80.1% 19.9% 45 30
CR: coding region; BQ: base quality; MQ: mapping quality; GC: GC content.

2.3. TNBC Subtype. Triple negative breast cancer (TNBC) is
known to bemolecularly and transcriptionally heterogeneous
and can be classified into one of six subtypes (basal-like 1, BL1;
basal-like 2, BL2; immunomodulatory, IM; mesenchymal,
M; mesenchymal-stem like, MSL; and luminal AR, LAR)
based on centroid correlations using gene expression [40].
In order to determine if RNAseq data originated from FFPE
specimens can be used for clinical subtyping, we performed
TNBC subtyping on each of the samples using TNBCtype
[41] and compared the repeatability of TNBC subtyping
consistency between the Ribo-Zero and RNase H methods.

2.4. NanoString. NanoString nCounter data was obtained on
302 genes using the same samples. The detailed processing
and normalizationmethod is described in [42].We computed
Spearman’s correlation coefficients to evaluate the concor-
dance between RNAseq and NanoString technology.

2.5. SNV Detection. We conducted advanced data mining
on our FFPE RNAseq data to extract SNV. We inferred
SNVs using Varscan 2 [43]. SNV quality was assessed by
the transition/transversion (Ti/Tv) ratio and the pairwise
heterozygous genotype consistency rate between any two
samples. The Ti/Tv ratio is commonly used as a quality
control measurement [44–46]. The Ti/Tv ratio of SNVs
residing in coding regions should be between two and three
and slightly lower for SNVs residing outside of the coding
regions [47]. Higher Ti/Tv ratios, without exceeding the
upper bound, usually indicate better overall quality. SNVs
were annotated with ANNOVAR [48]. The heterozygous
consistency rate of a pair of samples A-B is defined as the
number of consistent genotypes between samples A and
B, divided by the number of total heterozygous genotypes
within B. A SNV is qualified as part of a consistency rate

computation if it is detected by both samples and if the read
depth for that SNV is at least 10 on both samples.

3. Results

3.1. Raw Data Quality Assessment. On average, the Ribo-
Zero rRNA removal method produced 16.1 (range: 14.0–
17.8) million reads per sample, and the RNase H produced
21.4 (range: 20.2–24.0) million reads per sample. The RNase
H method consistently produced more reads than Ribo-
Zero. Given that the same amount of RNA was used and
the same number of samples was pooled per lane, a higher
RNA capture efficiency is probable for RNase H than that of
Ribo-Zero. On average, the guanine-cytosine (GC) content
of Ribo-Zero was 72.3% (range: 70.0–76.8%), which was
above the expected value (50%), whereas the GC content
of the RNase H method was 50.6% (range: 39.8–55.1%).
The GC content of the reference genome is roughly the
expected GC content for the sequenced data.The GC content
is 39.3% for the entire human genome, 48.9% for protein
coding RNA, 39.7% for lncRNA, and 50.2% for rRNA. The
sequenced reads of total RNAseq data are amixture of protein
coding RNA, lncRNA, and other species of RNA. With the
expected GC content around 50%, RNase H produced data
with GC content closest to the expected value. The raw data
quality control only provided partial quality assessment of the
samples.

3.2. Alignment Quality Assessment. Next, we examined the
percentage of the reads that aligned to the coding region
(Table 1). For the Ribo-Zero, on average, 34.7% (range: 27.4–
46.1%) of the sequenced reads aligned to coding regions, and
for the RNase H, on average, 71.6% (range: 42.6–80.3%) of
the sequenced reads aligned to coding regions. An interesting
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Figure 1: (a) Unsupervised cluster using all detected RNAs. Samples were clustered first by replicates then by rRNA depletion method. (b)
Pairwise Spearman correlation heatmap between all samples. Ribo-Zero produced higher correlation between repeats than RNase H. The
samples RN4 and RN4r produce low correlations with other samples compared to other random pairs. This could be the result of variation
in the sample or variation introduced by the RNase H kit.

observationwasmade in regard to themapping quality (MQ).
Ribo-Zero produced higher mapping quality data in the
noncoding region, whereas the RNase H method produced
higher mapping quality in the coding region. For the Ribo-
Zero, the average MQ for the coding region was 29 (range:
23–36) and 47 (range: 46-47) for the noncoding region. For
the RNase Hmethod, the average MQwas 45 (range: 44−46)
for the coding region and 34 (range: 33–41) for the noncoding
region. One of the repeats of sample two, which used the
RNase H, is a potential outlier because it had the lowest GC
content (39.8%) and the lowest coding region alignment rate
(42.6%) of all the RNase H based samples. RNase H also
produced less percentage of rRNA reads compared to Ribo-
Zero (paired 𝑡-test 𝑝 = 0.03).

3.3. Cluster Analysis. Cluster analysis showed that, regardless
of which RNA isolation kit was used, the repeated sample
clustered together based on gene expression.Within repeated
samples, the rRNA depletion kits were clustered separately.
The cluster analysis results provided additional evidence of
quality concern for the RNase H sample two repeat one, as

it was the only sample that did not perfectly cluster with
its pair within the same RNA isolation kit (Figure 1(a)). The
correlation heatmap (Figure 1(b)) showed similar results as
presented in Figure 1(a). Essentially, we observed a higher
pairwise correlation between repeated samples than between
random samples.

3.4. TNBC Subtype Comparison. Overall, correlations to the
TNBC subtypes were similar in replicates (Figure 2). RNase
H samples had more consistent TNBC subtype calls between
replicates (3/4 matching) than the Ribo-Zero samples (2/4
matching). The nonmatching replicate in the RNase H sam-
ples is sample 2 where we have previously noted its quality
issue. This result suggests that RNase H produces RNAseq
data with more consistent TNBC subtyping.

3.5. NanoString Comparison. We computed Spearman’s cor-
relation coefficients using the gene expression levels between
RNAseq. The correlation dot plot (Figure 3) shows that the
average correlation between Ribo-Zero and NanoString is
0.59 (range: 0.53–0.67), and the average correlation between
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Figure 2: TNBC subtype results from TNBC type. The results show that RNase H samples produced better TNBC subtype consistency than
Ribo-Zero samples.
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Figure 3: Spearman’s correlation coefficients between RNAseq data
and NanoString data. The Ribo-Zero samples produced slightly
higher correlation with NanoString data then RNase H samples.

RNase H and NanoString is 0.49 (range: 0.32–0.66). The
lowest correlation was produced by RNase H sample two

repeat one which is likely to be a sample with a sequencing
quality issue.

3.6. RNA Detection. We examined four kinds of RNAs:
mRNA (Figure 4(a)), lncRNA (Figure 4(b)), enhancer RNA
(Figure 4(c)), and super enhancer RNA (Figure 4(d)). After
normalization by total read count, we used four detection
thresholds (>0, >2, >5, and >10) to compare the RNA
detection rates between the two RNA isolation kits. For all
four types of RNAs, the Ribo-Zero rRNA depletion method
detects more RNA at detection thresholds >0 and >2. When
higher detection thresholds were used, the RNaseHmanaged
to detect more RNAs. RNA detected with low expression
values could be the result of noises and is therefore less trust-
worthy than RNA detected with higher levels of expression.
Based on these results, the RNase H rRNA depletion method
detected more potentially reliable RNA as compared to the
Ribo-Zero.

3.7. SNV Detection. We inferred SNVs from the FFPE RNA
data using VarScan 2. After filtering for high quality SNVs
(depth > 20), on average, the Ribo-Zero samples identified
525 SNVs per sample (range: 73–1862), and the RNase H
samples identified 57747 SNVs per sample (range: 21932–
87146). The RNase H samples clearly identified more SNVs
than the Ribo-Zero prepared samples. This is caused by the
difference of number of callable sites between the two kits.
We defined a callable site to be a genomic position with
coverage depth ≥ 20. RNase H produced substantially more
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Figure 4: Detected RNA using thresholds: normalized reads count > 0, 2, 5, and 10. (a) Protein coding RNA. (b) lncRNA. (c) Enhancer RNA.
(d) Super enhancer RNA. At lower thresholds (more noise), Ribo-Zero samples detected more RNAs. At higher thresholds (more reliability),
RNase H method detected more RNAs.

callable sites than Ribo-Zero (Figure 5). The callable site
analysis result shows that the coverage of Ribo-Zero is more
spread out than RNase H. High variations in the number
of SNVs were observed for both RNA isolation kits. For

SNVs identified in coding regions, on average, the Ti/Tv ratio
for Ribo-Zero was 3.51 (range: 2.42–8.00) and 2.08 (range:
1.34–2.47) for RNase H. For SNVs identified in noncoding
regions, on average, the Ti/Tv ratio for Ribo-Zero was 2.84
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Figure 5: Callable site is defined as a genomic position with depth
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substantially more callable sites than Ribo-Zero. The percentage of
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difference in number of total reads sequenced by the two kits.𝑌-axis
is plotted in log
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scale.

(range: 2.37–3.84) and 3.74 (range: 1.04–5.27) for RNase H.
The variation for the Ti/Tv ratio is large, indicating potential
problems with the SNVs identified.

Additional evidence for problematic SNV inferences was
observed in the results of the pairwise heterozygous genotype
consistency between samples. In DNA sequencing, we expect
the heterozygous genotype consistency rate for technical
replicates to be above 0.99. For RNAseq, the consistency rate
is expected to be lower but still yield above 80%. However, on
average, the consistency rates for both kits were less than 40%
which were substantially below expectation. Restricting SNV
pairwise heterozygous consistency computation to SNVs
with depth greater than 50x for both samples in the pair
increased the consistency slightly but still remained <50%.
The low heterozygous consistency rates indicate that SNVs
inferred from FFPE RNAseq samples contain high false
positive rates and are therefore not ideal sources for detecting
SNV.

4. Discussion

Utilization of FFPE specimens for gene expression studies
could open a new avenue for molecular epidemiological
and clinical research. Yet to date, the low quality of RNA
from FFPE specimens for gene expression analysis has been
a challenge. Several technologies have been developed for
quantifying gene expression from FFPE specimens, such as
NanoString [49] and quantitative Nuclease Protection Assay
[50].

Since gene expression data can yield both molecular
subtype classification and predicative markers of risk, efforts
have been made to use RNA extracted from FFPE tissue on
NanoString andmicroarray platforms [51, 52]. Triple negative
breast cancer has been shown to be transcriptionally hetero-
geneous, with several molecular subtypes with differing biol-
ogy [40, 53, 54]. The ability to identify TNBC subtypes from
RNA isolated from FFPE tissues will provide opportunities
for future clinical trial designs and retrospective evaluations
of previously failed clinical trials by individual subtypes. To
determine if RNA extracted from FFPE tissue that has been
stored for eight to nine years could yield gene expression
profiles by RNAseq sufficient enough to subtype TNBC, we
compared the efficiencies of both the Ribo-Zero and the
RNase H methods for rRNA depletion.

Through thorough quality control and analyses, we found
that expression profiling of coding and noncoding RNA is
possible for aged FFPE samples with RNAseq technology.
The Ribo-Zero and RNase H method each had strengths
and weaknesses in different areas. Our analyses suggested
that RNase H is more suitable for studies that target protein
coding RNA. On the other hand, Ribo-Zero offered more
consistency between repeated samples, which is of pivotal
importance, especially for low quality RNA extracted from
FFPE tissues. Under the same amount of library input and
same multiplexing scenario, RNase H consistently produced
more reads than Ribo-Zero. Many reasons could have caused
this read counts difference, including batch effect of the
cluster on the flow cell, and library efficiencies.The evidences
of more total reads sequenced under the same input amount
and better rRNA depletion efficiency for RNase H support
that RNase H has better library efficiency than Ribo-Zero.
RNase H hybridizes directly to the sequences of rRNAs
without the requirement of perfect match. The Ribo-Zero
uses bait strategy which is similar to enrichment like exome
capture with baits and beads. Thus it does not remove
degraded, fragmented rRNAs as efficient as RNase H. Our
study confirms previous finding that RNase H performed
better than Ribo-Zero for low quality RNAs [55].

Furthermore, genes quantified fromRibo-Zero processed
RNAseq data also had a slightly higher correlation with
genes quantified by NanoString technology. This suggests
that Ribo-Zero might offer better repeatability, although the
correlation (50–60%, FFPE) with NanoString data (FFPE)
did not reach the high correlation (80–90%, fresh frozen)
between microarray and RNAseq [56]. We suspect this is
primarily due to the variation introduced by the degraded
quality of the RNA extracted from FFPE samples.

The subtyping of gene expression profiles obtained by
both methods demonstrated that RNA isolated from stored
FFPE samples can be used to determine distinct TNBC sub-
types. While TNBC subtypes were similar among replicates,
RNase H samples had more consistent TNBC subtype calls
between replicates than that of the Ribo-Zero samples, which
is potentially due to the more efficient capture of protein
coding RNA.

By performing SNV detection analysis, we found that
SNV detected by FFPE RNAseq data is subjected to quality
concerns. It has been suggested that the SNV data inferred
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from RNAseq data has a high false positive rate [57]. Several
factors can contribute to the high false positive rate of SNV.
First, alignment on RNAseq data can be more complicated
than DNA sequencing data [19]. Processes such as RNA
editing, alternative splicing, gene fusion, and polyadenylation
introduce additional complications in RNAseq alignment.
The step that reverse-transcribes RNA to cDNA can also
introduce random errors. We have found that the number of
SNVs inferred from RNAseq data can be several folds higher
than that from the exome sequencing data on the sample. In
our study, the lower quality of RNA isolated from FFPE tissue
will result in an even higher number of false positive SNVs.
The low consistency rate of SNVs identified between paired
samples suggests that RNAseq data from FFPE tissues are not
suitable for SNV inference.

5. Conclusion

Recent studies have shown remarkably high consistency
between RNAseq data generated from paired freshly frozen
and FFPE tissue samples [58–60]. Our study provides addi-
tional evidence for the practicability of conducting gene
expression RNAseq with FFPE tissues. There is no denying
that there are technical and quality limitations for FFPE
RNAseq data. However, the majority of the issues can be
overcome through thorough quality control and careful
bioinformatics analyses. Our study supports the notions that
RNAseq on FFPE samples can be used as an unbiased and
comprehensive assessment of gene expression in biomedical
studies, and RNase H method provides more efficient rRNA
depletion than Ribo-Zeromethod for low quality fragmented
RNAs.
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